Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
Tooling
Manage
Activity
Members
Plan
Wiki
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Terraform modules
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
FOCUS
Tooling
Commits
8dd713b6
Commit
8dd713b6
authored
1 year ago
by
Christoph von Oy
Browse files
Options
Downloads
Patches
Plain Diff
Made pareto analysis available to all entities
parent
a0b67081
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
pareto_analysis/pareto_analysis.py
+37
-27
37 additions, 27 deletions
pareto_analysis/pareto_analysis.py
with
37 additions
and
27 deletions
pareto_analysis/pareto_analysis.py
+
37
−
27
View file @
8dd713b6
...
...
@@ -21,53 +21,65 @@ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
import
pyomo.environ
as
pyomo
from
pyomo.opt
import
SolverStatus
,
TerminationCondition
from
Model_Library.optimization_model
import
OptimizationModel
import
matplotlib.pyplot
as
plot
import
os
import
pyomo.environ
as
pyo
from
pyomo.opt
import
SolverStatus
,
TerminationCondition
def
pareto_analysis
(
entity
,
strategy
):
if
len
(
strategy
)
!=
2
:
raise
ValueError
(
'
Pareto analysis can only be done with two strategies!
'
)
model
=
OptimizationModel
(
entity
.
_name
,
entity
.
_dynamic
)
entity
.
_topology
.
build_model
(
model
,
strategy
)
model
.
collect_objectives
()
def
pareto_analysis
(
prosumer
,
model
,
strategy_names
):
model
=
model
.
block
strategy_names
=
list
(
strategy
.
keys
())
strategy_name_1
=
strategy_names
[
0
]
strategy_name_2
=
strategy_names
[
1
]
solver
=
pyo
mo
.
SolverFactory
(
"
gurobi
"
)
solver
=
pyo
.
SolverFactory
(
"
gurobi
"
)
solver
.
options
[
'
MIPGap
'
]
=
0.01
solver
.
options
[
'
Presolve
'
]
=
2
solver
.
options
[
'
TimeLimit
'
]
=
200
payoff
=
[[
0.0
,
0.0
],
[
0.0
,
0.0
]]
f1
=
getattr
(
model
,
'
f
'
+
strategy_name_1
)
O1
=
getattr
(
model
,
'
O
'
+
strategy_name_1
)
f2
=
getattr
(
model
,
'
f
'
+
strategy_name_2
)
O2
=
getattr
(
model
,
'
O
'
+
strategy_name_2
)
f1
=
getattr
(
model
,
'
f
_
'
+
strategy_name_1
)
O1
=
getattr
(
model
,
'
O
_
'
+
strategy_name_1
)
f2
=
getattr
(
model
,
'
f
_
'
+
strategy_name_2
)
O2
=
getattr
(
model
,
'
O
_
'
+
strategy_name_2
)
O2
.
deactivate
()
solver
.
solve
(
model
)
payoff
[
0
][
0
]
=
pyo
mo
.
value
(
f1
)
model
.
cp11
=
pyo
mo
.
Constraint
(
expr
=
f1
==
payoff
[
0
][
0
])
payoff
[
0
][
0
]
=
pyo
.
value
(
f1
)
model
.
cp11
=
pyo
.
Constraint
(
expr
=
f1
==
payoff
[
0
][
0
])
O1
.
deactivate
()
O2
.
activate
()
solver
.
solve
(
model
)
payoff
[
0
][
1
]
=
pyo
mo
.
value
(
f2
)
payoff
[
0
][
1
]
=
pyo
.
value
(
f2
)
model
.
del_component
(
model
.
cp11
)
solver
.
solve
(
model
)
payoff
[
1
][
1
]
=
pyo
mo
.
value
(
f2
)
model
.
cp22
=
pyo
mo
.
Constraint
(
expr
=
f2
==
payoff
[
1
][
1
])
payoff
[
1
][
1
]
=
pyo
.
value
(
f2
)
model
.
cp22
=
pyo
.
Constraint
(
expr
=
f2
==
payoff
[
1
][
1
])
O2
.
deactivate
()
O1
.
activate
()
solver
.
solve
(
model
)
payoff
[
1
][
0
]
=
pyo
mo
.
value
(
f1
)
payoff
[
1
][
0
]
=
pyo
.
value
(
f1
)
r2
=
payoff
[
1
][
1
]
-
payoff
[
0
][
1
]
g2
=
4
i2
=
0
number_of_solutions
=
0
model
.
s2
=
pyo
mo
.
Var
(
bounds
=
(
0
,
None
))
model
.
e2
=
pyo
mo
.
Param
(
mutable
=
True
)
model
.
s2
=
pyo
.
Var
(
bounds
=
(
0
,
None
))
model
.
e2
=
pyo
.
Param
(
mutable
=
True
)
model
.
del_component
(
model
.
cp22
)
if
O2
.
sense
==
pyo
mo
.
maximize
:
if
O2
.
sense
==
pyo
.
maximize
:
factor
=
-
1
else
:
factor
=
1
model
.
cp2
=
pyo
mo
.
Constraint
(
expr
=
f2
+
factor
*
model
.
s2
==
model
.
e2
)
model
.
cp2
=
pyo
.
Constraint
(
expr
=
f2
+
factor
*
model
.
s2
==
model
.
e2
)
O1
.
deactivate
()
model
.
O
=
pyo
mo
.
Objective
(
expr
=
f1
+
0.001
*
(
model
.
s2
/
r2
),
sense
=
O1
.
sense
)
model
.
O
=
pyo
.
Objective
(
expr
=
f1
+
0.001
*
(
model
.
s2
/
r2
),
sense
=
O1
.
sense
)
f1_list
=
[]
f2_list
=
[]
pareto_rsl
=
dict
()
...
...
@@ -75,21 +87,19 @@ def pareto_analysis(prosumer, model, strategy_names):
model
.
e2
=
payoff
[
0
][
1
]
+
(
i2
/
g2
)
*
r2
solver_result
=
solver
.
solve
(
model
)
if
solver_result
.
solver
.
status
==
SolverStatus
.
ok
and
solver_result
.
solver
.
termination_condition
==
TerminationCondition
.
optimal
:
f1_list
.
append
(
pyo
mo
.
value
(
f1
))
f2_list
.
append
(
pyo
mo
.
value
(
f2
))
pareto_rsl
[
number_of_solutions
]
=
(
pyo
mo
.
value
(
model
.
x
1
),
pyo
mo
.
value
(
model
.
x
2
))
f1_list
.
append
(
pyo
.
value
(
f1
))
f2_list
.
append
(
pyo
.
value
(
f2
))
pareto_rsl
[
number_of_solutions
]
=
(
pyo
.
value
(
f
1
),
pyo
.
value
(
f
2
))
number_of_solutions
+=
1
i2
+=
1
else
:
i2
=
g2
+
1
if
not
os
.
path
.
exists
(
'
output_files/
'
):
os
.
makedirs
(
'
output_files/
'
)
if
not
os
.
path
.
exists
(
'
output_files/
'
+
prosumer
.
name
+
'
/
'
):
os
.
makedirs
(
'
output_files/
'
+
prosumer
.
name
+
'
/
'
)
if
not
os
.
path
.
exists
(
'
output_files
'
):
os
.
makedirs
(
'
output_files
'
)
fig
,
ax
=
plot
.
subplots
(
figsize
=
(
16
,
9
))
ax
.
plot
(
f1_list
,
f2_list
,
'
o-.
'
,
linewidth
=
0.5
)
plot
.
title
(
'
Pareto-Front
'
)
plot
.
grid
(
True
)
plot
.
xlabel
(
strategy_name_1
)
plot
.
ylabel
(
strategy_name_2
)
plot
.
savefig
(
'
output_files/
'
+
prosumer
.
name
+
'
/pareto_front.png
'
)
\ No newline at end of file
plot
.
savefig
(
'
output_files/
'
+
entity
.
_name
+
'
_pareto_front.png
'
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment