diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..dd051801db53604981d2e0683e05da198d1b473f
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,9 @@
+.python-version
+*venv*
+*__pycache__
+*__runtime_stats__*
+*.log
+data/
+
+# Mac storage system
+*.DS_Store
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..83cd09273783a57c3d3691d92db00045890e3404
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 Production Metrology and Quality Management | RWTH Aachen University
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/README.md b/README.md
index 3646343a8125515ec884737d051d768cdda73ef4..b9e1e06a626fbff462a8629bf1cbf95feb5f9136 100644
--- a/README.md
+++ b/README.md
@@ -1,92 +1,216 @@
-# Method for Synthetic Dataset Generation
+# Method for Synthetic Dataset Generation of Fused Deposition Modeling (FDM) Parts
 
+This repository is an addon for Blender to simulate a 3D printer.
 
+Current stable version: 0.0.0
 
-## Getting started
-
-To make it easy for you to get started with GitLab, here's a list of recommended next steps.
-
-Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
-
-## Add your files
+## Installation
 
-- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
-- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
+### Blender
 
-```
-cd existing_repo
-git remote add origin https://git-ce.rwth-aachen.de/wzl-mq-public/smopa3d/method-for-synthetic-dataset-generation.git
-git branch -M main
-git push -uf origin main
-```
+Download Blender installer [here](https://www.blender.org/download/).
 
-## Integrate with your tools
+### Addon instalation
 
-- [ ] [Set up project integrations](https://git-ce.rwth-aachen.de/wzl-mq-public/smopa3d/method-for-synthetic-dataset-generation/-/settings/integrations)
+This repository work as a Blender addon. To use it, you can either install it once - keep in mind that every time you change the code you will have to repeat the addon installation -, or use [VSCode 'Blender Development' extension by Jacques Luke](https://marketplace.visualstudio.com/items?itemName=JacquesLucke.blender-development).
 
-## Collaborate with your team
+#### VSCode 'Blender Development' extension
 
-- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
-- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
-- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
-- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
-- [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
+Install the extension in VSCode Extensions Marketplace. Then, press `Ctrl/Cmd + P` and search for the `Blender: Start` function. Locate your installed Blender.
 
-## Test and Deploy
+After that, you Blender shall start with the extension already loaded. To run the functions in blender, press `F3` and search for the function you want to run. Currently, the main function is `object.node`.
 
-Use the built-in continuous integration in GitLab.
+To reload the addon after any change in the code, go back to VSCode and press `Ctrl/Cmd + P` and search for the `Blender: Reload Addons` function. You can now go back to Blender and find the function after pressing `F3`.
 
-- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
-- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
-- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
-- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
-- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
+#### One time installation
 
-***
+Zip the `addon/` folder and follow the instructions in [here](https://docs.blender.org/manual/en/latest/editors/preferences/addons.html).
 
-# Editing this README
+## Usage
 
-When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template.
+The addon is composed of functions that can be called from Blender's menu. To open it, go to `Edit > Menu Search...`, and type `fdm_simulator`. The available functions are:
 
-## Suggestions for a good README
-Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
+- `fdm_simulator.simulate`: simulates the 3D printing process of the selected object and plot the result in the Blender environment;
+- `fdm_simulator.draw_simulation`: draws a previously executed simulation result in the Blender environment;
+- `fdm_simulator.scan`: runs a measurement scan on the selected object simulating the behaviour of a laser line scanner and save it as `virtual_scan.npy` in a numpy array format with shape (n, 3), with each row representing (x, y, z) coordinates of the measured points.
 
-## Name
-Choose a self-explaining name for your project.
+It is also possible to execute the simulation outside the Blender environment. It is advantageous because Blender's addons run in a single thread, so the simulation can take a long time to finish. To do so, change the location of the gcode file in main.py and run it. The simulation will be saved in a pickle file to be later used in Blender via `fdm_simulator.draw_simulation` function.
 
-## Description
-Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
+**Important!** - the simulation saves temporary files in the path specified in the `saving_path` argument of the `addon.network.Network` class. Make sure to change it to a valid path in your system. It uses several GBs of disk space.
 
-## Badges
-On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
+## Development
 
-## Visuals
-Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
+It not actually necessary to install python requirements since all the code is supposed to be run on Blender's python and the autoload module is configured to handle installations. But if you want to run any content outside Blender's environment, follow the instructions below.
 
-## Installation
-Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
+1. Create and access virstual environment:
 
-## Usage
-Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
+on Posix:
+``` bash
+python -m venv venv && source venv/bin/activate
+```
 
-## Support
-Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
+or on Windows:
+``` bash
+python -m venv venv && venv\\Scripts\\activate.bat
+```
 
-## Roadmap
-If you have ideas for releases in the future, it is a good idea to list them in the README.
+2. Install dependencies
 
-## Contributing
-State if you are open to contributions and what your requirements are for accepting them.
+``` bash
+pip install -r requirements.txt
+```
 
-For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
+## Changelog
 
-You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
+**0.0.0** - 2023-11-29
+  - Initial release
 
-## Authors and acknowledgment
-Show your appreciation to those who have contributed to the project.
 
 ## License
-For open source projects, say how it is licensed.
 
-## Project status
-If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
+This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
+
+Below is a list of third-party libraries used in this project and their respective licenses:
+
+| Name                      | Version   | License                                                          |
+|---------------------------|-----------|------------------------------------------------------------------|
+| asttokens                 | 2.2.1     | Apache 2.0                                                       |
+| overrides                 | 7.3.1     | Apache License, Version 2.0                                      |
+| Cython                    | 0.29.35   | Apache Software License                                          |
+| arrow                     | 1.2.3     | Apache Software License                                          |
+| bleach                    | 6.0.0     | Apache Software License                                          |
+| prometheus-client         | 0.17.0    | Apache Software License                                          |
+| q                         | 2.7       | Apache Software License                                          |
+| requests                  | 2.31.0    | Apache Software License                                          |
+| retrying                  | 1.3.4     | Apache Software License                                          |
+| tenacity                  | 8.2.2     | Apache Software License                                          |
+| tornado                   | 6.3.2     | Apache Software License                                          |
+| tzdata                    | 2023.3    | Apache Software License                                          |
+| websocket-client          | 1.6.1     | Apache Software License                                          |
+| packaging                 | 23.1      | Apache Software License; BSD License                             |
+| python-dateutil           | 2.8.2     | Apache Software License; BSD License                             |
+| sniffio                   | 1.3.0     | Apache Software License; MIT License                             |
+| jupyterlab-pygments       | 0.2.2     | BSD                                                              |
+| matplotlib-inline         | 0.1.6     | BSD 3-Clause                                                     |
+| Flask                     | 2.2.5     | BSD License                                                      |
+| Jinja2                    | 3.1.2     | BSD License                                                      |
+| MarkupSafe                | 2.1.3     | BSD License                                                      |
+| Pygments                  | 2.15.1    | BSD License                                                      |
+| Send2Trash                | 1.8.2     | BSD License                                                      |
+| Werkzeug                  | 2.2.3     | BSD License                                                      |
+| appnope                   | 0.1.3     | BSD License                                                      |
+| backcall                  | 0.2.0     | BSD License                                                      |
+| click                     | 8.1.6     | BSD License                                                      |
+| comm                      | 0.1.3     | BSD License                                                      |
+| contourpy                 | 1.1.0     | BSD License                                                      |
+| cycler                    | 0.11.0    | BSD License                                                      |
+| decorator                 | 5.1.1     | BSD License                                                      |
+| fastjsonschema            | 2.17.1    | BSD License                                                      |
+| idna                      | 3.4       | BSD License                                                      |
+| imageio                   | 2.31.3    | BSD License                                                      |
+| ipykernel                 | 6.24.0    | BSD License                                                      |
+| ipython                   | 8.14.0    | BSD License                                                      |
+| ipython-genutils          | 0.2.0     | BSD License                                                      |
+| ipywidgets                | 8.1.1     | BSD License                                                      |
+| itsdangerous              | 2.1.2     | BSD License                                                      |
+| joblib                    | 1.3.1     | BSD License                                                      |
+| jsonpointer               | 2.4       | BSD License                                                      |
+| jupyter-events            | 0.6.3     | BSD License                                                      |
+| jupyter_client            | 8.3.0     | BSD License                                                      |
+| jupyter_core              | 5.3.1     | BSD License                                                      |
+| jupyter_server            | 2.7.0     | BSD License                                                      |
+| jupyter_server_terminals  | 0.4.4     | BSD License                                                      |
+| jupyterlab-widgets        | 3.0.9     | BSD License                                                      |
+| kiwisolver                | 1.4.4     | BSD License                                                      |
+| lazy_loader               | 0.3       | BSD License                                                      |
+| memory-profiler           | 0.61.0    | BSD License                                                      |
+| mistune                   | 3.0.1     | BSD License                                                      |
+| nbclassic                 | 1.0.0     | BSD License                                                      |
+| nbclient                  | 0.8.0     | BSD License                                                      |
+| nbconvert                 | 7.6.0     | BSD License                                                      |
+| nbformat                  | 5.7.0     | BSD License                                                      |
+| nest-asyncio              | 1.5.6     | BSD License                                                      |
+| networkx                  | 3.1       | BSD License                                                      |
+| notebook                  | 6.5.4     | BSD License                                                      |
+| notebook_shim             | 0.2.3     | BSD License                                                      |
+| numpy                     | 1.25.0    | BSD License                                                      |
+| pandas                    | 2.0.2     | BSD License                                                      |
+| pandocfilters             | 1.5.0     | BSD License                                                      |
+| prettytable               | 3.9.0     | BSD License                                                      |
+| prompt-toolkit            | 3.0.39    | BSD License                                                      |
+| psutil                    | 5.9.5     | BSD License                                                      |
+| pycparser                 | 2.21      | BSD License                                                      |
+| python-json-logger        | 2.0.7     | BSD License                                                      |
+| scikit-image              | 0.21.0    | BSD License                                                      |
+| scikit-learn              | 1.3.0     | BSD License                                                      |
+| scipy                     | 1.11.0    | BSD License                                                      |
+| seaborn                   | 0.12.2    | BSD License                                                      |
+| terminado                 | 0.17.1    | BSD License                                                      |
+| threadpoolctl             | 3.2.0     | BSD License                                                      |
+| tifffile                  | 2023.8.30 | BSD License                                                      |
+| tinycss2                  | 1.2.1     | BSD License                                                      |
+| traitlets                 | 5.9.0     | BSD License                                                      |
+| webcolors                 | 1.13      | BSD License                                                      |
+| webencodings              | 0.5.1     | BSD License                                                      |
+| widgetsnbextension        | 4.0.9     | BSD License                                                      |
+| zstandard                 | 0.21.0    | BSD License                                                      |
+| pyzmq                     | 25.1.0    | BSD License; GNU Library or Lesser General Public License (LGPL) |
+| debugpy                   | 1.6.7     | Eclipse Public License 2.0 (EPL-2.0); MIT License                |
+| ansi2html                 | 1.8.0     | GNU Lesser General Public License v3 or later (LGPLv3+)          |
+| bpy                       | 3.5.0     | GPL-3.0                                                          |
+| Pillow                    | 10.0.0    | Historical Permission Notice and Disclaimer (HPND)               |
+| isoduration               | 20.11.0   | ISC License (ISCL)                                               |
+| pexpect                   | 4.8.0     | ISC License (ISCL)                                               |
+| ptyprocess                | 0.7.0     | ISC License (ISCL)                                               |
+| dash-core-components      | 2.0.0     | MIT                                                              |
+| dash-html-components      | 2.0.0     | MIT                                                              |
+| dash-table                | 5.0.0     | MIT                                                              |
+| ConfigArgParse            | 1.5.5     | MIT License                                                      |
+| PeakUtils                 | 1.3.4     | MIT License                                                      |
+| PyWavelets                | 1.4.1     | MIT License                                                      |
+| PyYAML                    | 6.0       | MIT License                                                      |
+| addict                    | 2.4.0     | MIT License                                                      |
+| anyio                     | 3.7.1     | MIT License                                                      |
+| argon2-cffi               | 21.3.0    | MIT License                                                      |
+| argon2-cffi-bindings      | 21.2.0    | MIT License                                                      |
+| attrs                     | 23.1.0    | MIT License                                                      |
+| beautifulsoup4            | 4.12.2    | MIT License                                                      |
+| cffi                      | 1.15.1    | MIT License                                                      |
+| charset-normalizer        | 3.1.0     | MIT License                                                      |
+| dash                      | 2.11.1    | MIT License                                                      |
+| exceptiongroup            | 1.1.2     | MIT License                                                      |
+| executing                 | 1.2.0     | MIT License                                                      |
+| fake-bpy-module-3.3       | 20230117  | MIT License                                                      |
+| fonttools                 | 4.40.0    | MIT License                                                      |
+| jedi                      | 0.18.2    | MIT License                                                      |
+| jsonschema                | 4.18.0    | MIT License                                                      |
+| jsonschema-specifications | 2023.6.1  | MIT License                                                      |
+| open3d                    | 0.17.0    | MIT License                                                      |
+| parso                     | 0.8.3     | MIT License                                                      |
+| pickleshare               | 0.7.5     | MIT License                                                      |
+| pip                       | 23.1.2    | MIT License                                                      |
+| pip-licenses              | 4.3.3     | MIT License                                                      |
+| platformdirs              | 3.8.1     | MIT License                                                      |
+| plotly                    | 5.15.0    | MIT License                                                      |
+| pure-eval                 | 0.2.2     | MIT License                                                      |
+| pyparsing                 | 3.0.9     | MIT License                                                      |
+| pyquaternion              | 0.9.9     | MIT License                                                      |
+| pytz                      | 2023.3    | MIT License                                                      |
+| referencing               | 0.29.1    | MIT License                                                      |
+| rfc3339-validator         | 0.1.4     | MIT License                                                      |
+| rfc3986-validator         | 0.1.1     | MIT License                                                      |
+| rpds-py                   | 0.8.10    | MIT License                                                      |
+| setuptools                | 65.5.0    | MIT License                                                      |
+| six                       | 1.16.0    | MIT License                                                      |
+| soupsieve                 | 2.4.1     | MIT License                                                      |
+| stack-data                | 0.6.2     | MIT License                                                      |
+| trimesh                   | 3.22.5    | MIT License                                                      |
+| uri-template              | 1.3.0     | MIT License                                                      |
+| urllib3                   | 2.0.3     | MIT License                                                      |
+| wcwidth                   | 0.2.6     | MIT License                                                      |
+| tqdm                      | 4.65.0    | MIT License; Mozilla Public License 2.0 (MPL 2.0)                |
+| certifi                   | 2023.5.7  | Mozilla Public License 2.0 (MPL 2.0)                             |
+| fqdn                      | 1.5.1     | Mozilla Public License 2.0 (MPL 2.0)                             |
+| defusedxml                | 0.7.1     | Python Software Foundation License                               |
+| matplotlib                | 3.7.2     | Python Software Foundation License                               |
+| typing_extensions         | 4.7.1     | Python Software Foundation License                               |
\ No newline at end of file
diff --git a/addon/__init__.py b/addon/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..44e13288c04b731c53a4534569e7af45737ed2dc
--- /dev/null
+++ b/addon/__init__.py
@@ -0,0 +1,40 @@
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful, but
+# WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTIBILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+# General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+import logging
+from .utils import init_logging, running_in_blender
+
+if 'SmoPa3D' not in logging.Logger.manager.loggerDict.keys():
+    init_logging('DEBUG')
+
+bl_info = {
+    "name" : "FDM Simulator",
+    "author" : "MateusHarano",
+    "description" : "This addon simulates the printing process of an FDM 3D printer.",
+    "blender" : (2, 80, 0),
+    "version" : (0, 0, 0),
+    "location" : "",
+    "warning" : "",
+    "category" : "Generic"
+}
+
+if running_in_blender:
+    from . import auto_load
+
+    auto_load.init()
+
+def register():
+    auto_load.register()
+
+def unregister():
+    auto_load.unregister()
diff --git a/addon/auto_load.py b/addon/auto_load.py
new file mode 100644
index 0000000000000000000000000000000000000000..360b2444ccce965f53f9938621d1a0786853199f
--- /dev/null
+++ b/addon/auto_load.py
@@ -0,0 +1,191 @@
+import os
+import bpy
+import sys
+import typing
+import inspect
+import pkgutil
+import importlib
+from pathlib import Path
+
+from .utils import running_in_blender
+
+__all__ = (
+    "init",
+    "register",
+    "unregister",
+)
+
+if running_in_blender:
+    blender_version = bpy.app.version
+
+modules = None
+ordered_classes = None
+
+def init():
+    ensure_site_packages([("scipy", "scipy"), ("open3d", "open3d"), ("tqdm", "tqdm"), ("memory_profiler", "memory_profiler"), ("seaborn", "seaborn"), ("skimage", "scikit-image"), ("sklearn", "scikit-learn"), ("pandas", "pandas"), ("matplotlib", "matplotlib"), ("peakutils", "PeakUtils")])
+
+    global modules
+    global ordered_classes
+
+    modules = get_all_submodules(Path(__file__).parent)
+    ordered_classes = get_ordered_classes_to_register(modules)
+
+def register():
+    for cls in ordered_classes:
+        bpy.utils.register_class(cls)
+
+    for module in modules:
+        if module.__name__ == __name__:
+            continue
+        if hasattr(module, "register"):
+            module.register()
+
+def unregister():
+    for cls in reversed(ordered_classes):
+        bpy.utils.unregister_class(cls)
+
+    for module in modules:
+        if module.__name__ == __name__:
+            continue
+        if hasattr(module, "unregister"):
+            module.unregister()
+
+
+# Import modules
+#################################################
+
+def get_all_submodules(directory):
+    return list(iter_submodules(directory, directory.name))
+
+def iter_submodules(path, package_name):
+    for name in sorted(iter_submodule_names(path)):
+        yield importlib.import_module("." + name, package_name)
+
+def iter_submodule_names(path, root=""):
+    for _, module_name, is_package in pkgutil.iter_modules([str(path)]):
+        if is_package:
+            sub_path = path / module_name
+            sub_root = root + module_name + "."
+            yield from iter_submodule_names(sub_path, sub_root)
+        else:
+            yield root + module_name
+
+
+# Find classes to register
+#################################################
+
+def get_ordered_classes_to_register(modules):
+    return toposort(get_register_deps_dict(modules))
+
+def get_register_deps_dict(modules):
+    my_classes = set(iter_my_classes(modules))
+    my_classes_by_idname = {cls.bl_idname : cls for cls in my_classes if hasattr(cls, "bl_idname")}
+
+    deps_dict = {}
+    for cls in my_classes:
+        deps_dict[cls] = set(iter_my_register_deps(cls, my_classes, my_classes_by_idname))
+    return deps_dict
+
+def iter_my_register_deps(cls, my_classes, my_classes_by_idname):
+    yield from iter_my_deps_from_annotations(cls, my_classes)
+    yield from iter_my_deps_from_parent_id(cls, my_classes_by_idname)
+
+def iter_my_deps_from_annotations(cls, my_classes):
+    for value in typing.get_type_hints(cls, {}, {}).values():
+        dependency = get_dependency_from_annotation(value)
+        if dependency is not None:
+            if dependency in my_classes:
+                yield dependency
+
+def get_dependency_from_annotation(value):
+    if blender_version >= (2, 93):
+        if isinstance(value, bpy.props._PropertyDeferred):
+            return value.keywords.get("type")
+    else:
+        if isinstance(value, tuple) and len(value) == 2:
+            if value[0] in (bpy.props.PointerProperty, bpy.props.CollectionProperty):
+                return value[1]["type"]
+    return None
+
+def iter_my_deps_from_parent_id(cls, my_classes_by_idname):
+    if bpy.types.Panel in cls.__bases__:
+        parent_idname = getattr(cls, "bl_parent_id", None)
+        if parent_idname is not None:
+            parent_cls = my_classes_by_idname.get(parent_idname)
+            if parent_cls is not None:
+                yield parent_cls
+
+def iter_my_classes(modules):
+    base_types = get_register_base_types()
+    for cls in get_classes_in_modules(modules):
+        if any(base in base_types for base in cls.__bases__):
+            if not getattr(cls, "is_registered", False):
+                yield cls
+
+def get_classes_in_modules(modules):
+    classes = set()
+    for module in modules:
+        for cls in iter_classes_in_module(module):
+            classes.add(cls)
+    return classes
+
+def iter_classes_in_module(module):
+    for value in module.__dict__.values():
+        if inspect.isclass(value):
+            yield value
+
+def get_register_base_types():
+    return set(getattr(bpy.types, name) for name in [
+        "Panel", "Operator", "PropertyGroup",
+        "AddonPreferences", "Header", "Menu",
+        "Node", "NodeSocket", "NodeTree",
+        "UIList", "RenderEngine",
+        "Gizmo", "GizmoGroup",
+    ])
+
+
+# Find order to register to solve dependencies
+#################################################
+
+def toposort(deps_dict):
+    sorted_list = []
+    sorted_values = set()
+    while len(deps_dict) > 0:
+        unsorted = []
+        for value, deps in deps_dict.items():
+            if len(deps) == 0:
+                sorted_list.append(value)
+                sorted_values.add(value)
+            else:
+                unsorted.append(value)
+        deps_dict = {value : deps_dict[value] - sorted_values for value in unsorted}
+    return sorted_list
+
+def ensure_site_packages(packages):
+    """ `packages`: list of tuples (<import name>, <pip name>) """
+    
+    if not packages:
+        return
+
+    import site
+    import importlib
+    import importlib.util
+
+    user_site_packages = site.getusersitepackages()
+    if not user_site_packages in sys.path:
+        sys.path.append(user_site_packages)
+
+    modules_to_install = [module[1] for module in packages if not importlib.util.find_spec(module[0])]
+    if not modules_to_install:
+        return
+
+    if bpy.app.version < (2,91,0):
+        python_binary = bpy.app.binary_path_python
+    else:
+        python_binary = sys.executable
+        
+    import subprocess
+    subprocess.run([python_binary, '-m', 'ensurepip'], check=True)
+    subprocess.run([python_binary, '-m', 'pip', 'install', *modules_to_install, "--user"], check=True)
+    
+    importlib.invalidate_caches()
\ No newline at end of file
diff --git a/addon/command.py b/addon/command.py
new file mode 100644
index 0000000000000000000000000000000000000000..d842a8fc3a2b461b1ae1f248f2b75ee9bb91464f
--- /dev/null
+++ b/addon/command.py
@@ -0,0 +1,168 @@
+import os
+import numpy as np
+from skimage.measure import marching_cubes
+import logging
+log = logging.getLogger("SmoPa3D")
+
+from .gcode.parser import GcodeCommand
+from .node import Node, join_nodes, assign_values
+from .geometry import width_model
+
+class Command:
+    """Represents a command from the gcode file"""
+    def __init__(self, network, gcode:GcodeCommand, id:int) -> None:
+        self.network = network
+        self.gcode = gcode
+        self.id = id
+        self.nodes:list[Node] = []
+        self._vertices:np.ndarray = None
+        self._faces:np.ndarray = None
+        self.vertices_filepath:str = None
+        self.faces_filepath:str = None
+
+        # Update network to include this command
+        self.network.commands[id] = self
+
+        # Calculate distribution of nodes along the command
+        self.start = np.array((self.gcode.last_position['x'], self.gcode.last_position['y'], self.gcode.last_position['z']))
+        self.end = np.array((self.gcode.x if self.gcode.x is not None else self.gcode.last_position['x'], self.gcode.y if self.gcode.y is not None else self.gcode.last_position['y'], self.gcode.z if self.gcode.z is not None else self.gcode.last_position['z']))
+        self.trajectory_length = np.linalg.norm(self.end - self.start)
+
+        # Calculate properties
+        self.e = self.gcode.e
+        self.feedrate = (self.e - self.gcode.last_ocurrence('e')) / self.trajectory_length
+        self.speed = self.gcode.f if self.gcode.f is not None else self.gcode.last_ocurrence('f')
+
+        nominal_width = width_model(self.network.temperature, self.feedrate, self.speed)
+        self.node_distance = nominal_width * self.network.node_distance
+        self.qtd_nodes = round(self.trajectory_length / self.node_distance) + 1
+        self.nodes_coords = np.linspace(self.start, self.end, self.qtd_nodes)
+        if (self.start[0], self.start[1], self.start[2]) in self.network.coords:  # Remove coincident starts and endings
+            self.nodes_coords = self.nodes_coords[1:]
+            self.qtd_nodes -= 1
+
+        if self.qtd_nodes <= 0: return
+        # volume_distribution = volume_profile(self.qtd_nodes, self.trajectory_length, self.speed) * self.total_extruded_volume
+        volume_distribution = np.ones(self.qtd_nodes)/self.qtd_nodes * self.total_extruded_volume
+
+        # Assign layer
+        self.layer = self.network.get_layer(self.start[2])
+
+        # Initialize nodes
+        for coord, volume in zip(self.nodes_coords, volume_distribution):
+            Node(self.network, self, self.layer, coord[0], coord[1], coord[2], volume)
+
+    @property
+    def total_extruded_volume(self,
+                        constant:float = 0.0025726112346777796,
+                        feedrate_multiplier:float = 1.812969202377806
+                        ) -> float:
+        """Volume, in mm^3, of the filament deposited in the node
+        @param constant: constant value to calculate the area of the profile. Value retrieved experimentally
+        @param feedrate_multiplier: multiplier value to calculate the area of the profile. Value retrieved experimentally"""
+        area = constant + feedrate_multiplier * self.feedrate
+        volume = area * self.trajectory_length * self.network.extrusion_multiplier
+        # volume = self.feedrate * self.trajectory_length * np.pi * 1.75 ** 2 / 4 * self.network.extrusion_multiplier
+        return volume
+    
+    @property
+    def vertices(self) -> np.ndarray:
+        """Vertices of the mesh. If the vertices are not saved, returns None"""
+        if self._vertices is None:
+            if self.vertices_filepath is not None:
+                return np.load(self.vertices_filepath)
+            else:
+                return None
+        else:
+            return self._vertices
+    
+    @property
+    def faces(self) -> np.ndarray:
+        """Vertices of the mesh. If the vertices are not saved, returns None"""
+        if self._faces is None:
+            if self.faces_filepath is not None:
+                return np.load(self.faces_filepath)
+            else:
+                return None
+        else:
+            return self._faces
+
+def volume_profile(
+    qtd_nodes:int,
+    distance:float=100,
+    nozzle_speed:float=1000,
+    jerk:float=20,
+    acceleration:float=500
+    ):
+    times = []
+    umax = min(nozzle_speed, np.sqrt(jerk ** 2 + acceleration * distance))
+    s_ramp = (umax ** 2 - jerk ** 2) / (2 * acceleration)
+    for s in np.linspace(0, distance, qtd_nodes+1)[1:]:
+        if s <= s_ramp:
+            roots = np.roots((acceleration/2, jerk, -s))
+            roots = min(roots[roots > 0].real)
+            times.append(roots)
+        elif s <= (distance - s_ramp):
+            times.append((umax - jerk) / acceleration + (s - s_ramp) / umax)
+        else:
+            roots = np.roots((-acceleration/2, umax, (distance - s_ramp - s)))
+            roots = min(roots[roots > 0].real)
+            times.append((umax - jerk) / acceleration + (distance - 2*s_ramp)/umax + roots)
+    total_time = times[-1]
+    discretization = [times[i] - times[i-1] if i > 0 else times[i] for i in range(len(times))]
+    return (discretization / total_time).astype(float)
+
+def calculate_command_mesh(command:Command) -> tuple[str, str]:
+    """Calculate the mesh of the command. Returns the saved path of the vertices and faces"""
+    if command.qtd_nodes <= 0:
+        return None, None
+    elif command.qtd_nodes == 1:
+        if command.nodes[0].pointcloud is None: return None, None
+        joined_pcl = command.nodes[0].pointcloud
+        command.nodes[0].wipe()
+    else:  # If there are more than one node, join the pointclouds into one collection of points (shape = (n, 3) [x, y, z])
+        joined_pcl = np.vstack([join_nodes(command.nodes[0], node) for node in command.nodes]).astype(np.int64)
+        for node in command.nodes:
+            node.wipe()
+
+    if joined_pcl is None or len(joined_pcl) == 0:
+        return None, None
+    
+    # Shift the pointcloud to remove the negative values
+    shift = joined_pcl.min(0) - [1, 1, 1]
+    joined_pcl -= shift
+    volume_size = (joined_pcl.max(0) + [5,5,5])[[2,1,0]]
+
+    # Populate the voxel with the pointcloud
+    voxel = assign_values(np.zeros(volume_size, dtype=bool), joined_pcl)
+    
+    # Calculate the mesh
+    vertices, faces, _, _ = marching_cubes(voxel)
+    
+    # Positioning in the environment
+    vertices = (vertices.astype(np.float32)[:, ::-1] + shift - command.network.env.node_grid_size // 2  - 1) * command.network.env.resolution + command.nodes[0].coord
+    
+    # Save the mesh to disk so it does not occupy memory
+    vert_path = os.path.join(command.network.saving_path, "commands", f"{command.id}", "vertices.npy")
+    face_path = os.path.join(command.network.saving_path, "commands", f"{command.id}", "faces.npy")
+    os.makedirs(os.path.dirname(vert_path), exist_ok=True)
+    os.makedirs(os.path.dirname(face_path), exist_ok=True)
+    np.save(vert_path, vertices)
+    np.save(face_path, faces)
+    del vertices, faces, joined_pcl
+    return vert_path, face_path
+
+class Layer:
+    """Represents a layer of the print"""
+    def __init__(self, network, z:float) -> None:
+        self.network = network
+        self.z = z
+        self.commands:list[Command] = []
+        self.nodes:list[Node] = []
+
+    def wipe_memory(self) -> None:
+        """Delete the nodes from the memory"""
+        for node in self.nodes:
+            node.wipe()
+        log.info(f'Layer {self.z} wiped')
+
diff --git a/addon/decorators.py b/addon/decorators.py
new file mode 100644
index 0000000000000000000000000000000000000000..bd4c05ebdfea11375b6c68e2b01c56b9c1c882ad
--- /dev/null
+++ b/addon/decorators.py
@@ -0,0 +1,144 @@
+# -*- coding: utf-8 -*-
+
+__all__ = ["factory", "runtime", "delay"]
+
+import os
+import time
+import random
+import functools
+from memory_profiler import memory_usage
+import matplotlib.pyplot as plt
+import logging
+
+log = logging.getLogger('SmoPa3D')
+
+def factory(**default_opts):
+    """
+    Factory function to create decorators for tasks's run methods. Default options for the decorator
+    function can be given in *default_opts*. The returned decorator can be used with or without
+    actual invocation. Example:
+    .. code-block:: python
+        @factory(digits=2)
+        def runtime(fn, opts, task, *args, **kwargs):
+            t0 = time.time()
+            try:
+                return fn(task, *args, **kwargs)
+            finally:
+                t1 = time.time()
+                diff = round(t1 - t0, opts["digits"])
+                print("runtime:")
+                print(diff)
+        ...
+        class MyTask():
+            @runtime
+            def run(self):
+                ...
+            # or
+            @runtime(digits=3):
+            def run(self):
+                ...
+    """
+    def wrapper(decorator):
+        @functools.wraps(decorator)
+        def wrapper(fn=None, **opts):
+            _opts = default_opts.copy()
+            _opts.update(opts)
+
+            def wrapper(fn):
+                @functools.wraps(fn)
+                def wrapper(*args, **kwargs):
+                    return decorator(fn, _opts, *args, **kwargs)
+                return wrapper
+
+            return wrapper if fn is None else wrapper(fn)
+        return wrapper
+    return wrapper
+
+
+@factory(digits=2)
+def runtime(fn, opts, *args, **kwargs):
+    """
+    Decorator for inspecting a methods performance with a precision of *digits=2*.
+    """
+    t0 = time.time()
+    try:
+        return fn(*args, **kwargs)
+    finally:
+        t1 = time.time()
+        if (t1-t0) < 2:
+            diff = round(1000*(t1 - t0), opts["digits"])
+            log.debug(f"{fn.__name__} runtime: {diff} ms")
+        else:
+            diff = round((t1 - t0), opts["digits"])
+            log.debug(f"{fn.__name__} runtime: {diff} s")
+
+
+@factory(t=5, stddev=0, pdf="gauss")
+def delay(fn, opts, *args, **kwargs):
+    """ delay(t=5, stddev=0., pdf="gauss")
+    Wraps a bound method of a task and delays its execution by *t* seconds.
+    """
+    if opts["stddev"] <= 0:
+        t = opts["t"]
+    elif opts["pdf"] == "gauss":
+        t = random.gauss(opts["t"], opts["stddev"])
+    elif opts["pdf"] == "uniform":
+        t = random.uniform(opts["t"], opts["stddev"])
+    else:
+        raise ValueError(
+            "unknown delay decorator pdf '{}'".format(opts["pdf"]))
+
+    time.sleep(t)
+
+    return fn(*args, **kwargs)
+
+class Tracker:
+
+    def __init__(self) -> None:
+        self.runtime:list[float] = []
+        # self.memory:list[float] = []
+
+    def plot_results(self, function_name:str, path:str='./__runtime_stats__'):
+        os.makedirs(path, exist_ok=True)
+        fig, axs = plt.subplots(1, 1, layout='constrained')
+
+        # Plot runtime
+        axs.plot(self.runtime)
+        axs.set_ylabel('Runtime [ms]')
+        axs.set_xlabel('Iterations')
+        axs.set_title('Runtime')
+
+        # # Plot memory
+        # axs[1].plot(self.memory)
+        # axs[1].set_ylabel('Memory [MiB]')
+        # axs[1].set_xlabel('Iterations')
+        # axs[1].set_title('Memory')
+
+        print(f'Code statistics saved in {os.path.abspath(path)}')
+        fig.savefig(f"{path}/{function_name}.png")
+        
+
+@factory()
+def track(fn, opts, *args, **kwargs):
+    """Keep track of the runtime of a function over time"""
+    if f"{fn.__name__}_tracker" not in globals().keys():
+        globals()[f"{fn.__name__}_tracker"] = Tracker()
+    tracker:Tracker = globals()[f"{fn.__name__}_tracker"]
+    t0 = time.time()
+    try:
+        # memory = max(memory_usage((fn, [*args], {**kwargs})))
+        return fn(*args, **kwargs)
+    finally:
+        t1 = time.time()
+        tracker.runtime.append(round((t1-t0)*1000, 1))
+        # if memory is not None: tracker.memory.append(memory)
+
+def save_tracking_stats():
+    """Save the statistics in charts"""
+    to_delete = []
+    for varname, value in globals().items():
+        if isinstance(value, Tracker):
+            value.plot_results(function_name=varname)
+            to_delete.append(varname)
+    for varname in to_delete:
+        del globals()[varname]
\ No newline at end of file
diff --git a/addon/gcode/__init__.py b/addon/gcode/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/addon/gcode/convert_gcode.py b/addon/gcode/convert_gcode.py
new file mode 100644
index 0000000000000000000000000000000000000000..67718530475dd32af4ea2a95f8b6046c09dac616
--- /dev/null
+++ b/addon/gcode/convert_gcode.py
@@ -0,0 +1,247 @@
+# -*- coding: utf-8 -*-
+"""
+@author: grh
+
+Project: SmoPa3D
+
+Description: This code is used for the manipulation of the gcode in order to generate slices
+"""
+import pandas as pd
+from random import sample, randint
+import re
+import numpy as np
+from scipy.interpolate import interp1d
+import os
+
+#===============================================================================
+## Generating of gcode slices in order to send them to the printer
+#=============================================================================== 
+def convertGcode2Slices(rel_path = "/data/printjobs/test_part.gcode"):
+
+    with open(os.path.join(os.environ['ROOT'], rel_path), "r") as gcode:   
+        data = gcode.read() ### read in the G-Code
+
+        ##Get the layer height  
+        layerheight_start = re.search(";Layer height: ", data).end()
+        layerheight_end = re.search(";MINX:", data).start()
+        layerheight = float(data[layerheight_start:layerheight_end])
+        
+        ##Get the number of Layers    
+        numberOfLayers_start = re.search(";LAYER_COUNT:", data).end()
+        numberOfLayers_end = re.search(";LAYER:0", data).start()
+        numberOfLayers = int(data[numberOfLayers_start:numberOfLayers_end])
+        numberOfLayers = numberOfLayers - 1 ## subtracting -1 in order to get the real number of layers (the counting starts at 0 -> for example if 169 layers are displayed, the last layer ist layer 168)        
+
+        ##Get YMin und YMax for to select the measuring area
+        #Getting YMin
+        numberOfLayers_start = re.search(";MINY:", data).end()
+        numberOfLayers_end = re.search(";MINZ:", data).start()
+        YMin = float(data[numberOfLayers_start:numberOfLayers_end])
+
+        #Getting YMax
+        numberOfLayers_start = re.search(";MAXY:", data).end()
+        numberOfLayers_end = re.search(";MAXZ:", data).start()
+        YMax = float(data[numberOfLayers_start:numberOfLayers_end])
+        
+        ##Seperate the first Layer from the G-Code
+        numberOfLayers_end = re.search(";LAYER:1", data).start()
+        slices = np.array(str(data[:numberOfLayers_end]))
+
+        i = 1 ## starting the counter at 1 because the 0 layer was already seperated
+        while i <= numberOfLayers:
+            ## Select start and end Layer (code is searching for ";LAYER:i" and "LAYER:i+1" in order to seperate each layer)
+            startLayer = re.search(";LAYER:" + str(i), data).start() ## getting the number of the character of the current layer in order to extract the layer
+            
+            ## Seperate the other Layers from the G-Code
+            if i < numberOfLayers:
+                endLayer = re.search(";LAYER:" + str(i+1), data).start()  ## getting the number of the character of the next layer in order to extract the layer
+                slices = np.append(slices, (str(data[startLayer:endLayer]))) ## seperating the layer and appending it to the numpy array
+
+            ## Seperate the last Layer from the G-Code
+            else:
+                slices = np.append(slices, (str(data[startLayer:]))) ## seperating the layer and appending it to the numpy array
+            i += 1
+
+    return numberOfLayers, layerheight, YMin, YMax, slices
+
+#===============================================================================
+## Generating of gcode with randomly induced defects (pores)
+#=============================================================================== 
+def convertGcode2SlicesWithDefects(rel_path = "/data/printjobs/test_part.gcode", output_path = "/data/printjobs/test_part_defective.gcode"):
+
+    with open(os.path.join(os.environ['ROOT'], rel_path), "r") as gcode:     
+        data = gcode.read() ### read in the G-Code
+
+        ##Get the layer height  
+        layerheight_start = re.search(";Layer height: ", data).end()
+        layerheight_end = re.search(";MINX:", data).start()
+        layerheight = float(data[layerheight_start:layerheight_end])
+        
+        ##Get the number of Layers    
+        numberOfLayers_start = re.search(";LAYER_COUNT:", data).end()
+        numberOfLayers_end = re.search(";LAYER:0", data).start()
+        numberOfLayers = int(data[numberOfLayers_start:numberOfLayers_end])
+        numberOfLayers = numberOfLayers - 1 ## subtracting -1 in order to get the real number of layers (the counting starts at 0 -> for example if 169 layers are displayed, the last layer ist layer 168)        
+
+        ##Get YMin und YMax for to select the measuring area
+        #Getting YMin
+        numberOfLayers_start = re.search(";MINY:", data).end()
+        numberOfLayers_end = re.search(";MINZ:", data).start()
+        YMin = float(data[numberOfLayers_start:numberOfLayers_end])
+
+        #Getting YMax
+        numberOfLayers_start = re.search(";MAXY:", data).end()
+        numberOfLayers_end = re.search(";MAXZ:", data).start()
+        YMax = float(data[numberOfLayers_start:numberOfLayers_end])
+        
+    with open(os.path.join(os.environ['ROOT'], rel_path), "r") as gcode:
+        ## Convert gcode into a Pandas Dataframe in order to process it
+        lines = gcode.readlines()
+        lines = [line.strip() for line in lines]
+        df = pd.Series(lines)
+        
+        ## get the locations in the gcode, which contain those strings in order to seperate the code regarding the type which is printed
+        locations = df.loc[df.str.contains(";MESH:NONMESH|;TYPE:SKIN|;TYPE:FILL|;TYPE:WALL-INNER|;TYPE:WALL-OUTER", case= False)].index.values
+
+        i = 0
+        ## sets the resolution/size of the defects in mm
+        resolution = 1
+        ## go through each location. If its SKIN oder FILL, defects will be generated
+
+        while i < (len(locations)-1):
+            if df[locations[i]] == ";TYPE:SKIN" or df[locations[i]] == ";TYPE:FILL":
+                
+                ## get each for each command block the commands in which material is extruded
+                position_commands = df[(locations[i]+2):locations[i+1]].loc[df.str.contains("G1", case= False)].index.values
+                position_commands = df[position_commands].loc[df.str.contains("X", case= False)].index.values
+                position_commands = df[position_commands].loc[df.str.contains("E", case= False)].index.values
+                
+                
+                ## creates random numbers in range of the len of the position commands in order get a random entry from position commands
+                len_commands = len(position_commands)
+                random_number_array = sample(range(0, len_commands), int(len_commands/20))
+                random_number_array.sort(reverse=True)
+
+                ## see if there are any random numbers created
+                if random_number_array != []:
+                    
+                    ## go throug each printing section (FILL or SKIN) and create defects
+                    j = 0
+                    while j < int(len_commands/20):
+                        ## Gets the x-position, y-position and e-position in order to get the starting point of the considered command
+                        ## Get X
+                        X_start = re.search("X", df[position_commands[random_number_array][j]]).end()
+                        X_end = re.search("Y", df[position_commands[random_number_array][j]]).start()
+                        x = float(df[position_commands[random_number_array][j]][X_start:X_end])
+                        ## Get Y
+                        Y_start = re.search("Y", df[position_commands[random_number_array][j]]).end()
+                        Y_end = re.search("E", df[position_commands[random_number_array][j]]).start()
+                        y = float(df[position_commands[random_number_array][j]][Y_start:Y_end])
+                        ## Get E
+                        E_start = re.search("E", df[position_commands[random_number_array][j]]).end()
+                        e = float(df[position_commands[random_number_array][j]][E_start:])
+                        ## Create a coordinate variable
+                        coordinate = np.array((x,y))
+                
+                        ## Gets the previous x-position and y-position in order to get the starting point of the previous command
+                        ## Get X
+                        X_start = re.search("X", df[position_commands[random_number_array][j]-1]).end()
+                        X_end = re.search("Y", df[position_commands[random_number_array][j]-1]).start()
+                        prev_x = float(df[position_commands[random_number_array][j]-1][X_start:X_end])
+                        ## Get Y
+                        Y_start = re.search("Y", df[position_commands[random_number_array][j]-1]).end()
+                        if re.search("E", df[position_commands[random_number_array][j]-1]) is not None: 
+                            Y_end = re.search("E", df[position_commands[random_number_array][j]-1]).start()
+                            prev_y = float(df[position_commands[random_number_array][j]-1][Y_start:Y_end])
+                        else:
+                            prev_y = float(df[position_commands[random_number_array][j]-1][Y_start:])
+                        ## Create a coordinate variable
+                        prev_coordinates = np.array((prev_x,prev_y))
+                    
+                        ## gets the total distance between the considered commands ("coordinates" and "prev_coordinates")
+                        dist_total = np.linalg.norm(coordinate-prev_coordinates)
+                        
+                        ## if the total distance is lower than 2mm the command will be executed but no filament is extruded -> the defect is then max 2 mm long
+                        if dist_total < 2:
+                            df[position_commands[random_number_array][j]] = "G1 X" + str(x) + " Y" + str(y) + " \nG92 E" + str(e)
+
+                        ## if the total distance is higher than 2mm the "line" will be interupted on a random position and a defect will be inserted (nearly 1 mm long)
+                        elif dist_total > 2:
+                            
+                            ## Interpolation of the previous coordinates (from the previous command) and the current coordinates (from the considered command)
+                            prev_e = e - (dist_total * 0.033) ## 0.033 is the distance the E-axis is moving per mm
+                            increment = int(dist_total/resolution) ## total number of points which are created in the interpolated array
+                            x_interplt=[prev_x,x]
+                            y_interplt=[prev_y,y]
+                            f=interp1d(x_interplt,y_interplt)
+                            x_coordinates = np.linspace(prev_coordinates[0],coordinate[0],increment)
+                            y_coordinates = f(x_coordinates)                        
+
+                            ## creates a random number in order to select on position in the created "line" of the interpolation
+                            random_number = randint(1, (len(x_coordinates)-1))
+
+                            ## gets the coordinate before the "defect"
+                            coordinate_before_defect = np.array((x_coordinates[random_number-1], y_coordinates[random_number-1]))
+
+                            ## gets the coordinate after the "defect"
+                            coordinate_after_defect = np.array((x_coordinates[random_number], y_coordinates[random_number]))
+
+                            ## gets the distance between the previous coordinate and the coordinate before the "defect" in order to calculate the extrusion
+                            dist_1 = np.linalg.norm(prev_coordinates-coordinate_before_defect)
+                            e_value_1 = round(prev_e + (0.033 * dist_1),5)
+
+                            ## gets the distance between the the coordinate before the "defect" and the coordinate after the "defect" in order to calculate the "extrusion"
+                            dist_2 = np.linalg.norm(coordinate_before_defect-coordinate_after_defect)
+                            e_value_2 = round(e_value_1 + (0.033 * dist_2),5)
+
+                            ## if the random number is 1 and therefore the defect is just in the beginning of the line, the new code is generated
+                            ## The defect in a 3 mm line looks like this |x--| (with - as printed normal and x as not printed and therefore a defect)
+                            if random_number == 1:
+                                df[position_commands[random_number_array][j]] = "G0 X" + str(coordinate_after_defect[0]) + " Y" + str(coordinate_after_defect[1]) + " \nG92 E" + str(e_value_2) + " \n" + df[position_commands[random_number_array][j]]
+                            
+                            ## The defect in a 3 mm line looks like this |--x| (with - as printed normal and x as not printed and therefore a defect)
+                            elif random_number == (len(x_coordinates)-1):
+                                df[position_commands[random_number_array][j]] = "G1 X" + str(coordinate_before_defect[0]) + " Y" + str(coordinate_before_defect[1]) + " E" + str(e_value_1) + " \nG0 X" + str(x) + " Y" + str(y) + " \nG92 E" + str(e)
+                            
+                            ## The defect in a 3 mm line looks like this |-x-| (with - as printed normal and x as not printed and therefore a defect)
+                            else:
+                                df[position_commands[random_number_array][j]] = "G1 X" + str(coordinate_before_defect[0]) + " Y" + str(coordinate_before_defect[1]) + " E" + str(e_value_1) + " \nG0 X" + str(coordinate_after_defect[0]) + " Y" + str(coordinate_after_defect[1]) + " \nG92 E" + str(e_value_2) + " \n" + df[position_commands[random_number_array][j]]
+                        j +=1
+            i += 1
+
+        ## Convert Pandas Dataframe back into str in order to be processed as gcode
+        newlines = df.values.tolist()
+        newgcode = "\n".join(newlines)
+        
+        ##Seperate the first Layer from the G-Code
+        numberOfLayers_end = re.search(";LAYER:1", newgcode).start()
+        slices = np.array(str(newgcode[:numberOfLayers_end]))
+
+        i = 1 ## starting the counter at 1 because the 0 layer was already seperated
+        while i <= numberOfLayers:
+            ## Select start and end Layer (code is searching for ";LAYER:i" and "LAYER:i+1" in order to seperate each layer)
+            startLayer = re.search(";LAYER:" + str(i), newgcode).start() ## getting the number of the character of the current layer in order to extract the layer
+            
+            ## Seperate the other Layers from the G-Code
+            if i < numberOfLayers:
+                endLayer = re.search(";LAYER:" + str(i+1), newgcode).start()  ## getting the number of the character of the next layer in order to extract the layer
+                slices = np.append(slices, (str(newgcode[startLayer:endLayer]))) ## seperating the layer and appending it to the numpy array
+
+            ## Seperate the last Layer from the G-Code
+            else:
+                slices = np.append(slices, (str(newgcode[startLayer:]))) ## seperating the layer and appending it to the numpy array
+            i += 1
+ 
+    #file  = open(os.path.join(os.environ['ROOT'],utput_path), "w")
+    #file.write(newgcode)
+    #file.close
+
+    return numberOfLayers, layerheight, YMin, YMax, slices
+
+if __name__ == '__main__':
+    while True:
+        try:
+            convertGcode2SlicesWithDefects()
+        except AttributeError:
+            continue
+        break
\ No newline at end of file
diff --git a/addon/gcode/defects.py b/addon/gcode/defects.py
new file mode 100644
index 0000000000000000000000000000000000000000..ddab8c085fa2b0528fa6ccf4fb254565d3b58e47
--- /dev/null
+++ b/addon/gcode/defects.py
@@ -0,0 +1,40 @@
+# TODO:
+# 1. Functions for each of the defects
+#   a. ABC
+#   b. Over extrusion
+#   c. Under extrusion
+#   d. Void
+#   e. Geometric deviation
+from abc import ABC, abstractmethod
+
+from .parser import Command, Gcode
+
+class Defect(ABC):
+    def __init__(self, incidence_ratio:float, intensity:float) -> None:
+        """Parameters:
+        -----
+        *  @param incidence_ratio ∈ [0, 1]: percentage of the gcode commands upon which the defect may incide\n
+        *  @param intensity ∈ [0, 1]: percentage of the intensity of the defect"""
+        super().__init__()
+        assert 0 <= incidence_ratio <= 1, "incidence_ratio should be a float between 0 and 1"
+        assert 0 <= intensity <= 1, "incidence_ratio should be a float between 0 and 1"
+
+        self.incidence_ratio = incidence_ratio
+        self.intensity = intensity
+    
+    @abstractmethod
+    def apply(self, command:Command) -> None:
+        pass
+
+class OverExtrusion(Defect):
+    def apply(self, command:Command) -> None:
+        if not (type(command) == float or type(command) == float): return
+        last_coords = command.get_last_position()
+        original_extrusion = command.e - last_coords['e']
+        command.e += original_extrusion * self.intensity
+
+if __name__ == '__main__':
+    gcode = Gcode('data/defects_scans/single_line_cross/no_defect/CE3PRO_single_line_cross.gcode')
+    defects = [OverExtrusion(1, 1)]
+    gcode.apply_defects(defects)
+    gcode.save('./source/gcode/gcode_with_defects.gcode')
\ No newline at end of file
diff --git a/addon/gcode/gcode2voxel.py b/addon/gcode/gcode2voxel.py
new file mode 100644
index 0000000000000000000000000000000000000000..f30b0aaa562c0fb0caeb67fbee779beb1170db11
--- /dev/null
+++ b/addon/gcode/gcode2voxel.py
@@ -0,0 +1,276 @@
+"""
+@author: grh, grh_mh
+
+Project: SmoPa3D
+
+Description: This code is used to generate a nominal out of the gcode given by a slicer.
+"""
+
+from scipy.spatial.transform import Rotation as R
+import pandas as pd
+import numpy as np
+import matplotlib.pyplot as plt
+import re
+import logging
+from itertools import repeat
+import multiprocessing
+
+log = logging.getLogger('SmoPa3D')
+
+def gcode2dataframe(gcode_file_path:str):
+    """Reads a gcode file and transforms it into a pandas dataframe, each row representing a command.\n
+    Dataframe format:\n
+    ``` bash
+    +-------+---------+---------+---------+-----------+---------+-------+
+    | index | X-Value | Y-Value | Z-Value | Extrusion | Command | Layer |
+    +-------+---------+---------+---------+-----------+---------+-------+
+    |  int  |  float  |  float  |  float  |   float   |   int   |  int  |
+    """
+    with open(gcode_file_path, "r") as gcode:
+        data = gcode.read() ### read in the G-Code
+        numberOfLayers_start = re.search(";LAYER_COUNT:", data).end()
+        numberOfLayers_end = re.search(";LAYER:0", data).start()
+        numberOfLayers = int(data[numberOfLayers_start:numberOfLayers_end])
+
+        lines = [line.strip() for line in data.split('\n')]
+        data_size = len(lines)
+        df = pd.Series(lines)
+
+        gcode_values = np.zeros(((data_size),6))
+        amount_extracted_values = 0
+        amount_extracted_values_start_layer = 0
+
+
+        for i in range(numberOfLayers):
+            ### Selection of the i-th layer and separation of the code from the entire code block
+
+            startLayer = (";LAYER:" + str(i))
+            if i < (numberOfLayers-1):
+                startLayerplusone = (";LAYER:" + str(i+1))        
+                layer_start = df[df==str(startLayer)].index.values[0]
+                layer_end = df[df==str(startLayerplusone)].index.values[0]
+                layer = df[(layer_start+1):layer_end]
+
+            elif i == (numberOfLayers-1):
+                layer = df[(layer_start+1):]
+
+            ### Separation of only G-code where extrude and process
+            layer = layer.drop(layer.loc[layer.str.contains(";", case= False)].index.values)
+            layer = layer.drop(layer.loc[layer.str.contains("M20", case= False)].index.values)
+            layer = layer.drop(layer.loc[layer.str.contains("Z", case= False)].index.values) ## Skipping commands in which Z changes
+            layer = layer.drop(layer.loc[~layer.str.contains("Y", case= False)].index.values)
+            layer = layer.drop(layer.loc[~layer.str.contains("X", case= False)].index.values)
+
+            for (j, position) in enumerate(layer):
+                ## Extraction of position in X
+                X_start = re.search("X", position).end()
+                X_end = re.search("Y", position).start()
+                X_position = float(position[X_start:X_end])
+                ## Extraction of position in Y
+                Y_start = re.search("Y", position).end()
+                if re.search("E", position) is not None: 
+                    Y_end = re.search("E", position).start()
+                    Y_position = float(position[Y_start:Y_end])
+                else:
+                    Y_position = float(position[Y_start:])
+
+                ## Extraction of position in Z
+                Z_position = 0.2 + (i*0.2)
+
+                ## Extraction of feedrate
+                if (re.search("E", position) is None) != True: 
+                    Extrusion_start = re.search("E", position).end()
+                    Extrusion = float(position[Extrusion_start:])
+                else: Extrusion= float(0.00)
+                
+                ## Assignment of layer count to the values
+                numberOfLayer = i
+                
+                ## Assignment of the command number to the values
+                numberOfCommand = j
+
+                extracted_value = np.array((X_position,Y_position,Z_position, Extrusion, numberOfCommand, numberOfLayer))
+                gcode_values[amount_extracted_values: (amount_extracted_values + 1)] = extracted_value
+                amount_extracted_values += 1
+
+    gcode_values = gcode_values[:amount_extracted_values]
+
+    df2 = pd.DataFrame(gcode_values)
+    df2 = df2.set_axis(("X-Value", "Y-Value", "Z-Value", "Extrusion", "Command", "Layer"), axis='columns')
+    return df2
+
+def calculate_profile_dimensions(method:str, D:float=0.4, V_over_U:float=1.58, Rn:float=1, gap:float=0.2, alpha:float=1.505) -> tuple[float, float]:
+    """Calculates height and width of the strand. Available options:\n
+    * hebda
+    * xu
+    * comminal
+
+    References:\n
+    * [COMMINAL et al., 2018](https://doi.org/10.1016/j.addma.2017.12.013)\n
+    * [Hebda et al., 2019](http://hdl.handle.net/10454/16895)\n
+    * [Xu et al., 2022](https://hal-mines-paristech.archives-ouvertes.fr/hal-03766358)"""
+
+    if method == 'hebda':
+        W = D * alpha * np.sqrt(1/V_over_U)
+        H = D / alpha * np.sqrt(1 / V_over_U)
+    elif method == 'xu':
+        W = D * (1 - Rn/D + np.sqrt((Rn/D - 1)**2 + np.pi * D / (gap * V_over_U) * (Rn/D - 0.5)))
+        H = D**2 / (V_over_U * W)
+    elif method == 'comminal':
+        W = np.pi / 4 * 1 / V_over_U * D**2 / gap + gap * (1 - np.pi / 4)
+        H = gap
+    else:
+        log.warning('Calculation method for profile dimensions do not exist. Possible options are: hebda, xu and comminal')
+        W = 0
+        H = 0
+    return W, H
+
+def draw_profile(geometry:str='ellipse', width:float=0.374109, height:float=0.266511, resolution:float=0.07) -> pd.DataFrame:
+    """Creates a pinned ellipse profile in 2D to simulate the extrusion profile. It is made in Y = 0 plane.\n
+    Available format options:\n
+    * oblong
+    * ellipse
+    * pinned ellipse
+    * ellipse oblong 
+
+    References:\n
+    * [COMMINAL et al., 2018](https://doi.org/10.1016/j.addma.2017.12.013)\n
+    * [Hebda et al., 2019](http://hdl.handle.net/10454/16895)\n
+    * [Xu et al., 2022](https://hal-mines-paristech.archives-ouvertes.fr/hal-03766358)"""
+
+    df = pd.DataFrame(columns=['x', 'y', 'z'])
+    z_vector = np.linspace(0, height, int(height / resolution) + 2)
+
+    # Draw contours right side
+    if geometry == 'oblong':
+        for z in z_vector:
+            angle = np.arcsin((z - height / 2) * 2/ height)
+            x = np.cos(angle) * height / 2 + (width - height) / 2
+            new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+            df = pd.concat([df, new_row])
+
+    elif geometry == 'ellipse':
+        for z in z_vector:
+            angle = np.arcsin((z - height / 2) * 2 / height)
+            x = np.cos(angle) * width / 2
+            new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+            df = pd.concat([df, new_row])
+
+    elif geometry == 'pinned ellipse':
+        x = 0
+        for z in z_vector[::-1]:
+            if x <= 0.95 * width / 2:  # Upper side (ellipse)
+                angle = np.arcsin((z - height / 2) * 2 / height)
+                x = np.cos(angle) * width / 2
+                new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+                df = pd.concat([df, new_row])
+            else:  # Lower side (rectangle)
+                new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+                df = pd.concat([df, new_row])
+
+    elif geometry == 'ellipse oblong':
+        for z in z_vector:
+            if z >= height / 2:  # Upper side (ellipse)
+                angle = np.arcsin((z - height / 2) * 2 / height)
+                x = np.cos(angle) * width / 2
+                new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+                df = pd.concat([df, new_row])
+            else:  # Lower side (oblong)
+                angle = np.arcsin((z - height / 2) * 2 / height)
+                x = np.cos(angle) * height/ 2 + (width - height) / 2
+                new_row = pd.DataFrame([[x, 0, z]], columns=['x', 'y', 'z'])
+                df = pd.concat([df, new_row])
+
+    # Mirror to the left side
+    df = pd.concat([df, df * [-1, 1, 1]])
+
+    # Fill up
+    for z in z_vector:
+        x = df[df.z == z].x.to_list()
+        x_vector = np.linspace(min(x), max(x), int((max(x) - min(x)) / resolution))[1:-1]
+        z_row = np.ones_like(x_vector) * z
+        new_row = new_row = pd.DataFrame.from_dict({'x':x_vector, 'y':np.zeros_like(x_vector), 'z':z_row})
+        df = pd.concat([df, new_row])
+    return df
+
+def draw_rounded_ending(profile:pd.DataFrame, steps:int=7):
+    """Draw a rounded ending by revoluting half of the profile in its Z axis"""
+    ending = pd.DataFrame(columns=profile.columns)
+    one_side_profile = profile[profile.x < 0]
+    for angle in np.linspace(0, np.pi, steps)[1:-1]:
+        r = R.from_euler('z', angle, False)
+        rotated = one_side_profile.to_numpy() @ r.as_matrix()
+        df_rotated = pd.DataFrame(rotated, columns=profile.columns)
+        ending = pd.concat([ending, df_rotated])
+    return ending
+
+def show_profile(profile:pd.DataFrame, axis:tuple=['x', 'z']):
+    """Plot the profile to check it graphically"""
+    fig, ax = plt.subplots()
+    ax.plot(profile[axis[0]], profile[axis[1]], 'ko')
+    ax.set_box_aspect(1)
+    ax.set_title('profile')
+    plt.gca().set_aspect('equal')
+    plt.show()
+
+def draw_tubular_point_cloud(pt0:tuple[float], pt1:tuple[float], profile:pd.DataFrame, resolution:float):
+    """Given two coordinates and a profile, returns a DataFrame representing a tubular point cloud between them.\n
+    Args:\n
+    - points = [x, y, z]\n
+    - profile = pd.DataFrame(columns=['x', 'y', 'z'])
+    """
+    x0, y0, z0 = pt0
+    x1, y1, z1 = pt1
+    angle = -np.arctan2(y1 - y0, x1 - x0)
+    r = R.from_euler('z', angle + np.pi/2, False).as_matrix()
+    rotated = profile.to_numpy() @ r
+
+    dist = np.linalg.norm(np.array(pt1) - np.array(pt0))
+    segments = int(dist/resolution) + 2
+    X = np.repeat(np.linspace(x0, x1, num=segments), len(rotated))
+    Y = np.repeat(np.linspace(y0, y1, num=segments), len(rotated))
+    Z = np.array([z0 for i in range(len(X))])
+
+    pcl = np.array([X, Y, Z]).transpose() + np.tile(rotated, (segments, 1))
+    df_pcl = pd.DataFrame(pcl, columns=['X', 'Y', 'Z'])
+
+    # Add rounded endings to both sides of tubular point cloud
+    ending_part = draw_rounded_ending(profile)
+    ending = pd.DataFrame(ending_part.to_numpy() @ r + np.array(pt1), columns=df_pcl.columns)
+    opposite_r = R.from_euler('z', angle - np.pi/2, False).as_matrix()
+    beginning = pd.DataFrame(ending_part.to_numpy() @ opposite_r + np.array(pt0), columns=df_pcl.columns)
+    df_pcl = pd.concat([df_pcl, beginning, ending])
+    return df_pcl
+
+def build_command(index:int, commands:pd.DataFrame, profile:pd.DataFrame, resolution:float):
+    """Builds one line of gcode command"""
+    start_row = commands.iloc[index - 1] if index > 0 else commands.iloc[0]
+    start_point = [start_row['X-Value'], start_row['Y-Value'], start_row['Z-Value']]
+    end_point = [commands.iloc[index]['X-Value'], commands.iloc[index]['Y-Value'], commands.iloc[index]['Z-Value']]
+    pcl = draw_tubular_point_cloud(start_point, end_point, profile, resolution)
+    return pcl
+
+def build_part(commands:pd.DataFrame, profile:pd.DataFrame, resolution:float, processes:int=2):
+    """Builds every line in gcode commands. Number of processes can be changed, but with caution."""
+    with multiprocessing.Pool(processes) as pool:
+        df_pcl = pd.concat(pool.starmap(build_command, zip(commands[commands.Extrusion > 0].index, repeat(commands), repeat(profile), repeat(resolution))))
+    return df_pcl
+
+# if __name__ == '__main__':
+#     import generate_pointcloud as gp
+#     import utils
+#     import os
+#     start = time.time()
+
+#     gcode_path = utils.open_or_download('63847798504e7d63865e5769')
+#     df = gcode2dataframe(gcode_path, create_pcl_for_each_layer=False)
+#     resol = 0.07
+
+#     W, H = calculate_profile_dimensions('hebda')
+#     profile = draw_profile('oblong', W, H, resolution=resol)
+
+#     pcl = build_part(df, profile, resol)
+    
+#     path_to_pcl = gp.generate_pcl(pcl, path="files/", name = "00_nominal_part", LLS ="")
+
+#     log.info("I took {:.1f} s to generate realistic point cloud.".format(time.time() - start))
\ No newline at end of file
diff --git a/addon/gcode/parser.py b/addon/gcode/parser.py
new file mode 100644
index 0000000000000000000000000000000000000000..abf62cb4665ee081e71cfc10978aa953bd200c75
--- /dev/null
+++ b/addon/gcode/parser.py
@@ -0,0 +1,136 @@
+from __future__ import annotations
+from dataclasses import dataclass
+from typing import Any, Optional, TYPE_CHECKING
+import os, random
+
+import logging
+log = logging.getLogger("SmoPa3D")
+
+if TYPE_CHECKING:
+    from .defects import Defect
+
+@dataclass
+class GcodeCommand:
+    gcode: Gcode
+    id: int
+    command_line: Optional[str] = None
+    m: Optional[int] = None
+    s: Optional[int] = None
+    g: Optional[int] = None
+    f: Optional[float] = None
+    x: Optional[float] = None
+    y: Optional[float] = None
+    z: Optional[float] = None
+    e: Optional[float] = None
+
+    def __post_init__(self) -> None:
+        assert sum([self.command_line is not None, self.g is not None, self.m is not None]) == 1, "Either command_line or command must be input to Command class"
+        self.command_list = ['M', 'S', 'G', 'F', 'X', 'Y', 'Z', 'E']
+        if self.command_line[-1] == '\n': self.command_line = self.command_line[:-1]
+
+        if self.command_line is not None:
+            for arg in self.command_line.split(' '):
+                if arg[0] == ';': break
+                if arg[0] in self.command_list:
+                    self.__dict__[arg[0].lower()] = float(arg[1:]) if len(arg[1:]) > 0 else ''
+
+    def __str__(self) -> str:
+        if not self.is_transformable: return self.command_line
+        parameters = []
+        for arg in self.command_list:
+            value = self.__dict__[arg.lower()]
+            if value is None:
+                continue
+            elif type(value) == str:
+                parameters.append(value)
+            else:
+                parameters.append(arg + str(round(value, 5)))
+        return ' '.join(parameters)
+
+    def format(self) -> str:
+        return self.__str__()
+
+    @property
+    def last_position(self, parameters_to_search:list[str]=['x', 'y', 'z', 'e']) -> dict:
+        """Locate the last ocurrence of coordinates x, y, z, e in parent gcode. If no previous ocurrence is found, returns `None`\n
+        ```
+        return {x: float, y: float, z: float, e: float}
+        ```"""
+        coords = {param: None for param in parameters_to_search}
+        for i in range(self.id-1, 0, -1):
+            if all([pos is not None for pos in coords.values()]):
+                break
+            for coord in coords.keys():
+                if self.gcode.commands[i].__dict__[coord] is not None and self.gcode.commands[i].__dict__[coord] != '' and coords[coord] is None:
+                    coords[coord] = self.gcode.commands[i].__dict__[coord]
+        return coords
+    
+    def last_ocurrence(self, parameter:str) -> Optional[float]:
+        """Locate the last ocurrence of the parameter in parent gcode. If no previous ocurrence is found, returns `None`"""
+        if parameter.upper() not in self.command_list:
+            log.warning(f'No previous ocurrence of parameter {parameter} not found in command list')
+            return None
+        
+        for i in range(self.id-1, 0, -1):
+            if self.gcode.commands[i].__dict__[parameter] is not None and self.gcode.commands[i].__dict__[parameter] != '':
+                return self.gcode.commands[i].__dict__[parameter]
+    
+    @property
+    def is_transformable(self) -> bool:
+        """Check if command is transformable, i.e., if it:\n
+        * is not part of printer setup
+        * is not part of printer unset
+        * is not a comment
+        * is not M command
+        * has moved
+        * has extruded
+        """
+        is_setup = self.id <= self.gcode.setup_end
+        is_unset = self.id >= self.gcode.unset_start
+        is_comment = self.command_line[0] == ';'
+        is_m_command = self.m is not None
+        has_moved = sum([self.x is not None, self.y is not None, self.z is not None]) > 0
+        has_extruded = self.e is not None
+        return not any([is_setup, is_unset, is_comment, is_m_command, not has_moved, not has_extruded])
+    
+    def __setattr__(self, __name: str, __value: Any) -> None:
+        self.__dict__[__name] = __value
+
+
+class Gcode:
+    def __init__(self, path:str) -> None:
+        assert os.path.exists(path), f"File path {os.path.abspath(path)} does not exist"
+        self.path = path
+
+        # Read gcode
+        with open(path, 'r') as gcodefile:
+            gcode = gcodefile.readlines()
+        self.gcode = gcode
+        self.setup_end = next(i for (i, row) in enumerate(self.gcode) if ';LAYER_COUNT' in row)
+        self.unset_start = next(i for i in range(len(self.gcode)-1, 0, -1) if ';TIME_ELAPSED' in self.gcode[i])
+        self.commands = [GcodeCommand(self, command_line=command, id=i) for (i, command) in enumerate(gcode) if len(command.replace('\n', '')) > 0]
+
+    
+    def apply_defects(self, defectset:list[Defect], overlap:bool=False) -> None:
+        """Transform gcode by applying randomly the set of defects. Together with the transformed gcode, it outputs a label in json format indicating the coordinates of each of the synthetized defects.\n
+        Parameters:
+        -----
+        * @param overlap: if false, each command can contain a maximum of 1 defect. If True, more than one defect can happen in each command\n"""
+        
+        # if not overlap: assert if sum is equal or less than 1
+        transformable = [command for command in self.commands if command.is_transformable]
+        total_commands = len(transformable)
+        for defect in defectset:
+            sample = random.sample(transformable, int(defect.incidence_ratio * total_commands))
+            for command in sample:
+                if not overlap:
+                    transformable.remove(command)
+                command = defect.apply(command)
+
+    def save(self, path:str=None) -> None:
+        if path is None:
+            path = self.path.replace('.gcode', '_with_defects.gcode')
+        
+        with open(path, 'w') as fle:
+            for command in self.commands:
+                fle.write(command.format() + '\n')
\ No newline at end of file
diff --git a/addon/geometry.py b/addon/geometry.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bde9c9d503e0b1df86c004c7a7dc2a0f3c475d5
--- /dev/null
+++ b/addon/geometry.py
@@ -0,0 +1,173 @@
+import numpy as np
+import open3d as o3d
+from scipy.spatial import KDTree
+from scipy.spatial.transform import Rotation as R
+import logging
+
+log = logging.getLogger("SmoPa3D")
+
+def apply_revolution(f_of_z, height:int, width:int) -> np.ndarray:
+    """Create a solid by revolutioning a function of z over the z-axis.
+    @param f_of_z: function that returns a float by given z value (in grid units)
+    @param height: length in z of the volume in grid units
+    @param width: length in x and y of the volume in grid units"""
+    if width % 2 == 0: width += 1  # Volume must be uneven
+    max_x = width // 2 + 1
+    solid = np.zeros((height, max_x, width), dtype=int)  # z, y, x
+    for z in range(height):
+        for y in range(max_x):
+            if f_of_z(z) < y:
+                break
+            x_surface = round(np.sqrt(f_of_z(z) ** 2 - y ** 2))
+            x_array = [1 if x < x_surface else 0 for x in range(max_x)]
+            solid[z, y] = np.array([*x_array[::-1], *x_array[1:]])
+    solid = np.hstack((solid[:, ::-1], solid[:, 1:]))
+    return solid
+
+def place_ellipsoid(space:np.ndarray, w:int, l:int, h:int, direction:np.ndarray, center:np.ndarray) -> np.ndarray:
+    """Function to place an ellipsoid in a 3D space
+    @param space: 3D numpy array (environment)
+    @param w: width of the ellipsoid
+    @param l: length of the ellipsoid
+    @param h: height of the ellipsoid
+    @param direction: direction of the ellipsoid
+    @param center: center of the ellipsoid (z, y, x)"""
+
+    # # Create a rotation matrix from the direction vector
+    # enclosed_space = np.zeros((h, max(w, l), max(w, l)))
+    h += 1
+    direction = direction / np.linalg.norm(direction)
+    r  = R.from_euler('z', np.arctan2(direction[1], direction[0]), degrees=False)
+    r = R.from_matrix(r.as_matrix()[::-1,::-1].T)
+
+    # Create a grid of points
+    z,y,x = np.meshgrid(np.arange(space.shape[0]), np.arange(space.shape[1]), np.arange(space.shape[2]), indexing='ij')
+
+    # Get the points relative to the center of the space
+    points = np.vstack((z.ravel(), y.ravel(), x.ravel())) - center.reshape(-1, 1)
+
+    # Rotate the points by the rotation matrix
+    points = r.apply(points.T).T
+
+    # Ellipsoid equation
+    inside = (points[0, :] / h) ** 2 + (points[1, :] / w) ** 2 + (points[2, :] / l) ** 2 < 0.98
+    
+    # Cilinder equation
+    # inside = ((points[0, :] / h) ** 2 + (points[1, :] / w) ** 2 <= 1) * (abs(points[2, :] / l) <= 1)
+
+    # Set the value of the points inside the ellipsoid to 1
+    space.ravel()[inside] = 1
+    return space
+
+def calculate_shell(voxel:np.ndarray) -> np.ndarray:
+    """Remove the inner points of the geometry"""
+    dz, dy, dx = np.gradient(voxel)
+    grads = np.absolute(dz) + np.absolute(dy) + np.absolute(dx)
+    shell = grads * voxel
+    shell = np.where(shell != 0)
+    hull = np.array(shell[::-1]).transpose()
+    return hull
+
+def calculate_mesh(pointcloud:np.ndarray, simplify_factor:int=32, resolution:float=0.02) -> tuple[np.ndarray]:
+    """Calculate and simplify mesh by a given voxel. Returns vertices coordinates and a list of faces, each one given by a list of indexes of the vertices that make part of the face."""
+    basis = KDTree(pointcloud)
+    radius = resolution * (np.sqrt(3)+0.1)
+
+    neighbours_list = basis.query_ball_point(pointcloud, r=radius, p=2, return_length=False)
+    del basis
+
+    gradients = np.zeros((len(pointcloud), 3))
+    for i, neighbours in enumerate(neighbours_list):
+        if len(neighbours) >=27: continue
+        mean = np.mean(pointcloud[neighbours], axis=0)
+        gradients[i] = mean - pointcloud[i]
+        norm = np.linalg.norm(gradients[i])
+        gradients[i] = gradients[i] / norm if norm > 0 else np.zeros(3)
+
+    xyz = np.reshape(pointcloud[gradients.any(1)], (-1, 3))
+    normals = np.reshape(gradients[gradients.any(1)] * -1, (-1, 3))
+    del gradients, pointcloud
+    if len(normals) == 0: return np.zeros((0, 3)), np.zeros((0, 3))
+
+    pcd = o3d.geometry.PointCloud()
+    pcd.points = o3d.utility.Vector3dVector(xyz)
+    pcd.normals = o3d.utility.Vector3dVector(normals)
+
+    mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=9, scale=2, n_threads=1)
+    # vertices_to_remove = densities < np.quantile(densities, 0.01)
+    # mesh.remove_vertices_by_mask(vertices_to_remove)
+
+    # Simplify mesh
+    if simplify_factor > 0:
+        voxel_size = max(mesh.get_max_bound() - mesh.get_min_bound()) / simplify_factor
+        mesh = mesh.simplify_vertex_clustering(
+            voxel_size=voxel_size,
+            contraction=o3d.geometry.SimplificationContraction.Average)
+    vertices = np.asarray(mesh.vertices)
+    faces = np.asarray(mesh.triangles)
+    
+    pcd.clear()
+    mesh.clear()
+    densities.clear()
+    return vertices, faces
+
+def reconstruct_pointcloud_mesh(pointcloud:np.ndarray, simplify_factor:int=32) -> tuple[np.ndarray]:
+    xyz = np.reshape(pointcloud, (-1, 3))
+    pcd = o3d.geometry.PointCloud()
+    pcd.points = o3d.utility.Vector3dVector(xyz)
+    pcd.estimate_normals()
+    last_normals = np.asarray(pcd.normals)
+    pcd.normals = o3d.utility.Vector3dVector(np.absolute(last_normals))
+    radii = [0.16, 0.32]
+    mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_ball_pivoting(
+        pcd, o3d.utility.DoubleVector(radii))
+
+    # Simplify mesh
+    if simplify_factor > 0:
+        voxel_size = max(mesh.get_max_bound() - mesh.get_min_bound()) / simplify_factor
+        mesh = mesh.simplify_vertex_clustering(
+            voxel_size=voxel_size,
+            contraction=o3d.geometry.SimplificationContraction.Average)
+    vertices = np.asarray(mesh.vertices)
+    faces = np.asarray(mesh.triangles)
+    pcd.clear()
+    mesh.clear()
+    return vertices, faces
+
+def shift_array(array:np.ndarray, shift_vector:np.ndarray):
+    if any([shift > array.shape[i] for (i, shift) in enumerate(shift_vector)]): return np.zeros_like(array)
+    H, W, D = array.shape
+    dx, dy, dz = shift_vector
+    dx, dy, dz = int(dx), int(dy), int(dz)
+    augmented_volume = np.zeros((H+abs(dz), W+abs(dy), D+abs(dx)))
+    augmented_volume[max(0, dz):H+max(0, dz), max(0, dy):W+max(0, dy), max(0, dx):D+max(0, dx)] = array
+    shifted_array = augmented_volume[max(0, -dz):H+max(0, -dz), max(0, -dy):W+max(0, -dy), max(0, -dx):D+max(0, -dx)]
+    return shifted_array
+
+def visualize(voxel:np.array) -> None:
+    import matplotlib.pyplot as plt
+    fig = plt.figure()
+    ax = fig.add_subplot(projection='3d')
+
+    x, y, z = calculate_shell(voxel).transpose()
+    ax.scatter3D(x, y, z, c=z, cmap='Greens')
+        
+    ax.set_xlabel('X')
+    ax.set_ylabel('Y')
+    ax.set_zlabel('Z')
+    plt.show()
+
+def width_model(temperature:float, feedrate:float, speed:float) -> float:
+    """Returns the width of the filament in mm for a given temperature, speed and feedrate. Formulation is based on experimental values."""
+    root = np.cbrt(feedrate)
+    return (
+            -1.2411217231463934
+            + 0.004062025031923957 * temperature
+            - 0.0001331731552701792 * speed
+            + 2.984109335460154 * root
+            )
+
+def height_model(area:float, width:float) -> float:
+    """Returns the height of the filament in mm for a given area and width.
+    Calculation based on the area of the ellipse."""
+    return 2 * area / (np.pi * width / 2)
\ No newline at end of file
diff --git a/addon/lls.py b/addon/lls.py
new file mode 100644
index 0000000000000000000000000000000000000000..18fd1ccdcb2fe6930ee602d7f3ef182471361af5
--- /dev/null
+++ b/addon/lls.py
@@ -0,0 +1,156 @@
+from __future__ import annotations
+import bpy
+from mathutils import Vector
+import numpy as np
+import logging
+import itertools
+from tqdm import tqdm
+from tqdm.contrib.itertools import product
+import concurrent.futures
+
+from . import main
+
+log = logging.getLogger('SmoPa3D')
+
+class LaserLineScannerOperator(bpy.types.Operator):
+    bl_idname = "fdm_simulator.scan"
+    bl_label = "Simulate Laser Line Scanner"
+
+    def execute(self, context):
+        pcl = scan(draw=False, x_resolution=0.05, y_resolution=0.05, y_range=[40, 60])
+        np.save("virtual_scan.npy", pcl)
+        return {'FINISHED'}
+
+def scan(
+    x_range: tuple[float, float] = (95.306, 97.306),
+    x_resolution: float = 0.02,
+    y_range: tuple[float, float] = (-10, 10),
+    y_resolution: float = 1,
+    angle_range: tuple[float, float] = (-0.243, 0.243),
+    z: float = 130,
+    draw: bool = False
+    ) -> np.ndarray:
+    """Simulate the laser line scanner. Returns the point cloud of the scan in the format `np.array([[x0, y0, z0], ..., [xn, yn, zn]])`.\n
+    Arguments:
+    @param x_range: The limits of the laser line scanner source in the x axis
+    @param x_resolution: The resolution of the x axis. Resolution of the lls is 0.003 ~ 0.05 mm according to the datasheet
+    @param y_range: The range of the y axis
+    @param y_resolution: The resolution of the y axis. Resolution of the encoder is
+    @param angle_range: The range of the angle of the lls. Default value assessed experimentally
+    @param z: The height of the lls. Default value assessed experimentally
+    @param draw: Whether to draw the beams and the point cloud in the scene
+    """
+    bpy.context.view_layer.update()
+
+    width = 2 * z * np.tan(max(angle_range)) + abs(x_range[1] - x_range[0])
+    x_divisions = round(width / x_resolution)
+    x_range = np.linspace(*x_range, x_divisions)
+    y_range = np.arange(*y_range, y_resolution)
+    angle_range = np.linspace(*angle_range, x_divisions)
+    log.info("Casting beams")
+    beams = [Beam((x, y, z), (angle, 0, -1)) for (x, angle), y in product(zip(x_range, angle_range), y_range)]
+    with concurrent.futures.ThreadPoolExecutor() as executor:
+        executor.map(lambda beam: beam.cast(), beams)
+
+    if draw:
+        log.info("Drawing beams")
+        for beam in tqdm(Beam._instances):
+            beam.draw()
+
+    pointcloud = np.zeros((len(Beam._instances), 3))
+    i = 0
+    for beam in Beam._instances:
+        if beam.is_hit and beam.is_read:
+            pointcloud[i] = beam.hit_position
+            i += 1
+    pointcloud = pointcloud[:i]
+
+    del Beam._instances[:]
+    return pointcloud
+
+class Beam:
+    """Class for handling the beam of the laser line scanner."""
+    id_iter = itertools.count()  # Iterator for assigning unique ids to beams
+    _instances:list[Beam] = []  # List of all instances of this class
+
+    def __init__(self, origin:tuple[float, float, float], direction:tuple[float, float, float]) -> None:
+        self.origin = origin
+        self.direction = direction
+        self.id = next(self.id_iter)
+        self.detector_offset = (0, -65, 0)  # The offset of the detector from the origin of the beam
+        self.detector_position = Vector(self.origin) + Vector(self.detector_offset)
+        Beam._instances.append(self)
+    
+    def __getitem__(self, id:int) -> Beam:
+        return self._instances[id]
+        
+    def cast(self) -> tuple[bool, tuple[float, float, float]]:
+        """Cast the beam and return the result."""
+        reading = bpy.context.scene.ray_cast(bpy.context.view_layer.depsgraph, Vector(self.origin), Vector(self.direction))
+        self.is_hit, self.hit_position, self.hit_normal, self.hit_index, self.hit_object, self.hit_matrix = reading
+        
+        # Check if the beam can be seen by the detector
+        if self.is_hit:
+            detector_direction =  self.detector_position - Vector(self.hit_position)
+            detector_direction.normalize()
+            reading = bpy.context.scene.ray_cast(bpy.context.view_layer.depsgraph, self.hit_position + Vector((0, 0, 0.001)), detector_direction)
+            self.is_read = not reading[0]  # If the beam is blocked by an object
+            if not self.is_read:
+                self.detector_position = reading[1]
+        return reading
+    
+    def draw(self) -> None:
+        """Draw the path of the beam and the point where it hits."""
+        if not self.is_hit: return
+        color = green() if self.is_read else red()
+        if self.is_hit:
+            # Draw an icosphere where the beam hits
+            hit_pointer = reference_icosphere()
+            hit_pointer.location = self.hit_position
+            hit_pointer.active_material = color
+            main.group(hit_pointer, f"Laser beams/{self.id}")
+
+            # Draw the beam path
+            emission_beam = main.add_bezier(self.origin, self.hit_position)
+            emission_curve = emission_beam.data
+            emission_curve.dimensions = '3D'
+            emission_curve.bevel_depth = 0.02
+            emission_curve.bevel_resolution = 3
+            emission_curve.materials.append(color)
+            emission_curve.name = "Beam path"
+            main.group(emission_beam, f"Laser beams/{self.id}")
+            reading_beam = main.add_bezier(self.hit_position, self.detector_position)
+            reading_curve = reading_beam.data
+            reading_curve.dimensions = '3D'
+            reading_curve.bevel_depth = 0.02
+            reading_curve.bevel_resolution = 3
+            reading_curve.materials.append(color)
+            reading_curve.name = "Beam path"
+            main.group(reading_beam, f"Laser beams/{self.id}")
+
+def reference_icosphere() -> bpy.types.Object:
+    """Create a reference icosphere and return it."""
+    if "Reference Icosphere" in bpy.data.objects:
+        icosphere = bpy.data.objects["Reference Icosphere"]
+        icosphere = icosphere.copy()
+        return icosphere
+    bpy.ops.mesh.primitive_ico_sphere_add(radius=0.02, enter_editmode=False, location=(0, 0, 0))
+    icosphere = bpy.context.object
+    icosphere.data.name = "Reference Icosphere"
+    try:
+        bpy.context.scene.collection.children["Collection"].objects.unlink(icosphere)
+    except:
+        pass
+
+    icosphere = icosphere.copy()
+    return icosphere
+
+def red():
+    material = bpy.data.materials.new("Red")
+    material.diffuse_color = (1, 0, 0, 1)
+    return material
+
+def green():
+    material = bpy.data.materials.new("Green")
+    material.diffuse_color = (0, 1, 0, 1)
+    return material
\ No newline at end of file
diff --git a/addon/metrics.py b/addon/metrics.py
new file mode 100644
index 0000000000000000000000000000000000000000..8305d6ae79a0c88405ba51afd188377764fa5414
--- /dev/null
+++ b/addon/metrics.py
@@ -0,0 +1,226 @@
+import os
+import open3d as o3d
+import numpy as np
+from scipy.spatial import KDTree
+from scipy.spatial.transform import Rotation as R
+import matplotlib.pyplot as plt
+import seaborn as sns
+from tqdm.contrib.itertools import product
+sns.set()
+
+from .pointcloud_processing.process_pointclouds import layerize_pointclouds
+from .pointcloud_processing.calibration import prepare_dataset, execute_global_registration, draw_registration_result
+
+def get_samples(translation:np.ndarray=np.array((0, 0, 0)), rotation:float=30, plot: bool = True):
+    square = np.zeros((10, 10))
+    square[3:7, 3:7] = 1
+    straight = np.array(np.where(square == 1))
+    straight = np.vstack((straight, np.zeros((1, len(straight[0])))))
+
+    rotation_matrix = R.as_matrix(R.from_euler('z', rotation, degrees=True))
+    transformed = (rotation_matrix @ straight)
+    transformed = transformed + translation.reshape(3, 1)
+
+    if plot:
+        plot_squares(straight, transformed)
+
+    return straight.T, transformed.T
+
+def get_one_missplaced(deviation:np.ndarray=np.array([-1, 0, 0]), deviation_index:tuple[float, float, float]=[0, 0, 0], plot:bool=True):
+    straight, transformed = get_samples(rotation=0, plot=False)
+    transformed[deviation_index] += deviation
+    if plot:
+        plot_squares(straight, transformed)
+    return straight, transformed
+
+def plot_squares(pcd1:np.ndarray, pcd2:np.ndarray):
+    plt.plot(pcd1[:, 0], pcd1[:, 1], 'o')
+    plt.plot(pcd2[:, 0], pcd2[:, 1], 'o')
+    plt.legend(['straight', 'transformed'])
+
+
+def plot3d(pcls:list[np.ndarray], alpha:float=0.4, size_multiplier:float=1, figsize:tuple[int]=(10, 10)) -> plt.Figure:
+    """Plots a list of point clouds in 3D"""
+    fig = plt.figure(figsize=figsize)
+    fig.tight_layout()
+    ax = fig.add_subplot(projection='3d')
+    if not isinstance(pcls, list):
+        pcls = [pcls]
+    try:
+        s = size_multiplier * 0.06/(pcls[0][:, 0].max()-pcls[0][:, 0].min())
+    except:
+        s = size_multiplier * 0.06
+    for pcl in pcls:
+        if len(pcl) == 0:
+            continue
+        x, y, z = pcl[:, 0], pcl[:, 1], pcl[:, 2]
+        ax.set_box_aspect((np.ptp(x), np.ptp(y), np.ptp(z)))
+        ax.scatter(x, y, z, s=s, marker='o', alpha=alpha)
+        ax.set_xlabel('X')
+        ax.set_ylabel('Y')
+        ax.set_zlabel('Z')
+    return fig
+
+def RMSE(reference:np.ndarray, target:np.ndarray, workers:int=-1) -> float:
+    octree = KDTree(reference)
+    distances, indices = octree.query(target, k=1, p=2, workers=workers)
+    rmse = np.sqrt(np.mean(distances**2))
+    return rmse
+
+def calculate_accuracy(reference:np.ndarray, target:np.ndarray, threshold:float, workers:int=-1) -> tuple[float, np.ndarray]:
+    """Calculates the accuracy of the target point cloud compared to the reference point cloud.
+    If reference and target are swept, metric is called 'completeness'.
+    Returns the accuracy and the indices of the inaccurate points, i.e. the points of target that do not match any of the reference."""
+    octree = KDTree(reference)
+    distances, indices = octree.query(target, k=1, distance_upper_bound=threshold, p=2, workers=workers)
+    accuracy = np.array(distances <= threshold, dtype=int).sum() / len(distances)
+    return accuracy, np.array(range(len(target)))[distances > threshold]
+
+def f1_score(reference:np.ndarray, target:np.ndarray, threshold:float, workers:int=-1, plot_results:bool=False) -> tuple[float, np.ndarray, np.ndarray]:
+    """Calculates the F1 score between two pointclouds. Reference and target are interchangeable.
+    Returns the score, the indices of the inaccurate points of the reference and the indices of the uncomplete points of the target."""
+    accuracy, inaccurate_ids = calculate_accuracy(reference, target, threshold, workers=workers)
+    completeness, uncomplete_ids = calculate_accuracy(target, reference, threshold, workers=workers)
+    score = 2 * (accuracy * completeness) / (accuracy + completeness)
+    if plot_results:
+        inaccurate = target[inaccurate_ids]
+        accurate = target[np.setdiff1d(np.arange(len(target)), inaccurate_ids)]
+        uncomplete = reference[uncomplete_ids]
+        complete = reference[np.setdiff1d(np.arange(len(reference)), uncomplete_ids)]
+        matched = np.concatenate([accurate, complete], axis=0)
+        plot3d([matched, inaccurate, uncomplete])
+    return score, inaccurate_ids, uncomplete_ids
+
+def EMD(reference:np.ndarray, target:np.ndarray, workers:int=-1) -> float:
+    octree = KDTree(target)
+    distances, indices = octree.query(reference, k=1, p=2, workers=workers)
+    return distances.sum()
+
+def average_squared_distance(reference:np.ndarray, target:np.ndarray, neighbours:int=1, workers:int=-1) -> np.ndarray:
+    """Calculates the average squared distance to neighbours of all target's points to the reference"""
+    octree = KDTree(reference)
+    distances, indices = octree.query(target, k=neighbours, p=2, workers=workers)
+    return distances**2 / neighbours
+
+def k_chamf(reference:np.ndarray, target:np.ndarray, neighbours:int=1, workers:float=-1) -> float:
+    """Calculates the k-Nearest Chamfer distance between two point clouds. Reference and target are interchangeable."""
+    first_term = average_squared_distance(reference, target, neighbours, workers=workers)
+    first_term = np.mean(first_term)
+    second_term = average_squared_distance(target, reference, neighbours, workers=workers)
+    second_term = np.mean(second_term)
+    return first_term + second_term
+
+def load_pointcloud(path:str, bed_path:str, roi:list[list[float]]=[[None, None], [None, None], [None, None]], intensity_threshold:int=60, plot:bool=True) -> np.ndarray:
+    """Load the pointcloud from npy file, and layerize it by comparing with its bed.
+    @param path: the path to the npy file of the measurement point cloud
+    @param bed: the path to the npy file of the bed point cloud
+    @param roi: region that will be used. The rest of the part is cut off. Leave it as `None` not to define a limit.
+    Format: [[x0, x1], [y0, y1], [z0, z1]]
+    @param intensity_threshold: the threshold of the intensity of the point cloud. Points with intensity below this threshold will be removed.
+    @param plot: plot the point cloud using matplotlib if requested"""
+    pcl =  np.load(path)
+    bed = np.load(bed_path)[:, :3]
+
+    pcl = pcl[pcl[:, 3] > intensity_threshold]
+    pcl = pcl[:, :3]
+    _, pcl = layerize_pointclouds([bed, pcl])  # Layerize pointclouds
+    pcl[:, 2] = -pcl[:, 2] + max(pcl[:, 2])  # Invert z axis
+    pcl = pcl[pcl[:, 2] < 100]  # Removing outliers
+    for i in range(3):
+        if roi[i][0]is not None: pcl = pcl[:, i] > roi[i][0]
+        if roi[i][1]is not None: pcl = pcl[:, i] < roi[i][1]
+
+    if plot:
+        plot3d(pcl)
+    
+    return pcl
+
+def icp(source:np.ndarray, target:np.ndarray, voxel_size:float=0.5) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
+    """Performs Iteractive Closest Point registration on two point clouds.
+    The source point cloud is transformed to match the target point cloud.
+    Returns the transformed source point cloud, the target point cloud and the transformation matrix.
+    """
+    threshold = voxel_size * 0.4
+
+    pcd1 = o3d.geometry.PointCloud()
+    pcd1.points = o3d.utility.Vector3dVector(np.reshape(source, (-1, 3)))
+    pcd2 = o3d.geometry.PointCloud()
+    pcd2.points = o3d.utility.Vector3dVector(np.reshape(target, (-1, 3)))
+
+    source_pcl, target_pcl, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size, source=pcd1, target=pcd2)
+    result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size)
+
+    result_icp = o3d.pipelines.registration.registration_icp(
+        source_pcl, target_pcl, threshold, result_ransac.transformation,
+        o3d.pipelines.registration.TransformationEstimationPointToPoint(),
+        o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=5000))
+    
+    transformation = result_icp.transformation
+    return apply_transformation(source, transformation), target, transformation
+
+def apply_transformation(source:np.ndarray, transformation:np.ndarray) -> np.ndarray:
+    """Applies a transformation matrix to a point cloud"""
+    source = np.hstack((source, np.ones((len(source), 1))))
+    source = transformation @ source.T
+    source = source.T
+    return source[:, :3]
+
+def remove_noise(pointcloud:np.ndarray, threshold:float=0.5, workers:int=-1) -> np.ndarray:
+    """Removes noise from a point cloud. Returns the pointcloud without noise and log the deletion ratio, i.e. the percentage of points that were removed."""
+    basis = KDTree(pointcloud)
+    distances, indices = basis.query(pointcloud, k=[2], p=2, distance_upper_bound=threshold, workers=workers)
+    not_noise = distances[:, 0] < threshold
+    remove_ratio = 1-not_noise.sum()/len(pointcloud)
+    print(f"Removed {remove_ratio*100:.2f}% of the pointcloud")
+    return pointcloud[not_noise]
+
+def load_dataset(path="../data/metrics/measurements") -> list[tuple[str, str]]:
+    files = []
+    for filename in os.listdir(path):
+        if not filename.endswith(".npy") or filename.startswith("bed") or int(filename.split(".")[0][-1]) > 1:
+            continue
+        run = filename.split("_")[1]
+        bed = os.path.join(path, f"bed_before_printing_{run}_0.npy")
+        files.append((bed, os.path.join(path, filename)))
+    return files
+
+def evaluate_metrics(dataset:list[tuple[str, str]], results_path:str="../data/metrics/results") -> None:
+    """Evaluates the metrics on a dataset of point clouds."""
+    os.makedirs(results_path, exist_ok=True)
+    with open(os.path.join(results_path, "results.csv"), "w") as f:
+        f.write("target,source,rmse,f1,emd,chamfer\n")
+    for s, t in product(dataset, dataset):
+        s_file = os.path.split(s[1])[-1]
+        t_file = os.path.split(t[1])[-1]
+        if s == t:
+            continue
+        elif 'printing_0' in s_file or 'printing_0' in t_file:  # Ignore the first measurement
+            continue
+        elif 'measurement' not in s_file and 'measurement' not in t_file:  # Only compare scenarios to as-is
+            continue
+
+        source = load_pointcloud(s[1], s[0], plot=False)
+        target = load_pointcloud(t[1], t[0], plot=False)
+
+        source = remove_noise(source, 0.2)
+        target = remove_noise(target, 0.2)
+
+        source, _, _ = icp(source, target)
+        
+        rmse = RMSE(source, target)
+        f1, _, _ = f1_score(source, target, 0.15, plot_results=False)
+        emd = EMD(source, target)
+        chamfer = k_chamf(source, target)
+
+        with open(os.path.join(results_path, "results.csv"), "a") as f:
+            f.write(",".join((
+                os.path.split(t[1])[-1],
+                os.path.split(s[1])[-1],
+                str(round(rmse, 4)),
+                str(round(f1, 4)),
+                str(round(emd, 4)),
+                str(round(chamfer, 4))
+                )))
+            f.write("\n")
+
+        del source, target
\ No newline at end of file
diff --git a/addon/network.py b/addon/network.py
new file mode 100644
index 0000000000000000000000000000000000000000..627aca4132807db07da6f52fc91a8de7d6c900d9
--- /dev/null
+++ b/addon/network.py
@@ -0,0 +1,136 @@
+import os
+import pickle
+import numpy as np
+from scipy.spatial import KDTree
+from tqdm import tqdm
+from concurrent.futures import ThreadPoolExecutor as Pool
+import logging
+log = logging.getLogger("SmoPa3D")
+
+from .gcode.parser import Gcode
+from .node import Node, Environment
+from .command import Command, Layer, calculate_command_mesh
+from .decorators import runtime, track
+
+class Network:
+    """Class to create and manage Nodes from the given gcode
+    @param gcode_path: path to the gcode file
+    @param resolution: the concentration of the pointcloud per mm
+    @param node_size: the lenght, in mm, of the pointcloud around the node
+    @param filament_thickness: the diameter, in mm, of the filament used in the printing simulation
+    """
+    def __init__(self, gcode_path:str, resolution:float, node_size:float, node_distance:float=0.2, extrusion_multiplier:float=1, saving_path:str='data/simulation/pickle') -> None:
+        log.info('Creating network...')
+        self.saving_path = saving_path
+        os.makedirs(self.saving_path, exist_ok=True)
+
+        self.gcode = Gcode(path=gcode_path)
+        self.env = Environment(resolution=resolution, node_size=node_size)
+        self.node_distance = node_distance
+        self.extrusion_multiplier = extrusion_multiplier
+        self.nodes:list[Node] = []
+        self.commands:dict[int, Command] = {}
+        self.layers:dict[float, Layer] = {}
+        self.coords:list[tuple[float, float, float]] = []
+
+        # Get layer height from gcode
+        self.layer_height = None
+        for command in self.gcode.gcode[:self.gcode.setup_end]:
+            if ';Layer height: ' in command:
+                self.layer_height = float(command.split(';Layer height: ')[1])
+                break
+        if self.layer_height is None:
+            log.warning('Layer height not found in gcode. Using 0.2 mm as default')
+            self.layer_height = 0.2
+
+        self.create_network()
+
+    @runtime
+    def create_network(self) -> None:
+        """Create the nodes from the gcode commands"""
+        empty_commands = 0
+        for (command_id, gcode_command) in enumerate(self.gcode.commands):
+            if gcode_command.m == 109:  # Set extruder temperature
+                self.temperature = gcode_command.s
+            if not gcode_command.is_transformable: continue  # Only considers commands that extrude filament
+
+            # Create command and nodes
+            command = Command(self, gcode_command, id=command_id)
+            if command.qtd_nodes == 0:
+                if empty_commands < 15: log.warning(f'Command {command.id} has no nodes')
+                empty_commands += 1
+                continue
+
+            self.tree = KDTree(self.coords)
+        log.warning(f'{empty_commands} ({empty_commands/len(self.commands)*100:.2f}%) commands have no nodes, and will not be simulated')
+
+    def get_layer(self, z:float) -> Layer:
+        """Get the layer of the given z coordinate"""
+        if z not in self.layers:
+            self.layers[z] = Layer(self, z)
+        return self.layers[z]
+
+    @runtime
+    def simulate_printer(self, node_limit:int=-1, workers:int=-1, optmize_memory:bool=True) -> None:
+        """Run the calculations of each node
+        @param node_limit: limit the number of nodes to be calculated. If -1, all nodes will be calculated
+        @param workers: number of processes to be used in the calculation. If -1, all available cores will be used
+        @param optmize_memory: if True, the nodes will be saved after each iteration, and the previous layers will be deleted from memory"""
+        log.info('Simulating printer...')
+
+        current_layer = self.nodes[0].layer
+        for (i, node) in enumerate(tqdm(self.nodes[:node_limit])):
+            obstacles = self.calculate_obstacles(node, workers=workers)
+            node.iterate_volume(obstacles)
+            node.save()
+            
+            if node.layer != current_layer:
+                if optmize_memory:
+                    threshold_in_use = node.layer.z - self.layer_height * 3  # Delete layers that are not in the search radius of the calculate_obstacles function
+                    layers_to_wipe = [layer for layer in self.layers.values() if layer.z < threshold_in_use]
+                    for layer in layers_to_wipe:
+                        layer.wipe_memory()
+                current_layer = node.layer
+
+    @track
+    def calculate_obstacles(self, node:Node, workers:int) -> np.ndarray:
+        search_radius = self.env.node_size / np.sqrt(3)
+        query = self.tree.query_ball_point(node.coord, search_radius, p=2, workers=workers)
+        # Restrict teh search in the z axis to range between the node and 2 layers below
+        neighbours = [self.nodes[x] for x in query if self.nodes[x].z >= node.z - 2 * self.layer_height and self.nodes[x].z <= node.z]
+        return node.obstacles(neighbour_nodes=neighbours)  # TODO: processes = workers
+
+    def calculate_meshes(self, processes:int=None) -> None:
+        """Calculate the meshes of each command. Pass processes as 0 not to use multiprocessing"""
+        log.info('Calculating meshes...')
+        if processes == 0:
+            for command in tqdm(self.commands.values()):
+                command.vertices_filepath, command.faces_filepath = calculate_command_mesh(command)
+        else:
+            with Pool(processes) as pool:
+                meshes = list(tqdm(pool.map(calculate_command_mesh, (list(self.commands.values()))), total=len(self.commands)))
+            
+            log.info('Assigning meshes to commands...')
+            for command, (vertices_path, faces_path) in zip(self.commands.values(), meshes):
+                command.vertices_filepath = vertices_path
+                command.faces_filepath = faces_path
+
+
+    def save(self, filename:str="network") -> None:
+        """Save the network in a pickle file"""
+        if filename[-4:] != ".pkl": filename += ".pkl"
+        try:
+            with open(os.path.join(self.saving_path, filename), "wb") as fle:
+                pickle.dump(self, fle)
+            log.info(f'Network saved in {os.path.join(self.saving_path, filename)}')
+        except Exception as e:
+            log.warning(f'Could not save network due to {e}')
+
+def load_network(path:str="data/simulation/pickle/network.pkl") -> Network:
+    """Load the network from a pickle file"""
+    with open(path, "rb") as fle:
+        return pickle.load(fle)
+
+if __name__ == '__main__':
+    net = Network('test/sample.gcode', 0.01, 2)
+    net.simulate_printer()
\ No newline at end of file
diff --git a/addon/node.py b/addon/node.py
new file mode 100644
index 0000000000000000000000000000000000000000..4734c7c8f64be53552620a5f850eb81a04386dc6
--- /dev/null
+++ b/addon/node.py
@@ -0,0 +1,266 @@
+from __future__ import annotations
+from typing import TYPE_CHECKING
+if TYPE_CHECKING:
+    from .network import Network
+    from .command import Command, Layer
+
+from dataclasses import dataclass
+import os
+import numpy as np
+import logging
+from concurrent.futures import ThreadPoolExecutor as Pool
+from functools import partial
+
+from . import geometry as geo
+
+log = logging.getLogger('SmoPa3D')
+
+@dataclass
+class Environment:
+    resolution: float  # Size, in mm, of the edge of the cubic grid unit
+    node_size: float  # Size, in mm, of the edge of the cubic volume around the node
+    # Node grid size must be uneven
+
+    def __post_init__(self) -> None:
+        # Create the volume
+        self.node_grid_size = round(self.node_size / self.resolution)
+        if self.node_grid_size % 2 == 0: self.node_grid_size += 1  # Node grid size must be uneven
+        self.volume = np.zeros((self.node_grid_size, self.node_grid_size, self.node_grid_size))
+        self.calculate_nozzle()
+
+    def calculate_nozzle(self, D:float=0.4, angle:float=0.716, height:float=2.5) -> np.array:
+        """Create the 3D model of the nozzle in the environment grid.
+        ----
+        Arguments
+        ----
+        @param D: Diameter of nozzle, in mm
+        @param angle: angle of the trunk of cone of the nozzle, in rad"""
+        z0 = self.node_grid_size // 2  # Tip of the nozzle is always the center of the volume
+        height = height / self.resolution
+        radius = D / (2 * self.resolution) 
+        B = 1 / np.tan(angle)
+        A = radius - z0 * B
+        final_diameter = A + (height + z0) * B
+
+        def nozzle_2d(z:int) -> float:
+            """Build the nozzle in 2D.
+            @param z: coordinate in grid units"""
+            if z < z0:
+                return 0
+            elif z < z0 + height:
+                return A + z * B
+            else:
+                return final_diameter
+        
+        revolutionized = geo.apply_revolution(nozzle_2d, self.node_grid_size, self.node_grid_size).astype(int)
+        self.nozzle = np.where(revolutionized > 0)
+        self.nozzle = np.array(self.nozzle[::-1]).transpose()
+        return self.nozzle
+
+    def bed(self, node_z:float) -> np.array:
+        """Create the 3D model of the printing bed in the environment grid placing the bed according to the
+        position in z of the node.
+        ----
+        Arguments
+        ----
+        @param node_z: position, in mm, between the bottom of the nozzle  in the node (that corresponds to the
+        top of the printed filament)"""
+        z0 = self.node_grid_size//2 - 1 - round(node_z/self.resolution)
+        bed = np.zeros_like(self.volume)
+        if z0 > 0:
+            bed[:z0] = 1
+        return bed
+
+class Node:
+    def __init__(self, network:Network, command:Command, layer:Layer, x:float, y:float, z:float, filament_volume:float) -> None:
+        """@param index: index of the node in the network
+        @param x: Coordinate position of the center of the node
+        @param y: Coordinate position of the center of the node
+        @param z: Coordinate position of the center of the node
+        @param filament_volume: Volume, in mm^3, of the filament deposited in the node"""
+        self.network = network
+        self.command = command
+        self.x = x
+        self.y = y
+        self.z = z
+        self.filament_volume = filament_volume
+        self._placed_filament = None  # Voxel reprensenting the volume occupied by the node. It is None until iterate_volume() is computed
+        self._pointcloud = None  # Pointcloud of the filament, in (x, y, z) coordinates. It is None until iterate_volume() is computed
+        self.active:bool = True  # Set as False when the node is saved and wiped from memory
+        self.simulated:bool = False  # Set as True when the node is simulated
+
+        # Update Network to include this node
+        self.network.nodes.append(self)
+        self.index = len(self.network.nodes) - 1
+        self.network.coords.append((self.x, self.y, self.z))
+        
+        # Update Command to include this node
+        self.command.nodes.append(self)
+
+        # Update Layer to include this node
+        self.layer = layer
+        self.layer.nodes.append(self)
+
+    @property
+    def coord(self) -> np.ndarray:
+        """(x, y, z)"""
+        return np.array((self.x, self.y, self.z))
+
+    def __repr__(self) -> str:
+        return f"({self.x}, {self.y}, {self.z})"
+
+    def save(self) -> None:
+        """Save the node data in npy files"""
+        if self.active:
+            self.saving_path = os.path.join(self.network.saving_path, 'nodes', f'{self.index}')
+            os.makedirs(self.saving_path, exist_ok=True)
+            np.save(os.path.join(self.saving_path, 'placed_filament.npy'), self.placed_filament)
+            np.save(os.path.join(self.saving_path, 'pointcloud.npy'), self.pointcloud)
+        else:
+            log.warn('Node is already inactive. Cannot save it.')
+    
+    def load(self) -> None:
+        """Load the node from the npy files"""
+        if self.saving_path is None:
+            log.warning('Node was not saved before or saving path could not be found. Cannot load it.')
+            return
+        
+        self._placed_filament = np.load(os.path.join(self.saving_path, 'placed_filament.npy'), allow_pickle=True)
+        self._pointcloud = np.load(os.path.join(self.saving_path, 'pointcloud.npy'), allow_pickle=True)
+    
+    def wipe(self) -> None:
+        """Delete the node from the memory, but keeps it in the network to be loaded back again if necessary"""
+        if not self.active: return
+        del self._placed_filament
+        del self._pointcloud
+        self.active = False
+
+    @property
+    def placed_filament(self) -> np.ndarray:
+        """Voxel reprensenting the volume occupied by the node. If node is inactive, load it from the npy files"""
+        if not self.active:
+            self.load()
+        return self._placed_filament
+    
+    @property
+    def pointcloud(self) -> np.ndarray:
+        """Pointcloud of the filament, in (x, y, z) coordinates. If node is inactive, load it from the npy files"""
+        if not self.active:
+            self.load()
+        return self._pointcloud
+    
+    def backpropagate_feedrate(self, volume:float=None, constant:float=0.0025726112346777796, feedrate_multiplier:float=1.812969202377806) -> float:
+        """Calculate the feedrate that would be necessary to deposit the given volume of filament
+        @param volume: filament volume, in mm^3
+        @param constant: constant value to calculate the area of the profile. Value retrieved experimentally
+        @param feedrate_multiplier: multiplier value to calculate the area of the profile. Value retrieved experimentally"""
+        area = volume / self.command.trajectory_length * self.command.qtd_nodes / self.network.extrusion_multiplier
+        return (area - constant) / feedrate_multiplier
+        # return volume / (self.command.trajectory_length / self.command.qtd_nodes * np.pi * 1.75 ** 2 / 4 * self.network.extrusion_multiplier)
+    
+    def draw_revolutionized_profile(self, ground:int, volume:float=None) -> np.ndarray:
+        """Draw a drop of the profile with the given volume.
+        @param ground: z coordinate of the ground level
+        @param volume: filament volume, in mm^3"""
+        if volume is None:
+            volume = self.filament_volume
+        volume_multiplier = volume / self.filament_volume
+
+        self.applied_feedrate = self.backpropagate_feedrate(volume)
+        self.width = geo.width_model(self.network.temperature, self.applied_feedrate, self.command.speed)
+        self.length = 1.5 * np.cbrt(volume_multiplier) * self.command.trajectory_length / self.command.qtd_nodes
+        self.height = 6 *  volume / (np.pi * self.width * self.length)
+
+        h = round(self.height / self.network.env.resolution / 2)
+        w = round(self.width / self.network.env.resolution / 2)
+        l = round(self.length / self.network.env.resolution / 2)
+        grid = self.network.env.volume.copy()
+        if any(np.array(grid.shape) < np.array((w, l, h))):
+            log.warning(f'Node size is too small for node {self.index}. It was cut to fit in the simulation.')
+        center = np.array(grid.shape)//2 - 1
+        # if self.height > self.network.layer_height:
+        #     center[0] = ground + (center[0] - ground)//2
+        # else:
+        # center[0] = ground + h
+        center[0] = center[0] - round(self.network.layer_height / self.network.env.resolution / 2)
+        geo.place_ellipsoid(grid, w, l, h, self.command.end - self.command.start, center=center)
+        return grid
+    
+    def iterate_volume(self, obstacles:np.ndarray, increment_offset:float=0.1, precision:float=0.1, max_iterations:int=30) -> np.ndarray:
+        """Calculates the volume that results from the intersection between the deposited filament of the node
+        and the environment given by obstacles. Then expands the volume by the interference plus an increment_offset
+        and calculates the volume interference again, until the interference volume reaches a value as low as the
+        precision, or it gets to the max iterations.
+        @param obstacles: an array representing the interacting environment, given by the obstacles method
+        @param increment_offset: the extra volume, in percentage, that is increased during each iteration
+        to get faster to the result
+        @param precision: the acceptable error, in percentage, between the nominal_volume and the actual volume got from the iterations
+        @param max_iterations: the maximum size of the loop that is conducted to get to the final volume"""
+        
+        precision = self.filament_volume * precision  # Convert the units to mm^3
+
+        virtual_volume = self.filament_volume  # In the end of the iterations: virtual volume = self.filament_volume + intersection_volume
+        # ground_level = np.where(obstacles[:obstacles.shape[0]//2, obstacles.shape[1]//2, obstacles.shape[2]//2])[0].max()  # Get the ground level of the obstacles
+        for it in range(max_iterations):
+            if virtual_volume < 0:
+                log.warning(f'Negative filament volume in node {self.index}. It is ignored in the simulation.')
+                virtual_volume = 0
+                return None
+            drawn_profile = self.draw_revolutionized_profile(ground=0, volume=virtual_volume)
+            molded_profile = 1*((drawn_profile - obstacles) > 0)
+            molded_volume = molded_profile.sum() * self.network.env.resolution**3
+            diff = self.filament_volume - molded_volume
+
+            if abs(diff) <= precision:
+                break
+            else:
+                virtual_volume += diff * (1 + increment_offset)
+                if it == max_iterations - 1:
+                    log.warning(f'Node {self.index} did not converge. Difference of {diff*10**6:.0f} μm^3 ({(diff/self.filament_volume)*100:.2f}% difference) between nominal and actual volume.')
+        self._placed_filament = molded_profile.astype(int)
+        self._pointcloud = np.where(self._placed_filament > 0)
+        self._pointcloud = np.array(self._pointcloud[::-1]).transpose()
+        self.simulated = True
+        return self._placed_filament
+
+    def obstacles(self, neighbour_nodes:list[Node], processes:int=None) -> np.ndarray:
+        """Places all obstacles in the grid, including the nozzle, the bed (if applicable) and the adjacent nodes that already have
+        their volumes calculated.
+        @param neighbour_nodes: list of Node objects that must be considered in the surroundings of the node"""
+        if processes is not None and processes == 0:
+            neighbours_pts = np.empty((0, 3))
+            for nbr in neighbour_nodes:
+                neighbours_pts = np.concatenate([neighbours_pts, place_obstacle(self, nbr)])
+        else:
+            with Pool(max_workers=processes) as pool:
+                self_place_obstacle = partial(place_obstacle, self)
+                neighbours_pts = np.concatenate(list(pool.map(self_place_obstacle, neighbour_nodes)))
+        filter_in_boundaries = np.all((neighbours_pts >= 0) & (neighbours_pts < self.network.env.node_grid_size), axis=1)
+        neighbours = assign_values(self.network.env.volume.copy(), neighbours_pts[filter_in_boundaries])
+        return (self.network.env.bed(self.z) + neighbours) > 0
+
+def place_obstacle(main_node:Node, obstacle_node:Node) -> np.ndarray:
+    neighbours_pts = np.empty((0, 3))
+    shift_vector = np.around((obstacle_node.coord - main_node.coord)/main_node.network.env.resolution)
+    if any(np.abs(shift_vector) > main_node.network.env.node_grid_size): return np.empty((0, 3))  # Ignore nodes that are too far away (more than the node grid size)
+    if obstacle_node.z == main_node.z and (obstacle_node in main_node.command.nodes or obstacle_node.placed_filament is None):  # Add the nozzle of the next and last nodes even if they have not been placed yet
+        new_neighbour = obstacle_node.network.env.nozzle + shift_vector
+        neighbours_pts = np.concatenate([neighbours_pts, new_neighbour])
+    if not obstacle_node.placed_filament is None:  # if the filament has been placed, add it to the neighbours_pts
+        new_neighbour = obstacle_node.pointcloud + shift_vector
+        neighbours_pts = np.concatenate([neighbours_pts, new_neighbour])
+    return neighbours_pts
+
+def assign_values(volume, neighbours_pts) -> np.ndarray:
+    """Assigns 1 to the neighbours_pts in the volume array.\n
+    Works exactly as `volume[neighbours_pts] = 1` but more efficient."""
+    ravel = np.ravel_multi_index(neighbours_pts[:, [2, 1, 0]].astype(int).T, volume.shape)
+    np.put(volume, ravel, 1)
+    return volume
+
+def join_nodes(main_node:Node, obstacle_node:Node):
+    """Join the pointclouds of two nodes, placing the obstacle_node in the position relative to the main_node"""
+    if obstacle_node.placed_filament is None: return np.empty((0, 3))
+    shift_vector = np.around((obstacle_node.coord - main_node.coord)/main_node.network.env.resolution)
+    new_neighbour = obstacle_node.pointcloud + shift_vector
+    return new_neighbour
\ No newline at end of file
diff --git a/addon/pointcloud.py b/addon/pointcloud.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b99fb7629e11589921b24e2f8f307413fe3011b
--- /dev/null
+++ b/addon/pointcloud.py
@@ -0,0 +1,64 @@
+import random
+import numpy as np
+from .utils import running_in_blender
+if running_in_blender:
+    import bpy
+    import bmesh
+
+
+class PointCloud:
+    """Class for handling pointclouds."""
+    def __init__(self, path:str) -> None:
+        self.pcl:np.ndarray = np.load(path)
+        self.correct_z_axis()
+
+    def correct_z_axis(self) -> float:
+        """Invert z axis, then get the height of the bed from the pointcloud and move pointcloud so that the bed is at z=0."""
+        self.pcl[:, 2] = -self.pcl[:, 2]
+        z_values = self.pcl[:, 2].copy()
+        z_values.sort()
+        mode = z_values[int(len(z_values)*0.4):int(len(z_values)*0.6)]
+        bed_z = mode.mean() - 5* mode.std()
+
+        self.pcl[:, 2] = self.pcl[:, 2] - bed_z
+        return bed_z
+
+    def crop_ROI(self, x:tuple[float, float]=(None, None), y:tuple[float, float]=(None, None), z:tuple[float, float]=(None, None)) -> np.ndarray:
+        """Crop the pointcloud to the region of interest."""
+        if x[0] is not None: self.pcl = self.pcl[self.pcl[:, 0] > x[0]]
+        if x[1] is not None: self.pcl = self.pcl[self.pcl[:, 0] < x[1]]
+        if y[0] is not None: self.pcl = self.pcl[self.pcl[:, 1] > y[0]]
+        if y[1] is not None: self.pcl = self.pcl[self.pcl[:, 1] < y[1]]
+        if z[0] is not None: self.pcl = self.pcl[self.pcl[:, 2] > z[0]]
+        if z[1] is not None: self.pcl = self.pcl[self.pcl[:, 2] < z[1]]
+        return self.pcl
+
+    def downsample(self, select_rate:float=0.05) -> np.ndarray:
+        # Decrease amount of points
+        sample = random.sample(range(len(self.pcl)), int(len(self.pcl) * select_rate))
+        self.pcl = self.pcl[sample]
+        return self.pcl
+    
+    def place_pointcloud(self, name:str, parent:bpy.types.Object, move:tuple[float, float, float]=None) -> bpy.types.Object:
+        """Plot pointcloud given by x, y and z data in blender as points"""
+        mesh_data = bpy.data.meshes.new(name)
+        bm = bmesh.new()
+
+        for v in self.pcl[:, :3]:
+            bm.verts.new(v)
+        
+        bm.to_mesh(mesh_data)
+        mesh_obj = bpy.data.objects.new(mesh_data.name, mesh_data)
+
+        parent.parent = mesh_obj
+        parent.parent_type = 'OBJECT'
+
+        # Move pointcloud
+        if move is not None:
+            mesh_obj.location = move
+
+        # Visuals
+        mesh_obj.display.show_shadows = False
+        mesh_obj.show_all_edges = False
+        mesh_obj.show_instancer_for_viewport = False
+        return mesh_obj
\ No newline at end of file
diff --git a/addon/pointcloud_processing/PCL.py b/addon/pointcloud_processing/PCL.py
new file mode 100644
index 0000000000000000000000000000000000000000..8ae7147ba3f5c6ed885e25d98f0bba8acc66368f
--- /dev/null
+++ b/addon/pointcloud_processing/PCL.py
@@ -0,0 +1,756 @@
+import logging
+from pprint import pformat
+import math
+import numpy as np
+import numpy.matlib
+import matplotlib.pyplot as plt
+from matplotlib import cm
+from scipy.linalg import expm, norm
+import scipy.stats as stats
+import os
+import plotly.graph_objs as go
+from .utils import bundle_adjust
+import peakutils as peakutils
+from skimage.transform import (hough_line, hough_line_peaks)
+from skimage.feature import canny
+from skimage.morphology import opening, closing
+from sklearn.cluster import KMeans
+import open3d as o3d
+
+# TODO: recycle this code into a helpers module or class
+
+log = logging.getLogger('SmoPa3D')
+
+def histogram1d(data, bins='auto'):
+    n, bins, patches = plt.hist(data, bins, facecolor='blue', alpha=0.5, density=True)
+    return n, bins, patches
+
+
+def segmentation(heatmap, threshold):
+    return np.where(heatmap > threshold, 1.0, 0.0)
+
+
+def to_grayscale(heatmap):
+    maxGray = max(heatmap.flatten())
+    return np.uint8(heatmap / maxGray * 255)
+
+
+def bin_centers(binedges):
+    return [(binedges[idx]+binedges[idx+1])/2 for idx in range(len(binedges[:-1]))] 
+
+
+def cluster(points, n_clusters=10):
+    kmeans = KMeans(n_clusters=n_clusters)
+    kmeans.fit(points)
+    cluster_centers = kmeans.cluster_centers_
+    labels = kmeans.labels_
+    return cluster_centers, labels
+
+
+def to_parameterform(angle, distance):
+    x0 = distance * np.cos(angle)
+    y0 = distance * np.sin(angle)
+    x1 = x0 - distance * np.sin(angle)
+    y1 = y0 + distance * np.cos(angle)
+    return x0, x1, y0, y1
+
+
+def intersection(x1, y1, x2, y2, x3, y3, x4, y4):
+    px = ((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
+    py = ((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4)) / ((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4))
+    return [px, py]
+
+
+def remove_outliers(intersections, centers, labels, min_Npoints=3):
+    # remove outlier (clusters with less than min_Npoints in the cluster intersections)
+    sorted_labels = labels.argsort()
+    labels = labels[sorted_labels]
+    unique, counts = np.unique(labels, return_counts=True)
+    occurences = dict(zip(unique, counts))
+
+    bad_clusters = [key for key, val in occurences.items() if val < min_Npoints]
+
+    for bad_cluster in bad_clusters:
+        bad_cluster_idx = np.nonzero(labels == bad_cluster)
+        labels = np.delete(labels, bad_cluster_idx)
+        intersections = np.delete(intersections, bad_cluster_idx, axis=0)
+    centers = np.delete(centers, bad_clusters, axis=0)
+    return intersections, centers, labels
+
+
+def apply_hough_transform(heatmap, useEdges=True):
+    grayscale = opening(heatmap.T)
+    if useEdges:
+        grayscale = canny(grayscale/255.)
+        grayscale = closing(grayscale, np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]]))
+        grayscale = np.where(grayscale != 0.0, 255, 0)
+    h, theta, d = hough_line(grayscale)
+    return grayscale, h, theta, d
+
+
+def find_intersections(angles, distances, xBins, yBins, num_xbins, num_ybins):
+    intX = []
+    intY = []
+    for angle, dist in zip(angles, distances):
+        x1, x2, y1, y2 = to_parameterform(angle, dist)
+        for angle2, dist2 in zip(angles, distances):
+            x0 = 0
+            y0 = 0
+            if angle != angle2 and dist != dist2:
+                x3, x4, y3, y4 = to_parameterform(angle2, dist2)
+                X, Y = intersection(x1, y1, x2, y2, x3, y3, x4, y4)
+                xIntersect = X
+                yIntersect = Y
+                intX.append(xIntersect)
+                intY.append(yIntersect)
+            else:
+                continue
+    return np.array([intX, intY]).T
+
+
+class LaserscannerSystem:
+    """
+    Class representing the system of two laserscanners.
+
+    Functionality:
+        - trigger the data acquisition
+        - extract the pointClouds from the file given by the laser sensors
+    """
+
+    def __init__(self, pcl1, pcl2):
+        self.cloud1 = self.format_cloud(pcl1)
+        self.cloud2 = self.format_cloud(pcl2)
+        self.cloud1.name = "PCL1"
+        self.cloud2.name = "PCL2"
+        self.merged_cloud = self.join_clouds()
+        self.calibration_parameters = None
+
+    def add_calibration_parameters(self, filename):
+        import json
+        with open(filename, 'r') as json_file:
+            json_data = json_file.read()
+            self.calibration_parameters = json.loads(json_data)
+
+    def calibrate_pcls(self):
+        if self.calibration_parameters is not None:
+            log.info("Starting calibration")
+
+            self.merged_cloud.projection2D('x', 'y', suffix='before_calibration')
+            self.merged_cloud.projection2D('x', 'z', suffix='before_calibration')
+            self.merged_cloud.projection2D('y', 'z', suffix='before_calibration')
+
+            self.cloud1.shift('z', float(self.calibration_parameters['delta1_z']))
+            self.cloud2.shift('z', float(self.calibration_parameters['delta2_z']))
+
+            self.cloud1.rotate('x', 'z', float(self.calibration_parameters['theta1_xz']))
+            self.cloud1.rotate('y', 'z', float(self.calibration_parameters['theta1_yz']))
+            self.cloud2.rotate('x', 'z', float(self.calibration_parameters['theta2_xz']))
+            self.cloud2.rotate('y', 'z', float(self.calibration_parameters['theta2_yz']))
+
+            self.cloud1.shift('x', float(self.calibration_parameters['delta1_x']))
+            self.cloud1.shift('y', float(self.calibration_parameters['delta1_y']))
+            self.cloud1.rotate('x', 'y', float(self.calibration_parameters['theta1_xy']))
+
+            self.cloud2.shift('x', float(self.calibration_parameters['delta2_x']))
+            self.cloud2.shift('y', float(self.calibration_parameters['delta2_y']))
+            self.cloud2.rotate('x', 'y', float(self.calibration_parameters['theta2_xy'])-np.pi)
+
+            self.cloud1.update()
+            self.cloud2.update()
+
+            self.merged_cloud = self.join_clouds()
+            self.merged_cloud.show3DCloud(points=157, suffix="beforeCalib")
+
+            self.cloud2.move_rotate(np.array(self.calibration_parameters['R'])*0, np.array(self.calibration_parameters['T']))
+
+            self.merged_cloud = self.join_clouds()
+            self.merged_cloud.show3DCloud(points=157, suffix="afterCalib")
+            self.merged_cloud.projection2D('x', 'y', suffix='after_calibration')
+            self.merged_cloud.projection2D('x', 'z', suffix='after_calibration')
+            self.merged_cloud.projection2D('y', 'z', suffix='after_calibration')
+
+    def format_cloud(self, cloud):
+        return PointCloud(cloud)
+
+    def join_clouds(self):
+        return PointCloud(np.concatenate([self.cloud1._data, self.cloud2._data]), name="MergedCloud")
+
+    def calibrate(self):
+        calibration = Calibration(self.cloud1, self.cloud2)
+
+        # normalize to the minimum in z direction
+        print("Normalize to minimum")
+        calibration.normalize_to_minimum('z')
+
+        # correct the tilt in z direction
+        print("Correct the tilt in z direction")
+        calibration.z_leveling()
+        
+        # shift both point clouds to bed level. This should be where the highest point density is found
+        print("Bed Leveling")
+        calibration.bed_leveling()
+        self.cloud1.clean('z', 0.5, 1)
+        self.cloud1.clean('y', 20, 100)
+        self.cloud1.clean('x', 10, 40)
+        self.cloud2.clean('z', 0.5, 1)
+
+        self.merged_cloud = self.join_clouds()
+
+        # for the calibration the assumption is, that only very narrow parts are printed
+        # any noisy artifacts should be removed
+
+        self.cloud1.clean('z', -2, 1)
+        self.cloud2.clean('z', -2, 1)
+
+
+        # extract a region around the floor with a minimum height of 0.5mm for the calibration in the x-y plane
+        subcloud1 = self.cloud1.extract_subcloud('z', 0.5, 1)
+        subcloud1.name = "Sub1"
+        subcloud2 = self.cloud2.extract_subcloud('z', 0.5, 1)
+        subcloud2.name = "Sub2"
+
+        # find the origin of the calibration structure by clustering of heap points of hough lines
+        angle_xy1, center1 = Calibration.calibrateXY(subcloud1, num_xbins=300, num_ybins=300, useEdges=False, min_distance=3)
+        angle_xy2, center2 = Calibration.calibrateXY(subcloud2, num_xbins=300, num_ybins=300, useEdges=False, min_distance=2, min_Npoints=3)
+
+        self.cloud1.shift('x', center1[0])
+        self.cloud1.shift('y', center1[1])
+
+        self.cloud2.shift('x', center2[0])
+        self.cloud2.shift('y', center2[1])
+
+        self.cloud1.rotate('x', 'y', angle_xy1)
+        self.cloud2.rotate('x', 'y', angle_xy2+np.pi)
+
+        R, T = calibration.RBFMerge()
+
+        calibration.calibration_parameters['theta1_xy'] = angle_xy1
+        calibration.calibration_parameters['theta2_xy'] = angle_xy2
+        calibration.calibration_parameters['delta1_x'] = center1[0]
+        calibration.calibration_parameters['delta1_y'] = center1[1]
+
+        calibration.calibration_parameters['delta2_x'] = center2[0]
+        calibration.calibration_parameters['delta2_y'] = center2[1]
+
+        calibration.calibration_parameters['R'] = R.tolist()
+        calibration.calibration_parameters['T'] = T.tolist()
+
+        self.cloud2.move_rotate(R, T)
+
+        calibration.save_parameters_to_file("data/Calibration_Parameters.txt")
+
+
+class Calibration:
+    """
+    Class to takes two point clouds and performs processing steps to determine
+    the 3 rotational angles and the three shifts between two point clouds
+
+    Parameters:
+        - 2 Point cloud objects (probably numpy arrays)
+        - Calibration parameters
+
+    Functionality:
+        - Perform normalizations
+        - Save and visualize the Point clouds
+        - calculate the angles and shifts
+        - save/ return the calibration parameters
+    """
+    def __init__(self, cloud1, cloud2):
+        self.cloud1 = cloud1
+        self.cloud2 = cloud2
+        self.suffix = ""
+        self.calibration_parameters =  {'delta1_x': None, 'delta2_x': None, 'delta1_y': None, 'delta2_y': None, 'delta1_z': None, 'delta2_z': None, 'theta1_xy': None, 'theta2_xy': None, 'theta1_xz': None, 'theta2_xz': None, 'theta1_yz': None, 'theta2_yz': None, 'R': None, 'T': None}
+
+    def save_parameters_to_file(self, filename):
+        import json
+        if not os.path.exists(os.path.dirname(filename)):
+            os.mkdir(os.path.dirname(filename))
+        with open(filename, 'w') as json_file:
+            dict_json = json.dump(self.calibration_parameters, json_file)
+
+    def normalize_to_minimum(self, dim):
+        min1 = min(self.cloud1.dim[dim])
+        min2 = min(self.cloud2.dim[dim])
+        self.cloud1.dim[dim] -= min1
+        self.cloud2.dim[dim] -= min2
+        self.suffix = ''.join([self.suffix, 'NZ'])
+
+        if self.calibration_parameters['delta1_z'] is None:
+            self.calibration_parameters['delta1_z'] = min1
+        else:
+            self.calibration_parameters['delta1_z'] += min1
+
+        if self.calibration_parameters['delta2_z'] is None:
+            self.calibration_parameters['delta2_z'] = min2
+        else:
+            self.calibration_parameters['delta2_z'] += min2
+
+        self.cloud1.update()
+        self.cloud2.update()
+
+    def z_leveling(self):
+        self.suffix = ''.join([self.suffix, 'ZL'])
+
+        num_xbins = 201
+        num_ybins = 801
+        self.cloud1.projection2D('x', 'z', suffix="before_zleveled")
+
+        ##log.info("Requiring threshold for segmentation")
+        ##threshold = float(input("Enter threshold value according to control plot: "))
+        theta_xz, intercept = self.get_rotational_angle(self.cloud1, 'x', 'z', num_xbins, num_ybins, suffix=self.suffix, name=self.cloud1.name)
+        self.cloud1.rotate('x', 'z', theta_xz, 0, intercept)
+        self.cloud1.correct_projection('x', theta_xz, min(self.cloud1.dim['x']))
+        self.cloud1.dim['z'] -= intercept
+
+        self.calibration_parameters['theta1_xz'] = theta_xz
+        if self.calibration_parameters['delta1_z'] is None:
+            self.calibration_parameters['delta1_z'] = intercept
+        else:
+            self.calibration_parameters['delta1_z'] += intercept
+        self.cloud1.update()
+
+        self.cloud1.projection2D('x', 'z', suffix="after_zleveled")
+        self.cloud1.projection2D('y', 'z', suffix="before_zleveled")
+
+        ##log.info("Requiring threshold for segmentation")
+        ##threshold = float(input("Enter threshold value according to control plot: "))
+        theta_yz, intercept = self.get_rotational_angle(self.cloud1, 'y', 'z', num_xbins, num_ybins, suffix=self.suffix, name=self.cloud1.name)
+        self.cloud1.rotate('y', 'z', theta_yz, 0, intercept)
+        self.cloud1.correct_projection('y', theta_yz, min(self.cloud1.dim['y']))
+
+        self.cloud1.dim['z'] -= intercept
+        self.calibration_parameters['theta1_yz'] = theta_yz
+        if self.calibration_parameters['delta1_z'] is None:
+            self.calibration_parameters['delta1_z'] = intercept
+        else:
+            self.calibration_parameters['delta1_z'] += intercept
+        self.cloud1.update()
+
+        self.cloud1.projection2D('y', 'z', suffix="after_zleveled")
+        self.cloud2.projection2D('x', 'z', suffix="before_zleveled")
+
+
+        ##log.info("Requiring threshold for segmentation")
+        ##threshold = float(input("Enter threshold value according to control plot: "))
+        theta_xz, intercept = self.get_rotational_angle(self.cloud2, 'x', 'z', num_xbins, num_ybins, suffix=self.suffix, name=self.cloud2.name)
+        self.cloud2.rotate('x', 'z', theta_xz, 0, intercept)
+        self.cloud2.correct_projection('x', theta_xz, min(self.cloud2.dim['x']))
+
+        self.cloud2.dim['z'] -= intercept
+        self.calibration_parameters['theta2_xz'] = theta_xz
+        if self.calibration_parameters['delta2_z'] is None:
+            self.calibration_parameters['delta2_z'] = intercept
+        else:
+            self.calibration_parameters['delta2_z'] += intercept
+        self.cloud2.update()
+
+        self.cloud2.projection2D('x', 'z', suffix="after_zleveled")
+        self.cloud2.projection2D('y', 'z', suffix="before_zleveled")
+
+        ##log.info("Requiring threshold for segmentation")
+        ##threshold = float(input("Enter threshold value according to control plot: "))
+        theta_yz, intercept = self.get_rotational_angle(self.cloud2, 'y', 'z', num_xbins, num_ybins, suffix=self.suffix, name=self.cloud2.name)
+        self.cloud2.rotate('y', 'z', theta_yz, 0, intercept)
+        self.cloud2.correct_projection('y', theta_yz, min(self.cloud2.dim['y']))    
+        self.cloud2.dim['z'] -= intercept
+        self.calibration_parameters['theta2_yz'] = theta_yz
+        if self.calibration_parameters['delta2_z'] is None:
+            self.calibration_parameters['delta2_z'] = intercept
+        else:
+            self.calibration_parameters['delta2_z'] += intercept
+        self.cloud2.update()
+
+        ##self.cloud2.projection2D('y', 'z', suffix="after_zleveled")
+
+
+    def bed_leveling(self):
+        self.cloud1.normalize_hist_to_maximum('z', 800)
+        self.cloud2.normalize_hist_to_maximum('z', 800)
+        self.cloud1.update()
+        self.cloud2.update()
+
+    def get_rotational_angle(self, cloud, dim1, dim2, num_xbins, num_ybins, xlims=None, ylims=None, suffix=None, name=None):
+        # segmentation
+        
+        ybins = None
+        xbins = None
+        """
+        ##grayscale, xbins, ybins = cloud.projection2D(dim1, dim2, num_xbins=num_xbins, num_ybins=num_ybins, suffix=suffix, xlims=None, ylims=None)
+        cleaned_grayscale = np.where(grayscale > threshold, 1.0, 0.0)
+        ##extent = [xbins[0], xbins[-1], ybins[0], ybins[-1]]
+
+        # get the relevant points for the fit
+        x_Reg = np.repeat(xbins[:-1], cleaned_grayscale.shape[1])
+        y_Reg = np.tile(ybins[:-1], cleaned_grayscale.shape[0])*cleaned_grayscale.flatten()
+
+        relevant_points = np.where(cleaned_grayscale.flatten() != 0.0, True, False)
+
+        x_Reg = x_Reg[relevant_points]
+        y_Reg = y_Reg[relevant_points]
+        """
+        x_Reg = cloud.dim[dim1]
+        y_Reg = cloud.dim[dim2]
+
+        if ybins is None:
+            ybins = np.linspace(min(y_Reg), max(y_Reg), num_ybins)
+        if xbins is None:
+            xbins = np.linspace(min(x_Reg), max(x_Reg), num_xbins)
+
+        # Do the fit
+        if np.all(x_Reg == x_Reg[0]):
+            slope= 0
+            intercept = 0
+        else:
+            slope, intercept, r_value, p_value, std_err = stats.linregress(x_Reg, y_Reg)
+        
+
+        def line(x, slope, intercept):
+            return intercept + slope*x
+        y_Fit = line(xbins, slope, intercept)
+
+        # Now correct the full data and return a control plot
+        angle = np.arctan(slope)
+        ##log.info("angle: {ANGLE}".format(ANGLE=angle))
+        """
+        plt.plot(x_Reg, y_Reg, 'o', label='original data')
+        plt.plot(x_Reg, intercept + slope*x_Reg, 'r', label='fitted line')
+        plt.legend()
+        plt.show()
+        """
+
+        return angle, intercept
+
+    @staticmethod
+    def calibrateXY(cloud, num_xbins=300, num_ybins=300, suffix="", min_distance=2, useEdges=True, min_Npoints=5, chosenCenter=None):
+        find_centers = True
+        get_angle = True
+        print("Find centers for shifting")
+        while find_centers or get_angle:
+            
+            xbins = np.linspace(min(cloud.dim['x'])-10, max(cloud.dim['x'])+10, num_xbins)
+            ybins = np.linspace(min(cloud.dim['y'])-10, max(cloud.dim['y'])+10, num_ybins)
+            grayscale, xbins, ybins = cloud.projection2D('x', 'y', xbins=xbins, ybins=ybins, num_xbins=num_xbins, num_ybins=num_ybins, suffix=suffix, xlims=None, ylims=None)
+
+            # calculate scale to turn values back into mm
+            min_y = min(ybins)
+            min_x = min(xbins)
+            m_y = (max(ybins) - min(ybins))/num_ybins
+            m_x = (max(xbins) - min(xbins))/num_xbins
+
+            grayscale = to_grayscale(grayscale)
+
+            xCenters = bin_centers(xbins)
+            yCenters = bin_centers(ybins)
+
+            extent = [xCenters[0], xCenters[-1], yCenters[0], yCenters[-1]]
+
+            useEdges = input("Apply hough transform to edges? Y/N: ")
+            if useEdges == "Y":
+                useEdges = True
+            else:
+                useEdges = False
+            
+            min_distance = int(input("Choose a minimum distance (Default: {MIN_DISTANCE}): ".format(MIN_DISTANCE=min_distance)))
+            
+            grayscale, h, theta, d = apply_hough_transform(grayscale, useEdges=useEdges)
+
+            fig, axes = plt.subplots(1, 2, figsize=(15, 6))    
+            ax = axes.ravel()
+            ax[0].imshow(grayscale, cmap=cm.viridis, origin='lower')
+            ax[0].set_title('Input')
+            ax[1].imshow(grayscale, cmap=cm.viridis, origin='lower')
+
+            angles = []
+            angles_mm = []
+            distances = []
+            intersections = []
+            hough_lines = {'x0': [], 'x1': []}
+            for _, angle, dist in zip(*hough_line_peaks(h, theta, d, min_distance=min_distance)):
+                if angle < 0:
+                    angle += 2*np.pi
+
+                angles.append(angle)
+                distances.append(dist)
+                y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
+                y1 = (dist - grayscale.shape[1] * np.cos(angle)) / np.sin(angle)
+                x0 = 0
+                x1 = grayscale.shape[1]
+                hough_lines['x0'].append((m_x*x0+min_x, m_y*y0+min_y))
+                hough_lines['x1'].append((m_x*x1+min_x, m_y*y1+min_y))
+                ax[1].plot((x0, x1), (y0, y1), '-r', zorder=1)
+
+            ax[1].set_xlim(-10, num_xbins+10)
+            ax[1].set_ylim(-10, num_ybins+10)
+            ax[1].set_title('Hough_lines')
+
+            intersections = find_intersections(angles, distances, xCenters, yCenters, num_xbins, num_ybins)
+
+            centers, labels = cluster(intersections)
+            min_Npoints = int(input("Choose a minimum intersection points to find suited clusters (Default: {MIN_POINTS}): ".format(MIN_POINTS=min_Npoints)))
+
+            intersections, centers, labels = remove_outliers(intersections, centers, labels, min_Npoints=min_Npoints)
+
+            for idx, center in enumerate(centers):
+                ax[1].scatter(center[0], center[1], marker="o", color="g", zorder=11)
+                ax[1].text(center[0]+5, center[1]+5, str(idx), color="g")
+            if not os.path.exists("figures"):
+                os.mkdir("figures")
+                
+            plt.savefig("figures/{NAME}{SUFFIX}_houghlines_x_y.png".format(NAME=cloud.name,  SUFFIX="_{SUFFIX}".format(SUFFIX=suffix if suffix is not None else "")), format="png")
+
+            fig, ax2 = plt.subplots(1, 1, figsize=(15, 10))
+            ax2.imshow(grayscale, cmap=cm.viridis, origin='lower')
+            ax2.scatter(intersections[:, 0], intersections[:, 1], marker="+", color="b", zorder=10, s=50)
+            ax2.set_xlim(-10, num_xbins)
+            ax2.set_ylim(-10, num_ybins)
+            for idx, center in enumerate(centers):
+                ax2.scatter(center[0], center[1], marker="o", color="g", zorder=11)
+                ax2.text(center[0]+5, center[1]+5, str(idx), color="g")
+            plt.tight_layout()
+            plt.savefig("figures/{NAME}{SUFFIX}_intersections_x_y.png".format(NAME=cloud.name,  SUFFIX="_{SUFFIX}".format(SUFFIX=suffix if suffix is not None else "")), format="png")
+            
+            find_centers_input = input("Centers and hough lines, ok? Y/N: ")
+            if (find_centers_input == 'Y' and find_centers):
+                find_centers = False
+                # transform from bins to mm
+                centers[:, 0] *= m_x
+                centers[:, 0] += min_x
+                centers[:, 1] *= m_y
+                centers[:, 1] += min_y
+
+                # Let user decide which center to take and shift data accordingly
+                log.info(pformat(centers))
+                id_center = int(input("Enter index to use for coordinate origin for cloud: "))
+                origin = centers[id_center]
+                log.info("{CENTER} was chosen".format(CENTER=origin))
+
+                log.info("---  shift original cloud to new origin")
+                cloud.shift('x', origin[0])
+                cloud.shift('y', origin[1])
+                suffix += "C"
+                log.info("--- done shifting to new origin")
+
+            elif (find_centers_input == 'Y' and not find_centers):
+                        # Take the endpoint of one hough line to get the rotational angle for align the two clouds
+                get_angle = False
+                print(pformat(hough_lines['x0']))
+                id_hline = int(input("Enter index to use for line end for rotating subcloud1: "))
+                hline = hough_lines['x0'][id_hline]
+                print("{LINE} was chosen".format(LINE=hline))
+
+                x, y = hline
+                angle_xy = math.atan2(y, x)
+                # cloud.rotate('x', 'y', angle_xy)
+                cloud.projection2D('x', 'y', suffix="sdf")
+
+            else:
+                log.info("Repeat calculation of hough lines and clustering")
+                find_centers = True
+
+        return angle_xy, origin
+
+    def RBFMerge(self):
+        top_cloud1 = self.cloud1.extract_subcloud('z', 0.1, 5)
+        top_cloud2 = self.cloud2.extract_subcloud('z', 0.1, 5)
+        data_top_cloud1 = top_cloud1._data
+        data_top_cloud2 = top_cloud2._data
+
+        # Take random samples because cloud sizes have to be equal (n of entries)
+        size = min([data_top_cloud1.shape[0], data_top_cloud2.shape[0]])
+        print(size)
+
+        rand_data_cloud1 = data_top_cloud1  #np.empty(shape=(size,3))
+        rand_data_cloud2 = data_top_cloud2  # np.empty(shape=(size,3))
+        # for i in range(0, size):
+        #     rand_data_cloud1[i] = random.choice(data_top_cloud1)
+        #     rand_data_cloud2[i] = random.choice(data_top_cloud2)
+
+        # Points have to be in order for algorithm, norm allows sorting
+        sort_rand_cloud1 = np.append(rand_data_cloud1, np.empty(shape=(rand_data_cloud1.shape[0],1)), axis = 1)
+        sort_rand_cloud2 = np.append(rand_data_cloud2, np.empty(shape=(rand_data_cloud2.shape[0],1)), axis = 1)
+        for i in range(0, sort_rand_cloud1.shape[0]):
+            sort_rand_cloud1[i,3] = np.linalg.norm(sort_rand_cloud1[i,0:2])
+        for i in range(0, sort_rand_cloud2.shape[0]):
+            sort_rand_cloud2[i,3] = np.linalg.norm(sort_rand_cloud2[i,0:2])
+
+        # Conversion to tuples only to allow sorting
+        dtype_cloud_tuples = [('x', float), ('y', float), ('z', float), ('norm', float)]
+        tuples_sort_cloud1 = np.empty(sort_rand_cloud1.shape[0], dtype=dtype_cloud_tuples)
+        tuples_sort_cloud2 = np.empty(sort_rand_cloud2.shape[0], dtype=dtype_cloud_tuples)
+        for i in range(0, tuples_sort_cloud1.shape[0]):
+            tuples_sort_cloud1[i] = (sort_rand_cloud1[i,0],sort_rand_cloud1[i,1],\
+                sort_rand_cloud1[i,2],sort_rand_cloud1[i,3])
+        for i in range(0, tuples_sort_cloud2.shape[0]):
+            tuples_sort_cloud2[i] = (sort_rand_cloud2[i,0],sort_rand_cloud2[i,1],\
+                sort_rand_cloud2[i,2],sort_rand_cloud2[i,3])
+            
+        sorted_cloud1 = np.array(tuples_sort_cloud1,dtype=dtype_cloud_tuples)
+        sorted_cloud2 = np.array(tuples_sort_cloud2,dtype=dtype_cloud_tuples)
+        sorted_cloud1.sort(order='norm')
+        sorted_cloud2.sort(order='norm')
+
+        # Restore original arrays to allow algorithm to work
+        cloud1_final = np.empty((sorted_cloud1.shape[0],3))
+        cloud1_final[:,0] = sorted_cloud1['x']
+        cloud1_final[:,1] = sorted_cloud1['y']
+        cloud1_final[:,2] = sorted_cloud1['z']
+
+
+        cloud2_final = np.empty((sorted_cloud2.shape[0],3))
+        cloud2_final[:,0] = sorted_cloud2['x']
+        cloud2_final[:,1] = sorted_cloud2['y']
+        cloud2_final[:,2] = sorted_cloud2['z']
+
+        R, T, adjusted = bundle_adjust(cloud1_final[:size], cloud2_final[:size])
+
+        return R, T
+
+
+class PointCloud:
+    """
+    Class for PointCloud data
+
+    Functionality:
+        - Load point cloud
+        - Perform a rotation
+        - merge with another point cloud
+        - show point cloud
+        - save it
+    """
+
+    def __init__(self, point_cloud, name=""):
+        # point_cloud should be a numpy array with 3 columns and N entries.
+        self._data = point_cloud
+        self._x = self._data[:, 0]
+        self._y = self._data[:, 1]
+        self._z = self._data[:, 2]
+        self.dim = {'x': self._x, 'y': self._y, 'z': self._z}
+        self.name = name
+
+    def update(self):
+        self._x = self.dim['x']
+        self._y = self.dim['y']
+        self._z = self.dim['z']
+        self._data = np.array([self._x, self._y, self._z]).transpose()
+
+    def prepareScatter(self, points, color):
+        return go.Scatter3d(x=(self._x[::points]), y=(self._y[::points]), z=(self._z[::points]), mode='markers', marker=dict(size=3, color=self._z[::points], colorscale='Viridis', opacity=0.8))
+
+    
+    def projection2D(self, dim1, dim2, xbins=None, ybins=None, num_xbins=200, num_ybins=200, suffix=None, xlims=None, ylims=None):
+        # Build 2D projection
+        x = self.dim[dim1]
+        y = self.dim[dim2]
+        if ybins is None:
+            ybins = np.linspace(min(y), max(y), num_ybins)
+        if xbins is None:
+            xbins = np.linspace(min(x), max(x), num_xbins)
+
+        ##fig, ax = plt.subplots()
+        heatmap, xedges, yedges = np.histogram2d(x, y, bins=[xbins, ybins], density=True)
+        extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
+        """
+        im = ax.imshow(heatmap.T, extent=extent, origin='lower')
+        ax.set_xlabel(dim1)
+        ax.set_ylabel(dim2)
+        if xlims is not None:
+            ax.set_xlim(xlims)
+        if ylims is not None:
+            ax.set_ylim(ylims)
+        fig.colorbar(im)
+        ax.axis('equal')
+        if not os.path.exists("figures"):
+            os.mkdir("figures")
+        plt.savefig("figures/{NAME}{SUFFIX}_2Dprojection_{X}_{Y}.png".format(NAME=self.name, SUFFIX="_{SUFFIX}".format(SUFFIX=suffix if suffix is not None else ""), X=dim1, Y=dim2), format="png")
+        plt.show()
+        """
+        return heatmap, xedges, yedges
+
+    def rotation_matrix(self, axis, angle):
+        return expm(np.cross(np.eye(3), axis/norm(axis)*angle))
+    
+    def rotate(self, dim1, dim2, angle, pointx=0, pointy=0):
+        xData = self.dim[dim1]
+        yData = self.dim[dim2]
+        xDataPrime = pointx + np.cos(angle)*(xData - pointx) + np.sin(angle)*(yData - pointy)
+        yDataPrime = pointy - np.sin(angle)*(xData - pointx) + np.cos(angle)*(yData - pointy)
+        self.dim[dim1] = xDataPrime
+        self.dim[dim2] = yDataPrime
+        self.update()
+
+    def move_rotate(self, R, T):
+        temp = numpy.matmul(R, self._data.T).T + T
+        self.dim['x'] = temp[:,0]
+        self.dim['y'] = temp[:,1]
+        self.dim['z'] = temp[:,2]
+        self.update()
+
+
+    def skew(self, dim1, dim2, k):
+        xData = self.dim[dim1]
+        yData = self.dim[dim2]
+
+        xDataPrime = xData + k*yData 
+        yDataPrime = yData 
+        self.dim[dim1] = xDataPrime
+        self.dim[dim2] = yDataPrime
+        self.update()
+
+
+    def correct_projection(self, dim, angle, reference_point = 0):
+        """
+        Scales the axis to take into account the effect of a tilted sesnor projecting the height profile on a plane sensor 
+        """
+        data = self.dim[dim]
+        data -= reference_point
+        data /= np.cos(angle)
+        data += reference_point 
+        self.dim[dim] = data
+        self.update()
+
+
+    def normalize_hist_to_maximum(self, dim, num_bins, threshold=0.5, min_dist=100):
+        data = self.dim[dim]
+        count, bins, patches = histogram1d(data, bins=int(num_bins))
+        indexes = peakutils.indexes(count, thres=threshold, min_dist=min_dist)
+        maxzidx = np.argmax(count[indexes])
+        maximum = bins[indexes][maxzidx]
+        self.shift(dim, maximum)
+
+    def extract_subcloud(self, dim, lvalue=-999, hvalue=999):
+        # extracts a part of the the cloud given the
+        subcloud = PointCloud(self._data[np.where(self.dim[dim] > lvalue, True, False)])
+        subcloud = subcloud._data[np.where(subcloud.dim[dim] < hvalue, True, False)]
+        return PointCloud(subcloud)
+
+    def clean(self, dim, lvalue=-999, hvalue=999):
+        hdata = PointCloud(self._data[np.where(self.dim[dim] > lvalue, True, False)])
+        ldata = PointCloud(hdata._data[np.where(hdata.dim[dim] < hvalue, True, False)])
+        self._data = ldata._data
+        self._x = self._data[:, 0]
+        self._y = self._data[:, 1]
+        self._z = self._data[:, 2]
+        self.dim = {'x': self._x, 'y': self._y, 'z': self._z}
+        return PointCloud(ldata._data)
+
+    def shift(self, dim, value):
+        self.dim[dim] -= value
+        self.update()
+
+    def save_to_npz(self, outname, *args, **kwargs):
+        np.savez(outname, self._data, *args, **kwargs)
+
+    def transform_to_np(self):
+        x = self._data[:, 0]
+        y = self._data[:, 1]
+        z = self._data[:, 2]
+        nparray = np.concatenate((x.reshape(-1,1),y.reshape(-1,1),z.reshape(-1,1)), axis = 1)
+
+        return nparray
+
+    def show3DCloud(self):
+        npy = self.transform_to_np()
+        pcl = o3d.geometry.PointCloud()
+        pcl.points = o3d.utility.Vector3dVector(npy)
+        o3d.visualization.draw_geometries([pcl])
+
diff --git a/addon/pointcloud_processing/__init__.py b/addon/pointcloud_processing/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/addon/pointcloud_processing/calibration.py b/addon/pointcloud_processing/calibration.py
new file mode 100644
index 0000000000000000000000000000000000000000..4b92e13c42bb56695bdcfeb90b1c7191062fcd61
--- /dev/null
+++ b/addon/pointcloud_processing/calibration.py
@@ -0,0 +1,533 @@
+# -*- coding: utf-8 -*-
+"""
+@author: grh
+
+Project: SmoPa3D
+
+Description: This code is used to calibrate the laser light section sensors. 
+For this purpose, a standardized component must be placed on the build platform, which is scanned.
+Based on the captured data, calibration data is generated, which must be applied to all captured data.
+"""
+import os
+import json
+import logging
+import copy
+import numpy as np
+import open3d as o3d
+import matplotlib.pyplot as plt
+from json import JSONEncoder
+from .PCL import PointCloud, Calibration
+
+from . import generate_pointcloud as gp
+
+logger = logging.getLogger('SmoPa3D')  # Logger should be defined at demonstrator-orchestration
+
+#===============================================================================
+## Helper functions
+#=============================================================================== 
+## Look up "global registration open3d" http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
+def draw_registration_result(source, target, transformation):
+    source_temp = copy.deepcopy(source)
+    target_temp = copy.deepcopy(target)
+    source_temp.paint_uniform_color([1, 0.706, 0])
+    target_temp.paint_uniform_color([0, 0.651, 0.929])
+    source_temp.transform(transformation)
+    o3d.visualization.draw_geometries([source_temp, target_temp],
+                                      zoom=0.4459,
+                                      front=[0.9288, -0.2951, -0.2242],
+                                      lookat=[1.6784, 2.0612, 1.4451],
+                                      up=[-0.3402, -0.9189, -0.1996])
+
+## Look up "global registration open3d" http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
+def preprocess_registration(pcd, voxel_size):
+    print(":: Downsample with a voxel size %.3f." % voxel_size)
+    pcd_down = pcd.voxel_down_sample(voxel_size)
+
+    radius_normal = voxel_size * 2
+    print(":: Estimate normal with search radius %.3f." % radius_normal)
+    pcd_down.estimate_normals(
+        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=30))
+
+    radius_feature = voxel_size * 5
+    print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
+    pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(
+        pcd_down,
+        o3d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))
+    return pcd_down, pcd_fpfh
+
+## Look up "global registration open3d" http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
+def prepare_dataset(voxel_size, source, target):
+    print(":: Load two point clouds and disturb initial pose.")
+    trans_init = np.asarray([[0.0, 0.0, 1.0, 0.0], [1.0, 0.0, 0.0, 0.0],
+                             [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0]])
+    ##source.transform(trans_init)
+    ##draw_registration_result(source, target, np.identity(4))
+
+    source_down, source_fpfh = preprocess_registration(source, voxel_size)
+    target_down, target_fpfh = preprocess_registration(target, voxel_size)
+    return source, target, source_down, target_down, source_fpfh, target_fpfh
+
+## Look up "global registration open3d" http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
+def execute_global_registration(source_down, target_down, source_fpfh,
+                                target_fpfh, voxel_size):
+    distance_threshold = voxel_size * 1.5
+    print(":: RANSAC registration on downsampled point clouds.")
+    print("   Since the downsampling voxel size is %.3f," % voxel_size)
+    print("   we use a liberal distance threshold %.3f." % distance_threshold)
+    result = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(
+        source_down, target_down, source_fpfh, target_fpfh,  False, distance_threshold,
+        o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
+        4, [
+            o3d.pipelines.registration.CorrespondenceCheckerBasedOnEdgeLength(
+                0.9),
+            o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(
+                distance_threshold)
+        ], o3d.pipelines.registration.RANSACConvergenceCriteria(4000000, 500))
+    return result
+
+## Function for displaying in- and outliers
+def display_inlier_outlier(cloud, ind):
+    inlier_cloud = cloud.select_by_index(ind)
+    outlier_cloud = cloud.select_by_index(ind, invert=True)
+
+    print("Showing outliers (red) and inliers (gray): ")
+    outlier_cloud.paint_uniform_color([1, 0, 0])
+    inlier_cloud.paint_uniform_color([0.8, 0.8, 0.8])
+    o3d.visualization.draw_geometries([inlier_cloud, outlier_cloud],
+                                      zoom=0.3412,
+                                      front=[0.4257, -0.2125, -0.8795],
+                                      lookat=[2.6172, 2.0475, 1.532],
+                                      up=[-0.0694, -0.9768, 0.2024])
+## Function for removal of outliers
+def remove_outlier(cloud):
+    ## Downsample the point cloud with a voxel of 0.02
+    voxel_down_pcl = cloud.voxel_down_sample(voxel_size=0.02)
+    ## Statistical oulier removal
+    cloud, ind = voxel_down_pcl.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0)
+    ##display_inlier_outlier(voxel_down_pcl, ind)
+    return cloud
+
+def preprocess_pointcloud(pcl):
+    ## Converting of the pcl into an numpy array in order to process them
+    npy = np.asarray(pcl.points)
+
+    ## Inverting the Z-values making it easier to process them
+    npy[:,2] = npy[:,2]*-1
+
+    ## Creating PointCloud classes (self made class from PCL.py)
+    pcl = PointCloud(npy)
+
+    
+    ## Creating an X,Y and Z-area where only the relevant points are kept
+    pcl.clean('z', -1000, 300)
+
+    return pcl
+
+## Definition of class in order to encode np arrays to json data
+class NumpyArrayEncoder(JSONEncoder):
+    def default(self, obj):
+        if isinstance(obj, np.ndarray):
+            return obj.tolist()
+        return JSONEncoder.default(self, obj)
+
+#===============================================================================
+## Creation of calibration parameters using three different Pointclouds
+## 1. Surface of building platform
+## 2. Surface of printed part on building platform
+## 3. Features in order to calculate a transformation
+#=============================================================================== 
+def get_calibration_parameters(
+        calib_plate_1 = os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements", "plate_LLS1.ply"),
+        calib_plate_2=os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements","plate_LLS2.ply"),
+        surface_layer_1=os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements","part_surface_LLS1.ply"),
+        surface_layer_2=os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements","part_surface_LLS2.ply"),
+        last_layer_1=os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements","last_layer_LLS1.ply"),
+        last_layer_2=os.path.join(os.getcwd(), "data", "calibration", "calibration_measurements","last_layer_LLS2.ply"),
+        parameters_path:str=(os.getcwd() + "/data/calibration/calibration_files/transformation_parameters.json"),
+        view_steps:bool=logger.level <= 20
+        ):
+
+    #===============================================================================
+    ## Calibration of building plate
+    #===============================================================================
+    ## Import the calibration pcls
+    pcl_1 = o3d.io.read_point_cloud(calib_plate_1)
+    pcl_2 = o3d.io.read_point_cloud(calib_plate_2)
+
+    ## Removing outliers
+    pcl_1 = remove_outlier(pcl_1)
+    pcl_2 = remove_outlier(pcl_2)
+
+    ## Preprocessing of Pointclouds
+    pcl1 = preprocess_pointcloud(pcl_1)
+    pcl2 = preprocess_pointcloud(pcl_2)
+    
+    ## Creating a Calibration class (self made class from PCL.py)
+    calibration = Calibration(pcl1, pcl2)
+
+    ## Normalize to the minimum in z direction
+    calibration.normalize_to_minimum('z')
+
+    ## Correct the tilt in z direction
+    calibration.z_leveling()
+
+    ## Shift both point clouds to bed level. This should be where the highest point density is found
+    calibration.bed_leveling()
+
+    if view_steps: plt.show()
+    
+    ## Setting the zero plane by taking the top 99% quantile and shifting the zero point of the z-axis to that value
+    data_1 = np.reshape(pcl1._data, (-1, 3))
+    quant_1 = np.quantile(data_1[:,2], 0.99)
+    data_1[:,2] = data_1[:,2] - quant_1
+
+    data_2 = np.reshape(pcl2._data, (-1, 3))
+    quant_2 = np.quantile(data_2[:,2], 0.99)
+    data_2[:,2] = data_2[:,2] - quant_2
+
+    """
+    ## Visualization
+    plt.plot(data_1[:,1], data_1[:,2], 'o', label='updated data 1')
+    plt.legend()
+    plt.show()
+    plt.plot(data_2[:,1], data_2[:,2], 'o', label='updated data 2')
+    plt.legend()
+    plt.show()
+    """
+    
+    ## Getting the calibration parameters
+    plate_delta1_z = float(calibration.calibration_parameters['delta1_z']) + quant_1
+    plate_delta2_z = float(calibration.calibration_parameters['delta2_z']) + quant_2
+    plate_theta1_xz = float(calibration.calibration_parameters['theta1_xz'])
+    plate_theta1_yz = float(calibration.calibration_parameters['theta1_yz'])
+    plate_theta2_xz = float(calibration.calibration_parameters['theta2_xz'])
+    plate_theta2_yz = float(calibration.calibration_parameters['theta2_yz'])
+
+
+    logger.info("Both LLS are calibrated regarding the building plate")
+    #===============================================================================
+    ## Calibration of even surface of printed calibration parts
+    #===============================================================================
+    ## Import the calibration pcls
+    pcl_1 = o3d.io.read_point_cloud(surface_layer_1)
+    pcl_2 = o3d.io.read_point_cloud(surface_layer_2)
+
+    ## Removing outliers
+    pcl_1 = remove_outlier(pcl_1)
+    pcl_2 = remove_outlier(pcl_2)
+
+    ## Preprocessing of Pointclouds
+    pcl1 = preprocess_pointcloud(pcl_1)
+    pcl1.clean('y', 50, 90)
+    pcl1.clean('x', -30, -5)
+    pcl2 = preprocess_pointcloud(pcl_2)
+    pcl2.clean('y', 10, 50)
+    pcl2.clean('x', 5, 30)
+
+    ## Calibrating with the previous calibration parameters
+    ## Normalize to the minimum in z direction
+    pcl1.shift('z', plate_delta1_z)
+    pcl2.shift('z', plate_delta2_z)
+    ## Correct the tilt in z direction
+    pcl1.rotate('x', 'z', plate_theta1_xz)
+    pcl1.rotate('y', 'z', plate_theta1_yz)
+    pcl2.rotate('x', 'z', plate_theta2_xz)
+    pcl2.rotate('y', 'z', plate_theta2_yz)
+    ## Cutting out the relevant area
+    pcl1.clean('z', 0, 10)
+    pcl2.clean('z', 0, 10)
+
+    ## Creating a Calibration class (self made class from PCL.py)
+    surface_calibration = Calibration(pcl1, pcl2)
+
+    ## Correct the tilt in z direction
+    surface_calibration.z_leveling()
+    
+    
+    ## Visualization
+    data_1 = np.reshape(pcl1._data, (-1, 3))
+    data_2 = np.reshape(pcl2._data, (-1, 3))
+
+    if view_steps:
+        plt.show()
+        plt.plot(data_1[:,0], data_1[:,2], 'o', label='xz updated data 1')
+        plt.legend()
+        plt.show()
+        plt.plot(data_1[:,1], data_1[:,2], 'o', label='yz updated data 1')
+        plt.legend()
+        plt.show()
+        plt.plot(data_2[:,0], data_2[:,2], 'o', label='xz updated data 2')
+        plt.legend()
+        plt.show()
+        plt.plot(data_2[:,1], data_2[:,2], 'o', label='yz updated data 2')
+        plt.legend()
+        plt.show()
+    
+
+    ## Adapting the previous calibration parameters
+    ##delta1_z = plate_delta1_z + float(surface_calibration.calibration_parameters['delta1_z'])
+    delta1_z = plate_delta1_z
+    ##delta2_z = plate_delta2_z + float(surface_calibration.calibration_parameters['delta2_z'])
+    delta2_z = plate_delta2_z
+    theta1_xz = plate_theta1_xz + float(surface_calibration.calibration_parameters['theta1_xz'])
+    theta1_yz = plate_theta1_yz + float(surface_calibration.calibration_parameters['theta1_yz'])
+    theta2_xz = plate_theta2_xz + float(surface_calibration.calibration_parameters['theta2_xz'])
+    theta2_yz = plate_theta2_yz + float(surface_calibration.calibration_parameters['theta2_yz'])
+
+    
+    #===============================================================================
+    ## Test if the calibration worked
+    #===============================================================================
+    pcl_1 = o3d.io.read_point_cloud(surface_layer_1)
+    pcl_2 = o3d.io.read_point_cloud(surface_layer_2)
+
+    ## Removing outliers
+    pcl_1 = remove_outlier(pcl_1)
+    pcl_2 = remove_outlier(pcl_2)
+
+    ## Preprocessing of Pointclouds
+    pcl1 = preprocess_pointcloud(pcl_1)
+    pcl2 = preprocess_pointcloud(pcl_2)
+    
+    ## Calibrating with the previous calibration parameters
+    ## Normalize to the minimum in z direction
+    pcl1.shift('z', delta1_z)
+    pcl2.shift('z', delta2_z)
+    ## Correct the tilt in z direction
+    pcl1.rotate('x', 'z', theta1_xz)
+    pcl1.rotate('y', 'z', theta1_yz)
+    pcl2.rotate('x', 'z', theta2_xz)
+    pcl2.rotate('y', 'z', theta2_yz)
+
+    pcl1.clean('z', -10, 10)
+    pcl2.clean('z', -10, 10)
+
+    data_1 = np.reshape(pcl1._data, (-1, 3))
+    data_2 = np.reshape(pcl2._data, (-1, 3))
+    
+    ## Visualization
+    if view_steps:
+        plt.plot(data_1[:,0], data_1[:,2], 'o', label='updated data 1')
+        plt.legend()
+        plt.show()
+        plt.plot(data_2[:,0], data_2[:,2], 'o', label='updated data 2')
+        plt.legend()
+        plt.show()
+    
+    logger.info("Finished calibration of the even surface")
+    #===============================================================================
+    ## Calibration of features of printed calibration parts and merging of both pointclouds
+    #===============================================================================
+    
+    ## Import the calibration pcls
+    pcl_1 = o3d.io.read_point_cloud(last_layer_1)
+    pcl_2 = o3d.io.read_point_cloud(last_layer_2)
+
+    ## Preprocessing of Pointclouds
+    pcl1 = preprocess_pointcloud(pcl_1)
+    pcl2 = preprocess_pointcloud(pcl_2)
+
+    ## Calibrating with the previous calibration parameters
+    ## Normalize to the minimum in z direction
+    pcl1.shift('z', delta1_z)
+    pcl2.shift('z', delta2_z)
+    ## Correct the tilt in z direction
+    pcl1.rotate('x', 'z', theta1_xz)
+    pcl1.rotate('y', 'z', theta1_yz)
+    pcl2.rotate('x', 'z', theta2_xz)
+    pcl2.rotate('y', 'z', theta2_yz)
+    ## Cutting out the relevant area
+    pcl1.clean('z', 1.1, 10)
+    pcl1.clean('y', 50, 90)
+    pcl1.clean('x', -30, -5)
+
+    pcl2.clean('z', 1.1, 10)
+    pcl2.clean('y', 10, 50)
+    pcl2.clean('x', 5, 30)
+
+    ## Creating again numpy arrays in order to create PointCloud classes (this time we use the class from open3d)
+    npy1 = pcl1.transform_to_np()
+    pcd1 = o3d.geometry.PointCloud()
+    pcd1.points = o3d.utility.Vector3dVector(npy1)
+
+    npy2 = pcl2.transform_to_np()
+    pcd2 = o3d.geometry.PointCloud()
+    pcd2.points = o3d.utility.Vector3dVector(npy2)
+
+    ## Transfer of point clouds for processing in the registration algorithms
+    target = pcd2
+    source = pcd1
+
+    ## Setting up of variables for the registration
+    voxel_size = 0.5
+    threshold = voxel_size * 0.4
+
+    ## extracting geometric features from the original pointclouds
+    source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(voxel_size, source= source, target=target)
+
+    ## Using the RANSAC for global registration
+    result_ransac = execute_global_registration(source_down, target_down, source_fpfh, target_fpfh, voxel_size)
+
+    ## Local registration using the icp-algorithm -> for more: http://www.open3d.org/docs/latest/tutorial/Basic/icp_registration.html
+    result_icp = o3d.pipelines.registration.registration_icp(
+        source, target, threshold, result_ransac.transformation,
+        o3d.pipelines.registration.TransformationEstimationPointToPoint(),
+        o3d.pipelines.registration.ICPConvergenceCriteria(max_iteration=5000))
+
+    ## vizualisation of the results
+    if view_steps: draw_registration_result(source, target, result_icp.transformation)
+
+    logger.info(result_icp.fitness)
+    logger.info(result_icp.inlier_rmse)
+
+    ## Initalisation of dict for saving of JSON file
+    data = {
+        "delta1_z" : float(delta1_z),
+        "delta2_z" : float(delta2_z),
+        "theta1_xz" : float(theta1_xz),
+        "theta1_yz" : float(theta1_yz),
+        "theta2_xz" : float(theta2_xz),
+        "theta2_yz" : float(theta2_yz),
+        "fitness" : result_icp.fitness,
+        "inlier_rmse" : result_icp.inlier_rmse,
+        "transformation_matrix" : result_icp.transformation
+    }
+
+    # Serializing json
+    json_object = json.dumps(data, cls=NumpyArrayEncoder, indent=10)
+
+    # Writing to sample.json
+    path = os.path.dirname(parameters_path)
+    if not os.path.exists(path):
+        os.makedirs(path)
+    with open(parameters_path, "w") as outfile:
+        outfile.write(json_object)
+
+    return calibration, result_icp
+
+def calibrate_pcls(Layerheight, pcl1 =None, pcl2=None, calib_path = "/data/calibration/calibration_files/transformation_parameters.json", filetype = "NumpyArray"):
+    ## import the calibration parameters
+    path = (os.getcwd() + calib_path)
+    with open(path, "r") as read_file:
+        calib_params = json.load(read_file)
+
+        transformation_matrix_icp = np.asarray(calib_params["transformation_matrix"])
+        delta1_z = calib_params['delta1_z']
+        delta2_z = calib_params['delta2_z']
+        theta1_xz = calib_params['theta1_xz']
+        theta1_yz = calib_params['theta1_yz']
+        theta2_xz = calib_params['theta2_xz']
+        theta2_yz = calib_params['theta2_yz']
+    
+    ## Import the to be calibrated parts and converting them into an numpy array in order to process them
+    if type(pcl1) == str and filetype == "Pointcloud":
+        path_pcl1 = os.getcwd() + "/data/pointclouds/raw/" + pcl1
+        pcl_1 = o3d.io.read_point_cloud(path_pcl1)
+        npy_1 = np.asarray(pcl_1.points)
+    elif pcl1 == None and filetype == "Pointcloud":
+        path_pcl1 = os.getcwd() + "/data/pointclouds/raw/" + str(Layerheight) + "_LLS1"
+        pcl_1 = o3d.io.read_point_cloud(path_pcl1)
+        npy_1 = np.asarray(pcl_1.points)
+    elif type(pcl1) == str and filetype == "NumpyArray":
+        path_pcl1 = os.getcwd() + "/data/Numpy_Arrays/raw/" + pcl1
+        npy_1 = np.load(path_pcl1)
+    elif pcl1 == None and filetype == "NumpyArray":
+        path_pcl1 = os.getcwd() + "/data/Numpy_Arrays/raw/" + str(Layerheight) + "_LLS1"
+        npy_1 = np.load(path_pcl1)
+    else:
+        npy_1 = pcl1
+
+    if type(pcl2) == str and filetype == "Pointcloud":
+        path_pcl2 = os.getcwd() + "/data/pointclouds/raw/" + pcl2
+        pcl_2 = o3d.io.read_point_cloud(path_pcl2)
+        npy_2 = np.asarray(pcl_2.points)
+    elif pcl2 == None and filetype == "Pointcloud":
+        path_pcl2 = os.getcwd() + "/data/pointclouds/raw/" + str(Layerheight) + "_LLS2"
+        pcl_2 = o3d.io.read_point_cloud(path_pcl2)
+        npy_2 = np.asarray(pcl_2.points)
+    elif type(pcl2) == str and filetype == "NumpyArray":
+        path_pcl2 = os.getcwd() + "/data/Numpy_Arrays/raw/" + pcl2
+        npy_2 = np.load(path_pcl2)
+    elif pcl2 == None and filetype == "NumpyArray":
+        path_pcl2 = os.getcwd() + "/data/Numpy_Arrays/raw/" + str(Layerheight) + "_LLS2"
+        npy_2 = np.load(path_pcl2)
+    else:
+        npy_2 = pcl2
+    
+    ## Inverting the Z-values making it easier to process them
+    npy_1[:,2] = npy_1[:,2]*-1
+    npy_2[:,2] = npy_2[:,2]*-1
+
+    ## Creating PointCloud classes (self made class from PCL.py)
+    pcl1 = PointCloud(npy_1)
+    pcl2 = PointCloud(npy_2)
+
+    ## Creating an Z-area where points are kept (removing outliers)
+    pcl1.clean('z', -1000, -100)
+    pcl2.clean('z', -1000, -100)
+
+    ## Calibrating with the calibration parameters
+    ## Normalize to the minimum in z direction
+    pcl1.shift('z', delta1_z)
+    pcl2.shift('z', delta2_z)
+    ## Correct the tilt in z direction
+    pcl1.rotate('x', 'z', theta1_xz)
+    pcl1.rotate('y', 'z', theta1_yz)
+    pcl2.rotate('x', 'z', theta2_xz)
+    pcl2.rotate('y', 'z', theta2_yz)
+
+    pcl1.clean('z', 0.3, 300)
+    pcl2.clean('z', 0.3, 300)
+    ## Creating again numpy arrays in order to create PointCloud classes (this time we use the class from open3d)
+    npy_1 = pcl1.transform_to_np()
+    pcd1 = o3d.geometry.PointCloud()
+    pcd1.points = o3d.utility.Vector3dVector(npy_1)
+
+    npy_2 = pcl2.transform_to_np()
+    pcd2 = o3d.geometry.PointCloud()
+    pcd2.points = o3d.utility.Vector3dVector(npy_2)
+
+    ## visualization of the results
+    draw_registration_result(pcd1, pcd2, transformation_matrix_icp)
+
+    ## transforming npy3 into the right coordinate system using the generated transformation
+    npy1_transformed = np.asarray(pcd1.transform(transformation_matrix_icp).points)
+
+    ## merging of both pointclouds
+    merged_pcl = np.append(npy1_transformed, npy_2, axis=0)
+    
+    ## saving the merged pcl as .npy
+    height = Layerheight
+    gp.save_as_npArray(Data=merged_pcl, name=str(height), path = "/data/Numpy_Arrays/merged/")
+    
+    ## saving the merged pcl as .ply
+    pcd = o3d.geometry.PointCloud()
+    pcd.points = o3d.utility.Vector3dVector(merged_pcl)
+    pcl_path = os.getcwd() + "/data/pointclouds/merged/" + str(height) + "_merged.ply"
+    o3d.io.write_point_cloud(pcl_path, pcd)
+
+    return merged_pcl
+
+
+if __name__ == "__main__":
+    pass
+    # ##pcl_1, pcl_2 = calibration_acquisition()
+    # ##gp.save_as_npArray(pcl_1, Layerheight="pcl_1_calib", path = "/data/Calibration_PCLs/")
+    # ##gp.save_as_npArray(pcl_2, Layerheight="pcl_2_calib", path = "/data/Calibration_PCLs/")
+    # file_path = os.path.join(os.environ['ROOT'], 'files/calibration_parameters.json')
+    # get_calibration_parameters(
+    #     '63848113504e7d63865e576b',
+    #     '6384811d504e7d63865e576c',
+    #     '63848128504e7d63865e576e',
+    #     '63848130504e7d63865e576f',
+    #     '63848137504e7d63865e5771',
+    #     '6384813d504e7d63865e5772',
+    #     file_path,
+    #     False
+    #     )
+    # product = db.initiate_from_db('63847797504e7d63865e5767')
+    # user = db.initiate_from_db(os.environ['USER_ID'])
+    # nominal = db.State('Calibrated', 'Printjob is done and the parameters are obtained.', product, 3)
+    # nominal.post()
+    # transf_json = db.Files('Calibration Parameters', 'Transformation parameters to join the data from both sensors.', nominal, user, 'Parameters', localfilepath=file_path)
+    # transf_json.post()
diff --git a/addon/pointcloud_processing/generate_pointcloud.py b/addon/pointcloud_processing/generate_pointcloud.py
new file mode 100644
index 0000000000000000000000000000000000000000..285e4eb1e4f8b58c319081cfc64bf4403e30f7a9
--- /dev/null
+++ b/addon/pointcloud_processing/generate_pointcloud.py
@@ -0,0 +1,63 @@
+import numpy as np
+import open3d as o3d
+import pandas as pd
+import os
+
+## Generation of a pandas DataFrame and preprocessing of the data
+def generate_df(xyz_profile):
+    data = np.reshape(xyz_profile, (-1, 4))
+    df = pd.DataFrame(data)
+    df = df.set_axis(("X", "Y", "Z", "Intensität"), axis='columns')
+    return df
+
+### Generates a Pointcloud out of a pandas DataFrame and saves it as .ply
+def generate_pcl(Data, path="/data/pointclouds/raw/", name = "unknownName", LLS = "unknownLLS"):
+    if type(Data) != np.ndarray:
+        df = Data
+        xyz= df.iloc[:,[0, 1, 2]].to_numpy()
+    else:
+        xyz= Data[:,[0, 1, 2]]
+    xyz = np.reshape(xyz, (-1, 3))
+    pcd = o3d.geometry.PointCloud()
+    pcd.points = o3d.utility.Vector3dVector(xyz)
+    filepath = os.path.join(os.environ['ROOT'], path, str(name) + LLS + ".ply")
+    o3d.io.write_point_cloud(filepath, pcd)
+    print("Profil wurde als pcl gespeichert!")
+    return filepath
+
+### Saves a pandas DataFrame as hdf5
+def save_as_hdf(DataFrame, path = "/data/DataFrame/Ergebnisse.h5"):
+    df = DataFrame
+    filepath = os.path.join(os.environ['ROOT'], path)
+    df.to_hdf(filepath, key="DataFrame")
+    print("Profil wurde als .HDF5 gespeichert!")
+
+def save_as_npArray(Data, name, LLS, path = "/data/Numpy_Arrays/") -> str:
+    """Return the path to the saved file"""
+    Array = Data
+    filepath = os.path.join(os.environ['ROOT'], path, str(name) + LLS + ".npy")
+    np.save(filepath,Array)
+    return filepath
+
+if __name__ == "__main__":
+    path = "D:/DATA/"
+
+    data = np.array([])
+    df2 = pd.DataFrame(columns=["X", "Y", "Z", "Sensor", "Intensität"])
+
+    samples = os.listdir(path)
+    i = 0 
+    for sample in samples:
+        print("Layer " + str(i))
+        sample_path = str(path + str(i) + ".npy")
+        array = np.load(sample_path)
+
+        df = generate_df(array)
+        df = df[df.Intensität != 0]
+        df = df[df.Z > 20]
+        df_max = df.quantile(q=0.2)
+        df = df[df.Z < (df_max["Z"])]
+        df2 = pd.concat([df2, df])
+        i += 1
+
+    generate_pcl(df2)
\ No newline at end of file
diff --git a/addon/pointcloud_processing/process_pointclouds.py b/addon/pointcloud_processing/process_pointclouds.py
new file mode 100644
index 0000000000000000000000000000000000000000..e16a705b9966f17f1296798d3e0a7737faac3670
--- /dev/null
+++ b/addon/pointcloud_processing/process_pointclouds.py
@@ -0,0 +1,140 @@
+import numpy as np
+import open3d as o3d
+import os
+import json
+import copy
+from tqdm import tqdm
+from scipy import spatial
+
+from . import generate_pointcloud as gp
+from .PCL import PointCloud
+
+def draw_registration_result(source, target, transformation):
+    source_temp = copy.deepcopy(source)
+    target_temp = copy.deepcopy(target)
+    source_temp.paint_uniform_color([1, 0.706, 0])
+    target_temp.paint_uniform_color([0, 0.651, 0.929])
+    source_temp.transform(transformation)
+    o3d.visualization.draw_geometries([source_temp, target_temp],
+                                      zoom=0.4459,
+                                      front=[0.9288, -0.2951, -0.2242],
+                                      lookat=[1.6784, 2.0612, 1.4451],
+                                      up=[-0.3402, -0.9189, -0.1996])
+
+def merge_pointclouds(pcl1, pcl2, saving_path:str, calibration_filepath:str="data/calibration/calibration_files/transformation_parameters.json") -> np.ndarray:
+    """Merge two pointclouds, usually obtained from the laser scanners, by applying transformations described by a calibration json.
+    Pointclouds can be inputed as open3d pointclouds, numpy arrays or paths to those formats (.ply or .npy)."""
+
+    ## import the calibration parameters
+    with open(calibration_filepath, "r") as read_file:
+        calib_params = json.load(read_file)
+        transformation_matrix_icp = np.asarray(calib_params["transformation_matrix"])
+        delta1_z = calib_params['delta1_z']
+        delta2_z = calib_params['delta2_z']
+        theta1_xz = calib_params['theta1_xz']
+        theta1_yz = calib_params['theta1_yz']
+        theta2_xz = calib_params['theta2_xz']
+        theta2_yz = calib_params['theta2_yz']
+
+    ## Import the to be calibrated parts and converting them into an numpy array in order to process them
+    if type(pcl1) != type(pcl2):
+        raise NameError('Given point clouds are in different types. Try again with a same type.')
+    if type(pcl1) == str:   
+        # if not os.path.isdir(pcl1) or not os.path.isdir(pcl2):
+        #     raise NameError('Given point clouds do not exist.')
+        extension = pcl1.split('.')[-1].lower()
+        if extension == 'ply':
+            pcl1 = o3d.io.read_point_cloud(pcl1)
+            pcl2 = o3d.io.read_point_cloud(pcl2)
+        elif extension == 'npy':
+            pcl1 = np.load(pcl1)
+            pcl2 = np.load(pcl2)
+    if type(pcl1) == o3d.geometry.PointCloud:
+        pcl1 = np.asarray(pcl1.points)
+        pcl2 = np.asarray(pcl2.points)
+    if type(pcl1) != np.ndarray or type(pcl2) != np.ndarray:
+        raise NameError('Files could not be properly opened.')
+    
+    # ## Inverting the Z-values making it easier to process them
+    pcl1[:,2] = pcl1[:,2]*-1
+    pcl2[:,2] = pcl2[:,2]*-1
+
+    ## Creating PointCloud classes (self made class from PCL.py)
+    pcl1 = PointCloud(pcl1)
+    pcl2 = PointCloud(pcl2)
+
+    ## Creating an Z-area where points are kept (removing outliers)
+    ##pcl1.clean('z', -1000, -500)
+    ##pcl2.clean('z', -1000, -500)
+
+    ## Calibrating with the calibration parameters
+    ## Normalize to the minimum in z direction
+    pcl1.shift('z', delta1_z)
+    pcl2.shift('z', delta2_z)
+    ## Correct the tilt in z direction
+    pcl1.rotate('x', 'z', theta1_xz)
+    pcl1.rotate('y', 'z', theta1_yz)
+    pcl2.rotate('x', 'z', theta2_xz)
+    pcl2.rotate('y', 'z', theta2_yz)
+
+    # pcl1.clean('z', 0.3, 300)
+    # pcl2.clean('z', 0.3, 300)
+    
+    ## Creating again numpy arrays in order to create PointCloud classes (this time we use the class from open3d)
+    pcl1 = pcl1.transform_to_np()
+    pcd1 = o3d.geometry.PointCloud()
+    pcd1.points = o3d.utility.Vector3dVector(pcl1)
+
+    pcl2 = pcl2.transform_to_np()
+    pcd2 = o3d.geometry.PointCloud()
+    pcd2.points = o3d.utility.Vector3dVector(pcl2)
+
+    ## visualization of the results
+    ##draw_registration_result(pcd1, pcd2, transformation_matrix_icp)
+
+    ## transforming npy3 into the right coordinate system using the generated transformation
+    npy1_transformed = np.asarray(pcd1.transform(transformation_matrix_icp).points)
+
+    ## merging of both pointclouds
+    merged_pcl = np.append(npy1_transformed, pcl2, axis=0)
+    
+    ## saving the merged pcl as .npy
+    ##gp.save_as_npArray(Data=merged_pcl, name=str(layer), LLS="_merged", path = "/data/Numpy_Arrays/merged/")
+    
+    ## saving the merged pcl as .ply
+    if len(saving_path) > 0:
+        pcd = o3d.geometry.PointCloud()
+        pcd.points = o3d.utility.Vector3dVector(merged_pcl)
+        if saving_path[-4:] != '.ply':
+            saving_path += '.ply'
+        o3d.io.write_point_cloud(saving_path, pcd)
+        
+    return merged_pcl
+
+def layerize_pointclouds(layers, distance_threshold:float=0.2, workers:int=-1):
+    """Given a list of point clouds, sorted from bottom to top, iterates so that each layer represents only the added points."""
+    diff_layers = [layers[0]]
+    for i in tqdm(range(1, len(layers))):
+        basis = spatial.KDTree(layers[i-1])
+        raw_addition = layers[i]
+        dists, idx = basis.query(raw_addition, 1, p=2, distance_upper_bound=distance_threshold, workers=workers)
+        addition = raw_addition[dists == np.inf]
+        diff_layers.append(addition)
+    return diff_layers
+
+if __name__ == '__main__':
+    folder = 'data/pointclouds/raw'
+    calibration_path = 'data/calibration/calibration_files/transformation_parameters.json'
+    merged_layers = []
+    for i in range(20):
+        saving_path = 'data/pointclouds/layerize/%d_merged.ply' % i
+        merged_pcl = merge_pointclouds(
+            os.path.join(folder, '%d_LLS1.ply' % i),
+            os.path.join(folder, '%d_LLS2.ply' % i),
+            saving_path,
+            calibration_path
+        )
+        merged_layers.append(merged_pcl)
+    layers = layerize_pointclouds(merged_layers)
+    for (i, layer) in enumerate(layers):
+        gp.generate_pcl(layer, path="data/pointclouds/layerize/piece/layerized/", name = "", LLS =str(i))
\ No newline at end of file
diff --git a/addon/pointcloud_processing/utils.py b/addon/pointcloud_processing/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..22ffdcec906dc1d888b06f5e12431a7dab9f6a1a
--- /dev/null
+++ b/addon/pointcloud_processing/utils.py
@@ -0,0 +1,123 @@
+import numpy
+import logging
+import os
+
+def bundle_adjust(set1, set2, printer = True):
+    if set1.shape != set2.shape:
+        raise Exception("Can only bundle adjust equally shaped sets of points")
+    dim = set1.shape[1]
+    m = numpy.hstack((set1, set2))
+    mean = numpy.mean(m, axis=0)
+    m -= mean
+    H = numpy.matlib.zeros([dim,dim])
+    for d in m:
+        for i in range(dim):
+            for j in range(dim):
+                H[i,j] += d[j+dim]*d[i]
+                
+    U, s, V = numpy.linalg.svd(H)
+    
+    det = numpy.linalg.det(V.T*U.T)
+    R = numpy.asarray(V.T*numpy.diag([1,1,det])*U.T).T
+    T = -numpy.matmul(R, mean[dim:(2*dim)].T).T + mean[0:dim]
+    adjusted = numpy.matmul(R, set2.T).T + T
+    vol = numpy.linalg.norm(set1 - adjusted, axis=1)
+    if printer:
+        print("--- Bundle Adjust ---")
+        print("Rotation")
+        print(R)
+        print("Translation")
+        print(T)
+        print("Before: {}".format(numpy.mean(numpy.linalg.norm(set1 - set2, axis=1))))
+        print("After:  {}".format(numpy.mean(vol)))
+        print("Maximum deviations: {}\t{}\t{}".format(*numpy.sort(vol)[-3:].tolist()))
+        
+    return R, T, adjusted
+
+def quaternion(R, isprecise=False): #Gohlke
+    M = numpy.array(R)
+    if isprecise:
+        q = numpy.empty((4, ))
+        t = numpy.trace(M)
+        if t > M[3, 3]:
+            q[0] = t
+            q[3] = M[1, 0] - M[0, 1]
+            q[2] = M[0, 2] - M[2, 0]
+            q[1] = M[2, 1] - M[1, 2]
+        else:
+            i, j, k = 0, 1, 2
+            if M[1, 1] > M[0, 0]:
+                i, j, k = 1, 2, 0
+            if M[2, 2] > M[i, i]:
+                i, j, k = 2, 0, 1
+            t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
+            q[i] = t
+            q[j] = M[i, j] + M[j, i]
+            q[k] = M[k, i] + M[i, k]
+            q[3] = M[k, j] - M[j, k]
+            q = q[[3, 0, 1, 2]]
+        q *= 0.5 / numpy.sqrt(t * M[3, 3])
+    else:
+        m00 = M[0, 0]
+        m01 = M[0, 1]
+        m02 = M[0, 2]
+        m10 = M[1, 0]
+        m11 = M[1, 1]
+        m12 = M[1, 2]
+        m20 = M[2, 0]
+        m21 = M[2, 1]
+        m22 = M[2, 2]
+        # symmetric matrix K
+        K = numpy.array([[m00-m11-m22, 0.0,         0.0,         0.0],
+                        [m01+m10,     m11-m00-m22, 0.0,         0.0],
+                        [m02+m20,     m12+m21,     m22-m00-m11, 0.0],
+                        [m21-m12,     m02-m20,     m10-m01,     m00+m11+m22]])
+        K /= 3.0
+        # quaternion is eigenvector of K that corresponds to largest eigenvalue
+        w, V = numpy.linalg.eigh(K)
+        q = V[[3, 0, 1, 2], numpy.argmax(w)]
+    if q[0] < 0.0:
+        numpy.negative(q, q)
+    return q
+
+def rotation_matrix(q):
+    a, b, c, d = q
+    return numpy.array( 
+        [ 
+            [a**2 + b**2 - c**2 - d**2, 2*(b*c - a*d), 2*(b*d + a*c)],
+            [2*(b*c + a*d), a**2 -b**2  + c**2 - d**2, 2*(c*d - a*b)],
+            [2*(b*d - a*c), 2*(c*d + a*b), a**2 - b**2 - c**2 + d**2]
+
+        ]
+    )
+
+def euler(q):
+    a, b, c, d = q
+
+    alpha = numpy.arctan2(2*(a*b + c*d), a** - b**2 -c**2 + d**2)
+    beta  = numpy.arcsin(2*(a*c - b*d))
+    gamma = numpy.arctan2(2*(a*d + b*c), a**2 + b**2 - c**2 - d**2)
+
+    return [alpha, beta, gamma]
+
+def init_logging(log_level=None):
+    if log_level is None and 'LOG_LEVEL' in os.environ:
+        log_level = os.environ['LOG_LEVEL']
+    else:
+        log_level = logging.WARNING
+    logFormatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] [%(module)-10s] %(message)s", datefmt='%d/%m/%Y %H:%M:%S')
+    rootLogger = logging.getLogger("SmoPa3D")
+
+    fileHandler = logging.FileHandler(os.path.join(os.environ['ROOT'], "smopa3d.log"))
+    fileHandler.setFormatter(logFormatter)
+    fileHandler.setLevel(logging.WARNING)
+    rootLogger.addHandler(fileHandler)
+
+    consoleHandler = logging.StreamHandler()
+    consoleHandler.setFormatter(logFormatter)
+    consoleHandler.setLevel(log_level)
+    rootLogger.addHandler(consoleHandler)
+
+    rootLogger.setLevel(log_level)
+    return rootLogger
+
diff --git a/addon/simulation.py b/addon/simulation.py
new file mode 100644
index 0000000000000000000000000000000000000000..78ae8464385c85f09809fe92e1387c6f930ef77d
--- /dev/null
+++ b/addon/simulation.py
@@ -0,0 +1,163 @@
+import bpy
+import bmesh
+import os
+import numpy as np
+from tqdm import tqdm
+import logging
+
+from . import geometry as geo
+from .node import Node
+from .network import Network, load_network
+from .pointcloud import PointCloud
+from . import utils
+
+log = logging.getLogger('SmoPa3D')
+
+class SimulateOperator(bpy.types.Operator):
+    bl_idname = "fdm_simulator.simulate"
+    bl_label = "Simulate an FDM 3D printer"
+
+    def execute(self, context):
+        net = Network('test/benchy-02infill.gcode', 0.02, 1, node_distance=2/3)
+        net.simulate_printer()
+        net.calculate_meshes(processes=None)
+        net.save("benchy.pkl")
+
+        log.info('Plotting...')
+        for command in tqdm(net.commands.values()):
+            if command.vertices is None or len(command.faces) == 0: continue
+            node_mesh = place_mesh(command.vertices, command.faces, f'Command {command.id}')
+            group(node_mesh, f'Simulation/layer {command.layer.z}')  # Group by layer
+        return {'FINISHED'}
+
+class DrawSimulationOperator(bpy.types.Operator):
+    bl_idname = "fdm_simulator.draw_simulation"
+    bl_label = "Draw an already simulated FDM 3D printed part"
+
+    def execute(self, context):
+        net = load_network('data/simulation/over/benchy.pkl')
+
+        log.info('Plotting...')
+        for command in tqdm(net.commands.values()):
+            if command.vertices is None or len(command.faces) == 0: continue
+            node_mesh = place_mesh(command.vertices, command.faces, f'Command {command.id}')
+            group(node_mesh, f'Simulation/layer {command.layer.z}')  # Group by layer
+        return {'FINISHED'}
+    
+class LoadScanOperator(bpy.types.Operator):
+    bl_idname = "fdm_simulator.load_scan_point_cloud"
+    bl_label = "Load Scan in point cloud format"
+    
+    def execute(self, context):
+        path = "data/awk_wzl-printed_in_windows-2_lls"
+        scans = {int(os.path.split(fle)[-1].split('_')[0]): os.path.join(path, fle) for fle in os.listdir(path) if fle[-5] == '2'}
+        layers = sorted(scans.keys())
+        colors = utils.color_range(len(scans))
+        for layer, color in tqdm(zip(layers[::-1], colors)):
+            fle = scans[layer]
+            pointcloud = PointCloud(fle) 
+            pointcloud.crop_ROI((0, 25), (23, 33), (0, 10))
+            pointcloud.downsample(0.5)
+            
+            # Create an icosphere to use as an instance
+            bpy.ops.mesh.primitive_cube_add(size=0.05)
+            icosphere = bpy.context.object
+            icosphere.active_material = color
+
+            # Place instances at each vertex of the point cloud
+            placed_pointcloud = pointcloud.place_pointcloud(f'Layer {layer}', icosphere, (97.615, -10.637, 0))
+            group(placed_pointcloud, 'Scan')
+
+        return {'FINISHED'}
+
+class LoadScanMeshOperator(bpy.types.Operator):
+    bl_idname = "fdm_simulator.load_scan_mesh"
+    bl_label = "Load Scan as a mesh"
+    
+    def execute(self, context):
+        path = "data/awk_wzl-printed_in_windows-2_lls"
+        scans = {int(os.path.split(fle)[-1].split('_')[0]): os.path.join(path, fle) for fle in os.listdir(path) if fle[-5] == '2'}
+        layers = sorted(scans.keys())
+        colors = utils.color_range(len(scans))
+        for layer, color in tqdm(zip(layers[::-1], colors)):
+            fle = scans[layer]
+            pointcloud = PointCloud(fle)
+            pointcloud.crop_ROI((0, 25), (23, 33), (0, 10))
+            pcl = pointcloud.pcl[:, :3]
+            vertices, faces = geo.reconstruct_pointcloud_mesh(pcl, 0)
+            placed_pointcloud = place_mesh(vertices, faces, f'Layer {layer}')
+
+            group(placed_pointcloud, 'Scan')
+
+        return {'FINISHED'}
+
+def group(obj:bpy.types.Object, groupName:str):
+    """Group object by layer. If groupName is passed as a route, all parent layers will be created."""
+    folders = os.path.normpath(groupName).split(os.sep)
+    parent_folder = bpy.context.scene.collection
+    for folder in folders:
+        if not folder in parent_folder.children:
+            bpy.ops.collection.create(name=folder)
+            parent_folder.children.link(bpy.data.collections[folder])
+        parent_folder = parent_folder.children[folder]
+    parent_folder.objects.link(obj)
+
+def place_mesh(pointcloud:np.array, faces:np.array, name:str) -> bpy.types.Object:
+    """Plot pointcloud given by x, y and z data in blender as mesh"""
+    mesh_data = bpy.data.meshes.new(name)
+    mesh_data.from_pydata(pointcloud, [], faces)
+    bm = bmesh.new()
+    bm.from_mesh(mesh_data)
+    bm.to_mesh(mesh_data)
+    mesh_obj = bpy.data.objects.new(mesh_data.name, mesh_data)
+    return mesh_obj
+
+def place_node(node:Node) -> None:
+    if node.placed_filament is None: return
+    vertices, faces = geo.calculate_mesh(node.placed_filament, 16)
+    if len(vertices) == 0:
+        log.warning(f"Node {node} could not be plotted due to lack of normals.")
+        return
+    vertices *= node.network.env.resolution
+    positioned_node = vertices - np.repeat((1+ node.network.env.node_grid_size)//2, 3) * node.network.env.resolution + node.coord
+    node_mesh = place_mesh(positioned_node, faces, 'Node')
+    group(node_mesh, 'Layer ' + str(round(node.z, 2)))  # Group by layer
+
+def place_node_by_close_points(node:Node) -> None:
+    """Calculate mesh by finding points close to each other"""
+    if node.placed_filament is None: return
+    vertices = geo.calculate_shell(node.placed_filament)
+    vertices = geo.downsample(vertices, 0.5)
+    faces = geo.find_triangles(vertices, 2)
+    positioned_node = vertices - np.repeat((1+ node.network.env.node_grid_size)//2, 3) + node.coord / node.network.env.resolution
+    node_mesh = place_mesh(positioned_node, faces, 'Node')
+    group(node_mesh, 'Layer ' + str(round(node.z, 2)))  # Group by layer
+
+def place_obstacles(node:Node, net:Network) -> None:
+    search_radius = net.env.node_size * np.sqrt(2)
+    query = net.tree.query_ball_point(node.coord, search_radius)
+    neighbours:list[Node] = [net.nodes[x] for x in query]
+
+    for nbr in neighbours:
+        if nbr.placed_filament is None and nbr != node: continue
+        log.debug(f'Plotting node: {nbr} ...')
+        shift_vector = np.around(nbr.coord/node.network.env.resolution) - np.around(node.coord/node.network.env.resolution)
+        shifted_node = geo.shift_array(nbr.placed_filament, shift_vector)
+        vertices, faces = geo.calculate_mesh(shifted_node, 16)
+        if len(vertices) == 0: continue
+        positioned_node = vertices - np.repeat((1+ node.network.env.node_grid_size)//2, 3) + node.coord / node.network.env.resolution
+        node_mesh = place_mesh(positioned_node, faces, 'Neighbour')
+
+    log.debug('Plotting nozzle...')
+    vertices, faces = geo.calculate_mesh(node.network.env.nozzle, 16)
+    positioned_node = vertices - np.repeat((1+ node.network.env.node_grid_size)//2, 3) + node.coord / node.network.env.resolution
+    node_mesh = place_mesh(positioned_node, faces, 'Nozzle')
+    group(node_mesh, 'Nozzle')
+ 
+    log.debug('Plotting bed...')
+    bed = node.network.env.bed(node.z)
+    if len(bed != 0) > 0:
+        vertices, faces = geo.calculate_mesh(bed, 16)
+        positioned_node = vertices - np.repeat((1+ node.network.env.node_grid_size)//2, 3) + node.coord / node.network.env.resolution
+        node_mesh = place_mesh(positioned_node, faces, 'Bed')
+        group(node_mesh, 'Bed')
\ No newline at end of file
diff --git a/addon/utils.py b/addon/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..1224f0134603635fae59685e4cce16b815b6b025
--- /dev/null
+++ b/addon/utils.py
@@ -0,0 +1,62 @@
+import sys
+import logging
+import numpy as np
+running_in_blender = 'Blender' in sys.executable
+if running_in_blender:
+    import bpy
+
+def init_logging(log_level='WARNING'):
+    logFormatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] [%(module)-10s] %(message)s", datefmt='%d/%m/%Y %H:%M:%S')
+    rootLogger = logging.getLogger("SmoPa3D")
+
+    fileHandler = logging.FileHandler("smopa3d.log")
+    fileHandler.setFormatter(logFormatter)
+    fileHandler.setLevel(logging.WARNING)
+    rootLogger.addHandler(fileHandler)
+
+    consoleHandler = logging.StreamHandler()
+    consoleHandler.setFormatter(logFormatter)
+    consoleHandler.setLevel(log_level)
+    rootLogger.addHandler(consoleHandler)
+
+    rootLogger.setLevel(log_level)
+    return rootLogger
+
+def color_range(slices:int) -> list:
+    """Returns a list of colors for the given number of slices"""
+    def red(i:int) -> float:
+        """graph = \_"""
+        # return max(0, 1-2*i/slices)
+        return 0
+
+    def green(i:int) -> float:
+        """graph = _/"""
+        # return max(0, 2*i/slices-1)
+        return max(i/slices - 0.5, 0) * 2
+
+    def blue(i:int) -> float:
+        """graph = /\\"""
+        # return 1-(red(i)+green(i))
+        return min(1, 0.2 + 0.8 * 2 * i/slices) - max(i/slices - 0.5, 0) * 2
+    
+    colors = []
+    for slice in range(slices):
+        color_values = (red(slice), green(slice), blue(slice), 1)
+        color = bpy.data.materials.new(f"Color_{slice}")
+        color.use_nodes = True
+        tree = color.node_tree
+        nodes = tree.nodes
+        bsdf = nodes["Principled BSDF"]
+        bsdf.inputs["Base Color"].default_value = color_values
+        color.diffuse_color = color_values
+        colors.append(color)
+    return colors
+
+def npy_to_ply(path:str):
+    import open3d as o3d
+    xyz = np.load(path)
+    xyz = np.reshape(xyz, (-1, 3))
+    pcd = o3d.geometry.PointCloud()
+    pcd.points = o3d.utility.Vector3dVector(xyz)
+    filepath = path.replace(".npy", ".ply")
+    o3d.io.write_point_cloud(filepath, pcd)
\ No newline at end of file
diff --git a/experiments/__init__.py b/experiments/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/experiments/assessment.py b/experiments/assessment.py
new file mode 100644
index 0000000000000000000000000000000000000000..c142c29d754ea468ebe9abec59d3bd905abdb388
--- /dev/null
+++ b/experiments/assessment.py
@@ -0,0 +1,257 @@
+import os
+import random
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+from tqdm.contrib.itertools import product
+from sklearn.preprocessing import SplineTransformer
+from sklearn.linear_model import LinearRegression
+from sklearn.pipeline import Pipeline
+from sklearn.metrics import r2_score
+import seaborn as sns
+sns.set()
+import utils
+
+log = utils.init_logging("DEBUG")
+
+def load(results_path:str = "data/experiments/results/v2",
+         temperature:int = 200,
+        speed:int = 1000,
+        layer:int = 2,
+    ):
+    # Load the point cloud
+    pcl_path = os.path.join(results_path, f"temperature_{temperature}_speed_{speed}", f"{layer}_LLS2.npy")
+    npy = np.load(pcl_path)
+
+    # Invert z axis
+    npy[:, 2] = -npy[:, 2] + max(npy[:, 2])
+
+    # Crop to ROI
+    roi = [[None, None], [0, None], [None, 10]]
+    npy = utils.crop_to_roi(npy, roi=roi)
+    return npy
+
+def get_strand_rois() -> dict[list[list[float]]]:
+    """Definition of the ROI of each strand.
+    strand_rois[feeding_rate] = [[x_min, x_max], [y_min, y_max], [z_min, z_max]] """
+    strands_rois = {0.03: [[-28, -25], [40, 80], [None, None]]}
+    for i in range(1, 20):
+        strands_rois[0.03 + i * 0.01] = [[strands_rois[0.03][0][0] + i * 3, strands_rois[0.03][0][1] + i *3], *strands_rois[0.03][1:]]
+    return strands_rois
+
+def calculate_profile(strand:np.ndarray, layer:int, plot:bool=True):
+    # Noise removal
+    # Firstly, we split the lower third of the strand into two: left and right parts
+    # Then we calculate the gap between the left and right parts, add a secure margin of 10% to both ends and remove any points outside that range
+    upper_threshold = min(strand[:, 2]) + (max(strand[:, 2]) - min(strand[:, 2])) * 2/3
+    lower_threshold = min(strand[:, 2]) + (max(strand[:, 2]) - min(strand[:, 2])) * 1/3
+    upper_piece = strand[strand[:, 2] > upper_threshold]
+    lower_piece = strand[strand[:, 2] < lower_threshold]
+    left_part = lower_piece[lower_piece[:, 0] < upper_piece[:, 0].mean()]  # The left part of the bed before the strand
+    right_part = lower_piece[lower_piece[:, 0] > upper_piece[:, 0].mean()]  # The right part of the bed after the strand
+    bed_z = lower_piece[:, 2].mean()  # The z coordinate of the bed
+
+    # Calculate height
+    top_10 = sorted(strand[:, 2])[-10:]  # Get the top 10 highest points
+    height = np.mean(top_10) - bed_z
+    x_height = strand[strand[:, 2].argmax(), 0]
+    last_layer_height = height / (layer + 1) + bed_z
+    if layer > 0: strand = strand[strand[:, 2] > last_layer_height]  # Exclude previous layers
+
+    if len(left_part) > 0 and len(right_part) > 0:
+        lower_gap = min(right_part[:, 0]) - max(left_part[:, 0])
+        strand = strand[strand[:, 0] > (max(left_part[:, 0]) - lower_gap * 0.1)]  # Remove noise from the left side
+        strand = strand[strand[:, 0] < (min(right_part[:, 0]) + lower_gap * 0.1)]  # Remove noise from the right side
+        strand = strand[strand[:, 2] > bed_z]  # Remove noise from the bottom
+        if len(strand) == 0:
+            print("No strand left after noise removal")
+            return (None, None, None) if plot else (None, None)
+    else:
+        print("No gap between the left and right parts of the bed")
+        return (None, None, None) if plot else (None, None)
+
+    # Calcultate bed
+    # Assuming the data can be sliced in 3 parts by z axis, the upper part should represent the strand and the lower should represent the bed
+    # Bed is then calculated as the mean of the lower part
+    upper_threshold = min(strand[:, 2]) + (max(strand[:, 2]) - min(strand[:, 2])) * 2/3
+    lower_threshold = min(strand[:, 2]) + (max(strand[:, 2]) - min(strand[:, 2])) * 1/3
+    upper_piece = strand[strand[:, 2] > upper_threshold]
+    middle_piece = strand[(strand[:, 2] > lower_threshold)]
+    middle_piece = middle_piece[(middle_piece[:, 2] < upper_threshold)]
+    lower_piece = strand[strand[:, 2] < lower_threshold]
+    left_part = lower_piece[lower_piece[:, 0] < upper_piece[:, 0].mean()]  # The left part of the bed before the strand
+    right_part = lower_piece[lower_piece[:, 0] > upper_piece[:, 0].mean()]  # The right part of the bed after the strand
+
+    if len(lower_piece) == 0 or len(upper_piece) == 0:
+        return (None, None, None) if plot else (None, None)
+
+    # Calculate width
+    # We calculate the width by three ways:
+    #  * difference between opposite points in the middle part
+    #  * difference between opposite points in the upper part
+    #  * gap size in the center
+    # We then exclude any values outside the standart deviation and the width will be the mean of the remaining values
+    middle_left = middle_piece[middle_piece[:, 0] < upper_piece[:, 0].mean()]
+    middle_right = middle_piece[middle_piece[:, 0] > upper_piece[:, 0].mean()]
+    middle_width = np.mean(middle_right[:, 0]) - np.mean(middle_left[:, 0]) if len(middle_left) > 0 and len(middle_right) > 0 else None
+    upper_width = max(upper_piece[:, 0]) - min(upper_piece[:, 0])
+    lower_gap = min(right_part[:, 0]) - max(left_part[:, 0]) if len(left_part) > 0 and len(right_part) > 0 else None
+    widths = np.array([width for width in [middle_width, upper_width, lower_gap] if width is not None])
+    width = upper_width
+    if len(widths) == 0:
+        return None, None
+    elif len(widths) == 1:
+        width = widths[0]
+    elif len(widths) >= 2:
+        width = widths.mean()
+        
+    if plot:
+        width_start = upper_piece[:, 0].mean() - width/2
+        width_end = upper_piece[:, 0].mean() + width/2
+        fig, ax = plt.subplots()
+        ax.plot(strand[:, 0], strand[:, 2], 'ko')
+        # ax.plot(xaxis, interp(xaxis), '-')
+        ax.plot([min(strand[:, 0]), max(strand[:, 0])], [bed_z, bed_z], '-k')  # plot bed
+        ax.plot([min(strand[:, 0]), max(strand[:, 0])], [upper_threshold, upper_threshold], '--k')  # plot upper threshold
+        ax.plot([min(strand[:, 0]), max(strand[:, 0])], [lower_threshold, lower_threshold], '--k')  # plot lower threshold
+        ax.plot([x_height, x_height], [bed_z, bed_z + height], '-g')  # plot height
+        ax.plot([width_start, width_end], [np.mean([lower_threshold, upper_threshold]), np.mean([lower_threshold, upper_threshold])], '-r')  # plot width
+        ax.legend(['measurements', 'bed', 'upper third', 'lower third', 'height', 'width'])
+        ax.set_box_aspect(1)
+        ax.set_title('Front view')
+        plt.close()
+        return fig, height, width
+    
+    return height, width
+
+def assess_width_and_height(strand:np.ndarray, layer:int) -> dict:
+    step = 0.2
+    heights = []
+    widths = []
+    for y_slice in np.arange(min(strand[:, 1]), max(strand[:, 1]), step):
+        # Cut a straight line
+        slice = strand[strand[:, 1] >= y_slice]
+        slice = slice[slice[:, 1] < (y_slice + step)]
+        if len(slice) < 10: continue
+        height, width = calculate_profile(slice, layer, False)
+        if height is None or width is None: continue
+        heights.append(height)
+        widths.append(width)
+
+    stats = pd.DataFrame({'height':heights, 'width':widths})
+    
+    return {'width':{'mean': stats.width.mean(), 'std': stats.width.std()}, 'height':{'mean': stats.height.mean(), 'std': stats.height.std()}}
+
+def assess_results() -> pd.DataFrame:
+    results = pd.DataFrame(columns=['temperature', 'speed', 'run_number', 'layer', 'feeding_rate', 'extrusion_type', 'width_mean', 'width_std', 'height_mean', 'height_std'])
+
+    strands_rois = get_strand_rois()
+    for temperature, speed, run_number, layer, feeding_rate, extrusion_type in product([180, 200], [500, 700, 1000, 1200], range(1, 4), range(3), strands_rois.keys(), ['one_line', 'overextrusion']):
+        measurement = load(temperature=temperature, speed=speed, exp_number=run_number, layer=layer)
+        roi = strands_rois[feeding_rate][extrusion_type]
+        strand = utils.crop_to_roi(measurement, roi=roi)
+        stats = assess_width_and_height(strand, layer)
+        results.loc[len(results)] = {'temperature':temperature, 'speed':speed, 'run_number':run_number, 'layer':layer, 'feeding_rate':feeding_rate, 'extrusion_type': extrusion_type, 'width_mean':stats['width']['mean'], 'width_std':stats['width']['std'], 'height_mean':stats['height']['mean'], 'height_std':stats['height']['std']}
+        
+        # Clean up
+        del measurement, strand, stats
+    return results
+
+def assess_width_and_height_by_regression(strand:np.ndarray, last_layer_height:float, plot:bool=True):
+    # Model fitting
+    X = strand[:, 0].reshape(-1, 1)
+    Z = strand[:, 2].reshape(-1, 1)
+
+    model = Pipeline([
+                    ('spline', SplineTransformer(n_knots=50, degree=10)),
+                    ('linear', LinearRegression())])
+    model = model.fit(X, Z)
+    pred = model.predict(X)
+    r2 = r2_score(Z, pred)
+
+    domain = np.linspace(min(strand[:, 0]), max(strand[:, 0]), 3000)
+    pred_curve = model.predict(domain.reshape(-1, 1))
+    prediction = np.column_stack([domain, pred_curve])
+
+    # Noise removal
+    prediction = prediction[prediction[:, 0] > np.percentile(prediction[:, 0], 5)]  # Remove noise from the left side
+    prediction = prediction[prediction[:, 0] < np.percentile(prediction[:, 0], 95)]  # Remove noise from the left side
+    center = prediction[prediction[:, 0] > np.median(X) - 0.5]
+    center = center[center[:, 0] < np.median(X) + 0.5]
+    top = center[center[:, 1] > np.percentile(center[:, 1], 85)]  # Top 15% highest points
+    x_center = top[top[:, 1].argmax(), 0]
+    lower_third = prediction[prediction[:, 1] < np.percentile(prediction[:, 1], 50)]
+    left_side = lower_third[lower_third[:, 0] < x_center]
+    right_side = lower_third[lower_third[:, 0] > x_center]
+    lower_gap = right_side[:, 0].min() - left_side[:, 0].max()
+    prediction = prediction[prediction[:, 0] > (left_side[:, 0].max() - lower_gap * 0.1)]  # Remove noise from the left side
+    prediction = prediction[prediction[:, 0] < (right_side[:, 0].min() + lower_gap * 0.1)]  # Remove noise from the right side
+
+    # Calculation of characteristics
+    bed = np.median(lower_third[:, 1])
+    basis = bed + last_layer_height
+
+    # Height is the highest point minus the basis
+    highest_point = prediction[prediction[:, 1].argmax()]
+    raw_height = highest_point[1]
+    height = raw_height - basis
+    half_height = basis + height/2
+
+    # Width is calculated at half height
+    left = prediction[prediction[:, 0] < highest_point[0]]
+    right = prediction[prediction[:, 0] > highest_point[0]]
+    if len(left) == 0 or len(right) == 0:  # If the highest point is at the edge of the bed, we can't calculate the width
+        return (None, None, None) if plot else (None, None)
+    width_left = left[np.abs(left[:, 1] - half_height).argmin()]
+    width_right = right[np.abs(right[:, 1] - half_height).argmin()]
+    width = width_right[0] - width_left[0]
+
+    # Area is calculated as the area under the curve minus the area under the basis
+    basis_curve = prediction[:, 1].copy()
+    basis_curve[basis_curve > basis] = basis
+    basis_area = np.trapz(basis_curve, prediction[:, 0])
+    area = np.trapz(prediction[:, 1], prediction[:, 0]) - basis_area
+
+    if plot:
+        fig, ax = plt.subplots()
+        ax.plot(strand[:, 0], strand[:, 2], 'bo', markersize=0.02, label='measurement points')  # real data
+        ax.plot([min(strand[:, 0]), max(strand[:, 0])], [bed, bed], '-k', label='bed')  # plot bed
+        ax.plot([min(strand[:, 0]), max(strand[:, 0])], [bed + last_layer_height, bed + last_layer_height], '--k', label='last layer hight')  # plot last layer height
+        ax.plot([highest_point[0], highest_point[0]], [basis, highest_point[1]], '-g', label='height')  # plot height
+        ax.plot([width_left[0], width_right[0]], [half_height, half_height], '-m', label='width')  # plot width
+        ax.fill_between(prediction[:, 0], np.ones_like(prediction[:, 0]) * bed, basis_curve, color='b', alpha=0.2, label='area')  # area
+        ax.plot(prediction[:, 0], prediction[:, 1], 'r-', label='regression')  # regression
+        ax.legend(loc='upper left', bbox_to_anchor=(1, 0.5))
+        ax.set_xlabel('x [mm]')
+        ax.set_ylabel('z [mm]')
+        ax.set_box_aspect(1)
+        ax.set_title('Front view')
+        plt.close()
+        return fig, height, width, area, r2
+    else:
+        return height, width, area, r2
+    
+def assess_by_regression():
+    results = pd.DataFrame(columns=['temperature', 'speed', 'layer', 'feeding_rate', 'width', 'height', 'area', 'determination'])
+
+    strands_rois = get_strand_rois()
+    for temperature, speed, feeding_rate in product([180, 200], [500, 1200], strands_rois.keys()):
+        last_layer_height = 0
+        for layer in range(3):
+            measurement = load(temperature=temperature, speed=speed, layer=layer)
+            roi = strands_rois[feeding_rate]
+            strand = utils.crop_to_roi(measurement, roi=roi)
+            try:
+                fig, height, width, area, r2 = assess_width_and_height_by_regression(strand, last_layer_height=last_layer_height, plot=True)
+            except Exception as e:
+                print(f"Error while assessing {temperature}, {speed}, {layer}, {feeding_rate}")
+                NameError(e)
+
+            results.loc[len(results)] = {'temperature':temperature, 'speed':speed, 'layer':layer, 'feeding_rate':feeding_rate, 'width':width, 'height':height, 'area': area, 'determination':r2}
+            fig.savefig(f"data/experiments/assessment/v2/img/{temperature}_{speed}_{layer}_{feeding_rate}.png")
+            last_layer_height += height
+    return results
+
+if __name__ == '__main__':
+    results = assess_by_regression()
+    results.to_csv('data/experiments/assessment/v2/assessments_v1.csv', index=False)
\ No newline at end of file
diff --git a/experiments/doe.py b/experiments/doe.py
new file mode 100644
index 0000000000000000000000000000000000000000..abfd1ea381478fb9f6f2334fb38481b87cfba9f6
--- /dev/null
+++ b/experiments/doe.py
@@ -0,0 +1,61 @@
+"""Module to manage the design of experiments (DOE) to learn about the profile's cross-section"""
+
+import os
+
+def generate_experiment(folderpath:str="data/experiments/gcode", temperature:int=200, speed:int=1000, layer_count:int=3) -> None:
+    """Generates a gcode file with the given temperature and speed settings"""
+    # Setup
+    os.makedirs(folderpath, exist_ok=True)
+    gcode = setup(temperature=temperature, layer_count=layer_count)
+
+    # Generate gcode
+    global e
+    e = 0
+    y_start = 20
+    length = 100
+    for (layer_number, z) in enumerate([0.2, 0.4, 0.6]):
+        gcode += f";LAYER:{layer_number}\n"
+        direction = 1
+        for i in range(20):
+            gcode += print_strand(speed=speed, x=70 + i * 3, y=y_start + max(0, -direction * length), z=z, length=length * direction, feeding_rate=0.03 + i * 0.01)
+            direction *= -1
+
+    gcode += end()
+
+    with open(f"{folderpath}/temperature_{temperature}_speed_{speed}.gcode", "w") as fle:
+        fle.write(gcode)
+    
+
+def print_strand(speed:int, x:float, y:float, z:float, length:float, feeding_rate:float) -> str:
+    """Returns a string to print a strand at the given coordinates"""
+    global e
+    e += abs(feeding_rate * length)
+    y_final = y + length
+    move_up = f"G0 F6000 Z{round(z + 0.4, 1)}\n"
+    place_in_start = f"G0 F6000 X{round(x, 3)} Y{round(y, 3)}\n"
+    move_down = f"G0 F6000 Z{round(z, 1)}\n"
+    extrude = f"G1 F{round(speed, 3)} Y{round(y_final, 3)} E{round(e, 3)}\n"
+    return move_up + place_in_start + move_down + extrude
+
+def setup(temperature:int, layer_count:int) -> str:
+    """Returns a string to setup the printer with the given temperature"""
+    with open("doe/template_startup.gcode", "r") as fle:
+        template = fle.read()
+    
+    template = template.replace("{$TEMPERATURE}", str(temperature))
+    template = template.replace("{$LAYER_COUNT}", str(layer_count))
+    return template
+
+def end() -> str:
+    """Returns a string to end the printing process"""
+    with open("doe/template_end.gcode", "r") as fle:
+        template = fle.read()
+    return template
+
+if __name__ == "__main__":
+    def main():
+        for temp in [180, 200]:
+            for speed in [500, 1200]:
+                generate_experiment(folderpath='data/experiments/gcode/v2', temperature=temp, speed=speed)
+            
+    main()
\ No newline at end of file
diff --git a/experiments/results.ipynb b/experiments/results.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b12fe8aa372bcd13587addd0b7feda28d4f13a84
--- /dev/null
+++ b/experiments/results.ipynb
@@ -0,0 +1,1199 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 25,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>temperature</th>\n",
+       "      <th>speed</th>\n",
+       "      <th>layer</th>\n",
+       "      <th>feeding_rate</th>\n",
+       "      <th>width</th>\n",
+       "      <th>height</th>\n",
+       "      <th>area</th>\n",
+       "      <th>determination</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.03</td>\n",
+       "      <td>0.232047</td>\n",
+       "      <td>0.113483</td>\n",
+       "      <td>0.027571</td>\n",
+       "      <td>0.566229</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.03</td>\n",
+       "      <td>0.343069</td>\n",
+       "      <td>0.186798</td>\n",
+       "      <td>0.060071</td>\n",
+       "      <td>0.844442</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.03</td>\n",
+       "      <td>0.456030</td>\n",
+       "      <td>0.214355</td>\n",
+       "      <td>0.093566</td>\n",
+       "      <td>0.895364</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.04</td>\n",
+       "      <td>0.422093</td>\n",
+       "      <td>0.141609</td>\n",
+       "      <td>0.058275</td>\n",
+       "      <td>0.793031</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.04</td>\n",
+       "      <td>0.427048</td>\n",
+       "      <td>0.181689</td>\n",
+       "      <td>0.074651</td>\n",
+       "      <td>0.943355</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>235</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.21</td>\n",
+       "      <td>1.212323</td>\n",
+       "      <td>0.319786</td>\n",
+       "      <td>0.358358</td>\n",
+       "      <td>0.979150</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>236</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.21</td>\n",
+       "      <td>1.129647</td>\n",
+       "      <td>0.294548</td>\n",
+       "      <td>0.302866</td>\n",
+       "      <td>0.987627</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>237</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.22</td>\n",
+       "      <td>1.231542</td>\n",
+       "      <td>0.340750</td>\n",
+       "      <td>0.393009</td>\n",
+       "      <td>0.968387</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>238</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.22</td>\n",
+       "      <td>0.851429</td>\n",
+       "      <td>0.320425</td>\n",
+       "      <td>0.272002</td>\n",
+       "      <td>0.976035</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>239</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0.22</td>\n",
+       "      <td>1.188328</td>\n",
+       "      <td>0.230621</td>\n",
+       "      <td>0.234240</td>\n",
+       "      <td>0.945466</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>240 rows × 8 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     temperature  speed  layer  feeding_rate     width    height      area  \\\n",
+       "0            180    500      0          0.03  0.232047  0.113483  0.027571   \n",
+       "1            180    500      1          0.03  0.343069  0.186798  0.060071   \n",
+       "2            180    500      2          0.03  0.456030  0.214355  0.093566   \n",
+       "3            180    500      0          0.04  0.422093  0.141609  0.058275   \n",
+       "4            180    500      1          0.04  0.427048  0.181689  0.074651   \n",
+       "..           ...    ...    ...           ...       ...       ...       ...   \n",
+       "235          200   1200      1          0.21  1.212323  0.319786  0.358358   \n",
+       "236          200   1200      2          0.21  1.129647  0.294548  0.302866   \n",
+       "237          200   1200      0          0.22  1.231542  0.340750  0.393009   \n",
+       "238          200   1200      1          0.22  0.851429  0.320425  0.272002   \n",
+       "239          200   1200      2          0.22  1.188328  0.230621  0.234240   \n",
+       "\n",
+       "     determination  \n",
+       "0         0.566229  \n",
+       "1         0.844442  \n",
+       "2         0.895364  \n",
+       "3         0.793031  \n",
+       "4         0.943355  \n",
+       "..             ...  \n",
+       "235       0.979150  \n",
+       "236       0.987627  \n",
+       "237       0.968387  \n",
+       "238       0.976035  \n",
+       "239       0.945466  \n",
+       "\n",
+       "[240 rows x 8 columns]"
+      ]
+     },
+     "execution_count": 25,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "import pandas as pd\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "import seaborn as sns\n",
+    "sns.set()\n",
+    "\n",
+    "df = pd.read_csv('../data/experiments/assessment/v2/assessments_v1.csv')\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 26,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Setup plots\n",
+    "\n",
+    "SMALL_SIZE = 16\n",
+    "MEDIUM_SIZE = SMALL_SIZE * 1.2\n",
+    "BIGGER_SIZE = SMALL_SIZE * 1.5\n",
+    "\n",
+    "plt.rc('font', size=SMALL_SIZE)          # controls default text sizes\n",
+    "plt.rc('axes', titlesize=SMALL_SIZE)     # fontsize of the axes title\n",
+    "plt.rc('axes', labelsize=SMALL_SIZE)    # fontsize of the x and y labels\n",
+    "plt.rc('xtick', labelsize=SMALL_SIZE)    # fontsize of the tick labels\n",
+    "plt.rc('ytick', labelsize=SMALL_SIZE)    # fontsize of the tick labels\n",
+    "plt.rc('legend', fontsize=SMALL_SIZE)    # legend fontsize\n",
+    "plt.rc('figure', titlesize=MEDIUM_SIZE)  # fontsize of the figure title"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 27,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "11 (out of 240) data points disconsidered because of low determination\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(f\"{df[df.determination <= 0.7].shape[0]} (out of {df.shape[0]}) data points disconsidered because of low determination\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Pre processing\n",
+    "\n",
+    "* Calculate gap distance\n",
+    "* Remove data of layer = 2"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 28,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/var/folders/c0/l87ylxnd52v7n4kq_c122hg00000gn/T/ipykernel_7555/2155986236.py:9: SettingWithCopyWarning: \n",
+      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
+      "Try using .loc[row_indexer,col_indexer] = value instead\n",
+      "\n",
+      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
+      "  df['gap'] = (1 + df.layer) * 0.2 - df.last_layer_height\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>temperature</th>\n",
+       "      <th>speed</th>\n",
+       "      <th>layer</th>\n",
+       "      <th>feeding_rate</th>\n",
+       "      <th>width</th>\n",
+       "      <th>height</th>\n",
+       "      <th>area</th>\n",
+       "      <th>determination</th>\n",
+       "      <th>last_layer_height</th>\n",
+       "      <th>gap</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.03</td>\n",
+       "      <td>0.343069</td>\n",
+       "      <td>0.186798</td>\n",
+       "      <td>0.060071</td>\n",
+       "      <td>0.844442</td>\n",
+       "      <td>0.113483</td>\n",
+       "      <td>0.286517</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.04</td>\n",
+       "      <td>0.422093</td>\n",
+       "      <td>0.141609</td>\n",
+       "      <td>0.058275</td>\n",
+       "      <td>0.793031</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.04</td>\n",
+       "      <td>0.427048</td>\n",
+       "      <td>0.181689</td>\n",
+       "      <td>0.074651</td>\n",
+       "      <td>0.943355</td>\n",
+       "      <td>0.141609</td>\n",
+       "      <td>0.258391</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>6</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.05</td>\n",
+       "      <td>0.462910</td>\n",
+       "      <td>0.172832</td>\n",
+       "      <td>0.077505</td>\n",
+       "      <td>0.874186</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>7</th>\n",
+       "      <td>180</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.05</td>\n",
+       "      <td>0.519121</td>\n",
+       "      <td>0.185009</td>\n",
+       "      <td>0.091320</td>\n",
+       "      <td>0.957285</td>\n",
+       "      <td>0.172832</td>\n",
+       "      <td>0.227168</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>232</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.20</td>\n",
+       "      <td>1.273103</td>\n",
+       "      <td>0.311648</td>\n",
+       "      <td>0.361049</td>\n",
+       "      <td>0.987496</td>\n",
+       "      <td>0.340510</td>\n",
+       "      <td>0.059490</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>234</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.21</td>\n",
+       "      <td>1.142737</td>\n",
+       "      <td>0.359291</td>\n",
+       "      <td>0.382367</td>\n",
+       "      <td>0.967821</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>235</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.21</td>\n",
+       "      <td>1.212323</td>\n",
+       "      <td>0.319786</td>\n",
+       "      <td>0.358358</td>\n",
+       "      <td>0.979150</td>\n",
+       "      <td>0.359291</td>\n",
+       "      <td>0.040709</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>237</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0.22</td>\n",
+       "      <td>1.231542</td>\n",
+       "      <td>0.340750</td>\n",
+       "      <td>0.393009</td>\n",
+       "      <td>0.968387</td>\n",
+       "      <td>0.000000</td>\n",
+       "      <td>0.200000</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>238</th>\n",
+       "      <td>200</td>\n",
+       "      <td>1200</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0.22</td>\n",
+       "      <td>0.851429</td>\n",
+       "      <td>0.320425</td>\n",
+       "      <td>0.272002</td>\n",
+       "      <td>0.976035</td>\n",
+       "      <td>0.340750</td>\n",
+       "      <td>0.059250</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>152 rows × 10 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "     temperature  speed  layer  feeding_rate     width    height      area  \\\n",
+       "1            180    500      1          0.03  0.343069  0.186798  0.060071   \n",
+       "3            180    500      0          0.04  0.422093  0.141609  0.058275   \n",
+       "4            180    500      1          0.04  0.427048  0.181689  0.074651   \n",
+       "6            180    500      0          0.05  0.462910  0.172832  0.077505   \n",
+       "7            180    500      1          0.05  0.519121  0.185009  0.091320   \n",
+       "..           ...    ...    ...           ...       ...       ...       ...   \n",
+       "232          200   1200      1          0.20  1.273103  0.311648  0.361049   \n",
+       "234          200   1200      0          0.21  1.142737  0.359291  0.382367   \n",
+       "235          200   1200      1          0.21  1.212323  0.319786  0.358358   \n",
+       "237          200   1200      0          0.22  1.231542  0.340750  0.393009   \n",
+       "238          200   1200      1          0.22  0.851429  0.320425  0.272002   \n",
+       "\n",
+       "     determination  last_layer_height       gap  \n",
+       "1         0.844442           0.113483  0.286517  \n",
+       "3         0.793031           0.000000  0.200000  \n",
+       "4         0.943355           0.141609  0.258391  \n",
+       "6         0.874186           0.000000  0.200000  \n",
+       "7         0.957285           0.172832  0.227168  \n",
+       "..             ...                ...       ...  \n",
+       "232       0.987496           0.340510  0.059490  \n",
+       "234       0.967821           0.000000  0.200000  \n",
+       "235       0.979150           0.359291  0.040709  \n",
+       "237       0.968387           0.000000  0.200000  \n",
+       "238       0.976035           0.340750  0.059250  \n",
+       "\n",
+       "[152 rows x 10 columns]"
+      ]
+     },
+     "execution_count": 28,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "last_layer_height = []\n",
+    "for row in df.iloc:\n",
+    "    if row.layer == 0:\n",
+    "        last_layer_height.append(0)\n",
+    "    else:\n",
+    "        last_layer_height.append(df[(df.temperature == row.temperature) & (df.speed == row.speed) & (df.feeding_rate == row.feeding_rate) & (df.layer < row.layer)].height.sum())\n",
+    "df[\"last_layer_height\"] = last_layer_height\n",
+    "df = df[df.determination > 0.7]\n",
+    "df['gap'] = (1 + df.layer) * 0.2 - df.last_layer_height\n",
+    "df = df[df.layer <= 1]\n",
+    "df"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Dataset"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 29,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X = df[[\"temperature\", \"speed\", \"feeding_rate\", \"layer\", \"gap\", \"width\", \"area\"]].values\n",
+    "height = df[[\"height\"]].values\n",
+    "width = df[[\"width\"]].values\n",
+    "area = df[[\"area\"]].values"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Width model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 30,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXQAAAO+CAYAAACkVp0qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1f/H8Xc6aRmlrDIsICMte1NRUaYgioqCAwFx4UDwK+7tF1HcKKDiRLaICiJDhjL8sipbkK3s1QIFSnd7f3/0l9g0aXtTkrahr+fj4UN67yf3npyc3Jx8cu45FsMwDAEAAAAAAAAASjy/4i4AAAAAAAAAAMAcEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAUMwOHz6sqKgo+38DBw70ynnmz5+vu+++W+3atVPTpk3VsWNHDRkyRAcPHtRzzz3nUAb4hvxeU5R8sbGxWrBgQXEXo9Q6dOiQvvzyS6ft69atc7ge/vjjj8VQuqKR+/Nn3Lhxbh/D7OdHXu193LhxDo8/fPiw22XwtrS0NE2YMEG9e/dWq1at1LJlS3Xr1k1PP/20DMMwfZwlS5Zo1apVTtv5DC66Ojh16lSh2vnF8sR77WKkpaXpiy++0MmTJ4v0vEWpNF27AUAioQsApcLUqVM1YsQIrV+/XufOnVN6erpOnjypFStWKDg4uLiLh0LgNfVdR48e1eOPP66BAwdq3759xV2cUicpKUljxoxRr169tGLFiuIuziXvUmjvTz31lMaMGaPdu3crKSlJycnJOnTokLZs2SKLxVLg4/fs2aPBgwfrscce04kTJ4qgxMgtPT1dEydOVI8ePTR79uziLk6RWrZsmW688Ua99957SktLK+7iAAA8JKC4CwAA8L7p06c7/G2xWOTv769y5copIiKimEqFi8Fr6pvi4uJ0/fXXKyUlpbiLUmrdfffd+uuvv4q7GCWCn5+fQkND7X8HBgZ69PiXQnuPj4/X4sWLHbYFBAQoMzNT0dHRBT5++/btuv3225WRkeGtIl4SgoKCHNqipz3xxBNasmSJJKlChQpeO09JM3nyZL3xxhvFXQwAgBeQ0AWAUuDIkSP2f0dFRWn69OkqW7asEhMTi7FUuBi8pr4pNTXVp5Nbl4KzZ88WdxFKjJo1a2rTpk1eO/6l0N6PHj3qMK1C3759NXLkSBmGodTU1AIfn5iYSDLXhJEjR2rkyJFeO35pfd+X1ucNAKUBCV0AKAVyfqFu1KiRypUrJ0kqX758cRUJF4nXFAC8L3dCunXr1vL395eUPVIXAACgONALAYAS7rnnnrPP99ahQwd98803+vPPP/X111/rjz/+0NmzZ1W9enV17dpVDz74oCpXrmx/rKuFRebMmaM5c+ZIkkaPHq1bb7013/OvW7dOgwYNsv/t6jE//vijnn/+efvfkydPVkxMjEOMYRhauHChfvjhB23fvl2JiYkKDw9Xy5Yt1bdvX1177bVO5z58+LC6du1q/3vatGlq3ry5Jk+erJ9//lkHDhxQYGCgmjZtqrvvvlvdunXL83kcOHBAkydP1po1a3Ts2DFlZGSoatWqatmypfr376+2bdu6fFxhym1WRkaGFi9erLlz52r37t2Ki4tTaGio6tWrpy5duuiuu+6yJ2ptPPGa5n69Nm7cqFOnTmnChAn63//+pzNnzqhGjRrq2rWrHnroIVWsWNHlcY4fP65vvvlGq1ev1qFDh5SSkqLg4GBFRESodevWuvfee2W1Wh0ek7s9/frrr1q8eLEmT56s+Ph4ValSRQ8//LDuvPNOSVJycrJmzJihxYsX659//tH58+fl7++vSpUqqVGjRrrjjjvUuXNnh3PkbjczZ87U5ZdfrgkTJmjJkiU6ceKEqlSpoq5du2r48OGqUKGC0tPTNXnyZM2ePVsHDx5UhQoV1K5dOz3yyCNOz8EmOTlZ06ZN0y+//KJ//vlHGRkZioiIUExMjAYPHqz69es7xHfp0sVhZLUkjR8/XuPHj5ck7dq1y2HfiRMn9NVXX2nFihU6duyYAgMDFRkZqU6dOumee+5ReHi4U5kGDhyo2NhYSVKfPn30yCOP6LXXXtPGjRsVEBCgBg0aaOLEiQoNDVVKSopmzJihX3/9VXv37rXXbZUqVdS0aVPddtttF9W+T548qR9//FFLly7VkSNHlJiYqMqVK6tFixa65ZZbnF43V8+hb9++euONN7R69WpNmjRJW7ZsUVJSkiIjI3X99ddr8ODBTu+RvOS8ltrExsba31Ourls2SUlJ+uKLL7RgwQIdPXpUYWFh6tChgx5++GGn19kmIyNDP/zwg+bOnas9e/YoOTlZVatWVZs2bXT33XerZcuWpsotSZ9//rnef/99SdnTJKxZs8bhfbl+/Xrdfffd9r8ffPBBPfXUUw7HuPXWW7V9+3ZJUtOmTfXDDz84vVcee+wxDRs2zOn8a9eu1aRJk7R582YlJiaqdu3auuWWWzR48OA8y+xue8/p8OHD+vjjj/X777/r7NmzqlGjhrp3764HH3wwz+tRQc6ePauffvpJv/zyiw4ePKiEhARVrFhRTZs2Va9evXTjjTfKz+/f5UVyX6tsXnjhBb3wwguSsq9fl112WZ7ndHW9fv755/X888+rVq1a+u233/J87M6dO/Xpp58qNjbW3uZvuOEGDR48WCEhIS4fU5hrRn4u9rMid/uaPHmyjh07pk8//VRHjhxRxYoVdccdd2jYsGFO78+c7SP3a7FixQqVK1dOX375pRYtWqQjR44oNDRUrVq10n333ad27drZY8eNG2dvczZHjhyxvza5PzMv5n2bmJior7/+WosXL9ahQ4dUpkwZtW/fXo888shFT/Nw/Phxex/m4MGDSk5OVnBwsGrWrKk2bdpo0KBBatCgQZ51ZmN7Pfr06aO33npLkmM7HT16tKpUqaL33ntPf//9t8qVK6du3bpp1KhRkv7tE82ZM0c7duzQmTNnJGX/mFyvXj317NlTd911l9OPHRfTl80pLi5OX3zxhZYvX65jx46pQoUKuuqqq1xetwDgUkdCFwB8zPTp0/XGG2843MJ58OBBTZw4UQsXLtR3331X4uZQTUpK0ogRI7Rs2TKH7SdPntTixYu1ePFi9e7dW2+++aaCgoLyPE5CQoJuv/127dixw74tOTlZq1ev1urVqzVs2DA99thjTo/79ttvNWrUKKWnpztsP3LkiI4cOaL58+froYce0ogRI7xSblcOHz6sESNGaMuWLQ7b09LStHHjRm3cuFETJ07Uhx9+qPbt27t1bHetWbNGTz/9tJKSkuzbDhw4oK+//lrz5s3TV1995ZTU3Lp1q+6//36dO3fOYXtycrL279+v/fv36+eff9Z7772nnj175nnujz/+2GEl6mPHjql27dqSsl/vgQMHavfu3Q6PyczM1PHjx3X8+HEtW7ZM99xzjz3B4srff/+t4cOHOyxGdPToUU2ZMkX/+9//NGnSJD3++OMOt57HxcVpwYIFWr58uaZNm6bGjRs7HPPAgQMaMmSI9u/f77T9wIED+uGHH/Tcc8+5/EJtxvLly/XEE084vCapqanasWOHduzYoRkzZujjjz/O84cIKbudDhgwwGFVc9ucqfHx8brnnnu0d+9eh8dkZGTY3xeLFi3K8z1VkAULFujll192mgLk2LFjOnbsmH755Rd17NhR77//vsLCwvI91pgxYzRhwgSHbXv37tW4ceO0aNEizZw506tzb548eVK33nqr/vnnH/u2uLg4zZ07V4sXL9Y333yjVq1aOTzm1KlTeuSRR5ze37a6nTt3rh544AE99dRTphbV6tq1qz2hm5WVpdWrV6tXr172/WvWrHGItyXEc5Y357zB1113XYHntPnwww/16aefOmzbu3ev3nvvPf3666+qUqWK6WOZ8ccff+j111/XhQsX7NsOHDigL7/8UosXL9Z3333ndmLSdo2Li4tz2B4XF6dly5Zp2bJlmjRpksaPH68aNWp45HlcjHnz5um5555z+Mzas2ePPvzwQy1btkxTp051+szxxDWjIIX5rMhpzpw5Dtf7uLg4Va9e3e1yHDhwQM8//7zDDwapqan67bfftGzZMr355psF/rDpysW8b/fv36/7779fhw8ftm9LSUnR4sWL9dtvv11UwnHDhg0aMmSI0/U0KSlJe/fu1d69ezV79mxNmDBBV111VaHPI2W/xgsWLLD3Mc+cOWNPrhqGoaefflo///yz0+NOnz6t06dPa/369Zo/f74mTZqU7wKthenLbtmyRUOGDFFCQoJ9W3x8vH766SctWbJE995778U8dQDwOX4FhwAASoq//vpLI0eOVEZGhiwWi8NoIil7BMcnn3xi/zs0NNQp0REQEGDfXlS3iz733HNOSVHbLas2P//8s95+++18j/Piiy/ak7muyv7JJ584rSC+aNEivfrqq07J3Nx199lnn2nu3LleKXdu586d0z333OP0pTH3gkSnTp3S/fffr82bN9u3eeM1zfkFPXe9nDx5Uo888ojDF8m0tDSNGDHCIZlrsViczp2enq5XX31VWVlZeZ7b9uXeVq9Vq1bVFVdcIUkaNWqUUzLX1aJNkyZN0s6dO/M8xyuvvGJvF7nL+M8//6hnz572ZG7u1zcpKUlvvvmmw7bz58/rgQcecErm5nxsZmam3njjDS1atMi+LSQkxGlkXWBgoNNrun37dg0bNswhaSI5vjYJCQl66KGHHJIHua1atcqezLWVrXfv3pKyR2HlTuYGBgY6JSnGjRunFStW5HkOV5YuXaonnnjCKfmQ+7X7/fff9eCDD+Y7D+nSpUvtyVw/Pz+n8u3evVtTp041VS7boks5j2FLcIeGhjq99jbjxo2zJ3Nzt5+UlBS9/vrrDtvS09M1dOhQp/d37uN/+eWXmjhxoqmy169fX3Xr1rX//fvvvzvsz53Q3b59u0NCdOXKlQ7zwOZ3N0NOc+bMcUrmSv+2xU2bNtkXmsrNbHvP7aWXXrKXPXedHTx4UJ9//rmpstts3bpVDz74oFMyN3d73LZtmwYNGmQfcejv76/Q0FCnpJStHYWGhjpdL3PL7/F5jbKVpGeffVbp6eny8/NzOseWLVv03XffOWzz1DWjIO5+VuRmu97bHhsUFKQePXq4XY7hw4fbk7m535OGYWj06NH264qtzeUsr8VicfrMvJj3bWpqqoYOHepUt7ZzZmRkaMyYMW4/Tyn7s+Spp54q8Hqalpamxx57TKdPn7aXOzQ01CkuJCREoaGhef4IPXfuXKc+5k033SRJ+v77752Sua4+kzdt2qSZM2fm+Zzc7ctK2QnjRx991CGZK/1bx0lJSfr444/zPCcAXIpI6AKADzl79qwCAwP16quvatOmTdqyZYv+85//OMSsXr3a/u9NmzY5LXjTu3dv+3ZbJ92b1qxZ45DUatasmebMmaNt27Zp4cKFDqNPp06dqn379uV5rISEBLVv314///yztm3bpvnz5+vyyy+378/MzNTatWvtf6enpzsk4wIDA/Xss88qNjZWW7du1ZgxYxy+1Hz44Yf2pIcny53b6NGjHb74xcTEaN68edq2bZtWr16tgQMH2velpaXpmWeesY9i8cZrmpSUpOuvv15Lly7V1q1bNXnyZNWqVcu+//Dhw5o2bZr9719//VWHDh2y//3YY49p8+bN2r59u5YuXepwS2pCQoIOHjyY7/mfeOIJbdmyRStXrtSbb74pPz8/xcXFaf78+faYzp07a9WqVdq2bZtiY2N1xx13OBxj69ateR4/PT1dPXv21IoVK7Rt2zanBHxSUpKqVq2qKVOmaNu2bZo2bZrDbfwbN25UWlqa/e+vvvrK4TndcsstWrlypbZu3apvvvnGYYTfm2++qczMTEnS/PnzNW/ePIdzP/TQQ06v6RtvvGE/n5+fn55//nlt2LBBGzdu1KhRo+xfoBMTE/XBBx/k+bwlqU6dOlq0aJG2bt2qzz77zD6qM+cPFdddd529brZu3aq3337b4Ut6zhF1BTl//rzDaGk/Pz89/vjj+uOPP7Rt2zZ99913atSokX3/li1b8k3QJSQkqEKFChozZoy2bNmi9evXq3///g4xOa95+Rk5cqQ2bdqkmjVr2re1bdvWXv95jVzMyMjQrbfeqpUrV2r79u2aNm2aw63l27dv16lTp+x/z5kzx+H17NixoxYvXqxt27bp+++/dxjB+NFHH5letChnEjZnQjcpKcmp/WdkZGjDhg32v1euXGn/d7169fKcJiKnzMxMjR071mHbTTfdpGXLlmnr1q2aMmWKfTS9K2bbuyvPPfecNm7cqK1btzotlOXODwy2ZFjOH/QGDhxov5bMnz/f/gOSlJ0wtl0fbG3jiy++cDjmf//7X/tzyNmWXMnv8Tmvb7kFBQXp7bff1pYtW7R582YNHTrUYX/uOvDkNSM/7n5WuHLXXXdp48aNio2N1ZgxYwo1FUFCQoJ69uyppUuXavv27fr2228dRoqfO3dOf/75pyTp4Ycfdnp/2xYDzPmZeTHv27lz5zr8QFa5cmV9/PHH2rx5s1atWqX777/f7edos3PnTh09etT+93/+8x9t2LBB27Zt07p163TffffZ9yUnJ2vhwoWS/m2/Dz30kMPx5s2bp02bNuW7AF23bt0UGxurDRs2aMyYMfbrxTfffGOPiYyMtPfF/vzzT/uUDDa5E+M5uduXlbJ/uI2Pj7f/Xbt2bU2ePFlbt27V8uXLdfPNN+d5PgC4VJHQBQAf88QTT6h///4KCQlRUFCQHnnkEYd503LeXl0S5EwGBQQEaOzYsWrUqJH8/PxUr149ffTRRypTpozL+NyqVKmizz77TFarVRaLRQ0aNNDjjz/uEJPz+a9Zs0bHjx+3/z1w4EDdd999CgsLU2BgoHr16qUBAwbo8ssvV8+ePdW3b1/7yDBPljunM2fOOCQ5qlevrs8++0wNGzaUlP1F8KWXXlL37t3tMQcOHNDSpUtNHb8woqOj9cEHHygyMlKBgYGKiYnRF1984TBqZsGCBfZ/9+jRQwsXLtSHH36op59+Wo899pi9LiIjI52+WNlGDLlSv359PfzwwwoMDFRERISuueYaSdkjdZcvX67PP/9cTz75pF5//XX7F/awsDDdc889ps9Ro0YNvfvuu6pevbosFotuueUWhySElJ1kad++vfz8/NS2bVuHeR8zMzMdRgXlnOexQYMGevPNNxUREaGAgAB16NBBr776qn3/8ePH9b///S/PsuV28OBBh0Rcv3797PPEhoSEqF+/fg4J/8WLF+v8+fN5Hu8///mP6tatq4CAAHXq1MmeiMw56iwgIMD++gUFBemWW27RhAkTNHXqVK1Zs0YfffSR6fL/9NNPDomOQYMG6dFHH7UnbVq0aKHPPvvMYYTm5MmTHW67zW3UqFHq1auXgoKCVK5cOb3wwgsOSSBvX/OioqLsr7GUnSi5/fbbHWKOHTtm/3fO9hEeHq4PP/xQderUkZ+fn5o1a2afOkHKHuGbX2Ivp5xtMi4uzj4qff369U53IEj/TruQkZHhkBzJeW3Jz/bt2x1uaW/WrJneeecd1axZU4GBgWrfvr3TdcIT7rrrLt17770qW7asAgICdMcddzj8SJSzrguycuVKHThwwP539+7d9dJLL9mvJQ0aNNCECRMcbvv/6aefHBJHxWH48OG65ZZbFBQUpODgYA0bNkxVq1a178/5uebpa0Z+3P2syC0sLEwvvPCCQkJCFBYWZnqkeG5Wq1VjxoxRZGSkJKlVq1ZOt9u7e124mPft4sWLHY715ptvqlu3bgoODlaVKlX0zDPPFPoH9NwjhIOCguw/RFesWFHPPPOMPvjgA33//ffasGGDw1zahT3fK6+8ogoVKig0NNRhapcZM2Zo6tSpevnll/XOO+/Yk9xBQUHq16+fw7y3tpHueXG3L5vzTgA/Pz+NGzdOMTExCgwMVI0aNfTOO+9c1HQiAOCLmEMXAHyMqy9A9erVs48Oye/25eKQc8RLRESEkpOTnUaz1qhRw35Lc34jt6688kqnW3Xr1avn8HfO5597hEjOhIjNs88+q2effdar5c5p7dq1DqM9bV9ocrv//vsdvsCsXr0637loL8att97qlJSpX7++mjZtah/5t3v3bqWlpSkoKMie1LbVfXp6unbt2qVt27Zpw4YNDqMBJeWbrLvyyivz3BcREaGIiAj7wlz79+/Xtm3btGnTJqdbzvM7R4cOHZxuL61atarDLbsdO3Z02J97XkdbwuzYsWMOyZSGDRs6Tb2QezGXTZs2mV5cbOPGjQ5/161b16nd5UxGp6ena9u2berQoYPL4+VVv926dbP/CLFgwQItXrxYzZo1U5s2bdS6dWu1adOmUItP5X7tXY1Mi4iIUO/eve235J47d07btm1zudiQv7+/0+JptoWebAt8efua17lzZ6epHnLPs5qSkiIpux3mHC17+eWX68SJEw5Twdhuhbbdur5p0yanUceutGzZUlWqVLEnG1euXKno6GiH6RauuOIK+10KtoTupk2bHKZHMZtEyzlXuZS9iFLueqhbt66aNGliHw3pCa4Wy6tRo4Z96hl3Xm8z7TEkJET9+/e3j1zNysrSunXrdMMNN7hRas/KXQcWi0U1atSwTxtha2+S568Z+XH3syK31q1buz3fvCtdu3Z1KkfuvkDOz9mCXOz7Nud7pVKlSurUqZPTOW688UanaZ3MsFqtqlOnjv2HiXfeeUfjx49Xu3bt1Lp1a7Vu3Vrdu3f3SL1K2a9nXusw2BYLtS06FxcXp23btmnz5s1au3atww+rrn5kysmdvmxaWpr+/vtv+99NmjRRdHS00+N79eql9evX53teALiUkNAFAB9TrVo1p205E4I550ksKrZbyl3JOW/hkSNHHEZ7uJJzNFVurp577gRvzuefe5RVzhFOBfFkuXPKvep77i+heW3PmUT0tLxWaa9du7b9S25WVpbOnj1rr8OMjAzNmTPHfvtmzgRDbvm1SVevaU6rV6/WrFmztGbNmnxH/OR3Dleve84vv+Hh4U5fhnPPC2g7fu55OBcuXGi/xTUvZtuGq+O//fbbBc7RvH//fpfJmeDg4DyTss8//7wOHz7sMIoz563w/v7+ateunQYNGuTyh5C85Gzf5cqVy/P1zd2+jx075jKhW7FiRZeJiqK85rl6DrnnRbVdA8+ePeuQyNi4caPHrh1+fn7q0qWLff7U33//XUOGDHGYZuaRRx7R1q1blZSUZJ9HN2dSs3r16mrWrJmp8+WeCiKv60RkZKRHE7qukkk56zu/z5vcCnu9dWcUsDe4UweevGYUpDCfFTl5asHWgvpBtnKYdbHv25zvlbzqKK/tBfHz89PYsWP1yCOP2KdeSEpK0ooVK+xTb4SGhqpLly568MEHXSY63VHQa7Rv3z7NmDFDy5cvd5h6yV3u9GXPnj3r8Hd+1yIAKE1I6AKAj3G1arCnb3nNj6sv0/mNhHHny7ckh5Fkubl67mZWiLfJbxRnbp4sd075rfqcU+4vo0X5GtvkTpTZbv1MSkrSfffd5zAquXbt2mrZsqWaN2+u+Ph4+0JWBck5V21uo0aN0pQpU+x/V6pUyX6OyMhIPfnkk6bO4WrRlpzcGdnkbruQzLcNyb0khE1et0/nV7cVKlTQ5MmTtXLlSs2bN0//+9//HEZX2eajXrt2rQYMGKCXX37ZVFk83b7zOl5Rvh9cjaDP67rj7fbRrVs3e0J306ZNOnLkiH10YGhoqNq0aaM2bdro999/t8+jm3O+1W7dupm+ZuaOy6vOCxqJ566cU9nkVRazfOl6m5M7bc6T14zCyuuzIrf8rknu8HQ/6GLftznP7Y33SXR0tBYuXKh58+Zp0aJF+uOPP5ScnGzfn5SUpHnz5mnhwoV67733CkxG5ye/12j+/Pn2Bfuk7PdqixYt1KxZM7Vu3Vqvvfaa6aku3HkNc28vqmsRAJR0JHQBwMcU9ottYeXuOLu63TW/RX0qV65sH13asGFDp0Vy3OHuc8996/uRI0ecFgM6duyY/vzzT9WvX1+1a9e2J/88We6cco9+yXkbYU62qRxsClp852L8/fffLkdh5hzdFhgYaJ+39LPPPrMnc4ODg/XFF18oJibGHvvtt9+aPndeydTVq1c7JHOffvpp3Xffffb2mFe9eVvuNnX33XfrlVde8djxK1Wq5PD3Rx99VOipNgpKVFssFl177bW69tprZRiGdu/erc2bN+uPP/7Q4sWL7e/1qVOn6s4777TP85yfatWq2adCSExM1MmTJ12OxDLbvov6enexKlasKH9/f3uCqFOnTvrss888dvwOHTrYb/tOT0/XRx99ZE+mtW3bVoGBgerQoYN9SpKff/5Zu3btsj/e7Py5knNbz2s0XkGLHhYnV9fbVq1aOcUV5fXW0zx5zSiIu58VuXlqWgBPXxcu9n1buXJlex3k9T65mNGsUnbytG/fvurbt6/S0tL0559/avPmzVq9erV9nvbMzEy98cYb6tmzZ6ET3Hm9RufOndNLL71kT5r26NFDb731lsNdUjnnjy+IO69hhQoVFBAQYP9R3lt1DAC+hkXRAAD5Klu2rMPfrkZf2OY2dKV58+b2f+/fv9/py//p06f10EMP6e2339YPP/ygPXv2XFyBc8h9C3fOOWltZs6cqWHDhqlXr15q2bKlfXEZb5W7TZs2Cgj49/fU6dOnO4y0sfnqq68c/r766qtNHb8wfvrpJ6fRy4cOHXK4jbpRo0b2cuecv7ZevXoOyVxJ9oSeGXl96cw99+Udd9zhEOvOOTwpMjLSYRqD1atXO40KWr16tYYPH66xY8dqwYIFDvMw5n6+uUfX5Wx3kvNq9pI0ceJEPffcc/riiy+0bNky+5yOueVVt/v27dNXX32lF154QXfeeadWrlwpi8WiqKgo3XHHHXrvvff0xBNPODxm9+7dLo+V2xVXXOHwd+52LEknTpxw+IGkUqVKatKkianje0LOREJhRjfmJygoyOGW582bNzv94LVnzx49+uij+uCDD/TTTz+5lYQICgpymO/5559/tv/bdgt9znmTc9ZzxYoV7XNfmpG7Lc6fP99pJOamTZscEsa5FdTevS33tclVe0xOTtb06dPtfwcGBjq144vh7Trw5DWjIO5+VuRWnCOf83vfX+z7Nuc0JqdOnXKY19rGnR86c1q7dq3Gjx+vESNG6LbbbtPp06cVFBSkNm3a6P7779dXX33lMOdyfHy8Tp06Zf87d+K0oClq8nqN1q9f79BubrrpJodk7vHjx722mGBgYKAaNWpk/3v79u1OP8JkZmZq1qxZXjk/AJRUJHQBAPnKvTjUnDlz7PMLZmZmauLEiS6/QNrcfPPN9n+np6dr6NCh2rBhgzIyMhQfH68XX3xRy5cv19dff60XXnjBPqenJ3To0MGh/N9//73Gjx+v06dPKyMjQ0uXLtXEiRPt+8PDw+1fzLxV7sqVKzuMcDp+/Lgefvhh+0Igp06d0qhRo7R06VJ7jNVqdbnIiqfs2bNHjz/+uI4eParMzExt3rxZQ4YMcbgNtXfv3vZ/5xylvWvXLv3www/KyMjQ6dOnNW7cOH3//fcOxy/MbZC5R4K///77unDhglJSUvTzzz9r1KhRF32OwrBYLA6rlf/zzz964okndPDgQRmGoV27dum1117TokWL9PHHH2vEiBFKSEiwx+e+zXT37t1KT0+3fzmNiopySCzMnj1b48aN0+nTp5WVlaWlS5fqww8/1OzZs/Xee+/ptddeyzN5kpeEhAS98847+uGHH7Rp0ya98sorWrNmjTIyMpSVlaVdu3Zp0aJFDo8xO/907969HW6Znzx5sj799FP7Ld5btmzRQw895JAYyDnyuijkfA0OHz6sc+fO6fTp025NfZCfnO0jISFBjz76qHbu3KmsrCwdOnRIL730kn799Vd99tlneuaZZ5wWsCpIzsWEciambEnI6OhohYeHO+3v0qVLnrfCu9KgQQOHtrh+/Xq9+OKLio+PV3p6ulavXu2U+M+toPbubZ06dXJou0uWLNGoUaPsCa+9e/fq4YcfdvjRpW/fvoVaEDAvuetg586dyszMdFpMsbCK4pph4+5nRUmS83U4c+aMjh49qvPnz9uTkBfzvs39nJ966imtWLFCWVlZio+P18iRI+2jaN21adMmjRs3TvPnz9e2bdv0xBNPaO/evTIMQ2lpaVq1apXDArDBwcEKCwtz+byl7GRoenq6Dh8+7FY5cn8mf/nll/Z2sH79ej300EMOyWJPfybfeOON9n9nZmbq4Ycf1qZNm2QYho4cOWKvFwAoTZhyAQCQL9voOduIyBMnTqhHjx5q0KCBTpw4ofj4eIeVn3Pr1q2bOnToYB+xsnv3bvXv39/h9kabunXrql+/fh4re2BgoF544QUNHz5cUnZyY9y4cRo3bpzL8//nP/+x327ozXK/9NJL2rhxo30xm7Vr1+qGG25QYGCg05eg0NBQvfvuu15PeC1dulRLly51uK3Rpl69eg7Pr23btvYvTllZWXrhhRf08ssv5zkPYWESZe3atXMYNTdjxgx9++23slgsLke45Tfth6c98sgjWrBggT0RsGTJEi1ZssRl2+jTp4+ioqLsf1esWFEhISH2UdlLly5V8+bNlZWVpXXr1qlixYp64YUXdO+99yozM1OGYWj8+PEaP358gW3WrDZt2qhbt272Hw2OHTumwYMHy8/PTxaLxekcVqtVbdq0MXXsypUr69VXX9Xzzz8vKbt9fPjhh/rwww9dtu+YmBjde++9bpX/YtWoUcOejDl+/LhiYmLs14brrrvuoo/fv39/zZo1y/4eWb9+vW6++WaXr1/79u3d/rGmU6dOTu/TihUr2kewWSwWXXHFFU6L9blaVb4gzz77rO677z57ouaHH37QDz/84PBc8rv+m2nv3hQYGKh3331X999/v728U6ZM0ZQpU1y2x4YNG+qpp57yaBlq1Kjh8PeUKVM0bdo0hYSEaOPGjR45h7evGTm581lRkuR8HVJSUtS1a1cZhqFnn31W995770W9b7t06aL27dvbf9iNj4/XkCFDHB7r7++vgIAAl9NW5WfgwIH67rvv7Aui2foLAQEB9tc7p9tuu83h9c09fcjjjz8uf39/XXPNNabnupek1q1bO7zmmzZtUufOnV3Wj+T5z+Q77rhD3377rf3HoP379+vOO+90uhYlJycXy+LAAFAcGKELACjQSy+95LBIS2pqqrZv3674+HhVrlxZ7777br6PHz9+vNq2beuwLfcXgDp16mjSpEkem2PPpkePHnr11VedRiTlPL/FYtHDDz+svn37Fkm5q1WrpkmTJjndZp47uVC9enVNmjTpoletLshjjz1mT6zk/oJeq1Ytffrppw6v/9ChQ51Gbuesl0aNGjkkoM3erp9Tz549ddVVVzlsMwzDnsytVKmSwxd0T07VUZBKlSrp66+/dpqfM3fb6NKli/773/86bPP393eag9L2nGxzNsfExOjtt992Whwq9/GffPJJ9enTp1DP4e2333a4dd9WDlc/VnzyySdujey89dZbNWrUKIfbcSXn9n3dddfp008/LfRowcLKnbS11b/tzoOLFRQUpK+//loNGjRw2J67blu0aKFPPvnE7eNXqFDBaeqEmJgYh1urbdMv2ISGhhZq2pYrr7xSr7zyitMPSrbn0rRp03wXJzTT3r2tQ4cOGj9+vNOcwLnbY9u2bTVp0iSPLdxlU7VqVad5e7OysnThwgWPLU5WFNcMyf3PipLE1fveMAz7+/5i3rd+fn768MMPHaYFyPnYwMBAjRo1yukzw4xy5crpyy+/VO3atR22Z2RkOCUuO3furGeffdZh25VXXuk0dVZmZqbb77+IiAg9+uijTtttzzEgIMDhx8tDhw65nE6qsEJCQjRhwgTVqlXL5flDQ0M1duzYYl/QEACKEiN0AQAFat26tb777jtNmDBBsbGxOnv2rGrWrKlu3brp/vvvV1paWr6PL1eunKZOnaqff/5Z8+fP1/bt25WQkKDAwEDVq1dP3bt314ABAzz+Rdqmf//+uuKKKzR58mStWbNGx48fV1ZWlqpWrao2bdqof//+LhfK8Wa569evr5kzZ2rJkiWaN2+edu7cqbi4OIWEhKhBgwbq3r277rzzziL5cty0aVPNnTtXH374oVauXGl/fXv06KEhQ4aofPnyDvHVqlWzT1+xYsUKxcXFKTg4WJdffrmuv/56DRw4UPfdd5/Wr18vSVq4cKEef/xxtxZB8fPz04QJEzRx4kT9/PPPOnDggCwWi2rVqqWrr75aDzzwgL799lv7F+vNmzfr6NGjRbaYUVRUlH755RdNmzZNv/76q/bv36/z58+rXLlyaty4sW6++WbddNNNLr9c/ve//1V4eLgWL16s06dPKywsTE2aNHFIgPbu3VutW7fWlClTtGrVKh09elSpqamqVKmS2rRpo7vvvtvpxwZ32JIES5cu1dy5c/Xnn38qPj5ehmGoQoUKatiwobp166Z+/fo5JYnM6Nevn6655hrNnj1bv/32mw4dOqTz58+rcuXKatWqlfr27evVeaHzc8cddyglJUUzZ87UwYMHFRoaqnr16qlu3boeO0dERITmzJmjWbNmafHixdq9e7fOnj2rkJAQNWzYUDfccINuv/32Qv+A1a1bN4d5OnPP+ZpzHl1J6tixo8tV5c3o37+/mjVrpi+++EKxsbFKSkrS5ZdfrltuuUUDBgzQggUL8n28mfbubV26dNGCBQv0008/acmSJdq/f78SEhJUsWJFNW3aVDfddJOuv/56ry3CN27cOL3//vtasWKFzp8/r0qVKqlly5Z53tVQGN6+Zkjuf1aUJFdffbXee+89ff3119q7d6+CgoJUu3ZtNW7c2B5zMe/bypUra+bMmZo0aZL9M6tcuXKKiYnRkCFD1KhRI3366aeFKnv9+vU1b948zZo1S0uWLNGePXt09uxZ+fv7q0qVKmrSpIluuukml4sehoeH65tvvtFHH32kjRs3KisrS9WrV3f60ceMoUOH6vLLL9eUKVO0c+dOpaenq3LlymrTpo3uvfdeJSYmavDgwZKyfzBZunSpR6fgqFu3rn766Sd98cUXWrRokY4ePaqKFSvqmmuu0cMPP6zIyEiPnQsAfIHF4J4EAABKlR9//NF+S7wkTZgwwWFRFQAA+KwAAKDk4p4EAAAAAAAAAPARJHQBAAAAAAAAwEeQ0AUAAAAAAAAAH0FCFwAAAAAAAAB8BIuiAQAAAAAAAICPYIQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwC4KIZhFHcRAAAAAAAoNQKKuwAA4E3jxo3T+PHj3XrMr7/+qssuu8xLJbp0nDt3TmPHjlWTJk3Up0+f4i4OAAAAfFhCQoKmTJmiZcuW6dChQ0pJSVF4eLiaNWumG264Qddff70sFktxF7PQZs2apZdeekl9+vTRW2+9VdzFAeDjSOgCuKRFRUWpd+/eDttOnTql1atXKzQ0VF27dnV6TGhoaFEVz6eNHj1aP/74o0aNGlXcRQEAAIAP++uvv3TvvfcqISFBl112mdq1a6eAgAAdO3ZMy5Yt09KlS/X999/r008/VXBwcHEXFwCKHQldAJe06667Ttddd53DtnXr1mn16tUKDw/Xe++9V0wl831MtQAAAICLlZGRoWHDhikhIUEjR47UHXfc4bD/wIEDeuyxx7Rq1SqNGTNGzz33XDGVFABKDubQBQAAAAAAxWLDhg06fPiw2rZt65TMlaQ6dero7bffliTNnDmTQQUAIBK6AOBk27ZtGj58uDp06KCmTZuqa9euGj16tE6fPu0UGxUVpVtvvVVnz57VqFGj1LFjRzVv3lw33XST5s2bJ0k6duyYnnzyScXExKh9+/a69957tXPnTofjjBs3TlFRUfrll1+0cOFC3XzzzWrevLk6d+6s//73v4qLi3NZ1pMnT+r1119Xly5d1LRpU1155ZV64okntHv3bqfYgQMHKioqSrt379agQYPUrFkzXX311VqwYIGk7NERs2bN0j333KOYmBg1adJE7du318CBAzV//nyn5z179mxJ0ksvvaSoqCj9+OOPDudZvXq1Uxl+/PFHRUVF6amnnrJvW7dunaKiovTGG29oypQpuvLKK9WiRQv1799fWVlZkqTMzEzNnDlT/fr1U6tWrdSqVSvdcccd+vHHH+nUAwAA+LBTp05JUr7z4zZu3Fi33nqrevfureTkZEn/9jnj4+P18ccfq0uXLmrevLl69eqlzz//XGlpaS6P5U5fX8peN2LMmDHq2bOnmjVrppiYGD300ENav369y/jz58/rgw8+UPfu3dW8eXPdcMMNmjVrljtVAgAFYsoFAMjhp59+0gsvvKDMzEw1adJEtWrV0o4dO/TNN99oyZIlmjx5stOCaRcuXNAdd9yhkydPKiYmRqdPn9bmzZv15JNP6syZM/rss8/k5+enNm3aaN++fVq9erX69++vhQsXKiIiwuFYc+bM0bJly1SnTh116tRJ27dv1/Tp07V8+XJNmTLF4dw7d+7Ufffdp1OnTtnjT5w4oQULFujXX3/VuHHjdO211zo9x2HDhunChQu69tprtW3bNjVt2lSGYWjYsGH67bffFBYWphYtWig4OFh79+5VbGysYmNjderUKQ0aNEiS1Lt3b23evFmHDh1Sy5YtFRkZqdq1a19U3a9cuVIHDhxQ+/btZbFYVLNmTfn5+SkjI0OPPfaYli1bpvLly6t169YKCAhQbGysnn/+ecXGxrKwBAAAgI+KioqSJP3xxx8aN26c7rnnHlWoUMEpbvTo0S4f/9JLL2nZsmVq2bKlGjVqpNjYWL3//vtas2aNPv/8cwUGBtpj3e3rHz9+XIMGDdKBAwdUvXp1dezYUefOndPKlSu1cuVKjRw5Uv369bPHnz17VgMHDtSuXbsUERGhTp066ciRI3rppZfUoEEDT1UZAEgGAJQya9euNaxWq9G5c2eH7fv27TOaNm1qtGrVyli3bp19e2ZmpvHBBx8YVqvVuOuuuxweY7VaDavVavTq1cuIj4+3b3/99dft+x566CEjOTnZMAzDSE9PN+666y7DarUaX375pT1+7Nix9viRI0caGRkZhmEYRlpamvH000/bj2OTlpZmdO/e3bBarcbEiRONrKws+75ff/3VaNKkidGuXTvj1KlT9u0DBgwwrFarce211xpnzpyxPzfDMIxFixYZVqvV6Nu3r5GYmOjwHD/77DPDarUa3bt3d9j+7LPPGlar1fjuu+8cttvOs2rVKqe6/+GHHwyr1Wo8+eST9m2218NqtRpffPGFQ73nrJtBgwY5PJ+4uDjjlltucVkGAAAA+I7nn3/e3h9s0qSJMXDgQGPcuHHGmjVrjJSUFJePsfU5o6OjjXnz5tm3x8fHG7179zasVqvx1Vdf2bcXpq9vO8dbb71lpKWl2bdv3rzZaNu2rdGkSRNjz5499u0jR440rFar8cgjjziU+7vvvrM/v2effbbwFQUA/48pFwDg/02aNElpaWkaNmyY2rdvb9/u5+en//znP4qKitKGDRu0efNmp8cOHz5clStXtv9900032f/93HPPqUyZMpKkgIAAdenSRVL2Ag+51atXTy+88IL8/f0lSYGBgRo5cqTCw8O1bNkyHT16VJK0ZMkSHThwQJ07d9bgwYMdblHr0qWL7rzzTp09e1bff/+90zl69+6tihUr2p+bJKWnp6tLly566qmnVLZsWYf4u+66S5J0+PDhPGrOM/z9/dW/f3/7335+fkpLS9OkSZMUGBiod999V5UqVbLvr1KlikaNGiVJ+uqrr7xaNgAAAHjPyJEj9fjjjys0NFTp6elat26dfbRu+/btNWzYMO3YscPlY/v27asbbrjB/nflypXtfcTp06fbt7vb19+yZYtiY2MVHR2tp59+2mGkb4sWLfToo48qPT1dkydPliSlpaXpxx9/VGBgoEaNGqXg4GB7fL9+/dS5c+eLrygA+H8kdAHg/61bt06SFBMT47TPYrHo6quvliTFxsY67W/ZsqXD3+Hh4ZKkkJAQ1a1b12Gf7RYyV/N6XX/99fZkrk2ZMmXs57aVce3atZKkK664wuVz6dixo0N8TtHR0U7bbrjhBn366acOzz0lJUV//fWX5s6dKyl7HtvMzEyX5/OE2rVrKzQ01GHbX3/9pfPnz6tevXqqVq2a02OaNGmiypUr659//slznmEAAACUbAEBAXr00Uf1v//9T2PGjFHfvn1Vp04dSdl90sWLF+u2227TjBkznB6bM5lr07x5c0VEROjQoUM6cuSIJPf7+rb4du3a2QdB5GTrb9vi//zzTyUlJalp06YOgxBsunXrVkAtAIB5zKELAP/v2LFjkqQ+ffqYisspLCzM4W/biFlX83/lt+CDreOaW40aNSRlL4KWswyjR4/Ocz4xKXver4LKapOYmKiZM2fq999/1759+xQXFyfDMBzKa3hxATLbqOGcbCOSd+3aZZ9fLS/Hjh1T1apVvVE0AAAAFIGyZcuqV69e6tWrlyTpxIkTWrlypSZNmqQ9e/Zo5MiRatOmjaxWq/0xuQdP2NSoUUMnTpzQyZMnVatWLbf7+rZ+6JQpUzRlypQ84239bVs/PfcaGTa51+EAgItBQhcA/p9t9OkNN9zg8ld4G1cjXAMCPHM5zT0618aWSLXtz8rKkpQ9wsDVyFUbV6MDXD23PXv26J577tGpU6cUHh6u5s2b68Ybb1RUVJRiYmLUqVMnd5+KS/mN8HWV6LY9z5o1a6pNmzb5Hjv3VBEAAAAo+fbu3au4uDi1bdvWYVoDKTs52q9fP918880aNGiQNm3apHnz5mnEiBH2mLz67bn7z+729W390GbNmuWZNJb+7cPmN2hD8tz3BQCQSOgCgF21atV05MgRPf7443mOlPW2EydOuNxuGyFgG6lrG4nau3dvh5V1C2vkyJE6deqUHnjgAY0YMcIhsXz27Fm3jmXrzLpK3p4/f96tY9meZ/Xq1fXee++59VgAAACUfEOHDtX+/fs1a9YsNW/e3GVMUFCQevfurU2bNikhIcFh34kTJ1wOcMjdf3a3r2/rh1511VV64oknCoy3jcy1nTc32wheAPAE5tAFgP/Xrl07SdKKFStc7n/yySd122236ddff/VaGZYvX+60LSkpSatWrZK/v7+uvPJKU2WdPHmyevfurY8//tjUeW2LPzz88MNOo4RXrVpl/7dtpIKU9ygE2zy4p06dyvM8ZjVr1kxlypTRzp07XXaCT5w4oR49emjw4MG6cOGCW8cGAABA8WvdurUk5TutgST9888/kuQw3YLkuj+8efNmxcXFKTo62p6Ydbevb4v//fffHfrANkuWLNH111+v1157TZLUtGlTVahQQdu3b3eZ1HXVzweAwiKhCwD/b+DAgfL399dHH32kNWvWOOybMWOG5s2bpz179qhFixZeK0NsbKxDZzYtLU0vv/yyEhISdPPNN9sXW+vVq5eqVq2qJUuWaOLEiQ5z227dulVjx47V7t27C5x31sY2NUPuZPUff/yh119/3aE8NkFBQZKcR93ablP79ttvHeJ/+eUXLVmyxFR5bEJDQ3X77bcrKSlJTz/9tEOS+MKFC3ruuee0f/9+lS1blikXAAAAfNADDzygMmXKaO7cuXrllVecRuBmZWXpu+++07fffqvKlSvrlltucdj/1VdfadOmTfa/4+Li9NJLL0mSBg8ebN/ubl8/JiZGjRo10vbt2/XOO+849GsPHDigUaNG6e+//9bll18uSQoMDFT//v2VmZmpZ555RomJifb4RYsW6eeffy50HQFAbky5AAD/r2nTpnrhhRc0atQoDR48WI0bN9Zll12mf/75R3v27JG/v7/effddValSxWtlqF69ukaNGqUff/xRkZGR2rp1q44dO6ZGjRrpmWeesceFhIRo7NixGjJkiN566y1NnTpVUVFRSkhI0MaNG2UYhu655x7Tq+nee++9Gj16tJ599lnNnDlTVatW1cGDB7Vjxw5VrFhRVatWVVxcnOLi4lSuXDlJ/y5A8cknn2jTpk26+eab1a1bN91+++2aNm2aNm3apOuuu07NmzfXoUOH9Ndff6lPnz6aPXu2W3Xy5JNPaseOHVq7dq26d++uZs2aKSQkxH7LXd26dTVy5Ei3jgkAAICSoX79+ho3bpyefPJJzZw5Uz/++KOaNm2qiIgIpaSkaNu2bYqPj1eVKlU0YcIEe1/UpkKFCrr77rvVvn17hYaGau3atbpw4YJuueUWhwXQ3O3rWywWjRkzRvfcc48mTpyo+fPnq0mTJkpJSdH69euVnp6uHj16aMCAAfZzPProo9q4caNiY2PVrVs3tWvXTvHx8dq4caNatWrlkHgGgIvBCF0AyGHAgAGaNm2aunfvruPHj2vZsmVKSkpSr1699P3336tHjx5ePf8tt9yiUaNGKTU1VcuWLVNwcLAee+wxTZs2zT4616Z169aaM2eO7rzzThmGoZUrV+rgwYOKiYnRxx9/rBdeeMH0eQcPHqz3339fzZo10+7du7Vs2TIlJydr4MCBmjt3rnr27ClJWrZsmf0xd911l32ExMqVK7Vt2zZJ2QuYffvtt+rRo4eSk5O1YsUK+fv7a8yYMXrwwQfdrpMyZcro66+/1osvvqh69epp69atWrdunapVq6Zhw4Zp1qxZqly5stvHBQAAQMlwzTXXaNGiRRo+fLh9MMCvv/6qjRs3qnr16ho+fLgWLlyoZs2aOT32tdde03333ad9+/Zp9erVqlevnkaPHq23337bKdbdvv7ll1+uOXPm6P7771doaKhWrVqlnTt3qmnTpho9erQ++OADh+nKgoOD9dVXX+nJJ59UeHi4VqxYobi4OD311FN6/PHHPV9xAEoti5HzPl0AQLEYN26cxo8fr4cfftjUogsAAABAaTZw4EDFxsZq4sSJ9nUmAKC0YIQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAj2AOXQAAAAAAAADwEYzQBQAAAAAAAAAfQUIXAAAAAAAAAHxEQHEXwNcZhqGsrKKZtcLPz1Jk54LvoF3AFdoFXKFdwJWiahd+fhZZLBavnwclU1H1mbnOuY86cx915h7qy33UmfuoM/dQX+4raX1mEroXKSvL0OnTF7x+noAAP4WHl9W5c0nKyMjy+vngG2gXcIV2AVdoF3ClKNtFpUpl5e9PQre0Koo+M9c591Fn7qPO3EN9uY86cx915h7qy30lsc/MlAsAAAAAAAAA4CMYoQsAAFAKZWUZ2rH/tNL/OaNAi6H6NcPk58cIWvgm2jMAAChNSOgCAACUMht2ndT0pXt05nyqfVt4+WD179ZQbaKqFWPJAPfRngEAQGnDlAs+wDbiYMXGw9qx/zQTVwMAgELbsOukPp69zSH5JUlnzqfq49nbtGHXyWIqGeA+2jMAACiNGKFbwjHiAAAAeEpWlqHpS/fkGzNj6R61aliV29VR4tGeAQBAacUI3RKMEQcAAMCTdh9KcOpX5Hb6fKp2H0oomgIBF4H2DAAASisSuiWU2REHTL8AAADMSriQf/LL3TigOBWUzHU3DgAAwFeQ0C2hGHEAAAA8rWLZYI/GAcXpfFKaR+MAAAB8BQndEooRNAAAwNOskRUVXj7/ZG2l8sGyRlYsmgIBF6Fc2UCPxgEAAPgKErolFCNoAACAp/n5WdS/W8N8Y+7q1pAFpOATKpUr49E4AAAAX0FCt4RiBA0AAPCGNlHVNLRPU6d+Rnj5YA3t01RtoqoVU8kA99BfBgAApRUJ3RKKETQAAMCbsrKy8v0bKOnoLwMAAG/LyjK0Y/9prdh4WDv2n1ZWllHcRZIkBRR3AZA32wia6Uv3OCyQVql8sO7q1pARNAAAwG0bdp3Ux7O3OW0/eyFdH8/exihdAAAAQNn95tw5ufDywepfAnJyJHRLuDZR1dSifhUt33xEZ5MzFBYSoE4taykggMHVAADAPVlZhr6c91e+MV/N36FWDasyqhElXlaWoW8W7sw3ZtIvu2jPAADAbXkNgjhzPrVEDIIgoVvCufo1YOG6gyXi1wAAAOBb/tp/Wqnp+U+tkJKWqb/2n1bTepWLqFRA4ew8eEYXUjLyjUlMTtfOg2fUuG6lIioVAADwdb7wozHDPEsw268BOZO50r+/BmzYdbKYSgYAAHzR6j+PeTQOKE47D5zxaBwAAIDk3o/GxYWEbgll9teAkjIZMwAAKPniz6d4NA4oTobJbrDZOAAAAMk3fjQmoVtC+cKvAQAAwLeElwv2aBxQnIKDzN3iaDYOAABAkmS261CMXQwSuiWUL/waAAAAfEtIkL9H44DitGN/gkfjAAAAJMlaq6JH47yBhG4JlSVz94aZjQMAADiXlO7ROKA4JaXlfzebu3EAAACS5Odvbuit2ThvIKFbQoUGB3g0DgAAICTIXL/BbBxQnMLKBnk0DgAAQJLOJaV5NM4bSOiWUMkpmR6NAwAAiGkU4dE4oDjVrBTq0TgAAABJqhBq7sdgs3HeQEK3hLKYHLVtNg4AAODgyfMejQOK05nzqR6NAwAAkKSsLJPToJqM8wYSuiVUdJ1wj8YBAACs3XHSo3FAcTqXbHJOaJNxAAAAkrT7UIJH47yBhG4JZb2sokfjAAAAMjOzPBoHFKfgQH+PxgEAAEiSzN4NX4x3zZPQLaF2H07waBwAAEB07YoejQOKUwWTi52ZjQMAAJCk6EiTd82bjPMGErol1I79pz0aBwAAcEfnhh6NA4pT2WBzI2/NxgEAAEiSNbKiR+O8gYRuCRV/LsWjcQAAAPtPmFvszGwcUJzOXDA3N67ZOAAAAMk37ponoVtCWQxzE3GYjQMAADhl8odgs3FAcapULtijcQAAAJJv3DVPQreEqhRmsoNqMg4AAGCPyZV4zcYBxSm0TIBH4wAAACQp7myyR+O8gYRuCVU2ONCjcQAAAHuPnPVoHFCcDp1M9GgcAACAJJ0zOV2T2ThvIKFbQiWlmWsUZuMAAACSUk32L0zGAcXp1HmTU4iYjAMAAJCk9Iwsj8Z5AwndEsoik3PomowDAAAoHxLk0TigOFUuX8ajcQAAAJIUFGguXWo2zhtI6JZQ0XXCPRoHAABQvXKIR+OA4nRZtbIejQMAAJCky6tX8GicN5haIeDQoUMePWlkZKRHj3cpqmeyUZiNAwAAMH1jDzcAFQp95qKVmJzh0TgAAABJiqodrgXrDpqKKy6mErrdu3eXxeKZnr3FYtFff/3lkWNdymat2Gs6bmCPaC+XBgAAXAoSL5hMgJmMgyP6zEVr54EzHo0DAACQpCPx5hZUPRKfqGb1K3u5NK6ZSuhKUpkyZRQefnGZ5zNnziglhUUJzDhxJtmjcQAAAMFB5rp+ZuPgjD5zUTI8HAcAACDFnzXXDzMb5w2me+vdu3fXO++8c1Ene/rppzVv3ryLOkZpUSUs2KNxAAAA1sgwbd4bbyoOhUOfuejUjiinAycumIoDAAAwq1pFc+tJmI3zhiJdFM0w+HXcLCPLs3EAAABXNqru0Th4B31mczIzzHWEzcYBAABI0jXNa3o0zhtMjdCdPHmyKle++DkhHnnkEd1+++0XfZzS4GBcwaMN3IkDAAAYN+dP03EvDmrr5dJceugzF62tf5ubG9dsHAAAgCSt3HrUdNx17Wt7uTSumRqh2759e9WvX/+iT1a/fn21b9++UI+NjY1VdHS0Zs2a5dbj0tLS9PXXX6t3795q2bKlrrzySj311FM6eLDg1eqKU2iwudkwzMYBAACcOm9uni+zcXBEn7lomR13y/hcAADgDl9Y16rQ2cCpU6dq5syZOnjwoNLS0vKM88QKvX///bdGjBjh9u1nGRkZeuyxx7RixQpVq1ZN11xzjQ4dOqSff/5Zv/32m6ZPn67o6OiLKpu3dGt7mXaYWJG3W9vLiqA0AADgUhAaFKAE5d1vyxkHz6DP7D31apTXtn8K7i/Xq1G+CEoDAAAuHSV/4dVCzaE7Y8YMvfHGG9qzZ49SU1NlGEae/2VlXdxv4mvWrNGAAQMUFxfn9mOnT5+uFStW6Morr9TixYs1duxYzZ49W88//7wuXLig5557rsTOUXbslLmpFMzGAQAANK5b0aNxyB99Zu+qWDbQo3EAAACSVLu6uR+DzcZ5Q6GGX0ybNk1+fn56+eWXdd1116lChQqyWCweLdipU6c0btw4zZw5U35+fqpZs6aOHjU3h4WUvZjExIkTJUkvv/yyQkL+XXlu8ODBWrp0qf744w+tXbtWHTp08GjZPWHv4bMejQMAADhscu59s3HIH31m7zoUl+TROAAAAEn656i5XNs/R8/q2ha1vFwa1wo1Qvfw4cO64oordOedd6pSpUoKCAiQv79/nv8VxoQJEzRjxgzVrl1bkyZNUkxMjFuP3717t44ePap69eqpXr16Tvu7desmSVq+fHmhyudtqemZHo0DAAA4dyHdo3HIH31m7wotY3LNCZNxAAAAkrT38DmPxnlDoRK6ERERXr/tKjIyUq+++qrmzZuntm3dX2V57969kqSGDRu63N+gQQNJ2Z3YkqhCaJBH4wAAAEJMJrbMxiF/9Jm9q0mdSh6NAwAAkKTMLHP9N7Nx3lCo3nrfvn01fvx47du3zyMr+boyaNCgi3r8yZMnJUnVqlVzub9q1aqSpPj4+Is6jyQFBBQqL56vquEhBQf9f5w3zg/f4O/v5/B/QKJdwDXaBSSpbXQ17TtS8EiCttHV6F94AH1mR55uU5VN9pcr01/OE58N7qPO3EN9uY86cx915h7qq2CN6lTUiTPJpuKKq49RqITu/fffr127dumuu+7S3XffraioKIWFheUZXxzzbSUlZc+VVaZMGZf7bdttcYXl52dReHjZizqGK9UqlzMd543zw7dUqGDuCw1KF9oFXKFdlG63dYvWzF/3mooLCSrcFAD4F33mf3mjzxxZPe+6zB1Hfzl/fDa4jzpzD/XlPurMfdSZe6ivvHVqU0fLNx8zFVdcfYxCJXRTU1OVmpqqc+fOacKECfnGWiwW/fXXX4Uq3MWwzUNW0MITF3sbXFaWoXPnPL/Qgr/Jcvkbhs6cYeGS0srf308VKoTo3LlkZWZe3OrYuHTQLuAK7QKStP2f06biNmw7qiaXe/Y29QoVQkrdSBD6zP/yRp/ZbB/4zJkLOnMm1KPnvlTw2eA+6sw91Jf7qDP3UWfuob4KduJUoum4M2fMDcg0y2yfuVAJ3ffff19LliyRxWJRvXr1VKlSyZuXKjQ0u9OWkpLicr9tuy3uYmRkeP4NsOfwGdNxHZpW9/j54VsyM7O80g7h22gXcIV2Ubpt3RtnOi4qsqJ3C1MK0Gd25Olrz4J1B0zHNalX2aPnvtTw2eA+6sw91Jf7qDP3UWfuob7yFmxyGoXgAL9iq8NCJXQXLVqkcuXKafLkyWrcuLGny+QRERERkvKe7ysuLvsLjW1esJImITHNo3EAAADb95v7wXj7/jPq5+WylAb0mb3r9DnXSejCxgEAAEjS5r3m1g7YvDdezRtU8XJpXCvUfW/nzp1Tu3btSmzHVPp3pV7byr252bZbrdYiK5M7QoJMrkJtMg4AACAlNdOjccgffWbvCg40OXrGZBwAAIAknUwoeEE0d+K8oVC9m3r16ikhIcHDRfGsevXqKTIyUnv27NHBgwed9i9ZskSSdO211xZ10UyJaRTh0TgAAIDKFYI8Gof80Wf2riZ1zU2jYDYOAABAkqqGmVswzmycNxQqoTto0CBt2rRJy5cv93BxCuf06dPat2+fjh496rB9wIABMgxDL774ohIT/53QeNKkSVq/fr0aN26sK6+8sqiLa8phkxMwm40DAABobHKhM7NxyB99Zu8qGxro0TgAAABJqlIx2KNx3lCo+/WbNWumTp066dFHH1WnTp3UokULhYWFKSDA9eH69u17UYUsyLRp0zR+/Hi1b99eU6ZMsW8fMGCAli1bprVr1+q6665T27ZtdfjwYW3fvl1hYWF69913vVqui7HnoMlF0Q6eka6o693CAACAS0J4uTIejUP+6DN7V1JyukfjAAAAJCn+bKpH47yhUAndG2+8URaLRYZh6LffftOyZcvyjfd25zQvAQEB+vzzz/Xll19q7ty5WrZsmSpXrqybbrpJw4YNU+3atYulXGYcO2NuHg6zcQAAAIkmE1tm45A/+szeddrk4sBm4wAAACTp8EmTd82bjPOGQiV0b7nlFlksFk+XJV9vvfWW3nrrLZf7hg0bpmHDhrncFxwcrKFDh2ro0KHeLJ7HBQf6ezQOAAAgpIzJRVdNxiF/9Jm9q1I5c7c5mo0DAACQpACTqTazcd5QqN56Xp1EeE6l8mV06OQFU3EAAABm/HP0nOm4js1rerk0lz76zN5VLsTc3Lhm4wAAACQpI9PwaJw3FGpRNHhf9XBziVqzcQAAAAmJ5ub5MhsHFCemEAEAAN4QUsbcj8Fm47yh0PfTpaamasWKFTpw4IBSU/Pv9D/22GOFPU2pdTA+yaNxAAAAqemZHo1Dwegze8/p8ykejQMAAJCk8xfMDW4wG+cNhUroHjlyRAMGDNDx48fzjTMMQxaLhc5pIQSbnIjDbBwAAECFUHOjCMzGIX/0mb3LMHmXo9k4AAAASapYrowOnCh4GtSK5YrvrvlCJXRHjx6tY8eOqU6dOrrqqqtUvnz5Il/w4VJnvSxMm/fGm4oDAAAwo0pYiEfjkD/6zN5VpaLJ9mwyDgAAQJIaRoZpy75TpuKKS6ESups2bVLNmjU1Z84chYTQQfKGmlXKejQOAACgUd1Kmr/2oKk4XDz6zN7VqE645q85YCoOAADArMuqlPNonDcUalG01NRUNW3alI6pF+09ctajcQAAAA1qmhtFYDYO+aPP7F3RtcPl75f/iGd/P4uia5PQBQAA5u0+dMajcd5QqIRumzZttGvXLhlMSOU1WSbr1mwcAADA0g2HPRqH/NFn9q6MjCxlZuVft5lZhjIysoqoRAAA4FLw97FzHo3zhkIldJ966imdPHlS//3vf3XhQsGTBMN9iUlpHo0DAABYs/2YR+OQP/rM3vXtb3s8GgcAACBJ5y6kezTOGwo1h27Dhg314osv6qWXXtKcOXN02WWXKSzM9a15FotFU6dOvahClkZHTiV5NA4AACDd5EhFs3HIH31m7/rn+HmPxgEAAEgyfXdVcd6FVaiE7qpVq/Taa69JklJSUrR37948Y1nJt5DMtgnu4AMAACZVrxSikwkppuJw8egze1dosLmvMmbjAAAAJCksNEjHTiebiisuherdjB07VhkZGerWrZtuuOEGVapUiU6oh9WqUlb7jhY8F0etKmWLoDQAAOBS0MYaoa1/F7x4QxtrRBGU5tJHn9m7rmt7mXYcKLg9X9f2siIoDQAAuFRUKG8uUWs2zhsKldDdvXu3oqOjNX78eE+XB/+vbBlzL43ZOAAAgOS0DI/GIX/0mb3L38/cciBm4wAAACTzd04V5w/1herdhISEKDIy0tNlQQ5nElM9GgcAAFCubKBH45A/+szetftIgkfjAAAAJKlyhTIejfOGQiV0O3bsqA0bNiglpeA52FA4ZudVLsb5lwEAgI+pVM5cp9NsHPJHn9nLWHMCAAB4QbkQk4MgTMZ5Q6ESuiNGjJCfn58eeugh7dixw9NlgqTKYSZ/DTAZBwAA0KBWmAq6M8xiyY7DxaPP7F3WyIoejQMAAJB84662Qk3A+uabb6pmzZqKjY3VrbfeqqCgIJUvX14BAc6Hs1gsWrZs2UUXtLQpV8Zk4zEZBwAAsPfI2QLv7jGM7LjoOuFFU6hLGH1m7zI7ax3L0AEAAHckJZlbT8JsnDcUKqG7aNEih79TU1OVmup6LldW8i2cCynmGoXZOAAAgNOJ5m79NxuH/NFn9q6dB8+YjmtSr7KXSwMAAC4V5UODPBrnDYVK6P7666+eLgcAAAC87FximkfjkD/6zN516qy5xYHNxgEAAEhSWFlziVqzcd5gKqGbmJiowMBABQcHS5Jq1apVqJOlpqYqPT1d5cqVK9TjS5OQMv4ejQMAAEhMSvdoHBzRZy5iFpOrnZmNAwAAkJSZmeXROG8wtShau3bt9Morr1z0yV566SW1b9/+oo9TGlxIMfdFymwcAADA6fPmRiqajYMj+sxFK7xCsEfjAAAAJGnN9hMejfMGUwldwzBkFLSChkmeOs6l7sw5c7c6mo0DAAAw2w+jv1Y49JmLVlmTiwObjQMAAJCk+PPJHo3zBtNz6K5atUp33333RZ1s//79F/X40qSSyZEEZuMAAADMLrvF8lyFR5+56CSnZno0DgAAQJIqlw/WXpNxxcV0QvfUqVM6derURZ+QFXzNKWdyJIHZOAAAgMoVy3g0Ds7oMxchs4OYGewMAADcEBlRXut2xJmKKy6mErqTJ0/2djmQy4WUDI/GAQAANKpdSfPXHDQVB/fRZy5aZUPMjU0xGwcAACBJ4eXMDW4wG+cNpno3LMpQ9AyTq/GajQMAALBGVpRF+Q9YtPx/HNxHn7loVSgX5NE4AAAASSofau5ueLNx3mBqUTQUvdBgcyMJzMYBAADsPXK2wLvPjf+PA0q6SiZHxZiNAwAAkKRDJxI9GucNJHRLqCSTUymYjQMAADh9LsWjcUBxqlejgkfjAAAAJGnP0QSPxnkDCd0S6sy5VI/GAQAA7DtqbuSt2TigOC3ffMSjcQAAAJKUmpbl0ThvIKFbQlWsYG6uL7NxAAAAwKXkZEKyR+MAAAAkqW71ch6N8wYSuiVU+RBziVqzcQAAAFUrhng0DihOVcLMzY1rNg4AAECSyoeazMmZjPMGErolVFjZYI/GAQAAXFbF3CgCs3FAcbqsqsn2bDIOAABAkiqUM5eoNRvnDSR0S6jw8uYStWbjAAAAElPTPRoHFKfEFJPt2WQcAACAJFUqZ+7uHrNx3hBQ2AcmJydr0aJF2rVrl86fP6/MzEyXcRaLRW+++WahC1hasWovAADwtIom7+wxG4eC0Wf2nvJlAj0aBwAAIEnWyIoKDvRTanrei56VCfKXNbJi0RUql0IldOPi4tS/f38dPnxYhmHkG0vntHB+23TYdFzPmDpeLg0AALgUNKgV5tE45I8+s3cdiks0HdekXmUvlwYAAFwqsrKMfJO5kpSSlqmsLEN+fpYiKpWjQiV0P/jgAx06dEgRERG65ZZbVKNGDfn7+3u6bKXa7kMJpuNI6AIAADPc6V80vrySdwtTCtBn9q74sykejQMAAJCkxesPmo7rdUVd7xYmD4VK6P7+++8KDw/XnDlzFB4e7ukyQVJauuvb8QobBwAAsPPQGdNxJHQvHn1m76pWMcSjcQAAAJK0eU+86bjiSugWalG0c+fOqVWrVnRMvahO9fIejQMAAFD+d/27H4d80Wf2ri6tL5OlgLscLZbsOAAAgEtJoRK6derUUUJCgoeLgpzKlQnyaBwAAEB0HXOJRbNxyB99Zu8KCPBTj3aR+cb0aBepgIBCfeUBAAClVM3KZT0a5w2F6t3069dPmzZt0h9//OHp8uD/JaVleDQOAAAguna4ypbJf8atciGBiq5NQtcT6DN73+1dGqpn+0inkboWi9SzfaRu79KweAoGAAB8VrnQQI/GeYOpOXTXrFnj8HeDBg10+eWXa8iQIbrjjjvUsmVLVahQQZY87nnq0KHDxZe0lCno9jF34wAAAPz8LBp8fbQ+nr0tz5h7ekYV22q9vo4+c/G4vUtD3XpNfS3ffERnkzMUFhKgTi1rMTIXAAAUitm+cHH2mU0ldO+9916XHU/DMDRp0iRNmjQpz8daLBb99ddfhS5gbGysJkyYoB07diglJUVRUVEaNGiQevXqZfoYN910k3bt2pXn/gULFqh+/fqFLqM3REeGa54OmIoDAAAwq01UNQ3t01TTl+7RmfOp9u3h5YPVv1tDtYmqVoyl823F1Wcurf3lnPz8LKpTvbzSDYsCLQY/SgAAgELzhZycqYRuu3btvF0Ol+bOnatnnnlGAQEBiomJkb+/v9asWaMnnnhCe/fu1fDhwws8Rlpamvbt26ewsDBdc801LmPKly95C4tF18m+JfJCSt5TKpQrE8AcdwAAwG1toqqpRf0qjGj0sOLoM5fm/rLNhl0n+YECAAB4jC/k5EwldKdMmeLtcjiJj4/Xyy+/rJCQEE2dOlVNmjSRJO3bt0+DBg3SJ598oq5du9q352XXrl3KyMjQFVdcoffee68oiu4Rfn4WdWxeQ7/EHsoz5urmNRh9AAAA3OYqAbZw3UESYBepqPvMpb2/LGW3ZVdTiJw5n6qPZ2/T0D5NadMAAMAtpqYpuz66WHNyhRqG8ccff+jvv/8uMG7Lli2aNWtWYU6hadOmKSUlRQMGDHDohNavX18jRoyw37pWENuta02bNi1UOYpLVpahdTtO5hsTu+OksrKMIioRAAC4FNgSYDmTudK/CbANu/Lvf8A8b/eZ6S8bmr50T74xM5buob8MAAAuOYVK6A4cOFCfffZZgXFfffWV3nrrrcKcQitWrJAkdevWzWlft27dZLFYtHz58gKPY+ugFjQyoaTZfSjB6YtWbqfPp2r3oYSiKRAAAPB5JMCKlrf7zPSX6S8DAADP84U+s6kpF9auXSvDcCxkXFyc00q+OSUmJmrjxo1OjzPDMAzt3btXktSwYUOn/WFhYapSpYri4uJ04sQJRURE5HksWwf15MmTGjx4sHbs2KG0tDQ1a9ZMDz74oDp27Oh2+YpCwoX8O6fuxgEAALiTAGOefvcVZZ+Z/jL9ZQAA4B2+0Gc2ldD94YcfNG/ePPvfFotFa9asybdzKmV3NLt27ep2oc6ePavU1FSVLVtWoaGhLmOqVaumuLg4xcfH59lBzczM1O7duyVJzz33nKKjo9WuXTv9888/WrdundatW6dnn31W9913n9tl9LaKZYM9GgcAAEACzLuKss9Mf5n+MgAA8A5f6DObSug+/fTTOnHihH3kwB9//KHKlSurXr16LuMtFouCg4NVp04dPfroo24XKjk5WZIUEhKSZ0xwcHbHLCkpKc+Yffv2KSUlRcHBwfrwww/VpUsX+74FCxbo6aef1rvvvqu2bduqefPmbpfTxhsrQje+vJIqlQ/W6Xx+EahUIViNL6/EwmilmL+/n8P/AYl2AddoF5Ck8PJlTMd5o39zqSvKPrOv9Zclz/eZo+uEy2KR8hvcbLFkx9GeXeOzwX3UmXuoL/dRZ+6jztxDfRWscgVzfebKFYqvz2wqoVutWjVNnjzZ/nd0dLSuuuoqvfPOO14plJ9fdmVYLAUnKrOysvLcZ7VatWrVKiUnJysyMtJhX69evbR582ZNmjRJM2bMKHQH1c/PovDwsoV6bEE6tblMPy7fl/f+1pepcuVyXjk3fEuFCnl/mUPpRbuAK7SL0q18XN6JPYe4cmW81r+5lBVln9mX+svZ5fV8n/nPvfH5JnOl7GTv8bOpatagikfPfanhs8F91Jl7qC/3UWfuo87cQ33lLSYsVOV//FPnk9LzjCkfGqSYFpfJv5gGWZpK6Ob266+/5nlrlyeULZvd2UtJSckzJjU1e+RqQeWoUiXvzlvnzp01adIkbdu2rRClzJaVZejcOXNfjtw97oLV+/ONWbB6v266si4jdEsxf38/VagQonPnkpWZmfeXNZQutAu4QruAJB05cc50XO2qnu3rVagQUupGgnizz+xL/WXJO33mQ8fOmo67rDJfWl3hs8F91Jl7qC/3UWfuo87cQ30VLCvLUEpaZr4xKWkZSjhzweM5ObN95kIldGvVqlWYh5lWtmxZlS1bVufPn1dKSorKlHEe6nzy5ElJ2SMhCqtq1aqS/r1lrbAyMjz/Btj+9ykTjSdTf+6NV5N6lT1+fviWzMwsr7RD+DbaBVyhXZRuZYPNdf3KBgfQTjzAm31mX+svS57vM5ctY7I9l6E9F4TPBvdRZ+6hvtxHnbmPOnMP9ZW3bX+fUnoBdZOekaWte+PVtJhycqZ6QYVZ2MzGYrFo6dKlbj+mYcOG2rx5s/bt26cmTZo47E9ISFB8fLzCwsLyXbF30aJFWrx4sa644gr169fPaf+hQ4ckSdWrV3erfEVh9bbjpuNI6AIAADOyCro/3c04OCrKPjP9ZUlmmynNGQAAuGHVn8dMx5XohO6RI0dMHczf31+ZmfmPKjWrY8eO2rx5s5YuXerUQV26dKkMw9A111yT7zHOnj2refPmad++ferbt6/THGOzZ8+WJF199dUeKbMnJadleDQOAABg9+EE03HF1Tn1ZUXdZy7t/eVzyWkejQMAAJCk+HN5T2lVmDhvMDWR2eLFix3+mzt3rho0aKAKFSroueee05IlS7Rjxw5t375dq1at0qhRo1SlShW1atVK69evL1TB+vbtq5CQEH3zzTfauHGjffvff/+tDz/8UJL0wAMP2LefPHlS+/bts99aJkk9e/ZUxYoVtWPHDn388cf2FYcl6bvvvtOiRYtUuXJl3XnnnYUqozdVLBfk0TgAAABGNHpXUfeZS31/uWywR+MAAAAkKSjA3LoPZuO8wdQI3dq1azv8/f7772v//v367rvv1LhxY4d9lStXVt++fdWqVSv16dNH7733nl577TW3C1a9enW9+OKLevnllzVgwADFxMQoKChIa9asUWpqqp588klFR0fb4z/44APNnj1bffr00VtvvSVJqlChgt555x099thjGjdunH7++WdFRUVp//792rVrl0JDQzVu3DhVrFjR7fJ5W/2aFbV8c8FDvOvXrOj9wgAAgEtCdJ1wzVtzwFQc3FfUfebS3l9uUCtMFuX/+4Pl/+MAAADMurxGBe04kGAqrrgUKpU8d+5cxcTEOHVMc6pfv76uuOIKLVmypNCF69evn7744gu1adNGmzdv1oYNG9S4cWONGzdOQ4YMMXWMa6+9Vj/88INuuOEGJSYm6rffflNCQoJuu+02zZ07V23atCl0+bzpXJLJW8hMxgEAAETXDi9wIalyIYGKrk1C1xOKos9cmvvLuw8nFDiY3JD5qUYAAAAkme4LF2ef2dzSsLmcO3fO5Uq6rqSkXNx8Eh07dlTHjh0LjHvrrbfsIw1ys1qt+uCDDy6qHEXt4InzHo0DAADw87Oo4WVh2rz3VJ4xDWpVkJ+fJc/9MK+o+syltb+888AZ03GN61bycmkAAMClws9iri9sNs4bCjVCt27dulq7dq3D/Fu57du3T2vXrpXVai104UqztIwsj8YBAABkZGRpy768k7mStGXfKWXQv/AI+szeZZic7NlsHAAAgCQlJKV6NM4bCpXQveOOO3ThwgUNHDhQy5cvV1rav7f9Jycna968eRo8eLDS09M1ePBgT5W1VGl4mbm5vszGAQAA/LbxsIwCcluGkR2Hi0ef2bvKlgn0aBwAAIAkJV5I92icNxRqyoU777xTGzdu1Ny5c/XII4/I399fYWHZicWEhARlZWXJMAw99NBD6tGjh0cLXFp0axOpWcv2FbjIQ7c2kUVVJAAA4ONOJiR7NA75o8/sXWFlgz0aBwAAIEnlQ4M8GucNhUroStI777yjrl27asaMGdqwYYNOncq+fS84OFhXXHGF7rnnHl155ZUeK2hpExDgpx7tI/VL7KE8Y3q0j1RAQKEGWQMAgFKoSpi5+VzNxqFg9Jm9J6ysuS9RZuMAAAAkKby8uR+DzcZ5Q6ETupLUo0cP9ejRQ4Zh6MyZM7JYLAoPZ1VkT7m9S0NJ0qI/DjncHmmxSD3aRdr3AwAAmHFZ1XIejYM59Jm9xOw6JKzxBwAA3GCNrKjw8sE6cz7vOXIrlQ+WNbJi0RUqF48M77RYLKpUqRIdUy+oXytM5UMc8+7lQwJUvxZz5wIAAPckppicD8xkHNxDn9mzziWlFRzkRhwAAIAk+flZ1L9b/oMo7+rWUH5+xfersakRus8884wsFouefvppValSRc8884zpE1gsFr399tuFLmBptmHXSX08e5vT9nNJGfp49jYN7dNUbaKqFUPJAACAL6poci5Rs3FwRJ+5aNGeAQCAt7SJqqae7SPzvGu+uPNxphK6c+fOlcVi0cMPP6wqVapo7ty5pk9A57RwsrIMfbNwZ74xkxbuVKuGVYv1FwEAAOA7fOH2MV9Gn7loNagVJotFDl+ycrNYsuMAAADcsWHXSZfrWhmG9EvsIdWvFVasSV1TCd3Ro0dLkqpWrerwN7xn54EzupCSkW9MYkqGdh44o8aXVyqiUgEAAF9mu33M1R1ANsV9+5gvo89ctPYeOZtvMlfK/tK198hZRddhmgsAAGCOqUGWv+wq1kGWphK6ffr0yfdveN5fB0+bjiOhCwAAzGoTVU1D+zTV9KV7HEbqViofrLu6NSz228d8GX3mopVwIe+R5oWJAwAAkKSdB00MskxO186DZ9S4bvHk5EwldHO799571aVLF3Xq1EmRkZGeLhMknTlrruNpNg4AAMCmTVQ1tWpYVfuOnlW6YVGgxVD9mmGMzPUw+szexRy6AADAG3YeOGM6zqcSumvWrNHatWv15ptvqn79+vaOaqtWrWSx8EXAEypVKOPROAAAABQt+szexZzQAADAK8x204qxO1eohO6iRYu0YsUKrVy5Un/88Yc+//xzffHFF6pYsaI6deqkTp066eqrr1bZsmU9Xd5So1GdcM1fe8BUHAAAgDs27DrpNOVCePlg9WfKBY+iz+xdzAkNAAC8IToyXPNUcE4uOrL4cnKFSujWqVNHgwYN0qBBg5Samqq1a9dq5cqVWrlypWbPnq05c+YoICBA7du3V5cuXXT33Xd7utyXvOg64SpbJiDfOTvKlQlggQcAAOCWDbtOukyAnTmfqo9nb9PQPk1J6noIfWYAAADf4ws5Ob+LPUBwcLCuvfZavfzyy1qyZIl++eUX3X777TIMQ6tXr9aoUaM8Uc5Sx8/PosHXR+cbc8/10Yw4AAAApmVlGZq+dE++MTOW7lFWllFEJSo96DN7Hu0ZAAB4gy/k5Ao1Qje3ffv2KTY2VrGxsfrjjz906tQpGUZ2x6lmzZqeOEWpZFuFetqS3UpITLNvDy8XpP7drYyeAQAAbtl9KCHf+UYl6fT5VO0+lMBdQF5An9mzaM8AAMBbSnpOrlAJ3X379mndunWKjY3V+vXrHTqjERER6t27t2JiYhQTE6PLLrvMowUubViFGgAAeErChfyTX+7GIX/0mb2L9gwAALypJOfkCpXQvfHGG+3/rlWrlm644Qa1b99eMTExqlOnjscKh2x+fhY1qltJ4eFldebMBWVkZBV3kQAAgA+qWDbYo3HIH31m76I9AwAAbyupOblCzaFrGIYMw5Cfn5+qVKmiWrVqqVatWoqIiPB0+QAAAOAh1siKCi+ff3KrUvlgWSMrFk2BLnH0mb2L9gwAAEqrQo3QXb16tdasWWP/77PPPtPnn3+ugIAANW3a1H7rWOvWrRUczC/iAAAAJYGfn0X9uzXUx7O35RlzV7eGJeI2sksBfWbvoj0DAIDSymLYJvK6CIcOHbJ3VP/44w/Fx8fLYrEoMDBQzZs319SpUz1R1hIpMzNLp09f8Pp5AgL8StzwbhQ/2gVcoV3AFdoFctqw66SmL93jsKBUpfLBuqtbQ68t8FCpUln5+xfq5rBLBn1m7/SZi6M9Xyr4bHAfdeYe6st91Jn7qDP3UF/uK8o6M9tnLtQI3dwiIyMVGRmp22+/XadPn9a3336rb775RufOndOGDRs8cQoAAAB4SEle4OFSRp/ZO2jPAACgtLnohG5qaqr++OMP+2iDnTt32ucLq1u3rjp16uSBYgIAAMCTSuoCD5cq+szeRXsGAAClSaESulu2bLHPCbZ582alp6fLMAwFBgbqiiuu0LXXXqvOnTurdu3ani4vAAAA4BPoMwMAAMAbCpXQveOOO2SxWGQYhqpUqaJrr71WnTp10lVXXaXQ0FBPlxEAAADwOfSZAQAA4A2FSug2bdpUnTp1UqdOndS0aVNPlwkAAADwefSZAQAA4A2FSuh+//33ni4HAAAAcEmhzwwAAABv8CvuAgAAAAAAAAAAzCGhCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPgIEroAAAAAAAAA4CNI6AIAAAAAAACAjyChCwAAAAAAAAA+goQuAAAAAAAAAPiIgOIuQEFiY2M1YcIE7dixQykpKYqKitKgQYPUq1cv08dITEzUF198oUWLFuno0aOqWLGiOnfurOHDh6ty5cpeLD0AAADgXfSXAQAASpcSPUJ37ty5GjRokGJjY9W4cWO1a9dO27dv1xNPPKGxY8eaOkZiYqIGDRqkCRMmKDMzU506dVJoaKi+/fZb9enTR8ePH/fyswAAAAC8g/4yAABA6VNiR+jGx8fr5ZdfVkhIiKZOnaomTZpIkvbt26dBgwbpk08+UdeuXe3b8zJu3Dht375dt9xyi9544w0FBAQoKytLb7/9tr755hv997//1aeffloUT6nQsrIM7dh/Wun/nFGgxVD9mmHy87MUd7EAAABQjOgvAwAAeFdJzcmV2BG606ZNU0pKigYMGODQCa1fv75GjBghwzA0adKkfI+RmJio7777TiEhIXrhhRcUEJCdv/bz89MzzzyjyMhI/fbbbzp48KBXn8vF2LDrpJ7+dLVGT92o96Zt0OipG/X0p6u1YdfJ4i4aAAAAihH9ZQAAAO8pyTm5EpvQXbFihSSpW7duTvu6desmi8Wi5cuX53uM2NhYJSUlqW3btgoLC3PY5+/vr86dO0tSgccpLht2ndTHs7fpzPlUh+1nzqfq49nbSkQDAgAAQPGgvwwAAOAdJT0nVyITuoZhaO/evZKkhg0bOu0PCwtTlSpVdPbsWZ04cSLP4+R3DElq0KCBJGn37t0XW2SPy8oyNH3pnnxjZizdo6wso4hKBAAAgJKC/jIAAIB3+EJOrkTOoXv27FmlpqaqbNmyCg0NdRlTrVo1xcXFKT4+XhERES5jTp48aY91pWrVqpKy5x+7GAEBns+L79h/2ulXgNxOn0/VvqNn1ahuJY+fH77B39/P4f+ARLuAa7QLuEK78F2+1l+WvNNnzon27D7qzH3UmXuoL/dRZ+6jztxDfRXMF3JyJTKhm5ycLEkKCQnJMyY4OFiSlJSUlGeMbV+ZMmVc7rdtz+8YBfHzsyg8vGyhH5+X9H/OmIszvHN++JYKFfJ+r6D0ol3AFdoFXKFd+B5f6i9L3uszu0J7dh915j7qzD3Ul/uoM/dRZ+6hvvLmCzm5EpnQ9fPL/pXAYil41bisrKw89/n7+5s6jmEUfoh0Vpahc+curoPrSqDFXJkCLYbOnLng8fPDN/j7+6lChRCdO5eszMy83wsoXWgXcIV2AVeKsl1UqBDCSBAP8qX+cnYZvNNnzonrnPuoM/dRZ+6hvtxHnbmPOnMP9VWw4szJme0zl8iEbtmy2dntlJSUPGNSU7OHPud1i1nOfXkdx7Y9v2OYkZHh+TdA/ZphCi8fnO8Q70rlg1W/ZphXzg/fkpmZRTuAE9oFXKFdwBXahe/xtf6y5J0+syu0Z/dRZ+6jztxDfbmPOnMfdeYe6itvvpCTK5HDJMqWLauyZcvq/PnzeXYuC5rvS5J9rrC85vyKi4uT9O/cYCWJn59F/bu5XpzC5q5uDeXnV/CoDAAAAFxa6C8DAAB4hy/k5EpkQtdisdhX2t23b5/T/oSEBMXHxyssLCzPBR6kf1frta3em9uePdkr1lmt1ostsle0iaqmoX2aKrx8sMP2SuWDNbRPU7WJyrtzDgAAgEsX/WUAAADvKek5uRI55YIkdezYUZs3b9bSpUvVpEkTh31Lly6VYRi65ppr8j1G27ZtFRoaqtjYWJ0/f17ly5e378vMzNSyZctksVjUsWNHrzwHT2gTVU2tGlbVvqNnlW5YFGgxVL9mGCNzAQAASjn6ywAAAN5TknNyFuNiVzjwkuPHj6tnz56yWCz66quv1Lp1a0nS33//rUGDBikuLk4//fSToqOjJWXfUmbrhOa8rWzUqFGaMmWKevXqpbfffltBQUEyDENvv/22Jk6cqO7du2v8+PGFLqdhGMrKKpoq9Pf3Y8JqOKFdwBXaBVyhXcCVomoXfn4WUwt4wTxf6S9LRddn5jrnPurMfdSZe6gv91Fn7qPO3EN9ua+k9ZlLbEJXkmbNmqWXX35Zfn5+iomJUVBQkNasWaPU1FQ9+eSTGjJkiD32ueee0+zZs9WnTx+99dZb9u2JiYm66667tHv3btWqVUtNmzbVnj179Pfff6tWrVr69ttv851XDAAAACip6C8DAACUPiV2ygVJ6tevn6pXr67PP/9cmzdvlr+/vxo3bqz77rtP1113naljlCtXTtOmTdOnn36qRYsWadmyZYqIiFD//v316KOPssADAAAAfBb9ZQAAgNKnRI/QBQAAAAAAAAD8y6+4CwAAAAAAAAAAMIeELgAAAAAAAAD4CBK6AAAAAAAAAOAjSOgCAAAAAAAAgI8goQsAAAAAAAAAPoKELgAAAAAAAAD4CBK6AAAAAAAAAOAjSOgCAAAAAAAAgI8goQsAAAAAAAAAPoKELgAAAAAAAAD4CBK6AAAAAAAAAOAjSOgCAAAAAAAAgI8goVtMYmNjFR0drVmzZrncf/LkSb3yyivq1KmTmjZtqpiYGD3yyCPavHlznsdcsmSJ7rrrLrVr105t27bVvffeqzVr1njpGcBbPN02vvnmG0VFReX533vvvefFZwNPKahd7N69WyNGjNCVV16p5s2b6/rrr9dHH32ks2fP5nlMrhm+z9PtguuFb8rKytLMmTN1xx13qHXr1mrWrJl69Oihd999V+fOnXOKP3TokJ555hl17tzZ3i4+++wzpaenuzx+Wlqavv76a/Xu3VstW7bUlVdeqaeeekoHDx709lNDKbVkyZJ8r0VPPPGEQzxtWjp+/LheeeUVde7cWU2bNtVVV12V53OKj4/XyJEj1b17dzVv3lxdu3bVu+++q8TERJfHzsrK0vfff69bb71VrVu3VkxMjB599FFt27bN20/L4/JrVzn/W7duncPjaGPZFixYoDvvvFOtWrVSs2bNdMMNN2j8+PFKTU11ii3N7UySMjIy9M033+iWW25RixYt1KFDBz344INavXq1y/jSWl8F9WUTExM1ZswY9ezZU82bN9c111yjV199VadOncrzmO5+x3H3/V0SFFRvNnPmzFFUVFSe7U4qHW2voPr6559/9Pzzz9tzLO3bt9f999+v33//3WV8Yepgx44dGjp0qK6++mq1aNFCt9xyi2bMmCHDMAr9vCzGxTwahfL3339r0KBBiouL06hRo9SvXz+H/YcPH9add96puLg4XXbZZWrUqJGOHj2q7du3y9/fX++//76uv/56h8dMmDBBY8aMUWhoqGJiYpSSkqLY2FhlZWVp1KhR6tu3b1E+RRSSN9rG008/rblz56pTp04qX7680zm7dOmiXr16efV54eIU1C6WL1+u4cOHKzU1VREREWrcuLGOHz+uHTt2qE6dOvryyy9Vu3Zth8dwzfB93mgXXC98T1ZWloYPH64lS5YoJCREzZo1U2hoqLZu3arTp0+rTp06mj59uqpUqSJJ2rNnj+6++26dPXtWLVq0UEREhNavX6/Tp0+rQ4cO+vLLLxUQEGA/fkZGhh599FGtWLFC1apVU6tWrXTo0CH99ddfKlu2rKZPn67o6Ojievq4RH344Yf69NNP1b59e0VERDjtb9Wqle6++25JtGlJ+uuvv3TvvfcqISFB9evXV7169bRz504dOnRI4eHh+uGHH1SrVi1J2QMD7rzzTh05ckRWq1WXX365/vzzTx09elRWq1UzZsxQuXLlHI7/yiuvaObMmQoLC1P79u0VHx+vTZs2KTAwUBMmTNDVV19dHE+7UJ566qk89x06dEibN29W+fLlNXfuXNWsWVMSbczm/fff1+eff67AwEC1bdtWZcqU0YYNG3Tu3Dm1aNFCkydPVpkyZSTRztLS0jRkyBCtWbNGAQEBatasmcqXL68tW7bo7NmzGjZsmB577DF7fGmtr4L6somJiRo0aJC2b9+u2rVrq1GjRtq9e7f++ecfRURE6LvvvlP16tUdHuPudxx3398lQUH1ZrNx40bdf//9SkpK0sSJE3XllVc6xZSGtldQfW3YsEEPPPCAkpKSVLduXTVo0EAnTpzQn3/+KUl65plndP/99zs8xt06WLt2rR588EFlZGSobdu2Kl++vNauXasLFy6oT58+euuttwr35AwUqdWrVxsdOnQwrFarYbVaje+++84pZtiwYYbVajVee+01IyMjw7591qxZhtVqNdq1a2ekpKTYt+/YscOwWq3G1VdfbRw6dMi+/Y8//jBatmxpNG/e3Dh+/Lh3nxgumjfahmEYxg033GBERUUZ58+f9/pzgOcV1C4SEhKMNm3aGFar1Xj99deN1NRU+7758+cb0dHRRr9+/YysrCz7dq4Zvs8b7cIwuF74ou+++86wWq1Gjx49HN7P58+fNx566CHDarUaw4cPt2/v06ePYbVajZkzZzrE3n333YbVajUmTpzocPxJkyYZVqvVGDx4sJGUlGTfPnHiRMNqtRo333yzUzsCLtaQIUMMq9Vq7N69u8DY0t6mU1NTjZ49expWq9X47LPP7NszMjKM1157zbBarcYjjzxi3z506FDDarUaH3zwgcMxHn/8cftnRk5Lly41rFarceONNxqnT5+2b//ll1+MRo0aGVdddZVDPfqqpKQko2fPnkZUVJSxfPlyh32lvY0ZhmHs3LnTiIqKMtq3b+/wvjxz5oxx8803G1ar1fj888/t20t7O/vwww/tfe0///zTvv306dPGgAEDDKvV6tDOSmN9mfnu++abbxpWq9V45plnjPT0dMMwDCMzM9O+/eGHH3aIL8x3HHff38XNTL0ZRnZ/v2XLlva4VatWuYy71NteQfWVnp5udOnSxf4ZmvPa/L///c9o0qSJER0dbezatcu+3d06SE1NNa666iqjUaNGDu/7EydO2D+/Fy9eXKjnR0K3iMTHxxuvvvqqER0dbTRu3Njo1KlTnm/AVq1aGVar1YiPj3fad9111xlWq9XYsmWLfdvTTz9tWK1WY8aMGU7xH330kWG1Wo0PP/zQs08IHuPNtpGcnGw0atTI6NGjh1efAzzPbLuYPn26YbVajT59+hiZmZlOx3n55ZcNq9VqLFmyxL6Na4bv8ma74Hrhm+68807DarUay5Ytc9p36tQpIyoqymjSpImRnJxsrF692rBarcYdd9zhFHvgwAEjKirK6NSpk70zm5WVZW9j+/btc3qM7cvO6tWrPf68ULpdddVVRosWLRx+vHaFNm0YP/30k2G1Wo1hw4Y57UtKSjI6depk3HTTTUZGRoaxf/9+Iyoqyrj22mvtyRGbc+fOGa1btzaaN29uJCYm2rf379/fsFqtxsqVK52O/8wzzxhWq9WYNWuW559YEXvppZdcJi9oY9m+/vprw2q1Gq+++qrTvp9//tmwWq3Ggw8+aBiGQTszsq9huftZNkePHjUaN25s3HzzzYZhlL76MtuXPX/+vNGyZUujRYsWRkJCgsO+jIwMo2vXrobVajUOHDhg3+7udxx339/FyWy9HTx40PjPf/5jWK1Wo0WLFsaVV16ZZ0L3Um57Zutr1apVhtVqNW677TaXxxk5cqRhtVqNMWPG2Le5Wwe2wXdPPPGEU/yaNWsMq9Vq9O/fv1DPkzl0i8iECRM0Y8YM1a5dW5MmTVJMTEyesX5+2S/L8ePHHbanp6fb5zGpWLGiffuKFSskSd26dXM6Vvfu3SVl33qLksmbbWPXrl3KzMxUkyZNPF9weJXZdrF7925JUqdOneztI6crrrhCkrRy5Ur7Nq4Zvsub7YLrhW8KCwtTvXr11KJFC6d9lSpVUlhYmNLT03XmzBn7e79Lly5OsbVr11ZUVJSOHj2qXbt2ScpuR0ePHlW9evVUr149p8fYriFcL+BJ8fHxiouLU3R0tPz9/fONpU1LixYtkiQNHjzYaV9ISIiWLVumn376Sf7+/lq5cqUMw9C1117rdAtx+fLl7bcnr127VpJ0/vx5bdy4UaGhoerQoYPT8S+VPsPWrVs1a9Ys1ahRQyNGjHDYRxvLZrFYJDl/B5Gk06dPS8r+PJJU6tvZ6dOnFRcXp4CAAF1zzTVO+2vUqKHatWtrx44diouLK3X1ZbYvGxsbq6SkJLVt29betmz8/f3VuXNnSY7P093vOO6+v4uT2XobPXq0FixYoGbNmum7775zeR2yuZTbntn6unDhgpo1a+byvSpJdevWlZQ9NYVUuDrIr122b99eYWFh9ulr3EVCt4hERkbq1Vdf1bx589S2bdt8Y22N6ZlnntH69euVnJys/fv368knn1R8fLy6detmn/cwLi5OCQkJCg8Pt8+Pl1P9+vVlsVi0d+9eZWZmev6J4aJ5q21I0vbt2yVld7BeeeUVde3aVc2aNVPPnj318ccfu1zAACWD2XaRlZUlSU5zG9nYvgz//fffkrhm+DpvtQuJ64WvmjBhghYuXKjw8HCnfQcPHlRCQoICAwNVqVIl7dmzR5JktVpdHqtBgwaS/v1BYO/evZKkhg0bmooHPMF2Lapevbrefvtt9ejRQ82aNVOXLl309ttvOyzqSJvOri8/Pz81bdpUJ0+e1Ndff62XX35Zb7/9tmJjYx1i3a2vffv2KSsrS/Xq1XM5h2T9+vUd4n3Vm2++KcMw9NRTTyk0NNRhH20sW8eOHWWxWLRs2TJ99NFHiouLU2JiohYsWKCxY8cqKChIAwcOlEQ7s/XBgoODFRQU5DLG9jz37dtX6urLbF/W3fdSYb7juFv3xclsvUVFRen999/XrFmz8nxeNpdy2zNbX927d9f333+v4cOHu9y/detWSbLP1VyYOrDVs6u27Ofnp3r16skwDHucO0rW7M6XsEGDBpmOfemll3T8+HFt2LDBvuCDlP3L6MMPP6yhQ4fat9l+KahatarLYwUFBSksLEwJCQk6f/68w+hNlAzeahtS9iIZkjRt2jRVqlRJrVq1UkREhLZv366xY8dq5cqVmjhxolPnFcXPbLuw/eoaGxur++67z2n/hg0bJP07eoJrhm/zVruQuF5cij744ANJUufOnRUcHFzg+9+23bZytC2+WrVq+cbHx8d7rtAo9WzXooULF6pcuXJq166dqlevrm3btunrr7/Wb7/9pqlTp6pq1aqlvk2npaXp2LFjCg8P14oVK/Tss8/qwoUL9v1ff/21+vTpo1GjRikgIKDQ9VVQvK/UlysrV67Upk2bVL9+fd1www1O+0t7G7OpX7++Ro0apTfeeEOffPKJPvnkE/u+hg0b6s0331Tz5s0lFb7OLpV2VqlSJVWsWFEJCQnavn27051Pp06d0j///CMpux9W2urLbF/W3fdSYb7juFv3xclsvT3++OOmj3kptz13cix52bVrl+bPny+LxaLrrrtOUuHqwJvtjBG6JVDFihXVp08fhYWFKTIyUl27dlVUVJQMw9CPP/6odevW2WOTk5MlZd9SlZfg4GBJUlJSkncLDq9zp21I/34puu2227RixQp98sknmj59uubNm6fo6Ght3rxZ77//fnE8FXhIr169VKZMGS1btkyTJk2SYRj2fStWrND06dMlZX/pk7hmlBbutguJ68Wl5ptvvtHChQsVEhKi//znP5L+ff/bViHPzfbetyWEbNeAvOJt27lWwJN27NghSbr22mu1fPlyTZgwQZMmTdKSJUt0xRVXaP/+/Xr55Zcl0aZt020lJSVpxIgRuvrqqzV//nxt2LBBEyZMUEREhGbPnq2xY8dKKri+bNtz11defQZbvO24vmjSpEmSpCFDhtinFciptLexnNq0aaOrr75aZcqUUfv27XX11VerQoUK2rt3ryZNmuTU1yyt7czPz08333yzJOn555/XkSNH7PvOnz+v559/Xunp6ZKy+2Glvb7y4u57qTDfcdx9f19qaHt5O3XqlIYPH67MzEz16dNH0dHRkgpXBwW1zYv57s0I3RLoqaee0vz58/X444/rkUcesXcuFi9erBEjRmjo0KH68ccf1aBBA/vciK46ILnZbv+A73KnbUjZI+0OHz6sevXqOcxDFxkZqbfeekt9+vTRrFmz9Mwzz9gvJPAtVatW1euvv67nnntOb775pqZNm6aGDRvq2LFj2r59uwYMGKCpU6fabwnhmlE6uNsuJK4Xl5JvvvlGo0ePlsVi0RtvvGG//cv2uhb0/rf9AOBuPOAJ7733nh5//HHVrFnT4ctPpUqV9M4776hnz55atmyZDh8+XOrbtC2Blpqaqvbt29sTt1L2yPwqVaqoX79++uabb/TAAw94rb6ysrJkGIapvkVJ8vfff2vVqlWqXr26brzxRpcxpb2N2WzdulX33nuvqlSpop9++sk+r+SZM2f01FNPad68efL399c777xDO1P2KMkNGzZo27Zt6tWrl1q0aKEyZcpoy5YtCgwMVI8ePbRo0SIFBgZSX3lwt14K8x3nUn2/mkXbc+3EiRO67777tH//fjVt2lSvvPKKfV9h6sDf319ZWVmmHuMuRuiWMP/73/80f/58xcTE6NFHH3V40a+77jrdd999Sk1N1ddffy1J9ltfU1JS8jymbd5DbpP1be62DSn7V6CGDRu6XFSkUaNGql69ulJTUws1XwtKjptuuklTp07VNddco1OnTmn16tUKDg7W2LFjNWTIEElShQoVJHHNKE3caRcS14tLgWEYeueddzR69Gj5+/tr9OjRDrcQ297Tec2HnPu9X9D1wradawU8KSgoSPXr13c5kiUiIkKNGzeWlD13bGlv0zlHVeWcisumWbNmatasmVJTU7Vp06YC6yv383envnzxi/svv/wiwzB04403upwLUeK6afPmm28qMTFRr7/+uj2ZK0nh4eF69913Va5cOf388886cuQI7UxS2bJlNXXqVA0dOlQRERHauHGjdu7cqV69eumnn36yL/JVvnx56isP7r6XCvMdx93396WGtuds9+7duuuuu7R37141a9ZMX3/9tUN/pDB1UNBjLqadkdAtYWwrCF599dUu99sWxbLdjhYRESEp73lK0tLSdPbsWQUGBjIXpo9zt22YYZswPr8PPviG1q1b64svvtCGDRu0adMmzZgxQz169LAvelWzZk1JXDNKG7PtwgyuFyVbSkqKhg8frq+++kplypTR2LFj1adPH4cY2/s/Li7O5TFs221zeRV0vcgdDxQF27UoOTm51Lfp8uXLKzAwUJJ02WWXuYypVauWpOyRlKW9vnJbunSpJLmcO9eGOsv+fNm8ebPKlCnjcnGhSpUqqVmzZsrKytLOnTups/8XEhKi4cOHa/Hixdq2bZtWrlypV199VZUrV7b3w2rVqkV95cHd51mY7zju1v2lhrbnaNWqVbrrrrt05MgRXX311Zo0aZL9xxebwtSBN9sZCd0S5ty5c5LkcoSU9O+KmLZ5d8LDw1W1alXFx8frzJkzTvF79+6VYRhq2LCh/TYE+CZ328aJEyf04osv6umnn87zmIcOHZL070UGvicxMVGxsbF5JvJtPwQ0a9ZMEteM0sLddsH1wrclJiZq8ODBWrx4sSpVqqTJkyerW7duTnG21XX37dvn8ji5Vzu2xdtWms7Ntr2gVZQBs1JTU/Xyyy9r6NChef54ZLsWVa9evdS3aX9/f/uUKidOnHAZY/vSWblyZbfrq379+vLz89Pff//t8lZQX6uvnE6dOqXt27frsssus4/6dqW0tzEpe95X4//Yu/O4qOr1D+CfGfZ9FUzBDRlQQUVUTHMntUXL1FxSMu1aaXpvlltmt8WyxazrcjO11FxKLTU0byru5oLilguLqAhugOyyM+f3B7+ZHIHhzHBmg8/79ep1r3OemfM9cw7wzDPf83wFAXK5vMbcUPX5pKysjNcZKo/x0KFD1c58LCwsxIULF+Di4oIWLVrw/apBbT9Lj74v+nzG0fW9r2947f1tx44dmDRpEgoKCjB8+HB89913cHJyqhKnz3ug7X1WKpW4du0aZDKZOk4X/LRuZlRJ2aFDh6rd/ueffwKAuikzAPTs2RMAsG/fvirxe/fuBfD37E2yXLpeG87OzoiOjkZ0dHS1RZ2DBw8iJycHLVq0gL+/v4FGTYaWkZGBcePG4b333quyraSkBNu2bYO1tbV6ZU6AvzMaAl2vC/6+sFxlZWWYNGkSzp49i2bNmmHTpk3o0KFDtbGqn2vVrLSH3bx5E4mJiXjssccQFBQEAGjVqhX8/f2RlJSEmzdvVnmO6vdF7969pTocauDs7Oxw8OBBxMTE4OjRo1W2x8fHIz4+Hi4uLujYsSOvafw91l27dlXZpipa2traokOHDujZsydkMhkOHDiAiooKjdj8/HycPHkSDg4O6Nq1K4DKGYZdunRRb3uUJb5fKhcuXAAAdOzYUWscr7HKLwPc3d1RWFiIU6dOVdmen5+PixcvAqhs0cTrDFi+fDkmTZqE48ePV9m2detWlJaWYsCAAbCysuL7VYPOnTvD0dERsbGxyM/P19hWUVGBAwcOQCaTqT/XALp/xtH157u+4bVXaf/+/Zg1axbKy8sxdepUfPLJJzW24dHnPdB2nZ08eRK5ubkICwvTaIUnFgu6ZubZZ5+Fk5MTTp48iZUrV2o04D569ChWrFgBmUyGcePGqR8fM2YM5HI5vvnmG/XtGwBw5swZrFmzBnZ2dhrxZJl0vTacnJwwePBgAMB7772HrKwsdfyNGzfw0UcfAQCmTJlixKMgqbVs2RKtWrXCxYsXER0drX68tLQUs2fPxr179zB06FCNIhx/Z9R/ul4X/H1huZYuXYq4uDg0atQI69evR7NmzWqM7dy5M9q0aYPTp0/jxx9/VD9eUFCAd999F4IgYMKECRp9z8aOHQtBEDB37lwUFBSoH1+7di1Onz6Ntm3bonv37oY5OGqQRo0aBaCyZ6dqNi5QOdP03XffRUVFBSZOnKi+/buhX9OjRo2Co6Mjdu7ciS1btqgfLywsxNy5c1FYWIihQ4fC1dUVTZs2Rd++fZGWloYvv/xSnUuWlpbi/fffx4MHDzBy5Ei4uLioX0eVD3z88ccat4vu2bMHO3fuRKNGjfDcc88Z6WiloypAtmvXTmscr7HKxaZefPFFAMD777+PW7duqbcVFBRgzpw5yMnJQe/evdG8eXNeZwD69+8PAFi8eLHGNXD69Gl89dVXsLGxwRtvvAEAfL9q4ODggGHDhuHBgwd4//331YtACoKAL7/8EmlpaYiMjETLli3Vz9H1M44+P9/1Ca+9ytxizpw5qKiowBtvvIE333yz1ufo+h48+eST8PHxwc6dO7Fnzx714xkZGfj4448BAK+++qpe45cJ9XXJPjM3e/ZsbNu2DfPnz8eIESM0th04cAD//Oc/UVJSgmbNmiE4OBi3bt3CpUuXIJPJMHv2bIwfP17jOf/5z3/w3//+F3Z2dnj88cdRWlqKkydPQqlU4ssvv1R/UCfzJ+W1kZubi3HjxiEhIQEuLi7o1KkTKioqEBsbi9LSUowfPx5z5swx8hGSPrRdF+fPn8dLL72EsrIyhIWFwdvbG2fPnkVmZibCw8OxcuXKKreM8HdG/SDldcHfF5YnOzsbffv2RVFREYKDg7XeqjV79mx4e3vjypUrGDt2LAoKCtCuXTv4+fnh9OnTuH//Pvr06YNly5ZpzEooLy/HxIkTceLECXh5eaFz585IS0vDpUuX4Obmho0bN6J169bGOFxqIEpLS/Haa6/h2LFjsLe3R3h4OGxtbXHy5EkUFhZi4MCB+Prrr9W3ePOarvwQOX36dJSVlUGhUMDPzw9//fUXMjIyEBwcjPXr16s/kN+5cwcjR47EvXv30KpVKwQGBuKvv/7C7du30a5dO6xbt65KzjBz5kz89ttvcHZ2Rrdu3ZCdnY0zZ87AxsYGq1atQkREhCkOu05mzZqF7du344svvqi1+MBrrPLnUjXj1MbGBl27doW1tTUuXLiA7OxstGrVCuvWrVP3uOZ1Brz++us4cOAAvLy8EBYWpj4eKysrfPXVVxg0aJA6tiG/X9py2YKCAowePRqJiYlo2rQpQkJCkJSUhGvXrqFp06b4+eef4ePjo/EcXT/j6PrzbS60vW8PGzduHGJjY7F69epqv0hqKNdeTe/Xl19+iVWrVsHa2hqDBg2qsXjfqVMnjBkzRv1vXd+Dw4cPY/LkySgvL0enTp3g4eGBEydOoKCgACNHjlRPntEVC7omUtsP4NWrV7Fy5UocP34cWVlZcHJyQlhYGF555ZUaf0B27NiBH3/8EUlJSbC3t0ebNm3w+uuvm+UPFNVM6mujsLAQP/zwA3bt2oXU1FTY2dmhTZs2iIqKwpNPPmmMQyIJ1HZdnDt3DkuXLsWZM2cgCAJatGiB5557DqNHj4adnV21r8nfGZZP6uuCvy8sy549ezB16lTRsc2bNwcAXL9+HYsXL8bx48dRVFSEZs2a4fnnn8e4ceNga2tb5bklJSVYtWoVoqOjcfv2bXh5eaFLly6YOnWq1hnBRPoqLy/H+vXr8dtvv+HatWuQy+UIDAzEiBEjMHz48CofuHhNAwkJCVi+fDlOnjyJ/Px8NGnSBM888wxeffXVKitn37t3D0uWLMHBgweRm5uLJk2aYNCgQfjHP/4BZ2fnKq+tVCqxceNGbN68GTdu3ICrqyvat2+PqVOnok2bNsY6REn94x//wOHDh7F8+XL07du31nheY5U/l5s2bcL27dtx9epVlJeXw9/fHwMHDsTEiROrXDsN/TorLS3F8uXLsWPHDty5cwfe3t7o2LEjJk2aVG3f5ob6ftWWy+bl5eHbb7/F7t27kZGRAV9fX/Ts2ROTJ0+ucREpXT/j6PrzbQ6kKugCDePaq+n9Gjx4MBITE2t9/uDBg7Fw4UL1v/V5Dy5cuIBly5bhzJkzKC8vR8uWLTF69GgMGzZM77VrWNAlIiIiIiIiIiIishDsoUtERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERERWQgWdImIiIiIiIiIiIgsBAu6RERERERERERERBaCBV0iIiIiIiIiIiIiC8GCLhEREREREREREZGFYEGXiMyWIAimHkK9wPeRiIiIiIiIqP5gQZeIzNLOnTsxffp0Uw/DopWUlGDp0qX47rvvTD0UUdLS0hAUFKTx35UrVwAABQUFmDdvHiIiItCvXz98//33WgvVly5dwkcffYTBgwcjPDwc7du3x8CBA/Hhhx/ixo0bGrEnT56sst+UlBRDHioRERERGUh5ebk6pxNj3LhxGnngJ598YuARSuPtt99G9+7ddZq8sWTJEo1j7dWrlwFHSESGZG3qARARPerUqVN4++230alTJ1MPxaKtXLkSS5Ysweuvv27qoejEwcEBkZGRAAA3NzcAwHvvvYfS0lLs2rUL9+/fx9SpU+Ho6IjRo0drPLekpAQLFizATz/9BAAICAhAly5dUFZWhoSEBGzcuBFbtmzBF198gaeffhoA4O3tjcGDBwMA9u3bh8LCQmMdKhERERGZiccffxze3t4ICQkx9VBqpVQqcfToUfTp0wcymUz084KCgjB48GAUFRUhJibGgCMkIkNjQZeIzI5SqTT1EOoFS2214OrqioULF6r/XVRUhN27d+PgwYPw8vKCl5cX3nzzTaxfv16joCsIAqZOnYpDhw6hbdu2+PDDD9G+fXv19rKyMqxbtw5ffPEFZsyYARcXF/Ts2RMBAQHq/fXr148FXSIiIqIGaNKkSejevbuphyHK+fPnkZOTg969e+v0vAEDBmDAgAFIS0tjQZfIwrHlAhERWYSHZx9UNxNh48aNOHToEAICArB27VqNYi4A2NjYYMKECXjttddQXl6uUTQmIiIiIrIUhw4dgpWVFXr06GHqoRCRibCgS0RmZfbs2YiKigIAnDlzBkFBQRg3bpxGzI0bNzB79mz06tULISEh6NWrF+bOnYtbt25Veb1+/fohIiICJSUl+M9//oN+/fohNDQUAwcOxI8//ggAyM3Nxb///W/06NEDnTp1wqhRo3Dy5EmN19m6dSuCgoLw/fff4/jx4xg1ahQ6dOiAJ554Au+8806VvqwqeXl5+PrrrzFo0CCEhoYiIiICr732Gk6fPl3tsQcFBSE2NhZTp05F+/bt0a1bN6xZs0Yd88cff2DSpEno0aMHQkJCEB4ejhdffBEbNmzQmNncr18/LF26FACwfPlyBAUFYcmSJRr72bJlS5UxqPrJPjzzVdXbdvLkyfjf//6Hvn37IjQ0FIMHD0Z+fr46bteuXRg3bhzCw8PRoUMHPPfcc1izZg3KysqqfW/EcnBwwJNPPomPP/4YWVlZuHr1KpYtW4ahQ4dqxKnep+nTp8PV1bXG15s4cSLatm2Ltm3bIisrq05jIyIiIrJUhw4dwsSJE9GzZ0+EhISgT58+mDVrFpKTkzXijJEHq+iaT/7vf//DqFGj0KlTJ3Tr1g3vv/8+cnNz9X5PHqbKmRMTE7Ft2zY8//zzaN++PZ544gl8/PHHKCwsREVFBVauXIkBAwagQ4cOeOaZZ7Bx40aNO+VUufS0adNw9+5dzJo1C48//jg6duyIF198EUePHgUAJCUl4bXXXkN4eDi6d++OKVOmIC0trdqxHT58GB06dFC3JwPEn08iqh/YcoGIzEpYWBju3buHY8eOwdPTEz169EBAQIB6+/HjxzF58mQUFhZCoVCgY8eOuH79On755RfExMTg+++/r9L3qqKiAhMmTMCFCxfQrVs3+Pv74+TJk/jkk0+Qn5+P33//HVlZWejYsSPu3r2Ls2fPYsKECdi8eTPatWun8VonTpzAokWL4OXlhd69eyM5ORk7duzA4cOHsXr1ao34u3fvIioqCikpKWjcuDF69uyJvLw8HD58GIcPH8ZHH32EESNGVHkP5s2bh6ysLPTs2RNXr15VL+gwf/58rFu3Dg4ODujUqROcnZ2RkpKC8+fP4/z587h58ybmzJkDAIiMjMTx48eRmJgIhUKh08IQNUlISMChQ4fQrl07tG7dGuXl5XBxcQEAvP/++9i0aRPs7e3Rvn17uLi4IC4uDgsWLMDhw4exfPly2Nra6r3vTz/9FAsWLMBTTz0FR0dHjB07FqNGjVJv/+uvv3Dz5k04OTmhb9++Wl/L1dUV27Zt03ssRERERJZu+/btmD17NqytrdG5c2e4uroiKSkJ27dvx549e7Bp0yYoFAqN5xg6D9Y1n/zPf/6D//73v7CxsUG3bt1gZWWF3377DXFxcZK+V4sWLcKBAwcQFhaG7t27IzY2FuvXr8e9e/dgZ2eHPXv2IDw8HE2bNsWJEyfw4Ycfory8XD1JReX27dsYNmwYKioqEB4ejtTUVJw/fx6TJk3Chx9+iE8//RTe3t54/PHHcfHiRcTExODixYv4448/4ODgoH6djIwMXL58Gf/617/Uj+lzPonIwglERGbmxIkTgkKhEEaNGqXxeFZWltC1a1ehTZs2wq5duzS2/fzzz4JCoRD69+8vlJSUqB/v27evoFAohB49egjXr19XP7569WpBoVAICoVCGDZsmJCdna3e9tZbbwkKhUL48MMP1Y/9+uuv6vg333xTKC4uFgRBEJRKpfDVV18JCoVCGDJkiFBRUaF+ztixYwWFQiF89tlnQmlpqfrxc+fOCZ07dxbatWsnJCUlqR+fNWuWoFAohI4dOwo3b95Uv75SqRT++usvQaFQCP369RMyMjI0jn3Hjh2CQqEQOnTooLGfxYsXCwqFQli0aJFGvGo/mzdvFvXep6amqo/94fdEdayq92bw4MFCamqqent+fr4wYcKEasdQHdV+evbsWWvso7Zv3y4oFAph7NixOj/3Yarr5caNG3V6HSIiIiJz1r9/f6Ft27YauahSqRTmz58vKBQKYdasWerHjZEH65pPnj9/XggKChK6du0qJCQkqB+/efOm0KdPH/V4xVCN9c8//9R4XJUzBwUFCTExMerHL168KAQFBQkKhUIIDw8XEhMT1ds2btwoKBQK4ZlnnlE/9nAuPXbsWKGgoED9/k2ePFm9bd68eUJ5ebkgCIJQUFAgPPnkk4JCoRD+97//aYzrl19+ERQKhXD58mX1Y7qcz4fHpE/eTUTmgS0XiMhibNmyBTk5ORgzZgyeeuopjW0jR45E3759kZqair1791Z57oQJE9CiRQv1vwcPHqz+/2+99Rbc3d3V/37yyScBACkpKVVex93dHQsWLICdnR2Ayl6u//rXv6BQKBAfH48zZ84AqFyoIDY2FsHBwZgxYwZsbGzUr9GhQwdMnjwZZWVl6rYPD+vbty/8/f3Vry+TyZCXl4eBAwdi+vTp8Pb21oh/9tln4erqiqKiIty/f7/a904qY8eOVf9/ubzyT8jKlSsBAAsWLICfn596u7OzMxYsWAAbGxts2LABpaWlBhtXRkYGAFR5b4iIiIioqoyMDFhbW8PHx0f9mEwmw+uvv4558+Zh2LBhVZ5jyDxY13xy06ZNEAQBU6ZM0Zh56u/vr75jTSp9+vRB//791f9u164dWrVqBQB46aWXEBgYqN42cOBAANV/jgCAWbNmwcnJCUDl+/fMM88AAOzs7DBz5kxYWVkBAJycnNT9cW/evKnxGocOHYKPjw/atGmjfkyf80lElo0FXSKyGKq+thEREdVu79mzp0bcwzp06KDxb09PT/X/Dw4O1tim6r9aXQGyT58+cHZ21nhMLpejX79+ACpvRXt4DF26dFEXPqsba2xsbJVtj44HALp3747Fixerkz7V+JKSkvDLL7+o++casmhqb2+Pli1bajyWkZGBa9euwcXFpUp7CgDw8fFBcHAw8vPzcfnyZYONzdq6soNQRUWFwfZBREREVF907twZxcXFeOGFF7B06VJcuHABSqUSXl5eGDt2LLp06VLlOYbKg/XJJ0+dOgUA6NWrV7XjVOWGUnj0cwTw92eJR1uaqdqRVZeT29raom3bttW+jp+fX5X3VvWZpKSkRP1YeXk5jh07pn4PVfQ5n0Rk2dhDl4gsxp07dwAAb775pta4u3fvVnns4Rm4QOU31ioPLybw6LZHNW/evNrHH3vsMQBAeno6gMoeWQCwbt06rFu3TqexPjoelZKSEmzfvh0xMTG4evUq7t69qy7kqsYsPLQAg9RcXFyqvDeqc5Kfn19rj947d+6gY8eOBhmbajYCFzkjIiIiqt0nn3yCyZMn49KlS1iyZAmWLFkCd3d39OrVC8OGDUO3bt2qPMdQebA++aRqX76+vlVibG1t4ePjox5HXVWXm6tyYm2fMR7l4uJSpcCtiq8p/3/UmTNnkJ+fj969e2s8rs/5JCLLxoIuEVkM1ezLvn37VvkG+2GtW7eu8phU39KrboN6lKqQqtquKrSGhoZqtHp4VHVJX3UzGdLT0zF27FikpKTA2dkZ7du3R//+/REUFISuXbti/PjxkiStqnFXp7pxqc6Ju7t7lZkCj2rUqFHdBqeFajbHpUuXUFZWpnFrX3U2bNgAOzs79OrVS+PWNCIiIqKGoHHjxvj1119x6tQp7N+/H8eOHUNiYiKio6MRHR2NCRMmYNasWRrPMVQerE8+qa1wqm2s+qgtrxRLis8jhw4dgo2Njbodg4o+55OILBsLukRkMXx8fHDjxg1ERUWhe/fuJhnDvXv3qn1cVUxVzVBQJZs9evTAW2+9Vef9fv3110hJScHgwYPxySefqHuXqeTl5Yl+rUeTZ31fB/j7OO3s7LBw4UKdniul5s2bQ6FQIDExEUeOHFHf+ledwsJCLFy4EIWFhViyZAkGDBhgxJESERERmQeZTIauXbuia9euAID79+/j119/xddff43Vq1dj3LhxaNKkiTreUHmwPvmk6nPB7du3ERAQoLFNqVQiMzNT1OtYmsOHDyMsLKzayS26nk8ismzsoUtEZqemb9xVvZ8OHTpU7fYvvvgCzz//PDZv3mywsR05cqRKIVSpVGLfvn0A/u4JphrrkSNHqp31unfvXjz11FP44IMPRO337NmzAIBXX321SjH3/PnzKCgoUI9Fpab3UbUQQ3ULqJ07d07UeFT8/PzQpEkT3Lt3D/Hx8VW2FxUVYciQIXjppZeQlpam02vrasKECQCAL7/8EoWFhTXG/ec//0FhYSGaNGmCPn36GHRMRERERObm6tWrGDx4MF599VWNx728vDBp0iQEBQVBEIQqBVxD5cH65JOqyR179uypEn/y5EkUFRXV+j5Ymjt37iAxMbFK32B9zycRWTYWdInI7KgKlqoipcrIkSPh6OiI9evX4/fff9fYtn//fvz444+Ij49HaGiowcZ28+ZNLFy4UJ2cKpVKLFy4EMnJyYiIiFCvNqv6/5cuXcIXX3yhsTBCSkoK5s+fj2vXrlVZZKwmqgUTVAmzSmJiImbMmKH+98OLJtja2gKo+j6qepNt375dY0bu6dOn8fPPP4saz8NefvllAMDMmTM1VuEtLS3FBx98gISEBBQWFmqsWGwIzz//PCIiInDt2jW89NJLuHLlisb20tJSLFmyBGvWrIFMJsO///1v9XtERERE1FC0aNEC6enpOHr0KP744w+NbRcvXkRycjIcHR2rtDEzZB6saz750ksvwcbGBitWrMDp06fV8enp6fjoo4+keJvMjmpSy6P9c/U9n0Rk2dhygYjMjp+fH6ysrJCYmIiXX34ZQUFBePfdd+Hr64vPP/8c06dPx/Tp07Fs2TK0atUKd+7cwcWLFwEA7777rjqZNAQfHx+sXr0aBw4cQFBQEBISEnD9+nU0bdoUn3zyiTpOJpPh66+/xssvv4zVq1fj999/R7t27VBcXIzTp0+jrKwMAwcOxNixY0Xtd/z48YiLi8PixYuxb98++Pn54d69ezh//jzs7e3h5+eHtLQ0jdvLVD3LtmzZgrt376JPnz4YMWIEnn76aXz77be4efMmBgwYgM6dOyMzMxPnzp3D888/j23btun0nkRFReH8+fPYtWsXnn32WYSGhsLd3R0XLlxAeno6vLy8sGjRIp1eUx8ymQzLly/HtGnTcOTIETz//PNQKBRo3rw5ysrKcO7cOeTk5MDe3h4ffPABZ+cSERFRg2RtbY2PP/4Y06ZNwz//+U+0a9cOfn5+yM7ORlxcHCoqKvDuu+/CxcVF43mGzIN1zSdbt26Nd999Fx999BGioqLQpUsXODk54cSJE/D29oanp2e9Wyz30KFDaNKkCRQKhcbj+p5PIrJsnKFLRGbHy8sLn3zyCfz8/BAXF4cDBw6otw0YMAC//vorhgwZgvz8fBw8eBCZmZno27cvfvzxR/W3+4YSERGBZcuWwdHREQcOHEBpaSlefvllbNmyBf7+/hqxLVu2xPbt2zFx4kQ4Ojrizz//RHx8PEJCQrBgwQIsWrRI9IINAwYMwPfff48uXbrg1q1b2L9/PzIyMjB06FBs3bpVnRA//F5FRkZi/PjxcHR0xOHDhxEXFwegsuXCTz/9hBdeeAFWVlY4dOgQHjx4gPfff190C4iHyeVyLFq0CJ9//jlCQ0MRHx+Po0ePwsXFBa+88gq2b98ueiZyXTk6OmLFihVYtGgR+vXrh9zcXBw8eBDHjx+Hl5cXoqKisHPnTgwdOtQo4yEiIiIyR6rcslevXrh9+zb27duHq1evolevXlizZg1Gjx5d5TmGzIP1ySfHjBmDH374AV27dsWlS5dw6tQp9O7dG+vWrYODg4Nh3jgTKS0txYkTJ2pcNE6f80lElk0mqJakJCKiGm3duhVz5szB4MGDTbr4V32WlpaG/v37w9fXF4cPHzbJGPr164dbt25hz549aN68uUnGQERERGRO6nsePG7cOMTGxmL16tUmW3jZ2Mwh7yaiuuEMXSIiIiIiIiIiIiILwR66RERkVvLy8vDOO+8AAKZPn44mTZoYdH/Jycn49ttvAQDZ2dkG3RcRERERmacVK1Zg69at6NmzJ5577jlTD8cg9uzZgz179qCoqMjUQyGiOmJBl4iIzEpRURF27NgBAJg4caLBC7qZmZnq/RERERFRw3T8+HEAgIeHR70t6CYkJDDvJaon2EOXiIiIiIiIiIiIyEKwhy4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIjEwTB1EMgIgtlbeoBEBE1JFu3bsWcOXPQtWtXrFu3ztTDISIiIiKqk7S0NPTv319U7NChQ/HZZ58ZeETi9OrVC/fu3cO+ffvg5+dn1H2XlJRg5cqVsLa2xuuvv27UfRNR/cCCLhERERERERHV2eDBg7VuDwsLM9JIzNvKlSuxZMkSFnOJSG8s6BIRERERERFRnS1cuNDUQ7AIbLVARHXFHrpEREREREREREREFoIFXSIiM/fHH39g0qRJ6NGjB0JCQhAeHo4XX3wRGzZsgFKpVMe9/vrrCAoKwqZNm6p9nRUrViAoKAhLly7VeHzXrl0YN24cwsPD0aFDBzz33HNYs2YNysrKNOJOnjyJoKAgfPLJJ1i3bh26d++ODh06YMyYMRrjICIiIiISQ9VLdsiQIejQoQPCw8MRFRWF/fv31/icY8eO4R//+AciIiIQGhqKp556CkuWLEFhYWG18cePH8crr7yCLl26oHPnznjrrbdw+/ZtncY5e/ZsBAUFITY2FlOnTkX79u3RrVs3rFmzRh0jNmfv16+fOh9fvnw5goKCsGTJkjodIxE1PGy5QERkxubPn49169bBwcEBnTp1grOzM1JSUnD+/HmcP38eN2/exJw5cwAAw4cPx4EDB7B9+3aMHDmyymtt27YNMpkMQ4cOVT/2/vvvY9OmTbC3t0f79u3h4uKCuLg4LFiwAIcPH8by5ctha2ur8TqHDx9GSkoKunbtCplMhiZNmkAu5/eDRERERCReQUEBXnnlFVy4cAGenp7o1q0bSktLcerUKZw8eRJvvvkmpk6dqvGcFStW4KuvvoKNjQ1CQkLQqFEjnDt3DkuXLsW+ffuwdu1auLm5qeO3bNmCefPmQSaToXPnznB1dcWRI0cQFxenV3F03rx5yMrKQs+ePXH16lUEBQUB0C1nj4yMxPHjx5GYmAiFQoGgoCD16+hzjETUMLGgS0Rkpi5evIh169bBz88PmzZtgre3t3rbzp078fbbb2PTpk145513YGNjgz59+sDLywtnzpxBamoq/P391fEXLlzAtWvX8Pjjj6Np06YAgK1bt2LTpk0ICgrCf//7X/XqvgUFBfjnP/+Jo0ePYtmyZXjrrbc0xnXjxg3MmDEDr776KgBwdi4RERER6Wz+/Pm4cOECnn32WXz88cdwdHQEUJlrTpgwAUuXLkV4eDi6d+8OADhx4gQWLVqExo0b47vvvkNwcDAAoLS0FP/+97+xdetWfPzxx+o+vnfu3MH8+fNhY2ODVatWISIiAgCQlZWFiRMn4t69ezqPOT09HdHR0fD391f3wdU1Z3/33XexZMkSJCYmol+/fhq5tq7HSEQNF6dUERGZqby8PAwcOBDTp0/XSAwB4Nlnn4WrqyuKiopw//59AIC1tTWee+45AMD27ds14rdt2wYAeOGFF9SPrVy5EgCwYMECdTEXAJydnbFgwQLY2Nhgw4YNKC0t1XgtKysrjBkzRv1vzs4lIiIiIgDq2abV/fdwe4J79+4hOjoajRo10ijmAkCLFi0we/ZsAMD333+vfnzVqlUQBAFz585VFzoBwNbWFv/+97/h7e2NXbt2qQu127ZtQ3FxMcaMGaMu5gKAp6cn5s+fr9fx9e3bVz1pQiaTQSaT6Zyza6PrMRJRw8UZukREZqp79+7qGQkqpaWl6tu3VDNjHy64Dh8+HD/88AN+++039S1qpaWl2LVrF5ydnTFgwAAAQEZGBq5duwYXFxe0a9euyr59fHwQHByMv/76C5cvX0bHjh3V25o1a6aRdBMRERERAcDgwYNr3BYQEKD+/6dPn0ZFRQVCQ0OrzSt79OgBuVyOuLg4VFRUqJ8DQKM4q2Jvb4/OnTvjjz/+wOnTp/HMM8/g1KlTAIBevXpViW/Xrh0ee+wx3LlzR6fje7jIqqJPzl6diooKnY+RiBouFnSJiMxYSUkJtm/fjpiYGFy9ehV3795VJ4UymQwA1Ld7AZWJclhYGM6ePYvTp0+jc+fOOHDgAHJycjBy5EjY29sDgDp5zc/P1+jZVZ07d+5oFHTd3d0lPEIiIiIiqi/EtgJQLUq2f/9+rbloUVERcnNzIQgCioqKAABdu3bV+tqqPDc9PR0A4OvrW22cn5+fzgXdmnrX6pqzVycnJ0fnYySihosFXSIiM5Weno6xY8ciJSUFzs7OaN++Pfr374+goCB07doV48ePr3aF3mHDhuHs2bOIjo5G586d8dtvvwHQbLegmung7u6Onj17ah1Ho0aNNP6tSkqJiIiIiPShKna2bt0abdq0qTVelbva2tpi4MCBWmObN28OoPac1crKSsxQNVTXakzfnP1R+hwjETVcLOgSEZmpr7/+GikpKRg8eDA++eQT2NnZaWzPy8ur9nlPP/00Pv30U8TExGDmzJk4evQoWrVqpTHLVlWktbOz46IKRERERGRUqly0TZs2onLR0tJS2NjYoLy8HJ9++ilsbW1rfY6vry+SkpJw69YttG7dusp21QzeutI3Z3+Uu7u7zsdIRA0XV7IhIjJTZ8+eBQC8+uqrVRLD8+fPo6CgAMDfMxxUnJycMGjQINy/fx/ffPMNSkpKNGbnApW3mDVp0gT37t1DfHx8lX0XFRVhyJAheOmll5CWliblYRERERFRA9elSxcAwKlTp9RtBh72119/YcCAAZg6dSoEQYCtrS06duwIpVKJI0eOVIkXBAHjxo3DqFGjcOHCBQDA448/DgDYu3dvlfiUlBRcv35dkmPRJ2evbvawPsdIRA0XC7pERGbK09MTALBv3z6NxxMTEzFjxgz1v0tKSqo8d9iwYQCADRs2wMrKCs8991yVmJdffhkAMHPmTNy8eVP9eGlpKT744AMkJCSgsLAQfn5+dT8YIiIiIqL/5+/vj/79++Pu3buYO3euuugJAPfv38fcuXORkpKCxx57TF38HD9+PADg448/xuXLl9XxSqUS33zzDWJjY5GWlqZeuGzo0KFwc3PDr7/+it27d6vjCwoKMGfOnFp72oqlT86umn378HEDuh8jETVcbLlARGQCZ8+eRY8ePWrc/uKLL2L8+PGIi4vD4sWLsW/fPvj5+eHevXs4f/487O3t4efnh7S0NGRmZlZ5fufOndGyZUtcv34dffr0gY+PT5WYqKgonD9/Hrt27cKzzz6L0NBQuLu748KFC0hPT4eXlxcWLVok6XETEREREQGVRcuUlBT8/vvv+PPPPxEaGgqZTIbTp0+jsLAQnTp1wltvvaWOj4yMxIQJE/DDDz9gxIgRaNeuHXx8fBAfH4/U1FQ4ODhg8eLF6mKpl5cXFixYgH/961+YNm0awsLC4OPjg9jYWAiCgBYtWuDGjRt1Pg59cvYWLVoAALZs2YK7d++iT58+GDFihM7HSEQNF2foEhGZQFlZGTIzM2v8r6CgAAMGDMD333+PLl264NatW9i/fz8yMjIwdOhQbN26FWPHjgUAHDhwoNp9dOrUCQCqtFtQkcvlWLRoET7//HOEhoYiPj4eR48ehYuLC1555RVs374dLVu2NMwbQEREREQNmpeXFzZv3ox//vOf8PHxwalTp3Du3Dm0bNkS7777LlavXg0HBweN58yaNQvffvstunXrhhs3buDQoUOQy+UYPnw4fvvtN3X+q9K/f39s3LgR/fv3x/Xr13HkyBGEhoZi48aN1U540Ic+OXtkZCTGjx8PR0dHHD58GHFxcXofIxE1TDJBqvsMiIjIbJSWlqJXr16wsrLCwYMHYWNjY+ohEREREREREZEEOEOXiKieUCqVKC0tRXl5ORYuXIjs7GyMGjWKxVwiIiIiIiKieoQzdImI6onS0lKEhYVBJpOhrKwMvr6++P333+Hi4mLqoRERERERERGRRDhDl4ionrC1tUVwcDBkMhnCwsKwatUqFnOJiIiIiIiI6hnO0CUiIiIiIiIiIiKyEJyhS0RERERERERERGQhWNAlIiIiIiIiIiIishDWph6ApRMEAUqlcbpWyOUyo+2L6obnynLwXFkWni/LwXNlOYx1ruRyGWQymcH3Q+bJmDlzfcffr6QrXjOkK14zpCteM9IRmzOzoFtHSqWArKwHBt+PtbUcHh5OyMsrRHm50uD7I/3xXFkOnivLwvNlOXiuLIcxz5WnpxOsrFjQbaiMlTPXd/z9SrriNUO64jVDuuI1Iy2xOTNbLhARERERERERERFZCM7QtQBKpYArN7JQdj0bNjIBAU3cIJdzhgsREREREREREZGhKJUCElNzkPOgBO5OdlD4u5tFTY4FXTMXl5COjTFJyM4vUT/m4WKHMZGBCA/yMeHIiIiIiIiIiIiI6idzrsmx5YIZi0tIx7JtFzUuHADIzi/Bsm0XEZeQbqKRERERERERERER1U/mXpNjQddMKZUCNsYkaY35KSaJqwgSERERERERERFJxBJqcizomqnE1Jwq3wI8Kiu/BImpOcYZEBERERERERERUT1nCTU5FnTNVG0Xjq5xREREREREREREpJ0l1ORY0DVT+YWlksYRERERERERERGRdpZQk2NB10w5O9lIGkdERERERERERETaWUJNjgVdM+XpbC9pHBEREREREREREWlnCTU5FnTNlMLfHR4udlpjPF3soPB3N86AiIiIiIiIiIiITEipFBCfko0Tl+8iPiUbSqUg+T4soSZnbbI9k1ZyuQxjIgOxbNvFGmNGRwZCLpcZcVRERERUXyiVAq7cyELZ9WzYyAQENHFjXkFEREREopWXKxFzOhW5ReVwc7BGn45NYW1tuLmjcQnp2BiTpLEYmYeLHcZEBiI8yEey/VhCTY4FXSIiIqIGxljJMBEREVFDplQKSEzNQc6DErg7Vc7orC9foG/en4Tdp1IhPDRB9qd9SRjYxR8v9guUfH9xCenVFliz80uwbNtFTBkaImkeGx7kgylDQ6rkzJ4udhhtBjkzC7pmSqkUsOZ/8Vpj1v6RgLDARvXmlwEREREZnrGTYSIiIqKGqD5/gb55fxL+iE2t8rggQP24lEVdpVLAxpgkrTE/xSRJXiMLD/JBhwBv7D+ThvScIvi4O6BfJz+DzkIWy/QjoGrF38zGg+JyrTEFRWWIv5ltpBERERGRpRP7hbEhepERERERNRSqL9AfLuYCf3+BHpeQbqKR1V15uRK7T1Ut5j5s96lUlJcrJdtnYmpOlffyUVn5JUhMzZFsn0DleZy5/Bh+3n8V+8/cws/7r2Lm8mNmcf5Y0DVT8SniCrVi44iIiIj4hTERERGRYYmdTWqpX6DvP5Om0WahOoJQGSeVnAfai7m6xomhKsrnFJRq7qOg1CyK8izomiuxM8TZbYGIiIhEuiLyi2CxcURERESkyVSzSY0lPadI0jgx3J3sJI2rjai72v4Xb9KiPAu6Zkrh5y5pHBEREVGmyMRabBwRERERaTLFbFJj8nK1lzRODIW/OzxctBdrPV0qF52TQnyKiLvaistNetc8C7rmSmyR3zJn6BMREZEJ5BaW1h6kQxwRERERaTL2bFJjE0QWosTGiSGXyzAmUvsia6MjAyVbEO3KzSxJ4wyBBV0zlXgrR9I4IiIiIjsbK0njiIiIiOpCqRQQn5KNE5fvIj4l22L7yj7M2LNJH2aM9/N+XrGkcebofq642dNi4wzB2mR7Jq0EkYsBio0jIiIi8nAWNxNEbBwRERGRvuIS0rExJkmj36yHix3GRAYiPMjHhCOrG7lchog2PvgjNrXGmK5tfCSbTapitPfTBHeUi+1pGxbYSJL31ctNZFsJkXGGwBm6ZsrJQVytXWwcERERUbMmzpLGEREREekjLiEdy7ZdrLJ4WHZ+CZZtu4i4hHQTjazulEoBRy7c0Rpz9K+7ks6eNeb72aqJm6RxYhi7p22b5h6SxhkCC7pmytFRXKFWbBwRERHRzdsFksYRERER6UqpFLAxJklrzE8xSRbbfiH+pojiY1EZ4m9KU3w09vtpikXR4lPFvVdi42oT3MwDTvba623ODjYIbsaCLj0i5Xa+pHFEREREOQXiFjsTG0dERESkq8TUnCozSR+VlV+CxNQc4wxIYmJniUo1m9TY76dJegQbuc2DXC7D+KeCtca8PChI8rYZumBB11yZoCcJERER1W/2tuIWOxMbR0RERKSrnAfiFpISG2dulIK4Qo3YuNoY+/2Uy2UYExmoNWZ0ZKCkxc5gka0NxMaJER7kgylDQ6qsLeHhYocpQ0NM3ueZBV1zJfa6N92XAURERGRh/HycJI0jIiIi0pW7k7jFV8XGmZvC4jJJ42pjivdTVex0d7bVeNzD2dYgxU5TtkAQHplJKUhUiK8rFnTNVPMmLpLGEREREbk+knTXNY6IiIgMR6kUEJ+SjROX7yI+Jdtie8o+yiS37P8/Y7ynMpm4mXdi42rT6jFXSeN0UeUYJDqmR5miBYJqoblHW5HlFJSaxcJ9XFHLTBUXVUgaR0RERFTwQNxMELFxREREZBhxCenYGJOk0RvVw8UOYyIDTX6rd13J5TI093XW2ve1ma+z5P1JjfWe+no4ShpXm4PnbomOG9C1mST7VBU7H5WdX4Jl2y4aZJZueJAPBnX1x+5TqXh4kqxMBgzs4i/p/sQuNBcW2MhkfXQ5Q9dMOTnYSBpHRERElP9A3GJnYuOIiIhIeqpi2aMFT1WxzNQzA+uqvFyJ88n3tcacT76P8nKlZPs05nvar5NfrRNVZbLKOCmk5xRJGlcbscVOqWc/xyWk449YzWIuAAgC8EdsqqTn0BIW7mNB10zlimxWLTaOiIiI6MbdfEnjiIiISFqmKpYZ0/4zaVWKco8ShMo4KRj7PbW2lmNgF3+tMQO7+MPaWpqSnI+7g6RxtTFFsVOpFLDmf/FaY9b+kSDZObSEhftY0DVTqfcKJI0jIiIiKikX16pJbBwRERFJyxJmBtbVvZxCSeNqY4r3NKCpW52268LYM4JNUeyMv5mNB8XlWmMKisoQfzNbkv1ZwsJ9LOiaqfu5xZLGEREREdnZWEkaR0RERNKyhJmBdSZ2EqVEk5CN/Z7W9xnBpih2xqeIK9SKjauNKRfuE4sFXTNlYyPu1IiNIyIiImre2EXSOCIiIpKWq6OtpHHmqFUTcbNTxcbVxtgFSFPMCH6xXyA6tvaqdlvH1l54sV+gZPsySbFT7LpjEq1PJpfLMCZS+3s2OjLQZAuiASzomq2WjV0ljSMiIiJysreWNI6IiIgkZuTZq6bg5WovaVxtWjd1E9WSoLVEbRBMMcs6LiEd565Wv9Dcuav3JV0wzBTFTkVTd0nj6gNR2XpqaqqkO/X31z4VnICgZh7YdfKmqDgiIiIiMVLTRfboFxlHmpgzExFRXeU+KJU0zhypCqzaFkaTssB69VauqEXYrt7KRXDzutdYjD0jWGyLh7DARpIVWcODfDBlaAg2xiRpzEb2dLHD6MhAhAf5SLIfFbmVuHGLjauNKd5TXYkq6D755JOQ1fZ1hkgymQyXL1+W5LXqs1uZ4j5I3cosQGhA9dPqiYiIiB52K+OBpHGkiTkzERHVVX6huEKt2DhdKJUCrtzIQtn1bNjIBAQ0cTNIscrYBVZjz5hVtSTQ1nZBypYEurR4kOL9VAkP8kFYYCMk385FmSAz6DWTJ/J6FxtXG1O9p7oQfT+dvb09PDzqNsjs7GwUF3MRLzEyRS52JjaOiIiIyN5OXOonNo6qYs5MRER14exkI2mcWHEJ6VVmW3q42GGMAWZbGrvAauwZs6qWBMu2XawxRsqWBKZcSE8ul6FNC094eDghO/sBysuVku8DMP45tITFCUVn608++SS++OKLOu1sxowZ2LlzZ51eo6HwdhPXK0ZsHBEREVHHVl5IvpUnKo70w5yZiMh4lEoBiak5yHlQAnenyhmPplykSAqezuI+44uNEyMuIb3a4mN2fgmWbbuIKUNDJC3qGrs4J7Z1g1QtHgDjtiRoCAvpGbtNh7GvUX0YdfqFUNucelLzdhdZ0BUZR0RERGTsFYJJP8yZiYhqF5eQjo17k5Bd8NCMUmc7jHlS+hmlxmTswpUpeoUa+xjjU7JFx4VI2NJS1ZLA0F86KCvE5Q1i48yRsdt0GLtthj7kYoJ+/PFHvPbaa3Xe2RtvvIG1a9fW+XUagp3HUiSNIyIiIjqfXP3qx/rGkSbmzERExqGaUfpwMRcAsgsqZ5TGJaSbaGR1p0vhSgq69AqVirGP8djlu5LG6UIulyG4uQe6tW2M4OYeBplBnngrR9I4c2TsFgiqthnaSNk2Qx+iCrpdu3ZFQEBAnXcWEBCArl276vXc2NhYBAcHY8uWLTo9r7S0FD/88AMGDx6Mjh07onv37njnnXdw8+ZNvcZhLIXF5ZLGEREREQkQNzNDbBxpYs5MRGR4SqWAVb9f0Rrz/e9XoFRa5t8yYxeuTNEr1Nj7LCmtkDTO7Ii91C3zRwKAaVogqNpmeLhovqani53kbUj0oXfLhfXr12PTpk24efMmSktrXkVOihV6r127hunTp+t8+1l5eTnefPNNHDp0CD4+PujVqxdSU1OxY8cO7N+/Hxs3bkRwcHCdxmYoTb2dRC141tTbyQijISIiovqgiZcTkm/li4ojaTBnJiKS1pUbWbUW3opLK3DlRhbaWWBPeGP3QzVFoczY+wz0c8PZpExRcZYouLkHdh6v/e5tKVoRmIrC3x1O9tZ4oGVSo7O9teQtEIzVNkMfomboPuqnn37CJ598gqSkJJSUlEAQhBr/UyrrtsLd8ePHMXbsWGRkZOj83I0bN+LQoUPo3r079uzZg8WLF2Pbtm2YM2cOHjx4gNmzZ5ttj7Ie7RtLGkdERERUUiJyhorIONKOOTMRkfSOXRR5+7zIOLNj5NmWplgwTNVDVxspe+j2C/OTNM7cBDfzgJO99vmazg42CG5muQVdUWq7qPRkjLYZ+tBrhu6GDRsgl8sxb948DBgwAK6urpBJ/Mbdv38fS5YswaZNmyCXy9GkSRPcvn1b9PMFQcDq1asBAPPmzYODg4N62/jx4xETE4NTp07hxIkTePzxxyUduxTOJIhLxs8kZKBzkK+BR0NERET1QWpmgaRxpB1zZiIi6RWXifvSUWycuckpFNmOQGRcbcT2xk1MzUHblp6S7NPYC1xdu5MnOs4SZ7HK5TKMfyoYy7ZdrDHm5UFBZlOI1Ediao7W2bkAUFBUhsTUHIs8h/rQa4ZuWloaunXrhlGjRsHT0xPW1tawsrKq8T99LF++HD/99BOaNWuGtWvXIiIiQqfnJyYm4vbt22jVqhVatWpVZXtkZCQA4ODBg3qNz9DEtFvQJY6IiIhIJnI2j9g40o45MxGR9MTeFm+I2+eVSgHxKdk4cfku4lOyDdKnt+BBmaRxtbmSki1pnBgNoU+wsdXU79XDTPq91lVDOIe60muGrq+vr8Fvu/L398e///1vjBgxAjY2Nvjll190ev7Vq1cBAIGB1a9K17p1awCVSaw58nZzwNVbtX+L5O3mUGsMEREREQC4OtvhdlaRqDiqO+bMRETSiwz3x+YDyaLipBSXkI6Ne5OQXfB3wcjD2Q5jngyUtFjm7GAjaVxtsvLETRITGyeGsXvomqJPsCmYc7/Xumoo51AXehV0hw8fjqVLlyI5OVmSlXyrExUVVafnp6enAwB8fKr/xdqoUSMAQGZm7Y2xa2NtrddEZ616dmiCE5fviYozxP5Jf1ZWco3/JfPFc2VZeL4sB8+V+XJ3FreAiruzLfMLCTBn1sRrqu74+5V0VR+vGWtrOZ56vDn+p2URqKcebw77WnqK6uJUfHq1t7NnF5Rg2baLmDq8PboES1PULSzRflv5w3FS/F719hA3Sczbw0Gy3+NtW3rC08UOWfk1z6b0dLVD25aekhQjjb2/hymVAhJuZiOnoBTuzrYIamb4HqwhAcZdDNAYv2dMeQ7NlV6/4SZOnIiEhASMHj0aL730EoKCguDmVvPtDKbot1VYWAgAsLe3r3a76nFVnL7kchk8PKRfCbpHJ0d8tekstK2PIZcDPTr5w6qBXKyWxtWVs6ctBc+VZeH5shw8V+bHr7ErcDldVJwh8puGhjnz3wyVMzdU/P1KYlQoBVy+dh9ZV+/D09UebVt51ZvPjh0VPloLuh0VPpL9zqlQCli145LWmFU7LqF/RAtJ3t/GjVxEx0lxjBEhTbDjzxui4qT8Pf7aC+2xYO2pmrcPbQ8vL2eL3R8AHLtwGyu2/4X7D7XK9HKzx6TnQ9G9fRNJ92UODP23yRTn0JzpVdAtKSlBSUkJ8vLysHz5cq2xMpkMly9f1mtwdaHqQ1bbwhN1vQ1OqRSQl1e3BLc6paUVWou5lfsGMjPyYWurX881MgwrKzlcXR2Ql1eEioq6rVhNhsVzZVl4viwHz5X5Epv4WQPIzn4g6b5dXR3q1QwxMZgz/81QOXNDw9+vJNap+HRs2J2gMZvN08UOLw0MkmwmqakolQK+23pBa8x32y4gqKmrJDP1LibfR1GJ9gXWikoqcOxMqiQzI+1Efry3s5Lmb3UTj+q/0KsuTsrcoI2/G6YOb1/1OnW1w0sDgtDG382i93cqPh1Lfql6nd7PLcaCtackndVtasb622Tsc2gqYnNmvQq6X331Ffbu3QuZTIZWrVrB01OalQ6l5OjoCAAoLq6+z4vqcVVcXZSXS3/BrtsdLzru5afaSL5/qruKCqVBrg2SHs+VZeH5shw8V+Yn70Gp6Dieu7pjzqyJ15R0+PuVtIlLqL49QFZ+CZb8csHiF0iKT8nWets1AGTlleDy9SxJVrs/fO6W6Dgp9hfQxA0eLnbI1nZruYsdApq4SfJ74PL1LNFxbVtK+3csrLU3OrTyqrbnqyF+xxlrf0qlgPW7E7TGbNidgA6tvOpVewBj/G0y9jVjzvQq6O7evRvOzs748ccf0bZtW6nHJAlfX18ANff7ysjIAPB3XzBzE38zR9I4IiIiovv54hY0ERtH2jFnJiJjUyoFbIxJ0hrzU0wSwgIbWWwhydir3WeKXAxMbFxt5HIZxkQGVluUVxkdGSjZ+YtPzRYdJ3VBF6g8XikK4ea0v8TUHK0FeaDyC5bE1ByjHnt9Yexrxlzpdd9bXl4eunTpYraJKfD3Sr2qlXsfpXpcoVAYbUy6EHtLYkO7dZGIiIj0J/ajn2V+xDc/zJmJyNh0KSRZKmOvdu/tJq4lgdg4McKDfDBlaAg8XDSPwdPFTvoZ1mI76tSt806NlEoB8SnZOHH5LuJTsqFUGmhHRmTsLx2oYdJrhm6rVq2Qk5Mj8VCk1apVK/j7+yMpKQk3b95Es2bNNLbv3bsXANC7d29TDK9WEW0aYduR2nt/RLThbAkiIiISx9NV3IdNsXGkHXNmIjK2hlBIavWYq6RxtekR8hhOiFhQtEfIY5LsTyU8yAdhgY2qvbVcSkH+7tipZYG5h+OkFpeQjo0xSRpfQni42GFMZKBFtwUx9pcO1DDpNb0zKioKZ8+excGDByUejn6ysrKQnJyM27dvazw+duxYCIKAuXPnoqCgQP342rVrcfr0abRt2xbdu3c39nBF4QxdIiIikpqjvbjv8sXGkXbMmYnI2FwdbSWN00V5uRJ7Ym9i/Z4E7Im9abB+lgdF9rQVG1ebNi08YVPL524baznatDBcO4JubRsjuLmHQdpk1LYopq5xYql6PT86ozw7vwTLtl1EXELtRXRzpfB3rzK7+lGeLpUFeiJ96ZWth4aGok+fPpg8eTL69OmDDh06wM3NDdbW1b/c8OHD6zTI2mzYsAFLly5F165dsW7dOvXjY8eOxYEDB3DixAkMGDAAnTt3RlpaGi5dugQ3Nzd8+eWXBh1XXWTkiuu/IzaOiIiI6EFhmaRxpB1zZiIyNmWFuNvVxcaJtXl/EnafSoXw0MtuOnAVA7v448V+gZLu615OoaRxYtjayFFWUXOB2s7acida5RWJXDBVZJwY9b3Xs7H7IFPDpFdB99lnn4VMJoMgCNi/fz8OHDigNd7QyWlNrK2tsWLFCqxatQrR0dE4cOAAvLy8MGTIEEydOrXKLWXmJLeWvke6xhERERHdSC+oPUiHONKOOTMRGVvirRzRcSEBXpLsc/P+JPwRm1rlcUGA+nFJi7pG7vmamJqDB8XlWmMKisstdoErU7QHaAiLhqn6IG/Ym4icgr+L4R7OthjzpMJgLSWUSsHgbTrIPOhV0H3++ecln25fm88++wyfffZZtdumTp2KqVOnVrvNzs4OU6ZMwZQpUww5PMm5OYm7BUZsHBEREZGNyAlEYuNIO+bMRGR0Ri52lpcrsbuaYu7Ddsem4oVeAbCWaBZrqyZuOHD2tqg4KWTmF+kQZ3nFR1V7AG0FVqnbAzSEXs8qVfIAA+YF9bUnMVVPr4JuTUkiScdUfWyIiIio/npQXCFpHGnHnJmIjM3YC1zFxKXWWhsW/j9uUERzSfbpJXLhTrFxtbl+K0903BMhTSTZp4oxZluaoj1AQ1g0TNUj+FGqHsFThoZIWmQ19v7I9LjihZnioiVEREQktdJycYVasXFERGRejD0xKCktV3TcoAhJdmmCGaVi3yvpFw0z1mxLVXuAR/fn6WKH0QbYnylmBRuTsXsE1/eexFQ9vauBJSUlOHToEFJSUlBSon0a/Jtvvqnvbhou0/zNICIionqspExcoVZsHNWOOTMRGZOxF7iyFdmjR2ycGMaeUerr4SBpnBimmG0ZHuSDsMBGSL6dizJBBhuZgIAmbgYpANb3RcOM3SO4IfQkpqr0KujeunULY8eOxd27d7XGCYIAmUzG5FQPjnYiZ+iKjCMiIiJq7OGI9OxiUXFUd8yZicjYjH0ru7+PM05eThcVJyVjzijt18kPmw5chaClt4RMVhknBVPOtpTLZWjTwhMeHk7Izn6A8nKlpK//MGPPCjYmY/cIbkg9iU3BXBea06sauGDBAty5cwfNmzdHjx494OLiwl6uEisS2btObBwRERFRcHMPXLiWJSqO6o45M5F5Ky9XYv+ZNKTnFMHH3QH9OvlJtnBXdYxRFFD4u8PJ3hoPistrjHF2sJHsVnYPZ3F9asXG6UI1o9TQ76m1tRwDu/jjDy2Lvw3s4i/ZtdOQZlsa6xwam7G/WGkIPYlNxZwXmtOroHv27Fk0adIE27dvh4ODdLcV0N9kIv8WiI0jIiIi6hfmh80HkkXFUd0xZyYyX5v3J2H3qVSNWZebDlzFwC7+eLFfoOT7M2ZRoLxC+6zKcgn7pHu4iCsQiY3TlVwuM0pRU3VNPHrNyGSQ/JppaLMtjXUOVYz1xYoxewTX957EpmLuC83pVdAtKSlBeHg4E1MDUjR1B1D76qSVcURERES1u3pL3OI1V2/lom1LTwOPpv5jzkxknjbvT6p2tqUgQP24lAU6YxYF4lOyUVKmvaBbXKZEfEq2JL/njT0j2JRe7BeIF3oFGHxWtylnWyqVAq7cyELZ9WyD9tA1FWN9sWLsHsH1vSexKVjCQnN6FXTDw8ORkJCg7vdF0hP7tvLtJyIiIrEu3MgUHceCbt0xZyYyP+XlSuw+VfOt80DlLMwXegVIUqgzdlHgSkq26Dipfs/XOiO4lu2WxNpajgFdmxl0H6aabWnOt5ZLwdizLY3dI7g+9yQ2BUtofaLXX6h33nkH6enp+PDDD/HgwQOpx0TQ7Q8xERERkRjnEu5LGkfaMWcmMj/7z6RpXdwKqJypu/9MmiT706UoIIWsvNoXvtQlrjbxN0XMCC6tQPxNfm4VSzXbUhupZ1uqip2PXquqYmdcQu0L35kzsV+sKJW1/HLQUXiQD758oztmjg7DpCFtMXN0GL54o7vBiqvG3l99ZgmtT/SaoRsYGIi5c+fivffew/bt2+Hn5wc3N7dqY2UyGdavX1+nQTZE1+6IuyVSbBwRERGR2A8qUn+gaaiYMxOZn/ScIknjamPsooCHm8ietiLjanPlRu0Lbari2rbgnR9iGXO2pSXcWl5XppxtaewewcbeX31lCQvN6VXQ/fPPP/HBBx8AAIqLi3H16tUaY3l7mX7yHpRKGkdERETUxNsRmSJmZTXxdjTCaOo/5sxE5sfbzV7SuNoYuyjQtpkndh2/KSpOCvdrKZLpGqcrYyxwZSrhQT4IC2xk8OOzhFvL68oSZluSebGEheb0KuguXrwY5eXliIyMxDPPPANPT08moRJztLcBUPu3wpVxRERERLV7osNjuHCt9tlUT3R4zAijqf+YMxOZHz9vZ0njatPqMVdJ42oT3Nyj9kXK7K0lK8x5uYgrfIuN00V97/kKGGe2ZUModlrCbEsyL5aw0JxeBd3ExEQEBwdj6dKlUo+H/l9YYCNcvZUnKo6IiIhIjDOJ4hZFO5OYic5BvgYeTf3HnJnI/BSUlEkaV5uD526JjpNisS25XIbxTwVrLUK8/FSwZEWINi088PuJFFFxUjL2Alcq9XFGcEModlrCbEsyP+a+0JxeBV0HBwf4+/tLPRZ6SP9OfthyMFlUHBEREZEYJaUVksaRdsyZicyPsYtXxu7ZC/xdhNiwNxE5BX+36PNwtsWYJxWSFiGCm4mYEexgg+Bm0hV0TdXztb7OCG4IxU5LmG1J5slYrU/0oVdBt2fPnjhy5AiKi4thby/9rRMEXLtT++xcVZyl9rEhIiIi4wr0c8PZpNpn6Qb6Vb9wF+mGOTOR+VH4u4tqSSBV8crH3UHSOLFURYjk27koE2SwkQkIaOImeRFC1IzgQUGS7tcUPV9NNSPYGBpKsdPcZ1uS+TLXhebk+jxp+vTpkMvleO2113DlyhWpx0QAMvPFfUMrNo6IiIgoMtwftX0ck/1/HNUdc2YiCyVhr+t+Iu+oFBunC7lchjYtPNG7kx/atPA0WEFOVSjzcNGc1ezhYmeQQqexe76KnRGsVAqS7M8UajqHngY6h6YSHuSDL9/ojpmjwzBpSFvMHB2GL97oXm+OjxoWvWbofvrpp2jSpAliY2PxwgsvwNbWFi4uLrC2rvpyMpkMBw4cqPNAG5rk1FzRcU+ENDHwaIiIiKg+sLaWY2BXf/wRm1pjzMCu/rC21us7f3oEc2Yi85OYmqN1di4AFBSVSTq7syEw5m3Jxm6bYYoZwaZgrFndpmausy2JdKVXQXf37t0a/y4pKUFJSfW/4LiSr37SMh5IGkdEREQEAC/2C8TdrEKcu3q/yraOrb3wYr9AE4yqfmLOTJbM2Is/GWt/xp7duf9Mmug4KRZFMyVjFcqM3fPV2NeMKalmdXt4OCE7+wHKy5WmHhIR1UCvgu6+ffukHgc9ShB5u4bYOCIiIiJU9gGsrpgLAOeu3kdcQjpvPZQIc2ayVMZe/MmY+3O2t5E0rjamWBStvjN2z1djzwgmIhJDVEG3oKAANjY2sLOr/AXVtGlTvXZWUlKCsrIyODs76/X8hsTRQVytXWwcERERkVIp4LvoS1pjVkRfwrdvS7syeEPBnJnqA2Mv/mTs/aXeKxAdF9LKq87783YTtyCi2DiqZMwFrow9I5gMy9h3HxAZiqhqYJcuXTBkyBB8/vnnddrZe++9h99//x2XL1+u0+s0BHK5uN51YuOIiIiILl67j/IK7Xf3lFUIuHjtPtq39jbSqOoP5sxk6cQu/hQWKM2XPsbeHwBcvS1urRKxcbVp6i3uixmxcfQ3Y/XtNfaMYDIcY999QGRIoqqBgiBAkOjWfqlep75ztBU5Q1dkHBEREdHu0zUvhqZPHGlizkyWTpfFnyxxfwBgZ2MlaVxtktJyJI0jTaq+vd3aNkZwcw+DFVVVM4I9XDTbKni62Ek+i5wMQ3U3wKO/c1R3A8QlpJtoZET6EV0N/PPPP/HSSy/VaWc3btyo0/Mbku4hjXH88j1RcURERERiFBaVSRpHVTFnJktm7MWfTLHYVPeQxjhhzM9ZYuuLBqhDKpUCrtzIQtn1bNjIBAQ0ceMs0jow1oxgkp4p7gYgMjTRBd379+/j/v3qF9DQBVfwFadNC0/Y2VqhpLSixhh7Wyu0aeFpxFERERGRJXN3tkOKiP6R7s5c2EVfzJnJkhl78SdXR1tJ48Ro28ITdjZylJQpa4yxt7VCW4k+ZwX7e2AnUkTFSckUt5Y3hN6kqhnBZFl0uRuA55cshaiC7o8//mjocdAj5HIZ+nZsgj9ia77lsU/HJvXuDyQREREZThMvR5xPrr3Y2MTL0QijqX+YM5OlM/riT2I7i0jYgUQul+HVZ9tq7Yc68Zk2kn3OCm7uASd7azwoLq8xxtneWtIikrEXmlPtk71JyVyZ4m4AIkMTVdDt2rWrocdBj1AqBRy5cEdrzNELdzC8T2sWdYmIiEgUuZW4nEFsHGlizkyWztiLP+UUiiyyiIwTS9UPdcPeROQUlKofd3e2xUtPKiQtQMrlMox/Kljre/ryU8GSvaemuLXcFAVkIl0Y++4DImPgilpmKj4lW+u3uABQUFyO+JRstG3JtgtERERUOyd7G0njiKj+Sb6VW+t2qYpzBQ/E9esWG6cLY/ZDramA7OFsizESF5CNfWs5e5OSJTD63QcNCHt1mw4Lumbqys0s0XEs6BIREZEYLg7i+lCKjSOi+qW8XIndp2pu+QYAu0+l4oVeAbC2ltd5f84O4r48EhunK2P2QzVWAdnYt5azNylZAmPffdBQsNWKadX9rzAZxP1ccX9gxcYRERERXbujfeadrnFEVL/sP5MGoZZ+tYJQGSeFgiKRM3RFxpk7VQG5W9vGCG7uYZDikbFvLWdvUrIUqpnyHi6a176nix3bguhB1Wrl0S90VK1W4hLSTTSyhoMzdM2Ul5u9pHFEREREgsiVhcTGEVH9kp5TJGlcbZydRM7QFRlHxr+1nL1JyZIYs9VKfcZWK+aBM3TNVLDIP7Bi44iIiIhkEJdUi40jovrFW+RkEbFxtfF0Fvc6YuPo71vLtZHy1nJVAVkb9iYlc2KMmfL1nS6tVshwWNA1UzKZyA9cIuOIiIiIWjVxkzSOiOoXv0bOksbVhsVAwzDmreXGLiATkemx1Yp5YMsFM5VXVFp7kA5xRERERF6uIls6iYwjovqloFhkT1uRcbWRy2WIaOODP2JrXoitaxsfFgP1oLq1PPl2LsoEmUFXn1cVkB9dHMnTxQ6juTgSUb3DVivmQe+CblFREXbv3o2EhATk5+ejoqKi2jiZTIZPP/1U7wE2VC724vpEiY0jIiIiUvi7w8neGg+Ky2uMcXaw4Ww4CTFnJkvi6mgraVxtlEoBB87e0hpz8OwtDO/TmkVdPcjlMrRp4QkPDydkZz9AebnSYPtib1KihsPYvbqpenoVdDMyMjBmzBikpaVBqGUZVCan+rlxL090XLtWXgYeDREREdUX5RXaP9DXtp3EY85MlkZZIW5BRLFxtbl8PQslZdp/5xSXKXH5ehZCAiz/M49SKdTrgqeqNykR1W+qVivLtl2sMYatVgxPr4LuokWLkJqaCl9fXzz//PN47LHHYGVlJfXYGrTzV++Ljnvm8ZYGHg0RERHVB/E3s2svnpRWIP5mNtq28DTSqOov5sxkaeLTskXHSVFgPXb5rug4QxR0jVlgjUtIr9KSwMPFDmPYkoCILBBbrZieXgXdI0eOwMPDA9u3b4eHB7+BMwSxaQS/7yAiIiKx4lNEFmtSWNCVAnNmsjTZueIWsBEbV5uS0upbkOgbpwtjFljjEtKrncmWnV+CZdsuSr5QGRGRMRizVzdVJdfnSXl5eQgLC2NiakAdWjeSNI6IiIiI3xgbF3NmsjSeIhdEFBtXm0A/N0njxFIVWB/t/6gqsMYlpEu2L6VSwMaYJK0xP8UkQamUpo0FEZExqXp19+7khzYtPFnMNSK9CrrNmzdHTk6OxEOhh/k1cpI0joiIiCjYX1xhUWwcacecmSxNG5H9T8XG1SYy3L/W749k/x8nFWMXWBNTc7QuHAQAWfklSEzNkWR/RETUMOhV0B0xYgTOnj2LU6dOST0e+n9Xb+VKGkdEREQU3NwDTvbaO24521tzURuJMGcmS2Ps3xHW1nIM7Kq9WDuwqz+srfX62FotYxdYcx6Ia08hNo6IiAgQ2UP3+PHjGv9u3bo1WrZsiUmTJmHkyJHo2LEjXF1dIZNV//3q448/XveRNjS8JZKIiIgkJpfLMP6pYK2rEr/8VDBvl9MTc2aydKb4HfFiv0AAwO5TqRAemhQrkwEDu/irt0vF2AVWdyc7SeOIiIgAkQXdV155pdrEUxAErF27FmvXrq3xuTKZDJcvX9Z7gLGxsVi+fDmuXLmC4uJiBAUFISoqCk8//bTo1xgyZAgSEhJq3L5r1y4EBAToPUZDCPb3wE6kiIojIiIiEku1KvGGvYnIKShVP+7ubIuXnlRwYZ46MFXO3FDz5YZGqRRw5UYWyq5nG3ThmZp+R3g422KMgX5HvNgvEC/0CsD+M2lIzymCj7sD+nXyk3RmroqxC6wKf3d4uNhpnRXs6WIHhb+7JPsjIqKGQVRBt0uXLoYeR7Wio6Mxc+ZMWFtbIyIiAlZWVjh+/DjeeustXL16FdOmTav1NUpLS5GcnAw3Nzf06tWr2hgXFxeph15nqtudHhSX1xjDWyKJiIhIX4IgaP036c4UOXNDzpcbkriEdKN+CaNauTwxNQc5D0rg7lRZcDTk7H1razkGdG1msNdXMXaBVS6XYUxkoNZZz6MjA3lnBBER6UQmmGn2npmZif79+0Mul2P9+vVo164dACA5ORlRUVG4f/8+fv31V/XjNfnrr78wfPhwDBw4EIsXL5Z8nBUVSmRlPZD8dYG/V1+tyZShIZxFY4asreXw8HBCdvYDlJcrTT0c0oLnyrLwfFkOnivzZqr8wtPTCVZW0s+2a8gsJV8GDJsz13f8TCA9U7yncQnp2BiTpFFI9nSxw+jIQIOeP/5NJl3xmiFd8ZqRlticWa+s+tSpU7h27VqtcefPn8eWLVv02QU2bNiA4uJijB07ViMJDQgIwPTp09W3rtVGdetaSEiIXuMwJdXtTu7OthqPezjbMnEjIiIinSmVAtb8L15rzNr/xUu2untDZ+icmfly/cefWcNQfc7ycNFsq+DpYmewz1nhQT748o3umDk6DJOGtMXM0WH44o3u/ExHRER6EdVy4VHjxo3Dc889h88//1xr3Pfff48///wTI0aM0Hkfhw4dAgBERkZW2RYZGYm5c+fi4MGDtb6OKkGtbWaCuVLd7pR8Oxdlgsyg/bKIiIiofotPydbazgkACorLEZ+SjbYtPY00qvrL0Dkz8+X6jz+zhmOKthJyuYwt84iISBKiCronTpyo0lctIyOjykq+DysoKMCZM2f06scmCAKuXr0KAAgMrLqqqZubG7y9vZGRkYF79+7B19e3xtdSJajp6ekYP348rly5gtLSUoSGhuIf//gHevbsqfP4jE0ul6FNC09OYSciIqI6iU/NFh3H4pDujJkzM19uGPgza1gssBIRkaUSVdD99ddfsXPnTvW/ZTIZjh8/rjU5BSoTzf79++s8qNzcXJSUlMDJyQmOjo7Vxvj4+CAjIwOZmZk1JqgVFRVITEwEAMyePRvBwcHo0qULrl+/jpMnT+LkyZOYNWsWJkyYoPMYH2aI1VcfplQKSEjNQcn1bNhZyxDYlDN0zZmq1wn7BJo/nivLwvNlOXiuzJdcJi5/kMtkBs9v6iNj5syWli8Dhs+Z66OG9DOrVApIuJmNnIJSuDvbIqiZBz/zSIB/k0lXvGZIV7xmTENUQXfGjBm4d++eeubAqVOn4OXlhVatWlUbL5PJYGdnh+bNm2Py5Mk6D6qoqAgA4ODgUGOMnV1lv6PCwsIaY5KTk1FcXAw7Ozt888036Nevn3rbrl27MGPGDHz55Zfo3Lkz2rdvr/M4gcpvdT08nPR6rhjHLtzGiu1/4X5usfoxLzd7THo+FN3bNzHYfqnuXF1rvn7JvPBcWRaeL8vBc2V+wts9hug/b4iKM2R+U18ZM2e2pHwZMHzObAoVSgGXr91HVl4xPF3t0baVF6wkLkA2lJ9ZfuYxPP5NJl3xmiFd8ZoxLlEFXR8fH/z444/qfwcHB6NHjx744osvDDIoubyyqi8T8Y20Ullz+wGFQoE///wTRUVF8Pf319j29NNP49y5c1i7di1++uknvRNUpVJAXl7NSXJdnIpPx5JfLlR5/H5uMRasPYWpw9ujSzCb6JsbKys5XF0dkJdXhIoKtscwZzxXloXny3LwXJmvwoLi2oP+Py47+4Gk+3Z1daj3MzeMmTNbUr5cOQbD5cymcCo+HRt2JyArv0T9mKeLHV4aGCRpfm7Kn1lj4Wcew+LfZNIVrxnSFa8ZaYnNmfVaFG3fvn013tolBSenym+Xi4trTmBKSiqTp9rG4e3tXeO2vn37Yu3atbh48aIeo/ybIXraKpUCfth5WWvM6t+voEMrL96KZKYqKpTsd2wheK4sC8+X5eC5Mj/ZBSW1B/1/HM9d3RkyZ7a0fBkwTM5sCnEJ6Vi2rer7kZVfgiW/XMCUoSEID5KmAGnKn1mlUjD4gmFKpYD1uxO0xmzYncDPPBLg32TSFa8Z0hWvGePSq6DbtGlTqcehwcnJCU5OTsjPz0dxcTHs7e2rxKSnpwOonAmhr0aNGgH4+5Y1cxJ/U8SKtkVliL+ZjbYtuAACERER1c7Z3kbSONLOkDkz82XTUCoFbIxJ0hrzU0wSwgIbSVKAdBH5syg2Tqy4hHRsjElC9kMzkD1c7DAmMlCyYjUAJKbmaOyjOln5JUhMzeHiZURERA8RVdDVZ2EzFZlMhpiYGJ2fExgYiHPnziE5ORnt2rXT2J6Tk4PMzEy4ublpXbF39+7d2LNnD7p164YRI0ZU2Z6amgoAaNy4sU7jM4YrN7JEx7GgS0RERGKkZRSIjgtp5WXg0dQ/xsyZmS+bhrELkCnp+aLj2kn0M1vTDOTs/BIs23ZR0hnIOQ/EzUAWG0dERNRQiCro3rp1S9SLWVlZoaKiok4DUunZsyfOnTuHmJiYKglqTEwMBEFAr169tL5Gbm4udu7cieTkZAwfPrxKj7Ft27YBAJ544glJxiylzDxx/bLExhERERFl5orML0TGkSZj58wNPV82BWMXIJNv5UkaVxtjz0B2d7KTNI6IiKihELUyxZ49ezT+i46ORuvWreHq6orZs2dj7969uHLlCi5duoQ///wT8+fPh7e3N8LCwnD69Gm9BjZ8+HA4ODhgzZo1OHPmjPrxa9eu4ZtvvgEAvPrqq+rH09PTkZycrL61DAAGDRoEd3d3XLlyBcuWLVOvOAwAmzdvxu7du+Hl5YVRo0bpNUZDEpsesZMUERERieXjLm71YbFxpMnYOXNDz5dNwdgFSHsbK0njaqPLDGQpKPzd4eGi/b3ydKns30tERER/E1XQbdasmcZ/O3bswI0bN7BmzRqMHz8e/v7+6m/zvby8MHz4cKxduxaXLl3CwoUL9RpY48aNMXfuXBQVFWHs2LF45ZVX8Nprr+H5559HRkYG3n77bQQHB6vjFy1ahKeffhqLFi1SP+bq6oovvvgCtra2WLJkCQYNGoRp06ZhyJAhmDdvHhwdHbFkyRK4u7vrNUZD8nIV90FKbBwRERFRn47ierqKjSNNxs6ZG3q+bAqtm7pJGleb7iHiWl2IjauNsWcgy+UyjIkM1BozOjKQC6IRERE9QlRB91HR0dGIiIhA27Zta4wJCAhAt27dsHfvXr0HN2LECKxcuRLh4eE4d+4c4uLi0LZtWyxZsgSTJk0S9Rq9e/fGr7/+imeeeQYFBQXYv38/cnJyMGzYMERHRyM8PFzv8RlSUDN3SeOIiIiIrt7KlTSOtDNGztyQ82VTiL+ZLWlcbdq08ISdrfbZt/a2Vmgj0ZoapmiBEB7kgylDQ6rM1PV0sZO0Xy8REVF9IqqH7qPy8vKqXUm3OsXFdevB1rNnT/Ts2bPWuM8++wyfffZZtdsUCoXGTARLIJeJ+xZabBwRERFRfKrIYlRqNtq25KKrdWWsnLmh5sumcOziXdFxUiwsKJfL8OozbapdpExl4jNtJJvBqmqBoK3tgiFaIIQH+SAssBESU3OQ86AE7k6V++DMXCIiourpNUO3RYsWOHHihEb/rUclJyfjxIkTUCgUeg+uIcspFHm7k8g4IiIiIkEp1B6kQxxpx5y5/ikqKZM0TgzVDFZ3Z1uNxz0MMIPVlC0Q5HIZgpt7oFvbxghu7sFiLhERkRZ6FXRHjhyJBw8eYNy4cTh48CBKS0vV24qKirBz506MHz8eZWVlGD9+vFRjbVAKHohLAsXGERERETk52EgaR9oxZ66PzGfp4ocXsJMSWyAQERGZP71aLowaNQpnzpxBdHQ03njjDVhZWcHNrbLxf05ODpRKJQRBwGuvvYaBAwdKOuCGwsXRtvYgHeKIiIiI3ET2vRQbR9oxZ65/PF3E/WyIjRMjLiG92pYLOQWlWLbtokGKrGyBQEREZN70KugCwBdffIH+/fvjp59+QlxcHO7fvw8AsLOzQ7du3fDyyy+je/fukg20oXFzFleoFRtHRERE9OiMu7rGUe2YM9cvvp6OksbVRqkUsDEmSWvMTzFJCAtsJHmxVdUCgYiIiMyP3gVdABg4cCAGDhwIQRCQnZ0NmUwGDw/+0ZeE2Duo2OKOiIiIRDLVgkcNHXNmw1MqBaPMJu3XyQ+bDlyFtm4HMlllnBQSU3O0/rwCQFZ+CRJTc1h8JSIiakDqVNBVkclk8PTkSshSyisqrT1IhzgiIiIi1YJH1d2+rWKoBY+IObOhxCWkY2NMkkbh08PFDmMiAyVvRWBtLcfALv74Iza1xpiBXfxhba3XUiVV5DwQuVCyyDgiIiKqH0QVdGfOnAmZTIYZM2bA29sbM2fOFL0DmUyGzz//XO8BNlTuInvXiY0jIiIiIsNizmx8NfWXzc4vMVh/2Rf7BQIAdp9K1ZipK5NVFnNV26XAzwRERERUHVEF3ejoaMhkMrz++uvw9vZGdHS06B0wOdVP66ZukMlQ6+1crZu6GW9QREREZNFM2Y+zIWDObFymvJ4DmrrB9dJd5D4oUz/m6miDAIlzc34mICIiouqIKuguWLAAANCoUSONf5PhXL2VqzVxAyoTu6u3ctkvi4iIiERhP07DYs5sXKa6nmuaFZz7oEzyWcH8TEBERETVEVXQHTp0qNZ/k/RqS051jSMiIiJiP07DYs5sXKa4no09K5g/s0RERFQdvbr1v/LKK1i3bh1SU2teDIDqJr9Q3GJnYuOIiIiI2I/TuJgzG5YprmddZgVLgT+zREREVB1RM3Qfdfz4cZw4cQKffvopAgIC0K9fP/Tp0wdhYWGQydhvTQrOTjaSxhEREREp/N3h4WKntSDl6WIHhb+78QZVjzFnNixTXM/GnjHLn1kiIiKqjl4zdHfv3o05c+agR48eSE1NxYoVK/DSSy+he/fumDNnDnbv3o0HDx5IPdYGxdPZXtI4IiIiIrlchjGRgVpjRkcGckE0iTBnNixTXM/GnjHLn1kiIiKqjl4zdJs3b46oqChERUWhpKQEJ06cwOHDh3H48GFs27YN27dvh7W1Nbp27Yp+/frhpZdeknrc9R6/jSciIiKybMyZ6x9T5OjhQT6YMjQEG2OSNPbr6WKH0ZGBki3ARkRERJZDJgi1rZuqmxs3bmD16tX49ddfUVFRAQC4cuWKlLswKxUVSmRlGWZmRU0r6KpIuYIuScfaWg4PDydkZz9AebnS1MMhLXiuLAvPl+XguTJfSqWAGd8eq7UY9cUb3SWf8efp6QQrK71uDquXmDPXnamuZ1Pl6EqlgOTbuSgTZLCRCQho4saZuVQr/k0mXfGaIV3xmpGW2JxZrxm6j0pOTkZsbCxiY2Nx6tQp3L9/H6o6cZMmTaTYRYPEb+OJiIhISros6BTc3MNIo2o4mDNLy1TXs6lydLlchjYtPPmhmYiIiPQr6CYnJ+PkyZOIjY3F6dOnNZJRX19fDB48GBEREYiIiICfn5+kA25owoN8EBbYiN/GExERUZ0Ze0Gnho45s2GZ8npW5eiJqTnIeVACd6fKNgvM0YmIiMgY9CroPvvss+r/37RpUzzzzDPo2rUrIiIi0Lx5c8kGR5X4bTwRERFJwdgLOjV0zJkNy9TXs1wu40x2IiIiMgm9GpkJggBBECCXy+Ht7Y2mTZuiadOm8PX1lXp8RERERCQR1YJO2nDRVekwZzYsXs9ERETUUOk1Q/fYsWM4fvy4+r/vvvsOK1asgLW1NUJCQtS3jnXq1Al2dpzhQURERGQO5HIZxkQGal3QaXRkIG8blwhzZsPi9UxEREQNlUxQNfKqg9TUVHWieurUKWRmZkImk8HGxgbt27fH+vXrpRirWTLEir3V4aqBloPnynLwXFkWni/LwXNl/uIS0o2+oJPYFXvrM+bMhsmZTXE9mwp/v5KueM2QrnjNkK54zUhLbM4sSUH3YVlZWfj555+xZs0a5OXlQSaT4cqVK1LuwqywoEuP4rmyHDxXloXny3LwXFkGpVIw6qKrLOhqYs4sLaVSaBALlPH3K+mK1wzpitcM6YrXjLTE5sx6tVx4WElJCU6dOqWebRAfH6/uF9aiRQv06dOnrrsgIiIiIolx0VXjYs5sWFygjIiIiBoSvQq658+fV/cEO3fuHMrKyiAIAmxsbNCtWzf07t0bffv2RbNmzaQeLxERERGRRWDOTERERESGoFdBd+TIkZDJZBAEAd7e3ujduzf69OmDHj16wNHRUeoxEhERERFZHObMRERERGQIehV0Q0JC0KdPH/Tp0wchISFSj4mIiIiIyOIxZyYiIiIiQ9CroPvLL79IPQ4iIiIionqFOTMRERERGQKXGiYiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCWJt6ALWJjY3F8uXLceXKFRQXFyMoKAhRUVF4+umnRb9GQUEBVq5cid27d+P27dtwd3dH3759MW3aNHh5eRlw9EREREREhsV8mYiIiKhhMesZutHR0YiKikJsbCzatm2LLl264NKlS3jrrbewePFiUa9RUFCAqKgoLF++HBUVFejTpw8cHR3x888/Y+jQobh7966Bj6LulEoBV25k4dCZNFy5kQWlUjD1kIiIiIjIDDBfrqRUCohPycaJy3cRn5LNfJmIiIjqNbOdoZuZmYl58+bBwcEB69evR7t27QAAycnJiIqKwn//+1/0799f/XhNlixZgkuXLuH555/HJ598AmtrayiVSnz++edYs2YNPvzwQ3z77bfGOCS9xCWkY2NMErLzS9SPebjYYUxkIMKDfEw4MiIiIiIyJebLlZgvExERUUNjtjN0N2zYgOLiYowdO1YjCQ0ICMD06dMhCALWrl2r9TUKCgqwefNmODg44N1334W1dWX9Wi6XY+bMmfD398f+/ftx8+ZNgx6LvuIS0rFs20WN5BQAsvNLsGzbRcQlpJtoZERERERkasyXmS8TERFRw2S2Bd1Dhw4BACIjI6tsi4yMhEwmw8GDB7W+RmxsLAoLC9G5c2e4ublpbLOyskLfvn0BoNbXMQWlUsDGmCStMT/FJPF2MiIiIqIGivky82UiIiJqmMyyoCsIAq5evQoACAwMrLLdzc0N3t7eyM3Nxb1792p8HW2vAQCtW7cGACQmJtZ1yJJLTM2pMtPgUVn5JUhMzTHOgIiIiIjIbDBfZr5MREREDZdZ9tDNzc1FSUkJnJyc4OjoWG2Mj48PMjIykJmZCV9f32pj0tPT1bHVadSoEYDK/mN1YW0tfV08v6hMdJwh9k/6s7KSa/wvmS+eK8vC82U5eK4sB8+V5bK0fBmQPmduiPkyf2ZJV7xmSFe8ZkhXvGZMwywLukVFRQAABweHGmPs7OwAAIWFhTXGqLbZ29tXu131uLbXqI1cLoOHh5Pez6+J/2NutQf9f5wh9k915+pa8/VL5oXnyrLwfFkOnivLwXNleSwpXwYMkzM35HyZP7OkK14zpCteM6QrXjPGZZYFXbm8sqovk8lqjVUqlTVus7KyEvU6gqB/Xy2lUkBeXt0S3Oo08bCHp4sdsrTcRubpaocmHvbIzn4g+f5Jf1ZWcri6OiAvrwgVFTVfn2R6PFeWhefLcvBcWQ5jnitXVwfO3JCQJeXLlWOQPmduiPkyf7+SrnjNkK54zZCueM1IS2zObJYFXSenym/Qi4uLa4wpKalM3Gq6xezhbTW9jupxba8hRnm5YS7Y0ZGBWLbtYs3b+wdCqRS40IOZqqhQGuzaIGnxXFkWni/LwXNlOXiuLI+l5cuAYXLmhpov82eWdMVrhnTFa4Z0xWvGuMxymoSTkxOcnJyQn59fY3JZW78vAOpeYTX1/MrIyADwd28wcxMe5IMpQ0Pg4WKn8binix2mDA1BeFDNx05ERERE9Rfz5UrMl4mIiKghMssZujKZDIGBgTh37hySk5PRrl07je05OTnIzMyEm5tbjQs8AH+v1qtavfdRSUlJAACFQiHRyKUXHuSDsMBGSL6dizJBBhuZgIAmbpDLa7+9joiIiIjqJ+bLf1Ply4mpOch5UAJ3Jzso/N2ZLxMREVG9ZZYzdAGgZ8+eAICYmJgq22JiYiAIAnr16qX1NTp37gxHR0fExsYiPz9fY1tFRQUOHDgAmUym3pe5kstlaNPCE707+aFNC08mp0RERETEfPkhcrkMwc090K1tYwQ392C+TERERPWaTKjrCgcGcvfuXQwaNAgymQzff/89OnXqBAC4du0aoqKikJGRgd9++w3BwcEAKm8py8/Ph4uLi8ZtZfPnz8e6devw9NNP4/PPP4etrS0EQcDnn3+O1atX48knn8TSpUv1HqcgGK8nl5WVnA2mLQTPleXgubIsPF+Wg+fKchjrXMnlMlELeJF4lpIvA8bNmes7/n4lXfGaIV3xmiFd8ZqRjtic2WwLugCwZcsWzJs3D3K5HBEREbC1tcXx48dRUlKCt99+G5MmTVLHzp49G9u2bcPQoUPx2WefqR8vKCjA6NGjkZiYiKZNmyIkJARJSUm4du0amjZtip9//llrXzEiIiIiInPFfJmIiIio4THLHroqI0aMQOPGjbFixQqcO3cOVlZWaNu2LSZMmIABAwaIeg1nZ2ds2LAB3377LXbv3o0DBw7A19cXY8aMweTJk812gQciIiIiotowXyYiIiJqeMx6hi4RERERERERERER/c1sF0UjIiIiIiIiIiIiIk0s6BIRERERERERERFZCBZ0iYiIiIiIiIiIiCwEC7pEREREREREREREFoIFXSIiIiIiIiIiIiILwYIuERERERERERERkYVgQZeIiIiIiIiIiIjIQrCgS0RERERERERERGQhWNAlIiIiIiIiIiIishAs6BIRERERERERERFZCBZ0iYiIiIiIiIiIiCyEtakH0JDFxsZi+fLluHLlCoqLixEUFISoqCg8/fTTol+joKAAK1euxO7du3H79m24u7ujb9++mDZtGry8vAw4+oZHivN1/fp1rFixAsePH0dmZiYcHR0RGhqK8ePHo2fPngYcfcMixbl61I4dO/DOO+9g8ODBWLhwoYSjbdikOlfR0dH4+eefkZCQgLKyMgQEBGDUqFF48cUXIZPJDDT6hkWKc5Weno6lS5fi8OHDyMzMhJOTEzp16oTXXnsNHTt2NNzgG7DY2FhERUXh448/xogRI0Q/r7S0FOvXr8e2bduQmpoKR0dHdO/eHdOmTUOzZs0MOGKi+ssUuf+aNWuwYMGCGl/vH//4B9555x29jocMT+qcVhAEvPLKK7h27RoOHz5stP2ScZniutm7dy/efPPNGl/j6aefxtdff63X/snwTFHrUCqV2Lp1KzZu3IgbN27AxsYG4eHhmDx5MkJCQqQ8vHpLJgiCYOpBNETR0dGYOXMmrK2tERERASsrKxw/fhylpaWYMmUKpk2bVutrFBQUICoqCpcuXUKzZs3Qpk0bJCYm4vr16/D19cXmzZvRuHFjIxxN/SfF+YqLi8Orr76KwsJCtGjRAq1bt8a9e/fw119/AQBmzpyJiRMnGvpQ6j0pztWj7ty5gyFDhiAvL48FXQlJda7mzJmDrVu3ws7ODt26dUNJSQni4uJQVlaGiRMnYubMmQY+kvpPinOVlpaGUaNGISMjA35+fmjTpg1u376NS5cuwcrKCl999RWeeuopIxxNw3Ht2jVERUUhIyMD8+fPF13QLS8vx+TJk3Ho0CH4+PggLCwMqampuHz5MpycnLBx40YEBwcbePRE9Yupcv8ZM2YgOjoaffr0gYuLS5XX7NevH4t0ZsoQOe1nn32G1atXw9fXt8bCnCH2S8Zjquvmm2++wbfffouuXbvC19e3yvawsDC89NJLOu+bDM9UtY73338fmzZtgpubG7p27YrMzEycPXsWNjY2WL58OZ544gmDHG+9IpDRZWRkCO3btxc6duwoXLx4Uf341atXhe7duwtBQUEaj9fk008/FRQKhTBz5kyhrKxMEARBqKioUD/++uuvG+wYGhIpzldZWZnQr18/QaFQCN99952gVCrV244ePSq0a9dOCA4OFhISEgx2HA2BVD9bD1MqlcK4ceMEhUIhKBQK4e2335Z62A2SVOdq27ZtgkKhEAYOHCikpaWpH09MTBS6du0qKBQK4fLlywY5hoZCqnM1depUQaFQCB988IFQXl6ufnzLli2CQqEQunTpIhQXFxvkGBqiY8eOCY8//rj6d9fmzZtFP3ft2rWCQqEQxo8fLxQWFqofX716taBQKITnnntO4+8YEWlnytz/mWeeEYKCgoT8/HzpDogMTuqctrCwUJg1a5b6b0LPnj2Nsl8yLlNdN4IgCJMmTRIUCoWQmJhYp2Mg4zJVrSMmJkZQKBTCs88+K2RlZakf/+OPP4Q2bdoIPXr00MhBqXrsoWsCGzZsQHFxMcaOHYt27dqpHw8ICMD06dMhCALWrl2r9TUKCgqwefNmODg44N1334W1dWX3DLlcjpkzZ8Lf3x/79+/HzZs3DXosDYEU5ys2NhZpaWkIDQ3FpEmTNG4B79GjB0aOHAmlUoldu3YZ7DgaAinO1aNWr16NkydPokuXLlIPt0GT6lz997//hZWVFb755hs0bdpU/XhgYCAmTJiAxx57DBcvXjTIMTQUUp2ro0ePAgDefPNNWFlZqR8fmuEcNAAAnodJREFUPnw4WrRogdzcXCQkJEh/AA3M/fv38cEHH2DChAnIzc1FkyZNdHq+IAhYvXo1AGDevHlwcHBQbxs/fjy6dOmCK1eu4MSJE5KOm6g+M1XuX1xcjGvXrqFFixZwdnY2zMGRQUiZ08bExOD555/Htm3b4O/vb7T9kvGZ6roBgEuXLsHBwQGtWrXSe/xkfKaqdfzwww8AKmfuenh4qB8fOHAgBg8ejIyMDPz+++9SHWa9xYKuCRw6dAgAEBkZWWVbZGQkZDIZDh48qPU1YmNjUVhYiM6dO8PNzU1jm5WVFfr27QsAtb4O1U6K8/XgwQOEhoaiV69e1W5v0aIFgMr+kqQ/Kc7VwxISEvD111+jb9++eOGFF6QaJkGacxUfH4+UlBR069at2tu/X3vtNRw8eFCnvqFUlVQ/V3J5Zcpx9+5djcfLyspQUFAAAHB3d6/bYAnLly/HTz/9hGbNmmHt2rWIiIjQ6fmJiYm4ffs2WrVqVe2HMtV1wPyCSDxT5f4JCQmoqKjQ+JBOlkGqv715eXmYMmUKUlNTERUVhe+++84o+yXTMNV1k5mZiYyMDAQHB2t8aU/mzxS1jvz8fJw5cwaOjo54/PHHq8Q/+eSTAJhrisGCrpEJgoCrV68CqJxB9ig3Nzd4e3sjNzcX9+7dq/F1tL0GALRu3RpA5Qcz0p9U5+vJJ5/EL7/8UmP/mQsXLgAAex7XgVTnSqW0tBTvvPMOnJycMH/+fMnH25BJda5UM29DQ0MhCAIOHz6Mzz77DO+99x5+/PFH5ObmGuYAGhApf65USd7MmTNx+vRpFBUV4caNG3j77beRmZmJyMhILrYlAX9/f/z73//Gzp070blzZ52fz/yCSFqmzP0vXbqk3sf777+P/v37IzQ0FIMGDcKyZctQUlKi30GRQUn5t1cul+PZZ59FdHQ05s6dCzs7O6Psl4zPVNcN8PfvmsaNG+Pzzz/HwIEDERoain79+uHzzz9nTm6mTFXrSE5OhlKpRKtWrdR3mzwsICAAAHNNMaq+e2RQubm5KCkpgZOTExwdHauN8fHxQUZGBjIzM6ttKA78/e2Gj49PtdsbNWoEoPLbMtKfVOdLm4SEBPz++++QyWQYMGBAXYfcYEl9rhYtWoTExEQsXrwY3t7ehhhygyXVuVLdVurs7IxXX31VfUu/yrfffotly5ahU6dO0h5AAyLlz9V7772Hu3fvIi4uTmNRDJlMhtdffx1TpkyRfPwNUVRUVJ2ez/yCSFqmzP0vX74MoPKWWk9PT4SFhcHX1xeXLl3C4sWLcfjwYaxevbrGcZFpSPm319nZGV999ZXR90vGZ6rrBvj7d83//vc/ODs7o0uXLmjcuDEuXryIH374Afv378f69evVv6fIPJiq1qH6e1bT9cBcUzzO0DWyoqIiANDoSfco1TdghYWFNcaottnb21e7XfW4tteg2kl1vmpy//59TJs2DRUVFRg6dChXDa8DKc/V8ePHsWbNGgwZMgQDBw6UbpAEQLpzlZ+fDwBYsWIFLl68iIULF+LkyZPYu3cvRo4ciaysLLzxxhtsZVIHUv5cubu7Y+jQoXBzc4O/vz/69++PoKAgCIKArVu34uTJk9INnPTG/IJIWqbM/VVFlmHDhuHQoUP473//i40bN2Lnzp0IDg7GuXPndCrakHEY+vOHue2XpGHK83flyhUAQO/evXHw4EEsX74ca9euxd69e9GtWzfcuHED8+bNk3SfVHemqnWoXqum/ar+nqnGRzVjQdfIVD0EH24UXROlUlnjNlVvmtpeRxAEHUZHj5LqfFXn3r17iIqKwo0bNxASEoL3339frzFSJanOVV5eHubMmQNfX18mHgYi1bkqLS0FUHnOFi9ejMGDB8Pd3R3NmjXDRx99hL59+yInJwfr1q2TZuANkJS/A9955x289957GD9+PPbu3Yv//ve/iI6OxpIlS5CdnY0pU6aob/si02F+QSQtU+b+GzZswM6dO/Hxxx/D1tZW/bi/vz8+++wzyGQybNmyha0XzIwhP3+Y435JGqY8fwsXLsSuXbvwn//8By4uLurHPT098cUXX8DR0REHDhxAWlqapPulujFVrUPs3zOlUsl8sxYs6BqZk5MTgMpVZ2uiSqq03f6k2lbT66ge5y1UdSPV+XpUYmIiRo8ejatXryI0NBQ//PCD1m/GqHZSnasPP/wQd+/exYIFC+Dq6irtIAmAdOdK9TMTGBhY7cJPo0ePBgCcOHFC77E2dFKdq6NHj+L3339HREQEJk+erJHADRgwABMmTEBJSYl6xVsyHeYXRNIyZe7v4OCAwMDAahcpatOmDRo3boySkhIkJSXVchRkTIb6/GGu+yVpmPL82draIiAgoNrPs76+vmjbti2Av3vtknkwVa1Dl79nYorNDRl76BqZk5MTnJyckJ+fj+Li4mpvm6qtRxYAdf+SmvqKZGRkAKi5LwmJI9X5etiff/6JadOmoaCgAE888QQWL16s/mVK+pPiXP3111/YuXMn3N3dsXXrVmzdulW9TfWN8tmzZ/HOO+8gICAAb7zxhgGOpP6T6ufKw8MDAODn51ftdtXj2dnZdR1ygyXVuVIV1Z944olqt/fq1Qvfffed+pY9Mh3mF0TSMufc39vbG3fu3NH6YZ6MzxCfP8x5vyQNcz5/qvVIeAu9eTFVrYO5pnQ4Q9fIZDKZegXB5OTkKttzcnKQmZkJNzc3rU2nVa9R0+2pqm/aFQpFXYfcoEl1vlR27NiBSZMmoaCgAMOHD8d3333HYq5EpDhXqn4+OTk52LFjh8Z/Z8+eBVBZ2N2xYweOHTtmoCOp/6T6uQoKCgKAGlddVSUDXl5edR1ygyXVucrLywOAameJAVCvcFtWVlbXIVMd1ZZfqB5nfkEkjqly/3v37mHu3LmYMWNGja+ZmpoKAFzcysxI/fnD3PdL0jDV+SspKcG8efMwZcqUGr8cUv2uady4sWT7pbozVa0jICAAcrkc165dq7aVA3NN8VjQNYGePXsCAGJiYqpsi4mJgSAI6NWrl9bX6Ny5MxwdHREbG6teGEiloqICBw4cgEwmU++L9CfF+QKA/fv3Y9asWSgvL8fUqVPxySefqIsYJI26nquIiAgkJCRU+9+CBQsAAIMHD0ZCQgL7staRFD9X3bp1g52dHa5cuVJtEnL48GEAlb8vSX9SnKuAgAAAwKFDh6rd/ueffwIAF4Y0A61atYK/vz+SkpJw8+bNKtv37t0LoHLhEyISxxS5v7OzM6KjoxEdHV3t3Q8HDx5ETk4OWrRoAX9/f30PjQxEqs8flrJfkoYpzp+dnR0OHjyImJgYHD16tMr2+Ph4xMfHw8XFBR07dpR031R3pqh1ODg4oEuXLsjPz692UWTmmuKxoGsCw4cPh4ODA9asWYMzZ86oH7927Rq++eYbAMCrr76qfjw9PR3JyckaK7U7ODhg2LBhePDgAd5//3314kCCIODLL79EWloaIiMj0bJlS+McVD0mxfnKzMzEnDlzUFFRgTfeeANvvvmm0cbfkEhxrsg4pDhXzs7OePHFFyEIAmbMmIH79++rtx09ehTr1q2Dvb09Ro4cafgDqsekOFfPPvssnJyccPLkSaxcuVJjgYOjR49ixYoVkMlkGDdunOEPiNSysrKQnJyM27dvazw+duxYCIKAuXPnoqCgQP342rVrcfr0abRt2xbdu3c39nCJLJYpcn8nJycMHjwYAPDee+8hKytL/Vo3btzARx99BACYMmWKYQ6a6sRUOa2u+yXzYqrrZtSoUQCATz/9VD0bF6j8DPzuu++ioqICEydOrPaWfjItU9U6VDn/xx9/rL6rEgD27NmDnTt3olGjRnjuuefqenj1nkzgsnEmsWXLFsybNw9yuRwRERGwtbXF8ePHUVJSgrfffhuTJk1Sx86ePRvbtm3D0KFD8dlnn6kfLygowOjRo5GYmIimTZsiJCQESUlJuHbtGpo2bYqff/6Z/Y0kUtfz9eWXX2LVqlWwtrbGoEGDamzu3alTJ4wZM8Yox1RfSfGzVZ2tW7dizpw5GDx4MBYuXGjow2gQpDhXhYWFmDRpEk6dOgVHR0dEREQgJycH58+fh0wmw0cffYThw4eb4vDqFSnO1YEDB/DPf/4TJSUlaNasGYKDg3Hr1i1cunQJMpkMs2fPxvjx401wdPWb6nzMnz8fI0aM0Ni2ZMkSLF26FF27dtW466C8vBwTJ07EiRMn4OXlhc6dOyMtLQ2XLl2Cm5sbNm7ciNatWxv7UIgsmily/9zcXIwbNw4JCQlwcXFBp06dUFFRgdjYWJSWlmL8+PGYM2eOUd8HEs8QOW1aWhr69+8PX19f9Z1MddkvmR9TXDelpaV47bXXcOzYMdjb2yM8PBy2trY4efIkCgsLMXDgQHz99dc1tt4i0zJVrWPmzJn47bff4OzsjG7duiE7OxtnzpyBjY0NVq1aVe2i16SJ93ubyIgRI9C4cWOsWLEC586dg5WVFdq2bYsJEyZgwIABol7D2dkZGzZswLfffovdu3fjwIED8PX1xZgxYzB58mQ2kZZQXc+X6g9feXk5du7cqTWWBd26keJni4xDinPl6OiI1atXY8OGDdi+fTuOHz8Oe3t7PPHEE5g0aRK6dOli4KNoGKQ4V3379sXWrVuxcuVKHD9+HAcOHICTkxP69u2LV155hUmbGbG2tsaKFSuwatUqREdH48CBA/Dy8sKQIUMwdepUNGvWzNRDJLI4psj93dzc8PPPP+OHH37Arl27cPz4cdjZ2aFjx46IiorCk08+aYhDJYmYKqdlLm3ZTHH+bG1tsXLlSqxfvx6//fYb4uLiIJfLERgYiBEjRmD48OE1FvnI9ExV6/jss8/Qvn17bN68GUeOHIGrqyv69euHqVOnok2bNnU7qAaCM3SJiIiIiIiIiIiILAR76BIRERERERERERFZCBZ0iYiIiIiIiIiIiCwEC7pEREREREREREREFoIFXSIiIiIiIiIiIiILwYIuERERERERERERkYVgQZeIiIiIiIiIiIjIQrCgS0RERERERERERGQhWNAlIiIiIiIiIiIishAs6BIRERERERERGYEgCKYeAhHVAyzoEhGZyOzZsxEUFIQtW7aYeihERERERJK5desWXn/9dXTu3BkdOnTA6NGjTT0kHDt2DEFBQRg3bpxJ9n/9+nW8+uqruHnzpkn2T0T1i7WpB0BERERERERE9cfMmTNx+vRpNG3aFKGhoWjZsqWph2Ryr776KtLS0kw9DCKqJ1jQJSIiIiIiIiLJnD9/HgDw448/ws/Pz8SjMQ9stUBEUmLLBSIiIiIiIiKSTFlZGQCgcePGJh4JEVH9xIIuEZEZyc3NxZIlS/DCCy8gPDwcISEheOKJJzBt2jRcuHBBHZeZmYl27dqhffv2yM/Pr/a1nnrqKQQHB2vc2pWXl4evv/4agwYNQmhoKCIiIvDaa6/h9OnTVZ6v6vEbGxuLqVOnon379ujWrRvWrFkj+XETERERkeUbN24cgoKC1P9u164dgoKCNPLRGzduYPbs2ejVqxdCQkLQq1cvzJ07F7du3ar2NUtKSrBy5UoMGTIEHTp0QHh4OKKiorB///5q40tLS7FixQo8/fTT6NChAyIjI7FixQpUVFTodCxBQUF47rnnEBsbq86dBwwYgBs3bgAQn7efPHkSQUFB6uMbMGBAlfdE12MkImLLBSIiM3H//n2MGjUKN2/ehJ+fH7p164aysjJcunQJu3fvxv79+/HTTz8hNDQU3t7e6N27N/bt24c//vgDI0aM0Hit8+fP49q1a+jWrZv6Nre7d+8iKioKKSkpaNy4MXr27Im8vDwcPnwYhw8fxkcffVTldQBg3rx5yMrKQs+ePXH16lWNJJ2IiIiISKV79+7w9fXFjh07AADPPvssZDIZHB0dAQDHjx/H5MmTUVhYCIVCgY4dO+L69ev45ZdfEBMTg++//x4hISHq1ysoKMArr7yCCxcuwNPTE926dUNpaSlOnTqFkydP4s0338TUqVPV8WVlZfjHP/6BEydOwN3dHb169UJWVhYWLVqEgIAAnY/n/v37eOONN9CkSRM88cQTSEtLQ/PmzXXO2wcPHox9+/ahsLAQ/fv3h6Ojo/o90fUYiYgAFnSJiMzGt99+i5s3b2Ls2LF47733IJPJAFR+Y//WW29h37592LRpE0JDQwEAw4YNw759+7B9+/Yqhdht27YBAF544QX1YzNmzEBKSgomTJiA6dOnw8bGBkBl8ffVV1/Fhx9+iLCwMLRu3VrjtdLT0xEdHQ1/f3/2/iIiIiKiGr3xxhsAoC7ofv7557C2riw7ZGdn41//+hdKSkrwzTff4KmnnlI/b9OmTXj//ffxr3/9C7t27YKtrS0AYP78+bhw4QKeffZZfPzxx+oi6I0bNzBhwgQsXboU4eHh6N69OwBg3bp1OHHiBDp06IBVq1bB1dUVAHDo0CFMmTJF5+PJyMhA37598e2330Imk0GpVEImk+mUtwcEBGDhwoXo168fCgsLMWvWLDRv3ly9D12PkYgIYMsFIiKz4ebmhp49e2LatGnqpBAA7Ozs1IXZh2/N6t27Nxo1aoS4uDikpqaqHy8tLcWuXbvg7OyMAQMGAKgs2sbGxiI4OBgzZsxQF3MBoEOHDpg8eTLKysrw448/VhlX37594e/vDwCQyWQaYyMiIiIiEmPLli3IycnBmDFjNIq5ADBy5Ej07dsXqamp2Lt3LwDg3r17iI6ORqNGjTQKnQDQokULzJ49GwDw/fffqx//+eefAQAfffSRupgLVObNo0aN0mvcL730kjr/lcsrSyi65u010ecYiYgAFnSJiMzG1KlTsWrVKri5uakfy83NxalTp3D06FEAlcVaFWtrazz33HMQBAG//fab+vH9+/cjNzcXTz/9NBwcHABU9u4CgC5duqgT0Yf17NkTABAbG1tlW3BwsARHR0REREQNmSofjYiIqHa7Kh9VxZ0+fRoVFRUIDQ3VKHSq9OjRA3K5HHFxcaioqMC9e/eQkpICHx+favPX/v376zXu6l5L17y9JroeIxGRClsuEBGZkdTUVGzcuBFxcXG4ceMGcnNzAUD9zf+jLQ+GDRuGVatWITo6Gm+++SYAYPv27QA02y3cvn0bQOVtaOvWratx/3fv3q3y2MOJKhERERGRPu7cuQMA6py1Jqp8VJW/7t+/X+saDkVFRcjNzcW9e/cAAL6+vtXGqdaV0FVNubCueXt1dD1GT09PXYdPRPUUC7pERGZi586dmDVrFsrLy+Hv74/HH38crVq1QkhICARBqLbvV6tWrRAeHo64uDicO3cOzZo1w5EjR9CyZUuEhYWp45RKJQAgNDQULVq0qHEM1bVTqG5GLxERERGRLlQzTPv27QtnZ+ca41TrOajy19atW6NNmza1vn5tbcFUvXx1VV0urE/eXh1dj5GISIUFXSIiM/DgwQO8//77EAQBy5YtQ2RkpMZ2VS+x6gwbNgxxcXHYvXs3WrVqhfLyco3ZuQDQqFEjAJW3bb311lvSHwARERERkRY+Pj64ceMGoqKiRC3wpcpf27Rpg4ULF9YaX15eDuDvWa+PSk9P12G0NatL3v4oXY+RiEiF066IiMxAUlISHjx4AIVCUSUpBKDuxVXdrVtPPfUUnJycsG/fPuzduxdWVlZ47rnnNGK6dOkCADhy5Ih6JsDD9u7di6eeegoffPCBBEdDRERERKRJlY8eOnSo2u1ffPEFnn/+eWzevFkj/tSpUygqKqoS/9dff2HAgAGYOnUqBEGAj48PWrdujfv37yMuLq5K/MGDByU5jrrk7Y/S9RiJiFRY0CUiMgOqfljXr1/HtWvX1I8LgoCffvpJndiWlJRUea6joyOeeuoppKSk4MiRI3jiiSeq9A6LiIhAmzZtcOnSJXzxxRcaizSkpKRg/vz5uHbtGlq2bGmIwyMiIiKiBm7kyJFwdHTE+vXr8fvvv2ts279/P3788UfEx8cjNDQUAODv74/+/fvj7t27mDt3LgoKCtTx9+/fx9y5c5GSkoLHHntM3W5h/PjxAIB58+ape+oClYuPrV69WpLj0Ddvt7OzAwDk5+erH9PnGImIALZcICIyC82aNUO/fv2wf/9+PP/88+jatSvs7Oxw+fJl3L59G61bt8bVq1eRmZlZ7fOHDx+OX375BUqlskq7BaCyp9jXX3+Nl19+GatXr8bvv/+Odu3aobi4GKdPn0ZZWRkGDhyIsWPHGvpQiYiIiKgB8vX1xeeff47p06dj+vTpWLZsGVq1aoU7d+7g4sWLAIB3331Xo5fsxx9/jJSUFPz+++/4888/ERoaCplMhtOnT6OwsBCdOnXSaCc2fPhwnDhxAjt37sSgQYPw+OOPo7CwELGxsWjfvj3Onj1b5+PQN29v3rw5rl27hn/+859o164dZsyYAX9/f52PkYgI4AxdIiKz8fXXX2PatGnw8/NDbGwsjh07Bnd3d7z99tvYunUrFAoF0tPT1Qnvw0JCQmBnZwd3d3f069ev2tdv2bIltm/fjokTJ8LR0RF//vkn4uPjERISggULFmDRokWwsrL6v/buO76pev8f+Cvp3gNaECi7gw0yiiwZZThQUFDZuLiCyP25UFS8riuo6PWKCMK9CrJRAYGLAmUps0xZXZRVQGjpoIPunN8f/SY0bcZJcpKck7yej8d9XEk+OeeTfpJz3p93PsPeb5OIiIiI3NSQIUPw888/45FHHkFhYSH27NmDW7duYcCAAfjhhx8wadIkvfL16tXDunXr8Pe//x2RkZE4cuQITp48iRYtWuCtt97C999/Dz8/P115lUqFefPm4f3330ezZs2wf/9+XLhwAc888ww+/vhjyd6HNXH7W2+9hR49euDWrVs4cOCAbnSvpe+RiAgAVAIXYiEiUrwdO3Zg+vTpePrpp/Hmm286uzpEREREREREZCccoUtEpFBlZWUQBAE3btzQja4dO3ass6tFRERERERERHbENXSJiBRq48aN+Oijj1BRUQFBEDBu3Dg0bdrU2dUiIiIiIiIiIjtiQpeISKGio6Ph5+cHX19fPPTQQ1xqgYiIiIiIiMgNcA1dIiIiIiIiIiIiIoXgGrpERERERERERERECsGELhEREREREREREZFCMKFLREREREREREREpBBM6BIREREREREREREpBBO6RERERERERERERArBhC4RERERERERERGRQjChS0RERERERERERKQQTOgSERERERERERERKQQTukREREREREREREQKwYQuERERERERERERkUIwoUtERERERERERESkEEzoEhERERERERERESkEE7pERERERERERERECsGELhEREREREREREZFCMKFLREREREREREREpBBM6BIREREREREREREpBBO6RERERERERERERArBhC4RERERERERERGRQjChS0RERERERERERKQQTOgSERERERERERERKQQTukREREREREREREQKwYQuERERERERERERkUIwoUtERERERERERESkEEzoEhERERERERERESmEp7MrQERE+gRBwKFDh7Bp0yacOXMGN27cQFlZGcLDw9GxY0cMGTIEDzzwADw8PJxdVSIiIiIih7t+/ToGDRoEjUaDiRMn4u2333Z2lYiIHEolCILg7EoQEVG1q1ev4uWXX8apU6cAAK1atUKzZs3g5eWFzMxMJCcnQxAExMXFYdGiRbjnnnucXGMiIiIiIsf6+uuvMX/+fPj4+MDX1xe///47fH19nV0tIiKHYUKXiEgmbt68idGjR+PmzZvo06cPZs2ahdatW+uVuXr1Kj766CPs3r0b7dq1w7p16+DpyckWREREROQeBEHAoEGDkJeXh8cffxzLly/HnDlz8Nhjjzm7akREDsM1dImIZOK9997DzZs3MXjwYCxevLhOMhcAmjRpggULFqBdu3Y4e/Ystm/f7oSaEhERERE5x6FDh3Dt2jX07NkTw4cPBwCsWbPGybUiInIsDusiIpKBK1euYNeuXfD398cHH3xgcn1cDw8P/L//9/+QmJiIhg0b6h6vrKzEhg0bsGXLFqSkpKCoqAgBAQGIjY3FU089hYceekjvOAMHDkReXh4OHDiAf/3rX9i6dSuKiorQvHlzjBkzBk888QRUKpXd3jMRERERkaV+/vlnAMCwYcPQqVMnNG/eHH/++SeSk5PRpk0bvbJvvvkmNmzYgOXLl2P58uXYu3cv/P398cILL2Dy5MkAgKysLHz77bfYvXs3srKyEBwcjPj4eEydOhUxMTF1zn/x4kV8//33OHz4MG7evAmNRoPIyEj07dsXL7zwAho0aGD3vwEREUfoEhHJwObNmwEAAwYMQHh4uNny/fr1wwcffIB7770XQPXUs5deegnvvPMOkpOT0bFjR92xkpKS8Morr+CHH36ocxyNRoOpU6di+fLlaNmyJXr27ImLFy/i3XffxaxZs6R9k0RERERENigsLMSOHTsQEBCAIUOGAABGjBgBAFi9erXR182ePRuHDh1C3759ERISgtjYWABASkoKRowYgRUrVsDT0xP9+/dH48aNsXXrVowaNQp79+7VO87Ro0cxcuRIrF27FgEBAejXrx+6dOmCW7duYdWqVXjqqadQVFRknzdPRFQDR+gSEcnA6dOnAQDx8fFWvX7Hjh3YtWsXOnbsiKVLlyIgIED33OLFi/H5559jxYoVmDhxot7rSktLcfLkSSxdulR37suXL2PixInYsGEDBgwYgKFDh1r5roiIiIiIpLNlyxaUlpZi9OjR8PPzAwA89thjmD9/PjZv3oyZM2ciMDCwzuuysrKwadMmREVFQbuNUEVFBWbMmIGcnBzMmjULkyZN0s1O27VrF2bMmIHXX38dv/32m27Axfvvv4+SkhJ8+eWXeOCBB3THz87OxpNPPolr165h165deOSRR+z9pyAiN8cRukREMvDXX38BgNEpWh9//DFee+21Ov/7+OOPAVQHpAMHDsRrr72ml8wFgDFjxgCo3lDNkBdeeEEvkdysWTO8+eabAIBVq1bZ9saIiIiIiCSyfv16ANDbAK1Bgwbo06cP7ty5g02bNhl83YABAxAVFQUAUKlUUKlU2LFjBy5fvowBAwZg8uTJekuNDRw4EE899RRu376Nn376CQBQXFyM9u3b4/HHH9dL5gJAREQEEhISABiPuYmIpMQRukREMqDRaABAN2KgtsTERFy7dq3O440bN8Zbb72Fhx56qM4auaWlpbhw4QJOnDgBAKiqqkJVVVWd9Xlrvw6oDmI9PT1x7NgxVFZWwtOTtwsiIiIicp709HScOnUKLVq00C07pqVdHmHNmjUYO3ZsndfGxcXVeezQoUMAgJ49exo8X9++fbF8+XIcPnwYU6ZMQUBAAObMmVOn3M2bN5GcnIyUlBQAQHl5ucXvjYjIUuyhExHJQGRkJNLS0nDr1i2Dz+/atUvv35cvX9atG6ZVVFSEtWvX4o8//kBGRgays7MhCILeaIPaCWMPDw/daIWafHx8EBYWhuzsbOTm5iIyMtLat0ZEREREZDPtZmhFRUWYMGGC3nMVFRUAgNTUVBw/frxOwjckJKTO8bQz5ObMmWMwUat148YNvX8fP34c69atw9mzZ3HlyhWUlpYCgC7mNjZAg4hISkzoEhHJQJs2bbBv3z4cP34co0ePtvj16enpmDRpEnJychAWFoaOHTvi4YcfRmxsLOLj49G/f3+Dr1Orja+8ow1GOTqXiIiIiJypoqJCt5xCdnY2srOzjZZds2ZNnYSuoZhXO0MuPj7e5OCFmhsWv//++1i1ahXUajXi4uLwwAMPoFWrVujUqRP279+PRYsWWfS+iIisxV46EZEMPProo1iyZAkSExMxa9YsBAcHW/T6Dz74ADk5OXjuuefwyiuv6C2rcPv2baOvq6ioQG5url6gCgAlJSXIzc2Fr68vwsLCLHszREREREQS2rt3L3JyctC5c2esXbvWYJnTp09j1KhR+O233/DWW28hNDTU5DEjIiIAAMOHDxc1oCIpKQmrVq3CPffcg//85z9o3bq13vPbt28X92aIiCTATdGIiGQgOjoaQ4YMQUFBAd5++23diAFjzp49q/fvkydPAqje4Kz2Grn79+/X/beh4+7du7fOY7t27YJGo0Hv3r31lmwgIiIiInI07cZkDz/8sNEyHTp0QOvWrVFWVqbbPM2U7t27AzAcCwPADz/8gOHDh2PBggUA7sbbQ4YMqZPMraqq0q3JyyUXiMgRmNAlIpKJf/7zn2jatCm2b9+O8ePH4/Tp03XKZGZm4t1338Wrr74K4O4UMO3/79y5U6/8kSNH8OGHH+r+bWiThs8//xwXLlzQ/fvChQuYO3cuAGDSpEk2visiIiIiIutlZ2fjjz/+gIeHBx544AGTZUeMGAEAWLt2rdnE6oMPPoiIiAjs2LED33//vV75U6dO4auvvkJaWhpiY2MBQDdr7eDBgygpKdGVLSkpwezZs5Geng4AKCsrs/g9EhFZiksuEBHJRHBwMH788UfMnj0b27dvx6hRoxAVFYUWLVrAx8cHmZmZut1zfXx8MHbsWMyYMQMA8PTTT2POnDl44403sHbtWkRERODKlStITk5GaGgoIiIidOuNBQYG6p3Xw8MDjz76KO677z4IgoBDhw6hvLwc06ZNQ3x8vMP/DkREREREWhs3bkRlZSV69+6N+vXrmyz7yCOP4IsvvsClS5d0I2aN8fPzw1dffYUpU6Zg7ty5WLFiBWJjY5Gfn4/jx49DEARMmjQJCQkJAIAHHngAX3/9NdLS0pCQkIDOnTujvLwcJ06cQGFhIaKjo5Genm50k2MiIikxoUtEJCOhoaGYP38+Tp06hU2bNuHo0aM4ffo0ioqKEBYWht69e6NXr1547LHH9Na9nTx5MurXr4+lS5ciLS0NZ86cQaNGjTBhwgQ8//zzWLJkCZYvX47du3ejRYsWeuecP38+fvrpJ2zfvh3l5eXo1KkTnn76aQwaNMjRb5+IiIiISI92+QRTyy1oNWjQAL169cK+ffuwevVq+Pv7myx/7733YuPGjViyZAn++OMP/P777wgNDUV8fDwmTJigS+YCQGBgINatW4d///vfOHToEPbu3YuAgAC0bdsWTz31FHr27Kk7d0VFBby8vGx740REJqgELvBCROSWBg4ciGvXrmH79u1o1qyZs6tDRERERERERCJwDV0iIiIiIiIiIiIihWBCl4iIiIiIiIiIiEghmNAlIiIiIiIiIiIiUgiuoUtERERERERERESkEByhS0RERERERERERKQQTOgSERERERERERERKYSnsyugdIIgQKPhqhXWUqtV/PvJENtFvtg28sR2kSe2i7yo1SqoVCpnV4OcxFExM7/3ysG2Uga2kzKwnZSDbaUMzmwnsTEzE7o20mgE5OYWO7saiuTpqUZYWAAKCu6gslLj7OrQ/2G7yBfbRp7YLvLEdpGf8PAAeHgwoeuuHBEz83uvHGwrZWA7KQPbSTnYVsrg7HYSGzNzyQUiIiIiIiIiIiIiheAIXSIiIitpNAKSL+Wi4mIevFQCWjUKgVrNEYhEREREREqn0QhIy8xHfnEZQgN8EBMVylifZIMJXSIiIiscS83CqsR05BWW6R4LC/LB2IRodI2NdGLNiIiIiIjIFoz1Se645AIREZGFjqVmYcGGM3oBHgDkFZZhwYYzOJaa5aSaERERERGRLRjrG6fRCEi5nIdD524g5XIeN3hzIo7QJSIisoBGI2BVYrrJMqsT09ElOoJTsoiIiIiIFISxvnEctSwvHKFLRERkgbTM/Dq/1teWW1iGtMx8x1SIiIiIiIgkwVjfMI5alh8mdImIiCxgLsCztBwREREREclDfrG4GF5sOVcgdtQyl19wLCZ0iYiILFB4p1zSckREREREJA+hAT6SlnMFHLUsT0zoEhERWSAwwEvSckREREREJA8xUaEICzKdrA0P8kFMVKhjKiQDHLUsT0zoEhERWSA80FfSckREREREJA9qtQpjE6JNlhmTEO1WG6Jx1LI8MaFLLkGjEZByOQ+Hzt1AyuU8rt1CRHbDX+2JiIiIiOTBHrmArrGReHFk+zoxf3iQD14c2R5dYyOdVjdnYP9HnjydXQEiWx1LzcKqxHS9NV3CgnwwNiFa9IWWiEgs7a/2CzacMVrG3X61JyIiIiJyNGO5gKcGRSPIzwv5xWUIDahONFoam3eNjUSX6AikZeZbdRxDdQsP8sHfHuuINlEhFtXF2dj/kScmdEnRjqVmGbyo5BWWYcGGMxb9euZMGo1g9Y2CiIiIiIiIyJ2YygUs3Kj/uLUDvtRqFeKahUlWt9zCMsxZdgQvjeqILq3rW3xcZ9KOWjaUpB7DwXROwYQuiSa3pKNGI2BVYrrJMqsT09ElOkLWyVGOMCZSFo1GwNJfU0yWWfZbquyvPURERERESiQmF1CTIwd8ianbyu2p6NSynuL6CpaMWpZb/sgVMaFLosgx6ZiWma9XH0NyC8uQlplv1a9qjiDVCGNDF0sAvIAS2UHKlTwUl1aaLFNUUoGUK3lo2zzcQbUiIiIiInIPYnIBhjhiwJeoPEWBNHkKZyRN1WoVYqJCdedNy8yvc1455o9sIdfkNBO6ZJZclzXILxZ3ARdbztGkGmFs6GIZ4Fv91a6ZdFLyBZRITlIu54kux4QuEREREZG0rO3j23PAlzbpdzQ1S1R5W/MUzkqamjuvXPNH1pJzclrt1LOT7IlNOjpjt8bQANO7LFpaztEsGWFsjPZiWfs4xaWVdUYQai+gx0TeYIjICLE/xjr/R1siIiIiIpdjSx/fHgO+jqVm4fWFB/Dp6hPYdfyaqNcYeg8ajYCUy3k4dO4GUi7nGc2zGMsD2LvPb+68R1KyZJs/ssaRFOf8ncXiCF0yacuBi7Jd1iAmKhRhQT4m6xcedHf5AbmxdYSxpesGaSlhXWEiOYtpEgrgsshyREREREQkpZioUIQGeiO/qNzi10o94MvYiFRTwoPr5inEjgQVkwdY+msK/Hw8Edc0TLJ+v5jzrtieisI7FSbLyH1ZTK0qjYCV21JNlnF2boUjdMmoY6lZ2LjvkqiyzljWQK1WYWxCtMkyYxKiZZu4tHWEsbXrBpkb9StHYn+pJHIIsR8/fkyJiIiIiCR3Ij0bFZUai18X5Ocl6YAvawdZjRsSW2fNWVMjQTftu6DrC6dczjObBygurcS8NSfx+sIDko0iFZN/MJfM1ZLrspg1nbuQg1wbZ1TbG0fokkGWXpictaxB19hIvDiyfZ1fssKDfDBGBmuamGLrCGNbLoKWvtaZi4DLec0ack9p1/JFl2vfqp59K0NEREREZGeVlRrsOn4VWfkliAz1w8B7m8DT037jA031P60ZEas1fmiMpP1YSwdZhQf74G8jO6JNVAgq/y8hLSb3UnOgnXa/HDGkXLdWyiSsXJfFrCm3oFRUOWcmp5nQJYMsuTCpVEDrxiF2rpFxXWMj0SU6Qpa7DpqiHWFs6mZkaoSxLRdBS17rzISqqy2oTq5BEDkYQGw5IiIiIiK5WrcrHduOZEKoMfts7e7zGNo9Ck8MND1j1hqm+p9doiOsGhELAMN6RKF7XAOpqglAfDJv4L2N0S02Em1bhKNevUDk5RXrnrM0KVx7rxwxpFgaQGwOIdDPC0UlxkfqynlZzJrCg31FlXNmcppLLpBBlvzKIAjA+Wu37Vgbw2pOw0/LzEdMVCh6tm2IuGbSrRNjb9oRxmFB+heB8CAfs8lK7QhfS1lyAXXWYuuAvDfkI/cW4Cfut1Cx5YiIiIiI5GjdrnT8lqSfzAWqcwC/JWVi3S7rkqvGmOt/itnjp7Ygfy9MHdHeouSz2CX/xCbzusVGGs1TOGKEpxRLA4jJP4QH+WDC0BiTZeS8LGZNbVvWQ7iI9+vM5DR7m2SQpb8yOHqYuStNw7d2hLGYEb6GiL2Aik2o2msRcDG/VCplQXVyLf7+4m6dYssREREREclNZaUG245kmiyz7UgmHuvXSpLlF8T0P3ccvSr6eAG+nhjcrQke7tXCov6qJbkGKTZqd9QIT1tzNmJnGHeNjYR6pEqRy2LW5KFWYdzQWMz/6ZTRMs5OTrO3SQaJuTDV5Mhh5s6Yhm/vNWTVapVVSUljawgH+npCgP50DEsvoKlXzC+2bs+EqtgbjhIWVCfXcvl6ofhyHexcGSIiIiIiO9h1/Gqdkbm1CUJ1uYRuUTb3l8UM6LFkuYHi0kps3HcJjSMCRfeBzeUapo5ohyA/b733acsyioDluZeaAnw9Rf9NpMjZiN3DSKnLYtbWPU7eezYxoUsGWTL6097DzGsmU4P9vbFyR5rJ8lKPGpX7aGBjF0sANl1A84vKxZWzU0JV7A1HCQuqk4sRu8oHVwMhIiIiov/jzI2mrZGVXyKq3JmLudh2JNPm/rLYfqUlSUxAfH5AzAjhRb+c1Utya9+nLUk/a2feAsDUEe0BAVj4yxmTfxMpczZik7XWDlqTGzknp5nQJaO0v74s/TXF5MXBnsPMDSVTzZFy1Kgto4EdecM2drG05W8QGugtrpydEqpSTF8xR2lBFcmE2I8IP0pEREREBPkPEjIkMtRPVLkzF3PrPGbN7Fmx/crB3aKwcd9FUWUB8fkBMSOEa49Yrvk+P5vay+q+pbGRr6aEB/kgrmn1uryTH4izaZSwpVwlWSuWXN8vE7pkkvbXiC0HLmHH0UybpvBbylgyVQwpRo3asoasEm/YtcU2DbN7QtUUsWv0WHtjkkMbMaGsTM0aBQEnRJYjIiIiIrfmjCUDTTHWB6n9eP/OjbF293mzyy6YYsns2ZioULOjb8ODfPBwr+ZoHBFgUfJTTH7AlhyC9n3akvSrPRI0K7fEZOK6Zl9Y7FII5FqY0FUwRyWD1GoVHunTAg/3au6w5JOYZKopUowatXZTLrndsK1l74SqGPa6McmhjeSQUCbrlJZUSVqOiIiIiFyTLYOETPX3az5XL9gX8SH+oupjrA8S3yYSh5Oz6jzeqVU9nDyfI/bt1mHJ7NkT6dlml1LQ9j+1yc/Eo5lYs+u82WNn5ZpfPsKWHIJUs4RrjwQ1lLg21heW89IAZB9M6CqUM5JBjhxmLiaZaoxUo0at2ZTLlhu2HMnhlz6pb0xyaCM5JJTJegF+XpKWIyIiIiLXZMsgIWP9fQB1nqu3+RzGDo5Bl9b1jZ7HVB/kt6RMg4/nFZahc+t6+DMjx+qRukdTswDAZB9OTB8t0NcTXaIjdP9Wq1VI6BaF35KumN3/Ze+f1/Fwr+Z225wMsM/eMpb2heW6NADZBxO6CuQOySBbLoZSjRq1ZlMua2/YciaHX/qkvDE5u43kkFDmUg+2uS3y+iS2HBERERG5JmsGCZnr7xuSc7sU8386ZTQXYMsM2Cs3i7Dw5fux5+Q1pGbm40T6LYtev+v4New6fs3kADQxfbSi0so6fTS1WoX+nRth475LJl+bJ6J/Z8vmZID99pZhkpaMYUJXYeSQDHIEay6GUo0a1Sa7cotKEeTnhcKSCpPnrDka2JobtqX1ckYSzpVuIvZsIzGcnVDmUg+2y7xZJGk5IiIiInJNlg4SsnXpwaW/psDPx1O3WZaWLTNgcwvLcOGvAgzp0RTBgd4WJ3S1TA1As6WPFhkubrkJMefoGhuJEX2am00Q12bPvWVswYE8ro0JXYVxdjLIUcRMdwgL8sGzD7ZBQUm5ZBcnQ8kuU2qPBrZmVK+19Qry80LPdg3QJTrCLS7MUt2M7NVGYjkzoewOo/sdIed2qaTliIiIiMg1ienX1kwG2pJ4BYDi0krMW3OyzoANW/sW2tdL0UcyNABN7HELispx6NwNvf6g1P07sQnimiyZJVylEZB8KRc5BaV2TbJyII/rY0JXYZw9utBRxEx3GJsQjbYtwiU7p7FklyHGRgNbesO2pV6FJRXYcfQqdhy96vIXZilvRvZoI0s4K6HsLqP7HcHLSy1pOSIiIiJyTZZuNC1VP772gI1gf2+bjqftm9i6zixgeACamOOqVNDbAE3bH+wSHSFp/86Sfpils4SPpGRh1Y40vYEf9ujLcyCPexCV0M3MrLtAti2ioqIkPZ47cfboQkdy5IZcYpJdQX5eeGpQNMKCjP+KZukNW4p6Aa59YZb6ZiR1G1nKWQlldxnd7wgtGgYj+XK+qHJE5F4YMxMRUW2W9Gul7sdrB2zAyg3NAP2+ia3rzGrVTlyLOW7tTdlq9gel7N+J6a8F+Hpi6qPtEdcsTPRxHZVk5UAe9yEqoTt48GCoVNI0tEqlwrlz5yQ5lruoOdU82M/bqaMLxZBynRZHbcglJtlVWFKBsCAfs8kuKRPRlk65cbULs71uRo78saA2ZyWU3WV0vyPENg3D1sNXRJUjIvfCmJmIiAwR26+VYgRsTbmFZUg8monAAC+rj1Gzb6LRCPDz8YSPlxplFRqrj2kocW2sj6ZS1U3m1rQ6MR2fTu1lsn/XJToCKZfz6vztjeUuzPXXJj8QZ9FsYUcmWTmQx32IXnLB19cXYWG2NXZeXh5KS7mmoCUMTTUP8DXdbPYcXWiOPdZpccSGXFInu7pER8DPxxMpl/MAFRAXFWbRr3eWnk/L0Rdmey+ybs+bkaN+LDB2bkcnlN1pdL+9XbslbrOza7eK0KFVPTvXhojkhjEzEZF8yGlTKEP9WkP1k2IEbE1rdp1HkJ/lCd3afZNjqVlYuSMN+UXlNtXH1AC02n20gqJyvWUWDNH2B431706kZ+P1hQfq5Cji20TicHKW0dyFlP01RyZZOZDHfYhO6A4ePBiffvqpTSd7/fXXsWXLFpuO4U6MDckvLq0EUJ3Y1f434JjRhaYoeZ0WKZNdhpLa+4NuWJXUtia55qgLsyMWWbf3zcgRPxYY4+iEsrPXDnYlt0Rudia2HBG5FsbMRETyIPdNoUzVz1QyEYBFG3kD1bNNxRp4b2N0i43U65tYst+MOeYGoNXsox06d0PUMbX9wdr9O1M5it+S6i6TVDt3IVV/zZFJVg7kcR8O3RRNMDVOnvSIGZLv7anG1Kc6o+BOudN/bVT6Oi1SJbukTmpbM+XGERdmRyXvXf1m5MiEsj2XetBoBKRcybN5RLpShAeL+7yJLUdEVBtjZiIi21jbXxE7otfWkb9i6vfZ1F5Gz6FdQmDhL2f0BnlJoVtspF4fRaMRsPTXFJuPa80ANLH9vKzckjqPid2PxpCauQsp+muO7NdyII/7EJXQ/eGHH1Cvnu3TRqdOnYonnnjC5uO4AzFD8vOKyqFWqdCzbUMH1co4pa/TIkWyyx5JbUsXnXfEhdmRyXvejCxnKri0x1IPx1KzsPTXFL1AcgsuI8DXE5MfiJPF6AepVVWJWy9MbDkich2MmYmInM/a/orYEb2myokZ0Smmfj9sS0WnVvWN9p3VahXatgjH5AfiJF2ewVDfKuVynk1J4wBfT0wd0R5xTS0f8BETFYrQQG+zyzzs/fM6Hu7VXO/4lu5HU5PUuQtH9mudvQk4OY6ohG6PHj0kOVmrVq3QqlUrSY7l6uS87omhhJGc6yuWrckueyW1jdXLEHtemLXtfu5SrkOS99rzdYuNwI6jV42W483oLjFBqJRTh0xNvSourZT9UivWOpycJbrc8N4t7VwbIpITxsxERJaxxxq31vTLxI7oPZJyEws3njVarvayiIYSwqI25L5TgVcW7MekYbHoGhtp9O/UNTYSL43qiFU70pAjwXJfhvpWKZl5Nh2zuLQSapXKqnZVq1Xo37kRNu67ZLJcnoH+p625BylzF45OsjpzE3ByHKuXXFixYgXWrl2LK1euoLzc+K8lUu3Qm5SUhIkTJ+LDDz/E6NGjRb+uvLwcK1aswIYNG5CZmQl/f3/06tULM2bMQNOmTW2ul73Idaq5sYTR/Z0aiXq93KfG25LssmdSu2a9TqRn4+DZmyiqsQ6SvS/MhtrdHFtugIbOV3t3U96M9FkyrUyKqUNipzCt2pEm26VWrFVVJW4qtNhyROTaGDMTERlmrzVuLe2XiR3RW1Ul4NvNdZO5NdUeyWooFhdbv6KSCizYcAbDekSZ3Lyre1wkBsU3x7ptyVYvMWCybyVBSGtL3zAy3N+qcxhahsESUucujCXf7dWvdeYm4OQYViV0V69ejX/+85+i1veSYg2wCxcu4JVXXrH4WJWVlZg+fTr27t2LyMhI9OvXD5mZmdi8eTN27dqFVatWIS4uzub62YMcp5qbShht3Hexzq+RtSllary1yS57J+G19YprFoYnB0bb5cKs0QhIvpSLiot58FIJaNUoBCfSs62axmPt+zT2OdN+/Qd3a4Iu0RG8GdXgjDWsxU5hyisql+1SK9aKbRqKm3nmA8TYpqH2rwwRyRpjZiIiw+y5J4el/TKxI3oXbTKdzDWlZixuaT/J3OZd8e0awkOtwpAeTfHr4StWLTPw5CDjCcW4ZmHYcvCyxcesyZbkqDX97GOpWdi476LV57RX7kKbfD/851XkFJTaPcnqzE3Ayf6sSuiuXLkSarUas2fPxpAhQxAcHAyVyj4fwIMHD+LVV19FTk6Oxa9dtWoV9u7di169euGbb76Bn58fAGDp0qWYM2cO3nzzTWzYsMFudbeF3NY9EZMwMvd3dJWp8camuzh6XRypL8yGfiEPDfRGRaXl64Ba+z7FfM6OpWbjyYGu8VmSijPWsLbkV3Y5L7VijY6t6uH3P/8SVY6I3BtjZiKiumwZjCBmiYbCGjMZjanZX3FErFozFrdm42tjViemo3ubBgAs33+lprU709E1xvDgj7imYWYHb5liax/Y0n62LZuhadkzd+GhVqFN83BUWtHPJqpJbc2Lrl69ip49e+Kpp55CeHg4PD094eHhYfR/1sjJycF7772HZ555Brdv30ajRuKm9GsJgoDvv/8eADB79mxdYAoAkydPRvfu3ZGcnIxDhw5ZVT9H0K57Ehak/4tUeJCPw9elFJMwKiqpwIg+zWVRX3s5lpqF1xcewKerT2DxpnP4dPUJvL7wAI6lZuluoKbINamt/YW8dhvnF5VbdeO29n1akpiku5yxhrUlv7LLfakVSx1NEbeGrthyROS6GDMTEdVlbcxvqi+mpdEIWLPTfDLvyUGtdf0VR8Wq2lhcTL9RrNzCMqReubvGrbEcgpjjGOtjqdUqTH7A+lkatvaBLe1ni51J2D0uwqVzF+T6rBqh26BBA0mmhZmyaNEirF69Gs2bN8c///lP/PTTT9iwYYPo16elpeH69eto2bIlWrasuylNQkICjhw5gj179uC+++6TsuqSksu6J2ITQZHh/vhsai+n19cexE4LUtri41L8gqll6/t0hc31xJB68wdnrLktdmRBWKC3IpZascQtkRtOiC1HRK6LMTMRUV3WxPxi+2Jik3lBft66/5ZyxKwp17OLkXI5D60bhyDA1wuDuzXBvtN/oaSsyqbj5hfpr89eO4dw/VYxthwwv2SCqXYx1s/VruULwK59YEv62WI/X11iIvC3R9q7ZO6C3INVCd1Ro0bh66+/RkZGht124I2KisI//vEPjB49Gl5eXvjpp58sev358+cBANHRhn/Jad26NYDqIFbu5LDuiSUJIznUV2qWTAuSSxJeLLFBjykP92qGts3CFZmYlIrYJK2pzR+s/dw4Y81tsVO6xg6Oke1n31r1Q/xw/lqBqHJE5N4YMxMRVasZKxcUGd8gsiZtzG9JX0xsMu/o/43q1cbb1i5VYIktBy9jy8HLdTZ7tlVooHedx2r2yVMu54lK6JrrY5nr59q7Dyy2n+3uuQtyH1YldJ999lmkpqZizJgxGDduHGJjYxESEmK0vDW/5k+cONGaqulkZVVfoCMjDf8aFBERAQC4deuWTecBAE9Pq1auUJS2LcIRHuSDXFMJo2AftG0RLvqi7eGh1vt/OUu+lCtqWlDG9dto0zwcANBeIetnilljypTwYB+M6t9akpu1PT5njnAkJQsrt6Xq1Ts8yAfjhsaie1ykXjlTIwsC/bxQVKM9ah/D1Hdm/NBYzP/plNE6jhsaC29v66bzGhPfriHUHmp8/79kvXoDQKCfJ55+qK3e+3cVfTs1wqFzN0WVc4f7g1wp6R5Drosxsz57XxP5vVcOtpUySNVOhmJlc0nNmjG/JX2xesG+ouq06/g17Dp+TRdva+PaOjF9sA/GDI7B6u1pJvsoKgBic7RSJnMD/bzQtkV1v9NYO0ndx9L2czUaAalX8pBfVI7QQG/ENg1zSB/Y3Dnk3KfktU8ZlNJOViV0y8rKUFZWhoKCAixatMhkWZVKhXPnzllVOVvcuXMHAODra/iCrn1cW85aarUKYWEBNh1DKf72WEfMWXbE+PMjO6JevUCLjxscLP9RbBUX88wXAlAhKO/zEHWP8Y6lGNa2u9Hj2elzZi8HTl03mEjNLSzD/J9OYdak7ujVsRGqNAJW7TA9uql2UrT2MbQMfWeG3NcCgQE+WLzxNHJqTPWvH+qH5x9tr/d6KQ25rwUGxTfH6YxbOHP+FgQAHVvVR/vW9eHh4ACpSiPg3IUc5BaUIjzYF21b1rNLHXp29gNWnxBRrgm8mdB1OiXcY8h1MWa+y5ExM7/3ysG2UgZT7WQu/jIWK5tLataM+S3pi/Xp3BhB60+j8I64QSs1421tXGvo/QQH+prsozx6fyu0aR5eJxa3hFoFaCxM9j7SrxVCQ/0BmG4nqftYB05dr/Ne64X4YsqIDnbrd1hC7n1KXvuUQe7tZFVC9/PPP8eOHTugUqnQsmVLhIeHS10vm2k3ljC3G6+t65ppNAIKCmwLcJWiTVQIXhrV0eCvluOGxKJNVAjy8opFH8/DQ43gYD8UFJSgqkreOzx6qcR9TrxUgkV/AzloFOZr9hfMQD9PeHl66K9XZGW7myP158yeNBoB3643PioWAL7dcAqxjYOReiXP6uBOewwvLw+T35k2USH4/MXedX4pV6tVdv+bNavvj2b1m+r+XXDbsddFsaOkpXD6vLhRaodOZKJD6/qSnpvEU9I9xl0EB/vJfqSD1Bgz3+WImJnfe+VgWymDuXYyF3+JiZVrj9Q1FPNb0hfLzyuGYGlWFHfjbbVahSb1/NCkXnUiRxvTtokKwQP3NcOvBw0vXbBxbwaiIgLw+Yu9kXw5D/9edxKlFZZ9tjUCMDYhGiGBPgj298LizedMjkwO9PPEkK6NUVBQYvb7JGUf60hKlsEkfc7tUsxZdgQvjero9Fl6cu1T8tqnDM5uJ7Exs1UJ3W3btiEwMBA//PAD2rZta80h7M7fv/pXqtJSwwkU7ePacraorHSfL2KX1vXRqWU9g+vWWPt3qKrSmHyt1BtIWaNVoxBRa5S2ahSiyM/DGDNrRk0aFmd0vSJ7vF97fM7sIeVynslEOADkFpTh3MVcmzZy0x5DO73I3Hcmukmo7r81GgEaK4JaJTG2SYZ2xIXUO9Xu/fOa6HLaJVjIecx9X4jsiTGzPkd9F/m9Vw62lTIYaidz8dfUEe0Q5OdtNlYWBGBAl0Zo1SgERSUVCAzwgp+XB8rLq3R9Pkv6Yucu5qKotNLi96iNt42tp6rRCDh05obJY6zclopOLetB0AgWJ3O1Av29dMlQc+v6ThoWB41G0CWczH2fpOhjaTQCVmxLNVlG+3dw9hJ5cu5T8tqnDHJvJ6sSugUFBejVq5dsA1OgeldhwPh6X9nZ2QDurgtG4jly4XBTG0hJmaAxR8xC+WMSop1+07KW2F1DHblgvBIWqLdkh15bN3KzJSGsZOZ+0LFkkwypvp/XssX9mi+2HBG5LsbMROSKxMRfi345i0H3NhF1vN0nrmPPyet6I3Vr9vnE9MX6dWqEpJSbuG5D/GUq3hazkXRuYZkubrVWzT6D2D6aJWztY1nyd5BDX04JfUoia1mV0G3ZsiXy8/Mlroq0tDv1anfurU37eExMjMPqRJYx9quvdgMpqUfdmWOPG6qcaHcNTb+aj4tZxSgtKUdMVCjimvIGaIwlO6jGRIWaHVkgxblciZgfdKwNKm0Z+e/nLe7WKbYcEbkuxsxE5IrExF+CACQeuyr6mLVXddH2+aaOaI8gPy9UVGkwok8L7P3zut65A/28IAgCNu67aNF7MMRUvO2IgRzhQdUxaU3aPpqjZqyai5Et+TsQkX1Z1ducOHEiZs2ahT179qB///4SV0kaLVu2RFRUFNLT03HlyhU0bdpU7/kdO3YAAO6//35nVI/McMaoOzHsfUN19vISJ9KzsToxXW9qlDNGRCuFmCStNjATM7LA3DHcidgfdKwJKm0d+d+xdT2cv14gqhwRuTfGzETkihyZrFv0yxm9ZG9ooDdG9GmOyHB/ZOXewcZ9lyQ5j7l42xEDOYzN+HTUKFMxMbIlfwcisi+rErodOnRA//79MW3aNPTv3x+dOnVCSEgIPD0NH27UqFE2VdKc3Nxc5OXlwc/PD40a3d1Rcfz48ZgzZw7efvttLFy4EIGB1bsYLlu2DEePHkXbtm3Rq1cvu9aNrCPnqRz2uqE6e3kJuY2IVgJLl+IwNso70NfT5FpfSljOQ8ofIyz5QcfSoFKKz7nY9yX3NiMi+2PMTESuyJHJutojd/OLyrFx3yVMHdEee//8S7LzmIu37TmQQw4zPsXGyJb8HYjIvqxK6D788MNQqVQQBAG7du3C7t27TZa3d3C6cuVKfP311+jRoweWL1+ue3z8+PHYvXs3Dh06hCFDhqBbt264evUqzp49i5CQEHz22Wd2rRdZz92mcjg7mSrXEdFKYOlSHMZGeZ9Iz1bsch6GfowI8vNCz3YN0CU6wuLkriU/6FgSVEr1Oc++bXjjIGvLEZHrYsxMRHIh5Y/vti4lJoXvtyajtLzKotcE+npCAFBcYyCF2HhbqoEcQX5eGDskGiH+Pk7d9LsmS2NkV95bhkhJrErojhgxAiqV/L+gnp6eWLx4Mf7zn/9g06ZN2L17N+rVq4dHHnkEL730Up0pZSQdWwMGd5rKIYdkqr1HRDt7KQl7s3QpDkOjvB29PpZUjP0YUVhSgR1Hr2LH0asWjzQ/kZ4tqlx+cZlFQWXK5TxJPue3RXZexJYjItfFmJmIrCF17Cz1TEBblhKTithk7sO9mqFR/QDd3xGA1X9bqQZyyC2+t7Qv6Op7yxAphUoQak9iIEtUVWmQm8udzGsSGzB4eqoRFhaAvLxiVFZq9I6h0Qh4feEBs6PuPp3aS3Y3REulXM7Dp6tPmC03c0wXuy0vcejcDSzedM5suSmPtEXPtg0tOrazl5JwJaa+M84g5ntak5iR5hqNgJfn70NhSYXZ49X8Thj6nNUOKqX6nC/7NVnUFL/7O92DSQ+0MVuO7ENu3xcCwsMD4OGhdnY1yEkcETPze68cbCvjpI6djf34rmUoPtMmlAtLKhB1TwgahflCo6mbNli1IxWJx65ZXCdHskcfSm6DVWz9PlkbI8vt76AEvPYpg7PbSWzMzC24SVJSLR3gTlM55LC8hL1GRDt7KQmyLzG/5tckZqS5tvNgTpCfl97aXGJGQEj1ORc72k4Jo/KIiIhIPqSOna2ZCSjmR3Kte2MiZZ3QtddarmL2VFFSstPaGNlRm7URkWFWJ3TLysqwd+9eXL58GWVlpjv006dPt/Y0pCBSLx3gLlM55LC8hD0Wt5fDUhJkX5b+yCBmOQOxx+zZrkGdz425oFKqz7m/r7hbp9hyROTaGDMTkRj2iJ0tnUpvLKGcayShLIe1dE1x1gAgpc1Q5EZnRMpkVW/z2rVrGD9+PG7cuGGynCAIUKlUDE7dhD3WYRUz6k5Jv34aIocbqD1GRNt7XV5A+W2vdNb8yGAuYSv2mF2iIyw+t2Sfc7EfMX4UidweY2YiEssesbPYRGt+cZlVCWVL19L19VKjtML+05edNQBIoxGw5cBFbNx3qc5zcp6h6E6zY4lciVUJ3Tlz5uCvv/5Cs2bN0Lt3bwQFBXFqKdlt6QBTo+6U9uunIXK5gWpHRK9OTEeuBCOi7b2UhCu0vdJZMyrDXMLW3j9wSDHy399H5AhdkeWIyHUxZiYiscTGxLlFpaLKHUvNwuqdphO0WqEBPlYnlI3FVjVp4yyNIGDhxrOi6mSNh3s1Q9tm4U4Z5GGob2KIXGcousvsWCJXYlVv88SJE2jUqBE2btwIPz8/qetECuXopQNcaX1WudxAu8ZGonubBrieV4rMv27r1im1JuCw5+fBldpeySwdlSEmEeuIHzi0I/9TruQh5XIeoALiosJEj3YpKRW3q7KpclKPLudodSJ5YsxMRIC4+7TYmHht4nn4eHqga2wkNBpBF88IEBDg64WQAB9k598xOErUEG18lpRyU1R5Q4nn2rMqg/28ARVQcKe8zvu92KMAvyVlijqXJcKDfDCiT0unxD9HUrKwcKO4eNjWGYr2JGZ2LBHJh1UJ3bKyMnTt2pWBKelx5NIBrrg+q1xuoGq1Ch1a10eTen427egYExWKAF9PFJdWGi1jzefBFdteycSMytASm4h1xA8cJ9Kz9Y6/BZdFj/BWmd9w1GQ5e+xezdHqRPLEmJmIxN6nxc58KiypwIINZzCsRxT+OPWXyVhbDG18ZutgDLEbZD0xMBotGoVgxbZUvY1wA/28IAiC3vtRARBE1cp5SwIcSbmJRb9YNurYnptd24obnREph1UJ3a5duyI1NVW33hcR4NilAxyxPqszuNIN9ER6ttkA05rPg6u2vZLV/DHiRHo2Dp69iaIaAbo1iVh7/sBh6wjvmMahAC6bPU91OWnPbe/jEZG0GDMTuTdL7tOWznySYpTrsB5RuvM7cnBO97hIdI2pG+cB0HussKTc7BINzlwS4FhqllVLSNhzs2sich8ixxnpe+2115CVlYX3338fxcXFUteJFEw7si4sSP8mFR7kI2liwd7rs5JtxIyiDfT1tGpjK7a9PGl/jBiTEIMvX+qDmWO6YMojbTFzTBd8OrWXVd997TF7tm2IuGZhkiRzxY7w1miMjwcRO1Kkdjkpzm3P4xGR9BgzE7kva+7T2r5UoJ+XvasHAEhKztKdX5tQNkXKUbCG4rzaj3WPa2Cwbxnk74XB3ZrYFGfaSkz7GmLvza6JyH1YNUI3Ojoab7/9Nt555x1s3LgRTZo0QUhIiMGyKpUKK1assKmSpCyOWDrA0ev1kmXEjKItKq20ahQt217+7DnS3Na1YqUY4X3w7F+izvVb0mW0axGuq9+WAxclHV3O0epE8seYmch92bLJWHmFBku2nLN3Feuc3+iyV8E+GDPIOaNg5bIsXW1i2tcQZy0NQUSux6qE7v79+/Hee+8BAEpLS3H+/HmjZTm9zD3Ze+kAR04JIsvZcxQt2959SbFWrBSfzaz8ElHHSL6cj9cXHtCNdhG7OYnU3x+OVidyHsbMRO7Llvt07RGp9lT7/DUTqIUlFYi6JwSNwnydOuNHjsvSWRpfhQZ4YdyQWC6FRUSSsSqh+9VXX6GyshIJCQl46KGHEB4eziCUHMqR6/WS5ew5ipZt756kWitWis9mhQWbBWrrF+Ar/nYr9feHo9WJnIcxM5H7suU+LXaDNCkYOr82gerpqUZYWADy8oqdltC1dXaWvVgaXz03vB3aNg+3U22IyB1ZldBNS0tDXFwcvv76a6nrQySa0SlBTlwYn6rZexQt2969iF2Drkt0hNkAX4rPZr1gX2RmWbYWptgdqC35XnC0OpH8MWYmcl+23Kct3SDNWnKPE6SYnWUvlibdC+6U27lGRORurEro+vn5ISoqSuq6EFlMrmsquTtHjKJl27sPKdeKleKzGRMVipPnc0xX2kqWfC84Wp1I/hgzE7kmMaNGLblPGzqesQEMUpJznCBmdpYz+wKWJt05Y4qIpGZVQrdv3774448/UFpaCl9fX6nrRGQROa6pRI4ZRcu2dw9SrxVr62dzYJcmWLc7Q9S5LDGiTwuLvxccrU4kb4yZiVyPJaNGu8ZGYuqIdli+LQ1FJRW6x2vep80dr0t0BFIu52HhL2dEz/gxJ8DXE5MfiJNtnCBmdtayX1OcPnq3un3bY9EvZyCYWJFC7iOhiUiZrErovvLKK9i/fz/+9re/4c0330SbNm2krhcRuQCOoiUp2GOtWFs+mxf+KhB9HrHCAr3xcK/mVr2W3zMi+WLMTORaLF3T/1hqFtbsPK+XzA3y88KTg+4mc8Ucr22LcEx+IE6yJRimPtoebVvIdz1XMbOzikorgVoJbkv3VpBC97hIAO2wcONZo2XkPBKaiJTLqoTuxx9/jEaNGiEpKQmPPfYYvL29ERQUBE/PuodTqVTYvXu3zRUlImXiKFr5buagFPZaK9baz2b27RKLXxPo56XXmatt7OAYmz4T/J4RyRNjZiJlMBWraZ/LLSrF2sTzJo9Tc01/Y8nawpIKLNx4BhjRHmt2it8jQKolGMKDfGQfM4iddWWM2L0VpNI9rgHUI1WcMUVEDmVVQnfbtm16/y4rK0NZmeGLLnfyJSJ3JufNHJRCbmvFHk/Nsvg1k4bFAoDJQJ+JfyLXw5iZSJ5q3nOzckuw98/rBmM1oO692xTtmv4xUaFmlwxYsT0VhXeM/9hb83jaBGzNWTkn0rOx4+hVUfWqSQmjRW1db1bs3gpS4owpInI0qxK6O3fulLoeRESSc3aCzNJpeWScnNaKzS8SP2qkdv2MBfrWJP6d/fkmIvMYMxPZhy33QEP33Nq0sZo1TqRn645hirlkrlbt0araWTlxzcJ0iePasVH3NpE4cPoGCo2s2yt3YmZnmWPrKF9rcMYUETmSqIRuUVERvLy84ONT/UtZ48aNrTpZWVkZKioqEBgYaNXriYjEcvbIWDGbOTh6OpjSyWXkg5+PuN9CoyID8I/JPfTqZyjQtybx7+zPNxEZxpiZyP5suQcau+dK6dDZm2jeMFiy45karWoqNhrdv7XTYyZriZmdZY6to3yJiOROLaZQ9+7d8e6779p8snfeeQc9evSw+ThE1tJoBKRczsOhczeQcjkPGo2J7UhJsbTBeu1f9bUJsmNWTJm3lJjNHLTTwUg8bUK0Z9uGiGsW5pSOSUSIn6hyzRsEma2f2MR/zWuVHD7fRGQYY2Yi+zJ3DzySkmU01hdzz5VCYUkFCu+Uiyob6Odl8nkxewQYi43kEDPZQjs7KyxIPzEbFuiNAF/TP65bs7cCEZHSiBpmJAgCBEGaxJdUxyGyFEe0uQe5jIwVO83LGdPByDaFpeKmSIopZ0niP65ZGCorNfjht1ST5Tnym8h5GDMT2Y+YGG/RL2dQ86tTM9YXc8+VSmCAl6gNXZ8c1BoLN541WkYJ693ak7ERyCfSs2WztwIRkbOIXkN3//79GDdunE0nu3Tpkk2vJ7IW1zJ1H5YmyOxF7DQvTgdTHj8vcbdOMeUsSfwfS83Cst9SUVRi2QYqRORYjJmJ7ENMjFf7d5CasX5FlcaOtdMXHugrakPXrrGRUI9UyWKPALkytFyVnPZWICJyFtEJ3ZycHOTk5Nh8Qu7gS44mlxGb5BhyGRkrZjMHTgdTpl7tG+LguZuiypkjNqGflXsHG/ddElUW4MhvImdizExkH7bc21btSMPg7lES1sY4bXynVqtEJR0duUeAK22oKpe9FYiInEVUQveHH36wdz2I7EYuIzbJMeQyMlbMZg6cDqZMbZqHw8fbA2XlVUbL+Hp7oE3zcLPHEpP4DwvywZ6T1y2qY83Ptyt13ojkjjEzkf3YErvlFZVj3e4MCWtjXM34TmzS0dAoVKkZWn4u0M8L97VrgC7REYqMDxzxdyMikitRCV1uykBKJpcRm+QYchoZy+lgrkmtVmFA50b4LSnTaJn+nRuJ6hSJSfzf36kRNu67KLp+NT/fptYO56gWIukxZiayHzExnlS0sZpGEEyucVtTkL8XJg6NrRPfySHpaGz5uaKSCuw4ehU7jl7l3iJERAojeskFIqWSy4hNcgy5jYzldDDXo9EI+OPUXybL7Dv1F0b1by2qnc0l/i1d80/7+Ta3dniAryeKSyt1j7MjR0REciYmxrNWgK8nBndrgshw/zqxWlq3fOw8es3sMZ4c1FqW91Axy88B3FuEiEhpmNAllyenEZtkP7WnlU8d0Q5rdp6XxchYOYzMIOmkXM7TS4QaUlRaiZTLeWjbwvyyC4DpxH/K5TzRdRvRpzm6xkaK6rzVfg/syBERkdx1iY6o84OkFEwdr2t0pKiEbnigr5RVkoyY5edq4t4iRETKwIQuuTy5jdgk6RmbVv7UoGgE+XlxZCxJKvlKruhyYhO6gPHEf0xUqOjOa2S4PwDLO281sSNHRERylZaZL3kyV6vm5qM1Z60ofXCIpcvKcW8RIiJlUDu7AkSOoJ3SHBakv6xCeJAPR6MpnHZaee0gO6+wDAs3nkFxaQV6tm2IuGZhTFCRJHJui+sYiS1njlqtwuBuTUSV1S4dY8ua4NqOHBERkdw4as8L7ayVY6lZusEhpsh5cIg1y8pxbxEiIvnjCF1yG1zL1PWImVbO0YYktXoh4qZUii0nxsO9WmDH0asmRyXVHB1k65rg7MgREZGcaJfWOpaS5dDzauNIJW90a81mctxbhIhI/pjQJbfCtUxdi5hp5Zw2RlKLiwrF/w5eFlVOKmq1CpMfiBO9dIytO4GzI0dERM5Qe0+EmKhQnEjPrpNIdZSacaRSB4dYupmcnJePICKiu5jQJSLFEjuKUO6jDQ11XuTeOXBnKpW4thFbTixLRgfZshM4O3JEROQMx1KzsHJHGvKLynWPeXuqUF4pWHQcX28PlJZXSVavmnGkUgeHGIshDJHz8hFERHSX1QndkpISbNu2DampqSgsLERVleGbpkqlwscff2x1BYmIjBE7ilDOow2Nbeg2VoLpe0wU28ft4nLzhSwoZwlLRgcZ67wF+nmhqKTC6DnYkSOSFmNmIvO0eyLUZmkyFwD6drwHO45elaJaAOQdR1qiZgxxIj0bh87eRGGNeEAJy0cQEdFdViV0s7OzMXbsWFy9ehWCYPomy+CUiOxF6bsOG+u8aDfisGXDPnsmit3dbZEjvsWWs5Qlo4OMJYANTV9lR45IeoyZiczTaAQs/TVFsuN1iY5ATFSowftcjzaROJycJXr5BjnHkdbQxhBxzcLw5MBo/vBPRKRgViV0v/jiC2RmZqJBgwYYMWIE7rnnHnh4eEhdNyIik8RMK5fraEN7buhmz0QxAYUiE7Viy9mboQSwUtcBJFIaxsxE5qVczjO56acltAlYtVpl9D43qn9r3eNZuSXYuO+i0eNJGUfKbeaUUpePICKialYldP/44w+EhYVh48aNCAvjTYCInEepuw7ba0M3eyaKqdqlrGJJyzkLO3JE9seYmci8lMw8yY5VMwFr7D5X+/HGEQEWxZHWJGY5c4qIiKRmVUK3oKAAffr0YWBKRLKgxNGG9trQzV6JYrrLx1Pc6Dqx5YjIdTFmJhLB8mVy67Dlh3xL4khrErOcOUVERPZgVUK3WbNmyM/Pl7gqRETWU9poQ3tt6GavRDHdFdMkBCfP3xJVjojcG2NmIvPimoVhy8HLVr22W2x9DLw3yuYf8sXEkdYkZjlzioiI7EVtzYtGjx6NEydO4MiRI1LXh4jILWg3dDPFmo047JUoprsa1Q+QtBwRuS7GzETmxTUNQ4Cv5eOM/Lw98MKjHRDXLMzuyVCxiVmNRn+4sSUzp4iIiCwh6s558OBBvX+3bt0aLVq0wJQpU/Dkk0+ic+fOCA4Ohkpl+EZ633332V5TIiIXYq8N3bSJYlOdB1fbsdnRzl+7Lbpcx9b17VwbIpITxsxEllOrVZj8QJzJmMiQyQ+2cdioVmuXtOLMKSIishdRCd2nn37aYOApCAKWLVuGZcuWGX2tSqXCuXPnrK8hEZGLsseGbvZKFFMNYv90/BMTuR3GzETWMRYTGTOsRxS6xzlu3VlrE7OcOUVERPYiKqHbvXt3e9fDqKSkJCxatAjJyckoLS1FbGwsJk6ciAcffFD0MR555BGkpqYafX7r1q1o1aqVFNUlIrKIPTZ0s0eimO6KiwrDFphf6y8uSjlrOhtizS7eRO7OWTEz42WSA1vvGzVjotyiUiRfzMWJ9Fu4U1alKxPk54XxQ2PQPa6BPd6CUdYmZjlzioiI7EVUQnf58uX2rodBmzZtwsyZM+Hp6Yn4+Hh4eHjg4MGDePnll3H+/HnMmDHD7DHKy8uRkZGBkJAQ9OvXz2CZoKAgqatORCSaPTZ0s0eimKrFNate66+4tNJomUBfT0Vt0leboV28A/28MMEJnWgiJXFGzMx4mRzBXLLW0H0jLMgHYy38IblmTNSr3T2y+XHR2sQsZ04REZG9WL76PIAjR46gXr16aNmypclyf/75J9LS0jB69GiLz3Hr1i3Mnj0bfn5+WLFiBdq1awcAyMjIwMSJE/HNN99g0KBBuseNSU1NRWVlJXr27Il58+ZZXA8iIqWyR6KYxK31N+mBOMV2zozt4l1UUoGFG8/iYo8CPDEw2gk1I1Iee8fMjJfJEcwla43dN/IKy7Bgwxm8OLK91bOD5BLL2JKY5cwpIiKyB7U1L5owYQK+/fZbs+X++9//Yu7cudacAitXrkRpaSnGjx+vF4S2atUKr7zyim4tMnO0a5G1b9/eqnoQERHVpu2chQZ66z0eFuhtU8fV2cTs4v1bUiaOpGQ5qEZEymbvmJnxMtmbNllbe2SqNll7JCXL7H1jdWI6NBrBntV0CO29PyxIf1mF8CAfs/f+rrGR+GxqL8wc0wVTHmmLmWO64NOpvRQbLxARkfOJGqF76NAhCIL+TTg7O7vOTr41FRUV4fjx43VeJ9bevXsBAAkJCXWeS0hIwNtvv409e/aYPY42QDU3MoGIiMgS2mUtMq7fRoWggpdKQKtGIYodmQuI28UbAFZsT0XXmAiD71Uu02OJnMHRMTPjZbKWmGu1mB/5VmxPReGdCpNlcgvLkJaZL4uRtrayZUkruYw2JiIi1yAqofvzzz9jy5Ytun+rVCocPHjQZHAKVO/oO2jQIIsrJQgCzp8/DwCIjq47rTMkJAT169dHdnY2bt68iQYNjK/npw1Qs7KyMHnyZCQnJ6O8vBwdOnTA888/j759+1pcPyIiIqC6c9ameTjCwgKQl1eMykqNs6tkE7G7eBfeqTDYOZdqDUUipXJkzMx4mawl9lot5kc+c8lcLbH3FyVgYpaIiORAVEL39ddfx82bN3UjB8ytB6ZSqeDj44NmzZph2rRpFlfq9u3bKCsrQ0BAAPz9/Q2WiYyMRHZ2Nm7dumU0QK2qqkJaWhoA4M0330RcXBy6d++Oixcv4vDhwzh8+DDeeOMNPPPMMxbXsSZPT6tWrnB7Hh5qvf8neWC7yBfbRn40GgGpmfkou5gHH08Vohsre4RuvWBf0WULSyr07n9HUkyvofjSqI7oHmc+qavRCEi9kof8onKEBnojtmmYVX9Tfl/IGRwZMystXgbsHzPze2+aRiPgl30XseH3C3WeM3StLiwRl6wVo16wr17729JWUt0nyDx+p5SB7aQcbCtlUEo7iUroRkZG4ocfftD9Oy4uDr1798ann35ql0qVlJQAAPz8/IyW8fGpXrvozp07RstkZGSgtLQUPj4++PLLLzFw4EDdc1u3bsXrr7+Ozz77DN26dUPHjh2tqqtarUJYWIBVr6VqwcHG25mch+0iX0pumyqNgHMXcpBbUIrwYF+0bVkPHgrthB04dR2LN55Gzu1S3WP1QnwxZUQH9OrYyIk1s158iD+CN5xGQbH5TnzUPSG6+1+VRsCqHWkmy69OTMeg+OYm29sef1Mlf19IeRwZMyspXgYcGzPze1+XoeurIasT09G/ezOkXspFTlG5qGMHB3iZvG/UD/VDfKcmBq//lraVK957lYDfKWVgOykH20oZ5N5OohK6te3cudPoSAApqNXVWXCVynwnX6MxPr01JiYG+/fvR0lJCaKiovSee/DBB3Hy5EksW7YMq1evtjpA1WgEFBQYD5LJOA8PNYKD/VBQUIKqKmVPU3YlbBf5UnrbHEnJwsptqcittcPzuKGxokZuysmRlCzM/+lUncdzbpdizrIjokejytGEYXFY8PNpk2XCg33QKMwXeXnFAIDkS7lmkwS38ktw+M+raNM83ODzUv9Nlf59cUXBwX6yH+kgNXvGzEqKl6vrYP+Ymd97w4xdXw25lV+Cce9sRWlFlajy4cE+GDM4xuR9Y0xCNApu67e9qbYyNgLXle+9csXvlDKwnZSDbaUMzm4nsTGzVQndxo0bW/My0QICqn+9Ly013jksK6tOCJgLkuvXr2/0uQEDBmDZsmU4c6buFFFLKH3NRGerqtLwbyhDbBf5UmLbaHfJri23sAzzfzpldndoOdFoBHy35ZzJMt//LxmdWtZT5BTQrtERGNYjCr8lZRotM2ZQNDQaQbdreU6B6WSuVk5BqcHPrkYjYMW2VJOvXbkt1aq/qRK/L+Q67BkzKy1eBhwXM/N7f5eY62ttYpO5ANAjLhJdoyPw4sj2ddblDQ/ywZiEaHRpXd9oe9RuK2Pr+z41qDXW7Dxvsi7W3ifIPH6nlIHtpBxsK2WQezuJSuhas7GZlkqlQmJiokWvCQgIQEBAAAoLC1FaWgpf37pr+mVlZQGontpmrYiICAB3p6wREZH0xOySvToxHV2iIxTRCUu5kofi0kqTZYpKKpByJQ9tjYxGlbsnBkajRaMQrNiWqreGorZzXjv5HhrgI+q4xsqJ2XjHlXZJJ9flyJiZ8TKJIeb6aouk5CyM6t8aXWMj0SU6AmmZ+cgvLkNogA9iokItuq8b+/E3r7AMCzeeNft63ieIiMidiEroXrt2TdTBPDw8UFUl/hddY1QqFaKjo3Hy5ElkZGSgXbt2es/n5+fj1q1bCAkJMblj77Zt27B9+3b07NkTo0ePrvN8Zmb16KOGDRvaXGciIjLM1ZJ1Zy/kiCp37mKuYhO6ANA9LhJdY8R1zmOiQhEW5GOyncODql9viNjdzx25S7pGI9iUmCD35MiYmfEyAeavVfa+bta8f6vVKqvv42J+/BXDkfcJIiIiZxKV0N2+fbvev0tLS/HKK68gKysL06ZNw6BBg9CkSROoVCrk5ORg9+7d+PLLLxEVFYUlS5ZYVbG+ffvi5MmTSExMrBOgJiYmQhAE9OvXz+Qxbt++jS1btiAjIwOjRo2qs8bYhg0bAAB9+vSxqo5ERGSeHJN11jqWmoXtR40vRVDTxZuFdq6N/YntnKvVKoxNiDY4skprTEK00YSorSN8pWZsyu9YA6OTiWpydMzMeNm9iblWOeK6KcX9W6qRxI66TxARETmbqJ0pmjZtqve/zZs349KlS1i6dCkmT56MqKgoXfBXr149jBo1CsuWLcPZs2cxb948qyo2atQo+Pn5YenSpTh+/Lju8QsXLuDLL78EADz33HO6x7OyspCRkaGbWgYAw4YNQ2hoKJKTk7FgwQIIgqB7bt26ddi2bRvq1auHp556yqo6EhGReXJL1llLOxVU7Lr4Pp7utflT19hIvDiyPcKC9NsxPMjH7BrJ2hG+ppga4SslbTvXTizkFZZhwYYzOJaaZeSVRI6PmRkvuy9z16rViWlIuZyH1o1DzF5fbSXF/VuKpLCj7hNERERyYNWmaJs2bUJ8fDzatm1rtEyrVq3Qs2dP7NixA++9957F52jYsCHefvttzJ49G+PHj0d8fDy8vb1x8OBBlJWV4dVXX0VcXJyu/BdffIENGzZg5MiRmDt3LgAgODgYn376KaZPn4758+dj8+bNiI2NxaVLl5Camgp/f3/Mnz8foaGhFtePiIjEsXU6vhxYMxU0pkmofSojY9auoWjrCF+p2HO9Zy7h4J7sHTMzXnYv2utIXmEZVu80fa3acfQqdhy9irAgH8S3iTS50aUtpLp/S5EUdsR9goiISC6sSugWFBQY3HjBEFM775ozevRoNGzYEIsXL8bJkyfh4eGBtm3b4plnnsGQIUNEHeP+++/Hzz//jEWLFuHw4cPYtWsXwsPD8fjjj2Pq1KmIioqyun5ERGSeXJJ1trBmKmiTiEA71UberF1DUTvC19gu6Y5Y6sBe6z1zCQf35YiYmfGyezB0HREjr7AMvyVlYliPKBxOztJ7fZC/FwrvVJh4tXlS3b/F/vj75KBorNnpvPsEERGRXKiEmvOqRBo5ciSuXLmCX3/91eiuuRkZGRg5ciTatWuH1atX21xRuaqq0iA3t9jZ1VAkT081wsICkJdXjMpKkXOYye7YLvKl9LYx1BlVSifs0LkbWLzpnEWveW54G/Rqd4+dauS6pBrJas33RWw7T3mkLXq2FbdBlLFd27XMLUfhSsLDA+Dh4V5LkTBmvssRMbPS75PGmLuOiBEe5IO5f7sP56/d1l1fc4tK8Z/NyVYfz5b7t6G2Enu95IwHx3HV75SrYTspB9tKGZzdTmJjZqtG6D755JN47733MGHCBMyaNQu9evWCt7c3AKCkpAQ7d+7EJ598goqKCkyePNmaUxARkYuxdjq+HFgzFbSo2LZRT+7Kll3SbSX1es/2XMKBlIExM9nKmiV/DMktLMP5a7f1rq8pl/MsOsZTA1sjONDbbvdvsTM1nHmfICIikgurErpPPfUUjh8/jk2bNmHq1Knw8PBASEgIACA/Px8ajQaCIOBvf/sbhg4dKmmFiYhIuZTaCRMzFbS2IH9vO9aI7EHq9Z7ttYQDKQdjZrKVNUv+GFN74zFL7m3hQT5I6BZl9x+flPzjLxERkSNZPe/t008/xb///W/Ex8dDpVIhJycHOTk58PT0RL9+/fDdd9/h5ZdflrKuRERETqFdB9gS9t5VnKQnpp0tWS9S7K7tUuzuTvLFmJlsIeX1ofbsAkvubY5c617742/Ptg0R1yyMyVwiIiIDrBqhqzV06FAMHToUgiAgLy8PKpUKYWEcYUJERK5HOxV0xfZU3DaznIJKBbRuHOKgmpGUpNycTeolHEi5GDOTtaS6Phi7Lxm75mkpZa17IiIid2NTQldLpVIhPDxcikMRERHJVtfYSPj5eGLempMmywkC6qxVSMoh1ZRfqZdwkBo3FnI8xsxkKTHXET8fD5SUVZk8jqn7UpfoCPj5eCLlch40EBDo64WQAB+EBfG6QEREJFeiErozZ86ESqXC66+/jvr162PmzJmiT6BSqfDJJ59YXUEiIiI5KbhTLqocp9ErmxTrPWunM5vatd2R05hrOpaaVWdEXliQD8ZyJJ5NGDOT1MRcR6KbhOBURq7ZYxlKCpu6FvBHSSIiIvlSCYIgmCsUFxcHlUqFrVu3okWLFoiLixN/ApUKycnJNlVSzqqqNMjNLXZ2NRTJ01ONsLAA5OUVo7JS4+zq0P9hu8gX20YeUi7n4dPVJ8yWmzmmCzvDTiSn74uhhIkzpzEfS80ymRx6cWR7u9QrPDwAHh5Wb9+gCIyZjXNEzCyn773UjF1HerSJxG9JmaKOEejnhUnDYnXfb2ddCwDXbitXwnZSBraTcrCtlMHZ7SQ2ZhY1QnfOnDkAgIiICL1/ExERuZvWjUOgAmDq11AVuIYu3SWnXds1GgGrEtNNllmdmI4u0RGcZm0FxsxkL4auI60bh+CNbw+KPkZRSQUWbDiDF0e2R5foCF4LiIiIFExUQnfkyJEm/01EROQu0q7mm0zmAtXJ3rSr+WjbnGtlUjUplnCQQlpmvsm1OAEgt7AMaZn5sqiv0jBmJnuqfR1JuZxn9vtsyOrEdPj5ePJaQEREpGBWzXt7+umnsXz5cmRmipveQ0RE5CpSLudJWo7IkcSu7cw1oKXBmJnsydrvaW5hmeh7FK8FRERE8iRqhG5tBw8exKFDh/Dxxx+jVatWGDhwIPr3748uXbpApeKUHCIicmFib3O8HZIMhQb4SFqOTGPMTPZk0/dU5MeP1wIiIiJ5siqhu23bNuzduxe///47jhw5gsWLF2PJkiUIDQ1F//790b9/f/Tp0wcBAQFS15eIiMip4qLCsAWXRZUjciSNRjC7Tm9MVCjCgnxMTrUOD6p+LdmOMTPVJuZ7KpaY77MxcVFh2B90g9cCIiIihVIJgmBuKUCTysrKcOjQIfz+++/4/fffkZmZCZVKBU9PT/To0QMDBw7EuHHjpKqv7Dhix15X5eydA8kwtot8sW3kQaMR8Pev/kBxaaXRMoG+nvhyRl9uJONE7vZ9OZaahVWJ6XrJmbAgH4xNiK6zS72zdrYXu2Ovq2LMbP+YWe7fe0u+p5Yc09T32ZDwIB98OrUXTqRnO+VaAMi/raga20kZ2E7KwbZSBme3k9iY2eaEbm2XLl3C999/j59//hlVVVUAgOTkZClPIStM6FrP2V8SMoztIl9sG/lwVkKMxHOn74s1n0dDiaXwIB+MsSGxZI67J3RrY8wsPTl/7+153zD0fTal5rmccS0A5N1WdBfbSRnYTsrBtlIGZ7eT2JjZqiUXasvIyEBSUhKSkpJw5MgR5OTkQJsnbtSokRSnICIiko2usZF4cWR7rNyRhvyict3jYYHeGDs4hslcchiNRsCqxHSTZVYnpqNLdITeiPGusZHoEh0h2dRvEocxs3uy9nsqlqHvc2FJBdbsNJ+o5bWAiIhImaxK6GZkZODw4cNISkrC0aNH9YLRBg0aYPjw4YiPj0d8fDyaNGkiaYWJiIjkQNsJzrh+GxWCCl4qAa0ahbATTA6VlplvdlRebmEZ0jLzEddMf11ntVpV5zGSFmNmAmz7nopl6PvcNUZcopbXAiIiIuWxKqH78MMP6/67cePGeOihh9CjRw/Ex8ejWbNmklWOiIhIztRqFdo0D+fUKXKa/GJxU6zFliNpMWYmwHnfUyZqiYiIXJdVC5kJggBBEKBWq1G/fn00btwYjRs3RoMGDaSuHxEREREZERrgI2k5khZjZgL4PSUiIiLpWTVC98CBAzh48KDuf99++y0WL14MT09PtG/fXjd17N5774WPDwMTIiIiInuIiQpFWJCPyenc4UHVU63J8RgzE8DvKREREUlPJWgX8rJBZmamLlA9cuQIbt26BZVKBS8vL3Ts2BErVqyQoq6y5Igde12Vs3cOJMPYLvLFtpEntos8uVO7HEvNwoINZ4w+X3NHe2cSu2OvK2PMbN+YWc7fe6V8Tx1Fzm1Fd7GdlIHtpBxsK2VwdjuJjZmtGqFbW1RUFKKiovDEE08gNzcXa9aswdKlS1FQUIBjx45JcQoiIiIiMqBrbCReHNkeqxLN72hPzsWY2X3xe0pERERSsjmhW1ZWhiNHjuhGG6SkpOjWC2vevDn69+8vQTWJiIiIyJiusZHoEi1uR3tyDsbMxO8pERERScWqhO6ff/6pWxPs5MmTqKiogCAI8PLyQs+ePXH//fdjwIABaNq0qdT1JSIiIiIDuKO9/DBmptr4PSUiIiIpWJXQffLJJ6FSqSAIAurXr4/7778f/fv3R+/eveHv7y91HYmIiIiIFIcxMxERERHZg1UJ3fbt26N///7o378/2rdvL3WdiIiIiIgUjzEzEREREdmDVQndn376Sep6EBERERG5FMbMRERERGQPamdXgIiIiIiIiIiIiIjEYUKXiIiIiIiIiIiISCGY0CUiIiIiIiIiIiJSCCZ0iYiIiIiIiIiIiBSCCV0iIiIiIiIiIiIihWBCl4iIiIiIiIiIiEghmNAlIiIiIiIiIiIiUggmdImIiIiIiIiIiIgUggldIiIiIiIiIiIiIoVgQpeIiIiIiIiIiIhIIZjQJSIiIiIiIiIiIlIIJnSJiIiIiIiIiIiIFIIJXSIiIiIiIiIiIiKFYEKXiIiIiIiIiIiISCGY0CUiIiIiIiIiIiJSCE9nV8CcpKQkLFq0CMnJySgtLUVsbCwmTpyIBx98UPQxioqKsGTJEmzbtg3Xr19HaGgoBgwYgBkzZqBevXp2rD0RERERkX0xXiYiIiJyL7Ieobtp0yZMnDgRSUlJaNu2Lbp3746zZ8/i5ZdfxldffSXqGEVFRZg4cSIWLVqEqqoq9O/fH/7+/lizZg1GjhyJGzdu2PldEBERERHZB+NlIiIiIvcj2xG6t27dwuzZs+Hn54cVK1agXbt2AICMjAxMnDgR33zzDQYNGqR73Jj58+fj7NmzGDFiBP75z3/C09MTGo0Gn3zyCZYuXYr3338fCxcudMRbIiIiF6PRCEi+lIuKi3nwUglo1SgEarXK2dUiIjfBePkuXo+JiIjInch2hO7KlStRWlqK8ePH6wWhrVq1wiuvvAJBELBs2TKTxygqKsK6devg5+eHt956C56e1flrtVqNmTNnIioqCrt27cKVK1fs+l6IiMj1HEvNwusLD2DOiuOYt/IY5qw4jtcXHsCx1CxnV42I3ATj5Wq8HhMREZG7kW1Cd+/evQCAhISEOs8lJCRApVJhz549Jo+RlJSEO3fuoFu3bggJCdF7zsPDAwMGDAAAs8chIiKq6VhqFhZsOIO8wjK9x/MKy7BgwxkmEYjIIRgv83pMRERE7kmWCV1BEHD+/HkAQHR0dJ3nQ0JCUL9+fdy+fRs3b940ehxTxwCA1q1bAwDS0tJsrTIREbkJjUbAqsR0k2VWJ6ZDoxEcVCMickeMl3k9JiIiIvcly4Tu7du3UVZWhoCAAPj7+xssExkZCaB67TBjsrKy9MrWFhERYfYYRERENaVl5tcZCVZbbmEZ0jLzHVMhInJLjJd5PSYiIiL3JctN0UpKSgAAfn5+Rsv4+PgAAO7cuWO0jPY5X19fg89rHzd1DDE8PWWZF5c9Dw+13v+TPLBd5IttIw+FJRWiy/H+4Dz8vpCrU1q8DEgfM/N6rFy8RisD20kZ2E7KwbZSBqW0kywTump19R9NpTK/M61GozH6nIeHh6jjCIL107DUahXCwgKsfj0BwcHGOyLkPGwX+WLbOFfUPSHmC/1fOd4fnI/fF3JVSoqXAfvEzLweKx+v0crAdlIGtpNysK2UQe7tJMuEbkBAdcBVWlpqtExZWfX0KmNTzGo+Z+w42sdNHcMcjUZAQYHtIxbckYeHGsHBfigoKEFVlfGOBjkW20W+2Dby0CjMF+FBPsg1Mc03PNgHjcJ8kZdX7MCaUU38vshPcLCf7Ec6KImS4mXAPjEzr8fKxWu0MrCdlIHtpBxsK2VwdjuJjZllm9ANCAhAYWEhSktLDU4BM7feFwA0aNAAgPE1v7KzswHcXRvMWpWV/CLaoqpKw7+hDLFd5Itt43xjEqKxYMMZ488PioZGI3AjHhng94VcldLiZcA+MTOvx8rGa7QysJ2Uge2kHGwrZZB7O8lymIRKpdLttJuRkVHn+fz8fNy6dQshISG6INQQ7TG0u/fWlp5evStuTEyMrVUmIiI30jU2Ei+ObI+wIB+9x8ODfPDiyPboGms8eUJEJAXGy9V4PSYiIiJ3JMsRugDQt29fnDx5EomJiWjXrp3ec4mJiRAEAf369TN5jG7dusHf3x9JSUkoLCxEUFCQ7rmqqirs3r0bKpUKffv2tct7ICIi19U1NhJdoiOQcf02KgQVvFQCWjUKgVptfj1LIiIpMF6uxusxERERuRtZjtAFgFGjRsHPzw9Lly7F8ePHdY9fuHABX375JQDgueee0z2elZWFjIwM3dQyoHrX38cffxzFxcV49913UV5eDqB6U4fPPvsMV69eRUJCAlq0aOGYN0VERC5FrVahTfNw3H9vE7RpHs7kARE5FOPlu3g9JiIiIneiEmzdstaOfvzxR8yePRtqtRrx8fHw9vbGwYMHUVZWhldffRVTpkzRlX3zzTexYcMGjBw5EnPnztU9XlRUhDFjxiAtLQ2NGzdG+/btkZ6ejgsXLqBx48ZYs2aNyXXFzBEErsllCw8PNRcDlyG2i3yxbeSJ7SJPbBd5UatVUKmYZJOaEuJlwHExM7/3ysG2Uga2kzKwnZSDbaUMzmwnsTGzbJdcAIDRo0ejYcOGWLx4MU6ePAkPDw+0bdsWzzzzDIYMGSLqGIGBgVi5ciUWLlyIbdu2Yffu3WjQoAHGjh2LadOm2bzBg0qlgocHOye24I7X8sR2kS+2jTyxXeSJ7UKuTgnxMuDYmJnfe+VgWykD20kZ2E7KwbZSBrm3k6xH6BIRERERERERERHRXfJONxMRERERERERERGRDhO6RERERERERERERArBhC4RERERERERERGRQjChS0RERERERERERKQQTOgSERERERERERERKQQTukREREREREREREQKwYQuERERERERERERkUIwoUtERERERERERESkEEzoEhERERERERERESkEE7pERERERERERERECsGELhEREREREREREZFCMKFLREREREREREREpBCezq4AKVdSUhIWLVqE5ORklJaWIjY2FhMnTsSDDz4o+hhFRUVYsmQJtm3bhuvXryM0NBQDBgzAjBkzUK9evTrlly5dijlz5hg93vPPP4/XXnvNqvfjKqRol5oEQcDTTz+NCxcu4Pfff3fYeV2NM9plx44dmD59utFjPPjgg/jXv/5l1fldhRTtcvHiRSxevBgHDx7ErVu34O/vjw4dOmDy5Mno27dvnfIajQbr16/HqlWrcOnSJXh5eaFr166YNm0a2rdvL+XbUyxntMtHH32E5cuXGz3ee++9hzFjxlj1fojINs6IOclyzopByXLOuM+S5aRopytXrmDBggXYv38/8vPzERERgb59+2Lq1Km455577Fh792GPfvDmzZvx2muvYfjw4Zg3b56EtXVvUrTVI488gtTUVKPPb926Fa1atZKiumYxoUtW2bRpE2bOnAlPT0/Ex8fDw8MDBw8exMsvv4zz589jxowZZo9RVFSEiRMn4uzZs2jatCn69++PtLQ0rFmzBrt378a6devQsGFDvdecPXsWANC/f38EBQXVOWbbtm2leYMKJUW71PbJJ5/g4MGDaNCggUPP60qc1S7a70uPHj0MluvSpYvF53UlUrTLsWPH8Nxzz+HOnTto3rw57r//fty8eRP79u3Dvn37MHPmTDz77LN6r3nvvfewdu1ahISEoFevXrh16xZ27tyJ33//HYsWLUKfPn3s9ZYVwVntcu7cOQDAAw88AE/PuuFR8+bNJXl/RGQZZ8WcZBlnxTpkOWfdZ8kyUrTTpUuX8MQTT+D27dto2bIlOnfujIsXL2Lt2rXYunUrVqxYgbi4OAe8G9dlj2vfX3/9hQ8++MAOtXVvUrRVeXk5MjIyEBISgn79+hksYyhPZTcCkYWys7OFjh07Cp07dxbOnDmje/z8+fNCr169hNjYWL3Hjfn444+FmJgYYebMmUJFRYUgCIJQVVWle/yFF16o85qHHnpIiI2NFQoLC6V7Qy5CqnbRunPnjvDGG28IMTExQkxMjNC3b1+HnNfVOKtdBEEQpkyZIsTExAhpaWk2vQdXJEW7VFRUCAMHDhRiYmKEb7/9VtBoNLrn9u3bJ7Rr106Ii4sTUlNTdY8nJiYKMTExwsMPPyzk5ubqHv/tt9+ENm3aCL179xbu3Lkj4TtVFme1i0ajEbp06SLEx8dL/6aIyGrOjDlJPGfGOmQZZ91nyTJSfadGjRolxMTECPPnz9drp/nz5wsxMTHCqFGj7FJ/d2GPfrBGoxEmTJigu/69+uqrUlfbLUnVVqdOnRJiYmKEl156yZ7VFY1r6JLFVq5cidLSUowfPx7t2rXTPd6qVSu88sorEAQBy5YtM3mMoqIirFu3Dn5+fnjrrbd0o6HUajVmzpyJqKgo7Nq1C1euXNG9prS0FBcuXEDz5s0RGBhonzenYFK0i1ZiYiJGjBiBDRs2ICoqymHndUXOahegeoSun58fWrZsaXX9XZUU7ZKUlISrV6+iQ4cOmDJlClQqle653r1748knn4RGo8HWrVt1j3/33XcAgJkzZyIsLEz3+NChQzF8+HBkZ2fjf//7n1RvU3Gc1S6XLl1CcXGx3jmJyPmcFXOSZZwZ65BlnHWfJctI0U6XLl3CqVOn0LhxY7z44ot67TRt2jT4+/vj1KlTyM/Pt9fbcHn26Ad///33OHz4MLp37y51dd2aVG2lndEnl2XymNAli+3duxcAkJCQUOe5hIQEqFQq7Nmzx+QxkpKScOfOHXTr1g0hISF6z3l4eGDAgAEAoHec1NRUVFVVscNthBTtAgAFBQV48cUXkZmZiYkTJ+Lbb791yHldlbPa5datW8jOzkZcXBw8PDysqrsrk6JdiouL0aFDB6PTbbRT9LOysgAAhYWFOH78OPz9/XHffffVKT948GAA4PcFjm0XAEhOTgYgn+CMiKo5K+Ykyzgr1iHLOes+S5aRop2aN2+OgwcP4rvvvtNL5gJARUUFKioqAID9BBtI3Q9OTU3Fv/71LwwYMACPPfaYVNUkSNdW2oSuXHJSXEOXLCIIAs6fPw8AiI6OrvN8SEgI6tevj+zsbNy8edPomlemjgEArVu3BgCkpaXpHtOuBxoSEoJ3330X+/fvR1ZWFho3bozhw4fjueeeg4+Pj/VvTsGkahegesTKww8/jKlTp6J169a4evWqQ87ripzVLsDd70vDhg3xySefYNeuXbh+/ToiIiIwdOhQvPDCC3U6tu5CqnYZPHiwLglryKlTpwBAty5jRkYGNBoNWrZsaXCNVu3i+TWve+7EWe0C3P2+eHp64tVXX8XRo0eRl5eHFi1aYNSoURg3bhzUav4GTuRIzow5STxnxjpkGWfeZ0k8Kb9T4eHhCA8P13uspKQEH374ISoqKpCQkODY9T5diNT94PLycrz22msICAjARx99xI0gJSRlW2kTullZWZg8eTKSk5NRXl6ODh064Pnnn3f4hpDsnZBFbt++jbKyMgQEBMDf399gmcjISADVIwSN0f5iqy1bW0RERJ1jaL88K1euxI4dOxAbG4sOHTrgr7/+wldffYWJEyfizp07lr8pFyBVuwBAYGAgPv/8c10Hx1HndUXOahfg7vfl119/xbp169CiRQvce++9uH37Nr777js88cQTyM7OtuDduA5HfG5TU1Pxv//9DyqVCkOGDAFw97qnvb7VZui6506c1S7A3e/L119/jWPHjqFDhw6IjY1FRkYGPvroI0yfPh1VVVVWnZOIrOPMmJPEc2asQ5Zx5n2WxLNXOyUmJuLZZ59Fv3798PPPP2PAgAGYO3euJHV2R1K30xdffIG0tDS8//77qF+/vqR1dXdStVVVVZXux98333wTeXl56N69Oxo1aoTDhw/jueee0y2v5ygcoUsWKSkpAQD4+fkZLaMdJWsquap9ztfX1+Dz2sdrHkPb4X788cfx3nvvwdvbGwCQmZmJ6dOn4+TJk/j8888xe/ZssW/HZUjVLko5r1I48++jnUJ+//334/PPP9f9+p6bm4uXX34Zhw4dwuzZs7Fo0SJJz6sE9m6XnJwczJgxA1VVVXjsscd0uwdrj2XsvNrrnrZ+7sZZ7QLcvb9MmzYN06dP100/TE5OxrRp07Bz504sW7YMzzzzjMXnJSLrODPmJPEYCyqHM++zJJ692ungwYPYt2+f3nkuXbqEDh06WFlT9yZlOx08eBBLly7FI488gqFDh0pXSQIgXVtlZGSgtLQUPj4++PLLLzFw4EDdc1u3bsXrr7+Ozz77DN26dUPHjh0lqr1pHKFLFtFOOa29Do8hGo3G6HPazrK54wiCoPvvlStXYsuWLfjwww91yVwAiIqKwty5c6FSqfDjjz+irKzMbN1cjVTtopTzKoUz/z7z5s3D1q1b8e9//1tvKlV4eDg+/fRT+Pv7Y/fu3W45ndGe7XLz5k1MnDgRly5dQvv27fHuu+/qnhN73dNoNHrXPnfhrHYBgJ07d2LLli34+9//rreWXJs2bfD2228DAFasWGHROYnINs6MOUk8xoLK4cz7LIlnr3Z64YUXcPr0aSQmJmLy5Mk4dOgQJk6ciIyMDKvr6s6kaqeCggLMmjULDRo0cMuBaY4gVVvFxMRg//79+N///qeXzAWABx98EOPGjYNGo8Hq1attq7AFmNAliwQEBAAASktLjZbRJlSNDWev+Zyx42gfr3kMPz8/REdHG1y4vU2bNmjYsCHKysqQnp5u5l24HqnaRSnnVQpn/n28vb3RqlUrg79ENmjQAG3btgVwd+1Qd2KvdklLS8OYMWNw/vx5dOjQAd99953e39+S656YgMPVOKtdgOppvsbW17z//vvh4eGBa9euIS8vT/R5icg2zow5STzGgsrhzPssiWevdoqIiIC3tzeioqIwa9YsPPnkk7hz5w6WLFliW4XdlFTt9P777+PGjRuYM2cOgoODpa0kAZD2O1W/fn1ERUUZfE67yeqZM2esqaZVuOQCWSQgIAABAQEoLCxEaWmpwelr5tYqA6BbaNrYGiXatT2NrTVpSP369fHXX3+Z/KK6KqnaRSnnVQo5/320azO54/R+e7TL/v37MWPGDBQVFaFPnz746quvdMGDlj2ue67EWe1ijpeXF0JCQpCbm+uW9xciZ5FzzEl3yTnWIX1yvc+SPkd9px599FGsXbvWLQd3SEGKdjp9+jS2bNmC0NBQrF+/HuvXr9c9p51FeeLECbz22mto1aoVpk6daod34voc9Z3SxhGO7F9zhC5ZRKVS6UYxGZqekZ+fj1u3biEkJMTk7oDaY2h3G6xNO8o2JiYGQPU0nrfffhuvv/660WNmZmYCgNkdJF2RVO2ilPMqhbP+PmVlZZg9ezZefPFFowko7ffFHXcglrpdNm/ejClTpqCoqAijRo3Ct99+a7Az06pVK6jValy4cMHgdB7t9VB73XM3zmqX1NRUzJo1C3PmzDF4nOLiYuTm5sLLywv16tWz8F0RkbWcFXOSZRgLKoez7rNkGana6ejRo5g9ezZ+/PFHg89rlzCsrKyUoNbuR4p20q7Xmp+fj82bN+v978SJEwCqE7ubN2/GgQMH7PROXJ9U36lt27bh1VdfNfqdckb/mgldsljfvn0BVO+UWVtiYiIEQUC/fv1MHqNbt27w9/dHUlISCgsL9Z6rqqrC7t27oVKpdOcKDAzEpk2bsGnTJt1mTzXt2bMH+fn5aN68udEh8K5OinZR0nmVwhl/Hx8fH+zZsweJiYl6mx9opaSkICUlBUFBQejcubOk51YKqdpl165deOONN1BZWYmXXnoJ//znP+HpaXjyi5+fH7p3747CwkIcPny4zvM7duwAUD3F3105o118fHywfv16rFy5Erm5uXWe37hxIwCgR48eeuu3E5H9OSPmJMsxFlQOZ9xnyXJStFN+fj7WrVuH//73vwYHEvz+++8AgHbt2klQY/dkazvFx8cjNTXV4P+0Aw2GDx+O1NRULF++3D5vwk1I8Z26ffs2tmzZgpUrVxpcd3/Dhg0AgD59+khQY3GY0CWLjRo1Cn5+fli6dCmOHz+ue/zChQv48ssvAQDPPfec7vGsrCxkZGTohrED1YmNxx9/HMXFxXj33XdRXl4OoHpDis8++wxXr15FQkICWrRoAaB6mPzw4cMBAO+8845ep/vSpUv44IMPAAAvvviifd60AkjRLo44r7txVrs89dRTAICPP/5Y92shUD3l9K233kJVVRWeffZZo7t+uzop2uXWrVuYNWsWqqqqMHXqVEyfPt3seSdMmAAA+PDDD3XTfAFg+/bt2LJlCyIiIvDoo4/a+vYUyxnt0rx5c/Ts2RMVFRV48803UVxcrHvu1KlT+Pe//w2VSoVp06ZJ9C6JSCxnxJxkOWfFOmQ5Z8U/ZBkp2qlfv35o3LgxLl68iHnz5ukldXft2oVFixbBw8MDTz/9tP3fkIvitU85pGirYcOGITQ0FMnJyViwYIFeUnfdunXYtm0b6tWrp+uHO4JK4JauZIUff/wRs2fPhlqtRnx8PLy9vXHw4EGUlZXh1VdfxZQpU3Rl33zzTWzYsAEjR47E3LlzdY8XFRVhzJgxSEtLQ+PGjdG+fXukp6fjwoULaNy4MdasWaO3hsnt27cxYcIEpKamIigoCPfeey+qqqqQlJSE8vJyTJ48GbNmzXLo30FupGiX2q5evYpBgwahQYMGul9ybTmvO3JGu5SXl+Nvf/sbDhw4AF9fX3Tt2hXe3t44fPgw7ty5g6FDh+Jf//qXwU0G3YWt7fLZZ5/hP//5Dzw9PTFs2DCjG5nde++9GDt2rO7fM2fOxC+//ILAwED07NkTeXl5OH78OLy8vPCf//wH8fHx9n3jMueMdrl27RrGjRuHv/76C/Xq1UOnTp1QVFSEY8eOQaPRYNasWZg0aZL93zwR1eGMmJMs56wYlCznrPiHLCPFd+rEiRN49tlnUVxcjKZNmyI2NhaZmZlISUmBp6cn3nvvPYwePdoZb89l2OPaBwDr16/HrFmzMHz4cMybN8/eb8MtSNFWe/fuxfTp01FeXo7mzZsjNjYWly5dQmpqKvz9/fGf//wHXbt2ddh74rwIssro0aPRsGFDLF68GCdPnoSHhwfatm2LZ555BkOGDBF1jMDAQKxcuRILFy7Etm3bsHv3bjRo0ABjx47FtGnT6mxOERISgjVr1uC7777D1q1bcfDgQfj4+KBz586YOHEiBg8ebI+3qihStIuSzqsUzvj7eHt7Y8mSJVixYgV++eUXHDt2DGq1GtHR0Rg9ejRGjRplNAB3F7a2i7ZzWVlZiS1btpgsW7NDM3fuXHTs2BHr1q3DH3/8geDgYAwcOBAvvfQS2rRpY9ubcgHOaJfGjRtj/fr1+Pbbb7Fz50788ccfCAgIQN++ffHss8+iR48etr8xIrKKM2JOshxjQeVwVvxDlpHiO9WlSxf88ssv+Oabb7Bv3z7s3r0bISEhGDZsGJ577jl06NDBzu/C9fHapxxStNX999+Pn3/+GYsWLcLhw4exa9cuhIeH4/HHH8fUqVMdvvwnR+gSERERERERERERKQTX0CUiIiIiIiIiIiJSCCZ0iYiIiIiIiIiIiBSCCV0iIiIiIiIiIiIihWBCl4iIiIiIiIiIiEghmNAlIiIiIiIiIiIiUggmdImIiIiIiIiIiIgUggldIiIiIiIiIiIiIoVgQpeIiIiIiIiIiIhIIZjQJSIiIiIiIiIiIlIIJnSJiBTs8OHDiI2N1ftfQUGBs6tVh6F6Xr582dnVIiIiIiI3NGHCBL249J///Kezq2TUihUrMHToUHTs2BF9+vTBG2+8gby8PKxfv75OfF1ZWens6hKRg3g6uwJERGS78PBw9O7dGwDg5eXl5NrUVb9+fQwfPhwAsHPnTty5c8fJNSIiIiIid3ffffehfv36aN++vbOrYtDWrVvx4YcfYtq0aXjyySdx4sQJvPLKK6ioqMDYsWN18fXmzZudXFMicjQmdImIXEDz5s0xb948Z1fDqFatWunqN3DgQCZ0iYiIiMjppkyZgl69ejm7GkbFxsZi3rx5GDZsGLy8vDBkyBAEBgbi/Pnz6NatG7p16waACV0id8SELhERERERERGRzLRq1QqtWrUCAGg0GsyZMwcFBQV44oknnFwzInI2rqFLRGQhjUaD1atXY+TIkejSpQt69eqFd955Bzk5ORg8eDBiY2P1yh88eBAzZsxAv3790L59e3Tp0gWPPvooFi5ciPLycr2yb775JmJjY3H69GmsXLlSt15WQkICvvjiCxQVFYmq49WrVxEbG4sZM2bgxo0beOONN3Dfffehc+fOeOKJJ7Bv3z4AQHp6Ov72t7+ha9eu6NWrF1588UVcvXrVYJ3S0tKwYcMGjBgxQreG14cffog7d+6gqqoKS5YswZAhQ9CpUyc89NBDWLVqFQRBsOEvTURERERycvv2bcyfPx+PPfYYunbtivbt26NPnz6YMWMGTp06pVdWG49OmzYNv/76KwYMGIAOHTpg+PDhKCws1JXbunUrJkyYgK5du6JTp0549NFHsXTpUlRUVNQ5f2VlJX788UdMmjQJ8fHxaNeuHXr06IEJEybgf//7n83vT6q4V8pYHAByc3Px/PPPY/ny5ejRowdefPFFm98rESkbR+gSEVlAEAS8+uqr2Lp1K/z9/REfH4+ysjJs3LgRhw8frpNw/f777zF37lx4eXmhS5cu6Ny5M27cuIFTp04hJSUFZ8+exddff13nPAsWLMDu3bsRGxuL/v3749ixY/j222+xd+9e/PDDDwgJCRFV3+vXr+Pxxx9HVVUVunbtiszMTPz555+YMmUK3n//fXz88ceoX78+7rvvPpw5cwaJiYk4c+YMfvvtN/j5+ekd64svvsDu3bt1SeykpCSsWLECN2/ehI+PD7Zv346uXbuicePGOHToEN5//31UVlZi4sSJ1v/BiYiIiEgWcnJy8NRTT+HKlSto0qQJevbsiYqKCpw9exbbtm3Drl27sHr1anTo0EHvdampqdi7dy/atWuH1q1bo7KyEkFBQQCAd999F2vXroWvry86duyIoKAgHDt2DHPmzMHvv/+ORYsWwdvbG0B1HP7SSy9h165dCAkJQadOneDj44Pz588jKSkJSUlJyMnJkST2lCrulSIWT0tLwwsvvIBr165h3LhxmDVrliz3zCAix2JCl4jIAuvXr8fWrVsRHR2N7777DpGRkQCAlJQUPP3008jNzdWVzcrKwueff46QkBCsWbMGLVu21D139OhRTJo0CTt27MCNGzfQsGFDvfPs3r0br732Gp5//nkAQHFxMaZPn44DBw7gq6++wuzZs0XV9/Tp0+jRowcWLVqEgIAACIKA6dOnIzExEe+88w6efPJJ/OMf/4CHhweKi4sxcuRIXL58GXv37sWwYcP0jrVnzx588803GDRoEADg7NmzePzxx7Fjxw4EBQVh/fr1iI6OBgCsXr0a7733HtatW8eELhEREZELWLhwIa5cuYLx48fjnXfegUqlAgCUlZXh5Zdfxs6dO7F27do6Cd2rV69i3LhxePfddwFUz3YDquPqtWvXIjY2Ft988w2aNGkCACgqKsLf//537Nu3DwsWLMDLL78MANixYwd27dqFjh07YunSpQgICNCdY/Hixfj888+xYsUKSWJPqeJeW2PxK1euYPLkySgsLMS8efN0m6AREXHJBSIiCyxbtgwA8NFHH+mSuQAQFxeHN954Q6/srVu3MHjwYEybNk0vmQsA3bp10wWBhqZV9e7dW5fMBYCAgADMnTsXnp6e+Pnnn1FWVia6zm+88YYu4FWpVHjooYcAAD4+Ppg5cyY8PDx05+jduzcA4MqVK3WO079/f11QCwDt2rXTva9x48bp3g8ADB06FABw+fJl0fUkIiIiIvkKCQlB3759MWPGDF0yF6iOKR977DEAhuNaABg/frzuv9Xq6jTEkiVLAABz5szRJXMBIDAwEHPmzIGXlxdWrlypW6KsoqICAwcOxGuvvaaXzAWAMWPGmDy/paSMe22JxefMmYOcnBxoNBq8//77uo3QmNglIo7QJSISKScnB6mpqYiIiEDnzp3rPD9kyBC89dZbqKqqAgC0bdsW//rXv/TKVFVVITMzE6dPn8bt27cBwOD6YNpAr6YGDRqgY8eOOH78OP7880/06NHDbJ29vb3Rtm1bvcfCw8MBAE2aNEFgYKDec8HBwQBgMGHcqVOnOo+Fh4cjIyOjzrrB2ml0tdcIJiIiIiJleumll+o8dvv2baSlpenWhDUU+/n6+qJFixZ6j2VnZ+PChQsICgpCu3bt6rwmMjIScXFxOH36NM6dO4fOnTvjoYceqhMjl5aW4sKFCzhx4gSA6li7qqpKlyS1llRxr62x+D/+8Q+8/fbbdY7r6clUDpG741WAiEikv/76CwBwzz33GHze398f4eHhyM7O1j1WVVWF3377Df/73/+Qnp6O69evo7KyEgB0IxsMbRzWrFkzg+fQnjsrK0tUnYOCgnSjILS05xW7Dq+WofLaY4WGhhp8nIiIiIhcR2ZmJlatWoVjx47h0qVLugEKpuLaoKCgOrGhNq4uLCyskyCt7a+//tINpigqKsLatWvxxx9/ICMjA9nZ2RAEQe/4UmzKK1Xca2ssXntZNiIiLSZ0iYhE0iZitet+GVIzgLxz5w4mTZqEU6dOwdfXF+3bt0fv3r0RHR2Nrl274qOPPsKRI0cMHsfYqALt8cWOOpDy13tuvkBERETkvrZs2YI33ngDlZWViIqKwn333YeWLVuiffv2EAQBL774osHX1U5oAtDNaAsNDUXfvn1NnjciIgIAkJ6ejkmTJiEnJwdhYWHo2LEjHn74YcTGxiI+Ph79+/e37Q3WIFXcy5G0RGQvvLoQEYmkHR2rHVFQW2lpKfLy8nT//u6773Dq1Cncd999+Oqrr3RTqLQKCgqMnuvmzZsGH79+/bpeXYiIiIiI7K24uBjvvvsuBEHAggULkJCQoPf8jh07LDqeNknr4+ODefPmiXrNBx98gJycHDz33HN45ZVX9AY4aEcKExG5C26KRkQkUoMGDdCiRQvk5OTgzz//rPP8nj17dKMNAOjW8ho/fnydZO7NmzeRkZEBwPCI371799Z57MaNGzh9+jRCQ0Pr7B5MRERERGQv6enpKC4uRkxMTJ1kLgDdGrpilzto0qQJGjVqhJs3byIlJaXO8yUlJXjkkUcwbtw43UZnJ0+eBAC88MILdWar7d+/X/ffpmbTERG5CiZ0iYgsMHnyZADAO++8g1u3bukev3z5MubOnatXVrvhwe7du/WC2+vXr2P69Om6JRwMbUC2ceNGvZEORUVFmDlzJqqqqjBhwgSbN3ogIiIiIhJLG9devHgRFy5c0D0uCAJWr16NdevWATAc1xozadIkAMDMmTNx5coV3ePl5eV47733kJqaijt37qBJkyZ6ddi5c6fecY4cOYIPP/xQ7/VERK6OSy4QEVngiSeewJ49e7B7924MGTIE8fHxqKysxOHDh3WbFmjX3Bo/fjx+/fVX/PTTTzh+/Diio6ORm5uLEydOQBAEtGjRAhcvXtRLDGtFRkZi+vTpuPfeexEREYEjR44gNzcXvXr1wpQpUxz6nomIiIjIvTVt2hQDBw7Erl27MGLECPTo0QM+Pj44d+4crl+/jtatW+P8+fMG41pjJk6ciD///BNbt27Fww8/jA4dOiA0NBSnTp1CVlYW6tWrhy+++EJX/umnn8acOXPwxhtvYO3atYiIiMCVK1eQnJyM0NBQREREIDs7G9nZ2QgMDLTHn4GISDY4QpeIyAJqtRrz58/H66+/joYNG2Lfvn04e/YsRo4cif/+978AoAsgO3XqhFWrVqFv374oKCjArl27cPnyZSQkJGDNmjV45ZVXAFSP4K1t2rRpeO2115CVlYU9e/agfv36mDVrFpYsWQJvb2/HvWEiIiIiIgD/+te/MGPGDDRp0gRJSUk4cOAAQkND8eqrr2L9+vWIiYlBVlYWzpw5I+p4arUaX3zxBT755BN06NABKSkp2LdvH4KCgvD0009j48aNaNGiha785MmT8fnnn6NDhw5IS0vD7t27UVJSggkTJmDTpk0YNmwYAMOxNRGRq1EJYhe5ISIipKSkICwsDA0aNKjz3Llz5zBy5Eh06dIFa9asser4b775JjZs2ICPPvoIo0ePNlv+8OHDmDhxIu69916sXr3aqnM62sCBA3Ht2jVs374dzZo1c3Z1iIiIiMjNTJgwAUlJSfj+++/Rq1cvZ1fHZrGxsQCAs2fPwtOTE7GJ3AFH6BIRWeD9999Hv379sH37dr3Hi4uL8cknnwAAhgwZ4oyqEREREREREZEb4E83REQWePbZZ3Hy5Em89NJLaN++PZo0aYLi4mKcOHECRUVF6N27NyZOnOjwel26dAmvvfYaAODDDz+En5+fw+tgSkZGBhYuXAgAyMvLc3JtiIiIiIiAxYsXY/369ejbty8effRRZ1fHIkePHrV6ViARKR8TukREFkhISMDatWvxww8/4MSJE0hPT4efnx+io6Px6KOP4oknnoCHh4fD65Wbm4vNmzcDAN59913ZJXRv3bqlqx8RERERkRwcPHgQABAWFqa4hO6VK1cYXxO5Ma6hS0RERERERERERKQQXEOXiIiIiIiIiIiISCGY0CUiIiIiIiIiIiJSCCZ0iYiIiIiIiIiIiBSCCV0iIiIiIiIiIiIihWBCl4iIiIiIiIiIiEghmNAlIiIiIiIiIiIiUggmdImIiIiIiIiIiIgUggldIiIiIiIiIiIiIoX4/8mBJCZWkK4CAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1500x1000 with 6 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "eval = \"width\"\n",
+    "fig, axes = plt.subplots(3, 2, figsize=(15, 10))\n",
+    "fig.suptitle(\"Influence of parameters on the width of the printed strand\", weight=\"bold\")\n",
+    "fig.tight_layout(pad=3.0)\n",
+    "for i, (param, unit) in enumerate(zip([\"temperature\", \"speed\", \"layer\", \"feeding_rate\", \"gap\", \"area\"], [' [°C]', ' [mm/s]', '', '', '[mm]', ' [mm²]'])):\n",
+    "    axes[i//2, i%2].plot(df[param], df[eval], 'o')\n",
+    "    if param == 'feeding_rate': param = 'feed rate'\n",
+    "    axes[i//2, i%2].title.set_text(f'{param[0].upper()}{param[1:]}')\n",
+    "    axes[i//2, i%2].set_xlabel(f\"{param}{unit}\")\n",
+    "    axes[i//2, i%2].set_ylabel(f\"{eval} [mm]\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Test of the models in the literature"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 31,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Results of the model proposed by Xu et al. (2022)\n",
+      "--------------------------------------------------\n",
+      "Linear Regression r^2 on test data : -2.795\n",
+      "Prediction: 0.06649036758114679\n",
+      "Real value: 0.3430693379119418\n",
+      "\n",
+      "Results of the model proposed by Hebda et al. (2019)\n",
+      "--------------------------------------------------\n",
+      "Linear Regression r^2 on test data : -5.525\n",
+      "Prediction: 0.12124355652982143\n",
+      "Real value: 0.3430693379119418\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.metrics import r2_score\n",
+    "\n",
+    "def xu(X, D=0.4, rn=1):\n",
+    "    t, s, f, l, g, w, a = X.T\n",
+    "    w = D*(1 - rn/D + np.sqrt((rn/D-1)**2 + np.pi*D*f/g * (rn/D - 0.5)**2))\n",
+    "    return w\n",
+    "\n",
+    "predxu = xu(X)\n",
+    "\n",
+    "r2 = r2_score(width, predxu)\n",
+    "print('Results of the model proposed by Xu et al. (2022)')\n",
+    "print('-'*50)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {predxu[0]}\\nReal value: {width[0][0]}\")\n",
+    "\n",
+    "def hebda(X, D=0.4, alpha=1.75):\n",
+    "    t, s, f, l, g, w, a = X.T\n",
+    "    w = alpha * D * np.sqrt(f)\n",
+    "    return w\n",
+    "\n",
+    "predhebda = hebda(X)\n",
+    "\n",
+    "r2 = r2_score(width, predhebda)\n",
+    "print('\\nResults of the model proposed by Hebda et al. (2019)')\n",
+    "print('-'*50)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {predhebda[0]}\\nReal value: {width[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Feature Engineering\n",
+    "\n",
+    "**Hypothesis**:\n",
+    "* As suggested by Comminal et al., the width is proportional to the square root of the feeding rate\n",
+    "* The layer should not matter, although the graph suggests differently\n",
+    "* Parameters with low coefficients can be removed from the model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 32,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.preprocessing import FunctionTransformer\n",
+    "\n",
+    "def feature_extraction(X:np.ndarray) -> np.ndarray:\n",
+    "    temperature, speed, feeding_rate, layer = X[:, 0], X[:, 1], X[:, 2], X[:, 3]\n",
+    "    sqrt_fr = np.sqrt(feeding_rate)\n",
+    "    cbrt_fr = np.cbrt(feeding_rate)\n",
+    "    fr2 = feeding_rate ** 2\n",
+    "    t_f = temperature * feeding_rate\n",
+    "    return np.column_stack([temperature, speed, cbrt_fr])\n",
+    "\n",
+    "FeatureExtraction = FunctionTransformer(feature_extraction)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 33,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Linear Regression r^2 on test data : 0.881\n",
+      "Prediction: 0.3506883578110451\n",
+      "Real value: 0.3430693379119418\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.linear_model import LinearRegression\n",
+    "from sklearn.preprocessing import PolynomialFeatures\n",
+    "from sklearn.pipeline import Pipeline\n",
+    "from sklearn.metrics import r2_score\n",
+    "\n",
+    "width_model = Pipeline([('transf', FeatureExtraction),\n",
+    "                        # ('poly', PolynomialFeatures(degree=3)),\n",
+    "                        ('linear', LinearRegression())])\n",
+    "\n",
+    "width_model = width_model.fit(X, width)\n",
+    "pred = width_model.predict(X)\n",
+    "r2 = r2_score(width, pred)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {pred[0][0]}\\nReal value: {width[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 34,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Coefficients:\n",
+      "temperature: 0.004062025031923957\n",
+      "speed: -0.0001331731552701792\n",
+      "cbrt_fr: 2.984109335460154\n",
+      "intercept: -1.2411217231463934\n"
+     ]
+    }
+   ],
+   "source": [
+    "def print_coefs_and_params_names(model, coef_names = ['temperature', 'speed', 'cbrt_fr']):\n",
+    "    linear_model = model.named_steps['linear']\n",
+    "    transformer = model.named_steps['transf']\n",
+    "    if hasattr(transformer, 'get_feature_names_out'):\n",
+    "        coef_names = transformer.get_feature_names_out(coef_names)\n",
+    "    coefficients = linear_model.coef_[0]\n",
+    "    \n",
+    "    print('Coefficients:')\n",
+    "    for coef_name, coef_value in zip(coef_names, coefficients):\n",
+    "        print(f'{coef_name}: {coef_value}')\n",
+    "    print(f'intercept: {linear_model.intercept_[0]}')\n",
+    "        \n",
+    "print_coefs_and_params_names(width_model)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 35,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAACAUAAAMQCAYAAABVX04VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xN9x/H8dfNXhIkQoIaMYJaoQQ1a5SaNWrGKFVt9dehVlstHbRGdaH2HjVqq6qqXXvPJMQOGSRkyLq/P9LcuhIrQ4j38/Hog3zP95zzOZ+c3p7e7+d8vwaj0WhEREREREREREREREREREREchyL7A5AREREREREREREREREREREsoaKAkRERERERERERERERERERHIoFQWIiIiIiIiIiIiIiIiIiIjkUCoKEBERERERERERERERERERyaFUFCAiIiIiIiIiIiIiIiIiIpJDqShAREREREREREREREREREQkh1JRgIiIiIiIiIiIiIiIiIiISA5lld0BiIiIiIiIiIiIiIjIs8VoNBIfH09SUlJ2hyIiIvJUsbCwwNraGoPB8ND7qChAREREREREREREREQei8TEREJDQ4mMjCQuLj67wxEREXkq2dhY4+zsjJubG5aWlg/sbzAajcbHEJeIiIiIiIiIiIiIiDzDEhMTuXDhAtHRMdjbO2JnZ4+FxYMHMkREROQ/SUmJxMbGEBMThYODPYULF35gYYCKAkREREREREREREREJMtdvXqVsLBwXF3zY2Njm93hiIiIPNXi4m4TFnYVV9e85M+f/759LR5TTCIiIiIiIiIiIiIi8owyGo1ERkZib++oggAREZFMYGNji52dI5GRkTxoHgAVBYiIiIiIiIiIiIiISJaKj48nLi4eOzv77A5FREQkx7C3tycuLp74+Pj79lNRgIiIiIiIiIiIiIiIZKmkpCQALCzuv+axiIiIPLyU/66m/Hf2nv0eRzAiIiIiIiIiIiIiIiIiIiLy+KkoQEREREREREREREREREREJIdSUYCIiIiIiIiIiIiIiIiIiEgOpaIAERERERERERERERERyfGMRmN2hyAiki2ssjsAERERERERERERERGRZ9mUKZOYNm3yI+2zbNlqPD09syiinOXmzZtMmTKJ0qW9eeWVFtkdTqYyGo3079+Pc+eCWLXq93v227BhPb/+upCAgNMkJiZSsGAhGjZsTNeu3bG1tU3VPywsjBkzpvDPPzsICQnB1dWNBg0a0rNnbxwdHc36Hj16mAkTfuLUqZM4OTnx4ou16dfvHZyccqU6bnR0NH/++Qd//PE7Fy6cJywsFEdHJ0qWLMXLLzeladPmWFpaZjwxQEJCAqtXr2Tjxg0EBPhz82YkuXI5U7RoUWrXrserr7bFzs4+U86VXS5cOE/79q0pUMCD5cvXZOhYCxbM5fvvx91ze7duPXj77XfN2k6fPsW0aZM5duwIN2/eokiRIrRu3ZY2bdpiMBhSHSMq6hZz5sxi06aNBAdfwdnZhRdfrEOfPm+SN2/eDMX/uA0b9jF79uxi7doNaV7rk0ZFASIiIiIiIiIiIiIiItmoRImSNGnS1KwtPDycPXt2YW9vT5069VLt4+DwdA9mPk7ffz+W1atXMmTIp9kdSqb74Yfv2Lt3N/nyud+zz4QJPzJ79gysrKyoVMkHW1tbDh8+yJQpk9ixYxs//zwZOzs7U//Q0BB69+5BcPAVvLxKULPmi5w4cYy5c2exc+d2Jk+ejqOjEwDnzgXx9tt9qVu3PkOGzOXatasMHz6Mc+fO8eOPE80GSw8ePMBnn33M1avBODk54eVVgjJlynLt2lX279/L3r27WbVqBd999xMODg4ZysvNmzd5552+nDp1EheX3JQpUxZHR0fCw8M4ffo0Bw7s59dfFzBhwmQ8PQtm6Fw5xalTJwGoVevFNAs6SpUqbfbzvn17eP/9/iQkJFCxYmVy5crF3r17+Pbbrzl69AjDhg036x8VFcVbb73BqVMnKVSoELVq1SYwMIDfflvCtm1bmDZtFu7u+bPuAjNRUlISu3btpFatF5+KggBQUYCIiIiIiIiIiIiIiEi2ql//JerXf8msbd++vezZswsXl9wMH/5VNkWWMyQl5bxlA2JjY/j221GsXbvqvv0CAvyZM2cmzs4uTJo0leLFvQCIiIigf/83OXbsKIsXL6Rbtx6mfUaPHkVw8BW6d+9Fv37vABAfH8/nn3/Cxo0b+OWXiXzwwUcALFnyKwkJCQwa9DGOjo4ULvwcfn49GTNmFKdPn6J0aW8ADh8+xNtv98VoTKJv37d47bXOZgP/QUFnGTZsKIcOHeTDD99lwoQpGRpsHTv2G06dOknz5i0ZNOhjrK2tTdtu3rzJt99+zYYN6xk6dCAzZ85L93lyktOnT2EwGBgxYmSq2SDuFhcXx2effUxiYiJjxnxPzZq1gOSCkrff7svatauoU6cu9eo1MO0zZcokTp06SbNmzRk6dBhWVlYkJSXxww/fsXDhPEaPHsXo0d9l6TVmlmPHjhARcYMaNWpldygPzSK7AxARERERERERERERERGRh7Nly99069aJtWtXUbBgofv23b17F0ajkYYNG5sKAgBcXFzo2rU7AAcO7De1X7hwni1b/iZ//gL06fOmqd3a2pohQz7B0dGJFSt+Izo6GoBLly6SO3ces0HkggULmrYBxMTEMGzYUBITExg4cAg9e/ZONRNA0aLF+O67n3B2duHAgf1s3rwpPakBICEhnj///ANra2sGDBhsVhAAkCtXLj755HPy5nXl5MkTHD9+LN3nyiliY2M5dy6I554r8sCCAID169cSGhpKgwYNTQUBAG5u+Rg4cAgACxf+V2wRFXWLFSuWYWdnx3vvDcDKKvm9dQsLC/r3f4+CBQuxdetmLl68kMlXljV27NiOpaUl1avXyO5QHpqKAkREcqBdu3ZRunRp0z/PsujoaL777jsaNWrE888/T61atRg0aBCXLl3K7tBEREREJJvoeTltGzduNOXkxx9/zO5wREREMsWqsyuovcQXj2mu1F7iy6qzK7I7pEx18uRxhg4dSNOmL1G7dnVefbUF48eP5caN66n6+vr60KNHFyIjIxk79ltatGhC3bo16Nr1Nf74I3kt+qtXgxk2bCiNG9enceN69O/fD3//02bHmTJlEr6+Pvz1159s3LiBbt06UrduDVq3bsbo0SMJCwtNM9bQ0BDGjPmGNm2aU7t2dZo2bcgnnwwmMDAgVd9+/frg6+tDYGAAb7/9BnXq+NK8eWP+/PMPIHmt+JUrl/POO31p0qQBtWpVo3Hjerz11hts2LA+1XWnvE0/cuQX+Pr6sHr1SrPz7N69K1UMq1evxNfXh88++9jUtm/fXnx9ffjuu9H8+utCmjZtSN26NenbtxdJSUkAJCYmsnz5Unr18qNBgxepX78WvXt3Z/XqlRiNqWcsaN36FbOYHuTmzZsMHPgBly9f4rXXOjFmzPj79rewSH7b/tq1q6m2Xb+efJ84Ozub2nbu3IHRaKRmzRdNA7cpnJxyUaVKVW7fjmXv3j0AuLu7ExFxg7i4OFO/kJCQf7clTwX/99/J68eXKuVNq1av3jNWV1dXunTpRtWq1YiNjb3vdd1PZORNEhIS7jvTgK2tLZ07d6VFi9Zm1/k47m949PvEaDTy229L8PPrTL16NWnR4mV+/vkHbt++nebxU66jX78+90uVSUCAP4mJiZQuXeah+m/fvg0gzaVNKleugrOzM4cOHeTmzZsA7N+/j5iYGCpV8jG73wAsLS158cXaZscFGDHiM9PnwJo1q/Dz60TdujVo3rwxY8Z8Q0xMDImJicyZM5N27VpRt25NOnVqx9Kli81yePnyZXx9fRgy5COuXbvKiBHDaNr0JerVq8nrr/uxa9dOAM6cCeTDD9/lpZfq0LRpQwYN+pDLly+nef07dmyjXLnyZteyY8d23nvvbVq0aELt2tVp1aoZI0YM4+zZMw+V06ym5QNERCTHiouLo0ePHhw6dMjUFhoayvLly9myZQsLFiygaNGi2RegiIiIiMgTIiwsjFGjRmV3GCIiIplq1dkVdN/QBQMGjBg5Hn6M7hu6MKvRPFoUa5Xd4WXYunVr+PLL4SQlJeLtXYYCBTzw9z/FwoXz+Pvvv5gwYQqenp5m+0RFRdGnTw9CQkKoUqUq16+H/7v291Bu3LjBrFnTsbCwoFKlygQFnWXPnl307fs6Cxcuxd3dfM36tWtXs23bFgoVKkzNmi9y6tRJli5dzPbtW5kwYarZuf39T/Puu29x/Xq4qX9ISAh//vkHW7duZuTIMWZvG6cYMuQjoqOjqFGjFidPnsDbuwxGo5EhQz5i69bNODs7U65ceWxsbAgKOsv+/XvZv38v4eHhvPZaJwCaNGnK0aNHuHTpIs8/X56CBQtRqND9365/kJ07d3Dhwnl8fKpgMBjIn78AFhYW/06j/yHbt2/FycmJ8uUrYGVlxf79+/jyy8/Zv39fqnXWH5WFhYHGjZvSs+frFCtW/J6DlimqV6+BwWBg27YtTJ48kbZt22NnZ8/OnduZMmUiNjY2tG/f0dT/7NlAALy8vNI8XrFixdiy5W8CA/2pU6cuzZq1YOXK5Uya9DNvvfUOYWFhLFgwl9KlvfH2Th5gTinmaNSo8QOXBOjevRfdu/d66HykJU+ePLi5uREaGspnn33M//73AZ6eBVP1S5kpIS1ZeX+n5z4ZMWIY69atwcHBgRdeqE5sbCzz589l27YtGcpVilOnTgLg7JyLUaO+ZPfuXYSGhuDh4UmTJk3p0sUPW1tbU/+UgW4vrxKpjmVhYUGRIkU5cuQwZ84EUrFipTv63+u+Kg6QZhHFhAk/sn37VsqXr0DVqtU4cGA/S5YsIiTkGra2dvz990YqVKiEh4cn+/btYfTokSQkJJg+A1JcvRpMjx5dSUpKpGLFyly6dJFjx47ywQfvMmjQx3z33WhcXV2pWvUFTp48webNmzhx4ji//roMOzt703HCwkI5ffoUffu+ZWpbt241I0Z8hpWVFRUrVub553Nx5kwga9eu5u+//2LKlJlp5upxUlGAiIjkWNOmTTMVBLi5ufHyyy+zZ88eTp06RXh4OMOHD2fGjBnZHKWIiIiISPY6f/48/fr14/z589kdioiISKb6dt9IU0EAgBEjBgyM3jfqqS8KOHcuiJEjv8DW1pYxY8bj41MFgKSkJCZPnsjMmdMYPvwTfvllutl+Fy6cp1ix4ixZsoK8efMCMG7caH79dQHjxn1LrVq1+eqrb7CzsyMhIYG3336DQ4cOsmHD73Tp4md2rG3bttCu3Wu8//4ALC0tSUiI56uvRrBu3RrGjv2GsWO/B5Knch8y5COuXw/nvfc+5LXXOpsGhrdu3czQoQP5/POPWbToN/LkyWN2jtu3bzNv3mJcXFxISkrCwsKCTZs2snXrZsqWfZ6ffppkNg397NkzmDDhRxYvXmgaEBw+/CtGjPiMS5cu0qJFa1q1apPh/J8/f4533vmfaVA5ZZaAGTOmsn37VqpWfYEvvxxF7tzJ1xMWFsb77/dn7dpVVKxYySyGn36aREJCAm5ubg91bkdHJ0aM+OqhYy1WrDhDh37KuHGjmT59CtOnTzFtK17ci08++ZyyZcuZ2lLe8nd1TTseV9d8AISHhwNQoUJFRoz4mp9++p5FixYAUL26LwMHDjG9gX/uXBAA5cqVf+i4M8JgMPDWW+8yYsQwNm/exObNmyhVqjQ+PlWpXNmHSpV8cHFxue8xsvL+ftT75K+/NrJu3RoKFSrEhAlTTDMwnDx5nP79+6UZf/v2r9GoURPs7OweKmcpRQFLlvxKnjx5KF++Ivny5ePkyZNMnjyRHTu28eOPk7C3Tx4cf/B9ktweHh52V/98D9X/Tjt2bOPbb7+jTp26AJw8eYKePbuyefMmnJycmDlznmlpjGXLlvDtt1+zYsWyVEUBx48fo3LlKowd+z0ODg4YjUYGDx7A5s2b+PrrEbRu/SoffTQES0tLoqOj8fPrxMWLF9ixYzsNGjQ0HWfnzu2m2TRSTJ06GQsLS2bPXmAqcDAajYwfP4ZFixYwb96cDBcEZZSWDxARkRzJaDSycOFC088TJ07k008/Zf78+eTOnRuAHTt2cO7cuWyKUEREREQke926dYvJkyfTqlUrAgLSntZURETkaRYQ4W8qCEhhxIh/xOl77PH0WLhwPnFxcfTu3ddUEADJb+j27fsWJUqU5NChgxw9ejjVvn369DMVBEDym/Qp/ve/D02DiFZWVtSunTwIl9Y630WKFDUNmCb3t2bQoI/JnTs327dvJTj4CgCbNv3FxYsXePHFOnTs2MXsTfHatevSunVbIiMjWbVqeapzNGnS1DR4a2GRPKSVkJBA7dp1efvtd1OtS//qq+0AuHLl/m/PZ5SlpSVt23Yw/WxhYUF8fDyLFs3H2tqazz//0jTQC8nT4g8d+ikA8+fPMTtWoUKFKVq0GE5OubIs3ooVK1O9eg1sbe2oXLkKvr41yJUrF2fPnmHhwnlmU//HxsYA3HMwOeVt8ZiYaFNbw4aNWb58DevW/cmmTdsYN+4HChTwMG0PDU2ecv/O+y6rNWvWnFGjxpA/fwEATp9OnkVj0KAPadr0Jfr27cWmTRvvuX9W3d/puU+WLVsMwLvvfmgqCADw9i5Lz55pLw+QO3ceihYtZvZ7uJ/Tp5OLAlq0aMWKFev49ttx/PLLdBYsWEzJkqU4evQIP//8g6n/w98nMQ/Z3+7f/tGpttWs+aKpIADA27sMRYoUBaBt2w6mggCA+vVfAtL+zAL43//eN31uGAwGGjVqYoq3f//3TL9vBwcHqlf3TfNYO3ZsJ1++fJQq9d9SdKGhoVhZWeHm9l/Rg8FgoHv31/nww4G0aNEyzXgeJxUFiIiImW3bttGnTx9q1KhB2bJlqVChAk2aNOHrr78mMjLS1K9jx46m9UanT5+e6jizZs0ybe/bt6/ZtmPHjvHuu+/i6+vL888/z0svvcTnn39OcHBwquN069bNdJwjR47w0UcfUalSJapWrcro0aPveR0BAQGm4xUsWJAKFSoA4OTkRP369c2uV0RERETkYeWU52WAH374gbFjxxIdHY2dnR3PPfdcOrMiIiLyZCrhUhID5lOVGzBQMnepbIoo8+zfvxeAKlWqptpmMBioXr3Gv/32pdr+/PPmb2unvL2c1vNAykD17dtx3K1hw0amAbQUdnZ2pnPv27f3gbEC1KhR06zfnUqWTP27atSoCaNHf2d2vNjYWE6dOsnvv68FktdrT0xMTPN8maFQocKmN6ZTnDp1glu3blGkSFGzgcEU3t5lyJMnL+fOBd1zXfqscOzYUXr27MaZM4HMmbOQiROnMH78zyxZsoJq1arzxx+/M3LkF6b+FhbJv9MHTfOflJR63XtnZ2dsbGxStafMGJCVv5O01KvXgGXLVvHjjxPp0qUbZcqUxdLSkqSkJA4dOsiQIR8xfPinppke7pRV9/ej3ifJsR7A0tKSatWqp+pft269h8zG/U2aNJX58xczePAnZr9DT8+CfPrpcAwGA6tWLef27dvAf0U6D75Pku7qf/840rqv7v7Mgv8+t+7+jMiVywnArNAlhY2NDaVKead5HA8PTxwdncy2/ff5d9vUlpCQwO7d/+DrW9Osb+XKlbl9O5YePbowdeovHDt2lKSkJPLmzUv79h2pXLkK2U3LB4iIiMkff/zB//73P7OHoMTERIKCgggKCmLbtm0sXboUe3t72rZty4EDBwBYs2YNvXqZr/O0bt0609/btPlvOqzVq1czaNAgEhISTG0XL15kwYIFrFu3jqlTp1K+fNrTSH3yySecPHnS9HPRokXveS3+/v737FesWDHT3wMDA+95DBERERGRO+Wk52VInl0LoGTJkowbN47p06drCQEREclRBlYZQvcNXUxLCKT8OdBnSHaHlmEpxYLdu3e+b7+rV1MXFTo7O9/VkjxKlyvX3e33H/ArVCjtgsKUN7NDQ0PMYv3++3F8//24+8R69SFiTRYVdYvly5exc+cOzp07S2hoKEaj0SzelGedrJBWXCnXGRDgj6+vz333v3r16j2nXc9s48ePISrqFqNHf2dW9OHikpvPP/+Kdu1asX79Ot54ox8eHp6mYoc7B0LvlNLu4GCf5va0uLq6cevWLW7cuJ6BK0kfS0tLXnihOi+8kDygHhV1i3379vLbb0vZuXM769atoVy58rRr18Fsv6y6vx/1PrGwsCQ+Pp48efKk+Za9h4fnfY/xsOzs7M3euL9TqVKlcXfPz9WrwZw9G4i3d1kcHByIjIzk9u3baRaC/HefJL+Vb2/vYNaeun/sv/1T31fOzmkt9WC4x7Z7f2Y5OjqZihMefJy0P/8OHz7ErVu3qFHjRbP2oUOHMXDgB5w8eYKpU39h6tRfcHZ2oWbNWrRo0YoqVV64Z1yPi4oCREQESJ62aMSIEaYvOF988UVKlCjBlStX+PPPP0lMTCQwMJAtW7bQpEkTmjVrxtdff010dDRHjx7lwoULFC5cGIArV65w8OBBAFxcXGjQoAEAZ8+eZejQoaYvOCtUqED58uU5ePAgx44d48aNG7z//vusWbPGNL3QnU6ePEnZsmXx8fFh9+7dNG7c+J7Xk7JGUUoMd7rzof3OfiIiIiIi95LTnpcBypQpw48//kjDhg3T+HJMRETk6deiWCtmNZrH6H2j8I84TUmXUgysMoTmxbJ/GueMSkpKfuO6UaMm9/3veFpv2qe8tZ1Rd79FnSJlMD5le0qsVapUTfPN6BQpb+zeyWBIfW1nzgTy9tt9uX49nNy5c1O27PM0avQyJUuWxMenKq1aNXvka0lLWm+P3y+ulP4FChSgYsXK9z323cseZJXY2FiOHj2Cra0dlSqljilPnjyUKVOWvXt34+/vj4eHJ/nyuQPJ69unJSzs/mvJp8XbuwznzgVx9OiRBw6OXr58idWrV1KlStV0D6RevRrM5cuXeO65IqnidHR0ok6detSpU4/x48eycOE81q9fm6ooIKvu70e9Tx70Zr2FhcU9Y81Mrq6uXL0aTGxs8uB9vnzuREZGEhYWSq5cqZe+SJkNIyX/D76vUvqnzmFmfWZlxnF27NiGlZUV1aubz9rg7p6fGTPmcuDAfrZu3cyePbsIDAzg99/X8vvva+ncuRvvvvt+hs+fESoKEBERACIiImjVqhUnT56kYMGCjBgxwrRt6NChLF26FIALF5LXz3F0dKRp06am9jVr1vDmm28C8Pvvv5sejpo1a2aqFJw9e7apErB58+aMGTMGg8FAUlISb731Fps2beLChQusX7+eli1T/89Z/vz5WbBgwT3XHbpTylpFQKpKRWtra9Pfo6NTr1EkIiIiInK3nPa8DPDqq6+mJxUiIiJPlRbFWtGiWKvsDiPTubq6ERx8hTfe6EfhwtmzBFBIyLU021PWWk95ozplkK9x46a0atUmzX0exZgx33D9ejhdu3anX793zAZE71zO6WFYWCSPuKYM7N7p5s2bj3SslMFPd/cCDB/+1SPtm1Wiom5hNBqxtLS4Z/GIlVVy/hIS4gHw8kp+W/zs2TNp9j9z5sy//Uo+dBx16zZg/fp1bNq0ET+/nvedgWLNmlVMnz6FzZs3MW/erw99jjvNmDGV5cuX8fbb79KtW4979mvZsjULF85L877Jqvv7Ue8To9GIra0tERERREdHpyooCQsLy/CyDCEhIUyePJH4+Dg+//zLNPtcunTp37jzA1C8uBeBgQGcPXuGokWLmfVNSkri3LkgDAaDafaBh7+vSmToWrLazp3bqVChUqqlBiB5ZgEfnyr4+CQvFRAeHs7q1SuZNOknFiyYS4cOHSlQwONxh2yiMnAREQHAzc2Njz76iGnTpjFixAiMRiNBQUEsWbKEEydOmPqlVAICtGvXzvT3NWvWmP5+51Sod37RuHPnTtPfO3XqZHr4s7CwoHXr1qZtO3bsSDPGl1566aG/4MzK6cFERERE5NmT056XRURE5OmWMui0Y8f2NLcPGzaUnj27smXL5iyLYfv2banaYmJi2LXrH7P1z318fP6NNXV/gEWLFtClSwemT5/yUOc9evQwAD169Er1hvSuXf89T935/eC9xqBTpjS/fj081bZjx448VDwpypYth62tHf7+p0xTy9/p2rVrtG/fmnfeefOxvaiUJ09enJ1diI6O5sCBfam237p1k+PHjwP/zSrh61sTg8HA9u1bUw0237p1k3379mJnZ2f6vT6M2rXr8NxzRTh58gSrVq24Z7/Lly+xZElyIcDdb+4/ivLlKwKwcuVys+fzu507FwSQ5rT5WXV/P+p9YjAYqFLlBZKSktiy5e9U/Xfs2HrP63tYjo6OrF+f/Eb76dOnUm3fvn0rERE3eO65Inh6FgSgRo1aAGnGtH//XiIjIylfvqJpFoFKlSpjb2/P/v37uHXLvOAmMTGRbdu2YDAYqFGjZoavJ6tcvRpMYGBAqhjPnj1Dly4deO+9d8za8+bNi59fD0qUKInRaLxnocnjoqIAERExSUhIYOnSpfTt25dq1arRpEkTPv74Y9ODIZg/TPv4+FC8eHEATp8+TWBgIJcvX+bQoUMAFC9enAoVKpj6X7lyxfT3Ll26ULp0adM///vf/0zbAgMD04yvYMGCD30tKWtfQfJUr3e68+fHNVWXiIiIiDz9ctLzsoiIiDzdOnToiKWlJZMnT2TPnl1m25YtW8Iff/zOmTOBlCv3fJbFsH//Xn79daHp5/j4eEaO/ILIyAhefrkZLi65AWjYsDFubm5s3ryJ+fPnmj0vHTt2lClTJhIYGECJEg/35nnu3MnTsG/dal7wcODAPsaN+9b0c1zcf2uX29gkL71069Yts31SBsKXLVtCXFycqf2vv/7k77//eqh4Utjb29O6dRtiYmL4/PNPCA//r9AgOjqaL774jAsXzuPo6Gj2neTFixcICjqbaqA0MyQXlyYXoY4a9RVXrlw2bYuKiuKLLz4nMjKCmjVfNM044eHhyYsv1uHy5Uv89NP3pt9XfHw8o0Z9RXR0FK1bt8XJKfWU8fdibW3NwIFDsLS05JtvvmL27JnExsaY9fH3P8377/cnIuIG5ctXoEWL1qZtCQnxBAWdJSjorGlGg/tp0uRlihQpyoUL53n//XcICjqbqs/BgwcYO/YbLCws6Ny5a6rtWXV/p+c+ee21zgD8+ON4szftg4LOMnHiz2nm4MaN6wQFnTXNbHA/Dg4ONGnSFICRI7/g+vXrpm3nz59n9OhRAPTq1cfUXq9eA/Lly8cff/zOpk0bTe1hYaGMGfMNAF27dje129nZ06JFa6Kjoxg16ivTd/RGo5Gffvqey5cvUadOPZ57rsgD480uKYUfNWu+aNZeuPBzhIaGsmvXTv7660+zbSdPHico6Cz29vYUK1b8scWaFi0fICIiQPIbTT169ODAgQNA8heKTZs2pXLlyhw4cIBFixaluV+7du349tvkh+01a9bg6Oho2tamjfl0SXdWlubJk+eeax3da20fJ6fUU/LcS758/609dPf0T3f+fGc/EREREZF7yWnPyyIiIvJ08/Yuy3vvfci4caPp378fpUp54+npyfnz5zhzJhBLS0s+++xLXF1dsywGd/f8jBv3LatXr6RQoUIcO3aUq1eDKVWqtNna2XZ29nz99Wg++KA/P/wwjiVLFlGiREkiIm5w+PAhjEYjHTt2pk6deg913k6duvD99+MYPnwYv/22DDc3Ny5evMDp06dwccmNq6sbYWGhhIWFmab4ThnwnjFjCkeOHKJZs+bUqVOPVq3asGTJIo4cOUz79q0pW7Ycly5d4vTpkzRr1oK1a1c9Uk769evP6dOn2Lt3D+3ataJs2bLY2dlz+PAhIiMjeO65Igwa9LHZPu+88ybBwVf45JPPad489RJRGdW7d1+OHz/G3r276dChDZUrV8HKyorjx49y48YNihQpyscff2a2z4ABgzh58gQLFsxlx45teHmV4PjxowQHB+PtXYY33uj3yHFUrVqNUaPG8OmnQ5gw4Qdmz56Ot3cZXFxyc+nSRU6eTJ59q1KlynzzzVizZ95r10Lo2LEtAMuWrcbT0/O+57Kysmb8+J947713OHBgPx07tsXLqwSFChUGkgfTz50LwtramkGDPjbNLHCnrLy/H/U+qV7dFz+/nsyePYPu3TtTpcoLAOzbt4fSpb0JDw9LFf/ixYuYNm0ylStXYeLEB8/C0b//+5w4cZwTJ47Tvn0rKlSoRFJSIvv37yMuLo6OHbvw8svNTP0dHBwYOnQYH330PkOHDqRChYrkzp2HvXv3EBV1izZt2lKnTl2zc/Tt2499+/bw559/cPToEcqWLUdgYADnzgXh4eHJRx8NfmCc2WnHju0UKFAg1RIHVlZWDB78MUOHDmTo0IGULu1NwYKFuH79OocPHyQxMZGBA4c+UiFNVlBRgIiIALBs2TLTF5y1a9dm8uTJpnWm/P3977lf69at+e6774iPj2ft2rWmLzktLCxo1cp8vbb8+fNz8eJFACZOnEjlypVN2xITE+/5pWcKa2vrh76elDeyILma8U53/lyixJO9RpGIiIiIPBly2vOyiIiIPP3at+9IqVLezJ8/h8OHD3L2bCBubvlo2LAx3br1oHRp7yw9f7NmzfH0LMj8+XPYtm0L+fMX4PXX36BLF79Us3NWqFCR2bMXMmfOTP75Zwc7d27H2dmFKlWq0r59R+rWrf/Q5+3UqSuurm4sXDiPwMAATp48Tv78BWjfviPduvVgzpyZLF68kK1bt9ClSzcAXn21HQEBp9my5W927txBsWLFqVOnHgUKeDBlykwmT57I3r172LFjO15eXnz55ShKlCj5yEUBdnZ2/PDDRJYtW8L69Ws5duwoBoMBDw9POnToyGuvdTZNp/642NjYMH78TyxfvpS1a9dw5MghEhMT8fQsyKuvtqdLl26p1kfPn78A06fPYcqUSezYsZVt27ZQoIAH3bv3ws+vR7pnX61duy4LFixhyZJf2bNnF8ePH+f27Vhy5cpF9eq+NG3anMaNXzY9Z2eEh4cn8+YtYvXqlWzdupmAgAD++WcnFhYG3N3z067da7Rv/xpFihRNc/+svL/Tc5+89VZ/Spf2ZuHCeRw6dABbW1uaNWvOO+/8j4YNzQff08PZ2ZkpU2Yyb95s/vzzD/bu3Y2NjQ3PP1+BDh06Uq9eg1T71KhRi8mTZzBt2i8cPpx8XxUu/Bxt23ZIs8DF0dGJSZOmMWPGVP7660+2bdtCvnzutG3bnl69+uDq6pbh68gq8fHx7N2726ww4k7167/E+PE/s3DhPE6cOEZAQADOzrnw9a1Jp05dqFq12mOOODWDUYsui4jkOLt27cLPz8/086lTqdcButuwYcNMbzc1b96csWPHAnDz5k3at2/P2bPJUyy99dZbZlOXArzzzjts2LDBrO3FF19k2rRpZm1Dhgxh2bJlADRr1oyxY8eaHvD69+/Pvn37KFGiBB07dqRZs+T/uHbr1o3du3cDMHLkSLM1V+8nKSmJWrVqmaZfWrx4MRUqVCA6OppGjRoRGhoKwJ9//knhwoUf6pgiIiIikjPoeTltgwcP5rfffjPF3L9//3QfS0RE5G6xsbEEBp7Bza2AaSp3eTpNmTKJadMm06PH67z55tvZHY48IyIibtCkSQN+/32jaQmJrKD7W542cXG3CQ0NxsurOHZ2dvfsp5kCRESeAT169LjnNgcHByZMmIC7u7upbfXq1cTExJAvXz42btxISEiIaVtsbGyqY7Rr1y7Vl5ytW7dO1a979+6sWLGCxMRE1q5dy9mzZ6latSoBAQHs3LkTgOvXr/Ppp58+4hWmZmFhQYcOHZg0aRKQ/OXsyy+/zJ49e0wFAbVq1VJBgIiIiIg8k8/LIiIiIiJPkx07tpM/fwFcXHJndygiTyUVBYiIPANSvkBMS8o0RO3atWP27NlEREQAsHHjRrM+N2/eBODcuXOpjlG7dm3c3d25du0akLyWaaNGjVL18/b25pNPPmHEiBEYjUZOnDjBiRMnTNsNBgPDhg2jZMmS6bjK1Pr27cs///zDwYMHCQkJYc6cOaZtefPmZdiwYZlyHhERERF5uj2rz8siIiIiIk+DyMhIfvxxPIMHf4LBYMjucESeShlflENERHKEAgUKsGTJEl5++WXy5cuHtbU1hQoVokePHqxZswYbGxsAtm/fTlRUlNm+lpaWVKhQwfTzyy+/fM9pajp37syCBQvMzlOgQAEaNGjA3Llz6dSpU6Zdk4ODA7NmzeKdd96haNGiWFtb4+rqSqtWrVi8eDFFixbNtHOJiIiISM6WE5+XRURERESeBs7OzixZsoI6depmdygiTy2D0Wg0ZncQIiLydAsKCqJFixbExcUBMGfOHKpVq5bNUYmIiIiIPBn0vCwiIpK8xE5g4Bnc3ApgY2Ob3eGIiIjkCHFxtwkNDcbLq/g9i89ByweIiEg6Xbp0iblz55KUlMSqVatMX3CWKlVKX3CKiIiIyDNPz8siIiIiIiLypFBRgIiIpIuFhQXTp083a7O2tuaTTz7JpohERERERJ4cel4WERERERGRJ4VFdgcgIiJPJ3d3d4oUKYKtrS25c+emRo0aTJs2jerVq2d3aCIiIiIi2U7PyyIiIiIiIvKkMBiNRmN2ByEiIiIiIiIiIiIiIjlXbGwsgYFncHMrgI2NbXaHIyIikiPExd0mNDQYL6/i2NnZ3bOfZgoQERERERERERERERERERHJoVQUICIiIiIiIiIiIiIiIiIikkNZZXcATzuj0UhS0qOvwGBhYUjXfpJM+csY5S/9lLuMUf4yRvlLP+UuY5S/jElP/iwsDBgMhiyK6PHS83L2UP7ST7nLGOUvY5S/jFH+0k+5yxjlL2Oe9edlERERkcdBRQEZlJRkJDw86pH2sbKyIE8eRyIjo0lISMqiyHIu5S9jlL/0U+4yRvnLGOUv/ZS7jFH+Mia9+cub1xFLy5zxJaeelx8/5S/9lLuMUf4yRvnLGOUv/ZS7jFH+MkbPyyIiIiKPh5YPEBERERERERERERERERERyaGemqKA3bt34+3tzeLFizN0nL1791KmTBk6deqUSZGJiIiIiIiIiIiIiIiIiIg8mZ6KooAzZ87wwQcfYDRmbG2uW7duMXDgQJKSNJWXiIiIiIiIiIiIiIjIg6xY8Ru+vj6MGPFZho7j6+uDr68PCQkJmRSZiIg8rCe+KGDnzp107dqVkJCQDB/ryy+/5NKlS5kQlYiIiIiIiIiIiIiIiIiIyJPviS0KCAsL4/PPP6dXr15ERETg6emZoeOtX7+e3377jRdeeCGTIhQREREREREREREREREREXmyPbFFAZMmTWLBggU899xzzJo1i+rVq6f7WNeuXWPYsGGUK1eOfv36ZWKUIiIiIiIiIiIiIiIiIiIiTy6r7A7gXgoXLsxnn31G+/btsba2ZsmSJek6jtFoZMiQIURHR/PNN98QHh6eyZGKiIiIiIiIiIiIiIhk3JQpk5g2bTJjxowHYNasGfj7n8LOzg5f35r8738fkidPHlauXM6iRfO5ePEi7u7uNG36Cn5+PbCysjYd6+rVYGbNmsGOHdsIDQ3BycmJihUr061bd55/vkKqc9+6dZM5c2ayceMGQkJC8PQsSMeOXe4b7/nz55k5cxp79uzi+vVw8uTJi69vTXr16o2HR8ZmgBYRkczzxBYF+Pn5Zcpx5s6dy7Zt2xg0aBAlS5Zk165dmXLcO1lZPdqEC5aWFmZ/yqNR/jJG+Us/5S5jlL+MUf7ST7nLGOUvY5S/ZHpefryUv/RT7jJG+csY5S9jlL/0U+4yRvnLGOVP7mY0GolOiM7uMB6Jg5UDBoMh04/7229L2b59K6VKlaZaNV8OHz7I77+vJSjoLC+8UJ1582ZTvnwFqlatyu7du5g8eSKRkZG8996HABw7dpT33nubmzdvUqhQYerUqce1a1fZvHkTW7duZuDAIbRu3dZ0vsjISN56qw8BAf7ky+dOrVq1uXLlMiNHfkGxYsXTjHHPnl0MHPgBMTExeHmV4Pnny3P+/DlWrVrO5s2b+OGHn/H2LpvpuRERkUf3xBYFZIbAwEDGjBnDCy+8QI8ePbLkHBYWBvLkcUzXvs7O9pkczbNF+csY5S/9lLuMUf4yRvlLP+UuY5S/jHmW86fn5eyj/KWfcpcxyl/GKH8Zo/yln3KXMcpfxih/AskFAU1XNmL31X+yO5RHUj1/Dda2/CPTCwO2b9/Khx8OpH37jkDyMskdOrTm5MkT+Puf5scfJ1GlSlUAdu7czvvv92fVqhW8++77xMfHM3jwAG7evMkbb7xFz56vm+LbsWM7Q4YMYPTobyhTphylS3sDMHnyRAIC/KlTpx5ffDESW1tbAFauXM7XX49IFV9ExA0++WQIcXFxfPXVN7z0UiPTtuXLlzJq1Fd8/PFgFi5cirW1dar9RUTk8cqxRQHx8fF89NFHWFpaMmrUKCwssqbaNCnJSGTko1UuWlpa4OxsT2RkDImJSVkSV06m/GWM8pd+yl3GKH8Zo/yln3KXMcpfxqQ3f87O9jnmbSk9Lz9+yl/6KXcZo/xljPKXMcpf+il3GaP8ZYyel+VuBjL/jfunlZdXCVNBAIC7uzuVK1dh587tvPRSY1NBAICvb03s7e2JirrF9evh7Nr1DyEh1/DxqUqvXr3NjluzZi26devB1Km/sGDBXD7//Evi4uJYs2Yl1tbWDB36qakgAKBly9Zs2fI327ZtMTvOihXLiYi4Qfv2Hc0KAgBat27Ltm1b2bZtC3///ReNGjXJzNSIiEg65NiigB9//JFjx47x5ZdfUqhQoSw9V0JC+h74ExOT0r2vKH8Zpfyln3KXMcpfxih/6afcZYzylzHPev70vJw9lL/0U+4yRvnLGOUvY5S/9FPuMkb5yxjlTwAMBgNrW/6h5QP+Va5c+VRtefLkAaBkyZJm7QaDAScnJ2JiYrh9O44DB/YB0KDBS2keu1GjJkyd+gv79yf3O3HiODExMZQvX5HcufOk6l+3br1URQH79+8BMCtOuJOvb022bdvC/v17VRQgIvIEyJFFAaGhoUyZMgUbGxt27drFrl27TNvCwsIACAoKYsCAAeTNm5ehQ4dmV6giIiIiIiIiIiIiIkLy4LajdfqWH8tpnJ2d02g1/LvN5Z7bAEJCQgDw8PBM89iengWB/8ZLQkOT+7u7u9+3/52Cg4MBGDx4QJr7pLh69ep9t4uIyOORI4sCYmNjSUpKIi4ujlWrVqXZJzw8nFWrVlGwYEEVBYiIiIiIiIiIiIiIyBPDyiojwzfG+25NTEwEwNo6+RwPmunA0tIyVVtSUvLsHrVq1cbJyeme+xYrVvy+xxYRkccjRxYFFCpUiFOnTqW5bdeuXfj5+eHj48OCBQsec2QiIiIiIiIiIiIiIiJZx80tHwBXrlxOc/vly5cAyJvXFYB8+VL6X0mzf8rMA3dydXXj/PlzvPZaZ6pVq57hmEVEJGtZZHcAmSE8PJzAwEAuX077P3AiIiIiIiIiIiIiIiLPgkqVfAD466+NaW7fuPEPAHx8qgBQpkxZcuXKxalTJwgOTl0YsGPHtlRtPj4+99wG8OOP4/Hz68Ty5cse/QJERCTT5YiigHnz5tGsWTMGDRqU3aGIiIiIiIiIiIiIiIhkm4YNG5EvXz7279/LjBlTMRr/W05g587tzJ07G0tLS9q0aQeAlZU1bdt2IDExkeHDPyUq6pap/19/bWT9+nWpztGqVVvs7e1ZvHgRGzasN9u2detmFi2aj7//acqWLZdFVykiIo8iRy4fICIiIiIiIiIiIiIi8iyys7Pnq6++5YMP+vPLLxNYu3Y1pUqV5tq1qxw5chhLS0vef38A5co9b9qnZ8/eHD58iP3799K2bUsqVfIhPDycw4cPUr58BY4cOWx2Dnd3d4YNG8GwYUP59NMhTJs2mSJFinLt2lVOnDgOwPvvD6BUqdKP9dpFRCRtT01RwKhRoxg1alSa2/r370///v0f6jjVq1fn1KlTmRmaiIiIiIiIiIiIiIjIE6NChYrMnr2AWbOm888/O9my5W9y585Nw4aN6dSpq1lBAICtrS3jx//EwoXzWLNmFTt3bsfNLR9vv/0uZcqU5Z133kx1jvr1X2LGjLnMnTuLffv2sH37VvLmdaVWrdp07tyNKlWqPq7LFRGRBzAY75w3Rh5ZYmIS4eFRj7SPlZUFefI4cv16FAkJSVkUWc6l/GWM8pd+yl3GKH8Zo/yln3KXMcpfxqQ3f3nzOmJpmSNW+tLzcjZQ/tJPucsY5S9jlL+MUf7ST7nLGOUvY/S8/GyJjY0lMPAMbm4FsLGxze5wREREcoS4uNuEhgbj5VUcOzu7e/bTk5OIiIiIiIiIiIiIiIiIiEgOpaIAERERERERERERERERERGRHEpFASIiIiIiIiIiIiIiIiIiIjmUigJERERERERERERERERERERyKBUFiIiIiIiIiIiIiIiIiIiI5FAqChAREREREREREREREREREcmhVBQgIiIiIiIiIiIiIiIiIiKSQ6koQEREREQkDSGrV7KnXk22FM7Hnno1CVm9MrtDEhEREREREREREXlkKgoQEREREblLyOqVHOvVlagTx0i6fZuoE8c41qurCgNERERERERERETkqaOiABERERGRuwSNGQUGAxiNyQ1GIxgMBI0dlb2BiYiIiIiIiIiIiDwiFQWIiIiIiNwlJtD/v4KAFEYjMQH+2ROQiIiIiIiIiIiISDqpKEBERERE5C72XiWTZwq4k8GAfYlS2ROQiIiIiIiIiIiISDqpKEBERERE5C5FBww2LRkAmJYSKDpgcPYGJiIiIiIiIiIiIvKIVBQgIiIiInKXfM1bUm76XBzLlsPC1hbHsuUoN2Me+V5pkd2hiYiIiIiIiEg6Ge9eKlBE5Blhld0BiIiIiIg8iXY9D2PehcBI8HKGAeWMNM/uoERERERERCRHmjJlEtOmTX6kfZYtW42np2cWRZSz3Lx5kylTJlG6tDev5LCCf6PRSP/+/Th3LohVq36/Z78NG9bz668LCQg4TWJiIgULFqJhw8Z07dodW1vbVP3DwsKYMWMK//yzg5CQEFxd3WjQoCE9e/bG0dHRrO/Ro4eZMOEnTp06iZOTEy++WJt+/d7BySlXquNGR0fz559/8Mcfv3PhwnnCwkJxdHSiZMlSvPxyU5o2bY6lpWXGEwMkJCSwevVKNm7cQECAPzdvRpIrlzNFixaldu16vPpqW+zs7DPlXNnlwoXztG/fmgIFPFi+fE2mHnvdutUMHz6MH36YSLVq1dPsc+LEcebOncXBgweIiLhBrly5qFChEn5+PSlX7vlU/ePi4li8eBFr167i0qWL2Ns7UK1adfr0eZNChQqneY79+/cxc+Y0/P1Pcfv2bby8SvDaa51p2LBxpl5vVjt//jwdOrRmwIBBtGv32mM/v4oCRERERETusjpoJb3+6ooBA0aMnLh+jF5/dWV6g7k0L9oyu8MTERERERGRHKZEiZI0adLUrC08PJw9e3Zhb29PnTr1Uu3j4PB0D2Y+Tt9/P5bVq1cyZMin2R1Kpvvhh+/Yu3c3+fK537PPhAk/Mnv2DKysrKhUyQdbW1sOHz7IlCmT2LFjGz//PBk7OztT/9DQEHr37kFw8BW8vEpQs+aLnDhxjLlzZ7Fz53YmT56Oo6MTAOfOBfH2232pW7c+Q4bM5dq1qwwfPoxz587x448TMaQszQgcPHiAzz77mKtXg3FycsLLqwRlypTl2rWr7N+/l717d7Nq1Qq+++4nHBwcMpSXmzdv8s47fTl16iQuLrkpU6Ysjo6OhIeHcfr0aQ4c2M+vvy5gwoTJeHoWzNC5cqLDhw8xevSo+/bZuHEDw4Z9TGJiAl5eJXj++fJcvHiBzZs3sW3bVj7//AsaNWpi6p+QkMDgwQPYsWMb+fLlo0aNWly6dIn169exdesWfvllGiVLljI7x++/r2X48E+xtLSkatUXsLCwZO/e3XzyyWDOng2kT59+WXL9WWHnzm0A1Kz5YracX0UBIiIiIiJ3GXNglKkgAMCIEQMGxh4cpaIAERERERERyXT1679E/fovmbXt27eXPXt24eKSm+HDv8qmyHKGpKSct2xAbGwM3347irVrV923X0CAP3PmzMTZ2YVJk6ZSvLgXABEREfTv/ybHjh1l8eKFdOvWw7TP6NGjCA6+QvfuvejX7x0A4uPj+fzzT9i4cQO//DKRDz74CIAlS34lISGBQYM+xtHRkcKFn8PPrydjxozi9OlTlC7tDSQPMr/9dl+MxiT69n2L117rbDbwHxR0lmHDhnLo0EE+/PBdJkyYYlZQ8KjGjv2GU6dO0rx5SwYN+hhra2vTtps3b/Ltt1+zYcN6hg4dyMyZ89J9npxow4b1jBz5BdHR0ffsExERwciRX5CUlMjw4V+ZFTWtWbOKL774jJEjv6BKlRfImzcvAEuXLmbHjm288EJ1Ro8eZ5qlYeHCeYwfP5YvvviMWbPmm37vYWFhjBz5Jfb29kyYMAVv7zJA8r3y1ltvMH36VGrXrmdqf9Lt2LGNIkWKZlsRikW2nFVERERE5AkWGOlvKghIYcRIQIR/NkUkIiIiIiIiIpJsy5a/6datE2vXrqJgwUL37bt79y6MRiMNGzY2FQQAuLi40LVrdwAOHNhvar9w4TxbtvxN/vwF6NPnTVO7tbU1Q4Z8gqOjEytW/GYaML506SK5c+cxW1KgYMGCpm0AMTExDBs2lMTEBAYOHELPnr1TzQRQtGgxvvvuJ5ydXThwYD+bN29KT2oASEiI588//8Da2poBAwabFQQA5MqVi08++Zy8eV05efIEx48fS/e5cpLLly/xySeD+fTTISQlJZE3r+s9+/7991/cunWL+vVfSjXLySuvtKBWrdpER0ezbdsWIHmZiwUL5gAwYMAgs2UbOnbsQuXKPpw+fYp9+/aY2pcu/ZXbt2Np1+41s4H/okWL8dZb72A0Glm0aH6mXHtWi42N4cCB/dk2SwCoKEBEREREJBUv55IYMK9GN2CghEupe+whIiIiIiIi8vidPHmcoUMH0rTpS9SuXZ1XX23B+PFjuXHjeqq+vr4+9OjRhcjISMaO/ZYWLZpQt24NunZ9jT/+SF6L/urVYIYNG0rjxvVp3Lge/fv3w9//tNlxpkyZhK+vD3/99ScbN26gW7eO1K1bg9atmzF69EjCwkLTjDU0NIQxY76hTZvm1K5dnaZNG/LJJ4MJDAxI1bdfvz74+voQGBjA22+/QZ06vjRv3pg///wDSJ6GfOXK5bzzTl+aNGlArVrVaNy4Hm+99QYbNqxPdd0pb9OPHPkFvr4+rF690uw8u3fvShXD6tUr8fX14bPPPja17du3F19fH777bjS//rqQpk0bUrduTfr27UVSUhIAiYmJLF++lF69/GjQ4EXq169F797dWb16JUZj6hkLWrd+xSymB7l58yYDB37A5cuXeO21TowZM/6+/S0skr/fuHbtaqpt168n3yfOzs6mtp07d2A0GqlZ80WsrMwnHHdyykWVKlW5fTuWvXuTB2/d3d2JiLhBXFycqV9ISMi/2/ID8PffGwkOvkKpUt60avXqPWN1dXWlS5duVK1ajdjY2Pte1/1ERt4kISHhvjMN2Nra0rlzV1q0aG12nY/j/oZHv0+MRiO//bYEP7/O1KtXkxYtXubnn3/g9u3baR4/5Tr69etzv1SZGT9+LH/++Qdly5Zj2rTZFClS9J59ExISKF3am2rVqqe5/bnnigDJeQEIDAwgODiYIkWKpnncunXrA7Bt21ZT2/btyX9Pa/mUOnXqYzAYTH0ALl++jK+vD0OGfMS1a1cZMWIYTZu+RL16NXn9dT927doJwJkzgXz44bu89FIdmjZtyKBBH3L58mWz448Y8ZnpM2jNmlX4+XWibt0aNG/emDFjviEmJobExETmzJlJu3atqFu3Jp06tWPp0sVp/v727NlNXFwcNWrUMrXdvHmTH374ji5dOlCvXk1eeqkOffr0YMmSRSQkJKSZ14zQ8gEiIiIiIncZUHkwvf7qalpCIOXPAZUGZ3doIiIiIiIi8ghWXV/Bt1dGEhDrTwm7kgz0GEKLPK2yO6xMsW7dGr78cjhJSYl4e5ehQAEP/P1PsXDhPP7++y8mTJiCp6en2T5RUVH06dODkJAQqlSpyvXr4Rw9eoRhw4Zy48YNZs2ajoWFBZUqVSYo6Cx79uyib9/XWbhwKe7u5mvWr127mm3btlCoUGFq1nyRU6dOsnTpYrZv38qECVPNzu3vf5p3332L69fDTf1DQkL4888/2Lp1MyNHjqFmzVrcbciQj4iOjqJGjVqcPHkCb+8yGI1Ghgz5iK1bN+Ps7Ey5cuWxsbEhKOgs+/fvZf/+vYSHh/Paa50AaNKkKUePHuHSpYs8/3x5ChYsRKFC93+7/kF27tzBhQvn8fGpgsFgIH/+AlhYWPw7jf6HbN++FScnJ8qXr4CVlRX79+/jyy8/Z//+fQwbNjxD57awMNC4cVN69nydYsWKpxrMvFv16jUwGAxs27aFyZMn0rZte+zs7Nm5cztTpkzExsaG9u07mvqfPRsIgJeXV5rHK1asGFu2/E1goD916tSlWbMWrFy5nEmTfuatt94hLCyMBQvmUrq0t+nt7pRijkaNGj9wSYDu3XvRvXuvh85HWvLkyYObmxuhoaF89tnH/O9/H6Q5ZXvKTAlpycr7Oz33yYgRw1i3bg0ODg688EJ1YmNjmT9/rulN/MxQokRJGjZsTKNGTR74e2rbtj1t27a/5/bjx48CmD43zp49A4CXV4k0+xcrVhzAVERhNBoJCjp7z32cnZ1xdXUlNDSUa9eumX0+Xb0aTI8eXUlKSqRixcpcunSRY8eO8sEH7zJo0Md8991oXF1dqVr1BU6ePMHmzZs4ceI4v/66zGwGA4AJE35k+/atlC9fgapVq3HgwH6WLFlESMg1bG3t+PvvjVSoUAkPD0/27dvD6NEjSUhIMH3+pNixYzsODg5UruwDQGxsLG+++TqBgQEUKlSI6tVrcPt2LAcO7OfIkcMcP348w58Vd1NRgIiIiIjIXZoXbcn0BnMZe3AUARH+lHApyYBKQ3ilaIvsDk1EREREREQe0qrrK+h+poup0Pt4zDG6n+nCrOLznvrCgHPnghg58gtsbW0ZM2Y8Pj5VAEhKSmLy5InMnDmN4cM/4Zdfppvtd+HCeYoVK86SJStM63yPGzeaX39dwLhx31KrVm2++uob7OzsSEhI4O233+DQoYNs2PA7Xbr4mR1r27YttGv3Gu+/PwBLS0sSEuL56qsRrFu3hrFjv2Hs2O+B5Knchwz5iOvXw3nvvQ957bXOpgHHrVs3M3ToQD7//GMWLfqNPHnymJ3j9u3bzJu3GBcXF5KSkrCwsGDTpo1s3bqZsmWf56efJplNQz979gwmTPiRxYsXmgblhg//ihEjPuPSpYu0aNGaVq3aZDj/58+f4513/mcaVE6ZJWDGjKls376VqlVf4MsvR5E7d/L1hIWF8f77/Vm7dhUVK1Yyi+GnnyaRkJCAm5vbQ53b0dGJESO+euhYixUrztChnzJu3GimT5/C9OlTTNuKF/fik08+p2zZcqa2lLf8XV3TjsfVNR8A4eHhAFSoUJERI77mp5++Z9GiBQBUr+7LwIFDTG/gnzsXBEC5cuUfOu6MMBgMvPXWu4wYMYzNmzexefMmSpUqjY9PVSpX9qFSJR9cXFzue4ysvL8f9T7566+NrFu3hkKFCjFhwhTTDAwnTx6nf/9+acbfvv1rNGrUBDs7u4fO2xtvpH2sR7Vjx3YOHTqIra0tNWokT5f/4PsquT08PAyAyMhIbt++jYODI/b29vfcJzQ0lPDwMLOigOPHj1G5chXGjv0eBwcHjEYjgwcPYPPmTXz99Qhat36Vjz4agqWlJdHR0fj5deLixQvs2LGdBg0a3nUt2/j22++oU6cuACdPnqBnz65s3rwJJycnZs6cZ1qWY9myJXz77desWLEsVVHAzp3bqVq1mmkpi02b/iQwMIAmTZry+edfmu6Zixcv0KtXN9auXUXv3m+kWcySXlo+QEREREQkDc2LtmRT6x1c6B7CptY7VBAgIiIiIiLylPn2ykhTQQBgmglu9JVR2RxZxi1cOJ+4uDh69+5rKggAsLCwoG/ftyhRoiSHDh3k6NHDqfbt06efqSAAMFsP/H//+9A0iGhlZUXt2skDYRcvXkh1nCJFipoGTJP7WzNo0Mfkzp2b7du3Ehx8BYBNm/7i4sULvPhiHTp27GL2BnLt2nVp3botkZGRrFq1PNU5mjRpahq8tbBIHtJKSEigdu26vP32u6nWpX/11XYAXLly/7fnM8rS0pK2bTuYfrawsCA+Pp5Fi+ZjbW3N559/aRroheRp8YcO/RSA+fPnmB2rUKHCFC1aDCenXFkWb8WKlalevQa2tnZUrlwFX98a5MqVi7Nnz7Bw4Tyzqf9jY2MA7jmYbGtrC0BMTLSprWHDxixfvoZ16/5k06ZtjBv3AwUKeJi2h4YmT7l/532X1Zo1a86oUWPIn78AAKdPJ8+iMWjQhzRt+hJ9+/Zi06aN99w/q+7v9Nwny5YtBuDddz80FQQAeHuXpWfPtJcHyJ07D0WLFjP7PTwO58+f44svhgHg59cTV1dX4FHuq5iH6p+8j92/+0Sn2va//71v+nwwGAw0atTEdJ7+/d8z/V4dHByoXt0XSPtzrmbNF00FAQDe3mVMyx+0bdvBVBAAUL/+S2ke58yZQIKDr5jNFpHy70T+/AXM7plChQrz8cef8dlnX6T6fMsoFQWIiIiIiIiIiIiIiEiOExDrbyoISGHEiH/s6WyKKPPs378XgCpVqqbaZjAYqF69xr/99qXa/vzz5m9rp7y9bGdnx3PPPWe2LWWg+vbtOO7WsGEj08BaCjs7O9O59+3b+8BYAWrUqGnW704lS5ZK1daoURNGj/7O7HixsbGcOnWS339fCySv156YmJjm+TJDoUKFU729fOrUCW7dukWRIkVxc8uXah9v7zLkyZOXc+eC7rkufVY4duwoPXt248yZQObMWcjEiVMYP/5nlixZQbVq1fnjj98ZOfILU38Li+Tf6YOmj09KSr1uurOzMzY2NqnaU2YMyMrfSVrq1WvAsmWr+PHHiXTp0o0yZcpiaWlJUlIShw4dZMiQjxg+/FPTTA93yqr7+1Hvk+RYD2BpaUm1atVT9a9bt95DZiPrnT17hrfffoPr169Tq1ZtevbsbdqWUtTz4Psq6d/+D3cfJu9jfi/a2NhQqpS3WVvK55yHhyeOjk5m2/77nLud6th3f17eeay7P59y5Uo+7p1FNpA82wBAjRr/FQWkLCMwd+4sPv54EOvXr+P69esA1K1bn6ZNXzErGMkMWj5ARERERERERERERERynBJ2JTkec8ysMMCAgZJ2qQeanzbBwcEAdO/e+b79rl4NTtXm7Ox8V0vyoFuuXHe3339ArlCh59JsT3kzOzQ0xCzW778fx/ffj7tPrFcfItZkUVG3WL58GTt37uDcubOEhoZiNBrN4jUaUw9aZ5a04kq5zoAAf3x9fe67/9WrV+85jXpmGz9+DFFRtxg9+juzog8Xl9x8/vlXtGvXivXr1/HGG/3w8PA0FTukNUB6Z7uDQ9pTuqfF1dWNW7ducePG9QxcSfpYWlrywgvVeeGF5AH1qKhb7Nu3l99+W8rOndtZt24N5cqVp127Dmb7ZdX9/aj3iYWFJfHx8eTJkyfNt+Y9PDzve4zHZf/+fQwePIDIyAhq1XqRkSNHmwoBAOztk996v307Ns39/7uvHP790/6+/e/cdvcb9Y6OTmbnTpb82eDsnHrZiPt9zqXV/97HSvs4O3Zsx8urhOneAXj++Qq8996HTJjwIxs3bmDjxg0YDAa8vctQv35DWrd+9Z6ff+mlogAREREREREREREREclxBnoMofuZLqYlBFL+HOgxJLtDy7CkpOQ3rhs1apLG4Nd/0nrTPuWt7Yy6+y3qFCmD8SnbU2KtUqVqmm9Gp0h5+/ZOBkPqaztzJpC33+7L9evh5M6dm7Jln6dRo5cpWbIkPj5VadWq2SNfS1rSenv8fnGl9C9QoAAVK1a+77Eze1rwe4mNjeXo0SPY2tpRqVLqmPLkyUOZMmXZu3c3/v7+eHh4ki9f8trsYWFhaR4zLOz+a8Onxdu7DOfOBXH06BGqVHnhvn0vX77E6tUrqVKl6gP73svVq8FcvnyJ554rkipOR0cn6tSpR5069Rg/fiwLF85j/fq1qYoCsur+ftT75EEvyltYWNwz1sdl3brVfP31F8THx9OsWQuGDv001efMg++r5NkzUn5fDg6OODg4cuvWLWJjY9MsiLh7nxSZ9RmXGceKirrF4cMH6dixS6ptHTt2oXHjpmze/Bc7d+7gwIF9nDhxnBMnjrNw4Tx++WUahQunXZySHioKEBERERERERERERGRHKdFnlbMKj6P0VdG4R97mpJ2pRjoMYTmeVpmd2gZ5urqRnDwFd54o1+mDho9ipCQa2m2p6y1nvJWrKtr8kBp48ZNadWqTYbPO2bMN1y/Hk7Xrt3p1+8dswHRyMjIRzqWhUXyiGvKwO6dbt68+UjHShmYdHcvwPDhXz3SvlklKuoWRqMRS0uLexaPWFkl5y8hIR4AL6/kNdLPnj2TZv8zZ87826/kQ8dRt24D1q9fx6ZNG/Hz63nfN7PXrFnF9OlT2Lx5E/Pm/frQ57jTjBlTWb58GW+//S7duvW4Z7+WLVuzcOG8NO+brLq/H/U+MRqN2NraEhERQXR0dKqCkrCwsMe+LMOd5syZyc8//wDA66/3oU+ffmn2e/B9FfhvvxJA8tv7xYsX5+jRIwQFncXbu4xZ/4iICMLCwnB2dsbd3T1TriUr7Nq1i4SEBGrWfDHN7Xnz5qVNm3a0adOOpKQkDh8+yPffj+PEiePMnj2Tjz8elmmx3Lt8TERERERERERERERE5CnWIk8rtpTdyRWfMLaU3ZkjCgIAfHyqAMnTUqdl2LCh9OzZlS1bNmdZDNu3b0vVFhMTw65d/5itf+7j4/NvrKn7AyxatIAuXTowffqUhzrv0aOHAejRo1eqN6R37dpp+vudywfcaww6ZUrz69fDU207duzIQ8WTomzZctja2uHvf8o0tfydrl27Rvv2rXnnnTeJjo5+pGOnV548eXF2diE6OpoDB/al2n7r1k2OHz8O/DerhK9vTQwGA9u3b0012Hzr1k327duLnZ2d6ff6MGrXrsNzzxXh5MkTrFq14p79Ll++xJIlyYUAd7+5/yjKl68IwMqVy4mNvff08+fOBQFQvLhXqm1ZdX8/6n1iMBioUuUFkpKS2LLl71T9d+zYes/ry2pLly7m559/wNLSkqFDh92zIACgSJGiFCxYiDNnArl48UKq7Zs3bwIwGzyvUaMWQJrXvWXLJoxGo6nPk2rnzm04OjpRoUJFs/bx48fyyiuNzf69tLCwoFIlH3r27A3AtWupl3/JCBUFiIiIiIiIiIiIiIiIPEU6dOiIpaUlkydPZM+eXWbbli1bwh9//M6ZM4GUK/d8lsWwf/9efv11oenn+Ph4Ro78gsjICF5+uRkuLrkBaNiwMW5ubmzevIn58+eaDdYfO3aUKVMmEhgYQIkSD/fmee7cydOwb91qXvBw4MA+xo371vRzXNxt099tbGwBuHXrltk+KQPhy5YtIS4uztT+119/8vfffz1UPCns7e1p3boNMTExfP75J4SH/1doEB0dzRdffMaFC+dxdHQ0e9v74sULBAWd5datR5uZ4GFYWFjQuvWrAIwa9RVXrlw2bYuKiuKLLz4nMjKCmjVfNM044eHhyYsv1uHy5Uv89NP3pt9XfHw8o0Z9RXR0FK1bt8XJKddDx2Ftbc3AgUOwtLTkm2++YvbsmcTGxpj18fc/zfvv9yci4gbly1egRYvWpm0JCfEEBZ0lKOisaUaD+2nS5GWKFCnKhQvnef/9dwgKOpuqz8GDBxg79hssLCzo3Llrqu1ZdX+n5z557bXOAPz443izN+2Dgs4yceLPaebgxo3rBAWdNc1skNnOnAlk/PgxAAwa9DEtW7Z+4D7t2nXAaDTy1VcjiIqKMrUvWjSfgwcPUKqUt6nYAqBFi1bY2dmxYMFcDh8+ZGo/dy6ISZMmANC1a/dMuqKs8c8/O6hWrXqqZQgKFChAWFgoEyf+TFTUf59LCQkJ/PnnHwCULZu5n99aPkBEREREREREREREROQp4u1dlvfe+5Bx40bTv38/SpXyxtPTk/Pnz3HmTCCWlpZ89tmXuLq6ZlkM7u75GTfuW1avXkmhQoU4duwoV68GU6pUad59931TPzs7e77+ejQffNCfH34Yx5IliyhRoiQRETc4fPgQRqORjh07U6dOvYc6b6dOXfj++3EMHz6M335bhpubGxcvXuD06VO4uOTG1dWNsLBQwsLCcHR0AjANeM+YMYUjRw7RrFlz6tSpR6tWbViyZBFHjhymffvWlC1bjkuXLnH69EmaNWvB2rWrHikn/fr15/TpU+zdu4d27VpRtmxZ7OzsOXz4EJGRETz3XBEGDfrYbJ933nmT4OArfPLJ5zRvnvkzWfTu3Zfjx4+xd+9uOnRoQ+XKVbCysuL48aPcuHGDIkWK8vHHn5ntM2DAIE6ePMGCBXPZsWMbXl4lOH78KMHBwXh7l+GNN+79Rvi9VK1ajVGjxvDpp0OYMOEHZs+ejrd3GVxccnPp0kVOnjwBQKVKlfnmm7Fmg6jXroXQsWNbAJYtW42np+d9z2VlZc348T/x3nvvcODAfjp2bIuXVwkKFSoMJA+mnzsXhLW1NYMGfWyaWeBOWXl/P+p9Ur26L35+PZk9ewbdu3emSpUXANi3bw+lS3sTHh6WKv7FixcxbdpkKleuwsSJDzcLx6OYNm0y8fHxODg4sm/fHvbt25Nmv7p169OgQUMA2rfvyPbtW03XXalSZS5fvsSpUydxdnZm+PAvzfZ1d8/PBx8MZOTIL+jXrzc+PlWxsbFm79493L59m7fe6m8q7HkSnTp1kpCQEGrWTD2bQZs27diwYT2HDx+kTZvmlCtXHhsbG06dOkFwcDBFihSlU6fUxSoZoaIAEREREZF7iL9xHUsHRyxsbLI7FBERERGRJ058eBiWzi5YWOlrZpHs0L59R0qV8mb+/DkcPnyQs2cDcXPLR8OGjenWrQelS3tn6fmbNWuOp2dB5s+fw7ZtW8ifvwCvv/4GXbr4pVr3vEKFisyevZA5c2byzz872LlzO87OLlSpUpX27TtSt279hz5vp05dcXV1Y+HCeQQGBnDy5HHy5y9A+/Yd6datB3PmzGTx4oVs3bqFLl26AfDqq+0ICDjNli1/s3PnDooVK06dOvUoUMCDKVNmMnnyRPbu3cOOHdvx8vLiyy9HUaJEyUcuCrCzs+OHHyaybNkS1q9fy7FjRzEYDHh4eNKhQ0dee60zuXI9/Bv2mcHGxobx439i+fKlrF27hiNHDpGYmIinZ0FefbU9Xbp0MxVPpMifvwDTp89hypRJ7NixlW3btlCggAfdu/fCz69Hqt/vw6pduy4LFixhyZJf2bNnF8ePH+f27Vhy5cpF9eq+NG3anMaNX8bCIuMTnXt4eDJv3iJWr17J1q2bCQgI4J9/dmJhYcDdPT/t2r1G+/avUaRI0TT3z8r7Oz33yVtv9ad0aW8WLpzHoUMHsLW1pVmz5rzzzv9o2LBuhvP1qHbu3AFAdHQU69evu2c/Dw9PU1GAlZUVY8f+wLx5s/n997Vs376VPHny8vLLzejdu6+paONOLVu2xt3dndmzZ3Ls2BEsLCwoVcqbzp27Ur/+S1lzcZkkZUmJtJY4sLW15fvvf2b27Jls3ryJ/fv3AgY8PT3p0eN1unXrnurfy4wyGO+cx0IeWWJiEuHhUQ/ueAcrKwvy5HHk+vUoEhKSsiiynEv5yxjlL/2Uu4xR/jJG+Us/5S5jnsX8JcbEELpmJVcWzOXG1s3ka9mGclNnpetY6c1f3ryOWFrmjJW+9Lz8+Cl/6afcZYzylzHKX8Yof+mn3GXMs5i/hFs3ubZ8GcHzZhO5bw8F+7xJya++ffCOadDz8rMlNjaWwMAzuLkVME3lLk+nKVMmMW3aZHr0eJ0333w7u8ORZ0RExA2aNGnA779vNC0hkRV0f8vTJi7uNqGhwXh5FcfOzu6e/VTCKSIiIiIC3Dx8kCvzZnNt2RISIm4kNxoMOGbxmxUiIiIiIk86o9FI5O5dXJk/m2srfiMpOrno02BlhUOJJ3faXhERyTl27NhO/vwFcHHJnd2hiDyVVBQgIiIiIs+s+BvXubZ0MVfmzebW0cOmdtvCz+HRsQsFOnbB7t91B0VEREREnjVx164R/OsCrsyfTUyAv6ndvkRJPDr7UaBDJ2zc3bMxQhEReRZERkby44/jGTz4EwwGQ3aHI/JUUlGAiIiIiDxTjElJ3NixjSvzZhO6ZiVJsbEAGGxsyPdKCwp09iNP7boYMmH9OhERERGRp01SQgLXN/3JlXlzCPtjHcaEBAAsHBxxb9UGj85+OFerrkEZERF5bJydnVmyZAUODg7ZHYrIU0tFASIiIiLyTLgdfIXghfO4Mn8OsUFnTe2OZcrh0dWP/G07YJ3XNRsjFBERERHJPjHnggheMIcrC+YRd+Wyqd25ygsU6OKHe+tXsXLKlY0RisiTok+fN+nT583sDkOeMY+rIED3t+RUKgoQERERkRwrKSGB8D//4Mq8WYRtWA9JSQBYOuXC/dX2eHTpRq5KPnrLSURERESeSYmxsYSuW82VubO5sfVvU7tV3rwUaN8Jjy5+OHqXybb4RERERCRzqChARERERHKcmLNnuDJ/DsEL5xF3NdjU7lzNF8+u3cnXojWWjo7ZGKGIiIiISPa5deI4V+bN4urihSRcv57caDCQp049PLp2x+3lV7Cwtc3eIEVEREQk06goQERERERyhMTYWELXruLK3Fnc2LbF1G7t5kaBDp0p0MUPx5KlsjFCEREREZHsk3DrFiErlnFl7iwi9+0xtdt6FqRAp64U6NQV++eKZGOEIiIiIpJVVBQgIiIiIk+1qJMnuDx3Zqq3nPLWfwmPLt1xbdIUCxub7A1SRERERCQbGI1Gbh7cz5W5s7m2bDGJUbcAMFhZ4dq4KR5d/chbvyEGS8tsjlREREREspKKAkRERETkqZMYFcW1Fcu4Mmem+VtOBQtRoFNXPDp1xa7wc9kYoYiIiIhI9omPuMG1Jb9yee4soo4dMbXbF/fCo0t38nfohG3+/NkYoYiIiIg8TioKEBEREZGnxs3DB7kyZxZXl/5K4q2bwB1vOXXrTt56L+ktJxERERF5JhmNRiJ37+LynBmErFpOUkwMAAZbW/I1b4Vntx641KiFwWDI5khFRERE5HFTUYCIiIiIPNESbt3k2tLFXJ47i1uHDpja7YoWw6Nrdwq81kVvOYmIiIjIMys+PIzgXxdwZe4sok+fMrU7limLR9fu5G/3GtZ58mZjhCIiIiKS3VQUICIiIiJPHKPRyIWfxnP+x/Ek3LhuajfY2JDvlRZ4dO1B7lq1MVhYZGOUIiIiIiLZw2g0ErFzO5dnzyBk9QqMcXEAWDg44N66LR5du+Nc5QXNCiAiIiIigIoCREREROQJkhAZwdWli7nw8/fEnj+Xanup0d/j0alLNkQmIiIiImLOZvVKHMeOgsAAcnmVIOrDwcQ1b5ml54wLC+PqovlcnjODmMAAU7vT8xXw8OtJ/lfbYeXskqUxiIiIiMjTR0UBIiIiIpKmkNUrOTd2FNGBATh4laDIh4PJlwVfchqNRm7u38vlOTO5tnwpSdHRaXc0GLg4+WcVBYiIiIhItrNZvRKXXl0xGgxgNGJ5/BguvboSMX1uphcGGI1GbmzfypU5MwhZs8o0K4CloxPur7bH068HuSpWztRzioiIiEjOoqIAEREREUklZPVKjvXqCv9+yXnr+DGO9epKuelzM60wICEygqtLfuXy7BlEHT9qanco7U1MgD/GxETzHYxGYgL8M+XcIiIiIiIZ4ThmFEaDAYPRCIDBaMRoMOAwdlSmFQXEhYYSvGg+V+bMIOZMoKk9V6XKeHTriXubtlg55cqUc4mI3M+KFb8xcuQXNGvWgmHDhqf7OL6+PgBs27YbKysNT4mIPE761BURERGRVILGjDIVBADJfxoMBI0dlaGigHvNCmBhZ0e+lm3w6NoDl+q+7K1fi6gTx/47P4DBgH2JUhm5LBERERGRTGEZ6G8qCEhhMBqxymAR6z1nBXDKRf62HfDo1p1cFSpl6BwiIiIi8uxRUYCIiIiIpBIT6G8+IA8ZelM/4Wbkf7MCHDtianco7Y2nX0/yt3sN6zx5Te1FBww2m6kg5c+iAwan6/wiIiIikvlsVq/EccwoLAP9SfQqSdSAwZk+df6TKtGrJJYnjpkVBhgNBhLSWcQaHx5G8KIFXJ49nZjAAFN7rkqV8fDrhXvrtlg5OWU4bhERERF5NqkoQERERERSsfcqmSlv6t88dIDLs2dwdelikqKjkg9ja4t7yzZ4+vXCuVp1DAZDqv3yNW9JuelzCRo7ipgAf+xLlKTogCHke6VFhq5LRERERDKHzeqVuPTqappC3/LEMVx6dSVi+txnojAgasBgs+tP+TP6EYpYjUYjEbt2cnnWdEJWr8B4+zYAlo5OuLftgKdfD80KICIiIiKZQkUBIiIiIpJKRt7UT4yK4trypVyeNY2bBw+Y2h1KlsLDrycFOnQymxXgXvI1b5mhpQpEREREJOs4jhllGggHTAPjDmNHPRNFAXHNWxIxfS6O477BKsCfxBIlifpwMHEPUcQaH3GDq4sXcnnWdKJPnTS1O1WohKdfT9xfbYeVU66sDF9EnmBTpkxi2rTJjBkzHoBZs2bg738KOzs7fH1r8r//fUiePHlYuXI5ixbN5+LFi7i7u9O06Sv4+fXAysradKyrV4OZNWsGO3ZsIzQ0BCcnJypWrEy3bt15/vkKqc5969ZN5syZycaNGwgJCcHTsyAdO3a5b7znz59n5sxp7Nmzi+vXw8mTJy++vjXp1as3Hh6emZobERFJPxUFiIiIiEgqKW/qnxv3DdEB/jiUKEmRDwff9039W8ePcXn2dK4uXkTizUgADDY25GveEs/ur+PiWzPNWQFERERE5OljGehvNnU+JBcGWKVzuamnUVzzliS1bk2ePI7cvB5FQkLSPfsajUZuHtjH5VnTubZ8KUkxMQBYODjg3qYdnt174VzJ53GFLiJPgd9+W8r27VspVao01ar5cvjwQX7/fS1BQWd54YXqzJs3m/LlK1C1alV2797F5MkTiYyM5L33PgTg2LGjvPfe29y8eZNChQpTp049rl27yubNm9i6dTMDBw6hdeu2pvNFRkby1lt9CAjwJ18+d2rVqs2VK5cZOfILihUrnmaMe/bsYuDAD4iJicHLqwTPP1+e8+fPsWrVcjZv3sQPP/yMt3fZx5IvERG5PxUFiIiIiEia8jVvice/X3Jev8eXnImxsYSsWs7lWdOJ3P2Pqd2+WHE8/HpR4LXO2Li5Pc6wRUREROQxSPQqieWJY2aFAUaDgYRHXG4qp0u4dYtryxZzedZ0bh05ZGp3LFMOz+69yN+uA1bOLtkYociTxWg0Ep0Und1hPBIHC4csKYDfvn0rH344kPbtOwJw7do1OnRozcmTJ/D3P82PP06iSpWqAOzcuZ333+/PqlUrePfd94mPj2fw4AHcvHmTN954i549XzfFuGPHdoYMGcDo0d9Qpkw5Spf2BmDy5IkEBPhTp049vvhiJLa2tgCsXLmcr78ekSq+iIgbfPLJEOLi4vjqq2946aVGpm3Lly9l1Kiv+PjjwSxcuBRra+tU+4uIyOOlogAREREReWTRZwK4PGsGwQvnknD9OgAGKytcX34Fz+69yFO7LgYLi2yOUkRERESyStSAwbj06mpaQiDlz+iHWG7qWXDr2FEuz5rG1SW/knjrJgAGW1vcW72Kp18vnF+oplm0RO5iNBppeqoRu6P+eXDnJ0h1xxqsLf1Hpv877eVVwlQQAODu7k7lylXYuXM7L73U2FQQAODrWxN7e3uiom5x/Xo4u3b9Q0jINXx8qtKrV2+z49asWYtu3XowdeovLFgwl88//5K4uDjWrFmJtbU1Q4d+aioIAGjZsjVbtvzNtm1bzI6zYsVyIiJu0L59R7OCAIDWrduybdtWtm3bwt9//0WjRk0yMzUiIpIO+qZWRERERB5KUnw8IatWcKhdK3b7+nBx4o8kXL+ObcFCFB38Cb4HjvP89DnkrVtfBQEiIiIiOVxc85ZETJ9LQtlyGG1tSShbjogZ84i7z3JTOV1ibCzBvy5g/yuN2Fu/JpdnTiPx1k3svUrgNfxrah46SZmffsGlWvUcURCwOmgl9X6rSeFZ+aj3W01WB63M7pAkBzDw9P+7kVnKlSufqi1PnjwAlCxZ0qzdYDDg5OQEwO3bcRw4sA+ABg1eSvPYKYP0+/cn9ztx4jgxMTF4e5cld+48qfrXrVsvVdv+/XsAzIoT7uTrW/PffnvT3C4iIo+XZgoQERERkfuKvniRwB9+5tLsmcRdDU5uNBjI+1IjPHu8jutLjTFYWmZvkCIiIiLy2MU1b0lc85bZHUa2uxUQwOnxP3J5/hyzWbTcmrXAs3svcr9YJ0cUAdxpddBKev3VFQMGjBg5cf0Yvf7qyvQGc2leVPeEpI/BYGBt6T+0fMC/nJ2d02g1/LstrWVH/oshJCQEAA8PzzSP7elZEICwsDAAQkOT+7u7u9+3/52Cg5O/Hxg8eECa+6S4evXqfbeLiMjjoaIAEREREUnFmJTE9c2buDJ7GqG/r8OYmAiAtVs+PLr44dGtB/bPFcnmKEVEREREskdSQgJhf/zOlVnTCN+00dRuW6gwnt16UKBzN2zzF8jGCLPWmAOjTAUBAEaMGDAw9uAoFQVIhhgMBhwtHbM7jCeClVVGhm+M992amPL/+NbJ53hQUYNlGi8CJCUlAVCrVm3TLAVpKVas+H2PLSIij4eKAkRERETEJD48jOCF87k8axoxZ8+Y2nPXehHP7q/j1qwFFjY22RihiIiIiEj2uX01mCtzZ3FlzkxuX75kard0cqJgrzcoNuTTZ2IWrcBIf144aqTdn+AZCpfdYElDI4cq+md3aCICuLnlA+DKlctpbr/87+dX3ryuAOTLl9L/Spr9U2YeuJOrqxvnz5/jtdc6U61a9QzHLCIiWUuLvYqIiIg844xGI5H793Ki/5vsqOhN4OcfE3P2DEZHe3Y1yMvgATa83/0GuytZqyBARERERJ45RqOR69u2cKx3d/6pXJagb74yKwgASIyK4vwP4whdtyabony8mge4M2AuPBcMNgnJfw6YC80D82d3aCICVKrkA8Bff21Mc/vGjX8A4ONTBYAyZcqSK1cuTp06QXBw6sKAHTu2pWrz8fG55zaAH38cj59fJ5YvX/boFyAiIplORQEiIiIiz6jE6GiuzJvNvkZ12f9yA64umo/x9m2cnq9A7NDX8RsUw7jG1znjFsfx8OQ1QlcHrczusEVEREREHouEyAguTp3EntrVOPRqc0JW/oYxIQHnar7YFixk3tloBIOBoLGjsifYx6zdRkjivy+XLYAkQ3K7iGS/hg0bkS9fPvbv38uMGVMxGv9bTmDnzu3MnTsbS0tL2rRpB4CVlTVt23YgMTGR4cM/JSrqlqn/X39tZP36danO0apVW+zt7Vm8eBEbNqw327Z162YWLZqPv/9pypYtl0VXKSIij0LLB4iIiIg8Y6ID/bk8cxrBC+eTEHEDAIOtLe4t2+DZszfOVV6g/vJaxF3XGqEiIiIi8uy5dfQIl2ZM5erSRSRFRwNg4eBIgfYd8ezxOk7lnmdL4XypdzQaiQl4NqbPt75wjaS72iyMYHH+arbEIyLm7Ozs+eqrb/ngg/788ssE1q5dTalSpbl27SpHjhzG0tKS998fQLlyz5v26dmzN4cPH2L//r20bduSSpV8CA8P5/Dhg5QvX4EjRw6bncPd3Z1hw0YwbNhQPv10CNOmTaZIkaJcu3aVEyeOA/D++wMoVar0Y712ERFJm4oCRERERJ4BSQkJhG9Yz6Xpk7m+eZOp3e65onj2eJ0Cnbpi4+pqag+M9DcVBKQwYiQg4tn4klNEREREni1Jt28TsnoFl2ZMJXL3P6Z2h9LeFOzRm/wdOmKVy9nUbu9VkqgTx5JnCEhhMGBfotTjDDvbPOvXL/I0qFChIrNnL2DWrOn8889Otmz5m9y5c9OwYWM6depqVhAAYGtry/jxP7Fw4TzWrFnFzp3bcXPLx9tvv0uZMmV55503U52jfv2XmDFjLnPnzmLfvj1s376VvHldqVWrNp07d6NKlaqP63JFROQBDMY7542RR5aYmER4eNQj7WNlZUGePI5cvx5FQsLdNbXyIMpfxih/6afcZYzylzHKX/o967mLCwnhyrxZXJ41nduXLiY3GgzkbdiYgj17k7dBIwwWqVeUqvdbTU5cP2ZWGGDAQNm8z7Op9fbHFX62slm9Escxo7AM9CfRqyRRAwYT1/zRZklI7/2XN68jlpY5Y6UvPS8/fspf+il3GaP8ZYzylzHKX/o967mLvXSRy7Omc2XuLOJDQwAwWFnh1qwFBXv1waVGLQwGQ6r9Qlav5FivrmAwmJYOwGik3Ix55HulxeO+jMcus65fz8vPltjYWAIDz+DmVgAbG9vsDkdERCRHiIu7TWhoMF5exbGzs7tnP80UICIiIpLDGI1GIvfu5tL0KcnrnsbHA2CVNy8enf3w9OuJfdFi9z3GgMqD6fVXVwwYTEsHGDEyoNLgx3EJ2c5m9UpcenXFaDBgMBqxPHEMl15diZg+95ELA0RERETkyWI0GrmxdTOXpk0mdP1aSEoejLYp4IFntx54dOuBbQGP+x4jX/OWlJs+l3PjviE6wB+HEiUp8uHgZ6IgAP67/qCxo4gJ8Me+REmKDhjyzFy/iIiIyNNGRQEiIiIiOURidDTXflvCpelTuHXkkKk9l08VCvbsQ75Wr2J5n2rROzUv2pLpDeYy7uA3BET4U8KlJB9WGswrRZ+NL/kcx4wyFQQAGIxGjAYDDmNHqShARERE5CmVEBlB8K8LuDxjKtH+p03tuWvVxrNXH9xefgULa+uHPl6+5i3xaN36mZ1pIV/zluTTs7GIiIjIU0FFASIiIiJPuZigs1yaMZXgBXNIuHEDAIOtLfnbtMOzVx+cK/mk67jNi7akdYln80tOy0B/U0FACoPRiFWAfzZFJCIiIiLpFXXyBJemTyb414UkRScva2Tp6ET+Dh0p2LMPjt5l0nXc1UErGXtwFIERAXi5lODDSoNpXlSD5CIiIiLy5FFRgIiIiMhTyJiURPjfG7k0bTLhf/6RvI4nYPdcUTx7vI5H565Y53XN5iifXoleJbE8ccysMMBoMJBQolQ2RiUiIiIiDyspIYGw39dyafpkbmzbYmp3KFWagj37kL9DR6xyOaf7+KuDVpott3U8/Bi9/urK9AZzVRggIiIiIk8cFQWIiIiIPEXiI24QvHAel6dPIebsGVN73gYN8ezVB9eXGmOwtMzGCHOGqAGDcenVlSQDWBgxLSUQPWBwdocmIiIiIvcRFxLClXmzuDxzGrcvX0putLDArWlzCvbqQ+4X62AwGDJ8njEHRpkKAgCMGDFgYOzBUc9EUYDRaGTPtd1suPA7zYo0p3K+KtkdkoiIiIjch4oCRERERJ4Ct04c59K0yVxdspCk6GgALJ1d8OjUBc+evXEoXiKbI8wZbty+ztLAxcxPnEOJrjBsI5QJNWBRqhzRA4YQ90qL7A5RRERERNIQeWAfl6b+wrUVyzDGxQFg7eaGR9ceePr1xK5Q4Uw9X2Ckv6kgIIURIwEROXu5qWsx11gcsJD5p2fjH3EagLORZ5jaYFY2RyYiIiIi96OiABEREZEn1L2mPHUsU5aCvd7AvW0HrJycsjHCrLU6aCVjDowiMNIfL+eSDKicNWu0JhmT2H5lK/NOz2btuVXEJsYCcKqCDUktmjOg0mBK5/HO9POKiIiISMYk3b7NtZW/cWnaL9zcv8/UnsunCgVf74t7yzZY2Npmybm9nEty4voxs8IAAwZKuOS85aYSkhLYdOlP5p6azYYLv5NgTADAwcqBlsXa8FHlIdkcoYiIiIg8iIoCRERERJ4wcWFh/015evFCcmPKlKe9+5K75ouZMuXpk+zuNVpPXM/8NVqvRF1mof885vvP4dzNIFN7mTzl6FKqG+28XiOvnWumnEtEREREMs/tK5e5PGsal2fPJD40BACDjQ3urV6l4Otv4OxTNctjGFB5sNnzasqfAyrlnOWmgiLPssB/Dgv85xEcfcXUXiVfVTqX8qN1sVfJZeOcjRGKiIiIyMNSUYCIiIjIE+LmkUNcmvoLV5ctxnj7NgDWrq7JU55275XpU54+ybJqjdb4pHg2XFjPvNOz2HhxA0nGJAByWTvTpng7upTqRiU3nxxfdCEiIiLytDEajUTu3sXFqZMIXbMSY0Ly2+o2Hp4U7PE6Hl17YJMv32OLp3nRlkxvMJdxB78hIMKfEi4l+bDSYF4p+viWm7JZvRLHMaOwDPQn0askUQMGE9c8YwW0sQmxrDm3knmnZ7Ptyn+zlbnaudLOqyNdSvnhnadMRkMXERERkcdMRQEiIiIi2SgpPp7Qtau4NPUXInbtNLU7VahEwd59cW/dFks7u2yMMHtk9hqtgRH+zDs9h0UB8wmJuWZqr1GgFp1LdqNFsdY4WDmk2s/iwnmS8uSFHLxMg4iIiMiTLDE2lmu/LeHS1F+4deSQqd3FtyYFe/fFrWlzLKytsyW25kVb0rpEa/LkceT69SgSEpIe27ltVq/EpVdXjAYDBqMRyxPHcOnVlYjpc9NVGHA07Ajz/WezJGARN+JuAMnLIdQr2ICupbrT5Llm2FjamO9kNGIRdJYkD094Bv+fRURERORp8tQUBezevRs/Pz+++OIL2rdv/9D7Xbt2jV9++YXNmzcTHByMjY0NZcqUoVOnTjRv3jwLIxYRERG5t7jQUK7MncmlGVOJu3IZAIOVFflatKLg62/i/EK1Z/pt9cxYozU6IZrVQSuYd3o2O4O3m9rz2bvzWonOdC7VjRIuJVPtZ4i4ge3SxdjNn4P14YPcfrkZkbMXZuyCRERERHKgkNUrCRoziphAf+y9SlJ0wGDyZfBN9RSxly9xeeY0rsyZQXxYGAAWdna4v9qegq/3JVf5CplynqeV45hRpoIAAIPRiNFgwGHsqIcuCrgZF8myM0uYd3oWB0MPmNoLORamU6mudCrZlUJOqWcrM4SEYPfrAuwWzMHq9Cli/Hpxa8z4TLkuEREREckaT0VRwJkzZ/jggw8wGo0P7nyHs2fP0qVLF8LCwvDw8KB27dpERERw4MAB9u7dy4EDB/j000+zKGoRERGR1G4eOcylqZPMlwhwc8PTrxeePV7HtoBHNkf4ZMjIGq1Hwg4x99Qslp5ZTGRcBAAWBgteKtSIziX9aPzcy1hb3PU2WVIS1ju2YTdvNrZrVmKIjQXAaG1NvG+tTL8+ERERkaddyOqVHOvVFQwGMBqJOnGMY726Um763HQXBhiNRiL37ObilImErF4BiYkA2BYshGfP3nh06Y6Nq2tmXsZTyzLQ31QQkMJgNGIVcP+ZtYxGI3uu7Wbe6VmsOLuM6IRoAKwtrGn6XHM6l+pGXc/6WFpYmu+YkIDNpj+xmzcHmz/WYfh3+QajgwPxL1TLvAsTERERkSzxxBcF7Ny5kw8//JCwfyuCH8XHH39MWFgYXbp0YciQIVj/O5XY8ePH6dGjB3PnzqVOnTrUrVs3s8MWERERMUlKSCBs3RouTp1ExM7/3lh3qliZQv8uEWBha5uNET55UtZoHXtwlGmN1gGVhtxzjdaUt5zmnprFobD/3nJ6zqkInUt1o2PJLng6Fky1n8WVy9gtmo/d/DlYBp01tSeUKUts527EtuuIUV88i4iIiKQSNGaUqSAASP7TYCBo7KhHLgpIun2ba8uXcnHqL9w69N+znEuNWhTq/SauTV/BwuqJ/xrzsUr0KonliWNmhQFGg4GEEmnPrBUWG8bigAXMOz2bUzdOmtpLupSia+ketPfqiJu9W6r9LILOYrdgDnYL52P57wxnAPE+VYjt7MftNm0x5nLOxCsTERERkazwxD5Nh4WF8eOPP7Jo0SIsLCzw9PTk8uXLD97xX+fOnWPfvn24u7szePBgU0EAQNmyZXnzzTf55ptvWL16tYoCREREJE0ZnQ41/no4V+bO5tKMKdy+eAF4tCUCsnI61qdB86ItaV703tdrNBrZG7KbuadSv+XUrEgLupbqTm3PulgYLMx3jI/HZsN67ObPxubPPzAkJa/9mpTLmdtt2hHbpRsJlXySv+QWERERkTTFBPr/VxCQwmgk5gFvqt/p9tWrXJ45lcuzphMfGgKAwdaW/G07aImAB4gaMBiXXl1NSwik/Bk94L+ZtZKMSWy7soW5p2ay9txq4pLiALC3tKdlsTZ0Ld2Dau7VU/8/SWwstmtWYjd/DjZbN/93vLx5iW3fkdjOfiSWKftYrlNEREREMscTWxQwadIkFixYQNGiRfnqq69YsmQJv/3220PvHx4eTqVKlShRogQ2NjapthctWhSAa9euZVbIIiIikoNkZDrUqFMnuThlElcXLyApJgYAa1dXPLr1pGDP3th6eGbp+XO667fDWRywkDmnZqb5llOHEp1wtUv9dr9loD928+Zgt2g+FiH/PQPG+dYktosft5u3AkfHx3INIiIikjPYrF6J45hRWAb6k+hVkqgBgx96Pfennb1XSaJOHDMvDDAYsL/Hm+p3ijy4n0uTJ3JtxTKM8fEA2Hh4UrBnbzy69dQSAQ8hrnlLIqbPxWHsKKwC/EkoUZLoAUOIe6UFV6ODWeg/j7mnZ3HuZpBpnwqulehaujuvFm+Hs41LqmNaHj2C3fzZ2C1ZhMWNG0Dy7APx9RoQ08WPuCbNQDOcichTzmg03vcFDRGRnOqJLQooXLgwn332Ge3bt8fa2polS5Y80v6VK1dm0aJF99x++PBhAAoUKJChOEVERCRnetTpUI1JSYT/tYGLv0zg+uZNpnbHcuUp9EY/3Nu0w9LOLsvOn9MZjUZ2Bm9n9qkZrDm3ktuJt4GHeMspOhrb1SuwmzcbmzuWbkjK507sa52J7dyNxBIlH+eliIiISA5hs3ql2ZvalieO4dKrKxHT5z4ThQFFBww2K2JN+bPoHW+q3ykpIYHQtau4+MsEIvfsMrU7v1CdQm/0w61ZCyzumOlTHiyueUvTvZaYlMjflzYy+8/O/HFhHYnGRAByWTvT1qs9XUt1p4JbpVTHMNyMxHbZEuzmzcL64H9LNyQWKkxsp67EdupKUqHCj+V6RJ51U6ZMYtq0yY+0z7Jlq/H0fPCLBwI3b95kypRJlC7tzSuvpL004dPk/PlzzJo1nb179xAWFoqDgwNlypSlU6eu+PrWTNU/KSmJNWtWsnTpYs6fP4+1tTUVK1aiV6/eeHunPfvL6dOnmDZtMseOHeHmzVsUKVKE1q3b0qZN21Tfv6xdu5r58+dw8eIF8ucvQJs2benQoRMWFhapjnvt2lVWr17Ftm1buHLlMjdvRpInT14qVKhImzZtqVq1WuYkCYiIiODXXxewfftWLl26yO3bt3FxyU3ZsuVo2LAxDRs2fuqLRFas+I2RI7+gWbMWDBs2PEPH+uij99l6xyxBd/vuux+pUaOWWdvff//F/PlzOXs2EKPRSJky5fDz68ELL1RP8xiXLl1k6tRfOHBgH9evX6dAAQ+aNWtOly7dsLJ6up4FW7R4mfLlK/D1199mdygP5YktCvDz88uyY4eEhDBnzhwAmjRpkuHjWVml/lC7H0tLC7M/5dEofxmj/KWfcpcxyl/GKH/pl97c3W861Dv/259w6xZXFs7jwuRJRKdMlWphQb5mr/Bc37fIXfPFdP3PxcOeP6tl970XGhPCgtPzmXNyJgER/01FW961At3L9KRdiQ5pv+V0+BA2c2Zis/hXLCIjADBaWBDfsDFxfj2Ib9QErK0xkLUPxNmdvyeFnpcfL+Uv/ZS7jFH+Mkb5y5jsyJ/j2FGmggDANIW747hvSGrd+rHFkVHpzZ1H69ZYWs7jzOhRRPufxqFkKYoPHIL7XQUR8dfDuTRnFhem/MLtSxcBMFhbk79NW57r+xbOlX0y50KySXb/u3vp1iXmnZrN3FOzuXjrgqm9Wn5f/Lx70Kp4Gxyt75oNy2jEcvcubOfMwmb5UgzRyctwGa2tiW/WnNvdepBQtx5YWmIBZOWVZXf+RJ4kJUqUpEmTpmZt4eHh7NmzC3t7e+rUqZdqHwcH+8cU3dPv++/Hsnr1SoYM+TS7Q8mwQ4cO8t57bxMTE0Phws9Rq1ZtQkKusWvXP+za9Q/9+79Hly7mY2zffvs1y5cvw9nZmRdeqEZ4eDhbtvzNjh3bGDv2e6pXr2HWf9++Pbz/fn8SEhKoWLEyuXLlYu/ePXz77dccPXrEbPB59eqVfPnl5/Tv/z7167/E/v17GTnyC6Kjo+nVq4/ZcX/7bQnjx4/l9u3b5MvnTokSJbG3t+fcuSA2btzAxo0b6NixM++9NyDDeTp16iTvvvsWERE38PQsSOXKVbC0tOTq1ats27aFzZs3sWrVCkaP/g5bzYQDJOfM2tqaBg0aprndzS2f2c8zZ05j0qSfsbe3p0qVF4iNjWX//r3s3buboUM/pUWL1mb9z5wJ5M03XycyMpJy5Z7H27sshw4dYOLEn9izZzfjx/+EldUTO3Rtxt//NCEh16hZs9aDOz8hno7MZqLo6Gj69+/PrVu38PX1pUGDBhk6noWFgTx50jfNrLOz/oOdEcpfxih/6afcZYzylzHKX/o9au5ylS5NxJEjqaZDzeXtTZ48jkQFBRHw00+cnTqV+IjkQWdrFxeK9e5NiXfewfHfpYrS60Hnf9we572XZEzi7/N/M/ngZJadXkZ8UvKUsk42TnQq04k3Kr5BlQJVUhdbRETAggUwZQrs3/9fe9Gi8PrrGHr2xKZgQVIvLJX1nuV/d/W8nH2Uv/RT7jJG+csY5S9jHmv+AgNSFXEajEasAvyz5Xkto9KTuzx+nSnt1znNbZEnTxLwww8EzZpF4r+Dzrb58uHVrx/F33wTew+PDMX7pHmc915CUgK/n/mdyYcmsyZwDUnGJADy2OXBr5wffSr2oVy+cql3DA2F2bNh6lQ4ceK/9jJloHdvDN26YZMvn56XRbJJ/fovUb/+S2Zt+/btZc+eXbi45Gb48K+yKbKcISnJ+OBOT4GEhASGD/+UmJgY3nrrXbp16276fmTXrn8YMOB//PzzD/j61sTLqwQAW7ZsZvnyZXh5lWDChMm4uOQG4K+/NvLpp4P54ovPWLJkBXZ2yZ/FcXFxfPbZxyQmJjJmzPemQc/Q0BDefrsva9euok6dutSrlzy+tmDBXMqWfZ4uXboB4OnZkp07tzN//hyzooA5c2by888/4OzswrBhI6hf/6X/s3ffAU1dbwPHvyGMBBCQ5VYUUMQ96qyjttaqiHvjwr3byttqt13ya9Va61YQEHdr3Vqte9c9EBVQZKjInmEkue8fkWgEN4LjfP6Jntxx7uEGbu59zvMYZBI4duwI33zzBWvWrEKpNGf06HEvNE7Tpv0fqakpTJ36Jd269TR4Pzo6iqlTffjvv+MsWjSfyZM/fe59vSlSUpK5ezeOmjXdn+r3TVjYNRYtmo+DgwOLFy/XZy05d+4sn3wygZkzf6FZs5Y4ONwPJJg+/WvS0tKYOvUrunXrAUBmZgY+Ph9z6tR/rF+/hv79vV7OARaxo0cPI5PJCmROeJW9VUEBGRkZjBkzhrNnz1KxYkVmzZr1wtvUaiXS0rKeaR253AgrKyVpaSo0Gu0L9+FtI8bvxYjxe35i7F6MGL8XI8bv+T3v2FWZ8jkXhgwskA7Vvks3Dnh24+62LaDVbc/c2YVKo8dSrt9AjC0tyQVykzNfqN+P2n+VKZ+T/ILbfhbFee7Fq+6y+upKgq4EcD0tQt/e0KERg9yG0sO5F6VMSwGQknLv+it/llNQAKabNhjOcvLw1M1yat0G8r9kFuPYwfOPn5WV8o2ZLSWul4ufGL/nJ8buxYjxezFi/F5MSYxfKWcX5JdD9JkCQFd/XePiSnoxX3O8iKIcO0mSSNq3l6iF80jcs1vfblm7DpXHjKdMD11JrWwg+zUao8cpznMvJiOG4CuBBF8N4lZmrL69RbmWDHYbhmfVbiiMdSXL9N8ZtFqMDx7ALGg5Jtu2IMvTBdxKSiW53XqSM3gomiZNdd83QFwvC4IgvOLOnDnNrVuxuLvrUrQ/qGnTZnTt2oM//1zLv//u0gcFrFoVBMDEiR/rAwIA2rV7n8OHO7J9+1Z27/5HP6v7n3+2k5CQQPv2HQxmQdvbO/DZZ9MYP340a9as1AcFxMbG0KpVG4O+lC9fgYyMDFJSkrGxKc21a1dZvHgBZmZmzJ+/GFfX6gWOrXnzlvz00y9MmjSWlSuD6Nmzd4GZ6U/r/Plz3LoVS/36DQoEBABUqlSZb775niFDBrBp0wYmTfrktS8j8KKuXr0CgJtbzadaftUqXUZ2b++RBmVM6tdvwIABXvj5LeXvv/9k1KixAJw69R9Xr16hTp26+oAAAAsLS7788lt69+7G2rWr6Ndv4Gvxszh69DDVq9fAzs6+pLvy1N6aoIA7d+4wevRorly5QuXKlQkICMDevmh+UGr1813wazTa515XEOP3osT4PT8xdi9GjN+LEeP3/J517Gw7dqGWfzCRs3TpUE0dHJGZmBLx4/30aKXbvEfF0eOwbdce2b2HzkX183lw/6rwMJQurjj5TMP2I48SOQde1rmnlbQcvn2QoCvL2RG19X5WAJNS9HLuw6AaQ6ljV0+/fH4fZEmJKNatRrEyCON7X1oA1NVrkO01hOze/ZHs7O7tBH0AR0l52z+74nq5ZIjxe35i7F6MGL8XI8bvxRTn+GVOmYq1t5e+hED+a+aUqa/lz/BFxk6jUhG3fg0xSxeSlX9tJpNh/1FnKo4eh3XzlshkMiSK7nr5VfOyzj21Vs2emN0EXfVnT8xufVYAWzNb+roOxKv6EFxt7j9Yye+DUdwdFKuDUawMQn4zUv9+Xr0GZHsNIad7TySre2W4NBJQsjNoxe8+4WW6u2UT13+ZQVZ4GOYurrpSJ126lnS3isyVK5cJCgrg7NnTZGRk4ODgSOvWbRk61Bsbm9IGyzZr1hA3t5rMnbuQpUsXsX//HtLS0qhUqTKDBw/jww8/Ii7uDvPnz+X48WOARI0aNZk06RODh7hLly7Cz28JP//8C5IkERDgR1TUTUqXLk3Llq3w9h5Z6IOyhIR4AgL8OXLkEAkJ8VhalqJRo8YMGzZC/wA739ixIzl79jQrV65j9uxfuHjxAlZWVnz8sQ8ffPAharWa7du3smvXDsLCwsjIyMDCwhwXl+p0796T9u3vl45u1ux+qZoZM35gxowf+Oqr7/Dw8NTvZ+7chTRpYlgDPT8tfocOHfUzp0+fPsX48aPo27c/FSpUYvnyZWRlZeHm5sbChcswMjJCo9GwZctGNm/eRGTkdSRJwtnZhW7detK5c5cCDzy7devMnTu39X16nKysTNzda9G8eYtC369cuYp+rAEyMtK5cOE85ubmNG7cpMDybdq8x/btWzl8+JA+KODIkcMAhZasaNCgEVZWVpw/f4709HRKlSqFo2MZ/f7yxcffRaFQ6IMQ1q9fg1qtplevPoUGBORr0qQpbdq8h0wm4+7du88dFJCcnATw2IfLNWq44eHhiYmJCdnZ2SiVukwJ+efEtm272bRpA5s3byQ5OYly5crTqVMX+vcfiImJSYHtPctnESA9PZ3g4ED279/L7du3UCiU1KlTh0GDhlG/foMCy2dkpLNiRQB79uwmPj6e8uUr0K/fwEceX/5xDB8+ipEjxzxxzK5evXpvXJ4uKODo0SMAtG79XoH32rRph5/fUg4fPqQPCsg/r1q1altg+YoVK+Hi4kpY2DXCw8P050i3bp1RqVRs3ryDwEB/duzYRmJiAmXKlKVXr7707duftLQ0Fi6cx4ED+8jOzsbZ2YUxY8bTqFFj/fbzP8tTpnxGjRo1WbZsMZcuXUQuN6J+/YZMnvwpFStW4uDB/QQE+BMREY6trS2tW7dhzJgJ+nMjX3p6OpcuXWTQoKH6Nq1Wy59/ruOff7YTHR1FTk4u5cuX5913W+PlNdggIKekvBVBAZcvX2b06NHcvXuXWrVqsWTJkiILCBAEQRAE4c1l06IljuE9iPVfer/+qZkZZXv3o8LIsVjWdH+p+3fw8MThCV8GX1fxqnhWhwUTfDWAyPQb+vaG9o0Y7OZN16o9Cq19anLkEIrgAMy2bkaWm6trVirJ6doDlddQ1O80uT/LSRAEQRAE4SXK9fAk1T8Y81m+GIeHoXZxJctnGrmdu5R014pNzp3bxPov5VaQP+ok3c13uYUlZQcOouLw0SirVivhHr6+YjNiCL4WyKprK7iddUvf3rJsKwa7DaNTlS6YyR+qf6zRYLrvXxRBAZju3olMowFAa2VNTs/eZHsNQV2nHoLwNrm7ZZNBFr6MyyFcGDKQuoEr34jAgB07tvHjj9PRajW4udWkbNlyhIVdZc2alezfv5cFC5YazOAFyMzMZOTIocTHx9OoUWOSk5Pu1Yj/gpSUFAID/TEyMqJ+/QZERt7g5MkTjB49nDVr/sLR0dFgW7qHyQepWLESLVq8y9WrV/jrr/UcOXKIBQuWGew7LOwakyaNIzk5Sb98fHw8//67i0OHDjBjxsxCa3NPm/Z/ZGVl0rx5S65cCcXNrSaSJDFt2v9x6NABrKysqFWrDqampkRG3uDMmVOcOXOKpKQk+vbtD0CHDh25dOkisbEx1K5dhwoVKlKxYsUXGvtjx44SHR1Fw4a68oZlypTFyMgItVrN559P4ciRQ1haWlKnTl2MjY05c+Y0P/74HWfOnOabb6Y/eQeP0LZtO/0M/cJcvnwJQP+zioy8gVarpUoVp0JrtVe997c6IiJc33bjxnWAAoEaAEZGRlSp4sTFixe4fj2CevXq4+HhycKF89i3bw9t27bjwoXz7Nu3F0/PbshkMjQaDfv27QGgffuPnniM//vfi2f5dnFxBeDs2TMsXbqIfv0GUqpUqQLLffXVd4/cxowZP3D48EFq165DjRpunDlzigUL5nLy5Al++20uxsb3AwOe9bN4924c48aNIiYmGkfHMjRr1oL09DSOHTvKsWNHmTr1Kzw9u+mXT0tLY9y4kYSHh+Hg4EjLlq24ffsWM2b8oP8ZvqirV3WlhXJycvDx+ZjLl0PIysrE2dmF3r378dFHnfTLJiYmkJqago2NDXb5k3Ie4ORUFZlMRmTkdTQaDXK5nBs3dFlBnZ2dC91/1arVCAu7RkREuEHgiEajZvLkcVy+HEKjRu9QoUIFTp8+xW+//UpmZga7du0kJSWZWrXqEB9/l4sXzzNp0jj8/AILZD04evQIc+bMokKFirzzThNCQy9z6NABrl69Qv/+A/n999m4u9eiadNmnDr1H2vXrubOnTsFzsnjx4+i0Who0eJdfduMGT+yZctGrK1tqFOnLnK5MZcuXWTFigAOHtxPUNBqzMweunYrZm98UMDx48cZO3YsWVlZtGnTht9++w0Li9evrpsgCIIgCMUnM+waMYsXELd+NVqVCgBTxzKU9x5J+cHemIrgwufyqKwApUys7mUFGEZtuzoF1pPFx6NYsxLFykCMr98vK5BXp55ullPP3vdnOQmCIAiCIBSjXA9Pct/QIM7HSb9wjphF87mz8U9kat2D52Q7E8wH9eH9Cb4Yi2uz56LRavg3ZleBrAB2Cjv6ugxkUI0hOFu7FljPKDYGxcogFKuDkd8LZgbIa9IMldcQcjy7g7l5sR2HILxKrv8y435ZPtCX57v+q+9rHxRw82YkM2b8gJmZGTNnzqFhw0aAbrbqkiULCQjwY/r0r1i82N9gvejoKKpWrcaff27C1tYWgNmzf2XdutXMnv0LLVu24qef/odCoUCtVjN+/CjOnz/H7t07GThwsMG2Dh8+SK9effnkEx/kcjlqdR4//fQ9O3ZsY9as/zFr1u8AqNV5TJv2fyQnJ/Hxx1Po23eAfgb3oUMH+OKLz/juuy9Zu/ZvSpc2nFGdk5PDypXrsba2RqvVYmRkxL59ezh06ADu7rWZN28R5g/8jgsKWs6CBX+wfv0afVDA9Ok/8f333xIbG0OXLt3o2rX7C49/VNRNJkyYjJfXEP24AyxfvowjRw7RuPE7/Pijr36GeGJiIp98MpHt27dQr159gz7Mm7cItVr9wpNZw8PD2L37H2QyGW3bvg9AfLxuBv+jUpzntyfdC+57tnUSARg4cDA5Odn8+ON0vv56GsbGxnTt2p1x4yYCugfIGRkZyOXGT52a/kU5OVWlS5eubNmyCT+/JQQG+lOvXn0aNGhEgwYNqV277hMf0B49epgffpihzzqRlJTEpEljOXnyBGvXrmHgwEHA830Wv/32K2JiohkwYBDjxk3QBxhcunSRTz6ZwK+/zqBOnbr6B/5LliwkPDyM1q3b8sMPM/R937x5Iz///H2h/f/22+/Jzs7GxsbmqcYsv3zAb7/9SuXKVahbtx63bt3i8uUQvvvuK0JCLjFlymfAk88RU1NTSpWyIi0tlYyMDKytrZ/rXARdafjo6GiCg9dRuXJlAFavDub332ezZMlC3N1rsXixP9bWuuvPr7+exu7d/7B166YC59uxY0cYOHAQEyZ8jEwmIzMzgwED+hAXd4fff5/Nt9/+QMeOnQG4fj2CQYP6cfDgfpKTkw1+Nx07dgQrK2tq19bdx7xz5zZbtmykcuUqLF8erH8OnZ2dzYQJo7l06SK7d//zxEwgL9sbHRRw8eJFfUBA7969mT59OnK5vKS7JQiCIAjCK0iSJJIP7CNm8XySHqx/WqceFUePw7FbT4xMTUuwh6+vxOxE1oStZMXV5VxPu/9Qv5FDYwbVGFZ4VgCtFpNDB1CsCMBsx1Z97VOtZSlyevQme9AQ1PUKplITBEEQBEEQXg5JoyHhnx3ELJ5P6jFdulgZEOoE296FU+55aI1W4p/UEQ+rty9Q4kXczrzFymtBrLwWRGzm/Yf675ZrzaAaQwvPCqBWY/rvLhQrlmO6Zzeyew+jtKVLk91nANleQ9DUcCvOwxCEV1JWeNj9gIB8kkRW2LWS6VARWrNmFbm5uYwZM0H/EBJ0M7lHjx7H4cMHOX/+HJcuXaB27boG644cOVYfEAC6mfTr1q0GYPLkKSgUCgCMjY1p1aoN58+fIyYmukAfqlRx0gcE6JY34fPPv+TYsSMcOXKIO3duU7ZsOfbt20tMTDTvvtu6QLrzVq3a0K1bT9avX8OWLRsZPHiYwfsdOnTUP+wz0pduVNOqVRv69RtoEBAA0KNHLxYs+IPbt2/xMsnlcnr27KP/v5GREXl5eaxduwoTExO+++5Hg5TxdnZ2fPHF1wwdOpBVq1YYBAVUrFjphfuTlJTEtGn/h0ajwcPDUz/TOjtbN9kl/2f6sPyHy/nLPcs6qnsTaeRyOSNHjmXkyLEkJydjbW2t/1kBJCQkAGBtbV2sz+g+//xLypWrQHBwAFlZWZw+fYrTp0/dOwYFzZu3wNt7JNWr1yh0/S5duhqUobC1teWLL77B23sQGzas1wcFPOtn8dKli5w9expX1+pMmDDZYKxq167DsGEjmTt3NuvWrebzz78kNzeXbds2Y2JiwhdffG0QzODp2Y2DB/dz+PDBAv0vW7bcU49VZmYmsbExyGQyPv/8C7p166l/79Sp/5g61Yf169fQoEEj2rV7/4nnCDx4nmRhbW1Ndnb2Y9d5cPmHDRgwSB8QANChQyd+/302AKNHj9f/jgBdNo3du/8p9HeWlZU1Y8ZM0AclWVhY0rJlKzZsWE+dOvX0AQEA1ao5U7lyFW7cuE5sbLQ+KECSJI4dO0qzZs31P7vERF2AjLW1tcHEdIVCwZQpn3Pt2lV9AEFJeiOCApKSkkhOTkapVOrTb+Tk5PDpp5+SlZVF165d+fHHH0u4l4IgCIIgvIq0OTnEbVhPzKL5ZIaG6BplMuw6dCK6W32+YyMR6ZNw3vYHPg2m4uEkbnA+DUmSOB53lMArfmyN3EyuVpfq39KklD4rQB27ugXWk8XFoVi7EuWKAMPapw0bkT1oGNlde4ClZXEdhiAIgiAIwltPnZHBnbUriVm8gOxIXdknmbEx5xtasLpJKhEPZF+WIWPWOV9xzfwUtJKW/bF7CLyynF3RO9BIuowLtma29HUdyOAaQwvPChAdpcsKsGoF8ju39e25Ld4le/Awcjp1gcfcoBeEt425iysZl0MMAwNkMswfU9P8dXHmjO7h5oN1s/PJZDKaNm1OeHgYZ86cLhAU8PDDqfyHXQqFwuDBG4ClpS7lek5OboH9fPBB+wIPeRUKBU2bNueff3Zw+vQpOnfu8ti+AjRv3oL169dw5sypAkEBhdWfb9++g8HDWtDNyL15M5KLF88DoNFo9GnLX4aKFSsVqDN+9WooGRkZuLi4Ym/vUGAdN7ealC5ty82bkSQmJjxyxvSzio+PZ9KksURHR1Gzpjs+Pp/r3zMy0h2/7AmlFrVaLZIkIZPJMDIyQqvVPtU6D3s40wOgL1uguVfWprgYGxvj7T2Cfv0GcPToYU6cOM7Zs6eJiYkmJyeb/fv3cujQAaZM+ZwePXoVWP/DDwuWOnB3r4WDgyOxsTHcvn2LcuXKP/NnMX/5Bg0aGQQE5GvevAVz587mzJnTAISGXkalUlGnTj2DQJN8bdq0LTQo4FlYWFiwc+deUlKSqVLFyeC9xo2bMHLkGH77bSZ//rmWdu3ef+rzCkCr1f3+zT/W5zmvHvU7Cwr+jnjc76waNdwwMTExaCtd2qbQ7TxqW6Ghl0lOTqJ58xb6NmdnZ6ysrLl48QKjRnnzwQcf0qxZCypXrkzNmu7UfMklaJ/WGxEUsHLlSubNm0eTJk1YsWIFAH/99RdRUVGALlrJx8en0HWrVq3K+PHji62vgiAIgiC8GnITErgV6Ees/1Ly4u8CYGRuQbn+A6kwcix7jULw3uuFDBkSEqHJuv/7twsWNzkfIyUnmXXhqwm6upxrKVf17fXtGzC4hjfdqvXE0uShh/paLSYH9qFcEYDpzm3I1Gpdcykrcnr3ReU1FM0rEE0rCIIgCILwNsm+FUus3xJuBy1HnZoCgLG1DeUGD6PC8FF47a5PzkP39iUkwlPDir+zr5G7qrusvraCFVcDicqI1Lc3L9uSwTWG0bmKJwrjhx7qq9WY7tqpywqw919k9x5uau3syO7nRbbXYDTOBQMIBEGAap9N48KQgfdLCNx7rfbZtJLu2gu7c+cOAEOGDHjscnFxdwq0WVlZPdSie0hXqtTD7Y9/gFexYuVC28uUKQtAQkK8QV9//322fnZv4X2Ne4q+6mRmZrBx4waOHTvKzZs3SEhI0D/Uzic9nCWiCBXWr/zjDA8Po1mzho9dPy4urkiCAiIiwpkyZTJ37tzG3b0Wc+bMR6G4H6ygVOoyKeTk5BS6fn67UqnUj525uTlpaWnk5ORgWkjWzPx1Hs7S8Cj5x5menoZardYHCRQXc3NzPvjgQz744EMA7t69y7FjR1i7dhXXr0cwc6Yv9erVx9nZxWC9SpUedX6XIT7+LgkJ8ZQrV/6ZP4v5y69bt1qfoeNxy+d/jhwdHQtdrnz5Co/d79OytrY2mHH/oHffbc1vv83kypXLAPqAmEedVw++Z26uvLfO052LhZ1XD3/eHvycP+69J23n3hqPfK+wbR09ehgjIyOaNWupb1MolMyY8QvffPMlFy6c48KFcwBUqFCRVq3a0KNHLypXrvLIfhWXNyIooDAHD96Pitm1a9cjl2vYsKEIChAEQRCEt0jmtavELF5A3PrVaO+lrTIrX4EKw0dTbtAQTO5F3M78e5A+IAB0NzjFzKfCSZLEmfhTBF71Z+P1v8jW6MbV3NiCntV6M9htGPXsC6b6l8XFoVgTjHJFIPKoSH17XuMmqAYPI6dLN7CwKLCeIAiCIAiC8PKknz9L9KL5xG/agHQvWFNZtRoVR42jTN8BGN/L2uRs5Upocoj+ehl0mQJcrF//2bdFTZIkjtw5ROAVf7bf3EKeVlcay9rUhr4u/RlUYxg1ShdM9a/LChCIYuUK5A881Mtt1ZbswUPJ+agzPKEesiC87Ry7dKVu4Equ/+pLVtg1zF2rU+2zaTiWcF3noqDV6iKz2rfvUOhs43yFzX4tqoeyj5qFn/8wPv/9/L42atS40Bn0+QqbZS6TFTy269cjGD9+NMnJSdjY2ODuXpv27T/C1dWVhg0b07Vrp2c+lsIUNmP5cf3KX75s2bLUe0LJw6d9oP44J04c54svPiMzM4NmzZrz88+/Ftiuo6NuvBMTEwrdRn77gwEKDg6OpKWlkZiYQKlSpZ5qncexs7PD0bEMd+/GERoaQp069R67/PHjR7l+/TrNmjWnWjXnp9rHw27cuE5CQjwNGjTE2NhwZrijoyNdu3anY8fOjB8/iosXL7Br1w7Gjp1osNyjPlf3z2/d5+hZP4v5y7u713pk4AHcfyD9pJn1xVGSwc7ODrj/4D4/QCE/bf7DcnNzSU9Pw8TEBCsrXaCBg4MD165duXf+FCzZ8Ljzqqh+ZxXFdo4ePYKbm3uB31eNGr3DX39t5ujRwxw5cojTp08SGxvDmjUr+fPPtfz4oy9t27Z74f2/iNcmKMDX1xdfX99C35s4cSITJxp+WBctWlQc3RIEQRAE4TUgSRJJB/cTOW8uSf/eDxa0rNeASmMn4NClG0YPpY6KSAszuMEJYubTwzLy0vkrYj2BV/y5lHRB316zdC2Gug2nl3MfSpk+FGX7qKwAVtZk9+lHttdQNO61ivMwBEEQBEEQ3nqSVkv8zu1EzptL6tHD+nbrFu9SacwE7D78CNlDN7l9Gkw1yKyV/+pTf2pxd/+VlZyTxNqwVQRe8SciLVzf3sjhHYa4edO1ag+Uxoappx+ZFcDenuz+g1ANHIz2OR+QCMLbyrFLVxy7dC3pbhQ5Ozt77ty5zahRYx/7YPFlir+XefFhd+6VN8nPGGBnp3sw/eGHHenatfsL73fmzP+RnJyEl9cQxo6dYPBQNC0t7Zm2ZWSke+Ca/6D2Qenp6c+0rfyHmY6OZZk+/adnWvdZ/fPPDr7//ls0GjVdunTj88+/KPSBp5NTVYyMjLh5MxKtVlvgofX16xEABrPkq1VzJiIinBs3ruPkVNVgea1Wy82bkchksmd6YN+6dVv+/HMte/fueWJQQGDgcs6ePc3t2/2YMuWzp97Hgz7/fApRUTfx8wuiVq3ahS5jampKhw4duXjxQqHnTXx8fKFBLPkz/cuUKQM8+2cx/zxp0qQZY8Y8edKyg4OuD7dv3y70/fj4+Cdu40nOnDnNli0bcXKqypAh3gXej42NNeiLtbUNdnb2JCYmkJqagrW1jcHyN25cR5IkqlZ11p9zzs4uHDlyiBs3btC8eUseVti5+KpJTk7mypXLeHuPLPR9hUJBu3Yf0K7dBwBERt4gIMCPnTu3M2/enBIPCnh0yIogCIIgCMJrTpuXx+11a/i3YUPOdPPQBQTIZNh39KD+5p002rWfMj16FwgIAN3MJxmGkbhi5pNOSNIlPjv6CXXXuPF/Rz/mUtIFFHIFfVz6s81jN/u7HWVYzREGAQGy+HiUc3/Dtml9bPp2x2zrJmRqNXmNm5A2dyGJF66S+fOvIiBAEARBEAShGGlUKmIC/PjH3Z3zA/qQevQwMmNjHHv2odHuAzTYuB37jzoVCAgA8HDyxL9dMO62tTCTm+FuW4vl7VbS2alLCRzJq0OSJE7d/Y+JB8dQb40b3/z3BRFp4VgYWzLUbTh7ux5hR5c99HMdaBAQYBQTjbnvj9g2rIX10AGY7dmNTJLIbdWW1GWBJJ67QubX00VAgCAIeg0bNgJ0s1YL8803XzBsmBcHDx54aX04cuRwgTaVSsWJE8eRy+U0adL0Xl8b3utrweUB1q5dzcCBffD3X/pU+710STcxYehQ7wKzpE+cOKb/94PlAx412To/pXlyclKB90JCLj5Vf/K5u9fCzExBWNhVfcr3B929e5fevbsxYcIYsrKynmnbDzp06ADff/8NGo2aESNG8+WX3zxyBrRCoaRBg4ZkZGToa9k/6MCBfQC0aPGuvi3/ge3Bg/sLLH/mzCnS0tKoU6deoVkEHqVPn36YmJjw11/ruHHj+iOXO3BgH+fOncHIyIgePXo99fYfVqdOXQDWr1/z2OVu3rwJUGiAw5Ejhwq0Xbp0gcTEBFxdq+sf7j/rZzF/+ePHjxaajWL//r307duDX36ZAUDNmu6UKlWKq1dD9QE3D3rU5+pZ5OXlsWPHNtauXU1ubm6B97dv3wJA06bN9W3Nm7cACj9P7p9XLQtZfl+B5WNioomICKdMmbK4uLy6JZGOHz+CVqstENSwc+d2evXyxN9/mUG7k1NVfHw+Bwovj1LcRFCAIAiCIAhvnLzUFKL+mMPxxnUIGTOClHPnMDI3p7z3SJocO03twFXYNGvx2PRbPg2m6mc8AW/9zKdsdTbrwlfTaesHvLexBQFX/MjIS8fZyoXvm/zM+X5XmNd6Me84Nr0/rpKEyaEDlBo5FLv6blj++C3ym5ForaxRDR9F0v5jpGz/l5x+A6EI0uYJgiAIgiAITyc3Pp4b//uJ4w3dufLpZNKvXsXYyppKEz6m6amLuC9cRqknpD0GXWDAvm5HiR4Sz75uR9/qgID03HQCr/jTbtO7dNr6AWvDV5GtyaaWbR1+bTGHi/2v8kuL36htV+f+ShoNprt2YOXVB9vGdbCY/QvyO7fR2tuTNeFjEo+fJfWvzeR6dodCajoLgvB269OnH3K5nCVLFnLy5AmD9zZs+JNdu3Zy/XrEI2dJF4UzZ06xbt39h655eXnMmPEDaWmpfPRRJ/3s4Q8++BB7e3sOHNjHqlXBBg/rQ0IusXTpQiIiwp/6YaDNvdKPhw4ZBjycPXua2bN/0f8/N/d+7XJTU125lYyMDIN18lO6b9jwp8HD0L17/2X//r1P1Z98SqWSbt26o1Kp+O67r0hKuh9okJWVxQ8/fEt0dBQWFhYGaf5jYqKJjLxBRsaTMxMkJibyww/fodFoGDZsBCNGjH7iOr179wN0GRYeLCOwb98edu3aib29PR07dta3t23bDgcHB3bt2sm+fXse2HcCM2f+DwAvryFP3O+DKleuwpAh3uTm5jJmzAgOHNhX4IH43r17mD79ayRJon9/L6pWraZ/LyMjncjIG8TERD/V/gYNGoqZmYKdO7fzv//9RGpqqsH7Wq2WjRs38Pfff1K6tC2dOhW8hlm5MoiLF8/r/5+YmMDPP/8AQL9+A/Xtz/pZbNiwMdWr1+DKlVD++GMOeXl5+uWjo6OYPftXbt6MpEoVXQ16Y2MTevbsg0ajYfr0r8nMvH8O7927h3/+2VHoGNy5c5vIyBukpCQ/cbwaN36HypWrkJSUyMyZ/0Otvt+nI0cOsW7dGszMFAY/9549+2BkZMSiRQu4eTNS337hwnlWrw7GzMxMf+4B1K/fkOrVa3Du3FnWrl2tb8/MzOCnn6YjSRIDBgx6YrmEknT06BFKly6N+0OTmqpVcyYmJoZ161YZjAXoAgaAAuuUhNemfIAgCIIgCMKTqKJuErt0IbeDg9Dcu0A2LVOG6pMmYddvELJSNk+9rfyZT7PO+RKeGoaLtSs+9ae9dTc6r6dGsObcCvzO+5Oco/syaywzplOVLgxx8+bdcq0LXKzLkhJRrF2NIsgf44j7aVLzGjVGNdibnK49RBCAIAiCIAhCCcgMu0bMonncWbca6V5NWEXlKrh9+gk23fuC0qKEe/j6uZx0iZUnA1lxKZiMPN3DHIVcQdeqPRji5k0jh3cKXC8bxd1BsTIIRXAg8gcebuS+25rswcPI6egBZmbFehyCILx+3Nzc+fjjKcye/SsTJ46lenU3ypcvT1TUTa5fj0Aul/Pttz/qa4G/DI6OZZg9+xe2bt1MxYoVCQm5RFzcHapXr8GkSZ/ol1MolPz88698+ulE5s6dzZ9/rsXFxZXU1BQuXDiPJEn06zeA1q3bPtV++/cfyO+/z2b69G/4++8N2NvbExMTzbVrVw3SmicmJmJhYQmgT+u+fPlSLl48T6dOHrRu3ZauXbvz559ruXjxAr17d8PdvRaxsbFcu3aFTp266GdIP62xYydy7dpVTp06Sa9eXXF3d0ehUHLhwnnS0lKpXLkKn3/+pcE6EyaM4c6d23z11Xd4eHg+dvurVweTlpaKXG5MbGwM3377ZaHL1a1bn549ewO6h/wdO3Zmx45t9OnTg8aN3yElJZkLF85jYmLC9Ok/Y/pA8Jm5uTlffPEN//d/n/DFF59Rt249bGxKc+rUSTIzM+jevSetW7d5pnEBGDFiNBqNhuXLl/H551MoU6Yszs4umJqacu3aVW7d0qWo79WrL+PHTzJYd//+ffz443eULVuOjRu3PXFfTk5V8fX9lW+++YK///6LLVs2UbNmLRwdHcnOVhEaGkpSUiK2tnbMmvU7FhYFr4FKlbJizJgRNGjQCHNzc06dOklWViadOnnQufP9+4PP+lmUyWT8+KMv48ePZvXqYP799x+qV3cjJyeHc+fOoFaree+99+nVq69+H8OGjeDChfOcOXOKnj09qV+/IUlJSVy4cI46depy8eKFAv2fPv0bzp49zfDhoxg5csxjx0sul/P99z8zceIYNm/+m//+O0aNGjVJTEzg0qWLyOXGTJ/+g0F5hJo13Rk6dDj+/ksZPLg/jRu/Q25uHmfOnEKr1fLdd4a/f2QyGV999R1jx47kt99+Zfv2LZQvX4Fz586SnJxEy5bv6s/ZV5FGo+HEieO0bPlugWu76tVr0Ldvf9auXc2AAX2oV68+NjY2REdHERZ2DaVSyccf+5RQz+8TQQGCIAiCILz20s6dIXrBXOK3bAKNrgacRU13Ko6dSIXefbAra0tyciZqdcGUXI/j4eSJh9Pjv4y9TFsjNzPzrC8RaWE4W7ni02BqsfRHrVWzO/ofll9Zyv7Y+1HxFS0q4VVjCAOrD6aMeVnDlSQJ4/9OoAz0w2zLRmT3bjJrLUuR07MPqsHD0NxL3SYIgiAIgiAUH0mSSD12hOgFc0nctVPfXqphIyqNm0RZz67YOVg/1/VySTPduhmLmb7II8LQOLuS6TOV3Cc8TCkKOZoctkZuIuCKHyfi7qepdrZyYYibN31dB1DazNZwJa0Wk4P7UQb6Y7pzG7J731u0pUuT3Xcg2YOHoXmF0+UKgvBq6t27H9Wru7Fq1QouXDjHjRsR2Ns78MEHHzJo0FBq1HB7qfvv1MmD8uUrsGrVCg4fPkiZMmUZPnwUAwcONpgJD1C3bj2CgtawYkUAx48f5dixI1hZWdOoUWN69+5HmzbvPfV++/f3ws7OnjVrVhIREc6VK5cpU6YsvXv3Y9CgoaxYEcD69Ws4dOggAwcOAqBHj16Eh1/j4MH9HDt2lKpVq9G6dVvKli3H0qUBLFmykFOnTnL06BGcnZ358UdfXFxcnzkoQKFQMHfuQjZs+JN//tlOSMglZDIZ5cqVp0+ffvTtO+CZ0u4/7NgxXYp6jUbNrgf+rhfmwQesX389HXf3Wmza9DfHjx/F0rIUrVq1YcSI0VSvXqPAus2bt2TJkuX4+S3mwoXzaDQaKlWqTM+efZ4YuPA4o0ePo3nzlmzatIELF85z+vRJNBoNdnb2fPjhR/To0Zv69Z+crehpNG/ekvXrN7Jhw5+cOHGM6Ohorly5jEKhoGLFSvTq1Yfevfs98ufx2WfTOH/+HDt3biM9PZ1q1Zzp0aN3ocf/rJ/FypWrEBS0muDgQA4dOsDJkycwNzenZs1adO3anY8+6mRQGsPMzIw5c+axZs1Ktm3bwrFjR7C3d2D8+EnUrOnOhAmPf+j/NNzcahIUtJrly/04fvwoR44colQpK95/vz1Dhw7XZ9V40KhRY6lSxYm1a1dz+vQpFAoFDRs2ZujQ4TRq1LjA8tWr12D58hX3Pm//ERkZScWKFfHyGkzv3v0eWQbjVXDp0kXS0lINSm08aPLkKVSpUpVt2zZz5cplcnNzsbOzp0uXrgwZ4k3FipWKuccFyaQH87QIz0yj0ZKUlPlM6xgbG1G6tMVr+WXrVSDG78WI8Xt+YuxejBi/FyPGryBJqyXx33+IXvAHqQ/Uzird5j0qjZtE6bbtkMlkr+3YbY3cjPdeL33ZgvxX/3bBLy0wIC4rjpXXAgm6upxbmbrobBkyPqr2EYNch/FeufbIjQxr9cnSUjFbvxZlkD/GoZf17Xl16pE9dDjZ3XuBpeVL6e/r4HnPP1tbC+TyN6PSl7heLn5i/J6fGLsXI8bvxYjxezFi/ArSqtXEb9lIzMI/SD93Vtcok2H/UWcqjZuEVZOmr/X1sunWzVh7eyHJZMgkSf+a6h/80gIDotJvEnR1OauuBZGQrUu/LJfJ6ebaDS/XobRwLCSLVkICijUrUQb5I4+8oW/Pa9oc1RBvcjy6gkLxUvr7OhDXy2+X7OxsIiKuY29fVp/KXXg9LV26CD+/JQwdOpwxY8aXdHeEt8TevXtYtmwRq1atf6n7GTt2JGfPnmbu3IU0adL0pe5LEIpCbm4OCQl3cHauhuIx15WvbsiFIAiCIAhCITTZ2cT9uZaYhX+QFXYNAJmxMY7de1Fp7EQsa9d5whZeDzPP+uoDAQB9YMCsc75FGhQgSRLH7hxh+ZVlbIvcjFpSA2CnsKO/6yC8aw2nQZXaBW7SGV84hyLAD8WG9ciysnTbUirJ7t6L7CHeqOs3hFe4BpggCIIgCMKbSp2RwZ1VQUQvXkBOdBQARgoFZfsOpOKYcZg7vxmz0S1m+uoDAQB9YID5LN8iDQrQaDXsi/2XgCt+7I7+R399Xs68PINqDGWI+zDcK7oYXi9LEiYnjqEI8MNs6yZk92pUa0tZkd23P9mDvdG41SyyPgqCIAjC2+DYsSOFZjUQBOHpiKAAQRAEQRBeC3kpydwK8CNm6SLy4u8CIC9lRfnBw6gwcgyK8hVKuIdFKyItTH/DMZ+ERHhqWJFsPz03jXXhqwm44sfVlCv69nccmzLUbTieVbtjJjfD2PiB2TdZWSg2/oUi0A+Ts2f0zeoabrpZTr37IVnbFEn/BEEQBEEQhGeTExdH7LJF3ArwQ52aAoCJvT0Vho2k/LCRmNrbl2wHi5g8IkwfEJBPJkkYhxfN9XJidiKrrq0g8Io/URmR+vY25d9jqNsIOlTuiLGRscH1si6L1hqUgf4YXwnVt+fVb0D2kOFkd+sJhdQsfl1tTdnMzDhfInLCcDZzxafMVDxsSq78miAIgvDm+u+/E5w8eZz585eUdFcE4bUlggIEQRAEQXilqaJuErN4PrdXrkCbpUtBbla+AhVHjaPcoCEYl7Iq4R6+HM5WroQmhxgEBsiQ4WJdsH7Xs7icFMLyK8tYH76GLLVuPM2NLejl3JehbsOpbVdIpoUrV1DO+QPTNaswuneDWTIxIadLV7KHjiCvaXORFUAQBEEQBKGEZIZdI3rBXOLWr0G6NyNdWc2ZSmMnUqZPf+RKZQn38OXQOLsiDw0xCAyQZDLULs9/vSxJEmfiT+EfupTNkX+To8kBwNrUhn6uAxnq5o2zdSGZFs6cwXzOH5j+tc4wi1aP3vezaL1htqZsxvvm/XJnodkheN/0wp9gERggCIIgFLl33mnCmjV/oVC8mdc1glAcRFCAIAiCIAivpPSL54me/zt3N/0NGg0AFrXqUGncRBy79cTIxKSEe/hy+TSYivfe+zfZ8l996k995m3lanLZdnMzy0OXcTzuqL69uk0NhrmNoLdLP6xMrQ1XysvDdMdWzAP94NBB8qtRaSo7oRo8jOz+XkgODi9whIIgCIIgCK+/+K2biZzpiyoiDKWzK04+U3F4SfXsHyRJEqknjhO94HcSd27Xt1u905RK4ydj36EjMrn8pfejJGX6TMXa20tfQiD/Ncvn2a+Xs9RZbLz+F/6hS7mQeE7fXteuPt41R9KtWk/Mjc0NV1KpMNu0AfNAfzh9kvzq6G9LFq2ZcY8odxbnK4ICBOEtMHLkGEaOHFPS3RDeIjKZrNgCAhYuXFos+xGE4iaCAgRBEARBeGVIkkTy/r1Ez59L8sF9+vbSbd6j0vjJlG7zHrK3ZEa6h5Mn/u2CmXXOl/DUMFysXfGpP43OTl2eehu3MmMJurqcFVcDiFfdK7kgk9OpSheG1RxBy7KtCoyn0a1YFEHLUawMQh53516jEbkdOpI1xJu8tu+DkdHDuxIEQRAEQXjrxG/dTIi3ly5jkiSRGRpCiLcXtfyDX1pggKTRkLBzO9Hz5pB2+qSuUSbD/qPOVBo3CeumzV7Kfl9FuR6epPoHYz7LF+PwMNQurmT5TCO389NfL19PiyAg1I81YcGk5KYAYCY3o2vVHnjXHEkD+0YFr5evR6AM9EexJhij5GRdo4kJuV26kjVkOHnNWrwVWbQich5R7iynaMo3CIIgCIIgCEVLBAUIgiAIglDitGo18Zs2ED1/LhmXLuga5XIcu/ag0vhJlKpTr2Q7WEI8nDzxcHq2G8qSJHHkziH8Q5ey4+ZWNJIuy0IZZVkG1RjKoBpDKWdR3nAlrRaTg/tRLl+G6T/bkWm1umYHR3IGD0U5aTyZpexQq7VFclyCIAiCIAhvgsiZvvqAAED3KpMROcu3yIMCNNnZxK1fQ/SCuagiwgGQmZlRtk9/Ko2diLlLISnt3wK5Hp7kPuNYa7Qa9sbuxu/yEvbG/qtvr2xZhSFuwxlQfRB2CjvDldRqTHftRBmwDNP9e+9vq1Jlcod6oxw/hkxTy7fqetnZzJXQ7ELKnZm9WLkzQRAEQRAE4eUQQQGCIAiCIJQYTWYmt1evIHrhPHKiowAwMjennNcQKo4ah7JylRLu4esjIy+ddeFrWB66lKspV/Ttzcu2xNttJJ2cumBiZFhyQZachGLNKhSBfhhfj9C357Z4l+xhI5AksPh9JsyfSylnFzKnTH3mm66CIAiCIAhvKlVE2P2AgHyShCq86GZK56WmcCvAj5glC8mL12V+Mra2ofywEVQYPhqzMmWKbF9vuqTsRFaFBRMQ6kdURqS+vV2FD/CuOZL3K36I3Miw5IIsLg7lykAUQcuR34oFQJLJyH2/PdlDh5P7/ocYm5mgLG0ByZnFeTglzqfMVLxvFlLurOyzl28QBEEQBEEQXj4RFCAIgiAIQrHLTUwk1m8xsf5LUCclAWBib0+FEWOoMHQ4JrZ2T9iCkC8s5Rr+oUtYG76ajLx0AMyNLejt0o9hbiNwt61VYB3j82dR+C9F8fefyLKzAdCWsiK7b3+yhwxHU8MN062b9TVakSTkl0Ow9vYi1T+42AIDTLduxmKmL/KIMDTOrmT6iKAEQRAEQXgVva1/s5XOrmSEhiB7IDBAkslQurz4TOnsW7HELF7A7aDlaDIzADArX4GKY8ZTzmsIxpalXngfb4sLCefwD13Khuvrydborn2tTW3o7+rF0JrDqWblbLiCJGFy/CiK5Usx27oZmVoNgNbOjuwBg1ENHoa2ilMxH8Wrx8PGE3+CmRXnS3hOGC5mrviUnUZn66cv3yAIgiAIgiAUHxEUIAiCIAhCsVFF3SRm4R/cXrUCrUoFgKKKE5XGTaJsv4HIlUqD5eO3biZypi+qiDCUzq44+Ux9afVZXycarYZd0TvxC13CwVv79O0u1q4McxtBX9cBWJlaG66UnY3Zpg0oly/F5MxpfbPavTYq75Fk9+gNlpb6douZvkgymf4mt0ySkGQyzGf5FstN/geDEmSShDy0+IMSBEEQBEF4srf5b3bCkPdRfn4JrQyMJO69SiQMbvfc28y8dpXoeXOI+2sdUl4eABY13ak0fjKO3XthZGLyhC0IALmaXLZEbsQ/dCkn757Qt9e2rctw91F0r9YLc2Nzg3VkGemYrV+LMmAZxqGX9e15jZugGjaCnC7dQKEorkN4LXjYeOJh82Z/zgVBEARBEN4UIihAEARBEISXLiPkElHz5nB341+g0dW4t6zXgMoTJuPg0RWZXF5gnfitmwnx9tLXac0MDSHE24ta/sFvbWBAUnYiwdeCCLziR3TGvXILMiM+rNSR4TVH0bp8W2QymcE6RjcjUQb6o1gVhNG9rAySiQk5XbqhGjYSdZOmujF+iDwizGDWG+gCA4yLMB3u45R0UIIgCIIgCE/nbf6b/T+bPZTygp57oHw83HKAP9+HzNJ76MgPz7St1JMniPpjDok7t+nbrFu8S+UJk7F9/8MC13hC4e5k3Sbwij9BV5cTr7pXbkFmjGfVbnjXHM07jk0KjKX82lWU/kswW7cGowxd5i3J3Jzsnn3IHjocdZ16xX4cgiAIgiAIglDURFCAIAiCIAgvhSRJpB47QtQfv5G0Z7e+vXSb96g88RNsWrV57M3NyJm++oCAexsEmYzIWb5vXVDAxcTzLLu8mL+v/6lPeWprZsvA6kMY4uZN5VJVDFfQajHZvwel/1JMd/+jv0mvqVgJ1RBvsgcMRnJweOw+Nc6uyAtJh6sugnS4T6OkgxIEQRAEQXg6b/Pf7Ii0MHJqw4nahu1mqU937JIkkbRnF1FzfyP1+FF9u31HDypN/Bjrxk2KsrtvLEmSOBF3HL/QxWyL3Ixa0qX7L6MsyxA3bwbVGEoZ87KGK6nVmO7YhnL5UkwPH7zf7OxC9rARZPcdgGRtU4xHIQiCIAiCIAgvlwgKEARBEAShSElaLYm7dhL1+yzSTp/UNRoZ4dClG5UnTKZUvQZPtR1VRNj9gAD9xiVUb8ENZoA8bR5bIzex7PJig5Snde3qM7zmKLpV64nS2LDcgiwlGcXqlSgClmF847q+PbdtO1Teo8ht3wEKycpQmEyfqQapgPNfs3ymFs0BPkFJByUIgiAIgvB03ua/2c5WroQmhyBx/9hlyHCxfvyxa9Vq4jdtIGrub2SGhujWMzGhTO9+VBo/GQvXN3/sioJKreLv63+y7PJiLiVd0Lc3K9OC4TVH0cmpCyZGhuUWZHfvogwOQBG0HPmtWAAkIyNyO3RC5T2SvNZtC82iJQiCIAiCIAivOxEUIAiCIAjCY8Vv3UzkTF9UEWEonV1x8pla6Ex9bV4edzesJ2reHLKuXgFAZmZG2b4DqTRuIubVnJ9pv0pnV91N0gcDA2QylG/4Dea7qrsEXfEn8Io/cao7wFOkPL10EaX/EhR/rUOmUgGgtbImu98AsoeNQOPs+sz9yPXwJNU/GIvZ/8M4PAyNiyuZU6aS27nLix/kUyjpoARBEARBEJ7O2/w326fBVLz3eiFDhoSkf/WpX/ixa1Qq7qxZSfT8uWRHRQIgt7Ck3OBhVBw9DkX5CsXY+9dXdEYUy0OXsfJaIMk5yQAo5Ap6OvfBu+Yo6tjVNVxBkjA+9R9KvyWYbdmILC8PAK29PSqvoWQPHoa2YqXiPgxBEARBEARBKFYiKEAQBEEQhEeK37qZEG8vfRr/zNAQQry9qOUfrA8M0GRlcXtVENEL/iAnJhoAeSkrKgwbQYWRYzErU+a59u3kM9Vg3/mvTm/oDeYz8adYdnkxm25sIE+ru1HpqCzD4BrDGOLmXTDlaV4eZts2o/RbgsmJY/pmtXttVN4jye7ZBywsXqhPuR6eaLt1o3RpC9KTM1GrtS+0vWfdd6p/MOazfDEOD0Pt4kqWz7RiC0oQBEEQBOHpvM1/sz2cPPFvF8ysc76Ep4bhYu2KT/1pdHYyPHZ1Wiqxy5cRs3gBeQnxAJjY2VFh5FgqeI/ExKZ0SXT/tSJJEkfuHGLZ5cXsjNqGVtJdl1ayrMywmiMZWH0Qpc1sDVdSqVD8/ScK/6WYXDinb85r9A4q75HkeHYHM7NiPIqitzVlMzPjfInICcPZzBWfMlPxsHm7Sq0JgiAIgiAIT0cEBQiCIAiC8EiRM33vP5QH/cP5yFm+2LRqzS3/pcQsWUBeYiIAJg6OVBw9jgpDh2NsZf1C+3bw8KSWfzCRs3xRhYehdHHFyWcaDm/QDeZcTS6bI/9mWcgiziSc1rc3cniHEe6j6eLUDVO5qcE6RnF3UAQt16U8jdNlEpCMjcnx8CTbexR5TZu/MSlPcz08yS0kK0VxkCSJo5mH2Za6mVaWbelo3blE+iEIgiAIr4OS/Jtd0jycPPFwKvzYc+/eJWbJAmKXL0OTngaAWcVKVBo/iXL9ByE3Ny/Orr6WstRZ/Bm+Fr/QxYQmX9a3tyrXlhHuo/mw0kfIjQzLYxlF3UQZ4IdiZSBGybpMApKZGdk9epPtPRL1U5Yze9VtTdmM9837mSpCs0PwvumFP8HFEhigkTTsS/+XXWk76WrTg5aWrV76PgVBKDmbNv3NjBk/0KlTF775Zvpzb6dZs4YAHD78H8bG4vGUIAhCcRK/dQVBEARBeCRVRJhh+n7QZQy4EsrxBrXQZKQDoKjsRKUJkynbdwBypbKQLT0fBw/PQksVFBfTrZuxmOmLPCIMjbMrmT5Ti+SGd1xWHEFXdSUC7qridPsyMqVr1R6McB9NA4dGhitIEsYn/0PpvxizzRuRqdUAaBzLkD14mC7ladlyL9wvAW7n3WJt0ipWJa0gMvcGAJdVISIoQBAEQRCEp6aKukn0/N+5szoYbXY2AOY13Kg88RMcu/fCyMTkCVsQojOi8A9dysqrgaTkpgBgbmxOb5f+DK85CrfSNQ1XkCRMDu5H6bcY0392ILv3HUZTqTKqoSPIHjgIydaumI/i5ZoZ56sPCAD0JSxmxfm+1KCAyJwbrE5awZrkVdzOuwVAqiZFBAUIgiAIgiC84kRQgCAIgiAIj6R0diUzNKRgYIBGgyYjHYuatag86RMcuvbA6A2L8DbdutmgPq48NARrby9S/YOfOzDgbPxpll5eZFAioIyyLEPcvBns5o2j0tFwBZUKs41/6UoEPJjy9J2mqEaMJqezJ5gaZhIQnl2elMeutJ2sSgxiT/putOjS0VoalaK7TU8mOX5awj0UBEEQBOF1kHkllKi5s4n7+0/QaAAo1agxVSb7YPfhR8iMjEq4h682SZI4ducISy4vNCgRUNnSCe+aIxlQ3QsbM8NSC7KMdMzWrkbpvwTjsGv69tw276EaPprc9h1AbphJ4E0RkROmDwjIJyERnhNW5PtSaVVsT93CyqQgDmcc1LeXlpemd+l+TBTXy4IgCIIgCK+8N+vuvSAIgiAIRcrJZyoh3l4F2pXOrjhP/xG79h8he0NS1T/MYqavPiAAQCZJSDIZ5rN8nykoIE+bx9bITSy9vIhTd//Ttzd2bMJI9zF0ruJZsERATLQu5WlwAEZJSQBICoUu5enwUajr1CuCIxTCs8NYmRTE2uRVJKjj9e1NLZoz0HYwXay7YSG3KMEeCoIgCILwOkg7e5qoObNI2LFV31a6zXtUnjwFm5at3tjr5aKiUqvYcH09S0MWcTn5kr69Vbm2jKw1hvYVOxQoESCPCEPhtwTFmlUY3cteprWwJKffAFTeo9C4Vi/WYygJzmauhGaHGAQGyJDhYlZ0x34x6zwrk4L4K2U9qZoU/T7aWL7HQLvBfGTVGTMjsyLbnyAIgiAIgvDyiKAAQRAEQRAKlXb2NHHr1xi0yS0sqTThY6p8+n9v/M1NeUSYPiAgn0ySMA5/upk3idmJrLi6nOWhy7idpUuraWJkQreqPR9ZIsDk6GGUyxZjumMrMq1uZpSmYiVdylOvwW9cytOSkKnJZEvqRoITA/kv67i+3dG4DH1LD2CAnRfOZq4l2ENBEARBEF4HkiSRcuQQUXNmkXxwn65RJsO+UxcqT/4Uq/oNS7aDr4HbmbdYHrqMoKv+JOXoAmGVciW9Xfozwn10wRIBWi2me3frrpf3/qtvVru4oho+ipw+/ZFKWRXnIZQonzJT8b7ppS8hkP/qU3bqC203VZPCX8nrWZW0gguqc/r2SiaV6Wc7kH62A6lkWvkFey8IwuMsXboIP78lzJw5B4DAwOWEhV1FoVDQrFkLJk+eQunSpdm8eSNr164iJiYGR0dHOnbszODBQzE2vl+mJi7uDoGByzl69DAJCfFYWlpSr14DBg0aQu3adQvsOyMjnRUrAtizZzfx8fGUL1+Bfv0GPra/UVFRBAT4cfLkCZKTkyhd2pZmzVrg7T2CcuXKF+nYCIIgCM9PBAUIgiAIgqAnSRIpRw8TNWcmyQceuLnZ2ZMqkz+lVL0GJdvBYqRxdkUeGmIQGCDJZKhdHj/z5nJSCEsvL+SviHVka3Q1ZB2Ujgx1G87gGt6UMS9juEJWFoq/1qFcthjj0BB9c+67rXUpTzt0hDesNENxkySJc6ozBCcG8XfKn2RodbPJjDCivVUHBtgO5gOrDzGRifq+giAIgiA8niRJJO7eSdScWaSdupcFSi6nTK++VJ74CRbVa5RsB18Dp+7+x9KQhWyJ3IRaUgNQ0aIS3u6jGFh9EKXNbA2Wl6WlolizEoXfEoxvXAd01+W57TugGj6avDbvwVtYmsHDxhN/gpkV50t4ThguZq74lJ1GZ+suz7wtSZI4nnmU4KRAtqRsJFvSfY8xlZnSydqDAbaDaW3ZFiPZ2zfOQvGTJAltVlZJd+OZGJmbv5SJE3///RdHjhyievUaNGnSjAsXzrFz53YiI2/wzjtNWbkyiDp16tK4cWP+++8ES5YsJC0tjY8/ngJASMglPv54POnp6VSsWInWrdty924cBw7s49ChA3z22TS6deup319aWhrjxo0kPDwMBwdHWrZsxe3bt5gx4weqVq1WaB9PnjzBZ599ikqlwtnZhdq16xAVdZMtWzZy4MA+5s6dj5ube5GPjSAIgvDsxB1mQRAEQRCQJImkPbu4+dtM0k6e0DW+5Tc3M32mYu3tpS8hkP+a5VNw5o1Gq2F3zD8sCVnA4dv3a2zWs2vAyFpj6Fq1B2Zyw7SaRtFRKJcv05UISEkBQDI3J7tXP1TDR6GpKb40v6gUdTJ/pawjODGIkOyL+nYn06oMtB1MX9sBlDUpV4I9FARBEIQ3Q/zWzUTO9EUVEYbS2RUnn6k4PEO5pdeBpNEQv3UTN+fMIjNEd10hMzOj3IBBVBo/GWXlKiXcw1dbnjaPLTc2svTyQk7Hn9K3Ny/bkpHuY/mocieMjQxvU8rDrqH0W4xizSpkWZkAaK2sye7vhcp7JNpHPKB6m3jYeOJh8/yftbt5d1mbvIqViYFcz43Qt9dUuDPQdjC9SvfF1lhkKxOKjyRJnOrYntT/jj954VeIddPmNN6+q8gDA44cOcSUKZ/Ru3c/AO7evUufPt24ciWUsLBr/PHHIho1agzAsWNH+OSTiWzZsolJkz4hLy+PqVN9SE9PZ9SocQwbNlzfv6NHjzBtmg+//vo/atasRY0abgAsWbKQ8PAwWrduyw8/zMDMTHcfY/Pmjfz88/cF+peamsJXX00jNzeXn376H++/317/3saNf+Hr+xNffjmVNWv+wsREBOELgiCUNBEUIAiCIAhvMUmrJX7bZqLmzCLj4nlA3NzMl+vhSap/MOazfDEOD0Pt4kqWzzRyO9+feZORl87qa8EsvbyIyPQbAMhlcjpX8WRkrbE0cWxqeFNAkjA5dgTl0kWGJQIqO6HyHkn2AC8km9LFepxvGkmSOJp5mODEQLambiJHygHATGaGh3VXBtoNpoXFu2KWkyAIgiAUkfitmwnx9gKZDCSJzNAQQry9qOUf/EYEBmjz8oj7ax1Rc2ejuldGSm5hSfmhw6k4ZgJmZco8YQtvt6TsRFZcDcA/dKm+pJapkSk9nHsz0n0MdezqGa6g1WK671+USxZium+Pvlldww3V8NFk9+oLlpbFeQhvHI2kYX/6HlYkBbIrdQdqdNkaLIws6WHTiwG2g2ho3viNLxcnvMLEuafn7OyiDwgAcHR0pEGDRhw7doT33/9QHxAA0KxZC5RKJZmZGSQnJ3HixHHi4+/SsGFjvL1HGGy3RYuWDBo0lGXLFrN6dTDfffcjubm5bNu2GRMTE7744mt9QACAp2c3Dh7cz+HDBw22s2nTRlJTU+jdu59BQABAt249OXz4EIcPH2T//r20b9+hKIdGEARBeA4iKEAQBEEQ3kJatZq7G9YTNXc2WdeuAmBkbkGFocOpOHYCZmXKlnAPXw25Hp7kFnIzOzLtBn6hi1l1LZj0vDQAbExtGFRjGN41R1LBsqLhCioVir//RLl0EcYh92es57Zqi2rUWHI/+BDk8pd6LG+6u3l3WZO8klWJQQaznNwVtRlkN4SeNn2wMRYBF4IgCIJQ1CJn+uoDAgDdq0xG5Czf1zooQJOdzZ3VwUTNm0NOdBQAxjY2VBw5lgojRmNS2vYJW3i7XU2+wpLLC1kfvlpfUstRWYZhNUcwuIY3DkoHg+VlGemYrVmpK6l1XXctJ8lk5HboiGrEGPJatREPCl9QTG40q5JWsDopmNi8GH17Y/MmeNkOwdOmO5ZyEXAhlCyZTEbj7btE+YB7atWqU6CtdGnd91pXV1eDdplMhqWlJSqVipycXM6ePQ1Au3bvF7rt9u07sGzZYs6c0S0XGnoZlUpFnTr1sClkskKbNm0LBAWcOXMSwCA44UHNmrXg8OGDnDlzSgQFCIIgvAJEUIAgCIIgvEW0OTncWbeaqLmzyb4ZCYCxtQ0VRoym4sgxmNiK1JCPIkkSx+OOsjhkATujtqGVdLP8Xa2rM7LWWHo798PCxMJgHaPbt1AsX4YyyB+jpCTddpRKsnv3RzViNBq3msV+HG+S/FlOwUlB/JO6/aFZTr0ZZDeEesoGYpaTIAiCILxEqoiw+wEB+SRJP6v+daPJzOTWiuVEz59LbtwdAEwcHKk0ZgLlhw3H2LJUCffw1aWVtOyL+ZfFlxewP3avvr2uXX1G1RpbeEmtG9d1JQJWBWOUka7bjpU12QMG6UoEOFUt1mN40+RJefyTuoPgpAD2pe9BQvdZLS0vTe/S/RhoO4SaSlG2THi1yGQy5BYWT17wLWBlZVVIq+zee9aPfA8gPj4egHLlyhe67fLlKwCQmJgIQEKCbnlHR8fHLv+gO3d0fyenTvUpdJ18cXFxj31fEARBKB4iKEAQBEEQ3gIalYrbKwOJnvc7ObdiATCxt6fimAlUGDYC41KFfdEUAHI1uWy88ReLQxZwMfG8vv29Cu8zutZ42lZoVyAVvfGp/1AuXYjZlk3I1LoH1ZqKlVB5jyJ74CAkMbPshdzKjWVV0gpWJa0gJi9a397I/B0G2Q4Vs5wEQRAEoRgpnV3JDA0xDAyQyVC6VC+5Tj0HdXoasf5LiVk0j7x7D0jMKlSk0oTJlBswGLlSWcI9fHVl5mWyPmINS0MWEpZ6DQAjmREdK3swutZ4mpZpVrCk1qEDKJcuxHTXTmT3zh21i6uuREDfAaJEwFOK37qZyJm+qCLCUDq74uQzFQcPT67nRLAyMYg1ySuJV9/VL9/Ksg1etkPoaO2BwkhRgj0XBOFpGBu/yOMb6bHvajQaAExMdPt4UjC9vJDshtp7JRFbtmyF5WN+b1etWu2x2xYEQRCKhwgKEARBEIQ3mDojg1uB/kQvmEtevO5mkGmZslSaMJnyXkNF9P1jJGYnEnjFD//QpdxV6aLalXIlvV36M9J9DDVKuxmukJuL2ZaNKJcuxORe+j2A3OYtUY0cS+5HneCFvtC/3dSSmn/TdrEicTl70nejRXfzwUZuQ+/S/fCyHSpmOQmCIAhCCXDymUqIt9f9EgL3Xp18ppZ0155KXnISMUsXEbt0EerUFAAUVZyoPHkKZfv0x8jUtGQ7+Aq7nXkLv9AlBF3xJyU3BYBSJlYMrD6Y4e6jqFLKyXAFlQrFX+tQLl2IcehlfXPO++1RjRxLXtt2YGQYbCs8WvzWzQafvczQEEK8vdg+w52AxvfH18HYkf62XgywHUQ1M+cS7LEgCMXJ3l5XpuX27VuFvn/r3oQR23sZIx0c8pe/Xejy+ZkHHmRnZ09U1E369h1AkyZNX7jPgiAIwssl7kwLgiAIwhtInZ5GrN8SohfNQ30vbb1ZxUpUnvgJZft7IVeIWSGPcjX5CktCFrA+Yo2+/mlZ83IMrzmKQTWGYqswLLEgS0xEuWI5Cv+lyO/ovjxLpqbk9OiNauQY1HXqFfsxvEmicm+yKjGIVUnB3FHfvznRwuJdvOyG4GHdVcxyEgRBEIQS5ODhSS3/YCJn+aIKD0Pp4oqTzzQcOncp6a49Vm5CAjGL5xPrtwTNvbT15q7VqfyxD47de2H0mgRzmm7djMVMX+QRYWicXcn0mUquh+dL3ee5hDMsujSfzTf+Ri3psmJVKeXEKPex9K/uhaWJYYmFQktqmVuQ3W8AqhFj0Li4FtiH8GSRM33vB+MASBJaGbgvvYyssYx2pT7Ay24oH1p9hInMpGQ7KwhCsatfvyFbt25m79499OrVt8D7e/bsAqBhw0YA1KzpTqlSpbh6NZQ7d25Ttmw5g+WPHj1cYBsNGzbk7NnTHD16uNCggD/+mMPJkyfo0aM33br1KIrDEgRBEF7A6/ENRxAEQRCEp5KXkkzMkoWGM52cqlLlYx/K9O6HkYm4GVQYSZLYf2sviy7NY1/sHn17PbsGjK49Dk+n7pjKDWeJyUMvo1y6EMWfa5Fl64IHNI5lyB42AtVgb6R7UfbCs8uT8tiVtpMVicsNap/aye3oazsQL9shuCjEzWNBEARBeFU4eHji8JIfRBeVnLg4ohfM5VagH9qsLAAs3GtT5RMfHDy6IiskPfKrynTrZqy9vZBkMmSShDw0BGtvL1L9g4s8MECj1bAzajuLQuZxIu6Yvr152ZaMrjWeDpU6IjcyHDvjM6dQLlmA2eaN90tqVa5yv6SWtc0L9+tR6fPfdNnabDLCr+hLL+QzkqByjJxTNc9TybRyCfVOEIRXwQcftGfx4vmcOXOK5cuXMXTocH2JgGPHjhAcHIRcLqd7914AGBub0LNnHwIC/Jg+/WtmzpyDhYWuJMDevXv4558dBfbRtWtPVq0KZv36tdSqVZv27Tvo3zt06ABr165Co9Hg7l6rGI5YEARBeBIRFCAIgiAIb4C8pESiF88nduni+zOdqtegysc+OHTr+UIznbZGbmbmWV8i0sJwtnLFp8FUPJzejBtt2epsNlxfz6JL87iSEgqADBkdq3gwptZ4mpZpblhXT6vFdO9ulIsWYHpwn745r14DVKPGktO1B4gUs8/tZk4kK5OCWJW0grvqOH17a8v3GGQ3hI5WHpgaifEVBEEQhFfN63C9mHP7FlHz5nB7RQDaewGdlvUa4PTpZ9h16IjsNUxbbzHTVx8QACCTJCSZDPNZvkUWFJCRl87qa8EsubyQm+mRABjLjOlWrSdjao2nrn19wxXUaky3b8F80XxMTv2nb85t3hLVqHG6klpFFHjxqPT5tfyD39jAgKvZVwhODGBt8iq+qKCmcqQuEEBPJqOUq7sICBAEAYVCyU8//cKnn05k8eIFbN++lerVa3D3bhwXL15ALpfzySc+1KpVW7/OsGEjuHDhPGfOnKJnT0/q129IUlISFy6co06duly8eMFgH46Ojnzzzfd8880XfP31NPz8llClihN378YReq9MzCef+FC9eo1iPXZBEAShcCIoQBAEQRBeY7nx8UQvmkes3xK0WZkAWNSsRZUpn+HQ2fOFZzptjdyM914vZMiQkAhNDsF7rxf+7YJfuRu9zyJBlUDAlWX4hy4lIVtXF8/c2IKB1Qcxwn0MVa2qGa6QmYli7Spd/dOIcAAkIyNyO3uSNWoc6iZNdTcjhWeWJ+WxM3U7KxKXsz9jr77d3tiBAbaDGGg7mKpm1R6zhZdna8pmZsb5EpEThrOZKz5lpuJh8/qe94IgCILwMrzq14vZMdFE/fEbt1cGIeXmAmDVuAlVpnyGbbv2hgGgrxl5RFiBmeIyScI4POyFt30rM5allxex4moAabmpANiY2jDEbTjeNUdSzqK84X5TU1CsCETptxh5bAwAkomJrqTWqLEvpaRWYenzkcmInOX7RgUFqLQqtqRsZEVSACcy72dp2DfMjmHfJN4fg3uvTj5TS7C3giC8SurWrUdQ0GoCA/05fvwYBw/ux8bGhg8++JD+/b0MAgIAzMzMmDNnHmvWrGTbti0cO3YEe3sHxo+fRM2a7kyYMKbAPt57732WLw8mODiQ06dPcuTIIWxt7WjZshUDBgyiUaPGxXW4giAIwhPIJOmhbw/CM9FotCQlZT7TOsbGRpQubUFyciZqtfYl9ezNJcbvxYjxe35i7F6MGL8X8/D4FZb21LJufap8+hn2H3UqsplObf9uQWhyiD59O+hm0rvb1mJft6NFso+X7cGxu5wQyuJL81kXsZocTQ4A5S0qMNJ9LF7VB2NtZmOwrlFsDEq/JShWBGB0rxyDtpQV2V5DUI0YjbbSmz8D52V9dm/mRBKcFMiqpBXEq+/q29tYvsdgO286WHUs0awAW1M2433z/gOO/Ff/KsHPFBjwvONna2uBXP76zVgsjLheLn5i/J6fGLsXI8bvxbyu4/eqXC8+PH6qqJtE/T6bO2uCkfLyALBu1oIqUz6ndOu2r3UwQL7SbVsgDw0xCAyQZDLU7rVJ2Xfkqbfz4NidvnOahZfmsfnG36glXcr/albOjK41nj4u/bEwsTBYV349HOWShSjWrEJ2L0hZa2+PashwVENHIJUpUwRHWriDlRzQ5uQUaDcyM6N1dPxL2+/DXtZn92r2FVYkLmdd8mpSNCkAyJHT3uojhtgNo22p90nato3IWb6owsNQurji5DMNh85diqwPxUFcL79dsrOziYi4jr19WUxNzUq6O4IgCILwRsjNzSEh4Q7OztVQKBSPXE5kChAEQRCE10jO7dtc/302t4OW69OelmrQkCpTPseu/UdFfnMzIi3M4AYvgIREeOqLzz4qLpIksSdyD75Hf+Hf6F369vr2DRhbeyIeTl0xMTIxWMf4zCmUi+fr6p9qNABonKqSNWosOf0GIlmWKtZjeFPkSXn8k7qDoER/g6wADsaO+qwATmZVS7CH982M89UHAgD6wIBZcb4iW4AgCIIgPOBVu17MirzB9Vm/Erd2FdK9OvY277bGyWcqNi3eLZE+vSyZPlOx9vbSlxDIf816xpniWknLlvAt+B79H0dv3w8maFm2FWNqT6B9pQ4YyR54+CpJmBw5hHLxfEx37dQHJahr1kI1ehzZPXrDY25GFhWlsyuZoSH3MwUAyGQoXaq/9H2/LNnabLakbiQocblBVoCKJpXwshvCANtBlDUpp2938PB8o7IiCIIgCIIgCC+PCAoQBEEQhNdA9q1bnP32D64vWaKfDWPV6B2q/N9UbN/74KXNdHK2ci105peL9at/oy1Pm8fG63+xKGQeFxN1de9kyPiocmfG1p5I0zLNDMdNrcZ0x1Zd/dOTJ/TNuS1boRo9ntz2HYqs/unbJjo3ipWJgaxMWkGc+o6+va1lOwbZDeMj606YyEwes4XiF5HziAccOa9PQIwgCIIgFIdX5Xox68Z1wqf8xs2gIKR7QZ2l27xHlSmfY9OsRbH2pbjkeniS6h+M+SxfjMPDULu4kuUzjdynnCmuUqtYF76aJSHzCbsXxGEsM6ZrtR6MrTWBuvb1DVfIycHs7z9RLlmIyaX7daVz2ndANXo8ea3aFGtJLSefqYR4e70R6fPDs8MISlrO2qSVJGuSAV1WgA+tOjLYbihtS72PXCa+iwiCIAiCIAjPTwQFCIIgCMIrLOf2LaLmzuZ2cOD9YIAmzXDymUrpNu+99LSnPg2mGtSIzX/1qf/q3mhLzUkh6GoAyy4v4nbWLQDMTcwZ4OrFCPexVLNyNlhelp6GYtUKlEsXIY+6Cdyrf9q9F1mjx6OpU7fYj+FNoJE0/Ju2i8BEP/ak79Y/KLA3dmCA7SC8bIe8MlkBCuNs5kpodiEPOMxe/YAYQRAEQShOJX29mHU9gpu//crdP9feDwZ4732cfKZi/U7TYulDScr18CT3GWeKx6vi8Q9dQsCVZSRmJwJgbWbNEDdvvN1GUd6igsHyssRElEH+KPyWIL8bB4CkVJLddwCqUePQuLgWzcE8IwcPT2r5B7+26fNztblsT91CUNJyDmcc1LdXMKmozwpQzqR8CfZQEARBEARBeJOIoABBEARBeAVl34rVBwNIubkA2L/7LpWnfE6pFq2LrQaqh5Mn/u2CmXXOl/DUMFysXfGpP43OTq/ejbbojCiWhCwg+GoQmeoMAByVZRhVewyfNJ+ELNvMoEalUXQUymWLUQQHYpSeBoDW1hbVEG+yvUehLVO2RI7jdXc77xYrE4NYmRREbF6Mvr2VZRuG2HnzkVVnTI1MS7CHT8enzFS8bxbygKPsqxsQIwiCIAgloaSuF/ODAeL+XAv3ggHKduxIpU8+w6J+o5e679dVeGoYCy/NY134KnI0uoDjypZVGFNnHBOajkWdZWRwvSwPD0O5eAGKdauQqVQAaMqWQzV8FNmDhiLZ2pXIcTzodUyfH5lzgxWJAaxODiZBHQ+AEUa0t+rAYLthtCvVXmQFEARBEARBEIqcCAoQBEEQhFdIzu1b3Px9lkEwgHXzljh/Po1qnp1ISckyuFFXHDycPPFwenVvtJ1LOMPCi3+wOXIjGkl3Q7hmaXfG1p5I92q9sDBTUlppQXJ2JgDGZ06hXDQPsy2bkN27gax2cUU1ejzZvfuBuXmJHcvrSitpOZCxj8BEf/5J3Y4G3bjaym3pZ+vFYLuhVDNzKeFePhsPG0/8CWZWnC/hOWG4mLniU3Yana1fvYAYQRAEQShpxXm9WFgwgO0HH+L8+Rc4fdCG5OTMYr9efpVJksSxO0dYeOkP/oneoW9vaN+IsbUn0tnJE4WpKaXMLEjOygRJwuTIId318q6d+uXz6tRDNWY8OV17gOmrH+D5qlFLanal7SQw0Y996Xv07WWNyzHQbjBetkOoYFqxBHsoCIIgCIIgvOlEUIAgCIIgvALyywTcWhFgEAzg9NkXlG7ZCmNjo2LLDvA60Epa9sTsYsHFPzhy55C+vXX59xhXeyLvVXjfcLw0Gky2bsZy3lxM/juub85t1RbV2PHktmsPRkbFeQhvhAR1AquTgglK9OdmbqS+vZlFC4bYedPZ2hOFkaLkOviCPGw88bB5dQNiBEEQBOFtknU9gqg5M7mzfs39YID2HXDymYpVg0YYG4truQeptWq2RW5mwaW5nE04A+hKIXWo3IlxtSfRtEwzw+vl3FxM167Gcv4fmFy6AIAkk5HboSOqMRPIa94SxPeRZ3YrN5bgpECCEwO5o76tb3+v1PsMsRvOh1YfYSwTt2cFQRAEQRCEl09cdQqCIAhCCcq5c/t+MECOLoWndbMWumCAd1uXcO9ePTmaHP6KWMfCS39wNeUKAMYyY7pX68WY2hOoY1fXcIXMTMzWr4LFC7CMiABAMjEhp0dvskaPR1O7TnEfwmtPkiROZB4jINGPrambyJV0QSxWRtb0se3HYDtv3BQ1S7iXgiAIgiC8KVQ3rnPzt18fGQwgGMrMy2R12AoWXVpAVEYkAAq5gr6uAxlTaxzO1q4Gy8tSUzBbGQhLF2ERGwuApFSS3W8gqlFj0Ti7PrwL4Qm0kpb96XsJSPRjV9oOtOgyV9gb2zPAVpcVwMmsagn3UhAEQRAEQXjbiKAAQRAEQSgBOXFxRP0xm1uB/veDAZo2x+mzL7B5t7XICvCQlJxkAq/4s/TyIu6q4gCwNCnF4BrDGOk+hgqWhqk2jeLuoPBbgjJgGUYpKQBobUqjGjqcbO+RaMuWK+5DeO2laVJZnbCKwER/rmSH6tsbKBsyxG44XW16YCG3KMEeCoIgCILwJlHdjNQFA6xdZVAmwMlnKlYNG5dw7149d1V38bu8iOWhy0jJTQHA1swW75qj8K45CnulvcHyRlE3US5ZgGLlCowyMwDQlimDavhoVIOHIdnaFfchPJetkZuZedaXiLQwnK1c8WkwtcRKnyXkxbMifkWBLFotLN5liJ03nay7YGZkViJ9EwRBEARBEAQRFCAIgiAIxSj37l2i5s3hVqAfWpUKAKsmzaj6+ZciGKAQgVf8mXH6B5JyEvVt5czLM6rWOAbVGIKVqbXB8vLQyygXzUPx1zpk98owaKpWQz7lU1K79kZtpizW/r8JLmSdZ+WdAFbeXkmWNgsAcyNzetj0ZoidN/XMG5RwDwVBEARBeJNkR0dxc85M7qwORlKrAbBt9wFO/zcNq0bvlHDvXj3hqWEsvPgH6yJWk6PRBRs7larK2NoT6es6AHNjc4Pljc+cQrlwHmZbNiLT6mawa2q6I//s/0j9yBO13KTYj+F5bY3cjPdeL2TIkJAITQ7Be68X/u2Ciy0wQJIkjmccY2VsAOvj1htk0epr25/Bdt7UULgVS18EQRAEQRAE4XFEUIAgCIIgFIPcxESi5/9OrP8StFm6B6tWjZvoygS0eU8EAzzkUuJFvjj+fxyPO1rgvelNfqZbtR73GyQJk0MHMF8wF9O9/+qb85o0I2vsRLQeHpS2t4LkTFBri6P7rz2VVsWmlA0EJvpxOuuUvr2GmRtD7LzpbdsPa7lNyXVQEARBEIQ3TvatWKLmzOT2yiCkvDwASrdth9P/TcP6naYl3LtXz39xJ5h/8Xd2Rm1DQgKgkcM7jK8zmY6VOyM3kt9fWKvFdNdOlAvmYnr8/vV1btt2ZI2diPTBB5S2tXztrpdnnvXVBwQASEjIkDHrnO9LDwrI0KSzPnktAYl+hGaH6NvrKxsw1G5EsWXRepUyJQiCIAiCIAivNhEUIAiCIAgvUV5yEtEL5xGzZCHarEwASjVshNNnX2D73gevRTCA6dbNWMz0RR4RhsbZlUyfqeR6FP2NJkmSOHT7APMuzmF/7N5Cl5Eh4/cLM3VBAXl5mG3agHLBH5hcuqDbhpERuZ09yRo7AXXjJgAYy42KvK9vqus5EQQm+rMmKZhkTTIAJjITejr2xMt6KO8omr8W56wgCIIgCK+PnLg7RP0+i1tBy5HuZXqyadWWqp99gXXTZiXcu1eLVtKyK3on8y7M4b+7x/XtHSp1ZHydj2lappnhtZpKhWLdapSL5mEcEQ6AZGJCTo/eZI2ZgKZWbQCMX9Pru4i0MH1AQD4JifDUsJe2z8uqEAISl7E+eS2ZWl3ZBaVMSf9y/RloNZQ6ZvVf2r4f9ipkShAEQRAEQRBeHyIoQBAEQRBeAnVaKtGL5hOzeAGa9DQALOvWp+rnX2D7QYfX5sGq6dbNWHt7IclkyCQJeWgI1t5epPoHF1lggFqrZmvkJuZd/J0LiecAMJLpHuRrJcOZShIScXHXUC74A+WSBchvxerazc3J7u9F1qhxaKtWK5J+vS3Ukprdaf8QkLiMfel79O0VTSox2G4Ygx2HUMOxGsnJmahfo5ljgiAIgiC82nLj44n64zduBSxDm50NgHXzlrqyWi3eLeHevVpyNDn8FbGO+Rd/Jyz1GgCmRqb0cu7LuDqTqG5Tw2B5WWIiyuVLUfovwSghAQCtlTXZQ7xRjRiNtlz5Yj+Gl8HZypXQ5BCDwAAZMlysqxfpfnK0OWxL3czyxGWcyDymb3cxc2Wo3XAGOAykqkPFYr9eLslMCYIgCIIgCMLrRwQFCIIgCEIRUmekE7tsMdEL5qJOSQHAwr02Tp99gX3Hzq9NMEA+i5m++oAAAJkkIclkmM/yfeGgAJVaxeqwYBZe+oOb6ZEAKOVK+lf3YkytCQzdM9DgJl/5VJh8FMb8p8ZS9SUAWgdHVCNGoxo6HKm07Qv151X0MrM03M27y8qkQIISlxObFwPobqK2K/UBQ+1G8IHVh8hlcoyNRaYFQRAEQRCKTl5SItEL/iBm2WJ9Ji2rxk2oOvUrbFq1ee2ul1+mtNxUgq4GsCRkAXeybgNQysSKoW7DGVlrDGXNy7Fj+decmbsI27gc1HamNK3mRo1zYchUKgA0lSqjGjWW7IGDkSxLleThFDmfBlMNZsrnv/rUn1ok24/JjSYocTnBSYEkqOMBkCOnk3UXhtoN513L1shkshK7Xi6JTAmCIAiCIAjC60sEBQiCIAjCE8Rv3UzkTF9UEWEonV1x8pmKw0MPZjVZWdwK8CPqj9nkJSYCYF69Bk6ffYGDR1dkRq/ng1V5RJg+ICCfTJIwDn/+G03JOUn4hy7F7/JiErJ1M5dszWwZ7j4a75qjsFPYAfdv8tW+A1MOwoDzYKoB0KJ2rY5q7ESye/UFheK5+/IqexlZGiRJ4kTmcQISl7IldRN5kq5er63clgG2gxlsNwwns6pFeRiCIAiCIAjAA5m0Fs1Hk5EOQKn6DXCa+tVrU1aruMRl3WFJyEICrviRnqfLOlbWvByja41ncI2hlDK1AmDH8q9Rfv475QA3oEJcLkZxurJaeXXroxo/iZwu3cD4zbz95+HkiX+7YGad8yU8NQwXa1d86k+js1OX596mVtJyIGMfyxOWsittJ1p0M//LGpdjkN1QvOyGUM7k1ci0UFyZEgRBEN40kiSJ6w5BEN5Kb+a3AkEQBEEoIvFbNxPi7QUyGUgSmaEhhHh7Ucs/GAcPT7Q5OdwKDiDqt5nk3o0DQFnNGSefqTh274VMLi+SPtyc5UtWRDjmzi5UmVIwKOFl0Ti7Ig8NMQgMkGQy1C7PfqMpNiOGRSHzWHE1kCy1blZYZcsqjK09gX6uXliYWNxfWJLoHluaD7bUo9KR8/rmOw3cUH46ndz2HeA1DbR4WkWZpSFDk8FfKetYnrCMy9mX9O2NzBszzG4knjbdURi9mcEVgiAIgiCULHVGBrF+i4me//v9TFq16lD18y+x69BR3JR/QERqGPMvzmVd+GpytbkAVLepwfjak+np3AdTuen9hbVaSv8yn6aA4wPbuAUctzeh1e4Duu8wbzgPJ88iSZWfok5mTfJKAhL8uJ4boW9/17I1w+xG8pF1J0xkJi+8n6L0sjMlCIJQ/JYuXYSf35JnWmfDhq2UL/9qBCu96tLT01m6dBE1arjRufPzB5C9KqKibhIY6M+pUydJTEzA3NycmjXd6d/fi2bNWhRYXqvVsm3bZv76az1RUVGYmJhQr159vL1H4ObmXug+rl27ip/fEkJCLpKenkGVKlXo1q0n3bv3LHANt337VlatWkFMTDRlypSle/ee9OnTH6NC7t/dvRvH1q1bOHz4ILdv3yI9PY3SpW2pW7ce3bv3pHHjJkUzSEBqairr1q3myJFDxMbGkJOTg7W1De7utfjggw/54IMPX/vr0U2b/mbGjB/o1KkL33wzvUi3/dNP09myZROHD/+H8SMCTffs2c2GDeu5du0qKpUKBwdHmjdvydChw3F0dCywfGJiIsuXL+X48aPEx8djZ2dPu3YfMGzYCCwsLAos/zzn7qtq48YN+Pr+yKpV66lWzbnY9y+CAgRBEAThMSJn+uoDAgDdq0zGjZkzyEtJ5uas/5ETq0u9blapMk4+UynTux9GRTQb5+GghIzLhkEJL1umz1SD2er5r1k+T3+j6WryFeZdnMNfEetQS2oAatnWYWKdj/Gs2h1jowfGSqPBdNtmzOf/jsnZM9igC0LI9ehK1riJyBu9Q27RHuIrqyiyNIRnh7E8cSlrklaRrtXNMlPKlPQo3ZthdiOoa16/KLssCIIgCIKgp1GpuBXoR9Tc2eTdq2tvXr0GTp9/iUNnz9c2k9bLcDb+NH9cnMO2yM36Wd/vODZlUt1PaV+pA0ayB8YqNxezDesxn/87XRJ119ZaIAq4CqQBuSl5b0VAQFG4mHUe/8SlbEhej0rSlVwoZWRFX9v+DLUbQXVFjRLu4aO9jEwJgiCULBcXVzp06GjQlpSUxMmTJ1AqlbRu3bbAOubmymLq3evv999nsXXrZqZN+7qku/LCzp8/x8cfj0elUlGpUmVatmxFfPxdTpw4zokTx5k48WMGDhxssM4vv/zMxo0bsLKy4p13mpCUlMTBg/s5evQws2b9TtOmzQ2WP336JJ98MhG1Wk29eg0oVaoUp06d5JdffubSpYsGD5+3bt3Mjz9+x8SJn/Dee+9z5swpZsz4gaysLLy9Rxps9++//2TOnFnk5OTg4OCIi4srSqWSmzcj2bNnN3v27KZfvwF8/LHPC4/T1atXmDRpHKmpKZQvX4EGDRohl8uJi4vj8OGDHDiwjy1bNvHrr79hZmb2wvt706xdu5otWzY9dpnffvuVtWtXY2xsjLt7baytrbl69QobNqxn375/WbBgKVWrVtMvn5AQz4gRQ7lz5zbOzi60aPEuoaEhBAcHcuzYEZYs8cfCwtJgH8967r7Kjh07Qtmy5UokIABEUIAgCIIgPJYqIux+QEA+SSLrcgjXPp0IgGnZclT55P8oN3AwRqamhWzl+T0qKCFylm+xBAXkeniS6h+M+SxfjMPDULu4kuUzjdyniKj+L+4Ef1yYzT/RO/RtLcu2YmLdT3ivwvuGUbgqFYo1KzFf+AfyyBsASAoF2f0GkjVmAtoSulAqSc+bpUEtqdmVthP/hKUczNinb69qWo1h9iPoV3ogNsalX1q/BUEQBEF4u2lzc7m9agU3Z/9C7p3bACicquL0f9Mo06N3kWTSehNIksSBW/v448JvHLp9QN/+YaWPmFDnE5qVNby5KUtPQxEUgHLxfOT3xjVXBtclCAdU95bTyiCprMgA9Tg52hy2pm7CL2EJp7L+07e7K2rjbT+SHja9sZRbPmYLr46iypQgCMKr4b333ue99943aDt9+hQnT57A2tqG6dN/KqGevRm0WunJC70G1Go106d/jUqlYty4SQwaNER/j+3EieP4+Exm/vy5NGvWAmdnFwAOHjzAxo0bcHZ2YcGCJVhb2wCwd+8evv56Kj/88C1//rkJhUIXZJKbm8u3336JRqNh5szfadGiJaB7oDt+/Gi2b99C69ZtaNu2HQCrVwfj7l6bgQMHAVC+vCfHjh1h1aoVBkEBK1YEMH/+XKysrPnmm+957733DTIJHDt2hG+++YI1a1ahVJozevS4FxqnadP+j9TUFKZO/ZJu3XoavB8dHcXUqT78999xFi2az+TJnz73vt40Go2GRYvms2JFwGOXO3nyBGvXrqZ06dLMnbsQV1fdPcu8vDxmz/6Fv//+ix9++BZ//xX6dX791Zc7d24zZIg3Y8dO0C//3XdfsWfPbhYvXsinn/6ffvlnPXdfZXl5eZw8+V+B4K/iJMKyBUEQBOExlM6uj5xlY2Jvj/MPM2h64hwVho0o8oAAeHRQguoZZou/qFwPT1L2HSUhOp6UfUcfGxAgSRJ7onfhue0jPLa155/oHciQ0bmKJzu77OXvTttoV/F+zVhZchLms3/BrlEtSn3+KfLIG2hLlyZzyuckng4h45ff3sqAANBlacjPzgA8MUtDgjqB3+Nm8U5oXYZGDuBgxj6MMOIjq06srfY3x9zOMMZhgggIEARBEAThpZA0Gu6sXcV/LRoT9tkn5N65jVnFSlSf/QdNjpyibO9+IiAA0Gg1bL7xN+03t6HPP904dPsAxjJjejv340D34wS3X2cQEGAUdweLH77Ftr47ltO/Qn7nNpoyZcn4+nv++nYMF4HMe19XtDIwksBm4piSObhXXGxuDDNuf0+DUHfGRo3gVNZ/GGNMd5uebHb+h33VjzDYbthrExAgCIIgvJ3OnDnNrVuxuLvXYvDgoQaTbpo2bUbXrj3QarX8++8uffuqVUEATJz4sf6hKkC7du/ToUNHEhIS2L37H337P/9sJyEhgXbtPtAHBADY2zvw2WfTAFizZqW+PTY2hgoVKhj0s3z5CmRkZJCSkgzoShEsXrwAMzMz5s9fzPvvty9QWqB585b89NMvAKxcGURCQvxzjRHosincuhVL/foNCgQEAFSqVJlvvvkegE2bNiA9fP/1LXXu3BlGjBjCihUBVKhQ8bHLbt26GYDhw0fpAwIATExM+PTTz7Cysuby5RBiYqIBXSDGwYP7KVOmLCNHjjFYftq0r7CwsGTTpr/JysrSv/es5+6r7Ny5M2RlZRp8poqbyBQgCIIgCI9RZcrnXB4+qEC7Y88+VP91DsaWL/eGkdLZlczQEMPAAJkM5RNmixc3tVbNlsiNzL3wGyFJFwEwMTKht3M/JtT9GBdrV4PljWKiUS6ej3JFILKsTAA0lSqTNXYC2f0HQSH1o942T5ul4UzWKfwSlrApZQO5kq64gq3cloG2Qxhi701l0yol0X1BEARBEN4SklZL/LbNRP7vJ7KuXQXAxMGRKp/4UH7QMIxEKlYAcjQ5rA9fw7yLc7iepqtZr5QrGVhjMGNrT6SSZWWD5eXhYSgXzEWxbjWyXN01ntq1Oqrxk8nu2QfMzPgA2KE0I/WPxdjeySaprAKbiWP4aNj3xX14ryxJkjiSeQi/hCXsTN2GBg0AZY3LMcTeGy/boZQxKVPCvRQE4WUz2bIJxS8zkIeHoXFxJfuzaeR16VrS3SoyV65cJigogLNnT5ORkYGDgyOtW7dl6FBvbGwMJwY0a9YQN7eazJ27kKVLF7F//x7S0tKoVKkygwcP48MPPyIu7g7z58/l+PFjgESNGjWZNOkTg4d+S5cuws9vCT///AuSJBEQ4EdU1E1Kly5Ny5at8PYeiZ2dfYG+JiTEExDgz5Ejh0hIiMfSshSNGjVm2LAR+lnt+caOHcnZs6dZuXIds2f/wsWLF7CysuLjj3344IMPUavVbN++lV27dhAWFkZGRgYWFua4uFSne/eetG/fweC4882Y8QMzZvzAV199h4eHp34/c+cupEmTpgZ9yE+L36FDR32mhtOnTzF+/Cj69u1PhQqVWL58GVlZWbi5ubFw4TKMjIzQaDRs2bKRzZs3ERl5HUmScHZ2oVu3nnTu3KVADftu3Tpz585tfZ8eJysrE3f3WjRv3qLQ9ytXrqIfa4CMjHQuXDiPubk5jRs3KbB8mzbvsX37Vg4fPkSXLt0AOHLkMEChJSsaNGiElZUV58+fIz09nVKlSuHoWKbAA/z4+LsoFAr9g9z169egVqvp1auPwbn0sCZNmtKmzXvIZDLu3r2Lvb3DY8fjUZKTkwAKjPWDatRww8PDExMTE7Kzs1EqdbPN88+Jbdt2s2nTBjZv3khychLlypWnU6cu9O8/EBMTkwLbe5bPIkB6ejrBwYHs37+X27dvoVAoqVOnDoMGDaN+/QYFls/ISGfFigD27NlNfHw85ctXoF+/gY88vvzjGD58lMFD+Mfx8fmYjIwMOnToyKeffkaHDu89clmFQkG1as7Uq1ewryYmJpQrV460tFQSEuKpWLESx44dRZIkWrR4F+OHSu/m/y44eHA/p06dpHXrNs917uZ/ZqdM+YwaNWqybNliLl26iFxuRP36DZk8+VMqVqzEwYP7CQjwJyIiHFtbW1q3bsOYMRP05wDoPpcqlYrNm3cQGOjPjh3bSExMoEyZsvTq1Ze+ffuTlpbGwoXzOHBgH9nZ2Tg7uzBmzHgaNWpcoL9Hjx7B1NTU4FgiI2/g77+Uy5cvERcXh4WFBe7utenVq+9LCR4QQQGCIAiC8Agpx48Ru2yRQZuJvQPO03+ibO9+xdIHJ5+phHh73S8hcO/V6RGzxYtbtjqbteGrmHdxDjfTIwEwN7ZgcI1hjK09gXIW5Q2Wl4dexnzeHMz+/hOZWlcDVV2rDlkTJpPTtQcYi0uTB+V6eJJbyJfBbG02m1I24J+whLOqM/r2BsqGeNuPoqtNDxRGIm2sIAiCIBQX062bsZjpizwiDI2zK5k+Uwv9G/4mkSSJpH3/cuPnH8i4cA4AYxsbKk/4hArDRyEXQZ4AZOSlE3QlgEUh87iTpUv7b2Nqw3D30YxwH4Odws5geePTJzH/Yw6mO7bqy0jlvdOUrImfkPvhR/DQjLqOw36AYT8Uz8G8RjI0GfyZvBb/xCVcyQ7Vt7eweJfh9qP4yLozJrKCN/MFQXjzmGzZhOWQgfrse/LLIVgOGUhG4Mo3IjBgx45t/PjjdLRaDW5uNSlbthxhYVdZs2Yl+/fvZcGCpZQvb3hvJjMzk5EjhxIfH0+jRo1JTk66VyP+C1JSUggM9MfIyIj69RsQGXmDkydPMHr0cNas+QtHR0eDbekeyB2kYsVKtGjxLlevXuGvv9Zz5MghFixYZrDvsLBrTJo0juTkJP3y8fHx/PvvLg4dOsCMGTMLfQg2bdr/kZWVSfPmLblyJRQ3t5pIksS0af/HoUMHsLKyolatOpiamhIZeYMzZ05x5swpkpKS6Nu3PwAdOnTk0qWLxMbGULt2HSpUqEjFio+fBf0kx44dJTo6ioYNGyGTyShTpixGRkao1Wo+/3wKR44cwtLSkjp16mJsbMyZM6f58cfvOHPmNN98M/2599u2bTt92v7CXL58CUD/s4qMvIFWq6VKFacCD2IBfb33iIhwfduNG9cBCgRqABgZGVGlihMXL17g+vUI6tWrj4eHJwsXzmPfvj20bduOCxfOs2/fXjw9uyGTydBoNOzbtweA9u0/euIx/u9/s564zJO4uOgmKJ09e4alSxfRr99ASpUqVWC5r7767pHbmDHjBw4fPkjt2nWoUcONM2dOsWDBXE6ePMFvv83F2Pj+tcSzfhbv3o1j3LhRxMRE4+hYhmbNWpCensaxY0c5duwoU6d+hadnN/3yaWlpjBs3kvDwMBwcHGnZshW3b99ixowf9D/DotCiRSv69OlL7dp1n7jstGlfP/K9zMxMIiMjAXB01AVg3rihC4x1di48K2zVqlU5eHA/ERFhtG7d5rnO3XxHjx5hzpxZVKhQkXfeaUJo6GUOHTrA1atX6N9/IL//Pht391o0bdqMU6f+Y+3a1dy5c6fAuafRqJk8eRyXL4fQqNE7VKhQgdOnT/Hbb7+SmZnBrl07SUlJplatOsTH3+XixfNMmjQOP79A3NxqPtSnw9Sv31AfeHDjxnWGDx+iD/SpXt2N+Ph4jh49zNGjh/nqq2/x8Cjav1PizrsgCIIgPCT94nluzPiBpHtptmRmZlQYOoLKkz7F1OH5olOfl4OHJ7X8g7k5+39khYdh7uJKlSlTcXhMCv/ikJGXTsAVfxZdmsddVRwAtma2jKw1Fu+aIyltZmuwvPHxY5j/MRuzB9I55bZqQ9b4yeS99/4jSzQIhmJzYwhI9CM4MYBETSIApjJTutn0xNt+JA3NC0ahCoIgCILwcplu3Yy1t9f9hw2hIVh7e5HqH/zGBgakHD/GjZ+nk3r8KAByC0sqjhlPpbETMLayLuHevRqSshNZenkRfpcXk5KbAkA58/KMrT0BrxpDsTR5IOOYJGGy719dMMCRQ/rmnI86kTX+Y9RNmxVz719fETlhLE9YxuqklaRr0wAwN7Kgd+l+eNuNpKbSvYR7KAhCcVP8MkP/NxrQl+lT/Or72gcF3LwZyYwZP2BmZsbMmXNo2LARAFqtliVLFhIQ4Mf06V+xeLG/wXrR0VFUrVqNP//chK2t7v7N7Nm/sm7dambP/oWWLVvx00//Q6FQoFarGT9+FOfPn2P37p0MHDjYYFuHDx+kV6++fPKJD3K5HLU6j59++p4dO7Yxa9b/mDXrdwDU6jymTfs/kpOT+PjjKfTtO0A/g/vQoQN88cVnfPfdl6xd+zelSxvOqM7JyWHlyvVYW1uj1WoxMjJi3749HDp0AHf32sybtwhzc3P98kFBy1mw4A/Wr1+jDwqYPv0nvv/+W2JjY+jSpRtdu3Z/4fGPirrJhAmT8fIaoh93gOXLl3HkyCEaN36HH3/01c8QT0xM5JNPJrJ9+xbq1atv0Id58xahVquxty+YXeFZhIeHsXv3P8hkMtq2fR+A+HjdDP7CMjc82J6UlKRve/p1dPemBg4cTE5ONj/+OJ2vv56GsbExXbt2Z9y4iQAkJiaQkZGBXG5c4EHpy+LkVJUuXbqyZcsm/PyWEBjoT7169WnQoBENGjSkdu26mD0ho9XRo4f54YcZ+qwTSUlJTJo0lpMnT7B27RoGDtRll32ez+K3335FTEw0AwYMYty4CfoAg0uXLvLJJxP49dcZ1KlTV//ge8mShYSHh9G6dVt++GGGvu+bN2/k558LzxL17bffk52djY2NzVOP2/ff//TUyz7O8uXLyMnJpkYNN8qX15WWePJ5pbvvnn8uPs+5m+/YsSMMHDiICRM+RiaTkZmZwYABfYiLu8Pvv8/m229/oGPHzgBcvx7BoEH9OHhwP8nJyQa/gzIyMoiOjiY4eB2VK+sye61eHczvv89myZKFuLvXYvFif6ytdd+Bvv56Grt3/8PWrZsMzvVbt2K5eTOS7t3vl7JYtWoFWVmZTJ36pUGJi/379zJ1qg/Lli0RQQGCIAiC8LJkRYRxw/cn4jdt0DXI5ZQbMJgqUz5DUb7C41d+iRw8PCnXrRulS1uQnJyJWq0tsb4kqBJYdnkhfqFLSb13c7OCRUXG1Z7IgOqDsTB5YEaYVovprp2Y//EbJidPACDJZOR6dCVr4seo6zcsZA/CwyRJ4mjmYZYlLGZH6la06H7+FUwqMtRuOAPthmBv/GJfGgVBEARBeH4WM30LfdhgPsv3jQsKSL94nhs/f0/Snt3AveBZ71FUnvgJpi94E/tNcSszloWX/mDF1QCy1Lp6qNWsnJlY9xN6OffFTP7AzWe1GrPNf2P+xxyMQ3QluCRjY3J69SVr/GQ0NdxK4hBeO1pJy570XfglLGFv+r/69mqmzgy3H0Vf2wFYyUWwiiC8reThYfq/0flkkoQ87FoJ9ajorFmzitzcXMaMmaB/CAm6mdyjR4/j8OGDnD9/jkuXLhSY9Tty5Fh9QADoZtKvW7cagMmTp6BQ6LIPGhsb06pVG86fP6evC/6gKlWc9AEBuuVN+PzzLzl27AhHjhzizp3blC1bjn379hITE82777YukO68Vas2dOvWk/Xr17Bly0YGDx5m8H6HDh31D9zya9Cr1WpatWpDv34DDQICAHr06MWCBX9w+/atpx/M5yCXy+nZs4/+/0ZGRuTl5bF27SpMTEz47rsfDVLG29nZ8cUXXzN06EBWrVphEBRQsWKlF+5PUlIS06b9HxqNBg8PT32K/uxsFYD+Z/qw/IfL+cs9yzoqlW45uVzOyJFjGTlyLMnJyVhbW+t/VgAJCQkAWFtb68+V4vD5519SrlwFgoMDyMrK4vTpU5w+fereMSho3rwF3t4jqV69RqHrd+nS1aAMha2tLV988Q3e3oPYsGG9PijgWT+Lly5d5OzZ07i6VmfChMkGY1W7dh2GDRvJ5IeLCAABAABJREFU3LmzWbduNZ9//iW5ubls27YZExMTvvjia4NgBk/Pbhw8uJ/Dhw8W6H/ZsuVebACf0969e1i1agVGRkZMmvSJvv3pz6usZ1r+wXM3n5WVNWPGTNAHH1lYWNKyZSs2bFhPnTr19AEBANWqOVO5chVu3LhObGx0gcCkAQMG6QMCADp06MTvv88GYPTo8frfT6DL5LF79z8Ffl8ePaorydGixbv6tvzPxcM/p7Zt2+HjMxVbWzt9IFRREUEBgiAIwlsvOzaGyJm+3FmzEjQakMlw7N4Lp8++wLxa4emM3jaxGTH6m5sqje5Cy8XalUl1P6VHtd6Yyk3vL5yXh9mG9ZjPm4Px1SsASKamZPcdgOr/2bvr8CiuLoDDv92Nu+MQSIK7FLdixSlS+hUoUtxaIEBwh+DuXlyKlyrursEiJHjcN9nN7s73x5KFNMGjcN/n6ZNm5u7M2WGymcyce07/QWjdPLLiLeQ48dp4dkftYF3YKu4m3jEsr2VVhx6OvfnGthlGMnEpJwiCIAhZTeGf9sMGIz/fLIoo/aWZPNupK4WGDs/S5NnsJCDaj8W3FrDTbxtJuiQAyjiW4+eyQ2leqBUK+Ws3wBMSMNu+BYuli1A8CgRAsrAkoUs3EvoOQJfv08oZfymitVFsi9jMurDVBKofAiBDRiObJvRw7E0966+Ry9LvJqogCDmT1t0DxR2fFL+rJZkM7Vt6mucUV6/qH26m1btaJpNRtWp1/Px8uXr1SqqkgNKly6T4PvkhmJmZWYqHX6Dv9Q2gUqlT7adhw0apHvKamZlRtWp1/vrrD65cuUzz5i3fGitA9eo12LVrO1evXk6VFJBW//lGjZqkeFgLkJiYSFBQILdu3QBAq9Wi1Woz7CF0/vwFUvQfB7h//y5xcXG4u3vg5JS62mjx4iWwt3cgKCiQ8PCwN86A/lChoaEMHtyPx48fUaJESTw9RxrWyV9eg8jeUaVTp9MhSRIymQy5XI5Op3uv1/zXfx+oAobS71qt9p3vJT0ZGRnRo0dPvv/+B86ePc2FC+e5du0KT548RqVK5Pjxo5w6dYJhw0bStm37VK9v3Dh1q4OSJUvh7OzC06dPeP78GXny5P3gn8Xk8RUqVErzgW/16jVYtGgeV69eAeDu3TskJCRQpky5FIkmyerWrZdmUkBWOHLkHyZMGINOp2PAgMFUqlTFsO79z0XpA8e/OneTFStWHGPjlK2i7O3tgLQ/U972Ofemz8u0tvWm7Zw9e4b8+fNTsGAhw7IKFSpy7twZxozxolmzFtSoUZMKFSphZmZG+/bfkRHEnWRBEAThi6UOD+fRwrk8Xb8aSaUCwLFJUwp7jcOqVGnDuEOBB5hzzRv/GF/cbDzwrOBFC9fPa9bXm6R1c7OcYwUGlxtKs4ItUt7cVCox2/orFssWo3iZDamztiGx208k9O6HLlfurHgLOU6g6iHrwlezLWIz0dooACzkFnSw/58oeSoIgiAI2ZDK2QXTJ495/VaVBKhe9s7MyRKfPSVojjfPt20WybNvcDv8FotuzuVA4D50kv7GeI3ctRhcdij18zVIcXNSFh2F2Ya1WKxchjxMXw5V5+hIQq9+JHTviWTvkOY+hJTuJd5lTdhKdkduR6nTzySzVdjxP4fOdHfsSWHT9OurKwhCzpc4YhRWXTsZqvokf00cMSqrQ/tkL168AKBr1x/eOi44+EWqZTY2Nv9Zov99ZW393+VvfyCXP3/BNJfnenkPKOzl77vkWBcunGeYYZt2rMHvEatefHwc+/bt4dy5swQFPSQsLCzVg0HpP4mb6SmtuJLfp5+fL9Wqvb1CZnBwcLokBfj7+zFs2M+8ePGckiVLsWDBUszMXiUrmJvrKymoXt77/K/k5ebm5oZjZ2FhQUxMDCqVChMTkze+5r9VGt4k+X3Gxsag0WjS7A+fkSwsLGjYsDENGzYGICQkhHPnzrBjx1YCAvyZM8ebcuXK4+bmnuJ1BQq86fzORWhoCGFhoeTJk/eDfxaTx+/cuc1QoeNt45N/jlxcXNIclzebJOnu2LGVhQvnodPp6N27P126dEuxPjmJ5l3nooWF+cvxH37uJkv7c0P2xnVv+5z77/jXx75t3etxXrlymZb/aVnzww+d8ff346+//mDXru3s2rUdExMTKlasTOPG39CkSdN0T2oSSQGCIAjCF0cTF8uTFUt5vGwx2rhYAGxr1KLI6AnYflU1xdhDgQfocbQzMmRISNyN9KHH0c6s+3rzZ50YkNbNzZq5azO43FDq5f065c3NqEjM167CfM0K5OH6XmI6J2eUfQeQ2O0nJNFX9p0kSeJE3DHWhq3k75g/kdD/0epqUpgeTr34n0NnbBV2WRukIAiCIAhp8gEqoU8EkL321QdI+zZi9pcUEU7Qwnk8XbfqrcmzX7JLIRdYcGMO/zz+y7CscYFvGFx2GF/lSvk3hSw4GItVyzDbsBZ5rL7PvTZ/AZQDBpP4vy7wnjfUv2RaSctfMX+wNmwlp+JOGJaXMCvJT059aGf3HZYKy7dsQRCEL1VSy9bEbdyC2WxvFL4P0HoUJXHEKJI+gxY/Op1+1nWjRk3eWl46rVmx6fVQ9k0PrJIfxievT461UqXKac6gT5bWLHNZGlVfAgL8GTCgD5GREdjZ2VGyZGkaNfoGDw8PKlasTOvWzT74vaQlrZnwb4sreXzu3LkpV67CW7f9vg/U3+bChfOMHj2C+Pg4qlWrzvTps1Nt18VFf7zDw8PS3Eby8tcTFJydXYiJiSE8PAxra+v3es3bODo64uKSi5CQYO7e9aFMmXJvHX/+/FkCAgKoVq06RT4yEfXhwwDCwkKpUKEiRkYpZ4y7uLjQuvW3NG3anAEDenPr1k3+/vsP+vUblGLcm36uXp3f+p+jD/1ZTB5fsmSpNyYewKsHzO+aKZ+ZLRnSotVqmT9/Drt370ChUDBixOg0Ky84O+uTGsJf3j/+r/BwffJD8nn1MedusvRMPPnUbV25chmVKjFF6wD9do2ZNGka3bv35NixI1y8eIHbt29y/vxZzp8/y759e1iyZEWaiTkfSyQFCIIgCF8MnUrFs41rCVowh6SXPXusypSjyJgJ2NdvkOYF1pxr3oaEAAAJCRky5l73/iyTAi6HXGTBjTn8/fhPw7I33dyUB7/AfPkSzDauQx4fB4C2oCvKgT+T2PEH+E8JNSG1OG0cOyO3sTZsJb6qV/0M61s3oKdTHxpYNxYlTwVBEAQhmwsMDUEFlASsgVj0CQEvQoJzXFKAJi6OJ6uW8XjpIrQvH17bVqtBkTETsa1aLYujy3qSJHHy2XEW3JjDmRenAJDL5LR2/ZZBZYdS2jFlaVF54EMsli7CbPtmZC+TKzTFiqMcNATVt+3hPyVNhdQiNRFsidjEhvA1PFIHASBHTlPbFvR06kMNy1rvvFEuCIKQ1LI1Sf+Zofk5cHR04sWL5/Tu3e+tDxYzUmhoSJrLX7x4DryqGODoqH+417hxU1q3/vaT9ztnzkwiIyPo3Lkr/foNTPFQNCYm5oO2JZfrf48kP6h9XWxs7Adt69XDzNxMmjTtg177of766w8mT56AVquhZcs2jBw5Os2Hl66uhZHL5QQFBabZnzwgwB8gxSz5IkXc8Pf34+HDAFxdC6cYr9PpCAoKRCaTfdAD+zp16rF79w6OHj3yzqSAjRvXc+3aFZ4//55hw0a89z5eN3LkMB49CmLt2l8p9YakVhMTE5o0acqtWzfTPG9CQ0PTTGJJnumfK5e+MtiH/iwmnydffVWNvn0HvHO8s7M+hufPn6e5PjQ09J3byCgaTRJjxnhx4sQxzM3NmTx5OrVr101zrJub/nx5+DAgzfUBAQEvx+lbz37MuZsdnT17GlNTsze2T3F1LUz37j3p3r0niYkJnDlzmtmzZ3Dz5nWOHPmHpk2bp1ss4i6zIAiC8NmTtFpe7NjKhRqV8BvrRVJYGOZF3Ci5egOV/jmBw9cN33gjyT/G15AQYNgeEn7Rn0+PWEmSOPXsBO3+aEmzQw35+/GfyGVyvi3cjqOtz7C50c4UCQHyhwFYDfsZh0qlsVi2CHl8HJqSpYlZsZaI81dJ7PaTSAh4h4eqAMY9HUW5O8XxejoMX9UDrOTW9HTqw9liV9hRZC+NbL4RCQGCIAiCkAMkFXDhMfAPsOfl1ycySCqYc9oH6NRqnqxdyYWvyhHoPRVtbAxWpctSZttuyu//44tPCJAkiT8fHabpwa/p8Fdrzrw4hbHcmE5Ff+Rs28usrL8+RUKA4o4P1n1/wqF6Rcw3rkWmUpFUqQrRv24n8sR5VN/9TyQEvMPdhDsMe/wz5e+UYPLzcTxSB2GvsGeQ8xAulbjJetfN1LSqLRICBEH4olWsWAnQ96pOy/jxo+nevTMnT55Ic316OHPmdKplCQkJXLhwHoVCwVcvK3JWrFjxZaypxwPs2LGNTp2+Y9261e+139u3bwLQrVuPVLOkL1w4Z/j/19sHvOlXRnKJ8sjIiFTrfHxuvVc8yUqWLIWpqRm+vvcNJd9fFxISQocObRg4sC9KpfKDtv26U6dOMHnyeLRaDT179mHMmPFvnM1sZmZOhQoViYuLM/Syf92JE8cAUsxirl69JgAnTx5PNf7q1cvExMRQpky5NKsIvMl3332PsbExv/22840PhZPjuX79KnK5PM3Z5u+rTJmyAOzatf2t44KC9EmHaSU4nDlzKtWy27dvEh4ehodHUcPD/Q/9WUwef/782TSrURw/fpSOHdsya9YMAEqUKIm1tTX37981JNy87k0/V5lh4sRxnDhxDHt7e5YtW/3GhACAatVqIJPJOHPmFFptyiScuLhYrly5jJmZmeHz4mPO3ezo/PkzVKxYCVNTU8MyrVZLv369aNGiMYmJiYblZmbmNGjQiG++0Vc7CQlJ3VLlU4g7zYIgCMJnS5Ikwv7+g8tf1+TeoL6oHj/CJHceis5ZSJVTF3Fp3RbZW0o6AbjZeCAj5V8NMmS426YuvZbTSJLEP4//pNmhhrT7syWnnp/ASGbEDx5d0r656XMb67499Dc3N61HplaT9FU1orfsJPLYGVRtO0Am9wTLSSRJ4kTsMbo87Ei1exVYGbaUWF0MRUzcmJZ3JjdK3mV6vtm4m3lkdajZxqGoA9S7X4MCN52pd78Gh6IOZHVIgiAIgpDK7gb6myu6l5eMOhnIJdjdMEvDei+STkfwbzu5WLMyfqOGkxQWiplrYUqsWEulf0/i2KDxF/3QVavTsjdgN/X21eDHf7/natgVzBRm9CzZh4vtbzC/1hKK2L6amWR0+SI2XTriUK86Znt2IdNqUddvQNS+w0Qd/hf1N83gHX9/fMm0kpY/ow/Tzr8ldR9UY1PEehKkBEqZlWF+/iVcL3mPcXknUcAkp9XgEARByBjfffc9CoWCVauWc+nShRTr9uzZzd9//0lAgP8bZ0mnh6tXL7Nz56uHrklJScyYMYWYmGi++aYZtrZ2ADRs2BgnJydOnDjG1q2bUzys9/G5zerVy/H398Pd/f3uidjZ6dsMnDqVMuHh2rUrzJs3y/C9Wv2qF7mJif6BXFxcXIrXJJd037NnN2q12rD86NF/OX786HvFk8zc3Jw2bb4lISGBiRPHEhHxKtFAqVQyZcoEHj9+hKWlZYoy/0+ePCYw8CFxce+uTBAeHs6UKRPRarV0796Tnj37vPM1HTp8D+grLLxeiv3YsSP8/fefODk5pZiNXK/e1zg7O/P3339y7NiR1/Ydxpw5MwHo3LnrO/f7uoIFC9G1aw/UajV9+/bkxIljqR6IHz16hEmTxiFJEv/7X2cKFy5iWBcXF0tg4EOePHn8Xvvr0qUbpqZm/PnnYWbOnEZ0dHSK9Tqdjn379rB3727s7R1o1qxlqm1s2fIrt27dMHwfHh7G9OlTAPj++06G5R/6s1ixYmWKFi3GvXt3Wbx4AUlJSYbxjx8/Yt682QQFBVKoUCFAX2a+Xbvv0Gq1TJo0jvj4V+fw0aNH+OuvP9I8Bi9ePCcw8CFRUZHvdcw+1L59e/j3378xMzNj0aLllChR8q3j8+TJS61adXj27ClLliw0fA4kJSXh7T0NpTKeNm3aYWX1KtnkQ8/d7CYoKJAnT55Qo0bNFMsVCgXW1taEhYWxYsWSFEkS0dHRnDt3FtAnGqUncedeEARB+CxFXzhPwNQJRL/MDjaytaPgoCHk69kHxQf07PKs4EWPo50NLQSSv3qW98qo0DOcTtLxe+AB5t+Yw+0IfWa1mcKMTkV/ZECZn8lvVSDFeKPLF7FYOBfT1y4w1V83RPmLJ0nVamRorCaHDmA5xxuFvy9aNw/iPb1Q57C+f0qdkl2R21kTuoL7qnuG5V9bN6SXU1/qWzcUFQHScCjqAD2CXv3s3U30oUdQZ9axmRZ2OescEARBED5vh9xDeNwZ2h+BvKHwzBl2NYCbRYJZntXBvYEkSUQc+5eHUycR93KmnbGzC66eXuTp3BX5Fz6LPUmXxG/+O1l4Yy7+MX4AWBlb0714T/qUHoCLucurwZKE8cnjWCyci8npk/pFMhnqFq1RDh6C5h39hAWI0UazJWITa8NW8UgdCOhbBDSzbUkvp75Us6zxRSenCIIgvEnx4iX55ZdhzJs3m0GD+lG0aHHy5s3Lo0dBBAT4o1AomDBhKo6OjhkWg4tLLubNm8WhQwfInz8/Pj63CQ5+QdGixRg8eIhhnJmZOdOnz2bo0EEsWjSP3bt34O7uQXR0FDdv3kCSJL7//gfq1Kn3Xvv93/86sXDhPCZNGs/evXtwcnLiyZPHPHhwH1tbOxwdnQgPDyM8PBxLSysAQ1n39etXc+vWDZo1a0GdOvVo3fpbdu/ewa1bN+nQoQ0lS5bi6dOnPHhwj2bNWnL48MEPOib9+g3iwYP7XL58ifbtW1OyZEnMzMy5efMGMTHRFCxYiJEjx6R4zcCBfXnx4jljx06kxTvue23btpmYmGgUCiOePn3ChAlj0hxXtmx52rXrAOgf8jdt2pw//vid775rS+XKVYiKiuTmzRsYGxszadL0FH3LLSwsGD16PMOHD2H06BGULVsOOzt7Ll++RHx8HN9+2446dd48I/xNevbsg1arZf36NYwcOYxcuXLj5uaOiYkJDx7c59mzpwC0b9+RAQMGp3jt8ePHmDp1Irlz52Hfvt/fuS9X18J4e89m/PjR7N37GwcP7qdEiVK4uLiQmJjA3bt3iYgIx8HBkblzF2JpaZlqG9bWNvTt25MKFSphYWHB5cuXUCrjadasBc2bv0oi+NCfRZlMxtSp3gwY0Idt2zbz779/UbRocVQqFdevX0Wj0VC/fgPat+9o2Ef37j25efMGV69epl27VpQvX5GIiAhu3rxOmTJluXXrZqr4J00az7VrV/jpp9706tX3/f6R3pNGo2Ht2pUAODk5s3nzxjeO7dq1h6ESg6fnSO7du8u2bZs5e/Y0bm7u3LlzmxcvXlC8eAl69+6X4rUfeu5mN8lVHNKqZjB48BCuX7/G9u1bOXHiOEWLFkOtVnPz5g3i4+No2LAxVapUTfW6TyGSAgRBEITPSvz9ewRMm0j4n4cBkJuZka9XPwoO+gXjl1nEH6KFayvWfb2Zude98Yv2xd3WA8/yo2jumjp7NLvT6DTsDdjNwptzeRB1HwBLIyu6lfiJvqUGksvitRK3b7i5qWrZhoSfh6J5R++v9GBy6AC2PTojyWTIJAnFXR9se3Qmet3mHJEY8ET9mHVhq9kcsYEobRQAlnIrvrf/gZ+c+oiKAO8wJ9jbkBAAGJJy5gZ7i6QAQRAEIVtxs/HgUmkfLpZ+rTwtMkpm08pSMdeuEDBlAlEvr/EU1jYUHPgz+Xv3R5HGzdCcIPTQAYLmeqP098PCzZ1Cw7xw/ojrRZVWxTbfzSy+OZ/HcY8AsDe1p1fJfvQs2Qc709f+ntDpMPnzMBYL52B87SoAkpERiR2+J2HQELTvOdPxS+av8mV16Aq2R25FqYsHwE5hRxeH7nRz+klUBBAEQXgPHTp8T9Gixdm6dRM3b17n4UN/nJycadiwMV26dKNYseIZuv9mzVqQN28+tm7dxOnTJ8mVKzc//dSbTp1+TDETHqBs2XL8+ut2Nm3awPnzZzl37gw2NrZUqlSZDh2+p27d+u+93//9rzOOjk5s374Ff38/7t27Q65cuenQ4Xu6dOnGpk0b2LVrO6dOnaRTpy4AtG3bHj+/B5w8eZxz585SuHAR6tSpR+7ceVi9egOrVi3n8uVLnD17Bjc3N6ZO9cbd3eODkwKSZ03v2bObv/46jI/PbWQyGXny5OW7776nY8cfPqjs/n+dO6cvUa/Vavj77z/fOjY5KQBg3LhJlCxZiv3793L+/FmsrKypXbsuPXv2oWjRYqleW716TVatWs/atSu5efMGWq2WAgUK0q7dd+9MXHibPn36U716Tfbv38PNmze4cuUSWq0WR0cnGjf+hrZtO1C+fPokVVavXpNdu/axZ89uLlw4x+PHj7l37w5mZmbkz1+A9u2/o0OH79/47zFixChu3LjOn3/+TmxsLEWKuNG2bYc03/+H/iwWLFiIX3/dxubNGzl16gSXLl3AwsKCEiVK0br1t3zzTbMUrTFMTU1ZsGAJ27dv4fffD3Lu3BmcnJwZMGAwJUqUZODA9H3o/y5+fr6EhupbZDx58vitFRyaN29lSArIlSs369ZtYvXqFZw9e4rTp0+SO3ceunbtwY8/dkv1uQEffu5mJ2fPnqFQIVfy5cufal3+/AVYs2YDGzas5cqVy5w+fQozMzOKFClC8+ataNWqTbrHI5Ner9MifDCtVkdERPwHvcbISI69vSWRkfFoNKn7hQhvJ47fpxHH7+OJY/dpMvr4JT57SuCs6bzYvgV0OlAoyPNDF1w9vTDNkzfd95fZPuX4qbVqdvlvZ+GNuQTGPgTAxsSWXiX70qtkXxzMXssY1+kw+esP/c3Nq1eAlzc3v/sfCYN+QeuWeTc37evVQHHXB9lrlyqSTIamZCmijp197+1k5s+uJElciD/P6rDlHI4+iBZ96adCJq70dOrD/xw6Y6OwzdAY0ltWffYVuOmMSlKlWm4qM+Vx2dR9+bKrjz1+Dg6WKBSfRwUJcb2c+cTx+3ji2H2aL/X4HQo8kGZlqfVfb/mgRNKMPn7KAD8eTp9C6IG9AMhMTcnXvReFfhmGsUPGzSDMaKGHDhDVozMlAWsgFrgD2K3b/N6JAUqNkk3317P01iJeKPV9Wp3MnOlfZjDdivfAyvi1G8UaDab7fsNi0TyM7t0FIMFUxtpmcvZ1cqNT2fE5LoExs6+Xj8UeYXXYco7E/mNYXtysBD2d+tLeviMW8vev7JYdfKmffelFXC9/WRITE/H3D8DJKbehlLuQM61evYK1a1fRrdtP9O07IKvDEb4QR48eYc2aFWzduitD99OvXy+uXbvCokXL+eqr9J2pLQgZQa1WERb2Aje3IpiZmb1xnKgUIAiCIORoSVGRPFq8gKerl6NLTATAqXkrCo8ej6VH+szOyqkl7BM1iWz13cTim/N5Gv8EAEczR/qWGkj3Ej2xMXnt4bRWi+n+PVgsnIvR3TsASObmJHTuSkK/QejyF0hrFxlK4e+bIiEAQCZJGPn5Znos76LWqdkX9RurwpZzM+G6YXltq7r0cupHI5smKGSKN29ASMXN1IO7iT6GSgGgn3Xpbpo9Z10KgiAIX67sXllKFRxM0Fxvnm/eiKTRgExG7o4/4DpiNGZZcI2X3hLGj6IGIAEywBaoAVyZMArecc0elxTLurtrWHF7MWGJ+h6leSzyMqjsL3Qq2hVzI/NXg1UqzHZuw2LRPBRBgQCorcyZ3TKBRd9KhNhrkeHLEdHuKE3x2nh2RW5nddhyfFUPAP21XWObb+jl1I/aVnVFiwBBEARBEN7q3Lkz2X5muCBkZyIpQBAEQciRtImJPF27ikcL56CJigLAtloNioyfjG3lr9JtPzmxhH3yTKclNxcSnPACABfzXAwo8zM/FuuOpfFrZWHVasx2bcd80TyMHgYAoLO2IbF7T5R9BiA5O2fFWwBA6+aRdqUA9+zzUDg0KZRfI9axPmwNIZpgAMxkZrS370hPp76UNC+VxRHmXJ65vOgRlHrWpWdur6wOTRAEQRBSaeHaihau2evaUBMXy+MlC3m8Ygk6pRIAh0ZNKDJmIlYlP59rFLenTwwJAbz8KgFuT56Q9IbXxKijWXNnJSt9lhKpigSgoFUhBpcdSkePHzBVvDZ7VanEfPMGzJcuQvH8GQA6R0cSevenQe3dXDS+J9odvcVT9RPWha1mU8R6Q0stK7k1Pzh0podTb4qYumVtgIIgCIIg5AgXL17g0qXzLF26KqtDEYQcSyQFCIIgCDmKpNMRvHsHD72nonrZq8iyREmKjJ2IQ8Mm6T67xHKOtyEhAPQz1SWZDIu53tkuKSAuKY4N99ay7NYiwhL15dXzWuZjUJlf+KHojylnOiUkYLb1VyyWLETxVF9FQOfgQELv/iT81BvJ1i4L3kFK8Z5eKRIykr8qPbP+ofDthFusDl3OnqhdhhL3uY3y8JNTbzo7dsPRKOeW4M0uWti1Yh2bmRvsjZ/KF3dTDzxzj6K5bfaYdSkIgiAI2ZUuKYnnv64ncK43SWH62e/WlSrjNm4ydjVqZXF06c+aVwkByWQvl0f8Z3mkKoKVPstYc2clMepoAIrYuPFLOU/auX2Hsdz41TZiYzBbvwaLFUuQvzyO2tx5SOg/iIQu3cHSkus3Z/HfrpwSEn6q7FfZKrNdir/AqtDlHIreb2ip5WpSmF5OffneoRPWCpssjlAQBEEQhJykSpWv2L79N8zMzN89WBCENImkAEEQBCHHiDh2hIApE4i7fRMAkzx5Kew1ltzf/Q+ZImNKs+eEEvax6hjW3l3FittLiFDpb32+caZTXBzmG9dhsWwR8tAQALQuuUgY8DMJXbqBlVUWvIO0qVu0InrdZizmemPk54vG3QOl5yjUzbPmobBO0vFPzF+sDFvK6biThuUVLSrR26k/Le3aYCwzfssWhA/Vwq6VmGUnCIIgCO9JkiRCD+3n4bRJJAT4A2BexI0iYybi1KLVZ1uaPSlffuRPHqdIDJCApNdaI4QnhrPi9hLW3l1FXFIsAMXsijOk3HBaF26LQv7qbwlZZATmq1dgvnoF8ugoALQFXVEO+oXE7zuB6atra9HuKKUkKYlDUftZFbaMK8rLhuW1rOrQ26m/aKklCILwGenVqy+9evXN6jCEL4hMJsu0hIDly1dnyn4EIbOJpABBEAQh24u9dZOAyeOIPHEMAIW1DQV/Hkr+Xv1QmGfsxWB2LmEfrYpizd2VrLy9lCh1FPCWmU7RUZivXYX5yqXII/UlUrX5C6Ac+AuJP3QBM7OseAvvpG7RKssrMsRp49gRuYVVoct5qNa3WFCgoIVta/o496eyZfq1qxAEQRAEQfgYUefPETBpLDFXLgFg7OSMq6cXebp0Q278eSctqibPwKxHZ3SAHAxfVZNnEJoQyrLbi1h/dw1KTTwApRzKMLTccJq7tkIukxu2IwsNxWLFEszWrUYeHweAxqMoyp+HoWrbAYxS30IT7Y70IjURbIrYyLqwVTxLegqAqcyUtnYd6O3cn1LmpbM4QkEQBEEQBEEQckxSwMWLF/nxxx+ZMmUKHTp0eO/XqdVqNm/ezN69e3n8+DEWFhbUqFGDwYMHU7BgwQyMWBAEQfhUiU8e83DGFIJ37wBJQmZsTL4evSk0xBNjh8wpz54dS9hHqiJY5bOc1XdWGMqeetgWZWj5EbQp3C7lTKeIcMxXLcN89UrksTEAaAoXQfmLJ6r2HeEzv0n8KZ6oH7MmbCWbwzcSo9MfZ1uFHV0cutHDqRf5TQq8YwuCIAiCIAgZS+nnS8CUCYT9cQgAuYUFBfoNosCAwRhZWWdxdJljT2k42BnGH4FioXDfGSY1AKXJZk7t7EmCNgGAco4VGFZhJE0KNE1RNUH+/BnmyxZh/ut6ZAn6sZqSpYkfOhx181bwlopkX3q7I79EX1aFLWNn5DaUOiUAzkYudHfsSVfHn3A2ds7iCAVBEARBEARBSJYjkgICAgIYOnRoqj5t76LRaBg4cCAnTpzAxcWFOnXq8PjxYw4ePMjRo0fZunUrxYsXz6CoBUEQhI+liYkmaOE8nqxahqTS92t3+bYdhUdPwLyQa6bGkp1K2IcnhDPj0kxW3l5hKHta3K4EQ8uPoKVrm5TJAKGhWCxfjPm61ciU+llRmmLF9ckArdumOdNJ0Lscf5GVoctS9D91M3Wnl1M/vrP/H1aK7NNiQRAEQRCEL5M6NJTA2dN5tmkDaLUgl5OnU1dcR4zCNFfurA4vU8255s3d0jL2lv7PPaPHfwBQ0akSwyqMpGH+JimTAZ48xmLRPMy2bkKmVgOQVKEiyqEjUTf+Bt6z3cKX1u5IkiROxZ1gZehS/on9y7C8lFkZ+jj351u79pjKTd+yBUEQBEEQBEEQskK2fyJw7tw5hg0bRnh4+Ae/duvWrZw4cYIaNWqwbNkyzF+WmN6wYQMzZszAy8uLvXv3frZ99QRBEHIanVrNs41rCZw7E01EBAC2NWrhNmEKNhUqZVlcWV3CPjwxnFV3lrL6zgri1PpSpiXtSzOswkiaF2qZouyp/MVzzJcuTDHTKal0WZRDhusTGeTyNPfxpdNIGg5HH2RF6FIuKy8alte2qksf5/40tG6S4jgLgiAIgiBkBa1SyeMVS3i8eAHalyXuHZs0pci4yVgWLZbF0WUN/xhfJFJPIpEhY1vj36ifr0HKZIDAh/pkgB1bkSUlAZD0VTXih44gqX6D904G+NKodCr2Ru1mRehS7iTeBvTHuLHNN/RxHkBNy9ri/pogCIIgCIIgZGPZNikgPDycxYsXs2PHDuRyOXnz5uXZs2fv/XpJkli/fj0A48aNMyQEAHTr1o1///2XS5cucf78eapXr57u8QuCIAjvT5Ikwn4/SMCU8SQ81PdstyhajCLjJ+PY6Jsv9uZSeGI4y28vZu2dVcRr9Dd9yziWZWi5kTQt1DxlMsDTJ1gsno/Zll+Rvayu8DEznb40sdoYtkT8yurQFTxOegSAicyEb+3a08d5AKXNy2RxhIIgCIIgCCBptbzYtZ2HM6agfq6/N2JdvgJuE6dhV6NWFkeXdZ7HP8PCyBKVVpVqXQn7Unydv6Hhe4W/Lxbz52D6205kWn01KHWtOiiHjSSpRi1xvfwG4ZpwNoavZW3YKkI1IQBYyC343r4TvZ37UcTUPYsjFARBEARBEAThfWTbpIAVK1awbds2XF1dmTZtGrt372bv3r3v/foHDx7w7NkzihQpQpEiRVKtb9iwIZcuXeL48eMiKUAQBCELxVy5hN+EMcRcPA+AsbMLhUeOIfcPXZB/oSXuk5MB1txZiVKjL/1f1rEck+tOorZjA7TaVzOh5I+CsFg4D7Ptm8VMpw/wWP2I1WEr2By+kTidvhWDg8KBbk496e7Yi1zGubI4QkEQBEEQBL3Ik8fxnziWuNs3ATArWIjCo8fj0qYdsi+0CtTz+GcsujmPTfc3oNap0xwzvMIoABQP7mMxbxam+35DptMBoK7fgPihI9FUrZZpMec0vokPWBm2jJ0RW0mUEgHIY5yXn5z60MWhK/ZGDlkcoSAIgiAIgiAIHyLbPm0pUKAAEyZMoEOHDhgbG7N79+4Per2fnx8AHh4eaa53d9dnMj948ODTAhUEQRA+SkJQIAHTJhK6bw8AcnNzCvQfTIEBP2Nk9WX2bA9PDGfF7SWsubPSUBmgrGN5PCt40bxwcxwcrIiMjAckfdnThXP1ZU81GgDUNWvrZzrVrC2SAd7gSvwlVoQu5WD0PnTobwp7mBalr/NA2tt3xFxu/o4tCIIgCIIgZI74e3fxnzyOiH//BkBhY4vr0BHk+6k3ctPs1bP9UNQB5gR746/yxc3UA89cXrSwS//2W2klA1TPXZNaeepyOPAA/jF+uNt6MKy8F60S3LDo3Q3T/XuRSfqkWlWTpiiHDEdTsXK6x/Y5kCSJU7EnWBG6hH9i/zIsL2tenn7OA2ll9y3GMuMsjFAQBEEQBEEQhI+VbZMCfvzxx096fUiIvqSZi4tLmuudnZ0BCAsL+6T9CIIgCB8mKTqKgNmzeLJmBZJaDTIZub/vRGGvsZjmyZvV4WWJiMRwlr8hGaBJgabIZDJDCwV5gD/Wc2Zhumv7q7KndeqjHDaCpOo1s+w9ZGdaScvekL3M9J/NhfhzhuV1rOrTz3kA9a0bpmjFIAiCIAiCkJVUIcH4TZvK8y0bQadDZmRE3h69cB06AmMHx6wOL5VDUQfoEdQZGTIkJO4m+tAjqDPr2JxuiQEvlM8NyQDJrQKq5arBiIqjqZlb38t+VJXR2NtbEnP6AqZTvDE9uM/welXTFiiHjUBTtny6xPO5UevUbHq+h9kBc7iVoK9IIUNGE5tm9HMeSDXLGl9sSzdBEARBEARB+Fxk26SAT6VUKgEwMzNLc33y8uRxn8LI6MMeJCgU8hRfhQ8jjt+nEcfv44lj92lkOi1+S5dye/wEkiLCAXCoWw+PydOxLlM2i6PLGpGJESy7tZiVt5cTl5ScDFCOkZVG802hZiluvBkHBsAvc7DZssWQDJD0dUMShnuhfVn29LP9pf6R4rXxbAvfzPKQpTxUBQBgLDOmvcN39HcZRCmL0lkcYc4gPvs+jTh+euJ6OXOJ4/fxxLH7NOL4fSK1irszFnF3+nS0cfprQ+cWrfCYMBkLt+zbt31uiLchIQBAQkKGjHkhM2nj1OaTtv1C+YIF1+ey8e66V8kAuavjVWkMtfPWTXm9fOc2zJuFzZ49hmXqVm1I9ByJtnQZQFwv/1e0JoqNYetZFbKcZ0nPALCQW/A/x070dRmAm1n2Pe+yE/HZ92nE8RMEQRAEQcgcn+3fQwqFAuCdmcySJL11/bvI5TLs7S0/6rU2NqJE8acQx+/TiOP38cSx+zCSJPH899+56elJ7P37AFiXKEG52bPJ3azZFznjJCoxivmX5rPg8gJi1DEAlHcpz8RaE2nl3irlMXnwAKZOhS1b9DPFAJo1g/HjMa5aFVG8M7XnqucsebyE5U+WE6mJBMDeyJ5++fsxsMBA8pjmyeIIcybx2fdpvuTjJ66Xs444fh9PHLtPI47fh5F0Oh5v386tUaNQPnoEgH3lypSbNw/n2rWzOLp381f5GRICkklI+Kl8P/rzPzg+mJnnZ7L8+nISNfp+9rXy12JSrUnUL1g/5fXy9eswaRLs26f/XiaDDh1g3DhMSpfG5KMi+LwFJgSy4NEC1j5bS5xWn4CS2yQ3gwoMom/+vjgYO2RxhDmT+Oz7NOL4CYIgCIIgZKzPNinAwsICgMTExDTXJy9PHvexdDqJmJgPqzagUMixsTEnJiYBrVb3Sfv/Eonj92nE8ft44th9uNjbt/AdN4qIE8cBMHFywm3UWPJ06YbcyIioqE+v1pKTxKijWXFrGctuLSFGHQ1AKYfSjKw0muauLZHJZIZjIvfzxWzOTEx270Sme3m+tWhB3NARJJWvqP8+Mj4r3ka2dTfhDkuDF7M7YgdqSd9jtrBpEQbkHkjfIr3RxsvRKnVEKsVx+xDis+/TfOzxs7Ex/2xmS4nr5cwnjt/HE8fu04jj9+Gizp/jwdhRxFy9DIB5/vy4T5iMy7ftkcnlROaA6z03U3fuJPikSAyQIcPd1OOD4w9LCGXRjQWs9VlFgjYBgK9yVcOr0hjq5quX4npZcfMGZrNnYPL7IQAkmQxZx47EDRlOkkcx/QZzwPHLTFfjr7AkeCEHIvehQ/8zWsKsJIPy/EyPwl1RxenQxumIRBy3DyE++z6NuF4WhJxh//69zJgxhWbNWjJ+/KSP3k61avp7WqdPX8TI6LN9PCUIgpAtfbafurly5QIgLCwszfWhoaEAODs7f/K+NJqPu+DXanUf/VpBHL9PJY7fxxPH7t1UwcE89J7Ci62bQJKQmZhQsN9AKkwaT5zOCI1Gh+4LOoZxSbGs9lnB8tuLiVJHAVDcrgTDK46meaGWyGVytFoJkFD4+2Ixdxame3YZkgFUTZqiGjEKm69rkxQZL86/10iSxOm4kywLXcSR2H8My7+yqEY/l0F8Y9MMU2NjLBWWRGrFsfsU4rPv03zpx09cL2cNcfw+njh2n0Ycv3dLCAokYMoEQg/sBUBhaYXrL0MpO3oksSpJf/x0OeMYDnPxokdQZ0MLgeSvw3J5vfd5EJEYzrLbi1lzZyVKjf6BdCXnygyvMJr6+Rogk8leXS/fuonlHG9M/3iVDKD6th2q4V7YVqskrpf/Qyfp+CfmL5aFLuJc/BnD8rpW9ennPIj61g0wNlZgKjdFKa6XP4n47Ps04vgJgiAIgiBkrM82KcDDwwMAPz+/NNcnLy9atGimxSQIgvC50yYm8mTlUh4tmIs2/mUf1DZtKTJ2EtZFCmNsa/lFzdaJT4pn3d3VLL21gAhVBABF7YoxvPwoWhZug1z2alaDwt8Xi3mzMf1tZ4pkAKWnF5pyFT64H/fnLklK4kDUXpaFLuZWwg1APyOtuW0r+jkPpIpl1SyOUBAEQRAEITVNbAyPFs7j8cqlSCoVyOXk+aELriPHYpkvD0YWFqDKWdfLLexasY7NzA32xk/li7upB565R9HctuU7XxutimK5zxJW+SwnLikWgPJOFRhRYTQN8jdO0SZAcesmlnNnYnr4IJCcDNAe5dARaIsWE9fL/5GoS2RX5HaWhy7GT+ULgBFGtLXvQF/ngZQ2L5PFEQqCIAiCIAiCkJk+26SAIkWKUKBAAXx9fXn06BEFCxZMsf6ff/SzCevWrZsV4QmCIHxWJEkidP8e/KdMQPVY3wfVumIl3Cd7Y/vVl/dwNkGTwK/317HwxjzCEvWVaYrYuDG8wijaFG6HQq4wjJUH+GM5bxamu3ekmQwgpBSnjWVzxEZWhS7nSdJjACzkFnxv34k+zgMobFokiyMUBEEQBEFITdJqeb51Ew9nTCEpTH99aFe7Hu6Tp2NVqvQnbz/00AEC53iT4O+LuZsHrp5eOLdo9cnbfV8t7FrRwu799xerjmHVneUsv/2qrVZph7KMqDiaJgWapkwG8LmN5ewZqZMBho1E6yEmevxXhCacDeFrWRO2kjCN/lyzkdvyo2N3ejr1Ia9JviyOUBAEQRAEQRCErPBZJAVEREQQGRmJubk5efPmNSzv3LkzM2bMYMyYMSxfvhwrKysANm7cyOXLlylZsiQ1atTIqrAFQRA+CzHXruA3bhQxF88DYJInL27jJuHStgMy+Zc1W0elVbHlwa8suDGHF8rnABSydmVY+ZG0d+uIkfzVr1154EN9MsCu7ci0Wv3rG3+DcvioVMkAhwIPMPe6N/7RfrjZujOsvBctXDPvJm928CLpOatDV7AxfB0xOv2NYycjZ3o69aGb4084GDlmcYSCIAiCIAhpizx9Er+xXsTfuQ2AeRE33CZOw7FJyoffHyv00AF8enQGmQwkifi7Pvj06EypdZszNTHgfcQnxbP27iqW3lpApCoSgBL2JRleYTTNCrVIWUnr7h19m4CD+4BXbQKUQ0eiLVosK8LP1gJVD1kZupRtkZtR6pQA5DPOTx/n/nR26IqVwjqLIxQEQRDe1+rVK1i7dhVz5iwAYOPG9fj63sfMzIxq1Wrw88/DsLe358CBfezYsZUnT57g4uJC06bN+fHHbhgZGRu2FRz8go0b13P27GnCwkKxsrKiXLkKdOnSldKly6bad1xcLJs2beDIkX8IDQ0lb958fP99p7fG++jRIzZsWMulSxeIjIzA3t6BatVq0KNHT/LkyfvW1wqCIAiZ57NICtiyZQtLlizhq6++YtOmTYblnTt35tixY5w/f57GjRtTuXJlnjx5go+PD7a2tsyePTsLoxYEQcjZVC+eEzBtEsE7tgIgt7Cg4MBfKNB/MAoLiyyOLnMl6ZLY6beNeddn8ThOXykhn2V+hpYfwfcenTCWv/pjTP4oCIv5szHbsRWZRgOAqlETfTJA+Yqptn0o8AA9jr7q0XonwoceRzuz7uvNX0RiwP3EeywLWcTuqB0kSUkAuJt60M95EB3sv8dMbpbFEQqCIAiCIKQt4WEA/pPGEfZyhruRrR2FPEeSr3sv5CYm6bafwDnehoQAQP9VJiNwrne2SQpI1CSy8f7aFJW03G09GF5hFK0Lt02ZDPDgPhZzZmC6fy8ySdInA7T+FuUwL7TFimfVW8i2riuvsjRkEQej96FDX3mstFlZBrgMppXdtxjLjN+xBUEQhGxGkkCpzOooPoyFhf53cTrbu/c3zpw5RdGixfjqq2rcvHmdP/88TGDgQ6pUqcqWLb9SpkxZKleuzMWLF1i1ajkxMTH88sswAHx8bvPLLwOIjY0lf/4C1KlTj5CQYE6cOMapUycYMWIUbdq0M+wvJiaG/v174efni7OzCzVr1ub582fMmDGFwoXTrsx46dIFRowYSkJCAm5u7pQuXYZHj4I4eHAfJ04cY9GipRQvXjLdj40gCILw4T6LpIA3MTIyYtWqVaxZs4YDBw5w7NgxHB0dadWqFYMGDUrVUkAQBEF4N21CAk9WLCFo4Tx0Sn2/01wdvqfwmAmY5c2YUpRZXQ71TbQ6LXsf7mb2tRk8jAkAIJd5bn4p50nnYl0xVZgaxsqfPMZiwVzMtv5qSAZQf92Q+BGj0VSs/MZ9zLnmbUgIAJCQkCFj7nXvzzYpQJIkLsSfY0noAv6O+dOwvKpldQY4/0xjm29S3DgWBEEQBEHITjSxMQTNn8OTVcuQ1GpQKMjbtQeuw0dj4pj+1Y0S/H1fJQQkkyQS/HzTfV8fSq1Vs9V3E/Ovz+a58hmgr6TlWd6Ldm7fpaikpfDzxWKON6Z7dyN7+X4SW32L0tMLbfESWRJ/diVJEkdj/2Fp6CJOx500LK9v3YABzj9T26puulShEARByHSShHXTRhi9rEaZU2iqVif28N/pnhhw5swphg0bQYcO3wMQEhLCd9+14d69u/j6PmDx4hVUqqS/p3Tu3BmGDBnEwYP7GTx4CElJSXh5eRIbG0vv3v3p3v0nw++Gs2fPMGqUJ7Nnz6REiVIUe5l0t2rVcvz8fKlTpx5TpszA1FR/X+vAgX1Mnz45VXzR0VGMHTsKtVrNtGkzadCgkWHdvn2/4e09jTFjvNi+/TeMjUWSmiAIQlbLMUkB3t7eeHt7p7lu0KBBDBo0KM11pqamDBgwgAEDBmRkeIIgCJ89SZIIPbQf/4ljUT3Wz4a3qVQF96ne2FSqkmH7zY7lUHWSjt+DDjLr6jTuR90DwNHMkcFlh9Gt+E+YG5kbxsqfP8Ni4VzMNm9EplYDoK5bX58MUKXqO/flH+NrSAhIJiHhF531N3nTm1bS8kf07ywNXcAV5WUAZMhoZtuSAc6DqWz5VRZHKAiCIAiC8GaSVsuL7VsImD6ZpNAQAOzr1sd9ijeWGfhQ29zNg7i7PoYH6aAvtW/uXjTD9vkuGp2G3f47mHPNm0dxQQDktczHsPIjU1fSehiA5dyZmO7egUynn+muat6KeE8vtKVKZ0n82VWSlMTeyN0sDV3E3UQfAIww4lv79vR3Hkwpc3G8BEH4DIikJgM3N3dDQgCAi4sLFSpU4ty5MzRo0NiQEABQrVoNzM3NiY+PIzIyggsXzhMaGkLFipXp0aNniu3WqFGTLl26sWbNSrZt28zEiVNRq9X8/vsBjI2NGT16nCEhAKBVqzacPHmc06dPptjO/v37iI6OokOH71MkBAC0adOO06dPcfr0SY4fP0qjRk3S89AIgiAIHyHHJAUIgiAIWefRssUEzpqG7mX5NiN7Bzymz8KlbYcMn4GSncqhSpLE0Sf/MOPqVG6GXwfA1sSOAWUG07NkX6yMrQxjZSEhWCyeh/mGtchUKgDUteqgHDGapGo13nufbjYe3I30SZEYIEOGu23W3eRNb4m6RHZGbmNZyCIC1P4AmMpM+c7+B/q7DMTN1COLIxQEQRAEQXi7qPPn8Bs7krib1wEwL+KG2+TpODb6JsOvl8O6NsB95G1KAtZALHBHkvD78esM3W9adJKOgw/3MfPaNEMSq7O5C0PKedK5aDfMjF61fpI/foTFvFmYbd+CTKsFQNWkKcoRo9GUKZfpsWdncdpYNkdsZEXoUp4lPQXAUm5FZ4eu9HHuT36TAlkcoSAIQjqRyfQz7kX7AABKlSqTapm9vT0AHh4p75XIZDKsrKxISEhApVJz7doVAL7+ukGa227UqAlr1qzk6lX9uLt375CQkECZMuWws7NPNb5u3XqpkgKuXr0EkCI54XXVqtXg9OmTXL16WSQFCIIgZAMiKUAQBEF4I3VYGHf79yTy+NEUyzWREchNzTKlJGV2KYd69vlppl+ZzMUQfQk7SyMr+pTuT79SA7E1tTOMk4WHY7F0IebrViF7+UdsUtXqxHuNJalm7Q/er2cFL3oc7WxoIZD81bO8V7q8r6wUrY1iQ9haVoUtJ1Sjn01nq7Cju2NPejr1xcXYJYsjFARBEARBeLvEp08ImDKekD27AVDY2OI6bCT5fuqN3MQkU2K4ErCHHwEdIAdsgBrAzod7aMqUTIlBkiT+efwnM65OxSfiFgD2pvYMKjuUHiV6YWFkYRgrf/4Mi/mzMdvyK7KkJABUDRrpkwEqVMqUeHOKkKQQ1oatYF34GqK1UQA4G7nQ26kfXR17YGeU+qGNIAhCjieTgaVlVkeRLdjY2KSxVPZyne0b1wGEhoYCkCdP3jS3nfdlC9Dw8HAAwsL0411c0r4XkzeNlqEvXrwAwMvLM83XJAsODn7rekEQBCFziKQAQRAEIRVdUhJP160icLY32pjo1AMycaa+uZsH8Xd9UiYGZGI51GuhV5h+ZTInnh0DwExhRvcSvRhUZghO5k6vQoqOwnz5EsxXLkMeHwdAUsVKxI8cS1K9rz86Y7yFayvWfb2Zeddn4hfti7utB8PKe9HcteWnv7ks8jzpGStCl/Jr+Hridfpjlc84P32dB9DJ4UesFNZZHKEgCIIgCMLbaRMSeLx0IY8Wz0eXkAAyGXk6d6Ww1zhMnJ0zNZafDjwxJATw8qtWBt33P4HU7X/T3ennJ5l2eRJXQvWzBa2MrelXeiB9Sw3A2uTVw4w0K2nVrkf8yDFovnp3W60vyUNVAMtCF7M9YjMqSX+sipi4McDlZzrYf4+Z3OwdWxAEQRA+B0ZGn/L4RnrrWu3LKj3Gxvp9vGvij0KhSLVM97LtT82atbGyskq1PlnhwkXeum1BEAQhc4ikAEEQBCGFiGNH8Bs7EqXvA/2C10v3J8vEmfqunl749Oj8Ko6XX109M3am/L3Iu3hfncrhoIMAGMmM6FysK0PLjyC3RR7DOFlcLOarV2C+bDHy6CgAksqUQzlyNOpG36RL+bi2t6HLQgkjf9C4ScQPk1C7fvJmM92DxPssDVnI7qgdJEn6WWElzEoywPlnvrVvj7HM+B1byHyHog4wJ9gbf5UvbqYeeObyooVd5ratEARBEAQh+5AkidBD+/GfMAbVk8cA2Fargfu0mVhnUcn7YqGvEgKSKSQoHgoxGbjfq6GXmX5lCidfJs+aK8z5qWQfBpb5GQczR8M4WUQ4FksXYb52paGSlrpaDZReY0mqUSsDI8x5biqvszhkAQej96FD/6ClkkVlBroM4RubZihkqR/ICIIgCEJanJz0SYrPnz9Lc/2zZ/p2NA4O+t/Zzs7J45+nOT658sDrHB2dePQoiI4df+ArkeAnCIKQ7YmkAEEQBAGAhMCH+I0fTfifvwNg7OhI4dETeLJmJcp7d7Jspr5zi1aUWreZwLneJPj5Yu7ugavnKJybZ8xM+aDYQGZdnc5u/x1ISMhlcjq4fY9nBS8KWbu+GqhUYr5hLRaL5yF/WWpNU7wE8SPGoG7eMt16yZkcOoBtj85IL5MhFHd8sO3Rmeh1m1FnQqWG9HA5/iKLQxbwR8whw7LqljUZ5PILDawbZ0obio9xKOoAPYJetW64m+hDj6DOrGOzSAwQBEEQhC9Q3B0f/MaOJOplP13TfPlxmzAF59Zts/R6Jt41P8Z+j1MkBmhlEFc4Y/rM3428g/eVqfzxSH9tZyw3pkuxbgwpN5xcFrkN42Qx0ZivWIr5iqXI42KBl5W0vMaRVLd+hvRezokkSeJU3AkWhcznZNwxw/KG1o0Z5DKEapY1su31siAIgpB9lS9fkUOHDnD06BHat++Yav2RI38DULGivnVPiRIlsba25v79u7x48ZzcufOkGH/27OlU26hYsSLXrl3h7NnTaSYFLF68gEuXLtC2bQfatGmbHm9LEARB+AQiKUAQBOELp42PJ2jRXB4vW4ykUoFCQf6efSjk6YWxrR3G9g5ZMlP/dc4tWmV4q4Jg5QvmXZ/F5gcbSdLpZ7G3cG2NV8WxFLUr9mqgWo3Z5o1YzJ+NIljfO01TuAjKEaNRtWkHaZRT+xSWc7yRZDJkL5MyZJKEJJNhMdc7WycFSJLE0dh/WBQyn3PxZwzLm9q0YJDLL1S2/CoLo3s/c4K9DQkBABISMmTMDfYWSQGCIAiC8B+hhw4QNNcbpb8fFm7uFBrmlSmtpjJDUmQEgbOm83TDWtBqkZuZUWDAzxQcNASFhUVWh4di9AzkPTqjk4FcAp1MXynAaPQM1Om4n8CYh8y+NiNF8ux37v/Ds7wXBa0LvRoYH4/52lVYLJmPPCoKAE2pMsR7jUXdOH0qaX0OtJKWw9EHWRQynxsJ1wBQoOBb+/YMdP6FkualsjhCQRAEISdr2LARK1cu5erVy6xfv4Zu3X4yJJmdO3eGzZt/RaFQ8O237QEwMjKmXbvv2LBhLZMmjWPOnAVYWupbAhw9eoS//voj1T5at27H1q2b2bVrB6VKlaZRoyaGdadOnWDHjq1otVpKlhS/0wRBELIDkRQgCILwhZIkiZB9v+E/cSzql6XE7OvUx33aTCyLFTeMy+yZ+pktShXJ4psLWHNnBQnaBADq52vAqErjKO9U8dVAjQbT3TuwnOON4lEQANoCBYn39ELV4Xv4pD5vb6bw9zUkBCSTSRJGmdS+4UNpJA0Ho/axKGQ+Pom3ADCWGdPeriMDXH6mqFmxd2wh+/BX+RoSApJJSPipsuexFwRBEISsEnroQIok0rg7Pvj06EypdZtzdGKApNXyfPNGAmZMRhMRAYBTi9a4TZyKecFC73h15lG3aEX0us1YzPVG5ueL1t2DWM9R+upV6SA5eXbT/Q1oJA3whuRZlQqzTeuxnD8HeWgIAJqixYgfMRp1i9Yg/2+Tgy+TSqdiV+R2loQsIEDtD4C5zJxOjj/S13kgBU2yz7klCIIg5FxmZuZMmzaLoUMHsXLlMg4fPkTRosUICQnm1q2bKBQKhgzxpFSp0obXdO/ek5s3b3D16mXatWtF+fIViYiI4ObN65QpU5Zbt26m2IeLiwvjx09m/PjRjBs3irVrV1GokCshIcHcvXsHgCFDPClaNOfcCxIEQficiaQAQRCEL1Ccz218Rw8n+px+BrdZwUK4TZ6BU9PmaZamzIyZ+pktPimeNXdWsOTWQqLVUQBUdvmKsZUmUiPPa71NdTpMD+7DYuY0w4N4rUsulEOGk9i5K5iaZmicWjcPFHd9UiQGSDIZmkxq3/C+EnWJbI/YwtLQhQSpAwGwkFvyo2N3+joNIK9JvqwN8CO4mXpwN9EnRWKADBnuptnr2AuCIAhCVguc4/2qqhQYqksFzvXOsdeQ0Rcv4DvKk7hbNwCwKF4Cj6kzsa9TL2sDewN1i1bpXkUqWhXFklsLWX1nOUqNEoB6+b5mdKXxqZJnzXZsxWLuTBRPHgOgLehK/HAvVO07pnslrZwqThvLxvD1rAhdQrBGX3HMTmFHD6fe9HLqh6ORYxZHKAiCIHxuypYtx6+/bmPjxnWcP3+OkyePY2dnR8OGjfnf/zqnSAgAMDU1ZcGCJWzfvoXffz/IuXNncHJyZsCAwZQoUZKBA/um2kf9+g1Yv34zmzdv5MqVS5w5cwoHB0dq1qzNDz90oVKlypn1dgVBEIR3kEnSf6YfCh9Eq9URERH/Qa8xMpJjb29JZGQ8Go0ugyL7fInj92nE8ft4n8OxS4qK1Jc+XbcadDrk5uYUHDyUAv0HozA3z9B9Z5fjp9aq2fxgI/OuzyIkIRiAEvYlGV1pAo0LfPMqKUKSMDnyNxbTp2B8W58JrbO3RzloKAk9ekEmlYo1OXQA2x6dDS0Ekr9Gr9+SbrO/PkWsNob14WtZGbqUUI1+RpiDwoFezv3o4dgLeyOHLI7w48+9Q1EH6BHU2dBCIPnretctNLfN+mOfWbLLz25O9bHHz8HBEoXi85hRKa6XM584fh9PHLuPc7KAMzqVKtVyuakpdR6HZkFEH08VHEzAlPEE79wGgMLGlsIjR5O3W0/kxsYZuu/scv4pNUrW3FnJ4pvzDcmzlZyrMLbyRGrmqf1qoE6H6YG9WHhPxShAP+NdmzsPyqEjSPyhC5iYZGrc2eX4/VeYJow1octZG76aaG0UALmN8tDPZRBdHLphpbDK2gDJvscupxDH79OI6+UvS2JiIv7+ATg55cbEJGMnWQiCIAjCl0KtVhEW9gI3tyKYmZm9cZyoFCAIgvAFkHQ6nm/dxMNpE0kKDwfAuWUb3CZNwyx/gSyOLnPoJB17A3bjfXUqQbGBABS0cmVkxdG0LdIBhfzVDCbjc2ewnDYJ44vn9a+1siah30AS+g5AsrbJ1LiTy8FazpuJ0ctysPHDvLI8ISA0KZTVYctZF7aaGF00APmM89PfeRA/OPyIpcIyS+NLDy3sWrGOzcwN9sZP5Yu7qQeeuUd9UQkBgiAIgvA+zN08iL/r86pSAIBMhnk2q2z0NrqkJJ6uWUng7Blo42IByN3pR4qMnoCJs3MWR5c5knRJbH2wiTnXvAlO0M9kL25XglGVxvNNwWYpk2f//QvL6VMw8tG3i9I5OqIcPIyEbj9BBicb5xRP1U9YFrqIzeEbSZD0bcrcTN0Z5DyEdvbfYSoXD8MEQRAEQRAEQcg8IilAEAThMxdz9TK+ozyJvXYVAIuixfCYPjvblj5Nb5Ikcezpv0y9PInbEfoZ/87mLgwtN4Iuxbphong1g8noxjUsp0/G5NgR/WvNzEj4qQ/KQb8gOWRdOU91i1bo2rTB3t6S2CyeffJE/ZhloYvYEv6r4eamh2lRBrnob24ayzJ2Bl1ma2HXihZ2ObPssSAIgiBkFldPL3x6dH7VQuDlV1dPr6wO7b1EnjyO7+jhKB/cB8C6QkU8ZszBpuKXUe5WkiQOPNzLjKtTCIjRz/gvaFWIERVH067IdymTZ8+e1ifPXroAgM7ahoT+g0jo0x/JyjpL4s9u/BJ9WRwyn12R29GgAaCseXl+dhlKM9uWKGSinYIgCIIgCIIgCJlPJAUIgiB8ptTh4TycNpHnW34FSUJhZY3r8FHk69knw0ufZhdXQi4x9fJEzrw4BYC1sQ0Dy/xM71L9sTR+NZNd4fsAS++pmB7cB4BkZERi564oh45AlztPVoSe7fgmPmBxyHx2R+4w3NysYF6RwbmG0dSmOXKZKNsoCIIgCF8q5xatKLVuM0HzZqL088XC3YNCw7xwzgatjt4m8dlT/CeMIXT/HgCMHR0pMnYSuf/XGZn8y7i2OfH0GFMvT+RG+DUAnMycGFJuOD8W74Gp4tVMdqOb17GcNill8mzPvigH/pylybPZyU3ldRaGzONQ9H4k9FUzalrW5udcw6hrVf9VpQVBEARBEARBEIQsIJICBEEQPjOSVsuzTRt4OH0SmqgoAHK170iRCVMwzZU7a4PLJL5RD5h+ZTK/Bx0AwFRhSo8Svfm57FAczF7dtJQ/fYLFHG/Mtm1GptMhyWSo2n1H/PBR6AoXyarws5W0bm7WtqrLYJeh1LGqJ25uCoIgCIIA6BMD8rysbJTd+2rr1GqerFxG4NyZ6JTxIJeTt9tPFPYai7GdfVaHlyluhF1jyuWJnHx2DABLIyv6lxlEv9IDsTJ+NeNf4eeLhfdUzA7sBUTybFrOx51lQcgcjsb+a1j2jU0zBrsMpbLlV1kYmSAIgiAIgiAIwisiKUAQBOEzEnPlEg+8PIm7oZ/pY1miFB4z52JXrUYWR5Y5XiifM/vqDLb6bkIraZHL5HR0/4HhFUaR36qAYZwsPByLhXMxX78amUoFgOqbZsR7jUNbslRWhZ+tpH1zszk/uwylkmWVLIxMEARBEATh40WcOIbf6OEofR8AYFOlKh7ec7EuUzaLI8scD2MC8L4yhb0PfwPAWG5Mt+I/8Uu54TibOxvGyZ89fZU8q9Vm++TZQ1EHmBvijb/KDzdTd4a5eGVoCyhJkjga+w8LQuZyIf4cAHLkfGvXnsEuQylhXjLD9i0IgiAIgiAIgvAxRFKAIAjCZ8DQKmDzRgAU1jYU9hpD3u69kBt9/h/10aooltxayCqfZSRo9X3uvynYjNGVJlDcvoRhnCwuFvMVSzFfthh5XCwA6hq1iB8zAU2VqlkSe3YiSRLHYo+wIGQO5+PPAuLmpiAIgiAIn4fEZ0/xHz+a0Jcz3o2dnHEbP5lc3/3vi2gVEJoQyrzrM9l4bx0aSYMMGe3cvmNkxTEUsnY1jJNFhGOxaD7ma1e+Sp5t0pT4UeOzbfLsoagD9AjqjAwZEhJ3EnzoEdSZdWxO98QAnaTj9+iDLAyZy82E6wCYyEz43qEzA5wHU9g0+yVMCIIgCIIgCIIggEgKEARByNEknY7nW34lYOoENJGRAOTq+ANu4yZj4uKSbvu5tX4c+RatoFCwiqBcpjwd3Jcy3aek2/Y/lkqrYv3d1cy/MZtIlf79V3GpyvgqU6iaq9prA1WYbVqP5bxZyMPCAEgqU474MRNIqt8AvvAS+DpJxx8xv7MgeA43EvRVJsTNTUEQBEEQPge6pCSerFpO4OwZhlYB+X7qjeuI0Rjb2mV1eBkuLimO5bcXs+zWYuI1cQB8na8hYytPorRjmVcD4+OxWLUM8yULkcfGAKCuVoP4MRPRVK2W1qazjTnB3oaEAAAJCRky5gZ7p1tSgEbSsCdyF4tC5vFAdR8AC7kFPzr2oJ/zQPIY502X/QiCIAiCIAiCIGQUkRQgCIKQQ8XevM6DkUOJvXIZSG4VMA+7atXTdT+31o/j65EL0QFywOOpimIjF3IUsiwxQCfp+M1/J95Xp/I47hEARe2KMbbyJJoUaPqqz71Oh+lvO7GcOQ3FoyAANIWLoBw1DlWrb+ELmBX2NhpJw76o31gUMo97iXcB/c3NLg7d6e8ySNzcFARBEAQhR4s6e5oHXsNQ3tNf59hUqUrRmfOwKl3mHa/M+ZJ0SWy+v5HZ12YQlhgKQHmnCoyrPJnaeeu+NjAJs80bsZg7E0VIMACaUmWIHzMedYPGOSJ51l/la0gISCYh4afy/eRtq3QqtkduYXHIAh6pAwGwkdvS06k3vZz742jk+Mn7EARBEARBEARByAwiKUAQBCGHSYqO4uGMKTzbsBZ0OhRW1riOGEW+nn0zpFVAvkUrDAkBvPyqlUHexSshC5ICTjw9xuTL47kVfgOA3BZ5GFlxDB3df8BI/vL9SxImR/7GcuokjO7cBkDrkgulpxeJnX4EY+NMjzs7UevU7IrczsKQuQSqHwJgLbcx3Nx0MnLK4ggFQRAEQRA+nio4mIBJYwnevQMAY0dHioyfQu6OP3z2rQIkSeL3oINMuzwR/xg/AArbFGFMpQm0dG2TMnl2/x4sZ0xBEai/HtQWdCV+1FhU37bPUcmzbqYe3E30SZEYIEOGu2nRj96mUqdkc/gGloYu4nnSMwCcjJzo4zSA7k49sVHYfnLcgiAIgiAIgiAImUkkBQiCIOQQkiQR8ttO/CaMISk0BACXtu1xmzgN09x5Mmy/hYJV/PeWoEIC1xeJxGbYXlO7FX6TKZfHc/zpUQCsjW0YXHYIvUr1w8LIwjDO6PJFLKdMwOTcGQB0NrYoB/1CQs++YGmZiRFnP4m6RLZE/MqSkAU8TXoCgIPCgT7OA+jh1AtbhV3WBigIgiAIQo51KPAAc6974x/th5utO8PKe9HCNX37ub+LpNXybMNaAmZMQRsTDTIZeX/sQeHR4zC2d8jUWLLCheDzTLo0lsshFwFwMnNiWHkvfizeHWP5q6RY4xPHsJwyAeOb1wHQOTkTP2wEiV26g4lJVoT+STxzedEjqLOhhUDyV8/cXh+8rThtLOvC17AidDFhGn3bsTzGeRngPJjOjt2wkFu8YwuCIAiCIAiCIAjZk0gKEARByAHifR/gO3IoUadPAmDu7kHRmfOwr133Ha/8dEG5TPF4mjIxQCuDwNxmZEaxzCdxj/G+OpVdftuRkDCWG9O9eE+GlB+Bo9mrCBR+vlhOn4zpof0ASKamJPzUB+XgIUgOX3ZZz3htPL9GrGdpyEJCNPqysC5GuRjg8jM/OnTHUvFlJ0sIgiAIgvBpDgUeoMfRVw9l70T40ONoZ9Z9vTnTEgNirl/Fd8QQYq9fA8CqXAWKzpqHTYVKmbL/rOQX7cuUSxP449EhACyMLOhbagADyvyMtYmNYZzRzev65NkTxwDQWVqRMGAwyr4DwcoqS2JPDy3sWrGOzcwLmYmfyhd3Uw+G5fKiuW3L995GlCaS1WErWB22nChtFAAFTQox2GUoHe1/wFRumkHRC4IgCIIgCIIgZA6RFCAIgpCNaZVKghbM4fHShUhJScjNzCg0dAQF+g9GnkmzeJ4O7kuxkQvRyvQVApK/PhvUN0OTAmLU0Sy8MY9Vd5ah0qoA+LZwO0ZVGo+rTWHDOHnwCyxme2O2ZSMyrRZJLiex4w8oR4xGly9/BkaY/cVqY1gbtoqVoUsJ14YDkM84PwNdfqGTw4+Yyc2yOEJBEARBED4Hc655GxICAMNs7bnXvTM8KcDQWmv9GpAkFDa2FBk9nrxdeyBTKDJ031ktNCGU2dems+n+BrSSFrlMTqeiXRlRYRS5LHIbxskDH2LpPRWzPbsAkIyNSejeE+Uvw5GcPo+2US3sWtHGqQ329pZERsaj0eje63XhmnBWhC5hbdgq4nT6Omhupu784uJJW/sOGMu+7LZjgiAIgiAIgiB8PkRSgCAIQjYV/s+f+I4aTuKjIAAcGjXBY/pszAu5ZmocZbpP4SiQd/FKXF8kEpjbjGeD+lKm++QM2Z9aq2bjvbXMvT6TCFUEADVy12JClSlUcH4100sWG4P50oVYrFiKTKkEQNWkKfGjJ6AtUTJDYsspkmc6rQpbTvTLmU6uJoX52WUYHey/x0T+YQklh6IOMCfYG3+VL26mHnjm8qKFXeaWAxYEQRAEIfvyj/GlzW2JCf9C0TB44ASTGkocLuebYftMs7VWu+/0rbVy5cqw/WYHSo2SFbeXsPjmAuI1cQA0KdCUsZUnUcy+uGGcLDwci3kzMd+wFllSEgCJbTsQ7zUWnWvhNLf9pQhOCmZZ6CI2hq9FqdP/LVHCrCRDXIbT0q4NCtnnnVAiCIIgCIIgCMKXRyQFCIIgZDOJz57iN2YkYb8fAMA0X37cp83CqWlzZDJZlsRUpvsU6D6FWMDx5X/pTZIkDgUdYOrlCTyMCQCgqF0xxlWeTOMC37x672o1ZpvWYzl3JvIwfZ/PpMpfET9+MknVamRAZDlHuCaclaFLWRO20jDTycO0KL/k8uRbu/YYyT781/6hqAMperTeTfShR1Bn1rFZJAYIgiAIggBAHz8XFm5+jA6QA2VewJ7N8ItVxjycV/r78mDEMKJOHQcyt7XWm2RGEqVWp2Wn3zZmXJ3CC+VzAMo7VWBClanUzFP71UClEotVyzBfvAB5bAwA6npfEz9uEpoy5dI1ppzmedIzloQsYFP4BhKlRADKmpdnaK4RfGPTDLlM/o4tCIIgCIKQ00mSlGX3WAVBELKSSAoQBEHIJnQaDc/WreLhjKlo4+NAoaBAnwEU8vTCKAf3+Hwfl0MuMuHiGC6FXADA2dyFkRXG8EPRLhjJjTgUeIA5V2dQ7vR9vP+S4xyqBkDj5k78mImom7eEL/hiPjQplOWhi1kXvhqlLh7Qz3QammsELWxbf9JMpznBbygHHOwtkgIEQRAEQQBgwhEMCQG8/KqVwbgjoEvH4lI6lYpHi+YRtGgekkqF3MyMgr94UnDAz8hNs67ne2YkUR5/epSJF8dyJ/I2AAWtCjG60njaFGn36kG2VovZ9i1YzJyG4oU+aSCpTDl98mzd+ukSR071RP2YRSHz2BqxCbWk/1uikkUVhuUaQQPrxuLBgCAIgpAtrF69grVrV33Qa/bsOUTevHkzKKLPS2xsLKtXr6BYseI0b94yq8NJV5IkMWhQP4KCAjl48M83jvvnn7/YuXM7fn4P0Gq15MuXn4YNG9O5c1dM07ieDg8PZ/361Zw/f5bQ0FAcHZ34+uuGdO/eE0tLyxRjb9++ybJlS7h//x5WVlbUqlWbfv0GYmVlnWq7SqWSf//9m7///pPHjx8RHh6GpaUVHh5F+eabpjRt2gJFOrUC02g0HDp0gCNH/sHPz5fY2BisrW1wdXWldu16tG3bDjMz83TZV1Z5/PgRHTq0IXfuPOzb9/snbWvbts0sXDjvjeu7dOnGgAGDUyx78OA+a9euwsfnFrGxcRQqVIg2bdrx7bft0rzOjo+PY9OmjRw7doQXL55jY2NLrVp16NWrLw4ODp8Uf2YbP34Mly5d4PDhf3LE3xQiKUAQBCEbiLl2hQfDhxB38zoANpW/oujsBViVKp21gWWwwJiHTLsyif0P9wBgYWRBv9KDGFDmZ6yM9YkQhwIPsG5tZ9YdhqqP9a97YQUBA7rjMXgOGH+5fT6Dk4JZGrqQjWFrSZASAChjXo6huUbQ1KZ5usx08lf5GhICkklI+KkyrhywIAiCIAg5i/3jEP57+0MhgcOjYMLSaR+Rp07wYMQQEvz99Pus34Ci3nMxL1wknfbw8TIyifJu5B0mXxrHkSf/AGBrYseQcsP5qWRvTBUvb9xKEib//oXllAkY3bsLgLZAQeJHjUPVtgPIv9zZ74/UQSwMnsv2yC0kSfoWCtUsazAs10jqWNXLETfuBEEQhC+Hu7sHTZo0TbEsIiKCS5cuYG5uTp069VK9xsIiZz/MzEwLF87l0KEDjBo1LqtDSXeLFs3n8uWLODu7vHHMsmWL+fXX9RgZGVG+fEVMTU25efM6q1ev4OzZ0yxdugozMzPD+LCwUHr27MaLF89xc3OnRo1a3L3rw+bNGzl37gyrVq3D0lJ//zYoKJABA/pQt259Ro3aTEhIMJMmjScoKIjFi5enuOa6fv0aEyaMITj4BVZWVri5uVOiRElCQoK5evUyly9f5ODB/cyfvwQLC4tPOi6xsbEMHNiH+/fvYWtrR4kSJbG0tCQiIpwHDx5w7dpVdu7cxrJlq8ibN98n7etzcf/+PQBq1qyVZkJH0aLFUnx/5colhgwZhEajoVy5ClhbW3P58iVmzZrO7du3GD9+Uorx8fHx9O/fm/v375E/f35q1qyNv78fe/fu5vTpk6xduxEXl5zRDk6n03Hhwjlq1qyVY/6uEEkBgiAIWUgTG8PD6ZN5um41SBJGtnYUGTeJPJ27IvuMb95FqSKZf2MOa++sRK1TI0PG/zw6M7LiGPJYvspuVvg+oFD/fpy6of8+zgRm14F5taFQnksc+0ITAl4kPWdxyPwUZU8rmFfEM7cXDa2bpOtFiJupB3cTfVIkBsiQ4W5aNN32IQiCIAhCzqZ180Bx1weZ9Op6QZLJ0Lh/+vWCOjQU/wmjCd69AwATl1y4T/XGuXXbbHPjJSOSKIOVwcy6Oo0tvr+ik3QYy43pUaIXQ8oNx8HsVTMvoxvXsJw0DpPTJwHQ2dmhHDKChB69IAurJ2S1h6oAFobMZWfENjRoAKhtVZdhuUZSw6pWFkcnCIIgCGmrX78B9es3SLHsypXLXLp0AVtbOyZNmpZFkX0edDrp3YNymMTEBGbN8ubw4YNvHefn58umTRuwsbFlxYo1FCniBkB0dDSDBvXFx+c2u3Ztp0uXbobXzJ7tzYsXz+natQf9+g0EICkpiYkTx3LkyD+sXLmcoUOHA7B79040Gg0jR47B0tKSAgUK8uOP3Zkzx5sHD+5TrFhxAG7evMGAAX2QJB19+vSnY8cfUjz4Dwx8yPjxo7lx4zrDhg1m2bLVn3TNP3fuTO7fv0eLFq0YOXIMxq/dS46NjWXWrOn8889fjB49gg0btnz0fj4nDx7cRyaTMXnyjFTVIP5LrVYzYcIYtFotc+YspEaNmoA+oWTAgD4cPnyQOnXqUq/e14bXrF69gvv379GsWQtGjx6PkZEROp2ORYvms337FmbP9mb27PkZ+h7Ti4/PLaKjo6hevWZWh/LePt8nToIgCNmYJEmEHjrAxZpVeLp2FUgSLu2+46szl8n7Y/fPNiEgSZvEytvLqLq7PMtvL0atU1Mnb32OtD7NgtpLDQkBspAQrIYPwb5OVb6+EYtGDiuqgvtwmNwQ4kzBL/rLm6n+JPEJIx8No8rdsqwOW0GilEgliypsL/wbf3oco5HNN+l+c9wzl5dhthtgmAXnmdsrXfcjCIIgCELOFe/phUySkF5eh0gyGTJJQun58dcLkiTxfOsmLtaqrE8IkMnI270nVc5cwqVN2mUos4qbqYfhWinZxyZRKpOUzLk6k6q7y7PpwQZ0ko4Wrq051fYiU6p6GxIC5I+CsO7XE/tGdTE5fRLJ1BTlgJ+JuHiDhH4Dv9iEAD+lHwMC+1DjXiW2RmxCg4a6VvU54PYXv7kdFAkBgiAIgiB8Nk6ePE6XLv/j8OGD5MuX/61jL168gCRJNGzY2JAQAGBra0vnzl0BuHbtqmH548ePOHnyOLly5aZXr76G5cbGxowaNRZLSyv279+LUqkE4OnTJ9jZ2ad4iJwvXz7DOoCEhATGjx+NVqthxIhRdO/eM1UlAFfXwsyfvwQbG1uuXbvKiRPHPubQAKDRJPHvv39jbGyMp6dXioQAAGtra8aOnYiDgyP37t3lzh2fj97X5yIxMZGgoEAKFiz0zoQAgL/+OkxYWBhff93QkBAA4OTkzIgRowDYvv1VskV8fBz79+/BzMyMX37xxMhIP29dLpczaNAv5MuXn1OnTvDkyeN0fmcZ4+zZMygUCqpWrZ7Vobw3USlAEAQhkyU+fYKv1zDC//oDADPXwhSdvQCHz7jPpyRJHA48xOTL43kQ8QCAYnbFmVhlKl/nb/Tqpm58PBYrlmC+ZCHy+DgAjpazZkCDWO69Vv1Khgx32y9npvpT9ROWPJvPprCNhh6oVS2r45nLK8PLnrawa8U6NjM32Bs/lS/uph545h5Fc9vPq/eaIAiCIAgfT92iFdHrNmM5byZGfr5o3T2IH+aF+iN7tSr9fLnv+TPRZ08DYFmqDMXmLMCmUpX0DDvdeObyokdQZ0Py5MckUeokHTse7GDalUk8idXfOK3oVImJX02nWu5XN5lk0VFYLJiL+erlyNT668LE9h05MKA6k4zW4P9oBW7BHnjm8vrk1gU5SYDKjwWP57AzYjs6dAB8bd2QYblGUsWyahZHJwiCIAgZ6969O/z66wauXbtCXFwczs4u1KlTj27demBnZ59ibLVqFSlevASLFi1n9eoVHD9+hJiYGMPM7saNvyE4+AVLly7i/PlzgESxYiUYPHgIHh6v7sWtXr2CtWtXMX36LCRJYsOGtTx6FIS9vT01a9amR49eODo6pYo1LCyUDRvWcebMKcLCQrGysqZSpcp0794TNzf3FGP79evFtWtX2LJlJ/PmzeLWrZvY2Njwyy+eNGzYGI1Gw+HDh/j77z/w9fUlLi4OS0sL3N2L8u237WjUqEmK951sxowpzJgxhbFjJ9KiRSvDfhYtWs5XX6W8bjh06ABTp06kSZOmhkoNV65cZsCA3nTs+D/y5SvA+vVrUCqVFC9enOXL1yCXy9FqtRw8uI8DB/YTGBiAJEm4ubnTpk07mjdvmepeXps2zXnx4rkhpneJjY1lxIihKBQKOnb8H23atON//2v/xvFyuX5/ISHBqdZFRkYCYGNjY1h27txZJEmiRo1ahge3yZL/zU6ePM7ly5eoU6cuLi4uXLx4HrVajYmJCQChoaEAhlLwx4/r+8cXLVqc1q3bvjFWR0dHOnXqwqVLF0lMTHznsXiTmJhYNBqNIZ60mJqa8sMPnQkKCkrxPjPj/AY++DyRJIl9+35j7949PHoUiLW1Dd980yxV25H/vo8KFSqxfPnqdx4zPz9ftFotxYqVeOdYgDNn9H+vpdXapEKFStjY2HDjxnViY2Oxtrbm6tUrJCQkUK1ajRTnG4BCoaBWrdrs2LGNM2dO07Hj/wCYPHkChw8fZMuWndy7d5cdO7YSFBSItbU19eo1YMCAwZiYmLB16yb2799LaGgoefPmpX37jrRt295wDJ89e0bbti2oX78BQ4Z4smLFUs6dO0NCQgJubu707t2PqlWrExDgz9KlC7l+/TomJiaULVuOn38eRt68eVO9x7NnT1OqVJkU7+Xs2TPs3LkVf38/oqKicHBwpFKlynTp0o3C2aD1nUgKEARByCSSVsuTNSt4OGMqOmU8MiMjCgz6hUK/DEdh/vn2/7oZdp0JF8dw5sUpAJzNnRlZYSw/FO2CkfzlryGtFtOd27CcMQXFi+cAJFWoSPzEaQTlCefe0TRuspb//GeqP1U/YWHIXLZGbDIkA9SwqolnrlHUtKydaTPkWti1+qJuKguCIAiC8OHULVqha9MGe3tLYiPj0Wh0H7wNnUpF0MK5PFo0D0mtRm5ujuvw0eTv0x/5O9pGhR46QOAcbxL8fTF388DV0wvn97ihmh4+NYny3IszjL8wmhvh1wDIb1WAsZUm0qZIO+SylxXE1GrMN6zBYu5M5C9v3Kpr1yV+whT2FXykT0rQ6K+T7yb60COoM+vY/Nlfw/mrfJkXPJvfIncakgEa2TRhWK6RVLSonMXRCYIgCNnFwYf7mXVlBn7RvrjbejCi0ihaFm6d1WGliz/++J2pUyeh02kpXrwEuXPnwdf3Ptu3b+H48aMsW7Y61cOs+Ph4evXqRmhoKJUqVSYyMuJl7+/RREVFsXHjOuRyOeXLVyAw8CGXLl2gT5+f2L79N1xcUvasP3z4EKdPnyR//gLUqFGL+/fv8dtvuzhz5hTLlq1JsW9f3wcMHtyfyMgIw/jQ0FD+/fdvTp06wYwZc1LMNk42atRwlMp4qlevyb17dylevASSJDFq1HBOnTqBjY0NpUqVwcTEhMDAh1y9epmrVy8TERFheLDYpElTbt++xdOnTyhdugz58uUnf/63z65/l3PnzvL48SMqVqyETCYjV67cyOXyl2X0h3HmzCmsrKwoU6YsRkZGXL16halTJ3L16pVUfdY/lFwuo3HjpnTv/hOFCxfh2bNnbx1ftWp1ZDIZp0+fZNWq5bRr1wEzM3POnTvD6tXLMTExoUOH7w3jHz70B8DNzS3N7RUuXJiTJ4/j7+9LnTp1adasJQcO7GPFiqX07z+Q8PBwtm3bTLFixSleXP+A+d9//wagUaPG77yn2bVrD7p27fHexyMt9vb2ODk5ERYWxoQJY/j556HkzZsv1bjkSglpycjz+2POk8mTx/PHH79jYWFBlSpVSUxMZOvWzZx+2UrsU92/fw8AGxtrvL2ncvHiBcLCQsmTJy9NmjSlU6cfMX2tItnDhwEAaSY8yOVyChVy5datmwQE+FOuXPnXxr/pvNI/NPf390u1btmyxZw5c4oyZcpSufJXXLt2ld27dxAaGoKpqRnHjx+hbNny5MmTlytXLjF79gw0Go3hMyBZcPALunXrjE6npVy5Cjx9+gQfn9sMHTqYkSPHMH/+bBwdHalcuQr37t3lxIlj3L17h50792Bm9uoZTnh4GA8e3KdPn/6GZX/8cYjJkydgZGREuXIVKF3amoAAfw4fPsTx40dZvXpDmscqM4mkAEEQhEwQe+sG94cOJu6G/kafTZWqFJu7CMvi75d1lxO9UD5n+pXJ7PDdioSEqcKUoVWG0qf4ICzkVoZxxsePYjVxLEZ3bgOgLehK/JjxqFq3BbmcFsC6rzcz97q34Y83z/KjaO76+c5UT04G2BLxK0lSEgA1rWoxtegUysmqfNRNdkEQBEEQhOws6twZ7g8bTIKfvkWUQ4NGeMych3nBQu98beihA/j06AwyGUgS8Xd98OnRmVLrNmdqYsCHPoB/GBPA5Evj+T3oAABWxtaMqTGaH916YszLm22ShMnvB7GcMh6jlzfRNMVLED9+MuoGjUEmY879/obEWcCQSDs32PuzTQpIKxmgiW1TphSdhLuupLheFgRBEAwOPtxP1386GX5X3onwoes/ndjYaEuOTwwICgpkxowpmJqaMmfOAipWrASATqdj1arlbNiwlkmTxrJy5boUr3v8+BGFCxdh9+79ODg4ADBv3mx27tzGvHmzqFmzNtOmzcTMzAyNRsOAAb25ceM6//zzJ506/ZhiW6dPn6R9+44MGeKJQqFAo0li2rTJ/PHH78ydO5O5cxcC+lLuo0YNJzIygl9+GUbHjj8YHgyfOnWC0aNHMHHiGHbs2Iu9fcrqBiqVii1bdmFra4tOp0Mul3Ps2BFOnTpByZKlWbJkRYoy9L/+up5lyxaza9d2wwPBSZOmMXnyBJ4+fULLlm1o3frbTz7+jx4FMXDgz4aHyjqd/vpj/fo1nDlzisqVqzB1qrehWkN4eDhDhgzi8OGDlCtXPkUMS5asQKPR4OSUevZ5WiwtrZg8edp7x1q4cBFGjx7HvHmzWbduNevWvZo1XqSIG2PHTqRkyVKGZcmz/NOaDa9f7gxAREQEAGXLlmPy5OksWbKQHTu2AVC1ajVGjBhlmIEfFBQIQKlSZd477k8hk8no338wkyeP58SJY5w4cYyiRYtRsWJlKlSoSPnyFbG1tX3rNjLy/P7Q8+To0SP88cfv5M+fn2XLVhsqMNy7d4dBg/qlGX+HDh1p1KgJZmZm73XMkpMCdu/eib29PWXKlMPZ2Zl79+6xatVyzp49zeLFKzB/OcHx3eeJfnlERPh/xju/1/jXnT17mlmz5lOnTl0A7t27S/funTlx4hhWVlZs2LDF0Bpjz57dzJo1nf3796RKCrhzx4cKFSoxd+5CLCwskCQJLy9PTpw4xvTpk2nTpi3Dh49CoVCgVCr58cf/8eTJY86ePcPXXzc0bOfcuTOGahrJ1qxZhVyu4NdftxkSHCRJYsGCOezYsY0tWzZ9ckLQp/o8m1YLgiBkE1qlEv+JY7nSuB5xN66hsLGl6JyFVDj412ebEKDUKJlzzZtquyuw3XcLEhJti3Tg4nfXmF53OjYm+nI6irt3sP2+LXbftcHozm10tnbETZpOxJlLqL5tD/JXv6La3obrCyBhrP7rt7elrHlzGeyp+gkjnwyl6r3ybAhfS5KURE3L2ux1+52Dxf6knkO9rA5REARBEAQhXSVFRXJ/6CCut25Kgp8vxs4ulFy9gTJbd79XQgBA4BxvQ0IAoP8qkxE41zsDI/940aooJlwcQ609Vfg96ABymZyuxX/iyvc38KrmhbmR/iab0ZVL2LVsgm2Pzhg9DEDrkovYeYuJPHoGdcMm+veM/gF5ckJAMgkJP5Vvpr+3jOav8mXAo97UvFeFXZH6VgFNbJryt8dxtrnvoopt9mwxIQiCIGSdWVdmpJk8N/tK9rxO+BDbt29FrVbTs2cfQ0IA6Gfo9unTH3d3D27cuM7t2zdTvbZXr36GhAAgRfnxn38eZniIaGRkRO3a+odwafX5LlTI1fDAVD/emJEjx2BnZ8eZM6d48bIi6LFjR3ny5DG1atXh++87pZgpXrt2Xdq0aUdMTAwHD+5LtY8mTZoaHt7KX94v1Gg01K5dlwEDBqfqS9+2rb6M/vPnb589/6kUCgXt2n1n+F4ul5OUlMSOHVsxNjZm4sSpKdo3ODo6Mnr0OAC2bt2UYlv58xfA1bUwVlbWGRZvuXIVqFq1OqamZlSoUIlq1apjbW3Nw4cBbN++BfXL1lQAiYkJAG98mJw8WzwhQWlY1rBhY/bt+50//viXY8dOM2/eInLnzmNYHxYWBpDivMtozZq1wNt7Drly5QbgwQN9FY2RI4fRtGkD+vTpwbFjR974+ow6vz/mPNmzZxcAgwcPMyQEABQvXpLu3XulGb+dnT2uroVT/Du8zYMH+qSAli1bs3//H8yaNY+VK9exbdsuPDyKcvv2LZYuXWQY//7nScJ7jjd7OV6Zal2NGrUMCQEAxYuXoFAhVwDatfvOkBAAUL9+AyDtzyyAn38eYvjckMlkhlYjpqamDBr0i+Hf28LCgqpVq6W5rbNnz+Ds7EzRosUMy8LCwjAyMsLJ6VXSg0wmo2vXnxg2bAQtW2Z9wrZIChAEQcggEceOcKlONR4vWwRaLc6t2/LVmcvk/bE7Mvnn9/Grk3Ts9t9Bjd8qMevadJQaJZVdvuKPFkdYUW8tBawLAiALDsZq2GDs69fA5Oi/SMbGKPv0J+LCNRL6DYTXShABmBw6gG2Pziju+iBTqVDc9cG2R2dMDh3IireZIZ6pnxqSAdaHr0EtqallVYd9bofZ6/47Na1qZ3WIgiAIgiAI6UqSJEIO7OVizSo837wRgDxduvPVmUu4tG77QW2SEvx9ySdJNALaAo2AfJJkqDqQXWh0GtbfXUO13yqw/PZiknRJ1M/XgONtzjG7xnyczfXleOWPgrDu0x37pg0wvngeydyc+GEjiTh/jcTOXeE/fV3dTD2QkfJ4yZDhblqUz0WAyo+Bj/qkSgb4x+MEmwrvoLxFxXdvRBAEQfgi+UWnnTznG/0giyJKP1evXgagUqXULXNkMhlVq1Z/Oe5KqvWlS6ecrZ08e9nMzIyCBQumWJf8oFqlUvNfDRs2MjxAS2ZmZmbY95Url98ZK0D16jVSjHudh0fqa5pGjZowe/b8FNtLTEzk/v17/PnnYUDfr12r1aa5v/SQP38Bw4zpZPfv3yUuLo5ChVxTPBhMVrx4CeztHQgKCiQ8PCzDYvsvH5/bdO/ehYAAfzZt2s7y5atZsGApu3fv56uvqvL3338yY8YUw3i5XP9v+q5rcp0u9cQtGxsbTExMUi1PrhiQkf8maalX72v27DnI4sXL6dSpCyVKlEShUKDT6bhx4zqjRg1n0qRxhkoPr8uo8/tDzxN9rNdQKBR89VXVVOPr1q33nkfj7VasWMPWrbvw8hqb4t8wb958jBs3CZlMxsGD+1CpVMCrJJ13nye6/4x/exxpnVf//cyCV59b//2MsLbWVyl+PdElmYmJCUWLFk9zO3ny5MXS0irFuleffyrDMo1Gw8WL56lWrUaKsRUqVEClSqRbt06sWbMSH5/b6HQ6HBwc6NDheypUqERWE+0DBEEQ0pk6LAz/8aMI3r0DANN8+fGYORenxk3f8cqc61LIBcad9+JqmP6PjPyWBRhfZTKtC792QzchAZYvxHbGDGRxcQCoWrQmbuxEdEXS7iMEYDnHG0kmQ/Zy5pdMkpBkMizmeqPOpHKwGeVF0nMWBs9lU8QG1JL+IqWGZS2G5x4lEgEEQRAEQfhsJT59gu/IoYT//ScA5u4eFJu7CLvqqXvIvg9XZxcqPXmMBMgAW6AGcOW1GTRZ7djTI0y4MJp7UXcBKGpXjElVptGgQONXg2KiYeYUbBYsQKZSIclkJH7fCaXXWHR58r5hy+CZy4seQZ0NsyCTv3rm9srot5XhHqoCmBc8i92RO9Civ4Hc2OYbhucaRTmLClkcnSAIgpATuNt6cCfCJ0VigAwZHnY5P3nuxYsXAHTt+sNbxwUHv0i1zMbG5j9L9PfvrK3/u/ztD/zy5y+Y5vLkmdlhYaEpYl24cB4LF857S6zB7xGrXnx8HPv27eHcubMEBT0kLCwMSZJSxCtJGVdtNK24kt+nn58v1aq9PWkxODj4jWXX09uCBXOIj49j9uz5KZI+bG3tmDhxGu3bt+avv/6gd+9+5MmT15Ds8PqD0NclL7ewME9zfVocHZ2Ii4sjKiryE97Jx1EoFFSpUpUqVfQP1OPj47hy5TJ79/7GuXNn+OOP3ylVqgzt23+X4nUZdX5/6HkilytISkrC3t4+zVn2ed7yt8KHMDMzTzHj/nVFixbDxSUXwcEvePjQn+LFS2JhYUFMTAwqlSrNRJBX54l+Vr65uUWK5anHJ74cn/q8srFJq9WD7A3r3vyZZWlpZUhOePd20v78u3nzBnFxcVSvXivF8tGjxzNixFDu3bvLmjUrWbNmJTY2ttSoUZOWLVtTqVLWVzUTSQGCIAjpRJIkgnfvwG+cF5qICJDJyNezD4VHjcMoA0s/ZaWncU+Ycnk8ewJ2A2BpZMXP5YbSp9QAQ9lTdDpM9+zCatokePoEGZBUsRJxE6ejqVb9nftQ+PsaEgKSySQJo2w28+tDBCe9YHHIfDaGr0Ml6S+CqlvWZETu0SIZQBAEQRCEz5ak0/F0/WoeTp2ENj4OmbExBQcPpdAvnsj/Uy3qQ5QCQ0IAL79KL5fHfnLUn8Yv2pfxF0bx75O/AbA3tWdEhdH8WLwHxnJj/SCNBrNNG7CcNQ3Cw5EB6tr1iJs4FW2Zsu/cRwu7VqxjM3ODvfFT+eJu6oFn7lE0t22Zge8sYwWpApkfMpsdEVtTJAN45vISVQEEQRCEDzKi0ii6/tMpVfLciIqjsjq0T6bT6X9HNmrUJI2HXK+kNdPeyCh9Hg39dxZ1suSH8cnrk2OtVKlymjOjkyXP2H2dTJb6vQUE+DNgQB8iIyOws7OjZMnSNGr0DR4eHlSsWJnWrZt98HtJS1qzx98WV/L43LlzU67c2xMY/9v2IKMkJiZy+/YtTE3NKF8+dUz29vaUKFGSy5cv4uvrS548eXF21lewCg9P3dtdv/ztveTTUrx4CYKCArl9+9Y7H44+e/aUQ4cOUKlS5Y9+kBoc/IJnz55SsGChVHFaWlpRp0496tSpx4IFc9m+fQt//XU4VVJARp3fH3qevGtmvVwuf2Os6cnR0ZHg4BckJuof3js7uxATE0N4eBjW1qmffyRXw0g+/u8+r5LHpz6G6fWZlR7bOXv2NEZGRlStmrJqg4tLLtav38y1a1c5deoEly5dwN/fjz//PMyffx7mhx+6MHjwkE/e/6cQSQGCIAjvIfTQAYLmeqP098PCzZ1Cw7xwfm2WeuLjRzwY/gsRR/8FwLJEKYrNX4xNxbRLBuV0So2SJTcXsPTWQhK0CciQ8b1HJ0ZXGk8ui9yGcUbnz2E1YRTG167qFxQsSNy4iSS0bAvv2UJB6+ahbx3wWmKAJJOhcc95Gd0hSSEsCV3AhrA1JEr6i6eqltUZkWs0ta3rvuPVgiAIgiAIOVf8/XvcHzKQmMsXAbCpUpVi8xZjWaz4O175bqahIanmgsgA05DgLEsKiFJFMvf6TNbeWYVG0mAkM+Knkr0ZVn4kdqYvb3ZLEiZH/8FywhiMHtzXLytenNiJU0ms3+jddTVf08KuFS3scnYVLYDH6kcsCJ7DtojNaNAA0MC6EcNzj6Kixef5t5UgCIKQsVoWbs3GRluYfcUb3+gHeNgWZUSlUbQonPN/bzo6OvHixXN69+5HgQJpz2jOaKGhIWkuT+61njyjOvkhX+PGTWnd+ttP3u+cOTOJjIygc+eu9Os3MMUD0ZiYmA/allyuv+ZKfrD7utjYD7uaTH746eKSm0mTpn3QazNKfHwckiShUMjfmDxiZKQ/fhpNEgBubvrZ4g8fBqQ5PiAg4OU4j/eOo27dr/nrrz84duwIP/7Y/a0VKH7//SDr1q3mxIljbNmy87338br169ewb98eBgwYTJcu3d44rlWrNmzfviXN8yajzu8PPU8kScLU1JTo6GiUSmWqhJLw8PBPbssQGhrKqlXLSUpSM3Hi1DTHPH369GXc+opsRYq44e/vx8OHAbi6Fk4xVqfTERQUiEwmM1QfeP/zyv2T3ktGO3fuDGXLlk/VagD0lQUqVqxExYr6VgEREREcOnSAFSuWsG3bZr777nty586T2SEbfH5NrQVBENJZ6KED+PToTNwdH3SJicTd8cGnR2dCDx1A0mp5sno5F2tXJeLov8hMTSk8ejyV/j35WSYESJLEbv8d1PitEnOue5OgTaBarhr80+oEC2svMyQEyIMCsfnpR+xbNcH42lV0llYkjJsI9+6R1O67904IAIj39DK0DAAMrQSUnjmnHGq4JpxJz8ZR5W4ZVoQuIVFKpLLFV+wqsp8Dbn+KhABBEARBED5bOrWawDneXG5Qi5jLF1FYWePhPZcKB/9Kl4QAgMgCLvx3DpdWBhEFM799gEanYf3dNVTbXYGVPsvQSBoaFWjCybYXmFLV25AQoLh3F9uO32L7v/YYPbiPzsEB5ay5cPMmmsbffFBCwOfgmfopI54Modq9CmyK2IAGDfWsvuaw+79sK/KbSAgQBEEQPknLwq052f4cz38K52T7c59FQgBgeOh09uyZNNePHz+a7t07c/LkiQyL4cyZ06mWJSQkcOHC+RT9zytWrPgy1tTjAXbs2EanTt+xbt3q99rv7ds3AejWrUeqGdIXLpwz/P/r7QPedHmVXNI8MjIi1Tofn1vvFU+ykiVLYWpqhq/vfUNp+deFhITQoUMbBg7si1Kp/KBtfyx7ewdsbGxRKpVcu3Yl1fq4uFju3LkDvKoqUa1aDWQyGWfOnEr1sDkuLpYrVy5jZmZm+Hd9H7Vr16FgwULcu3eXgwf3v3Hcs2dP2b1bnwjw35n7H6JMmXIAHDiwzzCzPS1BQYEAaZbNz6jz+0PPE5lMRqVKVdDpdJw8eTzV+LNnT73x/b0vS0tL/vpLP6P9QXLC8mvOnDlFdHQUBQsWIm/efABUf9n+La2Yrl69TExMDGXKlDNUEShfvgLm5uZcvXqFuLiUCTdarZbTp08ik8moXr3GJ7+fjBIc/AJ/f79UMT58GECnTt/xyy8DUyx3cHDgxx+74e7ugSRJb0w0ySwiKUAQBOEdAud4668aky8iJQlkMgKmTeRai8b4jRmJThmPbbUaVDl2Vl/+1Ng4a4POANdCr9D890b0P9GLZ/FPKWBVkDX1N7K/2R+UdSoPgCw2BsspE3CoWRnTg/uQ5HISunQn4sJ1Eod4gvn795lKpm7Riuh1m9GULIVkaoqmZCmi129B3Tz7l0ON1EQw/flkKt8tw9LQhSRICVS0qMT2wnv43f0f6lrXf2tWrCAIgiAIQk4WffkilxvWJnDWdCS1GsfG31Dl1AXy9eiF7AOSRN9lUgP9zQ3ty8sqrQwUEkxumG67eC+nnp2gwf7ajDw3lAhVBMXsirO98R62NNqFu61+FpUsLAyr4UOwr1cdk+NHkYyNUfYbRMSF66h69oHP8O+ItwlOesHop8P56l45NoSvJUlKorZVPQ66/81Ot31Utvwqq0MU3uFQ1AHq3a9BgZvO1Ltfg0NRB7I6JEEQhC/Gd999j0KhYNWq5Vy6dCHFuj17dvP3338SEOBPqVKlMyyGq1cvs3PndsP3SUlJzJgxhZiYaL75phm2tnYANGzYGCcnJ06cOMbWrZtTPKz38bnN6tXL8ff3w939/Wae29npEy1PnUqZ8HDt2hXmzZtl+F6tftW73MRE364qLi4uxWuSH4Tv2bMbtVptWH706L8cP370veJJZm5uTps235KQkMDEiWOJiHiVaKBUKpkyZQKPHz/C0tIyxWzvJ08eExj4MNWD0vQgl8tp06YtAN7e03j+/JlhXXx8PFOmTCQmJpoaNWoZKk7kyZOXWrXq8OzZU5YsWWj490pKSsLbexpKZTxt2rTD6gNa5hobGzNixCgUCgUzZ07j1183kJiYkGKMr+8DhgwZRHR0FGXKlKVlyzaGdRpNEoGBDwkMfGioaPA2TZp8Q6FCrjx+/IghQwYSGPgw1Zjr168xd+5M5HI5P/zQOdX6jDq/P+Y86djxBwAWL16QYqZ9YOBDli9fmuYxiIqKJDDwoaGywdtYWFjQpElTAGbMmEJkZKRh3aNHj5g92xuAHj16GZbXq/c1zs7O/P33nxw7dsSwPDw8jDlzZgLQuXNXw3IzM3NatmyDUhmPt/c0kpL0/46SJLFkyUKePXtKnTr1KFiw0DvjzSrJiR81atRKsbxAgYKEhYVx4cI5jr6sJp3s3r07BAY+xNzcnMKFi2RarGkR7QMEQRDeIcHf91VCQDLp/+zdd1wU1xbA8d/u0juCgNgFFHuPLZYYY5oxGjWaWGKNvaOi2CvW2DX2GDWaGJOo0STP3rtGRVRAxUpTemd33h+rmxCw0gTP9/N5H/J278ycuQzr7Nxzz1VIDAokEdBY2+A2fjJFOnfN1oebr4vQhBCmnZ3E5oCNAFgYWTKk6nD6VByAmZGZvpFWi9nG9Vj6TkX9OLsxpdE7xE2ejrZCxSzHkNKiJSkt8k8Wd4w2mm/Dl7I8fAmxOn3pqSrm1RjlMoZm1u9LIoAQQgghCjRtfDyBUydxd8UyUBSMHR3xmD6bwp9+liP3Qd+6h3GnE4zfC+XC4VphfaLA7jKhjM32o2V0K+YmE0+PZVfwDgDsTe0ZWX0MX3n2wEj9+LFLcjLmq77FYt4s1LH6+8Pkj1sSN34yujx+MJQXItIiWBT2DesiVpGo6B8G17NswCgXH+pbvf2crcXrYmfUdroHdzKsz+2f5Ef34E6sYUOuLWexM2o7c0J9CUoOwM3UAy9n7wKxlIYQQrwIT88KDBkynHnzZjNwYF/KlvXE1dWV27eDuXEjCI1Gw4QJU3FwcMixGJycnJk3bxY7d26nWLFi+PldJjQ0hLJly6VbO9vMzJzp02czbNhAFi6cx9atW3B39yA6OoqLF/9GURQ6dPiSRo2avNBxv/iiIwsWzGPSpPH88ss2HB0duXv3DtevX8PW1g4HB0cePozg4cOHhhLfTwa8165dyaVLf/PRRy1o1KgJn37amq1bt3Dp0kXatWtFhQoVuXfvHtevX+Wjjz5h164dL9UnffsO5Pr1a5w5c5q2bT+lQoUKmJmZc/Hi38TERFOiRElGjfJJt82AAX0ICXnA2LETaZEDz0B79uzNlSt+nDlzis8/b0316jUxMjLiypXLREVFUbJkKXx8JqTbxstrFFev+vPDDxs4duwIbm7uXLlymZCQEDw9y/P1131fOo5atd7C13cO48aNZunShaxfvwZPz/LY2tpx795drl71B/QzymfOnJtu/fewsHA6dGgDwLZtO3F1dX3msYyMjJk/fzFDhgzg/PlzdOjQBjc3d4oVKw7oB9ODg29hbGzMqFE+hsoC/5aT1/fLXid16tSlS5durF+/lq+++pKaNWsDcPbsacqV8+TRo4cZ4v/ppy2sXr2C6tVrsmzZ86twDBw4FH//K/j7X6Fdu0+pUqUaOp2Wc+fOkpKSQocOHfngg48M7S0sLBgzZjwjRgxlzJiRVKlSFTs7e86cOU18fBytW7ehUaP0FXJ79+7L2bOn2bPnLy5fvkSFChUJCgokOPgWRYq4MmLE610d+Nixo7i4uGRY4sDIyAhvbx/GjBnJmDEjKVfOk6JFixEZGcnFixfQarWMHDnmpRJpcoIkBQghxHOYu3kQ7++XMTEAcPjgI8rOnIdpkWffhORHydpkvvVbyjcXZhOfps+g/dz9C8bWmoiLxT/r3hgfPojVuNEYXbkMQJqbO/GTppHy3ptX9jROG8fqiG9ZEr6AKG0UAOXNKjLKxYcPbT6WZAAhhBBCFHihe/ZwqkdPkm4HA+D8+Re4T56OcaGcexjtZuPBr5X8+KXSv8rDoqKCbdkcOyZAXGocC/+exzK/RSRrk9GoNHQr35MR1Udjb1pI30hRMNn9O1YTfdA8np2UWrkq8VNmkFr/zRv8jkx7xNLwRayMWE6CLh6AWhZv4e0yloZWjeV+OZ+ZE+prSAgAUFBQoWJuqG+uDMy/DkkJQgiR19q160DZsp5s2vQ9Fy9e4ObNIBwdC9OsWXM6d+5KuWxarulpPvqoBa6uRdm06XuOHDmEs7MLPXp8TceOXTKse16lSlXWr9/M99+v48SJYxw/fhQbG1tq1qxFu3YdaNz4nRc+7hdfdMLBwZHNmzcSFBTI1atXcHZ2oV27DnTu3JXvv1/HTz9t5vDhQ3Ts2BmAzz5rS2DgdQ4dOsDx48coXboMjRo1wcWlCCtXrmPFimWcOXOaY8eO4ubmxtSpvri7e7x0UoCZmRkLFy5j27at/PnnLvz8LqNSqShSxJXPP+9A+/ZfGsqp5xYTExPmz1/Mr7/+zK5dv3Pp0t9otVpcXYvy2Wft6Nixc4b10Z2dXViz5ntWrlzOsWOHOXLkEC4uRfjqq+506dI1w+/3RTVs2JgfftjK1q0/cvr0Sa5cuUJychLW1tbUqVOXDz9sQfPmH6DOhsl3RYq4snHjFnbu3M7hwwcJDAzkxInjqNUqnJycadu2Pe3atadkyVKZbp+T1/erXCf9+g2kXDlPNm/eyN9/n8fU1JSPPmrBgAGDadYs68vT2tjYsHLlOjZuXM+ePX9x5swpTExMqFSpCp9/3oEmTZpm2KZevQasWLGW1au/5eJF/XVVvHgJ2rT5PNMEF0tLK5YvX83atavYt28PR44conBhJ9q0aUf37r1wcHDM8nnklNTUVM6cOZUuMeLf3nnnXebPX8LmzRvx9/cjMDAQGxtr6tatzxdfdKRWrbyvgqZSlExGucQL02p1PHoU/1LbGBmpsbe3JDIynrS0/658KJ5H+i9rpP9eXvjO7fh1z1g+qFifAbhNmpYrD67Cd27n1hxfEoMCMHfzoJSXN4VzaOa8oij8eWc340+O5las/sFlDceaTKs7i5pOtQ3t1DeCsJo0DtPdOwHQ2dmR4OVNYrdemZY9LcjXXqIukXUPV7MobB4RaREAlDUtxwiX0Xxi2wq1Kus3sQW5/3Ka9F3WSP9lzav2X6FClmg0BaP6jNwv5z7pv1cnfffqUqOjuDlpHPc3fAeAabHilJuzgEJNc76G/85b2+m+75+BwSc/1zbdyMelsn/JKZ2i4+egH5lyZgIhCfpSnI1c32FqHV887csb2mn8LmM1zhuTI4cA0Do5Ez92IsmffwGZPOQsyNdfrDaG5eFL0lXSqmZenVEuPjS1fi9bvlMV5P7Laa/ad8UvFiZZSc7wuqnKlDtVMq6Pm92aXKuPf5KfISkBHicEmVVkf7ljOX78J+Tayxq5X36zJCUlERR0A0dHF0Mpd5E/rVy5nNWrV9C1aw/69Omf1+GIN0R0dBTvv9+UP/7Ya1hCIifI9S3ym5SUZCIiQnBzK4OZmdlT20mlACGEeA7jQoUwcXImJSwUACNbO9ym+FKkw5e5cnxDUoJKBYpCvL8fft07UXHNhmxPDLgedY2xJ0dx4J5+vSxncxfG1Z5EW7f2hoFtVWwMFvNmY75yGaqUFBSNhsRuPUnw8kbJwRlgr6NkXTIbH63nm9DZhKaFAFDKpDQjXEbzmV07NCpNHkcohBBCCJHzIv7YxfWRQ0l5vFZlsZ5fU2rMBIxyqTRii1ItWdN0A3Mv+BIYHYC7rQde1UbnSELAhYhzjDkxkjNhpwAoaV2KyW/N4IMSHxkGtlUREVj6TsVswzpUOh2KqSkJ/QaSMHAYWFk9a/cFTrw2ntUPV7AkbD6RWv26pBXMKjHKxYcPbD6SygD5nJupR6aD8u6mOVul44mg5IB0xwZ9tYLA5IBcOb4QQgghctexY0dxdnbB1tYur0MRIl+SpAAhhHiKtLhYbkwez/11qwEwLeJK7ZUrMKvfJFez/2/N8TUkBAD6nyoVt+b6ZltSQExKNHPOz2TVleWkKWmYqE3oU2kAQ6oOx8r48cNcrRazzRuxnDYJdYR+1kfKO+8SN3kG2hwuRfa6SVPS+PHRD8wNncmd1NsAFDMuznDnUXxe6AuMVRkrJQghhBBCFDQpDx8SOMaLsF9+BsDCzZ231q7BqFKNXJ8t26JUS1qUyrly4eGJ4Uw/O4lN179HQcHCyJJhVUfQu1J/TDWPZzqmpGC+egUWc2eijokGIKlla+LHT0ZXomSOxfY6StIlsf7hGuaHzSUiTf/dwd3Ug1EuPtlWSUvkPS9n73Tl+5/89HLJnbVg8zopQQghhBC5JyYmhkWL5uPtPVYSS4V4RZIUIIQQmXi0fy/Xhg8i+e4dAIp07ka5KVMpXNKVyMiXK4GcVYlBAf8kBDyhKCQGZn32g07RsSVgE1POTCAiSf+w7v3iHzKpznTK2LgZ2hmdOI7V2FEYX7wAQJqbO/GTp5PS7H19wsIbQqfo+C1qGzNDpnEjJQgAZyMXhjh70anQV5iqpfSdEEIIId4MYdt/IcB7OKkREaBWU7z/YNy9x+Do6pjr98s5KVWXyhr/Fcw+70tMin6gv61be8bXnoyLRRFDO5M9f2I5bjRGQYH67SpXJX6qL6n1GuRJ3HklVUll86ONzA2dyf3UewCUNCmFl7M3bew/x0glj6EKkhZ2LVnDBuaG+hKYHIC7qQdeLqP52Db7q3RkJq+TEoQQQgiRe2xsbNi69TcsLCzyOhQh8i35NiaEEP+SFhNN4AQfQjauB8CsREnKfbMY+4aNMTLKm9ks5m4exPv7pU8MUKkwd8/a7Idz4WcYfdyL8xHnAHCzcWdqHV/eLd7c0EZ99w6WU8Zj9nj2l87GlgSvUSR2/xpMTLJ0/PxEURT+jNmNb8hUriRdBsBB48BAp2F0c+yJudo8jyMUQgghhMgdKWFhXPceTsTO3wCwLF+BcguWYlOtBpo8ul/OKQfv7cfn5EiuR10DoIpDNabVnUUd57qGNprAACzHj8Z0z18A6BwLE+8zgaQOHUHz5iwlpVW0/BK1lVkh07mVchMAV+OiDHMeyReFOkklrQKshV1LWtjlXJWO5x07L5MShBDiTdarVx969eqT12GIN0xuJQTI9S0KKkkKEEKIxx7u+ZNrwweT8uA+AEV79qb0mAkY5fG6n6W8vPHr3umfJQQe/yzl9WqzH8ITw5l2ZiKbAr4HwMrYmuHVRtGrQh9MNI8H+hMSsFiyAIvF81ElJqKoVCR16kr86HEojo7ZdWr5wqHYA8wImczZhDMAWKtt6Oc0kN6O/bDS5M46uUIIIYQQeU1RFMJ+/pEAn5GkRUaiMjKixODhlBzihdq0YFVLuhN3mwmnfNh5S5/44GDmwJiaE/jSozMatX6gXxUTjcWcmZivWo4qLQ3F2JjEXn1JGD4SxdomL8PPVYqisCtmJzNDpnI1yR8ARyNHBjsN5yuHHpipzfI4QlHQ5WVSghBCCCGEEPmJJAUIId54qVGRBI4bTeiWTQCYly5DuQVLsatbP48j0yvcoiUV12zg1lxfEgMDMHf3oJTXaAp//HKzH9J0aaz1X8nM89MNpU8/d/+CcbUm4Wzhom+kKJjs+BWriWPRPF46IaVufeKnzSStctVsPa/X3Zn4U8wImcLhuIMAWKgt6OnYh/6FB2FvVCiPoxNCCCGEyD3JoSFcHzGEh3/sAsCqUhXKLViKdeUqeRxZ9kpKS2LJ5QUs/HseidpE1Co13cv3YmT1MdiZ2usb6XSY/bABy2kTUUdEAJDc/APiJ01D6+aRh9HnLkVROBR3gOkPJnE+UV95zFZjR//Cg+jp2AcrTd4mVgshhBBCCCGESE+SAoQQb7SH//tDXx0g5AGoVBTr3Z/S3mPRvGZrExVu0ZLCLV599sPRB4cZc2IE/pFXAKjsUJUZdefwlnMdQxvNFT+sfEZicvQwANqixYifOJXklq311QneEFcS/fANmcIfMfqH3iYqExpaNeFOSjDfhi9hT8xfeDl7y2wUIYQQQhR4huoAY0aQFhWFytiYksNHUWLgUNTGBaccvKIo/HlnN+NOehMcewuAei4NmF53NhULVTK0Mzp9EqsxIzH++zwAaR5liZsyg9Sm7+VF2HnmTPwppodM5kjcIQAs1JZ87diXfoUHYmdkn8fRCSGEEEIIIYTIjCQFCCHeSKnRUQSNG03I5o0AmLu547lwGba16zxny/zlQfx9Jp7y4ZebPwNgb2rPmJoT6FT2q39Kn0Y+wnLWdMzWrkKl06GYmZEwYAgJA4bAa5YckZNuJt9gVsh0tkX9hIKCGjUdCnWkmnlNRt4bggoVCgr+SX50D+7EGjZIYoAQQgghCqzk0NDH1QF+B8CqanU8Fy7DqnyFPI4se92ICWLsiVHsufsXAC4WRZhYeyqty7RF9TgxVh0aguXk8Zj9tBkAnbUNCV7eJPbsDQUoOeJ5Mkue7erQg0FOw3Eydsrj6IQQQgghhBBCPIskBQgh3jgP9/7FtWGDSHlwX18doM8AfXUAc/O8Di3bpOpSWeG3jDnnfYlPi0OFii6e3RldYyyFzBz0jbRazDZ8h+WMyagfPQIgucWnxE2ciq5EyTyMPneFpD5gbugsNj78jjTSAGhp25pRLj54mJWlybX6hoQAAAUFFSrmhvpKUoAQQgghChxFUQjb9pO+OkBkZIGtDpCQlsDCv+ey+NICUnQpGKuN6VNxAEOrjcDK+HHp+5QUzL9disW8Wajj4wBI/LIz8WMmoDi9OYPgt5JvMjNkWobkWS9nb4qZFM/r8IQQQgghhBBCvABJChBCvDHSYqIJHD+GkE3fA2Bexg3PBcuwrVM3jyPLXofvH2T0CS+uR10DoGbh2sysN5cqjtUMbYxOncRqtBfGl/4GIM2zPHFTZ5LaqEkeRJw3otIiWRQ2n1URy0lUEgFoat2MMS7jqWJRzdAuKDnAkBDwhIJCYHJAboYrhBBCCJHjUsLCuD5yKBG7dgBgVbmqvjpAxUrP2TL/UBSF3bd/Z9xJb+7E3QagSdGmTK87G3dbD0M7433/w8pnFEZBgQCk1qxF3LRZpNWolSdx54XQ1BDmhc7i+4fr0iXPeruMxd3M4zlbCyGEEEIIIYR4nUhSgBDijfDo4H6uDelP8r27+uoAX/ej9OhxaApQefwH8feZcGoMv97cBoCDmQPja02hvceXqFVqIJPSpza2JIwaQ2LXnm9M6dN4bTyrIpazOHwB0dooAGpb1GFskYnUs2qQob2bqQf+SX7pEgNUqHA3LZtbIQshhBBC5LiwHb8SMHIoqQ8fojIyouSwkZQYPLxAVQe4EROEz4mR7L37PwCKWhZjSh1fPi75yT9LBdy6idX4MZg+XjZBV9iJuHGTSP78C1Cr8yz23BStjWJx2AJWRiwjQZcAwDvW7+LjMiFd8qwQQgghhBBCiPxDkgKEEAWaNj6eoMnjuL92FQBmJUvhuWg5dnXr53Fk2efJUgGzz88gIS0etUpNV88eeNcYi52p/eNGqZiv+haL2TNQx8UCkNixi770aeHCeRh97klVUtnw8Dvmhs4kLC0UgPJmFRjjMoHmNh8YHgT/l5ezN92DOxmWEHjy08vFOzfDF0IIIYTIEamRjwgY7UXYtq0AWFaohOei5VhXrpLHkWWfxLREFlycy+KL80nRpWCiNqFfpUEMrjocS2NLfaOEBCwWfYPF4vmokpNRNBoSe/UlwWsUio1t3p5ALknUJbIq4lsWhc0j6nHybE2L2owtMpEGVg3zNjghhBBCCCGEEFkiSQFCiAIr6sRxrg7qQ9KtmwC4dutJmXGTMbKyyuPIss/xkKOMOjaMq1H+ANRyeouZ9eZS2aGqoY3xoQNYjRmB0XX9cgKp1WsQN2POG1P6VKfo2B71CzNCpnAz5QYAJUxKMsrFh8/s2qFRaZ65fQu7lqxhA3NDfQlMDsDd1AMvl9F8bPtJboQvhBBCCJFjHv7vD64NG0RKaAhoNJQYNJRSw71Rm5i89L52Rm1nbpgvQcmBuJm6M9zJmxZ2LXMg6pfz1+3djDkxittxtwD9UgEz6s7G7clSAYqCya6dWI0fjeaOfjmBlIaNiZs2C61n+TyKOnelKWn88GgDs0NmEJL2AABPs/KMdhnPBzYfPTV5VgghhBBCCCFE/iFJAUKIAkeblMTNGVO4u3wxKAqmRYtRbv4SCjV+J69DyzZhiWFMOjWWn4L0ywAUMi3E+NpT6ODR8Z+lAu7fw3L8GMy2/wKAzsGB+LGTSPqi0xtR+lRRFA7E7WPag0lcTLwAgKNRYYY7j6RzoW6YqF/8YXcLu5avxUNtIYQQQojskBYbQ+C40YRs+h4AC4+yeC5ajs0rJo3ujNqerrLSlUQ/ugd3Yg0b8uwe6nZsMGNPjuKP27sAcLUsypQ6vrQo2dIwyK0JCsBqzEhM9u8FQFu0GHGTp5PS4lN4AwbCFUVhZ/R2ZoRMJjA5AIBixsUZ6TKGdvYdnps8K4QQQgghhBAi/5CkACFEgRJ78QL+/b8m4dpVAFy+7Iz75OkYFZCSn1qdlnVXVzPj3BRiUqJRoaJzuW6MqTmOQmYO+kYpKZgvX4LlvFmoEuJR1GqSuvYg3nssip193p5ALjmfcJapDyZyOO4gAFZqa/oVHkifwgOw0hScShFCCCGEEC8r8uhhrg7qS/Kd26BSUazPAEp7j0Vjbv7K+5wT6mtICAAMSy7NDfXN9aSAZG0yyy4v4psLs0nUJmKkMqJPpQEMqzYSK+PH94Hx8VgsmIvF0oWoUlJQTExI6DeIhMHDwdIyV+PNK0fiDjHl/njOJ54DoJCmEEOdR9DVoSematM8jk4IkV+Y7NyO5RxfNEEBaN08iPfyJqWFJNQLURD99tsvzJgxhY8++oTx4ye98n7q1q0BwJEjpzAykuEpIYTITfKpK4QoEHRpadxeOI/gOb4oaWkYF3ai3DeLcGz+YV6Hlm0uRJxjxNGh/P3wPABVHaozs/5cahT+Z0aX8YF9+qUCAvUzfVJr1yHWdy7aArQm7LPcSA5k+oMpbI/WV0cwUZnQzaEng529cDRyzOPohBBCCCHyjjYpiZvTJnH32yUAmJUohefi5djVrZ/lfQclBxgSAp5QUAyzz3PL4fsHGXV8GIHR+uM2cGmIb725lLP3fByUgsnO7fqlAu7dBSClaTPips9CW8Y9V2PNK5cTLzH1wQT2xe4BwEJtSZ/C/elfeBDWGps8jk4IkZ+Y7NyObfdOKCoVKkVB4++HbfdORK/ZIIkBQgghhBCvIUkKEELkewmBAfgP+JrYc2cBKPxJKzxmfYOJg0O2HcNk53Ys5/pCUCDWbu7ED8+97Pfo5Cimn53MuqurUVCwMbFldI1xdPXsgUatL+mZYakAx8LEjZ9M8udfvBFLBYSlhjE31JfvH64jjTRUqGhr355RLj6UMCmZ1+EJIYQQQuSp2L/P66tpXb8GQJHO3XCbNBUjK+ts2b+bqQf+SX7pEgNUqHA3LZst+3+e0IRQJp724eegHwEobO7EpLem0abM5/8sFXAjECtvL0wO7ANAW7wEcVN8Sfnw4zdiqYDbKcH4hkzl58gfUVAwwoguDt0Y5jwKJ2OnvA5PCJEPWc7xNSQEAKgUBUWlwmKuryQFCCGEEEK8hiQpQAiRbyk6HffWrODGlAnoEhMxsrXDw3cOTp+1Mzz8yw7/zn5HUdBcyZ3sd0VR2Bq0hQmnfIhICgegrVt7JtSeirOFs75RairmK5ZhOXuGYamAxB5fkzByDIqtXY7F9rqI08ayJHwhy8IXk6CLB6CZdXN8ikykonmlPI5OCCGEECJv6dLSuD1/DsHzZqGkpWHi5Ey5+YtxaPZ+th7Hy9mb7sGdDEsIPPnp5eKdrcf5r8yW1upWvieja4zD1tRO3yghAYuFc7FYvOCfpQIGDCFh0DCwsMjR+F4Hj9Ie8k3oHNY+XEmKkgJAK7vP8HYZRxlTtzyOTgiRn2mCAgwJAU+oFMVQuVAIIYQQQrxeJClACJEvJT+4z9VBfYk8uB8A+8bvUG7BUsxci2b7sfIi+z0wOoBRx4Zx+MFBANxtPZhZbx4NXRsb2hgfO4KV93CMrvoDkFrrLWJnznsjlgpIVVL5/uE65oT6EpGmT5ioYVGTcUUm08CqYR5HJ4QQQgiR9xKCAvDv/69qWi1bU3bWPIwLZV81rSda2LVkDRuYFzaTwOQA3E09GO7szce2n2T7sZ64GHEBr2ODuRDxz9Jasxt8QzXHGoY2Jn/uxspnJJrbwYB+qYDY6bPRlSn4g+GJukRWhi9jQdg8YnUxADS0asy4IpOoZlHjOVsLIcTzad080Pj7pUsMUFQq0txzp0qMEAXZypXLWb16BXPmzAfgu+/WEhBwDTMzM+rWrc/gwcOxt7dn+/Zf2bJlE3fv3sXJyYkPP/yYLl26YmRkbNhXaGgI3323lmPHjhAREY6VlRVVq1anc+evqFQp4zPEuLhYvv9+HXv3/o/w8HBcXYvSoUPHZ8Z7+/Zt1q1bzenTJ4mMfIS9fSHq1q1P9+49KVLENVv7RgghxKuTpAAhRL4T9uvPXB85lLSoKNTm5riNn4Jr917ZWh3g33Iz+z0pLYkFF+ey6OI3pOhSMNOYMazaSPpWGoipxlR/7LAwrCb6YLZ1CwA6Bwfixk8huf2XBX6pAEVR2Bn9G9MeTOJGShAApU3KMLbIRFrYfppj14AQQgghxPOE79zOrTm+JAYFYO7mQSkvbwrnQflkRVG4/90agib6oEtIQGNjS9mZc7O9mtZ/tbBrSSvHVtjbWxIZGU9ami5HjhObEoPvuams9l+BTtFhbWzDmJrj0y+tdTsYK5+RmP65GwBt0WL6pQI+/qTALxWgVbT8GPkDviFTeZB6H4CKZpUZ7zqZJlZN5X5ZCJFt4r28DVUVn0yeUCkKCV45WyVGiDfJL7/8zNGjhylbthxvvVWXixcv8Mcfu7h16ya1a9dh48b1VK5chVq1anHq1ElWrFhGTEwMQ4YMB8DP7zJDhvQnNjaWYsWK06hRE8LCQjl4cD+HDx9k5MjRtGrVxnC8mJgY+vXrRWBgAIULO9GgQUMePLjPjBlTKF26TKYxnj59kpEjh5GYmIibmzuVKlXm9u1gduz4lYMH97Nw4RI8PSvkSn8JIYR4NkkKEELkG6nRUQR4exH2s36tUOvqNSi/ZCUW7h45etzMst91KhXabM5+P3hvPyOPD+VmzA0A3i32HjPqzqGUTenHgWgxW7cayxlTUMdEo6hUJHXuRrzPeBT7Qtkay+voRNwxJj0Yx9mE0wA4GhXGy9mbzg5dMVYZP2drIYQQQoicE75zO37dO+kHnBWFeH8//Lp3ouKaDbmWGBC+czs3fKeQGBgAOv2AvF3DxnguXIZZ0WK5EkNOUhSFncHb8TkxkpCEBwC0Lt2GyXV8/1laKyUFi6ULsfhmNqrERBQjIxL7DiR+2EiwtMzD6HOeoijsjf2LKQ8m4J90BYBixsUZXWQcbew+R60q2MnDQojcl9KiJdFrNmAx1xejwADS3D1I8BqtT8ASIgsURSEhLSGvw3gpFkYWOZJ4d/ToYYYPH0m7dh0ACAsL4/PPW3H1qj8BAddZtGg5NWvWAuD48aMMHTqQHTt+Y9CgoaSmpuLt7UVsbCxff92Pbt16GGI8duwoo0d7MXv2TMqXr0i5cp4ArFixjMDAABo1asKUKTMwNdVPUNq+/VemT5+cIb7o6CjGjh1NSkoK06bN5N133zO89+uvP+PrOw0fH282b/4ZY2N5dieEEHlNkgKEEPlC5OGDXB3Yh+T790CjoeQQL0oOG4k6F24oD331Lk1HXUarAo3C458K+7s0JTsK9YclhjH+5Gi23fgJAGdzF6bVncknpVoZbtaNLpzDauRQjC/oy6OmVq1O3Kx5pFWvmQ0RvN4Ckq4z5cF4/ojZBYCF2oK+hQfSv/AgrDTWeRydEEIIIQTcmuNLUaCComANxCoKV4Bbc31zJSnAkJTwH65f9SgQCQG3Y4PxPj6cPXf/AqCUdWlm1p/HO0XfNbQ584cvZcfNpXBwMgAP6pTHdM53aB8/5C7I/k44z6QH4zgSdwgAO40dQ5xG0N2xF2ZqszyOTghRkKW0aJljyyqKN5OiKHy4/T1OhZ7I61BeSh3neuxq+Ve2Jwa4ubkbEgIAnJycqF69JsePH+Xdd5sbEgIA6tatj7m5OfHxcURGPuLkyROEh4dRo0YtunfvmW6/9es3oHPnrqxa9S0//LCBiROnkpKSwu+/b8fY2JgxY8YZEgIAWrZsxaFDBzhy5FC6/fz2269ER0fRrl2HdAkBAK1ateHIkcMcOXKIAwf28d5772dn1wghhHgFkiouhHit6ZKTCZzgw99tPiH5/j3MS5eh+o4/KT3KJ1cSAgAG2u2lTSe45AKJRvqfn3WCwfZ7s7RfnaJj/dW1NPi5Fttu/IQKFT3Kf83RNqdpWbo1KpUKVXQUVt7DsXv/HYwvnEdnY0us71yi/thX4BMCwlLDGHF3KI2u1eGPmF1o0NDFoTsnPS8wysVHEgLeEDujttPkWn2KXyxMk2v12Rm1Pa9DEkIIITKwv36V+oAtoHn8sz5gf+1qjh87LS6Oa8MGZHxDpSL4m1k5fvyclKpLZdHF+TTc9hZ77v6FsdqYYVVHcLD1CUNCgCosjOieH/Jhl+m4BScTagedvMF1ij+/OV/P2xPIYbdTgukb3JP3AhpzJO4QpipT+hcezCnPv+nnNFASAoQQQuRLKmSpmycqVqyc4TV7e3sAPDzSV05VqVRYWVkBkJycwvnzZwFo2vRdMvNkkP7cOX07f/8rJCYm4ulZATs7+wztGzdukuG1c+f01Tz/nZzwb3Xr1n/c7kym7wshhMhdUilACPHair/qz5W+PYn3uwRAkc7dcJs0DaPHN7i5JSgmgCuVYFul9K+bRge88j6vRvrjdXQwp8L0mc+VHaoyp/58qhd+PNCvKJhu+wmr8WNQh4cBkNTmc+ImTkNxdn7l4+YH8dp4lkcsZnHYAuJ1cQB8YPMRY4tMoqxZuTyOTuSmnVHb6R7cCRUqFBT8k/zoHtyJNWyghZ3MRhFCCPH6qKjRoKSlGR5hqwAFqKgxIjkHjxt95hT+/XqRFhWV8U1F0S8lkE+dDTvN8KODuRJ5GYD6Lm8zq/43lLV7fD+o1WK2fi2W0ybhGBONTgXLWoBPd4i20g8ozA31LZD3DFFpkcwPm8uqiOWkKCkAtLVvz2iXcRQ3KZHH0QkhhBCvTqVSsavlX7J8wGM2NjaZvKp6/J7tU98DCA8PB6BIEddM9+3qWhSAhw8fAhARoW/v5OT0zPb/FhISAoC3t1em2zwRGhr6zPeFEELkDkkKEEK8dhRF4d7qb7kxeTy6pCSMHRwo980SHD/4KE/icbPxwD/SDwXF8JoKFe62ZV96X4lpicz/ezaLLy0gVZeKhZEl3jV86FmhD0Zq/Uey5kYgViOHY3JoPwBp7h7EzZxHasPG2XNCrymtomXLo034hkwlJE2/Tmx18xpMdJ1GPasGeRydyAtzQn0NCQEACkqBfsAvhBAi/7LS6jLMaVMBVjptjiQF6NLSuP3NbG7NmwVaLSpjY5TU1P8EoMLc/eXvV/NabEoM085OYq3/KhQU7E3tmVh7Gh08Ov6ztNalv7EaMQTjxzPbzpZV0WeQwpl/5Y8qKAQm59+kiMyk6FJY+3Al80JnEamNBKChVWMmFJlCFYtqeRucEEIIkU1UKhWWxpZ5HcZrwcgoK8M3yjPf1Wq1ABgb64/xvKQGjUaT4TWdTgdAgwYNDVUKMlO6dJln7lsIIUTukKQAIcRrJTk0lGuD+/Jo3x4ACjVtRrkFyzDNw9nxXtW96b7vn9nKT356VfN+qf0cun+AEceGcDPmBgDvF/+QGfXmUMyquL5BcjIWC+dhsXAequRkFDMzEoZ4kdB/MDsf/MmcX+oTFBOAm40HXtW9aVGq4AyK7o/dy8T7Y/FP8gOghEkpfFzG86ndZ6hVstLNmyooOSBdMg4UzAf8Qggh8j9d2XKo/P1QKf/8u6WoVGjLZv969om3buLfrxcxZ04B4PRZOwo1bcbVAb1BpQJFMfws5fVy96t5SVEUfg/ewZgTIwhJ0CeItnPrwKS3puNo7giAKi4Wi5nTMV+5DJVOh87Kmvgx4+ha/zv8Uq/Af5N4TfNfUkRmFEVhZ/RvTHkwgVspNwHwNCvP+CKTede6eY7MTBRCCCFE/uboWBiABw/uZ/r+/fv3AChUyAGAwoWftH+QafsnlQf+zcHBkdu3g2nf/kveeqtOlmMWQgiRs2SkRQjx2oj4azdnmtTl0b49qM3McJ8xm8o//JynCQEALUq1ZE3TDVQsVAkzjRkVC1VibdONfFzqkxfa/lHSQwYe6kPbP1pyM+YGzuYurG76PeubbTYkBBgfPoh9k3pYzp6BKjmZlCZNeXTwBAnDRrLzwZ9039cJ/0g/krXJ+Ef60X1fJ3beyv9rq19J9KP9jda0v9Ea/yQ/7DR2THKdztFyp2lt31YSAt5wbqYeGdYSLEgP+IUQQhQc8V7eqBQF5fHgrKJSoVIUErJxUF5RFEK2bOLMOw2IOXMKjbUN5ZetosLy1bh8/gUV12zAskJF1KamWFaoSMW1Gyn88Yvdr+a1+/H3+Grvl3Tf14mQhAeUsi7NT+//xpLGK/QJAYqCye87sH/7LSy+XYJKpyPp08+IPHaGpJ59GOY62pC8C/yTxOuSf5IinuZM/ClaBDanR3AXbqXcxMnImXnFFrGv7FGa2bwvCQFCCCGEyFS1ajUA2Ldvb6bv7937FwA1auiXMi1fvgLW1tZcu+ZPSEjGxIBjx45keK1GjRpPfQ9g0aL5dOnyBb/+uu3lT0AIIUS2k9EWIUSe0yYmct17OJc7tSf14UMsK1am5v8OUaxH79fmIVeLUi051PY4iV6JHGp7/IUSAhRFYWvQFhpsq8WWwE2oUNG9fC+OtjnNJ6U+RaVSoYqIwLr/19i1+QSjoEC0Ts7ErFhL9JZf0D0urTXn/FNKqF/wzdFzzkmhqSEMuzOQptcbsD92L8YqY3o79uek5wX6Fh6Aqdo0r0MUrwEvZ+8C+4BfCCFEwZLSoiXRazaQVqEiiqkpaRUqEr12IynZNCifFhONf98eXB3YB218HLZ161P7wDGc23xuaFO4RUtq7z9Gozvh1N5/LF8kBGh1WlZfWcHb297ij9u/Y6QyYkgVLw62PkHjou8AoL57B5suHbDt1hHN/XtoS5QiavPPxK5ch86lCAAt7FqypuQGKphVxFRlSgWziqwttZGPbV//Pnia4ORb9LrVlY8Cm3E64SQWagu8nL054XmeTg5fYaSSwo9CCCGEeLpmzd6jcOHCnDt3hrVrV6H8q6LV8eNH2bBhPRqNhtat2wJgZGRMmzafo9VqmTRpHPHxcYb2+/bt5c8/d2c4xqeftsHc3JyfftrC//73Z7r3Dh8+yJYtmwgIuE6FChVz6CyFEEK8DPkWKYTIU3F+l7nStwcJV/0BKNZ3IGXGjEdtmr8HhYNjbzHy2FD239Nn43ralWfu2wup7fS4lJaiYLp5I1YTfVBHRqKoVCR17UH8mPEotnbp9hUUE0CrywoT9kDZCLjuCJOaKeyqmv9KqCdoE5j9wJcFId+QoIsHoKVta3yKTKC0qawvJtJrYdeSNWxgbqgvgckBuJt64OUyOl8/4BdCCFFwpbRoSUqL7F/eKfrkCa7060nyndug0VB6lA8lBg5Flcm6rvmJf+QVhh0ZyNnw0wDULFybeW8vorx9BX2DtDTMVy3H0ncaqoR4FGNjEvoPJmGIF1hYZNhfC7uWtLDL/8trRaVGMf7uRFaELSNFSUGFii8LdWaUiw8uxkXyOjwhhBBC5BNmZuZMmzaLYcMG8u23S9m1aydly5YjLCyUS5cuotFoGDrUi4oVKxm26datJxcv/s25c2do06Yl1arV4NGjR1y8eIHKlatw6dLFdMdwcnJi/PjJjB8/hnHjRrN69QpKlixFWFgo/v5XABg61IuyZcvl6rkLIYTInCQFCCHyhKIo3Fu1nKDJ41GSkzFxcsZz0XIKvfNuXoeWJWm6NL71W8qsc9NI1CZiqjFlWNWR9K88GBONCQCawACsvAZj8ri0VlrFysTOXUBajVqZ7rN3oBMLNtxBh768S+UQ2LYBhljl7bIKL0On6Nj8cDPTLk/iXrJ+zbKaFrWZ5DqdtyxlzbHn2Rm1nblhvgQlB+Jm6s5wJ+8C8dD7RRSUB/xCCCHEy9KlpRE8bxbB82aBTodZyVJUWL4am5q18zq0LElKS+Kbv2ex6OJ80pQ0rIyt8ak5ga6ePdCo9YkORn+fx2r4YIwvXgAgtU49YucsQFvOMw8jz1mpSiprw9Yy6+IMHqY+BKCx1TtMdJ1GRfNKz9laCCGEECKjKlWqsn79D3z33RpOnDjOoUMHsLOzo1mz5nzxRad0CQEApqamzJ+/mM2bN/L77zs4fvwojo6F6d9/EOXLV2DAgD4ZjvHOO++ydu0GNmz4jrNnT3P06GEKFXKgQYOGfPllZ2rWzPx5pxBCiNynUv5dN0a8NK1Wx6NH8S+1jZGRGnt7SyIj40lL0+VQZAWX9F/WvA79lxIeztVBfXi0938AODT/gHLzl2Li6Jgn8byo5/XdpYcXGXpkABcfXgCgvsvbzG2wADdbD32D5GQsFs7DYsFcVCkpKObmxI8YQ2LvfmBs/NTjaupXxC7wTrr1XrQqiHIvge7o5Ww8w5xxLO4I4++P4WLiBQBKmJRkrMtEPrX77LVZHuJ1tjNqO92DOxlK5z/5uabkBhksf0Gvw+defib9lzWv2n+FClmi0RSMlb7kfjn3Sf+9utel7xJvB+Pftycxp08C4Pz5F3jMmI2RtU2exfQintd/J0KOMfTIAIJiAgH4oMRH+Nabi6tlUX2DuDgsZ07FfOVyVDodOls74sdPJqljF1AXjM/E/1IUhf/F/sHE+2MJTNZXAitn5snEIlNpav2e3C+/hNfl7zc/kr7LGum/rJH75TdLUlISQUE3cHR0wcQkf1cJFUIIIV4XKSnJRESE4OZWBjMzs6e2k0oBQohc9ejAPvz7f01qeBhqMzPcJkzFtXuvfP2wKzEtkbkXZrLk0gK0ihZbEzsmvjWVLz06G87L+PhRrLwGYxRwHYDkd98jbuY8dCVKPnf/9nfC+G/vaBQodDuUiOw+mWx0IzmIyQ/Gsyt6BwDWahvGlvGhs3UPjHQmeRxd/jEn1NeQCAAYEgPmhvpKUoAQQghRAIX9to1rwwejjYlGY21D2dnf4PxZu7wOK0tiU2KYfGYC311dDYCTuTMz6s2hRcmWhvtlk792YzVqOJp7dwFI+qwtcZN9UZyc8izunHY58RIT7vtwOO4AAI5Gjkxxn0Ibiy9AKwNdQgghhBBCCCGyjyQFCCFyhS4lhZu+U7mzeD4AluUrUH75GqzKV8jbwLLoeMhRhh4ZwI2YIAA+KdWK6XVn4WzhAoAqOgrLyeMx/34dALrCTsRNm0nyp5/BCyZCaN080Pj7ofpXYRdFpSLNvWz2nkw2idZGMS90NqsilpOqpKJBQ2eHrowu6kNZp9L67H+dzJ54UUHJAYaEgCcUFMNMMiGEEEIUDNr4eALHefNgw3cA2NR6i/LLV2P+Akmkr7M/b+9m5LGhPEi4D0Cnsl8xvvZk7EztAVCFhmLlMxKz7b8AoC1RithZc0lt+l6exZzTwlLD8A2ZwsZH61FQMFGZ0NuxP8OLelHS0VV/v4zcLwshhBBCCCGEyD6vfVLAqVOnWL58Of7+/iQlJVGuXDm6dOnCRx999ML7CAsLY/HixRw6dIiIiAgsLS2pUaMGvXv3plq1ajkXvBACgMSbN7jSpzux588B4Nq1B26TpqMxN8/jyF5dTEo0k09PYP21NQA4m7sws/48PirZQt9AUTDZ8StWY0aiCQsFILFzV+LHTUKxs3+pY8V7eWPbvROKSoVKUQw/E7y8s/WcsipNSWP9w7XMDpnOQ61+HdSm1s2Y5DqdcmaeGBnJbKdX4WbqgX+SX7rEABUq3E1fz6QQIYQQ4k2189Z25pz3JSgmADcbD7yqe9Oi1ItV9Ym7fIkrvbuREHAdVCpKDBlOqRFjUBu99l/Znyo8MRyfEyP49eY2AEpZl2be24t4u0gjfQOdDrON67GcPB51dBSKRkNinwHEe3mDpWUeRp5zknRJrAhfyvywucTpYgH41PYzxhaZSEnTUhhJGWwhhBBCCCGEEDnktX7CsH37dkaOHImRkRF16tRBo9Fw/Phxhg4dSmBgIIMGDXruPu7evUuHDh0IDw+nWLFiNGnShPv377Nv3z4OHjzI3Llz+fDDD3PhbIR4M4X+/CPXRwxFGxeLkZ0d5b5ZQuGPP8nrsLLkz+DdDDs82DDbqXO5boyvNQlbUzsA1PfuYjVqGKZ//QFAmrsHcXMXklqvwSsdL6VFS6LXbMBiri9GgQGkuXuQ4DWalNeoH/fF7GHC/TFcS74KQFnTckx2nU5Tm4I7wyu3eDl70z24k2EJgSc/vVxer6QQIYQQ4k2289Z2uu/7599r/0g/uu/rxJqmG56ZGKAoCvfWrCBo4liU5GRMXIpQfulK7N9ulIvRZy9FUfgxYDOjj40gMjkSjUpD30oDGVF9NOZG+qRgTcB1rLwGY3L8KACpVasTN28haZWr5mXoOUZRFHZE/8rkB+O5nRIMQHXzGkwu6ksdy7p5HJ0QQgghhBBCiDfBa5sUEBERwbhx4zA3N2fDhg1UrFgRgKCgILp06cLSpUt59913Da8/zaxZswgPD+fLL79k7NixaDQaALZu3YqPjw8TJkygadOmmJqa5vg5CfEm0cbHEzDai5DNGwGwrVOP8stWYVaseB5H9uoeJkUwYMfXbLqyCYDSNmWY12ARDYo01DfQ6TBbuxLLqZNQx8ehGBuTMGgYCYOHg5lZlo6d0qIlKS1ev/XjA5MCGH9/NHti/wKgkKYQI1186OLQDSPVa/tPTL7Swq4la9jAvLCZBCYH4G7qwXBnbz62fX2SQoQQQog33ZzzvoaEAMCQyDf3gu9TkwJSIx9xdXA/Hv6xCwCH5h9QbsEyTBwcci3u7HY37i6d9gxj1w39OVUqVIX5by+mimM1fYOUFCwWz8di3ixUKSkoFhbEjxpLYq8+kI+rIjzL3wnnGXvfm5PxxwEoYuzK2CITaWP3OWqVVAYQQgghhBBCCJE7XttvoBs3biQpKYlOnTqlG/h3c3Nj2LBhKIrCd99999z9HDlyBIABAwYYEgIA2rZtS6lSpYiOjubatWvZfwJCvMHi/C5ztnljfUKAWk1JL2+q/vJ7vk0IUBSFX25spe6PNdl0ZRNqlZr+lQdzoNVxQ0KA5tpV7Fo0x3r0CNTxcaTWeovIvUdIGOWT5YSA11FUWiTj7nnT6Fod9sT+hRFG9Hbsz8nyF+ju2EsSArJZC7uWHKpwnMSmiRyqcFwSAoQQQojXTFBMQLqlfkCfGBAYHZBp+6gTxznT9G0e/rELlYkJ7tNmUun7LVlKCDDZuR37JvVxLF4Y+yb1Mdm5/ZX39bJ0io51V1dT/6fa7LqxCxO1CWNqjufPlvsNCQFG585g/15jLH2nokpJIaVpMx4dOkli3wEFMiEgNDWUwbf70TygCSfjj2OuMmeE82iOlTtLO/sOkhAghBBCCCGEECJXvbbfvA8ePAhAs2bNMrzXrFkzfHx8OHDgwHP3o1brv2iHhITg8K8HLKmpqcTFxQFgZ2eX9YCFECiKwv3v1hA4zttQ/rTC8tXY1X87r0N7ZSEJDxh5bCh/3H4828mxEvPfXkKVQtX1DVJSsFg4D4v5c1ClpKCztCJ+7ESSuvUEdcF70JempPH9w3XMDJnKI+0jAN63+ZCJrlNxM/XI4+iEEEIIIfKGm40H/pF+6RIDVKhwty2brp2i03F74TxuzpwGWi3mpctQYdV3WGexbL7Jzu3Ydu+ETgUqBdT+l7Ht3onoNRtyvNrUjZgghh0ZyLEQfUJ+Pdd6zGuwCDfrx+ceH4+l71TMVy5DpdOhK1SIuKkzSW7zOahUORpbXkjSJbEifCnfhM0hXqd/5tDG7nPGFZmEq0nRPI5OCCGEEEIIIcSb6rUcsVIUhcDAQAA8PDIOMtna2uLo6Eh0dDShoaHP3FejRvq1GEeOHMmZM2dITEzk1q1bDB8+nIiICJo1a0aJEiWy/ySEeMOkxURzpVdXAkYORUlOplCz5tTadzTfJgQoisIP1zfw9ra3+OP2LozVxoyqOYazXc9Sw6kmAEZnT2P/XiMsZ01HlZJC8nvvE3nkFEk9vi6QCQGHYg/w7vW3GXVvGI+0jyhn6smWMr/wfektkhAghBBCiDeaV3Vvw5IBgGEpAa9q3oY2yaGhXPy8NTenTwatFqc2n1Nz7+EsJwQAaKePRgeoH+ckqBXQqiBtxpgs7/upx9RpWX55Me/8Up9jIUewMLJger2ZHO54mHL2ngAYH9hHocb1sPh2CSqdjqQ2n/PoyBmS27YvcAkBiqLwe/QOGl57i6khE4nXxVHDoia73PewrOQqSQgQQgghhBBCCJGnXstKAdHR0SQnJ2NpaYmFhUWmbZycnAgPDyciIgJnZ+en7mvs2LGEhIRw9uxZOnbsaHhdpVLRp08f+vfvn+3xC/GmiTl/liu9upF0+xYqIyPKjJ1EsT79UeXTgfF7cXcZfnQQ++7tAaCaY3UWNFxG5cKVMNGYEB8fheXUyZivWIpKUdA5OBA3bRbJrdsWuIebALeSbzLxwVh2Re8AwF5jz0gXH75y6C7LBAghhBBCAC1KtWRN0w3MveBLYHQA7rYeeFUbzcel9Ev+PDq4H/9+vUgND0NtYYHHjDm4dOiIKpvuHS1v3c2Q8a9RwOrmHWKy5QjpBURdZ/CRfpwJOwVAwyKNmdtgIe6F3NCoNaiiIrEe443Z5o0AaIsWI27OfFLebZ4D0eS9K4l+jLvvzeE4fcVDF6MijC0ykbb27WWZACGEEEIIIYQQr4XXcjQnMTERAHNz86e2MTU1BSAhIeGZ+7Kzs6N169YEBgZiY2ND2bJluXv3LteuXWPbtm3UqlWLhg0bZileI6OX+5Kv0ajT/RQvR/ova7Kz/xRF4c63SwmYMBYlNRWzEiWpvGodtrVqZ3nfeUFRFL67upbxJ3yIS43FVGPK6Jpj6VdlIEZqI32f7duHbY+eqG/dBCC5/RckTp2B4uD4en6gZkGcNo5vQuawJHQhKUoKGjT0KNyLUa5jsDcq9NL7k7/drJH+e3XSd1kj/Zc10n96cr+cu6T/Xl1W+q6VeytaubdK95qi1XJj5nRuzp0FioJl+QpUXv0dVp7lsyNcg2uFodKD9KUAtSq4WhhKvOTf37Ok6dJYenERM85OJVmbjJWxNZPrTuMrz26oVCp9v23bhk2/fqhDQ1FUKpJ79SbRZwJYWxe4++VHaQ/xvT+NNeGr0KHDVGXKAOfBDHYZhpXG6qX3J3+7WSP99+qk77JG+i9rpP+EEEIIIXLHa/mdXP14dvGLzJrQ6XTPfN/Ly4vff/+dwYMH07dvX8M+//rrL4YNG0b//v3Ztm0b7u7urxirCnt7y1fa1sbm6UkP4vmk/7Imq/2XEhnJ6R7duf/rrwAU/ewzaq1ejYmdXdaDywO3om/Rc3dP9gbvBfRroa75aA2eDvrSp0RHw3AvWLVK/7C1eHH49ltMP/wQ0zyLOmfoFB0bQzYyKmAUD1IeANCsUDPml51PRauKWd6//O1mjfTfq5O+yxrpv6x5k/tP7pfzjvTfq8uOvkt88ICTX35J+IEDAJTu2ZPqCxeieUby+6ua0roE85YGo1XpKwQ8+bnus5J884p/f//lF+5Ht93dOP3gNAAflP6AFR+soLhNcX2D0FAYMAC2btXfL3t6olq9GrP69THLlgheH2m6NL699y3jb4znUeojANo4tWG2x2xKm5fO8v7lbzdrpP9enfRd1kj/ZY30nxBCCCFEznqhpIDnDby/LPVzSopbWuofWiQlJT21TXJyMsBTlxcAOHLkCL///jt16tShX79+6d5r3rw53bt359tvv2XNmjVMnz79RcNPR6dTiIl5drWC/9Jo1NjYmBMTk4hWm719+yaQ/sua7Oi/6HNnudS9C0m3g1EZG1N26gyK9exNvKIiPjI+myPOWTpFxzr/1Uw4MZb4tHjMNeb41J5A70p90ag1REbGY/zHLiyGD0b9QD9AntLza+LHTQJra8hn5/s85+LP4n1nBGfi9aVgS5mUZmrxGXxo+zGqVBWRWThf+dvNGum/Vyd9lzXSf1nzqv1nY2Oeo7OlcvP+Xu6Xc5/036vLrr57dHA/l7/uTkp4OBpLSzznLaRIu/bEJOkgKfvvH6v1mM5nMR0ZvxfKhesrB0x6Fz7rPj1L92+gHwBf9Pd8Zp6dToouBRsTW6bXm8kXZTui0qqIfBSHyY+bMR8zCnXkI9BoSB4yjITho8DMrMDdLx+OPYj37RH4J10BoIJ5RWYUn0VD68aQBJFZ+P3K327WSP+9Oum7rJH+y5rX9X5ZCCGEEKKgeaGkgIoVsz4z9AmVSsWVK1ee2cbS0hJLS0tiY2NJSkrCzCzjvIKwsDAAnJycnrqfEydOAPD2229n+n6jRo349ttv8ff3f9HwM5WW9mo3/Fqt7pW3FdJ/WfUq/acoCvdWLSdo4pPlAkpRYdU6bKrVQKtVACVngs0hd+JuM+TwAA4/OABAXef6zG+4hDI2big60IaHY+UzErNtPwGgdXNHs2Y18ZVr6vuuAF1/4anhTA+ZxKZH36OgYKG2ZJjTCHoX7o+p2jRbf7/yt5s10n+vTvoua6T/suZ167/cvr+X++W8If336l617xStlltzZxI8d+bj5QIqUnH1eizcPXL0d/Fh8U/QDtpAp0a+BEYH4G7rgVe10XxQvEWWjnst8iqDDvfhfMQ5AJoX/4A5DRbgYlEErVZBff8uVl6DMd3zFwBplatg9N06EkqVLXD3y3dSbjPp/ji2R/8CgL3GHm+XcXR26IqRyihbf7/yt5s10n+vTvoua6T/skb6TwghhBAiZ71QUoCi5O5An0qlwsPDgwsXLhAUFJThoWVUVBQRERHY2tri7Oz81P3ExMQAoNFoMn3fyEh/+qmpqdkUuRAFV1pMNFcH9yfi9+0AOLb4lHLfLMLY1i5vA3sFiqKw/tpaJp4aS3xaHOYac8bWmkiPCr1Rq/RZ5iY7fsV61HDUEeEoajWJfQeSPGYs9q6OBWq2U6qSypqIFcwKmUGsTv+Z2c6+A+OKTMLFuIih3c6o7cwJ9SUoOQA3Uw+8nL1pYdcyr8IWQgiRRbl9fy/EmyAlLIwrfXsQdfggAEU6d8N9qm+OLBeQmRalWtKiVPbcn6Xp0lh6aSGzzuurA9ia2DG1ji+fu3+hX5JPUTDb8B2WE8eijo1BMTEhfsRoUgcNwd7JrkDdLyfqElkcNp9FYd+QpCShRk1Xhx6McvHB3qhQXocnhBBCCCGEEEK8kBdKCgBo2bIls2bNytLBRowYwc6dO1+obcOGDblw4QJ79uzJkBSwZ88eFEWhUaNGz9yHm5sbAAcPHqRHjx4Z3j969CgAnp6eLxSTEG+q2EsX8evRmaRbN1EZG+M2aRpFe/TWPxDMZ+7E3WbokYEcur8fgDrO9VjQcCllbPSfF6rwcKy9h2O641cA0jzLE7tgKWnVa2JkVLDK0h2M3Y/PvZFcT74GQBXzakwvOpu3LOuka7czajvdgzuhQoWCgn+SH92DO7GGDZIYIIQQ+Vhu398LUZBFHT/Kla+7kRIagtrCknJz5uPctn1eh/VKrkVeZfDhvpyLOAvAe8XfZ26DhbhY6BNG1beDsR42CJND+vvp1Jq1iV2wFG3ZcgXqfllRFH6P3sGE+2O4k3obgPqWbzOt6CwqmlfK4+iEEEIIIcSrUhQlXz7XFkKIrHrhpIDc1rZtW1atWsW6deto2LAhNWrUAODGjRvMnz8fgJ49exrah4WFERsbi7W1tWFJgRYtWrBgwQJOnjzJypUr6dmzp+HD/siRI6xYsQKVSkXnzp1z9+SEyCcUReHBxvUEjPZCSU7GtHgJKq76DpvqNfM6tJemKAqbAr5n3MnRxKXGYq4xZ0yt8fQs3weNWgOKgukvW7EaMwL1o0coGg0Jg4eRMHQkmJrmdfjZ6k7KbSbc92Fn9G8AOGgc8CkykS8KdUKjylhZZU6oryEhAEBBQYWKuaG+khQghBBCiDeaotNxZ/ECbsyYDFotFp7lqbj6eyw9yuZ1aC9Nq9Oy3G8JvuemkKxNxsbElql1fGnv/qX+e7ROh9m61VhOmYA6Pg7FzIx473Ek9u4HT6nOl19dT7rGmHsjORSnT3woalyMia5TaWnbWh4gCyGEECLHrFy5nNWrV7zUNtu27cTV1TWHIipYYmNjWblyOeXKefLxx5/kdTjZSlEUBg7sS3DwLXbs+OOp7f73vz/58cfNBAZeR6vVUrRoMZo1a06nTl9hmskz8IcPH7J27UpOnDhGeHg4Dg6ONG3ajG7demJpaZmu7eXLF1m6dDHXrl3FysqKt99uSN++A7Cyss6w34SEBPbs+Yu//vqDO3du8/BhBJaWVnh4lOWDDz7kww9bPLUC+MtKS0tj587t7N37PwIDA4iNjcHa2oZSpUrRsGETPvusDWZmuVPdLafcuXObdu1a4eJShF9//T1b9717904mTRrPwoXLeOutOpm28fe/woYN33Hhwnmio6OwtramSpVqdOnSjYoVMyZUp6Sk8NNPW9i1awf37t3F3NyCt96qQ69efShWrHimxzh37izr1q0mIOAaycnJuLm50779lzRr1jxbzzen3b59m88/b4WX1yja5sFEghdKCpgxYwbFi2f+i3gZ7du3p379+i/U1sXFBR8fH8aNG0enTp2oU6cOJiYmHD9+nOTkZIYPH55uhv+8efP45ZdfaN26Nb6+vgA4ODgwd+5cBg8ezJw5c/jxxx/x9PTk3r17+Pn5oVKp8Pb2pmrVqlk+NyEKGm1CAtdHDSN0yyYACr33PuUXf4uxff4rkRmS8IBhRway565+rdPaTnVY2HApbrYeAKhCQ7EeORTT3fqZjmkVKxO7cClplQvWZ0OSLokl4QtYGDqPRCURNWq6O/ZipPMY7Izsn7pdUHKAISHgCQWFwOSAnA5ZCCFEDsmL+3shCprUqEiuDujNw7/0D92c23Wg7Kxv0Pzn4Vh+cCMmiEGH+nIq7AQATYs245u3F1PEUv+AWR18C+sh/TE5ehiAlLr1iZu/GG0Z9zyLOSfEamOYEzqTleHLSCMNU5Up/QsPYqDTMCw1+e/3KoQQQoj8xd3dg/ff/zDda48ePeL06ZOYm5vTqFGTDNtYWOTvwczctGDBXHbu3M7o0ePyOpRst3DhN5w5c4rChZ2e2mbp0kWsX78WIyMjqlWrgampKRcvXmDlyuUcO3aEJUtWYGZmZmgfERFOz55dCQl5gJubO/Xrv42/vx8bNnzH8eNHWbFiDZaWVgAEB9+if//eNG78DqNHbyAsLJRJk8YTHBzMokXL0iXWXrhwngkTfAgNDcHKygo3N3fKl69AWFgo586d4cyZU+zY8RvffLMYCwuLLPVLbGwsAwb05tq1q9ja2lG+fAUsLS159Ogh169f5/z5c/z44w8sXboCV9eiWTpWQXTx4t/Mnu37zDZ79/6P8eN90GrTcHNzp1Klyty9e4eDB/dz5MhhJk6cwnvvvW9on5aWhre3F8eOHaFw4cLUq9eAe/fu8eefuzl8+BDffrsaj/8k2f/xxy4mTRqHRqOhVq3aqNUazpw5xdix3ty8GUSvXn1z5PxzwvHjRwCoX//tPDn+CyUFtG7dOlsOVqtWLWrVqvXC7du1a4eLiwsrVqzgwoULaDQaKlSoQPfu3Wne/MWyP9555x22bdvGypUrOX78OPv378fS0pJ33nmHbt26UadO5pktQrzJEgID8OvRmXj/K6BWU3rMeEoMGIJKnb/KgSqKwrYbPzH6uBdRKVGYakzxrjGOPhX7/1MdYNtP+uoAkZEoxsYkDBtJwqBhYGyc1+FnG0VR+DNmN+PuexOccguAepYNmF509guVPnUz9cA/yS9dYoAKFe6m+W8GnBBCCL28ur8XoqCIuXCOKz2/Iul2MCpTUzymz6ZIp6/y3SxynaJjrf8qppwZT0JaAlbG1kypM4MvPTr/Ux1g7SqspkxAlRCPYmFB3NiJJHX/GvLZd4NnURSFrVFbmHR/HGFpoQC8b/Mhk11nUNq0TB5HJ4QQQog3xTvvvMs777yb7rWzZ89w+vRJbG3tmDRpWh5FVjDodMrzG+UzSUmJzJrly65dO57ZLjAwgO+/X4eNjS3Ll6+iTBn9UrrR0dEMHNgHP7/L/PTTZjp37mrYZvZsX0JCHvDVV93p23cAAKmpqUycOJa9e//Ht98uY9iwEQBs3fojaWlpjBrlg6WlJcWLl6BLl27MmePL9evXKFdOP8H34sW/6d+/N4qio3fvfrRv/2W6gf9bt24yfvwY/v77AsOHD2Lp0pVZ+o41d+5Mrl27SosWLRk1ygfjfz3zj42NZdas6fzvf38yZsxI1q3b+MrHKYj+978/mTFjCgkJCU9tEx0dzYwZU9DptEyaNC1dUtPvv+9gypQJzJgxhZo1a1OokH6y6c8//8SxY0eoXbsOs2fPM1Rp2Lx5I/Pnz2XKlAl8990mw+/94cOHzJgxFXNzc5YuXYmnZ3lAf6306/c1a9asomHDJobXX3fHjh2hZMlSeZaE8srLB+zfv58tW7Zw+/ZtkpOTn9pOpVKxZ8+eVz0MDRs2pGHDhs9t5+vra6gQ8F/u7u7MnDnzlWMQ4k0StuNXrg3qhzY+DuPCTlRYsRb7Bs//G3zdRCRGMPL4UHbe0pfIr+ZYnUUNv6Wcvf4GRBUWhvWIIYbqAKmVqxK7cBnaTMrZ5Gc3koPwuTeSvbH/A8DFqAgTXafS2q7tC99QeTl70z24k2EJgSc/vVy8czJ0IYQQuSy37u+FyM8UReHB+rUE+IxESUnBrGQpKq75Hut8WGHqbtwdBh/uz+EHBwBoWKQx8xsuobhVCeBxdYChAzA5cgiAlHoNiJ2/BF3pgjVIfjnxEt53h3MqQV8lobRJGaYVnUkzm/efs6UQQgghhBB559ChAyxaNJ87d25TtGgx7t27+9S2p06dRFEUmjVrbkgIALC1taVTp68YP34M58+fMyQF3Llzm0OHDuDs7EKvXn0M7Y2NjRk9eiwnThznt99+oU+f/lhYWHDv3l3s7OzTLSlQtKh+0PPevbuUK+dJYmIi48ePQatNw9vbh1at2mSIs1Sp0nzzzWK++KIt58+f4+DB/TRp0vSV+ictLZU9e/7C2NgYLy/vdAkBANbW1owdO5GzZ89w9ao/V674UaFCxVc6VkFy//49li5dxJ49f2FmZkahQg48evQw07YHDuwjLi6Opk2bZahy8vHHn7Bv3x6OHj3MkSOHaNmyFYqi8MMP3wPg5TUq3bINHTp05ODB/Zw/f46zZ09Tq9ZbAPz8848kJyfRpUu3dAP/pUqVpl+/AUydOoktWzYxYcKU7O6KbJeUlMj58+do0+bzPIvhlZIC/vrrLwYPHoyiPD+zKr/NlBDiTaVLTeXGlAncXb4YANv6b1Ph2zWYOrvkcWQvb3fw7ww/OpCIpAiMVEZ4VfdmYJWhGKuN9dUBftmK1WgvfXUAIyN9dYDBwwtUdYAEXQILQ+eyOHwBKUoKxipj+jgOYKjzCKw0Vi+1rxZ2LVnDBuaG+hKYHIC7qQdeLqP52LZgrb0lhBBvMrm/F+L5tAkJXB85lNAffwDA4YOP8Vy0DGNbu7wN7CUpisKWwE2MOTGSuNRYLIwsGFdrMt3K90StUuurA3y3BqtJ4wp0dYBobRQzQ6axJmIlOnRYqC0Y6jSCPoUHYKrOuJ6qEEIIIfKvHZG/MevBDAKTAnA382BkkdF8Yv9pXoeVba5evcL69es4f/4scXFxFC7sRKNGTejatTt2dumXDK1btwaenuVZuHAZK1cu58CBvcTExBhmdjdv/gGhoSEsWbKQEyeOAwrlypVn0KCh6Up6r1y5nNWrVzB9+iwURWHdutXcvh2Mvb09DRo0pHv3Xjg4OGaINSIinHXr1nD06GEiIsKxsrKmZs1adOvWEze39EtT9e3bi/Pnz7Jx44/MmzeLS5cuYmNjw5AhXjRr1py0tDR27drJX3/tJiAggLi4OCwtLXB3L0vr1m3SlSyvW7eG4b9nzJjCjBlTGDt2Ii1atDQcJ7M103fu3M7UqRN5//0PDZUazp49Q//+X9O+/RcULVqctWtXkZCQgKenJ8uWrUKtVqPVatmx41e2b/+NW7duoCgKbm7utGrVho8//iTD9+pWrT4mJOSBIabniY2NZeTIYWg0Gtq3/4JWrdrwxRdtn9perdYfLywsNMN7kZGRANjY2BheO378GIqiUL/+2xgZpR9GfPI7O3ToAGfOnKZRo8Y4OTlx6tQJUlJSMDExASA8PBwAJydnAA4c2EtIyAPKlvXk008/e2qsDg4OdOzYmdOnT5GUlPTcvniamJhY0tLSDPFkxtTUlC+/7ERwcHC688yN6xt46etEURR+/fVnfvllG7dv38La2oYPPvgow4D8f8+jevWaLFu28oX6bf78uRw6dIAKFSri4zOBOXNmPjUpIC0tjXLlPDP83TxRokRJQ18ABAUFEhISQsmSpShZslSG9o0bv8P58+c4cuSwISng6OMl7DJbPqVRo3dQqSYb2gDcv3+fzz5rwTvvvMvQoV4sX76E48ePkpiYiJubO19/3Zc6depx40YQS5Ys4MKFC5iYmFClSlUGDx6Oq6urYV+TJ09g164dbNz4I1ev+rNlyyaCg29hbW1Nkybv0r//IExMTNi06Xt+++0XwsPDcXV1pW3b9nz2WcZJmadPnyIlJYV69RoYXouNjWXt2lWcPHmce/fuotEYUaZMGd5//0NatWqT4e8vq15pb8uXL0dRFHr16kXz5s2xsbGRh4NC5GPJoSFc6dWV6BPHACg+YAilx4xH/Z8PnPCd27k1x5fEoADM3Two5eVN4Re4ScktMSnRjD3pzeYAfamf8vYVWdzoWyo7VAFAFR6O9ahhmO7UVw9IrVRFXx2gUuU8izm7KYrC7pjfGXfPmzuptwFoYtWU6UVn427m8cr7bWHXkhZ2efe73hm1nTmhvgQlB+Bm6oGXs3eexiOEEAWN3N8L8WwJN4Lw696Z+CuXQa2mjM9Eig8YnO/+TsITwxl+dBB/3P4dgNpOdVjUcBllbPUPqNR3bmM9ZAAmhw8AkFK3PrELlhao6gA6RcePkT8w+cF4ItL0D6da2rZmkus0ipoUy+PohBBCCJHddkT+xlc3OhoqX15J9OOrGx35rszGApEYsHv370ydOgmdTounZ3lcXIoQEHCNzZs3cuDAPpYuXZlukAsgPj6eXr26Eh4eTs2atYiMfMTly5cYP34MUVFRfPfdGtRqNdWqVefWrZucPn2S3r17sHnzzzg5pV+zfteunRw5cohixYpTv/7bXLt2lZ9//omjRw+zdOmqdMcOCLjOoEH9iIx8ZGgfHh7Onj1/cfjwQWbMmEP9+g34r9GjR5CQEE+9eg24etUfT8/yKIrC6NEjOHz4IDY2NlSsWBkTExNu3brJuXNnOHfuDI8ePaJ9+y8AeP/9D7l8+RL37t2lUqXKFC1ajGLFsnbvd/z4Me7cuU2NGjVRqVQ4O7ugVqsfl9EfztGjh7GysqJy5SoYGRlx7txZpk6dyLlzZxk/flKWjq1Wq2je/EO6detB6dJluH///jPb16lTD5VKxZEjh1ixYhlt2rTDzMyc48ePsnLlMkxMTGjXroOh/c2bQQC4ubllur/SpUtz6NABgoICaNSoMR999Anbt//K8uVL6NdvAA8fPuSHHzZQrpynYXb3nj1/AfDee82f+z3qq6+689VX3V+4PzJjb2+Po6MjERERTJjgw+DBwzIt2d6p01dP3UdOXt+vcp1Mnjye3bt/x8LCgtq165CUlMSmTRs48ri6W3Zwd/egWbPmvPfe+8/9PbVp0442bdo99f0rVy4DGD43bt68AZBpggRA6cffO4OCAgH9WMetWzefuo2NjQ0ODg5EREQQFhaW7vMpNDSErl07odNpqVq1Ovfu3cXP7zLDhg1i1CgfvvlmNg4ODtSqVZurV/05eHA//v5X+PHHbekqGAAsXbqIo0cPU7lyFWrVeovz58+xdesWwsPDMDU148CBvVSpUo0iRVw5e/Y0s2fPIC0tzfD588SxY0exsLCgenV9klJSUhJ9+vQgKCiQYsWKUadOPZKTkzh//hyXLl3kypUrWf6s+K9XSgq4efMmNWvWZPjw4dkajBAi90UdP8qVXl1JCQtFY2WN56LlFP444wzw8J3b8eveCVQqUBTi/f3w696Jims2vBaJAUceHGLQob7cjb+DWqWmf6XBjKwxBlONfpaPyc7tWI8cgjoiQl8dYIgXCUO84BmZgvnNjeRAxtwbyb5YfUnnosbFmOLqy8e2GbMK85OdUdvTLV/gn+RH9+BOrGGDJAYIIUQ2kft7IZ4u4o9d+A/ojTYmGmPHwlRYuS5fLq/1+60deB0bxMOkh5ioTRhVYyz9Kg1Eo9aAomD2wwYsx3qjjotFMTcn3mcCiT37FKjqAP9dKsDd1IMZRefQ2PqdPI5MCCGEEDll1oMZhmdKgGFpzNkPfPN9UkBw8C1mzJiCqakpc+bMp0aNmgDodDpWrFjGunWrmTRpLN9+uybddnfu3KZ06TJs3fqbYZ3vefNm8+OPPzBv3iwaNGjItGkzMTMzIy0tjf79v+bvvy/wv//9QceOXdLt68iRQ7Rt256hQ73QaDSkpaUybdpkdu/+nblzZzJ37gJAX8p99OgRREY+YsiQ4bRv/6XheeXhwwcZM2YkEyf6sGXLL9jbp69ukJyczMaNP2Fra4tOp0OtVrN//14OHz5IhQqVWLx4ebp16devX8vSpYv46afNhkG5SZOmMXnyBO7du8snn7Ti009bZ7n/b98OZsCAwYZBZZ1OB8Datas4evQwtWrVZupUX0O1hocPHzJ06EB27dpB1arV0sWwePFy0tLScHTMOPs8M5aWVkyePO2FYy1dugxjxoxj3rzZrFmzkjVr/pk1XqaMG2PHTkxXOv/JLP/MZsPrXy8MwKNHjwCoUqUqkydPZ/HiBWzZoq+sVqdOXUaOHG2Y6RwcfAuAihVzZ4KeSqWiX79BTJ48noMH93Pw4H7Kli1HjRq1qF69BtWq1cDW1vaZ+8jJ6/tlr5N9+/aye/fvFCtWjKVLVxoqMFy9eoWBA/tmGn+7du157733MTMze+F++/rrzPf1so4dO8rff1/A1NSUevXeBl7kutK//qQyQUxMDMnJyVhYWGJubv7UbSIiInj06GG6pIArV/yoXr0mc+cuwMLCAkVR8Pb24uDB/UyfPplWrT5jxIjRaDQaEhIS6NLlC+7evcOxY0dp2rTZf87lCLNmfUOjRo0BuHrVn27dOnHw4H6srKxYt26jYVmObdu2MmvWdH77bVuGpIDjx49Sq9ZbhqUs9u/fQ1BQIO+//yETJ041XDN3796he/fO7Nq1g549v840meVVvdK3ezs7u3Rrgwgh8h9FUbizbDEXPmtBSlgoluUrUPN/BzJNCAC4NcfXkBDweAegUnFrrm+uxLvz1naa/FKf4t8Vpskv9dl5azsAiWmJjD0xis92t+Bu/B1KWZfmt4/+YFztSZhqTFFFRWLdtye23TuhjoggrXwFov7cT8LIMQUmISBRl4jvgyk0ulaXfbF7MFGZMMTJiyPlTtPCrmW+TggAmBPqm+mXt7mhuXPtCSHEm0Du74XISNFquTFtEpe7dEAbE41N7TrU2ns43yUExKREM+BQb7rt68jDpIdUsK/Eny0PMLDKEDRqDeqQB9h0bIf1kP6o42JJrfUWkfuPkvh1vwKTEBCjjcbn3kiaXW/IqYQTWKgtGVdkMgfKHpeEACGEEKKAC0wKMDxTekJBISDpeh5FlH02b95ESkoKPXv2NiQEAKjVanr37oe7uwd//32By5cvZti2V6++hoQAIF358cGDhxsGEY2MjGjYUD8QdvfunQz7KVmylGHAVN/emFGjfLCzs+Po0cOEhDwAYP/+fdy9e4e3325Ehw4d0z2vbNiwMa1atSEmJoYdO37NcIz33//QMHirfnx/mpaWRsOGjenff1C6hACAzz7Tl9F/8ODZs+ezSqPRpFsbXK1Wk5qaypYtmzA2NmbixKnplm9wcHBgzJhxAGza9H26fRUrVpxSpUpjZWWdY/FWrVqdOnXqYWpqRvXqNalbtx7W1tbcvHmDzZs3kpKSYmiblJQI8NTBZFNT/US8xMQEw2vNmjXn119/Z/fuPezff4R58xbi4lLE8H5ERARAuusup330UQt8fefg/HiJ5OvX9VU0Ro0azocfvkvv3t3Zv3/vU7fPqev7Va6Tbdt+AmDQoOGGhAAAT88KdOvWK9P47ezsKVWqdLrfQ264fTuYKVPGA9ClSzccHByAl7muEl+ovX4bs8fbJGR4b/DgoYbPB5VKZVhSxNTUlIEDhxh+rxYWFtSpUxfI/HOufv23DQkBAJ6e5Q3LH7Rp87khIQDgnXfezXQ/N24EERLyIF21iCd/E87OLumumWLFiuPjM4EJE6Zk+HzLqlf6ht+iRQvOnTtHaGjG9UeEEK+/tLg4Lvf4iqAJY0Crxblte2rs2ouF29PLyycGBfyTEPCEopAYGJDD0eoTArrv64R/pB/J2mT8I/3ovq8Tiy8uoNlvDVlxZRkAX3n2YF+ro9Rx1n+Am+z9C/tGdTH7+UcUtZqEwcOJ/OsgaZWr5njMueWvmN00vFaHeWGzSVFSaGLVlIPljjOmyHgsNQVjcCcoOfMvb4HJOX/tCSHEm0Lu74VIL+VhBBc7fMbtBXMBKNa7H9V+3YVpEdfnbPl6OfLgEI1/qcePgT+gVqkZXGU4f7bcT8VClUBRMP35R+wb1cF0z18oJibEjZ9C1I4/0ZbJvJxjfqMoClsjt1D/ai1WRixHh46Wtq05Vu4MA52GYKIuGEnCQgghhHg6dzMPVKSfMKNChYdZ2TyKKPucO3cGgJo1a2V4T6VSUadOvcftzmZ4v9J/llN9MnvZzMyMEiVKpHvvyUB1cnIK/9Ws2XuGgbUnzMzMDMc+e/bMc2MFqFevfrp2/+bhkfF39d577zN79jfp9peUlMS1a1f5449dgH69dq1Wm+nxskOxYsUzzF6+ds2fuLg4SpYshaNj4QzbeHqWx96+EMHBt3j4MCLHYvsvP7/LdOvWmRs3gvj++80sW7aS+fOXsHXrb7z1Vh3++usPZsyYYmivVut/p8+bbKbTKRles7GxwSSTyXhPKgbk5O8kM02aNGXbth0sWrSMjh07U758BTQaDTqdjr//vsDo0SOYNGmcodLDv+XU9f2y14k+1vNoNBreeqtOhvaNGzd5wd7IeTdv3qB//6+JjIykQYOGdOvW0/Dek6Se519XusftX+w61G+T/lo0MTGhbFnPdK89+ZwrUsQVS0urdO/98zmXnGHf//28/Pe+/vv5ZG2t3++/k2xAX20AoF69f5ICniwjsGHDd/j4jOLPP3cTGRkJQOPG7/Dhhx+nSxjJDq+0fMDAgQO5cOECHTt2pE+fPpQrVw47O7unti9evPirxieEyGYJQYGc6tqRGD8/VEZGuE/xxbV7r+d+sJq7eRDv75c+MUClwtw952+g55zPOFMcYPIZfcacs7kL899ezLvFm+vDiovFcvwYzDd8B0Cauwexi5aTVrN2jseaW26nBDP23ij+iNHf5LoaF2WKqy8tbPN/ZYD/cjP1wD/JL11igAoV7qb5/8ubEEK8LuT+Xoh/RJ47x6lWrUm6cxu1hQXlvlmMc+u2eR3WS0lKS2L62cks91sMQCnr0ixutIK3nPUPkFQREViPGobpk5kqVasTu2g52sfrfRYE15Ku4n13OEfjDwPgZurOjKJzaGLdNI8jE0IIIURuGllkNF/d6Gh4tvjk58gio/M6tCwLCQkB4Kuvvnxmu9DQkAyv2djY/OcV/fNEa+v/vv7sAblixUpk+vqTmdkREeHpYl2wYB4LFsx7RqwZE9UzxqoXHx/Hr79u4/jxYwQH3yQiIgJFUdLFq/x3kls2yiyuJ+cZGBhA3bo1nrl9aGjoU8uoZ7f58+cQHx/H7NnfpEv6sLW1Y+LEabRt+yl//rmbr7/uS5EiroZkh8wGSP/9uoVF5iXdM+Pg4EhcXBxRUZFZOJNXo9FoqF27DrVr678PxcfHcfbsGX755WeOHz/K7t2/U7FiZdq2/Tzddjl1fb/sdaJWa0hNTcXe3j7TWfNFXpPk9XPnzuLt7UVMTDQNGrzNjBmzDYkAAObm+lnvyclJmW7/z3Vl8fin+TPb//u9/86ot7S0SndsPf1ng41NxmUjnvU5l1n7p+8r8/0cO3YUNzd3w7UDUKlSFYYMGc7SpYvYu/d/7N37P1QqFZ6e5XnnnWa0avXZUz//XtUrJQUYGRlRtmxZTp8+zbhx457ZVqVSceXKlVcKTgiRvSL+3I1/v15oY2MwcXGh4qrvsc0ksywzpby88eve6Z8lBB7/LOXlncNRQ1BMALUvK7TdA64RcN8RtjaDU5WgZanWzG7wDfam+rJDxsePYj2wD5rbwSgqFYlf9yN+zHh4ypoz+U2KLoWl4Qv5JnQ2iUoiRhjRp/AAhjmPxEpj9fwd5ENezt50D+6U4cubl0vOX3tCCPGmkPt7IfTu/7CRq8MHo0tKwrx0GSqu24RV+Qp5HdZLufzwEv0O9uRqlD8AXcp1Z+JbU7Ey1t8rmvyxC+thA1FHhKMYGZEwfBQJg4bB43UN87t4bTxzQ2eyPHwxaaRhrjJnqPMI+hYeiKnaNK/DE0IIIUQu+8T+U74rs5HZD3wJSLqOh1lZRhYZTQv7lnkdWpbpdPoZ1++9934mg1//yGym/ZNZ21n131nUTzwZjH/y/pNYa9aslenM6CeezL79N5Uq47nduBFE//69iYx8hJ2dHRUqVOK99z7Aw8ODGjVq8emnH730uWQms9njz4rrSXsXFxeqVq3+zH1nd1nwp0lKSuLy5UuYmppRrVrGmOzt7SlfvgJnzpwiICCAIkVcKVxYvzb7w4cPM93nw4fPXhs+M56e5QkOvsXly5eo+ZzJe/fv32Pnzu3UrFnruW2fJjQ0hPv371GiRMkMcVpaWtGoURMaNWrC/Plz2bx5I3/+uStDUkBOXd8ve508bw6gWq1+aqy5ZffunUyfPoXU1FQ++ugTxowZl+Fz5vnXlb56xpPfl4WFJRYWlsTFxZGUlJRpQsR/t3kiuz7jsmNf8fFxXLx4gQ4dOmZ4r0OHjjRv/iEHD+7j+PFjnD9/Fn//K/j7X2Hz5o18++1qihfPPDnlVbzSmSxevJhNmzYB+lIZmX1QCyFeH4pOx63ZMwieOxMAx7ffpvyKdWgcnV54H4VbtKTimg3cmutLYmAA5u4elPIaTeGPP8mpsA1aBDrRfsMddOjXPCkRAl4bYE0PB1Z2W6fP4kpKwnLGFMyXL0alKGhLlCR24TJS67+d4/HlliNxhxh1dxgByfo1z+pbvs3MYvMoZ+b5nC3ztxZ2LVnDBuaG+hKYHIC7qQdeLqP52Dbnrz0hhHhTyP29eNPpUlIIHOfN/bWrAHB8/0PKLf4WY1u7vA3sJWh1WpZeXoTvuSmk6lJxNCvMgoZLeK/4BwCoYmOwHDca88frUqZ5lid2yYoCs7SWoijsjvkdn3sjuZd6F4APbD5malFfSpiUzOPohBBCCJGXPrH/lE/sP83rMLKdg4MjISEP+Prrvtk6aPQywsPDMn39yVrrT2bFOjjoB0qbN/+QTz9tneXjzpkzk8jIR3Tq9BV9+w5INyAaExPzUvtSq/Ujrk8Gdv8tNjb2pfb1ZGDSycmFSZOmvdS2OSU+Pg5FUdBo1E9NHjEy0vdfWloqAG5u+jXSb968kWn7GzduPG739OWI/6tx46b8+edu9u/fS5cu3Z45M/v333ewZs1KDh7cz8aNP77wMf5t7dpV/PrrNvr3H0Tnzl2f2q5ly1Zs3rwx0+smp67vl71OFEXB1NSU6OhoEhISMiSUPHz4MNeXZfi3779fx5IlCwHo0aMXvXr1zbTd86+roMft9MvZqVQqypQpw+XLl7h16yae/6lsFx0dzcOHD7GxscHJ6cXHunLbyZMnSUtLo/5TxqoKFSpE69Ztad26LTqdjosXL7BgwTz8/a+wfv06fHzGZ1ssT08fe4Zff/0VY2NjFi9ezPnz59m3b98z/yeEyDup0VFc6vS5ISGg+Nd9aLx3L6YuLs/ZMqPCLVpSe/8xGt0Jp/b+Y7mSEADw2R6dISGAxz91KvjqkCUqlQqjixewf68RFssWoVIUEjt9ReSBYwUmISAsNYy+wT35LKgFAcnXcTQqzJISK/jF7fcCnxDwRAu7luwvd4w7VcLZX+6YJAQIIUQ2k/t78SZLDg3hQuuP9QkBKhUVJ02i6sYt+Soh4HZsMJ/90YIpZ8aTqkvlwxItONT6pCEhwPjoYeyb1Md80/coKhUJ/QcT+dfBApMQcDslmM632tP11pfcS71LCZOSbCi9hfWlf5CEACGEEEIUWDVq1AT0ZakzM378GLp168ShQwdzLIajR49keC0xMZGTJ0+kW/+8Ro0aj2PN2B5gy5Yf6Njxc9asWflCx718+SIAXbt2zzBD+uTJ44b//vfyAU8bg35S0jwy8lGG9/z8Lr1QPE9UqFARU1MzAgKuGUrL/1tYWBjt2rViwIA+JCQkvNS+X5W9fSFsbGxJSEjg/PmzGd6Pi4s1VAN8UlWibt36qFQqjh49nGGwOS4ulrNnz2BmZmb4vb6Ihg0bUaJESa5e9WfHjt+e2u7+/Xts3apPBPjvzP2XUfnxd53t238lKenp5eeDg28BUKaMW4b3cur6ftnrRKVSUbNmbXQ6HYcOHcjQ/tixw089v5z2888/sWTJQjQaDWPGjH9qQgBAyZKlKFq0GDduBHH37p0M7x88uB8g3eB5vXoNADI970OH9qMoiqHN6+r48SNYWlpRpUr679/z58/l44+bp/u7VKvVVKtWg27degIQFpZx+ZeseKWkgIiICOrWrUuzZs2yNRghRPaKv+rPueZNeLTnL9Tm5nguWUE53zmoTUzyOrQXtufOnxB8L8OHlVoBk+AQLObNwu6Dphhdu4qusBPRG7YQN28RipV1nsSbnbSKljURK6l/tSY/R/2IChXdHHpy3PMs7ew7PDObUgghhHgZcn8v3lTRp09ytlkjYk6fxMjWjmo//ESF8eNRPaP86utma9AW3vm1AcdDjmJpZMWCt5ey7t2NOJo76qtpjRuNXeuP0dy5jbZEKaJ/2038hCmQSenF/CZFl8L80Dk0vPoWf8X8gbHKmCFOXhwqd5LmNh/mdXhCCCGEEDnq8887oNFoWLFiGadPn0z33rZtW/nrrz+4cSOIihUr5VgM586d4ccfNxv+f2pqKjNmTCEmJpoPPvgI28eJts2aNcfR0ZGDB/ezadOGdIP1fn6XWblyGUFBgbi7v9jMczs7fXW7w4fTJzycP3+WefNmGf5/Skqy4b9NTPRLScXFxaXb5slA+LZtW0lJSTG8vm/fHg4ceLmkeHNzc1q1ak1iYiITJ47l0aN/Eg0SEhKYMmUCd+7cxtLSMt1s77t373Dr1k3i4l6uMsGLUKvVtGr1GQC+vtN48OC+4b34+HimTJlITEw09eu/bag4UaSIK2+/3Yj79++xePECw+8rNTUVX99pJCTE06pVG6xe4hm8sbExI0eORqPRMHPmNNavX0dSUmK6NgEB1xk6dCDR0VFUrlyFTz5pZXgvLS2VW7ducuvWTUNFg2d5//0PKFmyFHfu3Gbo0AHcunUzQ5sLF84zd+5M1Go1X37ZKcP7OXV9v8p10r79lwAsWjQ/3Uz7W7dusmzZkkz7ICoqklu3bhoqG2S3GzeCmD9/DgCjRvnQsmWr527Ttu3nKIrCtGmTiY+PN7y+ZcsmLlw4T9mynoZkC4BPPvkUMzMzfvhhAxcv/m14PTj4FsuXLwWgU6evsumMcsaJE8d46606GZYhcHFx4eHDCJYtW0J8/D+fS2lpaezZ8xcAFSpk7+f3Ky0fULRo0XQfjkKI10/4zu1cHdgHbXwcpsVLUGndRqzz0UyghLQEJp0ay9qrq5jlCCVC9YkAT1gBdTUaLH2nApD8SStiZ32D4uCQNwFns4sJF/C6O5gLiecBqGpenVnF5lHdomYeRyaEEKIgkvt78Sa6v+E7AkYNQ0lNxcKzPJXWbcKm7IuXv8xr0clRjDo+jG03tgJQ26kOSxqtoJRNaQA0ly5i068nRteuApDYuSvxk6YViORZgGNxRxh5dyjXk68B0MCyITOLzaOsWbk8jkwIIYQQInd4elZgyJDhzJs3m4ED+1K2rCeurq7cvh3MjRtBaDQaJkyYikMOPi91cnJm3rxZ7Ny5nWLFiuHnd5nQ0BDKli3HoEFDDe3MzMyZPn02w4YNZOHCeWzdugV3dw+io6O4ePFvFEWhQ4cvadSoyQsd94svOrJgwTwmTRrPL79sw9HRkbt373D9+jVsbe1wcHDk4cMIHj58iKWlFYBhwHvt2pVcuvQ3H33UgkaNmvDpp63ZunULly5dpF27VlSoUJF79+5x/fpVPvroE3bt2vFSfdK370CuX7/GmTOnadv2UypUqICZmTkXL/5NTEw0JUqUZNQon3TbDBjQh5CQB4wdO5EWLVq+1PFeRM+evblyxY8zZ07x+eetqV69JkZGRly5cpmoqChKliyFj8+EdNt4eY3i6lV/fvhhA8eOHcHNzZ0rVy4TEhKCp2d5vv766TPCn6ZWrbfw9Z3DuHGjWbp0IevXr8HTszy2tnbcu3eXq1f9AahWrTozZ85NN4gaFhZOhw5tANi2bSeurq7PPJaRkTHz5y9myJABnD9/jg4d2uDm5k6xYsUB/WB6cPAtjI2NGTXKx1BZ4N9y8vp+2eukTp26dOnSjfXr1/LVV19Ss2ZtAM6ePU25cp48evQwQ/w//bSF1atXUL16TZYte7EqHC9j9eoVpKamYmFhydmzpzl79nSm7Ro3foemTfWTUNq168DRo4cN512tWnXu37/HtWtXsbGxYdKkqem2dXJyZtiwkcyYMYW+fXtSo0YtTEyMOXPmNMnJyfTrN9CQ2PM6unbtKuHh4dSvn7GaQevWbfnf//7k4sULtG7dgooVK2NiYsK1a/6EhIRQsmQpvvgiY7JKVrxSUsDnn3/OnDlzuHTpEpUrV87WgIQQWaPodNyaNY3gebMBsGvYmAor1mGSjwbLLz38m74He3I9Sv+AL6bb+6hn/Kmv8aQolAaqAUaJiehsbImbMZvktu2fXgMqH4nTxuIbMpVVEd+iQ4e12oYxRcbT1aEHGpXm+TsQQgghXoHc34s3iS4lhUCfUdz/bjUAji0+xXPhMoysrPI4shd37MERBhzqzd34O2hUGryqezO4ynCM1Eag1WK+ZCGWM6eiSk1FV9iJ2G8WkdK8YMycf5j2kIn3fdgSuQkAR6PCTHKdRlu79lJJSwghhBBvnHbtOlC2rCebNn3PxYsXuHkzCEfHwjRr1pzOnbtSrlzOLj360UctcHUtyqZN33PkyCGcnV3o0eNrOnbskmHd8ypVqrJ+/Wa+/34dJ04c4/jxo9jY2FKzZi3atetA48bvvPBxv/iiEw4OjmzevJGgoECuXr2Cs7ML7dp1oHPnrnz//Tp++mkzhw8fomPHzgB89llbAgOvc+jQAY4fP0bp0mVo1KgJLi5FWLlyHStWLOPMmdMcO3YUNzc3pk71xd3d46WTAszMzFi4cBnbtm3lzz934ed3GZVKRZEirnz+eQfat/8Sa+vcTdQ1MTFh/vzF/Prrz+za9TuXLv2NVqvF1bUon33Wjo4dOxuSJ55wdnZhzZrvWblyOceOHebIkUO4uBThq6+606VL1wy/3xfVsGFjfvhhK1u3/sjp0ye5cuUKyclJWFtbU6dOXT78sAXNm3+AOhuqtxUp4srGjVvYuXM7hw8fJDAwkBMnjqNWq3BycqZt2/a0a9eekiVLZbp9Tl7fr3Kd9Os3kHLlPNm8eSN//30eU1NTPvqoBQMGDKZZs8ZZ7q+Xdfz4MQASEuL588/dT21XpIirISnAyMiIuXMXsnHjev74YxdHjx7G3r4QH3zwET179jYkbfxby5atcHJyYv36dfj5XUKtVlO2rCdfftmJd955N2dOLps8WVIisyUOTE1NWbBgCevXr+Pgwf2cO3cGUOHq6krXrj3o3PmrDH+XWaVS/l3H4gXFxcXh5eXFyZMnadu2LVWrVsXW1jZD6YMn6tWrl+VAX1darY5Hj+Kf3/BfjIzU2NtbEhkZT1qaLociK7ik/54uNToK/369ePS/PwEo1rs/ZSZMQf2vv83Xuf90io6llxcx4+xkUnWpOJu7sLDRMt4p+i7hO7dzf+ZUKgZcp4hOH3fK242IXbgMXSb/UOSEnOw7RVHYGb2dsfdH8SBVX8KptV0bJrvOwNnYJVuPlVde52svP5D+e3XSd1kj/Zc1r9p/hQpZotHkXvnynLy/l/vl3Cf993TJoaH49ehMzKkToFJRevQ4SgwebhhMft37LkWbwqzz01l08RsUFEpZl2ZZ41XUdNLPElEH38JmQG+MH6+jmvxhC2LnLkRxdMyV+HKy/3SKjs2PNjLpwVgitZGoUNHFoTs+LuOxM7LP1mPlldf9+nvdSf+9Oum7rJH+y5r8cr8sskdSUhJBQTdwdHQxlHIX+dPKlctZvXoFXbv2oE+f/nkdjnhDREdH8f77Tfnjj72GJSRyglzfIr9JSUkmIiIEN7cymD1jqcBXqhRQq1YtVCoViqKwYcMGNmzY8NS2KpWKK1euvMphhBAvIT7gOpe7dCAxKBC1mRll5y7EpV2HbD2Gyc7tWM7xRRMUgNbNg3gvb1KyqZzRg/j7DDjUm8MP9OtAfVTyE+Y2WIiDmb7CQVGNBs+IcNQ6HYqJCfE+E0ns3Q/y0XqvT3M7JZjRd734X6w+maOUSWlmFpvHO9avd5abEEKIgkPu78WbIObcGS537UhKyAM0NrZUWL4Kh2bv53VYLywoOoA+B3ry90P98lIdy3ZhSh1frIytQFEw3bIJqzEjUcfForO0Im76LJI7dCwQ1bSuJvkz8u5QTsTrZ6JUMKvEnGLzqWX5Vh5HJoQQQgghhMgtx44dxdnZBVtbu7wORYh86ZWSAmrXrp3dcQghsuDhnj+50rsH2tgYTIsWo9J3m7CuUi1bj2Gyczu23TuhU4FKAbX/ZWy7dyJ6zYYsJwb8fmsHw44OIDI5EgsjC6bVncWXHp31M7bi4rAaPxrzDd8BkFahEjFLV6KtUDE7TitPpSqpfBu+lNkh00lUEjFWGTOw8BAGO3thrjbP6/CEEEK8QeT+XhR0IT/+wLXhg1CSk7EoW45K63/Aoox7th5jZ9R25oT6EpQcgJupB17O3rSwy3oCraIo/BCwgTEnRpCQloC9qT1zGyyiRSn9vlWPHmI9fDCmv28HILVOPWIWf4vuKSUw85NEXSLfhM5mcdh80kjDQm3BSGcfvi7cFyPVKz3OEEIIIYQQQuRDMTExLFo0H2/vsbJsmBCv6JW+RX///ffZHYcQ4hUoisKdRfO5MW0iKAq2depRcc0GTAoXzvZjaaePRgeoHy84olZAq4K0GWPgFZMC4lPjGX9qDN9fWwtAVYfqLG+yCjdbDwCMzp3Bum9PjG7eQFGpSOw3iHjvsWCa/8uLnUs4w/A7g/FLugRAfcu3mVXsG8qalcvjyIQQQryJ5P5eFFSKVsuNKRO4s3QhAA7vf0j5pSsxsrbJ1uPsjNpO9+BOqFChoOCf5Ef34E6sYUOWEgOikiMZfnQwO279CsDbRRqxpNEKili6AmB8cD/WA/ugCXmAYmRE/CgfEgcMAY0mG84qbx2M3c/Iu0O5mXIDgA9sPmJ60dkUM8mdpcOEEEIIIYQQrw8bGxu2bv0NCwuLvA5FiHxLUuuFyKe0iYlcGzqAsG0/AVCkczc8ZsxGbWKSI8ezvHWX/xbq1yhgdfMOMa+wv0sP/6bPgR4ERF9HhYr+lQfjXWMsJhoT0GqxWDAXi9kzUGm1aF2LktjxK8x+3475quXZvnRBborVxjD9wWTWPFyJgoK9xp6JrtPoYN9RMhyFEEIIIbJRanQU/r2782jfHgBKDPWi9KixqHJg+ak5ob6GhAAABQUVKuaG+r5yUsDxkKP0O9iLe/F3MVIZ4V1zHP0rDUKj1kBSEpbTJmHx7RIA0tw9iF22irSq1bPtnPJKRFoE4++PZmvkFgBcjIowo9gcPrb9JI8jE0IIIYQQT/Tq1YdevfrkdRjiDZNbCQFyfYuCKktJAX5+fgQHB5OSkvLMdq1atcrKYYQQ/5F0/x6Xv/qSuL/PozIywn3aLIp265mjx7xWGCo9IF1igFYFVwuD60vsR1EUVlxZypTTE0jRpeBiUYQljVbQ0LUxAOrgW9j0/xrjUycASGr1Gcnvvo/twN4oKhUqRUHj75dtSxfkpt+jdzDm3ggepN4HoJ19Bya5TsfRyDGPIxNCCCH05P5eFBQJgQFc6tyexKBA1ObmeC5chtOnn+XY8YKSAwwJAU8oKAQmB7z0vtJ0acw5P4Nv/p6DgkIZGzeWNV5F9cI1AdD4X8GmTw+M/P0ASOzag7iJ0yCfz5hRFIXNkRuZeN+HSG0kKlR0d+jFmCLjsdZkb2UHIYQQQgghhBDiTfNKSQGRkZH06tULPz+/F2ovDw2FyD7RZ05x+asvSQ0Pw6hQISqt2YBd/bdz/LirWxZjwbd30Kr0FQKe/FzTqjhjX3Af4YnhDD7clz13/wLgwxIt+ObtRRQycwDAdOsWrEYNRx0bg87KmjjfOSS364D9Ow0MCQEAKkVBUamwmOubL5ICHqTex/uuF7tjdgJQyqQ0s4vNp7H1O3kcmRBCCKEn9/eioAjfuZ3AiT4k3w4GwLiQA1V++hXrylVz9Lhuph74J/mlSwxQocLdtOxL7edO3G36HOjB6bCTAHzh0YlpdWdhZWwFioLZ6m+xmjQOVXIyOkdHYucvIaX5h9l6LnnhRnIgw+8M5mj8YQAqmlVmbvEF1LColceRCSGEEEIIIYQQBcMrJQXMmjWLy5cvY2NjQ/Xq1bG2tpay10LkgpCfNnNt2ECU5GQsK1Si0vofMC9RMleOXa3HDD6L78T4vVAuXF85YNK78Gm3GS+0/cF7++l/6GvCEkMx+z979x0XxbUFcPw3u/Ruw4aKItZobLFrrDExtsTeFXvXSOy9oqJRo7H33rsxMfbeFcWGKIKNovTO7rw/eJIQGwK6aM7383kfnrMzc89eZjeXmXPP1ZoxocJUOhZ2QVEUlPAwrIYOxmxrYonQ+PIVCZu/GH0+RwC03l5JCQEvKaqK0b33n3n1McC7v/YAAQAASURBVOlVPSufL2PS03FE6MMxwoi+9gMZlP1nzDXmhg5PCCGESCLje/E5CNizi5td2ifbFv/iOTEPH37wpADX7MNwedguaQmBlz9dcwxL8Tl2P9jBT6f6ExYXirWxDTOrzKFJgaYAKIGBWA/ohelficm1sXW+IXz2b6j29h/k/Xwscfo4fgucy0z/acSqsZgr5vycYwQ9svXGWDE2dHhCCCGEEEIIIcRnI1VJAadPnyZTpkzs3buXLFmypHdMQoh/UfV6HkyZgO/cWQBk/a4BReYvxsjK6qPF0MCxEfRfS7vqbtwL9aKgrTOupYbzvePb1/aM18fjdmkS867PRkWlsF0RFtdcSdFMxQAwunAOm17d0Pr6oGq1RLkOI2rAYDD6++tJ5+SM9pZnssQAVVFIKPh+M68+ptsxt/jJrx8Xo84DUNaiHDMdfqWYeXEDRyaEEEK8Ssb34lOnj4vj7uD+r76gKPjMdCPbB64u1cCuEctZy0x/N+7FelHQ1BnXHMP53vbtY2WAqIQoRp8dxpq7KwEom+0rFtZYRj5rRwCMDx/Epl8vNIEBqKamRIybTIxLN/hX4s7ekN24+7vhHeuFk6kzrtmH0cAu41bVuhh5nsGP+nMr5iYAX1vVZIbDbBxN8xs4MiGEEEIIIYQQ4vOTqqSAsLAwqlWrJjcMhfgIEiIiuNW7G88P7AMg74DB5B8+GkWj+eixNHBslJgckEI+YQ/oedSFy0GXAOhQ2IUJFaZgYWQBOh0Ws92xcHdD0enQ5c1H2IKlJHxV4ZXzRLoOw9alXdISAi9/RrmmfObVxxKjj2G2/wx+DZxNvBqPpcaKUTnH0ilLV7SK1tDhCSGEEK8l43vxKYt7/hxPl3YkhAS/+qKqEv2Rqks1sGv03g/hb77wpPvRTtwNuYOCwoCSg/m5zHCMNcYQE4Pl5HFYLPoNgISixQhbuBxd0WKvnGdvyO5klQpuxXji8rAdy1mb4RIDInThTH46nuXPl6CikkWbhQm5p9LMrqVUKBFCCCGEEEIIIT6QVCUFfPHFF/j4+KRzKEKIf4vx8+V6+1ZE3ryBYmpK4Vm/kqN5K0OHlSK77m/np1P9CY8Pw9bEjllVf6WhY2MANI/8sOnVFeNzZwCIadqCiGkzUW1sX3uuuAaNCF2+FouZbhjd8yKhoDNRrsOJ+/7dM68+prMRp/npUT/uxSbeeP7Wpj5Tc7uT28TBwJEJIYQQbyfje5FeAvfuxsfdjWhvL8ydnHF0HfZBZ+lH3r7F9XYtifH1AY0G9PrkOygK5hmwupSqqqy6s5zR54YRq4slu3kO5n+9mOq5agCgvXsHmx4uGHleByCqaw8iR08A89cvQeXu75aUEAAkLWEw098tQyUFHAw7wM+PBvEk/jEALTK1ZnyuKWQxkoQkIYQQQgghhBDiQ0rVVOMBAwbg7e3NokWLUP+1zrcQIn2EXjjHpXo1ibx5A+Ns9pTase+TSAiITojG9dRAuh3tRHh8GF/ZV+Bwk5NJCQEme3aRqWYVjM+dQW9lTdj8xYQvWPrGhICX4ho0IuTIaYL8Agk5cjpDJQSE68IY8mgQjby/5V6sF/ZG2VmWbzWrHDdIQoAQQohPgozvRXoI3LsbT5d2RN7yRB8bS+QtTzxd2hG4d/cHae/5X39wuX4dYnx9MMvniNP4qYkvvJxtriigqjhmsOpSYXGhdDvSiSGnBxGri6W2Q12ONDmdmBCgqpitWUmmutUx8ryOPmtWQtdtJnLKjDcmBAB4x3olJQS8pKImJasaWlBCED0futD2QQuexD8mr4kjmwvsZF7eRZIQIIQQQgghhBBCfASpqhRQrlw5xo0bx+jRo9m0aRPOzs7Y2r7+gZ6iKEybNi1NQQrxX+O/bTO3B/ZBjY3FsngJSqzZiJlDHkOH9U53Q+7Q7UgnbgV7oqDQv+RPDCkzIrH8aVQUVmNGYL56OQDxZcsRtmAZesdPe83QP8N+Z8ijn5JmO7XN3IGxOSdiZ5TJwJEJIYQQKSfje5EefNzdkh7EA4k/FQWfmW7pWi1AVVUeL13IvdHDQa/HtnJVii9bg0mWLJjlzo3PTDei73lhXtAZR9fhZMtAyaSXAy/S/YgLvhE+GClGjCo3np5f9EGjaFBCQ7AaPACz3TsAiPu6JmHzFqNmz/7O8zqZOnMrxjNZYoCCQkFTw1ZJUFWVrSGbGP14GC90L9CgoUe2PgzJPgJLraVBYxNCCCGEEEIIIf5LUpUUcOPGDdzc3AB48uQJT548eeO+ctNQiJRTVRWfGVN56J74+cry7fcU/W0JRlZWBo7s7VRVZdO99Qw7M5iohCiymmVj/teLqZm7NgDaWzex6dEZo9u3UBWF6H6DiBw6EoyNDRx56gXGBzLqyRB2hGwDIJ+JI7McfqWa9dcGjkwIIYR4fzK+F+kh2tvr74SAl1SV6HvpN1tdn5DAvZFDeLJiKQA52rSn0PRf0JiYAJCtQaMPulxBaulVPQtvzGfSxbEkqAnktcrHohrLKWv/FQBG589h06sLWj9fVCMjIkeMJbp3v8QlEVLANfswXB62S1pC4OVP1xyGq5LgF+fLz48Gcjj8LwCKmX3BL3l+pbRFWYPFJIQQQgghhBBC/FelKinA3d2dyMhISpQoQb169cicOTPKyxKNQohU0cXEcGdgbwK2bwUgT58BFBg9HiWFNwINJSI+gqGnf2KL90YAquWswW9fLyG7RfbE8qcrl2E1dgRKTAw6++yEz19M/Nc1DRx16qmqypbnmxju93PSbKde2frxc47hWGgsDB2eEEIIkSoyvhfpwdzJmchbnskTAxQF84LpM1s9ISwUz26dCD5yCBSFAqMnkKdP/wx/rb6IeU7/E7340+8AAA0dmzCrylxsTe1Ap8Ni7iwspk9B0enQ5XMkbPEKEkq/34PzBnaNWM5aZvq7cS/Wi4KmzrjmGM73th+/SoJe1bM0YBHjH48lUh+BqWLK4OxD6WM/AGPl000KFkIIIYQQQgghPmWpSgq4fv06jo6ObNiwASOjVJ1CCPEPcQEB3OjUhrCL51GMjHCe/gu52nU0dFjvdCv4Jl0Pd8Ar9C4aRcPQ0iPpX/IntBotSkgw1oP6YbovcQ3Z2Np1CZ+7EDVbNgNHnXqP4x7T/tpP7AvaB0BxsxLMzjOPLy1KGzgyIYQQIm1kfC/Sg6PrMDxd2v29hMD/fzq6pn22evRDH663a0HUndtoLCwo+ttSstVvkA5Rf1gXAs7R/UhnHkc+wlRryoTyU+lUpAuKoqB59hTr3t0wOXkcgJgfmxMx4xdUa5tUtdXArhEN7AxbJeFejBc/XerHyZCTAFSwrMQvDvMoaOZs0LiEEEIIIUTa7Nq1g6lTJ1K/fkPGjBmf6vNUrFgGgJMnz8vfnkII8ZGlagqykZERhQoVki9tIdJB5O1bXPquFmEXz2Nka0fJTTsyfEKAqqpsuLuWb3fXxCv0LjkscrLju30MKvUzWo0WowvnyFS7Gqb7dqMaGxMxYQph67Z8sgkBelXPqufLqeRZjn1B+zBRTBieYzR/FjoqCQFCCCE+CzK+F+khW4NGFF++FstixdGYmmJZrDjFV6wj2/dpm60eeuEcl7+rRdSd25jkyEnp3QcyfEKAXtUz//pcGu/7jseRjyhg48T+BofoXLQriqJgfPggmWpVweTkcVQLS8LmLiB8wdJUJwQYWoKawNyAX6h2syInQ05iqbFkam53djn9LgkBQnxge0N2U+NOZfJ4ZKPGncrsDdlt6JCEEEIIIYQQGVCq7vqVK1eOGzduoNPp0Gq16R2TEP8ZL44dwdOlPbrwMMzzF6DE+i1YOGXsm2aR8ZEMPfMTm+9tAKBm7trMr76ErOZZQa/HfP5cLKeMTyx/6pg/sfxpqTIGjjr1HsTe5ye/fpyKPAFARduKzMr9KwWNCxs4MiGEECL9yPhepJdsDRqRrUH6zVYP2L2DW326o8bGYlXiS0qs3YRpzlzpdv4P4d/LBfyQvynuVeZgbWID8fFYTp2IxbzZACQUL0HYkpXoCmbsvwHexjP6BgP8euMRfRWAbzJ/w4xcs8mpdTBsYEL8B+wN2Y3Lw3YoKKio3IrxxOVhO5az1uCVQ4QQQgghhBAZS6oqBfz0008EBwczdOhQgoOD0zsmIf4Tnq5fw/XWTdGFh2FbsTJlfj+U4RMCbgffot6eGmy+twGNomFk2bFs+GYbWc2zogQGYtu6KVYTx6DodMT80JTgQyc+2YQAnapjUeB8atypxKnIE1hoLJjsMI2T5U5SxLyoocMTQggh0pWM70VGo6oqvr/O5mbXjqixsWT5tj6ldx/I8AkBFwPOU3tXNf70O4Cp1hT3ynNYWGM51iY2aHwfYtfo26SEgOjOXQn+/dAnmxAQp49j+rMp1L1bHY/oq9hq7ZiXbyEHSh8gj2leQ4cnxH+Cu79bUkIAgIqKgsJMfzcDRyaEEEIIIYTIaFJVKWDbtm2ULFmSffv2sX//fvLkyYOdnd1ry40qisLatWvTHKgQnwtVVXngNhHfX9wBsP+xOUXm/IbG1NTAkb3dJq/1DDk9iGhdNDkscrKoxnIq5agCgPHJ41j37II2wB/VzIyIKTOIadshcR3ZT9C9GC8G+PXmQtQ5AKpaVWeWw68UtHRCq8jsSSGEEJ8fGd+LjEQfH4/XMFeerlkBQO7uvSg4fgpKBq5ioaoqi2/+xvjzo0lQEyhg48SSmqsokaUkACb79mA9sA+a0BD0NraE/zKPuIaNDRx16l2LusIAvz7cjLkBwHc2DZjuMIvc5rlQPtG/AYT4FHnHeiUlBLykonIv1stAEQkhhEgPS5YsZNmyxbi7zwZg1aoVeHndwczMjIoVKzNgwGAyZcrE7t072bRpPY8ePcLe3p7vvvueDh06YWRknHQuf/9nrFq1gtOnTxIUFIiVlRVfflma9u078sUXJV9pOyIinDVrVnLo0EECAwPJlSs3rVq1fWu8vr6+rFy5jAsXzhEc/IJMmTJTsWJlXFy6kjODJ/UKIcR/SaqSApYvX570/1VV5eHDhzx8+PC1+8oNASH+po+N5faAXgRs3wpAvp9+xnHoqAz9OYlJiGHk2SGsubsSgK9z1eS3r5eSzTwb6HRY/DIDC3c3FL2ehMJFCFu8El3RYoYNOpV0qo4FgfOY/mwyMWoMVhprxuaaSPvMndAoqSqsIoQQQnwSZHwvMoqE8DA8u3Yk+MghUBQKTnLDoVsvQ4f1VmFxoQw82Ze9PrsAaJz/R2ZVmZu4XEBsLJYTRmOxZCEA8WXLEbZwOfp8jgaMOPVi9bG4+7sxL2A2OnRk0WZham53Gtv9KN8NQhiAk6kzt2I8kyUGKCgUNC1kwKiEECJtVFUlSh9l6DDei4XG4oOMhXbs2MapUycoVKgw5ctXxMPjKgcO7MfH5wFffVWBdetWU6JEScqVK8f58+dYvHgBYWFhDBw4GABPzxsMHNiH8PBwHBzyUL16DQIC/Dl27AgnThxjyJDhNGnSNKm9sLAwevfuxr17XmTLZk+VKtV4+vQJU6dOJH/+Aq+N8cKFcwwZ8hPR0dE4ORXkiy9K4Ov7kD17dnLs2BHmzp1PkSKf5r1iIYT43KQqKWD16tXpHYcQn734F8+50bENoefOoBgZUWjmXHK2bmfosN7qQdh9uhzuwI0XHigo/Fx6OIO+/BmtRosSEIBNr66YnDgKQHTrdkRMmQGWlgaNObXuxNxmgF8vLkddAqCGVS1m5fkVB5M8Bo5MCCGE+PBkfC8ygpjHj7jepjmRtzzRWFhQbOFysn5b/73OsddnN+5X3PAO88LJxhnX0sNo4Pjh1tW+/tyDrkc68CDsPsYaYyaUn4pL0W4oioLmoQ823TthfOUyAFG9+hE5ahwYG7/9pBnUpcgLDPDrzd3YOwA0sfuRKbndyWqU1cCRCfHf5Zp9GC4P2yUtIfDyp2uOYYYOTQghUkVVVb67U5fzkWcNHcp7qWBZif2F/0z3xIBTp04wePAQmjdvBUBAQAAtWjTh9u1beHnd5ddfF1K2bDkAzpw5xaBB/dizZxf9+w8iPj6eYcNcCQ8Pp3v33nTu3CUpvtOnTzF8uCszZkyjaNHiFC5cBIDFixdw754X1avXYOLEqZj+v7Lt7t07mTJlwivxhYaGMGrUcOLi4pg8eRq1a9dNem3nzm24uU1m5MhhbNy4DeNPdAwshBCfk1QlBZQvXz694xDisxbt8wCP1k2J9r6H1tqGL1asJVP1GoYO6632+eyh/4lehMeHkcUsCwu+XkaN3LWAfy0XYGFB+LRZxLZsY+CIUydBTeC3gLlM959CnBqHjcaWCbmm0DpzO5ntJIQQ4j9DxvfC0CJuXMejTTPinj3FxD47JdZtxvrL0u91jr0+u3E5/PfDsVvBnrgcbsfyWmvTPTFAVVXWe61h+BlXYnQxOFjmYWmtVZTJlnhT1mTfHqwH9EYTForezo7wXxcRV++7dI3hY4nRxzD92RR+C5yLHj3ZjOyZ7vAL39s2NHRoQvznNbBrxHLWMtPfjXuxXhQ0dcY1x3D5fAohPmkKcj/uJSengkkJAQD29vaULl2WM2dOUbv2N0kJAQAVK1bG3NycyMgIgoNfcO7cWQIDAyhTphwuLl2Tnbdy5Sq0b9+JpUsXsWHDWsaNm0RcXBz79u3G2NiYESNGJyUEADRq1ITjx49y8uTxZOfZtWsnoaEhNG/eKllCAECTJk05efIEJ08e5+jRw9StWy89u0YIIUQqpCgpoHz58tSvX59x48alqbExY8bwxx9/cO7cuTSdR4hPSdiVS1xv24L4oEBMHfJQcv1WLIsUNXRYbxSvj2fSxXEsuPErAF/ZV2BJzZXkssyduFzAbHcsZkxNXC6gSFHClqxC9/9s0k/Nv6sD1LH+hpl55pLTWNa6EkII8XmT8b3ISF4cPYynS3t0EeFYFC5CyfVbMcuT973P437FLSkhAEiaNTvzqlu6JgVEJUQx7MxgNnqtA6COwzfMq76IzGZZIC4Oy4ljsFj0GwDxZb8ibMlK9A6fZvWpy1EX6e/bK6k6QFO7FkzOPY3MRlkMHJkQ4qUGdo1oYPfhKqIIIcTHpCgK+wv/KcsH/F/x4iVe2ZYpUyYAnJ2dk21XFAUrKyuio6OJjY3jypXE+521atV+7bnr1q3H0qWLuHw5cb9bt24SHR1NiRJfYmeX6ZX9v/66xitJAZcvXwBIlpzwTxUrVubkyeNcvnxRkgKEECIDSFFSQFhYGFFRaf8PcXR0NGFhYWk+jxCfiucHD+DZrRP6qCisvihJifVbMM2R09BhvZF/1DO6HenEWf/TAPT6oh+jyo3DWGOMEhiITe+umBw7AkB0m/aJywVYWBgy5FRJUBP4LfBXZjybQqwai43Glkm53WiZqY1UBxBCCPGfION7kVE827SeO4P6oiYkYFelGsVXrsPY1i5V5/IO80q2rjYkJgbcC/VKh0gT3Q/zxuVQe24G30CjaBheZjT9Sg5Co2jQ+Pli060jxv+/sRrVZwCRI8Z8kssFxOpjmeE/lXkBs5OqA7g7zOE72+8NHZoQQgghPnOKomCp/TSXJ01vNjY2r9mq/P812ze+BhAYGAhAzpyvn/yUK1duAJ4/fw5AUFDi/vb29m/d/5+ePXsGwLBhrq895iV/f/+3vi6EEOLjSPHyAVeuXGHIkCFpauzKlStpOl6IT8mT1Su4O2QQ6PVkqlGL4svXYGRlbeiw3ujMs1N0O9KJgGh/rIytmVttQdKMKqNzZ7Hp1hHts6ef/HIBXjF36e/Xk0tRFwGobV2XWXl+leoAQggh/nNkfC8MSVVVHv4yAx+3SQDY/9iMInMWoPlHmdL35WTjzK1gz2SJAQoKBW0LpTlegAO+++l7vAdhcaFkNcvG4porqJqzOgAmBw9g3ac7mpCQT365gCtRl+jv24s7sbcB+NGuOVNyT5fqAEIIIYQQH5mRUapWf/4/9a2v6nQ6AIyNE9t410QprVb7yja9Xg9AlSrVsLKyeuOx+fMXeOu5hRBCfBwp/q+Kn58ffn5+aW5QZuGKz52qqjxwm4jvL+4A5GjdjkLuc9Bk0BlCqqqy4MY8Jl4cg07VUTRTMZbXWoOTrTOoKuYL5mE5cQyKTkeCcyHClq1Bl4GXP3gTnapjUeBvTH02gVg1FmuNDZNyu9EqU1v5XhJCCPGfJON7YSj6hAS8hv7E0zUrAcjTbxAFRo5F0WjSdF7X0sNwOdwuaQmBlz9dSw1L03kT9AlMuzyZOR4zgcTltZbWXEVOy1yQkIDltMlYzEl8Lb5MWcKWrEKfiuUPDC1OH8dMfzfmBvyCDh1ZjbIxw2G2rE0uhBBCCPEJypo1GwBPnz557etPnjwGIHPmxMTPbNle7v/0tfu/rDzwT1myZMXX9yEtW7ahfPkKaY5ZCCHEh5WipICpU6d+6DiE+Czo4+O5M6gv/ps3AJDPdRiOPw/PsDfLw+PCGHCyD3t9dgHQ1KkF7pXnYGlsiRIagnX/3pj+vheAmB+bEe4+F96S9ZlRPYi9T3+/XpyLPANATevazHL4ldwmDgaOTAghhDAMGd8LQ9FFRuLZvRMvDv4BGg3Ok6eTu0v3dDl3A8dGLK+1lplX3bgX6kVBW2dcSw3ne8fUP9QOjA6k51EXTjw9BkD3Yr0YW35S4vJa/v7Y9HTB5NQJAKK69iBy3GQwMUmX9/Mx3Yi+Tj/fnnjGXAegid2PTM09kyxSHUAIIYQQ4pNUqlQZ9u7dzeHDh2jWrOUrrx869CcAZcqUBaBo0WJYW1tz584tnj17So5/LYF7+vTJV85RpkwZrly5xOnTJ1+bFPDrr7O5cOEcP/7YnCZNfkyPtyWEECINUpQU8MMPP3zoOIT45CVERODZpT3BRw6BVkth9znkbNvB0GG90e3gW3T4sw33Qr0w1hgzqcI0OhXpgqIoGF2/ho1Le7QPfVBNTIiY6EZMpy6QQZMb3kSv6ln5fBkTno4mSh+FpcaKCbmm0C5zxwybqCGEEEJ8DDK+F4YQ9/w519s2I/zyJTRmZhRbtIKs36XvGvU/3oD2s0HrDToniHRViXNM3bkuBVzA5XB7nkY9wcLIktlV59GkQFMAjE+fxLp7Z7QB/ugtrYj45VdimzRNt/fxsSSoCfwa8Avu/m7Eq/Fk1mZmusMvNLKT7wghhBBCiE9ZnTp1WbRoPpcvX2TFiqV06tQl6X7omTOnWLt2NVqtlh9+aAaAkZExTZu2YOXKZYwfPxp399lYWiZODjt8+BB//PH7K200btyU9evXsmXLJooX/4K6deslvXbixDE2bVqPTqejWLHiH+EdCyGEeJe0LEojhPi/uMDAxBucV6+gsbCg+NJVZKlT790HGsi2O9votK8TEfER5LLMzbKaqylr/xUAZutWYzVsMEpsLLq8+QhbuoqEUmUMHPH7exTnx0C/vhyPOAJAFctqzMn7G3lN8qXqfHtDdjMzwA3v2Hs4mRZksP0wGtg1Ss+QhRBCCCE+W9G+D/Fo+QPR3vcwypSJEms3Y/tV+pYYNdm7G1uXdqiKgqKqaG95YuvSjtDla4lrkPJxm6qqrLy1nGGnXInTx+FsW4jltdZSOFORxOW15s3BcvI4FL2ehKLFEpfXKuicru/lY/CKuUtf3+5cib4MwHc2DZjhMBt7Y3sDRyaEEEIIIdLKzMycyZOn89NP/Vi06Df2799LoUKFCQjw5/p1D7RaLYMGuVK8+BdJx3Tu3BUPj2tcvnyRpk0bUapUGV68eIGHx1VKlCjJ9eseydqwt7dnzJgJjBkzgtGjh7Ns2WLy5XMkIMCfW7duAjBokCuFChX+qO9dCCHE66Vt0UYhBNE+D7jSoC7hV69glDkzpbbtybAJAQn6BMadG02znc2IiI+gas7qHGx0PDEhICYGq0F9sR7UFyU2lti69Qg+eOyTSwhQVZWNL9bx9Z1KHI84grlizuRc09jmtCdNCQEuD9txM9qTGH0MN6M9cXnYjr0hu9M5eiGEEEKIz0/EjetcqV+HaO97mDrkofSeP9M9IQDA0t0tKSEAQFFVVEXBYqZbis8RkxBDtwPd+OlEf+L0cXyfrxF/NDpC4UxFUMJCsenUFquJY1D0emKatyL498OfXEKAXtWzMHAete5W4Ur0ZWw0tszLs4iVjuskIUAIIYQQ4jNSsuSXrF69gcaNfyAuLo7jx4/y7NlT6tT5hsWLV7yyrICpqSmzZ8+jd+9+2NracebMKZ4/D6JPn/706NH7tW3UrFmbFSvW8u239YmMjODUqRM8f/6cKlWqMX/+Ylq2bPMx3qoQQogUUFT1/3dMRKrodHpevIh8r2OMjDRkymRJcHAkCQn6DxTZ5ysj9V+4x1U8WjcjPjAAs7z5KLlxOxYZ9Kbg85jndD/SmRNPjwLQt+QARpQZi5HGCM1DH2y6dMDY4yqqRkPUsFFE9f8JNJ9W3lBgfCCujwbwe9heAMpafMW8vAtxMk3b76TGncrcivFE5e+vSwWFYmbFOVL4dJrOnVJ7Q3bj7u+Gd6wXTqbOuGb/9CoVZKTP7qdI+i/1pO/SRvovbVLbf5kzW6LVflr/HX4TGS9/fBmp/4JPHudGxzbowsOwLFqckhu3YZoz1wdpK2uebCixsa9sV01NCfILfOfxjyL86HKkPVcCL6NRNIwoO5Z+JQaiKAram57YuLTD6L534vJak6cT06HzJ7e8ll+cL/19e3Eq8gQANa1r84vDPHKZ5E6X82eka+9TJP2XNtJ/qSd9lzbSf2kj4+X/lpiYGLy975M1aw5MTEwNHY4QQgjxWYiLiyUo6BlOTgUwMzN7436yfIAQqfTi2BE8O7VFFxmBZfESiTc4s+cwdFivdS3oCp0PteNRpB+WRpYsr7+cujm+JyFBj8lff2DduxuakBD0WbIQtnA58V/XNHTI721/6F5cH/UnKCEIY8WYodlH0sd+AFpFm+Zze8d6JUsIAFBRuRfrleZzp8TLSgUKCioqt2ISKxUsZ+0nlxgghBBCiP+OgF3budWnO2pcHLaVqvDF6g0Y29p9sPZ0Ts5ob3kmVQoAUBWFhIKF3nnsiSfH6H60E89jnpPFPAuLa66gWo4aAJhu2Yi16wCU6Gh0DnkIW7aahNJlP9Tb+CBUVWVj8DpGPh5KhD4cC40F43NNoUPmzklrywohhBBCCCGEEOLzJemUQqRCwK7tXG/TDF1kBHZVq1N61/4MmxCwyWs9DfZ9w6NIPwrYOPFnkyO0KNoCdDospk3Gtk1zNCEhxJctR/BfJz65hIAwXSj9fHvSyacNQQlBFDUrzh/OR+mf/ad0SQgAcDJ1RiH5zVIFhYKm777BnB7c/d2SEgIgMSFBQWGmf8pL4QohhBBCfAwme3eTqUZlsuTKTO5uncgVF0fWBo0puWnHB00IAIh0HZa0ZACQtJRAlOuwNx6jqioLbsyj+R+NeR7znC+zluJix4vUdKgFcXFYDf0Jmz7dUaKjiatRi+CDxz+5hICA+AA6+rRmgF9vIvThfGVRgcOFTtExi4skBAghhBBCCCGEEP8RkhQgxHt6vGIpN7t3Ro2PJ1ujHyi5YRtGNraGDusV8fp4Rp4dQr8TPYnVxVIvz3f80fAIRTMXgxcvsGrdHMuZ0wCIdulGyK4D6HM7GDjq93Mq4gQ17lRmU/B6FBT6ZRvEn85H+cK8RLq245p9WNKDeCDpAb1rjjffYE5Phq5UIIQQQgiREiZ7d2Pr0g7tzRtoEhKwBSoDZZo0RfuW8nXpJa5BI0KXryWhWHFUU1MSihUndMU64r5v+Nr9oxKi6HWsK2PPj0Cv6mlZsA37Gx3E0dYR5ckT7JrUx3zFUgAiBw8ldMM21CxZPvj7SE/7Q/fy9Z0KHAjbj7FizKic49ld8AAFTJ0MHZoQQgghhBBCCCE+Ilk+QIgUUlWVh7Om4zNtMgC5OnbB2c0dRZs+s9HTU1B0EF2PdOD0s5MAuJYahmvpYWgUDdob16FTW4zv30c1NyfcfQ6xzVsZOOL3E6uPZcqzCSwMnIeKSj4TR37Ns4iKVpU+SHsN7BqxnLXMCpjGvVgvCpo6Mzj7ML63ff0N5vTmZOrMrRjPZIkBH7NSgRBCCCFESli4T0WFpPpKComz9S1+mU5coyYfJYa4Bo2Ia/Du5ZX8Inzp+FcbbrzwQKtomVTBDZei3TE20sKJE9g0a4YmIAC9rR3hC5YQV6feR4g+/UTowhn1ZBjrX6wBoKhZcX7Lu4Ti5l8YODIhhBBCCCGEEEIYQqqTAlRV5dKlS9y5c4ewsDB0Ot1r91MUhT59+qQ6QCEyAlWv597oYTxeshCAfD8NwXHoyAxZbtMj6CqdDrXlUaQflkZWzP96MfXzNQDAdOsmrAf3h+hodPkcCV2+Fl2JkgaO+P14Rt+gt283bsV4AtA+cyfG55qCldbqg7bbwK4RTbI2IVMmS4KDI0lI0H/Q9v7JNfswXB62S6pQ8LErFQghhPhvkPG9SAt9XBya27f49+hYUVWM7mWs6kYnnx6n25GOPI95TlazrCytuZrKOauCqmK66DcYPQJNQgIJRYsTunId+vwFDB3yezkXeZY+vt3xjfNBQaFPtgEMzTESU42poUMTQgghhBBCCCGEgaQqKSAiIoKuXbty7dq1t+6nqqrcNBSfPH18PLf79yJg22YACk6ehkO3XgaJJXDvbnzc3Yj29sLcyRlH12Fk+8dMqC33NjL4VH9idDEUsHFiVe0NFM5UBOLjsRw/CovFCxJ3/PZbwucvRmdtZ5D3kRo6VceCwHm4PZtInBpHVqOszHKYx7e29Q0d2gf3slLBTH+3pEoFrjmGf7RKBUIIIT5/Mr4XaaGLjOSGSzvK6fXYQrLEAJ0CIXmzGyq0ZFRVZcnNBYw9PxKdquPLLKVZUXstDlZ5ICoK68H9Mfv/mD+2WQvCZswBS0sDR51ycfo4ZvhP5deAX9CjJ49xXublXUQlqyqGDk0IIYQQQgghhBAGlqqkgDlz5nD16lXMzc2pXbs2OXPmRJsBS6gLkVa6qCg8u7TnxaGDKEZGFPl1IdmbtjBILIF7d+Pp0g4UBVSVyFueeLq0o/jytWSu/z0TLo5hwY1fAaibpx6/VV+CrakdSkAANl07YHL2NADRg4dgPm0KalgMfMTZ7mnxKM6Pvr49OB2ZuBxCPZvvmOUwj2zG2Qwc2cfTwK4RDezeXQpXCCGESA0Z34vUig9+wfU2zQm7dAEPI6iekJgIoFX//jmhDowycJwxCTH8fHogm+6tB6C5Uyvcq8zB3MgczUMfbDu1xcjzOqpWizJzJlHtu4BOfcdZM467MXfo5duV69GJiT0tM7Vhcu5p2GhtDRyZEEIIIYQQQgghMoJUJQX89ddfWFpasnPnTvLkyZPeMQmRISSEhXK9bQtCz51BY25O8eVryFL7G4PF4+PulpQQACT+VBS83SfT13gFRx4fAmDQl64MLTMKjaLB6MolbDq1Rfv0CXprG8LnLULfsCHmn9BN/u3BWxjy6CfC9KFYaCyZlMuNtpk7ZMilG4QQQohPlYzvRWrE+vvj0aIJkbc8MbKzo3fbSAqFxjPmEBQOhDvZYHxt+L2Av0GTAvyjntHpUBsuBV5Eq2gZV34S3Yv1RlEUjI8dwaZ7JzTBweizZiNyxWqsG3wLwZFAxk8KUFWVFc+XMu7JSGLUGDJrMzPDYQ4N7RobOjQhhBBCCCGEEEJkIKlKCggKCqJKlSpyw1B8tuKCgvBo9SMRHlfR2thSct0WbCtUNGhM0d5efycEvKSqhN+9zZHHtzDXmvNr9YU0yv8DAKYb12H980CU2FgSnAsRtmoDuoLOqfvQG0CYLpShjwazLSSxhGtZi6+Yn3cxBUydDByZEEII8fmR8b14X9G+D7nWrBExPg8wyZ6Dkpt3ot7uys5gT3Z88feYVUGhmG0hg8V5JfASHQ+14VnUU+xM7FhScxVf564Jqor5/LlYThyDotcTX7oMYSvWocn76XwGAuIDGOTXh4PhfwBQw6oWc/MuIIdxTgNHJoQQQgghhBBCiIxGk5qDcubMSWxsbHrHIkSGEPPkMVcbf0uEx1WMs2aj1I59Bk8IADB3ck6sFPAPegUeZ1NxsMzD3gYHExMC4uOxHPEzNv17ocTGEvttfUIOHEZX0NlAkb+/sxGnqXmnCttCNqNBg2v2Yewp+IckBAghhBAfiIzvxfuI9LrL1UbfEuPzALO8jpTefQCrosVwLT0MFRWFxDGrgoKKimupYQaJc8u9jTTa/y3Pop5S2K4IBxodSUwIiIrCulcXrMaPQtHriW7djpBdB9Dnym2QOFPjz7DfqXG3IgfD/8BUMWVyrmlsLLBdEgKEEEIIIYQQQgjxWqlKCmjUqBEXLlzAy8srveMRwqCi7ntzpWE9orzuYprbgdJ7DmBdoqShwwLA0XVY0pIBkJgQoFHBo2lh/mh0lBJZSqIEBmLbvDEWSxcBEPnzcMJWrke1tjFk6CkWr8Yz9ekEmnjXxy/el3wmjuwp+AdDcozASPlUahwIIYQQnx4Z34uUCve4ytVG9Yh98hiLQoUpvecA5vkLANDAsRHLa62lWObimGpNKZa5OCtqreN7x4YfNUadXsf4C6Ppc7w7sbpY6uX5jv0N/qKAjRMa34fYNfgGs+1bUY2MCJ/qTsTs+WBm9lFjTK0ofRRDHg2i3YOWBCUEUczsC/50Pka3bL3QKKn6814IIYQQQgghhBD/ASl6yubn55fs3/Xq1WP//v107tyZHj16UKpUKWxsbNBoXn8TQsqQik9BxE1PPFo0IS7AH/MCTny5dTdmDhnn2s3WoBGFli7n/MRBWDwO5Uk2COxQC7eBmzHRmmDkcRWbjm3QPn6E3sqa8PmLifvue0OHnWL3Y73p7duVy1GXAGidqR2Tc0/DSmtt4MiEEEKIz4+M70VqhJw9w/W2zdGFh2H1ZWlKbtyOSZYsyfZp4NiIBo6NDBQhhMWF0uOoC4ceHQRg0JeuDC0zCo2iwfjkcWy6dkDz4gX6rFkJW7aG+EpVDBbr+7oe7UGvh124G3sHgJ7Z+jIixxjMNJ9GQoMQQnyO9obsZmaAG96x93AyLchg+2E0sDPcfweFEEIIIYR4kxQlBdStWxflX2XLAVRVZcqUKW89VlEUbt68mbrohPhIwq5cwqPlDySEhGBZvARfbtqBib29ocNKxj/Kny7KAi71CkWraJlccTo/F+0GgOnObVgP6I0SHU2CU0HCVm1AV6iwgSNOGVVV2RS8nuGPfyZSH4Gt1o5ZDnNpaNfE0KEJIYQQny0Z34v39eLIIW50aoM+OhrbSlUosXYTRhmsGtWDsPu0/6sld0PuYK41Z06132hSoCmoKmbLFmM1aiiKTkf8l6UJW7kOfW4HQ4ecInpVz+Kg35j0dBxxahzZjXIwL+8ivrauaejQhBDiP21vyG5cHrZLWi7nZrQnLg/bsZy1khgghBBCCCEynBQlBeTKletDxyGEwYScPcP1Ns3QRYRjU648JdZvwdguk6HDSub6cw86/NWKx5GPsDOxY1mtNVTL9TXo9VhOnYjFnJkAxNauS/jCZai2doYNOIVCdSH8/GggO0O2A1DZsirz8y4mt8mncYNWCCGE+FTJ+F68j6AD+/Hs2gE1Lo7Mdb6h+LI1aM3NDR1WMqefnsTlcDtexL4gh0VO1tTZyJdZS0NcHFbDXTFfsxKAmKYtCJ/1K2Sw+N/EP96ffr49OBpxGIBvbb7nlzzzyGKU5R1HCiGE+NDc/d2SEgIAVFQUFGb6u0lSgBBCZGCqqr42SV4IIT53KUoKOHz48IeOQwiDeHHsCDc6tkYfFYVd1ep8sXojRlZWhg4rmb0+u+l7vDtRCVEUtHVmbZ1NFLAtiBIehnWvrpj+eQCAqL4DiRw5FrRaA0ecMmcjztDbtyuP4v3QomVojpH0sx+EVvk04hdCCCE+ZTK+FykVsHMbt3p3Q01IIGuDxhRbuAyNiYmhw0pmzZ2VDD39EwlqAqWzlmFVnQ3ksMiJEhiIrUs7jM+dQVUUIkdPILpPf/hEbgAeDDvAAL/eBCUEYa6YMz7XFDpmcZEbmEIIkUF4x3olJQS8pKJyL9bLQBEJIT51S5YsZNmyxe91zPbteyXpO4XCw8NZsmQhhQsX4fvvGxo6nDTz9X3IqlXLuXjxAs+fB2FhYUHRosVo3bodFStWfmV/vV7Pvn272bZtC76+vhgbG/Pll6VwcelKkSLFXtvG3bt3WLZsMZ6e1wkPjyBfvnw0adKUH35o+srfJfv372X9+jU8euRH9uw5+OGHprRo0fq1yxIGBPizd+8eTp48ztOnTwgPDyNTpsyULPklP/zQlHLlyqdPJwGhoaFs3ryBU6dO8PjxI2JjY7G1taNYseLUqfMNdep888n/jbVr1w6mTp1I/foNGTNmfJrO9fPPgzhx4tgbX//ll1+p9K9l+I4ePcz69Wt58MAbVVUpWrQ4HTp04quvKrz2HI8fP2Lp0kVcuXKJ4OBgcuTISf36DWjbtj1GRsZpiv9ja9jwW0qUKMmUKdMNHUqKpCgp4N+ePHmChYUFdnZ2b93v0aNHPHjwgGrVqqWmGSE+qOcHD3DDpT1qbCyZa9el+PK1GWrGk6qqzL7mztTLEwGokbsWS2qsxNbUDs19b2w7tMLo7h1UMzPCZ/1KbLOWBo44ZRLUBGb5T2eW/3T06Mln4sjCvMsoa/mVoUMTQggh/rNkfC9e59nGddwe2Af0erI3a0nhuQvQGKXqT8gPIkGfwLjzI1l8cwEAP+Rvyuxqv2FuZI7R9WvYdGiN9vEj9Da2hC9aRlztbwwcccrE6GOY8HQ0S4MWAVDcrAQL8y2jsFkRA0cmhBDin5xMnbkV45ksMUBBoaBpIQNGJYT4lBUs6Ey9et8l2/bixQsuXDiHubk51avXeOUYC4uMcz87o5szZyZ79+5m+PDRhg4lza5du8rAgX2Ijo4mT568VKlSjcDAAM6dO8u5c2fp128gbdt2SHbM9OlT2LlzOzY2Nnz1VXlevHjB8eNHOX36JDNnzqFChUrJ9r906QKDBvUjISGBL78sjbW1NRcvXmD69CncuHE92cPnvXt3M2nSOPr1G0TNmrW5fPkiU6dOJCoqCheXbsnOu2PHVmbPnklsbCzZstlTsKAz5ubmPHzow6FDBzl06CCtWrVh4EDXNPfTnTu36d+/N6GhIeTKlZvSpcui1Wrx9/fn5MnjHDt2hD17djFjxi+Ympqmub3PwZ07tzE2NqZWrTqvfT1r1mzJ/r1y5TIWLpyPubk5Zct+RUxMDJcvX+TixfOMGDGahg2bJNv//n1vevbsQlhYGMWLf0GRIsW4du0KCxbM48KF88yePQ+jDHTf4W28vO4SGBhA5cpV3r1zBpGqnq1duzaNGjVi2rRpb91v+vTpnD17lvPnz6cqOCE+lMA9u7jZ0wU1Pp6s9RtSbNFyNCn40g/cuxsfdzeivb0wd3LG0XUY2Rqkf0m4mIQYBp3qyzbvzQB0LdaDCeWnYqQxwvj4UWy6dkATEoIuR07CVq0noXTZdI/hQ3gU50dv326cjTwNQItMrXHL7Y6V1trAkQkhhBD/bTK+F//2eOUyvIYMAiBn+04UmjEb5TUzPAwlPC6M7kc7c+jRQQCGlhnJT18OQVEUTHbvwKZfT5ToaBKcChK2ZhO6gs4Gjjhl7sbcofvDztyMuQFAj6y9GZVzPKYauUElhBAZjWv2Ybg8bJe0hMDLn645hhk6NCHEJ6pmzdrUrFk72bZLly5y4cI5bG3tGD9+soEi+zzo9eq7d/oEJCQkMH78aKKjo+nduz/t23dMmul+7txZXF0HMH/+XCpWrIyTU0EAjh8/xs6d23FyKshvvy3G9v/LDx8+fIjRo4cxceJYtm7dhZlZYpJJXFwcY8eORKfT4e4+J+mhZ1BQIH369GD//j1Ur/41NWrUAmDDhrUUK/YFbdu2ByBXrkacOXOK9evXJEsKWLNmJfPnz8XGxpYxYyZQs2btZJUEzpw5xZgxI9i4cT3m5hb06NE7Tf00fPjPhIaGMGzYSJo0aZrsdT8/X4YNc+X8+bMsXDifAQN+SnVbn4uQkGACAvwpWrRYir5vvLzusnDhfLJly8aiRSuSqpZcvXqFQYP64u4+nYoVq5At29+JBOPHjyYsLIxhw0bRpMmPAERGRuDqOpCLF8+zZctGWrdu92HeYDo7ffokiqK8UjkhI0vRXR0/P79k/1NVlcjIyFe2//N/N2/e5ObNm8THx3/o9yDEe3m2ZSOe3Tqixsdj/2Mzii1ZmeKEAE+XdkTe8kQfG0vkLU88XdoRuHd3usYXFB1E0wMN2ea9Ga2iZXrlX5hScQZGGiPMli/BtuUPaEJCiC/7FSEHj30yCQH7QvdQ624VzkaexkpjzYK8S5mXd5EkBAghhBAGION78TZ+C+clJQTk7taTQu5zMlRCgF+ELw32fcOhRwcx15qzrOZqBpcaigJYzJiKbdeOKNHRxNWqQ8iBw59EQoCqqqx7vppvvL7mZswNshplZUP+rUzM7SYJAUIIkUE1sGvE8nxrKW7+BWYaM4qbf8EKx3V8b/vpl6QWQgiRcV2+fIknTx5TrFhiifZ/lr6vUKEijRv/iF6v56+//kzavn79agD69RuYlBAAUKtWberV+46goCAOHvwjafsff+wnKCiIWrXqJJsFnTVrNoYMGQ7Axo3rkrY/fvyI3LlzJ4szV67cREREEBISDCQuRbBo0W+Ympoyf/4iateu+8rSApUqVWHy5MQy7OvWrSYoKDBVfQSJ1RSePHlMqVKlX0kIAMiTJy9jxkwAYNeu7ajq55E0khZ37twGoEiRoinaf/36NQC4uHRLtoxJqVKladOmHbGxMezYsTVp+8WL57lz5zYlSpRMSggAsLS0YuTIsSiKwqZN6z+Z38Xp0ycpVKgwWbJkNXQoKZaiSgETJkzg5MmTSf9WFIVDhw5x6NChtx6nqirly6ff2h9CpNXT9Wu4M6gvqCo52rSn8My5KNqUrWHv4+6WuP7oyy8kVQVFwWemW7pVC7gTfJu2B1vgG+GDjYkty2qu5uvcNSE+HquRQzBfuQyAmBatCZ85Fz6BkjbR+mjGPhnByueJsZc2L8PCfMvJb1rAwJEJIYQQ/10yvhdv8nDOTB5MTiwDmXfAYPKPGJOh1le8GHCeDn+1JigmEHvz7Kytu4lSWctAVBTWA3pjtms7AFG9+hE5ZgKkcKxvSKG6EH5+NJCdIYmxV7eqyfy8i8hunMPAkQkhhHiXBnaNaJK1CZkyWRIcHElCgt7QIQkhXiNgzy7uT59K1D0vLAo6U2DIcOwbNjZ0WOnm9u2brF69kitXLhEREUG2bPZUr16DTp1csLPLlGzfihXLUKRIUebOXcCSJQs5evQQYWFh5MmTlw4dOvPNN9/i7/+M+fPncvbsGUClcOGi9O8/CGfnv5dHWbJkIcuWLWbKlOmoqsrKlcvw9X1IpkyZqFKlGi4u3V77oCwoKJCVK5dz6tQJgoICsbKypmzZcnTu3DVpVvtLvXp148qVS6xbt5lZs6Zz/boHNjY2DBzoSp0635CQkMD+/Xv588/f8fLyIiIiAktLCwoWLMQPPzSlbt16yd73S1OnTmTq1ImMGjWOBg0aJbUzd+4CypdPvgb6y7L49ep9lzRz+tKli/Tp052WLVuTO3ceVqxYSlRUFEWKFGHBgqVoNBp0Oh179uxk9+5d+PjcR1VVnJwK0qRJU77/vuErf2M1afI9z549TYrpbaKiIilWrDiVKlV+7et58+ZL6muAiIhwPDyuYWFhQblyr/49//XXNdm/fy8nT55IKvV+6lTi/YLXLVlRunRZbGxsuHbtKuHh4VhbW2Nvn/2VB/iBgQGYmZklJSFs2bKRhIQEmjVrkexa+rfy5Svw9dc1URSFgICAV8rVp1Rw8AuAt/49W7hwERo0aISxsTExMTGY/3956ZfXxL59B9m1azu7d+8kOPgFOXPmon79hrRu3RZjY+NXzvc+n0WA8PBw1q5dxdGjh3n69AlmZuaUKFGC9u07U6pU6Vf2j4gIZ82alRw6dJDAwEBy5cpNq1Zt3/j+Xr6PLl26061bz3f22Z07d/7fLylLCjh9+hQA1avXfOW1r7+uxbJlSzh58gTdu/cC/r6uqlWr8cr+Dg55KFjQGS+vu9y755V0jTRp8j3R0dHs3v07q1Yt5/ff9/H8eRDZs+egWbOWtGzZmrCwMBYsmMexY0eIiYnByakgPXv2oWzZcknnf/lZHjx4CIULF2Xp0kXcuHEdrVZDqVJlGDDgJxwc8nD8+FFWrlyOt/c9MmfOTPXqX9OzZ9+ka+Ol8PBwbty4Tvv2nZK26fV6tm7dzB9/7MfPz5fY2Dhy5cpF1arVadeuQ7KEHENJUVLAiBEj6Nq1a1J2xtOnTzEzMyNTplcvYkj8kJmampIvXz5GjBiRftEKkQZPVi3n7s8DAcjl0g3nKTPea8ZTtLfX3wkBL6kq0fe80iW+o48P0+VwB8Ljw8hn7cj6ultxtiuEEvwCm66dMDlxFFVRiBw1nui+AxITFDK42zG36P6wE7djbgHQN9tAhuUYhYnGxMCRCSGEEP9tMr4Xr+Pj7obP9CkAOA4bheNPQwwcUXI772+j34mexOpi+SJzSdbU2UhuKwc0T59g06E1xteuoBobEzFjNjFt2hs63BS5GHmenr5d8I17iBFGDMs5mr7ZBqBRMk5lBiGEEEKIT1nAnl14dGybNNkr4qYnHh3bUnLVus8iMeD33/cxadJ49HodRYoUJUeOnHh53WHjxnUcPXqY335bkmwGL0BkZCTdunUiMDCQsmXLERz84v9rxI8gJCSEVauWo9FoKFWqND4+D7hw4Rw9enRh48Zt2NvbJztX4sPk4zg45KFy5arcuXObbdu2cOrUCX77bWmytr287tK/f2+Cg18k7R8YGMhff/3JiRPHmDrV/bVrcw8f/jNRUZFUqlSF27dvUaRIUVRVZfjwnzlx4hg2NjYUL14CExMTfHwecPnyRS5fvsiLFy9o2bI1APXqfceNG9d5/PgRX3xRgty5HXBwcEhT3585cxo/P1/KlCmLoihkz54DjUZDQkICQ4cO5tSpE1hZWVGiREmMjIy4fPkSkyaN4/LlS4wZMz7V7daoUSupbP/r3LyZuBTZy9+Vj88D9Ho9+fI5vnat9vz5EyfveXvfS9r24MF9gFcSNQA0Gg358jly/boH9+978+WXpWjQoBELFszjyJFD1KhRCw+Paxw5cphGjZqgKAo6nY4jRxInIdSt++073+O0aTPfuc+7FPx/xbgrVy6zZMlCWrVqi7X1q1WLR40a98ZzTJ06kZMnj/PFFyUoXLgIly9f5Lff5nLhwjl++WUuRkZ/Jwa872cxIMCf3r278+iRH/b22alYsTLh4WGcOXOaM2dOM2zYKBo1apK0f1hYGL17d+PePS+yZbOnSpVqPH36hKlTJyb9DtPqzp3E5zixsbG4ug7k5k1PoqIicXIqSPPmrfj22/pJ+z5/HkRoaAh2dnZkyZLllXM5OuZHURR8fO6j0+nQarU8eOANgJOT02vbz5+/AF5ed/H2vpcscUSnS2DAgN7cvOlJ2bJfkTt3bi5dusgvv8wgMjKCP/88QEhIMMWLlyAwMIDr16/Rv39vli1b9UrVg9OnTzF79kxy53bgq6/Kc+vWTU6cOMadO7dp3botc+bMolix4lSoUJGLF8+zadMGnj179so1efbsaXQ6HZUrV03aNnXqJPbs2YmtrR0lSpREqzXixo3rrFmzkuPHj7J69QZMDTzRN0VJAfnz5082a6hIkSLUrVuX6dOnf7DAhEhPj5ctxmu4KwAOPXrjNGHqe894MndyJvKWZ/LEAEXBvOCbs9pSauXtZQw/44pO1VEheyVW1l5PFrMsaL3uYtOuBUYP7qNaWBK2cBlx//jizahUVWXdi9WMfDyEaDWabEb2zMu7iJrWtd99sBBCCCE+OBnfi39SVRWfaZN4OGsGAAVGjSdv/0EGjupvqqoy8+o0pl9JTFiol+c7FtRYhpWxFUZXLmHToTVa/2fos2QhbPla4j+B9fz0qp75gXOZ8nQ8OnTkNXFkUd5llLX8ytChCSGEEEJ8Vu5Pn/ra6q/3Z7h98kkBDx/6MHXqRExNTXF3n02ZMonLzOr1ehYvXsDKlcsYP34UixYtT3acn58v+fMXYOvWXWTOnBmAWbNmsHnzBmbNmk6VKtWYPHkaZmZmJCQk0KdPd65du8rBgwdo27ZDsnOdPHmcZs1aMmiQK1qtloSEeCZPnsDvv+9j5sxpzJw5B4CEhHiGD/+Z4OAXDBw4mJYt2yTdnz9x4hgjRgxh3LiRbNq045Vk9djYWNat24KtrS16vR6NRsORI4c4ceIYxYp9wbx5C7GwsEjaf/XqFfz2269s2bIxKSlg/PjJTJgwlsePH9GwYRMaN/4hzf3v6/uQvn0H0K5dx6R+B1ixYimnTp2gXLmvmDTJLWmG+PPnzxk0qB/79+/hyy9LJYth3ryFJCQkkDVr2sqQ37vnxcGDf6AoCjVqJN6LDwxMnMH/phLnL7e/ePEiaVvKj3kOQNu2HYiNjWHSpPGMHj0cIyMjGjf+gd69+wGJD5AjIiLQao1SXJo+rRwd89OwYWP27NnFsmWLWbVqOV9+WYrSpctSunQZvvii5Dsf0J4+fZKJE6cmVZ148eIF/fv34sKFc2zatJG2bROT0VPzWRw7dhSPHvnRpk17evfum5RgcOPGdQYN6suMGVMpUaJk0gP/xYsXcO+eF9Wr12DixKlJse/evZMpUya8Nv6xYycQExODnZ1divrs5fIBv/wyg7x581Gy5Jc8efKEmzc9GTduFJ6eNxg8OHHywLuuERMTE6ytbQgLCyUiIgJbW9tUXYsAERER+Pn5sXbtZvLmzQvAhg1rmTNnFosXL6BYseIsWrQcW1tbAEaPHs7Bg3+wd++uV663M2dO0bZte/r2HYiiKERGRtCmTQv8/Z8xZ84sxo6dyHfffQ/A/fvetG/fiuPHjxIcHJzsu+nMmVPY2NjyxRclAHj27Cl79uwkb958rFixFktLSwBiYmLo27cHN25c5+DBP95ZCeRDS9X0g9WrV9OjR4/0jkWID8Jv0fykhIA8fQakKiEAwNF1WNKgEUgaTDq6Dkt1bDq9jtHnhjPk9CB0qo7mTq3Y+u1usphlwfjoYey+q43Rg/vo8uQleN/BTyIhIFwXRk9fF3561I9oNZoaVrU4Uui0JAQIIYQQGZiM7/+7VFXlweTxSQkBTuOnZKiEgFhdLH2Od09KCOhZvC8ra6/HytgK013bsWv8HVr/ZyQUKUrwgSOfREJAYHwgrR80ZeLTMejQ0cTuRw4XOiEJAUIIIYQQH0DUvddXf43yumuYgNLRxo3riYuLo2vXHkkPISFxJnePHr0pWNCZa9eucuOGxyvHduvWKykhABJn0r80YMBgzMzMADAyMqJata8BePTI75Xz5MvnmJQQkLi/MUOHjsTOzo5Tp07w7NlTAI4cOcyjR35UrVqdVq3aJrs/X63a1zRp0pSwsDD27Nn5Shv16n2X9LDv5Rr0CQkJVKv2NX369E+WEADw44/NAHj69Mmbui5daLVamjZtkfRvjUZDfHw8mzatx9jYmHHjJiUrGZ8lSxZGjBgN/L0W+0sODnlwdMyPldWrM9lT6sWLFwwf/jM6nY7vv2+YNNM6JiYaIOl3+m8vHy6/3O99jomOTtxPq9XSrVsvDh06zp49f3D48El++unnpOODgoIAsLW1TbpWPoahQ0fSvXtvLCwsSEhI4NKliyxduog+fXrwzTc1GTbMlbt377zx+IYNGydbhiJz5syMGDEGgO3btyRtf9/P4o0b17ly5RLOzoXo23dAsooDX3xRgs6duxEfH8/mzRsAiIuLY9++3RgbGzNixOhkyQyNGjWhatXqr40/R46cODrmf+3SBf8WGRnJ48ePUBSFYcNGsnnzDtzc3Fm9ej2//roAKysrtmzZyOHDiRNM3nWNwD+vk6j/HxPz1mP+vf8/tWnTPikhAKBevb+flfXo0SfpOwJIqqTxuu8sGxtbevbsm/QdZGlpRZUq1QAoUeLLpIQAgAIFnMibNx+qqvL48d/nUlWVM2dOU7FipaTvpOfPExNkbG1tkxICXr7XwYOHMnz46KQEAkNKVVJA+fLl31jeQYiMxHf+XLxHDwcS10QtMGZCqtdEzdagEcWXr8WyWHE0pqZYFitO8RXryPZ9w1SdLzI+EpfD7VnkOR+A4WVGM6/6Iky1ppitXIZt66ZowkKJL1+R4ANH0BX/IlXtfEzXoq5Q+241doRsQ4uWUTnHs7HAduyN7d99sBBCCCEMRsb3/02qquI9bhS+c2cBUHDyNPL06mvgqP4WHPuCFn80Yav3JrSKFvfKc5hQYQpaRYPFzGnYdOuEEhND7DffErLvIPp8joYO+Z1OhB+j5t3KHAk/hJlixiyHX1mUdwU2Wtt3HyyEEEIIId6bRUHnV5dhVRQs3rKm+afi8uWLAMnWzX5JURQqVKj0//0uvfL6vx9OvZwBa2ZmluzBG5D0oDo2Nu6V89SpU/eVh7xmZmZJbV+6dPGdsQJUqlQ52X7/9Lr15+vWrceMGb8kO19MTAx37tzmwIH9AOh0OnQ63WvbSw8ODnleWWf8zp1bREREkC+fI1mzZnvlmCJFipIpU2YePvTh+fOgdIslMDCQPn264+fnS9GixXB1HZr0mkaT+Pt513MRvV6ftMTgywedKTnm3zJlypR0/Esvly34kL+P1zEyMsLFpSt79/7JpEluNGzYBAeHPADExsZw9OhhOndux/btW197/DffvLrUQbFixcmWzZ7Hjx8lJZ6872fx5f6lS5d9pa/gn5+HxP1v3bpJdHQ0RYoUe+0D/q+/rvHmTkghS0tLDhw4zMaN22jSpGmy18qVK0+3bj0B2Lp1E5Dy6wpAr0/7dfWm7yx49Tvibd9ZhQsXwdjYONm2TJnsXnueN53r1q2bBAe/SPo9QeKSCDY2tly/7kH37i5s3rwRX19fAIoWLUbjxj/g6Jj/1Tf7kaVo+YAOHTq8e6c3UBSFVatWpfp4IVLr4ZyZPJicuDZPvsFDcRwyItUJAS9la9CIbOlQ3sM/yp/2f7XgatAVTLWm/FptIU0KNAWdDstxI7FY9BsAMc1bET7rVzDwOiPvoqoqS4IWMP7paOLVeByM87Aw33LKW1YwdGhCCCGEeA0Z3wtVVbk3ehiPFy8AwHmqO7m7dDdwVH/zCXtAm4PNuBfqhbWxDctqraZG7loQG4v1oL6Y/f9GRFTPvkSOnQgfcbZJaiSoCbj7u/GL/wxUVAqbFmFxvpUUNS9m6NCEEEIIIT5rBYYMx6Nj27+XEPj/zwJDhhs6tDR79uwZAB07tnnrfv7+z17ZZmNj868tiffNra3/vf3tD/AcHPK+dnv27DkACAoKTBbrnDmzmDNn1lti9U9BrIkiIyPYuXM7Z86c5uHDBwQFBaGqarJ41X9XiUhHr4vr5fu8d8+LihXLvPV4f3//N5ZRfx/e3vcYPHgAz549pVix4syePR8zs7+TFczNEyspxMbGvvb4l9vNzc2T+s7CwoKwsDBiY2MxMTF54zH/rtLwJi/fZ3h4GAkJCUlJAh+LhYUFdep8Q5063wAQEBDAmTOn2LRpPffve+Pu7saXX5bCyalgsuPy5HnT9Z2dwMAAgoICyZkz13t/Fl/uv3nzhqRqAG/b/+XnyN7+9ZMvc+XK/dZ2U8rW1jbZjPt/qlq1Or/84s7t2zcBkhJi3nRd/fM1Cwvz/x+TsmvxddfVvz9v//ycv+21d53n/0e88bXXnev06ZNoNBoqVvy7UqGZmTlTp05nzJiReHhcxcPjKgC5cztQrdrX/PhjM/LmzffGuD6WFH3yzp8//9rtiqK88Uv15WtpfQgrRGo8nO3Og/+vo+I4ZESaSvyntzvBt2lzsBl+Eb5kNs3MqjobqZC9IkpEONY9u2D65wEAIoePJmqg66uZrBlMSEIw/f16cyBsHwDf2TRgdp55ZDLK/I4jhRBCCGEoMr7/b1NVlXsjfubxssUAFHKfQ64OnQ0c1d8uBpynw1+tCIoJIrelA+vqbqFY5uIoQUHYdmqD8fmzqFotEdNmEZOB4n6TZ/FP6fmwC6cjTwLQNnMHJuWahqXW8h1HCiGEEEKItLJv2JiSq9Zxf4YbUV53sXAuRIEhw7E38LrO6UGvT5x1XbduvdfONn7pdbNf0+uh7JtKwb/8u/Ll6y9jLVu23Gtn0L/0z9m/LynKq+/t/n1v+vTpQXDwC+zs7ChW7Avq1v0WZ2dnypQpR+PG6bMM7+tmLL8trpf758iRgy+/LP3Wc6f0gfrbnDt3lhEjhhAZGUHFipWYMmXGK+e1t0/s7zdVJni5/Z8JCtmy2RMWFsbz50FYW7+6pMHrjnmbLFmyYG+fnYAAf27d8qREiS/fuv/Zs6e5f/8+FStWokCB1FU1fPDgPkFBgZQuXSZZeX5IfLjeuPEPfPfd9/Tp053r1z3488/f6dWrX7L93vS5+vv6Tvwcve9n8eX+xYoVf2PiAfz9QPpd92E+xpIMWbJkAf5+cP8yQeFl2fx/i4uLIzw8DGNjY2xsEhMNsmXLxt27t/9//RR+5Zi3XVfp9Z2VHuc5ffoURYoUe+X7qmzZr9i2bTenT5/k1KkTXLp0gcePH7Fx4zq2bt3EpEluSUsbGEqK3v2KFSuS/Vun0+Hm5oaPjw+tWrWiTp06ODg4YGRkREBAAEeOHGHlypUUKVKEqVOnfpDAhXiTh3NmJiUE5B8xhnwDXdPt3Ht9duN+xQ3vMC+cbJxxLT2MBo4pH0CeeHKMzofbERYXSn6bAmyou5UCtgXRPH6EbdsWGN28gWpmRti8RcQ1+iHd209vlyIv0P1hZ/zifTFRTBifazIuWbrLwwIhhBAig5Px/X+XqqrcGzU0MSFAUSg861dytk195Yj0tufBTvoc706MLoaSWUqxtu4mcljkRHvnNrZtW6D19UFvY0vYstXEf13T0OG+05HwQ/Tx7UZQQhCWGivcHWbTNFOLdx8ohBBCCCHSjX3Dxtg3bGzoMNJdlixZefbsKd2793rrg8UPKTAw4LXbnz17CvxdMSBLlsQH09988x2NG7963/t9ubtPIzj4Be3adaRXr77JHoqGhYW917k0msR72S8f1P5TeHj4e53r5cNMe/scjB8/+b2OfV9//PE7EyaMRadLoGHDJgwdOuK1DzwdHfOj0Wh4+NAHvV7/ykPr+/e9AZLNki9QwAlv73s8eHD/lZLner2ehw99UBTlvR7YV69eg61bN3H48KF3JgWsWrWCK1cu8fRpKwYPHpLiNv5p6NDB+Po+ZNmy1RR/w9LMJiYm1Kv3Hdeve7z2ugkMDHxtEsvLmf7Zs2cH3v+z+PI6KV++Ij179nnn/tmyJcbw9OnT174eGBj4znO8y+XLl9izZyeOjvnp2NHlldcfP36cLBZbWzuyZMnK8+dBhIaGYGtrl2z/Bw/uo6oq+fM7JV1zTk4FOXXqBA8ePKBSpSr82+uuxYwmODiY27dv4uLS7bWvm5mZUatWHWrVqgOAj88DVq5cxoED+5k3b7bBkwLenLLyD5UqVUr2v1u3bnH//n0WLFjAqFGjqFixIg4ODuTIkYOSJUsyYMAAlixZgoeHBzt27PjQ70GIJL5zf0laMiD/yLHpnhDgcrgdt4I9idXFcivYE5fD7djrsztFx2/0WkfLP34gLC6U8vYV2d/gEAVsC2J05RJ29WpidPMG+mz2hOzc/8aEgLS0n55UVWVR4HwaeX+LX7wv+Uwc2V/wL7pk7SEJAUIIIcQnQMb3/01JSwYsWQiQoRICVFVl/vW5dDnSgRhdDPXyfMfO+vvJYZET42NHsPu+LlpfH3T5HAn5/VCGTwhIUBNwezqRVvd/JCghiOJmJfir0DFJCBBCCCGEEOmmTJmyQOKs1dcZM2YEnTu34/jxYx8shlOnTr6yLTo6mnPnzqLVailfvsL/Yy3z/1hf3R9g06YNtG3bguXLl6So3Rs3PADo1MnllVnS586dSfr//6yE96bb1i9LmgcHv3jlNU/P6ymK56VixYpjamqGl9edpJLv/xQQEEDz5k3o27cnUVFR73Xufzpx4hgTJoxBp0uga9cejBw55o0zoM3MzCldugwRERFJa9n/07FjRwCoXLlq0raXD2yPHz/6yv6XL18kLCyMEiW+fG0VgTdp0aIVxsbGbNu2mQcP7r9xv2PHjnD16mU0Gg0//tgsxef/txIlSgKwZcvGt+738OFDgNcmOJw6deKVbTduePD8eRDOzoWSHu6/72fx5f5nz55+bTWKo0cP07Llj0yfnjgpo2jRYlhbW3Pnzq2khJt/etPn6n3Ex8fz++/72LRpA3Fxca+8vn//HgAqVKiUtK1SpcrA66+Tv6+rKq/Z/8gr+z965Ie39z2yZ89BwYLOqX8jH9jZs6fQ6/WvJDUcOLCfZs0asXz50mTbHR3z4+o6FHj98igfW4qSAv5t8+bNlC1blmrVqr1xn3LlylG+fHl27dqV6uCEeB++v87m/qSxAOQfPpp8Awan6/ndr7ihoKCSOJBQUVFQmHnV7a3HqaqK+xU3+p/oRYKawA/5m7L1291kMcuCyf692DWpjzbAn4SixQn+4wgJZcqla/vpLSQhmI4+bRj9ZDjxajyNbH/gUKETlLQo9VHjEEIIIUT6kfH9509VVbzHDOfx4gUAFJo5N8MkBOj0OoafdWX8hVEAdC3Wg5W112NlbIXZutXYtm6KJiyU+AqVCD5wBN1ryp9mJM/in9LMuxGzAmagotIhiwv7nf/CyTTj3tgQQgghhBCfnhYtWqHValm8eAEXLpxL9tr27Vv5888D3L/v/cZZ0unh8uWLbN7890PX+Ph4pk6dSFhYKN9+Wz9p9nCdOt+QNWtWjh07wvr1a5M9rPf0vMGSJQvw9r6X4oeBdnaJZbtPnEie8HDlyiVmzZqe9O+4uL/XLjcxMQUgIiIi2TEvS7pv37412cPQw4f/4ujRwymK5yVzc3OaNPmB6Ohoxo0bxYsXfycaREVFMXHiWPz8fLG0tExW5v/RIz98fB4QEfHuygTPnz9n4sRx6HQ6OnfuSteuPd55TPPmrYDECgv/XEbgyJFD/PnnAbJmzcp3332ftL1GjVpky5aNP/88wJEjh/7RdhDu7tMAaNeu4zvb/ae8efPRsaMLcXFx9OzZlWPHjrzyQPzw4UOMHz8aVVVp3bod+fMXSHotIiIcH58HPHrkl6L22rfvhKmpGQcO7GfatMmEhoYme12v17Nz53Z27NhKpkyZqV+/4SvnWLduNdevX0v69/PnQUyZMhGAVq3aJm1/389imTLlKFSoMLdv3+LXX2cTHx+ftL+fny+zZs3g4UMf8uVLXIPeyMiYpk1boNPpGD9+NJGRf1/Dhw8f4o8/fn9tHzx79hQfnweEhAS/s7/KlfuKvHnz8eLFc9zdp5GQ8HdMp06dYPPmjZiamiX7vTdt2gKNRsPChb/x8KFP0nYPj2ts2LAWU1PTpGsPoFSpMhQqVJirV6+wadOGpO2RkRFMnjweVVVp06Z9hp54evr0KTJlykSxYsWTbS9QwIlHjx6xefP6ZH0BiQkDwCvHGEKqFk8IDAykaNGi79zPwsLilQ+aEB+C7/y53J84BgDHoSPJN+jndG/DO8wr6YH8Syoq90K93nhMvD6eIacHse7uagD6lRjEyHJj0aBgvmg+lmNGoKgqcbXqELZ0FarVmzPrUtN+erscdZFuPp2SlguYkGsqnbN0zdBf0kIIIYR4Nxnff95UVcV77EgeLfoNgELuc8jVvpNhg/q/qIQoeh7twgHffQCMLz+FXl/0Bb0ey8njsZgzE4CYpi0Inz0fTE0NGe47HQs/Qi/fLknLBcxymMsPmVI/u0UIIYQQQog3KVKkGAMHDmbWrBn069eLQoWKkCtXLnx9H3L/vjdarZaxYyclrQX+IdjbZ2fWrOns3bsbBwcHPD1v4O//jEKFCtO//6Ck/czMzJkyZQY//dSPuXNnsXXrJgoWdCY0NAQPj2uoqkqrVm2oXr1Gitpt3botc+bMYvz4MezYsZ2sWbPy6JEfd+/eSVbW/Pnz51haWgEklXVfsWIJ169fo379BlSvXoPGjX9g69ZNXL/uQfPmTShWrDiPHz/m7t3b1K/fMGmGdEr16tWPu3fvcPHiBZo1a0yxYsUwMzPHw+MaYWGh5M2bj6FDRyY7pm/fnjx79pRRo8bRoMHblwvesGEtYWGhaLVGPH78iLFjR752v5IlS9G0aXMg8SH/d999z++/76NFix8pV+4rQkKC8fC4hrGxMePHT8HExCTpWAsLC0aMGMPPPw9ixIghlCz5JXZ2mbh48QKRkRH88ENTqlf/+r36BaBr1x7odDpWrFjK0KGDyZ49B05OBTExMeHu3Ts8eZJYor5Zs5b06dM/2bFHjx5h0qRx5MiRk507972zLUfH/Li5zWDMmBHs2LGNPXt2UbRocezt7YmJiebWrVu8ePGczJmzMHPmHCwtLV85h7W1DT17dqV06bJYWFhw8eIFoqIiqV+/Ad9//3cSwft+FhVFYdIkN/r06cGGDWv5668/KFSoCLGxsVy9epmEhARq1qxNs2Ytk9ro3LkrHh7XuHz5Ik2bNqJUqTK8ePECD4+rlChRkuvXPV6Jf/z4MVy5cokuXbrTrVvPt/aXVqtlwoQp9OvXk927d3D+/BkKFy7K8+dB3LhxHa3WiPHjJyZbHqFo0WJ06tSF5cuX0KFDa8qV+4q4uHguX76IXq9n3Ljk3z+KojBq1Dh69erGL7/MYP/+PeTKlZurV68QHPyCKlWqJl2zGZFOp+PcubNUqVL1lWdihQoVpmXL1mzatIE2bVrw5ZelsLOzw8/PFy+vu5ibmzMwHSubp1aqkgJy587NhQsXiIiIwMrK6rX7BAQEcObMGfLnz//a11Pq/PnzLFy4kFu3bhETE0PhwoXp0KED9evXf6/z7N69m40bN3Lnzh3i4+NxcnKiVatWtGjRQh5ofuL8Fszj/vjEWUWOPw/HcfDQD9KOk40zt4I9kz2YV1AoaPv6mUoR8RF0PdyBw4//QqNomFrRnc5Fu4JOh9WoIZgvWwxAdMcuREydAW8o75Pa9tOTqqosC1rE2KcjiVfjyWfiyLJ8q6U6gBBCCPGZ+Jjje/FxqarK/fGjebRwHgCFZswmV4fOBo4qUVB0EO3/asmlwAuYak2ZX30xjfL/ADExWPfvidnO7QBEDh5K1JARb673+Q97Q3bj7u+Gd6wXTqbOuGYfRgO7t99USw86Vccs/+m4+7uholLcrARLHVdKdQAhhBBCCPFBNW/eikKFirB+/Ro8PK7y4IE3WbNmo06db2jfvhOFCxf5oO3Xr9+AXLlys379Gk6ePE727Dno0qU7bdt2SDYTHqBkyS9ZvXoja9as5OzZ05w5cwobG1vKli1H8+at+Po9lghr3bodWbJkZePGdXh73+P27Ztkz56D5s1b0b59J9asWcmWLRs5ceI4bdu2B+DHH5tx795djh8/ypkzp8mfvwDVq9cgR46cLFmyksWLF3Dx4gVOnz6Fk5MTkya5UbCg83snBZiZmTF37gK2b9/KH3/sx9PzBoqikDNnLlq0aEXLlm3eq+z+v505k1iiXqdL4M8/D7x1338+YB09ejzFihVn164dnD17Gisra6pV+5quXXtQqFDhV46tVKkKixevYNmyRXh4XEOn05EnT16aNm3xzsSFt+nRozeVKlVh167teHhc49KlC+h0OrJkyco333zLjz82p1Sp0qk+/7/fw5YtO9m+fSvnzp3Bz8+P27dvYmZmhoNDHpo1a0Hz5q3e+PsYMmQ4165d5cCBfYSHh1OggBM//tj8te//fT+LefPmY/XqDaxdu4oTJ45x4cI5LCwsKFq0OI0b/8C339ZPtjSGqakps2fPY+PGdezbt4czZ06RNWs2+vTpT9Gixejb9+0P/VOiSJGirF69gRUrlnH27GlOnTqBtbUNtWvXpVOnLklVNf6pe/de5MvnyKZNG7h06SJmZmaUKVOOTp26ULbsq1WxCxUqzIoVa/7/eTuPj48PDg4OtGvXgebNW71xGYyM4MaN64SFhSZbauOfBgwYTL58+dm3bze3b98kLi6OLFmy0rBhYzp2dMHBIc9HjvhVivrPOi0ptHjxYmbNmkWpUqWYOHEizs7Jb3RcuXKF0aNH4+3tzfjx42nRInXrJu7evZshQ4ZgZGREhQoV0Gq1nDlzhri4OPr06UP//v3ffRJg+PDhbN++HVNTUypWrEhsbCyXLl0iPj6eLl26MGTIkFTFB6DT6XnxIvK9jjEy0pApkyXBwZEkJLy6Xoh4u3/2n89v87g3ahgA+QYPJf/Q12fFpYe9PrvZM7cdY/+CQkFwNyuMrwON+q/je8fkpWX8o/xpe7A5Hs+vYq41Z1HNFXybtz5ERGDT0wXT///HOmLsJKJ790vZDU6f3bgcbpe0hMDLnytqvdr+27zv9ReuC2OQXz92hyauH9zAtjGz88zDRmub4jY/F/LZTRvpv7SR/ks96bu0kf5Lm9T2X+bMlmi1qVrpK1U+5Phexssf38v+e/EigrvjxuD36y8AOE+bRe7OXQ0cXaIHYfdp9eePPAi7j52JHavrbKRijsooz59j27E1xufPohoZET7rV2L/UZbxbfaG7Mbl4avj5eX51qY4MSA1115QQhC9HnbhWETiuojtM3dmUm43zDXmKTr+cyKf3bSR/ksb6b/Uk75LG+m/tPlUxssifcTExODtfZ+sWXMklXIXn6YlSxaybNliOnXqQs+efQwdjviPOHz4EEuXLmT9+i0ftJ1evbpx5col5s5dQPnyFT5oW0Kkh7i4WIKCnuHkVAAzM7M37peqlIvOnTtz6tQpzp07R6NGjbC3tyd79uwAPHnyhOfPn6OqKg0aNEh1QkBQUBCjR4/G3NyctWvXUrx44loL3t7edOjQgd9++43atWsnbX+TnTt3sn37dvLnz8+yZcvInTs3AF5eXrRr145ly5bRsGHDFJVLFRnLoxVLkxIC8g5yxXHIiA/a3o83oPNa0CugUaGEP2xfC6G1VOIc/97PK+Qurf9sim/EQ7KaZWVNnU2Utf8KzbOn2LRtgfH1a6hmZoTNX0xcwyYpbr+BYyOW11rLzKtu3Av1oqCtM66lhr9XQsD7uhntSZeH7fGOvYcRRozLNYluWXtJdQ0hhBDiM/Mxxvfi47s/bUpSQkDBqTMyTELA5cCLtDvYgqCYIPJY5WXDN9soZFcY7f172LRuhtGD++htbAlbsZb4aikvSenu75aUCAAkJQbM9Hf7YNUCzkWepfvDTjyNf4KFxoLpuX+hRebWH6QtIYQQQgghhPgvO3Pm1GurGgghUiZV6ZTGxsYsW7aMIUOGkCdPHvz9/fHw8MDDw4OgoCCcnJyYOHEi7u7uqQ5s3bp1xMTE0K5du2QP/p2cnPjpp59QVZVVq1a98zy//fYbWq2W2bNnJyUEADg7O+Pi4kLOnDm5ceNGquMUhvFgxQpuDx4IQJ6+A8k/bPQHf1Bt6e6Gqiho/l9bQ6OCqihYzHRL2udCwDka7KuLb8RD8tsUYG+Dg5S1/wrt7VvYfVcb4+vX0GfNSsj2ve+VEPDSjzfg6myIHpX484cb713oI8U2vljHd1618I69Ry7j3Owq+Dvds/WWhAAhhBDiM/Qxxvfi47rt5saD6VMBcJowBYcuPQwcUaKDfgf48fcGBMUEUTJLKfY3OEQhu8IYXTiHXf06GD24jy5PXkL2HXyvhAAA71ivZEttQWJiwL1Yr/R8C4nnVVUWBM7jh3v1eRr/BGfTQhxwPiIJAUIIIYQQQgjxAZw/f44LF87SrVvay+QL8V+V6sUZjIyMcHFxwcXFBX9/fwICAlAUhezZs5MtW7Y0B3bs2DEA6tSp88prderUYeTIkRw9evSt57h9+zYPHz6kSpUqFCny6to5PXr0oEePjHFzTKTcs62budGjCwC5u/WkwOjxH+VBtdbbC+Vfq20oqorRvcSbjH/4/k73I52I1kVTNls51tTZTFbzrBifOoFNxzZowkJJcCpI6Pqt6PMXeO/2TfbuxtalHaqioKgq2lue2Lq0I3T5WuLSsIbPv8XoYxjx+GfWvkhMuqlpXZvf8i4li1GWdGtDCCGEEBnPhx7fi4/Hd8F87o4cDkD+UePI07PvR2t7b8hu3P3d8I71wsnUGdfsw5Jm6W+4u5afTvVDp+qombs2y2qtxsrYGpN9e7Dp1QUlJob4UqUJXbMZ9f+VKt6Hk6kzt2I8kyUGKCgUNH113cO0CNOF0t+vN/tDE9cW/cGuKTMdfsVKa5Wu7QghhBBCCCGESPTVV+XZuHEbZmb/vWXahEgvqU4K+Kfs2bMnlRdND6qqcu/ePYBX1jMFsLW1JWvWrAQGBuLv7//Gtl9WAChRogSqqnLixAlOnz5NREQEhQoVonHjxtja/vfWRf+UBe7Zxc1e3UBVyd3JhYKTpn20mes6J2e0tzyTJQaoikJCwUKsvbMK19MD0Kt66jh8w5Kaq7A0tsR0x1as+/VEiYsj/qsKhK7ZiJo5dQ/XX1YqeNm+oqpJlQrSKyngYawPXR52wCP6KgoKQ3KMYJD9z2gUWaNNCCGE+C9J7/G9+Hger1iK18ihAOQfMpx8/X/6aG3vDdmNy8N2SSX8b8V44vKwHctZw72HXky5NAGAFgVb80vVeRhrjDFbtgirEUNQVJXYb74lbNEKsLRMVfuu2Ycla//lT9ccw9LtPd6M9sTFpx3347wxVoyZmMuNzlm6SjUtIYQQQgjxn9KtW0+ZsS0+KkVRPlpCwIIFSz5KO0J8bClKCpgzZw6KotChQwfs7OyYM2dOihtQFIX+/fu/V1ChoaHExsZiaWmJhYXFa/ext7cnMDCQoKCgN96w9PX1BcDKyoquXbty8uTJZK8vWLCA+fPnU6ZMmfeKTxhG0B+/c7NHZ1SdDsdOnXByn41O//Haj3Qdlmym/sufG5sW5qdT/QBo7dwO9ypzMFaMMJ83B6sJowGIbdCYsPmLwTz1/9F6V6WCtPor7A96+3YjRBdCFm0WFuRbRg3rWulybiGEEEJkLB97fC8+jqfr1+A1NDEJoPDQoTgMGYFO9+GWm/o3d3+3pAfxQNKDedf7A3hx9QUA/UoMYlS5cSiqiuW4UVj8NheA6A4uRLi5g1Hq89Yb2DViOWuZ6e/GvVgvCpo645pjON/bNkz7mwO2BG/E1W8A0Wo0DsZ5WOq4ijIW5dLl3EIIIYQQQgghhBAfUoruuCxYsABFUWjYsCF2dnZJ/1bVN99gevl6am4aRkdHA2D+lgeopqamAERFRb1xn/DwcAAWL16MRqPB3d2datWqERYWxtKlS9m0aRO9evViz5492Nvbv1eM/2Rk9H6zqLVaTbKf4t2eHz6EZ5f2qAkJ5GjWgnJLlxIeGYfyEbMC9E2aEKFdh9kMN7Red9EVdGZhw+z0s9gKwODSPzOi3BgUvR7zEUMwW7IIgJgevYmeNBUjrTZN7esKOqO9+WqlAp1zofe6Bv99/elUHdOeTsH96TQAyliUY6XTWhxMHNIU7+dIPrtpI/2XNtJ/qSd9lzbSf2mTUfvvY4/vZbz84T3bupk7gxKXCcjXuy8lpk4lPDwGRfl442XvWK9kpfshMTHghfICBYXJldzoWaIPxMZi2bs7Jju2ARA9ehwxAwdjlA6z7ZtkbUKTrE1Sffzrrr1YfSyjHg1jWWDibJGaNrVZnH8ZWYyypinWz5F8dtNG+i9tpP9ST/oubaT/0kb6TwghhBDi40hRUkCfPn1QFIVMmTIl+/eHotEkDgJT0oZe/+abXHFxcQCEhYWxevVqKlSoAICdnR0TJkwgICCAI0eOsGbNGgYPHpzKWBUyZUpdeUsbG1n7JCWCTp7Eo30r1Lg4cjdtSsUN61C0WsP0X4c20KENMQkxtN3Tlu13t6OgMLfOXPqW7QvR0dC2A+zYkbj/rFmYDRqEWXq0PWE8NG0KigKqCv+vVGA0YXyqrkEbG3OC4oJoe6Mtf774E4A+Dn2YWWgmphrT9Ij4syWf3bSR/ksb6b/Uk75LG+m/tMlo/fcxx/cyXv7wHu/ahef/l9hy6tWL0vPmoijKR++/wpaFuR5xPXligArEwIZGG2hZtCWEhECrH+HYscSqAMuXY96+PRntN/2y7/xi/Gju0ZxzYecAGJN/DGMKjEGrpC3h93Mnn920kf5LG+m/1JO+Sxvpv7SR/hNCCCGE+LBSlBTQr1+/t/47vVn+fw3JmJiYN+4TGxsL8MblBeDvSgPOzs5JCQH/1Lp1a44cOcLZs2dTHaterxIW9uZqBa+j1WqwsTEnLCwa3cesf/8JCrt2lUuNvkcXHU2WOt9QeP4SIqLisbExMlj/hcWF0f7PVpx4chwTjQmLai2jcYEfCHnwCMs2LTA+ewbVxITIhUuJb/IjBEemT8M162G86h+VCpwLETNkOPE1vnmvNl5ef0efnKT9vTY8ivPDXDFndr55NM/SkqjQBKJISJ+YPzPy2U0b6b+0kf5LPem7tJH+S5vU9p+NjfkHnS31Mcf3Ml7+sJ4fPcLVVi1QdTpytmqD48RphIfHGKT/BtsPpWNE27+XEFABBYblGsE3ORoQ4umFVYsfMLrpiWplTcSa9SR8XTP9xsvp4J/X3uHgQ3R90InnCc+x02ZiUf6l1LWtR1jIm/9O/a+Tz27aSP+ljfRf6knfpY30X9pk1PGyEEIIIcTnJkVJAaNGjaJq1apUqlQJW1vbDx0TlpaWWFpaEh4eTkxMDGZmr86zDggIAHhr2f+XM58cHF5fBv3l9uDg4DTFm5CQugG/TqdP9bH/BZF3bnOlaSN04WHYVq5KsWVr0GuMkv5AMET/BUYH0vrPpng8v4qVsTWr62ygas7q6B/6Ytu6KUa3b6G3sSVs9QbiK1eFdI4v4buGRH/3rzVRU9HG8sfL6X27N7FqLAVMnFjuuJZi5sXlekwh+eymjfRf2kj/pZ70XdpI/6VNRuu/jz2+l/HyhxF6/hzX2rVEjYsj6/eNcJ41D52epCW2Pnb/fWfdkGnZZzHadxhxxnFoY7WMcZhAL4d+qDdvYdPqR7SP/NDZZyd043Z0X5RI9/FyelBVlV8ez2LC4zHo0VPSvBTL8q0mn6mjXI8pJJ/dtJH+Sxvpv9STvksb6b+0kf4TQgghhPiwUpQUsHXrVrZt24ZGo6FYsWJUrlyZqlWrUrp0aYyMUnSK96IoCs7Ozly9ehVvb2+KFy+e7PWQkBCCgoKwtbUle/bsbzxP4cKFAfD393/t64GBgQBkyZIlnSIX6SX6oQ/Xmjcm4cULrEuXocSajWjNDVtGzDf8IS3+aML9MG+ymmVl4zfbKZm1FNrbt7Bt9SPaJ4/R5ciZeIOzWPF3n9AAYvWxDHk4lJVBywH41qY+8/Iuwkb74R8GpNXekN24+7vhHeuFk6kzrtmH0cCukaHDEkIIIT5JH3t8L9Jf+HUPPNo0Qx8VRaaatSm2cBkaA//ubr7wZNaR6cRFx5HXKh+b6+2ggG1BjC6cw7ZdCzTBwSQ4FSR00w70efMZNNY3CdeF0/16J7YGbAWgVaa2THOYhblGShoLIYQQQgghhBDi05Wiu0YDBgzg4sWLXLlyhevXr3P9+nUWL16Mubk5FSpUoHLlylSpUoUCBQqkW2DVqlXj6tWr/PXXX68kBfz111+oqkr16tXfeo6KFStiamrKrVu38Pb2xsnJKdnrx48fB6BcuXLpFrdIu9inT7jWtBFxz55iWbQYJTdsw8jaxqAx3Q6+RYs/mvAs6il5rPKyud4OnGydMTp7Btv2LdGEhpDgXCjxBqdDHoPG+iZP45/g4tOeS1EXUFAYnmsU/bMORqNk/FJre0N24/KwXVIp2lsxnrg8bMdy1kpigBBCCJEKhhjfi/QTdc8Lj5ZN0IWFYluhEl+sWIfG1NSgMZ33P0fbg80JjQuhaKZibKq3gxwWOTH543dsundCiY4mvmw5QtduQc2gSdn3Yrzo/LAtd2JuY6wYMznXdDpmcUFRFEOHJoQQQgghhBBCCJEmKUoK6NWrFwA6nQ5PT08uXrzIhQsXuHz5MkeOHOHIkSMoikLOnDmpUqUKlSpVonLlytjZ2aU6sGbNmrF06VJWrlxJtWrVKFOmDAD3799n9uzZAHTt2jVp/4CAAMLDw7G2tk5aUsDKyooWLVqwZs0afv75Z5YsWZJUFeDkyZOsWbMGMzMzWrZsmeo4RfqKe/6ca80bE+Prg5ljfkpu3olxZsPeNLwQcI62fzYnJC6EInZF2VRvBzktc2Hy+z5senRGiYkhvlx5QtduQjVwrG9yOuIkXR92JCghEDttJtaXWEdFbfVPpiybu7/b32vTAioqCgoz/d0kKUAIIYRIBUOM70X6iPHz5VqzRsQHBWFVshQl1m1Ga2Fh0Jj+8vuDLoc7EK2L5iv7Cqyruxk700yYrVuN1eD+KHo9sXW+IWzJKrC0NGisb/J76D76+vYgXB9GLtNcLHdcQxmzrwwdlhBCCCGEEEIIIUS6eK/6klqtlpIlS1KyZElcXFxQVZU7d+5w8eJFzp8/z+XLl9myZQtbtmxBq9VStGhRqlatysCBA987sBw5cjBy5EhGjx5Nu3btqFChAiYmJpw5c4bY2FgGDx5MkSJFkvafNWsWO3bs4IcffsDNzS1p+08//cTt27e5cOECderUoUKFCoSEhHDt2jUURWHs2LHkzZv3veMT6S8hIhyPVj8SdfcOprly8+XW3Zhmz2HQmI48PkTnQ22JSoiinH151tXdTCbTzMlvcNb7jrBFK8DAN2NfR1VVlgUtYvST4ejQUdysBGsKrqd01i8IDo40dHgp5h3rlZQQ8JKKyr1YLwNFJIQQQnwePub4XqRdXEAA15o1IvbJYywKFabkph0Y2Rh2Gajt3lvoe7wHCWoCtR3qsqzWGiy05pjPmYnV5PEAxLRqS/jMuWBsbNBYX0ev6pnhP5WZ/tMAqGRVme2lt2EaZf3JJNAKIYQQQgghhBBCvEuaFp1UFIUiRYpQpEgR2rVrB8CDBw/Yt28f27Zt48aNG3h6eqb6pmHz5s3JkSMHixcv5urVq2i1WooVK4aLiwvffPNNis5hYWHBihUrWLduHTt37uTMmTOYmZlRtWpVunfvzldfyeyPjEAXE8ONjm2IuHYF4yxZKLllF+YGXmd0r89ueh51IU4fR63cdVhWaw2WRhaYz/0Fq0ljAYhu054I9zmQAdfejdHH8POjgWwKXg/Aj3bNmZXnV2xMrAwc2ftzMnXmVoxnssQABYWCpoUMGJUQQgjx+fnQ43uReglhoXi0+pHoB/cxy5uPL7fswsTAZfhX3V7OkNODUFH5sUBzfq2+EGO0WI4ZgcWi+QBE9f+JyJFjIQOW4A/ThdLHtzt/hP0OQLesPZmUdyr2pnYER306CbRCCCGEEEIIIYQQ75LmJ5mqquLp6cm5c+c4d+4c165dIywsDFVV0Wq1lChRIk3nr1atGtWqVXvnfm5ubskqBPyTsbExnTp1olOnTmmKRXwYqk7HrV5dCTlxDK2VNSU3bsfS2bAPezd6rWPgyT7oVT2NHH/gt6+XYKIxxnLcKCwW/ApAVL9BRI4alyFvcD6Oe0Rnn7Zcjb6CFi1jc02kR9Y+aV4PdW/Ibtz93fCO9cLJ1BnX7MM+Svl+1+zDcHnYLmkJgZc/XXMM++BtCyGEEP81H3p8L96fLjqa6+1bEXHDA+Ns9pTcvBPTnLkMGtOvHrOZeHEMAJ2KdMGt0kw0CTqsB/bEbMtGACLGTyG6V19DhvlGXjF36ejTmnuxXpgqpsx0mEuLzK0xUjSGDk0IIYQQQogMZ9euHUydOpH69RsyZsz4VJ+nYsXEZaJPnjyPUQacaCeEEJ+zVH3rPn/+nBMnTnDixAlOnTpFaGgoqpo4gzdXrlx88803VKlShcqVK2NjY5OuAYvPi6qq3P15IEH7dqOYmPDF6g1Yf1naoDEt8VzAyHNDAWhbqAPuleeg1atY9++F2abEWfcR4yYT3bufIcN8ozMRp+jysANBCYFk1mZmcb6VVLeukebz7g3ZnezB/K0YT1wetmM5az94YkADu0YsZy0z/d24F+tFQVNnXHMM53vbhh+0XSGEEOK/Qsb3GZc+IYGbPToTeuYUWmsbSm7cjkUBJ4PFo6oqUy5NYI7HTAAGlBzMiLJjUKKjseneCdM/D6BqtYTPnk9syzYGi/NtDoTup7dvNyL04eQyzs1Kx3WUsihj6LCEEEIIIYQQQgghPpgUJQXodDouX76cdKPwzp07qKqKqqqYm5tTvXp1qlSpQtWqVSlQoMCHjll8Rh5MmcDTtatAo6HYwuVkqlrdYLGoqsqsa9OZdnkyAD2L92V8+ckoMTHY9OiM6YH9iTc4f5lHbKu2BovzTVRVZcXzpYx6PJQEEihuVoJV+deT1yR9lmFw93dLSggAkmbsz/R3+yjVAhrYNfoo7QghhBD/BTK+/zSoqsrdwf15fmA/iqkpJdZsxLpESYPFo1f1DD/jyorbSwEYVW48/UsOQgkNwbZdS4zPnUE1MyNsySri6n1nsDjfRK/qmeU/nen+UwCoZFmFpflWk804m4EjE0IIIYQQQgghhPiwUpQUUKFCBSIjI1FVFUVRKFy4MFWrVqVKlSqULVsWExOTDx2n+Az5LZiH75zEGUaF3OeQrYHhHviqqsrY8yNZ6DkPgGFlRjHoy5/RhIdh074VJmdOJd7gXLySuG/rGyzON4nTxzHs8WDWvlgFwI92zZiVZx4WGot0a8M71ispIeAlFZV7sV7p1oYQQgghPg4Z338a7k8Yw7MNa0GrpfiSVdhVrmqwWBL0CfQ/0Yut3ptQUJhe+Rc6FnFB8ffHruUPGN28gd7GlrC1m4ivWNlgcb5JhC6Cvn492B+6B4CuWXswPtcUjBVjA0cmhBBCCCGEEEII8eGlKCkgIiICRVGoWrUqgwYNonjx4h86LvGZe7ZpPd5jRwCQf9Q4crXraLBY9Kqen08PYs2dFQBMrjCNbsV7oQQFYdvqR4w9rqK3tkm8wVmpisHifJOA+ABcfNpxPuosGjSMzjmB3tn6oShKurbjZOrMrRjPZIkBCgoFTQulaztCCCGE+PBkfJ/x+f46G7/5cwAo/Ms8showMTVWF0uPoy7sf7gHraJlfvXF/OjUHI2fL7bNGmH04D46++yEbtyO7osSBovzTR7G+tDBpzW3YjwxUUyY4TCb1pnbGTosIYQQQgghXmvJkoUsW7YYd/fZAKxatQIvrzuYmZlRsWJlBgwYTKZMmdi9eyebNq3n0aNH2Nvb891339OhQyeMjP5OfPX3f8aqVSs4ffokQUGBWFlZ8eWXpWnfviNffPFqFbKIiHDWrFnJoUMHCQwMJFeu3LR6R9VcX19fVq5cxoUL5wgOfkGmTJmpWLEyLi5dyZkzV7r2jRBCiNRLUVJAnjx58PPz4+TJk5w6dYqCBQtStWpVKleuTPny5TE1Nf3QcYrPyPNDf3J7YB8AHHr2JW+/QQaLJUGfwIATvdnivRGNomF21fm0cm6L5sljbJs3xsjrLvqsWQndtIOEEl8aLM438Yi6SkefNjyOf4SNxpbF+ZZTy6buB2nLNfswXB62S1pC4OVP1xzDPkh7QgghhPhwZHyfsT3btJ77E8cAUGDsJHIacOmq6IRoXA6349Cjg5hoTFhWaw318n6H1usuts0bo33yGF3efIRs2YU+f8ZbauJkxHG6+nTghe4F9kbZWem4jnKW5Q0dlhBCCCGEeANVVdFHRRk6jPeisbBI9wlaADt2bOPUqRMUKlSY8uUr4uFxlQMH9uPj84CvvqrAunWrKVGiJOXKleP8+XMsXryAsLAwBg4cDICn5w0GDuxDeHg4Dg55qF69BgEB/hw7doQTJ44xZMhwmjRpmtReWFgYvXt34949L7Jls6dKlWo8ffqEqVMnkv8NY/0LF84xZMhPREdH4+RUkC++KIGv70P27NnJsWNHmDt3PkWKFEv3vhFCCPH+UpQUcPDgQXx9fTlx4gTHjx/n/PnzrFixgpUrV2JiYkK5cuWoWrUqVatWxdnZ+UPHLD5hYVcu4dmlA+h0ZG/WEqdxkz7IgCkl4nRx9DrWlT0+OzFSjPjt6yU0KdAUzX1v7Jo3Ruvniy63A6FbdqErmPGu653B2xjg15toNZqCps6syb8RJ9MPF2cDu0YsZy0z/d24F+tFQVNnXHMM53vbhh+sTSGEEEJ8GDK+z7heHP6LO4P6ApCnd3/y9ulvsFgi4iPo8FcrTj49jrnWnFV1NlAjdy2MPK5i2/IHNM+fk1CoMKFbdqHPYDOAVFVl+fMljHo8FB06SpuXYWX+9eQ0zlhxCiGEEEKIv6mqysXv6hJ6/qyhQ3kvthUqUW7/n+l+n/vUqRMMHjyE5s1bARAQEECLFk24ffsWXl53+fXXhZQtWw6AM2dOMWhQP/bs2UX//oOIj49n2DBXwsPD6d69N507d0mK7/TpUwwf7sqMGdMoWrQ4hQsXAWDx4gXcu+dF9eo1mDhxalKy+O7dO5kyZcIr8YWGhjBq1HDi4uKYPHkatWv/PVlt585tuLlNZuTIYWzcuA1jY1m2SwghDC1FSQEAefPmpW3btrRt25b4+HguXrzI8ePHk2YXnTp1iunTp2Nvb0+VKlWS1iS1tbX9kPGLT0jUfW+ut22OPiqKTDVqUXj2fBSNxiCxxCTE0OVIew76/YGJxoQlNVfxXb7v0d70xLZFE7QB/iQUcCJ06270DnkMEuOb6FU9bs8mMTvAHYDa1nX5H3v3HV/j2cdx/HOyd4SITYiZoEUHWqqt0ipqU3vVLErVaqnV0halw9571a5Oo7aatVcIYmbJnufczx+pPE3FzEK/79frefVx7uu+fr9zuU/cOffvuq5pRWbjZp35n7W6OepTN0f9TI8jIiIimU/394+fyL8OcaxjG4ykJLwaN6PYsDu/eMsqEQnhvPtrE/bd3IuLrSuL31hB5bxVsdmzG/dWTbGKjCDxmQqEL12FkStXtuWZlgRLAoOvfMSC0OTtwZp4NGd8wW9wtHLM5sxERERE5L6yaQLZ48jHp3hKQQCAl5cXFSpUYvfunbz+eq2UggCAypWr4ujoSHR0FGFhoezdu4egoJtUrPgcHTt2TtVv1aov0aZNe2bOnMaSJQsZPnw0CQkJ/PjjOmxtbRkyZGiq1ePq12/Atm1b2bFjW6p+1q5dQ3j4LZo2bZGqIACgQYPG7NixnR07trF162beeKN2Rg6NiIg8ggcuCvgnW1tbqlSpQpUqVRg4cCA3btxg+/bt7Nixg71797Jq1SpWr16NlZUVfn5+LF++PKPzlidMQlAQR1o0IjE4GJdyz+A3ewFWdnbZkkt0YjTtNrVk29UtOFg7MPf1xbxWsCY2B/bh/m5jrG7dIsm3LLeWr8Hw8sqWHO8myhxJj0vv8XPERgDez/0BH+f7FGuTdTZnJiIiIk8y3d9nv9iACxx5twmWmGhyVKtB6UmTs62ANjQuhOa/NOKvkEO42+VgWe1VVMz9HLabf8O9Q2tMsbEkVK5KxMJlGG6PV5FIcFIwHQNasyd6FyZMDM03kp65e2fb6mQiIiIi8uBMJhPPbfxV2wf8zc+v3B2veXh4ANyxopvJZMLFxYXY2Fji4xM4dOgAAK+99nqafb/xRm1mzpzGwYPJ7U6ePEFsbCzlyj1Djhwed7R/5ZUadxQFHDy4DyBVccI/Va5clR07tnHw4H4VBYiIPAYeqSjg3/LkyUOTJk1o0qQJ4eHhrF27lvnz5xMYGMjRo0czIoQ8wZKiojjaqglxARdwKOxNucUrsXFxzZZcIhMiaPlbU/be2I2TjTOL31hB1XwvY7tzO+6tmmGKiSbxuRcIX7wCI42bn+x0OeESrS8052TccexN9kwo9C1NPVrc/0QRERGRh6T7+6yVEBzMkeYNSQwOwtmvHGXnLsy2AtqbsTdp+nN9ToadIJdDLpbXXku5XOWx27AOt64dMCUmEv/6G0TMWgBOTtmS492cjD1Bm4DmXEq4iKuVG9OKzKKmm758FBEREXmSmEwmrJ2dszuNx4Kbm1sar5r+PpZWce7/CxOCgoIAyHeXbb7y5y8AQEhICADBwcntve4ySe52+3+6fv06AIMG9U/znNtu3Lhxz+MiIpI10l0U4O/vz8GDB1P+d+nSJSB5/x8vLy+qVKmS7iTlyWVJTORE57ZEHj6Eba5clF/2A/Z58mRLLhEJ4TT/pSEHgvbjZufO0lo/8JzXC8kzntq3whQXR0L1VwmfuwhcXLIlx7vZG72HDgEtCU4KxssmD/O8F1PJ+fnsTktERESeQrq/z1rm6GiOtmpC7IXz2BcqTPmlP2DjmtaXf5nvRsx1Gv1Ul7PhZ8jjmJcf3lpPyRylsF+5DNde3TCZzcS904jI76dDNhUt3M1vET/T9WInoiyReNsVZWHR5ZR0KJXdaYmIiIiIPDIbm/Q8vjHuedRsNgNga5sc434rHVhb37lSrcViAeCll6rhco/v04sWLXbPvkVEJGs81L8qCQkJHDlyJOULwkOHDhEREQEkf0no4uLCq6++StWqValSpQo+Pj6ZkrQ8GQzD4MyHvQnd/DtWjo6UW7gcJ58S9z8xE9yKD6PZLw04HHwID3sPVtReS3nPZ7HbuAG399olz3iq/RYRM+aBg0O25Hg3S0MX0T+wDwlGAuUcn2G+9xIK2BXM7rRERETkKaD7++xlSUrieJf2RB46iI2HB+WXrsI+T95syeVa9FUa/VQX/4hzFHAuyA9vraeYmw8OC+fh8mFvTIZBXItWRH79HaTxhWB2MQyDyUHfMvLaUAwMXnKuxizv+eS0yZXdqYmIiIiIZBtPz9wAXLt2Nc3jV69eASBnzuT75ty5b7e/lmb72ysP/FOuXJ5cunSR5s1b8sILL6Y7ZxERyVwPVBTwxRdfcOjQIY4fP05SUhKQ/OWLra0tzz33XMqXhOXLl8cqm/a9lMfPxfFfcH3pIrC2xnfGXNwqZc/M9tC4EJr+0oCjIX+R0z4nK99cT9lc5bBfvRLXHu8lz3iq35DIyTMeqxlPZsPM6GvD+T5oEgB13d/h20JTcbbW8lkiIiKSPrq/z36GYXBu8EeE/vYLVg4OlFuwHOcSJbMllytRgTT86W0CIi9QyKUwq97aQBFXbxxnTMHl44EAxHboTNSYcfAYXQ/xlngGBPZlSdhCANrk7MDYguOwNdlmc2YiIiIiItnr2WcrsmHDOjZv3kSTJs3vOL5p068AVKxYCYAyZXxxdXXl9OmTXL9+jbx586Vqv2vXjjv6qFixIocOHWDXrh1pFgV8++1E9u3bS6NGTWnQoFFGvC0REUmHByoKmDNnDpC8hEzp0qWpUqUKVapU4fnnn8fhMZtVLY+H68sWE/Dl5wCUHDsez1pvZUsewbHBNP3lHY6HHsXTwZOVb67HN6cf9ksW4vpBz+QZT01bEDlpMqRrOaaMFWWOoselzvwcsRGAfnkGMCDPEKxMj8+XsCIiIvLk0v199rv8/TdcnTcLTCbKTJmFezbNrLkUeZFGP9XjUlQAhV28WfXWegq7FsHxmwm4jB4OQEz3XkQPHw33WVI0K4UkhdAhoBV7ondhhRWj8o+hs2e3+y57KiIiIiLyX1Cz5htMm/Y9Bw/uZ86cmbRv3ynlXnn37p0sXDgfa2trGjZsAoCNjS2NGzdj7txZjBgxlHHjJuLsnLwlwObNm/jll5/uiPHOO41ZvHghK1Ysw8+vLG+8UTvl2Pbtf7Bs2WLMZjO+vn5Z8I5FROR+HugpaLNmzahcuTJVqlTBw8Mjs3OSJ1zYjm2c7tcLgEK9+pK/XcdsySMoNogmP9fjZNgJcjt6serNDZTyKI3DrOm4Du4PQGzbjkR9OeGxmvF0NeEKrS8051jcEexN9kwqNJlGHk2zOy0RERF5iuj+PnvdXLea8yOHAuAz8nNyv10vW/IIiLhAo5/qEhh9GW/Xoqx+60cKOBfAaexonCd8CUD0hwOJGTDksSoIOBt3hlYXmhKQcAFXKzdmFJnLa241szstEREREZHHhoODI5999iX9+vVi2rTJbNy4gZIlS3Hz5g2OHj2CtbU1ffv2x8+vbMo5HTp05siRvzh4cD+NG9fn2WcrEhoaypEjhylXrjxHjx5JFcPLy4thw0YybNgQhg4dzKxZ0ylSxJubN29w8uQJAPr27U/JkqWy9L2LiEjaHqgoYOTIkZmdhzwlok+f4lj7VhiJieR+pxHFPv40W/K4EXODJj/X4/StU+RxzMuqtzZQIkdJHKd+h8uwIQDEdO1B9Mgxj9UXnIdjDtLmQgtuJF3H0yY3872X8JzzC9mdloiIiDxldH+ffcL/3MvJnl0AKNC5KwW79MiWPC5EnKfRT3W5Eh1IMTcfVr/1I/mc8uE86lOcvpsIQNQnI4jt3Tdb8rubbZFb6XSxLeHmWxS282ZR0eWUciid3WmJiIiIiDx2ypd/hvnzlzBv3mz27NnNtm1byZEjBzVr1uLdd1unKggAsLe3Z+LE71i6dBE//rie3bt34umZm549e1OmjC/vv9/tjhivvvo6c+YsZOHCeRw4sI+dO7eTM2cuXnqpGi1btqFSpeey6u2KiMh9mAzDMLI7iSeZ2WwhNDT6oc6xsbHCw8OZsLBokpIsmZRZ1ou/cYODdV4n/vIl3J5/kWd+WI91Jiw/e7/xuxl7k0Y/vc2ZW6fJ55Sf1W9toJh7cRy/nYjLqGEAxPT5kOghwx6rgoANt9bR89J7xBqxlHHwZUHRZRS2K5LhcZ7W6y8raOzSR+OXPhq/R6exSx+NX/o86vjlzOmMtfXjs5JReuh++f9izvtzsM7rJIWGkuvNOpSdswiTtXWGx7nf+F2IOE/Dn97mavQVSriXZNVbG8jjmAfnYUNwmvY9AFGffUHse90zPLf0WBAyl4GB/UgiiRecKjO36GI8bTwzNMbTeu1lFY1f+mj80kfj9+g0dumj8Usf3S//t8TFxeHvfx5Pz7zY2dlndzoiIiJPhYSEeIKDr+PjU+ye24LqzkkyhDk6mmNtmhF/+RKORYtRdv7STCkIuJ+bsTdp/FNdztw6TX7nAqyps5Fi7sVxmjgupSAg+qPBj1VBgGEYfHNjAh0vtibWiOU115psKP5rphQEiIiIiEj2SAgJ4ei7jUkKDcX12Qr4TpmVKQUB93N7y4D/FwT8mFwQ8PGAlIKAyC8mPFYFAWbDzKdXP+bDwN4kkUTjHM1Y6bMuwwsCRERERERERESeVg+0fYDIvRhmMye6dyby8CFscuak3JKV2OXKleV5BMUG0eSn5C0D8jnlZ9VbGyjqVgyncWNx/vJzAKIHfUJMvwFZntvdJBqJfBT4AYtDFwDQKVcXRhUYi41JH00RERGRp4U5Lo5j7d4l9sJ57AsVpuyC5Vg7O2d5HgERF2j409tciQ78f0GAQ25cBvbDce4sDJOJqHGTiGvTPstzu5toczTdL3Xm54gfARiY92P6eQ3A9JgU+IqIiIiIiIiIPAn05FHSzX/kMEJ+/hGTvT3l5i3FqVjxLM8hODaYJj/X49Stk+R1ype8ZYBrMZzGjsZ5wpfA47cnarj5Fh0D2rI9aitWWPFZgS/o5Nk1u9MSERERkQxkGAanP+hJxJ97sHZzp/zildjnyZPleVyKvEijn+pyJTqQ4u4lkrcMcMiNy0cf4LhgLobJROTE74l/t3WW53Y3NxJv0OZCMw7HHsLeZM83habQ0KNJdqclIiIiIiIiIvLEUVGApMu1RfMJnPItAKW/mYL7i5WzPIeQuBAa/1yPk2EnyOOYN7kgwM0H589G4PTNBACihn9GbI9eWZ7b3VxOuESrC005FXcSJytnZhSZwxtub2Z3WiIiIiKSwS5+/RU3V60Aa2vKzl6Ac6nSWZ7D5ahLNPzpbQKjL+PjVpzVb/1IHvvcuPR9H8clCzGsrIj8Zgrxzd7N8tzu5lTcSVqeb0Jg4mVyWudkftFlvOD8YnanJSIiIiIiIiLyRFJRgDyysJ3bOfPRBwAU6T+IPA2zftZOaFwIjX+qx8mw43g55mF1nR/xcSuO86hPcfpuIgBRo8cS26VHlud2N4djDtL6QnNuJt0gr00+FhVdTjmnZ7I7LRERERHJYDfXrSZg7GgASo4dj0f1GlmeQ2DUZRpufJvLUZco5ubD6jrJBQGuH/TEYdni5IKA76cT37hZlud2N39EbqFjQBsiLRH42BdnUdEVFLP3ye60RERERERERESeWFbZnYA8mWLOn+N4x9YYSUl4NWyM90eDszyHW/FhNP2lASfCjpHb0YvVb/1IcbfiOI8enlIQEDlm3GNVEPBT+I808K/DzaQb+DqU5ecSm1UQICIiIvIUijh0gFO9ugFQsGsP8rfrmOU5XI2+SsOf3uZS1EWKuhVj9Vs/ktchD659308uCLC2JnLa7MeqIGBxyALePd+YSEsElZ2r8mPx31QQICIiIiIiIiKSTioKkIeWeCuMo62akRQWhmul5yg1cTImkylLc4iIj6DJxoYcDfkLTwdPVr/1IyXcS+D8+Uicvv0aSC4IiOvUJUvzupeZQVNpH9CSGEsMr7q+zvriP5PfrkB2pyUiIiIiGSzu6hWOtX0XS2wsOWvWwmf4Z1mew/Wo6zTY8DYXIwMo4urN6rd+JJ9jXlz69cJh6aLkgoCps4h/p1GW55YWwzAYe20UHwT2JIkkGuVoyopia8lpkyu7UxMREREREREReeKpKEAeiiUxkeOd2hHrfw77AgUpO3cJ1o6OWZpDVGIUdVbU4WDQfjzsPVj55npKupfEaewonCaNByDy8y8fm4IAi2Fh2NUhDLk6AAODNjk7sLDoclyt3bI7NRERERHJYOboaI61aUHCjes4l/HFd9psTNbWWZpDSFwwNZfV5Fz4WQo6F2LVWxvI75gPlw9747h4QfKWAZNnPDYFAQmWBN6/3JUJN78CoJ/XR0wpPBN7K/tszkxERERERERE5Olgk90JyJPDMAzODRnAre1bsXJyptyCZdjnyZOlOcQmxdL692bsvLoTNzt3VtRei6+HL05fjMb563EARI0eS1znblma193EWeLodakba8NXAfBx3k/p7dUvy1dWEBEREZHMZ1gsnOzxHlFH/8LW05OyC5Zh45q1haDLzi7ho119iDPHYWOyoWe5PhRyKohL/z44LpqfXBDw/XTiGzbJ0rzuJsIcToeANmyP2oo11owrOIlWudpmd1oiIiIiIiIiIk8VFQXIA7s6ewZX580CkwnfqbNwKVsuS+PHm+Npv6kl269uw8XOhZV11lA+57M4ffk5zhOSZxVFjfyc2C49sjSvuwlLCqVdQEv2RO/C1mTLpEKTaeLRPLvTEhEREZFMcuGL0QT/tAGTnR1l5y7BsXCRLI2/4txSem3vmvLnJCOJIbv603DSj+RevSW5IOC7acQ3bpaled3NtcSrvHu+CSfijuFk5cysIvN43a1WdqclIiIiIiIiIvLUUVGAPJCwHds4+8lAAIp9MgLPN+tkafwEcwKdN7dly5VNONk4sbHJRsq6VMTuizE4jxsLQNSIz4nt9n6W5nU3lxIu8u75xpyNP4OrlRtzvRdRzfWV7E5LRERERDLJzbWruPT3ylWlJnyL+wsvZmn8qMQo+u/8gIbH4NPfoWQwnMkFV92h1JktGCYTkd9OJb7J41GkejL2BO9eaMzVxCvktvFiSdGVlHd6NrvTEhERERERERF5KqkoQO4r9mIAxzu3BbMZr8bNKPR+nyyNb7aY6fHHe/xy+SccrB1YXHs51QpVI2bEaJy++AyAqGGjiO3+eBQEHI35i3cvNOFm0g3y2xZgcdGV+Dr6ZXdaIiIiIpJJIo8e4VTv7gAU6tGbvM3ezdL4cUlxtPv9Xd78K4ZVC8ECWAHlb8AzN5L/HPXNFOKbtsjSvO5mR9Q22l9oRYQlnBL2JVlS7AcK22XtqgoiIiIiIiIiIv8lKgqQe0qKiuJY23dJCg3F9dkKlJrwLSaTKcviWwwLH+7szbqA1dha2TLntYVUL1ADvvkGp+FDAYgeMozYLC5UuJutkZvpENCaaEsUZRz8WFJ0JfntCmR3WiIiIiKSSRKCgznW7l0ssbF4vPo6xYaOyNL4iZZE3tvSju3X/uDw7/8vCAC4fdd+w8MGm+YtszSvu1kT9gM9L3ch0UjkRecqzPdegodNzuxOS0RERERERETkqWZ1/ybyX2VYLJzq3Z3ok8exze2F39zFWDs6Zl18w2DY3sEsPrsAK5MV02rM4fVCtbCbOwv6JBcBRPcbQMwH/bMsp3v5IWw5rS40JdoSRTWXV1hf/GcVBIiIiIg8xSwJCRzv1Ib4wMs4FvPBd9psTNbWWRbfbDHTa1vXlBW1fEOs0/wFL3d01hX13sv0oMl0udSBRCOReu4NWFFsrQoCREREREQkSxmGkd0piIhkC60UIHd1ccKXBG9Yi8nOjrJzFuGQP2sfcH956HOmn5gCwMSXv6eud33sly7CuV9yQUBcrw+IGfhxluZ0N1OCvuPTq0MAaJCjEd8Wmoa9lX02ZyUiIiIimencJwMJ370TaxdXys5fim0OjyyLbRgGA3b1ZdX5ldiYbJj92gJMJUZgnDjGP0sADJMJo0TpLMsrLYZhMPracL4N+hqATrm6MLrAF1ibsq6AQkRERETkcTdjxlRmzZr+UOesWrWB/PnzZ1JGT5fIyEhmzJhKqVKlefvtetmdTrpdunSRefNms3//PkJCgnFycqJMGV/efbc1lStXvaO9xWLhxx/X8cMPK7h06RK2trY888yzdOzYmdKlfdOMcebMaWbNms7x40eJjIyiSJEiNGjQmIYNG9+xovTGjRtYvHgBgYGXyZMnLw0bNqZZs3exsrqzdP3mzRts2LCeHTu2ce3aVSIjI/DwyEn58s/QsGFjnnvuhYwZJCA8PJzly5ewc+d2rlwJJD4+Hnf3HPj6+lGzZi1q1qyVpatjZ4a1a1czZswo6tSpx7BhGbt64WefjWD9+rXs2PEnNjZpP1LetOk3Vq1awZkzp4mNjSV3bi+qVHmJ9u074eXldUf7kJAQ5syZwZ49uwgKCiJXLk9ee60mHTp0xtnZ+Y72j3LtPq7WrFnF2LGjWbx4BcWK+WR5fBUFSJqCNm4g4MvPASj55de4v/BilsaffPRbxh/+AoAxlb+iRYlW2P+wHNc+PZIb9OpF7PBRYM7eqj6LYWHEtaFMCfoWgC6e3RmZfwxWJi3CISIiIvI0uzpvNlfnzgKTiTJTZ+JcslSWxTYMg+H7PmHBmblYmayYWmMWNQvVJrH8WmxOHPt/O5MJk2EQ039QluX2b4lGIn0vv8/ysCUAfJz3U3p79Xviv3QREREREcloxYuXoHbtt1K9Fhoayr59e3F0dKR69Rp3nOPklHUr+z7pJk0az4YN6xg8eGh2p5Juf/11mA8+6ElsbCyFChXmpZeqERR0k71797B37x569fqAVq3apjrnyy8/Z82aVbi5ufH88y8QGhrKtm1b2bVrB+PHT+LFF6ukan/gwD769u1FUlISzzxTAVdXV/bv38eXX37OsWNHUz183rBhHaNHD6dXr768+urrHDy4nzFjRhETE0PHju+l6nf16pVMnDie+Ph4cuf2onjxEjg6OnLxYgCbNv3Gpk2/0aJFSz7IgBWiT58+Re/ePQgPv0X+/AWoUKES1tbW3Lhxgx07tvHHH1tYv34tX331Nfb2muT5b8uWLWH9+rX3bPP111+xbNkSbGxs8PUti7u7O6dPn2LVqhVs2fI7kyfPoGjRYintg4OD6Ny5PdevX8PHpzhVq77MyZPHWbhwHrt372T69Nk4O7ukivGw1+7jbPfuneTNmy9bCgJARQGShuhTJznVswsABTp3JV/LNlkaf8HpuQzfl7wCwMeVPqWTb1fsNqzD9f2umAyD+HYdsJ80CW7FANlXFJBgSaDP5R78cGs5AEPzjeT93H30BaeIiIjIU+7Wnt2cHZz8BUXRIcPwrPXWfc7IWBP++pIpx5KLUie89C31izbEYe4sHJcuBMCS2wuryAjMxUsQ/eEgErJpFkyUOYpOF9uwJXIT1ljzdaHvaJGzVbbkIiIiIiLyuHv11dd59dXXU7124MB+9u3bi7t7DkaM+CybMns6WCxPx7YBSUlJjBgxlNjYWHr06E2bNu1Snkns3buH/v378P3331C5clV8fIoDsG3bH6xZswofn+JMnjwdd/ccAGzevImhQwcxatSnrFy5FgeH5CKThIQEPv30Y8xmM+PGTaJq1ZeA5Ae6PXt2ZePG9VSv/go1arwGwJIlC/H1LUurVsnPkvLnr8/u3TtZvHhBqqKABQvm8v333+Dm5s6wYSN59dXXU60ksHv3ToYNG8LSpYtxdHSia9ce6RqnwYM/Ijz8FoMGfUyDBo1THb98+RKDBvXnzz/3MHXq9/Tp0++RYz1tzGYzU6d+z4IFc+/Zbt++vSxbtgQPDw+++WYKJUqUBCAxMZEJE75k9eofGDXqU2bPXpByzldfjeX69Wu0a9eR7t3fT2k/fPgnbNr0G9OmTaFfv49S2j/stfs4S0xMZN++P+8o/spKms4sqSRFhHOsfUvM0VHkeLk6PiM+z9L4q8+vpP/O5O0BepXrS59nPsR28++4de2AyWwmrnlLYsZPgmx+8B5ljqL1hWb8cGs5NtjwbaGp9PL6QAUBIiIiIk+5+OvXON6pDUZSErkbNKJw76z94mD68cl8cTD5y8DRL46lZck22K9YisvA5Dxi3v+A8FP+EBtL5Lbd2VYQEJwUTGP/umyJ3ISjyZH5RZeoIEBERERERCSdDh48wNWrV/D19aNt2/apnkm8+GJl3nmnERaLhd9//zXl9cWL5wPQq9cHKQ9VAV577XVq136L4OBgfvvtl5TXf/llI8HBwbz2Ws2UggAAT8/cDBgwGIClSxelvH7lSiAFCqTefjp//gJERUVx61YYkLwVwbRpk7G3t+f776fx+utv3LG1QJUqL/HZZ18CsGjRfIKDgx5pjCB5NYWrV6/w7LMV7igIAChUqDDDho0EYO3aVRjG01E0kl6HDx+kc+d2LFgwlwIFCt6z7YYN6wDo1KlLSkEAgK2tLf36DcDNzZ0TJ44TGHgZSC7E2LZtK3ny5OW997qlaj948Cc4O7uwdu1qYmJiUo497LX7ODt8+CAxMdGpPlNZTSsFSArDYuHk+12JPe+PfcFC+E6fi5WtbZbF3xz4Gz3/6IKBQfvSnfjkueHY7tmFe4dWmBITiavfkMiJ32OTxh40WSkkKYRWF5pwMOYATlZOzC6ygNfc3sjWnEREREQk81kSEjjeqS2JQTdxLuNH6a+/z9Ki0OXnlvDJ3uStAAZW/Jgufj2w27gB197dMRkGsR3fI3roCGyyuVA1MOEyzc434Fz8WXJa52RR0RVUcn4+W3MSEREREXlanTp1gvnz53Lo0AGioqLInduL6tVr0L59R3Lk8EjVtnLlipQuXYZvvpnCjBlT2bp1ExERERQqVJi2bTtQq9ab3Lhxne+//4Y9e3YDBqVKlaF3776pHvrNmDGVWbOm8/nnX2IYBnPnzuLSpYt4eHjw0kvV6NjxPXLl8rwj1+DgIObOnc3OndsJDg7CxcWVSpWeo0OHzimz2m/r3v09Dh06wKJFy5kw4UuOHj2Cm5sbH3zQn5o1a5GUlMTGjRv49defOHv2LFFRUTg7O1G8eEkaNmzMG2/UTvW+bxszZhRjxozik0+GU7du/ZQ433wzhRf+tY3y7WXxa9d+K2WlhgMH9tOzZxeaN3+XAgUKMWfOTGJiYihdujRTpszEysoKs9nM+vVrWLduLQEB5zEMAx+f4jRo0Ji33653x++RDRq8zfXr11JyupeYmGh8ff2oUqVqmscLFy6SMtYAUVGRHDnyF05OTjz33At3tH/llVfZuHEDO3Zsp169BgDs3LkDIM0tKypUqISbmxt//XWYyMhIXF1d8fLKc8cD/KCgmzg4OKQ8yF2xYilJSUk0adIs1bX0by+88CKvvPIqJpOJmzdv4umZ+57jcTdhYaEA9/ydvVSp0tStWx9bW1vi4uJwdEyebX77mvjxx99Yu3YV69atISwslHz58lOnTj3efbcVtmk8O3uYzyJAZGQkCxfOY+vWzVy7dhUHB0fKlStHmzYdePbZCne0j4qKZMGCuWza9BtBQUHkz1+AFi3uXnx/+3106tQl1UP4e+nf/wOioqKoXfst+vUbQO3ar961rYODA8WK+fDMM3fmamtrS758+YiICCc4OIiCBQuxe/cuDMOgatWXsbFJ/Xj69s+Cbdu2sn//PqpXf+WRrt3bn9kPPxxAqVJlmDlzGseOHcXa2opnn61Inz79KFiwENu2bWXu3Nn4+58jZ86cVK/+Ct26vZ9yDUDy5zI2NpZ1635i3rzZ/PTTj4SEBJMnT16aNGlO8+bvEhERwZQp3/HHH1uIi4vDx6c43br1pFKl5+7Id9eundjZ2aV6LwEBF5g9ewYnThzjxo0bODs74+tbliZNmmdK8YCKAiTFxYnjCPl5IyZ7e/xmL8DO885/tDPLvpt76bCpNUlGEo2KNWFslfHYHv0Lt1bNMMXGEv/6G0ROngHW1lmWU1quJATS7HwDzsafwcPag8VFV+oLThEREZH/iHPDBhOxby/Wbu74zVmItbNzlsX+9dJP9NmevHRiV7+e9HtmALZ/bMGtS/vkFbWavUvU519l+4paZ+JO0+x8A64mXqGAbUGWF1tDCYe7f+EjIiIiIpLZbNevxeHLMVifO4u5eAniBgwmsd472Z1Whvjppx8ZPXoEFouZ0qXLkDdvPs6ePc3SpYvYunUzkyfPIH/+/KnOiY6O5r332hMUFESlSs8RFhb69x7xQ7h16xbz5s3GysqKZ5+tQEDABfbt20vXrp1YuvQHvLy8UvWV/EBuGwULFqJq1Zc5ffoUP/ywgp07tzN58sxUsc+ePUPv3j0ICwtNaR8UFMTvv//K9u1/MGbMuDQfgg0e/BExMdFUqfISp06dpHTpMhiGweDBH7F9+x+4ubnh51cOOzs7AgIucPDgfg4e3E9oaCjNm78LQO3ab3Hs2FGuXAmkbNlyFChQkIIF7z0L+n52797F5cuXqFixEiaTiTx58mJlZUVSUhIDB37Izp3bcXFxoVy58tjY2HDw4AFGjx7OwYMHGDZsxCPHrVHjtZRl+9Ny4sQxgJS/q4CAC1gsFooU8b7jQSyQst+7v/+5lNcuXDgPcEehBoCVlRVFinhz9OgRzp/355lnnqVu3fpMmfIdW7ZsokaN1zhy5C+2bNlM/foNMJlMmM1mtmzZBMAbb7x53/f4xRfj79vmfooXLwHAoUMHmTFjKi1atMLV1fWOdp98MvyufYwZM4odO7ZRtmw5SpUqzcGD+5k8+Rv27dvL119/g43N/wsDHvazePPmDXr06EJg4GW8vPJQuXJVIiMj2L17F7t372LQoE+oX79BSvuIiAh69HiPc+fOkju3Fy+9VI1r164yZsyolL/DjFC1ajWaNWtO2bLl79t28OChdz0WHR1NQEAAAF5eeQC4cMEfAB8fnzTPKVq0KNu2bcXf/yzVq7/ySNfubbt27WTixPEUKFCQ559/gZMnT7B9+x+cPn2Kd99txaRJE/D19ePFFyuzf/+fLFu2hOvXr99x7ZnNSfTp04MTJ45TqdLzFChQgAMH9vP1118RHR3Fr7/+zK1bYfj5lSMo6CZHj/5F7949mDVrHqVLl/lXTjt49tmKKYUHFy6cp1OndimFPiVLliYoKIhdu3awa9cOPvnkU+rWzdh/q1QUIACEbP6NgC+SK91KfjEBt2cr3ueMjHMq7CStfm1KrDmW1wu+wTfVpmJ75gzuzRpgFRlBQtWXiZi9EOzssiyntJyNO0Oz8w24khhIftsCLC+2hpIOpbI1JxERERHJGteXLebq7BkAlJk8Hadiaf8Smxn2XN9N5y3tMBtmmhV/lxEvfIbtvj9xb/cupoQE4t+uT+TE7yGbV9Q6EL2PlheaEGYOo6R9KZYVW00Bu/R90SYiIiIikh6269fi0q4VhsmEyTCwPnEcl3atiJq36IkvDLh4MYAxY0Zhb2/PuHETqVixEgAWi4Xp06cwd+4sRoz4hGnTZqc67/LlSxQtWoyVK9eSM2dOACZM+Irly5cwYcKXvPRSNT777AscHBxISkqiZ88u/PXXYX777WdatWqbqq8dO7bRpElz+vbtj7W1NUlJiXz22Uh++ulHxo//gvHjJwGQlJTI4MEfERYWygcffEjz5i1TZnBv3/4HQ4YMYPjwj1m2bDUeHqlnVMfHx7No0Qrc3d2xWCxYWVmxZcsmtm//A1/fsnz33VScnJxS2s+fP4fJk79lxYqlKUUBI0Z8xsiRn3LlSiD16jXgnXcapnv8L126yPvv96F163Yp4w4wZ85Mdu7cznPPPc/o0WNTZoiHhITQt28vNm5czzPPPJsqh+++m0pSUhKe6Zyoee7cWX777RdMJhM1arwOQFBQ8gz+tFZu+OfroaGhKa89+DkhALRq1Zb4+DhGjx7B0KGDsbGx4Z13GtKjRy8AQkKCiYqKwtra5o4HpZnF27so9eq9w/r1a5k1azrz5s3mmWeepUKFSlSoUJGyZctjb29/zz527drBqFFjUladCA0NpXfv7uzbt5dly5bSqlUb4NE+i59++gmBgZdp2bINPXq8n1JgcOzYUfr2fZ+vvhpDuXLlUx58T58+hXPnzlK9eg1GjRqTkvu6dWv4/PORaeb/6acjiYuLI0eOHA88biNHfvbAbe9lzpyZxMfHUapUafLnT95a4v7XVfKqELevxUe5dm/bvXsnrVq14f33k7f9jo6OomXLZty4cZ1Jkybw6aejeOuttwE4f96fNm1asG3bVsLCwlL9DIqKiuLy5cssXLicwoULA7BkyUImTZrA9OlT8PX1Y9q02bi7uwMwdOhgfvvtFzZsWJvqWr969QoXLwbQsOH/t7JYvHgBMTHRDBr0caotLrZu3cygQf2ZOXN6hhcFZO+3RvJYiA24wMluncAwyNemA/latsmy2JciL9LslwbcSrjFc14vMPPV+TgEXsW96TtYhYaSWKEiEQuWwj+W7MgOh2IOUO9cLa4kBlLcvgQbiv+qggARERGR/4jIo39x5qMPACjSfxCetd7KstjHQ4/R+vdmxJnjqFXoTb5++Ttsjx3DvWUTTDExJNR4jYips+DvqvmgDevYU60yPzg6sqdaZYL+3uMvs22N3Ezj8/UJM4dR0akS64r/rIIAEREREcl2Dl+OSSkIADAZBobJhMNXY7M5s/RbunQxCQkJdO7cNeUhJCTP5O7atQfFi5fgr78Oc+zYkTvOfe+97ikFAZA8k/62Pn0+xMHBAQAbGxuqVXsFIGVf8H8qUsQ7pSAgub0tAwd+TI4cOdi5czvXr18DYMuWzQQGXubll6vTokWrVEu6V6v2Cg0aNCYiIoL169fcEaN27bdSHrjd3oM+KSmJatVeoWfP3qkKAgAaNWoCwLVrV+82dBnC2tqaxo2bpfzZysqKxMREli1bjK2tLcOHj061ZHyuXLkYMiR5ZvXixQtS9VWwYCG8vYvi4nLnTPYHFRoayuDBH2E2m3n77XopS/THxcUCpPyd/tvth8u32z3MObGxye2sra15773ubNq0jfXrf2Hz5h306/dRyvnBwcEAuLu7p1wrWWHgwI/p0qUHTk5OJCUlceDAfmbOnEbPnl2pVetVBg3qz5kzp+96fr1676TahiJnzpwMGTIMgFWrVqS8/rCfxWPHjnLo0AFKlCjJ++/3SbXiQNmy5ejQ4T0SExNZvnwJAAkJCfz44zpsbW0ZMmRoqmKG+vUb8PLL1dPMP2/efHh7F01z64LMtHnzJhYvXoCVlRW9e/dNef3Br6uYh2r/z2v3Njc3d7p1ez/lZ42zswsvvVQNgHLlnkkpCAAoVsyHwoWLYBgGV67c+XOuZcs2KQUBALVr10n5/1279kz5+QSkrOLx75+Xu3Ylb8lRterLKa/d/lzkzZsvVdsaNV6jf/9B9O7dL6XYKKOoKOA/zhwTw/GObUi6dQvXipUo8fmXWRY7KDaIpr+8w/WYa5TOUYZFbyzHNTicHI3rY339GkmlyxC+5AcMV7csyyktf0RuoaF/XULNoVRwrMj64r9S0K5QtuYkIiIiIlkjMSyU4x3aYImLI2fNWnj3H5RlsQMiLtD8l4ZEJITzYp4qzHh1Hg7nA8jRvAFWEeEkvliF8DmL4O9fhIM2rON4x9ZEnTiOJS6OqBPHOd6xdaYXBqy9tYpWF5oSY4nmFZdXWVlsPTltcmVqTBERERGRB2F97mxKQcBtJsPA+uyZbMoo4xw8uB8gzb2rTSYTL75Y5e92B+44XrZsuVR/vj0z1sHBIdXDLyDlQXV8fMId/dSs+cYdD3kdHBxSYh84sP++uQJUqVI1Vbt/Smv/+TfeqM1XX32dqr+4uDhOnz7Fzz9vBMBsNmM2m9OMlxEKFiyUav9xgNOnTxIVFUWRIt54eua+45zSpcvg4ZGTixcDCAkJzrBcgoKC6NmzC5cvX6JMGV/69x+YcszKKvnvx3SfreYsFgvG35+V28UXD3LOv3l4eKScf9vtpd8z8+8jLTY2NnTs2JkNG35l9Oix1KvXgIIFk5/txMfHsXXrZjp0aM2qVSvTPL9WrTu3OvD19SN3bi+uXAlMKTx52M/i7fYVKlS6Y6zgn5+H5PYnT54gNjaW0qV903zA/8orNe4+CFls06bfGDZsMBaLhe7d36dSpf9vv/3g1+Lt6/Dhr93bSpUqja2tbarXPDxyAGn/TLnXz7m7/bxMq6+79bNr104KFixI4cJFUl6rUCF5xfaPPx7E+PFfsnv3TuLi4gBo0qQZr732eprXR3po+4D/MMMwOPPRB0QdO4Ktpyd+sxdidZ/lUjJKZEIELX5txIWI8xRyKcyy2qvJGQPuzRpgfSkAs3dRwlesxciZvV8mbri1jm6XOpJgJFDd5VXmei/ExfrRq/VERERE5MlhmM2c6NaJuEsBOBTxpszkGZiyaIn+GzE3aPrLO9yMvYGvR1kW1lyG8/Xg5BW1goNJLP8s4YuWg7NzyjkB48aCyQS3fxk2DDCZCBg/ltx162dKnvND5vBR4AcYGLzj3ojvCk/D3iprfqcQEREREbkfc/ESWJ84nqowwDCZMKfxUOhJc/36dQDatWt5z3Y3bly/4zU3t39PxEt+6OaaxgS9ez2QK1iwcJqv58mTF4Dg4KBUuU6aNIFJkybcI9cbD5BrsujoKNasWcXu3bu4ePECwcHBGIaRKt9/PyjMSGnldft9njt3lsqV771F840bN+66LPrD8Pc/x4cf9uH69Wv4+voxceL3ODj8v1jB0TF5JYX4+Pg0z7/9uqOjY8rYOTk5ERERQXx8PHZpbOt8+5x/r9JwN7ffZ2RkBElJSWnuD5+ZnJycqFmzFjVr1gLg5s2b7N69k2XLFnP+vD/jxo3lmWeexceneKrzChW62/Wdh6CgmwQHB5EvX/6H/izebr98+ZKU1QDu1f7258jLyyvNdreX589uy5YtZtKkCVgsFrp06UGbNu1THb9dRHO/a9HJyfHv9g9/7d6W9s8N012P3evn3L/b/7PtvY79M88DB/ZT719b1rRs2Rp//3P88stPrFixlBUrlmJnZ0fFis9Rq9ab1K79VoavrKGigP+wq3NmcmPFUrC2xnf6XByy6AdHvDmedptacjTkLzwdPFlRew35cMe9ZX1sTp/CnC8/t1auw/L3jUN2WRq6iA8u98SChXruDZhceIa+4BQRERH5Dwn4agxhWzZh5ehI2TmLsM2iJfciEsJp8WsjLkYGUMTVm2W1V5EjypxcQHslkKQSJQlfthrDzT3VebH+Z/9fEHCbYRB77mym5PntzYmMupa8dGK7XJ0YW2Ac1qasWwpSREREROR+4gYMxqVdq5QtBG7/N27A4OxOLd0sluRZ12+8Ufues0nTmhWbUQ9l7/bA6vbD+NvHb+daqdJzac6gv+2fM3BvM5nufG/nz/vTs2dXwsJCyZEjB76+ZXnjjTcpUaIEFSs+xzvv1LnjnEdxr6W708rrdvu8efPyzDMV7tn3gz5Qv5e9e/cwZMgAoqOjqFy5Cp9//tUd/Xp5JY/33VYmuP36PwsUcuf2IiIigpCQYFxd75wkmdY595IrVy68vPJw8+YNTp48Trlyz9yz/Z49uzh//jyVK1ehWDGfB4rxbxcunCc4OIgKFSqmWp4fkh+uv/NOQ95662169uzC0aNH+PXXn+jevVeqdnf7XP3/+k7+HD3sZ/F2e19fv7sWHsD/HzDfb6Z8Vm7JkBaz2czXX49j5cplWFtbM2DAkJRtPP4pd+7kooaQkJA0+wkJSS5+uH1dPcq1e1tGFp6kt68DB/YTHx+XauuA5H5tGTHiMzp06MyWLZv488+9HDt2hD17drFnzy7WrFnFd99NTbMw51GpKOA/KuLwQc4NS77xKfbJCDzusudIRrMYFt7f1pUd17bhYuvK0lqrKOZYGPc2zbE9sA+Lhwfhy9dg+ccSGtlhRtAUPr6avMROq5xtGVdwkr7gFBEREfkPCd38Oxe//gqAkuMm4fKv5eIyS7w5nvabWnE89Ci5Hb1YXnsNeS3OuLesh825s5gLFCR8+RqMXHeuqOXoU4Lok8dTFwaYTDgWz9hZUIZhMOb6KCbeHAdAb69+fJz30/t+USEiIiIiktUS671D1LxFOHw1FuuzZzCXKEncgMEkZtJKWlkpVy5Prl+/Rpcu3e/5YDEzBQXdTPP169evAf9fMSBXruSHe7VqvcU77zRMd9xx474gLCyU1q3b0b37+6keikZERDxUX1ZWyb/H3H5Q+0+RkZEP1df/H2bmZcSIzx7q3If1yy8/MXLkp5jNSdSr14CBA4ek+fDS27soVlZWXLwYgMViueOh9fnz/gCpZskXK+aDv/85Llw4j7d30VTtLRYLFy8GYDKZHuqBffXqNVi5chmbN2+6b1HAvHlzOHToANeuteDDDwc8cIx/GjjwQy5dusisWfPx8yubZhs7Oztq136Lo0ePpHndBAUFpVnEcnumf548eYCH/yzevk5eeKEy3br1vG/73LmTc7h27Vqax4OCgu7bR2ZJSkrk448H8ccfW3B0dGTkyM+pVu2VNNv6+CRfLxcunE/z+Pnz5/9uVwJ4tGv3cbRr1w7s7R3uun2Kt3dROnToTIcOnYmLi2Xnzh189dUYjhw5zKZNv/HWW29nWC5Zs/alPFYSb4VxonM7jIQEPN+qS6Eeve5/UgYwDINP/xzC2gursLWyZe7riyifszyuvbpit2UThpMT4YtWYC5VOkvyuVuO4298kVIQ0NWzJxMKfquCABEREZH/kLgrgZzo0RkMg/ztOpG3aYssiWsxLPTe1o0d17bhbOPC0lo/UNS+AG7tW2N76CCWnDmTC2gLFEzzfO/+g1K2DABSthLw7j8oQ3McdOXDlIKAT/IO55N8w1UQICIiIiKPrcR67xC5bTe3roUQuW33U1EQAFCxYiUgea/qtAwbNoQOHVqzbdsfmZbDzp077ngtNjaWvXv3YG1tzQsvvPh3rhX/zvXO9gDLli2hVatmzJ4944HiHjt2BID27TveMUt6797dKf//n9sH3O1XlttLlIeFhd5x7Pjxow+Uz22+vn7Y2ztw9uzplCXf/+nmzZs0bdqA99/vRkxMzEP1/U/bt//ByJHDMJuT6Ny5Kx9/POyus5kdHBypUKEiUVFRKXvZ/9Mff2wBSDWLuUqVlwDYtm3rHe0PHtxPREQE5co9k+YqAnfTrFkLbG1t+eGH5Xd9KHw7n8OHD2JlZZXmbPMHVa5ceQBWrFh6z3YXL14ESLPAYefO7Xe8duzYEUJCgilRomTKw/2H/Szebr9nz640V6PYunUzzZs34ssvxwBQpowvrq6unD59MqXg5p/u9rnKCsOHD+WPP7bg4eHB5Mkz7loQAFC5clVMJhM7d27HbE5dhBMVFcmBA/txcHBI+XnxKNfu42jPnp1UrFgJ+39s3242m+ne/T3q1q1FXFxcyusODo68/vobvPlm8monN2/euaVKeqgo4D/GMAxO9e5O3KWLOBT2ptQ3k7PsC7wpx75j2vHJAHxbbSrV872Cy5CPcFj9A4atLeGzF5L03AtZkktaDMPg02sf88X15Aq+gXk/ZmT+z/UFp4iIiMh/iCUxkRNdOpAUGopL+WfxGTUmy2KP2DeU1Rd+wMZkw5zXF1IuR1nceryH3bYtGE7OhC/54Z57n+auWx+/2Qtx8SuLlYMDLn5l8ZuziNxv18uQ/BKNRN6/3JU5ITMxYeLLAl/TO0+/DOlbREREREQeTrNmLbC2tmb69Cns27c31bFVq1by668/c/68/11nSWeEgwf3s3z5/x+6JiYmMmbMKCIiwnnzzTq4u+cAoGbNWnh6evLHH1tYvHhhqof1x48fY8aMKfj7n6N48RIPFDfH31u7bd+euuDh0KEDTJjwZcqfExL+vxe5nV3yA7moqKhU59xe0n3VqpUkJCSkvL558+9s3br5gfK5zdHRkQYNGhIbG8vw4Z8QGvr/QoOYmBhGjfqUy5cv4ezsnGqZ/8DAywQEXCAq6v4rE4SEhDBq1HDMZjMdOnSmc+eu9z2n6d+F7uPGfZFqKfYtWzbx668/4+npmWo2co0ar5E7d25+/fVntmzZ9I/YwYwb9wUArVu3u2/cfypcuAjt2nUkISGBbt0688cfW+54IL558yZGjBiKYRi8+25rihYtlnIsKiqSgIALBAZefqB4bdq0x97egZ9/3sgXX3xGeHh4quMWi4U1a1axevVKPDxyUqfOnb83L1o0n6NH/0r5c0hIMJ9/PgqAFi1apbz+sJ/FihWfo2TJUpw6dZJvv51IYmJiSvvLly8xYcJXXLwYQJEiyStq29jY0rhxM8xmMyNGDCU6+v/X8ObNm/jll5/SHIPr168REHCBW7fCHmjMHtaaNav4/fdfcXBw4JtvplCmjO892+fLl5+XX67O1atX+O67SSk/BxITExk79jNiYqJp0KAxLi7/LzZ52Gv3cXPxYgCBgYFUrfpSqtetra1xdXUlODiYqVO/S1UkER4ezu7du4DkQqOMpO0D/mMCp3xHyM8bMdnZ4TdrHrZ//6Oc2X7wX87wfR8DMPz5z2jk0xSnr8bgOHsGhslE5HfTSHytZpbkkhazYaZ/YB8Whc4H4LP8X/Be7u7Zlo+IiIiIZI/zo4cTsW8v1m7u+M2ch7WDQ5bEnXrsO6Yc+xaASdUmUyP/q7h81Bf79Wsw7OwIn7eYpAqV7ttP7rr1ydegAR4ezoSFRZOUdPc9MB9GnCWOLhc78HPEj1hjzXeFp9HYo1mG9C0iIiIiIg+vdGlfPvjgQyZM+IpevbpTsmRp8ufPz6VLFzl/3h9ra2s+/XQ0udLYeiyjeHnlYcKEL9mwYR0FCxbk+PFj3LhxnZIlS9G7d9+Udg4Ojnz++Vf069eLb76ZwMqVyyhevATh4bc4cuQvDMOgRYuWVK9e44HivvtuKyZNmsCIEcNYvXoVnp6eBAZe5syZ07i75yBXLk9CQoIJCQnB2dkFIGVZ9zlzZnD06F/UqVOX6tVr8M47DVm5chlHjx6hadMG+Pr6ceXKFc6cOUWdOvXYuHH9Q41J9+69OHPmNPv376NJk3fw9fXFwcGRI0f+IiIinMKFizBw4Mepznn//W5cv36NTz4ZTt37rGSxZMlCIiLCsba24cqVQD799OM025Uv/yyNGzcFkh/yv/XW2/z00480a9aI5557nlu3wjhy5C9sbW0ZMeLzVPuWOzk5MWTIMD76qC9DhgygfPlnyJHDg/379xEdHUXDho2pXv3uM8LvpnPnrpjNZubMmcnAgR+SJ09efHyKY2dnx5kzp7l69QoATZo0p2fP3qnO3bp1C6NHDydv3nysWfPjfWN5exdl7NivGDZsCKtX/8D69WspU8YPLy8v4uJiOXnyJKGhIeTMmYvx4yfh7Ox8Rx+urm5069aZChUq4eTkxP79+4iJiaZOnbq8/Y/i+4f9LJpMJkaPHkvPnl1ZsmQhv//+CyVLliY+Pp7Dhw+SlJTEq6++TpMmzVNidOjQmSNH/uLgwf00blyfZ5+tSGhoKEeOHKZcufIcPXrkjvxHjBjGoUMH6NSpC++91+3B/pIeUFJSErNmTQPA0zM3CxfOu2vbdu06pqzE0L//QE6dOsmSJQvZtWsHPj7FOXHiGNevX6d06TJ06ZL6udzDXruPm9urOKS1mkHv3n05fPgQS5cu5o8/tlKyZCkSEhI4cuQvoqOjqFmzFs8//2KG5qOigP+Q8L178B81DIDio7/A9ZkKWRJ329Wt9N6e/EHu6teTHuV64TB7Bs5fJc+6ihozjviGj74MTHolGon0vPQea26twgorJhb6nhY5W93/RBERERF5qgT/9COBU5IfzJeeNBnHf+2dmFlWn1/JsD+HADD0uZE0Ld4Cp7GjcJw/G8NkImLKTBJfeTVLcklLtDmadgEt2Ra1BXuTPTOLzKe2+1vZlo+IiIiIiCRr2rQFJUuWZvHiBRw5cpgLF/zx9MxNzZq1aNOmPaUyeaveOnXqkj9/ARYvXsCOHdvIkycvnTp1oVWrtqlmwgOUL/8M8+cvZcGCuezZs4vdu3fi5uZOpUrP0bRpC155iN953n23NblyebJ06SL8/c9x6tQJ8uTJS9OmLWjTpj0LFsxlxYqlbN++jVat2gDQqFETzp07w7ZtW9m9exdFixajevUa5M2bjxkz5jJ9+hT279/Hrl078fHxYfTosRQvXuKhiwJuz5petWolv/yykePHj2EymciXLz/NmrWgefOWD7Xs/r/t3p28RL3ZnMSvv/58z7a3iwIAhg4dga+vH2vXrmbPnl24uLhSrdordO7clZIlS91xbpUqLzF9+hxmzZrGkSN/YTabKVSoMI0bN7tv4cK9dO3agypVXmLt2lUcOfIXBw7sw2w2kyuXJ7VqvUmjRk159tmMeXZVpcpLrFixhlWrVrJ3724uX77MqVMncHBwoGDBQjRp0oymTVvc9e9jwIDB/PXXYX7++UciIyMpVsyHRo2apvn+H/azWLhwEebPX8LChfPYvv0P9u3bi5OTE2XK+PHOOw158806qbbGsLe3Z+LE71i6dBE//rie3bt34umZm549e1OmjC/vv5+xD/3v59y5swQFJW+RERh4+Z4rOLz9dv2UooA8efIye/YCZsyYyq5d29mxYxt58+ajXbuOtG3b/o6fG/Dw1+7jZNeunRQp4k2BNLaBLFiwEDNnzmXu3FkcOLCfHTu24+DgQLFixXj77frUr98gw/MxGf9cp0UemtlsITQ0+qHOsbGxyvCZO/eTEBzM/tdfJuHaVbwaNaHMlFlZsiz+0ZAjvLPxLaISI2lQtBFTa8zGYcM63Dq3w2QYRH80mJiPBj9Unxk5fvGWeN672J6fI37E1mTL1MKzqZfjnXT1+bjLjuvvaaGxSx+NX/po/B6dxi59NH7p86jjlzOnM9bWT8dOX0/K/XJswAX216yOOSKcgl17UjyLtg3YfvUPWvzaiERLIu/5dmP0i1/gOGcmroM+BCBy3CTi2nZ4qD4zcvwizRG0utCMPdG7cLJyZoH3Uqq5PvyMkCeFfualj8YvfTR+6aPxe3Qau/TR+KWP7pf/W+Li4vD3P4+nZ96UpdzlyTRjxlRmzZpO+/ad6NatZ3anI/8RmzdvYubMqSxevCJT43Tv/h6HDh3gm2+m8MILGTtTWyQzJCTEExx8HR+fYjjcY8VL3Tn9BxgWCyd7dCbh2lUci5eg5LhJWVIQEBh1mZa/NiEqMZKX81Xn2+rTsN+zG7ce72EyDGLbdyKm/6BMz+NuYiwxtA1owc8RP2Jvsmeu96LHviBgw6111DhdlUJHclPjdFU23FqX3SmJiIiIPPHMcXEc79wOc0Q4bs+9QLFhI7Mk7onQ47Tf1IpESyL1vBsw8oUx2P+4HpfB/QGIHvjxQxcEZKRbSWE0Pf8Oe6J34WrlxvJia57qggARERERERF5fO3evfOxnxku8jhTUcB/wMWJ4wjbuhkrR0f8Zi3AxuXRl6Z5UBEJ4bT8tQk3Yq9TxsOPua8vwumMP25tWmCKjye+Tj2ixoyDLChOSEuUOZJW55uyJXITTlZOLCq6gjfc3syWXB7Uhlvr6HixNSfjjhNvxHMy7jgdL7ZWYYCIiIhIOvl/OoSoI4exyZkT3xlzsbK1feS+7Dasw6NGVTwL5cajRlXsNqR9r3Y95hqtfmtKZGIElfNU5fvq07H/80/cundKLqBt25GYfgMeOY/0Ck4KppF/PQ7GHMDD2oNVPut5wVkzJERERERERCTr/fnnXvbt28N772XtMvkiTxMVBTzlbu3ZTcCXnwNQ4osJuJTxzfSYCeYEOmxqw6lbJ8nrlI/Fb6wgR1Ak7u82xioinMQXKhMxZSb8Yz+UB7UhYB3VVlbGcZwj1VZWZkPAwz8QDzffotn5huyM3o6LlStLi66mumuNh+4nq427MRYTJgySd/wwMDBhYvyNsdmcmYiIiMiTK2jDOq7OmQlAme+n45DGPm8Pym7DOtw7tsb65HFM8fFYnzyOe8fWdxQGRCVG0eq3ZlyJDqS4ewnm1VyMs38A7m2aJxfQvlmHqLHZV0B7I/E6Dc69xbG4I+S28WK1z0aeccqYPR1FREREREREHtbzz7/A0qU/pLk3u4g8GJvsTkAyT2JYKCe7dwKLhTxNmpOvRatMj2kYBh/t+oDt17biZOPMojeWU9Dsgvu7tbG+eoWkkqUIX7AUHB0fuu8NAevouLl1yoPxE6HH6bi5NbNfW0hd7/oP1EdoUgjNzjfkSOxhcljnYFmx1VRwqvTQuWQH//izKQUBtxkYnIs/m00ZiYiIiDzZ4gIvc7rv+wAU6tmHXK/XSld/zuPGYphMmIzkezaTYWCYTDiNH0tC3eT71SRLEl23duBoyF94Oniy+I2V5AqNw71FI6zCb5H43AtETJ0NNtnzq1pgwmUa+9fjQsJ58tnm54di6ynuUCJbchERERERkcfTe+9104xtyVImkwkHh4d/rvQopkyZkSVxRLKaVgp4ShmGwem+vYi/Eohj0WKU+HJClsT9+q+vWHJ2IVYmK2a+OpdyzqVwa/suNqdOYs6bj/ClqzA8cj5S3+MO3WWm/OEHmyl/ewnUI7GH8bTxZLXPxiemIADAx74EJlLPFjNhorh9yWzKSEREROTJZUlK4kS3TiSF38K1QkWKDh6a7j6t/c+mFATcZjIMbM4lF3EahsGQPR/x2+VfcLB2YEHNZRQ1PHBv0RjrK4EkFS9B+MJl4OT0yDlsuLWOaicq47jZkWonKj/UVlOXEi7SwL8OFxLOU9jOm3U+P6sgQERERERERETkKaCigKfU1bmzCN64HpOtLb7T52Dj4prpMVecW8rYg6MBGFtlPDULvIHr+12x270Ti6sb4Ut+wFKw0CP37x9xl5ny4fefKX8z8SaN/N/mRNwxvGzysMbnJ/wcyz5yLtmhf55BKYUQQEqBRP+8g7I5MxEREZEnz8VxY4n4cw/WLq74TpuDlZ1duvs0+5TA+NeS/4bJRFLx5CLOKce+Y+6pWZgwMfmVmVRyL49b+1bYnDyO2StPcgFtzlyPHH/DrXV0vNiaE7HHibPEcSL2OB0vtn6gwoAL8edpcK4OlxIuUtSuGOt8fqKIvfcj5yIiIiIiIiIiIo8PFQU8haJOHOfcsMEAFBs6AtdnMn//z13XdvDBjp4A9CzXh/alO+E8YigO61Zj2NkRMW8xZr/0PYT3cbvLTHn3e8+Uv5F4nYb+dTgVd5K8NvlY47ORkg6l0pVLdqiboz6ziyzE18EPe5M9vg5+zPFexNvu9bI7NREREZEnStjO7Vz8+isASo6fhKN30QzpN7r/oJQtA4CUrQRi+g9i/YU1DN/3MQAjXviMukXq4fpBT+x2bsfi4ppcQFu4SLrij7txl5W1btx7Za3z8edo6P82gYmX8bEvztriP5HfrkC6chERERERERERkceHigKeMuaYGE50aY8RH0/OmrUo2LVnpsc8F36WdptakmhJpJ53A4Y+NwKHWdNxmvItAJGTJpP4cvV0x+lf4S4z5Z+9+0z5a4lXaeBfh7PxZ8hvW4A1xTc+0Uug1s1Rny2ldnG5fBBbSu1SQYCIiIjIQ0oICeFk985gGORt2YY8DZtkXN916xM+eyFJvn4Y9vYk+foRPmcRu5/PS89tXQDoVKYLXf164vTFaBx+WI5hY0PE7AWYy5VPd3z/+LusrBV/95W1zsWd5Z1zdbiaeIWS9qVY4/MTeW3zpTsXERERERERERF5fNhkdwKSsc4NHUTMmdPY5clL6W+mYvrX8qUZLTQuhFa/NSU84RaVcj/Pd9Wn4fDbL7h8PACA6CHDiG/cLENi1fWuzyZTHwp8O40i1+O4mNeeK726Uc477QfjVxICaej/NgEJFyhoW4hVPhvwts+YWWAiIiIi8uQxDIPTfbqTcP0aTiVKUuKzLzM8RkLd+iTUrZ/y58Coy7Rd/ypx5jhqFXqT0S9+geOShThPSF6pIOqriSTWeC1DYvvYl+Bk3PFUhQEmTBS3T3tlrdNxp2jkX5egpJuUcfBlZbH15LbNnSG5iIiIiIiIiIjI40MrBTxFbq5dxbUFc8FkoszkGdh5emZqvARzAp02t+VCxHkKuRRmfs2luB4/hVuXDpgsFmJbtSWmz4cZFs9uwzpeGziJklficUiCklfieW3gROw23LlH6uWES7zjX4eAhAsUtvNmTfGNGVIQsOHWOmqcrkqhI7mpcbrqA+3PKiIiIiKPhyszpxLy68+Y7O3xnTYHa2fnTI0XlRhJ69+aExR7E1+PskytMRuHbX/g0r8PANF9+xPXqm2Gxeuf5y4ra+W9c2Wtk7EnaOj/NkFJN/F1KMsPPhtUECAiIiIiIiIi8pRSUcBTIu5KIKc/TP5ysXCfD/Go9kqmxjMMg0G7P2Tn9e0427iwoOYy8oTE4daqGaaYGBJeeZWoL7+GDFypwHnc2JR9WYGU/VqdxqfeIzUw4TIN/etyKSEAb7uirPXZSGG79O3PCskFAR0vtuZk3HHijXhOxh2n48XWKgwQEREReQJEnTiO/4ihAPgMH41L2XKZGs9sMdN9a2dOhB0jt6MXC99YhvvZi7h1aospKYm4Rk2JGTQ0Q2PWzVGf2UUW4udYFgcrB/wcyzLHe9EdW06dijtJ4/N1CU4KopzjM6zyWY+nTeYWFIuIiIiIiIiISPbR9gFPAcNi4VSvbpgjwnGtWAnvjwZnesypx79n4Zl5WJmsmP7qbPxsCuLeshbWN2+QVMaXiFnzwdY2Q2Na+59NKQi4zWQY2Jz7/x6pt7cMuF0QsMZnI/ntCmRI/HE3xqbMtgJSZmGNvzGWujnq3+dsEREREcku5rg4TnbvjJGQQM43alOgY5dMjzlq/6f8cvkn7K3tmff6YgpH2eDeqilWkREkVK5K5KTJGVpAe1vdHPVp4NkADw9nwsKiSUqypDp+e8uA4KRgyjk+w8pia/GwyZnheYiIiIiIiIiIyONDKwU8BQKnfs+tHduwcnKizOQZWGXww/h/++XSTwz/82MARrzwGW/kfR23jm2xOXUSc568hC9ageHmnuFxzT4lMP71xalhMpFUPHmP1KsJV2jo/zYXM6EgAMA//myq/VkhuTDgXPzZu5whIiIiIo+DC2NGEX3yOLaenpT++ntMmfAw/p8WnZnP5GPfAPBNtSk85+SLW6tmWF8JJKl4CSLmLQZ7+0zNIS1n4k7/XRAQRFmH8ioIEBERERERERH5j1BRwBMu6thRzn8+AoDio8biVKx4psY7HnqMbls7YWDQplQHupTpjsug/tht24Lh5EzEouVYChbKlNjR/QelbBkApGwlENN/ENcSr9LAvw4BCRcoYufNap8fM7QgAMDHvkTK/qy3mTBR3L5khsYRERERkYwTtm0rgVO+BaDU199j5+WVqfF2XtvORzs/AKD/s4No6N0Itx7vYXv0LyyenoQvXonhkfUP4s/GnaGh/9sEJd3Ez6EcK31UECAiIiIiIiIi8l+hooAnmDkujhM9kpdBzfVmHfK1bpep8W7G3qTNb82JToqiWr5XGFtlHE4zpuC4YA6GyUTEtNkklX820+In1K1P+OyFmP3KgoMDZr+yhM9ZxMValWh47m0CEi5Q+O+CgAJ2BTM8fv88g1K2DABSthLon3dQhscSERERkfRLvBXGyV7dAMjXtiOetd/K1HjnI/zpuLk1SUYSDYo24qMKg3EePRz7n3/EsLcnfO4SLN5FMzWHtJyLO5tSEODrUJaVPuvIaZMry/MQEREREZEn09q1q6lcuSIjR36arn4qV65I5coVSUpKyqDMRETkQako4Al24bMRxJw6ia1nbkqN/zZTl0FNMCfQcVNrAqMvU8zNh5mvzcN50yachw0BIPrT0SRk8peskFwYELltN8TGErltN5dqPUcj/7qcT/CnsF0RVvtsoKBd5qxUUDdHfWYXWYivgx/2Jnt8HfyY472It93rZUo8EREREXl0hmFwZkBfEq5dxbGYD8VHfJap8SITImj7ewvC4sOo6FmJSdWm4LB0EU7fTUw+/vV3JL3wYqbmkBb/+OSCgJtJNyjj4McPPuvJpYIAEREREREREZH/FJvsTkAeTegfWwic9j0ApSd9j13u3JkWyzAMBu/uz5839+Bm587CN5bj6X8N1y4dMRkGsa3bEdv9/UyLfzc3E2/Q2L8e/vHnKGhbiFU+GyhkVzhTY9bNUZ+6OepnagwRERERSb+bPywnaM0qsLamzOQZWDs7Z1osi2Gh57YunLl1mrxO+ZhXcwlufx7AtX8fAKL7DSC+SfNMi383F+LP0/BcXW4kXaeMg68KAkRERERERERE/qNUFPAESgwL5dTfy6Dmb9+JXG+8manx5pyayYIzczFhYtorsyiRkAP3Nq9iFR1FwkvViBo7HjJxlYK0BCcE0/BMPc7GnyG/bQFW+/xIYbsiWZqDiIiIiDye4i5f4szADwHw7j8It4rPZWq8Lw99zs+XNmJvbc/c1xeR70YMbh1aYUpMJK5+Q2IGDMnU+Gm5GHuRd868zfWka5SyL83KYuvxtPHM8jxERERERERERCT7qSjgCeT/6cckXL+GY/ES+AzP3GVQd17bzid7BgLwyXMjeD13ddwb1cX68iWSihYjYvYCsLPL1Bz+LTzpFo0O1eNk3Am8bPKwymc9Rey9szQHEREREXl8ne7fB3NkBG7PvUDhPh9maqx1F1Yz4fCXAIyrOong62e51ao3ucLiOVbEkYP96/KWVdbu2nY14SrvnHiLwITLFLPzYaXPOnLbZt7KYiIiIiIiknFmzJjKrFnTGTduIgDz5s3h7NnTODg4ULlyVfr0+RAPDw/WrVvDsmWLCQwMxMvLi7feepu2bdtjY2Ob0teNG9eZN28Ou3btIDg4CBcXF555pgJt2rSjbNnyd8SOiopkwYK5bNr0G0FBQeTPX4AWLVrdM99Lly4xd+4s9u3bS1hYKB4eOalcuSodO3YmX778GTo2IiLy6FQU8ASKvXAeK0fH5GVQnZwyLc6lyIt03tKWJCOJRsWa8n7Z3rj2eA/b/X9icc9BxKIVGB45My1+WiLNETS70JBD0YfwtPHkB5/1FLMvnqU5iIiIiMjjLfbCeWzcc1Dm++lY2WTerzzHQo7Se3t3ALr5vY+LyZHc3drhcx0uu0OtVrFc29WJ2Q721PXOmi2obibepKH/2/jH+1PEzptVPhvIY5s3S2KLiIiIiEjGWb36B3bu3E7JkqV44YXKHDlymJ9/3khAwAWef/5FFi2aT7ly5Xnuuef488+9TJ8+hYiICD74ILkw+vjxY3zwQU8iIyMpWLAQ1avX4ObNG/zxxxa2b/+DAQMG06BB45R4ERER9OjxHufOnSV3bi9eeqka165dZcyYURQtWizNHPft28uAAf2IjY3Fx6c4ZcuW49Kli6xfv4Y//tjCN998T+nSvlkyXiIicm8qCngClVvyA+boaOzz5Mm0GNGJ0bT9/V1C4kIon+tZvn75O5y+m4jDqhUY1tZEzJqPuXiJTIufZk7maFpeaMqB6H3ktM3J6uIbKGVXOktzEBEREZHHX6Xf/sBIMmOXK1emxQiJC6HdpneJSYqhRoHXGPb8SH5vWYJaZyHaFuq3hWtuYMLE+MNjs6QoICQphKbn63M2/iyF7AuxtsSP5LcukOlxRUREREQyjGFATEx2Z/FwnJwyZXvdnTu38+GHA2jatAUAN2/epFmzBpw6dZKzZ8/w7bdTqVQpeau03bt30rdvL9avX0vv3n1JTExk0KD+REZG0qVLDzp06ITp7xx37drJ4MH9+eqrLyhTxo9SpZK/Y58+fQrnzp2levUajBo1Bnt7ewDWrVvD55+PvCO/8PBbfPLJYBISEvjssy94/fU3Uo6tWfMDY8d+xscfD2Lp0h+wtbW943wREclaKgp4Atm4uGDj4pJp/RuGQe/t3TkRdozcjl7Me30x7pu34vzZCABGNs/DmAtN8QkpQf8Kg7LkC85YSyxtA1qwN3o3btbu/FrhV4qZS5OUZMn02CIiIiLyZLF1z5Gp/SdaEum8uS2Xoy5R1K0Y02vMwWXpEtpsDgGg9Ydw+FUgDoxrBufCz2ZqPgC3ksJodr4BJ+NOkNc2L5srbSZXfD7dL4uIiIjIk8MwcH3rDWz+3JPdmTyUpBerELnx1wwvDPDxKZ5SEADg5eVFhQqV2L17J6+/XiulIACgcuWqODo6Eh0dRVhYKHv37iEo6CYVKz5Hx46dU/VbtepLtGnTnpkzp7FkyUKGDx9NQkICP/64DltbW4YMGZpSEABQv34Dtm3byo4d21L1s3btGsLDb9G0aYtUBQEADRo0ZseO7ezYsY2tWzfzxhu1M3JoRETkEWTt5pbyRJh0ZDzrA9Zga2XL7NcWUvhqNK7dOmMyDKa8CCPKXyPeHM/JsON03NyaDQHrMjWfBEsCHQNasz3qD5ytXFhRfDWV3CplakwRERERkbv59M8h7Ly+HRdbV+a/vhTPI2dwGdAXgGFtYc1rJP+m5Qj4gFe+zFvhCyDKHMm7FxpzNPYvPG1ys6bkjxR30hZbIiIiIvIEyoQZ908qP79yd7zm4eEBQIkSqVfxNZlMuPw9kTA+PoFDhw4A8Nprr6fZ9+2H9AcPJrc7efIEsbGxlC7tS44cHne0f+WVGne8dvDgPoBUxQn/VLly1b/b7U/zuIiIZC2tFCCpbLmyiTEHRgEwtsp4KjuUxu2dV7GKimR/cSc+qBeDgQGAgZHpy6GaDTM9Lr3HpsjfcDQ5srjoCp53eSFTYomIiIiI3M+Kc0uZeWIaAJNfmUGZWFfc29fFlJDAj9UcGd0yFm5/j2kCDCBf5uUTZ4mjbcC7HIjZj4e1ByuLraOkQ6nMCygiIiIikllMpuQZ99o+AAA3N7c0XjX9fcz9rscAgoKCAMiXL3+afefPn7zNWEhI8mpnwcHJ7b28vO7Z/p+uX78OwKBB/dM857YbN27c87iIiGQNFQVIikuRF+m2tSMGBq1LtqNN8Ta4tWqKzXl/zAUL0bDVDRL+dcUYZN5yqBbDQr/LvVgXvhpbky1zvBdRxeWlTIklIiIiInI/x0KO0n9nHwD6PTuAN3O/its7b2IVdJOkMn60HXAWw/pfJ5ngppE5X4IlGol0vtiWHVHbcLZyYWmxVfg6+mVKLBERERGRLGEygbNzdmfxWLCxSc/jG+OeR81mMwC2tskxTPcparC2/vcvOmCxJG9V9tJL1VJWKUhL0aLF7tm3iIhkDRUFCACxSbF02NyasPgwKnhW5PPKX+E8ejh2m3/HcHQkYt5i3M51xxR2PGWlAAATJoq7l8zwfAzDYNjVwSwJW4gVVkwrPIfX3GpmeBwRERERkQcRFh9K+02tiDXH8lqBmnz0zCBce3XH9vAhLB4ehM9fQt64loTFpXG/bJ/x98tmw8z7l7rwa8TPOJgcWFR0ORWctMWWiIiIiIiAp2duAK5du5rm8atXrwCQM2cuAHLnvt3+Wprtb6888E+5cnly6dJFmjdvyQsvvJjunEVEJHNZZXcC9/Pnn3/SsWNHqlSpQoUKFWjRogUbN25MV5/r16+nVKlS9O9/72Vt/isMw2DArr4cDfmLXA65mP3aQtzXrMXp+0kARE6aTFK5Z+hfYVDKlgGQ/AWngUH/ZwdleE5f3vic6cFTAJhY6Hvq5sic7QlERERERO7HYljo8cd7XIoKoLCLN1NqzMRl+lQcVi7DsLYmYuZ8LEW86Z/nLvfLeTP2ftkwDAYE9mX1rR+wwYbZ3guo6vJyhsYQEREREZEn17PPVgRg8+ZNaR7ftOlXACpWTC4sLlPGF1dXV06fPsn163cWBuzateOO1ypWrHjXYwDffjuRtm3fZc2aVQ//BkREJMM91kUB69ato23btvz555/4+vry/PPPc/z4cfr27cs333zzSH1eu3aNkSNHZnCmT7a5p2ax7NxirExWTK8xlyL+Qbj26wVATJ8PiW/QGIC63vWZ/dpCfHP6YW9tj29OP+a8toi3vetlaD6Tb37L+BtfADCmwFe0yNkqQ/sXEREREXkYXx0aw6bA33CwdmDO6wvx2nUI5xGfABA1agyJ1V4BoG6O+swushBfBz/sTfb4Ovgxx3sRb7tn3P2yYRgMv/YJC0LnYoUVU4vMoqZb7QzrX0REREREnnw1a75B7ty5OXhwP3PmzMQw/r+a2e7dO1m4cD7W1tY0bNgEABsbWxo3bobZbGbEiKFER0eltN+8eRO//PLTHTHeeacxjo6OrFixjN9++yXVse3b/2DZssWcPXsGX19tcSYi8jh4bLcPCA4OZujQoTg6OrJw4UL8/JL/4fD396dt27ZMnjyZ119/PeX1B2EYBgMHDiQiIiKz0n7i7Lu5l0/2DgTgk+dGUN2+LG4dqmOKiyP+jdpEDx6aqn2jY9BmIlj7g9kHovsbJHhnXD4LQ+Yx/NrHAAzJO4xOnl0zrnMRERERkYf066WfGH84uWB1/Evf8Ey0O27d6mGyWIht1Za4TqnvV+vmqJ+pq1x9ffMrpgR9C8CEgt9SP0fDTIslIiIiIiJPJgcHRz777Ev69evFtGmT2bhxAyVLluLmzRscPXoEa2tr+vbtj59f2ZRzOnTozJEjf3Hw4H4aN67Ps89WJDQ0lCNHDlOuXHmOHj2SKoaXlxfDho1k2LAhDB06mFmzplOkiDc3b97g5MkTAPTt25+SJUtl6XsXEZG0PbYrBSxatIi4uDhat26d6sG/j48P/fr1wzAM5s2b91B9zpkzh7179/L8889ndLpPpBsxN+i0uS2JlkTqeTegZ+keuHXpgHXgZZKK+RA5ZSZY/f8SsduwDveOrbE+eRxTfDzWJ4/j3rE1dhvWZUg+62+tpX9gHwB65e5LH68PM6RfEREREZFHcT7Cnx7bugDQqUwXmhZ4B7cOrbEKCyOxQkWixo4HkynL8pkTPJOx10cDMCr/GFrmapNlsUVERERE5MlSvvwzzJ+/hHfeaUhCQgLbtm3l+vVr1KxZi+nT59CkSfNU7e3t7Zk48Tt69OiFu3sOdu/eSUhIMD179qZr1x5pxnj11deZM2chb75Zh+joKHbu3E5ISAgvvVSN77+fTvPmLbPirYqIyAMwGf9cN+Yx0qhRI44fP87y5ct55plnUh0LDw/nxRdfxM3NjT///POB+jt9+jRNmjThpZdeolatWgwePJh69eoxbty4dOVpNlsIDY1+qHNsbKzw8HAmLCyapCRLuuI/KrPFTJOf67Pz+nZK5ijFz/U2k2fsOJy+/RrDyYmwnzZjLuOb6hyPGlWTCwL+cckYJhNJvn7c2rIrXflsi9xKywtNSDASaJOzA+MKTsR0ly9YH4fxe5Jp/B6dxi59NH7po/F7dBq79NH4pc+jjl/OnM5YWz+29bsP5Um9X45NiuWt9a9zIuwYz3u9yOo3N5Crbx8cli3G4ulJ2G/bsBQomGX5rAn7ga6XOmJg0D/PIAbkHXLXto/D+D2pNHbpo/FLH41f+mj8Hp3GLn00fumj++X/lri4OPz9z+PpmRc7O/vsTkdEROSpkJAQT3DwdXx8iuHg4HDXdo/lnZNhGJw7dw6AEiVK3HHc3d0dT09PwsPDuXHjxn37S0hIoH///jg7OzN69OgMz/dJ9OWhz9h5fTvONi7MeW0ROX/ZgtO3XwMQOfH7OwoCAKz9z6YqCAAwGQY2586mK5fDMQdpF9CSBCOBeu4N+LLghLsWBIiIiIiIZIUhez7iRNgxPB1yM+u1+bgtWIDDssUYVlZETJtz14KAoA3r2FejKtsK5WZfjaoEZcCqWlsiN9HzchcMDDrmeo+P8gxOd58iIiIiIiIiIvLf8VgWBYSHhxMfH4+zszNOTk5ptvHy8gIgODj4vv1NmDCBM2fOMGLECDw9PTM01yfRpsu/8vVfySskjH9pEqWDwLVXNwBiur1PfIPGaZ5n9imB8a+H9YbJRFLxko+cy9m4M7x7vjHRliiqudRgcuEZWJusH7k/EREREZH0Wnp2EYvOzMeEiak1ZlHw+CVcPhkIQPTQkSRWeyXN84I2rON4x9ZEnzyOJT6e6JPHOd6xdboKAw5E76NDQCsSjUQa5mjM5wW+UgGtiIiIiIiIiIg8FJvsTiAtsbGxADg6Ot61jb198vJCMTEx9+xr9+7dzJ07l/r161O7du2MS/IfbGwerrbi9tJW2bHEVWBUID3/3he1o29nmuWvg1vNV7CKjiLx5WrEjxx91/cTN3AwLu1aYZhMmAwj5b/xAwc/9BgABCYE0ux8A0LMIVR0qsTC4ktwtr773/lt2Tl+TwON36PT2KWPxi99NH6PTmOXPhq/9NH4JXuS7pdPhB5n4K5+AAx67mNet/fDrfPLmBITSXinIYm9+2Bzl4fyF8ePBZMJbq+uZRhgMnFxwhfka9DgoXM5FXuSlheaEmOJ4TW3mkwpOgM7q/v/Cqfr7tFp7NJH45c+Gr/00fg9Oo1d+mj80kfjJyIiIpI1HsuiACur5JvAB5kBY7Hcfa+piIgIBg8eTJ48eRg6dGiG5fdPVlYmPDycH+lcN7f7PwDPSInmRLpu6EBofCiV8lZi8pvfYt+iFZw9AwUKYPvDSjxyu9+9g7YtwcUB08iRcPo0plKl4NNPcWnY8KFzCUkIofmphlxJDKSUUyl+ee5nPO0ebhWHrB6/p43G79Fp7NJH45c+Gr9Hp7FLH41f+vyXx+9Jul+OSoii08q2xJpjqeVdi9HVPsHqjVpw7RqUKYPdgnnYubrc9fwY/3P/Lwi4zTCIOXf2ocfgYuxFmh5rQJg5lBfdXmRdpTU4Wz9cH//l6y69NHbpo/FLH41f+mj8Hp3GLn00fumj8RMRERHJXI9lUYCzc/KXXXFxcXdtEx8fD3DX7QUARowYwfXr15k9ezZubm4Zm+TfLBaDiIh7r1bwb9bWVri5ORIREYvZfPeihoz2ye7B7L66Gzc7d2bUmIv58/GwahWGnR2RcxZitnWGsOh7d/Jq7eT//dP9zvmXaHM0Dc7W5WT0SfLbFmCFzxqsox0Ji36wfrJr/J4WGr9Hp7FLH41f+mj8Hp3GLn00funzqOPn5ub41MyWelLulw3DoMvmjpwOPU0+5/x8V20aCX0/wmHbNgwXVyLmLsKSZHXPe18nn+JEnTieujDAZMKpeAnCHuKeOSQpmDqn3uBK/BVKOpRiUdHlJERAArpfzmwau/TR+KWPxi99NH6PTmOXPhq/9NH9soiIiEjWeGyLApydnYmMjCQuLg4HB4c72ty8eRMALy+vNPs4evQoGzZsIEeOHKxatYpVq1alHAsMDATg0KFD9O/fHx8fH7p37/7I+SYlPdoNv9lseeRzH9aPAeuZfPRbAL6pNoWiR67gOOpTAKJGf0H8s5UgC3JJMpLoeKEtB6L34WHtwfJia8hrVeCRxiErx+9ppPF7dBq79NH4pY/G79Fp7NJH45c+//XxexLul+eemsUP/iuwNlkzvcZcvH7dhcPk5PvniG+nklC0+H3vl4t8OIjjHVv/fwuBv/9b5MNBD/w+YiwxtPBvytn4sxS0LcTyomtww0P3y1lMY5c+Gr/00filj8bv0Wns0kfjlz4aPxEREZHM9VgWBZhMJkqUKMHhw4fx9/fHz88v1fFbt24RHByMu7s7efLkSbOPmJiYlLbr169Ps01gYCCBgYG88MIL6SoKeNwFRFygz44eAHTze5+3nV7EtcvLmMxm4ho3I65dxyzJwzAMPgr8gN8if8HR5MjCossp6VAqS2KLiIiIiNzNX8GH+GTPQAA+eW4EVWK8cO3TFICY7r1IeLveA/WTu259/GYvJGD8WGLPncWxeAm8+w8m9wOen2Qk0fViBw7E7COHdQ6WFltFfrsCj/amRERERERERERE/vZYFgUAVKtWjcOHD/P777/fURTw+++/YxgG1atXv+v5L774IqdPn07z2KpVqxg8eDD16tVj3LhxGZr34ybBnECXre2JSAjnOa8XGFpxGG7vNsf6+jWSSpYi8quJyTOYssCXNz5nUeh8rLBiWpE5PO/8YpbEFRERERG5m8iECN7b0p4ESwJvFq5Dj+Lv4Va3FlYR4SQ+/yLRnwx/qP5y161P7rr1HzoPwzAYGNiPXyJ+wsHkwAIV0IqIiIiIiIiISAZ5bDdeatKkCY6OjsydO5eDBw+mvH7+/HkmTpwIQOfOnVNev3nzJv7+/inbCkiyzw6M4HDwIXLY5WBGjbm4T/wau21bMJyciJi1AFxcsiSP+SFzGH/jCwC+LPg1b7rXyZK4IiIiIiJ3YxgGH+3qS0DkBQo6F+KbalNwHTYE26N/YcmZk4gZc8HWNktyGX/jCxaEzsUKK6YWmc2LzpWzJK6IiIiISFaxsUmeo5iYmJjNmYiIiDw9bv+7evvf2bt5bIsC8ubNy8cff0xsbCytW7emQ4cOdO3alQYNGhAUFMSHH35I6dKlU9pPmDCBOnXqMGHChGzM+vGy6fKvTDmWvA/qpGpT8D5wFqdxYwGI/PJrzKVK3+v0DPNz+EYGBPYF4MM8A2mbq0OWxBURERERuZdl5xaz6vwKrE3WTK0xmzwbfsNx3iwMk4mIyTOx5M+apfsXhszjyxufAzCmwDjquNfNkrgiIiIiIlnJxsYGFxdnoqMjsFjM2Z2OiIjIE89iMRMdHYGLi/N9iwIe2+0DAJo2bUrevHmZPn06hw8fxtraGl9fXzp27EitWrWyO73H2o2Y6/Ta3g2AjmXe4237irh1fwmTYRDbuh3xzd7Nkjz2Re+l68UOWLDQKmdbBuQZkiVxRURERETu5Vz4WQbt/hCAARWGUCU8B64fNgAgpu9HJL5WM0vy+DXiJz4K/ACAvl796eDZ+d4niIiIiIg8wXLnzs2lS5e5efMaTk7O2Nk5YGX12M5dFBEReSxZLBYSEuKIiYnGygq8vLzue85jXRQAUK1aNapVq3bfdmPHjmXs2LEP1GejRo1o1KhRelN7bFkMCz23dSU4Lhhfj7IMrzAC12ZNsAoOJsmvHFGffZkleZyPP0ebC82JNWJ5w7U2XxWciMlkSlefQRvWcXH8WGL8z+HkU5wiHw56pD1bRUREROS/K94cT5ctHYhJiuHlfNXp49MVtzo1McVEk1DtFWI+GpwleRyKOcB7Ae0xY6aFRysG5R2aJXFFRERERLKLk5MTxYoV5ebNm0RHRxMVFZHdKYmIiDyRbGyscXV1xsvLCzs7u/u3z4KcJIt9d2Qi265uwcnGiemvziHXuHHY7dmFxcWViFnzwNEx03MITgqmxfnGhJpDqehUielF5mJjSt/lFrRhHcc7tgaTCQyDqBPHOd6xNX6zF6owQEREREQe2Mh9QzkWeoRcDrmY/MoM3AcOwOb0KcxeeYiYMgusrTM9h4vxAbS60IxYI5bXXGsyvtA36S6gFRERERF5EtjZ2VGwYEEMwyAxMRGLxZLdKYmIiDxRrKyssLW1fajvklQU8JTZf/NPxhwcBcDnlb/C7/AVnL6ZAEDkxO8wFyue6TnEWmJpe6EFAQkXKGznzXzvZThbO6e734BxY1MKAoDk/5pMBIwfq6IAEREREXkgv1z6iRknpgLwbbWpFPnxDxyWLcawsiJy+hyMB1huLb1uJYXR6kJTgpOC8HMox8wi87A12WZ6XBERERGRx4nJZHqgmY0iIiKSfioKeIqEx9+i29ZOmA0zDYs2pqV7LdwavgRAbNuOJNRvmOk5WAwLvS51Y3/Mn7hb52Bx0RV42WbMF6ux/mf/XxBwm2EQe+5shvQvIiIiIk+3q9FX6LO9OwBd/XpSO9EHlwHVAYj5cCCJVV/O9BwSLAl0CGjNmfjT5LPNz+JiK3Cxds30uCIiIiIiIiIi8t9lld0JSMYwDIOPdn3ApaiLFHbx5qsqE3Dv3Q2roJsklS5D1KgxWZLH6GvDWRe+GluTLXO9F1HSoVSG9e3oUyJ5pYB/MplwLF4yw2KIiIiIyNPJbDHT848uhMaHUj7Xs3xSfgiuXTthFR1FQpWXiOk3INNzMAyDvoHvszN6Oy5WriwuupJ8tvkzPa6IiIiIiIiIiPy3qSjgKbHSfxlrLqzC2mTNtBqzyDNrAXZbNmE4OBAxfS44OmZ6DnODZ/Fd0EQAJhb6npdcqmVo/979B6VsGQCkbCXg3X9QhsYRERERkafPlOPfsfP6dpxsnJleYzY5x4zB9q9DWDw8iJwyE6ytMz2Hr26MYUXYUqyxZmaRefg5ls30mCIiIiIiIiIiIioKeApcirzIoN39AfiowmBevGKF82fDAYga/QXm0mUyPYffI35h0JUPARiY92OaerTI8Bi569bHb/ZCXPzKYuXggItfWfzmLCL32/UyPJaIiIiIPD2OhhxhzIGRAHxW+QtK7z+P09TvAIicNAVL/gKZnsPS0EWMuzEWgC8Lfs1rbjUzPaaIiIiIiIiIiAiATXYnIOljtph5f1tXIhMjeN7rRfoU7YxbzRqYkpKIq9+QuDbtMz2HY7FHee9iByxYaOHRin5embf0au669cnXoAEeHs6EhUWTlGTJtFgiIiIi8uSLTYqlxx+dSbQk8lbhurR2ewPXXi8BENO5Kwlv1sn0HHZEbaPf5V4A9PH6kDa52md6TBERERERERERkdtUFPCE+/7oJPbc2IWzjQvfV5tGjoEfYX0xAHOhwkSNn/T/pfYzyY3EG7S50JxoSxTVXF5hXMFJmDI5poiIiIjIgxq9/1NO3zqFl2MeJlSdhFubTlgFB5PkV47oYaMyPb5//Fk6BrQmiSQa5GjE4LxDMz2miIiIiIiIiIjIP2n7gCfYkeDDfHHoMwA+r/wlpX7ajcOqFRjW1kRMnYXhniNT48daYmkX0IIriYH42BdnVpH52FnZZWpMEREREZEHteXKJmacmArApJe/p+CM+dht34rh5ETEjLng4JCp8W8lhdH6QnNumW9Ryek5JhWagpVJv4KJiIiIiIiIiEjW0koBT6iYpBi6/70M6ttF6tPKtgqug15OPjbwY5KefzFT4xuGwQeXe3Aw5gA5rHOwqOhycth4ZGpMEREREZEHFRoXQu9t3QHoWOY9agfnwvmL5ILayDHjMBcvkanxE41EOl1si3/8OQrYFmSu9xIcrRwzNaaIiIiIiIiIiEhaVBTwhBq1bxhnw8+QxzEv414cj1vTlphiokmo+jIxvfpmevxxN8ay+tYP2GDDHO9FFLMvnukxRUREREQehGEY9N/1ATdir1PCvSSf+g3CtXZtTElJxNVvSHyLVpkef1Bgf7ZH/YGTlTMLiy4nj22eTI0pIiIiIiIiIiJyN1q78gm0OfA3Zp2cDsCkapMpNHUOtgf2YXFzJ/K7aWBtnanxV4et5KsbYwD4suDXvORSLVPjiYiIiIg8jGXnFrMhYC02JhumvDKT3KM+x8b/HOZ8+Yn66mswmTI1/vTgySwInYMJE9MKz8bPsWymxhMREREREREREbkXFQU8gcYcGA1AZ9+u1LqZA6fxXwAQ9cV4LAULZWrsA9H76H05eRnW7rl70TpXu0yNJyIiIiLysD4/MBKAgRU/5rlD13GcNwuAyG+nYnjkzNTYv0f8wqdXPwbg03yjqe3+VqbGExERERERERERuR9tH/AEalGiFeVylWdYmYG41qqJyWwmrmFj4hs3y9S4VxICaRvwLvFGPLXc3mRYvpGZGk9ERERE5GFtCFiH2WLG2mTN1kNL+XjsNQBiuvYksXqNTI19MvYEXS52xIKFVjnb0j33+5kaT0RERERERERE5EGoKOAJ1Mm3CwAuH/bB5sJ5zPkLEPXFhEyNGWOJoV1AS4KSbuLrUJaphWdhbcrcbQpERERERB7GhoB1dNzcGhMmDMNgwPzTOIZCmE9Bkj7+NFNjhyaF0CagBVGWSF5yrsYXBSZgyuRtCkRERERERERERB6Etg94Qtn9vBHHBXMwTCYiv5uGkcMj02IZhkG/y+9zJPYwuaxzsaDoUlysXTMtnoiIiIjIoxh3aGxyQQAG7/0J9U9CvDV0auUADg6ZFjfJSOK9ix24lBBAYTtvZnnPx87KLtPiiYiIiIiIiIiIPAwVBTyBTDdv4toveSnS2G7vk/hy9UyN923QRFbdWokNNszyXkAhu8KZGu9eNtxaR7UTlXHc7Ei1E5XZcGtdtuUiIiIiIo8X/4izGBgUD4avNyS/NqQ2bHS9nKlxR1z9hO1RW3Gycma+9xJy2uTK1HgiIiIiIiIiIiIPQ0UBTyCXoQOxCg4mqYwf0UOGZWqs3yN+4bNrwwH4rMCXVHV5OVPj3cuGW+voeLE1J2KPE2eJ40TscTpebK3CABEREREBwMetBCZMzPgBnBNhczGY+DIUdy+ZaTGXhi5iWvBkAL4rNA1fR79MiyUiIiIiIiIiIvIoVBTwBLIKDsbi5k7ElJlgb59pcc7FnaXrxU4YGLTJ2YH2uTplWqwHMe7G/5eDBTAwMGFi/I2x2ZqXiIiIiDwe+lcYhIGBVzRcc4X2zcBiBf2fHZQp8fZH/0n/wD7JsfMMom6O+pkSR0REREREREREJD1ssjsBeXjhS1dhio3BcHPPvBjmW7QJaE6kJYIXnaswpsBXmEymTIv3IPzjz6YUBNxmYHAu/mw2ZSQiIiIij5O63vWZ/dpCWrl+zuXQc+TNU5I5zw7mbe96GR7reuI1OgS0JsFIoI57PfrnyZzCAxERERERERERkfRSUcCTyNYWwzbzCgLMhpluFzvhH3+OArYFmVVkAXZWdkDyEv7jbozFP/4sPvYlsnRGlI99CU7GHU9VGGDCRHH7zFsOVkRERESeLHW961PXO3PvT+MscbQPaMmNpOuUcfDlu0JTsTJpETYREREREREREXk86ZsrucPY66PZFPkbDiYH5nkvxsvWC0guCOh4sTUn444Tb8RzMu44HS+2ZsOtdVmSV/88g1K2DABSthLon1ezskREREQkaxiGwcDAfhyMOYCHtQfzvJfgYu2a3WmJiIiIiIiIiIjclYoCJJUfw9cz6eZ4AL4u9B3lnZ5NOTbuxtiUB/FAygP68TfGZkludXPUZ3aRhfg5lsXBygE/x7LM8V7E2+4ZvxysiIiIiEha5ofOYUnYQqywYnqRuXjbF83ulERERERERERERO5J2wdIirNxZ+h1qRsAXT170NijWarj/vFnUy3dD8mFAefiz2ZZjnVz1KeBZwM8PJwJC4smKcmSZbFFRERE5L9tf/SfDLnyEQAf5xvOK66vZnNGIiIiIiIiIiIi96eVAgSAKHMkHQJaEWWJpIrzSwzLP+qONj72JVKW7r/NhIni9iWzKk0RERERkWxxM/EmnS62JdFIpK77O7yfu092pyQiIiIiIiIiIvJAVBQgGIZBn8s9ORN/mrw2+ZhRZB62Jts72vXPMyhlywAgZSuB/nkHZXXKIiIiIiJZJslIosvF9lxLvEoJ+5J8U2gyJpPp/ieKiIiIiIiIiIg8BlQUIHwf9A3rw9dga7Jllvd8vGy90mxXN0d9ZhdZiK+DH/Yme3wd/JjjvYi33etlccYiIiIiIlln5LVh7IregYuVK3O9F+Ni7ZrdKYmIiIiIiIiIiDwwm+xOQLLX9sg/GH3tUwBG5/+C551fvGf7ujnqUzdH/axITUREREQk260J+4GpQd8B8E2hKZRw0NZZIiIiIiIiIiLyZNFKAf9hVxIC6XKxPRYstPBoRftcnbI7JRERERGRx8bJ2BN8ENgTgN5e/VQcKyIiIiIiIiIiTyQVBfxHJVgS6HyxLSHmEMo7PssXBSdoX1QRERERkb9FmSPpdLENMZYYqru8yuC8Q7M7JRERERERERERkUeiooD/qFHXhnEgZj/u1jmYVWQ+jlaO2Z2SiIiIiMhjwTAMPgzszbn4s+S3LcC0IrOxNllnd1oiIiIiIiIiIiKPREUB/0Ebbq1jWvBkAL4tNJUi9t7Zm5CIiIiIyGNkTshMVt/6ARtsmF5kLrlscmV3SiIiIiIiIiIiIo9MRQH/Mefj/elzuQcAPXP34U33OtmckYiIiIjI4+NwzEGGXR0MwND8I3nB+cVszkhERERERERERCR9VBTwHxJniaNzQDsiLRG84FSZIfmGZXdKIiIiIiKPjVtJYXS+2I4EI4G33OrSzbNndqckIiIiIiIiIiKSbioK+A/55OogjsUdIZd1LqYXmYOtyTa7UxIREREReSwYhkHvy925lHCRwnbefFN4MiaTKbvTEhERERERERERSTcVBfxHrAxbxvyQ2ZgwMbnITPLbFcjulEREREREHhuTg77l54iN2JnsmFVkHu7WObI7JRERERERERERkQyhooD/gDNxp+kf2AeAfnkG8Krr69mckYiIiIjI42Nv9B5GX/sUgNH5v+AZpwrZnJGIiIiIiIiIiEjGUVHAUy7WEkvni22JscRQzeUV+ucZlN0piYiIiIg8NkKTQuh6sQNmzDTK0YR2uTpmd0oiIiIiIiIiIiIZSkUBT7lhV4dwKu4kuW28mFx4JtYm6+xOSURERETksWAYBh9cfp+riVcoZufDuIKTMJlM2Z2WiIiIiIiIiIhIhlJRwFNs/a21zAuZBcB3haeRxzZPNmckIiIiIvL4mB0yg58jfsTWZMv0InNwsXbN7pREREREREREREQynIoCnlKXEy7RL7AXAO/n/oBXXV/P5oxERERERB4fx2KPMvzqxwAMyzeS8v9r787jbK7////fz4xtxjK2MWSJ5AzG2BlhLKFFWrS8LTGhkhYqvFHSu0+qoXepN4WK0Du9w7eUUCLLIIxIJBn7khozY5sxC2aevz/8zskx+5yZOcfL7Xq5dNE8X8/zfD1fj3meOY95zeP1evk39+yEAAAAAAAAgCJCUYAFXTKX9OSRx3Q2/Yxa+rfSCzUmeHpKAAAAQLGIW7pEW7u0V1TtQG3t0l5xS5dk6nM+/byeODJYaSZNPcrfrqFVn/LATAEAAAAAAIDiQVGABb31V6SikzervE8FzazzsUraSnp6SgAAAECRi1u6RLuHDND5PbuVkZam83t2a/eQAZkKA146MVb70mJUvUQN/afODNlsNg/NGAAAAAAAACh6FAVYzIakKL1z8i1J0tu1/qO6pet5eEYAAABA8Tj81iTJZpOMudxgjGSz6fDbk5x9vjr9heaf+kQ22TT9xo9UtURVD80WAAAAAAAAKB4UBVhI/KV4PXXkcRkZPVw5QvdVesDTUwIAAACKTcqBfX8XBDgYo5T9+yRJh9MOadTxZyVJz1cbrY7lOhX3FAEAAAAAAIBiR1GARRhj9Nyxp/TXpT/VoLRdr90w2dNTAgAAAIqVX/0Gl+8UcCWbTX4323XRXNSTRx9VYsY5tfVvp9HVX/DMJAEAAAAAAIBiRlGARXxyao6+P/edStlK6YMb56isb1lPTwkAAAAoVnVHj3M+MkCS81ECdUeP0zux/9a25J9UwSdAM26cpRK2Ep6dLAAAAAAAAFBMKAqwgANp+/SvEy9Kkl6q8Yqa+IV6eEYAAABA8QvsdY9CPv5UZRuHyKd0aZVtHKKQOfN1pEuQ3on9tyTp37XeUe1SdTw8UwAAAAAAAKD4cHnMNe6iuainjjyu5IxkhZfroqFVn/L0lAAAAACPCex1jwJ73eP8Oik9SU/FdFC60vVAxX+od6UHPTg7AAAAAAAAoPhxp4Br3Nuxk/VzynYF+FbUtNoz5GPjWwoAAAA4vHziBR2+cEg1S9bSpFpveXo6AAAAAAAAQLHjL8jXsOjzW/Ru7OUTm2/Velc3lKrp4RkBAAAA3mP52aX69NQ82WTTe3U+UIBvRU9PCQAAAAAAACh2FAVco5LSE/X00ceVoQw9VKmv7q14v6enBAAAAHiN2IuxGnVsuCTp6cBn1aFcuIdnBAAAAAAAAHgGRQHXqJdOjNORC4dVu2QdRdb8t6enAwAAAHgNY4yeO/aUEtITFFImVGOrj/f0lAAAAAAAAACPoSjgGrT0zBJ9duq/ztugVvAN8PSUAAAAAK8xJ2GWfkhcqdK20ppx4yyV9int6SkBAAAAAAAAHkNRwDVoSuybkqTh1Z7XLeU6eHg2AAAAgHd5O3ayJOnlGq+qYZlGHp4NAAAAAAAA4FklPD0B5N8TgU/pt9TdGhP0oqenAgAAAHidZ6uN1Jn0M3q06hOengoAAAAAAADgcRQFXIP6VO7v6SkAAAAAXmto4FOengIAAAAAAADgNXh8AAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFkVRAAAAAAAAAAAAAAAAFlXC0xPITXR0tGbOnKk9e/YoNTVVwcHBioiIUM+ePfM8xqFDh/Thhx9q06ZNio+Pl7+/v0JDQzVo0CCFh4cX4ewBAAAAAAAAAAAAAPAcr75TwJIlSxQREaHo6Gg1btxYbdq00e7du/X8889r6tSpeRpj27Ztuv/++/Xll1+qdOnS6ty5s+rUqaMNGzbosce3FnXdAABBKUlEQVQe0+zZs4v4KAAAAAAAAAAAAAAA8AyvvVNAfHy8JkyYID8/P3366acKCQmRJB04cEARERGaPn26unXr5mzPyqVLlzRmzBglJydr1KhRevzxx2Wz2SRJGzdu1BNPPKG33npL4eHhstvtxXJcAAAAAAAAAAAAAAAUF6+9U8D8+fOVmpqqAQMGuPzhv379+ho5cqSMMZo3b16OY0RHR+v48eMKDQ3V0KFDnQUBktShQwf16dNHGRkZWr58eZEdBwAAAAAAAAAAAAAAnuK1RQHr1q2TJHXv3j3Ttu7du8tms2nt2rU5jnH+/HmFhoaqU6dOWW6vW7euJOnkyZNuzRUAAAAAAAAAAAAAAG/klY8PMMZo//79kqQGDRpk2h4QEKCqVasqLi5OsbGxCgoKynKcHj16qEePHtnuZ+fOnZKk6tWrF8KsAQAAAAAAAAAAAADwLl55p4CzZ88qLS1NZcuWlb+/f5Z9qlWrJkmKj48v0D727t2rZcuWyWaz6bbbbivwXAEAAAAAAAAAAAAA8FZeeaeAlJQUSZKfn1+2fUqXLi1JSk5Ozvf4CQkJGjFihNLT03X//ferYcOGBZvo/69EifzVVvj6+rj8i/whfu4hfgVH7NxD/NxD/AqO2LmH+LmH+F1Gvly8iF/BETv3ED/3ED/3EL+CI3buIX7uIX4AAADFwyuLAnx8LieBNpst174ZGRn5Gjs2NlZDhgzR4cOH1aRJE7388ssFmqODj49NlSqVLdBrK1TIvugBuSN+7iF+BUfs3EP83EP8Co7YuYf4ued6jh/5sucQv4Ijdu4hfu4hfu4hfgVH7NxD/NxD/AAAAIqWVxYFlC17+aRhampqtn3S0tIkKdvHC2QlJiZGw4YN0x9//KHQ0FDNnj07x7sR5EVGhtG5c/m7W4Gvr48qVPDTuXMpSk/PX1EDiJ+7iF/BETv3ED/3EL+CI3buIX7uKWj8KlTws8zVUuTLxY/4FRyxcw/xcw/xcw/xKzhi5x7i5x7yZQAAgOLhtUUBZcuWVWJiolJTU1WmTJlMfU6ePClJqlatWp7G3Lhxo0aMGKGkpCR17NhRU6dOdRYfuOvSpYIl/OnpGQV+LYifu4hfwRE79xA/9xC/giN27iF+7rne40e+7BnEr+CInXuIn3uIn3uIX8ERO/cQP/cQPwAAgKLlleWUNptNDRo0kCQdOHAg0/YzZ84oPj5eAQEBCgoKynW8b775RkOHDlVSUpIefPBBffDBB4VWEAAAAAAAAAAAAAAAgLfyyqIASQoPD5ckrVq1KtO2VatWyRijTp065TrO6tWrNXbsWF26dEnDhw/X66+/rhIlvPIGCQAAAAAAAAAAAAAAFCqvLQp48MEH5efnp7lz52r79u3O9oMHD+rdd9+VJD322GPO9pMnT+rAgQPOxwpIUnx8vF544QWlp6frySef1DPPPFNs8wcAAAAAAAAAAAAAwNO89pL56tWra/z48ZowYYIGDBigsLAwlSpVSps2bVJaWppGjRqlhg0bOvtPmTJFixcvVu/evTVp0iRJ0pw5c3TmzBmVKFFCx44d0+jRo7PcV8uWLdW/f/9iOS4AAAAAAAAAAAAAAIqL1xYFSNJDDz2k6tWr68MPP9SOHTvk6+urxo0ba8iQIbrttttyfX1UVJQk6dKlS1q6dGmOfSkKAAAAAAAAAAAAAABYjVcXBUhSeHi4wsPDc+03adIk5x0CHL755puimhYAAAAAAAAAAAAAAF7Px9MTAAAAAAAAAAAAAAAARYOiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALIqiAAAAAAAAAAAAAAAALKqEpyeQm+joaM2cOVN79uxRamqqgoODFRERoZ49e+Z5jKSkJH300UdasWKFTpw4oYoVK6pr164aMWKEqlSpUoSzBwAAAAAAAAAAAADAc7z6TgFLlixRRESEoqOj1bhxY7Vp00a7d+/W888/r6lTp+ZpjKSkJEVERGjmzJlKT09Xly5d5O/vr88//1y9e/fWX3/9VcRHAQAAAAAAAAAAAACAZ3htUUB8fLwmTJggPz8/LViwQLNnz9aHH36or776SlWrVtX06dO1e/fuXMeZNm2adu/erfvuu0/ffvutpk6dquXLl2vQoEGKjY3V//3f/xXD0QAAAAAAAAAAAAAAUPy8tihg/vz5Sk1N1YABAxQSEuJsr1+/vkaOHCljjObNm5fjGElJSVq4cKH8/Pz04osvqkSJy09L8PHx0ZgxY1S7dm2tXr1aR48eLdJjAQAAAAAAAAAAAADAE7y2KGDdunWSpO7du2fa1r17d9lsNq1duzbHMaKjo5WcnKzWrVsrICDAZZuvr6+6du0qSbmO402WnlmiLnvbq/bOQHXZ215Lzyzx9JQAAAAAAAAAAAAAAF7KK4sCjDHav3+/JKlBgwaZtgcEBKhq1ao6e/asYmNjsx0npzEk6eabb5YkxcTEuDvlYrH0zBINOTJAe1J3K82kaU/qbg05MoDCAAAAAAAAAAAAAABAlryyKODs2bNKS0tT2bJl5e/vn2WfatWqSZLi4+OzHefkyZMufa8WGBiY6xje5K3YSbLJJiMjSTIyssmmt2MneXhmAAAAAAAAAAAAAABvVMLTE8hKSkqKJMnPzy/bPqVLl5YkJScnZ9vHsa1MmTJZbne05zRGXpQokb/aCl9fH5d/8+pA2j5nQYCDkdH+tH35nsO1rKDxw2XEr+CInXuIn3uIX8ERO/cQP/cQv8uKK1/GZcSv4Iide4ife4ife4hfwRE79xA/9xA/AACA4uGVRQE+PpeTQJvNlmvfjIyMbLf5+vrmaRxjTI7bc+LjY1OlSmUL9NoKFbIveshKcNlg7Ura5VIYYJNNDcs2LPAcrmX5jR9cEb+CI3buIX7uIX4FR+zcQ/zccz3HrzjzZbgifgVH7NxD/NxD/NxD/AqO2LmH+LmH+AEAABQtrywKKFv28knD1NTUbPukpaVJUraPF7hyW3bjONpzGiM3GRlG587l704Dvr4+qlDBT+fOpSg9PfuihquNqjZWjyQ97HyEgOPfUdXG6vTp8/md+jWroPHDZcSv4Iide4ife4hfwRE79xA/9xQ0fhUq+FnmaqnizJdxGfErOGLnHuLnHuLnHuJXcMTOPcTPPeTLAAAAxcNriwLKli2rxMREpaamZnn7/5MnT0qSqlWrlu04QUFBkqT4+Pgst8fFxUmSAgMD3ZrvpUsFS/jT0zPy9do7y9+tj2/8VG/HTtL+tH26uXQDja7+gu4o36vAc7iW5Td+cEX8Co7YuYf4uYf4FRyxcw/xc8/1Hr/iypfhivgVHLFzD/FzD/FzD/ErOGLnHuLnHuIHAABQtLyyKMBms6lBgwbasWOHDhw4oJCQEJftZ86cUXx8vAICApx/+M9KgwYNJEn79+/Pcvu+ffskSXa7vZBmXvR6VbxHvSre4+lpAAAAAAAAAAAAAACuAV57j6Xw8HBJ0qpVqzJtW7VqlYwx6tSpU45jtG7dWv7+/oqOjlZiYqLLtvT0dK1Zs0Y2m825LwAAAAAAAAAAAAAArMRriwIefPBB+fn5ae7cudq+fbuz/eDBg3r33XclSY899piz/eTJkzpw4IDzsQKS5OfnpwceeEDnz5/Xyy+/rAsXLkiSjDH697//rePHj6t79+6qV69e8RwUAAAAAAAAAAAAAADFyCsfHyBJ1atX1/jx4zVhwgQNGDBAYWFhKlWqlDZt2qS0tDSNGjVKDRs2dPafMmWKFi9erN69e2vSpEnO9ueee05btmzR8uXL9csvv6hJkybat2+fDh48qJo1a+rll1/2xOEBAAAAAAAAAAAAAFDkvLYoQJIeeughVa9eXR9++KF27NghX19fNW7cWEOGDNFtt92WpzHKlSun+fPna8aMGVqxYoXWrFmjoKAg9e/fX0899ZQCAwOL+CgAAAAAAAAAAAAAAPAMry4KkKTw8HCFh4fn2m/SpEkudwi4UoUKFTR27FiNHTu2sKcHAAAAAAAAAAAAAIDX8vH0BAAAAAAAAAAAAAAAQNGgKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuiKAAAAAAAAAAAAAAAAIuyGWOMpydxLTPGKCMj/yH09fVRenpGEczo+kD83EP8Co7YuYf4uYf4FRyxcw/xc09B4ufjY5PNZiuiGRUv8mXPIH4FR+zcQ/zcQ/zcQ/wKjti5h/i553rPlwEAAIoDRQEAAAAAAAAAAAAAAFgUjw8AAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiKAoAAAAAAAAAAAAAAMCiSnh6At4qOjpaM2fO1J49e5Samqrg4GBFRESoZ8+eeR4jKSlJH330kVasWKETJ06oYsWK6tq1q0aMGKEqVapk6n/hwgXNnTtXy5Yt05EjR2SMUZ06ddSzZ08NGTJEpUuXdun/22+/qXfv3tnuv1mzZlq4cGHeD7oQeSJ+c+fOVWRkZLbjPf744xo9erRL2549e/Tee+/pl19+UWJiourVq6c+ffqob9++stlseT/gQlac8Tt+/Li6deuWpzF/+OEH1apVS5L3rr/CiN2VjDEaPHiwDh48qKioqELbb3x8vKZPn67169crNjZWgYGBuuOOO/Tkk0+qXLlyBZprYfBE/DIyMrRo0SJ9+eWX2rdvny5evKgbbrhB3bt31xNPPKEKFSq49D979qzatm2b7T6rVq2qjRs3Fmi+7vJE/FauXKlnnnkm2zF69uypd955x6Xt2LFjmjZtmrZu3aqEhATVrFlT9913n4YMGaKSJUsWaK7uKu7YBQcH52mcTz75RGFhYZKsv/YOHTqkDz/8UJs2bVJ8fLz8/f0VGhqqQYMGKTw8PFP/jIwMffnll/rss890+PBhlSxZUq1atdJTTz2lJk2aZLkPK3/u5jd+iYmJ+uijj7Rq1SodP35cvr6+uummm3T//ferX79+8vFxrd0tyHu9qJEvu4d82T3kywVHvuwe8mX3kC8XHPmye8iX3UO+DAAAcO2jKCALS5Ys0ZgxY1SiRAmFhYXJ19dXmzZt0vPPP6/9+/drxIgRuY6RlJSkiIgI7d69W3Xq1FGXLl0UExOjzz//XGvWrNHChQtVvXp1Z/+UlBQNHjxYP//8s8qXL6+WLVvKZrNpx44devfdd7VmzRrNnTtX/v7+ztfs3r1bktSkSRPVq1cv0xxuvPHGQohG/nkiftLf8ejSpYvKly+faczGjRu7fL1582Y9/vjjunTpklq3bq3y5ctr8+bNeuWVV/TLL79o0qRJbkSh4Io7fv7+/rr77ruzHWvv3r2KiYnRDTfcoEqVKjnbvXH9FUbsrjZ58mRt2rRJQUFBhbbfkydPqm/fvvrjjz9kt9vVpUsX7dq1S7NmzVJUVJT+97//eeREpyfil5GRoREjRmjlypXy8/NTaGio/P39tXPnTs2aNUsrV67UZ599pqpVqzpf89tvv0mSbrrpJoWEhGQa8+qTosXFU+vP8V5s27Ztlv1atGjh8vW+ffv08MMP6+zZs2rWrJmaNGmin376SVOmTNGmTZs0a9YslShRvOmBJ2KX08+9Y8eOaceOHSpfvrxq167tbLfy2tu2bZsee+wxJScnq27duurcubNiY2O1YcMGbdiwQWPGjNGjjz7q8ppXXnlFCxYsUEBAgNq3b6/4+Hj98MMPioqK0syZM9WxY0eX/lb+3M1v/BISEtS/f38dPnxYVapUUbt27ZSSkqKdO3fq1Vdf1caNGzVt2jT5+vo6X5Pf93pRI192D/mye8iXC4582T3ky+4hXy448mX3kC+7h3wZAADAIgxcxMXFmaZNm5rmzZubX3/91dm+f/9+0759exMcHOzSnp033njD2O12M2bMGHPx4kVjjDHp6enO9mHDhrn0f+edd4zdbjd9+/Y1CQkJzvb4+Hjz0EMPGbvdbiZPnuzymv/7v/8zdrvdrFmzxo0jLlyeip8xxtx1110mODjYJCYm5jp+Wlqa6dChg2nUqJFZu3atsz02Ntbccccdxm63m++//z4vh1yoPBm/rJw8edLccsstpkmTJua3335z2eZt66+wYueQnJxsxo4da+x2u7Hb7SY8PLzQ9vv0008bu91upkyZ4mxLS0szzz77rLHb7WbixIl5nmdh8VT8Fi5caOx2u7n99tvNsWPHnO2JiYnmiSeeMHa73YwYMcLlNbNmzTJ2u918+umn+TzKouOp+BljzNChQ43dbjcxMTF5Grt3797GbrebBQsWONsSExPNww8/bOx2u5kzZ06e51kYPBm77F5/xx13mODgYJfPB2Osu/YuXrxobr31VmO3280HH3xgMjIynNs2bNhgQkJCTMOGDc3evXud7atWrTJ2u9306tXLnDp1ytn+3XffmUaNGpkOHTqY5ORkZ7uVP3cLEr/Ro0cbu91unnnmGXP+/Hln+9GjR0337t2zXGf5fa8XJfJl95Avu4d8ueDIl91Dvuwe8uWCI192D/mye8iXAQAArMMn97KB68v8+fOVmpqqAQMGuFQ1169fXyNHjpQxRvPmzctxjKSkJC1cuFB+fn568cUXnRXkPj4+GjNmjGrXrq3Vq1fr6NGjztd8+eWXkqRXX31VlStXdrZXqVJFL7/8siRp2bJlLvtxVGBnVX3tKZ6KX2pqqg4ePKi6devm6YqRJUuWKC4uTnfccYc6d+7sbK9WrZr+9a9/Sbp8e9Xi5qn4ZWfcuHFKSEjQqFGj1KhRI5dt3rb+CiN2DqtWrdJ9992nxYsXu1z1UBj7PXLkiFatWqUaNWpo+PDhzvZSpUpp4sSJKleunBYtWqTz58/n9dALhafi5/jZN27cOOetdiWpXLlyeuONN2Sz2fTDDz8oNTXVuc3b1p7kufhJl6+G8PPz00033ZRr302bNmn37t1q0aKF/vGPfzjbr4z3vHnzZIzJ01wLgydjl5U33nhDBw8e1IABA1w+HyTrrr3o6GgdP35coaGhGjp0qMttSTt06KA+ffooIyNDy5cvd7Z//PHHkqQxY8a4XBV7++236+6771ZcXJxL3mLlz938xu/8+fP67rvvnD/3r7yqvXbt2s5bt1+d9+XnvV7UyJfdQ77sHvLlgiNfdg/5snvIlwuOfNk95MvuIV8GAACwDooCrrJu3TpJUvfu3TNt6969u2w2m9auXZvjGNHR0UpOTlbr1q0VEBDgss3X11ddu3aVJOc458+fV506ddSwYUM1aNAg03h169aVJMXFxTnbMjIytHfvXlWrVk2BgYF5Pbwi54n4SZdv2Zmenp7nXzxzmmfbtm0VEBCgbdu26dy5c3kar7B4Kn5Z+e6777RhwwY1adJEERERLtu8cf0VRuwk6dy5c3r66ad17NgxRURE6IMPPijU/UZFRckYo86dO2e65WT58uUVFham1NRUbd68Ode5FiZPxS8gIEA33XSTmjVrlmlb5cqVFRAQoIsXL+r06dPO9t9++02+vr5q2LBhrvMpLp6KX3x8vOLi4tSwYUOX2ybmNs9bb70107Y6deooODhYJ06c0N69e3Mdq7B4KnZZ2blzpxYtWqQaNWpo5MiRmbZbde2dP39eoaGh6tSpU5bbHXnIyZMnJV1+tuf27dvl7++vW265JVP/Hj16SHL9nLHy525+43fq1Ck1adJE7dq1U8WKFXPtL+X/vV7UyJfdQ77sHvLlgiNfdg/5snvIlwuOfNk95MvuIV8GAACwjuJ9CJqXM8Zo//79kpTlycaAgABVrVpVcXFxio2Nzfa5azmNIUk333yzJCkmJkaSVLZsWX366afZzmvXrl2S5LK/Q4cOKTk5WSEhIZoxY4aWL1+uo0ePqkKFCurSpYueeeaZHJ+pVxQ8FT/p7+eGBQQE6OWXX9bGjRt18uRJ1axZU3fffbcee+wxlS5d2tl/37592e7Dx8dHN910k37++Wft27dPrVq1yvXYC4Mn43e1Cxcu6M0335QkjR8/Xj4+rvVD3rb+Cit20uXvf69evfTkk0/q5ptv1vHjxwt1v461Z7fbsxzz5ptv1g8//KCYmBh169Yt+4MuRJ6KnyTNnDkz221Hjx7VmTNnVLJkSecVocnJyTp8+LDq1KmjL774Ql988YUOHTqkMmXK6JZbbtEzzzxT7FcFeDJ+jp991atX1+TJk7V69WqdOHFCgYGBuv322zVs2DCXP3bkZf39/vvviomJKZYTeZ6MXVbeeOMNGWM0evRol6tRJGuvvR49ejhPTGZl586dkuR8tvaBAweUkZGhm266Kcvn6davX1+S6+eMlT938xu/2rVr63//+1+e+0v5f68XJfJl95Avu4d8ueDIl91Dvuwe8uWCI192D/mye8iXAQAArIU7BVzh7NmzSktLU9myZTP9cuNQrVo1SZcrULPjqFR19L2a40qRnMZwyMjI0Lvvvivp8i3GHBzJ7tatWzV9+nRVq1ZNbdq00cWLF7Vw4ULdf//9zsS9uHgyfo5b1M2fP18rV65UcHCwQkND9eeff2rq1KmKiIhQcnJypn1kd9WOoz0hISHbeRY2b1p/X3zxhf744w917NhRLVu2zLTd29ZfYcVOunxbyLffftt5Mriw92vltSflL365mTJliiSpa9euzj9S7NmzRxkZGTp8+LBef/11lS1bVmFhYSpZsqSWLVumBx54QNHR0W7vOz88GT/Hz75vv/1WCxcuVL169dSyZUudPXtWH3/8sf7xj3+4XDXrbevPm9ZeVFSUfv75Z9WvX1933XVXpu1WX3vZ2bt3r5YtWyabzabbbrtNUt7X0ZX79La1J3kufjlJSUnRjBkzJLnmffl9rxclb8pXHMiXMyNfJl++Gvmye7wpZ7kS+XLuyJf/Rr5Mvpxf5MsAAADWwp0CrpCSkiJJ8vPzy7aP4xftK0+YXc2xrUyZMllud7TnNIZDZGSkduzYoapVq2ro0KHO9j179kiSQkND9f777zurcZOTkzVhwgQtXbpUI0eO1Ndff+3yrK6i5Mn4OZL/Bx54QK+88opKlSolSTp27JieeeYZ7dixQ2+//bYmTJiQp7nmZZ6FzVvWnzFGn3zyiSRp2LBhWfbxtvVXWLErjv06XpPb96c4n5HqqfjlZO7cufr222/l5+en5557ztnuWHt16tTRzJkznVdYXLx4UW+//bbmzJmj559/XitXrsz2pEVh82T8HPHo3Lmz3n77bZUvX17S5dstPv/889q8ebMmTJjgvMIst/XnmGdxrT9vWnuO52Be/YxLh+tx7SUkJGjEiBFKT0/X/fff77wazjFWdvt1rC/H/PIy12v5czc72cUvO+np6RozZoz++OMP1a9fX3369HFuy+97vSh5S75yJfLlzMiXyZevRr7sHm/KWRzIl/OGfLnwkC9nRr5MvgwAAHAt4U4BV3Dc8jEvJ2UyMjKy3eZ4dlVu4xhjctwWGRmpTz75RKVLl9a7777rvB2gJI0cOVLff/+9Zs+e7XJ7Ln9/f7322msKCgrS3r17tXXr1lyPpbB4Mn7z58/X0qVLNXHiROcJTunyLccmTZokm82mRYsWKS0tLV/7yGmehc1b1t/GjRt18OBBNWvWTG3atMmyj7etv8KKXXHstzB+PhQ2T8UvO3PnzlVkZKRsNptef/1158kkSerfv79Wr16t//3vfy7tJUuW1JgxYxQSEqL4+HitWLGiyOfp4Mn4vfXWW1q+fLn+85//OE96SJefL/vmm2/K399fa9ascd4a1NvWn7esvYMHD2rjxo2qXr26evXqlWWf623txcbGKiIiQocPH1aTJk308ssvO7fl5zPUsZas/LmblZzil5ULFy5o1KhR+v7771WxYkVNmzbNJZ/J73u9KHlLvuLYRr5Mvpwd8mVX5Mvu8ZacxYF8Oe/IlwsH+XJm5MuuyJcBAAC8H0UBVyhbtqwkKTU1Nds+jpNkOVU1O7ZlN46jPbsxLly4oNGjR2vu3Lny8/PT9OnTM51sKlmypG688cYsn4fl5+endu3aSZJ+/fXXbOdZ2DwZPz8/PzVo0MD5S9SVGjVqpOrVqystLc35jLbc9pGXeRY2b1l/3377rSTpvvvuy3Yf3rb+Cit2xbFfx7+O9qvl9v0pCp6K39WMMXrzzTcVGRkpX19fRUZGZrotpY+Pj2rWrKmqVatmer2Pj486d+4s6dr82VcQpUqVUv369bO8ciMoKEiNGzeW9PctjHNbf8X9s89b1t53330nY4x69eqV5TM/petr7cXExKhfv37av3+/QkND9fHHH7ussfx8zjhOIFr5c/dqucXvaufOndPQoUP17bffqnLlypozZ47LiXQp/+/1ouQt+Qr5MvlydsiXs0a+7B5vyVnIl/OPfLlwkC+7Il/+G/kyAADAtYOigCuULVtWZcuWVWJiYrYJb27Pn5TkvBIku+dpOZ5hldVzwk6fPq1BgwZp6dKlqlixoubMmaOOHTvm6zgkOX8Ju/JWZEXNG+KXHUc8HPNy7CO754kVZB/u8ob4ZWRkaM2aNSpRooTuuOOOfM3/SsW9/gordsWxXyuvPXekpqZqxIgRmj17tsqUKaOpU6eqd+/e+R7nWv7ZVxSujoe3rT9vid2qVaskKctno+aVVdbexo0b1a9fP+dzsufNm5fpD1oF+ZzxtrUneS5+Vzp+/Lj69u2rTZs2qVatWvrss8+cJyzzozjXnzfkK+TL5Mvky/lHvuweb8hZyJeLBvly3pAv/4182RX5MgAAwLWDooAr2Gw2NWjQQJJ04MCBTNvPnDmj+Ph4BQQEuNwC8mqOMfbv35/ldsfVN3a73aU9NjZWffv21bZt21SnTh0tWLBALVq0yHKMyMhIPfPMM/rjjz+y3O64HVb16tWznWdh81T8YmNjNX78eP3zn//Mdsxjx45J+vuXrJzmmZGRoYMHD7ocT3Hw9PqTLlfsJyQkqFWrVi63372at62/wopdcew3p/5Szt+fouKp+DkkJSVp0KBB+v7771W5cmV98skn6t69e5Z9Z86cqREjRmjnzp1Zbr+Wf/blV1pamiZMmKCnn3462xM0jp99jnh42/rz9NqTLj/Hcvfu3apVq1aOJ5euh7X3zTffaOjQoUpKStKDDz6oDz74wHl10JXq168vHx8fHTx4MMvbhDo+f65cR1b+3HXIa/wcYmJi1KdPHx04cEChoaFasGCB6tWrl6lfQd7rRcnT+Qr58mXky+TL+UW+7B5P5yzkywVDvlw4yJf/Rr7sinwZAADg2kJRwFXCw8Ml/V0FfaVVq1bJGKNOnTrlOEbr1q3l7++v6OhoJSYmumxLT0/XmjVrZLPZnPuSLt8K65FHHtHhw4ediW7dunWz3ccvv/yilStXauXKlZm2xcXFacOGDfL19VX79u1znGth80T8ypUrpyVLlmjJkiXas2dPpvHWrl2rM2fOqG7duqpdu7YkOeeQ1Ty3bNmis2fPqkWLFqpQoUIejrrweGr9OTh+ec/u5LqDN66/wohdcew3PDxcNptNa9asUXp6ukv/xMREbdmyRX5+fmrbtm2hzzUnnorfxYsXNXToUP3888/OP+40a9Ys2/779u3TihUr9M0332Talpqaqu+++06SCnTFqDs8Eb/SpUtr7dq1WrVqlTZs2JBp+++//67ff/9d5cuXV/PmzSXl/LPv6NGjiomJUY0aNRQcHFyoc82Jp9aeg+PnniNG2bH62lu9erXGjh2rS5cuafjw4Xr99dezvTWsn5+f2rRp4/yZdTXHZ4PjFrGStT93pfzFT7p8Unzw4MGKj49X586d9d///jfLW+1KBXuvFzXyZfeQL7uHfLngyJfdQ77sHvLlgiNfdg/5snvIlwEAACzEwMWff/5pmjVrZpo3b262bdvmbD9w4IDp0KGDsdvtZs+ePc722NhYs3//fhMbG+syzsSJE43dbjfPPfecSUtLM8YYk5GRYSIjI43dbjdPP/20S/+RI0cau91uevbsaRITE3Od5+LFi43dbjetWrUyu3fvdrYnJiaaRx991NjtdjN+/PgCxcAdnorfCy+8YOx2u7n//vtNQkKCs/3QoUOma9euxm63m6+//trZnpSUZDp27GgaNWpkVqxY4Ww/efKkufPOO43dbjerVq0qnKDkg6fi5zB27Fhjt9vNd999l+M8vXH9FVbsrnbs2DFjt9tNeHh4oezXGGOGDRtm7Ha7iYyMNBkZGcYYY9LS0sxzzz1n7Ha7eeONN/J9/O7yVPymTJli7Ha76dChg/nrr79ynefWrVuN3W43ISEhZv369c72tLQ0M27cOGO3282gQYNyHaeweSp+7733nrHb7aZr167m6NGjzva4uDjTu3dvY7fbzfTp053tGRkZ5t577zV2u93MmzfP2Z6YmGgefvjhTO3FwVOxc5g6daqx2+1m9uzZOfaz8tqLi4szbdu2NXa73bzzzjt52u/3339v7Ha7ufPOO83Jkyed7StWrDCNGjUyHTp0cH7+GGPtz92CxK9v377GbrebiIgIc+HChVz75/e9XtTIl91Dvuwe8uWCI192D/mye8iXC4582T3ky+4hXwYAALAOmzHGeLowwdssWrRIEyZMkI+Pj8LCwlSqVClt2rRJaWlpGjVqlIYOHersO27cOC1evFi9e/fWpEmTnO1JSUnq16+fYmJiVLNmTTVp0kT79u3TwYMHVbNmTX3++efO523t379fvXr1kjFGLVu2VM2aNbOd25tvvikfHx8ZYzRu3Dh99dVXKlGihFq2bKmAgABt3bpVZ86cUatWrTRr1iz5+/sXXaCyUdzxk6SzZ89q4MCB2rt3r8qXL6+WLVsqPT1d0dHRunDhggYNGqQXXnjBZZ5RUVF66qmndOnSJbVs2VKVKlXS5s2blZSUpD59+ujVV18t+mBlwRPxcxgwYIC2bt2q+fPnq3Xr1tnO0VvXX2HE7mrHjx9Xt27dFBQUpKioKLf3K0l//vmn+vTpo9jYWN10001q0KCBdu3apRMnTigkJET//e9/c7yFXlEp7vidPn1aXbt2VUpKiho2bJjjbRDHjRvnvCrgP//5j6ZPny7p8tUqQUFB2rFjhzOeOV1BUJQ8sf4uXLigJ554Qj/++KPKlCmjVq1aqVSpUtqyZYuSk5N1++2365133pGvr6/zNXv27NGAAQOUlJSkkJAQ1apVSz/99JMSEhLUpUsXvf/++zlesVEUPPXelaSxY8fqq6++0ptvvql77703x3lade39+9//1qxZs5zPx7bZbFnup2XLlurfv7/z6zFjxujrr79WuXLl1K5dO50+fVrbt29XyZIlNWvWLIWFhbm83qqfu/mN37p165xjduzYUZUqVcqyf8WKFfXSSy9JKth7vaiRL7uHfNk95MsFR77sHvJl95AvFxz5snvIl91DvgwAAGANxftbzDXioYceUvXq1fXhhx9qx44d8vX1VePGjTVkyBDddttteRqjXLlymj9/vmbMmKEVK1ZozZo1CgoKUv/+/fXUU08pMDDQ2Xf9+vVy1GZs375d27dvz3bcSZMmycfHRzabTZMnT1a7du20YMEC/frrr8rIyFDdunX1xBNPaODAgSpZsqR7gSig4o6fJAUEBOjzzz/Xxx9/rOXLl2vTpk0qXbq0mjdvroiICPXo0SPTPjp16qTPPvtM77//vrZv365Lly6pXr166tevnx544IFCiUVBeCJ+DqdOnZKkXG9H563rrzBiVxz7rVGjhhYtWqRp06Zp7dq1WrNmjW644QYNGzZMjz/+uEdOcErFH7+tW7cqJSVF0t+388vO8OHDnSePnn32WYWGhuqTTz7Rrl279Ntvv6lmzZp68sknr6v4SVKpUqX00Ucf6dNPP9XXX3+tbdu2ycfHRw0aNNBDDz2kBx98MNMJl0aNGun//b//p6lTp2rTpk06cOCA6tSpo0cffVQDBw4s9hOckufeu1Lef+5J1l17jpPAly5d0tKlS3Pse+VJzkmTJqlp06ZauHCh1q9frwoVKujWW2/V8OHD1ahRo0yvternbn7jt379eufXWd3e1CEoKMh5krMg7/WiRr7sHvJl95AvFxz5snvIl91Dvlxw5MvuIV92D/kyAACANXCnAAAAAAAAAAAAAAAALMrH0xMAAAAAAAAAAAAAAABFg6IAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAAAAAAAAAAAAAAAsiqIAAIBXMsZ4egoAAACA1yJfBgAAAADkFUUBAK4Lx48fV3BwcJ7+GzdunKen69SpUycFBwfr+PHjzraBAwcqODhYP/74owdnVnTOnTun1157TV999VWRjJ/VWtizZ0+R7KswJScnq0mTJpo8eXK+Xnfrrbe6HOs777xTRDMEAADXMvLlawf5ctbIlwEAAAAgeyU8PQEAKG533313jttbtGhRTDNBViIjI/Xll1/qtddeK9L9+Pn5qXv37pKkgICAIt1XYfjxxx918eJFde7cOV+v6969u06dOqW9e/cqJiamiGYHAACshHzZu5EvZ418GQAAAACyR1EAgOvOW2+95ekpuGXy5MlKSUnRDTfc4OmpFIniug1qhQoVrqm1EBUVpXLlyqlVq1b5et2LL74oSZo2bRonOQEAQJ5cSzlSVsiXCwf5MgAAAABYB0UBAHCNserJTeQsKipK7du3V8mSJT09FQAAAK9Gvnx9Il8GAAAAgOz5eHoCAODt0tLS9NFHH+mee+5Rs2bN1KpVK0VERGj16tXZvubHH3/U448/rrCwMIWGhurOO+/UtGnTlJycnGX/TZs2afDgwWrTpo1at26t559/XidOnMiyb1bPSHW0nTlzRp988ol69eqlpk2bqn379nrhhReyHWv58uXq27evWrVqpbZt2+q5557TsWPHNGjQoEzPZs2OY98xMTGKiIhQaGioOnbsqOXLl0uSLl26pEWLFumRRx5RWFiYQkJC1LZtWw0cOFDLli1zGSs4OFiLFy+WJL300ksKDg7Wl19+mWnOAwcOVKtWrdSsWTPde++9mjt3ri5evJjrXHMTHBys+++/X2fPntVrr72m8PBwNW3aVPfcc4+WLl0qSfrzzz81atQohYWFqW3btho8eLB+//13l3GmTZum4OBgrVmzRmvWrFHfvn3VvHlztWvXTv/85z916tQpSdKiRYt09913q1mzZrr99tv1/vvvZ3kce/fu1Z9//qlOnTo529LS0vT++++rd+/eatmypVq0aKHevXtr5syZSklJcTsWAAAAeUW+nDPyZfJlAAAAAPA07hQAADlISkrS4MGDtXPnTlWuXFnt2rXThQsXtHXrVm3ZskXPPPOMhg8f7vKaDz/8UG+//bZKliypJk2aKDAwUDt27NB7772nH374QfPmzXN5JueiRYs0YcIE2Ww2tW7dWhUqVND69eu1bdu2bE+KZuell17SqlWr1LRpU3Xq1Elbt27Vl19+qR9//FFLly5V+fLlnX3ffPNNzZ49W6VKlVJYWJh8fX21du1abd68WRUqVMh3rIYPH67z58+rc+fO+vXXX9WkSRMZYzR8+HCtXr1aAQEBatasmUqXLq39+/crOjpa0dHRSkhIUEREhKTLz6/dsWOHjh07pubNm6t27dqqU6eOcx8vv/yyFixYoDJlyqhp06YqX768tm3bpsjISEVFRWnmzJkqVapUvud+pfPnz6tPnz46efKkwsLCdOrUKe3YsUOjRo3S6dOn9cEHH8jHx0etWrXSgQMH9OOPP6p///769ttvFRQU5DLWggULtGbNGjVq1Ejt27fX9u3btWTJEh04cEDt27fX7Nmz1aJFC7Vr104bN27U1KlTde7cOb3wwgsu46xbt06SnCc5jTF68skntXHjRgUFBSksLEzGGP3000965513tHHjRn3yySey2WxuxQIAACA35Mt5R75MvgwAAAAAHmMA4Dpw7NgxY7fbjd1uz9frxo4da+x2uxk5cqQ5f/68s/3QoUOma9euxm63m40bNzrbN23aZIKDg02nTp3Mnj17nO1paWlm3Lhxxm63m1GjRjnbT5w4YZo2bWqaNGliNm/e7GxPSEgw9913n3POx44dc24bMGBApv062po3b+4yzunTp02PHj2M3W43n376qcs87Xa76dixo9m/f7+z/fjx487+V+83O459d+7c2Zw+fdoYY0x6eroxxpgVK1YYu91uHnzwQZOUlOTyug8++MDY7XbTo0cPl3ZHzBcuXOjS/sUXXxi73W7uvvtul3klJiaaIUOGGLvdbqZMmZLrfB1rITw8PNM2x3H37NnTxMfHO9snTpzo3PbEE0+YlJQUY4wxFy9eNP369TN2u93MmjXL2X/q1KnO/v/973+d7X/99Zdp1qyZsdvtplGjRi7fq3Xr1hm73W5atmzpjJ/Dww8/bO655x7n11u3bjV2u90MGDDAXLhwwdmekJBgunXrZux2u8vYV84pLzECAADXH/Jl8mUH8mXyZQAAAADWw+MDAFx3goODs/1v7ty5zn6xsbFasmSJAgMDNXHiRPn7+zu31a1bV+PGjZMkzZ4929k+a9YsGWM0fvx4NWzY0NleqlQp/etf/1LVqlW1fPlyxcbGSpIWL16s1NRU9e/fX2FhYc7+lStX1muvvZbvY/vHP/7hMk7FihV1zz33SJJiYmKc7fPmzZMkjRs3TvXr13e216xZU6+//nq+9ytdvmqpYsWKkiQfn8sfLxcvXtStt96q0aNHq2zZsi79+/XrJ0l5uuWqJH300UeSpMjISNWqVcvZXq5cOUVGRqpkyZKaP3++Lly4UKD5X2nEiBGqUqWK82tHDKXLMStTpowkqUSJErr11lslSUeOHMk0jt1u14ABA5xfBwUFqU2bNpKkO++80+V7FR4eLn9/fyUlJSkhIcHZnpiYqJ9//lmdO3d2tp08eVKSFBgY6PLM1MqVK2vixImKjIxU7dq1C3bwAADguke+TL6cG/JlAAAAALi28PgAANedu+++O9ttV57w++mnn5Senq7Q0FCXE5wOHTp0kI+Pj7Zt26b09HTnayS5nLxyKFOmjFq3bq3vvvtOP/30k+666y5t3bpVklyefekQEhKiGjVq6M8//8zzsTVr1ixTm+MWnY7nZhpjtHnzZvn6+jpP0F2pTZs2CgwMVFxcXJ73K8nlpK7DXXfdpbvuusulLTU1VQcPHtTPP/8sSUpPT1d6erp8fX2zHTsuLk4HDx5U+fLlFRISkml7tWrV1LBhQ+3atUu//fabmjdvnq+5X+3q11eqVEmS5Ofnp7p167psc9w6NquTq1l9PypXriwpc7xsNpvKlSun5ORkpaWlOds3bNigS5cuuayRFi1aqGTJklq2bJmSkpLUo0cPhYeHq3r16rrlllvyfqAAAABZIF8mX84N+TIAAAAAXFsoCgBw3Xnrrbfy1O/EiROSpNWrVys4ODjbfikpKTp79qyMMc4TiW3bts1xbMeJS8cVLFc/W9OhVq1a+TrJeeWzVx0cJw8zMjIkSWfOnFFycrKqVKkiPz+/LMepWbNmvk9yZrVv6fJzZhcsWKD169frwIEDiouLkzHG5fmdxpgcx3bEIDExMcfvhaOvuyc5rz4Wx1yzenZsTs8hzSomjv6Oq8RyGysqKkoVKlRQixYtnG01atTQm2++qQkTJmjdunXOZ6g2aNBAPXr0UN++fbNdUwAAALkhXyZfzg35MgAAAABcWygKAIBsOE4K3nzzzWrUqFGu/R1XP5UqVUq33357jn1vvPFGSTmfIJOU49VAWcltPEm6dOmSpL+PLyu5nXTMiuMWqFfat2+fHnnkESUkJKhSpUpq2rSpevXqpeDgYIWFhalLly55GtsR24oVKyo8PDzHvoGBgfme+9VKlCicj0d3xzHGaP369erQoUOmtdCzZ0+Fh4frhx9+UFRUlLZs2aJ9+/Zp3759mjt3rubMmeP2yV4AAICckC/nD/ly4Y9DvgwAAAAAeUNRAABkw3GyrFGjRnm6WurChQsqWbKkLl26pDfeeEOlSpXK9TVBQUHat2+f/vjjD918882ZtjuujCpMlSpVUunSpXX27FmdP38+07NLJeXraqucvPrqq0pISNBjjz2mkSNHupyoO3v2bJ7HcXwvSpcunecr16xg9+7diouLc3k+6pXKly+v++67T/fdd5+z/5QpU7Rhwwa9++67Ls/8BQAAKGzky+4jX3YP+TIAAAAA5E3mMnUAgKTLzwqVpK1btzpvc3qlXbt26bbbbtPw4cNljFGpUqXUvHlzZWRkaP369Zn6G2M0cOBA9e3bVzt37pQk5/MsV65cman/kSNHdOjQocI8JEmXr8Zp06aNMjIynLfRvNKuXbsK7eTqjh07JEnDhg3LdOXOxo0bnf9/5VVYWV29VatWLd1www2KjY3V77//nml7SkqK7rnnHj388MM6fvx4oczdG6xbt042my3T1V6zZ89W165d9dVXX7m0h4SE6J///KekwjtRDQAAkB3yZfeRL7uHfBkAAAAA8oaiAADIRu3atdWtWzf99ddfGj9+vJKSkpzbEhISNH78eB05ckQ1atRwnpgbNGiQJGnixIn67bffnP0zMjL07rvvKjo6WsePH1fDhg0lSb1791ZAQIC++OILrVixwtk/KSlJL7zwQoFuS5oXjnlOnjzZ5URqQkKCXnrpJefXebm9ak4qV64sSfrhhx9c2rdu3aqJEyc6v75w4YLz/x1XjCUmJrq85pFHHpEkjRkzRkePHnV57SuvvKK9e/cqOTlZtWrVcmvO3iQqKkqNGzdW1apVXdpvvPFGnThxQjNmzHB5lq0xRkuWLJEkNW3atFjnCgAArj/ky+TLnka+DAAAAAB5w+MDACAHEydO1JEjR7Rs2TJt3LhRoaGhstls+umnn5ScnKyWLVvq+eefd/bv3r27hgwZoo8//lgPPfSQQkJCVK1aNf3+++86duyY/Pz8NHXqVOeJvCpVqigyMlLPPfecRowYoRYtWqhatWqKjo6WMUZ169bV4cOHC/24wsPD9fDDD2v+/Pm65557FBYWppIlS2rLli3y9/eXn5+fUlJS3H7G5+DBgxUZGamxY8dqwYIFCgwM1NGjR7Vnzx5VrFhRgYGBiouLU1xcnMqVKydJqlu3riRp+vTp+vnnn3Xvvfeqe/fuioiI0C+//KLly5erV69eCg0NVcWKFbVz506dPHlSVapU0ZQpU9wNjdc4ffq0du7cqWHDhmXa1q1bN/Xo0UMrV65Ujx491LJlS5UtW1YxMTE6fPiwqlatqmeffdYDswYAANcb8mXyZU8hXwYAAACAvONOAQCQgypVqmjhwoV69tlnVa1aNW3dulU7duxQvXr19OKLL2rOnDny8/Nzec3YsWM1Y8YMtWvXTocPH9a6devk4+OjBx98UF9//bVatmzp0r9bt2767LPP1K1bNx06dEjr169XaGioPvvsM1WrVq3Ijm3ChAl67bXX1KBBA23dulXbtm1T165dtXDhQudJ2PLly7u1j0GDBuntt99WaGioYmJitGbNGqWkpGjgwIFasmSJ7rjjDknSmjVrnK/p16+f85mfUVFR+vXXXyVJPj4+mjJliiZPnqzQ0FD9/vvv2rBhg8qXL6/Bgwfrq6++Ur169dyarzdZv369MjIysnw+qs1m05QpUzRq1CjVrVtX27dv19q1a5WRkaGBAwfqq6++stQVYAAAwHuRL5Mvewr5MgAAAADknc0U1b32AABe68CBA/Lz81P16tXl4+NaH3b69Gndcsstqlq1qjZs2OChGRad48ePq1u3bgoKClJUVJSnp1Nspk2bpvfee0/Dhg1zuVoPAAAAmZEvky8DAAAAgJVwpwAAuA7NmDFDXbt21bx581zaL168qNdff13GGN1+++0emh0AAADgWeTLAAAAAAArce/hdwCAa1JERIS+//57TZo0SV988YVuuukmpaWladeuXUpISFBwcLDlr445d+6cRo8eLUkaOXKkbrjhBg/PqGi88cYbOnXqlPbu3evpqQAAAFwzyJfJlwEAAADASigKAIDrUNOmTbV48WLNmzdPW7ZsUVRUlEqUKKHatWtr0KBBeuSRR1S6dGlPT7NIpaSk6JtvvpEkPfroo5Y9yblq1Sr98ccfnp4GAADANYV8mXwZAAAAAKzEZowxnp4EAAAAAAAAAAAAAAAofD6engAAAAAAAAAAAAAAACgaFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBRFAUAAAAAAAAAAAAAAGBR/x/jw1NXczwQVQAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1500x800 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from itertools import product\n",
+    "\n",
+    "domain = np.linspace(df.feeding_rate.min(), df.feeding_rate.max(), 100)\n",
+    "def my_function(domain, temp, speed):\n",
+    "    # return np.cbrt(domain) * 3.5 * temp/200  -0.8\n",
+    "    return width_model.predict(np.column_stack([np.ones_like(domain) * temp, np.ones_like(domain) * speed, domain, np.ones_like(domain)]))\n",
+    "\n",
+    "fig, axs = plt.subplots(1, 2, figsize=(15, 8), sharey=True)\n",
+    "colors = {(200, 500): \"#aa0000\", (200, 1200): \"#ff0000\", (180, 500): \"#008800\", (180, 1200): \"#00bb00\"}\n",
+    "for temp, speed in product([180, 200], [500, 1200]):\n",
+    "    legend = f\"Temperature: {temp}ºC, Speed: {speed }mm/s\"\n",
+    "    pltdf = df[(df.temperature == temp) & (df.speed == speed)]\n",
+    "    for layer in range(2):\n",
+    "        ldf = pltdf[pltdf.layer == layer]\n",
+    "        axs[layer].plot(ldf.feeding_rate, ldf.width, 'o', label=legend, markersize=4, color=colors[(temp, speed)])\n",
+    "        axs[layer].plot(domain, my_function(domain, temp, speed), color=colors[(temp, speed)], label=\"model\")\n",
+    "for ax in axs:\n",
+    "    ax.set_xlabel(\"Feeding rate [mm/s]\")\n",
+    "    ax.set_ylabel(\"Width [mm]\")\n",
+    "    ax.set_title(f\"Layer {axs.tolist().index(ax)}\", weight=\"bold\")\n",
+    "fig.legend(bbox_to_anchor=(1.05, 1), loc='upper left')\n",
+    "plt.tight_layout()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Height model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 36,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXQAAASCCAYAAAASSWRyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxUZfvH8e+wiICK4K65pDm4r6lZWWqaZY+VPdqiaWZlWWqPWWa2m2W7pZna5q6ppT1qloq5lJKU+77lgruoIIggy/n94cP8GAaGMzADjHzer1ev5Mw159xzz5nDNRf3uW+LYRiGAAAAAAAAAABFnk9hNwAAAAAAAAAAYA4FXQAAAAAAAADwEhR0AQAAAAAAAMBLUNAFAAAAAAAAAC9BQRcAAAAAAAAAvAQFXQAAAAAAAADwEhR0AQAAAAAAAMBLUNAFAAAAAAAAAC9BQRcAAAAAAAAAvAQFXQAoQMeOHVN4eLjtvz59+njkOD///LN69+6tVq1aqVGjRmrXrp0GDBigo0ePasSIEXZtgHdw9p6i6IuKitLSpUsLuxnFVnR0tL755huH7Rs2bLC7Hi5YsKAQWpe9jh07evx3RWEcO+vvwfHjx+d5X+fOncvX8/PLHdflPXv26Pvvv3fYvmDBArt+2rBhgzub7hUKqg+uXLmir7/+WmfOnPHI/p0pzM+5JK1YsULr1q0r8OMWpMzn0IgRIwq7OQDgNhR0AeAaM3PmTL3wwgv6+++/dfHiRaWkpOjMmTNas2aNAgICCrt5yAPeU+914sQJPf/88+rTp48OHjxY2M0pdhITEzV27Fh17dpVa9asKezmwE1SUlI0ZcoUdenSRQsXLiyUNuT3unz+/Hm9+eab6t69u7Zs2eL5BiNbq1at0r/+9S99/PHHunLlSmE3p8Ds379f/fr106BBg3T69OnCbg4AIA/8CrsBAAD3mj17tt3PFotFvr6+KlWqlCpVqlRIrUJ+8J56p7Nnz+ruu+9WUlJSYTel2Ordu7d27dpV2M3wOoGBgQoKCpKkIvlHo6FDh2rFihWSpDJlyhRKG/J7Xb7rrrsUFxfnqeZdE/z8/GznoST5+vq6df/Tp0/Xu+++69Z9eoOdO3fqwQcfVGpqamE3BQCQDxR0AeAac/z4cdu/w8PDNXv2bAUHByshIaEQW4X84D31TsnJyRRzCxkFs7z5+eefC7sJThWF9zW/1+Wi8BqKunvvvVf33nuvx/ZfXN+DhIQEirkAcA2goAsA15jMBaT69eurVKlSkqTSpUsXVpOQT7ynAFC0cF0GAACFiYIuABQhI0aMsM0H2LZtW02dOlXbt2/Xd999p7/++ktxcXGqXLmy7rjjDj311FMqV66c7bnZLXD2008/6aeffpIkjRkzRg888IDT42/YsEF9+/a1/ZzdcxYsWKBXXnnF9vP06dPVpk0buxjDMPTLL7/oxx9/1M6dO5WQkKDQ0FA1a9ZMPXr00O233+5w7GPHjumOO+6w/Txr1iw1adJE06dP1+LFi3XkyBH5+/urUaNG6t27tzp16pTj6zhy5IimT5+uyMhInTx5UqmpqapQoYKaNWumXr166cYbb8z2eXlpt1mpqalavny5Fi1apH379uns2bMKCgpS7dq11bFjRz3yyCO2gkAGd7ynWd+vTZs26dy5c5o0aZL++OMPXbhwQVWqVNEdd9yhp59+WmXLls12P6dOndLUqVO1fv16RUdHKykpSQEBAapUqZJatGihxx9/XFar1e45Wc+nlStXavny5Zo+fbpiYmJUvnx5PfPMM3r44YclSZcvX9acOXO0fPlyHTp0SPHx8fL19VVYWJjq16+vhx56SB06dLA7RtbzZu7cubr++us1adIkrVixQqdPn1b58uV1xx13aMiQISpTpoxSUlI0ffp0LVy4UEePHlWZMmXUqlUrDRw40OE1ZLh8+bJmzZqlX3/9VYcOHVJqaqoqVaqkNm3aqF+/fqpTp45dfMeOHe1G8EnSF198oS+++EKStHfvXrvHTp8+rW+//VZr1qzRyZMn5e/vr+rVq6t9+/Z67LHHFBoa6tCmPn36KCoqSpLUvXt3DRw4UG+99ZY2bdokPz8/3XDDDZoyZYqCgoKUlJSkOXPmaOXKlTpw4ICtb8uXL69GjRrp3//+d77O7zNnzmjBggWKiIjQ8ePHlZCQoHLlyqlp06a6//77Hd637F5Djx499O6772r9+vWaNm2atm7dqsTERFWvXl133323+vXr5/AZyUnma2mGqKgo22cqu+tWhsTERH399ddaunSpTpw4oZCQELVt21bPPPOMw/ucITU1VT/++KMWLVqk/fv36/Lly6pQoYJatmyp3r17q1mzZqbanZuIiAhNmzZNO3fulMViUXh4uB5++GF169ZNFosl2+ds27ZN06ZN019//aXz588rODhYVqtVXbt2VY8ePeTv7+/wnMznb+vWrTVjxgyHmOPHj2vy5Mn6/fffFRMTo3Llyqljx4567rnndOLECfXo0cMW66y/pav9l/GZPHLkiIKCgtSyZUs99dRTdn03fvx422coczsy3lcz18Ssxy3o63Lmcz7DwoULbefrypUrdd1112X73PPnz2vixIlauXKlzpw5owoVKui2227TwIEDVbly5Wyf4+q1KzdZr7mTJk1Sq1at9O2332rp0qU6efKkypQpo5tuuknPPPOMbrjhBod9ZD6/Bg0apPbt22v06NHatWuXAgMD1axZM3311Ve55huZ34sPP/xQ3bp10/z587VgwQLt37/fFtOjRw91795dPj5Xl4/J+rspQ8br6t69u95//327x/744w/NmTNHW7ZsUVxcnMqUKaOGDRvqvvvu0z333JPj5y8tLU0LFizQggULtG/fPqWnp6t+/fp67LHH1KVLF+ednYu8XNezO39feeUVvfLKK6pWrZp+++03Sa79fpGkrVu3atasWdq8ebPOnDmjlJQUBQUF6brrrtMtt9yiJ5980uH3WOb319fXV7t27dLZs2f11VdfadWqVTp9+rRCQkLUpk0bPfXUU6pXr162/XDlyhXNnDlTS5Ys0aFDh+Tr66umTZvqqaee0k033ZSvPgaAooyCLgAUYbNnz9a7775rd2vc0aNHNWXKFP3yyy+aN29ekZtDNTExUS+88IJWrVplt/3MmTNavny5li9frm7duum9995TiRIlctxPbGysHnzwQe3evdu27fLly1q/fr3Wr1+vwYMHa9CgQQ7P+/777zV69GilpKTYbT9+/LiOHz+un3/+WU8//bReeOEFj7Q7O8eOHdMLL7ygrVu32m2/cuWKNm3apE2bNmnKlCn67LPP1Lp1a5f27arIyEi99NJLSkxMtG07cuSIvvvuOy1ZskTffvutQ1Fz27ZteuKJJ3Tx4kW77ZcvX9bhw4d1+PBhLV68WB9//LHuuuuuHI89YcIELViwwPbzyZMnVaNGDUlX3+8+ffpo3759ds9JS0vTqVOndOrUKa1atUqPPfaYRo4cmeMx/vnnHw0ZMsRukZcTJ05oxowZ+uOPPzRt2jQ9//zz2rx5s+3xs2fPaunSpVq9erVmzZqlBg0a2O3zyJEjGjBggA4fPuyw/ciRI/rxxx81YsSIbAsEZqxevVpDhw61e0+Sk5O1e/du7d69W3PmzNGECRNy/EOEdPU8ffTRR+1Waffx8VFQUJBiYmL02GOP6cCBA3bPSU1NtX0uli1bluNnKjdLly7V66+/7nCr+cmTJ3Xy5En9+uuvateunT755BOFhIQ43dfYsWM1adIku20HDhzQ+PHjtWzZMs2dO9duTk13O3PmjB544AEdOnTItu3s2bNatGiRli9frqlTp6p58+Z2zzl37pwGDhzo8PnO6NtFixbpySef1Isvvphj0ceM0aNHOxRWN27cqI0bN2r79u169dVXHZ6T8UcEwzBs22JjYxUVFaWoqCjNnTtXkydPdvn3yLp16zRo0CC7c/bkyZOaNWuWli1bpuHDh5ve16VLl/Too4/afSaTk5MVERGh3377TZ9//rnuvPNOl9pnRlG6Lptx4MABDRs2TGfPnrVtO3HihL7//nvbZ6NmzZp2z/H0tUu6+seoBx54QEeOHLFtO3v2rBYvXqxff/1VH374obp27Zrj8/fv368pU6bo0qVLkq72f17mRU5OTtYTTzyh9evX223PeC///vtvjRkzxuX9pqam6u2339a8efPstp87d05r167V2rVr9cMPP+iLL75wKP5fvnxZgwYN0h9//GG3PeNz27t3b7vPpis8fV3PzNnvF+lq3vXWW285vJb4+Hjb77GFCxdq9uzZqlWrVo7H2bJli55++mnFxsbatp09e1ZLlizRsmXLNHnyZN1yyy12zzl37pyeeuop7dy50277H3/8oXXr1mnYsGF5fNUAUPT5FHYDAADZ27Vrl0aNGqXU1FRZLBbbyJIMp06d0pdffmn7OSgoyKHQkbGgSFBQkPz8CuZveCNGjHAoimZdyGTx4sX64IMPnO7n1VdftRVzs2v7l19+6bAy87Jly/Tmm286FHOz9t3kyZO1aNEij7Q7q4sXL+qxxx5zKBpkHRV37tw5PfHEE3arnXviPc1czM3aL2fOnNHAgQPtCnNXrlzRCy+8YFfMtVgsDsdOSUnRm2++qfT09ByPnVHMzejXChUq2EbPjB492qGYm93IwWnTpmnPnj05HuONN96wnRdZ23jo0CHdddddtsJR1vc3MTFR7733nt22+Ph4Pfnkkw4FkczPTUtL07vvvqtly5bZtgUGBiowMNDh9WR9T3fu3KnBgwfbFcYk+/cmNjZWTz/9tI4dO5bj6163bp3ty3ZG27p16ybp6ojBrF/6/f39HYqL48eP15o1a3I8RnYiIiI0dOhQh2Ju1vfu999/11NPPaXk5GSn+8oo5vr4+Di0b9++fZo5c6apdpUoUUJBQUF2+8goQAQFBeW4uNL48eNtxdys509SUpLeeecdu20pKSl67rnnHD7fWff/zTffaMqUKabanp1NmzbZirnZfe5nzJjhMOp71qxZGj9+vF2RJWu7du/erYEDBzpcM52Jjo7WkCFDHM7ZjHbFxMTozTffNL2/GTNm2D6TWV9benq67feg9P+focyfD4vF4vI1sTCvywEBAU6fn/W6nOG9996zFXOzHuPChQv65JNP7Lbl9drlqg8++MBWzM3a9pSUFA0fPlw7duzI8fnLli2zFXOzXrtc8cknn9iKudm9BwsWLLC9376+vgoKCnJ4vzMWA8z8R9tPPvnEoZib9XMUGRmpF1980eGYo0aNcijmSv/fT7NmzdKJEyfMvDwHeb2uBwUFOSx0mHG9zPo7K4Oz3y8HDx7UO++843CdyXounDt3Th9//HGOryc9PV0DBgywFXOzyzFGjx7t8LwXXnjBoZibcWzDMJweEwC8HQVdACii4uLi5O/vrzfffFObN2/W1q1b9Z///McuJvNIlM2bN9uNcJKuJtwZ2z25sEiGyMhIuy+GjRs31k8//aQdO3bol19+sRvlNHPmTB08eDDHfcXGxqp169ZavHixduzYoZ9//lnXX3+97fG0tDT9+eeftp9TUlLsinH+/v56+eWXFRUVpW3btmns2LF2X9I+++wz2xcQd7Y7qzFjxtgV4tq0aaMlS5Zox44dWr9+vfr06WN77MqVKxo+fLiteOGJ9zQxMVF33323IiIitG3bNk2fPl3VqlWzPX7s2DHNmjXL9vPKlSsVHR1t+3nQoEHasmWLdu7cqYiICLvboWNjY3X06FGnxx86dKi2bt2qtWvX6r333pOPj4/Onj1rtwhThw4dtG7dOu3YsUNRUVF66KGH7Paxbdu2HPefkpKiu+66S2vWrNGOHTscCvCJiYmqUKGCZsyYoR07dmjWrFl2o6o2bdqkK1eu2H7+9ttv7V7T/fffr7Vr12rbtm2aOnWqqlSpYnvsvffeU1pamqSri0otWbLE7thPP/20w3v67rvv2o7n4+OjV155RRs3btSmTZs0evRoW8EhISFBn376aY6vW5Jq1qypZcuWadu2bZo8ebJtVFzmP1Tceeedtr7Ztm2bPvjgA7uiRuYR1LmJj4+3Gy3t4+Oj559/Xn/99Zd27NihefPmqX79+rbHt27dqq+++irH/cXGxqpMmTIaO3astm7dqr///lu9evWyi8k6+i4no0aN0ubNm1W1alXbthtvvNHW/zmNdk5NTdUDDzygtWvXaufOnZo1a5bdNCQ7d+7UuXPnbD//9NNPdu9nu3bttHz5cu3YsUM//PCD3Wj3zz//PM+LMKWmpqpmzZqaNWuWtm/frvXr19tNY2EYhtauXWv7+eLFi3YFvnLlymnSpEnasmWLIiMj1bt3b7vX9OOPP5puy+TJk+0K+A0bNtTChQu1fft2LV++XG3bttXly5ddem3t27fX8uXLtXPnTi1atMg2cl+6OkJv165dkqRnnnnG4f2rWrWqy9fEwrwuf/PNN06fn/mczSw1NVUDBgzQhg0btH37dk2YMMHud9ratWvtimp5vXa5KjExUfXq1dP8+fO1fft2/fLLL2rbtq3t8ZSUFI0dO9bpPpo3b67ff/9dW7Zs0dixYx1GYZoRGxur8PBwzZ07V9u3b9fq1avVokULu5h169ZJ+v9rwdNPP233+JIlS7R582aNGjVKknT48GFNnTrV9njGZ3Dbtm1avXq13ZQJq1at0u+//277+fDhw3bTvvj7++ull15SVFSUbbRwfu42yOt1ffPmzfr666/t9vX2229r8+bNThdDzOn3y8yZM22fjYCAAE2YMEE7duzQjh079P3339vdlZH1DyiZGYahuLg49e7dW3/88Yd27NihyZMn2xWZ//nnH506dcr28/r16+3ywKCgIL333nv6+++/FRUVpeHDh2f7h2EAuFZQ0AWAImzo0KHq1auXAgMDVaJECQ0cONBuPrrMt78VBZm/NPj5+WncuHGqX7++fHx8VLt2bX3++ecqWbJktvFZlS9fXpMnT5bVapXFYtENN9yg559/3i4m8+uPjIy0S/T79Omj/v37KyQkRP7+/urataseffRRXX/99brrrrvUo0cP26ggd7Y7swsXLtgV9SpXrqzJkyerbt26kq4WWV577TV17tzZFnPkyBFFRESY2n9e1KtXT59++qmqV68uf39/tWnTRl9//bXdaJqlS5fa/t2lSxf98ssv+uyzz/TSSy9p0KBBtr6oXr267rvvPrv9nz9/Psdj16lTR88884z8/f1VqVIl3XbbbZKujtRdvXq1vvrqKw0bNkzvvPOOypcvL0kKCQnRY489ZvoYVapU0UcffaTKlSvLYrHo/vvvtytYS1e/vLZu3Vo+Pj668cYb7eaDTEtLs7vdM/MX8htuuEHvvfeeKlWqJD8/P7Vt29ZuJOKpU6eyHY2Vk6NHj2rjxo22n3v27GmbJzYwMFA9e/a0KywtX75c8fHxOe7vP//5j2rVqiU/Pz+1b9/eVojMPJrMz8/P9v6VKFFC999/vyZNmqSZM2cqMjJSn3/+uen2//e//7UrUPbt21fPPvus7Xbppk2bavLkyXZFi+nTpztdXX306NHq2rWrSpQooVKlSmnkyJF2t197+poXHh5ue4+lq4WfBx980C7m5MmTtn9nPj9CQ0P12WefqWbNmvLx8VHjxo3tiqpJSUlOCya5GTt2rG688Ub5+PioXLlyDtMaZL7+ZR71KEkjR45Uhw4dVKJECYWFhen1119X48aNbY+bLegahqHly5fbfi5durS+++47NWjQQD4+PqpZs6a+/PLLHOdzzU758uVt/SZdfQ+eeOIJu5jMfZ5fRfG6bEaHDh00bNgwlS1bVj4+PurUqZNdGy9fvlxg167MSpYsqcmTJ6tJkyby8/NT7dq1NXnyZLt5gNetW+f0jxkjR45UxYoVVaJECXXt2jVPd5+UKFFCX3/9tZo1ayYfHx9VqVLFbv5dyfXrx08//WR318kHH3ygG2+8UX5+fna/azJk/hytWLHCrsDep08fPfnkkwoJCVFwcLAeeOABp9MH5cZT1/Wc5PT75ZVXXtGCBQv03nvv6d1331WnTp3k4+MjX19fNW/eXDfffLNtHxcuXHB6jA4dOuiNN95QhQoVZLFY1L59e3Xv3t0uJvN7mPlaJEkvvvii/v3vfys4OFghISF64okn9OSTT+bzlQNA0cUcugBQhGW38Fft2rVtt9k5u325MGQedVSpUiVdvnzZYTRrlSpVbLc0Zx2llNnNN9/sMHqldu3adj9nfv1ZR35kLtJlePnll/Xyyy97tN2Z/fnnn3ajPTOK81k98cQTWrFihe3n9evXO52LNj8eeOABh1sh69Spo0aNGtlGvu7bt09XrlxRiRIlbEXtjL5PSUnR3r17tWPHDm3cuNFuVKAkp8W6zF/ssqpUqZIqVapkW8Dl8OHD2rFjhzZv3mw36im3Y7Rt29ZhjuMKFSrYFuDx8/NTu3bt7B7PWnzKuP385MmTdkWyunXrOty+nHlhQunquWF2cbFNmzbZ/VyrVi2H8y5zMTolJUU7duywG/2WWU7926lTJ9sfIZYuXarly5ercePGatmypVq0aKGWLVvmuBieM1nf+6xFOOnq+9qtWzfNnTtX0tWRozt27Mh2kTBfX1+HxdMyFofLuKXW09e8Dh06ONyynHkko3S1MCtdPQ8zjxa//vrrdfr0abupYDJu7c6YnmDz5s0Oo47NqFixoho2bGi3LetIzox2ZRwns8qVKzucW7Vr19b27dslXZ16ITk52eFW7KyOHTtmV5i77bbbHM6doKAg3X333aanmLjpppscros59bk7FMXrshkdO3Z02Ja1nzI+H56+dmV26623OlxDAwICdNddd+mbb76RdPUPAbt27cr22lWqVCk1adLE5eNm1bhxY4e5oJ3lDGZk/hz5+/urTJkyDp+jWrVq2fo6c3zWqYH+/e9/O+y/a9eueuONN5xOVZQTT13Xc5LT75cSJUqoYcOGtutTQkKCdu3apW3btikqKkqRkZG22Nymdskub3P2Hmbt46zFX0n617/+pYkTJzo9LgB4Kwq6AFCEVaxY0WFb5i+eeV1MIz+c3ZaZebGW48ePO10IRZLdIipZZffasxZ4M7/+mJgYu8cqVKjg9NiZubPdmWUUETNk/WKS0/bMX8TdLafV02vUqGErTqWnpysuLs7Wh6mpqfrpp59st6M6K644Oyeze08zW79+vebPn6/IyEinI3mcHSO79z1zgTc0NNSh4Jv1lsyM/Wc+LyTpl19+0S+//JLzC5D5cyO7/X/wwQe5ztF8+PDhbIsiAQEBOX55f+WVV3Ts2DHbiuWpqal2t437+vqqVatW6tu3b7ZfqHOS+fwuVapUju9v1vP75MmT2RZ0y5Ytm+2CgwV5zcvuNWQtcmZcA+Pi4uwKFJs2bXLbtSOr7BYty6ldkuO5lXmKheykpKTo2LFjqlOnjtO4rKPjc7qeZF2cyxlXX1t+FcXrshlm+injj12evnZl5ux3SmY53VmR2+8Fs1zNGczI3I8pKSm5fr5PnTpl+8NI5tHSUvb9FBwcrLCwMIf8xQxPXdez4+z3i3R1uos5c+ZoxYoV2rNnT54/r7nlvJLsit+Z+7hcuXLZTmFRvXr1PLUFALwBBV0AKMKyGy2V04IpnpBdUp55ZJOZeGcyL7SVVXav3ZUV4p2N4szKne3OLLfRbhmyjs4pyPc4Q9Yvuhm3cyYmJqp///52I49q1KihZs2aqUmTJoqJibEtZJWbrCuAZzZ69Gjbok+SFBYWZjtG9erVTa9Undt8edkVDHOSly+lZs8NyfF9NyOnKRec9W2ZMmU0ffp0rV27VkuWLNEff/xhV1zJmI/6zz//1KOPPqrXX3/dVFvcfX7ntL+C/DxkN1Izp+uOp8+PzFxpl+Tecysv+3VlJKSrry2/vOm6nFnmaX8yFIVzMydZf6fk1H/Orl2u8ES+lNd+rFChgsOxc2qLKwsSZuap63p2nL1HBw8eVN++fW1FaR8fHzVs2FBNmjRRs2bN9OuvvzosOJsTV9/DzI+5u38BwBtQ0AWAIsyTX2qzkzUhzu5LubN58MqVK2cbxVS3bl2HRaFc4eprz3r76PHjxx1Gm508eVLbt29XnTp1VKNGDVvxz53tzizriKp//vkn27iMqRwy5LQojjv8888/2Y7WyTxqLePWUunqAkgZxdyAgAB9/fXXatOmjS32+++/N33snIqp69evtyvmvvTSS+rfv7/tfMyp3zwt6znVu3dvvfHGG27bf1hYmN3Pn3/+eZ5v6c6tUG2xWHT77bfr9ttvl2EY2rdvn7Zs2aK//vpLy5cvt33WZ86cqYcfftg2n6gzFStWtE2FkJCQoDNnzmQ7wsrs+V3Q17v8Klu2rHx9fW1Fn/bt22vy5MmF3Kqrsp5bkZGRDtvcsd/MCyZmltviiIWpKF6X3c3T167Mcuq/rCOhM+ZFz8qVP7I544nrR7ly5WxTVQQFBZmebinjuZlFR0c75CRxcXF5XihR8sx1PTvO3qPXXnvNVsytVauWpkyZYvdZyTo1T26vxxXlypWzTYFx7tw5JSYmOozSLcrXIgDILxZFAwDYBAcH2/2c3QIiW7ZsyfH5mefBO3z4sEMiff78eT399NP64IMP9OOPP2r//v35a3AmWW/hzjz3YYa5c+dq8ODB6tq1q5o1a2ZbkMpT7W7ZsqXd4i6zZ8/OdvX3b7/91u7nW2+91dT+8+K///2vw+jl6Oho21yaklS/fn1buzPPX1u7dm27Yq4kW0HPjJxG0GT9wvfQQw/ZxbpyDHeqXr263W2m69evdxjts379eg0ZMkTjxo3T0qVL7eZPzfp6s474yzpv5Jo1axzaMGXKFI0YMUJff/21Vq1aZZuLNauc+vbgwYP69ttvNXLkSD388MNau3atLBaLwsPD9dBDD+njjz/W0KFD7Z6zb9++bPeV1U033WT3c9bzWJJOnz5t9weSsLAwh7lgPSlzgSAvo1adKVGihOrVq2f7ecuWLQ7Fmf379+vZZ5/Vp59+qv/+9785FkDdLeu5lV1R5ZVXXtFbb72lWbNm2W7bzk2NGjXsVq3//fffHV5zXFyc2/4olpP8vK9F5brsyXMzv9cuV0RGRurYsWN221JTU+0WrPL19VX9+vWzfX5hjnzOWkDMOqo48+coMTFRf/31l93jKSkpGjRokN59913NnTvXbk7tzIsOStLixYsdju/KH0Qzy+91PbffTVnl9B4lJCTYzQV/++232xVz09PTtWvXLtOvy1WZ+zg9PT3bRSfz2scA4A0o6AIAbLIubPLTTz/ZVhdPS0vTlClTsi06Zbjvvvts/05JSdFzzz2njRs3KjU1VTExMXr11Ve1evVqfffddxo5cqTpIoIZbdu2tWv/Dz/8oC+++ELnz59XamqqIiIi7BbpCQ0NtX0Z8FS7y5UrZzca9tSpU3rmmWdsi9qdO3dOo0ePtls93Wq1qn379nnqAzP279+v559/XidOnFBaWpq2bNmiAQMG2N1a2q1bN9u/M4/S3rt3r3788Uelpqbq/PnzGj9+vH744Qe7/efl9sasI8E/+eQTXbp0SUlJSVq8eLFGjx6d72PkhcVi0b333mv7+dChQxo6dKiOHj0qwzC0d+9evfXWW1q2bJkmTJigF154wW5Ov6y3j+7bt08pKSm2kX/h4eF2BcGFCxdq/PjxOn/+vNLT0xUREaHPPvtMCxcu1Mcff6y33nrL5dXfY2Nj9eGHH+rHH3/U5s2b9cYbbygyMlKpqalKT0/X3r17tWzZMrvnmJ1/ulu3bna3gU+fPl0TJ0603bq/detWPf3003ZF6MwjrwtC5vfg2LFjunjxos6fP++228sznx+xsbF69tlntWfPHqWnpys6OlqvvfaaVq5cqcmTJ2v48OEOCyp5yt133203qu69997TkiVLdPnyZSUlJWn8+PFasGCB5syZo1GjRmnmzJmm9muxWHT33Xfbfo6Pj9cTTzyhvXv3KjU1Vbt27dKTTz6Zr1GHZmR+Xy9cuKATJ04oPj7e1FykReW6nPk1HDx4UElJSTp58qRbFoDL77XLFSkpKXr66adtC5NGR0dr8ODBdouwdezY0W1TK7hT1mv0zp07bfNJS/afb+nq3SNr1qzRlStXFB8fr3feeUcrVqzQ9OnT9cYbb9jNU9ylSxe7z+BXX32l6dOnKykpSZcuXdL333+vCRMm5Knd+b2uZ33dGfPeZl04LzdZp+BavHixtmzZIsMwdPjwYf3nP/9xGOnubNouV2XOVaSr17nFixcrJSVFcXFx+vLLLzV//ny3HQ8AihqmXAAA2GSMnssYEXn69Gl16dJFN9xwg06fPq2YmBi7Fduz6tSpk9q2bWtb1Xjfvn3q1auX3W3JGWrVqqWePXu6re3+/v4aOXKkhgwZIunqaI3x48dr/Pjx2R7/P//5j+3Llifb/dprr2nTpk22xVX+/PNP3XPPPfL393coTAYFBemjjz7yeMErIiJCERER8vPzcxitW7t2bbvXd+ONN9oKHenp6Ro5cqRef/31HOcWzEuhrFWrVpo9e7bt5zlz5uj777+XxWLJduSQp4tFmQ0cOFBLly61FYpWrFihFStWZHtudO/eXeHh4bafy5Ytq8DAQNvov4iICDVp0kTp6enasGGDypYtq5EjR+rxxx9XWlqaDMPQF198oS+++CLXc9asli1bqlOnTrbi1MmTJ9WvXz/5+PjIYrE4HMNqtaply5am9l2uXDm9+eabeuWVVyRdPT8+++wzffbZZ9me323atNHjjz/uUvvzq0qVKrYi6qlTp9SmTRvbteHOO+/M9/579eql+fPn2z4jf//9t+67775s37/WrVt79I81mZUvX14DBw7U559/LunqZ2bYsGGyWCwOn6vAwEA9//zzpvc9cOBALVmyRAkJCZKk7du3695775WPj49tv9m9/+5UpUoV27+TkpJ0xx13yDAMvfzyy6bOsaJwXa5SpYqt2LVjxw41b95c6enpWrBggVtGsefn2uWqAwcO6MEHH8z2d0rJkiVdOr8KUtZpNJ5//nn5+vrqtttu06RJk9SgQQP16NHD9ofLkydPasCAAdn2YVhYmJ566inbz+XLl9cTTzyhiRMnSrr6R/F3331X7733nt1n0FlOlZP8Xtczf34kacaMGZo1a5YCAwPtRtzmJiwsTLVr17ZNu3H+/Hk99NBD2fZPhosXL+Y4/Yar6tevr3vvvVeLFi2SdHUU9Ysvvqjhw4fLMAzbiOu89DEAeANG6AIA7Lz22mt2i9QkJydr586diomJUbly5fTRRx85ff4XX3yhG2+80W5b1sS+Zs2amjZtmtvmzsvQpUsXvfnmmw6jGDMf32Kx6JlnnlGPHj0KpN0VK1bUtGnTHL6gZy0aVK5cWdOmTbMbsekJgwYNst2Km/WLd7Vq1TRx4kS79/+5555zGLmduV/q169vV+gwe7t+ZnfddZduueUWu22GYdi+8IaFhdl9AXXnVB25CQsL03fffecw72bWc6Njx456++237bb5+vo6zFec8Zoy5mxu06aNPvjgA4cFj7Luf9iwYerevXueXsMHH3ygdu3aObQjuz9WfPnll7YF8cx44IEHNHr0aId5C7Oe33feeacmTpzo8gjj/MpatM3o/4w7D/KrRIkS+u6773TDDTfYbc/at02bNtWXX37plmOa9eyzz6pPnz522zJ/rqSrxdyJEyc6zO3pTOXKlTVu3LgcV5+3Wq0aMGCA3WOunFNmZPe+GoZh+n0tCtdlT5+b+bl2uaJ79+62fsz6OyUgIECffPJJnudu9bSbb77ZYaqptLQ02/VZkt566y116dLFISazsLAwTZ061WGO6cGDB9vdASTZfwYffPBBuxHvrsjPdb1ChQpq3ry5w3MvXbpkanHEzN544w2HxUgztyHrZ8zdv7/ffvtth/wh43pgsVj0/PPPq2nTpm49JgAUFYzQBQDYadGihebNm6dJkyYpKipKcXFxqlq1qjp16qQnnngi19vlSpUqpZkzZ2rx4sX6+eeftXPnTsXGxsrf31+1a9dW586d9eijj3rs9stevXrppptu0vTp0xUZGalTp04pPT1dFSpUUMuWLdWrVy+HLzKebnedOnU0d+5crVixQkuWLNGePXt09uxZBQYG6oYbblDnzp318MMPZ7vau7s1atRIixYt0meffaa1a9fa3t8uXbpowIABKl26tF18xYoVbdNXrFmzRmfPnlVAQICuv/563X333erTp4/69++vv//+W5L0yy+/6Pnnn3dpcRMfHx9NmjRJU6ZM0eLFi3XkyBFZLBZVq1ZNt956q5588kl9//33toLYli1bdOLEiQJbpCg8PFy//vqrZs2apZUrV+rw4cOKj49XqVKl1KBBA9133322EYpZvf322woNDdXy5ct1/vx5hYSEqGHDhnYF0G7duqlFixaaMWOG1q1bpxMnTig5OVlhYWFq2bKlevfu7fDHBleUKlVK33zzjSIiIrRo0SJt375dMTExMgxDZcqUUd26ddWpUyf17NnTobBsRs+ePXXbbbdp4cKF+u233xQdHa34+HiVK1dOzZs3V48ePTw6L7QzDz30kJKSkjR37lwdPXpUQUFBql27tmrVquW2Y1SqVEk//fST5s+fr+XLl2vfvn2Ki4tTYGCg6tatq3vuuUcPPvig2/+AZcZrr72mu+++W/PmzdPff/+tmJgYpaenq2rVqrr11lvVr18/Va9e3eX93nLLLVqwYIEmTZqk9evXKzY2VlWrVtU999yjp59+2mHeyrycV87ceuut+vjjj/Xdd9/pwIEDKlGihGrUqKEGDRqY3kdhX5cHDx4sX19fLVq0SKdPn1apUqUUHh6e7cKCeZWfa5dZoaGhmjNnjiZNmqQlS5bo5MmTKlu2rG655RY988wzuv766932etwtNDRUU6dO1eeff65NmzYpPT1dlStXVtu2bW0x/v7+GjdunFavXq2FCxdq69atOnfunHx8fFSjRg21b99e/fr1c1gETbr6h4wPP/xQ7du31+zZs7Vr1y5ZLBY1bNhQffr0UefOnfXqq6/mqe35va6PHz9en3zyidasWaP4+HiFhYWpWbNmOY6szUnbtm31/fffa+LEifr777+VkJBgO78efPBB3X777brppptsUystXbrUrn/zKygoSF9//bXmz5+v+fPn6+DBgypRooRatGih/v37q3Xr1m6d3gsAihKLkXX2dwAAcM1YsGCB7ZZ4SZo0aZI6dOhQiC0C4M3+/vtv+fj4qHz58ipXrpzDCEfp6jzYX331le3n33//3a2FShSeY8eO2d150L9/f7388suF2CIAAIonRugCAAAAMGXChAlav3697eeuXbvq7bffVpkyZXTlyhVFRkZq3rx5tserVKlCMRcAAMDNKOgCAAAAMOX222+3K+guXbpUS5cuVYkSJbKdkqd3794F2TwAAIBigUXRAAAAAJjy6KOPqmPHjg7bsyvmdu7cWY8//nhBNAsAAKBYYYQuAAAAAFP8/Pz05ZdfasWKFVq6dKl2796tM2fOKDk5WSVKlFBYWJgaNWqke++9V506dSrs5gIAAFyTWBQNAAAAAAAAALwEUy4AAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AAAAAAAAAOAlKOgCAAAAAAAAgJegoAsAAAAAAAAAXoKCLgAAAAAAAAB4CQq6AIB8MQyjsJsAAAAAAECx4VfYDQAATxo/fry++OILl56zcuVKXXfddR5q0bXj4sWLGjdunBo2bKju3bsXdnMAAADgpWJjYzVjxgytWrVK0dHRSkpKUmhoqBo3bqx77rlHd999tywWS2E3M8/mz5+v1157Td27d9f7779f2M0BcA2goAvgmhYeHq5u3brZbTt37pzWr1+voKAg3XHHHQ7PCQoKKqjmebUxY8ZowYIFGj16dGE3BQAAAF5q165devzxxxUbG6vrrrtOrVq1kp+fn06ePKlVq1YpIiJCP/zwgyZOnKiAgIDCbi4AFAkUdAFc0+68807deeeddts2bNig9evXKzQ0VB9//HEhtcz7MdUCAAAA8iM1NVWDBw9WbGysRo0apYceesju8SNHjmjQoEFat26dxo4dqxEjRhRSSwGgaGEOXQAAAAAAUOA2btyoY8eO6cYbb3Qo5kpSzZo19cEHH0iS5s6dy4ACAPgfCroAkMWOHTs0ZMgQtW3bVo0aNdIdd9yhMWPG6Pz58w6x4eHheuCBBxQXF6fRo0erXbt2atKkie69914tWbJEknTy5EkNGzZMbdq0UevWrfX4449rz549dvsZP368wsPD9euvv+qXX37RfffdpyZNmqhDhw56++23dfbs2WzbeubMGb3zzjvq2LGjGjVqpJtvvllDhw7Vvn37HGL79Omj8PBw7du3T3379lXjxo116623aunSpZKujpCYP3++HnvsMbVp00YNGzZU69at1adPH/38888Or3vhwoWSpNdee03h4eFasGCB3XHWr1/v0IYFCxYoPDxcL774om3bhg0bFB4ernfffVczZszQzTffrKZNm6pXr15KT0+XJKWlpWnu3Lnq2bOnmjdvrubNm+uhhx7SggULSOwBAAC81Llz5yTJ6fy4DRo00AMPPKBu3brp8uXLkv4/34yJidGECRPUsWNHNWnSRF27dtVXX32lK1euZLsvV/J86eqaEWPHjtVdd92lxo0bq02bNnr66af1999/ZxsfHx+vTz/9VJ07d1aTJk10zz33aP78+a50CQCYwpQLAJDJf//7X40cOVJpaWlq2LChqlWrpt27d2vq1KlasWKFpk+f7rBg2qVLl/TQQw/pzJkzatOmjc6fP68tW7Zo2LBhunDhgiZPniwfHx+1bNlSBw8e1Pr169WrVy/98ssvqlSpkt2+fvrpJ61atUo1a9ZU+/bttXPnTs2ePVurV6/WjBkz7I69Z88e9e/fX+fOnbPFnz59WkuXLtXKlSs1fvx43X777Q6vcfDgwbp06ZJuv/127dixQ40aNZJhGBo8eLB+++03hYSEqGnTpgoICNCBAwcUFRWlqKgonTt3Tn379pUkdevWTVu2bFF0dLSaNWum6tWrq0aNGvnq+7Vr1+rIkSNq3bq1LBaLqlatKh8fH6WmpmrQoEFatWqVSpcurRYtWsjPz09RUVF65ZVXFBUVxeISAAAAXig8PFyS9Ndff2n8+PF67LHHVKZMGYe4MWPGZPv81157TatWrVKzZs1Uv359RUVF6ZNPPlFkZKS++uor+fv722JdzfNPnTqlvn376siRI6pcubLatWunixcvau3atVq7dq1GjRqlnj172uLj4uLUp08f7d27V5UqVVL79u11/Phxvfbaa7rhhhvc1WUAcJUBAMXMn3/+aVitVqNDhw522w8ePGg0atTIaN68ubFhwwbb9rS0NOPTTz81rFar8cgjj9g9x2q1Glar1ejatasRExNj2/7OO+/YHnv66aeNy5cvG4ZhGCkpKcYjjzxiWK1W45tvvrHFjxs3zhY/atQoIzU11TAMw7hy5Yrx0ksv2faT4cqVK0bnzp0Nq9VqTJkyxUhPT7c9tnLlSqNhw4ZGq1atjHPnztm2P/roo4bVajVuv/1248KFC7bXZhiGsWzZMsNqtRo9evQwEhIS7F7j5MmTDavVanTu3Nlu+8svv2xYrVZj3rx5dtszjrNu3TqHvv/xxx8Nq9VqDBs2zLYt4/2wWq3G119/bdfvmfumb9++dq/n7Nmzxv33359tGwAAAOAdXnnlFVsu2LBhQ6NPnz7G+PHjjcjISCMpKSnb52Tkm/Xq1TOWLFli2x4TE2N069bNsFqtxrfffmvbnpc8P+MY77//vnHlyhXb9i1bthg33nij0bBhQ2P//v227aNGjTKsVqsxcOBAu3bPmzfP9vpefvnlvHcUAGTClAsA8D/Tpk3TlStXNHjwYLVu3dq23cfHR//5z38UHh6ujRs3asuWLQ7PHTJkiMqVK2f7+d5777X9e8SIESpZsqQkyc/PTx07dpR0dZGHrGrXrq2RI0fK19dXkuTv769Ro0YpNDRUq1at0okTJyRJK1as0JEjR9ShQwf169fP7ja1jh076uGHH1ZcXJx++OEHh2N069ZNZcuWtb02SUpJSVHHjh314osvKjg42C7+kUcekSQdO3Ysh55zD19fX/Xq1cv2s4+Pj65cuaJp06bJ399fH330kcLCwmyPly9fXqNHj5Ykffvttx5tGwAAADxj1KhRev755xUUFKSUlBRt2LDBNlq3devWGjx4sHbv3p3tc3v06KF77rnH9nO5cuVs+eHs2bNt213N87du3aqoqCjVq1dPL730kt1I36ZNm+rZZ59VSkqKpk+fLkm6cuWKFixYIH9/f40ePVoBAQG2+J49e6pDhw757ygAyISCLgD8z4YNGyRJbdq0cXjMYrHo1ltvlSRFRUU5PN6sWTO7n0NDQyVJgYGBqlWrlt1jGbeRZTe31913320r5mYoWbKk7dgZbfzzzz8lSTfddFO2r6Vdu3Z28ZnVq1fPYds999yjiRMn2r32pKQk7dq1S4sWLZJ0dR7btLS0bI/nDjVq1FBQUJDdtl27dik+Pl61a9dWxYoVHZ7TsGFDlStXTocOHcpxnmEAAAAUXX5+fnr22Wf1xx9/aOzYserRo4dq1qwp6Wo+unz5cv373//WnDlzHJ6buZiboUmTJqpUqZKio6N1/PhxSa7n+RnxrVq1sg2AyCwj186I3759uxITE9WoUSO7AQgZOnXqlEsvAIBrmEMXAP7n5MmTkqTu3bubisssJCTE7ueMEbPZzQHmbNGHjOQ1qypVqki6ugha5jaMGTMmxznFpKtzf+XW1gwJCQmaO3eufv/9dx08eFBnz56VYRh27TU8uABZxqjhzDJGJO/du9c2x1pOTp48qQoVKniiaQAAAPCw4OBgde3aVV27dpUknT59WmvXrtW0adO0f/9+jRo1Si1btpTVarU9J+vAiQxVqlTR6dOndebMGVWrVs3lPD8jB50xY4ZmzJiRY3xGrp2Ro2ddHyND1jU4ACC/KOgCwP9kjD695557sv1LfIbsRrj6+bnncpp1dG6GjEJqxuPp6emSro4yyG7kaobsRghk99r279+vxx57TOfOnVNoaKiaNGmif/3rXwoPD1ebNm3Uvn17V19KtpyN8M2u0J3xOqtWraqWLVs63XfWqSIAAABQtB04cEBnz57VjTfeaDetgXS1ONqzZ0/dd9996tu3rzZv3qwlS5bohRdesMXklLNnzZ1dzfMzctDGjRvnWDSW/j9/dTZgQ3LfdwUAyMBVBQD+p2LFijp+/Lief/75HEfKetrp06ez3Z4xSiBjpG7GSNRu3brZra6bV6NGjdK5c+f05JNP6oUXXrArLMfFxbm0r4yENrvibXx8vEv7ynidlStX1scff+zScwEAAFC0Pffcczp8+LDmz5+vJk2aZBtTokQJdevWTZs3b1ZsbKzdY6dPn852cEPW3NnVPD8jB73llls0dOjQXOMzRuZmHDerjBG8AOAuzKELAP/TqlUrSdKaNWuyfXzYsGH697//rZUrV3qsDatXr3bYlpiYqHXr1snX11c333yzqbZOnz5d3bp104QJE0wdN2MBiGeeecZhlPC6dets/84YrSDlPBIhYx7cc+fO5Xgcsxo3bqySJUtqz5492SbCp0+fVpcuXdSvXz9dunTJpX0DAACgcLVo0UKSnE5rIEmHDh2SJLvpFqTsc+EtW7bo7Nmzqlevnq0w62qenxH/+++/2+W/GVasWKG7775bb731liSpUaNGKlOmjHbu3JltUTe7HB8A8oOCLgD8T58+feTr66vPP/9ckZGRdo/NmTNHS5Ys0f79+9W0aVOPtSEqKsouob1y5Ypef/11xcbG6r777rMttta1a1dVqFBBK1as0JQpU+zmtt22bZvGjRunffv25TrvbIaMqRmyFqv/+usvvfPOO3btyVCiRAlJjqNuM25V+/777+3if/31V61YscJUezIEBQXpwQcfVGJiol566SW7IvGlS5c0YsQIHT58WMHBwUy5AAAA4GWefPJJlSxZUosWLdIbb7zhMAI3PT1d8+bN0/fff69y5crp/vvvt3v822+/1ebNm20/nz17Vq+99pokqV+/frbtrub5bdq0Uf369bVz5059+OGHdjntkSNHNHr0aP3zzz+6/vrrJUn+/v7q1auX0tLSNHz4cCUkJNjily1bpsWLF+e5jwAgO0y5AAD/06hRI40cOVKjR49Wv3791KBBA1133XU6dOiQ9u/fL19fX3300UcqX768x9pQuXJljR49WgsWLFD16tW1bds2nTx5UvXr19fw4cNtcYGBgRo3bpwGDBig999/XzNnzlR4eLhiY2O1adMmGYahxx57zPSKuo8//rjGjBmjl19+WXPnzlWFChV09OhR7d69W2XLllWFChV09uxZnT17VqVKlZL0/4tQfPnll9q8ebPuu+8+derUSQ8++KBmzZqlzZs3684771STJk0UHR2tXbt2qXv37lq4cKFLfTJs2DDt3r1bf/75pzp37qzGjRsrMDDQdttdrVq1NGrUKJf2CQAAgMJXp04djR8/XsOGDdPcuXO1YMECNWrUSJUqVVJSUpJ27NihmJgYlS9fXpMmTbLloRnKlCmj3r17q3Xr1goKCtKff/6pS5cu6f7777dbAM3VPN9isWjs2LF67LHHNGXKFP38889q2LChkpKS9PfffyslJUVdunTRo48+ajvGs88+q02bNikqKkqdOnVSq1atFBMTo02bNql58+Z2hWcAyC9G6AJAJo8++qhmzZqlzp0769SpU1q1apUSExPVtWtX/fDDD+rSpYtHj3///fdr9OjRSk5O1qpVqxQQEKBBgwZp1qxZttG5GVq0aKGffvpJDz/8sAzD0Nq1a3X06FG1adNGEyZM0MiRI00ft1+/fvrkk0/UuHFj7du3T6tWrdLly5fVp08fLVq0SHfddZckadWqVbbnPPLII7ZREmvXrtWOHTskXV3A7Pvvv1eXLl10+fJlrVmzRr6+vho7dqyeeuopl/ukZMmS+u677/Tqq6+qdu3a2rZtmzZs2KCKFStq8ODBmj9/vsqVK+fyfgEAAFD4brvtNi1btkxDhgyxDQRYuXKlNm3apMqVK2vIkCH65Zdf1LhxY4fnvvXWW+rfv78OHjyo9evXq3bt2hozZow++OADh1hX8/zrr79eP/30k5544gkFBQVp3bp12rNnjxo1aqQxY8bo008/tZuqLCAgQN9++62GDRum0NBQrVmzRmfPntWLL76o559/3v0dB6BYsxiZ79MFABSK8ePH64svvtAzzzxjauEFAAAAoLjq06ePoqKiNGXKFNsaEwBQnDBCFwAAAAAAAAC8BAVdAAAAAAAAAPASFHQBAAAAAAAAwEswhy4AAAAAAAAAeAlG6AIAAAAAAACAl6CgCwAAAAAAAABewq+wG+DtDMNQenrBzFrh42MpsGPBe3BeIDucF8gO5wWyU1DnhY+PRRaLxePHQdFDvly00Weuo89cQ3+5jj5zHX3mGvrLdUUtZ6agm0/p6YbOn7/k8eP4+fkoNDRYFy8mKjU13ePHg3fgvEB2OC+QHc4LZKcgz4uwsGD5+lLQLY7Il4su+sx19Jlr6C/X0Weuo89cQ3+5rijmzEy5AAAAAAAAAABegoIuAAAAAAAAAHgJCroAAAAAAAAA4CUo6AIAAAAAAACAl2BRNAAAgGIoPd3Q7sPnlXLogvwthupUDZGPD4uWwTtxPgMAgOKEgi4AAEAxs3HvGc2O2K8L8cm2baGlA9SrU121DK9YiC0DXMf5DAAAihumXAAAAChGNu49owkLd9gVvyTpQnyyJizcoY17zxRSywDXcT4DAIDiiIIuAABAMZGebmh2xH6nMXMi9is93SigFgF5x/kMAACKKwq6AAAAxcS+6FiHkYxZnY9P1r7o2IJpEJAPnM8AAKC4oqALAABQTMRecl78cjUOKEyczwAAoLiioAsAAFBMlA0OcGscUJg4nwEAQHFFQRcAAKCYsFYvq9DSzotbYaUDZK1etmAaBOQD5zMAACiuKOgCAAAUEz4+FvXqVNdpzCOd6srHx1JALQLyjvMZAAAUVxR0AQAAipGW4RX1XPdGDiMbw0oH6LnujdQyvGIhtQxwHeczAAAojvwKuwEAAAAoWC3DK6p53Qo6eCJOKYZF/hZDdaqGMJIRXonzGQAAFDcUdAEAAIohHx+L6tcKU2hosC5cuKTU1PTCbhKQZ5zPAACgOGHKBQAAAAAAAADwEhR0AQAAAAAAAMBLUNAFAAAAAAAAAC9BQRcAAAAAAAAAvAQFXQAAAAAAAADwEn6F3QDkLj3d0O7D55Vy6IL8LYbqVA2Rj4+lsJsFAAC8GPkFriWpqemK+DtacZdTFRLop/bNqsnPj7ErAADg2kRBt4jbuPeMZkfs14X4ZNu20NIB6tWprlqGVyzElgEAAG9FfoFrybzf9mvZX9EyjP/fNmflfnVpVV0PdqxbeA0DAADwEP5sXYRt3HtGExbusPuyJUkX4pM1YeEObdx7ppBaBgAAvBX5Ba4l837br1+j7Iu5kmQY0q9R0Zr32/7CaRgAAIAHUdAtotLTDc2OcJ6AzonYr/R0w2kMAABABvILXEtSU9O17K9opzHL/opWamp6AbUIAACgYFDQLaL2Rcc6jJzJ6nx8svZFxxZMgwAAgNcjv8C15LdNxxxG5mZlGFfjAAAAriUUdIuo2EvOv2y5GgcAAEB+gWvJmdjLbo0DAADwFhR0i6iywQFujQMAACC/wLWkYtlAt8YBAAB4Cwq6RZS1elmFlnb+ZSqsdICs1csWTIMAAIDXI7/AtaRji+tksTiPsViuxgEAAFxLKOgWUT4+FvXqVNdpzCOd6srHJ5csFgAA4H98fCyqWamU05galUqRX8Ar+Pn55Ho+16xUSn5+fOUBAADXFrKbIqxleEU9172Rw0iasNIBeq57I7UMr1hILQMAAN4oNTVdWw+ecxqz9eA5paamF1CLgLxLTU3XkdMJTmOOnE7gfAYAANccv8JuAJxrGV5RzetW0METcUoxLPK3GKpTNYSRMwAAwGW/bTomw3AeYxhX4+5sXaNgGgXkEeczAAAorijoegEfH4vq1wpTaGiwLly4xCgDAACQJ2diL7s1DihMnM8AAKC4YsoFAACAYqJi2UC3xgGFifMZAAAUVxR0AQAAiomOLa6TJZdZmyyWq3FAUcf5DAAAiqsiX9CNiopS//791bZtWzVv3lwPP/ywli5dmq99Ll68WOHh4XrxxRfd1EoAAICiz8/PR11aVXca06VVdfn5FfkUEZkU13yZ8xkAABRXRXoO3UWLFmn48OHy8/NTmzZt5Ovrq8jISA0dOlQHDhzQkCFDXN7nyZMnNWrUKA+0FgAAoOh7sGNdSdKyv6LtFpSyWK4WvzIeh3co7vky5zMAACiOimxBNyYmRq+//roCAwM1c+ZMNWzYUJJ08OBB9e3bV19++aXuuOMO23YzDMPQyy+/rIsXL3qq2R6Rnm5o9+HzSjl0Qf4WQ3WqhsjHJ5f7ywAAAHLwYMe6uv/W2pq/+oDOJVxRuVIl1LP9DSpRwrewmwYXkC9f9WDHurr35uv1zc+7dC4+WeVKB+jJexqoZMki+1UHAAAgX4rs/UezZs1SUlKSHn30UbsktE6dOnrhhRdkGIamTZvm0j6nTJmiDRs2qFWrVu5ursds3HtGL01crzEzN+njWRs1ZuYmvTRxvTbuPVPYTQMAAF5q494zeuXrP7Vy03Ft2XdWKzcd1ytf/0l+4WXIl6+a99t+Pff5Wm3aH6Mjp+K1aX+Mnvt8reb9tr+wmwYAAOARRbagu2bNGklSp06dHB7r1KmTLBaLVq9ebXp/e/fu1dixY9WhQwc98MAD7mqmR23ce0YTFu7Qhfhku+0X4pM1YeEOvnQBAACXkV9cO8iXrxZzf42yn25BkgxD+jUqmqIuAAC4JhXJgq5hGDpw4IAkqW5dx3mvQkJCVL58ecXFxen06dO57u/KlSt68cUXFRwcrNGjR7u9vZ6Qnm5odoTzBHROxH6lpxtOYwAAADKQX1w7yJel1NR0Lfsr2mnMsr+ilZqaXkAtAgAAKBhFcmKpuLg4JScnKzg4WEFBQdnGVKxYUWfPnlVMTIwqVarkdH+ffvqp9u3bp3Hjxql8+fJub68nVs7dffi8w8iZrM7HJ+vgiTjVrxXm9uPDO/j6+tj9H5A4L5A9zgtI5BfXEvJlKeJvx5G5WRmGtHrLcd11U023H/9awO8G19FnrqG/XEefuY4+cw395bqi2GdFsqB7+fJlSVJgYGCOMQEBAZKkxMREp/uKjIzU1KlTde+996pLly7ua+T/+PhYFBoa7Pb9Jh88by4uTR45PrxLmTI5f1ZQfHFeIDucF8VbyqEL5uIMz+Q3cB/yZSn2UorpOM5n5/jd4Dr6zDX0l+voM9fRZ66hv1xXlPqsSBZ0fXyuVrwtFkuusenpOd9CdfHiRb3yyiuqVKmSXn/9dbe1z/74hi5edJ4k58Wps/Gm4y5cuOT248M7+Pr6qEyZQF28eFlpadxOiKs4L5AdzgtIkr/F3FQK/hbD7flFmTKBRWpUg7cjX5aSk80VdJOTU8iXc8DvBtfRZ66hv1xHn7mOPnMN/eW6guwzszlzkSzoBgdf/Qt6UlJSjjHJyVdvF8zpFjNJevvtt3Xq1Cl99913KlOmjHsbmYkn5uUKCjD31gQF+DEvGJSWls55AAecF8gO50XxVqdqiEJLBziddiGsdIDqVA3hPCniyJelmpVLm47jfHaO3w2uo89cQ3+5jj5zHX3mGvrLdUWpz4psQTc4OFjx8fFKSkpSyZIlHWLOnLm6AnPFihWz3cf27du1ZMkSlS1bVgsWLNCCBQtsjx07dkyStHnzZr344ouqU6eOBg4c6IFXkncJl82NODAbBwAA4ONjUa9OdTVh4Y4cYx7pVFc+PrmP+kThIl+WEpNS3RoHAADgLYpkQddisahu3brasmWLDh48qIYNG9o9Hhsbq5iYGIWEhOS4wEPGXGGxsbFavHhxtjHHjh3TsWPH1Lp16yKXoJYK9ndrHAAAgCS1DK+o57o30uyI/XYjdUNLB6hXp7pqGZ598Q9FC/ky+TIAACi+imRBV5LatWunLVu2KCIiwiFBjYiIkGEYuu2223J8fps2bbR3795sH1uwYIFeeeUVdevWTR9//LFb2+0uYaUcR1nkJw4AACAzwzCc/oyij3yZfBkAABRPRXZlih49eigwMFBTp07Vpk2bbNv/+ecfffbZZ5KkJ5980rb9zJkzOnjwoO3WMm9nrV5WoaUDnMaElQ6QtXrZgmkQAAC4Jmzce0YTFu5QbMIVu+2xCVc0YeEObdx7beRSxQH5clkFl3Q+PqVUST/yZQAAkGfp6YZ2Hz6vNZuOaffh80pPLxqDIIrsCN3KlSvr1Vdf1euvv65HH31Ubdq0UYkSJRQZGank5GQNGzZM9erVs8V/+umnWrhwobp3767333+/EFvuHj4+FrWpX1G/RkXnGNO6fkXmuAMAAKalpxuaHbHfacyciP1qXrcCOYYXKO75siSl5vKlKrfHAQAAcrJx75kiO01ZkS3oSlLPnj1VuXJlffXVV9qyZYt8fX3VoEED9e/fX3feeWdhN8+j0tMN/b7tpNOYP7adVI/2N/CFCwAAmLIvOtYuIc3O+fhk7YuOVb2aoQXUKuRHcc6X9xy9oOQraU5jkq6kac/RC2pQK6yAWgUAAK4FGXe1ZXUhPlkTFu7Qc90bFWpR12IwYVq+pKWl6/z5S27f765D5/Xx3C25xr34UDM1uJ4Etbjy8/NRaGiwLly4pNTU9MJuDooIzgtkh/MCkvTnrlP6atGuXOMG3NtANzWo7NZjh4UFy9e3yM72BQ/yVL68YM1BLYk8kmvcv9rW1AO313H78a8F/G5wHX3mGvrLdfSZ6+gz19BfuUtPN/TSxPVOB0KElQ7QhwNvdvsgS7M5M1l1EbUn+oJb4wAAAMoGO5+f39U4oFCZ/f7EzWwAAMAFrtzVVlgo6BZVZsdNM74aAACYxKKruJbUq25uWhCzcQAAAJIUe8l5MdfVOE+goFtEmZ23jvntAACAWT4+FvXqVNdpzCOd6jI/P7xCvZqhCi7pfEmQUiX9yJcBAIBLvOGuNgq6RVS9GiYS1EB/1atBggoAAMxrGV5Rz3VvpLKlSthtDy1VotAXdwBc4eNjUb+76zmNeezuevyBAgAAuMQb7mqjoFtE+fhYVPe6EKcxN1QrQ4IKAADyxGKxZN1QOA0B8uHg8bh8PQ4AAJCVN9zVRkG3iEpNTdeWA+ecxmw5cI4VCQEAgEs27j2jCQt3OCz0cCE+WRMW7tDGvWcKqWWAa1JT0/VrVLTTmF+josmXAQCAy4r6H40p6BZRy/8+6tY4AACA9HRDsyP2O42ZE7Ff6emsuoqiL2Kj82Kuq3EAAADS1T8aL/vLef6w7K/C/aMxBd0iasv+GLfGAQAA7IuOdRiZm9X5+GTti44tmAYB+bD/mLmRMWbjAAAAJOm3Tcdk5DK+wTCuxhUWCrpFlJHbmeNiHAAAQOwl58VcV+OAwhTgb+6rjNk4AAAASTodm+jWOE8guymigkv6uzUOAACgbLDz1XpdjQMK03XlS7k1DgAAQJJkduxkIY6xpKBbRJldKK8QF9QDAABe5oZqIbLkkjtYLFfjgKIuMTnFrXEAAACSVLuquVzYbJwn+JkJat++vdsOaLFYtGrVKrft71pV0uTIW7NxAAAAB47HmZoP7MDxONWrGVowjbqGkDMXrPMJV9waBwAAIEnlypR0a5wnmCronjp1ym0HtOQ2LASSpNb1KurPnadNxQEAAJjBHLqeRc5csMqVNvlly2QcAACAJNWuUsatcZ5gqqArSZ07d9aIESPydbAxY8Zo5cqV+dpHcXHqnLmJlU+dS5TqergxAADgmsAcup5Hzlxw6tUoq5//PGIqDgAAwKzVW46bjruzdQ0PtyZ7pgu6gYGBqlatWr4OFhgYmK/nFyf7j8eZjrvLw20BAADXhlqVSrs1Do7ImQtObtOHuBoHAAAgSafOX3JrnCeYKugOGjRI4eHh+T7YnXfeqZo1a+Z7P8VBgJ+vW+MAAADmrzlgOq5Pl3oebs21h5y5YO2NjjUd16hOOc82BgAAXDNiTc6/bzbOE0wXdN2hc+fO6ty5s1v2da2rVjFI2m0yDgAAwITTFy67NQ72yJkL1vmLSW6NAwAAkKSypUxOU2YyzhNMT7mQ1e7du/Xjjz/qyJEjSk7OeeEMi8WiadOm5fUwxdblK2lujQMAAKgUGqhdhy+YioN7kDN7TmiIuS9RZuMAAAAkyezatIW5hm2eCrpRUVHq37+/0tLSZOQyKRUr9OaNj8z1m9k4AACAnrffoFWbT5iKQ/6RM3tWvetCtVRHTcUBAACYdX21MqZy5uurlSmA1mQvTwXdsWPHKjU1Vffcc486d+6sMmXKkIS6Wb2aoVoSaWLV3pokqAAAwJx/Tl40Hdfg+jAPt+baR87sWT6+JgdAmIwDAACQpLDgkm6N84Q8FXT37dunBg0a6JNPPnF3e/A/1uvKujUOAABgT3Tu0y1kxFHQzT9yZs+6mGhuIRKzcQAAAJJyvbPK1ThP8MnLkwIDA1WpUiV3twWZ7DsW69Y4AAAAmc05Cy83vaaQM3tWmaASbo0DAACQpL3RsW6N84Q8FXTvuOMObd26VfHx8e5uD/5nxz/n3BoHAAAQXr2sW+PgHDmzZyVdSXVrHAAAgCSZXq6qEGd1ylNBd9iwYQoNDdWTTz6pyMhInT9/Xunp6Tn+B9ftOmLulkizcQAAAGnp5obemo2Dc+TMnrVo3WG3xgEAAEjSDVVD3BrnCXmaQ7dMmTK65557NG7cOPXv399prMVi0a5du/LUuOIsKdnkiAOTcQAAAJG7TpmOa3JDeQ+35tpHzuxZsQnJbo0DAACQpBMxl0zHFVbOnKcRujNmzND48eMlXZ0A2Nl/jDbIm7AyAW6NAwAAOB+X5NY4OEfO7FllS5mbG9dsHAAAgCTtOx7n1jhPyNMI3ZkzZ8pisejll1/Wvffeq7AwVkF2t4a1ymnP0dxPjIa1yhVAawAAwLWgbGlzfwg2GwfnyJk96/5ba2vcj9tNxQEAAJiVlJTi1jhPyFNB9+TJk2rTpo369evn5uYgQ1iZkm6NAwAAuGwy6TQbB+fImT2rXvVQt8YBAABIUkLSFbfGeUKeplyoUKGCSpTg1iVPCjU5MsZsHAAAwOHTCW6Ng3PkzJ41f80Bt8YBAABIUorJsQ1m4zwhTwXde++9V3/++aeio6Pd3R78j7V6WQWXdD6AulSgv6zVyxZMgwAAgNdLTzfcGgfnyJk969T5RLfGAQAASFJYiMm75k3GeUKeplwYOHCg/vrrL/Xq1UtPPPGEmjZtqpCQEPn7+2cbX7169Xw1srhKTXO+OEZqaloBtQQAAFwLKoWW1KFTua/aWymUKZ3cgZzZs0r4+bo1DgAAQJK6tKqu3UcumIorLHkq6N5+++1KS0vTxYsX9cEHHziNtVgs2rVrV54aV5ztOXJBySnOC7pJKenac+SCGlzPAhsAACB37ZtX16Ff9piKQ/6RM3tW5XJB2nrwnKk4AAAAsxrVLicfi+TspjUfy9W4wpKngm5gYKAkqVSpUm5tDP7f7qPnTcdR0AUAAGaUM7mYqtk4OEfO7Flxl8wtRGI2DgAAQLo6/VhuM5ClG1fjfHwsBdOoLPJU0P3tt9/c3Q5kcS4u2a1xAAAAqanO7/5xNQ7OkTN7VjmTiwObjQMAAJCkZVFHTcfdc3MtzzYmB3laFA2eV87kxMpm4wAAAJb9bTI5NRkHFKbwGqFujQMAAJCkyF2n3RrnCXkaoZvhwoULio6OVnKy81GirVq1ys9hiqX6NUP1c+QRU3EAAABmnL9o7s4es3Ewh5zZM8ze4lhYt0ICAADvlJZm7m41s3GekKeC7uXLl/Xyyy8rIiJChuF8UgkWeMibG6qGuDUOAACgbCl/nb5w2VQc8o+c2bPiEkzOoWsyDgAAQJKs14WYypmt1xVeTS5PBd2xY8dq+fLl8vX1Ve3atVW6dGlZLPzl251WbzluOu7O1jU83BoAAHAtqFA2UHujL5qKQ/6RM3tW3CVzI8nNxgEAAEiS2XStMNO6PBV0V65cqeDgYM2dO1c33HCDu9sESWdic/9LgCtxAAAACZfT3BoH58iZPetSUopb4wAAACQpxuT0Y2bjPCFPi6KdO3dObdu2JTH1oPImFzszGwcAABBQwlzqZzYOzpEze5jzWSxcjwMAAJBU0eTdambjPCFP2brVatWZM2fc3RZkUq18KbfGAQAAVC1nLuk0GwfnyJk9q6S/r1vjAAAAJKlJnXJujfOEPBV0BwwYoG3btmnJkiXubg/+Z190rFvjAAAA9hzNff5cV+LgHDmzZ+06esGtcQAAAJJ08Li5XNhsnCfkaQ7dTp06acSIEXrppZc0e/Zs1atXTyEh2a/sZrFYNGTIkHw1sjg6F5fk1jgAAIDE5FS3xsE5cmbPSkwyN9ez2TgAAABJOn/RXK3NbJwn5KmgGx0dralTp8owDG3atEmbNm1yiLFYLDIMg+Q0jwyluzUOAADg+sqldeRUvKk45B85s2eVLeWvI6fNxQEAAJgVWibArXGekKeC7pgxY3Tq1ClVqVJF7du3V1hYmCwWi7vbVqylG+ZWbzAbBwAA0OO2Olq95YSpOOQfObNnNQ0vr60Hz5uKAwAAMKukyQWCzcZ5Qp4Kun///beqVKmixYsXq1QpFuXyhIREc7c6mo0DAAD4Y8dJ03F3tq7h4dZc+8iZPetKkrk71czGAQAASNLuI7Gm4/51s2fbkpM8lZLT0tLUuHFjElMPCggwV2s3GwcAAHA6NtGtcXCOnNmzSgeVcGscAACAJCUmmVx3wmScJ+SpoNu0aVPt37/f3W1BJtbrsl8wI69xAAAAMjtTEzM6uQU5s2eFljY5v53JOAAAAEkqW8pc7mA2zhPyVNAdPHiwjh49qo8//lipqdzy7wkdm1/n1jgAAIDaVc39IdhsHJwjZ/asG6qFKLcpiS2Wq3EAAABmtQyv4NY4T8jT/fq7du3SLbfcom+//VY//PCDGjZsqJCQEPn5Oe7OYrHogw8+yHdDi5t/Tl40HVevZqiHWwMAAK4F5cqUdGscnCNn9qwDx+OU2/rAhnE1jnwZAACYVT4k0K1xnpCngu4777wji8UiwzAUGxurdevW5RhLcpo35xOS3BoHAABgrV5WAf4+Sk7JeZGokiV8Za1etuAadQ0jZ/as2EvJbo0DAACQzN/dU5h3AeWpoDtmzBh3twNZXEy44tY4AACA9HTDaTFXkpKupCk93ZCPTy73siNX5MyeVSbQ3GJnZuMAAAAkac+RC6bjGtUp5+HWZC9PBd3u3bu7ux3IIj7RXKHWbBwAAEDExmjTcXe1qenh1lz7yJk9zOzfHPjbBAAAcMEf20+Yjiusgq6pRdG6d++uzz77LN8HGzt2rB544IF876c4OHIqwa1xAAAA+4/FuTUO9siZC9ZFkwMbzMYBAABI0j8nTK5rZTLOE0wVdHfv3q0TJ8xVp505ceKEdu/ene/9FAcl/E29NabjAAAAAvx93RoHe+TMBatMkMkpF0zGAQAASJKvr7nbe8zGeYLpKRf27Nmjzz//PF8H27NnT76eX5yUCTaZoJqMAwAAaNugkv7cddpUHPKGnLkAGW6OAwAAkGS9rqxOXzhlKq6wmC7o7tu3T/v27cvzgTJW+LVYmMTKjJIlzI2MMRsHAADg62vuzh6zcXBEzlxwLiQkuzUOAABAkiqWDXRrnCeYKugOGjTI0+1AFnuPxro1DgAAIO6SublEzcbBHjlzwTp4PNZ03C2Nq3i2MQAA4Jrxz6l4t8Z5AgXdIsoweW+Y2TgAAIB4k4tDmY2DPXLmghVr8g8PZuMAAAAk71jXivvpiqiyJufGNRsHAABQKtjfrXFAYQr0Nzd7nNk4AAAASbquQrBb4zyBgm4RVa1CabfGAQAAlA0OcGscUJhualjZrXEAAACSlHQl3a1xnkBBt4jyMfnOmI0DAABITTWXdJqNAwqT2XXjWF8OAAC4wjDM5cJm4zyBcmARFRRg7lZHs3EAAADrd5xwaxxQmPYcOe/WOAAAAElKSEx1a5wnUNAtoi4lpbg1DgAA4OAJcyvxmo0DCtOhkwlujQMAAJCk4zGX3BrnCRR0i6jzcclujQMAAEhLN9waBxSmlLQ0t8YBAABI0uVkc7mD2ThPyFNB96efftLGjRtzjVu5cqXGjRuXl0MUe4bF3Bcps3EAAABVwgLdGgfnyJk9q1xISbfGAQAASFJIsJ9b4zwhTwXdESNGaN68ebnG/fe//9WUKVPycohir3wZc4mn2TgAAIA7W9VwaxycI2f2rFsaVnFrHAAAgCTVrFLarXGeYKqU/NNPPyk11X6i3yNHjuiHH37I8TkJCQmKjIyUvz+LduVFvRqh+vnPo6biAAAAzPD393VrHOyRMxesejXN5cFm4wAAACSpTFCAW+M8wVRBd+fOnZoxY4YsFoskyWKxaOvWrdq6davT5xmGoe7du+e/lcVQusm568zGAQAAXEy84tY42CNnLlh7j14wHdewdjkPtwYAAFwrQoLNFWrNxnmCqYLukCFDlJDw/6vDLly4UDVq1FDLli1zfE5AQIBq1aqlRx55JP+tLIYid54yHdf4hvIebg0AALgWlAkq4dY42CNnLljrtp80HUdBFwAAmBVSylwubDbOE0wVdEuXLq0xY8bYfl64cKGaNWtmt81ToqKiNGnSJO3evVtJSUkKDw9X37591bVrV9P7OHTokL766itFRkYqJiZGQUFBaty4sfr166d27dp5sPV5F3Mxya1xAAAAMntjDzcA5Ulh5czky+6JAwAAkOQVOXOelmPbs2ePu9uRrUWLFmn48OHy8/NTmzZt5Ovrq8jISA0dOlQHDhzQkCFDct3Hxo0b9eSTTyoxMVG1atXS7bffrtOnT+uPP/7QH3/8oeHDh+uJJ54ogFfjmrAyJaXjF83FAQAAmHDxsskpF0zGwbmCyJmLc75cPqSkDpjIl8uHkC8DAADz4i6Zy4XNxnlCngq6mSUmJio+Pl5paWk5xlStWtXl/cbExOj1119XYGCgZs6cqYYNG0qSDh48qL59++rLL7/UHXfcYduendTUVA0fPlyJiYkaNmyYnnrqKducZuvWrdPTTz+tjz/+WO3atZPVanW5jZ5Uo0IpRe0+YyoOAADAjFIlzS28ZTYO5nkiZy7u+XLbhlX0567c8+W2DasUQGsAAMC14kKCubt7zMZ5Qp4LurNnz9aUKVN07Ngxp3EWi0W7du1yef+zZs1SUlKSBgwYYJeE1qlTRy+88IJGjhypadOm6cMPP8xxH1FRUTp27JgaN26sAQMG2D12yy236KGHHtLMmTO1dOnSIpegJian5h7kQhwAAMCxswm5B/0vrhFzjrqFJ3Pm4p4v/6/u7LY4AAAASTp2xmTObDLOE/JU0F20aJFGjRolSfLx8VFYWJh8fX3d2rA1a9ZIkjp16uTwWKdOnfTqq69q9erVTvdx6dIlNW7cWLfddlu2j9eqVUuSdOZM7n/ZL2jnTc71ZTYOAADgzIXLbo2Dc57OmYt7vrz3aKzpOP5AAQAAzEoyOXjSbJwn5KmgO23aNFksFg0dOlT9+vVTiRLuXdXNMAwdOHBAklS3bl2Hx0NCQlS+fHmdPXtWp0+fVqVKlbLdT+fOndW5c+ccj7Nt2zZJUuXKld3QavdKNzmzstk4AACA2IRkt8bBOU/mzOTL0rl4cwMbzMYBAABIkiFzt/eYjfOEPBV0Dx48mO1tWe4SFxen5ORkBQcHKygoKNuYihUr6uzZs4qJickxQXVm7969+vnnn2WxWHTnnXfmq71+fj75en52fH3M7dPXx8cjx4d38PX1sfs/IHFeIHucF5Ck0NIBpuPIL/LPkzkz+bJUweRiZxVCSnI+54DfDa6jz1xDf7mOPnMdfeYa+it3FpODJy0yCi3HyFNBNyAgIE9JoVmXL1+9zS8wMNBpG6SrC0y46ty5cxoyZIjS0tL0wAMPqF69enlrqCQfH4tCQ4Pz/PycXFe5jLTztKk4Txwf3qVMmZw/Kyi+OC+QHc6L4i0w0NwI0cDAEuQXbuDJnJl8WWrdpJoWrz9iKo7z2Tl+N7iOPnMN/eU6+sx19Jlr6K+cGSYHWRo+PoWWY+SpoNumTRtt2rRJV65ccft0C9LVOcYk2VbYdSY9Pd2lfZ8+fVr9+/fX4cOH1ahRI73xxht5auP/H9/QxYuuJ8m5uS4s+5EW2cVduHDJ7ceHd/D19VGZMoG6ePGy0tJc+yzg2sV5gexwXkCSqpnML6p5IL8oUyaw2I0E8WTOTL4sVSljbsR5lTIB5Ms54HeD6+gz19BfrqPPXEefuYb+yl3V0EBtNRlXWDlzngq6Q4cOVc+ePfXiiy/qnXfeUUhISF52k6Pg4KvV7aSknOe7Sk6+OrdbTreYZWffvn165plndPz4cTVu3Fjffvut01ENZqWmuv8DsGnfWdNxjeuwyENxl5aW7pHzEN6N8wLZ4bwo3uJMzo0bl5DMeeIGnsyZyZelZRuOmo67u21Ntx//WsLvBtfRZ66hv1xHn7mOPnMN/ZWzy8lppuMKqw9NFXR79+7tsC0oKEgrVqzQb7/9plq1aql06dK2kQKZWSwWzZw506VGBQcHKzg4WPHx8UpKSlLJko7zY2WstFuxYkVT+1y3bp2GDBmihIQE3XrrrRo3bpwtES6KDp+Od2scAADAUZN5g9k42CvInJl8Wdp80NwAiM0Hz1LQBQAApsVeMrmQsMk4TzBV0N24cWOOj6WmptpW2M2OmdvAsntO3bp1tWXLFh08eFANGza0ezw2NlYxMTEKCQkxNS/Z4sWLNWLECKWmpqpHjx56++235eeXp8HJBSawhLlbEs3GAQAAJKWYG21gNg72CjJnJl+WDJMDYszGAQAASFIJf3O1NrNxnmAqS5s+fbqn2+GgXbt22rJliyIiIhwS1IiICBmGodtuuy3X/fz22296+eWXlZaWpsGDB2vQoEGearJb+fmaS+rNxgEAAJQJ9ndrHOwVdM5c3PPloJLmvkSZjQMAAJCkkiV83RrnCaYKuq1bt/Z0Oxz06NFD33zzjaZOnap27dqpRYsWkqR//vlHn332mSTpySeftMWfOXNG8fHxKl26tO22spiYGL3yyitKS0vTwIEDvSY5laSLiSlujQMAAEgyOR+Y2TjYK+icubjnywmXU90aBwAAIElxCeZqbWbjPKHI3kdVuXJlvfrqq3r99df16KOPqk2bNipRooQiIyOVnJysYcOGqV69erb4Tz/9VAsXLlT37t31/vvvS5KmTJmi2NhY+fn5KTo6Wi+++GK2x2rRooV69epVIK/LNMPNcQAAoNg7F29uni+zcShcxT1fvpJiLhE2GwcAACBJV0xOP2Y2zhPyVNDt27dvrjEWi0V+fn4qXbq0atasqc6dO6tRo0YuHadnz56qXLmyvvrqK23ZskW+vr5q0KCB+vfvrzvvvDPX569du1bS1TnLlixZ4jS2qCWolUIDdfTMJVNxAAAAZpTwMzkfmMk4OFcQOXNxzperlQ/S8Zjc8+Vq5YMKoDUAAAAFJ08F3aioKElXE1DDyP4v3lkf+/rrrzVo0CA9++yzLh2rXbt2ateuXa5x77//vm2kQYbFixe7dKyixNfX3Bcps3EAAADXVymj3UdiTcUh/woqZy6u+XKNyqUVteesqTgAAACzAkzOjWs2zhPyVA2MiIhQs2bNJEkPPPCAvv76a/3yyy9aunSpvvvuO/Xq1Uu+vr6qWbOmxo8frxEjRqh8+fIaP3681q9f7872X7PCypR0axwAAED4dWXdGgfnyJk9q2xwgFvjAAAAJOmGqiFujfOEPI3QXbJkibZu3aoPP/xQ3bp1s3usdu3auvnmm9WuXTsNHDhQ0dHR6t+/v9q3b69//etfmjVrlm6++Wa3NP5aVirQ3OrSZuMAAACOn8v99vSMuMY3lPdwa6595MyelXDZ3EIkZuMAAAAkmR/+Wog3zefp0AsWLFCjRo0cEtPMOnTooObNm2vu3LmSpFq1aql58+batm1b3lpazJQpVcKtcQAAAGdjk9waB+fImT0rKMjc2BSzcQAAAJJ0/qK5BYLNxnlCngq6p0+fVrVq1XKNq1ixok6ePGn7uXz58oqLi8vLIYudsFImp1wwGQcAAJDTPK55jYNz5MyelXDJ5Ahdk3EAAACSVLFsoFvjPCFPBd1KlSppy5YtSknJOTlKSUnR1q1bVa5cOdu2CxcuKDQ0NC+HLHas1csqtLTz+b7CSgfIWr1swTQIAAB4vaAAcws3mI2Dc+TMnnUpKdWtcQAAAJLUscV1slicx1gsV+MKS54Kul26dNGpU6c0cuRIJSc7Di9OTk7Wa6+9ptOnT+uOO+6QJB0/flwbN25U3bp189fiYsLHx6JenZz31SOd6srHJ5czDAAA4H98fM2lfmbj4Bw5s2fl9kXL1TgAAABJ8vPzUZdW1Z3GdGlVXX5+hZcz52lCqQEDBmjVqlVavHixfv/9d91yyy2qWrWq0tPTdeLECUVGRio2NlY1atTQoEGDFBcXp3vvvVepqanq2bOnu1/DNatleEU9172RZkfs14X4//8SEFY6QI90qquW4RULsXUAAMDb1KseqiU6YioO+UfO7FmczwAAwFPqVAuRFJ3L44UnTwXd0qVLa/r06frggw+0ePFi/fzzz3aP+/j46J577tHIkSNVtmxZ7d69W8nJyerXr5+6dOniloYXFy3DK6p53Qo6eCJOKYZF/hZDdaqGMDIXAAC4zFq9rCySnM2Qa/lfHPKPnNmz6tUMVXBJP6dTKpQq6ad6NSnoAgAA89LTDc2O2O80Zk7EfjWvW6HQ6nN5XvI1LCxMH3zwgUaMGKENGzbo5MmTSklJUZUqVdS6dWtVqlTJFlunTh39/fffKlmSBbzywsfHovq1whQaGqwLFy4pNTW9sJsEAAC80IHjcU6LudLVYu+B43EUwdyEnNlzfHwsatekin6Nynn0zK1NqjAQAgAAuGRfdKzdnfLZOR+frH3RsYWWM+e5oJshNDRUd911l9OYEiVK5PcwAAAAyKdzF5PcGgfzyJndLz3d0O/bTjqN+WP7KfVofwNFXQAAYNr5BHO5sNk4TzBV0I2MjJQktWjRQgEBAbafzWrbtq3rLQMAAIBbHTweZzrulsZVPNyaaw85c8Hac/SC0+kWJCnhcor2HL2gBrXCCqhVAADA2yVcSnFrnCeYKug+/vjjslgsWrp0qa6//nrbz2ZYLBbt2rUrX40s7tLTDe0+fF4phy4why4AAMiz2ATnt465Ggd75MwFa8+RC6bjKOgCAACzSgeZu2vKbJwnmCrotmrVSpIUGBho9zM8b+PeM5odsd9u7o7Q0gHq1amuWoZXLMSWAQAAb1MywNxsW2bjYI+cuYCZHd/AOAgAAOCC0NIBbo3zBFPZ+owZM5z+DM/YuPeMJizc4bD9QnyyJizcoee6N6KoCwAATLupfiX9ufO0qTi4jpy5YFmrlZV0xGQcAACAOdbqZRVaOsDpwmhhpQNkrV624BqVhU+hHRlOpacbmh2x32nMnIj9Sk/Pba1qAACAq/z8zKV+ZuOAwmRyNgvTcQAAAJLk42NRr051ncY80qluoU6Hmq9s/cKFC/r666/11FNPqVu3bvrggw8kSRMnTtRvv/3mlgYWV/uiY53+JUCSzscna190bME0CAAAeL2LiVfcGgdzyJk9Y6/JPNhsHAAAQIaW4RX1XPdGDtMqhJUOKBJ3zOd5grTff/9dL774oi5evCjDMGSxWFS/fn1J0tKlSzVu3Dj169dPL7/8stsaW5zEXjK5aInJOAAAgLLB5ub5MhuH3JEzexBz6AIAAA9qGV5RzetW0METcUoxLPK3GKpTNaRQR+ZmyNMI3f3792vQoEFKTExU7969NXnyZBnG/9/637NnT5UqVUpTp05l1EEe8YULAAC4W8Z8YM4U9nxg1xJyZs+qVz3UrXEAAABZ+fhYVL9WmG5vcZ3q1worEsVcKY8F3YkTJ+rKlSsaP368XnvtNd1+++12j/ft21fffvutJGnmzJn5b2UxxBcuAADgbt4wH9i1hJzZs+rVDFVwSec3HJYq6ad6NSnoAgCAa0ueCrobNmxQkyZN1L59+xxjmjRpohYtWmj/fucLeyF7fOECAACeUNTnA7uWkDN7lo+PRf3uruc05rG765EvAwCAa06e5tC9ePGiKlWqlGtc2bJltX379rwcAvr/L1yzI/bbLZAWVjpAj3SqyxcuAACQJ0V5PrBrCTmz52Xky7NW7FNswv8v5hdaqoR6dbaSLwMAgGtSngq6FStW1N69e3ON27t3rypWJInKD75wAQAAT8iYDyw0NFgXLlxSamp6YTfpmkPOXDDIlwEAQHGTpykX2rdvr6NHj2rGjBk5xkydOlXHjh1Tu3bt8tw4XFVUJ2AGAABAzsiZCw75MgAAKE7yNEL3mWee0S+//KL33ntPf/75p1q3bi1JOnPmjH744QetXbtWK1asUJkyZfTUU0+5tcEAAACANyBnBgAAgCfkqaBboUIFfffddxoyZIhWrlyp3377TdLVhR82bNggwzBUoUIFjRs3TlWrVnVrgwEAAABvQM4MAAAAT8hTQVeS6tWrp6VLl2r58uXasGGDTp48qbS0NFWsWFGtWrVS165dVbJkSXe2FQAAAPAq5MwAAABwtzwXdCXJz89PXbt2VdeuXd3VHgAAAOCaQs4MAAAAd8rTomgAAAAAAAAAgIKX5xG6e/bs0fTp07V3717Fx8crLS0t2ziLxaKIiIg8NxAAAADwVuTMAAAAcLc8FXS3bdumRx99VCkpKTIMw2msxWLJU8MAAAAAb0bODAAAAE/IU0F33LhxunLlitq3b6++ffuqcuXK8vPL13S8AAAAwDWFnBkAAACekOcRujVr1tSECRPk6+vr7jYBAAAAXo+cGQAAAJ6Qp0XRUlJSFB4eTmIKAAAA5ICcGQAAAJ6Qp4JugwYNdODAAXe3BQAAALhmkDMDAADAE/JU0H366ad16NAhffvtt+5uDwAAAHBNIGcGAACAJ5iaQ/fzzz932FarVi19/PHHWrJkiZo3b67SpUvLx8exPmyxWDRkyJD8txQAAAAowsiZAQAAUBBMFXQnTpwoi8UiwzAkye7fu3fv1u7dux2ekxFDcgoAAIDigJwZAAAABcFUQXfQoEGebgcAAADg1ciZAQAAUBAo6AIAAABuQM4MAACAgpCnRdEAAAAAAAAAAAWPgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICXoKALAAAAAAAAAF6Cgi4AAAAAAAAAeAkKugAAAAAAAADgJSjoAgAAAAAAAICX8CvsBuQmKipKkyZN0u7du5WUlKTw8HD17dtXXbt2Nb2PhIQEff3111q2bJlOnDihsmXLqkOHDhoyZIjKlSvnwdYDAAAAnkW+DAAAULwU6RG6ixYtUt++fRUVFaUGDRqoVatW2rlzp4YOHapx48aZ2kdCQoL69u2rSZMmKS0tTe3bt1dQUJC+//57de/eXadOnfLwqwAAAAA8g3wZAACg+CmyBd2YmBi9/vrrCgwM1Ny5c/Xtt9/qq6++0k8//aTy5cvryy+/1M6dO3Pdz/jx47Vz507df//9+uWXXzRu3DgtXbpU/fr10+nTp/X2228XwKsBAAAA3It8GQAAoHgqsgXdWbNmKSkpSY8++qgaNmxo216nTh298MILMgxD06ZNc7qPhIQEzZs3T4GBgRo5cqT8/K7OMOHj46Phw4erevXq+u2333T06FGPvhYAAADA3ciXAQAAiqciW9Bds2aNJKlTp04Oj3Xq1EkWi0WrV692uo+oqCglJibqxhtvVEhIiN1jvr6+6tChgyTluh8AAACgqCFfBgAAKJ6KZEHXMAwdOHBAklS3bl2Hx0NCQlS+fHnFxcXp9OnTOe7H2T4k6YYbbpAk7du3L79NBgAAAAoM+TIAAEDx5VfYDchOXFyckpOTFRwcrKCgoGxjKlasqLNnzyomJkaVKlXKNubMmTO22OxUqFBB0tX5x/LDz8/zdXFfXx+7/wMS5wWyx3mB7HBeIDucF96LfNkR57Pr6DPX0Weuob9cR5+5jj5zDf3luqLYZ0WyoHv58mVJUmBgYI4xAQEBkqTExMQcYzIeK1myZLaPZ2x3to/c+PhYFBoanOfnu6pMmZz7BMUX5wWyw3mB7HBeIDucF96HfDlnnM+uo89cR5+5hv5yHX3mOvrMNfSX64pSnxXJgq6Pz9WKt8ViyTU2PT09x8d8fX1N7ccwDBdal/X4hi5ezHuCa5avr4/KlAnUxYuXlZaW82tG8cJ5gexwXiA7nBfITkGeF2XKBBapUQ3ejnzZEdc519FnrqPPXEN/uY4+cx195hr6y3VFMWcukgXd4OCrf8FPSkrKMSY5OVmScrzFLPNjOe0nY7uzfZiRmlpwH4C0tPQCPR68A+cFssN5gexwXiA7nBfeh3w5Z5zPrqPPXEefuYb+ch195jr6zDX0l+uKUp8VyWESwcHBCg4OVnx8fI7JZW7zfUmyzRWW05xfZ8+elfT/c4MBAAAA3oB8GQAAoPgqkgVdi8ViW2n34MGDDo/HxsYqJiZGISEhOS7wIP3/ar0Zq/dmtX//fkmS1WrNb5MBAACAAkO+DAAAUHwVyYKuJLVr106SFBER4fBYRESEDMPQbbfd5nQfN954o4KCghQVFaX4+Hi7x9LS0rRq1SpZLBbbsYqq9HRDuw+f15pNx7T78Hmlp+d9DjMAAABcG8iXAQAAPKuo1uSKbEG3R48eCgwM1NSpU7Vp0ybb9n/++UefffaZJOnJJ5+0bT9z5owOHjxou7VMurrq77///W9dunRJb7zxhq5cuSLp6qIOH330kY4dO6ZOnTrp+uuvL5gXlQcb957RSxPXa8zMTfp41kaNmblJL01cr417z+T+ZAAAAFyzyJcBAAA8pyjX5CxGfpas9bD58+fr9ddfl4+Pj9q0aaMSJUooMjJSycnJGjZsmAYMGGCLHTFihBYuXKju3bvr/ffft21PSEjQI488on379qlatWpq1KiR9u/fr3/++UfVqlXT999/73ResdykpaXr/PlL+XqdOdm494wmLNyR4+PPdW+kluF5bzu8n5+fj0JDg3XhwqUiMzE3Ch/nBbLDeYHsFOR5ERYWbGrFXrimuOfLmXGdcx195jr6zDX0l+voM9fRZ66hv8wprJqc2Zy5SGfVPXv21Ndff62WLVtqy5Yt2rhxoxo0aKDx48fbJafOlCpVSrNmzVL//v0lSatWrVJKSop69eqluXPn5is59aT0dEOzI/Y7jZkTsb/IDPUGAABAwSvO+TIAAIAneENNrkiP0PUGnhpxsOfIBX04Z3OuccMfaa56NUPdfnx4B/6yhuxwXiA7nBfIDiN0URAYoVt00Weuo89cQ3+5jj5zHX3mGvord4VZk7smRugWZ7GXkt0aBwAAAAAAAMA5b6jJUdAtosoGB7g1DgAAAAAAAIBz3lCTo6BbRFmrl1VoaecnRljpAFmrly2YBgEAAAAAAADXOG+oyVHQLaJ8fCzq1amu05hHOtWVj4+lgFoEAAAAAAAAXNu8oSZHQbcIaxleUc91b+TwV4Gw0gF6rnsjtQxnxWEAAAAAAADAnYp6Tc6vUI+OXLUMr6jmdSvo4Ik4pRgW+VsM1akawshcAAAAAAAAwEOKck2Ogq4X8PGxqH6tMIWGBuvChUtKTU0v7CYBAAAAAAAA17SiWpNjygUAAAAAAAAA8BIUdAEAAAAAAADAS1DQBQAAAAAAAAAvYTEMwyjsRngzwzCUnl4wXejr66O0tKIxVweKDs4LZIfzAtnhvEB2Cuq88PGxyGIp/AUkUPDIl4s2+sx19Jlr6C/X0Weuo89cQ3+5rqjlzBR0AQAAAAAAAMBLMOUCAAAAAAAAAHgJCroAAAAAAAAA4CUo6AIAAAAAAACAl6CgCwAAAAAAAABegoIuAAAAAAAAAHgJCroAAAAAAAAA4CUo6AIAAAAAAACAl6CgCwAAAAAAAABegoIuAAAAAAAAAHgJCroAAAAAAAAA4CUo6AIAAAAAAACAl6CgCwAAAAAAAABegoIuAAAAAAAAAHgJCrqFJCoqSvXq1dP8+fOzffzMmTN644031L59ezVq1Eht2rTRwIEDtWXLlhz3uWLFCj3yyCNq1aqVbrzxRj3++OOKjIz00CuAp7j73Jg6darCw8Nz/O/jjz/24KuBu+R2Xuzbt08vvPCCbr75ZjVp0kR33323Pv/8c8XFxeW4T64Z3s/d5wXXC++Unp6uuXPn6qGHHlKLFi3UuHFjdenSRR999JEuXrzoEB8dHa3hw4erQ4cOtvNi8uTJSklJyXb/V65c0Xfffadu3bqpWbNmuvnmm/Xiiy/q6NGjnn5pKKZWrFjh9Fo0dOhQu3jOaenUqVN644031KFDBzVq1Ei33HJLjq8pJiZGo0aNUufOndWkSRPdcccd+uijj5SQkJDtvtPT0/XDDz/ogQceUIsWLdSmTRs9++yz2rFjh6dflts5O68y/7dhwwa753GOXbV06VI9/PDDat68uRo3bqx77rlHX3zxhZKTkx1ii/N5JkmpqamaOnWq7r//fjVt2lRt27bVU089pfXr12cbX1z7K7dcNiEhQWPHjtVdd92lJk2a6LbbbtObb76pc+fO5bhPV7/juPr5Lgpy67cMP/30k8LDw3M876Tice7l1l+HDh3SK6+8YquxtG7dWk888YR+//33bOPz0ge7d+/Wc889p1tvvVVNmzbV/fffrzlz5sgwjDy/LouRn2cjT/755x/17dtXZ8+e1ejRo9WzZ0+7x48dO6aHH35YZ8+e1XXXXaf69evrxIkT2rlzp3x9ffXJJ5/o7rvvtnvOpEmTNHbsWAUFBalNmzZKSkpSVFSU0tPTNXr0aPXo0aMgXyLyyBPnxksvvaRFixapffv2Kl26tMMxO3bsqK5du3r0dSF/cjsvVq9erSFDhig5OVmVKlVSgwYNdOrUKe3evVs1a9bUN998oxo1atg9h2uG9/PEecH1wvukp6dryJAhWrFihQIDA9W4cWMFBQVp27ZtOn/+vGrWrKnZs2erfPnykqT9+/erd+/eiouLU9OmTVWpUiX9/fffOn/+vNq2batvvvlGfn5+tv2npqbq2Wef1Zo1a1SxYkU1b95c0dHR2rVrl4KDgzV79mzVq1evsF4+rlGfffaZJk6cqNatW6tSpUoOjzdv3ly9e/eWxDktSbt27dLjjz+u2NhY1alTR7Vr19aePXsUHR2t0NBQ/fjjj6pWrZqkqwMDHn74YR0/flxWq1XXX3+9tm/frhMnTshqtWrOnDkqVaqU3f7feOMNzZ07VyEhIWrdurViYmK0efNm+fv7a9KkSbr11lsL42XnyYsvvpjjY9HR0dqyZYtKly6tRYsWqWrVqpI4xzJ88skn+uqrr+Tv768bb7xRJUuW1MaNG3Xx4kU1bdpU06dPV8mSJSVxnl25ckUDBgxQZGSk/Pz81LhxY5UuXVpbt25VXFycBg8erEGDBtnii2t/5ZbLJiQkqG/fvtq5c6dq1Kih+vXra9++fTp06JAqVaqkefPmqXLlynbPcfU7jquf76Igt37LsGnTJj3xxBNKTEzUlClTdPPNNzvEFIdzL7f+2rhxo5588kklJiaqVq1auuGGG3T69Glt375dkjR8+HA98cQTds9xtQ/+/PNPPfXUU0pNTdWNN96o0qVL688//9SlS5fUvXt3vf/++3l7cQYK1Pr16422bdsaVqvVsFqtxrx58xxiBg8ebFitVuOtt94yUlNTbdvnz59vWK1Wo1WrVkZSUpJt++7duw2r1WrceuutRnR0tG37X3/9ZTRr1sxo0qSJcerUKc++MOSbJ84NwzCMe+65xwgPDzfi4+M9/hrgfrmdF7GxsUbLli0Nq9VqvPPOO0ZycrLtsZ9//tmoV6+e0bNnTyM9Pd22nWuG9/PEeWEYXC+80bx58wyr1Wp06dLF7vMcHx9vPP3004bVajWGDBli2969e3fDarUac+fOtYvt3bu3YbVajSlTptjtf9q0aYbVajX69etnJCYm2rZPmTLFsFqtxn333edwHgH5NWDAAMNqtRr79u3LNba4n9PJycnGXXfdZVitVmPy5Mm27ampqcZbb71lWK1WY+DAgbbtzz33nGG1Wo1PP/3Ubh/PP/+87XdGZhEREYbVajX+9a9/GefPn7dt//XXX4369esbt9xyi10/eqvExETjrrvuMsLDw43Vq1fbPVbczzHDMIw9e/YY4eHhRuvWre0+lxcuXDDuu+8+w2q1Gl999ZVte3E/zz777DNbrr19+3bb9vPnzxuPPvqoYbVa7c6z4thfZr77vvfee4bVajWGDx9upKSkGIZhGGlpabbtzzzzjF18Xr7juPr5Lmxm+s0wrub7zZo1s8WtW7cu27hr/dzLrb9SUlKMjh072n6HZr42//HHH0bDhg2NevXqGXv37rVtd7UPkpOTjVtuucWoX7++3ef+9OnTtt/fy5cvz9Pro6BbQGJiYow333zTqFevntGgQQOjffv2OX4AmzdvblitViMmJsbhsTvvvNOwWq3G1q1bbdteeuklw2q1GnPmzHGI//zzzw2r1Wp89tln7n1BcBtPnhuXL1826tevb3Tp0sWjrwHuZ/a8mD17tmG1Wo3u3bsbaWlpDvt5/fXXDavVaqxYscK2jWuG9/LkecH1wjs9/PDDhtVqNVatWuXw2Llz54zw8HCjYcOGxuXLl43169cbVqvVeOihhxxijxw5YoSHhxvt27e3JbPp6em2c+zgwYMOz8n4srN+/Xq3vy4Ub7fccovRtGlTuz9eZ4dz2jD++9//Glar1Rg8eLDDY4mJiUb79u2Ne++910hNTTUOHz5shIeHG7fffrutOJLh4sWLRosWLYwmTZoYCQkJtu29evUyrFarsXbtWof9Dx8+3LBarcb8+fPd/8IK2GuvvZZt8YJz7KrvvvvOsFqtxptvvunw2OLFiw2r1Wo89dRThmEYnGfG1WtY1jwrw4kTJ4wGDRoY9913n2EYxa+/zOay8fHxRrNmzYymTZsasbGxdo+lpqYad9xxh2G1Wo0jR47Ytrv6HcfVz3dhMttvR48eNf7zn/8YVqvVaNq0qXHzzTfnWNC9ls89s/21bt06w2q1Gv/+97+z3c+oUaMMq9VqjB071rbN1T7IGHw3dOj/sXff4VGVaR/Hf5NCCCGkAAGBAFKSUCIdbCAdV0UXu4gsiy7rirKvDVFXt1hQ11UXRFlRAUVcy4oiYkMQdEWioQlCQifUUBJICKTNef/IzkhIMjkznGmZ7+e69lqZc885zykzuec+z3meu6vEr1y50khJSTFGjx7t0X4yhq6PzJw5U2+//bZat26tuXPnql+/fjXGhoVVnJYDBw5Uer20tNQ5jkl8fLzz9eXLl0uShg4dWmVdw4YNk1Tx6C0CkzevjaysLJWXl6tLly7WNxxeZfa6yM7OliQNHDjQeX2c7vzzz5ckrVixwvka3xnBy5vXBd8XwSkuLk7t2rVTt27dqixLTExUXFycSktLlZeX5/zsDx48uEps69atlZqaqn379ikrK0tSxXW0b98+tWvXTu3atavyHsd3CN8XsNLhw4d16NAhpaWlKTw83GUs17T0+eefS5LGjRtXZVl0dLSWLVumjz76SOHh4VqxYoUMw9All1xS5RHi2NhY5+PJ33//vSSpoKBAq1evVoMGDXTBBRdUWX9dyRnWr1+v9957T+ecc47uueeeSsu4xirYbDZJVX+DSNLRo0clVfw9khTy19nRo0d16NAhRUREaMCAAVWWn3POOWrdurU2bdqkQ4cOhdzxMpvLZmRkqKioSL1793ZeWw7h4eEaNGiQpMr76e5vHHc/3/5k9rhNnTpVixcvVnp6ut59991qv4cc6vK1Z/Z4nThxQunp6dV+ViWpbdu2kiqGppA8Owaursu+ffsqLi7OOXyNuyjo+khycrL+/Oc/a9GiRerdu7fLWMfFNHnyZP344486efKkdu7cqXvvvVeHDx/W0KFDneMeHjp0SPn5+UpISHCOj3e69u3by2azaevWrSovL7d+x3DWvHVtSNLGjRslVSRYjz76qIYMGaL09HRdeumlmjFjRrUTGCAwmL0u7Ha7JFUZ28jB8WN4+/btkvjOCHbeui4kvi+C1cyZM/Xpp58qISGhyrLdu3crPz9fkZGRSkxM1JYtWyRJKSkp1a6rQ4cOkn65IbB161ZJUseOHU3FA1ZwfBc1b95cTz/9tEaMGKH09HQNHjxYTz/9dKVJHbmmK45XWFiYunbtqtzcXL3++ut65JFH9PTTTysjI6NSrLvHa9u2bbLb7WrXrl21Y0i2b9++UnywevLJJ2UYhu677z41aNCg0jKusQr9+/eXzWbTsmXL9M9//lOHDh1SYWGhFi9erGnTpqlevXq65ZZbJHGdOXKwqKgo1atXr9oYx35u27Yt5I6X2VzW3c+SJ79x3D32/mT2uKWmpuof//iH3nvvvRr3y6EuX3tmj9ewYcP0/vvva9KkSdUuX79+vSQ5x2r25Bg4jnN113JYWJjatWsnwzCcce4IrNGd67CxY8eajv3Tn/6kAwcOKDMz0znhg1RxZ/T222/XxIkTna857hQ0bdq02nXVq1dPcXFxys/PV0FBQaXemwgM3ro2pIpJMiTprbfeUmJionr06KFmzZpp48aNmjZtmlasWKHZs2dXSV7hf2avC8dd14yMDI0fP77K8szMTEm/9J7gOyO4eeu6kPi+qIuee+45SdKgQYMUFRVV6+ff8bpj5mhHfFJSksv4w4cPW9dohDzHd9Gnn36qhg0bqk+fPmrevLk2bNig119/XUuXLtW8efPUtGnTkL+mS0pKtH//fiUkJGj58uV64IEHdOLECefy119/XaNGjdLjjz+uiIgIj49XbfHBcryqs2LFCq1Zs0bt27fX5ZdfXmV5qF9jDu3bt9fjjz+uJ554Qi+99JJeeukl57KOHTvqySef1HnnnSfJ82NWV66zxMRExcfHKz8/Xxs3bqzy5NORI0e0Y8cOSRV5WKgdL7O5rLufJU9+47h77P3J7HH74x//aHqddfnac6fGUpOsrCx98sknstlsGj58uCTPjoE3rzN66Aag+Ph4jRo1SnFxcUpOTtaQIUOUmpoqwzD0wQcfaNWqVc7YkydPSqp4pKomUVFRkqSioiLvNhxe5861If3yo+iaa67R8uXL9dJLL2n+/PlatGiR0tLStHbtWv3jH//wx67AIpdddpnq16+vZcuWae7cuTIMw7ls+fLlmj9/vqSKH30S3xmhwt3rQuL7oq6ZM2eOPv30U0VHR+v//u//JP3y+XfMQn4mx2ffURByfAfUFO94ne8KWGnTpk2SpEsuuURff/21Zs6cqblz5+rLL7/U+eefr507d+qRRx6RxDXtGG6rqKhI99xzjy6++GJ98sknyszM1MyZM9WsWTMtWLBA06ZNk1T78XK8fubxqilncMQ71huM5s6dK0maMGGCc1iB04X6NXa6Xr166eKLL1b9+vXVt29fXXzxxWrUqJG2bt2quXPnVsk1Q/U6CwsL01VXXSVJevDBB7V3717nsoKCAj344IMqLS2VVJGHhfrxqom7nyVPfuO4+/mua7j2anbkyBFNmjRJ5eXlGjVqlNLS0iR5dgxquzbP5rc3PXQD0H333adPPvlEf/zjH/WHP/zBmVx88cUXuueeezRx4kR98MEH6tChg3NsxOoSkDM5Hv9A8HLn2pAqetrt2bNH7dq1qzQOXXJysp566imNGjVK7733niZPnuz8IkFwadq0qR577DFNmTJFTz75pN566y117NhR+/fv18aNGzVmzBjNmzfP+UgI3xmhwd3rQuL7oi6ZM2eOpk6dKpvNpieeeML5+JfjvNb2+XfcAHA3HrDCs88+qz/+8Y9q0aJFpR8/iYmJeuaZZ3TppZdq2bJl2rNnT8hf044CWnFxsfr27ess3EoVPfObNGmi6667TnPmzNFtt93mteNlt9tlGIap3CKQbN++Xf/973/VvHlzXXHFFdXGhPo15rB+/Xr99re/VZMmTfTRRx85x5XMy8vTfffdp0WLFik8PFzPPPMM15kqeklmZmZqw4YNuuyyy9StWzfVr19f69atU2RkpEaMGKHPP/9ckZGRHK8auHtcPPmNU1c/r2Zx7VXv4MGDGj9+vHbu3KmuXbvq0UcfdS7z5BiEh4fLbrebeo+76KEbYL799lt98skn6tevn+64445KJ3348OEaP368iouL9frrr0uS89HXU6dO1bhOx7iHPCYb3Ny9NqSKu0AdO3asdlKRTp06qXnz5iouLvZovBYEjiuvvFLz5s3TgAEDdOTIEX333XeKiorStGnTNGHCBElSo0aNJPGdEUrcuS4kvi/qAsMw9Mwzz2jq1KkKDw/X1KlTKz1C7PhM1zQe8pmf/dq+Lxyv810BK9WrV0/t27evtidLs2bN1LlzZ0kVY8eG+jV9eq+q04fickhPT1d6erqKi4u1Zs2aWo/XmfvvzvEKxh/un332mQzD0BVXXFHtWIgS35sOTz75pAoLC/XYY485i7mSlJCQoL///e9q2LChPv74Y+3du5frTFJMTIzmzZuniRMnqlmzZlq9erU2b96syy67TB999JFzkq/Y2FiOVw3c/Sx58hvH3c93XcO1V1V2drZuuukmbd26Venp6Xr99dcr5SOeHIPa3nM21xkF3QDjmEHw4osvrna5Y1Isx+NozZo1k1TzOCUlJSU6duyYIiMjGQszyLl7bZjhGDDe1R8+BIeePXtq1qxZyszM1Jo1a/T2229rxIgRzkmvWrRoIYnvjFBj9rowg++LwHbq1ClNmjRJr732murXr69p06Zp1KhRlWIcn/9Dhw5Vuw7H646xvGr7vjgzHvAFx3fRyZMnQ/6ajo2NVWRkpCSpVatW1ca0bNlSUkVPylA/XmdasmSJJFU7dq4Dx6zi78vatWtVv379aicXSkxMVHp6uux2uzZv3swx+5/o6GhNmjRJX3zxhTZs2KAVK1boz3/+sxo3buzMw1q2bMnxqoG7++nJbxx3j31dw7VX2X//+1/ddNNN2rt3ry6++GLNnTvXefPFwZNj4M3rjIJugDl+/LgkVdtDSvplRkzHuDsJCQlq2rSpDh8+rLy8vCrxW7dulWEY6tixo/MxBAQnd6+NgwcP6uGHH9b9999f4zpzcnIk/fIlg+BTWFiojIyMGgv5jhsB6enpkvjOCBXuXhd8XwS3wsJCjRs3Tl988YUSExP1xhtvaOjQoVXiHLPrbtu2rdr1nDnbsSPeMdP0mRyv1zaLMmBWcXGxHnnkEU2cOLHGm0eO76LmzZuH/DUdHh7uHFLl4MGD1cY4fnQ2btzY7ePVvn17hYWFafv27dU+Chpsx+t0R44c0caNG9WqVStnr+/qhPo1JlWM+2oYhsLCwmrMDR2/T0pLS7nOVLGPy5cvr7bnY1FRkdavX6/Y2Fi1bduW41WD2j5LZx4XT37juHvs6xquvV98/PHHmjBhggoLC3XttdfqX//6l2JiYqrEeXIMXB1nu92u7du3y2azOePcwa/1AONIypYvX17t8v/+97+S5ByUWZL69+8vSfrqq6+qxH/55ZeSfum9ieDl7rXRsGFDLVy4UAsXLqy2qPP1118rPz9fbdu2VXJyspdaDW87dOiQbrnlFv3pT3+qsqy4uFgLFixQRESEc2ZOie+MUODudcH3RfAqLS3VhAkTtGbNGrVu3VrvvPOOunXrVm2s43Pt6JV2ut27dys7O1vnnHOOUlNTJUnt2rVTcnKytmzZot27d1d5j+P74pJLLrFqdxDioqKi9PXXX2vJkiX69ttvqyzfvHmzNm/erNjYWHXv3p1rWr+0dfHixVWWOYqW9erVU7du3dS/f3/ZbDYtW7ZM5eXllWILCgq0atUqRUdHq2/fvpIqehj26dPHuexMwXi8HNavXy9J6t69u8s4rrGKmwHx8fEqKirSDz/8UGV5QUGBNmzYIKliiCauM2nmzJmaMGGCVq5cWWXZBx98oJKSEg0fPlzh4eEcrxr07t1bDRo0UEZGhgoKCiotKy8v17Jly2Sz2Zy/ayT3f+O4+/mua7j2KixdulQPPPCAysrKdNddd+mJJ56ocRgeT46Bq+ts1apVOnbsmHr06FFpKDyzKOgGmCuuuEIxMTFatWqVZs2aVWkA7m+//VavvPKKbDabbrnlFufro0ePVlhYmF544QXn4xuStHr1as2ZM0dRUVGV4hGc3L02YmJiNHLkSEnSn/70Jx09etQZv3PnTv3tb3+TJE2cONGHewGrnXvuuWrXrp02bNighQsXOl8vKSnRlClTdPDgQY0aNapSEY7vjLrP3euC74vg9eKLLyozM1NNmzbVvHnz1Lp16xpje/furU6dOunHH3/UG2+84Xy9sLBQDz30kAzD0Pjx4yuNezZmzBgZhqGHH35YhYWFztfnzp2rH3/8UZ07d9aFF17onZ1DSLrxxhslVYzZ6eiNK1X0NH3ooYdUXl6uW2+91fn4d6hf0zfeeKMaNGigRYsW6b333nO+XlRUpIcfflhFRUUaNWqUGjVqpJYtW2rQoEHas2eP/v73vztzyZKSEj366KM6ceKEbrjhBsXGxjrX48gHHnvssUqPi37xxRdatGiRmjZtqquuuspHe2sdRwGyS5cuLuO4xiomm7r++uslSY8++qj27t3rXFZYWKgHH3xQ+fn5uuSSS9SmTRuuM0lDhgyRJE2bNq3SNfDjjz/qH//4hyIjI/WHP/xBkjheNYiOjtY111yjEydO6NFHH3VOAmkYhv7+979rz549Gjp0qM4991zne9z9jePJ57su4dqryC0efPBBlZeX6w9/+IPuvPPOWt/j7jEYNmyYkpKStGjRIn3xxRfO1w8dOqTHHntMknTbbbd51H6bUVen7AtwU6ZM0YIFC/T444/ruuuuq7Rs2bJl+uMf/6ji4mK1bt1aaWlp2rt3rzZu3CibzaYpU6Zo3Lhxld7zz3/+Uy+99JKioqJ0wQUXqKSkRKtWrZLdbtff//535w91BD4rr41jx47plltuUVZWlmJjY9WzZ0+Vl5crIyNDJSUlGjdunB588EEf7yE84eq6WLdunW6++WaVlpaqR48eatKkidasWaPDhw+rV69emjVrVpVHRvjOqBusvC74vgg+eXl5GjRokE6ePKm0tDSXj2pNmTJFTZo00aZNmzRmzBgVFhaqS5cuatWqlX788UcdOXJEAwcO1IwZMyr1SigrK9Ott96q77//Xo0bN1bv3r21Z88ebdy4UXFxcZo/f746dOjgi91FiCgpKdHvf/97fffdd6pfv7569eqlevXqadWqVSoqKtKIESP0/PPPOx/x5pqu+BF5zz33qLS0VCkpKWrVqpV++uknHTp0SGlpaZo3b57zB/n+/ft1ww036ODBg2rXrp06duyon376Sfv27VOXLl305ptvVskZJk+erI8++kgNGzbU+eefr7y8PK1evVqRkZF69dVX1a9fP3/s9ll54IEH9OGHH+qZZ56ptfjANVbxuXT0OI2MjFTfvn0VERGh9evXKy8vT+3atdObb77pHOOa60y6/fbbtWzZMjVu3Fg9evRw7k94eLj+8Y9/6NJLL3XGhvLxcpXLFhYW6qabblJ2drZatmyprl27asuWLdq+fbtatmypf//730pKSqr0Hnd/47j7+Q4Uro7b6W655RZlZGRo9uzZ1d5ICpVrr6bj9fe//12vvvqqIiIidOmll9ZYvO/Zs6dGjx7t/Le7x2DFihW64447VFZWpp49eyohIUHff/+9CgsLdcMNNzg7z7iLgq6f1PYB3Lp1q2bNmqWVK1fq6NGjiomJUY8ePfTb3/62xg/Ixx9/rDfeeENbtmxR/fr11alTJ91+++0B+YFCzay+NoqKivT6669r8eLFysnJUVRUlDp16qSxY8dq2LBhvtglWKC262Lt2rV68cUXtXr1ahmGobZt2+qqq67STTfdpKioqGrXyXdG8LP6uuD7Irh88cUXuuuuu0zHtmnTRpK0Y8cOTZs2TStXrtTJkyfVunVr/frXv9Ytt9yievXqVXlvcXGxXn31VS1cuFD79u1T48aN1adPH911110uewQDniorK9O8efP00Ucfafv27QoLC1PHjh113XXX6dprr63yg4trWsrKytLMmTO1atUqFRQUqEWLFrr88st12223VZk5++DBg5o+fbq+/vprHTt2TC1atNCll16q3/3ud2rYsGGVddvtds2fP1/vvvuudu7cqUaNGum8887TXXfdpU6dOvlqFy31u9/9TitWrNDMmTM1aNCgWuO5xio+l++8844+/PBDbd26VWVlZUpOTtaIESN06623Vrl2Qv06Kykp0cyZM/Xxxx9r//79atKkibp3764JEyZUO25zqB6v2nLZ48eP6+WXX9bnn3+uQ4cOqVmzZurfv7/uuOOOGieRcvc3jruf70BgVUFXCo1rr6bjNXLkSGVnZ9f6/pEjR+rZZ591/tuTY7B+/XrNmDFDq1evVllZmc4991zddNNNuuaaazyeu4aCLgAAAAAAAAAECcbQBQAAAAAAAIAgQUEXAAAAAAAAAIIEBV0AAAAAAAAACBIUdAEAAAAAAAAgSFDQBQAAAAAAAIAgQUEXAAAAAAAAAIIEBV0AAAAAAAAACBIUdAEAAAAAAAAgSFDQBRCwDMPwdxPqBI4jAAAAAAB1BwVdAAFp0aJFuueee/zdjKBWXFysF198Uf/617/83RRT9uzZo9TU1Er/27RpkySpsLBQjzzyiPr166fBgwfrtddec1mo3rhxo/72t79p5MiR6tWrl8477zyNGDFCf/3rX7Vz585KsatWraqy3V27dnlzVwEAAOAlZWVlzpzOjFtuuaVSHvjEE094uYXWuPfee3XhhRe61Xlj+vTplfZ1wIABXmwhAG+K8HcDAOBMP/zwg+6991717NnT300JarNmzdL06dN1++23+7spbomOjtbQoUMlSXFxcZKkP/3pTyopKdHixYt15MgR3XXXXWrQoIFuuummSu8tLi7W1KlT9fbbb0uS2rdvrz59+qi0tFRZWVmaP3++3nvvPT3zzDO67LLLJElNmjTRyJEjJUlfffWVioqKfLWrAAAACBAXXHCBmjRpoq5du/q7KbWy2+369ttvNXDgQNlsNtPvS01N1ciRI3Xy5EktWbLEiy0E4G0UdAEEHLvd7u8m1AnBOtRCo0aN9Oyzzzr/ffLkSX3++ef6+uuv1bhxYzVu3Fh33nmn5s2bV6mgaxiG7rrrLi1fvlydO3fWX//6V5133nnO5aWlpXrzzTf1zDPP6P7771dsbKz69++v9u3bO7c3ePBgCroAAAAhaMKECbrwwgv93QxT1q1bp/z8fF1yySVuvW/48OEaPny49uzZQ0EXCHIMuQAACAqn9z6orifC/PnztXz5crVv315z586tVMyVpMjISI0fP16///3vVVZWVqloDAAAAASL5cuXKzw8XBdddJG/mwLATyjoAggoU6ZM0dixYyVJq1evVmpqqm655ZZKMTt37tSUKVM0YMAAde3aVQMGDNDDDz+svXv3Vlnf4MGD1a9fPxUXF+uf//ynBg8erPT0dI0YMUJvvPGGJOnYsWP685//rIsuukg9e/bUjTfeqFWrVlVazwcffKDU1FS99tprWrlypW688UZ169ZNF198se67774q47I6HD9+XM8//7wuvfRSpaenq1+/fvr973+vH3/8sdp9T01NVUZGhu666y6dd955Ov/88zVnzhxnzGeffaYJEybooosuUteuXdWrVy9df/31euuttyr1bB48eLBefPFFSdLMmTOVmpqq6dOnV9rOe++9V6UNjvFkT+/56hjb9o477tCnn36qQYMGKT09XSNHjlRBQYEzbvHixbrlllvUq1cvdevWTVdddZXmzJmj0tLSao+NWdHR0Ro2bJgee+wxHT16VFu3btWMGTM0atSoSnGO43TPPfeoUaNGNa7v1ltvVefOndW5c2cdPXr0rNoGAAAQrJYvX65bb71V/fv3V9euXTVw4EA98MAD2rZtW6U4X+TBDu7mk59++qluvPFG9ezZU+eff74effRRHTt2zONjcjpHzpydna0FCxbo17/+tc477zxdfPHFeuyxx1RUVKTy8nLNmjVLw4cPV7du3XT55Zdr/vz5lZ6Uc+TSkyZN0oEDB/TAAw/oggsuUPfu3XX99dfr22+/lSRt2bJFv//979WrVy9deOGFmjhxovbs2VNt21asWKFu3bo5hyeTzJ9PAHUDQy4ACCg9evTQwYMH9d133ykxMVEXXXSR2rdv71y+cuVK3XHHHSoqKlJKSoq6d++uHTt26P3339eSJUv02muvVRn3qry8XOPHj9f69et1/vnnKzk5WatWrdITTzyhgoICffLJJzp69Ki6d++uAwcOaM2aNRo/frzeffdddenSpdK6vv/+ez333HNq3LixLrnkEm3btk0ff/yxVqxYodmzZ1eKP3DggMaOHatdu3apefPm6t+/v44fP64VK1ZoxYoV+tvf/qbrrruuyjF45JFHdPToUfXv319bt251Tujw+OOP680331R0dLR69uyphg0bateuXVq3bp3WrVun3bt368EHH5QkDR06VCtXrlR2drZSUlLcmhiiJllZWVq+fLm6dOmiDh06qKysTLGxsZKkRx99VO+8847q16+v8847T7GxscrMzNTUqVO1YsUKzZw5U/Xq1fN4208++aSmTp2qX/3qV2rQoIHGjBmjG2+80bn8p59+0u7duxUTE6NBgwa5XFejRo20YMECj9sCAAAQ7D788ENNmTJFERER6t27txo1aqQtW7boww8/1BdffKF33nlHKSkpld7j7TzY3Xzyn//8p1566SVFRkbq/PPPV3h4uD766CNlZmZaeqyee+45LVu2TD169NCFF16ojIwMzZs3TwcPHlRUVJS++OIL9erVSy1bttT333+vv/71ryorK3N2UnHYt2+frrnmGpWXl6tXr17KycnRunXrNGHCBP31r3/Vk08+qSZNmuiCCy7Qhg0btGTJEm3YsEGfffaZoqOjnes5dOiQfv75Z/3f//2f8zVPzieAIGcAQID5/vvvjZSUFOPGG2+s9PrRo0eNvn37Gp06dTIWL15cadm///1vIyUlxRgyZIhRXFzsfH3QoEFGSkqKcdFFFxk7duxwvj579mwjJSXFSElJMa655hojLy/Puezuu+82UlJSjL/+9a/O1/7zn/844++8807j1KlThmEYht1uN/7xj38YKSkpxpVXXmmUl5c73zNmzBgjJSXFeOqpp4ySkhLn62vXrjV69+5tdOnSxdiyZYvz9QceeMBISUkxunfvbuzevdu5frvdbvz0009GSkqKMXjwYOPQoUOV9v3jjz82UlJSjG7dulXazrRp04yUlBTjueeeqxTv2M67775r6tjn5OQ49/30Y+LYV8exGTlypJGTk+NcXlBQYIwfP77aNlTHsZ3+/fvXGnumDz/80EhJSTHGjBnj9ntP57hedu7ceVbrAQAACGRDhgwxOnfuXCkXtdvtxuOPP26kpKQYDzzwgPN1X+TB7uaT69atM1JTU42+ffsaWVlZztd3795tDBw40NleMxxt/e9//1vpdUfOnJqaaixZssT5+oYNG4zU1FQjJSXF6NWrl5Gdne1cNn/+fCMlJcW4/PLLna+dnkuPGTPGKCwsdB6/O+64w7nskUceMcrKygzDMIzCwkJj2LBhRkpKivHpp59Watf7779vpKSkGD///LPzNXfO5+lt8iTvBhAYGHIBQNB47733lJ+fr9GjR+tXv/pVpWU33HCDBg0apJycHH355ZdV3jt+/Hi1bdvW+e+RI0c6//vuu+9WfHy889/Dhg2TJO3atavKeuLj4zV16lRFRUVJqhjL9f/+7/+UkpKizZs3a/Xq1ZIqJirIyMhQWlqa7r//fkVGRjrX0a1bN91xxx0qLS11DvtwukGDBik5Odm5fpvNpuPHj2vEiBG655571KRJk0rxV1xxhRo1aqSTJ0/qyJEj1R47q4wZM8b532FhFX9CZs2aJUmaOnWqWrVq5VzesGFDTZ06VZGRkXrrrbdUUlLitXYdOnRIkqocGwAAAFR16NAhRUREKCkpyfmazWbT7bffrkceeUTXXHNNlfd4Mw92N5985513ZBiGJk6cWKnnaXJysvOJNasMHDhQQ4YMcf67S5cuateunSTp5ptvVseOHZ3LRowYIan63xGS9MADDygmJkZSxfG7/PLLJUlRUVGaPHmywsPDJUkxMTHO8XF3795daR3Lly9XUlKSOnXq5HzNk/MJILhR0AUQNBzj2vbr16/a5f37968Ud7pu3bpV+ndiYqLzv9PS0iotc4y/Wl0BcuDAgWrYsGGl18LCwjR48GBJFY+ind6GPn36OAuf1bU1IyOjyrIz2yNJF154oaZNm+ZM+hzt27Jli95//33n+LneLJrWr19f5557bqXXDh06pO3btys2NrbK8BSSlJSUpLS0NBUUFOjnn3/2WtsiIipGECovL/faNgAAAOqK3r1769SpU7r66qv14osvav369bLb7WrcuLHGjBmjPn36VHmPt/JgT/LJH374QZI0YMCAatvpyA2tcObvCOmX3xJnDmnmGI6supy8Xr166ty5c7XradWqVZVj6/hNUlxc7HytrKxM3333nfMYOnhyPgEEN8bQBRA09u/fL0m68847XcYdOHCgymun98CVKu5YO5w+mcCZy87Upk2bal8/55xzJEm5ubmSKsbIkqQ333xTb775plttPbM9DsXFxfrwww+1ZMkSbd26VQcOHHAWch1tNk6bgMFqsbGxVY6N45wUFBTUOkbv/v371b17d6+0zdEbgUnOAAAAavfEE0/ojjvu0MaNGzV9+nRNnz5d8fHxGjBggK655hqdf/75Vd7jrTzYk3zSsa1mzZpVialXr56SkpKc7Thb1eXmjpzY1W+MM8XGxlYpcDvia8r/z7R69WoVFBTokksuqfS6J+cTQHCjoAsgaDh6Xw4aNKjKHezTdejQocprVt2ldzwGdSZHIdWx3FFoTU9PrzTUw5mqS/qq68mQm5urMWPGaNeuXWrYsKHOO+88DRkyRKmpqerbt6/GjRtnSdLqaHd1qmuX45zEx8dX6SlwpqZNm55d41xw9ObYuHGjSktLKz3aV5233npLUVFRGjBgQKVH0wAAAEJB8+bN9Z///Ec//PCDli5dqu+++07Z2dlauHChFi5cqPHjx+uBBx6o9B5v5cGe5JOuCqeu2uqJ2vJKs6z4PbJ8+XJFRkY6h2Nw8OR8AghuFHQBBI2kpCTt3LlTY8eO1YUXXuiXNhw8eLDa1x3FVEcPBUeyedFFF+nuu+8+6+0+//zz2rVrl0aOHKknnnjCOXaZw/Hjx02v68zk2dP1SL/sZ1RUlJ599lm33mulNm3aKCUlRdnZ2frmm2+cj/5Vp6ioSM8++6yKioo0ffp0DR8+3IctBQAACAw2m019+/ZV3759JUlHjhzRf/7zHz3//POaPXu2brnlFrVo0cIZ76082JN80vG7YN++fWrfvn2lZXa7XYcPHza1nmCzYsUK9ejRo9rOLe6eTwDBjTF0AQScmu64O8Z+Wr58ebXLn3nmGf3617/Wu+++67W2ffPNN1UKoXa7XV999ZWkX8YEc7T1m2++qbbX65dffqlf/epX+stf/mJqu2vWrJEk3XbbbVWKuevWrVNhYaGzLQ41HUfHRAzVTaC2du1aU+1xaNWqlVq0aKGDBw9q8+bNVZafPHlSV155pW6++Wbt2bPHrXW7a/z48ZKkv//97yoqKqox7p///KeKiorUokULDRw40KttAgAACDRbt27VyJEjddttt1V6vXHjxpowYYJSU1NlGEaVAq638mBP8klH544vvviiSvyqVat08uTJWo9DsNm/f7+ys7OrjBvs6fkEENwo6AIIOI6CpaNI6XDDDTeoQYMGmjdvnj755JNKy5YuXao33nhDmzdvVnp6utfatnv3bj377LPO5NRut+vZZ5/Vtm3b1K9fP+dss47/3rhxo5555plKEyPs2rVLjz/+uLZv315lkrGaOCZMcCTMDtnZ2br//vud/z590oR69epJqnocHWOTffjhh5V65P7444/697//bao9p/vNb34jSZo8eXKlWXhLSkr0l7/8RVlZWSoqKqo0Y7E3/PrXv1a/fv20fft23Xzzzdq0aVOl5SUlJZo+fbrmzJkjm82mP//5z85jBAAAECratm2r3Nxcffvtt/rss88qLduwYYO2bdumBg0aVBnGzJt5sLv55M0336zIyEi98sor+vHHH53xubm5+tvf/mbFYQo4jk4tZ46f6+n5BBDcGHIBQMBp1aqVwsPDlZ2drd/85jdKTU3VQw89pGbNmunpp5/WPffco3vuuUczZsxQu3bttH//fm3YsEGS9NBDDzmTSW9ISkrS7NmztWzZMqWmpiorK0s7duxQy5Yt9cQTTzjjbDabnn/+ef3mN7/R7Nmz9cknn6hLly46deqUfvzxR5WWlmrEiBEaM2aMqe2OGzdOmZmZmjZtmr766iu1atVKBw8e1Lp161S/fn21atVKe/bsqfR4mWPMsvfee08HDhzQwIEDdd111+myyy7Tyy+/rN27d2v48OHq3bu3Dh8+rLVr1+rXv/61FixY4NYxGTt2rNatW6fFixfriiuuUHp6uuLj47V+/Xrl5uaqcePGeu6559xapydsNptmzpypSZMm6ZtvvtGvf/1rpaSkqE2bNiotLdXatWuVn5+v+vXr6y9/+Qu9cwEAQEiKiIjQY489pkmTJumPf/yjunTpolatWikvL0+ZmZkqLy/XQw89pNjY2Erv82Ye7G4+2aFDBz300EP629/+prFjx6pPnz6KiYnR999/ryZNmigxMbHOTZa7fPlytWjRQikpKZVe9/R8Aghu9NAFEHAaN26sJ554Qq1atVJmZqaWLVvmXDZ8+HD95z//0ZVXXqmCggJ9/fXXOnz4sAYNGqQ33njDeXffW/r166cZM2aoQYMGWrZsmUpKSvSb3/xG7733npKTkyvFnnvuufrwww916623qkGDBvrvf/+rzZs3q2vXrpo6daqee+450xM2DB8+XK+99pr69OmjvXv3aunSpTp06JBGjRqlDz74wJkQn36shg4dqnHjxqlBgwZasWKFMjMzJVUMufD222/r6quvVnh4uJYvX64TJ07o0UcfNT0ExOnCwsL03HPP6emnn1Z6ero2b96sb7/9VrGxsfrtb3+rDz/80HRP5LPVoEEDvfLKK3ruuec0ePBgHTt2TF9//bVWrlypxo0ba+zYsVq0aJFGjRrlk/YAAAAEIkduOWDAAO3bt09fffWVtm7dqgEDBmjOnDm66aabqrzHm3mwJ/nk6NGj9frrr6tv377auHGjfvjhB11yySV68803FR0d7Z0D5yclJSX6/vvva5w0zpPzCSC42QzHlJQAgBp98MEHevDBBzVy5Ei/Tv5Vl+3Zs0dDhgxRs2bNtGLFCr+0YfDgwdq7d6+++OILtWnTxi9tAAAACCR1PQ++5ZZblJGRodmzZ/tt4mVfC4S8G8DZoYcuAAAAAAAAAAQJxtAFAASU48eP67777pMk3XPPPWrRooVXt7dt2za9/PLLkqS8vDyvbgsAAACB6ZVXXtEHH3yg/v3766qrrvJ3c7ziiy++0BdffKGTJ0/6uykAzhIFXQBAQDl58qQ+/vhjSdKtt97q9YLu4cOHndsDAABAaFq5cqUkKSEhoc4WdLOyssh7gTqCMXQBAAAAAAAAIEgwhi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAADgY4Zh+LsJAIJUhL8bAACh5IMPPtCDDz6ovn376s033/R3cwAAAICzsmfPHg0ZMsRU7KhRo/TUU095uUXmDBgwQAcPHtRXX32lVq1a+XTbxcXFmjVrliIiInT77bf7dNsA6gYKugAAAAAA4KyNHDnS5fIePXr4qCWBbdasWZo+fTrFXAAeo6ALAAAAAADO2rPPPuvvJgQFhloAcLYYQxcAAAAAAAAAggQFXQAIcJ999pkmTJigiy66SF27dlWvXr10/fXX66233pLdbnfG3X777UpNTdU777xT7XpeeeUVpaam6sUXX6z0+uLFi3XLLbeoV69e6tatm6666irNmTNHpaWlleJWrVql1NRUPfHEE3rzzTd14YUXqlu3bho9enSldgAAAABmOMaSvfLKK9WtWzf16tVLY8eO1dKlS2t8z3fffaff/e536tevn9LT0/WrX/1K06dPV1FRUbXxK1eu1G9/+1v16dNHvXv31t133619+/a51c4pU6YoNTVVGRkZuuuuu3Teeefp/PPP15w5c5wxZnP2wYMHO/PxmTNnKjU1VdOnTz+rfQQQehhyAQAC2OOPP64333xT0dHR6tmzpxo2bKhdu3Zp3bp1WrdunXbv3q0HH3xQknTttddq2bJl+vDDD3XDDTdUWdeCBQtks9k0atQo52uPPvqo3nnnHdWvX1/nnXeeYmNjlZmZqalTp2rFihWaOXOm6tWrV2k9K1as0K5du9S3b1/ZbDa1aNFCYWHcHwQAAIB5hYWF+u1vf6v169crMTFR559/vkpKSvTDDz9o1apVuvPOO3XXXXdVes8rr7yif/zjH4qMjFTXrl3VtGlTrV27Vi+++KK++uorzZ07V3Fxcc749957T4888ohsNpt69+6tRo0a6ZtvvlFmZqZHxdFHHnlER48eVf/+/bV161alpqZKci9nHzp0qFauXKns7GylpKQoNTXVuR5P9hFAaKKgCwABasOGDXrzzTfVqlUrvfPOO2rSpIlz2aJFi3TvvffqnXfe0X333afIyEgNHDhQjRs31urVq5WTk6Pk5GRn/Pr167V9+3ZdcMEFatmypSTpgw8+0DvvvKPU1FS99NJLztl9CwsL9cc//lHffvutZsyYobvvvrtSu3bu3Kn7779ft912myTROxcAAABue/zxx7V+/XpdccUVeuyxx9SgQQNJFbnm+PHj9eKLL6pXr1668MILJUnff/+9nnvuOTVv3lz/+te/lJaWJkkqKSnRn//8Z33wwQd67LHHnOP47t+/X48//rgiIyP16quvql+/fpKko0eP6tZbb9XBgwfdbnNubq4WLlyo5ORk5zi47ubsDz30kKZPn67s7GwNHjy4Uq7t7j4CCF10qQKAAHX8+HGNGDFC99xzT6XEUJKuuOIKNWrUSCdPntSRI0ckSREREbrqqqskSR9++GGl+AULFkiSrr76audrs2bNkiRNnTrVWcyVpIYNG2rq1KmKjIzUW2+9pZKSkkrrCg8P1+jRo53/pncuAAAAJDl7m1b3v9OHJzh48KAWLlyopk2bVirmSlLbtm01ZcoUSdJrr73mfP3VV1+VYRh6+OGHnYVOSapXr57+/Oc/q0mTJlq8eLGzULtgwQKdOnVKo0ePdhZzJSkxMVGPP/64R/s3aNAgZ6cJm80mm83mds7uirv7CCB00UMXAALUhRde6OyR4FBSUuJ8fMvRM/b0guu1116r119/XR999JHzEbWSkhItXrxYDRs21PDhwyVJhw4d0vbt2xUbG6suXbpU2XZSUpLS0tL0008/6eeff1b37t2dy1q3bl0p6QYAAAAkaeTIkTUua9++vfO/f/zxR5WXlys9Pb3avPKiiy5SWFiYMjMzVV5e7nyPpErFWYf69eurd+/e+uyzz/Tjjz/q8ssv1w8//CBJGjBgQJX4Ll266JxzztH+/fvd2r/Ti6wOnuTs1SkvL3d7HwGELgq6ABDAiouL9eGHH2rJkiXaunWrDhw44EwKbTabJDkf95IqEuUePXpozZo1+vHHH9W7d28tW7ZM+fn5uuGGG1S/fn1JciavBQUFlcbsqs7+/fsrFXTj4+Mt3EMAAADUFWaHAnBMSrZ06VKXuejJkyd17NgxGYahkydPSpL69u3rct2OPDc3N1eS1KxZs2rjWrVq5XZBt6axa93N2auTn5/v9j4CCF0UdAEgQOXm5mrMmDHatWuXGjZsqPPOO09DhgxRamqq+vbtq3HjxlU7Q+8111yjNWvWaOHCherdu7c++ugjSZWHW3D0dIiPj1f//v1dtqNp06aV/u1ISgEAAABPOIqdHTp0UKdOnWqNd+Su9erV04gRI1zGtmnTRlLtOWt4eLiZplZS3VBjnubsZ/JkHwGELgq6ABCgnn/+ee3atUsjR47UE088oaioqErLjx8/Xu37LrvsMj355JNasmSJJk+erG+//Vbt2rWr1MvWUaSNiopiUgUAAAD4lCMX7dSpk6lctKSkRJGRkSorK9OTTz6pevXq1fqeZs2aacuWLdq7d686dOhQZbmjB+/Z8jRnP1N8fLzb+wggdDGTDQAEqDVr1kiSbrvttiqJ4bp161RYWCjplx4ODjExMbr00kt15MgRvfDCCyouLq7UO1eqeMSsRYsWOnjwoDZv3lxl2ydPntSVV16pm2++WXv27LFytwAAABDi+vTpI0n64YcfnMMMnO6nn37S8OHDddddd8kwDNWrV0/du3eX3W7XN998UyXeMAzdcsstuvHGG7V+/XpJ0gUXXCBJ+vLLL6vE79q1Szt27LBkXzzJ2avrPezJPgIIXRR0ASBAJSYmSpK++uqrSq9nZ2fr/vvvd/67uLi4ynuvueYaSdJbb72l8PBwXXXVVVVifvOb30iSJk+erN27dztfLykp0V/+8hdlZWWpqKhIrVq1OvudAQAAAP4nOTlZQ4YM0YEDB/Twww87i56SdOTIET388MPatWuXzjnnHGfxc9y4cZKkxx57TD///LMz3m6364UXXlBGRob27NnjnLhs1KhRiouL03/+8x99/vnnzvjCwkI9+OCDtY5pa5YnObuj9+3p+y25v48AQhdDLgCAH6xZs0YXXXRRjcuvv/56jRs3TpmZmZo2bZq++uortWrVSgcPHtS6detUv359tWrVSnv27NHhw4ervL93794699xztWPHDg0cOFBJSUlVYsaOHat169Zp8eLFuuKKK5Senq74+HitX79eubm5aty4sZ577jlL9xsAAACQKoqWu3bt0ieffKL//ve/Sk9Pl81m048//qiioiL17NlTd999tzN+6NChGj9+vF5//XVdd9116tKli5KSkrR582bl5OQoOjpa06ZNcxZLGzdurKlTp+r//u//NGnSJPXo0UNJSUnKyMiQYRhq27atdu7cedb74UnO3rZtW0nSe++9pwMHDmjgwIG67rrr3N5HAKGLHroA4AelpaU6fPhwjf8rLCzU8OHD9dprr6lPnz7au3evli5dqkOHDmnUqFH64IMPNGbMGEnSsmXLqt1Gz549JanKcAsOYWFheu655/T0008rPT1dmzdv1rfffqvY2Fj99re/1Ycffqhzzz3XOwcAAAAAIa1x48Z699139cc//lFJSUn64YcftHbtWp177rl66KGHNHv2bEVHR1d6zwMPPKCXX35Z559/vnbu3Knly5crLCxM1157rT766CNn/uswZMgQzZ8/X0OGDNGOHTv0zTffKD09XfPnz6+2w4MnPMnZhw4dqnHjxqlBgwZasWKFMjMzPd5HAKHJZlj1nAEAIGCUlJRowIABCg8P19dff63IyEh/NwkAAAAAAFiAHroAUEfY7XaVlJSorKxMzz77rPLy8nTjjTdSzAUAAAAAoA6hhy4A1BElJSXq0aOHbDabSktL1axZM33yySeKjY31d9MAAAAAAIBF6KELAHVEvXr1lJaWJpvNph49eujVV1+lmAsAAAAAQB1DD10AAAAAAAAACBL00AUAAAAAAACAIEFBFwAAAAAAAACCRIS/GxDsDMOQ3e6bUSvCwmw+2xbODucqeHCuggvnK3hwroKHr85VWJhNNpvN69tB4PFlvhwK+H6Fu7hm4C6uGbiLa8Y6ZnNmCrpnyW43dPToCa9vJyIiTAkJMTp+vEhlZXavbw+e41wFD85VcOF8BQ/OVfDw5blKTIxReDgF3VDkq3w5FPD9CndxzcBdXDNwF9eMtczmzAy5AAAAAAAAAABBgoIuAAAAAAAAAAQJCroAAAAAAAAAECQo6AIAAAAAAABAkGBSNAAAgBBktxvatPOoSnfkKdJmqH2LOIWFMWkZAAAA4GC3G8rOyVf+iWLFx0QpJTk+IHJmCroAAAAhJjMrV/OXbFFeQbHztYTYKI0e2lG9UpP82DIAAAAgMARyzsyQCwAAACEkMytXMxZsqJSYSlJeQbFmLNigzKxcP7UMAAAACAyBnjNT0AUAAAgRdruh+Uu2uIx5e8kW2e2Gj1oEAAAABJZgyJkp6AIAAISI7Jz8Kr0MznS0oFjZOfm+aRAAAAAQYIIhZ6agCwAAECLyT7hOTN2NAwAAAOqaYMiZKegCAACEiPiYKEvjAAAAgLomGHJmCroAAAAhIiU5XgmxrhPPxNgopSTH+6ZBAAAAQIAJhpyZgi4AAECICAuzafTQji5jbhraUWFhNh+1CAAAAAgswZAzU9AFAAAIIb1SkzRxVNcqvQ4SY6M0cVRX9UpN8lPLAAAAgMAQ6DlzhF+3DgAAAJ/rlZqkHh2batu+Yyo1bIq0GWrfIo6euQAAAMD/OHLm7Jx85Z8oVnxMxTALgZAzU9AFAAAIQWFhNnVqm6iEhBjl5Z1QWZnd300CAAAAAkpYmE1pbRL83YwqGHIBAAAAAAAAAIIEBV0AAAAAAAAACBIUdAEAAAAAAAAgSFDQBQAAAAAAAIAgQUEXAAAAAAAAAIJEhL8bAAAAAN8rK7NryY85OnayTHHRERrYvaUiIrjXDwAAgMBltxvKzslX/olixcdEKSU5XmFhtjqzPbMo6AIAAISYd5du0ec/5Mgwfnnt7a+2aESfZF0/uKP/GgYAAADUIDMrV/OXbFFeQbHztYTYKI0e2lG9UpOCfnvuoBsGAABACHl36RZ9llG5mCtJhiF9lpGjd5du8U/DAAAAgBpkZuVqxoINlYqrkpRXUKwZCzYoMys3qLfnLgq6AAAAIaKszK7Pf8hxGfP5DzkqK7P7qEUAAACAa3a7oflLXHc6eHvJFtnthsuYQN2eJyjoAgAAhIilq/dU6Zl7JsOoiAMAAAACQXZOfpWesmc6WlCs7Jz8oNyeJyjoAgAAhIjc/JOWxgEAAADeln/CdXHV3bhA254nmBQNAAAgRCTFR1saBwAAgMBhtxvKzslX/olixcdEKSU5XmFhNq9ub9POoyrdkadIm6H2LeK8sr34mChL4wJte56goAsAABAiBvdspXeWbXU57ILNVhEHAACA4JGZlav5S7ZUGiogITZKo4d2VK/UpKDeXkpyvBJio1wOg5AYW1HADsbteYIhFwAAAEJERESY2jRr6DKmTbOGioggRQQAAAgWmVm5mrFgQ5UCZF5BsWYs2KDMrNyg3l5YmE2jh3Z0GXPT0I6W9Q729fY8QbYOAAAQIsrK7Np1sNBlzK6DhSors/uoRQAAADgbdruh+Uu2uIx5e8kW2e21zIwboNtz6JWapImjuiohtvIwB4mxUZo4qqvlvYJ9vT13MeQCAABAiFi6eo/L4RYkyTAq4ob3be2bRgEAAMBj2Tn5LocGkKSjBcXKzslXWpuEoNve6XqlJqlHx6Y+GyfY19tzBwVdAACAEJGbf9LSOAAAAPhX/gnXxVV34wJte2cKC7NZXigOpO2ZxZALAAAAISIpPtrSOAAAAPhXfExU7UFuxAXa9lC9gC/oZmRkaPz48brgggvUo0cP3XjjjVq8ePFZrfPjjz9Wamqq7rvvPotaCQAAEPgG92wlWy1PiNlsFXEIHuTLAACErpTk+CrjvJ4pMbZiqIBg3B6qF9AF3YULF2rs2LHKyMhQ586d1adPH23cuFF33323pk2b5tE69+/fr7/97W8WtxQAACDwRUSEaUSfZJcxI/okKyIioFNEnIZ8GQCA0BYWZtPooR1dxtw0tKNl4776enuoXsCOoXv48GE98sgjio6O1rx589SlSxdJ0rZt2zR27Fi99NJLGjJkiPN1MwzD0AMPPKDjx497q9kAAAAB7frBFQn45z/kVJogzWarKOY6liPwkS8DABDY7HbDJxNq9UpN0sRRXTV/yZZKE5YlxkbppqEd1Ss1Kai3h6oCtqD71ltv6dSpU5owYUKlJLR9+/a655579NBDD2nu3Ll65plnTK9z9uzZWrVqlfr06aMffvjBG80GAAAIeO1bxqnRxgM6dqLU+VqjBpFq3zLOj62Cu8iXAQAIXJlZuVUKngmxURrtpYJnr9Qk9ejY1CcFZMf2urVvoq/X7tWxk2WKi47QwO4tedLLRwL2KC9fvlySNHTo0CrLhg4dKpvNpq+//tr0+rKysvT8889r0KBBuvrqq61qJgAAQFDJzMrVjAUbKhVzJenYiVLNWLBBmVm5fmoZ3EW+DABAYHLkW6cXcyUpr6DYq/lWWJhNaW0SdH7n5kprk+DVYQ8ys3L1wL9Wav6SLfrkvzs0f8kWPfCvlV7PJe12Q5t35en7nw9o86482e1G7W+qgwKyoGsYhrZu3SpJ6tix6mN/cXFxatKkiY4dO6aDBw/Wur6SkhLdd999iomJ0eOPP255ewEAAIKB3W5ozqebXcbM/SwrZBPjYEK+DABAYLLbDc1fssVlzNtLtgR1vuWvgnVmVq7uf/k7PfP2Gr2y8Gc98/Ya3f/ydyHZISEgh1w4duyYiouLFRMTowYNGlQbk5SUpEOHDunw4cNq1qyZy/U999xzys7O1rRp09SkSRPL2+uL7uTh4WGV/h+Bi3MVPDhXwYXzFTw4V4Fr446jOnGqzGVM4clSbdl7TF3OTfRRq+AJ8uXQxPcr3MU1A3dxzZy9TTuPVil0nuloQbG27TumTm2DL9+y2w29XVvB+qst6tOpmaU9hH/YXFFEPpOjiHzXteepT1rojN0bkAXdkydPSpKio6NrjImKipIkFRUVuVzXypUrNWfOHF155ZUaMWKEdY38n7AwmxISYixfb00aNar5mCCwcK6CB+cquHC+ggfnKvBsX7nLXNyBAl3cM9nLrcHZIF8ObXy/wl1cM3AX14znSnfkmYszrP/7WG439PP2Izp6/JQSG9VX53aNFW7xsAs/bT2so7UVrI8Xa1/eKaV3sOYmcbnd0Pwvs13GvL1ki4b0a2v5/gaqgCzohoVV3Amy2Wo/CXa7vcZlx48f14MPPqhmzZrpkUcesax9lbdv6Phx10myFcLDw9SoUbSOHz+p8vKa9xn+x7kKHpyr4ML5Ch6cq8C19+Bx03F5eScs3XajRtH09rEQ+XJo4vsV7uKagbu4Zs5epM3cUAqRNsPSfOuHzbl66/OsSsXWxNgo3Twi1dKeqzn7j5mOa9XYmhsDm3Ye1ZFjp1zGHM4/qVXr9gRlr+fTmc2ZA7KgGxNTcYfi1KmaT1ZxccUFWtMjZpL017/+VQcOHNDrr7+uRo0aWdvI05SV+e5Lrrzc7tPtwXOcq+DBuQounK/gwbkKPAkNo0zHce4CG/lyaOP7Fe7imoG7uGY8175FnBJio1wOu5AYG6X2LeIsO8aOMW3PdLSgWNPfX6+Jo7qqV6o1Rd3Y6EjTcVbt35Hjrou5p8eFynUbsAXdmJgYFRQU6NSpU6pfv36VmNzcigGPk5KqvyB/+uknLVq0SPHx8frggw/0wQcfOJft2bNHkrRmzRrdd999at++vf7whz94YU8AAAACR1rrBH3y/W5TcQhs5MsAAASmsDCbRg/tWG2B1eGmoR0tG1/W7CRsPTo2tWSbKcnxpgrWKcnxZ70th/gYc50SzMbVBQFZ0LXZbOrYsaPWrl2rbdu2qUuXLpWW5+fn6/Dhw4qLi6txggfHWGH5+fn6+OOPq43Zs2eP9uzZo759+5KgAgCAOs/M4/nuxMF/yJcBAAhcvVKTNHFUV81fsqVS4TMxNko3De1oWW9ZScrOyTc1CVt2Tr7S2pz9TXtfF6wl/xSRA11AFnQlqX///lq7dq2WLFlSJUFdsmSJDMPQgAEDanx/v379lJWVVe2yDz74QA8++KBGjhypZ5991tJ2AwAABKrjJ0ssjYN/kS8DAOAeu91Qdk6+8k8UKz6mogBoZeHxdL1Sk9SjY1Ovby//hOtirrtxZviyYC35p4gc6AK2oHvttdfq1Vdf1Zw5c9S/f3/17NlTkrR9+3a98MILkqTbbrvNGZ+bm6uCggLFxsbW+FhZsLLbDW3aeVSlO/IUaTPUvkVcSF2kAADAGjyuVreQLwMAYF5mVm6VAmRCbJRGe6EA6RAWZrOkV6wr/srvHAXrbfuOqdSweb1eVVMR2dvnMFAFbEG3efPmevjhh/XII49ozJgx6tevn+rVq6eVK1equLhY9957r9LS0pzxzz33nBYsWKBRo0bpqaee8mPLrZWZlau3vsxWfuEvPWXiG9bTzcNSQu5iBQAAZyclOV4x9SN04lRZjTEN60eE1ONqwYx8GQAAc2qaNCyvoFgzFmywdNIwX/PncARhYTZ1apuohIQY5eWd8MmEZHa73eW/Q0WYvxvgynXXXadZs2apV69eWrt2rTIzM9W5c2dNnz5dEyZM8HfzvM7xhXN6MVeS8gtLNGPBBmVm5fqpZQAAoM5i/NygEur5MgAAtTE7aZjdbvioRdZyDEfgSl0YjsBRIzt2orTS68dOlIZkjcxmGEZwXrEBorzcrqNHT1i+Xrvd0B+nfVNrD5oXJvUP+g9lXRMREebTu1PwHOcquHC+ggfnKnBt3pWnZ95eU2vc5Jt6WP54YGJijMLDA7ovAbzEW/lyKOL7Fe7imoG76uI148/8x5eqG1LCW2Pans4X10wo1cjM5swBO+RCqNu8K8/lhSpJhafKtHlXnjqfm+ijVgEAgGDmj0kzAAAA/ClU8h9fTcLmD9TIqqKgG6A25+SZjguVixUAAJwdJkUDAAChJpTyH19MwuYP1Miq4rm3QGV2IAwGzAAAACY5Js1wxVuTZgAAAPgD+U8dQI2sCgq6AcrsHZW6eOcFAAB4R6hMmgEAAAKf3W5o8648ff/zAW3elee1Scn8mf/4ah/9xW43tGnnUS1fvUebdh712v75s0YWqOeQIRcCVFrrBMXUj3A94HN0pNJaU9AFAADm9UpN0qV9k/X5Dzk6fWpcm00a0SfZq5NmAAAASNVP4JUQG6XRXprAq1dqkiaO6urTScN8vY++5sv981eNLJDPIQXdABUWZlODWi7W6KhwetAAAAC3ZGbl6rOMnCqvG4b0WUaO2reM83uCCgAA6q7MrFzNWLChyut5BcWasWCDJo7q6rWirq8mDfPXPtrtRp3cv7Awm/qfd061OazDxenNLd1Xf51DsyjoBqhTp8p0KP+Uy5hD+ad06lSZ6tfnNAIAgNrZ7YbmL9niMubtJVvUo2NTbhoDAADLhUIu4q999FVvUn/sn91uaNWmXJcxGZtyde3ADpZsMxiuU8bQDVCvLNpoaRwAAEB2Tn6lJL86RwuKlZ2T75sGAQCAkOLPXCQzK1f3v/ydnnl7jV5Z+LOeeXuN7n/5O2VmuS4Uussf++joTXrmdh29Sa3cR3/sn6+3GQw5MwXdAJWbd9LSOAAAgPwTrhNTd+MAAADc4a9cxJcFz6OFrp+2djeuNmZ7k1o1mZc/zqGvtxkMOTMFXQAAgBDRqEE9S+MAAADcER8TZWmcGb4ueBaeKLU0rja+7k3qj3Po6236Yx/dRUE3QLVv1cjSOAAAAHu5uR8qZuMAAEDdYbcb2rTzqJav3qNNO49aVuA8XYeWcbLVMuSozVYRZxVfFzxjTd4YNxtXG1/3Jk1JjldCrOtCZmJsxYRsVvH1Nv2xj+5iNq0A1bJxQ0vjAAAAsvfmm47r2r6xdxsDAAAChq8m1Nq695iMWurEhlERl9YmwZJt+rrgWVsh0N242vi6N2lYmE2jh3bUjAUbaoy5aWhHSycL8/U2w8Js6tcpSZ9l5NQY07dTkl8n7jNV0B04cKBlG7TZbFq2bJll66urBnZvqX8v3WoqDgAAwBSzHW3ooOsRcmYAQDByjC97Jsf4shNHdbWsqOuPsUl9XfB09O501SvYG71JfbU9SeqVmqRL+ybr8x9yKhXobTZpRJ9kS28CnL7NiaO6VrnxkBgbpZssvvFgtxtatcn1uMoZm3J17cAOfivqmiroHjhwwLIN2mrrWw9J0tZ9x0zHdW6b6OXWAACAuiCtTYIWrdxlKg7uI2cGAAQbs+PL9ujY1JLClT/GJvV1wdPXvTv90WM2Myu32v0zDOmzjBy1bxnntaJuj45NlZ2Tr/wTxYqPqThvVhdV3Rmmw195s+khF4YNG6YpU6ac1camTp2qr7766qzWESo27jhiOo6CLgAAMCOtdYKi6oWruKS8xpj69cKV1pqCrqfImQEAwcTXhSt/9Cb1dcHTH707fd171Zc3Ac4UFmbzehH1aOEpS+O8wXRBNzo6Wi1bnt3j/dHR0Wf1/lCycWee6bjrvNwWAABQh9Q2cB3OCjkzACCY+Lpw5a+xSX05RIC/enfSe9U6hSdKLY3zBlMF3TvvvFOpqalnvbHhw4erTZs2Z72eUGD2KTuexgMAAGZt3p2n4lK7y5hTJeXavDuPJ4A8QM4MAAg2vi5c+WtsUl8OEeCPcYJ9yd/7Z7cbXi9axzaoZ2mcN5gu6Fph2LBhGjZsmCXrquvaNmukXQcKTcUBAACYsXmXuSeANu+ioOsJcmYAgJXqYuHKH707Q2GcYKmiaH3mkAsJsVEabfGQC/7aP8l3+5gQa67tZuO8wfSQC2fatGmT/vOf/2jXrl0qLq75w2iz2TR37lxPNxOyenRsouXr9pmKAwAAMMXsbxSeALIMOTMAwBN1tXDlj96doTBOcGZWbrVjBOcVFGvGgg2aOKqrZdeNP/ZPCo19dIdHBd2MjAyNHz9e5eXlMmoZh40Zej1z/FSJpXEAAABpyQlapF2m4nD2yJkBAJ6oy4Urf/Tu9HUR2R+TsPmyB7Kv908KjX10l0cF3eeff15lZWW6/PLLNWzYMDVq1Igk1GLb9xw3HXdx1xZebg0AAKgL0tokKKZ+hE6cKqsxpmH9iKCdwCLQkDMDQN1SVmbX0tV7lJt/Uknx0Rrcs5UiIsIs3UZdL1z5o+ejP4rIvVKTNHFU1yq9rBNjo3STxb2s/TGMhS/3T/LvPr71ZbbyC3/pTJnQsJ5GD0uxfB/d5VFBNzs7W507d9Y//vEPq9uD/zn9YrEiDgAAICzMpv7nneNyZumLzzvHr70N6hJyZgCoO95dukWf/5Cj0x+4eGfZVo3ok6zrB3e0bDv+KFz5UliYTf06JbnMRfp2SrI0F0lJjq/9hnZ0pOWPz/dKTVKPjk29Pg6yvyYpc+zftn3HVGrYFGkz1L5FnFfySH9OxFblZnyA3Jz36FZSdHS0mjVrZnVbcJqoSHOnxmwcAACA3W7o8x9q/gElSV/8kCO73fXwADCHnBkA6oZ3l27RZxmVi7mSZBjSZxk5enep6x617vB14cpsj2CrcgO73dCqTbkuYzI25fo+F6llaKRA5s9JysLCbOrUNlGX9GylTm0TvdYpwB/76Bj65MwbLI6hTzKzXF/H3uZRNXDIkCFat26dCgoKrG4P/qd+PXOnxmwcAADAuq2Hav29Yjcq4nD2yJkBIPiVldlrvRn6+Q85KiuzW7K9Rg3qWRpXG3d6BAfj9hzbdNU7V5IKT5VZuk2poiB4/8vf6Zm31+iVhT/rmbfX6P6Xv7O8EOgYxsIVf0/gdbY6tIyrtWOszVYRZwVf3+jwhEfVwHvvvVcJCQm67bbbtHLlSh09elR2u73G/8F9YWHmTo3ZOAAAgHeXbbU0Dq6RMwNA8Fu6ek+tN0MNoyLOEmbrQxbVkXzdI9gfj877Y5u+7N3pGAfZFW9N4GW3G9q086iWr96jTTuPeq3AuXXvMVOfw617j1myPX/ceHCXR2PoNmrUSJdffrmmTZum8ePHu4y12Wz6+eefPWpcKGscV9/SOAAAgKJT5ZbGwTVyZgAIfgfziyyNq83xk+bmyTEbVxtfP8ruj0fnfb1NX09sJ1WMZ9u9Q2Ot3XqkyrLuHRp7ZQKvzKzcKpOiJcRGabQXJkULhRsP7vKoe+ebb76p6dOnS5IMw3D5P3obeCZM5j7UZuMAAACSEqItjYNr5MwAUAf4uMesr4uPvn5c3x/DAzgmRXOlYf0Iy7bpj96d7y7dUm0xV5LWbj1i6TjPku/Hlw2FGw/u8qiH7rx582Sz2fTAAw/oyiuvVGJiotXtCnkHj520NA4AAGDilV11z8zvTMXh7JEzA0Dwa9ciTsvW7DMVZwVH8dHVmK9WFh8dj+vPWLChxhgrH9f39fZMq22AVjccLTxlaVxtzI7zfPWA9oqIOPthO+12Q3M+3ewyZu5nWZb2QHbcCHBVKPfGjQdfbc8THp3J/fv3q1+/fho3bhyJqZfkHzfZvdtkHAAAwMLvd1oaB9fImQHAe+x2Q5t35en7nw9o8648r43d2biRyeEQTcZZwsLio1TxuP7EUV2r9JxNjI3SxFFdLX983tfbMzUp2slSy3rMFp4otTSuNr4e53nz7jxTx3Pz7jxLtif5fpzgsDCb+nVyfR327ZTk+xsPp/Goh27Tpk1Vr541MyqiBrV9Gt2NAwAAIW/HgQJL4+AaOTMAeEdmVq7e+jJb+YW/jCMb37Cebh6WYnkx0Nc99dwpPqa1SbBkm1JFkbVb+yb6eu1eHTtZprjoCA3s3tKSHp01ba9Hx6bKzslX/olixcdUHENvFMh8PR5qbANzf/vNxtUmN9/ck9tm42qzeZe5Qu3mXXnq3Na6G9qOGwFnjtubGBulmywet9duN7Rqk+thIzI25eragR38VtT1qKB75ZVX6vXXX1dOTo6Sk5OtbhMklZSbK9SajQMAAGhQy/hx7sbBNXJmALCeY+zOM+UXlmjGgg2W9/D09RAB/pqMqboi+eLvd3mlSO5rvh4PtbYxgt2Nq01SvMk5EkzG1crspe6FOqevbgS4Mw6ylTdW3OFRtv6HP/xBP/zwg0aPHq1bb71V3bp1U1xcnCIjI6uNJ4F137nnxGqTibse554T64PWAACAumBYr1batLP2/GJYr1Y+aE3dR84MANYyNXbnp5stHbtT8m3PQH9MxuTrIrljm3W1l7Wvtze4Zyu9s2yrywe4bbaKOCukJSdokXaZivOGsDCb14uo/rqx4g6PCrqXXHKJysvLdfz4cT399NMuY202m37++WePGhfKUpMTtPj73abiAAAAzKgXEW5pHFwjZwYAa23eZWLszlNlFY96n2vt2OW+6hno62KgP4rk/uhl3a9Tkj7LqHniMCvHQ/V1r+6IiDCN6JPscv9G9Em2bPiMtDYJpibu81fPVSv448aKuzwq6EZHV3TTbtiwoaWNwS925x43HZfevrGXWwMAAOqC/CKTvQ1MxsE1cmYAocRuN7xe7NycY3LszhzrC7qSb3oG+roY6OsiuT8KyP4YD9WXvbol6frBFROGff5DTqWeujZbRTHXsdwKYWE2jftVmstr9De/SvPrhGFny9c3VjzhUUF36dKlVrcDZ1i39YjpuMsvONfLrQEAAHXB8dMea7QiDq6RMwMIFT57fN7sFDJBPtWMoxh45jFNaFhPoy0+pr4ukvujl7W/xkP15cRvUkVR9+oB7bV09R7l5p9UUny0Bvds5ZWJ7Xx5jfqDr2+seIIZLwAAAEJEbT+g3I0DAMCXj8+ntUnQopUmxu4M4ke9T2ez2c58wfqN+LhI7o9e1rUVc92Nc4cvenWfLiIiTMP7tvbJthwF6237jqnUsCnSZqh9i7ig7pl7Ol/3snbXWRV08/LylJOTo+Ji1xd9nz59zmYzIalFk4baurf2YRdaNOERPgAAYI7Z34He+L0YysiZAdRVdruhVxe5Hv/7tU82Wfb4fFprE2N3RkcqrXVwF3RrKpLnFRQHf5HcD72sC4rMPXlkNg6/CAuzqVPbRCUkxCgv74TKyuxe36Yvhndx8HUva3d4VNA9efKkHnjgAS1ZskSGq2n0xAQPnmpY39xkJGbjAAAA2jVvZGkcXCNnBlDX/bzzqIpLXRdwTpWU6+edR9W13dnP/WJq7M5LU71WbPFFIcluNzR/yRaXMW8v2WJZkTylVbxscl0/tf0vzgr+6GXdMCbS0jh3+LL4GAoys3Kr9JhNiI3SaC/2mPV1L2uzPCroPv/88/riiy8UHh6udu3aKTY2tuqjADgrYeHmxjgxGwcAALB83V7Tcd1Tmnq5NXUfOTMAf7LbDW3aeVSlO/K89ij0dxsOmI6zoqArVfSYu7Rvco2TP3mrqOOrQpKvx3vduvdYrZ1hjf/FWbE9f/SyTmxY39I4s/xRfKzLfNlzPRh4VND96quvFBMTo3feeUcdOnSwuk2QlJacoEUycdcqOfDuEgAAgMB0+NgpS+PgGjkzAH/xVSGpuLTc0jgzMrNy9VlGTpXXDUP6LCNH7VvGWV7U8WUhKf+EuXFczcYF2vb80cs6JTleCbFRLgvlibEVvWetQvHRWr7uuR4MPOreeeTIEV1wwQUkpl7U7hyTj0SajAMAAKhfz1zqZzYOrpEzAzid3W5o8648ff/zAW3elSe73cJBQk/jKCSdWbxyFJIys3It21bHVnGWxtXGbFHHymPr6202alDP0rhA2570y2RTCbFRlV5PiI3ySqEzLMym0UM7uoy5aWhHywqB/rhO6zp3eq6HCo966KakpCg317o/Aqjq3a+3mo4be2mal1sDAADqgsTY+tqmQlNxOHvkzAAcfNVj1te92Ib2StZ7y7bVOv7q0F7JZ70tyffDEfhlm76eNMwPk5RJvp9sylFEPvNzmBgbpZuCfNiMUODrnuTBwKPuFxMmTND69eu1aNEiq9uD/9lxoMDSOAAAALMTD/tgguKQQM4MQPJtj1lf92KLiAjTiL6ui7Uj+iYrIsKaJz/8UdTx9TaPnyyxNC7QtudPvVKT9Pc/XKjJN/XQhCs7a/JNPfTMHy60vEewP4uPvnoSwNfiY6JqD3Ijzh2Bekw96qE7dOhQTZkyRffff7/mz5+vtLQ0xcVV/wiFzWbTpEmTzqqRoahBPXOnxmwcAABAx5ZxWrPlsKk4nD1yZgC+7jFbWzHX3Tgzrh9c8Sh7dePaXto32bncCv4o6vh6m3V9ew7+mjAsLMzm9V6xoXZMfcEf4yBLgX1MPaoG5uTkaM6cOTIMQ6tXr9bq1aurxNhsNhmGQXLqoc7nxmvT7jxTcQAAAGa0atrQ0ji4Rs4MwNePXhcUmetFaTbOrPYt45TQMFd5hacVPRpGqb3FNwhTkuMVUz9CJ06V1RjTsH6EpUUdXxeS6vr2pLo/YRjH1HqOcZBdTaZn5TjIUuAfU48KulOnTtWBAwd0zjnnaODAgUpMTJTNFhqzyPlKXKy5OzVm4wAAAI4WnbI0Dq6RMwPw9aPXDWMiLY0zo8aiR6Gfih4Wf8/6upBU17fn617r/sAx9Q5fjoMcDMfUo4Lujz/+qHPOOUcff/yxGjakB4c3FBXVfMfRkzgAAIA1mw+ZjhuQ3tLLran7yJkB+PrR68SG5ia1NBtXG18XPbJz8l32zpWkwpOllk82VVMhyVuPXvuycOXr7YXKhGEcU+/w1WR6wXBMPSrolpeXKz09ncTUi2Ib1LM0DgAAIL+w1NI4uEbODAQuu93wekFAqvuPz/u66OHvme4Nw3D5byv5qnB15va27TumUsOmSJuh9i3iLN+ev8+hL/nqHIbSMZV8Mw5yMBxTjwq63bp105Ytru/C4ewkmBxKwWwcAABATH1zqZ/ZOLhGzgwEJl9OclPXH5/3ddHDn5NNVXdM8wtLvDqshC8KV2dur1PbRCUkxCgv74TKyuyWb8Nf59Bf6vIkbHVZMBzTME/edNddd2n37t169tlnVVbGI//e0KFlnGr7E2v7XxwAAIAZI/okWxoH18iZAfPsdkObd+Xp+58PaPOuPNnt3un56CjMndmr1DHJTWZWruXbdDx6fWZnnMTYKK8UAn25PV8XPRw9kF2xerIps8NKeOOa9dXn4vTtbdp5VMtX79GmnUe9sj1/nMO6jmNqvWA4ph51v/j555910UUX6bXXXtP777+vLl26KC4uThERVVdns9n09NNPn3VDQ012Tr5q++o0/hfX+dxEXzQJAAAEuS7tGisiIsxlj5vIiDB1adfYh62qu8iZAXN81WPWn5Pc1NXH5309xIM/Zrr311iavuxJ7svt+eMc1nUcU+sFwzG1GR4M+pKWliabzWZqvBibzaZNmzZ51LhgUF5u19GjJyxf73+Wb9UnK3fXGnf5Ba11zSUdLN8+PBcREebVR1RgHc5VcOF8BQ/OVWCb9v46rd16pMbl3Ts01qRru1m+3cTEGIWHe/RwWNAiZ67grXw5FNXF79eaHmV3sLJH6eZdeXrm7TW1xk2+qUfQTxzk4Itrxpfn8PRt+mrCsO827terH9f+/XzbyE66sMs5lmzT18e0rp/DUOGvY1oX/zY5+OOYms2ZPeqhO3XqVE/eBjcczjtlaRwAAEBZmV3rttVczJWkdduOqKzMroiI0Cq+egM5M+Car3vM+nuSG19NxHb69jbtPKrSHXle66Er/TLEgy+LHr7s8Xy8sMTSuNr4+nPhr57rvu61Hgo4ptYL5GPqUUF31KhRVrcDZzheZC6JMBsHAACwdPUe1dZZ1DAq4ob3be2bRtVh5MyAa75+lN2fk9zU1cfnHQK56HG2Ck+WWhpXG19/Lvw1pITk+0nfQgHH1HqBekxNdb0YNWqUXnjhhbPe2PPPP6+rr776rNcTCkrKzY2EYTYOAAAgN/+kpXGojJwZdYkvJmPydY9Zf01y4+uJ2Pwx8Zv0S9Hj/M7NldYmwavF3MysXN3/8nd65u01emXhz3rm7TW6/+XvvLJvR2spdrobVxtffy783XMdgGdM9dDdtGmTOnbseNYb27dvX50dG8xqTRtFa9ve46biAAAAzEispZDhbhwqI2dGXeGr3p2+7jHrj0luQuXxeV+qabxXR8Ha6vFeG8fWtzSuNo0a1LM0rjb+7LkOwHOmh1zYvHmz/vnPf57VxjZv3nxW7w8lF3Rppu83HTQVBwAAYAY9dL2PnBnBzpfFMkePWVePe3ujx6wvhdLj874YI9gfBetObRP0yfe7TMVZwmxneIs6zYfC5xCoi0wXdLOzs5Wdne3xhhwz/NpswXkX0NfMHieOJwAAMOtwvslJV03GoSpyZgQzXxfLfN1j1h/FwFB5fN5Xvbr9UbBOa52gmPoROnGqrMaYhtGRSmttzfaOnzQ5CZvJuNr4o+c6gLNnqqB75513ersdOEPWnjzTcV3bN/ZyawAAQF0QGWFq+gTTcaiMnBnBzh/Fsl6pSZo4qmuVYmBibJRuqgPFQF8/zu6Px+d92av7aKG5G45m48wIC7Np3K/SXBY8f3NpqmUFz0bRJodcMBlnhi8/h6fzRa9uoK6ioBugjhwzd8fUbBwAAEDzxvW1bpu5OLiPnBnBzl+9O3ulJqlHx6ZeL+z4Y/98/Ti7r7fn617PhSdKLY0zq6aCpzd6IcvsYbK47un4HG7bd0ylhk2RNkPtW8R5rcDqq17dQF1lesgF+FbjOJMDr5uMAwAAOF5Y8+OinsQBqFv8OTlSWJjN8jFdz+SP/QsLs6lNs4YuC6ytmzW0rGgWFmZTv05J+iwjp8aYvp2SLNuer3s9x5qcCMxsnDt8dePheJHJIRdMxrkjLMymTm0TlZAQo7y8Eyors1u+Dcn3E9sBdRHP0wWoTib/2JmNAwAAaNTA3L18s3EA6hZH705XgnlyJH/sX1mZXeu2HXEZs27bEcsKZ3a7oVWbcl3GZGzKld1uzYxavu71XNv5czfOXY4bD+d3bq60Ngle6b3qzxsrvmC2V7dV1yhQV1HQDVApreItjQMAANi6r8DSOAC+Y7cb2rTzqJav3qNNO496pdjhmBzJlWCeHMkf+7d09R4ZtZwqw6iIs4I7PWat4OviY4eWcbWONGD7X1ywqus3Vnx9jQJ1Fd0vAtSmXeYmRdu0K0/pTIoGAABMOFVibigFs3EAfMOXY036a3Kkuio3/6SlcbWprVDmblxt2p3TyNK42mTvyVdttzKM/8V1bptoyTZ9zXHjwdUkbMF8Y8VfY3UDdQ0F3QD1ecYu03EUdAEAgBn164VbGgfA+/wx1qSvxgr1NV9P4CVJSfHRlsbVpsDkuKpm42rz9dq9puOG92191tvbbLLj0+ZdeUFb0JXq9o2Vuj6kBOArFHQD1IlT5mblNBsHAADQPjlO20wMp9A+OXgfVQXqEn8UIB18MUnZ6ex2w+sFZF9P4CVJg3u20jvLtrocdsFmq4izQsOYSEvjauPrHsi1jrfgblwAq6s3VhxDSrj6LAbzkBKAr3hU0P3www+VnJysXr16uYz76quvtHHjRk2aNMmjxoWy+IZR2nXwhKk4AAAAM+qFmet5azYOrpEz42z5owDpD74aUsIfj3pHRIRpRJ9kfZaRU2PMiD7JioiwZnqbxIb1LY2rja97IKclJ2iRan+aNS05eD8Pp/P1jRVfqOtDSoQax/jupTvyFGkz1L5FHOfORzz6qzFlyhS9++67tcZ99NFHmj17tiebCHndOjaxNA4AAMDsj8K69uPRX8iZcbZCYaxJx5ASZxauHUNKZGblWrYtfz3q3b6WCbpqW+6ODi3jZKullmKzWTdp2MDuLS2Nq01amwTF1HfdL61h/Qj+jgU4x5ASZ07+lhgb5ZVhZOAdmVm5uv/l7zR13mo9+1amps5brftf/s7S723UzFQP3Q8//FBlZZUnx9i1a5fef//9Gt9TWFiolStXKjLSmkc5Qs3uA4WWxgEAAKS0irc0DpWRM8NqdX2sSV8PKeGPR719vY9b9x5zObyDJBlGRZwVRc/t+4+bjrNie2FhNo37VZrL3p2/+VUaPQSDQF0dUiJU+GN8d1RmqqC7ceNGvfnmm7L971afzWbTunXrtG7dOpfvMwxDo0aNOvtWhqD8QpN3403GAQAAZOfkm47rfG7wTibjL+TMsFpdH2vS10NK+ONRb1/vo697dfujF7mjd+dbX2Yrv/CXyd0SGtbT6GEpFJGCSF0cUiIU+HN8d/zCVEF30qRJKiz8pSfoggUL1Lp1a5fjgUVFRalt27a66aabzr6VIYhZqAEAgNU255icHTwnj4KuB8iZYTV/jjXpi0nK/FUMvLRvsj7/IadST1abrWIsW6uLgb7ex0bR9SyNq42/epHTuxPwn1AZ3z3QmSroxsbGaurUqc5/L1iwQN27d6/0mrdkZGRo5syZ2rRpk06dOqXU1FSNHTtWl112mel17NixQ6+88opWrlypw4cPq0GDBkpPT9e4cePUv39/L7bec62SGko/1z7uSKukhj5oDQAAqBNqeQzX7ThU4q+cOVTz5VDh6I145qRhibFRusniScMcfDVJmT+KgZlZudVOUGYY0mcZOWrfMi6499FsPdOiuqc/e5HTuxPwj1AY3z0YmCronmnz5s1Wt6NaCxcu1OTJkxUREaF+/fopPDxcK1eu1N13362tW7eamgk4MzNTt912m4qKitS2bVtdcsklOnjwoL799lt9++23mjx5sm699VYf7I17GjUweWfVZBwAAEBqcrwWrax9dvDUIH18O9D4ImcO5XzZn3zRe/V0jt6I2/YdU6lh8+pM4r4cF9HXxUB/PCbcoWWcbHJ9n8wm6yYp83WhxZ+9yIFg4Ou/F75Q18d3DxYeFXRPV1RUpIKCApWXl9cY06JFC7fXe/jwYT3yyCOKjo7WvHnz1KVLF0nStm3bNHbsWL300ksaMmSI8/XqlJWVafLkySoqKtK9996r3/3ud84xzf773//q97//vZ599ln1799fKSkpbrfRm3aYHFx+x/7juvg8948vAAAIPeV2c11vzcbBPG/kzKGeL/uLr3qvnikszKZObROVkBCjvLwTKiuzW74NXxc8fV0M9Mdjwtl78mt96MH4X1zntmc/1E3hiVJL48zwRy9yIBj46++Ft9X18d2DhccF3fnz52v27Nnas2ePyzibzaaff/7Z7fW/9dZbOnXqlCZMmFApCW3fvr3uuecePfTQQ5o7d66eeeaZGteRkZGhPXv2KD09XRMmTKi07KKLLtINN9ygefPmafHixYGXoPr4URkAAFD3rdx4wHTceR2aeLk1ocGbOXPI58t+UNdn9a7r4yIeLTxlaZwZm3eZHLt8V54lBd1Yk09wmo0zizFtgcrq8t8LeuYHBo8KugsXLtTf/vY3SVJYWJgSExMVHm7t5FzLly+XJA0dOrTKsqFDh+rhhx/W119/7XIdJ06cUHp6ugYMGFDt8rZt20qScnNrH6vW15rGRVsaBwAAcCj/pKVxcM3bOXOo58u+Fgqzevv6cX1fH1N/9F71dUedhFhzjzibjXMHY9oCFULh7wU98/3Po4Lu3LlzZbPZdPfdd2vcuHGqV8/au3uGYWjr1q2SpI4dO1ZZHhcXpyZNmujQoUM6ePCgmjVrVu16hg0bpmHDhtW4nfXr10uSmjdvbkGrrdWqibnJzszGAQAAlNnNPaJtNg6ueTNnJl/2vbree1Xy/biIvj6m/ui9mpacoEWqfezytGRrrhkehQb8LxT+Xki+Hd8dVXlU0N22bVu1j2VZ5dixYyouLlZMTIwaNGhQbUxSUpIOHTqkw4cP15igupKVlaVPPvlENptNw4cPP6v2RkSEndX7q3OipMx0nDe2D8+Fh4dV+n8ELs5VcOF8BQ/OVeBq3Chauw+eMBVHfnH2vJkzky/7XsFJc702C06Wem1/vf392vncRDWsH6HCUzX/FmkYHaHO5yZa8oPd18e0SXx903FWncPO5yaamhSt87mJlm1zzIhUTX9/fY3Lbx6Rqnr1rH3CFnUHedzZC4S/F77UtX0TNWoUrePHT6q8nE4BvuJRQTcqKsqjpNCskycrHvOLjq55OIGoqIq7wkVFRW6v/8iRI5o0aZLKy8t19dVXKy0tzbOGquKxkoSEGI/fX5NSk5+BUru8sn2cvUaNGA4jWHCuggvnK3hwrgLPeR2bas2Ww6biyC/OnjdzZvJl30s+J850nLf311vfr+V2Q7ZaCrU2W5jiE2IUbkFBt0XzRqbjrDimvWOjZbOtluGiumqzSb3TW6qeRUWWn7YeNjUp2oFjxUq3aOzy4Recq4YxUXrlw5905Ngv4wE3iY/W767qqguZVBsmkMd5LpD+XvgS14xveVTQ7devn1avXq2SkhLLh1uQKsYYk+ScYdcVu5uPBB48eFDjx4/Xzp071bVrVz366KMetfGX7Rs6ftz9JLk2uYcLTcfl5dXe0wa+Ex4ext2pIMG5Ci6cr+DBuQpcRadKTMdZnV80ahQdcr19vJkzky9X3UbW7jzlF5YovmE9pbZOsPyRz+ZxUbLZVGsxsHlclFfy87Iyu5au2aO8wlIlNIzU4B6tLO/ZtWnnURUUue5ZVlBUolXr9qiTBRN4FR43N1534fGTlhzTjduPuDx/UsX5zVi3R13aNT7r7UlSzv5jpuNaNbauGNIpOU7/mHiRtuw9puIyQ1ERNnVsWfEoNL8f4Qp53NlrkVBfibFROupq6JNGUWqRUL9OfB65ZqxlNmf2qKB7991367rrrtN9992nxx57THFx5u4+mBUTU3GH4tSpmmcXLS6u+GDU9IhZdbKzs3X77bdr7969Sk9P12uvveayV4NZZWXWX7CHjpmctOTYSa9sH2evvNzOuQkSnKvgwvkKHpyrwLNld77puLK+nLuz5c2cmXz5F5lZuVUmZUmIjdJoiydl2bwrz1QxcPOuPMvHRHx36RZ9/kNOpe2/9UW2RvRJ1vWDq46h7Kkjx2u+ns6Ms+KcHjJZ0D103JrfPBt3HjUdl9ramnMYGx1pOs4bn5PU5HglJMQoL++Eysrssttr6y8MVCCPOzs3De2oGQs21Lx8SEfZ7Uad+kxyzfiWqYLuzTffXOW1Bg0a6Msvv9TSpUvVtm1bxcbGOnsKnM5ms2nevHluNSomJkYxMTEqKCjQqVOnVL9+1bGOHDPtJiWZS9L++9//atKkSSosLNTFF1+sadOmORPhQGQz+Zk2GwcAAFBsMsk2G4fKfJkzky9XyMzKrfYHc15BsWYs2KCJo7paVtTNP+F6ght348x6d+kWfZaRU+V1w5DzdauKur6eFG3H3uOm4y7uasEwAWZ/O1n4G4tJyoDQ1Cs1SRNHda1ywzExNko3WXzDEaHJVEE3MzOzxmVlZWXOGXarY+YxsOre07FjR61du1bbtm1Tly5dKi3Pz8/X4cOHFRcXZ2pcso8//lhTpkxRWVmZrr32Wv31r39VRIRHnZN9JqGRuSTJbBwAAEDrpjHatDPPVBzc58ucmXy5YpiF+Uu2uIx5e8kW9ejY1JLhF3xd7JQqejZ//kPVYu7pPv8hR1cPaG/J8AspyfGKigxTsYsJPepHhllWfDRM9kwzG1ebtDYJWrRyl6k4q4SF2TS6tp56QzsyKzzgI3a7oeycfOWfKFZ8TMXNFG99/nqlJqlHx6Y+2x5Ci6ks7Y033vB2O6ro37+/1q5dqyVLllRJUJcsWSLDMDRgwIBa17N06VI98MADKi8v11133aU777zTW022VKHJWRHNxgEAAOw/Ym4cU7NxqMzXOXOo58vZOfkuez1K0tGCYmXn5FtSoEtJjldM/QidOFVWY0zD6EhLe1ouXb3H1DAPS1fv0fC+rc96e3a7oZJaZmcuLq14bN+KgkT+CXPjepuNq01Kq3jZ5LoDru1/cVaipx4QGHw1RM/pwsJslg/DA0gmC7p9+/b1djuquPbaa/Xqq69qzpw56t+/v3r27ClJ2r59u1544QVJ0m233eaMz83NVUFBgWJjY52PlR0+fFgPPvigysvL9Yc//CFoklNJ2mfyh5TZOAAAAH89Mh4qfJ0zh3q+HJDXc23VVzfl5psbY9ZsXG2Wrt5T62gDhqwrIMfFmuvNbDauNlv3HjO1f1v3HrO8AENPPcC/fDlED+ALAfscVfPmzfXwww/rkUce0ZgxY9SvXz/Vq1dPK1euVHFxse69916lpaU545977jktWLBAo0aN0lNPPSVJmj17tvLz8xUREaGcnBzdd9991W6rZ8+eGj16tE/2yyzG0AUAAJbzw/iR8J5Qz5d9PQRCdk6+y965klR4qsyyHsGSlBRvbkI6s3G1OZhvrrOI2bjanJNgbsI+s3G18fdNAHrqAf7h6yF6AF/wqKA7duzYWmNsNpsiIiIUGxurNm3aaNiwYeratatb27nuuuvUvHlzvfLKK1q7dq3Cw8PVuXNnjR8/XsOHD6/1/StWrJBUMWbZokWLXMYGWoLaommMtu6rfZKAFoxxBwAATGrWuIF2554wFYez54ucOZTzZV9PNuWPYuDgnq30zrKtLjv+2mwVcVYwTM6HaDauNr7eP3+MgwzA/3w9RA/gCx4VdDMyMiRVJKBGDX99z1w2a9Ys3Xnnnbrjjjvc2lb//v3Vv3//WuOeeuopZ08Dh48//titbQWShvUjLY0DAABIijPZ289kHFzzVc4cqvmyryeb8kcxMCIiTE3i6utQ/qkaY5rE1bdkQjRJahBl7ueh2bjaRESEaUSfZH2WUfPEbyP6JFu2f76+CQAgMPi7dz7gDR79ZVyyZIm6d+8uSbr66qs1a9Ysffrpp1q8eLFef/11jR49WuHh4WrTpo2mT5+uKVOmqEmTJpo+fbq+++47K9tfd5nNO3kaAAAAmJTa2lyvE7NxcI2c2fsck00lnDHGamJslOXjITqKga5YXQwsKSl3WcyVpEP5p1RSUm7J9sLCzf24MBtnxvWDO+rSvsmynbFKm026tG+yrh/c0bJtOW4CuGLlTQAAgYHe+aiLPLq1umjRIq1bt07PPPOMRo4cWWlZu3btdOGFF6p///76wx/+oJycHI0fP14DBw7UFVdcobfeeksXXnihJY2vy4pOlVoaBwAAYLZIQTHDGuTMvuGryaZ83SNYkt5Z5nrMx9PjbhmRVntgLdKSE7RIu0zFWen6wR119YD2Wrp6j3LzTyopPlqDe7ayrGfu6Rw3Ac6c6T4xNko3eXGmewD+Q+981EUeFXQ/+OADde3atUpierpBgwapR48eeueddzR+/Hi1bdtWPXr00Pr16z1ubCixmUwEzcYBAAAcKyyxNA6ukTP7jq8mm/J1MfBg3klL42pjtpjhjaJHRESYhvdtbfl6q+OrmwAAAoM/bsgB3uZRQffgwYPq3LlzrXFJSUnauHGj899NmjTRunXrPNlkyGlqcuw6s3EAAAAFReYKtWbj4Bo5c93UKzVJ3do38Ulv0qT4aP2sPFNxVti695jpuGCfOMhXNwEABAZ656Ou8aig26xZM61du1alpaWKjKx+Uq7S0lKtW7dOjRs3dr6Wl5enhAT+aJrRqmlDS+MAAAAaxpicdNVkHFwjZ66bMrNyqxQEPv8hR6O9UBDo3qGJvl67z1ScFZg4CEBdRu981CUe3UYeMWKEDhw4oIceekjFxVX/mBcXF+tPf/qTDh48qCFDhkiS9u7dq8zMTHXsaN2g9nVZocmxcc3GAQAAJDasb2kcXCNnrnsys3I1Y8GGKuMw5hUUa8aCDcrMyrV0e0UlZZbG1YaJgwDUdY7e+ed3bq60NgkUcxG0POqhO2HCBC1btkwff/yxvvnmG1100UVq0aKF7Ha79u3bp5UrVyo/P1+tW7fWnXfeqWPHjunKK69UWVmZrrvuOqv3oU5qFF3P0jgAAAAmBfEtcmbfsdsNr/e4stsNzV/iepKyt5dsUY+OTS3btq8LrHxHAAAQHDwq6MbGxuqNN97Q008/rY8//liffPJJpeVhYWG6/PLL9dBDDyk+Pl6bNm1ScXGxxo0bpxEjRljS8DrPbA7IzSQAAGBSWJhN/Tol6bOMnBpj+nZKoreKRciZfaO6IRASYqMsHwIhOyffZaFTko4WFCs7J9+ysVl9XWBl4iAAAIKDRwVdSUpMTNTTTz+tKVOmaNWqVdq/f79KS0t1zjnnqG/fvmrWrJkztn379vrxxx9Vvz6P75l13ORkJGbjAAAA7HZDy2oZj/Prtft07cAOFGwsQs7sXY4hEM7kGAJh4qiulhV1jxaesjTODH/chGHiIAAAAp/HBV2HhIQEXXrppS5j6tVjWAB3MX4VAACw2qadR1VcUu4y5lRJuTbtPKou7Rq7jIN7yJmt5+shEApPmJzjwmScGXa7oVWbXI/Lm7Ep1/KbMEwcBABAYDNV0F25cqUkqWfPnoqKinL+26wLLrjA/ZaFOMavAgAAVvtuwwHTcRR03UfO7Fu+HgIhtoG5grvZODP8McyDg2PiIAAAEHhMFXR/+9vfymazafHixTr33HOd/zbDZrPp559/PqtGhiLGrwIAAFY7Veq6d667caiMnNm38k+4LnS6G1ebhFhzT8aZjTPD1/sIAACCg6mCbp8+fSRJ0dHRlf4NAACA4NG+ZSOt2XLYVBzcR87sW74eoqxDyzjZJBkuYmz/i7MKw7ABAIDqmCrovvnmmy7/Dev5ekwwAABQ97VOirU0DpWRM/uWr4coy96T77KYK1UUe7P35Ktz20RLtskwbAAAoDph/m4AqufOeFkAAABmFJ4yOamTyTjAnxxDlLli5RBlm3flWRpnhq/3EQAABIezKujm5eVp1qxZ+t3vfqeRI0fq6aefliS9/PLLWrp0qSUNDFWMlwUAAKzG49v+Qc7sPb1SkzRxVNcq49YmxkZp4qiu6pWaZN3GzNZMLa6t+nQfAQBAUDA15EJ1vvnmG9133306fvy4DMOQzWZTp06dJEmLFy/WtGnTNG7cOD3wwAOWNTaU8IMLAABYjce3fY+c2ft6pSapR8emys7JV/6JYsXHVFzDVvdaTUtO0CLtMhVnNcc+btt3TKWGTZE2Q+1bxNEzFwCAEOVRD90tW7bozjvvVFFRkW6++Wb961//kmH8MqLUddddp4YNG2rOnDn0OvCQ4weXK/zgAgAA7uDxbd8iZ/adsDCb0tok6PzOzZXWJsEr13BamwTF1HfdH6Zh/QiltbG+oCtV7GOntom6pGcrdWqbyOcUAIAQ5lFB9+WXX1ZJSYmmT5+uP/3pT7rkkksqLR87dqxee+01SdK8efPOvpUhiB9cAADAG3h823fImeuWsDCbxv0qzWXMb36VRn4OAAC8zqMhF1atWqXzzjtPAwcOrDHmvPPOU8+ePbVlyxZP2xbyHD+45i/ZUunRyMTYKN00tCM/uAAAgEd4RdMEFgAAte5JREFUfNs3yJnrHkd+/taX2covLHG+ntCwnkYPSyE/BwAAPuFRQff48eNq1qxZrXHx8fH66aefPNkE/ocfXAAAwBscj28nJMQoL++Eysrs/m5SnUPOXDf5asxeAACAmnhU0E1KSlJWVlatcVlZWUpK4i712eIHFwAAQPAhZ667HGP2AgAA+INHY+gOHDhQu3fv1ptvvlljzJw5c7Rnzx7179/f48YBAAAAwYqcGQAAAN7gUQ/d22+/XZ9++qmefPJJff/99+rbt68kKTc3V++//75WrFihL7/8Uo0aNdLvfvc7SxsMAAAABANyZgAAAHiDzTAMw5M3bt68WZMmTdLu3btls9lkGIZstopxowzDUNOmTTVt2jT16NHD0gYHmvJyu44ePeH17UREhDHkQpDgXAUPzlVw4XwFD85V8PDluUpMjFF4uEcPhwU1cmbf5cuhgO9XuItrBu7imoG7uGasZTZn9qiHriSlpaVp8eLF+uKLL7Rq1Srt379f5eXlSkpKUp8+fXTZZZepfv36nq4eAAAACHrkzAAAALCaxwVdSYqIiNBll12myy67zKr2AAAAAHUKOTMAAACsFHrPvQEAAAAAAABAkPK4h+7mzZv1xhtvKCsrSwUFBSovL682zmazacmSJR43EAAAAAhW5MwAAACwmkcF3fXr12vMmDEqLS1VbXOqOSZ9AAAAAEIJOTMAAAC8waOC7rRp01RSUqKBAwdq7Nixat68uSIizmo4XgAAAKBOIWcGAACAN3jcQ7dNmzaaMWOGwsPDrW4TAAAAEPTImQEAAOANHk2KVlpaqtTUVBJTAAAAoAbkzAAAAPAGjwq6nTt31tatW61uCwAAAFBnkDMDAADAGzwq6P7+97/Xjh079Nprr1ndHgAAAKBOIGcGAACAN5gaQ/ef//xnldfatm2rZ599VosWLVKPHj0UGxursLCq9WGbzaZJkyadfUsBAACAAEbODAAAAF8wVdB9+eWXZbPZZBiGJFX6702bNmnTpk1V3uOIITkFAABAKCBnBgAAgC+YKujeeeed3m4HAAAAENTImQEAAOALFHQBAAAAC5AzAwAAwBc8mhQNAAAAAAAAAOB7FHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIEFBFwAAAAAAAACCBAVdAAAAAAAAAAgSFHQBAAAAAAAAIEhQ0AUAAAAAAACAIBHh7wbUJiMjQzNnztSmTZt06tQppaamauzYsbrssstMr6OwsFCzZs3S559/rn379ik+Pl6DBg3SpEmT1LhxYy+2HgAAAPAu8mUAAIDQEtA9dBcuXKixY8cqIyNDnTt3Vp8+fbRx40bdfffdmjZtmql1FBYWauzYsZo5c6bKy8s1cOBANWjQQP/+9781atQoHThwwMt7AQAAAHgH+TIAAEDoCdiC7uHDh/XII48oOjpa77zzjl577TW98sor+vDDD9WkSRO99NJL2rhxY63rmT59ujZu3Khf//rX+vTTTzVt2jQtXrxY48aN08GDB/XXv/7VB3sDAAAAWIt8GQAAIDQFbEH3rbfe0qlTpzRmzBh16dLF+Xr79u11zz33yDAMzZ071+U6CgsL9e677yo6OloPPfSQIiIqRpgICwvT5MmTlZycrKVLl2r37t1e3RcAAADAauTLAAAAoSlgC7rLly+XJA0dOrTKsqFDh8pms+nrr792uY6MjAwVFRWpd+/eiouLq7QsPDxcgwYNkqRa1wMAAAAEGvJlAACA0BSQBV3DMLR161ZJUseOHassj4uLU5MmTXTs2DEdPHiwxvW4WockdejQQZKUnZ19tk0GAAAAfIZ8GQAAIHRF+LsB1Tl27JiKi4sVExOjBg0aVBuTlJSkQ4cO6fDhw2rWrFm1Mbm5uc7Y6jRt2lRSxfhjZyMiwvt18fDwsEr/j8DFuQoenKvgwvkKHpyr4MG5Cl7ky6GJzyzcxTUDd3HNwF1cM/4RkAXdkydPSpKio6NrjImKipIkFRUV1RjjWFa/fv1qlzted7WO2oSF2ZSQEOPx+93VqFHNxwSBhXMVPDhXwYXzFTw4V8GDcxV8yJdDG59ZuItrBu7imoG7uGZ8KyALumFhFVV9m81Wa6zdbq9xWXh4uKn1GIbhRuvO3L6h48c9T3DNCg8PU6NG0Tp+/KTKy2veZ/gf5yp4cK6CC+creHCugocvz1WjRtH03LAQ+XJo4vsV7uKagbu4ZuAurhlrmc2ZA7KgGxNTcQf/1KlTNcYUFxdLUo2PmJ2+rKb1OF53tQ4zysp8d8GWl9t9uj14jnMVPDhXwYXzFTw4V8GDcxV8yJdDG59ZuItrBu7imoG7uGZ8KyC7ScTExCgmJkYFBQU1Jpe1jfclyTlWWE1jfh06dEjSL2ODAQAAAMGAfBkAACB0BWRB12azOWfa3bZtW5Xl+fn5Onz4sOLi4mqc4EH6ZbZex+y9Z9qyZYskKSUl5WybDAAAAPgM+TIAAEDoCsiCriT1799fkrRkyZIqy5YsWSLDMDRgwACX6+jdu7caNGigjIwMFRQUVFpWXl6uZcuWyWazObcFAAAABAvyZQAAgNAUsAXda6+9VtHR0ZozZ45Wr17tfH379u164YUXJEm33Xab8/Xc3Fxt27bN+WiZVDHr7zXXXKMTJ07o0UcfVUlJiaSKSR3+/ve/a8+ePRo6dKjOPfdc3+yUh+x2Q5t2HtXy1Xu0aedR2e2eT0oBAACAuoF8+Rd2u6HNu/L0/c8HtHlXHvkyAACo02zG2UxZ62XvvfeeHnnkEYWFhalfv36qV6+eVq5cqeLiYt17772aMGGCM3bKlClasGCBRo0apaeeesr5emFhoW666SZlZ2erZcuW6tq1q7Zs2aLt27erZcuW+ve//+1yXLHalJfbdfToibPaT1cys3I1f8kW5RUUO19LiI3S6KEd1SvV83bDeyIiwpSQEKO8vBMMCB7gOFfBhfMVPDhXwcOX5yoxMcbUjL1wD/lyaOXLfL/CXVwzcBfXDNzFNWMtszlzQGfV1113nWbNmqVevXpp7dq1yszMVOfOnTV9+vRKyakrDRs21FtvvaXx48dLkpYtW6bS0lKNHj1a77zzzlklp96WmZWrGQs2VEpOJSmvoFgzFmxQZlZuDe8EAABAKCBfJl8GAAChJ6B76AYDb/U4sNsN3f/yd1WS09MlxkbpmT9cqLAwm+Xbh+e4OxU8OFfBhfMVPDhXwYMeuvAF8mXr8P0Kd3HNwF1cM3AX14y16kQP3VCWnZPvMjmVpKMFxcrOyfdNgwAAAIAAQr4MAABCFQXdAJV/wnVy6m4cAAAAUJeQLwMAgFBFQTdAxcdEWRoHAAAA1CXkywAAIFRR0A1QKcnxSoh1nXwmxkYpJTneNw0CAAAAAgj5MgAACFUUdANUWJhNo4d2dBlz09COdWaCBwAAAMAd5MsAACBUUdANYL1SkzRxVNcqPQ8SY6M0cVRX9UpN8lPLAAAAAP8jXwYAAKEowt8NgGu9UpPUo2NTbdt3TKWGTZE2Q+1bxNHTAAAAANAv+XJ2Tr7yTxQrPqZimAXyZQAAUFdR0A0CYWE2dWqbqISEGOXlnVBZmd3fTQIAAAACRliYTWltEvzdDAAAAJ9gyAUAAAAAAAAACBIUdAEAAAAAAAAgSFDQBQAAAAAAAIAgYTMMw/B3I4KZYRiy231zCMPDw1Rezvi5wYBzFTw4V8GF8xU8OFfBw1fnKizMJpuNSapCkS/z5VDA9yvcxTUDd3HNwF1cM9YxmzNT0AUAAAAAAACAIMGQCwAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCjoAgAAAAAAAECQoKALAAAAAAAAAEGCgi4AAAAAAAAABAkKugAAAAAAAAAQJCL83YBQlpGRoZkzZ2rTpk06deqUUlNTNXbsWF122WWm11FYWKhZs2bp888/1759+xQfH69BgwZp0qRJaty4sRdbH1qsOFc7duzQK6+8opUrV+rw4cNq0KCB0tPTNW7cOPXv39+LrQ89VpyvM3388ce67777NHLkSD377LMWtja0WXWuFi5cqH//+9/KyspSaWmp2rdvrxtvvFHXX3+9bDabl1ofWqw4V7m5uXrxxRe1YsUKHT58WDExMerZs6d+//vfq3v37t5rfAjLyMjQ2LFj9dhjj+m6664z/b6SkhLNmzdPCxYsUE5Ojho0aKALL7xQkyZNUuvWrb3YYqDu8kfuP2fOHE2dOrXG9f3ud7/Tfffd59H+wPuszmkNw9Bvf/tbbd++XStWrPDZduE7/rhmvvzyS9155501ruOyyy7T888/79H24Rv+qHfY7XZ98MEHmj9/vnbu3KnIyEj16tVLd9xxh7p27Wrl7tVZNsMwDH83IhQtXLhQkydPVkREhPr166fw8HCtXLlSJSUlmjhxoiZNmlTrOgoLCzV27Fht3LhRrVu3VqdOnZSdna0dO3aoWbNmevfdd9W8eXMf7E3dZsW5yszM1G233aaioiK1bdtWHTp00MGDB/XTTz9JkiZPnqxbb73V27sSEqw4X2fav3+/rrzySh0/fpyCroWsOlcPPvigPvjgA0VFRen8889XcXGxMjMzVVpaqltvvVWTJ0/28p7UfVacqz179ujGG2/UoUOH1KpVK3Xq1En79u3Txo0bFR4ern/84x/61a9+5YO9CR3bt2/X2LFjdejQIT3++OOmC7plZWW64447tHz5ciUlJalHjx7KycnRzz//rJiYGM2fP19paWlebj1Qt/gr97///vu1cOFCDRw4ULGxsVXWOXjwYIp0AcobOe1TTz2l2bNnq1mzZjUW57yxXfiGv66ZF154QS+//LL69u2rZs2aVVneo0cP3XzzzW5vG77hr3rHo48+qnfeeUdxcXHq27evDh8+rDVr1igyMlIzZ87UxRdf7JX9rVMM+NyhQ4eM8847z+jevbuxYcMG5+tbt241LrzwQiM1NbXS6zV58sknjZSUFGPy5MlGaWmpYRiGUV5e7nz99ttv99o+hAorzlVpaakxePBgIyUlxfjXv/5l2O1257Jvv/3W6NKli5GWlmZkZWV5bT9ChVWfrdPZ7XbjlltuMVJSUoyUlBTj3nvvtbrZIcmqc7VgwQIjJSXFGDFihLFnzx7n69nZ2Ubfvn2NlJQU4+eff/bKPoQKq87VXXfdZaSkpBh/+ctfjLKyMufr7733npGSkmL06dPHOHXqlFf2IRR99913xgUXXOD87nr33XdNv3fu3LlGSkqKMW7cOKOoqMj5+uzZs42UlBTjqquuqvS3DIBr/sz9L7/8ciM1NdUoKCiwbofgdVbntEVFRcYDDzzg/JvQv39/n2wXvuOva8YwDGPChAlGSkqKkZ2dfVb7AN/zV71jyZIlRkpKinHFFVcYR48edb7+2WefGZ06dTIuuuiiSjkoqscYun7w1ltv6dSpUxozZoy6dOnifL19+/a65557ZBiG5s6d63IdhYWFevfddxUdHa2HHnpIEREVo2eEhYVp8uTJSk5O1tKlS7V7926v7ktdZ8W5ysjI0J49e5Senq4JEyZUevz7oosu0g033CC73a7Fixd7bT9ChRXn60yzZ8/WqlWr1KdPH6ubG9KsOlcvvfSSwsPD9cILL6hly5bO1zt27Kjx48frnHPO0YYNG7yyD6HCqnP17bffSpLuvPNOhYeHO1+/9tpr1bZtWx07dkxZWVnW70CIOXLkiP7yl79o/PjxOnbsmFq0aOHW+w3D0OzZsyVJjzzyiKKjo53Lxo0bpz59+mjTpk36/vvvLW03UJf5K/c/deqUtm/frrZt26phw4be2Tl4hZU57ZIlS/TrX/9aCxYsUHJyss+2C9/y1zUjSRs3blR0dLTatWvncfvhH/6qd7z++uuSKnruJiQkOF8fMWKERo4cqUOHDumTTz6xajfrLAq6frB8+XJJ0tChQ6ssGzp0qGw2m77++muX68jIyFBRUZF69+6tuLi4SsvCw8M1aNAgSap1PXDNinN14sQJpaena8CAAdUub9u2raSKsSVxdqw4X6fLysrS888/r0GDBunqq6+2qpmQNedq8+bN2rVrl84///xqH//+/e9/r6+//tqtcUNRlVWfq7CwipTjwIEDlV4vLS1VYWGhJCk+Pv7sGgvNnDlTb7/9tlq3bq25c+eqX79+br0/Oztb+/btU7t27ar9Yea4DsgvAPP8lftnZWWpvLy80o90BAer/vYeP35cEydOVE5OjsaOHat//etfPtkufM9f18zhw4d16NAhpaWlVbphj+Dgj3pHQUGBVq9erQYNGuiCCy6oEj9s2DBJ5JpmUND1McMwtHXrVkkVPcjOFBcXpyZNmujYsWM6ePBgjetxtQ5J6tChg6SKH2bwjFXnatiwYXr//fdrHHtm/fr1ksR4x2fJqvPlUFJSovvuu08xMTF6/PHHLW9vKLPqXDl63qanp8swDK1YsUJPPfWU/vSnP+mNN97QsWPHvLMDIcTKz5UjyZs8ebJ+/PFHnTx5Ujt37tS9996rw4cPa+jQoUy2ZYHk5GT9+c9/1qJFi9S7d2+3309+AVjLn7n/xo0bndt49NFHNWTIEKWnp+vSSy/VjBkzVFxc7NlOwaus/NsbFhamK664QgsXLtTDDz+sqKgon2wXvuWva0b65XumefPmevrppzVixAilp6dr8ODBevrpp8nHA5i/6h3btm2T3W5Xu3btnE+bnK59+/aSyDXNqHr04FXHjh1TcXGxYmJi1KBBg2pjkpKSdOjQIR0+fLjaQcWlX+5uJCUlVbu8adOmkirumMEzVp0rV7KysvTJJ5/IZrNp+PDhZ9vkkGb1+XruueeUnZ2tadOmqUmTJt5ocsiy6lw5Hitt2LChbrvtNucj/Q4vv/yyZsyYoZ49e1q7AyHEys/Vn/70Jx04cECZmZmVJsaw2Wy6/fbbNXHiRMvbH4rGjh17Vu8nv/h/9u48vqkq7+P4N22hdKO0rIoVEErZEQFRFBRZXFFRHAWVYdRBUeQZd9DB17g8g+MwOiPj4DaKAu4DCMiobKLIJggiS8uOoEKBttACXZPnD55USpP0Jr1J7k0+79fL1wzJzc25Ob3J7/zuub8DmCucsf/mzZslnbylNj09Xd26dVPTpk21adMmvfTSS/rqq6/01ltveW0XwsPM397k5GT97W9/C/n7IrTC9Tcj/fo989///lfJycnq2bOnmjVrpo0bN+rNN9/U4sWLNX369MrvKFhHuPId7t8zb38TxJrGMUM3xE6cOCFJVWrSnc59Fez48eNet3E/V69ePY/Pux/3tQ/4ZlZfeXP48GGNHTtWFRUVGjJkCCuG15KZ/bVixQpNnTpV1157rS6//HLzGglJ5vVVYWGhJOm1117Txo0bNWnSJK1atUoLFizQzTffrLy8PI0ePZpyJrVg5nnVoEEDDRkyRKmpqcrIyFD//v2VlZUll8ulmTNnatWqVeY1HAEjvgDMFc7Y351oufHGG7V06VL961//0rvvvqt58+apXbt2Wr9+vV+JG4RGsMcgVntf1F44+27Lli2SpEsuuURffvmlXnnlFb399ttasGCBLrjgAu3evVsTJkww9T1hjnDlO9z78va+7t8zd/vgHQndEHPXEDy1ULQ3TqfT63Pu+jQ17cflcvnROpzKrL7y5MCBAxoxYoR2796tTp066cknnwyojfiVWf119OhRjR8/Xk2bNiX4CBKz+qq0tFTSyT576aWXNHjwYDVo0EBnn322nn76afXr108FBQWaNm2aOQ2PQmZ+Dz788MP64x//qJEjR2rBggX617/+pTlz5mjy5MnKz8/XfffdV3nbF8KH+AIwVzhj/xkzZmjevHl65plnVLdu3crHMzIy9Nxzz8nhcOijjz6i9ILFBHMMYsX3Re2Fs+8mTZqk+fPn6x//+IdSUlIqH09PT9fzzz+vxMRELVmyRPv27TP1fVF74cp3GP09czqdxJs1IKEbYklJSZJOrjrrjTuo8nX7k/s5b/txP84tVIEzq69Ot3XrVg0bNkzbt29X586d9eabb/q8KgZjzOqvp556Svv379fEiRNVv359cxsJSeb1lfu8yczM9Ljw07BhwyRJK1euDLit0c6svlq2bJk+/fRT9erVS/fee2+VAG7QoEG64447VFJSUrniLcKH+AIwVzhj/4SEBGVmZnpcqKh9+/Zq1qyZSkpKtG3bthqOAqEUrDGIVd8XtRfOvqtbt65at27tcTzbtGlTdejQQdKvtXZhHeHKd/jze2Yk2RzNqKEbYklJSUpKSlJhYaGKi4s93jZVU40sSZX1S7zVFTl48KAk73VJUDOz+upU33zzjcaOHauioiJdfPHFeumllyq/SFE7ZvTXDz/8oHnz5qlBgwaaOXOmZs6cWfmc+6ryunXr9PDDD6t169YaPXp0EI4k8pl1bqWlpUmSzjrrLI/Pux/Pz8+vbZOjlll95U6qX3zxxR6f79u3r1599dXK2/YQPsQXgLmsHPs3atRIv/zyi8/BPEIvGGMQK78vas/Kfedei4Tb560nXPkOYk3zMEM3xBwOR+UKgjt27Kj2fEFBgQ4dOqTU1FSfRafd+/B2e6r7Snvbtm1r2+SoZVZfuc2dO1ejRo1SUVGRhg4dqldffZVkronM6C93PZ+CggLNnTu3yn/r1q2TdDKxO3fuXC1fvjxIRxL5zDq3srKyJMnrqqvuYKBhw4a1bXLUMquvjh49KkkeZ4lJqlzhtqysrLZNRi3VFF+4Hye+AIwJV+x/4MABPfHEE3rkkUe87nPv3r2SxOJWFmP2GMTq74vaC1fflZSUaMKECbrvvvu8Xhhyf880a9bMtPeFOcKV72jdurViYmK0c+dOj6UciDWNI6EbBn369JEkLVy4sNpzCxculMvlUt++fX3uo0ePHkpMTNTq1asrFwZyq6io0JIlS+RwOCrfC4Exo68kafHixXrsscdUXl6u+++/X//7v/9bmcCAeWrbX7169VJOTo7H/yZOnChJGjx4sHJycqjLWktmnFsXXHCB4uPjtWXLFo9ByFdffSXp5PclAmdGX7Vu3VqStHTpUo/Pf/PNN5LE4pAWcM455ygjI0Pbtm3Tjz/+WO35BQsWSDq5+AkAY8IR+ycnJ2vOnDmaM2eOx7sfvvzySxUUFKhly5bKyMgI9NAQJGaNQezyvqi9cPRdfHy8vvzySy1cuFDLli2r9nx2drays7OVkpKic88919T3hjnCke9ISEhQz549VVhY6HFRZGJN40johsHQoUOVkJCgqVOn6rvvvqt8fOfOnfr73/8uSbrrrrsqH8/NzdWOHTuqrNSekJCgG2+8UceOHdOTTz5ZuTiQy+XSX//6V+3bt08DBgxQq1atQnNQEcqMvjp06JDGjx+viooKjR49WmPGjAlZ+6ONGf2F0DCjr5KTk/Wb3/xGLpdLjzzyiA4fPlz53LJlyzRt2jTVq1dPN998c/APKIKZ0VfXXHONkpKStGrVKr3++utVFjhYtmyZXnvtNTkcDt1+++3BPyBUysvL044dO/Tzzz9Xefy2226Ty+XSE088oaKiosrH3377ba1Zs0YdOnRQ7969Q91cwLbCEfsnJSVp8ODBkqQ//vGPysvLq9zX7t279fTTT0uS7rvvvuAcNGolXDGtv+8L6wjX38wtt9wiSfrzn/9cORtXOjkGfvzxx1VRUaE777zT4+38CL9w5TvcMf8zzzxTeVelJH3xxReaN2+eGjdurOuuu662hxfxHC6WjQuLjz76SBMmTFBMTIx69eqlunXrasWKFSopKdFDDz2kUaNGVW47btw4zZo1S0OGDNFzzz1X+XhRUZGGDRumrVu3qnnz5urUqZO2bdumnTt3qnnz5nr//fepb2SC2vbVX//6V73xxhuKi4vTFVdc4bWw93nnnafhw4eH5JgimRnnliczZ87U+PHjNXjwYE2aNCnYhxEVzOir48ePa9SoUfr222+VmJioXr16qaCgQN9//70cDoeefvppDR06NByHF1HM6KslS5bof/7nf1RSUqKzzz5b7dq1008//aRNmzbJ4XBo3LhxGjlyZBiOLrK5++PZZ5/VTTfdVOW5yZMn65///KfOP//8KncdlJeX684779TKlSvVsGFD9ejRQ/v27dOmTZuUmpqqd999V23atAn1oQC2Fo7Y/8iRI7r99tuVk5OjlJQUnXfeeaqoqNDq1atVWlqqkSNHavz48SH9HGBcMGLaffv2qX///mratGnlnUy1eV9YSzj+ZkpLS3X33Xdr+fLlqlevnrp37666detq1apVOn78uC6//HK9+OKLXstuIfzCle949NFH9cknnyg5OVkXXHCB8vPz9d1336lOnTp64403PC56jaq45ztMbrrpJjVr1kyvvfaa1q9fr9jYWHXo0EF33HGHBg0aZGgfycnJmjFjhqZMmaLPP/9cS5YsUdOmTTV8+HDde++9FJE2SW37yv3DV15ernnz5vncloRu7ZlxbiE0zOirxMREvfXWW5oxY4Zmz56tFStWqF69err44os1atQo9ezZM8hHER3M6Kt+/fpp5syZev3117VixQotWbJESUlJ6tevn373u98RtFlIXFycXnvtNb3xxhuaM2eOlixZooYNG+raa6/V/fffr7PPPjvcTQRsJxyxf2pqqt5//329+eabmj9/vlasWKH4+Hide+65GjFihAYOHBiMQ4VJwhXTEkvbVzj6rm7dunr99dc1ffp0ffLJJ1q7dq1iYmKUmZmpm266SUOHDvWa4IM1hCvf8dxzz6lLly768MMP9fXXX6t+/fq67LLLdP/996t9+/a1O6gowQxdAAAAAAAAALAJaugCAAAAAAAAgE2Q0AUAAAAAAAAAmyChCwAAAAAAAAA2QUIXAAAAAAAAAGyChC4AAAAAAAAA2AQJXQAAAAAAAACwCRK6AAAAAAAAAGATJHQBAAAAAABCwOVyhbsJACIACV0ACJNx48YpKytLH330UbibAgAAAJjmp59+0j333KMePXqoa9euGjZsWLibpOXLlysrK0u33357WN5/165duuuuu/Tjjz+G5f0BRJa4cDcAAAAAAABEjkcffVRr1qxR8+bN1blzZ7Vq1SrcTQq7u+66S/v27Qt3MwBECBK6AAAAAADANN9//70k6Z133tFZZ50V5tZYA6UWAJiJkgsAAAAAAMA0ZWVlkqRmzZqFuSUAEJlI6AKAhRw5ckSTJ0/WDTfcoO7du6tTp066+OKLNXbsWG3YsKFyu0OHDqljx47q0qWLCgsLPe7ryiuvVLt27arc2nX06FG9+OKLuuKKK9S5c2f16tVLd999t9asWVPt9e4av6tXr9b999+vLl266IILLtDUqVNNP24AAADY3+23366srKzKf3fs2FFZWVlV4tHdu3dr3Lhx6tu3rzp16qS+ffvqiSee0E8//eRxnyUlJXr99dd17bXXqmvXrurevbtGjBihxYsXe9y+tLRUr732mq666ip17dpVAwYM0GuvvaaKigq/jiUrK0vXXXedVq9eXRk7Dxo0SLt375ZkPG5ftWqVsrKyKo9v0KBB1T4Tf48RACi5AAAWcfjwYd1yyy368ccfddZZZ+mCCy5QWVmZNm3apM8//1yLFy/We++9p86dO6tRo0a65JJLtGjRIn322We66aabquzr+++/186dO3XBBRdU3ua2f/9+jRgxQnv27FGzZs3Up08fHT16VF999ZW++uorPf3009X2I0kTJkxQXl6e+vTpo+3bt1cJ0gEAAAC33r17q2nTppo7d64k6ZprrpHD4VBiYqIkacWKFbr33nt1/PhxtW3bVueee6527dqljz/+WAsXLtS///1vderUqXJ/RUVF+t3vfqcNGzYoPT1dF1xwgUpLS/Xtt99q1apVGjNmjO6///7K7cvKyvT73/9eK1euVIMGDdS3b1/l5eXphRdeUOvWrf0+nsOHD2v06NE688wzdfHFF2vfvn1q0aKF33H74MGDtWjRIh0/flz9+/dXYmJi5Wfi7zECgERCFwAsY8qUKfrxxx9122236Y9//KMcDoekk1fsH3jgAS1atEgffPCBOnfuLEm68cYbtWjRIs2ePbtaInbWrFmSpBtuuKHysUceeUR79uzRHXfcoQcffFB16tSRdDL5e9ddd+mpp55St27d1KZNmyr7ys3N1Zw5c5SRkUHtLwAAAHg1evRoSapM6P7lL39RXNzJtEN+fr7+8Ic/qKSkRH//+9915ZVXVr7ugw8+0JNPPqk//OEPmj9/vurWrStJevbZZ7VhwwZdc801euaZZyqToLt379Ydd9yhf/7zn+revbt69+4tSZo2bZpWrlyprl276o033lD9+vUlSUuXLtV9993n9/EcPHhQ/fr105QpU+RwOOR0OuVwOPyK21u3bq1Jkybpsssu0/Hjx/XYY4+pRYsWle/h7zECgETJBQCwjNTUVPXp00djx46tDAolKT4+vjIxe+qtWZdccokaN26stWvXau/evZWPl5aWav78+UpOTtagQYMknUzarl69Wu3atdMjjzxSmcyVpK5du+ree+9VWVmZ3nnnnWrt6tevnzIyMiRJDoejStsAAAAAIz766CMVFBRo+PDhVZK5knTzzTerX79+2rt3rxYsWCBJOnDggObMmaPGjRtXSXRKUsuWLTVu3DhJ0r///e/Kx99//31J0tNPP12ZzJVOxs233HJLQO2+9dZbK+PfmJiTKRR/43ZvAjlGAJBI6AKAZdx///164403lJqaWvnYkSNH9O2332rZsmWSTiZr3eLi4nTdddfJ5XLpk08+qXx88eLFOnLkiK666iolJCRIOlm7S5J69uxZGYieqk+fPpKk1atXV3uuXbt2JhwdAAAAopk7Hu3Vq5fH593xqHu7NWvWqKKiQp07d66S6HS76KKLFBMTo7Vr16qiokIHDhzQnj171KRJE4/xa//+/QNqt6d9+Ru3e+PvMQKAGyUXAMBC9u7dq3fffVdr167V7t27deTIEUmqvPJ/esmDG2+8UW+88YbmzJmjMWPGSJJmz54tqWq5hZ9//lnSydvQpk2b5vX99+/fX+2xUwNVAAAAIBC//PKLJFXGrN6441F3/Lp48WKfazicOHFCR44c0YEDByRJTZs29bide10Jf3mLhf2N2z3x9xjT09P9bT6ACEVCFwAsYt68eXrsscdUXl6ujIwMXXjhhTrnnHPUqVMnuVwuj3W/zjnnHHXv3l1r167V+vXrdfbZZ+vrr79Wq1at1K1bt8rtnE6nJKlz585q2bKl1zZ4KqfgaUYvAAAA4A/3DNN+/fopOTnZ63bu9Rzc8WubNm3Uvn37GvdfU1kwdy1ff3mKhQOJ2z3x9xgBwI2ELgBYwLFjx/Tkk0/K5XLp5Zdf1oABA6o8764l5smNN96otWvX6vPPP9c555yj8vLyKrNzJalx48aSTt629cADD5h/AAAAAIAPTZo00e7duzVixAhDC3y549f27dtr0qRJNW5fXl4u6ddZr6fLzc31o7Xe1SZuP52/xwgAbky7AgAL2LZtm44dO6a2bdtWCwolVdbi8nTr1pVXXqmkpCQtWrRICxYsUGxsrK677roq2/Ts2VOS9PXXX1fOBDjVggULdOWVV+pPf/qTCUcDAAAAVOWOR5cuXerx+eeff17XX3+9Pvzwwyrbf/vttzpx4kS17X/44QcNGjRI999/v1wul5o0aaI2bdro8OHDWrt2bbXtv/zyS1OOozZx++n8PUYAcCOhCwAW4K6HtWvXLu3cubPycZfLpffee68ysC0pKan22sTERF155ZXas2ePvv76a1188cXVaof16tVL7du316ZNm/T8889XWaRhz549evbZZ7Vz5061atUqGIcHAACAKHfzzTcrMTFR06dP16efflrlucWLF+udd95Rdna2OnfuLEnKyMhQ//79tX//fj3xxBMqKiqq3P7w4cN64okntGfPHp1xxhmV5RZGjhwpSZowYUJlTV3p5OJjb731linHEWjcHh8fL0kqLCysfCyQYwQAiZILAGAJZ599ti677DItXrxY119/vc4//3zFx8dr8+bN+vnnn9WmTRtt375dhw4d8vj6oUOH6uOPP5bT6axWbkE6WVPsxRdf1G9/+1u99dZb+vTTT9WxY0cVFxdrzZo1Kisr0+WXX67bbrst2IcKAACAKNS0aVP95S9/0YMPPqgHH3xQL7/8ss455xz98ssv2rhxoyTp8ccfr1JL9plnntGePXv06aef6ptvvlHnzp3lcDi0Zs0aHT9+XOedd16VcmJDhw7VypUrNW/ePF1xxRW68MILdfz4ca1evVpdunTRunXran0cgcbtLVq00M6dO/U///M/6tixox555BFlZGT4fYwAIDFDFwAs48UXX9TYsWN11llnafXq1Vq+fLkaNGighx56SDNnzlTbtm2Vm5tbGfCeqlOnToqPj1eDBg102WWXedx/q1atNHv2bN15551KTEzUN998o+zsbHXq1EkTJ07UCy+8oNjY2GAfJgAAAKLUoEGD9J///EfXXnutCgsL9eWXX+rQoUPq16+f3nnnHf32t7+tsn3Dhg314Ycf6n/+53/UpEkTffvtt1q/fr1atWqlxx9/XG+99ZYSEhIqt3c4HJo0aZKeeuoptWjRQt9884127typO+64Q3/+859NO45A4vbHH39c559/vg4dOqTly5dXzu719xgBQJIcLgqxAIDtLViwQGPGjNHvfvc7jRs3LtzNAQAAAAAAQcIMXQCwqZKSErlcLu3fv79ydu3w4cPD3SwAAAAAABBE1NAFAJuaPXu2nn32WZWVlcnlcunWW2/V2WefHe5mAQAAAACAICKhCwA2lZmZqYSEBNWrV09XX301pRYAAAAAAIgC1NAFAAAAAAAAAJughi4AAAAAAAAA2AQJXQAAAAAAAACwCRK6AAAAAAAAAGATJHQBAAAAAAAAwCZI6AIAAAAAAACATZDQBQAAAAAAAACbIKELAAAAAAAAADZBQhcAAAAAAAAAbIKELgAAAAAAAADYBAldAAAAAAAAALAJEroAAAAAAAAAYBMkdAEAAAAAAADAJkjoAgAAAAAAAIBNkNAFAAAAAAAAAJsgoQsAAAAAAAAANkFCFwAAAAAAAABsgoQuAAAAAAAAANgECV0AAAAAAAAAsAkSugAAAAAAAABgEyR0AQAAAAAAAMAmSOgCAAAAAAAAgE2Q0AUAAAAAAAAAmyChCwAAAAAAAAA2QUIXAAAAAAAAAGwiLtwNAABU5XK5tHLlSs2ZM0cbN27U/v37VVJSovT0dHXp0kWDBg3SlVdeqdjY2HA3FQAAAAi5n3/+Wf3795fT6dSIESP0xBNPhLtJABBSDpfL5Qp3IwAAJ+3bt08PPPCANmzYIElq3bq1WrRooTp16mjv3r3asmWLXC6X2rVrp1deeUVnnHFGmFsMAAAAhNY///lPTZ48WfHx8apXr56++uor1atXL9zNAoCQIaELABZx4MAB3XTTTTpw4IAuvvhijR8/Xm3atKmyzb59+/Tss89qyZIl6tixoz788EPFxXGzBQAAAKKDy+VS//79lZ+frxtvvFHTpk3TxIkTdcMNN4S7aQAQMtTQBQCL+NOf/qQDBw5o4MCBeu2116olcyXprLPO0ssvv6yOHTtq06ZN+uKLL8LQUgAAACA8Vq5cqZ9++kkXXHCBBg8eLEl6//33w9wqAAgtpnUBgAX8+OOPWrx4sRITE/X000/7rI8bGxurP/zhD1q4cKGaNWtW+Xh5eblmzZqlefPmKTs7W0VFRUpKSlJWVpZuueUWXX311VX2c9lllyk/P1/Lly/Xiy++qPnz56uoqEgtW7bUsGHD9Jvf/EYOhyNoxwwAAAD46z//+Y8k6YorrlDXrl3VsmVLff/999qyZYvat29fZdtx48Zp1qxZmjZtmqZNm6alS5cqMTFR99xzj0aOHClJys3N1auvvqolS5YoNzdX9evXV69evTR69Gi1bdu22vvv2rVLb731llatWqUDBw7I6XSqSZMm6tOnj+655x41bdo06J8BADBDFwAsYO7cuZKkfv36KT09vcbt+/btq6efflrnnXeepJO3nt1///364x//qC1btqhLly6V+1q9erUefPBBvfPOO9X243Q6NXr0aE2bNk3nnHOOLrjgAu3atUtPPvmkxo8fb+5BAgAAALVQWFioBQsWKCkpSYMGDZIkXX/99ZKk9957z+vrJkyYoJUrV6pPnz5KTU1VVlaWJCk7O1vXX3+9pk+frri4OF166aVq3ry55s+fr6FDh2rp0qVV9rNmzRoNGTJEH3zwgZKSktS3b19169ZNhw4d0rvvvqtbbrlFRUVFwTl4ADgFM3QBwAJ++OEHSVKvXr0Cev2CBQu0ePFidenSRVOnTlVSUlLlc6+99pr+9re/afr06RoxYkSV1xUXF2v9+vWaOnVq5Xvv2bNHI0aM0KxZs9SvXz9dfvnlAR4VAAAAYJ558+apuLhYN910kxISEiRJN9xwgyZPnqy5c+fq0UcfVXJycrXX5ebmas6cOcrIyJB7GaGysjKNHTtWhw8f1vjx4/Xb3/628u60xYsXa+zYsXrkkUf02WefVU64eOqpp3TixAn9/e9/15VXXlm5/4MHD+rmm2/WTz/9pMWLF+vaa68N9kcBIMoxQxcALOCXX36RJK+3aP35z3/Www8/XO2/P//5z5JOBqSXXXaZHn744SrJXEkaNmyYpJMLqnlyzz33VEkkt2jRQuPGjZMkvfvuu7U7MAAAAMAkM2fOlKQqC6A1bdpUF198sY4fP645c+Z4fF2/fv2UkZEhSXI4HHI4HFqwYIH27Nmjfv36aeTIkVVKjV122WW65ZZbdOTIEX388ceSpGPHjqlTp0668cYbqyRzJalx48YaMGCAJO8xNwCYiRm6AGABTqdTkipnDJxu4cKF+umnn6o93rx5cz3++OO6+uqrq9XILS4u1s6dO7Vu3TpJUkVFhSoqKqrV5z39ddLJIDYuLk5r165VeXm54uL4uQAAAED4bNu2TRs2bFCrVq0qy465ucsjvP/++xo+fHi117Zr167aYytXrpQkXXDBBR7fr0+fPpo2bZpWrVqlUaNGKSkpSRMnTqy23YEDB7RlyxZlZ2dLkkpLS/0+NgDwFyN0ALCAJk2aaOvWrTp06JDH5xcvXlzl33v27KmsG+ZWVFSkDz74QF9//bV27NihgwcPyuVyVZltcHrCODY2tnK2wqni4+OVlpamgwcPKi8vT02aNAn00AAAAIBacy+GVlRUpNtvv73Kc2VlZZKknJwcfffdd9USvqmpqdX2575DbuLEiR4TtW779++v8u/vvvtOH374oTZt2qQff/xRxcXFklQZc3uboAEAZiKhCwAW0L59ey1btkzfffedbrrpJr9fv23bNv32t7/V4cOHlZaWpi5duuiaa65RVlaWevXqpUsvvdTj62JivFfecQejzM4FAABAOJWVlVWWUzh48KAOHjzoddv333+/WkLXU8zrvkOuV69ePicvnLpg8VNPPaV3331XMTExateuna688kq1bt1aXbt21TfffKNXXnnFr+MCgEAxSgcAC7juuuv0+uuva+HChRo/frzq16/v1+uffvppHT58WHfddZcefPDBKmUVjhw54vV1ZWVlysvLqxKoStKJEyeUl5enevXqKS0tzb+DAQAAAEy0dOlSHT58WOeee64++OADj9v88MMPGjp0qD777DM9/vjjatCggc99Nm7cWJI0ePBgQxMqVq9erXfffVdnnHGG3njjDbVp06bK81988YWxgwEAE7AoGgBYQGZmpgYNGqSjR4/qiSeeqJwx4M2mTZuq/Hv9+vWSTi5wdnqN3G+++aby/3va79KlS6s9tnjxYjmdTl100UVVSjYAAAAAoeZemOyaa67xuk3nzp3Vpk0blZSUVC6e5kvPnj0leY6FJemdd97R4MGD9fLLL0v6Nd4eNGhQtWRuRUVFZU1eSi4ACAUSugBgEf/7v/+rs88+W1988YVuu+02/fDDD9W22bt3r5588kk99NBDkn69Bcz9v4sWLaqy/bfffqtnnnmm8t+eFmn429/+pp07d1b+e+fOnXruueckSb/97W9reVQAAABA4A4ePKivv/5asbGxuvLKK31ue/3110uSPvjggxoTq1dddZUaN26sBQsW6K233qqy/YYNG/TSSy9p69atysrKkqTKu9ZWrFihEydOVG574sQJTZgwQdu2bZMklZSU+H2MAOAvSi4AgEXUr19fH330kSZMmKAvvvhCQ4cOVUZGhlq1aqX4+Hjt3bu3cvXc+Ph4DR8+XGPHjpUk/e53v9PEiRP12GOP6YMPPlDjxo31448/asuWLWrQoIEaN25cWW8sOTm5yvvGxsbquuuu04UXXiiXy6WVK1eqtLRU9957r3r16hXyzwEAAABwmz17tsrLy3XRRRepUaNGPre99tpr9cILL2j37t2VM2a9SUhI0EsvvaRRo0bpueee0/Tp05WVlaWCggJ99913crlc+u1vf6sBAwZIkq688kr985//1NatWzVgwACde+65Ki0t1bp161RYWKjMzExt27bN6yLHAGAmEroAYCENGjTQ5MmTtWHDBs2ZM0dr1qzRDz/8oKKiIqWlpemiiy5S7969dcMNN1Spezty5Eg1atRIU6dO1datW7Vx40adeeaZuv322/X73/9er7/+uqZNm6YlS5aoVatWVd5z8uTJ+vjjj/XFF1+otLRUXbt21e9+9zv1798/1IcPAAAAVOEun+Cr3IJb06ZN1bt3by1btkzvvfeeEhMTfW5/3nnnafbs2Xr99df19ddf66uvvlKDBg3Uq1cv3X777ZXJXElKTk7Whx9+qH/84x9auXKlli5dqqSkJHXo0EG33HKLLrjggsr3LisrU506dWp34ADgg8NFgRcAiEqXXXaZfvrpJ33xxRdq0aJFuJsDAAAAAAAMoIYuAAAAAAAAANgECV0AAAAAAAAAsAkSugAAAAAAAABgE9TQBQAAAAAAAACbYIYuAAAAAAAAANgECV0AAAAAAAAAsAkSugAAAAAAAABgE3HhboDduVwuOZ2UIQ5UTIyDz8+C6Bdrol+si76xJvrFWmJiHHI4HOFuBsIglPEy57190Ff2QD/ZA/1kH/SVPYSzn4zGzCR0a8npdCkv71i4m2FLcXExSktL0tGjx1Ve7gx3c/D/6Bdrol+si76xJvrFetLTkxQbS0I3GoUqXua8tw/6yh7oJ3ugn+yDvrKHcPeT0ZiZkgsAAAAAAAAAYBMkdAEAAAAAAADAJkjoAgAAAAAAAIBNUEMXiFBOp0tb9xao4FiJGiTFq21GA8XEULsQAAAAAADACKvmVkjoAhFobU6u3l24TfmFJZWPpaXEa/iATHXPahLGlgEAAAAAAFiflXMrlFwAIszanFy9PGtjlS8cScovLNHLszZqbU5umFoGAAAAAABgfd9mWzu3QkIXiCBOp0vvLtzmc5v3Fm6T0+kKUYsAAAAAAADso8Lp0ozPc3xuE+7cCgldIIJs3VtQ7erR6fIKS7R1b0FoGgQAAAAAAGAjm3ceVp7FcyskdIEIUnDM9xeOv9sBAAAAAABEk7yjxYa2C2duhYQuEEEaJMWbuh0AAAAAAEA0Sa9fz9B24cytkNAFIkjbjAZKS/H9hZKeEq+2GQ1C0yAAAAAAAAAb6XBOQ6VbPLdCQheIIDExDg0fkOlzm2EDMhUT4whRiwAAAAAAAOwjNsahWy/P8rlNuHMrJHSBCNM9q4nuG9Kp2kzd9JR43Tekk7pnNQlTywAAAAAAAKyvZztr51biwvruAIKie1YTdctsrK17C1RwrEQNkk7eCsDMXAAAAAAAgJpZObdCQheIUDExDrVrkRbuZgAAAAAAANiSVXMrlFwAAAAAAAAAAJsgoQsAAAAAAAAANkFCFwAAAAAAAABsgoQuAAAAAAAAANgECV0AAAAAAAAAsIm4cDcA9uF0urR1b4EKjpWoQVK82mY0UEyMI9zNMl20HCcAAAAAAIhM4cptkFMJDRK6MGRtTq7eXbhN+YUllY+lpcRr+IBMdc9qEsaWmStajhMAAAAAAESmcOU2yKmEDiUXUKO1Obl6edbGKiekJOUXlujlWRu1Nic3TC0zV7QcJwAAAAAAiEzhym2QUwktErrwyel06d2F23xu897CbXI6XSFqUXBEy3ECAAAAAIDIFK7cBjmV0COhC5+27i2odnXldHmFJdq6tyA0DQqSaDlOAAAAAAAQmcKV2yCnEnokdOFTwTHfJ6S/21lVtBwnAAAAAACITOHKbZBTCT0WRYNPDZLiTd3Oqux2nKeuGlk/oa7kkI4eL2UFSQAAAAAALKrC6dKW3Xk6fLQ4KOP3UOQ2Ts1HuI/BbjmVSEBCFz61zWigtJR4n1Pn01NOnsB2Zqfj9LRq5KlYQRIAAAAAAGv5NjtX7y7YqsNHiisfM3v8Huzchqd8RFpKvG7pn2mbnEqkoOQCfIqJcWj4gEyf2wwbkGn7GaF2OU5vq0aeihUkAQAAAACwjrU5uZr88YYqyVzJ/PF7MHMb3vIR+YUlmjJ7o3q1952UtkJOJZKQ0EWNumc10X1DOiktperU+PSUeN03pFPEzAS1+nEaWTXyVKwgCQAAAABAeBkZy5s5fg9GbsPIMazekqvR13e0bE4l0lByAYZ0z2qibpmNq9VJibSrK1Y+TiOrRp7KvYJkuxZpQWwVAAAAAADwxshY3uzxu9m5DaPHkJJQV38d3duSOZVIQ0IXhsXEOKIiOWjV4wxkNUhWkAQAAAAAIHyMjsvNHr+bmdvw5xismlOJNJRcAGwikNUgWUESAAAAAIDwMTout/L4PRKOIdKQ0AVswr1apVGsIAkAAAAAQHgZGctbffweCccQaSyf0F29erXuuOMOXXjhherWrZtuueUWzZ8/v1b7nDt3rrKysvTwww+b1Eog+IysVnkqVpAEACA6EC8DAGBdRsbyVh+/R8IxRBpLJ3TnzJmjESNGaPXq1erQoYN69uypTZs26YEHHtBLL70U0D5/+eUXPf300ya3FAgNb6tVnooVJAEAiB7EywAAWF/3rCa6f2gXNUytV+VxO43fveUj7HQMkcSyi6IdOnRIEyZMUEJCgqZPn66OHTtKknbs2KERI0boX//6l/r371/5uBEul0uPPfaYjh49GqxmRySn08UKhRZy+mqV9RPqSg7p6PHSiO0f/gYBAKiOeBkAAPvo2a6J+vdqqVXf79Pho8XVxraexr2SLDUWPj0fYYU2RSvLJnRnzJih4uJijRo1qkoQ2rp1az344IN6/PHH9fbbb+v55583vM+33npLq1atUs+ePfXtt98Go9kRZ21Ort5duE35hb+uaJiWEq/hAzK5+hJG0bRqJH+DAAB4RrwMAIC9xMY41L5lusrLnVUe9zTuTap3MmV3rLi88jErjIWjKR9hZZYtubB06VJJ0oABA6o9N2DAADkcDn355ZeG95eTk6MXX3xR/fr10w033GBWM0PC6XQpe0++Vm7er+w9+XI6XSF537U5uXp51sYqXyiSlF9YopdnbdTanNyQtAPRi79BAAC8I14GACBw4cq1nM7buPdYcXmVZK7EWBi/suQMXZfLpe3bt0uSMjOrF11OTU1Vo0aNdPDgQR04cEBNmzb1ub/S0lI9/PDDSkpK0rPPPquvvvoqKO0OhnDNTnQ6XXp34Taf27y3cJu6ZTZmaj2Cgr9BAAC8I14GACBwVrkT1Mi41xPGwrBkQvfIkSMqKSlRUlKSEhMTPW7TpEkTHTx4UIcOHaoxQH3hhRe0detWvfTSS2rUqJHp7Y2LC85E52+zT16lOZ37isz9Q7uoZ7vgfNFs2Z1X7erQ6fIKS7Tj5yNq3zK9yuNOp0s5P+aroKhUDZLrKuvsNI9fMrGxMVX+F9ZglX6pzd9gJLJKv6A6+saa6BdEOuLl6jjv7YO+sgf6yR7op5qdnqMoPF4WllyLp74yMu71JJrGwqFml3PKkgndEydOSJISEhK8bhMff3JVvePHj/vc14oVKzR16lRde+21uvzyy81r5P+LiXEoLS3J9P1WOF16d8FWn9u8t3Cb+vdqqdggXJEp25VvbDtX1eNfvuFnvTb7Bx0+Ulz5WMPUehp1fWf17nKmx33Ur++9nxE+4e6XQP8GI124+wXe0TfWRL8gUhEve8d5bx/0lT3QT/ZAP3nmKUdRUwolmLkWqWpfGR33ehJtY+FQs/o5ZcmEbkzMySy4w1HzyeN0Or0+d/ToUY0fP15NmzbVhAkTTGtf1fd36ehR30FyILbszqvyhePJoYITWvX9vqBckanjMFY7po7Dpfz8Y5JOziie/PGGatscPlKsiW9/W+0qV2xsjOrXT9DRoydUUeG9HxFaVumXQP4GI5lV+gXV0TfWRL9YT/36CZaf6WAnxMvVcd7bB31lD/STPdBP3nnLUdRUKjdYuRZPfWV03OtJtIyFQy3c55TRmNmSCd2kpJNXGIqLvSc0S0pOTkn3douZJD311FPav3+/3nzzTdWvX9/cRp7i9NUJzXD4qO9k7qnbBeP9W5+ZqrSUeJ9T/9NT4tX6zFSVlzvldLo0/fMcn/uc8XmOup7TsFr5hYoKZ1COAbUT7n7x928wWoS7X+AdfWNN9AsiFfGyd5z39kFf2QP9ZA/0U1VGchS+BCvXIlXtKyPjXk+icSwcalY/pyyb0E1KSlJhYaGKi4tVr169atvk5p5c0a9JE891TX744QfNmzdPDRo00MyZMzVz5szK5/bt2ydJWrdunR5++GG1bt1ao0ePDsKRBK5BUryp2/krJsah4QMyPdaVcRs2ILMyObt1b4Gheqdb9xaoXYs0U9uKyOTv3yAAANGEeBkAAO+M5Ch8CVau5XRGxr2eMBaGJRO6DodDmZmZWr9+vXbs2KGOHTtWeb6goECHDh1Samqq1wUe3LXCCgoKNHfuXI/b7Nu3T/v27dP5559vuQC1bUYDQ7MT22Y0CFobumc10X1DOlVb+TE9JV7DTlv5seCYsS9Ko9sBkn9/gwAARBPiZQAAvKtN7iHYuZbTeRv3JteLk0vSseLyKm1jLAzJogldSerTp4/Wr1+vhQsXVgtQFy5cKJfLpb59+3p9fa9evZST43l6/cyZMzV+/HgNHjxYkyZNMrXdZrHK7MTuWU3ULbOxtu4tUMGxEjVIOvnFdvr7hntGMcLD6XTV+LdRW0b/BoFwcDpd2rI7T2W78lXH4VLrM1P52wQQMtEeLwMAoos/48/a5B7CMfvV27hXkuFjDsX4HNZh2YTu0KFD9cYbb2jq1Knq06ePzjvvPEnSzp079fe//12SdNddd1Vun5ubq8LCQqWkpHi9rcxurDI7MSbGUWOZBCvMKEZorc3Jrfa3mZYSr+FB+Ns08jcIhFoozwEA8IR4GQAQLfyNvY3kKBwOyXXKmmThnv3qbdxrZCzM2CT6WDah26xZMz3xxBOaMGGCbrvtNvXq1Ut169bVihUrVFJSooceekjt2rWr3P6FF17QrFmzNGTIED333HNhbLm57DI70SozihEaa3NyPfZ1fmGJXp61UfcN6cSPBiIa5wAAKyBeBgBEg0Bi75gYh27p30ZTZm/yut97ruuolIS6ls61GMHYJDpZNqErSTfddJOaNWum1157TevXr1dsbKw6dOigO+64Q4MGDQp380LGLrMTrTKjGMHldLr07sJtPrd5b+E2dctsbMsfQ6AmnAMArIR4GQAQyQKNvdfm5Or9Rds9bh9JOQrGJtHL4XKdOsEc/qqocCov71i4m2EpRuu2xMXFKC0tSfn5x1Re7gxDS+FJTf2SvSdfz7+3rsb9PDqsmy0uRNgF54t1cA7YA+eM9aSnJyk2NibczUAYhCpe5ry3D/rKHugne4j0fgok9vY2Y9Vt9PWd1LNd6JO5wegrxibmC/c5ZTRmtvQMXdiTXWYUIzBGVwutzaqigJXlFRWbuh0AAAAAz/wdfxqZsfrBom3q3jYyZqwyPo9eTJMA4Bejq4XWZlVRwMqKjpWZuh0AAAAAz/wdf27dW+BzITRJyiss0da9BbVtmiUwPo9eJHRhW06nS9l78rVy835l78mX00n1kFBwrxbqS3rKyVIbQCRKSaxr6nYAAAAAPDM6/mzTPFXZe/K1JifX0H4jYcaq0+mS0+lSUj3fN98zPo9MlFyALa3Nya22+FpaSryGR0hhcyuLiXFo+IBMnzWJhg3IjIjbVwBPagoo/d0OAAAACDeja+GEmpHx5/ntm+ixV1fUODP3VEZmrFr1M5E850S8MXN8buXPJNqQ0IXteCtwnl9YopdnbdR9QzqR1A2y7llNdN+QTtV+QCJptVDAm7YZDZRUL07Hisu9bpOcUIer4AAAALAFq0+Y8jX+PL99E322eq9f+zMyY9XKn0lNi765mT0+t/JnEo1I6MJWjBQ4f2/hNnXLjIwC51bWPauJumU25uocotKJUu/JXEk6UUL9XAAAAFhfoBOmQj1T09P4s03zVD326gq/91XTjNWaPpOBPc5St8zGYRn/GsmJJNWL0+jrO6nd2WmmtY+JddZDQhe24k+B83Yt0kLUquqi5TaEmBhHWD9nIBw27jwsp9P3NhXOk9t1adMoNI0CAAAA/BTohClvMzUv6XqmmqQnBG0MfPr4M3tPvl9lFozMWDXymSxYs08L1uwLy+xUIzmRY8XlinE4TC2zwMQ66yGhC1sxWrg8nAXOuQ3BPqIl8Q5zfb7G2C1dn6/ZS0IXAAAAlhXIhClfMzVnL9tV+e9Ax8D+jNGMjvsvO6+5emQ1MTTeM/KZuIVjdmo4ciJ2mVgXbUjowlaMFC73ZzuzcRuCfZB4R6COnTBWTsHodgAAAEA4+JscNDJT0y2QMbC/YzSj4/4eWU0MJxoDSYSGcnZqOHIidphYF41iwt0AwB9tMxrUuHK8kQLnwWD0NgSn0xWiFsEbd+L99KuM7qBjbU5umFoGO6gTa+yn0+h2AAAAsD+n06XsPflauXm/svfk22Lc529y0J/Zq25Gx8A1jdG+zc6t9vkGIz8QSCLUPTs1FMKRE7H6xLpoxQxd2EpMjEPDB2T6XNGxpgLnwcJtCPZA/R/UVvMmSdrx81FD2wEAACDy2fXuP3dy0Nc49tTkYCAzMI2MgY2M0V75ZKNcp+SF3Z+v2fkBI5+JJ6GanRqOnIi/fycIDUMJ3UsvvdS0N3Q4HFqyZIlp+0P06Z7VRPcN6VTtB9NIgfNg4jYEeyDxjto6M91YotbodgAiBzEzAEQfO5fd8zc5GOgMzJrGwEbGaK7TJvme+vl6yg+kJNTRbZe39fuzX7ftoErLKvx6jSTVT6ir7D35IVmfJdQ5EStPrItmhhK6+/fvN+0NHQ46GLXXPauJumU2ttSCVtyGYK5gLVhG4h211bfLmXp/8XZD2wGILsTMABBd7Hb3n6cxlj/JwUBnr9Y0Bq7N2Ou9hdv0/Ojecrqk6Z/nqPD/17EoPFGm9xdtV4zD4VcNX19JS2+S68Xp3/O3hHSGdqhzIladWBfNDJdcGDhwoMaNG1erN5s4caIWLVpUq30AbjExDkvNoOQ2BPME85YlEu+orS+//8nwdlf0ahHk1gCwGmJmAIgedrr7r6YxlpHkYEyMQ73aN9Fnq/cafl8jY+DajL3yCks0b/luzV62q9pz/syS9mfBt9MVFZdLxeUBv3egQp0TseLEumhmOKGbkJCg5s2b1+rNEhISavV6wMqM/Lid374JX3Y1CPYtSyTeUVs5P+Yb3o6ELhB9iJkBIHqs23bQ0HbhvvvP6BirpuTg2pxcv5K5krFb8QOd+eu2YI3vNhmZJR3Igm9pyXVVWu7UsdOSuf6+t51YbWJdNDOU0B0zZoyysrJq/WaDBg1SixYMbhGZnE6XVm3J9bnN6i25Gnppm4j5MjdbKG5Zov4Paiu/qNTU7QBEDmJmAIgea3NytWDNPkPbhvPuP7PGWP7OYPXnVnwjYzRffCVUJWOzpI0m3a/p3UJnNkpSg6R4OV0uTXp/fY3vPXvZTnVoka4OrdINvQdghOGErhkGDhyogQMHmrIvwGrsdLuNVYXqM6T+D2qjQXJd/XjA2HYAogsxMwBEB3+Sm+G++8+sMZbRGazXXNhCHVqm+30rvrcxmsNRfUG0UyXVi6sxoSvVnLA1mnTv0CK98nNaudlY7fx5y/do3vI9Sk+J1903dFH7jFRDrwN8MVxy4XRbtmzRf/7zH+3Zs0clJd5PDIfDobfffjvQtwFsg8W2ai+UnyH1fxCo9JR6pm4HILIRMwNA5PHn9vy+XcO7UK5ZYyyj5SXObJwU8OQbT2O0whOlmjJ7k9fXDOxxlmYv213jvmtK2AZSms/fmdd5hSWa+Pa3un9oF3Vr08iv1wKnCyihu3r1at1xxx2qqKiQy9elErFCL6JHJCy25XS6tGV3nsp25auOw6XWZ6aGNMEZ6s+Q+j8IRMvmKdJ6g9sBiGrEzAAQmfyZYDJ72S4t/f7ngBd4djpdtZqEYsYYK5TlJTyN0WKGOLzeXdkts7GWfv9LrddICaQ0X6C1f2d8kaOu5zRkMhFqJaCE7osvvqjy8nJdffXVGjhwoOrXr08Qiqhn98W2alr1NBSMfIZJ9eLkdLrkdLr4AURYHD9e8y1d/mwHIHIRMwNAZPI3aRnoAs9mjNGMjLHSfIxT/Skv4Ws/tVHT3ZVmrZHib2m+QGv/5h2lFCNqL6CE7tatW9WhQwf97W9/M7s9sLDaXhmM9HbZebEto6ueBpuRz/BYcbkmfbA+5Mnmmvjzd2iVv1kEpuhEmanbAYhcxMwAEJkCnZn57sJt6tq6kbb/dKTGsYBZYzQjY6zSsgqt23bQ4/78KS/haz+1derM3dPHU90yG5u2Roq/pfm8JYFrQilG1FZACd2EhAQ1bdrU7LbAwqwwe9MO7bLjYltmrXpqFqM/iKFONvviz9+h1f5m4b/8o8aCL6PbAYhcxMwAEJkCnZmZX1iisS99reLSisrHPI0F/BmjGeEeY039b7bHBcSOFZd7HVv5k3g8dT/BWq/E13jqr6N7m/Ke/pbmOzUJvHl3nuat2FPja6xcihH2EFBCt3///lqwYIEKCwuVkkKNwEhnldmbdmmX3RbbMmvVUzO5P8PsH/M1ZfZGn6uWhjLZ7Ik/f4dW/ZuFfxqk1DV1OwCRi5gZAIIn3He91ZQk9ebUZK7keSzgzxitU+uGht63W2ZjzViw1ec2nsZW9RP9j2nf/m92UCaxWHk85U4Ct81ooG827vddirG+dUsxwj5iAnnRQw89pLS0NN11111asWKF8vLy5HQ6vf4H+zJ6ZdDp9L3Qh9ms2i4395f5BR2aqV2LNMsmcyXzVj01W0yMQzEOR43BkTuQCQd//g6t/jcL406UGAvYjW4HIHIRMwNAcKzNydUjU5br+ffW6bU5m/X8e+v0yJTlWpuTG9J2dMtsrLp1Yk3Z16ljgWCM0bbuLVBBUanPbTyOrQIYnhQVl1dLaLqTroH2kV3GU+7Z277cOijL0jkC2ENAM3Tr16+vq6++Wi+99JLuuOMOn9s6HA5t3rw5oMYh/Kw4e1MKbbtCceU3nFeXzVj1NFismmx28+fvUJIlzqVwz2QAgGhCzAwA5rPSLE1/6svW5NSxQDDGaIGOrY6e8J0E9peROyw9jVmMjr227M5TbGxMWMc7Xksx1o/X3UO6qH1GqsrLuZCL2gkooTtt2jRNnjxZkuRy+b76UdPzsDarJtRC1a5Q1DsNd01VIwX904O0WmlNrJxsloLzdxjMcyncf2uRw2hASKIciHbEzABgLqut/2F27O7en9FF1wr9WIQ30LGV2WOtmiaxeBuz9MgyVi/4bx9+X+XfKQl1dNvlWerZLrTjHU+lGDu0SlfDhsnKzz8W0rYgMgWU0J0+fbocDocee+wxXXvttUpPTze7XbAIqybUjL5fbt7xgN8jFFd+rXB12UhB/2EDMsMyi9PKyWYpOOdHsM4lK/ytRYqEusZuqzO6HYDIRcwMAOay2h2kZsfu7v3FxDh0S/82mjJ7k8/tP1i0Tb06GFt800jy19PYymhy2R/eEuG+xiwL1uwL6L0KT5RpyuyN2nV+hn5zme9SCKer7d2Npy+uxp2RMFNANXR/+eUX9erVSyNHjiQwjXDuL29fwpFQM9IuSVq6/ueAauiEoj6PlWoAuW8JOf0zTU+JD3th+ZrqD4Ur2Sz5d36E6lxyOl3K3pOvlZv3K3tPPvV7gyCvyFgwa3Q7AJGLmBkAzGW1O0iNjkuNSEmso7yi4soYPiWh5sXI8gpLlPNjfo3bOZ0uvb/I93hAkm7u36ba2MrImMxfnhLhRsYsjloM+z5bvVffZh8wvL1V6jQD3gQ0Q7dx48aqW5fVu6OBVWdvxsQ4dEnXMzV72S6f2+UXlQZ0dTYUV36tdnXZfUvIjp+PqMzlUB2HS63PTA37VUSv9YdS4jUszKUC/D0/gn0uebs96ZKuZ1jqb832jN4Wze3TQNQjZgYAc1ntDlIj4wGjCo+X6Y25WyT5V2KgpoXOJOO1fr0lkb2NyQLhbRKLkTbWNrye/vlWdW/bpMYxF3c3wg4CSuhee+21evPNN7V3715lZGSY3SZYjFUTak3SEwxtF8jV2VBc+fX3PUKxmFVMjEPtW6YrLS1J+fnHLFOo3VP9Iass5uXP+RHMc8lX0DF72W5D+wjX4nL2Qw1dAMYQMwNA7Zw+BmrTPNVyJdm8xfjJCXVUVl6hkrKqYyqHpJrykv6UGKifWEc/bD+kvb8cUUpCHY/jJDPGt6ePyX4+eEzzVuwxtN9TeZvEYrSNA3ucpeUb9+tYcbnf7114oqzGSSxWq9MMeBNQQnf06NH69ttvNXz4cN15553q2rWrUlNTVadOHY/bE8DanxUTasG8OhuKK7/+vEe4F7MKRTK5JqfXH7ISf86PYJxLRoIOI8K1uBwARCpiZgAInLcxUK/2TfTZ6r1eXxfsO0g9jY08xfiFJ0o91sB1J3MH9DhLKzcdUJGP2rYOh+9Zqcn14vTa3M3VPqNb+mcqJaFOZVvqGyjfIHkfD5x+zOe3a6qtSQV+JXRrmsRidCzSLbOxurZupEkfrDf83qeqKXFstTtpAW8CSuhecsklqqio0NGjR/WXv/zF57YOh0ObN28OqHGwFqsl1IK5YFYoFuMy+h7eAoFQ3e4R7mSyXfhzfph9Lhm9hcqXcC4uZzcNU+uZuh2AyEXMDACB8XX32Wer9+qK8zO0aktuyO8grWls5I7xnU6XHpmy3Oe+Vm32ncyVai4xUFRcLp02UzW/sERTZlf97NJS4pVUL87nrNa05LpyulxauXl/lUkn3o75lv5tahzPpiTW0c392yg9uV6Nk1j8HYMHulBbTYljq9VpBrwJKKGbkHDyVvfk5GRTGwP4I5j1fUNRO9jIe9zcP7PG4vXBvN2D2kH2YEYwEc7F5ewmKd7zzLpAtwMQuYiZAcB/Ru4+W70lV3+5+0Jt/+lIyO4i9GdsZGTCReFx38lct4E9ztKanINVE6rJdVVa7jRcdsBI4rO03KlJ76//9T18zIY+mTTepCvOz/A5W3rE5VmGx4tmr0/iiZFJLFar0wx4E1BCd/HixWa3AwhIMGuShqJ2cE3vkVSvTthu96B2UPCZVcrCaDBx/cWttPT7n4M6k8EK5TmCrajYWALd6HYAIhcxMwCrsnLMZvSW98Xf7dOAHhkhabe/YyMzZ292y2ysmy/LrNJfTperSvLVqOSEOoqNkY4c+zWZnBQfq2MlFdWSw+7Z0L6s3pKr0dd30vuLzBkzm7E+iS9GJrGE4m5dwAwBJXQBKwlmfd9Q1A729R4rN+83tI9g3O6R82M+tYOCyMxSFkaDjmt6t9Q1vVsG5e/Z6XRp3vJdWrBmX5VgMBLLc+z+pcjU7QAAAELJ6iXVjI5t3l+8XZ9/uzck7fa3rqrRCRfJCXV8ll1wJw5PL9lmdJx4uqITZUpOqHoX2fHSioD2JZ085pSEOvrr6N6mjTFquz7JkeMlmvHFtiqfqz8J5lDcrQuYoVYJ3fz8fO3du1clJb6/2Hr27FmbtwFqFMz6vqGoHeztPcJ5u0dBUamh7dZtO0hC109ml7LwN+gwu7/W5uRq6n+zPd7yFYnlOcoqnDVv5Md2ACIfMTMAq7BDSTV/xjahave6bQcNbedORhudcHFz/zYe10tx85Y4rM347/QEck11emtScKzE9DFzbdcn6ZnVtFYJ5lDcrQvUVkAJ3RMnTuixxx7TwoUL5arh7GeBh+Cx8m0yMEc4b/dokGxsJdSVmw7o5su4QmlUsEpZhCvo8DYoOF0kledoWL+etv901NB2AKIbMTMAK7FLSbW2GQ1qXMDrdMFst9Pp0spNBwxt6060Gp1w0S2zsa6/+Fi1u9x8xfBOp0tOp8vvzyhYrFhL1owEcyju1gVqI6CE7osvvqgvvvhCsbGxOuecc5SSkiKHgz/qULL6bTIwRzhv98g6O00pCXVUWMPKq4Unyii74Aejt2stXLPX75pgoQ46jAwK3CKpPEdG02St2pJraDsA0Y2YGYCV+Fs2wE6MtrumSVGent+6t6DGMZEkpSTUUZvmqcrek1/5el/1ZSXpkSnLqzyXVC9OA3tk6JreLT3G8J7yAOEU6bVkQ3G3LhCogBK6ixYtUlJSkj744AO1adPG7DahBna4TQbmCdfMy5gYhy7o2FQL1uyrcdtg1PCNVMGuCRbKoMPIoOBUkfJ30iDFYCkUg9sBiFzEzACsxGjcFu6YbevegoBmntbU7pomRXl7vkdWY0Pv3+rMFD326opqr7+lfxulJNStkiRet+2gxzH9seJyzV62S80bJ1UbAxi9My6UqCULhE9ACd3Dhw/r4osvJjANA7vcJgNzhet2j26ZjQ0ldK14m41VBVoTrFfHZkFsVWD8DfYD+TuxYmmZBokGE7oGtwMQuYiZAVjF2pxcvbfI2J1V4Y7tA00o/3zomLL35HuMF2uaFHXF+Rn6bPVej88bGQ9J0oYdeR5fP2X2Jt03pJMu6HAyng9kTG/kNUkJcRp9XScdKy7T+4u2V0kspyTWUeHxmmcZA7CPgBK6bdu2VW5uzbebwnyRfJsMfAvH7R7hrOEbqYx8pqd7b+E29WzfNIitCkz9BGN1lqXA/k6sWlqmwuBiZ0a3AxC5iJkBSOG/QO3PzE4rxPaBJpTnLd+jecv3VIsXjSRDP/+2ejL3VA6H78XDanr+1ARtIGN6I685dqJcMQ6HerZrqu5tm1T5m2vTPLXa7OGajiEtua5Ky50+Z0szmQwIn5hAXjRq1Cht2LBB8+bNM7s9qIHRq5Xhvk3GTE6nS9l78rVy835l78mX01nLZThhmLuGry9GbrOhD39l5DM9XV5hiXJ+zA9Si2rBj7jN39ux3AOP04NO9yyKtTnhS5CsMLgohtHtAEQuYmYAa3Ny9ciU5Xr+vXV6bc5mPf/eOj0yZXnIYhl/1jyQrHELvXsCRKBOjxeNJENrWLey1s/nFZYoe0++svfka43Bvs8rKq4cQ23eU332ryfuPIB7MtAFHZqpXYs0xcXF1DgGuee6Tnp0WDeNuraDHh3WTXde06HG0hfuxDOA0Atohu6AAQM0btw4PfLII3r33XfVrl07paametzW4XBo7NixtWokfmX0amW4b5Mxi1Vn6EWT2tbwpQ+r8/aZ+lJQVBrkVvnv6HFjbRrY4yy/+trqpWUOFZ4wdTsAkYuYGYhuVlj7xOiaBymJdTTi8ixLxOdGFoY2wh0vmjXZaWCPs7Qm52DAC5JN+WSjX7WBP1i43dBibKfylQfwd1y3cvN+Q+8ZSZPJADsJKKG7d+9eTZ06VS6XS999952+++67ats4HA65XC6CU5NF0y3wVgiAcFKgNXzpQ+/cn+nCNXv1/uLtNW7fINl4eYNQyc0zlrDslmlsIQk3q5eWaZhST9t11NB2AKIbMTMQvaxygdposu3m/m3CGpefXpbCWcOU1+5tG2vt1oM+t3HHi2ZNduqW2VhtzkrVlNmbAnq9vwu9+ZvMTa9fcx7An3FdtE0mA+wmoITuxIkTtX//fp1xxhm69NJLlZ6eLoeDmimhYORqpRVuk6ktqwRA+JW/NXzpw5rFxDg0oEeGPv92b40XabLOtlZNbKfTpaXf/1zjdmnJdf2+wGT10jJnNUnSqi3GtgMQ3YiZgehllQvURpNt6cnhuxDt6Y6+mr4qsw2WIys4VqLz2zWtcVJUTTVw01N+rUNrVbcOyjI0rjI6roumyWSAHQWU0F2zZo3OOOMMzZ07V8nJyWa3CTWo7S3wdmCVAAiBow+NsetFGqO3711y7pl+t93ozN9wzQY4UVph6nYAIhcxMxC9rHKB2upJOW939NVUk9bobNcGSfGG4u3Le2bos9XeF0YbNiBT2386EnC5BaNSEuoENDP37iFd1D4jVeXl5i3Ka9dxChAtAkroVlRUqHPnzgSmYRToLfB2YZUACIGjD42z40Uao/3WJD3Rr/0Gc+avWWIMrgZndDsAkYuYGYheVrld3cpJOX8XbDtdUr04n4ndUxPVRuLt1s1TfT5vtKasP210u+y85uqR1UT5hSV6fd7mGre/5sIWOrNxkhokxatDq3Q1bJis/PxjfrevJnYcpwDRIqCEbteuXbVtW+BfvDCHv7fA24lVAiAEjj70j90u0gSrf4M589cs7Vqkad6KPYa2AxDdiJmByHN6rVdv8ZqVZsZaNSlnNO7zZmCPszR72W6vz5+eqK4p3q7peaNx7S2XtVH95LqVtYAnvb++xtf0yGqidi3SlL3HWCmJDi3TK2PNYMfEdhunANEioITu/fffr9tuu02TJk3SH/7wB8XFBbQbwCsrBUAIDH3oPztdpAlW/wZr5q+Z2p2dpvi6sSrxUVKhXt1YtbNY3WMAoUfMDEQWT7Ve01LiNdxDUtRqM2OtmJSrzZ16yQl1dE3vVmreONljovrm/m2UUDdOM7/aIblOXmhvd3ZajfG2r+eNxr8DemRUfq5Op8uvmNmqYyg7jVOAaBFQVLl582ZddNFF+ve//62PP/5YHTt2VGpqqscg1eFw6C9/+UutG4roYrUAKFSMXvG3g2jtw2gRrP61zczumgq71fQ8gKhAzAyYL1zxsrdar/mFJXp51kbdN6RTtaSu1WbGWiUp53S6lL0nXxt2HA58J/8fa3lKVBeeKNM7n2VXKXUwb8UeJdWL08gr2wX8uQcS//r7GsZQAIxyuFz+jzrbtWsnh8MhIy91OBzassXAcuA2VVHhVF6e+bVqokFcXIzS0pKUn3/Ma/H2Dxdv0+ff7q2SG3E4That/81lmSFqaWj4c8U/mIz0iz88HVe4b++yI7P7xSxm96/T6dIjU5bXOCvh+dG9wxbIbt6Vp0kfrK9xu4dvPlcdWqUHv0HwyKrnTDRLT09SbGxMuJsRUsTMJ4UqXua8t49A+ypc8XJt4xO7TtoIxjm1NidXU/+bbXhRM18eHdatWoLaW+L9VJ6S7/4IJP719zX+bM93n33QV/YQ7n4yGjMHNEN34sSJgbwM8MvanFyPK426XNJnq/eqdfPUiEkIBnLF3y6seHsXzGN2/xqZldC365lanX0gbH9Lm/cYm02yec9hErpAlCNmBswTznjZSK3XvMISbd1b4HEGbDhmxloxiWwk2eqP00s2OJ0uzViwtcbXvbtwm7plNg748wgk/vX3NYyhANQkoITukCFDzG4HUIWRFU/fq+UPcaDMDo6sfKxmscrtXQgOs/vX2+2JyQl15HK5NHvZrsrHAp2VU5vzeNdPhaZuByByETMD5gh3vGy01mttasKaKZx3/nmLsYwmW/1xtKhUTqerss+37i1QQVFpja/L95F8NyqQ+Nff1zCGAuCLoYTukCFDdMkll+gPf/hDrd7sxRdf1Ndff62ZM2fWaj+IfLW9Ch4swQiOrHqsQDidPishN++4x1WMA5mVU9vz+MiJmgcKnraz4kwZAOYiZgZqz9PvZbjjZdvU+Fd4ZzL7irGS6tUxlGz1x/uLt+vzb/dWxnD+JNStknwHgEAZSuhu2bJFmZm1r1f6888/R2xtMJjLilfBgxUcWfFYAStwz0pw163zxeisHDPO44R4Yze3nLqdVWpkAwguYmagdrz9XvbIamzo9cGKl9tmNFBaSnyNNXTbZjQIyvsb5XS6NPW/2T63CdZM5ppirIE9zjL1/U7f/31DOvmVULdC8h0AasNwyYXs7Gz94x//qNWbZWf7/nEB3Kx2FTyYt3lZ8Vh/2H5Ie385opSEOswiRNiZNSvHrPO4W2Yj7fjpqO9G//92UmTXyAZQHTEzEBhfv5cL1uwztI9gxctGavwPG5AZ9ph53vJdNS42FoyZzEZirJWbD5j2fp68t3Cbnrv7QjVIrlvjTOA0CyTfAaC2DCd0t27dqq1bA695417h1+EgMYSaWe0qeDBv87LSsa7NydV7C7cpz8RZhNxmjtoyaxa7WefxZeeepY+/3Fljey4796yw1/wDEHrEzID/jPxeOhwnF0f2Jtjxsrca/+kp8RpmgTtunE6X4cR3XlGxqe89b/muGmOswuNlSqoXV2PC+XRpKfEa2OMsfbhkh8/t8gpLtP2nI7p1YNsaF17r1b4JcRcA2zOU0B0zZkyw2wFUYbWr4MEsi2CVYw3GLEJuM4cZjM62qZ9QV9l78r1ePDDrPP5qw8+G9vPVhp91dtMUamQDUYSYGQiMkYuuvpK5Umji5dNr/FtpssLWvQWGk6UfLNyu+LhYU+Lxb7MPeFznwJP2LdK0JuegX/sfPiBTZRVOQ9sWHCvRBR2a6b4hnfTGvM0qKfP8us9W71Xr5qmMRwDYGgld+C1UMy6tdBU82GURwn2swZhFyG3mMIuRWezJ9eL07/lbfF48MOs8PpB/3NB+sn/MV3JSHUPbUiMbiAzEzEBgjP4ODuxxltbkHAzr2MBd498KnE6XsvfkK3tvvn46eMzw6wpPlJkSj3+bnatXPtlkePtmDRMNb3tqv2bvyTf0GncM1y2zsRLr1VFJmfe/K+6QAmB3hksuAFLoZ1xa5Sp4KMoihPNYzS4pEarbzCnnEB2MzGIvKi6XTpuVcvrFA0OJ4f+vG22G9dsPG6q1K7EwBwAguhn9HeyW2Vg3X5ZJ/KeT47Kp/832u4TBqbzF4+4Yu/BEmTLOSNWZafU8vv+U2b5LG5wqLSVeiQYXlr3lsjYa0COjsl3+jsWCWS4PAKyChC4MC9eMSytcBQ9VWYRwHavZJSVCEURRziG6eJvFnpZcV6XlTp+DmVMHKzUmhk+Uad22gz7/hlqfmaol64yVXSg8UVbjNmbU/OPiBgDAzvxJ2FlhbBBu3sZl/vIUj3uKsU+fBW1k8sbpSssqaqyD65ZWv16VOMbfsVgwy+UBgFWQ0IUhLOwT/rIIwWR2SYlgB1GUc4hOnmaxO10uTXp/vc/XnTpY6ZbZuMYFOWr6LkuvX32WSm3U9mIQFzcAALVhhYuCVllTwg6cTpdmLAh84cXTnRqPe4ux806LsY1M3jidPzOJP1i0Td3bVo3F/BmLBbtcHgBYAQldGMJtKydZpQSE2cwuKRHMIIqLC9Ht9Fk5KzfvN/Q692DFyIIhNX2XtWyaYrC1VSUn1FHRKTN2zbgYxMUNAEBtWOmiYCRPnjDT1r0FKigqNW1/7njcnxg72DNbvcViRsdioSiXBwDhRkIXhnDbyq8i8TYvs2dFBDOI4uICTuXvxQMzvss+/HK7oX2cblj/TKWlxJt2MYiLGwCA2rDiRcFInTxhJjPHW4HWnQ3FzFZvx2lkLMaMbwDRICbcDYA9cNtK5HPPikhPqdqH6Snxfgf07iDKl0CDKC4u4FTuiwe+nDpYMeO7bNcvhYbbd6q0lHi1a5GmCzo0U7sWabUeRPgz8AIA4FRGLwo6na4QtehX7oSdWb+XkaZ+Ql3T9hVo3Vkj8Vdt1XZc6R7bnN7OQMY2AGBFAc3QnT17tjIyMtS9e3ef2y1atEibNm3S2LFjA2ocrIPbVqJD96wm6tm+qX7OL9beX44oJaFOwLMignXbHBcXcCp/Z2CY8V3mkv+DW7O+H0+tc/jzwWOGXsPFDSB8iJlhVdzxFJhg1Rs2ul93iQwzXH9xq4DrzhqJv2rDrLiJGd8AIllACd1x48bpuuuuqzE4/eSTT/T1118TnEYAbluJHjExDnVu00hnNUxQebmzVvsKRhBlJCGXklBHbZqnBvwesBd/Lh6Y8V3WsUUD/XigyK82mvH96KnOoRFc3ADCh5gZVsUdT1UZSagGq96w0f16K5ERiOR6cbrqghZVHvP3onf3rCYafX1HvfLJJrl8XOt2OOTzeU/MHFdGYrk8AJAMJnRnz56t8vKqi8js2bNHH3/8sdfXFBUVacWKFapTp07tWgjLYKECBMLsIMpIQq7wRJkee3VFWBb0QHj4c/Ggtt9l7c5O139X7zPULrO+HwMdxHHnBBBaxMywC+54+pWRhGqw6g0b3a+REhn+KCourxYrB3LRu2e7ppIcmjLb+2su75mhz1bvNdQuxpUAYJyhhO6mTZs0bdo0ORwnv7wdDoe+//57ff/99z5f53K5NGTIkNq3EpbBbSuwAm8JuVOFc0GP0wXr9jxU5c/Fg9p8l+07ZKzUwSVdz9Ttl2fVuq9rM4jjzgkgtIiZYReUUzvJSEK1W2bjGn+H3/ksR11bN1JcnPElavxZ3NRIiQx/eYqVvV70rh+vYf09J1p7tmuimBoulLdunurx+Zv7ZyoloQ4xMgAEwFBCd+zYsSoq+vX20lmzZunss8/2eftYfHy8WrZsqWHDhtW+lbAUbluBFXTPaqKurRvpoZe/UeGJMq/bvfN5jkrKK5SeXC8sQWKwbs9D7QX6XbZtX4Gh7Y4cKzHl7y2QQRwzXIDwIGaGXVBOzXhCNaFuXI2/w4UnyvTQy99oxBVZVX57fV3UN1rHOHtPvrJ/zDd4VP5zJ43d7Tr1onfhiTJlnJGqM9Pq+Vwgr6YL5UwKAgDzGUropqSkaOLEiZX/njVrls4999wqjwXL6tWr9corr2jLli0qLi5WVlaWRowYoauuusrwPnbt2qXXXntNK1as0KFDh5SYmKjOnTtr5MiR6tOnTxBbDyCYtv90xGcyV5IKj5fpjblbJIU+kRqs2/MQXiUGa0sb3a4mRusXXtO7hc5slGR4kMTMccB84YqZiZcRiGgtp+b+/du8J89YQnWvsWRq4YmyKvFdTRf1jf6+T/lko44Vl9e84Wl+06+1jpeUa97yPT6387T4nfuid1xcjNLSkpSff8xnQvfU1wT6PADAPwEtipadnW12OzyaM2eOHn30UcXFxalXr16KjY3VihUr9MADD2j79u2GFo5Yu3at7rrrLh0/flwtW7bUJZdcogMHDmjZsmVatmyZHn30Ud15550hOBoAZvN3oY5QJlL9uY2OJJq9tGqaoi27ax7ctWqa4vU5f5KpRusXdmiRbnigxMxxIDRCETMTL6M2om3mZCALjO4/fNyv93hv4TY5XfJYV9Ydi46+vpPh3/dAkrnpKfEa1PNsrc4+YGj7aFn8DgAiSUAJ3VMdP35chYWFqqio8LrNmWee6fd+Dx06pAkTJighIUHTp09Xx44dJUk7duzQiBEj9K9//Uv9+/evfNyT8vJyPfroozp+/Lgeeugh/f73v6+safbNN9/o7rvv1qRJk9SnTx+1bdvW7zbCO2Z+IRQCXagjFIlUo7fRnT4jAtaXldFA81f9aGg7T/xNpppd55CZ40B4BCNmJl6GL0bj8WiYOel0ujRv+S7NXrbb79dm/1jg1/Z5hSWa/nmOz21e+WSjRl3bscbf90C5y2Ww+B0ARK6AE7rvvvuu3nrrLe3b53ulb4fDoc2bN/u9/xkzZqi4uFijRo2qEoS2bt1aDz74oB5//HG9/fbbev75573uY/Xq1dq3b586d+6sUaNGVXnuoosu0s0336zp06dr/vz5BKgmYuYXQsVIosuTUCRSjc50YEaE/fx02NiiaD8dPqbObRpVeSyQZKqZdQ6ZOQ6EXjBjZuJleEM8/qtAZuW6pSTWUeFx3+W9PKmpJJjLJb36ySZdcX6GPlu91+/9e3N6uQwWvwOAyGV8Gc5TzJkzR08//bT27t0rh8Ohhg0bqkmTJh7/a9y4cUANW7p0qSRpwIAB1Z4bMGCAHA6HvvzyS5/7OHbsmDp37qy+fft6fL5ly5aSpNzc3IDaiOrcyYrTgwZ3smJtDp81zONOdAUi2IlUZkRErkNHigPazmgytaYadbXhz8xxALUX7JiZeBmeEI//yttnYdQFHZqa3KKqVm/J1ejrT87UDcTVF7TQwzefq1HXdtCjw7rp+dG9qyTsjcTKkb74HQBEqoBm6L799ttyOBx64IEHNHLkSNWtW9fURrlcLm3fvl2SlJlZ/QcoNTVVjRo10sGDB3XgwAE1ber5h3bgwIEaOHCg1/fZsGGDJKlZs2YmtBrM/EI4eFvQoybBTqT6MyMiWCVKKH0SHI1S6wW0XaBlOMz8bmXmOBBawYyZiZfhSaTF406nS9l78k8uTOaS2rVIU7uz00y7K8Ub90zXpHp1tGCN79n1p0tJqFPjDF23vMISpSTU1V9H91b2nny/F0Dr2Krm+vnRuvgdAES6gBK6O3bs8HhbllmOHDmikpISJSUlKTEx0eM2TZo00cGDB3Xo0CGvAaovOTk5+vTTT+VwODRo0KBatTcuLqCJzhFny25jK8Xu+PmI2rdMV2zsyc/N/b+wBjv2S6+OzdSzfVPl/Jiv/MISzfhiq89AOr1+vDq0Sg/6QOa2y7M0+eMNXp+/9fIsfb/zsGZ8nqO80wLsWy/PUs92vwbY/vbLt9m5hvYL/zidLjllbAZtRuPkKr8PRgd33207qNhYh7L+f8Dq73erLw3rG0tGN6xfz/a/bXb8LkPkCWbMTLxcHee9//H46ZxOl3J+zFdBUakaJNet/C0ym5G++jY7V2/N26yiUxKc81bsUXJCHf3u6vY1xjNGPovTXXtRS3VslV553Cs27/fr9ZI04qp2eu+LrVViMF8KT5Spbt1Y1akT41cy15949tRY2Z++5ZyyB/rJPugre7BLPwWU0I2Pjw8oKDTqxIkTkqSEhASfbZBOLjDhr8OHD2vs2LGqqKjQDTfcoHbt2gXWUJ28jSUtLSng10eSsl01r/ouSWWuqp9Z/fre+xnhY8d+6d0wWZKU1iBRE9/+1ut2dw/poob/v20wDbqwlZKT4vXa7B90+JTb7xs1SNDvr+skSR7bmVdYoskfb9D43/ZU7y5VF8gx0i/LN/zsMZHsa7+o2fINP1frS1/25p3Qpad812WckWrodQvX7NPCNfvUMLWeRl3fWWUuYwPp079bPemVmqiGczf7PIZGDRLUq+tZirXBzC0j7PhdhsgRzJiZeNm7aD7vA43HJc+/c+7fomDFDd76ylssI0lFJ8oMxTMlO/P8aktKYl3dcX2Xyt+/5Rt+1pSZ3uvXe3LDpa11Re9zVD+5ns9Y9FQZZ6QqLS3JcN+5BRLP9g4w/o3mc8pO6Cf7oK/swer9FFBCt1evXvruu+9UWlpqerkFSYqJOZkFd6+w64vT6fRr3wcOHNAdd9yh3bt3q1OnTnryyScDauOv7+/S0aP+B8mRqI7D2Ky1Og6X8vOPKTY2RvXrJ+jo0ROqqPCvHxE8kdAv7TNSdf/QLtVnqNaP162DstQ+I1X5+cYWtjKjLX+776JqMyIk6cHJy3y+9tVZG5TVvL5iYhyG+8XpdOnVmd5nBZ++31AL1cwfs32bnetztrUnx4+VVPk7OzOtntJT4g3P2Dl8pFgT3/5WQ/qeY2h793drTYYPbOvzWIYNyNTRI/b/XYuE77JgC/X5WL9+guVnOpgtmDEz8XJ10Xzeu8/nrbuNJTFP/83w9jt36m9Rs/RE074rfPWV0+nSK//5vsZ9+Ipnvs3O1dRPt/jVpsLjpVq0ard6tmtiKJ7y5Mvv9una3i3VPiNVY27orJdn/SCXjyFSev14nZlWT/n5xwyPpVIS62jkVe1DEs9G8zllJ/STfdBX9hDufjIaMweU0H3ggQd000036eGHH9Yzzzyj1FRjs46MSko6ebW4uNj7DKKSkpMDYm+3mHmydetW3XPPPfrpp5/UuXNn/fvf//Y5q8Go8nJORElqfWaqoZqhrc9MrfKZVVQ4+QwtyO790q1NI3U9p6HHGrLhOK7MsxpU/n93PbiaEnt5R0u0eVdeldpoNfVLoPsNBbuuuO10ujT98xy/X1d0oqxaXw0bkKmXZ/k32+fL7/YF9N3qdnot5a7nNPRZS69bm0YqL3dGTA1mu3+XBYtdz0e7CWbMTLzsXbSd957OZ19O/80w8js366udlf/f23dFIL8bnvoqe0++8otKazyOvKMlemX2RjVKrVeltq57IbRAzPg8pzJ+NHoB9vQ2uWOs89o21j3XddSU2Zu8bj+sf+bJck5Ol6GxVEpCHf3t3osUFxfDOYVq6Cf7oK/swer9ZCihe+utt1Z7LDExUQsWLNDixYvVsmVLpaSkVM4UOJXD4dD06dP9alRSUpKSkpJUWFio4uJi1atXveafe6XdJk2MDTq++eYbjR07VkVFRbr44ov10ksvVQbCMId7FVVfARSrqCKUYmIcIU9aGhWsxamsuuiVt8GVe8Xt+4Z0smwSychiZh55mGkTyCJ++UWluv7iVpq9bJfXbbx9t/pK2v11dG+vA2+SfZG9qKCdz0erC2XMTLwMyfv57Mvpvxn+/s55+q4w83dj3baDhrddufmApJO1dZPqxWnEFe30/qLAFkKTTpanyt6Tr6Mnak4oe3NqjNWzXVPFDHEYWpDMyFhqxBVZtq9xDwAwh6GE7tq1a70+V15eXrnCridGbgPz9JrMzEytX79eO3bsUMeOHas8X1BQoEOHDik1NdVQXbK5c+dq3LhxKi8v19ChQ/XUU08pLi6gycmogdVXUY3kATrspUFSvKnbBXu/tWH3FbcDTn57qX3bPauJumU21ta9BVqTk6vF3/1U466apCf4/d0aaNKOZF9kJ7Ttfj5aXShjZuJlGDmfT+XtN8OfBOqp3N8V67YdNO1349vsXC1Ysy+g9hwrLteU2YHNzD3VlE82amCPjIBff3qMdervfk1jEKuPpQAA1mEoSnvnnXeC3Y5q+vTpo/Xr12vhwoXVAtSFCxfK5XKpb9++Ne5n8eLFeuyxx1RRUaH7779fY8aMCVaT8f/8CVpCKZIH6LCfthkNDN1G3zajgSX2WxtGZv7kFZZo694CS86oDjT5Xa+O9xk0p84eN5LQbZAUr3Yt0gx/twaatCPZF/kJbbufj1YX6piZeDm6GZ1Ze82FLdShZbrH34y1OYEnUPMKS5T9Y75pvxvfZh/QK594L08QKseKyzV72S4l1YvTseJyv17rLcby564xq46lAADWYiihe/755we7HdUMHTpUb7zxhqZOnao+ffrovPPOkyTt3LlTf//73yVJd911V+X2ubm5KiwsVEpKSuVtZYcOHdL48eNVUVGh0aNHE5yGkNVudY/0ATrsJ1glSqxY+sSqZSCMMpIk92R3bpEp+z51cGj0uzXQpF20J/uiIaFt9/PR6kIdMxMvRzej5+mZjZM8fmf7O8PXk+w9+ab8bqzNyfVZazYcArnT1KwYy2pjKQCA9Vj2PqpmzZrpiSee0IQJE3TbbbepV69eqlu3rlasWKGSkhI99NBDateuXeX2L7zwgmbNmqUhQ4boueeekyS99dZbKigoUFxcnPbu3auHH37Y43udd955Gj58eEiOC6EXDQN02FOwbquz2u16ViwD4Q8jSXJPysoqTNl3IIPDQJN20Z7si4aEtt3PR1RFvBzdans+B1wj/lQGf558/W6YkVgOhqITZbr+4pZa+v0vVT6n5HpxcklVZu9SEgEAEGoBJXRHjBhR4zYOh0NxcXFKSUlRixYtNHDgQHXq1Mmv97npppvUrFkzvfbaa1q/fr1iY2PVoUMH3XHHHRo0aFCNr//qq68knaxZNm/ePJ/bEqBGrmgYoMO+gnVbnZVu17NiGQh/BbKYWd06sbXad20Gh4EO8qM92RcNCe1IOB/tJBQxM/Fy9Krt+Vzb77L0lHi1y0jTPO2pcVtfvxumJJb9cMX5Gfp6wy+Gyik0SU/0uIioJEvEWACA6BVQQnf16tWSTgagLlf1Vbw9Pff6669rzJgxuvfee/16rz59+qhPnz41bvfcc89VzjRwmzt3rl/vhcgUDQN02Fuwbquzyu16ViwDEQh3kvy1uRu1ekvNC8i0bJbi9779GRz6WuQx0EG+kdcl14uL2GRfNCS0I+V8tItQxczEy9Gptudzbb/Lzm/fRO1apNX6IlGokrlJ9eI08sp26p7VRJ3OaahJ76+v8TUNkuK9xlNWiLEAANHL+4otPixcuFDnnnuuJOmGG27Q66+/rv/+97+aP3++3nzzTQ0fPlyxsbFq0aKFJk+erHHjxqlRo0aaPHmyli9fbmb7gRpFwwAdsDr3LNS0lKrnWXpKvK1qWMfEOHR2E2OJ2qR6dfzed7sWabqgQzO1a5HmM6G2NidXj0xZruffW6fX5mzW8++t0yNTlmttTm7lvoYPyPT5fp4G+UZeV1RcHvCK6FbnTmj7EgmzVyPlfLQDYmYEm7fzOalenK6/uKW6ZTb2+tq2GQ3UILluwO/92eq9WrftYEC/N6cqPF4acBv8Mfq6X7/f2p2dFhXf9wCAyBXQDN158+bp+++/1/PPP6/BgwdXee6cc85R79691adPH40ePVp79+7VHXfcoUsvvVTXXHONZsyYod69e5vSeMAIbi8FrMFKZSBqY6+Bxc782c5fRhd5DLSUQ7fMxjWu7B2pdcejafZqpJyPVkfMjFBwn8/zlu/WgjV7day4XMeKyzV72W4t/f4XDffynR8T49Cl556p2ct2B/ze7y3cpudH965V6aDkJGMXQFudkaJdvxQG1M70lPgqM2qj6fseABCZAkrozpw5U506daoWmJ6qX79+6tatmz744APdcccdatmypbp166YNGzYE3FggEARsgHVYpQxEbZSWO03dzh/+LvIYSNJu696CGusKRnLdcastKhhMkXA+Wh0xM0Jl3baDmr1sV7XHT7/Yd7om6Ym1el/370FtLhKlJ9cz9F6HCooDbqenWD+avu8BAJEnoITugQMH1KFDhxq3a9KkiTZt2lT570aNGun7778P5C2BWiFgA2CWNmemat22Q4a2M1sgizz6m7Sj7jizV2EeYmaEgr8X+05lRskx9+9BoBeJjNxNl5JQR4UnymrcV3JCHRWdsl1NsT7f9wAAuwooodu0aVOtX79eZWVlqlPH8y0yZWVl+v7779WwYcPKx/Lz85WWxkwQhAcBGwAzZDRNNnU7f4Qi2Urd8ZOYvQozEDMjFAK52OdmJJlak9r+Hhi5m+6Cjk21YM2+Gvc1rH+m0lLi/Yr1+b4HANhRQIuiXX755dq/f78ef/xxlZRU//EvKSnRH//4Rx04cED9+/eXJP30009au3atMjN9F80HgsmfRYcAwJOi4ppnCPmznT9CkWyNloXBgFAgZkYo1OZin5HFMH0x6/egpsUafS3udqq0/6+VS6wPAIh0Ac3QHTVqlJYsWaK5c+fq66+/1kUXXaQzzzxTTqdTP//8s1asWKGCggKdffbZGjNmjI4cOaJrr71W5eXluummm8w+BgAAQiacM1hDschjbeuOO52uWt0JUdvXA1ZCzIxQMPp7Uz+hrrL35KvgWInqJ9aVXNLRE6VqkBSv0dd30vuLtvk9U9fMdSh83U3ndLpY5BgAgFMElNBNSUnRO++8o7/85S+aO3euPv300yrPx8TE6Oqrr9bjjz+uBg0aaMuWLSopKdHIkSN1+eWXm9JwAADCoU3zVDkcksvlfRuH4+R2ZgvVIo+B1h1fm5Nb7TVpKfFeV1g3+/XRjmS49RAz43TBOE+N/C5J0r8/3aL8Is8J0bSUeN3Sv41SEuoqv7BEhcdLlZxUR+nJ9VR4oqxasjdY61B4K3/AIscAAFTlcLlq+un3LT8/X6tWrdIvv/yisrIynXHGGTr//PPVtGnTym1KS0vldDpVr56xFUztpKLCqby8Y+Fuhi3FxcUoLS1J+fnHVB6E1eARGPrFmugX68jek6/n31tX43aPDusWtJp8nhKfwRhc+5N4WJuT63Og7W2FdbNef7poO2fskAxPT09SbGxA1b4iQjTHzKGKl61+3gfrPDX6u2SEt+9asxPRgfZVqH7/cJLVzymcRD/ZB31lD+HuJ6Mxc0AzdE+VlpamK664wuc2devWre3bAABgCaFYmKwmoVrk0ehCMbVZYd2M10c7b8nw/MISvTxro9/JcAQHMXN0C+Z5aubvjbfvWqssHMYixwAAnGQoobtixQpJ0nnnnaf4+PjKfxt14YUX+t8yAAAsKJw1dE9llcG1VLsV1s14vR0EqxwCyXBrIWaGJ2adp96+R8z8vbHDd62Vfv8AAAgXQwnd3/3ud3I4HJo/f75atWpV+W8jHA6HNm/eXKtGAgBgFaFYmMxuajtr2QqznoMpmOUQoiEZbifEzPDEjPPU2/fILf0zlRQfp6R6cTpWXG5Ke+36XQsAQDQxlNDt2bOnJCkhIaHKvwEAiDYszFJdbWctW2XWczAEuxxCpCfD7YaYGZ7U9jz19T0yZbb336JA2fG7FgCAaGMooTtt2jSf/wYAANGrtrOWI3XWcyjKIURyMtyOiJnhSW3OUyPfI76kJddVabnT8OxdO37XAgAQjaJ3qWEAAAJgNEnndLpC1KLwc89a9sXXrOXavt6q/LnNOlDuZLgvJGiA8KrNeWrke8STpHpxeviWc/XXey/SyCvbGX6dHb9rAQCIRrVK6Obn5+v111/X73//ew0ePFh/+ctfJElTpkzR4sWLTWkgAABWEooknR11z2qi+4Z0qpa0SE+JN1RWoLavt6JQlEOI1GR4pCFmjm61OU8D/X44VlyuGIdDMTEOr9+vp7Lzdy0AANHIUMkFT77++ms9/PDDOnr0qFwulxwOh9q3by9Jmj9/vl566SWNHDlSjz32mGmNBQAg3KhZ6l33rCbqltnY4yrsoXi91YSqHII7WXP6gknpKfEaZsLCa6gdYmZIgZ+ntfl+OPV36PTv1/qJdSWXdPREqe2/awEAiEYBJXS3bdumMWPGyOl06tZbb1WfPn109913Vz5/0003afLkyZo6dap69uypyy67zLQGAwAQTtQs9S0mxuF1lfZQvN5KQlkbONKS4ZGCmBmnCuQ8NfI94s3pv0OR9P0KAEC0CyihO2XKFJWWlmrKlCm69NJLqz0/YsQInXvuubr55ps1ffp0glMAQMSI1AW8YD73bdaeVqd3M7McAska6yFmxun8PU+NfI94wu8QAACRLaAauqtWrVKXLl08BqZuXbp00Xnnnadt2wJflRUAAKuhZin8EYm1gWEcMTPMYKQG7un4HQIAILIFNEP36NGjatq0aY3bNWjQQD/88EMgbwEAgGVRsxT+oBxC9CJmhlk8fY8UnijV+4u28zsEAEAUCiih26RJE+Xk5NS4XU5Ojpo0IZgAAEQe9+B6x89HVOZyqI7DpdZnppKkg0eUQ4hOxMwwk6fvke5tm3CxCACAKBRQyYVLL71UP/74o6ZNm+Z1m6lTp2rfvn3q06dPwI0DAMDKYmIcat8yXZecd5bat0xnEA2gCmJmBJs7yXtBh2Zq1yKN3yEAAKJEQDN077nnHv33v//Vn//8Z61cuVLnn3++JCk3N1cff/yxvvrqKy1YsED169fX73//e1MbDAAAANgBMTMAAACCweFyuVyBvDA7O1tjx47Vjz/+KIfDIZfLJYfj5BVhl8ulxo0b66WXXlK3bt1MbbDVVFQ4lZd3LNzNsKW4uBilpSUpP/+Yysud4W4O/h/9Yk30i3XRN9ZEv1hPenqSYmMDujnM1oiZQxcvc97bB31lD/STPdBP9kFf2UO4+8lozBzQDF1JateunebPn68vvvhCq1at0i+//KKKigo1adJEPXv21FVXXaV69eoFunsAAADA9oiZAQAAYLaAE7qSFBcXp6uuukpXXXWVWe0BAAAAIgoxMwAAAMwUffe9AQAAAAAAAIBNBTxDNzs7W++8845ycnJUWFioiooKj9s5HA4tXLgw4AYCAAAAdkXMDAAAALMFlNDdsGGDbrvtNpWVlammNdXciz4AAAAA0YSYGQAAAMEQUEL3pZdeUmlpqS699FKNGDFCzZo1U1xcrcrxAgAAABGFmBkAAADBEPAM3RYtWujll19WbGys2W0CAAAAbI+YGQAAAMEQ0KJoZWVlysrKIjAFAAAAvCBmBgAAQDAElNDt0KGDtm/fbnZbAAAAgIhBzAwAAIBgCCihe/fdd2vXrl3697//bXZ7AAAAgIhAzAwAAIBgMFRD9x//+Ee1x1q2bKlJkyZp3rx56tatm1JSUhQTUz0/7HA4NHbs2Nq3FAAAALAwYmYAAACEgqGE7pQpU+RwOORyuSSpyv/fsmWLtmzZUu017m0ITgEAABANiJkBAAAQCoYSumPGjAl2OwAAAABbI2YGAABAKJDQBQAAAExAzAwAAIBQCGhRNAAAAAAAAABA6JHQBQAAAAAAAACbIKELAAAAAAAAADZBQhcAAAAAAAAAbIKELgAAAAAAAADYBAldAAAAAAAAALAJEroAAAAAAAAAYBMkdAEAAAAAAADAJkjoAgAAAAAAAIBNkNAFAAAAAAAAAJsgoQsAAAAAAAAANkFCFwAAAAAAAABsgoQuAAAAAAAAANgECV0AAAAAAAAAsAkSugAAAAAAAABgEyR0AQAAAAAAAMAmSOgCAAAAAAAAgE2Q0AUAAAAAAAAAmyChCwAAAAAAAAA2QUIXAAAAAAAAAGyChC4AAAAAAAAA2AQJXQAAAAAAAACwCRK6AAAAAAAAAGATJHQBAAAAAAAAwCZI6AIAAAAAAACATZDQBQAAAAAAAACbIKELAAAAAAAAADZBQhcAAAAAAAAAbIKELgAAAAAAAADYBAldAAAAAAAAALAJEroAAAAAAAAAYBMkdAEAAAAAAADAJuLC3YCarF69Wq+88oq2bNmi4uJiZWVlacSIEbrqqqsM76OoqEivv/66Pv/8c/38889q0KCB+vXrp7Fjx6phw4ZBbD0AAAAQXMTLAAAA0cXSM3TnzJmjESNGaPXq1erQoYN69uypTZs26YEHHtBLL71kaB9FRUUaMWKEXnnlFVVUVOjSSy9VYmKi3n//fQ0ZMkT79+8P8lEAAAAAwUG8DAAAEH0sm9A9dOiQJkyYoISEBH3wwQf697//rddee02zZ89Wo0aN9K9//UubNm2qcT+TJ0/Wpk2bdP311+u///2vXnrpJc2fP18jR47UgQMH9NRTT4XgaAAAAABzES8DAABEJ8smdGfMmKHi4mLddttt6tixY+XjrVu31oMPPiiXy6W3337b5z6Kior04YcfKiEhQY8//rji4k5WmIiJidGjjz6qjIwMLV68WD/++GNQjwUAAAAwG/EyAABAdLJsQnfp0qWSpAEDBlR7bsCAAXI4HPryyy997mP16tU6fvy4evToodTU1CrPxcbGql+/fpJU434AAAAAqyFeBgAAiE6WTOi6XC5t375dkpSZmVnt+dTUVDVq1EhHjhzRgQMHvO7H1z4kqU2bNpKkrVu31rbJAAAAQMgQLwMAAESvuHA3wJMjR46opKRESUlJSkxM9LhNkyZNdPDgQR06dEhNmzb1uE1ubm7ltp40btxY0sn6Y7URF2fJvLjlxcbGVPlfWAP9Yk30i3XRN9ZEvyDSES9Xx3lvH/SVPdBP9kA/2Qd9ZQ926SdLJnRPnDghSUpISPC6TXx8vCTp+PHjXrdxP1evXj2Pz7sf97WPmsTEOJSWlhTw6yHVr++9nxE+9Is10S/WRd9YE/2CSEW87B3nvX3QV/ZAP9kD/WQf9JU9WL2fLJnQjYk5mQV3OBw1but0Or0+Fxsba2g/LpfLj9ad/v4uHT0aeIAbzWJjY1S/foKOHj2higrv/YjQol+siX6xLvrGmugX66lfP8HyMx3shHi5Os57+6Cv7IF+sgf6yT7oK3sIdz8ZjZktmdBNSjp5Bb+4uNjrNiUlJZLk9RazU5/zth/34772YUR5OSdibVRUOPkMLYh+sSb6xbroG2uiXxCpiJe947y3D/rKHugne6Cf7IO+sger95Mlp0kkJSUpKSlJhYWFXoPLmup9SaqsFeat5tfBgwcl/VobDAAAALAD4mUAAIDoZcmErsPhqFxpd8eOHdWeLygo0KFDh5Samup1gQfp19V63av3nm7btm2SpLZt29a2yQAAAEDIEC8DAABEL0smdCWpT58+kqSFCxdWe27hwoVyuVzq27evz3306NFDiYmJWr16tQoLC6s8V1FRoSVLlsjhcFS+FwAA/nA6XdqyO09Lv9unLbvz5HQGXmMSAPxFvPwrvo8BAEA0sWxCd+jQoUpISNDUqVP13XffVT6+c+dO/f3vf5ck3XXXXZWP5+bmaseOHZW3lkknV/298cYbdezYMT355JMqLS2VdHJRh7/+9a/at2+fBgwYoFatWoXmoAAAEWNtTq4embJcE6d/p0kz1mri9O/0yJTlWpuTW/OLAcAExMsn8X0MAACijcNVmyVrg+yjjz7ShAkTFBMTo169eqlu3bpasWKFSkpK9NBDD2nUqFGV244bN06zZs3SkCFD9Nxzz1U+XlRUpGHDhmnr1q1q3ry5OnXqpG3btmnnzp1q3ry53n//fZ91xWpSUeFUXt6xWh1ntIqLi1FaWpLy849ZutB0tKFfrIl+sZa1Obl6edZGr8/fN6STumcF/tuC2uOcsZ709CRDK/bCP9EeL/N9bE98R9sD/WQP9JN90Ff2EO5+MhozWzqqvummm/T666+re/fuWr9+vdauXasOHTpo8uTJVYJTX5KTkzVjxgzdcccdkqQlS5aorKxMw4cP1wcffFCr4BQAEH2cTpfeXbjN5zbvLdzG7b4AQiKa42W+jwEAQLSy9AxdO2CGbuDCfdUDntEv1kS/WEf2nnw9/966Grd7dFg3tWuRFoIWwRPOGethhm70Cla8zPexffEdbQ/0kz3QT/ZBX9lDuPspImboAgBgNQXHSkzdDgAQGL6PAQBAtCKhCwCAHxokxZu6HQAgMHwfAwCAaEVCFwAAP7TNaKC0FN/JgfSUeLXNaBCaBgFAlOL7GAAARCsSugAA+CEmxqHhAzJ9bjNsQKZiYhwhahEARCe+jwEAQLQioQsAgJ+6ZzXRfUM6VZsZlp4Sr/uGdFL3LGuuCA8AkYbvYwAAEI3iwt0AAADsqHtWE3XLbKwdPx9RmcuhOg6XWp+ZykwwAAgxvo8BAEC0IaELAECAYmIcat8yXWlpScrPP6bycme4mwQAUYnvYwAAEE0ouQAAAAAAAAAANkFCFwAAAAAAAABsgoQuAAAAAAAAANiEw+VyucLdCDtzuVxyOvkIAxUbG6OKCmqcWQ39Yk30i3XRN9ZEv1hLTIxDDgeLVEWjUMbLnPf2QV/ZA/1kD/STfdBX9hDOfjIaM5PQBQAAAAAAAACboOQCAAAAAAAAANgECV0AAAAAAAAAsAkSugAAAAAAAABgEyR0AQAAAAAAAMAmSOgCAAAAAAAAgE2Q0AUAAAAAAAAAmyChCwAAAAAAAAA2QUIXAAAAAAAAAGyChC4AAAAAAAAA2AQJXQAAAAAAAACwCRK6AAAAAAAAAGATJHQBAAAAAAAAwCZI6AIAAAAAAACATcSFuwGwp9WrV+uVV17Rli1bVFxcrKysLI0YMUJXXXWV4X0UFRXp9ddf1+eff66ff/5ZDRo0UL9+/TR27Fg1bNiw2vZTp07VxIkTve7v97//vR5++OGAjidSmNEvp3K5XPrd736nnTt36quvvgrZ+0aicPTNggULNGbMGK/7uOqqq/Tiiy8G9P6Rwox+2bVrl1577TWtWLFChw4dUmJiojp37qyRI0eqT58+1bZ3Op2aOXOm3n33Xe3evVt16tRR9+7dde+996pTp05mHp5thaNfnn32WU2bNs3r/v70pz9p2LBhAR0PgNoJR9wJ/4UrDoV/wvEbi8CY0Vc//vijXn75ZX3zzTcqKChQ48aN1adPH40ePVpnnHFGEFsfPYIxFp47d64efvhhDR48WJMmTTKxtdHNjL669tprlZOT4/X5+fPnq3Xr1mY0t0YkdOG3OXPm6NFHH1VcXJx69eql2NhYrVixQg888IC2b9+usWPH1riPoqIijRgxQps2bdLZZ5+tSy+9VFu3btX777+vJUuW6MMPP1SzZs2qvGbTpk2SpEsvvVQpKSnV9tmhQwdzDtCmzOiX0/3lL3/RihUr1LRp05C+b6QJV9+4z5nzzz/f43bdunXz+30jiRn9snbtWt111106fvy4WrZsqUsuuUQHDhzQsmXLtGzZMj366KO68847q7zmT3/6kz744AOlpqaqd+/eOnTokBYtWqSvvvpKr7zyii6++OJgHbIthKtfNm/eLEm68sorFRdXPTxq2bKlKccHwD/hijvhn3DFOvBPuH5j4T8z+mr37t36zW9+oyNHjuicc87Rueeeq127dumDDz7Q/PnzNX36dLVr1y4ERxO5gvHd98svv+jpp58OQmujmxl9VVpaqh07dig1NVV9+/b1uI2nXFXQuAA/HDx40NWlSxfXueee69q4cWPl49u3b3f17t3blZWVVeVxb/785z+72rZt63r00UddZWVlLpfL5aqoqKh8/J577qn2mquvvtqVlZXlKiwsNO+AIoRZ/eJ2/Phx12OPPeZq27atq23btq4+ffqE5H0jUbj6xuVyuUaNGuVq27ata+vWrbU6hkhkRr+UlZW5LrvsMlfbtm1dr776qsvpdFY+t2zZMlfHjh1d7dq1c+Xk5FQ+vnDhQlfbtm1d11xzjSsvL6/y8c8++8zVvn1710UXXeQ6fvy4iUdqL+HqF6fT6erWrZurV69e5h8UgICFM+6EceGMdWBcuH5j4T+zzqmhQ4e62rZt65o8eXKVvpo8ebKrbdu2rqFDhwal/dEiGGNhp9Ppuv322yu//x566CGzmx2VzOqrDRs2uNq2beu6//77g9lcw6ihC7/MmDFDxcXFuu2229SxY8fKx1u3bq0HH3xQLpdLb7/9ts99FBUV6cMPP1RCQoIef/zxyplQMTExevTRR5WRkaHFixfrxx9/rHxNcXGxdu7cqZYtWyo5OTk4B2djZvSL28KFC3X99ddr1qxZysjICNn7Rqpw9Y10coZuQkKCzjnnnIDbH6nM6JfVq1dr37596ty5s0aNGiWHw1H53EUXXaSbb75ZTqdT8+fPr3z8zTfflCQ9+uijSktLq3z88ssv1+DBg3Xw4EF9+umnZh2m7YSrX3bv3q1jx45VeU8A4ReuuBP+CWesA+PC9RsL/5nRV7t379aGDRvUvHlz3XfffVX66t5771ViYqI2bNiggoKCYB1GxAvGWPitt97SqlWr1LNnT7ObG9XM6iv3HX1WKZNHQhd+Wbp0qSRpwIAB1Z4bMGCAHA6HvvzyS5/7WL16tY4fP64ePXooNTW1ynOxsbHq16+fJFXZT05OjioqKhhse2FGv0jS0aNHdd9992nv3r0aMWKEXn311ZC8byQLV98cOnRIBw8eVLt27RQbGxtQ2yOZGf1y7Ngxde7c2evtNu5b9HNzcyVJhYWF+u6775SYmKgLL7yw2vYDBw6UpKg+Z8LRL5K0ZcsWSdYJzgCcFK64E/4JV6wD/4TrNxb+M6OvWrZsqRUrVujNN9+sksyVpLKyMpWVlUkS44RaMHssnJOToxdffFH9+vXTDTfcYFYzIfP6yp3QtUpeihq6MMzlcmn79u2SpMzMzGrPp6amqlGjRjp48KAOHDjgtd6Vr31IUps2bSRJW7durXzMXQs0NTVVTz75pL755hvl5uaqefPmGjx4sO666y7Fx8cHfnA2Zla/SCdnq1xzzTUaPXq02rRpo3379oXkfSNVuPpG+vWcadasmf7yl79o8eLF+vnnn9W4cWNdfvnluueee6oNbKOFWf0ycODAyiSsJxs2bJCkyrqMO3bskNPp1DnnnOOxRqu7eP6p333RJFz9Iv16vsTFxemhhx7SmjVrlJ+fr1atWmno0KG69dZbFRPDNXAglMIZd8K4cMY6MC6cv7Hwj5nnVHp6utLT06s8duLECT3zzDMqKyvTgAEDQlvvM4KYPRYuLS3Vww8/rKSkJD377LMsBGkiM/vKndDNzc3VyJEjtWXLFpWWlqpz5876/e9/H/JFIRmdwLAjR46opKRESUlJSkxM9LhNkyZNJJ2cHeiN+4qte9vTNW7cuNo+3CfOjBkztGDBAmVlZalz58765Zdf9NJLL2nEiBE6fvy4/wcVAczqF0lKTk7W3/72t8rBTajeN1KFq2+kX8+Z//73v/rwww/VqlUrnXfeeTpy5IjefPNN/eY3v9HBgwf9OJrIEYq/3ZycHH366adyOBwaNGiQpF+/+9zfcafz9N0XTcLVL9Kv58s///lPrV27Vp07d1ZWVpZ27NihZ599VmPGjFFFRUVA7wkgMOGMO2FcOGMdGBfO31j4J1h9tXDhQt15553q27ev/vOf/6hfv3567rnnTGlzNDK7n1544QVt3bpVTz31lBo1amRqW6OdWX1VUVFRefF33Lhxys/PV8+ePXXmmWdq1apVuuuuuyrL64UKM3Rh2IkTJyRJCQkJXrdxz5L1lVx1P1evXj2Pz7sfP3Uf7sH2jTfeqD/96U+qW7euJGnv3r0aM2aM1q9fr7/97W+aMGGC0cOJGGb1i13e107C+Rm5byG/5JJL9Le//a3y6nteXp4eeOABrVy5UhMmTNArr7xi6vvaQbD75fDhwxo7dqwqKip0ww03VK4e7N6Xt/d1f/e52xdtwtUv0q+/Mffee6/GjBlTefvhli1bdO+992rRokV6++23dccdd/j9vgACE864E8YRD9pDOH9j4Z9g9dWKFSu0bNmyKu+ze/dude7cOcCWRjcz+2nFihWaOnWqrr32Wl1++eXmNRKSzOurHTt2qLi4WPHx8fr73/+uyy67rPK5+fPn65FHHtFf//pX9ejRQ126dDGp9b4xQxeGuW83Pb0GjydOp9Prc+6Bck37cblclf9/xowZmjdvnp555pnKZK4kZWRk6LnnnpPD4dBHH32kkpKSGtsWaczqF7u8r52E8zOaNGmS5s+fr3/84x9VbqVKT0/X888/r8TERC1ZsiQqb2cMZr8cOHBAI0aM0O7du9WpUyc9+eSTlc8Z/e5zOp1Vvv+iRbj6RZIWLVqkefPm6X/+53+q1JJr3769nnjiCUnS9OnT/XpPALUTzrgTxhEP2kM4f2Phn2D11T333KMffvhBCxcu1MiRI7Vy5UqNGDFCO3bsCLit0cysfjp69KjGjx+vpk2bRuXktFAwq6/atm2rb775Rp9++mmVZK4kXXXVVbr11lvldDr13nvv1a7BfiChC8OSkpIkScXFxV63cSdUvU1lP/U5b/txP37qPhISEpSZmemxaHv79u3VrFkzlZSUaNu2bTUcReQxq1/s8r52Es7PqG7dumrdurXHK5FNmzZVhw4dJP1aOzSaBKtftm7dqmHDhmn79u3q3Lmz3nzzzSqfvz/ffUYCjkgTrn6RTt7m662+5iWXXKLY2Fj99NNPys/PN/y+AGonnHEnjCMetIdw/sbCP8Hqq8aNG6tu3brKyMjQ+PHjdfPNN+v48eN6/fXXa9fgKGVWPz311FPav3+/Jk6cqPr165vbSEgy95xq1KiRMjIyPD7nXmR148aNgTQzIJRcgGFJSUlKSkpSYWGhiouLPd66VlOdMkmVRaa91Sdx1/X0VmfSk0aNGumXX37xeZJGKrP6xS7vaydW/ozctZmi8fb+YPTLN998o7Fjx6qoqEgXX3yxXnrppcrgwS0Y332RJFz9UpM6deooNTVVeXl5UfkbA4SLleNO/MrKsQ5+ZdXfWFQXqnPquuuu0wcffBCVkzvMYEY//fDDD5o3b54aNGigmTNnaubMmZXPue+iXLdunR5++GG1bt1ao0ePDsKRRL5QnVPuOCKU42tm6MIwh8NROYPJ060ZBQUFOnTokFJTU32uDOjeh3ulwdO5Z9m2bdtW0snbeJ544gk98sgjXve5d+9eSapx9chIZFa/2OV97SRcn1FJSYkmTJig++67z2sCyn3OROMqxGb3y9y5czVq1CgVFRVp6NChevXVVz0OaFq3bq2YmBjt3LnT4+087u9E93dftAlXv+Tk5Gj8+PGaOHGix/0cO3ZMeXl5qlOnjho2bOjnUQEIVLjiTviHeNAewvUbC/+Z1Vdr1qzRhAkT9NFHH3l83l3GsLy83IRWRx8z+sldr7WgoEBz586t8t+6desknUzszp07V8uXLw/SkUQ+s86pzz//XA899JDXcyoc42sSuvBLnz59JJ1cJfN0CxculMvlUt++fX3uo0ePHkpMTNTq1atVWFhY5bmKigotWbJEDoej8r2Sk5M1Z84czZkzp3Khp1N9+eWXKigoUMuWLb1Of490ZvSLnd7XTsLxGcXHx+vLL7/UwoULqyx+4Jadna3s7GylpKTo3HPPNfW97cKsflm8eLEee+wxlZeX6/7779f//u//Ki7O880vCQkJ6tmzpwoLC7Vq1apqzy9YsEDSyVv8o1U4+iU+Pl4zZ87UjBkzlJeXV+352bNnS5LOP//8KjXcAQRfOOJO+I940B7C8RuLwJjRVwUFBfrwww/173//2+NEgq+++kqS1LFjRxNaHJ1q20+9evVSTk6Ox//cEw0GDx6snJwcTZs2LTgHESXMOKeOHDmiefPmacaMGR7r7s+aNUuSdPHFF5vQYmNI6MIvQ4cOVUJCgqZOnarvvvuu8vGdO3fq73//uyTprrvuqnw8NzdXO3bsqJzCLp1Matx44406duyYnnzySZWWlko6uRjFX//6V+3bt08DBgxQq1atJJ2cIj948GBJ0h//+McqA+7du3fr6aefliTdd999wTloGzCjX0LxvtEoXH1zyy23SJL+/Oc/V14tlE7ecvr444+roqJCd955p9dVvyOdGf1y6NAhjR8/XhUVFRo9erTGjBlT4/vefvvtkqRnnnmm8jZfSfriiy80b948NW7cWNddd11tD8+2wtEvLVu21AUXXKCysjKNGzdOx44dq3xuw4YN+sc//iGHw6F7773XpKMEYFQ44k74L1yxDvwTrtgH/jOjr/r27avmzZtr165dmjRpUpWk7uLFi/XKK68oNjZWv/vd74J/QBGK7z77MKOvrrjiCjVo0EBbtmzRyy+/XCWp++GHH+rzzz9Xw4YNK8fhoeBwsaQr/PTRRx9pwoQJiomJUa9evVS3bl2tWLFCJSUleuihhzRq1KjKbceNG6dZs2ZpyJAheu655yofLyoq0rBhw7R161Y1b95cnTp10rZt27Rz5041b95c77//fpX6JUeOHNHtt9+unJwcpaSk6LzzzlNFRYVWr16t0tJSjRw5UuPHjw/p52A1ZvTL6fbt26f+/furadOmlVdxa/O+0SocfVNaWqq7775by5cvV7169dS9e3fVrVtXq1at0vHjx3X55ZfrxRdf9LjQYLSobb/89a9/1RtvvKG4uDhdccUVXhcyO++88zR8+PDKfz/66KP65JNPlJycrAsuuED5+fn67rvvVKdOHb3xxhvq1atXcA/c4sLRLz/99JNuvfVW/fLLL2rYsKG6du2qoqIirV27Vk6nU+PHj9dvf/vb4B88gGrCEXfCf+GKQ+GfcMU+8J8Z59S6det055136tixYzr77LOVlZWlvXv3Kjs7W3FxcfrTn/6km266KRyHFzGC8d0nSTNnztT48eM1ePBgTZo0KdiHERXM6KulS5dqzJgxKi0tVcuWLZWVlaXdu3crJydHiYmJeuONN9S9e/eQHRP3RsBvN910k5o1a6bXXntN69evV2xsrDp06KA77rhDgwYNMrSP5ORkzZgxQ1OmTNHnn3+uJUuWqGnTpho+fLjuvffeagtTpKam6v3339ebb76p+fPna8WKFYqPj9e5556rESNGaODAgcE4VFsxo1/s9L52Eo7PqG7dunr99dc1ffp0ffLJJ1q7dq1iYmKUmZmpm266SUOHDvUahEeL2vaLe3BZXl6uefPm+dz21EHNc889py5duujDDz/U119/rfr16+uyyy7T/fffr/bt29fuoCJAOPqlefPmmjlzpl599VUtWrRIX3/9tZKSktSnTx/deeedOv/882t/YAACEo64E/4jHrSHcMU+8J8Z51S3bt30ySef6F//+peWLVumJUuWKDU1VVdccYXuuusude7cOchHEfn47rMPM/rqkksu0X/+8x+98sorWrVqlRYvXqz09HTdeOONGj16dMhLgDJDFwAAAAAAAABsghq6AAAAAAAAAGATJHQBAAAAAAAAwCZI6AIAAAAAAACATZDQBQAAAAAAAACbIKELAAAAAAAAADZBQhcAAAAAAAAAbIKELgAAAAAAAADYBAldAAAAAAAAALAJEroAAAAAAAAAYBMkdAHAxlatWqWsrKwq/x09ejTczarGUzv37NkT7mYBAAAgCt1+++1V4tL//d//DXeTvJo+fbouv/xydenSRRdffLEee+wx5efna+bMmdXi6/Ly8nA3F0CIxIW7AQCA2ktPT9dFF10kSapTp06YW1Ndo0aNNHjwYEnSokWLdPz48TC3CAAAANHuwgsvVKNGjdSpU6dwN8Wj+fPn65lnntG9996rm2++WevWrdODDz6osrIyDR8+vDK+njt3bphbCiDUSOgCQARo2bKlJk2aFO5meNW6devK9l122WUkdAEAABB2o0aNUu/evcPdDK+ysrI0adIkXXHFFapTp44GDRqk5ORkbd++XT169FCPHj0kkdAFohEJXQAAAAAAAItp3bq1WrduLUlyOp2aOHGijh49qt/85jdhbhmAcKOGLgD4yel06r333tOQIUPUrVs39e7dW3/84x91+PBhDRw4UFlZWVW2X7FihcaOHau+ffuqU6dO6tatm6677jpNmTJFpaWlVbYdN26csrKy9MMPP2jGjBmV9bIGDBigF154QUVFRYbauG/fPmVlZWns2LHav3+/HnvsMV144YU699xz9Zvf/EbLli2TJG3btk133323unfvrt69e+u+++7Tvn37PLZp69atmjVrlq6//vrKGl7PPPOMjh8/roqKCr3++usaNGiQunbtqquvvlrvvvuuXC5XLT5pAAAAWMmRI0c0efJk3XDDDerevbs6deqkiy++WGPHjtWGDRuqbOuOR++9917997//Vb9+/dS5c2cNHjxYhYWFldvNnz9ft99+u7p3766uXbvquuuu09SpU1VWVlbt/cvLy/XRRx/pt7/9rXr16qWOHTvq/PPP1+23365PP/201sdnVtxrZiwuSXl5efr973+vadOm6fzzz9d9991X62MFYG/M0AUAP7hcLj300EOaP3++EhMT1atXL5WUlGj27NlatWpVtYTrW2+9peeee0516tRRt27ddO6552r//v3asGGDsrOztWnTJv3zn/+s9j4vv/yylixZoqysLF166aVau3atXn31VS1dulTvvPOOUlNTDbX3559/1o033qiKigp1795de/fu1ffff69Ro0bpqaee0p///Gc1atRIF154oTZu3KiFCxdq48aN+uyzz5SQkFBlXy+88IKWLFlSmcRevXq1pk+frgMHDig+Pl5ffPGFunfvrubNm2vlypV66qmnVF5erhEjRgT+gQMA/q+9e4+puv7jOP70Emh48mCh1k45nIhTLmYNU0ZzZOamy6hlNW66LnMGNo0gi1CTDd1EN5uX6bLLSjiuyHWxkuRSZBMvCISBiMoxUS4Hp3K8JHR+f7jzXcdz9AdJKvp6/IWf7/f7+Xy+/sHee/P+vj8iIrcEu93Oiy++iM1mw2Kx8Nhjj3Hp0iWqqqr48ccfKSgoICcnh9DQULfnampqKC4uZsyYMYwYMYL29nZMJhMAGRkZWK1W+vXrR1hYGCaTib1795KVlcXPP//M+vXr8fHxAS7H4cnJyRQUFDBw4EDCw8Px9fXl0KFDlJaWUlpait1u75bYs7vi3u6IxQ8ePMicOXM4fvw4sbGxLFy48JY8M0NEbiwldEVEuiAvL49t27YRFBTEpk2bGDx4MADV1dXMnj2b1tZW496mpiays7MZOHAgubm5DB8+3Li2Z88eEhMTyc/P5+TJkwwdOtRtncLCQlJSUnj11VcBcDgcJCUlsXPnTlavXs17773Xqf1WVlYSERHB+vXr8fPzw+l0kpSUxE8//UR6ejovvPACixYtok+fPjgcDmJiYqivr6e4uJipU6e6zVVUVMTatWt54oknAKiqquK5554jPz8fk8lEXl4eQUFBAOTk5LB48WK2bNmihK6IiIjIbWDdunXYbDbi4uJIT0+nV69eAFy8eJH58+ezY8cOrFarR0L3zz//JDY2loyMDODy125wOa62Wq0EBwezdu1aLBYLAG1tbbzxxhuUlJSwZs0a5s+fD0B+fj4FBQWEhYXx8ccf4+fnZ6yxYcMGsrOz+eyzz7ol9uyuuPd6Y3GbzcasWbM4e/YsK1asMA5BExFRywURkS745JNPAMjMzDSSuQCjRo0iLS3N7d6WlhaefPJJ5s6d65bMBXj00UeNINDbZ1WRkZFGMhfAz8+PZcuW0bdvX7788ksuXrzY6T2npaUZAW+vXr2YNm0aAL6+vqSmptKnTx9jjcjISABsNpvHPJMmTTKCWoAxY8YY7xUbG2u8D8BTTz0FQH19faf3KSIiIiK3roEDBxIVFcW8efOMZC5cjimfffZZwHtcCxAXF2f83Lv35TTExo0bAcjKyjKSuQADBgwgKyuLu+66i88//9xoUXbp0iWio6NJSUlxS+YCvPTSS9dcv6u6M+69nlg8KysLu93O33//zZIlS4yD0JTYFRFV6IqIdJLdbqempoaAgADGjh3rcX3KlCm88847dHR0ADB69GhWrVrldk9HRwfHjh2jsrKS06dPA3jtD+YK9P5pyJAhhIWFsW/fPsrLy4mIiPi/e/bx8WH06NFuY4MGDQLAYrEwYMAAt2v33HMPgNeEcXh4uMfYoEGDqKur8+gb7PqM7soewSIiIiLSMyUnJ3uMnT59moMHDxo9Yb3Ffv369SMwMNBtrLm5mcOHD2MymRgzZozHM4MHD2bUqFFUVlZy4MABxo4dy7Rp0zxi5AsXLnD48GHKysqAy7F2R0eHkST9t7or7r3eWHzRokW8++67HvP27atUjsidTr8FREQ66cSJEwDcf//9Xq/ffffdDBo0iObmZmOso6ODH374ge+++47a2loaGhpob28HMCobvB0cNmzYMK9ruNZuamrq1J5NJpNRBeHiWrezfXhdvN3vmstsNnsdFxEREZHbx7Fjx9i8eTN79+7l6NGjRoHCteJak8nkERu64uqzZ896JEivdOLECaOYoq2tDavVyi+//EJdXR3Nzc04nU63+bvjUN7uinuvNxa/si2biIiLEroiIp3kSsS6+n55888A8ty5cyQmJlJRUUG/fv0ICQkhMjKSoKAgHnnkETIzM9m9e7fXea5WVeCav7NVB93513sdviAiIiJy5/r2229JS0ujvb2dBx98kAkTJjB8+HBCQkJwOp28/vrrXp+7MqEJGF+0mc1moqKirrluQEAAALW1tSQmJmK32/H39ycsLIzp06cTHBzM+PHjmTRp0vW94D90V9yrSloR+a/ot4uISCe5qmNdFQVXunDhAqdOnTL+vWnTJioqKpgwYQKrV682PqFyOXPmzFXXamxs9Dre0NDgthcRERERkf+aw+EgIyMDp9PJmjVrmDx5stv1/Pz8Ls3nStL6+vqyYsWKTj3z/vvvY7fbeeWVV1iwYIFbgYOrUlhE5E6hQ9FERDppyJAhBAYGYrfbKS8v97heVFRkVBsARi+vuLg4j2RuY2MjdXV1gPeK3+LiYo+xkydPUllZidls9jg9WERERETkv1JbW4vD4WDkyJEeyVzA6KHb2XYHFouFBx54gMbGRqqrqz2unz9/nqeffprY2FjjoLP9+/cDMGfOHI+v1X799Vfj52t9TScicrtQQldEpAtmzZoFQHp6Oi0tLcZ4fX09y5Ytc7vXdeBBYWGhW3Db0NBAUlKS0cLB2wFkW7dudat0aGtrIzU1lY6ODuLj46/7oAcRERERkc5yxbVHjhzh8OHDxrjT6SQnJ4ctW7YA3uPaq0lMTAQgNTUVm81mjP/1118sXryYmpoazp07h8VicdvDjh073ObZvXs3S5cudXteROR2p5YLIiJdMHPmTIqKiigsLGTKlCmMHz+e9vZ2du3aZRxa4Oq5FRcXx/fff88XX3zBvn37CAoKorW1lbKyMpxOJ4GBgRw5csQtMewyePBgkpKSGDduHAEBAezevZvW1lYmTpzIa6+9dkPfWURERETubA899BDR0dEUFBTwzDPPEBERga+vLwcOHKChoYERI0Zw6NAhr3Ht1SQkJFBeXs62bduYPn06oaGhmM1mKioqaGpq4t5772XlypXG/bNnzyYrK4u0tDSsVisBAQHYbDb++OMPzGYzAQEBNDc309zczIABA/6L/wYRkVuGKnRFRLqgd+/efPDBB7z11lsMHTqUkpISqqqqiImJ4cMPPwQwAsjw8HA2b95MVFQUZ86coaCggPr6eiZPnkxubi4LFiwALlfwXmnu3LmkpKTQ1NREUVER9913HwsXLmTjxo34+PjcuBcWEREREQFWrVrFvHnzsFgslJaWsnPnTsxmM2+++SZ5eXmMHDmSpqYmfv/9907N17t3b1auXMny5csJDQ2lurqakpISTCYTs2fPZuvWrQQGBhr3z5o1i+zsbEJDQzl48CCFhYWcP3+e+Ph4vv76a6ZOnQp4j61FRG43vZydbXIjIiJUV1fj7+/PkCFDPK4dOHCAmJgYHn74YXJzc//V/G+//TZfffUVmZmZPP/88//3/l27dpGQkMC4cePIycn5V2veaNHR0Rw/fpzt27czbNiwm70dEREREbnDxMfHU1paykcffcTEiRNv9nauW3BwMABVVVX07asPsUXuBKrQFRHpgiVLlvD444+zfft2t3GHw8Hy5csBmDJlys3YmoiIiIiIiIjcAfSnGxGRLnj55ZfZv38/ycnJhISEYLFYcDgclJWV0dbWRmRkJAkJCTd8X0ePHiUlJQWApUuX0r9//xu+h2upq6tj3bp1AJw6deom70ZEREREBDZs2EBeXh5RUVHMmDHjZm+nS/bs2fOvvwoUkZ5PCV0RkS6YPHkyVquVTz/9lLKyMmpra+nfvz9BQUHMmDGDmTNn0qdPnxu+r9bWVr755hsAMjIybrmEbktLi7E/EREREZFbwW+//QaAv79/j0vo2mw2xdcidzD10BURERERERERERHpIdRDV0RERERERERERKSHUEJXREREREREREREpIdQQldERERERERERESkh1BCV0RERERERERERKSHUEJXREREREREREREpIdQQldERERERERERESkh1BCV0RERERERERERKSHUEJXREREREREREREpIf4H+DsQHyrTEHVAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1500x1200 with 6 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "eval = \"height\"\n",
+    "fig, axes = plt.subplots(3, 2, figsize=(15, 12))\n",
+    "fig.suptitle(\"Influence of parameters on the height of the printed strand\", weight=\"bold\")\n",
+    "fig.tight_layout(pad=3.0)\n",
+    "for i, (param, unit) in enumerate(zip([\"temperature\", \"speed\", \"layer\", \"feeding_rate\", \"gap\", \"area\"], [' [°C]', ' [mm/s]', '', '', '[mm]', ' [mm²]'])):\n",
+    "    axes[i//2, i%2].plot(df[param], df[eval], 'o')\n",
+    "    if param == 'feeding_rate': param = 'feed rate'\n",
+    "    axes[i//2, i%2].title.set_text(f'{param[0].upper()}{param[1:]}')\n",
+    "    axes[i//2, i%2].set_xlabel(f\"{param}{unit}\")\n",
+    "    axes[i//2, i%2].set_ylabel(f\"{eval} [mm]\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Basic features"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 37,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Linear Regression r^2 on test data : -21013005883.420\n",
+      "Prediction: 0.18622350017540157\n",
+      "Real value: 0.1867976188659668\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.preprocessing import PolynomialFeatures\n",
+    "\n",
+    "polyreg = Pipeline([('poly', PolynomialFeatures(degree=3)),\n",
+    "                  ('linear', LinearRegression())])\n",
+    "\n",
+    "polyreg = polyreg.fit(X[df.layer != 0], height[df.layer != 0])\n",
+    "pred = polyreg.predict(X)\n",
+    "r2 = r2_score(height, pred)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {pred[0][0]}\\nReal value: {height[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Feature Engineering\n",
+    "\n",
+    "**Hypothesis**:\n",
+    "* Parameters with low coefficients can be removed from the model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 38,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.preprocessing import FunctionTransformer\n",
+    "\n",
+    "def height_features(X:np.ndarray) -> np.ndarray:\n",
+    "    temperature, speed, feeding_rate, layer, gap, width, area = X[:, 0], X[:, 1], X[:, 2], X[:, 3], X[:, 4], X[:, 5], X[:, 6]\n",
+    "    fw = feeding_rate / width\n",
+    "    sqrtf = np.sqrt(feeding_rate)\n",
+    "    w2 = width ** 2\n",
+    "    sqrtfw = np.sqrt(fw)\n",
+    "    return np.column_stack([feeding_rate, temperature, speed, np.cbrt(feeding_rate)])\n",
+    "\n",
+    "HeightFeatures = FunctionTransformer(height_features)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 39,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Linear Regression r^2 on test data : 0.801\n",
+      "Prediction: 0.16186860238094286\n",
+      "Real value: 0.1867976188659668\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.linear_model import LinearRegression\n",
+    "from sklearn.pipeline import Pipeline\n",
+    "from sklearn.metrics import r2_score\n",
+    "\n",
+    "height_model = Pipeline([('transf', HeightFeatures),\n",
+    "                  ('linear', LinearRegression())])\n",
+    "# fit to an order-3 polynomial data\n",
+    "height_model = height_model.fit(X[df.layer != 0], height[df.layer != 0])\n",
+    "pred = height_model.predict(X[df.layer != 0])\n",
+    "r2 = r2_score(height[df.layer != 0], pred)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {pred[0][0]}\\nReal value: {height[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 40,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "<matplotlib.legend.Legend at 0x157836a10>"
+      ]
+     },
+     "execution_count": 40,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABaIAAAL/CAYAAACUKrBZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xUVd7H8c/MpJBQQhNQjGDAxbZSVEQRu65b2F1dV5FiLyAIBLCjixWUFpFgWyuhqLvqCvq4VkSKWCg2LCGKiFKlkz73+SOSFQmQQIZQPu997Ss6c+ecMxfJmfnec38nFARBgCRJkiRJkiRJMRKu6gFIkiRJkiRJkvZuBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYipuR18YBAGFhYVEo9HtHhsOh4mPjycUCu1od5IkSZIkSZKkPVSFg+ji4mJWrFjB2rVrKSgoLPfrEhLiqVWrFvXr1ycSiVS0W0mSJEmSJEnSHioUBEFQ3oOLi4tZtGgRGzfmkpRUnWrVkgiHtx8qR6PF5OXlkpu7geTkJFJTUw2jJUmSJEmSJGkfUaEgeunSpaxc+RP16jUkISGxwp0VFOSzcuVS6tWrS8OGDSv8ekmSJEmSJEnSnqfcmxUGQcDatWtJSqq+QyE0QEJCItWqVWft2rVUIP+WJEmSJEmSJO3Byh1EFxYWUlBQSLVqSTvVYVJSEgUFhRQWlr++tCRJkiRJkiRpz1XuIDoajZa8oBw1obfZ4c+v39SeJEmStDuaNWsWLVq0oEWLFixYsGCX9HnjjTfSokULzj///Epr87TTTqNFixYMGzZsh16/fv16HnnkkUobjyRJkvZN5Q6iJUmSJO1bZsyYwVlnncVTTz1V1UORJEnSHs4gWpIkSdpN7Lfffhx88ME0bty4qocCwEcffcTKlSurehiSJEnaC8RV9QAkSZIklejfvz/9+/ev6mFIkiRJlc4V0ZIkSZIkSZKkmHJFtCRJklQOM2fO5Mknn2Tu3Lnk5ubSqFEjTj31VK6++mrq1q27xfGFhYX8+9//ZvLkyXz11Vds3LiRevXqcfTRR9OlSxeOPvroLV5z44038sILL9CyZUueffbZLZ7/4osveOyxx5g9ezbLli2jfv36nHrqqVxzzTU8//zzDB8+nHPOOYchQ4aU+R6WL1/Oww8/zJQpU1iyZAkpKSkcddRRXHrppbRt27b0uFmzZnHRRReV/vuKFSto0aIFAG+++SYHHnhghc+fJEmS9m0G0ZIkSdJ2jBkzhsmTJwOQnJxMYWEhCxcu5Mknn+SVV17hX//6Fw0bNiw9ftmyZXTv3p3PPvsMgFAoRM2aNVm6dCkvv/wyL7/8Mpdddhk33HBDucfw/PPPc+utt1JUVARArVq1WLp0KePGjePVV1/lhBNO2Obr58+fz5/+9CdWr15NfHw8kUiEFStW8NZbbzFlyhTuuusu/va3vwEQHx9P/fr12bhxIxs3biQcDpeG7ZFIpPwnTpIkSfqZpTkkSZKk7Zg8eTInnXQSL7/8MnPmzGHOnDmltZyXLVvG6NGjS48tKCigR48efPbZZ6SlpTFmzBjmzZvHBx98wHvvvUd6ejrx8fE8/vjjPPbYY+Xqf968edx8880UFRVxyimn8MYbb/DBBx/wwQcf0L9/f1avXs2kSZO22ca0adOIi4vj/vvvZ+7cucydO5dx48ZxwAEHEI1GufvuuykoKACgTZs2TJ8+ncsuuwyAunXrMn36dKZPn87++++/I6dQkiRJ+ziDaEmSJGk7WrVqxcMPP0zz5s0BqFatGldddRUnn3wyANOnTy899oUXXuDTTz+lQYMGTJw4kdNPP53ExEQAateuTffu3bnuuuuAkpXW69at227/Q4YMIQgC2rRpw5gxY0hNTQWgevXqXHXVVdxyyy3bbSMuLo7HHnuMs88+m7i4OEKhEMcccwzXX389ABs2bGDu3LnlPymSJElSBRhES5IkSdtxwQUXEA5v+dH5mGOOAUpqL2/ywgsvAPD73/+elJSUMts777zziEQirF+/nhkzZmyz7yVLljB79mwArrnmmjJLY1x44YXbXancpk0bDj300K2+ByhZ3S1JkiTFQrlrRMfFlRxaWFhIQkLiDndYWFi4WXuSJEnS7q5Zs2ZlPl6vXj2gpBxHQUEB4XCYTz/9FIDnnnuOl19+eattBkEAQHZ2Nr/73e+2etxHH30EQDgc5thjjy3zmHA4TNu2bfnPf/6z1XbS0tLKfLx+/fql/7x+/fqtvl6SJEnaGRUKomvUqM6GDWtJSkoiHK74JiXRaDEbNqylRo3qBtGSJEnaY9SoUaPMx0OhUOk/B0HAmjVrShdebNrob3vWrl27zec3rVKuVasW1apV2+pxv9wssSzlfQ+SJElSLFQoDd5vv/347rtFLFv2I8nJ1UlIqFbmLYq/Fo1GKSjIY+PGDYTD0KBBgx0esCRJkrS7ikajpf98++2306lTp51uc1Ow/cu2y7K9EPmXgbMkSZK0q1UoiE5OTiYt7WCWLVvGhg0bWL9+26s3NusoLkLNmtVp0KABCQkJFR6oJEmStLtLSUkhHA4TjUb58ccfK6XNTaUz1q9fT25uLklJSWUet2LFikrpT5IkSYqFCtfHSEhI4MADDyQIAgoLC7e7MgNKatbFx8e7CkOSJEl7tYSEBFq0aMH8+fN59913SU9PL/O4hQsX0q1bN/bff3/69evHcccdt9U2W7VqBZSsiJ49ezbt27ff4pggCPjwww8r5T1IkiRJsbD9uhpbEQqFSEhIoFq1atv9f0JCgiG0JEmS9gkdO3YE4LPPPtvqZoUZGRksXbqUr776isMPP3yb7aWlpXHUUUcB8PDDD5e5EGTSpEksWrRoJ0e+pU1l+IqLiyu9bUmSJO1bdjiIliRJkrSlCy+8kLS0NABuuOEGnnzySTZs2ACUbDx4yy238MorrwBw1VVXUbNmze22ef311xMKhZg1axZ9+vTh+++/ByAvL4/x48dzyy23lB5bmQtAUlJSgJINFb/99ttKa1eSJEn7ngqX5pAkSZK0dcnJyTzyyCNcffXVLFiwgMGDB3PfffeRnJzMunXrSo/7+9//To8ePcrV5rHHHsstt9zC3XffzWuvvcZrr71GrVq1yM3NpbCwkMaNG5OSksLnn39OfHx8pb2XVq1aEQqFKC4u5uyzz6ZmzZo8/PDDtGnTptL6kCRJ0r7BFdGSJElSJUtNTeWFF17g1ltv5dhjj6VmzZrk5uZSp04dTj75ZDIzM7nrrrsq1Ga3bt2YOHEiv/vd76hfvz65ubk0aNCASy65hOeff5569eoBUL169Up7H0ceeST33HMPBx98MHFxcUQiEZYuXVpp7UuSJGnfEQqCIKjqQUiSJEnaOX/961+ZP38+AwcOpFu3blU9HEmSJGkzroiWJEmSdmNFRUW0bt2aP/zhD8yYMaPMY+bPn88XX3wBYNkMSZIk7ZYMoiVJkqTdWFxcHEcccQQLFizgtttuY/r06RQXFwNQUFDAG2+8wVVXXUUQBHTo0IEjjjiiikcsSZIkbcnSHJIkSdJu7quvvuKSSy5h5cqVAEQiEWrUqMHatWvZ9HG+devWjBkzhrp161blUCVJkqQyGURLkiRJe4C1a9fyr3/9i9dee43FixezatUq6tSpQ/PmzenYsSN//vOfiYuLq+phSpIkSWUyiJYkSZIkSZIkxZQ1oiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYsogWpIkSZIkSZIUUwbRkiRJkiRJkqSYMoiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYsogWpIkSZIkSZIUUwbRkiRJkiRJkqSYMoiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYsogWpIkSZIkSZIUUwbRkiRJkiRJkqSYMoiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYsogWpIkSZIkSZIUUwbRkiRJkiRJkqSYMoiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFoSAM8//zwtWrSgW7duVT2UKvH6669z4YUXcuyxx3LMMcdw6aWXMnPmzKoeliRpD7Ovz6e/9OKLL9KiRQtmzJhR1UORJO1h9uX5tKCggEceeYS//OUvtGrVipYtW9KxY0cefPBB8vPzq3p40k6Jq+oBSFJVe+ihhxg5ciTJyckcd9xx5OXlMWvWLGbOnMldd93FeeedV9VDlCRpjzJ79mxuv/32qh6GJEl7lNzcXC699FLmzJlDzZo1adOmDaFQiLlz55KRkcHbb7/Nk08+SXJyclUPVdohBtGS9mlffPEFI0eOpEGDBkyYMIEDDzwQgA8//JArr7ySO++8kw4dOtCwYcMqHqkkSXuGV155hVtuuYWNGzdW9VAkSdqjPPzww8yZM4c2bdqQmZlJ3bp1AVi5ciU9evRg3rx5jB49muuvv76KRyrtGEtzSNqnPf744wD07NmzNIQGSstz5OXlMXHixKoaniRJe4xFixaRnp5Oeno6QRBQv379qh6SJEl7lOeffx6AO+64ozSEBqhXrx633XYbAC+//HKVjE2qDAbRknbKq6++ylVXXUX79u058sgjOfroozn//PMZN24c0Wi09Lju3bvTokULnnnmmTLbeeSRR2jRogWjR4/e7PFXXnmFbt26cfTRR9OyZUv+8pe/8OSTT1JYWLjZcbNmzaJFixbcfffdjB07lhNOOIGWLVvSuXPnzcbxa++88w4AZ5xxxhbPnXnmmQBMmTKlXOdCkqQdtafPpwCDBw/mlVde4be//S3PPvssaWlpO3g2JEnaMXvyfLphwwYOOuggDj30UA455JAtnm/atCkAy5cvr8gpkXYrluaQtMPuuusuxo4dS1JSEm3atKFGjRosXLiQefPmMW/ePL777jtuuukmAM477zzefvttXnzxRS644IIt2nrhhRcIhUKcc845pY/ddtttPPPMM1SrVo2jjjqKmjVr8tFHHzF48GCmTp3KQw89REJCwmbtTJ06lYULF9K2bVtCoRAHHHAA4XDZ19yWL1/O6tWrqVOnTpmrtpo1a0YoFCI7O5vi4mIikcjOnC5Jksq0p8+nm7Ro0YI//OEP/PGPfyQUClXCmZEkqfz29Pm0evXqZGVlbfX9ffLJJwCWjdQezSBa0g759NNPGTt2LAceeCDPPPPMZkHu5MmT6d+/P8888wwDBgwgPj6eU045hXr16jF79mwWLVpEampq6fEff/wxOTk5HH/88TRu3BgouSXpmWeeoUWLFowZM6a0bMb69evp06cP06ZNIzMzk/T09M3G9e2333LddddxxRVXAGxz9dayZcsA2G+//cp8PiEhgZSUFFavXs26deuoXbt2xU+UJEnbsDfMp5v06dNnp8+HJEk7Ym+aT8sSjUbJyMgA4He/+90OtSHtDizNIWmHrF27lt/97nf069dvi9XEf/rTn6hVqxa5ubmsXLkSgLi4OP7yl78A8OKLL252/AsvvADAueeeW/rYo48+CpTc5vvL2s01atRg8ODBxMfHM27cOAoKCjZrKxKJ0Llz59J/39bqrdzcXACSkpK2ekxiYiKAGy5JkmJib5hPJUmqanv7fDp48GDmzp1L/fr1ueqqq3aoDWl34CdKSTvkhBNOYNSoUfzxj38sfaygoICvv/6af/3rX6VXen85EZ933nkA/Oc//9nsNa+88go1atTgrLPOAkpKZuTk5FCzZk2OOOKILfpu0KABhx56KOvWrePzzz/f7LmDDjqI5OTkcr2HTR8CynP78I5euZYkaVv2hvlUkqSqtrfOp0EQMHjwYJ5++mkSExPJyMjYbBNDaU9jaQ5JOyw/P58XX3yRN954g+zsbJYsWVI6wW8Kd4MgKD2+WbNmtG7dmjlz5vDhhx9yzDHH8Pbbb7N69WouuOACqlWrBsCPP/4IwLp162jRosU2x/Djjz/SqlWr0n+vSPmMTR8I8vLytvkef3msJEmVbU+fTyVJ2h3sbfNpQUEBN910E5MnTyYpKYnRo0dz7LHH7nB70u7AIFrSDlm2bBldu3Zl4cKF1KhRg6OOOorTTz+dFi1a0LZtWy655BJ++OGHLV73t7/9jTlz5vDSSy9xzDHHlF59/uVtT8XFxUDJpN2hQ4dtjuPX9Z0rsjnSpk0eVqxYUebzBQUFrFmzhvj4eL+QS5JiYm+YTyVJqmp723y6atUqevbsyUcffUTt2rV56KGHaN269Q61Je1ODKIl7ZCRI0eycOFCOnbsyN13311aS3mTtWvXlvm6P/zhD9xzzz288cYbXH/99UybNo20tLTNrhpvmrwTExMZNmxYzN5DnTp12G+//Vi+fDmrVq2iTp06mz2fnZ1NEAQccsgh1saUJMXE3jCfSpJU1fam+XTp0qVcdNFFfPvttxx00EE8+uijNG3aNOb9SruCyYqkHTJnzhwArrjiii0m+Xnz5rF+/Xpgy9rK1atX5+yzz2blypVkZGSQn5+/2dVmgAMPPJADDjiApUuX8sUXX2zRd25uLn/+85/p0qUL33///U69j01XtN98880tnnv99dcBOOmkk3aqD0mStmZvmU8lSapKe8t8unbtWi6++GK+/fZbfvvb3/LMM88YQmuvYhAtaYds2iDh1wHuV199xXXXXVf675tqLP/S3/72NwDGjRtHJBIp3a34ly6++GIArr/+er777rvSxwsKChg0aBBffvklGzdu3GzH4h3RuXNnwuEwGRkZ5OTklD4+e/ZsnnzySRITE+nWrdtO9SFJ0tbsLfOpJElVaW+ZT2+//Xa++eYbmjdvzpNPPunGhNrrWJpD0mbmzJlD+/btt/r8+eefT58+fbjkkkv46KOPGDVqFG+++SYHHnggS5cuZd68eVSrVo0DDzyQ77//vsz6y8cccwwHH3ww33zzDaeccgoNGjTY4piLLrqIefPm8corr/CnP/2J3/72t9SuXZuPP/6YZcuWUa9ePUaMGLHT7/e3v/0t3bt3Z8yYMfz1r3/l+OOPp6CggFmzZhGNRhk6dCj169ff6X4kSfuWfW0+lSQpFval+TQ7O5uXX34ZgFq1ajFo0KCtHnvfffdZPlJ7JINoSZspLCzc6uZ9QOktTWeddRaPPfYYDz30EF9//TVfffUVDRo04JxzzuHKK6/knXfeYciQIbz99tuceOKJW7TTpk0bvvnmmy1ue9okHA4zYsQITj75ZJ577jm++OILioqKaNy4MX/84x+57LLLyvyAsCP69OlDWloaTz/9NLNmzaJatWocd9xxdO/eneOOO65S+pAk7Vv2xflUkqTKti/Np++++y5BEAAld+jOnj17q8cOGTLEIFp7pFCw6b9ySdpFCgoKOOmkk4hEIkyZMoX4+PiqHpIkSXsc51NJknae86m063j5RNIuEY1GKSgooKioiGHDhrFq1So6derkJC9JUgU4n0qStPOcT6Wq4YpoSbtEQUEBrVu3JhQKUVhYSMOGDXn55ZepWbNmVQ9NkqQ9hvOpJEk7z/lUqhquiJa0SyQkJHDooYcSCoVo3bo1//znP53kJUmqIOdTSZJ2nvOpVDVcES1JkiRJkiRJiilXREuSJEmSJEmSYsogWpIkSZIkSZIUU3FVPQDtmCAIiEb3nqoq4XBor3o/uyPPcWx5fmNvbzrH4XCIUChU1cMQzqeqOM9x7HmOY2tvO7/OqbuHvW0+jZW97e9frHieysfzVH6eq+3bVfOpQfQeKhoN+OmnDVU9jEoRFxemTp3qrF27kaKiaFUPZ6/kOY4tz2/s7W3nuG7d6kQifmneHTifqiI8x7HnOY6tvfH8OqfuHkKh0F7131Us7I1//2LB81Q+nqfy81yVz66aTy3NIUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYiquqgcgSZIkSdq35KzMZvzcLBatWUhqShM6t+pKWr3mVT0sSZIUQwbRkiRJkqRdZsLcLNIn9yJEiICAECFGz8wgo2MmnVp2qerhSZKkGLE0hyRJkiRpl8hZmU365F5EgyjFQfFmP/tO6knOTwuqeoiSJClGDKIlSZIkSbvE+LlZhAiV+VyIEOPnjN3FI5IkSbuKQbQkSZIkaZdYtGYhAUGZzwUELFqzcBePSJIk7SoG0ZIkSZKkXSI1pck2V0SnpjTZxSOSJEm7ikG0JEmSJGmX6Nyq6zZXRHdu3W0Xj0iSJO0qBtGSJEmSpF0irV5zMjpmEg6FiYQim/3M6JhJWt1mVT1ESZIUI3FVPQBJkiRJ0r6jU8sutE1tx/g5Y1m0ZiGpKU3o3LqbIbQkSXs5g2hJkiRJ0i6VVrcZA08fVNXDkCRJu5ClOSRJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKIliRJkiRJkiTFlEG0JEmSJEmSJCmmDKIlSZIkSZIkSTFlEC1JkiRJkiRJiimDaEmSJEmSJElSTBlES5IkSZIkSZJiyiBakiRJkiRJkhRTBtGSJEmSJEmSpJgyiJYkSZIkSZIkxZRBtCRJkiRJkiQppgyiJUmSJEmSJEkxZRAtSZIkSZIkSYopg2hJkiRJkiRJUkwZREuSJEmSJEmSYsogWpIkSZIkSZIUUwbRkiRJkiRJkqSYMoiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMxVX1ACRJkiRJ+5aVOdnMHZ/FmkULSUltQqvOXamX1ryqhyVJkmLIIFqSJEmSVC45K7MZPzeLRWsWkprShM6tupJWr2IB8twJWUxO7wWhEAQBhELMHJ1Bx4xMWnbqEqORS5KkqmYQLUmSJEnarglzs0if3IsQIQICQoQYPTODjI6ZdGpZvgB5ZU42k9N7EUSjWzw3qW9PUtu2o25as8oeuiRJ2g1YI1qSJEmStE05K7NJn9yLaBClOCje7GffST3J+WlBudqZOz6rZCV0WUIh5owfW4mjliRJuxODaEmSJEnSNo2fm0WIsgPkECHGzylfgLxm0cKSchxlCYKS5yVJ0l7JIFqSJEmStE2L1iwkoOwAOSBg0ZryBcgpqU22uSI6JbXJjg5RkiTt5gyiJUmSJEnblJrSZJsrolNTyhcgt+rcdZsrolt37rajQ5QkSbs5g2hJkiRJ0jZ1btV1myuiO7cuX4BcL605HTMyCYXDhCKRzX52zMh0o0JJkvZicVU9AEmSJEnS7i2tXnMyOmbSd1JPQoQICEp/ZnTMJK1u+QPklp26kNq2HXPGj2XNooWkpDahdeduhtCSJO3lDKIlSZIkSdvVqWUX2qa2Y/ycsSxas5DUlCZ0bt2tQiH0JnXTmnH6wEGVP0hJkrTbMoiWJEmSJJVLWt1mDDx9UFUPQ5Ik7YGsES1JkiRJkiRJiimDaEmSJEmSJElSTFmaQ5IkSZL2cjkrs5n48TiWbFxMo+TGdDqqC2n1mlf1sCRJ0j7EIFqSJEmSdlM5K7MZPzfrf5sDtupa4QB5wtws0if3IkSIgIAQIUZNH0lGx0w6tewSo5FLkiRtziBakiRJknZDZQXIo2dmVChAzlmZTfrkXkSD6BbP9Z3Uk7ap7Uir26yyhy5JkrQFa0RLkiRJ0m7mlwFycVC82c++k3qS89OCcrUzfm4WIUJlPhcixPg5Yytz2JIkSVtlEC1JkiRJu5nKCpAXrVlIQFDmcwEBi9Ys3OExSpIkVYRBtCRJkiTtZiorQE5NabLNQDs1pckOj1GSJKkiDKIlSZIkaTdTWQFy51Zdtxlod27dbYfHKEmSVBEG0ZIkSZK0m6msADmtXnMyOmYSDoWJhCKb/czomOlGhZIkaZeJq+oBSJIkSZI2tylA7jupJyFCBASlPysaIHdq2YW2qe2YOC+LJRsX0yi5MZ1adjWEliRJu5RBtCRJkiTthjYFyOPnjGXRmoWkpjShc+tuOxQgp9Vtxm1n3k6dOtVZtWoDRUXRGIxYkiRp6wyiJUmSJGk3lVa3GQNPH1TVw5AkSdpp1oiWJEmSJEmSJMWUQbQkSZIkSZIkKaYMoiVJkiRJkiRJMWUQLUmSJEmSJEmKKYNoSZIkSZIkSVJMGURLkiRJkiRJkmLKIFqSJEmSJEmSFFMG0ZIkSZIkSZKkmDKI3or333+fyy67jOOPP57WrVvTqVMnXnnllZ1qc9KkSbRo0YIBAwZU0iglSZIkSZIkafcXV9UD2B299NJLXH/99cTFxXHccccRiUSYOXMm6enpZGdn07t37wq3+eOPP3LHHXfEYLSSJEmSJEmStHsziP6VFStWcOutt5KUlERWVhZHHHEEAAsWLOCiiy5izJgxnH766aWPl0cQBNxwww2sXbs2VsOWJEmSJEmSpN2WpTl+Zdy4ceTl5dG1a9fNwuZmzZrRr18/giDgqaeeqlCbTzzxBLNmzeLYY4+t7OFKkiRJ2k3lrMzmrjcHcfXzl3LXm4PIWZld1UOSJEmqMgbRv/LOO+8AcMYZZ2zx3BlnnEEoFGLKlCnlbu/LL79k5MiRnHrqqZx77rmVNUxJUhXIXvE1fV66hpYZh/LuN+9U9XAkSbuxCXOzOOHBY8iceT//+fwFMmfezwkPHsPEeeOqZDwrc7J5/Y5/8OSFF/L6Hf9gZU7VheLL1i/jrjcH0WbUETz2wcNVNg5JkrRrWZrjF4IgIDu75APZIYccssXzKSkp1K9fn+XLl7N06VIaNmy4zfYKCgoYMGAA1atX56677mLq1KkxGbckKbY+/nEu908fweT5/yEgAGBtvuWWJElly1mZTfrkXkSD6BbP9Z3Uk7ap7Uir22yXjWfuhCwmp/eCUAiCAEIhpo8aSceMTFp26rLLxrFo9Xdkzryf8XPHkleUB8DyDct3Wf+SJKlqGUT/wpo1a8jPz6d69eokJyeXeUyDBg1Yvnw5K1as2G4QPWLECL766itGjRpF/fr1K328cXF7x4L2SCS82U9VPs9xbHl+Y6+qzvHMhdMZMXUYb2a/XvrYHw79E3079OeYAy23tLdwPlV5eY5jb285xxM/HkeIUJnPhQgxcV4Wt515+y4Zy8oF2UxO70UQ3TIUn9S3J01POIF6abENxb9c/gWjpo3kuY+foShaBMDRBx5Lvw4D+N1vfk84vGf/eavEnv73Ntb2lt9vseZ5Kh/PU/l5rsonVPbHlkpnEP0Lubm5ACQlJW31mMTERAA2bty4zbZmzpzJk08+yZ///Gd+97vfVd4gfxYOh6hTp3qlt1uVatXa+nlX5fAcx5bnN/Z2xTkOgoD/+/z/uOf1e5ieMx2ASDjChW0u5IYzbuDIA46M+Ri06zifakd4jmNvTz/HSzYuLr2D5tcCApZsXLzLfve8+++JhEKhMkcTCoX4/F8T+PPgweVub9nXX/Pe44/z07ffUrdpU9pddhkNyribFODD7z5k8OuDeeHjFwiCkhGc0eIMbj7zZk455BRCu+pbr3aJPf3v7a7ieSofz1P5eJ7Kz3O1ezCI/oVNV+LL84EoWsaKgk3Wrl3LTTfdRMOGDbn11lsrbXyb9x+wdu22w/A9RSQSplatJNauzaW4eOvnVTvOcxxbnt/Y2xXnuDhazH8+f4GMd4fz6ZJPAEiIJNCldTeubd+XpnUPBmDVqg073VetWklekd9NOJ+qIjzHsbe3nONGyY23uSK6UXLjSplPymPJV9mlIfCvBUHAkq+yyz2WOePG8p8+PTcr8fHmfffxl1FjaN25a2mbMxZOY8TUYby94M3S1/7psI707TCANo2PBmD16sr53eucuvvY0//extre8vst1jxP5eN5Kj/PVfmkpCTtkjuUDKJ/oXr1klUJeXl5Wz0mPz8fYKulOwBuv/12lixZwuOPP06tWrUqd5C/UFS0d/0FKi6O7nXvaXfjOY4tz2/sxeIcFxQX8NzHE3lgxkhyfloAQPWEGlx89GX0OK4XDWs2Ava+37n6n73tz9bfRbHnOY69Pf0cdzqqC6OmjyzzuYCATi277rL3V+vAg7Z+v20oRK0DDyrXWFbmZPOfPj3LLPHxn97XcMDRbfmo+Gsypg/nw+/fByASinDukX/n2hPSObTBYcDe9ztX/7On/73dVTxP5eN5Kh/PU/l5rrZtK9esK51B9C9Ur16d6tWrs27dOvLy8qhWrdoWxyxbtgwoqRVdlk8++YTJkydTu3Ztnn/+eZ5//vnS577//nsA5syZw4ABA2jWrBk9evSIwTuRJG3PhoINjJvzFGPee4Af1i4GoE5SHa5s24PLj72KOkl1q3iEkqQ9VVq95mR0zKTvpJ6ECBEQlP7M6Ji5SzcqbNW5KzNHZ5T9ZBDQunO3crUzd3xWmYF2NAQLDgn43fiz+I4VACRGEuncuhvXtOtNkzpNd3DkkiRpb2MQ/QuhUIhDDjmEuXPnsmDBAo444ojNnl+9ejUrVqwgJSVlqxsVbqodvXr1aiZNmlTmMd9//z3ff/89bdu2NYiWpF1sde4qHv/wUR6ZNYafcn8CoFHN/enR7lq6tbmEGgk1qniEkqS9QaeWXWib2o7xc8ayaM1CUlOa0Ll1t10aQgPUS2tOx4xMJvXdvKQGQUDHjEzqlnOjwjWLFm62XKo4DPMPg9ltYE3tAFhB9YQaXHr0FVzdricNa2x7Y3dJkrTvMYj+lQ4dOjB37lzeeOONLYLoN954gyAIOOmkk7b6+uOOO44vv/yyzOeef/55brrpJjp27MiwYcMqddySpG1btn4ZD8/K5IkP/8n6gnUANK1zMNeekM75R11IYlxiFY9QkrS3SavbjIGnD6rqYdCyUxdS27Zj3sQsNi5ZTHKjxrTs1LXcITRASmoTCIUojINPj4Q5rWHDz9duq+VCx6QTuLv3BGon1YnRu5AkSXs6g+hfOe+88/jnP//Jk08+SYcOHWjTpg0AOTk5ZGRkAHDFFVeUHr9s2TLWrVtHzZo1t1quQ5JUdX5Yu5jMmfczdvaT5BWV7AFwWIMj6NO+H38+/Bziwk6FkqTd18qcbOaOz2LNooWkpDahVeeu1EtrXuF26qY148zbbqdOneqsWrWhwnUym//9r4yaMZI5rSAvqeSx6uuhzWw4cn6IPlMzDaElSdI2+e37Vxo1asQtt9zCrbfeSteuXTnuuONISEhg5syZ5Ofn079/fw499NDS40eMGMELL7zAOeecw5AhQ6pw5JKkX/p21Tc8MCODiXOzKIwWAnB042Poe+J1nHXI2YS2tnGTJEm7ibkTspic3muzkhozR2fQMSOTlp267JIx/LRxJY++/xD//OBh1hxfUpqj1ho4ZnaIQ78MEVdMhUp8SJKkfZdBdBn+/ve/06hRIx555BHmzp1LJBLh8MMP57LLLuOss86q6uFJkrbh6xVfcf/04fz7k2cpDooBaN+kA+kdrqND05MNoCVJe4SVOdlMTu9FEN1y5fKkvj1JbdsupuHv0vVLeei90Tz50WNsKFgPwG/qt+CK33TjgBkrWH/IIlJOa0Lrzt0MoSVJUrkYRG9Fhw4d6NChw3aPGzJkSLlXQp977rmce+65Ozs0SVIZPlv6KRnThvHS5y8QULJi67RmZ9D3xOtod9DxVTw6SZIqZu74rJKV0GUJhZgzfiynDxxU6f3+sHYxo2dkkDXnqdKSVkc2PIr0Dtfxx0M7Eg6F4fRK71aSJO0DDKIlSXu02Ys/JGPaMF796pXSx37f4k+knziAVge0qcKRSZK049YsWlhSjqMsQVDyfCXaWkmr9BOv40xLWkmSpEpgEC1J2iPNXDidkdOGMiXnLQBChPjrEefSp/0ADm94RBWPTpKknZOS2mSbK6JTUptUSj9fLf+S+6cP5/lPn7OklSRJiimDaEnSHiMIAqbkvMWId+/jve9mABAJRfj7UZ3ofUI/mtc/JOb9L3jrdXKmvE27Hr2odUDjmPYnSdp3terclZmjM8p+Mgho3bnbTrX/6ZJPyJg2jEnzX6ySklY/zpvDp8//i8P/cg6N2xwT8/4kSVLVM4iWJO32giDgpU9e4vZX7mT24g8BSIgkcGGrbvQ6vg9N6jSNaf/R4mLmT/4P0+8fwdJPPwag9kEH0fbKHjHtV5K076qX1pyOGZlM6tuzZGV0EJT+7JiRucMbBL6/8H3+Mfl2Xv1y15e0CoKA796bwfSMYSx4+00ANv600iBakqR9hEG0JGm3FQ2ivPzFJEZOu49Pl3wCQFJcEhcdfSnXtOvN/rUOiGn/xQUFfPKvZ5g+agQ/5SwAID65OkdfdCmtu14S074lSWrZqQupbdsxZ/xY1ixaSEpqE1p37rZDIfSsRe8x4t17eXtBSQC8K0taBUFA9hv/ZVrGcL7/YFZJ/5EIR/z1b5x2yz9i2rckSdp9GERLknY7xdFiJs1/kRHv3scXy+cDUCOxBlccezVXtr2G/arvF9P+CzZsYM64p3hvzAOs/WExANVq16btFd059oqrSa5bL6b9S5K0Sd20Zpw+cNAOv37mwukMmzqEd799B4BIOML5R13Itcenx7ykVbS4mM9feoEZo0ay9LOSC8qRhARaXdiN43v2pk7Tg2PavyRJ2r0YREuSdhvF0WJe/OzfjJw2lK9WfAlArcQUrm7XgxvPvo5QQSJFRdGY9Z+3ZjUfPP4o7z8yho0rVwJQo2Ej2vW4ljYXXUJijZox61uSpMoSBAHTvp3K8HfvZcbCaQDEh+O5sHUXBv3pNmqHG8R0Pi3Kz+eT5yYy44GR/PRNDgAJ1Wtw9CWXc1z3ntRs2ChmfUuSpN2XQbQkqcoVRYv49yfPkjFtGAt+ygYgpVptrj7uGq5s2516NepSp3p1VhVsiEn/65ctY9bDmXz4xD8pWL8OgDpNmnLCtekcdf6FxFWrFpN+JUmqTEEQ8M43bzN86r3MWjQTKNlToXOrblx7QjoH129KnTrVWbUqNvNpwYYNzMl6kpljHmDdjz8AkFSnDm2v7MGxl19FUp26MelXkiTtGQyiJUlVprC4kH998gwjpw3l21XfAFAnqQ492l3L5cdeRc3EWjHtf/V3C5k5ZhRzx4+lKC8PgP0OO5z2vftxxF/OJRznNClJ+6KcldmMn5vFojULSU1pQudWXUmr17yqh7VVQRDw1oLXGTb1Xj5a/AEAiZFEura5mGtPSOeAWo1j2n/u6lV88NgjvP/og+T+9BMANRvtT7trrqVN10tIqFEjpv1LkqQ9g9+wJUm7XEFxAc/MG8/904fz3eqFANRLrkePdr257JgrqJFY+SUwVuZkM3d8FmsWLSS+eg1yf1rJV//9P4LiYgAaH30MJ/a9jkPO/B2hcLjS+5ck7RkmzM0ifXIvQoQICAgRYvTMDDI6ZtKpZZeqHt5mgiDg9a9fZfi79zLnh9kAVIurxsVHX0bP4/vQqOb+Me1/3dIlzHook4+efIyCDesBqNP04P/dUZSYGNP+JUnSnsUgWpK0y+QX5TNhXhajpo/g+zWLAKhffT96Hd+Xi4++jOoJ1WPS79wJWUxO70UAEN28JmbayafSvk9/mrTvQCgUikn/kqQ9Q87KbNIn9yIabFk/ue+knrRNbUda3WZVMLLNBUHA/335MsPfvZdPlswDIDk+mYuPvpxrju9NwxoNY9r/qoXfMjPzfuZOyKI4Px+ABocdQfu+/Tm841+9o0iSJJXJTwiSpJjLK8pj3JynGDV9JD+uK6kZ2aBGQ649oS/d2lxKcnxyzPpemZPNpL49IQi2fDIU4vf3jqBuWtWHCpKkqjd+bhYhyr4oGSLE+DljGXj6oF07qF+IBlFe/mISI969j8+WfgJAcnx1Lj/2Krq368V+1feLaf8rsr9m+v3D+eRfz5TeUXTgMW1p37c/h5x5thd0JUnSNhlES5JiJrcwl7Gzn+CBGRksXb8EgP1rHkDv9ul0bnURSfFJMes7CAK+mTqlNIROAY4AagLrgM+AteEwc8aP5fSBg2I2DknSnmPRmoUElHHhEggIWLRm4S4eUYniaDGT5/+HEe/ex/zlnwNQI6EmVxx7NVe360m95Hox7X/pZ58y7f5hfP6fF0ov7KadfConpl/HQce3N4CWJEnlYhAtSap0mwLoUTNGsmz9UgAa1zqQ3u370blVNxLjYlczMggCvn79VaaNHMrijz4E4DDg9F8d1wZ4MxplzaKqCRUkSbuf1JQm21wRnZrSZJeOJxpEmfT5iwybOoQvV3wBQK3EFK5s252rjutBnaS6Me3/hzkf8e7IoXz16iulj/3m7D9wYt8BNG5zTEz7liRJex+DaElSpckryisJoKePLF0BnZpyEH1PHMAFLTuTEEmIWd9BNMr8l19i2oihLP2s5HbluGrVOPjggzl9/nx+vf1gAJweBHxWs1bMxiRJ2rN0btWV0TMzynwuIKBz6267ZBzRIMrk+f9h2NQhfLF8PgAp1Wpz9XHXcGXb7qRUqx3T/r97bwbTRg5lwdtvljwQCnH4X87hxD4DaHjEkTHtW5Ik7b0MoiVJO21TDej7p49gybofATgwJZX0E6+LeQAdLSri0+efY/qoEaz46ksAEqrX4JjLruS4q3tSeN/dMH/+Fq8LURJGHxGzkUmS9jRp9ZqT0TGTvpN6EiJEQFD6M6NjZsw3KtxUA3rY1CHMX/YZULICunu7nlzVtge1qqXErO8gCPjmnbd5d+RQvps5HYBQJMJvz7uA9r37Uf+Q38Ssb0mStG8wiJYk7bD8onzGzX2a+6cNL92EsHGtA+l74gAubNU1pgF0cUEBHz87gen3D2fVwm8BqJZSm7ZXdqftld1JqlNyu/LGdWspCIXK3KwwFAqRsG5tzMYoSdrzdGrZhbap7Rg/ZyyL1iwkNaUJnVt3i2kIHQQBr3w5mWFTh5RuQlgzsRZXte1B93Y9Y7oCOggCvn7tVd4deR8/zP4IgHB8PK0u7MYJ1/alTpOmMetbkiTtWwyiJUkVVlBcwPi5Y7l/2nAWr/0egANqNaZP+/4xrwFdmJvL3PFPM+OBDNb+sBiA5Hr1aNfjWo659AoSf1VqI5zahFA4DMXFW7QVCocJp+7aep+SpN1fWt1mDDx9UMz7CYKAV796haHvDObTpR8DJZsQXnVcD7of15PaSXVi1ne0uJgvXn6JaSOHbVbSqs1Fl3L8Nb2pdUDjmPUtSZL2TQbRkqRyKyguYOK8cWRMG8b3axYB0Kjm/vRp35+urS+OaQCdt24d00aNYkbmKDYsXwZAjYaNOKFXH1p3vYSE6tXLfF18567kj84ou9EgIL7zrqn3KUnSJkEQ8NrXrzL0ncF8vGQuANUTanBV2+50b9crppsQFhcVMe+ZCbwzYigrv/4K2LykVY0GDWLWtyRJ2rcZREuStquwuJBnPh7PyHeHsmjNdwA0rNGIPu370bXNJVSLqxazvvPWruGjxx/hvYcy2fjTTwCkpB5E+2vTadmpC3HVtt13JK05SRmZ5PbtCZtKdPz8Mykjk0habOt9SpK0SRAEvP71qwydOoR5P84BSgLoK469mh7telE3uV7M+i4uKGDe+IlMHzWClTk5QNklrSRJkmLFIFqStFWFxYU898lERrw7lO9WfwtAgxoN6X1COt3aXEpSfFLM+s5dvYr3H3mQWY88SP7aNQDUa9ac9n36c+TfzicSH1/uthI6dSHSth2F48cSXbSQcGoT4jt3M4SWJO0SQRDwZvZrDJ06mDk/zAYgOb46lx97Fdcc35t6MQygi/LzmTchi+mjRrDm+5K7marXr89x3XuVWdJKkiQpVgyiJUlbKIoW8a9PnmH4u/eycNW3AOxXvQHXntCXi4++PKYB9MafVjLrkTF88OjD5P+8keB+LQ7lD/+4jaZn/pFoENqhdiNpzYgMHFSJI5UkaduCIODtnDcZ+s49fLT4QwCS45O57JiSALp+9fox67soL485455mxgMjS/dUqNGwIWfecAOH/70L4cTYzeWSJEllMYiWJJUqjhbz4mf/ZujUweT8tACA+tX349oT0rn46MtIjk+OWd8bVqzgvYdG8+Fjj1CwYT0ADQ47gg4DbuDIv/yVevVqsmrVBqJF0ZiNQZKkyjLt26kMfvtOPvh+FgBJcUlceuyV9Dy+D/tV3y9m/Rbm5jJ77BPMeCCD9UuXAFCz0f6c0DudYy++lAYH1GfVqg0UOZ9KkqRdzCBakkQQBLz8xSTue+duvlg+H4B6yfXoeXxfLj3mCqonlL0RYGVYv2wZ7z34AB8+8U8KN24AoOGRR3FS/xto8fs/EgqHCYfDMetfkqTK9P6iWdw75S7e/fYdAKrFVeOSY66g1/F9aVAjdhsBFmzYwOynn2DG6IzSTX1rHdCY9r370apzN+KqVSMuzvlUkiRVHYNoSdqHBUHAG9n/ZciUu/lkyTwAUqrVpufxvbni2KupkVgzZn2vW7qEmaPv56OnH6coNxeA/Vu2pkP/G/jN735PKLRjJTgkSaoK836cw5Apd/Fm9usAxIfjuejoS+nTvj+Nau4fs34L1q/nwyf+ycwHR7FxxQqgZFPfE/v056gLOhOXmBizviVJkirCIFqS9kFBEDD1mykMmXJnac3K6gk16H5cT7q360lKtdox63vtjz8w44GRzB77JMX5+QAc0OZoThpwI81PP2uLAHplTjYfTxzHxiWLSW7UmKM6daFeWvOYjU+SpIr4fOln3PfOPbzy5SQAIqEIF7bqSvqJ15H8UwFz73+YGYsWkpLahFadu1baHJa/bi0fPP4o7z34ALk//QRA7YOacmL6AI76eyciCQmV0o8kSVJlMYiWpH3Me9/NYMiUu5ixcBpQUrPy8mOvpucJfaiXXC9m/a75fhEzHhjJnHFPU1xQAMCBx7TlpAE3knbq6WWugJ47IYvJ6b0gFIIggFCI6aNG0jEjk5adulSo/5zibMYXZrEoupDUcBM6x3clLVKxMGBlTjZzx2exJgaBgiRpz5K94muGTr2HFz97noCAECHO++0F9D/pBtLqNmPuhCye+tUcNnN0xg7NYb+Ut3YNH/zzYd57aDR5q1cDUPfgNE5Mv44j/3Y+kfj4SnqHkiRJlcsgWpJ2A8U52RSOzyK6aCHh1CbEd+5KpJIDztmLP2TIlLuYkvMWAAmRBC45+nKubd+PhjUaVmpfv7T6u4VMv38EcydmES0sBCD1uOM5acCNHHzSKVstwbEyJ5vJ6b0IoltupjSpb09S27ajblqzco1hQkEW6bm9CBEqDQtG52eQkZRJp4TyhQFlheKVEShIkvYs3676huFT7+W5TyYSDUrmqL8cfi7XnXQTv9mvBVC5c9gmuatX8f4jDzLrkQfJX7sGgHrNDykJoM85j3CcX+0kSdLuzU8rklTFCiZkkfurgDN/dAZJGZkkVELA+cmSj7lvyt389+v/AyAuHEfnVheRfuIAGqccuNPtb83q7xYyLWMY8yaOI1pUBECT9h04acCNNDnhxO3WgJ47PqvknJQlFGLO+LGcPnDQdseRU5xNem4vomwZBvTN7UnbSDvSItsOA2IRKEiS9iyL13zPyGnDGD/3aYqiJfPa2b/5A9effAtHNvrtZsdW1hwGJQH0rIcyef/Rh8hftxaA+r9pQYd+13P4X84lHIns8HuSJEnalQyiJakKFedkl4TQZQScuX17EmnbjsgOBpxfLf+S+965h5fmvwBAOBTm/KMupF+H62la5+CdGve2rF70XUkAPSGrNIA++KRT6dD/epoc377c7axZtLAkmC9LEJQ8Xw7jC7MIUXYYECLE+MKxDIwM2mYblRkoSJL2LEvXL2XU9OE89dHjFBSXlJY6tdnp3HDyLbRpfEyZr6mMOSxvzWpmPTyGWQ+PKQ2g9zvscE7qfwOH/ekvhMLhHXtDkiRJVcQgWpKqUOF2As7C8WOJVDDg/OanHIZNHcK/P32WaBAlRIhzjvgbA066ieb1D9n5QW/Fmu8XMS1jOHMnjC0twXHwSady8nU3kXpcuwq3l5LaZJvnJiW1SbnaWRRdSEDZYUBAwKLo9sOAygrFJUl7jpUbV5I5434e++BhcotyATj+oPbcdOqttDvohG2+dmfmsLy1a/4XQP9cgmO/ww7npAE3ctgf/2wALUmS9lgG0ZJUhaLbCTijFQg4f1z7A8PevZfxc56mOCgG4A8tOnL9yTdzeMMjKjSuitSsXvvDYqZlDGPOuKdLA+imHU6mVZduLPv8cz54/GG+ev3VCm/s16pzV2aOzij7ySCgdedu5WonNdxkmyuiU8PbD7QrKxSXJO3+1uev48H3RvPge6NZX7AOgKMbH8uNpwzkpIO3vrfBL+3IHJa/bi2zHnmQWQ9lkrdmNQD7HXpYSQDtCmhJkrQXMIiWpCoU3k7AGS5HwPnTxpWMmjGSxz94hLyiPABOb34mN54ykJb7t67wmMpbs3rtjz8w/f7hzMl6iuKCkluVm7TvwMnX38yqb7/hP9dctVMb+9VLa07HjEwm9e25WTsEAR0zMstdk7lzfFdG52eU+VxAQOf47QfalRWKS5J2X3lFeTz54T+5f/pwVm5cCUBqQQqdEk7l0pNvpX5a+e8qqsgclr9+He8/+hDvPfgAeatXAyU1oE8acCOH//kcA2hJkrTXCAXB1pbiaXdWXBzlp582VPUwKkVcXJg6daqzatUGioq2rJOrnec5jq2dOb/FOdmsP+GYMmtEEw5TY8ZHW60RvT5/HQ/NymTMzAdKV2wdl3o8t5z2j+3eMrwz49mYnMz0USOYPfZJivPzATjo+PacfP3NNG3fgZU52Tx4wjFlbuwXCoe5ZsZHFdrY76ecBcybmMXGJYtJbtSYlp26VnhjwIkF4+ib25MQIQKC0p8ZSZl0SihfMD5v4ritBgrlDdc3qVu3OpGIwcLuwPlUFeE5jr2qOMdF0SImzhvHsKlD+GHtYgBqr4J274c4JBtCofAO/77/KWcBc8aPZc2ihaSkNqF1526lc1j++nV88NgjvDdmFLmrVgFQ75DfcFL/G2K2CeHe+N+wc+ruY2/67yoW9sa/f7HgeSofz1P5ea7KZ1fNp66IlqQqFElrTlJGJrllBJxJGZllhtB5RXk89dFj3D9tOCs2rgDgiIa/5ZZTb+P05meV65bhrdlezeovu1/Gf76YT1Feycrr1OOOLwmgTzyptN/K3tivblozzrzt9p368NApoQttI+0YXziWRdGFpIab0Dm+G2mR8gfaLTt1IbVtu60GCpKkPUs0iDLp8xcZMuUuFvyUDUCj5IYcMXkZh34eEP55vU5ASbmrSX17ktq2XYV+79dNa7bFnFewfj0fPP4oM8fcT+5PPwFQr/khdOh/A0f89W8xCaAlSZJ2BwbRklTFEjp1IdK2HYXjx/6iJnO3LULoomgRz348gaHvDGbx2u8BSKvbjBtPGcifDz+HcGjnr15uq2Z1tLiY9XPnUASktm1XEkB3OHmL4Ht33dgvLdKMgZFBO9VGWYGCJGn3kbMym/Fzs1i0ZiGpKU3o3KorafU2358gCALeWvA697x9J58smQdAveR69GnfnyavL+GjLzIJft5rYTM7cDH1lwo2bODDnwPojStLSn/UTWtGh/43cOS5fzeAliRJez2DaEnaDUTSmhHZyhfbaBBl8vz/MGTKXWSv/BqA/WsewICTbqRTyy7ER+IrbRzbrFkN0Gh/uox6kINPPnWrK6/d2E+SVBUmzM0ifXKvzcowjZ6ZQUbHTDq1LCmpMWvRe9z91iDe+24GADUSatKjXS+6t+tJzcRaPP/EpZV+MbVw40Y+fOKfzMjMYOOKkjuZ6h6cxon9rue3fzufcJxfySRJ0r7BTz2StJsKgoC3c97knrfu4OMlcwGom1SX3u37c+kxV5AUn1TpfcZ37kr+6AwC4JdRcgCEQiGOfvFlImnNt/LqEm7sJ0na1XJWZpM+uRfRYMvyTX0n9aROUh2env0Er3/9XwASI4lceuyV9Gnfn3rJ9UqPrcyLqUV5eXz09ONMv38EG5YvA6BO04Pp0O96fnveBQbQkiRpn+OnH0naDX3w/Szufut2ZiycBkD1hBr0aNeLHu16UTOxVkz6zFuzmveee4bV8QmcnJ/HpvVgoXCYEPxcs3rbITRAvbTmdMzI3OrGftZUliRVtvFzswhRdoAcBAHdnukEQCQUoXOrbvQ/6QYOqNV4i2Mr42JqcUEBc8eP5d2RQ1n34w8A1D6oKR36lwTQkfjKu5NJkiRpT2IQLUm7kc+WfsqQt+/kv1//H1CyYuuSY66gT/v+1K9ePyZ9Fqxfz/v/fIiZY0aRt3o1ABsPacEphx5KSiSOyEFl16zeFjf2kyTtSovWLCSg7JIamx7/6+HncsMpt9Cs3iFbbWdnLqZGi4r45F/PMHXYEFZ/V1LCo1bjA+nQ73padupiAC1JkvZ5BtGStBOKc7LJnziO/CWLKWrUmLhOXcq1avjXFq76liFT7uL5T58jICAcCnNhy64MOOlGGqccGIORQ2FuLh89+RjTHxhRWrOyfotDOeX6Wzj0jx0JhXdu88O9cWO/4pxsCsdn/WJTya479OctSapcqSlNtroiGqDTUV0Z9Zcx5WqrohdTg2iUz178N+8MHcxPC7IBqNGgISemD6B110uIS0ys+BuSJEnaCxlES9IOKpiQRW56r81XTI0aSVJGJgmdupSrjZUbVzLy3ft44sN/UhgtBODPh53DjacMpHn9ra/Y2hlF+fnMyXqKaRnDWL90CVCyadJJ19/MEX/9G+FIJCb97unK+vPOH51RoT9vSVJsnHvkeTwwY2SZz4VDYfp26F+h9spzMTUIAr58ZTJT7rub5fM/ByC5Xj1OuLYfx1xyOfHJyRXqU5IkaW9nEC1JO6A4J7sklIxuuSlSbt+eRNq222Ypiw0FG3hk1hgemJHB+oJ1AJx08KncevogWu7fOjZjLizk42cn8O7we1nz/SIAUg5M5aQBN3LU+Re6adI27OyftyQpNoqjxTz78QTufefuzUpzhH7+HyHI6JhJWt3K+x0dBAHZb77GlCF3s+TjuQAk1krh+J69aXtldxJr1Ky0viRJkvYmpg6StAMKx2eVrIwtSyhE4fixRMpYSVUULWLcnKcZOnUwy9YvBeC3jVpy6+m3c0raaTEZa7S4mE+ff453hw3hp29yAKjZaH9O7DuAVl0uKvOW4ZU52cwdn1V6S3Krzl2ptw+XoNjRP29JUmwEQcDrX7/KXW8N4ovl8wFoXOtALjv2SlZtXMXitYtITWlC59bdKjWE/ubdd5gy+E6+//B9ABKq16Dt1T1o170XSbXrVFo/kiRJeyODaEnaAdFFC0vKM5QlCEqe3+yhgJe/mMTdbw1iwU8l9SMPqt2Um0+9lb8e8TfCoZ2rx1zmMKJR5r/8Eu/cezcrvvoSgOT69Wnfux9HX3w58UlJZb5u7oQsJv+qBMXM0Rl0zMikZRWUoMgpzmZi/jiW5C+mUVFjOsV1IS2ya0PxTX/e3zaBJy+Gz46Aoz+CTs9A00Vb/nlLkmLnw+/f5443b+O972YAULtabfqcOIDLj72KanHVYtLnolnv8faQO1k4/V0A4pKSOPayqzihV1+S69WLSZ97u3XBWt4ofI0T4jrQMNywqocjSZJ2AYNoSdoB4dQm21whG05tUvqvMxdO5443b+WjxR8CUC+5Hv06XM9FbS4jMa7yNzAKgoCvX3uVKffezdJPPwagWu3aHN+zD20vv5qEGjW2+tqVOdlMTu9FUEYJikl9e5Latt1WN2uKhQkFWaTn9iJEiICAECFGMZKMpEw6Jey6UDyc2oSHrooyPB0Ilfx/Xkt44jK4Z2BA5wOabK8JSdJ25KzMZuLH41iycTGNkhvT6agupNX734XH7BVfc/fbt/PyFy8BUC2uGle27cG1J/SldlJsViP/MHc2U4bcxYK33gAgkpBAm4supX2f/tRs2Cgmfe7tVkRX8GjBGB7Lf5S1rOHv8Z3ITH6kqoclSZJ2AYNoSdoB8Z27kj86o+wng4D4zt2Yv+xz7n5rEK99/SoAyfHJdG/Xi57H96ZmYq2YjOubqVN4e/AdLP6oJPROqFGTdt17clz3nlSrlbLd18/dTgmKOePHbnfzpsqSU5xNem4vomwZivfN7UnbSDvSIrEPxT8t/oS7r36fN+MpCaF/FkRKFozffFfASWtPZt8tXCJJO2/C3CzSJ//qwuP0kWR0zOTUtNMZOnUI4+Y8RXFQTDgUplPLLlx30k00TjkwJuNZNv9zpgy5iy//bzIA4bg4Wl3YjRP7XUdK49j0ubdbHP2eMfmjyCp4ilxyAfhNuAWXJ1xVxSOTJEm7ikG0JO2ASFpzkjIyye3bc7MSFgQBPw29k1s/HcYz88YTEBAJReja5hIGdLiBhjVjs3pq8ewPefvuO/jm3SkAxCcnc+wV3Tn+mmtJrlv+W4bXbKfkyJpdWIJifGFWyUZTZQgRYnzhWAZGBsWs/1lF7zEqfzivF/0XErZyUAhCoTATG73DQE6N2VgkaW+WszKb9Mm9iAZbXnjs/VIPqsVVI68oD4Czf/MHbj71Hxza4LAy29rZPQ5WffsN7wwdzCf/egaCgFA4zG/Pu4AO/W+g7sFpO/YG93ELir/mgfwMniucSCGFALSKtKZP4gB+H/fHmJQnkyRJuyeDaEnaQQmduhBp246iiVnELVnM8oZ1eajFBh776g7yv80HoONhf+XmU2+lWb1DYjKGZV/MZ8rgO/+3Yis+nqMvvowT+15HjQYNKtxeynZKjqSk7roSFIuiCwkoOxQPCFgUrfxQPAgC3i56k/vzhzOzeDoAYcIcEDqAxcHiMscThInJWCRpXzF+7tYvPALkFeVxzIFtue30O2h30AlbPW5n9jhYt3QJ00bcx+ysp4gWloSlh/7pL5xy40D2+02LHXtj+7hPiudxf/4IJhW+WDp/nhg5id6J/Tg57lRCW/u8IUmS9loG0ZK0EyJpzYjedCNPf/w497w2mDXzVwNw/EHtue2MOzi68bEx6Xf1dwt55757+Pi5if9bsfX3Tpx8QWeqTXmL6K03kJfahPjOXYlUYCVYq85dmbmNkiOtO3ernDdQDqnhJttcEZ0arrxQPBpEebloEvfnDefj6FwA4onngvjO9Ersw/jCLDLz76eY4piPRZL2NYvWbP3CI8Bxqe146eL/bjO43NE9DnJXr2LG6Pt5/9EHKcotKReRdsppnHrzbRzQqs0OvBu9VzST+/OH8WbR66WP/S7u9/RO7MexccdV4cgkSVJVM4iWpB0UDaL8+5NnuWfKHSxe8z0Ah+13OLeefjunNz8rJit91i9dyrSMoXz09BP/W7H1xz9zyo0DSZn9Ibnn/Zn8X6wEyx+dQVJGJgnbWQm2Sb205nTMyGRSGSVHOmZk7tKNCjvHd2V0fkaZzwUEdI7f+VC8MCjk34XPMip/BNnRrwFIJpluCZfSI7EXB4Qbl4yF2I9FkvZVqSlN2FoOHSbMcaknbHdOregeBwUbNvD+ow8yY/T95K9dA0Djo4/ltIGDaNq+w468jX1ayR1Fb5CRP5z3imcAJX92f43/G70T+3F45IgqHqEkSdodGERL0g6Y/u27/OP1W/h4yVwAUuukcuMpAzn38POJhCOV3l/u6lXMzBzF+48+SOHGjQCknXxqyYqt1kdTnJPN+vReUMZKsNy+PYm0bUeknCFyy05dSG3bjjnjx5bW2GzdudsuDaEB0iLNyUjKpG9uz802rwoIyEjK3KmNCnODXMYXPE1m/ii+DxYBkEJtrki8misSulMvvHld7ViORZL2ZV8t/5LZP3xY5sa0AISgc+vtX+wr7x4HRfn5zMl6kndHDGXD8mUANDjsCE69+TYOOetsy0VUUHFQzMtFL3F/3gg+ic4DIIEELkjoQq+EPhwcsa62JEn6H4NoSaqAr1d8xR1v3Mp/v/4/AGok1KTfSQO48ezryNsQpahoK1+kd1DBhg188NjDzHggg7w1qwFofPQxnHbLIJqeeFLpcYXbWQlWOH4skV+sBNueumnNNls5VlU6JXShbaQdE4uyWBK3mEZFjekU13WHg9+1wRqeyP8nDxeMYUWwHIAGoYZ0T+zFJQmXUSNUc7tjGV84lkXRhaSGm9A5vpshtCTtgOUbljP0nXsYO/tJioNiwqEw0SBKmHDJRrCbLvZ1zCSt7vZ/z25vj4NajVOZN3EcU4cNYfV3JaF0nSZNOfmGWzjinPMIRyr/IvLerCAoKL2jaEE0G4BkqnNxwmX0SOxFo/D+VTxCSZK0OzKIlqRyWL5hOcOmDubpj56gOCgmEopw8dGX0f+kG9k/pSFJCUnkbdhQaf0VFxQwe+yTTBs5lPXLlgKw36GHcepNt/Gbs/+wxYqt6HZWgkUX7bmb6aVFmnFb4u3UqVOdVas27FDYvzK6kvvW3M246FgK4ko2ktw/OID0pOvolNCFaqFq5R7LwMigCvcvSSqRW5jLw7MyGTV9JOsL1gFw9m/+yG2n30E4HGbivCyWbFxMo+TGdGrZtVwhNGx7j4MgGuWLl19i5ugcAGo0bESHftfTustFRBISKuV97StK7igay+j8DBYHJWXJaodqc0VCd65IuJq6v7qjSJIk6ZcMoiVpG3ILc3lk1hjunz7iF1+Y/8Ctp9/BIfV/U+n9RYuL+fTfz/LOfYNZ/d23ANQ+qCknX38TR/7t/K2u2ApvZyVYOHXf3ExvaXQpD+Y/wD/zHqYgnA9hYCWEPgyx5OsfqfanalRrWb4QWpK046JBlH998gz3vH0HP6xdDECr/Vsz6My7OaHJiaXH3Xbmjl14LGuPgwBKSlYFAau+yaFa7dq0v7Yfx15+FfHJyZX8Dvdu64P1PFXwOGPyR7E8KClp0jDUiB6J13JRwiXbvKNIkiRpE4NoSSrDpi/Mg9++k8VrS1b8tNy/NYPOuIv2TSt/E6MgCPjq1Vd4e/AdLP9iPgA1GjQsWbHV9eLtrtiK79yV/K2sBCMIiO+86zfTyynOZnxh1i/KWHQlLdJ8l/T9fXQRo/MzGFfwNPn8HEAvBT4Acko2GAToO6knbVPblXvFnSSp4qZ9O5V/vH4LnywpqSF8YEoqt5z6D8458jzCoXCl9bNpj4OpI4eS89brbFheUoIpPrk6x13dg+Ov6U21lNqV1t++YE2wmsfyH+HhgkxWBasASA0dRK/EvlyY0LXcdxRJkiSBQbQkbWHat1MZ9PrA0o0ID0xJ5eZTb+PcI/9eqV+YN1k06z3evPM2Fr3/HgDVUmpzwrXpHHv5VSRUr16uNiJpzUnKyCT3FyvBNv1Mysgs90aFlWVCQRbpub0229hvdH4GGUmZdEroErN+c4oX8ED+SJ4pHE8RRQDsv/4Alr65hOjCLVfWhQgxfs5YBp4+KGZjkqR91VfLv+SON2/lta9fBaBmYi36njiAK9t2p1pc5QeYK3OyefueO5n/0gsARBISOPriy2jfZwA1GjSo9P72ZiujK3mkIJN/5j/COtYCkBZuRt/EAfwt/nziQ/FVPEJJkrQnMoiWtM8qzsmmcHwW0UULCac24Zs/nsA9Xz5WuhFhzcRa9GnfnyvbdicpPqnS+1/+5Re8dfftfPXqywDEJSXR9soenNCrD0m161S4vYROXYi0bUfh+LGl7ym+c7ddHkLnFGeTntuLKFsGv31ze9I20q7SN/j7svgLMvKH8ULhv0r77RA5hX7VruOpNx/jpe9eLPN1AQGL1uy59bMlaXe0bP0yhk4dTNbPGxHGheNK9lXocCP1q9ev9P7WL13K1OFDmJP1FNGiIgiFOOrvnTj5hluonXpQpfe3N1saXcKY/Ad4quAxNrIRgEPDh5GeeB1/jj+HSMhNHSVJ0o4ziJa0TyqYkEVuei8IhVhZLcqotvBM8QiKwxAJRbjkmMtj9oV57Y8/8M599zBvQhZBNEooHKZVl4s4acCN1Nr/gJ1qO5LWjMjAQZUz0B00vjCLEGXXqw4RYnzh2Erb8O+T4nmMzBvGy0UvlZbbODPud/RNHMCxcccB8HbKm9scT2rKvlk/W5Iq28bCjTz8XiajZoxkQ8F6AH7f4k/cetrtNK9/SKX3l79+HTMzR/Heg6Mp3FiyYXDzM87itIG30/DwIyq9v73ZFiWtgJaR1qQnXsfZcX+IyR1hkiRp32MQLWmfU5yTTW56L/JCUZ5oDQ8fDRt+LsF8Rg78o8+/aNHq9ErvN2/NaqY/kMH7j4yhKC8PgBZ/6Mhpt/yD+odU/saHVWVRdGFpKPxrAQGLoju/AvmDollk5A/j9aL/lj72p7i/kF5tAL+NtNzs2M6tujJ6ZsZWx9O5dcXrZwcFBYS2U7dbkvYV0SDKcx9PZPCUO0s3Imx9QBsGnXE3xzdpX+n9FRcUMHvsE0wdfi8bV6wA4IA2R3P6rXfQtH3l7+OwNyurpNWxkePon3g9p8adQWhrGyFXkqCgAOLjY96PJEnaPRhES9rnFIwbyyvNA+47HhbXKnnst0vhhmlw3NIIic3ehUoMoovy8vjg8UeZljGUvNWrAUg97njOuO0ODjz2uErrZ3eRGm6y7RXI4R1bgRwEAdMKpzJ0w328WzwFgDBhzok/jz6J/Tk0cliZr0ur15yMjpn0ndRzs5rVAQEZHTPLvVFhEAQUvf0m+aNGUDxjGslPjCP+jx136L1I0t5i1qL3uPW/NzD3xzkApKYcxC2n/YO/HvG3Sl9FG0SjfPaf55lyzx2sWvgtAHXTmnHaLYM49E9/NsysgPlFnzN841BeLPz3FiWtToicGPNzWfzJx+SPGkHhSy+Q2O96qt1wS0z7kyRJuweDaEn7lLk/zObm/Kf58HclK3b3Xwf9Z0DHryAMEA6ILqqcmsHR4mI++dczvHPv3az5fhEA9VscyukDb+eQs86OyZe8lTnZzB2fxZpFC0lJbUKrzl2pl9a80vvZls7xXRmdn1HmcwEBneMrtgI5CALeKHid+xcPY3redADiiOOC+M5cm5hernrTnVp2oW1qO8bPGcuiNQtJTWlC59bdyhVCB9EoRS9PIu/+4UQ/nlvyYHw8oVq1KvQ+JGlvsmj1d9z55m28+PnzANRIqEl6h+t2aiPClTnZfDxxHBuXLCa5UWOO6tSldA77ZuoU3rzzH/w4ryTwrr5fA06+7iZadbmISLwb55XXx0XzGPXjcJ7f8HzpY78uaRVLRe/NJH/UcIreeK30sVDdujHvV5Ik7R4MoiXtE5as+5F73r6DifPGQSIkFcJVH8HlcyCp6BcHhkKEU3euZnAQBCx463XevHMQyz7/FIBaBzTm5Btu4ajzLyQc2XKjn8oIkOdOyGLyz3WvCQIIhZg5OoOOGZm07NRlp95TRaRFmpORlEnf3DJWICdllnujwiAIeL3oVYbn38uc4tkAJJJIl4SL6JXYlwPDqRUbV91mDDx9ULmPDwoLKfz3s+Q/MJLo11+VPJicTEK3S0jscS3hAxpXqH9J2husL1jP6OkjGfPeA+QV5REiRNc2l3DDybfQoEaDHW63rDls+qiRnDTgRha9/x45U94CIKFGTU7o1YfjrrqGhBo1Kutt7fXmFs1meP69/Lfo/0of21pJq8pWckfRG+RnDKf4vRklD4bDxP/1XBKv7UfkiCNj2r8kSdp9GERL2qvlFuby0HujuX/6CDYWlmxkdN7Bf6T3P15h/3Vl1DEOAuI7V7xm8CY/zPmIN+64jYXT3wWgWkpt2vfux7FXXE18UlKZr6mMAHllTjaT03sRRKNbPDepb09S27ajblr5AuDK0CmhC20j7RhfOJZF0YWkhpvQOb5buULoIAh4tegVhufdy8fRuQAkk0z32t25InQN9aM7HnSUR5CbS8H4p8nPHEXw80p2UmqTePlVJFzZg3C9ejHtX5J2lZyV2Yyfm/W/O0VadSWtXtkXQaNBlGc/nsDdb93O0vVLAGjfpAN3njWE/TcmMTdjzA5fTN3WHPbOffcAEI6P55hLLufE9OupXr/yNxLeW31U9AHD8+/ljaKSFchhwnSq0Ymekb4cwqEx7TsoLqbolUnkZQwn+sm8kgfj44nv1IXEnn2I7MLPJZIkafdgEC1prxQEAS99/gJ3vHkbi9Z8B8AxB7blrrOG0KbxMRTEjSO3b8/Nwl+CgKSMzB36YrTs66954bob+Ow/LwAQSUyk7RXdad87naQ6W7/ltLIC5Lnjs0reQ1lCIeaMH8vpAweV671UlrRIMwZGyt9nNIjyctEkRuTdx2fRTwBIpjqXJVzJtdV785t6B7Nq1QaKyjhXlSFYu4b8Jx+j4KFMghXLAQjt14DE7r1IuOQyQjUtxSFp7zFhbhbpk3oBAUEQEAqFGD0jg4w/Z9Kp5eYXQX9dB7pJnaYMOuNu/tDiT8ybOI4Hd/Ji6jbnMErKWnUa+wx1mh68w+93X/N+0SyG5Q9mSlHJSvIIEf4Wfz4Dql/PsfVblcynRTs2n+YUZzO+MOsXF5q7khb534WHoKCg5I6iUSOILsgueTA5mYSLLiOxRy/C+x9QrnYkSdLexyBa0l5n3o9zGPjfG5m1aCYAB9RqzG2n38E5R5xXWpc5oVMXIm3bUTh+LNFFCwmnNiG+c7cKh9AbVqxg2oghfPjk40SLiiAUouUFnTn5+ptJOXD7pSMqK0Bes2hhSQBQliAoeX43VRwUM7nwP4zIv4/50c8BqEFNrki8mqsTelIvXI+4cOVuePVL0eXLKXj0QfIfewTWrQUgdFATEnv2IaFTF0JbWckuSXuqnJXZ9J3Uk4Cf541QSQ1/goA+L11D29R2pNVtxqLV33HXW//ghc/+DZTUge7X4XqubNudxLjESruYumbRwjLbKBlbiIaHH2EIXU4zi6YzLO/e0k19I0S4IL4zvRP7kRZpRlxk5+bTCQVZpOf22qz01uj8DDKSMrmg6Jz/3VG0+PuSF6TUJvGKq0m4ovtmdxRtq51OCbuunJgkSdq1DKIl7TU21YF+Zt54AgKS45PpdUJfrjm+N8nxyVscH0lrRmQHVwkX5uby/qMPMi1jOAXr1wHwm9/9nlNuuo2Ghx9R7nYqK0BOSW2yzUA7ZSfrXsdCcVDMfwqfZ0T+fXwV/RKAmtTiysTuXJ1wDXXCsd28KLr4e/LHjKIg6ynIzQUg/JsWJPbuR/w55xFy8ytJe6nHpjwA0eDnXXp/IQREAx56czh16++/eR3o1hdzwykDN6sDXRkXU4NolIING7Y6F4bC4d1yDtudBEHA9OJ3GZY3hBnF04CSTX0vjO9K72r9aBJuWin95BRnk57biyhbXjTou+EaDr/gZprMXQVAqEHD/91RVKNm+dvJ7UnbSLty7ychSZL2LAbRkvZ4uYW5PDwrk4xpw/9XB/q3FzDwtEEcUKtyN5QLolE++fezvH3PHaz9ebXPAa1a87eRI6jf8tgK3+ZaWQFyq85dmTk6YyuDDmhdwbrXsbxdtigo4vnC5xiZP5QF0ZJbdlOozdWJ13BlYndSQrUrpZ+tKc7+mvwHRlL43EQoKtmpMtK6DYl9BhB39h8IxXD1tSTtDj79fMZWnwuAcV9MpJCS34/tm3TgjrMG89tGR21x7M5eTP122lReHzSQJR/P3fpBOzCH7SuCIGBq8RSG593Le8Ulf6bxxNM54SJ6J6aTGj6oUvsbX5hFiLI/s4SiAc+dvorrfmpCYq++JXcUVatW8XYIMb5wbIVKe0mSpD2HQbSkPU5xTjaF47MoXvQt/3dgAfdU/4jvN/wIwNGNj+Wu3w3h6MbHVnq/305/l9f/cUvpF+ZajQ/ktFv+QcvzL6BevZqsWrWhwm1WVoBcL605HTMymVRG3euOGZkV2qgwVrfLFgaF/LvwWUbmD+WbaA4AdUJ16J7Qi8sTr6JWKGWH2y6P4s8+JX/kUAonvVganEQ6nEy13v2InHRKadkWSdrb1VoL1NjKk2EopGizOtBb+/24oxdTl3/1JW/eeRtf//f/AEisWYu0U05j/uT/lFwM3Ik5bF8QBAFvF73BsPx7+bD4fQASSKBrwsVcm5hO4/CBMel3UXTh/8q5/HpMIVjyl2Op2f+/hOK2/RVzm+0QsCi6+5YTkyRJO8cgWtIepWBCFrnpvfhsP7jrxCgfAmyA/ePqcNufhnLukX+v9EBxxddf8cYdt5Z+YU6oUZMT+/an7ZU9iE9KIrwTK2grM0Bu2akLqW3bMWf8WNYsWkhKahNad+5WoTZicbtsQVDAs4UTyMgbznfBtwDUC9WjR2JvLku4ghqhmttuYCcVfzKPvOH3UfTKpNLH4s7+A4m9+xF3TNuY9i1Ju6Pf1TqB16Jflix//vWUGcCfQsfwYPf/IzEucZvtVPRi6obly3ln6D3MHvskQXExoUiEYy65nA79b6R6/fr8lLOAeROz2LhkMcmNGtOyU1dD6F8IgoA3iv7L8Px7mV38EQDVqMZFCZfSM7EP+4cPiGn/jdemEEoso6QLEIpEaNK0w3ZDaIDUcJNtrohODVuKRZKkvZVBtKQ9RnFONotv6smIkwOePaJk9U21QrhqNlwxdzX7XXB0pYbQG5YvZ+qwwXz09BOlX5iPvvgyThpwE9Xr16+0fiojQN6kblqzcm1uuDWVebtsQVDAxMJx3J83nEXBdwDUD+1Hz8Q+XJxwGTVCW1uOVzmK5s4mf/i9FP18AYFQiPi/nENi3+uIVKCOtyTtbX7f5VomXfEEb5/88wMh2LRAtcM0GPbQo9sNoaH8F1MLN25k1iNjmD5qZOm+Ci1+/ydOu/V26jc/pLS9umnNOPO226lTpzqrVm2ocLmrvVUQBLxW9CrD8ocwr3gOAEkkcXHC5fRM7EPDcMOY9l/81ZfkZwzjLx89y5j/C8q8gBEQ0Dm+fHdxdY7vyuj8jDKfq0g7kiRpz2MQLWmPUBQt4p/j+jOsS8Dan0sOdvwSrpsB+68HImEKx4/d4c0Hf6kwN7fkC/P9I/63EeHZf+T02+7Y7AtzZdrZALmyVMbtsoVBIRMLx5GRN6w0gG4QakivxD5clHAZyaEtN46sTEUffVASQL/xWskD4TDx55xHYvp1RH7TIqZ9S9LuLggC3i/8kvln1oOilQAkbYSmC+HYj0J0u31Mpd2NE0SjfPzcRKYMvpO1PywGYP9WrTnz9ntocnz7mLy/vUkQBLxe9CpDfxFAJ5PMpQlXck1ib/YL7xfT/os/+Zi8jGEUTf4PBAFNgXuzjuCGiz4nRLi0fFdAQEZSZrnvmEqLNCcjKZO+uT03KwNW0XYkSdKexyBa0m5v5sLp3PTqdXzOp1ANDlsOt70Dx/z4i4OCgOh2NkXaniAa5ZN/PcPbg+8s3Yhw/1atOXPQ3TQ54cSdantX2dlNBnfmdtnCoJBnCycwMm8o3wUlfxYNQg3pnZhOt4RLSQolVezNVFDR+7PIHz6EorffLHkgHCb+vAtI7DuASIwuIEjSniR7xdfc8tr1vL2g5Pdkw6QGnJ97DIf/VI3ahzel9V2VdzfON+++wxuDBrLkk3kApByYyqm3/IMjzznPTWG3IwgC3ix6jaH5g5lTPBso2YSwafhgTo47jW4JF+9QCJ1TnM3E/HEsyV9Mo6LGdIrrUuZnhKIP3yc/YxhFr71a+ljcHzpSLX0AF7dsTYfiBYwvHPuLzxrdKhwed0roQttIu51uR5Ik7VkMoiXttn5c+wO3vzGQ5z/7FwApJJL+TgGdPgmI/HrRbihEeCubIpXHt9Om8vqggaUbEe6JX5grY5PBHbldtigo4rnCiYzIv4+F0W8B2C/UgC5F3SiYW8BHqz9gWcoyOrfqSlq98ofi5VX03gzyh91L0dS3Sx6IRIg//0IS+/QnYm1RSWJ9/jpGvDuUh2dlUhgtJCGSQI9219LnxP7USKjcMknLv/yCN++4la9f/y8AibVSOLFPf9pe2Z24atUqta89QUUuEG/ahHBo/mA+Kv4QKNmEsIACiilmQTSbnIIFPF7wSIU3EC7rM8IoRpa2EwQBxTOnkz9i6P/m03CY+L+eS2KfAUQOO7y0rbRIs3KX6dqWympHkiTtOQyiJe128ovyeXhWJiPeHcrGwg2ECNGtzaVcf3AXEjPPLKlB+WtBQHznitcUXP7VlyVfmH9e9ZNYsxYn9h2wx31hrqxNBityu2xRUMS/Cp9hRP59fBv9BiipAX1tYjrJXyRzw6R+m4fiMzPI6JhJp5bl/+K8NUEQUDxjGnnDhlA8/d2SB+PiiO/UhWq9+xFuevBO9yFJe7ogCPj3p89yx5u3sWRdyW1EZzQ/i7vOGlKpFwZzVmbz5IyHmfP+axR98g2HfwZ14+I4+pLLOan/jSTXq1dpfe1JynuBuCSAfvPnAPoDoKQG9Lnx5zG+MAtgi/m9InP79j4jtPkgygFDsiieNbPkwbg44v/eicTe6USaeUeRJEmqPAbRknYrb2a/xi3/vYGcnxYAcMyBbRly9jCO2r8VAAUZmeSWsSlSUkZmhVa/bvxpJe/cdw8fPfU4QXEx4bg4jr74Mjr0v7FSNyLcVSpzk8Ht3S5bFBTx78JnGZF/H99EcwCoH6pPz8S+XJJwOUt/+pETJh1DNCjjC++knrRNbUda3fL/WeWszGbix+NYsnExDZMP4O/5v+GAMU9T/N6MkgPi40m4sBuJffoRTj2o3O1K0t7s0yWfcPN/r+O970p+VzatczB3nTWEs37z+0rtJ+uDJ+j/al+IBiXfLFrD7DZw9/G3cPaZ/Su1rz1JeS4QHxxO452itxmaP5gPimcB/9uEsFdiXx4pGEOYMMUUb9FGReb2bX5GKI4ydlpPBswCEhJI6NyNxF59CR+043eZSZIkbY1BtKTdwjc/5XDbazfx36//D4D9qjfgttPv4O9HdSIc+l9pjIROXYi0bUfh+LFEFy0knNqE+M7dyh1CFxcW8uETjzJ16BDy1qwGYr8R4a5QGZsM/lJZt8sWB8U8X/gcI/LvY0E0G4B6oXr0TOzLpQlXUD1UHYDxc7cTis8Zy8DTB5X5/K9NmJtF+uSfV5MFUUJBwAMB3LMa/paQQEKXi0js3Y9w4wMr9P4kaW+1Kvcnhky5i6c+epxoECU5Ppk+7fvT4/hrqRZXeXf6BEHAG/9+hP6fX0cQAn5VxWrgrDs57ei/VujC495kW+EvwL35d7M4+j3vF78HQDWqlQbQDcMNgcqb27fdDnzfJEJC9x4kXnMt4Ub7l6tNSZKkHWEQLalKbSzcyKhpw8mcOYr84nziwnFc2bYHA066gZqJtcp8TSStGZFfbYq0PUEQkP3ma7x+282szP4agIZH/Jaz7hxM0xNP2tm3UeV2ZpPB7SkOinmx8N8Mz7+X7GjJuasbqss1iX24LOFKaoQ2ry+6aM12vjivKd8X55yV2aRP7rX5yuqf3+LNZ4Q4+fxJNDv0+Iq/oZ2QszKb8XOzWLRmIakpTWJW91qSKqo4Wsy4uU9zz1u381PuTwD85fBzGXTGXTROqdyLdT9+Mo/Xb72JCcE0aANlTT8VvfC4t9lW+BslyguFJftfJJLIxQmXcW1iOg3DjTY7rrLm9m22EwqRdtaVJHW6p1xtSZIk7QyDaElVIggCJs1/kX+8fguL134PwEkHn8o9v7uP3+zXolL7Wv7lF7x+200sePtNAJLr1+fUm26jVeduhCORSu2rquzIJoPbUxwU81LhCwzPv5evol8CUCdUh2sSenN54lXUCNUs83WpKdv54pyy/S/OQRCQ9cLthKLRLQOOEIRCYSYs/i8Dd2EQvdnq7BjUvZakHfXB97O4+dXrmffjHAAO3e8w7jl7KCc2rdwLreuXLuXtIXcyd/xYCALW/z4M4QDKCFwrcuFxb7St8BcgQoRLE66gd2I/GoXLXoVcGXN7UFjIea+lMLpDccl8+sshBRCEQ3SpcfV225EkSaoMBtGSdrkvls3nlv9ez7vfvgNAaspB3H7mPfzx0I6EQlv/0lZRG39aydShg/nwycdK6kDHx3PcVddwYvoAqtVKqbR+dgcV2WRwe6JBlJeLXuK+vHv4MvoFALVDtemRcC1XJF5NzVDZK9U36dyqK6NnZpT5XEBA59Zb/+IcRKMUvfoKecPv5ZsD5hE0p8yVdrs64ChzdfbPdqTutSRVhqXrl3LXm//gmY/HA1ArMYXrT76JS4+5kvhIfKX1U5SXx6xHHmRaxjAK1q8D4Ihzz6Pg7Npkf/oExUHZNYzLc+Fxb7WtEBngheRXaBe/7YupOzO3BwUFFD47gbyM4ez/3bfccy7cfE/JCuggHCppJ1TxzwiSJEk7wyB6K95//30eeugh5s+fT15eHi1atOCiiy7iD3/4Q7nb+O6778jMzGT69OmsXr2a/fbbjw4dOtCjRw/239/6a9r3rM9fx31TB/PorAcpDoqpFleNXif0pdcJfUmOT660fooLC/noyX/yztDB5K1eDUCL3/+JM/5xJ3UrsKHhnmZ7mwxuTxAEvFb0KkPy7uKz6CcApFCbHom9uDKx+3YD6E3S6jUno2MmfSeV8cW5Y2aZgW0QjVL08kvkDb+P6OefAnBgnXhC4SLKWmm3qwOOyqx7LUk7a2n2F9w34Xqei04jL1wEQOdW3bjltEHsV32/SusnCAK+eHkSbwwayOrvvgXggNZtOOvOe0ltexytVmbz6KePl/3a7Vx43NutCdbwm/ChfBH9vPSxTfPI/UljthtCb1LRuT3Iz6dg4jjyR40gWPRdSb/196PLb/twSvypTEx4niVxi2lU1JhOcV0NoSVJ0i5lEF2Gl156ieuvv564uDiOO+44IpEIM2fOJD09nezsbHr37r3dNr799lvOP/981qxZQ1paGq1ateKbb77hmWee4ZVXXiErK4tDDz10F7wbqeoFQcDk+f9h4Gs38uO6HwD4fYs/cceZ99CkTtNK7evrN/67WR3oBocfyVl3DubgDidXaj+7q7I2GdyeIAiYUvQW9+bfxezijwCoQU26J/ake2JPaoUqvnq8U8sutE1tx/g5Y/9XT7l1ty1C6KC4mMJJL5I/4j6iX8wvebBGTRKvvJqLL/gDj44/A4Kyb/nelQFHZdW9lqSdNeGJO7lzzlBW7AeEoeFSOPndEJceckKlhtCb6kAvnDENgJqN9ue0gYP47XkXEAqX7Ey4Ixce93afFX/KvXl382rRywBEiOOw8GE0Dh9Ii8hhFbpAvEl55vYgL4+C8WPJf2AkweKSkmehBg1J7NWHhIsuI5ScTBpwW1xL6tSpzqpVGygq2vIuH0mSpFgyiP6VFStWcOutt5KUlERWVhZHHHEEAAsWLOCiiy5izJgxnH766aWPb811113HmjVruPbaa+nZs2dpuYHRo0fzwAMPcOutt/Lcc8/F/P1IVe2bn3K46dUBvLXgDQCa1GnKvWcP57TmZ1ZqP8u//ILX/3EzC94q6Se5fn1OvfFWWnW5aK+pAx0LM4umMzjvTt4rngFAMslckdidaxKupW643k61nVa32VZXCQfFxRS++G/yRw4l+lVJ/WlqpZB4ZXcSrupBuE5dmsNuE3BURt1rSdoZq3J/4tYX+/HsoudhP0jMgxNmwBGfQYiASX17ktq23U7f+bN+2TKmDLmTOeOehiAgrlo1jr+mNyf06ktCjRpbHF/eC497u6+Kv2Ro/mD+U/g8AGHC/D2+E/2r3UDT8MEx6zfIzaUg60nyH8ggWPIjAKFG+5PYO52ELhcTSkqKWd+SJEkVZRD9K+PGjSMvL4+rrrpqs7C5WbNm9OvXj5tvvpmnnnqK++67b6ttfPvtt3z88cc0btx4sxAa4JprruGxxx7j448/ZvXq1dSuXTuWb0eqMvlF+TwwYyT3TxtOfnE+CZEErj0hnd7t+5EUX3lfisqsA31lD07sd90uqQO9MiebjyeOY+OSxSQ3asxRnbpQL615zPvdWR8Wvc+Q/LuZWvQ2AIkkcknCFVybmE6DcIOY9RsUFVH4/HMlAfSC7JIHU2qTePU1JF7ZnVBK7c2O3xRwTJyXxZKNi2mU3JhOLbvu8oBjZ+peS9LOCIKAZz4ez+1vDGTlxpUQgsM+h/bTISnvFweGQswZP5bTBw7aoX6K8vOZ9fCYzetAn/M3Tr/1DlIOTN3ma7d14XFv901xDsPz7+Vfhc8QpWSF8Tnxf2NA4k0cEvlNzPoNNm6k4OnHyR99P8GypQCEDmhMYu9+JHTuRqhatZj1LUmStKMMon/lnXdKNk8744wztnjujDPO4JZbbmHKlCnbbKNp06bMnDmTtWvXbrHxWmFhIYWFhQBEXKWpvdQ7OW9zw//1I+enBQCcdPCp3Pv7YTRdE6Lw3nvZuGgh4dQmxHfuSmQHQ9uy6kD/5uw/cuagu3ZZHei5E7KYnN4LQqGS8hGhENNHjaRjRiYtO3XZJWOoqE+K53Fv3t28VvQqAPHE0yXhItITr2P/8AEx6zcoLKTw38+WBNDf5AAQqlOHhB7Xknj5VYRqbr3+dFrdZtx25u1Veiuxt59LqgpfLJvP9f+Xznvfldy1ckBhLY6ftI4DFpdRKigIWLOo4mWCNtWBfvP2gaxa+C0A+7dqze/uvJfU49rtzPD3at9HFzEybygTCrMooqRO9+/j/sT11W7miMiRMes32LCBgicfIz/zfoIVywEIHZhKYp/+JHTqQigxMWZ9S5Ik7SyD6F8IgoDs7JIVeocccsgWz6ekpFC/fn2WL1/O0qVLadiw4Vbbqlu3LnXr1t3ssdzcXO68804KCws544wzqFmzZuW+AamKLV23hNtev4kXPvs3AA1rNOLOswbzl8PPpXDiONb/KrTNH51BUkYmCRUMbXOmvMV/B97Aip9LOjQ47IiSOtAnnVLZb2mrVuZkMzm9F0F0y1C0sm6PrkxfFn/BfXn3MKnoRQAiRDg//kL6VbueJuGmMes3KCig8NkJ5GUMJ/h5o6tQvXok9uhNwmVXEKqx5/we9PZzSbvKhoINDJ96Lw/NGk1RtIjk+GQGnHQTh7y5gg+WjCageMsXhUKkpFasTNCy+Z/z31uu59tpUwGo0bARpw0cxFF/71RaB3pflVOczfjCrF9sENiVtEhzlkaXcH/+cJ4ueIICCgA4Le4Mbki8hdZxR8dsPMH6dRQ8/k/yHxxFsHIlAKGDmlKtb3/iz7+QUEJCzPqWJEmqLAbRv7BmzRry8/OpXr06ycnJZR7ToEEDli9fzooVK7YZRP/SG2+8wYQJE/j4449Zu3Ytp556KkOGDKnMoUtVqjhazBMfPsrgKXexLn8t4VCYy4+9ihtOvoVa1VIozskmN70XlBHa5vbtSaRtOyLlCG1Xf7eQ1/9xC1+8/BIAyfXqccqNt9K6y0WE43btr7O547NKQvWy7MDt0Vv7wruzcoqzGZo/hOcLnytdxXtO/Hlcl3gjzSJbXnCrLEF+PgUTx5E/asT/s3ffcVWVfwDHP+duRMW9EcORWc7MrLQ0Mxvatgiw4U4c4N7h3ooDrbS0QDS1LDWzcmSZtkwbaiWiiOZWUODu8/z+uOpP5QIXuEyf9+vVi7jjOc85Xu73nu/9nu+DSDoOgFKpMsawQRhe747ips9ocXA7X34uSVLB+PKfLxjz1XBOpCQBrsV9p3SaQS0/fy5Ui+eX6IXunygEzYM9axNkSUlm56xp/PL+ewinE53JROt+A3iof4TbPtC3m1W2WCLM/W+6AmahdR7tdR3Y4/gBM2YAHtK2ZaRpHPfr8q9yXKSmYvtgKdbF8xEXLwKgqXMHxsHD0b/4Mopen2/bliRJkiRJ8jaZiL6B2ez6UOmTxaIexquXu6Wnp3s87p49e9i1a9dN2zl27BiNGzfO5UxddLqSUami1Wpu+il5X34e470nfmXIpkH8cep3AFrUbMmczlE0rdHs+mOsq1dmmbR1rI7FOH5Cptuwm83sWjCPXfPn4rBY0Gi13NejN+1HjcHnlp7CBeXyieMgBMkBcPAluFwLyp6ARuugfJLg8onjHv+NrrTEMCjt5pYPi6xRLPBdTLApNFfzS3IeZ5Z5BqussTivVs51MTzLCJ/RNNJlvdhqXgiLBevKjzBHzUU9eQIApWpVfAZEYHqjO0omX/JlR75PSPlJxlPJU/l5jI9fSmTkl8PY8s9mAPzL1WbGU7N54s6nrj+maoMGPLtgMZ8P7HfTFUYIwbMLFlOlQdZfMKqqyv64WLZOHE/a+fMA3NW5C50mT6d87aKx6Gpej/ERZzwrLTEcVxOprQkgxNSNujn4YveIM54Ic//r/Z5vtN3hWhD5Pt39jCk1jof17XI1R0+ItDQs77+HeWHU9QpoTd16lBo6AsOLXVFy+QW8fJ+Q8pN8XWVN/v15Rh4nz8jj5Dl5rDyTWcrG22Qi+gaaq5cg3trX2R3VTWVnZvr27cuIESM4c+YMsbGxrFixgtdee41169ZRt27uLunWaBTKl/fN1XOLqrJl5are+c2bx/hS+iVGbxzNu7vfRQhBOZ9yTOsyjV4P9kKrubn/ufX0SdfJsjtCoDt90u3rWQjBH599xvrBg7l47BgA9dq146UFC6iRxy9y8qpag3qsfVGwbRIgAMX187de8NhYQYd69Tz6Gz1sO8ygC2FuT3gHpvWjU8UO1DN4fgJ9ynGKyZcmszRlKXZc/eifLvU0EytMpIWphcfj5JRqNnN52TKSp0/H+d9/AGhr1KD8iBGU7dULTRZf8OWEfJ+QvE3GUyk3vHmMbQ4bc7bPYdJXkzDbzei1eoY+OpSxncZSypDxy7tHw/rQuFMH9rz/PhePHaNCnTo80KMHletlHSsSf/6ZdQMGkPjzzwBUbdiQFxcsoGHHjl7bF2/KzTFefnk5PS/0vOmL3QWWebxf5X3eKPuGR2N8cn41CpmfC3T17crH1T726HwhN9S0NFKWLCFl5kyc51w9oPX16lF+/HjKvPpqrhPQt5LvE1J+kK8rz8jj5Bl5nDwjj5Pn5LEqGmQi+ga+vq4TUYvFkuljrFYrQKatO9ypXLkyAP7+/owaNQqz2czHH3/M0qVLc92iQ1UFly97XpVdlGm1GsqW9eHyZTNOZ8EvQnY78OYxFkKw5o/VjP9qNOfSXCdIrzR9lQmPT6ZK6apcTsn49+OoVjPriuhqNbl0Ke2mm8/9+w9fjhrOkR3bAChboyadJk7h7udfRFGUDI8vaKW6PsA2X4G4dc1RAVsnC0akP+TRHBenvZvpCa+CQvTZdxjvm3m1+DWX1IssMEfxjmUxVlz/BrUv1+btspN43udFMMMls/ePmUhPx7LiA8wL5yHOnAFAU6MmPhFDMIa8hjCZSLGoYMnbtkva+0TZsj7yG/kiQsZTKSe8fYx3Hf2OoV9E8O8515oHbeq0ZVbnedxZuSHWNIE1zf17p65iddoOH3vTbZnFnNRzZ9k2aQK/xX4IgKF0adoNG8X9fd5CZzAUejy9VW6P8RFnPD2Te7r9YrfH2R40trUgUJt9AcihtH/cjgGuuOy0C5KTvf+eIdLTsSx/H/OCuYirCWjNHYH4DB2BsesrOHU6kq9YAWuetlMS3ydkTC06StLrKj+UxL+//CCPk2fkcfKcPFae8fPzuV6gm59kIvoGvr6++Pr6cuXKFSwWCyaTKcNjzp49C7h6RefWs88+y8cff8yBAwdyPQaAw1Gy/oCcTrXE7VNRk9dj/O+5fxjx5WB+SPwegAaV7mTGk3N5qE5bIPPXpC4oBBbMcz+oEOiCQq8/15p6he9nz+Cn9xajOhxoDQZa9xtIm0FDMPj64nQKXCXIhWtj5Z0oZg3i1pNVBRRFw4ZKO2jieCTbcRKdxxCZ7I9AkOg8luW/WapIZal1CdHWBVwmxXXjKVD2KJw8eZJevElal3SCmuZsQcjsiLQ0bCvexxo9H3HedcKs1PLHOGgIhqAQFKPR1RDEy3/T8n1Cyg8l7TUl/07yX16P8bm0c0R+M4a1f64GoFKpSkR2nELXxkEoiuKVfz/V4eDX5Uv5dsZUrJdd8aFx1yA6jJ9ImarVgKL92s/pMY6xfJTlF7sfmT9krCky0+c7hIO19tVst2/NNC5r0FBLqe3V4ybMZmwfvo91YRTinOs8Q6ldB9OQ4ehfegVFr5fxVCo25OvKM/I4eUYeJ8/I4+Q5eayyltlF7N4mE9E3UBSF+vXrs3//fo4cOcLdd9/cRzU5OZnz58/j5+eX5UKFv/76K59//jlNmjSha9euGe43XF3V2uFweHcHJCmfWBwW5n0/k0W752NX7fjofBjcdjhvPTAAgzb7Vdq1gfXwiYrGHB6WoaelT1Q02sC6CCH4c93HbJs4ntQzpwGo37ETj0+aTgUPFjIsaElqImT2ZaHm6v0e8NcEZHni7K9x37PTKqzE2JYz1zqL88KVCOY8sBs45kpiX+sNHb4xjFb+rQmskPfjKFKvYPtgGdYlC673rFRq18EUPgT9y6+iGLJ/PUiSJN2uhBCs3P8RE7aOI8WSjILCa/d2Z0z78ZTzKe+17STu3sWWUcM4e8hV9FD1niY8OW02/vfn36J6hS1JTczyi93M4rIQgk2ODUy3TOKw+m+W2xAIgvWeLQiZHWE2Y4tZjnXBPMRZ1xVFSu0ATBHDXPFULkIoSZIkSVIJJBPRt2jbti379+9n69atGRLRW7duRQjBww8/nOUYycnJrFmzhl9++YUXX3wxQ2n7d999B5BhfEkqinYn7mLIpoEcuRgPQKf6TzLliZnULpezRY0MQSFoW7XGHheDmpSIxj8AfXA3tIF1Of3nH2wZNZSkn38EoHydO+g0ZQb1Oz7h9f3xltwmkG8VrA9lkTXK7X3uTnidwsla+2pmWaaRJI4DUEdzB3fGN+SbL75CFRm/4VVQiNsXw9gOkR7Nye1crlzG+v572JYsRFy6BICmzh0YI4Zdr9iSJEmSMnfkwmGGfDGI3YmuBaybVGvGzKfm0qJmS69t4/J/J/kmcgwHP/sUAJ/y5Wk/ajzNu72BRntrL6mSJadxWQjBTscOplonsN+5D4DySnkGGodQhjIMt0Tc1GtaIIjyifaovUdWhMWCLXYF1vlzEVe/eFdq+bsS0K8Eyy90JUmSJEkq0WQi+hYvvfQSy5YtY8WKFbRt25YWLVyLeyUkJBAVFQVAz549rz/+7NmzXLlyhTJlylxv1/Hwww9Ts2ZNjh49yuzZsxk6dOj1ZPT27dt555130Gq1vPnmmwW7c5KUAymWZCZuHU/MvhUAVMaXiRca8xQNMbSyQ7mcj6kNrIt2bOT1382XLrJjeAS/fbQcoaroS5WiTfhQWvftj85Na5yiJKcJ5MwEausR5RNNuDksyxNeIQRfODYy3TKJf1VXL9GqSjWGGEcQYniN/kd7Z7oNgSApxbMK7QzPTUnGuuxdbO9GI5KTAdDUredKQL/Q1WuLJkmSJJVUNqeN6N3zmfv9TKxOK6X0pRjRbiy9WvVFp/HOe6jDauXHdxaxa94s7OnpKBoNLV57k3Yjx1KqQkWvbKOoy0lc/tXxM1MsE/jB6Wo1Vgpf+hrD6GccQFnFD4A2uoeJs8eQpCbirwkgWN8tT0loYbFgW/mhKwF9+hRwNQEdPhR9UIhMQEuSJEmSdFuQGYRbVKtWjTFjxjBu3DhCQ0O5//77MRgM7NmzB6vVypAhQ2jYsOH1x8+dO5f169fz/PPPX1940GAwMGfOHHr06MH777/PN998w5133klSUhJ///03Op2OCRMmyIpoqUgSQrDp0OeM+moYZ1Ndl4q+cgCG7zFT1vozNuUXbNHz8YmKxhCUu77DqtPJvpgV7Jg2EfPV6tpGz73AY29Pxq9mLa/tS37yNIHsiSBDCK20rTM94d3p2MFUywT2OX8DoJxSjoHGIXQ39KKU4lo41d8vm0owv5xVsIuUZKzvRGNd+g5c7S2qqd8A4+Dh6J97EaWEV9ZJkiR5w96TvzB44wAOnTsIQPu6HRh9TzjnN+xgw/Je+PkH0Cw4lIqB9XK9jcPfbOHrsSO5eDQBAP9Wrek0bRbVGzf1yj54IsEZT5w99oYYFkqgNuf7lOCMZ7V1JaetJ6nmqEmQLsTjcTyJy4ecB5lmmcgWx2YADBh409CTgcYhVNZUvmW8uozVRuZ4H24lrFZscTFYo2YjTv0HgFKjJsbwoRheDUUxGvO8DUmSJEmSpOJCJqLd6Nq1K9WqVeO9995j//79aLVaGjVqRPfu3Xn88cc9GqN58+Z8/vnnLF68mF27drFjxw78/Px44okn6NmzJ40bN87nvZCknPvv8klGfjmELf+6TtDqlq3DxBWJtDop4JZF+czhYWhbtUabw/7NJ375iS9HDuX0n78DUPmuRjwxdRZ1HmrrlX0oSNcSyKsdsZzWXTtpDs1VxZS7E969jl+YapnI986dwLWKrX70Mw68XrF1TXCzUBbtiXI7tkAQ3NyzCm2RegXre0uwLlkEKckAaBre5UpAd3lOJqAlSZI8kGq9wrRvJ7Hs53cRCCqWqsikx6dT908bMV2f4UAjuFJaUGavwt0x8+g2YTFNc/jl7sWjCXw9biSHv94CQOkqVenw9iQav/QKiuL+i8n8sMoWS4S5/03J30XWKKJ8ogkyeL5P7sZZwLwcjZPZF7saRUO/9F58Yl+DQKBBQ5A+hKGmkdTS+Od217Mk7Hbsa1ZhmTsTkeRqpaVUr+Fa1DfkNZmAliRJkiTptqQIUVDrIkre5HSqXLyYVtjT8AqdTkP58r5cupQmVzDNJ9kdY1WorNj7PpO3RZJqu4JOo2PggxH03WVFWRwNTmfGQbVajGGDMN3QaiMr6RcvsH1yJPtiPwTAWNaPdiNG0/LNXmiKeXsHb7+G/3YeYpplEl86NgGuiq03DD0YaBxCFU2VTJ+3+veVhG90UwnWJZqgplmfxIv0dGzLl2FdOBdx8SLgSkCbho1C9/QzKJrMVmYsGCXtfaJCBV+02sI9ppKLjKdSTnhyjL85vIXhmwdz8vIJALo2DmLi49Pg9CUGdL+Xbe0zfvTusENh0Qe/ebQ4r8NqZfeiKH6YPweHxYJGp+P+3v1oO2Q4xjJl87aDOZTgjOfB1JaoZDwWGjTsLr3Xoy9nvTXOrc6op5lrnUmMbQUOXIuEP6N/nhHGMdTXNsjxeJ4QTif29euwzpqGerVKXalaDWP4EAwhr6MUcuuxkvg+IWNq0VGSXlf5oST+/eUHeZw8I4+T5+Sx8kxBxdPinf2RJCnP/jn3N4M3DeCXEz8BcG/N+5jbeSF3VWlE+uo3sWf2XZUQqEnZ9x0Wqsrvq1eydeI4zFcTnE1fDaXD2An4Vq6czbNvL4nqMWZaprLO/vH1iq1X9MEMNY3EX1M72+cHNQ2hlX9r4vbFkJSSiL9fAMHNuxFYIfOTd2G1YotZjjVqDuKsqxWLpm49jMNGoX/2BVkBLUmS5KGzqWcZ9/UI1h/4BIDa5eow66l5tK/bAYDYlRPZ1l4gbv18L2Bbe8GXKxcQMm5+lttI2LmDL0cM5mLCEQDuaNuOJ6bPplL9/EmqZifOHptlW6g4e4xH7S28Nc41yeISC61RLLO+gxkzAO11HRhtGk9TbXOPx8kJoao4vtiIZeYU1H/+BkCpWBHjwCEY3uiB4uOTL9uVJEmSJEkqTmQiWpJuU1aHlfk/zGH+rjnYVTu+htKMffRt3ri3J1qNK/mo8Q+AzC7vVRTX/Vk4c/AAXw6PIOnnHwFXG46nZsyjdusHvLovxd0F9QLzrDNZbluGHTsAnXXPMtI0lgbaO3M0VmCFuoztEJnt44Tdjn31StclwyddVXtK7QBMQ0eif+kVuQihJEmSh4QQrP59JW9/M5pkSzIaRUPf1v0Z9vAofA2+1x/31eXdUNrNAAogYMvl3WR27cqVM6f5ZvwoDqx3JblLV6lKx0nTuPu5Fwu0DcetktREBO6/sBYIklTPFsr11jhmYeZ923vMt8whhWQAWmpbMdYUyYO6Nh6NkVNCCBzfbMEyfQrqX3+4bvQrhzFsIMaefVFKu/tHlyRJkiRJuj3JTIMk3YZ+PL6HoV8M5N/z/wDweP0nmPHkXGr63bxQoD44FOuiKPeDCIE+2H3fYVtqKt/Nns6P70YjnE70pXx5ZNgoWvV+C61e781dKdbSRBrvWRez0BpFKlcAeETXnjHGt2mma5Ev2xROJ/Z1H2OdPR018RhwtWdlxDAMwd1QDIZ82a4kSVJJlHDxCMM2R/D90W8BaFytKXM7L6Bp9YxVt5fLcutyCxnvv4XqdPLr8qV8O20y1iuXUTQaWnbvRbuRYzGV9cv4hALmr8lmoVyNZwvl5nUcp3Cyxr6KGZYp/CdOAnCX5m7GmMbTUfdEviTrhRA4du7AOmMyzr2/um4sXQZjn34Y+4ah+JXz+jYlSZIkSZKKO5mIlqTbyGVLCm9/PZ4P974PQCXfykzrNItnGj3v9iRNG1gPn6hozOFhrspoIa7/9ImKzrBQoRCCv7/YyNdjR3D5P9eJYMOnn+HxydPxq1krw/glQcKFeFb/sZLT6SepVqomQU1CCKxYL8vnOISDlbaPmGWdxlnhaofRRNOMcT4TeETXPl/mKVQV+8bPsM6cinr4XwCUSpVdPStf617oPSslSZKKE7vTzsIfFjD7u2lYHBZMOhPDHxlD39Zh6DTuP17f0+hBfvzrn0zHvKfRgzf9fvK3X9k8LOL64r41WtzLUzPnUb1JM6/tR14F60NZZI1ye59AEKz3bKHc3I4jhOAbxxYmWyL5Wz0EQC3FnxGmMbykfwWtkj/tpRx7fsAyfTLOPT+4bvDxwdizL4awgWgqVMyXbRYlzoR47HGxqEmJaPwD0AeHog3M+rOPJEmSJEkSyES0JN021v++nrA1YZy6cgqA4GbdePuxSZT3qZDl8wxBIWhbtcYeF3PDCUe3DEnoS8eOsmX0MOK3fg1Audp1eGL6LOo/1il/dqgIWLU/lohN/W9aHHDBD/MyXRxQCMEXjo1MsURyRI0HIEBTh9HG8TyrfwGN4v2FAYQQOLZsxjJjCurBvwBQypfH2D8CQ/deKL6+2YwgSZIk3ejX47/yZmx3/jr9JwBt72jH7KeiuKNCYJbP69FuAMsOrrj6pe4NdwhQNAo92g8EwJx8iR1TJrL3ow9ACEx+5Xh0zNs07/YGmiLWtz9QW48on2jCzW4WyvWJ9niBwdyM84vjJyZZ3uZH524AyinlCDcOo7uhFyYlf75cdfz2K9bpk3F8u911g8GA4Y0eGAcMRlO1ar5ss6ixrYrFHNH/pgIF66IofKKiMQRlvTCyJEmSJEmSIkRmK5FJRZnTqXLxYlphT8Mr5Aqm+etM6hlGbRnCpkMbALijQiBznl5AmzoPe2V8h9XKnsUL2DVvFg6LBY1ez4P9B9Fm0FD0pUp5ZRv55UJCPPvjYklJSsTPP4BmwaFU9LCiJ+FCPA8uaYkqMr5mNYqG3f323rRI4B7HD0y0jGOv03X5bkWlIkOMI3jN0B2D4v12GEIIHDu2YZ0+Cef+fa4by5TF+FZ/jH36oZRxcw34DRIuxBO3P/b/ix42C8220js/lbT3iYJakVjKnoynkqfS7enM3DmFd36MRhUq5X3KM6HjVF5pEuxx64fVv68kfEMYIBBCXH2eQtQz0bzSJJg/165ma+RY0s6fA6Bx1yAee3sypatUuWkcb71HJzjjibPHkqQm4q8JIFgfSqA2N+McIc4ec8M43TxOQt86zmpHLKd1J6nmqEmQLjTDOPHOw0yxTOALh+tzjQkTvYxvMdAYgZ9SLsfb9ITzzz+wzJyC46svXTfodBhCXscYMRRNjZr5ss38kpf3CWdCPKkPtgTVzfM0Gkrv3puhUKEgyJhadMj4kzUZpz0jj5Nn5HHynDxWnimoeCoroiWphBJC8Olfaxn91TAumS+h0+gY8FA44Q8Nw0fvnZXbj36/ky9HDOZC/GEA6rR5mCdnzKVS/QZeGT8/7V8Vy6ZbKnr2LIqiS1Q0TT2o6InbH5tlP8u4fTGM7RDJIedBplgi+dqxBYBS+PKWsT/9jAMoo2SdDM4tx+5dWKZNwvnTHtcNpXwx9n4Lw1v90ZTPugIe3Fd6L9oTlWmltyRJUkn3U9KPDNrwFgkXjwDwYuOuTOw4ncq+lXM0TlDTEFr5tyZuX8z/k8jNu1HmvIOYFzqT+MP3AFRqcCdPzphLnYfaZhjDW+/Rq2yxRJhvGccaRZRPNEGGnL3XB2rrMlYbmaPnZDbOeOMEtyeLp9VTzLJOJ872EU6caNDwqj6UYaZR1NDkTzLY+e8/WGdOxb5hvesGjQb9y69iGjICTUCdfNlmUWaPi81yEWt7XAzasZEFOidJkiRJkoqXYpmITk1NJSEhAbPZjOruG/mrHnjggQKclSQVHWdSzzB8cwRf/rMJgHuoQtT55ty5W6CrfRLy2Mcv9cwZvokcw1+frAHAt3IVOk6Ywj0vvpwvCwJ524WEeDZF9Ee4ef/YGB6Gf6vWVMimoicpJRGB+wtKBIJ/LIcYmP4WH9vjEAi0aOlmeIMhxpFU1eTP5buO/b9hnTIBx84drhtMJgxv9MQ4IAJNZc+SJQkX4onY1N9tpXf4xjBa+be+qdJbkgqSjP9SQUu3pzNtxyTe+2kxAkH1sjVY+up7PFijXa4ragIr1GVsh0gA7OnpfD9vFnsWL0C129H5+NB28HAeeGsAWjeLx3rrPTrBGU+EuT+qm9UTw81htNK2zlVFc364LFKIts7nHWs0ZswAPKF7itGmt2movStftqkeT8Qyaxr2tatd1b+Kgv75FzEOHYW2Xv182WZxoCYlur68d0cI1/1SsSFjqiRJklQYilUiWlVVpk6dyurVq3E6nVk+VlEUDh48WEAzk6SiIUMVNBr6/STou+88euc3WJStsGBervv4qU4ne1e8z45pk7BeTgFFoeWbPWk/ahymYrQ6/P5sKnr2xcXQIZuKHn+/APcV0UYQ9wm2Nvsap931PtVF9xyjTeOoq82fk1fnv/9gmT4Zx6bPXTfo9RhCX8cYMQxNteo5GsvTSm9JKkgy/kuF4dYq6FebhjL1yenUqVGTS5fy3s7l36++ZMvoYaQkHQegfqcneWLKTMrVDsj0Od56j46zZzOOPcYrFc55YRVWllnfY551FhfFRQDu097PONNEWuvyJzGmnj2LNWoWtg8/ALsdAN2TnTGNGIO20d35ss3iROMfkOXnJ41/5q9dqeiQMVWSJEkqTMUqEf3hhx8SGxsLQK1atahSpQraIrZoiyQVlgxV0OXvZOqSf7nrnIBbKnfN4WFoW7XOUR+/U3/s54uhgzh1td9w9abNeWrWPGo0a+G1fSgoKdlU9KR4UNET3CyURXui/n+DFmgKtARhEjhx8qC2DeNME7hXd583pp2BmnQcy+zp2D+O+3/F1kuvYBo+OteXDGdX6Z2UIqudpIIn479UkG6tgq5Wpjpzn17AY/U7odPlvW9eyskTbBk1jH+3fAGAXy1/Ok2ZyZ1PPp3tc731Hp2kZjOOWnjv9apQWXllJaOTx3D86jzqaxowxhTJk7qn8+XKK5GSjDV6Adb3FkN6OgC6h9tjHD0OXYuWXt9ecaUPDsW6KMr9nUKgD+5WoPORckfGVEmSJKkwFatE9CeffIJWqyU6Opp27doV9nQkqUgQQrD+wDpGbRl6vRf04LbD6bMzDfViPOCm0iEHffzs6ensnDmVH99ZhFBVjGX9eHT0eFq83h1NMf3Q6pdNRY+fBxU9gRXrEdUlmkGb+sGdIFoLKOO6r4atJrPLRdFB93i+nDCr5879v2LLZgOuVmyNGoe2Yd4uU8600htXlZy/n6x2kgqejP9SQbm1CjqoaQiTHp+Gn6lcnsd2XVW0jO2TJ2BLS0Wj09H6rQG0HTwcg6+vR2N46z3aX5PNOJrCea/f6djBxNRx/On8A4BqSnWGm0YTpA9Bp3j/tEWkp2Nb9i7WRfMQyckAaFvci2lMJLq2j3h9e8WdNrAePlHRmMPDblpjAyHwiYoulIUKpZyTMVWSJEkqTMUqEX38+HHuu+8+GTCl24IzIR57XCxqUiIa/wD0waFob+ntfDb1LMM2h/+/CrpqExY8s4R7qjUmfeWbqHns45fw7Xa+GBpO8vFjANz9/Is8PnE6pavmT4/jgtIsOJQ9WVT0NPewoqf63TWoF1Cfw8q/AJSxliFCP4y3Kg1Aq3g/SS8up2BdvADrO4sh3XVZuLbtI5hGj0d3r3eqrjNUet+4fQTBzWW1k1TwZPyX8lu6PZ3p307m3R+jM1RBX3MhIZ4/Vq8k/fRJSlWrSZOgECp6uObC2UMH2TR4ACf3/gJArfvu5+k5C6iSwy8PvfUeHawPZZE1i3H0Bftef8h5kImWcWxzfANAWU1ZBpkG00PXl1JKKa9vT9hs2FZ+hHXuTMSZ0wBo7myIadR4dE/mT9V1SWEICkHbqjX2uJgbPqN2k0noYkTGVEmSJKkwFatEdNmyZTEajYU9DUnKd7ZVsZgj+t9UbWJdFHW9t3NmVdCDHhqCXqsH8tbHL/3CBb4eP4o/164GoGzNWjw1cy71Oz7h9X0tDBUD69ElKpqNbip6ukRFZ7tQ4U0nzAqUVfwYW2EMoaI7OmfGxaXySqSnY3v/PawL5/6/Yqt5C0yj30b3SHuvbutapXf4xjAUFATi+s+oLtFyoUKpUMj4L+UnT6qg96+KZdMtcfmHBfPoEhVN0yzWXHBYLOyKms0PC+eh2u0YSpehw9hI7n2jB4om520+vPUeHaitR5RPNOFmN+P4RBfYQoVn1NPMtExlpf0jVFR06Ohh6s3k6hPQXvbJ9YKQmRFOJ/ZP12KdORU18RgASu0ATMNGoX/pFZRieqVXQdMG1vXoqjqpaJIxVZIkSSpMxSoR3bZtW7Zv305KSgp+fn6FPR1JyhfOhHhXEtrN6tXm8DAuNq7PyAPz2fzPRuDmKugb5aaPnxCCvz5Zw9fjRpJ+4QIoCq169qHdqHEYS5fJ874VJU2DQvBv1Zp9cTGkJCXi5x9A8+BuWSahz6hnmGmZctMJc3dDL4b7jqRu+dpcupSGA++dNAu73VWxNWfG/yu2GtyJaeQ4dE93ybeKraCmIbTyb03cvhiSUhLx9wsguHk3mYSWCo2M/1J+MNvNTPt20k1V0HOenk/H+jd/6XohIZ5NEf0RbuLyxvAw/Fu1dhs7jv+4m02DB3Ah/jAADZ54mienz6ZsjZp5mre33qODDCG00rYmzh5DkpqIvyaAYH23AklCp4k0llgXssg6n3RcV/h01j3LWNPbNDA2oLzWl0vkfUHIa4QQOL76Esu0iaiHXAuvKZWrYBw8HEO3N1AM3v8SWZKKKhlTJUmSpMKkCJHZtftFz7lz53jppZe44447GDNmDPXr1y/sKRUap1Pl4kXvfUAvTDqdhvLlfV1JPC9XvhRHlsmRWKPnwy2rWAtg050KEx83kowFnUZHRJthhLcZer0K+la21Ssz7eNnuKWCK/l4IpuHhXNkxzYAKt/ViC5zF1LTSy0firOsTpgDtfW8/hoWqop9/TqsM6agHjsKgOJf21Wx1TXotqzYKmnvExUq+KLV5n3Rs9tFfsZ/GU9vTz8n/cSgDW9x5GI84EruTuw4lXI+5TM8dtvkSPZEz0c4M665oGi1PBA2iA43VIdaUpLZNvFtfotZDkDpKlV5YtpsGnZ+5rZv+eAUTj62xzHNMokzwvUF673alkSapnK/rjXg/dexY9d3WKZMwHm1LQp+5TD2H4SxZ18UD3tzlyRF6X3CkzZ0npAxNWfyM6YWhddVUVaU/v6KMnmcPCOPk+fksfJMQcXTYlURPWHCBKpVq8ZPP/3EM888g8lkomzZsm4/1CuKwo4dOwphlpKUN2pSoitpfIPzPvB2O/i6ngAsmVZB3+paHz/H6lh0p0/iqFYTXVDoTX38VKeTn5cu4dvpk7Gnp6M1Gmk7eDgPhg1Ce5tXCDmFkzX2VUyzTOK0OAVkPGH2loQL8azcH8Pxv3+i+t5/efH789RJAaVSZYyDh2Ho9iaKvIxSuk3J+C95i6dV0DdKcROXrxPCdf9VhzZtYMuooaRevYqlebc36DBuAj7lMia48yLBGU+cPfaGSuZQArU5T+AVpB32bURaxnJIPQBAbaUO40yRPKN/Pl8S9I79v2GdMgHHzqvvBz4+GHu9hbH/IBQv/3vkN28lbIuS7NrQSflHxlRJkiSpMBWrRPTWrVtv+t1sNmM2m90+9navOJGKrxt7Owvgi/ow8RG45AM6JwzQPsCQHhsxaD1LEmsD62IcP8HtN4Cn//qTTYP7c2r/PgACHmzD03PmU7Hu7Xu1wTXf2rcTaRnLQfUvAGorAYw1RfKs/gWvv7+s2h9LxMYwFCFc52IB8F4AzPJ5htB+76CULu3V7UlScSPjv+QNt1ZBv9IkmEmPT3NbBX0jv2zWXPDzD+DK6VN8OXIo/2x2tc2qULcenecsIODBNl7dB4BVtlgizP1v6u28yBpFlE80QYail8A76DzABMtYdjhcV1z5UY7BpuF0N/TCqHj/C1ZnQjzWqZOwb1jvukGvx9DtDYwRw9BUreb17eW3kpiwza4NnbZVa7n4YT6SMVWSJEkqTMUqEb1t27bCnoIk5btrvZ0vmmB8e/jqasFLw3MwY7tCqw2L0XqYhM6M3Wzmuzkzrl9qbCzrx2NvT6J5yGu5WjypJDnkPMgEy1i2O1wf0v0oR4RpGD0MvfPlhPnwr18TsbkfqgJc+++qYbZNPGQ7QyAyES3d3mT8l/LC6rAy7dtJLNmz0OMq6Bs1Cw5lTyZrLghVRW8yseSh+7BeuYxGp+PBAeG0jRiOzmTy4l64JDjjiTD3R3WzHkG4OYxW2tYFttBgdk6rp5hhmcIqeywqKnr0dDf0ZrBxGOU1Fby+PfXMGaxzpmOLWeFqb6Yo6F96BdOwUWjq3OH17RWEkpqwtcfFZvnljj0uRi6GmI9kTJUkSZIKU7FKRNesmbfFXSSpONAG1uOnKWFEHF7IOV9XFXS/vQp99oLf3MV5PuE4+v1ONg8dxMWjCQDc1eU5Ok2dSZliWCXkTWfU08ywTCHOHnPDCXMvIozDqKCp6PXtqf+dxDJrGh8d/QilOTcloK9RUIjbF8PYDpFe374kFScy/ku5dejsQd5a35ODZ11Xt3haBX2jioH16BIVzcZb1lwQqkqFOwLZOXMqADXvbcnTcxZStdHdWY6Xl7YacfZYFHcBg6sxwx7DWG2kx/uWH1JFKoutC1hsXUA66QB00T3HWFMkd2gDvb49ceUy1ugFWN9ZBOmu7ek6dsI0JhJtNv8WRV1JTdi6a0N3nRCu+6V8I2OqJEmSVJiKVSI6Jw4ePEijRo0KexqSlCNmu5mJ28bx/n/vgS/UowJR55vR5P5m6Od3y1MSOu3iRT4bEM6+uBgAylSvwZMz5nLnE095a/rFUppIY7F1AdHWBdcXIuyie44xprfzpapMpCRjXTAP69IlYLFwohOITM4xBYKkFHkyJkk5IeO/BKAKlaU/L2HytkisTisVS1VkXudonrgzdzGvaVAI/q1a8/vqWFJPHudi0klO7P2FiwlH0Jfy5dEx42nZvTeabBaTzWtbjSQ1EYH7BJ5AkKQWXsxwCier7SuZbpl8w0KE9zHBNJVWuvu9vj1hs2H76AOsc2cizp8HQHtvS0zjJqLLh5YohaGkJmw12bS70fgHFOyEpEzJmCpJkiR5W7FLRB84cICPP/6YEydOYLPZEDd8OFNVFavVyoULFzh37hwHDx4sxJlKUs78eep33vqsJ/+e/weAnvf1YVyHifjoffI0rhCCvz5dx5bRw7ly9iwoCi3f6MGjYyMxlinrjakXS6pQWWNfxRTLhII5YbZYsH2wFGvULERyMgDa+x/gjk4BKMfWgnBmeI6Cgr+fPBmTJJDxX/Lcqcv/MWDDW3x31LXA1mP1Hmdel2iqlq6ap3ErBNal4RNP8cWQgZw64Fpwr37HTjw5Yy5+tfyzfb432mr4awKyrIj21xROzNjp2MF48+jrCxEGaOowzjSBLrrnvN5jVqgq9s8+wTptEmriMQA0dethGv02us7PlKietiU1YXutDZ1bQqAP7lag87kdyZgqSZIkFZZilYj+888/CQkJwW63Xw+WiqLcFDiv/d6gQYPCmqYk5YhTdRK9ZwEzvp2MXbVTpXRVFnRZzKP1OuZ57NQzZ9g8PIJ/vtwEQOUGd/L03EX4t/J+orU4+dGxh3GWkfzudC3SWFupwzhTJM/on/f+CbPTiX3taiwzpiBOngBAc2dDTGMnoHv8CUIvHmHxkjXun4sguLk8GZMkGf8lT208+BlDvhhIsiUZH50PEx6fyustuuf5vd2ens630yfz07vRCCHwrVyZTlNm0uhZzxew9UZbjWB9KIusUW7vEwiC9QUbMxKc8URaxrLFsRmAcko5BhuH82Y+LUTo2LkD86S3Uf/YD4BSpSrGYaMwBHdD0eu9vr3CVlITttrAevhERWO+pd0NQuATFV0s+14XJzKmSpIkSYWpWCWily5dis1mo0OHDrzwwgt8//33rFmzhujoaFRV5fvvv2ft2rXUq1ePdevWFfZ0JSlbScnH6f95H/Yc/wGAp+7swpzOC6hYKm89iYUQHFi/ji2jhmK+dAmtXk/H0aO5r+9A0Ja8EzVPJanHmWgZz+f2TwEoTRkGm4bTy9DX6yfMQggc277GMikS9ZCrQkypURPTiDHoX34V5erl24EV6xHVJZrwjWE3XaotEER1iSawgjwZkyQZ/6XsXLFeZtSWYaz5YxUATas3Z8lzy6hXqX6ex0766Uc2DHqLiwlHALj/jTdoN24ihjLlcjaOF9pqBGrrEeUTTbjZTczwiS6whQpTRDJzLDN53/Yuduxo0dLd0IuhxpH5shCh88/fsUx6G8e32103lC6Dsf8gjH3CUHx9vb69oqIkJ2wNQSFoW7XGHheDmpSIxj8AfXDe2tBJnpExVZIkSSpMxSoR/dtvv1GpUiXmzZuHwWDAz8+P1atXoygKjz32GI899hgNGzZk4sSJxMTE0KNHj8KesiS5JYTgk7/WMOLLIVyxXsbXUJqpnWYS1DQkz1VbqWfPsnlY+PUq6GqNm/L84ne5q839XLqUhsOR8ZLgki5VpLLQOpfF1oVYsaKgEKp/nRGmsVTRVPH69hx7f8Ey6W2cu3e5bvArh2ngYAw9+6D4ZGy1EtQ0hFb+rYnbF0NSSiL+fgEEN+8mk9CSdJWM/1JWfjy+h/6f9+Z4ciIaRcOghwYz9OFR6PP4xeu1Kugf340GIShTvQbPRC3k/pdfyFU89VZbjSBDCK20rYmzx9yw4GG3AklCO4SDWNuHzLBO5oK4AEAHXUcmmKbSQHun17enJh7DMm0S9k/Xum7Q6zG82RNj+DA0lSp5fXtFUUlO2GoD6xbLxRaLOxlTJUmSpMJUrBLRycnJtGnTBoPBAHD9UqG//vqL9u3bA/Dqq6+ydOlSvvjiCxk0pSIp2XyJEV8OZv2BTwBoWasV0c++xx0V8raS/K1V0BqdjraDh/PQoCEYfbx/eWxhupAQz/64WFKSEvHzD6BZcCgVA+tleJy7PtAPadsy0WcajbVNvD4vZ/xh0iZNwLHxM9cNRiOGnn0xDoxAUz7rCrHACnUZ2yHS63OSpJJAxn/JHZvTxuyd01mwey6qUKldLoBFz75H69oP5HnspJ9/YsPAvteroJu+GsrjE6dSumLuq3292VYjUFs32zYe3vad41vGmUdd7wNdX9OAiaapdNA/7vVtOc+dI21cJJYPloLdDoD+ha6YRo5FU+cOr2+vqJMJW8mbZEyVJEmSClOxSkSbTCb0N/R/K1u2LH5+fiQkJNz0uEaNGrFnz56Cnp4kZev7ozsZsKEv/10+iVbRMvThkQxqMwSdJm9/iqlnz7p6QW/eCEDVe5rwzIIlVLunsTemXaTsXxXLpoj+N12iumdRFF2iomkaFHL9cT85fmScZQT7r/aBDtDUIdI0had0nb3eB1o9c4azo2dxeelScDpBUdC/Eoxp+Gg0HixgJUlS1mT8l251+Py/9PusF7+fcr3Hv9IkmKlPzKSMMW+L8NrNZr6dNun/VdDVqvP03AXUf6xTnudcVNpq5JS7PtDDjaN53dADveLddl8iLY30pYu5uDAKceUKALp2j2IaNwFt46Ze3ZYk3a5kTJUkSZIKU7FKRAcEBPD333/fdFudOnU4cHXl8musVitOp7MgpyZJWbI6rEzdMZElPy4E4I4KgSx5bhktarbM07hZVUFrS+CiPRcS4tkU0R+hZrwcemN4GP6tWpNWR89ky9ust7sqzktThgjTMHob3vJ+H+i0NKzvLHItJJSWBoDu8ScwjYlEe1cjr25Lkm5nMv5L1wghWLH3fSK/GYPZYaacqRxznl5Al0bP5XnspJ9/cvWCPhIPQNOgEB6fNA2TX7k8j31NYbbVyKnLIoW5llkstS253gf6TUNPhhlHeb0PtHA6sa9ZhWXaJMTpUwBomzZzLez7SHuvbkuSbncypkqSJEmFSVPYE8iJdu3aceLECaZMmcKVq1USLVq0ICkpie3bXYuXHD16lJ9//platWoV5lSl25gzIR7L5EjS+7yJZXIkf+39kk7vt7+ehO7W4k229dqV5yR06tmzrOvejfV9e2C+dImq9zShx9c7eXjoyBKZhAbYHxfrqoR2w+YLo4705aErLVlv/+R6H+gfy+xjgDHcq0lo4XRiWxXLlQdaYJ0xBdLSMLZqRdlNW/CNXSOT0JLkZTL+SwBnUs8QsrorI74cjNlh5pHA9uzs82Oek9B2s5lvxo9mRZfHuXgknjLVqhMUt5ZnFizxahL6mkBtXcaaInm31HLGmiKLXBLaKZx8aP2A1leas9i2ADt2HtU9xs7SPzLVZ5bXk9D2b7eT2qEt5kH9EKdPoakdQNW4OPy2fSeT0JKUD2RMlSRJkgpTsaqIfv3119mwYQOxsbEkJiby3nvvERwcTExMDAMHDqRBgwYcPXoUm83G008/XdjTlW5DtlWxmK+2jVCFyodNYbZdYNNBpVKVmNclmk4NnszTNoQQHPjsE1cV9MWLaHQ62kQMo0340BKbgL4mJSnR1Y7jBkKBv5+FPUNV0qr+BMCD2jZM8pmeL32g7d9uxxI5FvXgXwAotQPwHT+Bqt1fIzk5/bZcDFKS8puM/9KX/3zB4E39uZB+AaPWyLgOE+jZqi8aJW81Fe6qoDtOnIpPufLemHax871jJ+PMozioumJcvvaBPnQQy4SxOLZvdd3gVw5TxDBK9elLmWoVuHQpDdxcASVJUt7ImCpJkiQVpmKViC5btiwff/wxixcvply5cgD4+/szffp0xo8fz8GDBwF49NFH5aIKUoFzJsS7ktCqymlfGPEY7K7tuq/dMVgweDXVGrTK0zZSz57lyxGD+fuLDUDJ7gXtjp9/ACgKyX5wsBGcaQoXn4P0q8VkVVL8mF49mqd1XbzeBzqzE2ZDj97ofX28vj1Jkv5Pxv/bV6otlbe/Hk3MvhUA3F21MYufW8pdVfJ25YndbObb6ZP58Z1F/+8FPWc+9Ts+4YVZFz8JziNMsIzjS8cmwNUHephxFG8Yenq9D7R65jSWGVOwx8W4Es16PYbuvTBGDENToSKKrlhdsClJxY6MqZIkSVJhUoS4pbywmEpPT+fw4cNUqFABf/+SvziY06ly8WJaYU/DK3Q6DeXL+3LpUlqxria1TI7EGj2fb2s5Gd4RLvmAyQ6jdsGrhzSYwsIx5XLFcyEEBz//lC9HDrm5CnrQELRXV7zOSkk5xhcS4hnQ/V62dhHQBmh49Q4r1FsNn3T+keqBnicnEpzxxNljb+jTGUqgtt5Nj1HPnMYycyr2lR+5PWGGknN8i7KSdowrVPBFq5XJFm/Ia/yX8bToOnjmAL0+eZ3DF/5FQaHfAwMZ2W4sRl3eWi3dWgXd5JVgHp80zaMq6JJ2jFPFFeZaZvGuLfp6H+g3DD0YZhxFBU1Fr25LpKVhXbwAa/QCSL+6rkKX5zCNeRtt4P/bk5S0Y1zUlMTjK2Oq9+Q1ppak11V+KIl/f/lBHifPyOPkOXmsPFNQ8bRYVUTfSghBcnIyiqJQrlw5mjaVq2lLeeNMiMceF4ualIjGPwB9cCjawHrZPxGwJh1lRmsny1q4fm90FuZ9BYHJgAbUpMRczSlDFfTdjV1V0I2933aiqDvnZ2PrCAH3AXpAAAeAPXDErGAu53lyYpUtlghzfxQUBAIFhUXWKKJ8ogkyhLhOmJcsxLpo/v9PmDs/i2ls5E0nzJIkFTwZ/0s2IQSx+z5kzFfDsTgsVCtTncXPLaVNnYfzNK6sgv4/IQTr7B8zMW00ZzTnAXgkMYAJfnNoFODdNhzC6cS+eiWW6ZMRZ04DoL33PkwTpqJrdf9Nj3UmxGNdvRLr6ZM4qtVEFxTi8ecwSZJyR8ZUSZIkqSAVy0T0nj17+OCDD/j111+xWCw888wzzJgxg4EDB1KzZk3Cw8MxGr23MJl0e7ixvzNCgKJgXRSFT1Q0hqCQLJ97IiWJXrV+ZO/V9Ty6/Q4jdoHx2pdtioLGPyDHczrw+ad8OWLw/6ugw4e6ekF7UAVd0my1f8Vbjl7w4NUbrgAXAAtgAI1FQ9y+GMZ2iMx2rARnPBHm/qhk/DY03BxG882nqT7u3RtOmFtiipyK7v7W3todSZJyQcb/ku+K9TJDvxjE+gOfANChXkcWPvMulXwr5WncE7/+zOcD+uaqCrqk+dP5B6PMQ/nZ+SNoIOAYjJmq0P67EyBexubB5x5P2bdvxTJhHOqhAwAotevgM34Cui7PZWhp5e5zGAvmefQ5TJKknJMxVZIkSSoMxS4RvWjRIqKjoxFCoNFoEEJwrbvI33//zTfffMOff/7JBx98gOE2TNZJuXNjf+dbmcPD0LZqnWkV7JZ/NjNwQ1+SSaaMFaZtg05HbnmQEOiDu3k8H0tKMl+OHMpfn6wBbu8q6ATnEcZbRvG1YwuYACuuamjfq//VBlqAuk0lKcWzqvM4eywK7ns6K06V2H8mMPSM64TZNC4S/TPPyx7QklTIZPwv+f489Ts9P32doxcT0CpaRj/6NmEPDMzTgoROu53v58xgV9RshKpSumo1np4znwaP523h4OLoonqB6dbJfGRbjoqKTzr0WwxvLgejTQBOIPvPPZ5wHvjLta7Ct9sBUMqVwzh4OIY3e6G4SWzl5XOYJEk5J2OqJEmSVFiKVTOtHTt2sGjRIqpXr86iRYv45Zdfbrp/zpw51K9fn71797JmzZpCmqVUHNnjYl2VN+4oimtBnVvYnDbGfT2S19YEkWxJpnmNFnx15yQ6HdWAVgua///0iYr2+AQqcfcu3mv/EH99sgZFo6Ht4OH0+GrHbZeEThNpTLVM5OHU+/nasQUdOhqdu8eVhNbc8p8CooOgTJWyHo2dpCYicN8eXwAn7tBjipxCmR9+wfDsCzIJLUmFTMb/kk0IwQe/LuWp5Y9x9GICNcvW4vPXtzDgwfA8JaEvHDnMis4d+X7uTISqcs+LL9P3+59uuyS0UzhZYX2fB1JbsML2PioqXf69k6+e0tD3XTDabnlCJp97PKGePkV6eBipjz7kSkLr9Rj6hFH6p/0Y+/Z3m4SG3H0OkyQpd2RMlSRJkgpTsaqIXrFiBQaDgRUrVlC7du0M9zdu3Jjly5fz2GOP8dlnnxEaGloIs5SKIzUp0XUZqDtCZOjvnHjpGL0/fYN9//0GQJ/7wxjXYQIGrQHnQ52xx8Xc0Ge6m0dJaIfVyrczprAnej4IQfmAOjy3eCm17rs/2+eWJEIINtjX87ZlDP+JkwC00z3KFNNM3lWjOchfGZ+k4Mog3+3ZNvw1AZlXRCsKgR17Yiw/IHc7IEmS18n4X3JdtqQQsWkAGw99BkCn+k+y4NkllPepkOsxhRDsi1nB1+NHYU9Px+RXjidnzuWe51/y0qyLj58dPzHKPJQ/1d8BuEvTiKk+s2i+7APspw67f5Kbzz3ZEWlpWKPnY128ANLTAdA/8zzGMW+jvSMw2+fn9HOYJEm5J2OqJEmSVJiKVSL6wIED3HfffW4D5jUVK1bkvvvu4/fffy/AmUnFncY/IMtKnBv7O286tIHwjWFctqZQzlSOBc+8wxN3PnX9fm1gXbRjI3O0/XP//M36t3py5q8/AGgW8hqPT5qGsXSZHO9LcXbIeZAx5uHscn4HQG0lgIk+03hS9zSKonDFeBnFpritZlYUhSuGyx5t51X1ZRap81wJ7Bv/2QUIjUJI6d5e2BtJkrxFxv+Saf9/v9Hr0zdIvHQMvUbPuA4T6HN/WJ6uQkk7d46Ng/tz+KsvAajT9hGeWbAEv5q1vDXtYuGMepqJlvGsta8GoCx+jDSN4Q1DT3SKDov/No8/92RFqCr2T9ZgmRyJOPUfANqWrTBFTsmwEGFWcvI5TJKkvJExVZIkSSpMxao1h8PhQK/XZ/s4IQQ2263XGUpS5vTBoVlW4uiDu2FxWBi1ZSjd14Vy2ZpCy1qt2N77h5uS0DklVJWfl73Dso4Pc+avP/CpUIGuy1fSZd6i2yoJnSKSGWsewaOpD7HL+R0mTAwzjuL7Mj/zlL7z9aSEvyYg08u0NYoGf03WJ6pCCOwbP6fyw0FMHSXQqKB1gkZo0KJFo2iI8okmUCv7UEpSUSLjf8kihOC9nxbz9PKOJF46Ru1yAWx84yv6tu6fpyT0v19/ybuPtObwV1+iNRjoOGEqoWs/x2G1sG1yJJ/2eZNtkyO5kBDvxb0pWmzCRrR1AQ9cuZe19tUoKIToX2NPmd/oaeyLTnHVoHjyuSc7jl9/Ju3pxzCH9Uac+g+ldgClln2I7xff5CgJ7a35SJLkGRlTJUmSpMJUrCqiAwIC+PPPP7FYLJhMJrePSUtL488//8zyG15JupU2sB4+UdGYw8NuXq1dCHyiokksB72Wd+TP066qgP4PhDOq/Tj02uw/xGXmyulTbBzUjyM7tgFQ99HH6DJ/MWWqVvPGLhULqlBZbV/JZMvbnBfnAXha9wwTfKZQ201SOVgfyiJrlNuxBIJgfeYnqs4/f8c8diTOPT8A8JK9Bg/t7seaDhc4IY7jrwkgWN9NJqElqQiS8b/kSDZfYtDGML78ZxMATzd8hqgui/Azlcv1mLa0NLZGjmXvh+8DUPmuRjy/eBlV776H/ati2RTR/6bYvmdRFF2iomkaFJKj7SQ441ltXclp60mqOWoSpAshUFsv1/P2tm/t2xljGc5h9V8AWmjvZZppNs1192Z4bHafe7JqKaaePIFl0tvYP13rusG3NMaIoRh790PJ5O8zO3mZjyRJOSNjqiRJklSYilUiunPnzsyZM4dx48YxefJkjLcseGK1Whk/fjwpKSm88cYbhTNJqdgyBIWgbdU6Q3/njeb9DF76MKm2K1TwqcCiZ9/lsfqd8rStQ5s28MWQAZgvXUJnMvHY25Np2b3XbbUo3m+OXxltGcZvzr0A1Nc0YIppJu30j2b6nEBtPaJ8ogk3h6HgatFx7WdmlczqmTNYpk9yLXQkBJhMGMMGYewfTllfX8bl2x5KkuQtMv6XDHtP/kLvT94kKeU4Bq2BCR2n0L1l7zzFvv/27WV9v15cPOKqcm7dtz/tR49HZzJxISGeTRH9Eaqa4Xkbw8Pwb9WaCh4mOFfZYokw978p9ixgHlE+0QQZcpbQ9rbjaiLjzaPZ7NgIQCWlEuNME3lFH5zlYo+Zfe7JLOl7vQ909Hwwm0FR0L8aimnUOERaKtbZ028YJxRtYM6S9Nfm41gdi+70SRzVaqILCpVJaEnyMhlTJUmSpMKkCJHZdXBFj81mIyQkhD///JPKlSvTpEkTtm3bRv369bnrrrv45ZdfOHXqFPXr12fNmjX4+PgU9pTzjdOpcvFiWmFPwyt0Og3ly/ty6VIaDkfGk8XCYrabGff1KD767QMAWtd+kHeef58aZWvmekxr6hW+GjOC31fFAlCtSTOeW7yUyg3u9MqcM1NUjvGFhHi++/Q9Pmq6hR9aHQOgNGUYahpJT0MfDIrBo3ESnEeIs8eQpCZmWsksLBZs7y3BEjUbUq8AoH/hJUxjJ6Cp5e/V/Soqx7ckK2nHuEIFX7TaYtUdq1DlZ/yX8TT/CSFY8uMiJm9/G4fqoE75O1j64gqaVm+e6zFVh4MfFszlu9nTUR0OylSvwbML3+GOh9tdf8y2yZHsiZ6PcDozPF/RankgbBAdPFjTIcEZz4OpLVHJeEw1aNhdem+hXE1jFmYWWaNYaJ2HBQtatPQw9GaYaRR+SjmvbUeoKvZP12KZ9Pb/+0C3fhCfSdPQNm2ObVUs5luqzq9VMhtyWHUORfd1XFKUxOMrY2rO5GdMLUmvq/xQEv/+8oM8Tp6Rx8lz8lh5pqDiabGqiDYYDCxfvpzJkyezceNGtm1ztTQ4fPgwhw+7Vv7u0KEDkyZNKtFJaCn/xZ8/TM9PXufg2b9QUAhvM4Rhj4xGp8n9n0zSzz/xeVgvLiUeA0XhoYGDeWTYKLQGz5Kvxd1vqz5ixo8D2D1YYC3nuq3hZxBZdgyPPt8vR2MFausyVhvp9j4hBI5NGzBPGIc4fgwAbfMWmCbNyHHPSkmSigYZ/4uvi+kXGLjhLb4+vAWAZxu9wNzOCyhjLJvrMS8dO8pnYb058ctPADR69gWemjkXn/IVbnpcSlJiln2HU5ISPdpenD0WBfdV2woKcfaYTGNSftlm/5qRlqEkqscAeEjblqk+s7hL28ir23H8+jOWcSNx7v0VAKV2AD5vT0LX+VkURcGZEO9KQrupOjeHh6Ft1VpWNEtSESNjqiRJklSYilUiGqB06dJMnz6dwYMH8+uvv/Lff/+hqiqVK1emZcuW+Pt7t9JRKh6cCfHY42LzdEnoNWv/WM2wzRGk29Oo5FuZxc8tpV1g5u0isp2b3c53c6bzQ9QchKri51+b56Lfo3brB3M9ZnHzfeIm+tXsz5mJrt8rHYR2kVB9H+zWjKZZ004eXx6dFeefv2MeNwrn7l0AKNWqYxobif6lV1A0slJGkoozGf+Ln5+SfqTPp2/y3+WTGLVGJneawWst3vS4FceFhHj2x8WSkpSIn38ATV8N4eQvP7Nl1DBsaakYy5TliemzafzSK27H9PMPcFXnuqMorvs9kKQmInCf0BYIklTPEtre8J96krHmkWxyfA5AdaUGE01TeUb/vFfbe6knT2CZHIn9kzWuG0r5uvpA9wm7qQ+0PS42y2Nsj4tB60HVuSRJBUvGVEmSJKmwFLtE9DVVqlThqaeeKuxpSEWAu0tCrYuicnxJqM1pY8xXI/hwr2uxozZ1HmbJc8uoWib3iwdeOHKYz/r14r99vwHQuGsQT0ybhamsX67HLE6uiMtMt0xmWdl3EU1BnwoPzIPGK0Fz7UppRWFfXIxHl0dnRj171tUHeuVH/+8D3W8gxv7hKKVLe2VfJEkqGmT8L/qEELz382IivxmLUzipW6EeS1/8kHuqNfZ4jFsXGRTA7gVzr99fu/WDPLvoXcrVzjyZ3Cw4lD2LojKbJM2DM1/g9kb+moAsK6L93Syu6212YWep7R1mWqaSThpatPQ29GOYaSSllTJe245IT3f1gV4U9f8+0EEhmEaPR+NmMWU1m6pz1cOqc0mSCoeMqZIkSVJBK5aJ6EuXLpGUlITVas3ycffdd18BzUgqLN66JPTMldN0X9eNX078hILCkIdHMKTtCLQaba7mJYTgt4+W883bo7Gnp2MqV46nZkVx97Mv5Gq84kYIwef2TxlnGcUZcRo0UP8LaDMVSp/N8GCPL4/OsB2r1dUHet6s//eBfv5FTOMmer0PtCRJhU/G/6Iv3Z7O0C8Gse7PjwF44Z6uzH4qitJGz5OlWS0yCNC63wA6jJuIRpt1jK4YWI8uUdFsDA/L0L+4S1S0x1fiBOtDWWSNcnufQBCs9yyhnVs/OX5kuDmCQ+oBAO7T3s9Mn3ncrb3Ha9sQQvy/D/R/JwHQ3v8APpOno22aeS9vTTZV5xoPq84lSSp4MqZKkiRJhaFYJaLNZjMjRoxg69atZLfGoqIoHDx4sIBmJhUWb1wS+suJn+i+thtnUk9T1ujHO88v47H6nXI9J/Oli2wY1I9/t2wG4I627Xhm4RLK1sj9IofFSYIznhGWIex07AAgUFOXVz5tRtrIz9wuGJWTy6OvEULg2LwJS+QY1MRjAGibNcc0eWaO+kAnXIgnbn8sSSmJ+PsFENwslMCKuWvpIklS/pHxv3hISj7OG2tD+PP072gVLRMfn0rP+/rmuGXE/qxiu0aDRqfPNgl9TdOgEPxbtWZfXMz1Fh/Ng7vlqB1UoLYeUT7RhJvDUFAQiOs/o3yi822hwgvqBSZb3mal/SMAKigVGG+aRJA+BHE0AUtcpFdakjl++xXLmBE49/4CgOJf29UHustz2f7b6YNDXdXT7giB3sOqc0mSCo6MqZIkSVJhKlaJ6Hnz5vH111+j1WoJDAykTJkyXu2HJxU/eb0k9KPfljPqy6HYVTsNK9/FipfjCKyQ+xPKpJ9/4tM+b3L55Am0BgOPjo3k/t79bov+xBZhYb51Dgut87Bhw4iRQcYh9DeGk9b2BEvEevdPzMHl0QDOf//BMno4ju9ciW6lajVXH+iuQTk6zqv2xxKxqf9NSYVFe6KI6hJNUFPPW7pIkpT/ZPwv+r4/upNen7zORfNFKpWqxLKXPuLBgDa5GislKTHTamjl6v05USGwbp7aPwEEGUJopW3Nakcsp3UnqeaoSZAuNF+S0KpQWWWPZZJlPBfFRQBC9K8x1jSBipqKXmtJpp49i2VKJPZVsa4bSvliDB/i6gPt4QJl2sB6+ERFY3ZTde4TFS0XKpSkIkjGVEmSJKkwFatE9LZt2/D19eXjjz+mXj1ZtSjl/pJQq8PK6C3DiNm3AoDODZ9lwTOLc3Tp8I2EqrInegHbp05AOJ1UuCOQF5Z9SPXGTXM1XnGz3b6VkZYhHFOPAtBe14FpptnXT9BNXrg8Wly5jGX2DGxLl4DDAUYjxn4DMA4YnOM+0AkX4onY1B9VZEx0hG8Mo5V/6zx9ISFJknfJ+F90CSF456doJmwdiypUmlZvzvKusdTyy317JIfVlvmXzLm4isZbArV1GW+cQPnyvly6lIbD4T5ZnhcHnH8x3BzBL86fALhLczczfeZxv6414J2WZMJux7Z8KZYZU+HKZQD0rwRjGhvptg90dgxBIWhbtcYeF3NDhXY3mYSWpCJKxlRJkiSpMBWrRPSFCxdo06aNDJjSdbm5JPT0lVO8uTaUvSd/QUFhdPvxDHxocK4rAdLOn2fDgD7Eb/sGgLtfeImnZ8/HWNp7iwcVVafU/xhnGcUGu6vauZpSnSk+M+isezbD8czt5dFCVbGvXe3qW3n2DAC6J57CZ+I0NHXuyNW84/bHZrnwVNy+GMZ2iMzV2JIkeZ+M/0VTuj2dwZsG8OlfawF4pUkwM5+ah4/es2raWzmsVrZGjuGfzRszf1AOr6IpipwJ8djjYm9qq2G+oxqzLNN4z7YYJ05K4csI0xh6GvqgV/TXn5vXlmSOXd9hHj0M9e9DAGibNsc0dSa6+zxva+WONrButq3QJEkqGmRMlSRJkgpTsUpEN2jQgLNnb13pTLqd5fSS0J+TfqL7ulDOpp7Bz1SOd55fRod6j+d6+8d/3M2nvd/kyulT6EwmOk2ZSfPQ10v85W0O4eB927tMt0whjVQ0aOhleIsRptGUVjJPwOf08mjnH/sxjxyK89efAdAE1sU0ZQb6Drn/NwNISklE4L7aTiBISsnd4omSJOUPGf+LnuPJibyxJoS/zvyBVtEy6fFp9LivT67j38WEI3zS+01O/7EfgHodHid++zeulku5XGSwKLq1rYZQYMM/85gyqxynfC4B0Fn3LJN9plNDk3Ftidy2JFNPJGGJHIt9g+uLY6VCBUxjItEHd0PxsN+2JEklg4ypkiRJUmEqVono3r17079/fzZt2kTnzp0LezpSEeHJJaFCCD76bTmjtwzDrtq5q3Ijlr+8MtftF4Sqsmv+HHbOmIJQVSrWq8+LSz+k6t3eW8G+qPrF8RPDzYM5oP4JwL3a+5jpM4/G2iZe24Z68QLWqZOwxSx3nXCX8sU0eDiGPv1QjMY8j+/vF5BlRbS/X+Fc9i1Jknsy/hctOxN20OfTN73SDxrgwOefsiliALbUK/hUqMCzi96l/mOduJhwJE+LDBY1t7bVOO4PE8fDznYAl6jtrMn0MlE8ps98weSctiQTFgvWJQuxRs0Gsxk0Ggxv9MA4Ygya8hW8sl+SJBUvMqZKkiRJhUkR2S2VW8SsWLGCGTNm0Lx5cxo2bIifn5/bxymKwsCBAwt4dgXH6VS5eDGtsKfhFTqdJl/7LVodVkZtGUrsvg8B6HLXc8x/ZjGlDTnrK3xN6tmzfB7Wi4SdrsXyGncN4qkZczHksE9xQfLGMb6kXmSyJZIY+woAyinlGGeaSIj+NTSKdxZjFE4ntg8/wDp9EiI5GQD9C10xvT0JTfUaXtkGuHpEP7ikpdse0RpFw+5+e3P0JUV+v4alkneMK1TwRast+YuYelN+xX8ZTz0nhGDJj4uYuG0cqlBpVr05y7uupKZfrVyNZzeb+Wb8aPZ++D4A/vc/wAvvfkDZGhkrgfPi2wvbmXFuCmeUU1QV1RlReQztKj6a43ESLsSz+o+VnE4/SbVSNQlqEkJgRc8vbbdMjsQaPR+bxsnSXrDkLbCaQG+DXssUwulPuVFTshzDmRBP6oMt3faIRqOh9O69aAPrIoTA8fUWLGNHoCYeA0Db+kF8ps5Ce0/jnOx2gStp7/dFTUk8vjKm5lx+xdSS9LrKDyXx7y8/yOPkGXmcPCePlWcKKp4Wq4ropKQkVqxYgRCC3377jd9++y3DYxRFQQhR4hPRkmdOXf6P7utC2XvyVxQUxjwayYAHw3N96fDR73fy2Vs9ST17Bp2PD0/NmEvTHKxQXxwJIfjM/gljLCM4L84BEKQPYbxpEpU0lby2HcePezCPGop6wFVprWl0Dz7TZqF74CGvbeOawIr1iOoSTfjGMBQUBOL6z6gu0XKhQkkqYmT8L3zp9nQGb+zPpwfWARDUNISZT83DpDPlarzz8Yf5pOfrnD34FygKDw0aQrvho9HovPvRdFB8GKsqxkBV1+8nOMHLPEfIkdeYV3eRx+Os2h9LxKb+N8WMBT/MI6pLNEFNPfscoCYl8lszlTGTIL6+67YHdkNkJAQmKuif/S/bMTxpSeZMiMcyZgSOq2tXKNWqY3p7EvoXupb41mHgvge3NlD2wpWka2RMlSRJkgpTsUpET5s2jdOnT1O9enXatWtHhQoVbosP1FLu/Hh8Dz3WdeNc2ln8TOV494UPeLTuY7kaS3U6+X7ODL6bMwOEoHLDu3hx6YdUvrOhl2ddtJxQkxhhHsw3jq8AaKC5k9k+82mte9Br21BPn8IyYRz2T9a4bvArh2nkWAyvd0fxckLiRkFNQ2jl35q4fTEkpSTi7xdAcPNuMgktSUWQjP+FK/HSMd5YG8KBM3+i0+iY9Ph0urfslet/gz/XfcwXQ8Oxp6dRqlIlnoteSt32Hbw8a1cl9KqKMXBrYYeAlRU+4rmLL/JIhfbZjpNwIZ6ITf3dXkUTvjGMVv6ts40dV8RlJoTGE3OPQGig4nkYPRW6bMTVKEqbsa1GZjJrSaapUtVVdf3OIrDZQK/H2Lc/xohhKEX4qi1vurUHN4qCdVEUPlHRGEp44YAkeUrGVEmSJKkwFatE9K+//kr16tXZuHEjpW+TD9RSzgkhWLH3fcZ8NRyH6uCuKnezoutK7qgQmKvxrpw5zWdv9eTYru8AaBbcjSemzkJfqpQ3p12kOIWTD2zvMdUyiTRSMWBgkHEIA42DMSq579Gc4Iwnzh5LkppILVGLrmuh+oT3IS0VFAV96OuYRo1HU8l7ldZZCaxQl7EdIgtkW5Ik5Z6M/4Xn24Tt9Pn0TS6ZL1HJtzIfvBRD69q5+zLSnp7OljHD2b/yIwACHmrL8++8T5mq1bw55etmnJtyvRL6JgogYPrZyR4louP2x2a5rkDcvpgsY8kW+2ZGmAdzqomr4vnFdTByOpRLueFBQqAP7pbtXK7RBtZFe3XxXyEE9vXrSJswDnHKtQ3do49hmjIDbd36Ho9Z3N3ag/tG5vAwtK1aZ1jEWpJuRzKmSpIkSYWpWCWinU4njRs3lgFTypTFYWHkl0OI2x8DwLONXiCqSzS+Bt9cjZfw7XY+69eLtPPn0Jfy5alZ82jSNcibUy5yDjoPMMQ8gL3OXwFopW1NhHUoe37dzcCUvq7K4WahOeqLCbDKFktEen8EwnWpn4BFz8C0H+HlxPswTZuFrlmL/NglSZKKORn/C54Qgug9C5i8/W1UodK8RguWd11JjbK569987t9/+KTX65w7dBAUhYeHjKDtkBFotFovz/z/ziin8nT/NUkpiQjcL6kiECSlJLofXz3NaPNwNjo+A6CO5g5m7HmGFmMWuip2NRnbauSU88BfmEcPw7nnBwCU2nXwmTwdXacnb7sKR3tcbJYLOdrjYq4n7yXpdiZjqiRJklSYilUiumnTphw+fLiwpyEVUf9dPkn3taH89t9eNIqGMY9G0v+BQbk6EVMdDnbOmsquqDkgBFUa3cOLyz6kUr2SW1lkERbmWWey0BqFAwelKcN400T0h/SEbHwZriWQFYVFu6OIesbzvpgJznjC08MQytUTeQXXKb2AUdOhXel3CdTJ/o2SJLkn43/BSrOlEbExjM8OfgrAq01DmfHU3Fz3g/599Uq+HDkEe3o6patU5bkly7ij7SPenLJbVUV1TnAiy/s94e8XgJLJ0t6KcN1/IyEEK+0fEWkey2VS0KKln3EgQ40j8XncB+fuNzK01chpElpcuYxl+mRs77/nqgD28cE4aAjGfgNRTLn7dyru1KREVzsOd4Rw3S9JkoypkiRJUqEqVssLDxgwgOPHjzN79mwcDkdhT0cqQn47+Ssdlz3Cb//tpZypHKte/STXixJe/u8kMS90Zte82SAELV7rTvcvt5XoJPRuxy7apz7IPOtsHDh4UteZH8r8wsOpjzB44wBUVFQEQgEVgSpUBm3oR8LFIx6NH508H+Hu5PBqC8fFVxZ6eY8kSSpJZPwvOP9dPknnFY/z2cFP0Wl0TH9yDlFdonOVhLalpfF5/z5sGPgW9vR07ni4Pb22/1AgSWiAEZXHuP7n1vBz9feRVcZ6NM4rFR9GqKrbcYSqElTp//tzxHmY59OeZrB5AJdJoZm2OV+X3sk40wR8FB/A1VbDNDaSUu8uxzQ2MkdJaCEEts8+4cqDLbEtfQdUFV2X5yjzw6+YBg+/bZPQgKvHdhYV0Z724Jakkk7GVEmSJKkwFauK6IMHD/LQQw/x/vvvs27dOu6++278/PzQuVnQTFEUZsyYUQizlAraF39vpN/6npgdZu6qcjcfvhxHnfJ35GqsIzu2sf6tHpgvXsRQugyd5y7g7ude9PKMi44UkcxE83hi7CsAqKJUZbrPHDrrnwFgzLeDQBUZv7JSAFXw/o4FTHlxfpbbcPy4mz3mVdAs88f8eGk3lM/1bkiSVMLJ+F8w/jz9ByGru3L6yikq+1bh/ZdiaF37gVyNde7ff1jXPZTz//6DotHwyIgxtBk0BEXjeQ3EjesK+GsCCNaHEqj1/OqZdhUfJeTIa6ys8FGGJHLIxdd4pG72/aEB/Dd9x9QdCqPbu9pKCa63mWbqDoVa2p3YmjxEtHU+c60zsWKlFKUYaRpLT0NfdIp3Pm47E+KxjBiCY+cOADR3BGKaMRd9u0e9Mn5xpw8Oxbooyv2dOezBLUklmYypkiRJUmFShNsyxaKpYcOGKIrivrLyFoqicOjQoQKYVeFwOlUuXkwr7GnkmTMhHsfqlehOn8RRrSa6oBC0gZ6fZL77UzTjvx6NQNChXkeWvrCC0sYyOZ6HEII9i+azfUokQlWp1qQZL763nAolZFEbnU5D+fK+XLqUhsOhIoRgk+NzRpmHcVacAaCb4U3Gmybgp5S7/rxnJ93Hj+o/CDd5A0WF1po7+XzcL263qZ4/j2XiOOyrV/JENBx5DPfXYKjQ4Pid7Grqfpzi4NbjK3lfSTvGFSr4otUWq4uSClV+xv+SEk8hb38n2+K/pucnb5BmS+XOSg2Je3Ud/uVq52oef2/exOf9+2BLvUKZatV5/t0PCHjgoRyNscoWS4S5PwoKAnH9Z5RPNEEGz9pCXbPz4g6mn53MGeUUVUV1RlYZ69Eihdek93kT++frSSyjsrYRnCgLtS5D14MQcEXDX/0fYfSgsxxSDwDQXteBmT7zCNDUydE8MyMsFqzz52BdOA9sNjAaXW04+oeXyArovLyObatXYg4Pu957+8Ye3IagnL1uSqqSFk9BxtScys+YWpJeV/mhJP795Qd5nDwjj5Pn5LHyTEHF02JVET1t2rTCnoLkRbZVsa7VzW88WVgwz6OTBafqZPw3o1j68zsAvNaiO9OfnI1Ok/OXtC0tjY3hYRz83NULs1nIazw5bTa6EnhyB3BK/Y8R5iFscXwBQF1NPeb6LOQBXcYkQdnLQBbrmJS9nPE2oarYV36EZdJ4RHIyAK0SG3CEf/9fRnb9wa4fra88mKt9kSTp9iDjf/766LfljNg8GKdw0rbOI3zQNQY/U7kcjyNUlZ0zp/L93JkABDzYhheXfohv5co5GifBGU+EuT8qGU8Uws1htNK2JlDr+RfFj1Ron6PE862utXwISIGhe/5/e1opmDxa8NFrOxAqVFQqMtE0jZf0r3htoUD79q1YRg5BPXYUAF37Dpimzc7Vwoa3A0NQCNpWrfPcg1uSSjIZUyVJkqTCVKwS0c8//3xhT0HyEmdCvCsJrWY8yTSHh6Ft1TrTk4Y0Wxpvre/Jln9didRxHSbmelHCi0cTWPtGCGcPHUCj1/PElJm0eL17iVxpXhUqH1iWEpk2nlSuoEPHQGME4cZhmBT3SfdOZR/ka/WfTBPIT5S9OYHs/PMPzMMjcO51VTdr7m6Mz8y5DAqsyOpt9yI6iAyXRyvbFPo9OtBLeylJUkkk43/+UIXK1O0TWbB7LgCvNAlmTucFGLSGHI9lSUnms369OPzNVwDc36cfHcZPQqvX53isOHssCu7jsIJCnD2GsdrIHI+bW+5aPnz7CLw9Af6r6QpqXfVBTDRNo6Kmole2qZ76D/PYkTg2fgaAUq06PpOno+vyXIn8jOJN2sC6aMdGFvY0JKnIkjFVkiRJKkzFKhEtlRz2uNgsF5Sxx8W4PYk4m3qWbh+/zL7/fsOoNbLo2Xd59u4XcjWHI9u38mnf7liSk/GtXIWuH8Tif3/rXI1V1P3tOMSwk+H8YPkBgHu1LZnjs5BG2ruzfN6TIQPY3H0F29pnTCB32KHw5AeuBLJIvYJlxpTrCyfhWxrTiNEYevZF0ekIBObXX8yg2H7QCERZgXJZgYMw/+HFBFaQlUqSJEkFyeKwMPDzvnx20HU10PBHRjOk7YhcJTnP/fM3a15/lYsJR9CZTDw9ez5NXn4113NLUhMRGVYGdBEIktTEXI+dG9rAevhERWMOD+NCRZg0WuWLzq77/NMrMrvSMtrrO3hlW8LhwLbsHSwzpkJaKmg0GHr1xTR8NEqZsl7ZhiRJkiRJkiQVFpmIlgqFmpToasfhjhCu+2/x77l/CF79EseTE6ngU4EPX1nN/f45TxwLIdi9cB7bp0wAIah573289EEMZavXyPFYRZ1DOFhoncds63Ts2ClNaUabxvOmoRdaRZvt8ysG1mNE38XUeLsfBxrBldKCMqkKdx+EbhMWU/6OQOwb1mMeOxJx+hQA+meexzRpGppbjmdQ0xBa+bcmbl8MSUmJ+PsFEBzSTSahJUmSCtjF9Au8tuZVfk76Eb1Gz9zOC3mlaXCuxvr7i42uftBpqfjV8qfripVUb9IsT/Pz1wRkWRHtrwnI0/i5oX8lmA1tLjFaP5FkkwWNqtDbGsqIajPxVXy9sg3HLz9hHj4Y9cCfAGjvvQ+fmfPQNm7ilfElSZIkSZIkqbDJRLRUKK71W3RLUVz33+CHY9/zxtoQUizJ1Cl/B6tf/YTAip4vaniNLTWVDYP6cejqpa7NQ1/niWmz0RmNOR6rqDvkPMhA81v87twHwNOlnmaaYTbVRM0cjdM0KAT/Vq3ZFxdDSlIifncG0HxON/yA9KAXcOzYBoCmzh2Yps9G/2jHTMcKrFCXsR0ic7tLkiRJUh4lXDxC8KqXSLh4hLJGP5Z3jaXtHY/keBzV6WTnrKnsmjsLgDptHuaF91bgW6lSnucYrA9lkTXK7X0CQbC+W563kRNn1DMMN0fwZZlNADQ1NGWuz0Ia08wr46sXL2CZHIk99kMAlHLlMI2biD7kNRSNXIBNkiRJkiRJKjlkIloqFO76LV4nBPrg/59krv1jNeEbw7CrdlrWasVHL6+mkm/OT3QvJhxhzZshnDt0EI1ez5PTZtPitTdzuQdF161V0GXVMnTb1oZ7vyvNoWrL0AeFUDEwZ0n85ADBnqGQpEIt1UGNle+gnbwCrFYwGDAOiMA4cDCKj0/+7JQkSZKUZ7+c+InXPg7iQvoFavn5Exe0joZV7srxOJaUZNa/1ZP4rV8DcH+fMB57exIanXc+VgZq6xHlE024OQwFBYG4/jPKJzpHCxXmhRCC9fZ1jLIM5ZK4hB49Q31GMKHGeFKTbXledV2oKvaP47BMHIe4cAEAfVAIpvGT0HghoS9JkiRJkiRJRY1MREuF4sZ+iyiKq03H1Z8+UdFoA+sihGDu9zOZsXMKAM/c9TwLn30HH33Ok53x275mfd+eWFKSKV2lKi99EIt/q/u9vVuF7tYq6NZnGnP3i3+hPf81+68e4x8WzKNLVDRNg0I8GnOVLZYIc39XEkCoKKoguitM3QevnG+PacZstHXr5+duSZIkSXm08eBn9PusF1anlabVmxMbtIaqpavmeJyzfx9i7euvcvFoAjqTic5zF9L4pVe8Pt8gQwittK2Js8eQpCbirwkgWN+twJLQ16ugHa4q6Hs0TVhY6h2aGpugV/SALU/jOw8ddC3u+9MeADQN78Jn5jx0rR/M5pmSJEmSJEmSVHzJRLRUaAxBIWhbtcaxOhbd6ZM4qtVEFxSKNrAudqedYZvDidsfA0DYA4MY12ECGiVnl6gKIfhh/hx2TJt0vR901+WxlKlWPT92yasuJMSzPy7W1Q7DP4BmwaGZVjI7hINF1ihmW6djw4Yf5Rh1ZTAnH34bVIHAedPjN4aH4d+qNRUCsz6hT3DGE2Huj8rVqi8F0AICRk9XaFdmDoHanLdIkSRJkgqGEIIlPy5iwtaxCASd6j/JOy98gK8h532ND238nM8H9MWenoaff21XP+jGTd0+NicxLDOB2rqM1UbmeJ55cWsVtA4dg43DGWQccjUBncfxzWasc2dijZ4PDgeUKoVp6CgMffqh6PM+viRJkiRJkiQVZTIRLRUqbWBdjOMnUL68L5cupeFwqFy2pNB93Wt8d3QHGkXDtCdm82bLnjke25p6hQ0D+/H3ps8BaNHtTTpNnVks+kHvXxXLpoj+N1WL71kU5baS+dYq6Md1TzDbZz4HFr7Lf4omQxIaAEVhX1wMHcZGZjmPlbYYFBW4Nf+vgIKGOHtsgScJJEmSJM84VAdjvhrO8l+XAdDjvt5MfnwGWk32i9XeSHU6+XbGFH6Img1AnbaP8OJ7KyhVsaLbx+ckhhUlZ9WzDDdHsNmxEXBVQS8otYR7tI29Mr5j13eYhwxEPZoAgO6Jp/GZOhNNLX+vjC9JkiRJkiRJRV2xS0QLIdi7dy///PMPly9fxul0k2QDFEUhLCysgGcn5dWJlCRCVnXl0LmDlNL7suzFFTxWv1OOx7mQEM+a14M5/8/fxa4f9IWEeDZF9EeoGXtP3ljJ7K4KerLPdF7Wv4qiKOxOSnQlANwRgpSkxCzn4TyawLHDKxEt3ffAFAiS1KzHkCRJ8hYZ/3Mm1ZZKn0/f5JvDX6GgMKHjFPrcH4aS2ULBmTAnX+Kzt3oSv+0bAFr37U+H8RMz7QftaQwrSvK9Cjr5EubIsdjjXFd5KVWr4TN9Dvqnu+R5bEmSpNyQMVWSJEkqLMUqEZ2amkrPnj35/fffs3ycEEIGzWLoj1O/80rsi5xJPU3V0tVYGbSGJtWb5Xicw1u/Yn3fnlgvp1C6ajW6fhBDrfuKTz/o/XGxrioyd65WMtcc9QoDzX3Zf7UKuqOuE3N8FlBN8/+WI37+AVmO4+cf4PYu4XBgW7IIy+xp1OhnRrk3kyFQ8Ne4H0OSJMmbZPzPmVOXTxG08iX+PP07Jp2Jxc8to/Ndz+R4nLOHDrLm9Ve5dOwoOh8fVz/oF1/O8jmexLDsrsYpSPlZBS2EwL5hPZbRwxHnzgJgeL0HpnGRKGX98jy+JOWUMyEe6+qVWK+3xAtBm8OWOVLxJ2OqJEmSVJiKVSJ6/vz57N+/Hx8fHzp06ED16tXRanN2ealUNG0+sJmXl79Mmi2Nuyo3YuWra6nll7NLVYUQ7IqazbfTJ4MQ1Lrvfl76IIYyVavl06zzR0oWlcyqRuXjel+xOXWR2yroGzULDmXPoiiS/eBgI7hcFspehkYHofwVQfPgbhnGd/6xn/SIAah/uj6YvnzsPpZq9wIZK9sEgmB9xjEkSZK8TcZ/z/313188sexJTqacoFKpSnz0ympa1mqV43EObvyMDQPeut4P+uUVcVRr3CTb52UVwzy5GqegCCH4zP4JoyxDuSguokNHhHEY4cahXqmCVk+ewDxiMI6vtwCgqd8AnzkL0bV+IM9jS1Ju2FbFYr6lZQ4L5uETFY2hCLfMkbxPxlRJkiSpMBWrRPTWrVvx9fXls88+w99f9tMrKVbui2HQ52GoQuXhO9rzwUsfUdaUs0ohW1oan/fvw99fbACgxWvdeWLqTLQGQ35MOV9lVsl8oR5smyE40+QA4L4K+kYVA+uhnxBC7OmYm27/rQUMqR5606XRIi0Ny8yp2N6NBlVFKVcO04Sp3BMUQpQ9jnBzGAoKAnH9Z5RPNIHaonV5tSRJJZOM/575LuFbXvs4mMuWy9StUI+4V9dxR4XAHI0hVJUd0ydf7wd9R9t2vPDe8kz7Qd8qt1fjFKSz6llGmAfzhcP1mcGrVdBOJ7YVy7BMngBpqaDXYxw4GGP4UJRisEaFVDI5E+JdSWg3LXPM4WFoW7VGW8Ra5kj5R8ZUSZIkqTDdugRZkXb+/Hnuu+8+GTBLmOk7pqAKleDm3Vj16rocJ6GvnDnNR889xd9fbEBrMPD0nAU8PTuqWCahwVXJfGM1maqFX/vA6s/hTBMoq5Zhoc87xJZak2kSGiDhQjzzzq1EaMjw39yzsSRcPAKAfcc2rjzyALYlC0FV0T/3AqV3/Yrh1VAURSHIEMLu0nsJMw7iWf3zhBkHsbv0XoIMsnpGkqSCIeN/9r7+90teWfkily2XeSDgQTZ335rjJLTdbOaT3m9eT0I/0G8gwR9/6nESGjLGsJsI91fjFBQhBOtt63g4tRVfODagQ8cw4yi+Kr3DK0lo59+HSOv8OJZRwyAtFW3LVpTetgvTiDEyCS0VKns2LXOu9S+Xbg8ypkqSJEmFqVhVRFevXh2r1VrY05C8bMGzi7Fr0ulY52mczkxOXjNx9u9DrA5+iZQTSZSqWJGXP1yNf6vi0w/anYqB9egSFc3G8DAu1IOt01TOXL0a+v6z9/Be3XVU19TIdpy4/bEouD/pUFBYufs9hnx5Cfva1a7batTEZ+Zc9I8/meHxgdq6jNVG5nqfJEmS8kLG/6xtPPgZfdZ3x6E6eK7Jcyx+Zhk6JWdfxqZfuMDHrwVx4pef0Oj1dJm3iCYvv5rjudwYw25qASAEXaKiC22hwluroO/WNGZBqSU01mbfbiQ7wmLBGjUb68J5YLdD6TKYxkZieKMHiqZY1XxIJZSaTcsctYi0zJEKhoypkiRJUmEqVonoZ555hnfeeYfDhw9Tv379wp6O5CXt6z5K+fK+XLqUBnieiD76/U7WvhmK9XIKFQLr8mrcukI7wfW2xq+8yvaHj7DEOA+7DkpZjYyzj6Z7vfAMvaAzk5SSiMjkeAqhcnT9+9g32kBRMPTojWn0eJTSZby5G5IkSV4h43/m1v6xmgEb+qIKlRcbd2XVmytJvWzD4ch4CX5mLiTEs/rVl7h4NAGTXzm6rlhJnYfa5npOTYNC8G/Vmn1xMaQkJeLnH0Dz4G45jtHOhHjscbGoSYlo/APQB4fmamG1LfbNDDb357w4f70X9CDjEAw5TNa74/hxN+bBA1DjDwOge+IpfKbPQVOjZp7HliRv0WTTMkdTBFrmSAVHxlRJkiSpMBXpRHRSUtJNv3fq1InNmzfz5ptv0qdPH5o1a0bZsmXRZFJtIi83Krl+/ziOTYMHoNrt+LdqzcsfraJUBc8vHS7KTqn/McD8Ft/57gCg6vmqPH3yGdrf3cXjJDSAv1+AqyLaD7gbKANcAQ6AcklQ87wNzV2N8JmzAF3LnC9kJUmSlF9k/PdM7L4PGbJpIALBq01DWfBcNHqtHrB5PEbSTz/y8etBmC9epFztAILi1lG5wZ15nluFwLp0GBuZ6+e7W1jNuigqRwurpYpU3jaPJsa+AoBGmntYWOodr1RBq5dTMI8fh+2jDwBQqlTFZ9osdJ2fzVGslqSCoA8Oxbooyv2dQqAvxJY5Uv6TMVWSJEkqShQhMrtOq/A1bNjQ7Yd5IUS2H/IVReHgwYP5NbVC53SqXLyYVtjT8AqdTnO9Ijq7Ci4hBN/Nns53s6YB0Oi5F3h2wTvoTKaCmGq+22Bfz1DzIJJFMthB2aXAX6BB41ogsEs0QU09OwFPuBDPA9/ei3g045+4shV2JvbjzoETUYppL+2iJCevYSl3StoxrlDBF61WXrKfmYKM/8U1nr7/y7uM2jIMgDfu7cH0J+dg0Oty9Hdy4PNP+bx/H5xWKzWat+CVmDWUrlIlv6eeLWdCPKkPtnS7sBoaDaV37812YbW9jl/oZ+7FUTUBRSj03teCwWv98akRmOvKanC9F+l3fMWZsDDE6dMA6ENfx2f8RJRy5XM1pnSzkvZ+X1TYVq/E7KZlTk6+3CmqZEzNWkHGVPl3mzX5/uYZeZw8I4+T5+Sx8kxBxdMiXRFdo0b2fXCl24fTZmPTkIH88XEcAA8OHMyjo8eXiP6LV8RlRpmHsca+ynXDGeArEMmuJLITJwDhG8No5d+awAoeXN5cDugAGdpEC6CjgqFMLxStTEJLklT0yPiftUW75zNx2zgA+rbuz4THpuSoClcIwZ5F89k2aTwADZ54mhfeeR99qVJcSIhnf1zs9ZYazYJDqZjLpG1uebKwmjaTamuHcBBlnc0c6wycOKluLsfMPim0/nk/iH1Yc1FZfY165gxXRg3GtmkjAJrAuvjMXYjuwTY5GkeSCoMhKARtq9Y4VseiO30SR7Wa6IJCs/1SRyr+ZEyVJEmSipIinYjevn17YU9BKiIsKcms7d6NY9/vRNFqeWrGXFq89mZhT8srfnTspn96H46LRDRouPe/+9i7/hdUZ8Zv6hQU4vbFMLZDZLbjrrR+hEaA89ZzecVVYR1nj5ELEEqSVCTJ+O+eEILZ301n1neuq4IGtxnGiHZjc5SEVh0Otowaxt4P3wegVa++dJw4DY1Wy/5VsWy6pR3GnkVRdImKpmkBVkzmdmG1BOcRwsy92ev8BYDnrJ0Y+/DX+CULuPqF7jXm8DC0rVp7lIQTQmD/dC2W0cMQly6BTofPoAj0g4ahlJArsqTbgzawLsbxE2RV2G1GxlRJkiSpKClWpaT//fcfycnJ2T7uxIkTfP/99/k/IalAJCcdZ0WXThz7ficG39IExX5cIpLQNmFjqmUiz6U9xXGRSG2lDp/7bqHWoVqQyXmBQJCUkv3K5s5DBzm6YwWZdd4RCJJUuUK6JEnFg4z/rmTo5O2R15PQo9uPZ2T7cTlKQttSU/n4tSBXElpReHzydDpNmYlGq+VCQjybIvojVBXhdN70c2N4GBcTjuTXrmWQ04XVhBCstH3Eo6lt2Ov8hbL4scRnGQveuxu/K5l81L1aWZ0d9cwZ0t8IwfxWT8SlS2ibNMX/118pNeZtmYSWJKlYkjFVkiRJKkzFKhHdoUMHpk2blu3jZs6cyZAhQ/K0rZ9//pnu3bvzwAMP0Lx5c4KCgti8eXOOxjh69CijRo2iXbt23HPPPbRq1YoePXrIgJ4Dp37fx/InO3Du70OUqVad1zdsoV6Hxwt7Wnl22PkvT6U+RpR1NioqQfoQdpTZxf261v9fZNANBQV/v8xXNhcOB5Z5s0h9rC01/0pGyaSgTEHBXyNXSJckqXgoyPhfFKlCZcxXw1m4ex4Akx6fRniboTka48rpU3z47JPEb/0anY8PXZev5P7e/a7fvz+bdhj7PEjaeos+OBSE4JgfzH4Awju5fh7zI8PCaufV87yRHkKEuT/ppPGgtg3fltnNi4aXc11Z7bpbYPt0LakPt8Lx5SbQ6zGOGIPfN99ibNrUy3ssSZJUcG73mCpJkiQVriLdmuPWFX6FEKSlpWW4/UZXrlzh4MGD2O32XG93w4YNDB8+HJ1Ox/33349Wq2XPnj1EREQQHx/PwIEDsx1j79699OzZk/T0dOrUqcMjjzzCmTNn2LVrF7t27WL48OH06NEj13O8Hfz79Zd82vtN7OnpVGl0D6/GraVsjZqFPa08EUKw3LaMCZaxmDFTXinPbJ/5dNE/d/0xwc1CWbQnyv3zEQQ3d7+yufPQQcwD38L5+z4AXjnzMEu1u3BXXi0QBOvlCumSJBVNhRX/iyJVqAz7IpyYfSsAmPnUPN64N2efH84cPMDq4Je4/N9JfCtV5pXYj6nZouVNj0nJJmmbkkXS1p0EZzxx9liS1ET8NQEE60MJ1HrWa1obWI8NE0IYdjoGBdfSBgqwtAXMrh5K6NV2GtvsXzPQ3I9z4ix69IwyjectQ3+0ihbIeWX1NeqZM5iHR7gS0ICmcVNKLViC9u57UHTFqoZDKgKcCfHY42JRkxLR+AfkabFMScoNGVMlSZKkoqRIJ6InTpzIrl27rv+uKArbtm1j27ZtWT5PCEGrVq1ytc3z588zbtw4fHx8iI2N5e677wbgyJEjvPbaayxevJgOHTpcv90dh8PB8OHDSU9PZ8iQIfTq1ev6pbM//PADffr0Yfbs2bRt25YGDRrkap6FLb8/VP/6wVK2jB6GUFUC2z3KS+9/hLFMWa+NXxjOqGcIN/djm+MbAB7RtWehzztU01S/6XGBFesR1SWa8I1hKCgIxPWfUV2iMyxUKBwOrIuisM6eDjYb+JXDZ8oM7u4aRJQ9jnCzm3F8ognUysVpJEkqmgoj/hdFDtXBoA39WPvnajSKhqgu0QQ1zVmv5oSdO1jXvRvWK5epWL8Br8ato3xAnQyP88smaeuXSdLWnVW2WCLM/W+KPYusUUT5RBNkyH7+CRfiGXZuJaqbnO/Qs7G0uNiXj3yW84FtKQB3ahqyuNQyGmub3PRYfXAo1kVR7jdyS2W16yaBff06LKOGXu8FbRw8HOOgISh6vUf7Lkk3sq2KxXxL3/XcLpYpSbklY6okSZJUlBTpRPTo0aPp2bPn9T63p06dwmQyUb58ebePVxQFo9FIQEAAo0ePztU2V65cicVioXfv3jclm+vWrcvgwYMZPXo0H374ITNnzsx0jJ9//pkTJ07QuHFjevfufdN9Dz30EK+88gqxsbFs3ry5WCai8/NDtVBVtk4Yx49LFgLQLOQ1npo5D20xPwH80v4Fg839uSAuYMTIeNNEehj6oFHcV1YFNQ2hlX9r4vbFkJSSiL9fAMHNu2VIQt9aBa17/Al8Zs9HU82V3A4yhNBK25rVjlhO605SzVGTIF2oTEJLklSkFUb8L2psThtvre/JxkOfoVW0LHl+Gc/d/WKOxtgfF8MXQwehOhwEPNiGritW4lPO/TFsFhzKniySts2DPbuKJsEZT4S5P6qbq3HCzWG00rbONgbF7Y/NtEUVleF5W2cuaS8C0NvwFmNMkfgoPhkeqg2sh09UNObwsJs+syAEPlHRNy1UqJ49i3lY+P+roO9p4qqCvqexR/stSbdyJsS7Pi+rGf8WcrJYpiTllYypkiRJUlFSpBPRd9xxx03f1DZs2JCOHTtmmQTOq507dwLw2GOPZbjvscceY8yYMXz77bdZjpGWlkbjxo15+OGH3d5fp04dAM6ePZunuRaG/PxQbTebWdenJ39v+hyA9qPH89CgITlaiKmoSRWpjDePItb+IQB3axqzpNQyGmrvyva5gRXqMrZDpNv7MquC1ncNynC8ArV1GW+UK6RLklR8FEb8L0osDgu91r3OV4e/xKA1sPTFD3nyzqc9fr4Qgh3TJ7Fr7iwA7nnxZbpERaMzGjN9TsXAenSJimajm6Rtl6hoKngY2+PsmSeRFRTi7DGM1UZmOUZSSiKCW9qEKMC9oN6vckl7kapKNRb4LKG9vkOWYxmCQtC2ao09LuaGq7i6Xf+sIqugpfxiz6bvuj0uBu3YyAKdk3R7ut1jqiRJklS0FOlE9K0++ugjKlasmG/jCyGIj48HoH79+hnu9/Pzo1KlSpw7d44zZ85QtWpVt+N07NiRjh07ZrqdP/74A4Bq1ap5YdYFK78+VF85d44Vz3bmxK8/ozUY6DJ/MY1ffDlvky1kvzp+pp+5F8fUoygohBkGMcI0BqOSeSLgRpn113T+fQjzwL4497uvgpYkSSpp8jv+FyXp9nReX/MqOxN2YNKZWNF1JY/Wy/wzxa3sViuf9u3JH2s/BqDN4GG0GzHWoy91mwaF4N+qNfviYkhJSsTPP4Dmwd08TkIDJKlukshXCQRJava9pjMs2lsGeBy4ukxE3Uv1+KL2N1TQePaa0AbWdfvZRD171tULevNGQFZBS96Vl8UyJSk/3U4xVZIkSSp6ilUiOr97VKWkpGC1WvH19aVUqVJuH1OlShXOnTvH+fPnM01EZ+Wff/7hiy++QFEUHn/88TzNV1cIC+aIE8ez/FAtThzP8bwuHT1C7MsvcP7IEXzKlScodhV1HmzjhdkWDqdwMtc8i5nmaThxUlNTiyWl36ON3n2FvDsrLTEMSgvL0F9z9g9d6NL7S7DZUPzK4TttJoZXXs02waDVam76KXmXPL75Tx7j21t+x//CiKfuXLFeIXjVS+xO/AFfgy8rX/2YhwPbefx82+UUlrwQQvy336LR6egydwEtQl/L0RyqNKhPp8iJOZz5/wVo66DYM6+IDtDWyfZ4d2v52v8X7W0APAoYABsoOxVWd1xHFUPlXM9RCIHt07WkDR+KuHQRdDp8hgzHZ/CwbKug5XtR/ispx1gbUAd7FsUb2oDs/xbyQ0k5vlLu5WdMla+rrMm/P8/I4+QZeZw8J4+VZwqqGUGRTkS/9lrOTp5upCgKH374YY6eYzabAfDxydhn8Brj1cta09PTczynCxcuMHDgQJxOJy+88AINGzbM8RjXaDQK5cv75vr5ueVsUA9bFh+qSzWol6N5Je3bx9JOj5N2/jwV77iDvps3UzUPx6WwnXacJuRMCNvN2wEILh1MdOVoymnLeTzGYdthBl0Iy9hfU8DQ1p/TpBrc1fhpqrz3HroaNXI0v7JlM39tS3knj2/+k8f49lCQ8b+w4umtktOTeWX58/yY+CNlTWXZ3HczDwU+5PHzL58+zQedO3Hqr78wlilDj08+oWEWV2fll36+fVhwfJ7b+wSCsCp9KW/I+ni3LN+UxcGL6Xu6L1xbruMUKF8rfND5A1rWa5rr+TnOnOHcW2+Rtn49AIZmzai6YgXGpjkbU74X5b/ifox9+/Xh+AL3fwsIQZWwvhgK8b2nuB9fyXMFGVPl68oz8jh5Rh4nz8jj5Dl5rIqGIp2I/vnnn93erijK9cUWMrsvN32FNRrN9TGyo7rpkZyVM2fO0L17d44dO8Y999zD+PHjczy/m7cvuHw558nwPHsxCDLrJyYEvPQqly6leTTUiV9/Iabr81hSkqndsiXBq9ZiqFjZ4+cXNd/adtAntTvnxDl88WVW6XkEGYMRl+ESnu/T4rR33ffXVEAR8NmyJ2h+72quKAp4eKy0Wg1ly/pw+bIZp1P2iPY2eXzzX0k7xmXL+shv5LNQkPG/0OLpDS6mX+DFj57l91P7KedTnk+6fU6j8s08jocpJ0/y4fOduRB/GL8aNei27jMqN2xUKPG0EjVY4LuYgWn9brqqRyBY4LuYimnVuZSW9bz+cfzN/CoLoCIgoOGxu3j80hO89vobBFasm6v9clVBryNtxBDExZuroNP1etJlPC0ySswxrlQD3wWLSRvYL0Pfdd8Fi0mrWJ20QvgbLTHH9wYypmatIGNqSXpd5YeS+PeXH+Rx8ow8Tp6Tx8ozfn4+1/Oi+alIJ6KXL19+0+9Op5Pp06dz7NgxgoKCeOyxx6hVqxY6nY6zZ8+yY8cOVqxYQcOGDZk2bVqOt+fr66pKsFgsmT7GarUCZNq6w51///2Xvn37cvLkSRo3bsz777+fZdW1pwpl0bmAwCxXoBe17/BoXsd/3M2qV1/ClpZK7fsfIOyrL7GoumK5kJ5DOJhtncY862wEggaOevRe3QbNH1/xlf/fNAsOpWJgPY/HS3Qey7y/plbDyQa+OJ0CMnlMVpxOtVge4+JCHt/8J4/x7aGg439hvqZSbam8HPMCv5/aT6VSlVgbuoG7q97j8ZwuJR4j9sVnSD5+DL9a/gz8dge6CtVyvU/OhHjscbE3LOwXijYHMQzgZV0wLS5VI/bIFJJ0p/B3VCe07hjq+T2a7bxW21Yy0jyEdNKprFRhie8yHm7W7vr9udkv9eIFzMMicGz8DLi5F7QTIBdjyvei/FcSjrHu5WBKt7zf7WKZhb1vJeH4Sp4pyJgqX1eekcfJM/I4eUYeJ8/JY5W1zLrweluRTkQ/8MADN/2+dOlSEhISePfdd2nbtu1N91WrVo0mTZrw0EMP8frrr7N+/XoiIiJytD1fX198fX25cuUKFosFk8mU4TFnz54FXL2iPfHDDz8wcOBAUlNTadOmDQsWLLie8C6usluBPjsJO3ew5vVXsaenU6ftIwSv/BgfPz8sxbAS+pT6H33Te7DH+QMATx1vQ7mQXayqe4QrpQVl9ircHTOPbhMW0zQoxKMxaym1UVTAzRdRiqLgrwnw4h5IkiQVPQUd/wuLzWmjx7pu/PbfXsr7lGf9a5u5s7Ln7akuHDlM7IvPcPm/k5SvcwdvbNhM5bq5qxgGsK2KxRzR/6Yvmq2LovCJisbgYQy7Nk7liP5EXB/nFIgXsGUxTppIY6R5CB/b4wBoq23H4lJLqarJ+XocN7Lv2IZ54FuIM6dBp8MYMQzjoCEoBkOexpUkT2W2WKYkFZTbJaZKkiRJxUOxuoZpzZo13HvvvRkC5o1atmxJq1at+Pzzz3M8vqIo1K9fH4AjR45kuD85OZnz58/j5+fn0UKFGzdupHfv3qSmpvLSSy/x7rvvFvsk9DXawLqYxkZS6t3lmMZGepyEPvzNFlaHvow9PZ16HToSFLsGY+nS+Tzb/LHd/g2Ppj7EHucP+FKa2VemYRvwA6tehN+aCQ7Xc/2MCRbMeKcfFxMyvqZupZ47x/Ojf0UI1W3Bs0AQrO+WD3sjSZJUdOV3/C8MqlAZtKEfO45sw0drYoX5CfzHzsAyORJnQny2zz/79yE+evYpLv93kkoN7uT1DVsoV8s/1/NxJsS7ktCqCk7nTT/N4WE4PYhhN45zrIzK7FZOwju6fh4rk/k4h5wH6ZTajo/tcWjQMMI4hjW+6/OUhBZmM+Yxw0l/5XnEmdNo6jeg9JbtmIaNkkloSZJuayUxpkqSJEnFR7FKRJ87d47y5ctn+7hSpUqRkpKSq21cC8hbt27NcN/WrVsRQvDwww9nO8727dsZMWIEDoeDAQMGMGXKFHS6Il2Anu8ObfycNW+E4LRaufOpLnRdEYfeCy1KCppd2JlkeZug9Be5IC5wj6YJ20p/h2b5v2xrLxAabv5PgW3tBV+uXJD1uF9/SeojrfFf+T1Tx2vRoKBFiwbN9Z9RPtEEaj1L+kuSJJUUBRH/C5IQgre/GcMnf61Bh4aFn1lptHgN9s/XY42eT+qDLbGtXpnp80/9+Tsxzz9F6tkzVL27Ma+t30yZatXzNCd7XGzmS2UrCva4GI/HWXeXoFMoLGsBX9Zz/ewUCp80FDeNI4Rgpe0jOqW241/1H6op1fnUdxNDTCPQKtpc74vzzz9IffwRbEvfAfhfe3ceZ2P9/nH8fZ8z+wxjyVKayDK2bNnXEu0pirJOSClLUf20UVqpb0kiokKYRCiklMgesrRIGCNGihkxzD5zzv37Y5rJmBnOjHPPmTNez8ejx9R93+dzX/fVOeeauc59Ph/5DXxQId+uk71h40KPCQAlRUmrqQAA7+JVjegqVapo27ZtSkhIyPeY48ePa/Pmzbr66qsLdY7u3bsrMDBQs2bN0o4dO7K3R0dHa+LEiZKkQYMG5TjfgQMHsqfskKS4uDg988wzcjgceuSRRzRs2LBCxVKS/PLZp1r0UH8509NVv9s9umfGLPn4+3s6rFyiT0Tple/GavDiAXrlu7GKPpHzrrQ/nUfUNfE2vZuauQr6QL8HtSJklarba2rl6U15D/rv3/Vf57PfTExU8pMjlNT3PplxsbLVra/7h2zQplI7NNT/Md3l201D/R/TppDt6unn+lejAaCkKIr6X5Qmb35H72+ZIkka962p6/4wXb4L+c/t2zT37i5KOnFCVzS5Vv0WL1NwhQoXHZMz5lD+E8OZZuZ+Fxz461c9d70pp01y2PTfT0N6tqOp6KO7JUkJ5hkNSX5QI5OHKUUp6ujTSatDNqqNT7tCX4PpcCh18jtKuKWjnHt/l1GhooI++UyB49+SUYC1PQCgJCtpNRUA4F28qhF911136eTJkxo0aJD279+fa//OnTs1cOBAJScnq2fPnoU6R+XKlfXcc88pOTlZffv21YABAzR48GB17dpVsbGxeuKJJ1Snzn/zN06YMEG33XabJkyYkL1t5syZOnXqlHx8fBQTE6Mnn3wyz38iIyMLFaO32TnvY30+9CGZDoca9eyjru99ILuvr6fDyuWTXXPVZmozTdn8jr74bYmmbH5HbaY20/yfMu9KW5n+lW5IaKttji0qpdL6MOhjjQ98SwFG5lzip0uff/y89mfs3K6ETu2U9vFHkiS/h4cpZOUa2evVV3V7DY0OGKv3g2ZqdMBY7oQGcMkqivpfVOb/NE8vf/e8JGm0Oqjr/nx+FcvjLuRDmzdqbve7lBJ/SmEtWqnPwi8UWLacW+KyhVU97x3RtjDX1idYWPmk8hzFyPxcdsHl/+hXxy+6MeE6LUpfILvsGu0/Vp8ELdJltssKG76cR2KUeE8Xpbw0RkpPl88ttytk7Q/y7XRToccEgJKoJNVUAID38aq5IgYMGKCNGzdqy5YtuvPOO1WxYsXsuZqPHj2qEydOyDRN3XHHHbr33nsLfZ4ePXqocuXKmj59unbt2iW73a569epp4MCBuummC/9Bs27dOklSRkaGli9fft5je/fuXeg4vcG2D6fr62eelCQ17f+Abh3/lgxb8fv8I/pElEYuHyanmXsF1ce+HKLNV23UJ7a5kqTG9iaaHjRL1Ww57xC4pl4b/fDr3nzPcU29Ntn/bmZkKHXSBKX+b5zkcMi4/AoFvTtNPh2ud88FAUAJUlT132rf7v9aI5dlfktqSOtHNWjhn0p38S7k6LVr9GlET2UkJ6ta++t03+xP5OfGNRZ8e/dV6uSJ+cbi29u19QmOVi0n82De+5ySNl6XqA8TblCqUnWFUUXvB81US59WhYo5S9qiBUp+6gnpdLwUFKzAV1+Xb+9+MvJrrAPAJayk1FQAgHfyqka0r6+vPvzwQ3388ceaP3++Dh8+rGPHjmXvr1mzpu6//3716NHjos/Vvn378y7gkGX8+PEaP358jm3Lli276POXBJunTNKqF0dLklo9PEydX3y12P5RGLlrroy87uEqJZm3mtlN6MF+QzQm4CX5GbkXOnrg+uH64LdZmV9tPnsoUzJshh7o+KgkyfnHQSUNfUiObVskSb533a2ANybI5qa72gCgpCnK+l8QJ6KjtCtyruJjDik0rKoa9+6r8tVr5nns1pgtGvTZ/XKYDt3bsJeelzgdmgAAYcJJREFU7/SS0n54yaW7kPd985U+eyBCjtRU1ex0o7p/NDfXGguO6Cilzp+n1L//VEblKvLp2Uf2fGLJi716TQVOnKLkEUMzYzLN7J+BE6e4vCjxVVXqyzj0rTLbzmfxk3SD9FP4b5Kkm3xu0aTAqSpnK+9yjOcy408p+anHlb74s8xraNpMgVNmuBwrAFyKimtNBQBcGgzTzO9WnOLv2LFjOn78uAzDUKVKlVTBDXMkeguHw6l//kn0dBh5Mk1T6996XWvfeE2S1O7x/9P1T43Otwnt42NT2bLBOnkyURkZue9ILgqDFw/QF78tkbO0U6ovqZQku6QwSf6Sb7qvPgj9WLf63n7eceb/NE8jlg6VZMo0zX+v2dDEO6fovoa9lT5/npKfHSUlJkilSitw/Jvy7X6f5Q364pDjkoz8Wq+k5bhcuWDZ7cXv2yHewp31v7D1dNcnc7V85LBcTdsuE6eoUc+c8/nvjf1dXWbdpFMpp9Sp5o36+N758rX7yhEdpYQ2zTLnhj6XzaaQTdu1d/cvWjJ4oJwZGap9Wxfd/f5HudZYSPtkrpLziCVw4hT59SzY2gKO6ANKj5wjZ8wh2cKqyrd3vwI1dqNPRKnN1GY5v2FUQdKtkspIdtNHzwe+pIf9hl5U7cvYsE5Jwx+W+ecRyW6X/+Oj5D/y/2RYvDB0SXsvKo7IsbVKYn6pqRfHnTW1JD2vrFASX39WIE+uIU+uI1euKap66lV3RJ+rUqVK2V8jQvFgmqZWv/qiNk3KnDO747PPq92IJy0/b/SJKEXumquY+EMKC62q3o37qnp51+8ECwutKrOOKXX6d4Oh/+5qPiX1OXy/bm1//ia0JPVs1Ectwlopcuec/2Jp0k/VVEZJA/sp48ulkiR7qzYKmvy+bFe5NucmAOA/nq7/J6KjtHzkMJl5NJCXjRiqsBatVO7f5u2f8Ud0X2Q3nUo5paZVmuuDez6Wrz1znYQL3YX8244f9cWwwTKdTtW/u7vuevf9XGssOKKjMpvQ58RiSkoeMVT2Fq0K1Ei2V68h++ixBUvIWaqXr6mJXaZoxLKhmXE0NGW2MyW7VC6jnOaFLlRTn+aFHt9MTVXK+FeU9t4kyTRlu7q6At+bIZ+mhR8TAC5lnq6pAIBLS7FuRL/zzjsyDEMREREqU6aM3nnnHZcfaxiGHn30UQujw7lM09Q3o5/S1hnTJEk3vvSaWj08zPLzfrJrrkYuHyZDhkyZMmRo8uaJmthlino2cu1OsIaVasq81sy9fKcpqbTUoVwzl+OpXq6GRncam/3f6atXKeGxITKP/S35+sr/qefkP/QxGXa7y2MCwKWkuNf/XZFzzzulxs7IOeo0eqz+STqh+yK76ejpP1WrfLjm9VygYL/gHIf79ewje4tWue5C/nnzRi1/bIhkmmrUq6/umPCubHnUjfTIuTKlXJNLGcosYemRcwrUWI52RCkyfa5inIcUZquq3r59Vd3u+ge7UuaHsvXC6mvw6YE6UDZKknSd2VEzys1SGaNsgcY6m2PPb0oa8qCcu3+RJPn266/AF1+T4ca5sgGgpCnuNRUAcGkp1o3oqVOnyjAMdenSRWXKlMn+7/PNJpK1n6JZtEynU1/+3wjtnDNLknTbG2+raf8HLD/v+RYZHLFsqFqEtVL1che+E2zpsZnSFXnsMCQ5pc///lB31HdtYcmsP+IPp0frik2H1G30TlU7JtlqhSto6geyN2zs0jgAcKkq7vU/PuZQ5t3LeTFNxcccUmJaovrMv1f74vbqitJV9GmfJSoXlPd8yOfehbztw/f19TP/J+nCC/0m79ktOZ15rXIg0+lU8p7dCnDxuj5Jm6uRyed8sJs6URMDp6inn+tTfOx37NPDvg/oQNko+cpXYwNe0SC/hws9FYfpdCrtg2lKefkFKTVVRvnyCpwwWb63XvibSgBwqSvuNRUAcGkp1o3ooUMz5w8sW7Zsjv9G8eLMyNDSx4bol4XzZdhsec6PaZV8FxmUZMhQ5M45Oe5Ozotpmtp+xb7cd0NnjyMd9fnLpXiy/4g3DZlOh4xm0rSV0htfX6d+XT+VERTk0jgAcCkr7vU/NKzqee+IDr7ySj246H5t/3ObygSU0fxei3VlaFi+45296GHC8eM6tHG9JNcW+j32zz863xeqj/3zj1y5BznaEaWRycPkPHeRQUkjkoeqhb2Vqtsv/MHuV+lfamjSQ0rQGVUxrtRHQXPUxKepCxHkzfn3X0oe/rAy1q6RJPl0ulGBE9+Tja+RA4BLintNBQBcWop1I3r48OHn/W94niM9XUseGaQ9S5fIsNvVbeoHqt/1niI7f0z8IZnK+9N8U6Zi4g+d9/GJZqJGJA/Vn1fE53+QKV2RcfkFY8nxR7yhzMUO/338qNvXq53/X6ou1+fpBIBLVXGv/41799XmyRPz3GeaTn129QGtivpGgT6BmttzoepUrJvvWFmLHpqZD86+0zr85lsv2ISWpIPlyqqSlGt6DjN7fznVceGaItMv8MFu+hyNto/N9/FO06n/pY7TW6mvS5La2NtpRtBsVbAVftGr9NWrlDzsIZlxcVJgoAJeeEV+AwbRQAGAAijuNRUAcGkp1ssLjx49Wl9//bXi48/TJITHZKSkaOHAvtqzdIlsvr7q/uGcIm1CS5mLDBoypFBJbSTd/O/P0Mw/nMNC818M8A/nQd2W0FlfpC+W3bRLTilXT/vfv+yH1hh9wVjmJXwow5FHU9z47494AMCFFff6X756TXWZOEWGzSbDbs/x89joG/XFweWyG3bNuGeWWoS1zHecHIseOp05pvvY/+1KnTwYfcFY/Opeo+8MQ6Yyy1jWP6ak7wxDfnXru3RNMc4LfLDrzP+D3dNmvCKSemY3oR/ye0QLg78odBPazMhQyitjldTzbplxcbLVb6CQVevlP/BBmtAoMo7oqMzn4eABSnllrBzRUZ4OCSiU4l5TAQCXlmJ9R/Rnn32mRYsWyWazqV69emrTpo3atWunJk2ayMenWId+Sfj+jde0f+VX8gkIUI9Z81TzhhuLPIbejfvq3VNvSzecs+NayfmdU72b9MvzcavTV+nh5IE6ZZ5SBaOiPgyeo3Wb5+mt+h//d1vZvz+f2B2hJu07njeOjF07dPDgLJnXFe6PeADAf7yh/jfq2UdhLVppZ+QcxcccUmhYVe1qIi3YMUGS9HaXybop/NbzjuHqoofn07h3X02dPFFHTVP1JZWSdEbSbkmnDUNDeuddB88VZqt63juiw2x5f7C71/G7+if11gFnlAIUoDcD39G9fr1cOmdenH8eUdLggXJs/UGS5Nf/AQW8NE5GgKszXQMXL+2TuUoeOSzz9WmakmEodfJEBU6cIr8imn4OcBdvqKkAgEtHsa48jz32mH788Uft3LlTv/zyi3755RdNnz5dgYGBatmypdq0aaO2bduqevXqng71knRZzVq6rHYd3fLa/3R1++s8E0QZSZ2kXH87m5I6K/Mv8rM3m6beTZuo11JelFNONbU300dBc3W57Qq1at9aN/5xj6YceEVHff7SFRmXa2iN0edtQpumqbQZU5Xy4hhVeTRdRj5pON8f8QCAnLyl/perXiO7Ubzw5/l6/YuHJEmjb3hRPRtduFkVH3Mo827ovPy76OGFZN2dvWzEUG0+q2km01SXiVNUrrprU0L19u2ryakT8w5Fpnr75m5or0hfrqFJDylRCbrSCNPM4LlqZG/i0vnykv7t10oeNljmyZNSSCkFvv2u/O66u9DjAYXhiI7KbELn8dpMHjFU9hatZHfxdQUUB95SUwEAl4Zi3Yh+5JFHJEkOh0O7d+/Wjz/+qG3btmnHjh1as2aN1qxZI8MwdPnll6tt27Zq3bq12rRpozJlyng28EtE49791NjFO62sEpk+VzbDJoccOXcYkk22HHNaJpgJGpE8VEvTl0iS+vrer3GBb8rf8M9+WJNqHfVBtfPf/ZzFPHVSSY8NVcZXyyVJ98V11AzbWimPhZ7y+yMeAJCbt9X/76K+0WPLhkiSBrccouFtRrj0uLSkpBzTceRgGJmLIrog6+7sn+bPVdLffyqochU16tnX5Sa0JFW319TEwCkakTxUhgyZMrN/TgyckmOhQqfp1Bupr2lC6huSpLb29poRNFuX2S5z+XxnM9PTlfLqi0p7b5Ikyd6oiQKnz5T9apoiKHrpF/imQnrkHNkv8E0FoDjxtpoKACjZDNPM7y+g4ss0Te3du1c//vijtm7dqh07diguLk6SZLfbVbduXbVr104jRozwbKAWcjic+uefRE+H4RY+PjaVLRuskycTlZGRz51h+RicNECfpy6Wacv9NLY5Dd3lf7feD5qpg45o9U/qoz3O3fKVr14NeEP3+w0s9FyTGT9uVdLggTJjDkt+fgp48VX5DXxIn6ZH5vtHfE8/z32V82JyjAsjv9YraTkuVy5YdnuxXqahWLKi/l9sPd3+5zbdM6eLktKTdPc1PfRe1xmyGRf+f3tgzXea37uHnI6MPPcbNpuGbNpeoGayO14n0Y4DikyfoxjnIYXZqqq3b78cTeh485SGJD2obzNWSpIG+w3RCwGvyMco3L0NzpjDSnqovxzbf5Qk+T34sAKef1mGv/8FHukZJe29qDjydI6TBg9Q+hdL8rwjWjabfO/qpqD3ZxZ5XO7i6fxagZpaOFbU1JL0vLJCSXz9WYE8uYY8uY5cuaao6qlXNqLzcvDgQX355ZdatGiR/vrrLxmGoT179ng6LMvQiM703N+P6QPfmTLz+PvXyJAGpQ9Qp/J3aHDSA4rXKVU0KunDoDlq6dOqULGaTqfSpk5WyqtjpYwM2apdraAZs2Rv9N9XkS/0R7wn8MZrLfJrvZKWY/5odp+Lrf8XU09Pp8SrxeRG+if5H3Ws0Ulz7vtUfna/Cz7uzx0/as7dXZSelKgq1zbTnzu3y7DZck2r0aiAc9Fa/TrZ6/hd9yf1UrTzgAIUoLcCJ6mHX89Cj5e+YrmSHhsixZ+SQssoaOIU+d7exX0BW6CkvRcVR57OccorY5U65R3J4ci9026X/9DHFODFd0R7Or9WoKa6z8XW1JL0vLJCSXz9WYE8uYY8uY5cuaao6mmxnprjfEzT1O7du7VlyxZt2bJFP/30k06fPi3TNGW329WgQQNPh4giUHehpD76b4HBLKZkGtLRPT+r17WzZMpUU3tzzQyaq8q2ywt1Luc/J5Q8/GFlfJt5F5jvXXcr8K13ZJQOzXFcdXuN7OlAAADuVZzqf2JaopLTk9UirJU+7D7HpSZ0XNR+ze/TQ+lJibq6Q0f1ilyo+CMxORY9bNK7X4HuhC4Ky9OXanjSw9nzQc8KnqeG9saFGstMS1PKS2OUNn2qJMl+bVMFTZ8l21WspQDP8+3dV6mTJ+a90zTl6+Fp6QB3Kk41FQBwafCqRvSJEye0fv16rV+/Xhs3blR8fLyybui+4oordNNNN6lt27Zq06aNSpcu7eFo4Yrtf6zWtOjX9Lfv36qcXlkPV39WTavd4PLjg349rU7PGfruVfO/ZvS/TeiKu6Uvr90uKe/5oAsi44fNSnp4oMyjf0r+/gp4ebz87i/81B4AANcV1/p/eekrtPuJAwryDXJpOo4zf/+lyPu6KenECV3euIl6zJoru59fjkUPCyvaEaX5qfP0d+qfqpxRRT19+qi6veZFjSlJDtOhN1Jf1dupb0qS2tk7aHrQrELPB+3842DmVBy7dkqS/B4ZroDnXpDhd+EmPlAU7NVrKnDiFCWPGJr9DYWsn4ETp7BQIbxeca2pAIBLQ7FuRDscDu3YsSO7UO7du1emaco0TQUGBqpDhw5q27at2rVrxyq/Xuj19UM1of4cqZH+bSAf1lKjq55YH6FR7Se7NEZoWFXVm2LT5dsc+q2HdPpKye+0dKS1dLyhZHfY9HrI24rwG1CoGE2nU6nvvq3U8a9IDodsNWoqaMZs2a/h7gAAsIo31f8QvxCXjkuJP6XI++5WfMxhlateQ73mfSb/kFJuieGTtLkamTwsx/oEk/T2Ra9PEG+e0iNJg7Qq4xtJ0mC/oXoh4OVCzwedvuxzJY0YJp05LaNsWQVOmibfm28tdHyAVfx69pG9RSulR86RM+aQbGFV5du7H01oeCVvqqkAgJKvWDeiW7ZsqcTERJmmKcMwVLt2bbVr105t27ZV06ZN5cfdM15r+x+rNaH+HJn2c3aY0lv1P9aNf9yjJtU6XnCcxr37avPkiSpzWGrzlvRHB+mbCVJqqBR0XPrA/0N1LndPoWJ0xsYqeeiDyvh+tSTJ9557Ffi/t2W4qXEAAMhbSav/6cnJ+rRfTx3fs1shFSup96dLFFyhglvGjnZEaWTyMDmVe767EclD1cLeqlDrFPzu2KP7k3rpoDNaAQrQhMB31d3vvkLFaKakKOWFZ5U28wNJkr15SwVNnylblSsLNR5QFOzVa8juxXNBA1lKWk0FAHi3Yt2ITkhIkGEYateunUaOHKn69et7OiS4ydQDr0qN89jx79QaUw68og9caESXr15TXSZO0dIRQ/TjYGnzCFOySZV3Sm+fHKdO3QrXhM7YuF5JDz8g89jfUmCgAl/7n3x792MqDgAoAiWp/jszMrTk4Qd0+IdN8i9VWr3mL1bZqtXcNn5k+lwZyrs2GTIUmT6nwOsWLE9fqmFJg5WkRIUZV2lW8Dw1sDcqVHyO6CglDeov568/S5L8H31c/k89J8PXt1DjAQAKpiTVVACA9yvWjeiwsDDFxMRow4YN2rhxo2rWrKl27dqpTZs2atGihfz9CzffLzzvqM9fyufvZsn4d7+L6t7XQ5NvWK7N/l9Kkjr92kBvX/WBKl9ft8BxmQ6HUt/+n1LfHC85nbKF186ciqNuvQKPBQAonJJS/03T1IpRI7X3q+Wy+/vrvjnzVdnNUzvFOA/JlJn3+WUqxnnI5bFM09SLJ8foPfskSdKVp8M0I2hmoZvQaUs+U/Ljj0qJCTLKl1fglOnyveHGQo0FACicklJTAQAlQ7FuRH/77bc6fPiw1q9fr3Xr1mnr1q2aOXOmZs2aJT8/PzVr1kzt2rVTu3btVKtWLU+HiwK4IuNybTeP5L3TzNzvilPmSQ1M7KcN/utkl13jAt5U/7YPFCom89RJJT38gDJWr5Ik+fbso8Bxb8oIDi7UeACAwikp9f/711/RzrmzZdhs6jb1Q1Vt087t5wizVT3vHdFhtqoujZNhZqj7kTu1qfSGzA27pKMb/tRt5o2a2GWKejZyfa5pMz09cyqOD96XJNlbt1XQtA9lu/wKl8cAALhHSampAICSwTCzlsj1Aunp6frxxx+1bt06bdiwQfv375ckGYahihUrZi+y0LZtW4WGhno4Wms5HE7980+ip8MotO1/rNZtpbvKtCnnndGmZDilr09/ccE5og87D6l3Ynftc+5VsEL0YdBs3eBbuDutHL/tVtL9veQ89EfmVByvT5Bfz8Iv8FTc+PjYVLZssE6eTFRGRu55RHFxyK/1SlqOy5ULlt1u83QYXsPK+m9VPd36wTStfHaUJOn2N9/RtRGFWzT3QqIdUWqT0CzPOaJtsmlTyPYLzhGdYJ5R71M99INtk2RKWifpp7PGMWzaNGS7qpe78FzTzthYJQ2KkGPzRkmS/8gn5f9/z8rwKdb3PrispL0XFUfk2FolMb/U1IKxsqaWpOeVFUri688K5Mk15Ml15Mo1RVVPvaoRfa5jx45p/fr12rBhg7Zs2aKTJ0/KMAzZbDbVr19fCxYs8HSIlvH2RrQk9fvmFq1svinX9lu2tdHHN3193sfuytihPkn3KtY8rsuNKzQveKGusRfu687pS5co6dEhUlKijLCrFDwrUvYGDQs1VnHFG6+1yK/1SlqO+aP54riz/ltRT3d/vkiLBw+UTFPXPfWcOjzxlFvHP9f8tHkakTxUhgyZMrN/Tgycop5+5/9Q9S/nUfVJvFe/On+W0iWtlBSd8xi7YdfQ1o9pdKex5x0rY9cOJfXvI/Pon1JIKQVNmS7fW2+/qGsrbkrae1FxRI6tVRLzS029OO6sqSXpeWWFkvj6swJ5cg15ch25cg2N6AKKj4/XF198oY8//lhHjhyRYRjas2ePp8OyjLc3oqNPRKnN1GZylnZK9SWVknRG0m7Jdvr8d16tTP9Kg5MGKElJqme7RpHBC3WFrUqBYzAdDqWOe1mpkyZIkuztr1fQ9JmylS9f+AsrpnjjtRb5tV5JyzF/NLvPxdZ/d9fT6LVr9Env7nKmp6vZwAd1y7g3i2Sh22jHAc3PmKu/ff5U5Ywq6unT94J3Qu92/Ko+iT101PxT/mn+SluSJvNY7l8LbYZNd9XrpvfvnpnvWGnz5yn5/0ZIqamy1ayloNmfyF4r/GIvq9gpae9FxRE5tlZJzC811X0utqaWpOeVFUri688K5Mk15Ml15Mo1RVVPvfZ7kgcOHNCOHTuy/zl8+LCkzIV2KlasqNatW3s4QpxP5K65mXNaxks656ZowzAUuXNOnndefZj6vp5LeUpOOdXRp5M+CJqtUkbpAp/fefIfJT/8gDLWfCdJ8hvyqAJGjy0xXx0GgJKqONf/v37aqYX9+8iZnq66d3bTza++USRNaEmqbq+h5/1fdPmX7DXp3+mBpAgl6IzCbbXV+vd2mnt8lhxy5DrWkKGw0LznmjbT05Xy/DNK+3C6JMnnltsUNPl9GaVL9hRpAFASFOeaCgAombyi65aWlqaff/45u0Du3LlTp0+flpRZJENCQtSxY0e1adNGrVu3Vo0aF57DEJ4VE39IpvK+Gd+UqZj4Qzm2OU2nXkh5Tu+nTZEk9fW9X68HTpCv4Vvgczt2/6qk/r3/mw/67cnyu7tHgccBAFjLm+r/iegoRfa6R2mJCarW/jp1nTJdNrvdY/Gcz7y0j/Vk8mNyyKG29vaaGTxX/9Q7oTlr877j2ZSp3k365druPH48cz7oHzI/Ufb/v2fk/8RTMmzcmQgAxY031VQAQMlVrBvRr7/+unbu3Kndu3crIyNDUmaR9PX1VbNmzbKLZMOGDWXjjx6vEhZaNfOO6Dyce+dVkpmkoUkP6cuMpZKk0f5jNdx/ZKHuMkv7YrGSHxsiJSXJuKpq5nzQ1xRubmkAgDW8rf4nHDumyHvvVlJcnCo3aKR7Z82Tj7+/p8PKxTRNjU99WW+nvilJ6u57n94OnCx/w19lypfVxC5TNGJZHnNNd5mSa7qsjB0/KmlAX5l/HZVKlc6cD/qW2zxxWQCA8/C2mgoAKNmKdSN65szMO3MMw1CdOnXUunVrtW7dWs2bN1dAQICHo8PF6N24ryZvnpjnvrPvvIp1xioi6T5td/woP/np3cBp6ubXvcDnMx0Opbz6otImZ57Tp0NHBU7/SLZyJW8+aADwdt5U/1NOxyuy5906dfgPla12tXp9skj+pQo+ZZTVUs1UPZY8RIvTF0qSnvB/SqP8n83xoW7PRn3UIqyVInfOUUz8IYWFVlXvJv1yNaHTPpmr5FEjM+eDrhWeOR90zVpFej0AANd4U00FAJR8xboRfe+996pVq1Zq3bq1ypYt6+lw4EbVy9e84J1XUY796pl4jw6bf6iMUUYfB81XK582BT6X8+Q/Sn5ogDLWrpEk+Q19TAHPvcB80ABQTHlL/Xc6HFpwf28d2/2Lgi+roN6fLlFIxYqeDiuXk85/1D+pjzY7NspHPnorcJJ6+fXN89jq5WrkuUaDJJlpaUoZ87TSZn4gSfK55XYFTXlfRjFsvAMAMnlLTQUAXBqKdSfupZde8nQIyEe0I0qR6XMV4zykMFtV9fbtq+r2mgUaI+vOq/k/zdXfSX+qclAV9WzUV9XL1dAPGZsUkdRTp8xTqmqrpk+CFqmmveB3Wzl2/6rE+3vLPPyHFBSkwIlT5Nf1ngKPAwAoOt5S//85GK1DG9fLL6SUen26WOWuru7pkHL5w3lQvRO7K8q5X6VUWh8Fz9F1Ph0LPI7z+HElPdBPji2bJUn+o56V/+OjmA8aAIo5b6mpAIBLQ7FuRKN4+iRtrkYmD8txJ/Pk1ImaGDhFPf36FGis6uVq6PkbX1TZssE6eTJRGRlOLU5bqEeTH1Ga0tTU3kwfB32qCrYKBY4zbclnSh457N/5oKspeNY85oMGALhN+Ro1dff0mapY7xpVCK/t6XBy2Z6xTf2S7lOcGacqxpWKDP5Mde31CjxOxvZtShrY77/5oKfOkO9Nt1oQMQAAAICSjNtYUCDRjiiNTB4mp5xyyJHj54jkoYp2HCj02KZp6p2Ut/Rw8gNKU5pu97lTi4O/LHAT2szIUPKLY5Q8eKCUlCSf6zoq5Js1NKEBAG5lGIbqd72nWDahv0xfpm6JtyvOjFNDW2N9FfJdoZrQaZFzlHjXrTL/OipbrXCFrFxDExoAAABAodCIRoFEps+VISPPfYYMRabPKdS46Wa6RiQO16upL0qSHvEbrg+DPlagEVigcZz/nFBSz3uUNuUdSZLfsBEKmr+YRQkBAJcE0zT1XvJkDUzqqxSl6Eafm/V5yApVtl1esHHS0pQ8aqSSRwyV0tLkc+sdCvl6NYsSAgAAACg0puZAgcQ4D8mUmec+U6ZinIcKPOZp52n1+muAVqaulE02vRrwhh7wf6jA4zh+/UWJ/XvLPHwocz7od96T3113F3gcAAC8kcN06LG4x/Ru0ruSpP5+D+i1gP/JxyjYr3vOY8cy54Pe+oNkGPJ/6jn5j3iS+aABAAAAXBQa0SiQMFvV894RHWarWqDxYp2x6pnQTb84flaQgjQ9aKZu8i34V37TVyxX0iMPSMnJslWtpqBZkbLXv6bA4wAAUNTcsQBwqpmqRxIe0PK0pZKksQGv6hG/YTKMvGt2fhy//qLEPj3+mw962gfyvfGWAo0BAAAAAHnh1hYUSG/fvue9I7q3bz+Xx/rb+Ze6Jd6mXxw/q5K9kpaHrixUEzp1+ntKGtBHSk6Wz/U3KPib72lCAwC8widpc9UmoZmmpL6jL9KXaErqO2qT0Ezz0+a5PEaymax7T3XV8rSlsjltuj26i25JuLXATej01d8qocvN/80H/c0amtAAAAAA3IZGNAqkur2mJgZOkU022WXP8XNi4BRVt9dwaZwjzhjdmXiL9jn36gpbFa2rsk6NfZoUKBbT4VDyc6OUMvppyTTlFzFQQZGfyVa2XGEuDQCAAok+EaVXvhurwYsH6JXvxir6RFTBHu+GBYATzUR1PtZBm20bpXTJXGrq6y9XqM3UZpr/k+vN7LSPZyqpz71SYoLs7TooZMUq2WswHzQAAAAA92FqDhRYT78+amFvpcj0OWd9jbify03og45odU+8UzHmYV1lVNMXpZcr3C9cJxMTXY7BTEpS0iODlPHVcklSwJiX5DfssQLf/QUAQGF8smuuRi4fJkOGTJkyZGjy5oma2GWKejbq49IYriwAPNo+Nt/HnzFPq1v8HdofuFdKk7RUMo+acsghSRqxbKhahLVS9XL512fT6VTqay8pddIESZLvvb0UOOFdGX5+Ll0DAAAAALiKRjQKpbq9xnn/OM7Pfsc+3ZPYRX+bf6mGraYWBS/TVfawAo3hPH5cSf3ulWPnDsnfX4HvTpNf13sKHAsAAIURfSJKI5cPk9N05trnSvM3y8UsAHzS+Y96Jt2tn41dUoqkLyQdy3mMIUORO+dodKexeZ8jJUXJjz2i9CWLJEn+//eM/J98mg91AQAAAFiCqTlQZHY7ftVdibfob/Mv1bXV0xfBX+sKW5UCjeHYt1cJt3WSY+cOGWXLKnjhUprQAIAiFbnrAncy75zj0jiFXQA41hmrbol3aKdjh/zS/GQsMXI1oaV/m9nxeTeznf+cUGKPuzKb0D4+Cpw0VQH/9wxNaAAAAACWoRGNIrErY4fuTrxdcWacGtgaaXHwl6poq1igMTI2bVDC7TfKPHxItmpXK/ir7+TTqrVFEQMAkLeY+AvcyZxP8/dchVkAOGuh39+cv6qiUUk99vWULS7vX+cMGQoLzd3MdhyMVuJtneXYslkqHargT5fIr6dr04kAAAAAQGHRiIbltmZs0T2Jd+qkeVJN7c21OGSZytvKF2iMtM8+VWKPu6T4U7I3a6HgFd/JXr2mRREDAJC/sNAL3MmcR/M3LwVdADjGefi/hX6NKvoieIWG1xlx/mZ2k5zN7IxtW5R4Wyc5ow/IuDJMIcu/kU/761yKFwAAAAAuBo1oWGpjxnrdm9hVZ3Rare1ttTD4c4UaZVx+vGmaSpnwhpKHPCilp8unS1cFL1om22WXWRc0AADn0bvxBe5kbpL7Tub89PTro00h2zXU/zHd5dtNQ/0f06aQ7erpl/MO5YOOaN2VcKv+cB7MXOg35CvVsNdS9fI1NbHLFNkMm+yGPcfPiV2m5JirOn3ZF0q8p4vMEydka9hYIV99J3uduoVLAgAAAAAUEIsVwjKr01epf1JvpShF1/l01OygTxRkBLn8eDM9Xcn/N0LpkZlzbfoNfUwBY16UYePzEwCA52Q1f0csGypDhkyZ2T/Pbf665JQp7ZIULylUUmNTOuuLQ3kt9Hv2Ggs9G/VRi7BWmv/TXP2d9KcqB1VRz0Z9s+MwTVNpUycr5cXRkmnK56ZbFDTtIxkhIRebCgAAAABwGY1oWOKr9C/1YNL9SlOabva5VTOCZivACHD58ebpeCUNjFDGujWSzaaA1/4n/4EPWhgxAACuy2r+Ru6co5j4QwoLrareTfoVuAn9ya65Grl8WI6G9uTNEzWxyxT1bNRHux2/qkfinYoz41TXVk8Lg5fmucZC9XI19PyNL6ps2WCdPJmojAynJMnMyFDK6KeU9tEMSZLfwAcV8OobMuz2i08CAAAAABQAjWgUyonoKO2KnKv4mEMKDauqxr37qvy/czZ/nrZIQ5IfVIYy1MWnq6YGfSA/w8/lsZ1/HlFi7x5y7tktBQUraMZM+d54i1WXAgBAoVQvV0OjO40t9OOjT0Rp5PJhcprOXPtGLBuqUmGl9LjPcJ00T6qBrZEWBH9eoDUWzIQEJT08UBnffC0ZhgLGviq/h4fKMPKe3xoAAAAArEQjGgW265O5Wj5ymGQYkmlKhqHNkyeqy8Qp2nO3NCJ5qJxyqrvvfZoUOFU+hutPM8cvPymxdw+Zx/6WUbGSguctkL1REwuvBgAAz4jcNTffRQ9VWRpsDlSamaam9uaaH7yoQGssOI/9rcQ+98r58y4pIEBBU2bIt8tdbokbAAAAAAqDRjQK5ER0lJaPHCbTmfvurdd+GKI1t2Yu3tTPt7/+FzhRNsP1+ZzTvl2phAERUlKibHXqKjjyM9muDHNb7AAAFCcx8YfyXvTwSsl5h1NpPmlqbW+recELFGKUcnncjD2/KeG+e2QeiZFRvryC5nwqn2Yt3Bg5AAAAABQcq76hQHZFzs28E/rc7f2lNS9m/jH9oN/DejPwnQI1oeOnTdOZXj2kpETZ21+vkOXf0IQGAJRoYaFVc98RXVXSnZL8pLD4qvokeFGBmtBJ332n07d0lnkkRrYaNRW84jua0AAAAACKBRrRKJD4mEOZ03Gc5cfB0vrnMv/95jXheiXgdZfnnzRNU4kvvaDYRx6RnE759uyj4E8+k1E61N2hAwBQrPRu3DfnHdHVJd2hzO+rRUtzQz5VkBHk8nipC+br6C23yDxzWvaWrRX85beyX13d3WEDAAAAQKHQiEaBhIZVzb4j2pT0wwhp85OZ+1pOMnT/r7e73oR2OpXy9BNKmfiWJCnwmdEKfOc9GX6uL2wIAIC3ql6+piZ2mSKbYZMRbki3SrJL2i9NsL2ruuXquTxW6qwPlfDwICkjQ353d1fwwi9kK+f6woYAAAAAYDXmiEaBNO7dV5snT5Qk/dxX2jY0c3ubN6RmHxq6dlOES+OYDoeSHx+u9E8yp/qoMH26nPf0UkZG7rmnAQAoqXo26iOfMB8NtT0kGVLtE3X1YfWPFV6utstjpL4/RSljnpEkhQ4fLvsLr8pBOQUAAABQzHBHNAqkfPWa6jJxigybTUmVDdnSpeteMdTsQ5u6TJyictVrXHAMMz1dyUMGZTah7XaFTPtAoYMGFUH0AAAUP74hvpIh3e/3gNZevblATeiUiW9mN6EDHntcl73zjgwbv94BAAAAKH64IxoF1qhnH4W1aKVWkR/r2EsHVLliTTXZ1M+1JnRqqpIGD1TGimWSj4+C3p8p/27diiBqAACKp7v87tYNvp1Vyijt8mNM01Tq+JeV+vabkiT/Uc8q6KlnXJ4eCwAAAACKGo1oFEq56jXUefSLBXqMmZyspIF9lfHdt5K/v4I+miPfG2+xKEIAALxHQZvQKS88p7RpkyVJAc+/LP9hj9GEBgAAAFCs0YhGkTATE5UY0VOO9WulwEAFfzxfPtd19HRYAAB4FdPpVMozTypt5geSpIBx/5P/A4M9HBUAAAAAXBiNaFjOPHNaib26y7H1Byk4RMGffCafVm08HRYAAF7l3IV+A9+aJL++93s6LAAAAABwCY1oWMp58h8l9bxbjp07pNAyCp6/SD5Nm3s6LAAAvIqZnq7kYQ8pfckiyW5X4LvT5Nf9Pk+HBQAAAAAuoxENyzhjY5XY4y45f/tVRrlyCl74hewNGnk6LAAAvEpeC/36drnL02EBAAAAQIHQiIYlnH//pcTud8q5b6+MChUVvGiZ7HXqejosAAC8ipmcrKQH+ilj1TeSn1/mQr833erpsAAAAACgwGhEw+2cR2KUePcdcv5xUMYVVRS8aKnsNWp5OiwAALzKuQv9Bs3+RL7X3+DpsAAAAACgUGhEw60cB6OV2P1OmTGHZVxVTSGLlspWtZqnwwIAwKvkWug3cqF8Wrf1dFgAAAAAUGg0ouE2jv37lHhPF5l//yVbjZoKXrRMtiuqeDosAAC8Cgv9AgAAACiJaETDLRy7f1VijztlxsXJVqeughcula1SJU+HBQCAV3HGxWUu9Lv7Fxb6BQAAAFCi2DwdALxfxq4dSrz79swmdINGCl6ygiY0AAAF5Dz2txK73prZhK5QUcFLVtCEBgAAAFBi0IjGRcnYukWJ99wp8+RJ2Zs2V8jiZbKVL+/psAAA8CrOIzFKvPMWOfftzVzod+lXstet5+mwAAAAAMBtmJoDhZaxaYMSe/eQkhJlb91WwfMWyAgp5emwAADwKs6/jirhrlv/Xei3qkIWLWOhXwAAAAAlDndEo1AcP+9SYt/7pKRE+VzXUcGfLKIJDQBAIaSvWCYz5rBsNWoqZOnXNKEBAAAAlEjcEY0Cc0QfUGLPe6SEM7K366CgOZ/KCAjwdFgAAHglv3t7yQgKls9NtzK9FQAAAIASi0Y0CsR57JiS7usmMy5WtmsaKnh2JE1oAAAuglGqtPx69fV0GAAAAABgKabmgMvMM6eV2OseOQ/9IVvVapnTcZQq7emwAAAAAAAAABRzNKLhEjMlRYn395bz159lXFZBQQs+l61SJU+HBQAAAAAAAMAL0IjGBZkOh5KGPiTHhnVSSCkFf7pY9qurezosAAAAAAAAAF6CRjTOyzRNpTz7f8pY9rnk56fg2ZGyN2jk6bAAAAAAAAAAeBEa0Tiv1LdeV9rMDyTDUNB7M+TT/jpPhwQAAAAAAADAy9CIRr5SZ3+k1DdekyQFjHtTvnd283BEAAAAAAAAALwRjWjkKX35UqU89bgkyf/xUfIf+KCHIwIAAAAAAADgrWhEI5eMjeuV9PBAyemUX78B8n/qOU+HBAAAAAAAAMCL0YhGDo5ff1FiRC8pLU0+t3VRwBsTZBiGp8MCAAAAAAAA4MVoRCOb84+DSux5t3TmtOyt2ypo2ocy7HZPhwUAAAAAAADAy9GIhiTJGRurxPu6yTx+TLZ61yj4409kBAR4OiwAAAAAAAAAJQCNaMhMOKOk3t3lPBgt46qqCv50sYzQMp4OCwAAAAAAAEAJQSP6Emempiqpf185ftop47LLFLxgiWyVKns6LAAAAAAAAAAlCI3oPGzdulUDBw5U69at1aRJE/Xs2VMrVqwo9Himaap///7q0KGDG6O8eKbTqeThg5Wxbo0UFKygyM9kr17T02EBAAAAAAAAKGFoRJ9j6dKlioiI0NatW1WvXj01b95cu3fv1siRIzVp0qRCjfn6669r8+bNbo704pimqZTRTyn988WSr6+CZs2TT+NrPR0WAAAAAAAAgBLIx9MBFCdxcXEaM2aMAgMDNXfuXNWvX1+SdODAAUVEROi9995Tp06dsrdfSHJysl588UUtWbLEyrALJfWdt5T2wfuSpMDJ78v3+hs8HBEAAAAAAACAkoo7os8yb948paSkqG/fvjmazTVq1NDjjz8u0zQ1e/Zsl8ZatWqVunbtqiVLligsLMyqkAslY/NGpb72kiQp4NXX5detu4cjAgAAAAAAAFCS0Yg+y9q1ayVJnTt3zrWvc+fOMgxD33///QXHOX36tIYOHaqYmBhFRETo/fffd3eoF8ffX0aFivJ/erT8H3zE09EAAAAAAAAAKOGYmuNfpmkqKipKklSrVq1c+0NDQ3XZZZcpNjZWx44dU6VKlfIdy2az6Y477tAjjzyimjVr6siRI5bFXRg+1zZTqV/3yzAMT4cCAAAAAAAA4BJAI/pf8fHxSk1NVXBwsIKCgvI8pmLFioqNjVVcXNx5G9EhISF66623rAo1m49Pybih3W635fgJ9yPH1iK/1iPHsBL1FK4ix9Yjx9Yiv7ASz6vz4/XnGvLkGvLkOnLlmqK6V5VG9L+Sk5MlSYGBgfke4+/vL0lKSkoqkpjOx2YzVLZssKfDcKvSpfPPPdyDHFuL/FqPHMPdqKcoDHJsPXJsLfILK/C8cg15cg15cg15ch25Kh5oRP/LZsv8ZMSV6SqcTqfV4bgQg6nTpz3fEHcHu92m0qUDdfp0shwOz+e2JCLH1iK/1itpOS5dOpBP5IsJ6ikKghxbjxxbqyTml5pafJSk55UVSuLrzwrkyTXkyXXkyjWhoYHZvVEr0Yj+V3Bw5t1QKSkp+R6TmpoqSflO3VHUMjJK1gvI4XCWuGsqbsixtciv9cgxrFDSnlO8TqxHjq1Hjq1FfmEFnleuIU+uIU+uIU+uI1fnZ5pFcx4+Ov5XcHCwgoODdebMmXyb0cePH5eUOVc0AAAAAAAAAMA1NKL/ZRiGatWqJUk6cOBArv2nTp1SXFycQkNDz7tQIQAAAAAAAAAgJxrRZ2nfvr0kadWqVbn2rVq1SqZpqkOHDkUdFgAAAAAAAAB4NRrRZ+nevbsCAwM1a9Ys7dixI3t7dHS0Jk6cKEkaNGhQ9vbjx4/rwIED2VN2AAAAAAAAAAByoxF9lsqVK+u5555TcnKy+vbtqwEDBmjw4MHq2rWrYmNj9cQTT6hOnTrZx0+YMEG33XabJkyY4MGoAQAAAAAAAKB48/F0AMVNjx49VLlyZU2fPl27du2S3W5XvXr1NHDgQN10002eDg8AAAAAAAAAvA6N6Dy0b98+e77o8xk/frzGjx9/weOuvPJK7d271x2hAQAAAAAAAIDXYWoOAAAAAAAAAIClaEQDAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYAAAAAAAAAWIpGNAAAAAAAAADAUjSiAQAAAAAAAACWohENAAAAAAAAALAUjWgAAAAAAAAAgKVoRAMAAAAAAAAALEUjGgAAAAAAAABgKRrRAAAAAAAAAABL0YgGAAAAAAAAAFiKRjQAAAAAAAAAwFI0ogEAAAAAAAAAlqIRDQAAAAAAAACwFI1oAAAAAAAAAIClaEQDAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYAAAAAAAAAWIpGNAAAAAAAAADAUjSiAQAAAAAAAACWohENAAAAAAAAALAUjWgAAAAAAAAAgKVoRAMAAAAAAAAALEUjGgAAAAAAAABgKRrRAAAAAAAAAABL0YgGAAAAAAAAAFiKRjQAAAAAAAAAwFI0ogEAAAAAAAAAlqIRDQAAAAAAAACwFI1oAAAAAAAAAIClaEQDAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYAAAAAAAAAWIpGNAAAAAAAAADAUjSiAQAAAAAAAACWohENAAAAAAAAALAUjWgAAAAAAAAAgKVoRAMAAAAAAAAALEUjGgAAAAAAAABgKRrRAAAAAAAAAABL0YgGAAAAAAAAAFiKRjQAAAAAAAAAwFI0ogEAAAAAAAAAlqIRDQAAAAAAAACwFI1oAAAAAAAAAIClaEQDAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsJSPpwMorrZu3app06Zpz549SklJUe3atRUREaHbbrvN5TESEhI0Y8YMrVy5UkePHlWZMmXUsWNHPfrooypfvryF0QMAAAAAAABA8cEd0XlYunSpIiIitHXrVtWrV0/NmzfX7t27NXLkSE2aNMmlMRISEhQREaFp06bJ4XDo+uuvV1BQkObPn69u3brp77//tvgqAAAAAAAAAKB4oBF9jri4OI0ZM0aBgYH69NNP9eGHH2r69On6/PPPddlll+m9997T7t27LzjOu+++q927d6tr16766quvNGnSJK1YsUL9+/fXsWPH9OKLLxbB1QAAAAAAAACA59GIPse8efOUkpKivn37qn79+tnba9Sooccff1ymaWr27NnnHSMhIUELFixQYGCgnn32Wfn4ZM6AYrPZNGrUKIWFhWn16tU6fPiwpdcCAAAAAAAAAMUBjehzrF27VpLUuXPnXPs6d+4swzD0/fffn3eMrVu3KikpSc2aNVNoaGiOfXa7XR07dpSkC44DAAAAAAAAACUBjeizmKapqKgoSVKtWrVy7Q8NDdVll12m+Ph4HTt2LN9xzjeGJNWsWVOStG/fvosNGQAAAAAAAACKPR9PB1CcxMfHKzU1VcHBwQoKCsrzmIoVKyo2NlZxcXGqVKlSnsccP348+9i8VKhQQVLmfNQXw8enZHyOYLfbcvyE+5Fja5Ff65FjWIl6CleRY+uRY2uRX1iJ59X58fpzDXlyDXlyHblyjWEUzXloRJ8lOTlZkhQYGJjvMf7+/pKkpKSkfI/J2hcQEJDn/qzt5xvjQmw2Q2XLBhf68cVR6dL55x3uQY6tRX6tR47hbtRTFAY5th45thb5hRV4XrmGPLmGPLmGPLmOXBUPNKLPYrNlfjpiuPAxgNPpzHef3W53aRzTNAsQ3bnnN3X6dOEb2cWJ3W5T6dKBOn06WQ5H/nlF4ZFja5Ff65W0HJcuHcgn8sUE9RQFQY6tR46tVRLzS00tPkrS88oKJfH1ZwXy5Bry5Dpy5ZrQ0MDsvqiVaESfJTg4846olJSUfI9JTU2VpHyn7jh7X37jZG0/3xiuyMgoWS8gh8NZ4q6puCHH1iK/1iPHsEJJe07xOrEeObYeObYW+YUVeF65hjy5hjy5hjy5jlyd30XcK1sgfHR8luDgYAUHB+vMmTP5NpEvNP+zpOy5o/ObAzo2NlbSf3NFAwAAAAAAAEBJRiP6LIZhqFatWpKkAwcO5Np/6tQpxcXFKTQ0NN+FCiVljxEVFZXn/v3790uSwsPDLzZkAAAAAAAAACj2aESfo3379pKkVatW5dq3atUqmaapDh06nHeMZs2aKSgoSFu3btWZM2dy7HM4HFqzZo0Mw8g+FwAAAAAAAACUZDSiz9G9e3cFBgZq1qxZ2rFjR/b26OhoTZw4UZI0aNCg7O3Hjx/XgQMHsqfskKTAwEDdc889SkxM1PPPP6+0tDRJmYsT/u9//9ORI0fUuXNnXX311UVzUQAAAAAAAADgQSxWeI7KlSvrueee05gxY9S3b1+1bNlSfn5+2rx5s1JTU/XEE0+oTp062cdPmDBBS5YsUbdu3TR+/Pjs7SNGjNCWLVu0YsUK/fTTT7rmmmu0f/9+RUdHq0qVKnr++ec9cXkAAAAAAAAAUORoROehR48eqly5sqZPn65du3bJbrerXr16GjhwoG666SaXxggJCdG8efM0depUrVy5UmvWrFGlSpXUu3dvDRkyhIUKAQAAAAAAAFwyDNM0TU8HgYJzOJz6559ET4fhFj4+NpUtG6yTJxOVkeH0dDglEjm2Fvm1XknLcblywbLbmR2rOKCeoiDIsfXIsbVKYn6pqcVHSXpeWaEkvv6sQJ5cQ55cR65cU1T1lIoNAAAAAAAAALAUjWgAAAAAAAAAgKVoRAMAAAAAAAAALEUjGgAAAAAAAABgKRrRAAAAAAAAAABL0YgGAAAAAAAAAFiKRjQAAAAAAAAAwFI0ogEAAAAAAAAAlqIRDQAAAAAAAACwFI1oAAAAAAAAAIClfDwdAIqeIzpK6ZFz5Yw5JFtYVfn27it79ZqeDgsAAAAAAABACUUj+hKT9slcJY8cJhmGZJqSYSh18kQFTpwiv559PB0eAAAAAAAAgBKIqTkuIY7oqMwmtNMpORw5fiaPGCpH9AFPhwgAAAAAAACgBKIRfQlJj5ybeSd0XgxD6ZFzijYgAAAAAAAAAJcEGtGXEGfMoczpOPJimpn7AQAAAAAAAMDNaERfQmxhVc97R7QtrGrRBgQAAAAAAADgkkAj+hLi27vvee+I9u3dr2gDAgAAAAAAAHBJoBF9CbFXr6nAiVMkm02y23P8DJw4RfbqNTwdIgAAAAAAAIASyMfTAaBo+fXsI3uLVkqPnCNnzCHZwqrKt3c/mtAAAAAAAAAALEMj+hJkr15D9tFjPR0GAAAAAAAAgEsEU3MAAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYAAAAAAAAAWIpGNAAAAAAAAADAUjSiAQAAAAAAAACWohENAAAAAAAAALAUjWgAAAAAAAAAgKVoRAMAAAAAAAAALGWYpml6OggUnGmacjpLzv86u90mh8Pp6TBKNHJsLfJrvZKUY5vNkGEYng4Dop6i4Mix9cixtUpafqmpxUdJel5ZpaS9/qxCnlxDnlxHri6sqOopjWgAAAAAAAAAgKWYmgMAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYAAAAAAAAAWIpGNAAAAAAAAADAUjSiAQAAAAAAAACW8vF0APBuW7du1bRp07Rnzx6lpKSodu3aioiI0G233ebyGAkJCZoxY4ZWrlypo0ePqkyZMurYsaMeffRRlS9fPtfxs2bN0rhx4/Id78EHH9STTz5ZqOspjtyR47OZpqkBAwYoOjpa69atK7LzFmeeyPG3336rYcOG5TvGbbfdprfffrtQ5y9u3JHfgwcPavr06dq8ebPi4uIUFBSkBg0aqH///mrfvn2u451OpxYvXqzIyEj98ccf8vX1VdOmTTVkyBBdc8017rw8wG2oqdainlqPemo9aiqKkifqkjfyxOvSG1lRD5ctW6Ynn3xSXbp00ZtvvunGaD3HXXlaunSp5s+fr7179yo9PV01atRQz549de+998owDIuiLzruyNPx48c1efJkrVu3TnFxcQoODta1116rwYMHq3HjxtYF7yFbt25VRESEXn75ZfXo0cPlx6WlpWnu3LlasmSJYmJiFBQUpDZt2ujRRx/VVVddVeA4aESj0JYuXapRo0bJx8dHLVu2lN1u1+bNmzVy5EhFRUXp0UcfveAYCQkJioiI0O7du3XVVVfp+uuv1759+zR//nytWbNGCxYsUOXKlXM8Zvfu3ZKk66+/XqVKlco1Zr169dxzgcWAO3J8rtdff12bN29WpUqVivS8xZWncpz1PG7RokWexzVp0qTA5y2O3JHf7du3a9CgQUpKSlK1atV03XXX6dixY9qwYYM2bNigUaNG6YEHHsjxmLFjx+rTTz9VaGio2rRpo7i4OH333Xdat26dpk2bpnbt2ll1yUChUFOtRT21HvXUetRUFCVP1SVv46nXpbexokb89ddfeumllyyI1nPcladnnnlGixcvlr+/v1q1aqXU1FRt375dzz//vA4dOqRRo0ZZfCXWckeejhw5op49eyo2NlZXXnmlrr/+eh09elSrV6/W2rVr9dZbb+nWW28tgqspGtHR0Xr88cdlmmaBHpeRkaFhw4Zp7dq1qlixojp06KCYmBgtW7ZMq1evVmRkpOrUqVOwYEygEGJjY82GDRuajRs3Nn/99dfs7VFRUWabNm3M2rVr59ien9dee80MDw83R40aZaanp5umaZoOhyN7+8MPP5zrMbfffrtZu3Zt88yZM+67oGLIXTnOkpSUZD711FNmeHi4GR4ebrZv375IzluceSrHpmmaDz30kBkeHm7u27fvoq6hOHNHftPT080bbrjBDA8PN99//33T6XRm79uwYYNZv359s06dOubevXuzt69atcoMDw8377jjDvOff/7J3v7111+bdevWNdu2bWsmJSW58UqBi0NNtRb11HrUU+tRU1GUPFmXvImnXpfexop66HQ6zX79+mXXiSeeeMLdYRc5d+VpyZIlZnh4uHnzzTebR44cyd6+b98+s0WLFmZ4eLj522+/WXINRcFdeRo+fLgZHh5ujh071szIyMjevnDhQjM8PNxs3ry5mZKSYsk1FLVNmzaZrVu3zn69LFiwwOXHzp492wwPDzf79++fo97PnDnTDA8PN++6664c71uuYI5oFMq8efOUkpKivn37qn79+tnba9Sokf0py+zZs887RkJCghYsWKDAwEA9++yz8vHJvEHfZrNp1KhRCgsL0+rVq3X48OHsx6SkpCg6OlrVqlVTSEiINRdXTLgjx1lWrVqlrl27asmSJQoLCyuy8xZ3nsqxlHkHV2BgoKpXr17o+Is7d+R369atOnLkiBo0aKCHHnoox9fI2rZtq/vuu09Op1MrVqzI3v7RRx9JkkaNGqWyZctmb7/55pvVpUsXxcbG6ssvv3TXZQIXjZpqLeqp9ain1qOmoih5qi55G0+9Lr2NFfVw5syZ2rJli5o3b+7ucD3GXXl67733ZLfbNXHiRFWpUiV7e61atTRw4EBdfvnl+vXXXy25hqLgrjxt2LBBkjRs2DDZ7fbs7d27d1e1atUUHx+vvXv3uv8CitCJEyc0duxYDRw4UPHx8briiisK9HjTNDVz5kxJ0pgxYxQYGJi9r3///mrevLn27NmjH374oUDj0ohGoaxdu1aS1Llz51z7OnfuLMMw9P333593jK1btyopKUnNmjVTaGhojn12u10dO3aUpBzj7N27Vw6HI8cbTknljhxL0unTpzV06FDFxMQoIiJC77//fpGc1xt4KsdxcXGKjY1VnTp1chS9ksYd+U1MTFSDBg3UoUOHPPdXq1ZNUub8XpJ05swZ7dixQ0FBQWrdunWu42+88UZJKjHPYZQM1FRrUU+tRz21HjUVRclTdcnbeOJ16Y3cXQ/37t2rt99+Wx07dtTdd9/trjA9zh15+v3333Xo0CG1atUqz+kSBg8erO+//75A8wMXN+56Ptlsme3Qv//+O8f29PR0JSQkSJLKlClzccF62LRp0/TJJ5/oqquu0uzZs9WyZcsCPX7fvn06evSoqlevnucH/ln/Dwr6Ps4c0Sgw0zQVFRUlKfNTtXOFhobqsssuU2xsrI4dO5bvvH7nG0OSatasKSnzyZ8lax7A0NBQPf/889q4caOOHz+uKlWqqEuXLho0aJD8/f0Lf3HFhLtyLGW+wd5xxx165JFHVLNmTR05cqRIzlvceSrH0n/P48qVK+v111/X6tWrdfToUVWoUEE333yzHn744Vy/sHsbd+X3xhtvzP5DNy8///yzJGXPL3jgwAE5nU5Vr149+86bs9WoUUNSzvcVwJOoqdainlqPemo9aiqKkifrkjfx1OvS27i7HqalpenJJ59UcHCwXnnllfMuFuxN3JWnrDudGzRoINM0tX79em3atEkJCQkKDw/XXXfd5dV10Z3Ppw4dOujLL7/UqFGj9OKLL6p+/fo6duyYJkyYoLi4OHXu3LlQC/EVJ2FhYXrhhRfUo0cP+fr66rPPPivQ4616H+eOaBRYfHy8UlNTFRwcrKCgoDyPqVixoqTMO1Xyk/Wpbtax56pQoUKuMX777TdJmV/H+Pbbb1W7dm01aNBAf/31lyZNmqSIiAglJSUV/KKKGXflWJJCQkL01ltvZb9JFNV5iztP5Vj673n81VdfacGCBbr66qt17bXXKj4+Xh999JHuvfdexcbGFuBqip+ieC7t3btXX375pQzD0E033STpv/eVrPePc+X1vgJ4EjXVWtRT61FPrUdNRVHyZF3yJp56XXobd+dpwoQJ2rdvn1588UVddtllbo3Vk9yVp6ypbkJCQjRo0CA9+OCDmjlzphYuXKhXX31Vt9xyi3bs2OH+Cygi7nw+jR49Wk2bNlVUVJT69Omjxo0b6+abb9Y333yjhx9+WG+//bbb4y9qERER6t27t3x9fQv1eKvex2lEo8CSk5MlKcf8MOfKuoPqfH/AZu0LCAjIc3/W9rPHyPqD45577tHatWv13nvvKTIyUsuXL1edOnW0a9cuvfXWWwW4muLJXTn2lvN6gievdc+ePZKk6667Tt9//72mTZum2bNn69tvv1WrVq30xx9/aMyYMW49Z1GzOr8nTpzQo48+KofDoW7dumV/9SxrrPzOm/W+khUf4GnUVGtRT61HPbUeNRVFyZN1yZt46nXpbdyZp82bN2vWrFm68847dfPNN7svyGLAXXk6c+aMJGn69On69ddf9eabb2rLli369ttvdd999+mff/7RI4884rVTvbjz+VSmTBl169ZNoaGhCgsLU6dOnVS7dm2ZpqnFixdry5Yt7gvcS1n1Pk4jGgWWNZfO2Qsp5MfpdOa7L2suvwuNY5pm9r/PmzdPy5cv18svvyw/P7/s7WFhYRo/frwMw9DChQuVmpp6wdiKM3fl2FvO6wmevNY333xTK1as0DvvvKNSpUplby9XrpzeeOMNBQUFac2aNRf8SnJxZmV+jx07poiICP3xxx+65ppr9Pzzz2fvc/V9xel05nhvATyFmmot6qn1qKfWo6aiKHmyLnkTT70uvY278nT69Gk988wzqlSpUon4gPFc7spTWlqapMx8TZo0SV26dFGZMmV01VVX6aWXXlLHjh116tQpzZkzxz2BFzF3vu6efPJJjR49Wv3799e3336r9957T0uXLtW7776rkydPaujQodlTU1yqrHofpxGNAgsODpYkpaSk5HtM1h+t+X1d4ux9+Y2Ttf3sMQIDA1WrVq08F6SpW7euKleurNTUVO3fv/8CV1G8uSvH3nJeT/Dktfr5+alGjRp5fpJbqVIl1atXT9J/c196I6vyu2/fPvXq1UtRUVFq0KCBPvrooxx5LMj7iiu/wABWo6Zai3pqPeqp9aipKEqerEvexFOvS2/jrjy9+OKL+vvvvzVu3DiVLl3avUEWA+7KU9ZzpVatWnkuTNerVy9J0g8//FDoWD3JXXnasGGDvvzyS7Vs2VJDhgzJUcNuuukmDRw4UKmpqfroo4/cFLl3sup9nEY0Ciw4OFjBwcE6c+ZMvk/IC80lIyl74vj85pPJmtMvv3np8pI1T9T53pi8gbty7C3n9YTifK1Zz2Nv/qqrFfnduHGjevXqpT///FPt2rXT7Nmzcy22YcX7CmAlaqq1qKfWK87XWhLqqURNRdEqznWpOPHU69LbuCNPv/zyi5YvX67Q0FAtXrxYTz75ZPY/CxYskCTt3LlTTz75pKZOnWrNhVjMXc+nsmXLSpKuvPLKPPdnbT958uTFhOsx7spTViO+Xbt2ee7v0KGDpP+mALtUWfU+TiMaBWYYRvaqmQcOHMi1/9SpU4qLi1NoaOh5VynNGiO/rztk3YEVHh4uKfMrSs8995z+7//+L98xY2JiJMmrV5+X3JdjbzmvJ3jqWlNTUzVmzBgNHTo03+KZ9Tz21tWxJffnd9myZXrooYeUkJCg7t276/3338/+RPxsNWrUkM1mU3R0dJ5fx8p6v8l6XwE8jZpqLeqp9ain1qOmoih5qi55G0+9Lr2NO/KUNf/sqVOntGzZshz/7Ny5U5J05MgRLVu2TJs2bbLoSqzlrudT7dq1JWX+npeXrMZh+fLlLzZkj3BXnk6fPi1JeX4rUJJ8fHwkSenp6Rcbsle70Pt4YX8PoBGNQmnfvr0kadWqVbn2rVq1SqZpZn+KlJ9mzZopKChIW7duzZ5UP4vD4dCaNWtkGEb2uUJCQrR06VItXbo0z0+mvv/+e506dUrVqlVTWFhYYS+t2HBHjr3pvJ7giWv19/fX999/r1WrVmnDhg259v/+++/6/fffVapUKTVu3Nit5y5q7srv6tWr9dRTTykjI0PDhw/Xq6++mv3LwbkCAwPVvHlznTlzJs8FJr799ltJmQtbAcUFNdVa1FPrUU+tR01FUfJEXfJGnnhdeqOLzVPLli21d+/ePP8ZN26cJKlLly7au3ev1859LLnn+dSqVSv5+/trz549eTZq161bJynz9emt3JGnGjVqSJLWrl2b5/6NGzdKktcuEuou1atXV1hYmPbv36/Dhw/n2l/o3wNMoBD++usvs1GjRmbjxo3N7du3Z28/cOCA2bZtWzM8PNzcs2dP9vZjx46ZUVFR5rFjx3KM8/LLL5vh4eHmiBEjzNTUVNM0TdPpdJrjxo0zw8PDzaFDh+Y4/plnnjHDw8PNu+++2zxx4kT29oMHD5odO3Y0w8PDzS+++MKKSy5y7srxuWJiYszw8HCzffv2bjmvN/NUjidPnmyGh4ebHTt2NA8fPpy9PTY21uzWrZsZHh5uvvfeexd5dZ7njvzGxsaaLVq0MMPDw823337bpfN+8803Znh4uHnrrbeax48fz96+cuVKs27dumbbtm2z32+A4oCaai3qqfWop9ajpqIoeaoueRtPvS69jVU1wjRNc9GiRWZ4eLj5xBNPWBJ7UXL3665bt25mXFxc9vb169eb11xzjdmwYUPz0KFD1l+QRdyRp7i4OLNJkyZmeHi4OX36dNPpdGbvW79+vdmwYUOzdu3a5q5du4rmoorIU089ZYaHh5sLFizIte/EiRNmVFSU+eeff+bYPnPmTDM8PNzs27eveebMmezts2bNMsPDw82uXbsWOA7DNL10mVp43MKFCzVmzBjZbDa1bNlSfn5+2rx5s1JTU/XEE0/ooYceyj726aef1pIlS9StWzeNHz8+e3tCQoJ69eqlffv2qUqVKrrmmmu0f/9+RUdHq0qVKpo/f36OuX3i4+PVr18/7d27V6VKldK1114rh8OhrVu3Ki0tTf3799czzzxTpHmwkjtyfK4jR46oU6dOqlSpUvYnohdzXm/niRynpaVp8ODB2rRpkwICAtS0aVP5+flpy5YtSkpK0s0336y33347368KeZOLze///vc/ffDBB/Lx8dEtt9yS72JI1157rXr37p3936NGjdIXX3yhkJAQtWrVSidPntSOHTvk6+urDz74IM/FOwBPoqZai3pqPeqp9aipKEqeqEveyFOvS29jRY2QpMWLF+uZZ55Rly5d9Oabb1p9GZZzR56SkpL00EMPadu2bQoKClLLli116tQp/fTTTzIMQy+99JK6d+/uictzG3fkac2aNXrssceUmpqqq666SnXq1NGff/6p3bt3yzAMPf300+rfv78Hrs46Wbl45ZVX1KNHjxz73n33XU2ePFktWrTI8c2CjIwMPfDAA/rhhx9Uvnx5NWvWTEeOHNHu3bsVGhqqyMhI1axZs0BxlJzve6DI9ejRQ5UrV9b06dO1a9cu2e121atXTwMHDtRNN93k0hghISGaN2+epk6dqpUrV2rNmjWqVKmSevfurSFDhuSa9Dw0NFTz58/XRx99pBUrVmjz5s3y9/dX48aNFRERoRtvvNGKS/UYd+TYm87rCZ64Vj8/P82YMUNz587VF198oe3bt8tms6lWrVrq0aOHunfvXmJWn7/Y/GY1HjIyMrR8+fLzHnv2L+fjx49Xw4YNtWDBAq1fv16lS5fWDTfcoOHDh6tu3boXd1GABaip1qKeWo96aj1qKoqSJ+qSN/LU69LbXEr18GK4I09BQUGaOXOm5s2bp88//1ybN29WQECA2rVrp4ceekjNmze3+Cqs5448dezYUYsXL9aMGTO0efNmrVmzRsHBwerYsaMGDBjAh6z/8vHx0fTp0/XBBx9o6dKlWrNmjcqXL68777xTw4cP11VXXVXgMbkjGgAAAAAAAABgKRYrBAAAAAAAAABYikY0AAAAAAAAAMBSNKIBAAAAAAAAAJaiEQ0AAAAAAAAAsBSNaAAAAAAAAACApWhEAwAAAAAAAAAsRSMaAAAAAAAAAGApGtEAAAAAAAAAAEvRiAYANzNN09MhAABQIlBTAQC4eNRTFBc+ng4AwPkdOXJEnTp1cunYbt26afz48RZH5JoOHTro2LFj+u6773TllVdKkvr166etW7dq5syZatOmjYcjdL/Tp09r0qRJql+/vrp16+bpcAAA56Cmeg9qKgAUX9RT70E9RXFDIxrwIl26dDnv/iZNmhRRJMjLuHHjtHjxYr3yyiueDgUAcAHU1OKNmgoA3oF6WrxRT1Hc0IgGvMibb77p6RAuyuuvv67k5GRdccUVng7FEnzdCQC8BzW1eKOmAoB3oJ4Wb9RTFDc0ogEUmZJa3AEAKGrUVAAALh71FChaLFYIlGCpqamaMWOG7rzzTjVq1EhNmzZVRESEVq9ene9jNm3apAcffFAtW7ZUgwYNdOutt+rdd99VUlJSnsdv3rxZAwYMUPPmzdWsWTONHDlSR48ezfPYfv36qXbt2tq0aVOubadOndLHH3+sO+64Qw0bNlSbNm30zDPP5DvWihUr1LNnTzVt2lQtWrTQiBEjFBMTo/79+6t27do6cuTIBfOTde59+/YpIiJCDRo0ULt27bRixQpJUkZGhhYuXKj7779fLVu2VP369dWiRQv169dPX375ZY6xateurSVLlkiSRo8erdq1a2vx4sW5Yu7Xr5+aNm2qRo0a6a677tKsWbOUnp5+wVgBAJ5FTT0/aioAwBXU0/OjnqKk445ooIRKSEjQgAED9PPPP6tcuXJq1aqV0tLStG3bNm3ZskXDhg3T8OHDczxm+vTpeuutt+Tr66trrrlGFSpU0K5duzR58mR99913mj17tkJDQ7OPX7hwocaMGSPDMNSsWTOVLl1a69ev1/bt2/P9pSA/o0eP1qpVq9SwYUN16NBB27Zt0+LFi7Vp0yYtX75cpUqVyj72jTfe0Icffig/Pz+1bNlSdrtd33//vX744QeVLl26wLkaPny4EhMTdd111+nXX3/VNddcI9M0NXz4cK1evVqhoaFq1KiR/P39FRUVpa1bt2rr1q06ceKEIiIiJGXOjbZr1y7FxMSocePGCgsL01VXXZV9jueff16ffvqpAgIC1LBhQ5UqVUrbt2/XuHHjtG7dOk2bNk1+fn4Fjh0AYD1qquuoqQCA/FBPXUc9RYllAijWYmJizPDwcDM8PLxAj3vqqafM8PBw8/HHHzcTExOztx88eNDs2LGjGR4ebm7cuDF7++bNm83atWubHTp0MPfs2ZO9PTU11Xz66afN8PBw84knnsjefvToUbNhw4bmNddcY/7www/Z20+cOGF27do1O+aYmJjsfX379s113qxtjRs3zjHOyZMnzRtvvNEMDw83586dmyPO8PBws127dmZUVFT29iNHjmQff+5585N17uuuu848efKkaZqm6XA4TNM0zZUrV5rh4eFm9+7dzYSEhByPe//9983w8HDzxhtvzLE9K+cLFizIsX3RokVmeHi42aVLlxxxnTlzxhw4cKAZHh5uTpgw4YLxAgAuDjWVmgoAuHjUU+opUFhMzQF4kdq1a+f7z6xZs7KPO3bsmJYuXaoKFSro5ZdfVlBQUPa+atWq6emnn5Ykffjhh9nbP/jgA5mmqeeee0516tTJ3u7n56cXXnhBl112mVasWKFjx45JkpYsWaKUlBT17t1bLVu2zD6+XLlyhVqR9957780xTpkyZXTnnXdKkvbt25e9ffbs2ZKkp59+WjVq1MjeXqVKFb366qsFPq+U+UlxmTJlJEk2W+bbYnp6um644QY9+eSTCg4OznF8r169JMmlr1ZJ0owZMyRlrlh85ZVXZm8PCQnRuHHj5Ovrq3nz5iktLa1Q8QMACo6aSk0FAFw86in1FCgIpuYAvEiXLl3y3Xd2wfvxxx/lcDjUoEGDHAU+S9u2bWWz2bR9+3Y5HI7sx0jKUWizBAQEqFmzZvr666/1448/6vbbb9e2bdskSR06dMh1fP369XX55Zfrr7/+cvnaGjVqlGtbpUqVJEnJycmSMlf8/eGHH2S323XDDTfkOr558+aqUKGCYmNjXT6vpBy/1GS5/fbbdfvtt+fYlpKSoujoaO3cuVOS5HA45HA4ZLfb8x07NjZW0dHRKlWqlOrXr59rf8WKFVWnTh398ssv+u2339S4ceMCxQ4AKBxqKjUVAHDxqKfUU6AgaEQDXuTNN9906bisxRNWr16t2rVr53tccnKy4uPjZZpmdiFt0aLFecfOKtzHjx+X9F8hPteVV15ZoCJ/9rxeWbKKp9PplCSdOnVKSUlJKl++vAIDA/Mcp0qVKgUu8nmdW8qcw+zTTz/V+vXrdeDAAcXGxso0TRmGkX2MaZrnHTsrB2fOnDnv/4usYynyAFA0qKnUVADAxaOeUk+BgqARDZRAWUWxZs2aqlu37gWPz/rE2c/PTzfffPN5j61ataok5Sh0eTnfJ7B5udB4UuYKwdJ/15eXCxXdvGR91els+/fv1/33368TJ06obNmyatiwoe644w7Vrl1bLVu21PXXX+/S2Fm5LVOmjNq3b3/eYytUqFDg2AEA1qKmFgw1FQCQF+ppwVBPUVLRiAZKoKxiUbduXZc+oU5LS5Ovr68yMjL02muvubQybqVKlbR//379+eefqlmzZq79WZ9Gu1PZsmXl7++v+Ph4JSYm5poXS1KBPuE+n5deekknTpzQoEGD9Pjjj+f4pSU+Pt7lcbL+X/j7+7t8twAAoPigpl48aioAgHp68ainKAlYrBAogZo3by5J2rZtW/bXmc72yy+/6KabbtLw4cNlmqb8/PzUuHFjOZ1OrV+/PtfxpmmqX79+6tmzp37++WdJUuvWrSVJ3377ba7jDx06pIMHD7rzkiRJPj4+at68uZxOp9auXZtr/y+//OK2Xy527dolSXr44YdzfXK+cePG7H8/+5PvvD4xv/LKK3XFFVfo2LFj+v3333PtT05O1p133qk+ffq4vLAEAKDoUFMvHjUVAEA9vXjUU5QENKKBEigsLEydOnXS33//reeee04JCQnZ+06cOKHnnntOhw4d0uWXX55dmPr37y9Jevnll/Xbb79lH+90OjVx4kRt3bpVR44cyV40oVu3bgoNDdWiRYu0cuXK7OMTEhL0zDPPFOrrR67IivP111/P8YvEiRMnNHr06Oz/duVrVOdTrlw5SdJ3332XY/u2bdv08ssvZ//32asIZ31Kf+bMmRyPuf/++yVJo0aN0uHDh3M8duzYsdq7d6+SkpJyrFYMACgeqKnUVADAxaOeUk8Biak5gBLr5Zdf1qFDh/Tll19q48aNatCggQzD0I8//qikpCRde+21GjlyZPbxnTt31sCBA/XRRx+pR48eql+/vipWrKjff/9dMTExCgwM1KRJk7ILWfny5TVu3DiNGDFCjz76qJo0aaKKFStq69atMk1T1apV0x9//OH262rfvr369OmjefPm6c4771TLli3l6+urLVu2KCgoSIGBgUpOTpaPz8W9vQ0YMEDjxo3TU089pU8//VQVKlTQ4cOHtWfPHpUpUyZ75ePY2FiFhIRIkqpVqyZJeu+997Rz507ddddd6ty5syIiIvTTTz9pxYoVuuOOO9SgQQOVKVNGP//8s44fP67y5ctrwoQJF5saAIBFqKnUVADAxaOeUk8B7ogGSqjy5ctrwYIFeuyxx1SxYkVt27ZNu3bt0tVXX61nn31WM2fOzLWq71NPPaWpU6eqVatW+uOPP7R27VrZbDZ1795dX3zxha699tocx3fq1EmRkZHq1KmTDh48qPXr16tBgwaKjIxUxYoVLbu2MWPG6JVXXlGtWrW0bds2bd++XR07dtSCBQuyfwkpVarURZ2jf//+euutt9SgQQPt27dPa9asUXJysvr166elS5fqlltukSStWbMm+zG9evVS165dJUnr1q3Tr7/+KilzoYkJEybo9ddfV4MGDfT7779rw4YNKlWqlAYMGKDPP/9cV1999UXFCwCwDjWVmgoAuHjUU+opYJhWfTcBACxw4MABBQYGqnLlyrlWEj558qRat26tyy67TBs2bPBQhAAAeAdqKgAAF496CriOO6IBeJWpU6eqY8eOmj17do7t6enpevXVV2Wapm6++WYPRQcAgPegpgIAcPGop4DruCMagFf5+eef1bdvX6WmpqpWrVqqXr26UlNT9csvv+jEiROqXbu2IiMjs+fEAgAAeaOmAgBw8aingOtoRAPwOgcOHNDs2bO1ZcsWHTt2TD4+PgoLC9Ott96q+++/X/7+/p4OEQAAr0BNBQDg4lFPAdfQiAYAAAAAAAAAWIo5ogEAAAAAAAAAlqIRDQAAAAAAAACwFI1oAAAAAAAAAIClaEQDAAAAAAAAACxFIxoAAAAAAAAAYCka0QAAAAAAAAAAS9GIBgAAAAAAAABYikY0AAAAAAAAAMBS/w/7gULgu5r5qwAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1500x800 with 3 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "eval = \"height\"\n",
+    "fig, axes = plt.subplots(1, 3, figsize=(15, 8), sharey=True)\n",
+    "fig.suptitle(eval)\n",
+    "fig.tight_layout(pad=3.0)\n",
+    "\n",
+    "for layer in [0, 1, 2]:\n",
+    "    for temp_no, temperature in enumerate([180, 200]):\n",
+    "        for speed_no, speed in enumerate([500, 700, 1000, 1200]):\n",
+    "            color_base = np.zeros((3,))\n",
+    "            color_base[temp_no] = 1\n",
+    "            current = df[(df.temperature == temperature) & (df.speed == speed) & (df.layer == layer)]\n",
+    "            if len(current) == 0: continue\n",
+    "            axes[layer].plot(current[\"feeding_rate\"], current[eval], 'o', markersize=5, color=color_base * ((3 + speed_no) / 7), label=f\"temp {temperature} speed {speed}\")#+ np.array([0, 0, 1]) * speed_no / 4)\n",
+    "            predictions_mean = []\n",
+    "            for fr in np.unique(current[\"feeding_rate\"]):\n",
+    "                current_fr = current[current.feeding_rate == fr]\n",
+    "                params = current_fr[[\"temperature\", \"speed\", \"feeding_rate\", \"layer\", \"gap\", \"width\", \"area\"]].values.mean(axis=0)\n",
+    "                predictions_mean.append(height_model.predict(params.reshape(1, -1))[0])\n",
+    "            axes[layer].plot(np.unique(current[\"feeding_rate\"]), predictions_mean, color=color_base * ((3 + speed_no) / 7), label=f\"temp {temperature} speed {speed}\")#+ np.array([0, 0, 1]) * speed_no / 4\n",
+    "    axes[layer].title.set_text(f\"Layer {layer}\")\n",
+    "    axes[layer].set_xlabel(\"Feeding rate\")\n",
+    "    axes[layer].set_ylabel(\"Width mean\")\n",
+    "handles, labels = axes[-1].get_legend_handles_labels()\n",
+    "fig.legend(handles, labels, loc='upper left')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Model based on ellipse formula"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 41,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Linear Regression r^2 on test data : 0.975\n",
+      "Prediction: 0.18659585343559454\n",
+      "Real value: 0.1867976188659668\n"
+     ]
+    }
+   ],
+   "source": [
+    "def geometry_model(X:np.ndarray) -> np.ndarray:\n",
+    "    temperature, speed, feeding_rate, layer, gap, w, area = X[:, 0], X[:, 1], X[:, 2], X[:, 3], X[:, 4], X[:, 5], X[:, 6]\n",
+    "    # w = width_model.predict(X)\n",
+    "    # area = area_model.predict(X)\n",
+    "    delta = w ** 2 * (np.pi**2 + 8*np.pi + 16) + 32 * 0.9 * area * (np.pi - 4)\n",
+    "    b = w * (np.pi + 4)\n",
+    "    denominator = 8 - 2 * np.pi\n",
+    "    h = (b - np.sqrt(delta)) / denominator\n",
+    "    return np.column_stack([h])\n",
+    "\n",
+    "GeometryFeatures = FunctionTransformer(geometry_model)\n",
+    "\n",
+    "height_model = Pipeline([('transf', GeometryFeatures),\n",
+    "                  ('linear', LinearRegression())])\n",
+    "# fit to an order-3 polynomial data\n",
+    "height_model = height_model.fit(X, height)\n",
+    "pred = height_model.predict(X)\n",
+    "r2 = r2_score(height, pred)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {pred[0][0]}\\nReal value: {height[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 42,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Coefficients:\n",
+      "h: 1.1091118401975177\n",
+      "intercept: -0.023084143477631602\n"
+     ]
+    }
+   ],
+   "source": [
+    "print_coefs_and_params_names(height_model, ['h'])"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 43,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "[<matplotlib.lines.Line2D at 0x157813df0>]"
+      ]
+     },
+     "execution_count": 43,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGmCAYAAABiJr6sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYlklEQVR4nO3de1hTZ74v8O9KAgJRERUFFMEL4aJYcaSM0+JlpM6MnXZ60dm9eDjWsd29aS927HR77J6e6T7jeWamY+ucjrWdju5de92tU9u6t5Z66Y2KFVRUREBBvKBBAeUSIGSdP2JiAglkJSvJWsn38zzzdMxlrXe9WZAf7/t7f68giqIIIiIiIhXRBLsBRERERFIxgCEiIiLVYQBDREREqsMAhoiIiFSHAQwRERGpDgMYIiIiUh0GMERERKQ6DGCIiIhIdXTBboC/iKIIi0X+Gn0ajeCX44Yr9qd82JfyYV/Ki/0pn1DvS41GgCAIHr02ZAMYi0XE5cttsh5Tp9MgLk6PK1faYTZbZD12OGJ/yod9KR/2pbzYn/IJh74cPlwPrdazAIZTSERERKQ6DGCIiIhIdRjAEBERkeowgCEiIiLVYQBDREREqsMAhoiIiFSHAQwRERGpDgMYIiIiUh0GMERERKQ6DGCIiIhIdRjAEBERkeowgCEiIiLVYQBDREREqhOyu1ETERGFAnNtGcznKhCZnAXE5Qe7OYrBAIaIiEihzLVl6Nj5MiBo0H1kJ9oGRwHxWcFuliJwComIiEihzOcqAEEDiBZA0MBUdyTYTVIMBjBEREQKpUvKtAcvEC2ISpkS7CYpBqeQiIiIFEqXmoPo+U/AfP44IsdmQm/IRVdTW7CbpQgMYIiIiBRMl5pj/Z+OkyaO2BtERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBARESlYWZUR7xRVofSEMdhNURTuhURERKRQZVVGrP+wHBoB+Pz7egzWD4JhzNBgN0sROAJDRESkUMfrmqERAIsIaASgvOZSsJukGAxgiIiIFCojZZg9eLGIQPbEEcFukmJwComIiEihctLisfzubFSebkbW+OHIm5KIpqa2YDdLERjAEBERKVhOWjxy0uKh03HSxBF7g4iIiFSHAQwRERGpDgMYIiIiUh0GMERERKQ6TOIlIqKwYK4tg/lcBXRJmdCl5gS7OZJ1nSpF4/fV6BkxCZrkacFuTtAxgCEiopBnri1Dx86XAUGD7iM7ET3/CVUFMY7th2hRXfv9gVNIREQU8sznKuxf/hA0MJ8/HuwmSaL29vsDAxgiIgp5uqRM+5c/RAt0iRnBbpIkam+/P3AKiYiIQp4uNQfnspfAdPoYosZlIV1l0y+61Bzof/YkdJeqYWYODAAGMEREFAbKqoxYv9cCjZAByykLlo80IictPtjNkiRy/HTETc9HU1MbzGZLsJsTdJxCIiKikNd7V+fK083BbhL5iAEMERGFvN67OqePGxbsJpGPOIVEREQhz3FX5/Rxw1Q3fUR9MYAhIqKQZitgl52UiZx56kreBa63PzI5C4jLD3ZzFIMBDBERhaxQKmDXfWQn2gZHAfFZwW6WIjAHhoiIQpbaC8D1br+p7kiwm6QYDGCIiChkqb0AXO/2R6VMCXaTFINTSEREFLJ0qTmInv8EzOePQ5eYoarpI8C5/ZFjM6E35KKrqS3YzVIEBjBERBTSdKk5qgtcHNnar9Nx0sQRe4OIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOl4HMCUlJVi6dClmzpyJnJwc3HPPPdi+fbtPjfnkk0+Qnp6OZ555xqfjEBERUWjzahXStm3bsGrVKuh0OuTl5UGr1aK4uBhPPfUUqqursWLFCsnHPH/+PP73//7f3jSHiIiIwozkAKaxsRFr1qxBdHQ03nrrLUyePBkAUFNTg8LCQrz66quYN2+e/XFPiKKIZ599FleuXJHaHCIion6VVRlxvK4ZGSncxDGUSJ5C2rJlC0wmExYvXuwUpEycOBFPP/00RFHE5s2bJR3z73//O/bt24fc3FypzSEiInKrrMqI9R+W44sD9Vj/YTnKqozBbhLJRHIAs3fvXgBAQUFBn+cKCgogCAL27Nnj8fEqKyvx5z//GXPnzsVdd90ltTlERERuHa9rhkYALCKgEYDK083BbhLJRFIAI4oiqqurAQBpaWl9no+NjcXIkSPR0tKCCxcuDHi8rq4uPPPMM9Dr9XjxxRelNIWIiGhAGSnD7MGLRQTSxw0LdpNgri2D6du3Ya4tk/S+0hNGvP5xOUpPcBQJkJgD09LSgs7OTuj1esTExLh8zahRo2A0GtHY2IjRo0f3e7yXXnoJJ06cwCuvvIKRI0dKaYpH5C67rNVqnP5LvmF/yod9KR/2pbyC3Z+5maPx5C81qKhrQmZKHKYbgpsD03WqFB07XwYEDbqP7IT+Z08icvx0+3PmsxXQjcm0P2ZTesKIde8fgkYjwGIR8eQvbwj6tQSbpACmo6MDABAdHe32NYMGDQIAtLe393us4uJibNq0Cbfffjt+8pOfSGmGRzQaAXFxetmPCwBDh7q/fpKO/Skf9qV82JfyCmZ/zsvTY15eatDO76jx+2r7ztIQNNBdqkbc9Hy0ndiPpv9aBwgadB7egcGLfgO94Xpe6MmGk/bgRaMRcKqhVTHXFCySAhiNxhpBC4Iw4GstFovb565cuYLnnnsOo0ePxpo1a6Q0wWMWi4grV/oPoqTSajUYOjQaV650oKfH/fWRZ9if8mFfyod9KS9/9md/IxZK1TNikj14gWiBecQkNDW1ob2yzCmwaT5Rhq74LADW0Zf681fswYvFImJ8wmA0heCu1EOHRns8WicpgNHrrSMaJpPJ7Ws6OzsBwO0UEwC88MILaGhowJtvvomhQ4dKaYIkZrN/fvn09Fj8duxwxP6UD/tSPuxLeQ3Un1KXOptry+xTMZ2Hd8Ay/wlV7DitSZ6G6PlPwHz+OHSJGdAkT4PZbIEmIQM4vMMexGhGZ8BstthXUWmujRvMyByNH00ejakTRoT9/Sk5gNHr9bh69SpMJhOioqL6vObixYsArLkwrpSXl+PTTz/FsGHD8NFHH+Gjjz6yP3fmzBkAQFlZGZ555hlMnDgRjzzyiJQmEhGRyjh+SX/+fT2W3509YBBjPlfhNGJhPn9cFQEMAOhSc/q0VZea4xTY2J7vvYoqcYQe0w3xYR+8ABIDGEEQkJaWhoMHD6KmpqZPsbrm5mY0NjYiNjbWbQKvLTemubkZn3zyicvXnDlzBmfOnMGNN97IAIaIKMS5Wuo8UACjS8pE95Gd9iBGl5gRoNb6j6vAJiNlGD7/vt7eP9kTRwSpdcojuRJvfn4+Dh48iKKioj4BTFFREURRxKxZs9y+Py8vD5WVlS6f++ijj/Dcc8/htttuwx//+EepTSMiIhXq/SXtyVJnxxELQRtpHZG59ngoyUmLx/K7s1F5uhlZ44cjb0piSOa+eEPyuraFCxciOjoamzZtQmlpqf3xkydPYt26dQCAZcuW2R+/ePEiampq7FNLREREjmxf0gUzkj2aPrLRpeZAl5iBroOfoPtoETp2viy5tooa5KTF4555aWG/bLo3ySMwCQkJWL16NdasWYPFixcjLy8PkZGRKC4uRmdnJ1auXImMjOtDeS+99BK2bt2KO++8E2vXrpW18UREFBpy0uK92qdIzbkw5BuvdqNetGgREhISsHHjRhw8eBBarRZZWVlYunQp5s+fL3cbiYiI+iirMqLJGItch2XJoZALQ54RRFEUg90If+jpseDyZXnnCXU6DeLi9GhqamMGuAzYn/JhX8qHfSkvf/Wn48qlLF09FmWakZg1PaRHX8Lh3hw+XO9xHRjWyiYiItVxXLl0zJyMbwbNCunghfpiAENEFKbKqox4p6gKZVXq2xxQiZs0ekPNn0GweZUDQ0RE6uZN8TglcVxenD7Os+q9SqP2zyDYOAJDRBSGXBWPUwtzbRlM376N7IgzuGdeGgCochRDzZ+BEnAEhogoDHlTPA6QvmeR3Bz3QOo+shPnspdg/V6LKkcxMlKG4fyhb2GIaMCJ7gSkj8sOdpNUhQEMEVEY8mYKRglTHr3rvphOH4NGyJC0DYFSZEecwaQhu2GBgNlRFYiOmApAHW1XAk4hERGFKVuFV0+/8P055WGbFhqokq4uKdMevEC0IGpcluqSeW2Ju+ePlQKCBhqI9iJ85DmOwBARkUe8nXYaSO9poej5T7hdEt171+b01BwsH2lUTTKv4yjWeZ0ODw5hET5vMYAhIgqQYOeP+MpfK3+kbgfQe9dmb7chCIbe9Wv2JyzCj+KvQJeYwTo2EjGAISIKACXkj8jBH8GCLikT3Ud2hsVIRO9RrLjMGxE1QH/aAt/JE4ZjXp4+QC1VPgYwREQB4Cp/RI0BjD/0nhYaaCRCzSNZUkexege+g/WDYBgzNECtVTYGMEREAeCv/JFQ0XtayJ1AjmT5K1CSMorVO/Atr7nEAOYarkIiIgoA21/eBTOSVTt9pASBKv5mC5S+OFCP9R+WB61IXu8tE7InjghKO5SIIzBERAGipmRTpQrUSFYwpvxcjfg4TjlljR+OvCmJaGpq82s7PGmXEjCAISIi1QjUHkgDBUpyf6n3NzVmC3x1usBPmig5+ZwBDBERqUogRrJy0uLx7Gxrpd+ocVlIdzjfQF/q5toymM9VQJeU6fHS6P5GfGzHi0zOAuLy5b1QD9qVHVmPSboGVJsTUHk6mQEMEREFlzdftOHCXFuGpPJN1qXd5SUwJ8ba+2igYMPTonyO3I349D5e2+AoID7LX5fdx3T9WSQN3o0eUcCcqAqci0kBkBaw8/eHSbxEREFmKy0fyERR2xdj99EidOx8ecAS/uHGVXE9m96JtY7TS/29rz/ukrz77P1Ud0TW6xxIingOIjTQCiJEaJCC8wE9f38YwBARBVGwVrt4+0UbLnrvueRYXK+/FWX9vW8grvam6rP3U8oUeS7QQ7qkTAiwnl+AsooMcgqJiCiIglXgztvqt2qadvIl0Xag4nrZEWeQGV0BXUQmHHeQllqUT0o7IsdmQm/IRVcAVyHJfT1yEkRRFIPdCH/o6bHg8mV5P2SdToO4OD2amtpgNltkPXY4Yn/Kh30pn0D3pWNCqEWE/S/6QCxdNdeWSfpicszHgGjxKL/DH/3pSRDlrl/lOr/UfpBDOPycDx+uh1br2eQQR2CIiILI1bLgQC1d9bT6rY3UTRf9wdMkWX+ObPXXD0qtmRKKmANDRBRkvXMfAlVtVipf8jvk4mnuTn+Jtl6dt7YMpm/fhrm2zG0/KKV6b7jgCAwRkcIodd8kJeRDeJq7I2fBO1ejPq76gRt2BhYDGCIihenvyzfYUxRSp538cX5Pgyi5Ct65GvWJmnlvn3MrNfAMVQxgiIgCRMoKHldfvkou6x5IngZRcq2YCvSoT7CDVLVgAENEFADeVmh1xCkKz8nR3zbl3WPRNHoR0iIakJg13a+jPgxSPcckXiIiD/lSMVeOwnFyJ6aGMrkK9dkCirePR+NfD49HeffY/s/rkOzrDaUmcCsRAxgiIg/4usJEjhU8/VWADSeeBJJyrZiybWb4i+j9yI6s7zegkGN7hoyUYcjS1eOumP3I0tUzSO0Hp5CIiDzg6/SNXCt4ArETc6BJyVXxdIpFrv6WspmhHHVysiPOYNKQ3bBAwOyoCkRHTIVjpV+6jiMwREQekGP6Rpea43L1SjiTOmohZYpFjv5ObjkIEfBoM0M5Rn1sQZAGIveoGgBHYIiIPCBnXRG6TuqoRSCXKptry9Bz+iCEa/8eaDNDOUZ9vN2jyiacVjAxgCEi8pC/pm/UtEGi3KR+YQcykHQKrgBoUwZevu1rnRxfgqBwW8HEAIaIKIjkXO6rRt58YQcqD6h3cBWZPsvv5wS8D4LCbZk9AxgioiBSwgaJwSb1CztQ0yRK2DpBinCrBMwAhogoiHzNeQg3gZ4m8WY0JFh5KDlp8Xh2tgam08cQNS4L6SE8+gIwgCEiCiq1/ZXvD1K+8G11WSbpGlBtTsBXh0YoKmk1mHko5toyJJVvsgbD5SUwJ8aG9P3EAIaIKMik/JUfagm/Ur/we9dleb0O+KIm2e/BgqdBVjDzUMJtOpJ1YIiIVEKOSq9KI7V0fop4DiI00AoiLBCQFtHg97L7UqowB3O7B7mqD6sFAxgiIpWQa38fJZH6ha9LyoQAi73YW1V3Qr/v9WX/KhspQVYwt3uwTUdGTLklLFazcQqJiMgHgUzYDIWE395TYFLruvTOGbr1fAvmuUlaLasyYve27TBENGD3oQTg9gVuj9/f5yh1dU8wt3vwtQ6NmgiiKIrBboQ/9PRYcPlym6zH1Ok0iIvTo6mpDWazRdZjhyP2p3zYl/KR0peO+RsWEQH5i9tcW6bIhF93uTmO/WmqPmCveQPR4vMogWMNHVfH2/XxZ8i98IF95GR/wiL8+PZb+xzHk8+xrMoY9CrM4fBzPny4HlqtZ5NDHIEhIvKSPxM23QYECvoL29ZGQTcIXQc/GbAYn9xJpgMdL9N8FID1swGAzO6jAPoGMJ58jv4YVQm1hOxAYw4MEZGX/JWwqYZkXcc2WoMXYcDcHLmTTAc6Xqw+0vnfgwe5PE4wEm9t/dd55HPFfsZKxxEYIiIv+WtfHjUsh3XeJ0gARHHAwETumjcDHS8yYzY6Th+8/m83WwEEowDc+WOlGCIK0AoiekQB54+VIllhn7HSMYAhIvKQqyF/f0wtqCFZt88+QdNug9jTNWBgIvcUWH/H8zRgCkYBuKruBOReC160gogqcwKS/XrG0MMAhohUJVhl2gO56aIaqvOqoY2AZwFToEa8HO/duKwb8Xp1I9IiGlDVnYC5c2+U/XyhjgEMEalGUMu0B3haR0nJuu7ItU9QsJNZAzHi5erenXv7AlSebsbcIK5sUjMGMESkGsEs066GaR2lc/Ulnh1xJmAjW+54M5okNejqvYdT5elk3DMvzaf7t3cbgh0IBhoDGCJSDakFxeSklimTYPFkas9VAJoZXQERGgiiBSICl7Dc+8te6n5UUoOu3ns4nYtJAZDmU/s7dr4MCwR0H9kJ3fhcmE/tBwQhaIFgoHkdwJSUlGDDhg2oqKiAyWRCeno6CgsLsWDBAo+Pcfr0afy///f/8M0336C5uRnx8fHIz8/HI488gsTERG+bRkQhyl+rfjylhmmdYPB0as9VAFrXmIQkWK4ls1pQh0Ske3hOb3OhpAQgLqe8vJhOTBHPoQsaaAVroJaC85La3JvjKiaLCJhP7YcIQBBFQBAUuXJNbl4FMNu2bcOqVaug0+mQl5cHrVaL4uJiPPXUU6iursaKFSsGPEZtbS1++ctfoqWlBRMmTMC0adNw6tQpvPfee9i+fTveeustZGRwiJaInAWzTDs5s325V59tBjDw1J6rAPSdujHY3joXE3UNqDEnILF9zIABjJRcKF8CEHfnsU0nWiBA4+F0ouMUpCDDFGTvVUw9IqC1rWaH6PcpTiVMV0kOYBobG7FmzRpER0fjrbfewuTJkwEANTU1KCwsxKuvvop58+bZH3fn17/+NVpaWrB8+XI89thjEARrqcS//OUvWL9+PdasWYMPPvjAi0sionAQrNVIZGX7chcAOO5HM9DUXu8A1Doqk4yj3cmwiMAcD6YFPc2FGigAGSifyd15yrvHYvfVuddXEHWPxUBf4XJPQTquYuq06PCTmHJ7EFM17CZM92NQEcgVef2RXIl3y5YtMJlMWLx4sVOQMnHiRDz99NMQRRGbN2/u9xi1tbU4fPgwxowZ4xS8AMCjjz6KmJgYHD58GM3NzVKbR0RhwPbF9MWBeqz/sNynnYbJO7Yv996b6U2bNFJSQOm4e/OzszXINH4+YFVaTyvnuttF2tNdm92d53hdM46Zk7G1PRfHzMn97k7tSJeag6iZ98ryZZ+TFo+5ty9A2+S7IOTcgdevzsVXnZl4/epcnBr9Y5+P3x+l7IoueQRm7969AICCgoI+zxUUFGD16tXYs2dPv8dITU1FcXExrly54hS8AEB3dze6u7sBAFqtVmrziCgMBHM1ElnZ8llsIzDCtemL/Buk5y/mpMVfW420Cd0e/FXvaS5Uf0nfnuQzuTtPMJPJe7fP1qYPAWwtroMgAEeK6zAhaajffiaUsiJPUgAjiiKqq6sBAGlpfbOnY2NjMXLkSBiNRly4cAGjR492e6zhw4dj+PDhTo91dHTgd7/7Hbq7u1FQUIAhQ4ZIaR4RhQmlfIGEM8cv9yRTFWJba30qwy81MdaTXCg5kr5dnSfYyeSudHVbAhbU61JzcC57yfWtF9SQA9PS0oLOzk7o9XrExMS4fM2oUaNgNBrR2NjYbwDjqKioCO+88w4OHz6MK1euYO7cuVi7dq2Uprmk08m7V6Vti29Pt/qm/rE/5RPoviw9YURF7WVkpg7HdEPgf3nnZo7Gk7/UoKKuCZkpcbK2QWpfdp0qhflsBXRjMhE5frps7VCD3MzRuCHqLNr+6317GX7L2GFO/eBpf0YmZzlvTTA2U5bf4bmZo5GbORpdp0rR9V2R/XPy9R62HTeQ+uvLyROGOwX1WeOHy/4daFN6woh1ey3QCBmwnLLgydGXgvJ7QFIA09HRAQCIjo52+5pBg6y7fba3t3t83OLiYnz99ddO56mtrUV2draU5jnRaATExem9fn9/hg51f/0kHftTPoHoy31HzmPd+4eg0QjYUVKP//XAjcibEviyB/Py9JiXl+q343vSl20n9qPpv9YBggadh3dg8KLfQG/I9VublGDfkfM4XNOIqRNHIm9KIhq/r3YaOdFdqkbc9Pw+7xuwP+PyUXapHS01hxE7cSomuDiGo7YT+9FRdwTRKVMG7PPen9O5Gx/Cuv82DXgP975WpXDVl/Py9BisH4TymkvInjjCr+092XASGo0Ai0WERiPgVEOrX38W3ZEUwGg01miud96KKxaLxePjPvzww3j22Wdx4cIFvPXWW9i0aRMKCwvxn//5n5g4caKUJjqcX8SVK54HUZ7QajUYOjQaV650oKfH8+sj19if8glkX+4/et76V55FhEYA9h9rgGHMUL+eM5Ck9GV7ZZnTl3fziTJ0xWcFqKWBV3rCiKKtn8IQ0YB/FCeg9c6fY8qISfbrh2iBecQkNDW12d/jaX+WnjBagwrBAEuVCU8OrXX7V33XqVK0XQtIrpR8Cv3Pnux39Kv353S58qB19KCfe7j0hNEaqAvAti9P4slf3uDTKIMcI3UD9aVhzFD7dTh+BnKbkDDE3ncWi4jxCYNlO9/QodEej35KCmD0euuIhslkcvuazs5OAHA7xeRKfLz1pkhOTsZzzz2Hjo4OvPfee3j99dd9mkoym/3zi7ynx+K3Y4cj9qd8AtGXhuRh2FFyfajaMDY2JD8/T/pSk5ABHN5h/3LUjM4Iyb6waSz/Dg8OsVaTnR1Vgf1HRkJz+61Oy4M1ydNc9sFA/Xn05GWnHI5jpy5j6oQRLl/bVX/MKSDpOlMBTfI0t8fu/TkNGpcFyylLv/fw0ZOXnUr/HzuV7LY9A3Fcdtx5eAcsPi47DvbvzKkTRjjlAE2dMCIo7ZEcwOj1ely9ehUmkwlRUVF9XnPx4kUA1lwYb/3iF7/Ae++9h6NHj3p9DCLyDyUmMAZLuG0vkBbR4FA4TUCargGAPBWKpSRmS10F0/tzSk/NwfKRxn7vYTlL/wd6I9BAUEJBSUkBjCAISEtLw8GDB1FTU9OnWF1zczMaGxsRGxvbbwLv999/j48//hhTp07FokWL+jwfGRkJADCbzVKaR0QBooRfXkoRTtsLJGZNR8eZr2CBNYhJzJIvaVlKYOxN4FjePRbH2wYjo3sYcjDwPZwinkPnteu0QPCp9L9Slh2HGsl1YPLz83Hw4EEUFRX1CWCKioogiiJmzZrV7zGam5vx/vvvY//+/bj77rvtuTU2X375JQAMWM2XiMKPEkqYhyt/jzhJCYylBI5Sth6wqROSkATx2pSW6PEeTe7aGk4jdYEieY3VwoULER0djU2bNqG0tNT++MmTJ7Fu3ToAwLJly+yPX7x4ETU1NfapJQCYNWsWxowZg1OnTuGPf/yjU8Lvrl27sGHDBmi1WjzwwAPeXBMRhShbLkH30SJ07Hx5wIqt4cxcWwbTt2/b+6j3v70lZzVZOdvVH3cVeftz9qJzUupZo29JqnL3G3kxApOQkIDVq1djzZo1WLx4MfLy8hAZGYni4mJ0dnZi5cqVTpswvvTSS9i6dSvuvPNOe0JuZGQk/vSnP+FXv/oV/va3v+Hzzz9Heno66uvrcfz4ceh0OrzwwgscgSEiJ6GYS+APvfeqiZx2G7oOfhL0vWsGaqcn7fJmDyxvCh+6y/fxVlmVEV8dOgcRAmbdkMgpWBl4tRv1okWLkJCQgI0bN+LgwYPQarXIysrC0qVLMX/+fI+OkZOTg48//hivvvoqvv76a+zevRuxsbH46U9/imXLlvlUA4aIQhNzCTzTJ9CrP6zIwE9qQOrNVBDgXeK5nPk+tnbbHKpu9Ljt5J5XAQxgzYXJz++/0BAArF271u1S6OTkZPz+97/3tglEFGaYS+CZPoFe8lR0XapTXOAnNSD1ZQ8sqYnnct5rx+ua+zzG/bt853UAQ0QUDOG06sdbrr58taMmKC7wkxokZKQMw/lD38IQ0YAT3QlIHyfvSH3vBHG57jXbFJYj7t/lOwYwREQhqPeyYbkDP7lWg7lqV2XxHmiqv8HgmAjE/+AW+/PZEWcwachuWGAtpBcdMRWAPKMY3uTjeMo2hVW7/yskdp9BnGGq15te0nUMYIiIQoQtwTUyQoPPiusk54p4yp9f9pXFe5BUvsn6jw6gY+cx+/FtOTMaP+TymM9VQIQGgmiBCPnzhLIjzmBS67Zrm16WwpwYq5iRMLXiNsBEpEqBWH6rJrZE0S8O1OOz4joIkLZsWApXybdyMdUdg0W8/m8RsB9fl5TptO+SnLk8dUISBFjQIwoQYEEd5N0M0Z99Fq44AkNEHvFm+aq/+HMEQK0cE1wFARCvBS+eLhuWQs7VYL3vq6iULGjKS+zPC4D9+P5M4i5tG4PtrXMxUdeAGnMCEtvHeF24zhWuoJMfAxgiGpC3y1f9hfVg+upd6+TWmSnoNls8WjZcWbwHprpjiErJQvrMOQOeS5eag3PZS2A6fQxR47KQ7mXfu7yvZs5BJQBNzTcYHO2cA2M7tz8+a2v/JeNodzIsIjBH7qCPK+hkxwCGSKGUNOLRe/lqU0UJTMaWoJXz51+zfXm7yaYt56RHFKAtL0ElMGAQU1ZlxPq9FmiEDFhOWbB8pNGre9Tdsuj0mXMADwIpOdn676tD52GduJIfV9DJizkwRArkmM+w/sNylFUZg9qejJRh9i+ZLF09chs+CGo5f9tfsxFTbuH0kYOctHjcMy/NZTBRVmXEO0VVfe4lU90xp4qzptPHBjyPN6X5XXG8r/wx1eWNg9WNOFxzSRE/d9Q/jsAQKZAvBbv8wfGv+5s6TwFngz99w79m+3K3tLm/KcColCxoy0vsQUzUuKwBz+NNaX5XPBk1kjq95Yvjdc3IjqzHJF0Dqs0JqDyd3KdN3ExUORjAECmQXF8QcrJVMjXXtqLjzFecvlGY/hKb+wuI06/lnNjzWTwIErydrnJ3LHfv92Z6yxfT9WeRNHg3ekQBc6IqcC4mBUCa/XkmjysLAxgiBZLzC0JuTEZUJneJzZXFezD+7CFk6YbhmDnZHhA75Vh5kXNiCzxsU1P+yNVyOb3lxwAmRTyHLmigFay1YFJw3ul5Jo8rCwMYIoWSundLIHH6RnlcJTbbRjBGiwImDxFRNPgXSM29GQBkWVXm79Vp3kxv+cKxDwUXo4tMHlcWBjBEQaak1UakXq5Gxkzfveo0gjFBex43pMXjnaIqWXKs/J2r5c30li8GGl3k6KOyMIAhCiKl1Vchdes9MuZuBEOuHKtA5GoFekn1QKOLHH1UDgYwREGktNVGFFrcjWDIlWPlz1wtjkzSQBjAEAWRElcbUWhJnzkHZSMno7SuGe1V1wvOZUecQWZ0BXQRmfBlR2d/5GpxZJI8wQCGKIiUvNqIQoOrYCA74oyilwNzZJI8wUq8REHWX/VUJeHuz+rkGAwAwFeHzil+Z2QlVugl5eEIDBENiAW81Ms2TWlzsPoS6sYkIela8OLrcmB/VKblyCR5ggEMkUIpqWQ5C3ipV05aPG6YNBI9dWVIi7CWyC9r/xEm9rMc2NN7z9fAtr9tApRaB4nJxcrBAIZIgZQ24sECXur2iyEHMWLIbvSIsJfI16XOcXlP2e49C4QB7z1fAttAbxMgByYXKwtzYIgUSGk5Ctz9Wb3MtWUYUbcLIgCtAIgQ+pTId3T+WCl6RAEaWIvfnT9W6va1uqRM+z0qNbD1ZhfsYJNrF26SBwMYIgXy5YvBb21KzUHUzHsZvKiMNRgWIFz7twCx3/vp++Y4e1ChFURUmRPcvtaXwDYqJcvpPP7eJkAOTC5WFk4hESkQS5arm5Lyl65P/wmAKCJy2m1u21RWZcQnp4fhVMRcTIpoQHV3AubOvbH/4/dTmbasyogT9c3InZwIw5ihTs8FepsAOTC5WFkEURTFYDfCH3p6LLh8uU3WY+p0GsTF6dHU1Aaz2SLrscNRMPozVBPweG/Kx9e+dMxfgmhRxJSbubbMZTDcO9B6p6gKXxyoty+5njZpJFYsnOrVOR3zRSwi8OQvb8DUCSPkuJywFQ4/58OH66HVejY5xCkkChu2X6hfHKjH+g/LUVZlDHaTKAQpLX8JcD39Zwu0uo8WoWPnyzDXljlNkQBA/g2JXp/zeF0zsiPr8Yvo/ciOrEdFXZOvl0HkhFNIFDZY3ZMCwTZlY4EAjULyl1xxFWjlzMzBs7M116d1fPj5mK4/i6TBu9EjCpgTVYELMakAJvnc7lAdRSXpOAJDYUOpCXiscBtayrvH4vWrc/GlKQOvX52LmvMtivx8bYniFgj2RHFzbRmSyjdhwpXvkVS+yac2p4jnIEIDrSBCFDQYh3M+t5mjqOSIIzAUNpSYgKe0ei/ku+N1zThmTsaR7mRkR9YjqXwTuhX4+ZZ3j8Xuqw7Jut1jkWn8XLaChY61gwTRYg2YfGSblpqksxbkqzydrIifYwoOBjAUVpRW3ZMVbkOP4w7jk3QN9qkkEcr6fL86ZB0RERz+nT1DvoKFtpV0lgvHMcyQg674LJ8TT3tPS52LSQGQ5tMxSb0YwBAFESvchh7Hkb5YkwmasxXXap1YUIdEpAe7gdeM7TqJW4ZcDwaKuoZCl3qnrMv3dak50E36AfRxenQ1+b4qNEU8hy5ooBWsAWF/Bfko9DGAIQoi1nsJTbaRvneKgAOtczFR14AacwIS28e4DGD62xPIU1KTW3OHXUbP1euVcGcMuwyg/7ouwdZnWooBf1hjAEMUZEr+wiDfREZoUN6VjCNdyRABzHGROC7HnkDe7NGTmDUdHWe+ggXWICYxa7r9WJ4GQoFeEcSAnxwxgCEi8oOyKiPqvv8ad8Y0oKo7ASkzbnb6krd9+Y8/ewijr5XTt4iApuYbQGIA402JAFfBwECBkGPhu/LusbJsbCi1ajEDfrJhAENE5AdNx0rwoEOOyf6WkQAmAnAeMcnSDcPkIdbStxoBSGivgrm2TNKXtGPisJQSAb2Dgf4Cod4r5ppGL4JGiPaprhJX4ZEvWAeGiMgP0iIanHZbTtM12J9zDBSOmZNxOmIC7Hu6eFG915Y4XDAj2euREMAaCGXp6nFXzH5k6eqdAqHeK+bSIhp8rqukxKrFpB4cgSEi8gN3OSaANVA4f+hbGCIacKI7AbqMWRDKT7pcjebpFEt2xBlkRldAF5EJwLsAJjviDCYN2Q0LBMyOqkB0xFT7sXqvmEvMmo5n41p8qtrLVXjkCwYwRER+0F/CaZ9AIfEJILHva21TLBYI/U6xyDUVYxsR0bioS6RLzcG57CX2gGUigKTyTdbgo7wE5sRYyefsfcx0Th+RBAxgiIg84M2KG3cJp64ChTokwlTXhCi0ID3V+rrzx0oxxGEa6vyxUiT3czxfCyL2NyJSVmXE+r0WaIQMWE5Z8MLUUgzz8Zy9j7l8pFFRhSZJ2ZgDQ2GF+w6RN+Teg8e2D5EtUGi40o2k8k1IadmPpPJNqCzeAwCo6k6wBy9aQUSVOcGj43k7FWMbNYqYckufUZzeCb5V5gSfz+kqaZjIUxyBobDBFQ/kLTl3MreO5AzG9OwlSMF56BIz0PJdMYY5jLSYTh8DZs5BXNaNeL26EWkR1qXYc+fe6PKYctZHcTdq1HulU1zmjYiemuTTOb1dPUUEMIChMMJ9h8hbcn3ROtVZEYHldxcgJzUeLUfPQ3ulxD7S0jI4FYB1dRFuX4DK082YO8AGpP6uj+J6M9R4n86pxA1WST0YwFDY4IoH8pZcX7TudlMu6xiL7x12htZ1jMUsh3NLPZ+/KuT6YzNUpW2wSurBAIbCBsuQky/k+KJ1t5uycK0KjGB/pejmCAPzZlsBIjViAEMhz/mvUZYhVzJfRw7k2BTRHakl711xt5vyT8Y0IemyQ2AzJsXrdsqZr0OkZAxgKKTxr1H18PWzkmNTRFdtOl7XbB05uVbzxJcEcHe7KbsLbLzBxFgKFwxgKKTxr1H1cJcf4ilT3TGn0v22lTzeKj1xPaAaHL0fiVHWoMOnOitupjHdBTbeyEmLx7OzNT5VyCVSAwYwFNL416h6uMsP8VRUSha05ddX8kSNy/KpPRW1l+33TbU5AXNQIUsCuKvVQnLmZ5lry3yukEukBgxgKKRxmaZ6+DqNkj5zDiqB6yMPPk4fZaYOx44Sa/Bb3pWMcw51W/wREMi1DJrlAihcMIChkMdlmuogxzRK+sw5Xk0bOSXoTvoBAGC6wTn4DeRUjC/JzCwXQOGCAQwRKUKwlrn3rtCs0T4JxOUDCE7wW1ZlxO5t22GIaMDuQwnA7QsktYHlAihceB3AlJSUYMOGDaioqIDJZEJ6ejoKCwuxYMECj49x6tQpbNy4EcXFxWhsbERMTAyys7OxZMkS5Ofne9s0IlIpf1eTtXEccTGfq4AI66iPCI11CmZ6fp/XBSoQaDpWggeHWHOBZkdVYH/FSCDtVknHCFQ/EgWTV5s5btu2DYWFhSgpKUFWVhZyc3Nx9OhRPPXUU3jllVc8OsaBAwdw11134aOPPsKgQYMwe/ZsjBs3Dl9//TWWLVuGv/3tb940jYhCjNwbcNpGXDqPfI6OnS+j4aoZAizoEQUIsOA0kgAAXadK0bHzZXQfLULHzpcDtgFoWkSD02qqNF1DQM5LpDaSR2AaGxuxZs0aREdH46233sLkyZMBADU1NSgsLMSrr76KefPm2R93xWw2Y9WqVWhvb8fKlSvx4IMPQhCsNSi/+eYb/PM//zP++Mc/Ij8/HwaDwctLIyK1swUbFgiybcB5/lgphjgECOcbmrG1dS4m6hpQY05AUvsYzARgPhucZNjErOnoOPMVLLC2MTFrut/PSaRGkkdgtmzZApPJhMWLFzsFKRMnTsTTTz8NURSxefPmfo9RUlKCM2fOIDs7Gw899JA9eAGAm266Cf/0T/8Ei8WC7du3S20eEYWQ88dK0SMK0OBasHGs1OdjVnUn2IMXrSDiZE8CyruS8XF7Lsq7kpGZEgcA0I3JtAcvgUqGtU1ZRU67DYOy53PHdKJ+SB6B2bt3LwCgoKCgz3MFBQVYvXo19uzZ0+8x2trakJ2djVmzZrl8PjU1FQBw8eJFqc0j6iMYeQwkj6ruBOQ6BBtV5gQkX3vO2881LutGvF7diLSIBlR1J+BI90gIAiCKwK0zUzDdYE2YjRw/HZYAJsM6JhNDtHgdvPB+p3AhKYARRRHV1dUAgLS0vgWmYmNjMXLkSBiNRly4cAGjR492eZxbbrkFt9xyi9vzHD58GACQkJAgpXlEffReYcK/aNWld7Axd+6NAHz7XHPS4oHbF6DydDN0Te3Q1FyyV2ruNlucXhvIZFg56rfwfqdwIimAaWlpQWdnJ/R6PWJiYly+ZtSoUTAajWhsbHQbwPSnsrISn332GQRBwPz58yW/35FO51WOsltarcbpv+SbQPRnV8Nxpy8Fy4Xj9jofoSRU783czNHQan+OiromFKTE2UdHfP1cczNHIzdzNEpPGGGuOwhDRANOdCcga/wNQevLyOQsp/otkWMzJf8OU+L9Hqr3ZjCwL51JCmA6OjoAANHR0W5fM2jQIABAe3u75MZcunQJK1asQE9PD+666y5kZHg/56zRCIiL03v9/v4MHer++kk6f/ZnZHoOLhzeYf+lPsyQA72f7gslCMV7c16eHvPyUp0ek+tz/WHcMYwfshsWWJcsHzoxGhX6m5E3JdplX+47ch6HaxoxdeJI5E1J9PaSXIvLR9vgKJjqjiAqZQr0hlzJh1Dy/R6K92awsC+tJAUwGo016nNMunXHYrEM+BpHFy5cwNKlS1FbW4spU6bg+eefl/T+vucXceWK9CCqP1qtBkOHRuPKlQ709Ei7PuorIP0ZnwX9z5605wR0xWehq6nNP+cKorC7N2X6XNsrywBBA41oXUbddOIQ3jwYif/1wI3IHDfMqS9LTxix7v1D0AjAti9P4slf3mAfEZJNfBY08VnoAry7TxV4v4fdvelH4dCXQ4dGezzCJCmA0eutkbzJZHL7ms7OTgBwO8XkyokTJ/Dwww/j7NmzyM7Oxt/+9rd+R3k8ZTb75wPu6bH47djhyN/9qUmehsjkaQD8d0+440tJeG8E+950TCAFIEsyqbs+lONz1SRkAId32Jcsj9BcRXZkPcprJsIwZqjTcY+evOy0s/mxU5cxdcIIr6/LXw6ZxuD4VT0yTMOQo6DfU8G+N0MJ+9JKcgCj1+tx9epVmEwmREVF9XmNbeXQqFGjPDrmN998gxUrVqC1tRU333wzXnnlFXugRKRmvpaEV5veCaQAfE4mLasyYv2H5dAIwOff12P53dn2PpQjOLSV3Tce+ByDLx1DVsRZZEeeQUtMGoDxTq/NSBmG84e+tefLpI/L9uqc/fH1mvrrL6JQIykTSBAE++qjmpqaPs83NzejsbERsbGxHiXwfvLJJ3jooYfQ2tqKhQsX4rXXXmPwQiHDVhL+5kHH8eCQ3WiqKAl2k/zKVpIfogUiAEBwWlHjjeN1zciOrMcvovcjO7IelaebAVz/ov7iQD3Wf1iOsiqj9PZeq/ALAHGJYyFCA60gQoQG43Cuz+uzI87gwSG7kR9l/TyzI854dU3uyHFNx+uanUaJbP1FFIokpzLb9igqKirq81xRURFEUXRb38XRrl278Oyzz8JsNmP58uX4t3/7N+h03FuSQke4lYSvE5IcSvIDgAjLtSDG2yJw0/VnsWzwbuQPOo5lg3cjJ+YsAN+/qG2jRbZtAgTdIAiwBlsCLIhKmdL3PdeWOWsg+hSUuSNH8JGRMsz+fosIpI8bJmsbiZREcsSwcOFCvPHGG9i0aRPy8/Mxfbq1zPXJkyexbt06AMCyZcvsr7948SKuXr2KIUOG2KeVGhsb8dxzz6GnpwePPPIIHn/8cRkuhUhZwq0kfGnbGGy/VpK/uttaw8lWvyWlbii6qqv6TI0MNGWSIp5DFzTQCtaNFlNwHoD1i/rz7+u9/qLuXXNF7Omy7+AcOTYTekNun+RXXVKm0zJnuSvz+npNgLXGzfK7s1F5uhnp4wKTd0UULJIDmISEBKxevRpr1qzB4sWLkZeXh8jISBQXF6OzsxMrV650Wv780ksvYevWrbjzzjuxdu1aAMDf//53NDc3Q6fTob6+Hs8884zLc02fPh333Xefl5dG5F5l8R6Y6o4hKiUL6TPn+OUctvwKKZVcA9Euf7F+ASdDFK8HLlvbcyEIAL7/uk8ukCf5Go5Bg+AQNPj6Re0qGCnvHovjbYMxuXs4XE2Ae/N5SiFX8JGTFs/AhcKCV3M2ixYtQkJCAjZu3IiDBw9Cq9UiKysLS5cu9aj43JdffgnAuqnjp59+2u9rGcCQ3CqL9yCpfJN1eqe8BJWAX4MYT7/o/NGuQJaVz0mLx5JsE3LO7kaPKGBOVAVevzoXAPDgEOtjs6MqsL9iJJB2qz2/ZZKuAdXmBFSeTu4bwPQTNPjyRa1LzcG57CUwnT6GqHFZaO8e6xRMDdYPgmHMUJfv82c/Mvgg8pzXSSf5+fn2fJj+rF271j7yYvPJJ594e1oin5nqjjnlpphOHwP8PNrhyeoSudsVjLLysVdrna5heuxljIyNQs/lvrlA0/VnkTT4erBzLiYFQN8tSmxBgy3pVo5grKzKiPV7LdAIGbCcsmDapHNOwZRtGTURKRfrEVPYiUrJctqNOGpcll/PZ1tOPeTYR9i9bbvb1SVyt8t5VZD8Saeu9L4GTWI6MnJ/CK0g9skFShHPOa38seW3uLyWXkm35toyn9rZO2E2ueukU7LwD64lCxORcnHZD4Wd9JlzUAnYpw/8nWtiW07dewrF3+2qE5KQdG1VkFawoA6JSPfpiANLnzkHX15uR3NNOaq7E3CkPApDDGOR7WIayF1+iytybHToqHfC7IxhlyG2Xk8WdrWMmoiUhQEMhaX0mXP8Pm1kI2U5tZztclwVVGNOQGL7GL8HMABwdlAaGsxGpEU0QBBgzW2Z1zd3REpSrLcrgNzlAPVOmE2MiEPHma/swVRUyhR0eXf5RBQgDGCI/CxYy6ltq4KOdifDIgJzAlQTxNPcFsDzpNjeSbfpHrxnoBwg54TZ+AGXURORsjCAIfIzfy+/dSdYNUFc1W7xdXl476Tb5SONA16P1GknWzCl0zE1kEgNGMAQBUB/Iw3+3PAxGMtye+e2NFzpRlKdb8vDXVWpHei6bO2wQIDGD4XniCi4GMAQBZG7Ym5qLmjXe8Sp5btiDPNxebg3VWrLu8di99W59qJ6c7vHIjBjX0QUCAxgiPrhz9ERAC6LucU0HpWloF0gi9j15jjiFHW+BdryEp+Wh3szHXa8rhnHzMk40p0MjQAkeTBqQ0TqwQCGyA1PSt37ylXCqxwF7YJRxM4duZaHS50Ok2NvISJSLgYwRG54k3chlauE17qULJ9HLOSum+KrQC5bt3E3ahPMkSkikg8DGCI3AvEXvKtibumpOT6PWPh752S16D1qo6SRKSLyDQMYIjdy0uLx7GzN9UDCD/kT7pZY+zpiEayl20qntJEpIvIeAxgiN8y1ZUgq32T9wisvgTkx1i9fdv7a4bi8eyyOtw1GRvcwrr65hiNTRKGDAQyRG2r+az0QCchqxJEpotDBkpNEbuiSMu3Bi9r+WneVgExW5d1jsbVtBsq7xwa7KUTkA47AELmh5r/WuYTYNY5MEYUOBjBE/fA0P0VpS3ODtQ+S0gViaTwRBQYDGCIfKXVpbjD2QVI6jkwRhQ4GMEQ+Mp+rgAhrHRcR6kr2DTccmSIKHQxgiHxUJyQhCZZrlXMtqEMi0n08ptKmpEIJR6aIQgMDGCIflbaNwfbWuZioa0CNOQGJ7WN8CmA8nZJyCnIm/cCHMxIRqQ8DGFI8pY9GWPMqknG0OxkWEZjjY16FJ/Vnegc5Gu2TQFy+T+clIlIT1oEhRbN9UXcfLULHzpdhri0LdpP6sOVVFMxIlmVZrif1Z/oEOecqfDonEZHacASGFE0t1XDlzKvQpebgXPaS63swubjePiXxkzJlOTcRkVowgCFFC8e9a8qqjFi/1wKNkAHLKQuWjzT2CY56F9mLHD89SK0lIgoOBjCkaJ6MRoQaT4utOW7WmBuEdhIRBRMDGFI0T0Yjgk3uJGNPiq31Lon/5C81mJen9/ncRERqwSReUjSlb0o4UJKxubYMpm/flpR87ElScO9+qahr8vlaiIjUhAEMKVpGyjD7l7QSS7+7SjK2P+fDCqqctHjcMy/N7WhT737JTInz+VqIiNSEU0ikaEov/d5fkrE/V1D17pfpBmX1CxGRvzGAIcVTcun33quBHAMUW3BjgQCNH1ZQKblfiIj8jQEMkY90qTkuR1bKu8di99W5SItoQFV3AuZ2j0Xor6EiIgoMBjBEfnK8rhnHzMk40p0MjQAkuVkOTURE0jGJl8hHZVVGvFNUhbIqo9PjSk9AJiJSM47AEPmgdz0Wx2XPSk9AJiJSMwYwRD4YqGouE22JiPyDU0hEPuA0ERFRcHAEhsgHnCYiIgoOBjBEPuI0ERFR4HEKiYiIiFSHAQwRERGpDgMYIiIiUh0GMERERKQ6DGCIiIhIdRjAEBERkeowgCEiIiLVYQBDREREqsMAhoiIiFSHAQwRERGpDgMYIiIiUh2vA5iSkhIsXboUM2fORE5ODu655x5s377d64aIooglS5Zg1qxZXh+DiIiIwoNXAcy2bdtQWFiIkpISZGVlITc3F0ePHsVTTz2FV155xauG/N//+39RXFzs1XuJiIgovEjejbqxsRFr1qxBdHQ03nrrLUyePBkAUFNTg8LCQrz66quYN2+e/fGBdHR04IUXXsDWrVulNoWIiIjClOQRmC1btsBkMmHx4sVOQcrEiRPx9NNPQxRFbN682aNjFRUV4Y477sDWrVuRnJwstSlEREQUpiQHMHv37gUAFBQU9HmuoKAAgiBgz549Ax7nypUreOyxx1BfX4/CwkK89tprUptCREREYUrSFJIoiqiurgYApKWl9Xk+NjYWI0eOhNFoxIULFzB69Gi3x9JoNPj5z3+ORx55BJMmTcKZM2ckNp2IiIjClaQApqWlBZ2dndDr9YiJiXH5mlGjRsFoNKKxsbHfAGbw4MH405/+JK21Eul08q4S12o1Tv8l37A/5cO+lA/7Ul7sT/mwL51JCmA6OjoAANHR0W5fM2jQIABAe3u7D83ynUYjIC5O75djDx3q/vpJOvanfNiX8mFfyov9KR/2pZWkAEajsUZ9giAM+FqLxeJdi2RisYi4ckXeIEqr1WDo0GhcudKBnp7gXl8oYH/Kh30pH/alvNif8gmHvhw6NNrjESZJAYxebx3RMJlMbl/T2dkJAG6nmALJbPbPB9zTY/HbscMR+1M+7Ev5sC/lxf6UD/vSStJEml6vh16vx9WrV90GMRcvXgRgzYUhIiIi8gdJAYwgCPbVRzU1NX2eb25uRmNjI2JjY/tN4CUiIiLyheRU5vz8fADWInS9FRUVQRRF7mdEREREfiU5gFm4cCGio6OxadMmlJaW2h8/efIk1q1bBwBYtmyZ/fGLFy+ipqbGPrVERERE5CvJAUxCQgJWr16Njo4OLF68GA888AD++Z//GXfccQeMRiNWrlyJjIwM++tfeuklLFiwAC+99JKsDSciIqLwJXkzRwBYtGgREhISsHHjRhw8eBBarRZZWVlYunQp5s+fL3cbiYiIiJwIoiiKwW6EP/T0WHD5cpusx9TpNIiL06OpqY1L2GTA/pQP+1I+7Et5sT/lEw59OXy43uM6MKxHTERERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqY7O2zeWlJRgw4YNqKiogMlkQnp6OgoLC7FgwQKPj9Ha2orXX38dO3bswLlz5zBs2DDMnTsXK1aswIgRI7xtGhEREYU4r0Zgtm3bhsLCQpSUlCArKwu5ubk4evQonnrqKbzyyiseHaO1tRWFhYXYsGEDenp6MGfOHMTExODdd9/FnXfeiYaGBm+aRkRERGFAcgDT2NiINWvWIDo6Gu+99x7+9re/YePGjfjHP/6BkSNH4tVXX8XRo0cHPM769etx9OhR3HHHHfiv//ovvPLKK9i+fTuWLFmCCxcu4IUXXvDqgoiIiCj0SQ5gtmzZApPJhMWLF2Py5Mn2xydOnIinn34aoihi8+bN/R6jtbUV77//PqKjo/Ev//Iv0OmsM1kajQarVq1CcnIydu3ahdOnT0ttHhEREYUByQHM3r17AQAFBQV9nisoKIAgCNizZ0+/xygpKUF7eztmzJiB2NhYp+e0Wi3mzp0LAAMeh4iIiMKTpABGFEVUV1cDANLS0vo8Hxsbi5EjR6KlpQUXLlxwe5z+jgEAkyZNAgCcOHFCSvOIiIgoTEhahdTS0oLOzk7o9XrExMS4fM2oUaNgNBrR2NiI0aNHu3zNxYsX7a91JT4+HoA138YXOp28q8S1Wo3Tf8k37E/5sC/lw76UF/tTPuxLZ5ICmI6ODgBAdHS029cMGjQIANDe3u72NbbnoqKiXD5ve7y/YwxEoxEQF6f3+v39GTrU/fWTdOxP+bAv5cO+lBf7Uz7sSytJAYxGY436BEEY8LUWi8Xtc1qt1qPjiKIooXW9zy/iyhXvAyBXtFoNhg6NxpUrHejpcX995Bn2p3zYl/JhX8qL/SmfcOjLoUOjPR5hkhTA6PXWEQ2TyeT2NZ2dnQDgdorJ8Tl3x7E93t8xPGE2++cD7umx+O3Y4Yj9KR/2pXzYl/Jif8qHfWklaSJNr9dDr9fj6tWrboOPgfJbANhzY9zluBiNRgDXc2GIiIiIHEkKYARBsK8cqqmp6fN8c3MzGhsbERsb6zaBF7i++si2Gqm3qqoqAIDBYJDSPCIiIgoTklOZ8/PzAQBFRUV9nisqKoIoipg1a1a/x5gxYwZiYmJQUlKCq1evOj3X09OD3bt3QxAE+7mIiIiIHEkOYBYuXIjo6Ghs2rQJpaWl9sdPnjyJdevWAQCWLVtmf/zixYuoqamxTy0B1lVMd999N9ra2vD888+jq6sLgDVp9w9/+APOnDmDgoICjB8/3tvrIiIiohAmeTfqhIQErF69GmvWrMHixYuRl5eHyMhIFBcXo7OzEytXrkRGRob99S+99BK2bt2KO++8E2vXrrU//uSTT2Lfvn3Yvn07Dh06hClTpqCqqgonT57EmDFj8Pzzz8tzhURERBRyJAcwALBo0SIkJCRg48aNOHjwILRaLbKysrB06VLMnz/fo2MMHjwYW7ZswV//+lfs2LEDu3fvxujRo3Hffffh0UcfZQIvERERuSWIvhRbUbCeHgsuX26T9Zg6nQZxcXo0NbVxCZsM2J/yYV/Kh30pL/anfMKhL4cP13tcB4b1iImIiEh1GMAQERGR6jCAISIiItVhACPRviPnsWVnJcqqjMFuChERUdjyahVSuCo9YUTR1k9hiGjA7rIE4PYFyEnjaikiIqJAYwAjwaWj3+HBIbvRIwqYHVWB/RUjgbRbg90sIiKisMMpJAnSdBfQIwrQCiJ6RAFpuoZgN4mIiCgsMYCRIGnKdGgFERZYg5jErOnBbhIREVFY4hSSBJHjp2Pwot+g+UQZNKMzoEvNCXaTiIiIwhIDGIn0hlx0xWeFbBVEIiIiNeAUEhEREakOAxgiIiJSHQYwREREpDoMYIiIiEh1GMAQERGR6jCAISIiItVhAENERESqwwCGiIiIVIcBDBEREakOAxgiIiJSHQYwREREpDoMYIiIiEh1BFEUxWA3wh9EUYTFIv+labUa9PRwI0e5sD/lw76UD/tSXuxP+YR6X2o0AgRB8Oi1IRvAEBERUejiFBIRERGpDgMYIiIiUh0GMERERKQ6DGCIiIhIdRjAEBERkeowgCEiIiLVYQBDREREqsMAhoiIiFSHAQwRERGpDgMYIiIiUh0GMERERKQ6DGCIiIhIdRjAEBERkerogt2AQCkpKcGGDRtQUVEBk8mE9PR0FBYWYsGCBR4fo7W1Fa+//jp27NiBc+fOYdiwYZg7dy5WrFiBESNGuHzP559/jjfffBPV1dUQRRHZ2dl46KGHMHPmTLkuLSjk6M9Tp05h48aNKC4uRmNjI2JiYpCdnY0lS5YgPz+/z+tffPFF/Md//Ifb4/32t7/Fvffe69X1BJMcfXn77bejsrLS7fPbt2/HxIkT7f+2WCz46KOP8Pbbb6O2thYRERH4wQ9+gEcffRRTpkzx6XqCzZf+XL9+Pf7yl78M+Lobb7zR6V4M1XvTUUlJCQoLC/G73/0OixYt8vh9XV1deOutt7B161bU19cjJiYGP/rRj7BixQqMGzfO7bl8/ZlQMm/78uLFi3jttdewd+9eNDQ0IDIyEpmZmbj33nvx85//vM/rN23ahN///vduj/fggw/imWee8eoalCAsApht27Zh1apV0Ol0yMvLg1arRXFxMZ566ilUV1djxYoVAx6jtbUVhYWFOHr0KMaNG4c5c+bgxIkTePfdd7F79268//77SEhIcHrPhg0b8Oc//xkxMTHIy8uDyWTCvn37UFxcjBdffBELFy701yX7lRz9eeDAASxbtgzt7e1ITU3F7NmzceHCBXz99df4+uuvsWrVKvzqV79yes+xY8cAAD/72c+g0/W9dVNTU2W5vkCSoy+7urpQU1OD2NhYzJo1y+VrhgwZ4vTv3/72t3jvvfcQGxuLH/3oR2hsbMQXX3yBL7/8Ehs2bMDNN98sy/UFmq/9mZ6ejttuu83t80VFRejo6EBWVpbT46F4bzo6efIknn76aYiiKOl9ZrMZjz/+OPbu3YtRo0Zh1qxZqK+vxyeffIJdu3bh7bffRkZGhtN75PiZUDJv+/LUqVO4//77cenSJSQmJiI/Px8tLS0oKyvD999/j7KyMqxZs8bpPUePHgUAzJkzp8/vAAB97mPVEUOc0WgUp06dKk6bNk08cuSI/fHq6mrxRz/6kZienu70uDv/5//8H9FgMIirVq0Su7u7RVEUxZ6eHvvjDz/8sNPrKyoqRIPBIN58881ifX29/fH9+/eL06ZNE6dOnSo2NDTIdJWBI0d/dnd3iz/+8Y9Fg8Egvvbaa6LFYrE/9/XXX4uTJ08WMzIyxMrKSvvjFotFzMnJEfPy8uS/qCCR6948fPiwaDAYxOXLl3t03qKiItFgMIg///nPxcuXL9sf/+///m8xMzNTvOmmm8T29nbpFxRkcvWnOx988IFoMBjEe+65x/47QBRD89509O2334ozZ84UDQaDaDAYxPfff9/j927evFk0GAzikiVLnO6pv//976LBYBB/8YtfOP38+/szDDZf+vLee+8VDQaD+MILL4hdXV32x48ePSrm5uaKBoNB3LNnj9N7br31VjE9PV28evWqbNegJCGfA7NlyxaYTCYsXrwYkydPtj8+ceJEexS8efPmfo/R2tqK999/H9HR0fiXf/kX+19YGo0Gq1atQnJyMnbt2oXTp0/b3/Pmm28CAB577DGMHTvW/viMGTPwwAMPwGQy4d1335XzUgNCjv4sKSnBmTNn7NNpgiDYn7vpppvwT//0T7BYLNi+fbv98draWrS1tTmdU+3k6Evg+l//nk792O7NVatWIS4uzv74T37yE9x2220wGo347LPPpFyKIsjVn67U1tbixRdfhF6vxx//+EenUZZQvDcB4NKlS/jtb3+LpUuXoqWlBUlJSZLeL4oi/v73vwMA1qxZg+joaPtzS5YsQW5uLioqKvDdd9/ZH/fnZxhMvvZlXV0dDhw4gFGjRuE3v/kNIiIi7M9lZWXh4YcfBgB8+umn9sdNJhNOnjyJ1NRUDB48WJ4LUZiQD2D27t0LACgoKOjzXEFBAQRBwJ49e/o9RklJCdrb2zFjxgzExsY6PafVajF37lwAcDpOf+e95ZZb+rxeLeToz7a2NmRnZ7ud7rANt1+8eNH+WEVFBQDPv6TVQI6+BK4HMJ58gV69ehWlpaWIiYlxmYcV7vemO7///e/R0dGBp556CmPGjHF6LhTvTcA6Bf7OO+9g3Lhx2Lx5M/Ly8iS9/8SJEzh37hwmTJiACRMm9Hne9jl5+nvT188wmHzty8uXL2PatGmYNWsWIiMj+zzv6ndmZWUlenp6Qi6wdhTSOTCiKKK6uhoAkJaW1uf52NhYjBw5EkajERcuXMDo0aNdHqe/YwDApEmTAFh/YAHAaDSiubkZcXFxGDlyZJ/XT5w4EYIgoLq6Gj09PdBqtdIvLgjk6s9bbrnF/kXpyuHDhwHAKafINper0+mwcuVKfP/992hqasL48eOxcOFC3H///dBo1BOPy9WXwPUA5uLFi1iyZAkqKirQ1dWF7OxsPPjgg04J0TU1NbBYLJgwYYLLXA1boq/tXlYLOfuzt6+++gp79uzBpEmTcN999/V5PtTuTZvk5GT867/+KxYtWoSIiAj853/+p6T3S/296c/PMNh87cucnBy89957bp/v73dmbGwsnn/+eXzzzTe4ePEixowZg9tuuw3Lli3DoEGDvLga5VDfT5UELS0t6OzshF6vR0xMjMvXjBo1CgDQ2Njo9ji2qNb22t7i4+OdjmF7ve3x3iIjIxEbG4uuri5cvXrVgytRBrn6sz+VlZX47LPPIAgC5s+fb3/c9iX9l7/8BQcOHEB2djbS09NRU1ODF198EY8//jh6enq8OmcwyNWXPT099i+A3/zmN2hqakJubi6SkpKwb98+LFu2zD5lBAx8b/a+l9XCn/fm+vXrAQCPPvqoyz82Qu3etCksLMR9993nNF0hhdTfm4H4/RIsvvZlf4xGo30F3E9+8hP747b7csuWLfj888+Rnp6O7OxsnD9/Hq+88goKCwvR3t4ue3sCKaRHYDo6OgDAae61N1sE2t8HaXsuKirK5fO2x22vk3reYcOGuX2dksjVn+5cunQJK1asQE9PD+666y6n1Qm2H8ZHH30Ujz/+uP2LpKKiAo8++ii++OILbN68GUuXLpV83mCQqy9rampgMpkwaNAgrFu3Dj/+8Y/tz23fvh2//vWv8Yc//AEzZszA1KlT7cdyd17bvWxrn1r4694sKyvDoUOHkJKSgp/+9KcuXxNq96Zc/P17k6z9sHz5crS2tuKHP/yh08+/7b68++678dvf/tY+9VRfX4/HH38cBw8exJ/+9Kc+K5fUJKRHYGzDto5Jou5YLBa3z9l+IQ10HPHasji5zqs0/ryuCxcuoLCwELW1tZgyZQqef/55p+e/+OILfPrpp3jiiSec/grOzMzE6tWrAQBvvfWWpHMGk1x9aTAY8M033+Czzz5z+uUFAAsWLMD9998Pi8WCd955B4Dn97LFYpG8zDOY/HVv2u6pBx54wO1Ub6jdm3Lh703/am1txUMPPYSysjKMHTsWf/rTn5ye37JlCz799FP87ne/c8qbSU5Oxtq1ayEIAj744AN0dnYGuumyCekARq/XA7BmY7tj+/DcDVk6PufuOLbHba8b6PWenldp5OrP3k6cOIF7770X1dXVyM7Oxptvvtnnr7DBgwe7nUufPXs2tFotzp49i6amJo/PG0xy9uXIkSORnJzs8jlbgvmRI0ecjuXJvezJF4lS+OPe7OzsxK5duxAREYFbb73V7etC7d6Ui9Tfm/76/RKKGhoacP/992P//v0YN24c/v3f/71PvmV0dDTS0tJcBt6ZmZlISEhAZ2cnqqqqAtVs2YV8AKPX63H16lW3PxQDzdMCsCeLuZt3NRqNAK7P6Q70+q6uLrS0tCAiIkI100eAfP3p6JtvvsG9996Ls2fP4uabb8bmzZv7rPQaSEREhP09/f3yUxJ/9KUrtnvSNjwv9V5WC3/057fffov29nbk5+dj6NChXrVLjfemXKTea4H6mVC7Y8eOYdGiRTh+/DgmT56Md955p8/KOE/YAh4135chHcAIgmD/y6impqbP883NzWhsbERsbGy/Ge22Y9gy5HuzRbAGgwEAEBcXh/j4eDQ2Nrr8q8u2rUBaWpqqVifI1Z82n3zyCR566CG0trZi4cKFeO211+x/hTmqrKzEc88957YkdltbGy5fvoyIiAi3WzoojVx9uWPHDqxcuRIffPCBy+fr6+sBXF+dMHHiRGg0Gpw8edLlMLztHrfdy2oh970JAF9++SUA58TI3kLx3pTLQL83e99r/vgMQ813332H+++/HxcvXsTs2bPxH//xHy5Xul64cAGrV6/Gr3/9a7fHsv1uUHNfqufb00u2JaRFRUV9nisqKoIoim7rkdjMmDEDMTExKCkp6bNqqKenB7t374YgCE7LVW3//4svvuhzvM8//xwABjyvEsnRnwCwa9cuPPvsszCbzVi+fDn+7d/+zeWyXsCauPfRRx9hy5YtuHz5cp/n//GPfwCw7k/jqkaCUsnRly0tLfj000+xZcsWlzkrW7duBQD71gDR0dHIzc3F1atXsW/fvj6vt92bs2fPlnYxCiDXvWlz6NAhAMC0adPcviZU7005TJgwAcnJyaiqqnIq8mnj6l6T+zMMJeXl5XjkkUfQ3t6ORYsW4a9//avLP/gA67Tmtm3bsG3bNnudIkd79uxBc3MzUlNT3U4/q0JA6/4Gwfnz58UbbrhBnDZtmnjgwAH74zU1NeJNN90kGgwGsaKiwv74hQsXxOrqavHChQtOx/nd734nGgwG8cknnxQ7OztFUbSWEP/9738vGgwG8bHHHnN6/eHDh8WMjAzxpptuEmtqauyPHzhwQJw2bZqYnZ0tGo1Gf1yyX8nRn0ajUbzxxhtFg8Eg/vnPf/bovIWFhaLBYBAffPBBsbW11f74oUOHxNzcXDE9PV3cv3+/7xcYQHL0ZUtLi70v169f71SW/b333hMNBoM4c+ZMsampyf74zp07RYPBIP7sZz8TL168aH98x44d9q0EbPe4msj1sy6KotjZ2SlOnjxZzMnJcepTV0Lx3nTl2WefdVv+/tKlS2J1dbV49uxZp8dtWwYsXrzYqZz9pk2bRIPBIN5xxx1Or5f6GaqV1L40mUxiQUGBaDAYxF//+tceneO5554TDQaDeNddd4mXLl2yP37q1Clx7ty5osFgED/++GPfLyaIBFFU0VIDL33wwQdYs2YNNBoN8vLyEBkZieLiYnR2dmLlypV46KGH7K/9zW9+g61bt+LOO+/E2rVr7Y+3trbi3nvvxYkTJzBmzBhMmTIFVVVVOHnyJMaMGYN33323z7zsyy+/jFdffRWDBg3CzJkz0dXVhX379sFiseAPf/hDv5vGKZmv/fmHP/wBb7zxBnQ6HX7605+6TRadPn26vXDY2bNncf/99+P8+fMYMWIEbrjhBrS2tuLAgQOwWCx47rnn8D//5//0/8XLTI57c+/evXj88cfR1dWF1NRUpKeno7a2FpWVlYiJicEbb7yBH/zgB07nXbVqFT7++GMMHjwYP/zhD9HU1ITS0lJERETgjTfekFwpVCnk6E/AOrxeUFCAcePG2UcK3AnVe7M3W3+9+OKLfXZQtu3i3XuXbrPZjF/96lf47rvvMGLECMyYMQNnzpzB0aNHERsbi7ffftte0M5GymeoVlL78u2338YLL7wAAJg/f77bAnTjx4/HY489BsA6Ovs//sf/QGVlJYYMGYLp06ejp6cHJSUl6OrqwpIlS/Dcc8/58Sr9L6TrwNgsWrQICQkJ2LhxIw4ePAitVousrCwsXbrUqVhafwYPHowtW7bgr3/9K3bs2IHdu3dj9OjRuO+++/Doo4+6THp84oknMGHCBPz7v/879u3bh6ioKOTl5eHhhx9W7RcE4Ht/2nILzGaz094drtgCmDFjxuCjjz7Ca6+9hi+++AJfffUV9Ho98vPz8atf/Qo33nij7xcWBHLcm7Nnz8aHH36IDRs2YN++fdi1axeGDx+Ou+++G4888ojLIeK1a9di6tSpeP/99/HVV19h6NCh+PGPf4zly5cjMzNT7ssMGDn6E4A9d83VDr69heq9KQedToeNGzfijTfewLZt27B7926MGDECt99+O5YvX45x48b1eY9cn2Eosf3OBICdO3e6fd306dPtAUxsbCzeffddvPnmm9i+fTuKi4sxaNAgTJs2DYWFhf1WQ1eLsBiBISIiotAS8km8REREFHoYwBAREZHqMIAhIiIi1WEAQ0RERKrDAIaIiIhUhwEMERERqQ4DGCIiIlIdBjBERESkOgxgiIiISHUYwBAREZHqMIAhIiIi1WEAQ0RERKrz/wFVeeDsqycKUgAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "markersize = 2\n",
+    "plt.plot(df.width, pred, 'o', markersize=markersize)\n",
+    "plt.plot(df.width, height, 'o', markersize=markersize)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Conclusions\n",
+    "\n",
+    "Height can be calculated with the analytical model of the ellipse, varying with the width and the area. However, if the parameters passed to it are the predictions, i.e. the models of area and width, the height prediction presents a high error, probably due to a combination of errors in the area and width models.\n",
+    "\n",
+    "The area model, though, has a multiplier, probably because the format may vary."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Area model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 44,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABXQAAAO+CAYAAACkVp0qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1f7H8c+mkgApdIEgUja0gHQLKE1BuKggqCAglmsHL6AoKhZE0WsBRRQbHZEiICDSFEEBjVJEIhBAek2AQEIKKfP7Izf7y6ZsZpPdJEver+fxkcx8d+bs2bOzZ7975hyLYRiGAAAAAAAAAAClnldJFwAAAAAAAAAAYA4JXQAAAAAAAADwECR0AQAAAAAAAMBDkNAFAAAAAAAAAA9BQhcAAAAAAAAAPAQJXQAAAAAAAADwECR0AQAAAAAAAMBDkNAFAAAAAAAAAA9BQhcAAAAAAAAAPAQJXQAoxY4dO6bw8HDbf4MHD3bLeb777jvdd999atu2rZo1a6aOHTvqkUce0ZEjR/T888/blQGewdFritIvMjJSK1euLOlilFlHjx7VF198kWv7b7/9Znc9XLx4cQmUDu7w119/6amnntKNN96oZs2a6brrrtOAAQO0YcMG08c4e/asJk+enGt7zs/yvGKudMVZB2vXrtWmTZvcdvz8lHR/ac+ePfr666+L/bzFafDgwbb67dKlS0kXBwBKFAldACjj5syZo5EjR+qPP/7QxYsXlZqaqjNnzmjDhg3y9/cv6eKhEHhNPdeJEyf09NNPa/DgwTpw4EBJF6fMSUxM1MSJE9WzZ0+nEnnwbFFRURowYIDWrl2r2NhYpaam6vz589q2bZsuXLhQ4ONTU1M1ffp0de/eXUuWLCmGEiMv+/bt09ChQ/XUU0/p9OnTJV2cYnPu3Dm98sor6tOnj3bs2FHSxQEAFBOfki4AAKBkffXVV3Z/WywWeXt7q0KFCqpevXoJlQpFwWvqmWJiYnTbbbcpOTm5pItSZt133336+++/S7oYKGYLFy5Uamqq3TZfX1+lpqaqUaNGBT5+xIgRWrt2rSQpKCjILWX0dF5eXgoMDLT97evr69LjR0VF6e6771ZaWppLj+sJevToYeqHBwDAlYWELgCUccePH7f9Ozw8XF999ZXKly+vhISEEiwVioLX1DOlpKSQzC1hJEXKpuzXTF9fXy1fvlzXXHON4uPjVaFChQIfT7spWM2aNbV9+3a3HT8hIaFMJnMl2h8AlFUkdAGgjMueQGrcuLHty2vFihVLqkgoIl5TADAv+zWzatWquuaaayRxzQQAAKUXCV0A8GDPP/+8bb6+66+/XjNmzNBff/2ladOm6ffff9eFCxdUo0YNde3aVf/+979VuXJl22PzWrBj6dKlWrp0qSRpwoQJ6tu3r8Pz//bbbxoyZIjt77wes3jxYo0ZM8b296xZs9S+fXu7GMMw9P333+ubb75RVFSUEhISFBoaqmuvvVb9+vXTzTffnOvcx44dU9euXW1/z507V82bN9esWbO0fPlyHT58WL6+vmrWrJnuu+8+devWLd/ncfjwYc2aNUtbtmzRyZMnlZaWpqpVq+raa6/VwIED1aZNmzwfV5hym5WWlqY1a9Zo2bJlio6OVkxMjAIDA1WvXj116dJFAwYMyDVyzBWvac7Xa9u2bTp79qymTp2qX375RefPn9dVV12lrl276tFHH1VISEiexzl16pRmzJihzZs36+jRo0pOTpa/v7+qV6+uVq1a6YEHHpDVarV7TM729MMPP2jNmjWaNWuWYmNjVaVKFT322GO69957JUlJSUmaN2+e1qxZo4MHDyo+Pl7e3t6qVKmSGjdurHvuuUedO3e2O0fOdjN//nxdc801mjp1qtauXavTp0+rSpUq6tq1q4YPH66goCClpqZq1qxZWrJkiY4cOaKgoCC1bdtWjz/+eK7nkCUpKUlz587VqlWrdPDgQaWlpal69epq3769hg4dqvr169vFd+nSxW6UoCR99NFH+uijjyRJe/futdt3+vRpffnll9qwYYNOnjwpX19fhYWFqVOnTrr//vsVGhqaq0yDBw9WZGSkJKlPnz56/PHH9eqrr2rbtm3y8fFRgwYNNH36dAUGBio5OVnz5s3TDz/8oP3799vqtkqVKmrWrJnuuuuuIrXvM2fOaPHixVq3bp2OHz+uhIQEVa5cWS1atNCdd96Z63XL6zn069dPb7zxhjZv3qyZM2fqzz//VGJiosLCwnTbbbdp6NChpkZXSvbX0iyRkZG291Re160siYmJ+vzzz7Vy5UqdOHFCwcHBuv766/XYY4/lep2zpKWl6ZtvvtGyZcu0b98+JSUlqWrVqmrdurXuu+8+XXvttabKnVNcXJxmzZqlDRs26PDhw0pMTJSPj4+qVKmi5s2ba/DgwWrdurXdY3K+J2bNmqWTJ0/qk08+0fHjxxUSEqJ77rlHw4YNs8X8888/mjZtmrZs2aIzZ84oICBA11xzjbp166b77rvP7tb67ArznnXGH3/8oW+++Ubbt2/X6dOn5eXlpZo1a+qGG27Q4MGDVbt2bbv47O0py4kTJ2yve58+ffTWW2/le77Jkyfb3qNZjh8/bnu8o2tuWlqa7bpy+PBhBQYGqnXr1vr3v/+d7+vvjs+c7NeeBx98UKNHj9aiRYs0f/58HThwQD4+PoqIiNCQIUPUqVOnXI/P/t5p166dJk2apNdee00///yzJKlOnTqaMmWKJNm1s6eeesquTRXlvZ3XZ9+YMWM0ZswY1apVSz/++KPdvsK2X0n69ddfNXPmTO3YsUMJCQmqU6eO7rzzTg0dOtRRNZvy/fff69tvv9Xu3bt17tw5GYah4OBgNWzYULfddpv69u1rN1VFXu13yZIlttfjhx9+UO3ate3aaa1atbR8+XK99dZbWrVqlS5fvqxatWrprbfeUvPmzSUV7vPblX2yNWvW6Ouvv9auXbuUkpKi+vXr695771X//v2LVsEAcIUhoQsAV5CvvvpKb7zxht1th0eOHNH06dP1/fffa8GCBaVuDtXExESNHDlS69evt9t+5swZrVmzRmvWrFHv3r315ptvys/PL9/jxMXF6e6779bu3btt25KSkrR582Zt3rxZw4YN01NPPZXrcV9//bXGjx+fa/7E48eP6/jx4/ruu+/06KOPauTIkW4pd16OHTumkSNH6s8//7TbfvnyZW3btk3btm3T9OnTNWnSJLVr186pYztry5YtevbZZ5WYmGjbdvjwYU2bNk0rVqzQl19+meuL3c6dO/XQQw/p4sWLdtuTkpJ06NAhHTp0SMuXL9e7776rHj165HvuKVOmaPHixba/T548qTp16kjKfL0HDx6s6Ohou8ekp6fr1KlTOnXqlNavX6/7779fL7zwQr7n+OeffzR8+HC7BXROnDih2bNn65dfftHMmTP19NNP290qHBMTo5UrV+qnn37S3Llz1aRJE7tjHj58WI888ogOHTqUa/vhw4f1zTff6Pnnn7dLXjvjp59+0ogRI+xek5SUFO3evVu7d+/WvHnzNGXKlHx/iJAy2+mgQYN05swZ27asOS5jY2N1//33a//+/XaPSUtLs70vVq9ene97qiArV67U2LFjc00BcvLkSZ08eVKrVq1Sx44d9d577yk4ONjhsSZOnKipU6fabdu/f78mT56s1atXa/78+Q6TM0V15swZ9e3bVwcPHrRti4mJ0bJly7RmzRrNmDFDLVu2tHvM2bNn9fjjj+d6f2fV7bJly/Twww/rmWeekcViMV2Wo0ePatCgQTp16pTd9vT0dNuxV61apeeff95h8mnp0qV277uYmBjVqFHD9vfChQv12muv2V0zL1++rB07dmjHjh2aN2+ePvvsMzVo0MDuuK56z+YlKSlJ48aNsyt3lujoaEVHR2vu3LkaPXp0od93rnTp0iUNGjTI7rqSkpKidevW6ccff9QHH3ygW2+91e4x7vzMyZKWlqbHH3881zk2bdqkTZs2aciQIXrxxRcdPq+hQ4favcYXLlxQrVq1cv1gVRB3vbcL234ladKkSfrkk09ylendd9/VDz/8oCpVqjhdHknKyMjQiBEjtGrVqlz7YmNjFRsbqy1btmjt2rX6+OOPC/36Spnvt6eeekqbN2+2bTt+/Ljq1asnyXWf34Xpk2VkZOiFF17I9eNaVFSUxo4dqw0bNuTqqwFAWeZV0gUAALjG33//rXHjxiktLU0Wi0VeXvaX+FOnTunjjz+2/R0YGJjry5CPj49tu49P8fzm9/zzz+f68ujt7W339/Lly/X22287PM6LL75o++KQV9k//vjjXKter169Wq+88kquLwg56+7TTz/VsmXL3FLunC5evKj7778/V7In5wIyZ8+e1UMPPWS3orU7XtPsydyc9XLmzBk9/vjjdom5y5cva+TIkXZfBi0WS65zp6am6pVXXlFGRka+585KzmTVa9WqVXXddddJksaPH58rMZTXIjszZ87Unj178j3Hyy+/bGsXOct48OBB9ejRw5Z0yfn6JiYm6s0337TbFh8fr4cffjhXMjf7Y9PT0/XGG29o9erVtm0BAQEKCAjI9XxyvqZRUVEaNmyYXTJXsn9t4uLi9Oijj+rYsWP5Pu9NmzbZkrlZZevdu7ekzFGFOZO5vr6+uZKLkydP1oYNG/I9R17WrVunESNG5Erm5nztfv75Z/373/9WSkqKw2NlJXy8vLxylS86Olpz5swxVS4/Pz8FBgbaHSMrwR0YGJjrtc8yefJkWzI3Z/tJTk7W66+/brctNTVVTz75ZK73d87jf/HFF5o+fbqpsmd57rnnciVzc9arYRh65513dP78+XyPk/W+y2pTfn5+6t69uyRp/fr1Gjt2rN01M+d14fjx43r44YdzJYRc9Z7Ny7PPPpsrmevj42P3eqampuqNN97QjBkzbNv8/f0VGBho9xwsFovtdS8ocZb1Hs3v8fldc2fPnm27ruSMycjIsH2WZ+euz5zsFi1aZDtHztdVyhy9PXv27HwfHxUVZXuNs8rWq1cvp36YkJx/bwcGBsrf398uJus9nf26WpT2u3Tp0lzJ3OyP3759u21hPGctWrQoVzLXy8sr1+v7888/64MPPrD9ndV+s8v+mZ/Xa3jq1ClbMjfr+J07d1aFChVc+vldmD7Zxx9/nCuZK/1/Ha9bt86t8zADgKchoQsAV4gLFy7I19dXr7zyirZv364///xT//nPf+xiso/I2L59e66Oce/evW3bb7/9dreXecuWLXZJrYiICC1dulS7du3S999/bzf6dM6cOTpw4EC+x4qLi1O7du20fPly7dq1S999951tHkQpM4n266+/2v5OTU21S8b5+vrqueeeU2RkpHbu3KmJEyfafZmfNGmSDMNweblzmjBhgl0irn379lqxYoV27dqlzZs3a/DgwbZ9ly9f1ujRo21f/N3xmiYmJuq2227TunXrtHPnTs2aNUu1atWy7T927Jjmzp1r+/uHH37Q0aNHbX8/9dRT2rFjh6KiorRu3Tq7W4nj4uJ05MgRh+cfMWKE/vzzT23cuFFvvvmmvLy8FBMTo++++84W07lzZ23atEm7du1SZGSk7rnnHrtj7Ny5M9/jp6amqkePHtqwYYN27dqVKxmSmJioqlWravbs2dq1a5fmzp1rd6vvtm3bdPnyZdvfX375pd1zuvPOO7Vx40bt3LlTM2bM0FVXXWXb9+abbyo9PV2S9N1332nFihV253700UdzvaZvvPGG7XxeXl4aM2aMtm7dqm3btmn8+PG2BFlCQoLef//9fJ+3JF199dVavXq1du7cqU8//VQ9e/aUJLuk0a233mqrm507d+rtt9+2S8LlNSIyP/Hx8XYjL728vPT000/r999/165du7RgwQI1btzYtv/PP//UZ599lu/x4uLiFBQUpIkTJ+rPP//UH3/8oYEDB9rFZL/mOTJu3Dht375dNWvWtG1r06aNrf7zG+2clpamvn37auPGjYqKitLcuXPtpiGJiorS2bNnbX8vXbrU7vXs2LGj1qxZo127dmnRokV2o90/+OAD04sd7dy5U1u3brX9fffdd+uPP/7Qrl279PPPP6tLly52Zf77778dHm/AgAHatm2bIiMjNXHiRAUFBSk9PV2vv/667ToYGBiot99+W9u3b9fWrVvtPm9Onjypzz//3Pa3K9+zOS1dutQukVarVi19+eWX+uuvv7R9+3a99tprdsm+d955x/aDyxdffJHr9c1avGv79u0aN26cw3M/9thjDh+f3zU3LS1NnTp10po1axQVFaVly5bZ7j6QMusr+2vkzs+c7BITExUSEqIPPvhA27dv1+bNm3ON5p48ebKSkpLyPUZoaKgWLVpku17mfG3NcPa9vX37drv2Jkmvvfaatm/fbmt3RWm/6enp+vDDD+2Of/vtt2v9+vXauXOnZs+ebff6OSv7lBB169bVt99+q6ioKO3atUvz5s2z+8xdvny57TMgq/1ml/0zP/v1LDt/f3998cUX2rVrl5YuXapHHnlEkms/v53tk8XHx+vLL7+0O8aDDz6oTZs2aceOHfr444/tpg0DAJDQBYAryogRIzRw4EAFBATIz89Pjz/+uN1tg9lvry4NsieDfHx89OGHH6px48by8vJSvXr19MEHH6hcuXJ5xudUpUoVffrpp7JarbJYLGrQoIGefvppu5jsz3/Lli12o9kGDx6sBx98UMHBwfL19VXPnj01aNAgXXPNNerRo4f69eunS5cuubzc2Z0/f94uqVejRg19+umnatiwoSSpcuXKeumll3TLLbfYYg4fPqx169aZOn5hNGrUSO+//77CwsLk6+ur9u3b6/PPP7cb+bNy5Urbv7t3767vv/9ekyZN0rPPPqunnnrKVhdhYWG644477I5/7ty5fM9dv359PfbYY/L19VX16tV10003ScocqfvTTz/ps88+06hRo/T666/bbnUNDg7W/fffb/ocV111ld555x3VqFFDFotFd955p92XZykzMdCuXTt5eXmpTZs2dvMEpqenKy4uzvZ39tFFDRo00Jtvvqnq1avLx8dH119/vV555RXb/lOnTumXX37Jt2w5HTlyxC5p179/f9tckgEBAerfv79dwn/NmjWKj4/P93j/+c9/VLduXfn4+KhTp062RGT2UWE+Pj6218/Pz0933nmnpk6dqjlz5mjLli12o8UK8u2339olKIcMGaInnnhCQUFBkqQWLVro008/tRtxNmvWLIcr148fP149e/aUn5+fKlSooBdeeMF2PMn917zw8HDbayxlJoHvvvtuu5iTJ0/a/p29fYSGhmrSpEm6+uqr5eXlpYiICL333nu2/cnJyXZJUEciIiK0bt06TZkyRf/5z3/04osv2hb0qlatmm3e6SyO3hPBwcF64YUXFBAQoODgYNtcl5GRkXa3zT/22GO68847Va5cOVWoUEGPP/64bSSvZH/dc+V7NqdZs2bZ/u3l5aUpU6aoQ4cO8vLyUkBAgO69914988wztpisuWtLUpUqVWyvvZTZjh566CG7mOztxl2fOXl5/fXX1aNHD5UrV06VK1fWmDFj9K9//cu2/8KFC9q0aVO+j3/ooYcUERFhu14WNtHp6vd2UdpvVFSU3WMjIiL03//+VzVr1pSvr6/atWuX63PRGdmvud7e3goICJCXl5e8vLzUqlUrTZkyRZ999pl++OEHbdiwoUhTLkhS37591bFjR3l5ealx48a2aYNc+fntbJ/s559/trvzpHv37nruuedUpUoV+fv7q2vXrnbXRwAAc+gCwBUlr0Um6tWrZ7t92tHtyyUh+8iS6tWrKykpKdfIoquuusp2S7OjW+1uuOGGXLceZs0JlyX78895y3P2JF2W5557Ts8995xby53dr7/+ajfaMys5n9NDDz1kNyJt8+bNDueyK4q+ffvm+pJav359NWvWzDaKLjo6WpcvX5afn58twZBV96mpqdq7d6927dqlrVu3auPGjXbHcpSsu+GGG/LdV716dVWvXt22CNChQ4e0a9cubd++3bYYj5lzXH/99bm+HFetWtX25d3Hx0cdO3a02599PlFJttt3T548afcjQcOGDXNNvZBzhNH27dtNL2S0bds2u7/r1q2bq91lT0anpqZq165duv766/M8Xn71261bN1syY+XKlVqzZo0iIiLUunVrtWrVSq1bt853MTxHcr72ORNYUubr2rt3b82fP19S5hQku3btynORKG9v71wLaGUtDhcVFSXJ/de8zp0757odPPsobCkzMStltsPsI0+vueYanT592u62Y29vbwUGBtoSG9u3b881MjEvFotFYWFhCgsLU7du3ZSRkaHo6Gjt2rVL27Ztc+p916pVqzwTRjnbX+3atXO1v6wEpZQ59+eRI0dsCT1XvWezO3funO21ljLbdPZR3lkGDhyoiRMn2urV7Mhtd7nuuutyXdvzazeS+z5zcgoKCso1d6+UORo1+4+Nu3btyndRK0fXbbPc8d4uSvvNPg+slLlYXs73fd26ddW0aVP99ddfTpVLkm655RbbD7MHDhzQrbfeqvr166tt27Zq2bKl2rZtm2e7Lqz8XiNXf3470yfLOc3KXXfdleuY119/vSpXrmx31wMAlGUkdAHgClKtWrVc27J/acy61bA4Zd1SnpeYmBjbv48fP2675Ts/hw8fzndfXs8955eJ7M8/NjbWbl/VqlUdnjs7V5Y7u5yLxuT88pPf9pzzZrpSzlXhs9SpU8eWnMrIyNCFCxdsdZiWlqalS5dqxYoV2r59u11iIidHbTKv1zS7zZs3a+HChdqyZYvDOUEdnSOv1z17Mis0NDRXciuveUkl+3YhZa5Y/v333+f/BGS+beR1/LfffrvA+TIPHTqUZ0LX398/36TsmDFjdOzYMdvq6WlpaXZTP3h7e6tt27YaMmRInj+E5Cd7+65QoUK+r2/O9n3y5Mk8E7ohISF5Jh6L85qX13PIOZdn1jXwwoULdnN3btu2zWXXjiyrVq3S0qVL9fvvv+eapzg7R/WS38KZOdtfzoUi83Lo0CG7EZqueM9ml3Oe6Oy3dGfn4+OjsLAw7d27V5J7r5lm5FXH+bUbyX2fOTk5ut5n52hkpisWXnXHe7so7Tfn1Cf51VNYWFihErp33nmnoqKi7EaOHzhwQAcOHNDXX38tSbJarerfv7/uvffeIo/QdfQaufPz21GfLPudLlL+dVy7dm0SugDwPyR0AeAKkvMLoZT3wibuklfyNvuIUzPxjuRcpCS7vJ67MwuxmB0RJrm23Nnl9RzyknMhkuJ8jbPk/CKXdctoYmKiHnzwQbsRYnXq1NG1116r5s2bKzY2NtfK5fnJPldtTuPHj7dbnKdSpUq2c4SFhWnUqFGmzpHXokzZOfPF2dl2IZlvG1Lu192M/KZccFS3QUFBmjVrljZu3KgVK1bol19+sUvgZM19+Ouvv2rQoEEaO3asqbK4un3nd7zifD/kNYI+v+uOO9tHenq6nn76abuR+zVq1LC9J3x9ffXGG2+YOlZ+baOo7c9V79nszLYpyf6a5ewiXa7mTLuR3PeZY1Z+1/u8OLq2mOWO93ZR2m/O1ya/cuRcYNUZL774ou666y4tWbJE69evz5WUj46O1htvvKHly5dr9uzZdlNsOCu/18iVn9/O9sly1ml+sUWpYwC40pDQBYArSHF/Sc3ZAc/rFkhHi/pUrlzZNlKqYcOGuRaFcoazzz3nre/Hjx9X/fr17badPHlSf/31l+rXr686derYkn+uLHd2OUfN/PPPP3nGZd1WmyW/hU9c4Z9//slzFGb20Za+vr62uQ0//fRT25dBf39/ff7552rfvr0tNmu0kRn5JVM3b95slxh69tln9eCDD9raY3715m4529R9992nl19+2WXHr1Spkt3fH3zwQaGn2igoUW2xWHTzzTfr5ptvlmEYio6O1o4dO/T7779rzZo1tvf6nDlzdO+999rmeXakWrVqttulExISdObMmTxHcZlt3yWdlHNWSEiIvL29bcm5Tp066dNPP3XJsRcvXmyXzJ04caLdKM6cUxo4kl/byNn+Fi1apIiICFPHdNd7Nuc1M2fbyZKammq32FPOebJLO3d95uR0+PBhpaWlycfH/itizrtHHC1OVdTRo5J73ttFab85n2/2tpRdQYt8FqRRo0YaM2aMxowZo5MnT2rbtm3atm2bVq9ebRthvHPnTn3zzTe67777Cn2e/F4jV35+F7VPdvTo0Vx3axiGkWtUPgCUZSyKBgAotPLly9v9ndciJTt27Mj38c2bN7f9+9ChQ7m+DJ07d06PPvqo3n77bX3zzTfat29f0QqcTc5buLMnQ7LMnz9fw4YNU8+ePXXttdfaFqRyV7lbt25t90X6q6++ynM18ZwrQXfo0MHU8Qvj22+/zTV6+ejRo3a3lTZu3NhW7uyJo3r16tl9GZRkN99lQfIbBZVzHr977rnHLtaZc7hSWFiY3TQGmzdvzjWaaPPmzRo+fLg+/PBDrVy50m7+1JzPN+eIsuztTpI2bNiQqwzTp0/X888/r88//1zr16+3W2Qmu/zq9sCBA/ryyy/1wgsv6N5779XGjRtlsVgUHh6ue+65R++++65GjBhh95jo6Og8j5XTddddZ/d3znYsSadPn7ZLVlWqVElNmzY1dXxXyJ6EKMyIPkf8/PzUqFEj2987duzI9YPXvn379MQTT+j999/Xt99+m2/iKKfs74mgoKBct+S74n1npv298847eumllzRjxgz98ssvtmuHu96zISEhCg8Pt/29efPmXPOdSrmvpa6+Zrqz3UjF91l56dIlrVq1Ktf27AtfSnKYCC2JO0byOm9hrp/5td+cj/3uu+9yjVrevn27bUoPZ1y4cEFz587V66+/rgceeEBTpkyRlDkncq9evTR27NhcP/zkPI+z7S+/ZKsrP7+dlbOO8/rR4rvvvnP56HMA8GQkdAEAhZZzcailS5faVuZOT0/X9OnT8/zSlCX7ismpqal68skntXXrVqWlpSk2NlYvvviifvrpJ02bNk0vvPCCbU5PV7j++uvtyr9o0SJ99NFHOnfunNLS0rRu3TpNnz7dtj80NNT2JdZd5a5cubLdaNhTp07psccesy1qd/bsWY0fP962eIqUOa9ep06dClUHZuzbt09PP/20Tpw4ofT0dO3YsUOPPPKI3S3AvXv3tv07+yjtvXv36ptvvlFaWprOnTunyZMna9GiRXbHL8ztkzlHgr/33nu6dOmSkpOTtXz5co0fP77I5ygMi8Wi22+/3fb3wYMHNWLECB05ckSGYWjv3r169dVXtXr1ak2ZMkUjR460mzcw5y2q0dHRSk1NtY06DA8Pt0sILlmyRJMnT9a5c+eUkZGhdevWadKkSVqyZIneffddvfrqq7lG2hUkLi5O//3vf/XNN99o+/btevnll7VlyxalpaUpIyNDe/fu1erVq+0eY3b+6d69e9vdJjxr1ix98sknttua//zzTz366KN2SejsoziLQ/bX4NixY7p48aLOnTvnsiRC9vYRFxenJ554Qnv27FFGRoaOHj2ql156ST/88IM+/fRTjR49OteiTfnJ/p64ePGiPv74Y12+fFkJCQmaM2eOPv74Y7v4wrwnOnToYDeK7tNPP9XcuXOVkJCg1NRUzZ8/X9OmTdPChQs1YcIETZo0ydb+3Pmevfvuu23/zsjI0JNPPqlNmzYpIyNDycnJmj9/vt5//31bjJ+fn4YMGeLUcy9I9nZz/vx5nThxQvHx8bnmai+s4vysfOWVV7Ry5UqlpaUpLi5OH374oZYsWWLbX7Vq1XwXWixJOa+fe/bsUXp6um1hyqK03wYNGthde//44w+9+OKLio2NVWpqqjZv3pzrhy6z/Pz89P7772vOnDnavHmzPvnkEy1YsMB2HTx9+rTmzZtn95icdzZkf+4HDhxQcnKyTp486XD+27wUx+d3frIWPMuybNkyTZw4UfHx8UpJSdGqVas0btw4l50PAK4ETLkAACi0rNFzWaM2Tp8+re7du6tBgwY6ffq0YmNj7VZsz6lbt266/vrrtWXLFkmZCayBAwfa3ZacpW7duurfv7/Lyu7r66sXXnhBw4cPl5SZCJg8ebImT56c5/n/85//2G5TdGe5X3rpJW3bts12e+Wvv/6qXr16ydfXN9eXp8DAQL3zzjtuT3itW7dO69atk4+PT67RuvXq1bN7fm3atLEloDMyMvTCCy9o7Nix+c4BWZhEWdu2bfXVV1/Z/p43b56+/vprWSyWPEcnOZr2w9Uef/xxrVy50pbIWbt2rdauXZtn2+jTp4/d6MKQkBAFBATYRhKuW7dOzZs3V0ZGhn777TeFhITohRde0AMPPKD09HQZhqGPPvpIH330UYFt1qzWrVurW7duth8NTp48qaFDh8rLy0sWiyXXOaxWq1q3bm3q2JUrV9Yrr7yiMWPGSMpsH5MmTdKkSZPybN/t27fXAw884FT5i+qqq66yJVFPnTql9u3b264Nt956a5GPP3DgQC1cuND2Hvnjjz90xx135Pn6tWvXzvSPNW3atLH78eyDDz7Q5MmT8x2tV5j3hJ+fn5577jmNHj1aUub86OPGjdO4ceNyld/b29tuTlx3vmcHDBigtWvX6tdff5WUOT3Agw8+KB8fH9v7JLtXXnnF5dPUXHXVVbZ/Jycnq2vXrjIMQ88995xL2nBxflYmJCRoxIgReR5bkkaMGOGSaRVcLftrIEmzZ8/W3LlzFRAQoG3bthWp/UrSc889pwcffNDWnr755ht98803do911N/JT0BAgIYPH64333xTUmaSdOzYsRo7dmye18WAgADdeeeduZ571g9/u3btUsuWLZWRkaHFixc7dYdDcXx+58fPz08jRozQSy+9ZNs2depUTZ06tch1DABXKkboAgCK5KWXXrJb4CUlJUVRUVGKjY1V5cqV9c477zh8/EcffaQ2bdrYbcv55eHqq6/WzJkzXf4lsnv37nrllVdyjWLMfn6LxaLHHntM/fr1K5ZyV6tWTTNnzsz1JSznl7oaNWpo5syZdqOG3OGpp56yTSOQM5lbq1YtffLJJ3av/5NPPplr5Hb2emncuLFdAtrs7frZ9ejRQzfeeKPdNsMwbImhSpUq2X25d+VUHQWpVKmSpk2blmtuz5xto0uXLnrttdfstnl7e+earzjrOWXNn9m+fXu9/fbbuRbEyXn8UaNGqU+fPoV6Dm+//bY6duyYqxx5JY4+/vhjhwsk5dS3b1+NHz8+12rnOdv3rbfeqk8++cTpEcZFlTNpm1X/WXceFJWfn5+mTZumBg0a2G3PWbctWrTINarWkUGDBtn9OCDZ33odFhZmm+daKvx74o477tDo0aNzveY5k2FvvfWW3ShOd75nvb29NXnyZP3rX/+y256WlmaXzPX399cbb7yR61ruCnm1G8MwXNZupOL5rGzcuLH69u2b57El6dFHH9Vdd91VqGO7W9WqVdWyZUu7bRkZGbp06ZLtLoDCtl9JuuGGG/Tyyy/n+gE167HNmjUr1MJ+knT//ffr0UcfzTUVQs7rYvny5fXBBx+odu3adttddd0qjs9vR/r3769HH3001/asMtx8880aOnSoS88JAJ6MhC4AoEhatWqlBQsWqFevXqpatar8/PxUt25dPfzww1qxYoWaNWvm8PEVKlTQnDlz9M4776hTp06qWrWqfH19FRgYqGbNmmnEiBFavHhxri8ZrjJw4EAtX75cAwYMUN26dVWuXDn5+fmpVq1auv322zVv3rw8b6V0Z7nr16+v+fPna+LEieratatq1aolPz8/BQcHq3Xr1nr++ee1atWqXHPOuUOzZs20bNky9e3bV1WqVJGvr6+uvvpqPfLII/r2229Vt25du/hq1app0aJFuvfee3XVVVfJx8dH5cuXV7NmzfTss89q/vz5atWqlS3++++/zzWCriBeXl6aOnWqRo4cqYYNG8rPz0/+/v6qV6+ehgwZoqVLl9olM3fs2KETJ04UqR6cER4erlWrVumZZ55Ry5YtFRoaKh8fH4WEhOiGG27Q22+/rSlTpuSZdHnttdc0ePBgVa9eXb6+vqpSpYpuvvlmuwRo7969tXLlSj3wwAOyWq2qUKGCfH19Vb16dfXs2VNz587VI488UujyV6hQQV988YWmTJmi7t27q2bNmvLz85Ovr68qV66s6667Ti+99JK+/fZbhYWFOX38/v37a9WqVRoxYoRatGihSpUqydfXVzVq1NBtt92mL7/8UpMnT841R3dxuOeee/TCCy+ofv368vX1VXBwsFq2bJmrnRdF9erVtXTpUr3yyiu224x9fHxUsWJFtWrVSmPHjtWcOXNUsWJF08cMDAzUV199pYcffti2gGNgYKCsVqsef/xxLV68WJ07d7bF//TTT3nOz23GQw89pKVLl+ree+9V3bp1FRgYKF9fX9WuXVt9+/bV4sWL7aaWkNz/ng0KCtJ7772nOXPmqF+/frrmmmsUGBhoq4OHHnpIa9ascUsyV8q8nf/dd99VkyZN5OfnpwoVKqhJkyZq0qSJy85RHJ+VXl5emjBhgt5++201bdpU5cqVU1BQkDp06KBp06Zp5MiRLns+7jB58mT16dPHdk2pXr26unfvbpeULEz7zTJw4EAtWLBA3bt3V2hoqPz9/dWoUSM9//zz+vrrr516z+Y0cuRILVq0SHfffbfq16+vwMBAeXt7KygoSBEREXrsscf0/fff6+abb8712GHDhumJJ55Q7dq15evrq9DQUF133XV5LjrpSHF8fhdk5MiRmj59ujp27KigoCAFBgaqRYsWeuONN/Tpp5/aFqcFAEgWw9VXYQAA4LEWL15suyVeyrzlMXsiCABw5ejSpYuOHz8uSWratKkWL15cwiUCAABmMEIXAAAAAAAAADwECV0AAAAAAAAA8BAkdAEAAAAAAADAQ5DQBQAAAAAAAAAPwaJoAAAAAAAAAOAhGKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgAAAAAAAICHIKELAAAAAAAAAB6ChC4AAAAAAAAAeAgSugAAAAAAAADgIUjoAgCKxDCMki4CAAAAAABlhk9JFwAA3Gny5Mn66KOPnHrMDz/8oNq1a7upRFeOixcv6sMPP1TTpk3Vp0+fki4OAAAAPFRcXJxmz56t9evX6+jRo0pOTlZoaKgiIiLUq1cv3XbbbbJYLCVdzEJbuHChXnrpJfXp00dvvfVWSRcHwBWAhC6AK1p4eLh69+5tt+3s2bPavHmzAgMD1bVr11yPCQwMLK7iebQJEyZo8eLFGj9+fEkXBQAAAB7q77//1gMPPKC4uDjVrl1bbdu2lY+Pj06ePKn169dr3bp1WrRokT755BP5+/uXdHEBoFQgoQvginbrrbfq1ltvtdv222+/afPmzQoNDdW7775bQiXzfEy1AAAAgKJIS0vTsGHDFBcXp3Hjxumee+6x23/48GE99dRT2rRpkyZOnKjnn3++hEoKAKULc+gCAAAAAIBit3XrVh07dkxt2rTJlcyVpKuvvlpvv/22JGn+/PkMKACA/yGhCwA57Nq1S8OHD9f111+vZs2aqWvXrpowYYLOnTuXKzY8PFx9+/bVhQsXNH78eHXs2FHNmzfX7bffrhUrVkiSTp48qVGjRql9+/Zq166dHnjgAe3Zs8fuOJMnT1Z4eLhWrVql77//XnfccYeaN2+uzp0767XXXlNMTEyeZT1z5oxef/11denSRc2aNdMNN9ygESNGKDo6Olfs4MGDFR4erujoaA0ZMkQRERHq0KGDVq5cKSlzhMTChQt1//33q3379mratKnatWunwYMH67vvvsv1vJcsWSJJeumllxQeHq7FixfbnWfz5s25yrB48WKFh4frmWeesW377bffFB4erjfeeEOzZ8/WDTfcoBYtWmjgwIHKyMiQJKWnp2v+/Pnq37+/WrZsqZYtW+qee+7R4sWL6dgDAAB4qLNnz0qSw/lxmzRpor59+6p3795KSkqS9P/9zdjYWE2ZMkVdunRR8+bN1bNnT3322We6fPlynsdypp8vZa4ZMXHiRPXo0UMRERFq3769Hn30Uf3xxx95xsfHx+v999/XLbfcoubNm6tXr15auHChM1UCAKYw5QIAZPPtt9/qhRdeUHp6upo2bapatWpp9+7dmjFjhtauXatZs2blWjDt0qVLuueee3TmzBm1b99e586d044dOzRq1CidP39en376qby8vNS6dWsdOHBAmzdv1sCBA/X999+revXqdsdaunSp1q9fr6uvvlqdOnVSVFSUvvrqK/3000+aPXu23bn37NmjBx98UGfPnrXFnz59WitXrtQPP/ygyZMn6+abb871HIcNG6ZLly7p5ptv1q5du9SsWTMZhqFhw4bpxx9/VHBwsFq0aCF/f3/t379fkZGRioyM1NmzZzVkyBBJUu/evbVjxw4dPXpU1157rcLCwlSnTp0i1f3GjRt1+PBhtWvXThaLRTVr1pSXl5fS0tL01FNPaf369apYsaJatWolHx8fRUZGasyYMYqMjGRxCQAAAA8UHh4uSfr99981efJk3X///QoKCsoVN2HChDwf/9JLL2n9+vW69tpr1bhxY0VGRuq9997Tli1b9Nlnn8nX19cW62w//9SpUxoyZIgOHz6sGjVqqGPHjrp48aI2btyojRs3aty4cerfv78t/sKFCxo8eLD27t2r6tWrq1OnTjp+/LheeuklNWjQwFVVBgCZDAAoY3799VfDarUanTt3ttt+4MABo1mzZkbLli2N3377zbY9PT3deP/99w2r1WoMGDDA7jFWq9WwWq1Gz549jdjYWNv2119/3bbv0UcfNZKSkgzDMIzU1FRjwIABhtVqNb744gtb/IcffmiLHzdunJGWlmYYhmFcvnzZePbZZ23HyXL58mXjlltuMaxWqzF9+nQjIyPDtu+HH34wmjZtarRt29Y4e/asbfugQYMMq9Vq3Hzzzcb58+dtz80wDGP16tWG1Wo1+vXrZyQkJNg9x08//dSwWq3GLbfcYrf9ueeeM6xWq7FgwQK77Vnn2bRpU666/+abbwyr1WqMGjXKti3r9bBarcbnn39uV+/Z62bIkCF2zycmJsa488478ywDAAAAPMOYMWNsfcGmTZsagwcPNiZPnmxs2bLFSE5OzvMxWf3NRo0aGStWrLBtj42NNXr37m1YrVbjyy+/tG0vTD8/6xxvvfWWcfnyZdv2HTt2GG3atDGaNm1q7Nu3z7Z93LhxhtVqNR5//HG7ci9YsMD2/J577rnCVxQAZMOUCwDwPzNnztTly5c1bNgwtWvXzrbdy8tL//nPfxQeHq6tW7dqx44duR47fPhwVa5c2fb37bffbvv3888/r3LlykmSfHx81KVLF0mZizzkVK9ePb3wwgvy9vaWJPn6+mrcuHEKDQ3V+vXrdeLECUnS2rVrdfjwYXXu3FlDhw61u02tS5cuuvfee3XhwgUtWrQo1zl69+6tkJAQ23OTpNTUVHXp0kXPPPOMypcvbxc/YMAASdKxY8fyqTnX8Pb21sCBA21/e3l56fLly5o5c6Z8fX31zjvvqFKlSrb9VapU0fjx4yVJX375pVvLBgAAAPcYN26cnn76aQUGBio1NVW//fabbbRuu3btNGzYMO3evTvPx/br10+9evWy/V25cmVb//Crr76ybXe2n//nn38qMjJSjRo10rPPPms30rdFixZ64oknlJqaqlmzZkmSLl++rMWLF8vX11fjx4+Xv7+/Lb5///7q3Llz0SsKALIhoQsA//Pbb79Jktq3b59rn8ViUYcOHSRJkZGRufZfe+21dn+HhoZKkgICAlS3bl27fVm3keU1t9dtt91mS+ZmKVeunO3cWWX89ddfJUnXXXddns+lY8eOdvHZNWrUKNe2Xr166ZNPPrF77snJyfr777+1bNkySZnz2Kanp+d5PleoU6eOAgMD7bb9/fffio+PV7169VStWrVcj2natKkqV66sgwcP5jvPMAAAAEovHx8fPfHEE/rll180ceJE9evXT1dffbWkzP7omjVrdNddd2nevHm5Hps9mZulefPmql69uo4eParjx49Lcr6fnxXftm1b2wCI7LL62lnxf/31lxITE9WsWTO7AQhZunXrVkAtAIBzmEMXAP7n5MmTkqQ+ffqYissuODjY7u+sEbN5zQHmaNGHrM5rTldddZWkzEXQspdhwoQJ+c4pJmXO/VVQWbMkJCRo/vz5+vnnn3XgwAHFxMTIMAy78hpuXIAsa9Rwdlkjkvfu3WubYy0/J0+eVNWqVd1RNAAAALhZ+fLl1bNnT/Xs2VOSdPr0aW3cuFEzZ87Uvn37NG7cOLVu3VpWq9X2mJwDJ7JcddVVOn36tM6cOaNatWo53c/P6oPOnj1bs2fPzjc+q6+d1UfPuT5GlpxrcABAUZHQBYD/yRp92qtXrzx/ic+S1whXHx/XXE5zjs7NkpVIzdqfkZEhKXOUQV4jV7PkNUIgr+e2b98+3X///Tp79qxCQ0PVvHlz/etf/1J4eLjat2+vTp06OftU8uRohG9eie6s51mzZk21bt3a4bFzThUBAACA0m3//v2KiYlRmzZt7KY1kDKTo/3799cdd9yhIUOGaPv27VqxYoVGjhxpi8mvz56z7+xsPz+rDxoREZFv0lj6//6rowEbkuu+KwBAFq4qAPA/1apV0/Hjx/X000/nO1LW3U6fPp3n9qxRAlkjdbNGovbu3dtudd3CGjdunM6ePauHH35YI0eOtEssX7hwwaljZXVo80rexsfHO3WsrOdZo0YNvfvuu049FgAAAKXbk08+qUOHDmnhwoVq3rx5njF+fn7q3bu3tm/frri4OLt9p0+fznNwQ86+s7P9/Kw+6I033qgRI0YUGJ81MjfrvDlljeAFAFdhDl0A+J+2bdtKkjZs2JDn/lGjRumuu+7SDz/84LYy/PTTT7m2JSYmatOmTfL29tYNN9xgqqyzZs1S7969NWXKFFPnzVoA4rHHHss1SnjTpk22f2eNVpDyH4mQNQ/u2bNn8z2PWRERESpXrpz27NmTZ0f49OnT6t69u4YOHapLly45dWwAAACUrFatWkmSw2kNJOngwYOSZDfdgpR3X3jHjh2KiYlRo0aNbIlZZ/v5WfE///yzXf83y9q1a3Xbbbfp1VdflSQ1a9ZMQUFBioqKyjOpm1cfHwCKgoQuAPzP4MGD5e3trQ8++EBbtmyx2zdv3jytWLFC+/btU4sWLdxWhsjISLsO7eXLlzV27FjFxcXpjjvusC221rNnT1WtWlVr167V9OnT7ea23blzpz788ENFR0cXOO9slqypGXImq3///Xe9/vrrduXJ4ufnJyn3qNusW9W+/vpru/hVq1Zp7dq1psqTJTAwUHfffbcSExP17LPP2iWJL126pOeff16HDh1S+fLlmXIBAADAwzz88MMqV66cli1bppdffjnXCNyMjAwtWLBAX3/9tSpXrqw777zTbv+XX36p7du32/6OiYnRSy+9JEkaOnSobbuz/fz27durcePGioqK0n//+1+7Pu3hw4c1fvx4/fPPP7rmmmskSb6+vho4cKDS09M1evRoJSQk2OJXr16t5cuXF7qOACAvTLkAAP/TrFkzvfDCCxo/fryGDh2qJk2aqHbt2jp48KD27dsnb29vvfPOO6pSpYrbylCjRg2NHz9eixcvVlhYmHbu3KmTJ0+qcePGGj16tC0uICBAH374oR555BG99dZbmjNnjsLDwxUXF6dt27bJMAzdf//9plfUfeCBBzRhwgQ999xzmj9/vqpWraojR45o9+7dCgkJUdWqVRUTE6OYmBhVqFBB0v8vQvHxxx9r+/btuuOOO9StWzfdfffdmjt3rrZv365bb71VzZs319GjR/X333+rT58+WrJkiVN1MmrUKO3evVu//vqrbrnlFkVERCggIMB2213dunU1btw4p44JAACAkle/fn1NnjxZo0aN0vz587V48WI1a9ZM1atXV3Jysnbt2qXY2FhVqVJFU6dOtfVDswQFBem+++5Tu3btFBgYqF9//VWXLl3SnXfeabcAmrP9fIvFookTJ+r+++/X9OnT9d1336lp06ZKTk7WH3/8odTUVHXv3l2DBg2yneOJJ57Qtm3bFBkZqW7duqlt27aKjY3Vtm3b1LJlS7vEMwAUFSN0ASCbQYMGae7cubrlllt06tQprV+/XomJierZs6cWLVqk7t27u/X8d955p8aPH6+UlBStX79e/v7+euqppzR37lzb6NwsrVq10tKlS3XvvffKMAxt3LhRR44cUfv27TVlyhS98MILps87dOhQvffee4qIiFB0dLTWr1+vpKQkDR48WMuWLVOPHj0kSevXr7c9ZsCAAbZREhs3btSuXbskZS5g9vXXX6t79+5KSkrShg0b5O3trYkTJ+rf//6303VSrlw5TZs2TS+++KLq1aunnTt36rffflO1atU0bNgwLVy4UJUrV3b6uAAAACh5N910k1avXq3hw4fbBgL88MMP2rZtm2rUqKHhw4fr+++/V0RERK7Hvvrqq3rwwQd14MABbd68WfXq1dOECRP09ttv54p1tp9/zTXXaOnSpXrooYcUGBioTZs2ac+ePWrWrJkmTJig999/326qMn9/f3355ZcaNWqUQkNDtWHDBsXExOiZZ57R008/7fqKA1CmWYzs9+kCAErE5MmT9dFHH+mxxx4ztfACAAAAUFYNHjxYkZGRmj59um2NCQAoSxihCwAAAAAAAAAegoQuAAAAAAAAAHgIEroAAAAAAAAA4CGYQxcAAAAAAAAAPAQjdAEAAAAAAADAQ5DQBQAAAAAAAAAP4VPSBfB0hmEoI8P9s1Z4eVmK5TzwPLQN5IV2gbzQLpCX4moXXl4WWSwWt58HpU9x9ZclrnOFQZ05h/pyHnXmPOrMOdSX86gz55W2PjMJ3SLKyDB07twlt57Dx8dLoaHldfFiotLSMtx6LngW2gbyQrtAXmgXyEtxtotKlcrL25uEbllUHP1lietcYVBnzqG+nEedOY86cw715TzqzHmlsc/MlAsAAAAAAAAA4CEYoQsAAFAGZWQY2n3onFIPnpevxVD9msHy8mIELTwT7RkAAJQlJHQBAADKmK17z+irdft0Pj7Fti20or8Gdmuo1uHVSrBkgPNozwAAoKxhygUAAIAyZOveM5qyZJdd8kuSzsenaMqSXdq690wJlQxwHu0ZAACURSR0AQAAyoiMDENfrdvnMGbeun2segyPQHsGAABlFQldAACAMiL6aFyukYw5nYtPUfTRuOIpEFAEtGcAAFBWkdAFAAAoI+IuOU5+ORsHlCTaMwAAKKtI6AIAAJQRIeX9XRoHlCTaMwAAKKtI6AIAAJQR1rAQhVZ0nNyqVNFf1rCQ4ikQUAS0ZwAAUFaR0AUAACgjvLwsGtitocOYAd0aysvLUkwlAgqP9gwAAMoqEroAAABlSOvwanqyT7NcIxsrVfTXk32aqXV4tRIqGeA82jMAACiLfEq6AAAAAChercOrqWXDqjpw4oJSDYt8LYbq1wxmJCM8Eu0ZAACUNSR0AQAAyiAvL4sa162k0NDyOn/+ktLSMkq6SECh0Z4BAEBZwpQLAAAAAAAAAOAhSOgCAAAAAAAAgIcgoQsAAAAAAAAAHoI5dEu5jAxDuw+dU+rB8yzwAAAAAOSBPjMAAChLSOiWYlv3ntFX6/bpfHyKbVtoRX8N7NZQrcOrlWDJAAAAgNKBPjMAAChrmHKhlNq694ymLNll1zGVpPPxKZqyZJe27j1TQiUDAAAASgf6zAAAoCwioVsKZWQY+mrdPocx89btU0aGUUwlAgAAV5qsW9Q3bDum3YfO0a+Ax6HPDAAAyiqmXCiFoo/G5RplkNO5+BRFH41To6tDi6lUAADgSsEt6rgS0GcGAABlFSN0S6G4S447ps7GAQAAZOEWdVwp6DMDAICyioRuKRQU6OfSOAAAAIlb1HFlqVDO16VxAAAAnoKEbmlk9jsU37UAAIATnLlFHSjtjsUkuDQOAADAU5DQLYUuJl12aRwAAIDELeq4ssReSHZpHAAAgKcgoVsKhZT3d2kcAACARB8DV5ZqIQEujQMAAPAUJHRLIWtYiEIrOv4iVamiv6xhIcVTIAAAcEWgj4ErSZdWtWWxOI6xWDLjAAAAriQkdEshLy+LBnZr6DBmQLeG8vIqoAcLAACQjZeXRe0bV3MY065xNfoY8Ag+Pl5qUb+yw5gW9SvLx4evPAAA4MpC76aUah1eTT3aheUadWCxSD3ahal1uOMvYwAAADllZBj6bfcZhzGRu88oI4OVV1H6ZWQYOnza8YJnR04n0J4BAMAVh4RuKbV17xmtijwqI0f/0zCkVZFHtXWv4y9jAAAAOUUfjdP5eMcLnp2LT1H00bjiKRBQBLRnAABQVpHQLYUyMgzN+H6Pw5iZq/Yy2gAAADgl7pLj5JezcUBJKiiZ62wcAACApyChWwrtOXJel5LTHMYkJKVqz5HzxVQiAABwJQgp73hBNGfjgJJ0weQPD2bjAAAAPEWpTuhGRkbqwQcf1PXXX6+WLVvq3nvv1cqVK4t0zOXLlys8PFzPPPOMi0rpensOm0vUmo0DAACQJGtYiMqX83EYUyHAV9awkOIpEFyirPaZLyWlujQOAADAUzju0ZegZcuWafTo0fLx8VH79u3l7e2tLVu2aMSIEdq/f7+GDx/u9DFPnjypcePGuaG0LmZ2YWkWoAYAAK6WcwJ/lGr0mV0YBwAA4CFKZUI3NjZWY8eOVUBAgObMmaOmTZtKkg4cOKAhQ4bo448/VteuXW3bzTAMQ88995wuXrzormK7jLVWiKTDJuMAAADMiT4aV/C0Tslpij4ap0ZXhxZTqVBYZb3PHOjn69I4AAAAT1Eqp1yYO3eukpOTNWjQILsOaP369TVy5EgZhqGZM2c6dczp06frt99+U9u2bV1dXJfz8jY3jMBsHAAAgMSiaFeast5nTrzs+McJZ+MAAAA8RalM6G7YsEGS1K1bt1z7unXrJovFop9++sn08fbu3auJEyeqc+fO6tu3r6uK6TYXEy+7NA4AAECSggL8XBqHklXW+8yS2elBmEYEAAAUTkaGod2HzmnDtmPafeicMjJKR7+i1E25YBiG9u/fL0lq2LBhrv3BwcGqUqWKYmJidPr0aVWvXt3h8S5fvqxnnnlG5cuX1/jx47Vx40a3lNuVWIEaAAC4BXOOXjHoM0vly5mbSsFsHAAAQHZb957RV+v26Xz8/9+9FlrRXwO7NVTr8GolWDKTCd3Ro0e77IQWi0Vvv/12vvsvXLiglJQUlS9fXoGBgXnGVKtWTTExMYqNjS2wc/r+++8rOjpaH374oapUqVKksufHx8e1A52bXFNJlSr661x8/rc7VgryV5NrKsnLi29cZZm3t5fd/wGJdoG80S4gSfFJqabjXN2/KQvoM+fPHe0ppKLJQRAV/WnP+eCzwTnUl/OoM+dRZ86hvpxHnZnz+54zmrJkV67t5+NTNGXJLg3r11xtG5VcUtdUQnfZsmWyWCwyXLDqcUGd06SkJElSQEBAvjH+/pmdt8TERIfn2rJli2bMmKHbb79d3bt3L0RpC+blZVFoaHmXH/fRvs01Yebv+e/v01yVK1dw+XnhmYKC8n+/oOyiXSAvtIuyLTXDfJw7+jdXOvrMeXNXfznD5OxxGfKiPReAzwbnUF/Oo86cR505h/pyHnWWv/QMQ1+tjXYYM2/dPnVtX1feJTTQ0vSUC9dee63uvvvuIp1s/vz5+vPPPx3GeHlldswsloIrJCMj/28lFy9e1JgxY1S9enWNHTvWuYI6ISPD0MWLjjvJhZFQwGIkCZdSdP78JZefF57F29tLQUEBungxSenpJr+l44pHu0BeaBeQpJhz5voOMecuubyfERQUUCZGgtBnzuv87ukv+1jMJc59LAb95nzw2eAc6st51JnzqDPnUF/Oo84KtvvQOZ29kOwwJjYuSb/9eUyN61Zy6bnN9plNJ3TDwsLUp0+fIhVq8+bNBXZOy5fP/PU8OTn/iktJyUx25nd7mSS99tprOnXqlKZNm6agoKBClNa8tDTXvgEyMgzNWb3XYczc1XvVol5lplyAJCk9PcPl7RCej3aBvNAuyjbD5CIORoZBOykk+sx5c0d7qhBgbm7cCgG+tOcC8NngHOrLedSZ86gz51BfzqPO8nf2ouNkbva4kqpDUwndtm3bqn79+kU+Wf369dWmTRuHMeXLl1f58uUVHx+v5ORklStXLlfMmTNnJGXOC5aXv/76SytWrFBISIgWL16sxYsX2/YdO3ZMkrR9+3Y988wzql+/vh5//PHCPiW3iD4aZzfhcl7Oxaco+micGl0dWkylAgAAnq5h7RBJh03GwVn0mYtXRrq5HyjMxgEAAEhSUKCfS+PcwVRCd/bs2S452WOPPabHHnvMYYzFYlHDhg21Y8cOHThwQE2bNrXbHxcXp9jYWAUHB+e7uEPWPGFxcXFavnx5njHHjh3TsWPH1K5du1LXOS0ometsHAAAgCQdj00wHRdRv7KbS3Ploc9cvPYejTMd14z2DAAAzDL7W3AJ/mZsesqFnFJSUrRhwwYdPnzYdjtXXiwWi5588kmnjt2xY0ft2LFD69aty9U5XbdunQzD0E033ZTv49u3b6+9e/OesmDx4sUaM2aMevfurXfffdepchWX+MTLLo0DAACQpNgC5gJzNg4Fo8/sPudM3g5pNg4AAECSLiaZy7eZjXOHQiV0jx8/rkGDBunUqVMO4wzDKFTntF+/fvriiy80Y8YMdezYUa1atZIk/fPPP5o0aZIk6eGHH7bFnzlzRvHx8apYsWK+t5R5ksBAcy+L2TgAAABJqhZibjVjs3FwjD6ze4UEmbvN0WwcAACAJIWU93dpnDsUKiM4YcIEnTx5UldffbVuvPFGVaxY0dQKu2bVqFFDL774osaOHatBgwapffv28vPz05YtW5SSkqJRo0apUaNGtvj3339fS5YsUZ8+ffTWW2+5rBwlJTExzaVxAAAAktSlVW3NX79fhoPbwyyWzDgUHX1m96oYYC5RazYOAABAkqxhISpfzkeXkvPPu1UI8JU1LKT4CpVDoRK627dvV82aNbV06VIFBLhnBEf//v1Vo0YNffbZZ9qxY4e8vb3VpEkTPfjgg7r11lvdcs7SIrCcyRG6JuMAAAAkycfHS1WCyykmLv9b0KsEl5OPj1cxlurKRZ/ZvTxhwRIAAOCZUlLTHe+/XLKDLAuVEUxJSVHr1q3d1jHN0rFjR3Xs2LHAuLfeesv0KIO+ffuqb9++RS2aWx08edF0XIfmNd1cGgAAcKW4fDndYTJXkmLiknX5crr8/LyLqVRXLvrM7nXR5HoSZuMAAAAk6e+D55SW7njFs9R0Q38fPFdiC68WavhF69attXfvXhmO7tdDoZmtVqofAAA44+sfo10aB8foM7tXQlKqS+MAAAAkaVPUSZfGuUOhErrPPPOMzpw5o9dee02XLl1ydZnKPLNTq7lwCjYAAFAG/HPC3F1AZuPgGH1m9zp/McWlcQAAAJIUG5fk0jh3KNSUCw0bNtSLL76ol156SUuXLlXt2rUVHBycZ6zFYtGcOXOKVMiy5uqaFaXtJuMAAADMMvtjMD8auwR9ZvcKCTI3N67ZOAAAAEny8zE39ZjZOHcoVEJ306ZNevXVVyVJycnJ2r9/f76xrlzJt6xITnI88bKzcQAAAJJUPTRQR04XPFK0emhgMZTmykef2b3Kl/N1aRwAAIAkBZU3ufCqyTh3KFRC98MPP1RaWpq6deumXr16qVKlSnRCXaiiyZV4zcYBAABIkpfJ/prZODhGn9m9EpPNrS5tNg4AAECSKoeUc2mcOxQqoRsdHa1GjRrpo48+cnV5ICm0or9L4wAAACRmXChu9Jndizl0AQCAOzSpU0krtxwxFVdSCrUoWkBAgMLCwlxdFvyPNSykwGRtpYr+soaFFE+BAADAFaGSyVEEZuPgGH1m9woNNjkIwmQcAACAJDW6OlTlyzkeA1uhnI8aXR1aTCXKrVAJ3Y4dO2rr1q1KTk52dXkgycvLooHdGjqMGdCtoby8GD8DAADMMzuKoCRHG1xJ6DO7F+0ZAAC4g5eXRR2bX+UwpkPzq0o0L1eohO7IkSPl5eWlRx99VLt373Z1mQAAAOAGZu/u4S4g16DP7F6Nrg6Vv6/jrzPl/LxLdPQMAADwPBkZhn7eedJhzC87TyojwyimEuVWqDl033zzTdWsWVORkZHq27ev/Pz8VLFiRfn45D6cxWLR+vXri1zQsiQjw9Cny/92GPPZ8r/1ScOqjNIFAACmRR+NMx3X5BpGNRYVfWb3Sy/ge1R6CX7RAgAAnmnP4fO6VMCiqgnJadpz+HyJ9ZkLldBdvXq13d8pKSlKScl7sQFW8nVe1D9nlZaW4TAmNS1DUf+cVUSDKsVUKgAA4On2HD1vOo6EbtHRZ3av3YfOmeoz7z50Tk3rVS6mUgEAAE+3+7C5PvNuT0vo/vDDD64uB7JZ9XvBK+llxZHQBQAAZhmOc19Ox8Ex+szutWmX41shs8eR0AUAAGadvZjk0jh3KFRCt1atWq4uB7I5dzHvkRuFjQMAAJCkAH9zXT+zcXCMPrN7xcSZ+xJlNg4AAECSMgxzUzaZjXOHQi2KBveqVMHPpXEAAACSdOxMvEvjgJLk5+Pt0jgAAABJMjsRVklOmFXo4Rdz5szR/PnzdeTIEV2+fDnfOIvFor//drzAF+w1rVdZu49eMBUHAABgVnKqubkUzMahYPSZ3adujYrafSTOVBwAAIBZFpPjX83GuUOhErrz5s3TG2+8IcPE0GIzMbAXUsHfpXEAAACSVDHQXNfPbBwco8/sXuUDzN2tZjYOAABAkkKDzfUdzMa5Q6F663PnzpWXl5fGjh2rW2+9VUFBQazM60IJSakujQMAAJCklMvpLo2DY/SZ3evomYsujQMAAJCkiiZ/DDYb5w6FSugeO3ZM1113ne69915XlweSKpT3dWkcAACAJJ1LMLnwqsk4OEaf2b3Omlwg2GwcAACAJAWXN3dHvNk4dyjUZA/Vq1fntjA3qlShnEvjAAAAJKmyyemazMbBMfrM7lUlyFxf2GwcAACAJAWXNzfy1mycOxQqoduvXz9t3bpVBw4ccHV5IMkaFqLy5RwPnq5QzkfWsJDiKRAAALgihFU3tziU2Tg4Rp/ZvW6MuMqlcQAAAJKUYfIHebNx7lCoKRceeugh7d27VwMGDNB9992n8PBwBQcH5xt//fXXF7qAZVVahuNGUdB+AACAnJJSzM2NazYOjtFndq/GdSvJ19tLqekZ+cb4+nipcd1KxVgqAADg6fYeiTMd16xeZfcWJh+FSuimpKQoJSVFFy9e1NSpUx3GWiwW/f3334UqXFm158j5AhcjSb6crj1HzqsJHVQAAIBSiT6z+3l5SXLQbfZmDToAAOCksxeTXBrnDoVK6L733ntau3atLBaL6tWrp0qVSCq60p7D503HkdAFAABmFTSlk7NxcIw+s3vtOXxeKan5j86VpOTUjMw+8zXUPQAAMMfsPfElee98oXrrq1evVoUKFTRr1iw1adLE1WUq88xOwcEaGwAAwBmXklNdGgfH6DO7126TgyB2k9AFAABO8ISFVwu1KNrFixfVtm1bOqZuUj7A5OgZk3EAAACZzN5/zn3qrkCf2b084XZIAADgeczOv1+S8/QXKqFbr149xcXFubgoyFKhvK9L4wAAACQpoJy3S+PgGH1m9/KEFagBAIDnsdYOKXB4g+V/cSWlUAndIUOGaPv27frpp59cXBxIUny8udsczcYBAABIUlJymkvj4Bh9ZjfzhAnuAACAx9l//EKB3Qfjf3ElpVD37EdERKhTp0564okn1KlTJ7Vo0ULBwcHy8cn7cP369StSIcuaw2fiXRoHAAAgSRYvc1MpmI2DY/SZ3Ss+0eQgCJNxAAAAknQ+PsWlce5QqITuv/71L1ksFhmGoR9//FHr1693GE/n1DlHT190aRwAAIAkWWuFSDpsMg5FRZ/ZvS6npbs0DgAAQJLOX0x2aZw7FCqhe+edd8piYeSGu6SkZrg0DgAAQOIO9eJGn9m9qgQH6MCJgu9YqxIcUAylAQAAV4q/Dsaajut5Q133FiYfhUrovvXWW64uB7IJrVhO5+Ivm4oDAAAwa0vUSdNxEfUru7k0Vz76zO51Y8RV+m33GVNxAAAAZp0+n+TSOHcwtSjahAkTtHz58iKfbNmyZZowYUKRj3Ola22t6tI4AAAASYq9YO62MLNxsEefuXg1qVtJPt6OR0D7+nipSd1KxVQiAABwJfD2MpUuNR3nDqbOPHPmTP38889FPtnPP/+sWbNmFfk4V7pubcJcGgcAACBJlYP8XRoHe/SZi5+/r3eR9gMAAOTUoGaQS+PcwfSUC7GxsdqyZUuRThYba24OirLOx8dLPdqFaVXk0XxjerQLk49Pyf0SAAAAPE+dakH6bXeMqTgUDn3m4hN9NE6XktMcxiQkpSr6aJwaXR1aTKUCAACerkPzmvptT8F95g7NaxZDafJmOqG7ZcuWIndODcNgYQiT7u7SUJK0+vejMrKtTGKxSN3bhtn2AwAAmFWxoq9L45AbfebiE3cpxaVxAAAAkhRex9wPwWbj3MFUQrdt27buLgfycHeXhrr9hmv0xXd/62x8iipX9NfDvZqoXLlCrWUHAADKuMREx6MZnY2DPfrMxSukvLmpQczGAQAASNL+4xdMx5XUXUCmMoOzZ892dzmQhwU/7rObduHwqXg9MWmjerRjhC4AAHBegL+5H4XNxsEefebiVe8qc1ODmI0DAACQpHMJ5hYINhvnDkzCWkrlTOZmtyryqBb8uK+YSwQAADzd9n0FzwXmTBxQkn7acdylcQAAAJKUcCnVpXHuQEK3FEpLy3C4IJqUmdRNS8sophIBAIArweXUdJfGASXp9Pkkl8YBAABIUoUAc+tJmI1zBxK6pdCaP464NA4AAECSqlcKdGkcUJKM7CsHuyAOAABAki4mXnZpnDuQ0C2Ftu0949I4AAAASep/cwOXxgElqZyfxaVxAAAAkhR/yVyi1mycO5DQLYViL6S4NA4AAECSDp2Od2kcUJIOn050aRwAAIAkHT6d4NI4dyChWwqV8/N2aRwAAIDkGSv2Amb5m+wLm40DAACQJB8f18a5AwndUqh6pQCXxgEAAEjSxQST84GZjANKkrVWsEvjAAAAJMns9PslOU2/SxK6hmEoIyPD9l9aWpouXbqkw4cPa8aMGa44RZni72tytIHJOAAAAElKSEp1aRycQ5/ZtWpWKe/SOAAAAElKTE5zaZw7FHpw8Jw5czR79mwdP35c6enpDmOHDh1a2NMoMjJSU6dO1e7du5WcnKzw8HANGTJEPXv2NH2MgwcP6rPPPtOWLVsUGxurwMBARUREaOjQoerYsWOhy+YucSYnVTYbBwAAIEnnL5qbf99sHApWHH3msthflqT9Jy6YjmveoIqbSwMAAK4UyZczXBrnDoVK6K5cuVLjx48vMK5KlSrq0aNHYU4hSVq2bJlGjx4tHx8ftW/fXt7e3tqyZYtGjBih/fv3a/jw4QUeY+vWrXr44YeVmJiounXr6uabb9bp06f1yy+/6JdfftHo0aP10EMPFbqM7lClYjnt10VTcQAAAGaFBPm5NA6OFUefuaz2lyVJZm9zLMHbIQEAgOepWTVAx2MvmYorKYWacuHrr7+WxWLRqFGj9Mcff2js2LHy8vLShg0bFBkZqffff1+VKlVSenq6HnnkkUIVLDY2VmPHjlVAQIDmz5+vL7/8Up999pmWLl2qKlWq6OOPP1ZUVJTDY6SlpWn06NFKTEzUqFGjtGrVKk2ZMkWLFi3StGnT5Ovrq3fffVfR0dGFKqO7XN+0hkvjAAAAJCnQ39xv+Wbj4Ji7+8xlub8sSeFhIS6NAwAAkKQ6VSu6NM4dCpXQ3bt3r6655hr9+9//VoUKFdSqVStlZGQoMjJSQUFB6tmzpz744AOdP39eX3zxRaEKNnfuXCUnJ2vQoEFq2rSpbXv9+vU1cuRIGYahmTNnOjxGZGSkjh07poiICD3yyCOyWCy2fTfeeKPuueceZWRkaOXKlYUqo7t4e5t7WczGAQAASNLxM4kujYNj7u4zl+X+siS7sroiDgAAQJKOx5jsM5uMc4dCZQQvXbqkBg0a2P6uV6+eLBaLdu/ebdvWtm1bNW7cWBs3bixUwTZs2CBJ6tatW6593bp1k8Vi0U8//VRgOSMiInTTTTflub9u3bqSpDNnzhSqjO5yMcnkCtQm4wAAACQpJc3xHK7OxsExd/eZy3J/WaLPDAAA3MMT+syFup+uQoUKSkn5/8Uy/P39VbVqVf3zzz92cXXq1CmwE5kXwzC0f/9+SVLDhg1z7Q8ODlaVKlUUExOj06dPq3r16nke55ZbbtEtt9yS73l27twpSapRo3RNXRBS3t+lcQAAAJLUsHawtu+LNRWHonNnn7ms95cl+swAAMA9PKHPXKiEbqNGjbRjxw4lJyerXLnMhbnq16+vnTt3yjAM221NMTEx8vNzflGNCxcuKCUlReXLl1dgYGCeMdWqVVNMTIxiY2Pz7aA6snfvXn333XeyWCy69dZbnX58dj4+rp36oMk1lVSpor/Oxee/wnSlIH81uaaSvLy4hawsy5p2g+k3kB3tAnmhXUCSbm1bRwvWHzAV5+r+TVnkzj5zWe8vS1Kjq0NlsUiGg0XPLJbMONpz3vhscA715TzqzHnUmXOoL+dRZwXr0f5qLVx/wOG6qpb/xZVUH6NQCd1evXrp119/1dChQzVq1Ci1bdtWHTp00JYtWzRx4kQ98sgj+uGHH7Rt2zY1b97c6eMnJSVJkgIC8l8tzt8/85f2xETn56s4e/ashg8frvT0dPXt21eNGjVy+hhZvLwsCg0tX+jH56dhnRD9FnU6//1hIapcuYLLzwvPFBRUcisrovSiXSAvtIuy7a/9BY80kKQz8ZcV0aCKm0tz5XNnn5n+cmZ7dpTMlTKTvacupNCeC8Bng3OoL+dRZ86jzpxDfTmPOnOsQViw9h294HB/1RJcFK1QCd2+ffvqxx9/1Pr16zVjxgy1bdtW99xzj7788kt9/vnn+vzzzyVlLkAwdOhQp4/v5eVle3xBMjIynDr26dOn9eCDD+rQoUNq1qyZXn75ZafLZ39+QxcvunYS5LS0DIfJXEn6Leq0YmLiGW1Qxnl7eykoKEAXLyYpPd259wKuXLQL5IV2AUk6ejL/TmnOuNqVXdvJDwoKKHMjQdzZZy7r/WWpZNvzlYLPBudQX86jzpxHnTmH+nIedVawtLQMh8lcSdp39IJb8nJm+8yFSuh6e3vrk08+0dq1a5Wamiopc46wmTNnaty4cfrzzz9VqVIlDR06VD179nT6+OXLZ/6Cn5ycnG9M1nxk+d1ilpfo6Gg99thjOn78uCIiIvTll186HNVgVlqaa98Aq347bDquR/urXXpueKb09AyXt0N4PtoF8kK7KNvKlzPX9Stfzod24gLu7DOX9f6yRHt2JT4bnEN9OY86cx515hzqy3nUWf48IS9XqIRulpwLKDRs2FCzZ88uUoGkzA5q+fLlFR8fbzfnWHZZK+1Wq1bN1DE3bdqk4cOHKyEhQR06dNCHH35o6wiXNnuPxJmOI6ELAABMK+D2dKfjYIo7+sxlvb8sSakmv4SajQMAAJCk6GNxpuNKKi9X5HHBqamp2rlzp1avXq2tW7dKkk6cOFGkY1osFttqvQcO5F64Iy4uTrGxsQoODja1wMPy5cv1yCOPKCEhQf369dOnn35aqjunh0/HuzQOAABAkuIS819wtTBxMM/Vfeay3l+WpLW/H3FpHAAAgCSlpKS5NM4dCj1CNy0tTVOmTNHcuXMVH5+ZWOzdu7dat26t0aNHKykpSRMnTlSdOnUKdfyOHTtqx44dWrdunZo2bWq3b926dTIMQzfddFOBx/nxxx/13HPPKT09XcOGDdNTTz1VqPIUJy+LuWExZuMAAAAkKS7eZELXZBwK5s4+c1nuL0tSQlKqS+MAAAAkqWKgn0vj3KFQI3TT0tL06KOPaurUqUpKSlKzZs1kZFti9uLFi4qKitLAgQMVG2tuNeWc+vXrp4CAAM2YMUPbtm2zbf/nn380adIkSdLDDz9s237mzBkdOHDAdmuZJMXGxmrMmDFKT0/X448/7jGd05AKuW+ZK0ocAACAJB09leDSODjm7j5zWe4vS5KPyUX2zMYBAABIkkUFLzrrTJw7FGqE7ty5c7Vp0yZ16NBBEyZMUNWqVdWoUSPb/gULFuiVV17Rt99+q2nTpmn06NFOn6NGjRp68cUXNXbsWA0aNEjt27eXn5+ftmzZopSUFI0aNcrunO+//76WLFmiPn366K233pIkTZ8+XXFxcfLx8dHRo0f1zDPP5HmuVq1aaeDAgU6X0V1uuram/jm511QcAACAWbEX819AqzBxcMzdfeay3F+WpLDqFfXPyYKnIAurXrEYSgMAAK4YZvO0JZfPLVxCd8mSJQoJCdEHH3yQ59xa5cqV0/jx47VlyxZt3LixUAldSerfv79q1Kihzz77TDt27JC3t7eaNGmiBx98ULfeemuBj9+4caOkzNERK1ascBhbmjqoVYLMrSRsNg4AAECS/HzNjVQ0GwfHiqPPXFb7y5J0VaVAl8YBAABIHpHPLVxC99ChQ+rQoYPDhRJ8fX3VvHlzbdq0qdCFkzLnBuvYsWOBcW+99ZZtpEGW5cuXF+ncJSX7rXiuiAMAAJCka64K0u7DcabiUHTF1Wcui/1lSep0bS19/eN+U3EAAADmlf6UbqGGX/j4+OjixYsFxmXdvgXn7D0a59I4AAAASWpydSWXxsEx+szu9c/JguvWmTgAAABJqhzi79I4dyhUQrdx48b666+/dPLkyXxjjh49qr/++stu3i6YkyFzI2/NxgEAAEiSNSzEpXFwjD6ze51LMDfXs9k4AAAASQoPC3VpnDsUKqE7YMAAJSUl6YknntCePXty7d+7d6+GDRumy5cvq1+/fkUuZFlToZyvS+MAAAAkKdrk3T1m4+AYfWb3uphw2aVxAAAAkuRlMTeVgtk4dyjUvV09e/bUr7/+qgULFqhPnz6qWLGiLBaLfv75Z3Xq1EmnT5+WYRjq1auX7rjjDleX+YoXXN7ckG2zcQAAAJK05+h503FNrmHahaKiz+xel5LSXBoHAAAgSReTTP5obDLOHQo9Wde4ceN07bXX6vPPP9fBgwclSefPZ35JqFmzpu6//34NGTLENaUsY0IrmkvUmo0DAACQJNOzNTGrk8vQZ3Yfs4NiSnDwDAAA8EAhJgdQmo1zh0IldBMSElShQgX17dtXffv2VWxsrE6cOKGMjAxVrVpVtWqxkmxR1DO5srTZOAAAAEkKDwvRii2HTcWh6OgzuxftGQAAuIMn5OUKldAdOHCgqlatqi+//FKSVKVKFVWpUsWlBSvL1m09ajqu5/V13VsYAABwxTBMjrw1GwfH6DO7V0aGyYWETcYBAABI0rptJvNy246q53V13VuYfBRqUbRDhw7Jx6fQszWgAFuiTrk0DgAAQJKij8e5NA6O0Wd2r1//Pu3SOAAAAEnasS/WpXHuUKiEbuXKlXXhwgVXlwX/k5ZubhSB2TgAAABJzKFbzOgzu1dyarpL4wAAACTJ7PT7JTlNf6ESus8995x27dql8ePH69ChQy4uEqxhwS6NAwAAkMzPJcqco65Bn9m9GtY21xc2GwcAACBJzetXdmmcOxTqHrAVK1aoRo0amjt3rubOnaty5cqpYsWK8vLKnR+2WCxav359kQtalrRuWE0/7yx4OoXWDasVQ2kAAMCVggG6xYs+s3t1alFLC9YfMBUHAABglsXL3Nhbs3HuUKiE7rp16+z+TkpKUlJSUp6xFktJDkD2TPtPmLs1b/+JC2rekIU1AACAOXuPxJmOa1av5EYcXCnoM7vXxp0nTMfd2q6Om0sDAACuFGcvJrs0zh0KldD94YcfXF0OZOcJk3UAAACPc/aCyc6pyTg4Rp/ZvU7HJbo0DgAAQJJH3NZWqIRurVrctuRO1lohkg6bjAMAADDLA3qnVxD6zG5GcwYAAG5wzVVBWr+94DuBrrkqqBhKk7dCLYrmjL///tvdp7jieHmbG3prNg4AAECSgiv6uzQOrkOf2Xl1a5j7EmU2DgAAQJISklJdGucOhRqhK0lRUVGaP3++jh07psuXL8sw/v+n74yMDKWkpOjs2bOKiYmhg+qkuPgUl8YBAABI0qmzl1wah4LRZ3afgycvmo7r2KKmm0sDAACuFAmJJhO6JuPcoVAJ3b/++kv33XefUlNTbZ1Si8Vi10HN+ttqtbqmpGVI9LE403E3RFzl3sIAAIArRmpahkvj4Bh9ZveKSzA5CMJkHAAAgHQFL4r2+eef6/Lly+ratav69u2rn3/+WQsWLNCUKVOUkZGhn3/+WQsXLlSDBg20aNEiV5f5infsTIJL4wAAACSpakiAdDjOXByKjD6ze5XzNfdVxmwcAACAJMXFm0vUmo1zh0LNobtt2zZVqVJFEydOVNeuXfWvf/1LGRkZslgs6tatm1577TWNHTtW+/fv1+zZs11d5ivexUuXXRoHAAAgSVWDzSVqzcbBMfrM7lW7enmXxgEAAEhSjMmRt2bj3KFQCd24uDg1a9ZMfn5+kmS7RWzXrl22mAEDBuiqq67Sd99954Jili3BFfxcGgcAACBJ50zeem42Do7RZ3avEJOL95mNAwAAkCRfb2+XxrlDoRK65cqVk6+vr+3voKAgBQcH659//rGLa9KkiQ4fPly0EpZBLa1VXRoHAAAgSdVMTqVgNg6O0Wd2r0oVyrk0DgAAQJIa1Ql1aZw7FCqhe/XVV2vPnj122+rWrauoqCi7bSkpKUpPTy986cqoW9vUcWkcAACAJHVpVVsWi+MYiyUzDkVHn9m9rGEhKl/O8fy4FQJ8ZQ0LKZ4CAQCAK8KArg1dGucOhUrodurUSceOHdMbb7yh+Ph4SVKrVq109OhR/fjjj5KkgwcPKjIyUrVr84XAWV5eFvn7On5pyvl6ycurgG9kAAAA2fj4eKl72zCHMd3bhsnHp1BdRORAn7kUMIySLgEAAPAwfn7eurZBZYcx1zaoLD8/D5ty4f7771ft2rU1Z84cjRo1SpI0cOBAeXt7a/jw4erbt6/69u2ry5cvq1evXi4tcFkQfTROKakZDmOSUzMUfTSueAoEAACuGHd3aZhvB/XaBpV1d5eSG2lwpaHP7F7RR+N0KTnNYUxCchp9ZgAA4LTh/Vqoakje0zZVDSmn4f1aFHOJ7BUqoRsUFKT58+frvvvuU/PmzSVJYWFheuutt+Tn56e///5bSUlJ6ty5sx566CGXFrgsiLtkbiESs3EAAABZtu49ox37z+a5b8f+s9q690wxl+jKRZ/ZvegzAwAAd1nw4z7FxCXnuS8mLlkLftxXzCWy53jSKQcqVaqkl156yW7bv/71L3Xp0kX79u1TpUqVFBbm+JY+5C0owM+lcQAAAJKUkWHoq3WOO5/z1u1Ty4ZVmdrJRegzu09IeX+XxgEAAEhSWlqGVv9+1GHM6t+Pqu9N9UtsqjKXnzUwMFAtWrSgY1oEhsm5vszGAQAASJm3qJ+Pdzxa8Vx8CreoFwP6zEXXoFawCvrZwfK/OAAAALN+3HaswGn4DSMzrqSw4kUpFHXonEvjAAAAJBWYzHU2DihJ0cfiVNDwBuN/cQAAAGadPJfo0jh3IKFbCv19+LxL4wAAACQpPvGyS+OAkrTHZF/YbBwAAIAkHTuT4NI4dyChCwAAUEYEljO3fILZOKAkGQWOz3UuDgAAQJJ8fcytJWE2zh1I6JZC19QIcmkcAACAJB08edGlcUBJKl/O16VxAAAAkuTva25wg9k4dyChWwq1bFjFpXEAAACSlJFhbqSi2TigJAUF+rk0DgAAQJJqVApwaZw7kNAthRKSUl0aBwAAIEkXLpmbG9dsHFCSLppsp2bjAAAAJOlCorl8m9k4dyChWwodOHHBpXEAAACSFFLR3EhFs3FASTpyOt6lcQAAAJJUuaK/S+PcgYQuAABAGVEtJNClcUBJSk5Nd2kcAACAJDWuW8mlce5AQrcUqh5q7kuU2TgAAABJql2lgkvjgJIUUsHkiHOTcQAAAJLUqE6oypdzvOBZhQBfNaoTWkwlyo2EbinUpVVtWSyOYyyWzDgAAACzElJMztNvMg4oSQ1qhbg0DgAAQJK8vCwaelsjhzH39wiXl1cByTs3IqFbCvn4eKl72zCHMd3bhsnHh5cPAACYF1Le3DxfZuOAklQpqJxL4wAAALK0Dq+mJ/s0U2iOeXJDK/rryT7N1Dq8WgmVLJPj8cMoMXd3aShJWv37URnG/2+3WDKTuVn7AQAAzGpQK1gWi+z6FjlZLJlxQGlHewYAAO7UOryaWjasqgMnLijVsMjXYqh+zeASHZmbhYRuKXZ3l4bqe1N9/bTjuC4kpSk4wEedrq3FyFwAAFAo+49fcJj8kjKTY/uPX1Cjq0tuTjDADNozAABwNy8vixrXraTQ0PI6f/6S0tIySrpIkkjolno+Pl7qcd3Vpa7hAAAAzxN3KcWlcUBJoj0DAICyiqGeAAAAZQRz6OJKQnsGAABlFQldAACAMsIaFpJrYYecKlX0lzUspHgKBBQB7RkAAJRVJHQBAADKCC8viwZ2c7yw6oBuDUvFQg9AQWjPAACgrCKhCwAAUIa0Dq+mJ/s0yzWysVJFfz3Zp5lah1croZIBzqM9AwCAsqhUL4oWGRmpqVOnavfu3UpOTlZ4eLiGDBminj17mj5GQkKCPv/8c61evVonTpxQSEiIOnfurOHDh6ty5cpuLD0AAEDp1Dq8mlo2rKoDJy4o1bDI12Kofs1gRjJ6qLLeZ6Y9AwCAsqbUjtBdtmyZhgwZosjISDVp0kRt27ZVVFSURowYoQ8//NDUMRISEjRkyBBNnTpV6enp6tSpkwIDA/X111+rT58+OnXqlJufBQAAQOnk5WVR47qVdHOr2mpctxLJLw9FnzkT7RkAAJQlpTKhGxsbq7FjxyogIEDz58/Xl19+qc8++0xLly5VlSpV9PHHHysqKqrA40yePFlRUVG688479f333+vDDz/UypUrNXToUJ0+fVqvvfZaMTwbAAAAwPXoMwMAAJRNpTKhO3fuXCUnJ2vQoEFq2rSpbXv9+vU1cuRIGYahmTNnOjxGQkKCFixYoICAAL3wwgvy8cmcXcLLy0ujR49WWFiYfvzxRx05csStz6WoMjIM7T50Thu2HdPuQ+eUkWGUdJEAAABQCtBnBgAAcK/SmpcrlQndDRs2SJK6deuWa1+3bt1ksVj0008/OTxGZGSkEhMT1aZNGwUHB9vt8/b2VufOnSWpwOOUpK17z+jZTzZrwpxtenfuVk2Ys03PfrJZW/eeKemiAQAAoITRZwYAAHCf0pyXK3UJXcMwtH//fklSw4YNc+0PDg5WlSpVdOHCBZ0+fTrf4zg6hiQ1aNBAkhQdHV3UIrvF1r1nNGXJLp2PT7Hbfj4+RVOW7CoVjQcAAAAlgz4zAACA+5T2vFypS+heuHBBKSkpKl++vAIDA/OMqVatmqTMecPyc+bMGbvYnKpWrVrgMUpKRoahr9btcxgzb92+UjPMGwAAAMWLPjMAAIB7eEJezqfEzpyPpKQkSVJAQEC+Mf7+/pKkxMTEfGOy9pUrVy7P/VnbHR3DLB8f1+bFdx86l+sXgJzOxafowIkLaly3kkvPDc/i7e1l939Aol0gb7QL5IV24bk8rc/s6v5yXmjPzqPOnEN9OY86cx515hzqy3nUWcE8IS9X6hK6Xl6ZDcpisRQYm5GRke8+b29vU8cxjKJl0728LAoNLV+kY+SUevC8uTjD9eeGZwoKyv/LHMou2gXyQrtAXmgXnseT+szu6C87Qnt2HnXmHOrLedSZ86gz51BfzqPO8ucJeblSl9AtXz6zIpKTk/ONSUnJzJLnd3tZ9n35HSdru6NjmJGRYejixaKP8s3O12Kuw+xrMXT+/CWXnhuexdvbS0FBAbp4MUnp6fl/WUPZQrtAXmgXyEtxtougoABGgriQJ/WZ3dFfzgvXOedRZ86hvpxHnTmPOnMO9eU86qxgJZmXM9tnLpUJ3fLlyys+Pl7Jycl53v5V0FxfklS9enVJ+c/3FRMTI+n/5wUrirQ0174B6tcMVmhFf4fDuytV9Ff9msEuPzc8U3p6Bm0BudAukBfaBfJCu/A8ntZnLs72RXt2HnXmHOrLedSZ86gz51BfzqPO8ucJeblSN0zCYrHYVtk9cOBArv1xcXGKjY1VcHCwrQOal6xjZK3cm9O+fZmTG1ut1qIW2eW8vCwa2C3vlYazDOjWUF5eBd9iBwAAgCsPfWYAAAD38IS8XKlL6EpSx44dJUnr1q3LtW/dunUyDEM33XSTw2O0adNGgYGBioyMVHx8vN2+9PR0rV+/XhaLxXau0qZ1eDU92aeZQiv6222vVNFfT/Zpptbh+Y+0AAAAwJWPPjMAAIB7lPa8XKmbckGS+vXrpy+++EIzZsxQx44d1apVK0nSP//8o0mTJkmSHn74YVv8mTNnFB8fr4oVK9puKQsICNBdd92l2bNn6+WXX9bbb78tPz8/GYahd955R8eOHdMtt9yia665ptifn1mtw6upZcOqOnDiglINi3wthurXDGZkLgAAAOgzAwAAuFFpzstZjKIsWetGCxcu1NixY+Xl5aX27dvLz89PW7ZsUUpKikaNGqVHHnnEFvv8889ryZIl6tOnj9566y3b9oSEBA0YMEDR0dGqVauWmjVrpn379umff/5RrVq19PXXXzucU8wMwzCUkeH+KvT29mKyauSJtoG80C6QF9oF8lJc7cLLyyKLpeQ7v1caT+gzF1d/WeI6VxjUmXOoL+dRZ86jzpxDfTmPOnNeaeszl8oRupLUv39/1ahRQ5999pl27Nghb29vNWnSRA8++KBuvfVWU8eoUKGC5s6dq08++USrV6/W+vXrVb16dQ0cOFBPPPGESxZEs1gs8vYuni8nrAyN/NA2kBfaBfJCu0BeaBeeyxP6zMXZX5Zoz4VBnTmH+nIedeY86sw51JfzqDPnlaY6K7UjdAEAAAAAAAAA9kpPahkAAAAAAAAA4BAJXQAAAAAAAADwECR0AQAAAAAAAMBDkNAFAAAAAAAAAA9BQhcAAAAAAAAAPAQJXQAAAAAAAADwECR0AQAAAAAAAMBDkNAFAAAAAAAAAA9BQhcAAAAAAAAAPAQJXQAAAAAAAADwECR0AQAAAAAAAMBDkNAFAAAAAAAAAA9BQhcAAAAAAAAAPAQJ3RISGRmpRo0aaeHChXnuP3PmjF5++WV16tRJzZo1U/v27fX4449rx44d+R5z7dq1GjBggNq2bas2bdrogQce0JYtW9z0DOAOrm4XM2bMUHh4eL7/vfvuu258NnClgtpGdHS0Ro4cqRtuuEHNmzfXbbfdpg8++EAXLlzI95hcMzyfq9sF1wzPlJGRofnz5+uee+5Rq1atFBERoe7du+udd97RxYsXc8UfPXpUo0ePVufOnW3t4tNPP1Vqamqex798+bKmTZum3r1769prr9UNN9ygZ555RkeOHHH3U0MZtXbtWofXohEjRtjF06alU6dO6eWXX1bnzp3VrFkz3Xjjjfk+p9jYWI0bN0633HKLmjdvrq5du+qdd95RQkJCnsfOyMjQokWL1LdvX7Vq1Urt27fXE088oV27drn7abmco3aV/b/ffvvN7nG0MWnlypW699571bJlS0VERKhXr1766KOPlJKSkiu2LLexLGlpaZoxY4buvPNOtWjRQtdff73+/e9/a/PmzXnGl9U6K6gvm5CQoIkTJ6pHjx5q3ry5brrpJr3yyis6e/Zsvsd09juOs+/vklZQnWVZunSpwsPD821zUtlodwXV18GDBzVmzBhbjqVdu3Z66KGH9PPPP+cZX5g62L17t5588kl16NBBLVq00J133ql58+bJMIwiPTeLUdQjwGn//POPhgwZopiYGI0fP179+/e323/s2DHde++9iomJUe3atdW4cWOdOHFCUVFR8vb21nvvvafbbrvN7jFTp07VxIkTFRgYqPbt2ys5OVmRkZHKyMjQ+PHj1a9fv+J8iigEd7SLZ599VsuWLVOnTp1UsWLFXOfs0qWLevbs6dbnhaIrqG389NNPGj58uFJSUlS9enU1adJEp06d0u7du3X11Vfriy++UJ06dewewzXD87mjXXDN8DwZGRkaPny41q5dq4CAAEVERCgwMFA7d+7UuXPndPXVV+urr75SlSpVJEn79u3TfffdpwsXLqhFixaqXr26/vjjD507d07XX3+9vvjiC/n4+NiOn5aWpieeeEIbNmxQtWrV1LJlSx09elR///23ypcvr6+++kqNGjUqqaePK9SkSZP0ySefqF27dqpevXqu/S1bttR9990niTYtSX///bceeOABxcXFqX79+qpXr5727Nmjo0ePKjQ0VN98841q1aolKXNwwL333qvjx4/LarXqmmuu0V9//aUTJ07IarVq3rx5qlChgt3xX375Zc2fP1/BwcFq166dYmNjtX37dvn6+mrq1Knq0KFDSTztQnnmmWfy3Xf06FHt2LFDFStW1LJly1SzZk1JtDFJeu+99/TZZ5/J19dXbdq0Ubly5bR161ZdvHhRLVq00KxZs1SuXDlJtDEpM6H/yCOPaMuWLfLx8VFERIQqVqyoP//8UxcuXNCwYcP01FNP2eLLap0V1JdNSEjQkCFDFBUVpTp16qhx48aKjo7WwYMHVb16dS1YsEA1atSwe4yz33GcfX+XtILqLMu2bdv00EMPKTExUdOnT9cNN9yQK6YstLuC6mvr1q16+OGHlZiYqLp166pBgwY6ffq0/vrrL0nS6NGj9dBDD9k9xtk6+PXXX/Xvf/9baWlpatOmjSpWrKhff/1Vly5dUp8+ffTWW28V/gkaKFabN282rr/+esNqtRpWq9VYsGBBrphhw4YZVqvVePXVV420tDTb9oULFxpWq9Vo27atkZycbNu+e/duw2q1Gh06dDCOHj1q2/77778b1157rdG8eXPj1KlT7n1iKBJ3tAvDMIxevXoZ4eHhRnx8vNufA9yjoLYRFxdntG7d2rBarcbrr79upKSk2PZ99913RqNGjYz+/fsbGRkZtu1cMzyfO9qFYXDN8EQLFiwwrFar0b17d7v3c3x8vPHoo48aVqvVGD58uG17nz59DKvVasyfP98u9r777jOsVqsxffp0u+PPnDnTsFqtxtChQ43ExETb9unTpxtWq9W44447crUjoKgeeeQRw2q1GtHR0QXGlvU2nZKSYvTo0cOwWq3Gp59+atuelpZmvPrqq4bVajUef/xx2/Ynn3zSsFqtxvvvv293jKefftr2mZHdunXrDKvVavzrX/8yzp07Z9u+atUqo3HjxsaNN95oV4+eKjEx0ejRo4cRHh5u/PTTT3b7ynob27NnjxEeHm60a9fO7j15/vx544477jCsVqvx2Wef2bbTxgxj0qRJtr72X3/9Zdt+7tw5Y9CgQYbVarVrZ2Wxzsx8/33zzTcNq9VqjB492khNTTUMwzDS09Nt2x977DG7+MJ8x3H2/V2SzNSZYWT29a+99lpb3KZNm/KMu9LbXUH1lZqaanTp0sX2+Zn9uvzLL78YTZs2NRo1amTs3bvXtt3ZOkhJSTFuvPFGo3Hjxnbv+dOnT9s+u9esWVPo50hCt5jExsYar7zyitGoUSOjSZMmRqdOnfJ9E7Zs2dKwWq1GbGxsrn233nqrYbVajT///NO27dlnnzWsVqsxb968XPEffPCBYbVajUmTJrn2CcEl3NkukpKSjMaNGxvdu3d363OAe5htG1999ZVhtVqNPn36GOnp6bmOM3bsWMNqtRpr1661beOa4bnc2S64Znime++917Barcb69etz7Tt79qwRHh5uNG3a1EhKSjI2b95sWK1W45577skVe/jwYSM8PNzo1KmTrUObkZFha2MHDhzI9ZisLzubN292+fNC2XbjjTcaLVq0sPsBOy+0acP49ttvDavVagwbNizXvsTERKNTp07G7bffbqSlpRmHDh0ywsPDjZtvvtmWHMly8eJFo1WrVkbz5s2NhIQE2/aBAwcaVqvV2LhxY67jjx492rBarcbChQtd/8SK2UsvvZRnAoM2ZhjTpk0zrFar8corr+Tat3z5csNqtRr//ve/DcMwaGP/c+ONN+bqZ2U5ceKE0aRJE+OOO+4wDKPs1ZnZvmx8fLxx7bXXGi1atDDi4uLs9qWlpRldu3Y1rFarcfjwYdt2Z7/jOPv+Lilm6+zIkSPGf/7zH8NqtRotWrQwbrjhhnwTuldyuzNbX5s2bTKsVqtx11135XmccePGGVar1Zg4caJtm7N1kDX4bsSIEbnit2zZYlitVmPgwIGFfKaGwRy6xWTq1KmaN2+e6tSpo5kzZ6p9+/b5xnp5Zb4sp06dstuemppqm8skJCTEtn3Dhg2SpG7duuU61i233CIp89ZblD7ubBd79+5Venq6mjZt6vqCw+3Mto3o6GhJUqdOnWxtJLvrrrtOkrRx40bbNq4Znsud7YJrhmcKDg5WvXr11KJFi1z7KlWqpODgYKWmpur8+fO2936XLl1yxdapU0fh4eE6ceKE9u7dKymzHZ04cUL16tVTvXr1cj0m6xrC9QKuFBsbq5iYGDVq1Eje3t4OY2nT0urVqyVJQ4cOzbUvICBA69ev17fffitvb29t3LhRhmHo5ptvznULccWKFW23J//666+SpPj4eG3btk2BgYG6/vrrcx3/Sukz7Ny5UwsXLtRVV12lkSNH2u2jjUkWi0VS7u8gknTu3DlJmZ9FkmhjyqyTmJgY+fj46Kabbsq1/6qrrlKdOnW0e/duxcTElLk6M9uXjYyMVGJiotq0aWNrX1m8vb3VuXNnSfbP09nvOM6+v0uK2TqbMGGCVq5cqYiICC1YsCDPa1CWK7ndma2vS5cuKSIiIs/3qSTVrVtXUubUFFLh6sBRm2zXrp2Cg4Nt09cUBgndYhIWFqZXXnlFK1asUJs2bRzGZjWo0aNH648//lBSUpIOHTqkUaNGKTY2Vt26dbPNexgTE6O4uDiFhoba5sfLrn79+rJYLNq/f7/S09Nd/8RQJO5qF5IUFRUlKbOD9fLLL6tr166KiIhQjx49NGXKlDwXMEDpYbZtZGRkSFKu+Y2yZH0Z/ueffyRxzfB07moXEtcMTzV16lR9//33Cg0NzbXvyJEjiouLk6+vrypVqqR9+/ZJkqxWa57HatCggaT//0Fg//79kqSGDRuaigdcIetaVKNGDb399tvq3r27IiIi1KVLF7399tt2izrSpjPry8vLS82aNdOZM2c0bdo0jR07Vm+//bYiIyPtYp2trwMHDigjI0P16tXLcw7J+vXr28V7qjfffFOGYeiZZ55RYGCg3T7amNSxY0dZLBatX79eH3zwgWJiYpSQkKCVK1fqww8/lJ+fnwYPHiyJNib9fx/M399ffn5+ecZkPdcDBw6UuToz25d19r1UmO84ztZ9STFbZ+Hh4Xrvvfe0cOHCfJ9Tliu53Zmtr1tuuUWLFi3S8OHD89y/c+dOSbLN01yYOsiq57zasZeXl+rVqyfDMGxxzio9sztf4YYMGWI69qWXXtKpU6e0detW24IPUuavo4899piefPJJ27asXwuqVq2a57H8/PwUHBysuLg4xcfH243gRMlzV7uQMhfIkKS5c+eqUqVKatmypapXr66oqCh9+OGH2rhxo6ZPn56r44rSwWzbyPrlNTIyUg8++GCu/Vu3bpX0/yMouGZ4Nne1C4lrxpXo/ffflyR17txZ/v7+Bb7/s7ZnrRydFV+tWjWH8bGxsa4rNMq8rGvR999/rwoVKqht27aqUaOGdu3apWnTpunHH3/UnDlzVLVq1TLfpi9fvqyTJ08qNDRUGzZs0HPPPadLly7Z9k+bNk19+vTR+PHj5ePjU+j6KijeU+orLxs3btT27dtVv3599erVK9f+st7GpMwkxfjx4/XGG2/o448/1scff2zb17BhQ7355ptq3ry5pMLX15XUxipVqqSQkBDFxcUpKioq151PZ8+e1cGDByVl9sPKWp2Z7cs6+14qzHccZ+u+pJits6efftr0Ma/kdudMjiU/e/fu1XfffSeLxaJbb71VUuHqwN1tjBG6pVBISIj69Omj4OBghYWFqWvXrgoPD5dhGFq8eLF+++03W2xSUpKkzFuq8uPv7y9JSkxMdG/B4VbOtAvp/78Q3XXXXdqwYYM+/vhjffXVV1qxYoUaNWqkHTt26L333iuJpwIX6tmzp8qVK6f169dr5syZMgzDtm/Dhg366quvJGV+6ZO4ZpQVzrYLiWvGlWbGjBn6/vvvFRAQoP/85z+S/v/9n7USeU5Z7/2shFDWNSC/+KztXCvgSrt375Yk3Xzzzfrpp580depUzZw5U2vXrtV1112nQ4cOaezYsZJo01lTbiUmJmrkyJHq0KGDvvvuO23dulVTp05V9erVtWTJEn344YeSCq6vrO056yu/PkNWfNZxPdHMmTMlSY888ohtaoHsynoby9K6dWt16NBB5cqVU7t27dShQwcFBQVp//79mjlzZq5+ZlluY15eXrrjjjskSWPGjNHx48dt++Lj4zVmzBilpqZKyuyHUWd5c/a9VJjvOM6+v68ktLv8nT17VsOHD1d6err69OmjRo0aSSpcHRTULov6vZsRuqXQM888o++++05PP/20Hn/8cVvnYs2aNRo5cqSefPJJLV68WA0aNLDNjZhXBySnrNs/4JmcaRdS5ii7Y8eOqV69enZz0IWFhemtt95Snz59tHDhQo0ePdp2IYHnqVq1ql5//XU9//zzevPNNzV37lw1bNhQJ0+eVFRUlAYNGqQ5c+bYbgvhmlE2ONsuJK4ZV5IZM2ZowoQJslgseuONN2y3gGW9rgW9/7N+AHA2HnCFd999V08//bRq1qxp9wWoUqVK+u9//6sePXpo/fr1OnbsWJlv01lJtJSUFLVr186WuJUyR+ZXqVJF/fv314wZM/Twww+7rb4yMjJkGIapvkVp8s8//2jTpk2qUaOG/vWvf+UZU9bbmJR52/EDDzygKlWq6Ntvv7XNK3n+/Hk988wzWrFihby9vfXf//6XNvY/Tz/9tLZu3apdu3apZ8+eatGihcqVK6c///xTvr6+6t69u1avXi3f/2PvvsOjKNc2gN+76b1BgpDQQgqQ0AIEaVIioIIKghQBERAVhHNERRHBBoKKqCCKoAJSFPAAAiJqJDQJBEKTkkYJCSWFdJJsys73R75dWZJsZjezLXv/rsvrHHafzLyzM9k8++w7z2tnx9esFrq+Lvp8xmmIv69i8bqrWUZGBiZPnoxr164hLCwMCxYsUD+nz2tgY2MDpVIp6mf0wRm6ZubIkSP49ddfERkZienTp2uc+EGDBmHy5MlQKBT4/vvvAUB962tpaWmt21T1PeRtspZL1+sCqPoWKCgoqMYFRdq2bYsmTZpAoVDo3a+FzMfjjz+OjRs3om/fvrhz5w6OHj0KBwcHLF++HNOmTQMAuLu7A+B7hjXR5boA+J7REAiCgI8//hiLFy+GjY0NFi9erHELsep3urZ+yPf/7tf1fqF6nO8VJCV7e3sEBgbWOJvFz88P7dq1A1DVO9bar+l7Z1bd245LJTw8HOHh4VAoFDh9+nSdr9f9x6/L62WJH9737dsHQRAwdOjQGvshAnzfBKp6DBcVFeGDDz5QF3MBwMvLC5988glcXV2xe/du3Lhxg9fY/3NxccHGjRsxY8YM+Pn54dSpU0hISMCjjz6KX375Rb3Il5ubG1+zWuj6u6TPZxxdf78bEl531SUlJWHs2LFISUlBeHg4vv/+e41cRJ/XoK6fqe81xoKumVGtIti7d+8an1ctjKW6Hc3Pzw9A7b1KysrKkJ+fDzs7O/bCtGC6XhdiqJrFa/ujR5ajS5cuWLNmDeLj43H69Gn8+OOPGDx4sHrRq6ZNmwLge4a1EXtdiMH3DPNWWlqKWbNm4bvvvoOjoyOWL1+O4cOHa8Sofv+zsrJq3IbqcVU/r7reL+6PJzIG1XtRSUmJ1V/Tbm5usLOzAwD4+/vXGNOsWTMAVbMprf31ul90dDQA1Ng7V8XaX7PS0lKcOXMGjo6ONS4u5O3tjfDwcCiVSiQkJFj963UvJycnzJo1C3/88QfOnz+PQ4cO4Z133oGPj486D2vWrBlfs1roepz6fMbR9bVvSHjdafr7778xduxY3LhxA71798b69evVX7yo6PMaGPoaY0HXzBQUFABAjTOkgH9XxFT13fHy8kLjxo2RnZ2N3NzcavEpKSkQBAFBQUHq2xDI8uh6XWRkZGDevHl4/fXXa91mWloagH/fZMgyFRUVIS4urtZivurLgPDwcAB8z7AWul4XfM+wbEVFRZg0aRL++OMPeHt744cffkBUVFS1ONUKu5cvX65xO/eveKyKV600fT/V43WtpEwklkKhwPz58zFjxoxavzxSvRc1adLE6q9pGxsbdUuVjIyMGmNUHzx9fHx0fr0CAwMhl8tx5cqVGm8HtbTX61537tzBhQsX4O/vr571XRNrv8YKCwshCALkcnmteaHq80l5eTmvsf+XnJyMgwcP1jj7sbi4GOfOnYObmxtatmzJ16wWdf0u3f+66PMZR9fXviHhdfev3bt3Y9q0aSgqKsLIkSPxzTffwMXFpVqcPq+BttdZqVTiypUrkMlk6jhd8dO6mVElZQcPHqzx+b///hsA1I2ZAaBPnz4AgL/++qta/J9//gng3xmcZJl0vS5cXV2xa9cu7Nq1q8aCzoEDB5CXl4eWLVsiICDAQKMmY8jKysKECRPw9ttvV3tOoVBgx44dsLW1Va/OCfA9wxroel3wPcNylZeXY9q0aTh9+jSaN2+OLVu2oGPHjjXGqn6vVbPS7nX9+nUkJSXhgQceQEhICACgdevWCAgIQHJyMq5fv17tZ1TvFw899JBUh0NWzsHBAQcOHEB0dDSOHDlS7fmEhAQkJCTAzc0NnTp14jWNf8e6d+/eas+pipb29vbo2LEj+vTpA5lMhpiYGFRWVmrEFhYW4vjx43ByckL37t0BVM0w7Natm/q5+1ni66Vy7tw5AECnTp20xln7Nebj4wNPT08UFxfjxIkT1Z4vLCzE+fPnAVS1Z+I1VmXVqlWYNm0aYmNjqz23fft2lJWVYdCgQbCxseFrVouuXbvC2dkZcXFxKCws1HiusrISMTExkMlk6s81gO6fcXT9/W5IeN1V2b9/P9544w1UVFRg5syZWLRoUa0tePR5DbRdY8ePH0d+fj46d+6s0QZPFyzompmhQ4fCxcUFx48fx5o1azQacB85cgSrV6+GTCbDhAkT1I+PGzcOcrkcn3/+ufr2DQA4deoU1q1bBwcHB414sjy6XhcuLi4YNmwYAODtt99GTk6OOv7atWt4//33AQAzZsww4lGQIbRq1QqtW7fG+fPnsWvXLvXjZWVlePPNN5GRkYHhw4drFOH4ntHw6Xpd8D3Dcn355ZeIj49H48aNsXHjRjRv3rzW2K5du6Jt27Y4efIkfvjhB/XjRUVFeOuttyAIAiZPnqzR+2z8+PEQBAHz5s1DUVGR+vH169fj5MmTaNeuHXr27GmYgyOrNGbMGABVfTtVs3GBqpmmb731FiorKzFlyhT1LeDWfk2PGTMGzs7O2LNnD7Zt26Z+vLi4GPPmzUNxcTGGDx8Od3d3NGvWDP3790d6ejo++eQTdT5ZVlaGBQsW4O7duxg9ejTc3NzU21HlAx988IHGLaN//PEH9uzZg8aNG+OJJ54w0tFKR1WEbN++vdY4a7/G5HI5nn76aQDAggULcOPGDfVzRUVFmDt3LvLy8vDQQw+hRYsWvMb+38CBAwEAy5cv17gGTp48iU8//RR2dnZ46aWXAICvWS2cnJzw1FNP4e7du1iwYIF6EUhBEPDJJ58gPT0dUVFRaNWqlfpndP2Mo8/vd0PB664qr5g7dy4qKyvx0ksv4eWXX67zZ3R9DR5++GH4+vpiz549+OOPP9SPZ2Vl4YMPPgAATJ06Ve9jkAkNcck+C/Dmm29ix44dWLhwIUaNGqXxXExMDP7zn/9AoVCgefPmCA0NxY0bN3DhwgXIZDK8+eabmDRpksbPfPHFF/jqq6/g4OCABx98EGVlZTh+/DiUSiU++eQT9Qd1Mm9SXhf5+fmYMGECEhMT4ebmhi5duqCyshJxcXEoKyvDpEmTMHfuXCMfIelL27Vx9uxZPPPMMygvL0fnzp3RqFEjnD59GtnZ2YiIiMCaNWuq3TbC94yGQcrrgu8Zlic3Nxf9+/dHSUkJQkNDtd6u9eabb6JRo0a4dOkSxo8fj6KiIrRv3x7+/v44efIk7ty5g379+mHlypUaMxMqKiowZcoUHDt2DD4+PujatSvS09Nx4cIFeHh4YPPmzWjTpo0xDpesRFlZGV544QUcPXoUjo6OiIiIgL29PY4fP47i4mIMHjwYn332mfo2b17TVR8kZ8+ejfLycgQHB8Pf3x///PMPsrKyEBoaio0bN6o/lN+6dQujR49GRkYGWrdujaCgIPzzzz+4efMm2rdvjw0bNlTLGebMmYNffvkFrq6u6NGjB3Jzc3Hq1CnY2dnh22+/RWRkpCkOu17eeOMN7Ny5Ex9//HGdBQhrv8bKysrUs03t7OzQvXt32Nra4ty5c8jNzUXr1q2xYcMGdX9rXmNVXnzxRcTExMDHxwedO3dWH5ONjQ0+/fRTDBkyRB1rza+Ztly2qKgIY8eORVJSEpo1a4awsDAkJyfjypUraNasGX766Sf4+vpq/Iyun3F0/f02B9pes3tNmDABcXFxWLt2bY1fIlnLdVfb6/XJJ5/g22+/ha2tLYYMGVJr4b5Lly4YN26c+t+6vgaHDh3C9OnTUVFRgS5dusDLywvHjh1DUVERRo8erZ44ow8WdE2krl/ClJQUrFmzBrGxscjJyYGLiws6d+6M5557rtZfkt27d+OHH35AcnIyHB0d0bZtW7z44otm+UtFNZP6uiguLsb333+PvXv3Ii0tDQ4ODmjbti0mTpyIhx9+2BiHRBKp69o4c+YMvvzyS5w6dQqCIKBly5Z44oknMHbsWDg4ONS4Tb5nWD6prwu+Z1iWP/74AzNnzhQd26JFCwDA1atXsXz5csTGxqKkpATNmzfHk08+iQkTJsDe3r7azyoUCnz77bfYtWsXbt68CR8fH3Tr1g0zZ87UOiOYSF8VFRXYuHEjfvnlF1y5cgVyuRxBQUEYNWoURo4cWe1DF69pIDExEatWrcLx48dRWFiIpk2b4rHHHsPUqVOrrZ6dkZGBFStW4MCBA8jPz0fTpk0xZMgQPP/883B1da22baVSic2bN2Pr1q24du0a3N3d0aFDB8ycORNt27Y11iFK6vnnn8ehQ4ewatUq9O/fv854a7/GKioqsGXLFuzcuRMpKSmoqKhAQEAABg8ejClTplS7bniNVRXCV61ahd27d+PWrVto1KgROnXqhGnTptXYt9laX7O6ctmCggJ8/fXX+P3335GVlQU/Pz/06dMH06dPr3UhKV0/4+j6+21qUhV0Aeu47mp7vYYNG4akpKQ6f37YsGFYunSp+t/6vAbnzp3DypUrcerUKVRUVKBVq1YYO3YsnnrqqXqtW8OCLhEREREREREREZGFYA9dIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukRktgRBMPUQGgS+jkREREREREQNBwu6RGSW9uzZg9mzZ5t6GBZNoVDgyy+/xDfffGPqoYiSnp6OkJAQjf8uXboEACgqKsL8+fMRGRmJAQMG4LvvvtNaqL5w4QLef/99DBs2DBEREejQoQMGDx6M9957D9euXdOIPX78eLX9pqamGvJQiYiIiMhAKioq1DmdGBMmTNDIAxctWmTgEUrj1VdfRc+ePXWavLFixQqNY+3bt68BR0hEhmRr6gEQEd3vxIkTePXVV9GlSxdTD8WirVmzBitWrMCLL75o6qHoxMnJCVFRUQAADw8PAMDbb7+NsrIy7N27F3fu3MHMmTPh7OyMsWPHavysQqHA4sWL8eOPPwIAAgMD0a1bN5SXlyMxMRGbN2/Gtm3b8PHHH+PRRx8FADRq1AjDhg0DAPz1118oLi421qESERERkZl48MEH0ahRI4SFhZl6KHVSKpU4cuQI+vXrB5lMJvrnQkJCMGzYMJSUlCA6OtqAIyQiQ2NBl4jMjlKpNPUQGgRLbbXg7u6OpUuXqv9dUlKC33//HQcOHICPjw98fHzw8ssvY+PGjRoFXUEQMHPmTBw8eBDt2rXDe++9hw4dOqifLy8vx4YNG/Dxxx/j9ddfh5ubG/r06YPAwED1/gYMGMCCLhEREZEVmjZtGnr27GnqYYhy9uxZ5OXl4aGHHtLp5wYNGoRBgwYhPT2dBV0iC8eWC0REZBHunX1Q00yEzZs34+DBgwgMDMT69es1irkAYGdnh8mTJ+OFF15ARUWFRtGYiIiIiMhSHDx4EDY2NujVq5eph0JEJsKCLhGZlTfffBMTJ04EAJw6dQohISGYMGGCRsy1a9fw5ptvom/fvggLC0Pfvn0xb9483Lhxo9r2BgwYgMjISCgUCnzxxRcYMGAAwsPDMXjwYPzwww8AgPz8fLzzzjvo1asXunTpgjFjxuD48eMa29m+fTtCQkLw3XffITY2FmPGjEHHjh3Ru3dvvPbaa9X6sqoUFBTgs88+w5AhQxAeHo7IyEi88MILOHnyZI3HHhISgri4OMycORMdOnRAjx49sG7dOnXMvn37MG3aNPTq1QthYWGIiIjA008/jU2bNmnMbB4wYAC+/PJLAMCqVasQEhKCFStWaOxn27Zt1cag6id778xXVW/b6dOn47fffkP//v0RHh6OYcOGobCwUB23d+9eTJgwAREREejYsSOeeOIJrFu3DuXl5TW+NmI5OTnh4YcfxgcffICcnBykpKRg5cqVGD58uEac6nWaPXs23N3da93elClT0K5dO7Rr1w45OTn1GhsRERGRpTp48CCmTJmCPn36ICwsDP369cMbb7yBy5cva8QZIw9W0TWf/O233zBmzBh06dIFPXr0wIIFC5Cfn6/3a3IvVc6clJSEHTt24Mknn0SHDh3Qu3dvfPDBByguLkZlZSXWrFmDQYMGoWPHjnjsscewefNmjTvlVLn0rFmzcPv2bbzxxht48MEH0alTJzz99NM4cuQIACA5ORkvvPACIiIi0LNnT8yYMQPp6ek1ju3QoUPo2LGjuj0ZIP58ElHDwJYLRGRWOnfujIyMDBw9ehTe3t7o1asXAgMD1c/HxsZi+vTpKC4uRnBwMDp16oSrV6/i559/RnR0NL777rtqfa8qKysxefJknDt3Dj169EBAQACOHz+ORYsWobCwEL/++itycnLQqVMn3L59G6dPn8bkyZOxdetWtG/fXmNbx44dw7Jly+Dj44OHHnoIly9fxu7du3Ho0CGsXbtWI/727duYOHEiUlNT0aRJE/Tp0wcFBQU4dOgQDh06hPfffx+jRo2q9hrMnz8fOTk56NOnD1JSUtQLOixcuBAbNmyAk5MTunTpAldXV6SmpuLs2bM4e/Ysrl+/jrlz5wIAoqKiEBsbi6SkJAQHB+u0MERtEhMTcfDgQbRv3x5t2rRBRUUF3NzcAAALFizAli1b4OjoiA4dOsDNzQ3x8fFYvHgxDh06hFWrVsHe3l7vfX/44YdYvHgxHnnkETg7O2P8+PEYM2aM+vl//vkH169fh4uLC/r37691W+7u7tixY4feYyEiIiKydDt37sSbb74JW1tbdO3aFe7u7khOTsbOnTvxxx9/YMuWLQgODtb4GUPnwbrmk1988QW++uor2NnZoUePHrCxscEvv/yC+Ph4SV+rZcuWISYmBp07d0bPnj0RFxeHjRs3IiMjAw4ODvjjjz8QERGBZs2a4dixY3jvvfdQUVGhnqSicvPmTTz11FOorKxEREQE0tLScPbsWUybNg3vvfcePvzwQzRq1AgPPvggzp8/j+joaJw/fx779u2Dk5OTejtZWVm4ePEi/vvf/6of0+d8EpGFE4iIzMyxY8eE4OBgYcyYMRqP5+TkCN27dxfatm0r7N27V+O5n376SQgODhYGDhwoKBQK9eP9+/cXgoODhV69eglXr15VP7527VohODhYCA4OFp566ikhNzdX/dwrr7wiBAcHC++99576sf/973/q+JdfflkoLS0VBEEQlEql8OmnnwrBwcHC448/LlRWVqp/Zvz48UJwcLCwZMkSoaysTP34mTNnhK5duwrt27cXkpOT1Y+/8cYbQnBwsNCpUyfh+vXr6u0rlUrhn3/+EYKDg4UBAwYIWVlZGse+e/duITg4WOjYsaPGfpYvXy4EBwcLy5Yt04hX7Wfr1q2iXvu0tDT1sd/7mqiOVfXaDBs2TEhLS1M/X1hYKEyePLnGMdREtZ8+ffrUGXu/nTt3CsHBwcL48eN1/tl7qa6Xa9eu1Ws7REREROZs4MCBQrt27TRyUaVSKSxcuFAIDg4W3njjDfXjxsiDdc0nz549K4SEhAjdu3cXEhMT1Y9fv35d6Nevn3q8YqjG+vfff2s8rsqZQ0JChOjoaPXj58+fF0JCQoTg4GAhIiJCSEpKUj+3efNmITg4WHjsscfUj92bS48fP14oKipSv37Tp09XPzd//nyhoqJCEARBKCoqEh5++GEhODhY+O233zTG9fPPPwvBwcHCxYsX1Y/pcj7vHZM+eTcRmQe2XCAii7Ft2zbk5eVh3LhxeOSRRzSeGz16NPr374+0tDT8+eef1X528uTJaNmypfrfw4YNU///V155BZ6enup/P/zwwwCA1NTUatvx9PTE4sWL4eDgAKCql+t///tfBAcHIyEhAadOnQJQtVBBXFwcQkND8frrr8POzk69jY4dO2L69OkoLy9Xt324V//+/REQEKDevkwmQ0FBAQYPHozZs2ejUaNGGvFDhw6Fu7s7SkpKcOfOnRpfO6mMHz9e/f/l8qo/IWvWrAEALF68GP7+/urnXV1dsXjxYtjZ2WHTpk0oKysz2LiysrIAoNprQ0RERETVZWVlwdbWFr6+vurHZDIZXnzxRcyfPx9PPfVUtZ8xZB6saz65ZcsWCIKAGTNmaMw8DQgIUN+xJpV+/fph4MCB6n+3b98erVu3BgA888wzCAoKUj83ePBgADV/jgCAN954Ay4uLgCqXr/HHnsMAODg4IA5c+bAxsYGAODi4qLuj3v9+nWNbRw8eBC+vr5o27at+jF9zicRWTYWdInIYqj62kZGRtb4fJ8+fTTi7tWxY0eNf3t7e6v/f2hoqMZzqv6rNRUg+/XrB1dXV43H5HI5BgwYAKDqVrR7x9CtWzd14bOmscbFxVV77v7xAEDPnj2xfPlyddKnGl9ycjJ+/vlndf9cQxZNHR0d0apVK43HsrKycOXKFbi5uVVrTwEAvr6+CA0NRWFhIS5evGiwsdnaVnUQqqysNNg+iIiIiBqKrl27orS0FCNGjMCXX36Jc+fOQalUwsfHB+PHj0e3bt2q/Yyh8mB98skTJ04AAPr27VvjOFW5oRTu/xwB/PtZ4v6WZqp2ZDXl5Pb29mjXrl2N2/H396/22qo+kygUCvVjFRUVOHr0qPo1VNHnfBKRZWMPXSKyGLdu3QIAvPzyy1rjbt++Xe2xe2fgAlXfWKvcu5jA/c/dr0WLFjU+/sADDwAAMjMzAVT1yAKADRs2YMOGDTqN9f7xqCgUCuzcuRPR0dFISUnB7du31YVc1ZiFexZgkJqbm1u110Z1TgoLC+vs0Xvr1i106tTJIGNTzUbgImdEREREdVu0aBGmT5+OCxcuYMWKFVixYgU8PT3Rt29fPPXUU+jRo0e1nzFUHqxPPqnal5+fX7UYe3t7+Pr6qsdRXzXl5qqcWNtnjPu5ublVK3Cr4mvL/+936tQpFBYW4qGHHtJ4XJ/zSUSWjQVdIrIYqtmX/fv3r/YN9r3atGlT7TGpvqVX3QZ1P1UhVfW8qtAaHh6u0erhfjUlfTXNZMjMzMT48eORmpoKV1dXdOjQAQMHDkRISAi6d++OSZMmSZK0qsZdk5rGpTonnp6e1WYK3K9x48b1G5wWqtkcFy5cQHl5ucatfTXZtGkTHBwc0LdvX41b04iIiIisQZMmTfC///0PJ06cwP79+3H06FEkJSVh165d2LVrFyZPnow33nhD42cMlQfrk09qK5xqG6s+6sorxZLi88jBgwdhZ2enbsegos/5JCLLxoIuEVkMX19fXLt2DRMnTkTPnj1NMoaMjIwaH1cVU1UzFFTJZq9evfDKK6/Ue7+fffYZUlNTMWzYMCxatEjdu0yloKBA9LbuT5713Q7w73E6ODhg6dKlOv2slFq0aIHg4GAkJSXh8OHD6lv/alJcXIylS5eiuLgYK1aswKBBg4w4UiIiIiLzIJPJ0L17d3Tv3h0AcOfOHfzvf//DZ599hrVr12LChAlo2rSpOt5QebA++aTqc8HNmzcRGBio8ZxSqUR2drao7ViaQ4cOoXPnzjVObtH1fBKRZWMPXSIyO7V9467q/XTw4MEan//444/x5JNPYuvWrQYb2+HDh6sVQpVKJf766y8A//YEU4318OHDNc56/fPPP/HII4/g3XffFbXf06dPAwCmTp1arZh79uxZFBUVqceiUtvrqFqIoaYF1M6cOSNqPCr+/v5o2rQpMjIykJCQUO35kpISPP7443jmmWeQnp6u07Z1NXnyZADAJ598guLi4lrjvvjiCxQXF6Np06bo16+fQcdEREREZG5SUlIwbNgwTJ06VeNxHx8fTJs2DSEhIRAEoVoB11B5sD75pGpyxx9//FEt/vjx4ygpKanzdbA0t27dQlJSUrW+wfqeTyKybCzoEpHZURUsVUVKldGjR8PZ2RkbN27Er7/+qvHc/v378cMPPyAhIQHh4eEGG9v169exdOlSdXKqVCqxdOlSXL58GZGRkerVZlX//8KFC/j44481FkZITU3FwoULceXKlWqLjNVGtWCCKmFWSUpKwuuvv67+972LJtjb2wOo/jqqepPt3LlTY0buyZMn8dNPP4kaz72effZZAMCcOXM0VuEtKyvDu+++i8TERBQXF2usWGwITz75JCIjI3HlyhU888wzuHTpksbzZWVlWLFiBdatWweZTIZ33nlH/RoRERERWYuWLVsiMzMTR44cwb59+zSeO3/+PC5fvgxnZ+dqbcwMmQfrmk8+88wzsLOzw+rVq3Hy5El1fGZmJt5//30pXiazo5rUcn//XH3PJxFZNrZcICKz4+/vDxsbGyQlJeHZZ59FSEgI3nrrLfj5+eGjjz7C7NmzMXv2bKxcuRKtW7fGrVu3cP78eQDAW2+9pU4mDcHX1xdr165FTEwMQkJCkJiYiKtXr6JZs2ZYtGiROk4mk+Gzzz7Ds88+i7Vr1+LXX39F+/btUVpaipMnT6K8vByDBw/G+PHjRe130qRJiI+Px/Lly/HXX3/B398fGRkZOHv2LBwdHeHv74/09HSN28tUPcu2bduG27dvo1+/fhg1ahQeffRRfP3117h+/ToGDRqErl27Ijs7G2fOnMGTTz6JHTt26PSaTJw4EWfPnsXevXsxdOhQhIeHw9PTE+fOnUNmZiZ8fHywbNkynbapD5lMhlWrVmHWrFk4fPgwnnzySQQHB6NFixYoLy/HmTNnkJeXB0dHR7z77rucnUtERERWydbWFh988AFmzZqF//znP2jfvj38/f2Rm5uL+Ph4VFZW4q233oKbm5vGzxkyD9Y1n2zTpg3eeustvP/++5g4cSK6desGFxcXHDt2DI0aNYK3t3eDWyz34MGDaNq0KYKDgzUe1/d8EpFl4wxdIjI7Pj4+WLRoEfz9/REfH4+YmBj1c4MGDcL//vc/PP744ygsLMSBAweQnZ2N/v3744cfflB/u28okZGRWLlyJZydnRETE4OysjI8++yz2LZtGwICAjRiW7VqhZ07d2LKlClwdnbG33//jYSEBISFhWHx4sVYtmyZ6AUbBg0ahO+++w7dunXDjRs3sH//fmRlZWH48OHYvn27OiG+97WKiorCpEmT4OzsjEOHDiE+Ph5AVcuFH3/8ESNGjICNjQ0OHjyIu3fvYsGCBaJbQNxLLpdj2bJl+OijjxAeHo6EhAQcOXIEbm5ueO6557Bz507RM5Hry9nZGatXr8ayZcswYMAA5Ofn48CBA4iNjYWPjw8mTpyIPXv2YPjw4UYZDxEREZE5UuWWffv2xc2bN/HXX38hJSUFffv2xbp16zB27NhqP2PIPFiffHLcuHH4/vvv0b17d1y4cAEnTpzAQw89hA0bNsDJyckwL5yJlJWV4dixY7UuGqfP+SQiyyYTVEtSEhFRrbZv3465c+di2LBhJl38qyFLT0/HwIED4efnh0OHDplkDAMGDMCNGzfwxx9/oEWLFiYZAxEREZE5aeh58IQJExAXF4e1a9eabOFlYzOHvJuI6oczdImIiIiIiIiIiIgsBHvoEhGRWSkoKMBrr70GAJg9ezaaNm1q0P1dvnwZX3/9NQAgNzfXoPsiIiIiIvO0evVqbN++HX369METTzxh6uEYxB9//IE//vgDJSUlph4KEdUTC7pERGRWSkpKsHv3bgDAlClTDF7Qzc7OVu+PiIiIiKxTbGwsAMDLy6vBFnQTExOZ9xI1EOyhS0RERERERERERGQh2EOXiIiIiIiIiIiIyEKwoEtERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERERWQgWdImIiIiIiIiIiIgsBAu6RERERERERERERBaCBV0iIiIiIiIiIiIiC8GCLhEREREREREREZGFYEGXiIiIiIiIiIiIyEKwoEtERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERERWQgWdImIiIiIiIiIiIgsBAu6RERERERERERERBaCBV0iIiIiIiIiIiIiC8GCLhEREREREREREZGFYEGXiIiIiIiIiIiIyEKwoEtERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERERWQgWdImIiIiIiIiIiIgsBAu6RERERERERERERBaCBV0iIiIiIiIiIiIiC8GCLhERERERERGRkQmCYOohEJGFsjX1AIiIrMn27dsxd+5cdO/eHRs2bDD1cIiIiIiI6iU9PR0DBw4UFTt8+HAsWbLEwCMSp2/fvsjIyMBff/0Ff39/o+5boVBgzZo1sLW1xYsvvmjUfRNRw8CCLhERERERERHV27Bhw7Q+37lzZyONxLytWbMGK1asYDGXiPTGgi4RERERERER1dvSpUtNPQSLwFYLRFRf7KFLREREREREREREZCFY0CUiMnP79u3DtGnT0KtXL4SFhSEiIgJPP/00Nm3aBKVSqY578cUXERISgi1bttS4ndWrVyMkJARffvmlxuN79+7FhAkTEBERgY4dO+KJJ57AunXrUF5erhF3/PhxhISEYNGiRdiwYQN69uyJjh07Yty4cRrjICIiIiISQ9VL9vHHH0fHjh0RERGBiRMnYv/+/bX+zNGjR/H8888jMjIS4eHheOSRR7BixQoUFxfXGB8bG4vnnnsO3bp1Q9euXfHKK6/g5s2bOo3zzTffREhICOLi4jBz5kx06NABPXr0wLp169QxYnP2AQMGqPPxVatWISQkBCtWrKjXMRKR9WHLBSIiM7Zw4UJs2LABTk5O6NKlC1xdXZGamoqzZ8/i7NmzuH79OubOnQsAGDlyJGJiYrBz506MHj262rZ27NgBmUyG4cOHqx9bsGABtmzZAkdHR3To0AFubm6Ij4/H4sWLcejQIaxatQr29vYa2zl06BBSU1PRvXt3yGQyNG3aFHI5vx8kIiIiIvGKiorw3HPP4dy5c/D29kaPHj1QVlaGEydO4Pjx43j55Zcxc+ZMjZ9ZvXo1Pv30U9jZ2SEsLAyNGzfGmTNn8OWXX+Kvv/7C+vXr4eHhoY7ftm0b5s+fD5lMhq5du8Ld3R2HDx9GfHy8XsXR+fPnIycnB3369EFKSgpCQkIA6JazR0VFITY2FklJSQgODkZISIh6O/ocIxFZJxZ0iYjM1Pnz57Fhwwb4+/tjy5YtaNSokfq5PXv24NVXX8WWLVvw2muvwc7ODv369YOPjw9OnTqFtLQ0BAQEqOPPnTuHK1eu4MEHH0SzZs0AANu3b8eWLVsQEhKCr776Sr26b1FREf7zn//gyJEjWLlyJV555RWNcV27dg2vv/46pk6dCgCcnUtEREREOlu4cCHOnTuHoUOH4oMPPoCzszOAqlxz8uTJ+PLLLxEREYGePXsCAI4dO4Zly5ahSZMm+OabbxAaGgoAKCsrwzvvvIPt27fjgw8+UPfxvXXrFhYuXAg7Ozt8++23iIyMBADk5ORgypQpyMjI0HnMmZmZ2LVrFwICAtR9cHXN2d966y2sWLECSUlJGDBggEauresxEpH14pQqIiIzVVBQgMGDB2P27NkaiSEADB06FO7u7igpKcGdO3cAALa2tnjiiScAADt37tSI37FjBwBgxIgR6sfWrFkDAFi8eLG6mAsArq6uWLx4Mezs7LBp0yaUlZVpbMvGxgbjxo1T/5uzc4mIiIgIgHq2aU3/3dueICMjA7t27ULjxo01irkA0LJlS7z55psAgO+++079+LfffgtBEDBv3jx1oRMA7O3t8c4776BRo0bYu3evulC7Y8cOlJaWYty4cepiLgB4e3tj4cKFeh1f//791ZMmZDIZZDKZzjm7NroeIxFZL87QJSIyUz179lTPSFApKytT376lmhl7b8F15MiR+P777/HLL7+ob1ErKyvD3r174erqikGDBgEAsrKycOXKFbi5uaF9+/bV9u3r64vQ0FD8888/uHjxIjp16qR+rnnz5hpJNxERERERAAwbNqzW5wIDA9X//+TJk6isrER4eHiNeWWvXr0gl8sRHx+PyspK9c8A0CjOqjg6OqJr167Yt28fTp48icceewwnTpwAAPTt27dafPv27fHAAw/g1q1bOh3fvUVWFX1y9ppUVlbqfIxEZL1Y0CUiMmMKhQI7d+5EdHQ0UlJScPv2bXVSKJPJAEB9uxdQlSh37twZp0+fxsmTJ9G1a1fExMQgLy8Po0ePhqOjIwCok9fCwkKNnl01uXXrlkZB19PTU8IjJCIiIqKGQmwrANWiZPv379eai5aUlCA/Px+CIKCkpAQA0L17d63bVuW5mZmZAAA/P78a4/z9/XUu6NbWu1bXnL0meXl5Oh8jEVkvFnSJiMxUZmYmxo8fj9TUVLi6uqJDhw4YOHAgQkJC0L17d0yaNKnGFXqfeuopnD59Grt27ULXrl3xyy+/ANBst6Ca6eDp6Yk+ffpoHUfjxo01/q1KSomIiIiI9KEqdrZp0wZt27atM16Vu9rb22Pw4MFaY1u0aAGg7pzVxsZGzFA11NRqTN+c/X76HCMRWS8WdImIzNRnn32G1NRUDBs2DIsWLYKDg4PG8wUFBTX+3KOPPooPP/wQ0dHRmDNnDo4cOYLWrVtrzLJVFWkdHBy4qAIRERERGZUqF23btq2oXLSsrAx2dnaoqKjAhx9+CHt7+zp/xs/PD8nJybhx4wbatGlT7XnVDN760jdnv5+np6fOx0hE1osr2RARmanTp08DAKZOnVotMTx79iyKiooA/DvDQcXFxQVDhgzBnTt38Pnnn0OhUGjMzgWqbjFr2rQpMjIykJCQUG3fJSUlePzxx/HMM88gPT1dysMiIiIiIivXrVs3AMCJEyfUbQbu9c8//2DQoEGYOXMmBEGAvb09OnXqBKVSicOHD1eLFwQBEyZMwJgxY3Du3DkAwIMPPggA+PPPP6vFp6am4urVq5Iciz45e02zh/U5RiKyXizoEhGZKW9vbwDAX3/9pfF4UlISXn/9dfW/FQpFtZ996qmnAACbNm2CjY0NnnjiiWoxzz77LABgzpw5uH79uvrxsrIyvPvuu0hMTERxcTH8/f3rfzBERERERP8vICAAAwcOxO3btzFv3jx10RMA7ty5g3nz5iE1NRUPPPCAuvg5adIkAMAHH3yAixcvquOVSiU+//xzxMXFIT09Xb1w2fDhw+Hh4YH//e9/+P3339XxRUVFmDt3bp09bcXSJ2dXzb6997gB3Y+RiKwXWy4QEZnA6dOn0atXr1qff/rppzFp0iTEx8dj+fLl+Ouvv+Dv74+MjAycPXsWjo6O8Pf3R3p6OrKzs6v9fNeuXdGqVStcvXoV/fr1g6+vb7WYiRMn4uzZs9i7dy+GDh2K8PBweHp64ty5c8jMzISPjw+WLVsm6XETEREREQFVRcvU1FT8+uuv+PvvvxEeHg6ZTIaTJ0+iuLgYXbp0wSuvvKKOj4qKwuTJk/H9999j1KhRaN++PXx9fZGQkIC0tDQ4OTlh+fLl6mKpj48PFi9ejP/+97+YNWsWOnfuDF9fX8TFxUEQBLRs2RLXrl2r93Hok7O3bNkSALBt2zbcvn0b/fr1w6hRo3Q+RiKyXpyhS0RkAuXl5cjOzq71v6KiIgwaNAjfffcdunXrhhs3bmD//v3IysrC8OHDsX37dowfPx4AEBMTU+M+unTpAgDV2i2oyOVyLFu2DB999BHCw8ORkJCAI0eOwM3NDc899xx27tyJVq1aGeYFICIiIiKr5uPjg61bt+I///kPfH19ceLECZw5cwatWrXCW2+9hbVr18LJyUnjZ9544w18/fXX6NGjB65du4aDBw9CLpdj5MiR+OWXX9T5r8rAgQOxefNmDBw4EFevXsXhw4cRHh6OzZs31zjhQR/65OxRUVGYNGkSnJ2dcejQIcTHx+t9jERknWSCVPcZEBGR2SgrK0Pfvn1hY2ODAwcOwM7OztRDIiIiIiIiIiIJcIYuEVEDoVQqUVZWhoqKCixduhS5ubkYM2YMi7lEREREREREDQhn6BIRNRBlZWXo3LkzZDIZysvL4efnh19//RVubm6mHhoRERERERERSYQzdImIGgh7e3uEhoZCJpOhc+fO+Pbbb1nMJSIiIiIiImpgOEOXiIiIiIiIiIiIyEJwhi4RERERERERERGRhWBBl4iIiIiIiIiIiMhC2Jp6AJZOEAQolYbvWiGXy4yyH5IGz5fl4LmyHDxXloXny3IY61zJ5TLIZDKD74fMj7HyZWvB91fSFa8Z0hWvGdIVrxnpiM2ZWdCtJ6VSQE7OXYPuw9ZWDi8vFxQUFKOiQmnQfVH98XxZDp4ry8FzZVl4viyHMc+Vt7cLbGxY0LVGxsiXrQXfX0lXvGZIV7xmSFe8ZqQlNmdmywUiIiIiIiIiIiIiC8EZukRERERWSKkUcOlaDsqv5sJOJiCwqQfkcs6gJSIiIiJSUSoFJKXlIe+uAp4uDggO8DSLnJkFXSIiIiIrE5+Yic3RycgtVKgf83JzwLioIESE+JpwZERERERE5sGcc2a2XCAiIiKyIvGJmVi547xGYgoAuYUKrNxxHvGJmSYaGRERERGReTD3nJkFXSIiIiIroVQK2BydrDXmx+hkrlJMRERERFbLEnJmFnSJiIiIrERSWl61WQb3yylUICktzzgDIiIiIiIyM5aQM7OgS0RERGQl8u5qT0x1jSMiIiIiamgsIWdmQZeIiIjISni6OEgaR0RERETU0FhCzsyCLhEREZGVCA7whJeb9sTT280BwQGexhkQEREREZGZsYScmQVdIiIiIishl8swLipIa8zYqCDI5TIjjYiIiIiIyLxYQs7Mgi4RERGRFYkI8cWM4WHVZh14uzlgxvAwRIT4mmhkRERERETmwdxzZluT7p2IiIiIjC4ixBedgxrj8s18lAsy2MkEBDb14MxcIiIiIqL/p8qZk9LykHdXAU+XqjYL5pAzs6BLREREZIXkchnatvSGl5cLcnPvoqJCaeohERERERGZFblchtAWXqYeRjVsuUBERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERERWQj20CUiIiKyQkqlgEvXclB+NZeLohERERER1UCpFLgoGhERERGZXnxiJjZHJyO3UKF+zMvNAeOighAR4mvCkRERERERmQdzzpnZcoGIiIjIisQnZmLljvMaiSkA5BYqsHLHecQnZppoZERERERE5sHcc2YWdM2c6nbIg6fScelaDpRKwdRDIiIiIgulVArYHJ2sNebH6GTmG0RERERUp4Zas7KEnJktF8yYOU/tJiIiIsuTlJZXbZbB/XIKFUhKy0NoCy8jjYqIiIiILE1DrllZQs7MGbpmytyndhMREZHlyburPTHVNY6IiIiIrE9Dr1lZQs7Mgq4ZsoSp3URERGR53J3sJY0jIiIiIutiDTUrd2eRObPIOENgQdcM6TK1m4iIiEg0mcRxRERERGRVrKJmJbYWbcKaNQu6ZsgSpnYTERGR5SkoLpM0joiIiIisizXUrApKRObMIuMMgYuimSFPFwdJ44iIiIgA5hhEREREVD+mzieVSgFJaXnIu6uAp4sDggM8IZdLe3uZqY9RDBZ0zVBwgCe83By0TmH3dqu6aImIiIjEYo5BRERERPVhynwyPjETm6OTNfbt5eaAcVFBiAjxlWw/lpAzs+WCGZLLZRgXFaQ1ZmxUkOTfQBAREVHDJpfLENlWe7Lbva0vcwwiIiIiqpGpalbxiZlYueN8tSJrbqECK3ecR3xipmT7soS6HAu6RERERFZCqRRw/JL2ZDfuUqZFr0pMRERERIYVEeKLGcPD4OWm2XLAy80BM4aHSTpbFqjKYdf9lqA1Zv2+RElz2NqO0dtAx6grtlwwQ0qlgM3RyVpjfoxORuegxpxBQ0RERKLpsipxaAsvI42KiIiIiCyRIAha/y2VhOu5uFtaoTWmqKQcCddz0a6lt2T7jQjxReegxgbv2asPztA1Q7p82CIiIiISyxpWJSYiIiIyF0qlgITUXBy7eBsJqbkN5i4oVfuDvKIyjcfzisokb38AAAmpuZLG6UIulyG0hRd6tGuC0BZeZlHMBThD1yzVVczVNY6IiIgIsIwVe4mIiIgaAmMt4GVsJrmrXOxmzKPWahRmPUM3Li4OkydPxoMPPojOnTtjzJgx2Lt3b722uXv3boSEhOC1116TaJTSKywuqztIhzgiIiIioGrFXhdH7d/nuzrZmXTFXtKdtebMRERE5sqYC3gZmynuKg8NENcKTGxcQ2C2M3R37dqFOXPmwNbWFpGRkbCxsUFsbCxeeeUVpKSkYNasWTpv89atW3j//fcNMFppubrYSRpHREREpFJRqazX82RerDlnJiIiMkemXBdJqRQM3u/VFC28Qlt4wcXRVmsfXVdHW6taA8IsC7rZ2dmYP38+nJycsHHjRrRv3x4AcPnyZUycOBFfffUVBg4cqH5cDEEQ8MYbb6CgoMBQw5aMt6ujpHFEREREQNWCEopy7QXb0rJKyReUIMOw9pyZiIjIHJlqEVpjtXhwd7KXNE4MuVyGSY+EYuWO87XGPPtIqNn0tzUGs2y5sGnTJpSWlmL8+PEaCWhgYCBmz54NQRCwfv16nba5du1aHD9+HN26dZN6uJILDvCEl5v23nXebg68HZKIiIh0YsoFJUh61p4zExERmSNTzGA1aosHE/WzjQjxxYzhYfC47251Txc7zBgeZtF9ifVhlgXdgwcPAgCioqKqPRcVFQWZTIYDBw6I3l5iYiI+++wz9O/fHyNGjJBqmAYjl8swLipIa8zYqCCr+uaBiIiI6k+AuJWVxcaRaVl7zkxERGSOjL0IrdgWD0qlNPldgcj1nMTG6Uou1yxlyuSGLW0qlQISUnNx7OJtJKTmSvY61pfZFXQFQUBKSgoAICioelHTw8MDjRo1Qn5+PjIyMurcXllZGV577TW4uLhg4cKFko+XiIiIyFK4OIrrvy82jkyHOTMREZF5MvZd18ZepMzYBWsVUyw0F5+Yide/PoqPfzyN1bsu4uMfT+P1r4+axaJ2onrozpkzR7IdymQyfPTRR7U+n5+fD4VCARcXFzg7O9cY4+vri6ysLGRnZ8PPz0/r/pYtW4akpCQsX74cjRo1qtfYa2NrK21dXKkUsP63BK0x6/cloFtbP87SNUM2NnKN/yXzxXNlOXiuLAvPl/nydhfZp9/dUfL8xhowZ64drydp8P2VdMVrhnTFa0Ya4weHYMXP52p9/pnBIbC3t5FkX4Ul5aLjpPh73K6VN7zdHJCjpYjs7e6Adq28JatZKZUCfqxrFvJfyZLWyU4kZNbYs1dVQJ45sgO6hZquzYOogu6uXbsgk8kgCPWfVlxXclpSUgIAcHJyqjXGwaGqyl9cXKx1X7GxsVi3bh0ef/xxDB48WI/R1k0ul8HLy0XSbZ5NykKRlpX7AKCopALpd0rQMbixpPsm6bi7134Nk3nhubIcPFeWhefL/DRv6ik6Tur8xhowZ66ZIfJla8f3V9IVrxnSFa+Z+hn0YCu4ujhg9c5/cCe/VP14I08nPP9EGHp2aCrZvgIe8BAdJ9Xf4xdGdMDi9Sdqf354B/j4uEqyLwD4JyVbawEZAHIKFLiZW4rwNvX/YrpSKWDzn0laY36MTsbAyJawMdFES1EFXQDo1KkTnn766XrtbMuWLTh79qzWGFUvDJms7hdEqax9leaCggLMnTsXfn5+mD9/vm4D1YFSKaCgQHuSrKu48zdFxzVvXPOMDDIdGxs53N2dUFBQgspK7SuJk2nxXFkOnivLwvNlvpp6OYqaUdHUyxG5uXcl3be7u5NVzPZhzlzT/qXPl60V319JV7xmSFe8ZqTTNsADn7zUE9En05CZVwJfTydEdQ2Ara1c0jyrqZcjXJ3sUKRlpq6rk52k+V3bAA/MHNkBm35P1Mgrvd0d8MygELQN8JD0GNNu5YuO8/ep/5cRl67laBTia5KdV4LjZ9PRtqV3vfd3L7E5s+iCbkBAAIYPH16vQR09erTO5NTFperbgtLS2l84haLqYqnt9jIAeO+993D79m18//33cHd312O04lVUSPsmVymywXKlUpB83ySdykolz4+F4LmyHDxXloXnyzyNjQqq8fYx9fMDg6BUCmaz4IOlYc5cM74XSIvvr6QrXjOkK14z9RefmInN0ckaPV9/O34d46KCEBEi3a36SqVQ991BQlX9SMq2nZ3bNELH1j64fDMf5YIMdjIBgU09IJfLJL923JzEre/g5mQnyb7vFGgv5t4bZ6rfE1EF3W7duiEwMLDeOwsMDETXrl21xri4uMDFxQWFhYUoLS2Fo2P1Xm+ZmVXNh319a/4F+Oeff7Bnzx54enpi+/bt2L59u/q59PR0AMDp06fx2muvITAwEC+99JK+h2QQjnbi+qiIjSMiIiJSiQjxxYzhYdU+YHi5OUj+AcPaMGcmIiIi4N8FvO6n6r86Y3iYZDlXUloe7tbVtrO0AklpeQht4SXJPlXkchnatvSGl5cLcnPvGqy42aaZB2QyQFvdWiaripOCu7O9pHGGIKqgu2HDBkl29uKLL+LFF1/UGiOTyRAUFIQzZ87g8uXLaN++vcbzeXl5yM7OhoeHR62LO6j6hOXl5WH37t01xqSnpyM9PR3du3c3u+Q0PbNI0jgiIiKi+90/k0OKvq/WjjkzERERKZUCNte1gFd0MjoHNZZkxmzeXe29ZXWNM0cpN/K1FnOBqmJvyo18aYrWYtNiE6bPolsu3E+hUODgwYNITU1V385VE5lMhhkzZui07T59+uDMmTOIjo6ulpxGR0dDEAT07du31p+PjIxEYmJijc9t374dc+fOxbBhw7B06VKdxmUsOYXipnaLjSMiIiJSqW3GSF5RmeQzRog5MxERkbVJSsvTuAuqJjmFCslmzHq6OEgapwulUsClazkov5qr0XJBasYuWheUlEkaZwh6FXRv3LiB8ePH4/bt21rjBEHQKzkdOXIkvv32W6xbtw59+vRBly5dAABXrlzB559/DgCYOnWqOj4zMxOFhYVwc3Or9ZYyS+Lt4QjcKBAXR0RERCSSUilg3W8JWmPW70uUbMaItWPOTEREZH2MXXwMDvCEi6Ot1rYLro62CA7wlGR/KvGJmdj0ZxLyiv4tanq62uOZh4Mlnxxg7BYIpiySi6VXQXfx4sW4desWWrRogV69esHNzU3UCrtiNWnSBPPmzcP8+fMxfvx4REZGwt7eHrGxsVAoFHj11VcRGhqqjl+2bBl27NiB4cOHY8mSJZKNw1R6tX8Axy9mioojIiIiEivhem7dPdZKypFwPRftJF6x1xoxZyYiIrI+ZlkMlDD/AExwx5eRWyAEB3jCy81B60xrbzcHyYvkutCroHv69Gk0bdoUO3fuhJOTk9RjAgCMGjUKTZo0werVq3HmzBnY2NigXbt2mDx5MgYNGmSQfZoLsReEKS8cIiIisjwJqbmi41jQrT/mzERERNYnOMATDnZyKMprXyDM0U4uWU1H1KJoJeWStXgQdcfXbwmS3vGVVyxy1rPIuLrI5TKMiwqqsWitMjYqyKR3tOlV0FUoFIiIiDBYYqrSp08f9OnTp864JUuWiJ5lMGLECIwYMaK+QzOo/afTRccNiWxh4NEQERFRQ6FUipu2IDaOtGPOTEREZF6USgFJaXnIu6uAp0vVDEupi3JKpYAyLcVcAFCUK6FUCha5KFpCqog7vkorqiYItJJmgkDR3XJJ48SICPHFjOFh2BydrDFT18vNAeOigky+5oReBd2IiAgkJiaq+32RtJLT80XHDYk08GCIiIiowbhbKi7JFRtH2jFnJiIiMh/xiZlGKc7tP5Ve553/wv/HDerevN77M3aLh0vXc0THSVXQdRPZG1dsnC4EQdD6b1OR6/NDr732GjIzM/Hee+/h7t27Uo/J6jna2UgaR0RERAQYfwaHtWPOTEREVDulUkBCai6OXbyNhNRcg94hpOr5en9P1NxCBVbuOI/4xLrXMRIrM69E0ri6qPq9aiNlv9c7+eLyRLFxYni4iCvUio0TQ3XN3LvoG/Bvn2Aprxl96DVDNygoCPPmzcPbb7+NnTt3wt/fHx4eHjXGymQybNy4sV6DtDY92jdB7MUMUXFEREREYtV1+5+ucaQdc2YiIqKaGWu2LFBVON4cnaw15sfoZMl6vvp6imu1JDauLnK5DJFtfbEvLq3WmO5tfSVrLeHj4ShpnChihy7RDVHGvmb0oVdB9++//8a7774LACgtLUVKSkqtsby9THdGvk6JiIjISriLvA1NbBxpx5yZiIioOtXMx/upZsvOGB4maVE3KS2v2szc++UUKiRbNGxAF39siUmBtjvzZbKqOCkolQKOX9I+WzTuUiZG9msjSfGxbQsv/BqbKipOKgXFZXUH6RBXF2NfM/rQq6C7fPlyVFRUICoqCo899hi8vb2ZhEoo6Uae6LiwQB/DDoaIiIgaDJPMqLBizJmJiIg0mWLmo7FbTtnayjG4W4DWGbODuwXA1lavLqjVGLv4GNrcCy6OtloXRnN1skNoc+kKncbuE2wJbcr0KugmJSUhNDQUX375pdTjIQB1ds/WNY6IiIgIVcm1lHGkHXNmIiIiTaaY+WjsYiAAPD0gCADw+4k0jZm6MllVMVf1vBSMXXyUy2WY9EhojbOsVZ4dEiJpKwJVn2Bt146UfYJNcc3oSq+vA5ycnBAQECD1WOj/iX3TMtW0biIiIrJM7q4iWy6IjCPtmDMTERFpMsXMR2MvGqYS2Myj2iJdHi72CGxWcz99fZmi+BgR4osZw8Oqva5ebg6St8wAqorI46K0F8HHRgVJVkQ21TWjC71m6Pbp0weHDx9GaWkpHB15S57UQpt7wcFODoWWBUkc7W0knb5OREREDZ+3q7i8TWwcacecmYiISJMpio+qYqC2GaVSFgOB2vsE5xWVSd4n2NizV1UiQnzROagxLt/MR7kgg51MQGBTD4MtEqYqIt+/mJ63mwPGSryYnimuGV3pNUN39uzZkMvleOGFF3Dp0iWpx0QAbG20n5q6niciIiK6X3CAJxzstOcQjvY2Jp1t0JAwZyYiItJkCTMf60tsn2ClUpo+mnK5DJFttRczu7f1NUjxUS6XoW1LbzzUxR9tW3obvMAZEeKLT17qiTljO2Pa4+0wZ2xnfPxST8lnBKv2VdMsZG8DzULWlV4zdD/88EM0bdoUcXFxGDFiBOzt7eHm5gZb2+qbk8lkiImJqfdArUlSWp7W5tIAUFRSbtLV9IiIiMjyKJWC1juAAKC0rBJKpWDSGQcNBXNmIiIiTXK5DC38XLXOJm3u5yppHmLshdiM3SdYqRRw/FKm1pi4S5kY2a9Ng8jv5HKZ0WphqlnISWl5yLurgKdL1ZcN5vA66lXQ/f333zX+rVAooFDUfLFyJV/d5RSUShpHREREBADR8bWvtnx/3JDIFgYeTcPHnJmIiEhTRYUSZ1LuaI05k3IHFRVK2NpKc2eysQusde1L17i6mGKhOWtizAKyLvQq6P71119Sj4PukZyeJzquZ/gDhh0MERERNRhJaXmi41jQrT/mzERERJpM8eWysQushcVlksbVxdjHR+ZBr4Jus2bNpB4H3SM9q0jSOCIiIiIAUFRob7egaxxpx5yZiIjqo6ysEltikpGRWwI/LyeM7h8Ee3sbUw+rXpLT80XHDYmUZp/GLrA6O4srtYmNq4uxj4/MgzRXD0mqRFEpaRwRERERALTyc8Ola7mi4oiIiMh0lv98VqM1wcVruYg5fROd2vhg1siOBtmnUing0rUclF/NhZ1MQGBTD8l7hda1OKuucWK4uthJGleX4mLtayLpGlcXYx8fmQe9C7obN27Eli1bcP36dZSV1V7ll8lkuHjxor67sUruLna4qb2ljDqOiIiISKx2rbyx9/h1UXEkDebMRESkq/uLufc6k3IHy38+K3lRNz4xE5ujkzVuy/dyc8C4qCBEhPhKtp/mvm44dlH7Al6qOKl4OjtIGlcXN2d7SePq4u3qKGkcWQa9Cro//vgjFi1aBEEQ6owVE0OaPES+iYiNIyIiIgKA1k3cJY0j7ZgzExGRrsrKKkUtGlZWVilZ+4X4xEys3HG+2uO5hQqs3HEeM4aHSVbUdXcTV8QUGyeK2EnGEk1G9nITV6sRG1eX4ABPeLk5aO2R6+3mgOAAT0n2R+ZBr4Lupk2bIJfLMX/+fAwaNAju7u5cmVdCjTzFfWsiNo6IiIgIALYeSBEdN3FIqIFH0/AxZyYiIl1tiUkWHTdhcP3/ViuVAjZHa9/nj9HJ6BzUWJL2C6aYTVogsnes2Li6GLvAKpfLMC4qqMaivMrYqCDJ22eQaenVlCQ9PR09evTAmDFj4O3tDVtbW9jY2NT6H+kmpLmXpHFEREREAHD1dqGkcaQdc2YiItJVRm6JpHF1SUrL01p4BICcQgWS0vIk2V+bZh6o67tNmawqTiqeLiJbLoiMq4uqwKqN1AXWiBBfzBgeVm3Wr7ebg6QzrM2BUikgITUXxy7eRkJqLpRK67zLSa8Zun5+frwtzIDE/lLz2xUiIiLShYuDuNRPbBxpx5yZiIh05eflhIsiFjD183KSZH95d7UXc3WNq0vKjXzU9adREKriQltIM4ktOMATLo62uFta+yJkro62krYkUBVY7+9L7O3mgLES9yW+d5+dgxojKS0PeXcV8HSpmgXckGpHxur1bAn0ytZHjhyJL7/8EpcvX0ZgYKDUY7J6xr4dgIiIiKzDw139cTG17g+JD3f1N8JoGj7mzEREpKvR/YMQc/qmqDgpGHv2qrELyKIZoCWSKQqscrlMskK4uTFmr2dLoFdBd8qUKUhMTMTYsWPxzDPPICQkBB4etU+Hf/DBB/UeoDUy9hsqERERWQdbG3HdtsTGkXbMmYmIDEepFBrkTER7ext0auOjdWG0Tm18JFsQTdTsVSc7yWavmqLekZSWp/X4AKCopBxJaXmSF0MbcoHVmIzd69kS6FXQVSgUUCgUKCgowKpVq7TGymQyXLx4Ua/BWas2zTwgA6DtLgQZpO0pQ0RERA1fgsj+dwlpeWjf2sewg7ECzJmJiAyjod92PWtkRyz/+WyNRd1ObXwwa2RH4w5IwvZBxi4gA6izR7CucWR8uvR6tpYCul4F3U8//RR//vknZDIZWrduDW9vb6nHZdWS0vO0FnOBqmJvUnoe2rXka09ERETi3MkvlTSOtGPOTEQkPVPedm3MWcGzRnZEWVkltsQkIyO3BH5eThjdP0iymbkqomavllYYt1Amcf/5QpHtKsXGkfGZslWHud4NoFdB9/fff4erqyt++OEHtGvXTuoxWb0EEb3tVHEs6BIREZFY3m7ibl8UG0faMWcmIpKWKW+7NsWsYHt7G0wYHGqQbasYu1BmigKyq4udpHFkfKZqTWrOdwPo1SCtoKAA3bp1Y2JqIGK/jOKiyURERKQLV2eRH2hExpF2zJmJiKSly23XUlLNCr5/36pZwfGJmZLuT6WiQok/4q5j4x+J+CPuOioqlJLvw93JXtK4uphipqW3q6OkcWR8wQGe8KpjwoG3m4OkrTpM9Xsvll4zdFu3bo28vDyJh0IqLk7iTovYOCIiIiIAcHYWlzuIjSPtmDMTEUnLFMVApVLAut8StMas35co+azgrfuT8fuJNI2JXFtiUjC4WwCeHhAk2X4gdsgSHZopZlqqioHavgyQuhhI0pLLZRgXFVRjuxWVsVFBkv0OWsIibHrN0J04cSJOnz6NAwcOSDwcAgA3Z3HffImNIyIiIgKAazcKJY0j7ZgzExFJyxTFwITruXW3CCgpR8J1ca0Txdi6Pxn74tKq3ZUrCMC+uDRs3a+90KSL/CJxfWPFxtXFFDMtVcVAbaQsBpJhRIT4YsbwsGrXj7ebg+S9s011N4Au9Jp+ER4ejn79+mH69Ono168fOnbsCA8PD9ja1ry5kSNH1muQ1iZP5MqKYuOIiIiIACDvrrgPY2LjSDvmzERE0jLFTEtjr3FTUaHE7yfStMb8fiINI/oGwtZWrzl6GvJFzmYWG1cXY8+0pIYlIsQXnYMaG3yRMlMuwiaWXgXdoUOHQiaTQRAE7N+/HzExMVrjmZzq5vzVO6LjHuvZ0rCDISIiogbDwU7cBz+xcaQdc2YiImnJ5TJEtvXFvrjaC57d2/pKW9wxckuC/afS61wvRxCq4gZ1b17v/d0tLZc0TgzVTMv7F5vydnPAWAMsNmUJt8+TeHK5TLIF82pj7N7S+tCroPvkk09CJuNFbih1TevWNY6IiIgIAPwbueI46l7Awb+RqxFG0/AxZyYikpZSKeD4Je1/x+IuZWJkvzaSFeZCA7ywB6mi4qSQmVciaVydxC62LvGi7MaaaQnodvu8oQuFZCGM/EWOPvQq6C5ZskTqcdA9HB1sJI0jIiIiAoCSMu09AHWNI+2YMxMRScsUhbnQFl5wcbTV2kfX1dFWsv35ejpJGlcXJ0dxZSGxcbowxkxLwDJunyfzUlAsrv2Y2DhDEHU/3eLFi7F79+5672zXrl1YvHhxvbfT0LVv6SNpHBERERFQ9SFXyjjSxJyZiMiwTFGYk8tlmPRIqNaYZx8JlWxm6YAu/qjr5g6ZrCpOCiWllZLGmSNTLKZHls0SrhlRBd3169fj8OHD9d7Z4cOH8cMPP9R7Ow1d+1biGqmLjSMiIiICqnrTSRlHmpgzExEZlruzyL6WIuPEigjxxZDuAdUKrTIZMKR7gKQ9X21t5RjcLUBrzOBuAZIsiAagzuKxrnHmSLWYnjZSL6ZHls0SrhnRc+azs7MRGxtbr51lZ2fX6+etRWhzEbd0ONkhtDl7uxAREZF4rk52ksZRdcyZiYgMyET9XuMTM2tciE0QgH1xaQhs5iFpUffpAUG4nVOMMynVF0zv1MYHTw8IkmxfoS28sCdWRI9gC+4tK5fLMC4qCCt3nK81ZmxUEBdEIzVLuGZEF3RjY2PrnZwKgsCFIUSQy2Xo0+EBrSt39g5vwjcbIiIi0omri8iCrsg4qo45MxGR4RSUiOxrKTJODKVSwOboZK0xP0Yno3NQY8k+o8cnZtZYzAWAMyl3EJ+YKVkB2VomlEWE+GLG8DBsjk7W6MPs7eaAsVFBkhbkqWEw92tGVEG3W7duhh4H3UOpFBBz+obWmANnbkq6cicRERE1fMXF4hY7ExtHmpgzE5E5USoFXLqWg/KrubCTCQhs6mHxnx9N0dfS2AuxKZUC1v2WoDVm/W8JkhWQVT2Ctc1EfHZIiMVfO0BVga5zUGMkpeUh764Cni5Vt8w3hGMjwzDna0ZUQXfDhg2GHgfd4+K1HCjKlVpjSssqcfFaDsJac2E0IiIiEsdNZE9BsXGkiTkzEZmL+MTMarPKvNwcMM6As8qUSsHgRQ9VX0ttBVap+1rWVczVNa4uCam5WmfLAkBRaQUSUnPRTqJ1dWqbiWjoa8YU5HKZRbePIOMz12tGdMsFMp6j52+LjmNBl4iIiMSqa3EHXeOIiMj8xCdm1jjbMrdQgZU7zmPG8DDJC3TxiZnY9GcS8or+bXXg6WqPZx4OlnRfpuhrWVgsrn2D2Li6JKTlio6TqqAL/DsT8fLNfJQLsgYzq9vaGOOLFTIPLOiaodKySknjiIiIiACgTTMPSeOIiMi8mKrfa00F1ryiMoMUkCNCfDGkewB+P5EG4Z7Fz2QyYHC3AMmL1S4iFwoVG1cnEy38BlQVzNu29IaXlwtyc++iokL7ncNkXkwxM59MR27qAVB1nq7ibnMUG0dEREQEVN3GKWUcERGZF136vUpBbL9XpVK66mN8Yib2xWkWcwFAEIB9cWmIT8yUbF8AcLekXNK4uoSIbBchNk4Xqr7LB0+l49K1HEnPGxmW6ouV+3//VTPzpf69INPjDF0z1PIBN+CMyDgiIiIikY6cvyk6LiyQbZ2IiCxN3l1xfVzFxtXF2P1eTTED2dgzdGUyceMWGydWQ+27bA1M8XtBpseCrhlKvV0oPq6jgQdDREREDUZ61l1J44iIyLx4uojrgS42ri7G7veqywxkqRYxMvYM3YIScb14xcaJYaq+y2wPIA1T/F6Q6bHlAhEREZGVcLSzkTSOiIjMS3CAZ50LW3q7Vc2ElIIg8pZ8sXF1MfYMZABwdRE381ZsXF2MXZQXO7tT6rYZbA8gHVP8XpDpsaBrhnw8HCWNIyIiIgIAV5G3g4qNIyIi8yKXyzAuKkhrzNioIIttR+DuLG4dGbFxYng6iyywioyri7GL8qbou2zsAnJDZ+wvAcg8SFLQFQQBSqVS/V9FRQXu3r2L1NRUrFu3TopdWBVB5EKSYuOIiIiIgKoVwKWMI90wZyYiY4gI8cWQ7gHV3stlMmBI9wBJb2f3EFkgEhtXF2WluCKf2DgxhPtXX6tnXF2MXZQ39uxOYxeQrYGxvwQg86B3D92NGzdiw4YNuHHjBiorK7XGTpo0Sd/dIC4uDqtWrcKlS5dQWlqKkJAQTJw4EY8++qjobVy9ehWrV69GbGwssrOz4ezsjPDwcEyaNAl9+vTRe2yGcuVWgaRxRERERABQXiHuw6bYOKqbMXJma8yXiah28YmZ2BeXVu1xQQD2xaUhsJmHZEXduopIusbVJelGnug4qRb3TBRZWExMy0P71tLsMyLEFzOGh1XrMevt5oCxEveYNfbsTrYHkJ7qS4Ca+iCrSPklAJkHvQq6e/fuxcKFC+uMa9SoEYYMGaLPLgAAu3btwpw5c2Bra4vIyEjY2NggNjYWr7zyClJSUjBr1qw6txEfH4+pU6eiuLgYLVu2xEMPPYSMjAwcOXIER44cwZw5czBlyhS9x2gIDiL71omNIyIiIgKA5k1ccDG17gVsmjdxMcJoGj5j5MzWmi8TUc2USgHrfkvQGrN+X6Jkq92rZgZqm3Ep6cxAsd83Svm9pNiXSeJaWUSILzoHNUZSWh7y7irg6VL1OkpdlDP2OWR7AMMw5pcAZB70Kuj+9NNPkMlkmD17NsaOHYtffvkFixYtQkxMDJycnHDkyBEsXLgQlZWVmDZtml4Dy87Oxvz58+Hk5ISNGzeiffv2AIDLly9j4sSJ+OqrrzBw4ED14zWpqKjAnDlzUFxcjFdffRXPP/88ZP9/38nff/+NF154AUuXLkWfPn0QHBys1zgNoUc7Pxy7mCEqjoiIiEgsFwdxPQXFxpF2hs6ZrTlfJqKaJVzPxd3SCq0xRSXlSLiei3Ytveu9P2PPDAxq5iFpnBihAV7Yg1RRcVKTy2UIbSH9du/fhzHPodG/BLAixvoSgMyDXj10ExMT0apVKzz//PNwdXVFly5doFQqERcXB3d3dzz66KP44osvkJubi2+//VavgW3atAmlpaUYP368RhIaGBiI2bNnQxAErF+/Xus24uLikJ6ejvDwcEybNk2dnAJAr169MHr0aCiVSuzdu1evMRqKra240yI2joiIiAgAbmQXSRpH2hk6Z7bmfJmIapYg4i4MXeLEMGbP3ht37koaJ0ZoCy+4OGqfC+fqaGvwwqshqWZ33t8aw9vNATOGh0l6Do3dI9jaqL4E6NGuCUJbePF1bMD0qgjevXsXbdq0Uf+7devWkMlkuHTpkvqxbt26oW3btjh06JBeAzt48CAAICoqqtpzUVFRkMlkOHDgQJ3jDA8PR9++fWt8vmXLlgCAzMxMvcZoKAXFZZLGEREREQGAolzciqpi40g7Q+fM1pwvE1EtTNAeQNWz9/41wVQ9e+MTpXv/yM4vlTRODLlchkmPhGqNefaRUIsvnEWE+OKTl3pi7vgueO2ZCMwd3wUfv9TTILfqG7OATNRQ6dVywdXVFQrFv9PjHRwc0LhxY1y5ckUjrnnz5nUmkTURBAEpKSkAgKCg6t/ceHh4oFGjRsjKykJGRgb8/GpuPfDwww/j4YcfrnU/586dAwA0adJE5zEakruzuNscxcYRERERAUCQvwdOJ2eLiqP6M2TObO35MhHVzNjtAZRKAZujk7XG/BidLFnPXl9PJ0njxFIVIDf9mYS8on8nVnm52mPcw8ENpgApl8vQtqU3vLxckJt7FxUVhvuCl+0BiOpHr4JuaGgozpw5g9LSUjg6OgKourXr3LlzEARBfatWVlYW7O11Lzrm5+dDoVDAxcUFzs7ONcb4+voiKysL2dnZtSao2iQmJuLXX3+FTCbDoEGDdP75e0nd+sBG5BuYjVzGtgtmyMZGrvG/ZL54riwHz5Vl4fkyX0MiW2BrzGVRccwx6s+QObO158vWiu+vVJewQB+4OtqiSEsfXVcnW4QF+khSOLt0LUdrL1QAyClU4PLNfLSVoGfvoO7NsSUmpdps4HvJZFVxUr/vRLZvgm5t/ZB4PRd5RWXwdLVHSPOGd0u7sd9nwgJ9jLIfMhz+bTINvQq6jz32GI4dO4ZJkybh1VdfRbdu3dC7d2/Exsbis88+w7Rp0/DXX3/h1KlT6NChg87bLykpAQA4OdX+rZqDQ9XU/OLiYp23f+fOHcyaNQuVlZUYMWIEQkO13z6hjVwug5eXtCtBlyNHZJz0+ybpuLtL+60wGQ7PleXgubIsPF/maUS/QGw/UHtRd0S/QDRu7GbEETVchsyZrT1ftnZ8f62/SqWAi1fuIKegFN7ujmjX2kf0xBpz3+egHi20vs8PimwBHx9XSfaluCLus6tCCcneB4Y/pP3v2PCHDPt3rKdEr5254/sM6YrXjHHpVdAdMWIE9u/fj5iYGKxbtw7dunXD6NGj8d1332HNmjVYs2YNAEAmk2HSpEk6b18ul6t/vi5KpW63AGRkZGDy5Mm4du0awsLCsGDBAp3Hp7l/AQUFuifJ2tzKLBQdl5srXbN3koaNjRzu7k4oKChBZSV7EJoznivLwXNlWXi+zFuJQvvq5yWKCoPkF+7uTlY3c8OQObO158vWiu+v0jiRkImN+xKQe9+t8+OHhKJbqGFunT+RkIlNvyci557ZrN5uDnhmcIik+1QqBez9+6rWmL1Hr+Lxni0lmVl6W+Rn19sSfnZ9sncrlCgqsO9YqsZMXZkMGNKjBZ7s3Yqfk+uB7zOkK14z0hKbM+tV0LWxscHXX3+NP//8E+Xl5QCqeoStX78e77//Ps6ePQtvb29MmjQJjz76qM7bd3Gp+uautLT2RuaqfmS13WJWk6SkJLz44ou4ceMGwsPD8d1332md1SCW1H1l8gvFNXDPLyw1aE8bqp/KSiXPj4XgubIcPFeWhefL/FRUKPFbrPbeir/FpmJ4r1a8RV4ChsyZrT1ftnZ8f9VffGImVu44X+3x3KIyrPj5nEEWZKptnzmFCsn3ef7yHZTWsbBlaZkS55KzJbnV3dHRRnSclNfsqIcCMbxXK+w/lY7MvBL4ejphQBd/2NrK+bshEb7PkK54zRiXXgVdlfsXUAgKCsKGDRvqNSCgKkF1cXFBYWGhRs+xe6lW2vX1FfeH7++//8asWbNQVFSE3r17Y/ny5epE2NzkFJTVHaRDHBEREREARJ9MEx03pEcLA4/GehgiZ7b2fJlIH0qlgHW/JWiNWf9bgmQLeKn2acxFw45evC06ToqCbtHdcknjdGFrK8eg7s0l3y4RkSWo99SL8vJynDt3Dr///jvi4+MBADdv3qzXNmUymXq13suXq/fGycvLQ3Z2Njw8PEQt8LB7925MmzYNRUVFGDlyJL755hvzTk5lWjq86xNHREREBOBUUqakcSSe1Dmz1efLRHpISM3FXS2LhQFAUWkFElJzJdtnUlqeqEXDktLyJNmfoqxS0ri63C3R/nrqGkdEROLoXdCtqKjAF198gV69emH06NH473//iy1btgAA5syZg6eeegrXr1/Xe2B9+vQBAERHR1d7Ljo6GoIgoG/fvnVuZ//+/XjjjTdQUVGBmTNnYtGiRbC1rdfEZIPzdq8+w6I+cUREREQAcLdU3AwpsXFUN0PmzNacLxPpIyFNXKFWbJwY2YUlksbVJaiZh6RxdZGJrCiIjSNqaJRKAQmpuTh28TYSUnOhVHJiHklDr7fViooKvPDCC1i1ahVKSkoQFhYG4Z5u5AUFBbhw4QLGjRuH7OxsvQY2cuRIODk5Yd26dTh16pT68StXruDzzz8HAEydOlX9eGZmJi5fvqy+tQwAsrOzMXfuXFRWVuKll17Cyy+/rNdYjM3ZUVwCLTaOiIiICABsbcX1OhQbR9oZOme25nyZSC9i6ygS1luu3iiQNK4u/o1dJY2rS3AzT0njiBqS+MRMvP71UXz842ms3nURH/94Gq9/fRTxibwTiupPr4rgpk2b8Pfff6N3795YvHgxGjdujNDQUPXzW7duxTvvvINffvkF33//PebMmaPzPpo0aYJ58+Zh/vz5GD9+PCIjI2Fvb4/Y2FgoFAq8+uqrGvtctmwZduzYgeHDh2PJkiUAgLVr1yIvLw+2trZIS0vDa6+9VuO+unTpgnHjxuk8RkPh7BkiIiIyBB93R6Rl1r3ytw/vApKEoXNma86XifQR2sILe+pYGFIVJx2xfXGl6dlbUCpunRWxcXWR24gbt9g4ooai1gUYCxVYueO8QRZgJOuiV0F3x44d8PT0xBdffFFjby1HR0csXLgQsbGxOHTokF4FXQAYNWoUmjRpgtWrV+PMmTOwsbFBu3btMHnyZAwaNKjOnz906BCAqtkRe/bs0RprTglqnsjFzsTGEREREQFAkL8nzqTcERVH9WeMnNla82UifYQ294KLo63WPrquTnYIbS5dQdfPy0nSuLoYe5GygmKRBWSRcUQNgbEXQyTrpFdB99q1a+jdu7fWhRLs7OzQoUMH/P3333oPDqjqDabqD6bNkiVL1DMNVHbv3l2vfZuKl7uDpHFEREREABAg8hZbsXGknbFyZmvMl4n0IZfLMOmR0Bpnzak8OyRE0gJLv07N8NP+FFFxUnBztpc0ri6eLuI+k4qNI2oIdFkMUdo7Asia6NVD19bWFgUFdff4Ud2+RbpxdbKTNI6IiIgIAIoUImduiYwj7ZgzE9GVW+J644qNq4uXm8jJQSLj6hIc4FnntrzdHBAc4CnJ/ogsQd5d7cVcXeOIaqJXQbdt27b4559/cOvWrVpj0tLS8M8//2j07SJxXF1EFnRFxhEREREBgLuTuBlZYuNIO+bMROZF7G3QUq5Cn1NUKmlcXYxdYJXLZRgXFaQ1ZmxUEG8rJ6vCmetkDHoVdMeOHYuSkhJMnz4dCQkJ1Z5PTEzEzJkzUVZWhpEjR9Z7kNbG2H2PiIiIyEoYd20eq8ecmUg8pVJAQmoujl28jYTUXEmLqiq63AYtlYIikT1mRcbVxRQF1ogQX8wYHlatkOzt5sCFn8gqceY6GYNe93Y9+uijOHbsGLZu3Yrhw4fDzc0NMpkMhw8fRr9+/ZCRkQFBEPDYY4/hiSeekHrMDd7dktqb9OsTR0RERARw8RpjY85MJE58YiY2RydrFFu93BwwLipI0mKgKW6DNsVnO1WB9f7X1NvNAWMlfk3v3WfnoMZISstD3l0FPF2qilWcmUvWSPXFirZ+3Zy5TvWld7Ou999/H506dcKaNWtw9epVAEBubi4AoGnTpnj22WcxceJEaUZpZWQif6fFxhEREREBgLvIRXDExlHdmDMTaRefmFlj0SO3UIGVO85LOsPTFO+BpvpspyqwXr6Zj3JBBjuZgMCmHgYtIMnlMi7wRPT/TPHFClkXvQq6RUVFcHV1xYgRIzBixAhkZ2fj5s2bUCqVaNy4MZo1k2aFTmsV5O8JIFVkHBEREZE4Ym9hNsStztaIOTORdmJ72nYOaixJIbKiQilpnBihLbywJ7buz3aGKITK5TK0bekNLy8X5ObelfS4iKhu1jBzXakUcOlaDsqv5hrliyP6l14F3XHjxqFx48b47rvvAACNGjVCo0aNJB2YNbueKW6F0+uZBQgP9DHwaIiIiKihSLyeKzourDVzjPpizkyknS49baUoeB67mCE6rkMbaX5X2zT1kDSOiCxLQ565bqx2OVQzvRZFu3btGmxt9e7WQHU4m3JH0jgiIiIiALhTR+FE1zjSjjkzWTJjLFJm7J622fklksaJceDMDUnjiIjMgapdzv1fyqna5cQnZppoZNZDrwzTx8cH+fn5Uo+FVLgCNRERERmAt6v2FZd1jSPtmDOTpTLWrCtPF3HvNWLj6tLIwxEpN+q+G7KRh6Mk+wOAzDxxxWGxcUREpmbsdjlUM71m6L7xxhs4f/48Fi5ciGvXrkk8JOrYWtztPWLjiIiIiADA2Uncd/li40g75sxkiYw566pNM486FwOTyaripNCjXRNJ48Tw9XSSNI6IyNR0aZdDhqNXtr5nzx40adIEmzZtwqZNm+Do6Ag3NzfI5dXrwzKZDDExMfUeqDVp0cRN0jgiIiIiACgurZA0jrRjzkyWxtizrlJu5EOoo5ODIFTFSdGD0tZW3HwmsXFiDOjijy0xKVqPUyariiMiw1MqhQa9SJkxGLtdDtVMr4JudHS0xr9LSkpQUlLzLSKyur5ypWqKSssljSMiIiICgJz8UknjSDvmzGRpjL1IWU6RyPckkXF1KSgukzRODFtbOQZ3C8C+uLRaYwZ3C5C0iExENeMiXtIwdrscqpleBd2//vpL6nHQPdyd7SWNIyIiIgIAQWTNUGwcacecmSyNsWddFRSJLLCKjKuLqYoQTw8IAgD8fiJNY6auTFZVzFU9T0SGo2oncz9VO5kZw8NY1BUpOMATXm4OWr8A9Harmv1MhqNXQbdZs2ZSj4PuJXYBWekXmiUiIqIGzMdN3EI/YuNIO+bMZGmMXfC8WyKuvYvYuLqYsgjx9IAgjOgbiP2n0pGZVwJfTycM6OLPmblERsBFvKQll8swLiqoxgK5ytioIL6WBmbwvx4XL1409C4anLwikd+Mi4wjIiIiAgAnB3Hf5YuNI+kwZyZz0NJP3BodYuPMjaoIoY0hixC2tnIM6t4c4weFYFD35izmEhkJF/GSXkSIL2YMD4OXm+YXfN5uDpztbCR6Z+sXLlzAli1bkJ6ejrKyMgj33DuiVCqhUChw584dZGVlMUHVUcqNfNFxPcMfMPBoiIiIqKFIzy6SNI7qxpyZLMm2gymi4yYMDq33/pwcbSSNE0NVhLi/j6a3mwPGso8mUYPERbwMIyLEF52DGuPyzXyUCzLYyQQENvXgzFwj0aug+88//+CZZ55BeXm5OimVyWQaCarq38HBwdKM1Ipwhi4REREZgqKsUtI40o45M1majJyaF+3TN64uxSXiFnkWGyeWqgjBle6JrAMX8TIcuVyGti294eXlgtzcu6ioUJp6SFZDr4LumjVrUFZWhoEDB2LEiBE4fPgwtm7dipUrV0KpVOLw4cPYtm0b2rRpg59//lnqMTd4djbiEgmxcUREREQANBbjkSKOtGPOTJbG2J9D7tRxC7SucbqQy2UIbeEl+XaJyPxwES9qiPRq2nPq1Ck0atQIn332GQYOHIihQ4dCqVRCJpMhKioK7733HubPn4+UlBRs2LBB6jE3eDmFpZLGEREREQGAl5u9pHGkHXNmsjSKMnGLj4mNq4tMEFcYFhtHRFQTU/fPJjIEvQq6eXl5CAsLg719VbKvukXs/Pl/V7gbO3YsHnjgAfz6668SDNO6lJaJm6IuNo6IiIgIAJp4u0gaR9oxZyYpKZUCLl3LwcFT6bh0LQdKpfRT6UsqxG1TbFxdfDwdJY0jIqoNF/GihkavlguOjo6ws7NT/9vd3R0eHh64cuWKRly7du0QGxtbvxFaocaeTriRXSwqjoiIiEisAV38sSUmRWtLBZmsKo7qjzkzSSU+MbPaIl5ebg4YJ/EiXq2auCH1dqGoOCm0beGFX2NTRcUREdUX+2dTQ6LXDN0WLVogISFB47GWLVviwoULGo8pFApUVnJRDV1NG9pe0jgiIiIiALC1laNjoI/WmI6BPrC11StFpPswZyYpxCdmYuWO89V6P+YWKrByx3nEJ2ZKtq8xA7TfkqxrXF1Cm3vBxVH7HCNXJzuENmdBl4ikoeqf3aNdE4S28GIxlyyWXtl6v379kJ6ejkWLFqGwsOob3C5duiAtLQ379+8HAFy9ehVxcXHw9+cMD105OtqiZRNXrTEtm7jCsY7kh4iIiOheSqWA1IwirTHXM4oMciu3NWLOTPWlVArYHJ2sNebH6GTJfmft7W3QqY32L306tfGBvb2NJPuTy2WY9Eio1phnh4Sw4EJERHQfvQq6zz77LPz9/bFx40a8+uqrAIBx48bBxsYGs2bNwogRIzBixAiUlZXhsccek3TA1mLBpO61FnVbNnHFgkndjTwiIiIisnRJaXlaV3gGgJxCBZLS8owzoAaOOXPDpVQKSEjNxbGLt5GQmmuwL0FM8Ts7a2THWou6ndr4YNbIjpLtC6i9r6UX+1oSERHVSq8pnu7u7tiyZQu++uoreHp6AgACAgKwZMkSLFiwABcvXgQADBgwAFOmTJFssNbmsQdbYt3eC7ir+DdBdHGQ4bEHW5puUERERGSx8u5qLwzpGkfaMWdumIzVzxYw3e/srJEdUVZWiS0xycjILYGflxNG9w+SbGbu/djXkoiISDcyQdC2LIbuiouLkZycDG9vbwQEBEi5abNUWalETs5dyber6pVVG35bbb5sbeXw8nJBbu5dVFQoTT0c0oLnynLwXFkWni/zdf7yHSzbdrbOuNmjOiKsjl67uvL2doGNDXvzqlhTzmyofNkUjJ2jm/J3lhoG/k0mXfGaIV3xmpGW2JxZ8qza2dkZHTt2bPCJqSEplQK+3XNRa8x3ey6yvx0RERHpJD1Le/9cXeNIf8yZLY9SKWDdbwlaY9bvS5Q0R+fvLBEREdWE0yTM0MWrOVCUa/9Wo7RciYtXc4w0IiIiImoIkm7kSxpHZE0SrufibmmF1piiknIkXM+VbJ9ie+Oy7zUREZF1YUHXDB29eFvSOCIiIiIAUCi0F6N0jSOyJgmp4gq1YuPEyCkqlTSOiIiIGga9FkUjw1KUVUoaR0RERAQAbs7iUj+xcUTmQqkUDL6glgBxrRTExolhJxc3/0ZsHBERETUMzNbNUFAzD5xOzhYVR0RERCSWXCZuhXqxcUTmID4xE5ujk5FbqFA/5uXmgHFRQZIuUOZsbydpnBiNvZxx+VahqDgiIiKyHvwq1ww18RGXkImNIyIiIgIAH09HSeOITC0+MRMrd5zXKOYCQG6hAit3nEd8YqZk+7qrKJc0TowH2/lJGkdEREQNAwu6ZijuorjEU2wcEREREQCEBnhKGkdkSkqlgM3RyVpjfoxOhlIpTQuEnHxF3UE6xIlhYyPu45rYOCIiImoY+JffDN0pKJE0joiIiAgAZDJxPUXFxhGZUlJaXrWZuffLKVQgKS1Poj2KLQxL10O3oKRM0jgiIiJqGFjQNUPeHuJucxQbR0RERAQAecXiZg6KjSMypby7Iq9nkXF18fJwkDRODE8XcdsSG0dEREQNAwu6ZqhX+wckjSMiIiICgKK74np7io0jMiVjFzvdnOwljRMjOMATXm7ax+/t5oBgtkkhIiKyKizomqF2rbzhYKf91DjaydGulbeRRkREREQNgZuzyIKUyDgiUzJ2sdNDZGFYbJwYcrkM46KCtMaMjQqCXM42KURERNaEBV0zJJfLMHVoO60xU4a2Y+JGREREOqmr+KVrHJEpyeUyRLb11RrTva2vZDmzqX5/IkJ8MWN4WLXters5YMbwMESEaH8NiIiIqOGxNfUAqGaqxG3jH4nIv+e2R08XOzwzKISJGxEREemsTTMPyGSAoGXNJpmsKo7I3CmVAo5fytQaE3cpEyP7tZGkqKuaEaxtITZDtT+ICPFF56DGuHwzH+WCDHYyAYFNPTjBg4iIyEqxoGvGmLgRERGRlFJu5Gst5gJVxd6UG/kIbeFlnEER6SkpLU9rcRUAcgoVSErLk+R6VrU/WLnjfK0xhmx/IJfL0LalN7y8XJCbexcVFUqD7IeIiIjMH1sumDlV4vZQF3+0benNYi4RERHpLe+u9uKXrnFEpmSK65ntD4iIiMgccIYuERERkZXwFLlYk9g4IlMy1fWsuosuKS0PeXcV8HSparPAiRdERERkLCzoEhEREVkJU/YAJZKaKa9nuVzGtiRERERkMmy5QERERGQlVD1AtTFkD1AiKfF6JiIiImvFgi4RERGRFWEPUGpIeD0TERGRNTLrlgtxcXFYtWoVLl26hNLSUoSEhGDixIl49NFHRW+jqKgIa9aswe+//46bN2/C09MT/fv3x6xZs+Dj42PA0RMRERGZJ1UP0Ms381EuyGAnExDY1IMzGS2UtefM7GlLRERE1sZsC7q7du3CnDlzYGtri8jISNjY2CA2NhavvPIKUlJSMGvWrDq3UVRUhIkTJ+LChQto3rw5+vXrh6SkJPz000+IiYnB1q1b0aRJEyMcDREREZF5kctlaNvSG15eLsjNvYuKCqWph0R6YM5chT1tiYiIyJqYZUE3Ozsb8+fPh5OTEzZu3Ij27dsDAC5fvoyJEyfiq6++wsCBA9WP12bFihW4cOECnnzySSxatAi2trZQKpX46KOPsG7dOrz33nv4+uuvjXFIelMqBVy6loPyq7mcPUNEREREasyZ/6VUCpyhS0RERFbDLHvobtq0CaWlpRg/frxGAhoYGIjZs2dDEASsX79e6zaKioqwdetWODk54a233oKtbVXtWi6XY86cOQgICMD+/ftx/fp1gx5LfcQnZuL1r49i8cZTWLopHos3nsLrXx9FfGKmqYdGRERERCbGnLmKKmf++MfTWL3rIj7+8TRzZiIiImrQzLKge/DgQQBAVFRUteeioqIgk8lw4MABrduIi4tDcXExunbtCg8PD43nbGxs0L9/fwCoczumEp+YiZU7ziO3UKHxeG6hAit3nGeCSkRERGTlmDMzZyYiIiLrZHYFXUEQkJKSAgAICgqq9ryHhwcaNWqE/Px8ZGRk1LodbdsAgDZt2gAAkpKS6jtkySmVAjZHJ2uN+TE6GUqlYKQREREREZE5Yc7MnJmIiIisl9n10M3Pz4dCoYCLiwucnZ1rjPH19UVWVhays7Ph5+dXY0xmZqY6tiaNGzcGUNV7rL5sbaWti1+6llNtlsH9cgoVuHwzH21beku6b6o/Gxu5xv+S+eK5shw8V5aF58ty8FxZLkvLmaXOlwHrzJn5O0u64jVDuuI1Q7riNWMaZlfQLSkpAQA4OTnVGuPg4AAAKC4urjVG9Zyjo2ONz6se17YNMeRyGby8XOq1jfuVX80VFydIv2+Sjrt77dcwmReeK8vBc2VZeL4sB8+V5bGknNkQ+TJg3Tkzf2dJV7xmSFe8ZkhXvGaMy+wKunJ5VUVfJqt7VVqlUlnrczY2NqK2Iwj1uwVLqRRQUFC/ovD97GTixmQnE5Cbe1fSfVP92djI4e7uhIKCElRW1n6NkunxXFkOnivLwvNlOYx5rtzdnThzQ0KWlDMbIl8GrDNn5vsr6YrXDOmK1wzpiteMtMTmzGZX0HVxqfr2vLS0tNYYhaLq1qrabi+797natqN6XNs2xKqokPaCDWzqAS83B623kHm7OSCwqYfk+ybpVFYqeX4sBM+V5eC5siw8X5aD58ryWFrObIjry5pzZv7Okq54zZCueM2QrnjNGJfZTZNwcXGBi4sLCgsLa00s6+r1BUDdJ6y2fl9ZWVkA/u0LZk7kchnGRdW8MIXK2KggyOV1z8ggIiIiooaHOTNzZiIiIrJeZlfQlclk6lV2L1++XO35vLw8ZGdnw8PDo9bFHYB/V+pVrdx7v+TkqhVxg4OD6ztkg4gI8cWM4WHwcnPQeNzbzQEzhochIqT2xJyIiIiIGjbmzFWYMxMREZE1MruWCwDQp08fnDlzBtHR0Wjfvr3Gc9HR0RAEAX379tW6ja5du8LZ2RlxcXEoLCyEm5ub+rnKykrExMRAJpOhT58+BjkGKUSE+KJzUGNcvpmPckEGO5mAwKYenGVARERERMyZ/58qZ05Ky0PeXQU8XRwQHODJnJmIiIgaLLOboQsAI0eOhJOTE9atW4dTp06pH79y5Qo+//xzAMDUqVPVj2dmZuLy5cvq28qAqhV/n3rqKdy9excLFixAWVkZgKoFHT755BOkp6cjKioKrVq1Ms5B6Ukul6FtS2881MUfbVt6MzElIiIiIgDMme8ll8sQ2sILPdo1QWgLL+bMRERE1KDJhPosWWtA27Ztw/z58yGXyxEZGQl7e3vExsZCoVDg1VdfxbRp09Sxb775Jnbs2IHhw4djyZIl6seLioowduxYJCUloVmzZggLC0NycjKuXLmCZs2a4aefftLaU0wMQRCgVBr+JbSxkXO1QAvC82U5eK4sB8+VZeH5shzGOldyuQwyGYtsUrOEnNlY+bK14Psr6YrXDOmK1wzpiteMdMTmzGbZcgEARo0ahSZNmmD16tU4c+YMbGxs0K5dO0yePBmDBg0StQ1XV1ds2rQJX3/9NX7//XfExMTAz88P48aNw/Tp0yVZ3EEmk8HGxjgfTmxszHJCNdWC58ty8FxZDp4ry8LzZTl4riyXJeTMxsyXrQV/Z0lXvGZIV7xmSFe8ZozLbGfoEhEREREREREREZEmls+JiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhWBBl4iIiIiIiIiIiMhCsKBLREREREREREREZCFY0CUiIiIiIiIiIiKyECzoEhEREREREREREVkIFnSJiIiIiIiIiIiILAQLukREREREREREREQWggVdIiIiIiIiIiIiIgvBgi4RERERERERERGRhbA19QCsWVxcHFatWoVLly6htLQUISEhmDhxIh599FHR2ygqKsKaNWvw+++/4+bNm/D09ET//v0xa9Ys+Pj4GHD01kWKc3X16lWsXr0asbGxyM7OhrOzM8LDwzFp0iT06dPHgKO3PlKcr/vt3r0br732GoYNTIIVKAAAmy5JREFUG4alS5dKOFrrJtW52rVrF3766SckJiaivLwcgYGBGDNmDJ5++mnIZDIDjd66SHGuMjMz8eWXX+LQoUPIzs6Gi4sLunTpghdeeAGdOnUy3OCtWFxcHCZOnIgPPvgAo0aNEv1zZWVl2LhxI3bs2IG0tDQ4OzujZ8+emDVrFpo3b27AERM1XKbI/detW4fFixfXur3nn38er732ml7HQ4YndU4rCAKee+45XLlyBYcOHTLafsl4THHN/Pnnn3j55Zdr3cajjz6Kzz77TK/9k3GYot6hVCqxfft2bN68GdeuXYOdnR0iIiIwffp0hIWFSXl4DZZMEATB1IOwRrt27cKcOXNga2uLyMhI2NjYIDY2FmVlZZgxYwZmzZpV5zaKioowceJEXLhwAc2bN0fbtm2RlJSEq1evws/PD1u3bkWTJk2McDQNmxTnKj4+HlOnTkVxcTFatmyJNm3aICMjA//88w8AYM6cOZgyZYqhD8UqSHG+7nfr1i08/vjjKCgoYEFXQlKdq7lz52L79u1wcHBAjx49oFAoEB8fj/LyckyZMgVz5swx8JE0fFKcq/T0dIwZMwZZWVnw9/dH27ZtcfPmTVy4cAE2Njb49NNP8cgjjxjhaKzHlStXMHHiRGRlZWHhwoWiC7oVFRWYPn06Dh48CF9fX3Tu3BlpaWm4ePEiXFxcsHnzZoSGhhp49EQNi6ly/9dffx27du1Cv3794ObmVm2bAwYMYJHOTBkip12yZAnWrl0LPz+/WotzhtgvGYeprpnPP/8cX3/9Nbp37w4/P79qz3fu3BnPPPOMzvsm4zBVvWPBggXYsmULPDw80L17d2RnZ+P06dOws7PDqlWr0Lt3b4Mcb4MikNFlZWUJHTp0EDp16iScP39e/XhKSorQs2dPISQkROPx2nz44YdCcHCwMGfOHKG8vFwQBEGorKxUP/7iiy8a7BishRTnqry8XBgwYIAQHBwsfPPNN4JSqVQ/d+TIEaF9+/ZCaGiokJiYaLDjsBZS/W7dS6lUChMmTBCCg4OF4OBg4dVXX5V62FZJqnO1Y8cOITg4WBg8eLCQnp6ufjwpKUno3r27EBwcLFy8eNEgx2AtpDpXM2fOFIKDg4V3331XqKioUD++bds2ITg4WOjWrZtQWlpqkGOwRkePHhUefPBB9XvX1q1bRf/s+vXrheDgYGHSpElCcXGx+vG1a9cKwcHBwhNPPKHxt4yItDNl7v/YY48JISEhQmFhoXQHRAYndU5bXFwsvPHGG+q/CX369DHKfsl4THXNCIIgTJs2TQgODhaSkpLqdQxkfKaqd0RHRwvBwcHC0KFDhZycHPXj+/btE9q2bSv06tVLIwelmrGHrgls2rQJpaWlGD9+PNq3b69+PDAwELNnz4YgCFi/fr3WbRQVFWHr1q1wcnLCW2+9BVvbqu4Zcrkcc+bMQUBAAPbv34/r168b9FgaOinOVVxcHNLT0xEeHo5p06Zp3P7dq1cvjB49GkqlEnv37jXYcVgLKc7X/dauXYvjx4+jW7duUg/Xqkl1rr766ivY2Njg888/R7NmzdSPBwUFYfLkyXjggQdw/vx5gxyDtZDqXB05cgQA8PLLL8PGxkb9+MiRI9GyZUvk5+cjMTFR+gOwMnfu3MG7776LyZMnIz8/H02bNtXp5wVBwNq1awEA8+fPh5OTk/q5SZMmoVu3brh06RKOHTsm6biJGjJT5f6lpaW4cuUKWrZsCVdXV8McHBmElDltdHQ0nnzySezYsQMBAQFG2y8Zl6muGQC4cOECnJyc0Lp1a73HT6ZhqnrH999/D6Bq5q6Xl5f68cGDB2PYsGHIysrCr7/+KtVhNlgs6JrAwYMHAQBRUVHVnouKioJMJsOBAwe0biMuLg7FxcXo2rUrPDw8NJ6zsbFB//79AaDO7ZB2Upyru3fvIjw8HH379q3x+ZYtWwKo6i1J9SPF+bpXYmIiPvvsM/Tv3x8jRoyQapgEac5VQkICUlNT0aNHjxpv/37hhRdw4MABnfqGUnVS/V7J5VUpx+3btzUeLy8vR1FREQDA09OzfoMlrFq1Cj/++COaN2+O9evXIzIyUqefT0pKws2bN9G6desaP5iprgPmF0TimSr3T0xMRGVlpcaHdLIMUv3tLSgowIwZM5CWloaJEyfim2++Mcp+yfhMdc1kZ2cjKysLoaGhGl/Yk2UwRb2jsLAQp06dgrOzMx588MFq8Q8//DAA5ppisKBrZIIgICUlBUDVDLL7eXh4oFGjRsjPz0dGRkat29G2DQBo06YNgKoPZqQfqc7Vww8/jJ9//rnW3jPnzp0DAPY7riepzpdKWVkZXnvtNbi4uGDhwoWSj9eaSXWuVDNvw8PDIQgCDh06hCVLluDtt9/GDz/8gPz8fMMcgBWR8vdKleTNmTMHJ0+eRElJCa5du4ZXX30V2dnZiIqK4mJbEggICMA777yDPXv2oGvXrjr/PPMLImmZMve/cOGCeh8LFizAwIEDER4ejiFDhmDlypVQKBT6HRQZlJR/e+VyOYYOHYpdu3Zh3rx5cHBwMMp+ybhMdc0A/77PNGnSBB999BEGDx6M8PBwDBgwAB999BHzcTNmqnrH5cuXoVQq0bp1a/XdJvcKDAwEwFxTjOqvHhlUfn4+FAoFXFxc4OzsXGOMr68vsrKykJ2dXWNTceDfbzd8fX1rfL5x48YAqr4xI/1Ida60SUxMxK+//gqZTIZBgwbVd8hWTerztWzZMiQlJWH58uVo1KiRIYZstaQ6V6rbSl1dXTF16lT1Lf0qX3/9NVauXIkuXbpIewBWRMrfq7fffhu3b99GfHy8xsIYMpkML774ImbMmCH5+K3RxIkT6/XzzC+IpGXK3P/ixYsAqm6p9fb2RufOneHn54cLFy5g+fLlOHToENauXVvruMg0pPzb6+rqik8//dTo+yXjMtU1A/z7PvPbb7/B1dUV3bp1Q5MmTXD+/Hl8//332L9/PzZu3Kh+jyLzYap6h+rvWW3XBHNN8ThD18hKSkoAQKMn3f1U34IVFxfXGqN6ztHRscbnVY9r2wZpJ9W5qs2dO3cwa9YsVFZWYvjw4VwxvJ6kPF+xsbFYt24dHn/8cQwePFi6QRIA6c5VYWEhAGD16tU4f/48li5diuPHj+PPP//E6NGjkZOTg5deeontTOpByt8rT09PDB8+HB4eHggICMDAgQMREhICQRCwfft2HD9+XLqBk96YXxBJy5S5v6rQ8tRTT+HgwYP46quvsHnzZuzZswehoaE4c+aMToUbMg5DfwYxt/1S/Zny3F26dAkA8NBDD+HAgQNYtWoV1q9fjz///BM9evTAtWvXMH/+fEn3SdIwVb1Dta3a9qv6e6YaH9WOBV0jU/UQvLdRdG2USmWtz6n609S1HUEQdBgd3Uuqc1WTjIwMTJw4EdeuXUNYWBgWLFig1xjpX1Kdr4KCAsydOxd+fn5MPgxEqnNVVlYGoOqcLV++HMOGDYOnpyeaN2+O999/H/3790deXh42bNggzcCtkJTvg6+99hrefvttTJo0CX/++Se++uor7Nq1CytWrEBubi5mzJihvu2LTIf5BZG0TJn7b9q0CXv27MEHH3wAe3t79eMBAQFYsmQJZDIZtm3bxtYLZsaQn0HMcb9Uf6Y8d0uXLsXevXvxxRdfwM3NTf24t7c3Pv74Yzg7OyMmJgbp6emS7pfqz1T1DrF/z5RKJfPNOrCga2QuLi4AqladrY0qqdJ2+5Pqudq2o3qct1DpT6pzdb+kpCSMHTsWKSkpCA8Px/fff6/1WzESR6rz9d577+H27dtYvHgx3N3dpR0kAZDuXKl+b4KCgmpc+Gns2LEAgGPHjuk9Vmsn1bk6cuQIfv31V0RGRmL69OkaCdygQYMwefJkKBQK9Yq3ZDrML4ikZcrc38nJCUFBQTUuVNS2bVs0adIECoUCycnJdRwFGZOhPoOY636p/kx57uzt7REYGFjj51k/Pz+0a9cOwL+9dsl8mKreocvfMzHFZmvGHrpG5uLiAhcXFxQWFqK0tLTG26bq6pEFQN2/pLa+IllZWQBq70tCdZPqXN3r77//xqxZs1BUVITevXtj+fLl6jdSqh8pztc///yDPXv2wNPTE9u3b8f27dvVz6m+VT59+jRee+01BAYG4qWXXjLAkTR8Uv1ueXl5AQD8/f1rfF71eG5ubn2HbLWkOleqonrv3r1rfL5v37745ptv1LftkekwvyCSljnn/o0aNcKtW7e0fpgn4zPEZxBz3i/VnzmfO9VaJLx93vyYqt7BXFM6nKFrZDKZTL2C4OXLl6s9n5eXh+zsbHh4eGhtOq3aRm23p6q+aQ8ODq7vkK2WVOdKZffu3Zg2bRqKioowcuRIfPPNNyzmSkiK86Xq55OXl4fdu3dr/Hf69GkAVYXd3bt34+jRowY6koZPqt+tkJAQAKh11VVVMuDj41PfIVstqc5VQUEBANQ4SwyAeoXb8vLy+g6Z6qmu/EL1OPMLInFMlftnZGRg3rx5eP3112vdZlpaGgBwcSszI/VnEHPfL9Wfqc6dQqHA/PnzMWPGjFq/GFK9zzRp0kSy/ZI0TFXvCAwMhFwux5UrV2ps5cBcUzwWdE2gT58+AIDo6Ohqz0VHR0MQBPTt21frNrp27QpnZ2fExcWpFwZSqaysRExMDGQymXpfpB8pzhUA7N+/H2+88QYqKiowc+ZMLFq0SF3AIOnU93xFRkYiMTGxxv8WL14MABg2bBgSExPZl7WepPjd6tGjBxwcHHDp0qUak5BDhw4BqHq/JP1Jca4CAwMBAAcPHqzx+b///hsAuDikGWjdujUCAgKQnJyM69evV3v+zz//BFC1+AkRiWOK3N/V1RW7du3Crl27arz74cCBA8jLy0PLli0REBCg76GRgUj1GcRS9kv1Z4pz5+DggAMHDiA6OhpHjhyp9nxCQgISEhLg5uaGTp06SbpvkoYp6h1OTk7o1q0bCgsLa1wUmbmmeCzomsDIkSPh5OSEdevW4dSpU+rHr1y5gs8//xwAMHXqVPXjmZmZuHz5ssZK7U5OTnjqqadw9+5dLFiwQL04kCAI+OSTT5Ceno6oqCi0atXKOAfVQElxrrKzszF37lxUVlbipZdewssvv2y08VsbKc4XGYcU58rV1RVPP/00BEHA66+/jjt37qifO3LkCDZs2ABHR0eMHj3a8AfUgElxroYOHQoXFxccP34ca9as0Vjg4MiRI1i9ejVkMhkmTJhg+AMitZycHFy+fBk3b97UeHz8+PEQBAHz5s1DUVGR+vH169fj5MmTaNeuHXr27Gns4RJZLFPk/i4uLhg2bBgA4O2330ZOTo56W9euXcP7778PAJgxY4ZhDprqxVQ5ra77JfNhqmtmzJgxAIAPP/xQPRsXqPoM/NZbb6GyshJTpkyp8XZ+Mj1T1TtUOf8HH3ygvqsSAP744w/s2bMHjRs3xhNPPFHfw2vwZAKXjTOJbdu2Yf78+ZDL5YiMjIS9vT1iY2OhUCjw6quvYtq0aerYN998Ezt27MDw4cOxZMkS9eNFRUUYO3YskpKS0KxZM4SFhSE5ORlXrlxBs2bN8NNPP7G/kQTqe64++eQTfPvtt7C1tcWQIUNqbezdpUsXjBs3zijH1JBJ8btVk+3bt2Pu3LkYNmwYli5daujDsApSnKvi4mJMmzYNJ06cgLOzMyIjI5GXl4ezZ89CJpPh/fffx8iRI01xeA2KFOcqJiYG//nPf6BQKNC8eXOEhobixo0buHDhAmQyGd58801MmjTJBEfXsKnOx8KFCzFq1CiN51asWIEvv/wS3bt317jroKKiAlOmTMGxY8fg4+ODrl27Ij09HRcuXICHhwc2b96MNm3aGPtQiCyaKXL//Px8TJgwAYmJiXBzc0OXLl1QWVmJuLg4lJWVYdKkSZg7d65RXwcSzxA5bXp6OgYOHAg/Pz/1nUz12S+ZF1NcM2VlZXjhhRdw9OhRODo6IiIiAvb29jh+/DiKi4sxePBgfPbZZ7W23SLTM1W9Y86cOfjll1/g6uqKHj16IDc3F6dOnYKdnR2+/fbbGhe9Jk2859tERo0ahSZNmmD16tU4c+YMbGxs0K5dO0yePBmDBg0StQ1XV1ds2rQJX3/9NX7//XfExMTAz88P48aNw/Tp09lEWiL1PVeqP3wVFRXYs2eP1lgWdOtPit8tMg4pzpWzszPWrl2LTZs2YefOnYiNjYWjoyN69+6NadOmoVu3bgY+Cusgxbnq378/tm/fjjVr1iA2NhYxMTFwcXFB//798dxzzzFpMyO2trZYvXo1vv32W+zatQsxMTHw8fHB448/jpkzZ6J58+amHiKRxTFF7u/h4YGffvoJ33//Pfbu3YvY2Fg4ODigU6dOmDhxIh5++GFDHCpJxFQ5LXNpy2WKc2dvb481a9Zg48aN+OWXXxAfHw+5XI6goCCMGjUKI0eOrLXAR+bBVPWOJUuWoEOHDti6dSsOHz4Md3d3DBgwADNnzkTbtm3rd1BWgjN0iYiIiIiIiIiIiCwEe+gSERERERERERERWQgWdImIiIiIiIiIiIgsBAu6RERERERERERERBaCBV0iIiIiIiIiIiIiC8GCLhEREREREREREZGFYEGXiIiIiIiIiIiIyEKwoEtERERERERERERkIVjQJSIiIiIiIiIiIrIQLOgSERERERERERmYIAimHgIRNRAs6BIRmcibb76JkJAQbNu2zdRDISIiIiKSxI0bN/Diiy+ia9eu6NixI8aOHWvqIeHo0aMICQnBhAkTTLL/q1evYurUqbh+/bpJ9k9EDY+tqQdARERERERERA3DnDlzcPLkSTRr1gzh4eFo1aqVqYdkclOnTkV6erqph0FEDQgLukREREREREQkibNnzwIAfvjhB/j7+5t4NOaBrRaISGpsuUBEREREREREkigvLwcANGnSxMQjISJquFjQJSIyI/n5+VixYgVGjBiBiIgIhIWFoXfv3pg1axbOnTunjsvOzkb79u3RoUMHFBYW1ritRx55BKGhoRq3dxUUFOCzzz7DkCFDEB4ejsjISLzwwgs4efJktZ9X9fiNi4vDzJkz0aFDB/To0QPr1q2T/LiJiIiIyLJNmDABISEh6n+3b98eISEhGrnotWvX8Oabb6Jv374ICwtD3759MW/ePNy4caPGbSoUCqxZswaPP/44OnbsiIiICEycOBH79++vMb6srAyrV6/Go48+io4dOyIqKgqrV69GZWWlTscSEhKCJ554AnFxceq8edCgQbh27RoA8Tn78ePHERISoj6+QYMGVXtNdD1GIiKALReIiMzGnTt3MGbMGFy/fh3+/v7o0aMHysvLceHCBfz+++/Yv38/fvzxR4SHh6NRo0Z46KGH8Ndff2Hfvn0YNWqUxrbOnj2LK1euoEePHupb3W7fvo2JEyciNTUVTZo0QZ8+fVBQUIBDhw7h0KFDeP/996ttBwDmz5+PnJwc9OnTBykpKRqJOhERERERAPTs2RN+fn7YvXs3AGDo0KGQyWRwdnYGAMTGxmL69OkoLi5GcHAwOnXqhKtXr+Lnn39GdHQ0vvvuO4SFham3V1RUhOeeew7nzp2Dt7c3evTogbKyMpw4cQLHjx/Hyy+/jJkzZ6rjy8vL8fzzz/9fe/cd31S9/w/8lXQvOqAFgUJL6QBaNlSBIqMsFQXEwRBwoQJyvwKCqHBFUfBeHFdFUBwoIEMvcAFRBArILhSQ2cFoKauDDrpX8vujv0RCk/YkOUnOSV7Px+M+riSfnPM5/eQkn7zP+7w/OHLkCPz8/NC3b1/k5eXh448/RlhYmNHHc/v2bbzyyito3rw5+vTpg2vXrqF169ZGz9mHDx+O3bt3o7S0FAMHDoSnp6f2b2LsMRIRaTCgS0QkEcuWLcPVq1cxfvx4vP3221AoFABqr9q/9tpr2L17N9avX4+YmBgAwOOPP47du3dj8+bNdQKxmzZtAgCMGjVK+9jrr7+OjIwMPPfcc5gxYwZcXFwA1AZ/X3jhBSxYsABdunRB27ZtdbaVnZ2NLVu2IDg4mPW/iIiIiEivV155BQC0Ad0PP/wQzs61IYf8/Hz83//9HyoqKvDpp59i2LBh2tetX78e8+fPx//93/9h+/btcHV1BQAsXLgQp0+fxiOPPIL33ntPGwRNT0/Hc889hy+++ALdunVDr169AACrVq3CkSNH0KlTJ3zzzTdo1KgRAGDfvn2YOnWq0ceTk5OD/v37Y9myZVAoFFCpVFAoFEbN2cPCwrBkyRIMGDAApaWlmDNnDlq3bq3dh7HHSESkwZILREQS4evri7i4OEyfPl07MQQANzc3bWD27tuzHnzwQQQGBiIpKQmZmZnaxysrK7F9+3Z4e3tj8ODBAGqDtomJiYiKisLrr7+uDeYCQKdOnTBlyhRUVVXhxx9/rNOv/v37Izg4GACgUCh0+kZERERE1JCff/4ZBQUFGDt2rE4wFwCeeuop9O/fH5mZmdi5cycAICsrC1u2bEFgYKBOoBMAQkJC8MYbbwAAvv32W+3j69atAwC8++672mAuUDtnfvrpp03q97hx47RzX6WyNnxi7JzdEFOOkYhIgwFdIiKJePXVV/HNN9/A19dX+1hhYSGOHTuGAwcOAKgN1mo4Ozvjscceg1qtxv/+9z/t4wkJCSgsLMRDDz0EDw8PALX1uwCgR48e2sno3eLi4gAAiYmJdZ6LiooS4eiIiIiIyFFp5qKxsbF6n9fMRTXtjh8/jpqaGsTExOgEOjV69+4NpVKJpKQk1NTUICsrCxkZGQgKCtI7dx04cKBJ/da3LWPn7IYYe4xERHdjyQUiIgnJzMzETz/9hKSkJKSnp6OwsBAAtFf/7y158Pjjj+Obb77Bli1bMG3aNADA5s2bAeiWW7hx4waA2lvRVq1aZXD/t27dqvPY3ZNVIiIiIiJj3bx5EwC081VDNHNRzdw1ISGh3vUbysrKUFhYiKysLABA06ZN9bbTrClhLEPzYGPn7PoYe4wBAQHGdp+I7BgDukREErFt2zbMmTMH1dXVCA4OxgMPPIA2bdogOjoaarVab+2vNm3aoFu3bkhKSsKpU6fQqlUr7N+/H6GhoejSpYu2nUqlAgDExMQgJCTEYB/0lVPQl9FLRERERCSUJsO0f//+8Pb2NthOs5aDZu7atm1btGvXrsHtN1QSTFPL11j65sGmzNn1MfYYiYjuxoAuEZEElJSUYP78+VCr1Vi6dCni4+N1ntfUE9Pn8ccfR1JSEnbs2IE2bdqgurpaJzsXAAIDAwHU3rr12muviX8AREREREQGBAUFIT09HRMmTBC0wJdm7tquXTssWbKkwfbV1dUA/s56vVd2drYRvTXMnDn7vYw9RiKiuzHtiohIAtLS0lBSUoKIiIg6E0MA2npc+m7fGjZsGLy8vLB7927s3LkTTk5OeOyxx3Ta9OjRAwCwf/9+bTbA3Xbu3Ilhw4bhnXfeEeFoiIiIiIj+ppmL7tu3T+/z//rXvzBixAhs2LBBp/2xY8dQVlZWp/2ZM2cwePBgvPrqq1Cr1QgKCkLbtm1x+/ZtJCUl1Wm/d+9eUY7DnDn7vYw9RiKiuzGgS0QkAZqaWFeuXMHly5e1j6vVaqxdu1Y7ua2oqKjzWk9PTwwbNgwZGRnYv38/+vTpU6d+WGxsLNq1a4dz587hX//6l85CDRkZGVi4cCEuX76M0NBQSxweERERETmwp556Cp6enli9ejV+/fVXnecSEhLw448/Ijk5GTExMQCA4OBgDBw4ELdu3cJbb72F4uJibfvbt2/jrbfeQkZGBu677z5tuYVJkyYBAObNm6etqQvULj72/fffi3Icps7Z3dzcAABFRUXax0w5RiIiDZZcICKSgFatWmHAgAFISEjAiBEj0LNnT7i5ueH8+fO4ceMG2rZti4sXLyI3N1fv60ePHo1ffvkFKpWqTrkFoLau2CeffIKJEyfi+++/x6+//ooOHTqgvLwcx48fR1VVFYYMGYLx48db+lCJiIiIyME0bdoUH374IWbMmIEZM2Zg6dKlaNOmDW7evImzZ88CAN58802dWrLvvfceMjIy8Ouvv+LgwYOIiYmBQqHA8ePHUVpaiq5du+qUEhs9ejSOHDmCbdu2YejQoXjggQdQWlqKxMREdOzYESdPnjT7OEyds7du3RqXL1/GP/7xD3To0AGvv/46goODjT5GIiINZugSEUnEJ598gunTp6Nly5ZITEzEoUOH4Ofnh5kzZ2Ljxo2IiIhAdna2dtJ7t+joaLi5ucHPzw8DBgzQu/3Q0FBs3rwZzz//PDw9PXHw4EEkJycjOjoaixYtwscffwwnJydLHyYREREROaDBgwfjv//9Lx599FEUFRVh7969yM3NRf/+/fHjjz9i4sSJOu0bN26MDRs24B//+AeCgoJw7NgxnDp1CqGhoXjzzTfx/fffw8PDQ9teoVBgyZIlWLBgAVq3bo2DBw/i8uXLeO655/DBBx+IdhymzNnffPNN9OzZE7m5uTh06JA2u9fYYyQi0lCoWYyFiEj2du7ciWnTpuHZZ5/FG2+8YevuEBEREREREZGFMEOXiEimKioqoFarcevWLW127dixY23dLSIiIiIiIiKyINbQJSKSqc2bN2PhwoWoqqqCWq3GuHHj0KpVK1t3i4iIiIiIiIgsiAFdIiKZCg8Ph4eHB9zd3fHwww+z1AIRERERERGRA2ANXSIiIiIiIiIiIiKZYA1dIiIiIiIiIiIiIplgQJeIiIiIiIiIiIhIJhjQJSIiIiIiIiIiIpIJBnSJiIiIiIiIiIiIZIIBXSIiIiIiIiIiIiKZYECXiIiIiIiIiIiISCYY0CUiIiIiIiIiIiKSCQZ0iYiIiIiIiIiIiGSCAV0iIiIiIiIiIiIimWBAl4iIiIiIiIiIiEgmGNAlIiIiIiIiIiIikgkGdImIiIiIiIiIiIhkggFdIiIiIiIiIiIiIplgQJeIiIiIiIiIiIhIJhjQJSIiIiIiIiIiIpIJBnSJiIiIiIiIiIiIZIIBXSIiIiIiIiIiIiKZYECXiIiIiIiIiIiISCYY0CUiIiIiIiIiIiKSCQZ0iYiIiIiIiIiIiGSCAV0iIiIiIiIiIiIimWBAl4iIiIiIiIiIiEgmGNAlIiIiIiIiIiIikgkGdImIiIiIiIiIiIhkwtnWHSAiIl1qtRpHjhzBli1bcPbsWdy6dQsVFRUICAhAx44dMXjwYAwbNgxOTk627ioRERERkdXduHEDAwcOhEqlwoQJE/DWW2/ZuktERFalUKvValt3goiIal27dg2vvfYaTp8+DQAICwtD69at4eLigszMTFy4cAFqtRpRUVFYvnw57rvvPhv3mIiIiIjIur744gt8/vnncHNzg7u7O/7880+4u7vbultERFbDgC4RkURkZWXhiSeeQFZWFvr06YO5c+eibdu2Om2uXbuGhQsXYs+ePejQoQM2bNgAZ2febEFEREREjkGtVmPgwIHIz8/H448/jlWrVmHRokUYNWqUrbtGRGQ1rKFLRCQR77zzDrKysjBo0CB8/fXXdYK5ANCyZUssXboUHTp0wLlz5/DHH3/YoKdERERERLZx5MgRXL9+Hffffz+GDx8OAFi3bp2Ne0VEZF1M6yIikoCrV68iISEBnp6eePfdd+utj+vk5IT/+7//w65du9CsWTPt49XV1di0aRO2bduG5ORkFBcXw8vLC5GRkXj66afx8MMP62xnwIAByM/Px6FDh/DJJ59g+/btKC4uRkhICMaMGYMnn3wSCoXCYsdMRERERGSs//73vwCAoUOHolOnTggJCcFff/2FCxcuoF27djpt33jjDWzatAmrVq3CqlWrsG/fPnh6euLll1/GpEmTAADZ2dn46quvsGfPHmRnZ6NRo0aIjY3FK6+8goiIiDr7v3LlCr7//nscPXoUWVlZUKlUCAoKQlxcHF5++WU0bdrU4n8DIiJm6BIRScDWrVsBAP3790dAQECD7fv27Yt3330XXbt2BVB769mrr76Kt99+GxcuXEDHjh2120pMTMSMGTPw448/1tmOSqXCK6+8glWrVqFNmza4//77ceXKFcyfPx9z584V9yCJiIiIiMxQVFSEnTt3wsvLC4MHDwYAjBgxAgCwdu1ag6+bN28ejhw5gri4OPj6+iIyMhIAkJycjBEjRmD16tVwdnZGv3790KJFC2zfvh2jR4/Gvn37dLZz/PhxjBw5EuvXr4eXlxf69u2LLl26IDc3Fz/99BOefvppFBcXW+bgiYjuwgxdIiIJOHPmDAAgNjbWpNfv3LkTCQkJ6NixI1auXAkvLy/tc19//TU++ugjrF69GhMmTNB5XXl5OU6dOoWVK1dq952RkYEJEyZg06ZN6N+/P4YMGWLiURERERERiWfbtm0oLy/HE088AQ8PDwDAqFGj8Pnnn2Pr1q2YPXs2vL2967wuOzsbW7ZsQXBwMDTLCFVVVWH69Om4ffs25s6di4kTJ2rvTktISMD06dPx+uuv4/fff9cmXCxYsABlZWX49NNPMWzYMO32c3Jy8NRTT+H69etISEjAo48+auk/BRE5OGboEhFJwM2bNwHA4C1aH3zwAWbNmlXnfx988AGA2gnpgAEDMGvWLJ1gLgCMGTMGQO2Cavq8/PLLOoHk1q1b44033gAA/PTTT+YdGBERERGRSDZu3AgAOgugNW3aFH369EFpaSm2bNmi93X9+/dHcHAwAEChUEChUGDnzp3IyMhA//79MWnSJJ1SYwMGDMDTTz+NwsJC/PLLLwCAkpISREdH4/HHH9cJ5gJAYGAg4uPjARiecxMRiYkZukREEqBSqQBAmzFwr127duH69et1Hm/RogXefPNNPPzww3Vq5JaXl+Py5cs4efIkAKCmpgY1NTV16vPe+zqgdhLr7OyMpKQkVFdXw9mZXxdEREREZDtpaWk4ffo0QkNDtWXHNDTlEdatW4exY8fWeW1UVFSdx44cOQIAuP/++/XuLy4uDqtWrcLRo0cxefJkeHl5YdGiRXXaZWVl4cKFC0hOTgYAVFZWGn1sRETG4i90IiIJCAoKQmpqKnJzc/U+n5CQoPPvjIwMbd0wjeLiYqxfvx779+/HpUuXkJOTA7VarZNtcG/A2MnJSZutcDc3Nzf4+/sjJycHeXl5CAoKMvXQiIiIiIjMplkMrbi4GM8884zOc1VVVQCAlJQUnDhxok7A19fXt872NHfILVq0SG+gVuPWrVs6/z5x4gQ2bNiAc+fO4erVqygvLwcA7ZzbUIIGEZGYGNAlIpKAdu3a4cCBAzhx4gSeeOIJo1+flpaGiRMn4vbt2/D390fHjh3xyCOPIDIyErGxsejXr5/e1ymVhivvaCajzM4lIiIiIluqqqrSllPIyclBTk6Owbbr1q2rE9DVN+fV3CEXGxtbb/LC3QsWL1iwAD/99BOUSiWioqIwbNgwhIWFoVOnTjh48CCWL19u1HEREZmKv9KJiCTgsccew4oVK7Br1y7MnTsXjRo1Mur17777Lm7fvo0XXngBM2bM0CmrUFhYaPB1VVVVyMvL05moAkBZWRny8vLg7u4Of39/4w6GiIiIiEhE+/btw+3bt9G5c2esX79eb5szZ85g9OjR+P333/Hmm2/Cz8+v3m0GBgYCAIYPHy4ooSIxMRE//fQT7rvvPnzzzTdo27atzvN//PGHsIMhIhIBF0UjIpKA8PBwDB48GHfu3MFbb72lzRgw5Ny5czr/PnXqFIDaBc7urZF78OBB7X/r2+6+ffvqPJaQkACVSoXevXvrlGwgIiIiIrI2zcJkjzzyiME2MTExaNu2LSoqKrSLp9WnR48eAPTPhQHgxx9/xPDhw7F06VIAf8+3Bw8eXCeYW1NTo63Jy5ILRGQNDOgSEUnE+++/j1atWuGPP/7A+PHjcebMmTptMjMzMX/+fMycORPA37eAaf5/9+7dOu2PHTuG9957T/tvfYs0fPTRR7h8+bL235cvX8bixYsBABMnTjTzqIiIiIiITJeTk4P9+/fDyckJw4YNq7ftiBEjAADr169vMLD60EMPITAwEDt37sT333+v0/706dP47LPPkJqaisjISADQ3rV2+PBhlJWVaduWlZVh3rx5SEtLAwBUVFQYfYxERMZiyQUiIolo1KgRfv75Z8ybNw9//PEHRo8ejeDgYISGhsLNzQ2ZmZna1XPd3NwwduxYTJ8+HQDw7LPPYtGiRZgzZw7Wr1+PwMBAXL16FRcuXICfnx8CAwO19ca8vb119uvk5ITHHnsMDzzwANRqNY4cOYLKykpMmTIFsbGxVv87EBERERFpbN68GdXV1ejduzeaNGlSb9tHH30UH3/8MdLT07UZs4Z4eHjgs88+w+TJk7F48WKsXr0akZGRKCgowIkTJ6BWqzFx4kTEx8cDAIYNG4YvvvgCqampiI+PR+fOnVFZWYmTJ0+iqKgI4eHhSEtLM7jIMRGRmBjQJSKSED8/P3z++ec4ffo0tmzZguPHj+PMmTMoLi6Gv78/evfujV69emHUqFE6dW8nTZqEJk2aYOXKlUhNTcXZs2fRvHlzPPPMM3jxxRexYsUKrFq1Cnv27EFoaKjOPj///HP88ssv+OOPP1BZWYlOnTrh2WefxcCBA619+EREREREOjTlE+ort6DRtGlT9OrVCwcOHMDatWvh6elZb/uuXbti8+bNWLFiBfbv348///wTfn5+iI2NxTPPPKMN5gKAt7c3NmzYgP/85z84cuQI9u3bBy8vL7Rv3x5PP/007r//fu2+q6qq4OLiYt6BExHVQ6FmgRciIoc0YMAAXL9+HX/88Qdat25t6+4QERERERERkQCsoUtEREREREREREQkEwzoEhEREREREREREckEA7pEREREREREREREMsEaukREREREREREREQywQxdIiIiIiIiIiIiIplgQJeIiIiIiIiIiIhIJpxt3QG5U6vVUKlYtcJUSqWCfz8J4rhIE8dFmjgu0sWxkRalUgGFQmHrbpANWHO+zPNeHjhO8sGxkgeOk3xwrOTBluMkdM7MgK6ZVCo18vJKbN0NWXJ2VsLf3wt37pSiulpl6+7Q/8dxkSaOizRxXKSLYyM9AQFecHJiQNcRWWu+zPNeHjhO8sGxkgeOk3xwrOTB1uMkdM7MkgtEREREREREREREMsEMXSI7pVKpkZpZgIKSCvh5uSEi2A9KJTOjiIiIiIiIiIiEkGpshQFdIjuUlJKNn3alIb+oQvuYv48bxsaHo1tkkA17RkREREREREQkfVKOrbDkApGdSUrJxtJNZ3U+cAAgv6gCSzedRVJKto16RkREREREREQkfceSpR1bYUCXyI6oVGr8tCut3jZrd6VxVU0iIiIiIiIiIj1qVGqs2ZFSbxtbx1YY0CWyI6mZBXWuHt0rr6gCqZkF1ukQEREREREREZGMnL98G3kSj60woEtkRwpK6v/AMbYdEREREREREZEjybtTLqidLWMrDOgS2RE/LzdR2xEREREREREROZKARu6C2tkytsKALpEdiQj2g79P/R8oAT5uiAj2s06HiIiIiIiIiIhkpH2bxgiQeGyFAV0iO6JUKjA2PrzeNmPiw6FUKqzUIyIiIiIiIiIi+XBSKjBuSGS9bWwdW2FAl8jOdIsMwtSR0XUydQN83DB1ZDS6RQbZqGdERERERERERNLXI0rasRVnm+6diCyiW2QQuoQHIjWzAAUlFfDzqr0VgJm5REREREREREQNk3JshQFdIjulVCoQ1drf1t0gIiIiIiIiIpIlqcZWWHKBiIiIiIiIiIiISCYY0CUiIiIiIiIiIiKSCQZ0iYiIiIiIiIiIiGSCNXRJMJVKLclC0EREREREREREZHuMHVkHA7okSFJKNn7alYb8ogrtY/4+bhgbH45ukUE27BkREREREREREdkaY0fWw5IL1KCklGws3XRW54QEgPyiCizddBZJKdk26hkREREREREREdkaY0fWxQxdqpdKpcZPu9LqbbN2Vxq6hAcyhd5GeDsDkW2oVGpcSM9D1ZV8uCjUCGvuy3OPiIiIiIjslkqlRnJGPpIz8wE1ENXaH1Gt/AGAsSMrY0CX6pWaWVDn6sq98ooqkJpZgKjW/lbqFWnwdgYi2+C5R0REREREjiQpJRsrf0tGSXm19rFthzPg5e6MQd2DGTuyMpZcoHoVlNR/QhrbjsTD2xmIbIPnHhERERERORLNb6C7g7kaJeXV2HzgiqDtMHYkHgZ0qV5+Xm6itiNxCC2FoVKprdQjIsfAc4+IiIiIiByJSqXGmp2pomyLsSPxMKBL9YoI9oO/T/0nXIBPbd1Wsh5jSmEQkXh47hERERERkSNJzSxAQXGl2dth7EhcDOhSvZRKBcbGh9fbZkx8OItaWxlLYRDZBs89IiIiIiJyJGL9tmHsSFwM6FKDukUGYerI6DqZugE+bpg6MtruFgDSrNp45PwtJGfkS/LWaZbCILINnntERERERCQHYsU2jPltM6JPiMPEjmzN2dYdIHnoFhmELuGBtan2JRXw86pNlbe3qytyWbleUwqjvlu/eTsDkfh47hERERERkRSpVGptzCY7rwz7/rohSmwjItgPft6uDZZd8PdxwyO9QvFIr1C7jx1JAQO6JJhSqUBUa39bd8NiNKs23kuzcr2UrihpSmHo668Gb2cgEh/PPSIiIiIikoKGArj3MjW2oVQqMG5QRL2/gQBg7F2/g+w5diQVDOgSQfjK9V3CAyUTqNGUwrg3ozjAxw1jJJZRTERERERERETi0Hd3sVCmxDY08YeVvyWjpLxa5zlvDxdMHBrJGISVMaBLBONWrpfSlSZHKYVBJBUqlRorf0uut80Pv6dI6uIPERERERHZD0N3FwtlamxDE39IzshHcmY+oK7NxI1q5c/fPjbAgC4R5L1yvb2XwgB0byVh0JpsKflqfp0r0vcqLqtC8tV8tA8JsFKviIiIiIjI3uj7HQygwbuLhTA1tqFUKtA+NADtQ/lbx9YY0KUGOUIwjSvXS5dcFqojx5CckS+4HQO6REREREQklJBFzR7s1NykMgv3YmxD/iQd0E1MTMTy5ctx4cIFlJeXIzIyEhMmTMBDDz1k8ja3bt2KWbNmYfjw4ViyZImIvbVPjhJM48r10iSnherIQQi9lmVf17yISOI4ZyYiIpI3ITVx84sqsPnAFbP3xdiGfVDaugOGbNmyBRMmTEBiYiLat2+PHj164Ny5c3jttdfw2WefmbTNmzdv4t133xW5p/ZLE0y79wNFE0xLSsm2Uc/Ep1m5vj5SWrlepVIjOSMfR87fQnJGPlQqta27JDqhC9XZ47GTdEUFCytvIrQdEZG5OGcmIiKSjxqVGhfS83R+yxuKvViKlGIbZDpJZujm5uZi3rx58PDwwOrVq9GhQwcAwKVLlzBhwgR8+eWXGDhwoPZxIdRqNebMmYM7d+5Yqtt2RWgwzZ4W/tGs2njvVbEAHzeMkVBGsqNkTct1oTqyb1Gt/eHl7lxvHV1vd2e+J4nIKjhnJiIikq57y1eWVFZj3a403C4s17bx93FDZVWNVfojtdgGmUeSAd01a9agvLwckydP1pmAhoWFYcaMGXjzzTfxww8/4F//+pfgbX7//fc4evQoevTogWPHjlmi23bFUYNpmlUbpVoz2JFKEMh5oTqyX0qlApOGRdW7quzEYVGS+cwgIvvGOTMREZE0CSmhAMCiWbn+3q54sHNzBAV4Si62QeaTZEB33759AID4+Pg6z8XHx+Ott97C3r17BW8vJSUFn3zyCfr374/BgwdzciqAIwfTlEqFJIPUjpY1zYXqiIiI6sc5MxERkTToLmhWis0H0i26vxF9QrDvr5u6d+4ygOtQJBfQVavVuHjxIgAgPLxuTVNfX180adIEOTk5yMrKQtOmTevdXmVlJWbNmgUvLy8sXLgQf/75p0X6bW8YTJMeR8ua5kJ1JEWOdmGFiKSLc2YiIiJpEJqNK5YAHzc80isUj/QKlezdxWR5ggK6s2fPFm2HCoUCH374ocHnCwsLUVFRAS8vL3h6euptExQUhJycHOTm5jY4Of3444+RmpqKzz77DE2aNDGr74Y4O0t2bTmTtQ8NQICPG/LqC6Y1ckP70ACTPzCcnJQ6/0/1KyqrEtzOnPeklMZl/JBIfP7LaYPPjxsSCVdXJyv2yHakNC6O7EJ6nqALK5duFKJdSICVekX68JwhW+Cc2TBrzJd53ssDx0k+OFbywHGyHpVKjZSr+SgoroSftysiW/kjKTWn3nJslnD37+DosMZW3bcjkMs5JSigu2XLFigUCqjV5q8m39DktKysDADg4eFhsI2bW21WaGlpab37Onz4MFauXIlHH30UQ4YMMaG3DVMqFfD397LItm3tpVEdsegHw7favTSyIxo39jZ7P40aGR5r+lvwfb6C24nxnpTCuAx+IBTeXm74evMZncLxTfw88OJj0ejVsbkNe2cbUhgXR1ZxKU9YuxrY7XeD3PCcIWvinFk/a8+Xed7LA8dJPjhW8sBxEl9ltQq/HbyCm7dLUF5ZjRPJWcgvqtQ+H9DIDVXVKqv1x5F/B9uC1M8pwSUXOnfujCeffNKsna1fvx5//fVXvW2UytoIuELRcNanSmX4xLlz5w7mzp2Lpk2bYt68ecZ11AgqlRp37tQ/SZardsG+eHV0R6zZkaKTqRvQyA3jBkeiXbAv8vNLTN6+k5MSjRp54M6dMtTUWO9DUK6a+7sLyppu7u9uV+PSLtgXH03tXedKqFKpMOs45UZq4+KobuUUCW7nSO9PKeI5Iz2NGnlIPtNBDJwz69u/debLPO/lgeMkHxwreeA4iU+lUmPZ5jNIPJ+N+i7R5t0Rr8SCt4cLXJwUyC/+O2Ds7+OKfl1aolmAp8P+DrYFW59TQufMggO6wcHBGDlypFmdOnToUIOTUy+v2qv35eXlBttUVNSeNIZuLwOABQsW4NatW/juu+/QqFEjE3orXLUVr8hYW5e2TdCpTWO9dVnEOu6aGpVd/w3FNCY+vN7bOcYMDIdKpYZKZX5mkNTGJbyln/a/xTpGOZLauDgaTzdhX5uebs4cJ4ngOUPWxjmzftY8D3neywPHST44VvLAcRJHUko2vtl2HhVV1v1bThwaiS7hgfXWxHXk38G2IPVzStAv0x49eiAsLMzsnYWFhaF79+71tvHy8oKXlxeKiopQXl4Od3f3Om2ys7MB1NYF0+fMmTPYtm0b/Pz8sHHjRmzcuFH73LVr1wAAJ0+exKxZsxAWFoZXXnnF1EOyuLtXSrRVkWulUmEXi2zZg26RQZg6MrpOwfUAHzeMiQ9Ht0j95wQRiaPwrivmYrQjIvvCOTMREZF83BtvKSqrxLLN56zah3t/yzP2QkIJCuiuWrVKlJ29/PLLePnll+tto1AoEB4ejlOnTuHSpUvo0KGDzvMFBQXIzc2Fr6+vwcUdNHXCCgoKsHXrVr1trl27hmvXrqFnz56SnZzqWynR38cNYyUeuJNCENqedYsMavDKHRFZxtUsYSUXhLYjIvvCOTMREZH06ItRnEzLqRNvEVDFyCwBjdzw4ogYKFUq3L5Tzt/yZBbBJRfuVVFRgX379iEjI0N7O5c+CoUCU6dONWrbcXFxOHXqFHbt2lVncrpr1y6o1Wr07dvX4OtjY2ORkpKi97mNGzdi7ty5GD58OJYsWWJUv6wpKSVb7631+UUVWLrpLKaOjJZkUFeuQWi5YdY0kW3kFRm+tdmUdkRk/zhnJiIisi5NADe/qALn02/jZFouSitqtM97uTujpLy6zutEWNO0jhF9QhEU4AE/Lze0Dw1A48beyM8vkfSt/CQPJgV0r1+/jvHjx+PWrVv1tlOr1SZNTkePHo1vvvkGK1euRFxcHLp27QoAuHz5Mj799FMAwAsvvKBtn52djaKiIvj4+Bi8pUxOVCo1ftqVVm+btbvS0CU8UFJXcqwdhLanTGB7OhYiexbg6w5cvyOsHRE5PM6ZiYiIrEOlUuP8lTxsO3wFV24WoarGcHRWXzDXHN7uznBxcWqwLCJ/45OYTAroLlq0CDdv3kTr1q3Ru3dv+Pj4CFphV6hmzZrhrbfewrx58zB+/HjExsbC1dUVhw8fRkVFBWbOnImoqCht+48//hibNm3CyJEjsXjxYtH6YSuaK0n1ySuqQGpmgWSyNK0dhNaXCezl7oxB3VvikV6hsvqgZFYzkXz07nAfjp7PFtSOiIhzZiIiIstSqdTYdugKth3OQHU9QVxLmjgsimURyepMCuiePHkSzZs3x+bNm+Hh4SF2nwAATzzxBJo1a4avv/4ap06dgpOTE9q3b4/nnnsOgwcPtsg+paKgpP5grrHtxFJfFqk1g9CGMoFLyqux+UA6dh6/hknDomQRDJVraQ0NZhaTo4kI9hO1HRHZN86ZiYiIxKP5/ZlXXI7ikirk3inHgb9uoLzKNuULuKAZ2ZJJAd2Kigp069bNYhNTjbi4OMTFxTXYbvHixYKzDEaNGoVRo0aZ2zWL8vNyE7WdGBrKIrVWEFpIJnBJebVsgqFyLK2hwcxickQJJ68Jbjc0trWFe0NEUsc5MxERkTiOJWdj9Y4UFJVV2awPCgA9ooLQOaIJE5rI5kwK6Hbr1g0pKSnael8krohgP/j7uNWb8Rrg42a1DDAhWaTWCkILyQTWkHIwFJBnaQ0NuWcWazDDmIyVdq1QcLuhsRbuDBFJHufMRERExlGp1EjOyEdyZj6grs16PXMpFzuOCUusEINCobtAmpuLEt0jAzFxaDs4Oyut1g+i+pgU0J01axaefPJJLFiwAK+//jq8vLzE7pdDUyoVGBsfrjdgpjEmPtwqgSehWaSLX3rAKkFoYzJ8pRoM1ZBqaY2GyD2zWIMZxmQKdxcnUdsRkX3jnJmIiEi4pJRsrPwtWWfRsm2HM6zej5cfi4aPhwsTf0jSTArohoeH46233sLbb7+NzZs3o2XLlvD19dXbVqFQYPXq1WZ10hF1iwzC1JHRdQJO+lZKtCShWaQXrxdaJQhtbIav1IKhd5NiaQ0h5JxZrGEvGcZkffd3aIbD57MEtSMi4pyZiIhIGEO/0SzJy91ZJ3hs7XgLkTlMCugePHgQ77zzDgCgvLwcFy9eNNiWt5eZrltkkM1XSjQmi/T+9s0sHoQWUo7iblILht5NaqU1hJJrZrGGvWQYk20IfUfwnUNEAOfMREREQqhUaqzZmWq1/Xm7O2PisCibx1uIzGFSQPezzz5DdXU14uPj8fDDDyMgIICTUAtRKhU2zXI0NovU0kFoIeUoNKQYDL2blEprGEOumcUa9pBhTLaTer1AcLvosMaW7QwRSR7nzERERA1LzSxAQXGlxffj5e6MQd2D8UivEO3vbP7mI7kyKaCbmpqKqKgofPHFF2L3hyTGlCxSSwehNeUo7q2tcy8pBkPvJZXSGsaQa2axhtwzjMnG1A03MaodEdk1zpmJiMhRGbMAtSV/e0UF+6FP5/sQ4O3ODFyyKyYFdD08PBAcHCx2X0iCpJpFqskE3nYoHTuPZ1q07o0xX0SmvEYKpTWMIdX3hFByzzAm24pq7S9oYQZe6ScigHNmIiJyDCqVGslX85GckQ8oACeFAn+evil4AWoxf3u5OivRItALPaKCEN8tGM7OStG2TSQlJgV04+LisH//fpSXl8Pd3V3sPpHESDWLVKlU4NE+oXikV4jFgqFJKdl1jru+LyJTX2Pr0hrGkup7Qgi5ZxiTbUW18oebixIVVSqDbdxdnRDVSj7nMxFZDufMRERkj1QqNZIz8nEhIx9p1wpw5VYRqqoNz4+B+hegjgj2g5+3q8llF3w8XXB/+6boEh4o6eQoIjGZFNCdMWMGDh48iJdeeglvvPEG2rVrJ3a/SGKknEVqqWCooVU26/siMuU1cqAv41jK74n6yD3DmGzP2an+gK6zE7MAiKgW58xERGQPqqtV2JWUidTMQuQWlOFmXglq6o/fGqRvAWqlUoFxgyIErZWj4eHqhN4d70NXBnHJQZkU0P3ggw/QvHlzJCYmYtSoUXB1dYWPjw+cnetuTqFQYM+ePWZ3lGxPblmk5lCp1PhpV1q9be79IlKp1Fj5W3K9r/nh95Q6X15S11DGsRzfE3LOMCbbSs0sqLd2NwAUl1VxUT0iAsA5MxERyd+GhDT8npgp2vYMLUBd31o53h4ueGZIJHw8XGSVTERkSSYFdHfs2KHz74qKClRU6L99mSv5khylZhbUe0s+UPeLKPlqvqBAT/LVfLQPCRCtr5ZkrxnHgLSzzkm68u6Ui9qOiOwb58xERCQX1dUqJJy4huyCMgT5eWBA15bY+OclUYO5GoYWQdP8RkvOyEdyZj6grl2bIqqVP3+nEd3DpIDu7t27xe4HkaQIXWXz7nbJGfmCXpOcIY+ArilZynLjSFnnJI6UTGHneUpmPnrF3Gfh3hCR1HHOTEREcrAhIQ07jmVCrf77sXUJFy22v/oWQVMqFWgfGoD2odL/zUxkSyYFdFu0aCF2P4gkRegqmzrthMY0ZRL7TLmab3SWspjurdvbtoUvLl4vtKtsWn21iS19TLbYpz25dL1Q1HZEZN84ZyYiIilRqdQ4n56HQ2dvIbewDE183VFdo8LxlFyr9YELUBOJw6SALpG9iwj2g7+PW70BzXu/iKKC/bENGQ1uOypYHhmhQlcYFZrNbAx9dXsVCuhcMb67jq8cNVSb2F72aW+qa9QNNzKiHRERERGRNSSlZOObbed1Fve9eP2O1fvBBaiJxGFyQHf16tVYv349rl69ispKw4EfhUKB8+fPm7obIptQKhUYGx9e7yqb934RRbX2h5e7c711dL3dnWVzi7+ft6uwdgKzmYUyVLdXfU98TM51fG1Rm9ie6yFbk7enC7ILGq6P6+3pYoXeEJEccM5MRETWdu9deUVllVi2+ZxN+8QFqInEZVJAd+3atXj//fehvjfCooeQNkRSpFll896MRkNfREqlApOGRdUbBJ44LEo2VyMjW/kbnaVsLiF1e+8ltzq+tqhN7Aj1kK0lONAbl28UCWpHRMQ5MxERWZuhux2tzcvdGYO6t0RQgCdLvRFZgEkB3TVr1kCpVGLevHkYPHgwGjVqxJV5yS5pVtkUWnNUEwReszNVp2SBv7crxg6KMOtqpLVrn5qSpWyu1MyCBuv23suSdXwtQcgxin1MttinvbqvsZeo7YjIvnHOTERElqZSqXHmYi4ybxbiZm4xNh9Ir9PGWtcMXZwU6BjWGP27tERUa38GcIksyKSA7rVr13D//ffj6aefFrs/JBAXNrIepVJhVJDL2CCwELaqfWpslrK5TK3Ha4k6vpYitK9iHpMt9mmv+nVuIWjF336duRASEXHOTERE4rs7FpCdV4Z9f90wOilGLC5OCoTe1whtg33RvlUAg7hEVmRSQLdp06a8LcyGuLCR9BkbBK6PNWufqlRqXEjPQ9WVfLgo1Ahr7muRALUhptbjFbuOryUJ7auYx2SLfdqryzeFLRxx+eYdZjsTEefMRERkNpVKjeSMfCRn5uPW7VIkXy1AcVmV1fY/tGcwRvUNw66kTKRmFqKyqhqt7/NBh9aNGcAlsiGTArqjR4/GF198gUuXLiEsLEzsPlE9uLCRY7Fm7dOGLhRYIzgVEezXYN3ee4ldx9fShByj2Mdki33aK2Y7E5ExOGcmIiJTqVRqbDt0Bb8dvYqKKpXV969QAEN6BOPJAeEAgKGxrTE01urdICIDTAroPv/880hJScGYMWMwbtw4REZGwtfX12D7Bx54wOQO0t+4sJHjsVbtU6lcKBBSt/deYtfxtTRL1yY2VI7F2vWQ7RWznYnIGJwzExGREPfO4YvKqvDj78koKa+2aj96RzeFm6szgvw8MKBrSzg7K626fyISzqSAbkVFBSoqKnDnzh0sX7683rYKhQLnz583qXOkiwsbOR5rZANK7UKBobq9CoVuMX9L1fG1BkvVJm4oy9qa9ZDtVdsWvlAAqO8GasX/b0dExDkzERHVR5OFu/P4NasHb+/m7qLE84+0528CIhkxKaD70UcfYefOnVAoFGjTpg0CAgLE7hfp4ai3+jryAnDWyAaU4oUCfXV727bwxcXrhXbxPlCp1PByd8Hj/dqguKQKPp6u8Pcx75iEZllbqx6yvUq9VlBvMBeoDfamXitA+xB+NxI5Os6ZiYhIQ/O7Nq+4HMUlVcgtLMeBMzdRXlljtT68MiIaHq5OOHT2FnILy9DE1x29OtyH9qEB/E1AJDMmBXR37NgBb29v/Pjjj2jfvr3YfSIDHPFWX0dfAM4atU+leqFA38JyUs48F3rhob73tDllFozJspby31HqkjPyBbdjQJeIOGcmInJsmgXN9py6jnNX8qwavL3bvXflRbdpbJN+EJF4TAro3rlzB7169eLE1MocbWEjqdR1tSVr1D51xAsFYhN64cFS72kpZlnbK6GL1XNReyICOGcmInIkKpUayVfzkZyRDxXUKLhTjuOpuai0wYJmADCiTyiCAjx4Vx6RnTIpoNumTRsUFBSI3BVqiCMtbGRMxiEAu76F3NK1Tx3tQoHYhAZpLVmrWKpZ1vbIy0PY16bQdkRk3zhnJiKyb5q79E6kZmPfqRuoqrH9VX2ukUHkGEz6xTlhwgTMnTsXe/fuRb9+/UTuEtXHURY2EppxuO1QOvb9dcPuSzJYsvapI10oEJsxQVpLZtHaOsvakepc+3i6itqOiOwb58xERPZHk4m79+Q1nL2ch3IbZeBq+Pu4YlivUPh6uMDHw8Wu5+JE9DeTAroxMTHo168fpkyZgn79+qFTp07w9fWFs7P+zY0ePdqsTpIuR1jYSGgm4eYDV+o8Zq8lGSxZ+1TIhQJHCtoJZUyQ1pJZtLbMsna0OtcFDYy3se2IyL5xzkxEZF+OJWfh+18v2DyI6+HqhD4d70OX8EC0Dw1A48beyM8vQXW1bftFRNZjUkD3kUcegUKhgFqtRkJCAvbs2VNve05OxWfvCxuJkUlo6u3rjkpzoeDSjUJUqRVwUagR1twXSqXC4YJ2QhkTpLVkFq2tsqwdsc712Su3Bbd7uFeIZTtDRJLHOTMRkf3YkJCG3xMzbbZ/dxclots0Rr8uLRDVyl87t+fvXSLHZFJAd8SIEVAo+KFBliMk47AhXATKeEqlAu1CAuDv76W9wuuIQTuhjAnSWjqL1trlWCxZE1jKhH4mmfPZRUT2g3NmIiJ5MXRX4rHkbKsGc73dnfHM0Ej4eLjyDkki0sukgO7ixYvF7geRDiEZh0JwESjzOGrQTihjgrTWyKK1ZjkWS9YEljJ3NydR2xGRfeOcmYhIPgzdlfj0wLZYvSPVKn3wcnfGoO7BeKRXiEP+viIi4ZRCGi1atAhbt241e2dbtmzBokWLzN4OOQZNxqG/j24WZICPG0b0CRG0DUstAuUojAnaOSJNkLY+dwdp63tPTx0ZjS7hgUjOyMeR87eQnJEPlcr4VXI15Vjub98MUa39LTYRFHqx5GRajkX2bysdQhqL2o6I7AvnzERE0qZSqfXOtzV3Jd772ye/qALLNp9DUVmVxfrk4+GCQd1bYvaYLvjP9Dg82ieUwVwiapCgDN0ffvgBjz76KIYPH27Wzvbv349t27Zh7ty5Zm2HHIehjEMA2PfXTZssAuVILLmQl70wttSBoff0ybQcvL7skGzqFAu9WHLkXBaeGiB+/V5b6RAagN+OXhXUjogcD+fMRETScncJhey8Muz764aeDNxwrNtd/12JYnJ1VqJHVCDahzSGvw9LKRCRaQSXXMjNzcXhw4fN2llubq5ZryfHZGgBOFssAuVoLLmQlz0xttTBve9pIXWKYzs0s1j/TRER7AcfD5cGsxWKyqrsquxCVCt/eLk7o6S82mAbbw8XRLWyj+MlIuNxzkxEZHsqlRpbD17BjsSrKK9SGWxXm4FrXpk/IdxdndAhJAD9u+ouaEZEZCrBAd3Dhw+bPTlVq9VcGIJEY+1FoByRpRfysieGLjw0RGid4h7tmpraNYtQKhW4v0NT7Dx+rcG29pTBrVQqENfxvnoXxegT04yTdCIHxjkzEZFtJaVk45tt51FRTyDX0txdndA1ogk6MAuXiCxEUEC3R48elu4HkUmsuQiUI7LGQl6OTmid4pSr+ejV2NtKvRKmS3igoICuORnchlYathWVSo09J6/X22bvqRsY3a8tzwsiB8Q5MxGR9WjmiflFFSgqrYS3lwty88ux+cAVq/fFSQnc374Z2ocEMIBLRFYhKKC7atUqS/eDyGSmZkaaSmoBJktjJrRlCa5TXFxp4Z4YT0gGt78ZGdyGVhq2ZV3h8+l5DWZ7lFfW4Hx6HqLbcGE0IkfDOTMRkWVVV6uQcOIazl7Jw6XrhSirrLHKfgN83PDU/6+1e/fc1N3VCYN7BOPR3lzIjIisS3DJBSKSZoDJGszNhHa0ILgxBNcp9na1cE+MJySDu7KqBifTcow+P4TUFbbFOXfo7C3B7RjQJSIiIjKdSqXG2cu3seNYJkorqqGqUSEzp8QmfdEksnSL4N2hRCQNDOgSCSTVAJO1mJoJ7ahBcKGE1imOlOgiW90igzC0ZzB2JGZCref5kvJqo88PoXWFu4QHWn0CXS4wC0RoOyIiIiKqKyklG19tOYfqGn0zTPHVZuC2xbrdF+u9K9Had4cSERnCgC5JnhSyO6UcYJIyRw+CCyH3OsVJKdn1LhCmYcz5IbSucGpmgdUn1EIzpaWYUU1EREQkVZpSCtkFZaiorMbBs1lW3f/fGbhBNv/tSUQkBAO6ZDRrBlilkt1prQCTFILXYmEQXDi51ikWMsYaxpwfgusKC2wnppD7fIBTAtsRERERkQ6VSo3kjHxcyMjH7TtlUAPIyS/DlZtFeu/2sjRm4BKRXDGgS0axZoBVStmd1ggwSSV4LRYpZ1lKkbl1im1ByBjfTej5kZ1XJqid0PrDYsq4VSS8XScLd4aIiIhIJlQqNbYduoLfjl5tcIFZS+sZFYjOEYGymG8TERnCgC4JZs0Aq9SyOwUvXGVigElKwWuxSDnLUqrklhFg7NgJOT9UKjX2/XWjwXb+3q6ICPYzav9EREREZH1JKdlY+VsySsqrbdoPD1cnTHqoHXpEyet3FRGRPgzokiDWDrBKLbtT6MJVpgSYpBa8VqnUOHMxF5k3C+Hj4WLyVWtLB8HJ9owZO6Hnh9Cs3wc7NzfrfDC1vEljX3dB2xfajoiIiMgeaOZWecXlKC6pgo+nK/x93FBUVollm8/ZpE+P9W6NGjUANRDV2h9RrfyZjUtEdkOUgK5arYZa/XfFG5VKhYqKCuTm5mLPnj2YNGmSGLshG7J2gFVq2Z2WXLhKSsHrpJRsrN2VhjwRyj5YMghO0iBkjDWEnh9Cz+mgAM86jwkN0ppT3kQt8A5Boe2IyLFwzkxE9kZTSuGPY5koraip87zCBvFTqa9DQUQkBpMDuqtXr8aqVatw/fp11NTU/eC+mzmT08TERCxfvhwXLlxAeXk5IiMjMWHCBDz00EOCt3HlyhV8/fXXOHz4MHJzc+Hp6YmYmBhMmjQJcXFxJvfNkVg7wCrF7E5LLVwlleC12GUfLBkEJ2kQMsbe7s6YOCxK8HvH1HNfaJDW3Pf55Zt3BPVPaDsisn/WmDNzvkxEtiCklILawiudKQDEhDVG+9b+8PZyQYC3O+viEpFDMCmgu337dixcuLDBdk2aNMHQoUNN2QUAYMuWLZg9ezacnZ0RGxsLJycnHD58GK+99houXryI6dOnN7iNpKQkvPDCCygtLUVISAgefPBBZGVl4cCBAzhw4ABmz56N559/3uQ+OgprB1ilmt1piYWrpBC8tlTZB0sFwUk6DI2xl7szBnUPxiO9Qox6z5hy7gsN0orxPndzcRJ0HELbEZF9s8acmfNlIrIFQ/Mva2jR2BORrf0R5OeBAV1bwtlZaZN+EBHZkkkB3XXr1kGhUGDGjBkYM2YM/ve//+H999/Hnj174OHhgQMHDmDhwoWoqanB5MmTTepYbm4u5s2bBw8PD6xevRodOnQAAFy6dAkTJkzAl19+iYEDB2of16e6uhqzZ89GaWkpZs6ciRdffBGK/3/Px8GDB/HSSy9hyZIliIuLQ0REhEn9dBTWDrBKObtT7IWrpBC8tmTZB0sEwUlaxBxjY899Y4K0YrzP72/fFEfOZzVwFLXtiIgsPWfmfJmILEFTxqqorArB9/miub97necbmn+JpVtEE5RW1KC0ohqhzXzw9IBwuLrywjkRkUmXslJSUhAaGooXX3wR3t7e6Nq1K1QqFRITE9GoUSM89NBD+M9//oP8/Hx88803JnVszZo1KC8vx/jx43UmoWFhYZgxYwbUajV++OGHereRmJiIa9euISYmBpMnT9ZOTgGgd+/eeOqpp6BSqbB9+3aT+uhINEGW+ogdYNVk/vn76GamBvi4GX37v5TZ4m97L0uXfdAEwe9v3wxRrbkYgT0Sc4yNOfeNCdKK8T4XmgHCTBEiAiw/Z+Z8mYjElpSSjdeXHcK/1p7Ess1n8eayg5jx+QEkpWRr2whdxNYcCgUwtGcwpo7qiNfHdME/J/XAhKFRDOYSEf1/JmXolpSUIDY2VvvvNm3aQKFQ4MKFCxg+fDgAoEePHmjXrh3+/PNPvPnmm0bvY9++fQCA+Pj4Os/Fx8fjrbfewt69exvsZ0xMDPr27av3+ZCQEABAdna23udJly1un3eU7E5blyaQQtkHorsJPfeNCdKK8T6/U1opaBtC2xGRfbP0nJnzZSIylb7FZE+m5ei9SyrvnjJWllrbw9VZiYhgP0SHBrCUAhFRA0wK6Hp7e6Oi4u8PcTc3NwQGBuLy5cs67Vq1atXgJFIftVqNixcvAgDCw+tmLvr6+qJJkybIyclBVlYWmjbVf2vroEGDMGjQIIP7OX36NACgWbNmRvfRUdkiwCp2iQOpsmXwWgplH4juJeTcNyZIK8b7vJGnq6D9CW1HRPbNknNmzpeJyBgqlRrJV/ORnJGPm7dLkHK1AMV3LWbm5+2KqmpVvdvQlLEyJclDodBdIM3dRYngpt4IaOSOJo3c0S4kAFGteCcfEZFQJgV0o6KicOrUKZSXl8PdvbaeTlhYGE6fPg21Wq29VSsnJweursb/qC0sLERFRQW8vLzg6empt01QUBBycnKQm5trcIJan5SUFPz6669QKBQYPHiw0a+/myNeOYwOa2z2NpyclDr/T7XE+NuaYvyQSHz+y2mDz48bEmnSLU4qlRopV/NRUFwJP29XRIo0UbPUdqWK54t+7UMDEODjhrz6grSN3NA+NABKpcLs97mTwPeYk1LhkN8NUsJzhqTAknNmzpfr4nkvDxwn69HMl4+n5GDfqeuorDIcsC0obvjuoryiCly6USho/nWvqSNj4OPp4jBzd2viOSUfHCt5kMs4mRTQffjhh3HkyBFMmjQJM2fORI8ePdCnTx8cPnwYn3zyCSZPnozdu3fjxIkT6Nixo9HbLysrAwB4eHgYbOPmVntVsLS01Ojt3759G9OnT0dNTQ1GjRqFqKgoo7ehoVQq4O/vZfLrCWjUyPA4k/UMfiAU3l5u+HrzGdwuLNc+3sTPAy8+Fo1eHZsbvc1Dp2/U2V5jX3dMHhFj0vYsvV05cPTzpUalxvnLt5F3pxwBjdzRvk1jvDSqIxb9cMzga14a2RGNG3sDMP99XoU8Qf2sQt3vBn19FxogJtM5+jlDtmXJOTPny4bxvJcHjpPlVFarsPTnUzhw6joqG8i6NVaVWoHGjb0bnH9p+Hi6YtoTnex+ji4FPKfkg2MlD1IfJ5MCuqNGjUJCQgL27NmDlStXokePHnjqqafw7bffYsWKFVixYgUAQKFQYNKkSUZvX6lUal/fEJXKuC+orKwsPPfcc0hPT0d0dDTmz59vdP9096/GnTvGT5Kp9mpHo0YeuHOnDDU14k40yDTtgn3x6fQ4ZOaW4nrWHTTydNFePc/PLzFqW8eSs/VmQt4uLMeiH47h1dEd0SPK+NrAltqu1PF8qR37NTtSdLJBAnzcMG5IJF4d3bHuc43cMG5wJNoF++q8f9sF++Kjqb31Zng39D6/fuuOoL4eOnUdbkpot1tf38V4vzpaxroQPGekp1EjD8lnOojNknNmzpfr4nkvDxwncWnmAPlFFbhTUomz6Xk4ffG2xfbnolAjP78E7YJ99c6/NLw8nDGkRzAe7dPGpN8SJBzPKfngWMmDrcdJ6JzZpICuk5MTli1bhp07d6KqqgpAbY2wH374Ae+++y7++usvBAQEYNKkSXjooYeM3r6XV+0V/PLycoNtNPXIDN1ipk9qaipefvllXL9+HTExMfj222/rzWoQqlrkq56OpqZGxb+hhDg7KxHTtglaNvZAdbUKKpUaKpW64RfeRaVSY/WOlHrbrNmRgk5tGhsVdLLUduXEUc+XpJRsg4t0fP7LaUwdGY1/vdJLbw1qQ3+vsOa+SM0swO075Th/JU9Qzer0m8ICukfOZ+HI+Sz4+7ghtl0Qfk/MrLfv5ix8mJSSXWdBRX8fN4y1woKKcuCo5wxJgyXnzJwvG8bzXh44TuZLPJ+FH3Yko6yixir7C/BxQ1hzX+24dWnbBJ3aNEZqZgHyistRXFIFH09X+Pv8PQ8z5bcEmYbnlHxwrORB6uNkUkBX494FFMLDw7Fq1SqzOgTUTlC9vLxQVFSkU3PsbpqVdoOChP1YPXjwIKZPn47i4mL06dMHn332mXYiTETiSs0sqHfhKaA2mJWaWWDUgneW2i5Jm0qlxk+70upto1mkQ+i4mxoErain9pw++UUVeoO5d9P03ZSLEIYC3fn3rEZNRLZliTkz58tEjkelUmsvXu8+fg2Xbgi70CyWMfHhdeYrjrKANRGR1Jh931tVVRVOnz6NHTt2ICkpCQBw48YNs7apUCi0q/VeunSpzvMFBQXIzc2Fr6+voAUetm7dismTJ6O4uBijR4/GV199xckpkQUVlAhbIEFoO0tvl6TNmEC+EJog6L3b1ARBk1KyDb7Wz9v4hT4bYkzf7yY00M2sGCJpEHvOzPkykWNQqdRIzsjH2l2peO3zA/jX2pP4est5iwVzvd2d4e/jpvNYQCM3XiQmIpIYkzN0q6ursXTpUqxZswZFRUUAgOHDh6Nbt26YPXs2ysrK8Mknn6BVq1YmbT8uLg6nTp3Crl270KFDB53ndu3aBbVajb59+za4nYSEBMyZMwc1NTV49dVXMW3aNJP6Q8LdfeX47tueyXH4ebk13MiIdpbeLkmbmIF8Y7J99X1uhTZvhL2nzLtoqY8pFyGYsU4kD5acM3O+TGSfNL+nTqbl4Mi5LBSVVVlt3xOHRaFLeCBSMwtQVFaF4Pt80dzfnReIiYgkxqSAbnV1NV566SUcOnQIzs7OiI6OxpkzZ7TP37lzB6mpqRg7diw2b96MJk2aGL2P0aNH45tvvsHKlSsRFxeHrl27AgAuX76MTz/9FADwwgsvaNtnZ2ejqKgIPj4+2tvKcnNzMXfuXNTU1OCVV17h5NQKWMuRACAi2A/+Pm71BpsC/n9tLSlsl6RNzEC+uUHQEgv9oDLlIgQz1omkz9JzZs6XieTv3mSYorIqrNud1uB8RWwBPm4Yc9dvtqjW/nB2VsLf3wv5+SUM6BIRSYxJAd01a9bg4MGD6NOnDxYtWoTAwEBERUVpn9+wYQP++c9/4n//+x++++47zJ492+h9NGvWDG+99RbmzZuH8ePHIzY2Fq6urjh8+DAqKiowc+ZMnX1+/PHH2LRpE0aOHInFixcDAL7//nsUFBTA2dkZmZmZmDVrlt59de3aFWPHjjW6j6SLtRxJQ6lUYGx8uN73g4a+Gly22i5Jm5iBfHODoEVllYJebwxTL0IwY51I+iw9Z+Z8mUje9CXDWJOLsxL9OjdHl/BA3lVJRCQzJgV0N23aBD8/P/znP//RW1vL3d0dCxcuxOHDh/Hnn3+aFNAFgCeeeALNmjXD119/jVOnTsHJyQnt27fHc889h8GDBzf4+j///BNAbXbEtm3b6m3LCap5zL2NmexPt8ggTB0ZXWeSeu/Vf6lsl6RLzEC+uUHQgjviB3T7drrPpNcxY51I+qwxZ+Z8mUj6qqtVSDhxDdkFZQjy88CAri3x16Xceuc2luTuosSQnq0wvHcof5sREcmUSQHd9PR09OnTp96FElxcXNCxY0ccPHjQ5M4BtbXB4uLiGmy3ePFibaaBxtatW83aNwnHWo6kT7fIIG0NLjFrKltquyRdYgXyzQ2C+jcyLdt1aM9gHL2QrXe/mw+kY99fN40uTcOMdSLps9acmfNlImlSqdT4astZHEvO0Xl8/Z6LcHU2e31yozgpFejftQW6MhuXiMgumBTQdXZ2xp07Da+qqbl9i+wfazmSIUqlwiJBfEttl6RLjEC+uUFQbw8Xo/p8d8B5dL+22HYoHZsPXKnTztTSNMxYJ5I2zpmJHFdSSja++fUCKipr6jynVgMVVSqL7t/DzQnNAjzR1N8TvaKboX1IAIO4RER2xKSZY7t27XDmzBncvHkT992n/1bRzMxMnDlzBh07djSrgyQPrOVIZNi9i10wK8J0YgTyzQmCensJC+j263IfekY1qzPW+/66Ue/rTClNw4x1IuninJnIftU3vzO0tog1xLTxx7DYEM4FiIjsnEkB3TFjxmDGjBmYMmUKFi1apLPYAgCkpKRgzpw5qKysxOjRo0XpKEkbazkS6advsQt/Hzejb68ncZkaBC0uqRK0/SA/zzqBZzFK0xj68ciMdSJp4pyZyH6oVGokX83HhfR8pF7Lx5WbRaiuUWuf18zvuoQHNri2iFj8fdzQvrU/3FydtLV5na1cyoGIiGzDpIDuQw89hCNHjmDDhg0YOXIkfHx8oFAosH//fvTr1w9ZWVlQq9V4+OGH8dhjj4ndZ5Ig1nIkKbJ1Zqyh7AxTb68ncZkSBC0pqza5nbmlaXhxgEh+OGcmkj+VSo1th9Lx29GMesskaOZ3I/qENHgB1xw+Hi64v0NTdGEtXCIih2Zysa53330XnTt3xooVK3DlSm09wPz8fABA8+bNMXHiREyYMEGcXpIssJYjSYmtg18qlbrB7AxTbq8n21IIHCp97cwpTcOLA0TyxTkzkXwlpWRj5W/JKCkXdkEXAHYevyZ6PxjEJSKie5kU0C0uLoa3tzdGjRqFUaNGITc3Fzdu3IBKpUJgYCBatGghdj9JJljLkWzl7mzc7LxSbD6QXqeNNYNfYtxeT9IT1sLX5HamlqbhxQEi+eKcmUj6NKUUkjPyAQUQFeyPqNb+OJmWY1IdXGOCvwoAjbxcUHhXSacAHzc8NbAtfDxc+XuKiIgMMimgO3bsWAQGBuLbb78FADRp0gRNmjQRtWMkX6zlSNamLxu3PtYIfpl7ez1J08m0HMHtOrXV/V4UUpqmb6fmSEzO0vnxxosDRPLFOTORNGkSAU6m5WD/6Zsor6zRPrcNGfByN/lGVgCAl7uzoMDukJ7BGN2vLZNhiIjIaCZ9U6WnpxtcqZeIyJpMWUXYGsEvc26vJ+nKyCo2q52h0jTeHi5Qq9XYfOCK9jFNiZCqGsP1+u5m7MUBW9eYJnIEnDMTSc+x5Gys3pGCojLDC50ak2Wrz6DuwTrf6foM7RmMJweEAwAvyBIRkdFMCug2btwYhYWFYveFiMgoQm5FN8TSmbGm3l5P0ubp5mR2u3tL0zRUImREn1BB+zTm4oCta0wTOQrOmYmkQXMR8/fEDJy+lGfRffl4uOCRXiFoEehV57vWzcUJ3SMDMXFoFJydlRbtBxER2TeTArpz5szBrFmzsHDhQowfPx4hISEid4vIMpiRZl+E3IpuiKUzY4XcXj8mPpzvP5np0DoAFzIKBLWrj6Y0jUqlxuvLDtXbdt9fN+Dn7YqC4kqDbYy5OMAF1oish3NmIuu5d57ftoUvLl4vxMm0HBw5l1VvRq6Yxg+JgFKp4NoiRERkUSYFdLdt24ZmzZphzZo1WLNmDdzd3eHj4wOlsu5VRoVCgT179pjdUSJzMSPN/piaZWutzFhDt9cH+LhhDN93suTfyF3UdkIuSuQXVaBnVCASkw3X7+3ZLkjQD0QusEZkXZwzE1mHvnm+QgGo1dbtx9CewegR1VT7b64tQkRElmJSQHfXrl06/y4rK0NZWZnetgoFfxCS7TEjzT6ZmmVrzcxYZmfYF38fYe85oe2EXpQ4l55f7/MHz97CqL5hem/fvDtj6U5xJRdYI7IizpmJxFdZWYN1Cam4crMIXu7OCG3hi18PZdRpZ81groerEyY91A49ovh7goiIrMOkgO7u3bvF7geRxTAjzX4JqVN7N1tlxjI7w360beHbYMaPQlHbTgihFyUaWpylqLQKM5YexMShkTrvb30ZS0JYusY0kaPgnJlIHJqLk+sT0uosPHpeQCkkU3m5O8PFWam37JGzkwIdwxpjQNeWiGrlz98RRERkVSYFdFu0aCF2P4gsRsgtzcxIkychdWpH9AlFUICHpDNjLVXbmTWjxXfxemGDGT9qdW07IZ8nQi5KeLk7C1ptu7isSueOA0N3Jghh6RrTRI6Cc2Yi02jmMPlFFTiffhvHk7NRUW3l+gkAJg2L0t5plVdcjuKSKvh4usLfh/MqIiKyLZMCusY4f/482rdvb+ndEBkkNNOMGWnyJPc6tZaq7cya0ZaRd6dc1HZCLkoM6t4Smw+kC9oeUHvHQaewJg3emWCItWpME5EuzpmJasspfLHpNJKvFqC6xvoBXA1vd2dMHBalnTMx6YOIiKTG5IDuuXPnsH79ely7dg2VlZVQ35WypFKpUFFRgdu3byMnJwfnz58XpbNEphCaacaMNPmSa51aS9V2Zs1oy7l4vVBwu14x9wlq29BFiS7hgdj3103BZRPyiiqQcOKa0WUWNKxZY5rIEXDOTCTMZ7/8hVMXb9ts/2HNfdAuJABRwf6Ias0SCkREJG0mBXTPnDmDcePGoaqqSjspVSgUOhNUzb8jIiLE6SmRiYTc0syMNPmTW51aS9V2Zs1oy8ovEpZ5K7SdRkMXJRrK4r1XdoH+RZfqI5esdiI54ZyZSBhbBnN9PFwwfkgEekQ1tcn+iYiITGFSQHfFihWorKzEwIEDMWrUKOzfvx8bNmzA0qVLoVKpsH//fvz8889o27YtfvnlF7H7TGQUIbc0MyONrM1StZ1ZM9qyKiprRG13t/ouSmiyeH/8PQVFZVUNbivIz0PQPp8e0BaNvF1lk9VOJDecMxM1rLKyxurBXB9PF9zfvim6hAfy+4+IiGTJpIDuiRMn0KRJE3zyySdwdXWFr68v1q1bB4VCgfj4eMTHxyMqKgrvvvsuVq1aheeff17sfhMZRe51Vsn+WKq2M2tGW1ZpRcOLkxnTzhjdIoPQKawJZiw9iOJ6groBPm4Y0LUldhzLbPDOhPjuwfwRS2RBnDMTNWz9HtNqvjdEoYDOQqY+Hi64vwODuEREZB9MCugWFBSgT58+cHV1BQDtLWJnz55F//79AQBjxozBihUr8Ouvv3JySpIg1zqrZJ8sVduZNaMtSyHw40JoO2M5OysxcWhkg3ccODsrzb4zQbPCOD8viUzHOTM5ElO/N7LyjS8TZMiIPqEICvCAn5cb2rbwxcXrhfweIyIiu2RSQNfd3R0uLi7afzdq1Ai+vr64fPmyTrv27dvj8OHD5vWQSERyq7NK9stStZ1ZM9qyQu9rhIysEkHtLEXoHQfm3JmQlJJd53X+Pm4YyzsaiIzCOTM5CnO+N5r6e+B8er5Z+3dxVmLy8PZ19sV5PxER2SuTArqtW7dGcnKyzmMhISE4d+6czmMVFRWoqTG+jiARkb2zVG1n1oy2rKcHRGDvqZuC2lmS0DsOTLkzISklW+/7J7+oAks3ncXUkdEM6hIJxDkzOQJzvzee6h+OPSdvGL1fH08XBAd6YUjP1ugQGsC5DRERORSlKS/q168frl27hvfffx9FRUUAgK5duyIzMxMJCQkAgCtXriAxMREtW7YUr7dERHZEk0Hp76Nb/iDAx82soJmltisGlUqN5Ix8HDl/C8kZ+VCp1A2/SEJcXZ3QuW3jett0btsYrq5OFu+L5o6D+9s3Q1Rrf4M/ZIW2A2rH56dd9dcyXLsrTXbjRmQrnDOTPVCp1Dh/JQ8b/7yEjfsu4Xx6nvZ7QIzvDSHfrXfzcHXCKyOi8Z/pcZg1pitiwhozmEtERA7HpAzdiRMnYsuWLVi9ejUyMjLw9ddfY+zYsVi1ahWmT5+OiIgIXLlyBZWVlXj44YfF7jMRkd2wVG1nKdaMtofb+FUqNQb3aIX8ogpkZBXXeb5z28aYPrqTDXomjtTMgnrLdQBAXlEFUjMLeBsrkQCcM5PcqFRqJF/NR3JGPqAAlAoFdiddQ0n534t9bjucAS93Z0waFgUvdxdRvjemj+6Ez375C6cu3q7zXPPGHugSEQgFai9QRrWq/+IkERGRIzApoNuoUSOsX78eX375Jfz8/AAAwcHBWLx4MebPn4/z588DAAYMGMDFHYiIGmCp2s5SqhltD7fx6wtI383bXYneMfdZuVfiKiip/0e5xsm0HMm8tyyFi8KRGDhnJjnQBHH3nLiGUxdvo0bAXRgl5dVYuuksBnUXllku5Ptl+uhOqKyswfo9acjKL0NTfw881T/cKne9EBERyY1CrVaLet9kaWkp0tLSEBAQgODgYDE3LUk1NSrk5TW8QA7V5eyshL+/F/LzS1BdrbJ1d+j/47hIk5zHRaVS4/VlhxpcqO1fr/SSbMDMUEBaHzkEpw1JzsjHv9aebLCdj6cLPpnWR+94SSUQas45Yw/Z5FIUEOAFJyeTqn3ZJUeaM1trvizn70pruvtzOjuvFH8cy0RphWk1nH08XFBUVtVgu9ljumgvBHKc5INjJQ8cJ/ngWMmDrcdJ6JzZpAzd+nh6eqJTJ/nebkpEROKS+238QuoD3u3bbefRJTxQssHp+kQE+8HbwwXFDfw4Lyqt0jteYgRCbR0QtodscpIHzpnJ2lQqNbYduoKdx3VLKJijqKyqwe+NAJ/az3IiIiISj+gBXSIiorsJvY1faDtrExKQvlt5lQrnr+QhOkz4Ai9SoVQq8ECHpth5/FqDbe8dLzECobbOjBW6uI9cA/ZE5Fh0M3HLsPN4pmiB3Ls19L0xJj6cn5lEREQiY0CXiIgsys/LTdR21mZKoPnQ+VuyDOgCQJfwQEEB3bvHS4xAqBQyY+WeTU5Ejk2lUiM5Ix/Jmfm4dbsEFzIKLBLAvVeX8EBEBPvVuSAX4OOGMSxVQ0REZBEM6BIRkUVFBPvB38etwRq6Ur0d05RAc0WlabUIpcCU8TI3ECqVzFi5Z5Mby9blLYjIfJrz+ERqDv786wYqrVzrz9/n78+OLuGB/EwhIiKyEgZ0iYjIopRKBcbGh9e7qJiUb8cUEuC8V3gLXwv2yLJMGS9zA6FSyYyVeza5MWxd3oKIzKfvPLa2sXd9HyiVCt69QEREZCVcapiIiCyuW2QQpo6Mhr+PbiAswMdN8otMaQKcxmjW2NNCvbEOY8fL3ECoVDJjNcH7+piaTa65FfrI+VtIzsiHSqU2sZfm05S3uDcIpClvkZSSbaOeEVF97v4c2XLgst7z2Fq8PVwk//1NRERkz5ihS0REVtEtMki2t2NqApxfbzmHqpqGA3GJ57PROTzQCj2zHGPGy9yyGlLJjLVUNrmUsmGlUt6CiIxjy2xcN2clhsYGo0YNQA1EtfZHVCt/fkYQERHZEAO6RERkNXK+HbNbZBBaN7uKi9fvNNj29p0yK/TI8oSOl7mBUCnVWdYE78Va3EcKi73dTSrlLYhIOEOfI5bm4qzEsNhWeLR3KIO3REREEsOALhERkUCNfd0FBXQDfN2t0BtpMScQKrU6y2Jlk0sxG1Yq5S2ISBghnyPm8nJ3xsBuLVFTo8Ltogo09nFHuxBm4RIREUkZA7pEREQC9e5wH46eb7i+aO8O91mhN9JjTiBU7MxYc4mRTW7tbFjNavf1/e2lUt6CyFEJOU/vJuRzxFRe7s4Y1D0Yj/QKYeCWiIhIZhjQJSIiEqh9aADcXJSoqFIZbOPuokT70AAr9kpazAmEyrnOsj7WzIYVWqdXSuUtiByNKfW0xcyW9/d2xYOdmyMowFP2n69ERESOjgFdIiIigZRKBV54pH29pQGef6Q9fyCbQc51lu9lrWxYY+r0Sq28BZGjMLWetrmfD67OSjzYuTm6hAcygEtERGRHlLbuABERkZxoSgP4ernoPO7n5WL1Ba5I2jTZsPUxNxtWaJ1elUqt/bfmPXxv3wJ83PgeJrIAU85TDSGfI/q4uzjh0d4h+HLGgxgTH4Go1qyHS0REZE+YoUtERGQkTWmASzcKUaVWwEWhRlhzX/5YJh3WyIY1tU6vvZW3IJIyc+ppC/kcGdEnFIF+HigqrYS3lwsCvN15PhMREdk5BnSJiIhMoFQq0C4kAP7+XsjPL0F1teG6uuS4LL3Ymzl1eu2pvAWRlJlbT1tqi0YSERGR7TGgS0RERGRBlsyGtVadXiIynRjnKbPqiYiI6G4M6BIRERFZmKWyYTX1Neu7ndvcOr1EZB6xzlNm1RMREZEGF0UjIiIikilNfc36mFunl4jMw/OUiIiIxMaALhEREZGMaepr+vvo3q4d4OOGqSOjWV+TSAJ4nhIREZGYJF1yITExEcuXL8eFCxdQXl6OyMhITJgwAQ899JDgbRQXF2PFihXYsWMHbty4AT8/P/Tv3x/Tp09H48aNLdh7IiIiIutgfU3HxjmzPPA8JSIiIrFINqC7ZcsWzJ49G87OzoiNjYWTkxMOHz6M1157DRcvXsT06dMb3EZxcTEmTJiAc+fOoVWrVujXrx9SU1Oxbt067NmzBxs2bECzZs2scDRERERElsX6mo6Jc2Z54XlKREREYpBkQDc3Nxfz5s2Dh4cHVq9ejQ4dOgAALl26hAkTJuDLL7/EwIEDtY8b8vnnn+PcuXMYMWIE3n//fTg7O0OlUuHDDz/EypUrsWDBAixbtswah0RERHZGpVLjQnoeqq7kw0WhRlhzX2ZZEZFVcc78N34mExERkSORZA3dNWvWoLy8HOPHj9eZgIaFhWHGjBlQq9X44Ycf6t1GcXExNmzYAA8PD7z55ptwdq6NXSuVSsyePRvBwcFISEjA1atXLXosRERkf5JSsvH6skNYtPoElqxJwqLVJ/D6skNISsm2ddeIyIFwzlyLn8lERETkaCQZ0N23bx8AID4+vs5z8fHxUCgU2Lt3b73bSExMRGlpKbp37w5fX1+d55ycnNC/f38AaHA7REREd0tKycbSTWeRX1Sh83h+UQWWbjrLAAIRWQ3nzPxMJiIiIsckuYCuWq3GxYsXAQDh4eF1nvf19UWTJk1QWFiIrKwsg9upbxsA0LZtWwBAamqquV0mIiIHoVKp8dOutHrbrN2VBpVKbaUeEZGj4pyZn8lERETkuCRXQ7ewsBAVFRXw8vKCp6en3jZBQUHIyclBbm4umjZtqrdNdna2tq0+gYGBAGprj5nL2VlycXFZcHJS6vw/SQPHRZo4LtJwIT2vThbYvfKKKnDpRiHahQRYqVekD88ZsndymzNbYr7Mz2R54uezfHCs5IHjJB8cK3mQyzhJLqBbVlYGAPDw8DDYxs3NDQBQWlpqsI3mOXd3d73Pax6vbxtCKJUK+Pt7mbUNR9eokeGxJtvhuEgTx8W2qq7kC2un5neDVPCcIXslpzmzpebL/EyWN34+ywfHSh44TvLBsZIHqY+T5AK6SmVtBFyhaHhVWpVKZfA5JycnQdtRq827BUulUuPOHfOCwo7KyUmJRo08cOdOGWpqDI8lWRfHRZo4LtLgohD2neGiUCM/v8TCvaH68JyRnkaNPCSf6SAncpozW2q+zM9keeLns3xwrOSB4yQfHCt5sPU4CZ0zSy6g6+VVe/W8vLzcYJuKitpbqwzdXnb3c4a2o3m8vm0IVV3NE9EcNTUq/g0liOMiTRwX2wpr7gt/H7d6b/EN8HFDWHNfjpNE8JwheyW3ObMlzkN+JssbP5/lg2MlDxwn+eBYyYPUx0lyaRJeXl7w8vJCUVGRwYllQ7W+AGjrhBmq95WTkwPg77pgREREDVEqFRgbr3/hII0x8eFQKhvOmCMiMgfnzPxMJiIiIscluYCuQqHQrrJ76dKlOs8XFBQgNzcXvr6+Bhd3AP5eqVezcu+90tJqV8SNiIgwt8tERORAukUGYerIaPj7uOk8HuDjhqkjo9Et0nDghIhILJwz1+JnMhERETkiyZVcAIC4uDicOnUKu3btQocOHXSe27VrF9RqNfr27VvvNrp37w5PT08kJiaiqKgIPj4+2udqamqwZ88eKBQKxMXFWeQYiIjIfnWLDEKX8EBculGIKrUCLgo1wpr7MguMiKyKc+Za/EwmIiIiRyO5DF0AGD16NDw8PLBy5UqcOHFC+/jly5fx6aefAgBeeOEF7ePZ2dm4dOmS9rYyoHbF38cffxwlJSWYP38+KisrAdQu6PDvf/8b165dQ3x8PEJDQ61zUEREZFeUSgXahQTgwa4t0S4kgIEDIrI6zpn/xs9kIiIiciQKtTlL1lrQzz//jHnz5kGpVCI2Nhaurq44fPgwKioqMHPmTEyePFnb9o033sCmTZswcuRILF68WPt4cXExxowZg9TUVLRo0QLR0dFIS0vD5cuX0aJFC6xbt67emmJCqNVqqFSS/BPKgpOTkqs7ShDHRZo4LtLEcZEujo20KJUKKBQMsolNDnNma86Xed7LA8dJPjhW8sBxkg+OlTzYcpyEzpklWXIBAJ544gk0a9YMX3/9NU6dOgUnJye0b98ezz33HAYPHixoG97e3lizZg2WLVuGHTt2YM+ePWjatCnGjh2LKVOmiLK4g0KhgJMTf5yYw8lJkoniDo/jIk0cF2niuEgXx4bsnRzmzNaeL/O8lweOk3xwrOSB4yQfHCt5kPo4STZDl4iIiIiIiIiIiIh0STvcTERERERERERERERaDOgSERERERERERERyQQDukREREREREREREQywYAuERERERERERERkUwwoEtEREREREREREQkEwzoEhEREREREREREckEA7pEREREREREREREMsGALhEREREREREREZFMMKBLREREREREREREJBMM6BIRERERERERERHJBAO6RERERERERERERDLBgC4RERERERERERGRTDjbugMkT4mJiVi+fDkuXLiA8vJyREZGYsKECXjooYcEb6O4uBgrVqzAjh07cOPGDfj5+aF///6YPn06GjduXKf9ypUrsWjRIoPbe/HFFzFr1iyTjsdeiDEud1Or1Xj22Wdx+fJl/Pnnn1bbrz2yxdjs3LkT06ZNM7iNhx56CJ988olJ+7cXYozLlStX8PXXX+Pw4cPIzc2Fp6cnYmJiMGnSJMTFxdVpr1KpsHHjRvz0009IT0+Hi4sLunXrhilTpiA6OlrMw5MtW4zLwoULsWrVKoPbe+eddzBmzBiTjoeIzGOLeScZz1bzUDKOLb5jyTRijNXVq1exdOlSHDx4EAUFBQgMDERcXBxeeeUV3HfffRbsveOwxG/hrVu3YtasWRg+fDiWLFkiYm8dlxjj9OijjyIlJcXg89u3b0dYWJgY3RWEAV0y2pYtWzB79mw4OzsjNjYWTk5OOHz4MF577TVcvHgR06dPb3AbxcXFmDBhAs6dO4dWrVqhX79+SE1Nxbp167Bnzx5s2LABzZo103nNuXPnAAD9+vWDj49PnW22b99enAOUKTHG5V4ffvghDh8+jKZNm1p1v/bGVmOjOWd69uypt12XLl2M3q89EWNckpKS8MILL6C0tBQhISF48MEHkZWVhQMHDuDAgQOYPXs2nn/+eZ3XvPPOO1i/fj18fX3Rq1cv5ObmYvfu3fjzzz+xfPly9OnTx1KHLAu2Gpfz588DAIYNGwZn57rTo5CQEFGOj4iMY6t5JxnHVnMdMo6tvmPJeGKMVXp6Op588kkUFhaiTZs26Ny5M65cuYL169dj+/btWL16NaKioqxwNPbLEp99N2/exLvvvmuB3jouMcapsrISly5dgq+vL/r27au3jb44lUWpiYyQk5Oj7tixo7pz587qs2fPah+/ePGiulevXurIyEidxw354IMP1BEREerZs2erq6qq1Gq1Wl1TU6N9/OWXX67zmocfflgdGRmpLioqEu+A7IRY46JRWlqqnjNnjjoiIkIdERGhjouLs8p+7ZGtxkatVqsnT56sjoiIUKemppp1DPZIjHGpqqpSDxgwQB0REaH+6quv1CqVSvvcgQMH1B06dFBHRUWpU1JStI/v2rVLHRERoX7kkUfUeXl52sd///13dbt27dS9e/dWl5aWinik8mKrcVGpVOouXbqoY2NjxT8oIjKZLeedJJwt5zoknK2+Y8l4Yp1To0ePVkdERKg///xznbH6/PPP1REREerRo0dbpP+OwhK/hVUqlfqZZ57Rfv7NnDlT7G47HLHG6fTp0+qIiAj1q6++asnuGoU1dMkoa9asQXl5OcaPH48OHTpoHw8LC8OMGTOgVqvxww8/1LuN4uJibNiwAR4eHnjzzTe1mVBKpRKzZ89GcHAwEhIScPXqVe1rysvLcfnyZYSEhMDb29syBydjYoyLxq5duzBixAhs2rQJwcHBVtuvvbLV2AC1GboeHh5o06aNyf23V2KMS2JiIq5du4aYmBhMnjwZCoVC+1zv3r3x1FNPQaVSYfv27drHv/vuOwDA7Nmz4e/vr318yJAhGD58OHJycvDrr7+KdZiyY6txSU9PR0lJic4+icj2bDXvJOPYcq5DwtnqO5aMJ8ZYpaen4/Tp02jRogWmTp2qM1ZTpkyBp6cnTp8+jYKCAksdht2zxG/h77//HkePHkWPHj3E7q7DEmucNHfzSalEHgO6ZJR9+/YBAOLj4+s8Fx8fD4VCgb1799a7jcTERJSWlqJ79+7w9fXVec7JyQn9+/cHAJ3tpKSkoKamhj+2DRBjXADgzp07mDp1KjIzMzFhwgR89dVXVtmvPbPV2OTm5iInJwdRUVFwcnIyqe/2TIxxKSkpQUxMjMFbbjS36GdnZwMAioqKcOLECXh6euKBBx6o037QoEEA4NDnjC3GBQAuXLgAQFoTNCKy3byTjGOruQ4Zx1bfsWQ8McYqJCQEhw8fxnfffacTzAWAqqoqVFVVAQB/J5hB7N/CKSkp+OSTT9C/f3+MGjVKrG46PLHGSRPQlVJMijV0STC1Wo2LFy8CAMLDw+s87+vriyZNmiAnJwdZWVkG613Vtw0AaNu2LQAgNTVV+5imFqivry/mz5+PgwcPIjs7Gy1atMDw4cPxwgsvwM3NzfSDkzGxxgWozVZ55JFH8Morr6Bt27a4du2aVfZrr2w1NsDf50yzZs3w4YcfIiEhATdu3EBgYCCGDBmCl19+uc4PW0ch1rgMGjRIG4TV5/Tp0wCgrct46dIlqFQqtGnTRm+NVk0B/bs/+xyJrcYF+Pt8cXZ2xsyZM3H8+HHk5+cjNDQUo0ePxrhx46BU8ho4kTXZct5JwtlyrkPC2fI7lowj5jkVEBCAgIAAncfKysrw3nvvoaqqCvHx8dav+WknxP4tXFlZiVmzZsHLywsLFy7kQpAiEXOcNAHd7OxsTJo0CRcuXEBlZSViYmLw4osv2mRBSP46IcEKCwtRUVEBLy8veHp66m0TFBQEoDY70BDNFVtN23sFBgbW2Ybm5FmzZg127tyJyMhIxMTE4ObNm/jss88wYcIElJaWGn9QdkCscQEAb29vfPTRR9ofN9bar72y1dgAf58zv/32GzZs2IDQ0FB07doVhYWF+O677/Dkk08iJyfHiKOxH9Z476akpODXX3+FQqHA4MGDAfz92af5jLuXvs8+R2KrcQH+Pl+++OILJCUlISYmBpGRkbh06RIWLlyIadOmoaamxqR9EpFpbDnvJOFsOdch4Wz5HUvGsdRY7dq1C88//zz69u2L//73v+jfvz8WL14sSp8dkdjj9PHHHyM1NRULFixAkyZNRO2rIxNrnGpqarQXft944w3k5+ejR48eaN68OY4ePYoXXnhBW1rPmpihS4KVlZUBADw8PAy20WTJ1hdc1Tzn7u6u93nN43dvQ/Nj+/HHH8c777wDV1dXAEBmZiamTZuGU6dO4aOPPsK8efOEHo7dEGtc5LJfObHl30hzC/mDDz6Ijz76SHv1PS8vD6+99hqOHDmCefPmYfny5aLuVw4sPS63b9/G9OnTUVNTg1GjRmlXD9Zsy9B+NZ99mv45GluNC/D3d8yUKVMwbdo07e2HFy5cwJQpU7B792788MMPeO6554zeLxGZxpbzThKO80F5sOV3LBnHUmN1+PBhHDhwQGc/6enpiImJMbGnjk3McTp8+DBWrlyJRx99FEOGDBGvkyTaOF26dAnl5eVwc3PDp59+igEDBmif2759O15//XX8+9//Rvfu3dGxY0eRet8wZuiSYJrbTe+twaOPSqUy+Jzmh3JD21Gr1dr/XrNmDbZt24b33ntPG8wFgODgYCxevBgKhQI///wzKioqGuybvRFrXOSyXzmx5d9oyZIl2L59O/7zn//o3EoVEBCAf/3rX/D09MSePXsc8nZGS45LVlYWJkyYgPT0dERHR2P+/Pna54R+9qlUKp3PP0dhq3EBgN27d2Pbtm34xz/+oVNLrl27dnjrrbcAAKtXrzZqn0RkHlvOO0k4zgflwZbfsWQcS43Vyy+/jDNnzmDXrl2YNGkSjhw5ggkTJuDSpUsm99WRiTVOd+7cwdy5c9G0aVOHTE6zNLHGKSIiAgcPHsSvv/6qE8wFgIceegjjxo2DSqXC2rVrzeuwkRjQJcG8vLwAAOXl5QbbaAKqhtLZ737O0HY0j9+9DQ8PD4SHh+st2t6uXTs0a9YMFRUVSEtLa+Ao7I9Y4yKX/cqJLf9Grq6uCAsL03s1smnTpmjfvj2Av2uHOhJLjUtqairGjBmDixcvIiYmBt99953O39+Yzz4hkw57Y6txAWpv8zVUX/PBBx+Ek5MTrl+/jvz8fMH7JSLz2HLeScJxPigPtvyOJeNYaqwCAwPh6uqK4OBgzJ07F0899RRKS0uxYsUK8zrsoMQapwULFuDWrVtYtGgRGjVqJG4nSdTzqUmTJggODtb7nGaB1bNnz5rSTZOx5AIJ5uXlBS8vLxQVFaG8vFzvrWsN1SkDoC00bahGiaaup6E6k/o0adIEN2/erPdEtVdijYtc9isnUv4baWozOeLt/ZYYl4MHD2L69OkoLi5Gnz598Nlnn2knEBqW+OyzJ7Yal4a4uLjA19cXeXl5DvkdQ2QrUp530t+kPNehv0n1O5bqstY59dhjj2H9+vUOmdwhBjHG6cyZM9i2bRv8/PywceNGbNy4Ufuc5i7KkydPYtasWQgLC8Mrr7xigSOxb9Y6nzRzCGv/tmaGLgmmUCi0GUz6bs0oKChAbm4ufH19610dULMNzWqD99Jk2UZERACovY3nrbfewuuvv25wm5mZmQDQ4OqR9kiscZHLfuXEVn+jiooKzJs3D1OnTjUYgNKcM464CrHY47J161ZMnjwZxcXFGD16NL766iu9P2jCwsKgVCpx+fJlvbf0aD4TNZ99jsZW45KSkoK5c+di0aJFerdTUlKCvLw8uLi4oHHjxkYeFRGZylbzTjIO54PyYKvvWDKeWGN1/PhxzJs3Dz///LPe5zVlDKurq0XoteMRY5w0NVsLCgqwdetWnf+dPHkSQG1gd+vWrTh06JCFjsS+iXU+7dixAzNnzjR4PtnqtzUDumSUuLg4ALWrZN5r165dUKvV6Nu3b73b6N69Ozw9PZGYmIiioiKd52pqarBnzx4oFArtvry9vbFlyxZs2bJFu9DT3fbu3YuCggKEhIQYTIG3d2KMi5z2Kye2+Bu5ublh79692LVrl87iBxrJyclITk6Gj48POnfuLOq+5UKscUlISMCcOXNQXV2NV199Fe+//z6cnfXf/OLh4YEePXqgqKgIR48erfP8zp07AdTe4u+obDEubm5u2LhxI9asWYO8vLw6z2/evBkA0LNnT50a7kRkebaYd5LxOB+UB1t8x5JpxBirgoICbNiwAd9++63eRII///wTANChQwcReuyYzB2n2NhYpKSk6P2fJtFg+PDhSElJwapVqyxzEA5AjPOpsLAQ27Ztw5o1a/TW3N+0aRMAoE+fPiL0WDgGdMkoo0ePhoeHB1auXIkTJ05oH798+TI+/fRTAMALL7ygfTw7OxuXLl3SprEDtUGNxx9/HCUlJZg/fz4qKysB1C5G8e9//xvXrl1DfHw8QkNDAdSmyQ8fPhwA8Pbbb+v84E5PT8e7774LAJg6daplDloGxBgXa+zXEdlqbJ5++mkAwAcffKC9YgjU3nL65ptvoqamBs8//7zBVb/tnRjjkpubi7lz56KmpgavvPIKpk2b1uB+n3nmGQDAe++9p73NFwD++OMPbNu2DYGBgXjsscfMPTzZssW4hISE4P7770dVVRXeeOMNlJSUaJ87ffo0/vOf/0ChUGDKlCkiHSURCWWLeScZz1ZzHTKOreY+ZDwxxqpv375o0aIFrly5giVLlugEdRMSErB8+XI4OTnh2WeftfwB2Sl+9smDGOM0dOhQ+Pn54cKFC1i6dKlOUHfDhg3YsWMHGjdurP0Nbi0KNZd0JSP9/PPPmDdvHpRKJWJjY+Hq6orDhw+joqICM2fOxOTJk7Vt33jjDWzatAkjR47E4sWLtY8XFxdjzJgxSE1NRYsWLRAdHY20tDRcvnwZLVq0wLp163RqmBQWFuKZZ55BSkoKfHx80LVrV9TU1CAxMRGVlZWYNGkS5s6da9W/g9SIMS73unbtGgYOHIimTZtqr+Kas19HZYuxqaysxEsvvYRDhw7B3d0d3bp1g6urK44ePYrS0lIMGTIEn3zyid6FBh2FuePy73//G9988w2cnZ0xdOhQgwuZde3aFWPHjtX+e/bs2fjf//4Hb29v3H///cjPz8eJEyfg4uKCb775BrGxsZY9cImzxbhcv34d48aNw82bN9G4cWN06tQJxcXFSEpKgkqlwty5czFx4kTLHzwR1WGLeScZz1bzUDKOreY+ZDwxzqmTJ0/i+eefR0lJCVq1aoXIyEhkZmYiOTkZzs7OeOedd/DEE0/Y4vDshiU++wBg48aNmDt3LoYPH44lS5ZY+jDsnhjjtG/fPkybNg2VlZUICQlBZGQk0tPTkZKSAk9PT3zzzTfo1q2bVY+L90aQ0Z544gk0a9YMX3/9NU6dOgUnJye0b98ezz33HAYPHixoG97e3lizZg2WLVuGHTt2YM+ePWjatCnGjh2LKVOm1FmYwtfXF+vWrcN3332H7du34/Dhw3Bzc0Pnzp0xYcIEDBo0yBKHKitijIuc9isntvgbubq6YsWKFVi9ejX+97//ISkpCUqlEuHh4XjiiScwevRog5NwR2HuuGh+XFZXV2Pbtm31tr37R83ixYvRsWNHbNiwAfv370ejRo0wYMAAvPrqq2jXrp15B2UHbDEuLVq0wMaNG/HVV19h9+7d2L9/P7y8vBAXF4fnn38ePXv2NP/AiMgktph3kvE4H5QHW819yHhinFNdunTB//73P3z55Zc4cOAA9uzZA19fXwwdOhQvvPACYmJiLHwU9o+fffIgxjg9+OCD+O9//4vly5fj6NGjSEhIQEBAAB5//HG88sorNin/yQxdIiIiIiIiIiIiIplgDV0iIiIiIiIiIiIimWBAl4iIiIiIiIiIiEgmGNAlIiIiIiIiIiIikgkGdImIiIiIiIiIiIhkggFdIiIiIiIiIiIiIplgQJeIiIiIiIiIiIhIJhjQJSIiIiIiIiIiIpIJBnSJiIiIiIiIiIiIZIIBXSIiIiIiIiIiIiKZYECXiEjGjh49isjISJ3/3blzx9bdqkNfPzMyMmzdLSIiIiJyQM8884zOvPT999+3dZcMWr16NYYMGYKOHTuiT58+mDNnDvLz87Fx48Y68+vq6mpbd5eIrMTZ1h0gIiLzBQQEoHfv3gAAFxcXG/emriZNmmD48OEAgN27d6O0tNTGPSIiIiIiR/fAAw+gSZMmiI6OtnVX9Nq+fTvee+89TJkyBU899RROnjyJGTNmoKqqCmPHjtXOr7du3WrjnhKRtTGgS0RkB0JCQrBkyRJbd8OgsLAwbf8GDBjAgC4RERER2dzkyZPRq1cvW3fDoMjISCxZsgRDhw6Fi4sLBg8eDG9vb1y8eBHdu3dH9+7dATCgS+SIGNAlIiIiIiIiIpKYsLAwhIWFAQBUKhUWLVqEO3fu4Mknn7Rxz4jI1lhDl4jISCqVCmvXrsXIkSPRpUsX9OrVC2+//TZu376NQYMGITIyUqf94cOHMX36dPTt2xfR0dHo0qULHnvsMSxbtgyVlZU6bd944w1ERkbizJkzWLNmjbZeVnx8PD7++GMUFxcL6uO1a9cQGRmJ6dOn49atW5gzZw4eeOABdO7cGU8++SQOHDgAAEhLS8NLL72Ebt26oVevXpg6dSquXbumt0+pqanYtGkTRowYoa3h9d5776G0tBQ1NTVYsWIFBg8ejE6dOuHhhx/GTz/9BLVabcZfmoiIiIikpLCwEJ9//jlGjRqFbt26ITo6Gn369MH06dNx+vRpnbaa+eiUKVPw22+/oX///oiJicHw4cNRVFSkbbd9+3Y888wz6NatGzp16oTHHnsMK1euRFVVVZ39V1dX4+eff8bEiRMRGxuLDh06oGfPnnjmmWfw66+/mn18Ys17xZyLA0BeXh5efPFFrFq1Cj179sTUqVPNPlYikjdm6BIRGUGtVmPmzJnYvn07PD09ERsbi4qKCmzevBlHjx6tE3D9/vvvsXjxYri4uKBLly7o3Lkzbt26hdOnTyM5ORnnzp3DF198UWc/S5cuxZ49exAZGYl+/fohKSkJX331Ffbt24cff/wRvr6+gvp748YNPP7446ipqUG3bt2QmZmJv/76C5MnT8aCBQvwwQcfoEmTJnjggQdw9uxZ7Nq1C2fPnsXvv/8ODw8PnW19/PHH2LNnjzaInZiYiNWrVyMrKwtubm74448/0K1bN7Ro0QJHjhzBggULUF1djQkTJpj+ByciIiIiSbh9+zaefvppXL16FS1btsT999+PqqoqnDt3Djt27EBCQgLWrl2LmJgYndelpKRg37596NChA9q2bYvq6mr4+PgAAObPn4/169fD3d0dHTt2hI+PD5KSkrBo0SL8+eefWL58OVxdXQHUzsNfffVVJCQkwNfXF506dYKbmxsuXryIxMREJCYm4vbt26LMPcWa94oxF09NTcXLL7+M69evY9y4cZg7d64k18wgIutiQJeIyAgbN27E9u3bER4eju+++w5BQUEAgOTkZDz77LPIy8vTts3OzsZHH30EX19frFu3Dm3atNE+d/z4cUycOBE7d+7ErVu30KxZM5397NmzB7NmzcKLL74IACgpKcG0adNw6NAhfPbZZ5g3b56g/p45cwY9e/bE8uXL4eXlBbVajWnTpmHXrl14++238dRTT+Gf//wnnJycUFJSgpEjRyIjIwP79u3D0KFDdba1d+9efPnllxg4cCAA4Ny5c3j88cexc+dO+Pj4YOPGjQgPDwcArF27Fu+88w42bNjAgC4RERGRHVi2bBmuXr2K8ePH4+2334ZCoQAAVFRU4LXXXsPu3buxfv36OgHda9euYdy4cZg/fz6A2rvdgNp59fr16xEZGYkvv/wSLVu2BAAUFxfjH//4Bw4cOIClS5fitddeAwDs3LkTCQkJ6NixI1auXAkvLy/tPr7++mt89NFHWL16tShzT7HmvebOxa9evYpJkyahqKgIS5Ys0S6CRkTEkgtEREb44YcfAAALFy7UBnMBICoqCnPmzNFpm5ubi0GDBmHKlCk6wVwA6N69u3YSqO+2qt69e2uDuQDg5eWFxYsXw9nZGf/9739RUVEhuM9z5szRTngVCgUefvhhAICbmxtmz54NJycn7T569+4NALh69Wqd7fTr1087qQWADh06aI9r3Lhx2uMBgCFDhgAAMjIyBPeTiIiIiKTL19cXcXFxmD59ujaYC9TOKUeNGgVA/7wWAMaPH6/9b6WyNgyxYsUKAMCiRYu0wVwA8Pb2xqJFi+Di4oI1a9ZoS5RVVVVhwIABmDVrlk4wFwDGjBlT7/6NJea815y5+KJFi3D79m2oVCosWLBAuxAaA7tExAxdIiKBbt++jZSUFAQGBqJz5851nh88eDDefPNN1NTUAADat2+PTz75RKdNTU0NMjMzcebMGRQWFgKA3vpgmone3Zo2bYqOHTvixIkT+Ouvv9CzZ88G++zq6or27dvrPBYQEAAAaNmyJby9vXWea9SoEQDoDRh36tSpzmMBAQG4dOlSnbrBmtvo7q0RTERERETy9Oqrr9Z5rLCwEKmpqdqasPrmfu7u7ggNDdV5LCcnB5cvX4aPjw86dOhQ5zVBQUGIiorCmTNncP78eXTu3BkPP/xwnTlyeXk5Ll++jJMnTwKonWvX1NRog6SmEmvea+5c/J///CfeeuutOtt1dmYoh8jR8VOAiEigmzdvAgDuu+8+vc97enoiICAAOTk52sdqamrw+++/49dff0VaWhpu3LiB6upqANBmNuhbOKx169Z696HZd3Z2tqA++/j4aLMgNDT7FVqHV0Nfe822/Pz89D5ORERERPYjMzMTP/30E5KSkpCenq5NUKhvXuvj41NnbqiZVxcVFdUJkN7r5s2b2mSK4uJirF+/Hvv378elS5eQk5MDtVqts30xFuUVa95r7lz83rJsREQaDOgSEQmkCcRq6n7pc/cEsrS0FBMnTsTp06fh7u6O6Oho9O7dG+Hh4ejWrRsWLlyIY8eO6d2OoawCzfaFZh2IefWeiy8QEREROa5t27Zhzpw5qK6uRnBwMB544AG0adMG0dHRUKvVmDp1qt7X3RvQBKC9o83Pzw9xcXH17jcwMBAAkJaWhokTJ+L27dvw9/dHx44d8cgjjyAyMhKxsbHo16+feQd4F7HmvcykJSJL4acLEZFAmuxYTUbBvcrLy5Gfn6/993fffYfTp0/jgQcewGeffaa9hUrjzp07BveVlZWl9/EbN27o9IWIiIiIyNJKSkowf/58qNVqLF26FPHx8TrP79y506jtaYK0bm5uWLJkiaDXvPvuu7h9+zZeeOEFzJgxQyfBQZMpTETkKLgoGhGRQE2bNkVoaChu376Nv/76q87ze/fu1WYbANDW8ho/fnydYG5WVhYuXboEQH/G7759++o8duvWLZw5cwZ+fn51Vg8mIiIiIrKUtLQ0lJSUICIiok4wF4C2hq7QcgctW7ZE8+bNkZWVheTk5DrPl5WV4dFHH8W4ceO0C52dOnUKAPDyyy/XuVvt4MGD2v+u7246IiJ7wYAuEZERJk2aBAB4++23kZubq308IyMDixcv1mmrWfBgz549OpPbGzduYNq0adoSDvoWINu8ebNOpkNxcTFmz56NmpoaPPPMM2Yv9EBEREREJJRmXnvlyhVcvnxZ+7harcbatWuxYcMGAPrntYZMnDgRADB79mxcvXpV+3hlZSXeeecdpKSkoLS0FC1bttTpw+7du3W2c+zYMbz33ns6rycisncsuUBEZIQnn3wSe/fuxZ49ezB48GDExsaiuroaR48e1S5aoKm5NX78ePz222/45ZdfcOLECYSHhyMvLw8nT56EWq1GaGgorly5ohMY1ggKCsK0adPQtWtXBAYG4tixY8jLy0OvXr0wefJkqx4zERERETm2Vq1aYcCAAUhISMCIESPQs2dPuLm54fz587hx4wbatm2Lixcv6p3XGjJhwgT89ddf2L59Ox555BHExMTAz88Pp0+fRnZ2Nho3boyPP/5Y2/7ZZ5/FokWLMGfOHKxfvx6BgYG4evUqLly4AD8/PwQGBiInJwc5OTnw9va2xJ+BiEgymKFLRGQEpVKJzz//HK+//jqaNWuGAwcO4Ny5cxg5ciS+/fZbANBOIDt16oSffvoJcXFxuHPnDhISEpCRkYH4+HisW7cOM2bMAFCbwXuvKVOmYNasWcjOzsbevXvRpEkTzJ07FytWrICrq6v1DpiIiIiICMAnn3yC6dOno2XLlkhMTMShQ4fg5+eHmTNnYuPGjYiIiEB2djbOnj0raHtKpRIff/wxPvzwQ8TExCA5ORkHDhyAj48Pnn32WWzevBmhoaHa9pMmTcJHH32EmJgYpKamYs+ePSgrK8MzzzyDLVu2YOjQoQD0z62JiOyNQi20yA0RESE5ORn+/v5o2rRpnefOnz+PkSNHokuXLli3bp1J23/jjTewadMmLFy4EE888USD7Y8ePYoJEyaga9euWLt2rUn7tLYBAwbg+vXr+OOPP9C6dWtbd4eIiIiIHMwzzzyDxMREfP/99+jVq5etu2O2yMhIAMC5c+fg7MwbsYkcATN0iYiMsGDBAvTt2xd//PGHzuMlJSX48MMPAQCDBw+2RdeIiIiIiIiIyAHw0g0RkRGef/55nDp1Cq+++iqio6PRsmVLlJSU4OTJkyguLkbv3r0xYcIEq/crPT0ds2bNAgC899578PDwsHof6nPp0iUsW7YMAJCfn2/j3hARERERAV9//TU2btyIuLg4PPbYY7bujlGOHz9u8l2BRCR/DOgSERkhPj4e69evx48//oiTJ08iLS0NHh4eCA8Px2OPPYYnn3wSTk5OVu9XXl4etm7dCgCYP3++5AK6ubm52v4REREREUnB4cOHAQD+/v6yC+hevXqV82siB8YaukREREREREREREQywRq6RERERERERERERDLBgC4RERERERERERGRTDCgS0RERERERERERCQTDOgSERERERERERERyQQDukREREREREREREQywYAuERERERERERERkUwwoEtEREREREREREQkEwzoEhEREREREREREcnE/wOa4RJlvKwgfwAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1500x1000 with 6 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "eval = \"area\"\n",
+    "fig, axes = plt.subplots(3, 2, figsize=(15, 10))\n",
+    "fig.suptitle(\"Influence of parameters on the area of the printed strand\", weight=\"bold\")\n",
+    "fig.tight_layout(pad=3.0)\n",
+    "for i, (param, unit) in enumerate(zip([\"temperature\", \"speed\", \"layer\", \"feeding_rate\", \"gap\", \"area\"], [' [°C]', ' [mm/s]', '', '', '[mm]', ' [mm²]'])):\n",
+    "    axes[i//2, i%2].plot(df[param], df[eval], 'o')\n",
+    "    if param == 'feeding_rate': param = 'feed rate'\n",
+    "    axes[i//2, i%2].title.set_text(f'{param[0].upper()}{param[1:]}')\n",
+    "    axes[i//2, i%2].set_xlabel(f\"{param}{unit}\")\n",
+    "    axes[i//2, i%2].set_ylabel(f\"{eval} [mm]\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 45,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Linear Regression r^2 on test data : 0.843\n",
+      "Prediction: 0.056961687306011956\n",
+      "Real value: 0.0600707403988143\n"
+     ]
+    }
+   ],
+   "source": [
+    "from sklearn.preprocessing import FunctionTransformer\n",
+    "from sklearn.linear_model import LinearRegression\n",
+    "from sklearn.pipeline import Pipeline\n",
+    "from sklearn.metrics import r2_score\n",
+    "\n",
+    "def area_features(X:np.ndarray) -> np.ndarray:\n",
+    "    temperature, speed, feeding_rate, layer, gap, w, area = X[:, 0], X[:, 1], X[:, 2], X[:, 3], X[:, 4], X[:, 5], X[:, 6]\n",
+    "    fr2 = feeding_rate ** 2\n",
+    "    t_f = temperature * feeding_rate\n",
+    "    s_f = speed * feeding_rate\n",
+    "    sqrt = np.sqrt(feeding_rate)\n",
+    "    w2 = w ** 2\n",
+    "    return np.column_stack([feeding_rate])\n",
+    "\n",
+    "AreaFeatures = FunctionTransformer(area_features)\n",
+    "\n",
+    "area_model = Pipeline([('transf', AreaFeatures),\n",
+    "                  ('linear', LinearRegression())])\n",
+    "# fit to an order-3 polynomial data\n",
+    "area_model = area_model.fit(X, area)\n",
+    "pred = area_model.predict(X)\n",
+    "r2 = r2_score(area, pred)\n",
+    "print(f\"Linear Regression r^2 on test data : {r2:.3f}\")\n",
+    "print(f\"Prediction: {pred[0][0]}\\nReal value: {area[0][0]}\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 46,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Coefficients:\n",
+      "feeding_rate: 1.812969202377806\n",
+      "intercept: 0.0025726112346777796\n"
+     ]
+    }
+   ],
+   "source": [
+    "print_coefs_and_params_names(area_model, coef_names = ['feeding_rate', 'fr2'])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The volume measured does not match the theoretical volume calculated by the E parameter of the gcode."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 47,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "0.3608385656749022"
+      ]
+     },
+     "execution_count": 47,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "area_ratio = (df.feeding_rate * np.pi * 1.75**2 / 4) / df.area - 1\n",
+    "area_ratio = area_ratio[~np.isinf(area_ratio)]\n",
+    "area_ratio.mean()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "venv",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.10.9"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/experiments/template_end.gcode b/experiments/template_end.gcode
new file mode 100644
index 0000000000000000000000000000000000000000..7a223822a21c3c10ab10c218778665e02ccc14cd
--- /dev/null
+++ b/experiments/template_end.gcode
@@ -0,0 +1,28 @@
+;TIME_ELAPSED:0
+M107
+G91 ;Relative positioning
+G1 E-2 F2700 ;Retract a bit
+G1 E-2 Z0.2 F2400 ;Retract and raise Z
+G1 X5 Y5 F3000 ;Wipe out
+G1 Z10 ;Raise Z more
+G90 ;Absolute positioning
+
+G1 X0 Y220 ;Present print
+M106 S0 ;Turn-off fan
+M106 P1 S0 ;Turn-off fan
+M104 S0 ;Turn-off hotend
+M140 S0 ;Turn-off bed
+
+M84 X Y E ;Disable all steppers but Z
+
+M82 ;absolute extrusion mode
+M104 S0
+;End of Gcode
+;SETTING_3 {"global_quality": "[general]\\nversion = 4\\nname = Standard Quality
+;SETTING_3  #2\\ndefinition = creality_ender3pro\\n\\n[metadata]\\ntype = qualit
+;SETTING_3 y_changes\\nquality_type = standard\\nsetting_version = 20\\n\\n[valu
+;SETTING_3 es]\\nadhesion_type = none\\n\\n", "extruder_quality": ["[general]\\n
+;SETTING_3 version = 4\\nname = Standard Quality #2\\ndefinition = creality_ende
+;SETTING_3 r3pro\\n\\n[metadata]\\ntype = quality_changes\\nquality_type = stand
+;SETTING_3 ard\\nsetting_version = 20\\nposition = 0\\n\\n[values]\\ninfill_spar
+;SETTING_3 se_density = 100\\n\\n"]}
\ No newline at end of file
diff --git a/experiments/template_startup.gcode b/experiments/template_startup.gcode
new file mode 100644
index 0000000000000000000000000000000000000000..0eb743c6e009de185e6ba80199aad5ad2e07950e
--- /dev/null
+++ b/experiments/template_startup.gcode
@@ -0,0 +1,36 @@
+;FLAVOR:Marlin
+;TIME:265
+;Filament used: 0.113878m
+;Layer height: 0.2
+;MINX:60
+;MINY:20
+;MINZ:0.2
+;MAXX:120
+;MAXY:30
+;MAXZ:0.6
+;Generated with Cura_SteamEngine main
+M82 ;absolute extrusion mode
+; Ender 3 Custom Start G-code
+G92 E0 ; Reset Extruder
+G28 ; Home all axes
+M104 S175 ; Start heating up the nozzle most of the way
+M190 S60 ; Start heating the bed, wait until target temperature reached
+M109 S{$TEMPERATURE} ; Finish heating the nozzle
+G1 Z2.0 F3000 ; Move Z Axis up little to prevent scratching of Heat Bed
+G1 X0.1 Y20 Z0.3 F5000.0 ; Move to start position
+G1 X0.1 Y200.0 Z0.3 F1500.0 E15 ; Draw the first line
+G1 X0.4 Y200.0 Z0.3 F5000.0 ; Move to side a little
+G1 X0.4 Y20 Z0.3 F1500.0 E30 ; Draw the second line
+G92 E0 ; Reset Extruder
+G1 Z2.0 F3000 ; Move Z Axis up little to prevent scratching of Heat Bed
+G1 X5 Y20 Z0.3 F5000.0 ; Move over to prevent blob squish
+G92 E0
+G92 E0
+G1 F1500 E-6.5
+;LAYER_COUNT:{$LAYER_COUNT}
+;LAYER:0
+M107
+M106 S85
+M106 P1 S85
+;TYPE:WALL-INNER
+G1 F1500 E0
diff --git a/experiments/utils.py b/experiments/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e847a6b6bd5e791d62b3f0a5f9abdf97de10fcc9
--- /dev/null
+++ b/experiments/utils.py
@@ -0,0 +1,62 @@
+import logging
+import matplotlib.pyplot as plt
+import numpy as np
+
+def plot_pointclouds(pointcloud:np.array, markersize:float=0.01) -> tuple[plt.Figure, plt.Axes]:
+    fig, ax = plt.subplots(3, 1, figsize=(10,10))
+    fig.suptitle("Raw data view")
+    fig.tight_layout(pad=3.0)
+    
+    # XY
+    ax[0].plot(pointcloud[:,1], pointcloud[:,0], 'o', markersize=markersize)
+    # ax[0].set_aspect('equal')
+    ax[0].title.set_text('YX')
+    ax[0].set_xlabel('Y')
+    ax[0].set_ylabel('X')
+
+    # XZ
+    ax[1].plot(pointcloud[:,0], pointcloud[:,2], 'o', markersize=markersize)
+    ax[1].set_aspect('equal')
+    ax[1].title.set_text('XZ')
+    ax[1].set_xlabel('X')
+    ax[1].set_ylabel('Z')
+
+    # YZ
+    ax[2].plot(pointcloud[:,1], pointcloud[:,2], 'o', markersize=markersize)
+    ax[2].set_aspect('equal')
+    ax[2].title.set_text('XZ')
+    ax[2].set_xlabel('Y')
+    ax[2].set_ylabel('Z')
+
+    return fig, ax
+
+def crop_to_roi(pointcloud:np.array, roi:list[list[float]]):
+    """
+    Crop pointcloud to region of interest (roi)
+    roi: [[min x, max x], [min y, max y], [min z, max z]]
+    """
+    pcl = pointcloud.copy()
+    if roi[0][0] is not None: pcl = pcl[pcl[:, 0] > roi[0][0]]  # min x
+    if roi[0][1] is not None: pcl = pcl[pcl[:, 0] < roi[0][1]]  # max x
+    if roi[1][0] is not None: pcl = pcl[pcl[:, 1] > roi[1][0]]  # min y
+    if roi[1][1] is not None: pcl = pcl[pcl[:, 1] < roi[1][1]]  # max y
+    if roi[2][0] is not None: pcl = pcl[pcl[:, 2] > roi[2][0]]  # min z
+    if roi[2][1] is not None: pcl = pcl[pcl[:, 2] < roi[2][1]]  # max z
+    return pcl
+
+def init_logging(log_level='WARNING'):
+    logFormatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] [%(module)-10s] %(message)s", datefmt='%d/%m/%Y %H:%M:%S')
+    rootLogger = logging.getLogger("SmoPa3D")
+
+    fileHandler = logging.FileHandler("smopa3d.log")
+    fileHandler.setFormatter(logFormatter)
+    fileHandler.setLevel(logging.WARNING)
+    rootLogger.addHandler(fileHandler)
+
+    consoleHandler = logging.StreamHandler()
+    consoleHandler.setFormatter(logFormatter)
+    consoleHandler.setLevel(log_level)
+    rootLogger.addHandler(consoleHandler)
+
+    rootLogger.setLevel(log_level)
+    return rootLogger
\ No newline at end of file
diff --git a/main.py b/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..11f9d408b0807d20005a8a69fd8a69010bdab934
--- /dev/null
+++ b/main.py
@@ -0,0 +1,14 @@
+from addon.network import Network, load_network
+from addon.decorators import save_tracking_stats
+
+def simulation():
+    nodes_to_simulate = -1
+    net = Network('test/benchy.gcode', 0.02, 1, node_distance=2/3, extrusion_multiplier=1, saving_path='data/simulation/over')
+    net.simulate_printer(node_limit=nodes_to_simulate)
+    net.calculate_meshes(processes=None)
+    net.save("benchy.pkl")
+    save_tracking_stats()
+
+if __name__ =='__main__':
+    simulation()
+
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..70afb7a4d92a7b7e096b51dfa9df3518ccf0efa2
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,7 @@
+bpy
+mathutils
+memory_profiler
+numpy
+open3d
+scipy
+tqdm
\ No newline at end of file
diff --git a/test/benchy.gcode b/test/benchy.gcode
new file mode 100644
index 0000000000000000000000000000000000000000..b0f2766b8e538c2257e2ef16cb7fe295a4294a0d
--- /dev/null
+++ b/test/benchy.gcode
@@ -0,0 +1,9858 @@
+;FLAVOR:Marlin
+;TIME:640
+;Filament used: 0.172783m
+;Layer height: 0.2
+;MINX:100.804
+;MINY:40.523
+;MINZ:0.2
+;MAXX:119.166
+;MAXY:49.827
+;MAXZ:15
+;Generated with Cura_SteamEngine main
+M82 ;absolute extrusion mode
+; Ender 3 Custom Start G-code
+G92 E0 ; Reset Extruder
+G28 ; Home all axes
+M104 S175 ; Start heating up the nozzle most of the way
+M190 S60 ; Start heating the bed, wait until target temperature reached
+M109 S200 ; Finish heating the nozzle
+G1 Z2.0 F3000 ; Move Z Axis up little to prevent scratching of Heat Bed
+G1 X0.1 Y20 Z0.3 F5000.0 ; Move to start position
+G1 X0.1 Y200.0 Z0.3 F1500.0 E15 ; Draw the first line
+G1 X0.4 Y200.0 Z0.3 F5000.0 ; Move to side a little
+G1 X0.4 Y20 Z0.3 F1500.0 E30 ; Draw the second line
+G92 E0 ; Reset Extruder
+G1 Z2.0 F3000 ; Move Z Axis up little to prevent scratching of Heat Bed
+G1 X5 Y20 Z0.3 F5000.0 ; Move over to prevent blob squish
+G92 E0
+G92 E0
+G1 F1500 E-6.5
+;LAYER_COUNT:75
+;LAYER:0
+M107
+;MESH:3DBenchy.stl
+G0 F6000 X109.853 Y47.153 Z0.2
+;TYPE:WALL-INNER
+G1 F1500 E0
+G1 F942.2 X110.252 Y47.153 E0.01327
+G1 X110.668 Y47.107 E0.02719
+G1 X110.983 Y47.039 E0.03791
+G1 X111.374 Y46.934 E0.05138
+G1 X111.8 Y46.753 E0.06677
+G1 X112.051 Y46.622 E0.07619
+G1 X112.351 Y46.435 E0.08794
+G1 X112.767 Y46.119 E0.10532
+G1 X113.065 Y45.821 E0.11934
+G1 X113.231 Y45.631 E0.12773
+G1 X113.56 Y45.192 E0.14597
+G1 X113.429 Y44.977 E0.15435
+G1 X113.213 Y44.698 E0.16608
+G1 X112.967 Y44.416 E0.17853
+G1 X112.534 Y44.036 E0.19769
+G1 X112.059 Y43.726 E0.21656
+G1 X111.731 Y43.566 E0.2287
+G1 X111.413 Y43.431 E0.24019
+G1 X110.951 Y43.295 E0.2562
+G1 X110.536 Y43.227 E0.27019
+G1 X110.129 Y43.196 E0.28377
+G1 X109.786 Y43.2 E0.29518
+G1 X102.487 Y43.659 E0.53842
+G1 X102.487 Y46.688 E0.63917
+G1 X109.853 Y47.153 E0.88465
+G0 F6000 X109.841 Y47.553
+;TYPE:WALL-OUTER
+G1 F942.2 X110.274 Y47.553 E0.89905
+G1 X110.732 Y47.503 E0.91437
+G1 X111.077 Y47.428 E0.92612
+G1 X111.354 Y47.354 E0.93565
+G1 X111.6 Y47.272 E0.94428
+G1 X111.97 Y47.115 E0.95765
+G1 X112.249 Y46.97 E0.9681
+G1 X112.578 Y46.765 E0.981
+G1 X113.031 Y46.421 E0.99991
+G1 X113.357 Y46.095 E1.01525
+G1 X113.542 Y45.883 E1.02461
+G1 X113.763 Y45.588 E1.03687
+G1 X113.962 Y45.279 E1.04909
+G1 X113.961 Y45.083 E1.05561
+G1 X113.76 Y44.751 E1.06852
+G1 X113.541 Y44.466 E1.08047
+G1 X113.248 Y44.131 E1.09528
+G1 X112.878 Y43.805 E1.11168
+G1 X112.67 Y43.647 E1.12037
+G1 X112.257 Y43.378 E1.13676
+G1 X111.897 Y43.202 E1.15009
+G1 X111.547 Y43.053 E1.16274
+G1 X111.174 Y42.944 E1.17566
+G1 X110.923 Y42.886 E1.18423
+G1 X110.584 Y42.829 E1.19566
+G1 X110.141 Y42.796 E1.21044
+G1 X109.771 Y42.8 E1.22275
+G1 X102.403 Y43.26 E1.46828
+G1 X102.223 Y43.327 E1.47467
+G1 X102.134 Y43.425 E1.47908
+G1 X102.084 Y43.559 E1.48383
+G1 X102.087 Y46.776 E1.59083
+G1 X102.123 Y46.9 E1.59513
+G1 X102.229 Y47.025 E1.60058
+G1 X102.367 Y47.082 E1.60554
+G1 X109.841 Y47.553 E1.85462
+G0 F6000 X110.231 Y46.793
+;TYPE:SKIN
+G1 F942.2 X110.608 Y46.752 E1.86723
+G1 X110.897 Y46.688 E1.87708
+G1 X111.259 Y46.591 E1.88954
+G1 X111.645 Y46.426 E1.90351
+G1 X111.872 Y46.309 E1.912
+G1 X112.144 Y46.138 E1.92269
+G1 X112.532 Y45.844 E1.93888
+G1 X112.878 Y45.498 E1.95515
+G1 X113.124 Y45.174 E1.96868
+G1 X112.945 Y44.939 E1.97851
+G1 X112.694 Y44.656 E1.99109
+G1 X112.315 Y44.324 E2.00785
+G1 X111.821 Y44.002 E2.02746
+G1 X111.29 Y43.77 E2.04673
+G1 X110.896 Y43.653 E2.0604
+G1 X110.491 Y43.585 E2.07406
+G1 X110.115 Y43.557 E2.0866
+G1 X109.801 Y43.56 E2.09705
+G1 X102.845 Y43.994 E2.32886
+G1 X102.847 Y46.349 E2.40718
+G1 X109.864 Y46.793 E2.64104
+G1 X110.231 Y46.793 E2.65324
+G0 F6000 X110.231 Y47.053
+G0 X111.464 Y46.72
+G0 X112.207 Y46.307
+G0 X112.915 Y45.829
+G0 X112.704 Y45.387
+G1 F942.2 X111.316 Y44 E2.71851
+G0 F6000 X110.548 Y43.797
+G1 F942.2 X112.421 Y45.67 E2.80661
+G0 F6000 X112.101 Y45.916
+G1 F942.2 X109.944 Y43.759 E2.90807
+G0 F6000 X109.404 Y43.785
+G1 F942.2 X111.761 Y46.141 E3.01891
+G0 F6000 X111.377 Y46.323
+G1 F942.2 X108.872 Y43.818 E3.13674
+G0 F6000 X108.34 Y43.851
+G1 F942.2 X110.954 Y46.466 E3.25971
+G0 F6000 X110.485 Y46.562
+G1 F942.2 X107.807 Y43.885 E3.38565
+G0 F6000 X107.275 Y43.918
+G1 F942.2 X109.949 Y46.592 E3.51143
+G0 F6000 X109.351 Y46.56
+G1 F942.2 X106.742 Y43.951 E3.63415
+G0 F6000 X106.21 Y43.984
+G1 F942.2 X108.747 Y46.521 E3.75348
+G0 F6000 X108.143 Y46.483
+G1 F942.2 X105.677 Y44.018 E3.86945
+G0 F6000 X105.145 Y44.051
+G1 F942.2 X107.539 Y46.445 E3.98206
+G0 F6000 X106.935 Y46.406
+G1 F942.2 X104.612 Y44.084 E4.0913
+G0 F6000 X104.08 Y44.117
+G1 F942.2 X106.331 Y46.368 E4.19718
+G0 F6000 X105.727 Y46.33
+G1 F942.2 X103.548 Y44.151 E4.29968
+G0 F6000 X103.044 Y44.213
+G1 F942.2 X105.123 Y46.292 E4.39747
+G0 F6000 X104.519 Y46.253
+G1 F942.2 X103.044 Y44.778 E4.46685
+G0 F6000 X103.045 Y45.345
+G1 F942.2 X103.915 Y46.215 E4.50777
+G0 F6000 X103.311 Y46.176
+M104 S200
+G1 F942.2 X103.045 Y45.911 E4.52026
+;MESH:NONMESH
+G0 F300 X103.045 Y45.911 Z0.4
+G0 F6000 X102.586 Y45.911
+G0 X102.658 Y46.527
+G0 X110.349 Y47.043
+G0 X110.229 Y47.294
+;TIME_ELAPSED:15.128097
+;LAYER:1
+M106 S85
+M106 P1 S85
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F888.9 X110.575 Y47.266 E4.5318
+G1 X111.129 Y47.16 E4.55056
+G1 X111.647 Y46.992 E4.56867
+G1 X112.017 Y46.821 E4.58223
+G1 X112.316 Y46.658 E4.59356
+G1 X112.707 Y46.392 E4.60929
+G1 X112.982 Y46.162 E4.62121
+G1 X113.252 Y45.896 E4.63382
+G1 X113.477 Y45.639 E4.64518
+G1 X113.657 Y45.396 E4.65524
+G1 X113.807 Y45.163 E4.66445
+G1 X113.468 Y44.703 E4.68346
+G1 X113.197 Y44.39 E4.69723
+G1 X112.811 Y44.036 E4.71465
+G1 X112.46 Y43.786 E4.72898
+G1 X112.022 Y43.525 E4.74594
+G1 X111.649 Y43.363 E4.75946
+G1 X111.327 Y43.251 E4.7708
+G1 X110.929 Y43.147 E4.78449
+G1 X110.606 Y43.09 E4.79539
+G1 X110.218 Y43.051 E4.80836
+G1 X109.782 Y43.055 E4.82287
+G1 X102.393 Y43.551 E5.06918
+G1 X102.387 Y44.335 E5.09526
+G1 X103.493 Y44.336 E5.13204
+G1 X103.859 Y44.46 E5.14489
+G1 X104.049 Y44.71 E5.15534
+G1 X104.092 Y44.936 E5.16299
+G1 X104.092 Y45.413 E5.17885
+G1 X104.048 Y45.64 E5.18655
+G1 X103.858 Y45.889 E5.19696
+G1 X103.556 Y46.011 E5.2078
+G1 X102.389 Y46.015 E5.24661
+G1 X102.398 Y46.796 E5.27259
+G1 X103.572 Y46.881 E5.31174
+G1 X109.862 Y47.3 E5.52141
+G1 X110.229 Y47.294 E5.53362
+G0 F7500 X110.249 Y47.694
+;TYPE:WALL-OUTER
+G1 F888.9 X110.629 Y47.663 E5.5463
+G1 X111.23 Y47.548 E5.56665
+G1 X111.693 Y47.398 E5.58284
+G1 X111.929 Y47.303 E5.5913
+G1 X112.197 Y47.178 E5.60113
+G1 X112.524 Y47 E5.61352
+G1 X112.949 Y46.712 E5.63059
+G1 X113.251 Y46.458 E5.64372
+G1 X113.544 Y46.171 E5.65736
+G1 X113.789 Y45.89 E5.66976
+G1 X113.986 Y45.624 E5.68077
+G1 X114.199 Y45.295 E5.6938
+G1 X114.225 Y45.111 E5.69998
+G1 X114.03 Y44.792 E5.71242
+G1 X113.782 Y44.453 E5.72639
+G1 X113.484 Y44.109 E5.74153
+G1 X113.153 Y43.807 E5.75643
+G1 X112.947 Y43.641 E5.76523
+G1 X112.679 Y43.451 E5.77616
+G1 X112.211 Y43.171 E5.79429
+G1 X111.795 Y42.99 E5.80938
+G1 X111.443 Y42.868 E5.82177
+G1 X111.015 Y42.756 E5.83649
+G1 X110.661 Y42.694 E5.84844
+G1 X110.236 Y42.651 E5.86265
+G1 X109.766 Y42.655 E5.87828
+G1 X102.245 Y43.16 E6.129
+G1 X102.046 Y43.31 E6.13728
+G1 X101.989 Y43.51 E6.1442
+G1 X101.987 Y44.735 E6.18494
+G1 X103.493 Y44.736 E6.23503
+G1 X103.615 Y44.777 E6.23932
+G1 X103.692 Y44.878 E6.24354
+G1 X103.692 Y45.471 E6.26326
+G1 X103.614 Y45.572 E6.26751
+G1 X103.514 Y45.613 E6.2711
+G1 X101.987 Y45.615 E6.32189
+G1 X101.992 Y46.868 E6.36357
+G1 X102.09 Y47.094 E6.37176
+G1 X102.333 Y47.195 E6.38051
+G1 X109.852 Y47.7 E6.63116
+G1 X110.249 Y47.694 E6.64436
+G0 F7500 X110.211 Y46.934
+;TYPE:SKIN
+G1 F888.9 X110.523 Y46.909 E6.65477
+G1 X111.032 Y46.812 E6.67201
+G1 X111.503 Y46.663 E6.68844
+G1 X111.854 Y46.499 E6.70132
+G1 X112.126 Y46.351 E6.71162
+G1 X112.489 Y46.105 E6.72621
+G1 X112.74 Y45.894 E6.73711
+G1 X112.99 Y45.649 E6.74876
+G1 X113.194 Y45.414 E6.75911
+G1 X113.365 Y45.173 E6.76894
+G1 X113.186 Y44.927 E6.77905
+G1 X112.941 Y44.642 E6.79155
+G1 X112.651 Y44.379 E6.80458
+G1 X112.344 Y44.138 E6.81756
+G1 X111.861 Y43.848 E6.83629
+G1 X111.505 Y43.693 E6.84921
+G1 X111.222 Y43.598 E6.85914
+G1 X110.85 Y43.501 E6.87192
+G1 X110.557 Y43.448 E6.88183
+G1 X110.201 Y43.412 E6.89373
+G1 X109.796 Y43.415 E6.9072
+G1 X104.068 Y43.799 E7.09814
+G1 F834.7 X103.822 Y43.842 E7.10699
+G1 F742.3 X103.575 Y43.885 E7.11697
+G1 F681.2 X103.486 Y43.907 E7.12095
+G1 X103.568 Y43.935 E7.12471
+G1 F722.7 X103.828 Y44.056 E7.13644
+G1 F763 X104.088 Y44.177 E7.14756
+G1 F834.7 X104.384 Y44.567 E7.1649
+G1 F888.9 X104.449 Y44.903 E7.17628
+G1 X104.449 Y45.446 E7.19434
+G1 X104.384 Y45.787 E7.20589
+G1 F850.6 X104.094 Y46.164 E7.22242
+G1 F797.2 X103.852 Y46.305 E7.23281
+G1 F764.7 X103.609 Y46.446 E7.24367
+G1 F813.7 X104.086 Y46.55 E7.26141
+G1 F888.9 X109.873 Y46.939 E7.45432
+G1 X110.211 Y46.934 E7.46556
+G0 F7500 X110.328 Y47.187
+G0 X102.563 Y46.638
+G0 X102.562 Y46.187
+G0 X103.392 Y46.113
+G0 X103.598 Y46.444
+G1 F659.7 X103.331 Y46.436 E7.47754
+G1 F685.1 X103.064 Y46.428 E7.48906
+G1 F714 X102.797 Y46.42 E7.50012
+G0 F7500 X102.776 Y46.723
+G0 X102.562 Y46.187
+G0 X103.92 Y45.841
+G0 X103.92 Y44.508
+G0 X102.559 Y44.163
+G0 X102.559 Y43.798
+G0 X102.794 Y43.93
+G1 F706.9 X103.14 Y43.919 E7.5146
+G1 F676 X103.486 Y43.907 E7.52974
+G0 F7500 X103.485 Y44.235
+G0 X104.084 Y44.601
+G0 X104.45 Y44.324
+G1 F888.9 X104.827 Y43.948 E7.54745
+G0 F7500 X105.433 Y43.907
+G1 F888.9 X104.617 Y44.723 E7.58584
+G0 F7500 X104.651 Y45.254
+G1 F888.9 X106.039 Y43.866 E7.65112
+G0 F7500 X106.645 Y43.826
+G1 F888.9 X104.472 Y46 E7.75336
+G0 F7500 X104.651 Y46.386
+G1 F888.9 X107.252 Y43.785 E7.8757
+G0 F7500 X107.858 Y43.745
+G1 F888.9 X105.18 Y46.422 E8.00164
+G0 F7500 X105.711 Y46.458
+G1 F888.9 X108.465 Y43.704 E8.13118
+G0 F7500 X109.071 Y43.663
+G1 F888.9 X106.24 Y46.494 E8.26434
+G0 F7500 X106.771 Y46.529
+G1 F888.9 X109.677 Y43.622 E8.40106
+G0 F7500 X110.249 Y43.617
+G1 F888.9 X107.301 Y46.565 E8.53972
+G0 F7500 X107.83 Y46.601
+G1 F888.9 X110.746 Y43.685 E8.67688
+G0 F7500 X111.197 Y43.8
+G1 F888.9 X108.361 Y46.636 E8.81028
+G0 F7500 X108.89 Y46.672
+G1 F888.9 X111.607 Y43.955 E8.93808
+G0 F7500 X111.977 Y44.151
+G1 F888.9 X109.421 Y46.707 E9.0583
+G0 F7500 X109.957 Y46.737
+G1 F888.9 X112.321 Y44.373 E9.1695
+G0 F7500 X112.63 Y44.63
+G1 F888.9 X110.563 Y46.697 E9.26672
+G0 F7500 X111.313 Y46.512
+G1 F888.9 X112.91 Y44.916 E9.34182
+;MESH:NONMESH
+G0 F300 X112.91 Y44.916 Z0.6
+G0 F7500 X113.261 Y44.615
+G0 X113.601 Y45.176
+G0 X113.01 Y45.91
+G0 X112.165 Y46.558
+G0 X111.334 Y46.903
+G0 X110.328 Y47.187
+G0 X110.061 Y47.443
+;TIME_ELAPSED:27.386072
+;LAYER:2
+M106 S170
+M106 P1 S170
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F952.4 X110.464 Y47.42 E9.35524
+G1 X110.895 Y47.357 E9.36973
+G1 X111.281 Y47.268 E9.38291
+G1 X111.686 Y47.134 E9.3971
+G1 X111.947 Y47.024 E9.40652
+G1 X112.297 Y46.856 E9.41943
+G1 X112.834 Y46.51 E9.44068
+G1 X113.149 Y46.25 E9.45426
+G1 X113.457 Y45.957 E9.4684
+G1 X113.793 Y45.557 E9.48577
+G1 X114.051 Y45.173 E9.50116
+G1 X113.78 Y44.782 E9.51698
+G1 X113.547 Y44.498 E9.5292
+G1 X113.352 Y44.29 E9.53869
+G1 X113.111 Y44.067 E9.54961
+G1 X112.897 Y43.892 E9.5588
+G1 X112.56 Y43.655 E9.5725
+G1 X112.15 Y43.418 E9.58825
+G1 X111.678 Y43.211 E9.6054
+G1 X111.31 Y43.091 E9.61827
+G1 X110.944 Y43.002 E9.6308
+G1 X110.421 Y42.92 E9.64841
+G1 X109.896 Y42.903 E9.66588
+G1 X102.294 Y43.45 E9.91937
+G1 X102.293 Y44.262 E9.94638
+G1 X103.492 Y44.262 E9.98626
+G1 X103.859 Y44.386 E9.99915
+G1 X104.049 Y44.636 E10.00959
+G1 X104.092 Y44.862 E10.01724
+G1 X104.092 Y45.487 E10.03803
+G1 X104.049 Y45.713 E10.04568
+G1 X103.859 Y45.963 E10.05612
+G1 X103.553 Y46.085 E10.06708
+G1 X102.294 Y46.088 E10.10895
+G1 X102.299 Y46.901 E10.136
+G1 X109.678 Y47.432 E10.38206
+G1 X110.061 Y47.443 E10.3948
+G0 F9000 X110.067 Y47.843
+;TYPE:WALL-OUTER
+G1 F952.4 X110.504 Y47.818 E10.40936
+G1 X110.969 Y47.751 E10.42499
+G1 X111.389 Y47.654 E10.43932
+G1 X111.826 Y47.509 E10.45464
+G1 X112.111 Y47.389 E10.46492
+G1 X112.493 Y47.206 E10.47901
+G1 X113.071 Y46.834 E10.50187
+G1 X113.415 Y46.549 E10.51673
+G1 X113.749 Y46.231 E10.53207
+G1 X114.113 Y45.799 E10.55086
+G1 X114.331 Y45.474 E10.56387
+G1 X114.459 Y45.251 E10.57242
+G1 X114.459 Y45.095 E10.57761
+G1 X114.33 Y44.873 E10.58615
+G1 X114.1 Y44.541 E10.59959
+G1 X113.848 Y44.234 E10.6128
+G1 X113.634 Y44.006 E10.6232
+G1 X113.374 Y43.765 E10.63499
+G1 X113.139 Y43.573 E10.64508
+G1 X112.776 Y43.317 E10.65986
+G1 X112.331 Y43.06 E10.67695
+G1 X111.82 Y42.837 E10.69549
+G1 X111.42 Y42.706 E10.70949
+G1 X111.022 Y42.609 E10.72312
+G1 X110.458 Y42.521 E10.7421
+G1 X109.888 Y42.503 E10.76107
+G1 X102.171 Y43.059 E11.0184
+G1 X102.035 Y43.116 E11.02331
+G1 X101.962 Y43.193 E11.02684
+G1 X101.894 Y43.405 E11.03424
+G1 X101.893 Y44.662 E11.07605
+G1 X103.492 Y44.662 E11.12923
+G1 X103.615 Y44.703 E11.13354
+G1 X103.692 Y44.804 E11.13777
+G1 X103.692 Y45.545 E11.16241
+G1 X103.615 Y45.646 E11.16664
+G1 X103.513 Y45.687 E11.17029
+G1 X101.893 Y45.687 E11.22418
+G1 X101.894 Y46.943 E11.26595
+G1 X101.95 Y47.137 E11.27267
+G1 X102.032 Y47.23 E11.27679
+G1 X102.207 Y47.296 E11.28301
+G1 X109.658 Y47.832 E11.53147
+G1 X110.067 Y47.843 E11.54508
+G0 F9000 X110.055 Y47.082
+;TYPE:SKIN
+G1 F952.4 X110.427 Y47.061 E11.55747
+G1 X110.825 Y47.003 E11.57085
+G1 X111.17 Y46.923 E11.58263
+G1 X111.557 Y46.797 E11.59617
+G1 X111.798 Y46.695 E11.60487
+G1 X112.122 Y46.54 E11.61682
+G1 X112.618 Y46.22 E11.63645
+G1 X112.907 Y45.98 E11.64894
+G1 X113.229 Y45.67 E11.66381
+G1 X113.637 Y45.179 E11.68504
+G1 X113.297 Y44.76 E11.70299
+G1 X113.097 Y44.545 E11.71276
+G1 X112.764 Y44.24 E11.72778
+G1 X112.367 Y43.959 E11.74395
+G1 X111.986 Y43.74 E11.75857
+G1 X111.55 Y43.548 E11.77441
+G1 X111.198 Y43.436 E11.7867
+G1 X110.873 Y43.356 E11.79783
+G1 X110.385 Y43.28 E11.81426
+G1 X109.905 Y43.265 E11.83023
+G1 X104.072 Y43.684 E12.02474
+G1 F879.8 X103.826 Y43.735 E12.03378
+G1 F763.5 X103.58 Y43.786 E12.04421
+G1 F687.7 X103.485 Y43.814 E12.04877
+G1 X103.572 Y43.85 E12.05311
+G1 F738.3 X103.831 Y43.978 E12.0655
+G1 F790.4 X104.091 Y44.107 E12.07714
+G1 F879.8 X104.384 Y44.492 E12.09455
+G1 F952.4 X104.449 Y44.829 E12.10597
+G1 X104.449 Y45.52 E12.12895
+G1 X104.384 Y45.857 E12.14037
+G1 F860 X104.094 Y46.239 E12.15803
+G1 F782.3 X103.569 Y46.545 E12.18264
+G1 F817.5 X103.829 Y46.606 E12.19299
+G1 F902.8 X104.09 Y46.667 E12.2024
+G1 F952.4 X109.698 Y47.072 E12.3894
+G1 X110.055 Y47.082 E12.40128
+G0 F9000 X110.046 Y47.342
+G0 X102.465 Y46.741
+G0 X102.466 Y46.26
+G0 X103.404 Y46.187
+G0 X103.567 Y46.537
+G1 F662.6 X103.283 Y46.528 E12.41487
+G1 F688.9 X102.999 Y46.518 E12.42793
+G1 F717.5 X102.715 Y46.508 E12.44048
+G0 F9000 X102.714 Y46.188
+G0 X103.92 Y45.915
+G0 X103.92 Y44.434
+G0 X102.465 Y44.09
+G0 X102.465 Y43.61
+G0 X102.714 Y43.842
+G1 F720.2 X102.971 Y43.833 E12.45179
+G1 F695.2 X103.228 Y43.824 E12.46351
+G1 F673.1 X103.485 Y43.814 E12.47562
+G0 F9000 X103.468 Y43.468
+G0 X102.465 Y43.61
+G0 X102.465 Y44.09
+G0 X103.92 Y44.434
+G0 X103.957 Y46.09
+G0 X102.466 Y46.26
+G0 X102.465 Y46.741
+G0 X104.713 Y46.974
+G0 X104.412 Y46.147
+G1 F952.4 X104.779 Y46.514 E12.49288
+G0 F9000 X105.389 Y46.558
+G1 F952.4 X104.603 Y45.772 E12.52985
+G0 F9000 X104.651 Y45.254
+G1 F952.4 X105.999 Y46.602 E12.59325
+G0 F9000 X106.609 Y46.647
+G1 F952.4 X104.618 Y44.655 E12.68693
+G0 F9000 X104.39 Y43.861
+G1 F952.4 X107.219 Y46.69 E12.82
+G0 F9000 X107.829 Y46.735
+G1 F952.4 X104.918 Y43.824 E12.95692
+G0 F9000 X105.445 Y43.786
+G1 F952.4 X108.439 Y46.779 E13.09773
+G0 F9000 X109.049 Y46.823
+G1 F952.4 X105.973 Y43.747 E13.24241
+G0 F9000 X106.501 Y43.71
+G1 F952.4 X109.659 Y46.868 E13.39095
+G0 F9000 X110.228 Y46.871
+G1 F952.4 X107.029 Y43.672 E13.54143
+G0 F9000 X107.556 Y43.634
+G1 F952.4 X110.735 Y46.812 E13.69093
+G0 F9000 X111.192 Y46.704
+G1 F952.4 X108.084 Y43.595 E13.83715
+G0 F9000 X108.612 Y43.558
+G1 F952.4 X111.613 Y46.56 E13.97833
+G0 F9000 X111.996 Y46.377
+G1 F952.4 X109.139 Y43.52 E14.11271
+G0 F9000 X109.667 Y43.482
+G1 F952.4 X112.343 Y46.157 E14.23856
+G0 F9000 X112.668 Y45.917
+G1 F952.4 X110.226 Y43.475 E14.35342
+G0 F9000 X110.88 Y43.564
+G1 F952.4 X112.963 Y45.646 E14.45138
+G0 F9000 X113.232 Y45.35
+G1 F952.4 X111.727 Y43.844 E14.52219
+;MESH:NONMESH
+G0 F300 X111.727 Y43.844 Z0.8
+G0 F9000 X111.913 Y43.424
+G0 X113.06 Y44.239
+G0 X113.675 Y44.914
+G0 X113.848 Y45.176
+G0 X113.221 Y45.959
+G0 X112.476 Y46.549
+G0 X111.537 Y47.015
+G0 X110.655 Y47.213
+G0 X109.653 Y47.329
+G0 X109.638 Y47.574
+;TIME_ELAPSED:40.359426
+;LAYER:3
+M106 S255
+M106 P1 S255
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F1025.6 X109.983 Y47.586 E14.53367
+G1 X110.262 Y47.579 E14.54296
+G1 X110.639 Y47.545 E14.55555
+G1 X110.91 Y47.502 E14.56467
+G1 X111.267 Y47.426 E14.57681
+G1 X111.706 Y47.292 E14.59208
+G1 X112.148 Y47.104 E14.60805
+G1 X112.517 Y46.916 E14.62183
+G1 X112.858 Y46.695 E14.63534
+G1 X113.186 Y46.448 E14.649
+G1 X113.377 Y46.284 E14.65737
+G1 X113.695 Y45.968 E14.67228
+G1 X113.86 Y45.78 E14.6806
+G1 X114.308 Y45.187 E14.70532
+G1 X114.078 Y44.849 E14.71892
+G1 X113.801 Y44.498 E14.73379
+G1 X113.629 Y44.309 E14.74229
+G1 X113.376 Y44.063 E14.75403
+G1 X113.181 Y43.895 E14.76259
+G1 X112.875 Y43.665 E14.77532
+G1 X112.518 Y43.433 E14.78948
+G1 X112.144 Y43.242 E14.80345
+G1 X111.79 Y43.088 E14.81629
+G1 X111.331 Y42.941 E14.83232
+G1 X110.848 Y42.832 E14.84879
+G1 X110.451 Y42.784 E14.86209
+G1 X110.072 Y42.764 E14.87471
+G1 X109.738 Y42.77 E14.88582
+G1 X102.2 Y43.344 E15.13726
+G1 X102.2 Y44.336 E15.17026
+G1 X103.493 Y44.337 E15.21326
+G1 X103.86 Y44.462 E15.22616
+G1 X104.049 Y44.712 E15.23658
+G1 X104.092 Y44.937 E15.2442
+G1 X104.092 Y45.414 E15.26007
+G1 X104.049 Y45.639 E15.26769
+G1 X103.859 Y45.89 E15.27816
+G1 X103.55 Y46.012 E15.28921
+G1 X102.201 Y46.015 E15.33407
+G1 X102.207 Y47.002 E15.3669
+G1 X109.638 Y47.574 E15.61479
+G0 F9000 X109.981 Y47.986
+;TYPE:WALL-OUTER
+G1 F1025.6 X110.285 Y47.979 E15.6249
+G1 X110.688 Y47.942 E15.63836
+G1 X110.983 Y47.896 E15.64829
+G1 X111.367 Y47.814 E15.66135
+G1 X111.739 Y47.7 E15.67429
+G1 X112.009 Y47.6 E15.68387
+G1 X112.318 Y47.466 E15.69507
+G1 X112.717 Y47.263 E15.70996
+G1 X113.087 Y47.023 E15.72463
+G1 X113.438 Y46.76 E15.73922
+G1 X113.649 Y46.578 E15.74849
+G1 X113.987 Y46.242 E15.76434
+G1 X114.17 Y46.033 E15.77358
+G1 X114.516 Y45.575 E15.79267
+G1 X114.695 Y45.272 E15.80437
+G1 X114.71 Y45.097 E15.81022
+G1 X114.562 Y44.849 E15.81982
+G1 X114.401 Y44.613 E15.82932
+G1 X114.107 Y44.24 E15.84512
+G1 X113.917 Y44.031 E15.85451
+G1 X113.646 Y43.768 E15.86707
+G1 X113.433 Y43.583 E15.87646
+G1 X113.105 Y43.337 E15.89009
+G1 X112.718 Y43.086 E15.90544
+G1 X112.315 Y42.88 E15.92049
+G1 X111.932 Y42.713 E15.93439
+G1 X111.445 Y42.557 E15.9514
+G1 X110.922 Y42.438 E15.96923
+G1 X110.485 Y42.385 E15.98388
+G1 X110.078 Y42.364 E15.99743
+G1 X109.719 Y42.37 E16.00937
+G1 X102.064 Y42.953 E16.26472
+G1 X101.878 Y43.072 E16.27206
+G1 X101.8 Y43.222 E16.27768
+G1 X101.799 Y44.736 E16.32804
+G1 X103.493 Y44.737 E16.38438
+G1 X103.615 Y44.778 E16.38866
+G1 X103.692 Y44.881 E16.39294
+G1 X103.692 Y45.47 E16.41253
+G1 X103.615 Y45.573 E16.41681
+G1 X103.512 Y45.614 E16.4205
+G1 X101.8 Y45.615 E16.47744
+G1 X101.804 Y47.079 E16.52613
+G1 X101.88 Y47.271 E16.533
+G1 X102.038 Y47.394 E16.53966
+G1 X109.616 Y47.974 E16.79244
+G1 X109.981 Y47.986 E16.80459
+G0 F9000 X109.984 Y47.225
+;TYPE:SKIN
+G1 F1025.6 X110.241 Y47.219 E16.81314
+G1 X110.593 Y47.187 E16.82489
+G1 X110.844 Y47.147 E16.83335
+G1 X111.179 Y47.076 E16.84474
+G1 X111.588 Y46.951 E16.85896
+G1 X111.995 Y46.777 E16.87368
+G1 X112.337 Y46.603 E16.88644
+G1 X112.651 Y46.4 E16.89888
+G1 X113.053 Y46.096 E16.91564
+G1 X113.517 Y45.635 E16.9374
+G1 X113.869 Y45.168 E16.95685
+G1 X113.46 Y44.648 E16.97885
+G1 X113.045 Y44.247 E16.99805
+G1 X112.668 Y43.96 E17.01381
+G1 X112.338 Y43.746 E17.02689
+G1 X111.988 Y43.568 E17.03995
+G1 X111.666 Y43.427 E17.05164
+G1 X111.16 Y43.27 E17.06926
+G1 X110.78 Y43.187 E17.0822
+G1 X110.42 Y43.143 E17.09426
+G1 X110.063 Y43.125 E17.10615
+G1 X109.755 Y43.13 E17.11639
+G1 X104.1 Y43.56 E17.30502
+G1 F1035.9 X103.84 Y43.576 E17.3136
+G1 F1057.3 X103.579 Y43.592 E17.32204
+G1 F1076.7 X103.319 Y43.608 E17.33029
+G1 F1099.8 X103.058 Y43.624 E17.3384
+G1 F1120.8 X102.798 Y43.64 E17.34633
+G1 F1145.9 X102.537 Y43.657 E17.35411
+G1 F1155.6 X102.537 Y43.999 E17.36421
+G1 F1149.1 X102.866 Y43.994 E17.37398
+G1 F1130.1 X103.195 Y43.989 E17.38391
+G1 F1111.7 X103.524 Y43.984 E17.394
+G1 F1082.4 X103.774 Y44.066 E17.40229
+G1 F1043.8 X104.024 Y44.149 E17.4109
+G1 F1025.6 X104.119 Y44.218 E17.41481
+G1 X104.385 Y44.569 E17.42946
+G1 X104.449 Y44.901 E17.4407
+G1 X104.449 Y45.45 E17.45896
+G1 X104.385 Y45.782 E17.47021
+G1 X104.081 Y46.184 E17.48697
+G1 F1033.3 X103.604 Y46.365 E17.50381
+G1 F1057.3 X103.338 Y46.362 E17.51239
+G1 F1085.3 X103.072 Y46.359 E17.52076
+G1 F1114.7 X102.806 Y46.355 E17.5289
+G1 F1145.9 X102.54 Y46.352 E17.53681
+G1 F1162.1 X102.54 Y46.692 E17.54679
+G1 F1152.3 X102.802 Y46.708 E17.55456
+G1 F1127 X103.065 Y46.724 E17.56254
+G1 F1102.8 X103.328 Y46.74 E17.57069
+G1 F1079.5 X103.59 Y46.756 E17.57898
+G1 F1057.3 X103.853 Y46.772 E17.58748
+G1 F1035.9 X104.116 Y46.788 E17.59616
+G1 F1025.6 X109.658 Y47.214 E17.78103
+G1 X109.984 Y47.225 E17.79188
+G0 F9000 X109.867 Y47.481
+G0 X111.411 Y47.214
+G0 X112.518 Y46.724
+G0 X113.304 Y46.13
+G0 X114.053 Y45.257
+G0 X114.042 Y44.977
+G0 X113.441 Y44.95
+G1 F1025.6 X111.71 Y46.681 E17.8733
+G0 F9000 X110.894 Y46.931
+G1 F1025.6 X113.175 Y44.65 E17.98059
+G0 F9000 X112.883 Y44.376
+G1 F1025.6 X110.242 Y47.018 E18.10484
+G0 F9000 X109.68 Y47.014
+G1 F1025.6 X112.562 Y44.131 E18.24042
+G0 F9000 X112.219 Y43.909
+G1 F1025.6 X109.153 Y46.975 E18.38464
+G0 F9000 X108.628 Y46.934
+G1 F1025.6 X111.841 Y43.721 E18.53577
+G0 F9000 X111.433 Y43.564
+G1 F1025.6 X108.103 Y46.894 E18.6924
+G0 F9000 X107.577 Y46.854
+G1 F1025.6 X110.993 Y43.438 E18.85308
+G0 F9000 X110.511 Y43.354
+G1 F1025.6 X107.052 Y46.814 E19.0158
+G0 F9000 X106.527 Y46.773
+G1 F1025.6 X109.974 Y43.326 E19.17794
+G0 F9000 X109.375 Y43.359
+G1 F1025.6 X106.001 Y46.733 E19.33664
+G0 F9000 X105.476 Y46.693
+G1 F1025.6 X108.763 Y43.405 E19.49128
+G0 F9000 X108.151 Y43.452
+G1 F1025.6 X104.95 Y46.652 E19.64182
+G0 F9000 X104.425 Y46.612
+G1 F1025.6 X107.538 Y43.499 E19.78825
+G0 F9000 X106.926 Y43.545
+G1 F1025.6 X104.462 Y46.01 E19.90417
+G0 F9000 X104.072 Y46.399
+G1 F1025.6 X103.894 Y46.577 E19.91254
+G0 F9000 X103.382 Y46.994
+G0 X102.375 Y46.846
+G0 X102.374 Y46.187
+G0 X103.803 Y46.088
+G0 X104.192 Y45.254
+G0 X104.651 Y45.254
+G1 F1025.6 X106.314 Y43.592 E19.99074
+G0 F9000 X105.701 Y43.639
+G1 F1025.6 X104.618 Y44.722 E20.04168
+G0 F9000 X104.45 Y44.324
+G1 F1025.6 X105.089 Y43.685 E20.07174
+G0 F9000 X104.477 Y43.731
+G1 F1025.6 X104.181 Y44.028 E20.08568
+G0 F9000 X103.871 Y43.772
+G1 F1025.6 X103.781 Y43.862 E20.08992
+;MESH:NONMESH
+G0 F300 X103.781 Y43.862 Z1
+G0 F9000 X103.635 Y44.29
+G0 X104.199 Y44.653
+G0 X103.958 Y46.017
+G0 X102.374 Y46.187
+G0 X102.375 Y46.846
+G0 X109.726 Y47.476
+G0 X109.588 Y47.711
+;TIME_ELAPSED:52.966885
+;LAYER:4
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F600 X110.047 Y47.726 E20.10519
+G1 X110.386 Y47.712 E20.11648
+G1 X110.921 Y47.649 E20.13439
+G1 X111.426 Y47.529 E20.15166
+G1 X111.706 Y47.445 E20.16138
+G1 X112.09 Y47.302 E20.17501
+G1 X112.485 Y47.108 E20.18965
+G1 X112.728 Y46.972 E20.19891
+G1 X113.05 Y46.769 E20.21157
+G1 X113.447 Y46.456 E20.22838
+G1 X113.682 Y46.242 E20.23895
+G1 X113.975 Y45.935 E20.25307
+G1 X114.243 Y45.604 E20.26723
+G1 X114.544 Y45.176 E20.28464
+G1 X114.213 Y44.695 E20.30406
+G1 X113.989 Y44.43 E20.3156
+G1 X113.779 Y44.204 E20.32586
+G1 X113.442 Y43.89 E20.34118
+G1 X113.225 Y43.715 E20.35045
+G1 X112.918 Y43.497 E20.36297
+G1 X112.684 Y43.352 E20.37213
+G1 X112.438 Y43.216 E20.38148
+G1 X112.139 Y43.074 E20.39249
+G1 X111.835 Y42.95 E20.40341
+G1 X111.571 Y42.861 E20.41268
+G1 X111.103 Y42.736 E20.42879
+G1 X110.59 Y42.653 E20.44607
+G1 X110.126 Y42.62 E20.46154
+G1 X109.586 Y42.638 E20.47951
+G1 X102.109 Y43.245 E20.72902
+G1 X102.107 Y47.108 E20.8575
+G1 X109.588 Y47.711 E21.10713
+G0 F9000 X109.566 Y48.111
+;TYPE:WALL-OUTER
+G1 F600 X110.049 Y48.126 E21.1232
+G1 X110.418 Y48.111 E21.13548
+G1 X110.991 Y48.043 E21.15467
+G1 X111.53 Y47.915 E21.1731
+G1 X111.834 Y47.824 E21.18365
+G1 X112.119 Y47.718 E21.19377
+G1 X112.351 Y47.619 E21.20216
+G1 X112.671 Y47.462 E21.21401
+G1 X112.932 Y47.316 E21.22396
+G1 X113.281 Y47.096 E21.23768
+G1 X113.706 Y46.762 E21.25566
+G1 X113.962 Y46.528 E21.2672
+G1 X114.275 Y46.2 E21.28227
+G1 X114.563 Y45.846 E21.29745
+G1 X114.765 Y45.558 E21.30915
+G1 X114.935 Y45.275 E21.32013
+G1 X114.946 Y45.086 E21.32643
+G1 X114.78 Y44.813 E21.33706
+G1 X114.535 Y44.456 E21.35146
+G1 X114.283 Y44.158 E21.36444
+G1 X114.065 Y43.924 E21.37508
+G1 X113.701 Y43.585 E21.39162
+G1 X113.467 Y43.396 E21.40162
+G1 X113.14 Y43.163 E21.41498
+G1 X112.886 Y43.006 E21.42491
+G1 X112.62 Y42.86 E21.435
+G1 X112.301 Y42.708 E21.44676
+G1 X111.974 Y42.574 E21.45851
+G1 X111.687 Y42.478 E21.46857
+G1 X111.338 Y42.384 E21.4806
+G1 X111.087 Y42.328 E21.48915
+G1 X110.636 Y42.255 E21.50435
+G1 X110.134 Y42.22 E21.52108
+G1 X109.563 Y42.238 E21.54008
+G1 X101.984 Y42.853 E21.79299
+G1 X101.789 Y42.97 E21.80055
+G1 X101.709 Y43.137 E21.80671
+G1 X101.706 Y47.21 E21.94218
+G1 X101.767 Y47.348 E21.9472
+G1 X101.943 Y47.495 E21.95483
+G1 X109.566 Y48.111 E22.2092
+G0 F9000 X109.588 Y47.412
+G0 X107.712 Y47.261
+G0 X107.694 Y47.478
+;TYPE:FILL
+G1 F1200 X112.049 Y43.123 E22.41404
+G0 F9000 X111.967 Y43.325
+G0 X111.967 Y47.023
+G0 X112.053 Y47.228
+G1 F1200 X107.695 Y42.871 E22.619
+G0 F9000 X107.712 Y43.09
+G0 X106.57 Y43.182
+G0 X106.553 Y42.963
+G1 F1200 X104.171 Y45.344 E22.73102
+G0 F9000 X104.171 Y45.003
+G1 F1200 X106.553 Y47.386 E22.84309
+G0 F9000 X106.571 Y47.169
+G0 X103.348 Y46.267
+G0 X103.349 Y46.167
+G1 F1200 X102.459 Y47.056 E22.88493
+G0 F9000 X102.477 Y46.84
+G0 X102.391 Y46.196
+G0 X102.28 Y44.756
+G0 X102.401 Y44.154
+G0 X103.35 Y44.082
+G0 X103.35 Y44.182
+G1 F1200 X102.463 Y43.295 E22.92665
+G0 F9000 X102.48 Y43.514
+G0 X102.401 Y44.154
+G0 X102.4 Y44.756
+G0 X102.279 Y46.194
+G0 X102.468 Y46.126
+;TYPE:SKIN
+G1 F600 X103.92 Y46.127 E22.97494
+G1 X104.038 Y46.07 E22.9793
+G1 X104.104 Y45.989 E22.98278
+G1 X104.132 Y45.868 E22.98691
+G1 X104.132 Y44.434 E23.0346
+G1 X104.075 Y44.316 E23.03896
+G1 X103.992 Y44.25 E23.04249
+G1 X103.872 Y44.222 E23.04659
+G1 X102.469 Y44.222 E23.09325
+G1 X102.468 Y46.126 E23.15658
+G0 F9000 X103.06 Y45.925
+G1 F600 X102.666 Y45.532 E23.17509
+G0 F9000 X102.667 Y44.967
+G1 F600 X103.626 Y45.926 E23.2202
+G0 F9000 X103.931 Y45.665
+G1 F600 X102.688 Y44.422 E23.27866
+G0 F9000 X103.253 Y44.422
+G1 F600 X103.931 Y45.099 E23.31053
+G0 F9000 X103.931 Y44.534
+G1 F600 X103.819 Y44.422 E23.3158
+G0 F9000 X103.819 Y44.082
+G0 X113.485 Y46.085
+G0 X113.7 Y45.68
+G1 F556.8 X113.879 Y45.432 E23.32676
+G1 F536.9 X114.058 Y45.184 E23.33813
+G1 F521.7 X113.919 Y44.957 E23.34831
+G1 F539.3 X113.709 Y44.676 E23.36129
+G1 F564.7 X113.424 Y44.369 E23.37609
+G1 X113.244 Y44.556 E23.38526
+G1 X113.232 Y44.651 E23.38865
+G1 X113.267 Y44.757 E23.39259
+G1 F558.1 X113.529 Y45.18 E23.41038
+G1 F562.1 X113.296 Y45.519 E23.42499
+G1 F574.2 X113.252 Y45.689 E23.43109
+G1 X113.277 Y45.782 E23.43444
+G1 X113.456 Y45.942 E23.44278
+G1 F570.1 X113.7 Y45.68 E23.45532
+;MESH:NONMESH
+G0 F300 X113.7 Y45.68 Z1.2
+G0 F9000 X113.485 Y46.085
+G0 X109.928 Y47.422
+G0 X109.914 Y47.864
+;TIME_ELAPSED:64.167970
+;LAYER:5
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F600 X110.448 Y47.852 E23.47308
+G1 X111.07 Y47.765 E23.49397
+G1 X111.456 Y47.67 E23.50719
+G1 X111.865 Y47.55 E23.52137
+G1 X112.361 Y47.341 E23.53927
+G1 X112.796 Y47.115 E23.55558
+G1 X113.092 Y46.93 E23.56719
+G1 X113.438 Y46.686 E23.58127
+G1 X113.752 Y46.416 E23.59504
+G1 X114.073 Y46.099 E23.61005
+G1 X114.332 Y45.8 E23.6232
+G1 X114.6 Y45.451 E23.63784
+G1 X114.768 Y45.175 E23.64859
+G1 X114.576 Y44.866 E23.66068
+G1 X114.326 Y44.54 E23.67435
+G1 X114.07 Y44.241 E23.68744
+G1 X113.713 Y43.893 E23.70402
+G1 X113.372 Y43.618 E23.71859
+G1 X113.002 Y43.359 E23.73361
+G1 X112.577 Y43.115 E23.74991
+G1 X112.202 Y42.933 E23.76378
+G1 X111.756 Y42.766 E23.77962
+G1 X111.368 Y42.656 E23.79303
+G1 X110.974 Y42.568 E23.80646
+G1 X110.477 Y42.502 E23.82313
+G1 X110.064 Y42.485 E23.83688
+G1 X109.683 Y42.49 E23.84956
+G1 X102.018 Y43.14 E24.10541
+G1 X102.017 Y47.209 E24.24074
+G1 X109.549 Y47.847 E24.49216
+G1 X109.914 Y47.864 E24.50431
+G0 F9000 X109.91 Y48.264
+;TYPE:WALL-OUTER
+G1 F600 X110.346 Y48.255 E24.51881
+G1 X110.615 Y48.233 E24.52779
+G1 X111.146 Y48.158 E24.54563
+G1 X111.627 Y48.038 E24.56212
+G1 X111.882 Y47.961 E24.57098
+G1 X112.131 Y47.872 E24.57977
+G1 X112.528 Y47.705 E24.5941
+G1 X112.998 Y47.461 E24.61171
+G1 X113.313 Y47.264 E24.62407
+G1 X113.574 Y47.08 E24.63469
+G1 X113.784 Y46.917 E24.64353
+G1 X114.023 Y46.71 E24.65405
+G1 X114.365 Y46.373 E24.67002
+G1 X114.642 Y46.054 E24.68407
+G1 X114.838 Y45.8 E24.69474
+G1 X114.998 Y45.566 E24.70417
+G1 X115.205 Y45.228 E24.71735
+G1 X115.166 Y45.057 E24.72318
+G1 X114.905 Y44.638 E24.7396
+G1 X114.637 Y44.288 E24.75426
+G1 X114.362 Y43.967 E24.76832
+G1 X113.979 Y43.593 E24.78613
+G1 X113.612 Y43.298 E24.80179
+G1 X113.22 Y43.023 E24.81771
+G1 X112.761 Y42.759 E24.83532
+G1 X112.473 Y42.62 E24.84596
+G1 X112.228 Y42.515 E24.85483
+G1 X111.88 Y42.385 E24.86718
+G1 X111.466 Y42.268 E24.88149
+G1 X111.044 Y42.174 E24.89587
+G1 X110.511 Y42.103 E24.91376
+G1 X110.07 Y42.085 E24.92844
+G1 X109.663 Y42.09 E24.94197
+G1 X101.923 Y42.747 E25.20033
+G1 X101.728 Y42.84 E25.20752
+G1 X101.647 Y42.96 E25.21233
+G1 X101.618 Y43.095 E25.21693
+G1 X101.616 Y47.308 E25.35705
+G1 X101.678 Y47.449 E25.36217
+G1 X101.885 Y47.599 E25.37068
+G1 X109.523 Y48.247 E25.62563
+G1 X109.91 Y48.264 E25.63851
+G0 F9000 X109.911 Y47.566
+G0 X107.591 Y47.383
+G0 X107.572 Y47.6
+;TYPE:FILL
+G1 F1200 X112.168 Y43.004 E25.8547
+G0 F9000 X112.079 Y43.212
+G0 X112.078 Y47.136
+G0 X112.161 Y47.337
+G1 F1200 X107.574 Y42.749 E26.07048
+G0 F9000 X106.692 Y42.823
+G1 F1200 X104.171 Y45.344 E26.18906
+G0 F9000 X104.171 Y45.003
+G1 F1200 X106.692 Y47.524 E26.30764
+G0 F9000 X106.71 Y47.308
+G0 X103.348 Y46.267
+G0 X103.349 Y46.167
+G1 F1200 X102.359 Y47.156 E26.35418
+G0 F9000 X102.377 Y46.94
+G0 X102.312 Y46.196
+G0 X102.19 Y44.154
+G0 X102.512 Y44.152
+G0 X103.35 Y44.082
+G0 X103.35 Y44.182
+G1 F1200 X102.36 Y43.192 E26.40075
+G0 F9000 X102.377 Y43.411
+G0 X102.242 Y44.151
+G0 X102.189 Y46.194
+G0 X102.378 Y46.126
+;TYPE:SKIN
+G1 F600 X103.92 Y46.127 E26.45203
+G1 X104.038 Y46.07 E26.45639
+G1 X104.104 Y45.989 E26.45987
+G1 X104.132 Y45.868 E26.464
+G1 X104.132 Y44.434 E26.51169
+G1 X104.075 Y44.316 E26.51605
+G1 X103.992 Y44.25 E26.51958
+G1 X103.872 Y44.222 E26.52368
+G1 X102.378 Y44.222 E26.57337
+G1 X102.378 Y46.126 E26.6367
+G0 F9000 X102.377 Y46.266
+G0 X103.412 Y46.267
+G0 X103.413 Y45.927
+G1 F600 X103.931 Y45.409 E26.66106
+G0 F9000 X103.931 Y44.844
+G1 F600 X102.848 Y45.926 E26.71198
+G0 F9000 X102.577 Y45.631
+G1 F600 X103.787 Y44.421 E26.76889
+G0 F9000 X103.222 Y44.421
+G1 F600 X102.577 Y45.066 E26.79923
+G0 F9000 X102.577 Y44.5
+G1 F600 X102.656 Y44.421 E26.80295
+G0 F9000 X102.656 Y44.082
+G0 X103.768 Y44.158
+G0 X113.646 Y46.053
+G0 X113.731 Y45.933
+G1 F558.1 X114.043 Y45.557 E26.82042
+G1 F524 X114.293 Y45.17 E26.83796
+G1 X114.073 Y44.835 E26.85323
+G1 F559.4 X113.724 Y44.399 E26.87315
+G1 F572.8 X113.512 Y44.612 E26.88362
+G1 F578.3 X113.5 Y44.703 E26.88679
+G1 X113.538 Y44.815 E26.89087
+G1 F555.6 X113.767 Y45.159 E26.90571
+G1 F553 X113.557 Y45.499 E26.92013
+G1 F572.8 X113.51 Y45.672 E26.92638
+G1 X113.537 Y45.764 E26.92972
+G1 F568.7 X113.731 Y45.933 E26.93875
+G0 F9000 X113.259 Y46.051
+;MESH:NONMESH
+G0 F300 X113.259 Y46.051 Z1.4
+G0 F9000 X110.138 Y47.559
+G0 X110.148 Y48.003
+;TIME_ELAPSED:75.702673
+;LAYER:6
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F811.5 X110.57 Y47.972 E26.95282
+G1 X110.942 Y47.924 E26.9653
+G1 X111.25 Y47.864 E26.97573
+G1 X111.556 Y47.788 E26.98622
+G1 X111.951 Y47.665 E26.99998
+G1 X112.205 Y47.571 E27.00899
+G1 X112.586 Y47.405 E27.02281
+G1 X112.954 Y47.204 E27.03676
+G1 X113.219 Y47.038 E27.04716
+G1 X113.478 Y46.857 E27.05767
+G1 X113.724 Y46.665 E27.06805
+G1 X114.039 Y46.385 E27.08206
+G1 X114.37 Y46.049 E27.09775
+G1 X114.698 Y45.638 E27.11524
+G1 X114.853 Y45.42 E27.12414
+G1 X115.01 Y45.171 E27.13393
+G1 X114.773 Y44.816 E27.14812
+G1 X114.593 Y44.573 E27.15818
+G1 X114.432 Y44.376 E27.16664
+G1 X114.144 Y44.065 E27.18074
+G1 X113.959 Y43.888 E27.18926
+G1 X113.721 Y43.681 E27.19975
+G1 X113.472 Y43.487 E27.21025
+G1 X113.262 Y43.338 E27.21881
+G1 X113.042 Y43.199 E27.22747
+G1 X112.815 Y43.069 E27.23617
+G1 X112.533 Y42.924 E27.24671
+G1 X112.248 Y42.796 E27.25711
+G1 X111.908 Y42.667 E27.2692
+G1 X111.503 Y42.546 E27.28326
+G1 X111.053 Y42.44 E27.29864
+G1 X110.676 Y42.388 E27.31129
+G1 X110.305 Y42.357 E27.32368
+G1 X109.991 Y42.349 E27.33412
+G1 X109.614 Y42.361 E27.34667
+G1 X101.928 Y43.043 E27.60331
+G1 X101.933 Y47.308 E27.74516
+G1 X109.673 Y47.992 E28.0036
+G1 X110.148 Y48.003 E28.0194
+G0 F9000 X110.158 Y48.403
+;TYPE:WALL-OUTER
+G1 F811.5 X110.61 Y48.37 E28.03448
+G1 X111.006 Y48.319 E28.04776
+G1 X111.336 Y48.255 E28.05894
+G1 X111.664 Y48.174 E28.07018
+G1 X112.081 Y48.044 E28.0847
+G1 X112.355 Y47.942 E28.09443
+G1 X112.762 Y47.765 E28.10919
+G1 X113.156 Y47.549 E28.12413
+G1 X113.439 Y47.372 E28.13524
+G1 X113.716 Y47.179 E28.14646
+G1 X113.98 Y46.973 E28.1576
+G1 X114.315 Y46.675 E28.17251
+G1 X114.67 Y46.315 E28.18933
+G1 X115.018 Y45.879 E28.20788
+G1 X115.191 Y45.634 E28.21786
+G1 X115.428 Y45.259 E28.23261
+G1 X115.421 Y45.068 E28.23897
+G1 X115.11 Y44.598 E28.25772
+G1 X114.909 Y44.327 E28.26894
+G1 X114.734 Y44.113 E28.27813
+G1 X114.429 Y43.784 E28.29305
+G1 X114.229 Y43.592 E28.30228
+G1 X113.975 Y43.372 E28.31345
+G1 X113.71 Y43.165 E28.32464
+G1 X113.484 Y43.006 E28.33383
+G1 X113.249 Y42.857 E28.34308
+G1 X113.006 Y42.717 E28.35241
+G1 X112.707 Y42.564 E28.36358
+G1 X112.401 Y42.426 E28.37475
+G1 X112.037 Y42.288 E28.38769
+G1 X111.606 Y42.159 E28.40266
+G1 X111.126 Y42.046 E28.41906
+G1 X110.72 Y41.99 E28.43269
+G1 X110.327 Y41.957 E28.44581
+G1 X109.99 Y41.949 E28.45702
+G1 X109.59 Y41.961 E28.47033
+G1 X101.783 Y42.655 E28.73101
+G1 X101.656 Y42.727 E28.73587
+G1 X101.529 Y42.959 E28.74467
+G1 X101.529 Y47.38 E28.89171
+G1 X101.61 Y47.573 E28.89867
+G1 X101.822 Y47.7 E28.90689
+G1 X109.651 Y48.392 E29.1683
+G1 X110.158 Y48.403 E29.18517
+G0 F9000 X110.143 Y47.704
+G0 X112.19 Y47.251
+G0 X112.276 Y47.451
+;TYPE:FILL
+G1 F1622.9 X107.456 Y42.632 E29.41186
+G0 F9000 X106.828 Y42.687
+G1 F1622.9 X106.271 Y43.245 E29.43808
+G0 F9000 X106.271 Y43.145
+G0 X104.278 Y43.213
+G0 X103.349 Y44.082
+G0 X103.349 Y44.181
+G1 F1622.9 X102.261 Y43.093 E29.48926
+G0 F9000 X102.279 Y43.312
+G0 X104.345 Y43.206
+G0 X107.469 Y43.24
+G0 X107.643 Y43.46
+G0 X107.618 Y46.959
+G0 X107.395 Y47.136
+G0 X104.207 Y47.11
+G0 X103.348 Y46.267
+G0 X103.349 Y46.167
+G1 F1622.9 X102.259 Y47.256 E29.54051
+G0 F9000 X102.278 Y47.04
+G0 X106.271 Y47.204
+G0 X106.271 Y47.103
+G1 F1622.9 X106.827 Y47.659 E29.56666
+G0 F9000 X107.456 Y47.716
+G1 F1622.9 X112.276 Y42.896 E29.79338
+G0 F9000 X112.185 Y43.096
+G0 X113.436 Y45.302
+G0 X113.927 Y46.054
+G0 X114.002 Y45.934
+;TYPE:SKIN
+G1 F741.1 X114.197 Y45.666 E29.80545
+G1 F721.3 X114.392 Y45.397 E29.81788
+G1 F692.1 X114.529 Y45.171 E29.82819
+G1 F673.4 X114.284 Y44.833 E29.84492
+G1 X114.002 Y44.486 E29.86284
+G1 X113.83 Y44.659 E29.87262
+G1 X113.813 Y44.766 E29.87696
+G1 F686.2 X114.017 Y45.169 E29.89472
+G1 F742.8 X113.809 Y45.515 E29.90939
+G1 F789.7 X113.789 Y45.735 E29.91694
+G1 X113.803 Y45.774 E29.91836
+G1 F769.2 X114.002 Y45.934 E29.92732
+G0 F9000 X113.927 Y46.054
+G0 X107.588 Y47.095
+G0 X107.477 Y47.006
+G1 F811.5 X107.543 Y46.925 E29.93079
+G1 X107.571 Y46.804 E29.93492
+G1 X107.571 Y43.497 E30.04491
+G1 X107.514 Y43.379 E30.04927
+G1 X107.431 Y43.313 E30.0528
+G1 X107.311 Y43.285 E30.0569
+G1 X104.315 Y43.285 E30.15655
+G1 X104.197 Y43.342 E30.1609
+G1 X104.103 Y43.46 E30.16592
+G1 X104.103 Y44.022 E30.18461
+G1 X104.024 Y44.182 E30.19055
+G1 X103.904 Y44.222 E30.19476
+G1 X102.289 Y44.223 E30.24847
+G1 X102.289 Y46.126 E30.31177
+G1 X103.904 Y46.128 E30.36548
+G1 X104.024 Y46.168 E30.36969
+G1 X104.103 Y46.328 E30.37562
+G1 X104.104 Y46.852 E30.39305
+G1 X104.161 Y46.97 E30.39741
+G1 X104.242 Y47.036 E30.40089
+G1 X104.363 Y47.064 E30.40502
+G1 X107.359 Y47.063 E30.50466
+G1 X107.477 Y47.006 E30.50902
+G0 F9000 X107.588 Y47.095
+G0 X107.711 Y44.013
+G0 X107.37 Y44.013
+G1 F811.5 X106.841 Y43.484 E30.5339
+G0 F9000 X106.276 Y43.484
+G1 F811.5 X107.37 Y44.579 E30.58539
+G0 F9000 X107.37 Y45.145
+G1 F811.5 X105.71 Y43.484 E30.66349
+G0 F9000 X105.144 Y43.484
+G1 F811.5 X107.37 Y45.71 E30.7682
+G0 F9000 X107.37 Y46.276
+G1 F811.5 X104.578 Y43.484 E30.89952
+G0 F9000 X104.301 Y43.773
+G1 F811.5 X107.361 Y46.833 E31.04346
+G0 F9000 X106.825 Y46.862
+G1 F811.5 X104.221 Y44.258 E31.16594
+G0 F9000 X103.819 Y44.422
+G1 F811.5 X106.259 Y46.862 E31.28071
+G0 F9000 X105.694 Y46.863
+G1 F811.5 X103.253 Y44.422 E31.39553
+G0 F9000 X102.688 Y44.423
+G1 F811.5 X105.129 Y46.863 E31.51032
+G0 F9000 X104.563 Y46.863
+G1 F811.5 X104.302 Y46.602 E31.5226
+G0 F9000 X103.627 Y45.927
+G1 F811.5 X102.488 Y44.788 E31.57617
+G0 F9000 X102.488 Y45.353
+G1 F811.5 X103.06 Y45.926 E31.6031
+G0 F9000 X103.059 Y46.567
+;MESH:NONMESH
+G0 F300 X103.059 Y46.567 Z1.6
+G0 F9000 X102.178 Y46.216
+G0 X101.448 Y45.077
+;TIME_ELAPSED:88.530328
+;LAYER:7
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F823.2 X101.439 Y45.194 E31.60704
+G0 F9000 X101.702 Y45.893
+G0 X104.352 Y47.143
+G0 X109.555 Y47.817
+G0 X109.527 Y48.115
+;TYPE:WALL-INNER
+G1 F831.4 X109.971 Y48.133 E31.62182
+G1 X110.407 Y48.119 E31.63633
+G1 X110.737 Y48.089 E31.64735
+G1 X111.059 Y48.041 E31.65818
+G1 X111.493 Y47.948 E31.67294
+G1 X111.851 Y47.846 E31.68532
+G1 X112.227 Y47.716 E31.69856
+G1 X112.578 Y47.565 E31.71127
+G1 X112.926 Y47.39 E31.72422
+G1 X113.258 Y47.202 E31.73691
+G1 X113.619 Y46.951 E31.75153
+G1 X113.837 Y46.784 E31.76067
+G1 X114.086 Y46.572 E31.77155
+G1 X114.409 Y46.26 E31.78648
+G1 X114.592 Y46.063 E31.79542
+G1 X114.905 Y45.684 E31.81177
+G1 X115.241 Y45.183 E31.83184
+G1 X115.032 Y44.845 E31.84505
+G1 X114.728 Y44.448 E31.86169
+G1 X114.513 Y44.199 E31.87263
+G1 X114.247 Y43.924 E31.88535
+G1 X113.914 Y43.627 E31.90019
+G1 X113.704 Y43.46 E31.90912
+G1 X113.486 Y43.303 E31.91805
+G1 X113.108 Y43.061 E31.93298
+G1 X112.87 Y42.929 E31.94203
+G1 X112.575 Y42.781 E31.95301
+G1 X112.208 Y42.625 E31.96627
+G1 X111.912 Y42.523 E31.97669
+G1 X111.646 Y42.443 E31.98593
+G1 X111.383 Y42.375 E31.99496
+G1 X110.902 Y42.279 E32.01127
+G1 X110.516 Y42.239 E32.02418
+G1 X110.018 Y42.212 E32.04077
+G1 X109.523 Y42.235 E32.05725
+G1 X101.847 Y42.945 E32.31365
+G1 X101.843 Y44.276 E32.35791
+G1 X102.252 Y44.333 E32.37165
+G1 X102.452 Y44.507 E32.38047
+G1 X102.568 Y44.744 E32.38924
+G1 X102.568 Y45.606 E32.41791
+G1 X102.45 Y45.844 E32.42675
+G1 X102.251 Y46.017 E32.43552
+G1 X101.842 Y46.064 E32.44921
+G1 X101.842 Y47.393 E32.49341
+G1 X101.867 Y47.406 E32.49435
+G1 X109.527 Y48.115 E32.75021
+G0 F9000 X109.5 Y48.514
+;TYPE:WALL-OUTER
+G1 F831.4 X109.969 Y48.533 E32.76583
+G1 X110.432 Y48.519 E32.78123
+G1 X110.785 Y48.486 E32.79302
+G1 X111.13 Y48.435 E32.80462
+G1 X111.59 Y48.336 E32.82027
+G1 X111.971 Y48.228 E32.83344
+G1 X112.371 Y48.09 E32.84752
+G1 X112.747 Y47.928 E32.86114
+G1 X113.115 Y47.743 E32.87483
+G1 X113.471 Y47.541 E32.88845
+G1 X113.855 Y47.274 E32.904
+G1 X114.089 Y47.095 E32.9138
+G1 X114.355 Y46.868 E32.92543
+G1 X114.695 Y46.54 E32.94115
+G1 X114.893 Y46.327 E32.95082
+G1 X115.226 Y45.924 E32.96821
+G1 X115.49 Y45.531 E32.98395
+G1 X115.625 Y45.305 E32.99271
+G1 X115.661 Y45.1 E32.99963
+G1 X115.362 Y44.617 E33.01853
+G1 X115.038 Y44.195 E33.03622
+G1 X114.808 Y43.929 E33.04792
+G1 X114.524 Y43.636 E33.06149
+G1 X114.172 Y43.321 E33.0772
+G1 X113.946 Y43.141 E33.08681
+G1 X113.711 Y42.972 E33.09644
+G1 X113.313 Y42.717 E33.11216
+G1 X113.057 Y42.575 E33.1219
+G1 X112.743 Y42.418 E33.13357
+G1 X112.352 Y42.251 E33.14771
+G1 X112.035 Y42.142 E33.15886
+G1 X111.754 Y42.057 E33.16863
+G1 X111.472 Y41.985 E33.17831
+G1 X110.962 Y41.883 E33.19561
+G1 X110.548 Y41.84 E33.20945
+G1 X110.02 Y41.811 E33.22704
+G1 X109.495 Y41.836 E33.24452
+G1 X101.725 Y42.555 E33.50405
+G1 X101.545 Y42.657 E33.51093
+G1 X101.444 Y42.911 E33.52003
+G1 F829.3 X101.445 Y43.633 E33.5441
+G1 F821.1 X101.446 Y44.355 E33.56841
+G1 F815.1 X101.448 Y45.077 E33.59291
+G1 F821.1 X101.607 Y44.8 E33.60366
+G1 F831.4 X101.773 Y44.7 E33.61011
+G1 X101.925 Y44.667 E33.61528
+G1 X102.063 Y44.686 E33.61992
+G1 X102.168 Y44.822 E33.62563
+G1 X102.168 Y45.526 E33.64905
+G1 X102.062 Y45.664 E33.65483
+G1 X101.915 Y45.681 E33.65976
+G1 X101.742 Y45.635 E33.66571
+G1 F833.5 X101.554 Y45.494 E33.67351
+G1 F835.6 X101.439 Y45.194 E33.68414
+G1 F833.5 X101.442 Y47.448 E33.75892
+G1 F831.4 X101.543 Y47.689 E33.76761
+G1 X101.753 Y47.798 E33.77548
+G1 X109.5 Y48.514 E34.03424
+G0 F9000 X109.559 Y47.817
+G0 X107.361 Y47.614
+G0 X107.34 Y47.832
+;TYPE:FILL
+G1 F1662.8 X112.386 Y42.787 E34.27157
+G0 F9000 X112.301 Y42.989
+G0 X112.3 Y47.359
+G0 X112.385 Y47.56
+G1 F1662.8 X107.342 Y42.517 E34.50878
+G0 F9000 X106.964 Y42.552
+G1 F1662.8 X106.271 Y43.245 E34.54137
+G0 F9000 X106.271 Y43.145
+G0 X104.278 Y43.213
+G0 X103.424 Y44.157
+G0 X103.424 Y44.257
+G1 F1662.8 X102.164 Y42.997 E34.60064
+G0 F9000 X102.183 Y43.214
+G0 X107.469 Y43.24
+G0 X107.643 Y43.46
+G0 X107.617 Y46.96
+G0 X107.395 Y47.136
+G0 X104.207 Y47.11
+G0 X103.422 Y46.194
+G0 X103.422 Y46.094
+G1 F1662.8 X102.162 Y47.353 E34.65988
+G0 F9000 X102.182 Y47.136
+G0 X106.271 Y47.204
+G0 X106.271 Y47.103
+G1 F1662.8 X106.965 Y47.797 E34.69253
+G0 F9000 X107.477 Y47.006
+;TYPE:SKIN
+G1 F831.4 X107.543 Y46.925 E34.696
+G1 X107.571 Y46.804 E34.70013
+G1 X107.571 Y43.497 E34.81012
+G1 X107.514 Y43.379 E34.81448
+G1 X107.431 Y43.313 E34.81801
+G1 X107.311 Y43.285 E34.82211
+G1 X104.315 Y43.285 E34.92176
+G1 X104.197 Y43.342 E34.92611
+G1 X104.103 Y43.46 E34.93113
+G1 X104.103 Y44.097 E34.95232
+G1 X104.031 Y44.252 E34.958
+G1 X103.903 Y44.298 E34.96253
+G1 X102.74 Y44.298 E35.00121
+G1 X102.76 Y44.323 E35.00227
+G1 X102.928 Y44.665 E35.01495
+G1 X102.928 Y45.687 E35.04894
+G1 X102.746 Y46.053 E35.06253
+G1 X103.903 Y46.054 E35.10102
+G1 X104.031 Y46.099 E35.10553
+G1 X104.103 Y46.254 E35.11121
+G1 X104.104 Y46.852 E35.1311
+G1 X104.161 Y46.97 E35.13546
+G1 X104.242 Y47.036 E35.13894
+G1 X104.363 Y47.064 E35.14307
+G1 X107.359 Y47.063 E35.24271
+G1 X107.477 Y47.006 E35.24707
+G0 F9000 X107.002 Y46.863
+G1 F831.4 X107.369 Y46.496 E35.26434
+G0 F9000 X107.369 Y45.93
+G1 F831.4 X106.437 Y46.863 E35.3082
+G0 F9000 X105.871 Y46.863
+G1 F831.4 X107.369 Y45.365 E35.37866
+G0 F9000 X107.369 Y44.799
+G1 F831.4 X105.305 Y46.864 E35.47577
+G0 F9000 X104.739 Y46.864
+G1 F831.4 X107.369 Y44.233 E35.5995
+G0 F9000 X107.369 Y43.668
+G1 F831.4 X104.303 Y46.734 E35.74371
+G0 F9000 X104.284 Y46.188
+G1 F831.4 X106.987 Y43.484 E35.87088
+G0 F9000 X106.421 Y43.484
+G1 F831.4 X104.012 Y45.894 E35.98421
+G0 F9000 X103.486 Y45.854
+G1 F831.4 X105.856 Y43.484 E36.09569
+G0 F9000 X105.29 Y43.484
+G1 F831.4 X103.123 Y45.652 E36.19764
+G0 F9000 X103.127 Y45.082
+G1 F831.4 X103.711 Y44.498 E36.22511
+G0 F9000 X103.145 Y44.498
+G1 F831.4 X103.084 Y44.559 E36.22798
+G0 F9000 X103.084 Y44.157
+G0 X103.963 Y43.907
+G0 X104.302 Y43.907
+G1 F831.4 X104.724 Y43.484 E36.24785
+G0 F9000 X104.724 Y43.145
+G0 X107.469 Y43.24
+G0 X114.229 Y45.949
+G0 X114.308 Y45.823
+G1 F786.2 X114.579 Y45.495 E36.26282
+G1 F735.7 X114.773 Y45.162 E36.2773
+G1 F697.2 X114.307 Y44.556 E36.30762
+G1 X114.116 Y44.747 E36.31834
+G1 X114.129 Y44.873 E36.32336
+G1 X114.24 Y45.182 E36.33638
+G1 F744 X114.117 Y45.412 E36.34608
+G1 F795.6 X114.082 Y45.584 E36.35218
+G1 X114.112 Y45.667 E36.35525
+G1 X114.308 Y45.823 E36.36395
+G0 F9000 X113.847 Y45.971
+;MESH:NONMESH
+G0 F300 X113.847 Y45.971 Z1.8
+G0 F9000 X107.362 Y42.848
+G0 X104.278 Y43.213
+G0 X101.683 Y44.438
+G0 X101.358 Y45.084
+;TIME_ELAPSED:102.012987
+;LAYER:8
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F702.8 X101.356 Y45.224 E36.36934
+G0 F9000 X101.563 Y45.887
+G0 X104.312 Y47.501
+G0 X110.114 Y47.961
+G0 X110.117 Y48.26
+;TYPE:WALL-INNER
+G1 F813.5 X110.518 Y48.24 E36.3827
+G1 X110.971 Y48.187 E36.39787
+G1 X111.462 Y48.096 E36.41448
+G1 X111.974 Y47.952 E36.43217
+G1 X112.298 Y47.836 E36.44361
+G1 X112.718 Y47.658 E36.45878
+G1 X113.031 Y47.501 E36.47043
+G1 X113.278 Y47.362 E36.47986
+G1 X113.52 Y47.208 E36.4894
+G1 X113.805 Y47.009 E36.50096
+G1 X114.122 Y46.758 E36.51441
+G1 X114.463 Y46.447 E36.52976
+G1 X114.812 Y46.081 E36.54658
+G1 X115.104 Y45.713 E36.5622
+G1 X115.472 Y45.176 E36.58385
+G1 X115.227 Y44.808 E36.59856
+G1 X114.962 Y44.449 E36.6134
+G1 X114.755 Y44.207 E36.62399
+G1 X114.58 Y44.019 E36.63253
+G1 X114.29 Y43.738 E36.64597
+G1 X113.899 Y43.404 E36.66307
+G1 X113.473 Y43.11 E36.68028
+G1 X113.076 Y42.873 E36.69566
+G1 X112.605 Y42.64 E36.71314
+G1 X112.29 Y42.509 E36.72449
+G1 X112.03 Y42.416 E36.73367
+G1 X111.53 Y42.272 E36.75098
+G1 X111.068 Y42.172 E36.7667
+G1 X110.513 Y42.109 E36.78528
+G1 X110.014 Y42.085 E36.80189
+G1 X109.612 Y42.1 E36.81527
+G1 X101.762 Y42.851 E37.07756
+G1 X101.746 Y43.123 E37.08662
+G1 X101.747 Y43.276 E37.09171
+G1 X101.759 Y43.542 E37.10056
+G1 X101.726 Y43.665 E37.1048
+G1 X101.726 Y44.323 E37.12669
+G1 X101.957 Y44.278 E37.13451
+G1 X102.293 Y44.352 E37.14596
+G1 X102.576 Y44.532 E37.15711
+G1 X102.754 Y44.82 E37.16837
+G1 X102.831 Y45.152 E37.17971
+G1 X102.724 Y45.567 E37.19396
+G1 X102.622 Y45.754 E37.20105
+G1 X102.419 Y45.916 E37.20969
+G1 X102.187 Y46.031 E37.2183
+G1 X101.726 Y46.078 E37.23371
+G1 X101.726 Y47.19 E37.2707
+G1 X101.74 Y47.199 E37.27125
+G1 X101.769 Y47.498 E37.28124
+G1 X109.439 Y48.235 E37.53752
+G1 X109.841 Y48.259 E37.55091
+G1 X110.117 Y48.26 E37.56009
+G0 F9000 X109.829 Y48.659
+;TYPE:WALL-OUTER
+G1 F813.5 X110.126 Y48.66 E37.56997
+G1 X110.551 Y48.639 E37.58413
+G1 X111.031 Y48.583 E37.6002
+G1 X111.553 Y48.486 E37.61786
+G1 X112.096 Y48.333 E37.63662
+G1 X112.605 Y48.145 E37.65467
+G1 X112.89 Y48.02 E37.66502
+G1 X113.219 Y47.854 E37.67728
+G1 X113.484 Y47.705 E37.68739
+G1 X113.742 Y47.541 E37.69756
+G1 X114.044 Y47.33 E37.70981
+G1 X114.381 Y47.063 E37.72411
+G1 X114.743 Y46.733 E37.7404
+G1 X115.114 Y46.344 E37.75828
+G1 X115.426 Y45.951 E37.77497
+G1 X115.739 Y45.496 E37.79334
+G1 X115.873 Y45.269 E37.80211
+G1 X115.863 Y45.071 E37.8087
+G1 X115.721 Y44.828 E37.81806
+G1 X115.549 Y44.571 E37.82835
+G1 X115.276 Y44.201 E37.84364
+G1 X115.049 Y43.935 E37.85527
+G1 X114.866 Y43.739 E37.86419
+G1 X114.56 Y43.442 E37.87837
+G1 X114.138 Y43.081 E37.89684
+G1 X113.689 Y42.773 E37.91495
+G1 X113.268 Y42.521 E37.93127
+G1 X112.771 Y42.276 E37.9497
+G1 X112.434 Y42.135 E37.96185
+G1 X112.156 Y42.036 E37.97167
+G1 X111.737 Y41.908 E37.98624
+G1 X111.133 Y41.777 E38.0068
+G1 X110.545 Y41.71 E38.02648
+G1 X110.016 Y41.685 E38.04409
+G1 X109.586 Y41.701 E38.0584
+G1 X101.632 Y42.462 E38.32416
+G1 X101.439 Y42.587 E38.33181
+G1 X101.364 Y42.732 E38.33724
+G1 X101.357 Y43.063 E38.34825
+G1 X101.326 Y43.083 E38.34948
+G1 X101.354 Y43.555 E38.36521
+G1 X101.326 Y43.578 E38.36641
+G1 F809.5 X101.327 Y44.728 E38.40485
+G1 F748.1 X101.358 Y45.084 E38.41778
+G1 F721.5 X101.427 Y44.929 E38.42414
+G1 F778.5 X101.729 Y44.699 E38.43733
+G1 F813.5 X101.879 Y44.67 E38.44242
+G1 X102.157 Y44.728 E38.45186
+G1 X102.329 Y44.874 E38.45936
+G1 X102.431 Y45.148 E38.46909
+G1 X102.32 Y45.519 E38.48197
+G1 X102.015 Y45.669 E38.49327
+G1 X101.88 Y45.683 E38.49779
+G1 X101.598 Y45.589 E38.50767
+G1 F784.1 X101.422 Y45.404 E38.51649
+G1 F731.3 X101.356 Y45.224 E38.52358
+G1 F751.5 X101.329 Y45.566 E38.53593
+G1 F803.5 X101.328 Y46.423 E38.56479
+G1 F811.5 X101.326 Y47.28 E38.59337
+G1 F813.5 X101.352 Y47.297 E38.5944
+G1 X101.375 Y47.628 E38.60544
+G1 X101.526 Y47.837 E38.61401
+G1 X101.671 Y47.892 E38.61917
+G1 X109.408 Y48.634 E38.87768
+G1 X109.829 Y48.659 E38.89171
+G0 F9000 X109.856 Y47.96
+G0 X107.249 Y47.726
+G0 X107.228 Y47.944
+;TYPE:FILL
+G1 F1627 X112.492 Y42.68 E39.13931
+G0 F9000 X112.408 Y42.881
+G0 X112.405 Y47.47
+G0 X112.492 Y47.667
+G1 F1627 X107.233 Y42.408 E39.38668
+G1 X107.094 Y42.421
+G1 X106.271 Y43.245 E39.42542
+G0 F9000 X106.271 Y43.145
+G0 X104.278 Y43.213
+G0 X104.058 Y43.387
+G0 X103.963 Y44.894
+G0 X104.062 Y44.894
+G1 F1627 X102.07 Y42.902 E39.51911
+G0 F9000 X102.09 Y43.119
+G0 X103.963 Y45.454
+G0 X104.062 Y45.454
+G1 F1627 X102.064 Y47.451 E39.61307
+G0 F9000 X102.085 Y47.23
+G0 X106.271 Y47.204
+G0 X106.271 Y47.103
+G1 F1627 X107.099 Y47.931 E39.65202
+G0 F9000 X107.477 Y47.006
+;TYPE:SKIN
+G1 F813.5 X107.543 Y46.925 E39.65549
+G1 X107.571 Y46.804 E39.65962
+G1 X107.571 Y43.497 E39.76961
+G1 X107.514 Y43.379 E39.77397
+G1 X107.431 Y43.313 E39.7775
+G1 X107.311 Y43.285 E39.7816
+G1 X104.315 Y43.285 E39.88124
+G1 X104.197 Y43.342 E39.8856
+G1 X104.131 Y43.425 E39.88913
+G1 X104.103 Y43.545 E39.89323
+G1 X104.104 Y46.852 E40.00322
+G1 X104.161 Y46.97 E40.00758
+G1 X104.242 Y47.036 E40.01105
+G1 X104.363 Y47.064 E40.01518
+G1 X107.359 Y47.063 E40.11483
+G1 X107.477 Y47.006 E40.11919
+G0 F9000 X107.588 Y47.095
+G0 X107.329 Y47.143
+G0 X104.207 Y47.11
+G0 X103.963 Y46.602
+G0 X104.302 Y46.602
+G1 F813.5 X104.563 Y46.863 E40.13147
+G0 F9000 X105.129 Y46.863
+G1 F813.5 X104.302 Y46.036 E40.17037
+G0 F9000 X104.302 Y45.471
+G1 F813.5 X105.694 Y46.863 E40.23584
+G0 F9000 X106.259 Y46.862
+G1 F813.5 X104.301 Y44.904 E40.32794
+G0 F9000 X104.301 Y44.339
+G1 F813.5 X106.825 Y46.862 E40.44664
+G0 F9000 X107.361 Y46.833
+G1 F813.5 X104.301 Y43.773 E40.59057
+G0 F9000 X104.578 Y43.484
+G1 F813.5 X107.37 Y46.276 E40.7219
+G0 F9000 X107.37 Y45.71
+G1 F813.5 X105.144 Y43.484 E40.8266
+G0 F9000 X105.71 Y43.484
+G1 F813.5 X107.37 Y45.145 E40.90471
+G0 F9000 X107.37 Y44.579
+G1 F813.5 X106.276 Y43.484 E40.95619
+G0 F9000 X106.841 Y43.484
+G1 F813.5 X107.37 Y44.013 E40.98107
+G0 F9000 X107.711 Y44.013
+G0 X114.492 Y45.885
+G0 X114.595 Y45.743
+G1 F737.9 X114.801 Y45.482 E40.99326
+G1 X115.019 Y45.165 E41.00737
+G1 X114.607 Y44.613 E41.03263
+G1 X114.526 Y44.659 E41.03605
+G1 X114.467 Y44.765 E41.04049
+G1 X114.529 Y45.153 E41.0549
+G1 X114.465 Y45.5 E41.06784
+G1 X114.509 Y45.693 E41.0751
+G1 X114.595 Y45.743 E41.07875
+G0 F9000 X114.12 Y45.94
+;MESH:NONMESH
+G0 F300 X114.12 Y45.94 Z2
+G0 F9000 X107.362 Y42.848
+G0 X104.179 Y42.867
+G0 X101.572 Y44.508
+G0 X101.307 Y45.105
+;TIME_ELAPSED:115.008526
+;LAYER:9
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1244.8 X101.304 Y45.249 E41.08414
+G0 F9000 X101.536 Y45.877
+G0 X101.853 Y47.436
+G0 X109.568 Y48.266
+G0 X109.561 Y48.37
+;TYPE:WALL-INNER
+G1 F1400.4 X110.056 Y48.383 E41.10061
+G1 X110.396 Y48.372 E41.11192
+G1 X110.994 Y48.311 E41.13191
+G1 X111.507 Y48.214 E41.14928
+G1 X111.92 Y48.106 E41.16348
+G1 X112.203 Y48.016 E41.17335
+G1 X112.529 Y47.889 E41.18499
+G1 X112.975 Y47.689 E41.20125
+G1 X113.395 Y47.46 E41.21716
+G1 X113.747 Y47.234 E41.23107
+G1 X114.09 Y46.983 E41.24521
+G1 X114.322 Y46.794 E41.25516
+G1 X114.542 Y46.596 E41.26501
+G1 X114.844 Y46.292 E41.27926
+G1 X115.039 Y46.074 E41.28899
+G1 X115.385 Y45.64 E41.30745
+G1 X115.681 Y45.176 E41.32575
+G1 X115.471 Y44.843 E41.33885
+G1 X115.151 Y44.402 E41.35697
+G1 X114.879 Y44.095 E41.37061
+G1 X114.58 Y43.789 E41.38484
+G1 X114.363 Y43.591 E41.39461
+G1 X114.036 Y43.324 E41.40865
+G1 X113.644 Y43.045 E41.42465
+G1 X113.229 Y42.795 E41.44077
+G1 X112.966 Y42.657 E41.45065
+G1 X112.703 Y42.533 E41.46032
+G1 X112.202 Y42.336 E41.47822
+G1 X111.501 Y42.135 E41.50248
+G1 X111.163 Y42.066 E41.51395
+G1 X110.813 Y42.015 E41.52572
+G1 X110.404 Y41.978 E41.53937
+G1 X110 Y41.966 E41.55282
+G1 X109.286 Y42.008 E41.57661
+G1 X101.684 Y42.76 E41.83068
+G1 X101.671 Y43.083 E41.84144
+G1 X101.666 Y43.491 E41.85501
+G1 X101.672 Y43.752 E41.86369
+G1 X101.679 Y43.797 E41.8652
+G1 X101.678 Y44.277 E41.88117
+G1 X101.875 Y44.262 E41.88774
+G1 X102.239 Y44.351 E41.9002
+G1 X102.489 Y44.53 E41.91043
+G1 X102.614 Y44.681 E41.91695
+G1 X102.734 Y44.918 E41.92579
+G1 X102.771 Y45.15 E41.9336
+G1 X102.698 Y45.573 E41.94788
+G1 X102.508 Y45.797 E41.95765
+G1 X102.195 Y46.021 E41.97045
+G1 X102.039 Y46.064 E41.97583
+G1 X101.679 Y46.07 E41.98781
+G1 X101.679 Y46.244 E41.99359
+G1 X101.674 Y46.559 E42.00407
+G1 X101.672 Y46.713 E42.00919
+G1 X101.671 Y47.08 E42.0214
+G1 X101.671 Y47.25 E42.02705
+G1 X101.691 Y47.591 E42.03842
+G1 X109.561 Y48.37 E42.30145
+G0 F9000 X110.058 Y48.783
+;TYPE:WALL-OUTER
+G1 F1400.4 X110.423 Y48.771 E42.3136
+G1 X111.051 Y48.707 E42.33459
+G1 X111.595 Y48.605 E42.353
+G1 X112.032 Y48.49 E42.36803
+G1 X112.337 Y48.393 E42.37868
+G1 X112.683 Y48.258 E42.39103
+G1 X113.153 Y48.047 E42.40817
+G1 X113.599 Y47.804 E42.42506
+G1 X113.973 Y47.564 E42.43984
+G1 X114.335 Y47.299 E42.45476
+G1 X114.582 Y47.098 E42.46535
+G1 X114.818 Y46.886 E42.4759
+G1 X115.135 Y46.567 E42.49086
+G1 X115.345 Y46.332 E42.50134
+G1 X115.625 Y45.981 E42.51628
+G1 X115.783 Y45.76 E42.52531
+G1 X115.948 Y45.511 E42.53525
+G1 X116.091 Y45.268 E42.54463
+G1 X116.091 Y45.074 E42.55108
+G1 X115.803 Y44.618 E42.56902
+G1 X115.539 Y44.255 E42.58395
+G1 X115.382 Y44.059 E42.5923
+G1 X115.172 Y43.822 E42.60283
+G1 X114.858 Y43.501 E42.61777
+G1 X114.625 Y43.288 E42.62826
+G1 X114.279 Y43.006 E42.64311
+G1 X113.864 Y42.71 E42.66007
+G1 X113.425 Y42.446 E42.6771
+G1 X113.144 Y42.299 E42.68765
+G1 X112.861 Y42.165 E42.69807
+G1 X112.33 Y41.957 E42.71703
+G1 X111.597 Y41.746 E42.7424
+G1 X111.232 Y41.672 E42.75479
+G1 X110.86 Y41.617 E42.7673
+G1 X110.428 Y41.578 E42.78172
+G1 X109.994 Y41.566 E42.79616
+G1 X109.254 Y41.609 E42.82082
+G1 X101.541 Y42.37 E43.0786
+G1 X101.374 Y42.486 E43.08536
+G1 X101.283 Y42.648 E43.09154
+G1 X101.273 Y43.058 E43.10518
+G1 X101.246 Y43.075 E43.10624
+G1 X101.279 Y43.415 E43.11761
+G1 X101.248 Y43.491 E43.12034
+G1 X101.279 Y43.567 E43.12307
+G1 X101.25 Y43.752 E43.12929
+G1 X101.279 Y43.816 E43.13163
+G1 X101.253 Y43.993 E43.13758
+G1 X101.278 Y44.04 E43.13935
+G1 F1393.4 X101.248 Y44.448 E43.15303
+G1 F1376.3 X101.256 Y44.783 E43.16437
+G1 F1296.6 X101.307 Y45.105 E43.17608
+G1 F1305.7 X101.455 Y44.814 E43.18772
+G1 F1389.9 X101.781 Y44.653 E43.19991
+G1 F1396.9 X102.146 Y44.736 E43.21239
+G1 F1400.4 X102.346 Y45.015 E43.22381
+G1 X102.371 Y45.146 E43.22824
+G1 X102.299 Y45.453 E43.23873
+G1 X102.037 Y45.653 E43.24969
+G1 X101.755 Y45.68 E43.25911
+G1 X101.557 Y45.602 E43.26619
+G1 F1353 X101.35 Y45.381 E43.27662
+G1 F1281.8 X101.304 Y45.249 E43.2817
+G1 F1324.2 X101.274 Y45.622 E43.29486
+G1 F1400.4 X101.281 Y45.704 E43.29759
+G1 X101.275 Y46.14 E43.3121
+G1 X101.275 Y46.236 E43.31529
+G1 X101.278 Y46.504 E43.3242
+G1 X101.246 Y46.57 E43.32664
+G1 X101.279 Y46.953 E43.33943
+G1 X101.246 Y47.278 E43.3503
+G1 X101.276 Y47.298 E43.35149
+G1 X101.289 Y47.677 E43.36411
+G1 X101.38 Y47.867 E43.37111
+G1 X101.541 Y47.978 E43.37762
+G1 X109.626 Y48.772 E43.64782
+G1 X110.058 Y48.783 E43.66219
+G0 F9000 X109.953 Y48.279
+G0 X111.572 Y48.031
+G0 X112.354 Y47.768
+G0 X112.416 Y47.591
+;TYPE:FILL
+G1 F2800.7 X112.596 Y47.772 E43.67068
+G0 F9000 X112.507 Y47.572
+G0 X113.476 Y47.055
+G0 X113.591 Y47.238
+G1 F2800.7 X114.974 Y45.855 E43.73574
+G0 F9000 X114.888 Y45.786
+G0 X115.044 Y44.437
+G0 X114.974 Y44.492
+G1 F2800.7 X113.581 Y43.1 E43.80123
+G0 F9000 X113.464 Y43.285
+G0 X112.517 Y42.781
+G0 X112.599 Y42.573
+G1 F2800.7 X112.413 Y42.759 E43.80998
+G0 F9000 X112.508 Y42.727
+G0 X114.767 Y45.869
+G0 X114.845 Y45.703
+;TYPE:SKIN
+G1 F1267.3 X115.014 Y45.492 E43.81992
+G1 X115.235 Y45.166 E43.83439
+G1 X114.85 Y44.637 E43.85844
+G1 X114.707 Y44.765 E43.86549
+G1 X114.75 Y45.125 E43.87882
+G1 X114.691 Y45.422 E43.88995
+G1 X114.689 Y45.562 E43.89509
+G1 X114.725 Y45.631 E43.89795
+G1 X114.845 Y45.703 E43.9031
+G0 F9000 X114.767 Y45.869
+G0 X112.4 Y47.767
+G0 X111.345 Y48.059
+G0 X110.045 Y48.282
+G0 X110.055 Y48.022
+G1 F1400.4 X110.371 Y48.012 E43.91361
+G1 X110.941 Y47.954 E43.93267
+G1 X111.415 Y47.865 E43.94871
+G1 X111.748 Y47.78 E43.96014
+G1 X112.087 Y47.674 E43.97195
+G1 X112.415 Y47.54 E43.98374
+G1 X112.415 Y42.883 E44.13863
+G1 X112.384 Y42.795 E44.14173
+G1 X112.087 Y42.678 E44.15235
+G1 X111.415 Y42.486 E44.1756
+G1 X111.101 Y42.422 E44.18625
+G1 X110.77 Y42.373 E44.19738
+G1 X110.382 Y42.338 E44.21034
+G1 X110.007 Y42.327 E44.22282
+G1 X109.314 Y42.367 E44.24591
+G1 X102.039 Y43.085 E44.48905
+G1 X102.04 Y43.931 E44.51719
+G1 X102.38 Y44.016 E44.52884
+G1 X102.757 Y44.286 E44.54427
+G1 X102.912 Y44.483 E44.5526
+G1 X103.083 Y44.822 E44.56523
+G1 X103.134 Y45.156 E44.57647
+G1 X103.064 Y45.558 E44.59004
+G1 X102.946 Y45.836 E44.60009
+G1 X102.746 Y46.071 E44.61035
+G1 X102.341 Y46.355 E44.6268
+G1 X102.033 Y46.408 E44.6372
+G1 X102.037 Y46.798 E44.65017
+G1 X102.029 Y47.117 E44.66078
+G1 X102.019 Y47.177 E44.66281
+G1 X102.028 Y47.261 E44.66562
+G1 X109.587 Y48.01 E44.91826
+G1 X110.055 Y48.022 E44.93383
+G0 F9000 X110.045 Y48.282
+G0 X111.875 Y47.952
+G0 X112.441 Y47.738
+G0 X112.555 Y47.308
+G0 X112.214 Y47.308
+G1 F1400.4 X112.045 Y47.477 E44.94178
+G0 F9000 X112.214 Y46.743
+G1 F1400.4 X111.268 Y47.689 E44.98628
+G0 F9000 X110.604 Y47.787
+G1 F1400.4 X112.214 Y46.177 E45.06201
+G0 F9000 X112.214 Y45.611
+G1 F1400.4 X110.004 Y47.821 E45.16596
+G0 F9000 X109.463 Y47.796
+G1 F1400.4 X112.214 Y45.046 E45.29533
+G0 F9000 X112.214 Y44.48
+G1 F1400.4 X108.949 Y47.745 E45.44891
+G0 F9000 X108.434 Y47.694
+G1 F1400.4 X112.214 Y43.914 E45.62671
+G0 F9000 X112.214 Y43.349
+G1 F1400.4 X107.92 Y47.643 E45.82869
+G0 F9000 X107.405 Y47.592
+G1 F1400.4 X112.106 Y42.891 E46.04981
+G0 F9000 X111.666 Y42.765
+G1 F1400.4 X106.89 Y47.541 E46.27445
+G0 F9000 X106.375 Y47.49
+G1 F1400.4 X111.217 Y42.649 E46.50218
+G0 F9000 X110.73 Y42.569
+G1 F1400.4 X105.86 Y47.439 E46.73125
+G0 F9000 X105.346 Y47.388
+G1 F1400.4 X110.202 Y42.532 E46.95966
+G0 F9000 X109.62 Y42.548
+G1 F1400.4 X104.831 Y47.337 E47.18492
+G0 F9000 X104.316 Y47.287
+G1 F1400.4 X109.006 Y42.597 E47.40553
+G0 F9000 X108.378 Y42.659
+G1 F1400.4 X103.801 Y47.236 E47.62082
+G0 F9000 X103.287 Y47.185
+G1 F1400.4 X107.751 Y42.721 E47.83079
+G0 F9000 X107.123 Y42.782
+G1 F1400.4 X102.772 Y47.134 E48.03547
+G0 F9000 X102.258 Y47.082
+G1 F1400.4 X106.495 Y42.845 E48.23477
+G0 F9000 X105.868 Y42.907
+G1 F1400.4 X103.279 Y45.495 E48.35652
+G0 F9000 X103.297 Y44.911
+G1 F1400.4 X105.24 Y42.968 E48.44791
+G0 F9000 X104.612 Y43.03
+G1 F1400.4 X103.144 Y44.499 E48.51699
+G0 F9000 X102.915 Y44.163
+G1 F1400.4 X103.985 Y43.093 E48.56732
+G0 F9000 X103.357 Y43.154
+G1 F1400.4 X102.591 Y43.921 E48.60337
+G0 F9000 X102.237 Y43.709
+G1 F1400.4 X102.729 Y43.216 E48.62654
+;MESH:NONMESH
+G0 F300 X102.729 Y43.216 Z2.2
+G0 F9000 X102.685 Y42.759
+G0 X101.85 Y42.912
+G0 X101.851 Y44.093
+G0 X102.552 Y44.86
+G0 X102.621 Y45.139
+G0 X102.523 Y45.575
+G0 X102.124 Y45.896
+G0 X101.536 Y45.877
+G0 X101.249 Y45.398
+;TIME_ELAPSED:129.147952
+;LAYER:10
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1183.4 X101.241 Y45.04 E48.64163
+G1 F1185.8 X101.26 Y45.429 E48.65802
+G1 F1117.3 X101.249 Y45.398 E48.65949
+G0 F9000 X101.454 Y45.839
+G0 X101.777 Y47.524
+G0 X104.594 Y47.882
+G0 X104.682 Y47.022
+;TYPE:WALL-INNER
+G1 F1500 X104.322 Y46.853 E48.67271
+G1 X104.143 Y46.514 E48.68547
+G1 X104.143 Y43.925 E48.77158
+G1 X104.151 Y43.822 E48.77501
+G1 X104.32 Y43.498 E48.78717
+G1 X104.614 Y43.327 E48.79848
+G1 X106.931 Y43.325 E48.87554
+G1 X107.263 Y43.424 E48.88706
+G1 X107.458 Y43.637 E48.89667
+G1 X107.526 Y43.847 E48.90401
+G1 X107.532 Y46.427 E48.98982
+G1 X107.488 Y46.649 E48.99735
+G1 X107.3 Y46.899 E49.00775
+G1 X106.974 Y47.023 E49.01935
+G1 X104.682 Y47.022 E49.09559
+G0 F9000 X104.602 Y46.567
+;TYPE:WALL-OUTER
+G1 F1500 X104.546 Y46.46 E49.0996
+G1 X104.543 Y43.925 E49.18392
+G1 X104.602 Y43.782 E49.18906
+G1 X104.7 Y43.725 E49.19283
+G1 X106.931 Y43.725 E49.26704
+G1 X107.042 Y43.758 E49.27089
+G1 X107.13 Y43.899 E49.27642
+G1 X107.132 Y46.479 E49.36223
+G1 X107.054 Y46.583 E49.36655
+G1 X106.946 Y46.624 E49.37039
+G1 X104.722 Y46.624 E49.44436
+G1 X104.602 Y46.567 E49.44878
+G1 F1500 E42.94878
+G0 F9000 X104.602 Y46.924
+G0 X107.411 Y47.042
+G0 X107.271 Y48.437
+G0 X109.693 Y48.492
+;TYPE:WALL-INNER
+G1 F1500 E49.44878
+G1 X110.112 Y48.5 E49.46272
+G1 X110.532 Y48.483 E49.4767
+G1 X111.017 Y48.43 E49.49293
+G1 X111.437 Y48.356 E49.50711
+G1 X111.794 Y48.27 E49.51933
+G1 X112.272 Y48.124 E49.53595
+G1 X112.675 Y47.972 E49.55028
+G1 X113.016 Y47.819 E49.56271
+G1 X113.293 Y47.677 E49.57306
+G1 X113.56 Y47.524 E49.5833
+G1 X113.982 Y47.248 E49.60007
+G1 X114.28 Y47.024 E49.61247
+G1 X114.719 Y46.652 E49.63161
+G1 X115.14 Y46.211 E49.65188
+G1 X115.476 Y45.798 E49.66959
+G1 X115.652 Y45.558 E49.67949
+G1 X115.903 Y45.171 E49.69483
+G1 X115.665 Y44.811 E49.70919
+G1 X115.415 Y44.471 E49.72322
+G1 X115.137 Y44.134 E49.73775
+G1 X114.792 Y43.775 E49.75431
+G1 X114.321 Y43.358 E49.77524
+G1 X113.975 Y43.097 E49.78965
+G1 X113.607 Y42.855 E49.8043
+G1 X113.341 Y42.7 E49.81454
+G1 X112.847 Y42.447 E49.833
+G1 X112.377 Y42.26 E49.84982
+G1 X111.749 Y42.062 E49.87172
+G1 X111.315 Y41.969 E49.88649
+G1 X110.89 Y41.902 E49.9008
+G1 X110.527 Y41.866 E49.91293
+G1 X110.228 Y41.852 E49.92289
+G1 X109.932 Y41.85 E49.93273
+G1 X109.588 Y41.864 E49.94418
+G1 X109.077 Y41.91 E49.96125
+G1 X101.608 Y42.675 E50.21097
+G1 X101.603 Y42.987 E50.22134
+G1 X101.599 Y43.171 E50.22747
+G1 X101.601 Y43.962 E50.25377
+G1 X101.601 Y44.266 E50.26389
+G1 X101.94 Y44.275 E50.27517
+G1 X102.126 Y44.329 E50.28161
+G1 X102.48 Y44.568 E50.29581
+G1 X102.638 Y44.832 E50.30605
+G1 X102.726 Y45.216 E50.31915
+G1 X102.603 Y45.58 E50.33193
+G1 X102.457 Y45.821 E50.3413
+G1 X102.049 Y46.063 E50.35708
+G1 X101.7 Y46.081 E50.3687
+G1 X101.603 Y46.069 E50.37195
+G1 X101.602 Y46.379 E50.38226
+G1 X101.57 Y46.523 E50.38717
+G1 X101.592 Y46.628 E50.39074
+G1 X101.604 Y46.941 E50.40116
+G1 X101.57 Y47.163 E50.40863
+G1 X101.606 Y47.364 E50.41542
+G1 X101.606 Y47.68 E50.42593
+G1 X109.394 Y48.47 E50.68629
+G1 X109.693 Y48.492 E50.69626
+G0 F9000 X109.674 Y48.892
+;TYPE:WALL-OUTER
+G1 F1500 X110.116 Y48.9 E50.71096
+G1 X110.562 Y48.882 E50.72581
+G1 X111.073 Y48.826 E50.74291
+G1 X111.519 Y48.748 E50.75796
+G1 X111.899 Y48.656 E50.77097
+G1 X112.402 Y48.503 E50.78845
+G1 X112.828 Y48.342 E50.8036
+G1 X113.19 Y48.179 E50.81681
+G1 X113.483 Y48.029 E50.82775
+G1 X113.769 Y47.866 E50.8387
+G1 X114.212 Y47.576 E50.85631
+G1 X114.53 Y47.337 E50.86954
+G1 X114.883 Y47.037 E50.88495
+G1 X115.075 Y46.858 E50.89368
+G1 X115.44 Y46.476 E50.91126
+G1 X115.776 Y46.065 E50.92891
+G1 X115.97 Y45.801 E50.93981
+G1 X116.273 Y45.338 E50.95821
+G1 X116.325 Y45.117 E50.96576
+G1 X116.147 Y44.814 E50.97745
+G1 X115.988 Y44.575 E50.987
+G1 X115.731 Y44.225 E51.00144
+G1 X115.436 Y43.868 E51.01685
+G1 X115.07 Y43.486 E51.03444
+G1 X114.574 Y43.048 E51.05645
+G1 X114.206 Y42.77 E51.07179
+G1 X113.818 Y42.515 E51.08723
+G1 X113.533 Y42.349 E51.0982
+G1 X113.122 Y42.138 E51.11357
+G1 X112.883 Y42.031 E51.12228
+G1 X112.515 Y41.884 E51.13546
+G1 X112.272 Y41.802 E51.14399
+G1 X111.957 Y41.708 E51.15492
+G1 X111.705 Y41.643 E51.16358
+G1 X111.388 Y41.575 E51.17436
+G1 X110.941 Y41.505 E51.18941
+G1 X110.557 Y41.467 E51.20224
+G1 X110.239 Y41.452 E51.21283
+G1 X109.924 Y41.45 E51.22331
+G1 X109.561 Y41.465 E51.23539
+G1 X109.018 Y41.514 E51.25353
+G1 X101.496 Y42.284 E51.50502
+G1 X101.332 Y42.368 E51.51114
+G1 X101.245 Y42.479 E51.51584
+G1 X101.203 Y42.646 E51.52156
+G1 X101.2 Y43.026 E51.5342
+G1 X101.171 Y43.139 E51.53808
+G1 X101.203 Y43.382 E51.54623
+G1 X101.175 Y43.528 E51.55118
+G1 X101.203 Y43.576 E51.55303
+G1 X101.173 Y43.752 E51.55897
+G1 X101.203 Y43.928 E51.5649
+G1 X101.17 Y44.011 E51.56787
+G1 X101.202 Y44.17 E51.57327
+G1 X101.199 Y44.478 E51.58351
+G1 F1421.8 X101.204 Y44.724 E51.59215
+G1 F1360.5 X101.237 Y45.009 E51.60267
+G1 F1432 X101.48 Y44.758 E51.61484
+G1 F1500 X101.674 Y44.673 E51.62188
+G1 X101.934 Y44.672 E51.63053
+G1 X102.209 Y44.872 E51.64184
+G1 X102.327 Y45.161 E51.65222
+G1 X102.209 Y45.494 E51.66397
+G1 X101.947 Y45.671 E51.67449
+G1 X101.666 Y45.674 E51.68384
+G1 F1354.4 X101.348 Y45.521 E51.69684
+G1 F1174.2 X101.26 Y45.429 E51.70225
+G1 F1207.2 X101.226 Y45.667 E51.71218
+G1 F1398.6 X101.17 Y45.927 E51.72167
+G1 F1500 X101.197 Y45.979 E51.72362
+G1 X101.193 Y46.394 E51.73742
+G1 X101.17 Y46.418 E51.73853
+G1 X101.203 Y46.821 E51.75198
+G1 X101.17 Y47.279 E51.76725
+G1 X101.205 Y47.304 E51.76868
+G1 X101.204 Y47.703 E51.78195
+G1 X101.246 Y47.866 E51.78755
+G1 X101.38 Y48.02 E51.79434
+G1 X101.506 Y48.072 E51.79887
+G1 X109.359 Y48.868 E52.0614
+G1 X109.674 Y48.892 E52.07191
+G0 F9000 X109.697 Y48.391
+G0 X111.496 Y48.177
+G0 X112.503 Y47.857
+G0 X112.47 Y47.645
+;TYPE:FILL
+G1 F3000 X112.697 Y47.873 E52.08261
+G0 F9000 X113.192 Y47.637
+G1 F3000 X115.08 Y45.749 E52.17142
+G0 F9000 X115.03 Y45.839
+G0 X114.918 Y45.537
+G0 X114.923 Y44.781
+G0 X115.024 Y44.504
+G0 X115.076 Y44.595
+G1 F3000 X113.201 Y42.719 E52.25963
+G0 F9000 X112.695 Y42.478
+G1 F3000 X112.47 Y42.702 E52.27019
+G0 F9000 X112.571 Y42.702
+G0 X115.101 Y45.8
+G0 X115.085 Y45.692
+;TYPE:SKIN
+G1 F1421.8 X115.474 Y45.179 E52.29278
+G1 X115.084 Y44.648 E52.3159
+G1 X115.008 Y44.736 E52.31998
+G1 X114.986 Y44.865 E52.32457
+G1 X115.01 Y45.585 E52.34985
+G1 X115.085 Y45.692 E52.35444
+G0 F9000 X115.201 Y45.788
+G0 X112.503 Y47.857
+G0 X111.432 Y48.18
+G0 X109.682 Y48.391
+G0 X109.709 Y48.132
+G1 F1500 X110.106 Y48.14 E52.36764
+G1 X110.505 Y48.123 E52.38093
+G1 X110.963 Y48.073 E52.39625
+G1 X111.362 Y48.003 E52.40972
+G1 X111.685 Y47.925 E52.42078
+G1 X112.155 Y47.784 E52.4371
+G1 X112.431 Y47.68 E52.44691
+G1 X112.431 Y42.653 E52.6141
+G1 X111.657 Y42.411 E52.64108
+G1 X111.25 Y42.324 E52.65492
+G1 X110.845 Y42.26 E52.66856
+G1 X110.501 Y42.226 E52.68005
+G1 X110.218 Y42.213 E52.68948
+G1 X109.939 Y42.211 E52.69876
+G1 X109.613 Y42.224 E52.70961
+G1 X109.103 Y42.269 E52.72664
+G1 X107.472 Y42.436 E52.78117
+G1 F1467 X107.189 Y42.474 E52.79088
+G1 F1405.2 X106.905 Y42.512 E52.80105
+G1 F1398.6 X106.635 Y42.532 E52.81071
+G1 F1445.8 X106.365 Y42.553 E52.82005
+G1 F1492.5 X106.094 Y42.574 E52.82914
+G1 F1546.4 X105.824 Y42.595 E52.83788
+G1 F1600 X105.554 Y42.616 E52.84632
+G1 F1662 X105.283 Y42.636 E52.85448
+G1 F1171.9 X104.9 Y42.833 E52.87281
+G1 X105.299 Y42.991 E52.89108
+G1 F1666.7 X105.573 Y42.984 E52.89929
+G1 F1621.6 X105.847 Y42.977 E52.90772
+G1 F1574.8 X106.121 Y42.97 E52.91641
+G1 F1534.5 X106.395 Y42.962 E52.92532
+G1 F1492.5 X106.669 Y42.955 E52.93448
+G1 F1456.3 X106.943 Y42.948 E52.94387
+G1 F1452.8 X107.464 Y43.117 E52.96268
+G1 F1485.1 X107.777 Y43.456 E52.97818
+G1 F1500 X107.89 Y43.819 E52.99082
+G1 X107.893 Y46.424 E53.07747
+G1 X107.825 Y46.791 E53.08988
+G1 F1485.1 X107.524 Y47.187 E53.10659
+G1 F1449.3 X107.005 Y47.403 E53.12594
+G1 F1452.8 X106.721 Y47.396 E53.1357
+G1 F1492.5 X106.437 Y47.389 E53.14519
+G1 F1534.5 X106.153 Y47.381 E53.15443
+G1 F1578.9 X105.869 Y47.374 E53.16341
+G1 F1626 X105.585 Y47.367 E53.17212
+G1 F1676 X105.301 Y47.359 E53.18058
+G1 F1176.5 X104.904 Y47.516 E53.19868
+G1 X105.285 Y47.712 E53.21685
+G1 F1666.7 X105.564 Y47.733 E53.22523
+G1 F1604.3 X105.843 Y47.754 E53.23393
+G1 F1546.4 X106.122 Y47.776 E53.24296
+G1 F1488.8 X106.402 Y47.797 E53.25237
+G1 F1438.8 X106.681 Y47.818 E53.26207
+G1 F1392.1 X106.96 Y47.84 E53.2721
+G1 F1398.6 X107.261 Y47.88 E53.28293
+G1 F1467 X107.564 Y47.92 E53.29332
+G1 F1500 X109.425 Y48.11 E53.35554
+G1 X109.709 Y48.132 E53.36502
+G0 F9000 X109.682 Y48.391
+G0 X104.864 Y47.909
+G0 X104.904 Y47.516
+G1 F913.2 X104.636 Y47.503 E53.37968
+G1 F917.4 X104.528 Y47.481 E53.38567
+G1 F953.9 X104.286 Y47.281 E53.40209
+G1 F1065.7 X104.043 Y47.08 E53.41685
+G1 F1167.3 X103.915 Y46.838 E53.42855
+G1 F1247.4 X103.787 Y46.595 E53.43954
+G1 F1321.6 X103.786 Y46.342 E53.44909
+G1 F1388.9 X103.785 Y46.089 E53.45818
+G1 F1463.4 X103.784 Y45.836 E53.4668
+G1 F1432 X103.737 Y45.523 E53.47783
+G1 F1312.9 X103.69 Y45.211 E53.48982
+G1 X103.736 Y44.936 E53.50041
+G1 F1432 X103.783 Y44.66 E53.51017
+G1 F1463.4 X103.784 Y44.359 E53.52043
+G1 F1395.3 X103.785 Y44.058 E53.53119
+G1 F1333.3 X103.786 Y43.757 E53.54245
+G1 F1263.2 X103.913 Y43.515 E53.55325
+G1 F1188.1 X104.041 Y43.272 E53.56478
+G1 F1088.9 X104.268 Y43.066 E53.57883
+G1 F982 X104.496 Y42.859 E53.59447
+G1 F1032.7 X104.234 Y42.827 E53.60722
+G1 F1304.3 X103.972 Y42.795 E53.61732
+G1 F1500 X101.957 Y43.001 E53.68469
+G1 X101.961 Y43.907 E53.71482
+G1 X102.285 Y44.004 E53.72607
+G1 X102.74 Y44.309 E53.74429
+G1 X102.964 Y44.683 E53.75879
+G1 F1369.9 X103.061 Y44.928 E53.76839
+G1 F1165 X103.158 Y45.173 E53.77967
+G1 X103.159 Y45.266 E53.78365
+G1 F1312.9 X103.042 Y45.502 E53.79366
+G1 F1432 X102.924 Y45.739 E53.80289
+G1 F1500 X102.722 Y46.075 E53.81592
+G1 X102.246 Y46.365 E53.83446
+G1 X101.929 Y46.423 E53.84518
+G1 X101.964 Y46.921 E53.86179
+G1 X101.953 Y47.351 E53.87609
+G1 X104.01 Y47.56 E53.94486
+G1 F1290.3 X104.269 Y47.521 E53.95499
+G1 F1006.7 X104.528 Y47.481 E53.96798
+G0 F9000 X104.489 Y47.872
+G0 X101.777 Y47.524
+G0 X101.774 Y46.252
+G0 X102.876 Y45.169
+G0 X101.754 Y44.039
+G0 X101.774 Y42.829
+G0 X104.458 Y42.481
+G0 X104.496 Y42.859
+G1 F914.6 X104.9 Y42.833 E53.99006
+G1 F1500 E47.49006
+G0 F9000 X104.9 Y43.225
+G0 X104.315 Y43.497
+G0 X103.963 Y46.175
+G0 X102.791 Y45.648
+G0 X102.149 Y46.712
+G1 F1500 E53.99006
+G1 X102.658 Y47.221 E54.014
+G0 F9000 X103.287 Y47.284
+G1 F1500 X102.468 Y46.465 E54.05252
+G0 F9000 X102.822 Y46.253
+G1 F1500 X103.917 Y47.348 E54.10403
+G0 F9000 X103.582 Y46.448
+G1 F1500 X103.049 Y45.915 E54.1291
+G0 F9000 X103.265 Y45.565
+G1 F1500 X103.582 Y45.882 E54.14401
+G0 F9000 X104.043 Y45.882
+G0 X103.963 Y44.95
+G0 X102.906 Y45.112
+G0 X103.559 Y44.728
+G1 F1500 X102.159 Y43.327 E54.20989
+G0 F9000 X102.539 Y43.142
+G1 F1500 X103.582 Y44.185 E54.25894
+G0 F9000 X103.615 Y43.653
+G1 F1500 X103.052 Y43.089 E54.28545
+G0 F9000 X103.565 Y43.037
+G1 F1500 X103.81 Y43.282 E54.29697
+G1 F1500 E47.79697
+G0 F9000 X104.218 Y43.495
+G0 X106.929 Y43.144
+G0 X106.891 Y42.335
+G0 X107.176 Y42.688
+G1 F1500 E54.29697
+G1 X107.354 Y42.866 E54.30535
+G0 F9000 X107.671 Y42.618
+G1 F1500 X112.23 Y47.176 E54.51976
+G0 F9000 X112.084 Y47.596
+G1 F1500 X108.002 Y43.514 E54.71177
+G0 F9000 X108.087 Y44.165
+G1 F1500 X111.649 Y47.726 E54.87929
+G0 F9000 X111.186 Y47.83
+G1 F1500 X108.088 Y44.731 E55.02504
+G0 F9000 X108.089 Y45.298
+G1 F1500 X110.691 Y47.9 E55.14743
+G0 F9000 X110.162 Y47.936
+G1 F1500 X108.091 Y45.865 E55.24484
+G0 F9000 X108.091 Y46.432
+G1 F1500 X109.581 Y47.921 E55.3149
+G0 F9000 X108.955 Y47.861
+G1 F1500 X107.982 Y46.888 E55.36067
+G0 F9000 X107.748 Y47.22
+G1 F1500 X108.325 Y47.796 E55.38778
+G0 F9000 X107.695 Y47.732
+G1 F1500 X107.415 Y47.452 E55.40095
+G0 F9000 X107.629 Y48.19
+G0 X110.183 Y48.337
+G0 X111.496 Y48.177
+G0 X112.503 Y47.857
+G0 X112.571 Y46.611
+G0 X112.23 Y46.611
+G1 F1500 X108.184 Y42.564 E55.59129
+G0 F9000 X108.697 Y42.512
+G1 F1500 X112.23 Y46.045 E55.75747
+G0 F9000 X112.23 Y45.479
+G1 F1500 X109.211 Y42.461 E55.89945
+G0 F9000 X109.736 Y42.42
+G1 F1500 X112.23 Y44.914 E56.01676
+G0 F9000 X112.23 Y44.348
+G1 F1500 X110.303 Y42.42 E56.10743
+G0 F9000 X110.923 Y42.475
+G1 F1500 X112.23 Y43.782 E56.1689
+G0 F9000 X112.23 Y43.216
+G1 F1500 X111.624 Y42.61 E56.19741
+;MESH:NONMESH
+G0 F300 X111.624 Y42.61 Z2.4
+G0 F9000 X112.571 Y42.586
+G0 X111.204 Y42.114
+G0 X109.88 Y42.013
+G0 X101.774 Y42.829
+G0 X101.459 Y44.487
+G0 X101.163 Y45.026
+;TIME_ELAPSED:146.950923
+;LAYER:11
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1136.4 X101.159 Y45.097 E56.20053
+G1 F1123.6 X101.182 Y45.397 E56.21389
+G1 F1098.9 X101.199 Y45.441 E56.21603
+G1 F1500 E49.71603
+G0 F9000 X101.372 Y45.872
+G0 X101.827 Y45.934
+G0 X102.613 Y45.847
+G0 X103.963 Y45.847
+G0 X104.68 Y47.021
+;TYPE:WALL-INNER
+G1 F1500 E56.21603
+G1 X104.328 Y46.859 E56.22892
+G1 X104.145 Y46.527 E56.24153
+G1 X104.143 Y43.925 E56.32807
+G1 X104.154 Y43.806 E56.33205
+G1 X104.328 Y43.49 E56.34404
+G1 X104.612 Y43.328 E56.35492
+G1 X106.931 Y43.325 E56.43205
+G1 X107.302 Y43.452 E56.44509
+G1 X107.489 Y43.702 E56.45547
+G1 X107.531 Y43.925 E56.46302
+G1 X107.531 Y46.435 E56.54651
+G1 X107.485 Y46.656 E56.55401
+G1 X107.296 Y46.902 E56.56433
+G1 X106.973 Y47.023 E56.5758
+G1 X104.68 Y47.021 E56.65207
+G0 F9000 X104.604 Y46.569
+;TYPE:WALL-OUTER
+G1 F1500 X104.546 Y46.464 E56.65606
+G1 X104.543 Y43.925 E56.74051
+G1 X104.604 Y43.78 E56.74574
+G1 X104.698 Y43.726 E56.74934
+G1 X106.931 Y43.725 E56.82361
+G1 X107.055 Y43.767 E56.82797
+G1 X107.131 Y43.869 E56.8322
+G1 X107.131 Y46.482 E56.91911
+G1 X107.053 Y46.584 E56.92338
+G1 X106.945 Y46.624 E56.92721
+G1 X104.722 Y46.623 E57.00115
+G1 X104.604 Y46.569 E57.00546
+G1 F1500 E50.50546
+G0 F9000 X104.604 Y46.924
+G0 X107.406 Y47.045
+G0 X107.253 Y48.54
+G0 X110.101 Y48.618
+;TYPE:WALL-INNER
+G1 F1500 E57.00546
+G1 X110.549 Y48.596 E57.02038
+G1 X110.857 Y48.567 E57.03067
+G1 X111.231 Y48.515 E57.04323
+G1 X111.667 Y48.426 E57.05803
+G1 X112.095 Y48.313 E57.07275
+G1 X112.52 Y48.169 E57.08768
+G1 X112.813 Y48.051 E57.09818
+G1 X113.228 Y47.859 E57.11339
+G1 X113.512 Y47.708 E57.12409
+G1 X113.728 Y47.582 E57.13241
+G1 X114.164 Y47.291 E57.14984
+G1 X114.676 Y46.894 E57.17139
+G1 X115.096 Y46.489 E57.1908
+G1 X115.401 Y46.156 E57.20582
+G1 X115.644 Y45.854 E57.21871
+G1 X115.881 Y45.526 E57.23217
+G1 X116.105 Y45.181 E57.24585
+G1 X115.964 Y44.948 E57.25491
+G1 X115.772 Y44.666 E57.26625
+G1 X115.519 Y44.333 E57.28016
+G1 X115.335 Y44.118 E57.28958
+G1 X115.092 Y43.856 E57.30146
+G1 X114.711 Y43.493 E57.31896
+G1 X114.369 Y43.204 E57.33386
+G1 X114.004 Y42.947 E57.3487
+G1 X113.557 Y42.667 E57.36625
+G1 X113.278 Y42.516 E57.3768
+G1 X112.873 Y42.323 E57.39172
+G1 X112.242 Y42.078 E57.41423
+G1 X111.717 Y41.936 E57.43232
+G1 X111.411 Y41.867 E57.44276
+G1 X111.105 Y41.815 E57.45308
+G1 X110.602 Y41.758 E57.46992
+G1 X110.236 Y41.739 E57.48211
+G1 X109.684 Y41.742 E57.50047
+G1 X101.534 Y42.59 E57.773
+G1 X101.53 Y43.109 E57.79026
+G1 X101.497 Y43.135 E57.79166
+G1 X101.498 Y43.7 E57.81045
+G1 X101.528 Y43.961 E57.81919
+G1 X101.498 Y44.094 E57.82372
+G1 X101.498 Y44.302 E57.83064
+G1 X101.641 Y44.27 E57.83552
+G1 X101.973 Y44.293 E57.84658
+G1 X102.301 Y44.456 E57.85877
+G1 X102.494 Y44.676 E57.8685
+G1 X102.631 Y45.058 E57.882
+G1 X102.621 Y45.404 E57.89351
+G1 X102.467 Y45.71 E57.9049
+G1 X102.287 Y45.898 E57.91356
+G1 X102.128 Y45.996 E57.91977
+G1 X101.881 Y46.075 E57.9284
+G1 X101.531 Y46.045 E57.94008
+G1 X101.528 Y46.39 E57.95156
+G1 X101.498 Y46.503 E57.95545
+G1 X101.53 Y46.692 E57.96182
+G1 X101.522 Y47.016 E57.9726
+G1 X101.498 Y47.182 E57.97818
+G1 X101.533 Y47.285 E57.9818
+G1 X101.534 Y47.76 E57.9976
+G1 X109.499 Y48.591 E58.26395
+G1 X110.101 Y48.618 E58.28399
+G0 F9000 X109.47 Y48.99
+;TYPE:WALL-OUTER
+G1 F1500 X109.991 Y49.013 E58.30134
+G1 X110.248 Y49.011 E58.30989
+G1 X110.577 Y48.995 E58.32084
+G1 X110.903 Y48.965 E58.33173
+G1 X111.299 Y48.909 E58.34503
+G1 X111.758 Y48.816 E58.36061
+G1 X112.21 Y48.696 E58.37617
+G1 X112.658 Y48.545 E58.39189
+G1 X112.972 Y48.419 E58.40314
+G1 X113.406 Y48.217 E58.41906
+G1 X113.707 Y48.058 E58.43039
+G1 X113.94 Y47.921 E58.43938
+G1 X114.398 Y47.616 E58.45768
+G1 X114.833 Y47.279 E58.47598
+G1 X115.037 Y47.102 E58.48496
+G1 X115.383 Y46.768 E58.50096
+G1 X115.705 Y46.416 E58.51683
+G1 X115.962 Y46.097 E58.53045
+G1 X116.202 Y45.766 E58.54405
+G1 X116.525 Y45.268 E58.56379
+G1 X116.493 Y45.051 E58.57109
+G1 X116.308 Y44.742 E58.58307
+G1 X116.097 Y44.432 E58.59554
+G1 X115.831 Y44.082 E58.61016
+G1 X115.656 Y43.876 E58.61915
+G1 X115.377 Y43.575 E58.6328
+G1 X114.978 Y43.195 E58.65113
+G1 X114.718 Y42.976 E58.66243
+G1 X114.516 Y42.818 E58.67096
+G1 X114.226 Y42.613 E58.68277
+G1 X113.759 Y42.321 E58.70109
+G1 X113.46 Y42.159 E58.7124
+G1 X113.031 Y41.955 E58.7282
+G1 X112.446 Y41.728 E58.74907
+G1 X112.206 Y41.654 E58.75743
+G1 X111.813 Y41.548 E58.77097
+G1 X111.489 Y41.475 E58.78201
+G1 X111.161 Y41.419 E58.79308
+G1 X110.635 Y41.359 E58.81069
+G1 X110.245 Y41.339 E58.82368
+G1 X109.788 Y41.341 E58.83888
+G1 X109.533 Y41.355 E58.84737
+G1 X101.428 Y42.198 E59.1184
+G1 X101.236 Y42.304 E59.12569
+G1 X101.134 Y42.525 E59.13379
+G1 X101.127 Y43.031 E59.15062
+G1 X101.097 Y43.055 E59.1519
+G1 X101.098 Y43.779 E59.17598
+G1 X101.127 Y43.802 E59.17721
+G1 X101.098 Y43.988 E59.18347
+G1 F1485.1 X101.097 Y44.637 E59.20527
+G1 F1276.6 X101.163 Y45.026 E59.22069
+G1 F1263.2 X101.371 Y44.791 E59.23309
+G1 F1467 X101.574 Y44.687 E59.24084
+G1 F1500 X101.837 Y44.672 E59.2496
+G1 X102.043 Y44.762 E59.25708
+G1 X102.186 Y44.93 E59.26442
+G1 X102.231 Y45.06 E59.269
+G1 X102.227 Y45.335 E59.27814
+G1 X102.027 Y45.594 E59.28903
+G1 X101.782 Y45.681 E59.29767
+G1 F1463.4 X101.447 Y45.626 E59.30925
+G1 F1239.7 X101.199 Y45.441 E59.3217
+G1 F1265.8 X101.098 Y45.886 E59.33968
+G1 F1500 X101.13 Y46.006 E59.34381
+G1 X101.119 Y46.376 E59.35613
+G1 X101.098 Y46.392 E59.357
+G1 X101.13 Y46.783 E59.37005
+G1 X101.098 Y46.987 E59.37692
+G1 X101.098 Y47.285 E59.38683
+G1 X101.132 Y47.311 E59.38826
+G1 X101.134 Y47.816 E59.40505
+G1 X101.218 Y48.027 E59.41261
+G1 X101.294 Y48.097 E59.41604
+G1 X101.471 Y48.161 E59.4223
+G1 X109.47 Y48.99 E59.68978
+G0 F9000 X109.523 Y48.491
+G0 X111.294 Y48.338
+G0 X112.543 Y47.988
+G0 X112.71 Y47.785
+G0 X112.608 Y47.784
+;TYPE:FILL
+G1 F3000 X112.798 Y47.973 E59.69869
+G1 X112.907 Y47.922
+G1 X115.185 Y45.644 E59.80584
+G0 F9000 X115.24 Y44.759
+G1 F3000 X112.912 Y42.43 E59.91536
+G1 X112.797 Y42.375
+G1 X112.61 Y42.562 E59.92416
+G0 F9000 X112.711 Y42.562
+G0 X115.166 Y45.686
+G0 X115.436 Y45.759
+G0 X115.323 Y45.667
+;TYPE:SKIN
+G1 F1442.3 X115.677 Y45.179 E59.94501
+G1 X115.331 Y44.673 E59.96622
+G1 X115.275 Y44.793 E59.9708
+G1 X115.172 Y45.414 E59.99257
+G1 X115.227 Y45.615 E59.99978
+G1 X115.323 Y45.667 E60.00356
+G0 F9000 X115.436 Y45.76
+G0 X112.543 Y47.988
+G0 X111.384 Y48.296
+G0 X110.227 Y48.511
+G0 X110.104 Y48.257
+G1 F1500 X110.705 Y48.225 E60.02358
+G1 X111.215 Y48.151 E60.04072
+G1 X111.583 Y48.074 E60.05322
+G1 X112 Y47.963 E60.06757
+G1 X112.57 Y47.774 E60.08755
+G1 X112.572 Y47.158 E60.10803
+G1 X112.448 Y46.844 E60.11926
+G1 X112.449 Y43.541 E60.22912
+G1 X112.571 Y43.195 E60.24132
+G1 X112.571 Y42.591 E60.26141
+G1 X112.123 Y42.416 E60.27741
+G1 X111.63 Y42.287 E60.29436
+G1 X111.303 Y42.215 E60.3055
+G1 X111.053 Y42.172 E60.31393
+G1 X110.572 Y42.117 E60.33004
+G1 X110.228 Y42.1 E60.34149
+G1 X109.708 Y42.102 E60.35879
+G1 X107.561 Y42.326 E60.43058
+G1 F1456.3 X107.311 Y42.364 E60.43925
+G1 F1373 X107.061 Y42.403 E60.44844
+G1 F1282.1 X106.899 Y42.437 E60.45488
+G1 F1252.6 X106.636 Y42.457 E60.46539
+G1 F1287.6 X106.373 Y42.478 E60.47561
+G1 F1327.4 X106.11 Y42.498 E60.48552
+G1 F1366.7 X105.847 Y42.519 E60.49515
+G1 F1408.5 X105.583 Y42.54 E60.50453
+G1 F1452.8 X105.32 Y42.56 E60.51359
+G1 F1500 X105.057 Y42.581 E60.52237
+G1 F1554.4 X104.794 Y42.602 E60.53084
+G1 F1608.6 X104.53 Y42.622 E60.53905
+G1 F1600 X104.243 Y42.661 E60.54808
+G1 F1534.5 X103.96 Y42.7 E60.55737
+G1 F1500 X101.892 Y42.915 E60.62652
+G1 X101.881 Y43.193 E60.63577
+G1 X101.858 Y43.226 E60.63711
+G1 X101.858 Y43.627 E60.65045
+G1 X101.871 Y43.648 E60.65127
+G1 X101.887 Y43.926 E60.66053
+G1 X102.078 Y43.948 E60.66693
+G1 X102.533 Y44.181 E60.68393
+G1 X102.789 Y44.463 E60.6966
+G1 X102.993 Y45.036 E60.71683
+G1 X102.977 Y45.48 E60.7316
+G1 X102.741 Y45.945 E60.74895
+G1 X102.524 Y46.171 E60.75937
+G1 X102.246 Y46.337 E60.77014
+G1 X101.894 Y46.443 E60.78236
+G1 X101.88 Y47.063 E60.80299
+G1 X101.894 Y47.439 E60.8155
+G1 X103.995 Y47.656 E60.88576
+G1 F1526.7 X104.302 Y47.695 E60.89587
+G1 F1583.1 X104.609 Y47.735 E60.90563
+G1 X104.869 Y47.755 E60.91384
+G1 F1530.6 X105.129 Y47.775 E60.92234
+G1 F1481.5 X105.389 Y47.795 E60.93112
+G1 F1435.4 X105.649 Y47.816 E60.94019
+G1 F1388.9 X105.91 Y47.836 E60.94959
+G1 F1348.3 X106.17 Y47.856 E60.95924
+G1 F1310 X106.43 Y47.877 E60.96918
+G1 F1273.9 X106.69 Y47.897 E60.97939
+G1 F1239.7 X106.951 Y47.917 E60.98992
+G1 F1276.6 X107.131 Y47.958 E60.99714
+G1 F1415.1 X107.57 Y48.027 E61.01281
+G1 F1500 X109.526 Y48.231 E61.07822
+G1 X110.104 Y48.257 E61.09746
+G1 F1500 E54.59746
+G0 F9000 X110.227 Y48.511
+G0 X106.833 Y48.497
+G0 X106.833 Y47.204
+G0 X106.978 Y47.428
+G1 F1500 E61.09746
+G1 F1232 X106.715 Y47.421 E61.10811
+G1 F1247.4 X106.452 Y47.414 E61.11864
+G1 F1263.2 X106.189 Y47.407 E61.12903
+G1 F1279.3 X105.926 Y47.4 E61.13929
+G1 F1295.9 X105.663 Y47.393 E61.14941
+G1 F1312.9 X105.4 Y47.386 E61.15941
+G1 F1330.4 X105.137 Y47.379 E61.16928
+G1 F1348.3 X104.874 Y47.372 E61.17901
+G1 F1366.7 X104.611 Y47.365 E61.18862
+G1 F1405.2 X104.373 Y47.259 E61.19787
+G1 F1467 X104.134 Y47.153 E61.20676
+G1 F1500 X104.044 Y47.069 E61.21085
+G1 X103.789 Y46.614 E61.2282
+G1 X103.783 Y43.805 E61.32163
+G1 X103.807 Y43.707 E61.32499
+G1 X104.071 Y43.228 E61.34318
+G1 F1519 X104.298 Y43.108 E61.35161
+G1 F1550.4 X104.526 Y42.987 E61.35992
+G1 F1546.4 X104.792 Y42.98 E61.3685
+G1 F1500 X105.058 Y42.973 E61.37735
+G1 F1459.9 X105.324 Y42.966 E61.38644
+G1 F1418.4 X105.59 Y42.959 E61.3958
+G1 F1382.5 X105.856 Y42.951 E61.40541
+G1 F1348.3 X106.122 Y42.944 E61.41525
+G1 F1312.9 X106.388 Y42.937 E61.42536
+G1 F1282.1 X106.654 Y42.93 E61.43572
+G1 F1250 X106.92 Y42.923 E61.44634
+G1 F1263.2 X107.225 Y43.042 E61.45927
+G1 F1324.5 X107.528 Y43.163 E61.47156
+G1 F1425.2 X107.825 Y43.559 E61.48889
+G1 F1500 X107.888 Y43.889 E61.50006
+G1 X107.891 Y46.439 E61.58488
+G1 X107.818 Y46.804 E61.59726
+G1 F1421.8 X107.521 Y47.19 E61.61435
+G1 F1315.8 X107.25 Y47.309 E61.62557
+G1 F1252.6 X106.978 Y47.428 E61.63739
+G1 F1500 E55.13739
+G0 F9000 X106.974 Y47.123
+G0 X107.191 Y46.971
+G0 X107.712 Y46.437
+G0 X110.06 Y48.453
+G0 X111.294 Y48.338
+G0 X112.543 Y47.988
+G0 X112.684 Y47.053
+G1 F1500 E61.63739
+G0 F9000 X112.359 Y47.163
+G1 F1500 X111.683 Y47.84 E61.66921
+G0 F9000 X110.973 Y47.984
+G1 F1500 X112.248 Y46.708 E61.72921
+G0 F9000 X112.248 Y46.142
+G1 F1500 X110.347 Y48.044 E61.81865
+G0 F9000 X109.783 Y48.042
+G1 F1500 X112.249 Y45.576 E61.93464
+G0 F9000 X112.249 Y45.01
+G1 F1500 X109.258 Y48.001 E62.07533
+G0 F9000 X108.745 Y47.948
+G1 F1500 X112.25 Y44.444 E62.24017
+G0 F9000 X112.25 Y43.878
+G1 F1500 X108.234 Y47.895 E62.4291
+G0 F9000 X107.721 Y47.842
+G1 F1500 X112.352 Y43.21 E62.64695
+G0 F9000 X112.298 Y42.699
+G1 F1500 X107.243 Y47.754 E62.88472
+G1 F1500 E56.38472
+G0 F9000 X107.192 Y48.251
+G0 X107.439 Y48.196
+G0 X107.062 Y47.194
+G0 X108.09 Y46.341
+G1 F1500 E62.88472
+G1 X111.874 Y42.557 E63.06271
+G0 F9000 X111.42 Y42.445
+G1 F1500 X108.09 Y45.775 E63.21934
+G0 F9000 X108.09 Y45.21
+G1 F1500 X110.94 Y42.359 E63.35342
+G0 F9000 X110.425 Y42.309
+G1 F1500 X108.09 Y44.644 E63.46325
+G0 F9000 X108.09 Y44.078
+G1 F1500 X109.868 Y42.301 E63.54686
+G0 F9000 X109.253 Y42.35
+G1 F1500 X108.031 Y43.571 E63.60431
+G0 F9000 X107.819 Y43.218
+G1 F1500 X108.622 Y42.415 E63.64208
+G0 F9000 X107.99 Y42.481
+G1 F1500 X107.524 Y42.947 E63.664
+G0 F9000 X107.331 Y42.575
+G1 F1500 X107.137 Y42.769 E63.67313
+G1 F1500 E57.17313
+G0 F9000 X106.974 Y43.244
+G0 X104.53 Y43.173
+G0 X104.46 Y42.485
+G0 X104.22 Y42.857
+G1 F1500 E63.67313
+G1 X104.078 Y42.999 E63.67981
+G0 F9000 X103.832 Y43.245
+G1 F1500 X102.847 Y44.23 E63.72614
+G0 F9000 X102.55 Y43.961
+G1 F1500 X103.571 Y42.941 E63.77414
+G0 F9000 X102.939 Y43.006
+G1 F1500 X102.171 Y43.774 E63.81026
+G0 F9000 X102.057 Y43.323
+G1 F1500 X102.308 Y43.072 E63.82207
+G1 F1500 E57.32207
+G0 F9000 X102.265 Y42.612
+G0 X103.824 Y42.553
+G0 X104.204 Y43.36
+G0 X103.583 Y44.06
+G1 F1500 E63.82207
+G1 X103.048 Y44.595 E63.84724
+G0 F9000 X103.193 Y45.015
+G1 F1500 X103.584 Y44.625 E63.8656
+G0 F9000 X103.584 Y45.191
+G1 F1500 X103.102 Y45.672 E63.88825
+G0 F9000 X103.584 Y45.756
+G1 F1500 X102.084 Y47.256 E63.95881
+G0 F9000 X102.596 Y47.309
+G1 F1500 X103.585 Y46.321 E64.0053
+G0 F9000 X103.666 Y46.806
+G1 F1500 X103.108 Y47.363 E64.03153
+G0 F9000 X103.621 Y47.416
+G1 F1500 X103.87 Y47.167 E64.04324
+G0 F9000 X104.129 Y47.473
+G1 F1500 X104.203 Y47.4 E64.0467
+G0 F9000 X104.755 Y47.997
+G0 X101.705 Y47.61
+G0 X101.629 Y46.694
+G0 X102.223 Y46.551
+G1 F1500 X102.089 Y46.685 E64.053
+;MESH:NONMESH
+G0 F300 X102.089 Y46.685 Z2.6
+G0 F9000 X101.629 Y46.694
+G0 X101.742 Y45.919
+G0 X102.147 Y45.819
+G0 X102.426 Y45.515
+G0 X102.502 Y45.211
+G0 X102.444 Y44.871
+G0 X102.183 Y44.554
+G0 X101.899 Y44.433
+G0 X101.351 Y44.508
+G0 X101.112 Y45.05
+;TIME_ELAPSED:166.926798
+;LAYER:12
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1214.6 X101.111 Y45.263 E64.06175
+G1 F1500 E57.56175
+G0 F9000 X101.301 Y45.861
+G0 X101.717 Y45.942
+G0 X102.153 Y45.758
+G0 X102.647 Y45.701
+G0 X103.963 Y45.701
+G0 X104.679 Y47.021
+;TYPE:WALL-INNER
+G1 F1500 E64.06175
+G1 X104.334 Y46.865 E64.07434
+G1 X104.146 Y46.536 E64.08694
+G1 X104.143 Y43.925 E64.17379
+G1 X104.157 Y43.794 E64.17817
+G1 X104.335 Y43.484 E64.19006
+G1 X104.61 Y43.328 E64.20057
+G1 X106.931 Y43.325 E64.27777
+G1 X107.275 Y43.433 E64.28976
+G1 X107.469 Y43.657 E64.29962
+G1 X107.529 Y43.871 E64.30701
+G1 X107.531 Y46.451 E64.39282
+G1 X107.479 Y46.669 E64.40028
+G1 X107.288 Y46.907 E64.41043
+G1 X106.972 Y47.023 E64.42162
+G1 X104.679 Y47.021 E64.49789
+G0 F9000 X104.606 Y46.571
+;TYPE:WALL-OUTER
+G1 F1500 X104.547 Y46.468 E64.50184
+G1 X104.543 Y43.925 E64.58642
+G1 X104.607 Y43.778 E64.59175
+G1 X104.697 Y43.726 E64.59521
+G1 X106.931 Y43.725 E64.66951
+G1 X107.046 Y43.761 E64.67352
+G1 X107.131 Y43.907 E64.67914
+G1 X107.131 Y46.485 E64.76488
+G1 X107.05 Y46.585 E64.76916
+G1 X106.945 Y46.624 E64.77289
+G1 X104.721 Y46.623 E64.84686
+G1 X104.606 Y46.571 E64.85105
+G1 F1500 E58.35105
+G0 F9000 X104.606 Y46.924
+G0 X107.396 Y47.052
+G0 X107.746 Y48.309
+G0 X109.63 Y48.707
+;TYPE:WALL-INNER
+G1 F1500 E64.85105
+G1 X110.059 Y48.717 E64.86533
+G1 X110.506 Y48.705 E64.8802
+G1 X110.821 Y48.68 E64.89071
+G1 X111.269 Y48.619 E64.90575
+G1 X111.779 Y48.518 E64.92304
+G1 X112.35 Y48.353 E64.94281
+G1 X112.656 Y48.244 E64.95361
+G1 X112.966 Y48.118 E64.96474
+G1 X113.205 Y48.01 E64.97347
+G1 X113.731 Y47.731 E64.99327
+G1 X114.131 Y47.478 E65.00901
+G1 X114.4 Y47.287 E65.01998
+G1 X114.77 Y46.993 E65.0357
+G1 X115.116 Y46.679 E65.05124
+G1 X115.462 Y46.324 E65.06773
+G1 X115.784 Y45.934 E65.08455
+G1 X115.95 Y45.71 E65.09382
+G1 X116.168 Y45.395 E65.10657
+G1 X116.305 Y45.167 E65.11541
+G1 X116.003 Y44.712 E65.13358
+G1 X115.775 Y44.405 E65.14629
+G1 X115.59 Y44.177 E65.15606
+G1 X115.346 Y43.904 E65.16824
+G1 X114.96 Y43.523 E65.18628
+G1 X114.658 Y43.263 E65.19953
+G1 X114.451 Y43.099 E65.20832
+G1 X114.123 Y42.865 E65.22172
+G1 X113.845 Y42.687 E65.2327
+G1 X113.496 Y42.488 E65.24606
+G1 X113.08 Y42.282 E65.2615
+G1 X112.774 Y42.149 E65.2726
+G1 X112.532 Y42.058 E65.28119
+G1 X112.14 Y41.93 E65.29491
+G1 X111.839 Y41.849 E65.30528
+G1 X111.517 Y41.776 E65.31626
+G1 X111.2 Y41.718 E65.32698
+G1 X110.692 Y41.658 E65.34399
+G1 X110.311 Y41.636 E65.35668
+G1 X109.729 Y41.64 E65.37604
+G1 X109.34 Y41.67 E65.38902
+G1 X101.466 Y42.503 E65.65237
+G1 X101.466 Y44.314 E65.7126
+G1 X101.758 Y44.278 E65.72239
+G1 X102.089 Y44.362 E65.73375
+G1 X102.238 Y44.452 E65.73954
+G1 X102.434 Y44.672 E65.74934
+G1 X102.573 Y45.013 E65.76159
+G1 X102.581 Y45.351 E65.77283
+G1 X102.482 Y45.588 E65.78137
+G1 X102.291 Y45.864 E65.79254
+G1 X101.889 Y46.054 E65.80733
+G1 X101.464 Y46.076 E65.82148
+G1 X101.463 Y47.812 E65.87922
+G1 X101.472 Y47.844 E65.88033
+G1 X109.63 Y48.707 E66.15318
+G0 F9000 X109.729 Y49.11
+;TYPE:WALL-OUTER
+G1 F1500 X110.06 Y49.117 E66.16419
+G1 X110.528 Y49.105 E66.17976
+G1 X110.864 Y49.078 E66.19097
+G1 X111.335 Y49.014 E66.20678
+G1 X111.739 Y48.934 E66.22048
+G1 X111.992 Y48.873 E66.22913
+G1 X112.473 Y48.734 E66.24579
+G1 X112.798 Y48.618 E66.25726
+G1 X113.124 Y48.486 E66.26896
+G1 X113.378 Y48.37 E66.27825
+G1 X113.694 Y48.21 E66.29003
+G1 X113.935 Y48.075 E66.29922
+G1 X114.353 Y47.81 E66.31568
+G1 X114.64 Y47.607 E66.32737
+G1 X115.029 Y47.298 E66.34389
+G1 X115.394 Y46.967 E66.36028
+G1 X115.76 Y46.592 E66.37771
+G1 X116.099 Y46.181 E66.39543
+G1 X116.279 Y45.938 E66.40549
+G1 X116.504 Y45.612 E66.41866
+G1 X116.71 Y45.269 E66.43197
+G1 X116.682 Y45.012 E66.44057
+G1 X116.325 Y44.474 E66.46204
+G1 X116.091 Y44.159 E66.4751
+G1 X115.868 Y43.887 E66.48679
+G1 X115.636 Y43.628 E66.49836
+G1 X115.232 Y43.229 E66.51724
+G1 X114.912 Y42.954 E66.53128
+G1 X114.691 Y42.779 E66.54065
+G1 X114.347 Y42.533 E66.55472
+G1 X114.052 Y42.345 E66.56635
+G1 X113.684 Y42.135 E66.58045
+G1 X113.249 Y41.919 E66.5966
+G1 X112.924 Y41.778 E66.60838
+G1 X112.664 Y41.68 E66.61763
+G1 X112.254 Y41.546 E66.63197
+G1 X111.935 Y41.461 E66.64295
+G1 X111.597 Y41.384 E66.65448
+G1 X111.263 Y41.323 E66.66577
+G1 X110.994 Y41.286 E66.67481
+G1 X110.724 Y41.259 E66.68383
+G1 X110.323 Y41.236 E66.69719
+G1 X109.714 Y41.24 E66.71745
+G1 X109.298 Y41.272 E66.73132
+G1 X101.317 Y42.116 E66.99825
+G1 X101.147 Y42.254 E67.00554
+G1 X101.066 Y42.456 E67.01277
+G1 X101.065 Y44.613 E67.08452
+G1 F1339.3 X101.112 Y45.05 E67.10089
+G1 F1293.1 X101.249 Y44.846 E67.11037
+G1 F1442.3 X101.535 Y44.685 E67.12172
+G1 F1500 X101.67 Y44.668 E67.12625
+G1 X101.933 Y44.73 E67.13523
+G1 X102.128 Y44.929 E67.1445
+G1 X102.174 Y45.043 E67.14859
+G1 X102.188 Y45.314 E67.15762
+G1 X101.991 Y45.582 E67.16868
+G1 X101.759 Y45.676 E67.177
+G1 X101.647 Y45.681 E67.18073
+G1 X101.364 Y45.589 E67.19063
+G1 F1408.5 X101.179 Y45.414 E67.19965
+G1 F1271.2 X101.111 Y45.263 E67.20615
+G1 F1279.3 X101.064 Y45.642 E67.22104
+G1 F1354.4 X101.064 Y45.92 E67.23128
+G1 F1373 X101.064 Y46.198 E67.24139
+G1 F1392.1 X101.064 Y46.476 E67.25135
+G1 F1411.8 X101.064 Y46.754 E67.26117
+G1 F1428.6 X101.064 Y47.032 E67.27088
+G1 F1449.3 X101.064 Y47.31 E67.28045
+G1 F1470.6 X101.064 Y47.588 E67.28988
+G1 F1492.5 X101.063 Y47.866 E67.29918
+G1 F1500 X101.063 Y47.862 E67.29931
+G1 X101.106 Y48.03 E67.30508
+G1 X101.22 Y48.168 E67.31103
+G1 X101.352 Y48.236 E67.31597
+G1 X109.47 Y49.093 E67.58747
+G1 X109.729 Y49.11 E67.59611
+G0 F9000 X109.728 Y48.608
+G0 X111.618 Y48.387
+G0 X112.785 Y48.011
+G0 X112.751 Y48.078
+;TYPE:FILL
+G1 F3000 X115.99 Y44.839 E67.74846
+G0 F9000 X115.991 Y45.51
+G1 F3000 X112.749 Y42.268 E67.90095
+G1 X112.888 Y42.284
+G1 X112.751 Y42.422 E67.90742
+G0 F9000 X112.852 Y42.422
+G0 X112.852 Y47.926
+G0 X112.751 Y47.926
+G1 F3000 X112.888 Y48.064 E67.91389
+G0 F9000 X112.852 Y47.861
+G0 X111.242 Y48.461
+G0 X109.63 Y48.601
+G0 X109.646 Y48.347
+;TYPE:SKIN
+G1 F1500 X110.112 Y48.356 E67.92939
+G1 X110.485 Y48.345 E67.9418
+G1 X110.781 Y48.322 E67.95168
+G1 X111.208 Y48.263 E67.96601
+G1 X111.707 Y48.164 E67.98293
+G1 X112.224 Y48.013 E68.00085
+G1 X112.712 Y47.842 E68.01805
+G1 X112.712 Y47.152 E68.041
+G1 X112.644 Y47.04 E68.04535
+G1 X112.515 Y46.947 E68.05064
+G1 X112.465 Y46.856 E68.0541
+G1 X112.462 Y43.51 E68.16539
+G1 X112.523 Y43.383 E68.17007
+G1 X112.714 Y43.215 E68.17853
+G1 X112.711 Y42.517 E68.20175
+G1 X112.472 Y42.419 E68.21034
+G1 X112.026 Y42.271 E68.22597
+G1 X111.443 Y42.129 E68.24593
+G1 X111.147 Y42.075 E68.25593
+G1 X110.662 Y42.017 E68.27218
+G1 X110.299 Y41.996 E68.28427
+G1 X109.812 Y41.994 E68.30047
+G1 X109.405 Y42.026 E68.31405
+G1 X107.516 Y42.226 E68.37723
+G1 F1363.6 X107.058 Y42.314 E68.39429
+G1 F1178.8 X106.897 Y42.36 E68.40138
+G1 F1129.9 X106.632 Y42.381 E68.41312
+G1 F1160.5 X106.367 Y42.402 E68.42454
+G1 F1190.5 X106.102 Y42.423 E68.43568
+G1 F1224.5 X105.837 Y42.444 E68.44652
+G1 F1257.9 X105.571 Y42.465 E68.4571
+G1 F1295.9 X105.306 Y42.486 E68.46733
+G1 F1336.3 X105.041 Y42.508 E68.47726
+G1 F1376.1 X104.776 Y42.529 E68.4869
+G1 F1421.8 X104.511 Y42.55 E68.49623
+G1 F1456.3 X104.228 Y42.576 E68.50596
+G1 F1485.1 X103.942 Y42.603 E68.51561
+G1 F1500 X101.826 Y42.828 E68.58639
+G1 X101.827 Y43.92 E68.62271
+G1 X102.23 Y44.03 E68.6366
+G1 X102.467 Y44.171 E68.64577
+G1 X102.727 Y44.455 E68.65858
+G1 X102.934 Y44.966 E68.67692
+G1 X102.937 Y45.413 E68.69178
+G1 X102.79 Y45.777 E68.70484
+G1 X102.545 Y46.111 E68.71862
+G1 X102.266 Y46.298 E68.72979
+G1 X102.012 Y46.393 E68.73881
+G1 X101.824 Y46.41 E68.74509
+G1 X101.823 Y47.52 E68.78201
+G1 X103.986 Y47.748 E68.85435
+G1 F1449.3 X104.466 Y47.784 E68.87092
+G1 F1415.1 X104.599 Y47.805 E68.87566
+G1 F1408.5 X104.86 Y47.825 E68.88494
+G1 F1363.6 X105.121 Y47.846 E68.89452
+G1 F1324.5 X105.382 Y47.867 E68.90438
+G1 F1287.6 X105.643 Y47.887 E68.91452
+G1 F1250 X105.905 Y47.908 E68.92501
+G1 F1217 X106.166 Y47.929 E68.93575
+G1 F1185.8 X106.427 Y47.949 E68.94676
+G1 F1153.8 X106.688 Y47.97 E68.95808
+G1 F1125.7 X106.949 Y47.991 E68.96969
+G1 F1188.1 X107.136 Y48.046 E68.97787
+G1 F1379.3 X107.567 Y48.126 E68.99373
+G1 F1500 X109.646 Y48.347 E69.06326
+G0 F9000 X109.63 Y48.601
+G0 X106.862 Y48.314
+G0 X106.952 Y47.452
+G1 F1282.1 X106.616 Y47.443 E69.07634
+G1 F1290.3 X106.28 Y47.434 E69.08934
+G1 F1298.7 X105.944 Y47.425 E69.10225
+G1 F1307.2 X105.608 Y47.416 E69.11508
+G1 F1315.8 X105.272 Y47.407 E69.12783
+G1 F1324.5 X104.936 Y47.398 E69.14049
+G1 F1333.3 X104.6 Y47.388 E69.15306
+G1 F1376.1 X104.373 Y47.276 E69.16224
+G1 F1456.3 X104.144 Y47.164 E69.17097
+G1 F1500 X104.053 Y47.081 E69.17507
+G1 X103.783 Y46.613 E69.19304
+G1 X103.783 Y43.793 E69.28683
+G1 X103.791 Y43.724 E69.28914
+G1 F1485.1 X104.082 Y43.219 E69.30872
+G1 F1449.3 X104.522 Y42.967 E69.32618
+G1 F1425.2 X104.786 Y42.96 E69.33542
+G1 F1405.2 X105.051 Y42.952 E69.34484
+G1 F1388.9 X105.316 Y42.944 E69.35436
+G1 F1369.9 X105.581 Y42.936 E69.36402
+G1 F1351.4 X105.846 Y42.929 E69.3738
+G1 F1336.3 X106.111 Y42.921 E69.3837
+G1 F1318.7 X106.376 Y42.913 E69.39373
+G1 F1304.3 X106.641 Y42.905 E69.40387
+G1 F1287.6 X106.905 Y42.897 E69.41411
+G1 F1304.3 X107.197 Y43.016 E69.42617
+G1 F1357.5 X107.491 Y43.136 E69.43784
+G1 F1438.8 X107.793 Y43.489 E69.45395
+G1 F1500 X107.888 Y43.844 E69.46617
+G1 X107.892 Y46.458 E69.55311
+G1 X107.81 Y46.823 E69.56555
+G1 F1438.8 X107.514 Y47.193 E69.58198
+G1 F1354.4 X107.233 Y47.322 E69.59337
+G1 F1301.5 X106.952 Y47.452 E69.60524
+G0 F9000 X106.862 Y48.314
+G0 X101.634 Y47.691
+G0 X101.563 Y47.151
+G0 X102.022 Y47.15
+G1 F1500 X102.233 Y47.362 E69.61519
+G0 F9000 X102.865 Y47.428
+G1 F1500 X102.028 Y46.591 E69.65456
+G0 F9000 X102.43 Y46.427
+G1 F1500 X103.498 Y47.495 E69.70479
+G0 F9000 X104.122 Y47.554
+G1 F1500 X102.743 Y46.174 E69.76968
+G0 F9000 X102.978 Y45.843
+G1 F1500 X103.583 Y46.449 E69.79816
+G0 F9000 X103.583 Y45.883
+G1 F1500 X103.133 Y45.433 E69.81933
+G0 F9000 X103.583 Y45.317
+G1 F1500 X103.091 Y44.826 E69.84245
+G0 F9000 X103.584 Y44.752
+G1 F1500 X102.025 Y43.194 E69.91575
+G0 F9000 X102.368 Y42.971
+G1 F1500 X103.584 Y44.187 E69.97295
+G0 F9000 X103.615 Y43.653
+G1 F1500 X102.879 Y42.917 E70.00757
+G0 F9000 X103.391 Y42.862
+G1 F1500 X103.813 Y43.284 E70.02742
+G0 F9000 X104.081 Y42.987
+G1 F1500 X103.902 Y42.808 E70.03584
+G0 F9000 X103.855 Y42.35
+G0 X106.996 Y42.019
+G0 X107.054 Y42.566
+G1 F1500 X107.323 Y42.835 E70.04849
+G0 F9000 X107.492 Y42.438
+G1 F1500 X112.511 Y47.457 E70.28457
+G0 F9000 X112.27 Y47.782
+G1 F1500 X108.007 Y43.518 E70.48511
+G0 F9000 X108.086 Y44.163
+G1 F1500 X111.838 Y47.916 E70.66162
+G0 F9000 X111.381 Y48.024
+G1 F1500 X108.087 Y44.73 E70.81656
+G0 F9000 X108.088 Y45.297
+G1 F1500 X110.894 Y48.103 E70.94854
+G0 F9000 X110.373 Y48.147
+G1 F1500 X108.089 Y45.864 E71.05595
+G0 F9000 X108.09 Y46.43
+G1 F1500 X109.809 Y48.149 E71.13681
+G0 F9000 X109.19 Y48.096
+G1 F1500 X107.995 Y46.9 E71.19304
+G0 F9000 X107.748 Y47.219
+G1 F1500 X108.557 Y48.029 E71.23112
+G0 F9000 X107.925 Y47.962
+G1 F1500 X107.427 Y47.464 E71.25454
+G0 F9000 X107.067 Y47.67
+G1 F1500 X107.226 Y47.829 E71.26202
+G0 F9000 X106.803 Y48.308
+G0 X110.117 Y48.555
+G0 X111.332 Y48.444
+G0 X112.716 Y48.047
+G0 X113.146 Y47.143
+G0 X112.602 Y46.645
+G0 X112.264 Y46.645
+G1 F1500 X107.996 Y42.376 E71.4628
+G0 F9000 X108.507 Y42.322
+G1 F1500 X112.264 Y46.079 E71.63952
+G0 F9000 X112.263 Y45.512
+G1 F1500 X109.018 Y42.268 E71.79213
+G0 F9000 X109.532 Y42.215
+G1 F1500 X112.263 Y44.947 E71.92061
+G0 F9000 X112.263 Y44.38
+G1 F1500 X110.078 Y42.195 E72.02339
+G0 F9000 X110.667 Y42.219
+G1 F1500 X112.263 Y43.815 E72.09846
+G0 F9000 X112.326 Y43.313
+G1 F1500 X111.324 Y42.311 E72.14559
+G0 F9000 X112.08 Y42.501
+G1 F1500 X112.512 Y42.933 E72.16591
+G0 F9000 X113.132 Y42.975
+G1 F1500 E65.66591
+;MESH:NONMESH
+G0 F300 X113.132 Y42.975 Z2.8
+G0 F9000 X112.583 Y42.248
+G0 X107.709 Y43.856
+G0 X106.931 Y43.682
+;TIME_ELAPSED:183.972517
+;LAYER:13
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E72.16591
+G1 F711.6 X105.816 Y43.682 E72.21106
+G1 F708.7 X104.701 Y43.683 E72.25639
+G1 F695.9 X104.577 Y43.734 E72.26195
+G1 F693.1 X104.501 Y43.847 E72.26761
+G1 F698.7 X104.501 Y44.521 E72.29541
+G1 F695.9 X104.501 Y45.195 E72.32332
+G1 F693.1 X104.501 Y45.869 E72.35134
+G1 F690.4 X104.501 Y46.543 E72.37947
+G1 F695.9 X104.686 Y46.667 E72.38869
+G1 F705.8 X106.973 Y46.666 E72.48206
+G0 F9000 X107.851 Y46.771
+G1 F585.4 X107.914 Y46.529 E72.49437
+G1 F746.9 X107.977 Y46.287 E72.50402
+G1 F866.4 X107.979 Y44.064 E72.57796
+G1 F805.9 X107.923 Y43.813 E72.58715
+G1 F707.3 X107.867 Y43.562 E72.59763
+G1 F753.4 X107.555 Y43.64 E72.60993
+G1 F866.4 X107.416 Y43.64 E72.61456
+G1 F782.3 X106.931 Y43.682 E72.63249
+G1 X107.131 Y43.925 E72.64408
+G1 F866.4 X107.131 Y46.424 E72.7272
+G1 F778.8 X106.973 Y46.666 E72.73789
+G1 X107.417 Y46.709 E72.7544
+G1 F866.4 X107.553 Y46.71 E72.75892
+G1 F656.4 X107.851 Y46.771 E72.77228
+G1 F503 X107.914 Y47.017 E72.78682
+G1 F515.7 X108.162 Y47.082 E72.80115
+G1 F555.4 X108.688 Y47.113 E72.82849
+G1 F540.6 X108.823 Y47.136 E72.83579
+G1 F1500 E66.33579
+G0 F9000 X107.765 Y46.496
+G0 X107.553 Y46.288
+;TYPE:WALL-INNER
+G1 F1500 E72.83579
+G1 F778.8 X107.554 Y45.176 E72.87693
+G1 F775.3 X107.555 Y44.064 E72.91827
+G0 F9000 X107.861 Y43.535
+;TYPE:WALL-OUTER
+G1 F508.9 X107.917 Y43.331 E72.93024
+G1 F513.4 X108.106 Y43.272 E72.94136
+G1 F549.2 X108.739 Y43.231 E72.97464
+G1 F537.3 X108.823 Y43.213 E72.97925
+G1 F1500 E66.47925
+G0 F9000 X109.814 Y43.158
+G0 X110.748 Y44.089
+G0 X111.123 Y44.068
+G0 X112.195 Y43.213
+G0 X112.471 Y48.153
+G1 F1500 E72.97925
+G0 F9000 X112.212 Y48.508
+;TYPE:WALL-INNER
+G1 F866.4 X112.732 Y48.337 E72.99745
+G1 X112.996 Y48.231 E73.00691
+G1 X113.381 Y48.055 E73.02099
+G1 X113.792 Y47.837 E73.03647
+G1 X114.018 Y47.702 E73.04522
+G1 X114.425 Y47.431 E73.06149
+G1 X114.833 Y47.123 E73.07849
+G1 X115.22 Y46.775 E73.0958
+G1 X115.577 Y46.418 E73.11259
+G1 X115.911 Y46.017 E73.12995
+G1 X116.119 Y45.743 E73.14139
+G1 X116.28 Y45.511 E73.15078
+G1 X116.492 Y45.16 E73.16442
+G1 X116.18 Y44.689 E73.18321
+G1 X116.032 Y44.486 E73.19157
+G1 X115.777 Y44.165 E73.2052
+G1 X115.454 Y43.807 E73.22124
+G1 X115.163 Y43.521 E73.23481
+G1 X114.797 Y43.202 E73.25096
+G1 X114.474 Y42.953 E73.26453
+G1 X114.074 Y42.682 E73.28059
+G1 X113.781 Y42.507 E73.29195
+G1 X113.398 Y42.303 E73.30638
+G1 X113.032 Y42.134 E73.31979
+G1 X112.645 Y41.98 E73.33364
+G1 X112.186 Y41.835 E73.34965
+G1 X112.212 Y41.934 E73.35306
+G1 X112.217 Y42.815 E73.38236
+G1 X112.113 Y42.926 E73.38742
+G1 X112.215 Y42.967 E73.39107
+G1 X112.375 Y43.248 E73.40183
+G1 X112.375 Y46.986 E73.52615
+G1 X112.343 Y47.167 E73.53227
+G1 X112.214 Y47.382 E73.54061
+G1 X112.113 Y47.423 E73.54423
+G1 X112.212 Y47.53 E73.54908
+G1 X112.212 Y48.508 E73.58161
+G1 F1500 E67.08161
+G0 F9000 X112.471 Y48.153
+G0 X111.782 Y48.826
+G0 X109.541 Y49.208
+;TYPE:WALL-OUTER
+G1 F1500 E73.58161
+G1 F924.1 X110.081 Y49.228 E73.59846
+G1 F916.8 X110.603 Y49.214 E73.61487
+G1 F914.4 X111.246 Y49.143 E73.63526
+G1 X111.659 Y49.07 E73.64848
+G1 F897.8 X111.933 Y49.003 E73.65753
+G1 F875.1 X112.406 Y48.87 E73.67371
+G1 F866.4 X112.902 Y48.701 E73.69114
+G1 X113.161 Y48.595 E73.70044
+G1 X113.537 Y48.424 E73.71418
+G1 X113.988 Y48.186 E73.73114
+G1 X114.232 Y48.041 E73.74058
+G1 X114.657 Y47.757 E73.75758
+G1 X115.087 Y47.432 E73.77551
+G1 X115.495 Y47.066 E73.79374
+G1 X115.874 Y46.687 E73.81157
+G1 X116.224 Y46.266 E73.82978
+G1 X116.443 Y45.979 E73.84179
+G1 X116.62 Y45.722 E73.85216
+G1 X116.867 Y45.322 E73.8678
+G1 X116.909 Y45.09 E73.87564
+G1 X116.711 Y44.766 E73.88827
+G1 X116.504 Y44.454 E73.90073
+G1 X116.331 Y44.219 E73.91043
+G1 X116.083 Y43.907 E73.92369
+G1 X115.743 Y43.53 E73.94057
+G1 X115.435 Y43.227 E73.95494
+G1 X115.051 Y42.892 E73.97189
+G1 X114.708 Y42.629 E73.98627
+G1 X114.289 Y42.344 E74.00312
+G1 X113.979 Y42.159 E74.01513
+G1 X113.595 Y41.954 E74.02961
+G1 X113.205 Y41.772 E74.04392
+G1 X112.792 Y41.607 E74.05871
+G1 X112.46 Y41.497 E74.07035
+G1 F877.4 X112.063 Y41.387 E74.08388
+G1 F897.8 X111.665 Y41.276 E74.09714
+G1 F912 X111.298 Y41.214 E74.1089
+G1 F919.2 X110.888 Y41.161 E74.12186
+G1 F916.8 X110.613 Y41.139 E74.13053
+G1 X110.252 Y41.123 E74.14189
+G1 F921.7 X109.841 Y41.125 E74.15474
+G1 X109.394 Y41.154 E74.16874
+G1 F919.2 X108.501 Y41.249 E74.19689
+G1 F916.8 X107.608 Y41.345 E74.22512
+G1 F914.4 X106.715 Y41.44 E74.25342
+G1 F912 X105.822 Y41.536 E74.2818
+G1 F909.6 X104.929 Y41.631 E74.31025
+G1 X104.036 Y41.727 E74.33871
+G1 F907.2 X103.143 Y41.822 E74.36723
+G1 F904.8 X102.25 Y41.918 E74.39583
+G1 F902.5 X101.357 Y42.014 E74.42451
+G1 F877.4 X101.183 Y42.089 E74.43073
+G1 F859.9 X101.027 Y42.28 E74.439
+G1 F884.1 X100.983 Y42.426 E74.44397
+G1 F909.6 X100.983 Y42.933 E74.46003
+G1 F916.8 X100.983 Y43.44 E74.47597
+G1 F926.6 X100.983 Y43.947 E74.49173
+G1 F934.1 X100.983 Y44.454 E74.50737
+G1 F755 X101.074 Y44.645 E74.51545
+G1 F604.8 X101.099 Y44.839 E74.52477
+G1 X101.285 Y44.686 E74.53624
+G1 F631.2 X101.266 Y44.63 E74.53894
+G1 F755 X101.353 Y44.453 E74.54647
+G1 F934.1 X101.353 Y43.97 E74.56137
+G1 F926.6 X101.353 Y43.487 E74.57639
+G1 F916.8 X101.353 Y43.004 E74.59157
+G1 F909.6 X101.353 Y42.521 E74.60687
+G1 F879.6 X101.448 Y42.404 E74.61181
+G1 F888.6 X101.537 Y42.369 E74.61491
+G1 F924.1 X103.554 Y42.156 E74.67815
+G1 F926.6 X105.572 Y41.942 E74.74126
+G1 X107.59 Y41.728 E74.80437
+G1 F929.1 X109.607 Y41.514 E74.86728
+G1 F926.6 X109.874 Y41.5 E74.87559
+G1 F924.1 X110.241 Y41.5 E74.88704
+G1 F921.7 X110.795 Y41.529 E74.90438
+G1 F912 X111.568 Y41.634 E74.92903
+G1 F886.3 X111.811 Y41.863 E74.93988
+G1 F866.4 X111.815 Y42.716 E74.96826
+G1 X111.69 Y42.852 E74.9744
+G1 X111.538 Y42.871 E74.97949
+G1 X111.555 Y43.188 E74.99005
+G1 X111.763 Y43.177 E74.99698
+G1 X111.922 Y43.24 E75.00267
+G1 X111.975 Y43.334 E75.00626
+G1 X111.975 Y47.02 E75.12886
+G1 X111.922 Y47.109 E75.1323
+G1 X111.764 Y47.172 E75.13796
+G1 X111.556 Y47.162 E75.14488
+G1 X111.539 Y47.478 E75.15541
+G1 X111.69 Y47.497 E75.16047
+G1 X111.813 Y47.632 E75.16655
+G1 X111.814 Y48.406 E75.19229
+G1 F875.1 X111.71 Y48.621 E75.20015
+G1 F897.8 X111.559 Y48.704 E75.20568
+G1 F921.7 X110.924 Y48.809 E75.22581
+G1 F926.6 X110.354 Y48.847 E75.24357
+G1 F921.7 X110.054 Y48.852 E75.25295
+G1 F924.1 X109.633 Y48.838 E75.26609
+G1 F926.6 X109.376 Y48.818 E75.2741
+G1 F924.1 X108.588 Y48.734 E75.29881
+G1 F921.7 X107.8 Y48.649 E75.32359
+G1 F919.2 X107.011 Y48.564 E75.34847
+G1 F916.8 X106.223 Y48.48 E75.37338
+G1 F914.4 X105.434 Y48.395 E75.39839
+G1 F912 X104.646 Y48.31 E75.42343
+G1 F909.6 X103.857 Y48.225 E75.44857
+G1 F907.2 X103.069 Y48.141 E75.47374
+G1 F904.8 X102.28 Y48.056 E75.49901
+G1 F902.5 X101.492 Y47.971 E75.52432
+G1 F900.1 X101.354 Y47.798 E75.5314
+G1 F902.5 X101.355 Y47.108 E75.55344
+G1 F909.6 X101.356 Y46.418 E75.57529
+G1 F919.2 X101.358 Y45.728 E75.59692
+G1 F1013.3 X101.485 Y45.625 E75.60157
+G1 X101.154 Y45.468 E75.61199
+G1 F793 X101.046 Y45.272 E75.62012
+G1 X100.984 Y45.677 E75.63501
+G1 F916.8 X100.984 Y46.416 E75.65824
+G1 F907.2 X100.984 Y47.155 E75.68171
+G1 F900.1 X100.984 Y47.894 E75.70537
+G1 F866.4 X101.036 Y48.081 E75.71183
+G1 F839.1 X101.114 Y48.198 E75.71665
+G1 F868.6 X101.325 Y48.326 E75.72484
+G1 F902.5 X102.071 Y48.406 E75.7488
+G1 F904.8 X102.818 Y48.486 E75.77272
+G1 F907.2 X103.565 Y48.566 E75.79659
+G1 F909.6 X104.311 Y48.646 E75.82036
+G1 F912 X105.058 Y48.726 E75.84409
+G1 X105.805 Y48.806 E75.86783
+G1 F914.4 X106.552 Y48.887 E75.89151
+G1 F916.8 X107.298 Y48.967 E75.91509
+G1 F919.2 X108.045 Y49.047 E75.93864
+G1 F921.7 X108.792 Y49.127 E75.96213
+G1 F924.1 X109.539 Y49.207 E75.98556
+G1 F1500 E69.48556
+G0 F9000 X101.709 Y45.586
+G1 F1500 E75.98556
+G1 F1438 X101.893 Y45.494 E75.98968
+G1 F1450 X101.999 Y45.38 E75.99277
+G1 F1533.4 X102.06 Y45.194 E75.99645
+G1 F1506.8 X101.987 Y44.938 E76.00154
+G1 F1403.1 X101.824 Y44.798 E76.00596
+G1 F1353.7 X101.702 Y44.749 E76.00875
+G0 F9000 X101.099 Y44.839
+G1 F632.4 X101.046 Y45.272 E76.02863
+G1 F1500 E69.52863
+G0 F9000 X112.195 Y45.272
+G0 X112.675 Y47.44
+G1 F1500 E76.02863
+G0 F9000 X112.265 Y47.44
+;TYPE:FILL
+G1 F1732.8 X112.975 Y48.15 E76.06203
+G0 F9000 X112.497 Y48.332
+G1 F1732.8 X116.105 Y44.724 E76.23174
+G0 F9000 X116.104 Y45.623
+G1 F1732.8 X112.497 Y42.015 E76.40142
+G0 F9000 X112.975 Y42.198
+G1 F1732.8 X112.266 Y42.906 E76.43475
+G0 F9000 X112.975 Y42.906
+G1 F1500 E69.93475
+;MESH:NONMESH
+G0 F300 X112.975 Y42.906 Z3
+G0 F9000 X112.029 Y42.95
+G0 X110.68 Y43.022
+G0 X109.856 Y44.135
+G0 X108.833 Y44.195
+G0 X106.931 Y43.674
+;TIME_ELAPSED:198.500956
+;LAYER:14
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E76.43475
+G1 F710.8 X105.8 Y43.674 E76.48205
+G1 F705.2 X104.669 Y43.675 E76.52973
+G1 F681 X104.556 Y43.728 E76.53518
+G1 F677.1 X104.493 Y43.842 E76.5409
+G1 F698.3 X104.493 Y45.171 E76.59748
+G1 F701 X104.493 Y46.5 E76.65384
+G1 F683.6 X104.566 Y46.627 E76.66021
+G1 F682.3 X104.669 Y46.675 E76.66516
+G1 F703.8 X105.423 Y46.675 E76.69701
+G1 F706.6 X106.177 Y46.675 E76.72873
+G1 F710.8 X106.931 Y46.675 E76.76027
+G0 F9000 X107.843 Y46.776
+G1 F673.3 X107.974 Y46.306 E76.78181
+G1 F893.8 X107.974 Y44.044 E76.85704
+G1 F775.5 X107.915 Y43.785 E76.86723
+G1 F613.2 X107.855 Y43.525 E76.88016
+G1 F569.3 X107.821 Y43.563 E76.88282
+G1 F706.6 X107.551 Y43.623 E76.89446
+G1 F893.8 X107.433 Y43.623 E76.89839
+G1 F841.2 X107.182 Y43.648 E76.9073
+G1 F751.1 X106.931 Y43.674 E76.91729
+G1 F792.7 X107.131 Y43.925 E76.92932
+G1 F893.8 X107.131 Y46.424 E77.01244
+G1 F803.4 X106.972 Y46.667 E77.02319
+G1 F720.8 X106.931 Y46.675 E77.02491
+G1 X106.973 Y46.685 E77.02669
+G1 F803.4 X107.434 Y46.726 E77.04381
+G1 F893.8 X107.55 Y46.727 E77.04767
+G1 F673.3 X107.843 Y46.776 E77.06079
+G1 F517.4 X107.91 Y47.022 E77.07544
+G1 F532.8 X108.157 Y47.087 E77.08969
+G1 F573 X108.682 Y47.118 E77.11698
+G1 F557.8 X108.818 Y47.141 E77.12433
+G1 F1500 E70.62433
+G0 F9000 X107.76 Y46.513
+G0 X107.553 Y46.306
+;TYPE:WALL-INNER
+G1 F1500 E77.12433
+G1 F808.9 X107.553 Y44.044 E77.20746
+G0 F9000 X107.855 Y43.525
+;TYPE:WALL-OUTER
+G1 F524.2 X107.912 Y43.326 E77.2192
+G1 F529.7 X108.101 Y43.267 E77.23031
+G1 F566.6 X108.734 Y43.226 E77.2636
+G1 F554.3 X108.818 Y43.208 E77.2682
+G1 F1500 E70.7682
+G0 F9000 X109.809 Y43.153
+G0 X110.764 Y44.083
+G0 X111.139 Y44.062
+G0 X112.211 Y43.208
+G0 X112.647 Y48.206
+G1 F1500 E77.2682
+G0 F9000 X112.361 Y48.571
+;TYPE:WALL-INNER
+G1 F893.8 X112.823 Y48.415 E77.28442
+G1 X113.154 Y48.282 E77.29629
+G1 X113.568 Y48.094 E77.31141
+G1 X114.144 Y47.764 E77.33349
+G1 X114.373 Y47.616 E77.34256
+G1 X114.743 Y47.355 E77.35762
+G1 X115.283 Y46.903 E77.38104
+G1 X115.562 Y46.626 E77.39412
+G1 X115.919 Y46.242 E77.41155
+G1 X116.244 Y45.824 E77.42916
+G1 X116.524 Y45.419 E77.44554
+G1 X116.672 Y45.173 E77.45509
+G1 X116.403 Y44.747 E77.47185
+G1 X116.09 Y44.324 E77.48935
+G1 X115.89 Y44.081 E77.49982
+G1 X115.654 Y43.819 E77.51154
+G1 X115.457 Y43.617 E77.52093
+G1 X115.203 Y43.378 E77.53253
+G1 X114.851 Y43.083 E77.5478
+G1 X114.632 Y42.915 E77.55698
+G1 X114.407 Y42.758 E77.56611
+G1 X114.11 Y42.566 E77.57787
+G1 X113.807 Y42.388 E77.58956
+G1 X113.5 Y42.227 E77.60109
+G1 X113.187 Y42.082 E77.61256
+G1 X112.945 Y41.98 E77.6213
+G1 X112.389 Y41.776 E77.641
+G1 X112.391 Y42.649 E77.67003
+G1 X112.325 Y42.923 E77.67941
+G1 X112.191 Y43.009 E77.6847
+G1 X112.326 Y43.096 E77.69004
+G1 X112.39 Y43.322 E77.69786
+G1 X112.391 Y46.978 E77.81946
+G1 X112.326 Y47.252 E77.82882
+G1 X112.196 Y47.339 E77.83402
+G1 X112.326 Y47.426 E77.83923
+G1 X112.39 Y47.596 E77.84527
+G1 X112.39 Y48.472 E77.8744
+G1 X112.361 Y48.571 E77.87784
+G1 F1500 E71.37784
+G0 F9000 X112.647 Y48.206
+G0 X112.052 Y48.862
+G0 X109.554 Y49.314
+;TYPE:WALL-OUTER
+G1 F1500 E77.87784
+G1 F1042.3 X109.893 Y49.332 E77.88752
+G1 F1036.3 X110.308 Y49.333 E77.89942
+G1 F1033.3 X110.587 Y49.322 E77.90746
+G1 F1030.3 X111.153 Y49.269 E77.92386
+G1 F1027.4 X111.504 Y49.216 E77.93413
+G1 F1024.4 X111.785 Y49.161 E77.94244
+G1 F998.7 X112.09 Y49.069 E77.95192
+G1 F953.4 X112.395 Y48.977 E77.96186
+G1 F914.4 X112.7 Y48.884 E77.97222
+G1 F893.8 X112.971 Y48.787 E77.9818
+G1 X113.319 Y48.646 E77.99428
+G1 X113.75 Y48.45 E78.01003
+G1 X114.352 Y48.106 E78.03309
+G1 X114.597 Y47.948 E78.04279
+G1 X114.987 Y47.673 E78.05866
+G1 X115.385 Y47.342 E78.07588
+G1 X115.639 Y47.113 E78.08725
+G1 X115.85 Y46.904 E78.09713
+G1 X116.103 Y46.633 E78.10946
+G1 X116.295 Y46.411 E78.11922
+G1 X116.542 Y46.094 E78.13259
+G1 X116.86 Y45.637 E78.15111
+G1 X117.083 Y45.269 E78.16542
+G1 X117.066 Y45.054 E78.17259
+G1 X116.925 Y44.816 E78.18179
+G1 X116.732 Y44.519 E78.19358
+G1 X116.427 Y44.105 E78.21068
+G1 X116.194 Y43.82 E78.22292
+G1 X115.946 Y43.545 E78.23524
+G1 X115.738 Y43.332 E78.24514
+G1 X115.469 Y43.079 E78.25742
+G1 X115.127 Y42.79 E78.27232
+G1 X114.895 Y42.611 E78.28206
+G1 X114.625 Y42.422 E78.29302
+G1 X114.341 Y42.238 E78.30428
+G1 X114.022 Y42.049 E78.31661
+G1 X113.67 Y41.865 E78.32982
+G1 X113.36 Y41.72 E78.3412
+G1 X113.075 Y41.602 E78.35146
+G1 X112.665 Y41.451 E78.366
+G1 F909.7 X112.406 Y41.376 E78.37481
+G1 F940.8 X112.147 Y41.3 E78.38334
+G1 F971.5 X111.888 Y41.225 E78.39159
+G1 F1007.1 X111.629 Y41.149 E78.39955
+G1 F1027.4 X110.998 Y41.063 E78.41798
+G1 F1036.3 X110.735 Y41.036 E78.42557
+G1 F1042.3 X110.226 Y41.015 E78.4401
+G1 F1039.3 X109.674 Y41.027 E78.45589
+G1 F1042.3 X109.337 Y41.054 E78.46553
+G1 F1045.4 X105.508 Y41.466 E78.57505
+G1 F1015.7 X105.083 Y41.479 E78.58749
+G1 F955.9 X105.061 Y41.452 E78.58857
+G1 F921.4 X104.805 Y41.465 E78.59684
+G1 F912 X104.093 Y41.544 E78.62019
+G1 F907.4 X103.38 Y41.623 E78.6437
+G1 F902.8 X102.667 Y41.702 E78.66732
+G1 F898.3 X101.954 Y41.781 E78.69106
+G1 F893.8 X101.241 Y41.86 E78.71492
+G1 F859.4 X101.053 Y41.948 E78.7221
+G1 F829.5 X100.897 Y42.121 E78.73044
+G1 F865.7 X100.819 Y42.349 E78.73872
+G1 F909.7 X100.819 Y42.911 E78.75709
+G1 F916.7 X100.819 Y43.473 E78.77531
+G1 F926.2 X100.819 Y44.035 E78.79335
+G1 F933.5 X100.818 Y44.597 E78.81125
+G1 F812.5 X100.879 Y44.721 E78.8163
+G1 F635 X100.944 Y44.999 E78.82967
+G1 X101.116 Y44.824 E78.84115
+G1 F839.3 X101.303 Y44.752 E78.84825
+G1 X101.153 Y44.676 E78.85421
+G1 F812.5 X101.199 Y44.596 E78.85758
+G1 F933.5 X101.199 Y44.061 E78.87462
+G1 F926.2 X101.2 Y43.526 E78.89179
+G1 F916.7 X101.201 Y42.991 E78.90914
+G1 F909.7 X101.202 Y42.456 E78.92663
+G1 F867.8 X101.341 Y42.268 E78.93464
+G1 F876.3 X101.454 Y42.221 E78.93879
+G1 F928.6 X105.015 Y41.838 E79.05344
+G1 F963.7 X105.181 Y41.834 E79.05857
+G1 F1024.4 X105.561 Y41.803 E79.06963
+G1 F1051.5 X107.486 Y41.597 E79.12436
+G1 F1045.4 X109.412 Y41.39 E79.17945
+G1 X109.742 Y41.367 E79.18886
+G1 F1042.3 X110.226 Y41.359 E79.20266
+G1 F1039.3 X110.709 Y41.381 E79.21649
+G1 F1036.3 X111.233 Y41.441 E79.23162
+G1 F1018.6 X111.678 Y41.522 E79.24482
+G1 F945.8 X111.929 Y41.712 E79.25472
+G1 F893.8 X111.989 Y41.898 E79.26122
+G1 X111.985 Y42.733 E79.28899
+G1 F940.8 X111.799 Y42.831 E79.29563
+G1 F995.9 X111.532 Y42.846 E79.30362
+G1 X111.551 Y43.205 E79.31435
+G1 X111.8 Y43.191 E79.32179
+G1 F940.8 X111.991 Y43.29 E79.32859
+G1 F893.8 X111.991 Y47.059 E79.45395
+G1 F940.8 X111.806 Y47.158 E79.46058
+G1 F993.1 X111.551 Y47.145 E79.46822
+G1 F995.9 X111.533 Y47.505 E79.47898
+G1 F993.1 X111.806 Y47.519 E79.48716
+G1 F940.8 X111.985 Y47.617 E79.49361
+G1 F893.8 X111.99 Y48.472 E79.52205
+G1 X111.957 Y48.584 E79.52593
+G1 F923.8 X111.734 Y48.817 E79.53631
+G1 F974.2 X111.478 Y48.863 E79.54425
+G1 F1012.8 X111.221 Y48.909 E79.55191
+G1 F1039.3 X110.894 Y48.949 E79.56133
+G1 F1042.3 X110.437 Y48.984 E79.57441
+G1 F1039.3 X109.995 Y48.991 E79.58705
+G1 F1045.4 X109.479 Y48.966 E79.60174
+G1 F1051.5 X105.464 Y48.537 E79.7159
+G1 F1015.7 X105.154 Y48.514 E79.72499
+G1 F953.4 X105.014 Y48.513 E79.72936
+G1 F921.4 X103.235 Y48.322 E79.78708
+G1 F916.7 X101.455 Y48.13 E79.84514
+G1 F880.6 X101.321 Y48.072 E79.85007
+G1 F887.2 X101.204 Y47.844 E79.85866
+G1 F923.8 X101.199 Y45.721 E79.92697
+G1 F990.4 X101.35 Y45.591 E79.93296
+G1 F867.8 X101.039 Y45.4 E79.94546
+G1 F650 X100.934 Y45.199 E79.95583
+G1 F716.5 X100.819 Y45.667 E79.97583
+G1 F916.7 X100.819 Y46.14 E79.99116
+G1 F909.7 X100.82 Y46.613 E80.00662
+G1 F902.8 X100.82 Y47.086 E80.0222
+G1 F898.3 X100.821 Y47.559 E80.03785
+G1 F891.6 X100.822 Y48.032 E80.05362
+G1 F863.6 X100.893 Y48.23 E80.06086
+G1 F865.7 X101.109 Y48.456 E80.0716
+G1 F914.4 X101.465 Y48.515 E80.08333
+G1 F935.9 X103.112 Y48.691 E80.13594
+G1 F931 X103.866 Y48.778 E80.16018
+G1 F921.4 X104.62 Y48.866 E80.18467
+G1 F919.1 X105.049 Y48.905 E80.1986
+G1 F923.8 X105.075 Y48.881 E80.19974
+G1 F984.9 X105.428 Y48.875 E80.2104
+G1 F1051.5 X107.491 Y49.094 E80.26905
+G1 F1048.5 X109.554 Y49.314 E80.32787
+G1 F1500 E73.82787
+G0 F9000 X101.498 Y45.596
+G1 F1500 E80.32787
+G1 F1547.7 X101.708 Y45.577 E80.33192
+G1 F1589 X101.87 Y45.476 E80.33549
+G1 F1541 X102.014 Y45.23 E80.34099
+G1 F1465.3 X101.97 Y45.205 E80.34202
+G1 X101.997 Y45.184 E80.34271
+G1 F1502.2 X101.921 Y44.927 E80.34802
+G1 F1534.4 X101.678 Y44.762 E80.35371
+G1 F1459.3 X101.435 Y44.762 E80.35866
+G0 F9000 X100.944 Y44.999
+G1 F577.6 X100.934 Y45.199 E80.36897
+G1 F1500 E73.86897
+G0 F9000 X112.211 Y45.199
+G0 X112.691 Y47.644
+G1 F1500 E80.36897
+G0 F9000 X112.469 Y47.644
+;TYPE:FILL
+G1 F1787.6 X113.057 Y48.233 E80.39665
+G0 F9000 X112.47 Y48.359
+G1 F1787.6 X116.209 Y44.62 E80.57252
+G0 F9000 X116.033 Y44.748
+G0 X116.032 Y45.606
+G0 X116.21 Y45.729
+G1 F1787.6 X112.47 Y41.988 E80.74846
+G0 F9000 X113.058 Y42.114
+G1 F1787.6 X112.47 Y42.702 E80.77612
+G0 F9000 X112.991 Y42.702
+G1 F1500 E74.27612
+;MESH:NONMESH
+G0 F300 X112.991 Y42.702 Z3.2
+G0 F9000 X112.211 Y43.893
+G0 X111.139 Y44.062
+G0 X108.828 Y44.19
+G0 X106.931 Y43.665
+;TIME_ELAPSED:213.000114
+;LAYER:15
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E80.77612
+G1 F687.7 X106.473 Y43.665 E80.79596
+G1 F683.8 X106.015 Y43.665 E80.81591
+G1 F679.9 X105.557 Y43.666 E80.83598
+G1 F677.3 X105.099 Y43.666 E80.85613
+G1 F673.5 X104.641 Y43.667 E80.87639
+G1 F651.5 X104.541 Y43.726 E80.8817
+G1 X104.483 Y43.841 E80.88759
+G1 F672.2 X104.483 Y45.176 E80.94676
+G1 F674.8 X104.484 Y46.511 E81.0057
+G1 F656.2 X104.534 Y46.612 E81.01082
+G1 F655 X104.656 Y46.684 E81.01726
+G1 F674.8 X105.429 Y46.684 E81.05139
+G1 F677.3 X106.202 Y46.684 E81.08539
+G1 F679.9 X106.975 Y46.684 E81.11926
+G0 F9000 X107.401 Y46.475
+G0 X107.699 Y46.475
+G0 X107.969 Y46.852
+G1 F895.8 X107.969 Y44.024 E81.21332
+G1 F775.6 X107.909 Y43.769 E81.22339
+G1 F611.4 X107.849 Y43.514 E81.23615
+G1 F568.7 X107.811 Y43.556 E81.23912
+G1 F708.1 X107.546 Y43.605 E81.25046
+G1 F895.8 X107.451 Y43.605 E81.25362
+G1 F833.3 X107.191 Y43.635 E81.26298
+G1 F731.2 X106.931 Y43.665 E81.27364
+G1 F778.9 X107.131 Y43.925 E81.28619
+G1 F895.8 X107.131 Y46.424 E81.3693
+G1 F773.9 X106.976 Y46.684 E81.38096
+G1 X107.452 Y46.744 E81.39943
+G1 F895.8 X107.546 Y46.745 E81.40255
+G1 X107.718 Y46.846 E81.40919
+G1 X107.741 Y46.911 E81.41148
+G1 X107.969 Y46.852 E81.41931
+G0 F9000 X107.905 Y47.029
+G1 F531.6 X108.152 Y47.093 E81.43361
+G1 F573.3 X108.676 Y47.123 E81.46089
+G1 F559 X108.813 Y47.146 E81.46829
+G1 F1500 E74.96829
+G0 F9000 X107.755 Y46.531
+G0 X107.55 Y46.326
+;TYPE:WALL-INNER
+G1 F1500 E81.46829
+G1 F818 X107.55 Y44.024 E81.55213
+G0 F9000 X107.849 Y43.514
+;TYPE:WALL-OUTER
+G1 F523.1 X107.906 Y43.321 E81.5636
+G1 F530 X108.096 Y43.262 E81.57478
+G1 F567.8 X108.729 Y43.221 E81.60806
+G1 F555.5 X108.813 Y43.203 E81.61267
+G1 F1500 E75.11267
+G0 F9000 X109.804 Y43.149
+G0 X110.78 Y44.077
+G0 X111.155 Y44.056
+G0 X112.227 Y43.203
+G0 X112.785 Y48.261
+G1 F1500 E81.61267
+G0 F9000 X112.528 Y48.632
+;TYPE:WALL-INNER
+G1 F895.8 X113.137 Y48.403 E81.63431
+G1 X113.574 Y48.203 E81.65029
+G1 X113.827 Y48.073 E81.65975
+G1 X114.19 Y47.868 E81.67362
+G1 X114.554 Y47.632 E81.68805
+G1 X114.763 Y47.484 E81.69656
+G1 X115.014 Y47.291 E81.7071
+G1 X115.292 Y47.059 E81.71914
+G1 X115.638 Y46.74 E81.73479
+G1 X116.004 Y46.343 E81.75275
+G1 X116.294 Y45.988 E81.768
+G1 X116.499 Y45.709 E81.77951
+G1 X116.853 Y45.185 E81.80054
+G1 X116.719 Y44.967 E81.80906
+G1 X116.423 Y44.533 E81.82653
+G1 X116.203 Y44.246 E81.83856
+G1 X115.996 Y43.998 E81.8493
+G1 X115.65 Y43.627 E81.86617
+G1 X115.339 Y43.334 E81.88038
+G1 X114.949 Y43.007 E81.89731
+G1 X114.601 Y42.75 E81.9117
+G1 X114.363 Y42.59 E81.92124
+G1 X114.122 Y42.442 E81.93065
+G1 X113.806 Y42.264 E81.94271
+G1 X113.54 Y42.132 E81.95259
+G1 X113.147 Y41.955 E81.96692
+G1 X112.823 Y41.827 E81.97851
+G1 X112.525 Y41.725 E81.98898
+G1 X112.532 Y41.789 E81.99113
+G1 X112.531 Y42.829 E82.02572
+G1 X112.442 Y43.049 E82.03361
+G1 X112.295 Y43.133 E82.03924
+G1 X112.408 Y43.275 E82.04528
+G1 X112.408 Y47.07 E82.1715
+G1 X112.299 Y47.216 E82.17756
+G1 X112.444 Y47.305 E82.18322
+G1 X112.531 Y47.524 E82.19105
+G1 X112.528 Y48.632 E82.22791
+G1 F1500 E75.72791
+G0 F9000 X112.785 Y48.261
+G0 X112.224 Y48.906
+G0 X109.708 Y49.407
+;TYPE:WALL-OUTER
+G1 F1500 E82.22791
+G1 F1056.9 X110.273 Y49.419 E82.24384
+G1 F1050.7 X110.699 Y49.402 E82.25593
+G1 F1047.7 X110.984 Y49.378 E82.26406
+G1 F1044.6 X111.414 Y49.323 E82.27642
+G1 F1047.7 X111.831 Y49.247 E82.28848
+G1 F965.8 X111.844 Y49.214 E82.28957
+G1 F895.8 X112.332 Y49.097 E82.30626
+G1 X112.85 Y48.938 E82.32428
+G1 X113.29 Y48.773 E82.33991
+G1 X113.756 Y48.559 E82.35697
+G1 X114.002 Y48.433 E82.36616
+G1 X114.397 Y48.21 E82.38125
+G1 X114.779 Y47.963 E82.39638
+G1 X114.995 Y47.81 E82.40518
+G1 X115.264 Y47.603 E82.41647
+G1 X115.556 Y47.359 E82.42913
+G1 X115.921 Y47.023 E82.44563
+G1 X116.306 Y46.606 E82.46451
+G1 X116.59 Y46.26 E82.47939
+G1 X116.814 Y45.958 E82.4919
+G1 X117.066 Y45.585 E82.50687
+G1 X117.235 Y45.303 E82.51781
+G1 X117.229 Y45.034 E82.52676
+G1 X117.05 Y44.742 E82.53815
+G1 X116.764 Y44.321 E82.55507
+G1 X116.536 Y44.021 E82.56761
+G1 X116.296 Y43.733 E82.58008
+G1 X115.934 Y43.345 E82.59773
+G1 X115.605 Y43.035 E82.61276
+G1 X115.197 Y42.692 E82.63049
+G1 X114.802 Y42.403 E82.64677
+G1 X114.58 Y42.254 E82.65566
+G1 X114.325 Y42.097 E82.66562
+G1 X113.994 Y41.911 E82.67825
+G1 X113.726 Y41.776 E82.68823
+G1 X113.313 Y41.59 E82.70329
+G1 X112.966 Y41.453 E82.7157
+G1 X112.602 Y41.328 E82.7285
+G1 X112.363 Y41.261 E82.73676
+G1 F963.2 X111.982 Y41.139 E82.74913
+G1 F1041.6 X111.547 Y41.048 E82.76185
+G1 F1047.7 X111.114 Y40.985 E82.77429
+G1 F1050.7 X110.562 Y40.937 E82.79
+G1 F1056.9 X109.904 Y40.933 E82.80855
+G1 F1063.2 X109.558 Y40.951 E82.81826
+G1 F1066.4 X107.305 Y41.194 E82.88157
+G1 F1029.6 X106.984 Y41.205 E82.89086
+G1 F963.2 X106.816 Y41.169 E82.89617
+G1 F938 X106.546 Y41.205 E82.90483
+G1 F947.9 X106.275 Y41.241 E82.91342
+G1 F960.6 X106.004 Y41.277 E82.9219
+G1 F971 X105.734 Y41.313 E82.93026
+G1 F981.7 X105.463 Y41.349 E82.93855
+G1 F995.3 X105.192 Y41.386 E82.94674
+G1 F1006.5 X104.922 Y41.422 E82.9548
+G1 F1017.9 X104.466 Y41.476 E82.96824
+G1 F1026.7 X104.008 Y41.53 E82.98163
+G1 F1035.6 X103.55 Y41.584 E82.99489
+G1 F1044.6 X103.092 Y41.638 E83.00805
+G1 F1053.8 X102.634 Y41.692 E83.02109
+G1 F1050.7 X102.164 Y41.741 E83.03448
+G1 F1035.6 X101.692 Y41.79 E83.04814
+G1 F1023.7 X101.221 Y41.84 E83.06192
+G1 F976.3 X100.957 Y41.993 E83.07123
+G1 F940.4 X100.882 Y42.088 E83.07507
+G1 F965.8 X100.804 Y42.312 E83.08238
+G1 F998.1 X100.804 Y43.047 E83.10432
+G1 F1003.7 X100.804 Y43.782 E83.12614
+G1 F1012.2 X100.804 Y44.517 E83.14778
+G1 F792.7 X100.905 Y44.722 E83.15637
+G1 F625.3 X100.936 Y44.907 E83.1653
+G1 X101.063 Y44.778 E83.17393
+G1 F740.3 X101.189 Y44.744 E83.17918
+G1 X101.076 Y44.69 E83.18422
+G1 F792.7 X101.158 Y44.517 E83.19142
+G1 F1012.2 X101.158 Y43.472 E83.22218
+G1 F1003.7 X101.158 Y42.427 E83.2532
+G1 F965.8 X101.213 Y42.281 E83.25801
+G1 F976.3 X101.385 Y42.167 E83.26431
+G1 F1029.6 X102.029 Y42.099 E83.28305
+G1 F1047.7 X102.673 Y42.03 E83.30146
+G1 F1053.8 X102.932 Y42.001 E83.30883
+G1 F1044.6 X103.191 Y41.972 E83.31626
+G1 F1035.6 X103.451 Y41.942 E83.32379
+G1 F1026.7 X103.71 Y41.913 E83.33136
+G1 F1020.8 X103.969 Y41.883 E83.33897
+G1 F1012.2 X104.229 Y41.854 E83.34667
+G1 F1003.7 X104.488 Y41.824 E83.35441
+G1 F995.3 X104.748 Y41.795 E83.36224
+G1 F987.1 X105.007 Y41.766 E83.37011
+G1 F979 X105.266 Y41.736 E83.37804
+G1 F971 X105.526 Y41.707 E83.38607
+G1 F963.2 X105.785 Y41.677 E83.39413
+G1 F958 X106.044 Y41.648 E83.40224
+G1 F950.4 X106.304 Y41.618 E83.41044
+G1 F942.9 X106.563 Y41.589 E83.41868
+G1 F935.5 X106.823 Y41.559 E83.42701
+G1 F979 X107.062 Y41.553 E83.43429
+G1 F1035.6 X107.686 Y41.487 E83.45234
+G1 F1044.6 X108.311 Y41.421 E83.47026
+G1 F1053.8 X108.936 Y41.355 E83.48803
+G1 F1063.2 X109.561 Y41.289 E83.50564
+G1 X109.884 Y41.272 E83.51471
+G1 X110.279 Y41.27 E83.52577
+G1 F1060.1 X110.676 Y41.285 E83.53694
+G1 F1053.8 X111.011 Y41.316 E83.54645
+G1 F1050.7 X111.412 Y41.372 E83.55793
+G1 F1044.6 X111.873 Y41.465 E83.57134
+G1 F963.2 X112.09 Y41.666 E83.58049
+G1 F895.8 X112.128 Y41.751 E83.58359
+G1 X112.127 Y42.776 E83.61768
+G1 F729.7 X111.938 Y43.024 E83.63041
+G1 F590.3 X111.854 Y43.05 E83.63485
+G1 X111.923 Y43.098 E83.63909
+G1 F729.7 X112.005 Y43.331 E83.64918
+G1 F895.8 X112.005 Y47.017 E83.77177
+G1 F738.8 X111.934 Y47.24 E83.78121
+G1 F597.2 X111.854 Y47.296 E83.78608
+G1 X111.952 Y47.333 E83.79131
+G1 F738.8 X112.127 Y47.574 E83.80332
+G1 F895.8 X112.128 Y48.541 E83.83548
+G1 X112.057 Y48.739 E83.84248
+G1 X111.79 Y48.958 E83.85397
+G1 F965.8 X111.763 Y48.913 E83.85558
+G1 F1050.7 X111.267 Y49 E83.86986
+G1 F1053.8 X110.801 Y49.053 E83.88312
+G1 F1060.1 X110.468 Y49.074 E83.8925
+G1 X110.075 Y49.081 E83.90355
+G1 F1063.2 X109.565 Y49.059 E83.91785
+G1 F1060.1 X108.344 Y48.928 E83.95236
+G1 F1053.8 X107.122 Y48.797 E83.98711
+G1 F989.8 X106.912 Y48.797 E83.99343
+G1 F938 X106.662 Y48.77 E84.00142
+G1 F942.9 X106.412 Y48.742 E84.00937
+G1 F947.9 X106.161 Y48.714 E84.0173
+G1 F952.9 X105.911 Y48.686 E84.02517
+G1 F958 X105.66 Y48.658 E84.03302
+G1 F963.2 X105.41 Y48.63 E84.0408
+G1 F968.4 X105.159 Y48.602 E84.04857
+G1 F971 X104.909 Y48.574 E84.05629
+G1 F976.3 X104.658 Y48.546 E84.064
+G1 F981.7 X104.408 Y48.518 E84.07164
+G1 F987.1 X104.157 Y48.49 E84.07926
+G1 F992.5 X103.907 Y48.462 E84.08681
+G1 F998.1 X103.657 Y48.434 E84.09432
+G1 F1003.7 X103.406 Y48.406 E84.10182
+G1 F1009.3 X103.156 Y48.378 E84.10924
+G1 F1012.2 X102.905 Y48.35 E84.11668
+G1 F1017.9 X102.655 Y48.322 E84.12404
+G1 F1023.7 X102.404 Y48.294 E84.13139
+G1 F1029.6 X102.154 Y48.266 E84.13867
+G1 F1035.6 X101.903 Y48.238 E84.14593
+G1 F1041.6 X101.653 Y48.21 E84.15313
+G1 F1047.7 X101.402 Y48.182 E84.16031
+G1 F1003.7 X101.282 Y48.142 E84.16407
+G1 F968.4 X101.159 Y47.944 E84.17124
+G1 F976.3 X101.162 Y46.818 E84.2056
+G1 F981.7 X101.165 Y45.692 E84.23977
+G1 F1092.4 X101.293 Y45.595 E84.24415
+G1 F1388.8 X101.491 Y45.595 E84.2484
+G1 F1284.2 X101.209 Y45.563 E84.25499
+G1 F909.4 X101.005 Y45.415 E84.26324
+G1 F718 X100.902 Y45.236 E84.27181
+G1 F791 X100.806 Y45.658 E84.28811
+G1 F992.5 X100.806 Y46.858 E84.32413
+G1 F984.4 X100.807 Y48.058 E84.36045
+G1 F955.5 X100.903 Y48.288 E84.36822
+G1 F945.4 X101.046 Y48.431 E84.3746
+G1 F987.1 X101.199 Y48.502 E84.37969
+G1 F1017.9 X102.145 Y48.607 E84.40755
+G1 F1023.7 X103.091 Y48.712 E84.43525
+G1 F1029.6 X104.038 Y48.818 E84.46282
+G1 F1026.7 X104.443 Y48.869 E84.47467
+G1 F1012.2 X104.848 Y48.92 E84.48668
+G1 F998.1 X105.253 Y48.971 E84.49887
+G1 F984.4 X105.592 Y49.016 E84.50922
+G1 F968.4 X105.932 Y49.062 E84.51977
+G1 F955.5 X106.272 Y49.107 E84.53047
+G1 F940.4 X106.612 Y49.153 E84.54134
+G1 F935.5 X106.92 Y49.182 E84.55119
+G1 F989.8 X107.114 Y49.135 E84.5572
+G1 F1050.7 X108.272 Y49.26 E84.59022
+G1 F1056.9 X109.431 Y49.386 E84.62309
+G1 F1060.1 X109.708 Y49.407 E84.63089
+G1 F1500 E78.13089
+G0 F9000 X101.491 Y45.595
+G1 F1500 E84.63089
+G1 F1564.6 X101.768 Y45.515 E84.63638
+G1 F1537.8 X101.926 Y45.289 E84.64173
+G1 F1557.8 X101.912 Y45.016 E84.64695
+G1 F1537.8 X101.731 Y44.809 E84.65228
+G1 F1518.2 X101.42 Y44.752 E84.65848
+G0 F9000 X100.936 Y44.907
+G1 F628.6 X100.902 Y45.236 E84.67416
+G1 F1500 E78.17416
+G0 F9000 X112.227 Y45.236
+G0 X112.83 Y47.785
+G1 F1500 E84.67416
+G0 F9000 X112.608 Y47.784
+;TYPE:FILL
+G1 F1791.5 X113.137 Y48.313 E84.69904
+G0 F9000 X112.607 Y48.222
+G1 F1791.5 X116.311 Y44.518 E84.87327
+G0 F9000 X116.137 Y44.649
+G0 X116.137 Y45.699
+G0 X116.311 Y45.829
+G1 F1791.5 X112.61 Y42.128 E85.04735
+G0 F9000 X112.61 Y42.562
+G1 F1791.5 X113.137 Y42.036 E85.07212
+G0 F9000 X113.131 Y42.51
+G1 F1500 E78.57212
+;MESH:NONMESH
+G0 F300 X113.131 Y42.51 Z3.4
+G0 F9000 X112.227 Y43.876
+G0 X111.155 Y44.056
+G0 X108.823 Y44.185
+G0 X106.931 Y43.657
+;TIME_ELAPSED:227.420226
+;LAYER:16
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E85.07212
+G1 F489.9 X106.472 Y43.657 E85.09261
+G1 F487.2 X106.013 Y43.657 E85.11322
+G1 F484.5 X105.554 Y43.658 E85.13395
+G1 F482.7 X105.095 Y43.658 E85.15475
+G1 F480.1 X104.636 Y43.659 E85.17566
+G1 F465.7 X104.538 Y43.719 E85.18106
+G1 F464.8 X104.477 Y43.813 E85.18633
+G1 F474.9 X104.477 Y44.497 E85.21784
+G1 F472.3 X104.477 Y45.181 E85.24952
+G1 F470.7 X104.477 Y45.865 E85.28131
+G1 F468.1 X104.477 Y46.549 E85.31328
+G1 F460 X104.564 Y46.653 E85.31973
+G1 F470.7 X104.743 Y46.693 E85.32825
+G1 F488.1 X105.86 Y46.693 E85.37831
+G1 F486.3 X106.977 Y46.692 E85.42856
+G0 F9000 X107.401 Y46.492
+G0 X107.693 Y46.492
+G0 X107.963 Y46.859
+G1 F657.7 X107.963 Y43.564 E85.53815
+G1 F517.9 X107.859 Y43.505 E85.5432
+G1 X107.709 Y43.493 E85.54956
+G1 F606.2 X107.562 Y43.576 E85.55565
+G1 F542.5 X107.247 Y43.616 E85.56846
+G1 F506.9 X106.931 Y43.657 E85.58221
+G1 F562.2 X107.131 Y43.925 E85.59522
+G1 F657.7 X107.131 Y46.424 E85.67834
+G1 F558.6 X106.977 Y46.692 E85.69045
+G1 F502.1 X107.269 Y46.733 E85.70329
+G1 F539.1 X107.562 Y46.774 E85.7153
+G1 F604.8 X107.708 Y46.857 E85.72137
+G1 F657.7 X107.734 Y46.923 E85.72373
+G1 X107.963 Y46.859 E85.73164
+G0 F9000 X107.9 Y47.034
+G1 F390.9 X108.146 Y47.098 E85.74586
+G1 F421 X108.67 Y47.128 E85.77314
+G1 F410.4 X108.807 Y47.151 E85.78054
+G0 F9000 X107.749 Y46.548
+G0 X107.547 Y46.346
+;TYPE:WALL-INNER
+G1 F609 X107.547 Y44.004 E85.86467
+G0 F9000 X107.9 Y43.316
+;TYPE:WALL-OUTER
+G1 F388.6 X108.091 Y43.256 E85.87594
+G1 F416.3 X108.723 Y43.216 E85.90922
+G1 F407.9 X108.807 Y43.198 E85.91383
+G1 F1500 E79.41383
+G0 F9000 X109.798 Y43.144
+G0 X110.795 Y44.071
+G0 X111.17 Y44.05
+G0 X112.08 Y41.243
+G1 F1500 E85.91383
+G1 F389.8 X111.654 Y41.152 E85.93828
+G1 F390.3 X111.294 Y41.095 E85.9587
+G1 F391.5 X110.859 Y41.046 E85.98316
+G1 F392.7 X110.383 Y41.02 E86.00972
+G1 F393.3 X109.952 Y41.023 E86.0337
+G1 F395 X109.637 Y41.038 E86.05116
+G1 F396.8 X108.402 Y41.166 E86.11961
+G1 F385.8 X108.096 Y41.15 E86.13699
+G1 F375.8 X107.842 Y41.183 E86.1519
+G1 F378 X107.587 Y41.217 E86.16678
+G1 F380.7 X107.332 Y41.251 E86.18156
+G1 F383.5 X107.077 Y41.285 E86.19624
+G1 F385.8 X106.822 Y41.318 E86.21082
+G1 F388.6 X106.567 Y41.352 E86.2253
+G1 F391.5 X106.312 Y41.386 E86.23968
+G1 F393.9 X106.058 Y41.42 E86.25391
+G1 F398 X105.776 Y41.455 E86.26953
+G1 F404.1 X105.491 Y41.491 E86.28508
+G1 F409.8 X105.206 Y41.526 E86.30041
+G1 F416.3 X104.921 Y41.562 E86.3155
+G1 F421 X104.672 Y41.591 E86.32853
+G1 F424.3 X104.423 Y41.62 E86.34145
+G1 F427.8 X104.173 Y41.649 E86.35432
+G1 F431.3 X103.924 Y41.678 E86.36704
+G1 F434.1 X103.675 Y41.707 E86.37967
+G1 F437.8 X103.425 Y41.737 E86.39225
+G1 F441.4 X103.176 Y41.766 E86.40468
+G1 F445.2 X102.927 Y41.795 E86.417
+G1 F449 X102.677 Y41.824 E86.42926
+G1 F448.2 X102.395 Y41.854 E86.4431
+G1 F443.7 X102.115 Y41.884 E86.45699
+G1 F439.2 X101.836 Y41.914 E86.47096
+G1 F434.9 X101.556 Y41.944 E86.48513
+G1 F430.6 X101.276 Y41.974 E86.49944
+G1 F414.3 X101.118 Y42.044 E86.50856
+G1 F399.2 X100.959 Y42.321 E86.52606
+G1 F398 X100.957 Y43.489 E86.59026
+G1 F399.2 X100.955 Y44.657 E86.65426
+G1 F395 X100.964 Y44.719 E86.65773
+G1 F442.2 X100.884 Y45.017 E86.673
+G1 F522 X100.873 Y45.177 E86.67972
+G0 F9000 X100.969 Y45.629
+G1 F392.7 X100.953 Y45.776 E86.68795
+G1 F401.7 X100.953 Y46.515 E86.7282
+G1 F399.8 X100.954 Y47.254 E86.76864
+G1 F398.6 X100.955 Y47.993 E86.80919
+G1 F392.1 X101.021 Y48.195 E86.82105
+G1 F407.3 X101.263 Y48.378 E86.83735
+G1 F431.3 X101.564 Y48.409 E86.85269
+G1 F434.1 X101.865 Y48.441 E86.86795
+G1 F437 X102.167 Y48.473 E86.88315
+G1 F440 X102.468 Y48.505 E86.8982
+G1 F442.9 X102.769 Y48.537 E86.91315
+G1 F445.9 X103.071 Y48.569 E86.92805
+G1 F445.2 X103.345 Y48.601 E86.9416
+G1 F440.7 X103.619 Y48.634 E86.9553
+G1 F435.6 X103.893 Y48.667 E86.96916
+G1 F431.3 X104.167 Y48.7 E86.98316
+G1 F426.4 X104.441 Y48.733 E86.99732
+G1 F422.3 X104.715 Y48.766 E87.01162
+G1 F418.3 X104.989 Y48.799 E87.02605
+G1 F413.7 X105.263 Y48.832 E87.04065
+G1 F409.8 X105.538 Y48.864 E87.05543
+G1 F404.1 X105.795 Y48.898 E87.06946
+G1 F397.4 X106.052 Y48.931 E87.08372
+G1 F390.3 X106.309 Y48.964 E87.09824
+G1 F384.1 X106.566 Y48.998 E87.11301
+G1 F378 X106.823 Y49.031 E87.128
+G1 F372.1 X107.08 Y49.064 E87.14324
+G1 F366.4 X107.337 Y49.097 E87.15871
+G1 F360.4 X107.594 Y49.131 E87.17444
+G1 F355.1 X107.851 Y49.164 E87.19041
+G1 F349.9 X108.108 Y49.197 E87.20661
+G1 F368 X108.332 Y49.175 E87.21999
+G1 F393.3 X108.882 Y49.234 E87.25076
+G1 F396.2 X109.433 Y49.294 E87.28136
+G1 X109.763 Y49.32 E87.29964
+G1 F394.4 X110.311 Y49.33 E87.33004
+G1 X110.714 Y49.312 E87.35241
+G1 F393.9 X111.074 Y49.283 E87.37247
+G1 F391.5 X111.609 Y49.207 E87.40267
+G1 F388.6 X111.979 Y49.128 E87.42396
+G1 F381.8 X112.078 Y49.094 E87.42996
+G0 F9000 X112.65 Y48.675
+;TYPE:WALL-INNER
+G1 F657.7 X112.787 Y48.633 E87.43473
+G1 X113.34 Y48.416 E87.45448
+G1 X113.738 Y48.231 E87.46908
+G1 X114 Y48.094 E87.47892
+G1 X114.426 Y47.843 E87.49536
+G1 X114.692 Y47.667 E87.50597
+G1 X114.901 Y47.517 E87.51453
+G1 X115.254 Y47.24 E87.52945
+G1 X115.474 Y47.051 E87.5391
+G1 X115.746 Y46.795 E87.55152
+G1 X115.946 Y46.593 E87.56097
+G1 X116.338 Y46.144 E87.5808
+G1 X116.512 Y45.921 E87.59021
+G1 X116.69 Y45.672 E87.60039
+G1 X117.011 Y45.189 E87.61968
+G1 X116.816 Y44.861 E87.63237
+G1 X116.551 Y44.483 E87.64772
+G1 X116.229 Y44.078 E87.66493
+G1 X116.041 Y43.862 E87.67445
+G1 X115.667 Y43.472 E87.69243
+G1 X115.244 Y43.101 E87.71114
+G1 X115.017 Y42.919 E87.72082
+G1 X114.785 Y42.75 E87.73036
+G1 X114.351 Y42.46 E87.74772
+G1 X113.977 Y42.242 E87.76212
+G1 X113.65 Y42.074 E87.77435
+G1 X113.309 Y41.919 E87.78681
+G1 X113.032 Y41.806 E87.79676
+G1 X112.668 Y41.681 E87.80956
+G1 X112.673 Y42.81 E87.84711
+G1 X112.595 Y43.014 E87.85438
+G1 X112.401 Y43.216 E87.86369
+G1 X112.423 Y43.359 E87.8685
+G1 X112.423 Y46.99 E87.98927
+G1 X112.4 Y47.133 E87.99409
+G1 X112.603 Y47.35 E88.00397
+G1 X112.672 Y47.54 E88.01069
+G1 X112.673 Y48.577 E88.04518
+G1 X112.65 Y48.675 E88.04853
+G0 F9000 X112.483 Y49.145
+;TYPE:WALL-OUTER
+G1 F651.2 X112.916 Y49.012 E88.06375
+G1 F657.7 X113.508 Y48.78 E88.0849
+G1 X113.922 Y48.587 E88.10009
+G1 X114.173 Y48.456 E88.10951
+G1 X114.638 Y48.183 E88.12744
+G1 X114.924 Y47.993 E88.13886
+G1 X115.141 Y47.837 E88.14775
+G1 X115.508 Y47.549 E88.16327
+G1 X115.742 Y47.348 E88.17353
+G1 X116.025 Y47.081 E88.18647
+G1 X116.239 Y46.865 E88.19658
+G1 X116.646 Y46.399 E88.21716
+G1 X116.851 Y46.135 E88.22828
+G1 X117.011 Y45.912 E88.2374
+G1 X117.222 Y45.595 E88.25007
+G1 X117.422 Y45.251 E88.2633
+G1 X117.386 Y45.034 E88.27062
+G1 X117.162 Y44.659 E88.28515
+G1 X116.872 Y44.244 E88.30199
+G1 X116.537 Y43.822 E88.31991
+G1 X116.337 Y43.592 E88.33005
+G1 X116.036 Y43.279 E88.34449
+G1 X115.849 Y43.1 E88.3531
+G1 X115.501 Y42.794 E88.36851
+G1 X115.26 Y42.601 E88.37878
+G1 X115.015 Y42.422 E88.38887
+G1 X114.563 Y42.12 E88.40695
+G1 X114.169 Y41.891 E88.42211
+G1 X113.824 Y41.714 E88.43501
+G1 X113.461 Y41.549 E88.44827
+G1 X113.181 Y41.434 E88.45834
+G1 X112.572 Y41.225 E88.47975
+G1 F569.5 X112.31 Y41.223 E88.48982
+G1 F438.5 X112.08 Y41.243 E88.50134
+G1 F421.6 X112.156 Y41.361 E88.50862
+G1 F541.3 X112.236 Y41.64 E88.52035
+G1 F657.7 X112.268 Y41.709 E88.52288
+G1 X112.268 Y42.761 E88.55787
+G1 X112.22 Y42.854 E88.56135
+G1 F588.6 X112.087 Y42.965 E88.56779
+G1 F468.1 X111.863 Y43.046 E88.57892
+G1 F478.4 X112.023 Y43.211 E88.58943
+G1 F559.8 X112.023 Y43.538 E88.60221
+G1 F562.2 X112.023 Y43.865 E88.61493
+G1 F564.6 X112.023 Y44.192 E88.6276
+G1 F567 X112.023 Y44.519 E88.64022
+G1 F569.5 X112.023 Y44.846 E88.65278
+G1 F571.9 X112.023 Y45.173 E88.66529
+G1 F574.4 X112.023 Y45.5 E88.67774
+G1 F577 X112.023 Y45.827 E88.69014
+G1 F579.5 X112.023 Y46.154 E88.70248
+G1 F582.1 X112.023 Y46.481 E88.71477
+G1 F584.7 X112.023 Y46.808 E88.72701
+G1 F587.3 X112.023 Y47.135 E88.73919
+G1 F488.1 X111.87 Y47.302 E88.74934
+G1 F467.3 X112.088 Y47.383 E88.76023
+G1 F587.3 X112.22 Y47.495 E88.76668
+G1 F657.7 X112.268 Y47.588 E88.77016
+G1 X112.273 Y48.577 E88.80305
+G1 F518.9 X112.152 Y49.001 E88.82164
+G1 F401.1 X112.078 Y49.094 E88.82812
+G1 F475.8 X112.483 Y49.145 E88.84689
+G1 F1500 E82.34689
+G0 F9000 X112.402 Y48.859
+G0 X112.486 Y47.238
+G0 X111.17 Y46.3
+G0 X109.85 Y46.298
+G0 X109.729 Y48.248
+G0 X107.96 Y48.149
+G0 X104.485 Y47.625
+G0 X104.15 Y47.528
+G0 X101.938 Y46.298
+G0 X101.432 Y45.597
+G1 F1500 E88.84689
+G1 F1100.8 X101.612 Y45.556 E88.85056
+G1 F1069.5 X101.784 Y45.443 E88.85477
+G1 F1114.8 X101.876 Y45.25 E88.85897
+G1 F1087.2 X101.853 Y45.029 E88.86344
+G1 F1073.9 X101.768 Y44.892 E88.86672
+G1 F1129.2 X101.575 Y44.77 E88.87115
+G1 F974.4 X101.237 Y44.762 E88.87874
+G1 F532.6 X100.964 Y44.719 E88.89009
+G1 F1500 E82.39009
+G0 F9000 X101.939 Y44.088
+G0 X104.397 Y42.728
+G0 X107.959 Y42.201
+G0 X109.73 Y42.102
+G0 X111.157 Y44.719
+G0 X112.242 Y44.719
+G0 X112.971 Y42.422
+G1 F1500 E88.89009
+G0 F9000 X112.751 Y42.422
+;TYPE:FILL
+G1 F1315.5 X113.208 Y41.964 E88.91161
+G0 F9000 X112.749 Y42.268
+G1 F1315.5 X116.406 Y45.925 E89.08362
+G0 F9000 X116.234 Y45.79
+G0 X116.232 Y44.561
+G0 X116.402 Y44.427
+G1 F1315.5 X112.751 Y48.079 E89.25538
+G1 X112.751 Y47.926
+G1 X113.207 Y48.382 E89.27683
+G0 F9000 X113.272 Y47.902
+G1 F1500 E82.77683
+;MESH:NONMESH
+G0 F300 X113.272 Y47.902 Z3.6
+G0 F9000 X112.242 Y45.531
+G0 X111.157 Y45.531
+G0 X109.729 Y48.248
+G0 X107.96 Y48.149
+G0 X104.485 Y47.625
+G0 X104.15 Y47.528
+G0 X101.94 Y46.291
+G0 X101.133 Y45.531
+;TIME_ELAPSED:243.760004
+;LAYER:17
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E89.27683
+G1 F1057.3 X101.292 Y45.589 E89.28002
+G1 F1066.7 X101.503 Y45.584 E89.28397
+G1 F1021.3 X101.727 Y45.446 E89.28911
+G1 F1025.6 X101.81 Y45.279 E89.29274
+G1 F1039 X101.822 Y45.122 E89.29576
+G1 F1004.2 X101.701 Y44.884 E89.30107
+G1 F1008.4 X101.512 Y44.767 E89.30547
+G1 F1043.5 X101.299 Y44.755 E89.30955
+G1 F1025.6 X101.116 Y44.825 E89.31336
+G1 F975.6 X101.011 Y44.944 E89.31661
+G1 F948.6 X100.941 Y45.129 E89.32077
+G1 F967.7 X100.949 Y45.292 E89.32413
+G1 F1008.4 X101.133 Y45.531 E89.3301
+G1 F1500 E82.8301
+G0 F9000 X107.351 Y45.531
+G0 X106.979 Y46.7
+G1 F1500 E89.3301
+G1 F427.8 X106.395 Y46.7 E89.35735
+G1 F425.5 X105.811 Y46.7 E89.38473
+G1 F423.3 X105.227 Y46.701 E89.41227
+G1 F421.1 X104.643 Y46.701 E89.43995
+G1 F404.7 X104.522 Y46.638 E89.44667
+G1 F408.9 X104.467 Y46.472 E89.45521
+G1 F430.1 X104.467 Y45.198 E89.51432
+G1 F432.4 X104.466 Y43.924 E89.57311
+G1 F411 X104.515 Y43.719 E89.58335
+G1 F403.4 X104.612 Y43.651 E89.58921
+G1 F418.1 X104.943 Y43.651 E89.60501
+G1 F420.3 X105.274 Y43.651 E89.62072
+G1 F422.5 X105.605 Y43.65 E89.63635
+G1 F424.8 X105.936 Y43.65 E89.6519
+G1 F427.8 X106.267 Y43.649 E89.66735
+G1 F430.1 X106.598 Y43.649 E89.6827
+G1 F432.4 X106.929 Y43.649 E89.69798
+G1 F1500 E83.19798
+G0 F9000 X107.401 Y43.841
+G0 X107.688 Y46.509
+G1 F1500 E89.69798
+G0 F9000 X107.958 Y46.869
+G1 F600 X107.962 Y43.517 E89.80947
+G1 X107.719 Y43.445 E89.8179
+G1 F547.9 X107.555 Y43.561 E89.82521
+G1 F483.9 X107.243 Y43.604 E89.8382
+G1 F449.4 X106.931 Y43.648 E89.85219
+G1 F503.1 X107.131 Y43.925 E89.86574
+G1 F600 X107.131 Y46.424 E89.94886
+G1 F500 X106.979 Y46.7 E89.96144
+G1 F444.4 X107.268 Y46.745 E89.97457
+G1 F480 X107.557 Y46.79 E89.98673
+G1 F545.5 X107.7 Y46.868 E89.99269
+G1 F600 X107.729 Y46.937 E89.99518
+G1 X107.958 Y46.869 E90.00312
+G0 F9000 X107.894 Y47.039
+G1 F356.1 X108.141 Y47.103 E90.01742
+G1 F384 X108.665 Y47.133 E90.0447
+G1 F374.4 X108.802 Y47.156 E90.0521
+G0 F9000 X107.744 Y46.565
+G0 X107.545 Y46.366
+;TYPE:WALL-INNER
+G1 F563.4 X107.545 Y43.984 E90.13648
+G0 F9000 X107.895 Y43.311
+;TYPE:WALL-OUTER
+G1 F354.5 X108.086 Y43.251 E90.14775
+G1 F379.7 X108.718 Y43.211 E90.18103
+G1 F372.1 X108.802 Y43.193 E90.18563
+G1 F1500 E83.68563
+G0 F9000 X108.743 Y42.141
+G0 X106.266 Y42.328
+G0 X106.162 Y41.379
+G1 F1500 E90.18563
+G1 F406.1 X106.285 Y41.356 E90.19178
+G1 F396 X106.543 Y41.321 E90.2049
+G1 F387.1 X106.802 Y41.286 E90.21838
+G1 F378.5 X107.06 Y41.251 E90.2321
+G1 F370.4 X107.319 Y41.216 E90.24618
+G1 F362.5 X107.578 Y41.181 E90.26057
+G1 F355 X107.836 Y41.146 E90.27521
+G1 F348.3 X108.095 Y41.111 E90.29018
+G1 F341.4 X108.354 Y41.075 E90.30546
+G1 F334.7 X108.612 Y41.04 E90.32099
+G1 F328.3 X108.871 Y41.005 E90.33687
+G1 F322.1 X109.129 Y40.97 E90.353
+G1 F338.5 X109.36 Y40.992 E90.36668
+G1 F364.2 X109.66 Y40.97 E90.38316
+G1 F366.4 X110.138 Y40.95 E90.40922
+G1 F364.2 X110.634 Y40.959 E90.4364
+G1 X110.908 Y40.977 E90.45145
+G1 F363.1 X111.345 Y41.023 E90.4756
+G1 F361.4 X111.616 Y41.065 E90.49074
+G1 F360.4 X112.139 Y41.172 E90.52031
+G0 F9000 X112.54 Y41.383
+G0 X113.071 Y48.344
+G0 X112.811 Y48.712
+;TYPE:WALL-INNER
+G1 F600 X113.147 Y48.588 E90.53222
+G1 X113.486 Y48.449 E90.5444
+G1 X113.835 Y48.286 E90.55721
+G1 X114.068 Y48.166 E90.56593
+G1 X114.338 Y48.012 E90.57627
+G1 X114.716 Y47.772 E90.59116
+G1 X115.143 Y47.463 E90.60869
+G1 X115.491 Y47.179 E90.62363
+G1 X115.765 Y46.931 E90.63592
+G1 X116.031 Y46.667 E90.64839
+G1 X116.28 Y46.396 E90.66063
+G1 X116.697 Y45.876 E90.6828
+G1 X116.998 Y45.437 E90.7005
+G1 X117.159 Y45.173 E90.71079
+G1 X117.022 Y44.948 E90.71955
+G1 X116.778 Y44.585 E90.7341
+G1 X116.481 Y44.189 E90.75056
+G1 X116.123 Y43.78 E90.76864
+G1 X115.944 Y43.593 E90.77725
+G1 X115.707 Y43.363 E90.78823
+G1 X115.309 Y43.018 E90.80575
+G1 X114.956 Y42.745 E90.82059
+G1 X114.522 Y42.45 E90.83805
+G1 X114.137 Y42.222 E90.85293
+G1 X113.869 Y42.08 E90.86302
+G1 X113.606 Y41.954 E90.87272
+G1 X113.34 Y41.839 E90.88236
+G1 X112.801 Y41.638 E90.90149
+G1 X112.816 Y41.692 E90.90335
+G1 X112.814 Y42.794 E90.94001
+G1 X112.709 Y43.046 E90.94909
+G1 X112.512 Y43.227 E90.95798
+G1 X112.439 Y43.249 E90.96052
+G1 X112.439 Y47.1 E91.0886
+G1 X112.512 Y47.122 E91.09114
+G1 X112.709 Y47.302 E91.10002
+G1 X112.781 Y47.447 E91.1054
+G1 X112.815 Y47.643 E91.11202
+G1 X112.811 Y48.712 E91.14757
+G0 F9000 X112.596 Y49.199
+;TYPE:WALL-OUTER
+G1 F510.6 X112.935 Y49.093 E91.16145
+G1 F600 X113.299 Y48.958 E91.17437
+G1 X113.664 Y48.807 E91.1875
+G1 X114.019 Y48.642 E91.20052
+G1 X114.295 Y48.498 E91.21088
+G1 X114.513 Y48.374 E91.21922
+G1 X114.94 Y48.103 E91.23604
+G1 X115.387 Y47.781 E91.25436
+G1 X115.752 Y47.483 E91.27004
+G1 X116.041 Y47.221 E91.28301
+G1 X116.319 Y46.945 E91.29604
+G1 X116.582 Y46.659 E91.30896
+G1 X116.83 Y46.358 E91.32193
+G1 X117.02 Y46.112 E91.33227
+G1 X117.327 Y45.666 E91.35028
+G1 X117.552 Y45.297 E91.36466
+G1 X117.551 Y45.048 E91.37294
+G1 X117.354 Y44.725 E91.38552
+G1 X117.124 Y44.382 E91.39926
+G1 X116.793 Y43.937 E91.4177
+G1 X116.418 Y43.509 E91.43663
+G1 X116.171 Y43.254 E91.44844
+G1 X115.977 Y43.068 E91.45738
+G1 X115.563 Y42.708 E91.47562
+G1 X115.191 Y42.421 E91.49125
+G1 X114.737 Y42.112 E91.50952
+G1 X114.333 Y41.873 E91.52513
+G1 X114.043 Y41.72 E91.53603
+G1 X113.782 Y41.594 E91.54567
+G1 X113.501 Y41.471 E91.55588
+G1 X112.995 Y41.279 E91.57388
+G1 F513.9 X112.543 Y41.14 E91.59224
+G1 F399.3 X112.139 Y41.172 E91.61249
+G1 F404.7 X112.284 Y41.353 E91.62393
+G1 F490.8 X112.416 Y41.651 E91.63718
+G1 F532.2 X112.415 Y41.925 E91.64745
+G1 F550.5 X112.413 Y42.199 E91.65739
+G1 F568.7 X112.412 Y42.473 E91.667
+G1 F589.7 X112.41 Y42.747 E91.67628
+G1 F600 X112.314 Y42.879 E91.6817
+G1 F466.9 X111.879 Y43.039 E91.70151
+G1 F463.3 X112.039 Y43.285 E91.71415
+G1 F588.2 X112.039 Y45.176 E91.77831
+G1 F591.1 X112.039 Y47.067 E91.84214
+G1 F464.2 X111.882 Y47.309 E91.85455
+G1 F466.9 X112.314 Y47.47 E91.87425
+G1 F600 X112.379 Y47.53 E91.87719
+G1 X112.415 Y47.643 E91.88114
+G1 X112.414 Y48.67 E91.91529
+G1 X112.349 Y48.807 E91.92034
+G1 F479 X112.257 Y49.075 E91.93214
+G1 F374.4 X112.18 Y49.162 E91.93833
+G1 F393.4 X112.596 Y49.199 E91.95952
+G0 F9000 X112.18 Y49.162
+G1 F355.6 X112.089 Y49.191 E91.96488
+G1 F356.6 X111.762 Y49.258 E91.98356
+G1 F358.2 X111.476 Y49.307 E91.99972
+G1 F362 X110.929 Y49.372 E92.03009
+G1 F363.1 X110.423 Y49.399 E92.05794
+G1 F364.2 X110.075 Y49.4 E92.07701
+G1 F365.3 X109.669 Y49.382 E92.09921
+G1 F362 X109.384 Y49.358 E92.11498
+G1 F337.6 X109.121 Y49.377 E92.13057
+G1 F322.1 X108.863 Y49.343 E92.14669
+G1 F328.3 X108.604 Y49.308 E92.16257
+G1 F334.7 X108.345 Y49.273 E92.17816
+G1 F340.9 X108.087 Y49.238 E92.1934
+G1 F347.8 X107.828 Y49.203 E92.20839
+G1 F354.5 X107.569 Y49.168 E92.2231
+G1 F362 X107.31 Y49.133 E92.23751
+G1 F369.8 X107.052 Y49.098 E92.25156
+G1 F377.4 X106.793 Y49.063 E92.26538
+G1 F385.9 X106.534 Y49.028 E92.2789
+G1 F394.7 X106.275 Y48.993 E92.29211
+G1 F1500 E85.79211
+G0 F9000 X106.379 Y48.032
+G0 X107.327 Y48.094
+G0 X111.477 Y48.327
+G0 X112.46 Y49.019
+G0 X113.115 Y48.069
+G1 F1500 E92.29211
+G0 F9000 X112.894 Y48.069
+;TYPE:FILL
+G1 F1200 X113.271 Y48.446 E92.30985
+G0 F9000 X112.895 Y47.934
+G1 F1200 X116.491 Y44.338 E92.47899
+G0 F9000 X116.317 Y44.467
+G0 X116.32 Y45.877
+G0 X116.488 Y46.007
+G1 F1200 X112.893 Y42.412 E92.64809
+G1 X112.894 Y42.278
+G1 X113.274 Y41.898 E92.66596
+G0 F9000 X113.414 Y42.382
+G1 F1500 E86.16596
+;MESH:NONMESH
+G0 F300 X113.414 Y42.382 Z3.8
+G0 F9000 X112.258 Y45.453
+G0 X111.173 Y45.453
+G0 X109.724 Y48.253
+G0 X107.955 Y48.154
+G0 X104.441 Y47.643
+G0 X100.853 Y46.287
+G0 X100.984 Y45.453
+;TIME_ELAPSED:259.101781
+;LAYER:18
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E92.66596
+G1 F1039 X101.109 Y45.544 E92.66893
+G1 F1066.7 X101.352 Y45.601 E92.6736
+G1 F1034.5 X101.623 Y45.495 E92.67922
+G1 F1000 X101.732 Y45.33 E92.68316
+G1 F987.7 X101.766 Y45.15 E92.68686
+G1 X101.693 Y44.945 E92.69126
+G1 F1000 X101.581 Y44.827 E92.69451
+G1 F1030 X101.259 Y44.733 E92.70101
+G1 F1066.7 X100.998 Y44.892 E92.70672
+G1 F1061.9 X100.88 Y45.119 E92.71153
+G1 F971.7 X100.903 Y45.305 E92.71538
+G1 F956.2 X100.984 Y45.453 E92.7189
+G1 F1500 E86.2189
+G0 F9000 X107.351 Y45.453
+G0 X106.98 Y46.709
+G1 F1500 E92.7189
+G1 F416.7 X105.861 Y46.709 E92.7725
+G1 F418.8 X104.742 Y46.71 E92.82581
+G1 F397.4 X104.516 Y46.647 E92.83759
+G1 F396 X104.459 Y46.473 E92.84682
+G1 F415.9 X104.459 Y46.137 E92.86294
+G1 F413.8 X104.459 Y45.801 E92.87915
+G1 F411.7 X104.459 Y45.465 E92.89543
+G1 F409.6 X104.459 Y45.129 E92.91181
+G1 F408.2 X104.458 Y44.793 E92.92823
+G1 F406.1 X104.458 Y44.457 E92.94475
+G1 F404 X104.458 Y44.121 E92.96134
+G1 F402 X104.458 Y43.785 E92.97802
+G1 F400.7 X104.589 Y43.641 E92.98772
+G1 F402 X104.882 Y43.641 E93.00226
+G1 F404.7 X105.175 Y43.641 E93.01671
+G1 F406.8 X105.468 Y43.641 E93.03108
+G1 F408.9 X105.761 Y43.64 E93.04538
+G1 F411.7 X106.054 Y43.64 E93.05959
+G1 F413.8 X106.347 Y43.64 E93.07372
+G1 F415.9 X106.64 Y43.64 E93.08778
+G1 F418.8 X106.933 Y43.639 E93.10174
+G1 F1500 E86.60174
+G0 F9000 X107.401 Y43.823
+G0 X107.683 Y46.527
+G1 F1500 E93.10174
+G0 F9000 X107.953 Y46.878
+G1 F600 X107.957 Y43.508 E93.21382
+G1 X107.713 Y43.43 E93.22234
+G1 X107.532 Y43.553 E93.22962
+G1 F541.8 X107.232 Y43.596 E93.24078
+G1 F453.7 X106.931 Y43.639 E93.25416
+G1 F493.8 X107.131 Y43.925 E93.26826
+G1 F600 X107.131 Y46.424 E93.35138
+G1 F490.8 X106.98 Y46.709 E93.36449
+G1 F450.3 X107.256 Y46.753 E93.37688
+G1 F540.5 X107.532 Y46.797 E93.3872
+G1 F600 X107.69 Y46.88 E93.39313
+G1 X107.722 Y46.951 E93.39572
+G1 X107.953 Y46.878 E93.40378
+G0 F9000 X107.889 Y47.044
+G1 F356.1 X108.136 Y47.108 E93.41808
+G1 F384 X108.661 Y47.138 E93.44541
+G1 F374.4 X108.797 Y47.161 E93.45276
+G0 F9000 X107.739 Y46.583
+G0 X107.542 Y46.386
+;TYPE:WALL-INNER
+G1 F568.7 X107.542 Y43.964 E93.53775
+G0 F9000 X107.891 Y43.305
+;TYPE:WALL-OUTER
+G1 F354.5 X108.081 Y43.246 E93.54895
+G1 F379.7 X108.713 Y43.206 E93.58223
+G1 F372.1 X108.797 Y43.188 E93.58683
+G1 F1500 E87.08683
+G0 F9000 X107.765 Y41.131
+G1 F1500 E93.58683
+G1 F389.6 X108.041 Y41.093 E93.6011
+G1 F378.5 X108.317 Y41.055 E93.61579
+G1 F368.1 X108.594 Y41.017 E93.63095
+G1 F358.2 X108.87 Y40.979 E93.64647
+G1 F349.3 X109.147 Y40.941 E93.66244
+G1 F340.4 X109.423 Y40.903 E93.67877
+G1 F332 X109.7 Y40.865 E93.69558
+G1 F322.6 X109.98 Y40.841 E93.71297
+G1 F338 X110.196 Y40.879 E93.72592
+G1 F367 X110.632 Y40.897 E93.74965
+G1 F370.9 X110.994 Y40.927 E93.76919
+G1 F367 X111.357 Y40.957 E93.78899
+G1 F363.6 X111.79 Y41.024 E93.81304
+G1 X112.229 Y41.119 E93.83769
+G0 F9000 X112.707 Y41.364
+G0 X113.208 Y48.373
+G0 X112.95 Y48.742
+;TYPE:WALL-INNER
+G1 F600 X113.542 Y48.516 E93.85877
+G1 X114.072 Y48.26 E93.87834
+G1 X114.372 Y48.093 E93.88976
+G1 X114.89 Y47.764 E93.91017
+G1 X115.134 Y47.59 E93.92014
+G1 X115.373 Y47.407 E93.93015
+G1 X115.659 Y47.165 E93.94261
+G1 X116.051 Y46.8 E93.96043
+G1 X116.458 Y46.358 E93.98041
+G1 X116.831 Y45.888 E94.00037
+G1 X117.131 Y45.456 E94.01786
+G1 X117.301 Y45.174 E94.02881
+G1 X117.042 Y44.759 E94.04508
+G1 X116.643 Y44.212 E94.0676
+G1 X116.355 Y43.873 E94.0824
+G1 X115.992 Y43.489 E94.09997
+G1 X115.542 Y43.08 E94.1202
+G1 X115.193 Y42.802 E94.13504
+G1 X114.823 Y42.539 E94.15014
+G1 X114.508 Y42.337 E94.16258
+G1 X114.042 Y42.075 E94.18036
+G1 X113.769 Y41.939 E94.19051
+G1 X113.501 Y41.819 E94.20027
+G1 X112.943 Y41.606 E94.22014
+G1 X112.955 Y41.671 E94.22234
+G1 X112.956 Y42.709 E94.25686
+G1 X112.919 Y42.899 E94.2633
+G1 X112.824 Y43.067 E94.26972
+G1 X112.511 Y43.272 E94.28216
+G1 X112.454 Y43.282 E94.28409
+G1 X112.449 Y47.067 E94.40998
+G1 X112.512 Y47.078 E94.41211
+G1 X112.827 Y47.284 E94.42462
+G1 X112.956 Y47.544 E94.43428
+G1 X112.95 Y48.742 E94.47412
+G0 F9000 X112.761 Y49.232
+;TYPE:WALL-OUTER
+G1 F479 X112.998 Y49.149 E94.48459
+G1 F554.3 X113.236 Y49.066 E94.49366
+G1 F600 X113.702 Y48.883 E94.51031
+G1 X114.266 Y48.61 E94.53115
+G1 X114.576 Y48.437 E94.54296
+G1 X115.114 Y48.096 E94.56415
+G1 X115.372 Y47.912 E94.57469
+G1 X115.623 Y47.719 E94.58522
+G1 X115.925 Y47.465 E94.59834
+G1 X116.335 Y47.082 E94.617
+G1 X116.762 Y46.618 E94.63798
+G1 X117.153 Y46.126 E94.65888
+G1 X117.467 Y45.674 E94.67718
+G1 X117.668 Y45.339 E94.69018
+G1 X117.706 Y45.209 E94.69468
+G1 X117.665 Y45.003 E94.70167
+G1 X117.374 Y44.535 E94.72
+G1 X116.957 Y43.964 E94.74351
+G1 X116.653 Y43.606 E94.75913
+G1 X116.272 Y43.203 E94.77758
+G1 X115.802 Y42.775 E94.79872
+G1 X115.434 Y42.482 E94.81437
+G1 X115.047 Y42.207 E94.83016
+G1 X114.714 Y41.994 E94.84331
+G1 X114.23 Y41.721 E94.86179
+G1 X113.951 Y41.582 E94.87216
+G1 X113.648 Y41.447 E94.88319
+G1 X113.157 Y41.254 E94.90074
+G1 X112.802 Y41.141 E94.91313
+G1 F504.2 X112.553 Y41.089 E94.92319
+G1 F396.7 X112.229 Y41.119 E94.93956
+G1 F434.8 X112.44 Y41.37 E94.95461
+G1 F567.4 X112.555 Y41.628 E94.96455
+G1 F600 X112.556 Y42.698 E95.00014
+G1 X112.512 Y42.817 E95.00436
+G1 F525.2 X112.424 Y42.875 E95.00836
+G1 F442.8 X112.16 Y42.954 E95.02078
+G1 F400.7 X111.895 Y43.033 E95.03455
+G1 F466.9 X112.05 Y43.305 E95.04793
+G1 F600 X112.051 Y47.044 E95.17229
+G1 F466.9 X111.898 Y47.315 E95.1856
+G1 F400.7 X112.161 Y47.395 E95.19929
+G1 F442.8 X112.425 Y47.475 E95.21172
+G1 F525.2 X112.513 Y47.533 E95.21572
+G1 F600 X112.557 Y47.622 E95.21903
+G1 X112.55 Y48.743 E95.25631
+G1 F484.8 X112.397 Y49.112 E95.27275
+G1 F381 X112.317 Y49.205 E95.27918
+G1 F398.7 X112.761 Y49.232 E95.30145
+G0 F9000 X112.317 Y49.205
+G1 F361.4 X112.225 Y49.234 E95.30677
+G1 F365.9 X111.685 Y49.343 E95.33682
+G1 F366.4 X111.206 Y49.412 E95.36318
+G1 F365.9 X110.92 Y49.438 E95.37884
+G1 F364.7 X110.182 Y49.465 E95.41925
+G1 F337.1 X109.977 Y49.513 E95.43171
+G1 F323 X109.52 Y49.465 E95.4601
+G1 F336.6 X109.265 Y49.43 E95.47536
+G1 F344.8 X109.009 Y49.394 E95.49032
+G1 F353.5 X108.754 Y49.358 E95.50486
+G1 F362.5 X108.498 Y49.322 E95.51909
+G1 F372.7 X108.243 Y49.286 E95.53288
+G1 F382.8 X107.987 Y49.25 E95.54636
+G1 F393.4 X107.731 Y49.215 E95.55947
+G1 F1500 E89.05947
+G0 F9000 X112.768 Y48.826
+G0 X113.253 Y48.208
+G1 F1500 E95.55947
+G0 F9000 X113.032 Y48.207
+;TYPE:FILL
+G1 F1200 X113.335 Y48.51 E95.57372
+G0 F9000 X113.035 Y47.794
+G1 F1200 X116.573 Y44.256 E95.74014
+G0 F9000 X116.397 Y44.384
+G0 X116.4 Y45.952
+G0 X116.57 Y46.088
+G1 F1200 X113.033 Y42.552 E95.90648
+G0 F9000 X113.034 Y42.138
+G1 F1200 X113.332 Y41.84 E95.9205
+G0 F9000 X113.555 Y42.321
+G1 F1500 E89.4205
+;MESH:NONMESH
+G0 F300 X113.555 Y42.321 Z4
+G0 F9000 X112.274 Y44.776
+G0 X111.189 Y44.776
+G0 X109.72 Y42.092
+G0 X107.949 Y42.191
+G0 X104.324 Y42.69
+G0 X102 Y44.142
+G0 X101.385 Y44.776
+;TIME_ELAPSED:273.808190
+;LAYER:19
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E95.9205
+G1 F1272.8 X101.493 Y44.818 E95.92265
+G1 F1244.9 X101.663 Y44.986 E95.92718
+G1 F1168 X101.704 Y45.221 E95.932
+G1 F1163.2 X101.569 Y45.483 E95.93798
+G1 F1197.6 X101.387 Y45.569 E95.94195
+G1 F1500 E89.44195
+G0 F9000 X107.351 Y45.569
+G0 X106.982 Y46.717
+G1 F1500 E95.94195
+G1 F478.6 X105.862 Y46.718 E95.99717
+G1 F480.2 X104.742 Y46.719 E96.05221
+G1 F454.9 X104.52 Y46.666 E96.06405
+G1 F447.7 X104.45 Y46.548 E96.07128
+G1 F464.5 X104.45 Y45.862 E96.10614
+G1 F463 X104.449 Y45.176 E96.1411
+G1 F461.5 X104.449 Y44.49 E96.17618
+G1 F460 X104.448 Y43.804 E96.21138
+G1 F449.1 X104.514 Y43.696 E96.21803
+G1 F452.7 X104.623 Y43.632 E96.22462
+G1 F468.4 X105.008 Y43.632 E96.24402
+G1 F470.7 X105.393 Y43.632 E96.26332
+G1 F473 X105.778 Y43.631 E96.28253
+G1 F475.4 X106.163 Y43.631 E96.30164
+G1 F477.8 X106.548 Y43.631 E96.32066
+G1 F480.2 X106.933 Y43.63 E96.33958
+G1 F1500 E89.83958
+G0 F9000 X107.401 Y43.806
+G0 X107.678 Y46.544
+G1 F1500 E96.33958
+G0 F9000 X107.948 Y46.886
+G1 F709.6 X107.948 Y43.498 E96.45226
+G1 X107.706 Y43.416 E96.46076
+G1 X107.529 Y43.536 E96.46787
+G1 F635 X107.23 Y43.583 E96.47912
+G1 F523.7 X106.931 Y43.63 E96.49276
+G1 F573.4 X107.131 Y43.926 E96.50747
+G1 F709.6 X107.131 Y46.423 E96.59052
+G1 F571.1 X106.982 Y46.717 E96.60414
+G1 F520.8 X107.255 Y46.765 E96.6167
+G1 F633.5 X107.528 Y46.814 E96.62703
+G1 F709.6 X107.681 Y46.891 E96.63273
+G1 X107.717 Y46.965 E96.63547
+G1 X107.948 Y46.886 E96.64359
+G0 F9000 X107.884 Y47.048
+G1 F421.7 X108.131 Y47.113 E96.65788
+G1 F454.9 X108.655 Y47.143 E96.68511
+G1 F444.2 X108.793 Y47.166 E96.69255
+G0 F9000 X107.734 Y46.6
+G0 X107.54 Y46.406
+;TYPE:WALL-INNER
+G1 F682.3 X107.54 Y43.944 E96.77771
+G0 F9000 X107.885 Y43.302
+;TYPE:WALL-OUTER
+G1 F420.5 X108.076 Y43.242 E96.78894
+G1 F449.8 X108.708 Y43.202 E96.82217
+G1 F440 X108.792 Y43.183 E96.82679
+G1 F1500 E90.32679
+G0 F9000 X108.891 Y40.951
+G1 F1500 E96.82679
+G1 F450.5 X109.206 Y40.905 E96.84346
+G1 F431.3 X109.521 Y40.859 E96.86088
+G0 F9000 X109.918 Y40.987
+G1 F788.4 X110.198 Y40.973 E96.86927
+G1 F750.9 X110.616 Y40.965 E96.88241
+G1 F680.6 X110.668 Y40.94 E96.88442
+G1 F574.5 X110.987 Y40.865 E96.89788
+G1 X110.777 Y40.592 E96.91202
+G1 F697.4 X110.596 Y40.568 E96.9182
+G1 F775.5 X110.247 Y40.603 E96.92888
+G1 F797.3 X109.897 Y40.638 E96.93929
+G1 F554.4 X109.521 Y40.859 E96.95786
+G1 F552.2 X109.918 Y40.987 E96.97568
+G0 F9000 X111.012 Y40.859
+G1 F440 X111.41 Y40.899 E96.99714
+G1 F438 X112.031 Y41.005 E97.03108
+G1 F435.3 X112.389 Y41.087 E97.05099
+G0 F9000 X112.847 Y41.329
+G0 X112.989 Y43.221
+G0 X112.637 Y43.396
+G0 X112.637 Y46.953
+G0 X113.258 Y47.673
+G0 X113.273 Y48.51
+G0 X113.095 Y48.766
+;TYPE:WALL-INNER
+G1 F709.6 X113.54 Y48.595 E97.06685
+G1 X113.888 Y48.438 E97.07955
+G1 X114.302 Y48.227 E97.095
+G1 X114.528 Y48.098 E97.10366
+G1 X114.892 Y47.869 E97.11796
+G1 X115.145 Y47.696 E97.12815
+G1 X115.364 Y47.532 E97.13725
+G1 X115.781 Y47.186 E97.15528
+G1 X116.135 Y46.861 E97.17126
+G1 X116.482 Y46.49 E97.18816
+G1 X116.824 Y46.077 E97.20599
+G1 X117.014 Y45.821 E97.21659
+G1 X117.216 Y45.529 E97.2284
+G1 X117.43 Y45.176 E97.24213
+G1 X117.253 Y44.879 E97.25363
+G1 X117.073 Y44.61 E97.2644
+G1 X116.772 Y44.203 E97.28123
+G1 X116.474 Y43.85 E97.2966
+G1 X116.271 Y43.631 E97.30653
+G1 X115.943 Y43.309 E97.32182
+G1 X115.597 Y43.004 E97.33716
+G1 X115.301 Y42.769 E97.34973
+G1 X114.993 Y42.549 E97.36232
+G1 X114.605 Y42.298 E97.37769
+G1 X114.26 Y42.101 E97.3909
+G1 X113.928 Y41.929 E97.40334
+G1 X113.658 Y41.805 E97.41322
+G1 X113.196 Y41.613 E97.42986
+G1 X113.085 Y41.578 E97.43373
+G1 X113.092 Y41.61 E97.43482
+G1 X113.094 Y42.819 E97.47503
+G1 X112.942 Y43.082 E97.48514
+G1 X112.531 Y43.279 E97.5003
+G1 X112.421 Y43.285 E97.50396
+G1 X112.47 Y43.342 E97.50646
+G1 X112.471 Y47.009 E97.62843
+G1 X112.423 Y47.064 E97.63085
+G1 X112.533 Y47.071 E97.63452
+G1 X112.943 Y47.268 E97.64965
+G1 X113.031 Y47.396 E97.65481
+G1 X113.094 Y47.607 E97.66214
+G1 X113.095 Y48.766 E97.70069
+G0 F9000 X112.944 Y49.241
+;TYPE:WALL-OUTER
+G1 F709.6 X113.327 Y49.109 E97.71416
+G1 X113.704 Y48.96 E97.72764
+G1 X114.029 Y48.815 E97.73948
+G1 X114.5 Y48.575 E97.75706
+G1 X114.752 Y48.431 E97.76672
+G1 X115.092 Y48.217 E97.78008
+G1 X115.383 Y48.017 E97.79182
+G1 X115.611 Y47.847 E97.80128
+G1 X116.044 Y47.488 E97.81999
+G1 X116.326 Y47.228 E97.83275
+G1 X116.54 Y47.014 E97.84281
+G1 X116.782 Y46.754 E97.85463
+G1 X117.138 Y46.325 E97.87317
+G1 X117.328 Y46.071 E97.88372
+G1 X117.552 Y45.747 E97.89682
+G1 X117.809 Y45.324 E97.91328
+G1 X117.843 Y45.084 E97.92134
+G1 X117.586 Y44.657 E97.93792
+G1 X117.414 Y44.398 E97.94826
+G1 X117.086 Y43.955 E97.96659
+G1 X116.774 Y43.585 E97.98269
+G1 X116.558 Y43.352 E97.99326
+G1 X116.216 Y43.016 E98.0092
+G1 X115.854 Y42.697 E98.02525
+G1 X115.542 Y42.449 E98.03851
+G1 X115.218 Y42.218 E98.05174
+G1 X114.813 Y41.956 E98.06779
+G1 X114.444 Y41.745 E98.08192
+G1 X114.115 Y41.575 E98.09424
+G1 X113.812 Y41.436 E98.10533
+G1 X113.338 Y41.238 E98.12242
+G1 F658.5 X113.073 Y41.153 E98.13239
+G1 F574.5 X112.808 Y41.067 E98.14383
+G1 F481.9 X112.389 Y41.087 E98.16438
+G1 F516 X112.587 Y41.336 E98.17893
+G1 F669.4 X112.692 Y41.612 E98.18934
+G1 F709.6 X112.696 Y42.726 E98.22639
+G1 F621.1 X112.624 Y42.85 E98.23184
+G1 F523.7 X112.268 Y42.938 E98.24836
+G1 F473.8 X111.911 Y43.027 E98.26669
+G1 F552.2 X112.07 Y43.342 E98.28177
+G1 F709.6 X112.071 Y47.009 E98.40374
+G1 F552.2 X111.914 Y47.321 E98.41866
+G1 F473.8 X112.272 Y47.411 E98.43705
+G1 F523.7 X112.631 Y47.502 E98.45374
+G1 F621.1 X112.696 Y47.649 E98.45985
+G1 F709.6 X112.695 Y48.712 E98.4952
+G1 X112.637 Y48.934 E98.50283
+G1 X112.368 Y49.135 E98.514
+G1 X112.435 Y49.382 E98.52252
+G1 X112.944 Y49.241 E98.54008
+G0 F9000 X112.392 Y49.261
+G1 F434.7 X112.119 Y49.328 E98.55535
+G1 F438 X111.629 Y49.416 E98.58217
+G1 F437.3 X111.263 Y49.467 E98.60211
+G1 F435.3 X111.006 Y49.491 E98.61611
+G0 F9000 X109.916 Y49.715
+G1 F786.2 X110.194 Y49.744 E98.6245
+G1 F750.9 X110.601 Y49.771 E98.63732
+G1 F664.7 X110.769 Y49.748 E98.64334
+G1 F532.5 X110.941 Y49.528 E98.65571
+G1 F452.7 X111.006 Y49.491 E98.65961
+G1 F497.1 X110.722 Y49.433 E98.67337
+G1 F648 X110.618 Y49.384 E98.67756
+G1 F745 X110.367 Y49.379 E98.68551
+G1 F771.3 X110.116 Y49.374 E98.6932
+G1 F792.8 X109.953 Y49.362 E98.69806
+G1 F655.5 X109.537 Y49.499 E98.71383
+G1 X109.916 Y49.715 E98.72954
+G0 F9000 X109.524 Y49.492
+G1 F431.3 X109.21 Y49.447 E98.74689
+G1 F447.7 X108.895 Y49.402 E98.76367
+G1 F1500 E92.26367
+G0 F9000 X108.996 Y48.43
+G0 X111.842 Y48.382
+G0 X112.284 Y47.244
+G0 X113.125 Y47.242
+G0 X113.273 Y48.51
+G0 X114.215 Y48.087
+G0 X114.283 Y46.648
+G1 F1500 E98.76367
+G0 F9000 X114.182 Y46.647
+;TYPE:FILL
+G1 F1419.1 X116.647 Y44.182 E98.87961
+G0 F9000 X116.48 Y44.322
+G0 X116.479 Y46.026
+G0 X116.647 Y46.165
+G1 F1419.1 X114.184 Y43.702 E98.99546
+G0 F9000 X114.285 Y43.703
+G0 X114.195 Y48.102
+G0 X113.657 Y48.432
+G0 X113.527 Y48.136
+;TYPE:SKIN
+G1 F521.7 X114.07 Y47.861 E99.023
+G1 F516 X114.064 Y47.432 E99.04262
+G1 F549 X114.142 Y47.038 E99.05988
+G1 F597.5 X114.142 Y46.783 E99.06996
+G1 F602.6 X114.142 Y46.528 E99.07994
+G1 F609.1 X114.142 Y46.273 E99.08982
+G1 F615.7 X114.142 Y46.018 E99.0996
+G1 F621.1 X114.142 Y45.763 E99.10929
+G1 F627.9 X114.142 Y45.508 E99.11887
+G1 F635 X114.142 Y45.253 E99.12835
+G1 F640.7 X114.142 Y44.998 E99.13774
+G1 F648 X114.142 Y44.743 E99.14703
+G1 F655.5 X114.142 Y44.488 E99.15621
+G1 F661.6 X114.142 Y44.233 E99.16531
+G1 F669.4 X114.142 Y43.978 E99.1743
+G1 F677.4 X114.142 Y43.723 E99.18318
+G1 F683.9 X114.142 Y43.468 E99.19198
+G1 F692.3 X114.141 Y43.213 E99.20067
+G1 F593.8 X114.071 Y42.845 E99.21556
+G1 F518.9 X114.073 Y42.491 E99.23166
+G1 F520.8 X113.755 Y42.326 E99.2479
+G1 X113.527 Y42.22 E99.25929
+G1 F518.9 X113.525 Y42.798 E99.28558
+G1 F593.8 X113.397 Y43.019 E99.29573
+G1 F699.1 X113.207 Y43.337 E99.30824
+G1 F706 X112.83 Y43.518 E99.32222
+G1 F709.6 X112.83 Y46.831 E99.43241
+G1 F690.6 X113.198 Y47.008 E99.44637
+G1 F654 X113.389 Y47.26 E99.45778
+G1 F569.9 X113.526 Y47.522 E99.47002
+G1 F518.9 X113.527 Y48.136 E99.49795
+G0 F9000 X113.657 Y48.432
+G0 X114.215 Y48.087
+G0 X114.282 Y47.116
+G0 X113.538 Y47.115
+G1 F709.6 X113.941 Y46.712 E99.5169
+G0 F9000 X113.942 Y46.146
+G1 F709.6 X113.267 Y46.821 E99.54865
+G0 F9000 X113.029 Y46.493
+G1 F709.6 X113.942 Y45.58 E99.5916
+G0 F9000 X113.943 Y45.014
+G1 F709.6 X113.029 Y45.927 E99.63456
+G0 F9000 X113.029 Y45.362
+G1 F709.6 X113.943 Y44.448 E99.67756
+G0 F9000 X113.943 Y43.882
+G1 F709.6 X113.029 Y44.796 E99.72055
+G0 F9000 X113.029 Y44.23
+G1 F709.6 X113.938 Y43.321 E99.7633
+G0 F9000 X113.573 Y43.121
+G1 F709.6 X113.809 Y42.885 E99.77441
+G0 F9000 X114.534 Y42.964
+G1 F1500 E93.27441
+;MESH:NONMESH
+G0 F300 X114.534 Y42.964 Z4.2
+G0 F9000 X114.065 Y42.181
+G0 X113.271 Y41.836
+G0 X113.066 Y43.185
+G0 X112.719 Y43.355
+G0 X112.29 Y43.806
+G0 X111.218 Y44.031
+G0 X108.802 Y44.165
+G0 X106.931 Y43.622
+;TIME_ELAPSED:290.145123
+;LAYER:20
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E99.77441
+G1 F463.8 X105.811 Y43.622 E99.83093
+G1 F461.5 X104.691 Y43.623 E99.88774
+G1 F439.2 X104.505 Y43.688 E99.89824
+G1 F432.4 X104.44 Y43.795 E99.90502
+G1 F446.8 X104.44 Y44.178 E99.92508
+G1 F449 X104.44 Y44.561 E99.94505
+G1 F451.1 X104.44 Y44.944 E99.96492
+G1 F452.6 X104.44 Y45.327 E99.98473
+G1 F454.8 X104.44 Y45.71 E100.00445
+G1 F457 X104.44 Y46.093 E100.02406
+G1 F459.2 X104.441 Y46.476 E100.04359
+G1 F439.2 X104.472 Y46.622 E100.05154
+G1 F417.7 X104.536 Y46.693 E100.0569
+G1 F437.8 X104.743 Y46.728 E100.06812
+G1 F462.2 X105.863 Y46.727 E100.12484
+G1 F460.7 X106.983 Y46.726 E100.18174
+G0 F9000 X107.942 Y46.895
+G1 F703.8 X107.942 Y43.49 E100.29499
+G1 X107.701 Y43.403 E100.30351
+G1 X107.525 Y43.519 E100.31052
+G1 F624.2 X107.228 Y43.57 E100.32182
+G1 F508.1 X106.931 Y43.622 E100.33571
+G1 F559.7 X107.131 Y43.918 E100.35065
+G1 F703.8 X107.131 Y46.432 E100.43427
+G1 F556.3 X106.983 Y46.726 E100.44812
+G1 F503.6 X107.253 Y46.779 E100.46091
+G1 F621.4 X107.524 Y46.832 E100.47131
+G1 F703.8 X107.671 Y46.903 E100.47674
+G1 X107.71 Y46.979 E100.47958
+G1 X107.942 Y46.895 E100.48779
+G0 F9000 X107.878 Y47.052
+G1 F418.9 X108.125 Y47.116 E100.50204
+G1 F451.1 X108.651 Y47.147 E100.52938
+G1 F439.2 X108.787 Y47.17 E100.53674
+G0 F9000 X107.728 Y46.618
+G0 X107.536 Y46.427
+;TYPE:WALL-INNER
+G1 F684.9 X107.537 Y43.925 E100.62224
+G0 F9000 X107.88 Y43.294
+;TYPE:WALL-OUTER
+G1 F415.2 X108.071 Y43.236 E100.63349
+G1 F445.4 X108.703 Y43.197 E100.66677
+G1 F437.1 X108.787 Y43.179 E100.67137
+G1 F1500 E94.17137
+G0 F9000 X109.777 Y43.123
+G0 X110.653 Y42.136
+G0 X111.088 Y41.805
+G0 X110.403 Y40.931
+G1 F1500 E100.67137
+G1 F769.1 X110.827 Y40.928 E100.68427
+G1 F725.5 X111.159 Y40.943 E100.695
+G1 F671.9 X111.197 Y40.926 E100.69645
+G1 F519.4 X111.554 Y40.864 E100.71278
+G1 F490.4 X111.397 Y40.718 E100.72301
+G1 F621.4 X111.315 Y40.538 E100.73046
+G1 F712.7 X110.974 Y40.548 E100.74166
+G1 F746.7 X110.633 Y40.559 E100.75236
+G1 F777.6 X110.382 Y40.577 E100.75993
+G1 F553.1 X109.982 Y40.782 E100.77896
+G1 F491.3 X110.245 Y40.868 E100.79214
+G1 F673.5 X110.403 Y40.931 E100.79805
+G0 F9000 X111.17 Y40.733
+G0 X111.554 Y40.864
+G1 F435.1 X112.062 Y40.951 E100.82578
+G1 F434.4 X112.595 Y41.077 E100.85529
+G0 F9000 X112.993 Y41.317
+G0 X113.086 Y43.243
+G0 X112.652 Y43.443
+G0 X112.652 Y46.906
+G0 X113.007 Y47.099
+G0 X113.338 Y48.408
+G0 X113.231 Y48.785
+;TYPE:WALL-INNER
+G1 F703.8 X113.774 Y48.568 E100.87474
+G1 X114.051 Y48.439 E100.8849
+G1 X114.394 Y48.261 E100.89775
+G1 X114.663 Y48.107 E100.90806
+G1 X114.967 Y47.913 E100.92006
+G1 X115.416 Y47.596 E100.93834
+G1 X115.653 Y47.408 E100.9484
+G1 X115.944 Y47.159 E100.96114
+G1 X116.338 Y46.781 E100.9793
+G1 X116.596 Y46.504 E100.99189
+G1 X116.845 Y46.21 E101.0047
+G1 X117.032 Y45.97 E101.01482
+G1 X117.308 Y45.579 E101.03074
+G1 X117.56 Y45.181 E101.04641
+G1 X117.408 Y44.925 E101.05631
+G1 X117.162 Y44.558 E101.07101
+G1 X116.836 Y44.128 E101.08895
+G1 X116.591 Y43.841 E101.10151
+G1 X116.294 Y43.524 E101.11595
+G1 X116.053 Y43.288 E101.12717
+G1 X115.762 Y43.03 E101.14011
+G1 X115.467 Y42.791 E101.15273
+G1 X115.154 Y42.563 E101.16561
+G1 X114.835 Y42.349 E101.17839
+G1 X114.341 Y42.055 E101.19751
+G1 X113.72 Y41.753 E101.22048
+G1 X113.238 Y41.569 E101.23764
+G1 X113.237 Y42.688 E101.27486
+G1 X113.196 Y42.886 E101.28158
+G1 X113.061 Y43.092 E101.28977
+G1 X112.671 Y43.266 E101.30398
+G1 X112.439 Y43.279 E101.31171
+G1 X112.486 Y43.334 E101.31411
+G1 X112.485 Y47.015 E101.43654
+G1 X112.438 Y47.07 E101.43895
+G1 X112.674 Y47.084 E101.44681
+G1 X113.062 Y47.258 E101.46096
+G1 X113.18 Y47.424 E101.46773
+G1 X113.237 Y47.642 E101.47522
+G1 X113.238 Y48.739 E101.51171
+G1 X113.231 Y48.785 E101.51326
+G0 F9000 X112.553 Y49.285
+;TYPE:WALL-OUTER
+G1 F436.4 X111.931 Y49.427 E101.54747
+G1 F437.1 X111.506 Y49.491 E101.57049
+G0 F9000 X111.2 Y49.605
+G0 X110.401 Y49.781
+G1 F740.8 X110.759 Y49.792 E101.58181
+G1 F718.1 X111.117 Y49.804 E101.59348
+G1 F632.6 X111.315 Y49.765 E101.60095
+G1 F542.4 X111.38 Y49.605 E101.6084
+G1 F472.3 X111.506 Y49.491 E101.61682
+G1 F493.9 X111.2 Y49.447 E101.63148
+G1 F632.6 X111.109 Y49.407 E101.63515
+G1 F729.3 X110.755 Y49.423 E101.64653
+G1 F638.3 X110.42 Y49.418 E101.65881
+G1 F479.6 X110.003 Y49.569 E101.68046
+G1 F541.4 X110.401 Y49.781 E101.69996
+G1 F1500 E95.19996
+G0 F9000 X111.167 Y49.634
+G0 X112.924 Y49.094
+G0 X112.553 Y49.285
+G1 F1500 E101.69996
+G1 F529.1 X112.983 Y49.297 E101.71899
+G1 F691.7 X113.481 Y49.121 E101.73686
+G1 F703.8 X113.942 Y48.931 E101.75345
+G1 X114.235 Y48.795 E101.76419
+G1 X114.592 Y48.609 E101.77758
+G1 X114.877 Y48.445 E101.78851
+G1 X115.19 Y48.245 E101.80087
+G1 X115.656 Y47.916 E101.81984
+G1 X115.907 Y47.717 E101.8305
+G1 X116.213 Y47.455 E101.84389
+G1 X116.623 Y47.062 E101.86278
+G1 X116.895 Y46.77 E101.87606
+G1 X117.155 Y46.462 E101.88946
+G1 X117.353 Y46.209 E101.90015
+G1 X117.63 Y45.819 E101.91606
+G1 X117.916 Y45.368 E101.93382
+G1 X117.965 Y45.079 E101.94357
+G1 X117.754 Y44.722 E101.95736
+G1 X117.488 Y44.325 E101.97326
+G1 X117.148 Y43.877 E101.99196
+G1 X116.889 Y43.574 E102.00522
+G1 X116.613 Y43.278 E102.01868
+G1 X116.326 Y42.996 E102.03206
+G1 X116.021 Y42.725 E102.04563
+G1 X115.711 Y42.474 E102.0589
+G1 X115.384 Y42.235 E102.07237
+G1 X115.049 Y42.011 E102.08577
+G1 X114.531 Y41.703 E102.10582
+G1 X113.88 Y41.385 E102.12992
+G1 F670.3 X113.599 Y41.278 E102.14042
+G1 F609.3 X113.317 Y41.171 E102.152
+G1 F559.7 X113.035 Y41.064 E102.16462
+G1 F480.4 X112.595 Y41.077 E102.18607
+G1 F495.6 X112.742 Y41.293 E102.19841
+G1 F604.1 X112.838 Y41.58 E102.21013
+G1 F638.3 X112.838 Y41.865 E102.22059
+G1 F647.1 X112.838 Y42.15 E102.23089
+G1 F654.7 X112.838 Y42.435 E102.24108
+G1 F663.9 X112.837 Y42.72 E102.25113
+G1 F684.9 X112.779 Y42.808 E102.25473
+G1 F703.8 X112.522 Y42.873 E102.26355
+G1 F616 X112.224 Y42.947 E102.27522
+G1 F493 X111.926 Y43.021 E102.2898
+G1 F547.7 X112.086 Y43.334 E102.30482
+G1 F703.8 X112.085 Y47.015 E102.42725
+G1 F547.7 X111.932 Y47.327 E102.4421
+G1 F493 X112.226 Y47.401 E102.4565
+G1 F616 X112.52 Y47.476 E102.46803
+G1 F703.8 X112.782 Y47.544 E102.47703
+G1 X112.838 Y47.67 E102.48162
+G1 X112.838 Y48.739 E102.51717
+G1 X112.792 Y48.912 E102.52312
+G1 F585.3 X112.64 Y49.187 E102.53569
+G1 F464.5 X112.553 Y49.285 E102.54229
+G0 F9000 X112.994 Y49.055
+G0 X114.815 Y47.804
+G0 X114.953 Y45.977
+G0 X114.853 Y45.976
+;TYPE:FILL
+G1 F1407.5 X116.717 Y44.112 E102.62997
+G0 F9000 X116.55 Y44.252
+G0 X114.953 Y44.371
+G0 X114.852 Y44.37
+G1 F1407.5 X116.717 Y46.236 E102.71772
+G0 F9000 X116.552 Y46.095
+G0 X114.815 Y47.804
+G0 X113.695 Y48.427
+G0 X113.444 Y48.513
+G0 X113.338 Y48.251
+G0 X113.599 Y48.25
+;TYPE:SKIN
+G1 F703.8 X113.876 Y48.123 E102.72785
+G1 X114.203 Y47.954 E102.7401
+G1 X114.472 Y47.801 E102.75039
+G1 X114.813 Y47.577 E102.76396
+G1 X114.813 Y42.756 E102.92431
+G1 X114.168 Y42.373 E102.94926
+G1 X113.599 Y42.095 E102.97032
+G1 X113.597 Y42.698 E102.99038
+G1 X113.531 Y43.024 E103.00144
+G1 X113.32 Y43.354 E103.01447
+G1 X112.845 Y43.568 E103.03179
+G1 X112.845 Y46.781 E103.13866
+G1 X113.313 Y46.992 E103.15573
+G1 X113.509 Y47.267 E103.16697
+G1 X113.597 Y47.62 E103.17907
+G1 X113.599 Y48.25 E103.20002
+G0 F9000 X114.011 Y47.826
+G1 F703.8 X113.796 Y47.61 E103.21016
+G0 F9000 X114.374 Y47.623
+G1 F703.8 X113.044 Y46.293 E103.27272
+G0 F9000 X113.044 Y45.727
+G1 F703.8 X114.612 Y47.295 E103.34647
+G0 F9000 X114.612 Y46.729
+G1 F703.8 X113.044 Y45.162 E103.4202
+G0 F9000 X113.044 Y44.596
+G1 F703.8 X114.612 Y46.164 E103.49395
+G0 F9000 X114.612 Y45.598
+G1 F703.8 X113.044 Y44.03 E103.56771
+G0 F9000 X113.204 Y43.624
+G1 F703.8 X114.612 Y45.032 E103.63394
+G0 F9000 X114.612 Y44.467
+G1 F703.8 X113.533 Y43.388 E103.68469
+G0 F9000 X113.734 Y43.023
+G1 F703.8 X114.612 Y43.901 E103.72599
+G0 F9000 X114.612 Y43.335
+G1 F703.8 X113.797 Y42.521 E103.7643
+G1 F1500 E97.2643
+;MESH:NONMESH
+G0 F300 X113.797 Y42.521 Z4.4
+G0 F9000 X114.953 Y42.695
+G0 X114.726 Y42.471
+G0 X113.648 Y41.897
+G0 X113.179 Y43.201
+G0 X112.753 Y43.396
+G0 X112.305 Y43.788
+G0 X111.233 Y44.025
+G0 X108.796 Y44.161
+G0 X106.931 Y43.613
+;TIME_ELAPSED:305.148114
+;LAYER:21
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E103.7643
+G1 F474.8 X104.689 Y43.616 E103.88081
+G1 F453.1 X104.544 Y43.646 E103.88888
+G1 F444.9 X104.431 Y43.775 E103.89839
+G1 F457.3 X104.431 Y44.113 E103.91663
+G1 F459.4 X104.431 Y44.451 E103.93478
+G1 F461.6 X104.431 Y44.789 E103.95286
+G1 F463.7 X104.432 Y45.127 E103.97084
+G1 F465.2 X104.432 Y45.465 E103.98877
+G1 F467.4 X104.432 Y45.803 E104.00662
+G1 F469.6 X104.432 Y46.141 E104.02438
+G1 F471.8 X104.433 Y46.479 E104.04206
+G1 F444.9 X104.483 Y46.663 E104.05264
+G1 F447 X104.743 Y46.735 E104.06753
+G1 F476.4 X105.49 Y46.735 E104.10623
+G1 F474.1 X106.237 Y46.735 E104.14511
+G1 F472.6 X106.984 Y46.735 E104.18412
+G0 F9000 X107.937 Y46.904
+G1 F742 X107.937 Y43.481 E104.29797
+G1 X107.693 Y43.389 E104.30664
+G1 X107.52 Y43.501 E104.31349
+G1 F650.8 X107.226 Y43.557 E104.32484
+G1 F522.5 X106.931 Y43.613 E104.33902
+G1 F579.6 X107.131 Y43.91 E104.35427
+G1 F742 X107.131 Y46.439 E104.43838
+G1 F576.3 X106.985 Y46.735 E104.45252
+G1 F518.8 X107.252 Y46.792 E104.4655
+G1 F649.4 X107.52 Y46.849 E104.47591
+G1 F742 X107.662 Y46.915 E104.48112
+G1 X107.704 Y46.993 E104.48407
+G1 X107.937 Y46.904 E104.49236
+G0 F9000 X107.873 Y47.057
+G1 F441.6 X108.12 Y47.121 E104.50662
+G1 F475.6 X108.645 Y47.152 E104.53391
+G1 F463 X108.781 Y47.175 E104.54126
+G0 F9000 X107.723 Y46.636
+G0 X107.534 Y46.446
+;TYPE:WALL-INNER
+G1 F731 X107.534 Y43.904 E104.62708
+G0 F9000 X107.875 Y43.289
+;TYPE:WALL-OUTER
+G1 F437.1 X108.066 Y43.23 E104.63836
+G1 F468.8 X108.697 Y43.192 E104.67163
+G1 F460.1 X108.781 Y43.174 E104.67624
+G1 F1500 E98.17624
+G0 F9000 X109.772 Y43.12
+G0 X110.523 Y41.723
+G0 X110.571 Y40.884
+G1 F1500 E104.67624
+G1 F831.3 X110.831 Y40.895 E104.68397
+G1 F799.9 X111.091 Y40.907 E104.692
+G1 F772.9 X111.351 Y40.918 E104.7003
+G1 F693.4 X111.429 Y40.889 E104.70327
+G1 F535.7 X111.749 Y40.844 E104.71815
+G1 F522.5 X111.592 Y40.684 E104.72874
+G1 F618.3 X111.546 Y40.568 E104.73372
+G1 F693.4 X111.369 Y40.53 E104.74016
+G1 F779 X111.014 Y40.539 E104.75141
+G1 F822.1 X110.659 Y40.549 E104.76207
+G1 F845.5 X110.569 Y40.58 E104.76485
+G1 X110.571 Y40.884 E104.77372
+G0 F9000 X111.749 Y40.844
+G1 F461.6 X112.248 Y40.937 E104.80086
+G1 X112.603 Y41.023 E104.82039
+G1 F449.7 X112.824 Y41.1 E104.83324
+G0 F9000 X113.106 Y41.287
+G0 X115.497 Y42.922
+G0 X115.617 Y47.26
+G0 X113.379 Y48.802
+;TYPE:WALL-INNER
+G1 F742 X113.858 Y48.599 E104.85054
+G1 X114.298 Y48.391 E104.86673
+G1 X114.763 Y48.127 E104.88451
+G1 X115.07 Y47.934 E104.89657
+G1 X115.454 Y47.664 E104.91218
+G1 X115.756 Y47.428 E104.92493
+G1 X116.169 Y47.067 E104.94318
+G1 X116.529 Y46.714 E104.95995
+G1 X116.858 Y46.34 E104.97651
+G1 X117.097 Y46.041 E104.98924
+G1 X117.336 Y45.711 E105.0028
+G1 X117.681 Y45.184 E105.02375
+G1 X117.401 Y44.737 E105.04129
+G1 X117.231 Y44.49 E105.05126
+G1 X116.897 Y44.058 E105.06943
+G1 X116.649 Y43.772 E105.08202
+G1 X116.267 Y43.377 E105.10029
+G1 X115.988 Y43.117 E105.11298
+G1 X115.564 Y42.768 E105.13124
+G1 X115.321 Y42.588 E105.1413
+G1 X114.976 Y42.355 E105.15515
+G1 X114.6 Y42.125 E105.16981
+G1 X114.194 Y41.907 E105.18513
+G1 X113.627 Y41.65 E105.20584
+G1 X113.371 Y41.557 E105.2149
+G1 X113.38 Y41.59 E105.21604
+G1 X113.374 Y42.732 E105.25402
+G1 X113.334 Y42.885 E105.25928
+G1 X113.182 Y43.098 E105.26798
+G1 X112.813 Y43.253 E105.28129
+G1 X112.455 Y43.273 E105.29322
+G1 X112.502 Y43.328 E105.29563
+G1 X112.501 Y47.021 E105.41846
+G1 X112.453 Y47.076 E105.42088
+G1 X112.816 Y47.097 E105.43298
+G1 X113.231 Y47.271 E105.44794
+G1 X113.38 Y47.592 E105.45971
+G1 X113.379 Y48.802 E105.49996
+G0 F9000 X112.709 Y49.298
+;TYPE:WALL-OUTER
+G1 F505.6 X113.131 Y49.303 E105.52056
+G1 F602 X113.433 Y49.195 E105.53371
+G1 F688.6 X113.736 Y49.086 E105.54525
+G1 F742 X114.028 Y48.961 E105.55581
+G1 X114.482 Y48.747 E105.5725
+G1 X114.951 Y48.482 E105.59042
+G1 X115.292 Y48.267 E105.60383
+G1 X115.692 Y47.986 E105.62009
+G1 X116.011 Y47.737 E105.63355
+G1 X116.441 Y47.361 E105.65255
+G1 X116.82 Y46.989 E105.67021
+G1 X117.165 Y46.597 E105.68758
+G1 X117.415 Y46.283 E105.70093
+G1 X117.653 Y45.957 E105.71435
+G1 X118.026 Y45.386 E105.73704
+G1 X118.079 Y45.207 E105.74325
+G1 X118.035 Y44.994 E105.75048
+G1 X117.721 Y44.496 E105.77006
+G1 X117.554 Y44.254 E105.77984
+G1 X117.207 Y43.804 E105.79874
+G1 X116.944 Y43.502 E105.81206
+G1 X116.547 Y43.091 E105.83107
+G1 X116.252 Y42.816 E105.84448
+G1 X115.81 Y42.452 E105.86352
+G1 X115.552 Y42.262 E105.87418
+G1 X115.215 Y42.033 E105.88773
+G1 X114.799 Y41.778 E105.90396
+G1 X114.354 Y41.54 E105.92075
+G1 X114.072 Y41.407 E105.93112
+G1 X113.761 Y41.273 E105.94238
+G1 X113.264 Y41.09 E105.95999
+G1 F550.6 X112.824 Y41.1 E105.97972
+G1 F492.2 X112.899 Y41.271 E105.98908
+G1 F639.6 X112.979 Y41.59 E106.00177
+G1 F742 X112.978 Y42.68 E106.03802
+G1 X112.914 Y42.802 E106.04261
+G1 X112.791 Y42.853 E106.04703
+G1 X112.538 Y42.867 E106.05546
+G1 F649.4 X112.24 Y42.941 E106.06713
+G1 F519.8 X111.942 Y43.015 E106.08171
+G1 F577.4 X112.102 Y43.328 E106.09673
+G1 F742 X112.101 Y47.021 E106.21956
+G1 F577.4 X111.944 Y47.333 E106.23449
+G1 F519.8 X112.24 Y47.407 E106.24898
+G1 F649.4 X112.536 Y47.482 E106.26058
+G1 F742 X112.792 Y47.497 E106.26911
+G1 X112.915 Y47.548 E106.27354
+G1 X112.975 Y47.65 E106.27747
+G1 F732.8 X112.975 Y47.935 E106.28707
+G1 F713.4 X112.976 Y48.22 E106.29693
+G1 F696.7 X112.977 Y48.505 E106.30702
+G1 F679.1 X112.978 Y48.79 E106.31738
+G1 F639.6 X112.872 Y49.082 E106.32937
+G1 F522.5 X112.709 Y49.298 E106.34215
+G1 F460.1 X112.074 Y49.449 E106.37715
+G1 F461.6 X111.751 Y49.504 E106.39467
+G0 F9000 X110.569 Y49.795
+G1 F824.4 X110.958 Y49.811 E106.40632
+G1 F810.9 X111.347 Y49.827 E106.41817
+G1 F710 X111.552 Y49.782 E106.42547
+G1 F557.9 X111.697 Y49.538 E106.43802
+G1 F477.1 X111.751 Y49.504 E106.44132
+G1 F533.8 X111.427 Y49.458 E106.45645
+G1 F691.8 X111.35 Y49.429 E106.45939
+G1 F774.9 X111.088 Y49.44 E106.46774
+G1 F804.3 X110.826 Y49.451 E106.47579
+G1 F836 X110.564 Y49.462 E106.48353
+G1 F840.7 X110.569 Y49.795 E106.4933
+G1 F1500 E99.9933
+G0 F9000 X113.197 Y48.834
+G0 X115.33 Y47.555
+G0 X115.546 Y47.366
+G0 X115.617 Y45.313
+G1 F1500 E106.4933
+G0 F9000 X115.516 Y45.313
+;TYPE:FILL
+G1 F1483.9 X116.781 Y44.048 E106.5528
+G0 F9000 X116.616 Y44.19
+G0 X115.617 Y45.033
+G0 X115.515 Y45.033
+G1 F1483.9 X116.784 Y46.302 E106.61249
+G0 F9000 X116.62 Y46.157
+G0 X115.567 Y47.259
+G0 X113.74 Y48.256
+;TYPE:SKIN
+G1 F742 X114.125 Y48.074 E106.62666
+G1 X114.574 Y47.821 E106.6438
+G1 X114.888 Y47.622 E106.65616
+G1 X115.25 Y47.365 E106.67093
+G1 X115.477 Y47.188 E106.6805
+G1 X115.476 Y43.153 E106.81471
+G1 X115.118 Y42.888 E106.82952
+G1 X114.785 Y42.661 E106.84293
+G1 X114.424 Y42.441 E106.85699
+G1 X114.019 Y42.223 E106.87228
+G1 X113.739 Y42.097 E106.8825
+G1 X113.736 Y42.768 E106.90481
+G1 X113.665 Y43.028 E106.91378
+G1 X113.429 Y43.368 E106.92754
+G1 X112.893 Y43.598 E106.94694
+G1 X112.862 Y43.605 E106.948
+G1 X112.862 Y46.737 E107.05217
+G1 X113.423 Y46.974 E107.07243
+G1 X113.633 Y47.257 E107.08415
+G1 X113.74 Y47.534 E107.09402
+G1 X113.74 Y48.256 E107.11804
+G0 F9000 X115.567 Y47.259
+G0 X115.275 Y47.076
+G1 F742 X115.184 Y47.166 E107.1223
+G0 F9000 X115.275 Y46.51
+G1 F742 X113.939 Y47.846 E107.18514
+G0 F9000 X113.88 Y47.339
+G1 F742 X115.275 Y45.944 E107.25075
+G0 F9000 X115.275 Y45.379
+G1 F742 X113.676 Y46.978 E107.32597
+G0 F9000 X113.358 Y46.73
+G1 F742 X115.275 Y44.813 E107.41613
+G0 F9000 X115.275 Y44.247
+G1 F742 X113.062 Y46.461 E107.52025
+G0 F9000 X113.062 Y45.895
+G1 F742 X115.275 Y43.682 E107.62434
+G0 F9000 X115.194 Y43.197
+G1 F742 X113.062 Y45.329 E107.72463
+G0 F9000 X113.062 Y44.764
+G1 F742 X114.867 Y42.958 E107.80955
+G0 F9000 X114.524 Y42.736
+G1 F742 X113.062 Y44.198 E107.87832
+G0 F9000 X112.601 Y44.198
+G0 X112.674 Y43.433
+G0 X113.029 Y43.338
+G0 X113.48 Y42.437
+G0 X113.933 Y42.761
+G1 F742 X114.165 Y42.529 E107.88923
+G1 F1500 E101.38923
+;MESH:NONMESH
+G0 F300 X114.165 Y42.529 Z4.6
+G0 F9000 X114.373 Y42.118
+G0 X113.558 Y41.814
+G0 X113.539 Y42.788
+G0 X113.294 Y42.97
+G0 X112.321 Y43.772
+G0 X111.249 Y44.019
+G0 X108.791 Y44.156
+G0 X106.931 Y43.613
+;TIME_ELAPSED:320.097414
+;LAYER:22
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E107.88923
+G1 F481.3 X105.81 Y43.613 E107.94749
+G1 F479 X104.689 Y43.614 E108.00603
+G1 F453.1 X104.527 Y43.65 E108.01519
+G1 F436.6 X104.46 Y43.736 E108.02143
+G1 F461.4 X104.431 Y43.925 E108.0318
+G1 F481.3 X104.432 Y45.202 E108.09817
+G1 F479.8 X104.433 Y46.479 E108.16474
+G1 F451 X104.479 Y46.659 E108.17505
+G1 F433.5 X104.55 Y46.706 E108.17996
+G1 F460.7 X104.743 Y46.736 E108.19056
+G1 F481.3 X105.864 Y46.736 E108.24882
+G1 F479 X106.985 Y46.735 E108.30736
+G0 F9000 X107.932 Y46.908
+G1 F752.1 X107.932 Y43.477 E108.42147
+G1 X107.687 Y43.386 E108.43017
+G1 X107.515 Y43.5 E108.43703
+G1 F659.7 X107.223 Y43.556 E108.4483
+G1 F529.6 X106.931 Y43.613 E108.46235
+G1 F587.6 X107.131 Y43.908 E108.47753
+G1 F752.1 X107.131 Y46.441 E108.56178
+G1 F584.2 X106.985 Y46.735 E108.57583
+G1 F525.9 X107.25 Y46.792 E108.58872
+G1 F658.3 X107.515 Y46.849 E108.59903
+G1 F752.1 X107.657 Y46.917 E108.60426
+G1 X107.699 Y46.995 E108.60721
+G1 X107.932 Y46.908 E108.61548
+G0 F9000 X107.868 Y47.062
+G1 F447.7 X108.115 Y47.126 E108.62974
+G1 F482.1 X108.64 Y47.157 E108.65703
+G1 F469.3 X108.776 Y47.18 E108.66438
+G0 F9000 X107.718 Y46.635
+G0 X107.531 Y46.449
+;TYPE:WALL-INNER
+G1 F748.4 X107.531 Y43.9 E108.74958
+G0 F9000 X107.87 Y43.284
+;TYPE:WALL-OUTER
+G1 F443.7 X108.061 Y43.226 E108.76083
+G1 F476 X108.692 Y43.187 E108.79406
+G1 F466.4 X108.776 Y43.169 E108.79866
+G1 F1500 E102.29866
+G0 F9000 X109.767 Y43.115
+G0 X110.724 Y41.535
+G0 X111.314 Y40.88
+G1 F1500 E108.79866
+G1 F798 X111.482 Y40.899 E108.80396
+G1 F709.5 X111.58 Y40.863 E108.80765
+G1 F555.1 X111.86 Y40.828 E108.82036
+G1 F480.6 X111.878 Y40.82 E108.82139
+G1 F543 X111.689 Y40.573 E108.83571
+G1 F709.5 X111.499 Y40.523 E108.84264
+G1 F798 X111.312 Y40.526 E108.8485
+G1 X111.314 Y40.88 E108.8596
+G0 F9000 X111.878 Y40.82
+G1 F472.3 X112.46 Y40.936 E108.89103
+G1 F470.8 X112.839 Y41.036 E108.91186
+G0 F9000 X113.268 Y41.292
+G0 X115.654 Y42.955
+G0 X116.251 Y43.497
+G0 X116.586 Y46.404
+G0 X116.178 Y46.791
+G0 X113.525 Y48.791
+;TYPE:WALL-INNER
+G1 F752.1 X113.88 Y48.65 E108.92457
+G1 X114.233 Y48.486 E108.93751
+G1 X114.674 Y48.258 E108.95402
+G1 X115.162 Y47.952 E108.97318
+G1 X115.609 Y47.635 E108.99141
+G1 X116.038 Y47.286 E109.0098
+G1 X116.295 Y47.052 E109.02136
+G1 X116.542 Y46.809 E109.03289
+G1 X116.938 Y46.379 E109.05233
+G1 X117.295 Y45.92 E109.07167
+G1 X117.558 Y45.541 E109.08701
+G1 X117.782 Y45.169 E109.10146
+G1 X117.632 Y44.925 E109.11098
+G1 X117.424 Y44.609 E109.12356
+G1 X117.097 Y44.169 E109.1418
+G1 X116.905 Y43.935 E109.15187
+G1 X116.589 Y43.587 E109.1675
+G1 X116.314 Y43.313 E109.18041
+G1 X116.085 Y43.102 E109.19077
+G1 X115.725 Y42.804 E109.20631
+G1 X115.414 Y42.57 E109.21926
+G1 X115.006 Y42.295 E109.23562
+G1 X114.477 Y41.988 E109.25596
+G1 X114.137 Y41.817 E109.26862
+G1 X113.533 Y41.546 E109.29064
+G1 X113.532 Y42.733 E109.33012
+G1 X113.44 Y42.959 E109.33824
+G1 X113.313 Y43.103 E109.34462
+G1 X112.966 Y43.239 E109.35702
+G1 X112.469 Y43.267 E109.37358
+G1 X112.517 Y43.322 E109.376
+G1 X112.518 Y47.027 E109.49923
+G1 X112.471 Y47.082 E109.50164
+G1 X112.967 Y47.11 E109.51816
+G1 X113.313 Y47.246 E109.53053
+G1 X113.481 Y47.465 E109.53971
+G1 X113.53 Y47.658 E109.54633
+G1 X113.532 Y48.751 E109.58268
+G1 X113.525 Y48.791 E109.58403
+G0 F9000 X113.155 Y49.317
+;TYPE:WALL-OUTER
+G1 F701.3 X113.385 Y49.273 E109.59239
+G1 F752.1 X114.047 Y49.014 E109.61603
+G1 X114.417 Y48.842 E109.6296
+G1 X114.873 Y48.606 E109.64668
+G1 X115.384 Y48.285 E109.66675
+G1 X115.851 Y47.953 E109.68581
+G1 X116.298 Y47.59 E109.70496
+G1 X116.537 Y47.374 E109.71567
+G1 X116.83 Y47.087 E109.72932
+G1 X117.244 Y46.637 E109.74965
+G1 X117.617 Y46.157 E109.76987
+G1 X117.893 Y45.76 E109.78595
+G1 X118.173 Y45.302 E109.80381
+G1 X118.159 Y45.019 E109.81323
+G1 X117.974 Y44.716 E109.82504
+G1 X117.752 Y44.379 E109.83846
+G1 X117.412 Y43.923 E109.85738
+G1 X117.208 Y43.674 E109.86809
+G1 X116.879 Y43.311 E109.88438
+G1 X116.59 Y43.024 E109.89793
+G1 X116.348 Y42.801 E109.90887
+G1 X115.973 Y42.49 E109.92508
+G1 X115.646 Y42.244 E109.93869
+G1 X115.215 Y41.954 E109.95597
+G1 X114.68 Y41.642 E109.97656
+G1 X114.301 Y41.452 E109.99066
+G1 X113.833 Y41.241 E110.00774
+G1 F699.6 X113.539 Y41.137 E110.01889
+G1 F614 X113.245 Y41.032 E110.03161
+G1 F517.8 X112.839 Y41.036 E110.05122
+G1 F519.6 X112.981 Y41.198 E110.0616
+G1 F617.7 X113.133 Y41.574 E110.07802
+G1 F668.5 X113.132 Y41.851 E110.08838
+G1 F690 X113.13 Y42.128 E110.09843
+G1 F714.6 X113.129 Y42.405 E110.10812
+G1 F739.2 X113.127 Y42.682 E110.1175
+G1 F752.1 X113.059 Y42.794 E110.12186
+G1 X112.943 Y42.839 E110.12599
+G1 X112.554 Y42.861 E110.13895
+G1 F658.3 X112.256 Y42.935 E110.15062
+G1 F526.9 X111.958 Y43.009 E110.1652
+G1 F585.3 X112.117 Y43.322 E110.1802
+G1 F752.1 X112.118 Y47.027 E110.30343
+G1 F584.2 X111.963 Y47.339 E110.31835
+G1 F525.9 X112.258 Y47.413 E110.33282
+G1 F658.3 X112.553 Y47.487 E110.34437
+G1 F752.1 X112.944 Y47.51 E110.3574
+G1 X113.059 Y47.555 E110.36151
+G1 X113.132 Y47.692 E110.36667
+G1 F746.5 X113.132 Y47.966 E110.37585
+G1 F733.8 X113.132 Y48.24 E110.38519
+G1 F719.7 X113.132 Y48.514 E110.39472
+G1 F707.9 X113.132 Y48.788 E110.4044
+G1 F677.6 X113.023 Y49.063 E110.41532
+G1 F545 X112.837 Y49.314 E110.42966
+G1 X113.155 Y49.317 E110.44426
+G0 F9000 X112.837 Y49.314
+G1 F468.6 X112.289 Y49.453 E110.47444
+G1 X111.795 Y49.543 E110.50124
+G1 F429.2 X111.503 Y49.636 E110.5191
+G1 F1500 E104.0191
+G0 F9000 X113.35 Y48.821
+G0 X115.095 Y47.803
+G0 X116.194 Y46.909
+G0 X116.286 Y45.703
+G1 F1500 E110.5191
+G0 F9000 X116.184 Y45.703
+;TYPE:FILL
+G1 F1504.2 X116.843 Y46.361 E110.55008
+G0 F9000 X116.684 Y46.214
+G0 X116.285 Y44.645
+G0 X116.184 Y44.645
+G1 F1504.2 X116.842 Y43.987 E110.58103
+G0 F9000 X116.68 Y44.133
+G0 X116.222 Y46.726
+G0 X113.892 Y48.25
+;TYPE:SKIN
+G1 F752.1 X114.495 Y47.945 E110.6035
+G1 X114.978 Y47.64 E110.6225
+G1 X115.39 Y47.346 E110.63934
+G1 X115.889 Y46.941 E110.66071
+G1 X116.146 Y46.691 E110.67264
+G1 X116.144 Y43.654 E110.77365
+G1 X115.847 Y43.372 E110.78727
+G1 X115.502 Y43.087 E110.80215
+G1 X115.205 Y42.864 E110.81451
+G1 X114.849 Y42.623 E110.82881
+G1 X114.312 Y42.309 E110.8495
+G1 X113.893 Y42.105 E110.865
+G1 X113.893 Y42.798 E110.88805
+G1 X113.745 Y43.156 E110.90093
+G1 X113.525 Y43.398 E110.91181
+G1 X113.043 Y43.586 E110.92902
+G1 X112.879 Y43.605 E110.93451
+G1 X112.879 Y46.744 E111.03891
+G1 X113.041 Y46.763 E111.04433
+G1 X113.546 Y46.959 E111.06235
+G1 X113.809 Y47.317 E111.07713
+G1 X113.89 Y47.628 E111.08782
+G1 X113.892 Y48.25 E111.1085
+G0 F9000 X114.472 Y47.721
+G1 F752.1 X113.993 Y47.242 E111.13103
+G0 F9000 X113.462 Y46.711
+G1 F752.1 X113.077 Y46.326 E111.14914
+G0 F9000 X113.077 Y45.761
+G1 F752.1 X114.819 Y47.503 E111.23108
+G0 F9000 X115.151 Y47.269
+G1 F752.1 X113.077 Y45.195 E111.32864
+G0 F9000 X113.077 Y44.629
+G1 F752.1 X115.47 Y47.022 E111.4412
+G0 F9000 X115.78 Y46.766
+G1 F752.1 X113.077 Y44.064 E111.56831
+G0 F9000 X113.285 Y43.706
+G1 F752.1 X115.945 Y46.366 E111.69343
+G0 F9000 X115.945 Y45.8
+G1 F752.1 X113.678 Y43.533 E111.80006
+G0 F9000 X113.929 Y43.218
+G1 F752.1 X115.945 Y45.234 E111.89489
+G0 F9000 X115.944 Y44.667
+G1 F752.1 X114.092 Y42.816 E111.98198
+G0 F9000 X114.484 Y42.642
+G1 F752.1 X115.943 Y44.101 E112.05061
+G0 F9000 X116.398 Y44.27
+G1 F1500 E105.55061
+;MESH:NONMESH
+G0 F300 X116.398 Y44.27 Z4.8
+G0 F9000 X116.202 Y43.429
+G0 X114.938 Y42.442
+G0 X113.712 Y41.822
+G0 X113.419 Y43.225
+G0 X112.762 Y43.405
+G0 X112.337 Y43.77
+G0 X111.265 Y44.013
+G0 X108.786 Y44.151
+G0 X106.931 Y43.613
+;TIME_ELAPSED:334.886019
+;LAYER:23
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E112.05061
+G1 F509.2 X104.69 Y43.617 E112.16688
+G1 F477.8 X104.51 Y43.659 E112.1771
+G1 F457.2 X104.461 Y43.731 E112.18214
+G1 F485.9 X104.431 Y43.925 E112.19281
+G1 F508.4 X104.431 Y44.22 E112.20814
+G1 F506 X104.431 Y44.515 E112.22355
+G1 F503.6 X104.431 Y44.81 E112.23902
+G1 F501.2 X104.431 Y45.105 E112.25458
+G1 F498.8 X104.432 Y45.4 E112.2702
+G1 F497.3 X104.432 Y45.695 E112.28588
+G1 F494.9 X104.432 Y45.99 E112.30162
+G1 F492.6 X104.432 Y46.285 E112.31745
+G1 F490.4 X104.432 Y46.58 E112.33334
+G1 F478.5 X104.559 Y46.709 E112.34333
+G1 F488.1 X104.743 Y46.736 E112.3534
+G1 F508.4 X105.864 Y46.736 E112.41166
+G1 F506 X106.985 Y46.735 E112.4702
+G0 F9000 X107.927 Y46.912
+G1 F794.4 X107.927 Y43.474 E112.58454
+G1 X107.684 Y43.385 E112.59315
+G1 X107.511 Y43.5 E112.60006
+G1 F696.8 X107.221 Y43.556 E112.61126
+G1 F559.4 X106.931 Y43.613 E112.62522
+G1 F620.6 X107.131 Y43.906 E112.64032
+G1 F794.4 X107.13 Y46.443 E112.7247
+G1 F617 X106.985 Y46.735 E112.73866
+G1 F555.5 X107.248 Y46.792 E112.75146
+G1 F695.3 X107.511 Y46.849 E112.76169
+G1 F794.4 X107.654 Y46.919 E112.76698
+G1 X107.694 Y46.996 E112.76987
+G1 X107.927 Y46.912 E112.77811
+G0 F9000 X107.863 Y47.066
+G1 F473.5 X108.11 Y47.131 E112.79236
+G1 F509.2 X108.635 Y47.162 E112.81965
+G1 F495.7 X108.771 Y47.185 E112.827
+G0 F9000 X107.713 Y46.635
+G0 X107.529 Y46.451
+;TYPE:WALL-INNER
+G1 F802.4 X107.529 Y43.898 E112.91106
+G0 F9000 X107.865 Y43.279
+;TYPE:WALL-OUTER
+G1 F468.7 X108.056 Y43.221 E112.92231
+G1 F502.8 X108.687 Y43.182 E112.95554
+G1 F492.6 X108.771 Y43.164 E112.96014
+G1 F1500 E106.46014
+G0 F9000 X109.762 Y43.11
+G0 X110.907 Y44.028
+G0 X111.28 Y44.007
+G0 X112.637 Y45.785
+;TYPE:WALL-INNER
+G1 F1500 E112.96014
+G1 F544.1 X112.686 Y45.478 E112.97524
+G1 F591.7 X112.736 Y45.17 E112.98917
+G1 F562.4 X112.632 Y44.687 E113.01239
+G1 F613.4 X112.369 Y44.994 E113.0298
+G1 F754.8 X112.308 Y45.026 E113.03221
+G1 X112.309 Y45.324 E113.04264
+G1 F753 X112.369 Y45.356 E113.04503
+G1 F679 X112.503 Y45.57 E113.05485
+G1 F566.4 X112.637 Y45.785 E113.06667
+G1 F1500 E106.56667
+G0 F9000 X112.873 Y47.243
+G1 F1500 E113.06667
+G0 F9000 X113.141 Y47.522
+;TYPE:WALL-OUTER
+G1 F794.4 X113.14 Y42.826 E113.22286
+G1 X112.569 Y42.857 E113.24188
+G1 F695.3 X112.274 Y42.93 E113.25343
+G1 F555.5 X111.978 Y43.004 E113.26794
+G1 F617 X112.133 Y43.317 E113.2829
+G1 F794.4 X112.13 Y44.601 E113.3256
+G1 X112.075 Y44.707 E113.32957
+G1 X111.898 Y44.777 E113.3359
+G1 X111.898 Y45.573 E113.36238
+G1 X112.076 Y45.644 E113.36875
+G1 X112.133 Y45.785 E113.37381
+G1 X112.134 Y47.033 E113.41532
+G1 F617 X111.979 Y47.345 E113.43024
+G1 F555.5 X112.274 Y47.419 E113.4447
+G1 F695.3 X112.569 Y47.493 E113.45626
+G1 F794.4 X113.141 Y47.522 E113.47531
+G0 F9000 X112.637 Y46.993
+;TYPE:WALL-INNER
+G1 F522.6 X112.637 Y45.785 E113.53638
+G0 F9000 X112.632 Y44.687
+G1 F517.5 X112.634 Y44.022 E113.57033
+G1 F520.9 X112.636 Y43.357 E113.60406
+G1 F1500 E107.10406
+G0 F9000 X112.926 Y43.051
+G0 X113.925 Y43.053
+G0 X113.327 Y41.156
+;TYPE:WALL-OUTER
+G1 F1500 E113.60406
+G1 F486.6 X112.95 Y41.019 E113.62584
+G1 F501.2 X112.408 Y40.883 E113.6553
+G1 F500.4 X111.983 Y40.8 E113.67816
+G1 F462.5 X111.751 Y40.715 E113.69228
+G1 F1500 E107.19228
+G0 F9000 X113.926 Y41.698
+G0 X114.102 Y48.603
+;TYPE:WALL-INNER
+G1 F1500 E113.69228
+G1 F794.4 X114.386 Y48.47 E113.70271
+G1 X114.659 Y48.326 E113.71298
+G1 X115.003 Y48.126 E113.72621
+G1 X115.263 Y47.959 E113.73649
+G1 X115.525 Y47.775 E113.74714
+G1 X115.913 Y47.485 E113.76325
+G1 X116.417 Y47.034 E113.78574
+G1 X116.691 Y46.76 E113.79863
+G1 X117.005 Y46.413 E113.8142
+G1 X117.365 Y45.966 E113.83328
+G1 X117.719 Y45.452 E113.85404
+G1 X117.88 Y45.173 E113.86476
+G1 X117.714 Y44.886 E113.87578
+G1 X117.339 Y44.352 E113.89749
+G1 X116.999 Y43.927 E113.91559
+G1 X116.608 Y43.496 E113.93494
+G1 X116.145 Y43.059 E113.95612
+G1 X115.76 Y42.748 E113.97258
+G1 X115.314 Y42.426 E113.99088
+G1 X114.837 Y42.125 E114.00964
+G1 X114.574 Y41.979 E114.01964
+G1 X114.107 Y41.746 E114.037
+G1 X114.102 Y48.603 E114.26506
+G0 F9000 X114.421 Y48.338
+G0 X113.775 Y48.934
+G0 X113.298 Y49.205
+;TYPE:WALL-OUTER
+G1 F484.4 X112.959 Y49.327 E114.28472
+G1 F500.4 X112.497 Y49.446 E114.30991
+G1 F497.3 X111.936 Y49.556 E114.34028
+G1 F458.5 X111.749 Y49.636 E114.352
+G1 F1500 E107.852
+G0 F9000 X113.71 Y48.981
+G0 X113.298 Y49.205
+G1 F1500 E114.352
+G1 F584.1 X113.7 Y49.197 E114.37019
+G1 F780.7 X114.125 Y49.035 E114.38558
+G1 F794.4 X114.572 Y48.824 E114.40202
+G1 X114.859 Y48.672 E114.41282
+G1 X115.201 Y48.474 E114.42597
+G1 X115.49 Y48.288 E114.4374
+G1 X115.724 Y48.126 E114.44687
+G1 X116.053 Y47.879 E114.46055
+G1 X116.264 Y47.707 E114.4696
+G1 X116.692 Y47.325 E114.48868
+G1 X116.981 Y47.036 E114.50228
+G1 X117.309 Y46.673 E114.51855
+G1 X117.686 Y46.206 E114.53851
+G1 X118.057 Y45.666 E114.5603
+G1 X118.28 Y45.283 E114.57504
+G1 X118.253 Y45.019 E114.58387
+G1 X118.052 Y44.67 E114.59726
+G1 X117.659 Y44.112 E114.61996
+G1 X117.303 Y43.667 E114.63892
+G1 X116.894 Y43.216 E114.65917
+G1 X116.406 Y42.755 E114.6815
+G1 X116.003 Y42.43 E114.69872
+G1 X115.538 Y42.094 E114.7178
+G1 X115.052 Y41.787 E114.73692
+G1 X114.755 Y41.621 E114.74823
+G1 X114.332 Y41.408 E114.76399
+G1 X113.953 Y41.244 E114.77772
+G1 F769.4 X113.713 Y41.162 E114.78643
+G1 F577.7 X113.327 Y41.156 E114.80409
+G1 F525.2 X113.623 Y41.529 E114.82804
+G1 F679 X113.707 Y41.778 E114.83827
+G1 F794.4 X113.701 Y48.645 E115.06666
+G1 F780.7 X113.503 Y48.922 E115.07819
+G1 F696.8 X113.474 Y48.999 E115.08131
+G1 F543.2 X113.298 Y49.205 E115.09449
+G0 F9000 X113.775 Y48.934
+G0 X114.584 Y48.252
+G0 X114.464 Y48.019
+;TYPE:SKIN
+G1 F794.4 X114.796 Y47.83 E115.10719
+G1 X115.064 Y47.658 E115.11778
+G1 X115.307 Y47.488 E115.12765
+G1 X115.684 Y47.204 E115.14335
+G1 X116.168 Y46.772 E115.16492
+G1 X116.429 Y46.511 E115.1772
+G1 X116.811 Y46.088 E115.19616
+G1 X116.813 Y44.26 E115.25696
+G1 X116.352 Y43.751 E115.2798
+G1 X115.827 Y43.266 E115.30357
+G1 X115.528 Y43.027 E115.3163
+G1 X115.084 Y42.707 E115.3345
+G1 X114.469 Y42.32 E115.35867
+G1 X114.464 Y48.019 E115.54822
+G0 F9000 X114.584 Y48.252
+G0 X115.915 Y47.266
+G0 X116.909 Y46.277
+G0 X116.951 Y45.742
+G0 X116.61 Y45.741
+G1 F794.4 X114.696 Y47.654 E115.63823
+G0 F9000 X114.663 Y47.123
+G1 F794.4 X116.61 Y45.175 E115.72983
+G0 F9000 X116.611 Y44.609
+G1 F794.4 X114.663 Y46.556 E115.82144
+G0 F9000 X114.664 Y45.99
+G1 F794.4 X116.471 Y44.182 E115.90646
+G0 F9000 X116.203 Y43.885
+G1 F794.4 X114.664 Y45.424 E115.97884
+G0 F9000 X114.665 Y44.858
+G1 F794.4 X115.908 Y43.614 E116.03734
+G0 F9000 X115.609 Y43.347
+G1 F794.4 X114.665 Y44.291 E116.08174
+G0 F9000 X114.665 Y43.726
+G1 F794.4 X115.29 Y43.101 E116.11114
+G0 F9000 X114.96 Y42.865
+G1 F794.4 X114.666 Y43.159 E116.12497
+G1 F1500 E109.62497
+;MESH:NONMESH
+G0 F300 X114.666 Y43.159 Z5
+G0 F9000 X114.206 Y43.159
+G0 X113.925 Y43.165
+G0 X112.843 Y42.007
+G0 X112.572 Y41.904
+G0 X110.797 Y42.009
+G0 X109.761 Y43.104
+G0 X108.766 Y43.159
+;TIME_ELAPSED:350.669348
+;LAYER:24
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E116.12497
+G1 F372.7 X108.682 Y43.177 E116.12957
+G1 F380.3 X108.05 Y43.217 E116.16279
+G1 F355.6 X107.86 Y43.277 E116.17397
+G1 F357.1 X107.81 Y43.524 E116.18806
+G1 F384 X107.811 Y45.202 E116.27526
+G1 F382.8 X107.812 Y46.88 E116.36274
+G1 F356.1 X107.859 Y47.072 E116.37382
+G1 F357.7 X108.105 Y47.136 E116.388
+G1 F384.6 X108.631 Y47.167 E116.41534
+G1 F374.4 X108.766 Y47.19 E116.42264
+G1 F1500 E109.92264
+G0 F9000 X109.758 Y47.246
+G0 X111.048 Y45.731
+G0 X112.653 Y46.129
+;TYPE:WALL-INNER
+G1 F1500 E116.42264
+G1 F427.8 X112.699 Y45.841 E116.43625
+G1 F512.8 X112.746 Y45.552 E116.44764
+G1 F568.7 X112.746 Y44.797 E116.47413
+G1 F461.5 X112.648 Y44.343 E116.49422
+G1 X112.385 Y44.65 E116.51169
+G1 F568.7 X112.325 Y44.679 E116.51403
+G1 X112.325 Y45.67 E116.54881
+G1 X112.385 Y45.699 E116.55114
+G1 F512.8 X112.519 Y45.914 E116.561
+G1 F427.8 X112.653 Y46.129 E116.57282
+G0 F9000 X112.563 Y45.316
+G0 X112.889 Y47.249
+G0 X113.157 Y47.531
+;TYPE:WALL-OUTER
+G1 F600 X113.157 Y42.818 E116.72958
+G1 X112.583 Y42.85 E116.7487
+G1 F525.2 X112.289 Y42.923 E116.76021
+G1 F420.3 X111.994 Y42.997 E116.77465
+G1 F466.9 X112.149 Y43.309 E116.78954
+G1 F600 X112.146 Y44.257 E116.82107
+G1 X112.091 Y44.362 E116.82501
+G1 X111.914 Y44.428 E116.83129
+G1 X111.914 Y45.922 E116.88098
+G1 X112.092 Y45.987 E116.88729
+G1 X112.149 Y46.129 E116.89238
+G1 X112.149 Y47.041 E116.92271
+G1 F466.9 X111.995 Y47.352 E116.93754
+G1 F420.3 X112.289 Y47.425 E116.95192
+G1 F525.2 X112.583 Y47.499 E116.96344
+G1 F600 X113.157 Y47.531 E116.98257
+G0 F9000 X112.652 Y46.998
+;TYPE:WALL-INNER
+G1 F394.1 X112.653 Y46.129 E117.02657
+G0 F9000 X112.563 Y45.316
+G0 X112.563 Y45.034
+G0 X112.648 Y44.343
+G1 F390.9 X112.652 Y43.351 E117.07722
+G1 F1500 E110.57722
+G0 F9000 X112.943 Y43.044
+G0 X114.593 Y43.046
+G0 X113.966 Y41.342
+;TYPE:WALL-OUTER
+G1 F1500 E117.07722
+G1 F370.4 X113.536 Y41.16 E117.10238
+G1 F379.1 X112.923 Y40.971 E117.13614
+G1 F380.3 X112.394 Y40.845 E117.16467
+G1 F377.4 X112.061 Y40.781 E117.1826
+G1 F347.8 X111.899 Y40.704 E117.19289
+G1 F1500 E110.69289
+G0 F9000 X111.889 Y41.747
+G0 X113.019 Y41.994
+G0 X114.773 Y48.318
+;TYPE:WALL-INNER
+G1 F1500 E117.19289
+G1 F600 X115.075 Y48.143 E117.2045
+G1 X115.583 Y47.811 E117.22469
+G1 X116.023 Y47.469 E117.24322
+G1 X116.287 Y47.245 E117.25474
+G1 X116.522 Y47.028 E117.26538
+G1 X116.798 Y46.749 E117.27843
+G1 X117.01 Y46.516 E117.28891
+G1 X117.294 Y46.178 E117.30359
+G1 X117.688 Y45.643 E117.32569
+G1 X117.975 Y45.172 E117.34404
+G1 X117.824 Y44.922 E117.35375
+G1 X117.522 Y44.476 E117.37166
+G1 X117.187 Y44.042 E117.3899
+G1 X116.859 Y43.668 E117.40644
+G1 X116.609 Y43.411 E117.41837
+G1 X116.207 Y43.037 E117.43663
+G1 X115.713 Y42.64 E117.45771
+G1 X115.332 Y42.37 E117.47324
+G1 X114.776 Y42.024 E117.49502
+G1 X114.773 Y48.318 E117.70436
+G0 F9000 X114.037 Y48.967
+;TYPE:WALL-OUTER
+G1 F360.4 X113.799 Y49.073 E117.71879
+G1 F373.8 X113.561 Y49.179 E117.7327
+G1 F379.7 X112.878 Y49.39 E117.77026
+G1 F380.3 X112.607 Y49.457 E117.78491
+G1 F378.5 X112.093 Y49.562 E117.81257
+G1 F347.3 X111.89 Y49.646 E117.82519
+G1 F1500 E111.32519
+G0 F9000 X114.432 Y48.716
+G0 X114.037 Y48.967
+G1 F1500 E117.82519
+G1 F394.7 X114.463 Y48.932 E117.8468
+G1 F476.2 X114.706 Y48.805 E117.85829
+G1 F553 X114.949 Y48.678 E117.86819
+G1 F600 X115.293 Y48.479 E117.8814
+G1 X115.701 Y48.213 E117.8976
+G1 X115.915 Y48.059 E117.90637
+G1 X116.269 Y47.785 E117.92126
+G1 X116.557 Y47.54 E117.93384
+G1 X116.782 Y47.333 E117.94401
+G1 X117.071 Y47.043 E117.95762
+G1 X117.293 Y46.801 E117.96855
+G1 X117.608 Y46.426 E117.98483
+G1 X118.02 Y45.867 E118.00793
+G1 X118.356 Y45.318 E118.02934
+G1 X118.354 Y45.022 E118.03918
+G1 X118.156 Y44.698 E118.05181
+G1 X117.846 Y44.241 E118.07018
+G1 X117.496 Y43.788 E118.08922
+G1 X117.174 Y43.419 E118.10551
+G1 X116.889 Y43.125 E118.11913
+G1 X116.469 Y42.734 E118.13821
+G1 X115.954 Y42.32 E118.16019
+G1 X115.554 Y42.037 E118.17649
+G1 X115.127 Y41.772 E118.1932
+G1 X114.856 Y41.619 E118.20355
+G1 F555.6 X114.621 Y41.502 E118.21298
+G1 F481.9 X114.386 Y41.384 E118.22387
+G1 F402.7 X113.966 Y41.342 E118.24479
+G1 F431.7 X114.168 Y41.616 E118.26053
+G1 F547.9 X114.373 Y41.937 E118.2744
+G1 F564.7 X114.373 Y44.088 E118.35041
+G1 F563.4 X114.373 Y46.239 E118.42661
+G1 F562.1 X114.373 Y48.39 E118.50298
+G1 F543 X114.224 Y48.687 E118.51519
+G1 F423.3 X114.037 Y48.967 E118.53106
+G0 F9000 X114.49 Y48.66
+G0 X114.874 Y47.672
+G0 X115.134 Y47.671
+;TYPE:SKIN
+G1 F600 X115.435 Y47.469 E118.54312
+G1 X115.804 Y47.181 E118.55869
+G1 X116.257 Y46.783 E118.57875
+G1 X116.518 Y46.521 E118.59105
+G1 X116.708 Y46.315 E118.60037
+G1 X117.01 Y45.953 E118.61605
+G1 X117.477 Y45.319 E118.64224
+G1 X117.477 Y45.053 E118.65108
+G1 X117.229 Y44.687 E118.66579
+G1 X116.909 Y44.272 E118.68322
+G1 X116.599 Y43.917 E118.69889
+G1 X116.344 Y43.657 E118.71101
+G1 X115.957 Y43.299 E118.72854
+G1 X115.498 Y42.929 E118.74815
+G1 X115.136 Y42.673 E118.7629
+G1 X115.134 Y47.671 E118.92913
+G0 F9000 X115.563 Y47.115
+G1 F600 X115.333 Y46.885 E118.93995
+G0 F9000 X115.869 Y46.855
+G1 F600 X115.333 Y46.319 E118.96516
+G0 F9000 X115.333 Y45.754
+G1 F600 X116.167 Y46.588 E119.00439
+G0 F9000 X116.447 Y46.302
+G1 F600 X115.333 Y45.188 E119.05679
+G0 F9000 X115.333 Y44.622
+G1 F600 X116.71 Y46 E119.12158
+G0 F9000 X116.959 Y45.683
+G1 F600 X115.333 Y44.056 E119.19809
+G0 F9000 X115.333 Y43.491
+G1 F600 X117.2 Y45.358 E119.28591
+G1 F1500 E112.78591
+;MESH:NONMESH
+G0 F300 X117.2 Y45.358 Z5.2
+G0 F9000 X117.57 Y45.634
+G0 X117.782 Y45.171
+G0 X117.04 Y44.117
+G0 X116.082 Y43.143
+G0 X114.956 Y42.348
+G0 X114.593 Y43.156
+G0 X113.019 Y41.994
+G0 X112.58 Y41.899
+G0 X110.814 Y42.001
+G0 X109.756 Y43.098
+G0 X108.76 Y43.154
+;TIME_ELAPSED:365.800134
+;LAYER:25
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E119.28591
+G1 F372.1 X108.677 Y43.172 E119.29046
+G1 F379.7 X108.045 Y43.211 E119.32374
+G1 F354 X107.853 Y43.27 E119.33506
+G1 F355.6 X107.803 Y43.519 E119.34931
+G1 F382.8 X107.804 Y45.202 E119.43706
+G1 F381.6 X107.805 Y46.885 E119.52508
+G1 F354.5 X107.852 Y47.078 E119.53626
+G1 F356.1 X108.099 Y47.142 E119.55056
+G1 F384 X108.624 Y47.172 E119.57789
+G1 F375 X108.761 Y47.195 E119.58528
+G1 F1500 E113.08528
+G0 F9000 X109.752 Y47.25
+G0 X110.883 Y47.129
+G0 X112.667 Y46.345
+;TYPE:WALL-INNER
+G1 F1500 E119.58528
+G1 F442 X112.731 Y46.062 E119.59839
+G1 F567.4 X112.796 Y45.778 E119.60863
+G1 F668.5 X112.796 Y45.468 E119.61789
+G1 F681.8 X112.797 Y45.158 E119.62696
+G1 F695.7 X112.798 Y44.848 E119.63585
+G1 F666.7 X112.78 Y44.554 E119.64467
+G1 F581.1 X112.746 Y44.489 E119.64719
+G1 F446.1 X112.655 Y44.163 E119.66233
+G1 F411.7 X112.379 Y44.479 E119.68267
+G1 F486.8 X112.44 Y44.563 E119.68692
+G1 F607.6 X112.456 Y44.849 E119.69633
+G1 F697.7 X112.452 Y45.6 E119.71781
+G1 F657.5 X112.413 Y45.772 E119.72317
+G1 F623.4 X112.332 Y45.883 E119.72757
+G1 X112.432 Y45.978 E119.73198
+G1 F485.8 X112.667 Y46.345 E119.74988
+G0 F9000 X112.901 Y47.255
+G0 X113.169 Y47.538
+;TYPE:WALL-OUTER
+G1 F600 X113.169 Y44.554 E119.84913
+G1 X113.169 Y42.813 E119.90704
+G1 X112.599 Y42.843 E119.92602
+G1 F525.2 X112.305 Y42.917 E119.93754
+G1 F420.3 X112.01 Y42.991 E119.95198
+G1 F466.9 X112.164 Y43.303 E119.96685
+G1 F600 X112.162 Y44.041 E119.9914
+G1 F601.5 X112.08 Y44.169 E119.99644
+G1 X111.929 Y44.209 E120.00162
+G1 X111.929 Y44.683 E120.01735
+G1 X112.029 Y44.711 E120.0208
+G1 X112.085 Y44.849 E120.02574
+G1 F600 X112.083 Y45.535 E120.04855
+G1 X112.03 Y45.638 E120.05241
+G1 X111.93 Y45.667 E120.05587
+G1 X111.93 Y46.14 E120.0716
+G1 X112.082 Y46.181 E120.07684
+G1 X112.165 Y46.345 E120.08295
+G1 X112.165 Y47.047 E120.1063
+G1 F466.9 X112.01 Y47.358 E120.12115
+G1 F420.3 X112.304 Y47.431 E120.13553
+G1 F525.2 X112.598 Y47.505 E120.14705
+G1 F600 X113.169 Y47.538 E120.16608
+G0 F9000 X112.667 Y47.007
+;TYPE:WALL-INNER
+G1 F397.4 X112.667 Y46.345 E120.19932
+G0 F9000 X112.655 Y44.163
+G1 F386.5 X112.662 Y44.128 E120.20117
+G1 F394.1 X112.667 Y43.343 E120.24092
+G1 F1500 E113.74092
+G0 F9000 X112.378 Y43.069
+G0 X112.026 Y40.701
+;TYPE:WALL-OUTER
+G1 F1500 E120.24092
+G1 F355.6 X112.269 Y40.792 E120.25548
+G1 F382.2 X112.788 Y40.903 E120.2832
+G1 F381.6 X113.391 Y41.077 E120.31602
+G1 F379.7 X113.782 Y41.214 E120.33779
+G1 F381 X114.305 Y41.426 E120.36736
+G1 F374.4 X114.592 Y41.584 E120.38482
+G1 F357.7 X114.879 Y41.743 E120.40312
+G0 F9000 X115.156 Y41.994
+G0 X115.537 Y47.488
+G0 X115.438 Y47.965
+;TYPE:WALL-INNER
+G1 F600 X115.683 Y47.796 E120.41302
+G1 X116.061 Y47.508 E120.42883
+G1 X116.472 Y47.153 E120.44689
+G1 X116.822 Y46.811 E120.46317
+G1 X117.129 Y46.476 E120.47828
+G1 X117.324 Y46.243 E120.48839
+G1 X117.675 Y45.778 E120.50776
+G1 X117.839 Y45.536 E120.51749
+G1 X118.06 Y45.174 E120.53159
+G1 X117.906 Y44.917 E120.54156
+G1 X117.576 Y44.432 E120.56107
+G1 X117.321 Y44.101 E120.57497
+G1 X117.053 Y43.787 E120.5887
+G1 X116.72 Y43.427 E120.60501
+G1 X116.216 Y42.97 E120.62764
+G1 X115.856 Y42.681 E120.64299
+G1 X115.437 Y42.384 E120.66007
+G1 X115.438 Y47.965 E120.8457
+G0 F9000 X114.907 Y48.573
+;TYPE:WALL-OUTER
+G1 F350.4 X114.565 Y48.786 E120.86865
+G1 F372.7 X114.218 Y48.959 E120.88941
+G1 F379.7 X113.705 Y49.167 E120.9185
+G1 F381.6 X113.173 Y49.342 E120.94779
+G1 F382.2 X112.864 Y49.428 E120.96454
+G1 F379.7 X112.231 Y49.566 E120.99859
+G1 F351.4 X112.025 Y49.65 E121.01122
+G1 F1500 E114.51122
+G0 F9000 X115.09 Y48.415
+G0 X114.907 Y48.573
+G1 F1500 E121.01122
+G1 F428.6 X115.353 Y48.507 E121.03221
+G1 F598.5 X115.914 Y48.124 E121.05486
+G1 F600 X116.322 Y47.812 E121.07195
+G1 X116.743 Y47.448 E121.09046
+G1 X117.095 Y47.105 E121.1068
+G1 X117.415 Y46.757 E121.12253
+G1 X117.637 Y46.492 E121.13403
+G1 X117.985 Y46.033 E121.15318
+G1 X118.18 Y45.745 E121.16475
+G1 X118.445 Y45.312 E121.18164
+G1 X118.431 Y45.01 E121.19169
+G1 X118.241 Y44.697 E121.20387
+G1 X117.883 Y44.174 E121.22495
+G1 X117.632 Y43.849 E121.23861
+G1 X117.367 Y43.536 E121.25225
+G1 X116.983 Y43.124 E121.27098
+G1 X116.467 Y42.658 E121.29411
+G1 X116.092 Y42.358 E121.31008
+G1 X115.766 Y42.12 E121.3235
+G1 X115.312 Y41.83 E121.34142
+G1 F442 X114.879 Y41.743 E121.36136
+G1 F390.9 X114.958 Y42.008 E121.37548
+G1 F509.6 X115.037 Y42.274 E121.38635
+G1 F600 X115.036 Y48.097 E121.58002
+G1 F597 X115.005 Y48.179 E121.58295
+G1 F466 X114.946 Y48.465 E121.59546
+G1 F357.7 X114.907 Y48.573 E121.60186
+G0 F9000 X115.148 Y48.359
+G0 X115.955 Y47.463
+G0 X115.798 Y47.256
+;TYPE:SKIN
+G1 F600 X116.232 Y46.883 E121.6209
+G1 X116.567 Y46.557 E121.63644
+G1 X116.859 Y46.238 E121.65083
+G1 X117.041 Y46.018 E121.66032
+G1 X117.38 Y45.571 E121.67898
+G1 X117.648 Y45.178 E121.6948
+G1 X117.283 Y44.644 E121.71632
+G1 X117.051 Y44.343 E121.72896
+G1 X116.799 Y44.045 E121.74194
+G1 X116.483 Y43.703 E121.75743
+G1 X115.998 Y43.259 E121.7793
+G1 X115.797 Y43.1 E121.78782
+G1 X115.797 Y43.355 E121.7963
+G1 X115.798 Y47.256 E121.92605
+G0 F9000 X115.998 Y46.353
+G1 F600 X117.31 Y45.041 E121.98776
+G0 F9000 X117.077 Y44.708
+G1 F600 X115.998 Y45.787 E122.03851
+G0 F9000 X115.998 Y45.222
+G1 F600 X116.828 Y44.391 E122.07758
+G0 F9000 X116.565 Y44.088
+G1 F600 X115.998 Y44.656 E122.10427
+G0 F9000 X115.998 Y44.09
+G1 F600 X116.291 Y43.797 E122.11805
+G1 F1500 E115.61805
+;MESH:NONMESH
+G0 F300 X116.291 Y43.797 Z5.4
+G0 F9000 X116.93 Y43.801
+G0 X115.62 Y42.733
+G0 X115.237 Y43.148
+G0 X108.755 Y43.149
+;TIME_ELAPSED:378.674937
+;LAYER:26
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E122.11805
+G1 F372.1 X108.671 Y43.167 E122.12266
+G1 F379.7 X108.04 Y43.206 E122.15588
+G1 F354 X107.848 Y43.265 E122.16721
+G1 F355.6 X107.798 Y43.514 E122.18146
+G1 F382.8 X107.801 Y46.889 E122.35742
+G1 F355.6 X107.849 Y47.084 E122.36869
+G1 F356.6 X108.094 Y47.147 E122.38285
+G1 F384 X108.618 Y47.177 E122.41012
+G1 F374.4 X108.755 Y47.2 E122.41753
+G1 F1500 E115.91753
+G0 F9000 X109.747 Y47.255
+G0 X110.846 Y48.363
+G0 X112.005 Y48.633
+G0 X112.165 Y49.646
+G1 F1500 E122.41753
+G1 F352.9 X112.351 Y49.568 E122.42893
+G1 F381 X112.77 Y49.476 E122.4514
+G1 F384 X113.124 Y49.384 E122.47041
+G1 F381.6 X113.487 Y49.274 E122.49025
+G1 F379.7 X113.901 Y49.126 E122.51335
+G1 F380.3 X114.48 Y48.88 E122.54636
+G1 F381 X115.049 Y48.59 E122.57982
+G1 F373.8 X115.279 Y48.439 E122.5945
+G1 F360.4 X115.509 Y48.287 E122.60977
+G0 F9000 X116.107 Y47.535
+;TYPE:WALL-INNER
+G1 F600 X116.542 Y47.159 E122.62889
+G1 X116.836 Y46.875 E122.64249
+G1 X117.053 Y46.646 E122.65298
+G1 X117.462 Y46.167 E122.67393
+G1 X117.689 Y45.867 E122.68644
+G1 X117.961 Y45.468 E122.70251
+G1 X118.144 Y45.175 E122.714
+G1 X117.913 Y44.806 E122.72848
+G1 X117.684 Y44.474 E122.74189
+G1 X117.336 Y44.024 E122.76081
+G1 X117.138 Y43.793 E122.77093
+G1 X116.932 Y43.57 E122.78103
+G1 X116.707 Y43.345 E122.79161
+G1 X116.481 Y43.134 E122.80189
+G1 X116.104 Y42.814 E122.81834
+G1 X116.107 Y47.535 E122.97536
+G0 F9000 X115.509 Y48.287
+;TYPE:WALL-OUTER
+G1 F444.4 X115.916 Y48.177 E122.99429
+G1 F598.5 X116.127 Y48.026 E123.00294
+G1 F600 X116.39 Y47.821 E123.01403
+G1 X116.818 Y47.449 E123.0329
+G1 X117.125 Y47.151 E123.04713
+G1 X117.354 Y46.91 E123.05818
+G1 X117.612 Y46.616 E123.07119
+G1 X117.781 Y46.409 E123.08008
+G1 X118.014 Y46.101 E123.09293
+G1 X118.29 Y45.697 E123.1092
+G1 X118.48 Y45.389 E123.12124
+G1 X118.536 Y45.213 E123.12738
+G1 X118.49 Y44.975 E123.13544
+G1 X118.225 Y44.553 E123.15201
+G1 X118.007 Y44.238 E123.16476
+G1 X117.64 Y43.764 E123.18469
+G1 X117.432 Y43.522 E123.19531
+G1 X117.21 Y43.283 E123.20616
+G1 X116.981 Y43.053 E123.21695
+G1 X116.739 Y42.828 E123.22794
+G1 X116.309 Y42.464 E123.24668
+G1 F583.9 X115.99 Y42.242 E123.25996
+G1 F423.3 X115.604 Y42.147 E123.2787
+G1 F378.5 X115.653 Y42.394 E123.29198
+G1 F502.1 X115.703 Y42.641 E123.302
+G1 F600 X115.707 Y47.677 E123.46949
+G1 F598.5 X115.64 Y47.896 E123.47713
+G1 F471.5 X115.545 Y48.207 E123.49089
+G1 F370.9 X115.509 Y48.287 E123.49561
+G1 F1500 E116.99561
+G0 F9000 X115.868 Y47.947
+G0 X115.941 Y42.514
+G1 F1500 E123.49561
+G0 F9000 X115.604 Y42.147
+G1 F351.9 X115.253 Y41.891 E123.52025
+G1 F375.6 X114.936 Y41.698 E123.53997
+G1 F381.6 X114.419 Y41.442 E123.57014
+G1 F379.7 X114.08 Y41.293 E123.5896
+G1 F380.3 X113.826 Y41.194 E123.6039
+G1 F381 X113.355 Y41.031 E123.63001
+G1 F383.4 X112.8 Y40.877 E123.65999
+G1 F382.8 X112.398 Y40.79 E123.68144
+G1 F354 X112.169 Y40.705 E123.69521
+G1 F1500 E117.19521
+G0 F9000 X115.922 Y42.52
+G0 X116.468 Y46.737
+;TYPE:SKIN
+G1 F1500 E123.69521
+G1 F600 X116.774 Y46.416 E123.70996
+G1 X117.102 Y46.045 E123.72643
+G1 X117.403 Y45.646 E123.74305
+G1 X117.725 Y45.166 E123.76228
+G1 X117.386 Y44.678 E123.78204
+G1 X117.068 Y44.267 E123.79932
+G1 X116.877 Y44.043 E123.80911
+G1 X116.673 Y43.821 E123.81914
+G1 X116.465 Y43.611 E123.82897
+G1 X116.468 Y46.737 E123.93294
+G0 F9000 X116.797 Y46.087
+G1 F600 X116.665 Y45.954 E123.93918
+G0 F9000 X117.053 Y45.776
+G1 F600 X116.664 Y45.388 E123.95745
+G0 F9000 X116.664 Y44.822
+G1 F600 X117.292 Y45.45 E123.98699
+G0 F9000 X117.265 Y44.858
+G1 F600 X116.664 Y44.256 E124.01528
+G1 F1500 E117.51528
+G0 F9000 X116.205 Y44.256
+G0 X115.907 Y46.495
+G0 X114.842 Y46.496
+G0 X114.05 Y46.493
+G0 X112.683 Y46.497
+;TYPE:WALL-INNER
+G1 F1500 E124.01528
+G1 F504.2 X112.814 Y46.066 E124.03311
+G1 F687.7 X112.813 Y45.25 E124.05679
+G1 F693.6 X112.812 Y44.434 E124.08027
+G1 F695.7 X112.812 Y44.435 E124.0803
+G1 F490.8 X112.667 Y44.039 E124.09744
+G1 F415.9 X112.514 Y44.239 E124.10953
+G1 F460.7 X112.533 Y44.282 E124.11156
+G1 F554.3 X112.468 Y44.444 E124.11785
+G1 F695.7 X112.468 Y45.971 E124.16165
+G1 F681.8 X112.421 Y46.122 E124.16628
+G1 F500 X112.683 Y46.497 E124.18454
+G0 F9000 X112.916 Y47.261
+G0 X113.184 Y47.544
+;TYPE:WALL-OUTER
+G1 F600 X113.184 Y44.435 E124.28794
+G1 X113.184 Y42.808 E124.34206
+G1 X112.615 Y42.837 E124.36101
+G1 F525.2 X112.32 Y42.911 E124.37257
+G1 F419.6 X112.025 Y42.985 E124.38703
+G1 F466 X112.18 Y43.297 E124.40195
+G1 F600 X112.178 Y43.89 E124.42167
+G1 X112.125 Y43.994 E124.42555
+G1 X111.945 Y44.058 E124.43191
+G1 X111.945 Y44.294 E124.43976
+G1 X112.102 Y44.396 E124.44599
+G1 X112.102 Y45.953 E124.49777
+G1 X111.946 Y46.056 E124.50399
+G1 X111.946 Y46.293 E124.51187
+G1 X112.048 Y46.306 E124.51529
+G1 X112.152 Y46.39 E124.51974
+G1 X112.182 Y46.497 E124.52343
+G1 X112.181 Y47.053 E124.54193
+G1 F466 X112.025 Y47.364 E124.55683
+G1 F419.6 X112.32 Y47.437 E124.57128
+G1 F525.2 X112.615 Y47.511 E124.58284
+G1 F600 X113.184 Y47.544 E124.60179
+G0 F9000 X112.682 Y47.013
+;TYPE:WALL-INNER
+G1 F398 X112.683 Y46.497 E124.62767
+G0 F9000 X112.667 Y44.039
+G1 F385.2 X112.678 Y43.977 E124.63093
+G1 F394.7 X112.682 Y43.337 E124.66328
+G1 F1500 E118.16328
+;MESH:NONMESH
+G0 F300 X112.682 Y43.337 Z5.6
+G0 F9000 X112.4 Y43.144
+G0 X110.9 Y43.226
+G0 X109.745 Y43.089
+G0 X108.75 Y43.144
+;TIME_ELAPSED:391.371282
+;LAYER:27
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E124.66328
+G1 F372.1 X108.666 Y43.162 E124.66789
+G1 F380.3 X108.033 Y43.202 E124.70117
+G1 F355.6 X107.844 Y43.262 E124.7123
+G1 F357.1 X107.794 Y43.509 E124.72638
+G1 F384 X107.795 Y45.202 E124.81436
+G1 F382.8 X107.796 Y46.895 E124.90263
+G1 F356.1 X107.843 Y47.087 E124.91371
+G1 F357.7 X108.089 Y47.151 E124.92789
+G1 F384.6 X108.614 Y47.182 E124.95518
+G1 F374.4 X108.75 Y47.205 E124.96253
+G1 F1500 E118.46253
+G0 F9000 X109.742 Y47.26
+G0 X110.863 Y48.369
+G0 X112.128 Y48.629
+G0 X112.308 Y49.64
+G1 F1500 E124.96253
+G1 F353.5 X112.522 Y49.556 E124.97551
+G1 F381.6 X112.948 Y49.456 E124.99839
+G1 F384.6 X113.398 Y49.329 E125.02266
+G1 F381 X113.785 Y49.197 E125.04407
+G1 F378 X114.158 Y49.053 E125.06519
+G1 F379.1 X114.601 Y48.857 E125.09068
+G1 F380.3 X115.125 Y48.587 E125.12161
+G1 F381 X115.597 Y48.301 E125.15052
+G1 F376.2 X115.903 Y48.086 E125.17036
+G1 F355 X116.262 Y47.781 E125.19684
+G0 F9000 X116.772 Y47.008
+;TYPE:WALL-INNER
+G1 F600 X117.173 Y46.591 E125.21608
+G1 X117.576 Y46.112 E125.2369
+G1 X117.86 Y45.725 E125.25287
+G1 X118.073 Y45.406 E125.26563
+G1 X118.213 Y45.173 E125.27467
+G1 X117.923 Y44.717 E125.29264
+G1 X117.7 Y44.402 E125.30548
+G1 X117.412 Y44.035 E125.32099
+G1 X117.051 Y43.626 E125.33914
+G1 X116.778 Y43.351 E125.35203
+G1 X116.772 Y47.008 E125.47366
+G0 F9000 X116.262 Y47.781
+;TYPE:WALL-OUTER
+G1 F381.6 X116.669 Y47.645 E125.4961
+G1 F504.2 X117.009 Y47.336 E125.51429
+G1 F600 X117.468 Y46.863 E125.53621
+G1 X117.836 Y46.435 E125.55498
+G1 X118.192 Y45.948 E125.57505
+G1 X118.416 Y45.612 E125.58848
+G1 X118.603 Y45.3 E125.60058
+G1 X118.603 Y45.042 E125.60916
+G1 X118.264 Y44.507 E125.63022
+G1 X118.03 Y44.174 E125.64376
+G1 X117.727 Y43.787 E125.66011
+G1 X117.337 Y43.345 E125.67971
+G1 X117.054 Y43.057 E125.69314
+G1 X116.689 Y42.717 E125.70973
+G1 F440.4 X116.276 Y42.569 E125.72961
+G1 X116.349 Y42.981 E125.74858
+G1 F600 X116.376 Y43.042 E125.75079
+G1 F594.1 X116.376 Y43.295 E125.75929
+G1 F581.1 X116.376 Y43.548 E125.76798
+G1 F568.7 X116.376 Y43.801 E125.77686
+G1 F556.8 X116.375 Y44.054 E125.78593
+G1 F545.5 X116.375 Y44.307 E125.79518
+G1 F534.5 X116.375 Y44.56 E125.80463
+G1 F524 X116.374 Y44.813 E125.81426
+G1 F513.9 X116.374 Y45.066 E125.82409
+G1 F504.2 X116.374 Y45.319 E125.8341
+G1 F494.8 X116.374 Y45.572 E125.8443
+G1 F485.8 X116.373 Y45.825 E125.8547
+G1 F477.1 X116.373 Y46.078 E125.86528
+G1 F468.8 X116.373 Y46.331 E125.87605
+G1 F460.7 X116.372 Y46.584 E125.88701
+G1 F452.8 X116.372 Y46.837 E125.89816
+G1 F445.3 X116.372 Y47.09 E125.9095
+G1 F438 X116.372 Y47.343 E125.92103
+G1 F381.6 X116.262 Y47.781 E125.94465
+G1 F1500 E119.44465
+G0 F9000 X116.566 Y47.45
+G0 X116.613 Y42.964
+G1 F1500 E125.94465
+G0 F9000 X116.276 Y42.569
+G1 F356.6 X116.044 Y42.38 E125.96139
+G1 F375 X115.812 Y42.191 E125.97732
+G1 F381 X115.583 Y42.04 E125.99168
+G1 F378.5 X115.094 Y41.747 E126.02174
+G1 F379.7 X114.736 Y41.558 E126.04301
+G1 X114.42 Y41.407 E126.06142
+G1 X114.11 Y41.275 E126.07912
+G1 X113.766 Y41.145 E126.09845
+G1 F382.2 X113.252 Y40.976 E126.1267
+G1 F384 X112.732 Y40.841 E126.15462
+G1 F381.6 X112.55 Y40.801 E126.16437
+G1 F355 X112.308 Y40.708 E126.17894
+G1 F1500 E119.67894
+G0 F9000 X116.594 Y42.969
+G0 X117.185 Y45.949
+;TYPE:SKIN
+G1 F1500 E126.17894
+G1 F481 X117.514 Y45.505 E126.20187
+G1 X117.733 Y45.18 E126.21813
+G1 X117.589 Y44.955 E126.22921
+G1 X117.382 Y44.662 E126.2441
+G1 X117.184 Y44.407 E126.25749
+G1 X117.185 Y45.949 E126.32147
+G1 F1500 E119.82147
+G0 F9000 X117.424 Y46.141
+G0 X116.59 Y47.273
+G0 X115.507 Y47.089
+G0 X114.066 Y47.271
+G0 X113.2 Y47.55
+;TYPE:WALL-OUTER
+G1 F1500 E126.32147
+G1 F600 X113.2 Y42.8 E126.47946
+G1 X112.63 Y42.83 E126.49844
+G1 F525.2 X112.333 Y42.904 E126.51008
+G1 F420.3 X112.036 Y42.978 E126.52461
+G1 F466.9 X112.195 Y43.29 E126.53957
+G1 F600 X112.194 Y43.783 E126.55597
+G1 X112.143 Y43.885 E126.55976
+G1 X111.96 Y43.95 E126.56622
+G1 X111.961 Y44.1 E126.57121
+G1 X112.118 Y44.222 E126.57783
+G1 X112.115 Y46.096 E126.64016
+G1 X112.01 Y46.239 E126.64606
+G1 X111.962 Y46.249 E126.64769
+G1 X111.961 Y46.399 E126.65268
+G1 X112.143 Y46.464 E126.6591
+G1 X112.196 Y46.602 E126.66402
+G1 X112.196 Y47.059 E126.67922
+G1 F466 X112.041 Y47.37 E126.6941
+G1 F419.6 X112.335 Y47.443 E126.70851
+G1 F525.2 X112.629 Y47.517 E126.72003
+G1 F600 X113.2 Y47.55 E126.73905
+G0 F9000 X112.698 Y47.018
+;TYPE:WALL-INNER
+G1 F397.4 X112.698 Y46.603 E126.75989
+G1 F367.5 X112.649 Y46.23 E126.78032
+G1 F346.8 X112.659 Y46.061 E126.79006
+G1 F351.9 X112.659 Y44.289 E126.89055
+G1 F346.8 X112.649 Y44.12 E126.90029
+G1 F365.3 X112.694 Y43.87 E126.91417
+G1 F394.7 X112.698 Y43.33 E126.94147
+G1 F1500 E120.44147
+;MESH:NONMESH
+G0 F300 X112.698 Y43.33 Z5.8
+G0 F9000 X112.395 Y43.129
+G0 X110.915 Y43.208
+G0 X109.741 Y43.084
+G0 X108.745 Y43.139
+;TIME_ELAPSED:402.707650
+;LAYER:28
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E126.94147
+G1 F372.1 X108.661 Y43.157 E126.94608
+G1 F379.7 X108.029 Y43.197 E126.97935
+G1 F354 X107.837 Y43.257 E126.9907
+G1 F355.6 X107.788 Y43.505 E127.00488
+G1 F382.8 X107.791 Y46.899 E127.18183
+G1 F356.1 X107.838 Y47.092 E127.19296
+G1 F357.7 X108.084 Y47.156 E127.20715
+G1 F384.6 X108.609 Y47.187 E127.23443
+G1 F374.4 X108.745 Y47.21 E127.24178
+G1 F1500 E120.74178
+G0 F9000 X108.799 Y46.219
+G0 X110.877 Y41.977
+G0 X112.27 Y41.731
+G0 X112.451 Y40.719
+G1 F1500 E127.24178
+G1 F357.1 X112.687 Y40.814 E127.256
+G1 F383.4 X113.276 Y40.963 E127.28762
+G1 F381.6 X113.756 Y41.117 E127.31399
+G1 F382.8 X114.207 Y41.289 E127.33915
+G1 X114.467 Y41.4 E127.35389
+G1 F384 X114.821 Y41.567 E127.37423
+G1 F382.8 X115.091 Y41.71 E127.39016
+G1 F381.6 X115.452 Y41.917 E127.41193
+G1 F382.2 X115.855 Y42.178 E127.437
+G1 F381.6 X116.119 Y42.367 E127.45398
+G1 F380.3 X116.447 Y42.621 E127.47575
+G1 F374.4 X116.641 Y42.797 E127.48971
+G1 F365.9 X116.835 Y42.973 E127.504
+G0 F9000 X117.263 Y43.551
+G0 X117.667 Y45.689
+G0 X117.531 Y46.097
+;TYPE:WALL-INNER
+G1 F409.6 X117.793 Y45.75 E127.52518
+G1 X118.173 Y45.177 E127.55868
+G1 X117.919 Y44.783 E127.58153
+G1 X117.532 Y44.253 E127.6135
+G1 X117.531 Y46.097 E127.70335
+G1 F1500 E121.20335
+G0 F9000 X117.667 Y45.689
+G0 X117.256 Y46.789
+G0 X112.268 Y49.822
+;TYPE:WALL-OUTER
+G1 F1500 E127.70335
+G1 F663 X112.576 Y49.803 E127.71264
+G1 F685.7 X112.617 Y49.725 E127.71521
+G1 F722.9 X112.867 Y49.658 E127.72235
+G1 F740.7 X113.117 Y49.59 E127.72933
+G1 F759.5 X113.367 Y49.522 E127.73614
+G1 F769.2 X113.714 Y49.412 E127.74558
+G1 F766.8 X114.062 Y49.287 E127.75521
+G1 F761.9 X114.366 Y49.165 E127.76379
+G1 F759.5 X114.66 Y49.034 E127.77224
+G1 F761.9 X115.079 Y48.825 E127.78451
+G1 X115.602 Y48.524 E127.80031
+G1 F759.5 X115.879 Y48.344 E127.80899
+G1 X116.39 Y47.98 E127.82548
+G1 F750 X116.834 Y47.604 E127.84096
+G1 F714.3 X117.032 Y47.407 E127.84876
+G1 F661.2 X117.276 Y47.148 E127.8595
+G1 F620.2 X117.372 Y47.086 E127.86318
+G1 F603 X117.425 Y47.112 E127.86513
+G1 X117.796 Y46.721 E127.88297
+G1 F601.5 X117.755 Y46.658 E127.88547
+G1 F600 X117.796 Y46.558 E127.88906
+G1 X118.135 Y46.124 E127.90738
+G1 X118.628 Y45.388 E127.93684
+G1 X118.668 Y45.106 E127.94631
+G1 X118.629 Y44.974 E127.95089
+G1 X118.32 Y44.495 E127.96985
+G1 X117.995 Y44.043 E127.98837
+G1 X117.797 Y43.794 E127.99895
+G1 X117.755 Y43.694 E128.00256
+G1 X117.792 Y43.635 E128.00487
+G1 X117.422 Y43.237 E128.02295
+G1 F515 X117.364 Y43.266 E128.02546
+G1 F424.8 X117.1 Y43.12 E128.03963
+G1 F380.3 X116.835 Y42.973 E128.05553
+G1 F451.1 X116.987 Y43.445 E128.07747
+G1 F600 X117.038 Y43.564 E128.08177
+G1 F601.5 X117.033 Y46.747 E128.18738
+G1 F626.6 X116.922 Y46.986 E128.19577
+G1 F689.7 X116.642 Y47.338 E128.20878
+G1 F745.3 X116.262 Y47.674 E128.22236
+G1 F759.5 X116.025 Y47.853 E128.23017
+G1 F764.3 X115.541 Y48.193 E128.24561
+G1 F766.8 X114.926 Y48.55 E128.26412
+G1 F764.3 X114.379 Y48.816 E128.28
+G1 F766.8 X114.036 Y48.962 E128.2897
+G1 F769.2 X113.604 Y49.119 E128.30163
+G1 X113.243 Y49.233 E128.31145
+G1 F757.1 X112.607 Y49.395 E128.32875
+G1 F701.8 X112.269 Y49.48 E128.33866
+G1 F663 X112.268 Y49.822 E128.34895
+G1 F1500 E121.84895
+G0 F9000 X112.424 Y47.299
+G0 X113.217 Y47.555
+G1 F1500 E128.34895
+G1 F600 X113.218 Y42.796 E128.50724
+G1 X112.645 Y42.825 E128.52632
+G1 F525.2 X112.351 Y42.899 E128.53784
+G1 F419.6 X112.056 Y42.973 E128.5523
+G1 F466 X112.211 Y43.284 E128.56719
+G1 F600 X112.21 Y43.71 E128.58135
+G1 X112.161 Y43.81 E128.58506
+G1 X111.976 Y43.877 E128.5916
+G1 X111.976 Y43.985 E128.59519
+G1 X112.13 Y44.106 E128.60171
+G1 X112.13 Y46.243 E128.67279
+G1 X111.977 Y46.365 E128.67929
+G1 X111.977 Y46.474 E128.68292
+G1 X112.161 Y46.54 E128.68942
+G1 X112.213 Y46.676 E128.69426
+G1 X112.212 Y47.065 E128.7072
+G1 F466 X112.057 Y47.376 E128.72208
+G1 F419.6 X112.351 Y47.45 E128.7365
+G1 F525.2 X112.646 Y47.524 E128.74806
+G1 F600 X113.217 Y47.555 E128.76708
+G0 F9000 X112.714 Y47.025
+;TYPE:WALL-INNER
+G1 F396.7 X112.715 Y46.677 E128.78458
+G1 F369.2 X112.669 Y46.315 E128.80431
+G1 F347.8 X112.675 Y46.174 E128.8124
+G1 F350.9 X112.676 Y44.176 E128.92604
+G1 F369.8 X112.711 Y43.797 E128.94658
+G1 F393.4 X112.715 Y43.326 E128.97047
+G1 F1500 E122.47047
+;MESH:NONMESH
+G0 F300 X112.715 Y43.326 Z6
+G0 F9000 X112.411 Y43.124
+G0 X110.931 Y43.203
+G0 X109.736 Y43.079
+G0 X108.74 Y43.134
+;TIME_ELAPSED:412.482912
+;LAYER:29
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E128.97047
+G1 F372.7 X108.656 Y43.152 E128.97507
+G1 F379.7 X108.023 Y43.192 E129.0084
+G1 F354.5 X107.832 Y43.252 E129.01967
+G1 F356.6 X107.783 Y43.5 E129.03382
+G1 F384 X107.784 Y45.202 E129.12227
+G1 F382.8 X107.785 Y46.904 E129.211
+G1 F356.1 X107.832 Y47.097 E129.22214
+G1 F357.7 X108.078 Y47.161 E129.23632
+G1 F384.6 X108.604 Y47.192 E129.26366
+G1 F374.4 X108.74 Y47.215 E129.27101
+G1 F1500 E122.77101
+G0 F9000 X109.732 Y47.271
+G0 X110.895 Y48.382
+G0 X111.8 Y48.844
+G0 X112.592 Y49.621
+G1 F1500 E129.27101
+G1 F352.4 X112.765 Y49.532 E129.28203
+G1 F381 X113.235 Y49.413 E129.30742
+G1 F382.8 X113.764 Y49.248 E129.33631
+G1 F381 X114.137 Y49.109 E129.35717
+G1 F382.8 X114.475 Y48.967 E129.37628
+G1 F383.4 X114.966 Y48.736 E129.40452
+G1 X115.435 Y48.476 E129.43244
+G1 F384 X115.885 Y48.184 E129.46031
+G1 F382.8 X116.214 Y47.952 E129.4813
+G1 X116.58 Y47.665 E129.50555
+G1 F379.7 X116.846 Y47.429 E129.52424
+G1 F372.1 X117.112 Y47.192 E129.54335
+G1 F1500 E123.04335
+G0 F9000 X116.324 Y46.582
+G0 X114.097 Y47.191
+G0 X113.233 Y47.564
+G1 F1500 E129.54335
+G1 F600 X113.233 Y42.787 E129.70223
+G1 X112.663 Y42.819 E129.72122
+G1 F525.2 X112.368 Y42.892 E129.73277
+G1 F420.3 X112.072 Y42.966 E129.74725
+G1 F466.9 X112.229 Y43.278 E129.76218
+G1 F600 X112.226 Y43.664 E129.77502
+G1 X112.177 Y43.763 E129.77869
+G1 X111.992 Y43.83 E129.78524
+G1 X111.992 Y43.917 E129.78813
+G1 X112.146 Y44.043 E129.79475
+G1 X112.147 Y44.901 E129.82329
+G1 X112.067 Y45.029 E129.82831
+G1 X111.992 Y45.056 E129.83096
+G1 X111.992 Y45.293 E129.83884
+G1 X112.067 Y45.32 E129.84149
+G1 X112.149 Y45.423 E129.84587
+G1 X112.146 Y46.307 E129.87527
+G1 X111.993 Y46.433 E129.88186
+G1 X111.993 Y46.518 E129.88469
+G1 X112.177 Y46.585 E129.8912
+G1 X112.227 Y46.719 E129.89596
+G1 X112.227 Y47.07 E129.90764
+G1 F466 X112.073 Y47.382 E129.92254
+G1 F419.6 X112.367 Y47.456 E129.93695
+G1 F525.2 X112.662 Y47.531 E129.94852
+G1 F600 X113.233 Y47.564 E129.96754
+G0 F9000 X112.73 Y47.032
+;TYPE:WALL-INNER
+G1 F396 X112.73 Y46.719 E129.98332
+G1 F368.7 X112.685 Y46.365 E130.00263
+G1 F346.3 X112.688 Y45.924 E130.02805
+G1 F349.3 X112.691 Y45.483 E130.05324
+G1 F335.2 X112.659 Y45.175 E130.07167
+G1 F332.9 X112.693 Y44.957 E130.0849
+G1 F345.3 X112.685 Y43.985 E130.14107
+G1 F366.4 X112.726 Y43.75 E130.15407
+G1 F393.4 X112.73 Y43.318 E130.17598
+G1 F1500 E123.67598
+G0 F9000 X113.032 Y46.13
+G0 X114.097 Y46.129
+G0 X116.844 Y45.92
+G0 X117.947 Y46.586
+;TYPE:WALL-OUTER
+G1 F1500 E130.17598
+G1 F600 X117.982 Y46.399 E130.18231
+G1 X118.306 Y45.96 E130.20045
+G1 X118.49 Y45.689 E130.21135
+G1 X118.733 Y45.291 E130.22686
+G1 X118.702 Y45.022 E130.23586
+G1 X118.554 Y44.762 E130.24582
+G1 X118.291 Y44.368 E130.26157
+G1 X117.954 Y43.916 E130.28032
+G1 X117.946 Y43.762 E130.28545
+G1 X117.598 Y43.952 E130.29864
+G1 X117.707 Y44.329 E130.31169
+G1 X117.708 Y46.06 E130.36927
+G1 X117.606 Y46.372 E130.38018
+G1 X117.947 Y46.586 E130.39357
+G0 F9000 X117.913 Y46.129
+G0 X118.288 Y45.178
+;TYPE:WALL-INNER
+G1 F394.7 X118.249 Y45.243 E130.39741
+G1 X118.174 Y45.243 E130.4012
+G1 X118.136 Y45.178 E130.405
+G1 X118.175 Y45.113 E130.40884
+G1 X118.249 Y45.113 E130.41258
+G1 F1500 E123.91258
+G0 F9000 X117.86 Y44.129
+G0 X117.112 Y43.156
+;TYPE:WALL-OUTER
+G1 F1500 E130.41258
+G1 F371.5 X116.92 Y42.983 E130.42646
+G1 F378.5 X116.727 Y42.809 E130.44016
+G1 F382.2 X116.476 Y42.601 E130.45718
+G1 F383.4 X116.088 Y42.303 E130.48265
+G1 F382.8 X115.773 Y42.088 E130.50253
+G1 F382.2 X115.281 Y41.788 E130.53262
+G1 F384 X114.978 Y41.621 E130.5506
+G1 X114.617 Y41.444 E130.57149
+G1 F384.6 X114.056 Y41.206 E130.60311
+G1 F385.9 X113.529 Y41.026 E130.63192
+G1 F386.5 X113.032 Y40.881 E130.65865
+G1 F384.6 X112.842 Y40.839 E130.66874
+G1 F351.4 X112.61 Y40.735 E130.68318
+G1 F1500 E124.18318
+;MESH:NONMESH
+G0 F300 X112.61 Y40.735 Z6.2
+G0 F9000 X111.562 Y40.737
+G0 X109.73 Y43.073
+G0 X108.734 Y43.129
+;TIME_ELAPSED:421.944920
+;LAYER:30
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E130.68318
+G1 F372.1 X108.651 Y43.147 E130.68774
+G1 F379.1 X108.019 Y43.186 E130.72107
+G1 F353.5 X107.829 Y43.244 E130.73228
+G1 F356.6 X107.779 Y43.495 E130.7466
+G1 F385.2 X107.779 Y44.633 E130.80556
+G1 F384 X107.779 Y45.771 E130.8647
+G1 F382.8 X107.78 Y46.909 E130.92403
+G1 F356.1 X107.827 Y47.102 E130.93516
+G1 F357.7 X108.073 Y47.166 E130.94934
+G1 F384.6 X108.599 Y47.197 E130.97668
+G1 F375 X108.735 Y47.22 E130.98402
+G1 F1500 E124.48402
+G0 F9000 X109.726 Y47.275
+G0 X111.703 Y49.596
+G0 X112.737 Y49.597
+G1 F1500 E130.98402
+G1 F349.9 X112.928 Y49.502 E130.99619
+G1 F379.1 X113.275 Y49.406 E131.01514
+G1 F382.8 X113.623 Y49.309 E131.03397
+G1 F384 X114.114 Y49.136 E131.06103
+G1 F383.4 X114.407 Y49.017 E131.07749
+G1 X114.836 Y48.821 E131.10204
+G1 F381.6 X115.459 Y48.488 E131.13899
+G1 F381 X115.853 Y48.239 E131.1634
+G1 F382.2 X116.112 Y48.06 E131.17984
+G1 F382.8 X116.409 Y47.837 E131.19921
+G1 F383.4 X116.803 Y47.515 E131.22569
+G1 F381 X116.946 Y47.384 E131.23585
+G1 F1500 E124.73585
+G0 F9000 X116.149 Y46.784
+G0 X114.112 Y47.343
+G0 X112.723 Y46.561
+;TYPE:WALL-INNER
+G1 F1500 E131.23585
+G1 F483.9 X112.877 Y46.163 E131.25345
+G1 F701.8 X112.877 Y45.564 E131.27049
+G1 F654 X112.852 Y45.175 E131.28238
+G1 F650.4 X112.875 Y44.914 E131.29042
+G1 F697.7 X112.877 Y44.202 E131.31079
+G1 F576.9 X112.712 Y43.829 E131.32489
+G1 F459.8 X112.625 Y43.952 E131.33143
+G1 F535.7 X112.535 Y44.202 E131.34133
+G1 F697.7 X112.532 Y44.885 E131.36087
+G1 F650.4 X112.484 Y45.079 E131.367
+G1 F610.7 X112.413 Y45.175 E131.3709
+G1 X112.484 Y45.271 E131.3748
+G1 F654 X112.536 Y45.564 E131.38388
+G1 F701.8 X112.536 Y46.163 E131.40092
+G1 F544.2 X112.617 Y46.398 E131.41003
+G1 F403.4 X112.723 Y46.561 E131.41965
+G0 F9000 X112.98 Y47.286
+G0 X113.244 Y47.569
+;TYPE:WALL-OUTER
+G1 F600 X113.248 Y44.202 E131.53164
+G1 X113.248 Y42.781 E131.5789
+G1 X112.681 Y42.812 E131.59779
+G1 F525.2 X112.385 Y42.886 E131.60938
+G1 F420.3 X112.088 Y42.96 E131.62392
+G1 F466.9 X112.244 Y43.273 E131.63886
+G1 F600 X112.241 Y43.647 E131.6513
+G1 F601.5 X112.192 Y43.745 E131.65494
+G1 X112.007 Y43.812 E131.66146
+G1 X112.007 Y43.89 E131.66405
+G1 X112.161 Y44.016 E131.67065
+G1 X112.163 Y44.821 E131.69736
+G1 F600 X112.109 Y44.926 E131.70129
+G1 X112.008 Y44.97 E131.70495
+G1 X112.008 Y45.38 E131.71859
+G1 X112.109 Y45.423 E131.72224
+G1 X112.165 Y45.564 E131.72729
+G1 X112.162 Y46.333 E131.75286
+G1 X112.008 Y46.459 E131.75948
+G1 X112.008 Y46.537 E131.76208
+G1 X112.193 Y46.603 E131.76861
+G1 X112.243 Y46.737 E131.77337
+G1 X112.244 Y47.076 E131.78464
+G1 F466 X112.089 Y47.388 E131.79956
+G1 F419.6 X112.384 Y47.462 E131.81403
+G1 F525.2 X112.679 Y47.536 E131.82558
+G1 F600 X113.244 Y47.569 E131.84441
+G0 F9000 X112.745 Y47.038
+;TYPE:WALL-INNER
+G1 F396 X112.745 Y46.737 E131.85957
+G1 F382.2 X112.723 Y46.561 E131.86884
+G0 F9000 X112.729 Y43.805
+G1 F383.4 X112.741 Y43.733 E131.87264
+G1 F394.1 X112.746 Y43.311 E131.89401
+G1 F1500 E125.39401
+G0 F9000 X113.047 Y44.161
+G0 X114.112 Y44.16
+G0 X117.21 Y44.701
+G0 X118.036 Y44.16
+;TYPE:WALL-OUTER
+G1 F1500 E131.89401
+G1 F365.9 X118.191 Y44.387 E131.909
+G0 F9000 X118.563 Y45.282
+G0 X118.544 Y45.717
+G1 F629.9 X118.76 Y45.333 E131.92296
+G1 F595.5 X118.784 Y45.17 E131.92848
+G1 F603 X118.735 Y44.971 E131.93526
+G1 F638.3 X118.55 Y44.64 E131.94712
+G1 F468.8 X118.191 Y44.387 E131.96581
+G1 F443.6 X118.238 Y44.737 E131.9817
+G1 F620.2 X118.23 Y44.795 E131.98358
+G1 F640 X118.366 Y45.114 E131.9944
+G1 F603 X118.37 Y45.215 E131.99774
+G1 F629.9 X118.226 Y45.554 E132.00941
+G1 F583.9 X118.231 Y45.68 E132.01372
+G1 F424 X118.192 Y45.96 E132.02702
+G1 F466 X118.544 Y45.717 E132.04534
+G0 F9000 X118.192 Y45.96
+G1 F365.9 X118.035 Y46.193 E132.06067
+G1 F1500 E125.56067
+G0 F9000 X117.258 Y45.585
+G0 X116.276 Y43.679
+G0 X116.949 Y42.965
+G1 F1500 E132.06067
+G1 F382.8 X116.618 Y42.677 E132.08354
+G1 X116.3 Y42.426 E132.10466
+G1 F381.6 X115.839 Y42.101 E132.13416
+G1 F384 X115.333 Y41.789 E132.16506
+G1 F385.2 X114.961 Y41.592 E132.18686
+G1 F384 X114.468 Y41.357 E132.21524
+G1 F382.2 X113.808 Y41.104 E132.25215
+G1 F382.8 X113.322 Y40.949 E132.27875
+G1 F383.4 X112.975 Y40.861 E132.29738
+G1 F351.4 X112.738 Y40.748 E132.31229
+G1 F1500 E125.81229
+;MESH:NONMESH
+G0 F300 X112.738 Y40.748 Z6.4
+G0 F9000 X111.704 Y40.749
+G0 X109.725 Y43.069
+G0 X108.729 Y43.124
+;TIME_ELAPSED:431.553730
+;LAYER:31
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E132.31229
+G1 F372.1 X108.645 Y43.142 E132.3169
+G1 F379.7 X108.013 Y43.182 E132.35018
+G1 F354 X107.821 Y43.242 E132.36152
+G1 F355.6 X107.772 Y43.49 E132.37571
+G1 F382.8 X107.775 Y46.914 E132.55422
+G1 F356.1 X107.822 Y47.107 E132.56535
+G1 F357.7 X108.068 Y47.171 E132.57953
+G1 F384.6 X108.593 Y47.202 E132.60682
+G1 F374.4 X108.729 Y47.225 E132.61417
+G1 F1500 E126.11417
+G0 F9000 X109.721 Y47.28
+G0 X111.843 Y49.791
+G0 X112.696 Y49.791
+G1 F1500 E132.61417
+G1 F636.6 X113.015 Y49.744 E132.62428
+G1 F633.2 X113.149 Y49.713 E132.62862
+G1 F545.5 X113.334 Y49.589 E132.63676
+G1 F424.8 X113.475 Y49.364 E132.64924
+G1 X113.201 Y49.376 E132.66212
+G1 F545.5 X113.065 Y49.344 E132.66724
+G1 F636.6 X112.695 Y49.428 E132.67913
+G1 F640 X112.696 Y49.791 E132.69045
+G0 F9000 X113.475 Y49.364
+G1 F382.2 X113.996 Y49.191 E132.71911
+G1 F384.6 X114.379 Y49.04 E132.74048
+G1 X114.93 Y48.792 E132.77183
+G1 F385.2 X115.343 Y48.573 E132.79604
+G1 F386.5 X115.677 Y48.376 E132.81607
+G1 F385.2 X116.059 Y48.126 E132.83972
+G1 X116.368 Y47.901 E132.85952
+G1 F382.2 X116.583 Y47.731 E132.87383
+G1 F380.3 X116.888 Y47.474 E132.89476
+G1 F1500 E126.39476
+G0 F9000 X116.167 Y46.807
+G0 X114.128 Y47.349
+G0 X113.264 Y47.574
+G1 F1500 E132.89476
+G1 F600 X113.264 Y42.775 E133.05437
+G1 X112.696 Y42.807 E133.07329
+G1 F525.2 X112.4 Y42.88 E133.08488
+G1 F420.3 X112.104 Y42.954 E133.09936
+G1 F466.9 X112.259 Y43.267 E133.11429
+G1 F600 X112.256 Y43.656 E133.12723
+G1 X112.208 Y43.755 E133.13089
+G1 X112.024 Y43.821 E133.13739
+G1 X112.024 Y43.9 E133.14002
+G1 X112.179 Y44.026 E133.14666
+G1 X112.179 Y44.853 E133.17417
+G1 X112.117 Y44.966 E133.17846
+G1 X112.025 Y45 E133.18172
+G1 X112.025 Y45.35 E133.19336
+G1 X112.116 Y45.384 E133.19659
+G1 X112.18 Y45.532 E133.20195
+G1 X112.178 Y46.324 E133.2283
+G1 X112.024 Y46.45 E133.23491
+G1 X112.024 Y46.528 E133.23751
+G1 X112.208 Y46.594 E133.24401
+G1 X112.258 Y46.728 E133.24877
+G1 X112.258 Y47.082 E133.26054
+G1 F466 X112.105 Y47.394 E133.27542
+G1 F419.6 X112.399 Y47.468 E133.28984
+G1 F525.2 X112.694 Y47.542 E133.3014
+G1 F600 X113.264 Y47.574 E133.32039
+G0 F9000 X112.761 Y47.043
+;TYPE:WALL-INNER
+G1 F396 X112.761 Y46.728 E133.33626
+G1 F369.2 X112.717 Y46.377 E133.35538
+G1 F347.3 X112.719 Y45.954 E133.37968
+G1 F349.9 X112.722 Y45.531 E133.40381
+G1 F330.1 X112.679 Y45.176 E133.42543
+G1 F328.3 X112.718 Y44.946 E133.43961
+G1 F346.3 X112.717 Y43.971 E133.49579
+G1 F367 X112.757 Y43.742 E133.50843
+G1 F393.4 X112.761 Y43.306 E133.53055
+G1 F1500 E127.03055
+G0 F9000 X113.063 Y44.213
+G0 X114.128 Y44.212
+G0 X117.348 Y44.811
+G0 X118.127 Y44.212
+;TYPE:WALL-OUTER
+G1 F1500 E133.53055
+G1 F379.1 X118.236 Y44.355 E133.54001
+G1 X118.451 Y44.676 E133.56035
+G1 F375.6 X118.667 Y44.998 E133.58095
+G1 F366.4 X118.688 Y45.229 E133.59358
+G1 F368.7 X118.652 Y45.385 E133.60225
+G1 F381 X118.237 Y45.991 E133.64072
+G1 F381.6 X118.127 Y46.137 E133.65028
+G1 F1500 E127.15028
+G0 F9000 X117.435 Y45.425
+G0 X116.232 Y43.603
+G0 X116.887 Y42.875
+G1 F1500 E133.65028
+G1 F382.8 X116.791 Y42.789 E133.657
+G1 F384 X116.342 Y42.43 E133.68688
+G1 F385.2 X115.886 Y42.108 E133.7158
+G1 F386.5 X115.609 Y41.933 E133.73272
+G1 X115.035 Y41.607 E133.7668
+G1 F387.1 X114.46 Y41.342 E133.79944
+G1 F385.2 X114.091 Y41.193 E133.82006
+G1 F379.7 X113.795 Y41.088 E133.83656
+G1 F372.7 X113.498 Y40.983 E133.85343
+G0 F9000 X112.7 Y40.923
+G1 F643.4 X113.09 Y41.009 E133.86582
+G1 F567.4 X113.19 Y40.986 E133.86942
+G1 F428.6 X113.498 Y40.983 E133.88377
+G1 X113.322 Y40.724 E133.89835
+G1 F567.4 X113.175 Y40.643 E133.90425
+G1 F638.3 X113.015 Y40.606 E133.90939
+G1 F641.7 X112.696 Y40.566 E133.91938
+G1 F646.9 X112.7 Y40.923 E133.9304
+G1 F1500 E127.4304
+;MESH:NONMESH
+G0 F300 X112.7 Y40.923 Z6.6
+G0 F9000 X112.076 Y41.546
+G0 X110.924 Y41.958
+G0 X109.72 Y43.064
+G0 X108.724 Y43.119
+;TIME_ELAPSED:440.825221
+;LAYER:32
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E133.9304
+G1 F372.1 X108.64 Y43.137 E133.935
+G1 F379.1 X108.009 Y43.176 E133.96828
+G1 F353.5 X107.817 Y43.235 E133.97962
+G1 F355.6 X107.767 Y43.485 E133.99393
+G1 F382.8 X107.77 Y46.919 E134.17296
+G1 F355 X107.817 Y47.114 E134.18424
+G1 F356.1 X108.063 Y47.177 E134.19847
+G1 F384 X108.587 Y47.207 E134.22575
+G1 F374.4 X108.724 Y47.23 E134.23315
+G1 F1500 E127.73315
+G0 F9000 X109.716 Y47.285
+G0 X111.046 Y46.377
+G0 X112.074 Y46.458
+G1 F1500 E134.23315
+G1 F612.2 X112.152 Y46.235 E134.24085
+G1 F766.8 X112.153 Y45.328 E134.26446
+G1 F685.7 X112.115 Y45.175 E134.26904
+G1 F683.8 X112.152 Y45.049 E134.27288
+G1 F766.8 X112.153 Y44.142 E134.29648
+G1 F615.4 X112.075 Y43.892 E134.30497
+G0 F9000 X111.975 Y42.937
+G1 F375.6 X112.119 Y42.945 E134.31264
+G1 F385.9 X112.838 Y42.906 E134.34988
+G1 F352.4 X113.111 Y42.95 E134.36554
+G1 F351.4 X113.168 Y43.217 E134.38104
+G1 F382.8 X113.166 Y47.186 E134.58797
+G1 F350.9 X113.11 Y47.401 E134.6006
+G1 F349.9 X112.891 Y47.446 E134.61336
+G1 F379.7 X112.066 Y47.401 E134.65677
+G1 F372.7 X111.975 Y47.412 E134.66168
+G1 F1500 E128.16168
+G0 F9000 X112.845 Y49.779
+G1 F1500 E134.66168
+G1 F645.2 X113.51 Y49.612 E134.68289
+G1 F640 X113.815 Y49.521 E134.69282
+G1 F551.7 X113.983 Y49.396 E134.70039
+G1 F419.6 X114.12 Y49.164 E134.71321
+G1 X113.841 Y49.183 E134.72651
+G1 F551.7 X113.707 Y49.162 E134.73141
+G1 F643.4 X113.356 Y49.269 E134.74279
+G1 F648.6 X112.843 Y49.396 E134.75905
+G1 X112.845 Y49.779 E134.77084
+G0 F9000 X114.12 Y49.164
+G1 F375 X114.199 Y49.123 E134.77557
+G1 F382.8 X114.461 Y49.015 E134.79035
+G1 F385.2 X115.014 Y48.76 E134.82189
+G1 F384 X115.502 Y48.497 E134.8507
+G1 F382.2 X115.98 Y48.198 E134.88014
+G1 F383.4 X116.496 Y47.828 E134.91319
+G1 F384 X116.885 Y47.507 E134.9394
+G1 F1500 E128.4394
+G0 F9000 X118.167 Y46.134
+G1 F1500 E134.9394
+G1 F379.7 X118.441 Y45.758 E134.96385
+G1 F375.6 X118.724 Y45.319 E134.9916
+G1 F375 X118.714 Y45.011 E135.008
+G1 F380.3 X118.374 Y44.493 E135.04051
+G1 X118.168 Y44.216 E135.05863
+G1 F1500 E128.55863
+G0 F9000 X116.882 Y42.842
+G1 F1500 E135.05863
+G1 F382.2 X116.712 Y42.696 E135.07033
+G1 F383.4 X116.41 Y42.457 E135.09037
+G1 X116.14 Y42.26 E135.10777
+G1 F382.8 X115.677 Y41.959 E135.13656
+G1 X115.186 Y41.679 E135.16603
+G1 F386.5 X114.831 Y41.499 E135.18658
+G1 X114.462 Y41.334 E135.20746
+G1 F380.3 X114.145 Y41.208 E135.22535
+G1 F420.3 X114.013 Y40.985 E135.23766
+G1 F544.2 X113.844 Y40.835 E135.24594
+G1 F640 X113.564 Y40.751 E135.25506
+G1 F645.2 X112.843 Y40.573 E135.27803
+G1 F650.4 X112.842 Y40.952 E135.28966
+G1 F646.9 X113.512 Y41.125 E135.31101
+G1 F640 X113.734 Y41.194 E135.31825
+G1 F544.2 X113.887 Y41.179 E135.32389
+G1 F420.3 X114.145 Y41.208 E135.33622
+G1 F1500 E128.83622
+;MESH:NONMESH
+G0 F300 X114.145 Y41.208 Z6.8
+G0 F9000 X108.719 Y43.114
+;TIME_ELAPSED:448.999470
+;LAYER:33
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E135.33622
+G1 F372.7 X108.635 Y43.132 E135.34082
+G1 F379.1 X108.003 Y43.171 E135.37415
+G1 F353.5 X107.813 Y43.229 E135.38536
+G1 F356.1 X107.762 Y43.48 E135.39972
+G1 F383.4 X107.76 Y44.753 E135.46598
+G1 F356.6 X107.715 Y44.941 E135.4768
+G1 F334.3 X107.715 Y45.409 E135.50474
+G1 F357.1 X107.761 Y45.651 E135.5185
+G1 F382.8 X107.764 Y46.924 E135.58487
+G1 F355.6 X107.812 Y47.119 E135.59614
+G1 F356.6 X108.057 Y47.182 E135.6103
+G1 F384 X108.582 Y47.212 E135.63763
+G1 F374.4 X108.719 Y47.235 E135.64503
+G1 F1500 E129.14503
+G0 F9000 X109.711 Y47.291
+G0 X111.063 Y46.383
+G0 X112.09 Y46.395
+G1 F1500 E135.64503
+G1 F610.7 X112.167 Y46.142 E135.65367
+G1 F761.9 X112.168 Y44.238 E135.70354
+G1 F612.2 X112.09 Y43.955 E135.71311
+G0 F9000 X111.991 Y42.931
+G1 F375 X112.136 Y42.939 E135.72084
+G1 F384.6 X112.854 Y42.899 E135.75815
+G1 F351.9 X113.127 Y42.943 E135.77383
+G1 F351.4 X113.184 Y43.211 E135.78939
+G1 F383.4 X113.182 Y47.192 E135.99661
+G1 F351.4 X113.125 Y47.407 E136.00924
+G1 F349.9 X112.907 Y47.452 E136.02194
+G1 F379.7 X112.082 Y47.407 E136.06536
+G1 F372.7 X111.991 Y47.418 E136.07027
+G1 F1500 E129.57027
+G0 F9000 X113.204 Y49.678
+G1 F1500 E136.07027
+G1 F657.5 X113.605 Y49.575 E136.08283
+G1 F652.2 X113.957 Y49.468 E136.09409
+G1 F643.4 X114.289 Y49.356 E136.10496
+G1 F638.3 X114.666 Y49.211 E136.11759
+G1 F634.9 X114.753 Y49.08 E136.12253
+G1 F633.2 X114.913 Y48.956 E136.12891
+G1 X114.781 Y48.742 E136.13683
+G1 F636.6 X114.279 Y48.959 E136.15398
+G1 F645.2 X113.966 Y49.075 E136.1643
+G1 F654 X113.57 Y49.205 E136.17702
+G1 F659.3 X113.203 Y49.309 E136.18857
+G1 X113.204 Y49.678 E136.19973
+G1 F1500 E129.69973
+G0 F9000 X114.842 Y48.851
+G1 F1500 E136.19973
+G1 F381.6 X115.174 Y48.686 E136.21912
+G1 F385.9 X115.448 Y48.535 E136.23531
+G1 F387.1 X115.862 Y48.289 E136.26013
+G1 F385.9 X116.169 Y48.083 E136.27925
+G1 F384 X116.421 Y47.9 E136.29544
+G1 F384.6 X116.798 Y47.605 E136.32028
+G1 X116.926 Y47.492 E136.32913
+G1 F1500 E129.82913
+G0 F9000 X118.164 Y46.184
+G1 F1500 E136.32913
+G1 F382.8 X118.364 Y45.923 E136.34628
+G1 X118.742 Y45.356 E136.38181
+G1 F372.7 X118.774 Y45.207 E136.38997
+G1 F370.9 X118.746 Y45.009 E136.40072
+G1 F380.3 X118.536 Y44.676 E136.42138
+G1 F384 X118.367 Y44.433 E136.43676
+G1 F382.8 X118.162 Y44.166 E136.45431
+G1 F1500 E129.95431
+G0 F9000 X116.926 Y42.852
+G1 F1500 E136.45431
+G1 F379.7 X116.689 Y42.662 E136.47027
+G1 F384 X116.451 Y42.471 E136.48613
+G1 F387.7 X115.959 Y42.122 E136.51718
+G1 F387.1 X115.448 Y41.813 E136.54797
+G1 F382.8 X115.097 Y41.631 E136.56858
+G1 F378.5 X114.746 Y41.448 E136.58945
+G1 F423.3 X114.63 Y41.185 E136.603
+G1 F550.5 X114.481 Y41.067 E136.60989
+G1 F643.4 X114.128 Y40.936 E136.62157
+G1 F652.2 X113.499 Y40.746 E136.64167
+G1 F659.3 X113.204 Y40.674 E136.65086
+G1 X113.207 Y41.042 E136.662
+G1 F655.7 X113.928 Y41.258 E136.68491
+G1 F646.9 X114.348 Y41.418 E136.69877
+G1 F550.5 X114.49 Y41.408 E136.70393
+G1 F423.3 X114.746 Y41.448 E136.71615
+G1 F1500 E130.21615
+;MESH:NONMESH
+G0 F300 X114.746 Y41.448 Z7
+G0 F9000 X108.713 Y43.109
+;TIME_ELAPSED:457.705489
+;LAYER:34
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E136.71615
+G1 F372.1 X108.63 Y43.127 E136.72071
+G1 F379.1 X107.998 Y43.166 E136.75403
+G1 F353.5 X107.808 Y43.224 E136.76525
+G1 F356.1 X107.757 Y43.475 E136.7796
+G1 F383.4 X107.755 Y44.273 E136.82114
+G1 F356.6 X107.71 Y44.461 E136.83196
+G1 F334.3 X107.71 Y45.888 E136.91715
+G1 F357.1 X107.756 Y46.129 E136.93086
+G1 F382.8 X107.759 Y46.929 E136.97257
+G1 F355.6 X107.807 Y47.124 E136.98384
+G1 F356.6 X108.052 Y47.187 E136.998
+G1 F384 X108.577 Y47.217 E137.02533
+G1 F374.4 X108.713 Y47.24 E137.03268
+G1 F1500 E130.53268
+G0 F9000 X109.705 Y47.295
+G0 X111.079 Y46.389
+G0 X112.106 Y46.299
+G1 F1500 E137.03268
+G1 F510.6 X112.106 Y46.181 E137.03729
+G1 F612.2 X112.184 Y45.986 E137.04414
+G1 F766.8 X112.185 Y44.391 E137.08565
+G1 F613.8 X112.106 Y44.169 E137.09331
+G1 F510.6 X112.106 Y44.051 E137.09792
+G0 F9000 X112.007 Y42.925
+G1 F375.6 X112.151 Y42.933 E137.10558
+G1 F385.9 X112.87 Y42.894 E137.14282
+G1 F352.9 X113.143 Y42.937 E137.15845
+G1 F352.4 X113.2 Y43.205 E137.17397
+G1 F384 X113.198 Y47.198 E137.38148
+G1 F351.4 X113.141 Y47.413 E137.39411
+G1 F349.9 X112.924 Y47.458 E137.40675
+G1 F379.7 X112.098 Y47.413 E137.45022
+G1 F372.7 X112.007 Y47.424 E137.45513
+G1 F1500 E130.95513
+G0 F9000 X113.867 Y49.48
+G1 F1500 E137.45513
+G1 F659.3 X114.11 Y49.403 E137.46285
+G1 F655.7 X114.441 Y49.281 E137.47358
+G1 F648.6 X114.888 Y49.101 E137.48841
+G1 F643.4 X115.129 Y48.991 E137.49662
+G1 F533.3 X115.28 Y48.839 E137.50464
+G1 F411.7 X115.367 Y48.593 E137.51729
+G1 F473.4 X114.967 Y48.655 E137.53435
+G1 F646.9 X114.54 Y48.847 E137.5488
+G1 F655.7 X113.868 Y49.108 E137.57074
+G1 F659.3 X113.867 Y49.48 E137.582
+G1 F1500 E131.082
+G0 F9000 X115.367 Y48.593
+G1 F1500 E137.582
+G1 F380.3 X115.704 Y48.394 E137.60253
+G1 F386.5 X116.034 Y48.184 E137.62273
+G1 F385.9 X116.471 Y47.876 E137.65038
+G1 F385.2 X116.849 Y47.578 E137.67531
+G1 F384 X117.025 Y47.423 E137.6875
+G1 F1500 E131.1875
+G0 F9000 X118.102 Y46.3
+G1 F1500 E137.6875
+G1 F385.9 X118.405 Y45.908 E137.71313
+G1 F384 X118.784 Y45.343 E137.74848
+G1 F380.3 X118.788 Y45.016 E137.76564
+G1 F382.8 X118.489 Y44.562 E137.79398
+G1 F387.1 X118.212 Y44.185 E137.8181
+G1 F385.2 X118.102 Y44.051 E137.82708
+G1 F1500 E131.32708
+G0 F9000 X117.028 Y42.929
+G1 F1500 E137.82708
+G1 F385.2 X116.718 Y42.666 E137.84814
+G1 F387.7 X116.401 Y42.42 E137.86879
+G1 F388.3 X116.013 Y42.151 E137.89305
+G1 F387.1 X115.667 Y41.934 E137.91411
+G1 F381.6 X115.406 Y41.782 E137.92991
+G1 F419.6 X115.316 Y41.552 E137.94165
+G1 F543 X115.16 Y41.373 E137.95038
+G1 F645.2 X114.803 Y41.211 E137.96251
+G1 F652.2 X114.403 Y41.05 E137.9757
+G1 F664.8 X113.869 Y40.867 E137.99264
+G1 F672.3 X113.866 Y41.234 E138.00354
+G1 F666.7 X114.219 Y41.374 E138.01491
+G1 F655.7 X114.573 Y41.515 E138.0265
+G1 F645.2 X114.999 Y41.712 E138.04102
+G1 F475.2 X115.406 Y41.782 E138.05836
+G1 F1500 E131.55836
+;MESH:NONMESH
+G0 F300 X115.406 Y41.782 Z7.2
+G0 F9000 X108.708 Y43.104
+;TIME_ELAPSED:466.294270
+;LAYER:35
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E138.05836
+G1 F372.1 X108.624 Y43.123 E138.06298
+G1 F379.7 X107.993 Y43.162 E138.0962
+G1 F354 X107.801 Y43.22 E138.10751
+G1 F355.6 X107.751 Y43.47 E138.12182
+G1 F382.2 X107.749 Y43.996 E138.14929
+G1 F356.1 X107.705 Y44.183 E138.16005
+G1 F334.3 X107.705 Y46.167 E138.2785
+G1 F357.1 X107.751 Y46.407 E138.29216
+G1 F382.8 X107.754 Y46.934 E138.31963
+G1 F355.6 X107.802 Y47.129 E138.3309
+G1 F356.6 X108.047 Y47.192 E138.34506
+G1 F384.6 X108.571 Y47.222 E138.37229
+G1 F375.6 X108.709 Y47.245 E138.37973
+G1 F1500 E131.87973
+G0 F9000 X109.7 Y47.3
+G0 X111.221 Y46.164
+G0 X112.122 Y46.164
+G1 F1500 E138.37973
+G1 F510.6 X112.122 Y45.918 E138.38934
+G1 F610.7 X112.199 Y45.723 E138.39619
+G1 F761.9 X112.2 Y44.655 E138.42417
+G1 F612.2 X112.122 Y44.433 E138.43183
+G1 F510.6 X112.122 Y44.186 E138.44149
+G0 F9000 X112.022 Y42.918
+G1 F375.6 X112.167 Y42.927 E138.44921
+G1 F385.9 X112.885 Y42.888 E138.4864
+G1 F352.4 X113.158 Y42.931 E138.50205
+G1 F351.4 X113.215 Y43.199 E138.51761
+G1 F383.4 X113.214 Y45.202 E138.62187
+G1 F382.8 X113.213 Y47.205 E138.72629
+G1 F350.9 X113.157 Y47.419 E138.73887
+G1 F349.9 X112.938 Y47.464 E138.75163
+G1 F379.7 X112.114 Y47.419 E138.79499
+G1 F372.7 X112.022 Y47.43 E138.79996
+G1 F1500 E132.29996
+G0 F9000 X111.964 Y48.484
+G0 X113.687 Y49.225
+G0 X114.532 Y49.228
+G1 F1500 E138.79996
+G1 F666.7 X114.906 Y49.073 E138.81207
+G1 F659.3 X115.229 Y48.926 E138.82282
+G1 F654 X115.469 Y48.806 E138.831
+G1 F645.2 X115.823 Y48.613 E138.84348
+G1 F547.9 X115.962 Y48.439 E138.85159
+G1 F421.8 X116.029 Y48.197 E138.86347
+G1 X115.79 Y48.272 E138.87532
+G1 F547.9 X115.64 Y48.285 E138.8808
+G1 F645.2 X115.346 Y48.455 E138.89131
+G1 F657.5 X115.006 Y48.629 E138.9029
+G1 F666.7 X114.534 Y48.848 E138.91847
+G1 F670.4 X114.532 Y49.228 E138.92979
+G1 F1500 E132.42979
+G0 F9000 X116.029 Y48.197
+G1 F1500 E138.92979
+G1 F379.1 X116.333 Y47.976 E138.94957
+G1 F384.6 X116.638 Y47.754 E138.96914
+G1 F387.7 X116.953 Y47.501 E138.98994
+G1 F383.4 X117.298 Y47.196 E139.01391
+G1 F392.2 X117.436 Y47.207 E139.02095
+G1 F492.8 X117.701 Y47.09 E139.03268
+G1 F613.8 X117.838 Y46.945 E139.03917
+G1 F495.9 X117.913 Y46.733 E139.04822
+G1 F399.3 X117.907 Y46.556 E139.05707
+G1 F381.6 X118.135 Y46.288 E139.07547
+G1 F384.6 X118.479 Y45.841 E139.10474
+G1 F384 X118.812 Y45.347 E139.1357
+G1 F372.1 X118.83 Y45.114 E139.14823
+G1 X118.791 Y44.985 E139.15546
+G1 F383.4 X118.608 Y44.696 E139.17326
+G1 F384.6 X118.382 Y44.375 E139.19363
+G1 X118.147 Y44.074 E139.21345
+G1 F378.5 X117.906 Y43.783 E139.23336
+G1 F394.1 X117.911 Y43.619 E139.24167
+G1 F508.5 X117.797 Y43.344 E139.25336
+G1 F594.1 X117.598 Y43.189 E139.26183
+G1 F474.3 X117.437 Y43.131 E139.26903
+G1 F398.7 X117.283 Y43.139 E139.27675
+G1 F385.2 X116.933 Y42.833 E139.30083
+G1 F387.1 X116.669 Y42.619 E139.31835
+G1 F381.6 X116.065 Y42.172 E139.35765
+G1 F470.6 X115.886 Y41.769 E139.37635
+G1 F629.9 X115.63 Y41.632 E139.38555
+G1 F645.2 X115.374 Y41.495 E139.39453
+G1 F657.5 X114.856 Y41.254 E139.41187
+G1 F666.7 X114.534 Y41.122 E139.42229
+G1 F668.5 X114.537 Y41.499 E139.43354
+G1 F661.2 X115.18 Y41.808 E139.45508
+G1 F646.9 X115.663 Y42.076 E139.47212
+G1 F476.2 X116.065 Y42.172 E139.48944
+G1 F1500 E132.98944
+;MESH:NONMESH
+G0 F300 X116.065 Y42.172 Z7.4
+G0 F9000 X115.333 Y42.873
+G0 X114.188 Y42.257
+G0 X113.553 Y41.874
+G0 X112.761 Y41.832
+G0 X110.986 Y41.934
+G0 X109.741 Y44.026
+G0 X108.718 Y44.086
+G0 X107.699 Y44.115
+;TIME_ELAPSED:474.102076
+;LAYER:36
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E139.48944
+G1 F355.6 X107.744 Y43.799 E139.50735
+G1 F382.2 X107.746 Y43.465 E139.52479
+G1 F355.6 X107.797 Y43.215 E139.53911
+G1 F354 X107.988 Y43.157 E139.55037
+G1 F379.7 X108.619 Y43.118 E139.58359
+G1 F372.1 X108.703 Y43.099 E139.58821
+G1 F1500 E133.08821
+G0 F9000 X108.713 Y44.081
+G0 X108.711 Y45.175
+G0 X107.653 Y45.212
+G0 X107.699 Y46.235
+G1 F1500 E139.58821
+G1 F357.7 X107.746 Y46.604 E139.60896
+G1 F383.4 X107.748 Y46.94 E139.62645
+G1 F356.1 X107.796 Y47.134 E139.63765
+G1 F357.1 X108.041 Y47.198 E139.6518
+G1 F384.6 X108.566 Y47.227 E139.67908
+G1 F375.6 X108.704 Y47.25 E139.68652
+G1 F1500 E133.18652
+G0 F9000 X109.695 Y47.305
+G0 X111.238 Y45.975
+G0 X112.138 Y45.975
+G1 F1500 E139.68652
+G1 F512.8 X112.138 Y44.374 E139.74882
+G0 F9000 X112.038 Y42.912
+G1 F376.2 X112.182 Y42.921 E139.75647
+G1 F385.2 X112.901 Y42.881 E139.79378
+G1 F351.4 X113.175 Y42.925 E139.80954
+G1 F328.3 X113.279 Y43.336 E139.83531
+G1 F333.3 X113.279 Y47.017 E140.05568
+G1 F328.8 X113.175 Y47.424 E140.08118
+G1 F349.9 X112.954 Y47.47 E140.09406
+G1 F379.7 X112.128 Y47.425 E140.13753
+G1 F373.3 X112.038 Y47.437 E140.14238
+G1 F1500 E133.64238
+G0 F9000 X111.98 Y48.49
+G0 X114.356 Y48.928
+G0 X115.198 Y48.927
+G1 F1500 E140.14238
+G1 F666.7 X115.822 Y48.591 E140.1636
+G1 F655.7 X116.271 Y48.322 E140.17953
+G1 F650.4 X116.657 Y48.071 E140.19365
+G1 F689.7 X116.776 Y47.864 E140.20056
+G1 F738.5 X117.233 Y47.455 E140.21714
+G1 F747.7 X117.691 Y47.046 E140.23352
+G1 F752.4 X117.739 Y47.037 E140.23482
+G1 X117.743 Y46.988 E140.23612
+G1 F761.9 X118.054 Y46.648 E140.24819
+G1 F766.8 X118.354 Y46.288 E140.26039
+G1 F764.3 X118.648 Y45.901 E140.27308
+G1 X118.832 Y45.635 E140.28152
+G1 F761.9 X118.986 Y45.385 E140.28921
+G1 F743 X119.025 Y45.129 E140.29617
+G1 F738.5 X118.977 Y44.941 E140.30141
+G1 F757.1 X118.715 Y44.545 E140.31393
+G1 F764.3 X118.323 Y44.018 E140.33108
+G1 X117.953 Y43.592 E140.34581
+G1 F759.5 X117.746 Y43.367 E140.35384
+G1 F754.7 X117.743 Y43.314 E140.35525
+G1 X117.69 Y43.31 E140.35665
+G1 F761.9 X117.372 Y43.005 E140.36819
+G1 F757.1 X117.06 Y42.736 E140.37905
+G1 F738.5 X116.747 Y42.467 E140.3902
+G1 F681.8 X116.682 Y42.312 E140.39512
+G1 F641.7 X116.457 Y42.148 E140.40378
+G1 F650.4 X116.054 Y41.894 E140.4184
+G1 F663 X115.711 Y41.696 E140.43032
+G1 F672.3 X115.453 Y41.56 E140.43898
+G1 F687.7 X115.194 Y41.423 E140.44748
+G1 F695.7 X115.192 Y41.798 E140.45824
+G1 X115.271 Y41.849 E140.46093
+G1 F685.7 X115.57 Y42.029 E140.47109
+G1 F666.7 X115.869 Y42.209 E140.48154
+G1 F652.2 X116.198 Y42.422 E140.49353
+G1 F643.4 X116.412 Y42.577 E140.50173
+G1 F695.7 X116.597 Y42.755 E140.50909
+G1 F766.8 X117.092 Y43.171 E140.52592
+G1 F764.3 X117.497 Y43.56 E140.54058
+G1 X117.897 Y44 E140.55611
+G1 F771.7 X118.132 Y44.283 E140.56562
+G1 F766.8 X118.474 Y44.747 E140.58062
+G1 F757.1 X118.678 Y45.062 E140.59051
+G1 F759.5 X118.69 Y45.276 E140.59615
+G1 F771.7 X118.508 Y45.557 E140.6048
+G1 X118.28 Y45.872 E140.61486
+G1 F769.2 X118.056 Y46.16 E140.62432
+G1 X117.804 Y46.459 E140.63447
+G1 F759.5 X117.491 Y46.798 E140.64659
+G1 F764.3 X117.083 Y47.183 E140.66124
+G1 F771.7 X116.709 Y47.508 E140.67405
+G1 F703.8 X116.414 Y47.771 E140.68526
+G1 F650.4 X116.061 Y48.017 E140.69846
+G1 F655.7 X115.714 Y48.235 E140.71093
+G1 F666.7 X115.2 Y48.525 E140.7286
+G1 F668.5 X115.198 Y48.927 E140.7406
+G1 F1500 E134.2406
+;MESH:NONMESH
+G0 F300 X115.198 Y48.927 Z7.6
+G0 F9000 X114.356 Y48.928
+G0 X111.005 Y48.424
+G0 X108.713 Y44.081
+G0 X107.694 Y43.848
+;TIME_ELAPSED:481.466545
+;LAYER:37
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E140.7406
+G1 F357.1 X107.741 Y43.46 E140.76244
+G1 F355.6 X107.791 Y43.21 E140.77675
+G1 F353.5 X107.983 Y43.151 E140.78809
+G1 F379.1 X108.614 Y43.113 E140.82136
+G1 F372.7 X108.698 Y43.094 E140.82597
+G1 F1500 E134.32597
+G0 F9000 X108.707 Y44.076
+G0 X108.704 Y44.885
+G0 X107.667 Y45.478
+G0 X107.694 Y46.502
+G1 F1500 E140.82597
+G1 F357.1 X107.74 Y46.752 E140.84017
+G1 F355.6 X107.789 Y47.139 E140.86207
+G1 F356.1 X108.036 Y47.203 E140.87637
+G1 F384.6 X108.561 Y47.232 E140.90365
+G1 F375 X108.698 Y47.255 E140.91104
+G1 F1500 E134.41104
+G0 F9000 X109.69 Y47.311
+G0 X111.253 Y45.687
+G0 X112.153 Y45.687
+G1 F1500 E140.91104
+G1 F510.6 X112.153 Y44.661 E140.95114
+G1 F1500 E134.45114
+G0 F9000 X112.054 Y42.906
+G1 F1500 E140.95114
+G1 F375 X112.198 Y42.915 E140.95882
+G1 F384.6 X112.917 Y42.875 E140.99618
+G1 F351.4 X113.19 Y42.919 E141.01188
+G1 F328.3 X113.294 Y43.31 E141.03648
+G1 F333.3 X113.294 Y47.044 E141.26002
+G1 F328.3 X113.19 Y47.431 E141.28438
+G1 F348.8 X112.97 Y47.477 E141.29724
+G1 F379.1 X112.144 Y47.432 E141.34078
+G1 F372.7 X112.054 Y47.443 E141.34564
+G1 F1500 E134.84564
+G0 F9000 X112.796 Y48.435
+G0 X115.021 Y48.536
+G0 X115.863 Y48.536
+G1 F1500 E141.34564
+G1 F678 X116.134 Y48.379 E141.35485
+G1 F672.3 X116.504 Y48.138 E141.36796
+G1 F661.2 X116.876 Y47.876 E141.3817
+G1 F654 X117.313 Y47.541 E141.3985
+G1 F699.7 X117.44 Y47.291 E141.4065
+G1 F764.3 X117.717 Y47.02 E141.41661
+G1 F774.2 X118.031 Y46.686 E141.42843
+G1 F766.8 X118.261 Y46.421 E141.43756
+G1 X118.461 Y46.171 E141.4459
+G1 F769.2 X118.707 Y45.843 E141.45653
+G1 F759.5 X118.99 Y45.415 E141.47001
+G1 F733.9 X119.045 Y45.159 E141.47713
+G1 X118.991 Y44.939 E141.48329
+G1 F759.5 X118.803 Y44.646 E141.49244
+G1 F771.7 X118.456 Y44.173 E141.50761
+G1 F774.2 X118.144 Y43.793 E141.52028
+G1 F769.2 X117.827 Y43.446 E141.53248
+G1 F752.4 X117.607 Y43.222 E141.54081
+G1 F729.5 X117.386 Y42.997 E141.54943
+G1 F683.8 X117.349 Y42.847 E141.55394
+G1 F648.6 X117.046 Y42.601 E141.56595
+G1 F654 X116.589 Y42.267 E141.58322
+G1 F668.5 X116.252 Y42.044 E141.59529
+G1 F678 X115.865 Y41.812 E141.60857
+G1 X115.863 Y42.211 E141.62031
+G1 F670.4 X116.456 Y42.615 E141.64167
+G1 F655.7 X116.833 Y42.904 E141.65613
+G1 F650.4 X117.068 Y43.113 E141.66578
+G1 F697.7 X117.169 Y43.23 E141.6702
+G1 F759.5 X117.513 Y43.57 E141.68291
+G1 F771.7 X117.923 Y44.013 E141.69852
+G1 F774.2 X118.21 Y44.362 E141.71016
+G1 F771.7 X118.487 Y44.738 E141.72224
+G1 F769.2 X118.68 Y45.027 E141.73126
+G1 F761.9 X118.688 Y45.306 E141.73857
+G1 X118.439 Y45.682 E141.75038
+G1 F769.2 X118.207 Y45.989 E141.76036
+G1 F771.7 X117.965 Y46.288 E141.77031
+G1 F769.2 X117.763 Y46.517 E141.77823
+G1 X117.494 Y46.801 E141.78838
+G1 F761.9 X117.203 Y47.083 E141.79899
+G1 F699.7 X117.017 Y47.294 E141.80702
+G1 F654 X116.641 Y47.595 E141.82171
+G1 F663 X116.202 Y47.911 E141.838
+G1 F676.1 X115.897 Y48.115 E141.84883
+G1 F678 X115.864 Y48.158 E141.85042
+G1 X115.863 Y48.536 E141.86155
+G1 F1500 E135.36155
+;MESH:NONMESH
+G0 F300 X115.863 Y48.536 Z7.8
+G0 F9000 X115.021 Y48.536
+G0 X112.791 Y48.528
+G0 X111.019 Y48.43
+G0 X108.707 Y44.076
+G0 X107.702 Y43.687
+;TIME_ELAPSED:489.024053
+;LAYER:38
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E141.86155
+G1 F365.3 X107.736 Y43.454 E141.87441
+G1 F356.1 X107.786 Y43.205 E141.88865
+G1 F353.5 X107.977 Y43.146 E141.89993
+G1 F379.1 X108.609 Y43.108 E141.93326
+G1 F372.7 X108.693 Y43.089 E141.93787
+G1 F1500 E135.43787
+G0 F9000 X108.701 Y44.071
+G0 X108.699 Y44.703
+G0 X107.683 Y45.653
+G0 X107.702 Y46.662
+G1 F1500 E141.93787
+G1 F344.3 X107.76 Y47.138 E141.96566
+G1 F361.4 X108.03 Y47.208 E141.98106
+G1 F384.6 X108.556 Y47.237 E142.00839
+G1 F375 X108.693 Y47.26 E142.01579
+G1 F1500 E135.51579
+G0 F9000 X109.685 Y47.316
+G0 X111.077 Y47.399
+G0 X112.069 Y47.449
+G1 F1500 E142.01579
+G1 F372.7 X112.16 Y47.438 E142.02069
+G1 F379.1 X112.986 Y47.483 E142.06423
+G1 F349.3 X113.206 Y47.437 E142.07707
+G1 F332.4 X113.303 Y47.063 E142.10027
+G1 F1500 E135.60027
+G0 F9000 X114.336 Y47.064
+G0 X115.692 Y48.085
+G0 X116.531 Y48.087
+G1 F1500 E142.10027
+G1 F691.6 X116.808 Y47.895 E142.10999
+G1 F685.7 X117.058 Y47.699 E142.11924
+G1 F670.4 X117.308 Y47.502 E142.12871
+G1 F657.5 X117.666 Y47.191 E142.14311
+G1 F645.2 X117.882 Y46.988 E142.15227
+G1 F652.2 X118.03 Y46.793 E142.15977
+G1 F703.8 X118.085 Y46.642 E142.16432
+G1 F754.7 X118.537 Y46.088 E142.18323
+G1 F766.8 X118.779 Y45.762 E142.19379
+G1 F759.5 X119.005 Y45.418 E142.20461
+G1 F736.2 X119.063 Y45.157 E142.21186
+G1 F733.9 X119.013 Y44.945 E142.21778
+G1 F759.5 X118.707 Y44.488 E142.23223
+G1 F769.2 X118.477 Y44.184 E142.24212
+G1 F761.9 X118.275 Y43.937 E142.25048
+G1 F743 X118.072 Y43.689 E142.25909
+G1 F679.9 X117.936 Y43.411 E142.26817
+G1 F640 X117.74 Y43.23 E142.27649
+G1 F654 X117.543 Y43.048 E142.28467
+G1 F664.8 X117.261 Y42.807 E142.29581
+G1 F676.1 X116.881 Y42.509 E142.31006
+G1 F685.7 X116.53 Y42.264 E142.32252
+G1 F683.8 X116.531 Y42.68 E142.33466
+G1 F676.1 X116.949 Y43.014 E142.35046
+G1 F666.7 X117.3 Y43.319 E142.36437
+G1 F646.9 X117.65 Y43.661 E142.37947
+G1 F687.7 X117.865 Y43.94 E142.38969
+G1 F761.9 X118.179 Y44.308 E142.40236
+G1 F771.7 X118.465 Y44.687 E142.41464
+G1 F761.9 X118.723 Y45.069 E142.42671
+G1 F757.1 X118.707 Y45.301 E142.43284
+G1 F766.8 X118.457 Y45.677 E142.4446
+G1 F771.7 X118.177 Y46.041 E142.45647
+G1 F761.9 X117.852 Y46.428 E142.46971
+G1 F703.8 X117.7 Y46.639 E142.47708
+G1 F655.7 X117.417 Y46.919 E142.4892
+G1 F663 X116.963 Y47.323 E142.50749
+G1 F683.8 X116.532 Y47.673 E142.52369
+G1 F691.6 X116.531 Y48.087 E142.53564
+G1 F1500 E136.03564
+G0 F9000 X115.692 Y48.085
+G0 X113.305 Y44.305
+G0 X113.303 Y43.288
+G1 F1500 E142.53564
+G1 F332 X113.205 Y42.912 E142.559
+G1 F351.4 X112.933 Y42.869 E142.57464
+G1 F384.6 X112.214 Y42.909 E142.612
+G1 F375 X112.069 Y42.9 E142.61973
+G1 F1500 E136.11973
+;MESH:NONMESH
+G0 F300 X112.069 Y42.9 Z8
+G0 F9000 X111.079 Y42.954
+G0 X109.727 Y44.011
+G0 X108.701 Y44.071
+G0 X107.706 Y43.575
+;TIME_ELAPSED:495.392065
+;LAYER:39
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E142.61973
+G1 F343.8 X107.78 Y43.2 E142.64192
+G1 F354 X107.972 Y43.142 E142.65322
+G1 F379.7 X108.604 Y43.103 E142.6865
+G1 F372.1 X108.687 Y43.085 E142.69106
+G1 F1500 E136.19106
+G0 F9000 X108.696 Y44.067
+G0 X108.695 Y44.525
+G0 X107.692 Y45.772
+G0 X107.706 Y46.773
+G1 F1500 E142.69106
+G1 F344.3 X107.779 Y47.149 E142.71325
+G1 F356.6 X108.025 Y47.213 E142.72748
+G1 F384.6 X108.551 Y47.242 E142.75481
+G1 F375.6 X108.688 Y47.264 E142.76218
+G1 F1500 E136.26218
+G0 F9000 X109.679 Y47.319
+G0 X111.093 Y47.405
+G0 X112.085 Y47.455
+G1 F1500 E142.76218
+G1 F373.3 X112.173 Y47.444 E142.76693
+G1 F379.1 X113.001 Y47.489 E142.81057
+G1 F348.8 X113.222 Y47.442 E142.8235
+G1 F342.9 X113.295 Y47.145 E142.8413
+G1 F1500 E136.3413
+G0 F9000 X113.295 Y46.15
+G0 X113.295 Y44.199
+G0 X113.295 Y43.205
+G1 F1500 E142.8413
+G1 F343.3 X113.222 Y42.906 E142.85919
+G1 F351.4 X112.949 Y42.862 E142.87489
+G1 F385.2 X112.227 Y42.902 E142.91235
+G1 F376.2 X112.085 Y42.894 E142.91989
+G1 F1500 E136.41989
+G0 F9000 X112.314 Y43.865
+G0 X112.314 Y44.154
+G0 X116.355 Y47.371
+G0 X117.194 Y47.571
+G1 F1500 E142.91989
+G1 F683.8 X117.861 Y46.967 E142.94616
+G1 F666.7 X118.251 Y46.567 E142.96288
+G1 F645.2 X118.603 Y46.176 E142.97915
+G1 F674.2 X118.706 Y45.886 E142.98826
+G1 F727.3 X119.028 Y45.406 E143.00412
+G1 F725.1 X119.072 Y45.253 E143.00851
+G1 F720.7 X119.057 Y44.971 E143.01632
+G1 F736.2 X118.77 Y44.549 E143.03016
+G1 F714.3 X118.642 Y44.224 E143.03992
+G1 F672.3 X118.32 Y43.857 E143.05441
+G1 F663 X117.991 Y43.513 E143.06874
+G1 F678 X117.672 Y43.206 E143.08177
+G1 F693.6 X117.419 Y42.979 E143.09155
+G1 F701.8 X117.194 Y42.796 E143.0998
+G1 X117.195 Y43.23 E143.11214
+G1 F691.6 X117.633 Y43.656 E143.12977
+G1 F674.2 X117.845 Y43.884 E143.13898
+G1 F663 X118.058 Y44.113 E143.1484
+G1 F676.1 X118.304 Y44.404 E143.15965
+G1 F729.5 X118.539 Y44.773 E143.17161
+G1 F750 X118.727 Y45.032 E143.18013
+G1 F743 X118.721 Y45.313 E143.18768
+G1 F750 X118.467 Y45.677 E143.19949
+G1 F689.7 X118.298 Y45.95 E143.20878
+G1 F643.4 X118.069 Y46.222 E143.21981
+G1 F659.3 X117.836 Y46.473 E143.23017
+G1 F672.3 X117.603 Y46.725 E143.24036
+G1 F689.7 X117.193 Y47.117 E143.25677
+G1 F695.7 X117.194 Y47.571 E143.2698
+G1 F1500 E136.7698
+;MESH:NONMESH
+G0 F300 X117.194 Y47.571 Z8.2
+G0 F9000 X116.355 Y47.371
+G0 X114.341 Y46.162
+G0 X108.696 Y44.067
+G0 X107.706 Y43.5
+;TIME_ELAPSED:501.454769
+;LAYER:40
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E143.2698
+G1 F346.3 X107.774 Y43.196 E143.28775
+G1 F354 X107.966 Y43.137 E143.29907
+G1 F379.7 X108.598 Y43.098 E143.33235
+G1 F372.1 X108.682 Y43.08 E143.33695
+G1 F1500 E136.83695
+G0 F9000 X108.69 Y44.062
+G0 X108.689 Y44.449
+G0 X107.695 Y45.852
+G0 X107.705 Y46.848
+G1 F1500 E143.33695
+G1 F346.8 X107.775 Y47.154 E143.35502
+G1 F357.1 X108.02 Y47.218 E143.36917
+G1 F384.6 X108.545 Y47.247 E143.39645
+G1 F375.6 X108.683 Y47.27 E143.40388
+G1 F1500 E136.90388
+G0 F9000 X109.674 Y47.325
+G0 X111.109 Y47.409
+G0 X112.101 Y47.461
+G1 F1500 E143.40388
+G1 F372.7 X112.192 Y47.45 E143.40879
+G1 F379.7 X113.018 Y47.495 E143.45226
+G1 F349.3 X113.238 Y47.449 E143.4651
+G1 F342.4 X113.31 Y47.144 E143.48337
+G1 F1500 E136.98337
+G0 F9000 X113.31 Y46.15
+G0 X113.31 Y44.199
+G0 X113.31 Y43.206
+G1 F1500 E143.48337
+G1 F343.3 X113.236 Y42.898 E143.50178
+G1 F351.9 X112.964 Y42.856 E143.51739
+G1 F385.2 X112.246 Y42.896 E143.55464
+G1 F375 X112.101 Y42.888 E143.56237
+G1 F1500 E137.06237
+G0 F9000 X112.33 Y43.858
+G0 X112.329 Y44.187
+G0 X114.151 Y44.187
+G0 X117.02 Y43.838
+G0 X118.032 Y43.843
+G1 F1500 E143.56237
+G1 F351.9 X118.253 Y44.097 E143.58146
+G1 F345.3 X118.474 Y44.351 E143.60092
+G1 F340.4 X118.629 Y44.553 E143.61584
+G1 F336.6 X118.784 Y44.755 E143.63094
+G1 F332.9 X118.94 Y44.958 E143.64628
+G1 F322.6 X118.983 Y45.112 E143.65618
+G1 F318.7 X118.953 Y45.368 E143.67231
+G1 F327 X118.761 Y45.624 E143.69185
+G1 F334.3 X118.568 Y45.88 E143.71099
+G1 F340.4 X118.395 Y46.088 E143.72685
+G1 F345.3 X118.221 Y46.297 E143.74256
+G1 F352.9 X118.029 Y46.512 E143.75886
+G1 F1500 E137.25886
+;MESH:NONMESH
+G0 F300 X118.029 Y46.512 Z8.4
+G0 F9000 X117.029 Y46.53
+G0 X108.69 Y44.062
+G0 X107.703 Y43.455
+;TIME_ELAPSED:507.024300
+;LAYER:41
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E143.75886
+G1 F347.8 X107.768 Y43.194 E143.77429
+G1 F355 X107.961 Y43.133 E143.78567
+G1 F380.3 X108.593 Y43.093 E143.81889
+G1 F372.7 X108.677 Y43.075 E143.82349
+G1 F1500 E137.32349
+G0 F9000 X108.685 Y44.057
+G0 X108.685 Y44.367
+G0 X107.698 Y45.899
+G0 X107.703 Y46.893
+G1 F1500 E143.82349
+G1 F347.8 X107.769 Y47.158 E143.83916
+G1 F356.6 X108.015 Y47.222 E143.85339
+G1 F384 X108.54 Y47.251 E143.88071
+G1 F374.4 X108.677 Y47.274 E143.88812
+G1 F1500 E137.38812
+G0 F9000 X109.669 Y47.33
+G0 X111.125 Y47.415
+G0 X112.117 Y47.467
+G1 F1500 E143.88812
+G1 F372.7 X112.208 Y47.456 E143.89303
+G1 F379.7 X113.034 Y47.501 E143.9365
+G1 F349.9 X113.253 Y47.455 E143.94926
+G1 F343.3 X113.326 Y47.145 E143.96777
+G1 F1500 E137.46777
+G0 F9000 X113.326 Y46.15
+G0 X113.326 Y44.199
+G0 X113.326 Y43.206
+G1 F1500 E143.96777
+G1 F343.8 X113.254 Y42.893 E143.98641
+G1 F352.4 X112.981 Y42.85 E144.00206
+G1 F385.2 X112.262 Y42.89 E144.03937
+G1 F375 X112.117 Y42.882 E144.04709
+G1 F1500 E137.54709
+G0 F9000 X112.344 Y43.852
+G0 X112.342 Y44.187
+G0 X117.692 Y44.628
+G0 X118.679 Y44.628
+G1 F1500 E144.04709
+G1 F365.3 X118.92 Y44.976 E144.07022
+G1 F345.8 X118.951 Y45.178 E144.08201
+G1 F342.4 X118.906 Y45.389 E144.09459
+G1 F359.3 X118.682 Y45.71 E144.11633
+G1 F1500 E137.61633
+;MESH:NONMESH
+G0 F300 X118.682 Y45.71 Z8.6
+G0 F9000 X117.691 Y45.725
+G0 X108.685 Y44.057
+G0 X107.699 Y43.441
+;TIME_ELAPSED:512.221089
+;LAYER:42
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E144.11633
+G1 F347.8 X107.765 Y43.185 E144.1315
+G1 F353.5 X107.956 Y43.126 E144.14278
+G1 F378.5 X108.588 Y43.089 E144.17616
+G1 F371.5 X108.672 Y43.07 E144.18078
+G1 F1500 E137.68078
+G0 F9000 X108.681 Y44.052
+G0 X108.681 Y44.351
+G0 X107.698 Y45.916
+G0 X107.698 Y46.909
+G1 F1500 E144.18078
+G1 F348.3 X107.764 Y47.164 E144.19587
+G1 F356.6 X108.009 Y47.227 E144.21003
+G1 F384 X108.535 Y47.256 E144.23741
+G1 F374.4 X108.672 Y47.279 E144.24481
+G1 F1500 E137.74481
+G0 F9000 X109.664 Y47.335
+G0 X111.14 Y47.421
+G0 X112.131 Y47.473
+G1 F1500 E144.24481
+G1 F373.3 X112.219 Y47.462 E144.24955
+G1 F379.7 X113.049 Y47.507 E144.29324
+G1 F349.3 X113.269 Y47.461 E144.30607
+G1 F342.9 X113.342 Y47.145 E144.32495
+G1 F1500 E137.82495
+G0 F9000 X113.342 Y46.15
+G0 X113.342 Y44.199
+G0 X113.342 Y43.205
+G1 F1500 E144.32495
+G1 F343.3 X113.269 Y42.887 E144.34392
+G1 F351.9 X112.996 Y42.844 E144.35959
+G1 F385.9 X112.275 Y42.884 E144.39693
+G1 F375.6 X112.131 Y42.876 E144.4046
+G1 F1500 E137.9046
+G0 F9000 X112.361 Y43.846
+G0 X112.36 Y44.187
+G0 X118.358 Y45.142
+G0 X119.151 Y45.134
+G1 F1500 E144.4046
+G1 F1043.5 X119.124 Y45.182 E144.40565
+G1 X119.166 Y45.158 E144.40658
+G1 F1500 E137.90658
+;MESH:NONMESH
+G0 F300 X119.166 Y45.158 Z8.8
+G0 F9000 X118.358 Y45.166
+G0 X108.681 Y44.052
+G0 X107.693 Y43.452
+;TIME_ELAPSED:517.237831
+;LAYER:43
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E144.40658
+G1 F348.3 X107.758 Y43.182 E144.42249
+G1 F355.6 X107.949 Y43.122 E144.43372
+G1 F379.7 X108.588 Y43.083 E144.46737
+G1 F370.9 X108.674 Y43.063 E144.47212
+G1 F1500 E137.97212
+G0 F9000 X108.677 Y44.047
+G0 X108.677 Y44.391
+G0 X107.695 Y45.904
+G0 X107.693 Y46.897
+G1 F1500 E144.47212
+G1 F348.3 X107.76 Y47.17 E144.48822
+G1 F356.1 X108.004 Y47.233 E144.50234
+G1 F383.4 X108.538 Y47.263 E144.53018
+G1 F374.4 X108.675 Y47.286 E144.53759
+G1 F1500 E138.03759
+G0 F9000 X109.667 Y47.339
+G0 X111.137 Y47.424
+G0 X112.129 Y47.479
+G1 F1500 E144.53759
+G1 F372.7 X112.218 Y47.468 E144.54239
+G1 F379.7 X113.065 Y47.513 E144.58696
+G1 F349.3 X113.285 Y47.467 E144.5998
+G1 F342.9 X113.358 Y47.145 E144.61902
+G1 F1500 E138.11902
+G0 F9000 X113.358 Y46.15
+G0 X113.358 Y44.199
+G0 X113.358 Y43.205
+G1 F1500 E144.61902
+G1 F343.3 X113.285 Y42.882 E144.63827
+G1 F351.9 X113.012 Y42.838 E144.65395
+G1 F385.9 X112.271 Y42.879 E144.69233
+G1 F376.2 X112.129 Y42.871 E144.69988
+G1 F1500 E138.19988
+;MESH:NONMESH
+G0 F300 X112.129 Y42.871 Z9
+G0 F9000 X111.139 Y42.928
+G0 X109.708 Y43.989
+G0 X108.677 Y44.047
+G0 X107.686 Y43.49
+;TIME_ELAPSED:521.308832
+;LAYER:44
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E144.69988
+G1 F346.8 X107.754 Y43.174 E144.71847
+G1 F354 X107.945 Y43.116 E144.72973
+G1 F379.1 X108.612 Y43.077 E144.76489
+G1 F370.4 X108.704 Y43.055 E144.76999
+G1 F1500 E138.26999
+G0 F9000 X108.67 Y44.042
+G0 X108.67 Y44.424
+G0 X107.689 Y45.863
+G0 X107.685 Y46.859
+G1 F1500 E144.76999
+G1 F346.3 X107.753 Y47.174 E144.78856
+G1 F355.6 X107.999 Y47.238 E144.80283
+G1 F382.8 X108.562 Y47.269 E144.83222
+G1 F373.3 X108.704 Y47.293 E144.83992
+G1 F1500 E138.33992
+G0 F9000 X109.698 Y47.34
+G0 X111.107 Y47.423
+G0 X112.099 Y47.483
+G1 F1500 E144.83992
+G1 F372.1 X112.195 Y47.471 E144.84511
+G1 F379.7 X113.081 Y47.52 E144.89174
+G1 F349.3 X113.301 Y47.473 E144.9046
+G1 F342.9 X113.374 Y47.144 E144.92421
+G1 F1500 E138.42421
+G0 F9000 X113.374 Y46.15
+G0 X113.374 Y44.199
+G0 X113.374 Y43.205
+G1 F1500 E144.92421
+G1 F344.3 X113.301 Y42.875 E144.9438
+G1 F352.4 X113.028 Y42.832 E144.95945
+G1 F385.2 X112.248 Y42.876 E144.99992
+G1 F375 X112.098 Y42.866 E145.00792
+G1 F1500 E138.50792
+;MESH:NONMESH
+G0 F300 X112.098 Y42.866 Z9.2
+G0 F9000 X111.108 Y42.927
+G0 X109.735 Y43.982
+G0 X108.67 Y44.042
+G0 X107.677 Y43.559
+;TIME_ELAPSED:525.421923
+;LAYER:45
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E145.00792
+G1 F344.8 X107.749 Y43.169 E145.03087
+G1 F354 X107.94 Y43.111 E145.04212
+G1 F379.1 X108.658 Y43.069 E145.07998
+G1 F369.2 X108.762 Y43.044 E145.08576
+G1 F1500 E138.58576
+G0 F9000 X108.665 Y44.037
+G0 X108.665 Y44.484
+G0 X107.689 Y45.79
+G0 X107.677 Y46.79
+G1 F1500 E145.08576
+G1 F344.8 X107.749 Y47.18 E145.10871
+G1 F355.6 X107.994 Y47.243 E145.12291
+G1 F383.4 X108.608 Y47.277 E145.15492
+G1 F372.1 X108.762 Y47.305 E145.16331
+G1 F1500 E138.66331
+G0 F9000 X109.76 Y47.35
+G0 X111.044 Y47.425
+G0 X112.039 Y47.488
+G1 F1500 E145.16331
+G1 F370.9 X112.147 Y47.474 E145.16917
+G1 F380.3 X113.097 Y47.526 E145.21909
+G1 F349.9 X113.317 Y47.481 E145.2319
+G1 F343.3 X113.39 Y47.144 E145.25194
+G1 F1500 E138.75194
+G0 F9000 X113.39 Y46.15
+G0 X113.389 Y44.199
+G0 X113.389 Y43.205
+G1 F1500 E145.25194
+G1 F343.8 X113.317 Y42.869 E145.27189
+G1 F352.4 X113.043 Y42.826 E145.28759
+G1 F385.2 X112.201 Y42.873 E145.33128
+G1 F372.7 X112.039 Y42.862 E145.33997
+G1 F1500 E138.83997
+;MESH:NONMESH
+G0 F300 X112.039 Y42.862 Z9.4
+G0 F9000 X111.045 Y42.927
+G0 X109.793 Y43.974
+G0 X108.665 Y44.037
+G0 X107.664 Y43.664
+;TIME_ELAPSED:529.604673
+;LAYER:46
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E145.33997
+G1 F366.4 X107.693 Y43.415 E145.35362
+G1 F355.6 X107.743 Y43.164 E145.36799
+G1 F354 X107.934 Y43.106 E145.37924
+G1 F379.7 X108.727 Y43.06 E145.42099
+G1 F365.9 X108.854 Y43.028 E145.42813
+G1 F1500 E138.92813
+G0 F9000 X108.908 Y44.029
+G0 X108.685 Y44.579
+G0 X107.681 Y45.68
+G0 X107.664 Y46.686
+G1 F1500 E145.42813
+G1 F365.3 X107.693 Y46.988 E145.4447
+G1 F354 X107.743 Y47.185 E145.45616
+G1 F355.6 X107.988 Y47.248 E145.47036
+G1 F383.4 X108.675 Y47.286 E145.50617
+G1 F368.1 X108.854 Y47.322 E145.51607
+G1 F1500 E139.01607
+G0 F9000 X109.857 Y47.36
+G0 X110.945 Y47.425
+G0 X111.947 Y47.494
+G1 F1500 E145.51607
+G1 F367 X112.076 Y47.475 E145.52316
+G1 F379.7 X113.113 Y47.532 E145.57774
+G1 F349.9 X113.331 Y47.486 E145.59045
+G1 F343.3 X113.405 Y47.145 E145.61073
+G1 F1500 E139.11073
+G0 F9000 X113.405 Y46.15
+G0 X113.405 Y44.199
+G0 X113.405 Y43.205
+G1 F1500 E145.61073
+G1 F343.3 X113.332 Y42.863 E145.63106
+G1 F351.9 X113.059 Y42.82 E145.64673
+G1 F385.9 X112.129 Y42.872 E145.6949
+G1 F369.8 X111.946 Y42.856 E145.70482
+G1 F1500 E139.20482
+;MESH:NONMESH
+G0 F300 X111.946 Y42.856 Z9.6
+G0 F9000 X110.946 Y42.926
+G0 X109.883 Y43.965
+G0 X108.66 Y44.032
+G0 X107.645 Y43.812
+;TIME_ELAPSED:533.874895
+;LAYER:47
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E145.70482
+G1 F359.3 X107.688 Y43.409 E145.72733
+G1 F356.1 X107.738 Y43.159 E145.74162
+G1 F354 X107.929 Y43.101 E145.75287
+G1 F379.1 X108.826 Y43.049 E145.80016
+G1 F359.3 X108.986 Y43.004 E145.80939
+G1 F1500 E139.30939
+G0 F9000 X109.042 Y44.016
+G0 X108.694 Y44.717
+G0 X107.669 Y45.517
+G0 X107.645 Y46.537
+G1 F1500 E145.80939
+G1 F358.2 X107.689 Y46.994 E145.83497
+G1 F354.5 X107.737 Y47.189 E145.84628
+G1 F356.1 X107.983 Y47.253 E145.86052
+G1 F384 X108.774 Y47.297 E145.90169
+G1 F362 X108.986 Y47.345 E145.91368
+G1 F1500 E139.41368
+G0 F9000 X111.812 Y47.503
+G1 F1500 E145.91368
+G1 F362 X111.976 Y47.475 E145.92285
+G1 F380.3 X113.128 Y47.538 E145.98338
+G1 F349.9 X113.347 Y47.493 E145.99613
+G1 F343.3 X113.421 Y47.144 E146.01687
+G1 F1500 E139.51687
+G0 F9000 X113.421 Y46.15
+G0 X113.421 Y44.199
+G0 X113.421 Y43.205
+G1 F1500 E146.01687
+G1 F344.3 X113.348 Y42.856 E146.03753
+G1 F351.9 X113.075 Y42.813 E146.05321
+G1 F385.2 X112.031 Y42.872 E146.10737
+G1 F363.6 X111.812 Y42.847 E146.11947
+G1 F1500 E139.61947
+;MESH:NONMESH
+G0 F300 X111.812 Y42.847 Z9.8
+G0 F9000 X110.802 Y42.926
+G0 X110.022 Y43.952
+G0 X108.655 Y44.027
+G0 X107.636 Y44.052
+;TIME_ELAPSED:538.310089
+;LAYER:48
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E146.11947
+G1 F356.1 X107.68 Y43.779 E146.13497
+G1 F382.2 X107.682 Y43.404 E146.15455
+G1 F356.1 X107.733 Y43.155 E146.1688
+G1 F354.5 X107.924 Y43.096 E146.18005
+G1 F379.1 X108.957 Y43.037 E146.23451
+G1 F354 X109.188 Y42.978 E146.24795
+G1 F1500 E139.74795
+G0 F9000 X109.244 Y43.999
+G0 X108.648 Y45.024
+G0 X107.678 Y45.276
+G0 X107.636 Y46.299
+G1 F1500 E146.24795
+G1 F357.1 X107.682 Y46.623 E146.26623
+G1 F382.8 X107.685 Y47 E146.28589
+G1 F355.6 X107.735 Y47.196 E146.29724
+G1 F356.1 X107.978 Y47.258 E146.3113
+G1 F383.4 X108.905 Y47.31 E146.35963
+G1 F356.6 X109.188 Y47.371 E146.37583
+G1 F1500 E139.87583
+G0 F9000 X111.609 Y47.506
+G1 F1500 E146.37583
+G1 F357.1 X111.845 Y47.473 E146.38914
+G1 F380.3 X113.144 Y47.544 E146.4574
+G1 F349.3 X113.364 Y47.498 E146.47024
+G1 F342.9 X113.437 Y47.144 E146.49128
+G1 F1500 E139.99128
+G0 F9000 X113.437 Y46.15
+G0 X113.437 Y44.199
+G0 X113.437 Y43.205
+G1 F1500 E146.49128
+G1 F343.8 X113.363 Y42.851 E146.51227
+G1 F351.4 X113.091 Y42.807 E146.52791
+G1 F385.2 X111.899 Y42.874 E146.58976
+G1 F358.7 X111.608 Y42.843 E146.60604
+G1 F1500 E140.10604
+;MESH:NONMESH
+G0 F300 X111.608 Y42.843 Z10
+G0 F9000 X110.59 Y42.934
+G0 X110.221 Y43.936
+G0 X108.648 Y45.024
+G0 X107.464 Y45.083
+G0 X107.451 Y44.751
+;TIME_ELAPSED:543.030671
+;LAYER:49
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E146.60604
+G1 F668.5 X107.811 Y44.705 E146.61687
+G1 X107.811 Y44.156 E146.63326
+G1 F712.2 X107.833 Y43.969 E146.63854
+G1 F750 X107.833 Y43.625 E146.64769
+G1 F722.9 X107.834 Y43.281 E146.65719
+G1 F736.2 X107.954 Y43.245 E146.66058
+G1 F761.9 X109.137 Y43.178 E146.69162
+G1 F710.1 X109.325 Y43.146 E146.69698
+G1 F668.5 X109.727 Y43.123 E146.709
+G1 X109.733 Y42.763 E146.71975
+G1 X109.207 Y42.791 E146.73547
+G1 F689.7 X109.177 Y42.862 E146.7377
+G1 F718.6 X108.861 Y42.88 E146.74649
+G1 F731.7 X108.544 Y42.898 E146.75515
+G1 F743 X108.228 Y42.916 E146.76365
+G1 F757.1 X107.911 Y42.934 E146.77202
+G1 F710.1 X107.56 Y42.979 E146.78197
+G1 F663 X107.547 Y43.15 E146.78713
+G1 F712.2 X107.522 Y43.399 E146.79414
+G1 F757.1 X107.521 Y43.713 E146.80242
+G1 F729.5 X107.52 Y44.027 E146.81101
+G1 F691.6 X107.451 Y44.057 E146.81318
+G1 F668.5 X107.451 Y44.751 E146.83389
+G1 F1500 E140.33389
+G0 F9000 X106.606 Y44.751
+G0 X106.618 Y47.064
+G0 X106.708 Y47.692
+G0 X107.177 Y48.195
+G0 X107.864 Y48.281
+G0 X109.686 Y48.43
+G0 X109.732 Y47.587
+G1 F1500 E146.83389
+G1 F664.8 X109.726 Y47.227 E146.8447
+G1 F666.7 X109.326 Y47.204 E146.8567
+G1 F714.3 X109.086 Y47.168 E146.86348
+G1 F769.2 X107.981 Y47.106 E146.89219
+G1 F740.7 X107.835 Y47.069 E146.89625
+G1 F725.1 X107.835 Y46.751 E146.905
+G1 F752.4 X107.834 Y46.433 E146.91343
+G1 F714.3 X107.811 Y46.192 E146.9202
+G1 F668.5 X107.811 Y45.644 E146.93655
+G1 X107.451 Y45.598 E146.94739
+G1 X107.451 Y46.291 E146.96808
+G1 F691.6 X107.52 Y46.323 E146.97027
+G1 F727.3 X107.522 Y46.664 E146.97963
+G1 F754.7 X107.524 Y47.005 E146.98864
+G1 F738.5 X107.551 Y47.37 E146.99853
+G1 F740.7 X107.964 Y47.418 E147.00974
+G1 F764.3 X108.267 Y47.435 E147.01766
+G1 F750 X108.571 Y47.452 E147.02576
+G1 F736.2 X108.875 Y47.469 E147.03401
+G1 F722.9 X109.179 Y47.487 E147.04242
+G1 F691.6 X109.207 Y47.559 E147.04465
+G1 F666.7 X109.732 Y47.587 E147.06039
+G0 F9000 X111.042 Y47.66
+G1 F672.3 X111.278 Y47.673 E147.0674
+G1 F539.3 X111.527 Y47.598 E147.07703
+G1 F412.4 X111.673 Y47.468 E147.08649
+G1 F485.8 X111.298 Y47.314 E147.10314
+G1 F672.3 X111.089 Y47.303 E147.10935
+G1 F670.4 X111.042 Y47.66 E147.12007
+G0 F9000 X111.673 Y47.468
+G1 F379.7 X113.159 Y47.551 E147.19828
+G1 F349.9 X113.38 Y47.504 E147.21117
+G1 F343.3 X113.452 Y47.145 E147.23245
+G1 F1500 E140.73245
+G0 F9000 X113.452 Y46.15
+G0 X113.452 Y44.199
+G0 X113.452 Y43.205
+G1 F1500 E147.23245
+G1 F343.8 X113.38 Y42.845 E147.25376
+G1 F352.4 X113.106 Y42.801 E147.26947
+G1 F385.9 X111.726 Y42.878 E147.34096
+G1 F389.6 X111.69 Y42.873 E147.34282
+G0 F9000 X111.089 Y43.046
+G1 F668.5 X111.302 Y43.034 E147.34919
+G1 F494.8 X111.69 Y42.873 E147.36613
+G1 F423.3 X111.528 Y42.746 E147.37583
+G1 F543 X111.284 Y42.675 E147.38517
+G1 F668.5 X111.042 Y42.688 E147.39241
+G1 X111.089 Y43.046 E147.40319
+;MESH:NONMESH
+G0 F300 X111.089 Y43.046 Z10.2
+G0 F9000 X113.468 Y43.205
+;TIME_ELAPSED:547.932697
+;LAYER:50
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F343.3 X113.395 Y42.839 E147.42488
+G1 F351.9 X113.122 Y42.795 E147.44056
+G1 F385.9 X111.489 Y42.887 E147.52515
+G1 F358.7 X111.243 Y42.853 E147.53897
+G1 F334.7 X109.551 Y42.946 E147.63999
+G1 F355.6 X109.366 Y43.002 E147.65084
+G1 F379.7 X107.914 Y43.086 E147.72727
+G1 F354 X107.723 Y43.144 E147.73853
+G1 F356.1 X107.673 Y43.394 E147.75281
+G1 F382.8 X107.67 Y44.233 E147.79656
+G1 F355.6 X107.625 Y44.422 E147.80746
+G1 F333.3 X107.625 Y45.927 E147.89756
+G1 F356.6 X107.672 Y46.17 E147.91141
+G1 F383.4 X107.676 Y47.009 E147.95508
+G1 F356.6 X107.725 Y47.205 E147.96639
+G1 F357.7 X107.968 Y47.267 E147.98038
+G1 F384.6 X109.314 Y47.343 E148.05033
+G1 F356.6 X109.553 Y47.403 E148.06412
+G1 F334.3 X111.245 Y47.496 E148.16529
+G1 F356.1 X111.436 Y47.46 E148.17618
+G1 F379.7 X113.175 Y47.557 E148.26771
+G1 F349.9 X113.396 Y47.51 E148.2806
+G1 F343.3 X113.468 Y47.145 E148.30222
+G1 F1500 E141.80222
+;MESH:NONMESH
+G0 F300 X113.468 Y47.145 Z10.4
+G0 F9000 X113.468 Y46.15
+G0 X113.484 Y44.199
+G0 X113.484 Y43.205
+;TIME_ELAPSED:551.165955
+;LAYER:51
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E148.30222
+G1 F344.3 X113.411 Y42.832 E148.32425
+G1 F352.4 X113.138 Y42.789 E148.3399
+G1 F385.9 X111.133 Y42.901 E148.44376
+G1 F358.7 X110.889 Y42.868 E148.45746
+G1 F334.7 X109.907 Y42.921 E148.51609
+G1 F355.6 X109.722 Y42.977 E148.52694
+G1 F379.7 X107.908 Y43.081 E148.62242
+G1 F354 X107.717 Y43.139 E148.63367
+G1 F356.1 X107.667 Y43.389 E148.64796
+G1 F383.4 X107.665 Y44.663 E148.71428
+G1 F356.6 X107.62 Y44.851 E148.72509
+G1 F334.3 X107.62 Y45.498 E148.76372
+G1 F357.7 X107.667 Y45.74 E148.77747
+G1 F384 X107.67 Y47.014 E148.84368
+G1 F356.1 X107.719 Y47.211 E148.85506
+G1 F357.1 X107.962 Y47.272 E148.86906
+G1 F384.6 X109.67 Y47.368 E148.95782
+G1 F357.1 X109.908 Y47.428 E148.97154
+G1 F334.7 X110.89 Y47.482 E149.03017
+G1 F356.1 X111.08 Y47.446 E149.04101
+G1 F379.7 X113.191 Y47.563 E149.15211
+G1 F349.9 X113.412 Y47.516 E149.165
+G1 F343.3 X113.484 Y47.144 E149.18702
+G1 F1500 E142.68702
+;MESH:NONMESH
+G0 F300 X113.484 Y47.144 Z10.6
+G0 F9000 X113.484 Y46.15
+G0 X113.499 Y44.199
+G0 X113.499 Y43.205
+;TIME_ELAPSED:554.662921
+;LAYER:52
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E149.18702
+G1 F343.8 X113.427 Y42.826 E149.20941
+G1 F352.4 X113.154 Y42.783 E149.22506
+G1 F385.9 X112.405 Y42.824 E149.26386
+G1 F384.6 X111.655 Y42.866 E149.30283
+G1 F384 X110.905 Y42.908 E149.34187
+G1 F382.8 X110.155 Y42.95 E149.38103
+G1 F382.2 X109.405 Y42.992 E149.42026
+G1 F381.6 X108.655 Y43.034 E149.45955
+G1 F380.3 X107.905 Y43.075 E149.49896
+G1 F354 X107.712 Y43.134 E149.51033
+G1 F356.1 X107.662 Y43.384 E149.52462
+G1 F384 X107.662 Y44.595 E149.58756
+G1 F382.8 X107.663 Y45.806 E149.65069
+G1 F381.6 X107.663 Y47.017 E149.71403
+G1 F354.5 X107.712 Y47.214 E149.72546
+G1 F355.6 X107.957 Y47.277 E149.73966
+G1 F383.4 X109.269 Y47.35 E149.80805
+G1 F382.2 X110.582 Y47.423 E149.87672
+G1 F381.6 X111.895 Y47.496 E149.9455
+G1 F380.3 X113.208 Y47.569 E150.0145
+G1 F349.3 X113.427 Y47.522 E150.02729
+G1 F342.9 X113.5 Y47.144 E150.0497
+;MESH:NONMESH
+G0 F300 X113.5 Y47.144 Z10.8
+G0 F9000 X113.461 Y47.525
+;TIME_ELAPSED:557.676633
+;LAYER:53
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F331 X113.547 Y47.042 E150.07928
+G1 F333.3 X113.547 Y43.308 E150.30282
+G1 F328.3 X113.442 Y42.82 E150.33316
+G1 F351.4 X113.169 Y42.776 E150.34887
+G1 F384.6 X112.417 Y42.817 E150.38794
+G1 F383.4 X111.664 Y42.859 E150.4272
+G1 F382.8 X110.911 Y42.901 E150.46652
+G1 F381.6 X110.158 Y42.943 E150.50596
+G1 F381 X109.405 Y42.985 E150.54547
+G1 F380.3 X108.652 Y43.027 E150.58504
+G1 F379.1 X107.899 Y43.069 E150.62474
+G1 F353.5 X107.707 Y43.129 E150.63609
+G1 F356.1 X107.657 Y43.379 E150.65038
+G1 F384 X107.657 Y44.594 E150.71352
+G1 F382.8 X107.658 Y45.809 E150.77687
+G1 F381.6 X107.659 Y47.024 E150.84041
+G1 F354.5 X107.707 Y47.218 E150.85166
+G1 F356.6 X107.953 Y47.281 E150.86588
+G1 F385.9 X108.705 Y47.323 E150.90483
+G1 F384.6 X109.458 Y47.365 E150.94396
+G1 F384 X110.211 Y47.407 E150.98315
+G1 F382.8 X110.964 Y47.449 E151.02247
+G1 F382.2 X111.717 Y47.491 E151.06185
+G1 F381.6 X112.47 Y47.533 E151.1013
+G1 F380.3 X113.222 Y47.575 E151.14081
+G1 F352.4 X113.461 Y47.525 E151.15464
+;MESH:NONMESH
+G0 F300 X113.461 Y47.525 Z11
+G0 F9000 X113.477 Y47.531
+;TIME_ELAPSED:561.074220
+;LAYER:54
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F331 X113.563 Y47.042 E151.18457
+G1 F333.3 X113.563 Y43.308 E151.40812
+G1 F356.1 X113.515 Y43.065 E151.422
+G1 F350.4 X113.458 Y42.814 E151.43666
+G1 F351.4 X113.185 Y42.77 E151.45237
+G1 F384.6 X110.8 Y42.903 E151.57631
+G1 F384 X108.414 Y43.036 E151.7005
+G1 F380.3 X108.157 Y43.047 E151.71399
+G1 F374.4 X107.9 Y43.058 E151.7277
+G1 F339.9 X107.671 Y43.126 E151.74173
+G1 F332.9 X107.625 Y43.375 E151.75691
+G1 F354.5 X107.625 Y44.29 E151.80842
+G1 F353.5 X107.626 Y45.205 E151.86008
+G1 F352.4 X107.626 Y46.12 E151.91189
+G1 F351.4 X107.627 Y47.035 E151.96385
+G1 F331 X107.67 Y47.221 E151.97536
+G1 F342.4 X107.915 Y47.289 E151.99018
+G1 F378 X109.689 Y47.386 E152.08399
+G1 F378.5 X111.463 Y47.483 E152.17765
+G1 F379.7 X113.238 Y47.58 E152.27107
+G1 F352.4 X113.477 Y47.531 E152.28488
+;MESH:NONMESH
+G0 F300 X113.477 Y47.531 Z11.2
+G0 F9000 X113.366 Y47.404
+;TIME_ELAPSED:564.568245
+;LAYER:55
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F705.9 X113.237 Y47.43 E152.2886
+G1 F761.9 X110.357 Y47.271 E152.36415
+G1 F759.5 X110.08 Y47.259 E152.37144
+G1 F745.3 X109.802 Y47.246 E152.37889
+G1 F733.9 X109.524 Y47.234 E152.38645
+G1 F720.7 X109.247 Y47.221 E152.39413
+G1 F697.7 X108.971 Y47.214 E152.40203
+G1 F663 X108.695 Y47.207 E152.41034
+G1 F631.6 X108.419 Y47.2 E152.41906
+G1 F582.5 X108.17 Y47.21 E152.4276
+G1 F535.7 X107.891 Y47.202 E152.438
+G1 F479 X107.756 Y47.16 E152.44389
+G1 F472.4 X107.723 Y47.021 E152.44992
+G1 F504.2 X107.723 Y45.804 E152.49809
+G1 F506.3 X107.723 Y44.587 E152.54606
+G1 F508.5 X107.722 Y43.37 E152.59382
+G1 F474.3 X107.757 Y43.189 E152.60158
+G1 F502.1 X107.983 Y43.135 E152.61081
+G1 F588.2 X108.24 Y43.142 E152.61953
+G1 F615.4 X108.497 Y43.15 E152.62787
+G1 F648.6 X108.86 Y43.141 E152.63904
+G1 F689.7 X109.223 Y43.131 E152.64955
+G1 F718.6 X109.496 Y43.119 E152.65714
+G1 F729.5 X109.771 Y43.106 E152.66467
+G1 F740.7 X110.046 Y43.093 E152.67209
+G1 F752.4 X110.321 Y43.08 E152.67939
+G1 F764.3 X110.596 Y43.067 E152.68658
+G1 F769.2 X113.209 Y42.92 E152.75448
+G1 F710.1 X113.363 Y42.945 E152.75886
+G1 F663 X113.398 Y43.369 E152.77167
+G1 F666.7 X113.398 Y46.984 E152.87988
+G1 F663 X113.366 Y47.404 E152.89256
+G0 F9000 X113.638 Y47.735
+G1 F655.7 X113.7 Y47.109 E152.9117
+G1 F663 X113.758 Y47.081 E152.91364
+G1 F666.7 X113.758 Y43.27 E153.02772
+G1 X113.711 Y43.248 E153.02927
+G1 F714.3 X113.688 Y43.076 E153.03412
+G1 F750 X113.64 Y42.633 E153.04598
+G1 F752.4 X113.193 Y42.608 E153.05785
+G1 F769.2 X110.577 Y42.754 E153.12582
+G1 F764.3 X110.171 Y42.77 E153.13643
+G1 F752.4 X109.765 Y42.786 E153.14721
+G1 F733.9 X109.476 Y42.787 E153.15507
+G1 F712.2 X109.186 Y42.788 E153.16319
+G1 F691.6 X108.896 Y42.79 E153.17156
+G1 F646.9 X108.463 Y42.766 E153.18494
+G1 F576.9 X108.153 Y42.698 E153.19592
+G1 F527.5 X107.756 Y42.693 E153.21094
+G1 F476.2 X107.376 Y42.759 E153.2271
+G1 F444.4 X107.306 Y42.831 E153.23161
+G1 X107.286 Y43.008 E153.23961
+G1 F474.3 X107.251 Y43.37 E153.25491
+G1 F508.5 X107.251 Y44.601 E153.30322
+G1 F506.3 X107.251 Y45.832 E153.35174
+G1 F504.2 X107.251 Y47.063 E153.40046
+G1 F472.4 X107.284 Y47.339 E153.41221
+G1 F444.4 X107.284 Y47.474 E153.41827
+G1 X107.328 Y47.548 E153.42213
+G1 X107.442 Y47.607 E153.4279
+G1 X107.549 Y47.609 E153.4327
+G1 F479 X107.831 Y47.654 E153.4446
+G1 F535.7 X108.205 Y47.64 E153.45854
+G1 F574.2 X108.384 Y47.59 E153.465
+G1 F631.6 X108.788 Y47.563 E153.47779
+G1 F691.6 X109.252 Y47.556 E153.49118
+G1 F725.1 X109.579 Y47.562 E153.50018
+G1 F743 X109.906 Y47.568 E153.50897
+G1 F759.5 X110.347 Y47.585 E153.52056
+G1 F766.8 X111.796 Y47.664 E153.55833
+G1 F761.9 X113.246 Y47.743 E153.59637
+G1 F703.8 X113.638 Y47.735 E153.60748
+G1 F1500 E147.10748
+;MESH:NONMESH
+G0 F300 X113.638 Y47.735 Z11.4
+G0 F9000 X113.592 Y48.585
+G0 X109.289 Y48.39
+G0 X109.291 Y47.761
+;TIME_ELAPSED:569.256434
+;LAYER:56
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E153.60748
+G1 F518.4 X109.625 Y47.769 E153.62035
+G1 F525.2 X109.959 Y47.777 E153.63304
+G1 F538.1 X110.267 Y47.766 E153.64447
+G1 F560.7 X110.385 Y47.728 E153.64888
+G1 F613.8 X110.798 Y47.686 E153.66238
+G1 F672.3 X111.094 Y47.682 E153.67117
+G1 F703.8 X111.39 Y47.677 E153.67956
+G1 F727.3 X111.708 Y47.684 E153.68829
+G1 F740.7 X112.027 Y47.692 E153.69689
+G1 F757.1 X112.346 Y47.7 E153.7053
+G1 F761.9 X113.263 Y47.75 E153.72935
+G1 F697.7 X113.671 Y47.743 E153.74102
+G1 F699.7 X113.704 Y47.333 E153.75276
+G1 F764.3 X113.704 Y45.201 E153.80842
+G1 F766.8 X113.705 Y43.069 E153.86391
+G1 F750 X113.657 Y42.625 E153.87579
+G1 X113.209 Y42.6 E153.88773
+G1 F764.3 X112.239 Y42.652 E153.91309
+G1 F754.7 X111.939 Y42.659 E153.92103
+G1 F738.5 X111.639 Y42.666 E153.92914
+G1 F722.9 X111.339 Y42.673 E153.93742
+G1 F691.6 X110.977 Y42.665 E153.94787
+G1 F650.4 X110.614 Y42.657 E153.95901
+G1 F585.4 X110.235 Y42.577 E153.97221
+G1 F539.3 X109.968 Y42.576 E153.98209
+G1 F527.5 X109.701 Y42.574 E153.99219
+G1 F517.2 X109.235 Y42.592 E154.01019
+G1 F511.7 X107.833 Y42.673 E154.06495
+G1 F490.8 X107.365 Y42.76 E154.08431
+G1 F455.4 X107.28 Y42.841 E154.08945
+G1 F438.8 X107.267 Y43.004 E154.09689
+G1 F467.8 X107.234 Y43.365 E154.11235
+G1 F499 X107.234 Y45.217 E154.18642
+G1 F496.9 X107.235 Y47.069 E154.2608
+G1 F466 X107.267 Y47.346 E154.27274
+G1 F438.8 X107.268 Y47.41 E154.27566
+G1 X107.303 Y47.538 E154.28169
+G1 X107.402 Y47.612 E154.28731
+G1 X107.525 Y47.619 E154.29292
+G1 F474.3 X107.914 Y47.683 E154.3095
+G1 F515 X109.291 Y47.761 E154.36295
+G1 F1500 E147.86295
+G0 F9000 X109.3 Y47.495
+G0 X110.409 Y47.523
+G0 X110.888 Y48.529
+G0 X113.301 Y48.574
+G0 X113.362 Y47.413
+G1 F1500 E154.36295
+G1 F697.7 X113.253 Y47.437 E154.36614
+G1 F752.4 X112.786 Y47.414 E154.37854
+G1 F743 X112.318 Y47.391 E154.39112
+G1 F733.9 X111.851 Y47.368 E154.40384
+G1 F725.1 X111.383 Y47.344 E154.41674
+G1 F703.8 X111.078 Y47.335 E154.42539
+G1 F672.3 X110.773 Y47.325 E154.43445
+G1 F626.6 X110.415 Y47.324 E154.44585
+G1 F571.4 X110.23 Y47.332 E154.45231
+G1 F543 X109.924 Y47.32 E154.46357
+G1 F531 X109.618 Y47.308 E154.47508
+G1 F519.5 X109.312 Y47.296 E154.48684
+G1 F515 X107.94 Y47.217 E154.54009
+G1 F474.3 X107.747 Y47.166 E154.54849
+G1 F466 X107.714 Y47.027 E154.55461
+G1 F496.9 X107.714 Y45.196 E154.62815
+G1 F499 X107.713 Y43.365 E154.70138
+G1 F467.8 X107.747 Y43.184 E154.70923
+G1 F472.4 X107.899 Y43.136 E154.71597
+G1 F511.7 X109.26 Y43.058 E154.76913
+G1 F518.4 X109.578 Y43.045 E154.78138
+G1 F528.6 X109.896 Y43.032 E154.7934
+G1 F540.5 X110.214 Y43.018 E154.80515
+G1 F592.6 X110.66 Y43.029 E154.82017
+G1 F657.5 X110.924 Y43.019 E154.82819
+G1 F674.2 X111.189 Y43.009 E154.83604
+G1 F691.6 X111.454 Y42.999 E154.84369
+G1 F712.2 X111.719 Y42.989 E154.85112
+G1 F731.7 X111.984 Y42.979 E154.85835
+G1 F752.4 X112.249 Y42.968 E154.86539
+G1 F764.3 X113.225 Y42.914 E154.89091
+G1 F701.8 X113.362 Y42.935 E154.89485
+G1 X113.391 Y43.07 E154.89878
+G1 F766.8 X113.391 Y45.188 E154.9539
+G1 F764.3 X113.39 Y47.306 E155.0092
+G1 F699.7 X113.362 Y47.413 E155.01236
+;MESH:NONMESH
+G0 F300 X113.362 Y47.413 Z11.6
+G0 F9000 X112.048 Y47.524
+;TIME_ELAPSED:574.904416
+;LAYER:57
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F601 X112.311 Y47.496 E155.02115
+G1 X112.623 Y47.414 E155.03188
+G1 X113.282 Y47.358 E155.05388
+G1 X113.283 Y42.983 E155.19939
+G1 X112.891 Y42.963 E155.21245
+G1 X112.554 Y42.93 E155.22371
+G1 X112.214 Y42.827 E155.23553
+G1 X111.71 Y42.824 E155.25229
+G1 X111.297 Y42.838 E155.26603
+G1 X107.576 Y43.056 E155.39001
+G1 X107.58 Y47.295 E155.531
+G1 X111.383 Y47.514 E155.65769
+G1 X111.691 Y47.524 E155.66794
+G1 X112.048 Y47.524 E155.67982
+G0 F9000 X112.069 Y47.924
+;TYPE:WALL-OUTER
+G1 F601 X112.391 Y47.89 E155.69059
+G1 X112.658 Y47.813 E155.69983
+G1 X113.104 Y47.774 E155.71472
+G1 X113.682 Y47.763 E155.73395
+G1 X113.681 Y42.602 E155.9056
+G1 X112.93 Y42.565 E155.93061
+G1 X112.569 Y42.53 E155.94268
+G1 X112.286 Y42.427 E155.95269
+G1 X111.696 Y42.424 E155.97232
+G1 X111.283 Y42.438 E155.98606
+G1 X107.389 Y42.665 E156.1158
+G1 X107.249 Y42.731 E156.12094
+G1 X107.175 Y42.917 E156.1276
+G1 X107.18 Y47.478 E156.2793
+G1 X107.22 Y47.577 E156.28285
+G1 X107.368 Y47.684 E156.28893
+G1 X111.365 Y47.914 E156.42209
+G1 X111.685 Y47.924 E156.43274
+G1 X112.069 Y47.924 E156.44551
+G0 F9000 X112.152 Y47.163
+;TYPE:SKIN
+G1 F601 X112.594 Y47.055 E156.46064
+G1 X112.922 Y47.028 E156.47159
+G1 X112.922 Y43.322 E156.59485
+G1 X112.482 Y43.282 E156.60954
+G1 X112.158 Y43.187 E156.62077
+G1 X111.697 Y43.185 E156.63611
+G1 X111.295 Y43.199 E156.64949
+G1 X107.937 Y43.394 E156.76136
+G1 X107.94 Y46.956 E156.87983
+G1 X111.363 Y47.151 E156.99387
+G1 X111.671 Y47.163 E157.00412
+G1 X112.152 Y47.163 E157.02012
+G0 F9000 X112.183 Y47.408
+G0 X113.11 Y47.202
+G0 X113.182 Y46.235
+G0 X112.721 Y46.236
+G1 F601 X111.994 Y46.963 E157.05431
+G0 F9000 X111.437 Y46.954
+G1 F601 X112.721 Y45.67 E157.11471
+G0 F9000 X112.721 Y45.104
+G1 F601 X110.901 Y46.925 E157.20034
+G0 F9000 X110.365 Y46.894
+G1 F601 X112.721 Y44.539 E157.31114
+G0 F9000 X112.721 Y43.973
+G1 F601 X109.831 Y46.863 E157.44707
+G0 F9000 X109.296 Y46.833
+G1 F601 X112.632 Y43.496 E157.60401
+G0 F9000 X112.165 Y43.397
+G1 F601 X108.76 Y46.802 E157.76417
+G0 F9000 X108.225 Y46.772
+G1 F601 X111.609 Y43.388 E157.92334
+G0 F9000 X111.016 Y43.415
+G1 F601 X108.139 Y46.292 E158.05867
+G0 F9000 X108.138 Y45.727
+G1 F601 X110.416 Y43.45 E158.1658
+G0 F9000 X109.815 Y43.485
+G1 F601 X108.137 Y45.162 E158.2447
+G0 F9000 X108.137 Y44.597
+G1 F601 X109.214 Y43.52 E158.29536
+G0 F9000 X108.614 Y43.554
+G1 F601 X108.137 Y44.032 E158.31782
+;MESH:NONMESH
+G0 F300 X108.137 Y44.032 Z11.8
+G0 F9000 X107.676 Y44.032
+G0 X107.751 Y47.133
+G0 X112.095 Y47.357
+G0 X112.983 Y47.282
+G0 X113.54 Y47.638
+;TIME_ELAPSED:586.352776
+;LAYER:58
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F662.1 X113.541 Y42.708 E158.48179
+G1 X107.556 Y43.053 E158.68118
+G1 X107.556 Y44.693 E158.73573
+G1 X107.64 Y44.545 E158.74139
+G1 X107.824 Y44.354 E158.75021
+G1 X108.048 Y44.208 E158.75911
+G1 X108.279 Y44.127 E158.76725
+G1 X108.595 Y44.115 E158.77777
+G1 X108.884 Y44.194 E158.78773
+G1 X109.143 Y44.343 E158.79767
+G1 X109.367 Y44.571 E158.8083
+G1 X109.539 Y44.976 E158.82293
+G1 X109.559 Y45.333 E158.83483
+G1 X109.401 Y45.714 E158.84854
+G1 X109.168 Y46.022 E158.86139
+G1 X108.833 Y46.177 E158.87367
+G1 X108.458 Y46.25 E158.88637
+G1 X108.131 Y46.177 E158.89752
+G1 X107.867 Y46.026 E158.90763
+G1 X107.654 Y45.817 E158.91756
+G1 X107.556 Y45.631 E158.92455
+G1 X107.557 Y47.295 E158.9799
+G1 X113.54 Y47.638 E159.17922
+G0 F9000 X113.773 Y48.044
+;TYPE:WALL-OUTER
+G1 F662.1 X113.94 Y47.879 E159.18703
+G1 X113.941 Y42.5 E159.36593
+G1 X113.844 Y42.348 E159.37193
+G1 X113.737 Y42.308 E159.37573
+G1 X113.289 Y42.321 E159.39064
+G1 X107.321 Y42.666 E159.58946
+G1 X107.192 Y42.787 E159.59535
+G1 X107.156 Y42.925 E159.60009
+G1 X107.156 Y44.511 E159.65284
+G1 F599.2 X107.197 Y44.805 E159.66375
+G1 F541.6 X107.249 Y45.079 E159.67509
+G1 F564.7 X107.178 Y45.489 E159.69132
+G1 F627.6 X107.156 Y45.858 E159.70429
+G1 F662.1 X107.157 Y47.453 E159.75734
+G1 X107.236 Y47.623 E159.76357
+G1 X107.384 Y47.687 E159.76894
+G1 X113.449 Y48.036 E159.97099
+G1 X113.773 Y48.044 E159.98177
+G1 F1500 E153.48177
+G0 F9000 X113.263 Y47.523
+G0 X107.728 Y47.133
+G0 X107.737 Y46.151
+G0 X108.111 Y46.066
+G1 F1500 E159.98177
+G0 F9000 X108.19 Y45.782
+G1 F636.6 X107.871 Y45.47 E159.99721
+G1 F551.8 X107.761 Y45.171 E160.00992
+G1 F488.6 X107.764 Y45.048 E160.01547
+G1 F514.3 X107.84 Y44.895 E160.02278
+G1 F599.2 X107.928 Y44.823 E160.02696
+G1 F662.1 X108.112 Y44.632 E160.03578
+G1 X108.37 Y44.517 E160.04518
+G1 X108.684 Y44.541 E160.05565
+G1 X108.943 Y44.69 E160.06559
+G1 X109.117 Y44.943 E160.0758
+G1 X109.165 Y45.237 E160.08571
+G1 X109.008 Y45.617 E160.09939
+G1 X108.754 Y45.785 E160.10951
+G1 X108.475 Y45.84 E160.11897
+G1 F653.9 X108.19 Y45.782 E160.12877
+G0 F9000 X108.111 Y46.066
+G0 X107.737 Y46.151
+G0 X107.728 Y47.133
+G0 X113.367 Y47.458
+G0 X113.18 Y47.258
+;TYPE:SKIN
+G1 F662.1 X113.18 Y43.093 E160.2673
+G1 X109.08 Y43.326 E160.40388
+G1 F653.9 X108.691 Y43.354 E160.41702
+G1 X108.563 Y43.355 E160.42133
+G1 F660.5 X107.918 Y43.394 E160.44287
+G1 F657.2 X107.922 Y43.865 E160.45866
+G1 X108.179 Y43.778 E160.46775
+G1 F652.3 X108.647 Y43.757 E160.48356
+G1 F653.9 X109.067 Y43.884 E160.49834
+G1 F662.1 X109.342 Y44.039 E160.50884
+G1 X109.746 Y44.451 E160.52803
+G1 X109.898 Y44.928 E160.54468
+G1 X109.92 Y45.402 E160.56046
+G1 X109.729 Y45.871 E160.57731
+G1 X109.399 Y46.306 E160.59547
+G1 X108.924 Y46.528 E160.61291
+G1 F663.8 X108.462 Y46.612 E160.62849
+G1 F657.2 X108.05 Y46.532 E160.64255
+G1 F649.1 X107.922 Y46.469 E160.64739
+G1 X107.922 Y46.951 E160.66374
+G1 F658.8 X108.174 Y46.971 E160.67219
+G1 F675.6 X108.426 Y46.992 E160.68043
+G1 F679.1 X108.735 Y47.005 E160.69046
+G1 F668.8 X109.044 Y47.019 E160.70065
+G1 F662.1 X113.18 Y47.258 E160.83844
+G0 F9000 X113.44 Y47.257
+G0 X113.369 Y42.893
+G0 X112.865 Y42.848
+G0 X112.89 Y43.31
+G1 F662.1 X112.979 Y43.4 E160.84265
+G0 F9000 X112.979 Y43.965
+G1 F662.1 X112.355 Y43.341 E160.872
+G0 F9000 X111.819 Y43.371
+G1 F662.1 X112.979 Y44.531 E160.92656
+G0 F9000 X112.979 Y45.097
+G1 F662.1 X111.284 Y43.402 E161.00629
+G0 F9000 X110.748 Y43.431
+G1 F662.1 X112.979 Y45.662 E161.11123
+G0 F9000 X112.979 Y46.228
+G1 F662.1 X110.213 Y43.462 E161.24134
+G0 F9000 X109.677 Y43.492
+G1 F662.1 X112.979 Y46.794 E161.39665
+G0 F9000 X112.645 Y47.026
+G1 F662.1 X109.142 Y43.523 E161.56142
+G0 F9000 X108.819 Y43.08
+G0 X107.727 Y43.215
+G0 X107.738 Y44.201
+G0 X109.002 Y44.238
+G0 X109.651 Y45.096
+G0 X110.102 Y45.048
+G1 F662.1 X112.045 Y46.991 E161.65281
+G0 F9000 X111.444 Y46.956
+G1 F662.1 X110.063 Y45.575 E161.71777
+G0 F9000 X109.898 Y45.976
+G1 F662.1 X110.844 Y46.922 E161.76227
+G0 F9000 X110.244 Y46.887
+G1 F662.1 X109.653 Y46.297 E161.79005
+G0 F9000 X109.343 Y46.552
+G1 F662.1 X109.643 Y46.852 E161.80416
+G0 F9000 X109.043 Y46.818
+G1 F662.1 X108.951 Y46.726 E161.80848
+;MESH:NONMESH
+G0 F300 X108.951 Y46.726 Z12
+G0 F9000 X108.759 Y46.294
+G0 X107.737 Y46.151
+G0 X107.728 Y47.133
+G0 X113.555 Y47.64
+;TIME_ELAPSED:599.035424
+;LAYER:59
+;TYPE:WALL-INNER
+;MESH:3DBenchy.stl
+G1 F650.3 X113.555 Y42.71 E161.97246
+G1 X107.897 Y43.034 E162.16095
+G1 X107.604 Y43.064 E162.17075
+G1 X107.604 Y44.623 E162.2226
+G1 X107.733 Y44.436 E162.23016
+G1 X107.941 Y44.27 E162.23901
+G1 X108.24 Y44.144 E162.2498
+G1 X108.578 Y44.123 E162.26106
+G1 X108.931 Y44.211 E162.27316
+G1 X109.159 Y44.352 E162.28208
+G1 X109.396 Y44.628 E162.29418
+G1 X109.558 Y45.011 E162.30801
+G1 X109.541 Y45.362 E162.3197
+G1 X109.471 Y45.592 E162.32769
+G1 X109.223 Y45.95 E162.34218
+G1 X108.899 Y46.16 E162.35502
+G1 X108.589 Y46.246 E162.36572
+G1 X108.255 Y46.216 E162.37687
+G1 X107.973 Y46.108 E162.38692
+G1 X107.753 Y45.93 E162.39633
+G1 X107.603 Y45.733 E162.40457
+G1 X107.603 Y47.283 E162.45612
+G1 X108.006 Y47.322 E162.46959
+G1 X113.555 Y47.64 E162.65445
+G0 F9000 X113.911 Y47.947
+;TYPE:WALL-OUTER
+G1 F650.3 X113.955 Y47.815 E162.65908
+G1 X113.955 Y42.539 E162.83456
+G1 X113.898 Y42.384 E162.84005
+G1 X113.736 Y42.299 E162.84613
+G1 X107.887 Y42.633 E163.04099
+G1 X107.359 Y42.687 E163.05864
+G1 X107.284 Y42.734 E163.06159
+G1 X107.204 Y42.896 E163.0676
+G1 X107.204 Y44.374 E163.11675
+G1 F619.3 X107.224 Y44.729 E163.12917
+G1 F539.6 X107.266 Y44.994 E163.13993
+G1 F495.4 X107.266 Y45.405 E163.15787
+G1 F540.8 X107.221 Y45.682 E163.16909
+G1 F622.3 X107.203 Y45.98 E163.17947
+G1 F650.3 X107.202 Y47.468 E163.22896
+G1 X107.333 Y47.658 E163.23663
+G1 X108 Y47.724 E163.25893
+G1 X113.726 Y48.05 E163.44968
+G1 X113.911 Y47.947 E163.45673
+G1 F1500 E156.95673
+G0 F9000 X113.665 Y47.765
+G0 X107.774 Y47.128
+G0 X107.786 Y46.184
+G1 F1500 E163.45673
+G0 F9000 X108.11 Y45.731
+G1 F526.5 X107.789 Y45.367 E163.47666
+G1 F501.2 X107.771 Y45.196 E163.48408
+G1 F502.1 X107.776 Y45.076 E163.48925
+G1 F551.1 X107.915 Y44.803 E163.50128
+G1 F626.8 X108.24 Y44.544 E163.51562
+G1 F642.2 X108.602 Y44.522 E163.52783
+G1 F650.3 X108.721 Y44.551 E163.5319
+G1 X108.949 Y44.692 E163.54082
+G1 X109.028 Y44.784 E163.54485
+G1 X109.165 Y45.108 E163.55655
+G1 X109.119 Y45.401 E163.56642
+G1 X108.973 Y45.638 E163.57568
+G1 X108.777 Y45.779 E163.58371
+G1 X108.577 Y45.839 E163.59065
+G1 X108.32 Y45.821 E163.59922
+G1 F603.5 X108.11 Y45.731 E163.60741
+G0 F9000 X108.016 Y46.239
+G0 X107.774 Y47.128
+G0 X113.382 Y47.458
+G0 X113.195 Y47.258
+;TYPE:SKIN
+G1 F650.3 X113.195 Y43.093 E163.74594
+G1 X109.275 Y43.316 E163.87653
+G1 F640.7 X108.653 Y43.358 E163.89757
+G1 F637.5 X107.967 Y43.393 E163.92088
+G1 F643.8 X107.966 Y43.874 E163.93704
+G1 X108.196 Y43.784 E163.94533
+G1 F637.5 X108.614 Y43.763 E163.95953
+G1 F640.7 X109.095 Y43.89 E163.97633
+G1 F650.3 X109.37 Y44.059 E163.98706
+G1 X109.718 Y44.464 E164.00482
+G1 X109.918 Y44.937 E164.0219
+G1 X109.9 Y45.391 E164.03701
+G1 X109.762 Y45.86 E164.05327
+G1 X109.4 Y46.297 E164.07215
+G1 X108.999 Y46.507 E164.0872
+G1 F651.9 X108.619 Y46.606 E164.10023
+G1 X108.196 Y46.571 E164.11431
+G1 F648.7 X107.964 Y46.488 E164.12253
+G1 X107.963 Y46.955 E164.1381
+G1 F655.2 X108.562 Y46.997 E164.15792
+G1 F660.2 X109.72 Y47.062 E164.19592
+G1 F656.8 X110.878 Y47.127 E164.23411
+G1 F655.2 X112.036 Y47.192 E164.2724
+G1 F651.9 X113.195 Y47.258 E164.31091
+G0 F9000 X112.503 Y47.019
+G1 F650.3 X112.994 Y46.529 E164.33398
+G0 F9000 X112.994 Y45.963
+G1 F650.3 X111.967 Y46.99 E164.38229
+G0 F9000 X111.432 Y46.959
+G1 F650.3 X112.994 Y45.397 E164.45576
+G0 F9000 X112.994 Y44.831
+G1 F650.3 X110.896 Y46.929 E164.55444
+G0 F9000 X110.36 Y46.9
+G1 F650.3 X112.994 Y44.266 E164.67834
+G0 F9000 X112.994 Y43.7
+G1 F650.3 X109.824 Y46.87 E164.82745
+G0 F9000 X109.288 Y46.84
+G1 F650.3 X112.814 Y43.314 E164.9933
+G0 F9000 X112.214 Y43.349
+G1 F650.3 X110.088 Y45.475 E165.0933
+G0 F9000 X110.112 Y44.885
+G1 F650.3 X111.614 Y43.383 E165.16395
+G0 F9000 X111.014 Y43.417
+G1 F650.3 X109.944 Y44.487 E165.21428
+G0 F9000 X109.713 Y44.152
+G1 F650.3 X110.414 Y43.452 E165.24723
+G0 F9000 X109.814 Y43.486
+G1 F650.3 X109.435 Y43.865 E165.26506
+G0 F9000 X109.214 Y43.521
+G1 F650.3 X109.06 Y43.674 E165.27228
+;MESH:NONMESH
+G0 F300 X109.06 Y43.674 Z12.2
+G0 F9000 X108.841 Y44.596
+;TIME_ELAPSED:610.891867
+;LAYER:60
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F591.1 X108.612 Y44.516 E165.28046
+G1 F582.5 X108.354 Y44.523 E165.28931
+G1 F566 X108.125 Y44.62 E165.29807
+G1 F579.7 X107.94 Y44.793 E165.30679
+G1 F591.1 X107.819 Y45.069 E165.31697
+G1 F586.8 X107.875 Y45.477 E165.33097
+G1 F592.6 X108.139 Y45.744 E165.34362
+G1 F579.7 X108.411 Y45.833 E165.35347
+G1 F567.4 X108.66 Y45.821 E165.36224
+G1 F576.9 X108.845 Y45.75 E165.36909
+G0 F9000 X109.413 Y45.751
+G0 X109.686 Y47.235
+G0 X113.259 Y47.522
+G0 X113.536 Y47.64
+;TYPE:WALL-INNER
+G1 F600 X113.535 Y42.704 E165.53326
+G1 X109.971 Y42.914 E165.65201
+G1 X109.511 Y42.962 E165.66739
+G1 X109.511 Y44.472 E165.71761
+G1 X109.435 Y44.686 E165.72517
+G1 X109.47 Y44.741 E165.72734
+G1 X109.568 Y45.073 E165.73885
+G1 X109.525 Y45.455 E165.75163
+G1 X109.434 Y45.66 E165.75909
+G1 X109.515 Y45.875 E165.76674
+G1 X109.515 Y47.385 E165.81696
+G1 X110.084 Y47.444 E165.83599
+G1 X113.536 Y47.64 E165.95098
+G0 F9000 X113.866 Y47.975
+;TYPE:WALL-OUTER
+G1 F600 X113.936 Y47.867 E165.95526
+G1 X113.934 Y42.525 E166.13294
+G1 X113.855 Y42.367 E166.13882
+G1 X113.705 Y42.294 E166.14436
+G1 X109.965 Y42.513 E166.26897
+G1 X109.48 Y42.561 E166.28518
+G1 X109.11 Y42.629 E166.29769
+G1 X109.114 Y44.422 E166.35733
+G1 X109.064 Y44.536 E166.36147
+G1 F595.5 X108.853 Y44.598 E166.36884
+G1 F594.1 X109.096 Y44.876 E166.38124
+G1 F598.5 X109.161 Y45.134 E166.39011
+G1 F600 X109.137 Y45.355 E166.39751
+G1 F595.5 X108.977 Y45.64 E166.40846
+G1 F585.4 X108.845 Y45.75 E166.41432
+G1 X108.993 Y45.758 E166.41937
+G1 F595.5 X109.112 Y45.913 E166.42592
+G1 F600 X109.115 Y47.729 E166.48632
+G1 X109.543 Y47.795 E166.50072
+G1 X110.072 Y47.844 E166.51839
+G1 X113.701 Y48.05 E166.63929
+G1 X113.866 Y47.975 E166.64532
+G0 F9000 X113.176 Y47.257
+;TYPE:SKIN
+G1 F600 X113.175 Y43.088 E166.78398
+G1 X109.872 Y43.281 E166.89402
+G1 X109.87 Y44.506 E166.93477
+G1 X109.828 Y44.68 E166.94072
+G1 X109.932 Y45.037 E166.95309
+G1 X109.88 Y45.523 E166.96934
+G1 X109.828 Y45.669 E166.9745
+G1 X109.872 Y45.854 E166.98082
+G1 X109.876 Y47.07 E167.02127
+G1 X113.176 Y47.257 E167.1312
+G0 F9000 X113.161 Y47.517
+G0 X109.686 Y47.235
+G0 X109.615 Y46.716
+G0 X110.073 Y46.717
+G1 F600 X110.244 Y46.887 E167.13922
+G0 F9000 X110.844 Y46.922
+G1 F600 X110.07 Y46.147 E167.17565
+G0 F9000 X110.067 Y45.579
+G1 F600 X111.444 Y46.956 E167.24042
+G0 F9000 X112.044 Y46.99
+G1 F600 X110.126 Y45.073 E167.33062
+G0 F9000 X110.068 Y44.449
+G1 F600 X112.644 Y47.025 E167.45178
+G0 F9000 X112.975 Y46.789
+G1 F600 X110.069 Y43.884 E167.58845
+G0 F9000 X110.213 Y43.462
+G1 F600 X112.975 Y46.224 E167.71836
+G0 F9000 X112.975 Y45.658
+G1 F600 X110.747 Y43.431 E167.82314
+G0 F9000 X111.281 Y43.399
+G1 F600 X112.975 Y45.092 E167.9028
+G0 F9000 X112.975 Y44.527
+G1 F600 X111.816 Y43.368 E167.95731
+G0 F9000 X112.35 Y43.337
+G1 F600 X112.975 Y43.961 E167.98669
+G0 F9000 X112.975 Y43.395
+G1 F600 X112.885 Y43.306 E167.9909
+;MESH:NONMESH
+G0 F300 X112.885 Y43.306 Z12.4
+G0 F9000 X112.859 Y42.844
+G0 X109.683 Y43.115
+G0 X109.413 Y45.774
+G0 X108.807 Y45.773
+;TIME_ELAPSED:620.851864
+;LAYER:61
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F581.1 X109.082 Y45.503 E168.00413
+G1 F567.4 X109.155 Y45.274 E168.01259
+G1 F576.9 X109.142 Y45 E168.02207
+G1 F568.7 X109.053 Y44.802 E168.02969
+G1 F563.4 X108.763 Y44.554 E168.04321
+G1 F572.8 X108.376 Y44.498 E168.05683
+G1 F571.4 X108.019 Y44.68 E168.07082
+G1 F576.9 X107.833 Y45.031 E168.08457
+G1 F560.7 X107.83 Y45.228 E168.09158
+G1 F551.7 X107.859 Y45.389 E168.09749
+G1 F558.1 X108.002 Y45.629 E168.10748
+G1 F570.1 X108.134 Y45.749 E168.11373
+G1 F578.3 X108.316 Y45.828 E168.12057
+G1 F568.7 X108.512 Y45.844 E168.12748
+G1 F574.2 X108.807 Y45.773 E168.13802
+G1 F1500 E161.63802
+G0 F9000 X111.409 Y46.183
+G0 X113.517 Y47.642
+;TYPE:WALL-INNER
+G1 F1500 E168.13802
+G1 F600 X113.516 Y42.705 E168.30223
+G1 X112.248 Y42.779 E168.34447
+G1 X111.587 Y42.841 E168.36655
+G1 X111.583 Y43.461 E168.38718
+G1 X111.59 Y44.211 E168.41212
+G1 X111.583 Y44.3 E168.41509
+G1 X111.583 Y46.08 E168.47429
+G1 X111.591 Y46.196 E168.47816
+G1 X111.587 Y46.886 E168.50111
+G1 X111.593 Y47.506 E168.52173
+G1 X112.112 Y47.561 E168.53909
+G1 X113.517 Y47.642 E168.5859
+G0 F9000 X113.846 Y47.976
+;TYPE:WALL-OUTER
+G1 F600 X113.917 Y47.821 E168.59157
+G1 X113.915 Y42.511 E168.76818
+G1 X113.888 Y42.427 E168.77112
+G1 X113.713 Y42.294 E168.77843
+G1 X112.212 Y42.381 E168.82843
+G1 X111.534 Y42.444 E168.85108
+G1 X111.187 Y42.498 E168.86276
+G1 X111.183 Y43.436 E168.89396
+G1 X111.19 Y44.211 E168.91974
+G1 X111.183 Y44.269 E168.92168
+G1 X111.183 Y46.095 E168.98241
+G1 X111.191 Y46.196 E168.98578
+G1 X111.193 Y47.848 E169.04073
+G1 X111.611 Y47.915 E169.05481
+G1 X112.088 Y47.96 E169.07075
+G1 X113.671 Y48.051 E169.12348
+G1 X113.846 Y47.976 E169.12982
+G0 F9000 X113.638 Y47.752
+G0 X111.928 Y47.442
+G0 X111.952 Y47.19
+;TYPE:SKIN
+G1 F600 X113.157 Y47.259 E169.16996
+G1 X113.156 Y43.086 E169.30875
+G1 X112.303 Y43.135 E169.33717
+G1 X111.947 Y43.17 E169.34907
+G1 X111.943 Y43.532 E169.36111
+G1 X111.951 Y44.211 E169.3837
+G1 X111.943 Y44.318 E169.38726
+G1 X111.944 Y46.087 E169.4461
+G1 X111.952 Y46.186 E169.44941
+G1 X111.952 Y47.19 E169.4828
+G0 F9000 X112.502 Y47.02
+G1 F600 X112.955 Y46.567 E169.50411
+G0 F9000 X112.955 Y46.002
+G1 F600 X112.15 Y46.806 E169.54195
+G0 F9000 X112.151 Y46.24
+G1 F600 X112.955 Y45.436 E169.57976
+G0 F9000 X112.955 Y44.87
+G1 F600 X112.142 Y45.684 E169.61803
+G0 F9000 X112.142 Y45.118
+G1 F600 X112.955 Y44.305 E169.65627
+G0 F9000 X112.955 Y43.739
+G1 F600 X112.142 Y44.552 E169.69451
+G0 F9000 X112.148 Y43.98
+G1 F600 X112.823 Y43.305 E169.72626
+G0 F9000 X112.224 Y43.339
+G1 F600 X112.145 Y43.418 E169.72998
+G1 F1500 E163.22998
+;MESH:NONMESH
+G0 F300 X112.145 Y43.418 Z12.6
+G0 F9000 X111.688 Y43.288
+G0 X111.408 Y44.254
+G0 X110.318 Y44.255
+G0 X109.86 Y45.926
+G0 X109.563 Y46.307
+G0 X108.81 Y45.778
+;TIME_ELAPSED:628.297835
+;LAYER:62
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E169.72998
+G1 F562.1 X108.952 Y45.661 E169.73651
+G1 F556.8 X109.12 Y45.437 E169.74654
+G1 F579.7 X109.167 Y45.205 E169.75469
+G1 F581.1 X109.111 Y44.885 E169.76585
+G1 F578.3 X108.899 Y44.629 E169.77732
+G1 F575.5 X108.587 Y44.503 E169.78899
+G1 F567.4 X108.408 Y44.502 E169.79528
+G1 F554.3 X108.246 Y44.552 E169.80139
+G1 F556.8 X108.011 Y44.697 E169.81128
+G1 F567.4 X107.824 Y45.056 E169.82552
+G1 F559.4 X107.817 Y45.194 E169.83045
+G1 F563.4 X107.849 Y45.395 E169.83766
+G1 F570.1 X107.972 Y45.609 E169.8463
+G1 F568.7 X108.187 Y45.782 E169.85598
+G1 F567.4 X108.555 Y45.85 E169.86914
+G1 F574.2 X108.81 Y45.778 E169.87835
+G1 F1500 E163.37835
+G0 F9000 X109.589 Y46.297
+G0 X112.396 Y45.783
+G0 X113.327 Y47.917
+G1 F1500 E169.87835
+G1 F466 X113.685 Y47.973 E169.89387
+G1 X113.778 Y47.935 E169.89817
+G1 X113.833 Y47.827 E169.90336
+G1 X113.836 Y42.493 E170.13178
+G1 X113.728 Y42.386 E170.13829
+G1 F465.1 X113.321 Y42.436 E170.15588
+G1 F466 X113.317 Y47.717 E170.38203
+G1 X113.327 Y47.917 E170.3906
+G1 F1500 E163.8906
+;MESH:NONMESH
+G0 F300 X113.327 Y47.917 Z12.8
+G0 F9000 X113.546 Y47.74
+G0 X113.481 Y45.784
+G0 X112.396 Y45.784
+G0 X109.589 Y46.297
+G0 X108.814 Y45.779
+;TIME_ELAPSED:632.165006
+;LAYER:63
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F1500 E170.3906
+G1 F571.4 X109.102 Y45.488 E170.4049
+G1 F574.2 X109.164 Y45.268 E170.41285
+G1 X109.14 Y44.958 E170.42365
+G1 F572.8 X108.979 Y44.692 E170.43448
+G1 F568.7 X108.776 Y44.554 E170.4431
+G1 F560.7 X108.455 Y44.492 E170.45473
+G1 X108.23 Y44.544 E170.46295
+G1 F558.1 X108.065 Y44.644 E170.46985
+G1 F555.6 X107.928 Y44.796 E170.4772
+G1 F560.7 X107.815 Y45.096 E170.48861
+G1 X107.833 Y45.352 E170.49774
+G1 F558.1 X108.021 Y45.668 E170.51089
+G1 F555.6 X108.256 Y45.811 E170.52077
+G1 F559.4 X108.569 Y45.849 E170.53202
+G1 F571.4 X108.814 Y45.779 E170.54092
+;MESH:NONMESH
+G0 F300 X108.814 Y45.779 Z13
+G0 F9000 X108.166 Y45.775
+;TIME_ELAPSED:633.057718
+;LAYER:64
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F545.5 X108.346 Y45.844 E170.54797
+G1 F554.3 X108.551 Y45.857 E170.55536
+G1 F564.7 X108.874 Y45.766 E170.56722
+G1 F570.1 X109.099 Y45.485 E170.57983
+G1 F560.7 X109.166 Y45.296 E170.58696
+G1 F559.4 X109.134 Y44.934 E170.59992
+G1 F563.4 X108.955 Y44.649 E170.61185
+G1 F554.3 X108.654 Y44.508 E170.62381
+G1 F550.5 X108.326 Y44.508 E170.6357
+G1 F549.2 X108.023 Y44.677 E170.64831
+G1 F547.9 X107.922 Y44.797 E170.65402
+G1 F545.5 X107.817 Y45.061 E170.66442
+G1 F543 X107.813 Y45.228 E170.67056
+G1 F549.2 X107.856 Y45.427 E170.67796
+G1 F544.2 X107.953 Y45.583 E170.68469
+G1 F538.1 X108.166 Y45.775 E170.69533
+;MESH:NONMESH
+G0 F300 X108.166 Y45.775 Z13.2
+G0 F9000 X108.845 Y45.772
+;TIME_ELAPSED:633.658119
+;LAYER:65
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F524 X109.075 Y45.529 E170.70807
+G1 F541.8 X109.17 Y45.272 E170.71816
+G1 F555.6 X109.157 Y44.983 E170.72855
+G1 F536.9 X109.064 Y44.806 E170.73598
+G1 F531 X108.877 Y44.607 E170.74625
+G1 F540.5 X108.551 Y44.487 E170.75907
+G1 F532.2 X108.279 Y44.517 E170.76934
+G1 F533.3 X107.965 Y44.736 E170.78366
+G1 F535.7 X107.851 Y44.941 E170.7924
+G1 F521.7 X107.816 Y45.216 E170.803
+G1 F522.9 X107.848 Y45.402 E170.8102
+G1 F531 X108.017 Y45.696 E170.82295
+G1 F541.8 X108.341 Y45.845 E170.83609
+G1 F544.2 X108.584 Y45.86 E170.84501
+G1 F531 X108.845 Y45.772 E170.85536
+;MESH:NONMESH
+G0 F300 X108.845 Y45.772 Z13.4
+G0 F9000 X108.795 Y45.797
+;TIME_ELAPSED:634.225504
+;LAYER:66
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F538.1 X109.012 Y45.635 E170.86541
+G1 F540.5 X109.129 Y45.447 E170.87358
+G1 F529.8 X109.175 Y45.132 E170.88557
+G1 F515 X109.076 Y44.826 E170.89804
+G1 F519.5 X108.875 Y44.6 E170.90965
+G1 F531 X108.662 Y44.504 E170.91844
+G1 F536.9 X108.466 Y44.486 E170.92575
+G1 F538.1 X108.131 Y44.583 E170.93868
+G1 F525.2 X107.986 Y44.711 E170.94603
+G1 F515 X107.822 Y44.986 E170.95844
+G1 F513.9 X107.811 Y45.236 E170.96816
+G1 F521.7 X107.852 Y45.434 E170.97589
+G1 X108.094 Y45.735 E170.99066
+G1 F522.9 X108.352 Y45.851 E171.00146
+G1 F527.5 X108.525 Y45.862 E171.00802
+G1 F528.6 X108.795 Y45.797 E171.0185
+;MESH:NONMESH
+G0 F300 X108.795 Y45.797 Z13.6
+G0 F9000 X108.15 Y45.776
+;TIME_ELAPSED:634.850100
+;LAYER:67
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F519.5 X108.444 Y45.866 E171.03031
+G1 F520.6 X108.657 Y45.848 E171.03851
+G1 F518.4 X108.893 Y45.737 E171.04855
+G1 F522.9 X109.103 Y45.515 E171.06021
+G1 F526.3 X109.188 Y45.202 E171.07251
+G1 F529.8 X109.074 Y44.787 E171.08872
+G1 F531 X108.872 Y44.59 E171.09933
+G1 F532.2 X108.673 Y44.506 E171.10743
+G1 F531 X108.405 Y44.483 E171.11754
+G1 F520.6 X108.223 Y44.536 E171.1248
+G1 F511.7 X107.976 Y44.72 E171.13681
+G1 F516.1 X107.864 Y44.868 E171.14399
+G1 F531 X107.802 Y45.117 E171.15363
+G1 F526.3 X107.81 Y45.289 E171.16016
+G1 F510.6 X107.912 Y45.544 E171.1709
+G1 F511.7 X108.021 Y45.686 E171.17788
+G1 F518.4 X108.15 Y45.776 E171.18393
+;MESH:NONMESH
+G0 F300 X108.15 Y45.776 Z13.8
+G0 F9000 X108.738 Y45.827
+;TIME_ELAPSED:635.478121
+;LAYER:68
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F510.6 X108.903 Y45.735 E171.19131
+G1 F512.8 X109.136 Y45.449 E171.20567
+G1 F513.9 X109.186 Y45.115 E171.21878
+G1 X109.153 Y44.941 E171.22566
+G1 F529.8 X108.959 Y44.662 E171.23846
+G1 F538.1 X108.744 Y44.525 E171.24792
+G1 F527.5 X108.392 Y44.485 E171.26132
+G1 F517.2 X108.125 Y44.579 E171.27224
+G1 F509.6 X107.955 Y44.738 E171.28136
+G1 F510.6 X107.807 Y45.042 E171.29457
+G1 F512.8 X107.796 Y45.17 E171.29957
+G1 X107.886 Y45.521 E171.31367
+G1 F511.7 X108.017 Y45.681 E171.32173
+G1 F510.6 X108.256 Y45.831 E171.33276
+G1 F511.7 X108.432 Y45.868 E171.33978
+G1 X108.738 Y45.827 E171.35182
+;MESH:NONMESH
+G0 F300 X108.738 Y45.827 Z14
+G0 F9000 X108.43 Y45.88
+;TIME_ELAPSED:636.095118
+;LAYER:69
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F517.2 X108.752 Y45.829 E171.36439
+G1 F510.6 X108.967 Y45.69 E171.3744
+G1 F500 X109.079 Y45.551 E171.38152
+G1 F503.1 X109.184 Y45.297 E171.39242
+G1 F506.3 X109.192 Y45.136 E171.39878
+G1 F504.2 X109.133 Y44.896 E171.40856
+G1 F506.3 X108.952 Y44.625 E171.4214
+G1 X108.663 Y44.495 E171.43389
+G1 F509.6 X108.321 Y44.498 E171.44729
+G1 F510.6 X108.017 Y44.656 E171.46068
+G1 F496.9 X107.839 Y44.944 E171.47428
+G1 F495.9 X107.793 Y45.172 E171.48364
+G1 F505.3 X107.844 Y45.442 E171.49449
+G1 F507.4 X108.091 Y45.752 E171.51008
+G1 F511.7 X108.43 Y45.88 E171.52421
+;MESH:NONMESH
+G0 F300 X108.43 Y45.88 Z14.2
+G0 F9000 X107.925 Y45.692
+;TIME_ELAPSED:636.740945
+;LAYER:70
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F392.8 X108.13 Y45.846 E171.53724
+G1 F390.2 X108.425 Y45.936 E171.55301
+G1 F396 X108.798 Y45.883 E171.57199
+G1 F401.3 X109.081 Y45.693 E171.58894
+G1 F396 X109.238 Y45.341 E171.60836
+G1 F395.4 X109.262 Y45.189 E171.61613
+G1 F398.7 X109.227 Y44.945 E171.62847
+G1 X109.046 Y44.618 E171.64718
+G1 F399.3 X108.75 Y44.45 E171.66418
+G1 F396 X108.492 Y44.41 E171.67734
+G1 F393.4 X108.304 Y44.428 E171.68692
+G1 F386.5 X108.069 Y44.536 E171.70027
+G1 F389.6 X107.935 Y44.646 E171.70915
+G1 F391.5 X107.808 Y44.849 E171.72136
+G1 F386.5 X107.72 Y45.107 E171.73543
+G1 F392.8 X107.773 Y45.487 E171.75493
+G1 F394.7 X107.925 Y45.692 E171.76783
+;MESH:NONMESH
+G0 F300 X107.925 Y45.692 Z14.4
+G0 F9000 X108.484 Y45.962
+;TIME_ELAPSED:637.602532
+;LAYER:71
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F389.6 X108.821 Y45.882 E171.78557
+G1 F388.3 X109.045 Y45.724 E171.79966
+G1 F380.3 X109.177 Y45.526 E171.81214
+G1 F383.4 X109.257 Y45.295 E171.82487
+G1 F394.1 X109.235 Y44.942 E171.84278
+G1 F387.1 X109.067 Y44.653 E171.86001
+G1 F384 X108.944 Y44.541 E171.86866
+G1 X108.751 Y44.445 E171.87986
+G1 F380.3 X108.534 Y44.402 E171.89146
+G1 F378.5 X108.328 Y44.419 E171.90236
+G1 F379.1 X108.101 Y44.505 E171.91514
+G1 F383.4 X107.873 Y44.685 E171.93026
+G1 F384.6 X107.724 Y45.045 E171.95047
+G1 F380.3 X107.709 Y45.133 E171.95516
+G1 F376.2 X107.752 Y45.396 E171.9693
+G1 F381 X107.847 Y45.632 E171.98262
+G1 F387.1 X108.15 Y45.877 E172.00271
+G1 F389 X108.484 Y45.962 E172.02039
+;MESH:NONMESH
+G0 F300 X108.484 Y45.962 Z14.6
+G0 F9000 X108.348 Y45.941
+;TIME_ELAPSED:638.455083
+;LAYER:72
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F380.3 X108.629 Y45.931 E172.03514
+G1 F377.4 X108.939 Y45.806 E172.05282
+G1 F382.8 X109.11 Y45.649 E172.06492
+G1 F387.1 X109.271 Y45.316 E172.08399
+G1 F386.5 X109.216 Y44.865 E172.10745
+G1 F382.8 X109.089 Y44.679 E172.1192
+G1 F383.4 X108.847 Y44.483 E172.1354
+G1 F385.9 X108.611 Y44.405 E172.14826
+G1 X108.254 Y44.423 E172.16675
+G1 F384.6 X107.99 Y44.582 E172.18274
+G1 F385.9 X107.883 Y44.699 E172.19094
+G1 F382.2 X107.723 Y45.026 E172.20995
+G1 F374.4 X107.733 Y45.302 E172.22467
+G1 F377.4 X107.825 Y45.576 E172.23995
+G1 F389 X108.06 Y45.815 E172.25715
+G1 F390.9 X108.348 Y45.941 E172.2732
+;MESH:NONMESH
+G0 F300 X108.348 Y45.941 Z14.8
+G0 F9000 X108.435 Y45.962
+;TIME_ELAPSED:639.302532
+;LAYER:73
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F385.9 X108.764 Y45.905 E172.29047
+G1 F386.5 X109.068 Y45.702 E172.30934
+G1 F380.3 X109.231 Y45.394 E172.32763
+G1 F379.1 X109.266 Y45.132 E172.34154
+G1 F385.9 X109.17 Y44.79 E172.35991
+G1 F381.6 X109.044 Y44.624 E172.37081
+G1 F378.5 X108.785 Y44.456 E172.38709
+G1 F379.1 X108.517 Y44.393 E172.40158
+G1 F379.7 X108.126 Y44.486 E172.4227
+G1 F378.5 X107.909 Y44.671 E172.43773
+G1 F378 X107.768 Y44.893 E172.45162
+G1 X107.714 Y45.149 E172.46543
+G1 F376.2 X107.747 Y45.381 E172.47786
+G1 F382.2 X107.857 Y45.643 E172.4927
+G1 F385.9 X108.136 Y45.871 E172.51133
+G1 F384.6 X108.435 Y45.962 E172.52755
+;MESH:NONMESH
+G0 F300 X108.435 Y45.962 Z15
+G0 F9000 X108.335 Y45.959
+;TIME_ELAPSED:640.155919
+;LAYER:74
+;TYPE:WALL-OUTER
+;MESH:3DBenchy.stl
+G1 F382.2 X108.7 Y45.924 E172.5467
+G1 F385.2 X109.029 Y45.758 E172.56579
+G1 F379.1 X109.205 Y45.458 E172.58409
+G1 F379.7 X109.271 Y45.221 E172.59702
+G1 F385.2 X109.255 Y45.023 E172.60731
+G1 F379.1 X109.136 Y44.75 E172.62299
+G1 F376.2 X108.951 Y44.536 E172.638
+G1 F380.3 X108.72 Y44.432 E172.65129
+G1 F383.4 X108.445 Y44.399 E172.6657
+G1 F384.6 X108.105 Y44.499 E172.68409
+G1 F381 X107.909 Y44.671 E172.69775
+G1 F380.3 X107.767 Y44.895 E172.71167
+G1 F381.6 X107.711 Y45.148 E172.72522
+G1 F376.2 X107.748 Y45.378 E172.73758
+G1 F378.5 X107.833 Y45.586 E172.74942
+G1 F381.6 X108.049 Y45.808 E172.76562
+G1 F379.7 X108.335 Y45.959 E172.78262
+;TIME_ELAPSED:640.929344
+G1 F1500 E166.28262
+M107
+G91 ;Relative positioning
+G1 E-2 F2700 ;Retract a bit
+G1 E-2 Z0.2 F2400 ;Retract and raise Z
+G1 X5 Y5 F3000 ;Wipe out
+G1 Z10 ;Raise Z more
+G90 ;Absolute positioning
+
+G1 X0 Y220 ;Present print
+M106 S0 ;Turn-off fan
+M106 P1 S0 ;Turn-off fan
+M104 S0 ;Turn-off hotend
+M140 S0 ;Turn-off bed
+
+M84 X Y E ;Disable all steppers but Z
+
+M82 ;absolute extrusion mode
+M104 S0
+;End of Gcode
+;SETTING_3 {"global_quality": "[general]\\nversion = 4\\nname = Standard Quality
+;SETTING_3  #2\\ndefinition = creality_ender3pro\\n\\n[metadata]\\ntype = qualit
+;SETTING_3 y_changes\\nquality_type = standard\\nsetting_version = 20\\n\\n[valu
+;SETTING_3 es]\\nadhesion_type = none\\nsupport_type = everywhere\\n\\n", "extru
+;SETTING_3 der_quality": ["[general]\\nversion = 4\\nname = Standard Quality #2\
+;SETTING_3 \ndefinition = creality_ender3pro\\n\\n[metadata]\\ntype = quality_ch
+;SETTING_3 anges\\nquality_type = standard\\nsetting_version = 20\\nposition = 0
+;SETTING_3 \\n\\n[values]\\ninfill_pattern = grid\\nsupport_offset = 0.0\\n\\n"]
+;SETTING_3 }