Contents

1

2

Simple examples

1.1 A verysimpleexample
1.2 Building theexample
1.3 Subdirectories
1.4 Variables and defines L.
1.5 Installing the foo library

Vista default structures

2.1 Using Vista
2.2 Libraries with many directories
2.3 Resettingthecache 0oL

2.4 Config files and prototypes

= W NN N

#include <cstdio>

class Foo {
public:
static int bla();

}s

Figure 1: foo.h

#include ”foo.h”

int Foo::bla() {
return 4;
}

Figure 2: foo.cpp

1 Simple examples

1.1 A very simple example

We begin with a very simple example consisting of three files shown in figure
1, 2 and 3. We like to create a library called foo. This library offers the class
Foo, defined in foo.h and implemented in foo.cpp. Then we want to create an
executable test. The executable code is implemented in test.cpp.

To build this example with CMake, we create a file CMakeLists.txt in the source
directory. The content of this file looks like this:

01 CMAKE_MINIMUM_REQUIRED (VERSION 2.6)
02 PROJECT (Test)

03

04 ADD_LIBRARY (foo SHARED
05 foo.h

06 foo.cpp

07)

#include <cstdio>
#include ”foo.h”

int main(int argc, charxx argv)

{
printf ("foo.is %i\n”, Foo::bla());

return 0;

Figure 3: test.cpp

08
09 ADD_EXECUTABLE (test

10 test.cpp

11 foo.h

12)

13

14 TARGET_LINK_LIBRARIES (test
15 foo

16)

CMake commands are case insensitive. We will write them with big letters by
default. The first two lines set the minimal version number of CMake required
to build the project and the project name. The project name is used e.g. as the
name for the Visual Studio solution.

Lines 4-7 define a library target. The first parameter sets the target name,
the second one tells CMake that we like to build a shared object file'. If you
prefer a static library, use STATIC instead.? The following parameters define
the files included in the library. CMake will automatically keep track of header
dependencies. Lines 9-12 define an executable. The parameters are just the
same as in the library definition.

The command in the lines 14-16 does two things. First it tells CMake to link the
target given in the first parameter against the following libraries, no matter if
the target is a library or an executable. Second it allows CMake to automatically
build a dependency structure. This way it is guaranteed that the build structure
builds the defined targets in the right order.

1.2 Building the example

You should have the four files in one directory. Create another directory some-
where on your disk. You should NOT run CMake from your source directory.3

Unix makefiles Start a console and change to your newly created build di-
rectory. Now call cmake pathto, where pathto is the source directory. CMake
should now build a makefile.

Visual Studio CMake comes with a program called cmake-gui. Specify your
source and build directories and press Configure. CMake should now show you
a list of supported generators. Choose your favorite Visual Studio version and
press OK. Now press Configure again and then generate. CMake will now create
the Visual Studio solution.

11ibfoo.so on Unix or foo.1ib and foo.d11l on Windows

2If you don’t specify if you want to use static or shared libraries, CMake will use the
variable BUILD_SHARED_LIBS. You will see more about variables later.

3This is actually possible, but has its troubles. It is easier to keep your source tree
untouched.

1.3 Swubdirectories

Now we want to move the library and the executable in different subdirectories
called foolib and execute.? Every subdirectory gets its own CMakeLists.txt,
where most of the old file goes to. The files look like this:

Toplevel:

01 cmake_minimum_required (VERSION 2.6)
02 PROJECT (Test)

03

04 ADD_SUBDIRECTORY (foolib)

05 ADD_SUBDIRECTORY (execute)

foolib:

01 ADD_LIBRARY (foo SHARED

02 foo.cpp

03 foo.h

04)

execute:

01 INCLUDE_DIRECTORIES (${CMAKE_SOURCE_DIR}/foolib)
02

03 ADD_EXECUTABLE (test

04 test.cpp

05)

06

07 TARGET_LINK_LIBRARIES (test
08 foo

09)

The ADD_SUBDIRECTORY command tells CMake to look for another CMakeLists.txt
in the given subdirectory. The executable target needs an additional path to
the include file foo.h. The library itself is not changed.

1.4 Variables and defines

In some cases it may happen, that one wants to make a library dependency
optional. CMake should leave it to the user if he wants to build the foo library. If
he decides to not build it, the executable should be built without using the class
Foo. Please find the the test.cpp in figure 1.4. We change the CMakeLists.txt
both on the top level and in the executable’s directory. The foo library is not
touched.

Toplevel:

01 cmake_minimum_required (VERSION 2.6)

02 PROJECT (Test)

03

04 SET (EXAMPLE_BUILD_FOO ON CACHE BOOL "Build foo library")

4You need to change the include in the file test.cpp to #include <foo.h>

#include <cstdio>

#if USEFOO
#include <foo.h>
#endif
int main(int argc, charxx argv)
{
#if USEFOO

printf (”foo_is_%i\n”, Foo::bla());
#else

printf (”foo._was.not_compiled\\n”);
#endif

return 0;
}

Figure 4: test.cpp with optional foo support

05
06 IF (EXAMPLE_BUILD_F00)
07 ADD_SUBDIRECTORY (foolib)
08 ADD_DEFINITIONS (-DUSEF00)

09 ENDIF (EXAMPLE_BUILD_F0O0)

10 ADD_SUBDIRECTORY (execute)

11

12 INCLUDE_DIRECTORIES (${CMAKE_SOURCE_DIR}/foolib)

execute:

01 ADD_EXECUTABLE (test

02 test.cpp

03)

04

05 IF (EXAMPLE_BUILD_FO0O0)

06 TARGET_LINK_LIBRARIES (test
o7 foo

08)

09 ENDIF (EXAMPLE_BUILD_F00)

The SET command creates or changes a variable. In our case, we create a
variable called EXAMPLE _BUILD_F00. The second parameter is the value to which
the variable is set. The key word CACHE tells CMake to create the variable in
its cache. Cache variables will be saved, while other variables just exist in a
single CMake run®. The remainder tells CMake the type of the variable and the
description shown in the GUI

The IF command is self-explanatory. Note that each IF needs a corresponding
ENDIF with the same parameter. We now only include the foolib subdirectory,

5You may compare this to global and local variables

if out variable is set to ON®. The ADD_DEFINITIONS command tells CMake to use
the given compiler flags. In this case, we define the compiler variable USEFQO,
which is used by test.cpp to decide whether to use the foo library or not.
CMake automatically rewrites the parameters in such a way that they are usable
both on Windows and Unix systems without changing the CMakeLists.txt.

1.5 Installing the foo library

If the foo library is compiled, the user may want to install it to his default
library path. Append the following code to the foolib’s CMakeLists.txt:

INSTALL (TARGETS foo
LIBRARY DESTINATION ${CMAKE_INSTALL_PREFIX}/lib
ARCHIVE DESTINATION ${CMAKE_INSTALL_PREFIX}/lib
RUNTIME DESTINATION ${CMAKE_INSTALL_PREFIX}/lib)
INSTALL (DIRECTORY .
DESTINATION ${CMAKE_INSTALL_PREFIX}/include/foolib
FILES_MATCHING PATTERN "x.h"
PATTERN ".svn" EXCLUDE
PATTERN "CMakeFiles" EXCLUDE)

CMake will generate either a make install target or a special install project
in the Visual Basic solution. The first INSTALL tells CMake how to install
the library itself. After the keyword TARGETS, you may specify arbitrary many
targets. The other parameters determine where to put those targets. The cache
variable CMAKE_INSTALL _PREFIX is used and set by CMake.

The second INSTALL copies the header structure. This is especially important for
large libraries with many subdirectories. This command defines which headers
to copy, where to put them and which subdirectories are to be excluded. Here,
we exclude SVN directories” and everything that is created by CMake, if you
use an in-source-build.

If you run CMake from the console, you have two possibilities to change cache
variables. You can either set the variable via the parameter —-DEXAMPLE _BUILD_FO0=0FF
or you can use ccmake instead of cmake. ccmake shows all cache variables and
allows the user to change them.

2 Vista default structures
2.1 Using Vista
The following is the CMakeLists.txt from Vista’s geometry demo:

01 cmake_minimum_required (VERSION 2.6)
02 PROJECT (VISTADEMO_Geometry)

%You can also use TRUE or 1. FALSE and 1 can be used instead of OFF.
"Depending on your project, you may want to ignore CVS or GIT directories here.

03
04 SET (EXEC_NAME VistaGeometryDemo)

05

06 FIND_PACKAGE(VISTA REQUIRED)

07

08 SET (files

09 main.cpp

10 GeometryDemoAppl.cpp

11 GeometryDemoAppl.h

12)

13 SOURCE_GROUP ("Source Files" FILES ${files})
14

15 ADD_EXECUTABLE (${EXEC_NAME}

16 ${files}

17)

18

19 TARGET_LINK_LIBRARIES (${EXEC_NAME}

20 ${VistaAspects}

21 ${VistaKernel}

22 ${VistaMath}

23)

24

256 IF (UNIX)

26 INCLUDE (${VISTA_DIR}/VISTAShellScripts.cmake)
27 CREATE_SHELLSCRIPT (${CMAKE_CURRENT_BINARY_DIR}/start.sh

"cd ${CMAKE_CURRENT_SOURCE_DIR}\n${CMAKE_CURRENT_BINARY_DIR}
/${EXEC_NAME} $1 $2 $3 $4 $5 $6 $7 $8 $9")
28 ENDIF (UNIX)

The most important new command is the FIND_PACKAGE command in line 6.
CMake will search for a file called VISTAConfig.cmake or FindVISTA.cmake.
Vista comes with VISTAConfig.cmake, which sets up everything that is needed
by CMake to link your program against the Vista libraries. To enable CMake to
find this file, you need to specify its path in the variable VISTA_DIR, which has to
be set via the console using cmake or ccmake or via the GUI before the first con-
figuration step. Vista will install the file to ${CMAKE_INSTALL_PREFIX}/cmake.

The SOURCE_GROUP command in line 13 puts the source files given in the variable
files into a group called Source Files. This only concerns IDEs like Visual
Studio. Makefiles don’t mind source groups.

Lines 20-22 use variables that are defined by the VISTAConfig.cmake. The ker-
nel library for example is called VistaKernel in release mode but VistaKernelD
in debug mode. This is automatically reflected by the VistaKernel variable.
Each Vista library has its corresponding variable.

For Unix systems®, there is the possibility to create startup scripts for your
executable. With these scripts you don’t have to set environment variables any
more. The command CREATE_SHELLSCRIPT takes the name of the script, that

8The key word UNIX is defined whenever CMake is run on a Unix system. For Windows
systems, use the key word WIN32 instead.

should be created, as the first parameter and the code to be executed as the
second parameter. This command is defined in VISTAShellScripts.cmake,
which is included in line 26.

2.2 Libraries with many directories

Sometimes you have a single library consisting of many source files grouped in a
set of possibly nested directories. There are some different possibilities to reflect
this in the CMakeLists.txt. We use a possibility that tries to minimize to effort
necessary when source files change, but also reflects the directory structure in
IDE projects. The following is a part of the kernel’s CMakeLists.txt:

VistaKernel:

001 IF (WIN32)

002 ADD_DEFINITIONS (-DVISTAKERNEL_EXPORTS -DOSG_WITH_GIF -DOSG_WITH_TIF
-DOSG_WITH_JPG -DOSG_BUILD_DLL -D_0SG_HAVE_CONFIGURED_H_ -wd4231)

003 SET (LIBRARIES

004 optimized 0SGWindowGLUT

007 debug 0SGWindowGLUTD

010)

011 LINK_DIRECTORIES("${0SG_ROOT}/1ib")

012 ELSEIF(UNIX)

013 SET (LIBRARIES

014 0SGWindowGLUT

017)

018 LINK_DIRECTORIES ("${0SG_ROOT}/1lib/opt")
019 ENDIF(WIN32)

020

021 INCLUDE_DIRECTORIES("${0SG_ROOT}/include")
022

023 SET (dirFiles

024 VistaClientDataTunnel.cpp

025 VistaClusterAux.cpp

060)

061 SOURCE_GROUP ("Source Files" FILES ${dirFiles})
062

072 ADD_SUBDIRECTORY (InteractionManager)

073 SOURCE_GROUP ("Source Files\\InteractionManager"
FILES ${dirFiles_InteractionManager})

074 SOURCE_GROUP ("Source Files\\InteractionManager\\DfnNodes"
FILES ${dirFiles_InteractionManager_DfnNodes})

088

089 ADD_LIBRARY (VistaKermel

090 ${dirFiles}

094 ${dirFiles_InteractionManager}

095 ${dirFiles_InteractionManager_DfnNodes}
101)

102

103 TARGET_LINK_LIBRARIES (VistaKernel

104 VistaDataFlowNet

111 ${LIBRARIES}

112)

113

114 # Include link paths for OpenSG so they will be found when
linking against the kernel

115 IF (VISTA_USE_RPATH)

116 IF (UNIX)

117 SET_TARGET_PROPERTIES (VistaKernel PROPERTIES
118 INSTALL_RPATH "${0SG_RO0T}/1ib/opt"

119)

120 ELSEIF (WIN32)

121 SET_TARGET_PROPERTIES (VistaKernel PROPERTIES
122 INSTALL_RPATH "${0SG_ROOT}/1lib"

123)

124 ENDIF (UNIX)

125 ENDIF (VISTA_USE_RPATH)

VistaKernel/InteractionManager:
01 SET (relDir "InteractionManager")
02 SET (dirFiles_in

03 CMakeLists.txt

04 VistaDriverWindowAspect.cpp
05 VistalntentionSelect.cpp

13 VistaDriverWindowAspect.h
14 VistalntentionSelect.h

23)

26

27 FOREACH (file ${dirFiles_in})
28 LIST (APPEND dirFiles_InteractionManager "${relDirl}/${file}")
29 ENDFOREACH (file)

30

31 ADD_SUBDIRECTORY (DfnNodes)

32

34 SET (dirFiles_InteractionManager ${dirFiles_InteractionManager}
PARENT_SCOPE)

35 SET (dirFiles_InteractionManager DfnNodes ${dirFiles_Interaction
Manager_DfnNodes} PARENT_SCOPE)

VistaKernel/InteractionManager/DfnNodes:
01 SET (relDir "InteractionManager/DfnNodes")
02 SET (dirFiles_in

03 CMakeLists.txt

04 VistaDfn3DMouseTransformNode. cpp
05 VistaDfnClusterNodeInfoNode. cpp
22 VistaDfn3DMouseTransformNode.h
23 VistaDfnClusterNodeInfoNode.h
46)

48

49 FOREACH (file ${dirFiles_in})

50 LIST (APPEND dirFiles_InteractionManager_DfnNodes "${relDirl}/${file}")

51 ENDFOREACH (file)

52

53 SET (dirFiles_InteractionManager_DfnNodes ${dirFiles_InteractionManager
_DfnNodes} PARENT_SCOPE)

Each subdirectory has its own CMakeLists.txt which contains information
about all needed files in this directory” along with the actual directory name,
relative to the library’s top directory. Subdirectories first prepend the file names
with this directory. We do not want to create file name lists in the cache, so all
variables are defined locally. To be able to access them on the above layer, we
have to re-define them with the key word PARENT_SCOPE. In this example, we
have a subsubdirectory. The InteractionManager directory has to keep track
of this by re-defining the variable that was re-defined by the DfnNodes directory.

The toplevel CMakeLists.txt can now access all file name lists. It creates
source groups for IDEs and merges the files for the library target. Most of this
work can be done automatically by our Python script, which you can find in
the directory VistaCoreLibs/VistaBuild/CMake

The cache variable VISTA_USE_RPATH is defined in the toplevel CMakeLists.txt.
If it is set to ON, the kernel library will be built with rpath support. This tells
the system where to search for built-in libraries. In our case, we want the kernel
library to find the OpenSG libraries.

2.3 Resetting the cache

There is no reasonable way to reset the cache without deleting the whole build
directory. For this reason we have introduced the variable RESET_CACHE. Many
of Vista’s CMake files accept this variable and reset their cache variables, if
RESET_CACHE is set to ON. To use this variable, you may simply add it to your own
executable’s CMake file. If your CMakeLists.txt does not offer this variable,
you can also set it on your own. See that you set RESET_CACHE to OFF after
resetting the cache!

2.4 Config files and prototypes

Vista uses a prototyped Config file. Config files are provided by libraries built
with CMake for easy access to them. Each Config file has the form FOOConfig. cmake,
if the corresponding project is named F00. A Config file is included with the
FIND_PACKAGE command. If FOOConfig.cmake is not in a standard install di-
rectory, you may specify its path by setting the variable FOO_DIR.

Prototype in our case means, that we provide an unfinished file, which is com-
pleted by CMake within a configure run. The prototype files have prototype
variables in the form <<VARNAME>>!?. These variables are instantiated regarding

9For convenience, we add the CMakeLists.txt here, so that CMake includes them in IDE
projects. This allows IDEs to automatically rebuild their projects if the CMake files have
changed.

10Please note, that this is not a CMake standard. We use this form for our own software.

10

the user given cache variables and environment settings. An instantiated Config
file prototype is specific to the system on which it was created.

The following is a part of Vista’s Config file prototype:

04 # Create cache variables

05 IF (RESET_CACHE)

06 SET (VISTA_INC_DIR <<VISTA_INC_DIR>> CACHE FILEPATH
"Path where ViSTA includes are installed, relative to
VISTA_INSTALL_PREFIX" FORCE)

o7 SET (VISTA_LIB_DIR <<VISTA_LIB_DIR>> CACHE FILEPATH
"Path where ViSTA libraries are installed, relative to
VISTA_INSTALL_PREFIX" FORCE)

08 SET (VISTA_INSTALL_PREFIX <<VISTA_INSTALL_PREFIX>>
CACHE FILEPATH "Root path of your ViSTA installation"
FORCE)

09 ELSE O

10 SET (VISTA_INC_DIR <<VISTA_INC_DIR>> CACHE FILEPATH

"Path where ViSTA includes are installed, relative to
VISTA_INSTALL_PREFIX")

11 SET (VISTA_LIB_DIR <<VISTA_LIB_DIR>> CACHE FILEPATH
"Path where ViSTA libraries are installed, relative to
VISTA_INSTALL_PREFIX")

12 SET (VISTA_INSTALL_PREFIX <<VISTA_INSTALL_PREFIX>>
CACHE FILEPATH "Root path of your ViSTA installation")

13 ENDIF (RESET_CACHE)

14

15 # Add the includes and libraries to the compiler/linker

16 # search directories

17 INCLUDE_DIRECTORIES (${VISTA_INSTALL_PREFIX}/${VISTA_INC_DIR})

18 LINK_DIRECTORIES(${VISTA_INSTALL_PREFIX}/${VISTA_LIB_DIR})

19

20 # Add platform defines

21 IF(UNIX)

22 ADD_DEFINITIONS (-DLINUX)

23 ELSEIF(WIN32)

24 ADD_DEFINITIONS(-DWIN32)

25 ENDIF (UNIX)

26

27 # Add library name variables

28 SET (VistaAspects

29 optimized VistaAspects
30 debug VistaAspectsD
31)

67

68 # Set OpenSG paths for usage in other projects
69 SET (OPENSG_INC_DIR <<QOPENSG_INC_DIR>>)

70 SET (OPENSG_LIB_DIR <<OPENSG_LIB_DIR>>)

71 # Set OpenSG as link path

72 LINK_DIRECTORIES(${OPENSG_LIB_DIR})

11

Here, we use the following prototype variables:

e <<VISTA_INC_DIR>>, the directory, where Vista include files are installed
e <<VISTA_LIB DIR>>, the directory, where Vista library files are installed
e <<VISTA_INSTALL_PREFIX>>, the main directory of the Vista installation

e <<OPENSG_INC_DIR>>, the directory, where OpenSG include files are in-
stalled

e <<QOPENSG_LIB DIR>>, the directory, where OpenSG library files are in-
stalled

When Vista is configured, this prototype gets instantiated. The resulting file
will then be installed. Including this file does the following:

e The variables VISTA_LIB_DIR, VISTA_INC_DIR, VISTA_INSTALL_PREFIX, OPENSG_LIB_DIR
and OPENSG_INC_DIR are set according to your installation.

e Both the Vista and the OpenSG library path are set as link directories.
Those are directories in which the linker will search for libraries.

e The Vista include path is added to CMake’s include directories so that
you can access all the headers.

e For each Vista library there is a variable with the same name. These
variables include both the release mode and the debug mode library so
that the makefile or the IDE project will link your code against the right
file.

The following code instantiates the prototype:

01
02
03
04

05

06

07

08
09

10
11

12
13
14

First read the prototype

FILE (READ VistaBuild/CMake/VISTAConfig.cmake_proto CONFIG_FILE)

Then replace the prototype variables

STRING (REPLACE "<<VISTA_INC_DIR>>" "${VISTA_INSTALL_INC_DIR}"
CONFIG_FILE ${CONFIG_FILE})

STRING (REPLACE "<<VISTA_LIB_DIR>>" "${VISTA_INSTALL_LIB_DIR}"
CONFIG_FILE ${CONFIG_FILE})

STRING (REPLACE "<<VISTA_INSTALL_PREFIX>>" "${CMAKE_INSTALL_PREFIX}"
CONFIG_FILE ${CONFIG_FILE})

STRING (REPLACE "<<OPENSG_INC_DIR>>" "${0SG_ROOT}/include"
CONFIG_FILE ${CONFIG_FILE})

IF (UNIX)

STRING (REPLACE "<<OPENSG_LIB_DIR>>" "${0SG_ROOT}/lib/opt"
CONFIG_FILE ${CONFIG_FILE})
ELSEIF (WIN32)
STRING (REPLACE "<<OPENSG_LIB_DIR>>" "${0SG_ROOT}/lib"
CONFIG_FILE ${CONFIG_FILE})

ENDIF (UNIX)

And write the file to the build directory

FILE (WRITE ${CMAKE_CURRENT_BINARY_DIR}/cmake/VISTAConfig.cmake
${CONFIG_FILE})

12

