Skip to content
Snippets Groups Projects
Commit 7fcc872a authored by Hu Zhao's avatar Hu Zhao
Browse files

test: use flatter import

parent c7ec64fe
No related branches found
No related tags found
No related merge requests found
import os
import pytest
import numpy as np
import matplotlib.pyplot as plt
from scipy import optimize
from scipy.stats import norm, multivariate_normal, uniform
from psimpy.inference.active_learning import ActiveLearning
from psimpy.simulator.run_simulator import RunSimulator
from psimpy.simulator.mass_point_model import MassPointModel
from psimpy.sampler.latin import LHS
from psimpy.sampler.saltelli import Saltelli
from psimpy.emulator.robustgasp import ScalarGaSP, PPGaSP
from psimpy.inference.bayes_inference import GridEstimation
from psimpy.inference.bayes_inference import MetropolisHastingsEstimation
from psimpy.sampler.metropolis_hastings import MetropolisHastings
from scipy.stats import uniform, norm
from scipy import optimize
from beartype.roar import BeartypeCallHintParamViolation
import matplotlib.pyplot as plt
import os
from psimpy.inference import ActiveLearning
from psimpy.simulator import RunSimulator
from psimpy.simulator import MassPointModel
from psimpy.sampler import LHS
from psimpy.sampler import Saltelli
from psimpy.emulator import ScalarGaSP, PPGaSP
from psimpy.inference import GridEstimation
from psimpy.inference import MetropolisHastingsEstimation
from psimpy.sampler import MetropolisHastings
dir_test = os.path.abspath(os.path.join(__file__, '../'))
......
import os
import pytest
import itertools
import numpy as np
from scipy.stats import norm, multivariate_normal, uniform
from psimpy.inference.bayes_inference import GridEstimation
from psimpy.inference.bayes_inference import MetropolisHastingsEstimation
from psimpy.sampler.metropolis_hastings import MetropolisHastings
import matplotlib.pyplot as plt
import os
import itertools
from scipy.stats import norm, multivariate_normal, uniform
from psimpy.inference import GridEstimation
from psimpy.inference import MetropolisHastingsEstimation
from psimpy.sampler import MetropolisHastings
dir_test = os.path.abspath(os.path.join(__file__, '../'))
......
import pytest
import numpy as np
from psimpy.sampler.latin import LHS
from psimpy.sampler import LHS
from beartype.roar import BeartypeCallHintParamViolation
@pytest.mark.parametrize(
......
from psimpy.simulator.mass_point_model import MassPointModel
import numpy as np
import os
import numpy as np
import pytest
from psimpy.simulator import MassPointModel
@pytest.mark.parametrize(
"elevation, x0, y0",
......
import os
import pytest
import numpy as np
from scipy.stats import norm, multivariate_normal, uniform
from psimpy.sampler.metropolis_hastings import MetropolisHastings
import matplotlib.pyplot as plt
import os
from scipy.stats import norm, multivariate_normal, uniform
from psimpy.sampler import MetropolisHastings
@pytest.mark.parametrize(
"ndim, init_state, f_sample, target, ln_target, bounds, f_density, symmetric",
......
from psimpy.simulator.ravaflow24 import Ravaflow24Mixture
import numpy as np
import os
import pytest
import numpy as np
from psimpy.simulator import Ravaflow24Mixture
@pytest.mark.parametrize(
"dir_sim, conversion_control, curvature_control, surface_control, \
......
import os
import pytest
import numpy as np
from psimpy.emulator.robustgasp import RobustGaSPBase, ScalarGaSP, PPGaSP
from beartype.roar import BeartypeCallHintParamViolation
from rpy2.rinterface import NA
import os
from beartype.roar import BeartypeCallHintParamViolation
from psimpy.emulator import ScalarGaSP, PPGaSP
from psimpy.emulator.robustgasp import RobustGaSPBase
@pytest.mark.parametrize(
"ndim, zero_mean, nugget, nugget_est, range_par, method, prior_choice, \
......
from psimpy.simulator.run_simulator import RunSimulator
from psimpy.simulator.mass_point_model import MassPointModel
import os
import numpy as np
import itertools
import time
import itertools
import numpy as np
from psimpy.simulator import RunSimulator
from psimpy.simulator import MassPointModel
def test_run_mass_point_model():
mpm = MassPointModel()
......
from psimpy.simulator.run_simulator import RunSimulator
from psimpy.simulator.ravaflow24 import Ravaflow24Mixture
import numpy as np
import itertools
import time
import os
import time
import itertools
import numpy as np
from psimpy.simulator import RunSimulator
from psimpy.simulator import Ravaflow24Mixture
dir_test = os.path.abspath(os.path.join(__file__, '../'))
......
from psimpy.simulator.run_simulator import RunSimulator
import os
import pytest
import numpy as np
import os
from beartype.roar import BeartypeCallHintParamViolation
from psimpy.simulator import RunSimulator
def add(a, b, c , d=100, save=False, filename=None):
if save is True:
......
import pytest
import numpy as np
from SALib.sample.saltelli import sample
from psimpy.sampler.saltelli import Saltelli
from psimpy.sampler import Saltelli
from beartype.roar import BeartypeCallHintParamViolation
......
import pytest
import numpy as np
from psimpy.sampler.saltelli import Saltelli
from psimpy.sampler.latin import LHS
from psimpy.emulator.robustgasp import ScalarGaSP
from psimpy.sensitivity.sobol import SobolAnalyze
from psimpy.sampler import Saltelli
from psimpy.sampler import LHS
from psimpy.emulator import ScalarGaSP
from psimpy.sensitivity import SobolAnalyze
def f(x1,x2,x3):
return np.sin(x1) + 7*np.sin(x2)**2 + 0.1*x3**4*np.sin(x1)
......@@ -42,7 +41,6 @@ def test_SobolAnalyze(calc_second_order, skip_values, nbase, seed, mode,
print('analytical S1: \n', [0.314, 0.442, 0])
@pytest.mark.parametrize(
"calc_second_order, skip_values, nbase, seed, mode, max_workers",
[
......
import numpy as np
import pytest
import numpy as np
from beartype.roar import BeartypeCallHintParamViolation
from psimpy.utility.util_funcs import scale_samples
import beartype
@pytest.mark.parametrize(
'samples, bounds',
......@@ -11,7 +12,7 @@ import beartype
]
)
def test_scale_samples_TypeError(samples, bounds):
with pytest.raises(beartype.roar.BeartypeCallHintParamViolation):
with pytest.raises(BeartypeCallHintParamViolation):
scale_samples(samples, bounds)
@pytest.mark.parametrize(
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment