Skip to content
Snippets Groups Projects
Select Git revision
  • bacad0a77d8c66b1bc1adb8f9752b8fe4619c026
  • 5.4 default protected
  • 5.5
  • dev/5.5
  • dev/5.4
  • dev/5.3_downgrade
  • feature/experimenttime_hack
  • 5.3 protected
  • _IntenSelect5.3
  • IntenSelect5.3
  • 4.27 protected
  • 4.26 protected
  • 5.0 protected
  • 4.22 protected
  • 4.21 protected
  • UE5.4-2024.1
  • UE5.4-2024.1-rc1
  • UE5.3-2023.1-rc3
  • UE5.3-2023.1-rc2
  • UE5.3-2023.1-rc
20 results

RWTHVRToolkitSettings.h

Blame
  • runme.py 6.90 KiB
    """
    MIT License
    
    Copyright (c) 2023 RWTH Aachen University
    
    Permission is hereby granted, free of charge, to any person obtaining a copy
    of this software and associated documentation files (the "Software"), to deal
    in the Software without restriction, including without limitation the rights
    to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    copies of the Software, and to permit persons to whom the Software is
    furnished to do so, subject to the following conditions:
    
    The above copyright notice and this permission notice shall be included in
    all copies or substantial portions of the Software.
    
    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
    AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    THE SOFTWARE.
    """
    
    import pandas as pd
    import Tooling.input_profile_processor.input_profile_processor
    from Tooling.dynamics.Dynamic import GlobalDynamic
    import Model_Library.Prosumer.main as main_prosumer
    import Model_Library.District.main as main_district
    from enum import Enum
    import json
    
    class SimulationScope(Enum):
        PROSUMER = 1
        DISTRICT = 2
    
    simulation_scope = SimulationScope.DISTRICT
    t_start = pd.Timestamp("2019-05-10 00:00:00") # start time of simulation
    global_dynamic = GlobalDynamic([3600 for i in range(240)])
    dynamic = global_dynamic.root()
    
    input_profile_dict = {'irradiance_1': {'type': 'irradiance', 'file': 'input_files/data/irradiance/Lindenberg2006BSRN_Irradiance_60sec.csv'},
                          'temperature_1': {'type': 'air_temperature', 'file': 'input_files/data/temperature/temperature.csv'},
                          'demand_electric_1': {'type': 'elec_demand', 'generate': {'yearly_demand': 3000}},
                          'demand_heat_1': {'type': 'therm_demand', 'generate': {'yearly_demand': 6000, 'temperature': 'temperature_1'}},
                          'demand_hot_water_1': {'type': 'hot_water_demand', 'generate': {'yearly_demand': 1500, 'temperature': 'temperature_1'}},
                          'irradiance_2': {'type': 'irradiance', 'file': 'input_files/data/irradiance/Lindenberg2006BSRN_Irradiance_60sec.csv'},
                          'temperature_2': {'type': 'air_temperature', 'file': 'input_files/data/temperature/temperature.csv'},
                          'demand_electric_2': {'type': 'elec_demand', 'generate': {'yearly_demand': 3000}},
                          'demand_heat_2': {'type': 'therm_demand', 'generate': {'yearly_demand': 6000, 'temperature': 'temperature_2'}},
                          'demand_hot_water_2': {'type': 'hot_water_demand', 'generate': {'yearly_demand': 1500, 'temperature': 'temperature_2'}},
                          'irradiance_3': {'type': 'irradiance', 'file': 'input_files/data/irradiance/Lindenberg2006BSRN_Irradiance_60sec.csv'},
                          'temperature_3': {'type': 'air_temperature', 'file': 'input_files/data/temperature/temperature.csv'},
                          'demand_electric_3': {'type': 'elec_demand', 'generate': {'yearly_demand': 0}},
                          'demand_heat_3': {'type': 'therm_demand', 'generate': {'yearly_demand': 0, 'temperature': 'temperature_3'}},
                          'demand_hot_water_3': {'type': 'hot_water_demand', 'generate': {'yearly_demand': 0, 'temperature': 'temperature_3'}},
                          'elec_price_1': {'type': 'elec_price', 'file': 'input_files/data/prices/day-ahead/hourly_price.csv'}}
    
    input_profiles = Tooling.input_profile_processor.input_profile_processor.process_input_profiles(input_profile_dict, t_start, dynamic)
    
    prosumer_paths = {'SCN2_CAT1_PV11_3000_6000': 'input_files/models/prosumer_models/SCN2_CAT1_PV11/prosumer.json',
                      'SCN0_CAT1_3000_6000': 'input_files/models/prosumer_models/SCN0_CAT1/prosumer.json'}
    prosumer_profiles = {'SCN2_CAT1_PV11_3000_6000': {'pv_roof': {'irradiance' : 'irradiance_1', 'temperature': 'temperature_1'},
                                                      'elec_cns': {'consumption': 'demand_electric_1'},
                                                      'therm_cns': {'consumption': 'demand_heat_1'},
                                                      'dhw_dmd': {'consumption': 'demand_hot_water_1'}},
                         'SCN0_CAT1_3000_6000': {'elec_cns': {'consumption': 'demand_electric_2'},
                                                 'therm_cns': {'consumption': 'demand_heat_2'},
                                                 'dhw_dmd': {'consumption': 'demand_hot_water_2'}}}
    prosumer_dict = dict()
    for prosumer_name, prosumer_path in prosumer_paths.items():
        with open(prosumer_path) as f:
            prosumer_json = json.load(f)
        prosumer_dict[prosumer_name] = prosumer_json
    for prosumer_name, component_profiles in prosumer_profiles.items():
        for component_name, profiles in component_profiles.items():
            prosumer_dict[prosumer_name]['components'][component_name].update(profiles)
    
    prosumer_main = main_prosumer.ProsumerMain(prosumer_dict, input_profiles, dynamic)
    
    prosumer_sizing_strategy = ['annuity']
    prosumer_main.optimize_sizing('sized', prosumer_sizing_strategy)
    
    prosumer_main.save_results()
    
    prosumers = prosumer_main.prosumers
    
    if simulation_scope == SimulationScope.PROSUMER:
        exit()
    
    district_asset_paths = {'ca_bat': 'input_files/models/district_models/example_CA/prosumer.json'}
    district_asset_profiles = {'ca_bat': {'elec_cns': {'consumption': 'demand_electric_3'}}}
    district_asset_dict = dict()
    for district_asset_name, district_asset_path in district_asset_paths.items():
        with open(district_asset_path) as f:
            district_asset_json = json.load(f)
        district_asset_dict[district_asset_name] = district_asset_json
    for district_asset_name, component_profiles in district_asset_profiles.items():
        for component_name, profiles in component_profiles.items():
            district_asset_dict[district_asset_name]['components'][component_name].update(profiles)
    
    district_assets = main_prosumer.DistrictAssetMain(district_asset_dict, input_profiles, dynamic).district_assets
    
    district_paths = {'community': 'input_files/models/district_models/example_community/district.json'}
    district_profiles = {'community': {'wholesale_price': 'elec_price_1', 'injection_price': 'elec_price_1'}}
    district_dict = dict()
    for district_name, district_path in district_paths.items():
        with open(district_path) as f:
            district_json = json.load(f)
        district_dict[district_name] = district_json
    for district_name, profiles in district_profiles.items():
        district_dict[district_name].update(profiles)
    
    district_main = main_district.DistrictMain(district_dict, prosumers, district_assets, input_profiles, dynamic)
    
    district_sizing_strategy = 'max_operational_profit'
    district_main.optimize_sizing('sized', district_sizing_strategy)
    
    district_main.save_results()