Skip to content
Snippets Groups Projects
Commit c01c699f authored by Nassim Bouteldja's avatar Nassim Bouteldja
Browse files

Update README.md

parent aec5e534
Branches
No related tags found
No related merge requests found
......@@ -5,7 +5,7 @@
# **FLASH**: **F**ramework for **LA**rge-**S**cale **H**istomorphometry
This repository represents a python framework to train, evaluate and apply segmentation networks for renal histological analysis. In particular, we trained an [nnUnet](https://github.com/MIC-DKFZ/nnUNet) for kidney tissue segmentation followed by training another [U-net-like](https://arxiv.org/pdf/1505.04597.pdf) CNN for the segmentation of several renal structures including ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+) tubulus, ![#00ff00](https://via.placeholder.com/15/00ff00/000000?text=+) glomerulus, ![#0000ff](https://via.placeholder.com/15/0000ff/000000?text=+) glomerular tuft, ![#00ffff](https://via.placeholder.com/15/00ffff/000000?text=+) non-tissue background (including veins, renal pelvis), ![#ff00ff](https://via.placeholder.com/15/ff00ff/000000?text=+) artery, and ![#ffff00](https://via.placeholder.com/15/ffff00/000000?text=+) arterial lumen from PAS-stained histopathology data. In our experiments, we utilized human tissue data sampled from different cohorts including inhouse biopsies (UKA_B) and nephrectomies (UKA_N), the *Human BioMolecular Atlas Program* cohort (HuBMAP), the *Kidney Precision Medicine Project* cohort (KPMP), and the *Validation of the Oxford classification of IgA Nephropathy* cohort (VALIGA).
This repository represents a python framework to train, evaluate and apply segmentation networks for renal histological analysis. In particular, we trained an [nnUnet](https://github.com/MIC-DKFZ/nnUNet) for kidney tissue segmentation followed by training another [U-net-like](https://arxiv.org/pdf/1505.04597.pdf) CNN for the segmentation of several renal structures including ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+) tubulus, ![#00ff00](https://via.placeholder.com/15/00ff00/000000?text=+) glomerulus, ![#0000ff](https://via.placeholder.com/15/0000ff/000000?text=+) glomerular tuft, ![#00ffff](https://via.placeholder.com/15/00ffff/000000?text=+) non-tissue background (including veins, renal pelvis), ![#ff00ff](https://via.placeholder.com/15/ff00ff/000000?text=+) artery, and ![#ffff00](https://via.placeholder.com/15/ffff00/000000?text=+) arterial lumen from PAS-stained histopathology data. In our experiments, we utilized human tissue data sampled from different cohorts including inhouse biopsies (AC_B) and nephrectomies (AC_N), the *Human BioMolecular Atlas Program* cohort (HuBMAP), the *Kidney Precision Medicine Project* cohort (KPMP), and the *Validation of the Oxford classification of IgA Nephropathy* cohort (VALIGA).
# Installation
1. Clone this repo using [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git):<br>
......@@ -55,9 +55,9 @@ Besides, you can also apply the trained network to our provided exemplary image
<br>
| Cohort | Annotation |
|:--:|:--:|
| UKA_B | Annotation |
| AC_B | Annotation |
| <img src="/exemplaryImages/UKA_Biopsies.png" width="400">| <img src="/exemplaryImages/UKA_Biopsies_Annotation.png" width="324"> |
| UKA_N | Annotation |
| AC_N | Annotation |
| <img src="/exemplaryImages/UKA_Nephrectomy.png" width="400">| <img src="/exemplaryImages/UKA_Nephrectomy_Annotation.png" width="324"> |
| HuBMAP | Annotation |
| <img src="/exemplaryImages/HuBMAP.png" width="400">| <img src="/exemplaryImages/HuBMAP_Annotation.png" width="324"> |
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment