Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Airbnb Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Beibei Wang
Airbnb Analysis
Commits
fd004047
Commit
fd004047
authored
Jan 28, 2022
by
Beibei Wang
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
2717bde1
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
comparison_figures.py
+240
-0
240 additions, 0 deletions
comparison_figures.py
with
240 additions
and
0 deletions
comparison_figures.py
0 → 100644
+
240
−
0
View file @
fd004047
import
os
import
click
import
numpy
as
np
import
pandas
as
pd
import
seaborn
as
sns
import
matplotlib.pyplot
as
plt
# pylint: disable=no-value-for-parameter
def
compute_contrip
(
x
,
y
,
w1
,
w2
):
return
(
np
.
minimum
(
np
.
full
((
y
.
shape
[
0
],
x
.
shape
[
1
]),
5
),
x
+
(
y
-
0.5
)
*
w1
)
-
(
1
-
y
)
/
w2
*
x
-
(
5
-
x
)
/
100
)
def
scaling
(
score
):
return
(
score
-
0.61
)
/
(
5
-
0.61
)
*
4
+
1
def
generate_dataframe
(
score
,
consensus
):
df
=
pd
.
DataFrame
()
df
[
"
ConTrip Score
"
]
=
np
.
ndarray
.
flatten
(
score
,
"
F
"
)
df
[
"
Consensus Score
"
]
=
np
.
asarray
([
consensus
]
*
5
).
flatten
()
df
[
"
Rating
"
]
=
np
.
asarray
(
[
[
"
Rating: 1
"
]
*
51
,
[
"
Rating: 2
"
]
*
51
,
[
"
Rating: 3
"
]
*
51
,
[
"
Rating: 4
"
]
*
51
,
[
"
Rating: 5
"
]
*
51
,
]
).
flatten
()
return
df
def
generate_dataframe_2
(
score
,
rating
):
df
=
pd
.
DataFrame
()
df
[
"
ConTrip Score
"
]
=
score
.
flatten
()
df
[
"
Rating
"
]
=
np
.
asarray
([
rating
]
*
6
).
flatten
()
df
[
"
Consensus Score
"
]
=
np
.
asarray
(
[
[
"
Consensus: 0.0
"
]
*
41
,
[
"
Consensus: 0.2
"
]
*
41
,
[
"
Consensus: 0.4
"
]
*
41
,
[
"
Consensus: 0.6
"
]
*
41
,
[
"
Consensus: 0.8
"
]
*
41
,
[
"
Consensus: 1.0
"
]
*
41
,
]
).
flatten
()
return
df
def
generate_plots_1
(
df
,
output
,
scale
):
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
5
,
5
))
sns
.
scatterplot
(
data
=
df
,
x
=
"
Consensus Score
"
,
y
=
"
ConTrip Score
"
,
hue
=
"
Rating
"
,
palette
=
[
"
#d7191c
"
,
"
#fdae61
"
,
"
#fee08b
"
,
"
#abdda4
"
,
"
#2b83ba
"
],
)
ax
.
spines
[
"
top
"
].
set_visible
(
False
)
ax
.
spines
[
"
right
"
].
set_visible
(
False
)
custom_lines
=
[]
for
el
in
[
[
"
Rating: 1
"
,
"
#d7191c
"
],
[
"
Rating: 2
"
,
"
#fdae61
"
],
[
"
Rating: 3
"
,
"
#fee08b
"
],
[
"
Rating: 4
"
,
"
#abdda4
"
],
[
"
Rating: 5
"
,
"
#2b83ba
"
],
]:
custom_lines
.
append
(
plt
.
plot
(
[],
[],
marker
=
"
o
"
,
ms
=
7
,
ls
=
""
,
mec
=
"
black
"
,
mew
=
0
,
color
=
el
[
1
],
label
=
el
[
0
],
)[
0
]
)
ax
.
legend
(
bbox_to_anchor
=
(
0.0
,
1.05
,
1.0
,
0.102
),
handles
=
custom_lines
,
loc
=
"
upper center
"
,
facecolor
=
"
white
"
,
ncol
=
3
,
fontsize
=
8
,
frameon
=
False
,
)
fig
.
tight_layout
()
if
scale
:
out_file
=
os
.
path
.
join
(
output
,
"
contrip_score_consensus_scaling.pdf
"
)
else
:
out_file
=
os
.
path
.
join
(
output
,
"
contrip_score_consensus.pdf
"
)
plt
.
savefig
(
out_file
)
plt
.
close
()
def
generate_plots_2
(
df
,
output
,
scale
):
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
5
,
5
))
sns
.
scatterplot
(
data
=
df
,
x
=
"
Rating
"
,
y
=
"
ConTrip Score
"
,
hue
=
"
Consensus Score
"
,
palette
=
[
"
#d7191c
"
,
"
#fdae61
"
,
"
#fee08b
"
,
"
#abdda4
"
,
"
#2b83ba
"
,
"
#5e4fa2
"
],
)
ax
.
spines
[
"
top
"
].
set_visible
(
False
)
ax
.
spines
[
"
right
"
].
set_visible
(
False
)
custom_lines
=
[]
for
el
in
[
[
"
Consensus: 0.0
"
,
"
#d7191c
"
],
[
"
Consensus: 0.2
"
,
"
#fdae61
"
],
[
"
Consensus: 0.4
"
,
"
#fee08b
"
],
[
"
Consensus: 0.6
"
,
"
#abdda4
"
],
[
"
Consensus: 0.8
"
,
"
#2b83ba
"
],
[
"
Consensus: 1.0
"
,
"
#5e4fa2
"
],
]:
custom_lines
.
append
(
plt
.
plot
(
[],
[],
marker
=
"
o
"
,
ms
=
7
,
ls
=
""
,
mec
=
"
black
"
,
mew
=
0
,
color
=
el
[
1
],
label
=
el
[
0
],
)[
0
]
)
ax
.
legend
(
bbox_to_anchor
=
(
0.0
,
1.05
,
1.0
,
0.102
),
handles
=
custom_lines
,
loc
=
"
upper center
"
,
facecolor
=
"
white
"
,
ncol
=
3
,
fontsize
=
8
,
frameon
=
False
,
)
fig
.
tight_layout
()
if
scale
:
out_file
=
os
.
path
.
join
(
output
,
"
contrip_score_rating_scaling.pdf
"
)
else
:
out_file
=
os
.
path
.
join
(
output
,
"
contrip_score_rating.pdf
"
)
plt
.
savefig
(
out_file
)
plt
.
close
()
def
generate_figure_1
(
weight_1
,
weight_2
,
scale
,
output
):
rating
=
np
.
linspace
(
1
,
5
,
5
).
reshape
(
1
,
5
)
consensus
=
np
.
linspace
(
0
,
1
,
51
).
reshape
(
51
,
1
)
score
=
compute_contrip
(
rating
,
consensus
,
weight_1
,
weight_2
)
if
scale
:
score
=
scaling
(
score
)
df
=
generate_dataframe
(
score
,
consensus
)
generate_plots_1
(
df
,
output
,
scale
)
def
generate_figure_2
(
weight_1
,
weight_2
,
scale
,
output
):
rating
=
np
.
linspace
(
1
,
5
,
41
).
reshape
(
1
,
41
)
consensus
=
np
.
linspace
(
0
,
1
,
6
).
reshape
(
6
,
1
)
score
=
compute_contrip
(
rating
,
consensus
,
weight_1
,
weight_2
)
if
scale
:
score
=
scaling
(
score
)
df
=
generate_dataframe_2
(
score
,
rating
)
generate_plots_2
(
df
,
output
,
scale
)
# ------------------------------------------------------------------------------
# CLICK
# ------------------------------------------------------------------------------
@click.command
(
short_help
=
"
script to study how different parameters change
"
"
the behavior of the score of a tripadvisor rating
"
)
@click.option
(
"
-w1
"
,
"
--weight_1
"
,
default
=
0.5
,
help
=
"
weight for the importance of the consensus value
"
,
)
@click.option
(
"
-w2
"
,
"
--weight_2
"
,
default
=
10.0
,
help
=
"
weight for the importance of the consensus value 2
"
,
)
@click.option
(
"
-sf
"
,
"
--scaling_flag
"
,
is_flag
=
True
,
help
=
"
flag to perform the scaling
"
)
@click.option
(
"
-o
"
,
"
--output
"
,
default
=
""
,
help
=
"
output folder
"
)
def
main
(
weight_1
,
weight_2
,
scaling_flag
,
output
):
generate_figure_1
(
weight_1
,
weight_2
,
scaling_flag
,
output
)
generate_figure_2
(
weight_1
,
weight_2
,
scaling_flag
,
output
)
if
__name__
==
"
__main__
"
:
main
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment