Select Git revision
test_akd_Fault125_reset.vi
chap02.aux 20.60 KiB
\relax
\providecommand\hyper@newdestlabel[2]{}
\citation{Mask_Aligner}
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Mask Aligner}{15}{chapter.2}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
\@writefile{toc}{\contentsline {section}{\numberline {2.1}Molecular beam evaporation chamber}{15}{section.2.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces Circuit diagram of the mask aligner and its associated vacuum system. It consists of the mask aligner (MA) chamber, the main chamber, the Pb evaporator and the \ce {Au} evaporator. The \ce {Au} evaporator is attached to the same vacuum system, but is unrelated to the Mask Aligner. The configuration depicted is used for evaporation. The \textcolor {tab_green}{green} line shows the sample/mask extraction and insertion path with the wobble stick. The black arrow shows the molecular beam path from the \ce {Pb} evaporator. BA stands for Bayard-Alpert pressure gauge. This diagram is accurate for the setup on 01.08.24.}}{15}{figure.caption.16}\protected@file@percent }
\newlabel{fig:mask_aligner_chamber}{{2.1}{15}{Circuit diagram of the mask aligner and its associated vacuum system. It consists of the mask aligner (MA) chamber, the main chamber, the Pb evaporator and the \ce {Au} evaporator. The \ce {Au} evaporator is attached to the same vacuum system, but is unrelated to the Mask Aligner. The configuration depicted is used for evaporation. The \textcolor {tab_green}{green} line shows the sample/mask extraction and insertion path with the wobble stick. The black arrow shows the molecular beam path from the \ce {Pb} evaporator. BA stands for Bayard-Alpert pressure gauge. This diagram is accurate for the setup on 01.08.24}{figure.caption.16}{}}
\citation{florian_forster}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1.1}Lead evaporator}{16}{subsection.2.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.2}{\ignorespaces Solidworks diagram of the evaporator used on the Mask Aligner.}}{17}{figure.caption.17}\protected@file@percent }
\newlabel{fig:ma_evap}{{2.2}{17}{Solidworks diagram of the evaporator used on the Mask Aligner}{figure.caption.17}{}}
\newlabel{fig:mask_aligner_nomenclature_motors}{{2.3a}{18}{\relax }{figure.caption.18}{}}
\newlabel{sub@fig:mask_aligner_nomenclature_motors}{{a}{18}{\relax }{figure.caption.18}{}}
\newlabel{fig:mask_aligner_nomenclature_components}{{2.3b}{18}{\relax }{figure.caption.18}{}}
\newlabel{sub@fig:mask_aligner_nomenclature_components}{{b}{18}{\relax }{figure.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.3}{\ignorespaces (\subref {fig:mask_aligner_nomenclature_motors}) the nomenclature for the motors of Mask Aligner. (\subref {fig:mask_aligner_nomenclature_components}) the components of the Mask Aligner \textbf {A} carrying frame \textbf {B} piezo stack, \textbf {C} stoppers, \textbf {D} sliding rail for x-movement, \textbf {E} sample stage, \textbf {F} sample \textbf {G} sample holder, \textbf {H} mask frame, \textbf {I} mask stage, \textbf {J} mask, \textbf {K} mask shuttle, \textbf {L} neodymium magnet, \textbf {M} \ce {Al2O3} plate, \textbf {N} \ce {CuBe} spring, \textbf {O} piezo motor front plate, \textbf {P} sapphire prism, \textbf {Q} lower body. In \textcolor {tab_red}{red} the molecular beam path to the mask is displayed.}}{18}{figure.caption.18}\protected@file@percent }
\newlabel{fig:mask_aligner_nomenclature}{{2.3}{18}{(\subref {fig:mask_aligner_nomenclature_motors}) the nomenclature for the motors of Mask Aligner. (\subref {fig:mask_aligner_nomenclature_components}) the components of the Mask Aligner \textbf {A} carrying frame \textbf {B} piezo stack, \textbf {C} stoppers, \textbf {D} sliding rail for x-movement, \textbf {E} sample stage, \textbf {F} sample \textbf {G} sample holder, \textbf {H} mask frame, \textbf {I} mask stage, \textbf {J} mask, \textbf {K} mask shuttle, \textbf {L} neodymium magnet, \textbf {M} \ce {Al2O3} plate, \textbf {N} \ce {CuBe} spring, \textbf {O} piezo motor front plate, \textbf {P} sapphire prism, \textbf {Q} lower body. In \textcolor {tab_red}{red} the molecular beam path to the mask is displayed}{figure.caption.18}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.2}Slip stick principle}{19}{section.2.2}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.4}{\ignorespaces Image showing the slip-stick principle. On the right an example signal is shown.}}{20}{figure.caption.19}\protected@file@percent }
\newlabel{fig:slip_stick_diagram}{{2.4}{20}{Image showing the slip-stick principle. On the right an example signal is shown}{figure.caption.19}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.3}Shadow mask alignment}{20}{section.2.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.1}Motor screw configuration}{20}{subsection.2.3.1}\protected@file@percent }
\newlabel{fig:screw_firmness_screw_image}{{2.5a}{21}{\relax }{figure.caption.20}{}}
\newlabel{sub@fig:screw_firmness_screw_image}{{a}{21}{\relax }{figure.caption.20}{}}
\newlabel{fig:screw_firmness_plot}{{2.5b}{21}{\relax }{figure.caption.20}{}}
\newlabel{sub@fig:screw_firmness_plot}{{b}{21}{\relax }{figure.caption.20}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces (\subref {fig:screw_firmness_screw_image}) frontal view of the motor Z2 marked in red is the screw used for calibration of the motors on the Mask Aligner. (\subref {fig:screw_firmness_plot}) example curves of how the screws of Z2 and Z3 affect the given motor's step size. The $0.0$ screw rotation is arbitrary. $+$ means retraction and $-$ means approach (Fig. \ref {fig:mask_aligner_nomenclature_motors}). The jumps in signal result from the \ce {CuBe} plate slipping across the winding of the screw. }}{21}{figure.caption.20}\protected@file@percent }
\newlabel{fig:screw_firmness}{{2.5}{21}{(\subref {fig:screw_firmness_screw_image}) frontal view of the motor Z2 marked in red is the screw used for calibration of the motors on the Mask Aligner. (\subref {fig:screw_firmness_plot}) example curves of how the screws of Z2 and Z3 affect the given motor's step size. The $0.0$ screw rotation is arbitrary. $+$ means retraction and $-$ means approach (Fig. \ref {fig:mask_aligner_nomenclature_motors}). The jumps in signal result from the \ce {CuBe} plate slipping across the winding of the screw}{figure.caption.20}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Motor calibration}{21}{subsection.2.3.2}\protected@file@percent }
\newlabel{fig:calibration_uhv_points_of_interest_z1}{{2.6a}{22}{\relax }{figure.caption.21}{}}
\newlabel{sub@fig:calibration_uhv_points_of_interest_z1}{{a}{22}{\relax }{figure.caption.21}{}}
\newlabel{fig:calibration_uhv_points_of_interest_z2z3}{{2.6b}{22}{\relax }{figure.caption.21}{}}
\newlabel{sub@fig:calibration_uhv_points_of_interest_z2z3}{{b}{22}{\relax }{figure.caption.21}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Points of interest for the calibration of the step size of the three piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination.}}{22}{figure.caption.21}\protected@file@percent }
\newlabel{fig:calibration_uhv_points_of_interest}{{2.6}{22}{Points of interest for the calibration of the step size of the three piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination}{figure.caption.21}{}}
\newlabel{fig:calibration_uhv_example_driving_z1}{{2.7a}{23}{\relax }{figure.caption.22}{}}
\newlabel{sub@fig:calibration_uhv_example_driving_z1}{{a}{23}{\relax }{figure.caption.22}{}}
\newlabel{fig:calibration_uhv_example_driving_z2}{{2.7b}{23}{\relax }{figure.caption.22}{}}
\newlabel{sub@fig:calibration_uhv_example_driving_z2}{{b}{23}{\relax }{figure.caption.22}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) top of motor Z1, inset shows a zoom in of the top plate. The image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps.}}{23}{figure.caption.22}\protected@file@percent }
\newlabel{fig:calibration_uhv_example_driving}{{2.7}{23}{Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) top of motor Z1, inset shows a zoom in of the top plate. The image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps}{figure.caption.22}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement.}}{24}{figure.caption.23}\protected@file@percent }
\newlabel{fig:calibration_screw_diff_explain}{{2.8}{24}{Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement}{figure.caption.23}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit.}}{24}{figure.caption.24}\protected@file@percent }
\newlabel{fig:calibration_example}{{2.9}{24}{Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit}{figure.caption.24}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Step size as a function of voltage (DC peak) with linear fit and resulting slopes marked.}}{25}{figure.caption.25}\protected@file@percent }
\newlabel{fig:calibration_voltage}{{2.10}{25}{Step size as a function of voltage (DC peak) with linear fit and resulting slopes marked}{figure.caption.25}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Optical alignment}{25}{subsection.2.3.3}\protected@file@percent }
\newlabel{fig:camera_alignment_example_low}{{2.11a}{26}{\relax }{figure.caption.26}{}}
\newlabel{sub@fig:camera_alignment_example_low}{{a}{26}{\relax }{figure.caption.26}{}}
\newlabel{fig:camera_alignment_example_high}{{2.11b}{26}{\relax }{figure.caption.26}{}}
\newlabel{sub@fig:camera_alignment_example_high}{{b}{26}{\relax }{figure.caption.26}{}}
\newlabel{fig:camera_alignment_example_good}{{2.11c}{26}{\relax }{figure.caption.26}{}}
\newlabel{sub@fig:camera_alignment_example_good}{{c}{26}{\relax }{figure.caption.26}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Examples of camera views for different alignment situations. (a) camera placed or angled too low, (b) too high and (c) placed in good alignment. }}{26}{figure.caption.26}\protected@file@percent }
\newlabel{fig:camera_alignment_example}{{2.11}{26}{Examples of camera views for different alignment situations. (a) camera placed or angled too low, (b) too high and (c) placed in good alignment}{figure.caption.26}{}}
\newlabel{fig:optical_approach_a}{{2.12a}{26}{\relax }{figure.caption.27}{}}
\newlabel{sub@fig:optical_approach_a}{{a}{26}{\relax }{figure.caption.27}{}}
\newlabel{fig:optical_approach_b}{{2.12b}{26}{\relax }{figure.caption.27}{}}
\newlabel{sub@fig:optical_approach_b}{{b}{26}{\relax }{figure.caption.27}{}}
\newlabel{fig:optical_approach_c}{{2.12c}{26}{\relax }{figure.caption.27}{}}
\newlabel{sub@fig:optical_approach_c}{{c}{26}{\relax }{figure.caption.27}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length.}}{26}{figure.caption.27}\protected@file@percent }
\newlabel{fig:optical_approach}{{2.12}{26}{The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length}{figure.caption.27}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Capacitive distance measurements}{27}{subsection.2.3.4}\protected@file@percent }
\newlabel{fig:mask_aligner_nomenclature_capacitances_motors}{{2.13a}{27}{\relax }{figure.caption.28}{}}
\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_motors}{{a}{27}{\relax }{figure.caption.28}{}}
\newlabel{fig:mask_aligner_nomenclature_capacitances_mask}{{2.13b}{27}{\relax }{figure.caption.28}{}}
\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_mask}{{b}{27}{\relax }{figure.caption.28}{}}
\newlabel{fig:mask_aligner_nomenclature_capacitances}{{\caption@xref {fig:mask_aligner_nomenclature_capacitances}{ on input line 277}}{27}{Capacitive distance measurements}{figure.caption.28}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces (\subref {fig:mask_aligner_nomenclature_capacitances_motors}) cross-section of the Mask Aligner showing the labeling and rough positioning of the capacitance sensors on the mask (inner \textcolor {tab_red}{red} triangle) in relation to the three piezo motor stacks. (\subref {fig:mask_aligner_nomenclature_capacitances_mask}) diagram of the mask's dimensions as well as labeling of the mask's sensors. The inset shows the dimensions of the holey part of the mask, which is used to create patterns. Below is a cross section of the materials used.}}{27}{figure.caption.28}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven.}}{28}{figure.caption.29}\protected@file@percent }
\newlabel{fig:diagram_MA_circ}{{2.14}{28}{Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven}{figure.caption.29}{}}
\newlabel{eq:plate_capacitor}{{2.1}{28}{Capacitive distance measurements}{equation.2.3.1}{}}
\citation{Beeker}
\newlabel{fig:approach_curve_example_cap}{{2.15a}{29}{\relax }{figure.caption.30}{}}
\newlabel{sub@fig:approach_curve_example_cap}{{a}{29}{\relax }{figure.caption.30}{}}
\newlabel{fig:approach_curve_example_cap_diff}{{2.15b}{29}{\relax }{figure.caption.30}{}}
\newlabel{sub@fig:approach_curve_example_cap_diff}{{b}{29}{\relax }{figure.caption.30}{}}
\newlabel{fig:approach_curve_example_first}{{2.15c}{29}{\relax }{figure.caption.30}{}}
\newlabel{sub@fig:approach_curve_example_first}{{c}{29}{\relax }{figure.caption.30}{}}
\newlabel{fig:approach_curve_example_second}{{2.15d}{29}{\relax }{figure.caption.30}{}}
\newlabel{sub@fig:approach_curve_example_second}{{d}{29}{\relax }{figure.caption.30}{}}
\newlabel{fig:approach_curve_example_full}{{2.15e}{29}{\relax }{figure.caption.30}{}}
\newlabel{sub@fig:approach_curve_example_full}{{e}{29}{\relax }{figure.caption.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces (a) capacitance (approach) curve. (b) difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample.}}{29}{figure.caption.30}\protected@file@percent }
\newlabel{fig:approach_curve_example}{{2.15}{29}{(a) capacitance (approach) curve. (b) difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample}{figure.caption.30}{}}
\citation{Beeker}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}Reproducibility}{30}{subsection.2.3.5}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{Reproducibility when removing sample/mask}{30}{section*.31}\protected@file@percent }
\newlabel{fig:approach_replicability_cap}{{2.16a}{30}{\relax }{figure.caption.32}{}}
\newlabel{sub@fig:approach_replicability_cap}{{a}{30}{\relax }{figure.caption.32}{}}
\newlabel{fig:approach_replicability_cap_diff}{{2.16b}{30}{\relax }{figure.caption.32}{}}
\newlabel{sub@fig:approach_replicability_cap_diff}{{b}{30}{\relax }{figure.caption.32}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces (\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier.}}{30}{figure.caption.32}\protected@file@percent }
\newlabel{fig:approach_replicability}{{2.16}{30}{(\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier}{figure.caption.32}{}}
\@writefile{toc}{\contentsline {section}{\numberline {2.4}Mask Aligner operation}{31}{section.2.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Sample preparation}{31}{subsection.2.4.1}\protected@file@percent }
\newlabel{sec:sample_prep}{{2.4.1}{31}{Sample preparation}{subsection.2.4.1}{}}
\@setckpt{chap02}{
\setcounter{page}{33}
\setcounter{equation}{1}
\setcounter{enumi}{10}
\setcounter{enumii}{0}
\setcounter{enumiii}{0}
\setcounter{enumiv}{0}
\setcounter{footnote}{1}
\setcounter{mpfootnote}{0}
\setcounter{part}{0}
\setcounter{chapter}{2}
\setcounter{section}{4}
\setcounter{subsection}{1}
\setcounter{subsubsection}{0}
\setcounter{paragraph}{0}
\setcounter{subparagraph}{0}
\setcounter{figure}{16}
\setcounter{table}{0}
\setcounter{section@level}{2}
\setcounter{Item}{10}
\setcounter{Hfootnote}{1}
\setcounter{bookmark@seq@number}{19}
\setcounter{parentequation}{0}
\setcounter{FancyVerbLine}{0}
\setcounter{NAT@ctr}{0}
\setcounter{caption@flags}{6}
\setcounter{continuedfloat}{0}
\setcounter{subfigure}{2}
\setcounter{subtable}{0}
\setcounter{lstnumber}{1}
\setcounter{@todonotes@numberoftodonotes}{1}
\setcounter{float@type}{8}
\setcounter{AM@survey}{0}
\setcounter{thm}{0}
\setcounter{defn}{0}
\setcounter{lstlisting}{0}
}