
34 5 Implementation

5 Implementation
The purpose of this chapter is to provide more detailed information about implemented approaches, to document
developed software artefacts and to explain how encountered problems influenced certain design decisions.
Section 5.1 discusses the implementation of CAD interface which allows assembly sequence planning (ASP)
using STEP assembly models. The module’s functionality is demonstrated on an industrial example. Section 5.2
describes how exact solver methods are applied to solve scheduling problems resulting from geometrical
constraints of the assembly and resource constraints of the involved assembly system.

5.1 CAD interface

The implementation of CAD interface is based on the method described in [Pin16b] and also makes use of CATIA
software suite developed by Dassault Systèmes. The programs described in this section are developed in Visual
Basic .NET (VB.NET) to access CATIA scripting API, which provides functionalities to export product-related
data, manipulate geometric bodies and execute clash analysis. AND/OR graph related procedures in Sections
5.1.4 and 5.1.5 are implemented in Python.

5.1.1 Demonstrative assembly

A demonstrative product is presented for better understanding of implemented programs. It is a free-to-share
model of a single-stage centrifugal pump taken from GrabCAD website. Analysed centrifugal pump contains 23
elementary components including 11 fasteners such as nuts and bolts. The specification tree as displayed in
CATIA can be seen on the left side of Fig. 5.1.

Figure 5.1: Single-stage centrifugal pump

5 Implementation 35

5.1.2 Assembly tiers method

CAD model preparation

A correct model of the analysed product stored in a STEP file is a prerequisite for assembly tiers determination.
Such a STEP file has to be opened by the user in CATIA first. After successful import of CAD file into the
program, its bill of materials or specification tree is shown next to the 3D rendering. It is important to consider
that complex assemblies may have multiple hierarchy levels in the specification tree. Methodology proposed by
Pintzos et al. only considers subassemblies on the first level of the tree as components relevant to assembly
tiers determination [Pin16b, p. 1047]. However, this methodology significantly reduces the utility of assembly
tiers determination because the operation sequences to build up the top-level assemblies from their components
are neglected. To overcome this limitation, a VB macro called PrepareProductStructure was written that
dissolves hierarchical product structures and puts all elementary parts on the top level of specification tree. The
list shown below is the optional procedure of creating a new CAD file without hierarchical product structure,
stored as a CATProduct file.

1. Open STEP assembly file in CATIA

2. Save a copy of assembly file as CATProduct

3. Restart CATIA

4. Open previously saved CATProduct file

5. Run PrepareProductStructure VB macro, resulting in new file ’Assembly.CATProduct’

6. Run AssemblyTiers algorithm from VB.NET application

(a) Main menu (b) Algorithm parameter input

Figure 5.2: CATIA interface GUI

User input and product preprocessing

36 5.1 CAD interface

After the CAD file is prepared, developed VB.NET application can be started from Microsoft Visual Studio©
or as an executable binary. In the beginning, a menu with four options appears (s. Fig. 5.2a). If CATIA is
not running yet, clicking the first button in the main menu will open the application, where a CAD file has to
be opened manually. Assembly tiers program is started by clicking the second button in the main menu. An
input form appears, where the user can specify parameters for algorithm execution (s. Fig. 5.2b). Algorithm
parameters are explained later together with the affected program steps.

Once the parameters are chosen, a reference to CATIA Component Object Model (COM) must be created.
This is achieved by command CATIA = GetObject(, "CATIA.Application"). Next, an object of type
ProductDocument is retrieved, which represents the product structure of opened assembly: document =

CATIA.ActiveDocument. This object has a property called Product in the API, which contains all relevant
data about analysed assembly. It is passed to ExtractProducts function in order to obtain an ArrayList of
all components (variable cAllProducts). The user gets notified about the total number of parts contained in
the assembly, including fasteners.

(a) Selected base component (b) Assembly after fastener removal

Figure 5.3: Assembly preparation steps

In the next step, the user is requested to select base components which are assumed to be pre-assembled and
stationary. This is required to ensure that base components are the ones that can be attached to existing
surroundings and foundations which are not present in the STEP model. As per Fig. 5.3a, Bearing housing
is the base component of the centrifugal pump. Further model preparation follows the approach proposed
in [Pin16b], where fasteners are removed from the assembly based on their names in the specification tree.
The result of this step is shown in Fig. 5.3b. Original approach achieves separation of components into
fasteners and assembly parts by keyword matching, identifying keywords ’bolt’, ’screw’, ’clip’, ’wedge’, ’pin’,
’nut’ and ’washer’ case-independently. This method is expanded in this work to recognise fasteners not only
by the mentioned keywords, but also using the names of common industrial norms. For instance, screws can
be detected if norms ISO 4762, DIN 912 or DIN 933 appear in the part number. The list of keywords is
also extended for nuts (norms ISO 4161, DIN 934, DIN 439) and washers (DIN 9021, DIN 125, DIN 127).
Programmatically the removal of fasteners is realised by the function DeactivateFasteners which iterates
over the list of all identified components and checks parts’ attribute PartNumber for keywords. If there are no
matches, such a part is considered relevant for disassembly simulation and appended to cRelevantProducts

5 Implementation 37

list. In other case, an API function is used to deactivate the fastener in CATIA, thus excluding it from collision
detections. The user is then informed about the number of parts that will be involved in collision analysis.

Bounding box and removal distances determination

Before disassembly simulation can begin, it is necessary to know how far each part has to be moved from its
original position for successful disassembly. A disassembly trial is successful if and when the removed part
can continue its movement outside the assembly without ever colliding with other parts. Bounding box (BB)
concept is especially relevant in this context. Bounding box of a geometric shape can be defined as a cuboid
wherein the shape is inscribed, meaning that no points belonging to the shape lie outside the bounding box
and the planes comprising the BB are perpendicular to the axes of a given axis system. A bounding box can be
constructed by calculating six extremum points of a geometric shape: minimum and maximum points along
each of three principal axes. The distances of these six points from the origin of part axis system fully describe
the bounding box.

Fig. 5.4 demonstrates geometric relations between coordinate systems (CS), extrema planes and bounding
boxes (BB) in an assembly.

Seite 1© IP/WZL

Assembly dimensions

x

y

z

Assembly BB

(aAssemblyBoundaries)

Global CS

Local part BB

(aBBCornersLocal)

Global part BB

(aPartBBGlob)

Congruent CS

Local CS

Figure 5.4: Assembly coordinate systems and bounding boxes

Six extremum points in the local axis system span the local part BB by defining extremal planes (light blue
cuboid in Fig. 5.4). To ensure correct detection of a successful disassembly attempt along both global and
local axes and to avoid complex geometrical calculations after each movement step, a so called global part
BB has to be created. If the directions of local and global coordinate systems coincide, then local and global
bounding boxes will also be the same. However, if the local axis system is rotated with respect to global CS as
in Fig. 5.4, the local part BB will be inscribed in the global part BB. Six of eight corner points of local part

38 5.1 CAD interface

BB (marked red) determine the locations of extremal planes in global part BB. Notice that the coordinate
systems of local and global BBs are called local and congruent coordinate systems, respectively. The congruent
CS has the same origin as local CS, but its axes are directed parallel to the axes of global CS.

A separate function GenerateBoundingBox is called for each relevant (not fastener) part to get the information
about its BB and to update the whole assembly’s BB. This function receives three arguments: partDocument1

As PartDocument, objProduct As Product, i As Integer. First, the name of PartDocument is
checked for extension .CATPart, which is required for correct execution of geometric operations. If the object
type is valid, its attribute Part is assigned a variable part1. In order to create extremum points, an instance
of HybridShapeFactory is saved in hybridShapeFactory1 variable. In the implemented algorithm, API
function AddNewExtremum of class HybridShapeFactory is applied, which can find the extremum points of
each part in its local coordinate system, i.e. such points that have the biggest or the smallest coordinates
along local axis. For further analysis, extremum points in local CS are transformed into global, or absolute,
coordinates absCoord.

An important method for coordinate transformations is called Coord_Transform in the code. It receives a
three-component vector relative to some CS and transforms it into CS of the parent Product. This operation
can be done recursively until the original vector is transformed into global axis system. Let x ∈ R3 be the
point coordinates with respect to global axes, x′ ∈ R3 coordinates of the same point in the local axis system
and x0 ∈ R3 translation vector between global and local CS. With rotation matrix R ∈ R3×3 representing the
orientation of local axes, the transformation realised by Coord_Transform is given by Eq. 5.1.

x = x0 + R−1x′ (5.1)

Once all six extremum points with respect to local CS are determined, eight corner points of local part BB can
be constructed by recombining values. Let x′max, y′max and z′max be the distances of local part BB extremal
planes from the local CS origin along positive directions of axes. Similarly, let x′min, y′min and z′min be the
extrema in negative directions. In local coordinates, the eight corners populating aBBCornersLocal 8 × 3

array are the following:

(x′max, y′max, z′max)

(x′max, y′max, z′min)

(x′max, y′min, z′max)

(x′max, y′min, z′min)

(x′min, y′max, z′max)

(x′min, y′max, z′min)

(x′min, y′min, z′max)

(x′min, y′min, z′min)

In the next logical step, six planes comprising global part BB have to be determined relative to congruent CS.
To do so, each corner point from aBBCornersLocal is transformed into global coordinates and the position

5 Implementation 39

vector of part’s own axis system origin is subtracted. In order to determine the six outermost corners of local
part BB (marked red in Fig. 5.4), the points with maximum and minimum coordinate components have to be
found. The whole implemented procedure is shown in Alg. 1:

Algorithm 1: GenerateBoundingBox
Result: aPartBBGlob of current part, updated aAssemblyBoundaries

1 Initialise aPartBBGlob of current part with −∞ for maximums and +∞ for minimums;
2 foreach Local BB corner point do

3 absCoord ← transform corner point into global coordinates; CCC ← subtract part’s origin position
to get corner coordinates in congruent CS;

4 if x, y or z of absCoord > corresponding maximum in aAssemblyBoundaries then

5 Replace corresponding value in aAssemblyBoundaries with new maximum;
6 end if

7 if x, y or z of absCoord < corresponding minimum in aAssemblyBoundaries then

8 Replace corresponding value in aAssemblyBoundaries with new minimum;
9 end if

10 if x, y or z of CCC > corresponding maximum in aPartBBGlob then

11 Replace corresponding value in aPartBBGlob with new maximum;
12 end if

13 if x, y or z of CCC < corresponding minimum in aPartBBGlob then

14 Replace corresponding value in aPartBBGlob with new minimum;
15 end if

16 end foreach

As a result, aPartBBGlob stores the distances from congruent CS origin to global part BB faces and
aAssemblyBoundaries is updated by any new global assembly extrema. After processing each relevant
part the removal distances can be easily calculated. Removal distance vector of a part is defined as a vector
4x = (4x+, 4x−, 4y+, 4y−, 4z+, 4z−)T , with

4 x+ = Xmax − x̃min (5.2)

4 x− = Xmin − x̃max (5.3)

4 y+ = Ymax − ỹmin (5.4)

4 y− = Ymin − ỹmax (5.5)

4 z+ = Zmax − z̃min (5.6)

4 z− = Zmin − z̃max (5.7)

where

4x+, 4y+, 4z+ are removal distances in positive axis directions

40 5.1 CAD interface

4x−, 4y−, 4z− are removal distances in negative axis directions

Xmax/min, Ymax/min, Zmax/min are the assembly boundaries (aAssemblyBoundaries)

x̃max/min, ỹmax/min, z̃max/min are the distances from congruent CS to global part BB faces (aPartBBGlob)

A part is disassembled when any component of part position vector x0 = (x0, y0, z0)T exceeds or becomes less
than the corresponding removal distance. A function named ProductReachedFinalPosition is implemented
to get a CATIA Product’s Position attribute and call its member function GetComponents, which returns
a twelve-element array containing nine elements of local CS rotation matrix and three position coordinates.
These three elements can then be efficiently checked against previously determined removal distances. In case
that a part reaches a position where it is guaranteed to be removed from the assembly the function returns
True.

The original assembly tiers method by Pintzos et al. requires definition of movement step by which relevant parts
are translated every iteration of virtual disassembly algorithm. The authors claim to have applied user-defined
steps covering the minimum width of the examined components in their tests on different product designs
[Pin16b, pp. 1047, 1055]. The application implemented as a part of this thesis gives user a choice between
automatically calculated step and its manual input (see ’Automatic step’ checkbox and ’Step [mm]’ input field
in Fig. 5.2b). For automatic step calculation an empiric formula

s =


(

(Xmax −Xmin) · (Ymax − Ymin) · (Zmax − Zmin)
)1/3

50

 (5.8)

is applied to set step length s by dividing the geometric mean of assembly BB dimensions by a factor of 50
and rounding the result to the closest integer value.

Main algorithm implementation

In the following, comprehensive textual explanations are aided by pseudocode blocks to formulate movement and
stationary phases of the assembly tiers algorithm, collision handling procedure and remaining helper algorithms.
First, a mathematical notation is required to define occurring variables and sets.

Let Π = {p0, . . . , pN−1} be the analysed product consisting of N parts relevant for collision detection. Single
parts are denoted by pi where i ∈ {0, 1, . . . , N − 1}. B ⊂ Π is the set of preselected base components which
are not being moved during virtual disassembly trials but nevertheless can cause clashes. Initial orientations
and positions of parts are stored in X∗ ∈ RN×12 matrix so that parts can be returned in their original states
whenever a collision prevents further movements. Removal distances vectors mentioned above can get combined
into 4X ∈ RN×6 matrix for convenient information extraction:

5 Implementation 41

4X =


4xT0
4xT1
...

4xTN−1

 (5.9)

Parameter input dialogue of the program (s. Fig. 5.2b) contains a drop-down element ’Number of disassembly
axis’ which determines whether a part will be moved along only six global axis directions or additionally along
six local axis directions. When the counter of already tested directions j ∈ N equals the chosen number of
disassembly axes J ∈ {6, 12}, it indicates that next part can be processed. Manipulation directions can be
mapped to the index j via set D = {xgl, ygl, zgl, −xgl, −ygl, −zgl, xloc, yloc, zloc, −xloc, −yloc, −zloc, },
so that they can be referred to as Dj .

Another two important parameters of the algorithm are step distance s and collision sensitivity ε. A penetration
of one geometric body into another is assumed to prevent further disassembly movement whenever the depth
of such penetration exceeds ε. As collision detection in CATIA is realised between two Group instances, they
are represented by sets G1, G2 ⊂ Π.

Furthermore, it is necessary to deactivate parts in CATIA as they get successfully disassembled. They comprise
a set of parts Θ ⊂ Π, which are not considered in collision detections and are not displayed in CATIA once
they are removed from assembly within a tier. In order to identify the parts that need to be assigned a tier and
be deactivated, parts are appended to Φ ⊂ Π – set of parts that could be successfully disassembled along at
least one direction. Set of moveable parts M ⊂ Π contains all components that have to be manipulated in the
current algorithm iteration. Apart from that, set L ⊆ Π is required for connectivity check mode (s. Fig. 5.2b)
and defines the subset of parts that is examined for connectivity between its elements.

Three more variables are necessary for complete definition of algorithm’s outputs. First, precedence matrix
S ∈ RN×N stores information about allowed assembly operation orders. Si,k = 1 if part i has a direct
precedence relation to k and Si,k = 0 otherwise. Second, assembly tiers as defined in [Pin16b] are sets of parts
that can be assembled simultaneously, so that each part pi ∈ Π can be assigned a tier number. Assembly tier
numbers begin with 0 for base components and increase as operations can only be executed at later stages.
Tiers vector t ∈ RN stores the assignment of tier numbers to parts, so that ti is the tier of part pi. Last
but not least, allowed disassembly directions are to be recorded for each part. This is realised by disassembly
directions matrix Y ∈ RN×12, where Yi,j = 1 if part pi can be removed from assembly along direction Dj

and Yi,j = 0 otherwise.

Variables in code are given names that differ from introduced symbols for better code readability. Table A.1
contains the mapping of mathematical symbols to VB.NET code variables. To avoid linear searches of
current part in the sets of successfully disassembled, deactivated and moveable parts (Φ, Θ and M) boolean
arrays bDisassembled, bDeactivated and bMoveable of size N are introduced in the source code. Thus,
membership of a part in these sets can be checked efficiently by getting the corresponding boolean value in an
array.

42 5.1 CAD interface

Apart from variable definition, AssemblyTiers implementation in VB.NET relies on CATIA API functions.
First of all, the stepwise movement of parts is realised by calling Apply(iTransformationArray) function
on the Product.Move property, whereby single parts are referred to as Product objects in CATIA. The
transformation array contains nine elements of a rotation matrix and three – of a translation vector. Sec-
ondly, every collision detection is performed by manipulating a new Clash object. Its ComputationType

is set to catClashComputationTypeBetweenTwo of SPATypeLib.CatClashComputationType enumera-
tor. Depending on the task at hand, InterferenceType is catClashInterferenceTypeClearance or
catClashInterferenceTypeContact of SPATypeLib.CatClashInterferenceType enumerator. Interfer-
ences between geometric bodies are saved as Conflicts property of the Clash object after Clash.Compute()

function is called.

While the general outline of AssemblyTiers algorithm is given in Section 2.2.6, its concrete implementation is
explained with Alg. 2 - 7. The preprocessing steps of deactivating fasteners and calculating removal distances for
each part of an assembly are followed by the movement phase of the algorithm, during which active manipulation
of parts and collision handling take place. After the movement phase, optional choice of disassembly directions
for parts with multiple unobstructed removal axes is given to the user. Next, precedence relations between parts
in sequential tiers are determined based on liaisons. Finally, data recorded in context of virtual disassembly are
transformed into assembly data.

AssemblyTiers movement phase starts with initialisation of required counters and sets. In the beginning N
parts including preselected base elements are present in the assembly. Parts get removed in CATIA in the
course of progressing disassembly, so that variable I keeps track of remaining parts. Tier counter l is initialised
with 1 and gets incremented as new groups of parts can be removed from the product. Each part deactivated
after stage l is assigned tier l. However, the tiers recorded this way represent disassembly stage order and need
to get reversed afterwards. Note that base components always retain tier 0 which requires no reversion. The
tiers vector t is instantiated as a null vector of length N . Counter variable i is used to obtain parts from set of
all components Π by index. The icycle counter monitors how many parts are tested at each disassembly stage.
The total number of parts to be checked in each tier decreases from stage to stage. Since each part has to be
moved in different directions, counter j determines which one to take and starts at 0 (D0 = xgl). Disassembly
directions matrix Y is populated with ones at start, so that certain entries can be overwritten with 0 whenever
a part’s movement is obstructed. Set of parts L becomes relevant whenever the option ’Connectivity check’ is
activated (s. Fig. 5.2b). In the beginning this set equals the entire set of relevant parts. Moveable components
M of an assembly in the initial state contains all parts except bases.

5 Implementation 43

Algorithm 2: AssemblyTiers movement phase
Input : Π, 4X, X∗, s, ε, J , N , B
Output : S, t, Y

1 I ← N ;
2 l← 1;
3 i, icycle, j ← 0;
4 L← Π, M ← Π \B, t← 0;
5 while I > |B| do // Tiers loop

6 while icycle < I − |B| do // Components loop

7 if pi ∈M then // Current part is moveable

8 if SubassemblyIsConnected(L \ {pi}) = True then

// Populate collision detection groups

9 G1 ← {pi};
10 G2 ← Π \ pi ∪Θ;
11 while j < J do // Directions loop

12 while ProductReachedFinalPosition(pi) = False do

13 MoveProduct(pi, s, Dj);
14 if CollisionDetected(G1, G2, ε) = True then

15 CollisionHandling;
16 end if

17 end while

18 Move pi to X∗i ; // Return current part to initial position

19 j ← j + 1; // Take next disassembly direction

20 end while

21 end if

22 icycle ← icycle + 1; // Update counter of checked parts

23 end if

24 i← i+ 1; // Get next part in assembly

25 j ← 0; // Disassembly direction indices start with 0

26 end while

27 TiersUpdate;
28 RecalculateRemovalDistances;
29 l← l + 1; // Increment tier counter

30 i← 0; // Begin next tier cycle with the first part

31 icycle ← 0; // Reset counter of checked parts

32 end while

44 5.1 CAD interface

The contents of tiers loop in Alg. 2 establish the main procedure that runs until only base components are
left in the assembly (I = |B|). This loop includes processing of each remaining moveable part, during which
disassembly possibilities are determined. First, membership of part pi in the set of moveable parts M is checked.
In the case that pi is a base component or already deactivated, part index i is increased by 1 and a new part
iteration begins. Otherwise, the stability of assembly without pi has to be examined. In simpler terms, it is
necessary to know whether removing a certain part will divide the product in two subassemblies, one of which
includes no base components and is thus unsupported, i.e. cannot be built upon base parts.

The discussed connectivity check is realised in SubassemblyIsConnected function. Consider the liaison
graph of an exemplary product shown in Fig. 5.5. Assuming that pi is part 6 (volute casing cover),
SubassemblyIsConnected would try to remove the corresponding node and all its edges from the liai-
son graph to examine whether the remaining graph is connected, i.e. there is a path from any node to any
other node. Removing part 6 would break up liaison graph connectivity since there would be no paths from
part 7 to the rest of the graph.

Seite 1© IP/WZL

Centrifugal pump – Liaison graph

1

9

10

12

8

2

4 3

11

5

6

7

11 2

12

8

10

9
4

1

3

5

6

7

Figure 5.5: Liaison graph of the centrifugal pump

Alg. 3 describes the procedure responsible for subassembly connectivity checking. An important requirement
for this algorithm omitted in the main pseudocode Alg. 2 is the extraction of an entire assembly’s liaison
graph using CATIA contact detection functions. The data structure employed to represent the graph in a
computer-readable form is the symmetrical adjacency matrix of liaison graph Λ ∈ RN×N with Λi,k = 1 if there
is a mechanical contact between parts pi and pk and Λi,k = 0 otherwise. Contacts of parts to themselves are
not allowed: Λi,i = 0.

There are three stages in SubassemblyIsConnected algorithm. Firstly, a submatrix of Λ is constructed using
the indices of parts in L \ {pi}. Secondly, the graph represented by resulting submatrix Λ′ is explored via
depth-first search (DFS) technique starting from the node with the smallest index. An array of visited nodes v

is populated with boolean values indicating whether a path leading to a node exists. Finally, the algorithm
iterates over v and returns False as soon as a node is found which cannot be visited. This indicates that the
graph encoded by Λ′ is not connected. In the case that all nodes can be visited from the starting node, True

5 Implementation 45

is returned.

Algorithm 3: SubassemblyIsConnected
Input :Λ, L, pi
Output : True if liaison subgraph with nodes L \ {pi} is connected, False otherwise

1 σ ← list of part indices q with pq ∈ L \ {pi};
2 c← |L \ {pi} |; // Count of parts in L without pi

3 vn ← False ∀n ∈ [0, c− 1] , n ∈ N; // No nodes are visited first

4 Λ′ ∈ Rc×c;
5 for m← 0 to c− 1 do

6 for k ← 0 to c− 1 do

7 Λ′m,k ← Λσm,σk
; // Construct liaison subgraph adjacency matrix

8 end for

9 end for

10 DFS(Λ′, v, 0); // Explore liaison subgraph nodes

11 for n← 0 to c− 1 do

12 if vn = False then

13 return False;
14 end if

15 end for

16 return True;

If a part can be removed from assembly without breaking up liaison graph connectivity, two groups of parts
have to be defined between which CATIA should detect collisions which may occur during part movements.
The first group G1 only contains the current part pi. The second group can be created differently depending
on ’BB projection check’ setting (s. Fig. 5.2b). BB projection check functionality is introduced to decrease
the computational cost of collision analysis by reducing the number of parts against which clash detection is
executed. Second group of parts contains all parts except pi and deactivated parts Θ if BB projection check is
not activated. In the other case only parts with bounding boxes that have overlapping projections with BB
projections of pi are appended to the second group. BBs are projected along the global assembly axes. If BB
projections of two parts do not overlap in any disassembly direction, then no collisions between the two parts
are possible during disassembly along principal axes. Thus, computationally expensive intersection analysis
between such geometric bodies can be avoided. The function shown in Alg. 4 is used to determine which parts
pk are to be added to the second collision detection group.

46 5.1 CAD interface

Algorithm 4: BoundingBoxesOverlap
Input : i, k

Output : True if BB projections of pi and pk overlap in at least one global axis direction, False

otherwise
1 if x̃min,i ≥ x̃max,k ∨ x̃max,i ≤ x̃min,k then

2 if ỹmin,i ≥ ỹmax,k ∨ ỹmax,i ≤ ỹmin,k then

3 if z̃min,i ≥ z̃max,k ∨ z̃max,i ≤ z̃min,k then

4 return False;
5 end if

6 end if

7 end if

8 return True;

The actual disassembly movement procedure commences after collision groups are defined. The part of interest
is moved stepwise in direction Dj until it reaches a distance at which a collision-free removal from assembly is
guaranteed or a collision occurs between G1 and G2 that blocks further movement in the same direction. Either
way, pi is returned to its initial position in global coordinates and the next disassembly direction is checked.

Instructions that are to be followed in case of a collision are grouped into CollisionHandling method
(s. Alg. 5). First of all, the obstacles from G2 on the way of pi need to be determined. Depending on the
obstacles’ tiers different actions are taken. Consider that base components as well as not yet removed parts
have tier 0. A collision with one of these components prohibits assembly movement in the same direction
as before. Thus, an entry in disassembly directions matrix Y is made to denote that pi cannot be removed
along axis Dj . Since further movement is blocked, the innermost while-loop of the main algorithm is exited,
whereafter the part is put back into its initial position. The same behaviour is triggered by any collision that
happens during the first tier iteration. The second rule ensures that precedence relations are recorded between
parts of consecutive tiers even if there are no direct liaisons between such parts, because assembly can be
obstructed by parts from a previously removed tier. For instance, consider the assembly of impeller (part 4) in
the centrifugal pump product (s. Fig. 5.5) when the volute casing cover (3), the shaft (2) and the volute casing
gasket (5) are already assembled. The assembly of part 4 is obstructed if part 6 is fixed upon the product
subassembly. In fact, parts 4 and 6 belong to sequential tiers but do not have any direct liaisons between them
(s. liaison graph in Fig. 5.5). Not applying the second rule in Alg. 5 would result in severe information loss and
would disregard the requirement to assemble part 4 before 6. It is important to note that a collision with a part
from the previous tier does not block further movements of pi and is only relevant for recording of precedence
relations.

5 Implementation 47

Algorithm 5: CollisionHandling

1 foreach obstacle pk do

2 if tk = 0 ∨ l = 1 then // Further movement is blocked

3 Yi,j ← 0; // Record obstructed disassembly direction

4 go to Alg. 2 ln. 18; // Interrupt disassembly movement

5 end if

6 if tk = l − 1 ∧ l 6= 1 then // Collision with parts from the previous tier

7 Si,k ← 1; // Record precedence relation, continue movement

8 end if

9 end foreach

Whenever part pi reaches disassembly-safe position, True is assigned to Φi. After every disassembly direction
is tested for a part, Φi provides information whether there is at least one obstacle-free disassembly direction
for the part of interest. In the connectivity check mode, this information is used to remove pi from L, thus
reducing the subset of parts which is considered in subassembly connectivity test for the next part, pi+1. This
measure ensures that subassembly connectivity is preserved after a tier iteration, because even if removing
single parts does not disintegrate the product, disassembly of multiple such parts simultaneously could still
result in unsupported subassemblies. This can be illustrated with a simple five-part wheel assembly shown in
Fig. 5.6. Let part 1 be the base component. AssemblyTiers algorithm with activated connectivity check
mode can determine that liaison graph connectivity is preserved after removing part 2 (one of the wheel
supports). This part can also be freely disassembled in an outward movement along the wheel axle 4. Set of
parts relevant for connectivity checks L is reduced to {1, 3, 4, 5} even though wheel support 2 stays active in
the collision detection scene. The next candidate for disassembly, wheel support 3, cannot be removed because
it would result in subassembly {4, 5} being disconnected from the base 1. Without intermediate update of L
the algorithm would allow disassembly of parts 2 and 3 in the first tier. Removing either part 2 or part 3 alone
does not lead to unsupported axle and wheel. However, removing them both in the same tier does.

Seite 1© IP/WZL

Wheel assembly

1

2 34

5

1

2 3

5

4

Figure 5.6: Wheel assembly for connectivity check illustration

Deactivation of parts takes place at TiersUpdate stage after iterations through all available parts (Alg. 2 ln. 27).
The methods involved in TiersUpdate are shown in Alg. 6 and can be divided into three steps. First of all,
newly disassembled parts are assigned the current tier l, highlighted in CATIA for better visualisation and

48 5.1 CAD interface

extracted from the set M to be skipped in the next tier. Parts disassembled in the previous tier are deactivated
and hidden in CATIA. Secondly, if only base components are left after the previous step, all non-base parts are
deactivated directly and the outermost tier loop of AssemblyTiers can be exited. Last but not least, the
counter of remaining parts I is compared to the temporary variable Itemp which stores the number of parts
before deactivation. In case that no parts can be removed (and I does not decrease), remaining non-base
components are deactivated and the tiers loop is left.

Since the removal of components can reduce the dimensions of assembly’s BB, removal distances of parts along
certain directions can also shorten. Thus, recalculating the removal distances is practical because it can reduce
the simulation time needed to extract parts from an assembly. This update function is called at Alg. 2 ln. 28.

RecalculateRemovalDistances method is responsible for updating (Xmax, Xmin, Ymax, Ymin, Zmax, Zmin)

assembly bounding box by iterating through the entire set of assembly’s parts Π and calculating the global
assembly BB only accounting for parts that are not members of Θ (deactivated components). This process
is followed by recalculation of removal distances using unchanged global part BBs X̃ and updated assembly

5 Implementation 49

minimum and maximum coordinates.

Algorithm 6: TiersUpdate

1 Itemp ← I;
2 for i← 0 to N − 1 do // Record tiers

3 if pi ∈ B then

4 ti = 0; // Base components always have tier 0

5 else

6 if Φi = True ∧ ti = 0 then // Disassembled parts without an assigned tier

7 ti ← l;
8 I ← I − 1; // Decrease the counter of parts left in assembly

9 Change visuals of pi to indicate disassembled tier;
10 M ←M \ {pi}; // Disable movement of this part in next tier

11 end if

12 if Φi = True∧ ti = l− 1∧ l > 1 then // Disassembled parts from the previous tier

13 Deactivate pi in CATIA;
14 Θ ← Θ ∪ {pi};

15 end if

16 end if

17 end for

18 for i← 0 to N − 1 do

19 if I = |B| ∧ ti = l then // All parts disassembled

20 Deactivate pi in CATIA;
21 Θ ← Θ ∪ {pi}; // Deactivate all parts from last tier directly

22 end if

23 end for

24 if I = Itemp then // No parts could be removed in this tier

25 for i← 0 to N − 1 do

26 if ti = 0 ∧ pi /∈ B then // Remaining non-base components

27 Deactivate pi in CATIA;
28 Θ ← Θ ∪ {pi};

29 end if

30 end for

31 exit AssemblyTiers movement phase;

32 end if

To continue the main algorithm cycle in the next stage, tier counter l is incremented by 1, part index and counter
of checked parts are reset to 0 (s. Alg. 2 ln. 29-31). Processing the last tier is followed by AssemblyTiers

stationary phase (Alg. 7), during which recorded disassembly directions and tiers are transformed into usable

50 5.1 CAD interface

output and additional precedence relations between components are determined.

Algorithm 7: AssemblyTiers stationary phase

1 lmax ← l − 1; // Highest recorded tier

2 j̄ ∈ N : Dj̄ = −Dj ; // Index of the opposite direction

3 K = {(a, b) : Λa,b = 1, a > b}; // Part index pairs representing liaisons

4 for i← 0 to N − 1 do

5 if pi /∈ B then // Non-base components

6 Activate pi in CATIA;
7 end if

8 if ti 6= 0 then

9 ti ← lmax + 1− ti; // Reverse all tiers except for base parts

10 end if

11 y← 0, y ∈ RJ ; // Temporary assembly directions vector

12 for j ← 0 to J − 1 do

13 if Yi,j = 1 then

// Reverse disassembly directions to obtain assembly directions

14 yj̄ ← 1;

15 end if

16 end for

17 Yi ← y;

18 end for

19 foreach (a, b) ∈ K do

// Precedence relations of components belonging to sequential tiers

20 if ta = tb − 1 then

21 Sa,b ← 1;
22 end if

23 if tb = ta − 1 then

24 Sb,a ← 1;
25 end if

26 end foreach

Vector t stores parts’ disassembly tiers at main algorithm runtime, i.e. parts that can be removed first are
assigned smaller tier values. However, the main purpose of the algorithm is to create a meaningful representation
of assembly logic, which means that the logical order has to be reversed in accordance with ’assembly-by-
disassembly’ strategy. This procedure (Alg. 7 ln. 9) is implemented as shown in [Pin16b, p. 1051]. Next, the
disassembly directions matrix Y is converted to store feasible assembly axes by means of swapping values
of opposite directions if one of them equals 1. A dictionary is instantiated beforehand which supplies the
algorithm with opposite axes mapping (s. Tab. 5.1). The dictionary provides the opposite axis index j̄ for a
given disassembly axis j.

5 Implementation 51

Dj +xgl +ygl +zgl −xgl −ygl −zgl +xloc +yloc +zloc −xloc −yloc −zloc
j 0 1 2 3 4 5 6 7 8 9 10 11

j̄ 3 4 5 0 1 2 9 10 11 6 7 8

Table 5.1: Index mapping for opposite direction retrieval

In the final step of AssemblyTiers stationary phase remaining precedence relations between parts belonging
to sequential tiers are determined by analysing contacts. Every pair of parts with a liaison connecting them is
checked for the difference between tiers. Whenever it equals 1, a directed edge in the assembly precedence
graph is created pointing from the part with a lower tier to the other component.

(a) ’Precedence Matrix’ worksheet

(b) ’Assembly Directions’ worksheet

Figure 5.7: AssemblyTiers output as an Excel spreadsheet

Assembly tiers method is concluded by writing precedence matrix S, assembly directions Y and tiers t to a
Microsoft Excel spreadsheet. The implemented program automatically creates a reference to a new Excel
COM object by calling the function CreateObject("Excel.Application"). Therein, a Workbook object is
instantiated. The first Excel Sheet added to the workbook is called ’Precedence Matrix’ and the second –
’Assembly Directions’. The first sheet contains values of S (Fig. 5.7a), while the second combines information

52 5.1 CAD interface

about part names, allowed assembly directions and tiers (Fig. 5.7b).

5.1.3 AND/OR graph prerequisite extraction

In accordance with the conceptual framework presented in Fig. 4.2, two alternatives are to be implemented as
basis for scheduling. The alternative B requires preparation of liaison and moving wedge (MW) matrices for
subsequent AND/OR hypergraph creation. Throughout this section, movement step s, collision sensitivity ε
and bounding box projection check settings are assumed to be the same as in AssemblyTiers program. Due
to the definition of MW matrices given in [SS02], only movements along global axes are considered. The actual
derivation of an AND/OR graph is treated in section 5.1.4 because it is not part of developed CATIA interface
but is outsourced to another software module which operates on data provided by the CAD interface.

Generation of an assembly AND/OR graph is based on respecting stability and geometrical feasibility predicate
of assembly operations (requirements ASP2 and ASP3 in Tab. 3.2). In contrast to assembly tiers method,
subassemblies are allowed to be built and manipulated as a whole. Considering this, a valid algorithm must
be able to determine whether a subassembly can be created from its components and then brought into
the assembly collision-free and respecting the stability predicate at the same time. Similar to assembly tiers
method, liaison graph connectivity check provides means of ensuring subassembly stability in a simplified form,
i.e. assuming that every liaison is a rigid, dynamically stable connection. In order to account for the entirety of
possible collisions that can occur between parts and subassemblies moving along main assembly directions,
MW matrices in accordance with [SS02] are applied in this thesis.

Prior to relevant data acquisition fasteners are deactivated using DeactivateFasteners function. Liaison
graph extraction is realised by the same method as in AssemblyTiers and provides Λ as output. The result
is written into a separate Excel file which can be later accessed by the AND/OR generation algorithm. For
instance, the liaison graph representing contacts between components of the centrifugal pump assembly is
saved as Centrifugal pump_Liaisons.xlsx.

Generating bounding boxes of components in an assembly is necessary to efficiently determine when a part can
be safely disassembled. This preprocessing step takes place before any part is manipulated by the algorithm.
Moving wedge extraction resembles the movement phase of AssemblyTiers algorithm but shows different

5 Implementation 53

behaviour on collisions. The logical outline of MovingWedge algorithm is presented in Alg. 8.

Algorithm 8: MovingWedge
Input : Π, 4X, X∗, s, ε, N
Output : MW

1 MWi,k(δ)← 1 ∀i, k ∈ {0, . . . , N − 1} , ∀δ ∈ {+x, +y, +z};
2 for i← 0 to N − 1 do

// Populate collision detection groups

3 G1 ← {pi};
4 G2 ← Π \ pi;
5 for j ← 0 to 2 do // Directions loop

6 while ProductReachedFinalPosition(pi) = False do // Movement loop

7 MoveProduct(pi, s, Dj);
8 if ProductReachedFinalPosition(pi) = True then

9 Move pi to X∗i ; // Return part to initial position

10 break; // Take next movement direction

11 end if

12 if CollisionDetected(G1, G2, ε) = True then

13 foreach obstacle pk do

14 if j = 0 then

15 MWk,i(+x)← 0;
16 else if j = 1 then

17 MWk,i(+y)← 0;
18 else if j = 2 then

19 MWk,i(+z)← 0;
20 end if

21 end foreach

22 end if

23 end while

24 end for

25 end for

MW matrix elements are initialised with 1, which corresponds with the assumption that no parts obstruct any
movements of other parts. The purpose of MovingWedge algorithm is to discover which assembly operations
are not possible given the geometric forms of a product’s components. The limits on assembly directions are
then to be recorded by overwriting corresponding MW values with 0. Similar to the assembly tiers method,
two collision detection groups are created for each part, which is then moved along three principal global axes,
while recording occurring clashes. However, the part continues its movement until it reaches a disassembly-safe
distance (indicated by a boolean output of ProductReachedFinalPosition method). An important property
of MW matrices is used to reduce the duration of collision analysis and the amount of data to be saved:

54 5.1 CAD interface

MW (δ)T = MW (−δ) (5.10)

Equation 5.10 allows a moving wedge matrix for one axis to contain information about both positive and
negative assembly directions along that axis, so that a single matrix for each principal axis is sufficient to record
all relevant collision data. This property results from the invariance of collisions to relative movement of parts
along the same axis but in different directions. To put it in simpler terms, if a part pi moving in the positive
axis direction δ collides with another stationary part pk, it implies that the same collision also occurs if the
part pk is moved in the negative direction of the same axis (−δ) and pi is fixed:

MWi,k(δ) = MWk,i(−δ) ∀i, k ∈ {0, . . . , N − 1} (5.11)

Thus, it is not necessary to move each part in both positive and negative axis directions. The information about
relative movements of parts and their collisions can be obtained by examining simulated disassembly movements
in the positive axis directions. Note that MW matrices contain information about assembly movements and it
implies permuting indices i and k in Alg. 8 ln. 14-20.

Prerequisites for generating an assembly AND/OR graph are ready after MW data are written to a dedicated
Excel file with three worksheets ’MW_x’, ’MW_y’ and ’MW_z’. Next section presents two alternative algorithms
developed to transform liaison and MW data into a complete AND/OR graph.

5.1.4 AND/OR graph generation

The algorithms related to AND/OR generation are implemented in Python 3 and make use of various libraries
to reduce development time. First of all, the liaison and MW data need to be read. For this purpose, Pandas
data analysis library is applied [Reb20]. An instance of ExcelFile is created by the specified path to allow
data extraction from Excel. Next, ’Liaison Matrix’ worksheet is parsed into a DataFrame object by Pandas’
parse() function. The first five rows of the read DataFrame are printed in the console for debugging purposes.
The same procedure is followed for MW matrices contained in their respective worksheets. Liaison dataframe is
stored in liaison_df variable, MW data is saved in a dictionary of dataframes mw_dfs, which can be retrieved
by their names (’MW_x’, ’MW_y’ or ’MW_z’). Secondly, the entire product Π is represented by a list of
parts prod, which contains 1-based indices of parts: prod = list(range(1, len(liaison_df) + 1)) for
more intuitive output and visualisation at later stages of the algorithm.

Since no performance benchmarks are present in the literature, two alternative approaches for AND/OR
derivation are programmed in this thesis for examination: top-down and bottom-up.

Top-down approach

This method was developed by Thomas in the dissertation [Tho08] and its application in self-optimising
assembly systems based on cognitive technologies is mentioned in [Bre12, p. 911]. The core idea of the
top-down approach is to apply ’assembly-by-disassembly’ strategy beginning with the entire product, but instead
of removing single parts as in the assembly tiers method, pairs of all subsets are examined for collision-free

5 Implementation 55

separation. Valid disassembly operations are appended to the AND/OR graph and resulting subassemblies are
evaluated and tested in further disassembly attempts. [Bre12]

The top-down procedure is a Python script called and_or.py, which can be launched in a conventional Python
IDE, e.g. Spyder. After the described data import an empty list of nodes Ω is created so that resulting
subsets of parts can be stored and skipped if they have already been ’visited’ by the recursive procedure. This
recursively executed algorithm is called and_or() in the code and requires four arguments: a subset of parts
to disassemble Π ′ ⊆ Π, liaison matrix Λ, MW matrices and the list of visited nodes Ω. HyperNetX library
[Bat18] is employed for graph storage and optional visualisation, so that string representations of subassemblies
are required. The entire top-down and_or() function is presented in the pseudocode Alg. 9.

The procedure begins with generating all possible partitions Π ′′ of the provided subassembly Π ′ in two
non-empty sets:

Π ′′ (Π ′) = {{π1, π2} : π1 ∪ π2 = Π ′, π1, π2 6= ∅} (5.12)

For example, a set {1, 2, 3} has three such partitions: {{{1, 2} , {3}} , {{1, 3} , {2}} , {{2, 3} , {1}}}. Ap-
plying bin_partitions() function to Π ′ yields every partition containing two subassemblies each. Consider
that every element of the initial part subset Π ′ can be assigned 0 or 1 to denote membership of the element
in one of the two resulting subassemblies. The entire set of partitions can then be enumerated by integers
0 ≤ n ≤ 2|Π′| − 1 encoded in binary system as shown in Tab. 5.2. Furthermore, since a permutation of
subassemblies π1 and π2 still results in the same initial part subset, an enumeration with a half of the numbers
is sufficient. Since empty subsets are not meaningful for assembly planning, the first and the last rows in
Tab. 5.2 are irrelevant. To conclude, numbers 1 ≤ n ≤ 2|Π′|−1 − 1 suffice for the partition encoding.

n 1 2 3 π1 π2

0 0 0 0 1, 2, 3 –

1 0 0 1 1, 2 3

2 0 1 0 1, 3 2

3 0 1 1 1 2, 3

4 1 0 0 2, 3 1

5 1 0 1 2 1, 3

6 1 1 0 3 1, 2

7 1 1 1 – 1, 2, 3

Table 5.2: Set partition encoding via binary number enumeration

56 5.1 CAD interface

Algorithm 9: AND/OR top-down approach
Input : Π ′, Λ, MW , Ω
Output : Assembly AND/OR hypergraph

1 Π ′′ ← bin_partitions(Π ′);
2 foreach {π1, π2} ∈ Π ′′ do

3 if is_stable(π1, Λ) = False ∨ is_stable(π2, Λ) = False then

4 continue;
5 end if

6 Y ← ∅; // Set of collision-free assembly direction indices

7 for j ← 0 to 5 do

8 c← 0; // Counter of collision-free part pairs for direction Dj

9 if j < 3 then // Positive axis directions

10 MW ′ ←MW (Dj);
11 for (pi, pk) ∈ π1 × π2 do

12 c← c+MW ′i,k;
13 end for

14 else // Negative axis directions

15 MW ′ ←MW (Dj−3);
16 for (pi, pk) ∈ π1 × π2 do

17 c← c+MW ′k,i;
18 end for

19 end if

20 if c = |π1| · |π2| then // Assembly direction is collision-free

21 Y ← Y ∪Dj ;
22 end if

23 end for

24 if |Y | > 0 then // There is at least one collision-free assembly direction

25 Save hyperedge (Π ′, π1, π2);
26 if π1 /∈ Ω then

27 Ω ← Ω ∪ π1;
28 and_or(π1, Λ, MW, Ω);

29 end if

30 if π2 /∈ Ω then

31 Ω ← Ω ∪ π2;
32 and_or(π2, Λ, MW, Ω);

33 end if

34 end if

35 end foreach

5 Implementation 57

Every partition consisting of two sets {π1, π2} has to be checked for stability predicate and geometrical feasibility.
At first, connectivity of both subassemblies is tested by executing a depth-first search on their corresponding
liaison subgraphs and determining whether they are connected. Whenever one of the subassemblies is not
connected, the next partition possibility is analysed.

Before testing the geometrical feasibility of putting subassemblies π1 and π2 together, an empty set of collision-
free assembly directions Y is initialised. Determining whether π1 can be assembled to π2 along a certain
direction requires analysis of MW submatrices for involved axis and subassemblies. A collision between two
groups of parts can only occur if a part from the first group collides with a part from another group. Vice
versa, a subassembly can be attached to another subassembly collision-free if any pair of parts contained in
opposite groups does not cause any clashes during assembly. This condition can be checked by counting ones
in the corresponding submatrix of MW for the axis of interest and comparing the sum c to the total number
of part pairs |π1| · |π2|. If the numbers are equal, the assembly axis is appended to the set of collision-free
directions. A new assembly operation is recorded for partitions which have at least one such direction.

Hyperedges in the AND/OR graph are represented by 3-tuples, in which the first element is the part subset
that is created by the assembly operation and the remaining two elements are the components or subassemblies
that are combined to form Π ′. Each of subassemblies π1 and π2 are added to the set of visited nodes Ω if their
decomposition has not been analysed, which is followed by a recursive call of and_or() function on unvisited
subassemblies.

Once the complete graph is created by the procedure, it is accessible as an instance of Hypergraph class,
which can be visualised as a rubber-band diagram. Each rubber-band embraces three subassembly nodes and
represents an assembly operation. Rubber-bands are given distinct colours and IDs. The graph itself is serialised
using Python module pickle and can be retrieved by process graph generation and scheduling programs.

Bottom-up approach

In contrast to the top-down AND/OR graph generation, Gulivindala et al. propose an approach that generates
assembly sequences starting from single parts and gradually creating bigger subassemblies at higher levels.
Their approach aims at finding a parallel assembly sequence with the smallest number of assembly levels using
a heuristic method. [Gul20]

In this thesis, a similar approach at generating the entire assembly AND/OR graph is implemented to account
for influences from the assembly system which can make a simple heuristic suboptimal. A separate Python script
called and_or_bottom_up.py is created for this purpose. The presented bottom-up algorithm operates on the
same input data as in the top-down algorithm implementation. In the context of the bottom-up approach, Ω
represents the list of subassemblies created by the algorithm so far. At first, the list of created subassemblies is
initialised with single parts. Existing subassemblies are combined on higher levels l to form bigger subassemblies.
At the beginning, only pairs of parts can be created, while an increasing number of combinations is possible on
higher levels because of the growing set of created subassemblies.

Several conditions are to be checked in order to create new combinations of parts and subassemblies (see Alg. 10
ln. 8). Firstly, the total number of parts in two subassemblies cannot exceed the total product part count,

58 5.1 CAD interface

because it implies that there are same parts present in both subassemblies. Secondly, even if the first condition
holds, the eventual intersection of the two subsets of parts π1 and π2 needs to be examined. If no same parts
appear in the two subsets, these subassemblies are put together and tested for connectivity. Furthermore, the
subassemblies are checked for existence of collision-free assembly directions. Notwithstanding the examined
conditions, a subassembly may still be created that prevents further necessary assembly operations, i.e. there
are parts that can no longer be assembled in any directions once a certain subassembly is built, which is to be
avoided. In the case that all previously mentioned conditions are satisfied, a new assembly hyperedge is created
in the same manner as in the top-down algorithm.

Algorithm 10: AND/OR bottom-up approach
Input : Π, Λ, MW , Ω
Output : Assembly AND/OR hypergraph

1 Ω ← {{pi} : pi ∈ Π}; // Populate set of created subassemblies with single parts

2 kstart ← 0; // Smallest index of the second component subassembly

3 for l← 2 to N do // Maximum number of assembly levels is N

4 Ω′ ← Ω; // Temporary updated set of created subassemblies

5 for i← 0 to |Ω| do // First component subassembly index

6 for k ← kstart to |Ω| do // Second component subassembly index

7 if i < k then // Skip repeated assembly operations

8 if π1 = Ωi is assembable to π2 = Ωk then

9 Π ′ ← π1 ∪ π2;
10 Save hyperedge (Π ′, π1, π2);
11 if Π ′ /∈ Ω′ then // Resulting subassembly is new

12 Ω′ ← Ω′ ∪Π ′; // Append new resulting subassembly

13 end for

14 end for

15 kstart ← |Ω|; // Reset second subassembly index to avoid examined combinations

16 Ω ← Ω′; // Rewrite set of created subassemblies with updated version

17 end for

5.1.5 Process graph generation

The method presented in [Ehm19] is applied in order to construct an assembly specific process graph from
AND/OR as a basis for scheduling. The main difference from the cited work is the form in which AND/OR is
stored and used by the process graph construction algorithm. In contrast to the transition matrix, the developed
algorithm works with AND/OR represented as a dictionary wherein each hyperedge ID is assigned a 3-tuple
of subassemblies. The notation of indices and sets found in [Ehm19, p. 93] is applied with modifications to
reflect the assembly logic. The explanations of important elements such as splitting and decision nodes can be
found in Section 2.2.5.

The implemented algorithm is a part of and_or_mip.py script and iterates over assembly operations k ∈ Oj

5 Implementation 59

present in the AND/OR graph and retrieves the subassembly created by k. The output subassembly is denoted
as h. A new decision node with the same index as k is appended to the set Rj whenever the created subassembly
h is not in the list of explored subassemblies. Operations k′ ∈ Oj that use h as a component are added to the
set of outgoing operations Routjr for the decision node r = k ∈ Rj and all operations k′ that assemble h are
added to the set of ingoing operations Rinjr . Next, a splitting node s can be created for each ingoing operation
k′, if both components h′ involved in k′ have at least one operation k′′ that assembles each of them. The
newly created splitting node s represents the possibility of simultaneous execution of such k′′. Analogously to
the method developed by Ehm, dummy operations k∗ need to be created wherever there are multiple operations
k′′ going into the splitting node s or multiple further outgoing assembly operations. The general outline of the
algorithm is shown in Alg. 11.

Algorithm 11: Process graph construction
Input : Assembly AND/OR hypergraph with operations Oj
Output : Rj , Sj , R

in
jr , R

out
jr , S

in
js , S

out
js

1 foreach k ∈ Oj do

2 h← subassembly created by operation k;
3 if h not explored then

4 Create decision node r = k ∈ Oj ;
5 Append h to explored subassemblies;

6 end if

7 foreach k′ ∈ Oj do

8 if h is a component in k′ then

9 Append k′ to Routjr ;
10 else if h is output of k′ then

11 Append k′ to Rinjr ;
12 h′1/2 ← components in k′;
13 if h′1/2 can be assembled ∧ k = k′ then

14 Create splitting node s ∈ Sj ;
15 Append all k′′ to Sinjs that assemble h′1/2 (if k′′ is the only way to assemble h′1/2 and

only one operation uses h′1/2 as component);
16 Append k′ to Soutjs ;
17 Insert a dummy operation if there are >1 ingoing operations creating or outgoing

operations using h′1/2;
18 s← s+ 1;

19 end if

20 end if

21 end foreach

22 end foreach

23 Replace operations with dummies where needed;
24 Remove redundant decision nodes (logical copies of splitting nodes);

60 5.1 CAD interface

Fig. 5.8 illustrates how an AND/OR graph is transformed into a collection of decision and splitting nodes,
preserving the logical assembly structure. A six-part product with a total of nine potential assembly operations
is chosen for easier demonstration of the algorithm. In the first iteration, operation k = 1 results in the first
decision node r = 1. This node has a special characteristic that it has no outgoing assembly operations,
because operation 1 is the final assembly step and creates the final product.

Analysing k = 2 results in another decision node r = 2, which has an outgoing operation 1 and two ingoing
operations 2 and 3. This node illustrates a choice between two alternative ways to assemble h = {1, 2, 4, 5, 6}.
Then, examining the ingoing operation k = k′ = 3 shows that both h′1 = {1, 4, 5} and h′2 = {2, 6} contain
more than a single part and have assembly operations creating them. The first splitting node s = 1 is
instantiated. Since the subassembly {1, 4, 5} has two operations that create it (operations 5 and 6) and {2, 6}

is used as a component by operations 3 and 4, no real ingoing assembly operations are appended to Sinj,1 at
this step. However, dummy operations 10* and 11* are inserted.

During the iteration with k = 4 a corresponding decision node r = 4 is added to the process graph. The
subassembly h = {1, 2, 5, 6} is a component of operation k′ = 2, which is then added to Routj,4 . Operation
k′ = 4 assembles {1, 2, 5, 6} and is thus appended to Rinj,4. Both component subassemblies h′1 = {2, 6}

and h′2 = {1, 5} can be assembled but are also both used in more than one further assembly operation each.
Thus, a new splitting node s = 2 is created with a single outgoing operation 4. No real ingoing operations are
inserted at this stage. Instead, dummies 12* and 13* are added.

The iteration k = 5 makes a new decision node r = 5 with ingoing operations 5 and 6 and an outgoing operation
3. This operation is recognised as redundant with the outgoing operation 3 from Soutj,1 . This redundancy is
eliminated in the end of the whole procedure by replacing operation 3 in Routj,5 with the dummy 10*. Proceeding
in the next iteration k = 6, the algorithm does not create a new decision node because the subassembly
h = {1, 4, 5} has already been explored in the previous iteration. Since operation k = k′ = 6 uses part {5} as
a component, which is not created by any assembly operation, no new splitting nodes are required at this step.

The rest of the operations k = 7, 8, 9 are processed in the same manner. Note the importance of the final
replacement of operations with dummies, during which the set of outgoing operations Routj,8 = {4, 5} is changed
to {12∗, 5} and Routj,9 = {3, 4} to {11∗, 13∗}.

5 Implementation 61

Seite 1© IP/WZL

Process graph construction

1, 2, 3, 4, 5, 6

3 1, 2, 4, 5, 6

1

1, 2, 5, 6 1, 4, 5 2, 64

2, 6 1, 5 1, 4

2 6 1 5 4 1

2 6

2 3

4 5 6
9

9 8 7

𝑟 = 1

1

𝑟 = 2
1

2 3

4

2
𝑟 = 4

𝑟 = 5
10*

5 6

7

6
𝑟 = 7

𝑟 = 8 512*

8

𝑟 = 9 13*11*

9

s = 1
3

10* 11*

s = 2
4

12* 13*

Figure 5.8: Transformation of an AND/OR graph adapted from [Ehm19, p. 92] into decision and splitting
nodes of a process graph

5.2 Scheduling module

Two separate scripts are dedicated to scheduling with different assembly process models. The script for scheduling
using precedence graphs is presented in Section 5.2.1 and can be found in assembly_tiers_scheduling.py. A
detailed explanation of and_or_mip.py script is given in Section 5.2.2. While the program for scheduling based
on precedence graphs does not require any additional information processing before starting the optimisation,
scheduling based on AND/OR graphs requires preliminary translation into a process graph, which is handled in
the previous section.

The process data necessary for scheduling are the characteristics of operations that need to be executed.
First of all, the duration of each operation is assumed to be deterministic and proportional to the volume
of component bounding boxes extracted previously by the CAD interface. Furthermore, the durations pt are
integers between 0 and 10, which can stand for different time units depending on the coarseness of the schedule
and the complexity of assembly operations. With VBB,k being the volume of the bounding box of part pk or
the sum of BB volumes of parts contained in a subassembly, the duration is calculated by the formula

ptk =

 VBB,k −min
k
VBB,k

max
k

VBB,k −min
k
VBB,k

· 9 + 1

 (5.13)

Secondly, the part weights are stored in the vector ρ as integer numbers of kilograms. The values of ρ are
distributed between 500 and 1500 kg in similarly to Eq. 5.2. In the test scenario, two types of cranes are
available with load capacities of 1000 kg and 5000 kg, respectively. For two cranes, this information is formalised
in the tuple λ = (1000, 5000). Thirdly, the number of workers requested by each operation is an integer
between 1 and 3 stored in the vector u. The values of u are deterministic and also proportional to BB volumes

62 5.2 Scheduling module

of parts. The total number of workers available on-site c cannot be exceeded at any time interval. Using the
mentioned data, it is possible to expand the standard RCPSP by additional constraints to reflect the restrictions
relevant for on-site large-scale assembly. The standard RCPSP and additional constraints are formulated as
MIPs which are then solved by Gurobi optimiser. The implementation of MIP constraints is covered in the
book ’Mixed Integer Linear Programming with Python’ by Santos and Toffolo [ST20], which provides the basis
for the scheduling programs developed in this thesis.

5.2.1 Scheduling with precedence graphs

The precedence graph and the assembly tiers of product parts need to be extracted from Excel first. To
do so, the string variable product_name is used to create a path to the file of interest automatically. The
function read_precedence_matrix() opens the Excel file and parses the ’Precedence Matrix’ worksheet
into a new Pandas DataFrame object called precedence_df. The assembly tiers are extracted similarly by
read_assembly_tiers(), where the object at_df stores the data of the ’Assembly Directions’ worksheet. In
the current implementation, the Excel files are assumed to be found in the folder data in the same directory as
the Python script. The relative path to the required files can be modified in the code, if changes in the project
structure are needed in the future.

Once the data is imported in Python, the precedence matrix needs to be transformed into a list of edges to match
the constraint implementation from [ST20]. First, the applied function edge_list() takes precedence_df

as an argument and calculates column and row sums of the precedence matrix. Then, a directed edge
(i+ 1, j + 1) 1 is created for each matrix element with Si,j = 1 and appended to the edge list. After that, a
dummy start operation 0 is to be connected with operations that have no predecessors. Such operations can
be identified by the column sums of the precedence matrix that equal 0, i.e. no edges point at these operations.
Dummy end operation N + 1 is connected to all operations that have no outgoing edges, which is determined
by the corresponding row sums that equal 0. The function returns the precedence_graph object containing
the set of directed precedence relations.

The wrapper function solve() is called after process data generation and import. Maximum load capacities of
machines λ and the total number of available workers c are initialised in the body of the solve() function. The
number of on-site cranes and manipulators is determined automatically by getting the number of elements in
the λ array. A Gurobi Model object is created to store variables, constraints and execute various data processing
operations. The planning horizon T is a Python range object that contains a sequence of integers between 0
and the sum of all operation durations, corresponding to the worst-case scenario of no parallel operations in the
schedule. The set of operations O is represented by integers from the interval {0, . . . , N + 1}. The cranes
and manipulators are enumerated in the setM. The precedence graph of the assembly job is represented by
the set of directed edges S.

Based on the binary programming formulation proposed by Pritsker [CITATION!], binary decision variables
are used to assign operations their time slots. In contrast to Pritsker’s formulation, binary decision variable
xktm = 1 if operation k starts in the beginning of time period t on machine m. The end times of operations

1Matrix indices in the imported DataFrame start with 0, but the first assembly operation has index 1 in the used notation

5 Implementation 63

are integer variables ek. The makespan of an assembly schedule is denoted by an integer variable Cmax. The
RCPSP input data and variables can be summarised as follows:

O set of operations Ok with k ∈ {0, . . . , N + 1}

ptk integer duration of operation k, where ptk ∈ {0, . . . , 10}

ρk weight of the component to be transported during operation k in kilograms
M set of machines (cranes and manipulators)
λm load capacity of machine m ∈M in kilograms
uk number of workers requested by operation k
c total capacity of workers on-site
T planning horizon

{
0, . . . ,

∑N+1
k=0 ptk

}
: set of possible processing times for operations

S set of precedences between operations (k, l) ∈ O ×O

xktm boolean, 1, if operation k starts at time t on machine m
ek integer end time of operation k
Cmax makespan

The MIP for scheduling with precedence graphs can then be formulated as follows:

min Cmax = max
k

ek (5.14a)

s.t. ek =
∑
m∈M

∑
t∈T

(t+ ptk) · xktm ∀ k ∈ O (5.14b)

∑
m∈M

∑
t∈T

xktm = 1 ∀ k ∈ O (5.14c)

∑
m∈M

∑
t∈T

t(xltm − xktm) ≥ ptk ∀ (k, l) ∈ S (5.14d)

(λm − ρk) ·
∑
t∈T

xktm ≥ 0 ∀ k ∈ O, m ∈M (5.14e)

∑
k∈O

∑
m∈M

t+1∑
t′=max(0, t−ptk+1)

ukxkt′m ≤ c ∀ t ∈ T (5.14f)

∑
k∈O

t+1∑
t′=max(0, t−ptk+1)

xkt′m ≤ 1 ∀ t ∈ T , m ∈M (5.14g)

The optimisation objective is to minimise the makespan (5.14a), which is defined as the latest completion time
of assembly operations (5.14b). The objective is set in Gurobi by the command model.setObjective(C_max,

GRB.MINIMIZE). Constraints are added to the MIP Model using Gurobi function addConstr(). Condition
5.14c ensures that each operation is assigned only one starting time t on only one machine m in the planning
horizon T . The precedence constraint 5.14d implies that the earliest start time of a successor operation l is
after the predecessor operation k is finished. Condition 5.14e restricts the choice of machines based on their
load capacities. The resource constraints 5.14f and 5.14g ensure that the capacity of workers is not exceeded
at any time and that each machine can only process one operation at a given time slot.

64 5.2 Scheduling module

The optimal schedule is generated by calling the model.optimize() method, which generates a solution log
in the console at runtime. Once the model is solved, the values of variables different from zero are printed out
by model.printAttr(’X’) method, unless the specified model is infeasible or unbounded. Python matplotlib
visualisation library [Cas20] is used to view the schedule in a Gantt chart for better readability of results, and
the precedence graph is plotted with NetworkX graph visualisation library [HSS08].

5.2.2 Scheduling with AND/OR-derived process graphs

The procedure implemented in and_or_mip.py is an alternative way of assembly sequence planning and
scheduling that makes use of the process graph. In contrast to the assembly tiers method, subassemblies are
allowed to be built. In general, AND/OR-derived process graphs contain a much bigger number of possible
operations than precedence graphs. Nevertheless, only a subset of alternative assembly operations needs to
be chosen in order to create a valid assembly sequence. The involved assembly system model is generated
analogously as in the previous section and includes the worker capacity constraint as well as the machine load
capacity constraint. The process data are generated according to the method described in the introduction to
the scheduling module.

Since the structure of process graphs is more complex than that of precedence graphs, the input data and
variables are added or adjusted to represent the changes in logic:

O set of operations Ok in the process graph
ptk integer duration of operation k, where ptk ∈ {0, . . . , 10}

ρk weight of the component to be transported during operation k in kilograms
M set of machines (cranes and manipulators)
λm load capacity of machine m ∈M in kilograms
uk number of workers requested by operation k
c total capacity of workers on-site
T planning horizon

{
0, . . . , T =

∑N+1
k=0 ptk

}
: set of possible processing times for operations

Pj set of task pairs (k, l) with direct precedence in the process graph
Rj set of decision nodes for product j
Sj set of splitting nodes for product j
Rinjr , R

out
jr set of ingoing and outgoing tasks of decision node r ∈ Rj

Sinjs , S
out
js set of ingoing and outgoing tasks of splitting node s ∈ Sj

xktm boolean, 1, if operation k starts at time t on machine m
ek integer end time of operation k
Cmax makespan

The full MIP for scheduling with AND/OR-derived process graphs is shown below:

5 Implementation 65

min Cmax = max
k

ek (5.15a)

s.t. ek =
∑
m∈M

∑
t∈T

(t+ ptk) · xktm ∀ k ∈ O (5.15b)

∑
m∈M

∑
t∈T

xktm ≤ 1 ∀ k ∈ O (5.15c)

∑
m∈M

∑
t∈T

t(xltm − xktm) ≥ ptk ·
∑
m∈M

∑
t∈T

xktm − T

(
1−

∑
m∈M

∑
t∈T

xltm

)
∀ (k, l) ∈ Pj (5.15d)

∑
k∈Rin

jr

∑
t∈T

∑
m∈M

xktm = 1 ∀r ∈ Rj , r = 1 (5.15e)

∑
k∈Rin

jr

∑
t∈T

∑
m∈M

xktm =
∑

l∈Rout
jr

∑
t∈T

∑
m∈M

xltm ∀r ∈ Rj , r > 1 (5.15f)

∑
t∈T

∑
m∈M

xktm =
∑
t∈T

∑
m∈M

xltm ∀s ∈ Sj , k ∈ Soutjs , l ∈ Sinjs (5.15g)

(λm − ρk) ·
∑
t∈T

xktm ≥ 0 ∀ k ∈ O, m ∈M (5.15h)

∑
k∈O

∑
m∈M

t+1∑
t′=max(0, t−ptk+1)

ukxkt′m ≤ c ∀ t ∈ T (5.15i)

∑
k∈O

t+1∑
t′=max(0, t−ptk+1)

xkt′m ≤ 1 ∀ t ∈ T , m ∈M (5.15j)

The optimisation objective of this MIP model is the same as that of precedence graph-based assembly scheduling,
to minimise the makespan, i.e. the latest completion time of operations. Constraint 5.15c is a modification
of the analogous constraint in precedence graph-based scheduling (5.14c) which accounts for the fact that
not all operations k ∈ O need to be chosen for the schedule. The next condition, 5.15d, is responsible for
restricting the earliest starting times of successor operations. This constraint is relaxed whenever the successor
operation l is not chosen for the schedule (

∑
m∈M

∑
t∈T xltm = 0). The set of direct precedence relations in

the process graph Pj contains all pairs of ingoing and outgoing operations of each node. Constraints 5.15e -
5.15g are modifications of constraints 7 - 9 from [Ehm19], which synchronise ingoing and outgoing flows at
decision nodes and represent parallel operations at splitting nodes. Conditions 5.15h and 5.15i are deployed to
check load capacities of cranes and on-site worker capacities. The last constraint, 5.15j, ensures that machines
are never used by more than one operation at the same time.

90 A Assembly tiers implementation

A Assembly tiers implementation

A.1 Table of variables

Symbol Code variable Description

Π cRelevantProducts Entire product without fasteners

N cRelevantProducts.Count Number of relevant parts

pi cRelevantProducts.Item(int_i) Part by index i

B cBaseProducts Set of base components

X∗ aInitPos Matrix of initial part positions

4X aRemovalDistances Removal distance matrix

X̃ aPartBBGlob Bounding box matrix

i int_i Part index

j int_j Counter of tested disassembly directions

I intI Counter of parts left in assembly

J intJ Number of disassembly directions to be tested

D d1 Set of movement directions

s intStep Movement step distance

ε dCollSens Collision sensitivity

G1/2 group1/2 Groups of parts for clash analysis

Θ bDeactivated Set of deactivated parts

M bMoveable Set of moveable parts

Φ bDisassembled Set of parts with at least one free disassembly direction

L connectivityCheckNodeIndices Set of parts examined in connectivity checks

S precedenceMatrix Precedence matrix

l intTier Tier counter

t aTiers Tiers vector

Y disassDir Disassembly directions matrix

Table A.1: Mathematical symbols and code variables in AssemblyTiers algorithm

	Implementation
	CAD interface
	Demonstrative assembly
	Assembly tiers method
	AND/OR graph prerequisite extraction
	AND/OR graph generation
	Process graph generation

	Scheduling module
	Scheduling with precedence graphs
	Scheduling with AND/OR-derived process graphs

	Assembly tiers implementation
	Table of variables

