diff --git a/.gitmodules b/.gitmodules new file mode 100644 index 0000000000000000000000000000000000000000..8c1af1507a5052492b53b2a0b4df17f0e2d411ae --- /dev/null +++ b/.gitmodules @@ -0,0 +1,12 @@ +[submodule "01_Input/Vorlagen/LaTeX Vorlage"] + path = 01_Input/Vorlagen/LaTeX Vorlage + url = https://git-ce.rwth-aachen.de/ebc/ebc-general/templates/abschlussarbeiten-und-dissertationen.git +[submodule "01_Input/Vorlagen/MA Konrad Beeser"] + path = 01_Input/Vorlagen/MA Konrad Beeser + url = https://git-ce.rwth-aachen.de/ebc/projects/GGE_EBC0002_BMWi_MPCGeothermie_/data-driven-model-predictive-control.git +[submodule "01_Input/Vorlagen/Masterarbeit Konrad Beeser"] + path = 01_Input/Vorlagen/Masterarbeit Konrad Beeser + url = https://git-ce.rwth-aachen.de/ebc/projects/GGE_EBC0002_BMWi_MPCGeothermie_/data-driven-model-predictive-control.git +[submodule "01_Input/Vorlagen/MPC Minimalbeispiele"] + path = 01_Input/Vorlagen/MPC Minimalbeispiele + url = https://git-ce.rwth-aachen.de/ebc/ebc-general/controls/mpc-tool-examples.git diff --git a/01_Input/Masterarbeit Konrad Beeser/README.md b/01_Input/Masterarbeit Konrad Beeser/README.md new file mode 100644 index 0000000000000000000000000000000000000000..12cfd5ee90183fd96193977a3b22dcadaae66e9d --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/README.md @@ -0,0 +1,14 @@ +# Data Driven Model Predictive Control - DDMPC + +Framework for creating and investigating data-driven model predictive controllers. + +------------ + + +**ann_ddmpc:** Base framework and some examples for ANN based data-driven MPC + +**gpr_ddmpc:** gaussian process based ddmpc, framework needs to be adapted to ann_ddmpc framework + +**lsi_ddmpc:** base example for the use of linear system identification + +**vdp_example:** proof of concept for ann-based ddmpc for a van der pol oscillator diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_base.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_base.py new file mode 100644 index 0000000000000000000000000000000000000000..87bf1ac74e5a5128db3d775469d4332c6a11016c --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_base.py @@ -0,0 +1,53 @@ +import requests +from urllib.parse import urljoin +import pandas as pd +import numpy as np + +url = "http://134.130.166.203:5000" + +""" Get Properties: """ +name = requests.get(url=urljoin(url,'name')).json() +inputs_meta = requests.get(url=urljoin(url,'inputs')).json() +measurements_meta = requests.get(url=urljoin(url,'measurements')).json() + + +""" Initialize: """ +init_params = {'start_time': 8*24*3600, + 'warmup_period': 7*24*3600} + +meas_dict = requests.put(url=urljoin(url, 'initialize'), data=init_params).json() + +step_size = requests.get(url=urljoin(url, 'step')).json() +print(step_size) + +new_step_size = {'step': 900} +requests.put(url=urljoin(url,'step'),data=new_step_size) + +# Setting a scenario resets the simulation to a given start time, +# also a predefined duration will be passed +scenario = {'electricity_price': 'dynamic', + 'time_period': 'peak_heat_day'} +scenario_return = requests.put(urljoin(url, 'scenario'), data=scenario).json() + + +""" Set Forecast parameters and get forecast""" +forecast_param = requests.get(urljoin(url, 'forecast_parameters')).json() +new_forecast_param = {'horizon': 32*900, + 'interval': 900} +requests.put(urljoin(url, 'forecast_parameters'),data=new_forecast_param) +print(requests.get(urljoin(url, 'forecast_parameters')).json()) + +forecast = requests.get(urljoin(url, 'forecast')).json() +forecast_pd = pd.DataFrame(data=forecast) + +""" Set Inputs and Advance""" +inputs={'oveHeaPumY_u':0.5} +y=requests.post(urljoin(url, 'advance'),inputs).json() + +""" get results and KPIs""" +res_req = {'point_name': 'oveHeaPumY_u', + 'start_time': -np.inf, + 'final_time': np.inf} +res = requests.put(url=urljoin(url,'results'),data=res_req).json() + +kpis = requests.get(url= urljoin(url,'kpi')).json() diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_service.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_service.py new file mode 100644 index 0000000000000000000000000000000000000000..74d40df189e44956a6a33fc8b5617e1bd7e49c0f --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/Boptest/test_boptest_service.py @@ -0,0 +1,8 @@ +import requests + +url = "http://134.130.166.203:80" + +testcase = 'bestest_hydronic_heat_pump' + +testid=requests.post('{0}/testcases/{1}/select'.format(url,testcase)).json()['testid'] +name = requests.get('{0}/name/{1}'.format(url, testid)).json() diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/2_generate_data.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/2_generate_data.py new file mode 100644 index 0000000000000000000000000000000000000000..722f7f09778ce4f2c5c596f11374080ba663ae62 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/2_generate_data.py @@ -0,0 +1,30 @@ +from Examples.ashrae140_900_set_point_ctrl_predicting_energy_consumption.configuration import * + +# PID controller for the BKT +BKT_PID = PID( + y=TAirRoom, + u=Q_flowTabs, + dt=60*15, + Kp=1, + Ti=600, + Td=0, +) + +# PID controller for the AHU +AHU_PID = PID( + y=TAirRoom, + u=TsetAHU, + dt=60 * 15, + Kp=1, + Ti=600, + Td=0, +) + +ThermalZone_Simulator.plotter.sub_folder_name = 'pid' +ThermalZone_FMU.setup(start_time=0) +ThermalZone_DataContainer = ThermalZone_Simulator.run(controllers=(AHU_PID, BKT_PID), + duration=60 * 60 * 24 * 6) +ThermalZone_DataContainers = ThermalZone_DataContainer.split_container(training_share=0.8,testing_share=0.1,validating_share=0.1) + +ThermalZone_DataHandler = DataHandler(containers=ThermalZone_DataContainers) +ThermalZone_DataHandler.save(pid_DataHandler_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/3_train_anns.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/3_train_anns.py new file mode 100644 index 0000000000000000000000000000000000000000..449dd9529fa4dd479032aee4f547d44c6f8cfd41 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/3_train_anns.py @@ -0,0 +1,51 @@ +from Examples.ashrae140_900_set_point_ctrl_predicting_energy_consumption.configuration import * +ThermalZone_DataHandler = load_DataHandler(pid_DataHandler_name) +containers = load_DataHandler(pid_DataHandler_name).containers + +# ----------------------------------- TAirRoom NetworkTrainer ----------------------------------- + +TAirRoom_NetworkTrainer = NetworkTrainer( + inputs=( + # disturbances + Input(feature=dry_bul, lag=2), + Input(feature=rad_dir, lag=1), + + Input(feature=daily_sin, lag=2), + Input(feature=daily_cos, lag=2), + Input(feature=weekly_sin, lag=2), + Input(feature=weekly_cos, lag=2), + + # Stellgrößen + Input(feature=Q_flowTabs, lag=6), + + Input(feature=TsetAHU, lag=2), + # T air room + Input(feature=TAirRoom, lag=6), + + ), + output=Output(feature=d_TAirRoom), + step_size=60*15 +) + +TAirRoom_NetworkTrainer.load_data(containers=containers) +TAirRoom_NetworkTrainer.tune(layer_range=(1,), neurons_range=(8, 16), trials=10, epochs=500, batch_size=100) +TAirRoom_NetworkTrainer.save(d_TAirRoom_NetworkTrainer_name, override=True) + +# ----------------------------------- Q_flowAHU NetworkTrainer ----------------------------------- + +Q_flowAhu_NetworkTrainer = NetworkTrainer( + inputs=( + + # AHU + Input(feature=TAirRoom, lag=2), + Input(feature=TsetAHU, lag=2), + Input(feature=dry_bul, lag=2), + ), + output=Output(feature=Q_flowAhu), + step_size=60*15 +) + +Q_flowAhu_NetworkTrainer.clear_data() +Q_flowAhu_NetworkTrainer.load_data(containers=containers) +Q_flowAhu_NetworkTrainer.tune(layer_range=(1,), neurons_range=(4, 8), trials=10, epochs=500, batch_size=100) +Q_flowAhu_NetworkTrainer.save(Q_flowAHU_NetworkTrainer_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/4_mpc_online.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/4_mpc_online.py new file mode 100644 index 0000000000000000000000000000000000000000..9b449e0e6419074d1a4117d7205015209d09aeb4 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/4_mpc_online.py @@ -0,0 +1,70 @@ +from Examples.ashrae140_900_set_point_ctrl_predicting_energy_consumption.configuration import * + +# load ann1 +TAirRoom_NetworkTrainer = load_NetworkTrainer(d_TAirRoom_NetworkTrainer_name) +TAirRoom_NetworkTrainer.load_best_ann(loc=0) + +# load ann2 +Q_flowAhu_NetworkTrainer = load_NetworkTrainer(Q_flowAHU_NetworkTrainer_name) +Q_flowAhu_NetworkTrainer.load_best_ann(loc=0) + +TAirRoom.mode = 'economic' + +ThermalZone_MPC = ModelPredictive( + dt=60*15, + N=32, + objectives=( + Objective(feature=TAirRoom, weight=500, k_0_offset=1), + Objective(feature=Q_flowTabs, weight=1, norm=5, k_N_offset=-1), + Objective(feature=d_Q_flowTabs, weight=2, norm=5, k_N_offset=-1), + Objective(feature=Q_flowAhu, weight=1, norm=5, k_N_offset=-1), + Objective(feature=d_TsetAHU, weight=2, norm=5, k_N_offset=-1), + ), + constraints=( + Constraint(features=(Q_flowTabs,), lb=-5, ub=5, k_N_offset=-1), + Constraint(features=(TsetAHU,), lb=273.15 + 18, ub=273.15 + 25, k_N_offset=-1), + ), + model=ThermalZone_Model, + disturbances_df=ThermalZone_FMU.load_disturbances(), + network_trainers=(TAirRoom_NetworkTrainer, Q_flowAhu_NetworkTrainer), + solver_options= {'verbose': False, + 'ipopt': {'print_level': 2, + 'linear_solver': 'ma57'}} +) + +ThermalZone_Simulator.plotter.sub_folder_name = 'online_mpc' +ThermalZone_FMU.setup(start_time=60*60*24*0) + +ThermalZone_MPC_DataHandler = DataHandler() + +# online mpc loop +for repetition in range(3): + + # run mpc and add to DataHandler + ThermalZone_DataContainer = ThermalZone_Simulator.run( + controllers=(ThermalZone_MPC,), + duration=60 * 60 * 24 * 3, + ) + + # split data into training, testing and validating + ThermalZone_DataContainers = ThermalZone_DataContainer.split_container(testing_share=0.15,training_share=0.7,validating_share=0.15) + ThermalZone_MPC_DataHandler.add_containers(ThermalZone_DataContainers) + + # online learning + ThermalZone_Simulator.retrain_anns( + containers=ThermalZone_DataContainers, + network_trainer=TAirRoom_NetworkTrainer, + epochs=500, + batch_size=250, + clear_data=False, + ) + ThermalZone_Simulator.retrain_anns( + containers=ThermalZone_DataContainers, + network_trainer=Q_flowAhu_NetworkTrainer, + epochs=500, + batch_size=250, + clear_data=False, + ) + ThermalZone_MPC.reinitialize_mpc = True + +ThermalZone_MPC_DataHandler.save(MPC_DataHandler_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/5_analyse_data.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/5_analyse_data.py new file mode 100644 index 0000000000000000000000000000000000000000..6dcfc453ad08f620194947c48aa34e08e3771468 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/5_analyse_data.py @@ -0,0 +1,14 @@ +from Examples.ashrae140_900_set_point_ctrl_predicting_energy_consumption.configuration import * + +TAirRoom_DataHandler_online = load_DataHandler(MPC_DataHandler_name) +complete_df_online = DataContainer.merge_containers(TAirRoom_DataHandler_online.containers) + +# comparison of online and offline learning +complete_df_online = abs(complete_df_online.rolling(window=4*6*24*7, center=False).mean()) +plt.plot(complete_df_online['TAirRoom error_bounds'], color=fmt.red, label='TAirRoom error_bounds mean online') +plt.legend() +plt.show() + +# exit() +TAirRoom_NetworkTrainer = load_NetworkTrainer('d_TAirRoom') +TAirRoom_NetworkTrainer.evaluate_data(containers=TAirRoom_DataHandler_online.containers) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/configuration.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/configuration.py new file mode 100644 index 0000000000000000000000000000000000000000..79c304f1fde7177ee4c6d27112f88757549639b2 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/configuration.py @@ -0,0 +1,143 @@ +import numpy as np +import pandas as pd +from ddmpc.controller import * +from ddmpc.modeling import * +from ddmpc.utils import * + + +# ---------------------------------------------- names ----------------------------------------------- +pid_DataHandler_name = 'ThermalZone_PID_Data' +d_TAirRoom_NetworkTrainer_name = 'd_TAirRoom_NetworkTrainer' +Q_flowAHU_NetworkTrainer_name = 'Q_flowAHU_NetworkTrainer' +MPC_DataHandler_name = "Online_Learning_MPC" +# -------------------------------------------- FEATURES -------------------------------------------- + +time = Time(dis_name='Simulation Time', var_name='SimTime') + +dry_bul = Temperature(dis_name='Außentemperatur', var_name='weaBus.TDryBul', plt_opts=PlotOptions(color=blue, line=line_solid, label='Außentemperatur')) +rad_dif = Radiation(dis_name='Horizontale diffuse Strahlung', var_name='weaBus.HDifHor', plt_opts=PlotOptions(color=light_red, line=line_solid, label='Strahlung')) +rad_dir = Radiation(dis_name='Direkte normale Strahlung', var_name='weaBus.HDirNor', plt_opts=PlotOptions(color=red, line=line_dashdot, label='')) +rad_glo = Radiation(dis_name='Horizontale globale Strahlung', var_name='weaBus.HGloHor', plt_opts=PlotOptions(color=dark_red, line=line_dotted, label='')) +int_gain_human = Percentage(dis_name='Personen', var_name='internalGains.y[1]', plt_opts=PlotOptions(color=light_grey, line=line_solid, label='Interne Gewinne')) +int_gain_elect = Percentage(dis_name='Verbraucher', var_name='internalGains.y[2]', plt_opts=PlotOptions(color=grey, line=line_dashdot, label='')) +int_gain_light = Percentage(dis_name='Licht', var_name='internalGains.y[3]', plt_opts=PlotOptions(color=dark_grey, line=line_dotted, label='')) + +Q_flowTabs = HeatFlowSetPoint(dis_name='Wärmestrom', var_name='QFlowTabsSet', lb=-5, ub=5, plt_opts=PlotOptions(color=red, line=fmt.line_solid)) +d_Q_flowTabs = Change(base_feature=Q_flowTabs) +d_d_Q_flowTabs = Change(base_feature=d_Q_flowTabs) + +Q_flowCold = HeatFlowMeas(dis_name='Wärmestrom_kalt', var_name='QFlowCold', plt_opts=PlotOptions(color=red, line=fmt.line_solid)) +Q_flowHot = HeatFlowMeas(dis_name='Wärmestrom_warm', var_name='QFlowHeat', plt_opts=PlotOptions(color=red, line=fmt.line_solid)) + +TsetAHU = TemperatureSetPoint(dis_name='Tsoll AHU', var_name='TAhuSet', lb=290.15, ub=299.15,default=290, plt_opts=PlotOptions(color=red, line=fmt.line_solid)) +d_TsetAHU = Change(base_feature=TsetAHU) +d_d_TsetAHU = Change(base_feature=d_TsetAHU) + +TsetAHU_movsum = MovingSum(base_feature=TsetAHU, n=3) +d_TsetAHU_movsum = MovingSum(base_feature=TsetAHU, n=2) + +TAirRoom = Controlled( + dis_name='Raumlufttemperatur', + var_name='TAirRoom', + mode='random', + plt_opts=PlotOptions(color=red, line=line_solid), + day_start=8, + day_end=18, + day_target=295.15, + day_lb=294.15, + day_ub=296.15, + night_lb=290.15, + night_ub=300.15, + night_target=295.15 +) +TAirIn = Temperature(dis_name='Einlasstemperatur', var_name='Bus.ahuBus.TSupAirMea') + +TsetAHU_minus_dry_bul = Subtraction(base_feature_one=TsetAHU, base_feature_two=dry_bul) +d_TsetAHU_minus_dry_bul = Change(base_feature=TsetAHU_minus_dry_bul) +TsetAHU_minus_TAirRoom = Subtraction(base_feature_one=TsetAHU, base_feature_two=TAirRoom) +d_TsetAHU_minus_TAirRoom = Change(base_feature=TsetAHU_minus_TAirRoom) +dry_bul_minus_TAirRoom = Subtraction(base_feature_one=dry_bul, base_feature_two=TAirRoom) +d_dry_bul_minus_TAirRoom = Change(base_feature=dry_bul_minus_TAirRoom) + +d_dry_bul = Change(base_feature=dry_bul) +d_rad_dir = Change(base_feature=rad_dir) +d_TAirRoom = Change(base_feature=TAirRoom) +d_TAirIn = Change(base_feature=TAirIn) + +daily_sin = PeriodicTime(name='Daily Sin', time=time, function=np.sin, frequency=60 * 60 * 24) +daily_cos = PeriodicTime(name='Daily Cos', time=time, function=np.cos, frequency=60 * 60 * 24) +weekly_sin = PeriodicTime(name='Weekly Sin', time=time, function=np.sin, frequency=60 * 60 * 24 * 7) +weekly_cos = PeriodicTime(name='Weekly Cos', time=time, function=np.cos, frequency=60 * 60 * 24 * 7) + +t_1 = Temperature(dis_name='AHU_hot_in', var_name='Bus.ahuBus.heaterBus.hydraulicBus.TFwrdInMea') +t_2 = Temperature(dis_name='AHU_hot_out', var_name='Bus.ahuBus.heaterBus.hydraulicBus.TRtrnOutMea') +t_3 = Temperature(dis_name='AHU_cold_in', var_name='Bus.ahuBus.coolerBus.hydraulicBus.TFwrdInMea') +t_4 = Temperature(dis_name='AHU_cold_out', var_name='Bus.ahuBus.coolerBus.hydraulicBus.TRtrnOutMea') + +f_1 = MassFlow(dis_name='AHU_hot', var_name='Bus.ahuBus.heaterBus.hydraulicBus.VFlowInMea', temperature_in=t_1, temperature_out=t_2) +f_2 = MassFlow(dis_name='AHU_cold', var_name='Bus.ahuBus.coolerBus.hydraulicBus.VFlowInMea', temperature_in=t_3, temperature_out=t_4) + +Q_flowAhu = EnergyBalance(name='Q_flow_Ahu', flows=[f_1, f_2]) + +# ------------------------------------------- Model ------------------------------------------- + +ThermalZone_Model = Model( + t=time, + X=( + TAirRoom, + Q_flowAhu, + ), + U=( + Q_flowTabs, + TsetAHU + ), + D=( + dry_bul, + rad_dir, + daily_sin, + daily_cos, + weekly_sin, + weekly_cos, + ), + C=( + d_TAirRoom, + TsetAHU_minus_dry_bul, + TsetAHU_minus_TAirRoom, + d_TsetAHU, + d_Q_flowTabs, + ), + T=( + Q_flowCold, + Q_flowHot, + t_1, + t_2, + t_3, + t_4, + f_1, + f_2 + ), +) + +# ------------------------------------------- Plotter ------------------------------------------- + +ThermalZone_Plotter = Plotter( + SubPlot(features=(TAirRoom,), y_label='Raumlufttemperatur in °C', shift=273.15), + SubPlot(features=(Q_flowTabs,), y_label='Sollwert Wärmestrom BKT', step=True), + SubPlot(features=(TsetAHU,), y_label='Sollwert Einlasstemperatur', shift=273.15, lb=14, ub=31, step=True), + SubPlot(features=(Q_flowAhu,), y_label='Ist Wärmestrom AHU', step=True), + SubPlot(features=(dry_bul, rad_dir), y_label='Störgrößen in %', normalize=True), + size=(8, 8) +) + + +# ---------------------------------------------- FMU ----------------------------------------------- + +ThermalZone_FMU = FMUSystem(model= ThermalZone_Model, + step_size=60 * 15, + fmu_name='ashrae140_900_set_point_fmu.fmu') +# ------------------------------------------ Simulator ------------------------------------------ +ThermalZone_FMU.load_disturbances() +ThermalZone_Simulator = Simulator( + system=ThermalZone_FMU, + plotter=ThermalZone_Plotter +) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/learn_mpc.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/learn_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..29f7c095a6dc8c546c2e6d5ceae4c4e427cc5ecd --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/learn_mpc.py @@ -0,0 +1,37 @@ +from Examples.ashrae140_900_set_point_ctrl_predicting_energy_consumption.configuration import * + +# ----------------------------------- TsetAHU NetworkTrainer ----------------------------------- + +TAirRoom_NetworkTrainer = NetworkTrainer( + inputs=( + + # disturbances + Input(feature=dry_bul, lag=2), + Input(feature=rad_dir, lag=1), + Input(feature=d_dry_bul, lag=2), + Input(feature=d_rad_dir, lag=1), + + Input(feature=daily_sin, lag=1), + Input(feature=daily_cos, lag=1), + Input(feature=weekly_sin, lag=1), + Input(feature=weekly_cos, lag=1), + + # Stellgrößen + Input(feature=Q_flowTabs, lag=6), + Input(feature=TsetAHU, lag=3), + + Input(feature=d_Q_flowTabs, lag=5), + Input(feature=d_TsetAHU, lag=2), + + # T air room + Input(feature=TAirRoom, lag=1), + Input(feature=d_TAirRoom, lag=1), + ), + output=Output(feature=TsetAHU), + step_size=60*15 +) + +containers = load_DataHandler('ThermalZone_MPC_online').containers +TAirRoom_NetworkTrainer.load_data(containers=containers) +TAirRoom_NetworkTrainer.tune(layer_range=(1,), neurons_range=(8, 16), trials=5, epochs=500, batch_size=100) +TAirRoom_NetworkTrainer.save('TsetAHU', override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/load_res.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/load_res.py new file mode 100644 index 0000000000000000000000000000000000000000..7bfe3cac48a00e369f4ec4eb9e18433820eb025d --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/load_res.py @@ -0,0 +1,24 @@ +from ddmpc import * +import pandas as pd + +ThermalZone_DataHandler = read_pkl(r"C:\Users\Administrator\Documents\data-driven-model-predictive-control\DataDrivenMPC\ashrae140_900_set_point_ctrl\stored_data\Res_6\MPC_one_year_8h_no_online_learning_reduced_features.pkl") + +training = ThermalZone_DataHandler[0].df +training.index = training['SimTime'] +for i in range(1,12): + container = ThermalZone_DataHandler[i].df + container.index = container['SimTime'] + container = container[1:] + training = training.append(container) + +mpc_res = ThermalZone_DataHandler[12].df +mpc_res.index = mpc_res['SimTime'] +for i in range(13,49): + container = ThermalZone_DataHandler[i].df + container.index = container['SimTime'] + container = container[1:] + mpc_res = mpc_res.append(container) + +write_pkl(data={'Training':training,'MPC':mpc_res},filename="DDMPC_one_year_8h_online_learning_reduced_features") +mpc_res.to_csv("data_driven_mpc_one_year_8h_prediction_online_learning_reduced_features.csv") +training.to_csv("data_driven_mpc_one_year_8h_prediction_online_learning_reduced_features_training.csv") \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/stored_data/FMUs/ashrae140_900_set_point_fmu.fmu b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/stored_data/FMUs/ashrae140_900_set_point_fmu.fmu new file mode 100644 index 0000000000000000000000000000000000000000..0265b7df25c3f1f0b5aa34baf192864938306b5a Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/ashrae140_900_set_point_ctrl_predicting_energy_consumption/stored_data/FMUs/ashrae140_900_set_point_fmu.fmu differ diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/2_generate_data_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/2_generate_data_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..4f47b39690abdf33e53f00af13d833429e3a65d4 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/2_generate_data_boptest.py @@ -0,0 +1,31 @@ +from Examples.boptest_hydronic_heat_pump_cost_based.configuration_boptest import * + +# PID controller for the HP +HP_PID = PID( + y=TAirRoom, + u=u_hp_rel, + dt=900, + Kp=0.05, + Ti=300, + Td=0, +) + + +TAirRoom.mode = 'random' + +hydronic_hp_Simulator.plotter.sub_folder_name = 'pid' +hydronic_hp_system.setup(start_time=0,warmup_period=7*24*3600) +hydronic_hp_system.activate_ctrl_layer({'oveHeaPumY_activate':1}) +hydronic_hp_DataContainer_random = hydronic_hp_Simulator.run(controllers=(HP_PID,), + duration=60 * 60 * 24 * 14) +TAirRoom.mode = 'steady' +hydronic_hp_DataContainer_steady = hydronic_hp_Simulator.run(controllers=(HP_PID,), + duration=60 * 60 * 24 * 14) +hydronic_hp_DataContainers_random = hydronic_hp_DataContainer_random.split_container(training_share=0.7,testing_share=0.15,validating_share=0.15) +hydronic_hp_DataContainers_steady = hydronic_hp_DataContainer_steady.split_container(training_share=0.7,testing_share=0.15,validating_share=0.15) + +hydronic_hp_DataHandler = DataHandler() +hydronic_hp_DataHandler.add_containers(*hydronic_hp_DataContainers_random) +hydronic_hp_DataHandler.add_containers(*hydronic_hp_DataContainers_steady) + +hydronic_hp_DataHandler.save(pid_DataHandler_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/3_train_anns_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/3_train_anns_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..a452659cb2301e1f3328b1bb7a8e47553b992570 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/3_train_anns_boptest.py @@ -0,0 +1,62 @@ +from Examples.boptest_hydronic_heat_pump_cost_based.configuration_boptest import * + +containers = load_DataHandler(pid_DataHandler_name).containers + + +# ------------------ P_el Networktrainer + +P_el_NetworkTrainer = NetworkTrainer( + inputs=( + # disturbances + Input(feature=t_amb, lag=3), + + # Stellgrößen + Input(feature=u_hp_rel, lag=3), + + # T air room + Input(feature=TAirRoom, lag=3), + + ), + output=Output(feature=power_hp), + step_size=60*15, +) + +P_el_NetworkTrainer.load_data(containers=containers) +P_el_NetworkTrainer.tune(layer_range=(1,), + neurons_range=(8, 16), + trials=5, + epochs=1000, + batch_size=100, + output_scale=6000, + loss='mse') +P_el_NetworkTrainer.save(P_hp_el_NetworkTrainer_name, override=True) + +# ----------------------------------- TAirRoom NetworkTrainer ----------------------------------- + +TAirRoom_NetworkTrainer = NetworkTrainer( + inputs=( + # disturbances + Input(feature=t_amb, lag=2), + Input(feature=rad_dir, lag=1), + + Input(feature=daily_sin, lag=2), + Input(feature=daily_cos, lag=2), + Input(feature=weekly_sin, lag=2), + Input(feature=weekly_cos, lag=2), + + # Stellgrößen + Input(feature=u_hp_rel, lag=4), + + # T air room + Input(feature=TAirRoom, lag=4), + + ), + output=Output(feature=d_TAirRoom), + step_size=60*15 +) + +TAirRoom_NetworkTrainer.load_data(containers=containers) +TAirRoom_NetworkTrainer.tune(layer_range=(1,), neurons_range=(8, 16), trials=5, epochs=1000, batch_size=100) +TAirRoom_NetworkTrainer.save(d_TAir_NetworkTrainer_name, override=True) + + diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/4_mpc_online_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/4_mpc_online_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..415b026d9a87384b9b98fa2603c78b820d195daf --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/4_mpc_online_boptest.py @@ -0,0 +1,74 @@ +from Examples.boptest_hydronic_heat_pump_cost_based.configuration_boptest import * + +MPC_DataHandler_name = 'mpc_online_2' +# load ann1 +TAirRoom_NetworkTrainer = load_NetworkTrainer(d_TAir_NetworkTrainer_name+'online_learning') +TAirRoom_NetworkTrainer.load_best_ann(loc=0) + +# load ann2 +P_el_NetworkTrainer = load_NetworkTrainer(P_hp_el_NetworkTrainer_name+'online_learning') +P_el_NetworkTrainer.load_best_ann(loc=0) +TAirRoom.mode = 'economic' + +hydronic_MPC = ModelPredictive( + dt=60*15, + N=96, + objectives=( + Objective(feature=TAirRoom, weight=25, k_0_offset=1), + Objective(feature=costs_el, weight=10, norm=1000, k_N_offset=-1, cost_order=CostOrder.linear), + Objective(feature=d_u_hp_rel, weight=1, norm=1 ,k_N_offset=-1), + ), + constraints=( + Constraint(features=(u_hp_rel,), lb=0, ub=1, k_N_offset=-1), + ), + + model=hydronic_hp_model, + disturbances_df=pd.DataFrame(), + network_trainers=(TAirRoom_NetworkTrainer, P_el_NetworkTrainer,), + solver_options={'verbose': False, + 'ipopt': {'print_level': 2, + 'linear_solver': 'ma27'}} +) + +hydronic_hp_Simulator.plotter.sub_folder_name = 'online_mpc' +hydronic_hp_system.setup(start_time=0,warmup_period=7*24*3600) +hydronic_hp_system.activate_ctrl_layer({'oveHeaPumY_activate': 1}) + +hydronic_hp_MPC_DataHandler = DataHandler() + +# online mpc loop +for repetition in range(12): + + # run mpc and add to DataHandler + hydronic_DataContainer = hydronic_hp_Simulator.run( + controllers=(hydronic_MPC,), + duration=60 * 60 * 24 * 6, + ) + + # split data into training, testing and validating + hydronic_DataContainers = hydronic_DataContainer.split_container(testing_share=0.2,training_share=0.6,validating_share=0.2) + hydronic_hp_MPC_DataHandler.add_containers(*hydronic_DataContainers) + hydronic_MPC.reinitialize_mpc = True + + # online learning + hydronic_hp_Simulator.retrain_anns( + containers=hydronic_DataContainers, + network_trainer=TAirRoom_NetworkTrainer, + epochs=500, + batch_size=250, + clear_data=False, + ) + hydronic_hp_Simulator.retrain_anns( + containers=hydronic_DataContainers, + network_trainer=P_el_NetworkTrainer, + epochs=500, + batch_size=250, + clear_data=False, + ) + + +hydronic_hp_MPC_DataHandler.save(MPC_DataHandler_name, override=True) +TAirRoom_NetworkTrainer.save_ann() +P_el_NetworkTrainer.save_ann() +TAirRoom_NetworkTrainer.save(d_TAir_NetworkTrainer_name+'_online_learning_2', override=True) +P_el_NetworkTrainer.save(P_hp_el_NetworkTrainer_name+'_online_learning_2', override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/configuration_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/configuration_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..6663e2165d68ae669e1b6acbe45178c2cfb550d9 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_cost_based/configuration_boptest.py @@ -0,0 +1,119 @@ +import numpy as np +import pandas as pd +from ddmpc.controller import * +from ddmpc.modeling import * +from ddmpc.utils import * + + +# ---------------------------------------------- names ----------------------------------------------- +pid_DataHandler_name = 'hydronic_PID_Data' +d_TAir_NetworkTrainer_name = 'd_TAir_NetworkTrainer' +P_hp_el_NetworkTrainer_name = 'P_hp_el_NetworkTrainer' +MPC_DataHandler_name = "Online_Learning_MPC" +# -------------------------------------------- FEATURES -------------------------------------------- +time = Time(dis_name='Simulation Time', var_name='SimTime') + +t_amb = Temperature(dis_name='Ambient temperature_', + var_name='TDryBul', + plt_opts=PlotOptions(color=blue, + line=line_solid, + label='Ambient Temperature')) +rad_dir = Radiation(dis_name='direct radiation', + var_name='HDirNor', + plt_opts=PlotOptions(color=light_red, line=line_solid, label='Radiation')) + +TAirRoom = Controlled( + dis_name='TAir', + var_name='reaTZon_y', + mode='random', + plt_opts=PlotOptions(color=red, line=line_solid), + day_start=8, + day_end=18, + day_target=295.15, + day_lb=294.15, + day_ub=296.15, + night_lb=290.15, + night_ub=300.15, + night_target=295.15, + random_step_size=3600*4 +) + +d_TAirRoom = Change(base_feature=TAirRoom) + +u_hp_rel = RelPower(var_name='oveHeaPumY_u', + dis_name='u_hp', + plt_opts=PlotOptions(color=blue, line=line_solid, label='u_hp'), + lb=0, + ub=1, + default=0) +d_u_hp_rel = Change(base_feature=u_hp_rel) + +daily_sin = PeriodicTime(name='Daily Sin', time=time, function=np.sin, frequency=60 * 60 * 24) +daily_cos = PeriodicTime(name='Daily Cos', time=time, function=np.cos, frequency=60 * 60 * 24) +weekly_sin = PeriodicTime(name='Weekly Sin', time=time, function=np.sin, frequency=60 * 60 * 24 * 7) +weekly_cos = PeriodicTime(name='Weekly Cos', time=time, function=np.cos, frequency=60 * 60 * 24 * 7) + +power_fan = PowerMeas(var_name='reaPFan_y', dis_name='el. Power Fan', plt_opts=PlotOptions(color=blue, line=line_dotted, label='P_fan'),) +power_hp = PowerMeas(var_name='reaPHeaPum_y', dis_name='el. Power HP', plt_opts=PlotOptions(color=red, line=line_solid, label='P_hp'),) +power_ec = PowerMeas(var_name='reaPPumEmi_y', dis_name='el. Power emission circuit', plt_opts=PlotOptions(color=grey, line=line_dashdot, label='P_ec'),) + +price_el = Price(var_name='PriceElectricPowerHighlyDynamic', dis_name='el. Power Price', plt_opts=PlotOptions(color=black, line=line_solid, label='P_ec')) + +costs_el = Product(base_feature_one=price_el, base_feature_two=power_hp,plt_opts=PlotOptions(color=black, line=line_solid, label='P_ec')) +# ------------------------------------------- Model ------------------------------------------- + +hydronic_hp_model = Model( + t=time, + X=( + TAirRoom, + power_hp, + ), + U=( + u_hp_rel, + ), + D=( + t_amb, + rad_dir, + daily_sin, + daily_cos, + weekly_sin, + weekly_cos, + price_el, + ), + C=( + d_TAirRoom, + d_u_hp_rel, + costs_el, + + ), + T=( + power_fan, + power_ec, + ), +) + +# ------------------------------------------- Plotter ------------------------------------------- + +plotter_hydronic = Plotter( + SubPlot(features=(TAirRoom,), y_label='Room temperature in °C', shift=273.15), + SubPlot(features=(u_hp_rel,), y_label='Modulation hp', step=True), + SubPlot(features=(t_amb,), y_label='Ambient temperature in °C', normalize=False, shift=273.15), + SubPlot(features=(power_fan, power_hp, power_ec), y_label='el. Power in W', normalize=False), + SubPlot(features=(price_el,), y_label='el. Price in €', normalize=False), + size=(8, 8) +) + + +# ---------------------------------------------- FMU ----------------------------------------------- + +hydronic_hp_system = BOPTESTSystem(model=hydronic_hp_model, + step_size=60 * 15, + url='http://134.130.166.203:5000', + name='simple_test') + +# ------------------------------------------ Simulator ------------------------------------------ + +hydronic_hp_Simulator = Simulator( + system=hydronic_hp_system, + plotter=plotter_hydronic +) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/2_generate_data_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/2_generate_data_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..615edd1414dfc85913232ca9332f397d022d67a9 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/2_generate_data_boptest.py @@ -0,0 +1,24 @@ +from Examples.boptest_hydronic_heat_pump_hp_ctrl.configuration_boptest import * + +# PID controller for the HP +HP_PID = PID( + y=TAirRoom, + u=u_hp_rel, + dt=60*30, + Kp=0.05, + Ti=300, + Td=0, +) + + +TAirRoom.mode = 'random' + +hydronic_hp_Simulator.plotter.sub_folder_name = 'pid' +hydronic_hp_system.setup(start_time=0,warmup_period=7*24*3600) +hydronic_hp_system.activate_ctrl_layer({'oveHeaPumY_activate':1}) +hydronic_hp_DataContainer = hydronic_hp_Simulator.run(controllers=(HP_PID,), + duration=60 * 60 * 24 * 7) +hydronic_hp_DataContainers = hydronic_hp_DataContainer.split_container(training_share=0.7,testing_share=0.15,validating_share=0.15) + +hydronic_hp_DataHandler = DataHandler(containers=hydronic_hp_DataContainers) +hydronic_hp_DataHandler.save(pid_DataHandler_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/3_train_anns_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/3_train_anns_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..a40ff4858884745e0ce18171c0f21023a6e55b3f --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/3_train_anns_boptest.py @@ -0,0 +1,32 @@ +from Examples.boptest_hydronic_heat_pump_hp_ctrl.configuration_boptest import * +hydronic_DataHandler = load_DataHandler(pid_DataHandler_name) +containers = load_DataHandler(pid_DataHandler_name).containers + +# ----------------------------------- TAirRoom NetworkTrainer ----------------------------------- + +TAirRoom_NetworkTrainer = NetworkTrainer( + inputs=( + # disturbances + Input(feature=t_amb, lag=2), + Input(feature=rad_dir, lag=1), + + Input(feature=daily_sin, lag=2), + Input(feature=daily_cos, lag=2), + Input(feature=weekly_sin, lag=2), + Input(feature=weekly_cos, lag=2), + + # Stellgrößen + Input(feature=u_hp_rel, lag=6), + + # T air room + Input(feature=TAirRoom, lag=6), + + ), + output=Output(feature=d_TAirRoom), + step_size=60*30 +) + +TAirRoom_NetworkTrainer.load_data(containers=containers) +TAirRoom_NetworkTrainer.tune(layer_range=(1,), neurons_range=(8, 16), trials=10, epochs=1000, batch_size=100) +TAirRoom_NetworkTrainer.save(d_TAir_NetworkTrainer_name, override=True) + diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/4_mpc_online_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/4_mpc_online_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..8985c1377fe92f13f79ae56a509d1e4112be39fd --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/4_mpc_online_boptest.py @@ -0,0 +1,56 @@ +from Examples.boptest_hydronic_heat_pump_hp_ctrl.configuration_boptest import * + +# load ann1 +TAirRoom_NetworkTrainer = load_NetworkTrainer(d_TAir_NetworkTrainer_name) +TAirRoom_NetworkTrainer.load_best_ann(loc=0) + +TAirRoom.mode = 'economic' + +hydronic_MPC = ModelPredictive( + dt=60*30, + N=32, + objectives=( + Objective(feature=TAirRoom, weight=50, k_0_offset=1), + Objective(feature=u_hp_rel, weight=1, norm=1, k_N_offset=-1, cost_order=CostOrder.linear), + Objective(feature=d_u_hp_rel, weight=0.01, norm=1 , k_N_offset=-1), + ), + constraints=( + Constraint(features=(u_hp_rel,), lb=0, ub=1, k_N_offset=-1), + ), + + model=hydronic_hp_model, + disturbances_df=pd.DataFrame(), + network_trainers=(TAirRoom_NetworkTrainer,), +) + +hydronic_hp_Simulator.plotter.sub_folder_name = 'online_mpc' +hydronic_hp_system.setup(start_time=0,warmup_period=7*24*3600) +hydronic_hp_system.activate_ctrl_layer({'oveHeaPumY_activate':1}) + +hydronic_hp_MPC_DataHandler = DataHandler() + +# online mpc loop +for repetition in range(1): + + # run mpc and add to DataHandler + hydronic_DataContainer = hydronic_hp_Simulator.run( + controllers=(hydronic_MPC,), + duration=60 * 60 * 24 * 3, + ) + + # split data into training, testing and validating + hydronic_DataContainers = hydronic_DataContainer.split_container(testing_share=0.15,training_share=0.7,validating_share=0.15) + hydronic_hp_MPC_DataHandler.add_containers(hydronic_DataContainers) + + # online learning + hydronic_hp_Simulator.retrain_anns( + containers=hydronic_DataContainers, + network_trainer=TAirRoom_NetworkTrainer, + epochs=500, + batch_size=250, + clear_data=False, + ) + hydronic_MPC.reinitialize_mpc = True + + +hydronic_hp_MPC_DataHandler.save(MPC_DataHandler_name, override=True) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/configuration_boptest.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/configuration_boptest.py new file mode 100644 index 0000000000000000000000000000000000000000..8a326a47d132cc4b59a00fa43eddf29c06307e33 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/Examples/boptest_hydronic_heat_pump_hp_ctrl/configuration_boptest.py @@ -0,0 +1,113 @@ +import numpy as np +import pandas as pd +from ddmpc.controller import * +from ddmpc.modeling import * +from ddmpc.utils import * + + +# ---------------------------------------------- names ----------------------------------------------- +pid_DataHandler_name = 'hydronic_PID_Data' +d_TAir_NetworkTrainer_name = 'd_TAir_NetworkTrainer' +P_hp_el_NetworkTrainer_name = 'P_hp_el_NetworkTrainer' +MPC_DataHandler_name = "Online_Learning_MPC" +# -------------------------------------------- FEATURES -------------------------------------------- +time = Time(dis_name='Simulation Time', var_name='SimTime') + +t_amb = Temperature(dis_name='Ambient temperature ', + var_name='TDryBul', + plt_opts=PlotOptions(color=blue, + line=line_solid, + label='Ambient Temperature')) +rad_dir = Radiation(dis_name='direct radiation', + var_name='HDirNor', + plt_opts=PlotOptions(color=light_red, line=line_solid, label='Radiation')) + +TAirRoom = Controlled( + dis_name='TAir', + var_name='reaTZon_y', + mode='random', + plt_opts=PlotOptions(color=red, line=line_solid), + day_start=8, + day_end=18, + day_target=295.15, + day_lb=294.15, + day_ub=296.15, + night_lb=290.15, + night_ub=300.15, + night_target=295.15, + random_step_size=3600*4 +) + +d_TAirRoom = Change(base_feature=TAirRoom) + +u_hp_rel = RelPower(var_name='oveHeaPumY_u', + dis_name='u_hp', + plt_opts=PlotOptions(color=blue, line=line_solid, label='u_hp'), + lb=0, + ub=1, + default=0) +d_u_hp_rel = Change(base_feature=u_hp_rel) + +daily_sin = PeriodicTime(name='Daily Sin', time=time, function=np.sin, frequency=60 * 60 * 24) +daily_cos = PeriodicTime(name='Daily Cos', time=time, function=np.cos, frequency=60 * 60 * 24) +weekly_sin = PeriodicTime(name='Weekly Sin', time=time, function=np.sin, frequency=60 * 60 * 24 * 7) +weekly_cos = PeriodicTime(name='Weekly Cos', time=time, function=np.cos, frequency=60 * 60 * 24 * 7) + +power_fan = PowerMeas(var_name='reaPFan_y', dis_name='el. Power Fan', plt_opts=PlotOptions(color=blue, line=line_dotted, label='P_fan'),) +power_hp = PowerMeas(var_name='reaPHeaPum_y', dis_name='el. Power HP', plt_opts=PlotOptions(color=red, line=line_solid, label='P_hp'),) +power_ec = PowerMeas(var_name='reaPPumEmi_y', dis_name='el. Power emission circuit', plt_opts=PlotOptions(color=grey, line=line_dashdot, label='P_ec'),) + +# ------------------------------------------- Model ------------------------------------------- + +hydronic_hp_model = Model( + t=time, + X=( + TAirRoom, + ), + U=( + u_hp_rel, + ), + D=( + t_amb, + rad_dir, + daily_sin, + daily_cos, + weekly_sin, + weekly_cos, + ), + C=( + d_TAirRoom, + d_u_hp_rel, + + ), + T=( + power_fan, + power_hp, + power_ec, + ), +) + +# ------------------------------------------- Plotter ------------------------------------------- + +plotter_hydronic = Plotter( + SubPlot(features=(TAirRoom,), y_label='Room temperature in °C', shift=273.15), + SubPlot(features=(u_hp_rel,), y_label='Modulation hp', step=True), + SubPlot(features=(t_amb, rad_dir), y_label='disturbances in %', normalize=True), + SubPlot(features=(power_fan, power_hp, power_ec), y_label='el. Power in W', normalize=False), + size=(8, 8) +) + + +# ---------------------------------------------- FMU ----------------------------------------------- + +hydronic_hp_system = BOPTESTSystem(model=hydronic_hp_model, + step_size=60 * 30, + url='http://134.130.166.203:5000', + name='simple_test') + +# ------------------------------------------ Simulator ------------------------------------------ + +hydronic_hp_Simulator = Simulator( + system=hydronic_hp_system, + plotter=plotter_hydronic +) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__init__.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..38966758dcf659f96f225eac86ddd1343507f1f7 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__init__.py @@ -0,0 +1,7 @@ +import ddmpc.utils +import ddmpc.modeling +import ddmpc.controller + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-38.pyc b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bc414658b7b61d44fc12378066b524397f9398dc Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-38.pyc differ diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-39.pyc b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..783edfab405e961b15d27b38d24d7a23404d01ea Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/__pycache__/__init__.cpython-39.pyc differ diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/__init__.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..5d457daa4d87b0959efefbcf50b6086d3c15c003 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/__init__.py @@ -0,0 +1,3 @@ +from ddmpc.controller.controllers import * +from ddmpc.controller.casadi_neural_network import * +from ddmpc.controller.mpc import * diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/casadi_neural_network.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/casadi_neural_network.py new file mode 100644 index 0000000000000000000000000000000000000000..34b4dfedd700c1753682ad7ab2662efc0abff9c6 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/casadi_neural_network.py @@ -0,0 +1,386 @@ +from keras import models, layers, Sequential +from casadi import * + + +class Layer: + """ + Single layer of an artificial neural network. + """ + + def __init__(self, layer: layers.Layer): + + self.config = layer.get_config() + + # name + if 'name' in self.config: + self.name = self.config['name'] + + # units + if 'units' in self.config: + self.units = self.config['units'] + + # activation function + if 'activation' in self.config: + self.activation = self.get_activation(layer.get_config()['activation']) + + # input / output shape + self.input_shape = layer.input_shape[1:] + self.output_shape = layer.output_shape[1:] + + # update the dimensions to two dimensions + self.update_dimensions() + + # symbolic input layer + self.input_layer = MX.sym('input_layer', self.input_shape[0], self.input_shape[1]) + + def __str__(self): + + ret = '' + + if hasattr(self, 'units'): + ret += f'\tunits:\t\t\t\t{self.units}\n' + if hasattr(self, 'activation'): + ret += f'\tactivation:\t\t\t{self.activation.__str__()}\n' + if hasattr(self, 'recurrent_activation'): + ret += f'\trec_activation:\t\t{self.recurrent_activation.__str__()}\n' + ret += f'\tinput_shape:\t\t{self.input_shape}\n' + ret += f'\toutput_shape:\t\t{self.output_shape}\n' + + return ret + + def update_dimensions(self): + """ + CasADi does only work with two dimensional arrays. So the dimensions must be updated. + """ + + if len(self.input_shape) == 1: + self.input_shape = (1, self.input_shape[0]) + elif len(self.input_shape) == 2: + self.input_shape = (self.input_shape[0], self.input_shape[1]) + else: + raise ValueError("Please check input dimensions.") + + if len(self.output_shape) == 1: + self.output_shape = (1, self.output_shape[0]) + elif len(self.output_shape) == 2: + self.output_shape = (self.output_shape[0], self.output_shape[1]) + else: + raise ValueError("Please check output dimensions.") + + @staticmethod + def get_activation(function: str): + blank = MX.sym('blank') + + if function == 'sigmoid': + return Function(function, [blank], [1 / (1 + exp(-blank))]) + + elif function == 'tanh': + return Function(function, [blank], [tanh(blank)]) + + elif function == 'relu': + return Function(function, [blank], [fmax(0, blank)]) + + elif function == 'exponential': + return Function(function, [blank], [exp(blank)]) + + elif function == 'softplus': + return Function(function, [blank], [log(1 + exp(blank))]) + + elif function == 'gaussian': + return Function(function, [blank], [exp(-blank ** 2)]) + + elif function == 'linear': + return Function(function, [blank], [blank]) + + else: + raise ValueError(f'Unknown activation function: "{function}"') + + +class Dense(Layer): + """ + Fully connected layer. + """ + + def __init__(self, layer: layers.Dense): + + super(Dense, self).__init__(layer) + + # weights and biases + self.weights, self.biases = layer.get_weights() + self.biases = self.biases.reshape(1, self.biases.shape[0]) + + # check input dimension + if self.input_shape[1] != self.weights.shape[0]: + raise ValueError(f'Please check the input dimensions of this layer. Layer with error: {self.name}') + + def forward(self, input): + + # forward pass + f = self.activation(input @ self.weights + self.biases) + + return f + + def inspect(self): + + print('Weights') + print(self.weights) + print('Biases') + print(self.biases) + + +class Flatten(Layer): + + def __init__(self, layer: layers.Flatten): + + super(Flatten, self).__init__(layer) + + def forward(self, input): + + # flattens the input + f = input[0, :] + for row in range(1, input.shape[0]): + f = horzcat(f, input[row, :]) + + return f + + +class BatchNormalising(Layer): + """ + Batch Normalizing layer. Make sure the axis setting is set to two. + """ + + def __init__(self, layer: layers.BatchNormalization): + + super(BatchNormalising, self).__init__(layer) + + # weights and biases + self.gamma = np.vstack([layer.get_weights()[0]]*self.input_shape[0]) + self.beta = np.vstack([layer.get_weights()[1]]*self.input_shape[0]) + self.mean = np.vstack([layer.get_weights()[2]]*self.input_shape[0]) + self.var = np.vstack([layer.get_weights()[3]] * self.input_shape[0]) + self.epsilon = layer.get_config()['epsilon'] + + # check Dimensions + if self.input_shape != self.gamma.shape: + axis = self.config['axis'][0] + raise ValueError(f'Dimension mismatch. Normalized axis: {axis}') + + # symbolic input layer + self.input_layer = MX.sym('input_layer', self.input_shape[0], self.input_shape[1]) + + def forward(self, input): + + # forward pass + f = (input - self.mean) / (sqrt(self.var + self.epsilon)) * self.gamma + self.beta + + return f + + def inspect(self): + + print('gamma:') + print(self.gamma) + print('beta:') + print(self.beta) + print('mean:') + print(self.mean) + print('var:') + print(self.var) + print('epsilon:') + print(self.epsilon) + + +class LSTM(Layer): + """ + Long Short Term Memory cell. + """ + + def __init__(self, layer: layers.LSTM): + + super(LSTM, self).__init__(layer) + + # recurrent activation + self.recurrent_activation = self.get_activation(layer.get_config()['recurrent_activation']) + + # load weights and biases + W = layer.get_weights()[0] + U = layer.get_weights()[1] + b = layer.get_weights()[2] + + # weights (kernel) + self.W_i = W[:, :self.units] + self.W_f = W[:, self.units: self.units * 2] + self.W_c = W[:, self.units * 2: self.units * 3] + self.W_o = W[:, self.units * 3:] + + # weights (recurrent kernel) + self.U_i = U[:, :self.units] + self.U_f = U[:, self.units: self.units * 2] + self.U_c = U[:, self.units * 2: self.units * 3] + self.U_o = U[:, self.units * 3:] + + # biases + self.b_i = np.expand_dims(b[:self.units], axis=0) + self.b_f = np.expand_dims(b[self.units: self.units * 2], axis=0) + self.b_c = np.expand_dims(b[self.units * 2: self.units * 3], axis=0) + self.b_o = np.expand_dims(b[self.units * 3:], axis=0) + + # initial memory and output + self.h_0 = np.zeros((1, self.units)) + self.c_0 = np.zeros((1, self.units)) + + def forward(self, input): + + # check input shape + if input.shape != self.input_shape: + print('Dimension mismatch!') + + # initial + c = self.c_0 + h = self.h_0 + + # number of time steps + steps = self.input_shape[0] + + # forward pass + for i in range(steps): + + # input for the current step + x = input[i, :] + + # calculate memory(c) and output(h) + c, h = self.step(x, c, h) + + # here the output has to be transposed, because of the dense layer implementation + return h + + def step(self, x_t, c_prev, h_prev): + + # gates + i_t = self.recurrent_activation(x_t @ self.W_i + h_prev @ self.U_i + self.b_i) + f_t = self.recurrent_activation(x_t @ self.W_f + h_prev @ self.U_f + self.b_f) + o_t = self.recurrent_activation(x_t @ self.W_o + h_prev @ self.U_o + self.b_o) + c_t = self.activation(x_t @ self.W_c + h_prev @ self.U_c + self.b_c) + + # memory and output + c_next = f_t * c_prev + i_t * c_t + h_next = o_t * self.activation(c_next) + + return c_next, h_next + + +class Rescaling(Layer): + + def __init__(self, layer: layers.Rescaling): + super(Rescaling, self).__init__(layer) + + # weights and biases + self.offset = layer.offset + self.scale = layer.scale + + def forward(self, input): + + # forward pass + f = input * self.scale + self.offset + + return f + + def inspect(self): + + print('offset:') + print(self.offset) + print('scale:') + print(self.scale) + + +class NeuralNetwork: + """ + Generic implementations of sequential Keras models in CasADi. + """ + + def __init__(self, model: models): + """ + Supported layers: + - Dense (Fully connected layer) + - Flatten (Reduces the input dimension to 1) + - BatchNormalizing (Normalization) + - LSTM (Recurrent Cell) + :param model: Sequential Keras Model + """ + + # list with all layers + self.layers = [] + + # forward function + self.predict = None + + # construct from keras model + self.construct(model) + + def __str__(self): + + ret = '\n--------------------- Casadi Neural Network ---------------------\n\n' + + for layer in self.layers: + ret += f'{layer.__class__.__name__}\n' + ret += f'{layer.__str__()}\n' + + ret += '--------------------- Casadi Neural Network ---------------------\n' + + return ret + + @property + def input_shape(self): + return self.layers[0].input_shape + + @property + def output_shape(self): + return self.layers[-1].output_shape + + def construct(self, model: models): + + # Add layers one by + for layer in model.layers: + + # get the name of the layer + name = layer.get_config()['name'] + + # recreate the matching layer + if 'dense' in name: + self.add_layer(Dense(layer)) + elif 'flatten' in name: + self.add_layer(Flatten(layer)) + elif 'batch_normalization' in name: + self.add_layer(BatchNormalising(layer)) + elif 'lstm' in name: + self.add_layer(LSTM(layer)) + elif 'rescaling' in name: + self.add_layer(Rescaling(layer)) + else: + raise NotImplementedError(f'Type "{name}" is not supported.') + + # update the predict function + self.update_forward() + + def update_forward(self): + + # create symbolic input layer + input_layer = self.layers[0].input_layer + + # initialize + f = input_layer + + # pass forward through all layers + for layer in self.layers: + f = layer.forward(f) + + # create the prediction function + self.predict = Function('forward', [input_layer], [f]) + + def add_layer(self, layer): + + # append layer + self.layers.append(layer) + + def inspect(self): + for layer in self.layers: + layer.inspect() diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/controllers.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/controllers.py new file mode 100644 index 0000000000000000000000000000000000000000..4aa1632dc56855ee11aa756a661b6872444f6104 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/controllers.py @@ -0,0 +1,142 @@ +from ddmpc.modeling import * +from ddmpc.utils import * +import pandas as pd + +class Controller: + """ + Super Class for every controller. + """ + + def __init__(self, + dt: int, + N: int = 1): + + + + # step size + self.dt = dt + self.N = N + + def __call__(self, df: pd.DataFrame) -> dict: + """ + This function is called during the simulation. + :param df: The DataFrame contains the current simulation data. + """ + raise NotImplementedError() + + def set_disturbances(self,disturbance_df: pd.DataFrame): + """ + Set Disturbance DataFrame + :param disturbance_df: disturbance dataFrame + :return: + """ + self.disturbances_df = disturbance_df + + + +class PID(Controller): + + def __init__( + self, + y: Controlled, + u: Control, + dt: int, + Kp: float, + Ti: float, + Td: float, + reverse_act: float = False, + + ): + """ + Simple PID controller + :param y: Controlled feature. + :param u: Control feature. + :param dt: Step size. Must be a multiple of the step size of the FMU. + :param Kp: Pproportional + :param Ti: Integral + :param Td: Differential + :param reverse_act: Reverse the control action + :param clamp_i_high: Clamps the integrator + :param clamp_i_low: Clamps the integrator + """ + super(PID, self).__init__( + dt=dt, + N=16) + + # control and controlled feature + self.u = u + self.y = y + + # PID parameters + self.Kp = Kp + self.Ti = Ti + self.Td = Td + + # integrator value + self.i = 0 + + # last error + self.e_last = 0 + + # reverse action + self.reverse_act = reverse_act + + def __str__(self): + + return f'{self.__class__.__name__} - {self.y} controlled by {self.u}' + + def __repr__(self): + return f'{self.__class__.__name__}' + + def __call__(self, df: pd.DataFrame) -> dict: + """ + This function is called during the simulation of the FMU. + It returns the control actions. + :param df: Data Frame with current simulation data. + :return: Dict with control action. + """ + + # empty control dict + control_dict = dict() + + # set default value + control_dict[self.u.col_name] = self.u.default + + # control difference depending on control direction + e = self.y.current_error + + # reverse action if reverse_act is true + if self.reverse_act: + e = -e + + # Integral + if self.Ti > 0: + self.i += 1 / self.Ti * e * self.dt + + else: + self.i = 0 + + # Differential + if self.dt > 0 and self.Td: + de = self.Td * (e - self.e_last) / self.dt + else: + de = 0 + + # PID output + output = self.Kp * (e + self.i + de) + + # update e_last + self.e_last = e + + # Limiter + if output < self.u.lb: + output = self.u.lb + elif output > self.u.ub: + output = self.u.ub + + # Anti wind up + self.i = output / self.Kp - e + + control_dict[self.u.col_name] = output + + return control_dict diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/mpc.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..b2c410b1b9aaabd184642d26cec4f69a681790d1 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/controller/mpc.py @@ -0,0 +1,615 @@ +from ddmpc.controller.controllers import Controller +from ddmpc.modeling import * +from ddmpc.modeling.features import Change, MovingSum, Subtraction +import ddmpc.controller.casadi_neural_network as cnn +import ddmpc.utils.formatting as fmt + +import pandas as pd +from casadi import * + +import time +from enum import Enum, auto + +debug_mode = False +print_solution = False +print_nlp = False + + +class CostOrder(Enum): + linear = auto() + quadratic = auto() + +class Objective: + + def __init__( + self, + feature: Feature, + weight: float, + weight_offset: float = 0, + norm: float = 1, + k_0_offset: int = 0, + k_N_offset: int = -1, + cost_order: CostOrder = CostOrder.quadratic, + ): + """ + + :param feature: feature to be considered in the cost function + :param weight: weighting of the featurer + :param weight_offset: offset + :param norm: normalization + :param k_0_offset: offset for the first value(s) of the Feature (e.g. first state is measured and cannot be + changed -> therefore no consideration in cost function) + :param k_N_offset: offset for the last value(s) of the feature (e.g. last input has no effect) + :param cost_order: order of the cost term ['linear','quadratic'] to be implemented: abs_relaxed (currently only + for not controlled features implemented) + """ + self.feature = feature + + self.weight = weight + self.weight_offset = weight_offset + + self.norm = norm + + self.k_0_offset = k_0_offset + self.k_N_offset = k_N_offset + + self.cost_order = cost_order + + def __str__(self): + return f'Objective(feature={self.feature}, weight={self.weight})' + + +class Constraint: + + def __init__( + self, + features: tuple, + lb: float, + ub: float, + k_0_offset: int = 0, + k_N_offset: int = -1, + ): + self.features = features + + self.k_0_offset = k_0_offset + self.k_N_offset = k_N_offset + + self.lb = lb + self.ub = ub + + def __str__(self): + return f'Constraint(features={self.features}, lb={self.lb}, ub={self.ub})' + + +class ModelPredictive(Controller): + + def __init__( + self, + dt: int, + N: int, + objectives: tuple, + constraints: tuple, + model: Model, + disturbances_df: pd.DataFrame, + network_trainers: tuple, + solver_options: dict, + ): + + super(ModelPredictive, self).__init__( + dt=dt, + ) + + self.model = model + + self.network_trainers = network_trainers + self.N = N + self.objectives = objectives + self.constraints = constraints + + # list with g constraints + self.g = list() + self.lbg = list() + self.ubg = list() + + # list with par & opt vars + self.PAR_LIST = list() + self.OPT_LIST = list() + + # nlp solver + self.nlp_solver = None + self.solver_options = solver_options + + # data frame with future disturbances + self.disturbances_df = disturbances_df + + # list with warm start values + self.warm_start = None + + self.reinitialize_mpc = True + + # print self + print(self.__str__()) + + def __str__(self): + + ret = 'ModelPredictive(\n' + ret +='\tObjectives:\n' + for objective in self.objectives: + ret += f'\t\t{objective}\n' + ret +='\tConstraints:\n' + for constraint in self.constraints: + ret += f'\t\t{constraint}\n' + ret += ')\n' + return ret + + def __call__(self, df: pd.DataFrame) -> dict: + + # start when the initialization is finished + + if (df['SimTime'].iloc[-1] - df['SimTime'].iloc[0]) <= self.dt * self.max_lag: + return {} + + if self.reinitialize_mpc: + self.create_nlp_solver() + self.reinitialize_mpc = False + + + # get the par vars + PAR_VARS = self.get_par_vars(df) + + start_time = time.time() + + # call the solver + if self.warm_start is None: + solution = self.nlp_solver( + lbg=vertcat(*self.lbg), + ubg=vertcat(*self.ubg), + p=PAR_VARS, + ) + else: + solution = self.nlp_solver( + lbg=vertcat(*self.lbg), + ubg=vertcat(*self.ubg), + p=PAR_VARS, + x0=self.warm_start + ) + + for controlled in self.model.controlled: + controlled.df['solver_call'].iloc[-1] = time.time() - start_time + + self.warm_start = solution['x'] + + # extract the optimal controls from the solver solution + control_dict = {} + for i, dct in enumerate(self.OPT_LIST): + + # optimal control + for u in self.model.U: + + if u == dct.get('feature') and dct.get('k') == 0: + control_dict[u.col_name] = float(solution['x'].toarray()[i]) + + # predicted value + # for j in range(1, self.N): + # for controlled in self.controlled: + # if self.y_con == dct.get('object') and dct.get('k') == j: + # predicted = float(solution['x'].toarray()[i]) + # self.trajectory_and_bounds.df.loc[self.trajectory_and_bounds.df['SimTime'] == t + dt * j, f'predicted_trajectory_+{j}'] = predicted + + # debug mode + if debug_mode: + + print('\nSOLVER INFO:') + print('\t', self.nlp_solver) + print('\t len(self.ubg):', len(self.ubg)) + print('\t len(self.lbg):', len(self.lbg)) + print('\t self.PAR_LIST:', len(self.PAR_LIST)) + print('\t self.OPT_LIST:', len(self.OPT_LIST)) + print('\t time_steps :', self.dt) + + print('\nPAR_VARS:') + for x, y in zip(self.PAR_LIST, PAR_VARS.toarray()): + print(f'\t{x}={np.round(y, decimals=3)}') + + # print solution + if print_solution: + + # solver status + if self.nlp_solver.stats()['return_status'] != 'Solve_Succeeded': + print( + f'{fmt.FAIL}Solver return status: {self.nlp_solver.stats()["return_status"]}){fmt.ENDC}') + else: + print( + f'{fmt.BOLD}Solver return status: {self.nlp_solver.stats()["return_status"]}){fmt.ENDC}') + + # solution + print('\nSOLUTION:') + for x, y in zip(self.OPT_LIST, solution['x'].toarray()): + print(f'\t{x.get("object")}[k={x.get("k")}]={np.round(y, decimals=3)}') + + print(f'control_dict: {control_dict}') + + # print optimal controls + print('\nOptimal controls:') + for u, value in control_dict.items(): + print(f'\t{u}={round(value, 5)}') + + return control_dict + + @property + def max_lag(self): + return max([trainer.max_lag for trainer in self.network_trainers]) + + def create_nlp_solver(self): + + # ------------------------ initialization --------------------------- + + obj = list() # objective + self.g = list() # constraints + self.lbg = list() # lbg + self.ubg = list() # ubg + + self.PAR_LIST = list() # PAR LIST + self.OPT_LIST = list() # OPT LIST + + PAR_VARS = list() # PAR VARS + OPT_VARS = list() # OPT VARS + VARS_DICT = dict() # Dict with variables as keys + + # ------------------------ par_vars & opt_vars --------------------------- + + for x in self.model.X: # state + VARS_DICT[x] = {} + for k in range(-self.max_lag, 1): + symbolic = MX.sym(f'PAR X {x}[k={"%+d" % k}]', 1) + VARS_DICT[x][k] = symbolic + PAR_VARS.append(symbolic) + self.PAR_LIST.append({'feature': x, 'info': 'value', 'k': k}) + + for k in range(1, self.N + 1): + symbolic = MX.sym(f'OPT X {x}[k={"%+d" % k}]', 1) + VARS_DICT[x][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': x, 'info': 'value', 'k': k}) + + for u in self.model.U: # controls + VARS_DICT[u] = {} + for k in range(-self.max_lag, 0): + symbolic = MX.sym(f'PAR U {u}[k={"%+d" % k}]', 1) + VARS_DICT[u][k] = symbolic + PAR_VARS.append(symbolic) + self.PAR_LIST.append({'feature': u, 'info': 'value', 'k': k}) + + for k in range(0, self.N): + symbolic = MX.sym(f'OPT U {u}[k={"%+d" % k}]', 1) + VARS_DICT[u][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': u, 'info': 'value', 'k': k}) + + for d in self.model.D: # disturbances + VARS_DICT[d] = {} + for k in range(-self.max_lag, self.N): + symbolic = MX.sym(f'PAR D {d}[k={"%+d" % k}]', 1) + VARS_DICT[d][k] = symbolic + PAR_VARS.append(symbolic) + self.PAR_LIST.append({'feature': d, 'info': 'value', 'k': k}) + + for c in self.model.C: # constructed + VARS_DICT[c] = {} + + for k in range(-self.max_lag, self.N + 1): + + if isinstance(c, Change): + + if k in VARS_DICT[c.base_feature] and (k - 1) in VARS_DICT[c.base_feature]: + + symbolic = MX.sym(f'OPT Change {c}[k={"%+d" % k}]', 1) + VARS_DICT[c][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': c, 'k': k}) + + elif isinstance(c, MovingSum): + + if k in VARS_DICT[c.base_feature] and (k - c.n) in VARS_DICT[c.base_feature]: + symbolic = MX.sym(f'OPT MovingSum {c}[k={"%+d" % k}]', 1) + VARS_DICT[c][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': c, 'k': k}) + + elif isinstance(c, Subtraction): + + if k in VARS_DICT[c.base_feature_one] and k in VARS_DICT[c.base_feature_one]: + + symbolic = MX.sym(f'OPT Subtraction {c}[k={"%+d" % k}]', 1) + VARS_DICT[c][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': c, 'k': k}) + + elif isinstance(c, Addition): + + if k in VARS_DICT[c.base_feature_one] and k in VARS_DICT[c.base_feature_one]: + symbolic = MX.sym(f'OPT Addition {c}[k={"%+d" % k}]', 1) + VARS_DICT[c][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': c, 'k': k}) + + elif isinstance(c, Product): + + if k in VARS_DICT[c.base_feature_one] and k in VARS_DICT[c.base_feature_one]: + symbolic = MX.sym(f'OPT Product {c}[k={"%+d" % k}]', 1) + VARS_DICT[c][k] = symbolic + OPT_VARS.append(symbolic) + self.OPT_LIST.append({'feature': c, 'k': k}) + + else: + raise NotImplementedError(f'Please contact Max. {c}') + + if print_nlp: + print(f'\n{fmt.BOLD}VARS_DICT: (max_lag={self.max_lag}, N={self.N}){fmt.ENDC}') + for feature in VARS_DICT: + print(f'\n\t{feature}:') + for lag in VARS_DICT[feature]: + print('\t\t', f'k={"%+d" % lag}:', VARS_DICT[feature][lag].__repr__()) + + # ----------------------- connect constructed vars ----------------------- + + for c in self.model.C: # constructed + for k in range(-self.max_lag, self.N + 1): + + if isinstance(c, Change): + + if k in VARS_DICT[c]: + + dC = VARS_DICT[c] + C = VARS_DICT[c.base_feature] + + # dc = c[k] - c[k-1] + self.add_constraint(dC[k] - (C[k] - C[k - 1])) + + elif isinstance(c, MovingSum): + + if k in VARS_DICT[c]: + + # mov_sum[k] = feature[k-0] + feature[k-1] +...+ feature[k-n] + mov_sum = VARS_DICT[c][k] + for i in range(k-c.n, k+1): + mov_sum -= VARS_DICT[c.base_feature][i] + + self.add_constraint(mov_sum) + + elif isinstance(c, Subtraction): + + if k in VARS_DICT[c]: + + lhs = VARS_DICT[c][k] + rhs = VARS_DICT[c.base_feature_one][k] - VARS_DICT[c.base_feature_two][k] + self.add_constraint(lhs - rhs) + + elif isinstance(c, Addition): + + if k in VARS_DICT[c]: + + lhs = VARS_DICT[c][k] + rhs = VARS_DICT[c.base_feature_one][k] + VARS_DICT[c.base_feature_two][k] + self.add_constraint(lhs - rhs) + + elif isinstance(c, Product): + + if k in VARS_DICT[c]: + + lhs = VARS_DICT[c][k] + rhs = VARS_DICT[c.base_feature_one][k] * VARS_DICT[c.base_feature_two][k] + self.add_constraint(lhs - rhs) + + else: + raise NotImplementedError('Please contact Max.') + + # ----------------------------- g constraints ---------------------------- + + for constraint in self.constraints: + + for k in range(constraint.k_0_offset, self.N + 1 + constraint.k_N_offset): + + product = 1 + for feature in constraint.features: + try: + product *= VARS_DICT[feature][k] + except: + raise ValueError(f'Feature {feature}({feature.__repr__()}) at k={k}') + + self.add_constraint(product, lbg=constraint.lb, ubg=constraint.ub) + + # ---------------------------- ann predictions ---------------------------- + + for network_trainer in self.network_trainers: + + keras_ann = network_trainer.ann + assert keras_ann is not None, f'Please make sure to provide an ANN for "{network_trainer.output.name}"' + + ca_ann = cnn.NeuralNetwork(model=keras_ann) + + if debug_mode: + ca_ann.inspect() + + for k in range(1, self.N + 1): + + if debug_mode: + print(f'\n--------- k={k} ---------') + print(f'{fmt.BOLD}Output:{fmt.ENDC}') + print('\t', VARS_DICT[network_trainer.output.feature][k]) + print(f'{fmt.BOLD}Inputs:{fmt.ENDC}') + + # get the input for the ann + input_for_ann = list() + for inp in network_trainer.inputs: + for i in range(k-1, k-inp.lag-1, -1): + input_for_ann.append(VARS_DICT[inp.feature][i]) + + if debug_mode: + print('\t', VARS_DICT[inp.feature][i]) + + input_for_ann = vertcat(*input_for_ann).T + + prediction = ca_ann.predict(input_for_ann) + + self.add_constraint(VARS_DICT[network_trainer.output.feature][k] - prediction) + + # ------------------------------ objectives ------------------------------- + + for objective in self.objectives: + + for k in range(objective.k_0_offset, self.N + 1 + objective.k_N_offset): + + if objective.feature.is_controlled: + + if objective.feature.mode == 'economic': + + # eps lb + eps_lb = MX.sym(f'OPT {objective.feature} eps lb [k={"%+d" % k}]', 1) + OPT_VARS.append(eps_lb) + self.OPT_LIST.append({'feature': objective.feature, 'info': 'lb', 'k': k}) + + # eps ub + eps_ub = MX.sym(f'OPT {objective.feature} eps ub [k={"%+d" % k}]', 1) + OPT_VARS.append(eps_ub) + self.OPT_LIST.append({'feature': objective.feature, 'info': 'ub', 'k': k}) + + # Xk + Xk = VARS_DICT[objective.feature][k] + + # lb / ub + lb_k = MX.sym(f'PAR {objective.feature} lb [k={"%+d" % k}]', 1) + ub_k = MX.sym(f'PAR {objective.feature} ub [k={"%+d" % k}]', 1) + PAR_VARS.append(lb_k) + PAR_VARS.append(ub_k) + self.PAR_LIST.append({'feature': objective.feature, 'info': 'lb', 'k': k}) + self.PAR_LIST.append({'feature': objective.feature, 'info': 'ub', 'k': k}) + + # constraints + self.add_constraint(Xk - lb_k + eps_lb, 0, inf) + self.add_constraint(Xk - ub_k + eps_ub, -inf, 0) + + # objective + obj.append((eps_lb / objective.norm) ** 2 * objective.weight) + obj.append((eps_ub / objective.norm) ** 2 * objective.weight) + + elif objective.feature.mode == 'steady': + + # target + target_k = MX.sym(f'PAR {objective.feature} target [k={"%+d" % k}]', 1) + PAR_VARS.append(target_k) + self.PAR_LIST.append({'feature': objective.feature, 'info': 'target', 'k': k}) + + # Xk + Xk = VARS_DICT[objective.feature][k] + + # objective + obj.append(((Xk - target_k) / objective.norm) ** 2 * objective.weight) + + + + else: + raise NotImplementedError(f'Mode {objective.feature.mode} is not implemented yet.') + + else: + + # Xk + Xk = VARS_DICT[objective.feature][k] + + # objective + if objective.cost_order == CostOrder.quadratic: + obj.append(((Xk - objective.weight_offset) / objective.norm) ** 2 * objective.weight) + elif objective.cost_order == CostOrder.linear: + obj.append(((Xk - objective.weight_offset) / objective.norm) ** 1 * objective.weight) + else: + print('Passed Cost Function is not implemented') + + + # -------------------------------- print nlp ------------------------------ + if print_nlp: + print('\n------------------------------- NLP SUMMARY -------------------------------\n') + fmt.print_lists(PAR_VARS, statement='PAR_VARS:') + fmt.print_lists(OPT_VARS, statement='OPT_VARS:') + fmt.print_lists(self.g, self.lbg, self.ubg, statement='CONSTRAINTS:') + fmt.print_lists(obj, statement='OBJECTIVES:') + print('\n------------------------------- NLP SUMMARY -------------------------------\n') + + # -------------------------------- create solver -------------------------- + + nlp = { + 'x': vertcat(*OPT_VARS), + 'f': sum(obj), + 'g': vertcat(*self.g), + 'p': vertcat(*PAR_VARS), + } + + + # save the controller + self.nlp_solver = nlpsol('solver', 'ipopt', nlp, self.solver_options) + + def add_constraint(self, constraint, lbg: float = 0.0, ubg: float = 0.0): + + self.g.append(constraint) + + self.lbg.append(lbg) + self.ubg.append(ubg) + + def get_par_vars(self, df): + + # calculate the par vars + t = df['SimTime'].iloc[-1] + + # get the par vars from the dicts + PAR_VARS = list() + for dct in self.PAR_LIST: + + feature = dct['feature'] + k = dct['k'] + info = dct['info'] + + if info == 'value': + + # extract the disturbances from the disturbances df + if feature.col_name in self.disturbances_df.columns: + PAR_VAR = self.disturbances_df.loc[self.disturbances_df['SimTime'] == t + self.dt * k, feature.col_name].values + + # extract the state vars from the actual simulation + else: + + # if the feature must be constructed, construct it. + if feature.col_name not in df.columns: + + if isinstance(feature, Constructed): + + df = feature.process(df.tail(self.max_lag+1).copy(deep=True)) + + else: + raise ValueError('Something went wrong.') + + + PAR_VAR = df.loc[df['SimTime'] == t + self.dt * k, feature.col_name].values + + assert len(PAR_VAR) != 0, f'Please provide sufficient Disturbance data! Error occured at t={t} {feature} {k} {info} {df}' + + PAR_VARS.append(PAR_VAR) + + elif info == 'lb': + + PAR_VAR_lb, PAR_VAR_ub = feature.get_bounds(t + self.dt * k) + PAR_VARS.append(PAR_VAR_lb) + + elif info == 'ub': + + PAR_VAR_lb, PAR_VAR_ub = feature.get_bounds(t + self.dt * k) + PAR_VARS.append(PAR_VAR_ub) + + elif info == 'target': + PAR_VAR_target = feature.get_target(t + self.dt * k) + PAR_VARS.append(PAR_VAR_target) + + else: + raise NotImplementedError() + + PAR_VARS = vertcat(*PAR_VARS) + + return PAR_VARS diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/__init__.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..176c98bf71c40525c1330dfe9c09b5d5ec21526d --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/__init__.py @@ -0,0 +1,7 @@ +from ddmpc.modeling.data_handling import * +from ddmpc.modeling.features import * +from ddmpc.modeling.keras_tuner import * +from ddmpc.modeling.modeling import * +from ddmpc.modeling.system_base_class import * +from ddmpc.modeling.training_networks import * +from ddmpc.modeling.systems import * \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/data_handling.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/data_handling.py new file mode 100644 index 0000000000000000000000000000000000000000..279641bcabe47848b5be5a3188a8268afa624bb5 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/data_handling.py @@ -0,0 +1,276 @@ +import pandas as pd +from ddmpc.utils.pickle_handler import write_pkl, read_pkl +from ddmpc.modeling.modeling import Model +from ddmpc.utils.plotting import Plotter +import ddmpc.utils.formatting as fmt + + +class DataContainer: + """ + The DataContainer stores training data and additional information. + """ + + def __init__( + self, + df: pd.DataFrame, + tag: str, + ): + """ + :param df: [pd.DataFrame] Simulated data. + :param tag: [Str] 'Training', 'Examples' or 'Validating'. + """ + + self.df = df + self._tag = tag + + def __str__(self): + return f'DataContainer({self.info})' + + def __repr__(self): + return f'DataContainer({self._tag})' + + @property + def info(self): + return f"Day {int(self.start_time/(60*60*24))} to {int(self.stop_time/(60*60*24))} - {self._tag}" + + @property + def tag(self): + return self._tag + + @tag.setter + def tag(self, value: str): + value = value.lower() + assert value in ['training', 'testing', 'validating', None] + self._tag = value + + @property + def start_time(self): + return self.df['SimTime'].iloc[0] + + @property + def stop_time(self): + return self.df['SimTime'].iloc[-1] + + @property + def duration(self): + return self.stop_time - self.start_time + + @property + def step_size(self): + return self.df['SimTime'].iloc[1] - self.df['SimTime'].iloc[0] + + @staticmethod + def merge_containers(containers: list, tag: str = None, directory: str = None): + """ + Merges the data frames from several data containers to a single DataFrame. + :param containers: List of DataContainers. + :param directory: directory to store the DataContainer. + :param tag: tag for the merged DataContainer + """ + + if tag is None: + tag = 'training' + + if directory is None: + directory = 'stored_data\\RawData' + + assert all(isinstance(container, DataContainer) for container in containers), \ + 'Please make sure to pass a list of DataContainers' + + # make sure stop and start time do match + for i in range(len(containers)-1): + + assert containers[i].stop_time == containers[i+1].start_time,\ + f'Stop time of container {containers[i]} (t={containers[i].stop_time}) ' \ + f'does not match start time of container {containers[i+1]} (t={containers[i].stop_time})' + + # make list with copies of the data frames + df_lst = list() + for container in containers: + + df = container.df.copy(deep=True) + df_lst.append(df) + + df = pd.concat(df_lst) + df = df.drop_duplicates(subset=['SimTime'], keep='first') + df = df.reset_index(drop=True) + + return DataContainer(df=df, tag=tag) + + def split_container( + self, + training_share: float = 0.5, + validating_share: float = 0.25, + testing_share: float = 0.25, + ) -> list: + """ + Splits a single DataContainer into three new DataContainers. + :param container: Initial DataContainer + :param testing_share: 0.0 - 1.0 + :param validating_share: 0.0 - 1.0 + :param training_share: 0.0 - 1.0 + """ + + assert training_share + validating_share + testing_share == 1, \ + 'Make sure training, testing and validation split add up to one.' + + # round up or down to the nearest multiplier of the step_size + first_split = round(len(self.df) * training_share) + second_split = round(len(self.df) * (training_share + validating_share)) + + # assign to new DataFrames + split_containers = list() + if training_share > 0: + training_container = DataContainer( + df=self.df.iloc[0:first_split + 1], + tag='training', + ) + split_containers.append(training_container) + + if validating_share > 0: + validating_container = DataContainer( + df=self.df.iloc[first_split:second_split + 1], + tag='validating' + ) + split_containers.append(validating_container) + + if testing_share > 0: + testing_container = DataContainer( + df=self.df.iloc[second_split:], + tag='testing', + ) + split_containers.append(testing_container) + + return split_containers + + def calculate_statistics(self, model: Model) -> dict: + """ + Returns a statistic dict with important benchmark information. + """ + statistics = dict() + + statistics['start_time'] = self.duration + statistics['stop_time'] = self.stop_time + statistics['duration'] = self.duration + + for feature in model.features: + + statistics[feature] = dict() + statistics[feature]['mean'] = self.df[feature.col_name].mean() + statistics[feature]['lb'] = self.df[feature.col_name].min() + statistics[feature]['ub'] = self.df[feature.col_name].max() + statistics[feature]['sum'] = self.df[feature.col_name].sum() + + for x in model.X: + + if f'{x.col_name} error_target' in self.df.columns: + + statistics[x]['target_mae'] = abs(self.df[f'{x.col_name} error_target']).mean() + statistics[x]['target_mse'] = (self.df[f'{x.col_name} error_target'] ** 2).mean() + + if f'{x.col_name} error_bounds' in self.df.columns: + statistics[x]['bounds_mae'] = abs(self.df[f'{x.col_name} error_bounds']).mean() + statistics[x]['bounds_mse'] = (self.df[f'{x.col_name} error_bounds'] ** 2).mean() + + if f'{x.col_name} solver_call' in self.df.columns: + statistics[x]['average_solver_call'] = self.df[f'{x.col_name} solver_call'].mean() + statistics[x]['minimum_solver_call'] = self.df[f'{x.col_name} solver_call'].min() + statistics[x]['maximum_solver_call'] = self.df[f'{x.col_name} solver_call'].max() + + return statistics + + def plot(self, plotter: Plotter, save_plot: bool = True, show_plot: bool = True): + """ + Plots the DataFrame. + """ + plotter.plot(df=self.df, name=self.info, save_plot=save_plot, show_plot=show_plot) + + +class DataHandler: + """ + Stores a list of DataContainers. + """ + + def __init__( + self, + containers: list = None, + directory: str = 'stored_data\\DataHandlers', + disturbances_directory: str = 'stored_data\\Disturbances', + + ): + """ + :param fmu: Instance of FMU + :param model: Instance of Model + :param plotter: Instance of Plotter + """ + + # containers + if containers is None: + containers = list() + self.containers = containers + + # directories + self.directory = directory + self.disturbances_directory = disturbances_directory + + def __str__(self) -> str: + + ret = f'{fmt.BOLD}DataHandler:{fmt.ENDC} \n' + if len(self.containers) == 0: + ret += '\tNone' + for container in self.containers: + ret += f'\t{container} \n' + + return ret + + def split_container( + self, + index: int, + training_share: float = 0.5, + validating_share: float = 0.25, + testing_share: float = 0.25, + ): + + # locate container to split + container_to_split = self.containers[index] + + # split the container + testing, training, validating = container_to_split.split_container( + training_share=training_share, + validating_share=validating_share, + testing_share=testing_share, + ) + + # append to + self.containers.extend([testing, training, validating]) + + # delete old container + del self.containers[index] + + # print data handler + print(self) + + def add_containers(self, *containers): + self.containers.extend(containers) + + def remove_container(self, index: int): + del self.containers[index] + + def clear(self): + """ + Clears the list with the DataContainers. + """ + del self.containers + self.containers = list() + + def save(self, filename: str, override: bool = False): + write_pkl(self, filename, self.directory, override) + + def add_container(self, data_container: DataContainer): + self.containers.append(data_container) + + +def load_DataHandler(filename: str, directory: str = 'stored_data\\DataHandlers') -> DataHandler: + dh = read_pkl(filename, directory) + print(dh) + return dh diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/features.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/features.py new file mode 100644 index 0000000000000000000000000000000000000000..17b7bc07d1036be2b09b1b40464d47b22f60628b --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/features.py @@ -0,0 +1,639 @@ +from ddmpc.utils.plotting import PlotOptions +from ddmpc.modeling.modeling import * + + +class Temperature(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + + # standard plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.red, + line=fmt.line_solid, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + +class Radiation(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + + # standard plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.light_red, + line=fmt.line_dotted, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + +class Price(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + + # standard plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.light_red, + line=fmt.line_dotted, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + +class MassFlow(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + temperature_in: Temperature, + temperature_out: Temperature, + cp: float = 4.18, + den: float = 1000, + plt_opts: PlotOptions = None, + ): + + # plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.green, + line=fmt.line_solid, + label=dis_name, + ) + + # temperature + self.temperature_in = temperature_in + self.temperature_out = temperature_out + + # heat capacity + self.cp = cp + + # density + self.den = den + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + +class Percentage(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.light_grey, + line=fmt.line_solid, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + +class HeatFlowMeas(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + + # standard plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.light_red, + line=fmt.line_dotted, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + +class PowerMeas(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions = None, + ): + + # standard plot options + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.light_red, + line=fmt.line_dotted, + label=dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + +class Time(BaseVariable): + + def __init__( + self, + var_name: str = 'SimTime', + dis_name: str = 'Time', + ): + + # plot options + plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + label = dis_name, + ) + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + +class Valve(Control): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + lb: float = 0.0, + ub: float = 1.0, + default: float = 0 + ): + """ + :param lb: lower bound + :param ub: upper bound + """ + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + lb=lb, + ub=ub, + default=default, + ) + +class RelPower(Control): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + lb: float = 0.0, + ub: float = 1.0, + default: float = 0, + ): + """ + :param lb: lower bound + :param ub: upper bound + """ + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + lb=lb, + ub=ub, + default=default, + ) + + +class HeatFlowSetPoint(Control): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + lb: float = 0, + ub: float = 10000, + default: float = 0, + ): + """ + :param lb: lower bound + :param ub: upper bound + """ + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + lb=lb, + ub=ub, + default=default + ) + + +class TemperatureSetPoint(Control): + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + lb: float = 273.15 + 15, + ub: float = 273.15 + 30, + default: float = 273.15 + 20, + ): + """ + :param lb: lower bound + :param ub: upper bound + """ + + # super call + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + lb=lb, + ub=ub, + default=default, + ) + + +class Change(Constructed): + """ + Used to calculate the change over time. + """ + def __init__( + self, + base_feature: Feature, + plt_opts: PlotOptions = None, + ): + + # feature to calculate the change + self.base_feature = base_feature + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + # make sure the feature is included in the columns + assert self.base_feature.col_name in df.columns, f'The feature {self.base_feature.col_name} is not included in the data frame.' + + # define the new feature + col_loc = df.columns.get_loc(self.base_feature.col_name) + 1 # next column + col_name = self.col_name + col_value = df[self.base_feature.col_name] - df[self.base_feature.col_name].shift(1) # change between last two values + + # insert the feature + df.insert(loc=col_loc, column=col_name, value=col_value) + + return df + + +class MovingSum(Constructed): + """ + Used to calculate the moving sum of a given Feature. + """ + def __init__( + self, + base_feature: Feature, + n: int, + plt_opts: PlotOptions = None, + ): + + # feature to calculate the change + self.base_feature = base_feature + + # n + self.n = n + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature}, n={n})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + df[self.col_name] = df[self.base_feature.col_name].rolling(self.n).sum() + + return df + + +class MovingAverage(Constructed): + """ + Used to calculate the moving average of a given Feature. + """ + def __init__( + self, + base_feature: Feature, + n: int, + plt_opts: PlotOptions = None, + ): + # feature to calculate the change + self.base_feature = base_feature + + # n + self.n = n + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + df[self.col_name] = df[self.base_feature.col_name].rolling(self.n).mean() + + return df + + +class Subtraction(Constructed): + """ + Subtraction of two Features. + """ + def __init__( + self, + base_feature_one: Feature, + base_feature_two: Feature, + plt_opts: PlotOptions = None, + ): + + # feature to calculate the change + self.base_feature_one = base_feature_one + self.base_feature_two = base_feature_two + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature_one} minus {self.base_feature_two})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + df[self.col_name] = df[self.base_feature_one.col_name] - df[self.base_feature_two.col_name] + + return df + + +class Addition(Constructed): + """ + Addition of two Features. + """ + def __init__( + self, + base_feature_one: Feature, + base_feature_two: Feature, + plt_opts: PlotOptions = None, + ): + + # feature to calculate the change + self.base_feature_one = base_feature_one + self.base_feature_two = base_feature_two + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature_one} plus {self.base_feature_two})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + df[self.col_name] = df[self.base_feature_one.col_name] + df[self.base_feature_two.col_name] + + return df + +class Product(Constructed): + """ + Multiplication of two Features. + """ + def __init__( + self, + base_feature_one: Feature, + base_feature_two: Feature, + plt_opts: PlotOptions = None, + ): + + # feature to calculate the change + self.base_feature_one = base_feature_one + self.base_feature_two = base_feature_two + + # default plot options + self.plt_opts = PlotOptions( + color=fmt.black, + line=fmt.line_solid, + ) + + # super call + super().__init__( + name=f'{self.__class__.__name__}({self.base_feature_one} times {self.base_feature_two})', + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + df[self.col_name] = df[self.base_feature_one.col_name] * df[self.base_feature_two.col_name] + + return df + +class PeriodicTime(Constructed): + """ + Periodic function of time. + """ + def __init__( + self, + name: str, + time: Time, + function: np.ufunc, + frequency: int, + plt_opts: PlotOptions = None, + ): + + # settings + self.time = time + self.function = function + self.frequency = frequency + + # super call + super().__init__( + name=name, + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + # make sure the feature is included in the columns + assert self.time.col_name in df.columns, 'The feature SimTime is not included in the data frame.' + + # define the new feature + col_loc = df.columns.get_loc(self.time.col_name) + 1 # next column + col_name = self.col_name + col_value = self.function(2 * np.pi * df[self.time.col_name] / self.frequency) # change between last two values + + # insert the feature + df.insert(loc=col_loc, column=col_name, value=col_value) + + return df + + +class EnergyBalance(Constructed): + """ + Used to calculate energy consumption via MassFlows. + """ + def __init__(self, + name: str, + flows: list, + plt_opts: PlotOptions = None, + ): + + # check, that all flows are of type MassFlow + assert all([isinstance(feature, MassFlow) for feature in flows]) + + # flows + self.flows = flows + + super().__init__( + name=name, + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + + # calculate the energy balance + df[self.col_name] = sum([df[feature.var_name] * + (df[feature.temperature_in.var_name] - df[feature.temperature_out.var_name]) * + feature.cp * + feature.den + for feature in self.flows]) + + return df + + +class LowerBound(Constructed): + + def __init__(self, base_feature: Controlled, plt_opts: PlotOptions = None): + self.base_feature = base_feature + + name = f'{self.base_feature.col_name}_ub' + + if plt_opts is None: + plt_opts = PlotOptions(color=fmt.black, line=fmt.line_solid) + + super(LowerBound, self).__init__( + name=name, + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + return df + + +class UpperBound(Constructed): + + def __init__(self, base_feature: Controlled, plt_opts: PlotOptions = None): + self.base_feature = base_feature + + name = f'{self.base_feature.col_name}_ub' + + if plt_opts is None: + plt_opts = PlotOptions(color=fmt.black, line=fmt.line_solid) + + super(UpperBound, self).__init__( + name=name, + plt_opts=plt_opts, + ) + + def process(self, df: pd.DataFrame) -> pd.DataFrame: + return df diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/keras_tuner.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/keras_tuner.py new file mode 100644 index 0000000000000000000000000000000000000000..084467d90294e44c108af034b236f006f94c795f --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/keras_tuner.py @@ -0,0 +1,143 @@ +import random +import re + +from keras.layers import Dense, BatchNormalization, Rescaling +from keras import Sequential + + +class TunerLayer: + + def __init__(self, optional: bool = True): + + self.optional = optional + + def build_keras_layer(self): + raise NotImplementedError() + + +class TunerDense(TunerLayer): + + def __init__(self, units: tuple = None, activations: tuple = None, optional: bool = False): + """ + :param units: Tuple with the number of neurons the layer can have. Default = (8, 16,) + :param activations: Tuple with activation functions to pick from. Default = ('sigmoid',) + :param optional: Is the layer optional? + """ + super().__init__(optional=optional) + + # default of 8 or 16 neurons + if units is None: + units = (8, 16,) + + # default activation is sigmoid + if activations is None: + activations = ('sigmoid',) + + self.units = units + self.activations = activations + + def build_keras_layer(self): + + units = random.choice(self.units) + activation = random.choice(self.activations) + + return Dense(units=units, activation=activation) + + +class TunerBatchNormalizing(TunerLayer): + + def __init__(self, axis: int = 1, optional: bool = False): + + super().__init__(optional=optional) + + self.axis = axis + + def build_keras_layer(self): + + return BatchNormalization(axis=self.axis) + + +class TunerRescaling(TunerLayer): + + def __init__(self, scale: float, offset: float, optional: bool = False): + + super().__init__(optional=optional) + + self.scale = scale + self.offset = offset + + def build_keras_layer(self): + + return Rescaling(scale=self.scale, offset=self.offset) + + +class TunerModel: + """ + Blueprint for a Sequential Keras model. + Layers can be made optional by setting optional to True. + """ + + def __init__( + self, + *layers: TunerLayer, + name: str, + optimizer: str = 'adam', + loss: str = 'mse', + ): + + self.layers = layers + self.optimizer = optimizer + self.loss = loss + + # check if the name is valid + assert re.match("^[A-Za-z0-9_-]*$", name), 'Please make sure you set a valid TunerModel name.' \ + 'Allowed characters: A-Z, a-z, 0-9, _, -' + self.name = name + + def __str__(self): + return f'TunerModel(name={self.name}, ' \ + f'optimizer={self.optimizer}, ' \ + f'loss={self.loss}, ' \ + f'max_layers={self.max_layers}, ' \ + f'min_layers={self.min_layers})' + + def __repr__(self): + return f'TunerModel(name={self.name}))' + + @property + def max_layers(self): + return len(self.layers) + + @property + def min_layers(self): + return len([layer for layer in self.layers if layer.optional == False]) + + def build_sequential(self) -> Sequential: + + # create random ann id + ann_id = random.randint(1000, 9999) + + # ann name + name = f'{self.name}_{ann_id}' + + # create sequential keras model + keras_model = Sequential(name=name) + + # iterate over every layer + for layer in self.layers: + + # check if the layer is optional and maybe skip it + if layer.optional and random.getrandbits(1): + continue + + # add layer + keras_model.add(layer.build_keras_layer()) + + # output layer + keras_model.add(Dense(units=1, activation='linear')) + + # compile the model + keras_model.compile(optimizer=self.optimizer, loss=self.loss) + + + return keras_model diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/modeling.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/modeling.py new file mode 100644 index 0000000000000000000000000000000000000000..9fd922b799257f229e6c30c1a6f46f0562339dfe --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/modeling.py @@ -0,0 +1,551 @@ +from ddmpc.utils.plotting import PlotOptions +from ddmpc.utils import formatting as fmt +from abc import abstractmethod +import pandas as pd +import numpy as np +import random + + +class Feature: + """ + Abstract representation of one variable. + There are two types of Features: + + -> BaseVariable + -> Constructed + + Every Feature consists of a name and plot options. + """ + + def __init__( + self, + name: str, + plt_opts: PlotOptions = None, + ): + """ + :param name: Representative name. + :param plt_opts: Holds information for the plotting of this feature. + """ + if plt_opts is None: + plt_opts = PlotOptions( + color=fmt.red, + line=fmt.line_solid, + ) + + if plt_opts.label is None: + plt_opts.label = name + + self.name = name.replace(" ", "_") + self.plt_opts = plt_opts + + def __str__(self): + return self.name + + def __repr__(self): + return self.name + + def __eq__(self, other): + if isinstance(other, Feature): + return object and hash(self) == hash(other) + else: + return False + + def __ne__(self, other): + return not self.__eq__(other) + + def __hash__(self): + return hash(self.name) + + @property + def is_base_variable(self): + if isinstance(self, BaseVariable): + return True + else: + return False + + @property + def is_constructed(self): + if isinstance(self, Constructed): + return True + else: + return False + + @property + def is_control(self): + if isinstance(self, Control): + return True + else: + return False + + @property + def is_controlled(self): + if isinstance(self, Controlled): + return True + else: + return False + + @property + @abstractmethod + def col_name(self): + pass + + +class BaseVariable(Feature): + """ + BaseVariables represent a variable from the FMU file in Python. + The var_name must match the variable name in the FMU. + BaseVariable objects inherit from Feature. + """ + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + ): + self.var_name = var_name + self.dis_name = dis_name + + super().__init__( + name=f'{self.__class__.__name__}({dis_name})', + plt_opts=plt_opts, + ) + + @property + def col_name(self): + return self.var_name + + +class Constructed(Feature): + """ + Every Feature that is not contained in the FMU file but should be included in the MPC is from the type Constructed. + Constructed objects inherit from Feature. + """ + def __init__( + self, + name: str, + plt_opts: PlotOptions + ): + super().__init__( + name=name, + plt_opts=plt_opts, + ) + + @property + def col_name(self): + return self.name + + @abstractmethod + def process(self, df: pd.DataFrame) -> pd.DataFrame: + pass + + +class Controlled(BaseVariable): + """ + Feature that will be controlled by the Controllers. + """ + + def __init__( + self, + var_name: str, + dis_name: str, + plt_opts: PlotOptions, + + mode: str = 'steady', + + day_start: int = 8, + day_end: int = 16, + day_target: float = 273.15 + 20, + night_target: float = 273.15 + 18, + day_lb: float = 273.15 + 19, + night_lb: float = 273.15 + 16, + day_ub: float = 273.15 + 21, + night_ub: float = 273.15 + 24, + random_step_size: int = 60 * 60 * 2, + + ): + + """ + :param mode: [str] 'steady', 'random' or 'economic'. + :param day_start: [int] Time at which the day starts. + :param day_end: [int] Time at which the day ends. + :param day_target: [float] Target value day. + :param night_target: [float] Target value night. + :param day_lb: [float] Lower bound day. + :param night_lb: [float] Lower bound night. + :param day_ub: [float] Upper bound day. + :param night_ub: [float] Upper bound night. + """ + + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + # target type + self.mode = mode + + # settings + self.day_start = day_start + self.day_end = day_end + self.day_target = day_target + self.night_target = night_target + self.day_lb = day_lb + self.night_lb = night_lb + self.day_ub = day_ub + self.night_ub = night_ub + self.random_step_size = random_step_size + + # current values + self.current_time = None # current time of the simulation + self.current_target = None # current target trajectory + self.current_error = None # current error to either the target trajectory or the bounds + self.current_delta = None # current delta between this and last step + + # data frame, that keeps track of the trajectory and bounds + self.df: pd.DataFrame = pd.DataFrame() + + @property + def mode(self): + """ + 'steady' -> follows the day_target at day and night_target at night. + 'random' -> follows a random step function. + 'economic' -> keeps the temperature in range of the comfort bounds. + """ + return self._mode + + @mode.setter + def mode(self, mode): + modes = ['random', 'steady', 'economic'] + assert mode in modes, f'{mode} is not a valid mode. Please choose from {modes}' + self._mode = mode + + def add_sub_features(self, df: pd.DataFrame) -> pd.DataFrame: + + # replace column name with right names + self.df.columns = ['SimTime'] + [f'{self.col_name}_{col}' for col in self.df.columns if col is not 'SimTime'] + + # merge the data frames + df = pd.merge(df, self.df, on='SimTime') + + # return merged data frame + return df + + def update(self, df: pd.DataFrame): + """ + This function updates the current values + :param df: [pd.DataFrame] DataFrame with the latest simulation results + :param col_name: [str] Column name of the regular variable + """ + + # current time + self.current_time = df['SimTime'].iloc[-1] + + # get the row with the current time + current_row = self.df['SimTime'] == self.current_time + + # actual value + actual_value = df[self.col_name].iloc[-1] + self.df.loc[current_row, 'actual'] = actual_value + + # delta between last and current step + self.current_delta = df[self.col_name].iloc[-2] - df[self.col_name].iloc[-1] + + if self._mode == 'economic': + + # error bounds + lb = float(self.df.loc[current_row, 'lb']) + ub = float(self.df.loc[current_row, 'ub']) + + error_bounds = -max(min(0, actual_value - lb), max(0, actual_value - ub), key=abs) + self.df.loc[current_row, 'error_bounds'] = error_bounds + + self.current_error = float(error_bounds) + + else: + + # error_target + error_target = self.df.loc[current_row, 'target'] - actual_value + self.df.loc[current_row, 'error_target'] = error_target + + self.current_error = float(error_target) + + def plan_simulation(self, start_time: int, stop_time: int, step_size: int): + """ + This function generates a DataFrame, in which the trajectory and bounds are stored. + This happens before the simulation acually starts. + + :param start_time: Start time of the simulation. + :param stop_time: Stop time of the simulation. + :param step_size: Step size of the simulation. + """ + + del self.df + self.df = pd.DataFrame() + + df = pd.DataFrame() + + # setup + df['SimTime'] = np.arange(start_time, stop_time + 1, step_size) + df['total_hours'] = np.floor(df['SimTime'] / (60 * 60)) + 1 + df['toal_days'] = np.floor(df['SimTime'] / (60 * 60 * 24)) + 1 + df['total_weeks'] = np.floor((df['toal_days'] - 1) / 7) + 1 + df['is_weekend'] = df['toal_days'] - (df['total_weeks'] - 1) * 7 > 5 + + # boolean + df['day'] = (self.day_start < df['total_hours'] - (df['toal_days'] - 1) * 24) & (df['total_hours'] - (df['toal_days'] - 1) * 24 <= self.day_end) + df['working'] = (df['day'] & (df['is_weekend'] == False)) + + # bounds + df['lb'] = np.where(df['day'] & (df['is_weekend'] == False), self.day_lb, self.night_lb) + df['ub'] = np.where(df['day'] & (df['is_weekend'] == False), self.day_ub, self.night_ub) + + # target + df['steady_target'] = np.where(df['day'] & (df['is_weekend'] == False), self.day_target, self.night_target) + df['random_target'] = 0 + + # empty columns + df['target'] = np.nan + df['actual'] = np.nan + df['error_target'] = np.nan + df['error_bounds'] = np.nan + df['solver_call'] = np.nan + + # generates a random step function within the comfort bounds + time_counter = np.inf + for i in range(0, len(df) - 1): + if time_counter > self.random_step_size or not (df.loc[i, 'lb'] <= df.loc[i, 'random_target'] <= df.loc[i, 'ub']): + time_counter = 0 + df.loc[i, 'random_target'] = random.uniform(df.loc[i, 'lb'], df.loc[i, 'ub']) + df.loc[i + 1, 'random_target'] = df.loc[i, 'random_target'] + time_counter += step_size + + # delete used columns + del df['day'] + del df['working'] + del df['is_weekend'] + del df['total_hours'] + del df['toal_days'] + del df['total_weeks'] + + # write target type + df['target_type'] = self._mode + + # write actual target + if self._mode != 'economic': + df['target'] = df[f'{self._mode}_target'] + + self.df = df + + def get_bounds(self, time: int): + """ + Returns the bounds for a given point in time. + """ + + assert self.df is not None,\ + f'Please call "plan_simulation" for feature {self} before running the simulation.' + + lb = self.df.loc[self.df['SimTime'] == time, 'lb'].values + ub = self.df.loc[self.df['SimTime'] == time, 'ub'].values + + if len(lb) == 0: + lb = self.night_lb + if len(ub) == 0: + ub = self.night_ub + + return lb, ub + + def get_target(self, time: int): + """ + Returns the target for a given point in time. + """ + + assert self.df is not None,\ + 'Please call "plan_simulation" before simulating.' + + target = self.df.loc[self.df['SimTime'] == time, 'target'].values + + if len(target) == 0: + target = self.night_target + + return target + + +class Control(BaseVariable): + + def __init__( + self, + var_name: str, + dis_name: str, + lb: float, + ub: float, + default: float, + plt_opts: PlotOptions, + ): + super().__init__( + var_name=var_name, + dis_name=dis_name, + plt_opts=plt_opts, + ) + + self.lb = lb + self.ub = ub + + self.default = default + + def correct_bounds(self, value: float): + + if value < self.lb: + return self.lb + elif value > self.ub: + return self.ub + else: + return value + + +class Model: + """ + This Cass represents the FMU Model in Python. + It stores all Features. + """ + def __init__( + self, + t: Feature, + X: tuple, + U: tuple, + D: tuple, + C: tuple, + T: tuple, + ): + """ + This Cass represents the variables of the fmu file in Python. + :param X: State + :param U: Controlled + :param D: Disturbances + :param C: Constructed + :param T: Tracked + """ + + # tuples with features + self.t = (t,) + self.X = X + self.U = U + self.D = D + self.C = C + self.T = T + + # check for duplicates + duplicates = [feature for n, feature in enumerate(self.features) if feature in self.features[:n]] + assert len(duplicates) == 0,\ + f'Dublicates:\n' \ + f'\t{duplicates}\n' \ + f'\t{[f.name for f in duplicates]}\n' \ + f'\t{[f for f in duplicates]}' + + # print the model + print(self) + + def __str__(self): + + rows = [['\t', '', 'name', 'is_control', 'is_constructed', 'is_base_variable', 'is_controlled']] + rows += [['\t', 'X', f.name, f.is_control, f.is_constructed, f.is_base_variable, f.is_controlled] for f in self.X] + rows += [['\t', '']] + rows += [['\t', 'U', f.name, f.is_control, f.is_constructed, f.is_base_variable, f.is_controlled] for f in self.U] + rows += [['\t', '']] + rows += [['\t', 'D', f.name, f.is_control, f.is_constructed, f.is_base_variable, f.is_controlled] for f in self.D] + rows += [['\t', '']] + rows += [['\t', 'C', f.name, f.is_control, f.is_constructed, f.is_base_variable, f.is_controlled] for f in self.C] + rows += [['\t', '']] + rows += [['\t', 'T', f.name, f.is_control, f.is_constructed, f.is_base_variable, f.is_controlled] for f in self.T] + + print(f'{fmt.BOLD}Model:{fmt.ENDC}') + fmt.print_table(rows=rows) + + return '' + + def __repr__(self): + return f'Model' + + def __contains__(self, item): + return item in self.features + + @property + def features(self): + return self.t + self.X + self.U + self.D + self.C + self.T + + @property + def names(self) -> list: + return [f.name for f in self.features] + + @property + def col_names(self) -> list: + """ + Returns a list with the col_names of all features. + """ + return [f.col_name for f in self.features] + + @property + def var_names(self) -> list: + """ + Returns a list with the var_names of every BaseVariables in the Model. + """ + return [f.var_name for f in self.features if isinstance(f, BaseVariable)] + + @property + def controlled(self) -> list: + return [feature for feature in self.features if isinstance(feature, Controlled)] + + @property + def controls(self) ->list: + return [feature for feature in self.features if isinstance(feature, Control)] + + @property + def constructed(self) -> list: + return [feature for feature in self.features if feature.is_constructed] + + @property + def base_variables(self) -> list: + return [feature for feature in self.features if isinstance(feature, BaseVariable)] + + def feature_creation(self, df: pd.DataFrame, copy: bool = False) -> pd.DataFrame: + """ + Creates all Constructed Features. + :param df: DataFrame with all BaseFeatures. + :param copy: Should the returned DataFrame be copy of the initial DataFrame? + :return: DataFrame with all Base and Constructed Features + """ + + constructed_features = [feature for feature in self.features if feature.is_constructed] + + if copy: + df = df.copy(deep=True) + + # create the features + for feature in constructed_features: + + feature: Constructed + + df = feature.process(df) + + return df + + def plan_simulation(self, start_time: int, stop_time: int, step_size: int): + """initialize data frames of the controlled variables""" + for y in self.controlled: + y.plan_simulation(start_time=start_time, stop_time=stop_time, step_size=step_size) + + def add_controlled_data_to_df(self, df: pd.DataFrame) -> pd.DataFrame: + + # add simulation plan to df + for controlled in self.controlled: + df = controlled.add_sub_features(df=df) + + return df + + def get_feature_by_name(self, name: str): + + for feature in self.features: + if name in feature .name: + return feature + + raise ValueError(f'Did not find feature with name {name}.') diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/system_base_class.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/system_base_class.py new file mode 100644 index 0000000000000000000000000000000000000000..2fa32e2bf1e864829e35b4859fa333f45d3d52f1 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/system_base_class.py @@ -0,0 +1,303 @@ +import pandas as pd +from abc import ABC, abstractmethod +from pathlib import Path +from ddmpc.modeling.data_handling import DataContainer +from ddmpc.modeling.modeling import Model +from ddmpc.modeling.training_networks import NetworkTrainer +from ddmpc.utils.plotting import Plotter + +""" +ToDo: - implement BOPTESTsystem + - implement ENERGYMsystem + - implement REALsystem + - The MPC modul should get a Trigger for recreation after retraining + - The run method is only implemented in the simulator class. This method should be initialized with a DataFrame to avoid the writing default values after retraining +""" + + +class System(ABC): + """ + Implements abstract system class to allow a modular access to the controller developement + Contains the relevant functions to interact with a system. The controller should be passed in the simulator class. + """ + + def __init__(self, + system_name: str, + directory: Path, + step_size: int, + model: Model): + """ + Initialize System, e.g. load relevant information + :param system_name: Identifier of the System + :param directory: Directory to load + :param step_size: Step_size of the system + :param model: Ontology of the system, passed as model class + """ + + # Pass initial values + self.system_name = system_name + self.directory = directory + self.step_size = step_size + self.model = model + + # times + self.start_time = None + self.stop_time = None + self.current_time = None + + + def __str__(self): + ret = f'{self.__class__}\n' + ret += f'\tstep_size = {self.step_size}s \n' + ret += f'\tsystem_name = "{self.system_name}" \n' + return ret + + @abstractmethod + def setup(self, **kwargs): + """ + Setup the system, e.g. load and initialize fmu, initialize communication to real system + (this Method is not generic and needs to be adapted for each system and called before the simulation) + :return: + """ + ... + + + @abstractmethod + def close(self): + """ + Close the system e.g. close fmu or connection / shut down docker container + :return: + """ + + @abstractmethod + def do_step(self) -> bool: + """ + In this method on simulation step is performed (in a real system we just wait for x-sec) + system time is updated + :return: + """ + ... + + @abstractmethod + def read_values(self,var_names:list) -> dict: + """ + Read Values from System and return DataFrame + :return: + """ + ... + + @abstractmethod + def write_values(self,control_dict:dict): + """ + Write control values to system + :return: + """ + ... + + @abstractmethod + def get_forecast(self, + n: int, + sampling_time: int, + meas_df: pd.DataFrame) -> pd.DataFrame: + """ + get disturbance forecast (weather etc.) + :param meas_df: measurements from before to take lags into account + :param n: Prediction Horizon of the forecast + :param sampling_time: sampling time of the forecast in s + :return: pd.DataFrame of forecast + """ + ... + + @abstractmethod + def get_system_time(self): + """ + Return the time of the system (Data type needs to be refined) + :return: + """ + ... + + @property + def output_names(self)->list: + """ + Return list of outputs + :return: + """ + return [] + + +class Simulator: + """ + Run simulation or experiments with given controller and system, Retrain Networks if possible + """ + + def __init__(self, + system:System, + plotter:Plotter): + """ + Initialize Simulator with given System + :param System: + """ + self.system = system + self.plotter = plotter + self.control_dict={} + for control in self.system.model.controls: + self.control_dict.update({control.col_name: control.default}) + + self.last_df = pd.DataFrame() + + def __str__(self): + return f'Simulator(System={self.system.system_name})' + + def run(self, + controllers, + duration: int, + save_plot: bool = True, + show_plot: bool = True, + show_time: bool = True, + tag: str = None + ): + """ + Run simulation / experiment with given properties + :param controllers: Tuple of controllers to be used + :param duration: duration of the experiment + :param save_plot: should the plot be saved? + :param show_plot: should the plot be shown? + :return: + """ + # assertions + assert self.system is not None,\ + 'Please make sure to call the function "setup()" first.' + + for controller in controllers: + assert self.system.step_size <= controller.dt,\ + f'Please make sure the dt of the controller (dt={controller.dt})' \ + f' is greater or equal to the step_size of the fmu (step_size={self.system.step_size}).' + assert controller.dt % self.system.step_size == 0,\ + f'The dt of the controller (dt={controller.dt}) ' \ + f'must be multiple of the step_size of the fmu (step_size={self.system.step_size}).' + + # update start and stop time + self.system.start_time = self.system.current_time + self.system.stop_time = self.system.current_time + duration + # write default values + self.system.write_values(self.control_dict) + # plan the simulation + self.system.model.plan_simulation(start_time=self.system.start_time, stop_time=self.system.stop_time, step_size=self.system.step_size) + + # initialize data frame + if self.last_df.empty: + df = pd.DataFrame(self.system.read_values(self.system.output_names), columns=['SimTime', *self.system.output_names], index=[0]) + else: + df = self.last_df + + # simulation loop + while self.system.do_step(): + + if self.system.current_time % self.system.step_size == 0: + + # print time + if show_time: + display_time(self.system.current_time, + self.system.system_name) + + # get the current state of the System + df = df.append(pd.DataFrame(self.system.read_values(self.system.output_names), index=[0]), ignore_index=True) + + # update the target and bounds dataframe + for y in self.system.model.controlled: + y.update(df=df) + + # calculate the controls and write them + for controller in controllers: + + if self.system.current_time % controller.dt == 0: + controller.set_disturbances(self.system.get_forecast(n=controller.N, + sampling_time=controller.dt, + meas_df=df)) + # calculate the controls + controls = controller(df) + + # add the controls to the control dictionary + for key, value in controls.items(): + self.control_dict.update({key: value}) + + self.system.write_values(self.control_dict) + + # delete last row to append last row with valid control + df.drop(df.tail(1).index, inplace=True) + + # read variables and add to the data frame + df = df.append(pd.DataFrame(self.system.read_values(self.system.output_names), index=[0]), ignore_index=True) + + # end line + print('\n') + self.last_df = df.copy(deep=True) + # remove data before the start_time + df = df.loc[self.system.start_time <= df['SimTime']] + + # feature creation + df = self.system.model.feature_creation(df=df) + + # add simulation plan data to df (bounds, error bounds, ...) + df = self.system.model.add_controlled_data_to_df(df=df) + + # create DataContainer + dc = DataContainer(df=df, tag=tag) + + # plotting via Plotter + dc.plot(plotter=self.plotter, save_plot=save_plot, show_plot=show_plot) + + # add to the DataHandler + return dc + + def retrain_anns(self, + containers: list, + network_trainer: NetworkTrainer, + epochs: int = 100, + batch_size: int = 50, + clear_data: bool = True): + """ + + :param containers: + :param network_trainer: + :param epochs: + :param batch_size: + :param clear_data: + :return: + """ + + # online learning + if clear_data: + network_trainer.clear_data() + network_trainer.load_data(containers=containers) + network_trainer.train_ann(epochs=epochs, batch_size=batch_size) + network_trainer.test_ann() + + def set_last_df(self, last_df: pd.DataFrame): + """ + sets raw DataFrame with former simulation results + """ + self.last_df = last_df + + + +def display_time(seconds:int, system_name:str): + result = [] + if seconds % 60 == 0: + for name, count in (('weeks', 604800), # 60 * 60 * 24 * 7 + ('days', 86400), # 60 * 60 * 24 + ('hours', 3600), + ('minutes', 60), + ): + value = seconds // count + if value: + seconds -= value * count + if value == 1: + name = name.rstrip('s') + result.append("{} {}".format(value, name)) + result = ' - '.join(result) + print(f'\r\tSimulating {system_name}: {result}', end='',) + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/__init__.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2fc1283ac810594bd47d5ba57a94758baa0c8910 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/__init__.py @@ -0,0 +1,3 @@ +from ddmpc.modeling.systems.fmu_system import * +from ddmpc.modeling.systems.boptest_system import * +from ddmpc.modeling.systems.energym_system import * \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/boptest_system.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/boptest_system.py new file mode 100644 index 0000000000000000000000000000000000000000..5ae9786029a6eadc30a8e948517cb9929f9509cf --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/boptest_system.py @@ -0,0 +1,222 @@ +import shutil +import requests +import numpy as np +import pandas as pd +from os.path import isfile +from pathlib import Path +from urllib.parse import urljoin +from abc import ABC, abstractmethod +from ddmpc.modeling.modeling import Model, Constructed +from ddmpc.modeling.system_base_class import System, display_time +from ddmpc.utils.pickle_handler import write_pkl, read_pkl + + +class BOPTESTSystem(System): + """ + This Boptest class implements functionalities to interact with the Boptest-base Framework + (To interact with the Boptest-Service Branch the functionalities need to be extended) + """ + + def __init__(self, + model: Model, + step_size: int, + url: str, + name: str, + directory: Path = Path('stored_data', 'boptest') + ): + """ + Initialize Boptest System, get list of inputs and measurements, set step size + :param model: ontology model of the Problem + :param step_size: time step size of one simulation step + :param url: url and port where the boptest framework is hosted + :param name: name of the experiment (gets added to the boptest testcase) + :param directory: directory to store additional information + """ + # set up super + self.url = url + testcase = requests.get(url=urljoin(self.url, 'name')).json()['name'] + super().__init__(system_name=testcase + name, + directory=directory, + step_size=step_size, + model=model) + # get variable lists + self.inputs_meta = requests.get(url=urljoin(url, 'inputs')).json() + self.outputs_meta = requests.get(url=urljoin(url, 'measurements')).json() + self._input_names = list(self.inputs_meta.keys()) + self._forecast_keys = list(self._get_forecast_keys()) + self._output_names = list(self.outputs_meta.keys())+self._forecast_keys + + # set step size + new_step_size = {'step': self.step_size} + requests.put(url=urljoin(url, 'step'), data=new_step_size) + + # initialize controls and measurements + self.measurement_dict = {} + self.input_dict = {} # could also be filled with the activation variables at the beginning + + # initialize parameter dict for forecast + self.forecast_param = {} + + def setup(self, start_time: int, warmup_period: int, scenario: dict = None): + """ + Set up the simulation with a defined start time, warmup_period and a scenario. + If a scenario is given, the start time will be overwritten by the start time defined in the scenario + :param warm_up_time: simulation time of the system with a base controller before the start + :param scenario: dict with a given simulation scenario {'electricity_price':,'time_period':} + :param start_time: start time of the simulation in s + :return: + """ + init_params = {'start_time': start_time, + 'warmup_period': warmup_period} + self.measurement_dict = requests.put(url=urljoin(self.url, 'initialize'), data=init_params).json() + + if scenario is not None: # if a scenario is available it is set. This step overwrites the start time + ret = requests.put(urljoin(self.url, 'scenario'), data=scenario).json() + self.measurement_dict = ret['time_period'] + + self.scenario = requests.get(url=urljoin(self.url, 'scenario')).json() + self.current_time = self.measurement_dict['time'] + self.start_time = self.current_time + + def do_step(self) -> bool: + """ + Perform one simulation step by calling the advance endpoint of the boptest api. Simulation is stopped if either + the stop time is reached or if the scenario is finished (signalised by passing an empty dataframe). Update + measurements by the return of the function + :return: + """ + if self.current_time < self.stop_time: + y = requests.post(urljoin(self.url, 'advance'), self.input_dict).json() + if y: + self.measurement_dict.update(y) + self.current_time = self.measurement_dict['time'] + return True + else: + return False + else: + return False + + + def write_values(self, control_dict: dict): + """ + just update control dict with new inputs + :param control_dict: + :return: + """ + self.input_dict.update(control_dict) + + def read_values(self, var_names: list) -> dict: + """ + update SimTime in measurement dict + :param var_names: + :return: + """ + self.measurement_dict.update({'SimTime': + self.measurement_dict['time']}) + forecast_dict = requests.get(urljoin(self.url, 'forecast')).json() + for key in self._forecast_keys: + self.measurement_dict.update({key:forecast_dict[key][0]}) + + return self.measurement_dict + + + + def get_system_time(self): + """ + Return current system time + :return: + """ + return self.current_time + + def _get_forecast_keys(self): + """ + Returns List of Forecast parameters + :return: + """ + return list(requests.get(urljoin(self.url, 'forecast')).json().keys()) + + def get_forecast(self, + n: int, + sampling_time: int, + meas_df:pd.DataFrame) -> pd.DataFrame: + """ + call forecast endpoint + transformation to pd + :param N: + :param sampling_time: + :return: + """ + + if not self.forecast_param: + self.forecast_param.update({'horizon': n*sampling_time, + 'interval': sampling_time}) + requests.put(urljoin(self.url, 'forecast_parameters'), data=self.forecast_param) + + forecast_raw = requests.get(urljoin(self.url, 'forecast')).json() + pd_boptest = pd.DataFrame(data=forecast_raw) + forecast = pd.DataFrame() + backcast = pd.DataFrame() + + for feature in self.model.D: + if feature.is_constructed == False: + key = feature.col_name + backcast[key] = meas_df[key] + forecast[key] = pd_boptest[key] + forecast['SimTime'] = pd_boptest['time'] + backcast['SimTime'] = meas_df['SimTime'] + + forecast.drop(forecast.head(1).index,inplace=True) + forecast = pd.concat([backcast,forecast],ignore_index=True) + forecast.index = forecast['SimTime'] + + # Construct features + for feature in self.model.D: + if feature.is_constructed: + feature: Constructed + forecast = feature.process(forecast) + + return forecast + + def close(self): + """ + :return: + """ + print('Disconnected to Boptest') + + @property + def output_names(self) -> list: + """ + Return list of outputs + :return: + """ + return self._output_names + + def get_results(self): + """ + Create Pandas DataFrame with complete Simulation Results + :return: + """ + df_res = pd.DataFrame() + for datapoint in self._output_names: + res_req = {'point_name': datapoint, + 'start_time': -np.inf, + 'final_time': np.inf} + res = requests.put(url=urljoin(self.url, 'results'), data=res_req).json() + df_res = pd.concat((df_res, pd.DataFrame(data=res[datapoint], + index=res['time'], columns=[datapoint])), axis=1) + return df_res + + def get_kpis(self): + """ + Get KPIs at the end of the Simulation + :return: + """ + return requests.get(url=urljoin(self.url, 'kpi')).json() + + def activate_ctrl_layer(self,base_ctrl:dict): + """ + In Boptest the controlled layer needs to be defined. Therefore we use this function to activate first. + ToDo: is there a better way to deal with this? + :param base_ctrl: + :return: + """ + self.input_dict.update(base_ctrl) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/energym_system.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/energym_system.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/fmu_system.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/fmu_system.py new file mode 100644 index 0000000000000000000000000000000000000000..26a6ac3c944d87978d3ffdb9e9dda9954d15daa8 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/systems/fmu_system.py @@ -0,0 +1,376 @@ +import shutil +import fmpy +import fmpy.fmi2 +import pandas as pd +from os.path import isfile +from pathlib import Path +from abc import ABC, abstractmethod +from ddmpc.modeling.modeling import Model +from ddmpc.modeling.system_base_class import System, display_time +from ddmpc.utils.pickle_handler import write_pkl, read_pkl + + + +class FMUSystem(System): + """ + This FMU class implements functionalities to interact with FMUs + """ + + # ------------ Implementation of abstract functions ----------------- + def __init__(self, + model: Model, + step_size: int, + fmu_name: str, + instance_name: str = 'fmu', + sim_tolerance: float = 0.0001, + system_name: str = "fmu_system", + directory: Path = Path('stored_data', 'FMUs') + ): + """ + initialize FMU System class + :param model: Model Ontology + :param step_size: time step size of the fmu + :param fmu_name: name of the fmu (must match with stored name) + :param instance_name: name of the instance to create + :param sim_tolerance: simulation tolerance + :param system_name: name of the system to control + :param directory: directory where the fmu file is stored + """ + # initialize parent class + super().__init__(system_name = system_name, + directory = directory, + step_size= step_size, + model= model) + + # technical settings + self.sim_tolerance = sim_tolerance + self.instance_name = instance_name + + # initialization + self.fmu = None + self.fmu_name = fmu_name + self.fmu_path = Path(directory,fmu_name) + + # description + self.description = self._read_description() + + # variables + self.variable_dict = self._get_variable_dict() + + # outputs: + self._output_names=[var_name for var_name in self.model.var_names if var_name in self.variable_dict.keys()] + # disturbances + self.disturbances_df = pd.DataFrame() + + def setup(self, start_time: int, **kwargs): + """ + Setup the FMU environment for a given start time + :param start_time: Time at which the simulation is started (in s of the year) + :return: + """ + + assert self.fmu is None, 'Please make sure the simulation was closed' + assert start_time >= 0, 'Please make sure the start time is greater or equal to zero.' + + # start time + self.current_time = start_time + + # create a slave + self.fmu = fmpy.fmi2.FMU2Slave( + guid=self.description.guid, + unzipDirectory=fmpy.extract(self.fmu_path), + modelIdentifier=self.description.coSimulation.modelIdentifier, + instanceName=self.instance_name + ) + + # create an instance of the fmu + self.fmu.instantiate() + + # reset the fmu + self.fmu.reset() + + # start new experiment + self.fmu.setupExperiment( + startTime=start_time, + tolerance=self.sim_tolerance + ) + + self.fmu.enterInitializationMode() + self.fmu.exitInitializationMode() + if self.check_for_disturbances_file()!= True: + print('Please generate Disturbance File first') + + def close(self): + """ + Closes the simulation and clears the fmu object. + """ + + self.fmu.terminate() + self.fmu.freeInstance() + shutil.rmtree(fmpy.extract(self.fmu_path)) + + self.__init__( + step_size=self.step_size, + fmu_name=self.fmu_name, + sim_tolerance=self.sim_tolerance, + instance_name=self.instance_name, + model=self.model) + print('FMU released') + + def do_step(self) -> bool: + """ + Simulates one step. + """ + # return finish status + if self.current_time < self.stop_time: + + self.fmu.doStep( + currentCommunicationPoint=self.current_time, + communicationStepSize=self.step_size + ) + + # increment time + self.current_time += self.step_size + return True + + else: + return False + + def read_values(self,var_names:list) -> dict: + """ + # read current variable values and store in dict + :param var_names: List with names of variables to read + :return: + """ + res = {} + + for var_name in var_names: + assert var_name in self.variable_dict.keys(), f'{var_name} not available in FMU' + res[var_name] = self._read_value(var_name) + + # add current time to results + res['SimTime'] = self.current_time + return res + + def _read_value(self, var_name: str): + """ + Get a single variable. + """ + + variable = self.variable_dict[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + return self.fmu.getReal(vr)[0] + elif variable.type in ['Integer', 'Enumeration']: + return self.fmu.getInteger(vr)[0] + elif variable.type == 'Boolean': + value = self.fmu.getBoolean(vr)[0] + return value != 0 + else: + pass + raise Exception("Unsupported type: %s" % variable.type) + + def write_values(self,control_dict:dict): + """ + Writes Values of control dict to fmu + :param control_dict: + :return: + """ + if control_dict: + for var_name, value in control_dict.items(): + self._write_value(var_name, value) + else: + self._write_default_values(self.model) + + def get_forecast(self, + n: int, + sampling_time: int, + meas_df: pd.DataFrame) -> pd.DataFrame: + """ + Get forecast for the current prediction horizon (In case of the FMU system we are lazy and just provide the pregenerated file) + :return: + """ + return self.disturbances_df + + def get_system_time(self): + return self.current_time + + # ------------ Additional Functions ------------ + @property + def disturbances_filepath(self): + return f'{self.directory}/{self.fmu_name}_disturbances_dt_{self.step_size}.pkl' + + @property + def output_names(self) ->list: + """ + Return list of outputs + :return: + """ + return self._output_names + + def check_for_disturbances_file(self): + """ + This function checks whether there are already matching disturbances. If not so they must be generated. + """ + # check if the disturbances already exist. + if isfile(self.disturbances_filepath): + return True + + # otherwise simulate them. + else: + return False + + def load_disturbances(self,start_time: int = 0, stop_time: int = 60 * 60 * 24 * 380,controllers: tuple = tuple()) -> pd.DataFrame: + + if self.check_for_disturbances_file(): + self.disturbances_df = read_pkl(filename=self.disturbances_filepath) + else: + self.simulate_disturbances(model=self.model, + start_time=start_time, + stop_time=stop_time, + controllers=controllers) + self.disturbances_df = read_pkl(filename=self.disturbances_filepath) + assert self.disturbances_df is not None, 'Please make sure to generate the disturbances before running the MPC.' + + return self.disturbances_df + + def simulate_disturbances(self, model: Model, start_time: int = 0, stop_time: int = 60 * 60 * 24 * 380,controllers: tuple = tuple()): + """ + Simulates the fmu file without a controller and then extracts only the disturbances from it. + Afterwards the DataFrame is stroed at the disturbances_filepath + :param model: Model instance + :param start_time: Start of the disturbances DataFrame + :param stop_time: End of the disturbances DataFrame + """ + # combine run and simulate disturbances script from Max + # setup the data simulator + print("------------------------------------------") + print(f"Simulating disturbances for System {self.system_name}") + print("------------------------------------------") + self.setup(start_time) + self.stop_time=stop_time + # write default values + self._write_default_values(model=model) + # plan the simulation + model.plan_simulation(start_time=start_time, stop_time=stop_time, step_size=self.step_size) + # extract var_names that are included in the fmu + var_names = [var_name for var_name in model.var_names if var_name in self.variable_dict.keys()] + # initialize data frame + df = pd.DataFrame(self.read_values(var_names), columns=['SimTime', *var_names], index=[0]) + while self.do_step(): + + if self.current_time % self.step_size == 0: + + # print time + display_time(self.current_time,self.system_name) + + # get the current state of the System + df = df.append(pd.DataFrame(self.read_values(var_names), index=[0]), ignore_index=True) + + # update the target and bounds dataframe + for y in model.controlled: + y.update(df=df) + + # calculate the controls and write them + control_dict = dict() + for controller in controllers: + + if self.current_time % controller.dt == 0: + + # calculate the controls + controls = controller(df) + + # add the controls to the control dictionary + for key, value in controls.items(): + if key in control_dict.keys(): + control_dict[key] += value + else: + control_dict[key] = value + + self.write_values(control_dict) + + # delete last row to append last row with valid control + df.drop(df.tail(1).index, inplace=True) + + # read variables and add to the data frame + df = df.append(pd.DataFrame(self.read_values(var_names), index=[0]), ignore_index=True) + + df = model.feature_creation(df=df) + self.close() + disturbances = [feature.col_name for feature in model.t + model.D] + df = df[disturbances] + # save as pickle + write_pkl(df, self.disturbances_filepath, override=True) + + # ------------ Additonal Functions for internal use only ------------ + def _read_description(self): + """ + Read the description of the given fmu file + :return: model_description + """ + + # open fmu file + self.fmu_path: Path + if self.fmu_path.is_file(): + file = open(self.fmu_path) + + else: + raise AttributeError(f'FMU file with path "{self.fmu_path}" does not exist.') + + # read model description + model_description = fmpy.read_model_description(self.fmu_path.as_posix()) + + # close fmu file + file.close() + + # return model description + return model_description + + def _get_variable_dict(self) -> dict: + """ + get dict of the variables included in the fmu + :return: dict with variables included in the fmu + """ + + assert self.description is not None, 'Please make sure to read model description first.' + + # collect all variables + variables = dict() + for variable in self.description.modelVariables: + variables[variable.name] = variable + + return variables + + def _write_value(self, var_name: str, value): + """ + Write a single control value + :param var_name: Name of the variable to write + :param value: value to be written + :return: + """ + + variable = self.variable_dict[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + self.fmu.setReal(vr, [float(value)]) + elif variable.type in ['Integer', 'Enumeration']: + self.fmu.setInteger(vr, [int(value)]) + elif variable.type == 'Boolean': + self.fmu.setBoolean(vr, [value == 1.0 or value == True or value == "True"]) + else: + raise Exception("Unsupported type: %s" % variable.type) + + def _write_default_values(self, model: Model): + """writes default control values""" + for control in model.controls: + self._write_value(control.col_name, control.default) + + + def _update_times(self, duration: int): + """updates the start and stop time""" + self.start_time = self.current_time + self.stop_time = self.current_time + duration + + diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/training_networks.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/training_networks.py new file mode 100644 index 0000000000000000000000000000000000000000..6dfa2136ce5f9808fe82d2267aac356e50ac598e --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/modeling/training_networks.py @@ -0,0 +1,649 @@ +import random +import matplotlib.pyplot as plt + +import numpy as np +import pandas as pd + +from keras import Sequential, models +from keras.layers import Dense, BatchNormalization, Rescaling + +from ddmpc.modeling.features import Feature +from ddmpc.utils.pickle_handler import read_pkl, write_pkl +from ddmpc.utils import formatting as fmt +from ddmpc.modeling.keras_tuner import TunerModel +from ddmpc.modeling.data_handling import DataContainer + + +class Node: + + def __init__(self, feature: Feature): + + self.feature = feature + + def __str__(self): + return f'{self.__class__.__name__}({self.feature.__str__()})' + + def __repr__(self): + return f'{self.__class__.__name__}({self.feature.__repr__()})' + + def __eq__(self, other): + return other and self.feature == other.feature + + def __ne__(self, other): + return not self.__eq__(other) + + def __hash__(self): + return hash(self.feature) + + @property + def name(self): + return self.feature.col_name + + +class Input(Node): + + def __init__(self, feature: Feature, lag: int): + assert lag > 0 + self.lag = lag + + super(Input, self).__init__(feature=feature) + + def __str__(self): + return f'Input({self.feature.__str__()} - lag: {self.lag})' + + def __repr__(self): + return f'Input({self.feature.__repr__()} - lag: {self.lag})' + + def col_name(self, k: int): + return f'Input({self.feature.name}_{-k})' + + +class Output(Node): + + def __init__(self, feature: Feature): + + super(Output, self).__init__(feature=feature) + + def col_name(self): + return f'Output({self.feature})' + + @property + def name(self): + return self.col_name() + + +class NetworkTrainer: + + def __init__( + self, + inputs: tuple, + output: Output, + step_size: int, + directory='stored_data\\NetworkTrainers', + show_plot: bool = True, + save_plot: bool = False, + ): + """ + Used to train Artificial Neural networks with Keras. + :param inputs: List of inputs. + :param output: List of Outputs. + """ + + assert all([type(i) == Input for i in inputs]), 'Make sure all inputs are from type "Input".' + assert type(output) == Output, 'Make sure the output is from type "Output".' + + # directory to save the network trainer at + self.directory = directory + self.show_plot = show_plot + self.save_plot = save_plot + + # define the in and output Features + self.inputs = inputs + self.output = output + + # training data + self.x_train = None + self.y_train = None + + self.x_test = None + self.y_test = None + + self.x_validate = None + self.y_validate = None + + # step size + self.step_size = step_size + + # DataFrame with all neural networks + self.df_networks = pd.DataFrame(columns=[ + 'ann_name', + 'layers', + 'neurons', + 'batch_normalizing', + 'output_scale', + 'optimizer', + 'loss', + 'metric', + 'score', + ]) + + # currently loaded ann + self.ann = None + + print(self) + + def __str__(self): + + print(f'{fmt.BOLD}NetworkTrainer:{fmt.ENDC}') + print('\tINPUTS:') + for input in self.inputs: + print(f'\t\t{input}') + print('\tOUTPUT:') + print(f'\t\t{self.output}') + + return '' + + def __repr__(self): + return f'NetworkTrainer(Output={self.output})' + + @property + def in_and_outputs(self): + return list(self.inputs + (self.output,)) + + @property + def input_col_names(self): + names = list() + for input in self.inputs: + for k in range(0, input.lag): + names.append(input.col_name(k)) + return names + + @property + def output_col_name(self): + return [self.output.col_name()] + + @property + def lag_list(self): + return [input.lag for input in self.inputs] + + @property + def cum_lag_list(self): + return [sum(self.lag_list[0:x:1]) for x in range(0, len(self.lag_list) + 1)] + + @property + def max_lag(self): + return max(self.lag_list) + + @property + def sum_lag(self): + return sum(self.lag_list) + + @property + def n_inputs(self): + return sum(self.lag_list) + + def load_ann(self, ann_name: str, folder: str = 'KerasTuner'): + ann = models.load_model(filepath=f'stored_data\\{folder}\\{ann_name}') + self.ann = ann + + def save_ann(self, ann: Sequential = None, folder: str = 'KerasTuner'): + if ann is None: + ann = self.ann + ann.save(filepath=f'stored_data\\{folder}\\{ann.name}') + + def load_best_ann(self, loc: int = 0): + """ + Loads the ann with the best score. + """ + assert len(self.df_networks) > 0, 'Please make sure to train a neural network first.' + assert 0 <= loc < len(self.df_networks), f'Invalid loc={loc}.' + + self.sort_df_networks() + best_ann_name = self.df_networks['ann_name'].iloc[loc] + print(f'Loaded ann with name: {best_ann_name}') + + self.load_ann(ann_name=best_ann_name) + + def sort_df_networks(self): + + self.df_networks.sort_values('score', inplace=True) + self.df_networks.reset_index(drop=True, inplace=True) + + def train_ann(self, ann: Sequential = None, epochs: int = 250, batch_size: int = 250, verbose: int = 2): + + if ann is None: + ann = self.ann + assert ann is not None, 'Please make sure to load an ANN before training.' + + assert self.x_train is not None or self.y_train is not None, 'Please generate training data first.' + + if self.x_validate is not None and self.y_validate is not None: + + ann.fit(x=self.x_train, + y=self.y_train, + validation_data=(self.x_validate, self.y_validate), + epochs=epochs, + batch_size=batch_size, + verbose=verbose, + ) + + else: + ann.fit(x=self.x_train, + y=self.y_train, + epochs=epochs, + batch_size=batch_size, + verbose=verbose, + ) + + def test_ann(self, ann: Sequential = None, metric: str = 'mse', on_training_data: bool = False): + """ + Tests a given ANN + :param ann: ANN to test. + :param metric: Metric to calculate the error. + :param on_training_data: Should the test be performed on the training data? + :return Score + """ + + if ann is None: + ann = self.ann + assert ann is not None, 'Please make sure to load an ANN before testing.' + + if self.x_test is None or self.y_test is None or on_training_data: + print('No test data available for testing. Proceeding with training data.') + x_test = self.x_train + y_test = self.y_train + else: + x_test = self.x_test + y_test = self.y_test + + assert metric in ['mse', 'mae'] + + df = pd.DataFrame() + + df['y_real'] = y_test.squeeze() + df['y_pred'] = ann.predict(x_test).squeeze() + + if metric == 'mae': + df['error'] = df['y_pred'] - df['y_real'] + elif metric == 'mse': + df['error'] = (df['y_pred'] - df['y_real']) ** 2 + else: + raise ValueError('Please select a proper metric.') + + score = df['error'].mean() + + df = df.sort_values('y_real', ignore_index=True) + + if self.show_plot: + # plt.axhline(y=0, color='black', linestyle=fmt.line_solid) + plt.scatter(df.index, df['y_pred'], s=0.4, c=fmt.blue, label='predicted') + plt.scatter(df.index, df['y_real'], s=0.4, c=fmt.red, label='real') + # plt.scatter(df.index, df['error'], s=0.5, c=fmt.black, label=metric) + plt.legend(loc='upper right') + plt.title(f'{self.output.feature} - {metric}={score:.5f}') + plt.gca().yaxis.grid(linestyle='dotted') + plt.show() + + + return score + + def load_data(self, containers: list): + """ + This function loads data to train anns with. + :param containers: [list] List of DataContainers that contain the training data. + """ + + # progress bar + print(f'{fmt.BOLD}NetworkTrainer:{fmt.ENDC}') + assert len(containers) > 0, 'Please generate data first.' + fmt.print_progress_bar(iteration=0, total=len(containers), length=20, prefix='\tLoading DataContainers') + + for i, container in enumerate(containers): + + assert container.step_size % self.step_size == 0,\ + f'Make sure the step_size of the NetworkTrainer {self.step_size} ist ' \ + f'a multiple of the step_size of the FMU {container.step_size}.' + + # reduces the step size to the desired size + df = self.reduce_step_size(container.df) + + # create all inputs + df = self.create_lag(df) + + # batch + x = df[self.input_col_names].values + y = df[self.output_col_name].values + + # add data + self.add_data(x, y, tag=container.tag) + + # progress bar + fmt.print_progress_bar(iteration=i+1, total=len(containers), length=20, prefix='\tLoading DataContainers') + + def reduce_step_size(self, df: pd.DataFrame): + """ + In case the step size of the MPC does not match the step size of the FMU the step size has to be reduced. + """ + return df[(df['SimTime'] - df['SimTime'].iloc[0]) % self.step_size == 0] + + def create_lag(self, df: pd.DataFrame) -> pd.DataFrame: + """ + This function creates lag to a pandas data frame. + """ + ret_df = pd.DataFrame() + + # inputs + for input in self.inputs: + + assert input.feature.col_name in df.columns, f'Please make sure {input.feature.col_name} is contained in {df.columns}.' + + for k in range(0, input.lag): + ret_df[input.col_name(k)] = df[input.feature.col_name].shift(k) + + # output + assert self.output.feature.col_name in df.columns, 'Please make sure the output of the ann is also an input.' + ret_df[self.output.col_name()] = df[f'{self.output.feature.col_name}'].shift(-1) + + # drop na + ret_df = ret_df.dropna(axis=0) + + return ret_df + + def add_data(self, x, y, tag: str): + + if tag == 'training': + if self.x_train is None: + self.x_train = x + self.y_train = y + else: + self.x_train = np.concatenate((self.x_train, x), axis=0) + self.y_train = np.concatenate((self.y_train, y), axis=0) + + elif tag == 'testing': + if self.x_test is None: + self.x_test = x + self.y_test = y + else: + self.x_test = np.concatenate((self.x_test, x), axis=0) + self.y_test = np.concatenate((self.y_test, y), axis=0) + + elif tag == 'validating': + if self.x_validate is None: + self.x_validate = x + self.y_validate = y + else: + self.x_validate = np.concatenate((self.x_validate, x), axis=0) + self.y_validate = np.concatenate((self.y_validate, y), axis=0) + + elif tag == 'none': + # dont load the data if the tag is none + return 0 + + else: + raise ValueError(f'Please select a propper tag. {tag}') + + def print_data(self): + + print('\tSuccessfully loaded data:') + if self.x_train is None: + x = self.x_train + else: + x = self.x_train.shape + + if self.y_train is None: + y = self.y_train + else: + y = self.y_train.shape + + print(f'\t\tTraining: x={x} \t y={y}') + + if self.x_test is None: + x = self.x_test + else: + x = self.x_test.shape + + if self.y_test is None: + y = self.y_test + else: + y = self.y_test.shape + + print(f'\t\tTesting: x={x} \t y={y}') + + if self.x_validate is None: + x = self.x_validate + else: + x = self.x_validate.shape + + if self.y_validate is None: + y = self.y_validate + else: + y = self.y_validate.shape + + print(f'\t\tValidating: x={x} \t y={y}') + + def clear_data(self): + + self.x_train = None + self.y_train = None + + self.x_test = None + self.y_test = None + + self.x_validate = None + self.y_validate = None + + def clear_trainer(self): + """ + Clears the saved ann names and scores. + """ + # DataFrame with all neural networks + self.df_networks = pd.DataFrame(columns=[ + 'ann_name', + 'layers', + 'neurons', + 'batch_normalizing', + 'output_scale', + 'optimizer', + 'loss', + 'metric', + 'score', + ]) + + def batch_data(self, df: pd.DataFrame) -> (np.ndarray, np.ndarray): + """ + This function translates a pandas DataFrames to numpy arrays. + + df -> x, y + + """ + n_rows = len(df) + + n_inputs = self.n_inputs + max_lag = self.max_lag + input_str_list = self.input_col_names + lag_list = self.lag_list + cum_lag_list = self.cum_lag_list + + # check that enough data is available + assert n_rows > max_lag, 'Please make sure there is sufficient data in the DataContainer.' + + # calculate y + y = np.array(df.loc[max_lag:n_rows, self.output.name]) + + # create empty array for x + x = np.zeros(shape=(n_rows - max_lag, n_inputs)) + + # fill x with values + for row in range(max_lag, n_rows): + + for name, lag, cum_lag in zip(input_str_list, lag_list, cum_lag_list): + + # insert the mini batch + x[row - max_lag, cum_lag:cum_lag + lag] = np.array(df.loc[row - lag + 1:row, name]) + + return x, y + + def evaluate_data(self, containers: list): + + dfs = list() + + for i, container in enumerate(containers): + + # create all inputs + df = self.create_lag(container.df) + + # add to list + dfs.append(df) + + # concat + df = pd.concat(dfs) + + # Correlation + print(df.corr()[self.output_col_name].to_string()) + + # box plot + i = 0 + for inp in self.inputs: + columns = df.columns[i:i+inp.lag].to_list() + i +=inp.lag + + df.boxplot(column=columns, + rot=20, + showfliers=False, + notch=False) + plt.show() + + @staticmethod + def build_dense(output_name: str, + layers: int, + neurons: int, + batch_normalizing: bool = True, + output_scale: float = None, + output_offset: float = 0, + optimizer: str = 'adam', + loss: str = 'mse', + ann_id: int = None, + ): + + if ann_id is None: + ann_id = random.randint(1000, 9999) + + # set the name + for char in ['.', '(', ')', '{', '}', '<', '>']: + output_name = output_name.replace(char, '') + + name = f'{output_name}_{ann_id}Id' + + # instantiate a new Sequential keras model + keras_model = Sequential(name=name) + + # batch normalizing layer to normalize the inputs + if batch_normalizing: + keras_model.add(BatchNormalization(axis=1)) + + # n Dense layers + for layer in range(layers): + keras_model.add(Dense(units=neurons, activation='sigmoid')) + + # output layer + keras_model.add(Dense(units=1, activation='linear')) + + # scale the output if necessary + if output_scale is not None: + keras_model.add(Rescaling(scale=output_scale, offset=output_offset)) + + # compile the model + keras_model.compile(optimizer=optimizer, loss=loss) + + return keras_model + + def freeze_layer(self, layer_i: int, freeze: bool = True): + """ + :param layer_i: Layer to freeze. + :param freeze: True / False + """ + + assert self.ann is not None, 'Please load ANN first.' + + print(f'Freezing layer {layer_i}.') + + self.ann.layers[layer_i].trainable = not freeze + + def tune(self, + layer_range: tuple, + neurons_range: tuple, + batch_normalizing: bool = True, + output_scale: float = None, + output_offset: float = 0, + trials: int = 10, + epochs: int = 500, + batch_size: int = 200, + optimizer: str = 'adam', + loss: str = 'mse', + metric: str = 'mse', + verbose: int = 0, + ): + + # tuner + for trial in range(1, trials+1): + # choose a random layer and neuron count + layers = random.choice(layer_range) + neurons = random.choice(neurons_range) + + ann = self.build_dense( + output_name=self.output.feature.col_name, + layers=layers, + neurons=neurons, + batch_normalizing=batch_normalizing, + output_scale=output_scale, + output_offset=output_offset, + optimizer=optimizer, + loss=loss, + ) + + # train the ann + self.train_ann(ann=ann, epochs=epochs, batch_size=batch_size, verbose=verbose) + + # test the ann + score = self.test_ann(ann, metric=metric) + + # save the keras model + self.save_ann(ann=ann) + + # stats + stats = {'ann_name': ann.name, + 'layers': layers, + 'neurons': neurons, + 'batch_normalizing': batch_normalizing, + 'output_scale': output_scale, + 'optimizer': optimizer, + 'loss': loss, + 'metric': metric, + 'score': score + } + + # add to the dict + self.df_networks = self.df_networks.append(stats, ignore_index=True) + + # print ann + print(f'\n{fmt.BOLD}ANN {trial} of {trials}:{fmt.ENDC}') + for stat, value in stats.items(): + print(f'\t{stat}: {value}') + + # evaluation + self.evaluate_tuner() + + def evaluate_tuner(self): + self.sort_df_networks() + print(self.df_networks.to_string()) + + def save(self, filename: str, override: bool = False): + del self.ann + self.ann = None + write_pkl(self, filename, self.directory, override) + + +def load_NetworkTrainer(filename: str, directory='stored_data\\NetworkTrainers') -> NetworkTrainer: + network_trainer = read_pkl(filename, directory) + print(network_trainer) + return network_trainer diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/__init__.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..0f8223d6084b596f9ffbb06f2127100493896ad1 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/__init__.py @@ -0,0 +1,3 @@ +from ddmpc.utils.formatting import * +from ddmpc.utils.pickle_handler import * +from ddmpc.utils.plotting import * \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/formatting.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/formatting.py new file mode 100644 index 0000000000000000000000000000000000000000..991f986a5631eb61cc65d248abe311d441a6a5b1 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/formatting.py @@ -0,0 +1,95 @@ +import time +import numpy as np + +# plt colors +dark_red = [172 / 255, 43 / 255, 28 / 255] +red = [221 / 255, 64 / 255, 45 / 255] +light_red = [235 / 255, 140 / 255, 129 / 255] +green = [112 / 255, 173 / 255, 71 / 255] +light_grey = [217 / 255, 217 / 255, 217 / 255] +grey = [157 / 255, 158 / 255, 160 / 255] +dark_grey = [78 / 255, 79 / 255, 80 / 255] +light_blue = [157 / 255, 195 / 255, 230 / 255] +blue = [0 / 255, 84 / 255, 159 / 255] +black = [0, 0, 0] +ebc_palette_sort_1 = [dark_red, red, light_red, dark_grey, grey, light_grey, blue, light_blue, green] +ebc_palette_sort_2 = [red, blue, grey, green, dark_red, dark_grey, light_red, light_blue, light_grey] + +# linestyles +line_solid = '-' +line_dotted = ':' +line_dashed = '--' +line_dashdot = '-.' + +# console colors +HEADER = '\033[95m' +OKBLUE = '\033[94m' +OKCYAN = '\033[96m' +OKGREEN = '\033[92m' +WARNING = '\033[93m' +FAIL = '\033[91m' +ENDC = '\033[0m' +BOLD = '\033[1m' +UNDERLINE = '\033[4m' + + +def print_progress_bar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█', printEnd=''): + """ + Call in a loop to create terminal progress bar + @params: + iteration - Required : current iteration (Int) + total - Required : total iterations (Int) + prefix - Optional : prefix string (Str) + suffix - Optional : suffix string (Str) + decimals - Optional : positive number of decimals in percent complete (Int) + length - Optional : character length of bar (Int) + fill - Optional : bar fill character (Str) + printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) + """ + percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) + filledLength = int(length * iteration // total) + bar = fill * filledLength + '-' * (length - filledLength) + print(f'\r{prefix} |{bar}| {percent}% {suffix}', end=printEnd,) + # Print New Line on Complete + if iteration == total: + print() + + +def print_lists(*lst, statement): + print(f'{BOLD}{statement}{ENDC}') + for i, elements in enumerate(zip(*lst)): + print('\t', "%03d" % i, *elements) + + +def generate_matrix(rows): + max_length = max([len(row) for row in rows]) + for row in rows: + for i in range(max_length - len(row)): + row.append(0) + return rows + + +def print_table_line(row: list, max_lengths: list, space_char: str = ' '): + print_string = str() + + for x in list(zip(row, max_lengths)): + value = str(x[0]) + max_length = int(x[1]) + + print_string += value + print_string += space_char * (max_length - len(value)) + print_string += '\t' + + print(print_string) + + +def print_table(rows: list, space_char: str = ' '): + lengths = list() + + for row in rows: + lengths.append([len(str(value)) for value in row]) + + max_lengths = list(np.amax(generate_matrix(lengths), axis=0)) + + for row in rows: + print_table_line(row, max_lengths, space_char) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/pickle_handler.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/pickle_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..7dceeb98150635c7ecb6424787f652249a63c8ee --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/pickle_handler.py @@ -0,0 +1,86 @@ +import pickle +import os + + +def read_pkl(filename: str, directory: str = None): + """ + Reads data from a pickle file. + :param filename: The name of the file. + :param directory: The directory the file is located. + :return: Pickle object. + """ + + path = _get_path(filename, directory) + + if os.path.exists(path): # check for the existance of the path + pkl_file = open(path, 'rb') # open path + pkl_data = pickle.load(pkl_file) # read data + pkl_file.close() # close path + return pkl_data # return data + else: + ValueError(f'The path {path} does not exist.') + + +def write_pkl(data, filename: str, directory: str = None, override: bool = False): + """ + Writes data to a pickle file. + :param data: The object that is supposed to be saved. + :param filename: The name of the file. + :param directory: The directory the file will be saved to. + :param override: Boolean. + """ + + path = _get_path(filename, directory) + + # make sure the directory does exist + if directory is not None: + if not os.path.exists(directory): + os.mkdir(directory) + + # make sure the file does not already exist + if os.path.exists(path) and not override: + if not _get_bool(f'The file "{path}" already exists. Do you want to override it?\n'): + return 0 + + # open the path and writhe the file + pkl_file = open(path, 'wb') + pickle.dump(data, pkl_file) + + # close file + pkl_file.close() + + +def _get_path(filename: str, directory: str): + """ + Returns the full path for a given filename and directory. + """ + if '.pkl' not in filename: # check for file extension + filename += '.pkl' # add file extension + + if directory is not None: # check if directory is none + if not os.path.exists(directory): # check if path exists + os.makedirs(directory) # create new directory + return str(directory + '\\' + filename) # calculate full path + else: + return filename + + +def _get_bool(message: str, true: list = None, false: list = None): + + if false is None: + false = ['no', 'nein', 'false', '1', 'n'] + if true is None: + true = ['yes', 'ja', 'true', 'wahr', '0', 'y'] + + val = input(message).lower() + if val in true: + return True + elif val in false: + return False + else: + print('Please try again.') + print('True:', true) + print('False:', false) + _get_bool(message, true, false) + + return val diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/plotting.py b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/plotting.py new file mode 100644 index 0000000000000000000000000000000000000000..69d38a93c3895aa7f57c6a850f5f05a0c07fd169 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/ddmpc/utils/plotting.py @@ -0,0 +1,253 @@ +import os +import time +import locale +import datetime +import matplotlib +import matplotlib.pyplot as plt +import matplotlib.dates as dates + +import pandas as pd +from .pickle_handler import write_pkl, read_pkl + + +class PlotOptions: + + def __init__( + self, + color: list, + line: str, + label: str = None, + ): + """ + :param color: Line color for the plotting + :param line: Line style for the plotting + :param label: Label for the plotting + """ + self.color = color + self.line = line + self.label = label + + def __str__(self): + return f'{self.__class__.__name__}(color={self.color}, line_style={self.line}, label={self.label})' + + def __repr__(self): + return f'{self.__class__.__name__}(color={self.color}, line_style={self.line}, label={self.label})' + + +class SubPlot: + """ + A sub plot takes a tuple of Features. + """ + def __init__( + self, + features: tuple, + y_label: str, + step: bool = False, + lb: float = None, + ub: float = None, + factor: float = 1, + shift: float = 0, + normalize: bool = False, + ): + self.features = features + self.y_label = y_label + self.step = step + self.lb = lb + self.ub = ub + self.n_features = len(features) + + self.factor = factor + self.shift = shift + self.normalize = normalize + + def convert(self, values: pd.Series): + + if self.normalize: + values = (values - values.min()) / (values.max() - values.min()) + + values = values * self.factor - self.shift + + return values + + +class Plotter: + """ + This class is used to plot the simulated data. + The SubPlots are stacked vertically. + """ + def __init__( + self, + *sub_plots: SubPlot, + size: tuple, + language: str = 'de_DE', + directory: str = 'stored_data//Plots', + sub_folder_name: str = None, + ): + + # SubPlots + self.sub_plots = sub_plots + + # settings + self.size = size + + #locale.setlocale(locale.LC_TIME, language) + + self.directory = directory + self.sub_folder_name = sub_folder_name + + # set locale + #locale.setlocale(locale.LC_TIME, language) + + def __str__(self): + return f'Plotter: \n\t SubPlots: {len(self.sub_plots)}\n\t Size: {self.size}' + + @staticmethod + def setup(): + + matplotlib.rcParams['mathtext.fontset'] = 'custom' + matplotlib.rcParams['mathtext.rm'] = 'Bitstream Vera Sans' + matplotlib.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic' + matplotlib.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold' + + matplotlib.rcParams['mathtext.fontset'] = 'stix' + matplotlib.rcParams['font.family'] = 'STIXGeneral' + + matplotlib.rcParams['savefig.dpi'] = 200 + matplotlib.rcParams['figure.dpi'] = 200 + + @property + def n_sub_plots(self): + return len(self.sub_plots) + + def plot_filepath(self, name: str): + if self.sub_folder_name is None: + return f'{self.directory}//{time.strftime("%Hh %Mm %Ss", time.localtime())} - {name}.pdf' + else: + return f'{self.directory}//{self.sub_folder_name}//{time.strftime("%Hh %Mm %Ss", time.localtime())} - {name}.pdf' + + def build(self, df: pd.DataFrame): + + df = df.copy(deep=True) + + # figure and axis + fig, axs = plt.subplots(self.n_sub_plots, sharex=True) + fig.set_size_inches(self.size[0], self.size[1]) + + # timescale + step_size = int(df['SimTime'].iloc[1] - df['SimTime'].iloc[0]) + start_date = datetime.datetime(2020, 1, 6) + datetime.timedelta(seconds=int(df['SimTime'].iloc[0])) + date_list = [start_date + datetime.timedelta(seconds=step_size) * rows for rows in range(0, len(df.index))] + + # iterate over all sub_plots + for index, sub_plot in enumerate(self.sub_plots): + + # set the y label + axs[index].set(ylabel=sub_plot.y_label) + + # set the lower and upper bound + + if sub_plot.lb is not None: + axs[index].set_ylim(bottom=sub_plot.lb- 0.4) + if sub_plot.ub is not None: + axs[index].set_ylim(top=sub_plot.ub + 0.4) + + # iterate over all features + for feature in sub_plot.features: + + assert feature.col_name in df.columns,\ + f'Plotting error! Feature with col_name {feature.col_name} not in df.' + + values = sub_plot.convert(df[feature.col_name]) + + if sub_plot.step: + axs[index].step( + date_list, + values, + label=feature.plt_opts.label, + color=feature.plt_opts.color, + linestyle=feature.plt_opts.line, + ) + + else: + axs[index].plot( + date_list, + values, + label=feature.plt_opts.label, + color=feature.plt_opts.color, + linestyle=feature.plt_opts.line, + ) + + # target + if f'{feature.col_name}_target' in df.columns: + + target = sub_plot.convert(df[f'{feature.col_name}_target']) + axs[index].step(date_list, + target, + label='', + color='black', + linestyle='--', + ) + + # lb + if f'{feature.col_name}_lb' in df.columns: + lb = sub_plot.convert(df[f'{feature.col_name}_lb']) + axs[index].step(date_list, + lb, + label='', + color='black', + linestyle='-', + ) + + # ub + if f'{feature.col_name}_ub' in df.columns: + lb = sub_plot.convert(df[f'{feature.col_name}_ub']) + axs[index].step(date_list, + lb, + label='', + color='black', + linestyle='-', + ) + + # label + axs[index].legend(loc='upper right') + + # major and minor locator + if len(df.index) <= int((60 * 60 * 24 * 2 + 1) / step_size): + axs[-1].xaxis.set_major_locator(dates.DayLocator()) + axs[-1].xaxis.set_major_formatter(dates.DateFormatter('%a')) + axs[-1].xaxis.set_minor_locator(dates.HourLocator(interval=4)) + axs[-1].xaxis.set_minor_formatter(dates.DateFormatter('%H:%M')) + else: + axs[-1].xaxis.set_major_locator(dates.MonthLocator()) + axs[-1].xaxis.set_major_formatter(dates.DateFormatter('%b')) + axs[-1].xaxis.set_minor_locator(dates.DayLocator()) + axs[-1].xaxis.set_minor_formatter(dates.DateFormatter('%a')) + + def plot(self, df: pd.DataFrame, name: str, save_plot: bool = True, show_plot: bool = True): + + # setup plot + self.setup() + + # build plot + self.build(df) + + # save plot + if save_plot: + if not os.path.exists(self.directory): + os.mkdir(self.directory) + if self.sub_folder_name is not None: + if not os.path.exists(f'{self.directory}//{self.sub_folder_name}'): + os.mkdir(f'{self.directory}//{self.sub_folder_name}') + + plt.savefig(self.plot_filepath(name)) + + # show plot + if show_plot: + plt.show(block=False) + + def save(self, filename: str, directory: str = 'stored_data\\Plotter', override: bool = False): + write_pkl(self, filename, directory, override) + + +def load_Plotter(filename: str, directory: str = 'stored_data\\Plotter') -> Plotter: + return read_pkl(filename, directory) diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/readme.md b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/readme.md new file mode 100644 index 0000000000000000000000000000000000000000..3b88469a7f8ea6e9df394f821861c6c0d858b581 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/readme.md @@ -0,0 +1,16 @@ +# Data Driven Model Predictive Control - DDMPC + +A brief explanation of the most important modules of the **ddmpc** package: + +- **controller**: contains the core controller functionalities +- **modeling**: modules for modeling, feature mapping and data handling. +Simulation interface can be accessed via abstract system class +- **utils**: utilities for formatting, plotting and pickle handling + +# Step by step manual: + +1. Create new folder for the system to be controlled +2. Create **configuration** file, defining the system, the causalities and the variable mapping +3. Define the training strategy as displayed in **2_generate_data** +4. Define the structure and hyperparameters of the anns to be used in **3_train_anns** +5. Configure the DDMPC and the online learning loop in **4_mpc_online** \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/requirements.txt b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..2a9bad3c63b8a34b872535668f28aef9ad4ab279 Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/ann_ddmpc/requirements.txt differ diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GPR_mpc.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GPR_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..e377abae12e6aca36dc864b293c7ce5683c7ea29 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GPR_mpc.py @@ -0,0 +1,1095 @@ +import numpy as np +import matplotlib.pyplot as plt +import matplotlib +#matplotlib.use('TKAgg') +import pandas as pd +import os +import datetime +from casadi import * +from pickle_handler import * +from data_manager import * +from GP_regression import * +#from ThermalZoneControllerPyomo import * +import pyDOE + + + +class lhs_ctrl: + def __init__(self, DataHandler, intervall = 6): # 9 + print('lhs controller') + self.intervall = intervall + self.DataHandler = DataHandler + self.start_time = self.DataHandler.fmu.start_time + self.stop_time = self.DataHandler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + print(self.sim_time) + self.timepoints = self.sim_time / DataHandler.step_size + print(self.timepoints) + self.u_values = pyDOE.lhs(2, int(self.timepoints/intervall +2), criterion = 'c') # with zero insertion /2 ! + # np.save("lhs_27_04_new3", self.u_values) + # self.u_values = np.load("lhs_27_04_new2.npy") # u_values # *(1-0.01)+0.01 New FMU does not require >0.01 + ''' + Einbauen, dass nach jeder control row 4x zero kommt bzw gekühlt wird, um zu gewährleisten, dass Temperatur + wieder absinkt ''' + print(self.u_values) + self.call_counter = 0 + self.control_row = -1 + self.counter_2 = 0 + + def __call__(self, *args): + if self.call_counter % self.intervall == 0: + self.control_row += 1 + control_dict = {} + for index, feature in enumerate(self.DataHandler.model.U): + control_dict[feature.var_name] = self.u_values[self.control_row,index] * (feature.ub - feature.lb) + feature.lb + self.call_counter += 1 + return control_dict + + # Call with zero insertion : + """def __call__(self, *args): + if self.call_counter % self.intervall == 0: + self.counter_2 +=1 + if self.call_counter % (self.intervall*2) ==0 : + self.control_row +=1 + control_dict = {} + for index, feature in enumerate(self.DataHandler.model.U): + if self.counter_2 % 2 == 0: + control_dict[feature.var_name] = self.u_values[self.control_row,index] + else: + control_dict[feature.var_name] = 0 + self.call_counter += 1 + return control_dict""" + + def description(self): + return f'LHS controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' + + +class zero_ctrl: + + def __init__(self, DataHandler): + + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.start_time = self.DataHandler.fmu.start_time + self.stop_time = self.DataHandler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + self.timepoints = self.sim_time / DataHandler.step_size + + def __call__(self, *args, **kwargs): + T_out = args[0]['weaBus.TDryBul'].iloc[-1] - 293.15 + control_dict = {} + control_dict['TsetAHU'] = T_out + control_dict['Q_flowTabs'] = 0 + return control_dict + + def description(self): + return f'ZERO controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' + + +class variance_tracker: + + def __init__(self, DataHandler, GPR_Model, df, incl_derivative=False): + """ + Variance Tracker Class. + own class to avoid overhead of creating MPC controller + Online Learning prob. better as function of GPR MPC track variance can simply be copied though + --> difference: df with whole data exists already here + for real online learning: use "live" df. + """ + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + if not incl_derivative: # --- bitte schlauer implementieren als über flag arg ! + self.df = self.DataHandler.insert_derivative(df) + self.df = self.DataHandler.keep_features(df) + print('df\n') + print(self.df) + else: + self.df = df + + def track_variance(self, start_int = 25, end_int = None, normalise = True): + variances = [] + time_indexes = [] + if end_int is None: + end_int = len(df.index) + loc = start_int + while loc <= end_int: + print(loc) + col_chunks = [] + for feature in self.regressor_list: + col_chunks.append(np.array(self.df.iloc[loc - feature.lag: loc+1][ feature.var_name])) # size(appendix) = lag+1 + x_test = np.hstack(col_chunks) + y, variance = self.gp.GP_eval(x_test=x_test.reshape(1,-1), normalise=normalise, with_variance=True) + variances.append(float(variance)) + time_indexes.append(loc) + loc += 1 + + ret = [variances, time_indexes] + self.variances = np.array(variances) + self.time_indexes = time_indexes + return ret + + def extend_GPR(self, number_of_timepoints, path, save = True): + var_indexes = (-self.variances).argsort()[:number_of_timepoints] + print(var_indexes) + time_marks = [] + for index in var_indexes: + time_marks.append(self.time_indexes[index]) + print(var_indexes) + ''' + ACHTUNG ! loc und iloc ! + ''' + df = self.df + X_train = np.empty((0, sum([feature.lag + 1 for feature in self.model.regressor_list])), float) + Y_train = np.empty((0, len(self.model.target_list)), float) + for i in time_marks: + col_chunks = [] + for feature in self.model.regressor_list: + col_chunks.append(np.array(df.iloc[i - feature.lag: i + 1][feature.var_name])) # size(appendix) = lag+1 + X_train = np.append(X_train, [np.hstack(col_chunks)], axis=0) + + target_values = [] + for target_name in self.model.target_list_str: # target_name = var_name + " (t+1)" + target_values.append(np.array(df.iloc[i][target_name])) # size(appendix) = 1 + # y_k+1 @ index i is corresponding to x_k @ index i + Y_train = np.append(Y_train, [np.hstack(target_values)], axis=0) + + #print(self.gp.X_train) + #print(X_train) + X_train_norm = self.gp.normalise_X(X_train, casadi_eval=False) + Y_train_norm = self.gp.normalise_Y(Y_train, casadi_eval=False) + print(self.gp.X_train) + #print(X_train_norm) + + X_train_new_full = np.vstack((self.gp.X_train, X_train_norm)) + Y_train_new_full = np.vstack((self.gp.Y_train, Y_train_norm)) + print(X_train_new_full.shape) + print(Y_train_new_full.shape) + + self.gp.set_new_data(X_train_new_full, Y_train_new_full) + self.gp.set_up_reg() + + if save is True: + self.gp.save_GPR(path=path) + ''' + GP-Setup + New Hyperparam ?! -> Beides testen + GP save_GPR + ''' + + +class GPR_MPC_comfort: + + def __init__(self, DataHandler, GPR_Model, N=8): # --- maybe pass disturbances df as argument instead of loading from DataHandler + self.comp_times = [] + self.N = N + #self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + self.disturbances_df = self.DataHandler.disturbances_df + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- working hours and comfort temperatures + self.working_hours = [6, 18] + self.comfort_limits_day = [273.15 + 20 , 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend([feature for feature in + self.model.c_D]) # if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + + self.nY = len(self.Y) + self.nU = len(self.U) + + self.create_controller() + + def get_comfort_limit(self, current_time): + + L_limits = [] + U_limits = [] + for t in range(self.N): + time_dict = self.get_time_dict(current_time + (t+2) * self.step_size ) + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + L_limits.append(self.comfort_limits_day[0]) + U_limits.append(self.comfort_limits_day[1]) + else: + L_limits.append(self.comfort_limits_night[0]) + U_limits.append(self.comfort_limits_night[1]) + + return L_limits, U_limits + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = df['SimTime'].iloc[-1] # int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressor to be simulated... ') + T_out = args[0]['weaBus.TDryBul'].iloc[-1] - 293.15 + control_dict = {} + control_dict['TsetAHU'] = T_out + control_dict['Q_flowTabs'] = 0 + return control_dict + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size # + 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d - feature.lag: loc_d + self.N, feature.var_name])) + print(feature.var_name) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc - feature.lag:-1][feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc - feature.lag::][feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + values_C = [] + for c in self.C: + values_aux1 = list(df.iloc[loc - c.lag::][self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc - c.lag - 1: loc][self.Y[0].var_name]) + + for i in range(c.lag + 1): + values_C.append(values_aux1[i] - values_aux2[i]) + + L_limits, U_limits = self.get_comfort_limit(current_time) + print(L_limits) + print(U_limits) + values_limit = [*L_limits, *U_limits] + print('values_limit') + print(values_limit) + print(values_D) + print(values_C) + print(values_Y) + print('hallo') + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C, values_limit) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] LIMITS[0:N] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N + 1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- add limitations to PARVARS: + LB_syms = [] + for k in range (N): # vll N+1 + lb_T_k = SX.sym('par LB_' + str(k), 1) + LB_syms.append(lb_T_k) + PARVARS.append(lb_T_k) + UB_syms = [] + for k in range (N): + ub_T_k = SX.sym('par UB_' + str(k), 1) + UB_syms.append(ub_T_k) + PARVARS.append(ub_T_k) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Multiple Shooting loop + obj = 0 + + self.Q_val = 1000 # 000 + self.R_val = [1, 1] # , 8, 4] + self.dR_val = [10, 10] # , 4, 4] + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + # --- Multiple Shooting Loop: + for k in range(self.N): + print('MPC_loop:') + print(k) + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + OPTVARS.append(U_k) + # for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + + self.constraint(U_k[i], self.U[i].lb, self.U[i].ub) # 0.02 + + Y_k = SX.sym('Y_' + str(k + 1), self.nY) + OPTVARS.append(Y_k) + + C_k = SX.sym('C_' + str(k + 1), 1) + OPTVARS.append(C_k) + + EPS_k = SX.sym('EPS_' + str(k + 1), 1) + OPTVARS.append(EPS_k) + + print(VARS_regressorlist) + print(U_k[0]) + print(VARS_regressorlist[0][4 + k]) + #quit() + # self.constraint(Y_k - Y_pred) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + # print(str(index)) + # print(VARS_regressorlist[index]) + col_chunk = np.array([VARS_regressorlist[index][ + k: k + 1 + feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + print('chunk len:') + print(len(VARS_regressorlist[index][k: k + feature.lag + 1])) + print(VARS_regressorlist[index][k: k + feature.lag + 1]) + + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk) + # print(col_chunks) + x_test = np.hstack(col_chunks) + print('x_test') + print(x_test.shape) + + dY_pred = self.gp.GP_eval(x_test.reshape(1, -1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + self.constraint(Y_k - Y_pred) + self.constraint(C_k - dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_k[i]) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(C_k) + + self.constraint(Y_pred + EPS_k - LB_syms[k], 0, inf) + self.constraint(Y_pred + EPS_k - UB_syms[k], -inf, 0) + + obj = obj + EPS_k.T @ Q @ EPS_k # + U_k.T @ R @ U_k hier adden, das [T_AHU, Q_CCA]_ref = [Tdrybul, 0] , TdryBul erster Wert in D. über N iterieren + # Tdrybul[k] = VARS_regressorlist[0][feature.lag + k] + ref = [VARS_regressorlist[0][self.regressor_list[0].lag + k] - 293.15, 0] #4 + # ref = [0,0] + for i in range(self.nU): + obj = obj + (U_k[i] - ref[i]) **2 * self.R_val[i] + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1]) ** 2 * \ + dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt': {'max_iter': 3000, 'print_level': 4}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C, values_LIM): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C, *values_LIM] + call_time = time.time() + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + self.comp_times.append(time.time() - call_time) + print(solution) + print(solution['x']) + control_dict = self.control2dict(solution['x']) + # u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict(self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + # for i in range(self.N): + temperatures = [] + temperatures = solution[::5] + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1 + index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + # quit() + return control_dict + + +class GPR_MPC_comfort_SS: + + def __init__(self, DataHandler, GPR_Model, N=8): # --- maybe pass disturbances df as argument instead of loading from DataHandler + self.comp_times = [] + self.N = N + # self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + self.disturbances_df = self.DataHandler.disturbances_df + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- working hours and comfort temperatures + self.working_hours = [6, 18] + self.comfort_limits_day = [273.15 + 20, 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend([feature for feature in + self.model.c_D]) # if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + + self.nY = len(self.Y) + self.nU = len(self.U) + + self.create_controller() + + def get_comfort_limit(self, current_time): + + L_limits = [] + U_limits = [] + for t in range(self.N): + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size ) + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + L_limits.append(self.comfort_limits_day[0]) + U_limits.append(self.comfort_limits_day[1]) + else: + L_limits.append(self.comfort_limits_night[0]) + U_limits.append(self.comfort_limits_night[1]) + + return L_limits, U_limits + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = df['SimTime'].iloc[-1] # int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressor to be simulated... ') + T_out = args[0]['weaBus.TDryBul'].iloc[-1] - 293.15 + control_dict = {} + control_dict['TsetAHU'] = T_out + control_dict['Q_flowTabs'] = 0 + return control_dict + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size # + 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d - feature.lag: loc_d + self.N, feature.var_name])) + print(feature.var_name) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc - feature.lag:-1][feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc - feature.lag::][feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + values_C = [] + for c in self.C: + values_aux1 = list(df.iloc[loc - c.lag::][self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc - c.lag - 1: loc][self.Y[0].var_name]) + + for i in range(c.lag + 1): + values_C.append(values_aux1[i] - values_aux2[i]) + + L_limits, U_limits = self.get_comfort_limit(current_time) + print(L_limits) + print(U_limits) + values_limit = [*L_limits, *U_limits] + print('values_limit') + print(values_limit) + print(values_D) + print(values_C) + print(values_Y) + print('hallo') + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C, values_limit) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] LIMITS[0:N] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N + 1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- add limitations to PARVARS: + LB_syms = [] + for k in range (N): # vll N+1 + lb_T_k = SX.sym('par LB_' + str(k), 1) + LB_syms.append(lb_T_k) + PARVARS.append(lb_T_k) + UB_syms = [] + for k in range (N): + ub_T_k = SX.sym('par UB_' + str(k), 1) + UB_syms.append(ub_T_k) + PARVARS.append(ub_T_k) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Single Shooting loop + obj = 0 + + self.Q_val = 1000 # 000 + self.R_val = [0.1, 0.1] # , 8, 4] + self.dR_val = [100, 100] # , 4, 4] + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + # --- Single Shooting Loop: + for k in range(self.N): + print('MPC_Single_Shooting_loop:') + print(k) + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + + OPTVARS.append(U_k) + # for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + self.model.U[i].lb, self.model.U[i].ub + self.constraint(U_k[i],self.model.U[i].lb, self.model.U[i].ub) # 0.02 + + EPS_k = SX.sym('EPS_' + str(k + 1), 1) + OPTVARS.append(EPS_k) + + #print(VARS_regressorlist) + # self.constraint(Y_k - Y_pred) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + + col_chunk = np.array([VARS_regressorlist[index][ + k: k + 1 + feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + print('chunk len:') + print(len(VARS_regressorlist[index][k: k + feature.lag + 1])) + # print(VARS_regressorlist[index][k: k + feature.lag + 1]) + print(feature.var_name) + print(col_chunk.shape) + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk.reshape(1, -1)) + # print(col_chunks) + #quit() + x_test = np.hstack(col_chunks) + print('x_test') + print(x_test.shape) + + dY_pred = self.gp.GP_eval(x_test.reshape(1, -1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k and add dY_pred + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + # self.constraint(Y_k - Y_pred) + # self.constraint(C_k - dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_pred) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(dY_pred) + + self.constraint(Y_pred + EPS_k - LB_syms[k], 0, inf) + self.constraint(Y_pred + EPS_k - UB_syms[k], -inf, 0) + + obj = obj + EPS_k.T @ Q @ EPS_k # + U_k.T @ R @ U_k + ref = [VARS_regressorlist[0][4 + k] - 293.15, 0] + for i in range(self.nU): + obj = obj + (U_k[i] - ref[i]) **2 * self.R_val[i] + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1]) ** 2 * \ + dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt': {'max_iter': 3000, 'print_level': 4}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C, values_LIM): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C, *values_LIM] + call_time = time.time() + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + self.comp_times.append(time.time() - call_time) + print(solution) + print(solution['x']) + + control_dict = self.control2dict(solution['x']) + # u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict(self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + # for i in range(self.N): + temperatures = [] + temperatures = solution[0] # --- single shooting ! + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1 + index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + #quit() + return control_dict + + + +class GPR_MPC: + + def __init__(self, DataHandler, GPR_Model, N = 5, control = True) : # --- maybe pass disturbances df as argument instead of loading from DataHandler + + self.N = N + self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + try: + self.disturbances_df = self.DataHandler.disturbances_df + + except AttributeError: + print('Default disturbance data is used ! ') + self.disturbances_df = read_pkl("C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_14-03_15_03\\disturbances.pkl" ) + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend( [feature for feature in self.model.c_D]) #if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + print(self.D) + print(len(self.C)) + + self.nY = len(self.Y) + self.nU = len(self.U) + + if control is True: + self.create_controller() + + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressors to be simulated... ') + return dict() + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size #+ 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d-feature.lag: loc_d + self.N, feature.var_name])) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc-feature.lag:-1][ feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc-feature.lag::][ feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + + values_C = [] + for c in self.C: + # if c.feature in D andere Behandlung, vll eigene Liste values_C_d + print(c) + values_aux1 = list(df.iloc[loc-c.lag::][ self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc-c.lag-1: loc][ self.Y[0].var_name]) + print('aux') + print(values_aux1) + print(values_aux2) + for i in range(c.lag+1): + values_C.append(values_aux1[i] - values_aux2[i]) + + print(values_D) + print(values_C) + print(values_Y) + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C ) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N+1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Multiple Shooting loop + ''' bester Run bisher: mit 0703 21 46 Datenset + Q = diag(self.nY) * 50 + R = diag([500,10,20,10]) * 1 + dR = [50,50,50,50] + ''' + obj = 0 + + self.Q_val = 20 + self.R_val = [1, 1, 1, 1] + self.dR_val = [8, 8, 8, 8] + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + print('initialize MPC_loop:') + # --- Multiple Shooting Loop: + for k in range(self.N): + + print('\n\nloop '+str(k)+' of '+str(self.N)+ '\nload symbolic GPR inputs:\n') + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + OPTVARS.append(U_k) + #for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + self.constraint(U_k[i], 0.02, 1) # 0.02 + + Y_k = SX.sym('Y_' + str(k + 1), self.nY) + OPTVARS.append(Y_k) + + C_k = SX.sym('C_' + str(k+1), 1) + OPTVARS.append(C_k) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + # print(str(index)) + # print(VARS_regressorlist[index]) + col_chunk = np.array([VARS_regressorlist[index][k : k+1+feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + # print('chunk len:') + # print(len(VARS_regressorlist[index][k : k + feature.lag+ 1])) + print(VARS_regressorlist[index][k : k + feature.lag+ 1]) + + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk) + #print(col_chunks) + x_test = np.hstack(col_chunks) + print('\ndim(x_test): ' + str(x_test.shape)) + + dY_pred = self.gp.GP_eval(x_test.reshape(1,-1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + self.constraint(Y_k-Y_pred) + self.constraint(C_k-dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_k[i]) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(C_k) + + obj = obj + (Y_pred - self.ref).T @ Q @ (Y_pred - self.ref) + U_k.T @ R @ U_k + for i in range(self.nU): + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1])**2 * dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt':{'max_iter': 3000, 'print_level':5}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C] + + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + print(solution) + print(solution['x']) + control_dict = self.control2dict(solution['x']) + #u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict (self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + #for i in range(self.N): + temperatures = [] + temperatures = solution[::6] + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1+index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + #quit() + return control_dict + + def description(self): + a = self.DataHandler.fmu.start_time + b = self.DataHandler.fmu.stop_time + c = (a-b)/ self.step_size + return f'MPC-ref controller from {a/86400} until {b/86400} (timepoints = {c})' + + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GP_regression.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GP_regression.py new file mode 100644 index 0000000000000000000000000000000000000000..13fa8fb2895157ffb1bd76252d7547480356f518 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/GP_regression.py @@ -0,0 +1,175 @@ +import GPy +import numpy as np +import time +import datetime +from pickle_handler import * +#from casadi import * +'''' +universal GP Regression class +''' + +class GP_Regression: + + def __init__(self, X_train, Y_train, abs = True, ARD=True): + ''' + :param X_train_abs: Regressor training data, npArray, shape: (N, D) (D: number of regressors, N: number of samples) + :param Y_train_abs: Target training data, npArray, shape: (N, number_of_targets) + :param abs: set True for absolute values + :param ARD: set True for automatic relevance detection kernel + ''' + self.X_train = X_train + self.x_min = np.amin(self.X_train, axis = 0) + self.x_max = np.amax(self.X_train, axis = 0) + + self.Y_train = Y_train + self.y_min = np.amin(self.Y_train, axis=0) + self.y_max = np.amax(self.Y_train, axis=0) + + if abs: + self.X_train = self.normalise_X(self.X_train, casadi_eval=False) + self.Y_train = self.normalise_Y(self.Y_train, casadi_eval=False) + + self.N = self.X_train.shape[0] + self.D = self.X_train.shape[1] + + self.ARD = ARD + + def set_new_data(self, X_train, Y_train): + + self.X_train = X_train + self.Y_train = Y_train + self.N = self.X_train.shape[0] + self.D = self.X_train.shape[1] + + + + def opt_hyperparam(self, restarts = 1, induce = False): + ''' + yields Theta, an array of hyperparams (length_params, kernel variance, noise variance) + GPy is used for optimization, it may be outdated, but offers and has a simple interface for this operation + (i.e. ARD GPR kernel not possible with scikit learn) + ''' + # m.kern.variance.prior = GPy.priors.Gamma(1, 0.1) + print('optimize hyperparameters') + kernel = GPy.kern.RBF(input_dim=self.D, ARD=self.ARD) + if induce is True: + m = GPy.models.SparseGPRegression(self.X_train, self.Y_train, kernel=kernel,num_inducing=300) + else: + m = GPy.models.GPRegression(self.X_train, self.Y_train, kernel, noise_var=1e-6) # NOISE VAR mal austesten + m.optimize( messages = True, max_iters = 200) # (optimizer='scg', + m.optimize_restarts(num_restarts=restarts, messages=True, max_iters=200) + print(m) + len_scales = [kernel.lengthscale[i] for i in range(self.D)] + + theta = [len_scales, kernel.variance[0], m.Gaussian_noise.variance[0]] + self.theta = theta + + def set_up_reg(self): + ''' + calculates values needed for actual regression + ''' + self.K = self.kernel(self.X_train, self.X_train) # --- without kernel noise, dim(K) = NxN (#datapoints) + # --- Idee: while Schleife, bis kein error + # --- Idee: scipy linalg statt numpy + #self.jitter = self.theta[2]**2 + self.jitter = 0 + counter = 1 + while True: + if self.jitter > 1e-3: + print('\n'+str(self.jitter)+' was not enough noise.') + break + try: + self.L = np.linalg.cholesky(self.K + np.eye(self.N) * self.jitter) + print('Cholesky succeeded!') + break + except np.linalg.LinAlgError: + print('Matrix numerically not p. sd. ... adding noise') + self.jitter = self.theta[2] * 10**(counter) + print(str(counter)+', new jitter: '+str(self.jitter)) + counter+=1 + + self.alpha = np.linalg.solve(self.L.T, np.linalg.solve(self.L, self.Y_train)) + + def kernel(self, a, b, eval=False): + # --- RBF ARD kernel function + kernelParameter_l = self.theta[0] + kernelParameter_sigma = self.theta[1] # **2 + + a = a / kernelParameter_l + b = b / kernelParameter_l + + sqdist = np.sum(a ** 2, axis=1).reshape(-1, 1) + np.sum(b ** 2, 1) - 2 * np.dot(a, b.T) + # --- multidim. binomial equation, (a-b).T*(a-b) = a^2 + b^2 - 2ab.T + + if eval: + return kernelParameter_sigma * np.exp(-0.5 * sqdist) # bc kronecker delta ;) + else: + return kernelParameter_sigma * np.exp(-0.5 * sqdist) + np.eye(self.N) * self.theta[2] # **2 + + def normalise_X(self, X, reverse = False, casadi_eval = True): + if reverse: + x_out = self.x_min + (self.x_max - self.x_min)*X + else: + x_out = (X - self.x_min) / (self.x_max - self.x_min) + if not casadi_eval: + if np.isnan(np.sum(x_out)): + print('Constant value in training data!\nWill set Nan to zero.') + x_out = np.nan_to_num(x_out) + return x_out + + def normalise_Y(self, Y, reverse = False, casadi_eval = True): + + self.norm_amplitude = 0.5 + if reverse: + # y_out = self.y_min + (self.y_max - self.y_min)*Y # [0,1] + y_out = self.y_min + (self.y_max - self.y_min) * (Y + self.norm_amplitude) / (2*self.norm_amplitude) + else: + # y_out = (Y - self.y_min) / (self.y_max - self.y_min)# [0,1] : + y_out = ( (Y - self.y_min) *2*self.norm_amplitude / (self.y_max - self.y_min) ) - self.norm_amplitude + #if not casadi_eval: + # if np.isnan(np.sum(y_out)): + # print('Constant value in training data!\nWill set Nan to zero.') + # x_out = np.nan_to_num(y_out) + return y_out + + def GP_eval(self, x_test, normalise = True, with_variance = False): + print(normalise) + ''' + :param x_test: input vector, shape: amount_of_test_points,D (normally 1 test point) + :param normalise: set False if normalising procedure ill for Casadi MPC + :return: corresponding GPR output to x_test + ''' + + if normalise: + x_test = self.normalise_X(x_test) + k_star = self.kernel(self.X_train, x_test, eval=True) + #print(k_star) + f_mean = np.dot(k_star.T, self.alpha) + + if with_variance: + # --- output variance as 2nd output, variance = covariance of random var with itself + v = np.linalg.solve(self.L, k_star) + #print(v) + variance = self.kernel(x_test, x_test, eval = True) - np.dot(v.T, v) #+noise variance if wanted + + std_dev = np.sqrt(variance) # --- mean + 1,2,3 sigma = 68,95,99.7 % f +- 2sigma -> 95 % interval + if normalise: + # --- inverse normalisation + f_mean = self.normalise_Y(f_mean, reverse = True) + std_dev = std_dev*(self.y_max - self.y_min) /(2*self.norm_amplitude) # ??? Aber müsste so stimmen + return f_mean, 2*std_dev + else: + if normalise: + # --- inverse normalisation + f_mean = self.normalise_Y(f_mean, reverse = True) + return f_mean + + def save_GPR(self, path: str): + + write_pkl(self, 'GPR_{date:%m-%d_%H_%M}'.format(date=datetime.datetime.now()), path) + + + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/controllers.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/controllers.py new file mode 100644 index 0000000000000000000000000000000000000000..622a92d746d3ffc97e6a47ee6cb0b02fb76bc8ca --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/controllers.py @@ -0,0 +1,288 @@ +import time +import scipy.stats +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +import math +import random +import pickle_handler +import fmu_handler +import tensorflow.keras +from data_manager import * +from tensorflow.keras import models +#from casadi_neural_network import * + + +class controller: + + def __init__(self, data_handler): + + self.debug_mode = False + + # data handler and step size + self.data_handler = data_handler + self.step_size = data_handler.step_size + + # current time + self.current_time = None + + # define target Temperatures + self.target_day = 273.15 + 21 + self.target_night = 273.15 + 18 + + # define target Temperatures + self.comfort_limits_day = [273.15 + 20, 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # define working hours + self.working_hours = [6, 18] + + # trackcomfort + self.comfort_error_list = list() + self.current_comfort = list() + + # track target + self.target_error_list = list() + self.target_list = list() + self.current_target = self.target_night + + # create control dict + self.control_dict = dict() + + def get_disturbances(self, current_time: int, past_steps: int, future_steps: int): + """ + returns disturbances data frame for a specific time window + """ + + start_time = current_time - self.step_size * past_steps + stop_time = current_time + self.step_size * future_steps + + # load disturbances + df = self.data_handler.disturbances_df + df = df[((df['SimTime'] >= start_time) & (df['SimTime'] <= stop_time))] + + if len(df.index) < past_steps: + raise ValueError('Please make sufficient weather data is available.') + + return df + + def get_comfort_limitations(self, current_time: int, future_steps=1): + """ + returns comfort limitations for current time and future steps + """ + assert current_time is not None and future_steps > 0 + + limitations = list() + for t in range(future_steps): + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size) + + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + limitations.append(self.comfort_limits_day) + else: + limitations.append(self.comfort_limits_night) + + if self.debug_mode: + print('limits:', limitations) + + return limitations + + def get_random_target(self, current_time): + + assert type(current_time) is not None + + limits = self.get_comfort_limitations(current_time) + + ret = random.uniform(limits[0][0], limits[0][1]) + + return ret + + def get_target(self, current_time: int, future_steps=1): + + assert type(current_time) is not None and future_steps > 0 + + debug_mode = False + + ret = list() + + for t in range(future_steps): + + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size) + + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + ret.append(self.target_day) + else: + ret.append(self.target_night) + + if debug_mode: + print('Target_list:', ret) + + return ret + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + @staticmethod + def get_casadiANN(keras_model_name): + """ + returns the casadi ann object + """ + + KerasModel = models.load_model(keras_model_name) + # construct casadi ann + casadiANN = NeuralNetwork('ANN') + casadiANN.construct(KerasModel) + + return casadiANN + + def update(self, df: pd.DataFrame): + + # current time + self.current_time = df['SimTime'].iloc[-1] + + # return empty control dict, when + if len(df.index) < 2: + return False + + # chreck for refresh + self.check_refresh() + + # append target + self.target_list.append(self.current_target) + + # current limitations + self.current_comfort = self.get_comfort_limitations(current_time=self.current_time) + + # current error + y = df[self.data_handler.model.Y[0].var_name].iloc[-1] + error = max([min([0, y - self.current_comfort[0][0]]), max([0, y - self.current_comfort[0][1]])], key=abs) + self.comfort_error_list.append(error) + + self.target_error_list.append(y - self.current_target) + + return True + + def check_refresh(self): + + # refresh, when comfort changes + f_limits = self.get_comfort_limitations(current_time=self.current_time-self.step_size, future_steps=2) + + if f_limits[0] != f_limits[1]: + self.refresh() + + def refresh(self): + + return 0 + + + +class pid_target(controller): + + def __init__(self, data_handler, no_control_name = None, random_target=False): + self.no_control_name = no_control_name + # call super + super(pid_target, self).__init__(data_handler) + self.start_time = self.data_handler.fmu.start_time + self.stop_time = self.data_handler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + self.timepoints = self.sim_time / data_handler.step_size + self.ki = dict() + self.kp = dict() + self.kd = dict() + + # new parameters + + for u in self.data_handler.model.U: + #if 'Ahu' in u.display_name: + self.kp[u.var_name] = 0.1 #0.0001 + self.ki[u.var_name] = 0.00005 #.01 + self.kd[u.var_name] = 0.01 #.001 + + + self.integral = 0 + print('random_target:' + str(random_target)) + self.random_target = random_target + self.refresh_rate = 1 + + + def __call__(self, *args, **kwargs): + + # update controller + if not self.update(args[0]): + return dict() + + # new target + if self.random_target is True: + # get new random target via refresh + if self.current_time % self.refresh_rate == 0: + self.refresh_rnd() + else: + self.current_target = self.get_target(self.current_time)[0] + + # update integral (i[0] = i[-1] + e * dt + self.integral += self.target_error_list[-1] * self.step_size + + # error + error = self.target_error_list[-1] + + # delta + delta = args[0][self.data_handler.model.Y[0].var_name].iloc[-1] - args[0][self.data_handler.model.Y[0].var_name].iloc[-2] + + for u in self.data_handler.model.U: + + kp = self.kp[u.var_name] + ki = self.ki[u.var_name] + kd = self.kd[u.var_name] + + if u.info == 'cooler': + self.control_dict[u.var_name] = u.lb + (kp * error + ki * self.integral + kd * delta) * (u.ub - u.lb) + elif u.info == 'heater': + self.control_dict[u.var_name] = u.lb - (kp * error + ki * self.integral + kd * delta) * (u.ub - u.lb) + + if self.control_dict[u.var_name] > u.ub: + self.control_dict[u.var_name] = u.ub + elif self.control_dict[u.var_name] < u.lb: + self.control_dict[u.var_name] = u.lb + + if self.no_control_name is not None: + for name in self.no_control_name: + self.control_dict[name] = 0 + + return self.control_dict + + def __str__(self): + + avrg_err = round(np.abs(np.array(self.comfort_error_list)).mean(), 4) + + return f'PID Regler (avrg_err={avrg_err}K)' + + def refresh_rnd(self): + + # refresh rate in hours + self.refresh_rate = 4*3600 + + # new target + self.current_target = self.get_random_target(self.current_time) + + + print('New target:', round(self.current_target, 4)) + + def description(self): + return f'PID controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/data_manager.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/data_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..1f03f2710fe8d21d6bea1a11806619224c75f9bb --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/data_manager.py @@ -0,0 +1,446 @@ +import matplotlib +import datetime +import pyDOE +import os +import matplotlib.dates as mdates +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np + +from pickle_handler import * +import controllers +from fmu_handler import FMU +from GP_regression import * +from GPR_mpc import * +from ebc_colors import * + + +class Feature: + + def __init__(self, + display_name: str, + var_name: str, + lag=0, + is_regressor = True, + is_target = False, + unit = '',): + ''' + :param var_name: Name as used in FMU + ''' + self.display_name = display_name + self.var_name = var_name + self.lag = lag + self.is_regressor = is_regressor + self.is_target = is_target + self.unit = unit + + def __str__(self): + return f'[{self.var_name}]' #{self.display_name} + + +class Control(Feature): + + def __init__(self, + display_name: str, + var_name: str, + lb: float, + ub: float, + info: str, + lag=0, + is_regressor = True, + is_target = False, + unit = '' + ): + + super(Control, self).__init__(display_name, var_name, lag, is_regressor, is_target) + + self.lb = lb + self.ub = ub + self.info = info + +class Derivative(Feature): + + def __init__(self, feature, is_regressor = True, is_target = False, lag = 0, operator = 'd'): + + self.feature = feature + var_name = f'd {self.feature.var_name}' + display_name = f'd {self.feature.display_name}' + unit = self.feature.unit + super(Derivative, self).__init__(display_name, var_name, lag, is_regressor, is_target) + +class Model: + + def __init__(self, D, c_D, U, Y, C): + + for u in U: + if type(u) is not Control: + raise ValueError('U must be a List of Control type objects!') + + # List of Features + self.D = D # disturbances + self.c_D = c_D # derivatives of D + self.U = U # controls + self.Y = Y # controlled + # self.c_Y + self.C = C # derivative of Y + + self.create_lists() + + + def description(self): + lines = [] + #print('\n' + lines.append('List of regressors in model (also order of regressors in X_train/GPR input) :') + for feature_list in [self.regressor_list, self.target_list]: + for index, feature in enumerate(feature_list): + lines.append('\t'+str(index)+str(feature)+' lag: '+str(feature.lag) + '\tRegressor: '+str(feature.is_regressor)+'\tTarget: '+str(feature.is_target)) + if feature_list==self.regressor_list: + lines.append('\n Targets:') + # lines.append('Order of regressors (for matching lenghtscale):') + # lines.append(str()) + return lines + + def create_lists(self): # --- create ? + + self.regressor_list = [feature for feature in self.all() if feature.is_regressor] + self.target_list = [feature for feature in self.all() if feature.is_target] + + self.regressor_list_str = [feature.var_name for feature in self.all() if feature.is_regressor] + self.list_all_str = [feature.var_name for feature in self.all() if feature.is_regressor or feature.is_target] + ''' GEFÄHRLICH WENN NICHT AUTOREGRESSIVE VARIABLE GELERNT WIRD ''' + self.target_list_str = [feature.var_name + ' (t+1)' for feature in self.all() if feature.is_target] + + def all(self): + return self.D + self.c_D + self.U + self.Y + self.C + + +class DataHandler: + + def __init__(self, model: Model, fmu: FMU): + + self.model = model + self.controller = None + self.controller_desc = [] + + self.fmu = fmu + self.step_size = self.fmu.step_size + + # data storage + self.raw_data = [] # --- list with df's from FMU + self.processed_data = [] + self.reg_data = None # --- final list of np arrays X_train, Y_train with shape (N,D) + + # --- flags: + self.GP_setup_done = False + + def simulate(self, start_time: int, stop_time: int, controller = None): + + # set start/stop time + self.fmu.start_time = start_time + # --- maybe add settling time + self.fmu.stop_time = stop_time + # --- set controller and add to list + if controller == 'lhs': + self.controller = lhs_ctrl(self) # class in GPR_mpc script + elif controller == 'zero': + self.controller = zero_ctrl(self) # class in GPR_mpc script + elif controller == 'PID': + self.controller = controllers.pid_target(self) # class in controllers script. Variant from Max original controller + elif controller == 'PID_random': + self.controller = controllers.pid_target(self, random_target=True) + elif controller == 'PID_no_AHU': + self.controller = controllers.pid_target(self, no_control_name=["valveHeaterSet","valveAHUCoolerSet"]) + elif controller == 'PID_no_CCA': + self.controller = controllers.pid_target(self, no_control_name=["valveTabsHotSet","valveTabsColdSet"]) + else: + self.controller = controller + if self.controller == None: + print('please pass controller or valid controller name') + quit() + + # run the FMU + try: + variables = [feature.var_name for feature in self.model.all()] + except AttributeError: + print('no disturbance derivative in Model') + variables = [feature.var_name for feature in self.model.D + self.model.U + self.model.Y + self.model.C] + print(variables) + df = self.fmu.run(features=variables, controller=self.controller) + + self.raw_data.append(df) + try: + self.controller_desc.append(self.controller.description()) + except AttributeError: + pass + # a, b = follow_up_slave(df, datagen=True, controller=self.controller) + return df + + + def simulate_for_disturbances(self, start_time: int, stop_time: int): + ''' + Runs FMU to obtain disturbance values over simulation time + :return: data frame with obtained disturbances + ''' + self.fmu.start_time = start_time + self.fmu.stop_time = stop_time + + # collect variable names for all disturbances + variables = [] + for feature in self.model.D: + variables.append(feature.var_name) + + for feature in self.model.C: + if type(feature.feature) in self.model.D: + variables.append(feature.var_name) + + # run the fmu without a controller + disturbances_df = self.fmu.run(variables) + + if len(self.model.c_D) is not 0: + disturbances_df = self.insert_derivative(disturbances_df) # --- CHECK IF USEFUL ! + # --- method checks, if derivative wanted + + # save the generated df + self.disturbances_df = disturbances_df + + return disturbances_df + + def insert_derivative(self, df): + ''' + inserts derivative of feature to dataframe if part of model.C or model.c_D + ''' + + for c in [*self.model.c_D,*self.model.C]: + name = c.feature.var_name + if name in df.columns: + # create corresponding derivative + col_loc = df.columns.get_loc(name) + 1 + col_value = df[name] - df[name].shift(1) # --- discr. derivative: diff(last 2 values) + + df.insert(loc=col_loc, column=c.var_name, value=col_value) + + # delete first row + df = df[1:] + + return df + + def process_data(self): # NECESSARY ? + self.processed_data = [] + + for df in self.raw_data: + df = df.copy() + + df = self.insert_derivative(df) + df = self.keep_features(df) + + self.processed_data.append(df) + + def build_GPR(self, number_of_time_marks: int, method='linspace'): + # --- pack regression data into np.array X_train and Y_train + # --- Arrays NOT normalized, done in GPR_class + df = pd.concat(self.processed_data) + self.number_of_time_marks = number_of_time_marks + self.method = method + if method == 'lhs': + time_marks = pyDOE.lhs(1, number_of_time_marks, "m").ravel() * len(df.index) + elif method == 'linspace': + time_marks = np.linspace(1, len(df.index)-1, number_of_time_marks) + elif method == 'all': + time_marks = np.linspace(1, len(df.index)-1, len(df.index)-1) + else: + print('invalid method: choose lhs, linspace or all') + quit() + time_marks = time_marks.astype(int) + + for feature in self.model.regressor_list: + while np.amin(time_marks) <= feature.lag: + time_marks[np.argmin(time_marks)] += 1 + + time_marks = np.unique(time_marks) + self.time_marks = time_marks + + if np.amax(time_marks) > len(df.index): + print('Lag is larger than simulated time steps !') + quit() + else: + X_train = np.empty( (0, sum([feature.lag +1 for feature in self.model.regressor_list])), float ) + Y_train = np.empty( (0, len(self.model.target_list)), float ) + for i in time_marks: + col_chunks = [] + for feature in self.model.regressor_list: + col_chunks.append(np.array(df.iloc[i-feature.lag: i+1][feature.var_name]) ) # size(appendix) = lag+1 + X_train = np.append(X_train, [np.hstack(col_chunks)], axis = 0) + + target_values = [] + for target_name in self.model.target_list_str: # target_name = var_name + " (t+1)" + target_values.append( np.array(df.iloc[i][target_name]) ) # size(appendix) = 1 + # y_k+1 @ index i is corresponding to x_k @ index i + Y_train = np.append( Y_train, [np.hstack(target_values)], axis = 0) + + self.X_train = X_train + self.Y_train = Y_train + # instantiate GPR + self.my_GPR = GP_Regression(X_train, Y_train, abs = True) + return self.my_GPR + + def set_up_GPR(self, GPR_object): + GPR_object.opt_hyperparam() + GPR_object.set_up_reg() + self.my_GPR = GPR_object + self.GP_setup_done = True + + def keep_features(self, df, add_target = True): + """ + Deletes all irrelevant features from the data frame + if add_target is true, target variable is shifted, as prediction (k+1) is actual target + """ + + # only keep the selected features ACHTUNG, vgl. line 120 + # df = df[self.model.regressor_list_str].copy() + df = df[self.model.list_all_str].copy() + + # Deletes the first few columns ? ROW ? + df = df[1:].reset_index(drop=True) + + if add_target is True: + # Add output dimension + for feature in self.model.all(): + if feature.is_target: + + df[feature.var_name + ' (t+1)'] = df[feature.var_name].shift(-1) + + # Delete last row + df = df[:-1] + + return df + + def save(self, start_time): + + directory_name = 'stored_data\\data_{date:%d-%m_%H_%M}'.format(date=datetime.datetime.now()) + self.directory_name = directory_name + if not os.path.exists(directory_name): + os.makedirs(directory_name) + #else Sekunde dazu ? + + write_pkl(self, 'DataHandler', directory_name) + # write_pkl(self.disturbances_df, 'disturbances', directory_name) + + with open(directory_name+"\\model.txt", "w") as desc: + desc.write(self.method + 'sampling with ' + str(self.time_marks.size)+' datapoints\n'+ + ' @ dt='+str(self.step_size)+ ', start time: ' + str(int(start_time/86400)) + 'days\n' + + '\n'.join(self.controller_desc) +'\n\n'+'\n'.join(self.model.description())) + print('model description saved') + + if len(self.raw_data) != 0: + write_pkl(pd.concat(self.raw_data),'raw_data', directory_name) + if len(self.processed_data) != 0: + write_pkl(pd.concat(self.processed_data), 'processed', directory_name) + pd.concat(self.processed_data).to_excel(directory_name + "\\new_fmu_processed_test.xlsx") + + if self.GP_setup_done is True: + write_pkl(self.my_GPR, 'GPR_is_opt', directory_name) + else: + write_pkl(self.my_GPR, 'GPR_not_opt', directory_name) + + def load_disturbances(self): + self.disturbances_df = read_pkl('disturbances') + + +if __name__ == '__main__': + for lag in [4,8]: + #if True: + my_lag = lag + # define features + d_1 = Feature('T dry bulb', 'weaBus.TDryBul', lag = my_lag, unit = '°C') + + d_5 = Feature('H diffuse horizontal', 'weaBus.HDifHor', lag = my_lag, unit = 'W/m^2') + d_6 = Feature('H direct normal', 'weaBus.HDirNor', lag = my_lag, unit = 'W/m^2') + d_7 = Feature('H global horizontal', 'weaBus.HGloHor', lag = my_lag, unit = 'W/m^2') + + #d_13 = Feature('H diffuse horizontal', 'weaBus.TDewPoi', lag=4, unit='W/m^2') + #d_14 = Feature('H diffuse horizontal', 'weaBus.relHum', lag=4, unit='W/m^2') + #d_15 = Feature('H diffuse horizontal', 'weaBus.pAtm', lag=4, unit='W/m^2') + #d_16 = Feature('H diffuse horizontal', 'weaBus.HHorIR', lag=4, unit='W/m^2') + #d_17= Feature('H diffuse horizontal', 'weaBus.winDir', lag=4, unit='W/m^2') + #d_18 = Feature('H diffuse horizontal', 'weaBus.winSpe', lag=4, unit='W/m^2') + + + d_10 = Feature('humans', 'internal_gain_1', lag = my_lag) + d_11 = Feature('devices', 'internal_gain_2', lag = my_lag ) + d_12 = Feature('lights', 'internal_gain_3', lag = my_lag ) + + u_1 = Control('T_Ahu', 'TsetAHU', lb=-10, ub=10, info='heater', lag = my_lag ) # during Training auf 293 bezogen. + u_2 = Control('Q_cca', 'Q_flowTabs', lb=-3, ub=3, info='heater', lag = my_lag ) + + + y_1 = Feature('T Air', 'TAirRoom', lag = my_lag, unit = '°C', is_target=False) + dy_1 = Derivative(feature=y_1, is_target=True, is_regressor=True, lag = my_lag) + + + # instantiate Model + My_Model = Model(D=[d_1, d_5, d_6, d_7, d_10, d_11, d_12], + c_D = [], + U=[u_1, u_2], + Y=[y_1], + C=[dy_1], + ) + # --- SETTINGS + dt = 60 * 15 + start_time = 60 * 60 * 24 * 65*0 + stop_time = 60 * 60 * 24 * 20 + controller_interval = 60 * 60 * 24 *1 + data_points = 2880 + + # instantiate FMU + My_FMU = FMU(start_time=start_time, # overwritten anyways + stop_time=stop_time, # overwritten anyways + step_size= dt, + sim_tolerance=0.00001, + #fmu_file="C:\\Users\\arman\MA\\modelica_files\\ASHRAE140_900_Thermal_Zone\\ashrae140_900_simpleTabs_ctrl_fmu.fmu", + fmu_file = "C:\\Users\\arman\\MA\\modelica_files\\ASHRAE140_900_Thermal_Zone\\ashrae140_900_simpleTabs_no_ig_ctrl_fmu.fmu", + intgains_file='C:\\Users\\arman\MA\\modelica_files\\Benchmark_thermal_zone\\internal_gains.csv') + + # instantiate DataHandler + My_DataHandler = DataHandler(My_Model, My_FMU) + '''My_DataHandler.set_controller("all_zero") + df = My_DataHandler.simulate_for_disturbances(start_time, stop_time) + write_pkl(df, "dist_new", "stored_data\\dist") + df.to_excel('dist_new.xlsx') + quit()''' + # --- simulate data + with_MPC = False + if with_MPC is True: + folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_21-03_21_48\\" + My_GPR = read_pkl(folder_path_model + "GPR_is_opt.pkl") + MPC_controller = GPR_MPC(My_DataHandler,My_GPR) + + + My_DataHandler.simulate(start_time=start_time + 0 * controller_interval, + stop_time=start_time + 5 * controller_interval, + controller='PID_random') + + My_DataHandler.simulate(start_time=start_time + 5 * controller_interval, + stop_time=start_time + 10 * controller_interval, + controller='lhs') + quit() + """My_DataHandler.simulate(start_time=start_time + 21 * controller_interval, + stop_time=stop_time, + controller = 'zero')""" + + """#Um verschiedene lags zu testen: + folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\simple_tabs\\stored_data\\data_28-05_00_59\\" + My_DataHandler = read_pkl(folder_path_model + "DataHandler.pkl") + My_DataHandler.model = My_Model""" + + + My_DataHandler.process_data() + + GPR = My_DataHandler.build_GPR(data_points) + #My_DataHandler.set_up_GPR(GPR) + My_DataHandler.save(start_time) + a = [] + for i in GPR.theta[0]: + a.append(i.round(1)) + print(a) + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/fmu_handler.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/fmu_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..b16a123db82d9b256789ae82f103deff470ee2d7 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/fmu_handler.py @@ -0,0 +1,341 @@ +import matplotlib.pyplot as plt +import math +import pandas as pd +import fmpy +import fmpy.fmi2 +import shutil +import time +import pickle_handler + + +class FMU: + """ + The fmu handler class + """ + + def __init__(self, + start_time: int, + stop_time: int, + step_size: int, + sim_tolerance: float, + fmu_file: str, + intgains_file=None, + instanceName='fmu1', + ): + """[summary] + + Args: + start_time ([int]): Start time in sec usually 0 + sim_date ([datetime]): the datetime of the simulation time + stop_time ([int]): Stop time in sec + step_size ([int]): The time step size after which data is exchanged + sim_tolerance ([float]): The numeric tolerance of the solver usual 0.001 + fmu_file ([string]): The name of the FMU file + instanceName ([type]): A name of the FMU instance. FMPY specific can be random + """ + + assert start_time < stop_time + assert sim_tolerance > 0 + + self.start_time = start_time # start time + self.stop_time = stop_time # stop time + self.step_size = step_size # The macro time step + self.sim_tolerance = sim_tolerance # The total simulation tolerance + self.fmu_file = fmu_file + self.instanceName = instanceName + + # load internal gains data + self.intgains_file = intgains_file + self.df_intgains = None + if self.intgains_file is not None: + self.df_intgains = pd.read_csv(self.intgains_file, header=None) + + # read the model description + self.model_description = fmpy.read_model_description(self.fmu_file) + + # Collect all variables + self.variables = {} + for variable in self.model_description.modelVariables: + self.variables[variable.name] = variable + + # extract the FMU + self.unzipdir = fmpy.extract(self.fmu_file) + + def run(self, features: list, controller=None): + """ + :param features: List of all variables that are supposed to be tracked + :param controller: Controller from controller.py + :return: Returns simulated data + """ + + self.__init__(self.start_time, + self.stop_time, + self.step_size, + self.sim_tolerance, + self.fmu_file, + self.intgains_file, + 'fmu1') + + # keep only features, that are part of the fmu + ''' + Die Begrenzung evlt rausnehmen bzw erweitern, wenn Stellgrößenreduktion umgesetzt wird + oder "per Hand" zu df hinzufügen + ''' + features = [feature for feature in features if feature in self.variables] + + # initialize fmu + self.setup() + self.initialize() + + # initialize internal gains + self.write_variables(self.get_intgains(self.current_time)) + + # initialize data frame + df = pd.DataFrame(self.read_variables(features), columns=['SimTime', *features], index=[0]) + + while not self.do_step(): + + # update internal gains + self.write_variables(self.get_intgains(self.current_time)) + + if self.current_time % self.step_size == 0: + + # print time + self.display_time(self.current_time) + + # get the current state of the System + df = df.append(pd.DataFrame(self.read_variables(features), index=[0]), ignore_index=True) + + # set variables + if controller is not None: + mydict = controller(df) + if bool(mydict) is True: + mydict["TsetAHU"] = mydict["TsetAHU"] + 293.15 #290 + mydict["Q_flowTabs"] = mydict["Q_flowTabs"] * 1000 + else: + print("empty control dict") + self.write_variables(mydict) + #self.write_variables(controller(df)) + # delete last row to append last row with valid control + df.drop(df.tail(1).index, inplace=True) + + # read variables and add to data frame + df = df.append(pd.DataFrame(self.read_variables(features), index=[0]), ignore_index=True) + + # delete the fmu instance + self.close() + + return df + + def setup(self): + + # create fmu obj + self.fmu = fmpy.fmi2.FMU2Slave(guid=self.model_description.guid, + unzipDirectory=self.unzipdir, + modelIdentifier=self.model_description.coSimulation.modelIdentifier, + instanceName=self.instanceName) + + # instantiate fmu + self.fmu.instantiate() + + # The current simulation time + self.current_time = self.start_time + + # initialize model + self.fmu.reset() + self.fmu.setupExperiment( + startTime=self.start_time, stopTime=self.stop_time, tolerance=self.sim_tolerance) + + def initialize(self): + self.fmu.enterInitializationMode() + self.fmu.exitInitializationMode() + + def find_vars(self, start_str: str): + """ + Retruns all variables starting with start_str + """ + key = list(self.variables.keys()) + key_list = [] + for i in range(len(key)): + if key[i].startswith(start_str): + key_list.append(key[i]) + return key_list + + def get_value(self, var_name: str): + """ + Get a single variable. + """ + + variable = self.variables[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + return self.fmu.getReal(vr)[0] + elif variable.type in ['Integer', 'Enumeration']: + return self.fmu.getInteger(vr)[0] + elif variable.type == 'Boolean': + value = self.fmu.getBoolean(vr)[0] + return value != 0 + else: + raise Exception("Unsupported type: %s" % variable.type) + + def set_value(self, var_name, value): + """ + Set a single variable. + var_name: str + """ + + variable = self.variables[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + self.fmu.setReal(vr, [float(value)]) + elif variable.type in ['Integer', 'Enumeration']: + self.fmu.setInteger(vr, [int(value)]) + elif variable.type == 'Boolean': + self.fmu.setBoolean(vr, [value == 1.0 or value == True or value == "True"]) + else: + raise Exception("Unsupported type: %s" % variable.type) + + def do_step(self): + # check if stop time is reached + if self.current_time < self.stop_time: + # do simulation step + status = self.fmu.doStep( + currentCommunicationPoint=self.current_time, + communicationStepSize=self.step_size) + # augment current time step + self.current_time += self.step_size + finished = False + else: + print('Simulation finished') + finished = True + + return finished + + def close(self): + self.fmu.terminate() + self.fmu.freeInstance() + shutil.rmtree(self.unzipdir) + + del self.fmu + print('FMU released') + + def read_variables(self, vrs_list: list): + """ + Reads multiple variable values of FMU. + vrs_list as list of strings + Method retruns a dict with FMU variable names as key + """ + res = {} + # read current variable values ans store in dict + for var in vrs_list: + res[var] = self.get_value(var) + + # add current time to results + res['SimTime'] = self.current_time + + # add addierte inputs bei Inputreduktion + res['TsetAHU'] = res['TsetAHU'] - 293.15 # 290 + res['Q_flowTabs'] = res['Q_flowTabs'] / 1000 + ''' + ... res[u_AHU] = AHU_hot - AHU_cold ... + ''' + return res + + def write_variables(self, var_dict: dict): + ''' + Sets multiple variables. + var_dict is a dict with variable names in keys. + ''' + + for key in var_dict: + self.set_value(key, var_dict[key]) + return "Variable set!!" + + @staticmethod + def display_time(seconds, granularity=2): + result = [] + + if seconds % 3600 == 0: + for name, count in (('weeks', 604800), # 60 * 60 * 24 * 7 + ('days', 86400), # 60 * 60 * 24 + ('hours', 3600), # 60 * 60 + ('minutes', 60), + ('seconds', 1),): + value = seconds // count + if value: + seconds -= value * count + if value == 1: + name = name.rstrip('s') + result.append("{} {}".format(value, name)) + print(', '.join(result[:granularity])) + + def get_intgains(self, SimTime: int): + + if self.df_intgains is None: + return dict() + + while SimTime > 604740: + SimTime -= 604740 + + row = self.df_intgains[(self.df_intgains[0] <= SimTime)].tail(1) + + dict_intgains = {'internal_gain_1': row.iloc[0, 1], + 'internal_gain_2': row.iloc[0, 2], + 'internal_gain_3': row.iloc[0, 3], + } + + return dict_intgains + + def __enter__(self): + self.fmu.terminate() + self.fmu.freeInstance() + + +if __name__ == '__main__': + + fmpy.dump('FMU/thermal_zone_valve_ctrl_wea_base_solver.fmu') + exit() + + # create fmu object + My_FMU = FMU(start_time=3600 * 24 * 0, + stop_time=3600 * 24 * 365, + step_size=60 * 60 * 6, + sim_tolerance=0.0001, + fmu_file='FMU/thermal_zone_valve_ctrl_wea_base_solver.fmu', + intgains_file='internal_gains.csv') + + # print(My_FMU.find_vars('')) + + # create fmu instance + variables = ['TAirRoom', + 'weaBus.TDryBul', + 'weaBus.HDifHor', + 'weaBus.HDirNor', + 'weaBus.HGloHor', + 'weaBus.HHorIR', + 'weaBus.TBlaSky', + 'weaBus.TDewPoi', + 'internal_gain_1', + 'internal_gain_2', + 'internal_gain_3', + ] + + df = My_FMU.run(variables) + + # pickle_handler.write_pkl(My_FMU, filename='My_FMU') + + df[['TAirRoom']].plot() + plt.show() + + df[['weaBus.HDifHor', 'weaBus.HDirNor', 'weaBus.HGloHor']].plot() + plt.show() + + df[['weaBus.TDewPoi', 'weaBus.TDryBul', 'weaBus.TBlaSky']].plot() + plt.show() + + df[['internal_gain_1', 'internal_gain_2', 'internal_gain_3']].plot() + plt.show() + + df.to_excel('Weather.xlsx') diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/main.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/main.py new file mode 100644 index 0000000000000000000000000000000000000000..20356e2fdea42eb9d8eb2fe7b8b1817fd6266428 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/main.py @@ -0,0 +1,63 @@ +from pickle_handler import * +from data_manager import * +from GP_regression import * +from GPR_mpc import * +from ebc_colors import * +import pandas as pd +import matplotlib.pyplot as plt + +#names = ['13_05' ... ] +#for folder_ending in names ... folder path model = ... und abfahrt + +# --- load data +folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\simple_tabs\\stored_data\\data_28-05_18_07\\" +My_DH = read_pkl(folder_path_model + "DataHandler.pkl") +My_GPR = read_pkl(folder_path_model + "GPR_is_opt.pkl") + +# My_GPR = read_pkl(folder_path_model + "GPR_04-06_10_52.pkl") +print(My_GPR.X_train) +print(My_GPR.K.shape) +print(My_GPR.X_train.shape) +print(My_GPR.Y_train.shape) +#quit() +#My_GPR.opt_hyperparam() +#My_GPR.set_up_reg() +#My_GPR.save_GPR(path=folder_path_model) +dist = read_pkl("C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\dist\\dist_900.pkl" ) +print(dist) +print(My_DH.step_size) +My_DH.disturbances_df = dist + +# --- set controller +#My_DH.controller = GPR_MPC_comfort(My_DH, My_GPR) + +days = [] +mean_errors = [] +max_errors = [] + +start_day = 21 +while start_day<22: + #if (start_day-19)%7==0: + # start_day+=2 + start_time = 60 * 60 * 24 * start_day + stop_time = 60 * 60 * 24 * (start_day+7) + # controller_interval = (stop_time - start_time) / 2 + + # --- simulate data + controller = GPR_MPC_comfort_SS(My_DH, My_GPR, N=8) + my_df = My_DH.simulate(start_time=start_time, + stop_time=stop_time, controller = controller) + # my_df.to_excel(folder_path_model + "gpr_mpc_test_plot_Test"+str(start_day)+".xlsx") + # write_pkl(my_df, 'res_df', folder_path_model) + days.append(start_day) + + a, b = follow_up_slave(my_df, datagen=False, controller = My_DH.controller, path = folder_path_model, week = True) + mean_errors.append(a) + max_errors.append(b) + start_day+=1 + #write_pkl(my_df, "online_learning_bitch", folder_path_model) + +for i, day in enumerate(days): + print('Day '+ str(day) + ', Mean Abs Error and Max Abs Error:') + print(mean_errors[i]) + print(max_errors[i]) diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/pickle_handler.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/pickle_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..7d03aabbceae05107de604af9781fc7e23578b29 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/pickle_handler.py @@ -0,0 +1,35 @@ +import pickle +import os +import datetime + +spare_directory_name = 'stored_data\\data_SPARE_{date:%d-%m_%H_%M}'.format(date=datetime.datetime.now()) + +def read_pkl(fullpath: str): + fullpath = fullpath + if os.path.exists(fullpath): + pkl_file = open(fullpath, 'rb') + pkl_data = pickle.load(pkl_file) + pkl_file.close() + print('\nFile:', '"' + fullpath + '"', 'loaded.') + return pkl_data + else: + ValueError(fullpath + ' does not exist.') + + +def write_pkl(data, filename: str, directory_name: str): + + fullpath = directory_name + '\\' + filename + '.pkl' + + # make sure directory exists + if not os.path.exists(directory_name): + print('hallo') + os.makedirs(directory_name) + + # Open Data + pkl_file = open(fullpath, 'wb') + pickle.dump(data, pkl_file) + + # Print Status + print('\nFile:', '"' + fullpath + '"', 'saved.') + + pkl_file.close() diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/variance_test.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/variance_test.py new file mode 100644 index 0000000000000000000000000000000000000000..fb05e7b675044f2641effab44a92a72f1242c3e6 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_simple_tabs_skripte/variance_test.py @@ -0,0 +1,139 @@ +from pickle_handler import * +from data_manager import * +from GP_regression import * +from GPR_mpc import * +from ebc_colors import * +import pandas as pd +import matplotlib.pyplot as plt + + +if True: + f = lambda x: np.sin(0.9 * x).flatten() + x = np.arange(-5, 5, 0.1) + plt.plot(x, f(x)) + plt.axis([-5, 5, -1.5, 1.5]) + + # --- "Training" data and target definition + N = 8 # number of existing observation points (training points). + X = np.random.uniform(-5, 5, size=(N, 1)) # N training points + y = f(X) + print(X.shape) + y = y.reshape(-1, 1) + print(y) + plt.plot(X, y, 'k+', ms=18) + plt.show() + + + +if False: + X_train = np.array([[-0.9],[1.1],[1.5]]) + Y_train = np.array([[-1.08],[-0.31],[-2.45]]) + My_GPR = GP_Regression(X_train, Y_train, abs = False) + My_GPR.opt_hyperparam(restarts = 0) + My_GPR.set_up_reg() + n = 10000 # test points + x_test = np.linspace(-1.5, 3, n) # .reshape(-1,1) # np.array([0.3]) + print(x_test) + values = [] + devs = [] + for x in x_test: + x = x.reshape(1, -1) + #print(x) + #print('hallo') + f_test, std_dev = My_GPR.GP_eval(x, normalise = False, with_variance = True) + values.append(float(f_test)) + devs.append(float(std_dev)) + + print(devs) + values = np.array(values) + devs = np.array(devs) + plt.plot(list(x_test), values) + plt.gca().fill_between(x_test.flat, values-2*devs, values+2*devs, color="#dddddd") + plt.ylim(-4,3.25) + plt.show() + quit() + +if False: + f = lambda x: np.sin(0.9 * x).flatten() + x = np.arange(-5, 5, 0.1) + plt.plot(x, f(x)) + plt.axis([-5, 5, -1.5, 1.5]) + + # --- "Training" data and target definition + N = 5 # number of existing observation points (training points). + X = np.random.uniform(-5, 5, size=(N, 1)) # N training points + y = f(X) + print(X.shape) + y = y.reshape(-1,1) + print(y) + plt.plot(X, y, 'k+', ms=18) + #plt.show() + + My_GPR1 = GP_Regression(X,y,abs=False) + My_GPR1.opt_hyperparam(restarts=0) + My_GPR1.set_up_reg() + + print('hallo') + My_GPR2 = GP_Regression(X, y, abs=True) + My_GPR2.opt_hyperparam(restarts=2) + My_GPR2.set_up_reg() + + n = 50 # test points + x_test = np.linspace(-5, 5, n).reshape(-1, 1) # np.array([0.3]) + print(x_test) + std1 = [] + std2 = [] + f_mean1 = [] + f_mean2 = [] + for x in x_test: + x = x.reshape(1, -1) + # print(x) + # print('hallo') + f_test1, std_dev1 = My_GPR1.GP_eval(x, normalise = False, with_variance = True) + f_test2, std_dev2 = My_GPR2.GP_eval(x, normalise = True, with_variance = True) + std1.append(float(2*std_dev1)) + f_mean1.append(float(f_test1)) + std2.append(float(2*std_dev2)) + f_mean2.append(float(f_test2)) + print('this is x and std_dev w/o and w/ normal') + print(x) + print(4*std_dev1) + print(4*std_dev2) + plt.plot(x_test, f_mean1, 'r-') + plt.plot(x_test, f_mean2, 'g-') + plt.show() + plt.plot(x_test, std1, 'r') + plt.plot(x_test, std2, 'g') + plt.show() + +if False: + model_paths = [] + normalise = [] + # model_paths.append("C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_30-03_20_39\\") + # normalise.append(False) + # model_paths.append("C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_06-04_01_00\\") + folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\simple_tabs\\stored_data\\data_28-05_18_07\\" + normalise.append(True) + model_paths.append(folder_path_model) + bla_list = [] + for i, folder_path_model in enumerate(model_paths): + My_DH = read_pkl(folder_path_model + "DataHandler.pkl") + My_GPR = read_pkl(folder_path_model + "GPR_is_opt.pkl") + + folder_path_data = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_for_mining_PID_300\\" + #df = read_pkl(folder_path_data + "DataHandler.pkl").processed_data[0] + df = read_pkl(folder_path_model+ "online_learning_bitch.pkl") + print(type(df)) + print(len(df.index)) + tracker = variance_tracker(My_DH, My_GPR, df) + bla = tracker.track_variance(start_int=5, end_int=1900, normalise=normalise[i]) + tracker.extend_GPR(400, path = folder_path_model, save=True) + bla = np.array(bla[0]) + # bla.reshape(-1,1) + print(My_GPR.theta[1],My_GPR.theta[2]) + bla_list.append(bla) + + for bla in bla_list: + plt.plot(np.linspace(0, bla.size - 1, bla.size), bla) + print(bla) + plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GPR_mpc.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GPR_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..94ad005e1d54b0b71e1951acbc76aa96ad3473d0 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GPR_mpc.py @@ -0,0 +1,1083 @@ +import numpy as np +import matplotlib.pyplot as plt +import matplotlib +#matplotlib.use('TKAgg') +import pandas as pd +import os +import datetime +from casadi import * +from pickle_handler import * +from data_manager import * +from GP_regression import * +import pyDOE + + +class lhs_ctrl: + def __init__(self, DataHandler, intervall = 6): #9 + print('lhs controller') + self.intervall = intervall + self.DataHandler = DataHandler + self.start_time = self.DataHandler.fmu.start_time + self.stop_time = self.DataHandler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + print(self.sim_time) + self.timepoints = self.sim_time / DataHandler.step_size + print(self.timepoints) + self.u_values = pyDOE.lhs(4, int(self.timepoints/intervall +2), criterion = 'c') # with zero insertion /2 ! + np.save("lhs_27_04_new5", self.u_values) + #self.u_values = np.load("lhs_27_04_new2.npy") # u_values # *(1-0.01)+0.01 New FMU does not require >0.01 + ''' + Einbauen, dass nach jeder control row 4x zero kommt bzw gekühlt wird, um zu gewährleisten, dass Temperatur + wieder absinkt ''' + print(self.u_values) + self.call_counter = 0 + self.control_row = -1 + self.counter_2 = 0 + + def __call__(self, *args): + if self.call_counter % self.intervall == 0: + self.control_row += 1 + control_dict = {} + for index, feature in enumerate(self.DataHandler.model.U): + control_dict[feature.var_name] = self.u_values[self.control_row,index] + self.call_counter += 1 + return control_dict + """ + + # Call with zero insertion : + def __call__(self, *args): + if self.call_counter % self.intervall == 0: + self.counter_2 +=1 + if self.call_counter % (self.intervall*2) ==0 : + self.control_row +=1 + control_dict = {} + for index, feature in enumerate(self.DataHandler.model.U): + if self.counter_2 % 2 == 0: + control_dict[feature.var_name] = self.u_values[self.control_row,index] + else: + control_dict[feature.var_name] = 0 + self.call_counter += 1 + return control_dict +""" + def description(self): + return f'LHS controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' + + +class zero_ctrl: + + def __init__(self, DataHandler): + + self.DataHandler = DataHandler + self.start_time = self.DataHandler.fmu.start_time + self.stop_time = self.DataHandler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + self.timepoints = self.sim_time / DataHandler.step_size + + def __call__(self, *args, **kwargs): + control_dict = {} + return control_dict + + def description(self): + return f'ZERO controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' + + +class variance_tracker: + + def __init__(self, DataHandler, GPR_Model, df, incl_derivative=True): + """ + Variance Tracker Class. Not yet suited for Online Learning! + own class to avoid overhead of creating MPC controller + Online Learning prob. better as function of GPR MPC track variance can simply be copied though + --> difference: df with whole data exists already here + for online learning: use "live" df. + """ + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + if not incl_derivative: # --- bitte schlauer implementieren als über flag arg ! + self.df = self.DataHandler.insert_derivative(df) + print('df\n') + print(self.df) + else: + self.df = df + + def track_variance(self, start_int = 25, end_int = None, normalise = True): + variances = [] + time_indexes = [] + if end_int is None: + end_int = len(df.index) + loc = start_int + while loc <= end_int: + print(loc) + col_chunks = [] + for feature in self.regressor_list: + col_chunks.append(np.array(self.df.iloc[loc - feature.lag: loc+1][ feature.var_name])) # size(appendix) = lag+1 + x_test = np.hstack(col_chunks) + y, variance = self.gp.GP_eval(x_test=x_test.reshape(1,-1), normalise=normalise, with_variance=True) + variances.append(float(variance)) + time_indexes.append(loc) + loc += 1 + + ret = [variances, time_indexes] + self.variances = np.array(variances) + self.time_indexes = time_indexes + return ret + + def extend_GPR(self, number_of_timepoints, path, save = True): + var_indexes = (-self.variances).argsort()[:number_of_timepoints] + print(var_indexes) + time_marks = [] + for index in var_indexes: + time_marks.append(self.time_indexes[index]) + print(var_indexes) + ''' + ACHTUNG ! loc und iloc ! + ''' + df = self.df + X_train = np.empty((0, sum([feature.lag + 1 for feature in self.model.regressor_list])), float) + Y_train = np.empty((0, len(self.model.target_list)), float) + for i in time_marks: + col_chunks = [] + for feature in self.model.regressor_list: + col_chunks.append(np.array(df.iloc[i - feature.lag: i + 1][feature.var_name])) # size(appendix) = lag+1 + X_train = np.append(X_train, [np.hstack(col_chunks)], axis=0) + + target_values = [] + for target_name in self.model.target_list_str: # target_name = var_name + " (t+1)" + target_values.append(np.array(df.iloc[i][target_name])) # size(appendix) = 1 + # y_k+1 @ index i is corresponding to x_k @ index i + Y_train = np.append(Y_train, [np.hstack(target_values)], axis=0) + + #print(self.gp.X_train) + #print(X_train) + X_train_norm = self.gp.normalise_X(X_train, casadi_eval=False) + Y_train_norm = self.gp.normalise_Y(Y_train, casadi_eval=False) + print(self.gp.X_train) + #print(X_train_norm) + + X_train_new_full = np.vstack((self.gp.X_train, X_train_norm)) + Y_train_new_full = np.vstack((self.gp.Y_train, Y_train_norm)) + print(X_train_new_full.shape) + print(Y_train_new_full.shape) + + self.gp.set_new_data(X_train_new_full, Y_train_new_full) + self.gp.set_up_reg() + + if save is True: + self.gp.save_GPR(path=path) + ''' + GP-Setup + New Hyperparam ?! -> Beides testen + GP save_GPR + ''' + + +class GPR_MPC_comfort: + + def __init__(self, DataHandler, GPR_Model, N=6): # --- maybe pass disturbances df as argument instead of loading from DataHandler + + self.N = N + #self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + self.disturbances_df = self.DataHandler.disturbances_df + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- working hours and comfort temperatures + self.working_hours = [6, 18] + self.comfort_limits_day = [273.15 + 20, 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend([feature for feature in + self.model.c_D]) # if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + + self.nY = len(self.Y) + self.nU = len(self.U) + + self.create_controller() + + def get_comfort_limit(self, current_time): + + L_limits = [] + U_limits = [] + for t in range(self.N): + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size ) + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + L_limits.append(self.comfort_limits_day[0]) + U_limits.append(self.comfort_limits_day[1]) + else: + L_limits.append(self.comfort_limits_night[0]) + U_limits.append(self.comfort_limits_night[1]) + + return L_limits, U_limits + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressor to be simulated... ') + return dict() + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size # + 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d - feature.lag: loc_d + self.N, feature.var_name])) + print(feature.var_name) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc - feature.lag:-1][feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc - feature.lag::][feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + values_C = [] + for c in self.C: + values_aux1 = list(df.iloc[loc - c.lag::][self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc - c.lag - 1: loc][self.Y[0].var_name]) + + for i in range(c.lag + 1): + values_C.append(values_aux1[i] - values_aux2[i]) + + L_limits, U_limits = self.get_comfort_limit(current_time) + print(L_limits) + print(U_limits) + values_limit = [*L_limits, *U_limits] + print('values_limit') + print(values_limit) + print(values_D) + print(values_C) + print(values_Y) + print('hallo') + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C, values_limit) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] LIMITS[0:N] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N + 1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- add limitations to PARVARS: + LB_syms = [] + for k in range (N): # vll N+1 + lb_T_k = SX.sym('par LB_' + str(k), 1) + LB_syms.append(lb_T_k) + PARVARS.append(lb_T_k) + UB_syms = [] + for k in range (N): + ub_T_k = SX.sym('par UB_' + str(k), 1) + UB_syms.append(ub_T_k) + PARVARS.append(ub_T_k) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Multiple Shooting loop + obj = 0 + + self.Q_val = 150 + self.R_val = [50, 100, 100, 50] + self.dR_val = [100, 100, 100, 100] + + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + # --- Multiple Shooting Loop: + for k in range(self.N): + print('MPC_loop:') + print(k) + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + OPTVARS.append(U_k) + # for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + print('halo') + self.constraint(U_k[i], self.model.U[i].lb, self.model.U[i].ub) # 0.02 + Y_k = SX.sym('Y_' + str(k + 1), self.nY) + OPTVARS.append(Y_k) + + C_k = SX.sym('C_' + str(k + 1), 1) + OPTVARS.append(C_k) + + EPS_k = SX.sym('EPS_' + str(k + 1), 1) + OPTVARS.append(EPS_k) + + print(VARS_regressorlist) + # self.constraint(Y_k - Y_pred) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + + col_chunk = np.array([VARS_regressorlist[index][ + k: k + 1 + feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + print('chunk len:') + print(len(VARS_regressorlist[index][k: k + feature.lag + 1])) + print(VARS_regressorlist[index][k: k + feature.lag + 1]) + + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk) + # print(col_chunks) + x_test = np.hstack(col_chunks) + print('x_test') + print(x_test.shape) + + dY_pred = self.gp.GP_eval(x_test.reshape(1, -1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + self.constraint(Y_k - Y_pred) + self.constraint(C_k - dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_k[i]) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(C_k) + + self.constraint(Y_pred + EPS_k - LB_syms[k], 0, inf) + self.constraint(Y_pred + EPS_k - UB_syms[k], -inf, 0) + + obj = obj + EPS_k.T @ Q @ EPS_k + U_k.T @ R @ U_k + + for i in range(self.nU): + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1]) ** 2 * \ + dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt': {'max_iter': 3000, 'print_level': 4}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C, values_LIM): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C, *values_LIM] + + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + print(solution) + print(solution['x']) + control_dict = self.control2dict(solution['x']) + # u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict(self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + # for i in range(self.N): + temperatures = [] + temperatures = solution[::5] + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1 + index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + # quit() + return control_dict + + +class GPR_MPC: + + def __init__(self, DataHandler, GPR_Model, N = 5, control = True) : # --- maybe pass disturbances df as argument instead of loading from DataHandler + + self.N = N + self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + try: + self.disturbances_df = self.DataHandler.disturbances_df + + except AttributeError: + print('Default disturbance data is used ! ') + self.disturbances_df = read_pkl("C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_14-03_15_03\\disturbances.pkl" ) + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend( [feature for feature in self.model.c_D]) #if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + print(self.D) + print(len(self.C)) + + self.nY = len(self.Y) + self.nU = len(self.U) + + if control is True: + self.create_controller() + + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressors to be simulated... ') + return dict() + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size #+ 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d-feature.lag: loc_d + self.N, feature.var_name])) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc-feature.lag:-1][ feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc-feature.lag::][ feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + + values_C = [] + for c in self.C: + # if c.feature in D andere Behandlung, vll eigene Liste values_C_d + print(c) + values_aux1 = list(df.iloc[loc-c.lag::][ self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc-c.lag-1: loc][ self.Y[0].var_name]) + print('aux') + print(values_aux1) + print(values_aux2) + for i in range(c.lag+1): + values_C.append(values_aux1[i] - values_aux2[i]) + + print(values_D) + print(values_C) + print(values_Y) + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C ) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N+1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Multiple Shooting loop + ''' bester Run bisher: mit 0703 21 46 Datenset + Q = diag(self.nY) * 50 + R = diag([500,10,20,10]) * 1 + dR = [50,50,50,50] + ''' + obj = 0 + + self.Q_val = 20 + self.R_val = [1, 1, 1, 1] + self.dR_val = [8, 8, 8, 8] + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + print('initialize MPC_loop:') + # --- Multiple Shooting Loop: + for k in range(self.N): + + print('\n\nloop '+str(k)+' of '+str(self.N)+ '\nload symbolic GPR inputs:\n') + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + OPTVARS.append(U_k) + #for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + self.constraint(U_k[i], 0.02, 1) # 0.02 + + Y_k = SX.sym('Y_' + str(k + 1), self.nY) + OPTVARS.append(Y_k) + + C_k = SX.sym('C_' + str(k+1), 1) + OPTVARS.append(C_k) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + # print(str(index)) + # print(VARS_regressorlist[index]) + col_chunk = np.array([VARS_regressorlist[index][k : k+1+feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + # print('chunk len:') + # print(len(VARS_regressorlist[index][k : k + feature.lag+ 1])) + print(VARS_regressorlist[index][k : k + feature.lag+ 1]) + + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk) + #print(col_chunks) + x_test = np.hstack(col_chunks) + print('\ndim(x_test): ' + str(x_test.shape)) + + dY_pred = self.gp.GP_eval(x_test.reshape(1,-1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + self.constraint(Y_k-Y_pred) + self.constraint(C_k-dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_k[i]) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(dY_pred) #C_k dY_pred + + obj = obj + (Y_pred - self.ref).T @ Q @ (Y_pred - self.ref) + U_k.T @ R @ U_k + for i in range(self.nU): + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1])**2 * dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt':{'max_iter': 3000, 'print_level':5}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C] + + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + print(solution) + print(solution['x']) + control_dict = self.control2dict(solution['x']) + #u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict (self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + #for i in range(self.N): + temperatures = [] + temperatures = solution[::6] + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1+index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + #quit() + return control_dict + + def description(self): + a = self.DataHandler.fmu.start_time + b = self.DataHandler.fmu.stop_time + c = (a-b)/ self.step_size + return f'MPC-ref controller from {a/86400} until {b/86400} (timepoints = {c})' + + +class GPR_MPC_comfort_SS: + + def __init__(self, DataHandler, GPR_Model, N=8): # --- maybe pass disturbances df as argument instead of loading from DataHandler + + self.N = N + #self.ref = 295 + + # --- load needed objects + self.gp = GPR_Model + self.DataHandler = DataHandler + self.model = self.DataHandler.model + self.regressor_list = self.model.regressor_list + + # --- load disturbances (pre known for whole time horizon) + self.disturbances_df = self.DataHandler.disturbances_df + + # --- time steps and horizon + self.step_size = self.DataHandler.step_size + + # --- working hours and comfort temperatures + self.working_hours = [6, 18] + self.comfort_limits_day = [273.15 + 20, 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # --- feature (regressor) lists by type of feature (U,D,Y,C) + self.U = [feature for feature in self.model.U if feature.is_regressor] + self.D = [feature for feature in self.model.D if feature.is_regressor] + try: + self.D.extend([feature for feature in + self.model.c_D]) # if (feature.is_regressor and feature.feature in self.model.D)]) + except AttributeError: + print('no disturbance derivative in Model') + + self.Y = [feature for feature in self.model.Y if feature.is_regressor] + self.C = [feature for feature in self.model.C if (feature.is_regressor and feature.feature in self.model.Y)] + + self.nY = len(self.Y) + self.nU = len(self.U) + + self.create_controller() + + def get_comfort_limit(self, current_time): + + L_limits = [] + U_limits = [] + for t in range(self.N): + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size ) + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + L_limits.append(self.comfort_limits_day[0]) + U_limits.append(self.comfort_limits_day[1]) + else: + L_limits.append(self.comfort_limits_night[0]) + U_limits.append(self.comfort_limits_night[1]) + + return L_limits, U_limits + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + def __call__(self, *args): + + df = args[0].copy() # --- "live" beschriebenes df mit features + print(df) + current_time = int(df['SimTime'][-1:].values) + + regressor_lags = [feature.lag for feature in self.regressor_list] + if len(df.index) <= max(regressor_lags) + 1: + print('Waiting for regressor to be simulated... ') + return dict() + + # --- obtain already known values to be passed as PARVARS to solver + loc_d = current_time / self.step_size # + 1 # via SIMTIME ? oder über current_time und step_size + values_D = [] + for feature in self.D: + values_D.extend(list(self.disturbances_df.loc[loc_d - feature.lag: loc_d + self.N, feature.var_name])) + print(feature.var_name) + loc = -1 + # VLL für alle lieber iloc verwenden, falls nicht bei 0 anfängt zu zählen + values_U = [] + for feature in self.U: + values_U.extend(list(df.iloc[loc - feature.lag:-1][feature.var_name])) + + values_Y = [] + for feature in self.Y: + values_Y.extend(list(df.iloc[loc - feature.lag::][feature.var_name])) + + ''' + only valid for c = dy_1 = T_AirRoom + ''' + values_C = [] + for c in self.C: + values_aux1 = list(df.iloc[loc - c.lag::][self.Y[0].var_name]) + values_aux2 = list(df.iloc[loc - c.lag - 1: loc][self.Y[0].var_name]) + + for i in range(c.lag + 1): + values_C.append(values_aux1[i] - values_aux2[i]) + + L_limits, U_limits = self.get_comfort_limit(current_time) + print(L_limits) + print(U_limits) + values_limit = [*L_limits, *U_limits] + print('values_limit') + print(values_limit) + print(values_D) + print(values_C) + print(values_Y) + print('hallo') + # obtain controls + control_dict = self.get_controls(values_D, values_U, values_Y, values_C, values_limit) + + return control_dict + + def create_controller(self): + N = self.N + # --- initialization + PARVARS = [] + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] LIMITS[0:N] + OPTVARS = [] + # --- OPTVARS order: + self.g = [] + self.lbg = [] + self.ubg = [] + + # --- fill PARVARS with symbolics, order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1], Y[0] is set via constraint + # --- Also: build list with lists of symbolic VARS for each feature to build x_test from this list + VARS_regressorlist = [] + for index, feature in enumerate(self.D): + VARS_feature = [] + for k in range(-feature.lag, N + 1): + D_k = SX.sym('par D_' + str(index) + str(k), 1) + VARS_feature.append(D_k) + PARVARS.append(D_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.U): + VARS_feature = [] + for k in range(-feature.lag, 0): + U_k = SX.sym('par U_' + str(index) + str(k), 1) + VARS_feature.append(U_k) + PARVARS.append(U_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.Y): + VARS_feature = [] + for k in range(-feature.lag, 1): + Y_k = SX.sym('par Y_' + str(index) + str(k), 1) + VARS_feature.append(Y_k) + PARVARS.append(Y_k) + VARS_regressorlist.append(VARS_feature) + + for index, feature in enumerate(self.C): + VARS_feature = [] + for k in range(-feature.lag, 1): + C_k = SX.sym('par C_' + str(index) + str(k), 1) + VARS_feature.append(C_k) + PARVARS.append(C_k) + VARS_regressorlist.append(VARS_feature) + + # --- add limitations to PARVARS: + LB_syms = [] + for k in range (N): # vll N+1 + lb_T_k = SX.sym('par LB_' + str(k), 1) + LB_syms.append(lb_T_k) + PARVARS.append(lb_T_k) + UB_syms = [] + for k in range (N): + ub_T_k = SX.sym('par UB_' + str(k), 1) + UB_syms.append(ub_T_k) + PARVARS.append(ub_T_k) + + # --- constraint initial state + Y_0_opt = SX.sym('Y_0_opt', 1) + OPTVARS.append(Y_0_opt) + self.constraint(Y_k - Y_0_opt) + + # --- initialize MPC Multiple Shooting loop + obj = 0 + + self.Q_val = 10 + self.R_val = [2, 2, 2, 2] #, 0] + self.dR_val = [5, 5, 5, 5] + Q = diag(self.nY) * self.Q_val # old FMU Q = diag(self.nY) * 50 + R = diag(self.R_val) * 1 # old FMU : R = diag([10, 5, 2, 2]) * 1 + """R = np.array([ + [20, 50, 50, 0], + [0, 20, 0, 50], + [0, 0, 20, 50], + [0, 0, 0, 20], + ])""" + dR = self.dR_val # old FMU: dR = [15, 15, 10, 10] + + # --- Single Shooting Loop: + for k in range(self.N): + print('MPC_Single_Shooting_loop:') + print(k) + Uk = [] + + U_k = SX.sym('U_' + str(k), self.nU) + + OPTVARS.append(U_k) + # for index, feature in enumerate(self.U): + for i in range(self.nU): + VARS_regressorlist[i + len(self.D)].append(U_k[i]) + self.model.U[i].lb, self.model.U[i].ub + self.constraint(U_k[i],self.model.U[i].lb, self.model.U[i].ub) # 0.02 + ''' + cross constraints: + ''' + self.constraint(U_k[0]*U_k[1], -0.0001,0.0001 ) + self.constraint(U_k[2]*U_k[3], -0.0001,0.0001 ) + self.constraint(U_k[1] * U_k[3], -0.0001, 0.0001) + self.constraint(U_k[0] * U_k[2], -0.0001, 0.0001) + + + + EPS_k = SX.sym('EPS_' + str(k + 1), 1) + OPTVARS.append(EPS_k) + + #print(VARS_regressorlist) + # self.constraint(Y_k - Y_pred) + + # --- build input vector x_test: + # --- order in regressor list: D U Y C + # --- PARVARS order: D[-lag:N] U[-lag:0] Y[-lag:1] C[-lag:1] + col_chunks = [] + for index, feature in enumerate(self.regressor_list): + + col_chunk = np.array([VARS_regressorlist[index][ + k: k + 1 + feature.lag]]) # --- in meiner STR indizierung, nicht listenindex! + print('chunk len:') + print(len(VARS_regressorlist[index][k: k + feature.lag + 1])) + # print(VARS_regressorlist[index][k: k + feature.lag + 1]) + print(feature.var_name) + print(col_chunk.shape) + # absolute position in der jeweiligen Unterliste von VARS_regressorlist + col_chunks.append(col_chunk.reshape(1, -1)) + # print(col_chunks) + #quit() + x_test = np.hstack(col_chunks) + print('x_test') + print(x_test.shape) + + dY_pred = self.gp.GP_eval(x_test.reshape(1, -1)) + # --- get last value from Y-list within VARS_regressorlist, which is previous Y_k and add dY_pred + Y_pred = VARS_regressorlist[len(self.D) + len(self.U)][-1] + dY_pred + + # self.constraint(Y_k - Y_pred) + # self.constraint(C_k - dY_pred) + # for index, feature in enumerate(self.Y): + for i in range(self.nY): + VARS_regressorlist[i + len(self.D) + len(self.U)].append(Y_pred) + VARS_regressorlist[len(self.D) + len(self.U) + len(self.Y)].append(dY_pred) + + self.constraint(Y_pred + EPS_k - LB_syms[k], 0, inf) + self.constraint(Y_pred + EPS_k - UB_syms[k], -inf, 0) + + obj = obj + EPS_k.T @ Q @ EPS_k + U_k.T @ R @ U_k + + for i in range(self.nU): + obj = obj + (VARS_regressorlist[i + len(self.D)][-2] - VARS_regressorlist[i + len(self.D)][-1]) ** 2 * \ + dR[i] + # dU über vars_regressor_list[i+len(self.D)] realisieren + # --- create NLP + nlp = {'x': vertcat(*OPTVARS), + 'f': obj, + 'g': vertcat(*self.g), + 'p': vertcat(*PARVARS) + } + self.optvars4print = vertcat(*OPTVARS) + opts_ipopt = {'verbose': False, 'ipopt': {'max_iter': 3000, 'print_level': 4}} + + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + def get_controls(self, values_D, values_U, values_Y, values_C, values_LIM): + PARVARS_values = [*values_D, *values_U, *values_Y, *values_C, *values_LIM] + + solution = self.controller(lbg=vertcat(*self.lbg), ubg=vertcat(*self.ubg), p=vertcat(*PARVARS_values)) + print(solution) + print(solution['x']) + + control_dict = self.control2dict(solution['x']) + # u_opt = self.process_controls(solution['x']) + return control_dict + + def constraint(self, eq, lb=0, ub=0): + ''' + :param eq: equation / term for constraint + :param lb: lower bound, default = 0 -> equality constraint + :param ub: upper bound, default = 0 -> equality constraint + :return: + ''' + self.g.append(eq) + self.lbg.append(lb) + self.ubg.append(ub) + + def control2dict(self, solution): + print(solution) + print(self.optvars4print) + control_dict = {} + # for i in range(self.N): + temperatures = [] + temperatures = solution[0] # --- single shooting ! + for index, feature in enumerate(self.U): + control_dict[feature.var_name] = solution[1 + index].full()[0][0] # --- hier nochmal genau schauen! + print(control_dict) + print(solution) + #quit() + return control_dict + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GP_regression.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GP_regression.py new file mode 100644 index 0000000000000000000000000000000000000000..074c3718f93ad0803381284eb3881e9cc6deffa4 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/GP_regression.py @@ -0,0 +1,175 @@ +import GPy +import numpy as np +import time +import datetime +from pickle_handler import * +#from casadi import * +'''' +universal GP Regression class +''' + +class GP_Regression: + + def __init__(self, X_train, Y_train, abs = True, ARD=True): + ''' + :param X_train_abs: Regressor training data, npArray, shape: (N, D) (D: number of regressors, N: number of samples) + :param Y_train_abs: Target training data, npArray, shape: (N, number_of_targets) + :param abs: set True for absolute values + :param ARD: set True for automatic relevance detection kernel + ''' + self.X_train = X_train + self.x_min = np.amin(self.X_train, axis = 0) + self.x_max = np.amax(self.X_train, axis = 0) + + self.Y_train = Y_train + self.y_min = np.amin(self.Y_train, axis=0) + self.y_max = np.amax(self.Y_train, axis=0) + + if abs: + self.X_train = self.normalise_X(self.X_train, casadi_eval=False) + self.Y_train = self.normalise_Y(self.Y_train, casadi_eval=False) + + self.N = self.X_train.shape[0] + self.D = self.X_train.shape[1] + + self.ARD = ARD + + def set_new_data(self, X_train, Y_train): + + self.X_train = X_train + self.Y_train = Y_train + self.N = self.X_train.shape[0] + self.D = self.X_train.shape[1] + + + + def opt_hyperparam(self, restarts = 2, induce = False): + ''' + yields Theta, an array of hyperparams (length_params, kernel variance, noise variance) + GPy is used for optimization, it may be outdated, but offers and has a simple interface for this operation + (i.e. ARD GPR kernel not possible with scikit learn) + ''' + # m.kern.variance.prior = GPy.priors.Gamma(1, 0.1) + print('optimize hyperparameters') + kernel = GPy.kern.RBF(input_dim=self.D, ARD=self.ARD) + if induce is True: + m = GPy.models.SparseGPRegression(self.X_train, self.Y_train, kernel=kernel,num_inducing=300) + else: + m = GPy.models.GPRegression(self.X_train, self.Y_train, kernel, noise_var=1e-6) # NOISE VAR mal austesten + m.optimize( messages = True, max_iters = 200 ) # (optimizer='scg', 300 iters + m.optimize_restarts(num_restarts=restarts, messages=True, max_iters=150) + print(m) + len_scales = [kernel.lengthscale[i] for i in range(self.D)] + + theta = [len_scales, kernel.variance[0], m.Gaussian_noise.variance[0]] + self.theta = theta + + def set_up_reg(self): + ''' + calculates values needed for actual regression + ''' + self.K = self.kernel(self.X_train, self.X_train) # --- without kernel noise, dim(K) = NxN (#datapoints) + # --- Idee: while Schleife, bis kein error + # --- Idee: scipy linalg statt numpy + #self.jitter = self.theta[2]**2 + self.jitter = 0 + counter = 1 + while True: + if self.jitter > 1e-3: + print('\n'+str(self.jitter)+' was not enough noise.') + break + try: + self.L = np.linalg.cholesky(self.K + np.eye(self.N) * self.jitter) + print('Cholesky succeeded!') + break + except np.linalg.LinAlgError: + print('Matrix numerically not p. sd. ... adding noise') + self.jitter = self.theta[2] * 10**(counter) + print(str(counter)+', new jitter: '+str(self.jitter)) + counter+=1 + + self.alpha = np.linalg.solve(self.L.T, np.linalg.solve(self.L, self.Y_train)) + + def kernel(self, a, b, eval=False): + # --- RBF ARD kernel function + kernelParameter_l = self.theta[0] + kernelParameter_sigma = self.theta[1] # **2 + + a = a / kernelParameter_l + b = b / kernelParameter_l + + sqdist = np.sum(a ** 2, axis=1).reshape(-1, 1) + np.sum(b ** 2, 1) - 2 * np.dot(a, b.T) + # --- multidim. binomial equation, (a-b).T*(a-b) = a^2 + b^2 - 2ab.T + + if eval: + return kernelParameter_sigma * np.exp(-0.5 * sqdist) # bc kronecker delta ;) + else: + return kernelParameter_sigma * np.exp(-0.5 * sqdist) + np.eye(self.N) * self.theta[2] # **2 + + def normalise_X(self, X, reverse = False, casadi_eval = True): + if reverse: + x_out = self.x_min + (self.x_max - self.x_min)*X + else: + x_out = (X - self.x_min) / (self.x_max - self.x_min) + if not casadi_eval: + if np.isnan(np.sum(x_out)): + print('Constant value in training data!\nWill set Nan to zero.') + x_out = np.nan_to_num(x_out) + return x_out + + def normalise_Y(self, Y, reverse = False, casadi_eval = True): + + self.norm_amplitude = 0.5 + if reverse: + # y_out = self.y_min + (self.y_max - self.y_min)*Y # [0,1] + y_out = self.y_min + (self.y_max - self.y_min) * (Y + self.norm_amplitude) / (2*self.norm_amplitude) + else: + # y_out = (Y - self.y_min) / (self.y_max - self.y_min)# [0,1] : + y_out = ( (Y - self.y_min) *2*self.norm_amplitude / (self.y_max - self.y_min) ) - self.norm_amplitude + #if not casadi_eval: + # if np.isnan(np.sum(y_out)): + # print('Constant value in training data!\nWill set Nan to zero.') + # x_out = np.nan_to_num(y_out) + return y_out + + def GP_eval(self, x_test, normalise = True, with_variance = False): + print(normalise) + ''' + :param x_test: input vector, shape: amount_of_test_points,D (normally 1 test point) + :param normalise: set False if normalising procedure ill for Casadi MPC + :return: corresponding GPR output to x_test + ''' + + if normalise: + x_test = self.normalise_X(x_test) + k_star = self.kernel(self.X_train, x_test, eval=True) + #print(k_star) + f_mean = np.dot(k_star.T, self.alpha) + + if with_variance: + # --- output variance as 2nd output, variance = covariance of random var with itself + v = np.linalg.solve(self.L, k_star) + #print(v) + variance = self.kernel(x_test, x_test, eval = True) - np.dot(v.T, v) #+noise variance if wanted + + std_dev = np.sqrt(variance) # --- mean + 1,2,3 sigma = 68,95,99.7 % f +- 2sigma -> 95 % interval + if normalise: + # --- inverse normalisation + f_mean = self.normalise_Y(f_mean, reverse = True) + std_dev = std_dev*(self.y_max - self.y_min) /(2*self.norm_amplitude) # ??? Aber müsste so stimmen + return f_mean, 2*std_dev + else: + if normalise: + # --- inverse normalisation + f_mean = self.normalise_Y(f_mean, reverse = True) + return f_mean + + def save_GPR(self, path: str): + + write_pkl(self, 'GPR_{date:%m-%d_%H_%M}'.format(date=datetime.datetime.now()), path) + + + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/controllers.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/controllers.py new file mode 100644 index 0000000000000000000000000000000000000000..efb1c442712a96d84145c8f1636614817a663d5a --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/controllers.py @@ -0,0 +1,298 @@ +import time +import scipy.stats +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +import math +import random +import pickle_handler +import fmu_handler +import tensorflow.keras +from data_manager import * +from tensorflow.keras import models +#from casadi_neural_network import * + + +class controller: + + def __init__(self, data_handler): + + self.debug_mode = False + + # data handler and step size + self.data_handler = data_handler + self.step_size = data_handler.step_size + + # current time + self.current_time = None + + # define target Temperatures + self.target_day = 273.15 + 21 + self.target_night = 273.15 + 18 + + # define target Temperatures + self.comfort_limits_day = [273.15 + 20, 273.15 + 22] + self.comfort_limits_night = [273.15 + 17, 273.15 + 26] + + # define working hours + self.working_hours = [6, 18] + + # trackcomfort + self.comfort_error_list = list() + self.current_comfort = list() + + # track target + self.target_error_list = list() + self.target_list = list() + self.current_target = self.target_night + + # create control dict + self.control_dict = dict() + + def get_disturbances(self, current_time: int, past_steps: int, future_steps: int): + """ + returns disturbances data frame for a specific time window + """ + + start_time = current_time - self.step_size * past_steps + stop_time = current_time + self.step_size * future_steps + + # load disturbances + df = self.data_handler.disturbances_df + df = df[((df['SimTime'] >= start_time) & (df['SimTime'] <= stop_time))] + + if len(df.index) < past_steps: + raise ValueError('Please make sufficient weather data is available.') + + return df + + def get_comfort_limitations(self, current_time: int, future_steps=1): + """ + returns comfort limitations for current time and future steps + """ + assert current_time is not None and future_steps > 0 + + limitations = list() + for t in range(future_steps): + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size) + + # append limits to the target data frame + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + limitations.append(self.comfort_limits_day) + else: + limitations.append(self.comfort_limits_night) + + if self.debug_mode: + print('limits:', limitations) + + return limitations + + def get_random_target(self, current_time): + + assert type(current_time) is not None + + limits = self.get_comfort_limitations(current_time) + + ret = random.uniform(limits[0][0], limits[0][1]) + + return ret + + def get_target(self, current_time: int, future_steps=1): + + assert type(current_time) is not None and future_steps > 0 + + debug_mode = False + + ret = list() + + for t in range(future_steps): + + time_dict = self.get_time_dict(current_time + (t+1) * self.step_size) + + if time_dict['days'] < 5 and (self.working_hours[0] < time_dict['hours'] < self.working_hours[1]): + ret.append(self.target_day) + else: + ret.append(self.target_night) + + if debug_mode: + print('Target_list:', ret) + + return ret + + @staticmethod + def get_time_dict(seconds: int): + result = dict() + + intervals = ( + ('weeks', 604800), + ('days', 86400), + ('hours', 3600), + ('minutes', 60), + ) + + for name, count in intervals: + value = seconds // count + seconds -= value * count + result[name] = value + return result + + @staticmethod + def get_casadiANN(keras_model_name): + """ + returns the casadi ann object + """ + + KerasModel = models.load_model(keras_model_name) + # construct casadi ann + casadiANN = NeuralNetwork('ANN') + casadiANN.construct(KerasModel) + + return casadiANN + + def update(self, df: pd.DataFrame): + + # current time + self.current_time = df['SimTime'].iloc[-1] + + # return empty control dict, when + if len(df.index) < 2: + return False + + # chreck for refresh + self.check_refresh() + + # append target + self.target_list.append(self.current_target) + + # current limitations + self.current_comfort = self.get_comfort_limitations(current_time=self.current_time) + + # current error + y = df[self.data_handler.model.Y[0].var_name].iloc[-1] + error = max([min([0, y - self.current_comfort[0][0]]), max([0, y - self.current_comfort[0][1]])], key=abs) + self.comfort_error_list.append(error) + + self.target_error_list.append(y - self.current_target) + + return True + + def check_refresh(self): + + # refresh, when comfort changes + f_limits = self.get_comfort_limitations(current_time=self.current_time-self.step_size, future_steps=2) + + if f_limits[0] != f_limits[1]: + self.refresh() + + def refresh(self): + return 0 + + def check_bounds(self): + for u in self.data_handler.model.U: + if self.control_dict[u.var_name] > u.ub: + self.control_dict[u.var_name] = u.ub + elif self.control_dict[u.var_name] < u.lb: + self.control_dict[u.var_name] = u.lb + + + + +class pid_target(controller): + + def __init__(self, data_handler, no_control_name = None, random_target=False): + self.no_control_name = no_control_name + # call super + super(pid_target, self).__init__(data_handler) + self.start_time = self.data_handler.fmu.start_time + self.stop_time = self.data_handler.fmu.stop_time + self.sim_time = self.stop_time - self.start_time + self.timepoints = self.sim_time / data_handler.step_size + self.ki = dict() + self.kp = dict() + self.kd = dict() + + # new parameters + + for u in self.data_handler.model.U: + if 'AHU' in u.display_name: + self.kp[u.var_name] = 0.05 + self.ki[u.var_name] = 0.000001 + self.kd[u.var_name] = 0.002 + elif 'CCA' in u.display_name or 'BKT' in u.display_name: + self.kp[u.var_name] = 0.045 + self.ki[u.var_name] = 0.0000008 + self.kd[u.var_name] = 0.003 + + self.integral = 0 + print('random_target:' + str(random_target)) + self.random_target = random_target + self.refresh_rate = 1 + + + def __call__(self, *args, **kwargs): + + # update controller + if not self.update(args[0]): + return dict() + + # new target + if self.random_target is True: + # get new random target via refresh + if self.current_time % self.refresh_rate == 0: + self.refresh_rnd() + else: + self.current_target = self.get_target(self.current_time)[0] + + # update integral (i[0] = i[-1] + e * dt + self.integral += self.target_error_list[-1] * self.step_size + + # error + error = self.target_error_list[-1] + + # delta + delta = args[0][self.data_handler.model.Y[0].var_name].iloc[-1] - args[0][self.data_handler.model.Y[0].var_name].iloc[-2] + + for u in self.data_handler.model.U: + + kp = self.kp[u.var_name] + ki = self.ki[u.var_name] + kd = self.kd[u.var_name] + value = (self.kp[u.var_name] * error + self.ki[u.var_name] * self.integral + self.kd[u.var_name] * delta) + value = value #/ (self.step_size*100) + + # reset + self.control_dict[u.var_name] = u.lb + + if u.info == 'cooler' and value > 0: + self.control_dict[u.var_name] = u.lb + abs(value) * (u.ub - u.lb) + + if u.info == 'heater' and value < 0: + self.control_dict[u.var_name] = u.lb + abs(value) * (u.ub - u.lb) + + self.check_bounds() + + if self.no_control_name is not None: + for name in self.no_control_name: + self.control_dict[name] = 0 + + return self.control_dict + + def __str__(self): + + avrg_err = round(np.abs(np.array(self.comfort_error_list)).mean(), 4) + + return f'PID Regler (avrg_err={avrg_err}K)' + + def refresh_rnd(self): + + # refresh rate in hours + self.refresh_rate = 4*3600 #random.randint(3, 5) * 3600 + + # new target + self.current_target = self.get_random_target(self.current_time) + + + print('New target:', round(self.current_target, 4)) + + def description(self): + return f'PID controller from {self.start_time/86400} until {self.stop_time/86400} (timepoints = {self.timepoints})' diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/data_manager.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/data_manager.py new file mode 100644 index 0000000000000000000000000000000000000000..2e5000f96a9c64b5b3a8f04dd940df914bd7b1ed --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/data_manager.py @@ -0,0 +1,440 @@ +import matplotlib +import datetime +import pyDOE +import os +import matplotlib.dates as mdates +import matplotlib.pyplot as plt +import pandas as pd +import numpy as np + +from pickle_handler import * +import controllers +from fmu_handler import FMU +from GP_regression import * +from GPR_mpc import * +from ebc_colors import * + + +class Feature: + + def __init__(self, + display_name: str, + var_name: str, + lag=0, + is_regressor = True, + is_target = False, + unit = '',): + ''' + :param var_name: Name as used in FMU + ''' + self.display_name = display_name + self.var_name = var_name + self.lag = lag + self.is_regressor = is_regressor + self.is_target = is_target + self.unit = unit + + def __str__(self): + return f'[{self.var_name}]' #{self.display_name} + + +class Control(Feature): + + def __init__(self, + display_name: str, + var_name: str, + lb: float, + ub: float, + info: str, + lag=0, + is_regressor = True, + is_target = False, + unit = '' + ): + + super(Control, self).__init__(display_name, var_name, lag, is_regressor, is_target) + + self.lb = lb + self.ub = ub + self.info = info + +class Derivative(Feature): + + def __init__(self, feature, is_regressor = True, is_target = False, lag = 0, operator = 'd'): + + self.feature = feature + var_name = f'd {self.feature.var_name}' + display_name = f'd {self.feature.display_name}' + unit = self.feature.unit + super(Derivative, self).__init__(display_name, var_name, lag, is_regressor, is_target) + +class Model: + + def __init__(self, D, c_D, U, Y, C): + + for u in U: + if type(u) is not Control: + raise ValueError('U must be a List of Control type objects!') + + # List of Features + self.D = D # disturbances + self.c_D = c_D # derivatives of D + self.U = U # controls + self.Y = Y # controlled + # self.c_Y + self.C = C # derivative of Y + + self.create_lists() + + + def description(self): + lines = [] + #print('\n' + lines.append('List of regressors in model (also order of regressors in X_train/GPR input) :') + for feature_list in [self.regressor_list, self.target_list]: + for index, feature in enumerate(feature_list): + lines.append('\t'+str(index)+str(feature)+' lag: '+str(feature.lag) + '\tRegressor: '+str(feature.is_regressor)+'\tTarget: '+str(feature.is_target)) + if feature_list==self.regressor_list: + lines.append('\n Targets:') + # lines.append('Order of regressors (for matching lenghtscale):') + # lines.append(str()) + return lines + + def create_lists(self): # --- create ? + + self.regressor_list = [feature for feature in self.all() if feature.is_regressor] + self.target_list = [feature for feature in self.all() if feature.is_target] + + self.regressor_list_str = [feature.var_name for feature in self.all() if feature.is_regressor] + self.list_all_str = [feature.var_name for feature in self.all() if feature.is_regressor or feature.is_target] + ''' GEFÄHRLICH WENN NICHT AUTOREGRESSIVE VARIABLE GELERNT WIRD ''' + self.target_list_str = [feature.var_name + ' (t+1)' for feature in self.all() if feature.is_target] + + def all(self): + return self.D + self.c_D + self.U + self.Y + self.C + + +class DataHandler: + + def __init__(self, model: Model, fmu: FMU): + + self.model = model + self.controller = None + self.controller_desc = [] + + self.fmu = fmu + self.step_size = self.fmu.step_size + + # data storage + self.raw_data = [] # --- list with df's from FMU + self.processed_data = [] + self.reg_data = None # --- final list of np arrays X_train, Y_train with shape (N,D) + + # --- flags: + self.GP_setup_done = False + + def simulate(self, start_time: int, stop_time: int, controller = None): + + # set start/stop time + self.fmu.start_time = start_time + # --- maybe add settling time + self.fmu.stop_time = stop_time + # --- set controller and add to list + if controller == 'lhs': + self.controller = lhs_ctrl(self) + elif controller == 'zero': + self.controller = zero_ctrl(self) + elif controller == 'PID': + self.controller = controllers.pid_target(self) + elif controller == 'PID_random': + self.controller = controllers.pid_target(self, random_target=True) + elif controller == 'PID_no_AHU': + self.controller = controllers.pid_target(self, no_control_name=["valveHeaterSet","valveAHUCoolerSet"]) + elif controller == 'PID_no_CCA': + self.controller = controllers.pid_target(self, no_control_name=["valveTabsHotSet","valveTabsColdSet"]) + else: + self.controller = controller + if self.controller == None: + print('please pass controller or valid controller name') + quit() + + # run the FMU + try: + variables = [feature.var_name for feature in self.model.all()] + except AttributeError: + print('no disturbance derivative in Model') + variables = [feature.var_name for feature in self.model.D + self.model.U + self.model.Y + self.model.C] + print(variables) + df = self.fmu.run(features=variables, controller=self.controller) + + self.raw_data.append(df) + try: + self.controller_desc.append(self.controller.description()) + except AttributeError: + pass + a, b = follow_up_slave(df, datagen=True, controller=self.controller) + return df + + + def simulate_for_disturbances(self, start_time: int, stop_time: int): + ''' + Runs FMU to obtain disturbance values over simulation time + :return: data frame with obtained disturbances + ''' + self.fmu.start_time = start_time + self.fmu.stop_time = stop_time + + # collect variable names for all disturbances + variables = [] + for feature in self.model.D: + variables.append(feature.var_name) + + for feature in self.model.C: + if type(feature.feature) in self.model.D: + variables.append(feature.var_name) + + # run the fmu without a controller + disturbances_df = self.fmu.run(variables) + + if len(self.model.c_D) is not 0: + disturbances_df = self.insert_derivative(disturbances_df) # --- CHECK IF USEFUL ! + # --- method checks, if derivative wanted + + # save the generated df + self.disturbances_df = disturbances_df + + return disturbances_df + + def insert_derivative(self, df): + ''' + inserts derivative of feature to dataframe if part of model.C or model.c_D + ''' + + for c in [*self.model.c_D,*self.model.C]: + name = c.feature.var_name + if name in df.columns: + # create corresponding derivative + col_loc = df.columns.get_loc(name) + 1 + col_value = df[name] - df[name].shift(1) # --- discr. derivative: diff(last 2 values) + + df.insert(loc=col_loc, column=c.var_name, value=col_value) + + # delete first row + df = df[1:] + + return df + + def process_data(self): # NECESSARY ? + self.processed_data = [] + + for df in self.raw_data: + df = df.copy() + + df = self.insert_derivative(df) + df = self.keep_features(df) + + self.processed_data.append(df) + + def build_GPR(self, number_of_time_marks: int, method='linspace'): + # --- pack regression data into np.array X_train and Y_train + # --- Arrays NOT normalized, done in GPR_class + df = pd.concat(self.processed_data) + self.number_of_time_marks = number_of_time_marks + self.method = method + if method == 'lhs': + time_marks = pyDOE.lhs(1, number_of_time_marks, "m").ravel() * len(df.index) + elif method == 'linspace': + time_marks = np.linspace(1, len(df.index)-1, number_of_time_marks) + elif method == 'all': + time_marks = np.linspace(1, len(df.index)-1, len(df.index)-1) + else: + print('invalid method: choose lhs, linspace or all') + quit() + time_marks = time_marks.astype(int) + + for feature in self.model.regressor_list: + while np.amin(time_marks) <= feature.lag: + time_marks[np.argmin(time_marks)] += 1 + + time_marks = np.unique(time_marks) + self.time_marks = time_marks + + if np.amax(time_marks) > len(df.index): + print('Lag is larger than simulated time steps !') + quit() + else: + X_train = np.empty( (0, sum([feature.lag +1 for feature in self.model.regressor_list])), float ) + Y_train = np.empty( (0, len(self.model.target_list)), float ) + for i in time_marks: + col_chunks = [] + for feature in self.model.regressor_list: + col_chunks.append(np.array(df.iloc[i-feature.lag: i+1][feature.var_name]) ) # size(appendix) = lag+1 + X_train = np.append(X_train, [np.hstack(col_chunks)], axis = 0) + + target_values = [] + for target_name in self.model.target_list_str: # target_name = var_name + " (t+1)" + target_values.append( np.array(df.iloc[i][target_name]) ) # size(appendix) = 1 + # y_k+1 @ index i is corresponding to x_k @ index i + Y_train = np.append( Y_train, [np.hstack(target_values)], axis = 0) + + self.X_train = X_train + self.Y_train = Y_train + # instantiate GPR + self.my_GPR = GP_Regression(X_train, Y_train, abs = True) + return self.my_GPR + + def set_up_GPR(self, GPR_object): + GPR_object.opt_hyperparam() + GPR_object.set_up_reg() + self.my_GPR = GPR_object + self.GP_setup_done = True + + def keep_features(self, df, add_target = True): + """ + Deletes all irrelevant features from the data frame + if add_target is true, target variable is shifted, as prediction (k+1) is actual target + """ + + # only keep the selected features ACHTUNG, vgl. line 120 + # df = df[self.model.regressor_list_str].copy() + df = df[self.model.list_all_str].copy() + + # Deletes the first few columns ? ROW ? + df = df[1:].reset_index(drop=True) + + if add_target is True: + # Add output dimension + for feature in self.model.all(): + if feature.is_target: + + df[feature.var_name + ' (t+1)'] = df[feature.var_name].shift(-1) + + # Delete last row + df = df[:-1] + + return df + + def save(self, start_time): + + directory_name = 'stored_data\\data_{date:%d-%m_%H_%M}'.format(date=datetime.datetime.now()) + self.directory_name = directory_name + if not os.path.exists(directory_name): + os.makedirs(directory_name) + #else Sekunde dazu ? + + write_pkl(self, 'DataHandler', directory_name) + # write_pkl(self.disturbances_df, 'disturbances', directory_name) + + with open(directory_name+"\\model.txt", "w") as desc: + desc.write(self.method + 'sampling with ' + str(self.time_marks.size)+' datapoints\n'+ + ' @ dt='+str(self.step_size)+ ', start time: ' + str(int(start_time/86400)) + 'days\n' + + '\n'.join(self.controller_desc) +'\n\n'+'\n'.join(self.model.description())) + print('model description saved') + + if len(self.raw_data) != 0: + write_pkl(pd.concat(self.raw_data),'raw_data', directory_name) + if len(self.processed_data) != 0: + write_pkl(pd.concat(self.processed_data), 'processed', directory_name) + pd.concat(self.processed_data).to_excel(directory_name + "\\new_fmu_processed_test.xlsx") + + if self.GP_setup_done is True: + write_pkl(self.my_GPR, 'GPR_is_opt', directory_name) + else: + write_pkl(self.my_GPR, 'GPR_not_opt', directory_name) + + def load_disturbances(self): + self.disturbances_df = read_pkl('disturbances') + + +if __name__ == '__main__': + lags = [4] + for lag in lags: + #if True: + my_lag = lag + # define features + d_1 = Feature('T dry bulb', 'weaBus.TDryBul', lag = my_lag, unit = '°C') + + d_5 = Feature('H diffuse horizontal', 'weaBus.HDifHor', lag = my_lag, unit = 'W/m^2') + d_6 = Feature('H direct normal', 'weaBus.HDirNor', lag = my_lag, unit = 'W/m^2') + d_7 = Feature('H global horizontal', 'weaBus.HGloHor', lag = my_lag, unit = 'W/m^2') + + d_10 = Feature('humans', 'internal_gain_1', lag = my_lag) + d_11 = Feature('devices', 'internal_gain_2', lag = my_lag ) + d_12 = Feature('lights', 'internal_gain_3', lag = my_lag ) + + u_1 = Control('CCA hot', 'valveTabsHotSet', lb=0, ub=1, info='heater', lag = my_lag ) + u_2 = Control('CCA cold', 'valveTabsColdSet', lb=0, ub=1, info='cooler', lag = my_lag ) + #u_3 = Control('AHU hot', 'valveAHUCoolerSet', lb=0.01, ub=1, info='heater', lag = 4 ) + #u_4 = Control('AHU cold', 'valveHeaterSet', lb=0.01, ub=1, info='cooler', lag = 4 ) + u_3 = Control('AHU cold', 'valveAHUCoolerSet', lb=0, ub=1, info='cooler', lag=my_lag) + u_4 = Control('AHU hot', 'valveHeaterSet', lb=0, ub=1, info='heater', lag=my_lag) + + + y_1 = Feature('T Air', 'TAirRoom', lag = my_lag, unit = '°C', is_target=False) + dy_1 = Derivative(feature=y_1, is_target=True, is_regressor=True, lag = my_lag) + + + # instantiate Model + My_Model = Model(D=[d_1, d_5, d_6, d_7, d_10, d_11, d_12], + c_D = [], + U=[u_1, u_2, u_3, u_4], + Y=[y_1], + C=[dy_1], + ) + # --- SETTINGS + dt = 60 * 15 # 20 + start_time = 60 * 60 * 24 * 95 + stop_time = 60 * 60 * 24 * 125 + controller_interval = 60 * 60 * 24 *1 + data_points = 3840 + + # instantiate FMU + My_FMU = FMU(start_time=start_time, # overwritten anyways + stop_time=stop_time, # overwritten anyways + step_size= dt, + sim_tolerance=0.00001, + #fmu_file="C:\\Users\\arman\MA\\modelica_files\\Benchmark_thermal_zone\\thermal_zone_valve_ctrl_wea_base_solver.fmu", + fmu_file = "C:\\Users\\arman\\MA\\modelica_files\\ASHRAE140_900_Thermal_Zone\\Benchmark_thermal_zone_ASHRAE140_900_Thermal_Zone_ashrae140_900_valve_ctrl_fmu.fmu", + intgains_file='C:\\Users\\arman\MA\\modelica_files\\Benchmark_thermal_zone\\internal_gains.csv') + + # instantiate DataHandler + My_DataHandler = DataHandler(My_Model, My_FMU) + + # --- simulate data + with_MPC = False + if with_MPC is True: + folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_21-03_21_48\\" + My_GPR = read_pkl(folder_path_model + "GPR_is_opt.pkl") + MPC_controller = GPR_MPC(My_DataHandler,My_GPR) + + + My_DataHandler.simulate(start_time=start_time + 0 * controller_interval, + stop_time=stop_time, + controller='PID_random') + + """My_DataHandler.simulate(start_time=start_time + 20 * controller_interval, + stop_time=start_time + 30 * controller_interval, + controller='lhs') + + My_DataHandler.simulate(start_time=start_time + 30 * controller_interval, + stop_time=stop_time, + controller = 'zero')""" + + My_DataHandler.process_data() + + + # Um verschiedene lags zu testen: + #data_names = ["12_57","14_17","21_19","22_46"] + #for name in data_names: + # folder_path_model = "C:\\Users\\arman\\MA\\MA_code\\GP_therm_zone_v2\\stored_data\\data_26-05_"+name+"\\" + # My_DataHandler = read_pkl(folder_path_model + "DataHandler.pkl") + # My_DataHandler.model = My_Model + + GPR = My_DataHandler.build_GPR(data_points) + #My_DataHandler.set_up_GPR(GPR) + My_DataHandler.save(start_time) + a = [] + for i in GPR.theta[0]: + a.append(i.round(1)) + print(a) + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/fmu_handler.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/fmu_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..6bd9f5bdafec441c4cb7e5087dcb7716e9e859d4 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/fmu_handler.py @@ -0,0 +1,333 @@ +import matplotlib.pyplot as plt +import math +import pandas as pd +import fmpy +import fmpy.fmi2 +import shutil +import time +import pickle_handler + + +class FMU: + """ + The fmu handler class + """ + + def __init__(self, + start_time: int, + stop_time: int, + step_size: int, + sim_tolerance: float, + fmu_file: str, + intgains_file=None, + instanceName='fmu1', + ): + """[summary] + + Args: + start_time ([int]): Start time in sec usually 0 + sim_date ([datetime]): the datetime of the simulation time + stop_time ([int]): Stop time in sec + step_size ([int]): The time step size after which data is exchanged + sim_tolerance ([float]): The numeric tolerance of the solver usual 0.001 + fmu_file ([string]): The name of the FMU file + instanceName ([type]): A name of the FMU instance. FMPY specific can be random + """ + + assert start_time < stop_time + assert sim_tolerance > 0 + + self.start_time = start_time # start time + self.stop_time = stop_time # stop time + self.step_size = step_size # The macro time step + self.sim_tolerance = sim_tolerance # The total simulation tolerance + self.fmu_file = fmu_file + self.instanceName = instanceName + + # load internal gains data + self.intgains_file = intgains_file + self.df_intgains = None + if self.intgains_file is not None: + self.df_intgains = pd.read_csv(self.intgains_file, header=None) + + # read the model description + self.model_description = fmpy.read_model_description(self.fmu_file) + + # Collect all variables + self.variables = {} + for variable in self.model_description.modelVariables: + self.variables[variable.name] = variable + + # extract the FMU + self.unzipdir = fmpy.extract(self.fmu_file) + + def run(self, features: list, controller=None): + """ + :param features: List of all variables that are supposed to be tracked + :param controller: Controller from controller.py + :return: Returns simulated data + """ + + self.__init__(self.start_time, + self.stop_time, + self.step_size, + self.sim_tolerance, + self.fmu_file, + self.intgains_file, + 'fmu1') + + # keep only features, that are part of the fmu + ''' + Die Begrenzung evlt rausnehmen bzw erweitern, wenn Stellgrößenreduktion umgesetzt wird + oder "per Hand" zu df hinzufügen + ''' + features = [feature for feature in features if feature in self.variables] + + # initialize fmu + self.setup() + self.initialize() + + # initialize internal gains + self.write_variables(self.get_intgains(self.current_time)) + + # initialize data frame + df = pd.DataFrame(self.read_variables(features), columns=['SimTime', *features], index=[0]) + + while not self.do_step(): + + # update internal gains + self.write_variables(self.get_intgains(self.current_time)) + + if self.current_time % self.step_size == 0: + + # print time + self.display_time(self.current_time) + + # get the current state of the System + df = df.append(pd.DataFrame(self.read_variables(features), index=[0]), ignore_index=True) + + # set variables + if controller is not None: + self.write_variables(controller(df)) + + # delete last row to append last row with valid control + df.drop(df.tail(1).index, inplace=True) + + # read variables and add to data frame + df = df.append(pd.DataFrame(self.read_variables(features), index=[0]), ignore_index=True) + + # delete the fmu instance + self.close() + + return df + + def setup(self): + + # create fmu obj + self.fmu = fmpy.fmi2.FMU2Slave(guid=self.model_description.guid, + unzipDirectory=self.unzipdir, + modelIdentifier=self.model_description.coSimulation.modelIdentifier, + instanceName=self.instanceName) + + # instantiate fmu + self.fmu.instantiate() + + # The current simulation time + self.current_time = self.start_time + + # initialize model + self.fmu.reset() + self.fmu.setupExperiment( + startTime=self.start_time, stopTime=self.stop_time, tolerance=self.sim_tolerance) + + def initialize(self): + self.fmu.enterInitializationMode() + self.fmu.exitInitializationMode() + + def find_vars(self, start_str: str): + """ + Retruns all variables starting with start_str + """ + key = list(self.variables.keys()) + key_list = [] + for i in range(len(key)): + if key[i].startswith(start_str): + key_list.append(key[i]) + return key_list + + def get_value(self, var_name: str): + """ + Get a single variable. + """ + + variable = self.variables[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + return self.fmu.getReal(vr)[0] + elif variable.type in ['Integer', 'Enumeration']: + return self.fmu.getInteger(vr)[0] + elif variable.type == 'Boolean': + value = self.fmu.getBoolean(vr)[0] + return value != 0 + else: + raise Exception("Unsupported type: %s" % variable.type) + + def set_value(self, var_name, value): + """ + Set a single variable. + var_name: str + """ + + variable = self.variables[var_name] + vr = [variable.valueReference] + + if variable.type == 'Real': + self.fmu.setReal(vr, [float(value)]) + elif variable.type in ['Integer', 'Enumeration']: + self.fmu.setInteger(vr, [int(value)]) + elif variable.type == 'Boolean': + self.fmu.setBoolean(vr, [value == 1.0 or value == True or value == "True"]) + else: + raise Exception("Unsupported type: %s" % variable.type) + + def do_step(self): + # check if stop time is reached + if self.current_time < self.stop_time: + # do simulation step + status = self.fmu.doStep( + currentCommunicationPoint=self.current_time, + communicationStepSize=self.step_size) + # augment current time step + self.current_time += self.step_size + finished = False + else: + print('Simulation finished') + finished = True + + return finished + + def close(self): + self.fmu.terminate() + self.fmu.freeInstance() + shutil.rmtree(self.unzipdir) + + del self.fmu + print('FMU released') + + def read_variables(self, vrs_list: list): + """ + Reads multiple variable values of FMU. + vrs_list as list of strings + Method retruns a dict with FMU variable names as key + """ + res = {} + # read current variable values ans store in dict + for var in vrs_list: + res[var] = self.get_value(var) + + # add current time to results + res['SimTime'] = self.current_time + + # add addierte inputs bei Inputreduktion + ''' + ... res[u_AHU] = AHU_hot - AHU_cold ... + ''' + return res + + def write_variables(self, var_dict: dict): + ''' + Sets multiple variables. + var_dict is a dict with variable names in keys. + ''' + + for key in var_dict: + self.set_value(key, var_dict[key]) + return "Variable set!!" + + @staticmethod + def display_time(seconds, granularity=2): + result = [] + + if seconds % 3600 == 0: + for name, count in (('weeks', 604800), # 60 * 60 * 24 * 7 + ('days', 86400), # 60 * 60 * 24 + ('hours', 3600), # 60 * 60 + ('minutes', 60), + ('seconds', 1),): + value = seconds // count + if value: + seconds -= value * count + if value == 1: + name = name.rstrip('s') + result.append("{} {}".format(value, name)) + print(', '.join(result[:granularity])) + + def get_intgains(self, SimTime: int): + + if self.df_intgains is None: + return dict() + + while SimTime > 604740: + SimTime -= 604740 + + row = self.df_intgains[(self.df_intgains[0] <= SimTime)].tail(1) + + dict_intgains = {'internal_gain_1': row.iloc[0, 1], + 'internal_gain_2': row.iloc[0, 2], + 'internal_gain_3': row.iloc[0, 3], + } + + return dict_intgains + + def __enter__(self): + self.fmu.terminate() + self.fmu.freeInstance() + + +if __name__ == '__main__': + + fmpy.dump('FMU/thermal_zone_valve_ctrl_wea_base_solver.fmu') + exit() + + # create fmu object + My_FMU = FMU(start_time=3600 * 24 * 0, + stop_time=3600 * 24 * 365, + step_size=60 * 60 * 6, + sim_tolerance=0.0001, + fmu_file='FMU/thermal_zone_valve_ctrl_wea_base_solver.fmu', + intgains_file='internal_gains.csv') + + # print(My_FMU.find_vars('')) + + # create fmu instance + variables = ['TAirRoom', + 'weaBus.TDryBul', + 'weaBus.HDifHor', + 'weaBus.HDirNor', + 'weaBus.HGloHor', + 'weaBus.HHorIR', + 'weaBus.TBlaSky', + 'weaBus.TDewPoi', + 'internal_gain_1', + 'internal_gain_2', + 'internal_gain_3', + ] + + df = My_FMU.run(variables) + + # pickle_handler.write_pkl(My_FMU, filename='My_FMU') + + df[['TAirRoom']].plot() + plt.show() + + df[['weaBus.HDifHor', 'weaBus.HDirNor', 'weaBus.HGloHor']].plot() + plt.show() + + df[['weaBus.TDewPoi', 'weaBus.TDryBul', 'weaBus.TBlaSky']].plot() + plt.show() + + df[['internal_gain_1', 'internal_gain_2', 'internal_gain_3']].plot() + plt.show() + + df.to_excel('Weather.xlsx') diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/pickle_handler.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/pickle_handler.py new file mode 100644 index 0000000000000000000000000000000000000000..7d03aabbceae05107de604af9781fc7e23578b29 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/pickle_handler.py @@ -0,0 +1,35 @@ +import pickle +import os +import datetime + +spare_directory_name = 'stored_data\\data_SPARE_{date:%d-%m_%H_%M}'.format(date=datetime.datetime.now()) + +def read_pkl(fullpath: str): + fullpath = fullpath + if os.path.exists(fullpath): + pkl_file = open(fullpath, 'rb') + pkl_data = pickle.load(pkl_file) + pkl_file.close() + print('\nFile:', '"' + fullpath + '"', 'loaded.') + return pkl_data + else: + ValueError(fullpath + ' does not exist.') + + +def write_pkl(data, filename: str, directory_name: str): + + fullpath = directory_name + '\\' + filename + '.pkl' + + # make sure directory exists + if not os.path.exists(directory_name): + print('hallo') + os.makedirs(directory_name) + + # Open Data + pkl_file = open(fullpath, 'wb') + pickle.dump(data, pkl_file) + + # Print Status + print('\nFile:', '"' + fullpath + '"', 'saved.') + + pkl_file.close() diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_1200.pkl b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_1200.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3e1a7cc89460bcc571ed6ed83e6826c4524fb78e Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_1200.pkl differ diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_900.pkl b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_900.pkl new file mode 100644 index 0000000000000000000000000000000000000000..3e1a7cc89460bcc571ed6ed83e6826c4524fb78e Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_900.pkl differ diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_new.pkl b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_new.pkl new file mode 100644 index 0000000000000000000000000000000000000000..95ba8c4d0031db0ba0ab24792ef5527b81f91f45 Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_valve_skripte/stored_data/dist/dist_new.pkl differ diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/GP_csd.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/GP_csd.py new file mode 100644 index 0000000000000000000000000000000000000000..5dc30b9301f9b14def85e8b368ecc056a761fb29 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/GP_csd.py @@ -0,0 +1,90 @@ +''' +very simple script of 1D Gaussian Process Regression +shows, that Casadi can be coupled with "handwritten" GPregression +''' + +from __future__ import division +import numpy as np +import matplotlib.pyplot as plt +from casadi import * + +class GP_regression: + def __init__(self): + # --- just for visualisation + self.f = lambda x: np.sin(0.9*x).flatten() + x = np.arange(-5, 1, 0.1) + plt.plot(x, self.f(x)) + plt.axis([-5, 1, -1.5, 1.5]) + + + # --- "Training" data and target definition + N = 8 # number of existing observation points (training points). + self.X = np.random.uniform(-5, 1, size=(N,1)) # N training points + self.y = self.f(self.X) + plt.plot(self.X, self.y, 'k+', ms=18) + + # --- Matrices that allow calculation for any evaluation + self.K = self.kernel(self.X, self.X) + self.L = np.linalg.cholesky(self.K) + + def kernel(self,a,b): + # --- kernel function + kernelParameter_l = 0.5 + kernelParameter_sigma = 1.0 + sqdist = np.sum(a**2,axis=1).reshape(-1,1) + np.sum(b**2,1) - 2*np.dot(a, b.T) + return kernelParameter_sigma*np.exp(-0.5 * (1/kernelParameter_l) * sqdist) + + def GP_eval(self, x_test): + # --- actual evaluating Algorithm, Rasmussen 2006 page 19 + x_test = x_test.reshape(-1,1) + alpha = np.linalg.solve(self.L.T, np.linalg.solve(self.L, self.y)) + k_star = self.kernel(self.X, x_test) + f_mean = np.dot(k_star.T, alpha) + + return f_mean + +if __name__ == '__main__' : + + GP = GP_regression() + + example_num = True + example_casadi = True + + if example_num == True: + n = 50 #test points + x_test = np.linspace(-5, 1, n).reshape(-1,1) #np.array([0.3]) + print(x_test) + + f_test = GP.GP_eval(x_test) + print(f_test) + + plt.plot(x_test, f_test, 'r--', ms=20) + + if example_casadi == True: + + x = SX.sym('x') + x_test_c = np.array([x]) + obj = GP.GP_eval(x_test_c) + OPTVARS = x + nlp = {'x': OPTVARS, 'f': obj} #, 'g': vertcat(*g), 'p': self.PARVARS} + + solver = nlpsol('S', 'ipopt', nlp) + res = solver(x0 = -3) + + f_sol = res['f'] + x_sol = res['x'] + + plt.plot(x_sol, f_sol, 'r*', ms=20) + + + + + + + + + + + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/gpy_test.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/gpy_test.py new file mode 100644 index 0000000000000000000000000000000000000000..c09344551bffdcbcb368b457dd496aa79e80aa99 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/gpy_test.py @@ -0,0 +1,65 @@ +import GPy +import numpy as np +import matplotlib.pyplot as plt +from vdp_gp import * + +dt = 0.5 +N_data = 500 +new_data = False + +vdp1 = vdp_model(dt) # --- from vdp_gp script +gp = GP_regression(vdp1) + + + +def get_new_data(N_data_arg=N_data): + X_train, Y_train = gp.set_up_data(N_data_arg) + np.save('X_train.npy', X_train) + np.save('Y_train.npy', Y_train) + + +if new_data == True: + print('New Data is set True. Generating new Training Data with N_data = ' + str(N_data)) + get_new_data(N_data) + +try: + X_train = np.load('X_train.npy') + Y_train = np.load('Y_train.npy') + print('Existing or created data used, N_data = ' + str(X_train.shape[0])) + time.sleep(5) +except FileNotFoundError: + print('No data created so far. Generating new Training Data with N_data = ' + str(N_data)) + get_new_data(N_data) + time.sleep(5) +X_train, Y_train = gp.set_up_data(300) + +np.save('X_train.npy', X_train) +np.save('Y_train.npy', Y_train) + +#X_train = np.load('X_train.npy') +#Y_train = np.load('Y_train.npy') + + +kernel = GPy.kern.RBF(input_dim = 3, ARD=True) +print(kernel) +#kernel.plot() +print(kernel.lengthscale) +m = GPy.models.GPRegression(X_train, Y_train, kernel) + +print(m) +m.optimize(messages = True) +#m.optimize_restarts(num_restarts = 10) +print(m) +print(kernel.lengthscale) +print(kernel.lengthscale[1]) + + +kernel = GPy.kern.RBF(input_dim = 3) + +m = GPy.models.GPRegression(X_train, Y_train, kernel) + +m.optimize(messages = False) +#m.optimize_restarts(num_restarts = 10) +print(m) +print(kernel.lengthscale) + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_GP_MPC.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_GP_MPC.py new file mode 100644 index 0000000000000000000000000000000000000000..b5b4905f34374cdbfc65d24a4f8ca4bacaab11d8 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_GP_MPC.py @@ -0,0 +1,210 @@ + +""" +Skript to check on performance of GP surrogate Model for MPC of an VdP Osc. + +""" +import numpy as np +from casadi import * +import matplotlib.pyplot as plt +from vdp_gp import * #--- This module contains the GP model + + +class vdp: # --- mathematical model of vdp oscillator + + def __init__(self): + # Declare model variables + x1 = SX.sym('x1') + x2 = SX.sym('x2') + x = vertcat(x1, x2) + u = SX.sym('u') + + self.nx = x.shape[0] + self.nu = u.shape[0] + + # Model equations + xdot = vertcat((1 - x2 ** 2) * x1 - x2 + u, x1) + + self.dae = {'x': x, 'p': u, 'ode': xdot} + self.model = None + + def apply_ctrl(self, x0, u, dt): + opts = {'tf': dt} + F = integrator('F', 'rk', self.dae, opts) + Fk = F(x0=x0, p=u) + return Fk['xf'] + + +class GP_MPC: + + def __init__(self, N = 10): #takes certain GP,(self.gp) gp is specified in main, allows for different gp regression to be examined + self.setpoint = np.zeros((2,1)) # Ruhelage vdp, =/=f(t) + self.N = N # Control horizon + + def create_controller(self, opts_ipopt = None): + # --- Initialization + OPTVARS = [] + PARVARS = [] + g = [] + self.ubg = [] + self.lbg = [] + + Xk = SX.sym('X0', vdp.nx) + X0 = SX.sym('X_0', vdp.nx) + g.append(X0 - Xk) + for i in range(vdp.nx): + self.lbg.append(0) + self.ubg.append(0) + OPTVARS.append(Xk) + PARVARS.append(X0) + + obj = 0 + + # --- Q,R weights for objective + Q = diag(2) + R = 1 + + # --- Multiple Shooting Loop over control horizon N + for k in range(self.N): + + Uk = SX.sym('U' + str(k), 1) # controls at k + + # "Integrator" -> Pred from GP + + X_pred = gp.GP_eval(np.array([Xk[0],Xk[1],Uk[0]]).reshape(1,-1)).reshape(2,1) + # to be improved :D + + Xk = SX.sym('X' + str(k + 1), 2) # states at k + + # Objective Function + obj = obj + (X_pred -self.setpoint).T @ Q @ (X_pred -self.setpoint) + Uk.T @ R @ Uk + + OPTVARS.append(Xk) + OPTVARS.append(Uk) + + g.append(Xk - X_pred) + for j in range(vdp.nx): + self.lbg.append(0) + self.ubg.append(0) + + self.OPTVARS = vertcat(*OPTVARS) + self.PARVARS = vertcat(*PARVARS) + + + # Create NLP and controller + nlp = {'x': self.OPTVARS, 'f': obj, 'g': vertcat(*g), 'p': self.PARVARS} + + if opts_ipopt == None: + self.controller = nlpsol('solver', 'ipopt', nlp) + else: + self.controller = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + + def get_control(self, x0): + + self.res = self.controller( lbg = vertcat(*self.lbg), ubg = vertcat(*self.ubg), p=vertcat(*x0)) + x_test = self.res['x'] + + new_x_pred = self.res['x'][vdp.nx : vdp.nx * 2] + u_opt = self.res['x'][vdp.nx * 2] + + return new_x_pred, u_opt + + + + +if __name__ == '__main__' : + + ''' settings ''' + # --- simulation + dt = 0.5 + sim_time = 10 + + # --- data + new_data = False + N_data = 1000 + + # --- mpc solver + my_solver_opts = False + my_opts_ipopt = {'verbose': False,'ipopt': {'max_cpu_time': dt/10 }} + + ''' Initialize GP ''' + vdp1 = vdp_model(dt) # --- from vdp_gp script + gp = GP_regression(vdp1) + + ''' setting up data and regression ''' # --- maybe outsourced at some point + def get_new_data(N_data_arg = N_data): + X_train, Y_train = gp.set_up_data(N_data_arg) + np.save('X_train.npy', X_train) + np.save('Y_train.npy', Y_train) + + if new_data == True: + print('New Data is set True. Generating new Training Data with N_data = ' + str(N_data)) + get_new_data(N_data) + + try: + X_train = np.load('X_train.npy') + Y_train = np.load('Y_train.npy') + print('Existing or created data used, N_data = ' + str(X_train.shape[0])) + time.sleep(5) + except FileNotFoundError: + print('No data created so far. Generating new Training Data with N_data = ' + str(N_data)) + get_new_data(N_data) + time.sleep(5) + + gp.set_up_reg(X_train, Y_train) + + ''' Run MPC ''' + + # --- initialize objects + vdp = vdp() + mpc = GP_MPC() + + # --- initialize MPC + + if my_solver_opts == True: + mpc.create_controller(my_opts_ipopt) + else: + mpc.create_controller() + + x0_init = [1,2] + U_st = [0] + X_st = [x0_init] + X_pred_st = X_st + + i = 0 + t_sim = 0 + while t_sim < sim_time: + + x_opt, u_opt = mpc.get_control(X_st[i]) + + x_new = np.array(vdp.apply_ctrl(X_st[i], u_opt, dt)) + + U_st.append(u_opt) + + X_st = np.append(X_st, x_new.reshape(1, 2), axis=0) + + x_opt = np.array(x_opt) + X_pred_st = np.append(X_pred_st, x_opt.reshape(1, 2), axis=0) + #stores prediction of the next X value + + i +=1 + t_sim += dt + + x_axis = np.linspace(0, sim_time, i+1) + plt.plot(x_axis, X_st[:,0], label = 'x1') + plt.plot(x_axis, X_st[:,1], label = 'x2') + plt.step(x_axis, U_st[:], label='u') + + plt.plot(x_axis, X_pred_st[:,0], label = 'x1_pred') + plt.plot(x_axis, X_pred_st[:,1], label = 'x2_pred') + + plt.legend() + plt.xlabel('time') + plt.title('VdP GP_MPC (dt = ' + str(dt) +') ' ) + plt.show() + + + + + + \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_gp.py b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_gp.py new file mode 100644 index 0000000000000000000000000000000000000000..971120dc6ae0a6ed8e17b4e759df8bfe11d83aa8 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/GPR_vdp/vdp_gp.py @@ -0,0 +1,151 @@ +import numpy as np +import matplotlib.pyplot as plt +import pyDOE +from casadi import * +import time + +class vdp_model: # --- mathematical model of vdp oscillator + + def __init__(self, dt = 0.5): + # Declare model variables + x1 = MX.sym('x1') + x2 = MX.sym('x2') + x = vertcat(x1, x2) + u = MX.sym('u') + + self.nx = x.shape[0] + self.nu = u.shape[0] + + # Model equations + xdot = vertcat((1 - x2 ** 2) * x1 - x2 + u, x1) + self.dt = dt + self.dae = {'x': x, 'p': u, 'ode': xdot} + self.model = None + + def apply_ctrl(self, x0, u): + + opts = {'tf': self.dt} + F = integrator('F', 'rk', self.dae, opts) + Fk = F(x0=x0, p=u) + x_new = np.array(Fk['xf']) + return x_new + + def generate_data(self,N, u_min = 0, u_max = 0 , x_min = 0 , x_max = 0): + # --- generate random inputs and corresponding outputs + U = pyDOE.lhs(self.nu, samples = N, criterion = 'maximin') + X = pyDOE.lhs(self.nx, samples = N, criterion = 'maximin') + # --- scale data + Y = np.zeros((N,self.nx)) + + for k in range(N): + U[k,:] = U[k,:] * (u_max - u_min) + u_min + X[k,:] = X[k,:] * (x_max - x_min) + x_min + Y[k,:] = self.apply_ctrl( (float(X[k,0]), float(X[k,1])) , float(U[k,:]) ).flatten() + + return U, X, Y + + +class GP_regression: + + def __init__(self, vdp): + self.vdp = vdp + + def set_up_data(self, N = 200): + # --- set up data for regression, new data with each call + self.u_min = -3 + self.u_max = 3 + self.x_min = np.array([-3,-4]) + self.x_max = np.array([3,4]) + self.N = N + + + # --- "training" data, more like auxiliary data + U,X,Y = self.vdp.generate_data(self.N, self.u_min, self.u_max, self.x_min, self.x_max) + X = np.hstack([X, U]) + Y = Y + return X, Y + + def set_up_reg(self, X_train, Y_train): + self.X = X_train + self.Y = Y_train + + # --- Matrices that allow calculation for any evaluation + self.K = self.kernel(self.X, self.X) + + try: + self.L = np.linalg.cholesky(self.K) + print('Matrix is p. sd. for this data') + except np.linalg.LinAlgError: + print('Matrix not p. sd. ... adding noise') + self.K = self.K + np.eye(self.N)*0.000005 # --- add noise to K + self.L = np.linalg.cholesky(self.K) + #time.sleep(10) + self.alpha = np.linalg.solve(self.L.T, np.linalg.solve(self.L, self.Y)) + + + def kernel(self,a,b, ARD = True): + # --- kernel function + if ARD == True: + kernelParameter_l = [2.36, 0.942, 10.5] + kernelParameter_sigma = 2.366 + else: + kernelParameter_l = 1.6 + kernelParameter_sigma = 1.7 + + a = a / kernelParameter_l + b = b / kernelParameter_l + + sqdist = np.sum(a**2,axis=1).reshape(-1,1) + np.sum(b**2,1) - 2*np.dot(a, b.T) + # --- multidim. binomial equation, (a-b).T*(a-b) + + return kernelParameter_sigma*np.exp(-0.5 * sqdist) + + + + def GP_eval(self, x_test): + # --- actual evaluating Algorithm, Rasmussen 2006 page 19 + + k_star = self.kernel(self.X, x_test) + + f_mean = np.dot(k_star.T, self.alpha) + + return f_mean + +''' no main part intended actually. Just access from external module + Main part written for test purposes + ''' +if __name__ == '__main__': + # --- initialize + # --- + vdp = vdp_model() + gp = GP_regression(vdp) + + + #gp.set_up_reg(X_test, Y_test) + + #X_test = np.hstack([X_test, U_test]) + + gp_error_list=[] + gp_err_mean = 0 + X_train = np.load('X_train.npy') + Y_train = np.load('Y_train.npy') + + gp.set_up_reg(X_train,Y_train) + + for i in range(1): + # --- test inputs, evaluate + + X_test, Y_test = gp.set_up_data(N=2000) + #X_test = np.array([1,1,1]).reshape(1,-1) + f_test = gp.GP_eval(X_test) + #print(Y_test) + #print(f_test) + gp_err = np.sum([f_test, Y_test*(-1)], axis=0)#**2 + gp_err_mean += gp_err.mean(axis=0) + gp_error_list.append(list(gp_err.mean(axis=0))) + + print(gp_err_mean) + print(gp_error_list) + + + diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/Readme.txt b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/Readme.txt new file mode 100644 index 0000000000000000000000000000000000000000..43b8fe8518337174b172d157838cd91bece4fc8a --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/Readme.txt @@ -0,0 +1,7 @@ +.py files: +controllers : Max Datei mit Reglern, enthält nur noch PID Regler, den ich zum in der Arbeit beschriebenen PID mit random target programmiert habe. Weitere Regler wurden gelöschht. controller Überklasse enthält entsprechenden Overhead! +data_manager: Set Up des ML-Modells sowie Ausführung der Simulationen, weitere Eigenschaften an Funktionen kommentiert. +fmu_handler: angepasster FMU handler (Beachte Skalierung bei Simple Tabs Stellgrößen!) +GP_regression: Enthält Machine Learning Klasse +GPR_mpc: Enthält GPR basierte MPC sowie lhs-"Regler" und zero-"Regler" +main: unaufgeräumtes Skript zum Starten und Verwerten der Simulationen diff --git a/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/alle_Regler_MA.png b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/alle_Regler_MA.png new file mode 100644 index 0000000000000000000000000000000000000000..bde717c04fec467ef323277aed1a59f90165a0cb Binary files /dev/null and b/01_Input/Masterarbeit Konrad Beeser/gpr_ddmpc/alle_Regler_MA.png differ diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/.gitignore b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/.gitignore new file mode 100644 index 0000000000000000000000000000000000000000..e7e9d11d4bf243bffe4bb60b4ac1f9392297f4bf --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/.gitignore @@ -0,0 +1,2 @@ +# Default ignored files +/workspace.xml diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/LSI.iml b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/LSI.iml new file mode 100644 index 0000000000000000000000000000000000000000..d0876a78d06ac03b5d78c8dcdb95570281c6f1d6 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/LSI.iml @@ -0,0 +1,8 @@ +<?xml version="1.0" encoding="UTF-8"?> +<module type="PYTHON_MODULE" version="4"> + <component name="NewModuleRootManager"> + <content url="file://$MODULE_DIR$" /> + <orderEntry type="inheritedJdk" /> + <orderEntry type="sourceFolder" forTests="false" /> + </component> +</module> \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/inspectionProfiles/profiles_settings.xml b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000000000000000000000000000000000000..105ce2da2d6447d11dfe32bfb846c3d5b199fc99 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ +<component name="InspectionProjectProfileManager"> + <settings> + <option name="USE_PROJECT_PROFILE" value="false" /> + <version value="1.0" /> + </settings> +</component> \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/misc.xml b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/misc.xml new file mode 100644 index 0000000000000000000000000000000000000000..0f4a5d0b8972b3e1130dc506783d7e1bacb6320b --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/misc.xml @@ -0,0 +1,7 @@ +<?xml version="1.0" encoding="UTF-8"?> +<project version="4"> + <component name="JavaScriptSettings"> + <option name="languageLevel" value="ES6" /> + </component> + <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7 (python-system-identifikation-mpc)" project-jdk-type="Python SDK" /> +</project> \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/modules.xml b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/modules.xml new file mode 100644 index 0000000000000000000000000000000000000000..249f1515e4df1922c36c2a3ee34da4d79545cca5 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/modules.xml @@ -0,0 +1,8 @@ +<?xml version="1.0" encoding="UTF-8"?> +<project version="4"> + <component name="ProjectModuleManager"> + <modules> + <module fileurl="file://$PROJECT_DIR$/.idea/LSI.iml" filepath="$PROJECT_DIR$/.idea/LSI.iml" /> + </modules> + </component> +</project> \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/vcs.xml b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/vcs.xml new file mode 100644 index 0000000000000000000000000000000000000000..6c0b8635858dc7ad44b93df54b762707ce49eefc --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/.idea/vcs.xml @@ -0,0 +1,6 @@ +<?xml version="1.0" encoding="UTF-8"?> +<project version="4"> + <component name="VcsDirectoryMappings"> + <mapping directory="$PROJECT_DIR$/.." vcs="Git" /> + </component> +</project> \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX.py new file mode 100644 index 0000000000000000000000000000000000000000..e35d6718a3c1648ccb862f5f73535a1c5a426865 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX.py @@ -0,0 +1,206 @@ +#!/usr/bin/env python +# coding: utf-8 +""" +ARMAX Example + +@author: Giuseppe Armenise +""" + +from __future__ import division +from past.utils import old_div +from sippy import functionset as fset +from sippy import * +import numpy as np +import control.matlab as cnt +import matplotlib.pyplot as plt + +# ## Define sampling time and Time vector + +sampling_time = 1. # [s] +end_time = 400 # [s] +npts = int(old_div(end_time, sampling_time)) + 1 +Time = np.linspace(0, end_time, npts) + +# ## Define pseudo random binary sequence as input signal and white noise as noise signal + +switch_probability = 0.08 # [0..1] +[Usim,_,_] = fset.GBN_seq(npts, switch_probability) +white_noise_variance = [0.005] +e_t = fset.white_noise_var(Usim.size, white_noise_variance)[0] + +# ## Define the system + +# ### Numerator of noise transfer function has only one root: nc = 1 + +NUM_H = [1., 0.3, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] + +# ### Common denominator between input and noise transfer functions has 4 roots: na = 4 + +DEN = [1., -2.21, 1.7494, -0.584256, 0.0684029, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.] + +# ### Numerator of input transfer function has 3 roots: nb = 3 + +NUM = [1., -2.07, 1.3146] + +# ### Define transfer functions + +g_sample = cnt.tf(NUM, DEN, sampling_time) +h_sample = cnt.tf(NUM_H, DEN, sampling_time) + +# ## Time responses + +# ### Input reponse + +Y1, Time, Xsim = cnt.lsim(g_sample, Usim, Time) +plt.figure(0) +plt.plot(Time, Usim) +plt.plot(Time, Y1) +plt.xlabel("Time") +plt.title("Time response y(t)=g*u(t)") +plt.legend(['u(t)', 'y(t)']) +plt.grid() +plt.show() + +# ### Noise response + +Y2, Time, Xsim = cnt.lsim(h_sample, e_t, Time) +plt.figure(1) +plt.plot(Time, e_t) +plt.plot(Time, Y2) +plt.xlabel("Time") +plt.title("Time response y(t)=h*e(t)") +plt.legend(['e(t)', 'y(t)']) +plt.grid() +plt.show() + +# ## Compute total output +# $$Y_t = Y_1 + Y_2 = G.u + H.e$$ + +Ytot = Y1 + Y2 +Utot = Usim + e_t +plt.figure(2) +plt.plot(Time, Utot) +plt.plot(Time, Ytot) +plt.xlabel("Time") +plt.title("Time response y_t(t)=g*u(t) + h*e(t)") +plt.legend(['u(t) + e(t)', 'y_t(t)']) +plt.grid() + +# ## Perform system identification from collected data + +Id_sys = system_identification(Ytot, Usim, 'ARMAX', IC='BIC', na_ord=[2, 5], nb_ord=[1, 5], + nc_ord=[0, 2], delays=[10, 13], ARMAX_max_iterations=300) + +# ## Check that output of the identified system is consistent + +Y_id1, Time, Xsim = cnt.lsim(Id_sys.G, Usim, Time) +Y_hid1, Time, Xsim = cnt.lsim(Id_sys.H, e_t, Time) +Y_idTot = Y_id1 + Y_hid1 + +plt.figure(3) +plt.plot(Time, Usim) +plt.ylabel("Input GBN") +plt.xlabel("Time") +plt.title("Input, validation data (Switch probability=0.08)") +plt.grid() +plt.show() + +plt.figure(4) +plt.plot(Time, Ytot) +plt.plot(Time, Y_idTot) +plt.grid() +plt.xlabel("Time") +plt.ylabel("y_tot") +plt.title("Gu+He (identification data)") +plt.legend(['Original system', 'Identified system']) +plt.show() + +plt.figure(5) +plt.plot(Time, Y1) +plt.plot(Time, Y_id1) +plt.ylabel("y_out") +plt.grid() +plt.xlabel("Time") +plt.title("Gu (identification data)") +plt.legend(['Original system', 'Identified system']) + +plt.figure(6) +plt.plot(Time, Y2) +plt.plot(Time, Y_hid1) +plt.ylabel("y_err") +plt.grid() +plt.xlabel("Time") +plt.title("He (identification data)") +plt.legend(['Original system', 'Identified system']) +plt.show() + +# # Validation of the identified system: +# ## Generate new time series for input and noise + +switch_probability = 0.07 # [0..1] +input_range = [0.5, 1.5] +[U_valid,_,_] = fset.GBN_seq(npts, switch_probability, Range = input_range) +white_noise_variance = [0.01] +e_valid = fset.white_noise_var(U_valid.size, white_noise_variance)[0] + +# ## Compute time responses for true system with new inputs + +Yvalid1, Time, Xsim = cnt.lsim(g_sample, U_valid, Time) +Yvalid2, Time, Xsim = cnt.lsim(h_sample, e_valid, Time) +Ytotvalid = Yvalid1 + Yvalid2 + +# ## Compute time responses for identified system with new inputs + +Yidvalid1, Time, Xsim = cnt.lsim(Id_sys.G, U_valid, Time) +Yidvalid2, Time, Xsim = cnt.lsim(Id_sys.H, e_valid, Time) +Yidtotvalid = Yidvalid1 + Yidvalid2 + +# ## Check responses are almost equal + +plt.figure(7) +plt.plot(Time, U_valid) +plt.ylabel("Input GBN") +plt.xlabel("Time") +plt.title("Input, validation data (Switch probability=0.07)") +plt.grid() +plt.show() + +plt.figure(8) +plt.plot(Time, Ytotvalid) +plt.plot(Time, Yidtotvalid) +plt.xlabel("Time") +plt.ylabel("y_tot") +plt.legend(['Original system', 'Identified system']) +plt.grid() +plt.show() + +rmse = np.round(np.sqrt(np.mean((Ytotvalid - Yidtotvalid) ** 2)), 2) +plt.title("Validation: Gu+He | RMSE = {}".format(rmse)) + +plt.figure(9) +plt.plot(Time, Yvalid1) +plt.plot(Time, Yidvalid1) +plt.grid() +plt.xlabel("Time") +plt.ylabel("y_out") +plt.title("Gu (Validation)") +plt.legend(['Original system', 'Identified system']) +plt.show() + +plt.figure(10) +plt.plot(Time, Yvalid2) +plt.plot(Time, Yidvalid2) +plt.grid() +plt.xlabel("Time") +plt.ylabel("y_err") +plt.title("He (Validation)") +plt.legend(['Original system', 'Identified system']) +plt.show() + +plt.figure(11) +_ = cnt.bode([h_sample, Id_sys.H]) +plt.show() + +plt.figure(12) +_ = cnt.bode([g_sample, Id_sys.G]) +plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX_MIMO.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX_MIMO.py new file mode 100644 index 0000000000000000000000000000000000000000..a0fa0baed7fddb629b5d93a7dfdc0878a17b6805 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARMAX_MIMO.py @@ -0,0 +1,493 @@ +# -*- coding: utf-8 -*- +""" +Created + +@author: Giuseppe Armenise +example armax mimo +case 3 outputs x 4 inputs + +""" +from __future__ import division + +from past.utils import old_div + +# Checking path to access other files +try: + from sippy import * +except ImportError: + import sys, os + + sys.path.append(os.pardir) + from sippy import * + +import numpy as np +import control.matlab as cnt +from sippy import functionset as fset + +# generating transfer functions in z-transf. +var_list = [50., 100., 1.] +ts = 1. + +NUM11 = [4, 3.3, 0., 0.] +NUM12 = [10, 0., 0.] +NUM13 = [7.0, 5.5, 2.2] +NUM14 = [-0.9, -0.11, 0., 0.] +DEN1 = [1., -0.3, -0.25, -0.021, 0., 0.] # +H1 = [1., 0.85, 0.32, 0., 0., 0.] +na1 = 3 +nb11 = 2 +nb12 = 1 +nb13 = 3 +nb14 = 2 +th11 = 1 +th12 = 2 +th13 = 2 +th14 = 1 +nc1 = 2 +# +DEN2 = [1., -0.4, 0., 0., 0.] +NUM21 = [-85, -57.5, -27.7] +NUM22 = [71, 12.3] +NUM23 = [-0.1, 0., 0., 0.] +NUM24 = [0.994, 0., 0., 0.] +H2 = [1., 0.4, 0.05, 0., 0.] + +na2 = 1 +nb21 = 3 +nb22 = 2 +nb23 = 1 +nb24 = 1 + +th21 = 1 +th22 = 2 +th23 = 0 +th24 = 0 +nc2 = 2 + +DEN3 = [1., -0.1, -0.3, 0., 0.] +NUM31 = [0.2, 0., 0., 0.] +NUM32 = [0.821, 0.432, 0.] +NUM33 = [0.1, 0., 0., 0.] +NUM34 = [0.891, 0.223] +H3 = [1., 0.7, 0.485, 0.22, 0.] + +na3 = 2 +nb31 = 1 +nb32 = 2 +nb33 = 1 +nb34 = 2 +th31 = 0 +th32 = 1 +th33 = 0 +th34 = 2 +nc3 = 3 + +# transfer function G, H +g_sample11 = cnt.tf(NUM11, DEN1, ts) +g_sample12 = cnt.tf(NUM12, DEN1, ts) +g_sample13 = cnt.tf(NUM13, DEN1, ts) +g_sample14 = cnt.tf(NUM14, DEN1, ts) + +g_sample22 = cnt.tf(NUM22, DEN2, ts) +g_sample21 = cnt.tf(NUM21, DEN2, ts) +g_sample23 = cnt.tf(NUM23, DEN2, ts) +g_sample24 = cnt.tf(NUM24, DEN2, ts) + +g_sample31 = cnt.tf(NUM31, DEN3, ts) +g_sample32 = cnt.tf(NUM32, DEN3, ts) +g_sample33 = cnt.tf(NUM33, DEN3, ts) +g_sample34 = cnt.tf(NUM34, DEN3, ts) + +H_sample1 = cnt.tf(H1, DEN1, ts) +H_sample2 = cnt.tf(H2, DEN2, ts) +H_sample3 = cnt.tf(H3, DEN3, ts) + +# +tfin = 400 +npts = int(old_div(tfin, ts)) + 1 +Time = np.linspace(0, tfin, npts) +# #INPUT# +Usim = np.zeros((4, npts)) +Usim_noise = np.zeros((4, npts)) +[Usim[0, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [-0.33, 0.1]) +[Usim[1, :],_,_] = fset.GBN_seq(npts, 0.03) +[Usim[2, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [2.3, 5.7]) +[Usim[3, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [8., 11.5]) + +# Adding noise +err_inputH = np.zeros((4, npts)) + +err_inputH = fset.white_noise_var(npts, var_list) + +err_outputH1, Time, Xsim = cnt.lsim(H_sample1, err_inputH[0, :], Time) +err_outputH2, Time, Xsim = cnt.lsim(H_sample2, err_inputH[1, :], Time) +err_outputH3, Time, Xsim = cnt.lsim(H_sample3, err_inputH[2, :], Time) + +# OUTPUTS +Yout = np.zeros((3, npts)) + +Yout11, Time, Xsim = cnt.lsim(g_sample11, Usim[0, :], Time) +Yout12, Time, Xsim = cnt.lsim(g_sample12, Usim[1, :], Time) +Yout13, Time, Xsim = cnt.lsim(g_sample13, Usim[2, :], Time) +Yout14, Time, Xsim = cnt.lsim(g_sample14, Usim[3, :], Time) +Yout21, Time, Xsim = cnt.lsim(g_sample21, Usim[0, :], Time) +Yout22, Time, Xsim = cnt.lsim(g_sample22, Usim[1, :], Time) +Yout23, Time, Xsim = cnt.lsim(g_sample23, Usim[2, :], Time) +Yout24, Time, Xsim = cnt.lsim(g_sample24, Usim[3, :], Time) +Yout31, Time, Xsim = cnt.lsim(g_sample31, Usim[0, :], Time) +Yout32, Time, Xsim = cnt.lsim(g_sample32, Usim[1, :], Time) +Yout33, Time, Xsim = cnt.lsim(g_sample33, Usim[2, :], Time) +Yout34, Time, Xsim = cnt.lsim(g_sample34, Usim[3, :], Time) + +Ytot1 = Yout11 + Yout12 + Yout13 + Yout14 +Ytot2 = Yout21 + Yout22 + Yout23 + Yout24 +Ytot3 = Yout31 + Yout32 + Yout33 + Yout34 + +Ytot = np.zeros((3, npts)) + +Ytot[0, :] = (Ytot1 + err_outputH1).squeeze() +Ytot[1, :] = (Ytot2 + err_outputH2).squeeze() +Ytot[2, :] = (Ytot3 + err_outputH3).squeeze() + +##identification parameters +ordersna = [na1, na2, na3] +ordersnb = [[nb11, nb12, nb13, nb14], [nb21, nb22, nb23, nb24], [nb31, nb32, nb33, nb34]] +ordersnc = [nc1, nc2, nc3] +theta_list = [[th11, th12, th13, th14], [th21, th22, th23, th24], [th31, th32, th33, th34]] + +# IDENTIFICATION +Id_sys = system_identification(Ytot, Usim, 'ARMAX', + ARMAX_orders=[ordersna, ordersnb, ordersnc, theta_list], + ARMAX_max_iterations=20) # + +# Generating transfer functions from NUMERATOR and DENOMINATOR +# you can use directly Id_sys.G for the G*u term, see the arx_MIMO example. +gid11 = cnt.tf(Id_sys.NUMERATOR[0][0], Id_sys.DENOMINATOR[0][0], 1.) +gid12 = cnt.tf(Id_sys.NUMERATOR[0][1], Id_sys.DENOMINATOR[0][1], 1.) +gid13 = cnt.tf(Id_sys.NUMERATOR[0][2], Id_sys.DENOMINATOR[0][2], 1.) +gid21 = cnt.tf(Id_sys.NUMERATOR[1][0], Id_sys.DENOMINATOR[1][0], 1.) +gid22 = cnt.tf(Id_sys.NUMERATOR[1][1], Id_sys.DENOMINATOR[1][1], 1.) +gid23 = cnt.tf(Id_sys.NUMERATOR[1][2], Id_sys.DENOMINATOR[1][2], 1.) +gid14 = cnt.tf(Id_sys.NUMERATOR[0][3], Id_sys.DENOMINATOR[0][3], 1.) +gid24 = cnt.tf(Id_sys.NUMERATOR[1][3], Id_sys.DENOMINATOR[1][3], 1.) +gid31 = cnt.tf(Id_sys.NUMERATOR[2][0], Id_sys.DENOMINATOR[2][0], 1.) +gid32 = cnt.tf(Id_sys.NUMERATOR[2][1], Id_sys.DENOMINATOR[2][1], 1.) +gid33 = cnt.tf(Id_sys.NUMERATOR[2][2], Id_sys.DENOMINATOR[2][2], 1.) +gid34 = cnt.tf(Id_sys.NUMERATOR[2][3], Id_sys.DENOMINATOR[2][3], 1.) + +hid1 = cnt.tf(Id_sys.NUMERATOR_H[0][0], Id_sys.DENOMINATOR_H[0][0], 1.) +hid2 = cnt.tf(Id_sys.NUMERATOR_H[1][0], Id_sys.DENOMINATOR_H[1][0], 1.) +hid3 = cnt.tf(Id_sys.NUMERATOR_H[2][0], Id_sys.DENOMINATOR_H[2][0], 1.) + +# output of the identified model +Yout_id11, Time, Xsim = cnt.lsim(gid11, Usim[0, :], Time) +Yout_id12, Time, Xsim = cnt.lsim(gid12, Usim[1, :], Time) +Yout_id13, Time, Xsim = cnt.lsim(gid13, Usim[2, :], Time) +Yout_id14, Time, Xsim = cnt.lsim(gid14, Usim[3, :], Time) +Yout_id21, Time, Xsim = cnt.lsim(gid21, Usim[0, :], Time) +Yout_id22, Time, Xsim = cnt.lsim(gid22, Usim[1, :], Time) +Yout_id23, Time, Xsim = cnt.lsim(gid23, Usim[2, :], Time) +Yout_id24, Time, Xsim = cnt.lsim(gid24, Usim[3, :], Time) +Yout_id31, Time, Xsim = cnt.lsim(gid31, Usim[0, :], Time) +Yout_id32, Time, Xsim = cnt.lsim(gid32, Usim[1, :], Time) +Yout_id33, Time, Xsim = cnt.lsim(gid33, Usim[2, :], Time) +Yout_id34, Time, Xsim = cnt.lsim(gid34, Usim[3, :], Time) +Yerr1, Time, Xsim = cnt.lsim(hid1, err_inputH[0, :], Time) +Yerr2, Time, Xsim = cnt.lsim(hid2, err_inputH[1, :], Time) +Yerr3, Time, Xsim = cnt.lsim(hid3, err_inputH[2, :], Time) + +######plot +# +import matplotlib.pyplot as plt + +plt.close('all') +plt.figure(0) +plt.subplot(4, 1, 1) +plt.plot(Time, Usim[0, :]) +plt.grid() +plt.ylabel("Input 1 GBN") +plt.xlabel("Time") +plt.title("Input (Switch probability=0.03) (identification data)") + +plt.subplot(4, 1, 2) +plt.plot(Time, Usim[1, :]) +plt.grid() +plt.ylabel("Input 2 GBN") +plt.xlabel("Time") + +plt.subplot(4, 1, 3) +plt.plot(Time, Usim[2, :]) +plt.ylabel("Input 3 GBN") +plt.xlabel("Time") +plt.grid() + +plt.subplot(4, 1, 4) +plt.plot(Time, Usim[3, :]) +plt.ylabel("Input 4 GBN") +plt.xlabel("Time") +plt.grid() + +plt.figure(3) +plt.subplot(3, 1, 1) +plt.plot(Time, Ytot1) +plt.plot(Time, Yout_id11 + Yout_id12 + Yout_id13 + Yout_id14) +plt.ylabel("y_1,out") +plt.grid() +plt.xlabel("Time") +plt.title("Gu (identification data)") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 2) +plt.plot(Time, Ytot2) +plt.plot(Time, Yout_id21 + Yout_id22 + Yout_id23 + Yout_id24) +plt.ylabel("y_2,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 3) +plt.plot(Time, Ytot3) +plt.plot(Time, Yout_id31 + Yout_id32 + Yout_id33 + Yout_id34) +plt.ylabel("y_3,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.figure(5) +plt.subplot(3, 1, 1) # +plt.plot(Time, err_outputH1) +plt.plot(Time, Yerr1) +plt.ylabel("y_1,err") +plt.grid() +plt.title("He (identification data)") +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 2) +plt.plot(Time, err_outputH2) +plt.plot(Time, Yerr2) +plt.ylabel("y_2,err") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 3) +plt.plot(Time, err_outputH3) +plt.plot(Time, Yerr3) +plt.ylabel("y_3,err") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.figure(6) +plt.subplot(3, 1, 1) +plt.plot(Time, Ytot[0, :].squeeze()) +plt.plot(Time, + Yout_id11 + Yout_id12 + Yout_id13 + Yout_id14 + Yerr1) +plt.xlabel("Time") +plt.ylabel("y_1,tot") +plt.title("Gu+He (identification data)") +plt.legend(['Original system', 'Identified system']) +plt.grid() + +plt.subplot(3, 1, 2) +plt.plot(Time, Ytot[1, :]) +plt.plot(Time, + Yout_id21 + Yout_id22 + Yout_id23 + Yout_id24 + Yerr2) +plt.xlabel("Time") +plt.ylabel("y_2,tot") + +plt.legend(['Original system', 'Identified system']) + +plt.grid() + +plt.subplot(3, 1, 3) +plt.plot(Time, Ytot[2, :]) +plt.plot(Time, + Yout_id31 + Yout_id32 + Yout_id33 + Yout_id34 + Yerr3) +plt.xlabel("Time") +plt.ylabel("y_3,tot") + +plt.legend(['Original system', 'Identified system']) + +plt.grid() + +################################################################################# +################################################################################### +####################################VALIDATION############################################ +################################################################################## +####################################################################################à + + +tfin = 400 +npts = int(old_div(tfin, ts)) + 1 +Time = np.linspace(0, tfin, npts) +# #INPUT# +Usim = np.zeros((4, npts)) +Usim_noise = np.zeros((4, npts)) +[Usim[0, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [0.33, 0.7]) +[Usim[1, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [-2., -1.]) +[Usim[2, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [1.3, 2.7]) +[Usim[3, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [1., 5.2]) +err_inputH = np.zeros((4, npts)) + +err_inputH = fset.white_noise_var(npts, var_list) + +err_outputH1, Time, Xsim = cnt.lsim(H_sample1, err_inputH[0, :], Time) +err_outputH2, Time, Xsim = cnt.lsim(H_sample2, err_inputH[1, :], Time) +err_outputH3, Time, Xsim = cnt.lsim(H_sample3, err_inputH[2, :], Time) + +Yout = np.zeros((3, npts)) + +Yout11, Time, Xsim = cnt.lsim(g_sample11, Usim[0, :], Time) +Yout12, Time, Xsim = cnt.lsim(g_sample12, Usim[1, :], Time) +Yout13, Time, Xsim = cnt.lsim(g_sample13, Usim[2, :], Time) +Yout14, Time, Xsim = cnt.lsim(g_sample14, Usim[3, :], Time) +Yout21, Time, Xsim = cnt.lsim(g_sample21, Usim[0, :], Time) +Yout22, Time, Xsim = cnt.lsim(g_sample22, Usim[1, :], Time) +Yout23, Time, Xsim = cnt.lsim(g_sample23, Usim[2, :], Time) +Yout24, Time, Xsim = cnt.lsim(g_sample24, Usim[3, :], Time) +Yout31, Time, Xsim = cnt.lsim(g_sample31, Usim[0, :], Time) +Yout32, Time, Xsim = cnt.lsim(g_sample32, Usim[1, :], Time) +Yout33, Time, Xsim = cnt.lsim(g_sample33, Usim[2, :], Time) +Yout34, Time, Xsim = cnt.lsim(g_sample34, Usim[3, :], Time) + +Ytot1 = Yout11 + Yout12 + Yout13 + Yout14 +Ytot2 = Yout21 + Yout22 + Yout23 + Yout24 +Ytot3 = Yout31 + Yout32 + Yout33 + Yout34 + +Ytot = np.zeros((3, npts)) # + +Ytot[0, :] = (Ytot1 + err_outputH1).squeeze() +Ytot[1, :] = (Ytot2 + err_outputH2).squeeze() +Ytot[2, :] = (Ytot3 + err_outputH3).squeeze() + +###############################################################################plot + + +Yout_id11, Time, Xsim = cnt.lsim(gid11, Usim[0, :], Time) +Yout_id12, Time, Xsim = cnt.lsim(gid12, Usim[1, :], Time) +Yout_id13, Time, Xsim = cnt.lsim(gid13, Usim[2, :], Time) +Yout_id14, Time, Xsim = cnt.lsim(gid14, Usim[3, :], Time) +Yout_id21, Time, Xsim = cnt.lsim(gid21, Usim[0, :], Time) +Yout_id22, Time, Xsim = cnt.lsim(gid22, Usim[1, :], Time) +Yout_id23, Time, Xsim = cnt.lsim(gid23, Usim[2, :], Time) +Yout_id24, Time, Xsim = cnt.lsim(gid24, Usim[3, :], Time) +Yout_id31, Time, Xsim = cnt.lsim(gid31, Usim[0, :], Time) +Yout_id32, Time, Xsim = cnt.lsim(gid32, Usim[1, :], Time) +Yout_id33, Time, Xsim = cnt.lsim(gid33, Usim[2, :], Time) +Yout_id34, Time, Xsim = cnt.lsim(gid34, Usim[3, :], Time) +Yerr1, Time, Xsim = cnt.lsim(hid1, err_inputH[0, :], Time) +Yerr2, Time, Xsim = cnt.lsim(hid2, err_inputH[1, :], Time) +Yerr3, Time, Xsim = cnt.lsim(hid3, err_inputH[2, :], Time) + +plt.figure(7) +plt.subplot(3, 1, 1) +plt.plot(Time, Ytot1) +plt.plot(Time, Yout_id11 + Yout_id12 + Yout_id13 + Yout_id14) +plt.ylabel("y_1,out") +plt.grid() +plt.xlabel("Time") +plt.title("Gu (validation data)") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 2) +plt.plot(Time, Ytot2) +plt.plot(Time, Yout_id21 + Yout_id22 + Yout_id23 + Yout_id24) +plt.ylabel("y_2,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 3) +plt.plot(Time, Ytot3) +plt.plot(Time, Yout_id31 + Yout_id32 + Yout_id33 + Yout_id34) +plt.ylabel("y_3,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.figure(8) +plt.subplot(3, 1, 1) # +plt.plot(Time, err_outputH1) +plt.plot(Time, Yerr1) +plt.ylabel("y_1,err") +plt.grid() +plt.title("He (validation data)") +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 2) +plt.plot(Time, err_outputH2) +plt.plot(Time, Yerr2) +plt.ylabel("y_2,err") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 3) +plt.plot(Time, err_outputH3) +plt.plot(Time, Yerr3) +plt.ylabel("y_3,err") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.figure(9) +plt.subplot(3, 1, 1) +plt.plot(Time, Ytot[0, :].squeeze()) +plt.plot(Time, + Yout_id11 + Yout_id12 + Yout_id13 + Yout_id14 + Yerr1) +plt.xlabel("Time") +plt.ylabel("y_1,tot") +plt.title("Gu+He (validation data)") +plt.legend(['Original system', 'Identified system']) +plt.grid() + +plt.subplot(3, 1, 2) +plt.plot(Time, Ytot[1, :]) +plt.plot(Time, + Yout_id21 + Yout_id22 + Yout_id23 + Yout_id24 + Yerr2) +plt.xlabel("Time") +plt.ylabel("y_2,tot") + +plt.legend(['Original system', 'Identified system']) + +plt.grid() + +plt.subplot(3, 1, 3) +plt.plot(Time, Ytot[2, :]) +plt.plot(Time, + Yout_id31 + Yout_id32 + Yout_id33 + Yout_id34 + Yerr3) +plt.xlabel("Time") +plt.ylabel("y_3,tot") +plt.legend(['Original system', 'Identified system']) +plt.grid() + +plt.figure(10) +plt.subplot(4, 1, 1) +plt.plot(Time, Usim[0, :]) +plt.grid() +plt.ylabel("Input 1 GBN") +plt.xlabel("Time") +plt.title("Input (Switch probability=0.03) (validation data)") + +plt.subplot(4, 1, 2) +plt.plot(Time, Usim[1, :]) +plt.grid() +plt.ylabel("Input 2 GBN") +plt.xlabel("Time") + +plt.subplot(4, 1, 3) +plt.plot(Time, Usim[2, :]) +plt.ylabel("Input 3 GBN") +plt.xlabel("Time") +plt.grid() + +plt.subplot(4, 1, 4) +plt.plot(Time, Usim[3, :]) +plt.ylabel("Input 4 GBN") +plt.xlabel("Time") +plt.grid() + +plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARX_MIMO.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARX_MIMO.py new file mode 100644 index 0000000000000000000000000000000000000000..52e9e51561e9acfa47bd5fcb696684f340e154d5 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/ARX_MIMO.py @@ -0,0 +1,219 @@ +# -*- coding: utf-8 -*- +""" +Created + +@author: Giuseppe Armenise +example armax mimo +case 3 outputs x 4 inputs + +""" +from __future__ import division + +from past.utils import old_div + +# Checking path to access other files +try: + from sippy import * +except ImportError: + import sys, os + + sys.path.append(os.pardir) + from sippy import * + +import numpy as np +import control.matlab as cnt +from sippy import functionset as fset + + +# generating transfer functions in z-transf. +var_list = [50., 100., 1.] +ts = 1. + +NUM11 = [4, 3.3, 0., 0.] +NUM12 = [10, 0., 0.] +NUM13 = [7.0, 5.5, 2.2] +NUM14 = [-0.9, -0.11, 0., 0.] +DEN1 = [1., -0.3, -0.25, -0.021, 0., 0.] # +H1 = [1., 0., 0., 0., 0., 0.] +na1 = 3 +nb11 = 2 +nb12 = 1 +nb13 = 3 +nb14 = 2 +th11 = 1 +th12 = 2 +th13 = 2 +th14 = 1 + +# +DEN2 = [1., -0.4, 0., 0., 0.] +NUM21 = [-85, -57.5, -27.7] +NUM22 = [71, 12.3] +NUM23 = [-0.1, 0., 0., 0.] +NUM24 = [0.994, 0., 0., 0.] +H2 = [1., 0., 0., 0., 0.] + +na2 = 1 +nb21 = 3 +nb22 = 2 +nb23 = 1 +nb24 = 1 + +th21 = 1 +th22 = 2 +th23 = 0 +th24 = 0 + +DEN3 = [1., -0.1, -0.3, 0., 0.] +NUM31 = [0.2, 0., 0., 0.] +NUM32 = [0.821, 0.432, 0.] +NUM33 = [0.1, 0., 0., 0.] +NUM34 = [0.891, 0.223] +H3 = [1., 0., 0., 0., 0.] + +na3 = 2 +nb31 = 1 +nb32 = 2 +nb33 = 1 +nb34 = 2 +th31 = 0 +th32 = 1 +th33 = 0 +th34 = 2 + +# transfer function G, H +g_sample11 = cnt.tf(NUM11, DEN1, ts) +g_sample12 = cnt.tf(NUM12, DEN1, ts) +g_sample13 = cnt.tf(NUM13, DEN1, ts) +g_sample14 = cnt.tf(NUM14, DEN1, ts) + +g_sample22 = cnt.tf(NUM22, DEN2, ts) +g_sample21 = cnt.tf(NUM21, DEN2, ts) +g_sample23 = cnt.tf(NUM23, DEN2, ts) +g_sample24 = cnt.tf(NUM24, DEN2, ts) + +g_sample31 = cnt.tf(NUM31, DEN3, ts) +g_sample32 = cnt.tf(NUM32, DEN3, ts) +g_sample33 = cnt.tf(NUM33, DEN3, ts) +g_sample34 = cnt.tf(NUM34, DEN3, ts) + +H_sample1 = cnt.tf(H1, DEN1, ts) +H_sample2 = cnt.tf(H2, DEN2, ts) +H_sample3 = cnt.tf(H3, DEN3, ts) + +# +tfin = 400 +npts = int(old_div(tfin, ts)) + 1 +Time = np.linspace(0, tfin, npts) +# #INPUT# +Usim = np.zeros((4, npts)) +Usim_noise = np.zeros((4, npts)) +[Usim[0, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [-0.33, 0.1]) +[Usim[1, :],_,_] = fset.GBN_seq(npts, 0.03) +[Usim[2, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [2.3, 5.7]) +[Usim[3, :],_,_] = fset.GBN_seq(npts, 0.03, Range = [8., 11.5]) + +# Adding noise +err_inputH = np.zeros((4, npts)) + +err_inputH = fset.white_noise_var(npts, var_list) + +err_outputH = np.ones((3, npts)) +err_outputH1, Time, Xsim = cnt.lsim(H_sample1, err_inputH[0, :], Time) +err_outputH2, Time, Xsim = cnt.lsim(H_sample2, err_inputH[1, :], Time) +err_outputH3, Time, Xsim = cnt.lsim(H_sample3, err_inputH[2, :], Time) + +Yout11, Time, Xsim = cnt.lsim(g_sample11, Usim[0, :], Time) +Yout12, Time, Xsim = cnt.lsim(g_sample12, Usim[1, :], Time) +Yout13, Time, Xsim = cnt.lsim(g_sample13, Usim[2, :], Time) +Yout14, Time, Xsim = cnt.lsim(g_sample14, Usim[3, :], Time) +Yout21, Time, Xsim = cnt.lsim(g_sample21, Usim[0, :], Time) +Yout22, Time, Xsim = cnt.lsim(g_sample22, Usim[1, :], Time) +Yout23, Time, Xsim = cnt.lsim(g_sample23, Usim[2, :], Time) +Yout24, Time, Xsim = cnt.lsim(g_sample24, Usim[3, :], Time) +Yout31, Time, Xsim = cnt.lsim(g_sample31, Usim[0, :], Time) +Yout32, Time, Xsim = cnt.lsim(g_sample32, Usim[1, :], Time) +Yout33, Time, Xsim = cnt.lsim(g_sample33, Usim[2, :], Time) +Yout34, Time, Xsim = cnt.lsim(g_sample34, Usim[3, :], Time) + +Ytot1 = Yout11 + Yout12 + Yout13 + Yout14 + err_outputH1 +Ytot2 = Yout21 + Yout22 + Yout23 + Yout24 + err_outputH2 +Ytot3 = Yout31 + Yout32 + Yout33 + Yout34 + err_outputH3 + +Ytot = np.zeros((3, npts)) + +Ytot[0, :] = Ytot1.squeeze() +Ytot[1, :] = Ytot2.squeeze() +Ytot[2, :] = Ytot3.squeeze() + +##identification parameters +ordersna = [na1, na2, na3] +ordersnb = [[nb11, nb12, nb13, nb14], [nb21, nb22, nb23, nb24], [nb31, nb32, nb33, nb34]] +theta_list = [[th11, th12, th13, th14], [th21, th22, th23, th24], [th31, th32, th33, th34]] + +# IDENTIFICATION +Id_sys = system_identification(Ytot, Usim, 'ARX', ARX_orders=[ordersna, ordersnb, theta_list]) # + +# output of the identified model +# you can build g11, g12, etc. separately using the NUMERATOR and DENOMINATOR attributes +# see how in the armax_MIMO example +Yout_id, Time, Xsim = cnt.lsim(Id_sys.G, Usim, Time) + +######plot +# +import matplotlib.pyplot as plt + +plt.close('all') +plt.figure(0) +plt.subplot(4, 1, 1) +plt.plot(Time, Usim[0, :]) +plt.grid() +plt.ylabel("Input 1 GBN") +plt.xlabel("Time") +plt.title("Input (Switch probability=0.03)") + +plt.subplot(4, 1, 2) +plt.plot(Time, Usim[1, :]) +plt.grid() +plt.ylabel("Input 2 GBN") +plt.xlabel("Time") + +plt.subplot(4, 1, 3) +plt.plot(Time, Usim[2, :]) +plt.ylabel("Input 3 GBN") +plt.xlabel("Time") +plt.grid() + +plt.subplot(4, 1, 4) +plt.plot(Time, Usim[3, :]) +plt.ylabel("Input 4 GBN") +plt.xlabel("Time") +plt.grid() + +plt.figure(1) +plt.subplot(3, 1, 1) +plt.plot(Time, Ytot1) +plt.plot(Time, Yout_id[:, 0]) +plt.ylabel("y_1,out") +plt.grid() +plt.xlabel("Time") +plt.title("Gu (identification data)") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 2) +plt.plot(Time, Ytot2) +plt.plot(Time, Yout_id[:, 1]) +plt.ylabel("y_2,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.subplot(3, 1, 3) +plt.plot(Time, Ytot3) +plt.plot(Time, Yout_id[:, 2]) +plt.ylabel("y_3,out") +plt.grid() +plt.xlabel("Time") +plt.legend(['Original system', 'Identified system']) + +plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/SS.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/SS.py new file mode 100644 index 0000000000000000000000000000000000000000..af292b1b82f388fd356908902073e0506bc21c13 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/SS.py @@ -0,0 +1,78 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Jan 19 2018 + +@author: Giuseppe Armenise + +In this test, no error occurs. +Using method='N4SID','MOESP' or 'CVA', if the message +"Kalman filter cannot be calculated" is shown, it means +that the package slycot is not well-installed. + +""" +from __future__ import division + +from past.utils import old_div + +# Checking path to access other files +try: + from sippy import * +except ImportError: + import sys, os + + sys.path.append(os.pardir) + from sippy import * + +import numpy as np +from sippy import functionset as fset +from sippy import functionsetSIM as fsetSIM + +ts = 1.0 + +A = np.array([[0.89, 0.], [0., 0.45]]) +B = np.array([[0.3], [2.5]]) +C = np.array([[0.7, 1.]]) +D = np.array([[0.0]]) + +tfin = 500 +npts = int(old_div(tfin, ts)) + 1 +Time = np.linspace(0, tfin, npts) + +# Input sequence +U = np.zeros((1, npts)) +[U[0],_,_] = fset.GBN_seq(npts, 0.05) + +##Output +x, yout = fsetSIM.SS_lsim_process_form(A, B, C, D, U) + +# measurement noise +noise = fset.white_noise_var(npts, [0.15]) + +# Output with noise +y_tot = yout + noise + +##System identification +method = 'N4SID' +sys_id = system_identification(y_tot, U, method, SS_fixed_order=2) +xid, yid = fsetSIM.SS_lsim_process_form(sys_id.A, sys_id.B, sys_id.C, sys_id.D, U, sys_id.x0) + +import matplotlib.pyplot as plt + +plt.close("all") +plt.figure(0) +plt.plot(Time, y_tot[0]) +plt.plot(Time, yid[0]) +plt.ylabel("y_tot") +plt.grid() +plt.xlabel("Time") +plt.title("Ytot") +plt.legend(['Original system', 'Identified system, ' + method]) +plt.show() + +plt.figure(1) +plt.plot(Time, U[0]) +plt.ylabel("input") +plt.grid() +plt.xlabel("Time") + +plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/example_CST.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/example_CST.py new file mode 100644 index 0000000000000000000000000000000000000000..d469ccb5b7b12882a6c3c30a6e2787b246098a1e --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/example_CST.py @@ -0,0 +1,323 @@ +# -*- coding: utf-8 -*- +""" +Created on Mon May 28 13:03:03 2018 + +@author: Riccardo Bacci di Capaci + +CST example + +A Continuous Stirred Tank to be identified from input-output data + +""" + +# import package +from __future__ import division # compatibility layer between Python 2 and Python 3 +from past.utils import old_div +from sippy import functionset as fset +from sippy import functionsetSIM as fsetSIM +from sippy import * +# +# +import numpy as np +import control.matlab as cnt +import matplotlib.pyplot as plt + +# sampling time +ts = 1. # [min] + +# time settings (t final, samples number, samples vector) +tfin = 4000 +npts = int(old_div(tfin,ts)) + 1 +Time = np.linspace(0, tfin, npts) + +# Data +V = 10.0 # tank volume [m^3] --> assumed to be constant +ro = 1100.0 # solution density [kg/m^3] --> assumed to be constant +cp = 4.180 # specific heat [kJ/kg*K] --> assumed to be constant +Lam = 2272.0 # latent heat [kJ/kg] --> assumed to be constant (Tvap = 100°C, Pvap = 1atm) +# initial conditions +# Ca_0 +# Tin_0 + + +# VARIABLES + +# 4 Inputs +# - as v. manipulated +# Input Flow rate Fin [m^3/min] +# Steam Flow rate W [kg/min] +# - as disturbances +# Input Concentration Ca_in [kg salt/m^3 solution] +# Input Temperature T_in [°C] +# U = [F, W, Ca_in, T_in] +m = 4 + +# 2 Outputs +# Output Concentration Ca [kg salt/m^3 solution] (Ca = Ca_out) +# Output Temperature T [°C] (T = T_out) +# X = [Ca, T] +p = 2 + + +# Function with System Dynamics +def Fdyn(X,U): + # Balances + + # V is constant ---> perfect Level Control + # ro*F_in = ro*F_out = ro*F --> F = F_in = F_out at each instant + + # Mass Balance on A + # Ca_in*F - Ca*F = V*dCA/dt + # + dx_0 = (U[2]*U[0] - X[0]*U[0])/V + + # Energy Balance + # ro*cp*F*T_in - ro*cp*F*T + W*Lam = (V*ro*cp)*dT/dt + # + dx_1 = (ro*cp*U[0]*U[3] - ro*cp*U[0]*X[1] + U[1]*Lam)/(V*ro*cp) + + fx = np.append(dx_0,dx_1) + + return fx + +# Build input sequences +U = np.zeros((m,npts)) + +# manipulated inputs as GBN +# Input Flow rate Fin = F = U[0] [m^3/min] +prob_switch_1 = 0.05 +F_min = 0.4 +F_max = 0.6 +Range_GBN_1 = [F_min,F_max] +[U[0,:],_,_] = fset.GBN_seq(npts, prob_switch_1, Range = Range_GBN_1) +# Steam Flow rate W = U[1] [kg/min] +prob_switch_2 = 0.05 +W_min = 20 +W_max = 40 +Range_GBN_2 = [W_min,W_max] +[U[1,:],_,_] = fset.GBN_seq(npts, prob_switch_2, Range = Range_GBN_2) + +# disturbance inputs as RW (random-walk) + +# Input Concentration Ca_in = U[2] [kg salt/m^3 solution] +Ca_0 = 10.0 # initial condition +sigma_Ca = 0.01 # variation +U[2,:] = fset.RW_seq(npts, Ca_0, sigma = sigma_Ca) +# Input Temperature T_in [°C] +Tin_0 = 25.0 # initial condition +sigma_T = 0.01 # variation +U[3,:] = fset.RW_seq(npts, Tin_0, sigma = sigma_T) + + +##### COLLECT DATA + +# Output Initial conditions +Caout_0 = Ca_0 +Tout_0 = (ro*cp*U[0,0]*Tin_0 + U[1,0]*Lam)/(ro*cp*U[0,0]) +Xo1 = Caout_0*np.ones((1,npts)) +Xo2 = Tout_0*np.ones((1,npts)) +X = np.vstack((Xo1,Xo2)) + +# Run Simulation +for j in range(npts-1): + # Explicit Runge-Kutta 4 (TC dynamics is integrateed by hand) + Mx = 5 # Number of elements in each time step + dt = ts/Mx # integration step + # Output & Input + X0k = X[:,j] + Uk = U[:,j] + # Integrate the model + for i in range(Mx): + k1 = Fdyn(X0k, Uk) + k2 = Fdyn(X0k + dt/2.0*k1, Uk) + k3 = Fdyn(X0k + dt/2.0*k2, Uk) + k4 = Fdyn(X0k + dt*k3, Uk) + Xk_1 = X0k + (dt/6.0)*(k1 + 2.0*k2 + 2.0*k3 + k4) + X[:,j+1] = Xk_1 + +# Add noise (with assigned variances) +var = [0.001, 0.001] +noise = fset.white_noise_var(npts,var) + +# Build Output +Y = X + noise + + +#### IDENTIFICATION STAGE + +# ARX - mimo +na_ords = [5,5] +nb_ords = [[3,1,3,1], [3,3,1,3]] +theta = [[0,0,0,0], [0,0,0,0]] +# call id +Id_ARX = system_identification(Y, U, 'ARX', centering = 'MeanVal', ARX_orders = [na_ords, nb_ords, theta]) + +# ARMAX - mimo +na_ords = [5,5] +nb_ords = [[2,2,2,2], [2,2,2,2]] +nc_ords = [3,3] +theta = [[1,1,1,1], [1,1,1,1]] +# Number of iterations +n_iter = 300 +# call id +Id_ARMAX = system_identification(Y, U, 'ARMAX', centering = 'InitVal', ARMAX_orders = [na_ords, nb_ords, nc_ords, theta], ARMAX_max_iterations = n_iter) + +# SS - mimo +# choose method +method = 'PARSIM-K' +SS_ord = 2 +Id_SS = system_identification(Y, U, method, SS_fixed_order = SS_ord) + +# GETTING RESULTS (Y_id) +# ARX +Y_arx = Id_ARX.Yid +# ARMAX +Y_armax = Id_ARMAX.Yid +# SS +x_ss, Y_ss = fsetSIM.SS_lsim_process_form(Id_SS.A,Id_SS.B,Id_SS.C,Id_SS.D,U,Id_SS.x0) + + +##### PLOTS + +# Input +plt.close('all') +plt.figure(1) + +str_input = ['F [m$^3$/min]', 'W [kg/min]', 'Ca$_{in}$ [kg/m$^3$]', 'T$_{in}$ [$^o$C]'] +for i in range(m): + plt.subplot(m,1,i+1) + plt.plot(Time,U[i,:]) + plt.ylabel("Input " + str(i+1)) + plt.ylabel(str_input[i]) + plt.grid() + plt.xlabel("Time") + plt.axis([0, tfin, 0.95*np.amin(U[i,:]), 1.05*np.amax(U[i,:])]) + if i == 0: + plt.title('identification') + +# Output +plt.figure(2) +str_output = ['Ca [kg/m$^3$]', 'T [$^o$C]'] +for i in range(p): + plt.subplot(p,1,i+1) + plt.plot(Time,Y[i,:],'b') + plt.plot(Time,Y_arx[i,:],'g') + plt.plot(Time,Y_armax[i,:],'r') + plt.plot(Time,Y_ss[i,:],'m') + plt.ylabel("Output " + str(i+1)) + plt.ylabel(str_output[i]) + plt.legend(['Data','ARX','ARMAX','SS']) + plt.grid() + plt.xlabel("Time") + if i == 0: + plt.title('identification') + + +#### VALIDATION STAGE + +# Build new input sequences +U_val = np.zeros((m,npts)) + +# manipulated inputs as GBN +# Input Flow rate Fin = F = U[0] [m^3/min] +prob_switch_1 = 0.05 +F_min = 0.4 +F_max = 0.6 +Range_GBN_1 = [F_min,F_max] +[U_val[0,:],_,_] = fset.GBN_seq(npts, prob_switch_1, Range = Range_GBN_1) +# Steam Flow rate W = U[1] [kg/min] +prob_switch_2 = 0.05 +W_min = 20 +W_max = 40 +Range_GBN_2 = [W_min,W_max] +[U_val[1,:],_,_] = fset.GBN_seq(npts, prob_switch_2, Range = Range_GBN_2) + +# disturbance inputs as RW (random-walk) +# Input Concentration Ca_in = U[2] [kg salt/m^3 solution] +Ca_0 = 10.0 # initial condition +sigma_Ca = 0.02 # variation +U_val[2,:] = fset.RW_seq(npts, Ca_0, sigma = sigma_Ca) +# Input Temperature T_in [°C] +Tin_0 = 25.0 # initial condition +sigma_T = 0.1 # variation +U_val[3,:] = fset.RW_seq(npts, Tin_0, sigma = sigma_T) + +#### COLLECT DATA + +# Output Initial conditions +Caout_0 = Ca_0 +Tout_0 = (ro*cp*U[0,0]*Tin_0 + U[1,0]*Lam)/(ro*cp*U[0,0]) +Xo1 = Caout_0*np.ones((1,npts)) +Xo2 = Tout_0*np.ones((1,npts)) +X_val = np.vstack((Xo1,Xo2)) + +# Run Simulation +for j in range(npts-1): + # Explicit Runge-Kutta 4 (TC dynamics is integrateed by hand) + Mx = 5 # Number of elements in each time step + dt = ts/Mx # integration step + # Output & Input + X0k = X_val[:,j] + Uk = U_val[:,j] + # Integrate the model + for i in range(Mx): + k1 = Fdyn(X0k, Uk) + k2 = Fdyn(X0k + dt/2.0*k1, Uk) + k3 = Fdyn(X0k + dt/2.0*k2, Uk) + k4 = Fdyn(X0k + dt*k3, Uk) + Xk_1 = X0k + (dt/6.0)*(k1 + 2.0*k2 + 2.0*k3 + k4) + X_val[:,j+1] = Xk_1 + +# Add noise (with assigned variances) +var = [0.01, 0.05] +noise_val = fset.white_noise_var(npts,var) + +# Build Output +Y_val = X_val + noise_val + + +# MODEL VALIDATION + +# ARX +Yv_arx = fset.validation(Id_ARX,U_val,Y_val,Time) + +# ARMAX +Yv_armax = fset.validation(Id_ARMAX,U_val,Y_val,Time) + + +# SS +x_ss, Yv_ss = fsetSIM.SS_lsim_process_form(Id_SS.A,Id_SS.B,Id_SS.C,Id_SS.D,U_val,Id_SS.x0) + + +##### PLOTS + +# Input +plt.figure(3) +str_input = ['F [m$^3$/min]', 'W [kg/min]', 'Ca$_{in}$ [kg/m$^3$]', 'T$_{in}$ [$^o$C]'] +for i in range(m): + plt.subplot(m,1,i+1) + plt.plot(Time,U_val[i,:]) + # plt.ylabel("Input " + str(i+1)) + plt.ylabel(str_input[i]) + plt.grid() + plt.xlabel("Time") + plt.axis([0, tfin, 0.95*np.amin(U_val[i,:]), 1.05*np.amax(U_val[i,:])]) + if i == 0: + plt.title('validation') + +# Output +plt.figure(4) +str_output = ['Ca [kg/m$^3$]', 'T [$^o$C]'] +for i in range(p): + plt.subplot(p,1,i+1) + plt.plot(Time,Y_val[i,:],'b') + plt.plot(Time,Yv_arx[i,:],'g') + plt.plot(Time,Yv_armax[i,:],'r') + plt.plot(Time,Yv_ss[i,:],'m') + # plt.ylabel("Output " + str(i+1)) + plt.ylabel(str_output[i]) + plt.legend(['Data','ARX','ARMAX','SS']) + plt.grid() + plt.xlabel("Time") + if i == 0: + plt.title('validation') diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/test_armax.ipynb b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/test_armax.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6a1d34685a64e930892460f426e2a587de93da2a --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/Examples/test_armax.ipynb @@ -0,0 +1,8677 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from __future__ import division\n", + "from past.utils import old_div\n", + "from sippy import functionset as fset\n", + "from sippy import *\n", + "import numpy as np\n", + "import control.matlab as cnt\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib import rcParams\n", + "\n", + "rcParams['figure.figsize'] = (9.0, 5.0)\n", + "%matplotlib nbagg" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define sampling time and Time vector" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "sampling_time = 1. # [s]\n", + "end_time = 400 # [s]\n", + "npts = int(old_div(end_time, sampling_time)) + 1\n", + "Time = np.linspace(0, end_time, npts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define pseudo random binary sequence as input signal and white noise as noise signal" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# make input signal\n", + "switch_probability = 0.08 # [0..1]\n", + "Usim = fset.GBN_seq(npts, switch_probability)\n", + "\n", + "# make noise for input signal\n", + "white_noise_variance = [0.005]\n", + "e_t = fset.white_noise_var(Usim.size, white_noise_variance)[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Define the system" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Numerator of noise transfer function has only one root: nc = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "NUM_H = [1., 0.3, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Common denominator between input and noise transfer functions has 4 roots: na = 4" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "DEN = [1., -2.21, 1.7494, -0.584256, 0.0684029, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Numerator of input transfer function has 3 roots: nb = 3" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "NUM = [1., -2.07, 1.3146]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define transfer functions" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "g()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{z^2 - 2.07 z + 1.315}{z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " z^2 - 2.07 z + 1.315\n", + "---------------------------------------------------------\n", + "z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "h()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{z^14 + 0.3 z^13}{z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " z^14 + 0.3 z^13\n", + "---------------------------------------------------------\n", + "z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "g_sample = cnt.tf(NUM, DEN, sampling_time)\n", + "h_sample = cnt.tf(NUM_H, DEN, sampling_time)\n", + "print(\"g()\")\n", + "display(g_sample)\n", + "print(\"h()\")\n", + "display(h_sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Time responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Input reponse" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Y1, Time, Xsim = cnt.lsim(g_sample, Usim, Time)\n", + "plt.figure()\n", + "plt.plot(Time, Usim, label=\"u(t)\")\n", + "plt.plot(Time, Y1, label=\"y(t)\")\n", + "plt.xlabel(\"Time\")\n", + "plt.title(\"Time response y(t)=g*u(t)\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Noise response" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Y2, Time, Xsim = cnt.lsim(h_sample, e_t, Time)\n", + "plt.figure()\n", + "plt.plot(Time, e_t, label=\"e(t)\")\n", + "plt.plot(Time, Y2, label=\"y(t)\")\n", + "plt.xlabel(\"Time\")\n", + "plt.title(\"Time response y(t)=h*e(t)\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compute total output \n", + "$$Y_t = Y_1 + Y_2 = G.u + H.e$$" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Ytot = Y1 + Y2\n", + "Utot = Usim + e_t\n", + "plt.figure()\n", + "plt.plot(Time, Ytot, label=\"y_t(t)\")\n", + "plt.plot(Time, Utot, label=\"u(t) + e(t)\")\n", + "plt.xlabel(\"Time\")\n", + "plt.title(\"Time response y_t(t)=g*u(t) + h*e(t)\")\n", + "plt.legend()\n", + "plt.grid()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Perform system identification from collected data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Armax model:\n", + "- Params:\n", + " na: 4 (2, 5)\n", + " nb: 4 (1, 5)\n", + " nc: 2 (0, 2)\n", + " delay: 10 (10, 13)\n", + " dt: 1.0 \n", + " method: BIC \n", + " max iterations: 1000 \n", + "- Output:\n", + " G: \n", + " 0.00527 z^3 + 1.001 z^2 - 2.078 z + 1.321\n", + "-----------------------------------------------------------\n", + "z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10\n", + "\n", + "dt = 1.0\n", + " \n", + " H: \n", + " z^14 + 0.3018 z^13 - 0.02355 z^12\n", + "-----------------------------------------------------------\n", + "z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10\n", + "\n", + "dt = 1.0\n", + " \n", + " Variance: 0.00011141138008015731 \n", + " Max reached: False\n" + ] + } + ], + "source": [ + "Id_sys = system_identification(Ytot, Usim, 'ARMAX', IC='BIC', na_ord=[2, 5], \\\n", + " nb_ord=[1, 5], nc_ord=[0, 2], delays=[10, 13], \\\n", + " ARMAX_max_iterations=1000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check that output of the identified system is consistent" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "Y_id1, Time, Xsim = cnt.lsim(Id_sys.G, Usim, Time)\n", + "Y_hid1, Time, Xsim = cnt.lsim(Id_sys.H, e_t, Time)\n", + "Y_idTot = Y_id1 + Y_hid1" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(0)\n", + "plt.plot(Time, Usim)\n", + "plt.ylabel(\"Input GBN\")\n", + "plt.xlabel(\"Time\")\n", + "plt.title(\"Input, validation data (Switch probability=0.08)\")\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7fe775297390>" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(1)\n", + "plt.plot(Time, Ytot, label=\"Original system\")\n", + "plt.plot(Time, Y_idTot, label=\"Identified system\")\n", + "plt.grid()\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"y_tot\")\n", + "plt.title(\"Gu+He (identification data)\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1, 'Gu (identification data)')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(2)\n", + "plt.plot(Time, Y1, label=\"Original system\")\n", + "plt.plot(Time, Y_id1, label=\"Identified system\")\n", + "plt.ylabel(\"y_out\")\n", + "plt.grid()\n", + "plt.xlabel(\"Time\")\n", + "plt.legend()\n", + "plt.title(\"Gu (identification data)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1, 'He (identification data)')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(3)\n", + "plt.plot(Time, Y2, label=\"Original system\")\n", + "plt.plot(Time, Y_hid1, label=\"Identified system\")\n", + "plt.ylabel(\"y_err\")\n", + "plt.grid()\n", + "plt.xlabel(\"Time\")\n", + "plt.legend()\n", + "plt.title(\"He (identification data)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Validation of the identified system: \n", + "## Generate new time series for input and noise" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "switch_probability = 0.07 # [0..1]\n", + "input_range = [0.5, 1.5]\n", + "U_valid = fset.GBN_seq(npts, switch_probability, input_range)\n", + "white_noise_variance = [0.01]\n", + "e_valid = fset.white_noise_var(U_valid.size, white_noise_variance)[0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compute time responses for true system with new inputs" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "Yvalid1, Time, Xsim = cnt.lsim(g_sample, U_valid, Time)\n", + "Yvalid2, Time, Xsim = cnt.lsim(h_sample, e_valid, Time)\n", + "Ytotvalid = Yvalid1 + Yvalid2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Compute time responses for identified system with new inputs" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "Yidvalid1, Time, Xsim = cnt.lsim(Id_sys.G, U_valid, Time)\n", + "Yidvalid2, Time, Xsim = cnt.lsim(Id_sys.H, e_valid, Time)\n", + "Yidtotvalid = Yidvalid1 + Yidvalid2" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Check responses are almost equal" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(4)\n", + "plt.plot(Time, U_valid)\n", + "plt.ylabel(\"Input GBN\")\n", + "plt.xlabel(\"Time\")\n", + "plt.title(\"Input, validation data (Switch probability=0.07)\")\n", + "plt.grid()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Validation: Gu+He | RMSE = 0.29')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(5)\n", + "plt.plot(Time, Ytotvalid)\n", + "plt.plot(Time, Yidtotvalid)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"y_tot\")\n", + "plt.legend(['Original system', 'Identified system'])\n", + "plt.grid()\n", + "\n", + "rmse = np.round(np.sqrt(np.mean((Ytotvalid-Yidtotvalid)**2)), 2)\n", + "plt.title(\"Validation: Gu+He | RMSE = {}\".format(rmse))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7fe76d4fca10>" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(6)\n", + "plt.plot(Time, Yvalid1, label=\"Original system\")\n", + "plt.plot(Time, Yidvalid1, label=\"Identified system\")\n", + "plt.grid()\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"y_out\")\n", + "plt.title(\"Gu (Validation)\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "<matplotlib.legend.Legend at 0x7fe76d549510>" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.figure(7)\n", + "plt.plot(Time, Yvalid2, label=\"Original system\")\n", + "plt.plot(Time, Yidvalid2, label=\"Identified system\")\n", + "plt.grid()\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"y_err\")\n", + "plt.title(\"He (Validation)\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original h()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{z^14 + 0.3 z^13}{z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " z^14 + 0.3 z^13\n", + "---------------------------------------------------------\n", + "z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Identified h()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{z^14 + 0.3018 z^13 - 0.02355 z^12}{z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " z^14 + 0.3018 z^13 - 0.02355 z^12\n", + "-----------------------------------------------------------\n", + "z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Original h()\")\n", + "display(h_sample)\n", + "print(\"Identified h()\")\n", + "display(Id_sys.H)\n", + "\n", + "plt.figure()\n", + "_ = cnt.bode([h_sample, Id_sys.H])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Original g()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{z^2 - 2.07 z + 1.315}{z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " z^2 - 2.07 z + 1.315\n", + "---------------------------------------------------------\n", + "z^14 - 2.21 z^13 + 1.749 z^12 - 0.5843 z^11 + 0.0684 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Identified g()\n" + ] + }, + { + "data": { + "text/latex": [ + "$$\\frac{0.00527 z^3 + 1.001 z^2 - 2.078 z + 1.321}{z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10}\\quad dt = 1.0$$" + ], + "text/plain": [ + "\n", + " 0.00527 z^3 + 1.001 z^2 - 2.078 z + 1.321\n", + "-----------------------------------------------------------\n", + "z^14 - 2.215 z^13 + 1.763 z^12 - 0.5889 z^11 + 0.06359 z^10\n", + "\n", + "dt = 1.0" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "window.mpl = {};\n", + "\n", + "\n", + "mpl.get_websocket_type = function() {\n", + " if (typeof(WebSocket) !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof(MozWebSocket) !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert('Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.');\n", + " };\n", + "}\n", + "\n", + "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = (this.ws.binaryType != undefined);\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById(\"mpl-warnings\");\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent = (\n", + " \"This browser does not support binary websocket messages. \" +\n", + " \"Performance may be slow.\");\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = $('<div/>');\n", + " this._root_extra_style(this.root)\n", + " this.root.attr('style', 'display: inline-block');\n", + "\n", + " $(parent_element).append(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", + " fig.send_message(\"send_image_mode\", {});\n", + " if (mpl.ratio != 1) {\n", + " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", + " }\n", + " fig.send_message(\"refresh\", {});\n", + " }\n", + "\n", + " this.imageObj.onload = function() {\n", + " if (fig.image_mode == 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function() {\n", + " fig.ws.close();\n", + " }\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "}\n", + "\n", + "mpl.figure.prototype._init_header = function() {\n", + " var titlebar = $(\n", + " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", + " 'ui-helper-clearfix\"/>');\n", + " var titletext = $(\n", + " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", + " 'text-align: center; padding: 3px;\"/>');\n", + " titlebar.append(titletext)\n", + " this.root.append(titlebar);\n", + " this.header = titletext[0];\n", + "}\n", + "\n", + "\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._init_canvas = function() {\n", + " var fig = this;\n", + "\n", + " var canvas_div = $('<div/>');\n", + "\n", + " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", + "\n", + " function canvas_keyboard_event(event) {\n", + " return fig.key_event(event, event['data']);\n", + " }\n", + "\n", + " canvas_div.keydown('key_press', canvas_keyboard_event);\n", + " canvas_div.keyup('key_release', canvas_keyboard_event);\n", + " this.canvas_div = canvas_div\n", + " this._canvas_extra_style(canvas_div)\n", + " this.root.append(canvas_div);\n", + "\n", + " var canvas = $('<canvas/>');\n", + " canvas.addClass('mpl-canvas');\n", + " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", + "\n", + " this.canvas = canvas[0];\n", + " this.context = canvas[0].getContext(\"2d\");\n", + "\n", + " var backingStore = this.context.backingStorePixelRatio ||\n", + "\tthis.context.webkitBackingStorePixelRatio ||\n", + "\tthis.context.mozBackingStorePixelRatio ||\n", + "\tthis.context.msBackingStorePixelRatio ||\n", + "\tthis.context.oBackingStorePixelRatio ||\n", + "\tthis.context.backingStorePixelRatio || 1;\n", + "\n", + " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband = $('<canvas/>');\n", + " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", + "\n", + " var pass_mouse_events = true;\n", + "\n", + " canvas_div.resizable({\n", + " start: function(event, ui) {\n", + " pass_mouse_events = false;\n", + " },\n", + " resize: function(event, ui) {\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " stop: function(event, ui) {\n", + " pass_mouse_events = true;\n", + " fig.request_resize(ui.size.width, ui.size.height);\n", + " },\n", + " });\n", + "\n", + " function mouse_event_fn(event) {\n", + " if (pass_mouse_events)\n", + " return fig.mouse_event(event, event['data']);\n", + " }\n", + "\n", + " rubberband.mousedown('button_press', mouse_event_fn);\n", + " rubberband.mouseup('button_release', mouse_event_fn);\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband.mousemove('motion_notify', mouse_event_fn);\n", + "\n", + " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", + " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", + "\n", + " canvas_div.on(\"wheel\", function (event) {\n", + " event = event.originalEvent;\n", + " event['data'] = 'scroll'\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " mouse_event_fn(event);\n", + " });\n", + "\n", + " canvas_div.append(canvas);\n", + " canvas_div.append(rubberband);\n", + "\n", + " this.rubberband = rubberband;\n", + " this.rubberband_canvas = rubberband[0];\n", + " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", + " this.rubberband_context.strokeStyle = \"#000000\";\n", + "\n", + " this._resize_canvas = function(width, height) {\n", + " // Keep the size of the canvas, canvas container, and rubber band\n", + " // canvas in synch.\n", + " canvas_div.css('width', width)\n", + " canvas_div.css('height', height)\n", + "\n", + " canvas.attr('width', width * mpl.ratio);\n", + " canvas.attr('height', height * mpl.ratio);\n", + " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", + "\n", + " rubberband.attr('width', width);\n", + " rubberband.attr('height', height);\n", + " }\n", + "\n", + " // Set the figure to an initial 600x600px, this will subsequently be updated\n", + " // upon first draw.\n", + " this._resize_canvas(600, 600);\n", + "\n", + " // Disable right mouse context menu.\n", + " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", + " return false;\n", + " });\n", + "\n", + " function set_focus () {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " // put a spacer in here.\n", + " continue;\n", + " }\n", + " var button = $('<button/>');\n", + " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", + " 'ui-button-icon-only');\n", + " button.attr('role', 'button');\n", + " button.attr('aria-disabled', 'false');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + "\n", + " var icon_img = $('<span/>');\n", + " icon_img.addClass('ui-button-icon-primary ui-icon');\n", + " icon_img.addClass(image);\n", + " icon_img.addClass('ui-corner-all');\n", + "\n", + " var tooltip_span = $('<span/>');\n", + " tooltip_span.addClass('ui-button-text');\n", + " tooltip_span.html(tooltip);\n", + "\n", + " button.append(icon_img);\n", + " button.append(tooltip_span);\n", + "\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " var fmt_picker_span = $('<span/>');\n", + "\n", + " var fmt_picker = $('<select/>');\n", + " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", + " fmt_picker_span.append(fmt_picker);\n", + " nav_element.append(fmt_picker_span);\n", + " this.format_dropdown = fmt_picker[0];\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = $(\n", + " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", + " fmt_picker.append(option);\n", + " }\n", + "\n", + " // Add hover states to the ui-buttons\n", + " $( \".ui-button\" ).hover(\n", + " function() { $(this).addClass(\"ui-state-hover\");},\n", + " function() { $(this).removeClass(\"ui-state-hover\");}\n", + " );\n", + "\n", + " var status_bar = $('<span class=\"mpl-message\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "}\n", + "\n", + "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", + "}\n", + "\n", + "mpl.figure.prototype.send_message = function(type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "}\n", + "\n", + "mpl.figure.prototype.send_draw_message = function() {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", + " }\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "}\n", + "\n", + "\n", + "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1]);\n", + " fig.send_message(\"refresh\", {});\n", + " };\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", + " var x0 = msg['x0'] / mpl.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", + " var x1 = msg['x1'] / mpl.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch(cursor)\n", + " {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_message = function(fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message(\"ack\", {});\n", + "}\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function(fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " evt.data.type = \"image/png\";\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src);\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " evt.data);\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig[\"handle_\" + msg_type];\n", + " } catch (e) {\n", + " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", + " }\n", + " }\n", + " };\n", + "}\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function(e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e)\n", + " e = window.event;\n", + " if (e.target)\n", + " targ = e.target;\n", + " else if (e.srcElement)\n", + " targ = e.srcElement;\n", + " if (targ.nodeType == 3) // defeat Safari bug\n", + " targ = targ.parentNode;\n", + "\n", + " // jQuery normalizes the pageX and pageY\n", + " // pageX,Y are the mouse positions relative to the document\n", + " // offset() returns the position of the element relative to the document\n", + " var x = e.pageX - $(targ).offset().left;\n", + " var y = e.pageY - $(targ).offset().top;\n", + "\n", + " return {\"x\": x, \"y\": y};\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys (original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object')\n", + " obj[key] = original[key]\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function(event, name) {\n", + " var canvas_pos = mpl.findpos(event)\n", + "\n", + " if (name === 'button_press')\n", + " {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * mpl.ratio;\n", + " var y = canvas_pos.y * mpl.ratio;\n", + "\n", + " this.send_message(name, {x: x, y: y, button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event)});\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "}\n", + "\n", + "mpl.figure.prototype.key_event = function(event, name) {\n", + "\n", + " // Prevent repeat events\n", + " if (name == 'key_press')\n", + " {\n", + " if (event.which === this._key)\n", + " return;\n", + " else\n", + " this._key = event.which;\n", + " }\n", + " if (name == 'key_release')\n", + " this._key = null;\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.which != 17)\n", + " value += \"ctrl+\";\n", + " if (event.altKey && event.which != 18)\n", + " value += \"alt+\";\n", + " if (event.shiftKey && event.which != 16)\n", + " value += \"shift+\";\n", + "\n", + " value += 'k';\n", + " value += event.which.toString();\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, {key: value,\n", + " guiEvent: simpleKeys(event)});\n", + " return false;\n", + "}\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", + " if (name == 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message(\"toolbar_button\", {name: name});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n", + "\n", + "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.close = function() {\n", + " comm.close()\n", + " };\n", + " ws.send = function(m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function(msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(msg['content']['data'])\n", + " });\n", + " return ws;\n", + "}\n", + "\n", + "mpl.mpl_figure_comm = function(comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = $(\"#\" + id);\n", + " var ws_proxy = comm_websocket_adapter(comm)\n", + "\n", + " function ondownload(figure, format) {\n", + " window.open(figure.imageObj.src);\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy,\n", + " ondownload,\n", + " element.get(0));\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element.get(0);\n", + " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", + " if (!fig.cell_info) {\n", + " console.error(\"Failed to find cell for figure\", id, fig);\n", + " return;\n", + " }\n", + "\n", + " var output_index = fig.cell_info[2]\n", + " var cell = fig.cell_info[0];\n", + "\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function(fig, msg) {\n", + " var width = fig.canvas.width/mpl.ratio\n", + " fig.root.unbind('remove')\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable()\n", + " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", + " fig.close_ws(fig, msg);\n", + "}\n", + "\n", + "mpl.figure.prototype.close_ws = function(fig, msg){\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "}\n", + "\n", + "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width/mpl.ratio\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", + "}\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function() {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message(\"ack\", {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () { fig.push_to_output() }, 1000);\n", + "}\n", + "\n", + "mpl.figure.prototype._init_toolbar = function() {\n", + " var fig = this;\n", + "\n", + " var nav_element = $('<div/>');\n", + " nav_element.attr('style', 'width: 100%');\n", + " this.root.append(nav_element);\n", + "\n", + " // Define a callback function for later on.\n", + " function toolbar_event(event) {\n", + " return fig.toolbar_button_onclick(event['data']);\n", + " }\n", + " function toolbar_mouse_event(event) {\n", + " return fig.toolbar_button_onmouseover(event['data']);\n", + " }\n", + "\n", + " for(var toolbar_ind in mpl.toolbar_items){\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) { continue; };\n", + "\n", + " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", + " button.click(method_name, toolbar_event);\n", + " button.mouseover(tooltip, toolbar_mouse_event);\n", + " nav_element.append(button);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", + " nav_element.append(status_bar);\n", + " this.message = status_bar[0];\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", + " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", + " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", + " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", + " buttongrp.append(button);\n", + " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", + " titlebar.prepend(buttongrp);\n", + "}\n", + "\n", + "mpl.figure.prototype._root_extra_style = function(el){\n", + " var fig = this\n", + " el.on(\"remove\", function(){\n", + "\tfig.close_ws(fig, {});\n", + " });\n", + "}\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function(el){\n", + " // this is important to make the div 'focusable\n", + " el.attr('tabindex', 0)\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " }\n", + " else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "\n", + "}\n", + "\n", + "mpl.figure.prototype._key_event_extra = function(event, name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager)\n", + " manager = IPython.keyboard_manager;\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which == 13) {\n", + " this.canvas_div.blur();\n", + " event.shiftKey = false;\n", + " // Send a \"J\" for go to next cell\n", + " event.which = 74;\n", + " event.keyCode = 74;\n", + " manager.command_mode();\n", + " manager.handle_keydown(event);\n", + " }\n", + "}\n", + "\n", + "mpl.figure.prototype.handle_save = function(fig, msg) {\n", + " fig.ondownload(fig, null);\n", + "}\n", + "\n", + "\n", + "mpl.find_output_cell = function(html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i=0; i<ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code'){\n", + " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] == html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "}\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel != null) {\n", + " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", + "}\n" + ], + "text/plain": [ + "<IPython.core.display.Javascript object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "<img src=\"\" width=\"640\">" + ], + "text/plain": [ + "<IPython.core.display.HTML object>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Original g()\")\n", + "display(g_sample)\n", + "print(\"Identified g()\")\n", + "display(Id_sys.G)\n", + "\n", + "plt.figure()\n", + "_ = cnt.bode([g_sample, Id_sys.G])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/requirements.txt b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..9cd6c5965d90285cd6050bd969c1d490ce3bcb52 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/requirements.txt @@ -0,0 +1,50 @@ +absl-py==0.9.0 +astunparse==1.6.3 +cachetools==4.1.1 +certifi==2020.6.20 +chardet==3.0.4 +control @ file:///D:/bld/control_1616259348526/work +cycler==0.10.0 +future @ file:///D:/bld/future_1610147416207/work +gast==0.3.3 +google-auth==1.20.0 +google-auth-oauthlib==0.4.1 +google-pasta==0.2.0 +grpcio==1.30.0 +h5py==2.10.0 +idna==2.10 +importlib-metadata==1.7.0 +Keras-Preprocessing==1.1.2 +kiwisolver @ file:///D:/bld/kiwisolver_1610099949969/work +Markdown==3.2.2 +matplotlib @ file:///D:/bld/matplotlib-suite_1611858873832/work +numpy==1.18.5 +oauthlib==3.1.0 +olefile @ file:///home/conda/feedstock_root/build_artifacts/olefile_1602866521163/work +opt-einsum==3.3.0 +pandas @ file:///D:/bld/pandas_1614698123791/work +Pillow @ file:///D:/bld/pillow_1615244129446/work +protobuf==3.12.4 +pyasn1==0.4.8 +pyasn1-modules==0.2.8 +pyparsing==2.4.7 +python-dateutil==2.8.1 +pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1612179539967/work +requests==2.24.0 +requests-oauthlib==1.3.0 +rsa==4.6 +scipy==1.4.1 +sippy==0.1.1 +six==1.15.0 +slycot==0.4.0.0 +tensorboard==2.3.0 +tensorboard-plugin-wit==1.7.0 +tensorflow==2.3.0 +tensorflow-estimator==2.3.0 +termcolor==1.1.0 +tornado @ file:///D:/bld/tornado_1610094878337/work +urllib3==1.25.10 +Werkzeug==1.0.1 +wincertstore==0.2 +wrapt==1.12.1 +zipp==3.1.0 diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/ss_mpc.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/ss_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..7b404115b2eb0e4d166088885ec6935a945ecf94 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/ss_mpc.py @@ -0,0 +1,278 @@ +from casadi import * +import random +import time +import matplotlib.pyplot as plt + + +class linearMPC(): + """ + Create Linear Model Predictive Controller to use LIS-Models + Since LIS-States cannot be measured, also a Moving Horizon Estimator and a Kalman Filter are implemented + """ + + def __init__(self, model, Dist=True, Kalman=False): + """ + Pass Model, Weighting Matrizes, Prediction Horizon and other Parameters + + :param model: + :param Q: + :param R: + :param N_pred: + :param Dist: + :param Kalman: + + ToDo: Split up in init and create_controller + Create_Tracking_controller and create_economic Controller? + """ + + # Convert NP Arrays to Casadi Matrix (needs discretized State Space model) + A = DM(model.A) + B = DM(model.B_u) + C = DM(model.C) + D = DM(model.D) + self.Dist = Dist + self.Kalman = Kalman + if Dist == True: + B2 = DM(model.B_d) + D2 = DM(model.D2) + self.B2 = B2 + self.D2 = D2 + + if Kalman == True: + K = DM(model.K) # Pass Kalman Gain + self.K = K + self.A = A + self.B = B + self.C = C + self.D = D + + # Get Dimensions + self.nx = model.A.shape[0] + self.nu = model.B_u.shape[1] + if Dist == True: + self.nw = model.B_d.shape[1] + self.ny = model.C.shape[0] + + def create_tracking_MPC(self, Q, R, N_pred=10): + # Create States + + self.N = N_pred + U = SX.sym('u', self.nu, self.N) + X = SX.sym('x', self.nx, self.N) + if self.Dist == True: + W = SX.sym('w', self.nw, self.N) + + # Reference + Y_ref = SX.sym('Y_ref', self.ny, 1) + + # Initial State + X_0 = SX.sym('X0', self.nx, 1) + + # Constraint Initial Value + g = [] + state = X[:, 0] + self.lbg = [] + self.ubg = [] + for i in range(self.nx): + g.append(state[i] - X_0[i]) + self.lbg.append(0) + self.ubg.append(0) + + # Prediction Loop (Multiple Shooting): + obj = 0 # Objective + for k in range(self.N - 1): + state = X[:, k] + control = U[:, k] + state_next = X[:, k + 1] + if self.Dist == True: + disturbance = W[:, k] + state_next_pred = self.A @ state + self.B @ control + self.B2 @ disturbance + y_pred = self.C @ state_next_pred + self.D @ control + self.D2 @ disturbance + else: + state_next_pred = self.A @ state + self.B @ control + y_pred = self.C @ state_next_pred + self.D @ control + + # Add Multiple Shooting Constraint + g.append(state_next - state_next_pred) + for j in range(self.nx): + self.lbg.append(0) + self.ubg.append(0) + + # Objective Function + obj = obj + (y_pred - Y_ref).T @ Q @ (y_pred - Y_ref) + control.T @ R @ control + + # External Parameters + if self.nw > 1: + self.PARVARS = horzcat(X_0[:].T, Y_ref[:].T, + W[:].T) # Could be Extended by variable Boundaries, disturbances etc. + else: + self.PARVARS = horzcat(X_0[:].T, Y_ref[:].T, W[:]) + + if self.nu > 1: + self.OPTVARS = horzcat(X[:].T, U[:].T) + else: + self.OPTVARS = horzcat(X[:].T, U[:]) + + # Create LP + opts = {} + opts["ipopt.linear_solver"] = 'ma57' + self.nlp = {'x': self.OPTVARS, 'f': obj, 'g': vertcat(*g), 'p': self.PARVARS} + self.controller_tracking = nlpsol('Controller', 'ipopt', self.nlp,opts) + + def get_tracking_control(self, x0, lbx, ubx, lbu, ubu, Y_ref, W, Initial=0): + """ + Perform MPC Step and get optimal control Aktion + :param x0: + :param lbx: + :param ubx: + :param lbu: + :param ubu: + :param Y_ref: + :param W: + :param Initial: + :return: + """ + # Create Boundaries + self.lb = [np.reshape(lbx * self.N, (self.N * self.nx, 1)), np.reshape(lbu * self.N, (self.N * self.nu, 1))] + self.ub = [np.reshape(ubx * self.N, (self.N * self.nx, 1)), np.reshape(ubu * self.N, (self.N * self.nu, 1))] + + # Solve QP + self.x_opt = self.controller_tracking(lbx=vertcat(*self.lb), # Lower variable bound + ubx=vertcat(*self.ub), # Upper variable bound #Watt + lbg=vertcat(*self.lbg), # Lower constraint bound + ubg=vertcat(*self.ubg), # Upper constraint bound + x0=Initial, + p=vertcat(*[x0, Y_ref, W])) + + x_opt = self.x_opt['x'][0:self.N * self.nx] + u_opt = self.x_opt['x'][self.N * self.nx:-self.nu] + res_tot = self.x_opt['x'] # Total results for Warmstart + x_opt = np.reshape(x_opt, (self.N, self.nx)) + u_opt = np.reshape(u_opt, (self.N - 1, self.nu)) + return x_opt, u_opt, res_tot + + def create_economic_MPC(self,Q,R,N_pred=10): + """ + Create Economic MPC based on soft constraints + :param Q: + :param R: + :param N_pred: + :return: + """ + return + def get_economic_control(self): + return + + def create_estimator(self): + """Implement Moving Horizon Estimator to get initial states for Kalman filter""" + self.estimator = "Place Holder" + + + + def get_mhe_x0(self): + """Perform Moving Horizon Estimation to get first x0""" + x0 =[] + return x0 + + def get_kal_x0(self): + """ + Perform Kalman Step to get x0 based on former Prediction and measurements + + :return: + """ + +class Model: + """Define Matrices for discrete Linear State Space model for small test system""" + + def __init__(self): + self.A = np.array([[2, -1, 0.5], [1, 0, 0.5], [0.1, -0.1, 1]]) + self.B_u = np.array([[1, 0], [0.2, 1], [0.1, 0.5]]) + self.C = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) + self.D = np.array([[0, 0], [0, 0], [0, 0]]) + + def simulate(self, x0, u): + """In Case of Nonlinear Model, implement e.g Runge Kutta here """ + x_k_1 = self.model.A @ self.x0 + self.model.B @ u + y_k_1 = self.model.A @ x_k_1 + self.model.D @ u + return y_k_1, x_k_1 + + +class Model_Dist: + """Define Matrices for discrete Linear State Space model with Disturbance for small test system""" + + def __init__(self): + self.A = np.array([[1., 0.1], [0., 1.]]) + self.B_u = np.array([[0.005], [0.1]]) + self.B_d = np.array([[0.5], [0.01]]) + self.C = np.array([[1, 0]]) + self.D = np.array([[0]]) + self.D2 = np.array([[0]]) + + def simulate(self, x0, u, w): + """In Case of Nonlinear Model, implement e.g Runge Kutta here """ + x_k_1 = self.A @ x0 + self.B_u @ u + self.B_d @ w + y_k_1 = self.A @ x_k_1 + self.D @ u + self.D2 @ w + return y_k_1, x_k_1 + + +if __name__ == '__main__': + """ Implement small test case""" + Testmodel = Model_Dist() + + Q = np.diag([1]) + R = np.diag([0.05]) + N = 10 + Warmstart = True + + MPC = linearMPC(Testmodel) + MPC.create_tracking_MPC(Q, R, N) + # Boundaries + lbx = [-0, -inf] + ubx = [10, inf] + lbu = [-100] + ubu = [100] + + # Reference + Y_ref = np.array([10]) + + # Start + x0 = np.array([0, 0]) + u_res, y_res, t_res = [], [], [] + initial = 0 + + # Create Disturbance + W = np.zeros((100, 1)) + for i in range(0, 100): + W[i, 0] = random.random() + + tic = time.time() + for t in range(0, 60): + Dist = W[t:t + N, 0] + x_opt, u_opt, res_tot = MPC.get_tracking_control(x0, lbx, ubx, lbu, ubu, Y_ref, W=Dist, Initial=initial) + if Warmstart == True: + initial = res_tot + + y_k_1, x_k_1 = Testmodel.simulate(x0=x0, u=u_opt[0], w=[W[t, 0]]) + u_res.append(u_opt[0]) + y_res.append(y_k_1[0]) + t_res.append(t) + print(f"timestep={t}") + x0 = x_k_1 + + print(f"t_res={t_res}") + print(f"u_res={u_res}") + print(f"y_res={y_res}") + toc = time.time() + print(f"Elapsed time: {toc - tic}s") + plt.subplot(2, 1, 1) + plt.plot(t_res, y_res, label='y_res') + plt.plot(t_res, u_res, label='u_res') + plt.grid(alpha=0.3) + plt.ylabel('Results') + plt.legend() + plt.subplot(2, 1, 2) + plt.plot(t_res, W[0:60, 0], label='y_res') + plt.grid(alpha=0.3) + plt.ylabel('Disturbance') + plt.xlabel('t') + plt.show() diff --git a/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/thermal_zone_identification.py b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/thermal_zone_identification.py new file mode 100644 index 0000000000000000000000000000000000000000..1129708448ca83f8242f937e96363b3f3b2fa503 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/lsi_ddmpc/thermal_zone_identification.py @@ -0,0 +1,151 @@ +from pickle import * +import pickle as pickle +import pandas as pd +import numpy as np +import matplotlib.pyplot as plt +from sklearn.metrics import mean_squared_error + +try: + from sippy import * +except ImportError: + import sys, os + + sys.path.append(os.pardir) + from sippy import * + +from sippy import functionset as fset +from sippy import functionsetSIM as fsetSIM + + +def read_pickle(filename: str): + with open(filename, 'rb') as f: + return pickle.load(f) + + +def write_pickle(filename: str, a): + with open(filename, 'wb') as handle: + pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL) + +def Centering(y,u,options): + y = 1. * np.atleast_2d(y) + u = 1. * np.atleast_2d(u) + [n1, n2] = y.shape + ydim = min(n1, n2) + ylength = max(n1, n2) + if ylength == n1: + y = y.T + [n1, n2] = u.shape + ulength = max(n1, n2) + udim = min(n1, n2) + if ulength == n1: + u = u.T + + # Checking data consinstency + if ulength != ylength: + sys.stdout.write("\033[0;35m") + print( + "Warning! y and u lengths are not the same. The minor value between the two lengths has been chosen. The perfomed indentification may be not correct, be sure to check your input and output data alignement") + sys.stdout.write(" ") + # Recasting data cutting out the over numbered data + minlength = min(ulength, ylength) + y = y[:, :minlength] + u = u[:, :minlength] + if options['centering'] == 'InitVal': + y_rif = 1. * y[:, 0] + u_rif = 1. * u[:, 0] + for i in range(ylength): + y[:, i] = y[:, i] - y_rif + u[:, i] = u[:, i] - u_rif + elif options['centering'] == 'MeanVal': + y_rif = np.zeros(ydim) + u_rif = np.zeros(udim) + for i in range(ydim): + y_rif[i] = np.mean(y[i, :]) + for i in range(udim): + u_rif[i] = np.mean(u[i, :]) + for i in range(ylength): + y[:, i] = y[:, i] - y_rif + u[:, i] = u[:, i] - u_rif + elif options['centering'] == 'None': + y_rif = np.zeros(ydim) + y_rif = 0. * y[:, 0] + u_rif=0 + + + u_tot_new = u + y_new = y + return y_rif,u_rif,u_tot_new,y_new + +if __name__ == '__main__': + """ + ToDo: Get Identification Results from Max to build linear Model with N4SID + Use Identificated SS Model in Model Predictive Controller + Implement Kalman Filter (look at controls library (lQR)) + Experiment with Identification Parameters + + + """ + savename = 'parsim_model' + # Prepared Data + dt = 300 # Time Stepsize of generated Data + raw_data = pd.read_excel('D:\Git_Repos\DDMPC\stored_data\post.xlsx')# + y = np.array(raw_data['TAirRoom']) + u = np.array([raw_data['valveTabsHotSet'], + raw_data['valveTabsColdSet'], + raw_data['valveAHUCoolerSet'], + raw_data['valveHeaterSet']]) + d = np.array ([raw_data['weaBus.TDryBul'], + raw_data['weaBus.HDifHor'], + raw_data['weaBus.HDirNor'], + raw_data['weaBus.HGloHor'], + raw_data['internal_gain_1'], + raw_data['internal_gain_2'], + raw_data['internal_gain_3']]) + u_tot = np.concatenate([u,d]) + + + # Set Identification Options + options={'method':'PARSIM-K', + 'no_states':6, + 'centering':'None', + 'no_data':8000, + 'ssf':150, + 'ssp':150} + # identify System + sys_id = system_identification(y[:options['no_data']], u_tot[:,:options['no_data']],centering=options['centering'], id_method=options['method'],SS_f=options['ssf'], SS_p=options['ssp'],SS_A_stability=True,SS_fixed_order=options['no_states']) + # Split Up B matrix in B_u (Inputs) and B_d (Disturbances) + sys_id.B_u = sys_id.B[:,:len(u)] + sys_id.B_d = sys_id.B[:,len(u):] + # fit data to centering + y_ref, u_ref, u_tot_new, y_new = Centering(y, u_tot, options) + + # Kalman step + xk_1 = sys_id.B@np.mat(u_tot_new[:, 0]).T+sys_id.K@np.mat(y_new[0,0]) + uk_1 = np.mat(u_tot_new[:, 0]).T + for i in range(1,1000): + xk = sys_id.A@xk_1 + sys_id.B@uk_1 + xk_est = xk + sys_id.K @(y_new[0,i] - sys_id.C @ xk) + xk_1 = xk_est + uk_1 = np.mat(u_tot_new[:, i]).T + + + + xid, yid = fsetSIM.SS_lsim_process_form(sys_id.A, sys_id.B, sys_id.C, sys_id.D, u_tot_new[:,:],np.array(xk_est)) #,sys_id.x0)#, + xid, yid = fsetSIM.SS_lsim_innovation_form(sys_id.A, sys_id.B, sys_id.C, sys_id.D, sys_id.K, y_new, u_tot_new[:,:],sys_id.x0) + #rms = mean_squared_error(y_new[100:], yid[0,:], squared=False) + #rms2 = mean_squared_error(y[1:2000], yid[0, :2000], squared=False) + plt.figure(0) + plt.plot(y[0:2000],label='original') + plt.plot(yid[0,:2000]+y_ref,label='identified') + plt.ylabel("Temperature") + plt.grid() + plt.xlabel("Time") + plt.title("Ytot") + plt.legend(['Original system', 'Identified system, ' + options['method']]) + plt.show() + #print(rms) + #print(rms2) + + # save Model + Model = {'Model':sys_id,'options':options,'data':raw_data} + write_pickle(f'./Data/{savename}',Model) \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/vdp_example/black_box_mpc.py b/01_Input/Masterarbeit Konrad Beeser/vdp_example/black_box_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..62c278cec1088cb48a9e0c5e42d4182af6d6a82a --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/vdp_example/black_box_mpc.py @@ -0,0 +1,41 @@ +from vdp_mpc_package import * + +""" +Was in diesem Script passiert: +1. Erstellen eines Van der Pol Simulators (VDPS) +2. Generieren von Trainingsdaten mit dem (VDPS) +3. Trainieren eines ANN's mit den erzeugten Trainingsdaten +4. Modellprädiktive Regelung (Black Box) +""" + +my_vdp = van_der_pol(eps=1.5, dt=0.05) # Erstellen eines Van Der Pol Oszillators + +if False: + + # Trainingsdaten generieren + generator = data_generator(vdp=my_vdp) # Erstellen eines data generators, der Trainingsdaten erstellt + training_data = generator.generate_training_data(n_oscillations=500, n_oscillation_steps=250) # generieren der Trainingsdaten + + # ANN erstellen und trainieren + trainer = ann_trainer() # Erstellen eines ANN trainers + trainer.fit_ann(data=training_data, epochs=500, batch_size=1000) # ANN Trainieren + trainer.evaluate_ann(data=training_data) + trainer.save_ann(name='vdp_ann') # ANN Speichern + +# Modellprädiktiv regeln +my_mpc = mpc(my_vdp) # MPC instanziieren +ann = models.load_model('vdp_ann') # ann laden +my_mpc.create_controller(False, ann) # MPC Solver erstellen (white_box = False weil das ANN verwendet werden soll) + +# Anfangszustand definieren +x0 = np.array([[1], [1]]) + +# sollwerttrajektorie definieren +target = np.zeros(shape=(200, 2)) +target[0:50] = np.array([0.5, 0]) +target[50:100] = np.array([-1, 0]) +target[100:150] = np.array([1.5, 0]) +target[150:200] = np.array([0, 0]) + +# MPC ausführen +my_mpc.run(x0=x0, target=target) diff --git a/01_Input/Masterarbeit Konrad Beeser/vdp_example/casadi_neural_network.py b/01_Input/Masterarbeit Konrad Beeser/vdp_example/casadi_neural_network.py new file mode 100644 index 0000000000000000000000000000000000000000..c372d6f75c20cc70c5b9451c1097c2aad85c4469 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/vdp_example/casadi_neural_network.py @@ -0,0 +1,390 @@ +from keras import models, layers, Sequential +import keras.layers.experimental.preprocessing as experimental +from casadi import * + + +class Layer: + """ + Single layer of an artificial neural network. + """ + + def __init__(self, layer: layers.Layer): + + self.config = layer.get_config() + + # name + if 'name' in self.config: + self.name = self.config['name'] + + # units + if 'units' in self.config: + self.units = self.config['units'] + + # activation function + if 'activation' in self.config: + self.activation = self.get_activation(layer.get_config()['activation']) + + # input / output shape + self.input_shape = layer.input_shape[1:] + self.output_shape = layer.output_shape[1:] + + # update the dimensions to two dimensions + self.update_dimensions() + + # symbolic input layer + self.input_layer = MX.sym('input_layer', self.input_shape[0], self.input_shape[1]) + + def __str__(self): + + ret = '' + + if hasattr(self, 'units'): + ret += f'\tunits:\t\t\t\t{self.units}\n' + if hasattr(self, 'activation'): + ret += f'\tactivation:\t\t\t{self.activation.__str__()}\n' + if hasattr(self, 'recurrent_activation'): + ret += f'\trec_activation:\t\t{self.recurrent_activation.__str__()}\n' + ret += f'\tinput_shape:\t\t{self.input_shape}\n' + ret += f'\toutput_shape:\t\t{self.output_shape}\n' + + return ret + + def update_dimensions(self): + """ + CasADi does only work with two dimensional arrays. So the dimensions must be updated. + """ + + if len(self.input_shape) == 1: + self.input_shape = (1, self.input_shape[0]) + elif len(self.input_shape) == 2: + self.input_shape = (self.input_shape[0], self.input_shape[1]) + else: + raise ValueError("Please check input dimensions.") + + if len(self.output_shape) == 1: + self.output_shape = (1, self.output_shape[0]) + elif len(self.output_shape) == 2: + self.output_shape = (self.output_shape[0], self.output_shape[1]) + else: + raise ValueError("Please check output dimensions.") + + @staticmethod + def get_activation(function: str): + blank = MX.sym('blank') + + if function == 'sigmoid': + return Function(function, [blank], [1 / (1 + exp(-blank))]) + + if function == 'tanh': + return Function(function, [blank], [tanh(blank)]) + + elif function == 'relu': + return Function(function, [blank], [fmax(0, blank)]) + + elif function == 'softplus': + return Function(function, [blank], [log(1 + exp(blank))]) + + elif function == 'gaussian': + return Function(function, [blank], [exp(-blank ** 2)]) + + elif function == 'linear': + return Function(function, [blank], [blank]) + + else: + ValueError(f'Unknown activation function:{function}') + + +class Dense(Layer): + """ + Fully connected layer. + """ + + def __init__(self, layer: layers.Dense): + + super(Dense, self).__init__(layer) + + # weights and biases + self.weights, self.biases = layer.get_weights() + self.biases = self.biases.reshape(1, self.biases.shape[0]) + + # check input dimension + if self.input_shape[1] != self.weights.shape[0]: + raise ValueError(f'Please check the input dimensions of this layer. Layer with error: {self.name}') + + def forward(self, input): + + # forward pass + f = self.activation(input @ self.weights + self.biases) + + return f + + +class Flatten(Layer): + + def __init__(self, layer: layers.Flatten): + + super(Flatten, self).__init__(layer) + + def forward(self, input): + + # flattens the input + f = input[0, :] + for row in range(1, input.shape[0]): + f = horzcat(f, input[row, :]) + + return f + + +class BatchNormalising(Layer): + """ + Batch Normalizing layer. Make sure the axis setting is set to two. + """ + + def __init__(self, layer: layers.BatchNormalization): + + super(BatchNormalising, self).__init__(layer) + + # weights and biases + self.gamma = np.vstack([layer.get_weights()[0]] * self.input_shape[0]) + self.beta = np.vstack([layer.get_weights()[1]] * self.input_shape[0]) + self.mean = np.vstack([layer.get_weights()[2]] * self.input_shape[0]) + self.var = np.vstack([layer.get_weights()[3]] * self.input_shape[0]) + self.epsilon = layer.get_config()['epsilon'] + + # check Dimensions + if self.input_shape != self.gamma.shape: + axis = self.config['axis'][0] + raise ValueError(f'Dimension mismatch. Normalized axis: {axis}') + + # symbolic input layer + self.input_layer = MX.sym('input_layer', self.input_shape[0], self.input_shape[1]) + + def forward(self, input): + + # forward pass + f = (input - self.mean) / (sqrt(self.var + self.epsilon)) * self.gamma + self.beta + + return f + + +class LSTM(Layer): + """ + Long Short Term Memory cell. + """ + + def __init__(self, layer: layers.LSTM): + + super(LSTM, self).__init__(layer) + + # recurrent activation + self.recurrent_activation = self.get_activation(layer.get_config()['recurrent_activation']) + + # load weights and biases + W = layer.get_weights()[0] + U = layer.get_weights()[1] + b = layer.get_weights()[2] + + # weights (kernel) + self.W_i = W[:, :self.units] + self.W_f = W[:, self.units: self.units * 2] + self.W_c = W[:, self.units * 2: self.units * 3] + self.W_o = W[:, self.units * 3:] + + # weights (recurrent kernel) + self.U_i = U[:, :self.units] + self.U_f = U[:, self.units: self.units * 2] + self.U_c = U[:, self.units * 2: self.units * 3] + self.U_o = U[:, self.units * 3:] + + # biases + self.b_i = np.expand_dims(b[:self.units], axis=0) + self.b_f = np.expand_dims(b[self.units: self.units * 2], axis=0) + self.b_c = np.expand_dims(b[self.units * 2: self.units * 3], axis=0) + self.b_o = np.expand_dims(b[self.units * 3:], axis=0) + + # initial memory and output + self.h_0 = np.zeros((1, self.units)) + self.c_0 = np.zeros((1, self.units)) + + def forward(self, input): + + # check input shape + if input.shape != self.input_shape: + print('Dimension mismatch!') + + # initial + c = self.c_0 + h = self.h_0 + + # number of time steps + steps = self.input_shape[0] + + # forward pass + for i in range(steps): + + # input for the current step + x = input[i, :] + + # calculate memory(c) and output(h) + c, h = self.step(x, c, h) + + # here the output has to be transposed, because of the dense layer implementation + return h + + def step(self, x_t, c_prev, h_prev): + + # gates + i_t = self.recurrent_activation(x_t @ self.W_i + h_prev @ self.U_i + self.b_i) + f_t = self.recurrent_activation(x_t @ self.W_f + h_prev @ self.U_f + self.b_f) + o_t = self.recurrent_activation(x_t @ self.W_o + h_prev @ self.U_o + self.b_o) + c_t = self.activation(x_t @ self.W_c + h_prev @ self.U_c + self.b_c) + + # memory and output + c_next = f_t * c_prev + i_t * c_t + h_next = o_t * self.activation(c_next) + + return c_next, h_next + + +class Rescaling(Layer): + + def __init__(self, layer: experimental.Rescaling): + super(Rescaling, self).__init__(layer) + + # weights and biases + self.offset = layer.offset + self.scale = layer.scale + + def forward(self, input): + + # forward pass + f = input * self.scale + self.offset + + return f + + +class NeuralNetwork: + """ + Generic implementations of sequential Keras models in CasADi. + """ + + def __init__(self, model: models): + """ + Supported layers: + - Dense (Fully connected layer) + - Flatten (Reduces the input dimension to 1) + - BatchNormalizing (Normalization) + - LSTM (Recurrent Cell) + :param model: Sequential Keras Model + """ + + # list with all layers + self.layers = [] + + # forward function + self.predict = None + + # construct from keras model + self.construct(model) + + def __str__(self): + + ret = '--------------------- Casadi Neural Network ---------------------\n\n' + + for layer in self.layers: + ret += f'{layer.__class__.__name__}\n' + ret += f'{layer.__str__()}\n' + + ret += '--------------------- Casadi Neural Network ---------------------' + + return ret + + @property + def input_shape(self): + return self.layers[0].input_shape + + @property + def output_shape(self): + return self.layers[-1].output_shape + + def construct(self, model: models): + + # Add layers one by + for layer in model.layers: + + # get the name of the layer + name = layer.get_config()['name'] + + # recreate the matching layer + if 'dense' in name: + self.add_layer(Dense(layer)) + elif 'flatten' in name: + self.add_layer(Flatten(layer)) + elif 'batch_normalization' in name: + self.add_layer(BatchNormalising(layer)) + elif 'lstm' in name: + self.add_layer(LSTM(layer)) + elif 'rescaling' in name: + self.add_layer(Rescaling(layer)) + else: + raise ValueError(f'Type "{name}" is not supported.') + + # update the predict function + self.update_forward() + + # print out the structure + print(self) + + def update_forward(self): + + # create symbolic input layer + input_layer = self.layers[0].input_layer + + # initialize + f = input_layer + + # pass forward through all layers + for layer in self.layers: + f = layer.forward(f) + + # create the prediction function + self.predict = Function('forward', [input_layer], [f]) + + def add_layer(self, layer): + + # append layer + self.layers.append(layer) + + +if __name__ == "__main__": + + """ ------------------------------ example ------------------------------------ """ + + samples = 1000 + n_inputs = 10 + n_outputs = 1 + + # test data + x_train = np.random.random(size=(samples, 2, n_inputs)) + y_train = np.random.random(size=(samples, n_outputs)) + + # create nn + keras_model = Sequential() + keras_model.add(layers.BatchNormalization(axis=2)) + keras_model.add(layers.Flatten()) + # keras_model.add(layers.LSTM(units=2)) + keras_model.add(layers.Dense(units=10, activation="sigmoid")) + keras_model.add(layers.Dense(units=1, activation="linear")) + keras_model.compile(optimizer="adam", loss="mse", metrics=["mse"]) + keras_model.fit(x_train, y_train, epochs=100, batch_size=50) + keras_model.save("dense") + + # CasADi NN + ann = NeuralNetwork(keras_model) + + # test + x_test = np.random.random(size=(2, n_inputs)) + print(keras_model.predict(np.expand_dims(x_test, axis=0)).squeeze()) + print(ann.predict(x_test)) + + """ ------------------------------ example ------------------------------------ """ diff --git a/01_Input/Masterarbeit Konrad Beeser/vdp_example/requirements.txt b/01_Input/Masterarbeit Konrad Beeser/vdp_example/requirements.txt new file mode 100644 index 0000000000000000000000000000000000000000..03537ea89162e69bc28ea6a6a7822c2739c4c8e2 --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/vdp_example/requirements.txt @@ -0,0 +1,4 @@ +matplotlib~=3.3.4 +numpy~=1.19.5 +casadi~=3.5.5 +Keras~=2.4.3 \ No newline at end of file diff --git a/01_Input/Masterarbeit Konrad Beeser/vdp_example/vdp_mpc_package.py b/01_Input/Masterarbeit Konrad Beeser/vdp_example/vdp_mpc_package.py new file mode 100644 index 0000000000000000000000000000000000000000..12341f14898e3eeb96b161badb80b3b3706e902a --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/vdp_example/vdp_mpc_package.py @@ -0,0 +1,424 @@ +import matplotlib.pyplot as plt +import numpy as np +from casadi import * +import random +from keras import Sequential, layers, models +import casadi_neural_network + + +class van_der_pol: + """ + Simuliert den Van der Pol oscillator. + """ + def __init__(self, dt=0.1, eps=1.0): + """ + :param dt: Schrittweite + :param eps: Charaktaristischer Parameter + """ + + # Einstellungen + self.dt = dt # Schrittweite + self.eps = eps # Parameter + + # Zustandsvariablen + x1 = MX.sym('x') # Position + x2 = MX.sym('v') # Geschwindigkeit + u = MX.sym('u') # Stellgröße + + # Zustandsraummodell + x1_dot = x2 + x2_dot = self.eps * (1 - x1 ** 2) * x2 - x1 + u # ẍ = eps * (1 - x^2) * ẋ + x + + x = vertcat(x1, x2) + x_dot = vertcat(x1_dot, x2_dot) + + # Erstellen der Differential algebraische Gleichung (DAE) + self.dae = { + 'x': x, # Zustände + 'p': u, # Parameter + 'ode': x_dot # Ableitung + } + + def do_step(self, x, u) -> np.array: + """ + Diese Methode berechnet einen "Schritt" des vdp-oscillators. Dazu wir der idas integrator benutzt. + :param x: Startzustand + :param u: Stellgröße + :return: Zustand nach dt sekunden + """ + + F = integrator( + 'F', # name des integrators + 'idas', # lösungsmethode + self.dae, # the dae + {'tf': self.dt} # options + ) + + Fk = F(x0=x, p=u) # initializieren des integrators + x_next = Fk['xf'] # berechnung des nächsten zustands + return x_next # rückgabe des nächsten Zustandes + + @staticmethod + def plot(X, U, target): + + fig, (ax1, ax2, ax3) = plt.subplots(3, gridspec_kw={'height_ratios': [1, 1, 1]}) + ax1.step(range(X.shape[0]), X[:, 0]) + ax1.step(range(target.shape[0]), target[:, 0], linestyle='-.') + ax2.step(range(X.shape[0]), X[:, 1]) + ax2.step(range(target.shape[0]), target[:, 1], linestyle='-.') + ax3.step(range(U.shape[0]), U) + + ax1.set_title('Van der Pol Oscillator') + + ax1.set_ylabel('Position') + ax2.set_ylabel('Velocity') + ax3.set_ylabel('U') + + plt.show() + + return 0 + + @staticmethod + def plot_batch(oscillation: list): + fig, (ax1, ax2) = plt.subplots(2, gridspec_kw={'height_ratios': [4, 1]}) + + ax1.set_title('Van der Pol Oscillator') + + ax1.set_xlabel('Position') + ax1.set_ylabel('Velocity') + + ax2.set_xlabel('Step') + ax2.set_ylabel('U') + + for data in oscillation: + ax1.plot(data[:, 0], data[:, 1]) + ax2.plot(data[:, 2]) + plt.show() + + +class data_generator: + """ + Wird verwendet um Trainingsdaten zu generieren und aufzubereiten + """ + def __init__(self, vdp: van_der_pol): + + self.vdp = vdp + + def simulate_oscillation(self, x0, U) -> np.array: + """ + Löst das Anfangswertproblem für x0 und u. + :param x0: Startzustand + :param U: Folge an Stellgrößen + :return: Berechnete Oszillation + """ + + X = [x0] + for i in range(0, U.shape[0] - 1): # schleife über die Abfolge der Stellgröße u + x_next = np.array(self.vdp.do_step(x=X[i], u=U[i]).T) # berechne den nächsten Zustand + X = np.append(X, x_next, axis=0) # füge den berechneten Zustand zum array hinzu + + data = np.concatenate([X, np.expand_dims(U, axis=1)], axis=1) + + return data + + def generate_training_data(self, n_oscillations: int, n_oscillation_steps: int): + """ + Diese Methode generiert trainingsdaten zum trainieren von KNN. + Dazu werden zufällige ivp's (initival value problem) erzeugt und anschließend gelöst. + Anschließend werden die Daten aufbereitet. + Abschließend werden die Daten gleichmäßig in test, train und validate aufgeteilt + und validate aufgeteilt. + + :param n_oscillations: Anzahl der Oszillationen die erzeugt werden sollen. + :param n_oscillation_steps: Anzahl der länge der Oszillationen. + :return: Trainingsdaten (dict) Dictionary mit den Trainingsdaten. + """ + + oscillations = list() + + # Erstellen von ivp's und lösen + # für eine Anzahl von n_oscillationen werden zufällige ivps erzeugt + print('-------------- Generating Data --------------') + for i in range(n_oscillations): + print(f'{i} of {n_oscillations}') + x0, U = self.random_ivp(steps=n_oscillation_steps) + X = self.simulate_oscillation(x0, U) # lösen des ivps + oscillations.append(X) # anhängen / speichern der daten + + # Plotten + self.vdp.plot_batch(oscillations) + + # Aufbereiten zu trainingsdaten (Nicht so wichtig) + X, Y = None, None # X -> input, Y -> Output + for oscillation in oscillations: + x = oscillation[:-1] # Für den Input wird der letzte Wert entfernt + y = oscillation[1:, 0:2] # Für den Output wird der erste Wert entfernt, sowie die Stellgrößen + + # Zusammenfügen der Einzelnen Oszillationen zu einem gesamtpaket an Trainingsdaten + if X is None: + X = x + Y = y + else: + X = np.concatenate([X, x], axis=0) + Y = np.concatenate([Y, y], axis=0) + + # Aufsplitten in 3 gleichgoße Teile + X = self.split(X, 3) + Y = self.split(Y, 3) + + # Zurück geben der fertigen Trainingsdaten + return { + 'x_train': X[0], + 'y_train': Y[0], + 'x_validate': X[1], + 'y_validate': Y[1], + 'x_test': X[2], + 'y_test': Y[2], + } + + @staticmethod + def random_ivp(steps: int): + """ + Diese Methode berechnet in einem ersten Schritt einen zufälligen(Normalverteilt) Anfangszustand für den VDP-O. + Anschließend werden mit hilfe einer zufällig gewählten Sinusfunktion ebenfalls Stellgrößen + über eine Länge von "steps" erzeugt. + :param steps: Anzahl der Integrationsschritte + """ + + x0 = np.random.uniform(-5, 5, size=(2,)) # Zufälliger Anfangszustand + + offset = random.uniform(-pi, pi) # Zufälliger Offset + amplitude = random.uniform(0, 10) # Zufällige Amplitude + scale = np.linspace(2 * pi, 4 * pi, steps) # Zufällige Skalierung + U = amplitude * np.sin((scale - offset)) + + return x0, U + + @staticmethod + def split(sequence: np.ndarray, number_of_chunks: int): + + chunk_size, remainder = divmod(sequence.shape[0], number_of_chunks) + + if chunk_size: + result = [sequence[x:x + chunk_size] for x in range(0, number_of_chunks * chunk_size, chunk_size)] + else: + result = [[]] + + if remainder: + result[-1] = np.concatenate([result[-1], sequence[-remainder:]]) + + return result + + +class ann_trainer: + """ + Wird verwendet um ANNS zu trainieren. + """ + + def __init__(self): + + self.ann = None # In dieser variable wird gleich das ANN gespeichert + self.build_ann() # Aufbauen des ANN's + + def build_ann(self): + """ + In dieser Funktion wird die Architektur des ANN bestimmt. + """ + + self.ann = Sequential() + self.ann.add(layers.BatchNormalization(axis=1)) + self.ann.add(layers.Dense(units=32, activation='sigmoid')) # Hidden Layer -> 8 Neuronen, Sigmoid + self.ann.add(layers.Dense(units=2, activation='linear')) # Output Layer -> 2 dimensionen, Linear + self.ann.compile(optimizer='adam', loss='mse') + + def fit_ann(self, data: dict, epochs: int = 100, batch_size: int = 100): + """ + Die "fit" Methode passt die Gewichte und Schwellenwerte des ANN an die gegebenen Trainingsdaten an. + Dazu werden trainings, test und validationsdaten verwendet. + :param batch_size: Die Anzahl der Batches. + :param epochs: Die Anzahl der Epochen. + :param data: Die Trainingsdaten als dict. + """ + + self.ann.fit( + x=data.get('x_train'), + y=data.get('y_train'), + validation_data=(data.get('x_validate'), data.get('y_validate')), + epochs=epochs, + batch_size=batch_size, + ) + + def evaluate_ann(self, data: dict, metric: str = 'mse'): + + x = data.get('x_test') + y_real = data.get('y_test') + + y_pred = self.ann.predict(x) + + error = y_real - y_pred + + if metric == 'mse': + score = sum(error**2) + elif metric == 'mae': + score = sum(error) + else: + raise ValueError('Metric must be mse or mae') + + print(f'Score: {score}') + return score + + def save_ann(self, name: str = 'vdp_ann'): + self.ann.save(name) + + def load_ann(self, name: str = 'vdp_ann'): + self.ann = models.load_model(name) + + +class mpc: + """ + Der Modellprädiktive Regler. + """ + + # Einstellungen + N = 15 # Prädiktionshorizont. + Q = np.array([[1000, 0], [0, 1]]) # Q ist die Gewichtung für die Abweichung von der Sollwerttrajektorie. + R = 0.1 # R ist die Gewichtung für Stellgröße U. + + def __init__(self, vdp: van_der_pol): + + # liste mit den beschränkungen für die Nebenbedingungen (Recht unwichtig) + self.lbg = list() + self.ubg = list() + + self.vdp = vdp # hier wird der verwendete vdp oscillator gespeichert + self.solver = None # In dem Solver wird später das nlp gespeichert (Darum vorerst None) + + def create_controller(self, white_box:bool = False, ann: Sequential = None): + """ + Mit dieser Methode wird ein nichtlineares optimierungsproblem aufgestellt. + :param white_box: Boolean ob das WB oder BB modell verwendet werden soll + :param ann: Sequenzielles Keras Modell zur modellierung des VDP-O + """ + + # Das ann ist nur für die Black Box variante interessant!!! + if not white_box: + # Zunächst muss das Sequenzielle Keras Modell in Casadi Schreibweise überfürht werden. + # Das wird mit hilfe der libary casadi_neural_network erreicht: + assert ann is not None, 'Bitte übergib ein ANN, wenn nicht WhiteBox geregelt wird' + cnn = casadi_neural_network.NeuralNetwork(model=ann) + else: + cnn = None + + # Initializierung + obj = 0 # Die variable obj ist die Zielfunktion. Sie wird später minimiert. + PAR_VARS = [] # Die PAR_VARS ist eine Liste mit Variablen, die als Übergabewerte an den solver übergeben werden müssen. Hier: x0 und die Sollwerttrajektorie "target" + OPT_VARS_X = [] # Liste mit den zu optimierenden Zustandsvariablen + OPT_VARS_U = [] # Liste mit den zu optimierenden Stellgrößen + g = [] + + # Anfangsbedingung x0 + X0 = MX.sym('X0 par_var', 2) # man achte auf die "2", da der VDP ja zwei Zustandsgrößen hat (pos und geschw) + PAR_VARS.append(X0) # anhängen an die Liste PAR_VARS, da der Anfangszustand nachher umbedingt übergeben werden muss. + + # Variable state Xk + Xk = MX.sym('X0 opt_var', 2) # der Unterschied zu "par_var" ist, dass die "opt_var(X/U)" Variablen Optimiert werden (wird bei betrachtung der Nebenbedingung gleich klarer) + OPT_VARS_X.append(Xk) # Die "par_var" Liste muss beim aufrufen des solvers übergeben werden. + + # starting condition x0 = xk(k=0) + g.append(X0 - Xk) # Nebenbedingung, die den Startzustand mit der ersten Optimierungsvariable verknüpft + self.lbg.append(0) # Wichtig ist, dass für jede Nebenbedingung auch die obere und untere Grenze gesetzt wird + self.lbg.append(0) # in diese Fall ist es lb=0 und ub=0, da es sich um eine Gleichheitsbedingung handelt + self.ubg.append(0) + self.ubg.append(0) + + for k in range(self.N): # Hier wird nun über N Zeitschritte iteriert (bis zum ende des Prädiktionshorizontes) + + Tk = MX.sym(f'target{k} par_var', 2) # Hier wird eine Variable erstellt, die Platzhalter für die Sollwerttrajektorie zum Zeitpunkt k ist. + PAR_VARS.append(Tk) # Wichtig ist wieder sie an die Liste der PAR_VARS anzuhängen + + Uk = MX.sym(f'U{k} opt_var', 1) # Hier wird eine Variable erstellt, die die Stellgröße U zum Zeitpunkt k beschreibt + OPT_VARS_U.append(Uk) # Da ja die Stellgrößen optimiert werden sollen hängen wir sie an die OPT_VARS_U liste an + + g.append(Uk) # die Stellgröße U wird auf +-25 limitiert + self.ubg.append(25) + self.lbg.append(-25) + + # An dieser Stelle entscheidet sich, ob das ANN(BB) benutzt wird oder der VDP(WB) + # In beiden fällen wird eine Prädiktion (oder halt der richtige Wert im Falle der WB) aufgestellt + if white_box: + Xk_pred = self.vdp.do_step(Xk, Uk) # White Box + else: + Xk_pred = cnn.predict(vertcat(Xk, Uk)).T # Black Box + + Xk = MX.sym(f'X{str(k + 1)} opt_var', 2) # Nun wird eine neue Zustandsvariable für den nächsten Zeitschritt erstellt. Also X(k+1) + OPT_VARS_X.append(Xk) # Auch dieser Zustand soll optimiert werden also wird er an die OPT_VARS_X angehängt. + + # shooting constraint + g.append(Xk - Xk_pred) # Nun verknüpfen wir die Prädiktion von grade eben mit der Zustandsvariable + self.lbg.append(0) # Auch hier gilt wieder das von oben, dass es sich um gleichheit handelt. + self.lbg.append(0) + self.ubg.append(0) + self.ubg.append(0) + + # Objective Function + obj += (Xk_pred - Tk).T @ self.Q @ (Xk_pred - Tk) + Uk.T @ self.R @ Uk # Hier wird die Gewichtung vorgenommen und diese zu der Zielfunktion auf addiert. + + # create nlp + PAR_VARS = vertcat(*PAR_VARS) + OPT_VARS = vertcat(*(OPT_VARS_U + OPT_VARS_X)) # hier müssen nun alle OPT_VARS zu einer Liste zusammengefasst werden + CONSTRAINTS = vertcat(*g) + + # erstellen des NLP + nlp = {'p': PAR_VARS, 'x': OPT_VARS, 'f': obj, 'g': CONSTRAINTS} + + # select options (Es wird der ipopt alg ausgewählt) + opts_ipopt = {'verbose': False, 'ipopt': {'max_iter': 25, 'print_level': 0}} + + # save the solver + self.solver = nlpsol('solver', 'ipopt', nlp, opts_ipopt) + + # geschafft + + def get_controls(self, x0, target): + """ + Diese Metode wird benutzt um den zuvor erstellen solver aufzurufen und Modellprädiktiv zu regeln + :param x0: Anfangszustand + :param target: Sollwerttrajektorie + """ + + # Den zuvor erstellten solver aufrufen. Dabei + + PAR_VARS = vertcat(*[x0, *target]) # hier wird der anfangszustand x0 einfach vor die Sollwerttrajektorie gehangen + + solution = self.solver(lbg=vertcat(*self.lbg), + ubg=vertcat(*self.ubg), + p=PAR_VARS) + + u_opt = solution['x'] # und die lösung auslesen + u0_opt = u_opt[0] # eine MPC benutzt immer nur den ersten optimieren Wert also u0 + return u0_opt # und zurück geben + + def run(self, x0, target): + + steps = len(target) - self.N # Nicht so wichtig, wieso hier -N gerechnet wird. + U = [] # leere liste in die die optimierten stellgrößen kommen + X = [x0] # liste an die die optimierten zustände angehängt werden (Der erste Zustand wird schon rein gepackt) + + for step in range(steps): # Jetzt wird schritt für schritt simuliert + + # erst wird der solver aufgerufen, um die Optimale Stellgröße zu errechnen + xk = X[step] # dazu wird der jetzige Systemzustand benötigt + tk = target[step + 1:step + self.N + 1] # sowie die Sollwerttrajektorie der nächsten N zustände + u_opt = self.get_controls(x0=xk, target=tk) # optimales u errechnen + U.append(float(u_opt)) # An Liste anhängen (Das ergebnis kommt als DM also muss man in float konvertieren. Nicht so wichtig zu verstehen) + + # Jetzt anhand der optimalen Stellgröße U das VDP aufrufen und einen schritt kalkulieren + x = np.array(self.vdp.do_step(X[step], U[step])) # Tatsächlichen Ausgang berechnen + X.append(x) # Diesen dann an die Liste anhängen + + # alles wiederholen bis fertig + + X = np.array(X).squeeze() # aus der Liste ein np.ndarray machen + U = np.array(U) # aus der Liste ein np.ndarray machen + + self.vdp.plot(X=X, U=U, target=target) # Das ergebnis Plotten diff --git a/01_Input/Masterarbeit Konrad Beeser/vdp_example/white_box_mpc.py b/01_Input/Masterarbeit Konrad Beeser/vdp_example/white_box_mpc.py new file mode 100644 index 0000000000000000000000000000000000000000..88ef43f3d4dc32aa8ba2c6a8caed5d36c68e37bc --- /dev/null +++ b/01_Input/Masterarbeit Konrad Beeser/vdp_example/white_box_mpc.py @@ -0,0 +1,33 @@ +from vdp_mpc_package import * + +""" +Was in diesem Script passiert: +1. Erstellen eines Van der Pol Simulators (VDPS) +2. Modellprädiktive Regelung (White Box) +""" + +# 1TIPP: Bei windows kommt man mit einem Mausrad-klick auf eine Methode sofort an die Stelle, wo sie definiert wurde. (Für schnelles nachschauen) +# Z.B. Mausradklick auf die Methode van_der_pol() +# 2TIPP: Wenn man mit der Maus über Methoden "Hovert" sieht man Informationen, welche Parameter Übergeben werden und was die Methode Macht +# (Zumindest, wenn man gut dokumentiert hat :D ) + +# Bei bugs oder Frage könnt ihr mich gerne kontaktieren + +my_vdp = van_der_pol(eps=1.5, dt=0.05) # Erstellen eines Van Der Pol Oszillators + +# Modellprädiktiv regeln +my_mpc = mpc(my_vdp) # MPC instanziieren +my_mpc.create_controller(True) # MPC Solver erstellen (white_box = True weil mit dem vdp als prozessmodell geregelt werden soll) + +# Anfangszustand definieren +x0 = np.array([[1], [1]]) + +# sollwerttrajektorie definieren +target = np.zeros(shape=(200, 2)) +target[0:50] = np.array([0.5, 0]) +target[50:100] = np.array([-1, 0]) +target[100:150] = np.array([1.5, 0]) +target[150:200] = np.array([0, 0]) + +# MPC ausführen +my_mpc.run(x0, target) diff --git a/01_Input/Vorlagen/LaTeX Vorlage b/01_Input/Vorlagen/LaTeX Vorlage new file mode 160000 index 0000000000000000000000000000000000000000..0c6a9c6dbf8d73aa10e6f93d07079781fd3a998e --- /dev/null +++ b/01_Input/Vorlagen/LaTeX Vorlage @@ -0,0 +1 @@ +Subproject commit 0c6a9c6dbf8d73aa10e6f93d07079781fd3a998e diff --git a/01_Input/Vorlagen/MA Konrad Beeser b/01_Input/Vorlagen/MA Konrad Beeser new file mode 160000 index 0000000000000000000000000000000000000000..959391878e07bdeb38847897bdf8ccbd81665f29 --- /dev/null +++ b/01_Input/Vorlagen/MA Konrad Beeser @@ -0,0 +1 @@ +Subproject commit 959391878e07bdeb38847897bdf8ccbd81665f29 diff --git a/01_Input/Vorlagen/MPC Minimalbeispiele b/01_Input/Vorlagen/MPC Minimalbeispiele new file mode 160000 index 0000000000000000000000000000000000000000..c2be9a891103e686343dcbab4de06b3eb6819c51 --- /dev/null +++ b/01_Input/Vorlagen/MPC Minimalbeispiele @@ -0,0 +1 @@ +Subproject commit c2be9a891103e686343dcbab4de06b3eb6819c51 diff --git a/01_Input/Vorlagen/Masterarbeit Konrad Beeser b/01_Input/Vorlagen/Masterarbeit Konrad Beeser new file mode 160000 index 0000000000000000000000000000000000000000..959391878e07bdeb38847897bdf8ccbd81665f29 --- /dev/null +++ b/01_Input/Vorlagen/Masterarbeit Konrad Beeser @@ -0,0 +1 @@ +Subproject commit 959391878e07bdeb38847897bdf8ccbd81665f29