Select Git revision
demo3-microservice-in-aws.py
train_model.py 6.60 KiB
from __future__ import print_function
import numpy as np
import os, sys
import random
import argparse
import datetime
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
from tensorflow.keras.datasets import cifar10
import tensorflow.keras.applications as applications
def parse_command_line():
parser = argparse.ArgumentParser()
parser.add_argument("--device", required=False, type=str, choices=["cpu", "cuda"], default="cuda")
parser.add_argument("--num_epochs", required=False, type=int, default=5)
parser.add_argument("--batch_size", required=False, type=int, default=128)
parser.add_argument("--verbosity", required=False, help="Keras verbosity level for training/evaluation", type=int, default=2)
parser.add_argument("--num_intraop_threads", required=False, help="Number of intra-op threads", type=int, default=None)
parser.add_argument("--num_interop_threads", required=False, help="Number of inter-op threads", type=int, default=None)
parser.add_argument("--tensorboard", required=False, help="Whether to use tensorboard callback", action="store_true", default=False)
parser.add_argument("--profile_batches", required=False, help='Batches to profile with for tensorboard. Format "batch_start,batch_end"', type=str, default="2,5")
args = parser.parse_args()
# default args for distributed
args.world_size = int(os.environ["WORLD_SIZE"])
args.world_rank = int(os.environ["RANK"])
args.local_rank = int(os.environ["LOCAL_RANK"])
args.global_batch_size = args.batch_size * args.world_size
args.verbosity = 0 if args.world_rank != 0 else args.verbosity # only use verbose for master process
# specific to cifar 10 dataset
args.num_classes = 10
if args.world_rank == 0:
print("Settings:")
settings_map = vars(args)
for name in sorted(settings_map.keys()):
print("--" + str(name) + ": " + str(settings_map[name]))
print("")
sys.stdout.flush()
return args
def load_dataset(args):
K.set_image_data_format("channels_last")
# load the cifar10 data
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
# convert class vectors to binary class matrices.
y_train = tf.keras.utils.to_categorical(y_train, args.num_classes)
y_test = tf.keras.utils.to_categorical(y_test, args.num_classes)
# normalize base data
x_train = x_train.astype("float32") / 255
x_test = x_test.astype("float32") / 255
x_train_mean = np.mean(x_train, axis=0)
x_train -= x_train_mean
x_test -= x_train_mean
# dimensions
if args.world_rank == 0:
print(f"original train_shape: {x_train.shape}")
print(f"original test_shape: {x_test.shape}")
n_train, n_test = x_train.shape[0], x_test.shape[0]
resize_size = 224 # use bigger images with ResNet
# Generating input pipelines
ds_train = (tf.data.Dataset.from_tensor_slices((x_train, y_train))
.map(lambda image, label: (tf.image.resize(image, [resize_size, resize_size]), label))
.shuffle(n_train)
.cache().batch(args.global_batch_size).prefetch(tf.data.AUTOTUNE)
)
ds_test = (tf.data.Dataset.from_tensor_slices((x_test, y_test))
.map(lambda image, label: (tf.image.resize(image, [resize_size, resize_size]), label))
.shuffle(n_test).cache().batch(args.global_batch_size).prefetch(tf.data.AUTOTUNE)
)
# get updated shapes
train_shape, test_shape = ds_train.element_spec[0].shape, ds_test.element_spec[0].shape
if args.world_rank == 0:
print(f"final train_shape: {train_shape}")
print(f"final test_shape: {test_shape}")
return ds_train, ds_test, train_shape
def setup(args):
if args.num_intraop_threads:
tf.config.threading.set_intra_op_parallelism_threads(args.num_intraop_threads)
if args.num_interop_threads:
tf.config.threading.set_inter_op_parallelism_threads(args.num_interop_threads)
gpu_devices = [] if args.device == "cpu" else tf.config.list_physical_devices("GPU")
if args.world_rank == 0:
print(f"Tensorflow get_intra_op_parallelism_threads: {tf.config.threading.get_intra_op_parallelism_threads()}")
print(f"Tensorflow get_inter_op_parallelism_threads: {tf.config.threading.get_inter_op_parallelism_threads()}")
print("List of GPU devices found:")
for dev in gpu_devices:
print(str(dev.device_type) + ": " + dev.name)
print("")
sys.stdout.flush()
tf.config.set_visible_devices(gpu_devices[0], "GPU")
tf.keras.backend.clear_session()
tf.config.optimizer.set_jit(True)
# define data parallel strategy for distrbuted training
strategy = tf.distribute.MultiWorkerMirroredStrategy(
communication_options=tf.distribute.experimental.CommunicationOptions(
implementation=tf.distribute.experimental.CollectiveCommunication.NCCL
)
)
print("MultiWorkerMirroredStrategy.num_replicas_in_sync", strategy.num_replicas_in_sync)
print("MultiWorkerMirroredStrategy.worker_index", strategy.cluster_resolver.task_id)
return strategy
def main():
# always use the same seed
random.seed(42)
tf.random.set_seed(42)
np.random.seed(42)
# parse command line arguments
args = parse_command_line()
# run setup (e.g., create distributed environment if desired)
strategy = setup(args)
# loading desired dataset
ds_train, ds_test, train_shape = load_dataset(args)
# callbacks to register
callbacks = []
with strategy.scope():
model = applications.ResNet50(weights=None, input_shape=train_shape[1:], classes=args.num_classes)
# model.summary() # display the model architecture
# create optimizer and scale learning rate with number of workers
cur_optimizer = Adam(learning_rate=0.001 * args.world_size)
model.compile(loss="categorical_crossentropy", optimizer=cur_optimizer, metrics=["accuracy"])
# callbacks to register
if args.tensorboard:
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir=os.path.join("logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S")),
histogram_freq=1,
profile_batch=args.profile_batches,
)
callbacks.append(tensorboard_callback)
# train the model
model.fit(ds_train, epochs=args.num_epochs, verbose=args.verbosity, callbacks=callbacks)
# evaluate model
scores = model.evaluate(ds_test, verbose=args.verbosity)
if args.world_rank == 0:
print(f"Test Evaluation: Accuracy: {scores[1]}")
sys.stdout.flush()
if __name__ == "__main__":
main()