Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Access structures for isogenies
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Muth, Philipp
Access structures for isogenies
Commits
44ef2b48
Commit
44ef2b48
authored
2 years ago
by
Philipp Muth
Browse files
Options
Downloads
Patches
Plain Diff
added conclusion slide, minor
parent
183903ee
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
ACNS/presentation/key_exchange.tex
+3
-3
3 additions, 3 deletions
ACNS/presentation/key_exchange.tex
ACNS/presentation/main.tex
+10
-0
10 additions, 0 deletions
ACNS/presentation/main.tex
ACNS/presentation/motivation.tex
+40
-14
40 additions, 14 deletions
ACNS/presentation/motivation.tex
with
53 additions
and
17 deletions
ACNS/presentation/key_exchange.tex
+
3
−
3
View file @
44ef2b48
...
...
@@ -10,14 +10,14 @@
\begin{definition}
[Piecewise Verifiable Proof
\cite
{
DBLP:conf/asiacrypt/BeullensKV19
}
]
A party proves knowledge of a polynomial
\(
f
\)
for a statement
\[
x
=
\left
(
\left
(
E
_
0
,E
_
1
\right
)
,s
_
1
,
\ldots
, s
_
n
\right
)
,
\]
where
\(
E
_
1
=
\left
[
f
\paren
*
0
\right
]
E
_
0
\)
and
\(
s
_
i
=
f
\paren
*
i
\)
for
\(
i
=
1
,
\ldots
, n
\)
.
where
\(
E
_
1
=
\left
[
f
\paren
*
0
\right
]
E
_
0
\)
and
\(
s
_
i
=
f
\paren
*
i
\in
\ZZ
_
p
\)
for
\(
i
=
1
,
\ldots
, n
\)
.
\end{definition}
\end{frame}
\begin{frame}
\frametitle
{
What to do?
}
\begin{itemize}
\item
Transfer PVP
and ZK
proof to
the
threshold setting
\item
Transfer PVP proof to threshold setting
\item
Integrate both to decapsulation protocol to achieve active security
\item
Prove, that resulting protocol is at least as secure as original decapsulation
\end{itemize}
...
...
@@ -61,7 +61,7 @@
\frametitle
{
A Shareholder
\(
P
_
i
\)
's Turn in the Decapsulation Protocol
}
Let
\(
S
^
\ast
\)
be a superauthorised set of shareholders executing the decapsulation protocol.
\begin{enumerate}
\item
Ascertain
\(
E
^{
k
-
1
}
\in
\mathcal
E
\)
, where
\(
E
^{
k
-
1
}\)
is previous shareholder's output
.
\item
Ascertain
\(
E
^{
k
-
1
}
\in
\mathcal
E
\)
, where
\(
E
^{
k
-
1
}\)
is previous shareholder's output
of
\(
E
^
0
=
c
\)
\item
Sample
\(
R
_
k
\sample
\mathcal
E
\)
, compute
\(
R
_
k'
\gets
\left
[
L
_{
i,S
^
\ast
}
s
_
i
\right
]
R
_
k
\)
.
\item
Compute and publish
\begin{align*}
...
...
This diff is collapsed.
Click to expand it.
ACNS/presentation/main.tex
+
10
−
0
View file @
44ef2b48
...
...
@@ -28,6 +28,16 @@
\input
{
generalsss
}
\begin{frame}
\frametitle
{
Conclusion
}
\begin{itemize}
\item
Transfer PVP to threshold setting
\item
Actively secure key exchange mechanism
\item
Transformed into signature scheme
\item
Define, which field of secret sharing schemes is compatible
\end{itemize}
\end{frame}
\section
{
References
}
\begin{frame}
[allowframebreaks]
\bibliographystyle
{
amsalpha
}
...
...
This diff is collapsed.
Click to expand it.
ACNS/presentation/motivation.tex
+
40
−
14
View file @
44ef2b48
...
...
@@ -39,7 +39,7 @@
\begin{frame}
\frametitle
{
Secret Sharing Schemes
}
\begin{itemize}
\item
Distribute a secret
\(
s
\)
among
\(
n
\)
shareholders via
\item
Distribute a secret
\(
s
\)
among shareholders
\(
P
_
1
,
\ldots
, P
_
n
\)
via
\[
\mathcal
S.
\share\paren
*
s
\]
\item
Reconstruct a shared secret via
\[
\SH
.
\rec\paren
*
{
\set
{
s
_
i
}_{
P
_
i
\in
S'
}}
\]
...
...
@@ -53,27 +53,26 @@
\end{frame}
\begin{frame}
\begin{frame}
%[allowframebreaks]
\frametitle
{
Key Exchange Mechanisms
}
\begin{center}
\begin{tikzpicture}
\begin{scope}
[minimum size = .7cm]
\node
[alice] (alice) at (-3,0)
{
Alice
}
;
\node
[bob] (bob) at (3,0)
{
Bob
}
;
\end{scope}
\pause
%
\pause
\node
[left = .5 of alice] (pair)
{$
\left
(
\sk
,
\pk\right
)
$}
;
%\node [above = 3 of alice] (pk) {$\pk$};
%\draw [->] (alice) -- (pk);
\pause
%
\pause
\node
[above = 2.5 of bob] (encaps)
{$
\encaps
\paren
*
\pk
$}
;
\node
[above = 0.5 of bob] (keybob)
{$
\key
$}
;
%\node [above = 2.5 of alice] (cipher) {$c$};
\node
(cipher) at (
$
(
encaps
)+(-
6
,
0
)
$
)
{$
c
$}
;
\draw
[->] (encaps) -- (cipher);
\draw
[->] (encaps) -- (keybob);
\pause
%
\pause
\node
[above = 1.5 of alice] (decaps)
{$
\decaps\paren
*
{
\sk
,c
}$}
;
\draw
[->] (cipher) -- (decaps);
...
...
@@ -87,6 +86,30 @@
\end{center}
\end{frame}
\begin{frame}
\frametitle
{
Key Exchange Mechanisms in a HHS
}
\begin{pchstack}
[center,space=2em]
\procedure
[space=auto]
{$
\keygen
()
$}{
\sk
\sample
\ZZ
_
p
\\
\pk
\gets
\left
[\sk\right]
E
_
0
\\
\pcreturn
\left
(
\sk
,
\pk\right
)
}
\vspace
{
1em
}
\procedure
[space=auto]
{$
\encaps\paren
*
\pk
$}{
b
\sample
\mathcal
G
\\
\key
\gets
b
\ast
\pk\\
c
\gets
b
\ast
E
_
0
\\
\pcreturn
\left
(
\key
,c
\right
)
}
\vspace
{
1em
}
\procedure
[space=auto]
{$
\decaps\paren
*
{
\sk
,c
}$}{
\key
\gets
\left
[\sk\right]
c
\\
\pcreturn
\key
}
\end{pchstack}
\end{frame}
\begin{frame}
\frametitle
{
A Decapsulation Protocol with Shared Secret Key
\cite
{
FeoM20
}}
...
...
@@ -104,14 +127,14 @@
\draw
[help lines] (sk) edge (sh1) edge (sh2) edge (sh3) edge (sh4);
\pause
\node
[right=of sh1] (cipher)
{$
E
_
0
=
c
$}
;
\node
[right=of sh1] (cipher)
{$
E
^
0
=
c
$}
;
\coordinate
[left = of sh2] (bla) ;
\draw
[->] (cipher) -- (sh1);
\pause
\draw
[->, >=Stealth, bend right] (sh1) edge node [midway, above]
{$
E
^
1
=
\left
[
L
_{
1
,S'
}
s
_
1
\right
]
E
_
0
$}
(sh2) ;
\draw
[->, >=Stealth, bend right] (sh2) edge node [midway, left]
{$
E
^
2
=
\left
[
L
_{
2
,S'
}
s
_
2
\right
]
E
_
1
$}
(sh3) ;
\draw
[->, >=Stealth, bend right] (sh3) edge node [midway, below]
{$
E
^
3
=
\left
[
L
_{
3
,S'
}
s
_
3
\right
]
E
_
2
$}
(sh4) ;
\draw
[->, >=Stealth, bend right] (sh1) edge node [midway, above]
{$
E
^
1
=
\left
[
L
_{
1
,S'
}
s
_
1
\right
]
E
^
0
$}
(sh2) ;
\draw
[->, >=Stealth, bend right] (sh2) edge node [midway, left]
{$
E
^
2
=
\left
[
L
_{
2
,S'
}
s
_
2
\right
]
E
^
1
$}
(sh3) ;
\draw
[->, >=Stealth, bend right] (sh3) edge node [midway, below]
{$
E
^
3
=
\left
[
L
_{
3
,S'
}
s
_
3
\right
]
E
^
2
$}
(sh4) ;
\node
[right = of sh4] (key)
{$
\key
=
\left
[
L
_{
4
,S'
}
s
_
4
\right
]
E
^
3
$}
;
\draw
[->] (sh4) -- (key);
...
...
@@ -121,6 +144,9 @@
\begin{frame}
\frametitle
{
Features of the Protocol
}
\begin{block}
{
Threshold Group Action
}
\[
E
^{
\#
S'
}
=
\left
[
L
_{
j,S'
}
s
_
j
\right
]
\left
(
\left
[
\ldots\right
]
E
^{
0
}
\right
)
=
\left
[
\sum
_{
P
_
i
\in
S'
}
L
_{
i,S'
}
s
_
i
\right
]
E
^
0
=
\left
[
s
\right
]
c.
\]
\end{block}
\begin{block}
{
Advantages
}
\begin{itemize}
\item
Simulatable
...
...
@@ -150,14 +176,14 @@
\draw
[help lines] (sk) edge (sh1) edge (sh2) edge (sh3) edge (sh4);
%\pause
\node
[right=of sh1] (cipher)
{$
E
_
0
=
c
$}
;
\node
[right=of sh1] (cipher)
{$
E
^
0
=
c
$}
;
\coordinate
[left = of sh2] (bla) ;
\draw
[->] (cipher) -- (sh1);
%\pause
\draw
[->, >=Stealth, bend right] (sh1) edge node [midway, above]
{$
E
^
1
=
\left
[
L
_{
1
,S'
}
s
_
1
\right
]
E
_
0
$}
(sh2) ;
\draw
[->, >=Stealth, bend right] (sh2) edge node [midway, left, color = red]
{$
{
E
^
2
}
\neq
\left
[
L
_{
2
,S'
}
s
_
2
\right
]
E
_
1
$}
(sh3) ;
\draw
[->, >=Stealth, bend right] (sh3) edge node [midway, below]
{$
E
^
3
=
\left
[
L
_{
3
,S'
}
s
_
3
\right
]
E
_
2
$}
(sh4) ;
\draw
[->, >=Stealth, bend right] (sh1) edge node [midway, above]
{$
E
^
1
=
\left
[
L
_{
1
,S'
}
s
_
1
\right
]
E
^
0
$}
(sh2) ;
\draw
[->, >=Stealth, bend right] (sh2) edge node [midway, left, color = red]
{$
{
E
^
2
}
\neq
\left
[
L
_{
2
,S'
}
s
_
2
\right
]
E
^
1
$}
(sh3) ;
\draw
[->, >=Stealth, bend right] (sh3) edge node [midway, below]
{$
E
^
3
=
\left
[
L
_{
3
,S'
}
s
_
3
\right
]
E
^
2
$}
(sh4) ;
\node
[right = of sh4] (key)
{$
\key
=
\left
[
L
_{
4
,S'
}
s
_
4
\right
]
E
^
3
$}
;
\draw
[->] (sh4) -- (key);
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment