Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Airbnb Analysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Beibei Wang
Airbnb Analysis
Commits
38794f92
Commit
38794f92
authored
3 years ago
by
Beibei Wang
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parent
4c9df5fd
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Gender_and_Rating.py
+173
-0
173 additions, 0 deletions
Gender_and_Rating.py
with
173 additions
and
0 deletions
Gender_and_Rating.py
0 → 100644
+
173
−
0
View file @
38794f92
#!/usr/bin/env python
# coding: utf-8
# In[1]:
# Importing the required libraries and methods
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
pandas
as
pd
import
os
from
scipy
import
stats
# In[2]:
# Importing the dataset and add 'city_id' 1:Los Angeles,2:New York, 3:San Francisco
List_LA
=
pd
.
read_csv
(
'
Data/listings_Los Angeles_02112021.csv
'
)
List_LA
[
'
city_id
'
]
=
1
List_NY
=
pd
.
read_csv
(
'
Data/listings_New York_02112021.csv
'
)
List_NY
[
'
city_id
'
]
=
2
List_SF
=
pd
.
read_csv
(
'
Data/listings_San Francisco_02112021.csv
'
)
List_SF
[
'
city_id
'
]
=
3
List_total
=
pd
.
concat
([
List_LA
,
List_NY
,
List_SF
],
join
=
"
inner
"
)
# In[3]:
len
(
List_total
)
# In[4]:
# Get gender from 'host_name’ by using the Gender-guesser dictionary.
List_NY_name_gender
=
List_total
[[
'
id
'
,
'
name
'
,
'
host_name
'
,
'
review_scores_rating
'
]]
List_NY_name_gender
=
List_NY_name_gender
.
dropna
(
subset
=
[
'
review_scores_rating
'
])
import
gender_guesser.detector
as
gender
d
=
gender
.
Detector
()
host_name_gender
=
[]
for
i
in
range
(
0
,
len
(
List_NY_name_gender
)):
name
=
list
(
List_NY_name_gender
[
'
host_name
'
])[
i
]
host_name_gender
.
append
(
d
.
get_gender
(
name
))
# In[19]:
table1
=
List_NY_name_gender
.
head
(
5
)
table1
.
to_csv
(
'
table1_gender_name.csv
'
)
# In[5]:
List_NY_name_gender
[
'
host_name_gender
'
]
=
host_name_gender
review_scores_rating_female
=
List_NY_name_gender
.
loc
[
List_NY_name_gender
[
'
host_name_gender
'
]
==
'
female
'
][
'
review_scores_rating
'
]
review_scores_rating_male
=
List_NY_name_gender
.
loc
[
List_NY_name_gender
[
'
host_name_gender
'
]
==
'
male
'
][
'
review_scores_rating
'
]
review_scores_rating_unknown
=
List_NY_name_gender
.
loc
[
List_NY_name_gender
[
'
host_name_gender
'
]
==
'
unknown
'
][
'
review_scores_rating
'
]
# In[6]:
x
=
np
.
array
([
"
Female
"
,
"
Male
"
,
"
Unknown
"
])
y
=
np
.
array
([
len
(
review_scores_rating_female
),
len
(
review_scores_rating_male
),
len
(
review_scores_rating_unknown
)])
plt
.
show
()
# In[20]:
x
=
np
.
array
([
"
Female
"
,
"
Male
"
,
"
Unknown
"
])
y
=
np
.
array
([
len
(
review_scores_rating_female
),
len
(
review_scores_rating_male
),
len
(
review_scores_rating_unknown
)])
fig
,
ax
=
plt
.
subplots
(
figsize
=
(
15
,
4
))
width
=
0.5
# the width of the bars
ind
=
np
.
arange
(
len
(
y
))
# the x locations for the groups
ax
.
barh
(
ind
,
y
,
width
,
color
=
"
#a0c3c3
"
)
ax
.
set_yticks
(
ind
+
width
/
2
)
ax
.
set_yticklabels
(
x
,
minor
=
False
)
for
i
,
v
in
enumerate
(
y
):
ax
.
text
(
v
+
3
,
i
+
.
01
,
str
(
v
),
color
=
'
black
'
)
plt
.
show
plt
.
savefig
(
'
figure1_gender.png
'
)
# df_m=pd.DataFrame(review_scores_rating_male)
# df_m.boxplot()
# In[21]:
# samesize
df_f
=
pd
.
DataFrame
(
review_scores_rating_female
)
df_m
=
pd
.
DataFrame
(
review_scores_rating_male
)
df_f
=
df_f
.
sample
(
n
=
len
(
df_m
),
random_state
=
414747
)
l_rating_f
=
list
(
df_f
[
'
review_scores_rating
'
])
l_rating_m
=
list
(
df_m
[
'
review_scores_rating
'
])
data_s
=
[
len
(
list
(
filter
(
lambda
x
:
x
<=
2
,
l_rating_f
))),
len
(
list
(
filter
(
lambda
x
:
x
<=
2
,
l_rating_m
))),
len
(
list
(
filter
(
lambda
x
:
2
<
x
<=
4
,
l_rating_f
))),
len
(
list
(
filter
(
lambda
x
:
2
<
x
<=
4
,
l_rating_m
))),
len
(
list
(
filter
(
lambda
x
:
4
<
x
<=
4.5
,
l_rating_f
))),
len
(
list
(
filter
(
lambda
x
:
4
<
x
<=
4.5
,
l_rating_m
))),
len
(
list
(
filter
(
lambda
x
:
4.5
<
x
<=
4.8
,
l_rating_f
))),
len
(
list
(
filter
(
lambda
x
:
4.5
<
x
<=
4.8
,
l_rating_m
))),
len
(
list
(
filter
(
lambda
x
:
4.8
<
x
<=
5.0
,
l_rating_f
))),
len
(
list
(
filter
(
lambda
x
:
4.8
<
x
<=
5.0
,
l_rating_m
)))]
data_s
=
np
.
reshape
(
data_s
,
(
5
,
2
))
df_data_s
=
pd
.
DataFrame
(
data
=
data_s
,
columns
=
[
'
female
'
,
'
male
'
,
],
index
=
[
'
0.0-2.0
'
,
'
2.0-4.0
'
,
'
4.0-4.5
'
,
'
4.5-4.8
'
,
'
4.9-5,0
'
])
df_data_s
.
to_csv
(
'
Table2_gender.csv
'
)
df_data_s
# In[9]:
df_data_s
.
plot
.
bar
(
stacked
=
True
,
alpha
=
0.5
,
color
=
[
'
#4f8686
'
,
'
#d2d2d2
'
])
# In[22]:
labels
=
[
'
0.0-2.0
'
,
'
2.0-4.0
'
,
'
4.0-4.5
'
,
'
4.5-4.8
'
,
'
4.9-5,0
'
]
first
=
list
(
df_data_s
[
'
female
'
])
second
=
list
(
df_data_s
[
'
male
'
])
x
=
np
.
arange
(
len
(
labels
))
width
=
0.25
plt
.
bar
(
x
-
width
/
2
,
first
,
width
,
label
=
'
female
'
,
color
=
'
#4f8686
'
)
plt
.
bar
(
x
+
width
/
2
,
second
,
width
,
label
=
'
male
'
,
color
=
'
#d2d2d2
'
)
plt
.
ylabel
(
'
frequency
'
)
plt
.
title
(
'
review_scores_rating
'
)
plt
.
xticks
(
x
,
labels
=
labels
)
plt
.
legend
()
plt
.
savefig
(
'
figure2_gender.png
'
)
# In[28]:
def
t_test
(
x
,
y
,
alternative
=
'
both-sided
'
):
_
,
double_p
=
stats
.
ttest_ind
(
x
,
y
,
equal_var
=
False
)
if
alternative
==
'
both-sided
'
:
pval
=
double_p
elif
alternative
==
'
greater
'
:
if
np
.
mean
(
x
)
>
np
.
mean
(
y
):
pval
=
double_p
/
2.
else
:
pval
=
1.0
-
double_p
/
2.
elif
alternative
==
'
less
'
:
if
np
.
mean
(
x
)
<
np
.
mean
(
y
):
pval
=
double_p
/
2.
else
:
pval
=
1.0
-
double_p
/
2.
return
pval
# In[33]:
#p_value
round
(
t_test
(
l_rating_f
,
l_rating_m
,
'
greater
'
),
6
)
# In[31]:
t_test
(
l_rating_f
,
l_rating_m
,
'
greater
'
)
<
0.05
# In[ ]:
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment