Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
qi2021
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Model registry
Monitor
Service Desk
Analyze
Contributor analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Information course
qi2021
Commits
22a3bf43
Commit
22a3bf43
authored
4 years ago
by
Valentin Bruch
Browse files
Options
Downloads
Patches
Plain Diff
steering scripts: first version as available on Moodle
parent
c29be98a
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
lectures-wegewijs/steering.py
+206
-0
206 additions, 0 deletions
lectures-wegewijs/steering.py
lectures-wegewijs/steering_bloch.py
+274
-0
274 additions, 0 deletions
lectures-wegewijs/steering_bloch.py
with
480 additions
and
0 deletions
lectures-wegewijs/steering.py
0 → 100644
+
206
−
0
View file @
22a3bf43
#!/usr/bin/env python3
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
from
matplotlib.colors
import
LinearSegmentedColormap
### Vectors
def
M1non
(
c
,
l
):
s0
=
np
.
sqrt
(
l
);
s1
=
np
.
sqrt
(
1
-
s0
**
2
)
v0
=
np
.
cos
(
c
);
v1
=
np
.
sin
(
c
)
return
np
.
transpose
(
np
.
array
([[
s0
*
v0
,
s1
*
v1
],[
-
s0
*
v1
,
s1
*
v0
]]))
def
M1
(
c
,
l
):
s0
=
np
.
sqrt
(
l
);
s1
=
np
.
sqrt
(
1
-
s0
**
2
)
x
=
M1non
(
c
,
l
)
return
x
/
np
.
linalg
.
norm
(
x
,
ord
=
2
,
axis
=
0
)
def
M2
(
c
):
v0
=
np
.
cos
(
c
);
v1
=
np
.
sin
(
c
);
return
np
.
transpose
(
np
.
array
([[
v0
,
v1
],[
-
v1
,
v0
]]))
class
Steering
:
# define red-green colormap
colorlist
=
[
"
red
"
,
"
red
"
,
"
limegreen
"
]
segmentlist
=
[
0.
,
0.4
,
1.
]
cmap
=
LinearSegmentedColormap
.
from_list
(
'
rg
'
,
list
(
zip
(
segmentlist
,
colorlist
)),
N
=
20
)
arrow_params
=
dict
(
head_width
=
0.05
,
head_length
=
0.05
,
length_includes_head
=
True
)
alice_arrow_params
=
dict
(
width
=
0.01
,
color
=
'
black
'
,
**
arrow_params
)
bob_arrow_params
=
dict
(
width
=
0.01
,
color
=
(
0.
,
0.
,
1.
),
**
arrow_params
)
bob_mirror_arrow_params
=
dict
(
width
=
0.01
,
color
=
(
0.2
,
0.2
,
1.
,
0.3
),
**
arrow_params
)
marginal_arrow_params
=
dict
(
width
=
0.001
,
color
=
'
lightgray
'
,
linestyle
=
'
--
'
,
**
arrow_params
)
def
__init__
(
self
,
resolution
=
200
):
self
.
fig
=
plt
.
figure
(
figsize
=
plt
.
figaspect
(
0.5
))
self
.
fig
.
subplots_adjust
(
left
=
0.15
,
bottom
=
0.25
)
self
.
ax1
=
self
.
fig
.
add_subplot
(
1
,
2
,
1
)
self
.
ax2
=
self
.
fig
.
add_subplot
(
1
,
2
,
2
)
self
.
ax1
.
axis
(
'
equal
'
)
# set the axes to the same scale
self
.
ax2
.
axis
(
'
equal
'
)
self
.
ax1
.
plot
(
0
,
0
,
'
ok
'
)
# plot a black point at the origin
self
.
ax2
.
plot
(
0
,
0
,
'
ok
'
)
self
.
arrows_alice
=
[]
self
.
arrows_bob
=
[]
m
=
0.15
# margin
self
.
ax1
.
set_xlim
([
-
1.0
-
m
,
1.0
+
m
])
self
.
ax1
.
set_ylim
([
-
1.0
-
m
,
1.0
+
m
])
self
.
ax2
.
set_xlim
([
-
1.0
-
m
,
1.0
+
m
])
self
.
ax2
.
set_ylim
([
-
1.0
-
m
,
1.0
+
m
])
self
.
drag_pointer
=
0
# Hide axes
self
.
ax1
.
xaxis
.
set_visible
(
False
)
self
.
ax1
.
yaxis
.
set_visible
(
False
)
self
.
ax2
.
xaxis
.
set_visible
(
False
)
self
.
ax2
.
yaxis
.
set_visible
(
False
)
self
.
ax1
.
set_title
(
'
Alice: Ensemble state vectors
\n
'
r
'
$\vert \psi_{Ab} \rangle = \langle b_B \vert \psi_{AB} \rangle / |\langle b_B \vert \psi_{AB} \rangle|$
'
)
self
.
ax2
.
set_title
(
'
Bob: Observation vectors
\n
'
r
'
$\vert b_{B} \rangle$
'
,)
self
.
ax1
.
arrow
(
-
1
,
0
,
2
,
0
,
**
self
.
marginal_arrow_params
,
zorder
=-
2
)
self
.
ax1
.
arrow
(
0
,
-
1
,
0
,
2
,
**
self
.
marginal_arrow_params
,
zorder
=-
2
)
self
.
ax2
.
arrow
(
-
1
,
0
,
2
,
0
,
**
self
.
marginal_arrow_params
,
zorder
=-
2
)
self
.
ax2
.
arrow
(
0
,
-
1
,
0
,
2
,
**
self
.
marginal_arrow_params
,
zorder
=-
2
)
self
.
ax1
.
text
(
0.85
,
-
0.2
,
'
eigen-
\n
'
r
'
vectors $\rho_A$
'
,
horizontalalignment
=
'
center
'
,
verticalalignment
=
'
center
'
,
color
=
'
grey
'
)
self
.
ax2
.
text
(
0.85
,
-
0.2
,
'
eigen-
\n
'
r
'
vectors $\rho_B$
'
,
horizontalalignment
=
'
center
'
,
verticalalignment
=
'
center
'
,
color
=
'
grey
'
)
self
.
ax2
.
text
(
-
0.75
,
0.925
,
'
Grab vectors
\n
to rotate
'
,
horizontalalignment
=
'
center
'
,
verticalalignment
=
'
center
'
,
color
=
'
grey
'
)
self
.
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
resolution
)
#### Slider ###
# Define initial values.
l_min
=
1e-5
# avoid ugly drawings for l=0 ...
c
=
0
*
np
.
pi
l
=
0.5
ax_slider_c
=
plt
.
axes
([
0.3
,
0.1
,
0.55
,
0.03
])
self
.
slider_c
=
Slider
(
ax_slider_c
,
'
Eigenbasis $
\\
rho_B$: angle $
\\
theta$ $
\\
in$ [-$
\\
pi$, 3$
\\
pi$]
'
,
-
1
*
np
.
pi
,
3
*
np
.
pi
,
valinit
=
c
)
ax_slider_l
=
plt
.
axes
([
0.3
,
0.05
,
0.55
,
0.03
])
self
.
slider_l
=
Slider
(
ax_slider_l
,
'
Eigenvalue $
\\
rho_B$: $\lambda_0$ $
\\
in$ [0,1]
'
,
l_min
,
1
-
l_min
,
valinit
=
l
)
self
.
slider_c
.
on_changed
(
self
.
update
)
self
.
slider_l
.
on_changed
(
self
.
update
)
# Dragging the arrows requires handling mouse input events:
self
.
fig
.
canvas
.
mpl_connect
(
'
button_press_event
'
,
self
.
on_press
)
self
.
fig
.
canvas
.
mpl_connect
(
'
button_release_event
'
,
self
.
on_release
)
self
.
fig
.
canvas
.
mpl_connect
(
'
motion_notify_event
'
,
self
.
drag
)
def
on_press
(
self
,
event
):
'
Mouse button press event: check if this should start dragging an arrow
'
if
event
.
inaxes
!=
self
.
ax2
:
return
if
self
.
arrows_bob
[
0
].
contains
(
event
,
500
)[
0
]
or
self
.
arrows_bob
[
1
].
contains
(
event
,
500
)[
0
]:
vec1
=
(
event
.
xdata
-
self
.
arrows_bob
[
0
].
xy
[
0
,
0
],
event
.
ydata
-
self
.
arrows_bob
[
0
].
xy
[
0
,
1
])
vec2
=
(
event
.
xdata
-
self
.
arrows_bob
[
1
].
xy
[
0
,
0
],
event
.
ydata
-
self
.
arrows_bob
[
1
].
xy
[
0
,
1
])
if
(
vec1
[
0
]
**
2
+
vec1
[
1
]
**
2
<
vec2
[
0
]
**
2
+
vec2
[
1
]
**
2
):
self
.
drag_pointer
=
1
else
:
self
.
drag_pointer
=
2
def
on_release
(
self
,
event
):
'
Stop dragging arrow
'
self
.
drag_pointer
=
0
def
drag
(
self
,
event
):
'''
Drag one of Bob
'
s arrows
'''
if
event
.
inaxes
!=
self
.
ax2
:
return
if
self
.
drag_pointer
==
1
:
self
.
slider_c
.
set_val
(
np
.
arctan2
(
event
.
ydata
,
event
.
xdata
))
elif
self
.
drag_pointer
==
2
:
self
.
slider_c
.
set_val
(
np
.
arctan2
(
-
event
.
xdata
,
event
.
ydata
))
def
run
(
self
):
'
Start the animation.
'
self
.
update
()
plt
.
show
()
def
steer
(
self
,
c
,
l
):
# Alice (left panel)
for
arr
in
self
.
arrows_alice
:
arr
.
remove
()
for
arr
in
self
.
arrows_bob
:
arr
.
remove
()
self
.
arrows_alice
.
clear
()
self
.
arrows_bob
.
clear
()
x
=
np
.
sqrt
(
l
)
*
np
.
cos
(
self
.
angles
)
y
=
np
.
sqrt
(
1
-
l
)
*
np
.
sin
(
self
.
angles
)
try
:
self
.
ellipse
.
set_data
(
x
,
y
)
except
AttributeError
:
self
.
ellipse
,
=
self
.
ax1
.
plot
(
x
,
y
,
color
=
'
lightgray
'
,
zorder
=-
1
)
M
=
M2
(
c
)
for
i
in
range
(
0
,
2
):
self
.
arrows_alice
.
append
(
self
.
ax1
.
arrow
(
0
,
0
,
M
[
0
,
i
],
M
[
1
,
i
],
**
self
.
bob_mirror_arrow_params
)
)
M
=
M1
(
c
,
l
)
for
i
in
range
(
0
,
2
):
self
.
arrows_alice
.
append
(
self
.
ax1
.
arrow
(
0
,
0
,
M
[
0
,
i
],
M
[
1
,
i
],
**
self
.
alice_arrow_params
)
)
M
=
M1non
(
c
,
l
)
for
i
in
range
(
0
,
2
):
self
.
arrows_alice
.
append
(
self
.
ax1
.
arrow
(
0
,
0
,
M
[
0
,
i
],
M
[
1
,
i
],
**
self
.
arrow_params
,
width
=
0.05
,
color
=
self
.
cmap
(
np
.
sqrt
(
M
[
0
,
i
]
**
2
+
M
[
1
,
i
]
**
2
)
)
)
)
# Bob (right panel)
M
=
M2
(
c
)
for
i
in
range
(
0
,
2
):
self
.
arrows_bob
.
append
(
self
.
ax2
.
arrow
(
0
,
0
,
M
[
0
,
i
],
M
[
1
,
i
],
**
self
.
bob_arrow_params
)
)
def
update
(
self
,
*
args
):
'
Read values from the sliders and update the figure
'
c
=
self
.
slider_c
.
val
l
=
self
.
slider_l
.
val
self
.
steer
(
c
,
l
)
self
.
fig
.
canvas
.
draw_idle
()
if
__name__
==
'
__main__
'
:
Steering
().
run
()
This diff is collapsed.
Click to expand it.
lectures-wegewijs/steering_bloch.py
0 → 100644
+
274
−
0
View file @
22a3bf43
#!/usr/bin/env python3
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib.widgets
import
Slider
from
matplotlib.colors
import
LinearSegmentedColormap
from
mpl_toolkits.mplot3d
import
Axes3D
from
matplotlib.patches
import
FancyArrowPatch
from
mpl_toolkits.mplot3d
import
proj3d
class
Arrow3D
(
FancyArrowPatch
):
# https://stackoverflow.com/questions/42281966/how-to-plot-vectors-in-python-using-matplotlib
def
__init__
(
self
,
xs
,
ys
,
zs
,
*
args
,
**
kwargs
):
FancyArrowPatch
.
__init__
(
self
,
(
0
,
0
),
(
0
,
0
),
*
args
,
**
kwargs
)
self
.
_verts3d
=
xs
,
ys
,
zs
def
draw
(
self
,
renderer
):
xs3d
,
ys3d
,
zs3d
=
self
.
_verts3d
xs
,
ys
,
zs
=
proj3d
.
proj_transform
(
xs3d
,
ys3d
,
zs3d
,
renderer
.
M
)
self
.
set_positions
((
xs
[
0
],
ys
[
0
]),(
xs
[
1
],
ys
[
1
]))
FancyArrowPatch
.
draw
(
self
,
renderer
)
# Bloch vectors
def
M1non
(
c
,
t
,
l
):
'
Probability-normalized Bloch vectors of A-ensemble
'
s0
=
np
.
sqrt
(
l
);
s1
=
np
.
sqrt
(
1
-
s0
**
2
)
xB
=
np
.
cos
(
c
)
*
np
.
sin
(
t
);
yB
=
np
.
sin
(
c
)
*
np
.
sin
(
t
);
zB
=
np
.
cos
(
t
)
xA1
=
s0
*
s1
*
xB
;
xA2
=
s0
*
s1
*
(
-
xB
)
yA1
=
-
s0
*
s1
*
yB
;
yA2
=
-
s0
*
s1
*
(
-
yB
)
zA1
=
((
s0
**
2
-
s1
**
2
)
+
zB
)
/
2
;
zA2
=
((
s0
**
2
-
s1
**
2
)
-
zB
)
/
2
return
np
.
transpose
(
np
.
array
([[
xA1
,
yA1
,
zA1
],[
xA2
,
yA2
,
zA2
]]))
def
M1
(
c
,
t
,
l
):
'
Normalized Bloch vectors of A-ensemble
'
x
=
M1non
(
c
,
t
,
l
)
return
x
/
np
.
linalg
.
norm
(
x
,
ord
=
2
,
axis
=
0
)
def
M2
(
c
,
t
):
'
Normalized Bloch vectors of B-measurement
'
xB
=
np
.
cos
(
c
)
*
np
.
sin
(
t
);
yB
=
np
.
sin
(
c
)
*
np
.
sin
(
t
);
zB
=
np
.
cos
(
t
)
return
np
.
transpose
(
np
.
array
([[
xB
,
yB
,
zB
],
[
-
xB
,
-
yB
,
-
zB
]]))
# Probabilities
def
prob
(
c
,
t
,
l
):
'
Probabilities of A-ensemble
'
s0
=
np
.
sqrt
(
l
);
s1
=
np
.
sqrt
(
1
-
s0
**
2
)
zB
=
np
.
cos
(
t
)
return
np
.
transpose
(
np
.
array
([
(
1
+
(
s0
**
2
-
s1
**
2
)
*
zB
)
/
2
,
(
1
+
(
s0
**
2
-
s1
**
2
)
*
(
-
zB
)
)
/
2
]))
#########################
class
Steering
:
# Red-Green colormap
colorlist
=
[
"
red
"
,
"
red
"
,
"
limegreen
"
]
segmentlist
=
[
0.
,
0.2
,
1.
]
cmap
=
LinearSegmentedColormap
.
from_list
(
'
rg
'
,
list
(
zip
(
segmentlist
,
colorlist
)),
N
=
20
)
# Bloch sphere/circle parameters
# stride = key performance parameter: < 6 is slow, > 6 gives ugly spheres
stride
=
6
sphere_params1
=
dict
(
color
=
'
blue
'
,
linewidth
=
0.3
,
alpha
=
0.01
,
rstride
=
stride
,
cstride
=
stride
)
sphere_params2
=
sphere_params1
ellipsoid_params1
=
dict
(
color
=
'
yellow
'
,
linewidth
=
0.1
,
alpha
=
0.05
,
rstride
=
stride
,
cstride
=
stride
)
circle_params1
=
dict
(
color
=
'
gray
'
,
linewidth
=
0.2
,
alpha
=
1.0
)
circle_params2
=
circle_params1
def
__init__
(
self
,
resolution
=
200
):
# Initialize figures
self
.
fig
=
plt
.
figure
(
figsize
=
plt
.
figaspect
(
0.5
))
self
.
ax1
=
self
.
fig
.
add_subplot
(
1
,
2
,
1
,
projection
=
'
3d
'
)
#, adjustable='box')
self
.
ax2
=
self
.
fig
.
add_subplot
(
1
,
2
,
2
,
projection
=
'
3d
'
)
# Initialize what needs NO update
self
.
fig
.
subplots_adjust
(
left
=
0.03
,
right
=
1
-
0.05
,
bottom
=
0.15
,
top
=
1
-
0.03
,
wspace
=
0.01
)
self
.
ax1
.
xaxis
.
set_ticks
([]);
self
.
ax1
.
yaxis
.
set_ticks
([]);
self
.
ax1
.
zaxis
.
set_ticks
([]);
self
.
ax2
.
xaxis
.
set_ticks
([]);
self
.
ax2
.
yaxis
.
set_ticks
([]);
self
.
ax2
.
zaxis
.
set_ticks
([]);
self
.
ax1
.
set_xlim
([
-
1
,
1
]);
self
.
ax1
.
set_ylim
([
-
1
,
1
]);
self
.
ax1
.
set_zlim
([
-
1
,
1
]);
self
.
ax2
.
set_xlim
([
-
1
,
1
]);
self
.
ax2
.
set_ylim
([
-
1
,
1
]);
self
.
ax2
.
set_zlim
([
-
1
,
1
]);
# Bloch spheres
self
.
u
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
100
)
self
.
v
=
np
.
linspace
(
0
,
np
.
pi
,
100
)
self
.
xsphere
=
1
*
np
.
outer
(
np
.
cos
(
self
.
u
),
np
.
sin
(
self
.
v
))
self
.
ysphere
=
1
*
np
.
outer
(
np
.
sin
(
self
.
u
),
np
.
sin
(
self
.
v
))
self
.
zsphere
=
1
*
np
.
outer
(
np
.
ones
(
np
.
size
(
self
.
u
)),
np
.
cos
(
self
.
v
))
self
.
ax1
.
plot_surface
(
self
.
xsphere
,
self
.
ysphere
,
self
.
zsphere
,
**
self
.
sphere_params1
,
zorder
=-
1
)
self
.
ax2
.
plot_surface
(
self
.
xsphere
,
self
.
ysphere
,
self
.
zsphere
,
**
self
.
sphere_params2
,
zorder
=-
1
)
# Circles
self
.
tline
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
100
)
self
.
cline
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
100
)
# Z-axis of Bob
self
.
ax2
.
add_artist
(
Arrow3D
([
0
,
0
],[
0
,
0
],[
-
1
,
1
],
mutation_scale
=
20
,
lw
=
2
,
arrowstyle
=
"
-
"
,
color
=
'
lightgrey
'
,
zorder
=-
1
))
# Text
self
.
ax1
.
text2D
(
0.99
,
0.99
,
'
Alice: Ensemble state Bloch-vectors
\n
'
r
'
for $\vert \psi_{Ab} \rangle = \langle b_B \vert \psi_{AB} \rangle / |\langle b_B \vert \psi_{AB} \rangle|$
'
,
horizontalalignment
=
'
right
'
,
verticalalignment
=
'
top
'
,
transform
=
self
.
ax1
.
transAxes
)
self
.
ax2
.
text2D
(
0.99
,
0.99
,
'
Bob: Observation Bloch-vectors
\n
'
r
'
for $\vert b_{B} \rangle$
'
,
horizontalalignment
=
'
right
'
,
verticalalignment
=
'
top
'
,
transform
=
self
.
ax2
.
transAxes
)
self
.
ax2
.
text2D
(
0.99
,
0.01
,
r
'
Grab figure to rotate: mouse (dx,dy) = ($d\phi$,$d\theta$)
'
,
color
=
'
grey
'
,
horizontalalignment
=
'
right
'
,
verticalalignment
=
'
bottom
'
,
transform
=
self
.
ax2
.
transAxes
)
# Initialize what needs to be updated
self
.
arrows1
=
[];
self
.
arrows2
=
[];
self
.
drag_pointer
=
0
# Initialize interactive stuff
# Initial values of l = \lambda_0, c = phi, t=theta
l_min
=
1e-5
# avoid ugly drawings for l=0 ...
self
.
l
=
0.
l
=
0.5
c
=
0
*
np
.
pi
t
=
0.0
*
np
.
pi
# Sliders: positions adjusted relative to left and right panel
xoffset
=
0.3
;
yoffset
=
0.05
;
yheight
=
0.03
xslider
=
self
.
ax1
.
get_position
().
x0
+
xoffset
;
xwidth
=
self
.
ax2
.
get_position
().
x1
-
xslider
yslider
=
self
.
ax1
.
get_position
().
y0
-
yoffset
ax_slider_c
=
plt
.
axes
([
xslider
,
yslider
,
xwidth
,
yheight
])
ax_slider_t
=
plt
.
axes
([
xslider
,
yslider
-
1.5
*
yheight
,
xwidth
,
yheight
])
ax_slider_l
=
plt
.
axes
([
xslider
,
yslider
-
3.0
*
yheight
,
xwidth
,
yheight
])
self
.
slider_c
=
Slider
(
ax_slider_c
,
'
Eigenbasis $
\\
rho_B$: angle $
\\
phi$ $
\\
in$ [-$
\\
pi$, 3$
\\
pi$]
'
,
-
1
*
np
.
pi
,
3
*
np
.
pi
,
valinit
=
c
)
self
.
slider_t
=
Slider
(
ax_slider_t
,
'
Eigenbasis $
\\
rho_B$: angle $
\\
theta$ $
\\
in$ [-$
\\
pi$, 3$
\\
pi$]
'
,
-
0.5
*
np
.
pi
,
1.5
*
np
.
pi
,
valinit
=
t
)
self
.
slider_l
=
Slider
(
ax_slider_l
,
'
Eigenvalue $
\\
rho_B$: $\lambda_0$ $
\\
in$ [0,1]
'
,
l_min
,
1
-
l_min
,
valinit
=
l
)
self
.
slider_c
.
on_changed
(
self
.
update
)
self
.
slider_t
.
on_changed
(
self
.
update
)
self
.
slider_l
.
on_changed
(
self
.
update
)
# Dragging: requires handling mouse input events:
self
.
fig
.
canvas
.
mpl_connect
(
'
button_press_event
'
,
self
.
on_press
)
self
.
fig
.
canvas
.
mpl_connect
(
'
button_release_event
'
,
self
.
on_release
)
self
.
fig
.
canvas
.
mpl_connect
(
'
motion_notify_event
'
,
self
.
drag
)
self
.
ax1
.
disable_mouse_rotation
();
self
.
ax2
.
disable_mouse_rotation
()
def
update_plots
(
self
,
c
,
t
,
l
):
for
arr
in
self
.
arrows1
:
arr
.
remove
()
for
arr
in
self
.
arrows2
:
arr
.
remove
()
self
.
arrows1
.
clear
();
self
.
arrows2
.
clear
();
# Circles: \theta
xline
=
np
.
cos
(
c
)
*
np
.
sin
(
self
.
tline
);
yline
=
np
.
sin
(
c
)
*
np
.
sin
(
self
.
tline
);
zline
=
np
.
cos
(
self
.
tline
)
try
:
self
.
tcircle1
.
set_data
(
xline
,
-
yline
);
self
.
tcircle1
.
set_3d_properties
(
zline
)
# update x,y,z data
self
.
tcircle2
.
set_data
(
xline
,
yline
);
self
.
tcircle2
.
set_3d_properties
(
zline
)
# update x,y,z data
except
AttributeError
:
self
.
tcircle1
,
=
self
.
ax1
.
plot3D
(
xline
,
-
yline
,
zline
,
**
self
.
circle_params1
,
zorder
=-
1
)
self
.
tcircle2
,
=
self
.
ax2
.
plot3D
(
xline
,
yline
,
zline
,
**
self
.
circle_params2
,
zorder
=-
1
)
# Circles: \phi (perhaps not helpful)
xline
=
np
.
cos
(
self
.
cline
)
*
np
.
sin
(
t
);
yline
=
np
.
sin
(
self
.
cline
)
*
np
.
sin
(
t
);
zline
=
np
.
cos
(
t
)
try
:
self
.
ccircle2
.
set_data
(
xline
,
yline
);
self
.
ccircle2
.
set_3d_properties
(
zline
)
# update x,y,z data
except
AttributeError
:
#self.ccircle1, = self.ax1.plot3D(xline, -yline, zline, **self.circle_params1,zorder=-1)
self
.
ccircle2
,
=
self
.
ax2
.
plot3D
(
xline
,
yline
,
zline
,
**
self
.
circle_params2
,
zorder
=-
1
)
# Ellipsoid of probability-normalized ensemble vectors
# (update only if l=\lambda changed which is not mouse-driven)
if
self
.
l
!=
l
:
self
.
l
=
l
x
=
np
.
sqrt
(
l
*
(
1
-
l
))
*
self
.
xsphere
;
y
=
np
.
sqrt
(
l
*
(
1
-
l
))
*
self
.
ysphere
;
z
=
(
l
-
(
1
-
l
))
/
2
+
(
1
/
2
)
*
self
.
zsphere
try
:
self
.
ellipsoid1
.
remove
()
self
.
ellipsoid1
=
self
.
ax1
.
plot_surface
(
x
,
y
,
z
,
**
self
.
ellipsoid_params1
,
zorder
=-
1
)
except
(
AttributeError
,
IndexError
):
self
.
ellipsoid1
=
self
.
ax1
.
plot_surface
(
x
,
y
,
z
,
**
self
.
ellipsoid_params1
,
zorder
=-
1
)
# Right panel (B)
# B-measurement Bloch vectors (normalized)
M
=
M2
(
c
,
t
)
arrows
=
[
"
-|>
"
,
"
-
"
]
for
i
in
range
(
0
,
1
+
1
):
self
.
arrows2
.
append
(
self
.
ax2
.
add_artist
(
Arrow3D
([
0
,
M
[
0
,
i
]],[
0
,
M
[
1
,
i
]],[
0
,
M
[
2
,
i
]],
mutation_scale
=
10
,
lw
=
2
,
arrowstyle
=
arrows
[
i
]
))
#"-|>"))
)
# Left panel (A)
# A-ensemble Bloch vectors (normalized)
M
=
M1
(
c
,
t
,
l
)
for
i
in
range
(
0
,
1
+
1
):
self
.
arrows1
.
append
(
self
.
ax1
.
add_artist
(
Arrow3D
([
0
,
M
[
0
,
i
]],[
0
,
M
[
1
,
i
]],[
0
,
M
[
2
,
i
]],
mutation_scale
=
10
,
lw
=
2
,
arrowstyle
=
"
-|>
"
,
color
=
'
black
'
))
)
#
self
.
arrows1
.
append
(
self
.
ax1
.
add_artist
(
Arrow3D
([
M
[
0
,
0
],
M
[
0
,
1
]],[
M
[
1
,
0
],
M
[
1
,
1
]],[
M
[
2
,
0
],
M
[
2
,
1
]],
mutation_scale
=
10
,
lw
=
1
,
arrowstyle
=
"
-
"
,
color
=
'
blue
'
))
)
# A-ensemble Bloch vectors (probability normalized)
M
=
M1non
(
c
,
t
,
l
)
for
i
in
range
(
0
,
1
+
1
):
self
.
arrows1
.
append
(
self
.
ax1
.
add_artist
(
Arrow3D
([
0
,
M
[
0
,
i
]],[
0
,
M
[
1
,
i
]],[
0
,
M
[
2
,
i
]],
mutation_scale
=
10
,
lw
=
2
,
arrowstyle
=
"
-|>
"
,
color
=
self
.
cmap
(
prob
(
c
,
t
,
l
)[
i
]
)
))
)
# A-mixed state Bloch vector
self
.
arrows1
.
append
(
self
.
ax1
.
add_artist
(
Arrow3D
([
0
,
M
[
0
,
0
]
+
M
[
0
,
1
]],[
0
,
M
[
1
,
0
]
+
M
[
1
,
1
]],[
0
,
M
[
2
,
0
]
+
M
[
2
,
1
]],
mutation_scale
=
10
,
lw
=
2
,
arrowstyle
=
"
-|>
"
,
color
=
'
blue
'
))
)
# Parallelogram of mixture (works, but is perhaps confusing)
#self.arrows1.append(
# self.ax1.add_artist(Arrow3D([M[0,0],M[0,0]+M[0,1]],[M[1,0],M[1,0]+M[1,1]],[M[2,0],M[2,0]+M[2,1]],
# mutation_scale=10,lw=1, arrowstyle="-"
# ,color = self.cmap( prob(c,t,l)[1] ) ))
#)
#self.arrows1.append(
# self.ax1.add_artist(Arrow3D([M[0,1],M[0,0]+M[0,1]],[M[1,1],M[1,0]+M[1,1]],[M[2,1],M[2,0]+M[2,1]],
# mutation_scale=10,lw=1, arrowstyle="-"
# ,color = self.cmap( prob(c,t,l)[0] ) ))
#)
# Interactive stuff
def
on_press
(
self
,
event
):
'
Mouse button press event: check if this should start dragging
'
if
event
.
inaxes
!=
self
.
ax2
:
return
self
.
drag_pointer
=
1
def
on_release
(
self
,
event
):
'
Stop dragging
'
self
.
drag_pointer
=
0
def
drag
(
self
,
event
):
'
Drag right panel (B)
'
if
self
.
drag_pointer
==
1
:
# Map mouse positions (x,y) in [0,1]x[0,1] to (\phi,\theta) angles
x
,
y
=
self
.
ax2
.
transLimits
.
transform
((
event
.
xdata
,
event
.
ydata
))
# Make-shift parameterization ...
self
.
slider_c
.
set_val
((
x
-
0.5
)
*
1.25
*
np
.
pi
)
self
.
slider_t
.
set_val
((
0.75
-
y
)
*
2
*
np
.
pi
)
def
run
(
self
):
'
Start the animation.
'
self
.
update
()
plt
.
show
()
def
update
(
self
,
*
args
):
'
Read values from the sliders and update the plots
'
c
=
self
.
slider_c
.
val
t
=
self
.
slider_t
.
val
l
=
self
.
slider_l
.
val
self
.
update_plots
(
c
,
t
,
l
)
self
.
fig
.
canvas
.
draw_idle
()
if
__name__
==
'
__main__
'
:
Steering
().
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment