Skip to content
Snippets Groups Projects
Commit 35610bfb authored by Nassim Bouteldja's avatar Nassim Bouteldja
Browse files

Upload New File

parent dd36832f
No related branches found
No related tags found
No related merge requests found
loss.py 0 → 100644
# This class performs the soft dice loss computation (used between ground-truth and predictions during training)
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import getOneHotEncoding
class DiceLoss(nn.Module):
def __init__(self, ignore_index=-1):
super(DiceLoss, self).__init__()
self.eps = 1e-6
self.smooth = 1.
self.ignore_index = ignore_index
def forward(self, prediction, target):
"""
Computes the dice loss (averaging dice scores across B x C) between network prediction and target used for training
:param prediction: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor, CARE: prediction results straight
after last conv without being finally propagated through an activation (softmax, sigmoid)
:param target: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor representing the ground-truth as one-hot encoding
:return: 1 - mean dice score across BxC
"""
predictionNorm = F.sigmoid(prediction)
# predictionNorm = F.softmax(prediction, dim=1)
if self.ignore_index != -1:
target = target.clone().detach()
mask = target == self.ignore_index
target[mask] = 0
if target.dtype == torch.int64:
target = getOneHotEncoding(prediction, target)
if self.ignore_index != -1 and target.size()[1] != 1:
mask = mask.unsqueeze(1).expand_as(target)
target[mask] = 0
denominator = predictionNorm + target
if self.ignore_index != -1:
denominator[mask] = 0
if target.dim() == 4: #2D
numerator = 2. * (predictionNorm * target).sum(3).sum(2) + self.smooth
denominator = denominator.sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
elif target.dim() == 5: #3D
numerator = 2. * (predictionNorm * target).sum(4).sum(3).sum(2) + self.smooth
denominator = denominator.sum(4).sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
else:
ValueError('Given data dimension >' + str(target.dim()) + 'd< not supported!')
class DiceLossGivenMask(nn.Module):
def __init__(self):
super(DiceLossGivenMask, self).__init__()
self.eps = 1e-6
self.smooth = 1.
def forward(self, prediction, target, mask):
"""
Fast dice loss computation when mask given
:param prediction: predictions without activation function
:param target: one-hot float tensor
:param mask: float tensor of prediction size to ignore certain spatial predictions
"""
predictionNorm = F.sigmoid(prediction)
# predictionNorm = F.softmax(prediction, dim=1)
denominator = predictionNorm + target
denominator = denominator * mask
if target.dim() == 4: #2D
numerator = 2. * (predictionNorm * target).sum(3).sum(2) + self.smooth
denominator = denominator.sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
elif target.dim() == 5: #3D
numerator = 2. * (predictionNorm * target).sum(4).sum(3).sum(2) + self.smooth
denominator = denominator.sum(4).sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
else:
ValueError('Given data dimension >' + str(target.dim()) + 'd< not supported!')
class PseudoDiceLoss(nn.Module):
def __init__(self, ignore_index=-1):
super(PseudoDiceLoss, self).__init__()
self.eps = 1e-6
self.smooth = 1.
self.ignore_index = ignore_index
def forward(self, prediction, target):
"""
Computes the pseudo dice loss (averaging dice scores across C) between network prediction and target used for training
:param prediction: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor, CARE: prediction results straight
after last conv without being finally propagated through an activation (softmax, sigmoid)
:param target: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor representing the ground-truth as one-hot encoding
:return: 1 - mean dice score across channel amount C
"""
predictionNorm = F.sigmoid(prediction)
if self.ignore_index != -1:
mask = (target == self.ignore_index)
target[mask] = 0
if target.dtype == torch.int64:
target = getOneHotEncoding(target)
if self.ignore_index != -1:
mask = mask.unsqueeze(1).expand_as(target)
target[mask] = 0
predictionNorm[mask] = 0
if target.dim() == 4: #2D
numerator = 2. * (predictionNorm * target).sum(3).sum(2).sum(0) + self.smooth
denominator = (predictionNorm + target).sum(3).sum(2).sum(0) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
elif target.dim() == 5: #3D
numerator = 2. * (predictionNorm * target).sum(4).sum(3).sum(2).sum(0) + self.smooth
denominator = (predictionNorm + target).sum(4).sum(3).sum(2).sum(0) + self.eps + self.smooth
dice_score = numerator / denominator
return 1.0 - dice_score.mean()
else:
ValueError('Given data dimension >' + str(target.dim()) + 'd< not supported!')
class HingeDiceLoss(nn.Module):
def __init__(self, ignore_index=-1):
super(HingeDiceLoss, self).__init__()
self.eps = 1e-6
self.smooth = 1.
self.ignore_index = ignore_index
def forward(self, prediction, target):
"""
Computes the hinge dice loss (averaging dice scores across B x C) between network prediction and target used for training
:param prediction: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor, CARE: prediction results straight
after last conv without being finally propagated through an activation (softmax, sigmoid)
:param target: BxCxHxW (2d) or BxCxHxWxD (3d) float tensor representing the ground-truth as one-hot encoding
:return: 1 - mean hinge dice score across BxC
"""
predictionNorm = F.sigmoid(prediction)
if self.ignore_index != -1:
mask = (target == self.ignore_index)
target[mask] = 0
if target.dtype == torch.int64:
target = getOneHotEncoding(target)
if self.ignore_index != -1:
mask = mask.unsqueeze(1).expand_as(target)
target[mask] = 0
predictionNorm[mask] = 0
if target.dim() == 4: #2D
numerator = 2. * (predictionNorm * target).sum(3).sum(2) + self.smooth
denominator = (predictionNorm + target).sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
h1 = (torch.clamp(dice_score, max=0.1) * 10 - 1) ** 2
h2 = (torch.clamp(dice_score, max=0.01) * 100 - 1) ** 2
return 1.0 - dice_score.mean() + h1.mean()*10 + h2.mean()*10
elif target.dim() == 5: #3D
numerator = 2. * (predictionNorm * target).sum(4).sum(3).sum(2) + self.smooth
denominator = (predictionNorm + target).sum(4).sum(3).sum(2) + self.eps + self.smooth
dice_score = numerator / denominator
h1 = (torch.clamp(dice_score, max=0.1) * 10 - 1) ** 2
h2 = (torch.clamp(dice_score, max=0.01) * 100 - 1) ** 2
return 1.0 - dice_score.mean() + h1.mean()*10 + h2.mean()*10
else:
ValueError('Given data dimension >' + str(target.dim()) + 'd< not supported!')
if __name__ == '__main__':
print()
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment