Skip to content
Snippets Groups Projects
Commit cb46e7d0 authored by Philipp Muth's avatar Philipp Muth
Browse files

minor

parent 258b97a1
No related branches found
No related tags found
No related merge requests found
......@@ -8,12 +8,12 @@
\title{On Actively Secure Fine-Grained Access Structures from Isogeny Assumptions}
\author{Fabio Campos\inst{1,2} \and \underline{Philipp Muth}\inst{3}}
\institute{\relax
RheinMain University of Applied Sciences, Wiesbaden, Germany
$^1$RheinMain University of Applied Sciences, Wiesbaden, Germany
\and
Radboud University, Nijmegen, The Netherlands %\\
$^2$Radboud University, Nijmegen, The Netherlands %\\
%\email{campos@sopmac.de}
\and
Technische Universität Darmstadt, Germany%\\
$^3$Technische Universität Darmstadt, Germany%\\
%\email{philipp.muth@tu-darmstadt.de}
}
......
......@@ -27,10 +27,10 @@
\end{block}
\begin{remark}
For \(s,s'\in \Z_p\) and \(E\in\mathcal E\), we have
\[[s] \left(\left[s'\right] E\right) = \left[s+s'\right] E.\]
\[\left[s\right] \left(\left[s'\right] E\right) = \left[s+s'\right] E.\]
\end{remark}
\begin{block}{The Group Action Inverse Problem}
\begin{block}{The Group Action Inverse Problem (GAIP)}
Given two elements \(E,E' \in \mathcal E\), find \(g\in \mathcal G\) with
\[g\ast E = E'.\]
\end{block}
......@@ -108,10 +108,10 @@
\draw [->] (cipher) -- (sh1);
\pause
\draw [->, >=Stealth, bend right] (sh1) edge node [midway, above] {$ E^1 = \left[L_{1} s_1\right] E_0$} (sh2) ;
\draw [->, >=Stealth, bend right] (sh2) edge node [midway, left] {$ E^2 = \left[L_{2} s_2\right] E_1$} (sh3) ;
\draw [->, >=Stealth, bend right] (sh3) edge node [midway, below] {$ E^3 = \left[L_{3} s_3\right] E_2$} (sh4) ;
\node [right = of sh4] (key) {$\key = \left[L_4 s_4\right] E^3$};
\draw [->, >=Stealth, bend right] (sh1) edge node [midway, above] {$ E^1 = \left[L_{1,S'} s_1\right] E_0$} (sh2) ;
\draw [->, >=Stealth, bend right] (sh2) edge node [midway, left] {$ E^2 = \left[L_{2,S'} s_2\right] E_1$} (sh3) ;
\draw [->, >=Stealth, bend right] (sh3) edge node [midway, below] {$ E^3 = \left[L_{3,S'} s_3\right] E_2$} (sh4) ;
\node [right = of sh4] (key) {$\key = \left[L_{4,S'} s_4\right] E^3$};
\draw [->] (sh4) -- (key);
\end{tikzpicture}
......@@ -154,10 +154,10 @@
\draw [->] (cipher) -- (sh1);
%\pause
\draw [->, >=Stealth, bend right] (sh1) edge node [midway, above] {$ E^1 = \left[L_{1} s_1\right] E_0$} (sh2) ;
\draw [->, >=Stealth, bend right] (sh2) edge node [midway, left, color = red] {$ {E^2} \neq \left[L_{2} s_2\right] E_1$} (sh3) ;
\draw [->, >=Stealth, bend right] (sh3) edge node [midway, below] {$ E^3 = \left[L_{3} s_3\right] E_2$} (sh4) ;
\node [right = of sh4] (key) {$\key = \left[L_4 s_4\right] E^3$};
\draw [->, >=Stealth, bend right] (sh1) edge node [midway, above] {$ E^1 = \left[L_{1,S'} s_1\right] E_0$} (sh2) ;
\draw [->, >=Stealth, bend right] (sh2) edge node [midway, left, color = red] {$ {E^2} \neq \left[L_{2,S'} s_2\right] E_1$} (sh3) ;
\draw [->, >=Stealth, bend right] (sh3) edge node [midway, below] {$ E^3 = \left[L_{3,S'} s_3\right] E_2$} (sh4) ;
\node [right = of sh4] (key) {$\key = \left[L_{4,S'} s_4\right] E^3$};
\draw [->] (sh4) -- (key);
\end{tikzpicture}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment