Skip to content
Snippets Groups Projects
Commit 61056e9a authored by Christoph von Oy's avatar Christoph von Oy
Browse files

Removed old parallelisation

parent a9c0e49e
No related branches found
No related tags found
No related merge requests found
Subproject commit 842c38c62fea72093415c476e92916fac9a1a45e Subproject commit d914920165330f710c732de4417c29db7bd067b8
...@@ -3,10 +3,6 @@ import pandas as pd ...@@ -3,10 +3,6 @@ import pandas as pd
import Tooling.input_profile_processor.input_profile_processor import Tooling.input_profile_processor.input_profile_processor
import Model_Library.Prosumer.main as main import Model_Library.Prosumer.main as main
import Model_Library.District.main_district as main_district import Model_Library.District.main_district as main_district
from functools import partial
from multiprocessing import Pool
from tqdm import tqdm
import os
from enum import Enum from enum import Enum
class SimulationScope(Enum): class SimulationScope(Enum):
...@@ -69,20 +65,11 @@ prosumer_dict = {'SCN2_CAT1_PV11_3000_6000':{'topology_path': 'input_files/model ...@@ -69,20 +65,11 @@ prosumer_dict = {'SCN2_CAT1_PV11_3000_6000':{'topology_path': 'input_files/model
'dhw_dmd': 'demand_hot_water_2'}},} 'dhw_dmd': 'demand_hot_water_2'}},}
prosumer_strategy = 'annuity' prosumer_strategy = 'annuity'
parallel_processing = False
before_optimization_time = time.time() before_optimization_time = time.time()
print("runme:\t\t\tProsumer Setup [s]: \t\t" + str(before_optimization_time - after_input_processing_time)) print("runme:\t\t\tProsumer Setup [s]: \t\t" + str(before_optimization_time - after_input_processing_time))
# Run multiple independent prosumers in parallel on multiple cores prosumers = dict()
prosumers = dict.fromkeys(prosumer_dict.keys()) for prosumer_name in prosumer_dict:
if parallel_processing:
count_processes = len(prosumer_dict.keys())
pool = Pool(os.cpu_count())
parallel_func = partial(process_each_prosumer, input_profiles = input_profiles, t_horizon = t_horizon, t_step = t_step, prosumer_strategy = prosumer_strategy)
mapped_values = list(tqdm(pool.map(parallel_func, list(prosumer_dict.keys()), list(prosumer_dict.values())), total = count_processes))
# Normal processing, one core only
else:
for prosumer_name in list(prosumer_dict.keys()):
prosumers[prosumer_name] = process_each_prosumer(prosumer_name, prosumer_dict[prosumer_name], input_profiles, t_horizon, t_step, prosumer_strategy) prosumers[prosumer_name] = process_each_prosumer(prosumer_name, prosumer_dict[prosumer_name], input_profiles, t_horizon, t_step, prosumer_strategy)
after_optimization_time = time.time() after_optimization_time = time.time()
print("runme:\t\t\tProsumer Optimization [s]: \t" + str(after_optimization_time - before_optimization_time)) print("runme:\t\t\tProsumer Optimization [s]: \t" + str(after_optimization_time - before_optimization_time))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment