Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
nmap2024
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Egenolf, Thilo
nmap2024
Commits
aa6aa372
Unverified
Commit
aa6aa372
authored
8 months ago
by
tegenolf
Committed by
GitHub
8 months ago
Browse files
Options
Downloads
Patches
Plain Diff
Create config2.py
parent
18383da1
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
week2/config2.py
+133
-0
133 additions, 0 deletions
week2/config2.py
with
133 additions
and
0 deletions
week2/config2.py
0 → 100644
+
133
−
0
View file @
aa6aa372
#!/usr/bin/env python
m
=
1
g
=
1
L
=
1
dt
=
0.1
def
hamiltonian
(
theta
,
p
):
T
=
p
*
p
/
(
2
*
m
*
L
*
L
)
U
=
m
*
g
*
L
*
(
1
-
np
.
cos
(
theta
))
return
T
+
U
def
solve_euler
(
theta
,
p
,
dt
=
0.1
):
# for comparison
theta_next
=
theta
+
dt
*
p
/
(
m
*
L
*
L
)
p_next
=
p
-
dt
*
m
*
g
*
L
*
np
.
sin
(
theta
)
return
(
theta_next
,
p_next
)
def
solve_leapfrog
(
theta
,
p
,
dt
=
dt
):
theta_half
=
theta
+
dt
/
2
*
p
/
(
m
*
L
*
L
)
p_next
=
p
-
dt
*
m
*
g
*
L
*
np
.
sin
(
theta_half
)
theta_next
=
theta_half
+
dt
/
2
*
p_next
/
(
m
*
L
*
L
)
return
(
theta_next
,
p_next
)
def
emittance
(
theta
,
p
):
N
=
len
(
theta
)
# subtract centroids
theta
=
theta
-
1
/
N
*
np
.
sum
(
theta
)
p
=
p
-
1
/
N
*
np
.
sum
(
p
)
# compute Σ matrix entries
theta_sq
=
1
/
N
*
np
.
sum
(
theta
*
theta
)
p_sq
=
1
/
N
*
np
.
sum
(
p
*
p
)
crossterm
=
1
/
N
*
np
.
sum
(
theta
*
p
)
# determinant of Σ matrix
epsilon
=
np
.
sqrt
(
theta_sq
*
p_sq
-
crossterm
*
crossterm
)
return
epsilon
# more stuff:
# for TUDa jupyter hub (https://tu-jupyter-i.ca.hrz.tu-darmstadt.de/)
# --> install dependencies via
# $ pip install -r requirements_noversions.txt --prefix=`pwd`/requirements
import
sys
sys
.
path
.
append
(
'
./requirements/lib/python3.8/site-packages/
'
)
import
warnings
warnings
.
filterwarnings
(
'
ignore
'
)
import
numpy
as
np
np
.
random
.
seed
(
0
)
import
matplotlib
import
matplotlib.pyplot
as
plt
import
seaborn
as
sns
sns
.
set_context
(
'
talk
'
,
font_scale
=
1.2
,
rc
=
{
'
lines.linewidth
'
:
3
})
sns
.
set_style
(
'
ticks
'
,
{
'
grid.linestyle
'
:
'
none
'
,
'
axes.edgecolor
'
:
'
0
'
,
'
axes.linewidth
'
:
1.2
,
'
legend.frameon
'
:
True
,
'
xtick.direction
'
:
'
out
'
,
'
ytick.direction
'
:
'
out
'
,
'
xtick.top
'
:
True
,
'
ytick.right
'
:
True
,
})
def
set_axes
(
xlim
=
(
-
np
.
pi
*
1.1
,
np
.
pi
*
1.1
),
ylim
=
(
-
3
,
3
)):
plt
.
xlim
(
xlim
)
plt
.
ylim
(
ylim
)
plt
.
xlabel
(
r
'
$\theta$
'
)
plt
.
ylabel
(
r
'
$p$
'
)
plt
.
xticks
([
-
np
.
pi
,
-
np
.
pi
/
2
,
0
,
np
.
pi
/
2
,
np
.
pi
],
[
r
"
$-\pi$
"
,
r
"
$-\pi/2$
"
,
"
0
"
,
r
"
$\pi/2$
"
,
r
"
$\pi$
"
])
def
plot_hamiltonian
(
xlim
=
(
-
np
.
pi
*
1.1
,
np
.
pi
*
1.1
),
ylim
=
(
-
3
,
3
)):
TH
,
PP
=
np
.
meshgrid
(
np
.
linspace
(
*
xlim
,
num
=
100
),
np
.
linspace
(
*
ylim
,
num
=
100
))
HH
=
hamiltonian
(
TH
,
PP
)
plt
.
contourf
(
TH
,
PP
,
HH
,
cmap
=
plt
.
get_cmap
(
'
hot_r
'
),
levels
=
12
,
zorder
=
0
)
plt
.
colorbar
(
label
=
r
'
$\mathcal{H}(\theta, p)$
'
)
set_axes
(
xlim
,
ylim
)
def
plot_macro_evolution
(
results_thetas
,
results_ps
):
n_steps
,
N
=
results_thetas
.
shape
centroids_theta
=
1
/
N
*
np
.
sum
(
results_thetas
,
axis
=
1
)
centroids_p
=
1
/
N
*
np
.
sum
(
results_ps
,
axis
=
1
)
var_theta
=
1
/
N
*
np
.
sum
(
results_thetas
*
results_thetas
,
axis
=
1
)
var_p
=
1
/
N
*
np
.
sum
(
results_ps
*
results_ps
,
axis
=
1
)
results_emit
=
np
.
zeros
(
n_steps
,
dtype
=
np
.
float32
)
for
k
in
range
(
n_steps
):
results_emit
[
k
]
=
emittance
(
results_thetas
[
k
],
results_ps
[
k
])
fig
,
ax
=
plt
.
subplots
(
1
,
3
,
figsize
=
(
12
,
4
))
plt
.
sca
(
ax
[
0
])
plt
.
plot
(
centroids_theta
,
label
=
r
'
$\langle\theta\rangle$
'
)
plt
.
plot
(
centroids_p
,
label
=
r
'
$\langle p\rangle$
'
)
plt
.
scatter
([
0
,
0
],
[
centroids_theta
[
0
],
centroids_p
[
0
]],
marker
=
'
*
'
,
c
=
'
k
'
)
plt
.
xlabel
(
'
Steps $k$
'
)
plt
.
ylabel
(
'
Centroid amplitude
'
)
plt
.
legend
()
plt
.
sca
(
ax
[
1
])
plt
.
plot
(
var_theta
,
label
=
r
'
$\langle\theta^2\rangle$
'
)
plt
.
plot
(
var_p
,
label
=
r
'
$\langle p^2\rangle$
'
)
plt
.
scatter
([
0
,
0
],
[
var_theta
[
0
],
var_p
[
0
]],
marker
=
'
*
'
,
c
=
'
k
'
)
plt
.
xlabel
(
'
Steps $k$
'
)
plt
.
ylabel
(
'
Variance
'
)
plt
.
legend
()
plt
.
sca
(
ax
[
2
])
plt
.
plot
(
results_emit
)
plt
.
scatter
([
0
],
[
results_emit
[
0
]],
marker
=
'
*
'
,
c
=
'
k
'
)
plt
.
xlabel
(
'
Steps $k$
'
)
plt
.
ylabel
(
'
RMS emittance $\epsilon$
'
)
plt
.
tight_layout
()
return
ax
def
get_boundary_ids
(
thetas
,
ps
):
psf
=
ps
.
flatten
();
tsf
=
thetas
.
flatten
()
ps_min
=
ps
.
min
();
ps_max
=
ps
.
max
();
thetas_min
=
thetas
.
min
();
thetas_max
=
thetas
.
max
()
seq
=
np
.
arange
(
len
(
psf
))
i_right
=
seq
[(
psf
==
0
)
*
(
tsf
==
thetas_max
)]
i_bottom
=
seq
[
psf
==
ps_min
]
i_left
=
seq
[(
psf
==
0
)
*
(
tsf
==
thetas_min
)]
i_top
=
seq
[
psf
==
ps_max
]
return
np
.
concatenate
((
i_right
,
i_top
,
i_left
,
i_bottom
,
i_right
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment