"data = np.moveaxis(training_data,4,1) # GAN output has shape(N,W,H,D,C) but no need to change spatial dimensions, but Channel dimension must be changed\n",
"#input[0-3]: Orientation, input[4]: Phase(one for martinsite)"
...
...
@@ -69,7 +59,7 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
...
...
@@ -82,7 +72,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"size of input is torch.Size([1987, 6, 32, 32, 32])\n",
"size of input is torch.Size([1987, 2, 32, 32, 32])\n",
"size of label is torch.Size([1987, 32, 32, 32])\n"
"/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:136: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray\n",
/usr/local/lib/python3.7/dist-packages/numpy/core/_asarray.py:136: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray