Skip to content
Snippets Groups Projects
Commit 3dddda3e authored by Thomas Kaster's avatar Thomas Kaster
Browse files

update files

parent 8f6ae77b
No related branches found
No related tags found
No related merge requests found
Pipeline #260721 failed
......@@ -5,12 +5,13 @@ Credits
Development Lead
----------------
* Jan-Niklas Schneider <jan-niklas.schneider@llt.rwth-aachen.de>
* Thomas Kaster <thomas.kaster@llt.rwth-aachen.de>
Contributors
------------
* Felipe Arango Callejas <Felipe.arango.callejas@llt.rwth-aachen.de>
* Leon Gorißen <leon.gorissen@llt.rwth-aachen.de>
* Thomas Kaster <thomas.kaster@llt.rwth-aachen.de>
* Jan-Niklas Schneider <jan-niklas.schneider@llt.rwth-aachen.de>
* Philipp Walderich <philipp.walderich@llt.rwth-aachen.de>
* Christian Hinke <christian.hinke@llt.rwth-aachen.de>
......@@ -48,9 +48,9 @@ source_suffix = ".rst"
master_doc = "index"
# General information about the project.
project = "LSTM-based inverse dynamics learning for Franka Emika Panda"
copyright = "2023, Jan-Niklas Schneider"
author = "Jan-Niklas Schneider"
project = "Identification of new kinematic systems for laser materials processing"
copyright = "2023, Thomas Kaster"
author = "Thomas Kaster"
# The version info for the project you're documenting, acts as replacement
# for |version| and |release|, also used in various other places throughout
......@@ -86,7 +86,7 @@ todo_include_todos = False
# a list of builtin themes.
#
html_theme = "piccolo_theme"
html_title = "LSTM-based Inverse Dynamics Learning for Franka Emika Panda - Supplementary Information"
html_title = "Identification of new kinematic systems for laser materials processing - Supplementary Information"
# Theme options are theme-specific and customize the look and feel of a
# theme further. For a list of options available for each theme, see the
# documentation.
......@@ -102,7 +102,7 @@ html_static_path = ["_static"]
# -- Options for HTMLHelp output ---------------------------------------
# Output file base name for HTML help builder.
htmlhelp_basename = "LSTM-based_inverse_dynamics_learning_for_Franka_Emika_Pandadoc"
htmlhelp_basename = "Identification_of_new_kinematic_systems_for_laser_materials_processingdoc"
# -- Options for LaTeX output ------------------------------------------
......@@ -128,9 +128,9 @@ latex_elements = {
latex_documents = [
(
master_doc,
"LSTM-based_inverse_dynamics_learning_for_Franka_Emika_Panda.tex",
"LSTM-based Inverse Dynamics Learning for Franka Emika Panda",
"Jan-Niklas Schneider",
"Identification_of_new_kinematic_systems_for_laser_materials_processing.tex",
"Identification of new kinematic systems for laser materials processing",
"Thomas Kaster",
"manual",
),
]
......@@ -143,8 +143,8 @@ latex_documents = [
man_pages = [
(
master_doc,
"LSTM-based_inverse_dynamics_learning_for_Franka_Emika_Panda",
"LSTM-based Inverse Dynamics Learning for Franka Emika Panda Supplementary Information",
"Identification_of_new_kinematic_systems_for_laser_materials_processing",
"Identification of new kinematic systems for laser materials processing Supplementary Information",
[author],
1,
)
......@@ -159,10 +159,10 @@ man_pages = [
texinfo_documents = [
(
master_doc,
"LSTM-based_inverse_dynamics_learning_for_Franka_Emika_Panda",
"LSTM-based Inverse Dynamics Learning for Franka Emika Panda Supplementary Information",
"Identification_of_new_kinematic_systems_for_laser_materials_processing",
"Identification of new kinematic systems for laser materials processing Supplementary Information",
author,
"LSTM-based_inverse_dynamics_learning_for_Franka_Emika_Panda",
"Identification_of_new_kinematic_systems_for_laser_materials_processing",
"One line description of project.",
"Miscellaneous",
),
......
====
Data
====
\ No newline at end of file
.. _dataset_v1:
.. include:: ../../data/dataset_v1/README.rst
\ No newline at end of file
.. _dataset_v2:
.. include:: ../../data/dataset_v2/README.rst
\ No newline at end of file
.. _dataset_v3:
.. include:: ../../data/dataset_v3/README.rst
docs/data/example_trajectory_random_joint.png

114 KiB

.. include:: ../../data/README.rst
********
Contents
********
.. toctree::
:maxdepth: 2
trajectory_generation
dataset_v1
dataset_v2
dataset_v3
\ No newline at end of file
.. _trajectory_generation:
#####################
Trajectory Generation
#####################
*********************
Random Pick and Place
*********************
Used in dataset V1
A random pick and place task is executed.
A random start and random target position (cartesian) is used.
After start, the tcp moves up 10cm, go the target position, go
down 10cm.
The trajectory is calculated in cartesian and joint space.
An example pick and place trajectory is depicted in the following
image.
Pick and Place Trajectory in Task Space
=======================================
Interpolated in joint space
---------------------------
.. image:: example_trajectory_pickandplace_task_1.png
Interpolated in task space
--------------------------
.. image:: example_trajectory_pickandplace_task_2.png
Pick and Place Trajectory in Joint Space
========================================
Interpolated in joint space
---------------------------
.. image:: example_trajectory_pickandplace_joint_1.png
Interpolated in task space
--------------------------
.. image:: example_trajectory_pickandplace_joint_2.png
Video of Random Pick and Place
==============================
* First: Interpolated in cartesian space
* Second: Interpolated in joint space
.. raw:: html
<embed>
<iframe width="560" height="315" src="https://www.youtube.com/embed/_fE7tPmV8Tk" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
</embed>
**************************
Random joint configuration
**************************
Used in dataset V2, V3
A random joint configuration is sampled.
The trajectory to this target is calculated started
from the actual joint position.
This results in a trajectory as examplary depicted in the
following picture.
Random Joint Trajectory in Task Space
=====================================
.. image:: example_trajectory_random_joint_task.png
Random Joint Trajectory in Joint Space
======================================
.. image:: example_trajectory_random_joint.png
Video of Random Joint Trajectory Generation
===========================================
.. raw:: html
<embed>
<iframe width="560" height="315" src="https://www.youtube.com/embed/ZAGxRc4KSUI" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
</embed>
***********************
ISO9283 test trajectory
***********************
Used in dataset V3 (test)
For evaluation, the optional test path for 400 x 400 mm plane
in A.5 (ISO 9283- Leistungskenngrößen und zugehörige Prüfmethoden,
9283:1998, International Organization for Standardization, 1998.) is used.
A velocity factor of 0.25, an acceleration factor of 0.1 is chosen.
Start position is [-0.18, 0.6, 0.2, -np.pi, 0, 0].
ISO9283 Trajectory in Task Space
================================
.. image:: example_trajectory_iso9283_task.png
ISO9283 Trajectory in Joint Space
=================================
.. image:: example_trajectory_iso9283.png
\ No newline at end of file
......@@ -5,8 +5,7 @@ Contents
.. toctree::
:maxdepth: 2
data/index
neural_network/index
data
authors
Indices and tables
......
Network Architecture
====================
The image below shows the neural network (stellar-sweep-529) resulting from hyperparameter search used for torque estimation.
.. image:: ../../src/Inverse_Dynamics/test_results/model_plot.png
\ No newline at end of file
Frequency Analysis
==================
test_result_fft_ISO_20230215_115048
-----------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_ISO_20230215_115048.png
test_result_fft_20230215_114631
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114631.png
test_result_fft_20230215_114651
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114651.png
test_result_fft_20230215_114701
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114701.png
test_result_fft_20230215_114712
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114701.png
test_result_fft_20230215_114716
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114716.png
test_result_fft_20230215_114729
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114729.png
test_result_fft_20230215_114751
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114751.png
test_result_fft_20230215_114802
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114802.png
test_result_fft_20230215_114808
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114808.png
test_result_fft_20230215_114813
-------------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_fft_20230215_114813.png
Hyperparameter Search
=====================
A report on the hyperparameter search conducted with weights&biases is available `here <https://api.wandb.ai/links/llt_dpp/35bafije>`_.
.. raw:: html
<embed>
<iframe src="https://wandb.ai/llt_dpp/Panda_Inverse_Dynamics/reports/Hyperparameter-search-for-LSTM-based-Inverse-Dynamics-Learning-for-Franka-Emika-Panda--VmlldzozNjM1MzMx" style="border:none;height:1024px;width:100%">
</embed>
\ No newline at end of file
==============
Neural Network
==============
The training of the neural network is based on dataset V3.
An optimized network architecture is derived by hyperparameter search.
The hyperparameter search is based on Weights & Biases.
The neural network predictions are conducted with a test dataset and
are analyzed in frequency domain.
********
Contents
********
.. toctree::
:maxdepth: 1
architecture
hyperparameter
results
freq_analysis
\ No newline at end of file
Neural Network Results
======================
test_result_ISO_20230215_115048
-------------------------------
The figure is presented in the original paper.
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_ISO_20230215_115048.csv
:header-rows: 1
test_result_20230215_114631
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114631.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114631.csv
:header-rows: 1
test_result_20230215_114651
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114651.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114651.csv
:header-rows: 1
test_result_20230215_114701
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114701.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114701.csv
:header-rows: 1
test_result_20230215_114712
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114712.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114712.csv
:header-rows: 1
test_result_20230215_114716
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114716.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114716.csv
:header-rows: 1
test_result_20230215_114729
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114729.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114729.csv
:header-rows: 1
test_result_20230215_114751
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114751.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114751.csv
:header-rows: 1
test_result_20230215_114802
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114802.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114802.csv
:header-rows: 1
test_result_20230215_114808
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114808.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114808.csv
:header-rows: 1
test_result_20230215_114813
---------------------------
.. figure:: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114813.png
.. csv-table:: Root Mean Square Error [Nm]
:file: ../../src/Inverse_Dynamics/test_results/test_result_20230215_114813.csv
:header-rows: 1
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment