diff --git a/Bericht/Bilder/64_volume.png b/Bericht/Bilder/64_volume.png
new file mode 100644
index 0000000000000000000000000000000000000000..df76ed5de01beed2ae280c2e3d73ded2bd7a9492
Binary files /dev/null and b/Bericht/Bilder/64_volume.png differ
diff --git a/Bericht/Bilder/Deformed_volume.png b/Bericht/Bilder/Deformed_volume.png
new file mode 100644
index 0000000000000000000000000000000000000000..efff935dd18f6e976ec218b240eb5344f37810da
Binary files /dev/null and b/Bericht/Bilder/Deformed_volume.png differ
diff --git a/Bericht/Bilder/Deformed_volume.xcf b/Bericht/Bilder/Deformed_volume.xcf
new file mode 100644
index 0000000000000000000000000000000000000000..c72394bb85d8b38be2b08c576d299772a0ad728b
Binary files /dev/null and b/Bericht/Bilder/Deformed_volume.xcf differ
diff --git a/Bericht/Bilder/martensite_percentage.png b/Bericht/Bilder/martensite_percentage.png
new file mode 100644
index 0000000000000000000000000000000000000000..32d6f25462e772ca94861a052a83c884cb837877
Binary files /dev/null and b/Bericht/Bilder/martensite_percentage.png differ
diff --git a/Bericht/vtk/result_14.vtk b/Bericht/vtk/result_14.vtk
new file mode 100644
index 0000000000000000000000000000000000000000..c962965b4846883d5e5e14656a5655034700e2d2
Binary files /dev/null and b/Bericht/vtk/result_14.vtk differ
diff --git a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_input.csv b/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_input.csv
deleted file mode 100644
index 0dbf29a22fe2e2d59b566aceb55d86c09e92b131..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_input.csv
+++ /dev/null
@@ -1,102 +0,0 @@
-a,b,c,alpha,volume,phi1,PHI,phi2,GrainID,final_discrete_volume,final_conti_volume,phaseID
-5.127765642672939,2.594773776060596,7.391994919663497,38.71082305908203,823.9634226653451,214.03862694599823,340.7921829152015,66.85139417332205,0,779.25,823.963422665345,1
-4.0427693725859735,2.312351165060003,5.54587924424552,6.564509391784668,434.3319419704122,296.35880174301707,155.9871688622997,223.36101233258586,1,412.625,434.3319419704122,1
-1.3471791868957637,5.199828578383646,5.199828578383646,86.61039733886719,305.15607675576973,4.824882834552011,107.72678956202776,194.66046247004266,2,291.5,305.1560767557698,2
-2.9762579449137943,2.271158179215791,5.082191459960348,2.477015256881714,287.7978712875716,128.34376825176287,274.7263228833649,325.3086371285804,3,275.0,287.7978712875716,1
-4.830429582753811,1.9933867249334913,3.040190494729496,21.22945213317871,245.2430558122336,250.35476962776,155.0471589587558,318.2506889091516,4,235.0,245.24305581223356,1
-4.639124151830187,1.7960332196425883,3.045778146432424,22.917821884155273,212.60194414808683,222.60200427073477,58.8210916574791,25.310138797941324,5,202.875,212.60194414808686,1
-3.3640043998355256,1.3490131380465564,4.214851399175444,171.3376922607422,160.24098538370296,62.26311890390319,285.47100870953756,48.40018172938759,6,152.0,160.24098538370296,1
-2.400507606375655,1.5885440189960889,4.8661303027769565,157.03111267089844,155.45499431668856,284.0589065507353,198.8903880223861,165.6370971828448,7,149.125,155.45499431668853,1
-5.049364160014189,1.630887919652159,2.20036803118046,21.589147567749023,151.80103772534588,339.5159061158933,128.27661117010297,133.50709400439985,8,145.5,151.80103772534585,1
-3.0611838012790944,0.9842441996609074,5.472120654365817,177.56544494628906,138.12317096892716,17.940743472090873,157.26988174215083,8.35871672892209,9,132.0,138.12317096892718,1
-1.9581248674924467,2.3832822984869675,2.3832822984869675,70.42293548583984,93.17726583130352,91.17554746399904,8.505741755617152,78.55511604179237,10,88.875,93.17726583130353,2
-1.0134272323800315,3.298090399655321,3.298090399655321,85.8499755859375,92.34986947481818,261.42540993094354,45.99558553707889,47.70829116920838,11,88.25,92.34986947481819,2
-1.4708850251224732,2.7159674522378445,2.7159674522378445,96.48249816894531,90.89635198674411,86.88421414085857,51.73142394729008,88.88647044543882,12,86.125,90.89635198674411,2
-2.473456530765928,1.7249891141434968,2.0743125136436653,21.120697021484375,74.14526698683885,341.24618999336,169.709454824202,300.78844025979583,13,70.5,74.14526698683886,1
-1.8886421230773143,1.334575704617865,3.5039020900304467,168.20494079589844,73.98836889404443,332.6217232768128,11.296541446943422,115.96559619383238,14,70.625,73.98836889404443,1
-2.029674792671265,1.1474290462723744,2.466781549732283,177.57069396972656,48.128418835724766,6.92946410361281,190.16812521972577,42.798721333517676,15,46.125,48.128418835724766,1
-2.4310967345419203,1.4049768911637692,1.6733350079164981,176.844970703125,47.88207064668138,166.99216063888028,0.15073360744481512,64.94522834181063,16,45.375,47.88207064668138,1
-2.1348480071629004,1.667913995901318,1.3702842730852491,2.1205806732177734,40.87614129008734,20.406275697473323,177.72333099684613,37.08358744069662,17,39.125,40.87614129008734,1
-2.740449465355919,1.8653074293450165,0.90201683676515,5.728599548339844,38.6282885553461,95.27642146448981,123.47737721453778,293.0191884177055,18,36.75,38.6282885553461,1
-2.3885774149396823,1.3634559646143694,1.3634559646143694,41.66294860839844,37.19976178339501,170.60381348972385,115.00001411588548,27.243783908641458,19,35.625,37.19976178339501,2
-1.5322113562396593,1.6885752064928843,1.6885752064928843,125.41627502441406,36.59974825816539,75.48387607180544,8.249734762587817,9.757408967926136,20,35.25,36.59974825816539,2
-2.4393260971427226,1.208820284291972,1.208820284291972,161.46728515625,29.861522388870224,102.13944939896675,117.79278740652065,237.73005615630242,21,28.75,29.861522388870224,2
-1.7331482713192419,0.9441305985728342,2.137824429732913,163.06231689453125,29.3061273102773,147.49566469007854,145.60961479630595,6.867534912674298,22,27.875,29.3061273102773,1
-0.559849330153247,2.4535227316404558,2.4535227316404558,80.75215148925781,28.233839394924374,187.94829650344832,152.1025924244034,321.78558960356315,23,27.125,28.23383939492437,2
-1.3101167779198901,1.4958712494401853,1.4958712494401853,96.56450653076172,24.559359914640524,293.34151131888774,78.4944025159959,168.29923200258023,24,23.25,24.559359914640524,2
-0.8547383714665149,1.8346327678846115,1.8346327678846115,96.26565551757812,24.101834397391247,135.20604629853617,167.0939919568726,163.42361361595883,25,22.375,24.101834397391244,2
-0.443669049871963,2.3687177951312517,2.3687177951312517,110.12188720703125,20.85472099577932,303.2318229462451,13.800073821092198,113.76117846708834,26,20.0,20.854720995779328,2
-2.1193628854974693,1.1724067551072628,0.9768786703759702,151.6986846923828,20.33493875868475,176.70067555676877,345.76534491738386,241.85030496645876,27,19.75,20.33493875868475,1
-1.5063642166084732,0.8629667879025592,1.815843937356943,32.281558990478516,19.775214260153064,135.24735490229213,11.469086823219051,121.41204205730283,28,18.5,19.77521426015306,1
-0.792296464791189,1.694932487503139,1.694932487503139,96.04865264892578,19.06826290863859,241.36021527330493,85.82609713034083,177.43818845628974,29,18.125,19.06826290863859,2
-0.5750989987186035,1.965079367698069,1.965079367698069,69.36507415771484,18.604645878137024,161.92972680166986,167.8839471278426,142.29519384958482,30,17.75,18.604645878137028,2
-0.9129808677873438,1.535537976912967,1.535537976912967,78.9184341430664,18.03438784777173,299.0727326977435,134.93163806468613,220.4266688587893,31,17.0,18.034387847771725,2
-0.6522195635277204,1.7859964931206982,1.7859964931206982,52.5240592956543,17.42904655784282,92.94108679092113,78.86447970404643,125.27606775993706,32,16.75,17.42904655784282,2
-0.5147775418828493,1.9210677570392192,1.9210677570392192,50.72481918334961,15.91562004162931,310.99567585232245,25.441886958732564,210.40568770913447,33,14.875,15.915620041629314,2
-0.722608970322385,1.6140003925821438,1.6140003925821438,93.80760192871094,15.769910389752315,214.27291398416585,155.82175106778377,70.72364235163114,34,15.5,15.769910389752315,2
-0.4234611468160441,2.1075420707075425,2.1075420707075425,80.07858276367188,15.757404359250623,110.88780085164743,9.801754729081711,235.21423847340552,35,15.5,15.757404359250623,2
-0.47573873665183813,1.9839843072654892,1.9839843072654892,82.83905029296875,15.687855676154225,236.0119703430152,136.87111779680427,99.93772826573183,36,15.0,15.687855676154225,2
-1.0486774519945503,1.2974016482005257,1.2974016482005257,68.50938415527344,14.787999450913034,351.41963280308966,137.179498001202,145.83237727616148,37,14.0,14.787999450913034,2
-0.7675762546952409,1.4808189981516244,1.4808189981516244,82.71311950683594,14.100810990043616,349.7310575241312,75.62697232200424,162.28818542517388,38,13.5,14.100810990043616,2
-0.4633555688378833,1.8829422373410474,1.8829422373410474,101.77873992919922,13.76280595900321,301.29706484803995,149.01997340315123,315.4269314607002,39,12.875,13.76280595900321,2
-0.8369652341828371,1.3356479931383178,1.3356479931383178,75.95601654052734,12.50863890125646,277.6705752752213,161.45831615860203,215.53580321186416,40,12.25,12.508638901256461,2
-1.7707458310823454,0.7070998633803337,1.1145222155921328,172.99853515625,11.690802288864974,35.327377331387595,24.841716698382548,170.16933366137005,41,11.125,11.690802288864976,1
-0.6500045445205679,1.4591064092807615,1.4591064092807615,94.30301666259766,11.593349492885217,55.21654169513517,159.17835985403045,341.6227442259856,42,11.125,11.593349492885219,2
-0.844940362313115,1.2112491838427124,1.2112491838427124,61.18122863769531,10.385123282004017,247.1913073646856,30.604396981330723,169.10253442791335,43,9.875,10.385123282004015,2
-0.5369044563013221,1.451638803926775,1.451638803926775,83.98120880126953,9.4783502133403,156.88654049870738,73.05429874697904,149.2275714219733,44,8.875,9.4783502133403,2
-0.4298062696091562,1.547887130103865,1.547887130103865,51.95884323120117,8.627201265400796,97.05874997818967,151.4236539690674,44.70006619027222,45,8.125,8.627201265400792,2
-1.8105736904134462,0.768214821290541,0.713171670617753,4.195479393005371,8.310201902725852,236.70880219639125,349.03665462564476,268.5103649670902,46,7.75,8.310201902725852,1
-0.4995939629258521,1.3756920511166641,1.3756920511166641,97.19245147705078,7.92096770272021,252.8398135638876,9.143879871051205,304.9220731893111,47,7.375,7.920967702720209,2
-0.46804627524306847,1.3006704582071082,1.3006704582071082,50.878875732421875,6.633488049525493,276.47132361275777,45.89291896461064,314.80121470370057,48,6.125,6.633488049525493,2
-0.4383192450962251,1.3435569843519983,1.3435569843519983,98.36361694335938,6.628592578479628,312.13296821014325,30.2098245951839,46.31906204424551,49,6.25,6.628592578479628,2
-1.373284440272983,0.8255596911052784,0.6700022990094778,176.06431579589844,6.363614711249341,200.37229873859835,46.96529318701247,18.75108839999854,50,6.125,6.363614711249341,1
-1.347917763106004,0.803113824546821,0.6245867549126677,178.9332733154297,5.664373385877218,215.68825587509855,37.13137190962818,208.57272653054494,51,5.375,5.664373385877217,1
-1.3547912716083252,0.8843411228723704,0.5588445403454047,178.64129638671875,5.609211658972289,358.2954556950122,304.42798138526115,62.61775549149067,52,5.5,5.60921165897229,1
-0.8029803206994409,0.9117174539857374,0.9117174539857374,48.02207565307617,5.591702340734066,70.49634476049332,153.9210181722378,346.20427301580906,53,5.0,5.591702340734066,2
-1.569778638730501,0.5980772721864924,0.5980772721864924,43.65568161010742,4.704046625774511,333.8427458066492,121.30228144726107,149.00593788645273,54,4.625,4.7040466257745095,2
-0.7992881965800458,0.4790697096830336,1.4324072132540246,145.43931579589844,4.595017993351474,123.01953229006148,112.89856625737444,283.93179571347366,55,4.25,4.595017993351474,1
-1.2402919949446733,0.7911527408314932,0.5056269200781708,169.19212341308594,4.156550590571923,258.9092812393308,9.254383971230006,255.24948695742466,56,3.875,4.156550590571923,1
-1.0300785967264032,0.6620039479086023,0.6620039479086023,209.06581115722656,3.7819007485630984,314.0315957908448,108.99969681917013,4.721316552304162,57,3.375,3.7819007485630984,2
-0.7267359990728806,1.31501895214853,0.4383052414641994,90.52802276611328,3.5091663382950675,121.99410859729936,159.9505789441528,324.0248081456821,58,3.25,3.509166338295068,1
-0.32745286263810586,1.1086847348223487,1.1086847348223487,74.3434829711914,3.3719686806964226,60.43774426341483,135.2767381422251,152.97560922758262,59,3.125,3.3719686806964226,2
-0.4277329860827801,0.899028343797223,0.899028343797223,81.51534271240234,2.896263803511188,312.6581842928488,58.88055523547382,149.79114738829685,60,2.875,2.8962638035111885,2
-0.45859678587834657,0.853777257305149,0.853777257305149,111.0793228149414,2.8005206256918633,202.22937709044592,51.23646791984867,214.10665541076523,61,2.625,2.8005206256918638,2
-0.5067452180929392,0.8058895880979127,0.8058895880979127,95.09966278076172,2.757143395412151,202.72580050710047,164.2600804647564,21.419509987945226,62,2.625,2.7571433954121507,2
-0.2541508532141969,1.0828615331595448,1.1638348292715248,79.86669158935547,2.6833322682686522,248.64677641986162,316.85736982799966,207.62719292400118,63,2.625,2.6833322682686522,1
-0.6125781459622202,0.6942228921790814,0.6942228921790814,98.74263763427734,2.473306649642633,221.1439297005693,75.05711606273145,10.12191334682429,64,2.375,2.473306649642633,2
-0.547780336347248,0.46491007022734576,1.1308724464274051,173.82235717773438,2.4127238614501785,92.46327614914063,77.07813370410298,39.84776819250926,65,2.375,2.4127238614501785,1
-0.8462875116958208,0.5681623810269111,0.5681623810269111,44.231388092041016,2.2886610952965776,355.07326631035113,137.80209919774902,319.1951291456595,66,2.125,2.288661095296577,2
-0.20040741762678244,1.1516305854975772,1.1516305854975772,84.43860626220703,2.2266849715058434,94.77049913384201,95.17759000268403,259.5164005743145,67,2.375,2.2266849715058434,2
-0.5960467079989484,0.6535525677472913,0.6535525677472913,112.88678741455078,2.1328482122446433,315.5024575729965,7.067230718222241,247.18964329932135,68,2.125,2.1328482122446433,2
-0.3619423184788049,0.8308643638220509,0.8308643638220509,66.6673355102539,2.093236184446444,80.40313895879899,92.9622478091229,321.4647430209619,69,2.125,2.093236184446444,2
-0.6122447175014353,0.4046602853720242,0.953528000901518,153.39108276367188,1.9790997593440498,222.50862604449554,276.2556493440967,266.653663011005,70,2.0,1.9790997593440498,1
-0.5685435434997466,0.8907542276033582,0.4504409225064963,92.34955596923828,1.911076483593653,324.9011571960535,325.9545089184769,286.5449612673739,71,1.875,1.911076483593653,1
-0.4292014810957234,0.6882177263835857,0.7569760026468154,120.3749771118164,1.873215675264647,106.48878034814837,71.04756081305901,30.557748507398287,72,1.75,1.8732156752646472,1
-0.3348635088736497,0.8098294181510011,0.8098294181510011,64.50626373291016,1.8398123371551927,179.48784901981153,68.67996371189957,235.36460822364936,73,2.0,1.8398123371551927,2
-0.40662887576790696,0.7116125488862661,0.7116125488862661,93.77250671386719,1.7250592521803159,270.004908108252,113.03618263894668,121.2150017427269,74,1.5,1.7250592521803159,2
-0.3057666717639964,0.7864705026008938,0.7864705026008938,58.976318359375,1.5844320843898692,274.27663142994055,60.805878892324245,191.6688723992737,75,1.375,1.5844320843898687,2
-0.8146939350222652,0.4303285525556751,0.5300332112521818,3.8908910751342773,1.5567408929870967,108.86851271647015,103.90182202546096,71.58994026787609,76,1.625,1.5567408929870967,1
-0.3104937818582528,0.7703795989490336,0.7703795989490336,96.83654022216797,1.5437645321726239,125.36691857162556,62.246001330693765,112.97255714933792,77,1.5,1.5437645321726237,2
-0.48893153764937314,0.6138257115041269,0.6138257115041269,84.4588623046875,1.5433229283457173,336.89089981419414,163.24262233098187,262.3485827882071,78,1.5,1.543322928345717,2
-0.28574961013980366,0.8004065633242221,0.8004065633242221,79.08781433105469,1.5336474395237483,232.22678001113377,172.39305434513346,17.346246756643808,79,1.375,1.5336474395237483,2
-0.36065617306888315,0.7045864240084493,0.7045864240084493,98.895263671875,1.4999628983283233,357.54518797071995,95.31053752078566,297.2768762527337,80,1.375,1.4999628983283233,2
-0.3053999383037233,0.7599278372559649,0.7599278372559649,92.28935241699219,1.4775162200392404,318.43021012228905,88.07234468282282,13.874886829682854,81,1.375,1.4775162200392404,2
-0.7850650694690836,0.4178277764622777,0.5319063444935043,165.11282348632812,1.461694920075468,31.09803123662486,186.15753947191067,329.28531142583444,82,1.625,1.461694920075468,1
-0.4178060146728394,0.6387935329172924,0.6387935329172924,96.00154876708984,1.4282831548522066,114.92696609932901,87.90707670921492,250.76264641577586,83,1.5,1.4282831548522066,2
-0.3790100662811357,0.6560479353722944,0.6560479353722944,100.19072723388672,1.3665971033099351,279.59400216347916,110.03460523975968,263.71374200778274,84,1.375,1.3665971033099351,2
-0.32730620710058694,0.6975086385348355,0.6975086385348355,50.22885513305664,1.3340497558447848,330.2307359108909,116.24221130280131,230.792200666446,85,1.125,1.334049755844785,2
-0.48382754647781206,0.5735177681747223,0.5735177681747223,114.60740661621094,1.3332234710962028,334.39762986431094,91.45032535933028,310.46183123805235,86,1.25,1.3332234710962028,2
-0.7559441997745724,0.3798809399786895,0.5377321063542276,172.2708740234375,1.293664961845313,337.4119950776613,335.9632086388191,144.68902040695897,87,1.375,1.2936649618453129,1
-0.8495391015038044,0.42535082707109406,0.42535082707109406,182.97422790527344,1.2876461717257588,222.97874137916565,155.6009005765084,83.66154454409805,88,1.25,1.2876461717257588,2
-0.8866280977093829,0.41141604367018925,0.41141604367018925,143.53341674804688,1.257252599466397,260.3222206359829,33.511131684405996,77.07690251380652,89,1.25,1.2572525994663972,2
-0.6026964958441966,0.3542205969248884,0.6974087781717088,28.095462799072266,1.2473217387682871,44.04215461856319,126.63621137366114,158.8827090804692,90,1.25,1.2473217387682873,1
-0.5863541962160863,0.517865776345332,0.4831016991507421,174.28367614746094,1.2289505793525306,100.10626987954038,222.45137563310854,3.711121646857798,91,1.125,1.2289505793525306,1
-0.4708982996736699,0.5515140917160034,0.5515140917160034,97.75881958007812,1.199938407414214,350.3242075301344,99.90160821044077,295.5933720253992,92,1.125,1.199938407414214,2
-0.3172796755039661,0.6548503273296199,0.6548503273296199,80.35009765625,1.139842787507681,182.18835124190682,95.25826945280905,82.09183950995394,93,1.125,1.1398427875076813,2
-0.7215602413044111,0.4330616913844104,0.4330616913844104,34.282100677490234,1.133680654140186,30.862371056218297,168.30325785607116,290.455274781239,94,1.0,1.1336806541401858,2
-0.4335709645655043,0.5584252102674626,0.5584252102674626,59.6182975769043,1.1326841632037656,14.983687437368145,120.18023720067691,145.9002103024931,95,1.125,1.1326841632037656,2
-0.7049311118298567,0.4154097578062564,0.4154097578062564,218.5637664794922,1.0191043862219733,215.18460095375852,40.421869948443344,2.513994671374622,96,0.875,1.0191043862219735,2
-0.6339354499663841,0.3614494139480277,0.3614494139480277,155.09805297851562,0.6938389772446817,301.69543041271817,14.519045411606049,23.097459391685724,97,0.625,0.6938389772446817,2
-0.6401740346077244,0.3465239723911827,0.3465239723911827,151.50338745117188,0.6439960873954934,231.24442640563598,176.8246309159804,77.36863886434253,98,0.625,0.6439960873954934,2
-0.7028786912363986,0.30219958331739555,0.30219958331739555,167.0904541015625,0.5377577829053289,1.9094357898828562,20.070134787316515,101.22519444638627,99,0.375,0.5377577829053289,2
-1.0309783047949628,0.22073396974337797,0.22073396974337797,139.1501007080078,0.4208297935261673,219.17629226983703,6.631741477547837,229.58393753226412,100,0.5,0.42082979352616734,2
diff --git a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_conti.csv b/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_conti.csv
deleted file mode 100644
index 64f671c4965254c91d1e02276fcaef8d75eb562f..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_conti.csv
+++ /dev/null
@@ -1,102 +0,0 @@
-a,b,c,alpha,volume,phi1,PHI,phi2,GrainID,final_discrete_volume,final_conti_volume,phaseID,meshed_conti_volume
-5.127765642672939,2.594773776060596,7.391994919663497,38.71082305908203,823.9634226653451,214.03862694599823,340.7921829152015,66.85139417332205,0,789.125,823.963422665345,1,789.125
-4.0427693725859735,2.312351165060003,5.54587924424552,6.564509391784668,434.3319419704122,296.35880174301707,155.9871688622997,223.36101233258586,1,444.5,434.3319419704122,1,444.5
-1.3471791868957637,5.199828578383646,5.199828578383646,86.61039733886719,305.15607675576973,4.824882834552011,107.72678956202776,194.66046247004266,2,294.5,305.1560767557698,2,294.5
-2.9762579449137943,2.271158179215791,5.082191459960348,2.477015256881714,287.7978712875716,128.34376825176287,274.7263228833649,325.3086371285804,3,276.375,287.7978712875716,1,276.375
-4.830429582753811,1.9933867249334913,3.040190494729496,21.22945213317871,245.2430558122336,250.35476962776,155.0471589587558,318.2506889091516,4,245.625,245.24305581223356,1,245.625
-4.639124151830187,1.7960332196425883,3.045778146432424,22.917821884155273,212.60194414808683,222.60200427073477,58.8210916574791,25.310138797941324,5,218.25,212.60194414808686,1,218.25
-3.3640043998355256,1.3490131380465564,4.214851399175444,171.3376922607422,160.24098538370296,62.26311890390319,285.47100870953756,48.40018172938759,6,142.25,160.24098538370296,1,142.25
-2.400507606375655,1.5885440189960889,4.8661303027769565,157.03111267089844,155.45499431668856,284.0589065507353,198.8903880223861,165.6370971828448,7,171.875,155.45499431668853,1,171.875
-5.049364160014189,1.630887919652159,2.20036803118046,21.589147567749023,151.80103772534588,339.5159061158933,128.27661117010297,133.50709400439985,8,155.875,151.80103772534585,1,155.875
-3.0611838012790944,0.9842441996609074,5.472120654365817,177.56544494628906,138.12317096892716,17.940743472090873,157.26988174215083,8.35871672892209,9,132.625,138.12317096892718,1,132.625
-1.9581248674924467,2.3832822984869675,2.3832822984869675,70.42293548583984,93.17726583130352,91.17554746399904,8.505741755617152,78.55511604179237,10,91.125,93.17726583130353,2,91.125
-1.0134272323800315,3.298090399655321,3.298090399655321,85.8499755859375,92.34986947481818,261.42540993094354,45.99558553707889,47.70829116920838,11,95.25,92.34986947481819,2,95.25
-1.4708850251224732,2.7159674522378445,2.7159674522378445,96.48249816894531,90.89635198674411,86.88421414085857,51.73142394729008,88.88647044543882,12,87.75,90.89635198674411,2,87.75
-2.473456530765928,1.7249891141434968,2.0743125136436653,21.120697021484375,74.14526698683885,341.24618999336,169.709454824202,300.78844025979583,13,76.0,74.14526698683886,1,76.0
-1.8886421230773143,1.334575704617865,3.5039020900304467,168.20494079589844,73.98836889404443,332.6217232768128,11.296541446943422,115.96559619383238,14,70.125,73.98836889404443,1,70.125
-2.029674792671265,1.1474290462723744,2.466781549732283,177.57069396972656,48.128418835724766,6.92946410361281,190.16812521972577,42.798721333517676,15,47.25,48.128418835724766,1,47.25
-2.4310967345419203,1.4049768911637692,1.6733350079164981,176.844970703125,47.88207064668138,166.99216063888028,0.15073360744481512,64.94522834181063,16,45.75,47.88207064668138,1,45.75
-2.1348480071629004,1.667913995901318,1.3702842730852491,2.1205806732177734,40.87614129008734,20.406275697473323,177.72333099684613,37.08358744069662,17,40.75,40.87614129008734,1,40.75
-2.740449465355919,1.8653074293450165,0.90201683676515,5.728599548339844,38.6282885553461,95.27642146448981,123.47737721453778,293.0191884177055,18,38.75,38.6282885553461,1,38.75
-2.3885774149396823,1.3634559646143694,1.3634559646143694,41.66294860839844,37.19976178339501,170.60381348972385,115.00001411588548,27.243783908641458,19,36.5,37.19976178339501,2,36.5
-1.5322113562396593,1.6885752064928843,1.6885752064928843,125.41627502441406,36.59974825816539,75.48387607180544,8.249734762587817,9.757408967926136,20,36.25,36.59974825816539,2,36.25
-2.4393260971427226,1.208820284291972,1.208820284291972,161.46728515625,29.861522388870224,102.13944939896675,117.79278740652065,237.73005615630242,21,32.625,29.861522388870224,2,32.625
-1.7331482713192419,0.9441305985728342,2.137824429732913,163.06231689453125,29.3061273102773,147.49566469007854,145.60961479630595,6.867534912674298,22,29.0,29.3061273102773,1,29.0
-0.559849330153247,2.4535227316404558,2.4535227316404558,80.75215148925781,28.233839394924374,187.94829650344832,152.1025924244034,321.78558960356315,23,29.5,28.23383939492437,2,29.5
-1.3101167779198901,1.4958712494401853,1.4958712494401853,96.56450653076172,24.559359914640524,293.34151131888774,78.4944025159959,168.29923200258023,24,26.125,24.559359914640524,2,26.125
-0.8547383714665149,1.8346327678846115,1.8346327678846115,96.26565551757812,24.101834397391247,135.20604629853617,167.0939919568726,163.42361361595883,25,20.875,24.101834397391244,2,20.875
-0.443669049871963,2.3687177951312517,2.3687177951312517,110.12188720703125,20.85472099577932,303.2318229462451,13.800073821092198,113.76117846708834,26,20.25,20.854720995779328,2,20.25
-2.1193628854974693,1.1724067551072628,0.9768786703759702,151.6986846923828,20.33493875868475,176.70067555676877,345.76534491738386,241.85030496645876,27,20.625,20.33493875868475,1,20.625
-1.5063642166084732,0.8629667879025592,1.815843937356943,32.281558990478516,19.775214260153064,135.24735490229213,11.469086823219051,121.41204205730283,28,19.25,19.77521426015306,1,19.25
-0.792296464791189,1.694932487503139,1.694932487503139,96.04865264892578,19.06826290863859,241.36021527330493,85.82609713034083,177.43818845628974,29,20.25,19.06826290863859,2,20.25
-0.5750989987186035,1.965079367698069,1.965079367698069,69.36507415771484,18.604645878137024,161.92972680166986,167.8839471278426,142.29519384958482,30,19.625,18.604645878137028,2,19.625
-0.9129808677873438,1.535537976912967,1.535537976912967,78.9184341430664,18.03438784777173,299.0727326977435,134.93163806468613,220.4266688587893,31,17.875,18.034387847771725,2,17.875
-0.6522195635277204,1.7859964931206982,1.7859964931206982,52.5240592956543,17.42904655784282,92.94108679092113,78.86447970404643,125.27606775993706,32,16.875,17.42904655784282,2,16.875
-0.5147775418828493,1.9210677570392192,1.9210677570392192,50.72481918334961,15.91562004162931,310.99567585232245,25.441886958732564,210.40568770913447,33,15.625,15.915620041629314,2,15.625
-0.722608970322385,1.6140003925821438,1.6140003925821438,93.80760192871094,15.769910389752315,214.27291398416585,155.82175106778377,70.72364235163114,34,16.25,15.769910389752315,2,16.25
-0.4234611468160441,2.1075420707075425,2.1075420707075425,80.07858276367188,15.757404359250623,110.88780085164743,9.801754729081711,235.21423847340552,35,14.5,15.757404359250623,2,14.5
-0.47573873665183813,1.9839843072654892,1.9839843072654892,82.83905029296875,15.687855676154225,236.0119703430152,136.87111779680427,99.93772826573183,36,15.375,15.687855676154225,2,15.375
-1.0486774519945503,1.2974016482005257,1.2974016482005257,68.50938415527344,14.787999450913034,351.41963280308966,137.179498001202,145.83237727616148,37,11.125,14.787999450913034,2,11.125
-0.7675762546952409,1.4808189981516244,1.4808189981516244,82.71311950683594,14.100810990043616,349.7310575241312,75.62697232200424,162.28818542517388,38,11.0,14.100810990043616,2,11.0
-0.4633555688378833,1.8829422373410474,1.8829422373410474,101.77873992919922,13.76280595900321,301.29706484803995,149.01997340315123,315.4269314607002,39,11.625,13.76280595900321,2,11.625
-0.8369652341828371,1.3356479931383178,1.3356479931383178,75.95601654052734,12.50863890125646,277.6705752752213,161.45831615860203,215.53580321186416,40,10.375,12.508638901256461,2,10.375
-1.7707458310823454,0.7070998633803337,1.1145222155921328,172.99853515625,11.690802288864974,35.327377331387595,24.841716698382548,170.16933366137005,41,11.375,11.690802288864976,1,11.375
-0.6500045445205679,1.4591064092807615,1.4591064092807615,94.30301666259766,11.593349492885217,55.21654169513517,159.17835985403045,341.6227442259856,42,12.125,11.593349492885219,2,12.125
-0.844940362313115,1.2112491838427124,1.2112491838427124,61.18122863769531,10.385123282004017,247.1913073646856,30.604396981330723,169.10253442791335,43,10.125,10.385123282004015,2,10.125
-0.5369044563013221,1.451638803926775,1.451638803926775,83.98120880126953,9.4783502133403,156.88654049870738,73.05429874697904,149.2275714219733,44,7.875,9.4783502133403,2,7.875
-0.4298062696091562,1.547887130103865,1.547887130103865,51.95884323120117,8.627201265400796,97.05874997818967,151.4236539690674,44.70006619027222,45,8.25,8.627201265400792,2,8.25
-1.8105736904134462,0.768214821290541,0.713171670617753,4.195479393005371,8.310201902725852,236.70880219639125,349.03665462564476,268.5103649670902,46,8.125,8.310201902725852,1,8.125
-0.4995939629258521,1.3756920511166641,1.3756920511166641,97.19245147705078,7.92096770272021,252.8398135638876,9.143879871051205,304.9220731893111,47,7.875,7.920967702720209,2,7.875
-0.46804627524306847,1.3006704582071082,1.3006704582071082,50.878875732421875,6.633488049525493,276.47132361275777,45.89291896461064,314.80121470370057,48,6.25,6.633488049525493,2,6.25
-0.4383192450962251,1.3435569843519983,1.3435569843519983,98.36361694335938,6.628592578479628,312.13296821014325,30.2098245951839,46.31906204424551,49,5.25,6.628592578479628,2,5.25
-1.373284440272983,0.8255596911052784,0.6700022990094778,176.06431579589844,6.363614711249341,200.37229873859835,46.96529318701247,18.75108839999854,50,6.5,6.363614711249341,1,6.5
-1.347917763106004,0.803113824546821,0.6245867549126677,178.9332733154297,5.664373385877218,215.68825587509855,37.13137190962818,208.57272653054494,51,6.125,5.664373385877217,1,6.125
-1.3547912716083252,0.8843411228723704,0.5588445403454047,178.64129638671875,5.609211658972289,358.2954556950122,304.42798138526115,62.61775549149067,52,5.625,5.60921165897229,1,5.625
-0.8029803206994409,0.9117174539857374,0.9117174539857374,48.02207565307617,5.591702340734066,70.49634476049332,153.9210181722378,346.20427301580906,53,4.875,5.591702340734066,2,4.875
-1.569778638730501,0.5980772721864924,0.5980772721864924,43.65568161010742,4.704046625774511,333.8427458066492,121.30228144726107,149.00593788645273,54,3.625,4.7040466257745095,2,3.625
-0.7992881965800458,0.4790697096830336,1.4324072132540246,145.43931579589844,4.595017993351474,123.01953229006148,112.89856625737444,283.93179571347366,55,3.875,4.595017993351474,1,3.875
-1.2402919949446733,0.7911527408314932,0.5056269200781708,169.19212341308594,4.156550590571923,258.9092812393308,9.254383971230006,255.24948695742466,56,4.5,4.156550590571923,1,4.5
-1.0300785967264032,0.6620039479086023,0.6620039479086023,209.06581115722656,3.7819007485630984,314.0315957908448,108.99969681917013,4.721316552304162,57,2.875,3.7819007485630984,2,2.875
-0.7267359990728806,1.31501895214853,0.4383052414641994,90.52802276611328,3.5091663382950675,121.99410859729936,159.9505789441528,324.0248081456821,58,3.125,3.509166338295068,1,3.125
-0.32745286263810586,1.1086847348223487,1.1086847348223487,74.3434829711914,3.3719686806964226,60.43774426341483,135.2767381422251,152.97560922758262,59,3.5,3.3719686806964226,2,3.5
-0.4277329860827801,0.899028343797223,0.899028343797223,81.51534271240234,2.896263803511188,312.6581842928488,58.88055523547382,149.79114738829685,60,1.625,2.8962638035111885,2,1.625
-0.45859678587834657,0.853777257305149,0.853777257305149,111.0793228149414,2.8005206256918633,202.22937709044592,51.23646791984867,214.10665541076523,61,2.75,2.8005206256918638,2,2.75
-0.5067452180929392,0.8058895880979127,0.8058895880979127,95.09966278076172,2.757143395412151,202.72580050710047,164.2600804647564,21.419509987945226,62,3.75,2.7571433954121507,2,3.75
-0.2541508532141969,1.0828615331595448,1.1638348292715248,79.86669158935547,2.6833322682686522,248.64677641986162,316.85736982799966,207.62719292400118,63,2.125,2.6833322682686522,1,2.125
-0.6125781459622202,0.6942228921790814,0.6942228921790814,98.74263763427734,2.473306649642633,221.1439297005693,75.05711606273145,10.12191334682429,64,2.25,2.473306649642633,2,2.25
-0.547780336347248,0.46491007022734576,1.1308724464274051,173.82235717773438,2.4127238614501785,92.46327614914063,77.07813370410298,39.84776819250926,65,1.625,2.4127238614501785,1,1.625
-0.8462875116958208,0.5681623810269111,0.5681623810269111,44.231388092041016,2.2886610952965776,355.07326631035113,137.80209919774902,319.1951291456595,66,2.875,2.288661095296577,2,2.875
-0.20040741762678244,1.1516305854975772,1.1516305854975772,84.43860626220703,2.2266849715058434,94.77049913384201,95.17759000268403,259.5164005743145,67,2.625,2.2266849715058434,2,2.625
-0.5960467079989484,0.6535525677472913,0.6535525677472913,112.88678741455078,2.1328482122446433,315.5024575729965,7.067230718222241,247.18964329932135,68,1.875,2.1328482122446433,2,1.875
-0.3619423184788049,0.8308643638220509,0.8308643638220509,66.6673355102539,2.093236184446444,80.40313895879899,92.9622478091229,321.4647430209619,69,2.25,2.093236184446444,2,2.25
-0.6122447175014353,0.4046602853720242,0.953528000901518,153.39108276367188,1.9790997593440498,222.50862604449554,276.2556493440967,266.653663011005,70,1.5,1.9790997593440498,1,1.5
-0.5685435434997466,0.8907542276033582,0.4504409225064963,92.34955596923828,1.911076483593653,324.9011571960535,325.9545089184769,286.5449612673739,71,2.0,1.911076483593653,1,2.0
-0.4292014810957234,0.6882177263835857,0.7569760026468154,120.3749771118164,1.873215675264647,106.48878034814837,71.04756081305901,30.557748507398287,72,1.875,1.8732156752646472,1,1.875
-0.3348635088736497,0.8098294181510011,0.8098294181510011,64.50626373291016,1.8398123371551927,179.48784901981153,68.67996371189957,235.36460822364936,73,1.875,1.8398123371551927,2,1.875
-0.40662887576790696,0.7116125488862661,0.7116125488862661,93.77250671386719,1.7250592521803159,270.004908108252,113.03618263894668,121.2150017427269,74,1.75,1.7250592521803159,2,1.75
-0.3057666717639964,0.7864705026008938,0.7864705026008938,58.976318359375,1.5844320843898692,274.27663142994055,60.805878892324245,191.6688723992737,75,0.75,1.5844320843898687,2,0.75
-0.8146939350222652,0.4303285525556751,0.5300332112521818,3.8908910751342773,1.5567408929870967,108.86851271647015,103.90182202546096,71.58994026787609,76,1.875,1.5567408929870967,1,1.875
-0.3104937818582528,0.7703795989490336,0.7703795989490336,96.83654022216797,1.5437645321726239,125.36691857162556,62.246001330693765,112.97255714933792,77,1.125,1.5437645321726237,2,1.125
-0.48893153764937314,0.6138257115041269,0.6138257115041269,84.4588623046875,1.5433229283457173,336.89089981419414,163.24262233098187,262.3485827882071,78,0.75,1.543322928345717,2,0.75
-0.28574961013980366,0.8004065633242221,0.8004065633242221,79.08781433105469,1.5336474395237483,232.22678001113377,172.39305434513346,17.346246756643808,79,1.625,1.5336474395237483,2,1.625
-0.36065617306888315,0.7045864240084493,0.7045864240084493,98.895263671875,1.4999628983283233,357.54518797071995,95.31053752078566,297.2768762527337,80,1.125,1.4999628983283233,2,1.125
-0.3053999383037233,0.7599278372559649,0.7599278372559649,92.28935241699219,1.4775162200392404,318.43021012228905,88.07234468282282,13.874886829682854,81,1.375,1.4775162200392404,2,1.375
-0.7850650694690836,0.4178277764622777,0.5319063444935043,165.11282348632812,1.461694920075468,31.09803123662486,186.15753947191067,329.28531142583444,82,0.75,1.461694920075468,1,0.75
-0.4178060146728394,0.6387935329172924,0.6387935329172924,96.00154876708984,1.4282831548522066,114.92696609932901,87.90707670921492,250.76264641577586,83,0.875,1.4282831548522066,2,0.875
-0.3790100662811357,0.6560479353722944,0.6560479353722944,100.19072723388672,1.3665971033099351,279.59400216347916,110.03460523975968,263.71374200778274,84,1.5,1.3665971033099351,2,1.5
-0.32730620710058694,0.6975086385348355,0.6975086385348355,50.22885513305664,1.3340497558447848,330.2307359108909,116.24221130280131,230.792200666446,85,1.5,1.334049755844785,2,1.5
-0.48382754647781206,0.5735177681747223,0.5735177681747223,114.60740661621094,1.3332234710962028,334.39762986431094,91.45032535933028,310.46183123805235,86,1.375,1.3332234710962028,2,1.375
-0.7559441997745724,0.3798809399786895,0.5377321063542276,172.2708740234375,1.293664961845313,337.4119950776613,335.9632086388191,144.68902040695897,87,0.75,1.2936649618453129,1,0.75
-0.8495391015038044,0.42535082707109406,0.42535082707109406,182.97422790527344,1.2876461717257588,222.97874137916565,155.6009005765084,83.66154454409805,88,0.625,1.2876461717257588,2,0.625
-0.8866280977093829,0.41141604367018925,0.41141604367018925,143.53341674804688,1.257252599466397,260.3222206359829,33.511131684405996,77.07690251380652,89,1.375,1.2572525994663972,2,1.375
-0.6026964958441966,0.3542205969248884,0.6974087781717088,28.095462799072266,1.2473217387682871,44.04215461856319,126.63621137366114,158.8827090804692,90,0.5,1.2473217387682873,1,0.5
-0.5863541962160863,0.517865776345332,0.4831016991507421,174.28367614746094,1.2289505793525306,100.10626987954038,222.45137563310854,3.711121646857798,91,1.25,1.2289505793525306,1,1.25
-0.4708982996736699,0.5515140917160034,0.5515140917160034,97.75881958007812,1.199938407414214,350.3242075301344,99.90160821044077,295.5933720253992,92,1.25,1.199938407414214,2,1.25
-0.3172796755039661,0.6548503273296199,0.6548503273296199,80.35009765625,1.139842787507681,182.18835124190682,95.25826945280905,82.09183950995394,93,1.0,1.1398427875076813,2,1.0
-0.7215602413044111,0.4330616913844104,0.4330616913844104,34.282100677490234,1.133680654140186,30.862371056218297,168.30325785607116,290.455274781239,94,1.125,1.1336806541401858,2,1.125
-0.4335709645655043,0.5584252102674626,0.5584252102674626,59.6182975769043,1.1326841632037656,14.983687437368145,120.18023720067691,145.9002103024931,95,0.75,1.1326841632037656,2,0.75
-0.7049311118298567,0.4154097578062564,0.4154097578062564,218.5637664794922,1.0191043862219733,215.18460095375852,40.421869948443344,2.513994671374622,96,0.875,1.0191043862219735,2,0.875
-0.6339354499663841,0.3614494139480277,0.3614494139480277,155.09805297851562,0.6938389772446817,301.69543041271817,14.519045411606049,23.097459391685724,97,0.375,0.6938389772446817,2,0.375
-0.6401740346077244,0.3465239723911827,0.3465239723911827,151.50338745117188,0.6439960873954934,231.24442640563598,176.8246309159804,77.36863886434253,98,0.75,0.6439960873954934,2,0.75
-0.7028786912363986,0.30219958331739555,0.30219958331739555,167.0904541015625,0.5377577829053289,1.9094357898828562,20.070134787316515,101.22519444638627,99,0.5,0.5377577829053289,2,0.5
-1.0309783047949628,0.22073396974337797,0.22073396974337797,139.1501007080078,0.4208297935261673,219.17629226983703,6.631741477547837,229.58393753226412,100,0.375,0.42082979352616734,2,0.375
diff --git a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_discrete.csv b/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_discrete.csv
deleted file mode 100644
index 64a8b490247f378537ea46805c9c99e33af65a81..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/Generation_Data/grain_data_output_discrete.csv
+++ /dev/null
@@ -1,102 +0,0 @@
-a,b,c,alpha,volume,phi1,PHI,phi2,GrainID,final_discrete_volume,final_conti_volume,phaseID
-5.127765642672939,2.594773776060596,7.391994919663497,38.71082305908203,823.9634226653451,214.03862694599823,340.7921829152015,66.85139417332205,0,789.125,823.963422665345,1
-4.0427693725859735,2.312351165060003,5.54587924424552,6.564509391784668,434.3319419704122,296.35880174301707,155.9871688622997,223.36101233258586,1,444.5,434.3319419704122,1
-1.3471791868957637,5.199828578383646,5.199828578383646,86.61039733886719,305.15607675576973,4.824882834552011,107.72678956202776,194.66046247004266,2,294.5,305.1560767557698,2
-2.9762579449137943,2.271158179215791,5.082191459960348,2.477015256881714,287.7978712875716,128.34376825176287,274.7263228833649,325.3086371285804,3,276.375,287.7978712875716,1
-4.830429582753811,1.9933867249334913,3.040190494729496,21.22945213317871,245.2430558122336,250.35476962776,155.0471589587558,318.2506889091516,4,245.625,245.24305581223356,1
-4.639124151830187,1.7960332196425883,3.045778146432424,22.917821884155273,212.60194414808683,222.60200427073477,58.8210916574791,25.310138797941324,5,218.25,212.60194414808686,1
-3.3640043998355256,1.3490131380465564,4.214851399175444,171.3376922607422,160.24098538370296,62.26311890390319,285.47100870953756,48.40018172938759,6,142.25,160.24098538370296,1
-2.400507606375655,1.5885440189960889,4.8661303027769565,157.03111267089844,155.45499431668856,284.0589065507353,198.8903880223861,165.6370971828448,7,171.875,155.45499431668853,1
-5.049364160014189,1.630887919652159,2.20036803118046,21.589147567749023,151.80103772534588,339.5159061158933,128.27661117010297,133.50709400439985,8,155.875,151.80103772534585,1
-3.0611838012790944,0.9842441996609074,5.472120654365817,177.56544494628906,138.12317096892716,17.940743472090873,157.26988174215083,8.35871672892209,9,132.625,138.12317096892718,1
-1.9581248674924467,2.3832822984869675,2.3832822984869675,70.42293548583984,93.17726583130352,91.17554746399904,8.505741755617152,78.55511604179237,10,91.125,93.17726583130353,2
-1.0134272323800315,3.298090399655321,3.298090399655321,85.8499755859375,92.34986947481818,261.42540993094354,45.99558553707889,47.70829116920838,11,95.25,92.34986947481819,2
-1.4708850251224732,2.7159674522378445,2.7159674522378445,96.48249816894531,90.89635198674411,86.88421414085857,51.73142394729008,88.88647044543882,12,87.75,90.89635198674411,2
-2.473456530765928,1.7249891141434968,2.0743125136436653,21.120697021484375,74.14526698683885,341.24618999336,169.709454824202,300.78844025979583,13,76.0,74.14526698683886,1
-1.8886421230773143,1.334575704617865,3.5039020900304467,168.20494079589844,73.98836889404443,332.6217232768128,11.296541446943422,115.96559619383238,14,70.125,73.98836889404443,1
-2.029674792671265,1.1474290462723744,2.466781549732283,177.57069396972656,48.128418835724766,6.92946410361281,190.16812521972577,42.798721333517676,15,47.25,48.128418835724766,1
-2.4310967345419203,1.4049768911637692,1.6733350079164981,176.844970703125,47.88207064668138,166.99216063888028,0.15073360744481512,64.94522834181063,16,45.75,47.88207064668138,1
-2.1348480071629004,1.667913995901318,1.3702842730852491,2.1205806732177734,40.87614129008734,20.406275697473323,177.72333099684613,37.08358744069662,17,40.75,40.87614129008734,1
-2.740449465355919,1.8653074293450165,0.90201683676515,5.728599548339844,38.6282885553461,95.27642146448981,123.47737721453778,293.0191884177055,18,38.75,38.6282885553461,1
-2.3885774149396823,1.3634559646143694,1.3634559646143694,41.66294860839844,37.19976178339501,170.60381348972385,115.00001411588548,27.243783908641458,19,36.5,37.19976178339501,2
-1.5322113562396593,1.6885752064928843,1.6885752064928843,125.41627502441406,36.59974825816539,75.48387607180544,8.249734762587817,9.757408967926136,20,36.25,36.59974825816539,2
-2.4393260971427226,1.208820284291972,1.208820284291972,161.46728515625,29.861522388870224,102.13944939896675,117.79278740652065,237.73005615630242,21,32.625,29.861522388870224,2
-1.7331482713192419,0.9441305985728342,2.137824429732913,163.06231689453125,29.3061273102773,147.49566469007854,145.60961479630595,6.867534912674298,22,29.0,29.3061273102773,1
-0.559849330153247,2.4535227316404558,2.4535227316404558,80.75215148925781,28.233839394924374,187.94829650344832,152.1025924244034,321.78558960356315,23,29.5,28.23383939492437,2
-1.3101167779198901,1.4958712494401853,1.4958712494401853,96.56450653076172,24.559359914640524,293.34151131888774,78.4944025159959,168.29923200258023,24,26.125,24.559359914640524,2
-0.8547383714665149,1.8346327678846115,1.8346327678846115,96.26565551757812,24.101834397391247,135.20604629853617,167.0939919568726,163.42361361595883,25,20.875,24.101834397391244,2
-0.443669049871963,2.3687177951312517,2.3687177951312517,110.12188720703125,20.85472099577932,303.2318229462451,13.800073821092198,113.76117846708834,26,20.25,20.854720995779328,2
-2.1193628854974693,1.1724067551072628,0.9768786703759702,151.6986846923828,20.33493875868475,176.70067555676877,345.76534491738386,241.85030496645876,27,20.625,20.33493875868475,1
-1.5063642166084732,0.8629667879025592,1.815843937356943,32.281558990478516,19.775214260153064,135.24735490229213,11.469086823219051,121.41204205730283,28,19.25,19.77521426015306,1
-0.792296464791189,1.694932487503139,1.694932487503139,96.04865264892578,19.06826290863859,241.36021527330493,85.82609713034083,177.43818845628974,29,20.25,19.06826290863859,2
-0.5750989987186035,1.965079367698069,1.965079367698069,69.36507415771484,18.604645878137024,161.92972680166986,167.8839471278426,142.29519384958482,30,19.625,18.604645878137028,2
-0.9129808677873438,1.535537976912967,1.535537976912967,78.9184341430664,18.03438784777173,299.0727326977435,134.93163806468613,220.4266688587893,31,17.875,18.034387847771725,2
-0.6522195635277204,1.7859964931206982,1.7859964931206982,52.5240592956543,17.42904655784282,92.94108679092113,78.86447970404643,125.27606775993706,32,16.875,17.42904655784282,2
-0.5147775418828493,1.9210677570392192,1.9210677570392192,50.72481918334961,15.91562004162931,310.99567585232245,25.441886958732564,210.40568770913447,33,15.625,15.915620041629314,2
-0.722608970322385,1.6140003925821438,1.6140003925821438,93.80760192871094,15.769910389752315,214.27291398416585,155.82175106778377,70.72364235163114,34,16.25,15.769910389752315,2
-0.4234611468160441,2.1075420707075425,2.1075420707075425,80.07858276367188,15.757404359250623,110.88780085164743,9.801754729081711,235.21423847340552,35,14.5,15.757404359250623,2
-0.47573873665183813,1.9839843072654892,1.9839843072654892,82.83905029296875,15.687855676154225,236.0119703430152,136.87111779680427,99.93772826573183,36,15.375,15.687855676154225,2
-1.0486774519945503,1.2974016482005257,1.2974016482005257,68.50938415527344,14.787999450913034,351.41963280308966,137.179498001202,145.83237727616148,37,11.125,14.787999450913034,2
-0.7675762546952409,1.4808189981516244,1.4808189981516244,82.71311950683594,14.100810990043616,349.7310575241312,75.62697232200424,162.28818542517388,38,11.0,14.100810990043616,2
-0.4633555688378833,1.8829422373410474,1.8829422373410474,101.77873992919922,13.76280595900321,301.29706484803995,149.01997340315123,315.4269314607002,39,11.625,13.76280595900321,2
-0.8369652341828371,1.3356479931383178,1.3356479931383178,75.95601654052734,12.50863890125646,277.6705752752213,161.45831615860203,215.53580321186416,40,10.375,12.508638901256461,2
-1.7707458310823454,0.7070998633803337,1.1145222155921328,172.99853515625,11.690802288864974,35.327377331387595,24.841716698382548,170.16933366137005,41,11.375,11.690802288864976,1
-0.6500045445205679,1.4591064092807615,1.4591064092807615,94.30301666259766,11.593349492885217,55.21654169513517,159.17835985403045,341.6227442259856,42,12.125,11.593349492885219,2
-0.844940362313115,1.2112491838427124,1.2112491838427124,61.18122863769531,10.385123282004017,247.1913073646856,30.604396981330723,169.10253442791335,43,10.125,10.385123282004015,2
-0.5369044563013221,1.451638803926775,1.451638803926775,83.98120880126953,9.4783502133403,156.88654049870738,73.05429874697904,149.2275714219733,44,7.875,9.4783502133403,2
-0.4298062696091562,1.547887130103865,1.547887130103865,51.95884323120117,8.627201265400796,97.05874997818967,151.4236539690674,44.70006619027222,45,8.25,8.627201265400792,2
-1.8105736904134462,0.768214821290541,0.713171670617753,4.195479393005371,8.310201902725852,236.70880219639125,349.03665462564476,268.5103649670902,46,8.125,8.310201902725852,1
-0.4995939629258521,1.3756920511166641,1.3756920511166641,97.19245147705078,7.92096770272021,252.8398135638876,9.143879871051205,304.9220731893111,47,7.875,7.920967702720209,2
-0.46804627524306847,1.3006704582071082,1.3006704582071082,50.878875732421875,6.633488049525493,276.47132361275777,45.89291896461064,314.80121470370057,48,6.25,6.633488049525493,2
-0.4383192450962251,1.3435569843519983,1.3435569843519983,98.36361694335938,6.628592578479628,312.13296821014325,30.2098245951839,46.31906204424551,49,5.25,6.628592578479628,2
-1.373284440272983,0.8255596911052784,0.6700022990094778,176.06431579589844,6.363614711249341,200.37229873859835,46.96529318701247,18.75108839999854,50,6.5,6.363614711249341,1
-1.347917763106004,0.803113824546821,0.6245867549126677,178.9332733154297,5.664373385877218,215.68825587509855,37.13137190962818,208.57272653054494,51,6.125,5.664373385877217,1
-1.3547912716083252,0.8843411228723704,0.5588445403454047,178.64129638671875,5.609211658972289,358.2954556950122,304.42798138526115,62.61775549149067,52,5.625,5.60921165897229,1
-0.8029803206994409,0.9117174539857374,0.9117174539857374,48.02207565307617,5.591702340734066,70.49634476049332,153.9210181722378,346.20427301580906,53,4.875,5.591702340734066,2
-1.569778638730501,0.5980772721864924,0.5980772721864924,43.65568161010742,4.704046625774511,333.8427458066492,121.30228144726107,149.00593788645273,54,3.625,4.7040466257745095,2
-0.7992881965800458,0.4790697096830336,1.4324072132540246,145.43931579589844,4.595017993351474,123.01953229006148,112.89856625737444,283.93179571347366,55,3.875,4.595017993351474,1
-1.2402919949446733,0.7911527408314932,0.5056269200781708,169.19212341308594,4.156550590571923,258.9092812393308,9.254383971230006,255.24948695742466,56,4.5,4.156550590571923,1
-1.0300785967264032,0.6620039479086023,0.6620039479086023,209.06581115722656,3.7819007485630984,314.0315957908448,108.99969681917013,4.721316552304162,57,2.875,3.7819007485630984,2
-0.7267359990728806,1.31501895214853,0.4383052414641994,90.52802276611328,3.5091663382950675,121.99410859729936,159.9505789441528,324.0248081456821,58,3.125,3.509166338295068,1
-0.32745286263810586,1.1086847348223487,1.1086847348223487,74.3434829711914,3.3719686806964226,60.43774426341483,135.2767381422251,152.97560922758262,59,3.5,3.3719686806964226,2
-0.4277329860827801,0.899028343797223,0.899028343797223,81.51534271240234,2.896263803511188,312.6581842928488,58.88055523547382,149.79114738829685,60,1.625,2.8962638035111885,2
-0.45859678587834657,0.853777257305149,0.853777257305149,111.0793228149414,2.8005206256918633,202.22937709044592,51.23646791984867,214.10665541076523,61,2.75,2.8005206256918638,2
-0.5067452180929392,0.8058895880979127,0.8058895880979127,95.09966278076172,2.757143395412151,202.72580050710047,164.2600804647564,21.419509987945226,62,3.75,2.7571433954121507,2
-0.2541508532141969,1.0828615331595448,1.1638348292715248,79.86669158935547,2.6833322682686522,248.64677641986162,316.85736982799966,207.62719292400118,63,2.125,2.6833322682686522,1
-0.6125781459622202,0.6942228921790814,0.6942228921790814,98.74263763427734,2.473306649642633,221.1439297005693,75.05711606273145,10.12191334682429,64,2.25,2.473306649642633,2
-0.547780336347248,0.46491007022734576,1.1308724464274051,173.82235717773438,2.4127238614501785,92.46327614914063,77.07813370410298,39.84776819250926,65,1.625,2.4127238614501785,1
-0.8462875116958208,0.5681623810269111,0.5681623810269111,44.231388092041016,2.2886610952965776,355.07326631035113,137.80209919774902,319.1951291456595,66,2.875,2.288661095296577,2
-0.20040741762678244,1.1516305854975772,1.1516305854975772,84.43860626220703,2.2266849715058434,94.77049913384201,95.17759000268403,259.5164005743145,67,2.625,2.2266849715058434,2
-0.5960467079989484,0.6535525677472913,0.6535525677472913,112.88678741455078,2.1328482122446433,315.5024575729965,7.067230718222241,247.18964329932135,68,1.875,2.1328482122446433,2
-0.3619423184788049,0.8308643638220509,0.8308643638220509,66.6673355102539,2.093236184446444,80.40313895879899,92.9622478091229,321.4647430209619,69,2.25,2.093236184446444,2
-0.6122447175014353,0.4046602853720242,0.953528000901518,153.39108276367188,1.9790997593440498,222.50862604449554,276.2556493440967,266.653663011005,70,1.5,1.9790997593440498,1
-0.5685435434997466,0.8907542276033582,0.4504409225064963,92.34955596923828,1.911076483593653,324.9011571960535,325.9545089184769,286.5449612673739,71,2.0,1.911076483593653,1
-0.4292014810957234,0.6882177263835857,0.7569760026468154,120.3749771118164,1.873215675264647,106.48878034814837,71.04756081305901,30.557748507398287,72,1.875,1.8732156752646472,1
-0.3348635088736497,0.8098294181510011,0.8098294181510011,64.50626373291016,1.8398123371551927,179.48784901981153,68.67996371189957,235.36460822364936,73,1.875,1.8398123371551927,2
-0.40662887576790696,0.7116125488862661,0.7116125488862661,93.77250671386719,1.7250592521803159,270.004908108252,113.03618263894668,121.2150017427269,74,1.75,1.7250592521803159,2
-0.3057666717639964,0.7864705026008938,0.7864705026008938,58.976318359375,1.5844320843898692,274.27663142994055,60.805878892324245,191.6688723992737,75,0.75,1.5844320843898687,2
-0.8146939350222652,0.4303285525556751,0.5300332112521818,3.8908910751342773,1.5567408929870967,108.86851271647015,103.90182202546096,71.58994026787609,76,1.875,1.5567408929870967,1
-0.3104937818582528,0.7703795989490336,0.7703795989490336,96.83654022216797,1.5437645321726239,125.36691857162556,62.246001330693765,112.97255714933792,77,1.125,1.5437645321726237,2
-0.48893153764937314,0.6138257115041269,0.6138257115041269,84.4588623046875,1.5433229283457173,336.89089981419414,163.24262233098187,262.3485827882071,78,0.75,1.543322928345717,2
-0.28574961013980366,0.8004065633242221,0.8004065633242221,79.08781433105469,1.5336474395237483,232.22678001113377,172.39305434513346,17.346246756643808,79,1.625,1.5336474395237483,2
-0.36065617306888315,0.7045864240084493,0.7045864240084493,98.895263671875,1.4999628983283233,357.54518797071995,95.31053752078566,297.2768762527337,80,1.125,1.4999628983283233,2
-0.3053999383037233,0.7599278372559649,0.7599278372559649,92.28935241699219,1.4775162200392404,318.43021012228905,88.07234468282282,13.874886829682854,81,1.375,1.4775162200392404,2
-0.7850650694690836,0.4178277764622777,0.5319063444935043,165.11282348632812,1.461694920075468,31.09803123662486,186.15753947191067,329.28531142583444,82,0.75,1.461694920075468,1
-0.4178060146728394,0.6387935329172924,0.6387935329172924,96.00154876708984,1.4282831548522066,114.92696609932901,87.90707670921492,250.76264641577586,83,0.875,1.4282831548522066,2
-0.3790100662811357,0.6560479353722944,0.6560479353722944,100.19072723388672,1.3665971033099351,279.59400216347916,110.03460523975968,263.71374200778274,84,1.5,1.3665971033099351,2
-0.32730620710058694,0.6975086385348355,0.6975086385348355,50.22885513305664,1.3340497558447848,330.2307359108909,116.24221130280131,230.792200666446,85,1.5,1.334049755844785,2
-0.48382754647781206,0.5735177681747223,0.5735177681747223,114.60740661621094,1.3332234710962028,334.39762986431094,91.45032535933028,310.46183123805235,86,1.375,1.3332234710962028,2
-0.7559441997745724,0.3798809399786895,0.5377321063542276,172.2708740234375,1.293664961845313,337.4119950776613,335.9632086388191,144.68902040695897,87,0.75,1.2936649618453129,1
-0.8495391015038044,0.42535082707109406,0.42535082707109406,182.97422790527344,1.2876461717257588,222.97874137916565,155.6009005765084,83.66154454409805,88,0.625,1.2876461717257588,2
-0.8866280977093829,0.41141604367018925,0.41141604367018925,143.53341674804688,1.257252599466397,260.3222206359829,33.511131684405996,77.07690251380652,89,1.375,1.2572525994663972,2
-0.6026964958441966,0.3542205969248884,0.6974087781717088,28.095462799072266,1.2473217387682871,44.04215461856319,126.63621137366114,158.8827090804692,90,0.5,1.2473217387682873,1
-0.5863541962160863,0.517865776345332,0.4831016991507421,174.28367614746094,1.2289505793525306,100.10626987954038,222.45137563310854,3.711121646857798,91,1.25,1.2289505793525306,1
-0.4708982996736699,0.5515140917160034,0.5515140917160034,97.75881958007812,1.199938407414214,350.3242075301344,99.90160821044077,295.5933720253992,92,1.25,1.199938407414214,2
-0.3172796755039661,0.6548503273296199,0.6548503273296199,80.35009765625,1.139842787507681,182.18835124190682,95.25826945280905,82.09183950995394,93,1.0,1.1398427875076813,2
-0.7215602413044111,0.4330616913844104,0.4330616913844104,34.282100677490234,1.133680654140186,30.862371056218297,168.30325785607116,290.455274781239,94,1.125,1.1336806541401858,2
-0.4335709645655043,0.5584252102674626,0.5584252102674626,59.6182975769043,1.1326841632037656,14.983687437368145,120.18023720067691,145.9002103024931,95,0.75,1.1326841632037656,2
-0.7049311118298567,0.4154097578062564,0.4154097578062564,218.5637664794922,1.0191043862219733,215.18460095375852,40.421869948443344,2.513994671374622,96,0.875,1.0191043862219735,2
-0.6339354499663841,0.3614494139480277,0.3614494139480277,155.09805297851562,0.6938389772446817,301.69543041271817,14.519045411606049,23.097459391685724,97,0.375,0.6938389772446817,2
-0.6401740346077244,0.3465239723911827,0.3465239723911827,151.50338745117188,0.6439960873954934,231.24442640563598,176.8246309159804,77.36863886434253,98,0.75,0.6439960873954934,2
-0.7028786912363986,0.30219958331739555,0.30219958331739555,167.0904541015625,0.5377577829053289,1.9094357898828562,20.070134787316515,101.22519444638627,99,0.5,0.5377577829053289,2
-1.0309783047949628,0.22073396974337797,0.22073396974337797,139.1501007080078,0.4208297935261673,219.17629226983703,6.631741477547837,229.58393753226412,100,0.375,0.42082979352616734,2
diff --git a/DAMASK_3/processing/post/DP1000/MartensiteSize.png b/DAMASK_3/processing/post/DP1000/MartensiteSize.png
deleted file mode 100644
index 8d4ffbba81c335ea56733ae4ee49b91705fc93e1..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/MartensiteSize.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Pairplot.png b/DAMASK_3/processing/post/DP1000/Pairplot.png
deleted file mode 100644
index 2660e64fe4bf9af911ac6b50e49361e08219bfb4..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Pairplot.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_conti.png b/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_conti.png
deleted file mode 100644
index 0e2a87d553be960c89a4b08310041ab9fbdb2cf8..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_conti.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_discrete.png b/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_discrete.png
deleted file mode 100644
index 18eb2fb4c578aff18ad3ce4009f96bc3f05d150c..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_input_discrete.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_conti.png b/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_conti.png
deleted file mode 100644
index e136d023fb098094a888fbc6b03e834864fd1778..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_conti.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_discrete.png b/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_discrete.png
deleted file mode 100644
index c10d5880ec913b2567efa32a472ca7672b565eac..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/phase_distribution_output_discrete.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_conti.png b/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_conti.png
deleted file mode 100644
index db27b7d7d32ed977a449b3ad2ea15e6e67ad2abc..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_conti.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_discrete.png b/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_discrete.png
deleted file mode 100644
index dd90ac344cb48c519d1618644e2821199ed60937..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/Postprocessing/vol_distribution_phase1vs2_discrete.png and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/RVE_Numpy.npy b/DAMASK_3/processing/post/DP1000/RVE_Numpy.npy
deleted file mode 100644
index b299de3790ecb355f61dbc57d4c4b994a8b0f43f..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/RVE_Numpy.npy and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/Specs.txt b/DAMASK_3/processing/post/DP1000/Specs.txt
deleted file mode 100644
index 755e8b0fc93e51a6eb2076ccd3bbe1287f0911ba..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/Specs.txt
+++ /dev/null
@@ -1,20 +0,0 @@
------------------------------------------------------------
----------------------RVE-Specifications--------------------
------------------------------------------------------------
-
-
-Created at: 14/11/2021
-
-Size of the RVE 16µm - 32
-Solver Typ: Spectral
-
-Number of Bands: 0.0
-Phase ratios:
- 	Overall-percentage: 25.495613945855027%
- 	Band-Percentage: 0.0%
- 	Island-Percentage: 25.495613945855027%
-No inclusions in the RVE! 
-
-For informations, contributing etc. please contact the DRAGEN-Team:
-	DRAGen@iehk.rwth-aachen.de
-
diff --git a/DAMASK_3/processing/post/DP1000/debug.yaml b/DAMASK_3/processing/post/DP1000/debug.yaml
deleted file mode 100644
index 5b87ff5b9b2c4e7ea9c36042198649bdad1877cc..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/debug.yaml
+++ /dev/null
@@ -1,12 +0,0 @@
-phase: [basic]
-CPFEM: [basic]
-
-# options for selective debugging
-element: 1
-integrationpoint: 1
-constituent: 1
-
-# solver-specific
-mesh: [PETSc]
-grid: [basic]
-Marc: [basic]
diff --git a/DAMASK_3/processing/post/DP1000/grid.vti b/DAMASK_3/processing/post/DP1000/grid.vti
deleted file mode 100644
index 0a0caf2a003cc826671581968cde8073b3e1bc37..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/grid.vti
+++ /dev/null
@@ -1,19 +0,0 @@
-<?xml version="1.0"?>
-<VTKFile type="ImageData" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
-  <ImageData WholeExtent="0 32 0 32 0 32" Origin="0 0 0" Spacing="0.000015625 0.000015625 0.000015625" Direction="1 0 0 0 1 0 0 0 1">
-    <FieldData>
-      <Array type="String" Name="comments" NumberOfTuples="0" format="binary">
-        AAAAAACAAAAAAAAA
-      </Array>
-    </FieldData>
-  <Piece Extent="0 32 0 32 0 32">
-    <PointData>
-    </PointData>
-    <CellData>
-      <DataArray type="Int64" Name="material" format="binary" RangeMin="1" RangeMax="101">
-        CAAAAACAAAAAAAAAUwUAAE0FAACPBQAAVwUAAE4FAAAlBQAAQgUAAGwFAAA=eF7t2r2OFEkUhFF+Fgkhll0JAQKEMWg81lqXxcUbEyTe/0UwyGsQIvTdm5VZVVkLTqh7eqQ60TPTdEY/u/fj39OWzzfmC8jHyXydzGeD8qkkOV3G9Ve9q/r/MEk+SnKP8qubenDe0T2Qey8/+SjJ6fJVS+d+35J8lGfzvzL5XvKtJDnP7nfu1f3ZHrL++y3VX+2B3Hv5yR15X9L5H7Tc6v+vJbmq+bBlOMjt/K6HByY/tCT3LH+437TM+p2bfg7i6+GP2+Se5X9j0vVA7qzf5V7urH9rZv2fJWf/3VvV/48k+Vzq7/0sf7YH8qt7lN/1QJ7R+RG+7vzxeq2+l3Bb/f9K0vWOzo+SVf/LZKp7VX/VXfUf1YPmn5Jx/yj/35Jn8atb/eR0qd7f/p8z3E8k6XpnpeuBnL3+SPUf1cMof/y9IPfZ/XHeSd5ev3Mf3QOdd5Pb7R5X8ffuPprkjvyrJV33qCTnUf7ZPZCPkrzVHtQ9uwfyUZJztt+dc5J7NX/sP+SmHO2v9uDOw9U/e/+LJFc2q16Xe/n1/Id82SRfNvf29/bgzr/IR3l2P53/kY/y6P076xzt1z0k7tcdmHyU5CcfJTmzfrd/Z/fOVfzkdvt/tQdyj/Jne6Ddn/Z/3XvP5nc90P6r7qyfeiD37B00HOR3e/CnltkePkge7Y/Melf30/6ZddPvAfVA7lm/9+Tfms6vjyP3Vfz0ePLv/fM/KrM9kHur/4vc3su/NcN90zJep8nr/O5zD0fvfpG6e6jbpdsBvkjS/k3XNzvd7lV1q//suzf5tQdyV/fPo3sgd68/Hn92f7aHeBy5q363A9L1js6z+ffugfxx/kXuVf2uB3feSe5R/r17IDdl1U/uvf3kyybtXlU/7Z6jklzZJD/tnrR/zuqBXJTk/e3/dc7yxzknPW6Uv7eHqluTzrk1Z7mrfnp/OfvzD+4cnHyUcf1ZZ9W/9fkn/9YeyFVN575tST7KrX53/kOuau7tdz3QudfsHsI9agcnP/koyZNNtwPTzkd5Vj/twOqv9kDuo/xZN+1cZ/Fne6D9W3fw7N7n+iD3aD/1QO6t/sjs/kuO3szu3+rVrO7fVf/W/Yvc9DkIer8y20+eapK/ms5PPVzFr5n1k/sq/rg/3Pr4q/mph6x/9P7v3LP81dRz/3Dr6zN5nZ96oOubnW73uWmpPbyDVH+cd5/t8w+0e+n+W+2B9o/V/dTDVfyuB939wh23yR9J1zkryUv+r+Z+8tIOSNc9KsmrGd8X7nj+71qu5q/2EG49Dxzt37sHctP5r/qrPRztdz2Qm879yU3+vXsY7Y/9p9e99/7f69ak3Y923+wOSp5qkouSvNUeVvP39lB1z+qBXNkkr+7Co/x03n8WP72fIK8muakPdw5Czkjy9Ca5byXJW/VTD+7cg1zVJH927+rdwaInOu+Z1QO5Yyfp7YH85KQkXzXdLlb1k/tsfnJrXsXv3OSnHsh9tJ92YHJTH+Qe5a/2QO7I7N7lktyj/dRDdv+P69f9k7xVPzl6k/Zv9er/U7+1XM2/df/5Jtm7/6/qp+e/2sPqfr1/VX9vDy7JH4+7ul/vz/p1/yaXS9q9R7urGd7s3qU+t3uv4qfdw/VAu3ek7v+Rq/lvWlb9tHusvn9v9UfSdc5K8jr/I7n9f/N/lbyTr5PX+Y/e+yide6v/qN2TvFV/JHlX9cf3PZJc1V/tgfx6P7nJP2vn2+rX10F1Z/1n27+dm3Yv56cezu6n3Y96oP2z1z27h0hyX9Uf7wvJTfsv+V0P5J3l13MAcpO/N8kbedsyrp/2Lt29I78DRQi8Z3he7dmxbhxHEIRh27Ahw7AsK7XggAQTwSBwkQAZUMBIkRIFipn4/V/BAacDF1z4e2Z7Znd5ZFK4JQnMV0fe3XZfvnv6+tXk95I/m/zJpPt5yjeQdy1/MPlby78k1ePczv9jMslHSe6sX3PUT95qv+sh63c9ZN2R5KQkX2/emsz2cFb/qNsluY/id+5r95OPktxV/t4e4v9zlnsvP/VA7tV+cozmH5L6fqxe/X6c/1PLd3I9m6v96nZ+yk+S4ent4ax+7eFa/fr/cK1+zWwPR/HP6kH/PrL+m5bxvuQ8f0oezZ3N1yb1/dm5qYej+p3b9UBul79Lns0/2oO6XdI5q5OcLnWudVb/aA9uvnet/m/mOnld/tKSzl2V5HWp7i/ymJzOrUnn35rkJPe1+d3/wbX44/fc6+Do64Dzu/k/uXqT3Efz79VDr596GHWv9uvPxedAcruM39/qn9UDZZXf9UDe2f64Dyb/aA9u/tvrv5N053V738hLS50DVPtp7h9J7qxf996uB+d3Pcz2Z3tQv853yH+RJD/NgyK3uslPbuph9Pknt0tyUlb547G+zlGSj5J82Yzzh/tWknrIzj+P5n/VUr2j7rP5nfu5+2c976v9oz3Mcj+2JHe1n3qI12XnrvJnn39yjGbM/dXt/HH9QZJ8lHv73f7jH3Nd/Vt7WO2n/Zdzux7IR3kUf9btkpxH95OvN8m92n/fcpU/24Nzx9zrpqV6snvvvf3UB807I+N9ivyuh6P4I8nr/HE/T37ag57NH9nrp7k/nXNWkpP82R7If7Ye3FzvWvzUQyR5j9IDOUf9vT2s3vse3b+qB3K++P8/yd3bQ+8elFzZJOdW9yz/Xj2Qk7LKvZc/fp6c2dzq130QObPp3NX+uK8YdWf92f039RKp90O96ea/n1uS1+0BnXt0/1ntp3l/JLmdX+/vyX8xST1cq1/nIJpVfuqB3KN+Nw8jN/VBTspwhyvrdz3E9ehh9hyUfJSxBx31984/j+q/NUnOs/pfSZ7VP9rDLPdjy1XuXv8st/ojV/mpB/2cUe3e+/l3PbjPmeGOxw+S5KTcyz+691D/1h729vf2cFb/fctZ+z9yPnf/aA/Pzd/bQzjdvOumpXp6996r/dk+aN6nc0/ad2oP6v/acrVfk7w09yV/pPp1/kvnnJXkpR7Ind0D0zlnJTnJn/17oL3H2Xqg+Zb2Qe69/OTc6o8k99l6IO9W/6q974v/6Yu8W/3ZHs6y/ydntd/N/8mVTfJW+amHrHvvHsiXzXDH/GfUX9UDuav9kVX+u5bkdHmRx+qO6+TpTfXP3n9n/ZTkonTz363+uK91ftp/RsZcYLU/ktzkj6z2x/nIR1ntd/MN548kv/ag54w5B3mz7mwP9LyTP76f9auXssqvPcS5s37Xg75OzJ6Dko9y1v5f56BH8+v+W/3koiT30fy3kuSjJHeVf7SH2Xtwcu/lD/fHltXux5ar3Nke4vX4o2SVu/f5J8fWdJ8v1R8Z536Qx6N5Nv+DJPko9/Jv3XudzX8vWbX/Ix/l2f1b+3jfUt0fTJKT3LP9vT2En+Zd6qK9t/Ov3n9v9bseaN9Lfjp3daqbvDT3JL/b/+/l1yQv+Xt7cHN/OuesJG91D7T/eduSzl2V5Oz1uyT3i//p660knb8qyfvi/2+Sd7SHcOve+29J8vQmeVf53f5b/dU9kLfKTz3Q/vO5+LWH8JHfJfmySe5qv+aov6oHcq/yk5P2Yc7Xu/9Wd1wnx2jG/HPr/tu5s/tf+jshR2+qe6s/7u9G/ZExB5nVg5t/V/kjs/5/ARg5oIR4Xu3aO4+aVxSFYV9i5aJEdqZPQUTBKBppqlh2YSG5mHKk9PP//0YKzmqWsvPuc+WDgeYVA8X3bJANZ/P45nR7LP219G3pd+uHzv4E/Zjs3vrO+ldQuR6Dkl/9oZS8tX6aA7lpDvo7+VVdT+TPzoG83h+tuu5af1S9vu71ujPbVvcqvzrLr5Kz1U+ubLfmd7f7/7T7vZ3lbp2Du7+UjnZv1f8lKDlau8pPc4jcs+ew2q++tZL7tfvJ0drZ/ge7/77U/TQHPU6e2t6Xzvar5M+WXNR7q/v/DkreyD3a3zoHd7s/cm/VXzuHyP9bKfn/CEr+f0pn+bPziNxeef17XOT3OZzbH80h61ej77M0B/L/biXHqJJ3lF/9VCq/u1fPgbxZP81Df/8U9Nr8Ubfmr50D+ai1/tlzIO9W/F9LydNaco+aQ69/1hzI2+umOdT6R8+B3LPnELl1zn/tft3/xUp7H5V82ZJ7tN9b6472QeRs9dP195Z81F6/9l7u1uN0/b2V48nuU/dWd9H+0/00J3LUVue+T1ZyZ/eg5I/2n6v9Pgdyr/ZH+2/yUaM9ALndH51zRH49TvvvWX7a/0R7sOzrHs3B/+7vAz//1HXQ7x/UUW7ag9b6qdH5v18PnXfSHMhL7tX+3j1ArZv8ut5RbvKTL1vy1vpHd7Y/Owd635OjtTf/f5c8ra11X/r+1/veqv+HI/dr8aur9/+z999Z/8Hue8nR2mj/S45sH6yt/lFziPa/Ku1/yZv1u+tgpTm0zmOV393k9zk8w/MuzZ/df9e+/rXzoN8/qO727zO9+/9o39Xrp3mQO3vuSXvvyE97D/LUNvLvSnvPfyO//zsfve6z/d6dtddPzbpnz6HWPcpfu/e7+U838vSW3KP8Pgdyr5oDuc/tn7X3PZdfJXfkHz0Hcp/br/P+Wf7sHMjTWnJTj6Xko5J/1RzIG/n3peSkrnar5KS2+r8ln0fX31vykTvy095fpb337DnoHHj1/vvc/mgPQO5Rftr7q6P23rP8dN6R3X+7W9dz6fv/qO7V+a/m5dcT7f/JW+unfdAov78/Lm3/T65s6fcP5M3OgdxZP3lqO8uvkjfrXu0nV21v/v/vavdqv6rz0Kz7Wv0quWf7ozmQo7bRPkCfP87l9/33XSl5akv+Q6m8/vmMHLWN9oB3VnJRH0qzfjX6PkIuKu1/5e7d/7o/mkPkf7bHR81hld/do/2tcziXn/agrf7sHLLuqNH3Gt/7v5TW+n0O5KVm57Ar1Xln1h1V/tb99yh/NIfs/p+c1Fa/Sq7a7oLOPve/+U838q72k3uUXyXv7DnUuq/N7yX3zX+6kau25L35T7do76HrP9r92pJ7lp/mQHsf9VhKzmzP7SfvKP+3oO7W88kxquSN/PtScpM/ej5d96iSN9p/qvp879cf7b234tc5MHmzfi/5af89aw5+/k/eXn80h5+D6nFdH3laG82BzoHJTY3cXr8+8mTbuwfq9WfnEF2nznvImXVn/dn3fbbkV+m8LzuPXj95WjvKH82h131pfpXcW/Fr/zXKXTsHcl+6388Bt+rXufds/1b336P2npfmV0fvf7fu1z4k2nuRixq5vYdSd+tzODlaS/7eOZDb/Wr0PYw82d5byd86B3LL5f5ne3yU392X5u+dR68/Owdyqzr/y77/e+fg7l0peWkf/mLNur2z57DKH82Bzv17/TSPXdBWdzSH2tc9mgP5so3cfu5d66XWumftvbL+0XuPVv+oOUTu1+6nvd/oOZBzlj8quW/+041ctSXvzX+6RXsfXf/R7vd2lT87B9p/HUvJle0qN/nJ3eu/lv33sXRfSu5r83+2+uf87Bz8vHu1X+ff5PXqdac5RHOhfY+ep+sjR2t9D0DuXr8q578uGavseF7t2rGKHFcQRmFLtrElMMKOFBjBsAJJiWAiZ2aTDSwUKjVG7/8SCvZW4B8Vp6pu9Z3umd3k0NIE/dV20HNrX/zw+PMC+nNzz9JfR3+BPh99K9d/SZ87JadXuz9yRavuWX+25N1qDlW3+mdLTq8/OSW3Vd2X8lfn4Pmj89ib/8tol9ubg+e+dr/1x9Gq+1r8WvJu7bfeup/mQL6sO+un+57tH07JRz26f3YOUf97uV7l/zBK/uocyG99LzX3s1FyZPtBSu7V/mdOyRVt1R+dA3nJv9UcZt3ROZDX+vto1l+dQ5ffe7//dzTq1mb92XmY+yQl71H8NAd1R/30vVZb9escyBmt517tJ7eWXFRy/yadddMcyHtpv5Vc0VbdW/s9d7ffSs6t/NQn//dLnmrJW/V/Dn7uKP5XTu2+7+W6u+SYbdatvR8lh1fvnOfa/X9LPf+qOVhfjpJb93y675v1r34OrOQmP+099bknv5Xuu6vkjs6Bvv+Rd7X/LCW39e1odg7k9Tq79yW3detzYHJSyUWtuvfin30O1H2pPSA5qXreR271V/eg5IqWfFTv3JP8R91/k1v7UWrnAFX3Uf10Dkjeo/qjewDybu23kvvJ//hD3q38dP+z1XPfW/HTub/Og7xRd3YO5KiW3FpyV/2r9/9Vf3QO5CW/nluQI1vyUVf7u+dAvmhn3Xbut2r/3+X33u/J6/m9OZC/OgdznOQ62lm/d/5b9UfncHJKXnJn57CV35uD5476ydvl1zmQk7raTXMgt5Z8VPLb57rde/fr57rd3hzIq70bJWfUT58nR7WX8ldLnmrJq8991J/d/+v32r35bc9jfm///1madXtzIMds1ftSSvuv+1HyZv1Wuv+uqp/cVT95L/UcZH/vuv/13nNn/aueg1k/zcFKTio5ZnseJXd1/08+Kt1/tWep+aLngFH/3uagbjr/7DoHJR+VXFR1Z/2zcyBftOZ5LddUdWf3oOSjkitau+/X0q3cXf6uOdh5p7ntWt3eHvha/VZv/68l71Z+a3b/TX51791PTvJXf+978VfnQPuf6D6EvE/+/5cc1ZI36yd31k/3P1s6B79WP7m9OXT5rbr3v1X/qv1/1U/zIGfUr3MgR7bkyvbNKDmr/u7ngTzR2nv+av/sHOz+T3IdrX7Pqfr1HDzrz87h5JS8nltL3q38NIet3dk50P6n6vfmUfWTcys/uaL13Fb7XJeb5kBu652UnFm/fq7bTc9B1l+dg+elkivbS/m13ve5VX7Pa/uvqv/a9t9Rv7k/Of8fdWvp/ruq7uge9H70k3TWbf1zlO5/tlU/Peez/lXPQdZtpfdcK/modP+z3bt/6zl4fjv3ifofnH/vmgM5qj1L6RxQz8MenHb7u+dQdXvngfT738sc1N3lj5Zc0f43Gt1/e/7sHph8VHJFq27y2/uvue2avHv1e3NQN+1Dydvt756D5yf30f3qvrX9v87h1vf/WffR/d4csnsw8j75H3/o/mdrHjsHJXeXPzoHuv/Z0h7gWv3kpjm8kZLTq+693o3S/c+WvDSHLr951W/nWOSolpxZf3UO6l/1dyDk3Ju/ew7k9Grv+V1+c0X9s3M4jZJTvV4v5c/O4SQl9z+j5Nfv+dF6++6sn+ah7q382Tl4e7A7KXm9em6rfS77vFPJnfVX50BubffeK+vu9lv1ve3Sfp3Dar83j24/zcHbf3p+bw7eHpjc3hzIk23UTX5yz/qtWz0HVvJ/lUb92eeeSo5qs36r7v8999H95vT89J5nJV+05KmW/LT3ppIrWnJUq+7sOdCD06PMoboH7vJ/A+UJmeB4Xu3aS25bRxCFYb/iRzLLyAPDQCBYmhkIsoMgBqxsIDN7/7vIwF0DH+jgr+qupi4pavKD9AP8iqTJ2+V3z378vEv2++gvo+/ldrZ/St8U+yLZb6Pkqjbm8F5ade/2a8lF/S7N+l+OrrrPzf8SSs5z9Yfvs3TVT75syUlVd1S9zn31//gh7y7/6hxW3Ufxd82h6r5U/6tRcl+K/5Upuat+evyrJSd11p+dAz3+rpLT9eMoOcl/J93t/0/6uzTrXvWrO/p8lByrVXd2DuqfncPV/3Cfm5KnWvLrHJz7VP6uOfwxSm53XbvLT+6uOaj/9ei9dLeffNlmvdrXUvVX50Be7a+j4biRkpvm4dzx+9RffR1kzzucW9vljzq31s2B3Lv9XXOgrvqrczi1Pz6/3O0uf3YOp/LT99io88/Ooeomv5vDv+b+qv9Ur4Pd/g+j5HWNP380v3NHP5iSN/t+ICc1669+Djr3ql9fB+TLltzV85But5Y81Xb73RzIlW38feTKdtbt/F/M/d37X3JVG3vQWf8X013+36S0/9TGv3+re2C6zlN/3CZftlW/fv7Nuqt+Lbmydfs/twd2Jee5+bPuS/XH+yJ8tA8kZ5e7ew7nvv8mHzXr7379k6tacmb91ef90v3kPop/dg7OT95L8Wt3++nxr5Z81Lej5J2dAz3+2cbee3UOs3uP6J3pqfy6/yevulf3P84f5zvkqFbdXf//YZd/1xyitP/Nunf7u+dB5/1H3/+vzoH87txzt5+81TncmvvJfT/qzjW6/eTLlp73qt/Nocsf53/kWm244zb56X2gcyCnc8/uPVZL3qy/eu5T9Z/LHMj72P74/Nrlr85htz+7DyLvUfzZOczuA8md9dMcaP/X7e6eA7lP7Sdv1p2dA7lpDuTPfg6Sd5d/dg5RctN5SNVPTmqXP/Yjq/74Hkfuo/h1b9zlpzns2n+Tl+Yw66bzsHDH7W6/Pv9u/5dtt1/bvf//Our2/+R1nwPknfVryUcNP+1/nVdLznPzR8n9WP6uOdDzHz7aC5Gz273bX90Dk3eXf3UOWX/365881ZLz6n+4q+6j+Gfn8NT3/6f20+Pv6l+mNI9z3f+v+lf3HtE7091+3X8fzR+N8w7yVBvuuJ7L+nfvP9WtJVe27lzj6P6uOdD5XlTPVY7ip3ncQsnt5rDbT07qLv+9tMtPntl2+6Nxntflj3Mg8lTb7Va/mwN51a3+Gyk5qyVftm6/k21273PUOdCei3r1P9xuP+2DyNntp/3Pqn92H0berjl0+8l7bn43h93+2Tm4PV94ae9F/k+ju93d/uzezzWu/8Mft8m56q/OgbzVOej5z2P5s3MgZ7c/rm/Iu+rO+rP7X/LTOaA7D3Purv3/0f3ZktP1q1Tdq37yHs3v9uDO6b4HkLPbPzuHWT99DyJnt3vWr3PI7v+p5L36fy65qiWvq/OHK7sPJO8u/z+j5Kz6s+6j+GdfB1f/z626H9vvmt3/qX92/03e6N+j9Phn69y0/131Z+dAj3+1s/7Zc3/tnWn447yDHLM9ql/Pe8hRrV7HZf2795/O3z0Pdz3r5hDX1Ufx0xxuoXRdrz2Vn7zZOTw1f5Tcs/7sHMirJU+15L50P82BfNnqHMipdee/5JrtLj85q/4bKbmqJVe15Fz1d8+BPNVm955H8e+aA3nJ3e2P96f79fg+S65syb3bT3sw2oeRj+rOP2nvQ3Nw++8ud7efSm7n1zmQt+qfnQN5Z+cQ1/9Pza/nP+qP6xvyVt2zcyBnl1/Pw8i96s/OgZxZvzv/c35tePV+5/ofjR+tL3he7dq9bhRBEEVhfiTA8AIECI9lYWckJGRIiACERIxEht//HQjcFXDl0qmq7t7tWa+To4VkvvIYZrp88eT+6wL6Avqm2NfSl8E+g/5y/pycXu161f1WSl7PT95R/t45fG+t+p9LyVn1U8lJfnWTX93H9lfnEPV73l4/ebIlr1fPT95V/N9ayXnq/up9cPY/XPKu6r9qJbfn/9hK3qr/ayu5olX/J6dR/6tW8lbnMNqv9fzeHE7Nb89zWf97KTm93jp9KiVHtvo8T/fBK+mh/aPn4L3PVf3VOWT9vXOg91ntO6nnHuUnd3QON1Bye3NYza8ld9UfnQN5teTJltxn//0XOam9bqudA5Er21lu64/Wql/P/2bNQUuubMl59j9cz2+9biVPteTKlrxn//0XudU/aw7kyZbcVf8HKbmyJVe0dP7v7X2O5df3WvJRyZ312/t/1K/vKVZyH9ofnYO6Pb/nzvqrcyDnaL++50X95K7OgZxZv55/kZ+6F793/mdu+0ze3v139v8Fcq7iz87BrtNzR/e/VPJH3VF/9OdBr3OWn9zVOVDJ782B9t9aeh4k7yy//f8wyz/aPdofvQ+ifvL2zoEc0er+LzuHUX7yrua3vcdj81+2eu5T8V9JL6Wee2/7X+/3Hzy31bv/e/2/W8k/eg5Rv+49R/sP/f23es+1UX+v2/N75xvkyZb89nyk/tH7f/Pdymcq+bJur6fiv2klb3QOo/299bxacnrVn4dV979Wz987h737yRdtr3vvfr0PyKnV8y/yZDvbbyVn1D9rDlryZEvOs//h0v6DHNWSp1ryRt2z/bPmQO6s/7qVHNWSJ1vv3JP2HuSnvW9vyRUtnfNn/XZ9tP/tLbmiJXd2DtH9d2/JFS15V/Pb+WbvHMg5y2/veeQkf+8cyJn12zlQ9PcftFm3lryr+739r3ff9/67QM6o3zv/jLqj/mxn+XUOdA4c3YNE9/9UvU510/43WvJG3dHqv59fnHrXG91/a73nYXKP9ms9v51vVP30HnCqfvIe26/7P+9832r7EPKTc1U/zSG6Bybn3vzR/W/1vl/Vv+r+m1zRmn+TP79qXdU/eg6bNOvXnxdy9vrJE+3m1J7raP8/yq0///Q8qs9t1W5Sfa41t90Ps/3kHT2HrZXea6yr+rNzICfV81f3f6P8NI8bKTn37requ9fvzeGx+XUO5KOSo9rV/Xaduu+Y1dF+Kzm1f1u9fc/skidb8kb9h5oDeaold9Q/ew7kqJbcVnLP9s+aA7lP3e+df3rn/VS7ztF7z1lzoPPvXv+sOZArWnJn50D731ElF5Wcq/t750DOWX57vyNXtuSd7bfzoOr+m3xU8o7ye3Po9Y/af5O710/ff51D7x6AvNU5kJPquWftPzyn7T3ts16nee9ao3tvKrln+6P7/zsp7b+13vMwuUf7tbP89B6wut/Od9S/9/2/1pzqtp76/ts71/b2gGf//63e98f2b1Jy29+P3n8fyq3dpMfyr7L/tkb9o/agnl+fU8gV7QZV98/WVfa/5BvlVr83B/JRyUslN/np/Wa17391DubZ5HO0q/u9OXyWkpO6ul/nMMq9N791tF/nQD4qXf+okifbXr9d1173XVZyevX2PbNLnmzJGfUfag7kqZa8q/hnzYG85D70HMiTLblP3e+d+/6Rz+RW/6p7z6jfK/mts/e/5IqWvFk/7X9HlVxUcq7u750DOc/+h9vr1/dc8kVL3tl+O/+r7v+jc/kH0baO1nhe7dy9rt1UEIZh/gQRIKpIAVFkNWlOQ0vHBdAgpaTl/q+BIp7ifNKnd2Z5vGzvs9O82tIp/Ix3DvaaiPdfffnz3vT7ZH+a7I+mP0g/bf1G+oep/tzXUufVxs8f5dc5qLvL7+ZA89Dr7Ha/20r+qHNl/W4Of5nS9f+a/Lnot9Lwk5v81Wb9cX3OrSXvXv/LVvJVm/V/3Ep+cmvJfbT/HfSj9Lut6ifn3fzqdv74TM5Z/4uUPNWOrVW/K3mv4h9Scp/tJ0+2A7rKTX797xS5sh1Q54/vR7ffPZe5km/WHVX331I3B3J2+WfnMKDuvjt/lHxUclLJTX59rg93fD7KT65qq356r9O65wRyrvK7efwpJeej+NW91+/mQE4qOWbb7XZzIB+VHF0lT7V7/XS9R5Vc1ZLT1Z3/0fXvLXmqJeej+6tzcO5V/qPmQO6sf9UcyFOt8/4rn8m9yt89B3fuG/74TO5H82vJrf0kJU+15MqW3NU5xPVd3U/OWb+6j/LvnQM5j/Lr3ot8Wt1zzs6BnKv81Tns3Xuv9usekPa/s/7qPMhZ9es5sPqdm+ZAzqqffFTdf5Of7jvtwclJ7fK7c6TqHiTr7voekMtVn4f3+qNVv/u9EL7Ye2fd9O8f6D0o61e3fg9mq3Nw9yU8tAfLutVfve9dfufVHr0HPMtPc1i1Bz3bP7aSn9yr/OTJdkj33vdZ/4et6o7fS93+AV3tD6fz6xzIRx3Qs/zZkm/WHXX77273rH92DgOa3f93+clX7V5/PNe7/f9d9r9ZP73Xau/i1+oeeGwl7939z/3/65Kr2r1+uv7ukqfau/mPmgM5XfXci667q+SplpxZ/13nUD33cO67+qvfA/LfdQ7kfnS/Owd97v9fl9zqv+red9ZfncPV999H+fX+u/0vuVzdfuuzfKaSc9bv9t+096u6ac9HJWeXX+971U/u2TmQs8sf56Kr/Nk5kHPWH96q/xcp+bLt8uv5gXO7PUicZ2X9R82BnOR2JX+U9t9H+cl5tNt9D9y5Z/j3/h4Ijzv/Vrc+9x/ln211Htk9EL3/XMX/s9RdV9ad9esc3P7zbP+q/d8H6Sr/2Er3fbU/6tzd/qhzn+WP30/d/gE926/PrV3uq/rpfc2VnFV3dNZd9ZOPSt6q3933+L3Q5e7yV+cxoM6tvaqf5jFM6f2WnlvJeZY/+tz/vy45qXf1kyvbu/hdyZft0//lDzld9dyLrrur5KqWnFn/Xefgznuq7rv6q98D8t91DuR+dL/+PZjde9zdTyX3an/XHMhd9UeP3vvrXqe6/676s3OI6+v2u/P9z1Lyzrq7/Nm9L7ndHMh9tF/3v+R3cyAv9Wp+2n93+2kO5NTGe4Nz/2b6n3wOn9t3d+9/9/rpHCma9ce5Frm7/FFyzrrJr9XzPfJ3zUHPPbvc0fh7r94X6Wo/nX+7c2DyOv/s/pP8Ud3/7nXvnUN1D0rn/VW/7sHJR6X3QHLv9bt5xGfyH70HI3e3X/vW/UMa/r3736w/Owfn/l0+Vzuk7r6f5dfnWHffq3MY0FVu9dP7m/bufvJlm/UP6OrvPbmqpTkMaLzPuP1/l/sov2v44/OQ0vu9e167i79r///PVjcP8l7FT85H9cdnclLv5teSj/rW/W4O5NXquR9dd3fJR511O//qOZAv2zjvIi+5V/u75vDW/VFyZ/2r50CubMl9VX/XHGgPkN17Pf2vS9c92+x+i0reWT9df7W034gevf8mt/q7/v0DuWe/D+Sd9bv/D2i15KR2+7NzcPvfaPhoz+Nc/wOQs5gMeF7t3E1vHEUUhWG+hBAgEol8CLHAa/AqwhISWWcdthH//3ewcJ+Fjzi8t6qru6rNePNqPDHq507LsesOefXZ48erYr+2/h76Xeg3od9af2rsD8WSj+qeqj+5U8nb6x89B/KTc5a/dw5fWZOffFTyql9sJSeV3MlPJWfq263u/dU6yv+9tde71/821N3u752Du1VdD/moX1pb3a3+1jkk//ut5KO630vuXj/NI7lVXf8vVvKe5ZfrZ3tcLfndvbq/dQ5y3tnj5CfnUf7PoaP86qets/3k3uu/Cx3lJ7dKvmpb53AXutc9y+9z0GN59fhh653Vf6+7t5J3FX/qQ6i7k7/15yFyr+p3t/s/2mMveWf5/9ja6vfnr+r3+yDd99Sr+1VyUq/u3zuHN1v3+v3cj653dMlZ9ZOT3FedQ+/r/1z8qs47yX3zP36Q/2pz8PP+/5vf5/A6VM+T+6r+5F7dr/Pu3jmQezU/7TnI23rfe8l9lJ/cvXPwvd8of9p7uYvO+Xv9NAff+5G/ev/T3q9370nOVM2P9r5q8qffm+TWY3LPmkPV73OgvZ+XvHv9vXPQ9ZFbJedsf3UO6ZxvtHuWP+2/yU8lp9f3IGe70x60t+Qlv88h7TnIubqf9oC+B017HvJW/eSqNv3+1+r2vSDtu8h9lp/mQN60DyU/zeHo+57ce/2tc0j779Sz9qC97l6/vs69n6yz/eROfpqDvu7DVne7n3xU8pOv2uTX8773U5+L3+fgn09+n0Pa/6rkrbrP8pNb1fv9yK/956r+1tddJXfyaw/W6l7Fr3MccuvnNfnfhJL3bD/Nwc+z3K3Pf7Tu9b/bStc9uuRPTd7eOczye8nd6ie39+jz7mrJX50DeZN79hzI/dz91Tnc/P/eo/bff22l6x5V8vsc9Nj9vvd4bn4v7b285J7lr87hbyt5e/10nUeX3Ff3+56j1a/Pk7d3Di+26vyfPKrOOavu1DQHNe07q01u2vv07n9a/em+oD0wufX75Nl+lbzJ7XubVj/tgcg7yl+dxyg/uXvnQK5q0x7A/X7Olfzko5L7bD+d98ntnyfnbD/tgchNJWfqbf//tO72fQc5V/fTHpD23+Sc5ac5kLfq753D0W41nQOQt7r/b30/DL3uo/79h6P8aQ7V90Gc5adzoF433Qd6nvb+q/rJXfWnkp9c1ZKfrrPaqv+DdfbrT65qq/6Hrcl/H0rOVvdoP83hwSq/nq/u/8k920+vu1fPk1ul/W91D3L2/nOvXz+vXdWv/mmt+uW6uj+VzvvJ+1z95NzrP/u8n3qWf9a+g3q0/+VW2nvQdR7VvX79PdH7+t/8Tzt7/0ted9Pep/r/f872q6Pc1b3fav50Hxy99539fSDNwffg5KSS/4WVrvPo7n3fQ6s/7T38utI5J3nSnpPa+n6fVj/tffbuf9xPe9/kp71vqr5vzvLTefCPxbZ+/6c9kEruo/00B7r+Xvdqfr/v6dxLJR+V3KP8ye1+8j5XPzmp5Ey97f+fVt5Re9/V/LQHpP03OWf5q3MgN/lb53CWW9Xv/Xvd5Nd/d69/1P7P/aoc5KZ9cHXvvZpf7XXTfZD+/G9bV/eTu9evyul74PdWclWb/HSd1Vb91f0/eaqlc1ByVTvKfx9Kztl+moP2nb3+1jmQ++z9n+99veRW6TyY9j9X9evnCnKT/52VrntU9/rJW/Wv9vrT17W+7q3+2XOgP0/Oq/lbS86q/6V11fc/jPa7e/X9/16/vl/c/I8fvX519v6XvO6u7j/IfTU/uat7v6v5yUkl/6z9N+39VPJRb/7/rvvTHOi8k7yr+Wnvs3f/k9w6ByB37/5b9XPws/3qPySoxXM=
-      </DataArray>
-    </CellData>
-  </Piece>
-  </ImageData>
-</VTKFile>
diff --git a/DAMASK_3/processing/post/DP1000/grid_load.C_ref b/DAMASK_3/processing/post/DP1000/grid_load.C_ref
deleted file mode 100644
index 2b86e8faafda56f7f7fead01b820c6b8aa0b4bd7..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/grid_load.C_ref
+++ /dev/null
@@ -1,2 +0,0 @@
-��tM�,YBj�^��0�VVR6���Z�^��0�|���#�<B$[���AOVR6��� [���A91c!�ABv�^��0€��m�V8B,[���A|��m�V8BP�F����֝���,[���Aҝ��� 6�[�	BRVR6���+[���Asb���=B [���A՝���-6�[�	Bpb���=B%6�[�	B�(Frx�Bf�^��0�}��m�V8B.[���A���m�V8BP�F����՝���1[���Aӝ���"6�[�	B|���#�<B(�F����֝���x�F�������S�WBKn���-�֝���Kn���-�:7e��CB$[���Aԝ���)6�[�	Bԝ���Nn���-�<7eӈHAB'6�[�	B:7eӈHAB�X�Z�-B[VR6���3[���Apb���=B%[���A֝���'6�[�	Bvb���=B'6�[�	B�(Frx�B[���Aѝ���&6�[�	Bԝ���Nn���-�;7eӈHAB(6�[�	B>7eӈHAB�X�Z�-B81c!�AB!6�[�	B�(Frx�B'6�[�	B97e��CB�X�Z�-B�(Frx�B�X�Z�-B��;�
-�VB
\ No newline at end of file
diff --git a/DAMASK_3/processing/post/DP1000/grid_load.hdf5 b/DAMASK_3/processing/post/DP1000/grid_load.hdf5
deleted file mode 100644
index e9d47bb69634df274a000e2879575bde33284a0c..0000000000000000000000000000000000000000
Binary files a/DAMASK_3/processing/post/DP1000/grid_load.hdf5 and /dev/null differ
diff --git a/DAMASK_3/processing/post/DP1000/grid_load.sta b/DAMASK_3/processing/post/DP1000/grid_load.sta
deleted file mode 100644
index 365829f0c3a345f789b68969a23d217e611534e7..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/grid_load.sta
+++ /dev/null
@@ -1,101 +0,0 @@
-Increment Time CutbackLevel Converged IterationsNeeded
-           1  0.10000000000000001                0 T          12
-           2  0.20000000000000001                0 T          20
-           3  0.30000000000000004                0 T          18
-           4  0.40000000000000002                0 T          16
-           5  0.50000000000000000                0 T          14
-           6  0.59999999999999998                0 T          13
-           7  0.69999999999999996                0 T          12
-           8  0.79999999999999993                0 T          11
-           9  0.89999999999999991                0 T          11
-          10  0.99999999999999989                0 T          10
-          11   1.0999999999999999                0 T          10
-          12   1.2000000000000000                0 T           9
-          13   1.3000000000000000                0 T           9
-          14   1.4000000000000001                0 T           9
-          15   1.5000000000000002                0 T           9
-          16   1.6000000000000003                0 T           8
-          17   1.7000000000000004                0 T           8
-          18   1.8000000000000005                0 T           8
-          19   1.9000000000000006                0 T           8
-          20   2.0000000000000004                0 T           8
-          21   2.1000000000000005                0 T           8
-          22   2.2000000000000006                0 T           8
-          23   2.3000000000000007                0 T           8
-          24   2.4000000000000008                0 T           8
-          25   2.5000000000000009                0 T           8
-          26   2.6000000000000010                0 T           8
-          27   2.7000000000000011                0 T           8
-          28   2.8000000000000012                0 T           8
-          29   2.9000000000000012                0 T           8
-          30   3.0000000000000013                0 T           8
-          31   3.1000000000000014                0 T           8
-          32   3.2000000000000015                0 T           7
-          33   3.3000000000000016                0 T           8
-          34   3.4000000000000017                0 T           7
-          35   3.5000000000000018                0 T           8
-          36   3.6000000000000019                0 T           7
-          37   3.7000000000000020                0 T           8
-          38   3.8000000000000020                0 T           7
-          39   3.9000000000000021                0 T           8
-          40   4.0000000000000018                0 T           7
-          41   4.1000000000000014                0 T           8
-          42   4.2000000000000011                0 T           8
-          43   4.3000000000000007                0 T           8
-          44   4.4000000000000004                0 T           8
-          45   4.5000000000000000                0 T           7
-          46   4.5999999999999996                0 T           8
-          47   4.6999999999999993                0 T           7
-          48   4.7999999999999989                0 T           8
-          49   4.8999999999999986                0 T           7
-          50   4.9999999999999982                0 T           7
-          51   5.0999999999999979                0 T           7
-          52   5.1999999999999975                0 T           7
-          53   5.2999999999999972                0 T           7
-          54   5.3999999999999968                0 T           7
-          55   5.4999999999999964                0 T           8
-          56   5.5999999999999961                0 T           7
-          57   5.6999999999999957                0 T           7
-          58   5.7999999999999954                0 T           7
-          59   5.8999999999999950                0 T           7
-          60   5.9999999999999947                0 T           7
-          61   6.0999999999999943                0 T           7
-          62   6.1999999999999940                0 T           7
-          63   6.2999999999999936                0 T           7
-          64   6.3999999999999932                0 T           7
-          65   6.4999999999999929                0 T           7
-          66   6.5999999999999925                0 T           7
-          67   6.6999999999999922                0 T           7
-          68   6.7999999999999918                0 T           7
-          69   6.8999999999999915                0 T           7
-          70   6.9999999999999911                0 T           8
-          71   7.0999999999999908                0 T           7
-          72   7.1999999999999904                0 T           8
-          73   7.2999999999999901                0 T           7
-          74   7.3999999999999897                0 T           8
-          75   7.4999999999999893                0 T           7
-          76   7.5999999999999890                0 T           8
-          77   7.6999999999999886                0 T           7
-          78   7.7999999999999883                0 T           8
-          79   7.8999999999999879                0 T           8
-          80   7.9999999999999876                0 T           8
-          81   8.0999999999999872                0 T           8
-          82   8.1999999999999869                0 T           8
-          83   8.2999999999999865                0 T           8
-          84   8.3999999999999861                0 T           8
-          85   8.4999999999999858                0 T           8
-          86   8.5999999999999854                0 T           8
-          87   8.6999999999999851                0 T           8
-          88   8.7999999999999847                0 T           8
-          89   8.8999999999999844                0 T           8
-          90   8.9999999999999840                0 T           8
-          91   9.0999999999999837                0 T           8
-          92   9.1999999999999833                0 T           8
-          93   9.2999999999999829                0 T           8
-          94   9.3999999999999826                0 T           9
-          95   9.4999999999999822                0 T           8
-          96   9.5999999999999819                0 T           8
-          97   9.6999999999999815                0 T           9
-          98   9.7999999999999812                0 T           8
-          99   9.8999999999999808                0 T           9
-         100   9.9999999999999805                0 T           8
diff --git a/DAMASK_3/processing/post/DP1000/load.yaml b/DAMASK_3/processing/post/DP1000/load.yaml
deleted file mode 100644
index 04256214077bd5e65ee950468d0dcedf4c90fc31..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/load.yaml
+++ /dev/null
@@ -1,15 +0,0 @@
-solver: {mechanical: spectral_basic}
-
-loadstep:
-  - boundary_conditions:
-      mechanical:
-        P:
-          - [x, x, x]
-          - [x, 0, x]
-          - [x, x, 0]
-        dot_F:
-          - [0.02, 0, 0]
-          - [0, x, 0]
-          - [0, 0, x]
-    discretization: {t: 10.0, N: 100}
-    f_out: 25
diff --git a/DAMASK_3/processing/post/DP1000/material.yaml b/DAMASK_3/processing/post/DP1000/material.yaml
deleted file mode 100644
index e367caf280a107515fd893723351c134cf6882da..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/material.yaml
+++ /dev/null
@@ -1,550 +0,0 @@
-material:
-  - constituents:
-      - phase: Ferrite
-        O: [0.03338013443463325, 0.8682295372341429, -0.22361722948208776, 0.44165435804265213]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.022573443201745466, -0.6314342509160452, 0.09265804841091717, -0.7695425345598451]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.20260212558486657, -0.2938164819500056, -0.34732154028860573, -0.8671747236252717]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.5249683604700381, 0.15836198937372267, -0.21537019145810443, -0.8080503582440246]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.35882190164036676, -0.3527863931226073, -0.850650022584386, 0.1522601156177013]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.14704702977605283, 0.2692999038345609, -0.9514834306421001, 0.02310874384895913]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.22371869562379346, 0.6624967273479554, -0.1254052596144438, -0.7037908441736588]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.3071352140776156, 0.0019796585616108915, -0.6655082721955892, 0.6802666983358205]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.2649451207707551, 0.7857824763119707, -0.46605617249484815, 0.30845036388412567]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.3191871598085297, 0.3495139380682325, -0.5370588564339709, 0.6982315868214752]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.45415810383126953, -0.13662306902864388, 0.8760220053642971, 0.08752142509749009]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.7520272866418792, 0.21819118584140804, -0.5562331661200116, -0.27830241011403484]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.09517415864028733, 0.6605221335319335, 0.717510744891619, 0.1995763553295083]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.7424430555658658, 0.1062153555715859, -0.4504661107505399, 0.48433138505377166]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.5155551524867512, -0.27449593504425357, -0.7171742453974629, 0.3801525590169337]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.5502548164113474, -0.3856382530831394, -0.7399825451866325, 0.030473063420207683]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.761434704639816, 0.5818322607961869, 0.28268189444449576, 0.042182430230428156]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.39139421391841683, 0.7556934988066458, 0.4954471053282347, 0.17398296179346856]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.39461694475508924, -0.8901313637355234, -0.22700392708948378, -0.020318447097372457]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4820328002865692, 0.845381894049414, -0.08417834571138329, -0.21421446910656797]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.1703248838553346, 0.9274942491177204, -0.13629637300078434, -0.30359043216157816]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6364779702787715, -0.2508938348335252, -0.485799756030384, -0.5440098106037817]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.8530846737027846, 0.42639405731170327, -0.29347876159418895, -0.065611461466871]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.702105648409736, -0.4245114077109118, 0.571528111267619, 0.013904719533756651]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.27685305942286886, -0.18412351589047934, -0.05989683633903802, 0.9412031042133787]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.9638592779836929, -0.2220842736616757, -0.10665627276577976, -0.10138198615450283]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6278599886105618, 0.28473473130156396, 0.7193087938805374, 0.08551506615034492]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.428565926745289, 0.16975863635669955, 0.8545783519531895, 0.23918422228114408]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.33348096732416355, 0.2670672691592024, 0.8946742484165353, 0.13047416371333484]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.21488008610355883, -0.7260709392463276, 0.21220444380953662, -0.617751417485681]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.8608032958439621, 0.06068710444930562, -0.5051798735289676, 0.011316209568032835]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.2328848439726503, 0.7538528195367671, -0.6111393136039664, -0.06308181427300331]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6230709354406175, -0.6171824730652041, -0.3119917273366546, -0.3654169761023194]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.5817166989143391, 0.1604523015593481, -0.7531156002095996, 0.26206417887503575]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4146320218281309, -0.7544746928634256, -0.5075680261468716, 0.03497031793857154]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.49540156482382813, 0.7029499217158597, 0.47257234445312873, -0.19265013985939008]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.38331878555037463, -0.5776215576421898, -0.46920667230598895, -0.5470513170212978]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.8344018866142068, -0.35303927478905506, 0.37734420230860805, -0.19169797874560596]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6578337413521228, 0.3966861343042863, 0.5935894340889707, 0.23988843933655016]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.026392690790696963, 0.9568448467411493, 0.2591007710252514, 0.12891142537360004]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.14976788230915644, 0.8985406440684398, -0.4125448519440102, 0.0010185873544292622]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.04651972182661612, 0.5131030256815248, 0.5102219592502667, -0.6886470451664322]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4799826865871374, -0.5676141295308942, 0.4910523274565508, 0.4542008721182551]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6743611300700988, -0.623423011842277, -0.38458231881037336, 0.09315178266957558]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.8431081694711368, 0.49414260581732183, -0.20064344073199375, -0.06880341109510998]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.18038297342896953, 0.6188748501401841, -0.3344375020124504, -0.6874645154541147]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.09636136177713069, -0.5335423999649775, -0.7618420177476161, 0.354462600834432]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.715921551752442, 0.45770744603754776, -0.5120148253131603, -0.1257022045856587]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6605261189896129, -0.16308277983953234, -0.6644392200778999, 0.3092406439564543]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.334414065384988, 0.4010755444477393, 0.8302076146756753, -0.19509217578662608]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.5685309228234273, -0.759267671616086, 0.22827978571880492, 0.21948469665196685]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.4614687502194682, -0.2939509558561352, 0.8369267796506293, 0.013892214574120137]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.4393560647355511, -0.7973964639897052, -0.2611139488112384, 0.3208498610456406]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.1755432883141291, 0.29218578900037506, -0.9394857455953621, 0.034330051809127106]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.972820848916666, 0.002136944922287113, 0.21225280260490625, -0.09254067843829035]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.6150425043271884, -0.37587817453988154, 0.29862382565605744, -0.6255094935538928]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.05937950245749079, -0.8509399923875852, 0.5141326252006346, 0.08968192542324789]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.5016825136685622, -0.5762013837392053, -0.3071845446272474, 0.5674013362676974]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.323709911818557, -0.8373369170650254, 0.20213346152144795, -0.39143434193210236]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.02260398484866849, -0.04433438004918818, 0.24353351564556922, 0.9686149644579752]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.38362642116884027, -0.8793610243607114, -0.25937898284188915, 0.11080388565558079]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.15878371147052575, -0.4427808603641135, 0.7233395768584128, -0.5054826398771302]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.3467390503777776, -0.15284114799684892, 0.7779418263857072, 0.501216648947132]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.6370826861067175, -0.1475593803256615, 0.7188951334587245, 0.23567279739146632]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.12383142067704765, 0.6663199999656093, -0.11894892975037441, 0.7256270316148477]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.16144307203083136, 0.6128842602783297, -0.5246853873209281, -0.5683434369535907]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.0295374229505092, 0.05823818511827249, 0.05104917227056975, 0.9965589979775719]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.5908842035272651, -0.5844019619280703, 0.053839240935715134, -0.5535625900040912]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.8523490754128139, 0.07324614652042659, -0.31236326850994894, 0.4129954529393887]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.054658031736700544, 0.40997284611882, -0.7661796378971304, 0.49183689113742396]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.8061190913748949, 0.12726408534446662, -0.4874439058855355, -0.310442106869225]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.5489744523010156, 0.5190223373611351, 0.4783771941647238, 0.4476584905305272]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.467025614593608, -0.5643109752341458, 0.6807159707716128, -0.008121925892964808]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.27187483659934913, -0.8094796416681344, -0.034040432046028, 0.5192957076031207]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.3384007678959565, 0.6686961010071105, 0.31089488238554697, -0.584529568877223]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.587434947325669, -0.3985678483621645, 0.6621830925257832, 0.2399529222273259]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.2839392456628315, -0.3094688431971428, 0.5777487222571442, -0.6998670972355263]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6480489608705319, 0.5266083330399004, -0.47882237612869777, -0.2710080072729019]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4054668547851002, -0.7857536904479971, 0.4669551456436484, -0.011859998943958222]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.2698326855352801, -0.4451417630261468, -0.7370504263760727, -0.4310403712016333]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.5535957303273183, -0.01875069001865881, 0.8234329029091495, 0.12303834115347222]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.3876140183021386, 0.8055650111800067, -0.2256394854781512, 0.3871785223529069]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.49798372447168154, -0.6931496239952856, -0.24758417040804293, 0.4585388614718145]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6216205155911253, -0.5861831110763206, -0.3969337097894477, 0.3352922977312422]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6068009815824997, 0.6813690642215852, -0.40920121043903074, -0.009117919036071918]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4538963065407538, -0.7326313090251688, -0.004759703083234113, -0.5071556498465624]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.23305908443137469, 0.9183144486004229, -0.3167287031164532, -0.04544188902191915]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.9363431782648309, 0.19340040146294543, 0.19377489553565605, 0.21979314614207693]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.16329712118907738, -0.2509207419737857, -0.07682122578918518, -0.9510369765297938]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.8884857139472508, -0.18836911618515467, 0.3718244952698446, -0.19198113682493098]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.4329225025662389, -0.708203037562605, 0.23785405437491328, -0.5044323672964495]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Ferrite
-        O: [0.6200565855658137, -0.38214272707098457, -0.35614726187883383, -0.5853681702137769]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.7709578926897427, -0.06891761328904925, 0.5287544684265495, 0.34827144929909115]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.3699631184405217, 0.10970588458368373, -0.8446328764960803, -0.37106227755382654]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.3499320023144287, 0.929363953552007, -0.04358245582925607, 0.10922822500749803]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.5218488900805288, 0.3358006742482453, 0.7024572103513631, -0.34851902490613745]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4280463804742962, -0.40192940923196896, -0.21426994735652163, 0.7805878783437057]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.7312566770487792, 0.03810737503543031, 0.02547947620897595, -0.6805602813356088]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.48769708787383415, -0.8286620861349445, -0.22276980252586334, -0.16076166385196206]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.771949862343683, -0.1437110050515257, -0.03730158773287648, 0.6181012446252278]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.6285637818981972, 0.43792126296278117, -0.3068114991253678, -0.5648001801835432]
-        v: 1.0
-    homogenization: SX
-  - constituents:
-      - phase: Martensite
-        O: [0.4430015814114614, -0.08919907143180258, -0.5962377318846888, -0.6635462995146989]
-        v: 1.0
-    homogenization: SX
-
-homogenization:
-  SX:
-    N_constituents: 1
-    mechanical: {type: pass}
-
-phase:
-  Ferrite:
-    lattice: cI
-    mechanical:
-      output: [F, P, F_e, F_p, L_p, O]
-      elastic: {type: Hooke, C_11: 233300000000.0, C_12: 135500000000.0, C_44: 128000000000.0}
-      plastic:
-        type: phenopowerlaw
-        N_sl: [12]
-        a_sl: 1.3
-        atol_xi: 1
-        dot_gamma_0_sl: 0.001
-        h_0_sl-sl: 4500000000.0
-        h_sl-sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
-        n_sl: 20
-        xi_0_sl: [200000000.0]
-        xi_inf_sl: [370000000.0]
-  Martensite:
-    lattice: cI
-    mechanical:
-      output: [F, P, F_e, F_p, L_p, O]
-      elastic: {type: Hooke, C_11: 417400000000.0, C_12: 242400000000.0, C_44: 211100000000.0}
-      plastic:
-        type: phenopowerlaw
-        N_sl: [12]
-        a_sl: 2.5
-        atol_xi: 1
-        dot_gamma_0_sl: 0.001
-        h_0_sl-sl: 40000000000.0
-        h_sl-sl: [1, 1, 1.4, 1.4, 1.4, 1.4, 1.4]
-        n_sl: 20
-        xi_0_sl: [680000000.0]
-        xi_inf_sl: [700000000.0]
diff --git a/DAMASK_3/processing/post/DP1000/numerics.yaml b/DAMASK_3/processing/post/DP1000/numerics.yaml
deleted file mode 100644
index 344a4ec691cfe54eb517d079e73c7138cfeb7344..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/numerics.yaml
+++ /dev/null
@@ -1,84 +0,0 @@
-# Available numerical parameters
-# Case sensitive keys
-
-homogenization:
-  mech:
-    RGC:
-      atol:                     1.0e+4       # absolute tolerance of RGC residuum (in Pa)
-      rtol:                     1.0e-3       # relative ...
-      amax:                     1.0e+10      # absolute upper-limit of RGC residuum (in Pa)
-      rmax:                     1.0e+2       # relative ...
-      perturbpenalty:           1.0e-7       # perturbation for computing penalty tangent
-      relevantmismatch:         1.0e-5       # minimum threshold of mismatch
-      viscositypower:           1.0e+0       # power (sensitivity rate) of numerical viscosity in RGC scheme
-      viscositymodulus:         0.0e+0       # stress modulus of RGC numerical viscosity (zero = without numerical viscosity)
-                                             # suggestion: larger than the aTol_RGC but still far below the expected flow stress of material
-      refrelaxationrate:        1.0e-3       # reference rate of relaxation (about the same magnitude as straining rate, possibly a bit higher)
-      maxrelaxationrate:        1.0e+0       # threshold of maximum relaxation vector increment (if exceed this then cutback)
-      maxvoldiscrepancy:        1.0e-5       # maximum allowable relative volume discrepancy
-      voldiscrepancymod:        1.0e+12
-      discrepancypower:         5.0
-
-  generic:
-    subStepMin:               1.0e-3       # minimum (relative) size of sub-step allowed during cutback in homogenization
-    subStepSize:              0.25         # size of substep when cutback introduced in homogenization (value between 0 and 1)
-    stepIncrease:             1.5          # increase of next substep size when previous substep converged in homogenization (value higher than 1)
-    nMPstate:                 10           # materialpoint state loop limit
-
-grid:
-  eps_div_atol:                1.0e-3       # absolute tolerance for fulfillment of stress equilibrium
-  eps_div_rtol:                5.0e-4       # relative tolerance for fulfillment of stress equilibrium
-  eps_curl_atol:               1.0e-12      # absolute tolerance for fulfillment of strain compatibility
-  eps_curl_rtol:               5.0e-4       # relative tolerance for fulfillment of strain compatibility
-  eps_stress_atol:             1.0e3        # absolute tolerance for fulfillment of stress BC
-  eps_stress_rtol:             0.01         # relative tolerance for fulfillment of stress BC
-  eps_damage_atol:             1.0e-2       # absolute tolerance for damage evolution
-  eps_damage_rtol:             1.0e-6       # relative tolerance for damage evolution
-  eps_thermal_atol:            1.0e-2       # absolute tolerance for thermal equilibrium
-  eps_thermal_rtol:            1.0e-6       # relative tolerance for thermal equilibrium
-  itmax:                       75          # Maximum iteration number
-  itmin:                       2            # Minimum iteration number
-  fftw_timelimit:              -1.0          # timelimit of plan creation for FFTW, see manual on www.fftw.org, Default -1.0: disable timelimit
-  fftw_plan_mode:              FFTW_PATIENT # reads the planing-rigor flag, see manual on www.fftw.org, Default FFTW_PATIENT: use patient planner flag
-  maxCutBack:                  10            # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
-  maxStaggeredIter:            10           # max number of field level staggered iterations
-  memory_efficient:            1            # Precalculate Gamma-operator (81 double per point)
-  update_gamma:                false        # Update Gamma-operator with current dPdF (not possible if memory_efficient=1)
-  divergence_correction:       2            # Use size-independent divergence criterion
-  derivative:                  continuous   # Approximation used for derivatives in Fourier space
-  petsc_options:               -snes_ngmres_anderson # PetSc solver options
-  alpha:                       1.0          # polarization scheme parameter 0.0 < alpha < 2.0. alpha = 1.0 ==> AL scheme, alpha = 2.0 ==> accelerated scheme
-  beta:                        1.0          # polarization scheme parameter 0.0 < beta < 2.0. beta = 1.0 ==> AL scheme, beta = 2.0 ==> accelerated scheme
-
-mesh:
-  maxCutBack:                  3            # maximum cut back level (0: 1, 1: 0.5, 2: 0.25, etc)
-  maxStaggeredIter:            10           # max number of field level staggered iterations
-  structorder:                 2            # order of displacement shape functions (when mesh is defined)
-  bbarstabilisation:           false
-  integrationorder:            2            # order of quadrature rule required (when mesh is defined)
-  itmax:                       250          # Maximum iteration number
-  itmin:                       2            # Minimum iteration number
-  eps_struct_atol:             1.0e-10      # absolute tolerance for mechanical equilibrium
-  eps_struct_rtol:             1.0e-4       # relative tolerance for mechanical equilibrium
-
-crystallite:
-  subStepMin:                  1.0e-3       # minimum (relative) size of sub-step allowed during cutback in crystallite
-  subStepSize:                 0.25         # size of substep when cutback introduced in crystallite (value between 0 and 1)
-  stepIncrease:                1.5          # increase of next substep size when previous substep converged in crystallite (value higher than 1)
-  subStepSizeLp:               0.5          # size of first substep when cutback in Lp calculation
-  subStepSizeLi:               0.5          # size of first substep when cutback in Li calculation
-  nState:                      10           # state loop limit
-  nStress:                     40           # stress loop limit
-  rtol_State:                  1.0e-6       # relative tolerance in crystallite state loop (abs tol provided by constitutive law)
-  rtol_Stress:                 1.0e-6       # relative tolerance in crystallite stress loop (Lp residuum)
-  atol_Stress:                 1.0e-8       # absolute tolerance in crystallite stress loop (Lp residuum!)
-  integrator:                  FPI          # integration method (FPI = Fixed Point Iteration, Euler = Euler, AdaptiveEuler = Adaptive Euler, RK4 = classical 4th order Runge-Kutta, RKCK45 = 5th order Runge-Kutta Cash-Karp)
-  iJacoLpresiduum:             1            # frequency of Jacobian update of residuum in Lp
-
-commercialFEM:
-  unitlength:                  1            # physical length of one computational length unit
-
-generic:
-  charLength:                  1.0          # characteristic length scale for gradient problems.
-  random_seed:                 0            # fixed seeding for pseudo-random number generator, Default 0: use random seed.
-  residualStiffness:           1.0e-6       # non-zero residual damage.
diff --git a/DAMASK_3/processing/post/DP1000/rve.sta b/DAMASK_3/processing/post/DP1000/rve.sta
deleted file mode 100644
index 37ffb36e9f3c131008ed288abd83365ad2f54c97..0000000000000000000000000000000000000000
--- a/DAMASK_3/processing/post/DP1000/rve.sta
+++ /dev/null
@@ -1,59 +0,0 @@
-------------------------------------------------------------------------------
-----------------------------RVE Generation started----------------------------
-------------------------------------------------------------------------------
-
-
-Starttime: 14/11/2021 15:37:30
-
-
-Calculating the phase ratio...
-The phase ratio for the rest of the volume is: 0.2549561394585503 
-
-Needed 65-Loops to sample points for the bands!
-RVE generation process continues with placing of the ferrite grains and martensite islands 
-Sampled 36 Ferrite-Points for the matrix! 
-The total conti volume is: 3070.170019827009 
-The total discrete volume is: 2922.875 
-Sampled 65 Martensite-Islands for the matrix! 
-The total conti volume is: 1101.4793390480595 
-The total discrete volume is: 1050.5 
-
-Elapsed time for normal RSA: 0:01:34.343063
-
-
-
-RVE generation process continues with the tesselation of grains!
-Packingratio: 61.047363%
-Packingratio: 74.603271%
-Packingratio: 86.151123%
-Packingratio: 94.027710%
-Packingratio: 96.707153%
-Packingratio: 97.387695%
-Packingratio: 98.059082%
-Packingratio: 98.153687%
-Packingratio: 98.284912%
-Packingratio: 98.315430%
-Packingratio: 98.358154%
-Packingratio: 98.413086%
-Packingratio: 98.590088%
-Packingratio: 98.880005%
-Packingratio: 99.316406%
-Packingratio: 99.349976%
-Packingratio: 99.383545%
-Packingratio: 99.414062%
-Packingratio: 99.447632%
-Packingratio: 99.450684%
-Packingratio: 99.951172%
-Packingratio: 100.000000%
-Elapsed time for Tesselation: 0:00:30.449399
-
-
-
-RVE generation process nearly complete: Creating input for DAMASK Spectral now: 
-Attention: Discrete and continuous Output are equal for the spectral grid! 
-
-
-RVE generation process has successfully completed... 
-------------------------------------------------------------------------------
------------------------------RVE Generation ended-----------------------------
-------------------------------------------------------------------------------
diff --git a/DAMASK_3/processing/post/config.txt b/DAMASK_3/processing/post/config.txt
index 358763ff4b442dbfcb463b2933197b4b805a7d9d..22b1b45a8a46b47ec86a232aebe3b8494654726d 100644
--- a/DAMASK_3/processing/post/config.txt
+++ b/DAMASK_3/processing/post/config.txt
@@ -1,5 +1,6 @@
 # Enter  hdf5 filename. Must be in same directory as process_results
 filename = grid_load.hdf5
+folderpath = E:/Data/damask3/DAMASK_3/processing/post/grid_load
 # Index of increments which should be exported. 
 increments = 100
 # Exported phases, Options:
diff --git a/DAMASK_3/processing/post/grid_load.hdf5 b/DAMASK_3/processing/post/grid_load.hdf5
index bec48f7f54ce992de8bae06debfdc848c62f913e..061fe00ec005a4eb3a041cc77fb08cf296cd81d6 100644
Binary files a/DAMASK_3/processing/post/grid_load.hdf5 and b/DAMASK_3/processing/post/grid_load.hdf5 differ
diff --git a/DAMASK_3/processing/post/grid_load/Results_1.vti b/DAMASK_3/processing/post/grid_load/Results_1.vti
new file mode 100644
index 0000000000000000000000000000000000000000..7af57ff8c764744643b5a2eec3ad97f4918dde5b
Binary files /dev/null and b/DAMASK_3/processing/post/grid_load/Results_1.vti differ
diff --git a/DAMASK_3/processing/post/grid_load/Results_inc100.vti b/DAMASK_3/processing/post/grid_load/Results_inc100.vti
new file mode 100644
index 0000000000000000000000000000000000000000..a818af02960ef767735f1039629767f4f231e446
Binary files /dev/null and b/DAMASK_3/processing/post/grid_load/Results_inc100.vti differ
diff --git a/DAMASK_3/processing/post/grid_load_1.hdf5 b/DAMASK_3/processing/post/grid_load_1.hdf5
new file mode 100644
index 0000000000000000000000000000000000000000..959ff72fc33687e5e980b97052baf7e232ea52ac
Binary files /dev/null and b/DAMASK_3/processing/post/grid_load_1.hdf5 differ
diff --git a/DAMASK_3/processing/post/process_results.py b/DAMASK_3/processing/post/process_results.py
index 91f9f9ab05c21228c197aa58ca87f8d6cab3e30c..583b6b8eb1e2a4233402f10c8ce06f3f2ef4e051 100644
--- a/DAMASK_3/processing/post/process_results.py
+++ b/DAMASK_3/processing/post/process_results.py
@@ -1,3 +1,4 @@
+from matplotlib.pyplot import title
 import pyvista as pv
 import numpy as np
 import damask   # the damask version has been customized. use git version of damask. Install it by: cd damask/python; pip install .
@@ -76,7 +77,7 @@ def export_VTK(config: dir):
 
     
 
-def display_Data(config: dict):
+def display_Data_clipped(config: dict):
     vtk_list = []
     indices = config['increments'].split(',')
     phase_namebase = config['folderpath']
@@ -118,9 +119,59 @@ def display_Data(config: dict):
         plotter.add_mesh_clip_plane(mesh, scalars=mesh.array_names[field_index], show_edges=True)
     plotter.show()
 
+def display_Data_whole(config: dict):
+    pv.global_theme.font.color = 'black'  
 
+    vtk_list = []
+    indices = config['increments'].split(',')
+    phase_namebase = config['folderpath']
+    for ind in indices:    # iterate through the increments        
+        ind = int(ind)          
+        if ind < 10:
+            vtk_list.append(f'{phase_namebase}/Results_inc00{int(ind)}.vti') # build a list containing the names of the vti-files, which should be plotted
+        elif ind < 100:
+            vtk_list.append(f'{phase_namebase}/Results_inc0{int(ind)}.vti')
+        else:
+            vtk_list.append(f'{phase_namebase}/Results_inc{int(ind)}.vti')
+    num_plots = len(vtk_list)
+    if num_plots > 0 and num_plots <3:
+        plotter = pv.Plotter(shape=(1,num_plots),off_screen=True)
+    elif num_plots < 5:
+        plotter = pv.Plotter(shape=(2,2))
+    else:
+        print('Invalid number of displayed increments. Must be between 1 and 4')
+    iter_vtk = 0    #set Counter for the increments
+    sargs = dict(height=0.5, vertical=True, position_x=0.05, position_y=0.05,title='')
+
+    for vtk_element in vtk_list:
+        iter_vtk = iter_vtk + 1 #increase iterater
+        _ , increment_name = vtk_element.split('Results_') # trenne die Increment Nummer aus dem Pfad zum VTK-Element
+        increment_name, _= increment_name.split('.')
+        phase_name = config['phase']
+        mesh = pv.read(f'{vtk_element}') #lade vtk file und transformiere es in ein Uniform grid
+        new_pos = mesh.points + mesh.get_array('u') # add the disposition of the grid points to the original position
+        mesh = mesh.cast_to_structured_grid()   # change it from uniform grid to structured grid to be able to edit position
+        mesh.points = new_pos   #change the position of the gridpoints
+        mesh = pv.wrap(mesh)    #wrap it up for visualization
+        name_array = mesh.array_names    #get list of all active fields
+        field_index = name_array.index(config['field']) # ermittele den Index des gewählten Feldes
+        if iter_vtk == 2:   # position des zweiten Increments im Ausgabebildschirm
+            plotter.subplot(0,1)
+        elif iter_vtk == 3:
+            plotter.subplot(1,0)
+        elif iter_vtk == 4:
+            plotter.subplot(1,1)
+        #plotter.add_text(f'{increment_name} phase {phase_name}')    # Füge Name zum Subplot hinzu
+        mesh[mesh.array_names[field_index]]=mesh[mesh.array_names[field_index]]/1000000000
+        plotter.add_mesh(mesh, scalars=mesh.array_names[field_index], show_edges=True,scalar_bar_args=sargs)
+    #plotter.remove_scalar_bar()
+    plotter
+    #plotter.show('F:/RWTH/HiWi_IEHK/DAMASK3/Bericht/vtk/64_volume.png')
+    #plotter.savefig('F:/RWTH/HiWi_IEHK/DAMASK3/Bericht/vtk/difference.png',transparent_background=True)
+    plotter.screenshot('64_volume.png', transparent_background=True)
 if __name__ == '__main__':
     config = read_config(f'{pathlib.Path(__file__).parent.resolve()}\config.txt')
     export_VTK(config)
-    display_Data(config)
+    #display_Data_clipped(config)
+    #display_Data_whole(config)
 
diff --git a/RVE_Generator/check_grainconsistency.py b/RVE_Generator/check_grainconsistency.py
index 4ba6ded518635c31cf38a6f9bbbc55759a24fddf..955dca483303d4b5aaf40cdf64058cb2e4bed3e3 100644
--- a/RVE_Generator/check_grainconsistency.py
+++ b/RVE_Generator/check_grainconsistency.py
@@ -7,18 +7,26 @@ from yaml.loader import SafeLoader
 def read_material(path : str):
     grid = pv.read(f'{path}/grid.vti')
     grid = grid['material']
+
     grid_grains = np.unique(grid, return_counts=False)
     with open(f'{path}/material.yaml') as file:
         material = yaml.load(file, Loader=SafeLoader)
         material = material['material']
     if len(grid_grains) != len(material):   # check if amount of grains in material.yaml and grid.vti is equal
         print(f'number of grains inconsistent in file:{path}/material.yaml. there are {grid_grains} in grid.vti and {len(material)} in material.yml')
+def check_max_stress(path : str):
+    grid = pv.read(f'{path}/Results_inc100.vti')
+    grid = grid['phase/mechanical/sigma_vM / Pa']
+
+    if grid.max() > 4e9:   # check if amount of grains in material.yaml and grid.vti is equal
+        print(f'stress to high:{path}/Results_inc100.vti. The maximum stress is {grid.max()}')
         
 if __name__ == '__main__':
     Input_path = 'E:/Data/Simulation_Output/OutputData_64'
 
     for folder_id, folder in enumerate(os.listdir(Input_path)):
         folder_path = f'{Input_path}/{folder}'
-        input_matrix = read_material(folder_path)
+        #input_matrix = read_material(folder_path)
+        check_max_stress(folder_path)
 
         
diff --git a/UNet/NormalizeTrainingdata_32.ipynb b/UNet/NormalizeTrainingdata_32.ipynb
index 5b8044d618556cd6b76bce756ae86a74851de403..a24703fb7ab2bc22ec39b4d170251298cfcd7d30 100644
--- a/UNet/NormalizeTrainingdata_32.ipynb
+++ b/UNet/NormalizeTrainingdata_32.ipynb
@@ -293,7 +293,7 @@
       "name": "python",
       "nbconvert_exporter": "python",
       "pygments_lexer": "ipython3",
-      "version": "3.9.10"
+      "version": "3.9.5"
     },
     "orig_nbformat": 4
   },
diff --git a/UNet/NormalizeTrainingdata_64.ipynb b/UNet/NormalizeTrainingdata_64.ipynb
index 7bcd331f5ee652cc9f2e368b7c28d9ef2329a770..de256a5ceb7ba676814eb268dc1c8814a12de10b 100644
--- a/UNet/NormalizeTrainingdata_64.ipynb
+++ b/UNet/NormalizeTrainingdata_64.ipynb
@@ -2,7 +2,7 @@
   "cells": [
     {
       "cell_type": "code",
-      "execution_count": 2,
+      "execution_count": 7,
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/"
@@ -19,16 +19,29 @@
     },
     {
       "cell_type": "code",
-      "execution_count": null,
+      "execution_count": 6,
       "metadata": {},
-      "outputs": [],
+      "outputs": [
+        {
+          "ename": "FileNotFoundError",
+          "evalue": "[Errno 2] No such file or directory: 'E:/Data/damask3/UNet/Input/Norm_min_max_64.npy'",
+          "output_type": "error",
+          "traceback": [
+            "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[1;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
+            "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_27568/913510190.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mmin_label\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmax_label\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mangles_min_max\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'E:/Data/damask3/UNet/Input/Norm_min_max_64.npy'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mallow_pickle\u001b[0m\u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+            "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\numpy\\lib\\npyio.py\u001b[0m in \u001b[0;36mload\u001b[1;34m(file, mmap_mode, allow_pickle, fix_imports, encoding)\u001b[0m\n\u001b[0;32m    415\u001b[0m             \u001b[0mown_fid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    416\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 417\u001b[1;33m             \u001b[0mfid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstack\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0menter_context\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mos_fspath\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfile\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"rb\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    418\u001b[0m             \u001b[0mown_fid\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mTrue\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    419\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
+            "\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'E:/Data/damask3/UNet/Input/Norm_min_max_64.npy'"
+          ]
+        }
+      ],
       "source": [
         "min_label, max_label,angles_min_max = np.load('E:/Data/damask3/UNet/Input/Norm_min_max_64.npy', allow_pickle= True)"
       ]
     },
     {
       "cell_type": "code",
-      "execution_count": 3,
+      "execution_count": 8,
       "metadata": {
         "id": "OzNQI96lq3Pi"
       },
@@ -47,7 +60,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 4,
+      "execution_count": 9,
       "metadata": {
         "id": "lUnBE7T4q3Pi"
       },
@@ -71,7 +84,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 5,
+      "execution_count": 10,
       "metadata": {
         "colab": {
           "base_uri": "https://localhost:8080/"
@@ -84,8 +97,8 @@
           "name": "stdout",
           "output_type": "stream",
           "text": [
-            "size of input is torch.Size([791, 2, 64, 64, 64])\n",
-            "size of label is torch.Size([791, 64, 64, 64])\n"
+            "size of input is torch.Size([783, 6, 64, 64, 64])\n",
+            "size of label is torch.Size([783, 64, 64, 64])\n"
           ]
         }
       ],
@@ -94,9 +107,9 @@
         "phase= data[:,4,:,:,:].reshape(data.shape[0], 1,64,64,64)\n",
         "new_phase = np.ones(phase.shape) - phase #input[4]: martinsite, input[5]:ferrit\n",
         "#new_training_data = np.append(data,new_channel,axis=1)\n",
-        "#input = np.append(angles,phase,axis=1)\n",
-        "#input = np.append(input,new_phase,axis=1)\n",
-        "input = np.append(phase,new_phase,axis=1)\n",
+        "input = np.append(angles,phase,axis=1)\n",
+        "input = np.append(input,new_phase,axis=1)\n",
+        "#input = np.append(phase,new_phase,axis=1)\n",
         "\n",
         "label = torch.from_numpy(training_label)\n",
         "input = torch.from_numpy(input)\n",
@@ -112,7 +125,7 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 4,
+      "execution_count": 11,
       "metadata": {
         "id": "Kgd1WhOODim3"
       },
@@ -130,15 +143,15 @@
     },
     {
       "cell_type": "code",
-      "execution_count": 5,
+      "execution_count": 12,
       "metadata": {
         "id": "-Rbt8Brb9mM_"
       },
       "outputs": [],
       "source": [
         "dataset = TensorDataset(input,label_normalized) # create the pytorch dataset \n",
-        "np.save('E:/Data/damask3/UNet/Input/Norm_min_max_64_subset_phase.npy',[min_label, max_label])\n",
-        "torch.save(dataset,'E:/Data/damask3/UNet/Input/TD_norm_64_subset_phase.pt')\n"
+        "np.save('E:/Data/damask3/UNet/Input/Norm_min_max_64_angles.npy',[min_label, max_label])\n",
+        "torch.save(dataset,'E:/Data/damask3/UNet/Input/TD_norm_64_angles.pt')\n"
       ]
     }
   ],
diff --git a/UNet/UNet_V13.py b/UNet/UNet_V13.py
index 536127b8be1a52685401165f8480dff504055146..7c4d893c8640f2459fdb5df764eba5325f76840f 100644
--- a/UNet/UNet_V13.py
+++ b/UNet/UNet_V13.py
@@ -1,4 +1,4 @@
-#like V6_2 but only the different phases as input
+#just the grains as input and for each layer just one convolution
 """UNet_V6.ipynb
 
 Automatically generated by Colaboratory.
@@ -11,9 +11,12 @@ import torch
 import torch.nn as nn
 import numpy as np
 import random
+from torch.utils.data.sampler import SubsetRandomSampler
 from torch.utils.data.dataloader import DataLoader
+from torch.utils.data import TensorDataset
 import torch.nn.functional as F
 from torch.utils.data import random_split
+from torch.nn.modules.activation import ReLU
 
 class depthwise_separable_conv(nn.Module):
     def __init__(self, in_c, out_1_c, out_2_c, padding, kernel_size):
@@ -53,7 +56,7 @@ class head_layer(nn.Module):
         #return self.sig(self.pointwise(self.depthwise(x))) #convolution
 
 class Encoder(nn.Module):
-    def __init__(self,kernel_size, chs, padding=(("same","same"),("same","same"),("same","same"),("same","same"))):
+    def __init__(self,kernel_size, chs, padding=(("same","same"),("same","same"),("same","same"))):
       super().__init__()
       self.channels = chs
       self.enc_blocks = nn.ModuleList([depthwise_separable_conv(chs[i][0], chs[i][1], chs[i][2], kernel_size=kernel_size, padding=padding[i]) for i in range(len(chs))])
@@ -75,7 +78,7 @@ class Encoder(nn.Module):
       return ftrs
 
 class Decoder(nn.Module):
-    def __init__(self,kernel_size, chs_upsampling, chs_conv, padding=(("same","same"),("same","same"),("same","same"),("same","same"))):
+    def __init__(self,kernel_size, chs_upsampling, chs_conv, padding=(("same","same"),("same","same"),("same","same"))):
         super().__init__()
         assert len(chs_conv) == len(chs_upsampling)
         self.chs         = chs_upsampling
@@ -113,7 +116,7 @@ class UNetBase(nn.Module):
         input, labels = batch 
         out = self(input)                    # Generate predictions
         loss = F.l1_loss(out, labels)   # Calculate loss
-        acc = accuracy(out.detach(), labels.detach(),normalization=self.normalization)         # Calculate accuracy
+        acc = accuracy(out.detach(), labels.detach(),self.normalization)         # Calculate accuracy
         return {'val_loss': loss.detach(), 'val_acc': acc}
         
     def validation_epoch_end(self, outputs):
@@ -133,12 +136,12 @@ def accuracy(outputs, labels,normalization, threshold = 0.05):
     percentage = ((right_predic/torch.numel(error))*100.)
     return percentage
     
+    
 class UNet(UNetBase):
-    def __init__(self,kernel_size = 7, enc_chs=((6,16,32), (32,32,64), (64,64,128), (128,128,256)), dec_chs_up=(256,256, 128, 64), dec_chs_conv=((384,256,256),(320,128,128),(160,64,64),(70,32,32)),normalization=np.array([0,1])):
+    def __init__(self,kernel_size = 5, enc_chs=((6,16,32), (32,32,64), (64,64,128),(128,128,256)), dec_chs_up=(256,256, 128, 64), dec_chs_conv=((384,256,256),(320,128, 128),(160,64,64),(70,32,32)),normalization=np.array([0,1])):
         super().__init__()
         self.encoder     = Encoder(kernel_size = kernel_size, chs = enc_chs)
         self.decoder     = Decoder(kernel_size = kernel_size, chs_upsampling = dec_chs_up, chs_conv = dec_chs_conv)
-        #self.head        = depthwise_separable_conv(1, 1, padding = "same", kernel_size=1)
         self.normalization = normalization
 
 
@@ -225,11 +228,11 @@ if __name__ == '__main__':
     path_to_rep = '/home/yk138599/Hiwi/damask3'
     use_seeds = False
     seed = 373686838
-    num_epochs = 200
-    b_size = 16
+    num_epochs = 300
+    b_size = 8
     opt_func = torch.optim.Adam
     lr = 0.00003
-    kernel = 7
+    kernel = 9
     print(f'number auf epochs: {num_epochs}')
     print(f'batchsize: {b_size}')
     print(f'learning rate: {lr}')
@@ -248,3 +251,4 @@ if __name__ == '__main__':
 
     model = to_device(UNet(kernel_size=kernel,normalization=normalization).double(), device)
     history = fit(num_epochs, lr, model, train_dl, valid_dl,f'{path_to_rep}/UNet/output', opt_func)
+
diff --git a/UNet/UNet_V14.py b/UNet/UNet_V14.py
index 4fa51be27e463e57e01adbb56db25f5289902114..c4b3a5fd852c8c8d9d9749ee5ad6525d3b545e81 100644
--- a/UNet/UNet_V14.py
+++ b/UNet/UNet_V14.py
@@ -19,14 +19,20 @@ from torch.utils.data import random_split
 from torch.nn.modules.activation import ReLU
 
 class depthwise_separable_conv(nn.Module):
-    def __init__(self, in_c, out_c, padding,kernel_size):
+    def __init__(self, in_c, out_1_c, out_2_c, padding, kernel_size):
         super(depthwise_separable_conv, self).__init__()
-        self.depthwise = nn.Conv3d(in_c, in_c, kernel_size= kernel_size, padding=padding, groups=in_c, bias=True)
-        self.pointwise = nn.Conv3d(in_c, out_c, kernel_size=1, bias=True)
+        self.depthwise_1 = nn.Conv3d(in_c, in_c, kernel_size= kernel_size, padding=padding[0], groups=in_c, bias=True)
+        self.pointwise_1 = nn.Conv3d(in_c, out_1_c, kernel_size=1, bias=True)
+        self.batch_norm_1 = nn.BatchNorm3d(out_1_c)
         self.relu = nn.ReLU()
-        self.batch_norm = nn.BatchNorm3d(out_c)
+        self.droptout = nn.Dropout3d(p=0.5)
+
+        self.depthwise_2 = nn.Conv3d(out_1_c, out_1_c, kernel_size= kernel_size, padding=padding[1], groups=out_1_c, bias=True)
+        self.pointwise_2 = nn.Conv3d(out_1_c, out_2_c, kernel_size=1, bias=True)
+        self.batch_norm_2 = nn.BatchNorm3d(out_2_c)
     def forward(self, x):
-        return self.batch_norm(self.relu(self.pointwise(self.depthwise(x))))
+        x = self.batch_norm_1(self.relu(self.droptout(self.pointwise_1(self.depthwise_1(x)))))
+        return self.batch_norm_2(self.relu(self.droptout(self.pointwise_2(self.depthwise_2(x)))))
 
 class convolution_Layer(nn.Module):
     def __init__(self, in_c, out_1_c, out_2_c, padding, kernel_size):
@@ -50,10 +56,10 @@ class head_layer(nn.Module):
         #return self.sig(self.pointwise(self.depthwise(x))) #convolution
 
 class Encoder(nn.Module):
-    def __init__(self,kernel_size, chs, padding=("same","same","same","same")):
+    def __init__(self,kernel_size, chs, padding=(("same","same"),("same","same"),("same","same"))):
       super().__init__()
       self.channels = chs
-      self.enc_blocks = nn.ModuleList([depthwise_separable_conv(chs[i][0], chs[i][1],kernel_size=kernel_size, padding=padding[i]) for i in range(len(chs))])
+      self.enc_blocks = nn.ModuleList([depthwise_separable_conv(chs[i][0], chs[i][1], chs[i][2], kernel_size=kernel_size, padding=padding[i]) for i in range(len(chs))])
       self.pool       = nn.MaxPool3d(kernel_size=2, stride=2)
       #self.batch_norm = nn.ModuleList([nn.BatchNorm3d( chs[i][2]) for i in range(len(chs))])
 
@@ -72,13 +78,13 @@ class Encoder(nn.Module):
       return ftrs
 
 class Decoder(nn.Module):
-    def __init__(self,kernel_size, chs_upsampling, chs_conv, padding=("same","same","same","same")):
+    def __init__(self,kernel_size, chs_upsampling, chs_conv, padding=(("same","same"),("same","same"),("same","same"))):
         super().__init__()
         assert len(chs_conv) == len(chs_upsampling)
         self.chs         = chs_upsampling
         self.upconvs    = nn.ModuleList([nn.ConvTranspose3d(chs_upsampling[i], chs_upsampling[i], 2, 2) for i in range(len(chs_upsampling))])
-        self.dec_blocks = nn.ModuleList([depthwise_separable_conv(chs_conv[i][0], chs_conv[i][1],kernel_size=kernel_size, padding=padding[i]) for i in range(len(chs_conv))])
-        self.head = head_layer(chs_conv[-1][1])
+        self.dec_blocks = nn.ModuleList([depthwise_separable_conv(chs_conv[i][0], chs_conv[i][1], chs_conv[i][2], kernel_size=kernel_size, padding=padding[i]) for i in range(len(chs_conv))])
+        self.head = head_layer(chs_conv[-1][2])
     def forward(self, x, encoder_features):
         for i in range(len(self.chs)):
             x        = self.upconvs[i](x)
@@ -132,7 +138,7 @@ def accuracy(outputs, labels,normalization, threshold = 0.05):
     
     
 class UNet(UNetBase):
-    def __init__(self,kernel_size = 7, enc_chs=((6,16), (16,32), (32,64), (64,128)), dec_chs_up=(128, 64, 32, 16), dec_chs_conv=((192, 64),(96,32),(48,16),(22,1)),normalization=np.array([0,1])):
+    def __init__(self,kernel_size = 9, enc_chs=((6,16,32), (32,32,64), (64,64,128)), dec_chs_up=(128, 128, 64), dec_chs_conv=((192,128, 128),(160,64,64),(70,32,32)),normalization=np.array([0,1])):
         super().__init__()
         self.encoder     = Encoder(kernel_size = kernel_size, chs = enc_chs)
         self.decoder     = Decoder(kernel_size = kernel_size, chs_upsampling = dec_chs_up, chs_conv = dec_chs_conv)
@@ -222,8 +228,8 @@ if __name__ == '__main__':
     path_to_rep = '/home/yk138599/Hiwi/damask3'
     use_seeds = False
     seed = 373686838
-    num_epochs = 500
-    b_size = 32
+    num_epochs = 300
+    b_size = 8
     opt_func = torch.optim.Adam
     lr = 0.00003
     kernel = 9
diff --git a/UNet/grain_ numbers.ipynb b/UNet/grain_ numbers.ipynb
index 8a8966577c3eacca09c06ba6a7f3bdfe5c063ef4..f57fbc3414a7c6185be07c7a5eb6d191fabdf8e6 100644
--- a/UNet/grain_ numbers.ipynb	
+++ b/UNet/grain_ numbers.ipynb	
@@ -2,13 +2,65 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
     "import pyvista as pv\n",
     "import numpy as np\n",
-    "import os"
+    "import os\n",
+    "import numpy as np\n",
+    "import pyvista as pv\n",
+    "import torch\n",
+    "import copy\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "data =torch.load('E:/Data/damask3/UNet/Input/TD_norm_32_angles.pt')\n",
+    "p_mart =np.empty(len(data))\n",
+    "for index in range(len(data)):\n",
+    "    input,_ = data[index]\n",
+    "    input = copy.copy(input)\n",
+    "    input = input.detach().numpy()\n",
+    "    p_mart[index]= np.sum(input[4,:,:,:])/input.size\n",
+    "\n",
+    "  \n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Minimum Mart percentage is:0.0248870849609375\n",
+      "Maximum Mart percentage is:0.060089111328125\n",
+      "Mean Mart percentage is:0.04008708634526112\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(f'Minimum Mart percentage is:{p_mart.min()}')\n",
+    "print(f'Maximum Mart percentage is:{p_mart.max()}')\n",
+    "print(f'Mean Mart percentage is:{p_mart.mean()}')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "np.save('E:/Data/damask3/UNet/percentage_mart',p_mart)"
    ]
   },
   {
@@ -44,7 +96,15 @@
    "name": "python3"
   },
   "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
    "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
    "version": "3.9.5"
   },
   "orig_nbformat": 4
diff --git a/UNet/postprocessing_new.ipynb b/UNet/postprocessing_new.ipynb
index c25e36d37d2d65eb5b9ad361645c6338b5f83ebc..46ed8ac3ac389abb5f8d0e8684f02216cef3c512 100644
--- a/UNet/postprocessing_new.ipynb
+++ b/UNet/postprocessing_new.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -119,13 +119,6 @@
     "    return matrix_grains"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "code",
    "execution_count": 3,
@@ -297,38 +290,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "sample number: 83\n"
-     ]
-    },
-    {
-     "ename": "RuntimeError",
-     "evalue": "[enforce fail at ..\\c10\\core\\CPUAllocator.cpp:76] data. DefaultCPUAllocator: not enough memory: you tried to allocate 14386462720 bytes.",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[1;31mRuntimeError\u001b[0m                              Traceback (most recent call last)",
-      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_23188/176243172.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[0msample_index\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlow\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mhigh\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mTraining_data_64\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      2\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34mf'sample number: {sample_index}'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mpredict_stress\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msample_index\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnormalization\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnormalization_64\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel_15\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdataset\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mTraining_data_64\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mgrain_data\u001b[0m \u001b[1;33m=\u001b[0m\u001b[0mgrain_data_64\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
-      "\u001b[1;32m~\\AppData\\Local\\Temp/ipykernel_23188/2786384287.py\u001b[0m in \u001b[0;36mpredict_stress\u001b[1;34m(image_id, normalization, model, dataset, grain_data, threshold)\u001b[0m\n\u001b[0;32m     11\u001b[0m     \u001b[0mxb\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mUNet15\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mto_device\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdevice_15\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     12\u001b[0m     \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0meval\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 13\u001b[1;33m     \u001b[0mprediction\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mxb\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     14\u001b[0m     \u001b[0minput\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0minput\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdetach\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     15\u001b[0m     \u001b[0mprediction\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mprediction\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdetach\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[0;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[1;32m-> 1102\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1103\u001b[0m         \u001b[1;31m# Do not call functions when jit is used\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32me:\\Data\\damask3\\UNet\\UNet_V15.py\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self, x)\u001b[0m\n\u001b[0;32m    149\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    150\u001b[0m         \u001b[0menc_ftrs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mencoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 151\u001b[1;33m         \u001b[0mout\u001b[0m      \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdecoder\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0menc_ftrs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0menc_ftrs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    152\u001b[0m         \u001b[1;31m#out      = self.head(out)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    153\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mout\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[0;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[1;32m-> 1102\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1103\u001b[0m         \u001b[1;31m# Do not call functions when jit is used\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32me:\\Data\\damask3\\UNet\\UNet_V15.py\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self, x, encoder_features)\u001b[0m\n\u001b[0;32m     95\u001b[0m             \u001b[1;31m#print(f'size after cropping&cat: {x.size()}')\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     96\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 97\u001b[1;33m             \u001b[0mx\u001b[0m        \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdec_blocks\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mi\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     98\u001b[0m             \u001b[1;31m#print(f'size after convolution: {x.size()}')\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     99\u001b[0m         \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mhead\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[0;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[1;32m-> 1102\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1103\u001b[0m         \u001b[1;31m# Do not call functions when jit is used\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32me:\\Data\\damask3\\UNet\\UNet_V15.py\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self, x)\u001b[0m\n\u001b[0;32m     31\u001b[0m         \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbatch_norm_2\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnn\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mBatchNorm3d\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mout_2_c\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     32\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 33\u001b[1;33m         \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbatch_norm_1\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrelu\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdroptout\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpointwise_1\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdepthwise_1\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     34\u001b[0m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbatch_norm_2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrelu\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdroptout\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpointwise_2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdepthwise_2\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     35\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[1;34m(self, *input, **kwargs)\u001b[0m\n\u001b[0;32m   1100\u001b[0m         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks\n\u001b[0;32m   1101\u001b[0m                 or _global_forward_hooks or _global_forward_pre_hooks):\n\u001b[1;32m-> 1102\u001b[1;33m             \u001b[1;32mreturn\u001b[0m \u001b[0mforward_call\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m   1103\u001b[0m         \u001b[1;31m# Do not call functions when jit is used\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m   1104\u001b[0m         \u001b[0mfull_backward_hooks\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnon_full_backward_hooks\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\conv.py\u001b[0m in \u001b[0;36mforward\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m    588\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    589\u001b[0m     \u001b[1;32mdef\u001b[0m \u001b[0mforward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0minput\u001b[0m\u001b[1;33m:\u001b[0m \u001b[0mTensor\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m->\u001b[0m \u001b[0mTensor\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 590\u001b[1;33m         \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_conv_forward\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mweight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbias\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    591\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    592\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
-      "\u001b[1;32m~\\Miniconda3\\lib\\site-packages\\torch\\nn\\modules\\conv.py\u001b[0m in \u001b[0;36m_conv_forward\u001b[1;34m(self, input, weight, bias)\u001b[0m\n\u001b[0;32m    583\u001b[0m                 \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroups\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    584\u001b[0m             )\n\u001b[1;32m--> 585\u001b[1;33m         return F.conv3d(\n\u001b[0m\u001b[0;32m    586\u001b[0m             \u001b[0minput\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mweight\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbias\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstride\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpadding\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdilation\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mgroups\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    587\u001b[0m         )\n",
-      "\u001b[1;31mRuntimeError\u001b[0m: [enforce fail at ..\\c10\\core\\CPUAllocator.cpp:76] data. DefaultCPUAllocator: not enough memory: you tried to allocate 14386462720 bytes."
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "sample_index = np.random.randint(low=0, high=len(Training_data_64))\n",
     "print(f'sample number: {sample_index}')\n",
@@ -397,7 +361,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.10"
+   "version": "3.9.5"
   },
   "orig_nbformat": 4
  },