Skip to content
Snippets Groups Projects
Commit f7750903 authored by Nassim Bouteldja's avatar Nassim Bouteldja
Browse files

Update README.md

parent 568f20a7
Branches
No related tags found
No related merge requests found
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
# **FLASH**: **F**ramework for **LA**rge-**S**cale **H**istomorphometry # **FLASH**: **F**ramework for **LA**rge-**S**cale **H**istomorphometry
This repository represents a python framework to train, evaluate and apply segmentation networks for renal histological analysis. In particular, we trained a neural network based on the [U-net architecture](https://arxiv.org/pdf/1505.04597.pdf) to segment several renal structures including ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+) tubulus, ![#00ff00](https://via.placeholder.com/15/00ff00/000000?text=+) glomerulus, ![#0000ff](https://via.placeholder.com/15/0000ff/000000?text=+) glomerular tuft, ![#00ffff](https://via.placeholder.com/15/00ffff/000000?text=+) non-tissue background (including veins, renal pelvis), ![#ff00ff](https://via.placeholder.com/15/ff00ff/000000?text=+) artery, and ![#ffff00](https://via.placeholder.com/15/ffff00/000000?text=+) arterial lumen from PAS-stained histopathology data. In our experiments, we utilized human tissue data sampled from different cohorts including inhouse biopsies (UKA_B) and nephrectomies (UKA_N), the Human BioMolecular Atlas Program cohort (HuBMAP), the Kidney Precision Medicine Project cohort (KPMP), and the Validation of the Oxford classification of IgA Nephropathy cohort (VALIGA). This repository represents a python framework to train, evaluate and apply segmentation networks for renal histological analysis. In particular, we trained an [nnUnet](https://github.com/MIC-DKFZ/nnUNet) for kidney tissue segmentation followed by training another [U-net-like](https://arxiv.org/pdf/1505.04597.pdf) CNN for the segmentation of several renal structures including ![#ff0000](https://via.placeholder.com/15/ff0000/000000?text=+) tubulus, ![#00ff00](https://via.placeholder.com/15/00ff00/000000?text=+) glomerulus, ![#0000ff](https://via.placeholder.com/15/0000ff/000000?text=+) glomerular tuft, ![#00ffff](https://via.placeholder.com/15/00ffff/000000?text=+) non-tissue background (including veins, renal pelvis), ![#ff00ff](https://via.placeholder.com/15/ff00ff/000000?text=+) artery, and ![#ffff00](https://via.placeholder.com/15/ffff00/000000?text=+) arterial lumen from PAS-stained histopathology data. In our experiments, we utilized human tissue data sampled from different cohorts including inhouse biopsies (UKA_B) and nephrectomies (UKA_N), the Human BioMolecular Atlas Program cohort (HuBMAP), the Kidney Precision Medicine Project cohort (KPMP), and the Validation of the Oxford classification of IgA Nephropathy cohort (VALIGA).
# Installation # Installation
1. Clone this repo using [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git):<br> 1. Clone this repo using [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git):<br>
...@@ -24,7 +24,7 @@ source activate python37 ...@@ -24,7 +24,7 @@ source activate python37
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
``` ```
# Training # Training
Train a network, e.g. using the following command: Train a structure segmentation network, e.g. using the following command:
``` ```
python ./FLASH/training.py -m custom -s train_val_test -e 500 -b 6 -r 0.001 -w 0.00001 python ./FLASH/training.py -m custom -s train_val_test -e 500 -b 6 -r 0.001 -w 0.00001
``` ```
...@@ -34,6 +34,7 @@ Note:<br> ...@@ -34,6 +34,7 @@ Note:<br>
``` ```
training.py --model --setting --epochs --batchSize --lrate --weightDecay training.py --model --setting --epochs --batchSize --lrate --weightDecay
``` ```
- We trained the prior tissue segmentation network using the [nnUnet repo](https://github.com/MIC-DKFZ/nnUNet).
# Application # Application
Use *getPredictionForBigPatch.py* to apply the trained network for histopathological renal structure segmentation to data of your choice. Use *getPredictionForBigPatch.py* to apply the trained network for histopathological renal structure segmentation to data of your choice.
``` ```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment