Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DAMASK3
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Brian Christopher Wasels
DAMASK3
Commits
6b0f4593
Commit
6b0f4593
authored
3 years ago
by
Brian Christopher Wasels
Browse files
Options
Downloads
Patches
Plain Diff
Modification of V13
parent
cf040dc7
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
Notes.txt
+1
-1
1 addition, 1 deletion
Notes.txt
UNet/UNet_V13.py
+3
-3
3 additions, 3 deletions
UNet/UNet_V13.py
with
4 additions
and
4 deletions
Notes.txt
+
1
−
1
View file @
6b0f4593
...
...
@@ -8,7 +8,7 @@ V9: 3 layer, doppelte depth Conv pro layer, norm. Daten,kernel 5, phase only
V10: 3 layer, eine Conv pro layer, norm Daten, phase only
V11: 3 layer, doppel Conv, normDaten, phase + angle
V12: 3 layer, doppel Conv, normDataen,phase 64
V13: 4 layer, doppel Conv, normDataen,
phase
64
V13: 4 layer, doppel Conv, normDataen,
angles
64
V14: 4 layer, single conv, normDataen,phase + angle 64
V15: 3 layer, doppelte depth Conv pro layer, norm. Daten,kernel 7, phase only, dropout 0.3, 32
V16: 3 layer, doppelte depth Conv pro layer, norm. Daten,kernel 7, angelsonly, dropout 0.5, 32
...
...
This diff is collapsed.
Click to expand it.
UNet/UNet_V13.py
+
3
−
3
View file @
6b0f4593
...
...
@@ -134,7 +134,7 @@ def accuracy(outputs, labels,normalization, threshold = 0.05):
return
percentage
class
UNet
(
UNetBase
):
def
__init__
(
self
,
kernel_size
=
5
,
enc_chs
=
((
6
,
6
,
16
),
(
16
,
16
,
32
),
(
32
,
32
,
64
),
(
64
,
128
,
128
)),
dec_chs_up
=
(
128
,
128
,
64
,
32
),
dec_chs_conv
=
((
192
,
128
,
128
),(
160
,
64
,
64
),(
8
0
,
32
,
32
)
,(
38
,
16
,
1
)
),
normalization
=
np
.
array
([
0
,
1
])):
def
__init__
(
self
,
kernel_size
=
7
,
enc_chs
=
((
6
,
16
,
32
),
(
32
,
32
,
64
),
(
64
,
64
,
128
),
(
128
,
128
,
256
)),
dec_chs_up
=
(
256
,
256
,
128
,
64
),
dec_chs_conv
=
((
384
,
256
,
256
),(
320
,
128
,
128
),(
160
,
64
,
64
),(
7
0
,
32
,
32
)),
normalization
=
np
.
array
([
0
,
1
])):
super
().
__init__
()
self
.
encoder
=
Encoder
(
kernel_size
=
kernel_size
,
chs
=
enc_chs
)
self
.
decoder
=
Decoder
(
kernel_size
=
kernel_size
,
chs_upsampling
=
dec_chs_up
,
chs_conv
=
dec_chs_conv
)
...
...
@@ -225,8 +225,8 @@ if __name__ == '__main__':
path_to_rep
=
'
/home/yk138599/Hiwi/damask3
'
use_seeds
=
False
seed
=
373686838
num_epochs
=
3
00
b_size
=
1
0
num_epochs
=
2
00
b_size
=
1
6
opt_func
=
torch
.
optim
.
Adam
lr
=
0.00003
kernel
=
7
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment