Skip to content
Snippets Groups Projects
Commit 33d38313 authored by Alexandros Asonitis's avatar Alexandros Asonitis
Browse files

complete version of memristor released!

parent fb377ed7
Branches
No related tags found
No related merge requests found
"""
This is a python file containing all the important functions for memristor measurement
Available Functions
measurements in the HP4155a
plot results
create data frame
ini file decoder
enabing and disabling widgets for jupyter(lists)
"""
import sys
sys.path.insert(0, '..') #append parent directory
import module
import matplotlib.pyplot as plt
import tkinter as tk
from tkinter import filedialog
import tkinter.messagebox
import numpy as np
from IPython.display import display, clear_output
import pandas as pd
from datetime import datetime
import ipywidgets as widgets
import time
import os
#these are the quick sampling checks
def test_contacts():
device = module.HP4155a('GPIB0::17::INSTR')
smu = [1,2,3,4]
for i in range(1,4): # iterate through smus 1-4
for j in range(4,i,-1):
"""
We have the following pairs in order
1-4,1-3,1-2,2-4,2-3,3-4
"""
device.reset()
device.measurement_mode('SAMP')
device.sampling_mode('LIN')
device.number_of_points(1)
device.integration_time('MED')
device.initial_interval(2e-3)
device.filter_status('OFF')
#remove total sampling time
device.auto_sampling_time('ON')
#disable vmus and vsus
device.disable_vsu(1)
device.disable_vsu(2)
device.disable_vmu(1)
device.disable_vmu(2)
device.smu_mode_meas(i,'V') #one smu is measuring
device.smu_mode_meas(j,'COMM') #one smu is ground
#set voltage and compliance
device.constant_smu_sampling(i,0.01)
device.constant_smu_comp(i,'MAX')
#smus to remove
smu_disable = smu.copy()
smu_disable.remove(i)
smu_disable.remove(j)
for number in smu_disable:
device.smu_disable_sweep(number)
device.display_variable('X','@TIME')
device.display_variable('Y1',f'I{i}')
device.single_measurement()
while device.operation_completed() == False:
time.sleep(2)
device.autoscaling()
V = device.return_data(f'V{i}')
I = device.return_data(f'I{i}')
R = V[0]/I[0]
print(f"R{i}{j}:{R} Ohm")
#print(f"Contact check of smu{i} and smu{j} failed!")
#double sweep from start to stop and then from start to stop
def sweep(start,stop,step,comp,integration,device):
device.measurement_mode('SWE')
#changed smu2 is source and 4 is ground
#smu2 is constant and common
device.smu_mode_meas(4,'COMM')
device.smu_function_sweep(4,'CONS')
#smu4 is VAR1 and V
device.smu_mode_meas(2,'V')
device.smu_function_sweep(2,'VAR1')
device.integration_time(integration)
#define double sweep
device.var1_mode('DOUB')
#start stop step and comp
device.start_value_sweep(start)
#time.sleep(5)
device.stop_value_sweep(stop)
#time.sleep(5)
if start < stop and step < 0 :
step = -step
elif start > stop and step > 0 :
step = -step
device.step_sweep(step)
#time.sleep(5)
device.comp('VAR1',comp)
#display variables
device.display_variable('X','V2')
device.display_variable('Y1','I2')
#execute measurement
device.single_measurement()
while device.operation_completed()==False:
time.sleep(2)
device.autoscaling()
#return values
V=device.return_data('V2')
I=device.return_data('I2')
#convert the list to np.array to return the absolute values for the logarithmic scale
V = np.array(V)
I = np.array(I)
#return all values to the function
return V, I
#sampling check
def sampling_check(voltage,device):
device.measurement_mode('SAMP')
device.smu_mode_meas(2,'V')
device.smu_mode_meas(4,'COMM')
#set voltage and compliance
device.constant_smu_sampling(2,voltage)
device.constant_smu_comp(2,'MAX')
device.sampling_mode('LIN')
device.number_of_points(5)
device.integration_time('MED')
device.initial_interval(2e-3)
device.filter_status('OFF')
#remove total sampling time
device.auto_sampling_time('ON')
device.display_variable('X','@TIME')
device.display_variable('Y1','R')
device.single_measurement()
while device.operation_completed() == False:
time.sleep(2)
device.autoscaling()
try:
TIME = device.return_data('@TIME')
R = device.return_data('R')
TIME = np.array(TIME)
R = np.array(R)
R_mean = np.average(R)
return R_mean
except:
return 0
#new (retention)
def retention(voltage,period,duration,device):
device.measurement_mode('SAMP')
device.smu_mode_meas(2,'V')
device.smu_mode_meas(4,'COMM')
#set voltage and compliance
device.constant_smu_sampling(2,voltage)
device.constant_smu_comp(2,'MAX')
device.sampling_mode('LIN')
device.initial_interval(period)
device.total_sampling_time(duration)
if int(duration/period)+1<=10001:
device.number_of_points(int(duration/period)+1)
else:
device.number_of_points('MAX')
device.integration_time('MED')
device.filter_status('OFF')
device.display_variable('X','@TIME')
device.display_variable('Y1','R')
device.single_measurement()
while device.operation_completed() == False:
time.sleep(2)
device.autoscaling()
try:
TIME = device.return_data('@TIME')
R = device.return_data('R')
TIME = np.array(TIME)
R = np.array(R)
return TIME,R
except:
return 0,0
#plot sweep results
def plot_sweep(x,y,title):
#plot results
plt.figure().clear()
fig, (ax1, ax2) = plt.subplots(2,sharex=True,figsize=(8,6)) #the plots share the same x axis
fig.suptitle(title)
ax1.set_title('Linear I')
ax1.set(xlabel='Voltage(V)',ylabel='Current(A)')
ax2.set_title('Logarithmic I')
ax2.set(xlabel='Voltage(V)',ylabel='Current(A)')
ax2.set_yscale('log')
ax1.plot(x,y)
ax2.plot(x,np.absolute(y))
plt.tight_layout()
plt.show()
def plot_retention(x,y):
fig, ax = plt.subplots()
fig.suptitle('Retention')
ax.set(xlabel='time(s)',ylabel='Resistance(Ohm)')
ax.set_yscale('log')
ax.set_xscale('linear')
plt.plot(x,y)
plt.show()
def create_data_frame(x,y):
header = ['V(V)','ABSV(V)',"I(A)",'ABSI(A)',"R(Ohm)"]
data = {header[0]:x,header[1]:np.absolute(x),header[2]:y,header[3]:np.absolute(y),header[4]:np.divide(x,y)}
df = pd.DataFrame(data)
#print(df)
return df
def create_retention_data_frame(x,y):
header = ['Time(s)','R(Ohm)']
data = {header[0]:x,header[1]:y}
df = pd.DataFrame(data)
return df
#write results to file
def write_to_file(file,title,df):
with open(file,'a') as f:
f.write(title)
f.write("\n")
f.write(df.to_string())
f.write("\n\n")
#### new functions ##############
def disable_widgets(widgets_list):
for widget in widgets_list:
widget.disabled = True
def change_state(widgets_list):
for widget in widgets_list:
widget.disabled = not widget.disabled
def enable_widgets(widgets_list):
for widget in widgets_list:
widget.disabled = False
#a check values function
def check_values(step,set_voltage,reset_voltage):
valid = True
root = tk.Tk()
root.withdraw()
root.lift() #show window above all other applications
root.attributes("-topmost", True)#window stays above all other applications
if step > abs(set_voltage) or step > abs(reset_voltage) or step==0:#invalid parameter setting
valid = False
tkinter.messagebox.showerror(message="Invalid parameter setting!")
#now if the set-reset voltages have the same polarity show a warning
elif set_voltage*reset_voltage>0:
valid = tk.messagebox.askokcancel(message="Set-Reset voltages have the same polarity. Continue?")
else:
pass
root.destroy()
return valid
def information_box(information):
#open dialog and hide the main window
root = tk.Tk()
root.withdraw()
root.lift() #show window above all other applications
root.attributes("-topmost", True)#window stays above all other applications
#display meaagebox
tkinter.messagebox.showinfo(message=information)
root.destroy()
#choose directory to save measurement results
#and check if you have access
def check_writable(folder):
filename = "test.txt"
file = os.path.join(folder,filename)
#protection against removing existing file in python
i=1
while os.path.exists(file):
filename=f"test{i}.txt"
file = os.path.join(folder,filename)
try:
with open(file,'a'):
writable = True
os.remove(file)
except:
writable = False
information_box(f"{folder} is not writable!")
return writable
def choose_folder():
root = tk.Tk()
root.withdraw()
root.lift() #show window above all other applications
root.attributes("-topmost", True)#window stays above all other applications
#choose nonemty folder
folder = tk.filedialog.askdirectory()
while folder == '':
folder = tk.filedialog.askdirectory()
#check if writable in a while loop
writable=check_writable(folder)
while writable == False:
#choose a correct folder
folder = tk.filedialog.askdirectory()
while folder == '':
folder = tk.filedialog.askdirectory()
#check writable if not repeat
writable=check_writable(folder)
root.destroy()
return folder
#create or append to file a new measurement(now locally) we dont need that anymore!!!
def create_remote_file(sample_series,field,DUT,folder):
filename=f"{sample_series.value}_{field.value}_{DUT.value}.txt"
file=os.path.join(folder,filename)#the whole file with location
date = str(datetime.today().replace(microsecond=0))
#check loop (once the return is called the function is over)
while True:
try:#you cannot write in every directory
with open(file,'a') as f:
title = f"Memristor Measurement"+"\n\n"+f"Sample series:{sample_series.value}" +"\n"+f"field:{field.value}"+"\n"+f"DUT:{DUT.value}"+"\n"+f"Date:{date}"+"\n\n"
f.write(title)
return file
except:
information_box(f"You cannot write in the directory: {folder}!")
#again
folder=choose_folder()
file=os.path.join(folder,filename)#the whole file with location
#write the header
def write_header(file,sample_series,field,DUT):
date = str(datetime.today().replace(microsecond=0))
with open(file,'a') as f:
title = f"Memristor Measurement"+"\n\n"+f"Sample series:{sample_series.value}" +"\n"+f"field:{field.value}"+"\n"+f"DUT:{DUT.value}"+"\n"+f"Date:{date}"+"\n\n"
f.write(title)
"""
New function (UPLOAD RESULTS)
IMPORTANT FOR ALL MEASUREMENTS
THE RESULTS ARE MOVED FROM SOURCE FILE TO TARGET FILE EVEN LOCALLY
"""
def upload_results(source_file,target_file,target_file_dir):
while True:
try:
with (open(source_file,'r') as source,open(target_file,'a') as target):
target.write(source.read())
os.remove(source_file)
return source_file,target_file,target_file_dir
except:
information_box(f"{target_file} is no longer accessible. Please change directory")
target_file_dir = choose_folder()
filename = os.path.basename(target_file)
target_file =os.path.join(target_file_dir,filename)
#and then try again
#setup device for regular memristor measurement
def setup_memristor():
#connect to the device
device = module.HP4155a('GPIB0::17::INSTR')
device.reset()
#disable all irrelevant units for the measurement
#smu1 and smu3 are disabled
device.smu_disable_sweep(1)
device.smu_disable_sweep(3)
#disable vmus and vsus
device.disable_vsu(1)
device.disable_vsu(2)
device.disable_vmu(1)
device.disable_vmu(2)
# R user function
device.user_function('R','OHM','V2/I2')
return device
\ No newline at end of file
import sys
sys.path.insert(0, '..') #append parent directory
import ipywidgets as widgets
import tkinter as tk
from tkinter import filedialog
import tkinter.messagebox
import os
from datetime import datetime
import matplotlib.pyplot as plt
import numpy as np
import module
import time
import pandas as pd
from IPython.display import display, clear_output
#widgets interactivity
def add_widgets_to_list(source_dictionary,target_list):
for widget in source_dictionary.values():
target_list.append(widget)
def check_pulse(dictionary):
#check if number of pulses is ok
if dictionary['pulses'].value < 0:
dictionary['pulses'].value = -dictionary['pulses'].value
elif dictionary['pulses'].value==0:
dictionary['pulses'].value = 1
else:
pass
# Restriction: pulse period ≥ pulse width + 4 ms
if dictionary['period'].value < dictionary['width'].value+4e-3:
dictionary['period'].value = dictionary['width'].value+4e-3
#sweep pulse measurement
def sweep_meas(dict):
device = module.HP4155a('GPIB0::17::INSTR')
device.reset()
device.smu_disable_sweep(1)
device.smu_disable_sweep(3)
#disable vmus and vsus
device.disable_vsu(1)
device.disable_vsu(2)
device.disable_vmu(1)
device.disable_vmu(2)
device.measurement_mode("SWE")
device.smu_function_sweep(2,"VAR1")
device.smu_mode_meas(4,"COMMON")
device.smu_function_sweep(4,"CONS")
device.smu_mode_meas(2,"VPULSE")
device.start_value_sweep(dict["start"].value)
device.stop_value_sweep(dict["stop"].value)
#define the number of steps given specific pulses
step = (dict["stop"].value-dict["start"].value)/(dict["pulses"].value-1)
device.step_sweep(step)
device.comp("VAR1",dict["comp"].value)
device.display_variable("X","V2")
device.display_variable("Y1",'I2')
device.range_mode(4,"AUTO")
device.range_mode(2,"AUTO")
device.pulse_base(dict["base"].value)
device.pulse_width(dict["width"].value)
device.pulse_period(dict["period"].value)
device.integration_time(dict["integration"].value)
t0 = time.time()
device.single_measurement()
while device.operation_completed()== False:
pass
t1 = time.time()
# get the execution time
elapsed_time = t1 - t0
device.autoscaling()
I_i=device.return_data("I2")
V_i=device.return_data("V2")
R_i = np.divide(V_i,I_i)
expected_time = dict["period"].value*dict["pulses"].value
times = (elapsed_time,expected_time)
values = (V_i,I_i,R_i)
del device
return times,values
def plot_sweep_pulse(values):
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel("V(V)")
ax1.set_ylabel("I(A)",color=color)
ax1.set_yscale('log')
ax1.plot(values[0],np.abs(values[1]),color=color)
ax1.tick_params(axis ='y', labelcolor = color,which = 'both')
# Adding Twin Axes
ax2 = ax1.twinx()
color = 'tab:green'
ax2.set_ylabel("R(Ohm)",color = color)
ax2.plot(values[0],np.abs(values[2]),color = color)
ax2.tick_params(axis ='y', labelcolor = color,which = 'both')
ax2.set_yscale('log')
fig.suptitle("Sweep Pulse Measurement Results")
plt.show()
def save_sweep(folder,sample_dict,values,times,sweep_dict):
filename = f"{sample_dict['series'].value}_{sample_dict['field'].value}_{sample_dict['dut'].value}.txt"
file = os.path.join(folder,filename)
with open(file,"a") as f:
date = str(datetime.today().replace(microsecond=0))
f.write(f"Sweep Pulse Measurement at {date}"+"\n")
f.write(f"period(s):{sweep_dict['period'].value}"+"\n")
f.write(f"width(s):{sweep_dict['width'].value}"+"\n")
f.write(f"base value(V):{sweep_dict['base'].value}"+"\n")
f.write(f"execution time(s):{times[0]}"+"\n")
f.write(f"expected time(s):{times[1]}"+"\n")
f.write(f"number of pulses:{sweep_dict['pulses'].value}"+"\n")
f.write(f"current compliance(A):{sweep_dict['comp'].value}"+"\n")
f.write(f"voltage:{sweep_dict['start'].value}V to {sweep_dict['stop'].value}V"+"\n")
f.write(f"integration time:{sweep_dict['integration'].value}"+"\n\n")
zipped = list(zip(values[0],values[1], values[2]))
df = pd.DataFrame(zipped, columns=['VPULSE(V)', 'IPULSE(A)', 'RPULSE(Ohm)'])
f.write("Results Sweep Pulse:\n")
f.write(df.to_string())
f.write("\n\n\n")
def constant_meas(dict):
device = module.HP4155a('GPIB0::17::INSTR')
device.reset()
device.user_function('V','V','V2')
device.user_function('I','A','I2')
#disable vmus and vsus
device.disable_vsu(1)
device.disable_vsu(2)
device.disable_vmu(1)
device.disable_vmu(2)
device.smu_disable_sweep(1)
#device.smu_disable_sweep(3)
device.measurement_mode("SWE")
device.smu_mode_meas(2,"VPULSE")
device.smu_function_sweep(2,'CONS')
device.smu_mode_meas(4,"COMM")
device.smu_function_sweep(2,"CONS")
device.smu_function_sweep(4,'CONS')
#smu 3 is used to define the number of pulses not contacted
device.smu_mode_meas(3,'V')
device.smu_function_sweep(3,"VAR1")
device.start_value_sweep(0)
device.stop_value_sweep(10)
#define the number of steps given specific pulses
step = 10/(dict["pulses"].value-1)
device.step_sweep(step)
device.comp("VAR1","MAX")
device.const_comp(2,dict["comp"].value)
device.cons_smu_value(2,dict["voltage"].value)
device.display_variable("X","@INDEX")
device.display_variable("Y1",'I')
device.range_mode(4,"AUTO")
device.range_mode(2,"AUTO")
device.range_mode(3,"AUTO")
device.pulse_base(dict["base"].value)
device.pulse_width(dict["width"].value)
device.pulse_period(dict["period"].value)
device.integration_time(dict["integration"].value)
t0 = time.time()
device.single_measurement()
while device.operation_completed()== False:
pass
t1 = time.time()
# get the execution time
elapsed_time = t1 - t0
device.autoscaling()
I_i=device.return_data("I")
V_i=device.return_data("V")
R_i = np.divide(V_i,I_i)
expected_time = dict["period"].value*dict["pulses"].value
times = (elapsed_time,expected_time)
values = (V_i,I_i,R_i)
del device
return times,values
def plot_constant_pulse(values):
index =[]
for i in range(len(values[0])):
index.append(i+1)
fig, ax1 = plt.subplots()
color = 'tab:red'
ax1.set_xlabel("Index(Pulse number)")
ax1.set_ylabel("I(A)",color=color)
ax1.set_yscale('log')
ax1.plot(index,np.abs(values[1]),color=color,label = "Voltage(V):"+str(min(values[0])))
ax1.tick_params(axis ='y', labelcolor = color,which = 'both')
# Adding Twin Axes
ax2 = ax1.twinx()
color = 'tab:green'
ax2.set_ylabel("R(Ohm)",color = color)
ax2.plot(index,np.abs(values[2]),color=color)
ax2.set_yscale('log')
ax2.tick_params(axis ='y', labelcolor = color,which = 'both')
fig.suptitle("Constant Pulse Measurement Results")
ax1.set_title("Voltage:"+str(min(values[0]))+"V")
plt.show()
def save_constant(folder,sample_dict,values,times,cons_dict):
filename = f"{sample_dict['series'].value}_{sample_dict['field'].value}_{sample_dict['dut'].value}.txt"
file = os.path.join(folder,filename)
with open(file,"a") as f:
date = str(datetime.today().replace(microsecond=0))
f.write(f"Constant Pulse Measurement at {date}"+"\n")
f.write(f"period(s):{cons_dict['period'].value}"+"\n")
f.write(f"width(s):{cons_dict['width'].value}"+"\n")
f.write(f"base value(V):{cons_dict['base'].value}"+"\n")
f.write(f"execution time(s):{times[0]}"+"\n")
f.write(f"expected time(s):{times[1]}"+"\n")
f.write(f"number of pulses:{cons_dict['pulses'].value}"+"\n")
f.write(f"current compliance(A):{cons_dict['comp'].value}"+"\n")
f.write(f"constant voltage:{cons_dict['voltage'].value}V"+"\n")
f.write(f"integration time:{cons_dict['integration'].value}"+"\n\n")
zipped = list(zip(values[0],values[1], values[2]))
df = pd.DataFrame(zipped, columns=['VPULSE(V)', 'IPULSE(A)', 'RPULSE(Ohm)'])
f.write("Results Constant Pulse:\n")
f.write(df.to_string())
f.write("\n\n\n")
import ipywidgets as widgets
#sample interface
style = {'description_width': 'initial'}
def constant_pulse():
voltage = widgets.BoundedFloatText(
value = 10,
min = -100,
max = 100,
step = 1,
description = 'Constant Voltage(V):',
style=style,
)
comp = widgets.BoundedFloatText(
value = 0.1,
min = -0.1,
max = 0.1,
step = 0.01,
description = 'Compliance(A):',
style=style,
)
pulses = widgets.IntText(
value = 100,
description = 'Number of Pulses:',
style=style,
)
period = widgets.BoundedFloatText(
value = 5e-3,
min = 5e-3,
max = 1,
step = 5e-3,
description ='Pulse Period(s):',
style=style,
)
width = widgets.BoundedFloatText(
value = 5e-4,
min = 5e-4,
max = 1e-1,
step= 5e-4,
description ='Pulse Width(s):',
style=style,
)
base = widgets.BoundedFloatText(
value = 0,
min = -100,
max = 100,
step = 1,
description = 'Base Voltage(V):',
style=style
)
integration =widgets.Dropdown(
options=['SHORt', 'MEDium', 'LONG'],
value='MEDium',
description='Integration:',
style=style
)
pulse_parameters = widgets.VBox([pulses,period,width,base])
smu_parameters = widgets.VBox([voltage,comp,integration])
constant_pulse_widgets = widgets.HBox([smu_parameters,pulse_parameters])
constant_pulse_dict = {
'voltage': voltage,
'comp':comp,
'pulses':pulses,
'period':period,
'width':width,
'base':base,
'integration':integration
}
return constant_pulse_widgets,constant_pulse_dict
def sweep_pulse():
start_voltage = widgets.BoundedFloatText(
value = 0,
min = -100,
max = 100,
step = 1,
description = 'Start Voltage(V):',
style=style,
)
stop_voltage = widgets.BoundedFloatText(
value = 15,
min = -100,
max = 100,
step = 1,
description = 'Stop Voltage(V):',
style=style,
)
comp = widgets.BoundedFloatText(
value = 0.1,
min = -0.1,
max = 0.1,
step = 0.01,
description = 'Compliance(A):',
style=style,
)
pulses = widgets.IntText(
value = 100,
description = 'Number of Pulses:',
style=style,
)
period = widgets.BoundedFloatText(
value = 5e-3,
min = 5e-3,
max = 1,
step = 5e-3,
description ='Pulse Period(s):',
style=style,
)
width = widgets.BoundedFloatText(
value = 5e-4,
min = 5e-4,
max = 1e-1,
step= 5e-4,
description ='Pulse Width(s):',
style=style,
)
base = widgets.BoundedFloatText(
value = 0,
min = -100,
max = 100,
step = 1,
description = 'Base Voltage(V):',
style=style
)
integration =widgets.Dropdown(
options=['SHORt', 'MEDium', 'LONG'],
value='MEDium',
description='Integration:',
style=style
)
pulse_parameters = widgets.VBox([pulses,period,width,base])
smu_parameters = widgets.VBox([start_voltage,stop_voltage,comp,integration])
sweep_pulse_widgets = widgets.HBox([smu_parameters,pulse_parameters])
sweep_pulse_dict = {
'start': start_voltage,
'stop':stop_voltage,
'comp':comp,
'pulses':pulses,
'period':period,
'width':width,
'base':base,
'integration':integration
}
return sweep_pulse_widgets,sweep_pulse_dict
### this is the new memrstor measurement (set and reset as many times as the user wants and full sweeps with a button)
from help import *
import ipywidgets as widgets
from keyboard import add_hotkey,remove_hotkey
# pulsed libraries
from help_pulse import *
#additional variables
first = True #first measurement
"""
This is not anymore the first time you start a measurement but the first time you write a header
"""
file = None #complete filename with path
#first_sampling = True #indicates first sampling for set and reset buttons because we cannot add two at each button
#we dont need this variable anymore
#create temporary file to store the results localy
temp_file= os.path.join(os.getcwd(),'tempfile.txt')
# the three naming fields
sample_series= widgets.Text(
value= '',
placeholder ='Enter text here:',
description = 'sample series:',
style = {'description_width': 'initial'}
)
field = widgets.Text(
value= '',
placeholder ='Enter text here:',
description = 'Field:',
style = {'description_width': 'initial'},
)
DUT = widgets.Text(
value= '',
placeholder ='Enter text here:',
description = 'DUT:',
style = {'description_width': 'initial'},
)
#start new measurement button(new sample)
new=widgets.Button(description='next sample')
#choose a new folder button
new_folder = widgets.Button(description='change folder')
horizontal = widgets.HBox([sample_series,new])
horizontal3= widgets.HBox([DUT,new_folder])
all_text_boxes = widgets.VBox([horizontal,field,horizontal3])
#first series of parameters
step = widgets.BoundedFloatText(
value=0.01,
min=0,
max=100,
step=0.01,
description='Step(V):',
)
integration_time=widgets.Dropdown(
options=['SHORt', 'MEDium', 'LONG'],
value='MEDium',
description='Integration:',
#style = {'description_width': 'initial'},
)
sampling=widgets.Checkbox(description='sampling check')
#align the widgets horizontaly
line0=widgets.HBox([step,integration_time,sampling])
# THE BUTTONS
#create buttons as it shown in the how_buttons_look
set=widgets.Button(description='SET')
reset=widgets.Button(description='RESET')
full=widgets.Button(description='FULL SWEEP')
number = widgets.BoundedIntText(value=1,min=1,max=sys.maxsize,step=1,description='full sweeps:',disabled=False) #number of measuremts for the full sweep
retention_button=widgets.Button(description='RETENTION')
contact_check = widgets.Button(description = 'CONTACT CHECK')
#parameter boxes
Vset=widgets.BoundedFloatText(
value=1,
min=-100,
max=100,
step=0.1,
description='Voltage(V):',
)
#parameter buttons
CC_vset=widgets.BoundedFloatText(
value=1e-3,
min=-0.1,
max=0.1,
step=0.01,
description= 'Comp(A):',
)
#parameter buttons
Vreset=widgets.BoundedFloatText(
value=-1,
min=-100,
max=100,
step=0.1,
description='Voltage(V):',
)
#parameter buttons
CC_vreset=widgets.BoundedFloatText(
value=1e-3,
min=-0.1,
max=0.1,
step=0.01,
description='Comp(A):',
)
Vretention=widgets.BoundedFloatText(
value=1,
min=-100,
max=100,
step=1,
description='Voltage(V):',
)
period=widgets.BoundedFloatText(
value=1,
min=2e-3,
max=65.535,
step=1,
description='Period(s):',
)
duration=widgets.BoundedFloatText(
value=60,
min=60e-6,
max=1e11,
step=1,
description='Duration(s):',
)
#align a button with a checkbox or integer bounded texts horizontaly
line1 = widgets.HBox([set,Vset,CC_vset])
line2 = widgets.HBox([reset,Vreset,CC_vreset])
line3 = widgets.HBox([full,number])
line4 = widgets.HBox([retention_button,Vretention,period,duration])
#pack them into a single vertical box
all = widgets.VBox([line0,line1,line2,line3,line4])
output = widgets.Output()
#help lists for changing state of the buttons
information = [sample_series,field,DUT]
buttons = [set,reset,full,new,new_folder,retention_button,contact_check]
parameters = [Vset,CC_vset,Vreset,CC_vreset,step,integration_time,number,sampling,Vretention,period,duration]
#choose folder directory
folder=choose_folder()
#display all at the end
display(all_text_boxes)
print()
display(contact_check)
print()
cons_widgets,cons_dict = constant_pulse()
sweep_widgets,sweep_dict = sweep_pulse()
sweep_button = widgets.Button(description = "SWEEP PULSE")
cons_button = widgets.Button(description = "CONSTANT PULSE")
children = [all,widgets.VBox([sweep_widgets,sweep_button]),widgets.VBox([cons_widgets,cons_button])]
titles = ["Regular","Sweep Pulse","Constant Pulse"]
tab = widgets.Tab()
tab.children = children
tab.titles = titles
display(tab,output)
all_widgets = [sweep_button,cons_button]
add_widgets_to_list(cons_dict,all_widgets)
add_widgets_to_list(sweep_dict,all_widgets)
#display the buttons
""" the above is what happens when the programm starts all the rest have to be written into button trigger functions"""
def on_contact_check_clicked(b):
with output:
clear_output(wait = True)
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
test_contacts()
information_box("Contact Check Completed")
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
def on_set_button_clicked(b):
global first,folder,file,temp_file
with output:
#disable buttons
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
device = setup_memristor()
#lock the device
device.inst.lock_excl()
clear_output()
#check values
valid = check_values(step.value,Vset.value,Vreset.value)
#during first button press
if first == True and valid == True:
change_state(information)#disable all widgets that are relevant about the information of the sample
filename=f"{sample_series.value}_{field.value}_{DUT.value}.txt"
file = os.path.join(folder,filename)
#write header to temp_file
write_header(temp_file,sample_series,field,DUT)
first = False
if valid == True:
if sampling.value == True: #do sampling set before set process(100mV)
R_mean_before = sampling_check(0.1,device)
R_mean_before = round(R_mean_before,1)#round 1 decimal point
print(f"Average Resistance(Sampling Check):{R_mean_before:e} Ohm")
first_sampling = False
#execute measurement,plot results and save them
V12,I12 = sweep(0,Vset.value,step.value,CC_vset.value,integration_time.value,device)
plot_sweep(V12,I12,'SET')
df = create_data_frame(V12,I12)
print(df)
if sampling.value == True: #do sampling set after set process(10mV)
R_mean_after = sampling_check(0.01,device)
R_mean_after = round(R_mean_after,1)
print(f"Average Resistance(Sampling Check):{R_mean_after:e} Ohm")
first_sampling = False
title = f"SET Memristor:"+"\n\n"+f"Set Voltage={Vset.value}V"+"\n"+f"current compliance={CC_vset.value}A"+"\n"
if sampling.value == True:
title = title + f"R(Ohm) Before/After"+"\n"+f"{R_mean_before} {R_mean_after}"+"\n"
write_to_file(temp_file,title,df)
#upload results
temp_file,file,folder=upload_results(temp_file,file,folder)
#show messagebox
information_box("Measurement finished!")
#unlock device
device.inst.unlock()
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
def on_reset_button_clicked(b):
global first,folder,file,temp_file
with output:
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
device = setup_memristor()
#lock device
device.inst.lock_excl()
clear_output()
#check values
valid = check_values(step.value,Vset.value,Vreset.value)
#during first button press
if first == True and valid == True:
#disable checkboxes, text fields etc.
change_state(information)
filename=f"{sample_series.value}_{field.value}_{DUT.value}.txt"
file = os.path.join(folder,filename)
#write header to temp_file
write_header(temp_file,sample_series,field,DUT)
first = False #set first to false irrelvant if it is in the if statement or not
if valid == True:
if sampling.value == True: #do sampling set before reset process(10mV)
R_mean_before = sampling_check(0.01,device)
R_mean_before = round(R_mean_before,1)#round 1 decimal point
print(f"Average Resistance(Sampling Check):{R_mean_before:e} Ohm")
first_sampling = False
#execute measurement,plot results and save them
V34,I34 = sweep(0,Vreset.value,step.value,CC_vreset.value,integration_time.value,device)
plot_sweep(V34,I34,'RESET')
df = create_data_frame(V34,I34)
print(df)
if sampling.value == True: #do sampling set after reset process(100mV)
R_mean_after = sampling_check(0.1,device)
R_mean_after = round(R_mean_after,1)
print(f"Average Resistance(Sampling Check):{R_mean_after:e} Ohm")
first_sampling = False
title =f"RESET Memristor:"+"\n\n"+f"Reset Voltage={Vreset.value}V"+"\n"+f"current compliance={CC_vreset.value}A"+"\n"
if sampling.value == True:
title = title + f"R(Ohm) Before/After"+"\n"+f"{R_mean_before} {R_mean_after}"+"\n"
write_to_file(temp_file,title,df)
#upload results
temp_file,file,folder=upload_results(temp_file,file,folder)
#show messagebox
information_box("Measurement finished!")
#unlock device
device.inst.unlock()
del device
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
def on_full_button_clicked(b):
global first,folder,file,temp_file
with output:
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
device= setup_memristor()
# lock device
device.inst.lock_excl()
clear_output()
#check values
valid = check_values(step.value,Vset.value,Vreset.value)
#during first button press
if first == True and valid == True:
#disable checkboxes, text fields etc.
change_state(information)
filename=f"{sample_series.value}_{field.value}_{DUT.value}.txt"
file = os.path.join(folder,filename)
#write header to temp_file
write_header(temp_file,sample_series,field,DUT)
first = False #set first to false irrelvant if it is in the if statement or not
if valid == True:
with open(temp_file,'a') as f:
f.write(f"{number.value} full sweeps with parameters:")
f.write("\n")
f.write(f"Set Voltage = {Vset.value}V")
f.write("\n")
f.write(f"Current compliance set = {CC_vset.value}A")
f.write("\n")
f.write(f"Reset Voltage = {Vreset.value}V")
f.write("\n")
f.write(f"Current compliance reset = {CC_vreset.value}A")
f.write("\n\n")
plt.figure().clear()
fig, (ax1, ax2) = plt.subplots(2,sharex=True,figsize=(8,6)) #the plots share the same x axis
fig.suptitle('FULL SWEEP')
ax1.set_title('Linear I')
ax1.set(xlabel='Voltage(V)',ylabel='Current(A)')
ax2.set_title('Logarithmic I')
ax2.set(xlabel='Voltage(V)',ylabel='Current(A)')
ax2.set_yscale('log')
stop = False
def break_loop():
nonlocal stop
stop = True
#help list with the resistances
resistances = []
add_hotkey("esc",break_loop)
#execute number of measurements
for i in range(number.value):#here it is easier to implement the sampling checks
if sampling.value == True: #before set(100mv)
R_mean_init = sampling_check(0.1,device)
R_mean_init = round(R_mean_init,1)
resistances.append(R_mean_init)
V12,I12 = sweep(0,Vset.value,step.value,CC_vset.value,integration_time.value,device) #set
#after set/before set
if sampling.value == True: #before set(10mv)
R_mean_set = sampling_check(0.01,device)
R_mean_set = round(R_mean_set,1)
resistances.append(R_mean_set)
V34,I34 = sweep(0,Vreset.value,step.value,CC_vreset.value,integration_time.value,device) #reset
#no reason to do check at the end because the next loop will do that(not anymore) more sampling checks
#after reset
if sampling.value == True:#-0.1V
R_mean_reset = sampling_check(-0.1,device)
R_mean_reset = round(R_mean_reset,1)
resistances.append(R_mean_reset)
#butterfly curve
V=np.concatenate((V12,V34))
I=np.concatenate((I12,I34))
#create data frame and save to file
df = create_data_frame(V,I)
f.write(f"{i+1} Iteration")
f.write("\n")
if sampling.value == True:
f.write(f"R(Ohm) INIT/SET/RESET"+"\n"+f"{R_mean_init} {R_mean_set} {R_mean_reset}"+"\n")
f.write(df.to_string())
f.write("\n\n")
#plot results
ax1.plot(V,I)
ax2.plot(V,np.absolute(I))
fig.tight_layout()
#update plot
clear_output()
display(fig)
#plt.show()
print(df)
#check for loop termination
if stop == True:
information_box("Endurance stopped after esc!")
f.write("endurance stopped!\n\n")
break
else:
information_box("Endurance completed!")
f.write("endurance completed!\n\n")
remove_hotkey('esc')
stop = False
#plot resistances if sampling value == True or len(resistances) !=0
if len(resistances)!=0:
indexes = np.arange(1,len(resistances)+1)
resistances = np.array(resistances)
plt.figure().clear()
fig, ax = plt.subplots()
fig.suptitle('Resistance')
ax.set(xlabel='Index',ylabel='Resistance(Ohm)')
ax.set_yscale('log')
plt.scatter(indexes,resistances)
plt.show()
#print(len(resistances))
#print(indexes)
#upload results
temp_file,file,folder=upload_results(temp_file,file,folder)
#unlock the device
device.inst.unlock()
del device
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
#move to next sample
def on_new_sample_button_clicked(b):
global first
with output:
#the if is to ensure that is not pressed many times
#just in case the user presses anything
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
first = True
#change_state(information) not anymore creating changing state but enabling the widgets
enable_widgets(information)
#sample_series.value=''
#field.value=''
DUT.value=''
#enable again
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
#new_folder clicked
def on_new_folder_button_clicked(b):
global folder,file,first
with output:
change_state(buttons) #just to be sure
change_state(parameters)
change_state(all_widgets)
folder = choose_folder()#choose new folder
#file = create_file(sample_series,field,DUT,folder) #and create the new file (creates multiple headers!!!)
first = True #that will write header if the directory is the same as the previous one!
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
def on_retention_button_clicked(b):
global first,folder,file,temp_file
with output:
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
device = setup_memristor()
device.inst.lock_excl()
clear_output()
#during first button press
if first == True:
#disable checkboxes, text fields etc.
change_state(information)
filename=f"{sample_series.value}_{field.value}_{DUT.value}.txt"
file = os.path.join(folder,filename)
#write header to temp_file
write_header(temp_file,sample_series,field,DUT)
first = False #set first to false irrelvant if it is in the if statement or not
#execute measurement
t,R=retention(Vretention.value,period.value,duration.value,device)
plot_retention(t,R)
df=create_retention_data_frame(t,R)
title =f"Retention Memristor:"+"\n\n"+f"Voltage={Vretention.value}V"+"\n"+f"period={period.value}s"+"\n"+f"duration={duration.value}s"+"\n"
write_to_file(temp_file,title,df)
#upload results
temp_file,file,folder=upload_results(temp_file,file,folder)
#show messagebox
information_box("Measurement finished!")
device.inst.unlock()
del device
change_state(buttons)
change_state(parameters)
change_state(all_widgets)
def on_sweep_button_clicked(b):
with output:
global first
clear_output(wait = True)
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
check_pulse(sweep_dict)
sample_dict= {
'series':sample_series,
'field':field,
'dut':DUT
}
if first == True:
change_state(information)
first = False
times,values = sweep_meas(sweep_dict)
plot_sweep_pulse(values)
save_sweep(folder,sample_dict,values,times,sweep_dict)
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
def on_constant_button_clicked(b):
with output:
global first
clear_output(wait = True)
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
check_pulse(sweep_dict)
sample_dict= {
'series':sample_series,
'field':field,
'dut':DUT
}
if first == True:
change_state(information)
first = False
times,values = constant_meas(cons_dict)
plot_constant_pulse(values)
save_constant(folder,sample_dict,values,times,cons_dict)
change_state(all_widgets)
change_state(buttons)
change_state(parameters)
#link buttons to widgets (pulsed)
sweep_button.on_click(on_sweep_button_clicked)
cons_button.on_click(on_constant_button_clicked)
#link buttons with functions
set.on_click(on_set_button_clicked)
reset.on_click(on_reset_button_clicked)
full.on_click(on_full_button_clicked)
new.on_click(on_new_sample_button_clicked)
new_folder.on_click(on_new_folder_button_clicked)
retention_button.on_click(on_retention_button_clicked)
contact_check.on_click(on_contact_check_clicked)
%% Cell type:code id:df99f5a2-80af-4892-8633-33177239e444 tags:
``` python
%run memristor.py
```
%% Output
%% Cell type:code id:076a9132-edc2-4ae5-8a7f-c8a179473952 tags:
``` python
```
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment