Skip to content
Snippets Groups Projects
Commit 1777e421 authored by Bernardbernoulli's avatar Bernardbernoulli
Browse files

Stuff

parent 7bf1b3e9
No related branches found
No related tags found
No related merge requests found
\relax \relax
\providecommand\hyper@newdestlabel[2]{} \providecommand\hyper@newdestlabel[2]{}
\@writefile{toc}{\contentsline {chapter}{Acknowledgments}{ix}{chapter*.127}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{Acknowledgments}{ix}{chapter*.130}\protected@file@percent }
\@setckpt{acknowledgments}{ \@setckpt{acknowledgments}{
\setcounter{page}{10} \setcounter{page}{10}
\setcounter{equation}{1} \setcounter{equation}{1}
...@@ -31,7 +31,7 @@ ...@@ -31,7 +31,7 @@
\setcounter{subfigure}{0} \setcounter{subfigure}{0}
\setcounter{subtable}{0} \setcounter{subtable}{0}
\setcounter{lstnumber}{1} \setcounter{lstnumber}{1}
\setcounter{@todonotes@numberoftodonotes}{2} \setcounter{@todonotes@numberoftodonotes}{5}
\setcounter{float@type}{8} \setcounter{float@type}{8}
\setcounter{AM@survey}{0} \setcounter{AM@survey}{0}
\setcounter{thm}{0} \setcounter{thm}{0}
......
\relax \relax
\providecommand\hyper@newdestlabel[2]{} \providecommand\hyper@newdestlabel[2]{}
\@writefile{toc}{\contentsline {chapter}{Appendix}{i}{chapter*.93}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{Appendix}{i}{chapter*.96}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {A}LockIn amplifier settings}{i}{section.5.1}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {A}LockIn amplifier settings}{i}{section.5.1}\protected@file@percent }
\newlabel{app:lock_in}{{A}{i}{LockIn amplifier settings}{section.5.1}{}} \newlabel{app:lock_in}{{A}{i}{LockIn amplifier settings}{section.5.1}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded.}}{i}{table.caption.94}\protected@file@percent } \@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded.}}{i}{table.caption.97}\protected@file@percent }
\newlabel{fig:app_lock_in}{{5.2}{i}{Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded}{table.caption.94}{}} \newlabel{fig:app_lock_in}{{5.2}{i}{Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded}{table.caption.97}{}}
\@writefile{toc}{\contentsline {section}{\numberline {B}Walker principle diagram}{ii}{section.5.2}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {B}Walker principle diagram}{ii}{section.5.2}\protected@file@percent }
\newlabel{app:walker_diagram}{{B}{ii}{Walker principle diagram}{section.5.2}{}} \newlabel{app:walker_diagram}{{B}{ii}{Walker principle diagram}{section.5.2}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5.16}{\ignorespaces Overview of the entire signal generation and amplification process of the new Mask Aligner controller.}}{ii}{figure.caption.95}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {5.16}{\ignorespaces Overview of the entire signal generation and amplification process of the new Mask Aligner controller.}}{ii}{figure.caption.98}\protected@file@percent }
\newlabel{fig:electronics_diagramm}{{5.16}{ii}{Overview of the entire signal generation and amplification process of the new Mask Aligner controller}{figure.caption.95}{}} \newlabel{fig:electronics_diagramm}{{5.16}{ii}{Overview of the entire signal generation and amplification process of the new Mask Aligner controller}{figure.caption.98}{}}
\@writefile{toc}{\contentsline {section}{\numberline {C}Walker circuit diagrams}{ii}{section.5.3}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {C}Walker circuit diagrams}{ii}{section.5.3}\protected@file@percent }
\newlabel{app:circuit_electronics}{{C}{ii}{Walker circuit diagrams}{section.5.3}{}} \newlabel{app:circuit_electronics}{{C}{ii}{Walker circuit diagrams}{section.5.3}{}}
\@writefile{toc}{\contentsline {section}{\numberline {D}New driver electronics}{vi}{section.5.4}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {D}New driver electronics}{vi}{section.5.4}\protected@file@percent }
\newlabel{sec:appendix_walker}{{D}{vi}{New driver electronics}{section.5.4}{}} \newlabel{sec:appendix_walker}{{D}{vi}{New driver electronics}{section.5.4}{}}
\@writefile{toc}{\contentsline {paragraph}{pulse?}{vi}{section*.96}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{pulse?}{vi}{section*.99}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{pol x}{vi}{section*.97}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{pol x}{vi}{section*.100}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{amp x}{vi}{section*.98}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{amp x}{vi}{section*.101}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{volt x}{vi}{section*.99}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{volt x}{vi}{section*.102}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{channel x}{vi}{section*.100}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{channel x}{vi}{section*.103}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{maxmstep x}{vi}{section*.101}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{maxmstep x}{vi}{section*.104}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{step x}{vi}{section*.102}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{step x}{vi}{section*.105}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{mstep x}{vi}{section*.103}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{mstep x}{vi}{section*.106}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{cancel}{vii}{section*.104}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{cancel}{vii}{section*.107}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{help}{vii}{section*.105}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{help}{vii}{section*.108}\protected@file@percent }
\@writefile{toc}{\contentsline {section}{\numberline {E}Raycast Simulation}{vii}{section.5.5}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {E}Raycast Simulation}{vii}{section.5.5}\protected@file@percent }
\newlabel{sec:appendix_raycast}{{E}{vii}{Raycast Simulation}{section.5.5}{}} \newlabel{sec:appendix_raycast}{{E}{vii}{Raycast Simulation}{section.5.5}{}}
\@writefile{toc}{\contentsline {paragraph}{radius\_1}{vii}{section*.106}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{radius\_1}{vii}{section*.109}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{angle}{vii}{section*.107}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{angle}{vii}{section*.110}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{radius\_mask}{vii}{section*.108}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{radius\_mask}{vii}{section*.111}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.109}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.112}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{distance\_sample}{vii}{section*.110}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{distance\_sample}{vii}{section*.113}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.111}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.114}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{running\_time}{vii}{section*.112}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{running\_time}{vii}{section*.115}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{deposition\_gain}{vii}{section*.113}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{deposition\_gain}{vii}{section*.116}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{penalize\_deposition}{vii}{section*.114}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{penalize\_deposition}{vii}{section*.117}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.115}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.118}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{oscillation\_period}{vii}{section*.116}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{oscillation\_period}{vii}{section*.119}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.117}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.120}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.118}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.121}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{save\_intervall}{viii}{section*.119}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{save\_intervall}{viii}{section*.122}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{oscillation\_dir}{viii}{section*.120}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{oscillation\_dir}{viii}{section*.123}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.121}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.124}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.122}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.125}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{random\_seed}{viii}{section*.123}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{random\_seed}{viii}{section*.126}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.124}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.127}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{resolution}{viii}{section*.125}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{resolution}{viii}{section*.128}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{path}{viii}{section*.126}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{path}{viii}{section*.129}\protected@file@percent }
\@setckpt{appendix}{ \@setckpt{appendix}{
\setcounter{page}{9} \setcounter{page}{9}
\setcounter{equation}{1} \setcounter{equation}{1}
...@@ -76,7 +76,7 @@ ...@@ -76,7 +76,7 @@
\setcounter{subfigure}{0} \setcounter{subfigure}{0}
\setcounter{subtable}{0} \setcounter{subtable}{0}
\setcounter{lstnumber}{1} \setcounter{lstnumber}{1}
\setcounter{@todonotes@numberoftodonotes}{2} \setcounter{@todonotes@numberoftodonotes}{5}
\setcounter{float@type}{8} \setcounter{float@type}{8}
\setcounter{AM@survey}{0} \setcounter{AM@survey}{0}
\setcounter{thm}{0} \setcounter{thm}{0}
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
\bibcite{Tungsten_evap}{{10}{}{{}}{{}}} \bibcite{Tungsten_evap}{{10}{}{{}}{{}}}
\bibcite{tungsten_evaporation}{{11}{}{{}}{{}}} \bibcite{tungsten_evaporation}{{11}{}{{}}{{}}}
\bibcite{Vapor_depo_princ}{{12}{}{{}}{{}}} \bibcite{Vapor_depo_princ}{{12}{}{{}}{{}}}
\@writefile{toc}{\contentsline {chapter}{Bibliography}{88}{chapter*.91}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{Bibliography}{89}{chapter*.94}\protected@file@percent }
\bibcite{sputter_damage}{{13}{}{{}}{{}}} \bibcite{sputter_damage}{{13}{}{{}}{{}}}
\bibcite{florian_forster}{{14}{}{{}}{{}}} \bibcite{florian_forster}{{14}{}{{}}{{}}}
\bibcite{afm_physics}{{15}{}{{}}{{}}} \bibcite{afm_physics}{{15}{}{{}}{{}}}
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
\bibcite{arduino_cpu_datasheet}{{25}{}{{}}{{}}} \bibcite{arduino_cpu_datasheet}{{25}{}{{}}{{}}}
\bibcite{switch_datasheet}{{26}{}{{}}{{}}} \bibcite{switch_datasheet}{{26}{}{{}}{{}}}
\@setckpt{bibliography}{ \@setckpt{bibliography}{
\setcounter{page}{91} \setcounter{page}{92}
\setcounter{equation}{1} \setcounter{equation}{1}
\setcounter{enumi}{4} \setcounter{enumi}{4}
\setcounter{enumii}{0} \setcounter{enumii}{0}
...@@ -59,7 +59,7 @@ ...@@ -59,7 +59,7 @@
\setcounter{subfigure}{0} \setcounter{subfigure}{0}
\setcounter{subtable}{0} \setcounter{subtable}{0}
\setcounter{lstnumber}{1} \setcounter{lstnumber}{1}
\setcounter{@todonotes@numberoftodonotes}{2} \setcounter{@todonotes@numberoftodonotes}{5}
\setcounter{float@type}{8} \setcounter{float@type}{8}
\setcounter{AM@survey}{0} \setcounter{AM@survey}{0}
\setcounter{thm}{0} \setcounter{thm}{0}
......
\relax \relax
\providecommand\hyper@newdestlabel[2]{} \providecommand\hyper@newdestlabel[2]{}
\citation{Tungsten_melt} \citation{Tungsten_melt}
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Mask Aligner background}{4}{chapter.1}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{\numberline {1}Mask Aligner background}{5}{chapter.1}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }} \@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }}
\newlabel{ch:background}{{1}{4}{Mask Aligner background}{chapter.1}{}} \newlabel{ch:background}{{1}{5}{Mask Aligner background}{chapter.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Electron beam evaporation}{4}{section.1.1}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {1.1}Electron beam evaporation}{5}{section.1.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Schematic diagram of a general electron beam evaporation chamber. The B-field is used to focus the beam onto the source. The shutter can interrupt the beam directed to the sample. The funnel is used to focus the vapor beam. }}{4}{figure.caption.3}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Schematic diagram of a general electron beam evaporation chamber. The B-field is used to focus the beam onto the source. The shutter can interrupt the beam directed to the sample. The funnel is used to focus the vapor beam. }}{5}{figure.caption.3}\protected@file@percent }
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}} \providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{fig:e-beam_evap}{{1.1}{4}{Schematic diagram of a general electron beam evaporation chamber. The B-field is used to focus the beam onto the source. The shutter can interrupt the beam directed to the sample. The funnel is used to focus the vapor beam}{figure.caption.3}{}} \newlabel{fig:e-beam_evap}{{1.1}{5}{Schematic diagram of a general electron beam evaporation chamber. The B-field is used to focus the beam onto the source. The shutter can interrupt the beam directed to the sample. The funnel is used to focus the vapor beam}{figure.caption.3}{}}
\citation{knudsen} \citation{knudsen}
\citation{Vapor_depo_princ} \citation{Vapor_depo_princ}
\citation{sputter_damage} \citation{sputter_damage}
\citation{tungsten_evaporation} \citation{tungsten_evaporation}
\newlabel{eq:hertz_knudsen}{{1.1}{5}{Electron beam evaporation}{equation.1.1.1}{}} \newlabel{eq:hertz_knudsen}{{1.1}{6}{Electron beam evaporation}{equation.1.1.1}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Stencil lithography}{6}{section.1.2}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {1.2}Stencil lithography}{7}{section.1.2}\protected@file@percent }
\@writefile{tdo}{\contentsline {todo}{Here}{6}{section*.4}\protected@file@percent } \@writefile{tdo}{\contentsline {todo}{Here}{7}{section*.4}\protected@file@percent }
\@writefile{toc}{\contentsline {subsubsection}{Penumbra}{6}{section*.5}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{Penumbra}{7}{section*.5}\protected@file@percent }
\citation{Bhaskar} \citation{Bhaskar}
\@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Diagram showing the geometrical reason for the creation of a penumbra in the evaporation from a non point source. The crucible is placed at distance $l$ from the mask, and beams emit from either side of the crucible to each side of the hole in the mask. The area where only beams from one side of the crucible hit the sample receives fewer particles and is called penumbra.}}{7}{figure.caption.6}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Diagram to determine the size of the penumbra $p$. The crucible is placed at distance $l$ from the mask, and beams emit from either side of the crucible to both edges of a hole in the mask. The area where only beams from one side of the crucible hit the sample is called penumbra.}}{8}{figure.caption.6}\protected@file@percent }
\newlabel{fig:penumbra_explanation}{{1.2}{7}{Diagram showing the geometrical reason for the creation of a penumbra in the evaporation from a non point source. The crucible is placed at distance $l$ from the mask, and beams emit from either side of the crucible to each side of the hole in the mask. The area where only beams from one side of the crucible hit the sample receives fewer particles and is called penumbra}{figure.caption.6}{}} \newlabel{fig:penumbra_explanation}{{1.2}{8}{Diagram to determine the size of the penumbra $p$. The crucible is placed at distance $l$ from the mask, and beams emit from either side of the crucible to both edges of a hole in the mask. The area where only beams from one side of the crucible hit the sample is called penumbra}{figure.caption.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{Tilt induced penumbra}{8}{section*.7}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{Tilt induced penumbra}{8}{section*.7}\protected@file@percent }
\newlabel{fig:penumbra_explanation_tilt_2d}{{1.3a}{8}{\relax }{figure.caption.8}{}} \newlabel{fig:penumbra_explanation_tilt_2d}{{1.3a}{9}{\relax }{figure.caption.8}{}}
\newlabel{sub@fig:penumbra_explanation_tilt_2d}{{a}{8}{\relax }{figure.caption.8}{}} \newlabel{sub@fig:penumbra_explanation_tilt_2d}{{a}{9}{\relax }{figure.caption.8}{}}
\newlabel{fig:penumbra_explanation_tilt_sim}{{1.3b}{8}{\relax }{figure.caption.8}{}} \newlabel{fig:penumbra_explanation_tilt_sim}{{1.3b}{9}{\relax }{figure.caption.8}{}}
\newlabel{sub@fig:penumbra_explanation_tilt_sim}{{b}{8}{\relax }{figure.caption.8}{}} \newlabel{sub@fig:penumbra_explanation_tilt_sim}{{b}{9}{\relax }{figure.caption.8}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces A diagram of the evaporation rays for a tilted mask with only one hole (\subref {fig:penumbra_explanation_tilt_2d}) showing the 2 different penumbral widths $p_{\text {i}}$ that appear in a cross-section. (\subref {fig:penumbra_explanation_tilt_sim}) Simulated evaporation with large penumbra for a tilt angle of $45^\circ $ the penumbra, is wider on one side than on the other. The penumbra in the simulation is for a mask sample distance of $200$ $\mu $m. Program used for simulation is described in Section \ref {sec:simulation}}}{8}{figure.caption.8}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces A diagram of the evaporation rays for a tilted mask with only one hole (\subref {fig:penumbra_explanation_tilt_2d}) showing the 2 different penumbral widths $p_{\text {i}}$ that appear in a cross-section. (\subref {fig:penumbra_explanation_tilt_sim}) Simulated evaporation with large penumbra for a tilt angle of $45^\circ $ the penumbra, is wider on one side than on the other. The penumbra in the simulation is for a mask sample distance of $200$ $\mu $m and a hole diameter of $3$ $\mu $m. Program used for simulation is described in Section \ref {sec:simulation}}}{9}{figure.caption.8}\protected@file@percent }
\newlabel{fig:penumbra_explanation_tilt}{{1.3}{8}{A diagram of the evaporation rays for a tilted mask with only one hole (\subref {fig:penumbra_explanation_tilt_2d}) showing the 2 different penumbral widths $p_{\text {i}}$ that appear in a cross-section. (\subref {fig:penumbra_explanation_tilt_sim}) Simulated evaporation with large penumbra for a tilt angle of $45^\circ $ the penumbra, is wider on one side than on the other. The penumbra in the simulation is for a mask sample distance of $200$ $\mu $m. Program used for simulation is described in Section \ref {sec:simulation}}{figure.caption.8}{}} \newlabel{fig:penumbra_explanation_tilt}{{1.3}{9}{A diagram of the evaporation rays for a tilted mask with only one hole (\subref {fig:penumbra_explanation_tilt_2d}) showing the 2 different penumbral widths $p_{\text {i}}$ that appear in a cross-section. (\subref {fig:penumbra_explanation_tilt_sim}) Simulated evaporation with large penumbra for a tilt angle of $45^\circ $ the penumbra, is wider on one side than on the other. The penumbra in the simulation is for a mask sample distance of $200$ $\mu $m and a hole diameter of $3$ $\mu $m. Program used for simulation is described in Section \ref {sec:simulation}}{figure.caption.8}{}}
\@writefile{toc}{\contentsline {section}{\numberline {1.3}Measurement techniques}{8}{section.1.3}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {1.3}Measurement techniques}{9}{section.1.3}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Atomic Force Microscopy}{9}{subsection.1.3.1}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Atomic Force Microscopy}{9}{subsection.1.3.1}\protected@file@percent }
\@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Diagram showing the configuration of an AFM. Depicted here is contact mode but the experimental setup is the same for all modes.}}{9}{figure.caption.9}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Diagram showing the configuration of an AFM with the tip in contact with the sample. Arrows indicate movement directions.}}{10}{figure.caption.9}\protected@file@percent }
\newlabel{fig:afm_principle}{{1.4}{9}{Diagram showing the configuration of an AFM. Depicted here is contact mode but the experimental setup is the same for all modes}{figure.caption.9}{}} \newlabel{fig:afm_principle}{{1.4}{10}{Diagram showing the configuration of an AFM with the tip in contact with the sample. Arrows indicate movement directions}{figure.caption.9}{}}
\@writefile{toc}{\contentsline {subsubsection}{Modes}{9}{section*.10}\protected@file@percent } \@writefile{toc}{\contentsline {subsubsection}{Modes}{10}{section*.10}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Contact}{10}{section*.11}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Schematic diagram of the Lennart Jones potential governing the interaction between tip and sample in an AFM. The 3 areas of the AFM Modes are marked \textcolor {tab_green}{contact}, \textcolor {tab_blue}{tapping} and \textcolor {tab_red}{non-contact}. These regions are approximate. Units on both axes are arbitrary.}}{11}{figure.caption.11}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Non-Contact}{10}{section*.12}\protected@file@percent } \newlabel{fig:afm_potential}{{1.5}{11}{Schematic diagram of the Lennart Jones potential governing the interaction between tip and sample in an AFM. The 3 areas of the AFM Modes are marked \textcolor {tab_green}{contact}, \textcolor {tab_blue}{tapping} and \textcolor {tab_red}{non-contact}. These regions are approximate. Units on both axes are arbitrary}{figure.caption.11}{}}
\@writefile{toc}{\contentsline {paragraph}{Tapping}{10}{section*.13}\protected@file@percent } \@writefile{toc}{\contentsline {paragraph}{Contact}{11}{section*.12}\protected@file@percent }
\@writefile{toc}{\contentsline {paragraph}{Non-Contact}{11}{section*.13}\protected@file@percent }
\citation{afm_physics,afm_bio} \citation{afm_physics,afm_bio}
\@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Schematic diagram of the Lennart Jones potential governing the interaction between tip and sample in an AFM. The 3 AFM Modes are marked \textcolor {tab_green}{contact}, \textcolor {tab_blue}{tapping} and \textcolor {tab_red}{non-contact} these regions are approximate. Units on both axes are arbitrary.}}{11}{figure.caption.14}\protected@file@percent }
\newlabel{fig:afm_potential}{{1.5}{11}{Schematic diagram of the Lennart Jones potential governing the interaction between tip and sample in an AFM. The 3 AFM Modes are marked \textcolor {tab_green}{contact}, \textcolor {tab_blue}{tapping} and \textcolor {tab_red}{non-contact} these regions are approximate. Units on both axes are arbitrary}{figure.caption.14}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Scanning Electron Microscopy}{11}{subsection.1.3.2}\protected@file@percent }
\citation{SEM_image_01} \citation{SEM_image_01}
\citation{SEM_image_02} \citation{SEM_image_02}
\citation{SEM_image_01} \citation{SEM_image_01}
\citation{SEM_image_02} \citation{SEM_image_02}
\@writefile{toc}{\contentsline {paragraph}{Tapping}{12}{section*.14}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Scanning Electron Microscopy}{12}{subsection.1.3.2}\protected@file@percent }
\citation{SEM_book} \citation{SEM_book}
\citation{SEM_book} \citation{SEM_book}
\citation{SEM_book} \citation{SEM_book}
\citation{SEM_book} \citation{SEM_book}
\newlabel{fig:sem_setup_beam}{{1.6a}{12}{\relax }{figure.caption.15}{}} \newlabel{fig:sem_setup_beam}{{1.6a}{13}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:sem_setup_beam}{{a}{12}{\relax }{figure.caption.15}{}} \newlabel{sub@fig:sem_setup_beam}{{a}{13}{\relax }{figure.caption.15}{}}
\newlabel{fig:sem_setup_interaction}{{1.6b}{12}{\relax }{figure.caption.15}{}} \newlabel{fig:sem_setup_interaction}{{1.6b}{13}{\relax }{figure.caption.15}{}}
\newlabel{sub@fig:sem_setup_interaction}{{b}{12}{\relax }{figure.caption.15}{}} \newlabel{sub@fig:sem_setup_interaction}{{b}{13}{\relax }{figure.caption.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces The beam path for an SEM (\subref {fig:sem_setup_beam}). The $3$ detectors used in an SEM are shown near the bottom of the image. The secondary electron detector (Everhard-Thornley) and the back scattering and X-ray detector. A diagram showing electron matter interactions (\subref {fig:sem_setup_interaction}). The green area represents the penetration depth into the sample at which the different signals can be detected. Images were taken from~\cite {SEM_image_01} and ~\cite {SEM_image_02}.}}{12}{figure.caption.15}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces The beam path for an SEM (\subref {fig:sem_setup_beam}). The $3$ detectors used in an SEM are shown near the bottom of the image. The secondary electron detector (Everhard-Thornley) and the back scattering and X-ray detector. A diagram showing electron matter interactions (\subref {fig:sem_setup_interaction}). The green area represents the penetration depth into the sample at which the different signals can be detected. Images were taken from~\cite {SEM_image_01} and ~\cite {SEM_image_02}.}}{13}{figure.caption.15}\protected@file@percent }
\newlabel{fig:sem_setup}{{1.6}{12}{The beam path for an SEM (\subref {fig:sem_setup_beam}). The $3$ detectors used in an SEM are shown near the bottom of the image. The secondary electron detector (Everhard-Thornley) and the back scattering and X-ray detector. A diagram showing electron matter interactions (\subref {fig:sem_setup_interaction}). The green area represents the penetration depth into the sample at which the different signals can be detected. Images were taken from~\cite {SEM_image_01} and ~\cite {SEM_image_02}}{figure.caption.15}{}} \newlabel{fig:sem_setup}{{1.6}{13}{The beam path for an SEM (\subref {fig:sem_setup_beam}). The $3$ detectors used in an SEM are shown near the bottom of the image. The secondary electron detector (Everhard-Thornley) and the back scattering and X-ray detector. A diagram showing electron matter interactions (\subref {fig:sem_setup_interaction}). The green area represents the penetration depth into the sample at which the different signals can be detected. Images were taken from~\cite {SEM_image_01} and ~\cite {SEM_image_02}}{figure.caption.15}{}}
\citation{self_epitaxy} \citation{self_epitaxy}
\@setckpt{chap01}{ \@setckpt{chap01}{
\setcounter{page}{14} \setcounter{page}{15}
\setcounter{equation}{2} \setcounter{equation}{2}
\setcounter{enumi}{0} \setcounter{enumi}{0}
\setcounter{enumii}{0} \setcounter{enumii}{0}
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
\relax \relax
\providecommand\hyper@newdestlabel[2]{} \providecommand\hyper@newdestlabel[2]{}
\@writefile{toc}{\contentsline {chapter}{Conclusions and Outlook}{86}{chapter*.90}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{Conclusions and Outlook}{87}{chapter*.93}\protected@file@percent }
\citation{self_epitaxy} \citation{self_epitaxy}
\@setckpt{conclusion}{ \@setckpt{conclusion}{
\setcounter{page}{88} \setcounter{page}{89}
\setcounter{equation}{1} \setcounter{equation}{1}
\setcounter{enumi}{4} \setcounter{enumi}{4}
\setcounter{enumii}{0} \setcounter{enumii}{0}
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
\setcounter{subfigure}{0} \setcounter{subfigure}{0}
\setcounter{subtable}{0} \setcounter{subtable}{0}
\setcounter{lstnumber}{1} \setcounter{lstnumber}{1}
\setcounter{@todonotes@numberoftodonotes}{2} \setcounter{@todonotes@numberoftodonotes}{5}
\setcounter{float@type}{8} \setcounter{float@type}{8}
\setcounter{AM@survey}{0} \setcounter{AM@survey}{0}
\setcounter{thm}{0} \setcounter{thm}{0}
......
No preview for this file type
No preview for this file type
No preview for this file type
...@@ -73,15 +73,15 @@ ...@@ -73,15 +73,15 @@
</rdf:Description> </rdf:Description>
<rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/">
<xmp:CreatorTool>LaTeX with hyperref</xmp:CreatorTool> <xmp:CreatorTool>LaTeX with hyperref</xmp:CreatorTool>
<xmp:ModifyDate>2024-09-14T21:09:36+02:00</xmp:ModifyDate> <xmp:ModifyDate>2024-09-16T14:37:56+02:00</xmp:ModifyDate>
<xmp:CreateDate>2024-09-14T21:09:36+02:00</xmp:CreateDate> <xmp:CreateDate>2024-09-16T14:37:56+02:00</xmp:CreateDate>
<xmp:MetadataDate>2024-09-14T21:09:36+02:00</xmp:MetadataDate> <xmp:MetadataDate>2024-09-16T14:37:56+02:00</xmp:MetadataDate>
</rdf:Description> </rdf:Description>
<rdf:Description rdf:about="" xmlns:xmpRights = "http://ns.adobe.com/xap/1.0/rights/"> <rdf:Description rdf:about="" xmlns:xmpRights = "http://ns.adobe.com/xap/1.0/rights/">
</rdf:Description> </rdf:Description>
<rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/">
<xmpMM:DocumentID>uuid:C8CFC28F-88E1-7995-E9AD-F6D12EAD346B</xmpMM:DocumentID> <xmpMM:DocumentID>uuid:C8CFC28F-88E1-7995-E9AD-F6D12EAD346B</xmpMM:DocumentID>
<xmpMM:InstanceID>uuid:BCDBD80E-F135-A467-0BD0-1FD3D1DEF069</xmpMM:InstanceID> <xmpMM:InstanceID>uuid:E342714C-F978-A4A7-C1ED-0C3D1F14384E</xmpMM:InstanceID>
</rdf:Description> </rdf:Description>
</rdf:RDF> </rdf:RDF>
</x:xmpmeta> </x:xmpmeta>
......
...@@ -7,7 +7,7 @@ ...@@ -7,7 +7,7 @@
\citation{Olschewski,Bhaskar} \citation{Olschewski,Bhaskar}
\@writefile{toc}{\contentsline {chapter}{Introduction}{3}{chapter*.2}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{Introduction}{3}{chapter*.2}\protected@file@percent }
\@setckpt{preface}{ \@setckpt{preface}{
\setcounter{page}{4} \setcounter{page}{5}
\setcounter{equation}{0} \setcounter{equation}{0}
\setcounter{enumi}{0} \setcounter{enumi}{0}
\setcounter{enumii}{0} \setcounter{enumii}{0}
......
\chapter*{Introduction} \chapter*{Introduction}
\addcontentsline{toc}{chapter}{Introduction} \addcontentsline{toc}{chapter}{Introduction}
In condensed matter physics, precise fabrication of nanostructures with sharp patterns is paramount for research in various fields like electronics, photonics and quantum computing. One problem, that is highly sought after in quantum computing, is the creation of Majorana Zero Modes, as these could potentially provide a stable and controllable way to encode information. \textbf{M}ajorana \textbf{Z}ero \textbf{M}odes (MZM) are quasi particles that behave like Majorana fermions with non-Abelian statistics. MZMs are predicted to emerge at the core of vortices at superconductor/topological insulator interfaces~\cite{majorana_zero_modes}. These interfaces require pristine conditions and at the same time patterns, smaller than the coherence length ($<100$ nm) of the superconductor.\\ In condensed matter physics, precise fabrication of nanostructures with sharp patterns is paramount for research in various fields like electronics, photonics and quantum computing. One problem, that is highly sought after in quantum computing, is the creation of Majorana Zero Modes, as these could potentially provide a stable and controllable way to encode information. \textbf{M}ajorana \textbf{Z}ero \textbf{M}odes (MZM) are quasi particles that behave like Majorana fermions with non-Abelian statistics. MZMs are predicted to emerge at the core of vortices at superconductor/topological insulator interfaces~\cite{majorana_zero_modes}. These interfaces require pristine conditions and at the same time patterns, smaller than the coherence length ($<100$ nm) of the superconductor.\\
Atmospheric conditions typically deteriorate surface properties of the required samples. Due to this \textbf{U}ltra \textbf{H}igh \textbf{V}accuum (UHV) conditions are required for the sample. This often limits the pattern creation process, as exposure to ambient conditions or other chemicals are required. \\ Atmospheric conditions typically deteriorate surface properties of the required samples. Due to this \textbf{U}ltra \textbf{H}igh \textbf{V}accuum (UHV) conditions are required for the sample. This often limits the pattern creation process, as exposure to ambient conditions or other chemicals are required. \\
Many methods like \textbf{E}lectron \textbf{B}eam \textbf{L}ithography or \textbf{E}xtreme \textbf{U}ltra\textbf{V}iolet \textbf{L}ithography (EUVL or EUV) give the required precision for patterning at the sub $100$ nm scale,~\cite{euv} but require resists, which typically are deposited with the help of solvents. These leave residues after the patterning process, which damage the pristine condition of the substrate. Typically, these methods can also not be performed under UHV conditions. \\ Many methods like \textbf{E}lectron \textbf{B}eam \textbf{L}ithography or \textbf{E}xtreme \textbf{U}ltra\textbf{V}iolet \textbf{L}ithography (EUVL or EUV) give the required precision for patterning at the sub $100$ nm scale,~\cite{euv} but require resists, which typically are deposited with the help of solvents. These leave residues after the patterning process, which damage the pristine condition of the substrate. Typically, these methods can also not be performed under UHV conditions. \\
Other methods of patterning superconductors on topological insulators have been proposed, but many have shortcomings that make their use impractical. There are for example scanning probe approaches,~\cite{afm_pattern} which can directly manipulate single atoms on surfaces, but require Other methods of patterning superconductors on topological insulators have been proposed, but many have shortcomings that make their use impractical. There are for example scanning probe approaches,~\cite{afm_pattern} which can directly manipulate single atoms on surfaces, but require
long timescales and expensive equipment. Additionally, many Scanning Probe approaches still require resists, leading to the same issues as previously mentioned.\\ long timescales and expensive equipment. Additionally, many Scanning Probe approaches still require resists, leading to the same issues as previously mentioned.\\
A simple and inexpensive approach is stencil lithography employing \textbf{P}hysical \textbf{V}apor \\ \textbf{D}eposition (PVD), where a stencil (mask) is used to mask a section of the sample. When the sample is hit with a molecular vapor beam, the masked areas are protected from the impinging material and stay pristine, while the ones not protected built patterned structures. In this method, no resist is required, and the procedure can be performed at UHV conditions. Resolutions of sub-$50$ nm have been achieved~\cite{stencil_resolution}. \\ A simple and inexpensive approach is stencil lithography employing \textbf{P}hysical \textbf{V}apor \\ \textbf{D}eposition (PVD), where a stencil (mask) is used to mask a section of the sample. When the sample is hit with a molecular vapor beam, the masked areas are protected from the impinging material and stay pristine, while the ones not protected built patterned structures. In this method, no resist is required, and the procedure can be performed at UHV conditions. Resolutions of sub-$50$ nm have been achieved~\cite{stencil_resolution}. \\
Stencil lithography however has its downside. In order to get very high resolution, the mask and the sample have to be very close as otherwise the aperture of the mask creates a "penumbra", limiting the final resolution of the pattern on the sample. The simple and often used approach is to simply bring mask and sample into direct mechanical contact, ensuring minimal distance. This however can \\ Stencil lithography however has its downsides. In order to get very high resolution, the mask and the sample have to be very close as otherwise the aperture of the mask creates a "penumbra", limiting the lateral resolution of the pattern. The simple and often used approach is to simply bring mask and sample into direct mechanical contact, ensuring minimal distance. This however can contaminate the sample or even mechanically damage it.\\
To avoid this a Mask Aligner operating in UHV, the subject of this work, was designed~\cite{Olschewski, Bhaskar}. It is a tool to use capacitive measurement to ensure minimal mask sample distance during PVD, while avoiding full contact with the sample, thus preserving surface condition. This work concerns the optimization, improvement and analysis of the Mask Aligner, as well as work on the creation of additional electronics and software to drive the Mask Aligners operation. To avoid this a Mask Aligner operating in UHV, the subject of this work, was designed~\cite{Olschewski, Bhaskar}. It uses capacitive measurement to ensure minimal mask sample distance during PVD, while avoiding full contact with the sample, thus preserving surface condition. This work concerns the optimization, improvement and analysis of the Mask Aligner, as well as work on the creation of additional electronics and software to drive the Mask Aligners operation.
\ No newline at end of file \ No newline at end of file
...@@ -10,16 +10,25 @@ ...@@ -10,16 +10,25 @@
\pgfsyspdfmark {pgfid4}{37433768}{23686377} \pgfsyspdfmark {pgfid4}{37433768}{23686377}
\pgfsyspdfmark {pgfid5}{39282063}{23411651} \pgfsyspdfmark {pgfid5}{39282063}{23411651}
\@input{chap02.aux} \@input{chap02.aux}
\pgfsyspdfmark {pgfid6}{4736286}{50112224} \pgfsyspdfmark {pgfid6}{4736286}{18753248}
\pgfsyspdfmark {pgfid9}{37433768}{50100220} \pgfsyspdfmark {pgfid9}{37433768}{18774022}
\pgfsyspdfmark {pgfid10}{39282063}{49825494} \pgfsyspdfmark {pgfid10}{39282063}{18499296}
\pgfsyspdfmark {pgfid11}{4736286}{50112224}
\pgfsyspdfmark {pgfid14}{37433768}{50100220}
\pgfsyspdfmark {pgfid15}{39282063}{49825494}
\pgfsyspdfmark {pgfid16}{4736286}{21159948}
\pgfsyspdfmark {pgfid19}{37433768}{21180722}
\pgfsyspdfmark {pgfid20}{39282063}{20905996}
\pgfsyspdfmark {pgfid21}{4736286}{10384924}
\pgfsyspdfmark {pgfid24}{37433768}{10405698}
\pgfsyspdfmark {pgfid25}{39282063}{10130972}
\@input{chap03.aux} \@input{chap03.aux}
\@input{chap04.aux} \@input{chap04.aux}
\@input{chap05.aux} \@input{chap05.aux}
\@input{conclusion.aux} \@input{conclusion.aux}
\@input{bibliography.aux} \@input{bibliography.aux}
\@writefile{toc}{\contentsline {chapter}{List of Abbreviations}{91}{chapter*.92}\protected@file@percent } \@writefile{toc}{\contentsline {chapter}{List of Abbreviations}{92}{chapter*.95}\protected@file@percent }
\@input{appendix.aux} \@input{appendix.aux}
\@input{acknowledgments.aux} \@input{acknowledgments.aux}
\providecommand\NAT@force@numbers{}\NAT@force@numbers \providecommand\NAT@force@numbers{}\NAT@force@numbers
\gdef \@abspage@last{101} \gdef \@abspage@last{102}
This diff is collapsed.
...@@ -57,13 +57,13 @@ ...@@ -57,13 +57,13 @@
\BOOKMARK [2][-]{subsection.5.5.2}{\376\377\000R\000e\000s\000u\000l\000t\000s}{section.5.5}% 57 \BOOKMARK [2][-]{subsection.5.5.2}{\376\377\000R\000e\000s\000u\000l\000t\000s}{section.5.5}% 57
\BOOKMARK [2][-]{subsection.5.5.3}{\376\377\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000i\000m\000p\000r\000o\000v\000e\000m\000e\000n\000t\000s}{section.5.5}% 58 \BOOKMARK [2][-]{subsection.5.5.3}{\376\377\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000i\000m\000p\000r\000o\000v\000e\000m\000e\000n\000t\000s}{section.5.5}% 58
\BOOKMARK [2][-]{subsection.5.5.4}{\376\377\000F\000i\000n\000a\000l\000\040\000R\000e\000m\000a\000r\000k}{section.5.5}% 59 \BOOKMARK [2][-]{subsection.5.5.4}{\376\377\000F\000i\000n\000a\000l\000\040\000R\000e\000m\000a\000r\000k}{section.5.5}% 59
\BOOKMARK [0][-]{chapter*.90}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000O\000u\000t\000l\000o\000o\000k}{}% 60 \BOOKMARK [0][-]{chapter*.93}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000O\000u\000t\000l\000o\000o\000k}{}% 60
\BOOKMARK [0][-]{chapter*.91}{\376\377\000B\000i\000b\000l\000i\000o\000g\000r\000a\000p\000h\000y}{}% 61 \BOOKMARK [0][-]{chapter*.94}{\376\377\000B\000i\000b\000l\000i\000o\000g\000r\000a\000p\000h\000y}{}% 61
\BOOKMARK [0][-]{chapter*.92}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000A\000b\000b\000r\000e\000v\000i\000a\000t\000i\000o\000n\000s}{}% 62 \BOOKMARK [0][-]{chapter*.95}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000A\000b\000b\000r\000e\000v\000i\000a\000t\000i\000o\000n\000s}{}% 62
\BOOKMARK [0][-]{chapter*.93}{\376\377\000A\000p\000p\000e\000n\000d\000i\000x}{}% 63 \BOOKMARK [0][-]{chapter*.96}{\376\377\000A\000p\000p\000e\000n\000d\000i\000x}{}% 63
\BOOKMARK [1][-]{section.5.1}{\376\377\000L\000o\000c\000k\000I\000n\000\040\000a\000m\000p\000l\000i\000f\000i\000e\000r\000\040\000s\000e\000t\000t\000i\000n\000g\000s}{chapter*.93}% 64 \BOOKMARK [1][-]{section.5.1}{\376\377\000L\000o\000c\000k\000I\000n\000\040\000a\000m\000p\000l\000i\000f\000i\000e\000r\000\040\000s\000e\000t\000t\000i\000n\000g\000s}{chapter*.96}% 64
\BOOKMARK [1][-]{section.5.2}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e\000\040\000d\000i\000a\000g\000r\000a\000m}{chapter*.93}% 65 \BOOKMARK [1][-]{section.5.2}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e\000\040\000d\000i\000a\000g\000r\000a\000m}{chapter*.96}% 65
\BOOKMARK [1][-]{section.5.3}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000c\000i\000r\000c\000u\000i\000t\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter*.93}% 66 \BOOKMARK [1][-]{section.5.3}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000c\000i\000r\000c\000u\000i\000t\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter*.96}% 66
\BOOKMARK [1][-]{section.5.4}{\376\377\000N\000e\000w\000\040\000d\000r\000i\000v\000e\000r\000\040\000e\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{chapter*.93}% 67 \BOOKMARK [1][-]{section.5.4}{\376\377\000N\000e\000w\000\040\000d\000r\000i\000v\000e\000r\000\040\000e\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{chapter*.96}% 67
\BOOKMARK [1][-]{section.5.5}{\376\377\000R\000a\000y\000c\000a\000s\000t\000\040\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter*.93}% 68 \BOOKMARK [1][-]{section.5.5}{\376\377\000R\000a\000y\000c\000a\000s\000t\000\040\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter*.96}% 68
\BOOKMARK [0][-]{chapter*.127}{\376\377\000A\000c\000k\000n\000o\000w\000l\000e\000d\000g\000m\000e\000n\000t\000s}{}% 69 \BOOKMARK [0][-]{chapter*.130}{\376\377\000A\000c\000k\000n\000o\000w\000l\000e\000d\000g\000m\000e\000n\000t\000s}{}% 69
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment