diff --git a/.ipynb_checkpoints/index-checkpoint.ipynb b/.ipynb_checkpoints/index-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..15236887cdc8bf5e589a6e1cf7e352d60dfaa4e2
--- /dev/null
+++ b/.ipynb_checkpoints/index-checkpoint.ipynb
@@ -0,0 +1,226 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<a href=\"http://em.geosci.xyz\"><img src=\"https://www.gge.eonerc.rwth-aachen.de/global/show_picture.asp?id=aaaaaaaaaakevlz\" style=\"width: 25%; height: 25%\" align=\"right\"></img></a>\n",
+    "\n",
+    "# Jupyter Notebooks für die Veranstaltungen EdgE 1+2\n",
+    "\n",
+    "Die Jupyter Notebooks sind begleitendes Lehrmaterial für den RWTH Kurse \"Einführung in die Geophysikalische Erkundung 1+2\". Es werden verschiedene in den Vorlesungen unterrichtete Themen behandelt. Sämtliche Notebooks laufen direkt auf dem JupyterHub ohne die Notwendigkeit, Python auf dem eigenen Rechner installiert zu haben (einfach auf die jeweiligen Notebooks links in der Leiste klicken). Alternativ können die Notebooks auch lokal verwendet werden. Allerdings benötigt man hierfür gewisse geophysikalische Programme. Die Installation kann in der Dokumentation von **<a href=\"https://github.com/geoscixyz/geosci-labs \">Geoscilabs</a>**, den Urhebern der Notebooks nachgeschlagen werden.\n",
+    "\n",
+    "Weiterführende Literatur ist unten verlinkt:\n",
+    "- **<a href=\"http://gpg.geosci.xyz\">gpg.geosci.xyz</a>**, allgemein für angewandte Geophysik.\n",
+    "- **<a href=\"http://em.geosci.xyz\">em.geosci.xyz</a>**, speziell für elektromagnetische Themen.  \n",
+    "- **<a href=\"https://wiki.seg.org/wiki/Main_Page\">wiki.seg.org</a>**, das offizielle Wiki der  Society of Exploration Geophysicists (SEG).  \n",
+    "\n",
+    "\n",
+    "\n",
+    "Unten sind die betreffenden Notebooks aufgezählt inklusiver einer kurzen Erläuterung zu deren Inhalten. Die Notebooks können durch direktes anklicken der Links geöffnet werden. Bei weiteren Fragen, wendet euch an den Norbert eures Vertrauens (nklitzsch@eonerc.rwth-aachen.de). \n",
+    "\n",
+    "Viel Spaß mit den Notebooks!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**[DCIP](#DC-Resistivity-und-Induced-Polarization) | [EMI](#Electromagnetics) | [GPR](#Ground-Penetrating-Radar-(GPR))  | [Magnetics](#Magnetics) | [Seismic](#Seismic) | [Gravity](#Gravity)** \n",
+    "\n",
+    "\n",
+    "## Table of Contents\n",
+    "\n",
+    "### DC Resistivity und Induced Polarization\n",
+    "- [DC_SurveyDataInversion.ipynb](./Notebooks/dcip/DC_SurveyDataInversion.ipynb): \n",
+    "\n",
+    "This Notebook introduces the fundamentals of DC resistivity surveys. It is divided into 4 major parts:\n",
+    "\n",
+    "1. Investigation of currents, fields, charges and potentials: All governing physical parameters are investigated in the environment of a cylinder target embedded in a homogeneous halfspace. Here, different subsurface characteristics such as cylinder and electrode geometry or resistivities $\\rho$ of the half space and the cylinder can be varied.\n",
+    "\n",
+    "2. Potential differences and Apparent Resistivities: Using the widgets contained in this notebook you will develop a better understand of what values are actually measured in a DC resistivity survey and how these measurements can be processed, plotted, inverted, and interpreted. The principles of Apparent Resistivity are introduced an further depicted in the widget.\n",
+    "\n",
+    "3. Building Pseudosections: 2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines. Pseudosections build the foundtion of the following inversion. Pseudo-sections of the apparent resistivity can be generated using dipole-dipole, pole-dipole, or dipole-pole arrays to see how survey geometry can distort the size, shape, and location of conductive bodies in a pseudo-section.  \n",
+    "\n",
+    "4. Parametric Inversion: A pseudosection indicates how the parameter varies with location and depth, but it can only be converted into a 2D model by inversion. Inverting the data to find a model which fits the observed data and is geologically reasonable a standard practice. In this final widget you are able to forward model the apparent resistivity of a cylinder embedded in a two layered earth. \n",
+    "\n",
+    "\n",
+    "- [DC_LayeredEarth.ipynb](./Notebooks/dcip/DC_LayeredEarth.ipynb): \n",
+    "\n",
+    "Using the widgets contained in this notebook we will explore the physical principals governing DC resistivity including the behavior of currents, electric field, electric potentials in a two layer earth. The measured data in a DC experiment are potential differences, we will demonstrate how these provide information about subsurface physical properties. (ALREADY IN FIRST NOTEBOOK)\n",
+    "\n",
+    "- [DC_Cylinder_2D.ipynb](./Notebooks/dcip/DC_Cylinder_2D.ipynb): \n",
+    "\n",
+    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes can be measurable on the surface electrodes. Here, we focus on a cylinder target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey (ALREADY IN FIRST NOTEBOOK).\n",
+    "\n",
+    "- [DC_Layer_Cylinder_2D.ipynb](./Notebooks/dcip/DC_Layer_Cylinder_2D.ipynb): \n",
+    "\n",
+    "In some situations the presence of a near surface layer can have large implications for the detectability of targets beneath the layer. If the near surface layer is very conductive current channelling occrurs and when the layer is very resistive it has a shielding effect. In both cases the near surface layer dramatically reduces the strength of currents beneath the layer and therefore also reduces the strength of charge build up on the surface of the target. This notebook is simillary built up like the previous Notebook except for the addition of a near surface layer.\n",
+    "\n",
+    "- [PhyProp_ColeCole.ipynb](./Notebooks/dcip/PhyProp_ColeCole.ipynb): \n",
+    "\n",
+    "Using a simple Cole-Cole model, we parameterize complex resistivity with four parameters: resistivity at zero frequency ($\\rho_0$), chargeability($\\eta$), time constant ($\\tau$), and frequency dependence ($c$). Based upon those parameters, we understand how resistivity and conductivity changes when medium is chargeable both in frequency domain and time domain.\n",
+    "\n",
+    "### Electromagnetics\n",
+    "\n",
+    "#### Frequency domain (FDEM)\n",
+    "- [EM31.ipynb](./Notebooks/em/FEM/EM_EM31.ipynb): \n",
+    "\n",
+    "In this app, we compute apparent resistivity using the response curves for a two-loop Frequency domain system for a two-layer earth. Below figure shows horizontal coplanar (HCP) configuration. \n",
+    "\n",
+    "- [FDEM EM_Pipeline.ipynb](./Notebooks/em/FEM/EM_Pipeline.ipynb): \n",
+    "\n",
+    "In the following app, we consider a loop-loop system with a pipe taget. Here, we simulate two surveys, one where the boom is oriented East-West (EW) and one where the boom is oriented North-South (NS). \n",
+    "\n",
+    "- [FDEM_Planewave_Wholespace.ipynb](./Notebooks/em/FEM/FDEM_Planewave_Wholespace.ipynb): \n",
+    "\n",
+    "We visualizae downward propagating planewave in the homogeneous earth medium. With the three apps: a) Plane wave app, b) Profile app, and c) Polarization ellipse app, we understand fundamental concepts of planewave propagation. \n",
+    "\n",
+    "#### Time Domain (TDEM)\n",
+    "- [TDEM_Groundedsource.ipynb](./Notebooks/em/TEM/TDEM_Groundedsource.ipynb):\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from a grounded source. Both electric currents and magnetic flux will be visualized to undertand physics of grounded source EM. Both charge buildup (galvanic) and EM induction (inductive) will occur at different times. \n",
+    "\n",
+    "- [TDEM_HorizontalLoop_LayeredEarth.ipynb](./Notebooks/em/TEM/TDEM_HorizontalLoop_LayeredEarth.ipynb):\n",
+    "\n",
+    "Here, we show the transient fields and fluxes that result from placing a vertical magnetic dipole (VMD) source over a layered Earth. The transient response in this case refers to the fields and fluxes that are produced once a long-standing primary magnetic field is removed. There are [two commonly used models](https://em.geosci.xyz/content/maxwell1_fundamentals/dipole_sources_in_homogeneous_media/magnetic_dipole_time/index.html) for describing the VMD source that produces a transient response (both models are used in the Notebook): \n",
+    "\n",
+    "1) as an infinitessimally small bar magnet that experiences a long-standing vertical magnetization which is then instantaneously removed at $t=0$\n",
+    "\n",
+    "2) as an infinitessimally small horizontal loop of wire carrying a constant current which is then instantaneously shut off at $t=0$ (step-off current waveform).\n",
+    "\n",
+    "- [TDEM_InductiveSource.ipynb](./Notebooks/em/TEM/TDEM_InductiveSource.ipynb):\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from inductive sources. Both electric currents and magnetic flux will be visualized to understand physics of inductive source EM. \n",
+    "\n",
+    "\n",
+    "\n",
+    "### Ground Penetrating Radar (GPR)\n",
+    "\n",
+    "- [GPR_Attenuation.ipynb](./Notebooks/gpr/GPR_Attenuation.ipynb):\n",
+    "\n",
+    "This Notebook focuses on the principles of EM wave attenuation. To simplify the GPR problems, we often assume that we do not have conductivity effect. However, in practice, this is not true. For instance, the earth medium can have considerably high conductivity values. In this case, EM wave attenuates as a function of conductivity ($\\sigma$), permittivity ($\\epsilon$), and frequency ($f$). How these factors influence attenuation is investigated in this Notebook.\n",
+    "\n",
+    "- [GPR_Lab6_FitData.ipynb](./Notebooks/gpr/GPR_Lab6_FitData.ipynb):\n",
+    "\n",
+    "This notebook contains two apps:\n",
+    "\n",
+    "+ **Pipe Fitting App**: This app simulates the radargram signature from a cylindrical pipe and lays it over a set of field collected data.\n",
+    "+ **Slab Fitting App**: This app simulates the radargram signature from a rectangular slab and lays it over a set of field collected data.\n",
+    "\n",
+    "By using the models provided (pipe/slab) to fit data signatures within field collected radargram data, we can determine the existence, location and dimensions of pipes and slabs. You may also use this app to learn how radargram signatures from pipes and rectangular slabs change as the parameters provided are altered.\n",
+    "\n",
+    "- [GPR_TBL4_DOI_Resolution.ipynb](./Notebooks/gpr/GPR_TBL4_DOI_Resolution.ipynb):\n",
+    "\n",
+    "This notebook contains two apps:\n",
+    "+ **GPR Zero Offset App**: This app simulates radargram data from two reflectors buried in a homogeneous Earth. The range of parameter values for this app are set such that we may assume we are operating in the wave regime.\n",
+    "+ **Attenuation App**: This app computes the propagation velocity and skin depth for GPR signals as a function of operating frequency.\n",
+    "\n",
+    "\n",
+    "\n",
+    "### Magnetics\n",
+    "\n",
+    "- [Mag_Dipole.ipynb](./Notebooks/mag/Mag_Dipole.ipynb): \n",
+    "\n",
+    "Define a magnetic dipole, the Earth's magneitc field and the observation point to compute 3D plots of field lines and data. This notebook aims to provide the basic principles of magnetic methods in geophysics.\n",
+    "\n",
+    "- [MagneticDipoleApplet.ipynb](./Notebooks/mag/MagneticDipoleApplet.ipynb): \n",
+    "\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a small buried dipolar magnet. In geophysics, this simulates the observed anomaly over a buried susceptible sphere that is magnetized by the Earth's magnetic field.\n",
+    "\n",
+    "- [MagneticPrismApplet.ipynb](./Notebooks/mag/MagneticPrismApplet.ipynb): \n",
+    "\n",
+    "From the Magnetic Dipole applet, we have learned how anomalous magnetic field observed at ground's surface look\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a retangular susceptible prism. \n",
+    "\n",
+    "- [Mag_Induced2D.ipynb](./Notebooks/mag/Mag_Induced2D.ipynb): \n",
+    "\n",
+    "An induced magnetic anomaly can be modelled in this Notebook. The model of the is a rectangular prism. Its geometry and the height of the survey grid above the ground can be adjusted. Moreover, you can change the Earth's field characteristics as well. Based on the prism that you made as well as the defined Earth's magnetic field, the total magnetic field at the receiver locations is computed. In the end, a 2D map and a profile line is produced. \n",
+    "\n",
+    "- [Mag_FitProfile.ipynb](./Notebooks/mag/Mag_FitProfile.ipynb): \n",
+    "\n",
+    "In this Notebook, the fit of one magnetic profile from field observation can be performed.\n",
+    "\n",
+    "### Seismic\n",
+    "- [SeismicApplet.ipynb](./Notebooks/seismic/SeismicApplet.ipynb): \n",
+    "\n",
+    "This Notebooks allows you to model a simple subsurface model to interactively explore seismic raypaths dpending on the applied parameters.\n",
+    "\n",
+    "- [Seis_Refraction.ipynb](./Notebooks/seismic/Seis_Refraction.ipynb): \n",
+    "\n",
+    "A Seismic refraction survey is demonstrated. In this notebook, we will use synthetic seismic data to examine the impact of survey parameters on the expected seismic data.\n",
+    "\n",
+    "- [Seis_Reflection.ipynb](./Notebooks/seismic/Seis_Reflection.ipynb): \n",
+    "\n",
+    "A synthetic reflection seismogram is produced. This Notebook aims to introduce you to the basic principles of reflection seismics. This Notebook also includes vertical resolution and NMO correction widgets. \n",
+    "\n",
+    "- [Seis_NMO.ipynb](./Notebooks/seismic/Seis_NMO.ipynb): \n",
+    "\n",
+    "Consider a reflection event on a CMP gather. The difference between the two-way time at a given offset and the two-way zero-offset time is called normal moveout (NMO). Reflection traveltimes must be corrected for NMO prior to summing the traces in the CMP gather along the offset axis. \n",
+    "We have two CMP gathers generated from different geologic models. One data set is clean and the other is contaminated with noise. In this notebook, we will walk through how to construct a normal incidence seismogram from these data sets. The processing steps include plotting the data, fitting a hyperbola to the reflection event in the data, performin the NMO correction and stacking.\n",
+    "\n",
+    "- [Seis_VerticalResolution.ipynb](./Notebooks/seismic/Seis_VerticalResolution.ipynb): \n",
+    "\n",
+    "When referring to vertical resolution, the question whether two arrivals (one from the top, and one from the bottom of the layer) can be distinguished. In this Notebook, adjust the layer thickness for the middle layer and the frequency of the input pulse to investigate vertical resolution. You can also add noise to the trace. \n",
+    "\n",
+    "- [fourier_transform.ipynb](./Notebooks/seismic/fourier_transform.ipynb): \n",
+    "\n",
+    "In the world of seismology, we use the *Fourier transformation* to transform a signal from the time domain into the frequency domain. That means, we split up the signal and separate the content of each frequency from each other. Doing so, we can analyse our signal according to energy content per frequency. We can extract information on how much amplitude each frequency contributes to the final signal. \n",
+    "\n",
+    "- [2D-LinearInversion-Crosswell-Tomorgraphy.ipynb](./Notebooks/seismic/2D-LinearInversion-Crosswell-Tomorgraphy.ipynb):\n",
+    "\n",
+    "Real world geophysical inverse problems are multidimensional (2D or 3D). This extension of dimension allows us to put more apriori (or geologic) information through the regularization term.  In this notebook, we explore these multidimensional aspects of the linear inversion by using 2D traveltime croswell tomography example. \n",
+    "\n",
+    "\n",
+    "### Gravity\n",
+    "- [gravitySphere.ipynb](./Notebooks/gravity/gravitySphere.ipynb): \n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a sphere buried in the subsurface.\n",
+    "\n",
+    "- [gravityDike.ipynb](./Notebooks/gravity/gravityDike.ipynb): \n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a 2D dipping dike that is infinite along one horizontal direction and buried in the subsurface. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### <center>We love open source!</center>\n",
+    "\n",
+    "<center><a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\"><img alt=\"Creative Commons License\" style=\"border-width:0\" width=60 src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" /></a> \n",
+    "\n",
+    "This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">Creative Commons Attribution 4.0 International License</a>.</center>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Dockerfile b/Dockerfile
index c9f8b3aa18a94be92efdd4abf0755670dfb1a2f8..c15a7aff4092c0fb283357f5ef4851662e30803d 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -4,15 +4,15 @@
 ARG BASE_IMAGE=registry.git-ce.rwth-aachen.de/jupyter/singleuser/python:latest
 FROM ${BASE_IMAGE}
 
-## Install packages via requirements.txt
-#ADD requirements.txt .
-#RUN pip install -r requirements.txt
+# Install packages via requirements.txt
+ADD requirements.txt .
+RUN pip install -r requirements.txt
 
-# .. Or update conda base environment to match specifications in environment.yml
-ADD environment.yml /tmp/environment.yml
+## .. Or update conda base environment to match specifications in environment.yml
+#ADD environment.yml /tmp/environment.yml
 
-# All packages specified in environment.yml are installed in the base environment
-RUN conda env update -f /tmp/environment.yml && \
-    conda clean -a -f -y
-
-ENV JUPYTER_ENABLE_LAB=yes
+## All packages specified in environment.yml are installed in the base environment
+#RUN conda env update -f /tmp/environment.yml && \
+#    conda clean -a -f -y
+#
+#ENV JUPYTER_ENABLE_LAB=yes
diff --git a/dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb b/Notebooks/dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb
similarity index 97%
rename from dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb
rename to Notebooks/dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb
index e7761f73e51a01178c042c1655765a02d528dac3..eb453acb57daef4404e9f2862b3f70f39dfdc5ea 100644
--- a/dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb
+++ b/Notebooks/dcip/.ipynb_checkpoints/DC_Cylinder_2D-checkpoint.ipynb
@@ -19,7 +19,7 @@
     "\n",
     "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
     "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
+    "can be measurable on the surface electrodes. \n",
     "Here, we focus on a cylinder target embedded in a halfspace, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, \"coupling\" among Tx, target (conductor or resistor), and Rx will be significanlty different upon various scenarios. \n",
     "By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey. "
    ]
@@ -93,7 +93,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "794335acaae64ac3af46b49c929e5297",
+       "model_id": "b796445f4b82417c827d983f8edf6991",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/dcip/DC_Layer_Cylinder_2D.ipynb b/Notebooks/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2D-checkpoint.ipynb
similarity index 100%
rename from dcip/DC_Layer_Cylinder_2D.ipynb
rename to Notebooks/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2D-checkpoint.ipynb
diff --git a/dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb b/Notebooks/dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb
similarity index 90%
rename from dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb
rename to Notebooks/dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb
index f4ac24a4f792ddb818f9962f6fcea4a373cd7826..7551b9e739cfbd0bf21136241b77575f65f68ea7 100644
--- a/dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb
+++ b/Notebooks/dcip/.ipynb_checkpoints/DC_LayeredEarth-checkpoint.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -12,7 +12,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -89,9 +89,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "504132f7176e42208fea61102f80a1f1",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(FloatSlider(value=-30.0, continuous_update=False, description='A', max=40.0, min=-40.0, step=1…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "out = DCLayers.plot_layer_potentials_app()\n",
     "display(out)"
diff --git a/dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb b/Notebooks/dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb
similarity index 71%
rename from dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb
rename to Notebooks/dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb
index 80bc2e21edd92e0e9e1ea3d352a12b6affb46c33..503799aafae7f68c938b79941ec21b3213d789c5 100644
--- a/dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb
+++ b/Notebooks/dcip/.ipynb_checkpoints/DC_SurveyDataInversion-checkpoint.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -18,14 +18,54 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# 1. Understanding currents, fields, charges and potentials"
+    "# 1. Understanding currents, fields, charges and potentials\n",
+    " \n",
+    "\n",
+    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
+    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
+    "can be measurable on the surface electrodes. \n",
+    "Here, we focus on a cylinder target embedded in a halfspace, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, \"coupling\" among Tx, target (conductor or resistor), and Rx will be significanlty different upon various scenarios. \n",
+    "By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Setup"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Cylinder app\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DCR_Setup_Cylinder.png?raw=true\"></img>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Question"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
+    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
+    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
+    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cylinder app\n",
+    "\n",
+    "## Parameters:\n",
     "\n",
     " - **survey**: Type of survey\n",
     " - **A**: (+) Current electrode  location\n",
@@ -44,9 +84,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3eb996ad78314314a5284bef96244dbd",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = cylinder_app();\n",
     "display(app)"
@@ -115,9 +170,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "caf54886b2f34b16a3ed4f3513036f64",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(FloatSlider(value=-30.0, continuous_update=False, description='A', max=40.0, min=-40.0, step=1…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = plot_layer_potentials_app()\n",
     "display(app)"
@@ -136,17 +208,17 @@
     "The figures shown below show how the points in a pseudo-section are plotted for pole-dipole, dipole-pole, and dipole-dipole arrays. The color coding of the dots match those shown in the widget.\n",
     "<br />\n",
     "<br />\n",
-    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/dc/PoleDipole.png?raw=true\">\n",
+    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/dc/PoleDipole.png?raw=true\">\n",
     "<center>Basic skematic for a uniformly spaced pole-dipole array.\n",
     "<br />\n",
     "<br />\n",
     "<br />\n",
-    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/dc/DipolePole.png?raw=true\">\n",
+    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/dc/DipolePole.png?raw=true\">\n",
     "<center>Basic skematic for a uniformly spaced dipole-pole array. \n",
     "<br />\n",
     "<br />\n",
     "<br />\n",
-    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/dc/DipoleDipole.png?raw=true\">\n",
+    "<img style=\"float: center; width: 60%; height: 60%\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/dc/DipoleDipole.png?raw=true\">\n",
     "<center>Basic skematic for a uniformly spaced dipole-dipole array.\n",
     "<br />\n"
    ]
@@ -160,9 +232,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 4,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4b9ee38b80ea473ba246d6af4cdce871",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(IntSlider(value=0, description='i', max=17), Output()), layout=Layout(align_items='stretch', d…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = MidpointPseudoSectionWidget();\n",
     "display(app)"
@@ -190,11 +277,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 5,
    "metadata": {
     "scrolled": false
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dd1b6c6a344a4033afb1381c057e0fae",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=1000.0, description='$…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = DC2DPseudoWidget()\n",
     "display(app)"
@@ -230,9 +332,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 6,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "07d04e134ab240388a3e69b48300d869",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=500.0, description='$\\\\rho_2…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = DC2DfwdWidget()\n",
     "display(app)"
diff --git a/dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb b/Notebooks/dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb
similarity index 81%
rename from dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb
rename to Notebooks/dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb
index be91aeee5aafa0aabd50d764f0c1fc71e6f61fff..19959b8aa10c40675f93b8800e274ad75a525a7e 100644
--- a/dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb
+++ b/Notebooks/dcip/.ipynb_checkpoints/PhyProp_ColeCole-checkpoint.ipynb
@@ -72,28 +72,34 @@
     "\n",
     "## Parameters\n",
     "\n",
-    "- $\\sigma_1$: Conductivity of the first layer (S/m)\n",
+    "- ($t_1; t_2$): time interval (resistivity widget only)\n",
     "\n",
-    "- $\\sigma_2$: Conductivity of the first layer (S/m)\n",
+    "- ($\\eta$): chargeability\n",
     "\n",
-    "- $f$ (Hz): Frequency (Hz)\n",
+    "- ($c$) : frequency exponent\n",
     "\n",
-    "- Type: \n",
+    "- ($\\tau$): relaxation time\n",
     "\n",
-    "    - Reflection: Transmission power as a function of incident angle    \n",
-    "    - Transmission: Transmission power as a function of incident angle    \n",
-    "    - Angle: relationship between $\\theta_i$ and $\\theta_t$"
+    "- ($\\rho_0$): DC resistivity \n",
+    "\n",
+    "- ($\\rho_{inf}$): high frequency resistivity\n",
+    "\n",
+    "- ($\\sigma_0$): DC conductivity \n",
+    "\n",
+    "- ($\\sigma_{inf}$): high frequency conductivity\n",
+    "\n",
+    "\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1777bc8b41f245ce996db49b8fe1161c",
+       "model_id": "b336c76cb9fb48c285198c3010d51770",
        "version_major": 2,
        "version_minor": 0
       },
@@ -110,7 +116,7 @@
        "<function geoscilabs.dcip.CondUtils.vizColeCole(sigres='sigma', eta=0.1, tau=0.1, c=0.5, t1=800, t2=1400)>"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -122,14 +128,7 @@
     "         sigres = ToggleButtons(options=['sigma','resis']), \n",
     "         t1=FloatText(value=800), \n",
     "         t2=FloatText(value=1400),          \n",
-    "        )\n",
-    "\n",
-    "# eta  = chargability\n",
-    "# t1,t2 = time interval (resistivity only)\n",
-    "# tau = relaxation time\n",
-    "# c = frequency exponent\n",
-    "# rho/sigma0 = DC resistivity/conductivity\n",
-    "# rho/sigma_inf = high frequency resistivity/conductivity"
+    "        )"
    ]
   },
   {
diff --git a/dcip/DC_Cylinder_2D.ipynb b/Notebooks/dcip/DC_Cylinder_2D.ipynb
similarity index 97%
rename from dcip/DC_Cylinder_2D.ipynb
rename to Notebooks/dcip/DC_Cylinder_2D.ipynb
index 8def5e2632dea423dd2da47c454778cf762c7e69..da6e5707c8449efe230baf040df872a44e3a792b 100644
--- a/dcip/DC_Cylinder_2D.ipynb
+++ b/Notebooks/dcip/DC_Cylinder_2D.ipynb
@@ -19,7 +19,7 @@
     "\n",
     "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
     "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
+    "can be measurable on the surface electrodes. \n",
     "Here, we focus on a cylinder target embedded in a halfspace, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, \"coupling\" among Tx, target (conductor or resistor), and Rx will be significanlty different upon various scenarios. \n",
     "By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey. "
    ]
@@ -93,7 +93,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "4b1c5dd4f93345a2bc4a6f25573d8bd8",
+       "model_id": "b4d224f33e4b406584bfc5462482c705",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2D-checkpoint.ipynb b/Notebooks/dcip/DC_Layer_Cylinder_2D.ipynb
similarity index 84%
rename from dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2D-checkpoint.ipynb
rename to Notebooks/dcip/DC_Layer_Cylinder_2D.ipynb
index 68581f24148ccae268683a4317f77b05202ad46a..36d21e5553836cc4f3e8354271a3c0f285dfc011 100644
--- a/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2D-checkpoint.ipynb
+++ b/Notebooks/dcip/DC_Layer_Cylinder_2D.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -12,7 +12,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -35,7 +35,7 @@
    "source": [
     "# Setup\n",
     "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/DC_ResLayer_Setup.png?raw=true\">"
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_ResLayer_Setup.png?raw=true\">"
    ]
   },
   {
@@ -78,11 +78,26 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 3,
    "metadata": {
     "scrolled": false
    },
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "d3314470c5604306812ba22448b34148",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "app = ResLayer_app()\n",
     "display(app)"
diff --git a/dcip/DC_LayeredEarth.ipynb b/Notebooks/dcip/DC_LayeredEarth.ipynb
similarity index 98%
rename from dcip/DC_LayeredEarth.ipynb
rename to Notebooks/dcip/DC_LayeredEarth.ipynb
index 97c39f9570d6109df78e92d78b414e30402dbeeb..ab5c772d257be2d6e02749365db126541109a294 100644
--- a/dcip/DC_LayeredEarth.ipynb
+++ b/Notebooks/dcip/DC_LayeredEarth.ipynb
@@ -95,7 +95,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "c88c93f061c14bd3bac3e246fab8202e",
+       "model_id": "695517f24db7478cbc0f94f32bc20f2f",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/dcip/DC_SurveyDataInversion.ipynb b/Notebooks/dcip/DC_SurveyDataInversion.ipynb
similarity index 86%
rename from dcip/DC_SurveyDataInversion.ipynb
rename to Notebooks/dcip/DC_SurveyDataInversion.ipynb
index 2cfbd83bd6a76e29ea81ea826aa089a104e0352c..503799aafae7f68c938b79941ec21b3213d789c5 100644
--- a/dcip/DC_SurveyDataInversion.ipynb
+++ b/Notebooks/dcip/DC_SurveyDataInversion.ipynb
@@ -18,14 +18,54 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# 1. Understanding currents, fields, charges and potentials"
+    "# 1. Understanding currents, fields, charges and potentials\n",
+    " \n",
+    "\n",
+    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
+    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
+    "can be measurable on the surface electrodes. \n",
+    "Here, we focus on a cylinder target embedded in a halfspace, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, \"coupling\" among Tx, target (conductor or resistor), and Rx will be significanlty different upon various scenarios. \n",
+    "By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Setup"
    ]
   },
   {
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Cylinder app\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DCR_Setup_Cylinder.png?raw=true\"></img>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Question"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
+    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
+    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
+    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Cylinder app\n",
+    "\n",
+    "## Parameters:\n",
     "\n",
     " - **survey**: Type of survey\n",
     " - **A**: (+) Current electrode  location\n",
@@ -50,7 +90,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "7f21de52afbd4823b82c63cf55166c3c",
+       "model_id": "3eb996ad78314314a5284bef96244dbd",
        "version_major": 2,
        "version_minor": 0
       },
@@ -130,13 +170,15 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {},
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": true
+   },
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "707adbc6365644488ddbfc2d638a3b2b",
+       "model_id": "caf54886b2f34b16a3ed4f3513036f64",
        "version_major": 2,
        "version_minor": 0
       },
@@ -196,7 +238,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "a6a81ca95fbb4e31ac89f6f5be4cfc3f",
+       "model_id": "4b9ee38b80ea473ba246d6af4cdce871",
        "version_major": 2,
        "version_minor": 0
       },
@@ -243,7 +285,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "b066ab561417408cad84d48e338bf329",
+       "model_id": "dd1b6c6a344a4033afb1381c057e0fae",
        "version_major": 2,
        "version_minor": 0
       },
@@ -296,7 +338,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "21dd914ef7e94b0cab60b1a007f162ea",
+       "model_id": "07d04e134ab240388a3e69b48300d869",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/dcip/PhyProp_ColeCole.ipynb b/Notebooks/dcip/PhyProp_ColeCole.ipynb
similarity index 81%
rename from dcip/PhyProp_ColeCole.ipynb
rename to Notebooks/dcip/PhyProp_ColeCole.ipynb
index be91aeee5aafa0aabd50d764f0c1fc71e6f61fff..19959b8aa10c40675f93b8800e274ad75a525a7e 100644
--- a/dcip/PhyProp_ColeCole.ipynb
+++ b/Notebooks/dcip/PhyProp_ColeCole.ipynb
@@ -72,28 +72,34 @@
     "\n",
     "## Parameters\n",
     "\n",
-    "- $\\sigma_1$: Conductivity of the first layer (S/m)\n",
+    "- ($t_1; t_2$): time interval (resistivity widget only)\n",
     "\n",
-    "- $\\sigma_2$: Conductivity of the first layer (S/m)\n",
+    "- ($\\eta$): chargeability\n",
     "\n",
-    "- $f$ (Hz): Frequency (Hz)\n",
+    "- ($c$) : frequency exponent\n",
     "\n",
-    "- Type: \n",
+    "- ($\\tau$): relaxation time\n",
     "\n",
-    "    - Reflection: Transmission power as a function of incident angle    \n",
-    "    - Transmission: Transmission power as a function of incident angle    \n",
-    "    - Angle: relationship between $\\theta_i$ and $\\theta_t$"
+    "- ($\\rho_0$): DC resistivity \n",
+    "\n",
+    "- ($\\rho_{inf}$): high frequency resistivity\n",
+    "\n",
+    "- ($\\sigma_0$): DC conductivity \n",
+    "\n",
+    "- ($\\sigma_{inf}$): high frequency conductivity\n",
+    "\n",
+    "\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1777bc8b41f245ce996db49b8fe1161c",
+       "model_id": "b336c76cb9fb48c285198c3010d51770",
        "version_major": 2,
        "version_minor": 0
       },
@@ -110,7 +116,7 @@
        "<function geoscilabs.dcip.CondUtils.vizColeCole(sigres='sigma', eta=0.1, tau=0.1, c=0.5, t1=800, t2=1400)>"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -122,14 +128,7 @@
     "         sigres = ToggleButtons(options=['sigma','resis']), \n",
     "         t1=FloatText(value=800), \n",
     "         t2=FloatText(value=1400),          \n",
-    "        )\n",
-    "\n",
-    "# eta  = chargability\n",
-    "# t1,t2 = time interval (resistivity only)\n",
-    "# tau = relaxation time\n",
-    "# c = frequency exponent\n",
-    "# rho/sigma0 = DC resistivity/conductivity\n",
-    "# rho/sigma_inf = high frequency resistivity/conductivity"
+    "        )"
    ]
   },
   {
diff --git a/Notebooks/em/FEM/.ipynb_checkpoints/EM_EM31-checkpoint.ipynb b/Notebooks/em/FEM/.ipynb_checkpoints/EM_EM31-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c2d1244267a58adae5f6b6d7e34efe2548f8fdbb
--- /dev/null
+++ b/Notebooks/em/FEM/.ipynb_checkpoints/EM_EM31-checkpoint.ipynb
@@ -0,0 +1,121 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.em.ResponseFct import interactive_responseFct\n",
+    "from IPython.display import display"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Computing Apparent Resistivity\n",
+    "\n",
+    "In this app, we compute apparent resistivity using the response curves for a two-loop Frequency domain system for a two-layer earth. Below figure shows horizontal coplanar (HCP) configuration. \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/ResponseFct/ResponseFct.png?raw=true\"> </img>\n",
+    "\n",
+    "Assuming the coil spacing $s \\ll \\delta$, where $\\delta$ is the skin depth, the apparent conductivity is given by\n",
+    "\n",
+    "$$\n",
+    "\\sigma_a = \\int_0^\\infty \\phi(z) \\sigma(z) dz\n",
+    "$$\n",
+    "\n",
+    "Where \n",
+    " - $\\sigma_a$ is the apparent conductivity\n",
+    " - $\\phi$ is the response function\n",
+    " - $\\sigma$ is the conductivity structure\n",
+    "\n",
+    "Note that in the following plots, the y-axis is a normalized depth: $z/s$ where $s$ is the source-receiver separation.  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Two different configurations of source-receiver configurations are considered:\n",
+    "\n",
+    "- HCP: Horizontal coplanar system. The associated dipoles are perpendicular to the plane of the loops and are therefore in the vertical direction. The response function associated with this is .\n",
+    "\n",
+    "- VCP: Vertical coplanar system. The associated dipoles are perpendicular to the plane of the loops and are therefore in the horizontal direction. The response function associated with this is .\n",
+    "\n",
+    "For more, see the <a href=\"http://gpg.geosci.xyz/en/latest/content/electromagnetics/dual_loop_systems.html\">GPG section on dual loop systems</a>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Parameters:\n",
+    "\n",
+    "- h$_{boom}$: height of the source-receiver boom from the surface [m]\n",
+    "\n",
+    "- h$_{1}$: thickness of the first layer [m]\n",
+    "\n",
+    "- $\\sigma_{1}$: conductivity of the first layer [S/m]\n",
+    "\n",
+    "- $\\sigma_{2}$: conductivity of the second layer [S/m]\n",
+    "\n",
+    "- configuration: configuration of the source-receiver"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3e8a0992d60047b691fd233e41a9f8ee",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='$h_{boom}$', max=2.0), Floa…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app = interactive_responseFct()\n",
+    "display(app)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/FEM/.ipynb_checkpoints/EM_Pipeline-checkpoint.ipynb b/Notebooks/em/FEM/.ipynb_checkpoints/EM_Pipeline-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6ac19ffde41c4d264d15c32e40064a15a8ac5a69
--- /dev/null
+++ b/Notebooks/em/FEM/.ipynb_checkpoints/EM_Pipeline-checkpoint.ipynb
@@ -0,0 +1,96 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Expo site characterization using EM-31\n",
+    "\n",
+    "\n",
+    "## Import Necessary Packages"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.em.FDEMpipe import interact_femPipe"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Pipe Widget\n",
+    "\n",
+    "In the following app, we consider a loop-loop system with a pipe taget. Here, we simulate two surveys, one where the boom is oriented East-West (EW) and one where the boom is oriented North-South (NS). \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/FEMpipe/model.png?raw=true\" style=\"width: 40%; height: 40%\"> </img>\n",
+    "\n",
+    "The variables are:\n",
+    "\n",
+    "- alpha: \n",
+    "$$\\alpha = \\frac{\\omega L}{R} = \\frac{2\\pi f L}{R}$$\n",
+    "- pipedepth: Depth of the pipe center\n",
+    "\n",
+    "We plot the percentage of Hp/Hs ratio in the Widget. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2696f379819743caba556444fac4839a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=1.0, continuous_update=False, description='alpha', max=5.0, min=0.1), …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "pipe = interact_femPipe()\n",
+    "pipe"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/FEM/.ipynb_checkpoints/FDEM_Planewave_Wholespace-checkpoint.ipynb b/Notebooks/em/FEM/.ipynb_checkpoints/FDEM_Planewave_Wholespace-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ba9d571bf4c99e9dd061437dc8c7b246f190b66f
--- /dev/null
+++ b/Notebooks/em/FEM/.ipynb_checkpoints/FDEM_Planewave_Wholespace-checkpoint.ipynb
@@ -0,0 +1,764 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "hidden": true
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "c59bfd9b-4293-433e-83db-820c33f4c378"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from IPython.display import display\n",
+    "from geoscilabs.em.PlanewaveWidgetFD import PlanewaveWidget, PolarEllipse, InteractivePlaneProfile\n",
+    "from geoscilabs.em.DipoleWidgetFD import InteractiveDipoleProfile\n",
+    "from geoscilabs.em.VolumeWidgetPlane import InteractivePlanes, plotObj3D"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 4,
+        "hidden": true,
+        "row": 6,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "95f1e819-0749-42ff-ad94-6d428298a5a7"
+    }
+   },
+   "source": [
+    "# Planewave propagation in a Whole-space (frequency-domain)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 4,
+        "height": 4,
+        "hidden": true,
+        "row": 6,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "3bd63ed4-b758-48e5-a662-b68e4b2ce034"
+    }
+   },
+   "source": [
+    "# Purpose\n",
+    "\n",
+    "We visualizae downward propagating planewave in the homogeneous earth medium. With the three apps: a) Plane wave app, b) Profile app, and c) Polarization ellipse app, we understand fundamental concepts of planewave propagation. \n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set up\n",
+    "\n",
+    "Planewave EM equation can be written as \n",
+    "\n",
+    "$$\\frac{\\partial^2 \\mathbf{E}}{\\partial z^2} + k^2 \\mathbf{E} = 0,$$\n",
+    "\n",
+    "For homogeneous earth, solution can be simply derived:\n",
+    "\n",
+    "\n",
+    "$$\\mathbf{E} = \\mathbf{E}_0 e^{ikz}$$\n",
+    "\n",
+    "$$\\mathbf{H} = - i \\omega \\mu \\nabla \\times (\\mathbf{E}_0 e^{ikz}).$$\n",
+    "\n",
+    "where complex wavenumber $k$ is \n",
+    "\n",
+    "$$ k = \\sqrt{\\mu \\epsilon \\omega^2 - i \\mu \\sigma \\omega}.$$\n",
+    "\n",
+    "In time domain, the wave travelling in the negative z-direction has the form:\n",
+    "\n",
+    "$$ \\mathbf{e} = \\mathbf{e}_0^- e^{i(k z + \\omega t)}.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 21,
+        "hidden": false,
+        "row": 0,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "baf63d98-9356-4c2d-81d7-8f8cd1a6da2d"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGKCAYAAACsKF5NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD24ElEQVR4nOydd5gkZbm37+qcJueZ3dkJmzO7bCJIkLAEBTEdBBQDIMecEBRRjx4DYDrgOYJ+igKCoAQVBAQFSYvAwsKyaXZmdnLomemezl3dVe/3R4ftnhx6enqWuq9rlO2qrnq7u6p+7/O8T5CEEGhoaGhoaOQCuvkegIaGhoaGRgJNlDQ0NDQ0cgZNlDQ0NDQ0cgZNlDQ0NDQ0cgZNlDQ0NDQ0cgbDJNu10DwNDQ2Ntw/SfA9As5Q0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGw3wPQOPtixACVVWRJCn5p6Gh8fZGEyWNrCOEIBqNoigKoVAo+bper0/+6XS65J8mVhoabx80UdLIGgkxikajAEiSlBSdhNWkKApCiDQh0ul0YwqWJlYaGscekhBiou0TbtTQmAoJsUkVo4QQybI8obgIIdL+NLHS0JhT5v3m0SwljTlDVdWkmw6Y0brReO9JTKai0SiRSCRtW0KshBCYzWZNrDQ0FhCaKGlklIRFE4lEUFUVmJkYTUbieCOPmypWr7zyCps2bUrbV6/XYzAYkkKl1+s1sdLQyCE0UdLICIk1oWg0OqdiNBmpAiRJEgaDITk+IOlGTLgChRATugE1wdLQyC6aKGnMikTwwtDQEPn5+dMO787WQ38yyyp1zSv1PTqdDoPBoImVhkaW0ERJY0YIIZIPclVV2bdvHzt27FhwD+vJxEpVVcLh8Kj3JKyrVFegJlYaGrNHEyWNaZGaY5Rwgen1eiB7Vk82GE+sgLTwdVmW07alugET1pUmVhoaU0cTJY0pMV6O0duRiSICx8u10hKDNTSmhiZKGhMyXo6RxmimKlbhcBin08nixYu1XCsNjRFooqQxJpnIMdKIMfK7C4VC+P1+dDpdMnx+ZBKxJlYab1c0UdJIkq0co5HnfDs+aCeKUpxKYrAmVhrHKpooaeRMjpFGjKkkBkcikTRB1xKDNY4VNFF6G5Ma1p14wGlilLtMNddKSwzWWMhoovQ2ZCwxertG0h0LaInBGscSmii9jRgrx0gTo+wzSWX+jDHTxOBwOIzFYsFisWhipZF1NFF6GyCEIBgMpj2kckGMotEovb29mM1mHA4HJpNpvoeUNebzAT9ZYnBHRwclJSUUFhambdMSgzWygSZKxzCpOUa7du3ihBNOyIkHSCQSoa2tjd7eXkpLS/F6vbS1tRGJRDAYDNjt9rS/t5NYzTeJ6yMhPAkma8KYCLDQIgI1ZosmSscYibDuXMwxCofDHDlyhIGBAWpraznhhBOS41QUBZPJRCQSwe/34/f7cTqdHDlyJClWDocjTayMRuN8f6RjkrHC9CcKX080a9SaMGpkAk2UjhEmyzFKRGPNxwMhFArR2tqKy+Wirq6OZcuWodPpUFUVp9OJ0+kkGo2i0+mwWCyYzWYsFgv5+flYLBaMRiOyLCfFqq+vD7/fTzQaxWg0JkUqIVqJdhW5SrbWlLLBZGKlJQZrTJfcvns1JmWqOUYJUcomgUCA1tZWPB4P9fX1rFy5EkmSUBSFvr4+nE4noVAoKZaqqhIIBAgEAmnH0ev1SaGyWCwUFBSMKVa9vb34fL6k1RUKheju7k6KVi6JVS4/gDMxedESgzVmSu7cpRrTYro5RtkUJZ/PR0tLC8FgkPr6elavXp0Uo4RllHAtTgVFUcYVq4RQWSwWCgsLMZvNGAwGZFlm9+7dKIpCT08Pfr8fRVEwm82j1qxS10405rbKhpYYrDEZmigtMGaaY5QNUfJ4PLS0tCDLMo2NjRQXFyNJEtFolP7+fgYGBpLWXCZQFCVpJaViMBiwWCz4/X5sNhtFRUVYLBb0ej2yLOPz+fD7/XR1deH3+1FVNU2sHA4HNptNE6ssMp3E4MT1tGjRIi0x+BhEE6UFwmxbR8ylKLndbgKBAE1NTTQ0NFBUVATEouwSYpRN12E0GsXn8xEIBOjq6kq+nhAri8WC3W6npKQkmYsTDoeTAtfR0UEgEEBV1eS+ib+3g1jlUj3CscQqEongdrtZvHjxhInBWhPGhYkmSjnOWGI0kxtrLkRpaGiI5uZmDAYDZrOZzZs3AyDLMn19fQwNDeXUon5CrHw+X9rrRqMxuWblcDgoLS3FbDaj0+mSFb39fj9DQ0NJsbJaraPEaqqThFx66I/FQhjfeCKTmhg8sgmjJlYLA02UcpRMt47IlCgJIRgYGKClpQWLxcLKlSvJy8vjhRdeIBwO09fXh8vlyikxmoxIJEIkEhlTrBKWVX5+PmVlZVgsFiRJIhgMJsVqYGCAQCCAECIpVolIQKvVmhOJyscSE4nmZInBWsfg3EcTpRxiLltHzFaUhBD09/fT2tqK3W5n7dq12O12IBby7XK52L9//6zHmUskxMrr9aa9bjKZkqHrBQUFVFRUYDab08TK5/PR399PMBgESLOsEr9zrrIQLKWZegsmEystMXj+0UQpB8hG64iZipIQgt7eXo4cOUJBQQEbNmzAarUCEAwG6e3tZXh4OC20+1hHluVRM20As9mcdAMWFhZSWVmJxWJJlnlKWFZutxufz4fX68Vms6W5Aa1W67x/h7n+O2Z6fFpicG6hidI8koikczqdGI1GHA7HnLkMpitKqqrS3d1Ne3s7xcXFHHfccVgsFoBkAqvH48n4OBcy4XCYcDic9r1IkpRmWRUVFWGz2XC73SxbtoxAIIDf78fr9dLb25usUZgQq4QbMOE21MieaGqJwfODJkrzwMiw7qGhIRwOB3l5eXN2zqmKkqIodHV10dHRQXl5Occff3yy9pzP50smqI5Frs+w5wMhRFKsEgQCAXw+H5IkJS2rkpISqqurMZvNCCGS+wwPD9Pd3U0oFEKn042yrOZCrHL9d0wEOswXU00Mfuutt1izZg2gidV00EQpi4zXOkKn0835GsNkohSNRuns7KSrq4vKykq2bt2arC3n8XiSpX0mOr7G1BFCEAqFCIVCDA8PJ19PFSqLxUJpaSmLFi3CZDIlK174/f5RYjUyITixxjXTseXy76mqak6Ob2SQRTgcRq/Xa4nB00QTpSwwWY5RNhJbxztHJBKhvb2d3t5eqqur2bZtW7Icz/DwMH19faMqKUzn+BrTI1WsUtHpdGlrVmVlZSxevBiTyZSWROxyuejs7Ew+EEe6AU0m05QeeLn8UMx10RzJVBODR77n7ZoYrInSHJLaOgLGN/vnw1KSZZm2tjb6+/tZvHgx27dvT87q3G43vb29ox6MGvOHqqoEg8FkNF+ChFglLKtEJKDJZCIajSYtq8HBQdrb25FlGb1eP2Z7kMS1meuTi4UmSuMxU7FKzbUKBoMYjUZsNlt2Bp0FNFGaA6abY5QoRjqXJEQpHA7T2trK0NAQtbW17NixIymKQ0ND9PX1jepGqpF5MvVQHU+sUovYms3mZCSg0WgkGo0mLatUsUr0sgoGgwwPD1NQUJCTvayOFVEaj+nkWt12220UFxdzxRVXZHuYc4YmShliNjlG2XB9KYpCa2srwWCQuro6VqxYkTzv4OAgfX19Y4Y5TxXNfZdbTFbENrU9SKJ6ReI9Q0NDDA4O0tnZOWbjRYfDMa+9rI51UZqIkc+UROv6YwlNlGZJJnKMdDrdKDM9U/j9flpbWxkcHKS2tpaNGzcmLbOBgQH6+/tHtRDIJpqYZZfxitjedtvveOc738m2beuJRqNUVVUl232MbLzY2to6qpdVNhsvvp1FaSSyLGM2m+d7GBlFE6UZMt3WERMxF+47r9dLS0sLoVCIhoYG9Ho9hYWFCCFwOp309/dnXAg1cVlY+P1+HnjgEc466wOcdNJ7GBrqYHBwELfbTWtra7KawUTtQcZrvDiyS3Ame1mpqqqVbooTCoU0S+ntTibFKEEmrYXh4WFaWlqIRqM0NjZSVFSEJEkMDAzgdDrp7u6eVi+jqaLNXKfOfIt3X18fbrePkpJGFi06nnA4Vufv8OHDbN26Om3f8YrYpopVansQnU6XrCPo9/vTelmZTKZR7UFmIlYLwVLK1m8cDoc1S+ntyng5RpkgE9F3LpeLlpYWABobGyksLARiDxWn00lnZycWi2XOEnRz/SGhEbtGbLY8enrC9PaGsdkkli5tBGK1+S644N3JfSf7PSequJ5Ys0ptDyJJUppl1dXVRSAQmFHjxYUgStmy5mRZ1iyltxuz7WM0FWbqvktEzLW0tGA0Glm2bBn5+flALP/I6XQmG+upqjrns7f5tgA0xiYWhCNx//1/Z+PGk6mqWkJJSfo+Pp+fp59+jMsuu2hWv+NERWzHag8iSVJaL6vUxovj9bJaCKKUrTFqltLbCFVVk60YKioq5jRpbbruu8S6UGtrK1arlVWrVuFwOIDYzKm/v5/BwcG0Y+b6TawxN/h8fm655Tdceumn2Lnzg4x3GZhMJjZs2DBn40gUsR2v4nrCii8rK0uK1Xi9rIQQyU7CCTdgrq0xZctS0kTpbUBqjlE4HKarq4uqqqo5PedU3XdCCPr6+mhtbSUvL49169Ylk+bC4TD9/f3jNtab6yg3LYoutzh06BBdXW5WrNjGe97zMUA3riBBbI1o8eLFyX9naxKTEKuRxX1Tc6wKCgooLy9PuqkS0X+hUIjBwcFRvaxm0ngx02SrPp8WEn6MMl6OkcFgmPOk1sS5JjqPqqrJ9hFFRUVpFbtDoVB84dqticICYq4e+nv37qWqqgFFKcduz0dRSPa9mgi328Uf/nA311zz6TkZ13QZWcQWjtYFHB4exm63U15eTmVlZdJSGKvxIjBKrLLReDFb9fk0UTrGmCzHKBvlfxLnHOs8qqrS1dVFe3s7paWlbN68Oe0GTIjRbM6RSTRRnD9iQQxFHD7sJRIJUlpaStyjOyWKi4v59KdzQ5DGI1EX0OfzIcty2jpvqmVVVFREVVUVJpNpVC+rsRovpnYJzmSlDc1SmhlvS1Gaalh3Nsr/JM6T+kBXFIXOzk46OzupqKhgy5YtyXIvgUCAvr6+tMrSU2Wu3Xcas8f87W8TOfdc1C1bprS/EILh4QC33fYnLr7442zefMKMzhsMBnnzzSa2bVsHgG7/fvRPPEHkc5+b1nGMd9yBunIlyvbtMxrHVBh5HY9XxHZkxfXU9iCJ8kypvawS789E48VsBjpoorSAGUuMJprNZGudJGGRRaNROjo66OrqGlWx2+/309vbO2qheKrkomjIsozT6Uw+PBJ/oyYH7e0YnngCXUsLRKOQn4+yejXKGWcg4tGGuYLxllsQy5cTPfvsOT/XK6+8xqFD/Zx88k4+9KErJlwzSmC4917EkjqUHemiEYlEcTr7j+734INE3/e+tH3M3/gGkfPPR922bdzjR885B9P//A/K5s0wh9UdpnI9T1ZxfbL2IKmNF6fby0oLdJg5bwtRmmmOUbYe5IqiMDw8zEsvvURNTQ07duxI5ml4vV76+vrGbaw3VXIp0CEhRuFwmOLi4mRYsMvlSraeNplMmEwm8jo6yL/rLpR3vAP5fe9DFBYieTzoX3gB6fBhxKZN0x+sosDIPJixXpsjZvs7/O1vj7F8+RaKitayZUvsWLO9VPPz83jnO98JgP3IEaRoFHXZsuR2ye1G8ngQKcEQYyEqKhBlZehefRV1jqyl2VohE1VcT60LmGgPYjQak3UBx+plZbPZ0ipYJBo1ZitPSROlBUQ2coxmgyzLHDlyhL6+PgwGA9u2bUuOzzM4yK9/9ztOOPHEZD+VXLR2poMsywwMDBAKhSgtLaW6ujqZQ5W6GC+ESEZl2R9+GO+qVXRv2IA0PIwpGIw9ON7xDkwmEwZGu7ykwUHM//VfGOKVk83f/jbKtm1ITU3o2tuJXHwxxr/8ZdRr6qZNIMsYHn0U/Z49EAyiLllC9H3vQ5SVHT3Wjh1Ihw6ha2tDFBcT+Y//QNTXY7j/fnTNzdDaiv7JJ6GggPD114/6HiwvvEDhc8+hD4XAYkHZupXo+ecnt+tcLvS33pp2fHnRIvbt20/DolU0NIexPf8ndLKMWllF9Ix3QlFR7M2RCPrnX0B36BBSOJS2Xf/kk+g6u6C7B/1LLyEcDiKf+DgAAwODPPvsM3zoQ+/B0dyMsmJFmtJJ7e0IkwlRWTnp76yuWIH+jTfmVJTmgoSVNFYR21TLKhEJOFKsUntZJcbY3t6ekcaLE5FLz7RMcEyK0lT7GM0XoVCI1tZWXC4XS5YsYdOmTTQ1NaHT6ZJ1x468/DJSVxeGgQH2NTXx1qFDfPCyy3j+3/9m2cqVlJaWEg6HsVqtUzrnXK+PTfT9JhJ5g8EgZWVlVFVVTdrKw2w2YxkexuByYbn4Yurq6lBVFVmWCYVCeL1eZFlGURQao1G8Hg/R4eGYC3CMh5b+xReRr7gCUVMTcwH+5S+jXwOM99wDoRDyF7+IsFoxPPEExttvR7722qQlpd+1K/a+igoMDz2E6a67CH/jG0Tf/36k3t4J3XdSfz/2xx+n7+Mfp3D1aggEkPr70/ZJPb7+wQcx/O53DH32Ol59tYey5zvIj6pEL70ULBb0u3ZheOBBopdfDnodhscfh7BM5JIPjdqunHEG0sDAmO67vLw8tm3bCoClvx+xdGnadl17O2pNDUzhAahWV2N88cVJ95sN2byfJ6u4PrI9iMFgoL+/n4GBAYxG46jGixP1stI4hkQpEdY9nT5G2SYQCNDa2orH46G+vp6VK1ciSRKBQACfz8eBAwcIhUIMDQ3x1r59nH/66RCNsra+ntW1tdDfT5Hfj3lgAI/bzZ333stnvvhF3jh4EL3ZzJq1axkaGqKwsHDM2VO2o++mK0YjkeIuSxEvmZRwr4xc2NXr9ZgtFsKKgsvlQjidNADRSISBgQGqVJXo1q2oNTWx88fXOpQdOxCLFsUOYjQi+f3od+8m/K1vIeLlmKLnnIP5mWfQtbWhNjTEXjvxREQ8d03ZsQPDM89AMAhTmSDEfxej0wnhMNhsiLq6tF2iJ56IWlmJJEm8bCmifsiEbwDOPOkU9D//OfKVV0LcslROOAHTq7uRensQxcXoDhwYf3tNzbjDMhj05OXFvmd9KIQY8R1L7e2I2trJPx+A2QxT6FY8U3IlynO8iuuJYrWRSISKiopkexCDwTBuL6uEWKW6ASfrZZUr30OmWfCiNJs+RtnC5/PR0tJCIBCgoaGB1atXJ9dghoaG6OiIVWdOVGUoKSnh/PPPT7uxdfFZ+uo1a5KvfeYjH4GhIUojEfSqCj093PurX3H5FVcw6PFwoKWFM3fuxOl0oqrqhPXEMkHiJonExSAQCFBaWjptMUoeL/59SG43oqJi3P0kScJkMlFcXBz7d/xmTrhdhBAMGwwMtbUl912sKITsdohGjxYFHRgAwPTDH6afQFHA5To6rtTgivi5pHAYMQVREqWleD7wAewvvoj5kUdQq6tRdu5EXbky7fi/+c3v2bjxVEprj0fmNYjISL7Yw8/029+mH1RVwONB0ukn3M4EotTX18cTT/ydK6/8MIrFgmFkcEB7O5GtWyf9fEBSbOeSXHZZJYRHlmW6urqSr4+suF5QUJCsTJEqVgMDAxw5cmTMXlYjxWohlFyaLgtWlDLRx2iu8Xq9NDc3I8syDQ0NlJSUJMUo0csokW+ROuvxeDw8++ijnHfqqROfIP5Zq6urY/+ORPjPj3wEZBlFllmZlwednbz61FMsbmykqLyc3/zxj3z0yisZGBoCoLS0NCOfVZIkFEWht7cXv99PaWkplfHZ/kwR5eWI0tLYovmKFePvZzIhpTYojFcHkHQ68vLyYm07iovJT3EBSkBYlhnq6UFRFPR6PVZVZRHg+fKXMRYXz+zBN4XPK69ejbexkdLCQvTPP4/xl78k/P3v449ECPllAl4LW7e+m/z8PKSUSgcJMZQ//gmwjSGA/sDE2wGksT9TdXU1GzZ8GIBwWRnG3t6jb3E6kYLBo5aSEJh+8hMiH/kI6PUYfvtboh/5yFGLtrsbNWGBzgHZSNOYLWOJxURFbFPXrBLtQfR6/aheVgmxuvPOOwkGgyiKwrPPPsuaNWuSk7KFzoITpbloHZFp3G43LS0tqKqabB8BjNtYb+TYTSYTDY2NsxpDXn4+efn5oKrsPO00/D4fQa+XM9auhc5OevbvRxaC0h07+M1dd3HhBz6AwWKht7eXZSlRV1MhGo0SCATwer2Ul5cnawVmgsj734/xl7+MhYGffDKioADJ60W/axdqSQnqpk2I2lp0u3ejHH88UiSC4bHHxj1ewgWo0+vJy8/HHo8mi0ajhMNhguvWYbjvPrrf8Q6iDgdmRSGvpwexciXm/HwmjXPKy0OKW1xjIfX3Y+rsRK6qAr0+6SY70tZJXnE9AakaKaynoGCMUHe7DXXlSgxP/p3oaadDngNCIaSODsSSJZNvN5nAbkNyu0YdenjYQ29vK1u2rMe7dCkFzz5LotuW1N6OsFqTwR5IEtHzz8fw0EMQCBC9+OKkIAFIBw/OWZBD8hw5dL+PxXQsmEQR2/EqrhcVFVEzwspdsmQJr732Gq+//jp/+MMfeOutt3C73Xz/+99n586d0xqroihce+213HHHHQwMDHiBJ4CrhBDjX8hzyIIRpVQx2rNnD8uXL0/WfcsVEhW7dTodjY2NFBQUALEfPdHPaLzGeqmWksViYeWKFZn1y0sSer2exfHZ7rpVq2KvDw9z7tatFPh8DLS3093UxLLiYh76299YsXYtK9at46V//5vt27ePOfMbGBjA7/ej1+upqKhIuiCnPqyJb1x15Urkz30OwxNPYPrBD2KutLw8lDVrEPF8meh552G46y7M3/gGoqiI6Omnoz9wAJi6391gMMTceB/+MOYnnqDxwQfB60VYLESWLGGgoQHvwACWSITBgQFCPT2YzWaswSDmlPNETz0V4+9/j/naaxEFBcjXXZd+omgU2z/+QV5/PxKglJaz5+R3cfiglw0bdBhNJqITfCfRs89Gv+sljH+4F8kfQJjNiEU1RJfUTWm7svl49I/9DdMtt6A6HEQ/+tHY60o0uZDvr6tDPP88uqYm1GXLYkEOixalWYFqTQ3GpiYi738/orw8+brU34/O6SSyefOUvveZsBDWUjLhVlNVlfz8/ORzJJWKigrOPPNMvve973HrrbemvWe6/OAHP+Dhhx/mpZdeorGxcRHwa+BO4JyZj37mSJP8wPP+648V1r1nzx6WLl067QfgTHjhhRfYsWPHuBeYEILBwUFaWlowm800NDQkexYpioLT6cTpdE7YWE9VVY4cOUJDfCHd6/Vy63/9F9d95jMZ+xx+vz+ZFzTV/Y0GA0gSTz/7LGedfz4vvvIKnmCQd55zDk/9619UVVWxaNEiCgoKcDqdOByOaf8miqLMWZ2wI0eOsGTJkowfO+ECTNRnC4fDKIqSTMpMuGJMJtOYLkCv10s4HOb++x9n8+bTqKoaf60nm5SXC8zm2PfWEAyOX9EhHMb4//4fypYt6F96iUhKeSLjHXegrliBsmPHnI2zu7ub0tLSSQMB5hOXy4UkScm+ZtOluLiYysrKCZsgBgIBLrjgAnbt2jXDUcZYsmQJN9xwAx//+McBJEmSGoHDQL0Q4sisDj4DctZSGkuMsl2TLnGusYIEEu0jWlpasNvtrFmzJplrk2islwgwmIyRiacOh4Nrr7sOZpkwm3aOae6fmjd01jvfCcEgxy9fzuDgIL27d2Pq66OhsRFXezv3P/kkF77//extbqZ68WJqa2uPyTbNCcaLAkxUlg+Hw7jd7mS+SmKB22w2E4lE+NWv7uXccy/m3HMvQafLDTdUZ2cXL774Mh/4wAUAqKtWoSas6VSiUYx33IFy9tmojY3oDx5Et3cv6tq1AEQuv3zOx7oQFveFEDMKLLJardTU1EzJCxQOh2ctzMPDw7S3t7M5xbIVQjRLkuQB1gNHZnWCGZBzopTaOgLGDl5ICEU2GCmAQohkxe6CggI2bNiQzBWKRCLJ/ITpiObIz6eqKvv27mXdiFDh2SBJEsxQyNV4xQm/309+QQF5DgeL4msxjuJiPn7RRXhcLvKGhzFbrSgGAz/+yU/46vXX09bTw6DHw5atWxkeHsbhcMx5FOB8odfrsdlsaQ+UxOTq4MGDdHe7qKxcyYYNp+PxBIhEVIxGEyaTMW5V6WddmWGmlJaWsmTJiZPvaDAQueqq5D8jl146h6Mam2PRfZdwfyeCoaZCJiZ+iZYhY7gI3cC81PDKCVGablh3NkUpkXSqqio9PT20tbVRXFyc1j5ivMZ6M0UIwYGDBzMqSsygzJCqqjEx8vnIz8+npqYGaQx3VMLFUFdfH7OwolG+9ulPw/Aw+X4/+nAYurv5y333cdrZZ2MrKOBfL77IBe99L263Oxb2ChiefhrCYdSaGkR1dax6wBzWT8sGzc3NlJcvRpKqsNsLKCoqx2SyI8sR7HYbsiwTDIbweDxJF6DJZMJoNCYFKxvhzzqdhHEBfdcLwVKaKkVFRVRWVk77+89E3bvEUsMYBZ4LAc/IF7PBvIrSTMO6sy1KHR0d9Pb2UlZWxvHHH580mROdaV0uV0ZnbwaDgfe///3J0OZMMdURTlWMUhn1i8V/w9KyMkoBolEuvegiAIJeL2uLi6Gjg/0vvYS1sJDN/f389vnnuQwIAQGgQpIQZWWIuEip1dUxsSoqmlLo9Xw+uPx+PyaTnVdf7WDZskLKyspITW/S6aRkfb9UFEUlEpGR5Vg0ViQSQQgVvd6QtKiMRhNGoyGjn6+7u5tXXnmVD37woowdc65YKO67ySYTFouFmpqaKfW7GgtZlmdtKRUWFlJbW8vu3bvZuHEjAJIkNRCzkt6Y1cFnyLyIUiKSLnWRezph3dkQpWg0SmdnJ263G4fDwdatW5MzmVAoRG9v75R7Gc2E3915J5e9612TisFUkWBS952qqniGh/H5fOTl51NdUzMns3Sr1UpjYyMIwQnHHx+zRD0eTgGMQAfQBlQKwR/7+9nW30/Va69xGFgNCIsFtaoqJlA1NTGxqqqCHFnD8nj8/M///I7LLvskJ5xw+rTeq9fr0OvT16uEiF2PsdBhmUAgQCQSL4tkNKaJlV4/MxdgXV0d27cvOSZdY/PBRGPU6/WUl5dTWlo6q88RCoUyEuxx5ZVX8sMf/pDTTjuNhoaGfOCHwOPzEeQA8yBKQojkAvBMc4zmUpSi0ShtbW309PRQU1NDcXFxslLwdBvrzYYtU82enyqSNK6lpKoqHo8Hn9dLXl7ezMRoFmtWAOK446gtLUXp6KBuYICG/n6E280pQAEx6ykhSs+EQphbW9nR2sqrwDqIhWWXlCQFSq2pwSgELFqUterfr7/+BocPO9m+/Qwuu+yTGRP0WGUkA0ajATiaFJtwectyZJQLMOH6m6oL0OkcoK+vk82b12dkzHPJQhHOsSgsLKSqqiojrtJMVQi/9tprcblcbIkVNO4C/g5kf7EwTtZFKRPJrnMhSrIs09bWRn9/P4sXL062j/B6vfh8Pvr6+pKLgtmgvqEBKYN5SmN926qq4vV48MxGjFKOP9tHhVi8GCW1NUIkQuHgIJLTic3p5DynE9Hfz9ZwGBE/XzexEKH9wJ7BQf5jcJA9b75JDVAPCIMBqqqOuv7ilhUzdJmMxT//+U8aG4/Dbl/O2rVLESI7ZXASJZNis+WjnyfVBRirXi3HXYD6pEUVEyzjmPdhrlshkPtjHOm+s1gsVFdXZzSNJRivmD9b9Ho9N998MzfffDNA3qwPOEvmxX03294+mRSlcDjMkSNHGBgYYMmSJezYsSN5Mfl8PpxOJ36/f8rVuDPFj3/0I770sY9hzpBLKjX6LiFGXq8XR14eNZlw083FQ8JoRFRWIiorSf7aQmDw+8HpRHE6Obe/H2lggOWDgyxJJLACKuADbolG+VpHB4c7OhDACkAGjAUFMRdgwv1XXR1LAp0gLyQVRVFoaWmhunoZQlTj9RrIz8/uNTIe47kAFUWJFwqVGR4OJquKJFyAixY1JvtZ5TK5Pj44OkadTkdFRcWsXXVjcSz2UoK3sSgFg0FaW1txu93U1dWxbNmyo72MPB76+vqSCafZFiSAr33ta5BJN6EkoQrB8PAwXo8Hh8OR+TWjbDwsJClWqNXhQKmvP/q6omAYGiLS389GpxPiVtWX443czJAUtp8BVwwPIw8Ps+/AAU4lJmBWnQ6pshIxUqzy85Oim3A/B4Pw5JP7OPfcpSxbdrSY6lSYj2eqJMEvf2nlxBNNrF9/NJFbVQW33GJmzZpm3njjRU4+eXvSa5BIAE4kBOdSKP9CsJQKCgpoaGiYs6jGY7EVOuRISPh00el0E1ZImIhAIEBLSws+n4/6+npWrVqVvMCHh4fp6+tL65uSrZboI9n92musq6nBmIGFTKGq+Hw+AoEAJpNpTgIYJOZ5BqvXxyL1ysqS4tPb00NFfj7y4CA1cYtKdTr50sAAkqIwDCRa1j0JNKoqq7q7ube7m0tefZVEnWy7zZYMU/+XP8qRoJmTzziP88+/cBYDzu5D1euV8PslysvTJ3PDwzoiEYmNGytYsuRsCgsddHZ2smjRomQisNfrZWBgAFVVMRgMmEymZDKw1gtoNGazmZKSEmpra+c0zF4TpRxCp9OlFTSdCj6fj+bmZkKhEA0NDaxZsyZ5M7ndbnp7ewmNKNcP8ydKvX19rK6sZDaXtFBVvD4fnuFhLFYrVqs1WRx2LshJp4rViqitRUntBaSqSG43dqeTpf39KAMDXOB0Ink8RIDjiElGE+ACTg8E+F5TK6c0uajGRh5geut/UIuKoKwUUVqGWh4TRFKsqlyit1dCkgQlJem/ktMpYbMJbLZYNGyq28kav2YSJBKBE40WfT4fcrw6e6pFlegd9HYTK51OR3l5OWVlZbz55ptz/vkzUdEhF1mwojRV953H46G5uZloNEpDQwPFxcVpvYz6+/vHFKME8yVK5557LsTbS0yXVDGy2e1UV1ejqCpDg4MZHmUKOfoAEoxhk+h0iOJiRHExpLbECIWQBgdZEReqFX19vNo3wKDIJ4qdp5C4AHgLKEfwsmuIMtcQDYcO0QbUATqTCbW0FFEWa7shyssQpWVgnt+HR2+vRFGRGJWL7HRKVFSodHZ20trayplnnj7uw1SSpHhSr3HM9vUxt2YQt9tNNBpNdhBO/cslF2Amyc/Pp7q6OikSqqrOebCLZinlEFMRJZfLRUtLCwCNjY3JwoiJAqp9fX3JWd5EZFOUUnMbfn/PPZy/fTv5Y1QIHvf9Y4hRojmgqqpzasnkpCRNVygtFkRNDb6iInyLajGYSnHvPsxQzSKW/fvfIMsUORyc4nKB18NKYnlVCnAIaAAOyjJD3d3s6O6mBagiFsQt8gti7sXSUkz5eciFRbHWEllqVtfbK+F2S9x6a7o4RiKwdavC8uXLqK5eihBjV7GfiFTxSUVV1TFdgInmi6l/C9WqMplM1NTUJCsjJMiWKM3Hevdcc0yJUsL6aWlpwWAwsGzZMvLjafSqqjI4ODiql9FkZEuUEudJ3JwnnXwy1in6oxNrRsMeDzabjarq6tEz0lnmEU3KXB8/C0RkGb3ByKFmJ/2DEVaurGbVqtUAbD/jDCAmQBBr9WBzDyO5XUguF2e53AiXi3o5TKLmtxMoBfzAM55h3usZpr35MFagDBB6fcyKKi1FLSuLWVVlZWO2Vde98Sa6/ftRVq9GrF077VlAb6+OE05QWLMm/b654w4jlZUqXV1dDAwMsG7d6owJxHguwNTCtS6XKxnxlwhvT1RZz2UXoCRJSVfdWOKTjQTf6VT9X0jMW/TdbBgpSolOri0tLVitVlatWpXMB0htrDdeL6PJxppNUUpQVFSEbrI8JSHw+Xy4h4exWa1UVVWN6x6Z90CEBcADDz3JijUnUFK2nOKySXbWG6CkBFFSwtGQG4EUDGF2uVBcLra4XbE26sPDnJMSrh4h5lb8paLw0b5e3H29uIDlxERPZ3fEXH9lZahlZVBSguEfT0E0iq6jHfVIK9Gzzp6yS9DlkgiHJerqVPLyxKjXKyuhpcXBkSOFrFsX23bHHUbe+c4oixdn9pqRJCnZu2osF2DCDTg8PDyuC3C+yYunUUy0npMtSykXvo9Ms6AtJSEEfX19tLa2kpeXx7p165IVmqfay2gqzMfD/Pf33stFJ55IWUoDtZQB4fP7cbvdWC0Wqior0U+WXzNBRYdMsRAlLxgM8ue/PsXJp17IthPfPa6oD8bX40pKSiY4mhSzcqzWWIJuAlXB6PESdblY4nKhDgwgPB4uDwUxAjpIBrT8Gdjq91Hs97G77QgnAmFiYpUYme7gQYydXUTPOw9Rm5JsPA69vRIGg6C8PP0X6uqSyMsT2O2CVasK2LvXiBB+2tutWCwi44I0Eanik+oKG8sFKMsyHR0daUI1Xu+qTGIymaiurk56XyZjri0lLU8ph5AkCZ/Px4svvkhRUREbN25Mugim28toMrLVu2mkpXTVlVeC05m+kxCxDH23G8tUxShx/EwOdpzj56QlNs6Yent7cbmDFJctY9mqU1AU/YTViB7926MAXHbpZdMfg04PhYWIwkJEfT2BYABVVXEYjETcLgpdborcLlSXiwtcblAVZGIuPohVxdQDm4CngJMAye8jct8fML3nPYjGxnh9vFhj3pFr3729Oior1VHLVz09OioqYvfI3r178PmWEggYef75Yq6+enYTuUwxlgvwyJEjVFVVjekCNBqNaWI1XtWK6SBJEmVlZZSXl2elUsdUOVZ7li0oUVJVle7ublpbWwHYunVrcqYQiURwOp3JxdRMkWhdMdeMFKXdr73G0vz82KwsLkZutxuzxTJpR8pxTjCnaz656Psfa0T9fX3kFZTi9llx+/Q4CvWUlZZmd2CJn8FshopK1IrKlG0CvF4MLheNcaE6fnAQKZ4EvJiYVdUFPEc5vj9X4BG7CKvLiGVd9XH88eWceupRV/Vpp43ttj7zzKOvr169ikDAyP3361m+fDgrXZ1nw3guwEgkkhQrj8dDJBJJlmNKTQae6v3jcDioqanJSYtEs5TmEUVR6OzspLOzk/LyctavX59sP57pXkYjma81pWAwiGK3x8TI5cJsNlMxEzFKIRfdd6qiEFWUZOv1uSISiaDTGdn1SitL6u0UF5djn8fnrjSe7SpJkJ+PyM9HLFkCgP7pfyJ1dgKxdSeIiVOBbhtBRaaIfCBElA6i/IsC3fnsf+0gQm9g9fp1dHV1UV5eES/oOjbBYIjycpnDhws5+2wPkNuiNBaptQBHugATuVV+v5+hoSEURUlGAaYKVsISMhqNVFdXj9X8LmfQQsIzyFRn1dFolI6ODrq7u6mqqmLbtm0YDAZCoVDSrzw0NDSnopFNUUoghGD9hg14Dh0iGo1SUVGBYZaZ4VNpXTG7E0zPElMVBffwMAG/H51en9bgzmRMtGIwZqR1h98f5K57HuGc8y/muM2nzPp42Uatq0PX04MwGGLlj2oWoVRWsfiIhaHXBXIkZmkZgCXVp7NpuRefLz8WAdbXx6EXd1Fy8kkM+HwcOHyY0848k66eXvLz85IP787OTpqayrjwQku2iqrPiJnci+O1r49Go4TDYWRZTnMBFhcXU1lZSTgcJhAIYLVac9IToAU6ZJFIJEJbWxt9fX3U1NSwffv25AJ0KBSiq6uLnp6erPwg2cxTUlUVr9eL0+nkuX/8g3csX07NokUZObY0x4EOU71lU3s25RcUUF1djRoPn1UVBTkSQZZlPF5vLHQ/vk5gjM+ATSYTep1uSlZVe0cn+w72sHzlNs7a+UEkcmc9YDqIunoi8S7EAonuLolXH9cx7Il9HodDxefTYTYLTjxRib8Wt3QEnH7SSSDAYDJjr29A6nfiPnQQQ3U15tIy7nvwSexFF1NW7sFkagHsOd2zKFPjGukCdDgcVFVVIeLu8kR3gGAwiE6nw263Y7fbcTgcOByOea+moFlKWUCWZY4cOYLT6Uy2j0iY06m9jFLLoWSDuT5XonxLV1cXFouFRYsWcc4555Dv92fuJFl4wEz0LYm44A57POSntMlQVTVpYen0eix6/Yjq1rF1gogsEwoGkz2D9DpdmlClLmi/+cYbVFYvB+MSyqryUIU0K7dnbiDhdsMrr+jp6U2IkWDTJoVXX4lN2HZsV5honmY0GimIW9xr4/lXIiLznlM343b/GzV8iPCREgoXLeIXd97JBy65BIPNxqHmZrZs2ZJ0ec0nc3EvGgwGqqurkwn2ADabjbKyo3kBiqLg9/vx+/0MDg7S1tZGJBJJVrdICJXdbs/ad6SJ0hwSCoVobW3F5XKxZMkSli5dmhSjQCBAX19fWg/5bAUfwNxG3yVmZE6nk0gkQmVlZTLc1GQyZbSf0pwznvsukUvldmO326fdJiN1nSC1A1KiDYMsy3iGh5FlmSGXi4KiGnoHzSj6KEajNScX7Kd7NQVDsOd1PU2HE+sdsH6dwoqVKnodCKEQjTKjEG4JCYfDQTgcpmpRI0XFxXg8Hj5+0UWYFIXhzk6MfX1I/f389ZFHqFu+nPXHH8+jf/8755x7LtFoFL1en1WxypSlJEkSJSUlVFRUTDp+vV5PfiLwKAVZlpNWVVdXF36/H1VVCYVCtLS0JIXKarVmPHJPc9/NAYFAgNbWVjweD/X19axcuTJ5wfn9fnp7e/F6vaPel023wly57xK9mhILqoODg2mz+SefeorjKipoaGzM+LnnirRvSQj8gQBulysWvj5WlYlZoNfrk6HCiqLg80V48pkDnHDSWmrr8olEogSDAQYHBtEbDPHOrUaMBiN6g378QINxOPecczM2dmBKlmtUgf37dezdqycajblIly9X2bAh3SKqWzL767OktISKCkey9Faij1dhURHHFRVBOMwF73wnQlURPT1UyDL6vj7e3LePzr4+zrvwQp569lk2Hn88BQUFBAKBKefzTIdMuRXt8TJcsy3Tk5gwpRY6VlWVl19+mby8PHw+H/39/QQCAXQ6HTabLSlUCRfgTD+PZillkFAoxP79+/H7/TQ0NLB69dHSJkII+vv76e/vHzfpNdu+7kyKkt/vp7+/H4PBQFVV1ShXVYL3vve90NOTsfNmk2AwiGtoCKPJlJEgjYnYs2cf7d0BNh53IqedniIcVohGIzGXjIitU0aiUULBEFElCkgYjbE1hYRYTTSTnThpNrMI4MgRidd26/EHYtd6TY3K5s0KBZl/zgPw+uuv01fsY/369ePKtSRJSPGJxZYtWyAaZePy5WxctgwGB1kkSdiHhnD39PDYP//JZR/9KC+99hr5paWsXLWK7u5uKisrZ2UxzFaUEvfdnFbLFwKDwUBZWdkoF2AgEMDn8+Fyuejo6ECWZQwGQ5pQ2e32KbmbNVHKIEIIqqqqKCkpGXWBSZJERUUFFRUVyLJMMBhM/gUCgWm3rJgtmXLfJdx0er1+lBjBaKHd8+abVEajVFRWshCQACUapae7G51eT1lZWUZ6QY3Hk08+TW3DcRSUrmN92XgPudh3mnAvpX7jQggi0QiRSEyovBEvAoFep8doNGKIW1Z6/fStqtngdMLLr+gZHIx9psJCleM3q1RVze265vp161hUESYaz+uZFvH9V65aBYDVYuGyCy8El4slFgtmWUZ0dvK3u+7io1deSVNHB139/Zx65pl0dnZSUlIyZYtlNvdiaWnplFx1s0VV1TG/Q71eT15e3qjirZFIBJ/Ph9/vp6enB7/fj6IoWCyWtPWqkS5AWZY1UcoUNpttSs2vEqZxaq5ANBolGAzS399PYWEhwWCQcDg8Z2OdrfsuVYwqKyvHvYhGnkcnSTnbDmIksizH2hUoCpUVFZjmyM8th8Ps23eAusZNlFZtwmAqQq+f2SUsSRImowmT8ahwCmLFQiORSPI6UxQFCYm39u1Dp9OxbetWDEYDOimz6wNeH7z2mp62tthxrRbBxo0qjY1qVi4Dr9eL1xrKeNXpysSkSgg+cckl4PdTbTJRVFKC1NnJvqeeYsPWrYQdDv7y2GNc9vGP093bi9FoTLMyUpmuaNpsNmpqarJWUVsIMS1r0Gg0UlRUlGa9CSGSPasSz5BgPIF6165dybJXfX19LFq0KGcjJWdCTgQ6TAeDwUBeXh4Oh4O6eJisqqpp1lQwGCQUCmXM7TaT4wQCAfr7+9HpdBOKUYKRorRu/Xro6pr2ebNJNBLB5XIRiUSw2e2oijInghRbTA6CvoCOfgNFlTpKSiarmDp9JCQMegOGEUKnCpX29jYA1q1bS8QTBQR6fdyqMkzTqkpxQcky7N2rY/9+PaoAvQ5Wr45V855Dr+conM5+LDqZRYsXz/lkKDHzRwjOPv10IHYtnbNpE1JXF0NvvYXJbqfMYODWX/6Sj3/ykwQiEQYHB6mrq5vyA9hgMFBZWZn1StqZKMYqSVJyzTRVnFVVxWKx8OKLL+LxeLjqqqvo7u6msLCQL3/5y5x//vnjHjMcDvPZz36Wf/zjH/T29lJUVMQHP/hBvvOd76Q9nyRJ+grweaAQeBG4UgjRkrJ9J/AjYt1amoEvCiGemNUHTmHBidJYpOYQJEjMNEaK1XSj9qbrvktYcQk35HRmZ6nneeyxx6gB1iXKNucQiqLgcrkIh0IUFhVht9kIhkIEMhnCTizBVpJ07N3XjnNQYfWacjZu2JTRc0yFVKuosKAQSLeqIpEIgUAQVVXQSbqY689gTP7/WA9RVcDBQzr27NERDse219erHLdRwW4ftfucs3zZMmoq5AkbXs4lBqMxWXx43Zo1sRe9Xi45+2xsbjeevj58fX1IeXk8cf/9vOPMM1nc0MBLr7zCSSedNEoIElF185EKMJc5XjqdjnXr1rFu3Tp+97vf8cgjjyBJEi6Xa9LC09FolNLSUv7yl7+wbNkyOjs7ueiii5BlmZ/97GcASJJ0CfAVYCdwAPgB8GdJkjYIIRRJkhqAB4ArgfuA9wMPSpK0RghxJBOfMacrOsz2HCMLOQLJ7pipYjVRS4upjjUYDOJ0OhFCUF5ePm1XwciZ1QknnYSpr29ax5hrVFXF7XYT8PspLCyktKQkbVad6VWPPz7wGCtWn0BZ5RrKcmxpLdWqslqO/taqqsbXqiLxNdCYVWXQGzDEAyp6evXs3WvD642tbZSVqRy/WSHbJfhSOdx8mEhAOepuywUkKWnlVFZWUllZiRwIsHP7dsqtVuT2dvQ9PUj9/fzr+efRmUzsfM97qFmyZF6b32WjbcVI4ZtK4Ibdbue///u/k/9esmQJH/vYx7j99ttTd7sSuE0IsRtAkqSvAf3E6gA/A3wEeFUIcVd8/7slSfpk/PVvz+YzJVjQltJMZiSJ6sGpiXKRSGSUUKV2pZ3IupqtGKWSaikpikI0Ehld8nkeUFUVj8eDz+slPz+fmpqaUeV/ZjrNGPm+YDDI3598lm0nnMumbedhNs3cHRgrrTTjt88InU6H2WROG7dAEI0qDA4ovL7HhNMZW8eyWqOsXROgtjZWtUJgyGpQRSqFhYXkF8QmZ7m+OmE0mdAbDFgNBk7Yvh3CYc7YsoVis5nbf/Yzbvi//5vX8WVDlBLMdoL/1FNPsX79+tSXNgA/SfxDCOGTJKkp/voz8f9/dcRhdsdfzwgLVpQS1QAyEUljNBoxGo1peRWKohAMBvF6vQwNDWGxWAiHw0nhCIVC9Pf3o6oq5eXlyT5OM2XkmtIbb7xBsc8XW1uaJ1LbqzscjmQVhvHfMEMFEIKBwUE8niB5hfVU1GwmHNHNSpByiVBIYs/r5mTyq8GgsmpVmDWrJVShIxKJ4Pf7iURjkaWp61QGgwG9bu4TU0tLSykuChMMhXI6wEaoaiwIKIVim42qvDx0ksSy5cvHeWf2mI8STZdffjm//e1vx93+9a9/ne9+97tpr/30pz/lueee45VXXkl9OQ8YJh03kD/J9jXTHvQ4aKI0Dnq9HofDgcViobCwkJUrVya72B46dIhgMMjixYszFjI+UpROOfVUaG+f9XFnREoTQZvNRnV1NbrJvucZ1taLteNw0D8IAy499TY91akN8hYwYya/rlBZ2ujFYgWj0QboR1tVkSiRaIRQKEw04kMVsZm30WBMTqBmkgA8ES+88AIr6o058VCfCAFJ0bQajdQUFGBPST340CWXzHuzyWy571KfF7feeis333zzuPuPnDT/5Cc/4Yc//CH/+Mc/qK2tTd3kBUaWRi8EPFPcPmsWvChl6zw+n4/Dhw8TiURYvXp10tcthBhznWq63W5HitL+/fsx9fbSmM2KDkIQCARwxVtlzGUTwVjNOx1//+frNC47jpKSGvJyt0vAtCK4xkp+XVSjsime/OrzqzBOcVgJKSk8WBPHE7G1KjmeAByaWQLwRJx44glUl8au49y1k2LoJImaggJKbLY0i8Tj9XLeKafwzP798zi67IhSNBpNS6tJRjROge985zvcdtttPPPMM6xYsWLk5j3E+kk+BCBJkgNYFn89sf20Ee85jlj/yYywYAMdsiVKgUCAQCDAvn37aGxsHJXZL0lSsix+6mLjbBN/LRYLhixWIQ4Fgwy5XBj0esorKqaURzZT/P4Ad/3+r5zzrkvYtuNsVDFHv6MUe6BngvPOPW9K+81F8quEhF6nR28ZOwE4GokJlS9uVc0kAbi/vx+7kYx0ap1LCsxmyvV6SscIUXQ4HPzlr3+dh1Glkw333Uzr3n3lK1/hvvvu45lnnhlvwns78GNJkh4kFn33XaAVeC6+/XfAVyRJuhj4I/A+YDPw4el/irHRLKVx8Pv9NDc3EwwGMRqNbNmyZVoX2kSJvwmRCoVCyRDckUVm6+vrwWDIfA8kIdLWDORwmKGhISRJorS0dMbl+KUp9FNqbWmlp9/PkoZNnHbm+4g3UZ/R+XKNMZNfj1NobBBztkQz3QTgRIh6QrBSQ92HhgYpKzDPafmd2WAxGFhUUEA0FBqzHiZARJbZ+9ZbnDDP9SKzYSnNRJTa2tq4+eabMZlMbNhwNC5hyZIlvPXWWwAIIe6WJKkGeISjeUrvFkIo8e3NkiRdRCxP6ddAC/CeTIWDwzyK0mwrJcyVKAUCAZqbmwkEAknL6MUXX8zIzCeR+DuyK2YwGKStrQ2fz4fVaiUUCvHcc88RbW3llHe8Y9bnTSBxdBYXiVfVVhSF4uLi2ZcrmeD3PHDgAOWVDchSFbb8KIrKMVMeZVTyqz4l+XWCu2uuouwmSgCORqKxUPVggKgnGiurFE8Arquro6JCJSzLORXooJckKvLyKLXbkSQJdzA47r0YCAT40wMPcMK7353lUaaTDUspFApNW5SWLFkypWeuEOJG4MYJtj8GPDatk08DzVKKEwgEaGlpwefz0djYSGlpaVbcGInE36KiIiwWCw0NDQghWLRoEaHXXwdJIhiJEJRllNlaTZJENBrFHW/1UFxcPKf5HC6XC5u9mI4eQURSKSjIZx7TR2bFnXfdCcBll14GxJJfm5pyJ/l1MnSSLmm9J0i1qvbufZOAW0dhYSGSJKEoSsY7AE+XIquVqvx8jClBNhM98IuKivjRj3+creGNSzYsJVmWj8m2FaCJEsFgkObmZnw+Hw0NDaxZs2ZefOqplqMkSYTDYSJ+P/UpnWfD0ShBWSYYiRCIC1Vkit9BIu+pr6+PouJiykpLMz4jTkimUFU83jB/fOh5zjz7PaxYlbEUhnlHQKzz66tHO7+Wl6kcf7xCFguJZ4RUq6qhoZ66Gh0SMTez2WJJ6wAs4h2Ak+3qzeYpdwCeLhaDgZqCAhxjPHTFCPdzKk6nk9vvuYfrbhx3kp8VsiFKoVDomPE2jGTBitJsG/2FQiGam5vxeDw0NjbOmxglGCmyb7zxBs7nnqP+P/4j+ZrZYMBsMFCY8r6IoiQtqUAkQjASIZxSoUJVVYaHh/H7fOh0uoz3NUqQ+ObefHM/Rzo8bNh0MmfvvGheMzHnwkX21JPpnV83b1JYXCtyPmJtMgoLCrDZFIKBQFrwTgIhBNF4q/pQKITH6520A/B00UkSlSmuurEQQozKU0pgsVjYsnXrjM6dSXI50GEhsGBFaaaWUqIj5PDw8KheTvPJyDW2nTt3Ii1eDJNUQDfq9Rj1evJTHiCKquIPh+no6aF3YABbfj5FixbRPYf9mZ597gUKSxooKF7NmsL49zn/X2vG6enVYTQI1m9QWbEi1vl12uRgbMdzzz/Plo2xljFjWSKSJGE0mTCO0QE4kugA7PEQiVdCSVpV8fdMNhEqtFioKijANMl+Ez3w8/LyOGPD/FvlqqrOec09zX03B2Qi0GE670+0XHe73dTX17Nq1aqcEKMEI7+PV155hbZHH+V9E1T9HQshBAMDA/T29FBSUsLKzZvR6/WxY7vdVBUUEBUiZl1FIrNap4rIMocPN1NTuxZr/iqiqnFOQ8lzgR28QL3ShqnVBsNFiMIi1OJiKCoE4zQiF3Pn0gPg1FNOobI0gs/rndbQ9Ho9eqsVS8pioRCCSNyqCgSDRIaHY1aVwXB0nSpuVVniCbB5U3zATiRK+/bt45rPf54/P/PMND5B5snVQIeFwjFvKYXDYVpbWxkaGhrVcj2XGPl5ioqKUNMzrSdECMHQ0BCdXV0UFhSwevXqNIGQJAmLwUCRzYY5vtgthIitU8UFKhBfr4pO8r0q0SjBYIiIauWtpgDWQh2VldW43e7pfegFwuHmw8n/XlHQg244CENBGIr1tEnM7YXDgSguRhQVoxYVQXEx2KzknAKNQUdnJzaTdVzX2HSQJGlUUAVCoKgqctyqCg4PYxMCo8nEgN9PwGbDarNhs1ontDJSKzqMZNWqVTzw4IOzHv9sydWQ8IXCMStKsizT0tLC0NAQdXV1rFixYlZiNNezn5GWUmNjI0sjEQgEJn2v2+2mo6MDm93OypUrk6Iz1jlSc4kkScISn62mZqfIYwiVrCjJHKfX9jTROxBh/Ybj2bptBwCKyFyiakbJwJD27t2b/O/A2WdjRgK3G93QEJLLBa4hdC43ks+H5PNBe/tRoTKZEcVFEBcqUVIMOh1HpSw38Hk9yGEdZotlbkLCJQm9Xo/VaqWyqIjq/HxMBkMyJSIQCOB2ueju6kJRFIwmEzarFZvdjs1qxWw2J6/f8e5Dl9vNvpdf5oSzz878+KdBtkRJC3TIMcYTJVmWaW1tTTYEm60YpZ5rLtsojxSlJ554gsd/+lN+PKKIYiper5f2jg6MBgNLly6dNLx7qi5Tk8GAyWCgIOV4UVXlhZde4lAn1C09gZrFESKqPMFR5p9MTSJSW5soigJWG5SXo8b7/0BsHQ+PB2loCN3QELhd6AaHkOQwUm8v9PYmCwsVSjrUgnyk0tKZu/8yzOrVqyktieD1eOZs8mXW66kuKEhb/xyvF5osy8keaEODg4TD4WRYusVsxmKxYLPZ0u5Jt8vFS/v2zbsoaYEOs+OYESVZljly5AhOp5O6ujqWLVuWsdlKpoquTuccp59+OqdWVsIYvZ78gQAd7e0IIairq8M+1Qrls1jHM+h0LKuro2/AT4k19jBWhUpEjRBRwwTlAB7hRULKTYtprtHpoLAQUViI0tAAgIIAfwBcrqRVJbmGkHw+9G43xN2dueD+e+mll9i2qXrW1e7HQidJlDsclDkcU3IPSpKUbDGTWmFCURQ6OztRVTXmqo7/t9lsxmazUVRUxCevvnpeqnSn8na0lOI18soBM6AAfmLFW31CTK+O2IIWpUTXzyNHjtDf38+SJUvYsWNHxi+I2Yafz+Qcbrebjn372JRStTkUCtHR0YEsyyxevDit1caUzsHMWrsnqKqqYu06K8F4c1KdpMOsN2PWm7FINjwiQI19CVERQVZkIqqMrIaJKDIqc1+nMPeQwG4Hux01Jd/M5xrC5PNj8ftn5v7Ly4+7ADPHsuVLKSg0IctyRh/o+WYzNQUFmDIQjabX6zGaTFgsForjYpUoiBwIBtmzZw9/+/Ofec+HPpSs8u9wOMjLy8Nut8+ppyMVIURW8pRywVKSJKkU2AG8g1gNvKUcrRr+FvCIJEl3CiFcUz3mvEbfzQYhBE6nk66uLmpra+dEjBJko/jrSNdaX18f/3r2WTYtX44sy3R2duLz+Vi8eHEy635G55jFGF966SVuv/NlPvXpr054DqNkwqhLd0VF1Zi7T1ZkZDUmWMFwgGH3cOy7lWIVr41GU+z/x2kjfiwgjCaUMivq4sXJ16bj/kOnQy0sguJZRP+NwG6zYzTGaiFmAlPcVVeQ6dm8SM8JS82pWrduHfYtW9i8dSuRSASfz4fP56Orqwu/34+qqthstqRYORyOo2tVGURV1Tm/dmVZTmtUOh9IkqQDrgdOIdb479fAfiAAlBITqQuBr0qSdL0Q4jdTOe6Cs5Si0ShHjhyhs7OTvLy8ORWjBPPhvluzZg0rPv1p2g4exO12U1NdTX19/awu9qkUTZ2I47dswV5yIvIY3eNj4xr/2AadEYPOiNVgJyyH6XX2gmKgvmwpQq8iK2EC4QAhOZjWRtxoOFrteiatGXLTkTjGqKbp/tMNDWY0+u/Z557j9JOWYbfbZ+Us1AFlDgflDseUfyvrRRcheb2xwoEpBO69F0Y8eCdyzRUUFLA27lkwGo0UFRWluf8SQRU+n4/h4WG6uroIh8PJmpQJobLb7bN6pryN3HcGwCmEOG6c7c8CP5UkaQVwHXBsiVI0GqWtrY3e3l4WL17MqlWrGB4ezkrb4Wy77xRF4bnnnuNvt9zCFz/+cdatXZuRzznb3LBht5vDh4eprVs7xsGZVAGi0Sh9/X0E/AGqqqpwOByoqhqrYm2SwJpYp5KJqBHCSpiQ7CcoB0e3ZjAZkxWvdXrd2NUbFryhNbb7D1meXfTfGO6/s858J2VFUYaHh2ccfZcXd9WZp+Gqk5xOdIODBH77W0Rd3aT7TyRKTz/9NA//v//Hz37xizG3pwZVVFRUJF+XZTlpVXV0dOD3+wHSrKq8vLwpV9B/uwQ6CCFk4L8haTUJMcYDRghxELh8qsfNeVGKRqO0t7fT09PDokWL2L59O3q9nsHBwaz0U4Lsue9UVaW9vZ2Ojg7y8/M597zz0m6eDJxkVqLkcrvZ++abY4vSBAqgqCqDAwO43W7Kysqorqoe96aNrVNZMOstOIx5YCmNlbgRkZjbTwkTkAME5SByJIw/EEBVFXSSLtkcL9GZ9ZjFZBo7+m94GCluVeGOW1dTdP8d9g9gWzeza82k11OVn0/hDKrt6g4cQJhMiFTRnYCJHvhnnHEGp3/uc9Meg8lkori4OK2Ro6qqBAIBvF4vQ0NDtLe3J6sopLr/bDbbqAljtgqy5oClhCRJOiGEmghmkCSpEjABEUBO/AkhpuwXzllRUhSF9vZ2urq60sQoQbaa/CXONZfuOyEE/f39uFwuCgoK2LZtW6wKQ14eeDLWZXjWgQ6NDQ184IOr8Y2TOjXy2EIIXC4XAwMDFBYV0bh0aayI58j3MbFRk7ZOZXBQaI5VPk2uU6kyoUiQQDhAOBImGIr1EFIUBaEKzGZz0gU4Vy0j5h2dDoqKEEVFM3L/RQmifyOEraQEtbwcqaYGyssRDse4lpNEzFVXMQ1X3ahhHzgQSxKfonU1UUHWI0eO0OP3s+2kk2Y0lrRx6XSjurkmQtUTVtXg4CCBeB6h3W5PugCj0ejbJtAhRYx0wE7gK8Si8GyACliAZuAdCQGb7Jg5F+igKAodHR10dXVRXV3Njh07xoyayaYozZX7LhGs0dzcTH5+Pnl5eSxbtgyAQ4cO8fkLLuBvd9+dsfPNNtChrb2de+95hfMvuGz0sUkXJa/XS29vLza7jYaGhjmpBZZcp8JOgakI7KCo0aRQ9fR3YzAbiIpIWudfo9F4tIW40ZjW7O7YYuruv/WuHgq8XvB64ciR5K7CYolZZOXlqGVliIoKRFERDquVmoICLOOUldK1tqJWV8MkD079gQPo2tqwnZfe2Tf4q18hqqpG7T9RQdYhl4sjgUBGRGksUkPVUztQK4qC3+/H5/PhdDrxer289tprWK3WUVZVptx6uWIppbAE+AVwP/B3YsuLemKi5IOjAjYZOWMpjRSjbdu2TfggW+iW0tDQEE1NTdjtdjZu3IjRaOTVV19Nbl++fDmPPvoouKYcSTkpsw10KCwoYN26deMeWwDBUIie7m70Bj21S2oxmyafzWXSdtHrDOh1BizY8Or8lOSVYDKb4utUMmElllMVDAcIBUN4Pd6UZncmjAYDRpMRvW4O3X/zHX0xhvvv8ef/zpkbT8A6NITZ7cbocqHr60MKhdC3tyfXqYyyTE1vL4XFxahLl8b+li1DbWgg0UhK99ZbWP/zP1EXLSL87W+jLl067lB0Bw8if/azRKfYmG8i992m445j4/r1U/8eMoReryc/Pz+ZouHz+Vi3bh2KouDz+fB6vfT39xMMBtMssMTfTCZsuWIpSZIkxdeRyoCwEOJLsz3mvItSIiGus7OTqqqqScUowUK1lIaHh2lqasJgMLBmzZqke0BV1TTh8/v9PP/3v3P28cdn5Lww+0CH/Px8Vq8uwR8avS0SiRCRZbq7u6iqrJpyEmZWGimmrVMBlnjRUFVOWlVBOUBQDiDLMv6AH1VR0elj61RCzbyK5Job8bhNm3AsMuMvLkaYzUg2Wyz82usFpxN9Xx/lra3UvPYaRqcz9trBg2nHUKurUZYtQ9TWolZWouvsxHL11cif/zzRc88d5XaTOjuRvF6UNWvGHpSqYvnUpwjfcAPo9Zi/8x30l1+OlCKmqTz11FO0vvoqH/vEJzLyncyURJ6S0WjEYrFQWlqa3JYQKp/PR19fH83NzSiKgsViSQZUOBwOLBbLhPdGrlQJTwlscAEvxlupd48V8DBV5k2UEmtGHR0dVFZWTlmMEmTbUprtuXw+H4cPHyYajbJs2TIKCgrSto8UjHA4zEv//ndGRWm2gQ6Hmpr4xnfu4dqvH22ipqgK/f0xl4VOr6ehvmFB5BdJkoRJb8akN2MHiswlyYCKiBpBVsKEoiECYX9ahQrXkItIXiQZom4wGnJOYGaCQa+PeQTgqHhIEiI/H0dpKTXbt2MxGmOr1j4fupYWdE1N6A4fjv21tKDr7kbX3Z12XEmWMd94I4aHHiL0i1+khX3rDhxAWK2I+vqxB6XTIV9xBaaf/xzJ6yX81a/GXLDjXF9r1qyhNu7+nk8mCnTQ6/UUFBSk3f9CiGSoutfrpaenh1AolJYAnPhLLGXkWpM/IUSTJEkPAw8Bv5YkyU0syEEBuoQQL0/1WPMmSi6XC1mW2bp164zaHSwU912is63f72fZsmVpET6pjBSl4uJivnHDDTAwMKPzjnkOZhfosGL5cr7//e8x7CNZ6mVwaJDS0lKWNjZyuLl5QQjSeKQGVNgM9ljBFDv0HRogFA1ispkoKypHZ5QIySH8fj+R6NF1qtScqoW2TvX8C89RvHNLWnKqUaejKj+fopFWr8OBun49aqqrLBpF196O1NSE/uWX0b/+OtLAAFL8etMfOoTujTdQjzua0qI/cABCIWznnpt2+MgFFxC5+moA1MZG9K+/Tvjzn49F6LW0jDsFyM/Px1ZZOZuvIWNM5z6QJAmbzYbNZqM8xQqMRqNJq6q7uxu/388//vEPXnjhBUKhEC+88AJ5eXksWrRo3u87SZKqgXcBDcANxNaSJCAfeAw4V5IkvRBCmexY8yZKZWVls8pIznX3nSzLNDc343a7aWxspKysbFoXjs/n47rPfpZbb7hhusMdl9kGOng8Hl5+uYWK6rX09fdTkJ/P0qVL53b9ZZZkYi1Qiaj4h4P43UGKjKUUFhaiCOXoOlU0vk4lBwkFQ3g8XkBg0B8NpjAYDTn9PZ1zzjkUFERxDQ0BUGq3U5mXN2a05JgYDLF1pfp6zDffjBRv9idsNpSGBtSNG9MECUD+9KeRP/3p8Y8ZCGD59reRP/MZjI88gnLGGROuKT340EMM7N7NZz7zmamNOccxGAwUFhamPSc3btzIWWedxXXXXceePXt48MEH6ezs5NJLL+UrX/nKlI7r9/tZv349bW1tacWGASRJ+grweWKlgl4ErhRCtKRs3wn8iJj4NANfEkI8DpxIrLLDaiFE31jnnYogQQ6sKc2UXHXfRaNRWltb6e/vn1X/JrPZzAc++MFpv28iZhvoMDAwwEsv/ZvTzqyjvq4u5xv6zaVbTS/p0eutWPRW8oykJP4myimFk+tUoXCYqC+W+KvT6RGqikDEhEqvzwn3394332Tb8fWY9Xrqi4spH+FenjKShHz11UiDgyjbtqGuXj3lcO80ZBnzt7+N/JGPoG7YgO7VV9E//3wsXH2c++mSSy5B3bhxZuNeIBgMBjZu3IhOp+Nb3/pWMgpwpLhMxLXXXkt9fT1tbW1pr98di/T9CrHQ7gPAD4A/S5K0QQihSJLUADwAXAncB7wfeECSpDXEtOSV8QRpWp9xtgeYL7JtKU02406NHly8ePGsyx8ZDAY2bNwIweCMjzGSmQY6BINB2uNVya+84hMEI3kZG9OxRGqBWox5yYCK2DpVQqiCDA4PoCoqnmEPSjzx12A0Jmv/GQzzIFQCqvLywGDAOsvw/ehFF81+PCYT4R/+MPlP+WtfA0A0NSVbWIzktddfRxCzJo51RpYZmup6/L/+9S+effZZbrrpJp5++um0bbfffjvAbUKI3QCSJH0N6AdOAp4BPgK8KoS4K/6WuyVJ+mT89b8BfkmSziVWXkhHLIFWASLTqRS+YEUpmz7UiQRQVVW6u7tpa2ujqqpqVJLvTFEUhVNOPZXX//a3WR8ryTRFKVEI1u/3U7tkCXI4zPd//Csu/cgXMjemY5z0dSoHhWbQBY2YrWbMVmM88TdEUA4QlkP4w774OlVKgdp4TtVcXfN2g4N3nbyT2rII7e3t874+MSEjCrKm4vX5EF5vVoczX8wk+i4QCHDFFVdw1113JUsppbJnzx6IFVYFQAjhkySpCdhATJQ2pG6Pszv++j+A04itK71ArHVFFMgDHgTuSAkfn5CFtRo7T4wlSkIIent72bVrF4FAgK1bt9LQ0JCx8vgGg4HXXn89I8dKMNVAB0VV6ezsZP/+/eTn57N27VoK4sm9Z5zxzoyOCeYubSeXH64GyYDVEEv6rbBXUVfUyNKyFTRWLqexehmLyheRZ8sDIQgEAwwMDuIccOJ2u/H5fYTl8Kw9BSadiTJLJYXmEr71zW8y5HLNeeHh2TLRmtI7TjmFk08+Ocsjmh+EEMlnzeWXX44kSeP+XX/99QBcd911vOtd72LLli1jHtMbE/ThES+7iQUrQExgRm4fjm8PA/cSW2/aC3QRs7I8xKqGT5mcq+iQi+h0uqTPVgjBwMAAhw8fpqCggM2bN89ZvsDdv/89F59yytQXmydhskAHIQT9Tie9PT2UlZWxbt26NBekyWSidvFi5Ax7TefySsjJh+w4Q9LrDOgxxNepCkYUqD2a+BuSg4RC4VEFag0GAyajafwCtXF0ko58YyF241E37Gc+82kK8vPwDA/n9L05kSj95o47KDntNM4///wsj2p+ufXWW7n55pvH3W6z2Xjuued49NFHE9bQmOTl5TE8PDxyMbGQmLBArGnfyO0FgEcI8W/g3xONc6q5SwvWfZdNEtF3LpeLpqYmLBYLGzZsmJMunak0NTUhTj45Yw3dxgt0EELEmgp2dFBQUMCaNWvG9FEPDg5y/fU3csN//W9GxvN2ZqoP/qkk/obkIAHZjxyRCQSC4xaolZCwGRzkmwrRS+kWvT8QQAjHvHdtnYyJxnfW2WdjGBHhl23mYxI0skbfWDz55JN0dnZSW1sLxJLdFUWhtLSU3/zmN7zrXe9iw4YN/Otf/9pELNco0U12GZBQsj3EXHTEt68n1tzvoYnOLUmShdi60rEdfZdNwuEwXV1duN1uVq1aRV5edhb6v/XtbyN1dWXseGMFOvh8Ptra2zEZjaxYsWJCq6+srIyf/exnDI404DWyysjEX8yJgIpoUqxSC9SGQiHUqMAmHOgsMsLiwWqxYDabk5bw3XfdyaY1/zmvn2sqpCX3jsBssWCc54TSbIi6EGLa4vfFL36RT6RUunjxxRe5+OKLef3115MRfFdeeSX/+te/rpIk6UFi0XffBVqB5+Jv+x3wFUmSLgb+CHwWWA/cI0nSZqCX2FqSQmxpSEesE+1NwJ+AW6YyVk2UJiAQCNDU1ITP56OwsHDcum9zxeUf/Si3fvWrmRNBSULE1yHC4XCsHH8kQt2SJdjjdcsmIhQK8eSTz3DclnMn3Vcju8QCKowYdUZIKVAbVaMoIopJZ0YVKqFQiFAoxJBriHAo1k3AbDFz9dVXIyDZBThnmSDQ4Xd33skKv59zzjknq0NKJZuW5nTOk1qbD2ITTIBFKYV6L7nkEi699NIfAY9wNE/p3QkLRwjRLEnSRcTWjX4NtADfBN4DXAY0AYPEqoOXAMcTE6hvA7+f6lg1URqDUChEc3MzXq+XpfFikoODg1kfx2c++1msM+hRMx4Ssai+trY2hoeHp91aXVVVent7MjaeuSaX3VDZwqAzYIjf5npJj91mx247OgFRhUAOh3n44V9z6QdOwOv1EggEsFqtySoDNrsdo8GQM9/neOP44pe+hLpyZZZHk042einB7K/tU089dczcJiHEjcCNo9+R3P4YsQoNqcVYvytJ0ibgbGJJtXrgDeAmIcRL0x3bgg50SKz1ZOoikGWZ1tZWBgcHaWhoYPXq1UiSxNDQUNZyolJnWosWL0YKTCtwZVxUVcXtduPxeFhcW0ttbe20fwObzcaHP/xhnJkrXD7niHkvyT2amAtqvkcRQydJWCwWaqqrWbJkSawWZVUVOkkiEAjg8/no7+8nEonV+0sKlc2G2WzOGaEC+Ntjj9Gg1yfbv8wHiWKsc32OXPjehRBCig8kntu0OxPHXdCWUiJUe7YXQWqr9SVLlrB8+fK0H3221bWnSqLGXuLcH//EJ/j1DTfMqvusEILBwUG6urqwWK1UVFRQMU6V5ckIhULc8M3v8pnPf3/G49HITc4771yMRjnZr8hisWCxWJK1GoUQRKJRAn4/gUCAoaEhwuFwssW41WrFbrdjsVrH7Xc016g5EGmpqmpWWqFPtTX7XJMaURcXqHjmyQKsEg6zf9jPtqqDqqp0dHTQ2dlJTU3NuFUYslU9YqTl99dHHkFKabg2XYY9Htrb2rDb7axevRqPx0NwFhUijCYTl11yyYzfr5G7XHXVVfzpDz8e936UJAmT0YhpRC22aDRKIBgkGAjQ29dHKH59pbn/bLaM5e9NxLnnn4+Y5yrh2XDfhcPhnGhbMZK4EM16ZnBMWErTRQhBd3c3R44cmVLbjLluh55gpEjf/fvfc/7q1dMuXBsIBGhra0On07F06dKj61KznQRIEoWFM6yJppHT/PDGH2KM3wPTmekbDAby8/LITwnGUVWVYDCIP25RdXZ2oqoqFosFq82GPS5Uma6deP3113PhNdewefPmjB53OmTDtZYrDf7mireVKAkh6O/vp7m5mZKSErZs2TIlM3iu2qGPZKT4ebxeFGVKof1AbE2so6ODYDBIbW1tWrQNzL51haIo3PDNb/Jf3/v1jI+RVXLA775Q6OzoYFXj8ow8VBMuvdSITiEEoVCIQCCAx+Oht7eXaDSK0WTCbrMlxcpkMs34/J/69KfJX7VqzG1VVVU89NBDbNu2bUbHnipvN0tpsnYUUy0tlMqCLjM0HbEYHBzkpZdeYmBggE2bNrFixYop+2Wz7b5LcPXVVydzCCYi0TBx/4EDFBYWsmbNmlGClDj+bOw9g8HA7bf9YhZHePtw31NP8R9f/3raa/c/9RQnX3kFrx06lHwtLMuc/p//yfMTZNrPNUII7r//vqPXxxyIuSRJWK1WSkpKWLx4MStWrGD16tXULVmCzWYjFC/6u2/fPg4cOEB7RwcDAwMEgsEprxWFwmGef/55ioqKRm3r6emZc0GC7AQ6yLI87w3+pKMzh49JknTaBNv/Q5KkaS2KL2hRmopbbXh4mJdffpnOzk7WrVvHmjVrpv2DZivQYeR5/vNTn+Lw4cPj7h8L0e7lzTffxGg0sm7tWkpKSsadac62dQXA/X+8PzdL9+QYx69aSZezn96UVILdBw9QV13Dmy3J9jS8efgwqqqyccWK+RgmELsuvvOd70y6X2Qa7RGmel6TyURRURHV1dUsW7aMNWvWsHTpUgoLCohGo/T29HBg/3727d/PkSNHiEQi+Hy+MSeJv7jtNpxOZ0bHOF2yEegQCoVyIdAh8SG/Afw1nr+USkJbfgjUTufAx2ygg8/no6mpCVVVWbFixZiWQybOk0lGiuyXvvxlasYICRdC4HK56OjsTCb1TmUhORPiGgoGM+o3F0IQVRQMen1OhLlmiobqGkoKCnl1/37OO+kkFFXh9YOHuObDH+bXDz+c3O/VAwdYVV+P3WLhvqee4qFnnmbA5SbPZuOsbdv4xIUXoNfp+fn999Pp7Of7//mptPde9/Of8/DNN2M1m2nu6uLn99/PwfY2LEYTZ23bxscvuADDONfGyVdewWc+8EH+9sLztHW/wvb15Xzp/e+nvq4OgJ2f+xzrly6lvbeXZ3bv5suXXsrnPvhBbrrrLu5+7DGGfT7WL1vGjZ/5DGsaGgC46vvfJxKNopMkHnn+eUoLC/nqhz/MpfGE1q7+fj510028dvAgkWiUNQ0N3PiZz3BcXJSFEPzknnv45cMPEwyF+NDOnextbmbHunV8/gMfoM/p5JIbbuC1pibCsszi8nK+eumlnL1jB5/+whfYdOGFKIpCVVUVADfffDOXXHIJ+fn5PP744+zYsQOAhx9+mB/+8Ie0t7dTW1ubLFYKsb5CN954I5/85Cf52c9+RiAQ4D3veQ8//vGPJ73PsuG+m0mF8DnER6ziw82SJJUBvxzRpkIwzYKsC95SGikWwWCQN998k3379lFXV8fmzZtnJUiJ82TLUkr9PMYxZkM+n499+/YxNDTEypUrWVJbO/XIpgyI0kc+8uEJb7rpHD8YCtF65AidHR20tLbQ1t5GX38fwx4Psixn5jufR6Nu08qVvHLgAAAH29opLsjn5I0b6XO58Ppj9+krB/Zz/KpYwmd5USE3f/ZzPP4//8P3P/Wf/PX55/nrc7EKL+eeeCK73tyLK6U1w2MvvMDpxx+P1WxmyOPhszffzCmbjuOhG2/iF9dey8v793Pno49OOMY//+tffPuqT/LjT3yCVfX1fOHWW9OuwTsffZRPvve9dD/6KFe/97389N57ueeJJ/jTD3/I4Qce4IT163n3l76EJ6UVwgP//CdnbN1Kx1/+ws+++EU+/+Mfs2vvXiAWtn3FhRey/777aH7wQTYuX86HvvGNpBV2z+OP879/+hP3f+97tDz0EJXFxTy/Zw+SJOFwONDr9Vy8cydv/eEPtP/1r3zgzDP5zE9+QktHB3fecQfXXnster2e559/njfeeIP3vve9o66jl156iU984hN861vf4siRI9xwww187GMf4+WXX07u09HRgdPpZM+ePfzzn//kwQcf5I9//OOkv3k2Ah2CweC8u+9SKAWuBq4D/hu4RpIkW8o6kwkITeeAx4wohcNh9u/fz+uvv05lZSVbtmwZ07c8E7IV6DDSkrnxppuS7rtQKMTBQ4fo6Oigrr6epUuXYp6mCT/bQAeAz3/hC8iRyKyOH41G6ezqoru7i8rKCurq6mhsaKS6ugab1UY4FKKnt3fWQjXbR8Pu3bv59re/TSh09J760Y9+xCOPPjKl9x+/aiW746L06v79bFq5EoNez4rFi9nT1IQvEOBQewfHr4wtzp+6aTPVpaVIksTy2iXs3L6dV/bH3l9fXc2yxYt5YtcuAPyhEE+/9hrnnngiAI/vepHGRYu44B2nYDQYKCsq4tJzdvJ4fP/x+I+zzqK2ooJzz9nJdz/5STqdzqSQAlx4yimcumkTkiRhs1i4629/4wsXX8yKJUswm0xc95GPoNfreezFF5Pv2bJ6Nf9x1lkYDAZO37KFC045hbvifcEWV1Rw3oknYrNYsJrN3PCJT9DR18fhzk4Afv/EE3zsXe9iw/LlGA0GPn/xxVSVliaPbbNY+I+zziLPZsNsNHLNhz+MyWSiz+tlxcqVrIhbXA6HA6/Xy8GDB5Ni09nZSW9vL3fccQfvfve7OSs+xp07d3L++edz1113Jc9jtVr5+te/jtlsprGxkVNPPZXXXntt0t/8bWQppd6IRUKIPwAfAr5ArMJDcXybgWmK0oKPvotEIjQ1NeF0OmfVfnyy88yH++7Wn/+c6N69tLa24vV6WbJkCQUzbVPN7AMdAL7whc/POOdEVVUGBgdxu1xUVFRQU10NHG3lbDQYMOblpdX6i0SjhIJBQqEQw243kWgEg94QS+60xhI8TcaZR2xNxN8e+xudXZ1pr/X29fLwQw9zzjnnTpokunnlKoY8d9Da3c3uAwe44NRTAFhTX8/rTU2xqghGI2saGwH4+79f4r6/P0n3wACKohCJRlkdd4tBzFp68Omn+eCZZ/LPV16hrLCQ9fEyWN0DA7zZfJhzPve55P5CCJRJRLyypIRQKMTll3+Uv/35lxQ5HHQPDCS311ZWpu3f2d9PXfx3g9g1u6Sykq7+/uRrS0a8p7aykj3x4I4Bt5vrfv5znn39dYZ9vuQDfMDtjn0OpzPtnJIksSie7C2EICTLfOmnP+XxXbsYHB5Gp9PhDQQYcLv50CWX8K94i+/y8nLKRySJ5+XlEQ6HaW5uprGxkVdeeYW8vDwcDgc1NTXs27cvuW9paWnadW6z2fD5fBN+l4kxZiP6LocsJYlYSwuEEE9IknQKsS60iyRJ+lB8e3g6B1ywoqQoCsPDw3R3d9PY2Mj27dvn7GLIZqBDQvwUReEX//u/LI1E2Lx5M3V1dbN+8GYi0EE3gbCNJ3pCCDxeD319/RQU5NO4dGmyR9Rk3+tYQhWNRgmFQgSDQYbdw+MK1WypXVzLkTGSl2tra6dUtaCiuJjFFZW8+Oab7G1t5VtXXgnA2vp6fv7gg5hNJjYsW4ZBr6dvaIjv/L9f899XX832tWsxGgz8/P77ORB/yAK8c8vx3PKHP3CwvY1HX3iec084IbmtsriE41eu4qbPfnZan7F3cJDNK1fyi9t+QSAUwuXzsSherBMYdU8tKi+nredo/UNVVWnr7aUmRQDaenvT3tPe20t1/Jjfuv12egcHefoXv6CypARvIEDVOeckr4PqsjLaU94vhKAzLngC+P1TT/Hc3r389Sc/YUllJZIkUfvudyOE4H3vex+Xf/Ob437WgoIClixZwsqVKwkEAmzcuBGfz4fP5+PAgQNYLBZefvllurq6iEajuFwuHA7HtPKpslXRYb4tpZQw70JABpAkSSeEOCBJ0vHA3zla2HVaGfsLzn2nqirt7e3s2rULSZJYtmwZixcvntPZSTar/qqqSldXF7t27cIQbydRVlaWsVqBsxXX//mfnxEOjW2Nx8aYfvxgKERLayueYQ91dXVUlFfMummhwWDA4XBQVlZGbW0tjQ2N1NTUYLfbkeUI/X39tLS2MDw8zNDQEMPDw4Tl8LQ/+85zzkGvG20VnnfeeVM+xuaVK/nD3//OorIyCuI9b+qrq3B7vfzz1Vc5Pp5XEwyFEEKlMC8Pg17PWy3NPDbC9ZZns/OO447jVw89xL6WVnbGF+0Bdu7YwYG2Nh557jnCshy7jpxOXoqv5YzHH558kvbeXt7Ys4cbbruNmtLS5JjG4pKdO/npPffQ1NGBHIlw4513ElWUtLG8vG8f9z35JIqi8PTu3Tz8zDN86OyzAfAEAtgsFgodDnyBAN/4RXqKwcVnncVv/vpX3jx8mEg0yi333UdP3HITqkogFMJsNFKcn48cifD9O+5gOG7B/N8vfsHSpUtRFGXMyUTyM1xyCX/+8595+umnycvLY9++fTzzzDN8/vOfZ/PmzRQXFyNJEk6nkzfffJN///vfuFwuvF4vAwMDhMPjX0vZylPKIUvpJeLuuUSAgxBiENhOrEI4xEVrqsx79N1UEULQ09PDkSNHKCsrY9u2bXR2dk7+xgVEKBTirbfeorS0lC1btnDi5s1IKS6FWZMBUfrRzTfT2T/OLC3l54xEIvT19xMOh6iqrJrzhogJoUptdtbb24veYECORPB4PMgRGb1Oj8VqxRqv7TZRsmZZaSk7TjiB5557NvladVU1GzdunPK4jl+1ioeeeZozt25NvqaTdKxdupRde99MCkBddTUfe9e7ue7ntxKNKhy3cgVnbN3K4Y6OtOOde+IJfPGnP2XHuvWUplT6KCko4H++9CVue+ABbnvoIWRZprK0hHef/I4Jx/euk07iG7fdRmfvv9m6rpKbrr4a/QTVTT5/8cWEIxEu+PKX8fh8rFu6lD/ffDP5KYmyF512Gk/s2sXnfvQjivPz+fHnP88J69cD8PWPfpSrf/ADat/9bsqLirj+Yx/jN3/9a/K9Hzr7bDr6+njPNdcQlmU+tHMnW1avxmw0IoTg0rPO4vv33MOy976XAoeDT73vfUl3YXtHB+vPO49PfOITnHbaaUSjUW688UYuvvjitM+wbds2fvGLX3D99dfT0dHB4sWL+eUvf8nW+G9ktVrR6/UsX74ciD178vLyEEIwPDxMZ2cnsixjMplwOBzkxS15q9WalUCHXLCUUniXEGLUIrMQQgbOlSTpvLG2T4Q0yUNqTn1W0Wh00ooFQgicTifNzc0UFhbS0NCQ/EHa29uRJInFixfP5TABeOGFFzghxV2SSRILssFgkIaGBmpqagC47otf5NzaWt7xjokfLFMlEAjQ2dmZvNlmwi3/90c27fgg1jFmas0tzdQursXldifXjfLz8ye8SYUQRKPRObmR+/r7sNvsaUKlKErS9RcKhQjLYXSSDqvVGiuDY7WmCZVzYICvfe265Ps/9tGPJcOKZ0p3dzdFRUUZbUsyE06+8gpu/co1bFi2jEUVYcoKI+zbt49Vq1bN+Pe46vvfx6DX8/NrrsnIGFVVZeUHPsB3r7qK95x6Kq2treNevx+77jpuefDBrH2v4XAYr9eLz+fD6/USDAaJRqNY44WP8/LysNvtGbecfvnLX2I2m/nUpz41+c7TZ97zMnJ6TWloaIim+ILwxo0bR11sOp1uWmV4co1QKERTUxPBYJAVK1bQ19eXlhT3+c9/nrz29oydLxOBDjabdcyrVgiBElVobW2lsLAwbd0ol9Dr9aNK4KQKldPpHCVUGzdu5PXXXwdg+/bt8zTyucPv9/OL/7udb1x3xXwPBYA//uMfnH/iiahCcPPddxMIBjlz+/ZJq038v1//GpFFoTebzZjNZkpTogNb4onRiqLQ0dGBPx4qb7fbkxaVw+GYsNbmZITD4WnXw1xI5KQoeTwempqa0Ol0rFmzZtz+84nou4VGNBqlpaWFgYEBli5dmlwz6u/vT3OvBYJBjKEQ9gy5vjIR6HDBBRfQ3pvuOgiGQnR3dxONRqlvaBjTisplxhQqNSZUoWCICy+4MClKvb29ycKiJpNp3to0ZBKD0cCmTZuS/57vJObbHniAz958MwCr6+v50w9/SFFeHrIsjzuNF0Jwwze/ybduv31ex6/T6bDZbGmRf4qi4Pf78fl89PX10dzcjKIo2Gy2NPffVKs05Jj7LuPklCj5/X6ampqIRqMsW7Zs0vDnbIVqZ4rUVhm1tbWjIgZHhoT/8U9/YpvVyimnnJKR82ci0OGLX/wCl33iu5QUF8fWjfr6CMthqquq6enpGbd6wHwx08+r143u0gqQX5BPKBhiML7gLaX0HrJarZjM5kmFKlcaDz57+y+B2He0bdtWjq5Lz5zbrrtu8p0m4e+33jrm65Ot16yKN+WcT8YKdNDr9aPakQshkk0UXS4X7e3tRCIRzGZzmlBZLJZRnylH8pTmjJwIdAiFQhw+fBi/38/SpUunVIQUFo4oCSHo6+ujpaWF8vLycVtljEzS/co11yC98UbmBpIBUfraddfhCefT73QezTfKr0GSpIy4BzOJNAfu8ZFClbSoQiEGhwYJh8IgSVgtFswWC7ZxhGq+H56pDAwM8N0bvsgD9/3ffA9lQiYSJUmSuPhDH5r362+q0XeSJCWt80QTTyEE4XA4uUbV29tLKBRKBvGoqorH4yEQCORS9F3GmVdRkmWZQ4cO4XK5aGxsnHbo80IQJZfLxaFDh3A4HGzevHnCGc5IS+bPf/0ri5zOjPWHmW1FByEEnZ0d9Lq8lJaWsnTp0rQbMBPuwVxlSe2SMV8fy6JSVTW2RhUKpgmVxWzGYrUSjSo5dd2WlZXxq1/9EshswdVMo04gSoFAgNNPOIEXmpuzPKp0ZhN9l2p1p65TRSIRvF4vb775Jj//+c/Zt28fjz/+OA8//DDHHXccJ5xwwrQiQnOdeV2JHh4eJj8/n+3bt1NeXj7tHzPbojSdB7rf7+e1116jtbWVNWvWsGbNmklN7pGiVFRUlLbOMVtmY8n4/X727d/Pnx54gOLiYsrLy0fNCGdzM+Y6119/Pddff/2U9k2sK5QUl1BTXUNDQwN1S5bEFqeFQJZluru7aWltpau7iyGXi2AwOG9CFQgE+Pe//z0v554WEzzwrVYrT/z971ke0GjmIk/JaDRSXFzMKaecwn333ceZZ57JLbfcwhVXXIFer+fVV1+d0nHuvfde1q9fj91up7Kykv/+7/9O237TTTchSVKXJEl+SZKelCSpIXW7JEk7JUl6S5KkoCRJeyVJOitzn/Io82oplZWVJUvMzIRsilLiXJOV2EmUMfF4PCxfvpzi4uIJ9x/rHAlOfsc7kKZQb2uqzMSSSTQODIXD1C1Zwvf++7u0do/vOsiV9ZJcIyFUNpuNYChISXEJJpOJcDhMMBhkyDUUs6gAs8WM1WJNzpqzUUtt79432XnGpsl3nkcmskIikQiv79nDSQ0NY27PFtnqp5Sfn8/WrVuTuVWTceedd3LNNddw5513cuqppxIMBtMSjO+++25uuukmgHcBB4AfAH+WJGmDEEKJC9QDwJXAfcD7gQclSVojhDhCBsm9mN1pkE1RmixIQFEUmpubeeWVVygqKmLbtm3TEqSxznHzj37E3XffPeMxT3b8iVDilSX2HzhAYVERq1etwm63c+8f7mVoaGicEzCvVbnHImd7P0kSOl0s7Ly4uPioRVVXR3FRMUgSbrebI21ttLS0xCyqoSECgUDGr/nCwkI+/vGPZ/SYc8FEohQMBnnwoYeyO6AxyFaZoemsKamqyrXXXss3v/lNzjjjDAwGA3l5eaxbty65z+23385VV12FEGK3ECIAfA1oAE6K7/IR4FUhxF1CCFkIcTewO/56RplXUcpE2+VsW0ojia2zdLJr1y70ej07duygqqpqRp9tpGh88pOf5KKLRvbOmgVTECUhBIODg+x9802QpFjjwHjZFYCK8vIJa4Hlkghk8uFwxZVXcMWVc5/HkxSqeOO7hvp66urrxxWqwaFB/AH/rO4Dp9PJ//3vzzP4KeaGiUSpoKCAH/34x1ke0WhysR36oUOH6O7uxufzsXLlSsrLyzn//PPTGoju2bMnbe1aCOEDmoAN8Zc2ACP9hLtTtmcMzVKa4bkSlSZ27dqF3+9n69at1NXVzeqCHHmOgYEBBlI6l86WyQId/H4/+/btwz08zKpVq6iprh71ed75ztPTiqNqzD26eCvxkUJVUlyCTtLhGfYcFaquo0KlqFML8XY4HBmrGjKXTJQ8Ozg4yHdHrJHMB9kqM5SwlC6//PJk5OtYf9dffz0D8dqBv/3tb/nb3/7GkSNHqK2t5V3veldy+cTr9Y6VguMGEnHsecDwBNszRk7lKU2XbItS4oE+PDzMoUOHMJvNY1aamCkjLaWXX34Z4969LF60KHPHH+N1WZZpb28nLMvU1ddPmKx7zTXXcPa7v0hdvDtp2vHJrZDwYxldSqRWAlUI5PgalWfYQ39fP6pQsZgtaRXURxaZNZlNLFq0NNsfYfoIMW6Qv8ViYfssyz9lgmwXZL311lu5OZ5oPBY2m42mpiYAPve5z1FfXw/A9773PYqKijh06BCrV68mLy+P4eGRmkMh4In/txcYqVqp2zOGJkpTRJIkAoEATU1NhMPhWbdYH+8cqaL0/ve/H2n5cshQKaWRMzhFVent6WFgcJDFixZRVFQ06Szvmzd8g66hsdfKZjpDzMbs8u3AuEIly4SCQbwe75hC1dfXz//7+U/5v1vn39KYiInWa2w2G+8844wsj2g02RalkUWIx2LFihVYrdYxv7vEaxs2bGD37t1ceOGFidcdwDJgT3zXPcBpI95+HPDUTD/HeGjuuymQyBPYv38/VVVVHH/88RkXJBj9eZ5++mkejXfszCRjrRsVp6wbTURHVxeh4ASNJHNoTYkcS+ZNIrJX9VIXz48qLCyksrKS+vp6GuobKIk3sfN6vEjA5Zd/hObmZiLxiuqziYqdKyaKbDt06BDnnX9+lkc0mmxMsGRZnlagg8Vi4aMf/Sg/+9nP6OjoIBwO841vfIM1a9Yki9teeeWV3HbbbUiSdJwkSVbgu0Ar8Fz8ML8Djpck6WJJkoySJF0MbAZ+m9EPR45UdJgpcy1Kid5NXV1dGI1GVq1aNavOr5Mx0lKqrKwkHK8YnilURWHfvn1YrFZWr149rQZmAM88/U9WbigdM38qW80QNWaHlEjkjS+WDw8P43K1sH7NepqamnDHm2cqioLFYsFms2G327HZbLMqJDpbJlpTWrFiBY88+mhWxzMW2bCUIpHItH+HH//4x3zhC19gw4YN6HQ6TjjhBP7yl78kU1wuueQSurq6+OpXv5pozPci8G4hhAIghGiWJOki4EfAr4EW4D2ZDgeHBe6+m6uHoBCC3t5eWlpaqKysZPv27Rw4cGDOH7gjP8/KlSuRolGQp9Uja0zCskxHezuyLLN8xYoZF3m9+pOfpKljnDU0SdLylBYgoXCI3p5urNZY+avaeCsYIQShUIhAIJAmVGazGZvdjj2edzXdic2MmWBNacjl4o3nnuMd02jAOBdkw1KaSS6U2Wzmf//3f/nf//3fcfe55ppruOaaa6rH2y6EeAx4bFonngELXpQyzdDQEIcOHSI/P58tW7YkK/eOLJY6F4y0/O655x6aHnyQb1577YyPqagqPd3dDA4NsXjRIvx+/6yqjv/hvj9QXnsmi8aw4I7lVaFLL71svocwZ1SUV3Di5vcxsiCrFI/6s1qtyXqUifpsgUAAj8dDT09P1oRqoge+Z3iYV958c95FCRZGhZJcZkGLUibx+XwcOnQISZJYt27dKPfUyGKpc8FYgQ6sXj2jQIfEulFXVxdlZWWsW7sWnU5Hxyy79S5tbEAxTiBqOWcoZWZAp2QwZFqILC4qTYG2tjaeevQBvvyFyfOwUuuzJZLDRwpVb28v0WgUk8mUdPvZ7fZZC9VEolRXV8cXzzxzVsdfCLwdgoLe9qIUDodpamrC7/ezfPlyioqKxtwvG0EVI0Wpv7+foQMHWLds2bSO4/P5OHLkCDabbUbrRhOxZcsWDraN576bvgQkbrC5uNmO7Vs3c5SWldIwiwf6eEIlyzL+QACv10tfX98oobLZ7ZimcW1OdI3s27+fR/7yF750ww0z/hwLiWNZmBZ0oMNsiEajtLa24nQ6aWxsZM2aNROOJxuL+CNdhO3t7Rx49dUpi1JYlmlvayMSiVDf0JCx5oCpfOMb17Nu64fZsH6cRO4ZfEcLIUDimX/9C8isxZQrmIwmyspKJ99xGkiSlOzMWhyf6KUKlc/no7+/n0gkgtFkSrr97A4HRoNhzHsxZmGOfY9WVlZyanwtTGNh87azlNR4Tbf29nYWL148qtHeeGTLUko9x/bt29lRWAiBwITvG7luNJV8o5nyrW99i0PtY1cun4v+RbnCXXfdCRybotTc3Mxf/3Qv//XNL8/pecYTqkgkgt/vx+/343Q6RwtV3PUnhEA/zr2an5fHmqULIAE4A+T6BG62zLsoZWuWnCgLdPjwYcrKysZttDce8+G+e+ONN3jpt7/lyksuGXP/8daN5pKDBw/gDjdSMkax2Zn8loqiMDg0iMFgxGa1Yhhnljxjju37NyOsXLmSC86+hnj0b1aRJAmTyYTJZEq6zlOFKhAI4BwYICLLqKoaq5qu12OPt6NPXCvPPfcc999+O7f88pdZ/wzZJBqNzmtYfjY4Jj7dZOsRw8PDHDx4EJvNxqZNm2bUtXE+3Hfl5eVsGqfB31yuG03E3rfewl5cNKYoTaezrRCCIZeLgQEnhQWFhEMh3G430UgEgzEmUIkW4zO9CXPV7y6EyCmrsq+vD2fnG5xx+vZx3WPZZDyh6urqQghBMBBgIC5URqMRm83G+g0b2PLRjx7zgQDTLca6EFnwopQQi7EuxEAgwKFDh1AUhVWrVs2qkOh8uO8qKiooO+44CAaTr6WuGzU0NGCbg3Wjibj4gx9gX+vszhkIBOjp6cFitbC0cSlCiORvmJglB+P5MUNDQ0SVKCajKRmebLGOrt+mMXOiSpSo3zffw5gQSZLQ6fWxYIqUYCQ5EiHg93OoqYkDR46wfO1ajEYjeXl55Ofnk5eXh8ViyYpQZcPjo4nSAiAhFqluK1mWaW5uxu12s3z58mSOxWzPo2SoBt14jLTGdu3axf998Yvc+fOfo6gq3V2xLqW1ixePGyU41/zxT39Eb9/GihUrRm2LtVMa/8aMRqP09vYSlmWqa2qwWixJERIIJHToUmbJBfFSTkII5IhMKBjCG18gT9ZvixcZtVqsc+66PFapqa5hZd3ZIKI5ZL+NwRjJsyajEVNhIRazGYNez9atW5FlGY/Hg9frpbe3l1AolBSqxN94teBmN7y5t9JCoZAmSrlOqgWjKArt7e10d3dTX18fq4iQoYtkPtx3O3bsYMedd+Jsbqa7u5vy8vKsrBtNxJo1axjwjR2pNd53raoqQ0NDDA0NUVFRQU2K2KhCjbmMhECoalr6piRJsWZ4koTZZMZsMifLPCUKjQYDATzDHvr6+kGIWNdWqy0peBqT89Zbb/H8U09x9VUfyWnX10QP/fXr17M23rTOZDJRWlpKaenR61SWZbxeL16vl/7+foLBYLLZXcKqmq1QZatthSZKc8xsH/YJC6a7u5vW1laqq6vZvn37pG3LZ3KebLvvjhw5wj9+8xtO37Qpo+tGs7l5Vq5Yzt6WsaPvxppm+/x+erq7ceTl0bi0Eb1OHxcjEQsfl4j/VvqYMKVsE/H/VxJj1kmxtZi4UKXWb4OYUIVDoWR7cb/Pj6TTEQgEYtaUzYY5ZXF8vsi1dY+6+jpqNs9/JYTJmKhK+D/++U+aXnqJKz75yTG3m0wmSkpK0rwmqULldDpHCVVeXh42m23Kv1W2K4Qfq8y7KM2WSCTC7t27KS4uTisLlGmyUWYoIdChUIhDhw7R0dHB0NBQsgdKRs7B7B6KP/rxj8krO52TTz557B3iX5EcidDT042qqNTW1mI2mxFCoKjq0VwmKfk/8X/HGpOlTSdShEoINU2oEsdIFarEuhPA4NAgkqTDbDYRCoYYHBggFA6hk3RYbTFrymK1YDJOLlS/vP3YjeqSkDCbTTknliMRgDTOQ3/tmjUsbmiY1vHGEqpERwCv18vAwACBQACDwYDD4UhaVOMJVS52nV2ILFhR8nq9HDx4kFAoxNq1a9NM9bkgG2WGhBAEg0F2797NsmXLWL9+PeetWgVud8bOMV6jv6ny1Wu+wpuHxw50kJBQFIX+/n7cw8NUVJRTkF9wVIwQ8ScLjGlWjT3gFKGKy9UEFlV8IEiSDgTodBJ2mx277ah1pyhKrNBoMIjH40GOyBj0hvj6lHVuQtNzmIMHD7L7+af55FWX5/ZnnqAgq91ux1xRMetTGI1GiouLk5UpIF2oWltbCQQC6PX6URZVttpWaKKUY4RCIZqamggGg6xYsYL29vY5s45SmUv3nRCCnp4eWltbAZIJvd3d3dzyta/xg2uuydi5pPj6zUzZu/dNuocWU109upiwLMsMDg1RXFxEY2Mj+rh1meqqy0jI8RQsKiUaJRAIYHc4iEajsRls/Nx6vR673Z5W3zAajRIMBgkGgxkPTc91jjvuONY0LAdmX41+Lpnoof/II4/Q9eqrfO5zn8v4eccSqmg0mhSqtrY2/H4/kiQRjUbp7u5OWlSZtpy0QIccIhqN0tLSwsDAAEuXLqWsrCwWJpqlRn9zFejgdrs5ePBgsir5K6+8kryQCwsLec9FF2X0fLP9HJ2dnbhlR5ooheUwPd09yLJMaUkJZWVlk7vqMk2KUPm8Afr6+igoLKAwHhghEKDGxqIk33LU7Ze6lgBHEzgToek33nQjiFgztIyEpueQRdLW1oa75yAnnrglp8Y1kolE6QMf/CDqxo1ZG4vBYKCoqCgtCnZ4eJjW1lai0ShtbW0EAgEkSUqzqOx2+6yESltTygFUVaWjo4POzk5qa2tHlQXKlihl+jzBYJBDhw4RjUZZs2bNmC2NLRYLK1etgkgkY+edToLrWJyzcydvHI5ZGIqq4uzvx+P1Ul1VRTAYRKfXz9xVN0siskxPTw86vY4lS5ZgGBkYEv/cCbFMCNV4EX+poem9vb0AlFeUzzo0PediAiXQ63UTusdygYlE6bXXXyeqKGweJ9k8G+h0OsxmM7W1tcnXotEoPp8Pr9dLR0dH0qKaqVBpllIWGO8iE0LQ19dHS0sL5eXl45YFWmiilFoIdtmyZZSVlY2778DAAJe87308ec89sz5vgkSgw0x5+OGHGAgsZ/mK5fT19lFUVMTSxkZ0Oh3BYDBWDkZR0Ol12Zt1C8HAwADDw8NUVFbgcIyTJJ3ivkt9L6QI1XgRf3FmEpputljQ5bAFsqR2CWsbSxFqeL6HMiETdZ4NBINE/P6sjmckYwU6GAwGCgsLKSwsTL6mKErS9ZcqVIlgiry8PBwOx5hCNd1W6AuReRelsXC5XBw6dAiHw8HmzZsnnBlkU5Rm8zAXQtDd3c2RI0emXAi2vLycvz/5JDidMz7vSGYb6LB69Sqefw08wx7q6+uThTIVVcVut+MccNLa2hprEGezYbXGAgdMZhNzYTH5fT56e3spKCigsbFx+kI4jlCNiviLoyjKqIi/yULTw6EwSFIs2s9iQVWUWa3rZZpdu3bxynOv8uFL/yOnAx2Eqo57BZ144omo69dndTwjmWpHWL1eP6ZQJSyqrq4ufD4fkiRht9vJz8/H4XBgMBi06Lts4/f7OXToEEKIcV1aI8nmmtJMz+NyuTh48CAFBQVs3bp1yvlGkUiE+++5h0vOOGNG5x2LmQY6KIpCR0cHXq+X+vr1FBUVjVo3MlvMLFoUax+gKkoscCAUpK/PQ1gOYzAYsFqs2OJiNcq9Ng2i0Qi9vb3JkHNjJoNdxor4S2zS6SaO+INRoekAihqL+AsFQ8gRmfb2dnS66YemzwXr1q9jxeJFuR8SPsFD/7e/+x15J53EhRdemN1BpTBRHtVk6PV6CgoKkhY4pAvVW2+9xec+9zmi0SilpaXJCfv69evTrrNjgZwQJVmWOXz4MB6Ph+XLl6dFuUxGLrvvUteNxupmOxlCCFriEXmZYrqBDiLuGuvu7qayspI333wDpz/MmWeeGavGMM66kU6vx+5wYE+ZWESjEULBWODA4NAQ0WgEk9GEzWbDYrVgtdqmkPQsGBwcwu1yUVFRgWMW9QxnwngWVaIiBZB0/aVF/On0ydB0n99PTXU1kiTlRGh6NBolGpGB3HYLTSSaZ519NvrjjsvyiNLJdJ5SqlAtWrSIl19+mVtuuQWv14tOp+NXv/oVXq+Xe++9d8LjHDx4kC984Qu89NJLSJLEiSeeyM9+9jPq6uqS+9x000389Kc/pbu72w+8CFwphGhJbJckaSfwI6ABaAa+KIR4ImMfNoV5F6Wenh6amppoaGhg1apV074BczH6LrFuNDAwwLJly2acQ2Uymbj+G9+A+CJ7RpjG5/D7/bS2tmKz2VizZg0Gg4GPfvSjvHrAdvQ7n0Ygg8FgxJFnTBESgSxHCAQC+Lw+nP1OVFVNrsfYbDYsZnMyYTIYDMaqQzgcNDQ0jJtImTXGCU1X1ZjLb9yIv7gDdazQ9Eg0Sig1ND0aSbb1mKvQ9P37D9DbvI8LLjg/ty0lGNc9azAaM2stz4BsWJqqqrJy5Uo+8pGPTPk9F198MWvXrqWjowMhBFdddRWXXHIJzz//PAB33303N910E4899hibN28uA34A/FmSpA1CCEWSpAbgAeBK4D7g/cCDkiStEUIcyfRnnHdRKikpobS0dMYzjFyylEauG23btm1WMychBO9/3/v44y23ZK6GH5MHOkQiETo6OggGg9TX12O325Ouur1799LcVkpjYwOzXyM6GuFGwr8uBKFwiGAgiGtoiGAodNRdRqzDqCPPkYFzT493nDzF5n7xatZJ4uNOCJXP50OWI6iqmizwmxrxZzQYME4Qmj4XVdO3b9vGhmVrCIWDOR0SPlF04D333ktDIMC5556b1SGlkqsVHQ4fPswPfvCDZEeByy67jPe+973J7bfffjtXXXUVmzZtQggRkCTpa0A/cBLwDPAR4FUhxF3xt9wtSdIn469/e9YfagTzLkpms5loNDrj9+t0OiKZDJme4DwTPcwT60aFhYXTWjeaCEmSuPa662Z9nJHHHO9TJCIe+/r6qK6upr6+PmkhqqqKqqp4PR4CfitzJgqShMVixWKxUoTA7XIzMDBAfkEBOp2E2+2mt6836eayWWPrU0aTce7GBHx4GjPTNOIPeSEEPb09qIpKXV0dJqNxzIi/2HvSAykmrJoeLzA6m6rp+/btw+/sZNPm+XV/TcZElshnP/c51FWrsjyidHK19t21117L7373O3bs2IEQgjvuuIP3vOc9ye179uzhC1/4QvLfQgifJElNwAZiorQBeHXEYXfHX8848y5Ks2W+Ax2CwSAHDx5EVdUZrRtNRnVNTSzqKIPVzscKdPB4PLS1tZGfn8/atWvR6/VJ6yixVqLT6dhxwglYDtrnPHgsFArS092D1WqloaEh3foAlGiUYChIIBDE5XIRiUYwGoxYbTZsNitWixV9TlRgELjdwwwMOCkvKye/IJ+EeE64PjWJUGUyNN1itZKXn7eg85Qef+IJluj1LF++PMujOkq2q4Rffvnl/Pa3vx13369//et897vfZefOnTzwwAMUFhYihGD9+vU8/vjjyf28Xm9agEUcN5Af/+88YHiM7Wtm81nGIxfu2lkxX+67RIWJwcHBjPVsGotLL7uMR267LWPN/EaujcmyTFu8aWBjY2OyhleqGCXcSwCPPfYY+1qLOPW00zMynpGo8dp5wWCQquoqLJaxI4v0BgMOR15KTpIgIkcIBoP4fD4GnANElSgWsyXp5rJarTNeh2o7cgSAJSmLw5MhyzLd3d2YTSbq6xsmDuKYpHTSVCL+phuanqia3lBfz/rlZQQC/pxeU1IneujnwLizYSml5indeuut3HzzzePua7PZcLlcnH766Xz5y1/m2WefRQjBjTfeyMknn8wbb7yBxWIhLy+P4eGRmkMh4In/txcYqVr/v73zDm+qbP/4N0lX0qS7pYPu3VJ2mSKioIAL9HW8r4LKdAECynAhDl5kCCgCIkuGvj83ggoiswUUECjYvfdus3fO8/sjPYekeyRNiudzXb2UnIxzknPO/Tz3c9/fr+l2i8IGpU5C38xpW+bi4mKLrBu1humI69Tp0+CUlVnuzU3ScVVVVaitrUX/4GB4eXqapeqYfWh2sQ8fNgyObh2X6ncdAolYgtq6Wvh4+8A/wB9dS8dx4OjkBEcnJ7gxoz4CjVoDlUoFiUSCqqoqEAD8poIBvoAPF2eXTt3Q3nv/PQDArl27O3EoBHX1dZBIpAgMCAC/uwOKzgSqdir+OipNp1XTL1+6jD/8SvHwww+b//b2Rjv7dd/kyaBsOEsCet/kTygUdtg2k5GRAYlEgqVLlzLnwdKlS7F69WpkZ2dj0KBBGDRoEK5evcqU03M4HCGAaABpTW+TBmBCs7ceAuCkhQ7LDJsHpZ7+iL0ZlPR6Pf7880+Lrhs1h167or+Xvfv24ckxYyw3U4Jxul5QWAgvT08MSEpihFPp2RGHw2lzRuHC51u8eU+r0aCisgJOjp2YUXQJDpyb0lYeTRplhKKYMuy6ujpo1BpjvxCfDxe+sYfKqQfrU3SFoEgkQmREhOVH8O1V/AEghDKr+DMNVFwOx6w0ncbf3x9RAZVQq9WQy+XIyMiAg4MDXF1dIXB1hdDVFY6OjvYZqJp48623cP+SJRg5cqTN9qG3Zkpduf7i4uLg5eWFLVu2YMmSJSCE4KOPPoKbm5ux2RxGPcclS5Zg+vTpGDp0KB/A+wAKAaQ2vc1+AK9xOJx/A/gWwL8ADAMw04KHxmDzoNRTeiMoKZVK5OTkQKvVYtiwYRZfNzKFXruiT26pTGYxIViNRgOxWAwnJyfExsTApcmdta1UXWucOXMG17L5uP/+h3q8P4SiUFtbC7lcjoDAwF5pAuTQDasCAQBjytVgMEClUkKtUqOqstLYL9RUhk33UHUEnXZUa9To378/nHqz696s4o/XouKvPY0/nU6Lc2dPYsyiCVDI5eByuQgJCYFWp4NSoYBCoUBdXR10Wi0cnZwgdHWFQCCAa1Og6m3aCowvL1gAYZPzrK3ojaCkVqu7VOggFApx9OhRrFy5EuvWrQMhBAMGDMDRo0eZWdZTTz2F8vJy3H///QBQD2Of0kOEEAMAEELyORzOIzD2Ke0BUABgujXKwQE2KLVL83UjpVJp1YAEtFzzWfTKK+AUF/foPQ0UhcqKCtQ3NMDV1RX+/v6M6V57qbrWeOCBBxASK4De0OFT20Uuk6Gqugpenl6IsEh5effh8XjN1qcAvc64PqVQKFBXX8c8XldXC76LMSVGBwL6WLqXdrQCdPquA40/uUyG/gFOCO9XB41abXYdOTk6wslECoc0FVIolErIZDJUV1dDr9fD2dmZ6bVydXW1uONzZ1EolXC1sXRTb/kpdbX6bvTo0Thz5ky7z1m2bBmWGS1yWk3JEEKOATjWpQ/uJmxQagXTdSNamby3UhfNS89nzJyJ9S++iICAgG69X0NDA0pLS+Hj64skkwY6qmk9or1UXWtkZ2XhZroD4hO7Vw1qquQdFhYGB4feH213BgdHR4gcHSFyczN/3MEB0qabMkUoUAYKPAcHY/+Ua+/3T3WaZhp/FWUFOH5kK7Z89A4innwMep0ONTU1jP+U8SUcsx4qZ2dnODs7w4tOhRICjUYDhUIBsViM8vJyUBQFPp9vTP01zaisPXsAmtLc/fsjISHB6p/VFvZaEt7XYINSMxoaGpCTkwNPT0+rrRu1R/PS81WrVsG7G8enUqlQVFQEBwcHxMXHw9nJiQl2dXV1oCgKQqGwy2XTBoMBen03RqTklpK3v7+/mfxQX8LDwxMeHgSNDY2ob6iHt48POAAkYgmqq6pNhGiNPVTWEqLtLul//w0YqvCff43G5LtWgcvjQdLQgLKyMgQFBTGahnQhBX0u0meg6SCGy+HApamSj64+pQiBWq2GQi43DojKygBCjIFKKIRrU+rU0qrp773/PkgX7dAtTW+XhN+u2Dwo2Uuhg1KpRHZ2NgBg4MCBFiss6CrN03c8BwcQTectBQwGA8rKyyERixEWFgY3NzezNF2/fv0gFovR2NiIsrIyEACuAgFTycPn89tN4yUkJsLgLICuC/3OcrkM1VVG071uKXnbERq1GpWVlXBxcUFEeMv+KXMh2mqLC9F2F7FYDA93FwxNdAQPHuDxAL2OIC83F+BwEB8fz+wXB4DpeJ80nTtMoDIYjP9uOle5XK5ZoBI0KcPTUIRApVRCoVCguqYGapVROcJVYJSSchUKwXdx6dG9YM/evZj68svoZwFL9O7CzpQsg82DUk/paVDS6/XIz89HQ0ODVfuNOkvz9N1777+Pd2bMQGhoaLuvI4Sgvr4e5eXl6NevH5KSkm6VeJuk6hydnODr5wfaxYkyGIzac3I5ysvLoVKp4OjoCKFQCFdXVwiFQjNNsXNnz+L0Hwo8+PBjHR6LXmdU8iaEWF7Ju5d58803IW40pqgCAwPh0kZRhvWEaHvG6d8OYurEeAwdMwoA0NB0rvTv3x+eHQggc7jcdgMVoSijHQeMMypCiPF4mtJ+3CYLBldXV/g1vd7QdN4pFApUVVZCpVKBx+NB4OoK16a0n7Ozc6cDlZe3t83t6u1VZqiv8Y8NSqbrRqGhoYiJibGLktfm6bs9e/eCk5/f7msUSiWKiorg4uKChIQEM4+jjqrquDwehCKRmdq2TquFQqGAXC5HdXU1dDods04QFRUFysWzxfuY0RQgxWKxTZS8LY1SoYDBQKF/cH/4ePt0eabXlhCtqi0h2ibx1R4LzhKCvXu24dWFD+O9t541VttptSgqKgKXy0V8QkK3b+TNAxV9njEVf3SwMnmNWWk6j2dmPw8YB4hKpRJyhQKNjY3QaDRmpent9VBNmz4dxMYDyt5I3zEB/zbmHxmU6uvrkZOTAy8vrzYdbdvC2ide8/Tdvi++wH0REQgMDGzxXL1ezzhXhoWFQSgUMsGIrrDqbFWdKY5OTvBwcmJ6e0AIU4lWXV2NkmIJ+K5SCJoaUPkufDi7OAPgQKVUoqKyEiKRyD6UvHuAwWBAdVUVtDodQoKDLTjTM9Gza02ItrERKrUaHMBMjYL+jjuEEBQVFWLk8GA89+QgBAUYb/x1dXWorKhAcHDwrd/WUkfU9DvzTH5vprG36XxsdX3KpJDCwcEBbm5ucDMpLjEtTddqtUhPT4eTs3OL0vTHHn8cW378sdsFQZagN2ZKQM+XPOydf1RQMl03GjRoUJfXjZo3tlqD5uk7vkDQ4kQnhKCmthZVlZUICAhAWFhYq2oMFgsI9OK9QIDc3FwU5NfhwYefgEqlglKlRG1tLdRqNfQGPbhcHny8veHu7t6HAxKBVCJFTW0NfHx8Eejhjv1f7AfQA2HWjjATom3aC7rRV2n8jjUaDXg8XodCtHqtBOdPbsPDk95CkO8QaDUa5OTnw8HBoUezoy4fUtPv79AsUHVYSGESqExL0yUSCeLj41stTX/1tdeMckoNDXBzc7NJKq+zzrMs7WPzoNTTG3xnXm+6bhQbG9slE8Hmn2Xt0VDz9N0TTz4JTk4O82+5XI7CwkKIRCLG46irDbA9YfSYMXD350Ot5ULg6gqBqwCNDY1Qa9To59cPDg4OUKlUKC0rhV5/S3tOIBBYJiVlZXRNenUODg5m6hLnUs4BsGJQagXzRl8jtBCtqhUh2uqqSuRmnMJ7q+ZhxIbVxorH2lpUVlYiJCTk1qzMhnRqfaqNij96sNVaafr53Fw4Ojqirq4OhYWFMBgMjJU4nSa0dtqrJ86znYFOi97u2DwoWRNCCMrKylBSUmKRdaPeUI9onr576eWXMfuOOzAwKQklJSVQazSdEk61FgX5+bhwQYyhyXdCrVKhsrISfAHfrBLtVm/PLe25FikpAd/OSqZvOdrac8l6a0K0ZaVl0KjqMSyRi1C/GPx98wacnZ2Z7v+4uDi7LjLpKFCBEDTU14PL5UKv17da8Xfw0CGsu/9+BAcHAzAGCKVSCalUiurqauTl5YEQAqFQyAQqoVBo0QEmm76zDHYRlLpq0d0Z6HUjb2/vLq8btYUtgtKbb70FbVoaMjIy0L9/f3h5eXVKONVaODg4wMHBAZWVldCo1QgMDIRzmyWqrWvP0Wk/05JpQZPTLJ/f+5YTarUKFeV25GjbWQgBh8uBvDEdAb4GDEi8CyDhqK6uRlVVFTw9PUFRFHJycpjSf7qisieK6b0BHagovR7FxcUgAGJiYsDj8Vqt+Pv444/B4fOZwMDlclsIlhoMBigUCkilUpSVlUGhMKqi0zMpNzc3uLq6dvum3xuFDrd7QALsJChZEoVCgezsbHC53G6tG7VHR0Z/lvoMOvA1NDTgwsWLiAdaFU4Femd2xEAIBK6u8PLigM93QUA3JHU4XDrtd0uuSa/XQaW8JenTW2k/QlGoqamBUqlEUFBQO8HVPtn9+WY899RY/OfxcQCMPVSFTVWYSUlJZj1UlMEAZZOtR2VTCTaXyzWWajfdvF2cne2qh0wiFqOkpASBgYHw9vFhHm8+o6IoCqvefRdvbt8OLpfLOPoCxuuJw+GAy+WCx+O1KKTQ6/WQy+WMn5hCoYCDg4NZoOLz+Z0KBtaeKf0TUnfAbRSUdDod8vPzIRaLERMT0+11o/Zoy+jP0p+h0WiQlpYGg8GAtLQ0hMfEgMvh2C4YAVAplSguLkZ+fj5OpdZj5rMvWuy9HRwcIXJz7DjtZ0GlBLqh19PTE+ER4T16r96EMhhw4UIqHps2AqtffwQ+3t4AMToG19bWIjQ0tIU0EtBU+t9s5qDX66GQy6FQKFBSXw+NRsOIrtJ9arZI+1EGA0pKS6FRqxEbG9uuuC2HywWPy8WgwYPB5/OZG7ehqcGXziiYWs/Tf1wuFw4ODvAw0fgDjPcSmUwGqVSK2tpapnePDmgikajVHiprz5S0Wi2c7DgNayn6fFCihSIvXbqE0NBQxMbGWu3EsPZMiaIoiMViVFZWIiEhAb6+vhiakACkp9skVQcYbxDl5eWQSqUIDQtDWHg4/EKsnfbpbNrvlpJ3Z9N+Br0elVWVIBRBaGioTdQVuotep4O7iAOe9jpE/DgIhT5Qq9UoKiyEQCBAQkJCC4WJ9nBwcIC7h4dZAYS2SctOLpejqqoKOp0OLi4uTJBydXW1anpVLpejqLAQfn5+CAsN7fS5/sSTTzK2HgDMZiz0tWP6X+BW4KJnU3SgcnR0hJeXl9nAVqPRMIGqoqKCWa+jgxQ9+7JmUPonNM4CfTwo0etGFEVZbN2oPaw5U6qtrUVuUwVRdHQ0fH19QQjBhT//xJ433sDOzZtRXV0NvotL71RREcJIEfn5+SExMRHgcCCXySCRqOHla9k+l45oNe1nquRd1+Q06+LCNKCaSyYRiMVi1NXVoZ9fv1ZnE+0RGtK+ooa1qautxsG972P/7v8i9qU5ACGoqqxEXV2dsUfNQg3KTs7OcHJ2vqXy0KRlJ1co0NDYyAj60j1CtJ5dT9OrhKJQXlEBqUSCqOjoLknpaNRqjElOxpU2zDDpAGVafWcaoOg/AG3OqOiKP5+mNCJp+l5kMhnEYjHTL3jz5k2zQGXJe5Kpwd/tDKeDkX+vJDF1Ol2Xbvam60YxMTFIS0vrFSXv9PR0BAUFmU31e4pSqURWVha4XC7i4uJQUVEBPp8PPz8/UE2zg6ysLAwbOhQ7PvoI3i4ueGzqVKx96y0sfvFFgMOBA49n0RG/Wq1GcZOYa/PZRFZmJg58exOPPvacxT7PchhvFCqlqkl/zpj2c3J2glqlhgvfBQEBgX2qI76kuBgySSmemD4UOo0MrkIh1CoVCgoKIBKJEBQU1KXZkSUgTZVt8qbUn1KpBIfDMa5NNaX+XFw65+gLGFPDBQUF8PT0NDaJd/U6JgRyDw+49lCQta0ZFQ0doAC0unZ06dIlJCYmMjMqmUxm0dL0kpISLFu2DD///HO3Xt9JbJ7H7lMzJdN1o9jYWHg2pXbo4gBr32wsmb4zGAwoKChAXV2dmeYeh8OBTCaDh4cHHB0d4erqimHDhgEAnl+6lHltyNSpcEpOxk9ffYXLp0/jg9dfx5H/+z+MHD4cfn5NCmNdvLgpgwGVlZVoFIsRGhLS6mwiLj4ezz4zBDJlDw7eajRrQG1qMpaIxRA2WTIUFhYY034CAQRNahS9Xe3XGbRaLRy4BKEBWshcpHByJHBycGV8sWgFD1vA4XJb6PsZ9HoompQXSktLoVarmfOXTv21WBsiBFVVVairr0dEeLjZLLgr6HQ6XL5yBXf1MCh1ZkZFz6To1B+Px2OCFcdE48/f3595PV2aXlVV1aPS9O54KfVF7O9qbAWKolBWVobS0lKEhYW1WDfqraBkifQdaVqUzs/PR1BQEEaOHMkEO4qi4O3tjdLSUly/fh2EEIhEInh4eMDd3R0CgcBohc3j4T//+Q8A4OGZM/HQjBkgHA4q/PxgiI3FzeJibFy9Gvs+/RR///UXPD08ENS/f7v7JWlKQXh7eyMxIaHNdExZWRl++Tkb4yb03HnWmtByR+5uboiOjjYL0HqdzigGKlegrrYOBoPhlu6cQAB+F0b51uLXIweRPNgLD9w/CUAgVEolCgsL4ebu3u7vYyt4Dg5wc3eHm7s78xijodikDq5rsvIWCoVwcnJCTU2NsQm8h8ej0Whw+KefcNfjj1viUMxoK1DRf/R1q1arYTAYoNPpzCr+TEvTaamw9krT6UDVWmk6m74zYvP0XV1dHXJzc+Hj44Pw8PBWc7R//fUXBgwYYPUfjPZZ8vX17fjJrSCXy5GZmQk+n4/o6Ggz91f6+Dkmi7UGgwEymQwSiQQSiQQKhQLOzs5wd3dn/lrzeyJN60FeXl7Yt3s3ogMDMSIxEXP+/W/s3boVjbW10BsM8Pf3h1ajQUlJCQAgJCSkQxvvuro6HD9TjvgBY7r1HVgbymBAdU0NNBo1AgMCO2dLbqI7p1QqoVarTXyRjIUUL774AgBg167dVt3/H77/GjOfvAPhIa5GtQ6KMs5eGxsR3oPZhF3QtA5TVVWF+vp6ODk5gcPhwIXPN964m/TsupOOJMHBgEnZeG9C36PCw8Ph5eXVQnmh+fpUa5iWpkulUiiVSrPSdPo+sH//fuzdu9eah2Pz9J3dBiWFQoGsrCzweDzExsYaF63b4Nq1a4iLi2v3OZYgNzcX7u7ut9JjnUSv1yMvLw9isRhxcXFmFtN0GsA0GLWHWq1mgpREIoHBYIBIJGKClFAobPV9DAYDbt68icGDB+PH//0PVfn5eGDCBHy6bh1mP/UUQoODodXpOpUSyit1gVRhf+syMqkU1TXV8PHxafqOu399Mb5ITX+r310NAFiz5r/GtJ+F7Sbq6moRFe6F4pzfkTx8EIQiEZQKBQoLC+Hh4YHAwEC7mx11Fb1Oh8LCQjg4OCAkJMToFda0bkqvTymUxrywsCkN1hmPr4b6emz+8Ues3rq1tw4FgHHGlJ+fD5lMhsTERLNBcXvrU61V/LUGXZoukUiwdOlS5OXlgaIoPPXUU0hOTsbw4cPRv39/S6+ls0EJMA9KOp0OeXl5kEgkZutG7XH9+nVER0fD1cqjyPz8fLN8cUcQQlBZWYnCwkKEhoYiKCjITI2B1srqyUlFUZTZbEoulxvVp01mU817GxobG5GTkwMfHx9kZmbi7rvuQsaVK9j50Uf4fPNmHP/+e0SGhiIqKsrow2Ry0eRkZ2PNxsNYuGR1t/fZ0uh1OlRWVoLD5SDAP8Aqa0Rz5swGAHy08SMoVUqoVWqLpf30WiW2blqMz7evgbOLi1klWnh4uJn2XV+lscndtjMK5aYeX3KFAqqmWYPp+pSzSaOvSqlEank5JlohfdcWCoUC6enp8PPzQ2hoaKeba02v/eb33o5mVKdPn8ZPP/2EadOm4fLly0hLS8N3331nNjj6+OOPcejQIdy8eROBgYHIy8tr8T7r16/H5s2bIRaLMXr0aOzcuRMRt9bjOBwOZzKAjQAiAOQDWEII+c3kCVEAdgAYDaARwCZCyMYOv4BOYhdBSa/XQ6fTMetG4eHhCAgI6PTN+saNGwgPDzfzZrEGhYWFcHZ2btVGojlSqRSZmZkQiUSIjo5mPI7aStVZEq1WC4lEArFYDIlEAl3TDEgoFEIsFoMQgri4uBZqF/SM7ccff0RCVBR8+Hw8et99OH30KHKuXwcIQVRUFNILuNBT9uCRRNBQ34DGxkb08+9nogdneeigZJa+60Taz6kVFW+aivJyXPrjF7y9/D9w4BGAw4FCLkdhURG8vbzg7+/f52dHhiaZIIPBYEy/d7NKVK/TQa5QQCGXQy6XM42kdMWfS0ICnDs5WOwJ9ECzpKQECQkJZuoQ3aErFX+//fYbrly5gg8//LDN9/v222/B4XCQlZWFvXv3tghKhw4dwuLFi3Hs2DHExcVhxYoVOHXqFNLS0uiijUgAfwOYB+BrAI8B2AkgkRBSxOFweE3bfwewHEAcgGMAFhBC/q9HX0YTdlHoUF9fj4yMDPj6+nar36g3NOmAzmn0abVa5ObmQqFQICEhASKRiMkxdzVV112cnJzg6+vLrH3RaYbS0lIIBALo9Xqkp6ebzaZcTOyop02bxrzXkevXAaEQefn5IAoFAr29sWzWEixftAo8Ymz27d8/2GrH0hYatRoVFRUQCAS206sztZto6usxTftVVVZCq9MyKt502k+lUkKnUWDEICGCvRPg4AAQiqCstBQymQxRkZFtOtv2JaQSCUpKSuAfEGBUnujBOe/g6GiuvEAINE2Nvn///TeWLViADbt2wdXVFe7u7oz6giVTrDqdDpmZmeDxeBg+fLjF9DSBzlX8ZWZmoqKiot33+9e//gUA2LdvX6vbd+7cifnz52Po0KEAgDVr1sDPzw+pqakYP348ADwD4C9CyMGmlxzicDjPNz2+GsCdAEIBrCSEKAFc5XA4nwF4HsDtE5Q4HA6GDBnS7TWh3gpK7X0OIQSlpaXMTC8hIaHVVF1v+61IJBJkZ2fD09MTY8eOZU5+nU7HpPzKy8uh0WiYC5q+qOnKIQCYev/9AICioiLwo6PgNnQo/r5+HX9lZuHZQYPx7f79GDFwIIKDgiCRSCxuIkdDKAq1tbWQy+UIDAqEi4t93bxb2qET6LQ6Zt2ktqYWedkXIHKuwYDIhxEZFQWZVIrikhL4eHsjISHB5pV/PYUyGFBaWgqVWo2YmJjOFZt0Fc4t1Y87xo1D6syZgLs7U9VWVVWF3NxcpoLVzc0N7u7ucHV17dY1KBaLkZWVhbCwsE6n77tL80BFURS2b9+O77//Hv/973979N5paWlYvHgx82+hUIjo6GikpaXRQWkQgL+avexq0+P09hxCiLzZ9pd6tGMm2EVQ8vLyMhNR7Cq2DkqNjY3Iysoyc7KlZ0bWTtW1Bb02p1QqkZCQ0KKAwdHRET4+PmYd6gqFAhKJBBUVFcjOzgaHw2kxmwoLC8PGjRshFgNJQwYjachgAEDsvfdCFBSEapkMH23ahHXvvour51Mh4DkgLj4eBoOhx6NWRZP0jYenJyIiI2AHa7KdgANHJyc4OjnhxG9HMfHOUCxb9DBUKhWkMhkK8vOZ/hONRoP6+noIhUKzNZO+BJ1+9PHxQWgXZIJ6QmNDA66VlGDCww+3Wn4tl8shkUhQXFwMuVxuJszq7u7eruAqRVEoLCxEY2MjBg0aZPViquY0NDTgxRdfRE5ODrKzszF16tRWn/fGG2/g/fff7/D9ZDIZ3E3K9gHAw8MDUqmU/qcIgKTZy8QAEjvY3rM8pgl2EZR6Sm+m70w/R6PRIDs7GzqdDgMHDoSrq6tZmq43UnXNoXPexcXFCAsLQ1xcXKc+n8PhMBd0UFAQAONaHz2bqqysNKolqFTYvz8Fzz231KiDxjOO6pKSBhjfyMsT6z7fCQDgRkUBjk6ggoIw+8knsWPzZogrKtBQV4eExMRW96M1DAYDqiorodfrERISYhOR0JkzZnbzlQQ3b9zEXXfEYu6MYQgM8AOn6Xytq62FX79+8O/XD3qDgRFHrW8SR3VycmJ+E1eh0CZuqp2FUBQqKiogkUh6Pf0ok8nw17VrmPDwwy228Xg8ZlBFo9PpmNJrWiXe2dmZCVJubm5wdnaGSqVCeno6PD09MXTo0F7Pcly8eBFLlizBG2+8gSlTpkCj0bT53M66IYhEIkgk5jFFLBabro3JALg3e5kHAGknt/cYuzjLe3rT7u2ZEkVRKC4uRkVFBaNTZw+pOrlcjqysLAiFQgwfPrzVHqau4ODgAG9vb0ZtghCCmpoaDBjQiIaG+qb+JgJXV+ONUyQSwtnZhRkcDx48mHmvnT/8ACcnR9RrtSiTSpHg7491776LJx96CP08PVFcXIyYmJhme0AgFktQV1cLP18/uLm7wVazozuNqY2uQQicHCmU5v0C17vd4RMYDMpgQHFREVQqlbFXralDv4U4atOaiVwuh1gsRnl5OSiKAp/u6REKjc3UdlAIQcseubu7Iz4+vtf3KSQ0FK9OnNjp5zs6Opqd14Cx1UIqlULStA6mVCqh1+vh7+/P+FL11vVsMBiwefNmHDt2DD/88ANTGWeJQq5Bgwbh6tWrzLqxXC5Hbm4uBg2is3NIAzCh2cuGADhpsj2Gw+G4EkIUJtvTerxzTdhF9Z3BYIBer+/26wsKCsDn8xEQEGDBvWpJdXU1ampqIJPJ4Ofnh/DwcPB4vF6rqmsLvV6PgoICpoy+pxVBHVFczEFDg/H/DQaKUZWWy+VQq9VmI3yhUAgHh9bTdjU1tXB3d0dNVRUO/+9/eHn2bBz99luE+PoiPjoaN2/eRL9+/eAfENCn9OoA4yL/zm3vYP+u1XBw5DGPlZSUwM/Pz9jr1sVzpDXNOdoTif6uezXtR1tm1NUhPCzMZm692VlZ+C49HSs7kb7qCIPBgKysLOj1eoSFhUGpVEIikUAqlYKiKAiFQmY2JRKJLB6oampqMH/+fCQmJmLt2rVdtqrQ6/XQ6/U4cOAA1q5di/T0dABg5IkOHTqEJUuWMNV3K1euxIkTJ3Djxg26+i4KwE0AswF8C+BfAHahZfXdbwBWAIgFcBzAIkLI/yzxHdwWQamoqAiOjo5M2skaqFQqpKWlQafTYfjw4Yx3C10pY6tUXU1NDQoKChAcHMz0QVmTkpISTJo0F//732+tbicEzAif/gMIBIJbN05jDr/19y8oKIRcLodBpcJnW7bg0w0bkH39OuR1dRgxYgR0Wq1N0nfnzp4F0PGMqaG+HrXVxXhwcjxU8ir4+vnBoNcb9eA0GoSHhVnUTJD2RJI3K5W2dtpPq9GgoLAQfBcXBAcH97oorCmNDQ0ocHbG0Dvu6NH7SKVSZGRkICQkpNWWFIqimPUpWnCVy+WarU/RUmDd4ezZs1i+fDk++OADPPDAA916n3feeQerV7fsITS9z69bt65Fn1JkZCS9uXmfUgGAxa30KX0GY5+SGMBHhJANXd7ZNrgtglJJSQk4HA6Cgy1fmmwwGFBUVITq6mr4+/tDp9MhNja2V0u8W4NWSnd2dkZ0dHSvmX8RQlBQYIBU2vnUIEURs9mUSqWCk5Njs9mUA+RyBYqKiuDh4Y7AwCBwucbvNC8vH3K5DINj4/DKvHlYtnAhBBwg++90jBw1ylqHakarfUqmEAKKMsCgKUFR7jk88cRjAG65p/r7+xtL9K19npik/egZFUVRjNVEj9N+hKCuvh5VlZUICQkx07qzFXqdDprISAhM0nFdgRCC4uJi1NTUIDExsUtN+Hq9nlmfkkqlUCgUcHJyarE+1d79Qa/XY+3atbhw4QIOHDhglftYF7B5dY1drCn1lOYWyJaAEMJ4HAUGBmLUqFFobGxETU2NTavq6CBZV1eH2NhYi9podAaNRoPU1D8wcGDztHPbcLkciETGNadb76NtqvaToqysnGk87dfPD56e5q7BUVHMKA4b9+0Dl8tFeXkZKouKgaAgfLpxA8YOHoLBcXG4fu0aBg8ZjN6+tn47/iMCvWWYOeNRjBz6GPR6PUpLSqDVajt0T7UoJqXStIW4adqvqqrKzAq9K2k/vU6HoqIio81KfLzdFF5cvHgRh7Ztw/Y2enPaQ6PRID09nVmH7Wo6zsHBoYUhIN28TguuajQa8Pl8s0BFr/dWVFRg7ty5GDNmDE6cONHjdeDbAbuYKVEUBZ1O1+3XV1RUQKPRIDw83CL7Q+vuOTo6IiYmBi4uLozIaVZWllEqxcOj3VJSa1BXV4e8vDwEBAQYUyY2WOQWi8VYsGA9lixZY7H3Ky0tg6+vL4RCV8jlCmY2xTOx8BaJRHB0bP0mKJMZy3wNej22bdqE5QsX4vQvv4Cn1eLO0aNRWVEBv379erQu1dZM6czpU7j37gRE9OfBxcUZXB7PeEwlJQgIDOxx06i1aC3tRyt408HKVK5J3GTw179//1sGgHYEiY8HupgWra2tRV5enpl1jDUghBhbAJoKKfLz87FixQoEBQUhNzcXy5cvx/z58+3FlsLmJ+ttEZSqqqqgUChM86LdQq/XIz8/Hw0NDYiLi2N090x7jugSabFYDLVaDYFAwFhL0A2nlkatVjN9Q3SQtCVlZRzU1vbsPbRaHYqLiwEAoaGhTXI85uh0erO1KZ1OB4HAtPrMlUnxNaemphY6nQ5B/fph2cKFeGPJEjRWViI3LQ2TJk6EWqWCC98Fnb0GmwclhVwOXx8Bsm8ewcjhifAPCIBer0dxUREoikJYWJhN1r66TRtpPxc+H1qNBhwOB1FRUXZ5TMVFRSgSCnHnpEmder7BYGB6+BITE3st9U2j1WrxzjvvIDMzE/feey9ycnJw/fp1hIWF4f/+zyKiCD3B5kHJPubfPaSnJeGkyWyMLhigXWybV9VxuVyzqTohhKnOqaioYFTN6b4IDw+PHtlpUBSFkpISVFVVITo62qqjuc6iUCjw6qvvYPny7q1rEmIcoVZVVSE4OBienh5tPtfR0QGenh7McwgBk4aqrq5hqs9M16acnY03GD+/W/Yi67Z9CgBQCYXwcHEBwsPx0VtvYerdExAfFoazv53AvffeC+MYrBPCmgY9Pt6wGHt2voe4B42lyLTgaGBgoPF3ssPZUbu0kvaTSiQoLCxkqupot2emiKKZMKqtkMlkKJd2rk1GLpcjPT0dAQEBiImJ6fW14JKSEsyZMweTJ0/GL7/8YjZ7t/QSRF/ltpgp1dXVob6+HrGxsV1+rUwmQ2ZmJlxdXZmCgZ6UeNONeWKxGGKxGFqtFkKhkJlNddZlsqGhAbm5uYwKsS1Sda2h0+nw1VcpSEq6p8uvVanURpkiPh/9+/dvs1S8Kxh9aBSQy2VNaShdi14eusHXFEKMgwqpVILjvx7DEw89hIOff45+bm6YNG4crl66hIEDBzICovRM6dFp92LpggfhwNXCwdHRuM5SXAwQgrCwMIva0tsK0mSqqVAoEB4eblYtSPv+yOVyKJql/ehAZQsnXzJgANDOd08IQXl5OcrLyxlNyt6EEIIjR45gzZo1+OSTT2hJH3vE5qOp2yIoNTQ0oLq6GvHx8Z1+jU6nQ25uLmQyGeLj45neHtNUHe150hMIIUwZqVgshlwuh4ODAxOkaNtzGo1Gg9zcXOj1+g59pGyBsfpOC6m08ylEiiKoqKiAWNxodRtvQozpTrlcDplMBqVSAYADoZBe1Bc1VUO1fK1Wq4NOZwxqH773Hl5bsABpf/yBwvR0/Hr4ezihAqtWzjZKvXA4aKivR3l5ud2us3QHpUKBgsJC+Hh7GzXeOjr/CYG6Ke2naFbtZ9YCYMVB1ZnTp/E3j4eXFi1qdbtWq0VmZiacnJwQExPT6z1varUab775JkpLS7F3715G2stOYYMSYLzRabXabr+e7nhP7IR0DT1iomV4AgMDW03VWbOqTqvVMrYSEokEer0eIpGIcZqNiopCv379rPLZPUWtViM0dAyOHbvWqefLZHIUFxfBy8t4k2trDcia6PUGpiRdJpO1GN0LhcJWZ1MAIJXKcPr0T1ArM6FprMK8p56CkMPBnk8+wYwnnoC3tzdEIpFNZgcWhRgHDo2NjYiIiOiRhxOhKCjoJl+TohXTaj9LViPW1dZCHBaGyBaKIMYBa3Z2NiIjI7tszmkJcnNzMW/ePDz++ONYvHix3WQ82oENSkDPg5JUKkVxcTGSkpLafR6t9Ovh4YGoqChGONWWagyAUdA1MzMTzs7OcHBwYLS46NmUu7u73ZTfAkBFBQfV1e0/R6/Xo7S0DBqNGmFhYTYvzjDF2OCrNimiUMBULkkoFMLFxQXffvs1Bg70whNP3M28tqqqCjdu3IBUKsVj06bhg5UrERMUhMemTsWerVvxzMyZ4HG5diH/01nUajUKCwogEomMDdhW2HfTtJ9cLoeuSYTW1Livu4FdIZdDN2AA3E2U6SmKYlROEhMTe/38I4Tgm2++waZNm7Bz506MHDmyVz+/B7BBCeh5UJLL5cjPzzfVbzJDq9UiJycHKpUK8fHxTPrI1g2wdApRpVIhLi7OrGmPtj2nZ1SEELi5uTGBqrfL0WkIIfjkk+8wbtxjbWw3jk7Ly8sRGBgAb28fW6+DdwpTuaT09HSEhnrCYChAVFQIIiMj4eLigtzcXKZNwDTlSp+/2z79FIuffx4Hd+xAdUEBXn3hBaT8/jsGDhx4S9POnmhSBKmpqUFYeLhV06qtfbbatNpPLgchxCztJxAIOlVE8e0336DQ0xOvvvYaAGMxTHp6Onx8fBAWFtbr14lSqcSyZcsglUrx+eefd8o9246w+dV6WwQlpVKJ7OxsDBkyxOxxiqJQWlqKsrIyREZGol+/fha3I+8OpClVUlJSgvDwcGa/2sNgMDB9DmKxGCqVCnw+36wcvTdy5YQQzJy5HIsXr29xv9BotCgqKgKPx0NoaGibfUX2DJcL/Pe/L2H16gUIDQ2FWCxm0lrOzs7w9PRkvnNXV9dWfzeqqVlVKBRi1Rtv4MVnn0VtYSG+3rMH761cicK8PHh6efV647MpOq0WBQUFcHZxQYiNZYJoTNN+crkcapNeNXpG1VbajzRd+7RCfnx8fAuLht4gIyMD8+fPx6xZs/DCCy/0hXRdc9igBPQ8KKnVaqSnp2PYsGHMY3Qu2cfHBxEREXYhnAoYq/2ysrLg5uaGyMjIbqfl6IY8eiYllUoZ/yP6pmmtlEVlJVBVdet7IwSorq5CbW1dU2Ox7aVnuopcrsDbby/CTz99ApHI+L2p1WomrRoTEwMulwuZTMYMDGhJGVPPqbZ6XlQqFcrLyxEVFYX1776LUUlJGDlgAFYvW4Y1b70FmUwGR0fHXrF8oAs0QkJC7HMGZwJtg9487UcHKldXV9y4eROq+Himoi4uLq7X092EEBw4cAA7d+7E7t27WwyQ+xBsUKJpzyukI7RaLdLS0pCcnAy1Wo2srCxQFIW4uDgIBAJGjNCWqTq6MVcqlSIuLs4qJamm/kdisZhxk6WDlKVUjadMeQ7vvrsLDg4OUCiUKCoqYtYj2ioYsFcUCiXy87Px4IODUVqahkGDBjHFMGVlZYiJiTGTkGmORqNhvnO6aIVWku6oBUCtVuPs2bO4b+JEfLFtG2RVVVgwaxa+2LYNDz/wANzo38tC56per0dRUREAGMvX7WidstMQYqyubApUCrkcaTdvoiYoCBMnTkRISAiEQmGvXt8ymQyvvPIKHBwcsG3btl4vN7cwbFCi6UlQ0uv1uHLlCvz8/JhGU19fY/OkPaTqqqurUVhYiJCQEKbar7c+W6FQMLMpmUxm9O0xae7tTjf7d9+dR0jIKFRUVEImkyEsLAyurt2v1rIVFEUgFhfi1193YsMGo820SqVCZmYmBAIBUwzTtfe8pSQtkUiYFgDT2VRHDdU7duzAs//+Ny6eOIEfDh7EJ2vX4uKpUwgPC4N/N+1ZaGHYoKAgeNlBE7ZFoCsGpVJ433MPM0CQy+VwdHRkvm83NzerZQ3S0tLw4osvYsGCBXjuuedsss5rYWx+ALdFUKqpqcH169cRFRWFsLAwcLlcu0jV0UreLi4uiIqK6nU5k9bQ6XRMkBKLxczI3rS5t6Pv6Y8/CpGVJUe/fn7o18+/TxQyNOeXX45ApcrG++8vBWAM4GVlZSgvL0dsbKxFF6dpgU76j26opm+a7c1g1Wo1XFxcsP3TT3H3qFHwdHLCshdfxBfbtqEkPx9OTk7tBirKYEBJaSk0ajUiIiLsUiaoO2g1GhQUFEAoFOL3M2cgGD0ajz12q/jGVBRVIpFAo9FAIBCYBaqerMFSFIXdu3fj4MGD2LdvX6faUfoINr+a7SYoabVadLAvLVAqlcjKygKXy4VcLscdd9zBeBvRPke2CEYGgwGFhYVoaGhATEyMTRe0O8J0ZE839zo5OZmVo9OVZnQV44MPzsGuXcfg5dWnqooAAOfPX8Dw4RGIinKGszMPIpEISqUSmZmZEAqFiIqKsnrBSGszWB6PZ1Zd2dbIXt/kzRQeHo4Du3dDxOVi2qRJWPbSS3hn2TIQioJep4OHpyfkcjmKCgu7bSpor9CSTqGhoXBzd0dNQwMwcCCTHWkNU0kw2maCEAKRSMSc520VrrT4/MZGLFiwAN7e3tiyZUunrcj7CDY/SfpkUDIYDCgoKGDsG7y8vHDhwgWMHj3apqk6wKjrlp+fj8DAQPTv378vVt9Ao9GYNfcaDAamfyosLAzOzsGoqOhbx6XV6iAQOOLUqb0YP34wBg8eDEIISktLUVFRgbi4ONtWwzXJU5muB9Ijew8PD2ODbhvBkhCC33//HRPvuQcnDh/GhRMn8Nzjj+O7/fsxbcoUREREGH/DPi6BRBkMKC4uhl6vR3hEBJNarRWL4TBkSJd/P7pZnT7PlUolHB0dGYuJ1lKtly9fxsKFC7FixQo8+eSTt0O6rjk2P6A+FZTo9Zn8/Hz079+fsW8ghCA1NRUDBw4En8+3iDxQV1GpVMjOzgaPx0NMTEyPhFjtCXoWQY/kZTIZvvjiVwwe/CC8vLw6VESwByiKYN68R/Djj1sRHBwIwJhazczMhLu7O1OdaU+YjuxNqytNb5it9arJ5XJkZGTA19cXV69exR2jRkFSXo4VCxbgh4MHcfnMGXi6uyMqOtpGR9Y9aPkjP1/fFrO+T3fuRP8pU/DQQw/1+HNaS7V+8803EAqFUKlUuHz5Mg4dOoRoK3x/FEXhjjvuwMWLFxmbEADYv38/Vq9ejcrKSiQlJWHbtm1mlcZXrlzBiy++iL///hsBAQFYvXo1nn766e7uBhuUaDoKSnK5HJmZmeDz+YiJiTETTqWrperq6qBSqRg7CXqEac3ZCkVRKC4uRnV1dYeVWn0JWqG8urq6hZnga6+tw+TJ80BRBhNFBHRKX643kUplOH78CFas+DcIkcDd3Z1xGa2urkZcXJxNelm6C+1ySt8w6V41eo1EKpWipqamVcFRnU4HR0dH/PDDDwjy8sKQmBhMmzgRh7/8EnVN4qt2GagIQVV1Nerr6oxNzK2VzDs5gVhpTYcQgvPnz2PDhg2or6+Ho6MjCCEYMmQIXnvttR7b5ZiyceNG/Prrrzh58iQTlFJTU3Hffffhhx9+wPjx47FlyxZs3LgRubm5cHNzg0QiQVRUFF599VW88sorOHfuHKZPn44TJ05g9OjR3dkNNijR6HS6Vu0n9Ho98vLyIBaLzRri2lJjoEeYtEo3XXHWlgBqT6ivr0dubi769etnV0rePUUikTA9XnThiCl1dUBpqfm5azBQTC8JrS/n4uICkUjE9JT0lu4dIcYy3aAgJxw+vA2vvLIAPB6PGdh4enoiIiKiz/9epKk8ura2lin1pq246fNdIBC0mjWgB3L9+/fH8V9+QWVeHp597DGsWroU82fMgLeHBxrq6xEYFNTLR3ULvU6H/Px8uLi4ICQkpE35o+NnzqD/ffchISHB4vuQmpqKV199FatXr8a0adPA4XCgUqlw7do1xMTEWExcNScnB1OmTMF3332HIUOGMEHpmWeeAUVROHDgAADj7xYaGor33nsPzzzzDPbu3YtVq1ahuLiY+Z1nzJgBBwcH7N27tzu7YvOgZLeNCrTqQVFREUJDQxEbG9sp4VQOh8M01QU1XVC0AKpYLEZRUREMBgNz4XbHQVatViMnJweEEAwaNMjulLy7C91LJZfLkZiYaCZ7ZMqcOXPw8svr4e19a1bI43Hh7u4Gd3dabf2WWjd906S9eOhA1ZqxnyX4668LSEk5iP37P8XSpa+AoigUFhaitrYW8SZNlrcDjY2NqKioQFJSEjw9Pc3WSWgjO2dnZ2ZARltxczgcJj1039SpzPvd/8or8ExKQtaNG9j91Vf4ZO1afH/gAGJDQpCYmAilQgFBG+eFJaHde4NDQjpcK+I5OFh8gGEwGLBhwwacPn0aR44cQWhoKLONz+djzJgxFvssiqIwa9YsrF+/vsWxpqWl4dlnn2X+zeFwMGTIEKSlpTHbhw4danb/Gjp0KBPE+iJ2GZQkEgmjejBixAhmykxbSgBdK/F2cnK6VYGEWwucYrGY0cTrTMqPavKZqaioQGRkZLvVPn0N2ho6JCSkQ/OzV15ZBD6//Rs7hwPw+S7g813g62scTZqKclZXV5s4yYoYrbOezKZOnz6Dfv2AWbPuxDPPGHPutF+Wj48Phg8f3udnRzRarRYZGRlwcnLC8OHDmUV/Ho/HnMf0jZTWUayvr0dBQQEMBoNZ1ZlpG8CIESMAAINGjsTHhw6BAPAaOxYuQUGQ8PmYcuedOP/bb7j5xx/QKZUYNny4cQRioVwtaUobq9RqxMXFdaqEfeKkSSBxcRb5fMAoujt37lwMHz4cJ0+etFhmpS22bNkCf39/PPLII8yMl0Ymk7VIMXt4eEDaZGrY0fa+iF0FJa1Wi9zcXCiVSrO8uKWFU00vXPr96ZRfWVmZWcqPToMoFArk5OTA29sbycnJdrcw3l00Gg1jtT506NBOFWh4e3tDre76b2D6nQK3nGRlMhmqqqqgUqng4ODAFE+IRMJONa9WV9egf38fJCeL4OnpBB6PAw7HAfn5+aivr7/tZkc1NTXIz89HVFRUpwZGLi4ucHFxYexQKIpiZlNFRUVMG0BbckmmhnQpubkAlwtxRQU0MhlIWBgeuvtu7NqyBQ5aLUqKizFk6NBuHZdapUJ+fj68vb2NAbWT1/lbb7+N+xYtwtixY7v1uTSEEJw6dQqvv/46PvzwQ0yZMsXqBVN5eXnYuHEjrly50up2kUgEiURi9phYLGbWskQiUYtAJhaLGX+4vojdBKXy8nIUFBQgIiICCQkJvepx1F7Kr7a2Funp6TAYDPDx8YFAIGDWS/pyOaiplE5UVFSXcuOLF7+CJUs+QUCAf4/2gcMBXF0FTWoQxhumTqeHTCaDTCZDRUUFYxhHp/yMqVbz99m5812sXPkMxo0bDsBoZZKVlQVfX9/banak0+mQk5MDg8GAYcOGdbsZm8vlMsGHhlZDEIvFTNl1a3JJ9Hc5btw45rV7TpyAl5cX0q5fx7lLlzA4KAgfvvUWptx5J5JiY5Gbm4vY9mYyhKC2thbV1dUIDw9n7Nc7y8JFiyDoodacTqfDBx98gL/++gvHjx9HYGBgj96vs6SmpqK2thYDBgwAAOZeN3DgQLz//vsYNGgQrl69yjyfEILr16/jkUceAQAMGjQIP/zwg9l7Xrt2rU3HhL6A3RQ61NTUwNXV1W48juibdmlpKSIiIuDt7c2k/MRiMdRqtVV05XoDuVxuJgrb1VlfQwNQXNw7vwdFESiVtEGf0TDOyckRLi4u2L37U+zc+ToCAtzB4XAYD53GxkYzi5LbAVpgOCwsDP7+/la/HiiKMmvwlcvlTIahM3JJOTk58PX1hVomw/KXX8aBHTtw7LvvIORwcMfYsZCIxXD38DDq8RUWMsry3VErz6+uhu/Ysd2eDZeVlWHOnDm4++678eabb/aqJqBSqURDQ4PZvowePRqXL19GXFwcrl+/jsmTJ+Pw4cMYN24cPv74Y6xfv56pvhOLxYiOjsayZcuwaNEipKSk4OGHH2ar7yyBXq9nUnS2FE4FjCPt7OxspoeltZO0ta58Wm+LvnCtnYvuKvSCf319PeLi4ro9xd+69RASEh6Ap6eHZXewExgMFLKzs5CU5IO//voZcXGx4HK5cHFxgVQqhb+/PyIjI/vMAKEjDAYD8vLyoFAokJCQYFOzRK1Wa1aSTgv+mjb4tve937hxAzwuFwnh4bhz2DD8b/dupF24AL1cjoenTev22tQ7GzfikeXLOzT5bA4hBL/++iveffddbN68GXfffXfHL7IyRUVFCA8Pb9Gn9M477zB9Stu3bzfrU7p8+TJeeukl3Lx5EwEBAXj33XfZPiVLoNPpzMrCbWW6R1efxcbGdnnkZZoCkUgkoCjKrMrPlim/xsZGZGdnIyAggGk67i4bNuzC4MGPmlXf9Rb19WXYtetNfPXVHnA4HBgMBuTm5qKxsRHe3t5QKpVmXlMdqSHYM1KpFJmZmYw6iL2li+mBGR2kZDIZY59C/7V2ztMzWrFYDB6Ph9KiIjx0zz145tFH8dqLLyLS3x+XLl7EXRMmdG5H3NxAutgvpNFosGrVKuTm5uKLL76wiVW6nWLzk8xugtKECRMQEBCA0aNHY/To0YiLi+u10S4hBFVVVUz5eUBAgEVuALQxX2spPw8Pj3ZtDSwF7W6r0WgQFxdnkfJ1sRgoLOzdc/f8+fMoLr6IdeuWMoNp2t4+MDAQwcHBZr1qtvKasgQURaGoqAj19fVISEhoszTfHjG1T5FIJFCr1WZCqI6OjsjKyoKXlxfCw8PNrjNa5qeqqgoHPv8cry9ahB0bNiAqIACTxo3D3zdvIj4+voVt+p7vvsPkl15CQCcV1AsLCzFnzhxMmzYNr776ap8csFgRNijR6HQ6pKWlISUlBefPn0dWVhZCQ0OZINXZyrCuIpfLkZ2dzVgVWDPlZpryo8VPHR0dzar8LJXPNrXM6Ky7bWd54ol5ePzx1xEREW6R92uP3Nw8+PuLEBnJg8GgQEhICJPSksvliI+P75QgJn2zpAOVtbymeopCoUBGRga8vb1bbVzua5jKJVVWVkIsFoPP58PLy6tduSSayspK8Hg8eLq748kHH8TXe/fij5MnUVdUhGkPPoj6ujqkpqdjzNNPd1isQwjBDz/8gPXr12Pbtm09rta7TWGDUlvQU/xz587h/PnzuHr1KkQiEUaOHIkxY8Zg5MiRcHd37/aNlhZ1bWxsRGxsrM3kZmjxU/pmSQgx8zvqzsxGpVIhKysLTk5OiImJsXigTUsrglIZCBcX6+n7EWK0Jv/5550YOTIcEydOBGBc8M/JyUFQUFCPUlrteU3Rgao3rUZocdjKykrEx8f36ZLe5uj1emRnZzPGm1wu10x8VqVSwcXFhfne3dzc2h2cFRUVobGxEUMSEvDvhx7C22+/jfgOAoxKpcKKFStQV1eH3bt33zZyYFaADUqdhTSVjZ4/fx4pKSn4448/oNVqMWzYMIwaNQpjx45FUFBQhzcp+n1oUVd7y9UbDAYz99iupPwIISgpKUFlZaVVdfjS0gqhUASCz7dOCowQ4NVX5+Pjj5diwACjHpter0dubi5UKhXi4+OtoqJhKsbZXa+p7qBWq5GRkQFXV9desc7oTSQSCTIzMxESEtJmWpyWSzJN+3XXVqI1srOzMW/ePMyYMQMvv/xyn599Whmb3wz7TFBqDYVCgUuXLiElJQWpqamoqqpCQkICRo8ejTFjxiAuLs7sApfJZMjLy4OjoyOio6P7hJJ3Z1N+dG8Onau35o3tmWcWYOrURYiJsayAp0ajxZkzv2PWrMnQaMqYAQOtMRgcHNyrzr2015RpWXRrkj3dhV7LLC4uvq3EfAEwwre1tbVITEzssudQc1sJhULBfPfNfb7a24cvv/wS27Ztw+eff47hw4f35JD+KbBByZLo9XrcuHGDCVJZWVno378/kpOTUVRUhIqKCnzxxRcWdRW1BaYpP3o2BQChoaHw9/e3+iK+TAbk5Vn23NXp9HB1NWDPnlX44INVcHFxMSvSiI+Pt4vihOYjelMdxfYEUJuj1WqRlZUFHo+H2NjYXu2NsTZqtRrp6elMH5ylZiatffdtySXJ5XIsXboUer0eO3bs6FNq8DaGDUrWhKIoHDx4EG+//TbCwsIgk8nA5/MxatQojB49GqNGjYKHh4ddpe+6Ql1dHfLy8hAQEAChUGhmEEenneiUnyWPcfv2g+jffwLTR9FTMjPT8eWX63D06D7msbq6OuTm5vZas2h3oSiKqbCkjeJM10fc3d1bzFppncHIyMjbrhSZPjbafNOaNJ/J5ubmYtOmTYiNjcXly5fxwgsv4JVXXrFoum758uU4evQoSktLIRQKcf/99+PDDz80O9Ze9j+yNDa/0G7roHTixAns3LkTmzZtQv/+/UEIQX19PbMudfHiRahUKrN1KdPSYntFq9UyC8exsbEtZhCEELOLVSaTMRbnlqjy27//e/j4jO2xzNCNGzfB5crwxBOjoFRK4OHhwUjp6PV6xMXF9YkUqyn0+ohpOToAuLm5QSQSob6+HgaDAYmJib1aSGFt6H4xtVqNhIQEmxwbRVHYunUrfv75Z8TFxaGgoAANDQ0YMmQIdu/ebZHr+vXXX8djjz2GAQMGQCwWY+bMmXBycsLhw4cBwBb+R5bG5je/2zoo0aoQ7aFUKpl1qfPnz6O8vBzx8fHMulRCQoLdLDwTQlBZWYni4uIuj7Lp1Ad9swTQorG3sygUQE5O989dhUIJodAF1dVXwOWKMWnSJAC3RtmWLmG3NXq9HuXl5SgqKmJu1r1pRGlt5HI50tPTbdrkK5FIsGDBAohEImzdupXp7aKrbK3hFAsAP//8M/7zn/8w15QN/I8sjc0vutsnkd0Knbk4BAIB7rrrLtx1110AjCfxzZs3kZKSgo8++giZmZlmTb3Dhw+3iX+SQqFAVlYWXF1dkZyc3OWZTnOlaLrKTywWo6Kiokspv5deegl33DEHw4Z1Tw36449XY9asiZg82VjmTc/8CCE9Ehq1R2hpJ6lUihEjRoDP55up0peXl0MqlYLH45mVo/eFGSIhhLFySUxMtJnW4NWrV/Hyyy9jyZIlmDFjhtl5y+PxrBaQAODkyZMYOHAg8+9/ov+Rpbmtg1J34PF4GDx4MAYPHowFCxaAEIKioiKkpqbihx9+wBtvvAFnZ2eMHDmSWZfy8vKy2uiQtluvqalpYUveE3g8Hry8vJhcuGnKj7YzcHZ2Nkv50TPG1avfQUVF1xaODQYKn322FW+99SwOHFjN3HSrq6sZdXg6YN4uyGQyZGRkwN/f3+xG1JoqvU6nYwYJpaWl0Gq1ZoMEo3Ov/cymaD8nFxcXDB8+3CbZBIqisH37dnz77bf43//+hzgLeip1hu+++w6ff/45zp49yzz2T/Q/sjRsUOoADoeD8PBwhIeHY8aMGSCEoKGhARcuXEBKSgq2bNkCpVKJIUOGYNSoURgzZozFrNHFYjGys7Ph5+eH5ORkq96UOBwORCIRRCIRgoODAYBZG6mpqUFeXh4AwN3dHWVlDTAYYjrdPFtVVY34+H6YMKEfvLw4cHZ2ZqrPOBzObTc7ogcydDl0Z2YQjo6O8PHxYVQJTAcJxcXFTCuAPQj+1tfXIycnp9N+TtbahxdffBHBwcE4e/Zsr1dmfvPNN5g/fz5++uknDDXxj/on+h9Zmtt6Tam3UKvVuHTpElJTU5GamorS0lLExsYy61KJiYldSrfp9XpGGTouLs5utM9oqZ633loDX9/xiIiIYJxjRSJRUzm0+WvE4jqsWvUsTp/+ETwez0z+yJY3NWuhVCqRnp4OT09PREREWHQgQXt80TMquiSaDlI9aTDtDBRFIT8/HzKZDImJiTZLMV68eBGLFy/GW2+9hX/961+9voa1d+9eLF26FEeOHGkhVfTMM8+AEIL9+/cDMA4uwsLC8O677zJrSu+88w6Ki4uZ18ycORM8Ho9dU6J3gA1KlsdgMCA9PZ0pnvj777/h7+9vti7VVjMh7SpqSWFYS6NSAVlZHDPnWLlcBqXS6HUkFIpQVlaGgoJLWLv2ZXC5xoITjUaDrKwsODg4WEX+yJaYmibGx8f3Sl8M7SBLByqFQgEXFxez5l5L9T8pFAqkp6fDz88PoaGhNjkvDQYDNm/ejOPHj2P//v2IiIjo9X34+OOPsXr1ahw7dgzJyckttqempva2/5GlsfkNhw1KvQAt/5OamoqUlBRcuXIFjo6OZutSMpkMO3fuxNNPP42YmBi7Tmft2nUQrq7JrebwKyuroFZL4eEhQXHxTSQmJsLNzY1Je8bGxnbJ5bYvoNFokJGRAT6fj+joaJtWa5qWo9NyPabNve2Jn7YGXfFZUlKChIQEm6WZqqurMX/+fCQlJeG///2vza4PDocDBweHFrNEuVzO/H8v+x9ZGjYo/RMhhEAsFuPChQs4d+4cvvvuO8hkMtx5552YOHEixowZg/DwcLta2Dbl559PQq+PRUhIcIttP/64CzExAjz11L8B3CoXJoTAwcEBOp2OSTnRC/j2OBvsLFVVVSgsLERMTAy8vb1tvTstMLVPkUgkUKlUjJVER15TOp0OWVlZ4HK5NlWdOHv2LJYtW4Y1a9bggQce6NPnSx/A5l8uG5RsSHFxMWbMmIHRo0djxYoVSE9PR2pqKs6fP4+ioiLExMQwxRNJSUl2I0Wj0QAZGebn7tq172LhwocwduwgAMbAW1FRgZKSErMbtmkXvlgsZjTNPD0921RAsEfoGzaHw0FsbGyfSUWaek2JxWIzYz5Trynaq4pW1LAFer0ea9euxYULF3DgwAGmAIfFqrBB6Z+MVCpFQUEBBg8e3GKbwWBAZmYmsy518+ZN+Pr6MutSycnJndZZszQLF76KoKDJmDRpEv788088+OAI1NffRHx8LJycnKBSqZCZmcl4VHUUTE0N+SQSidlN0sPDw+56dujqs9uljL2515RMJgMhBMHBwfD19e0VM8rmVFRUYO7cuRg7dizeeecduxmQ/QNggxJL56AX0mmx2cuXL4PL5WLEiBFMoPL19e2VINXQIEdurgucnQk++mghtm79kFk3KisrQ3l5OWJjY7stfGt6kxSLxdDpdC16dmy10J6Tk8NI6dhbsOwpKpUK6enp8PDwgJ+fH+N51JteU4QQnDhxAm+99RY2btyIe++91yqfw9ImbFBi6R6EEEgkEly8eJGZTUkkEgwaNIgJUpZUaDbl2LGTeOutT/Dnnz+AyzWew0qlEpmZmRAKhRb3BGot5UeLntJVZtZO+dHprP79+3fKt6uvQTcxx8XFtTqYoL2m6NmUqdeUpQYKWq0W7777Lv7++2/s37/fZmnDfzg2P7HZoHQbodVqceXKFaZfqqCgAFFRUUy/1MCBAy2y9kG7pIaEhDD/X1FRgbi4OIspTnT0+XSVmVgshlQqBYfDYW6QHh4eFhvJ0w7IYrEYCQkJXfYFsncMBgOys7Oh1+sRHx/f6fOjI6+pror+FhcXY+7cuZgyZQpWrFjRJ9YVb1PYoMRiPSiKQlZWFpPyu3HjBry9vZniieTk5B7ZWigUCmRmZsLd3R0RERE2vZGYyvRIJBKLpPzkcjkyMjJs2ptjTaRSKTIyMixmnmgq+iuVSkFRlFlzb2troIQQHDlyBGvWrMHWrVtx55139mgf7BmKouy2otYEm5/kbFD6B0H3nNBB6tKlSyCEmK1LdUadm3YVra6uRlxcnF0aqNGNpfRNsispP9PjS0hIgEgk6uW9ty5031x1dTUSExOtphhCu8c295qSSqVQKpUYPnw4PvzwQ5SWlmLv3r026V8zGAxYsWIF9u3bB7VajXvvvRefffaZRfaFEIK1a9ciKSkJU6dO7QsBCWCDUvdRKBQYOHAgiouLodfrzbatX78emzdvhlgsxujRo7Fz506z7u9jx45h6dKlKCgoQGRkJD766KN/5IIqIQRSqRR//PEHsy7V0NCAgQMHMkEqOjra7GKSSCTIycmxioyONWkt5cflcs2q/OjKwYyMDIu7ptoLGo0G6enpzNpfbx4f/RtcvHgRu3btwpUrV+Dg4ICHHnoIY8eOxZgxY3q97PuDDz7AF198gWPHjsHb2xuzZs2CUqnEr7/+apH3f/3115GVlYWamhqsXbsWY8aMsfdzig1K3WXBggXIzMzEmTNnzILSoUOHsHjxYhw7dgxxcXFYsWIFTp06hbS0NPB4PBQUFGDAgAHYuXMnHn/8cXzzzTeYN28e0tPTERYWZrsDshO0Wi2uXbvGBKm8vDxEREQgOTkZ+fn5jKX87SAgaZryE4vFUKlU0Ov16N+/PwIDA21Wcm8taDdfWzb6EkLw9ddfY8uWLfjss8+QmJiIy5cv48KFC1Aqlfjggw96dX9CQ0Px9ttvY/bs2QCA/Px8REVFobCwsEf3A4PBYDYTf+qppyCRSDBmzBi8/vrrPd1ta2LzE75PBqVz585h4cKFWL9+PaZMmWIWlMaPH48777wT7733HgDjuoCfnx9+/fVXjB8/HqtWrcKpU6eQkpLCvGbcuHGYOHEiVq1a1evHYu9QFIWjR49i8eLF6NevH9RqNdzc3Jh1qREjRkAkEvXpm7dGo0FmZiYcHR0REBDApJzodJOnp2eH6gf2jMFgQF5eHpRKpU0db5VKJZYtW8ZIanW3ZcBSSCRGt+Nr166Z9Qq6u7vjwIEDeOihh3r8GXRwEovF2Lt3L/bu3YvFixfjueee6/F7WwmbX8h9riNNqVRi7ty5OHjwIBQKRYvtaWlpWLx4MfNvoVCI6OhopKWlYfz48UhLSzPToQKMJlu0CReLOenp6fjwww/x448/IikpiVH5TklJwcmTJ7FmzRoYDAYMHz4cY8eOxejRo+Hv799nghQtgBsdHc2sI3h5eSE0NNRM/aCiogIymazVlJ89Qxdr+Pv7IyYmxma/S0ZGBubPn485c+Zg/vz5dpHCoj2MLOlv1HyGRP+/h4cHnnrqKTQ2NmL79u0YP368TQRl+wJ2E5SeffZZfPHFF21uf+ONN/D+++9j5cqVePDBB5GcnIwzZ860eF53TbbS09N7fhC3IQMGDMDZs2eZ8l4OhwN/f3889thjeOyxxxjfH3pdau/evairq8OAAQOYdanY2Fi7uAmZotPpkJ2dDYqi2vRz4nA4EAgEEAgECAwMZF5HL9yXlJRAr9ebafnZS8qPbrYuLy+3abEGRVE4ePAgdu7ciT179rSqXmIr6O+kNf+j7qSnCSFMEPrqq6/g7OyMQYMGMV5Kfn5+eOCBB3Dz5k0cP34cL7zwQg+P4PbEboLS1q1bsWHDhja3CwQCpKam4pdffml3VtOWyRZ9knW0ncUcWhW5ve0ikQiTJk3CpEmTABhv3NevX0dKSgrWrFmD7OxshIWFYcyYMRg9ejQGDx5sUzWEhoYGZp+6OqtzdHSEr68v4wNlah9Bp8j4fL5ZlV9vB2SdToeMjAw4OTnZzBUWMA4AX3nlFTg4OODcuXM2s0tvCw8PD4SEhODq1atMsCwoKIBUKjWzOO8IQozWLBwOB1qtFpMnT0ZpaSl4PB7Cw8OxcOFCTJkyBQAwYsQIeHl54erVqwD6TJl4r2I3QUkoFHZ40v7+++8oKytDSEgIAOPFZzAY4OPjg7179+LBBx/EoEGDcPXqVUybNg2AMX2Rm5uLQYOMQqGDBg3C6dOnzd732rVruOeeeyx/UP9QHB0dkZycjOTkZCxZsgQURSEvLw8pKSnYv38/lixZApFIxKxLjRw5Em5ublafYdBrKwqFAkOGDLGIWymdznN3d2815ZeVlQUej2dmK2/NlB8dcCMjI+Hn52e1z+mI69ev46WXXsLChQvx7LPP2sXssTXmzZuHDz/8EBMmTIC3tzeWL1+O++67r9NFDqbpOkIIMjMzMXjwYJw6dQo3b97Ejh07sHHjRsTExDAzpoULF+Lhhx9GXV3dbWfjYgn6VKGDVCo1y/VevHgR//73v1FUVARvb2/w+XwcOnQIS5YsYarvVq5ciRMnTuDGjRvg8XjIz89HUlISdu/ejX/961/49ttvMWfOHLb6rhchhKCmpgbnz59HSkoK/vzzT+h0OgwbNoxRn7BEM6cpEokEmZmZCAoKQv/+/Xv1Jkmn/EwlekQiEaOMbomUH608IZFIkJiY2Ov24Kb7sWvXLnz55ZfYt28fEhISbLIfncVgMGD58uXYt28fNBoNJk2ahJ07d3YqWNAzJABYvXo1I7CcnJzMVNidOXMGmzZtgqenJ/bt2wcAKC0txezZs3Ho0CF7dF62+eihTwWl5pw5cwYTJ05s0ae0bt26Fn1K9CgFMO9TioiIwKZNm/6RfUr2hFwux59//smUotONnXSQio2N7VYaiqIoFBYWoqGhAQkJCXZhLU9RlJnHUU9TfrQFu4+PD8LCwmw2K2lsbMTLL78MX19fbN68+baTZFKpVODz+aDvmRwOB2q1GvPmzcOlS5cwadIk/O9//8O0adPw+eefM687cOAAdu7ciXHjxmHNmjUAgE2bNpkVZNkRbFBiYWkNvV6PtLQ0JkhlZWUhODiYCVKdSb8pFApkZGTA29sbYWFhdpu7b+5xJJVKzVJ+Hh4ebWrSVVZWori4uNcs2Nvi0qVLWLRoEVauXIknnnjCbtN13aWhoQGPP/44du3axWRUrl69iqNHj6KyshLbt28HABw/fhxTp07Ft99+i+nTpwMwrlmvW7cO/fr1w8KFC+39u7H5zrFByYJoNBosXLgQp06dQlVVFTw9PfHEE0/gvffeM7uBsooTXYdOT9FB6urVq3B1dcWoUaMwevRojBw5Eh4eHuBwODAYDLhx4wa0Wi3i4+P7ZBGLqSq3WCyGwWBgbM3pIJWdnQ0AiIuLs5nfEEVR+OSTT3DkyBF88cUXiI6Otsl+WJvi4mLMmTMHR44cYa7ldevW4YMPPkBSUhLOnj3LzOTffPNN7NixA9euXWMUKuRyud0VerQBG5RuJxQKBdasWYMZM2YgOjoaZWVleOSRR3DHHXdgy5YtAFjFCUtBCEFdXR2zLnXx4kWo1WrExcUhIyMDd955J95///3bxhzONOVXW1sLqVQKoVAIf39/prG3t2eCdXV1eP755xEdHY1169bddv5SzRkwYAAWLVqEuXPnMo8tWrQI169fx9tvv80US1EUhQkTJqCmpgaZmZm22t3uwgal251PP/0UO3fuZMrYWcUJ60AIwZ49e7B27VrcddddKCkpQUVFBRISEpiUX3x8fJ9UZKAhhKCoqAh1dXVMAYGprbmpEV97KT9LkJKSgtdeew3vvvsuHn74YXtPSfUIumz7gw8+QG5uLjZs2MAUQlRUVGDmzJkIDw/H0qVLERcXB8A4szpw4ADefPNNW+56d7D5D3l7DCPtmJMnT5r1PLCKE9bhzJkzuHDhAv766y8mXafX63Hz5k2kpKRgw4YNTPUdHaSGDRtmsyq1rqJWq5Geng53d3cMGzaMmRW5uroiKCgIgDHlRwepoqKiFik/Pp/f4+Ch1+uxYcMGnD17FkeOHEFoaGiPj81eMK2mM/03/V1HRkbi+PHj+OOPP/DAAw8AAAIDA/Haa69h9erV+Pbbb/Hiiy8yiiB9MCDZBWxQ6iSdVZwwZfPmzUhNTcWVK1eYx1jFCeswYcIETJgwwewxBwcHDBkyBEOGDMHChQtBCEFhYSFSUlLwzTffYMWKFXBxcWHWpUaNGgVPT0+7G/XTUkixsbHw8vJq83lOTk7w8/Nj+pNMU345OTlQqVQQCARMkOpqyq+qqgpz585FcnIyfv/9d6vOxGwB/btfuXIFgwcPbpH6ffLJJ3Ho0CHs3r0bgYGBGDp0KADgvvvuw9WrV/HFF19g5MiRTBM5S/ewz3IkO2Tr1q2ora1t86+58u+mTZuwdu1anDp1imn2BVjFCVvC4XAQERGBZ555Bjt37sSVK1dw+PBhjB8/Hn/++SeeeOIJjBs3DgsXLsSXX36J4uJidJDetioGgwEZGRmorKzE8OHD2w1IrcHlcuHh4YGwsDAMHjwYo0aNQlRUFBwcHFBWVoZLly7hypUryMvLQ11dHXQ6XavvQwjByZMnMW3aNLz66qv473//a9WApNFoMH/+fERHR0MkEiEkJASvvfYa1Gq12fPWr1+PoKAguLq6YuLEiSgoKDDbfuzYMSQmJoLP52PAgAH47bffOvzsn376CbNnz4bBYABFUczjBoMBAPDJJ5+gqqoK27dvN0uxr1y5EmvXrmUDkgVgZ0qdpDOKEzTvvfcePvvsM5w9exaxsbFm21jFCfuBw+HAx8cHDz30EKMIrVQqcenSJaSmpmLJkiUoKytDXFwck/JLSEjoleIJmUyGjIwMBAUFISgoyCKzNw6HA1dX11ZTfg0NDSgsLGRSfnK5HG5ubggPD8eaNWtw7do1HDt2jNEAtCZ6vR4+Pj44cuSIWcGQVqs1Kxhav369WcHQQw89ZFYw9Mgjj5gVDE2fPr3NgiE6Veft7Q2ZTNZC/ofH44GiKISFhWHDhg04dOgQ5s+fj23btiExMRG+vr7MNd08DcjSNdhCBwvz2muv4euvv8apU6fMGnZpWMWJvoXBYMDff//NlKKnp6cjICCAkUgaPnw4+Hy+xT6PEILS0lJUVVUhISGh18uIDQYDpFIpfv75Z+zbtw8FBQWM+d2dd96JwYMH2yRt11sFQz/99BNWrFiBjIyMdvdHJpNhz549+Pnnn6FSqfDjjz/azKPKwtg8mrIzJQtSXFyMDRs2wMnJiZn5AEYjMXpN6KmnnkJ5eTnuv/9+pk/pp59+YqrCIiMj8f3332Pp0qWYNWsWIiIi8MMPP7AByUbweDwMGjQIgwYNwssvv8xYpaekpOCHH37AG2+8AScnJ4wcOZJZl/L29u7WSFmr1SI9PR0CgQDDhg2zSaUg3bTr5eUFuVyOL7/8EoGBgUhNTcW2bdvg7OyMHTt29Pp+WatgaPXq1fDx8cHkyZMRGRmJxMREuLm5obKyEgEBAW3uj0gkwqJFi/DMM89AIpHcLgHJLmCDkgWhBTk7YtmyZVi2bFmb2ydPnozJkydbctfaxWAwYMWKFdi3bx/UajXuvfdefPbZZ6xYZCtwOByEhYUhLCwMM2bMACEEjY2NuHDhAlJSUvDJJ59ALpdjyJAhGDVqFMaOHYvQ0NAOCwrq6+uRk5Nj5utkCzQaDd5++23k5+fj999/Z4om4uLiMGfOnB6/vz0VDMlkMjQ0NODrr7/G5s2bkZycDKlUCr1ezwSZtlJx9ON00QiL5WCDEgvWrl2Lw4cP488//2RSNTNmzMCvv/5q612zezgcDry8vPDAAw8wZcJqtZpZl1q2bBlKSkoQExPDrEsNGDCAWZdSq9XIzs6GwWDA0KFDbdqAWlhYiDlz5mD69OnYvHmzVWZqnbGoMWXTpk348MMPrVIwJBKJsGXLFqhUKuTl5eHnn3/G6dOnUVVVhYMHD2LWrFltznjZNSPrwa4psSA0NBRvv/02Zs+eDQDIz89HVFQUCgsL2bShBaCr6Oh1qZs3b6Jfv36Ii4vDiRMnsHDhQjzzzDM2u9ERQvD9999jw4YN2L59O8aMGWOT/WgOXTB08uTJFgVD48ePx/jx4/Huu+8CaH1N6fTp0zh37hzzmjvvvBP33HNPizUl06IGqVSKpUuXorGxEYsXL8bYsWP/aYULtj9QQkh7fyy3OWKxmAAg165dM3vczc2NHD582DY7dZtjMBjIunXrSHh4OHn66afJ8OHDyciRI8nChQvJV199RYqKiohcLicKhcLqf3V1dWT27Nlk2rRppL6+3tZfDcOrr75KQkJCSF5eXqvbDx48SPz8/MjVq1eJUqkkixYtIgkJCUSv1xNCCMnLyyN8Pp98+eWXRKvVki+//JIIBAJSWFjY5mfSr7106RKZNm0amT17NiktLbX4sdk5HcUEq/+x6bt/OHQOvr38PItlOXDgAHJzc3Hz5k24urqCEAKxWIyLFy8iJSUF27dvh0QiYXqLxo4di/DwcItr22VlZWH+/PmYMWMGXn75ZbtRUbdVwRD92uTkZEybNg2ffPIJLl++jP79+1vvYFlawKbv/uGIxWJ4enri2rVrjCU0YAxSBw4cYPp3WCxHZyywNRoNrly5wqT8CgsLERMTw5SiJyUldbs0mxCCL7/8Etu2bcOuXbtaVKn9kyEmqbqrV68yqg3/IGyevmODEgtCQ0OxatUqzJo1CwAYywx2Tcl+oCgKmZmZTJC6ceMGfHx8MHr0aIwePRrJyclwdXXtcO1DLpdj6dKl0Ov12LFjh009mOwV08DU2r9vc2x+oGxQYsEHH3yA/fv349ixY/D29sbs2bMhk8lw7NgxW+8aSxsQQlBRUYFz584hNTUVly9fBofDwYgRI5hA5efnZ3YzvXnzJl588UU8//zzmD17tt2k61jsCjYosXSeM2fOwMvLy6yJkKYnozmDwYDly5dj37590Gg0mDRpEnbu3Mn2KfUhCCGQSqXMutT58+chFosxcOBAjBo1ClVVVfjll1+wd+9eJCUl2Xp3WewXNiixdJ5NmzZh9+7dOHr0KJNW0+v1UKvVfcXVkqUX0Wq1uHr1Kn777TecOHECx44dg6urq613i8W+sXlQYufvfYjFixdDLBbjxo0bzGPvvPMOYmJicOnSpU69RweDEJuxfPlyRuIlMDAQc+fORUNDg9lz9u/fj8jISAgEAowcORJ//fWX2fYrV65gxIgREAgEiIyMxMGDB3vzEOwOJycnjBo1Cm+//TZSUlLYgMTSJ2CDUh/jlVdewdq1awEYg9Tnn3+Oo0ePIjk5ucVz6QD0yy+/4O6770Z+fr7dLtjyeDwcPHgQ9fX1SEtLQ1lZGZ577jlme2pqKl544QVs374djY2NePTRRzF16lSmbF0ikWDKlCl49NFH0djYiB07duD555/HxYsXbXVILCws3aGDRiYWO8FgMBBCCPnrr79IdHQ0ueOOO8iwYcPIn3/+SQghhKKoVl+Xk5NDgoODyYkTJ5jH2nquPXH06FHi5ubG/HvmzJnk6aefZv5NURQJDg4m+/btI4QQsmfPHhIcHGx2bE8//TR59tlne2+nWVj6PjZvnmVnSn0E0jTrqa+vh1KphFQqxZ49ezBixAhQFNWihBUASktLsXHjRowZMwYTJ05kjMro51IUBb1eb5cpvdZUoU37aTgcDoYMGcKoPqelpWHo0KFm3wNrI8/C0vdgg1IfgBACHo+Hn3/+Gf/+978xfvx48Hg8+Pr6AkCL0l7aMfPw4cMoLy/H/PnzARhTZHl5eSgtLWVe5+DgYHYjb+64CRgXzP/++2+rHV9zvvvuO3z++eeMoRvQfVVoVpXC+igUCkRGRrZqfmgNd1iW2xs2KPUBOBwOvvzySzz33HN47733sH37digUCqSmprb5fAA4evQooqOjzbrSt27diieeeAJLly7Ffffdh6VLl6K8vJzZzuPxWgS59PR0PP/88ygqKrL8wTXjm2++wdy5c/HTTz+Z7TdrI2+/rFixAuHh4S0ep91hjxw5gtraWiQkJOChhx5iZuy0O+zKlSshkUiwcuVKTJ8+vVfOMxb7hQ1Kdg5FUXj55Zfx1ltv4YMPPsALL7wANzc3PPvss/joo4+Y55jC5XKh1WpRWlqKpKQksxlEdXU10tPTMXjwYCxatAinTp3C9u3bcePGDSxYsABPPfUUTp8+zaT0CCEYMmQIwsLC8P333zOPWYO9e/di/vz5OHLkCCZMmGC2jbaRpyGE4Pr162Y28teuXTN7zbVr18y001gsz7lz55CSkoLly5e32LZz507Mnz8fQ4cOhUAgwJo1a1BQUMAMpr744gsMGzYMTz/9NJycnPDUU09h6NCh7fotsdz+sEHJzuFyuXjiiSewZ88ezJ07l3l8ypQpkEqlOHnyZKud+QUFBfDz84NIJGIeq62tRVFREV599VXMmDEDU6dOxZtvvomPPvoIq1atwpQpUxAQEIAXXngB+fn5AG4FvMbGRmi1WgDW8ZL5+OOP8eqrr+L48eMYO3Zsi+1z587F999/j5MnT0Kr1WLjxo1Qq9WYPn06AGD69OlQKpVYv349tFotTp48ie+//x7z5s2z+L6yGFEqlZg7dy4+//zzVnX4mq8DmrrDtrYdYNcBWdig1CcYN24cxo8fb/bY4MGDMXLkSFy+fLnV1zg7O8PNzQ1qtZp57Pr160yBAI1Op4Orqys+/vhjTJ06FevWrYOrqyuOHj0K4JZyckREBKqqqqDX6y19eACARYsWQSqVYsKECRAKhcwfzR133IFt27Zh7ty5cHd3x9dff41ffvmFSc95eHjgl19+wTfffAN3d3fMnTsXO3bswOjRo62yv7czzz77LDgcTpt/b775JgBg5cqVePDBB1ttRwDYdUCW7sFaV/QBSBsSQnv27Gn1+RRFITw8HGVlZWY39qtXr8LHx8dMZPW3337DyJEjERwcDMA4w4qKijK7MchkMjg4OKCqqqrVxWxL0JmU4MyZMzFz5sw2tycnJ3e6iZilbTrjDpuamopffvml3VkNuw7I0h3YmVIfoK10WfO1JBo6nZecnIzi4mLmhn/69Gl4enoiMDCQee4ff/yBu+++m/l3cXExqqurERMTwzzW2NiIwsJC1lfmH4JQKISPj0+bfwKBAL///jvKysoQEhICHx8fPPzwwzAYDPDx8cGRI0cAtFwHlMvlyM3NNVsHNN0OsOuALGxQ6tN0pPL8/PPP49KlS+BwONDr9Xj00UcxadIkeHl5AQAqKyuRlZWFu+66i3lNUVER9Hq9WeVbWloaamtrzYIXixGKojBmzBhwOByUlZUxj9/ukkhLlixBbm4url+/juvXr2PXrl3g8Xi4fv06Jk6cCACYN28ePvvsM1y7dg0qlQpvvvkmwsPDcccddwAwznyvXLmCr776CjqdDl999RX++usvPPPMM7Y8NBZb00F3LcttTEFBAZk+fTpRq9WEEEK0Wi1ZuHAhueuuu8ye95///IfMmjWLNDY22mAv7ZsNGzaQe+65hwBgrLNTUlKIQCAgx48fJ2q1mnz44YfEz8+PSCQSQojRgt7Hx4esXbuWqNVq8ttvvxFXV1dy4cIFWx5Kjzh9+jTh8XgtHv/www9JQEAA4fP55O67725hb/7rr7+ShIQE4uLiQhISEsjx48d7a5dZWsfmig5sUPoH0ZG8kEKhIFu3biUrV65kHvvzzz9JYGAguXbtmpX3ru+RnZ1NIiIiyLVr18yCEiuJxNKHsXlQYgsd/kE0X5ui5YnoxwUCAV566SVm++HDh7F79248//zzGDx4cJsFF/9EKIrCrFmzsH79enh4eJhtS0tLw7PPPsv8u7OSSAcOHOiNXWdhsWvYoPQPprU1KYqimMd9fX0xb948TJkyBYB1+pP6Klu2bIG/vz8eeeSRFgoEbCk0C0v3YYMSixmmgWrMmDE23BP7JS8vDxs3bsSVK1da3d5WqXNkZCSzvXkgY0uhWViMsNV3LCxdJDU1FbW1tRgwYAB8fHyYSsWBAwdi27ZtrCQSC0sPYO3QWVi6iFKpNHPFLSsrw+jRo3H58mXExcXh+vXrmDx5Mg4fPoxx48bh448/xvr165Gbmws3NzeIxWJER0dj2bJlWLRoEVJSUvDwww/jxIkTrAIFi62xeY6eTd+xsHQRgUAAgUDA/JuWXvL394dQKDSTRKqsrERSUlKrkkgvvfQS3n77bQQEBLCSSCwsTbAzJRYWFhYWGpvPlNg1JRYWFhYWu4ENSiwsLCwsdgMblFhYWFhY7AY2KLGwsLCw2A1sUGJhYWFhsRvYoMTCwsLCYjewQYmFhYWFxW5ggxILCwsLi93ABiUWFhYWFruBDUosLCwsLHYDG5RYWFhYWOwGNiixsLCwsNgNbFBiYWFhYbEb2KDEwsLCwmI3sEGJhYWFhcVuYIMSCwsLC4vdwAYlFhYWFha7gQ1KLCwsLCx2AxuUWFhYWFjsBjYosbCwsLDYDWxQYmFhYWGxGxw62M7plb1gYWFhYWEBO1NiYWFhYbEj2KDEwsLCwmI3sEGJhYWFhcVuYIMSCwsLC4vdwAYlFhYWFha7gQ1KLCwsLCx2w/8DnlIBoi6ukOIAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 504x504 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ax = plotObj3D()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 14,
+        "hidden": true,
+        "row": 14,
+        "width": null
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "4cca45b8-6d74-43f2-b3aa-2f1f3ece54f3"
+    }
+   },
+   "source": [
+    "# Planewave app\n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- Field: Type of EM fields (\"Ex\": electric field, \"Hy\": magnetic field)\n",
+    "- AmpDir: Type of the vectoral EM fields \n",
+    "\n",
+    "    None: $F_x$ or $F_y$ or $F_z$\n",
+    "    \n",
+    "    Amp: $\\mathbf{F} \\cdot \\mathbf{F}^* = |\\mathbf{F}|^2$\n",
+    "    \n",
+    "    Dir: Real part of a vectoral EM fields, $\\Re[\\mathbf{F}]$\n",
+    "    \n",
+    "- ComplexNumber: Type of complex data (\"Re\", \"Im\", \"Amp\", \"Phase\")    \n",
+    "- Frequency: Transmitting frequency (Hz)\n",
+    "- Sigma: Conductivity of homogeneous earth (S/m)\n",
+    "- Scale: Choose \"log\" or \"linear\" scale \n",
+    "- Time: "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 21,
+        "hidden": false,
+        "row": 0,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "d4efa881-fa5c-4ecc-87b0-47f53e865a5f"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b371dec79c8744d4a4db2b068455ad9f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='Field', options=('Ex', 'Hy'), value='Ex'), ToggleButtons(desc…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "dwidget = PlanewaveWidget()\n",
+    "Q = dwidget.InteractivePlaneWave()\n",
+    "display(Q)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 4,
+        "height": 4,
+        "hidden": true,
+        "row": 13,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "# Profile app\n",
+    "\n",
+    "We visualize EM fields at vertical profile (marked as red dots in the above app). \n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Field**: Ex, Hy, and Impedance \n",
+    "- ** $\\sigma$ **: Conductivity (S/m)\n",
+    "- **Scale**: Log10 or Linear scale\n",
+    "- **Fixed**: Fix the scale or not\n",
+    "- **$f$**: Frequency\n",
+    "- **$t$**: Time\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 17,
+        "hidden": false,
+        "row": 21,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "125cc6340f1b40cd8e322f62ba9fb736",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='Field', options=('Ex', 'Hy', 'Impedance', 'rhophi'), value='E…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "display(InteractivePlaneProfile())"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 4,
+        "hidden": true,
+        "row": 14,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "# Polarization Ellipse app"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 13,
+        "hidden": false,
+        "row": 38,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "348ec372c8e241e191ff47a74d372a29",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=0, description='itime', max=999, step=10), Output()), _dom_classes=('wid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Polarwidget = PolarEllipse(); \n",
+    "Polarwidget.Interactive()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "grid_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "nbpresent": {
+   "slides": {
+    "18cc87f9-a29c-43fe-a307-094e80f187ec": {
+     "id": "18cc87f9-a29c-43fe-a307-094e80f187ec",
+     "prev": "47ebf514-9d62-497c-ae0e-da3d22b7a793",
+     "regions": {
+      "81dc0ef7-16af-48ca-9707-b6626f7b5ef3": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c59bfd9b-4293-433e-83db-820c33f4c378",
+        "part": "whole"
+       },
+       "id": "81dc0ef7-16af-48ca-9707-b6626f7b5ef3"
+      }
+     }
+    },
+    "245f2cbf-072e-429f-b8c2-3a155572cae5": {
+     "id": "245f2cbf-072e-429f-b8c2-3a155572cae5",
+     "prev": "d4aec013-fcfb-4601-928a-08cb129f1ab6",
+     "regions": {
+      "f58b4744-dda4-46e7-a2b6-132966aebb6c": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "9cbd4d35-95ab-4b4c-bc7b-ef4c7a5bd601",
+        "part": "whole"
+       },
+       "id": "f58b4744-dda4-46e7-a2b6-132966aebb6c"
+      }
+     }
+    },
+    "47ebf514-9d62-497c-ae0e-da3d22b7a793": {
+     "id": "47ebf514-9d62-497c-ae0e-da3d22b7a793",
+     "prev": null,
+     "regions": {
+      "201b2767-c7c4-42a9-8972-0fb07ea027df": {
+       "attrs": {
+        "height": 0.7999999999999999,
+        "width": 0.8,
+        "x": -0.02479871175523355,
+        "y": 0.1261227410985866
+       },
+       "content": {
+        "cell": "e3a4dd9c-3f24-48d6-ad9b-4edbe3248df9",
+        "part": "whole"
+       },
+       "id": "201b2767-c7c4-42a9-8972-0fb07ea027df"
+      }
+     }
+    },
+    "4cff681d-a824-462c-82c4-6c9dab0650f1": {
+     "id": "4cff681d-a824-462c-82c4-6c9dab0650f1",
+     "prev": "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3",
+     "regions": {
+      "402b6864-2649-41f1-9713-ae5f6bf3b115": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "3bd63ed4-b758-48e5-a662-b68e4b2ce034",
+        "part": "whole"
+       },
+       "id": "402b6864-2649-41f1-9713-ae5f6bf3b115"
+      }
+     }
+    },
+    "51a59c43-c682-499d-b8a9-bf6c793cbe75": {
+     "id": "51a59c43-c682-499d-b8a9-bf6c793cbe75",
+     "prev": "b2754f55-e10b-4a02-b5e1-618bc5d423f0",
+     "regions": {
+      "15926dd2-ff48-4df3-a8be-e4b86ea2cd4f": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "baf63d98-9356-4c2d-81d7-8f8cd1a6da2d",
+        "part": "whole"
+       },
+       "id": "15926dd2-ff48-4df3-a8be-e4b86ea2cd4f"
+      }
+     }
+    },
+    "5dd85aee-5025-4fe2-a90c-d80de7f8d456": {
+     "id": "5dd85aee-5025-4fe2-a90c-d80de7f8d456",
+     "prev": "bf7c1942-c97d-4023-8cc8-62a6369c6229",
+     "regions": {
+      "a022dc82-caf9-430a-8e77-7a155085aee5": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "d4efa881-fa5c-4ecc-87b0-47f53e865a5f",
+        "part": "whole"
+       },
+       "id": "a022dc82-caf9-430a-8e77-7a155085aee5"
+      }
+     }
+    },
+    "7dad038d-3585-4d4a-acb4-d2388b117b7e": {
+     "id": "7dad038d-3585-4d4a-acb4-d2388b117b7e",
+     "prev": "5dd85aee-5025-4fe2-a90c-d80de7f8d456",
+     "regions": {
+      "e526da6b-003d-4015-8900-386d21051974": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c3075a3b-0158-49f6-9d38-ed7372a4761c",
+        "part": "whole"
+       },
+       "id": "e526da6b-003d-4015-8900-386d21051974"
+      }
+     }
+    },
+    "81c72ec7-c7a8-45e6-9649-080db72a3bf9": {
+     "id": "81c72ec7-c7a8-45e6-9649-080db72a3bf9",
+     "prev": "4cff681d-a824-462c-82c4-6c9dab0650f1",
+     "regions": {
+      "98e755fa-d098-4ebf-9481-63e3fed6a783": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "09257b6f-48e9-426c-a0f3-d1a60beb3ad0",
+        "part": "whole"
+       },
+       "id": "98e755fa-d098-4ebf-9481-63e3fed6a783"
+      }
+     }
+    },
+    "8a528caa-079f-4215-b8b8-28302cc93a3e": {
+     "id": "8a528caa-079f-4215-b8b8-28302cc93a3e",
+     "prev": "7dad038d-3585-4d4a-acb4-d2388b117b7e",
+     "regions": {
+      "8304fb51-067b-42fd-b53a-e3a1d9e04272": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "0053bec8-5b59-4ae4-b760-37bdf85ed0d8",
+        "part": "whole"
+       },
+       "id": "8304fb51-067b-42fd-b53a-e3a1d9e04272"
+      }
+     }
+    },
+    "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3": {
+     "id": "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3",
+     "prev": "245f2cbf-072e-429f-b8c2-3a155572cae5",
+     "regions": {
+      "11eb3f79-3a55-4a7b-a77f-7a29de426686": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c0138e15-c392-4695-9627-578e85ae9c0a",
+        "part": "whole"
+       },
+       "id": "11eb3f79-3a55-4a7b-a77f-7a29de426686"
+      }
+     }
+    },
+    "a3506cf3-dd45-4e72-86bb-af1f5dc15b15": {
+     "id": "a3506cf3-dd45-4e72-86bb-af1f5dc15b15",
+     "prev": "8a528caa-079f-4215-b8b8-28302cc93a3e",
+     "regions": {
+      "c31fa94d-0be2-484b-8fc7-21f845ecd9e7": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "3eafb99a-a449-44ad-92ca-c5759984f87c",
+        "part": "whole"
+       },
+       "id": "c31fa94d-0be2-484b-8fc7-21f845ecd9e7"
+      }
+     }
+    },
+    "b2754f55-e10b-4a02-b5e1-618bc5d423f0": {
+     "id": "b2754f55-e10b-4a02-b5e1-618bc5d423f0",
+     "prev": "c1556db0-f27c-4a07-a6ee-218b6da5228f",
+     "regions": {
+      "6ce0b2c5-9f8e-414c-b578-d1fb9537a350": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "53198a70-4798-4da9-8ce3-43a14b3086f2",
+        "part": "whole"
+       },
+       "id": "6ce0b2c5-9f8e-414c-b578-d1fb9537a350"
+      }
+     }
+    },
+    "bf7c1942-c97d-4023-8cc8-62a6369c6229": {
+     "id": "bf7c1942-c97d-4023-8cc8-62a6369c6229",
+     "prev": "f2016771-0d1f-4b36-a992-3ed37d96db8d",
+     "regions": {
+      "d2c780fd-f02d-4b23-855d-7268418a9a6b": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "4cca45b8-6d74-43f2-b3aa-2f1f3ece54f3",
+        "part": "whole"
+       },
+       "id": "d2c780fd-f02d-4b23-855d-7268418a9a6b"
+      }
+     }
+    },
+    "c1556db0-f27c-4a07-a6ee-218b6da5228f": {
+     "id": "c1556db0-f27c-4a07-a6ee-218b6da5228f",
+     "prev": "81c72ec7-c7a8-45e6-9649-080db72a3bf9",
+     "regions": {
+      "e8e03a1b-fce6-4369-b5e0-6f4c0d98fd48": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "b9b7af2b-084a-4f24-9c1f-6c681e30fd35",
+        "part": "whole"
+       },
+       "id": "e8e03a1b-fce6-4369-b5e0-6f4c0d98fd48"
+      }
+     }
+    },
+    "d4aec013-fcfb-4601-928a-08cb129f1ab6": {
+     "id": "d4aec013-fcfb-4601-928a-08cb129f1ab6",
+     "prev": "18cc87f9-a29c-43fe-a307-094e80f187ec",
+     "regions": {
+      "959cec78-5304-4c08-be1c-372309852edb": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "95f1e819-0749-42ff-ad94-6d428298a5a7",
+        "part": "whole"
+       },
+       "id": "959cec78-5304-4c08-be1c-372309852edb"
+      }
+     }
+    },
+    "f2016771-0d1f-4b36-a992-3ed37d96db8d": {
+     "id": "f2016771-0d1f-4b36-a992-3ed37d96db8d",
+     "prev": "51a59c43-c682-499d-b8a9-bf6c793cbe75",
+     "regions": {
+      "f238a22f-46b8-43ff-b102-98cb6289f575": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "100a2463-b8e6-4c4c-9cfc-5ea61334779e",
+        "part": "whole"
+       },
+       "id": "f238a22f-46b8-43ff-b102-98cb6289f575"
+      }
+     }
+    }
+   },
+   "themes": {}
+  },
+  "widgets": {
+   "state": {
+    "6711a1c5fb74421a8cb9f258aafb0c70": {
+     "views": [
+      {
+       "cell_index": 7
+      }
+     ]
+    },
+    "97e35c898161466e89cc45034dcbd498": {
+     "views": [
+      {
+       "cell_index": 9
+      }
+     ]
+    },
+    "e1d82c42c7af4010b72f3dc56080cc6c": {
+     "views": [
+      {
+       "cell_index": 11
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/FEM/EM_EM31.ipynb b/Notebooks/em/FEM/EM_EM31.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1df3f2a7ec94b4ce1fdb7eef4e5de00c0f4cc1c0
--- /dev/null
+++ b/Notebooks/em/FEM/EM_EM31.ipynb
@@ -0,0 +1,121 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.em.ResponseFct import interactive_responseFct\n",
+    "from IPython.display import display"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Computing Apparent Resistivity\n",
+    "\n",
+    "In this app, we compute apparent resistivity using the response curves for a two-loop Frequency domain system for a two-layer earth. Below figure shows horizontal coplanar (HCP) configuration. \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/ResponseFct/ResponseFct.png?raw=true\"> </img>\n",
+    "\n",
+    "Assuming the coil spacing $s \\ll \\delta$, where $\\delta$ is the skin depth, the apparent conductivity is given by\n",
+    "\n",
+    "$$\n",
+    "\\sigma_a = \\int_0^\\infty \\phi(z) \\sigma(z) dz\n",
+    "$$\n",
+    "\n",
+    "Where \n",
+    " - $\\sigma_a$ is the apparent conductivity\n",
+    " - $\\phi$ is the response function\n",
+    " - $\\sigma$ is the conductivity structure\n",
+    "\n",
+    "Note that in the following plots, the y-axis is a normalized depth: $z/s$ where $s$ is the source-receiver separation.  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Two different configurations of source-receiver configurations are considered:\n",
+    "\n",
+    "- HCP: Horizontal coplanar system. The associated dipoles are perpendicular to the plane of the loops and are therefore in the vertical direction. The response function associated with this is .\n",
+    "\n",
+    "- VCP: Vertical coplanar system. The associated dipoles are perpendicular to the plane of the loops and are therefore in the horizontal direction. The response function associated with this is .\n",
+    "\n",
+    "For more, see the <a href=\"http://gpg.geosci.xyz/en/latest/content/electromagnetics/dual_loop_systems.html\">GPG section on dual loop systems</a>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Parameters:\n",
+    "\n",
+    "- h$_{boom}$: height of the source-receiver boom from the surface [m]\n",
+    "\n",
+    "- h$_{1}$: thickness of the first layer [m]\n",
+    "\n",
+    "- $\\sigma_{1}$: conductivity of the first layer [S/m]\n",
+    "\n",
+    "- $\\sigma_{2}$: conductivity of the second layer [S/m]\n",
+    "\n",
+    "- configuration: configuration of the source-receiver"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6a6039d69c87430ca8655a992074c9e8",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='$h_{boom}$', max=2.0), Floa…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app = interactive_responseFct()\n",
+    "display(app)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/FEM/EM_Pipeline.ipynb b/Notebooks/em/FEM/EM_Pipeline.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6ac19ffde41c4d264d15c32e40064a15a8ac5a69
--- /dev/null
+++ b/Notebooks/em/FEM/EM_Pipeline.ipynb
@@ -0,0 +1,96 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Expo site characterization using EM-31\n",
+    "\n",
+    "\n",
+    "## Import Necessary Packages"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.em.FDEMpipe import interact_femPipe"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Pipe Widget\n",
+    "\n",
+    "In the following app, we consider a loop-loop system with a pipe taget. Here, we simulate two surveys, one where the boom is oriented East-West (EW) and one where the boom is oriented North-South (NS). \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/FEMpipe/model.png?raw=true\" style=\"width: 40%; height: 40%\"> </img>\n",
+    "\n",
+    "The variables are:\n",
+    "\n",
+    "- alpha: \n",
+    "$$\\alpha = \\frac{\\omega L}{R} = \\frac{2\\pi f L}{R}$$\n",
+    "- pipedepth: Depth of the pipe center\n",
+    "\n",
+    "We plot the percentage of Hp/Hs ratio in the Widget. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "2696f379819743caba556444fac4839a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=1.0, continuous_update=False, description='alpha', max=5.0, min=0.1), …"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "pipe = interact_femPipe()\n",
+    "pipe"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/FEM/FDEM_Planewave_Wholespace.ipynb b/Notebooks/em/FEM/FDEM_Planewave_Wholespace.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ba9d571bf4c99e9dd061437dc8c7b246f190b66f
--- /dev/null
+++ b/Notebooks/em/FEM/FDEM_Planewave_Wholespace.ipynb
@@ -0,0 +1,764 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "hidden": true
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "c59bfd9b-4293-433e-83db-820c33f4c378"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from IPython.display import display\n",
+    "from geoscilabs.em.PlanewaveWidgetFD import PlanewaveWidget, PolarEllipse, InteractivePlaneProfile\n",
+    "from geoscilabs.em.DipoleWidgetFD import InteractiveDipoleProfile\n",
+    "from geoscilabs.em.VolumeWidgetPlane import InteractivePlanes, plotObj3D"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 4,
+        "hidden": true,
+        "row": 6,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "95f1e819-0749-42ff-ad94-6d428298a5a7"
+    }
+   },
+   "source": [
+    "# Planewave propagation in a Whole-space (frequency-domain)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 4,
+        "height": 4,
+        "hidden": true,
+        "row": 6,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "3bd63ed4-b758-48e5-a662-b68e4b2ce034"
+    }
+   },
+   "source": [
+    "# Purpose\n",
+    "\n",
+    "We visualizae downward propagating planewave in the homogeneous earth medium. With the three apps: a) Plane wave app, b) Profile app, and c) Polarization ellipse app, we understand fundamental concepts of planewave propagation. \n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Set up\n",
+    "\n",
+    "Planewave EM equation can be written as \n",
+    "\n",
+    "$$\\frac{\\partial^2 \\mathbf{E}}{\\partial z^2} + k^2 \\mathbf{E} = 0,$$\n",
+    "\n",
+    "For homogeneous earth, solution can be simply derived:\n",
+    "\n",
+    "\n",
+    "$$\\mathbf{E} = \\mathbf{E}_0 e^{ikz}$$\n",
+    "\n",
+    "$$\\mathbf{H} = - i \\omega \\mu \\nabla \\times (\\mathbf{E}_0 e^{ikz}).$$\n",
+    "\n",
+    "where complex wavenumber $k$ is \n",
+    "\n",
+    "$$ k = \\sqrt{\\mu \\epsilon \\omega^2 - i \\mu \\sigma \\omega}.$$\n",
+    "\n",
+    "In time domain, the wave travelling in the negative z-direction has the form:\n",
+    "\n",
+    "$$ \\mathbf{e} = \\mathbf{e}_0^- e^{i(k z + \\omega t)}.$$"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 21,
+        "hidden": false,
+        "row": 0,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "baf63d98-9356-4c2d-81d7-8f8cd1a6da2d"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAGKCAYAAACsKF5NAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD24ElEQVR4nOydd5gkZbm37+qcJueZ3dkJmzO7bCJIkLAEBTEdBBQDIMecEBRRjx4DYDrgOYJ+igKCoAQVBAQFSYvAwsKyaXZmdnLomemezl3dVe/3R4ftnhx6enqWuq9rlO2qrnq7u6p+7/O8T5CEEGhoaGhoaOQCuvkegIaGhoaGRgJNlDQ0NDQ0cgZNlDQ0NDQ0cgZNlDQ0NDQ0cgZNlDQ0NDQ0cgbDJNu10DwNDQ2Ntw/SfA9As5Q0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGTZQ0NDQ0NHIGw3wPQOPtixACVVWRJCn5p6Gh8fZGEyWNrCOEIBqNoigKoVAo+bper0/+6XS65J8mVhoabx80UdLIGgkxikajAEiSlBSdhNWkKApCiDQh0ul0YwqWJlYaGscekhBiou0TbtTQmAoJsUkVo4QQybI8obgIIdL+NLHS0JhT5v3m0SwljTlDVdWkmw6Y0brReO9JTKai0SiRSCRtW0KshBCYzWZNrDQ0FhCaKGlklIRFE4lEUFUVmJkYTUbieCOPmypWr7zyCps2bUrbV6/XYzAYkkKl1+s1sdLQyCE0UdLICIk1oWg0OqdiNBmpAiRJEgaDITk+IOlGTLgChRATugE1wdLQyC6aKGnMikTwwtDQEPn5+dMO787WQ38yyyp1zSv1PTqdDoPBoImVhkaW0ERJY0YIIZIPclVV2bdvHzt27FhwD+vJxEpVVcLh8Kj3JKyrVFegJlYaGrNHEyWNaZGaY5Rwgen1eiB7Vk82GE+sgLTwdVmW07alugET1pUmVhoaU0cTJY0pMV6O0duRiSICx8u10hKDNTSmhiZKGhMyXo6RxmimKlbhcBin08nixYu1XCsNjRFooqQxJpnIMdKIMfK7C4VC+P1+dDpdMnx+ZBKxJlYab1c0UdJIkq0co5HnfDs+aCeKUpxKYrAmVhrHKpooaeRMjpFGjKkkBkcikTRB1xKDNY4VNFF6G5Ma1p14wGlilLtMNddKSwzWWMhoovQ2ZCwxertG0h0LaInBGscSmii9jRgrx0gTo+wzSWX+jDHTxOBwOIzFYsFisWhipZF1NFF6GyCEIBgMpj2kckGMotEovb29mM1mHA4HJpNpvoeUNebzAT9ZYnBHRwclJSUUFhambdMSgzWygSZKxzCpOUa7du3ihBNOyIkHSCQSoa2tjd7eXkpLS/F6vbS1tRGJRDAYDNjt9rS/t5NYzTeJ6yMhPAkma8KYCLDQIgI1ZosmSscYibDuXMwxCofDHDlyhIGBAWpraznhhBOS41QUBZPJRCQSwe/34/f7cTqdHDlyJClWDocjTayMRuN8f6RjkrHC9CcKX080a9SaMGpkAk2UjhEmyzFKRGPNxwMhFArR2tqKy+Wirq6OZcuWodPpUFUVp9OJ0+kkGo2i0+mwWCyYzWYsFgv5+flYLBaMRiOyLCfFqq+vD7/fTzQaxWg0JkUqIVqJdhW5SrbWlLLBZGKlJQZrTJfcvns1JmWqOUYJUcomgUCA1tZWPB4P9fX1rFy5EkmSUBSFvr4+nE4noVAoKZaqqhIIBAgEAmnH0ev1SaGyWCwUFBSMKVa9vb34fL6k1RUKheju7k6KVi6JVS4/gDMxedESgzVmSu7cpRrTYro5RtkUJZ/PR0tLC8FgkPr6elavXp0Uo4RllHAtTgVFUcYVq4RQWSwWCgsLMZvNGAwGZFlm9+7dKIpCT08Pfr8fRVEwm82j1qxS10405rbKhpYYrDEZmigtMGaaY5QNUfJ4PLS0tCDLMo2NjRQXFyNJEtFolP7+fgYGBpLWXCZQFCVpJaViMBiwWCz4/X5sNhtFRUVYLBb0ej2yLOPz+fD7/XR1deH3+1FVNU2sHA4HNptNE6ssMp3E4MT1tGjRIi0x+BhEE6UFwmxbR8ylKLndbgKBAE1NTTQ0NFBUVATEouwSYpRN12E0GsXn8xEIBOjq6kq+nhAri8WC3W6npKQkmYsTDoeTAtfR0UEgEEBV1eS+ib+3g1jlUj3CscQqEongdrtZvHjxhInBWhPGhYkmSjnOWGI0kxtrLkRpaGiI5uZmDAYDZrOZzZs3AyDLMn19fQwNDeXUon5CrHw+X9rrRqMxuWblcDgoLS3FbDaj0+mSFb39fj9DQ0NJsbJaraPEaqqThFx66I/FQhjfeCKTmhg8sgmjJlYLA02UcpRMt47IlCgJIRgYGKClpQWLxcLKlSvJy8vjhRdeIBwO09fXh8vlyikxmoxIJEIkEhlTrBKWVX5+PmVlZVgsFiRJIhgMJsVqYGCAQCCAECIpVolIQKvVmhOJyscSE4nmZInBWsfg3EcTpRxiLltHzFaUhBD09/fT2tqK3W5n7dq12O12IBby7XK52L9//6zHmUskxMrr9aa9bjKZkqHrBQUFVFRUYDab08TK5/PR399PMBgESLOsEr9zrrIQLKWZegsmEystMXj+0UQpB8hG64iZipIQgt7eXo4cOUJBQQEbNmzAarUCEAwG6e3tZXh4OC20+1hHluVRM20As9mcdAMWFhZSWVmJxWJJlnlKWFZutxufz4fX68Vms6W5Aa1W67x/h7n+O2Z6fFpicG6hidI8koikczqdGI1GHA7HnLkMpitKqqrS3d1Ne3s7xcXFHHfccVgsFoBkAqvH48n4OBcy4XCYcDic9r1IkpRmWRUVFWGz2XC73SxbtoxAIIDf78fr9dLb25usUZgQq4QbMOE21MieaGqJwfODJkrzwMiw7qGhIRwOB3l5eXN2zqmKkqIodHV10dHRQXl5Occff3yy9pzP50smqI5Frs+w5wMhRFKsEgQCAXw+H5IkJS2rkpISqqurMZvNCCGS+wwPD9Pd3U0oFEKn042yrOZCrHL9d0wEOswXU00Mfuutt1izZg2gidV00EQpi4zXOkKn0835GsNkohSNRuns7KSrq4vKykq2bt2arC3n8XiSpX0mOr7G1BFCEAqFCIVCDA8PJ19PFSqLxUJpaSmLFi3CZDIlK174/f5RYjUyITixxjXTseXy76mqak6Ob2SQRTgcRq/Xa4nB00QTpSwwWY5RNhJbxztHJBKhvb2d3t5eqqur2bZtW7Icz/DwMH19faMqKUzn+BrTI1WsUtHpdGlrVmVlZSxevBiTyZSWROxyuejs7Ew+EEe6AU0m05QeeLn8UMx10RzJVBODR77n7ZoYrInSHJLaOgLGN/vnw1KSZZm2tjb6+/tZvHgx27dvT87q3G43vb29ox6MGvOHqqoEg8FkNF+ChFglLKtEJKDJZCIajSYtq8HBQdrb25FlGb1eP2Z7kMS1meuTi4UmSuMxU7FKzbUKBoMYjUZsNlt2Bp0FNFGaA6abY5QoRjqXJEQpHA7T2trK0NAQtbW17NixIymKQ0ND9PX1jepGqpF5MvVQHU+sUovYms3mZCSg0WgkGo0mLatUsUr0sgoGgwwPD1NQUJCTvayOFVEaj+nkWt12220UFxdzxRVXZHuYc4YmShliNjlG2XB9KYpCa2srwWCQuro6VqxYkTzv4OAgfX19Y4Y5TxXNfZdbTFbENrU9SKJ6ReI9Q0NDDA4O0tnZOWbjRYfDMa+9rI51UZqIkc+UROv6YwlNlGZJJnKMdDrdKDM9U/j9flpbWxkcHKS2tpaNGzcmLbOBgQH6+/tHtRDIJpqYZZfxitjedtvveOc738m2beuJRqNUVVUl232MbLzY2to6qpdVNhsvvp1FaSSyLGM2m+d7GBlFE6UZMt3WERMxF+47r9dLS0sLoVCIhoYG9Ho9hYWFCCFwOp309/dnXAg1cVlY+P1+HnjgEc466wOcdNJ7GBrqYHBwELfbTWtra7KawUTtQcZrvDiyS3Ame1mpqqqVbooTCoU0S+ntTibFKEEmrYXh4WFaWlqIRqM0NjZSVFSEJEkMDAzgdDrp7u6eVi+jqaLNXKfOfIt3X18fbrePkpJGFi06nnA4Vufv8OHDbN26Om3f8YrYpopVansQnU6XrCPo9/vTelmZTKZR7UFmIlYLwVLK1m8cDoc1S+ntyng5RpkgE9F3LpeLlpYWABobGyksLARiDxWn00lnZycWi2XOEnRz/SGhEbtGbLY8enrC9PaGsdkkli5tBGK1+S644N3JfSf7PSequJ5Ys0ptDyJJUppl1dXVRSAQmFHjxYUgStmy5mRZ1iyltxuz7WM0FWbqvktEzLW0tGA0Glm2bBn5+flALP/I6XQmG+upqjrns7f5tgA0xiYWhCNx//1/Z+PGk6mqWkJJSfo+Pp+fp59+jMsuu2hWv+NERWzHag8iSVJaL6vUxovj9bJaCKKUrTFqltLbCFVVk60YKioq5jRpbbruu8S6UGtrK1arlVWrVuFwOIDYzKm/v5/BwcG0Y+b6TawxN/h8fm655Tdceumn2Lnzg4x3GZhMJjZs2DBn40gUsR2v4nrCii8rK0uK1Xi9rIQQyU7CCTdgrq0xZctS0kTpbUBqjlE4HKarq4uqqqo5PedU3XdCCPr6+mhtbSUvL49169Ylk+bC4TD9/f3jNtab6yg3LYoutzh06BBdXW5WrNjGe97zMUA3riBBbI1o8eLFyX9naxKTEKuRxX1Tc6wKCgooLy9PuqkS0X+hUIjBwcFRvaxm0ngx02SrPp8WEn6MMl6OkcFgmPOk1sS5JjqPqqrJ9hFFRUVpFbtDoVB84dqticICYq4e+nv37qWqqgFFKcduz0dRSPa9mgi328Uf/nA311zz6TkZ13QZWcQWjtYFHB4exm63U15eTmVlZdJSGKvxIjBKrLLReDFb9fk0UTrGmCzHKBvlfxLnHOs8qqrS1dVFe3s7paWlbN68Oe0GTIjRbM6RSTRRnD9iQQxFHD7sJRIJUlpaStyjOyWKi4v59KdzQ5DGI1EX0OfzIcty2jpvqmVVVFREVVUVJpNpVC+rsRovpnYJzmSlDc1SmhlvS1Gaalh3Nsr/JM6T+kBXFIXOzk46OzupqKhgy5YtyXIvgUCAvr6+tMrSU2Wu3Xcas8f87W8TOfdc1C1bprS/EILh4QC33fYnLr7442zefMKMzhsMBnnzzSa2bVsHgG7/fvRPPEHkc5+b1nGMd9yBunIlyvbtMxrHVBh5HY9XxHZkxfXU9iCJ8kypvawS789E48VsBjpoorSAGUuMJprNZGudJGGRRaNROjo66OrqGlWx2+/309vbO2qheKrkomjIsozT6Uw+PBJ/oyYH7e0YnngCXUsLRKOQn4+yejXKGWcg4tGGuYLxllsQy5cTPfvsOT/XK6+8xqFD/Zx88k4+9KErJlwzSmC4917EkjqUHemiEYlEcTr7j+734INE3/e+tH3M3/gGkfPPR922bdzjR885B9P//A/K5s0wh9UdpnI9T1ZxfbL2IKmNF6fby0oLdJg5bwtRmmmOUbYe5IqiMDw8zEsvvURNTQ07duxI5ml4vV76+vrGbaw3VXIp0CEhRuFwmOLi4mRYsMvlSraeNplMmEwm8jo6yL/rLpR3vAP5fe9DFBYieTzoX3gB6fBhxKZN0x+sosDIPJixXpsjZvs7/O1vj7F8+RaKitayZUvsWLO9VPPz83jnO98JgP3IEaRoFHXZsuR2ye1G8ngQKcEQYyEqKhBlZehefRV1jqyl2VohE1VcT60LmGgPYjQak3UBx+plZbPZ0ipYJBo1ZitPSROlBUQ2coxmgyzLHDlyhL6+PgwGA9u2bUuOzzM4yK9/9ztOOPHEZD+VXLR2poMsywwMDBAKhSgtLaW6ujqZQ5W6GC+ESEZl2R9+GO+qVXRv2IA0PIwpGIw9ON7xDkwmEwZGu7ykwUHM//VfGOKVk83f/jbKtm1ITU3o2tuJXHwxxr/8ZdRr6qZNIMsYHn0U/Z49EAyiLllC9H3vQ5SVHT3Wjh1Ihw6ha2tDFBcT+Y//QNTXY7j/fnTNzdDaiv7JJ6GggPD114/6HiwvvEDhc8+hD4XAYkHZupXo+ecnt+tcLvS33pp2fHnRIvbt20/DolU0NIexPf8ndLKMWllF9Ix3QlFR7M2RCPrnX0B36BBSOJS2Xf/kk+g6u6C7B/1LLyEcDiKf+DgAAwODPPvsM3zoQ+/B0dyMsmJFmtJJ7e0IkwlRWTnp76yuWIH+jTfmVJTmgoSVNFYR21TLKhEJOFKsUntZJcbY3t6ekcaLE5FLz7RMcEyK0lT7GM0XoVCI1tZWXC4XS5YsYdOmTTQ1NaHT6ZJ1x468/DJSVxeGgQH2NTXx1qFDfPCyy3j+3/9m2cqVlJaWEg6HsVqtUzrnXK+PTfT9JhJ5g8EgZWVlVFVVTdrKw2w2YxkexuByYbn4Yurq6lBVFVmWCYVCeL1eZFlGURQao1G8Hg/R4eGYC3CMh5b+xReRr7gCUVMTcwH+5S+jXwOM99wDoRDyF7+IsFoxPPEExttvR7722qQlpd+1K/a+igoMDz2E6a67CH/jG0Tf/36k3t4J3XdSfz/2xx+n7+Mfp3D1aggEkPr70/ZJPb7+wQcx/O53DH32Ol59tYey5zvIj6pEL70ULBb0u3ZheOBBopdfDnodhscfh7BM5JIPjdqunHEG0sDAmO67vLw8tm3bCoClvx+xdGnadl17O2pNDUzhAahWV2N88cVJ95sN2byfJ6u4PrI9iMFgoL+/n4GBAYxG46jGixP1stI4hkQpEdY9nT5G2SYQCNDa2orH46G+vp6VK1ciSRKBQACfz8eBAwcIhUIMDQ3x1r59nH/66RCNsra+ntW1tdDfT5Hfj3lgAI/bzZ333stnvvhF3jh4EL3ZzJq1axkaGqKwsHDM2VO2o++mK0YjkeIuSxEvmZRwr4xc2NXr9ZgtFsKKgsvlQjidNADRSISBgQGqVJXo1q2oNTWx88fXOpQdOxCLFsUOYjQi+f3od+8m/K1vIeLlmKLnnIP5mWfQtbWhNjTEXjvxREQ8d03ZsQPDM89AMAhTmSDEfxej0wnhMNhsiLq6tF2iJ56IWlmJJEm8bCmifsiEbwDOPOkU9D//OfKVV0LcslROOAHTq7uRensQxcXoDhwYf3tNzbjDMhj05OXFvmd9KIQY8R1L7e2I2trJPx+A2QxT6FY8U3IlynO8iuuJYrWRSISKiopkexCDwTBuL6uEWKW6ASfrZZUr30OmWfCiNJs+RtnC5/PR0tJCIBCgoaGB1atXJ9dghoaG6OiIVWdOVGUoKSnh/PPPT7uxdfFZ+uo1a5KvfeYjH4GhIUojEfSqCj093PurX3H5FVcw6PFwoKWFM3fuxOl0oqrqhPXEMkHiJonExSAQCFBaWjptMUoeL/59SG43oqJi3P0kScJkMlFcXBz7d/xmTrhdhBAMGwwMtbUl912sKITsdohGjxYFHRgAwPTDH6afQFHA5To6rtTgivi5pHAYMQVREqWleD7wAewvvoj5kUdQq6tRdu5EXbky7fi/+c3v2bjxVEprj0fmNYjISL7Yw8/029+mH1RVwONB0ukn3M4EotTX18cTT/ydK6/8MIrFgmFkcEB7O5GtWyf9fEBSbOeSXHZZJYRHlmW6urqSr4+suF5QUJCsTJEqVgMDAxw5cmTMXlYjxWohlFyaLgtWlDLRx2iu8Xq9NDc3I8syDQ0NlJSUJMUo0csokW+ROuvxeDw8++ijnHfqqROfIP5Zq6urY/+ORPjPj3wEZBlFllmZlwednbz61FMsbmykqLyc3/zxj3z0yisZGBoCoLS0NCOfVZIkFEWht7cXv99PaWkplfHZ/kwR5eWI0tLYovmKFePvZzIhpTYojFcHkHQ68vLyYm07iovJT3EBSkBYlhnq6UFRFPR6PVZVZRHg+fKXMRYXz+zBN4XPK69ejbexkdLCQvTPP4/xl78k/P3v449ECPllAl4LW7e+m/z8PKSUSgcJMZQ//gmwjSGA/sDE2wGksT9TdXU1GzZ8GIBwWRnG3t6jb3E6kYLBo5aSEJh+8hMiH/kI6PUYfvtboh/5yFGLtrsbNWGBzgHZSNOYLWOJxURFbFPXrBLtQfR6/aheVgmxuvPOOwkGgyiKwrPPPsuaNWuSk7KFzoITpbloHZFp3G43LS0tqKqabB8BjNtYb+TYTSYTDY2NsxpDXn4+efn5oKrsPO00/D4fQa+XM9auhc5OevbvRxaC0h07+M1dd3HhBz6AwWKht7eXZSlRV1MhGo0SCATwer2Ul5cnawVmgsj734/xl7+MhYGffDKioADJ60W/axdqSQnqpk2I2lp0u3ejHH88UiSC4bHHxj1ewgWo0+vJy8/HHo8mi0ajhMNhguvWYbjvPrrf8Q6iDgdmRSGvpwexciXm/HwmjXPKy0OKW1xjIfX3Y+rsRK6qAr0+6SY70tZJXnE9AakaKaynoGCMUHe7DXXlSgxP/p3oaadDngNCIaSODsSSJZNvN5nAbkNyu0YdenjYQ29vK1u2rMe7dCkFzz5LotuW1N6OsFqTwR5IEtHzz8fw0EMQCBC9+OKkIAFIBw/OWZBD8hw5dL+PxXQsmEQR2/EqrhcVFVEzwspdsmQJr732Gq+//jp/+MMfeOutt3C73Xz/+99n586d0xqroihce+213HHHHQwMDHiBJ4CrhBDjX8hzyIIRpVQx2rNnD8uXL0/WfcsVEhW7dTodjY2NFBQUALEfPdHPaLzGeqmWksViYeWKFZn1y0sSer2exfHZ7rpVq2KvDw9z7tatFPh8DLS3093UxLLiYh76299YsXYtK9at46V//5vt27ePOfMbGBjA7/ej1+upqKhIuiCnPqyJb1x15Urkz30OwxNPYPrBD2KutLw8lDVrEPF8meh552G46y7M3/gGoqiI6Omnoz9wAJi6391gMMTceB/+MOYnnqDxwQfB60VYLESWLGGgoQHvwACWSITBgQFCPT2YzWaswSDmlPNETz0V4+9/j/naaxEFBcjXXZd+omgU2z/+QV5/PxKglJaz5+R3cfiglw0bdBhNJqITfCfRs89Gv+sljH+4F8kfQJjNiEU1RJfUTWm7svl49I/9DdMtt6A6HEQ/+tHY60o0uZDvr6tDPP88uqYm1GXLYkEOixalWYFqTQ3GpiYi738/orw8+brU34/O6SSyefOUvveZsBDWUjLhVlNVlfz8/ORzJJWKigrOPPNMvve973HrrbemvWe6/OAHP+Dhhx/mpZdeorGxcRHwa+BO4JyZj37mSJP8wPP+648V1r1nzx6WLl067QfgTHjhhRfYsWPHuBeYEILBwUFaWlowm800NDQkexYpioLT6cTpdE7YWE9VVY4cOUJDfCHd6/Vy63/9F9d95jMZ+xx+vz+ZFzTV/Y0GA0gSTz/7LGedfz4vvvIKnmCQd55zDk/9619UVVWxaNEiCgoKcDqdOByOaf8miqLMWZ2wI0eOsGTJkowfO+ECTNRnC4fDKIqSTMpMuGJMJtOYLkCv10s4HOb++x9n8+bTqKoaf60nm5SXC8zm2PfWEAyOX9EhHMb4//4fypYt6F96iUhKeSLjHXegrliBsmPHnI2zu7ub0tLSSQMB5hOXy4UkScm+ZtOluLiYysrKCZsgBgIBLrjgAnbt2jXDUcZYsmQJN9xwAx//+McBJEmSGoHDQL0Q4sisDj4DctZSGkuMsl2TLnGusYIEEu0jWlpasNvtrFmzJplrk2islwgwmIyRiacOh4Nrr7sOZpkwm3aOae6fmjd01jvfCcEgxy9fzuDgIL27d2Pq66OhsRFXezv3P/kkF77//extbqZ68WJqa2uPyTbNCcaLAkxUlg+Hw7jd7mS+SmKB22w2E4lE+NWv7uXccy/m3HMvQafLDTdUZ2cXL774Mh/4wAUAqKtWoSas6VSiUYx33IFy9tmojY3oDx5Et3cv6tq1AEQuv3zOx7oQFveFEDMKLLJardTU1EzJCxQOh2ctzMPDw7S3t7M5xbIVQjRLkuQB1gNHZnWCGZBzopTaOgLGDl5ICEU2GCmAQohkxe6CggI2bNiQzBWKRCLJ/ITpiObIz6eqKvv27mXdiFDh2SBJEsxQyNV4xQm/309+QQF5DgeL4msxjuJiPn7RRXhcLvKGhzFbrSgGAz/+yU/46vXX09bTw6DHw5atWxkeHsbhcMx5FOB8odfrsdlsaQ+UxOTq4MGDdHe7qKxcyYYNp+PxBIhEVIxGEyaTMW5V6WddmWGmlJaWsmTJiZPvaDAQueqq5D8jl146h6Mam2PRfZdwfyeCoaZCJiZ+iZYhY7gI3cC81PDKCVGablh3NkUpkXSqqio9PT20tbVRXFyc1j5ivMZ6M0UIwYGDBzMqSsygzJCqqjEx8vnIz8+npqYGaQx3VMLFUFdfH7OwolG+9ulPw/Aw+X4/+nAYurv5y333cdrZZ2MrKOBfL77IBe99L263Oxb2ChiefhrCYdSaGkR1dax6wBzWT8sGzc3NlJcvRpKqsNsLKCoqx2SyI8sR7HYbsiwTDIbweDxJF6DJZMJoNCYFKxvhzzqdhHEBfdcLwVKaKkVFRVRWVk77+89E3bvEUsMYBZ4LAc/IF7PBvIrSTMO6sy1KHR0d9Pb2UlZWxvHHH580mROdaV0uV0ZnbwaDgfe///3J0OZMMdURTlWMUhn1i8V/w9KyMkoBolEuvegiAIJeL2uLi6Gjg/0vvYS1sJDN/f389vnnuQwIAQGgQpIQZWWIuEip1dUxsSoqmlLo9Xw+uPx+PyaTnVdf7WDZskLKyspITW/S6aRkfb9UFEUlEpGR5Vg0ViQSQQgVvd6QtKiMRhNGoyGjn6+7u5tXXnmVD37woowdc65YKO67ySYTFouFmpqaKfW7GgtZlmdtKRUWFlJbW8vu3bvZuHEjAJIkNRCzkt6Y1cFnyLyIUiKSLnWRezph3dkQpWg0SmdnJ263G4fDwdatW5MzmVAoRG9v75R7Gc2E3915J5e9612TisFUkWBS952qqniGh/H5fOTl51NdUzMns3Sr1UpjYyMIwQnHHx+zRD0eTgGMQAfQBlQKwR/7+9nW30/Va69xGFgNCIsFtaoqJlA1NTGxqqqCHFnD8nj8/M///I7LLvskJ5xw+rTeq9fr0OvT16uEiF2PsdBhmUAgQCQSL4tkNKaJlV4/MxdgXV0d27cvOSZdY/PBRGPU6/WUl5dTWlo6q88RCoUyEuxx5ZVX8sMf/pDTTjuNhoaGfOCHwOPzEeQA8yBKQojkAvBMc4zmUpSi0ShtbW309PRQU1NDcXFxslLwdBvrzYYtU82enyqSNK6lpKoqHo8Hn9dLXl7ezMRoFmtWAOK446gtLUXp6KBuYICG/n6E280pQAEx6ykhSs+EQphbW9nR2sqrwDqIhWWXlCQFSq2pwSgELFqUterfr7/+BocPO9m+/Qwuu+yTGRP0WGUkA0ajATiaFJtwectyZJQLMOH6m6oL0OkcoK+vk82b12dkzHPJQhHOsSgsLKSqqiojrtJMVQi/9tprcblcbIkVNO4C/g5kf7EwTtZFKRPJrnMhSrIs09bWRn9/P4sXL062j/B6vfh8Pvr6+pKLgtmgvqEBKYN5SmN926qq4vV48MxGjFKOP9tHhVi8GCW1NUIkQuHgIJLTic3p5DynE9Hfz9ZwGBE/XzexEKH9wJ7BQf5jcJA9b75JDVAPCIMBqqqOuv7ilhUzdJmMxT//+U8aG4/Dbl/O2rVLESI7ZXASJZNis+WjnyfVBRirXi3HXYD6pEUVEyzjmPdhrlshkPtjHOm+s1gsVFdXZzSNJRivmD9b9Ho9N998MzfffDNA3qwPOEvmxX03294+mRSlcDjMkSNHGBgYYMmSJezYsSN5Mfl8PpxOJ36/f8rVuDPFj3/0I770sY9hzpBLKjX6LiFGXq8XR14eNZlw083FQ8JoRFRWIiorSf7aQmDw+8HpRHE6Obe/H2lggOWDgyxJJLACKuADbolG+VpHB4c7OhDACkAGjAUFMRdgwv1XXR1LAp0gLyQVRVFoaWmhunoZQlTj9RrIz8/uNTIe47kAFUWJFwqVGR4OJquKJFyAixY1JvtZ5TK5Pj44OkadTkdFRcWsXXVjcSz2UoK3sSgFg0FaW1txu93U1dWxbNmyo72MPB76+vqSCafZFiSAr33ta5BJN6EkoQrB8PAwXo8Hh8OR+TWjbDwsJClWqNXhQKmvP/q6omAYGiLS389GpxPiVtWX443czJAUtp8BVwwPIw8Ps+/AAU4lJmBWnQ6pshIxUqzy85Oim3A/B4Pw5JP7OPfcpSxbdrSY6lSYj2eqJMEvf2nlxBNNrF9/NJFbVQW33GJmzZpm3njjRU4+eXvSa5BIAE4kBOdSKP9CsJQKCgpoaGiYs6jGY7EVOuRISPh00el0E1ZImIhAIEBLSws+n4/6+npWrVqVvMCHh4fp6+tL65uSrZboI9n92musq6nBmIGFTKGq+Hw+AoEAJpNpTgIYJOZ5BqvXxyL1ysqS4tPb00NFfj7y4CA1cYtKdTr50sAAkqIwDCRa1j0JNKoqq7q7ube7m0tefZVEnWy7zZYMU/+XP8qRoJmTzziP88+/cBYDzu5D1euV8PslysvTJ3PDwzoiEYmNGytYsuRsCgsddHZ2smjRomQisNfrZWBgAFVVMRgMmEymZDKw1gtoNGazmZKSEmpra+c0zF4TpRxCp9OlFTSdCj6fj+bmZkKhEA0NDaxZsyZ5M7ndbnp7ewmNKNcP8ydKvX19rK6sZDaXtFBVvD4fnuFhLFYrVqs1WRx2LshJp4rViqitRUntBaSqSG43dqeTpf39KAMDXOB0Ink8RIDjiElGE+ACTg8E+F5TK6c0uajGRh5geut/UIuKoKwUUVqGWh4TRFKsqlyit1dCkgQlJem/ktMpYbMJbLZYNGyq28kav2YSJBKBE40WfT4fcrw6e6pFlegd9HYTK51OR3l5OWVlZbz55ptz/vkzUdEhF1mwojRV953H46G5uZloNEpDQwPFxcVpvYz6+/vHFKME8yVK5557LsTbS0yXVDGy2e1UV1ejqCpDg4MZHmUKOfoAEoxhk+h0iOJiRHExpLbECIWQBgdZEReqFX19vNo3wKDIJ4qdp5C4AHgLKEfwsmuIMtcQDYcO0QbUATqTCbW0FFEWa7shyssQpWVgnt+HR2+vRFGRGJWL7HRKVFSodHZ20trayplnnj7uw1SSpHhSr3HM9vUxt2YQt9tNNBpNdhBO/cslF2Amyc/Pp7q6OikSqqrOebCLZinlEFMRJZfLRUtLCwCNjY3JwoiJAqp9fX3JWd5EZFOUUnMbfn/PPZy/fTv5Y1QIHvf9Y4hRojmgqqpzasnkpCRNVygtFkRNDb6iInyLajGYSnHvPsxQzSKW/fvfIMsUORyc4nKB18NKYnlVCnAIaAAOyjJD3d3s6O6mBagiFsQt8gti7sXSUkz5eciFRbHWEllqVtfbK+F2S9x6a7o4RiKwdavC8uXLqK5eihBjV7GfiFTxSUVV1TFdgInmi6l/C9WqMplM1NTUJCsjJMiWKM3Hevdcc0yJUsL6aWlpwWAwsGzZMvLjafSqqjI4ODiql9FkZEuUEudJ3JwnnXwy1in6oxNrRsMeDzabjarq6tEz0lnmEU3KXB8/C0RkGb3ByKFmJ/2DEVaurGbVqtUAbD/jDCAmQBBr9WBzDyO5XUguF2e53AiXi3o5TKLmtxMoBfzAM55h3usZpr35MFagDBB6fcyKKi1FLSuLWVVlZWO2Vde98Sa6/ftRVq9GrF077VlAb6+OE05QWLMm/b654w4jlZUqXV1dDAwMsG7d6owJxHguwNTCtS6XKxnxlwhvT1RZz2UXoCRJSVfdWOKTjQTf6VT9X0jMW/TdbBgpSolOri0tLVitVlatWpXMB0htrDdeL6PJxppNUUpQVFSEbrI8JSHw+Xy4h4exWa1UVVWN6x6Z90CEBcADDz3JijUnUFK2nOKySXbWG6CkBFFSwtGQG4EUDGF2uVBcLra4XbE26sPDnJMSrh4h5lb8paLw0b5e3H29uIDlxERPZ3fEXH9lZahlZVBSguEfT0E0iq6jHfVIK9Gzzp6yS9DlkgiHJerqVPLyxKjXKyuhpcXBkSOFrFsX23bHHUbe+c4oixdn9pqRJCnZu2osF2DCDTg8PDyuC3C+yYunUUy0npMtSykXvo9Ms6AtJSEEfX19tLa2kpeXx7p165IVmqfay2gqzMfD/Pf33stFJ55IWUoDtZQB4fP7cbvdWC0Wqior0U+WXzNBRYdMsRAlLxgM8ue/PsXJp17IthPfPa6oD8bX40pKSiY4mhSzcqzWWIJuAlXB6PESdblY4nKhDgwgPB4uDwUxAjpIBrT8Gdjq91Hs97G77QgnAmFiYpUYme7gQYydXUTPOw9Rm5JsPA69vRIGg6C8PP0X6uqSyMsT2O2CVasK2LvXiBB+2tutWCwi44I0Eanik+oKG8sFKMsyHR0daUI1Xu+qTGIymaiurk56XyZjri0lLU8ph5AkCZ/Px4svvkhRUREbN25Mugim28toMrLVu2mkpXTVlVeC05m+kxCxDH23G8tUxShx/EwOdpzj56QlNs6Yent7cbmDFJctY9mqU1AU/YTViB7926MAXHbpZdMfg04PhYWIwkJEfT2BYABVVXEYjETcLgpdborcLlSXiwtcblAVZGIuPohVxdQDm4CngJMAye8jct8fML3nPYjGxnh9vFhj3pFr3729Oior1VHLVz09OioqYvfI3r178PmWEggYef75Yq6+enYTuUwxlgvwyJEjVFVVjekCNBqNaWI1XtWK6SBJEmVlZZSXl2elUsdUOVZ7li0oUVJVle7ublpbWwHYunVrcqYQiURwOp3JxdRMkWhdMdeMFKXdr73G0vz82KwsLkZutxuzxTJpR8pxTjCnaz656Psfa0T9fX3kFZTi9llx+/Q4CvWUlZZmd2CJn8FshopK1IrKlG0CvF4MLheNcaE6fnAQKZ4EvJiYVdUFPEc5vj9X4BG7CKvLiGVd9XH88eWceupRV/Vpp43ttj7zzKOvr169ikDAyP3361m+fDgrXZ1nw3guwEgkkhQrj8dDJBJJlmNKTQae6v3jcDioqanJSYtEs5TmEUVR6OzspLOzk/LyctavX59sP57pXkYjma81pWAwiGK3x8TI5cJsNlMxEzFKIRfdd6qiEFWUZOv1uSISiaDTGdn1SitL6u0UF5djn8fnrjSe7SpJkJ+PyM9HLFkCgP7pfyJ1dgKxdSeIiVOBbhtBRaaIfCBElA6i/IsC3fnsf+0gQm9g9fp1dHV1UV5eES/oOjbBYIjycpnDhws5+2wPkNuiNBaptQBHugATuVV+v5+hoSEURUlGAaYKVsISMhqNVFdXj9X8LmfQQsIzyFRn1dFolI6ODrq7u6mqqmLbtm0YDAZCoVDSrzw0NDSnopFNUUoghGD9hg14Dh0iGo1SUVGBYZaZ4VNpXTG7E0zPElMVBffwMAG/H51en9bgzmRMtGIwZqR1h98f5K57HuGc8y/muM2nzPp42Uatq0PX04MwGGLlj2oWoVRWsfiIhaHXBXIkZmkZgCXVp7NpuRefLz8WAdbXx6EXd1Fy8kkM+HwcOHyY0848k66eXvLz85IP787OTpqayrjwQku2iqrPiJnci+O1r49Go4TDYWRZTnMBFhcXU1lZSTgcJhAIYLVac9IToAU6ZJFIJEJbWxt9fX3U1NSwffv25AJ0KBSiq6uLnp6erPwg2cxTUlUVr9eL0+nkuX/8g3csX07NokUZObY0x4EOU71lU3s25RcUUF1djRoPn1UVBTkSQZZlPF5vLHQ/vk5gjM+ATSYTep1uSlZVe0cn+w72sHzlNs7a+UEkcmc9YDqIunoi8S7EAonuLolXH9cx7Il9HodDxefTYTYLTjxRib8Wt3QEnH7SSSDAYDJjr29A6nfiPnQQQ3U15tIy7nvwSexFF1NW7sFkagHsOd2zKFPjGukCdDgcVFVVIeLu8kR3gGAwiE6nw263Y7fbcTgcOByOea+moFlKWUCWZY4cOYLT6Uy2j0iY06m9jFLLoWSDuT5XonxLV1cXFouFRYsWcc4555Dv92fuJFl4wEz0LYm44A57POSntMlQVTVpYen0eix6/Yjq1rF1gogsEwoGkz2D9DpdmlClLmi/+cYbVFYvB+MSyqryUIU0K7dnbiDhdsMrr+jp6U2IkWDTJoVXX4lN2HZsV5honmY0GimIW9xr4/lXIiLznlM343b/GzV8iPCREgoXLeIXd97JBy65BIPNxqHmZrZs2ZJ0ec0nc3EvGgwGqqurkwn2ADabjbKyo3kBiqLg9/vx+/0MDg7S1tZGJBJJVrdICJXdbs/ad6SJ0hwSCoVobW3F5XKxZMkSli5dmhSjQCBAX19fWg/5bAUfwNxG3yVmZE6nk0gkQmVlZTLc1GQyZbSf0pwznvsukUvldmO326fdJiN1nSC1A1KiDYMsy3iGh5FlmSGXi4KiGnoHzSj6KEajNScX7Kd7NQVDsOd1PU2HE+sdsH6dwoqVKnodCKEQjTKjEG4JCYfDQTgcpmpRI0XFxXg8Hj5+0UWYFIXhzk6MfX1I/f389ZFHqFu+nPXHH8+jf/8755x7LtFoFL1en1WxypSlJEkSJSUlVFRUTDp+vV5PfiLwKAVZlpNWVVdXF36/H1VVCYVCtLS0JIXKarVmPHJPc9/NAYFAgNbWVjweD/X19axcuTJ5wfn9fnp7e/F6vaPel023wly57xK9mhILqoODg2mz+SefeorjKipoaGzM+LnnirRvSQj8gQBulysWvj5WlYlZoNfrk6HCiqLg80V48pkDnHDSWmrr8olEogSDAQYHBtEbDPHOrUaMBiN6g378QINxOPecczM2dmBKlmtUgf37dezdqycajblIly9X2bAh3SKqWzL767OktISKCkey9Faij1dhURHHFRVBOMwF73wnQlURPT1UyDL6vj7e3LePzr4+zrvwQp569lk2Hn88BQUFBAKBKefzTIdMuRXt8TJcsy3Tk5gwpRY6VlWVl19+mby8PHw+H/39/QQCAXQ6HTabLSlUCRfgTD+PZillkFAoxP79+/H7/TQ0NLB69dHSJkII+vv76e/vHzfpNdu+7kyKkt/vp7+/H4PBQFVV1ShXVYL3vve90NOTsfNmk2AwiGtoCKPJlJEgjYnYs2cf7d0BNh53IqedniIcVohGIzGXjIitU0aiUULBEFElCkgYjbE1hYRYTTSTnThpNrMI4MgRidd26/EHYtd6TY3K5s0KBZl/zgPw+uuv01fsY/369ePKtSRJSPGJxZYtWyAaZePy5WxctgwGB1kkSdiHhnD39PDYP//JZR/9KC+99hr5paWsXLWK7u5uKisrZ2UxzFaUEvfdnFbLFwKDwUBZWdkoF2AgEMDn8+Fyuejo6ECWZQwGQ5pQ2e32KbmbNVHKIEIIqqqqKCkpGXWBSZJERUUFFRUVyLJMMBhM/gUCgWm3rJgtmXLfJdx0er1+lBjBaKHd8+abVEajVFRWshCQACUapae7G51eT1lZWUZ6QY3Hk08+TW3DcRSUrmN92XgPudh3mnAvpX7jQggi0QiRSEyovBEvAoFep8doNGKIW1Z6/fStqtngdMLLr+gZHIx9psJCleM3q1RVze265vp161hUESYaz+uZFvH9V65aBYDVYuGyCy8El4slFgtmWUZ0dvK3u+7io1deSVNHB139/Zx65pl0dnZSUlIyZYtlNvdiaWnplFx1s0VV1TG/Q71eT15e3qjirZFIBJ/Ph9/vp6enB7/fj6IoWCyWtPWqkS5AWZY1UcoUNpttSs2vEqZxaq5ANBolGAzS399PYWEhwWCQcDg8Z2OdrfsuVYwqKyvHvYhGnkcnSTnbDmIksizH2hUoCpUVFZjmyM8th8Ps23eAusZNlFZtwmAqQq+f2SUsSRImowmT8ahwCmLFQiORSPI6UxQFCYm39u1Dp9OxbetWDEYDOimz6wNeH7z2mp62tthxrRbBxo0qjY1qVi4Dr9eL1xrKeNXpysSkSgg+cckl4PdTbTJRVFKC1NnJvqeeYsPWrYQdDv7y2GNc9vGP093bi9FoTLMyUpmuaNpsNmpqarJWUVsIMS1r0Gg0UlRUlGa9CSGSPasSz5BgPIF6165dybJXfX19LFq0KGcjJWdCTgQ6TAeDwUBeXh4Oh4O6eJisqqpp1lQwGCQUCmXM7TaT4wQCAfr7+9HpdBOKUYKRorRu/Xro6pr2ebNJNBLB5XIRiUSw2e2oijInghRbTA6CvoCOfgNFlTpKSiarmDp9JCQMegOGEUKnCpX29jYA1q1bS8QTBQR6fdyqMkzTqkpxQcky7N2rY/9+PaoAvQ5Wr45V855Dr+conM5+LDqZRYsXz/lkKDHzRwjOPv10IHYtnbNpE1JXF0NvvYXJbqfMYODWX/6Sj3/ykwQiEQYHB6mrq5vyA9hgMFBZWZn1StqZKMYqSVJyzTRVnFVVxWKx8OKLL+LxeLjqqqvo7u6msLCQL3/5y5x//vnjHjMcDvPZz36Wf/zjH/T29lJUVMQHP/hBvvOd76Q9nyRJ+grweaAQeBG4UgjRkrJ9J/AjYt1amoEvCiGemNUHTmHBidJYpOYQJEjMNEaK1XSj9qbrvktYcQk35HRmZ6nneeyxx6gB1iXKNucQiqLgcrkIh0IUFhVht9kIhkIEMhnCTizBVpJ07N3XjnNQYfWacjZu2JTRc0yFVKuosKAQSLeqIpEIgUAQVVXQSbqY689gTP7/WA9RVcDBQzr27NERDse219erHLdRwW4ftfucs3zZMmoq5AkbXs4lBqMxWXx43Zo1sRe9Xi45+2xsbjeevj58fX1IeXk8cf/9vOPMM1nc0MBLr7zCSSedNEoIElF185EKMJc5XjqdjnXr1rFu3Tp+97vf8cgjjyBJEi6Xa9LC09FolNLSUv7yl7+wbNkyOjs7ueiii5BlmZ/97GcASJJ0CfAVYCdwAPgB8GdJkjYIIRRJkhqAB4ArgfuA9wMPSpK0RghxJBOfMacrOsz2HCMLOQLJ7pipYjVRS4upjjUYDOJ0OhFCUF5ePm1XwciZ1QknnYSpr29ax5hrVFXF7XYT8PspLCyktKQkbVad6VWPPz7wGCtWn0BZ5RrKcmxpLdWqslqO/taqqsbXqiLxNdCYVWXQGzDEAyp6evXs3WvD642tbZSVqRy/WSHbJfhSOdx8mEhAOepuywUkKWnlVFZWUllZiRwIsHP7dsqtVuT2dvQ9PUj9/fzr+efRmUzsfM97qFmyZF6b32WjbcVI4ZtK4Ibdbue///u/k/9esmQJH/vYx7j99ttTd7sSuE0IsRtAkqSvAf3E6gA/A3wEeFUIcVd8/7slSfpk/PVvz+YzJVjQltJMZiSJ6sGpiXKRSGSUUKV2pZ3IupqtGKWSaikpikI0Ehld8nkeUFUVj8eDz+slPz+fmpqaUeV/ZjrNGPm+YDDI3598lm0nnMumbedhNs3cHRgrrTTjt88InU6H2WROG7dAEI0qDA4ovL7HhNMZW8eyWqOsXROgtjZWtUJgyGpQRSqFhYXkF8QmZ7m+OmE0mdAbDFgNBk7Yvh3CYc7YsoVis5nbf/Yzbvi//5vX8WVDlBLMdoL/1FNPsX79+tSXNgA/SfxDCOGTJKkp/voz8f9/dcRhdsdfzwgLVpQS1QAyEUljNBoxGo1peRWKohAMBvF6vQwNDWGxWAiHw0nhCIVC9Pf3o6oq5eXlyT5OM2XkmtIbb7xBsc8XW1uaJ1LbqzscjmQVhvHfMEMFEIKBwUE8niB5hfVU1GwmHNHNSpByiVBIYs/r5mTyq8GgsmpVmDWrJVShIxKJ4Pf7iURjkaWp61QGgwG9bu4TU0tLSykuChMMhXI6wEaoaiwIKIVim42qvDx0ksSy5cvHeWf2mI8STZdffjm//e1vx93+9a9/ne9+97tpr/30pz/lueee45VXXkl9OQ8YJh03kD/J9jXTHvQ4aKI0Dnq9HofDgcViobCwkJUrVya72B46dIhgMMjixYszFjI+UpROOfVUaG+f9XFnREoTQZvNRnV1NbrJvucZ1taLteNw0D8IAy499TY91akN8hYwYya/rlBZ2ujFYgWj0QboR1tVkSiRaIRQKEw04kMVsZm30WBMTqBmkgA8ES+88AIr6o058VCfCAFJ0bQajdQUFGBPST340CWXzHuzyWy571KfF7feeis333zzuPuPnDT/5Cc/4Yc//CH/+Mc/qK2tTd3kBUaWRi8EPFPcPmsWvChl6zw+n4/Dhw8TiURYvXp10tcthBhznWq63W5HitL+/fsx9fbSmM2KDkIQCARwxVtlzGUTwVjNOx1//+frNC47jpKSGvJyt0vAtCK4xkp+XVSjsime/OrzqzBOcVgJKSk8WBPHE7G1KjmeAByaWQLwRJx44glUl8au49y1k2LoJImaggJKbLY0i8Tj9XLeKafwzP798zi67IhSNBpNS6tJRjROge985zvcdtttPPPMM6xYsWLk5j3E+kk+BCBJkgNYFn89sf20Ee85jlj/yYywYAMdsiVKgUCAQCDAvn37aGxsHJXZL0lSsix+6mLjbBN/LRYLhixWIQ4Fgwy5XBj0esorKqaURzZT/P4Ad/3+r5zzrkvYtuNsVDFHv6MUe6BngvPOPW9K+81F8quEhF6nR28ZOwE4GokJlS9uVc0kAbi/vx+7kYx0ap1LCsxmyvV6SscIUXQ4HPzlr3+dh1Glkw333Uzr3n3lK1/hvvvu45lnnhlvwns78GNJkh4kFn33XaAVeC6+/XfAVyRJuhj4I/A+YDPw4el/irHRLKVx8Pv9NDc3EwwGMRqNbNmyZVoX2kSJvwmRCoVCyRDckUVm6+vrwWDIfA8kIdLWDORwmKGhISRJorS0dMbl+KUp9FNqbWmlp9/PkoZNnHbm+4g3UZ/R+XKNMZNfj1NobBBztkQz3QTgRIh6QrBSQ92HhgYpKzDPafmd2WAxGFhUUEA0FBqzHiZARJbZ+9ZbnDDP9SKzYSnNRJTa2tq4+eabMZlMbNhwNC5hyZIlvPXWWwAIIe6WJKkGeISjeUrvFkIo8e3NkiRdRCxP6ddAC/CeTIWDwzyK0mwrJcyVKAUCAZqbmwkEAknL6MUXX8zIzCeR+DuyK2YwGKStrQ2fz4fVaiUUCvHcc88RbW3llHe8Y9bnTSBxdBYXiVfVVhSF4uLi2ZcrmeD3PHDgAOWVDchSFbb8KIrKMVMeZVTyqz4l+XWCu2uuouwmSgCORqKxUPVggKgnGiurFE8Arquro6JCJSzLORXooJckKvLyKLXbkSQJdzA47r0YCAT40wMPcMK7353lUaaTDUspFApNW5SWLFkypWeuEOJG4MYJtj8GPDatk08DzVKKEwgEaGlpwefz0djYSGlpaVbcGInE36KiIiwWCw0NDQghWLRoEaHXXwdJIhiJEJRllNlaTZJENBrFHW/1UFxcPKf5HC6XC5u9mI4eQURSKSjIZx7TR2bFnXfdCcBll14GxJJfm5pyJ/l1MnSSLmm9J0i1qvbufZOAW0dhYSGSJKEoSsY7AE+XIquVqvx8jClBNhM98IuKivjRj3+creGNSzYsJVmWj8m2FaCJEsFgkObmZnw+Hw0NDaxZs2ZefOqplqMkSYTDYSJ+P/UpnWfD0ShBWSYYiRCIC1Vkit9BIu+pr6+PouJiykpLMz4jTkimUFU83jB/fOh5zjz7PaxYlbEUhnlHQKzz66tHO7+Wl6kcf7xCFguJZ4RUq6qhoZ66Gh0SMTez2WJJ6wAs4h2Ak+3qzeYpdwCeLhaDgZqCAhxjPHTFCPdzKk6nk9vvuYfrbhx3kp8VsiFKoVDomPE2jGTBitJsG/2FQiGam5vxeDw0NjbOmxglGCmyb7zxBs7nnqP+P/4j+ZrZYMBsMFCY8r6IoiQtqUAkQjASIZxSoUJVVYaHh/H7fOh0uoz3NUqQ+ObefHM/Rzo8bNh0MmfvvGheMzHnwkX21JPpnV83b1JYXCtyPmJtMgoLCrDZFIKBQFrwTgIhBNF4q/pQKITH6520A/B00UkSlSmuurEQQozKU0pgsVjYsnXrjM6dSXI50GEhsGBFaaaWUqIj5PDw8KheTvPJyDW2nTt3Ii1eDJNUQDfq9Rj1evJTHiCKquIPh+no6aF3YABbfj5FixbRPYf9mZ597gUKSxooKF7NmsL49zn/X2vG6enVYTQI1m9QWbEi1vl12uRgbMdzzz/Plo2xljFjWSKSJGE0mTCO0QE4kugA7PEQiVdCSVpV8fdMNhEqtFioKijANMl+Ez3w8/LyOGPD/FvlqqrOec09zX03B2Qi0GE670+0XHe73dTX17Nq1aqcEKMEI7+PV155hbZHH+V9E1T9HQshBAMDA/T29FBSUsLKzZvR6/WxY7vdVBUUEBUiZl1FIrNap4rIMocPN1NTuxZr/iqiqnFOQ8lzgR28QL3ShqnVBsNFiMIi1OJiKCoE4zQiF3Pn0gPg1FNOobI0gs/rndbQ9Ho9eqsVS8pioRCCSNyqCgSDRIaHY1aVwXB0nSpuVVniCbB5U3zATiRK+/bt45rPf54/P/PMND5B5snVQIeFwjFvKYXDYVpbWxkaGhrVcj2XGPl5ioqKUNMzrSdECMHQ0BCdXV0UFhSwevXqNIGQJAmLwUCRzYY5vtgthIitU8UFKhBfr4pO8r0q0SjBYIiIauWtpgDWQh2VldW43e7pfegFwuHmw8n/XlHQg244CENBGIr1tEnM7YXDgSguRhQVoxYVQXEx2KzknAKNQUdnJzaTdVzX2HSQJGlUUAVCoKgqctyqCg4PYxMCo8nEgN9PwGbDarNhs1ontDJSKzqMZNWqVTzw4IOzHv9sydWQ8IXCMStKsizT0tLC0NAQdXV1rFixYlZiNNezn5GWUmNjI0sjEQgEJn2v2+2mo6MDm93OypUrk6Iz1jlSc4kkScISn62mZqfIYwiVrCjJHKfX9jTROxBh/Ybj2bptBwCKyFyiakbJwJD27t2b/O/A2WdjRgK3G93QEJLLBa4hdC43ks+H5PNBe/tRoTKZEcVFEBcqUVIMOh1HpSw38Hk9yGEdZotlbkLCJQm9Xo/VaqWyqIjq/HxMBkMyJSIQCOB2ueju6kJRFIwmEzarFZvdjs1qxWw2J6/f8e5Dl9vNvpdf5oSzz878+KdBtkRJC3TIMcYTJVmWaW1tTTYEm60YpZ5rLtsojxSlJ554gsd/+lN+PKKIYiper5f2jg6MBgNLly6dNLx7qi5Tk8GAyWCgIOV4UVXlhZde4lAn1C09gZrFESKqPMFR5p9MTSJSW5soigJWG5SXo8b7/0BsHQ+PB2loCN3QELhd6AaHkOQwUm8v9PYmCwsVSjrUgnyk0tKZu/8yzOrVqyktieD1eOZs8mXW66kuKEhb/xyvF5osy8keaEODg4TD4WRYusVsxmKxYLPZ0u5Jt8vFS/v2zbsoaYEOs+OYESVZljly5AhOp5O6ujqWLVuWsdlKpoquTuccp59+OqdWVsIYvZ78gQAd7e0IIairq8M+1Qrls1jHM+h0LKuro2/AT4k19jBWhUpEjRBRwwTlAB7hRULKTYtprtHpoLAQUViI0tAAgIIAfwBcrqRVJbmGkHw+9G43xN2dueD+e+mll9i2qXrW1e7HQidJlDsclDkcU3IPSpKUbDGTWmFCURQ6OztRVTXmqo7/t9lsxmazUVRUxCevvnpeqnSn8na0lOI18soBM6AAfmLFW31CTK+O2IIWpUTXzyNHjtDf38+SJUvYsWNHxi+I2Yafz+Qcbrebjn372JRStTkUCtHR0YEsyyxevDit1caUzsHMWrsnqKqqYu06K8F4c1KdpMOsN2PWm7FINjwiQI19CVERQVZkIqqMrIaJKDIqc1+nMPeQwG4Hux01Jd/M5xrC5PNj8ftn5v7Ly4+7ADPHsuVLKSg0IctyRh/o+WYzNQUFmDIQjabX6zGaTFgsForjYpUoiBwIBtmzZw9/+/Ofec+HPpSs8u9wOMjLy8Nut8+ppyMVIURW8pRywVKSJKkU2AG8g1gNvKUcrRr+FvCIJEl3CiFcUz3mvEbfzQYhBE6nk66uLmpra+dEjBJko/jrSNdaX18f/3r2WTYtX44sy3R2duLz+Vi8eHEy635G55jFGF966SVuv/NlPvXpr054DqNkwqhLd0VF1Zi7T1ZkZDUmWMFwgGH3cOy7lWIVr41GU+z/x2kjfiwgjCaUMivq4sXJ16bj/kOnQy0sguJZRP+NwG6zYzTGaiFmAlPcVVeQ6dm8SM8JS82pWrduHfYtW9i8dSuRSASfz4fP56Orqwu/34+qqthstqRYORyOo2tVGURV1Tm/dmVZTmtUOh9IkqQDrgdOIdb479fAfiAAlBITqQuBr0qSdL0Q4jdTOe6Cs5Si0ShHjhyhs7OTvLy8ORWjBPPhvluzZg0rPv1p2g4exO12U1NdTX19/awu9qkUTZ2I47dswV5yIvIY3eNj4xr/2AadEYPOiNVgJyyH6XX2gmKgvmwpQq8iK2EC4QAhOZjWRtxoOFrteiatGXLTkTjGqKbp/tMNDWY0+u/Z557j9JOWYbfbZ+Us1AFlDgflDseUfyvrRRcheb2xwoEpBO69F0Y8eCdyzRUUFLA27lkwGo0UFRWluf8SQRU+n4/h4WG6uroIh8PJmpQJobLb7bN6pryN3HcGwCmEOG6c7c8CP5UkaQVwHXBsiVI0GqWtrY3e3l4WL17MqlWrGB4ezkrb4Wy77xRF4bnnnuNvt9zCFz/+cdatXZuRzznb3LBht5vDh4eprVs7xsGZVAGi0Sh9/X0E/AGqqqpwOByoqhqrYm2SwJpYp5KJqBHCSpiQ7CcoB0e3ZjAZkxWvdXrd2NUbFryhNbb7D1meXfTfGO6/s858J2VFUYaHh2ccfZcXd9WZp+Gqk5xOdIODBH77W0Rd3aT7TyRKTz/9NA//v//Hz37xizG3pwZVVFRUJF+XZTlpVXV0dOD3+wHSrKq8vLwpV9B/uwQ6CCFk4L8haTUJMcYDRghxELh8qsfNeVGKRqO0t7fT09PDokWL2L59O3q9nsHBwaz0U4Lsue9UVaW9vZ2Ojg7y8/M597zz0m6eDJxkVqLkcrvZ++abY4vSBAqgqCqDAwO43W7Kysqorqoe96aNrVNZMOstOIx5YCmNlbgRkZjbTwkTkAME5SByJIw/EEBVFXSSLtkcL9GZ9ZjFZBo7+m94GCluVeGOW1dTdP8d9g9gWzeza82k11OVn0/hDKrt6g4cQJhMiFTRnYCJHvhnnHEGp3/uc9Meg8lkori4OK2Ro6qqBAIBvF4vQ0NDtLe3J6sopLr/bDbbqAljtgqy5oClhCRJOiGEmghmkCSpEjABEUBO/AkhpuwXzllRUhSF9vZ2urq60sQoQbaa/CXONZfuOyEE/f39uFwuCgoK2LZtW6wKQ14eeDLWZXjWgQ6NDQ184IOr8Y2TOjXy2EIIXC4XAwMDFBYV0bh0aayI58j3MbFRk7ZOZXBQaI5VPk2uU6kyoUiQQDhAOBImGIr1EFIUBaEKzGZz0gU4Vy0j5h2dDoqKEEVFM3L/RQmifyOEraQEtbwcqaYGyssRDse4lpNEzFVXMQ1X3ahhHzgQSxKfonU1UUHWI0eO0OP3s+2kk2Y0lrRx6XSjurkmQtUTVtXg4CCBeB6h3W5PugCj0ejbJtAhRYx0wE7gK8Si8GyACliAZuAdCQGb7Jg5F+igKAodHR10dXVRXV3Njh07xoyayaYozZX7LhGs0dzcTH5+Pnl5eSxbtgyAQ4cO8fkLLuBvd9+dsfPNNtChrb2de+95hfMvuGz0sUkXJa/XS29vLza7jYaGhjmpBZZcp8JOgakI7KCo0aRQ9fR3YzAbiIpIWudfo9F4tIW40ZjW7O7YYuruv/WuHgq8XvB64ciR5K7CYolZZOXlqGVliIoKRFERDquVmoICLOOUldK1tqJWV8MkD079gQPo2tqwnZfe2Tf4q18hqqpG7T9RQdYhl4sjgUBGRGksUkPVUztQK4qC3+/H5/PhdDrxer289tprWK3WUVZVptx6uWIppbAE+AVwP/B3YsuLemKi5IOjAjYZOWMpjRSjbdu2TfggW+iW0tDQEE1NTdjtdjZu3IjRaOTVV19Nbl++fDmPPvoouKYcSTkpsw10KCwoYN26deMeWwDBUIie7m70Bj21S2oxmyafzWXSdtHrDOh1BizY8Or8lOSVYDKb4utUMmElllMVDAcIBUN4Pd6UZncmjAYDRpMRvW4O3X/zHX0xhvvv8ef/zpkbT8A6NITZ7cbocqHr60MKhdC3tyfXqYyyTE1vL4XFxahLl8b+li1DbWgg0UhK99ZbWP/zP1EXLSL87W+jLl067lB0Bw8if/azRKfYmG8i992m445j4/r1U/8eMoReryc/Pz+ZouHz+Vi3bh2KouDz+fB6vfT39xMMBtMssMTfTCZsuWIpSZIkxdeRyoCwEOJLsz3mvItSIiGus7OTqqqqScUowUK1lIaHh2lqasJgMLBmzZqke0BV1TTh8/v9PP/3v3P28cdn5Lww+0CH/Px8Vq8uwR8avS0SiRCRZbq7u6iqrJpyEmZWGimmrVMBlnjRUFVOWlVBOUBQDiDLMv6AH1VR0elj61RCzbyK5Job8bhNm3AsMuMvLkaYzUg2Wyz82usFpxN9Xx/lra3UvPYaRqcz9trBg2nHUKurUZYtQ9TWolZWouvsxHL11cif/zzRc88d5XaTOjuRvF6UNWvGHpSqYvnUpwjfcAPo9Zi/8x30l1+OlCKmqTz11FO0vvoqH/vEJzLyncyURJ6S0WjEYrFQWlqa3JYQKp/PR19fH83NzSiKgsViSQZUOBwOLBbLhPdGrlQJTwlscAEvxlupd48V8DBV5k2UEmtGHR0dVFZWTlmMEmTbUprtuXw+H4cPHyYajbJs2TIKCgrSto8UjHA4zEv//ndGRWm2gQ6Hmpr4xnfu4dqvH22ipqgK/f0xl4VOr6ehvmFB5BdJkoRJb8akN2MHiswlyYCKiBpBVsKEoiECYX9ahQrXkItIXiQZom4wGnJOYGaCQa+PeQTgqHhIEiI/H0dpKTXbt2MxGmOr1j4fupYWdE1N6A4fjv21tKDr7kbX3Z12XEmWMd94I4aHHiL0i1+khX3rDhxAWK2I+vqxB6XTIV9xBaaf/xzJ6yX81a/GXLDjXF9r1qyhNu7+nk8mCnTQ6/UUFBSk3f9CiGSoutfrpaenh1AolJYAnPhLLGXkWpM/IUSTJEkPAw8Bv5YkyU0syEEBuoQQL0/1WPMmSi6XC1mW2bp164zaHSwU912is63f72fZsmVpET6pjBSl4uJivnHDDTAwMKPzjnkOZhfosGL5cr7//e8x7CNZ6mVwaJDS0lKWNjZyuLl5QQjSeKQGVNgM9ljBFDv0HRogFA1ispkoKypHZ5QIySH8fj+R6NF1qtScqoW2TvX8C89RvHNLWnKqUaejKj+fopFWr8OBun49aqqrLBpF196O1NSE/uWX0b/+OtLAAFL8etMfOoTujTdQjzua0qI/cABCIWznnpt2+MgFFxC5+moA1MZG9K+/Tvjzn49F6LW0jDsFyM/Px1ZZOZuvIWNM5z6QJAmbzYbNZqM8xQqMRqNJq6q7uxu/388//vEPXnjhBUKhEC+88AJ5eXksWrRo3u87SZKqgXcBDcANxNaSJCAfeAw4V5IkvRBCmexY8yZKZWVls8pIznX3nSzLNDc343a7aWxspKysbFoXjs/n47rPfpZbb7hhusMdl9kGOng8Hl5+uYWK6rX09fdTkJ/P0qVL53b9ZZZkYi1Qiaj4h4P43UGKjKUUFhaiCOXoOlU0vk4lBwkFQ3g8XkBg0B8NpjAYDTn9PZ1zzjkUFERxDQ0BUGq3U5mXN2a05JgYDLF1pfp6zDffjBRv9idsNpSGBtSNG9MECUD+9KeRP/3p8Y8ZCGD59reRP/MZjI88gnLGGROuKT340EMM7N7NZz7zmamNOccxGAwUFhamPSc3btzIWWedxXXXXceePXt48MEH6ezs5NJLL+UrX/nKlI7r9/tZv349bW1tacWGASRJ+grweWKlgl4ErhRCtKRs3wn8iJj4NANfEkI8DpxIrLLDaiFE31jnnYogQQ6sKc2UXHXfRaNRWltb6e/vn1X/JrPZzAc++MFpv28iZhvoMDAwwEsv/ZvTzqyjvq4u5xv6zaVbTS/p0eutWPRW8oykJP4myimFk+tUoXCYqC+W+KvT6RGqikDEhEqvzwn3394332Tb8fWY9Xrqi4spH+FenjKShHz11UiDgyjbtqGuXj3lcO80ZBnzt7+N/JGPoG7YgO7VV9E//3wsXH2c++mSSy5B3bhxZuNeIBgMBjZu3IhOp+Nb3/pWMgpwpLhMxLXXXkt9fT1tbW1pr98di/T9CrHQ7gPAD4A/S5K0QQihSJLUADwAXAncB7wfeECSpDXEtOSV8QRpWp9xtgeYL7JtKU02406NHly8ePGsyx8ZDAY2bNwIweCMjzGSmQY6BINB2uNVya+84hMEI3kZG9OxRGqBWox5yYCK2DpVQqiCDA4PoCoqnmEPSjzx12A0Jmv/GQzzIFQCqvLywGDAOsvw/ehFF81+PCYT4R/+MPlP+WtfA0A0NSVbWIzktddfRxCzJo51RpYZmup6/L/+9S+effZZbrrpJp5++um0bbfffjvAbUKI3QCSJH0N6AdOAp4BPgK8KoS4K/6WuyVJ+mT89b8BfkmSziVWXkhHLIFWASLTqRS+YEUpmz7UiQRQVVW6u7tpa2ujqqpqVJLvTFEUhVNOPZXX//a3WR8ryTRFKVEI1u/3U7tkCXI4zPd//Csu/cgXMjemY5z0dSoHhWbQBY2YrWbMVmM88TdEUA4QlkP4w774OlVKgdp4TtVcXfN2g4N3nbyT2rII7e3t874+MSEjCrKm4vX5EF5vVoczX8wk+i4QCHDFFVdw1113JUsppbJnzx6IFVYFQAjhkySpCdhATJQ2pG6Pszv++j+A04itK71ArHVFFMgDHgTuSAkfn5CFtRo7T4wlSkIIent72bVrF4FAgK1bt9LQ0JCx8vgGg4HXXn89I8dKMNVAB0VV6ezsZP/+/eTn57N27VoK4sm9Z5zxzoyOCeYubSeXH64GyYDVEEv6rbBXUVfUyNKyFTRWLqexehmLyheRZ8sDIQgEAwwMDuIccOJ2u/H5fYTl8Kw9BSadiTJLJYXmEr71zW8y5HLNeeHh2TLRmtI7TjmFk08+Ocsjmh+EEMlnzeWXX44kSeP+XX/99QBcd911vOtd72LLli1jHtMbE/ThES+7iQUrQExgRm4fjm8PA/cSW2/aC3QRs7I8xKqGT5mcq+iQi+h0uqTPVgjBwMAAhw8fpqCggM2bN89ZvsDdv/89F59yytQXmydhskAHIQT9Tie9PT2UlZWxbt26NBekyWSidvFi5Ax7TefySsjJh+w4Q9LrDOgxxNepCkYUqD2a+BuSg4RC4VEFag0GAyajafwCtXF0ko58YyF241E37Gc+82kK8vPwDA/n9L05kSj95o47KDntNM4///wsj2p+ufXWW7n55pvH3W6z2Xjuued49NFHE9bQmOTl5TE8PDxyMbGQmLBArGnfyO0FgEcI8W/g3xONc6q5SwvWfZdNEtF3LpeLpqYmLBYLGzZsmJMunak0NTUhTj45Yw3dxgt0EELEmgp2dFBQUMCaNWvG9FEPDg5y/fU3csN//W9GxvN2ZqoP/qkk/obkIAHZjxyRCQSC4xaolZCwGRzkmwrRS+kWvT8QQAjHvHdtnYyJxnfW2WdjGBHhl23mYxI0skbfWDz55JN0dnZSW1sLxJLdFUWhtLSU3/zmN7zrXe9iw4YN/Otf/9pELNco0U12GZBQsj3EXHTEt68n1tzvoYnOLUmShdi60rEdfZdNwuEwXV1duN1uVq1aRV5edhb6v/XtbyN1dWXseGMFOvh8Ptra2zEZjaxYsWJCq6+srIyf/exnDI404DWyysjEX8yJgIpoUqxSC9SGQiHUqMAmHOgsMsLiwWqxYDabk5bw3XfdyaY1/zmvn2sqpCX3jsBssWCc54TSbIi6EGLa4vfFL36RT6RUunjxxRe5+OKLef3115MRfFdeeSX/+te/rpIk6UFi0XffBVqB5+Jv+x3wFUmSLgb+CHwWWA/cI0nSZqCX2FqSQmxpSEesE+1NwJ+AW6YyVk2UJiAQCNDU1ITP56OwsHDcum9zxeUf/Si3fvWrmRNBSULE1yHC4XCsHH8kQt2SJdjjdcsmIhQK8eSTz3DclnMn3Vcju8QCKowYdUZIKVAbVaMoIopJZ0YVKqFQiFAoxJBriHAo1k3AbDFz9dVXIyDZBThnmSDQ4Xd33skKv59zzjknq0NKJZuW5nTOk1qbD2ITTIBFKYV6L7nkEi699NIfAY9wNE/p3QkLRwjRLEnSRcTWjX4NtADfBN4DXAY0AYPEqoOXAMcTE6hvA7+f6lg1URqDUChEc3MzXq+XpfFikoODg1kfx2c++1msM+hRMx4Ssai+trY2hoeHp91aXVVVent7MjaeuSaX3VDZwqAzYIjf5npJj91mx247OgFRhUAOh3n44V9z6QdOwOv1EggEsFqtySoDNrsdo8GQM9/neOP44pe+hLpyZZZHk042einB7K/tU089dczcJiHEjcCNo9+R3P4YsQoNqcVYvytJ0ibgbGJJtXrgDeAmIcRL0x3bgg50SKz1ZOoikGWZ1tZWBgcHaWhoYPXq1UiSxNDQUNZyolJnWosWL0YKTCtwZVxUVcXtduPxeFhcW0ttbe20fwObzcaHP/xhnJkrXD7niHkvyT2amAtqvkcRQydJWCwWaqqrWbJkSawWZVUVOkkiEAjg8/no7+8nEonV+0sKlc2G2WzOGaEC+Ntjj9Gg1yfbv8wHiWKsc32OXPjehRBCig8kntu0OxPHXdCWUiJUe7YXQWqr9SVLlrB8+fK0H3221bWnSqLGXuLcH//EJ/j1DTfMqvusEILBwUG6urqwWK1UVFRQMU6V5ckIhULc8M3v8pnPf3/G49HITc4771yMRjnZr8hisWCxWJK1GoUQRKJRAn4/gUCAoaEhwuFwssW41WrFbrdjsVrH7Xc016g5EGmpqmpWWqFPtTX7XJMaURcXqHjmyQKsEg6zf9jPtqqDqqp0dHTQ2dlJTU3NuFUYslU9YqTl99dHHkFKabg2XYY9Htrb2rDb7axevRqPx0NwFhUijCYTl11yyYzfr5G7XHXVVfzpDz8e936UJAmT0YhpRC22aDRKIBgkGAjQ29dHKH59pbn/bLaM5e9NxLnnn4+Y5yrh2XDfhcPhnGhbMZK4EM16ZnBMWErTRQhBd3c3R44cmVLbjLluh55gpEjf/fvfc/7q1dMuXBsIBGhra0On07F06dKj61KznQRIEoWFM6yJppHT/PDGH2KM3wPTmekbDAby8/LITwnGUVWVYDCIP25RdXZ2oqoqFosFq82GPS5Uma6deP3113PhNdewefPmjB53OmTDtZYrDf7mireVKAkh6O/vp7m5mZKSErZs2TIlM3iu2qGPZKT4ebxeFGVKof1AbE2so6ODYDBIbW1tWrQNzL51haIo3PDNb/Jf3/v1jI+RVXLA775Q6OzoYFXj8ow8VBMuvdSITiEEoVCIQCCAx+Oht7eXaDSK0WTCbrMlxcpkMs34/J/69KfJX7VqzG1VVVU89NBDbNu2bUbHnipvN0tpsnYUUy0tlMqCLjM0HbEYHBzkpZdeYmBggE2bNrFixYop+2Wz7b5LcPXVVydzCCYi0TBx/4EDFBYWsmbNmlGClDj+bOw9g8HA7bf9YhZHePtw31NP8R9f/3raa/c/9RQnX3kFrx06lHwtLMuc/p//yfMTZNrPNUII7r//vqPXxxyIuSRJWK1WSkpKWLx4MStWrGD16tXULVmCzWYjFC/6u2/fPg4cOEB7RwcDAwMEgsEprxWFwmGef/55ioqKRm3r6emZc0GC7AQ6yLI87w3+pKMzh49JknTaBNv/Q5KkaS2KL2hRmopbbXh4mJdffpnOzk7WrVvHmjVrpv2DZivQYeR5/vNTn+Lw4cPj7h8L0e7lzTffxGg0sm7tWkpKSsadac62dQXA/X+8PzdL9+QYx69aSZezn96UVILdBw9QV13Dmy3J9jS8efgwqqqyccWK+RgmELsuvvOd70y6X2Qa7RGmel6TyURRURHV1dUsW7aMNWvWsHTpUgoLCohGo/T29HBg/3727d/PkSNHiEQi+Hy+MSeJv7jtNpxOZ0bHOF2yEegQCoVyIdAh8SG/Afw1nr+USkJbfgjUTufAx2ygg8/no6mpCVVVWbFixZiWQybOk0lGiuyXvvxlasYICRdC4HK56OjsTCb1TmUhORPiGgoGM+o3F0IQVRQMen1OhLlmiobqGkoKCnl1/37OO+kkFFXh9YOHuObDH+bXDz+c3O/VAwdYVV+P3WLhvqee4qFnnmbA5SbPZuOsbdv4xIUXoNfp+fn999Pp7Of7//mptPde9/Of8/DNN2M1m2nu6uLn99/PwfY2LEYTZ23bxscvuADDONfGyVdewWc+8EH+9sLztHW/wvb15Xzp/e+nvq4OgJ2f+xzrly6lvbeXZ3bv5suXXsrnPvhBbrrrLu5+7DGGfT7WL1vGjZ/5DGsaGgC46vvfJxKNopMkHnn+eUoLC/nqhz/MpfGE1q7+fj510028dvAgkWiUNQ0N3PiZz3BcXJSFEPzknnv45cMPEwyF+NDOnextbmbHunV8/gMfoM/p5JIbbuC1pibCsszi8nK+eumlnL1jB5/+whfYdOGFKIpCVVUVADfffDOXXHIJ+fn5PP744+zYsQOAhx9+mB/+8Ie0t7dTW1ubLFYKsb5CN954I5/85Cf52c9+RiAQ4D3veQ8//vGPJ73PsuG+m0mF8DnER6ziw82SJJUBvxzRpkIwzYKsC95SGikWwWCQN998k3379lFXV8fmzZtnJUiJ82TLUkr9PMYxZkM+n499+/YxNDTEypUrWVJbO/XIpgyI0kc+8uEJb7rpHD8YCtF65AidHR20tLbQ1t5GX38fwx4Psixn5jufR6Nu08qVvHLgAAAH29opLsjn5I0b6XO58Ppj9+krB/Zz/KpYwmd5USE3f/ZzPP4//8P3P/Wf/PX55/nrc7EKL+eeeCK73tyLK6U1w2MvvMDpxx+P1WxmyOPhszffzCmbjuOhG2/iF9dey8v793Pno49OOMY//+tffPuqT/LjT3yCVfX1fOHWW9OuwTsffZRPvve9dD/6KFe/97389N57ueeJJ/jTD3/I4Qce4IT163n3l76EJ6UVwgP//CdnbN1Kx1/+ws+++EU+/+Mfs2vvXiAWtn3FhRey/777aH7wQTYuX86HvvGNpBV2z+OP879/+hP3f+97tDz0EJXFxTy/Zw+SJOFwONDr9Vy8cydv/eEPtP/1r3zgzDP5zE9+QktHB3fecQfXXnster2e559/njfeeIP3vve9o66jl156iU984hN861vf4siRI9xwww187GMf4+WXX07u09HRgdPpZM+ePfzzn//kwQcf5I9//OOkv3k2Ah2CweC8u+9SKAWuBq4D/hu4RpIkW8o6kwkITeeAx4wohcNh9u/fz+uvv05lZSVbtmwZ07c8E7IV6DDSkrnxppuS7rtQKMTBQ4fo6Oigrr6epUuXYp6mCT/bQAeAz3/hC8iRyKyOH41G6ezqoru7i8rKCurq6mhsaKS6ugab1UY4FKKnt3fWQjXbR8Pu3bv59re/TSh09J760Y9+xCOPPjKl9x+/aiW746L06v79bFq5EoNez4rFi9nT1IQvEOBQewfHr4wtzp+6aTPVpaVIksTy2iXs3L6dV/bH3l9fXc2yxYt5YtcuAPyhEE+/9hrnnngiAI/vepHGRYu44B2nYDQYKCsq4tJzdvJ4fP/x+I+zzqK2ooJzz9nJdz/5STqdzqSQAlx4yimcumkTkiRhs1i4629/4wsXX8yKJUswm0xc95GPoNfreezFF5Pv2bJ6Nf9x1lkYDAZO37KFC045hbvifcEWV1Rw3oknYrNYsJrN3PCJT9DR18fhzk4Afv/EE3zsXe9iw/LlGA0GPn/xxVSVliaPbbNY+I+zziLPZsNsNHLNhz+MyWSiz+tlxcqVrIhbXA6HA6/Xy8GDB5Ni09nZSW9vL3fccQfvfve7OSs+xp07d3L++edz1113Jc9jtVr5+te/jtlsprGxkVNPPZXXXntt0t/8bWQppd6IRUKIPwAfAr5ArMJDcXybgWmK0oKPvotEIjQ1NeF0OmfVfnyy88yH++7Wn/+c6N69tLa24vV6WbJkCQUzbVPN7AMdAL7whc/POOdEVVUGBgdxu1xUVFRQU10NHG3lbDQYMOblpdX6i0SjhIJBQqEQw243kWgEg94QS+60xhI8TcaZR2xNxN8e+xudXZ1pr/X29fLwQw9zzjnnTpokunnlKoY8d9Da3c3uAwe44NRTAFhTX8/rTU2xqghGI2saGwH4+79f4r6/P0n3wACKohCJRlkdd4tBzFp68Omn+eCZZ/LPV16hrLCQ9fEyWN0DA7zZfJhzPve55P5CCJRJRLyypIRQKMTll3+Uv/35lxQ5HHQPDCS311ZWpu3f2d9PXfx3g9g1u6Sykq7+/uRrS0a8p7aykj3x4I4Bt5vrfv5znn39dYZ9vuQDfMDtjn0OpzPtnJIksSie7C2EICTLfOmnP+XxXbsYHB5Gp9PhDQQYcLv50CWX8K94i+/y8nLKRySJ5+XlEQ6HaW5uprGxkVdeeYW8vDwcDgc1NTXs27cvuW9paWnadW6z2fD5fBN+l4kxZiP6LocsJYlYSwuEEE9IknQKsS60iyRJ+lB8e3g6B1ywoqQoCsPDw3R3d9PY2Mj27dvn7GLIZqBDQvwUReEX//u/LI1E2Lx5M3V1dbN+8GYi0EE3gbCNJ3pCCDxeD319/RQU5NO4dGmyR9Rk3+tYQhWNRgmFQgSDQYbdw+MK1WypXVzLkTGSl2tra6dUtaCiuJjFFZW8+Oab7G1t5VtXXgnA2vp6fv7gg5hNJjYsW4ZBr6dvaIjv/L9f899XX832tWsxGgz8/P77ORB/yAK8c8vx3PKHP3CwvY1HX3iec084IbmtsriE41eu4qbPfnZan7F3cJDNK1fyi9t+QSAUwuXzsSherBMYdU8tKi+nredo/UNVVWnr7aUmRQDaenvT3tPe20t1/Jjfuv12egcHefoXv6CypARvIEDVOeckr4PqsjLaU94vhKAzLngC+P1TT/Hc3r389Sc/YUllJZIkUfvudyOE4H3vex+Xf/Ob437WgoIClixZwsqVKwkEAmzcuBGfz4fP5+PAgQNYLBZefvllurq6iEajuFwuHA7HtPKpslXRYb4tpZQw70JABpAkSSeEOCBJ0vHA3zla2HVaGfsLzn2nqirt7e3s2rULSZJYtmwZixcvntPZSTar/qqqSldXF7t27cIQbydRVlaWsVqBsxXX//mfnxEOjW2Nx8aYfvxgKERLayueYQ91dXVUlFfMummhwWDA4XBQVlZGbW0tjQ2N1NTUYLfbkeUI/X39tLS2MDw8zNDQEMPDw4Tl8LQ/+85zzkGvG20VnnfeeVM+xuaVK/nD3//OorIyCuI9b+qrq3B7vfzz1Vc5Pp5XEwyFEEKlMC8Pg17PWy3NPDbC9ZZns/OO447jVw89xL6WVnbGF+0Bdu7YwYG2Nh557jnCshy7jpxOXoqv5YzHH558kvbeXt7Ys4cbbruNmtLS5JjG4pKdO/npPffQ1NGBHIlw4513ElWUtLG8vG8f9z35JIqi8PTu3Tz8zDN86OyzAfAEAtgsFgodDnyBAN/4RXqKwcVnncVv/vpX3jx8mEg0yi333UdP3HITqkogFMJsNFKcn48cifD9O+5gOG7B/N8vfsHSpUtRFGXMyUTyM1xyCX/+8595+umnycvLY9++fTzzzDN8/vOfZ/PmzRQXFyNJEk6nkzfffJN///vfuFwuvF4vAwMDhMPjX0vZylPKIUvpJeLuuUSAgxBiENhOrEI4xEVrqsx79N1UEULQ09PDkSNHKCsrY9u2bXR2dk7+xgVEKBTirbfeorS0lC1btnDi5s1IKS6FWZMBUfrRzTfT2T/OLC3l54xEIvT19xMOh6iqrJrzhogJoUptdtbb24veYECORPB4PMgRGb1Oj8VqxRqv7TZRsmZZaSk7TjiB5557NvladVU1GzdunPK4jl+1ioeeeZozt25NvqaTdKxdupRde99MCkBddTUfe9e7ue7ntxKNKhy3cgVnbN3K4Y6OtOOde+IJfPGnP2XHuvWUplT6KCko4H++9CVue+ABbnvoIWRZprK0hHef/I4Jx/euk07iG7fdRmfvv9m6rpKbrr4a/QTVTT5/8cWEIxEu+PKX8fh8rFu6lD/ffDP5KYmyF512Gk/s2sXnfvQjivPz+fHnP88J69cD8PWPfpSrf/ADat/9bsqLirj+Yx/jN3/9a/K9Hzr7bDr6+njPNdcQlmU+tHMnW1avxmw0IoTg0rPO4vv33MOy976XAoeDT73vfUl3YXtHB+vPO49PfOITnHbaaUSjUW688UYuvvjitM+wbds2fvGLX3D99dfT0dHB4sWL+eUvf8nW+G9ktVrR6/UsX74ciD178vLyEEIwPDxMZ2cnsixjMplwOBzkxS15q9WalUCHXLCUUniXEGLUIrMQQgbOlSTpvLG2T4Q0yUNqTn1W0Wh00ooFQgicTifNzc0UFhbS0NCQ/EHa29uRJInFixfP5TABeOGFFzghxV2SSRILssFgkIaGBmpqagC47otf5NzaWt7xjokfLFMlEAjQ2dmZvNlmwi3/90c27fgg1jFmas0tzdQursXldifXjfLz8ye8SYUQRKPRObmR+/r7sNvsaUKlKErS9RcKhQjLYXSSDqvVGiuDY7WmCZVzYICvfe265Ps/9tGPJcOKZ0p3dzdFRUUZbUsyE06+8gpu/co1bFi2jEUVYcoKI+zbt49Vq1bN+Pe46vvfx6DX8/NrrsnIGFVVZeUHPsB3r7qK95x6Kq2treNevx+77jpuefDBrH2v4XAYr9eLz+fD6/USDAaJRqNY44WP8/LysNvtGbecfvnLX2I2m/nUpz41+c7TZ97zMnJ6TWloaIim+ILwxo0bR11sOp1uWmV4co1QKERTUxPBYJAVK1bQ19eXlhT3+c9/nrz29oydLxOBDjabdcyrVgiBElVobW2lsLAwbd0ol9Dr9aNK4KQKldPpHCVUGzdu5PXXXwdg+/bt8zTyucPv9/OL/7udb1x3xXwPBYA//uMfnH/iiahCcPPddxMIBjlz+/ZJq038v1//GpFFoTebzZjNZkpTogNb4onRiqLQ0dGBPx4qb7fbkxaVw+GYsNbmZITD4WnXw1xI5KQoeTwempqa0Ol0rFmzZtz+84nou4VGNBqlpaWFgYEBli5dmlwz6u/vT3OvBYJBjKEQ9gy5vjIR6HDBBRfQ3pvuOgiGQnR3dxONRqlvaBjTisplxhQqNSZUoWCICy+4MClKvb29ycKiJpNp3to0ZBKD0cCmTZuS/57vJObbHniAz958MwCr6+v50w9/SFFeHrIsjzuNF0Jwwze/ybduv31ex6/T6bDZbGmRf4qi4Pf78fl89PX10dzcjKIo2Gy2NPffVKs05Jj7LuPklCj5/X6ampqIRqMsW7Zs0vDnbIVqZ4rUVhm1tbWjIgZHhoT/8U9/YpvVyimnnJKR82ci0OGLX/wCl33iu5QUF8fWjfr6CMthqquq6enpGbd6wHwx08+r143u0gqQX5BPKBhiML7gLaX0HrJarZjM5kmFKlcaDz57+y+B2He0bdtWjq5Lz5zbrrtu8p0m4e+33jrm65Ot16yKN+WcT8YKdNDr9aPakQshkk0UXS4X7e3tRCIRzGZzmlBZLJZRnylH8pTmjJwIdAiFQhw+fBi/38/SpUunVIQUFo4oCSHo6+ujpaWF8vLycVtljEzS/co11yC98UbmBpIBUfraddfhCefT73QezTfKr0GSpIy4BzOJNAfu8ZFClbSoQiEGhwYJh8IgSVgtFswWC7ZxhGq+H56pDAwM8N0bvsgD9/3ffA9lQiYSJUmSuPhDH5r362+q0XeSJCWt80QTTyEE4XA4uUbV29tLKBRKBvGoqorH4yEQCORS9F3GmVdRkmWZQ4cO4XK5aGxsnHbo80IQJZfLxaFDh3A4HGzevHnCGc5IS+bPf/0ri5zOjPWHmW1FByEEnZ0d9Lq8lJaWsnTp0rQbMBPuwVxlSe2SMV8fy6JSVTW2RhUKpgmVxWzGYrUSjSo5dd2WlZXxq1/9EshswdVMo04gSoFAgNNPOIEXmpuzPKp0ZhN9l2p1p65TRSIRvF4vb775Jj//+c/Zt28fjz/+OA8//DDHHXccJ5xwwrQiQnOdeV2JHh4eJj8/n+3bt1NeXj7tHzPbojSdB7rf7+e1116jtbWVNWvWsGbNmklN7pGiVFRUlLbOMVtmY8n4/X727d/Pnx54gOLiYsrLy0fNCGdzM+Y6119/Pddff/2U9k2sK5QUl1BTXUNDQwN1S5bEFqeFQJZluru7aWltpau7iyGXi2AwOG9CFQgE+Pe//z0v554WEzzwrVYrT/z971ke0GjmIk/JaDRSXFzMKaecwn333ceZZ57JLbfcwhVXXIFer+fVV1+d0nHuvfde1q9fj91up7Kykv/+7/9O237TTTchSVKXJEl+SZKelCSpIXW7JEk7JUl6S5KkoCRJeyVJOitzn/Io82oplZWVJUvMzIRsilLiXJOV2EmUMfF4PCxfvpzi4uIJ9x/rHAlOfsc7kKZQb2uqzMSSSTQODIXD1C1Zwvf++7u0do/vOsiV9ZJcIyFUNpuNYChISXEJJpOJcDhMMBhkyDUUs6gAs8WM1WJNzpqzUUtt79432XnGpsl3nkcmskIikQiv79nDSQ0NY27PFtnqp5Sfn8/WrVuTuVWTceedd3LNNddw5513cuqppxIMBtMSjO+++25uuukmgHcBB4AfAH+WJGmDEEKJC9QDwJXAfcD7gQclSVojhDhCBsm9mN1pkE1RmixIQFEUmpubeeWVVygqKmLbtm3TEqSxznHzj37E3XffPeMxT3b8iVDilSX2HzhAYVERq1etwm63c+8f7mVoaGicEzCvVbnHImd7P0kSOl0s7Ly4uPioRVVXR3FRMUgSbrebI21ttLS0xCyqoSECgUDGr/nCwkI+/vGPZ/SYc8FEohQMBnnwoYeyO6AxyFaZoemsKamqyrXXXss3v/lNzjjjDAwGA3l5eaxbty65z+23385VV12FEGK3ECIAfA1oAE6K7/IR4FUhxF1CCFkIcTewO/56RplXUcpE2+VsW0ojia2zdLJr1y70ej07duygqqpqRp9tpGh88pOf5KKLRvbOmgVTECUhBIODg+x9802QpFjjwHjZFYCK8vIJa4Hlkghk8uFwxZVXcMWVc5/HkxSqeOO7hvp66urrxxWqwaFB/AH/rO4Dp9PJ//3vzzP4KeaGiUSpoKCAH/34x1ke0WhysR36oUOH6O7uxufzsXLlSsrLyzn//PPTGoju2bMnbe1aCOEDmoAN8Zc2ACP9hLtTtmcMzVKa4bkSlSZ27dqF3+9n69at1NXVzeqCHHmOgYEBBlI6l86WyQId/H4/+/btwz08zKpVq6iprh71ed75ztPTiqNqzD26eCvxkUJVUlyCTtLhGfYcFaquo0KlqFML8XY4HBmrGjKXTJQ8Ozg4yHdHrJHMB9kqM5SwlC6//PJk5OtYf9dffz0D8dqBv/3tb/nb3/7GkSNHqK2t5V3veldy+cTr9Y6VguMGEnHsecDwBNszRk7lKU2XbItS4oE+PDzMoUOHMJvNY1aamCkjLaWXX34Z4969LF60KHPHH+N1WZZpb28nLMvU1ddPmKx7zTXXcPa7v0hdvDtp2vHJrZDwYxldSqRWAlUI5PgalWfYQ39fP6pQsZgtaRXURxaZNZlNLFq0NNsfYfoIMW6Qv8ViYfssyz9lgmwXZL311lu5OZ5oPBY2m42mpiYAPve5z1FfXw/A9773PYqKijh06BCrV68mLy+P4eGRmkMh4In/txcYqVqp2zOGJkpTRJIkAoEATU1NhMPhWbdYH+8cqaL0/ve/H2n5cshQKaWRMzhFVent6WFgcJDFixZRVFQ06Szvmzd8g66hsdfKZjpDzMbs8u3AuEIly4SCQbwe75hC1dfXz//7+U/5v1vn39KYiInWa2w2G+8844wsj2g02RalkUWIx2LFihVYrdYxv7vEaxs2bGD37t1ceOGFidcdwDJgT3zXPcBpI95+HPDUTD/HeGjuuymQyBPYv38/VVVVHH/88RkXJBj9eZ5++mkejXfszCRjrRsVp6wbTURHVxeh4ASNJHNoTYkcS+ZNIrJX9VIXz48qLCyksrKS+vp6GuobKIk3sfN6vEjA5Zd/hObmZiLxiuqziYqdKyaKbDt06BDnnX9+lkc0mmxMsGRZnlagg8Vi4aMf/Sg/+9nP6OjoIBwO841vfIM1a9Yki9teeeWV3HbbbUiSdJwkSVbgu0Ar8Fz8ML8Djpck6WJJkoySJF0MbAZ+m9EPR45UdJgpcy1Kid5NXV1dGI1GVq1aNavOr5Mx0lKqrKwkHK8YnilURWHfvn1YrFZWr149rQZmAM88/U9WbigdM38qW80QNWaHlEjkjS+WDw8P43K1sH7NepqamnDHm2cqioLFYsFms2G327HZbLMqJDpbJlpTWrFiBY88+mhWxzMW2bCUIpHItH+HH//4x3zhC19gw4YN6HQ6TjjhBP7yl78kU1wuueQSurq6+OpXv5pozPci8G4hhAIghGiWJOki4EfAr4EW4D2ZDgeHBe6+m6uHoBCC3t5eWlpaqKysZPv27Rw4cGDOH7gjP8/KlSuRolGQp9Uja0zCskxHezuyLLN8xYoZF3m9+pOfpKljnDU0SdLylBYgoXCI3p5urNZY+avaeCsYIQShUIhAIJAmVGazGZvdjj2edzXdic2MmWBNacjl4o3nnuMd02jAOBdkw1KaSS6U2Wzmf//3f/nf//3fcfe55ppruOaaa6rH2y6EeAx4bFonngELXpQyzdDQEIcOHSI/P58tW7YkK/eOLJY6F4y0/O655x6aHnyQb1577YyPqagqPd3dDA4NsXjRIvx+/6yqjv/hvj9QXnsmi8aw4I7lVaFLL71svocwZ1SUV3Di5vcxsiCrFI/6s1qtyXqUifpsgUAAj8dDT09P1oRqoge+Z3iYV958c95FCRZGhZJcZkGLUibx+XwcOnQISZJYt27dKPfUyGKpc8FYgQ6sXj2jQIfEulFXVxdlZWWsW7sWnU5Hxyy79S5tbEAxTiBqOWcoZWZAp2QwZFqILC4qTYG2tjaeevQBvvyFyfOwUuuzJZLDRwpVb28v0WgUk8mUdPvZ7fZZC9VEolRXV8cXzzxzVsdfCLwdgoLe9qIUDodpamrC7/ezfPlyioqKxtwvG0EVI0Wpv7+foQMHWLds2bSO4/P5OHLkCDabbUbrRhOxZcsWDraN576bvgQkbrC5uNmO7Vs3c5SWldIwiwf6eEIlyzL+QACv10tfX98oobLZ7ZimcW1OdI3s27+fR/7yF750ww0z/hwLiWNZmBZ0oMNsiEajtLa24nQ6aWxsZM2aNROOJxuL+CNdhO3t7Rx49dUpi1JYlmlvayMSiVDf0JCx5oCpfOMb17Nu64fZsH6cRO4ZfEcLIUDimX/9C8isxZQrmIwmyspKJ99xGkiSlOzMWhyf6KUKlc/no7+/n0gkgtFkSrr97A4HRoNhzHsxZmGOfY9WVlZyanwtTGNh87azlNR4Tbf29nYWL148qtHeeGTLUko9x/bt29lRWAiBwITvG7luNJV8o5nyrW99i0PtY1cun4v+RbnCXXfdCRybotTc3Mxf/3Qv//XNL8/pecYTqkgkgt/vx+/343Q6RwtV3PUnhEA/zr2an5fHmqULIAE4A+T6BG62zLsoZWuWnCgLdPjwYcrKysZttDce8+G+e+ONN3jpt7/lyksuGXP/8daN5pKDBw/gDjdSMkax2Zn8loqiMDg0iMFgxGa1Yhhnljxjju37NyOsXLmSC86+hnj0b1aRJAmTyYTJZEq6zlOFKhAI4BwYICLLqKoaq5qu12OPt6NPXCvPPfcc999+O7f88pdZ/wzZJBqNzmtYfjY4Jj7dZOsRw8PDHDx4EJvNxqZNm2bUtXE+3Hfl5eVsGqfB31yuG03E3rfewl5cNKYoTaezrRCCIZeLgQEnhQWFhEMh3G430UgEgzEmUIkW4zO9CXPV7y6EyCmrsq+vD2fnG5xx+vZx3WPZZDyh6urqQghBMBBgIC5URqMRm83G+g0b2PLRjx7zgQDTLca6EFnwopQQi7EuxEAgwKFDh1AUhVWrVs2qkOh8uO8qKiooO+44CAaTr6WuGzU0NGCbg3Wjibj4gx9gX+vszhkIBOjp6cFitbC0cSlCiORvmJglB+P5MUNDQ0SVKCajKRmebLGOrt+mMXOiSpSo3zffw5gQSZLQ6fWxYIqUYCQ5EiHg93OoqYkDR46wfO1ajEYjeXl55Ofnk5eXh8ViyYpQZcPjo4nSAiAhFqluK1mWaW5uxu12s3z58mSOxWzPo2SoBt14jLTGdu3axf998Yvc+fOfo6gq3V2xLqW1ixePGyU41/zxT39Eb9/GihUrRm2LtVMa/8aMRqP09vYSlmWqa2qwWixJERIIJHToUmbJBfFSTkII5IhMKBjCG18gT9ZvixcZtVqsc+66PFapqa5hZd3ZIKI5ZL+NwRjJsyajEVNhIRazGYNez9atW5FlGY/Hg9frpbe3l1AolBSqxN94teBmN7y5t9JCoZAmSrlOqgWjKArt7e10d3dTX18fq4iQoYtkPtx3O3bsYMedd+Jsbqa7u5vy8vKsrBtNxJo1axjwjR2pNd53raoqQ0NDDA0NUVFRQU2K2KhCjbmMhECoalr6piRJsWZ4koTZZMZsMifLPCUKjQYDATzDHvr6+kGIWNdWqy0peBqT89Zbb/H8U09x9VUfyWnX10QP/fXr17M23rTOZDJRWlpKaenR61SWZbxeL16vl/7+foLBYLLZXcKqmq1QZatthSZKc8xsH/YJC6a7u5vW1laqq6vZvn37pG3LZ3KebLvvjhw5wj9+8xtO37Qpo+tGs7l5Vq5Yzt6WsaPvxppm+/x+erq7ceTl0bi0Eb1OHxcjEQsfl4j/VvqYMKVsE/H/VxJj1kmxtZi4UKXWb4OYUIVDoWR7cb/Pj6TTEQgEYtaUzYY5ZXF8vsi1dY+6+jpqNs9/JYTJmKhK+D/++U+aXnqJKz75yTG3m0wmSkpK0rwmqULldDpHCVVeXh42m23Kv1W2K4Qfq8y7KM2WSCTC7t27KS4uTisLlGmyUWYoIdChUIhDhw7R0dHB0NBQsgdKRs7B7B6KP/rxj8krO52TTz557B3iX5EcidDT042qqNTW1mI2mxFCoKjq0VwmKfk/8X/HGpOlTSdShEoINU2oEsdIFarEuhPA4NAgkqTDbDYRCoYYHBggFA6hk3RYbTFrymK1YDJOLlS/vP3YjeqSkDCbTTknliMRgDTOQ3/tmjUsbmiY1vHGEqpERwCv18vAwACBQACDwYDD4UhaVOMJVS52nV2ILFhR8nq9HDx4kFAoxNq1a9NM9bkgG2WGhBAEg0F2797NsmXLWL9+PeetWgVud8bOMV6jv6ny1Wu+wpuHxw50kJBQFIX+/n7cw8NUVJRTkF9wVIwQ8ScLjGlWjT3gFKGKy9UEFlV8IEiSDgTodBJ2mx277ah1pyhKrNBoMIjH40GOyBj0hvj6lHVuQtNzmIMHD7L7+af55FWX5/ZnnqAgq91ux1xRMetTGI1GiouLk5UpIF2oWltbCQQC6PX6URZVttpWaKKUY4RCIZqamggGg6xYsYL29vY5s45SmUv3nRCCnp4eWltbAZIJvd3d3dzyta/xg2uuydi5pPj6zUzZu/dNuocWU109upiwLMsMDg1RXFxEY2Mj+rh1meqqy0jI8RQsKiUaJRAIYHc4iEajsRls/Nx6vR673Z5W3zAajRIMBgkGgxkPTc91jjvuONY0LAdmX41+Lpnoof/II4/Q9eqrfO5zn8v4eccSqmg0mhSqtrY2/H4/kiQRjUbp7u5OWlSZtpy0QIccIhqN0tLSwsDAAEuXLqWsrCwWJpqlRn9zFejgdrs5ePBgsir5K6+8kryQCwsLec9FF2X0fLP9HJ2dnbhlR5ooheUwPd09yLJMaUkJZWVlk7vqMk2KUPm8Afr6+igoLKAwHhghEKDGxqIk33LU7Ze6lgBHEzgToek33nQjiFgztIyEpueQRdLW1oa75yAnnrglp8Y1kolE6QMf/CDqxo1ZG4vBYKCoqCgtCnZ4eJjW1lai0ShtbW0EAgEkSUqzqOx2+6yESltTygFUVaWjo4POzk5qa2tHlQXKlihl+jzBYJBDhw4RjUZZs2bNmC2NLRYLK1etgkgkY+edToLrWJyzcydvHI5ZGIqq4uzvx+P1Ul1VRTAYRKfXz9xVN0siskxPTw86vY4lS5ZgGBkYEv/cCbFMCNV4EX+poem9vb0AlFeUzzo0PediAiXQ63UTusdygYlE6bXXXyeqKGweJ9k8G+h0OsxmM7W1tcnXotEoPp8Pr9dLR0dH0qKaqVBpllIWGO8iE0LQ19dHS0sL5eXl45YFWmiilFoIdtmyZZSVlY2778DAAJe87308ec89sz5vgkSgw0x5+OGHGAgsZ/mK5fT19lFUVMTSxkZ0Oh3BYDBWDkZR0Ol12Zt1C8HAwADDw8NUVFbgcIyTJJ3ivkt9L6QI1XgRf3FmEpputljQ5bAFsqR2CWsbSxFqeL6HMiETdZ4NBINE/P6sjmckYwU6GAwGCgsLKSwsTL6mKErS9ZcqVIlgiry8PBwOx5hCNd1W6AuReRelsXC5XBw6dAiHw8HmzZsnnBlkU5Rm8zAXQtDd3c2RI0emXAi2vLycvz/5JDidMz7vSGYb6LB69Sqefw08wx7q6+uThTIVVcVut+MccNLa2hprEGezYbXGAgdMZhNzYTH5fT56e3spKCigsbFx+kI4jlCNiviLoyjKqIi/yULTw6EwSFIs2s9iQVWUWa3rZZpdu3bxynOv8uFL/yOnAx2Eqo57BZ144omo69dndTwjmWpHWL1eP6ZQJSyqrq4ufD4fkiRht9vJz8/H4XBgMBi06Lts4/f7OXToEEKIcV1aI8nmmtJMz+NyuTh48CAFBQVs3bp1yvlGkUiE+++5h0vOOGNG5x2LmQY6KIpCR0cHXq+X+vr1FBUVjVo3MlvMLFoUax+gKkoscCAUpK/PQ1gOYzAYsFqs2OJiNcq9Ng2i0Qi9vb3JkHNjJoNdxor4S2zS6SaO+INRoekAihqL+AsFQ8gRmfb2dnS66YemzwXr1q9jxeJFuR8SPsFD/7e/+x15J53EhRdemN1BpTBRHtVk6PV6CgoKkhY4pAvVW2+9xec+9zmi0SilpaXJCfv69evTrrNjgZwQJVmWOXz4MB6Ph+XLl6dFuUxGLrvvUteNxupmOxlCCFriEXmZYrqBDiLuGuvu7qayspI333wDpz/MmWeeGavGMM66kU6vx+5wYE+ZWESjEULBWODA4NAQ0WgEk9GEzWbDYrVgtdqmkPQsGBwcwu1yUVFRgWMW9QxnwngWVaIiBZB0/aVF/On0ydB0n99PTXU1kiTlRGh6NBolGpGB3HYLTSSaZ519NvrjjsvyiNLJdJ5SqlAtWrSIl19+mVtuuQWv14tOp+NXv/oVXq+Xe++9d8LjHDx4kC984Qu89NJLSJLEiSeeyM9+9jPq6uqS+9x000389Kc/pbu72w+8CFwphGhJbJckaSfwI6ABaAa+KIR4ImMfNoV5F6Wenh6amppoaGhg1apV074BczH6LrFuNDAwwLJly2acQ2Uymbj+G9+A+CJ7RpjG5/D7/bS2tmKz2VizZg0Gg4GPfvSjvHrAdvQ7n0Ygg8FgxJFnTBESgSxHCAQC+Lw+nP1OVFVNrsfYbDYsZnMyYTIYDMaqQzgcNDQ0jJtImTXGCU1X1ZjLb9yIv7gDdazQ9Eg0Sig1ND0aSbb1mKvQ9P37D9DbvI8LLjg/ty0lGNc9azAaM2stz4BsWJqqqrJy5Uo+8pGPTPk9F198MWvXrqWjowMhBFdddRWXXHIJzz//PAB33303N910E4899hibN28uA34A/FmSpA1CCEWSpAbgAeBK4D7g/cCDkiStEUIcyfRnnHdRKikpobS0dMYzjFyylEauG23btm1WMychBO9/3/v44y23ZK6GH5MHOkQiETo6OggGg9TX12O325Ouur1799LcVkpjYwOzXyM6GuFGwr8uBKFwiGAgiGtoiGAodNRdRqzDqCPPkYFzT493nDzF5n7xatZJ4uNOCJXP50OWI6iqmizwmxrxZzQYME4Qmj4XVdO3b9vGhmVrCIWDOR0SPlF04D333ktDIMC5556b1SGlkqsVHQ4fPswPfvCDZEeByy67jPe+973J7bfffjtXXXUVmzZtQggRkCTpa0A/cBLwDPAR4FUhxF3xt9wtSdIn469/e9YfagTzLkpms5loNDrj9+t0OiKZDJme4DwTPcwT60aFhYXTWjeaCEmSuPa662Z9nJHHHO9TJCIe+/r6qK6upr6+PmkhqqqKqqp4PR4CfitzJgqShMVixWKxUoTA7XIzMDBAfkEBOp2E2+2mt6836eayWWPrU0aTce7GBHx4GjPTNOIPeSEEPb09qIpKXV0dJqNxzIi/2HvSAykmrJoeLzA6m6rp+/btw+/sZNPm+XV/TcZElshnP/c51FWrsjyidHK19t21117L7373O3bs2IEQgjvuuIP3vOc9ye179uzhC1/4QvLfQgifJElNwAZiorQBeHXEYXfHX8848y5Ks2W+Ax2CwSAHDx5EVdUZrRtNRnVNTSzqKIPVzscKdPB4PLS1tZGfn8/atWvR6/VJ6yixVqLT6dhxwglYDtrnPHgsFArS092D1WqloaEh3foAlGiUYChIIBDE5XIRiUYwGoxYbTZsNitWixV9TlRgELjdwwwMOCkvKye/IJ+EeE64PjWJUGUyNN1itZKXn7eg85Qef+IJluj1LF++PMujOkq2q4Rffvnl/Pa3vx13369//et897vfZefOnTzwwAMUFhYihGD9+vU8/vjjyf28Xm9agEUcN5Af/+88YHiM7Wtm81nGIxfu2lkxX+67RIWJwcHBjPVsGotLL7uMR267LWPN/EaujcmyTFu8aWBjY2OyhleqGCXcSwCPPfYY+1qLOPW00zMynpGo8dp5wWCQquoqLJaxI4v0BgMOR15KTpIgIkcIBoP4fD4GnANElSgWsyXp5rJarTNeh2o7cgSAJSmLw5MhyzLd3d2YTSbq6xsmDuKYpHTSVCL+phuanqia3lBfz/rlZQQC/pxeU1IneujnwLizYSml5indeuut3HzzzePua7PZcLlcnH766Xz5y1/m2WefRQjBjTfeyMknn8wbb7yBxWIhLy+P4eGRmkMh4In/txcYqVr/v73zDm+qbP/4N0lX0qS7pYPu3VJ2mSKioIAL9HW8r4LKdAECynAhDl5kCCgCIkuGvj83ggoiswUUECjYvfdus3fO8/sjPYekeyRNiudzXb2UnIxzknPO/Tz3c9/fr+l2i8IGpU5C38xpW+bi4mKLrBu1humI69Tp0+CUlVnuzU3ScVVVVaitrUX/4GB4eXqapeqYfWh2sQ8fNgyObh2X6ncdAolYgtq6Wvh4+8A/wB9dS8dx4OjkBEcnJ7gxoz4CjVoDlUoFiUSCqqoqEAD8poIBvoAPF2eXTt3Q3nv/PQDArl27O3EoBHX1dZBIpAgMCAC/uwOKzgSqdir+OipNp1XTL1+6jD/8SvHwww+b//b2Rjv7dd/kyaBsOEsCet/kTygUdtg2k5GRAYlEgqVLlzLnwdKlS7F69WpkZ2dj0KBBGDRoEK5evcqU03M4HCGAaABpTW+TBmBCs7ceAuCkhQ7LDJsHpZ7+iL0ZlPR6Pf7880+Lrhs1h167or+Xvfv24ckxYyw3U4Jxul5QWAgvT08MSEpihFPp2RGHw2lzRuHC51u8eU+r0aCisgJOjp2YUXQJDpyb0lYeTRplhKKYMuy6ujpo1BpjvxCfDxe+sYfKqQfrU3SFoEgkQmREhOVH8O1V/AEghDKr+DMNVFwOx6w0ncbf3x9RAZVQq9WQy+XIyMiAg4MDXF1dIXB1hdDVFY6OjvYZqJp48623cP+SJRg5cqTN9qG3Zkpduf7i4uLg5eWFLVu2YMmSJSCE4KOPPoKbm5ux2RxGPcclS5Zg+vTpGDp0KB/A+wAKAaQ2vc1+AK9xOJx/A/gWwL8ADAMw04KHxmDzoNRTeiMoKZVK5OTkQKvVYtiwYRZfNzKFXruiT26pTGYxIViNRgOxWAwnJyfExsTApcmdta1UXWucOXMG17L5uP/+h3q8P4SiUFtbC7lcjoDAwF5pAuTQDasCAQBjytVgMEClUkKtUqOqstLYL9RUhk33UHUEnXZUa9To378/nHqz696s4o/XouKvPY0/nU6Lc2dPYsyiCVDI5eByuQgJCYFWp4NSoYBCoUBdXR10Wi0cnZwgdHWFQCCAa1Og6m3aCowvL1gAYZPzrK3ojaCkVqu7VOggFApx9OhRrFy5EuvWrQMhBAMGDMDRo0eZWdZTTz2F8vJy3H///QBQD2Of0kOEEAMAEELyORzOIzD2Ke0BUABgujXKwQE2KLVL83UjpVJp1YAEtFzzWfTKK+AUF/foPQ0UhcqKCtQ3NMDV1RX+/v6M6V57qbrWeOCBBxASK4De0OFT20Uuk6Gqugpenl6IsEh5effh8XjN1qcAvc64PqVQKFBXX8c8XldXC76LMSVGBwL6WLqXdrQCdPquA40/uUyG/gFOCO9XB41abXYdOTk6wslECoc0FVIolErIZDJUV1dDr9fD2dmZ6bVydXW1uONzZ1EolXC1sXRTb/kpdbX6bvTo0Thz5ky7z1m2bBmWGS1yWk3JEEKOATjWpQ/uJmxQagXTdSNamby3UhfNS89nzJyJ9S++iICAgG69X0NDA0pLS+Hj64skkwY6qmk9or1UXWtkZ2XhZroD4hO7Vw1qquQdFhYGB4feH213BgdHR4gcHSFyczN/3MEB0qabMkUoUAYKPAcHY/+Ua+/3T3WaZhp/FWUFOH5kK7Z89A4innwMep0ONTU1jP+U8SUcsx4qZ2dnODs7w4tOhRICjUYDhUIBsViM8vJyUBQFPp9vTP01zaisPXsAmtLc/fsjISHB6p/VFvZaEt7XYINSMxoaGpCTkwNPT0+rrRu1R/PS81WrVsG7G8enUqlQVFQEBwcHxMXHw9nJiQl2dXV1oCgKQqGwy2XTBoMBen03RqTklpK3v7+/mfxQX8LDwxMeHgSNDY2ob6iHt48POAAkYgmqq6pNhGiNPVTWEqLtLul//w0YqvCff43G5LtWgcvjQdLQgLKyMgQFBTGahnQhBX0u0meg6SCGy+HApamSj64+pQiBWq2GQi43DojKygBCjIFKKIRrU+rU0qrp773/PkgX7dAtTW+XhN+u2Dwo2Uuhg1KpRHZ2NgBg4MCBFiss6CrN03c8BwcQTectBQwGA8rKyyERixEWFgY3NzezNF2/fv0gFovR2NiIsrIyEACuAgFTycPn89tN4yUkJsLgLICuC/3OcrkM1VVG071uKXnbERq1GpWVlXBxcUFEeMv+KXMh2mqLC9F2F7FYDA93FwxNdAQPHuDxAL2OIC83F+BwEB8fz+wXB4DpeJ80nTtMoDIYjP9uOle5XK5ZoBI0KcPTUIRApVRCoVCguqYGapVROcJVYJSSchUKwXdx6dG9YM/evZj68svoZwFL9O7CzpQsg82DUk/paVDS6/XIz89HQ0ODVfuNOkvz9N1777+Pd2bMQGhoaLuvI4Sgvr4e5eXl6NevH5KSkm6VeJuk6hydnODr5wfaxYkyGIzac3I5ysvLoVKp4OjoCKFQCFdXVwiFQjNNsXNnz+L0Hwo8+PBjHR6LXmdU8iaEWF7Ju5d58803IW40pqgCAwPh0kZRhvWEaHvG6d8OYurEeAwdMwoA0NB0rvTv3x+eHQggc7jcdgMVoSijHQeMMypCiPF4mtJ+3CYLBldXV/g1vd7QdN4pFApUVVZCpVKBx+NB4OoK16a0n7Ozc6cDlZe3t83t6u1VZqiv8Y8NSqbrRqGhoYiJibGLktfm6bs9e/eCk5/f7msUSiWKiorg4uKChIQEM4+jjqrquDwehCKRmdq2TquFQqGAXC5HdXU1dDods04QFRUFysWzxfuY0RQgxWKxTZS8LY1SoYDBQKF/cH/4ePt0eabXlhCtqi0h2ibx1R4LzhKCvXu24dWFD+O9t541VttptSgqKgKXy0V8QkK3b+TNAxV9njEVf3SwMnmNWWk6j2dmPw8YB4hKpRJyhQKNjY3QaDRmpent9VBNmz4dxMYDyt5I3zEB/zbmHxmU6uvrkZOTAy8vrzYdbdvC2ide8/Tdvi++wH0REQgMDGzxXL1ezzhXhoWFQSgUMsGIrrDqbFWdKY5OTvBwcmJ6e0AIU4lWXV2NkmIJ+K5SCJoaUPkufDi7OAPgQKVUoqKyEiKRyD6UvHuAwWBAdVUVtDodQoKDLTjTM9Gza02ItrERKrUaHMBMjYL+jjuEEBQVFWLk8GA89+QgBAUYb/x1dXWorKhAcHDwrd/WUkfU9DvzTH5vprG36XxsdX3KpJDCwcEBbm5ucDMpLjEtTddqtUhPT4eTs3OL0vTHHn8cW378sdsFQZagN2ZKQM+XPOydf1RQMl03GjRoUJfXjZo3tlqD5uk7vkDQ4kQnhKCmthZVlZUICAhAWFhYq2oMFgsI9OK9QIDc3FwU5NfhwYefgEqlglKlRG1tLdRqNfQGPbhcHny8veHu7t6HAxKBVCJFTW0NfHx8Eejhjv1f7AfQA2HWjjATom3aC7rRV2n8jjUaDXg8XodCtHqtBOdPbsPDk95CkO8QaDUa5OTnw8HBoUezoy4fUtPv79AsUHVYSGESqExL0yUSCeLj41stTX/1tdeMckoNDXBzc7NJKq+zzrMs7WPzoNTTG3xnXm+6bhQbG9slE8Hmn2Xt0VDz9N0TTz4JTk4O82+5XI7CwkKIRCLG46irDbA9YfSYMXD350Ot5ULg6gqBqwCNDY1Qa9To59cPDg4OUKlUKC0rhV5/S3tOIBBYJiVlZXRNenUODg5m6hLnUs4BsGJQagXzRl8jtBCtqhUh2uqqSuRmnMJ7q+ZhxIbVxorH2lpUVlYiJCTk1qzMhnRqfaqNij96sNVaafr53Fw4Ojqirq4OhYWFMBgMjJU4nSa0dtqrJ86znYFOi97u2DwoWRNCCMrKylBSUmKRdaPeUI9onr576eWXMfuOOzAwKQklJSVQazSdEk61FgX5+bhwQYyhyXdCrVKhsrISfAHfrBLtVm/PLe25FikpAd/OSqZvOdrac8l6a0K0ZaVl0KjqMSyRi1C/GPx98wacnZ2Z7v+4uDi7LjLpKFCBEDTU14PL5UKv17da8Xfw0CGsu/9+BAcHAzAGCKVSCalUiurqauTl5YEQAqFQyAQqoVBo0QEmm76zDHYRlLpq0d0Z6HUjb2/vLq8btYUtgtKbb70FbVoaMjIy0L9/f3h5eXVKONVaODg4wMHBAZWVldCo1QgMDIRzmyWqrWvP0Wk/05JpQZPTLJ/f+5YTarUKFeV25GjbWQgBh8uBvDEdAb4GDEi8CyDhqK6uRlVVFTw9PUFRFHJycpjSf7qisieK6b0BHagovR7FxcUgAGJiYsDj8Vqt+Pv444/B4fOZwMDlclsIlhoMBigUCkilUpSVlUGhMKqi0zMpNzc3uLq6dvum3xuFDrd7QALsJChZEoVCgezsbHC53G6tG7VHR0Z/lvoMOvA1NDTgwsWLiAdaFU4Femd2xEAIBK6u8PLigM93QUA3JHU4XDrtd0uuSa/XQaW8JenTW2k/QlGoqamBUqlEUFBQO8HVPtn9+WY899RY/OfxcQCMPVSFTVWYSUlJZj1UlMEAZZOtR2VTCTaXyzWWajfdvF2cne2qh0wiFqOkpASBgYHw9vFhHm8+o6IoCqvefRdvbt8OLpfLOPoCxuuJw+GAy+WCx+O1KKTQ6/WQy+WMn5hCoYCDg4NZoOLz+Z0KBtaeKf0TUnfAbRSUdDod8vPzIRaLERMT0+11o/Zoy+jP0p+h0WiQlpYGg8GAtLQ0hMfEgMvh2C4YAVAplSguLkZ+fj5OpdZj5rMvWuy9HRwcIXJz7DjtZ0GlBLqh19PTE+ER4T16r96EMhhw4UIqHps2AqtffwQ+3t4AMToG19bWIjQ0tIU0EtBU+t9s5qDX66GQy6FQKFBSXw+NRsOIrtJ9arZI+1EGA0pKS6FRqxEbG9uuuC2HywWPy8WgwYPB5/OZG7ehqcGXziiYWs/Tf1wuFw4ODvAw0fgDjPcSmUwGqVSK2tpapnePDmgikajVHiprz5S0Wi2c7DgNayn6fFCihSIvXbqE0NBQxMbGWu3EsPZMiaIoiMViVFZWIiEhAb6+vhiakACkp9skVQcYbxDl5eWQSqUIDQtDWHg4/EKsnfbpbNrvlpJ3Z9N+Br0elVWVIBRBaGioTdQVuotep4O7iAOe9jpE/DgIhT5Qq9UoKiyEQCBAQkJCC4WJ9nBwcIC7h4dZAYS2SctOLpejqqoKOp0OLi4uTJBydXW1anpVLpejqLAQfn5+CAsN7fS5/sSTTzK2HgDMZiz0tWP6X+BW4KJnU3SgcnR0hJeXl9nAVqPRMIGqoqKCWa+jgxQ9+7JmUPonNM4CfTwo0etGFEVZbN2oPaw5U6qtrUVuUwVRdHQ0fH19QQjBhT//xJ433sDOzZtRXV0NvotL71RREcJIEfn5+SExMRHgcCCXySCRqOHla9k+l45oNe1nquRd1+Q06+LCNKCaSyYRiMVi1NXVoZ9fv1ZnE+0RGtK+ooa1qautxsG972P/7v8i9qU5ACGoqqxEXV2dsUfNQg3KTs7OcHJ2vqXy0KRlJ1co0NDYyAj60j1CtJ5dT9OrhKJQXlEBqUSCqOjoLknpaNRqjElOxpU2zDDpAGVafWcaoOg/AG3OqOiKP5+mNCJp+l5kMhnEYjHTL3jz5k2zQGXJe5Kpwd/tDKeDkX+vJDF1Ol2Xbvam60YxMTFIS0vrFSXv9PR0BAUFmU31e4pSqURWVha4XC7i4uJQUVEBPp8PPz8/UE2zg6ysLAwbOhQ7PvoI3i4ueGzqVKx96y0sfvFFgMOBA49n0RG/Wq1GcZOYa/PZRFZmJg58exOPPvacxT7PchhvFCqlqkl/zpj2c3J2glqlhgvfBQEBgX2qI76kuBgySSmemD4UOo0MrkIh1CoVCgoKIBKJEBQU1KXZkSUgTZVt8qbUn1KpBIfDMa5NNaX+XFw65+gLGFPDBQUF8PT0NDaJd/U6JgRyDw+49lCQta0ZFQ0doAC0unZ06dIlJCYmMjMqmUxm0dL0kpISLFu2DD///HO3Xt9JbJ7H7lMzJdN1o9jYWHg2pXbo4gBr32wsmb4zGAwoKChAXV2dmeYeh8OBTCaDh4cHHB0d4erqimHDhgEAnl+6lHltyNSpcEpOxk9ffYXLp0/jg9dfx5H/+z+MHD4cfn5NCmNdvLgpgwGVlZVoFIsRGhLS6mwiLj4ezz4zBDJlDw7eajRrQG1qMpaIxRA2WTIUFhYY034CAQRNahS9Xe3XGbRaLRy4BKEBWshcpHByJHBycGV8sWgFD1vA4XJb6PsZ9HoompQXSktLoVarmfOXTv21WBsiBFVVVairr0dEeLjZLLgr6HQ6XL5yBXf1MCh1ZkZFz6To1B+Px2OCFcdE48/f3595PV2aXlVV1aPS9O54KfVF7O9qbAWKolBWVobS0lKEhYW1WDfqraBkifQdaVqUzs/PR1BQEEaOHMkEO4qi4O3tjdLSUly/fh2EEIhEInh4eMDd3R0CgcBohc3j4T//+Q8A4OGZM/HQjBkgHA4q/PxgiI3FzeJibFy9Gvs+/RR///UXPD08ENS/f7v7JWlKQXh7eyMxIaHNdExZWRl++Tkb4yb03HnWmtByR+5uboiOjjYL0HqdzigGKlegrrYOBoPhlu6cQAB+F0b51uLXIweRPNgLD9w/CUAgVEolCgsL4ebu3u7vYyt4Dg5wc3eHm7s78xijodikDq5rsvIWCoVwcnJCTU2NsQm8h8ej0Whw+KefcNfjj1viUMxoK1DRf/R1q1arYTAYoNPpzCr+TEvTaamw9krT6UDVWmk6m74zYvP0XV1dHXJzc+Hj44Pw8PBWc7R//fUXBgwYYPUfjPZZ8vX17fjJrSCXy5GZmQk+n4/o6Ggz91f6+Dkmi7UGgwEymQwSiQQSiQQKhQLOzs5wd3dn/lrzeyJN60FeXl7Yt3s3ogMDMSIxEXP+/W/s3boVjbW10BsM8Pf3h1ajQUlJCQAgJCSkQxvvuro6HD9TjvgBY7r1HVgbymBAdU0NNBo1AgMCO2dLbqI7p1QqoVarTXyRjIUUL774AgBg167dVt3/H77/GjOfvAPhIa5GtQ6KMs5eGxsR3oPZhF3QtA5TVVWF+vp6ODk5gcPhwIXPN964m/TsupOOJMHBgEnZeG9C36PCw8Ph5eXVQnmh+fpUa5iWpkulUiiVSrPSdPo+sH//fuzdu9eah2Pz9J3dBiWFQoGsrCzweDzExsYaF63b4Nq1a4iLi2v3OZYgNzcX7u7ut9JjnUSv1yMvLw9isRhxcXFmFtN0GsA0GLWHWq1mgpREIoHBYIBIJGKClFAobPV9DAYDbt68icGDB+PH//0PVfn5eGDCBHy6bh1mP/UUQoODodXpOpUSyit1gVRhf+syMqkU1TXV8PHxafqOu399Mb5ITX+r310NAFiz5r/GtJ+F7Sbq6moRFe6F4pzfkTx8EIQiEZQKBQoLC+Hh4YHAwEC7mx11Fb1Oh8LCQjg4OCAkJMToFda0bkqvTymUxrywsCkN1hmPr4b6emz+8Ues3rq1tw4FgHHGlJ+fD5lMhsTERLNBcXvrU61V/LUGXZoukUiwdOlS5OXlgaIoPPXUU0hOTsbw4cPRv39/S6+ls0EJMA9KOp0OeXl5kEgkZutG7XH9+nVER0fD1cqjyPz8fLN8cUcQQlBZWYnCwkKEhoYiKCjITI2B1srqyUlFUZTZbEoulxvVp01mU817GxobG5GTkwMfHx9kZmbi7rvuQsaVK9j50Uf4fPNmHP/+e0SGhiIqKsrow2Ry0eRkZ2PNxsNYuGR1t/fZ0uh1OlRWVoLD5SDAP8Aqa0Rz5swGAHy08SMoVUqoVWqLpf30WiW2blqMz7evgbOLi1klWnh4uJn2XV+lscndtjMK5aYeX3KFAqqmWYPp+pSzSaOvSqlEank5JlohfdcWCoUC6enp8PPzQ2hoaKeba02v/eb33o5mVKdPn8ZPP/2EadOm4fLly0hLS8N3331nNjj6+OOPcejQIdy8eROBgYHIy8tr8T7r16/H5s2bIRaLMXr0aOzcuRMRt9bjOBwOZzKAjQAiAOQDWEII+c3kCVEAdgAYDaARwCZCyMYOv4BOYhdBSa/XQ6fTMetG4eHhCAgI6PTN+saNGwgPDzfzZrEGhYWFcHZ2btVGojlSqRSZmZkQiUSIjo5mPI7aStVZEq1WC4lEArFYDIlEAl3TDEgoFEIsFoMQgri4uBZqF/SM7ccff0RCVBR8+Hw8et99OH30KHKuXwcIQVRUFNILuNBT9uCRRNBQ34DGxkb08+9nogdneeigZJa+60Taz6kVFW+aivJyXPrjF7y9/D9w4BGAw4FCLkdhURG8vbzg7+/f52dHhiaZIIPBYEy/d7NKVK/TQa5QQCGXQy6XM42kdMWfS0ICnDs5WOwJ9ECzpKQECQkJZuoQ3aErFX+//fYbrly5gg8//LDN9/v222/B4XCQlZWFvXv3tghKhw4dwuLFi3Hs2DHExcVhxYoVOHXqFNLS0uiijUgAfwOYB+BrAI8B2AkgkRBSxOFweE3bfwewHEAcgGMAFhBC/q9HX0YTdlHoUF9fj4yMDPj6+nar36g3NOmAzmn0abVa5ObmQqFQICEhASKRiMkxdzVV112cnJzg6+vLrH3RaYbS0lIIBALo9Xqkp6ebzaZcTOyop02bxrzXkevXAaEQefn5IAoFAr29sWzWEixftAo8Ymz27d8/2GrH0hYatRoVFRUQCAS206sztZto6usxTftVVVZCq9MyKt502k+lUkKnUWDEICGCvRPg4AAQiqCstBQymQxRkZFtOtv2JaQSCUpKSuAfEGBUnujBOe/g6GiuvEAINE2Nvn///TeWLViADbt2wdXVFe7u7oz6giVTrDqdDpmZmeDxeBg+fLjF9DSBzlX8ZWZmoqKiot33+9e//gUA2LdvX6vbd+7cifnz52Po0KEAgDVr1sDPzw+pqakYP348ADwD4C9CyMGmlxzicDjPNz2+GsCdAEIBrCSEKAFc5XA4nwF4HsDtE5Q4HA6GDBnS7TWh3gpK7X0OIQSlpaXMTC8hIaHVVF1v+61IJBJkZ2fD09MTY8eOZU5+nU7HpPzKy8uh0WiYC5q+qOnKIQCYev/9AICioiLwo6PgNnQo/r5+HX9lZuHZQYPx7f79GDFwIIKDgiCRSCxuIkdDKAq1tbWQy+UIDAqEi4t93bxb2qET6LQ6Zt2ktqYWedkXIHKuwYDIhxEZFQWZVIrikhL4eHsjISHB5pV/PYUyGFBaWgqVWo2YmJjOFZt0Fc4t1Y87xo1D6syZgLs7U9VWVVWF3NxcpoLVzc0N7u7ucHV17dY1KBaLkZWVhbCwsE6n77tL80BFURS2b9+O77//Hv/973979N5paWlYvHgx82+hUIjo6GikpaXRQWkQgL+avexq0+P09hxCiLzZ9pd6tGMm2EVQ8vLyMhNR7Cq2DkqNjY3Iysoyc7KlZ0bWTtW1Bb02p1QqkZCQ0KKAwdHRET4+PmYd6gqFAhKJBBUVFcjOzgaHw2kxmwoLC8PGjRshFgNJQwYjachgAEDsvfdCFBSEapkMH23ahHXvvour51Mh4DkgLj4eBoOhx6NWRZP0jYenJyIiI2AHa7KdgANHJyc4OjnhxG9HMfHOUCxb9DBUKhWkMhkK8vOZ/hONRoP6+noIhUKzNZO+BJ1+9PHxQWgXZIJ6QmNDA66VlGDCww+3Wn4tl8shkUhQXFwMuVxuJszq7u7eruAqRVEoLCxEY2MjBg0aZPViquY0NDTgxRdfRE5ODrKzszF16tRWn/fGG2/g/fff7/D9ZDIZ3E3K9gHAw8MDUqmU/qcIgKTZy8QAEjvY3rM8pgl2EZR6Sm+m70w/R6PRIDs7GzqdDgMHDoSrq6tZmq43UnXNoXPexcXFCAsLQ1xcXKc+n8PhMBd0UFAQAONaHz2bqqysNKolqFTYvz8Fzz231KiDxjOO6pKSBhjfyMsT6z7fCQDgRkUBjk6ggoIw+8knsWPzZogrKtBQV4eExMRW96M1DAYDqiorodfrERISYhOR0JkzZnbzlQQ3b9zEXXfEYu6MYQgM8AOn6Xytq62FX79+8O/XD3qDgRFHrW8SR3VycmJ+E1eh0CZuqp2FUBQqKiogkUh6Pf0ok8nw17VrmPDwwy228Xg8ZlBFo9PpmNJrWiXe2dmZCVJubm5wdnaGSqVCeno6PD09MXTo0F7Pcly8eBFLlizBG2+8gSlTpkCj0bT53M66IYhEIkgk5jFFLBabro3JALg3e5kHAGknt/cYuzjLe3rT7u2ZEkVRKC4uRkVFBaNTZw+pOrlcjqysLAiFQgwfPrzVHqau4ODgAG9vb0ZtghCCmpoaDBjQiIaG+qb+JgJXV+ONUyQSwtnZhRkcDx48mHmvnT/8ACcnR9RrtSiTSpHg7491776LJx96CP08PVFcXIyYmJhme0AgFktQV1cLP18/uLm7wVazozuNqY2uQQicHCmU5v0C17vd4RMYDMpgQHFREVQqlbFXralDv4U4atOaiVwuh1gsRnl5OSiKAp/u6REKjc3UdlAIQcseubu7Iz4+vtf3KSQ0FK9OnNjp5zs6Opqd14Cx1UIqlULStA6mVCqh1+vh7+/P+FL11vVsMBiwefNmHDt2DD/88ANTGWeJQq5Bgwbh6tWrzLqxXC5Hbm4uBg2is3NIAzCh2cuGADhpsj2Gw+G4EkIUJtvTerxzTdhF9Z3BYIBer+/26wsKCsDn8xEQEGDBvWpJdXU1ampqIJPJ4Ofnh/DwcPB4vF6rqmsLvV6PgoICpoy+pxVBHVFczEFDg/H/DQaKUZWWy+VQq9VmI3yhUAgHh9bTdjU1tXB3d0dNVRUO/+9/eHn2bBz99luE+PoiPjoaN2/eRL9+/eAfENCn9OoA4yL/zm3vYP+u1XBw5DGPlZSUwM/Pz9jr1sVzpDXNOdoTif6uezXtR1tm1NUhPCzMZm692VlZ+C49HSs7kb7qCIPBgKysLOj1eoSFhUGpVEIikUAqlYKiKAiFQmY2JRKJLB6oampqMH/+fCQmJmLt2rVdtqrQ6/XQ6/U4cOAA1q5di/T0dABg5IkOHTqEJUuWMNV3K1euxIkTJ3Djxg26+i4KwE0AswF8C+BfAHahZfXdbwBWAIgFcBzAIkLI/yzxHdwWQamoqAiOjo5M2skaqFQqpKWlQafTYfjw4Yx3C10pY6tUXU1NDQoKChAcHMz0QVmTkpISTJo0F//732+tbicEzAif/gMIBIJbN05jDr/19y8oKIRcLodBpcJnW7bg0w0bkH39OuR1dRgxYgR0Wq1N0nfnzp4F0PGMqaG+HrXVxXhwcjxU8ir4+vnBoNcb9eA0GoSHhVnUTJD2RJI3K5W2dtpPq9GgoLAQfBcXBAcH97oorCmNDQ0ocHbG0Dvu6NH7SKVSZGRkICQkpNWWFIqimPUpWnCVy+WarU/RUmDd4ezZs1i+fDk++OADPPDAA916n3feeQerV7fsITS9z69bt65Fn1JkZCS9uXmfUgGAxa30KX0GY5+SGMBHhJANXd7ZNrgtglJJSQk4HA6Cgy1fmmwwGFBUVITq6mr4+/tDp9MhNja2V0u8W4NWSnd2dkZ0dHSvmX8RQlBQYIBU2vnUIEURs9mUSqWCk5Njs9mUA+RyBYqKiuDh4Y7AwCBwucbvNC8vH3K5DINj4/DKvHlYtnAhBBwg++90jBw1ylqHakarfUqmEAKKMsCgKUFR7jk88cRjAG65p/r7+xtL9K19npik/egZFUVRjNVEj9N+hKCuvh5VlZUICQkx07qzFXqdDprISAhM0nFdgRCC4uJi1NTUIDExsUtN+Hq9nlmfkkqlUCgUcHJyarE+1d79Qa/XY+3atbhw4QIOHDhglftYF7B5dY1drCn1lOYWyJaAEMJ4HAUGBmLUqFFobGxETU2NTavq6CBZV1eH2NhYi9podAaNRoPU1D8wcGDztHPbcLkciETGNadb76NtqvaToqysnGk87dfPD56e5q7BUVHMKA4b9+0Dl8tFeXkZKouKgaAgfLpxA8YOHoLBcXG4fu0aBg8ZjN6+tn47/iMCvWWYOeNRjBz6GPR6PUpLSqDVajt0T7UoJqXStIW4adqvqqrKzAq9K2k/vU6HoqIio81KfLzdFF5cvHgRh7Ztw/Y2enPaQ6PRID09nVmH7Wo6zsHBoYUhIN28TguuajQa8Pl8s0BFr/dWVFRg7ty5GDNmDE6cONHjdeDbAbuYKVEUBZ1O1+3XV1RUQKPRIDw83CL7Q+vuOTo6IiYmBi4uLozIaVZWllEqxcOj3VJSa1BXV4e8vDwEBAQYUyY2WOQWi8VYsGA9lixZY7H3Ky0tg6+vL4RCV8jlCmY2xTOx8BaJRHB0bP0mKJMZy3wNej22bdqE5QsX4vQvv4Cn1eLO0aNRWVEBv379erQu1dZM6czpU7j37gRE9OfBxcUZXB7PeEwlJQgIDOxx06i1aC3tRyt408HKVK5J3GTw179//1sGgHYEiY8HupgWra2tRV5enpl1jDUghBhbAJoKKfLz87FixQoEBQUhNzcXy5cvx/z58+3FlsLmJ+ttEZSqqqqgUChM86LdQq/XIz8/Hw0NDYiLi2N090x7jugSabFYDLVaDYFAwFhL0A2nlkatVjN9Q3SQtCVlZRzU1vbsPbRaHYqLiwEAoaGhTXI85uh0erO1KZ1OB4HAtPrMlUnxNaemphY6nQ5B/fph2cKFeGPJEjRWViI3LQ2TJk6EWqWCC98Fnb0GmwclhVwOXx8Bsm8ewcjhifAPCIBer0dxUREoikJYWJhN1r66TRtpPxc+H1qNBhwOB1FRUXZ5TMVFRSgSCnHnpEmder7BYGB6+BITE3st9U2j1WrxzjvvIDMzE/feey9ycnJw/fp1hIWF4f/+zyKiCD3B5kHJPubfPaSnJeGkyWyMLhigXWybV9VxuVyzqTohhKnOqaioYFTN6b4IDw+PHtlpUBSFkpISVFVVITo62qqjuc6iUCjw6qvvYPny7q1rEmIcoVZVVSE4OBienh5tPtfR0QGenh7McwgBk4aqrq5hqs9M16acnY03GD+/W/Yi67Z9CgBQCYXwcHEBwsPx0VtvYerdExAfFoazv53AvffeC+MYrBPCmgY9Pt6wGHt2voe4B42lyLTgaGBgoPF3ssPZUbu0kvaTSiQoLCxkqupot2emiKKZMKqtkMlkKJd2rk1GLpcjPT0dAQEBiImJ6fW14JKSEsyZMweTJ0/GL7/8YjZ7t/QSRF/ltpgp1dXVob6+HrGxsV1+rUwmQ2ZmJlxdXZmCgZ6UeNONeWKxGGKxGFqtFkKhkJlNddZlsqGhAbm5uYwKsS1Sda2h0+nw1VcpSEq6p8uvVanURpkiPh/9+/dvs1S8Kxh9aBSQy2VNaShdi14eusHXFEKMgwqpVILjvx7DEw89hIOff45+bm6YNG4crl66hIEDBzICovRM6dFp92LpggfhwNXCwdHRuM5SXAwQgrCwMIva0tsK0mSqqVAoEB4eblYtSPv+yOVyKJql/ehAZQsnXzJgANDOd08IQXl5OcrLyxlNyt6EEIIjR45gzZo1+OSTT2hJH3vE5qOp2yIoNTQ0oLq6GvHx8Z1+jU6nQ25uLmQyGeLj45neHtNUHe150hMIIUwZqVgshlwuh4ODAxOkaNtzGo1Gg9zcXOj1+g59pGyBsfpOC6m08ylEiiKoqKiAWNxodRtvQozpTrlcDplMBqVSAYADoZBe1Bc1VUO1fK1Wq4NOZwxqH773Hl5bsABpf/yBwvR0/Hr4ezihAqtWzjZKvXA4aKivR3l5ud2us3QHpUKBgsJC+Hh7GzXeOjr/CYG6Ke2naFbtZ9YCYMVB1ZnTp/E3j4eXFi1qdbtWq0VmZiacnJwQExPT6z1varUab775JkpLS7F3715G2stOYYMSYLzRabXabr+e7nhP7IR0DT1iomV4AgMDW03VWbOqTqvVMrYSEokEer0eIpGIcZqNiopCv379rPLZPUWtViM0dAyOHbvWqefLZHIUFxfBy8t4k2trDcia6PUGpiRdJpO1GN0LhcJWZ1MAIJXKcPr0T1ArM6FprMK8p56CkMPBnk8+wYwnnoC3tzdEIpFNZgcWhRgHDo2NjYiIiOiRhxOhKCjoJl+TohXTaj9LViPW1dZCHBaGyBaKIMYBa3Z2NiIjI7tszmkJcnNzMW/ePDz++ONYvHix3WQ82oENSkDPg5JUKkVxcTGSkpLafR6t9Ovh4YGoqChGONWWagyAUdA1MzMTzs7OcHBwYLS46NmUu7u73ZTfAkBFBQfV1e0/R6/Xo7S0DBqNGmFhYTYvzjDF2OCrNimiUMBULkkoFMLFxQXffvs1Bg70whNP3M28tqqqCjdu3IBUKsVj06bhg5UrERMUhMemTsWerVvxzMyZ4HG5diH/01nUajUKCwogEomMDdhW2HfTtJ9cLoeuSYTW1Livu4FdIZdDN2AA3E2U6SmKYlROEhMTe/38I4Tgm2++waZNm7Bz506MHDmyVz+/B7BBCeh5UJLL5cjPzzfVbzJDq9UiJycHKpUK8fHxTPrI1g2wdApRpVIhLi7OrGmPtj2nZ1SEELi5uTGBqrfL0WkIIfjkk+8wbtxjbWw3jk7Ly8sRGBgAb28fW6+DdwpTuaT09HSEhnrCYChAVFQIIiMj4eLigtzcXKZNwDTlSp+/2z79FIuffx4Hd+xAdUEBXn3hBaT8/jsGDhx4S9POnmhSBKmpqUFYeLhV06qtfbbatNpPLgchxCztJxAIOlVE8e0336DQ0xOvvvYaAGMxTHp6Onx8fBAWFtbr14lSqcSyZcsglUrx+eefd8o9246w+dV6WwQlpVKJ7OxsDBkyxOxxiqJQWlqKsrIyREZGol+/fha3I+8OpClVUlJSgvDwcGa/2sNgMDB9DmKxGCqVCnw+36wcvTdy5YQQzJy5HIsXr29xv9BotCgqKgKPx0NoaGibfUX2DJcL/Pe/L2H16gUIDQ2FWCxm0lrOzs7w9PRkvnNXV9dWfzeqqVlVKBRi1Rtv4MVnn0VtYSG+3rMH761cicK8PHh6efV647MpOq0WBQUFcHZxQYiNZYJoTNN+crkcapNeNXpG1VbajzRd+7RCfnx8fAuLht4gIyMD8+fPx6xZs/DCCy/0hXRdc9igBPQ8KKnVaqSnp2PYsGHMY3Qu2cfHBxEREXYhnAoYq/2ysrLg5uaGyMjIbqfl6IY8eiYllUoZ/yP6pmmtlEVlJVBVdet7IwSorq5CbW1dU2Ox7aVnuopcrsDbby/CTz99ApHI+L2p1WomrRoTEwMulwuZTMYMDGhJGVPPqbZ6XlQqFcrLyxEVFYX1776LUUlJGDlgAFYvW4Y1b70FmUwGR0fHXrF8oAs0QkJC7HMGZwJtg9487UcHKldXV9y4eROq+Himoi4uLq7X092EEBw4cAA7d+7E7t27WwyQ+xBsUKJpzyukI7RaLdLS0pCcnAy1Wo2srCxQFIW4uDgIBAJGjNCWqTq6MVcqlSIuLs4qJamm/kdisZhxk6WDlKVUjadMeQ7vvrsLDg4OUCiUKCoqYtYj2ioYsFcUCiXy87Px4IODUVqahkGDBjHFMGVlZYiJiTGTkGmORqNhvnO6aIVWku6oBUCtVuPs2bO4b+JEfLFtG2RVVVgwaxa+2LYNDz/wANzo38tC56per0dRUREAGMvX7WidstMQYqyubApUCrkcaTdvoiYoCBMnTkRISAiEQmGvXt8ymQyvvPIKHBwcsG3btl4vN7cwbFCi6UlQ0uv1uHLlCvz8/JhGU19fY/OkPaTqqqurUVhYiJCQEKbar7c+W6FQMLMpmUxm9O0xae7tTjf7d9+dR0jIKFRUVEImkyEsLAyurt2v1rIVFEUgFhfi1193YsMGo820SqVCZmYmBAIBUwzTtfe8pSQtkUiYFgDT2VRHDdU7duzAs//+Ny6eOIEfDh7EJ2vX4uKpUwgPC4N/N+1ZaGHYoKAgeNlBE7ZFoCsGpVJ433MPM0CQy+VwdHRkvm83NzerZQ3S0tLw4osvYsGCBXjuuedsss5rYWx+ALdFUKqpqcH169cRFRWFsLAwcLlcu0jV0UreLi4uiIqK6nU5k9bQ6XRMkBKLxczI3rS5t6Pv6Y8/CpGVJUe/fn7o18+/TxQyNOeXX45ApcrG++8vBWAM4GVlZSgvL0dsbKxFF6dpgU76j26opm+a7c1g1Wo1XFxcsP3TT3H3qFHwdHLCshdfxBfbtqEkPx9OTk7tBirKYEBJaSk0ajUiIiLsUiaoO2g1GhQUFEAoFOL3M2cgGD0ajz12q/jGVBRVIpFAo9FAIBCYBaqerMFSFIXdu3fj4MGD2LdvX6faUfoINr+a7SYoabVadLAvLVAqlcjKygKXy4VcLscdd9zBeBvRPke2CEYGgwGFhYVoaGhATEyMTRe0O8J0ZE839zo5OZmVo9OVZnQV44MPzsGuXcfg5dWnqooAAOfPX8Dw4RGIinKGszMPIpEISqUSmZmZEAqFiIqKsnrBSGszWB6PZ1Zd2dbIXt/kzRQeHo4Du3dDxOVi2qRJWPbSS3hn2TIQioJep4OHpyfkcjmKCgu7bSpor9CSTqGhoXBzd0dNQwMwcCCTHWkNU0kw2maCEAKRSMSc520VrrT4/MZGLFiwAN7e3tiyZUunrcj7CDY/SfpkUDIYDCgoKGDsG7y8vHDhwgWMHj3apqk6wKjrlp+fj8DAQPTv378vVt9Ao9GYNfcaDAamfyosLAzOzsGoqOhbx6XV6iAQOOLUqb0YP34wBg8eDEIISktLUVFRgbi4ONtWwzXJU5muB9Ijew8PD2ODbhvBkhCC33//HRPvuQcnDh/GhRMn8Nzjj+O7/fsxbcoUREREGH/DPi6BRBkMKC4uhl6vR3hEBJNarRWL4TBkSJd/P7pZnT7PlUolHB0dGYuJ1lKtly9fxsKFC7FixQo8+eSTt0O6rjk2P6A+FZTo9Zn8/Hz079+fsW8ghCA1NRUDBw4En8+3iDxQV1GpVMjOzgaPx0NMTEyPhFjtCXoWQY/kZTIZvvjiVwwe/CC8vLw6VESwByiKYN68R/Djj1sRHBwIwJhazczMhLu7O1OdaU+YjuxNqytNb5it9arJ5XJkZGTA19cXV69exR2jRkFSXo4VCxbgh4MHcfnMGXi6uyMqOtpGR9Y9aPkjP1/fFrO+T3fuRP8pU/DQQw/1+HNaS7V+8803EAqFUKlUuHz5Mg4dOoRoK3x/FEXhjjvuwMWLFxmbEADYv38/Vq9ejcrKSiQlJWHbtm1mlcZXrlzBiy++iL///hsBAQFYvXo1nn766e7uBhuUaDoKSnK5HJmZmeDz+YiJiTETTqWrperq6qBSqRg7CXqEac3ZCkVRKC4uRnV1dYeVWn0JWqG8urq6hZnga6+tw+TJ80BRBhNFBHRKX643kUplOH78CFas+DcIkcDd3Z1xGa2urkZcXJxNelm6C+1ySt8w6V41eo1EKpWipqamVcFRnU4HR0dH/PDDDwjy8sKQmBhMmzgRh7/8EnVN4qt2GagIQVV1Nerr6oxNzK2VzDs5gVhpTYcQgvPnz2PDhg2or6+Ho6MjCCEYMmQIXnvttR7b5ZiyceNG/Prrrzh58iQTlFJTU3Hffffhhx9+wPjx47FlyxZs3LgRubm5cHNzg0QiQVRUFF599VW88sorOHfuHKZPn44TJ05g9OjR3dkNNijR6HS6Vu0n9Ho98vLyIBaLzRri2lJjoEeYtEo3XXHWlgBqT6ivr0dubi769etnV0rePUUikTA9XnThiCl1dUBpqfm5azBQTC8JrS/n4uICkUjE9JT0lu4dIcYy3aAgJxw+vA2vvLIAPB6PGdh4enoiIiKiz/9epKk8ura2lin1pq246fNdIBC0mjWgB3L9+/fH8V9+QWVeHp597DGsWroU82fMgLeHBxrq6xEYFNTLR3ULvU6H/Px8uLi4ICQkpE35o+NnzqD/ffchISHB4vuQmpqKV199FatXr8a0adPA4XCgUqlw7do1xMTEWExcNScnB1OmTMF3332HIUOGMEHpmWeeAUVROHDgAADj7xYaGor33nsPzzzzDPbu3YtVq1ahuLiY+Z1nzJgBBwcH7N27tzu7YvOgZLeNCrTqQVFREUJDQxEbG9sp4VQOh8M01QU1XVC0AKpYLEZRUREMBgNz4XbHQVatViMnJweEEAwaNMjulLy7C91LJZfLkZiYaCZ7ZMqcOXPw8svr4e19a1bI43Hh7u4Gd3dabf2WWjd906S9eOhA1ZqxnyX4668LSEk5iP37P8XSpa+AoigUFhaitrYW8SZNlrcDjY2NqKioQFJSEjw9Pc3WSWgjO2dnZ2ZARltxczgcJj1039SpzPvd/8or8ExKQtaNG9j91Vf4ZO1afH/gAGJDQpCYmAilQgFBG+eFJaHde4NDQjpcK+I5OFh8gGEwGLBhwwacPn0aR44cQWhoKLONz+djzJgxFvssiqIwa9YsrF+/vsWxpqWl4dlnn2X+zeFwMGTIEKSlpTHbhw4danb/Gjp0KBPE+iJ2GZQkEgmjejBixAhmykxbSgBdK/F2cnK6VYGEWwucYrGY0cTrTMqPavKZqaioQGRkZLvVPn0N2ho6JCSkQ/OzV15ZBD6//Rs7hwPw+S7g813g62scTZqKclZXV5s4yYoYrbOezKZOnz6Dfv2AWbPuxDPPGHPutF+Wj48Phg8f3udnRzRarRYZGRlwcnLC8OHDmUV/Ho/HnMf0jZTWUayvr0dBQQEMBoNZ1ZlpG8CIESMAAINGjsTHhw6BAPAaOxYuQUGQ8PmYcuedOP/bb7j5xx/QKZUYNny4cQRioVwtaUobq9RqxMXFdaqEfeKkSSBxcRb5fMAoujt37lwMHz4cJ0+etFhmpS22bNkCf39/PPLII8yMl0Ymk7VIMXt4eEDaZGrY0fa+iF0FJa1Wi9zcXCiVSrO8uKWFU00vXPr96ZRfWVmZWcqPToMoFArk5OTA29sbycnJdrcw3l00Gg1jtT506NBOFWh4e3tDre76b2D6nQK3nGRlMhmqqqqgUqng4ODAFE+IRMJONa9WV9egf38fJCeL4OnpBB6PAw7HAfn5+aivr7/tZkc1NTXIz89HVFRUpwZGLi4ucHFxYexQKIpiZlNFRUVMG0BbckmmhnQpubkAlwtxRQU0MhlIWBgeuvtu7NqyBQ5aLUqKizFk6NBuHZdapUJ+fj68vb2NAbWT1/lbb7+N+xYtwtixY7v1uTSEEJw6dQqvv/46PvzwQ0yZMsXqBVN5eXnYuHEjrly50up2kUgEiURi9phYLGbWskQiUYtAJhaLGX+4vojdBKXy8nIUFBQgIiICCQkJvepx1F7Kr7a2Funp6TAYDPDx8YFAIGDWS/pyOaiplE5UVFSXcuOLF7+CJUs+QUCAf4/2gcMBXF0FTWoQxhumTqeHTCaDTCZDRUUFYxhHp/yMqVbz99m5812sXPkMxo0bDsBoZZKVlQVfX9/banak0+mQk5MDg8GAYcOGdbsZm8vlMsGHhlZDEIvFTNl1a3JJ9Hc5btw45rV7TpyAl5cX0q5fx7lLlzA4KAgfvvUWptx5J5JiY5Gbm4vY9mYyhKC2thbV1dUIDw9n7Nc7y8JFiyDoodacTqfDBx98gL/++gvHjx9HYGBgj96vs6SmpqK2thYDBgwAAOZeN3DgQLz//vsYNGgQrl69yjyfEILr16/jkUceAQAMGjQIP/zwg9l7Xrt2rU3HhL6A3RQ61NTUwNXV1W48juibdmlpKSIiIuDt7c2k/MRiMdRqtVV05XoDuVxuJgrb1VlfQwNQXNw7vwdFESiVtEGf0TDOyckRLi4u2L37U+zc+ToCAtzB4XAYD53GxkYzi5LbAVpgOCwsDP7+/la/HiiKMmvwlcvlTIahM3JJOTk58PX1hVomw/KXX8aBHTtw7LvvIORwcMfYsZCIxXD38DDq8RUWMsry3VErz6+uhu/Ysd2eDZeVlWHOnDm4++678eabb/aqJqBSqURDQ4PZvowePRqXL19GXFwcrl+/jsmTJ+Pw4cMYN24cPv74Y6xfv56pvhOLxYiOjsayZcuwaNEipKSk4OGHH2ar7yyBXq9nUnS2FE4FjCPt7OxspoeltZO0ta58Wm+LvnCtnYvuKvSCf319PeLi4ro9xd+69RASEh6Ap6eHZXewExgMFLKzs5CU5IO//voZcXGx4HK5cHFxgVQqhb+/PyIjI/vMAKEjDAYD8vLyoFAokJCQYFOzRK1Wa1aSTgv+mjb4tve937hxAzwuFwnh4bhz2DD8b/dupF24AL1cjoenTev22tQ7GzfikeXLOzT5bA4hBL/++iveffddbN68GXfffXfHL7IyRUVFCA8Pb9Gn9M477zB9Stu3bzfrU7p8+TJeeukl3Lx5EwEBAXj33XfZPiVLoNPpzMrCbWW6R1efxcbGdnnkZZoCkUgkoCjKrMrPlim/xsZGZGdnIyAggGk67i4bNuzC4MGPmlXf9Rb19WXYtetNfPXVHnA4HBgMBuTm5qKxsRHe3t5QKpVmXlMdqSHYM1KpFJmZmYw6iL2li+mBGR2kZDIZY59C/7V2ztMzWrFYDB6Ph9KiIjx0zz145tFH8dqLLyLS3x+XLl7EXRMmdG5H3NxAutgvpNFosGrVKuTm5uKLL76wiVW6nWLzk8xugtKECRMQEBCA0aNHY/To0YiLi+u10S4hBFVVVUz5eUBAgEVuALQxX2spPw8Pj3ZtDSwF7W6r0WgQFxdnkfJ1sRgoLOzdc/f8+fMoLr6IdeuWMoNp2t4+MDAQwcHBZr1qtvKasgQURaGoqAj19fVISEhoszTfHjG1T5FIJFCr1WZCqI6OjsjKyoKXlxfCw8PNrjNa5qeqqgoHPv8cry9ahB0bNiAqIACTxo3D3zdvIj4+voVt+p7vvsPkl15CQCcV1AsLCzFnzhxMmzYNr776ap8csFgRNijR6HQ6pKWlISUlBefPn0dWVhZCQ0OZINXZyrCuIpfLkZ2dzVgVWDPlZpryo8VPHR0dzar8LJXPNrXM6Ky7bWd54ol5ePzx1xEREW6R92uP3Nw8+PuLEBnJg8GgQEhICJPSksvliI+P75QgJn2zpAOVtbymeopCoUBGRga8vb1bbVzua5jKJVVWVkIsFoPP58PLy6tduSSayspK8Hg8eLq748kHH8TXe/fij5MnUVdUhGkPPoj6ujqkpqdjzNNPd1isQwjBDz/8gPXr12Pbtm09rta7TWGDUlvQU/xz587h/PnzuHr1KkQiEUaOHIkxY8Zg5MiRcHd37/aNlhZ1bWxsRGxsrM3kZmjxU/pmSQgx8zvqzsxGpVIhKysLTk5OiImJsXigTUsrglIZCBcX6+n7EWK0Jv/5550YOTIcEydOBGBc8M/JyUFQUFCPUlrteU3Rgao3rUZocdjKykrEx8f36ZLe5uj1emRnZzPGm1wu10x8VqVSwcXFhfne3dzc2h2cFRUVobGxEUMSEvDvhx7C22+/jfgOAoxKpcKKFStQV1eH3bt33zZyYFaADUqdhTSVjZ4/fx4pKSn4448/oNVqMWzYMIwaNQpjx45FUFBQhzcp+n1oUVd7y9UbDAYz99iupPwIISgpKUFlZaVVdfjS0gqhUASCz7dOCowQ4NVX5+Pjj5diwACjHpter0dubi5UKhXi4+OtoqJhKsbZXa+p7qBWq5GRkQFXV9desc7oTSQSCTIzMxESEtJmWpyWSzJN+3XXVqI1srOzMW/ePMyYMQMvv/xyn599Whmb3wz7TFBqDYVCgUuXLiElJQWpqamoqqpCQkICRo8ejTFjxiAuLs7sApfJZMjLy4OjoyOio6P7hJJ3Z1N+dG8Onau35o3tmWcWYOrURYiJsayAp0ajxZkzv2PWrMnQaMqYAQOtMRgcHNyrzr2015RpWXRrkj3dhV7LLC4uvq3EfAEwwre1tbVITEzssudQc1sJhULBfPfNfb7a24cvv/wS27Ztw+eff47hw4f35JD+KbBByZLo9XrcuHGDCVJZWVno378/kpOTUVRUhIqKCnzxxRcWdRW1BaYpP3o2BQChoaHw9/e3+iK+TAbk5Vn23NXp9HB1NWDPnlX44INVcHFxMSvSiI+Pt4vihOYjelMdxfYEUJuj1WqRlZUFHo+H2NjYXu2NsTZqtRrp6elMH5ylZiatffdtySXJ5XIsXboUer0eO3bs6FNq8DaGDUrWhKIoHDx4EG+//TbCwsIgk8nA5/MxatQojB49GqNGjYKHh4ddpe+6Ql1dHfLy8hAQEAChUGhmEEenneiUnyWPcfv2g+jffwLTR9FTMjPT8eWX63D06D7msbq6OuTm5vZas2h3oSiKqbCkjeJM10fc3d1bzFppncHIyMjbrhSZPjbafNOaNJ/J5ubmYtOmTYiNjcXly5fxwgsv4JVXXrFoum758uU4evQoSktLIRQKcf/99+PDDz80O9Ze9j+yNDa/0G7roHTixAns3LkTmzZtQv/+/UEIQX19PbMudfHiRahUKrN1KdPSYntFq9UyC8exsbEtZhCEELOLVSaTMRbnlqjy27//e/j4jO2xzNCNGzfB5crwxBOjoFRK4OHhwUjp6PV6xMXF9YkUqyn0+ohpOToAuLm5QSQSob6+HgaDAYmJib1aSGFt6H4xtVqNhIQEmxwbRVHYunUrfv75Z8TFxaGgoAANDQ0YMmQIdu/ebZHr+vXXX8djjz2GAQMGQCwWY+bMmXBycsLhw4cBwBb+R5bG5je/2zoo0aoQ7aFUKpl1qfPnz6O8vBzx8fHMulRCQoLdLDwTQlBZWYni4uIuj7Lp1Ad9swTQorG3sygUQE5O989dhUIJodAF1dVXwOWKMWnSJAC3RtmWLmG3NXq9HuXl5SgqKmJu1r1pRGlt5HI50tPTbdrkK5FIsGDBAohEImzdupXp7aKrbK3hFAsAP//8M/7zn/8w15QN/I8sjc0vutsnkd0Knbk4BAIB7rrrLtx1110AjCfxzZs3kZKSgo8++giZmZlmTb3Dhw+3iX+SQqFAVlYWXF1dkZyc3OWZTnOlaLrKTywWo6Kiokspv5deegl33DEHw4Z1Tw36449XY9asiZg82VjmTc/8CCE9Ehq1R2hpJ6lUihEjRoDP55up0peXl0MqlYLH45mVo/eFGSIhhLFySUxMtJnW4NWrV/Hyyy9jyZIlmDFjhtl5y+PxrBaQAODkyZMYOHAg8+9/ov+Rpbmtg1J34PF4GDx4MAYPHowFCxaAEIKioiKkpqbihx9+wBtvvAFnZ2eMHDmSWZfy8vKy2uiQtluvqalpYUveE3g8Hry8vJhcuGnKj7YzcHZ2Nkv50TPG1avfQUVF1xaODQYKn322FW+99SwOHFjN3HSrq6sZdXg6YN4uyGQyZGRkwN/f3+xG1JoqvU6nYwYJpaWl0Gq1ZoMEo3Ov/cymaD8nFxcXDB8+3CbZBIqisH37dnz77bf43//+hzgLeip1hu+++w6ff/45zp49yzz2T/Q/sjRsUOoADoeD8PBwhIeHY8aMGSCEoKGhARcuXEBKSgq2bNkCpVKJIUOGYNSoURgzZozFrNHFYjGys7Ph5+eH5ORkq96UOBwORCIRRCIRgoODAYBZG6mpqUFeXh4AwN3dHWVlDTAYYjrdPFtVVY34+H6YMKEfvLw4cHZ2ZqrPOBzObTc7ogcydDl0Z2YQjo6O8PHxYVQJTAcJxcXFTCuAPQj+1tfXIycnp9N+TtbahxdffBHBwcE4e/Zsr1dmfvPNN5g/fz5++uknDDXxj/on+h9Zmtt6Tam3UKvVuHTpElJTU5GamorS0lLExsYy61KJiYldSrfp9XpGGTouLs5utM9oqZ633loDX9/xiIiIYJxjRSJRUzm0+WvE4jqsWvUsTp/+ETwez0z+yJY3NWuhVCqRnp4OT09PREREWHQgQXt80TMquiSaDlI9aTDtDBRFIT8/HzKZDImJiTZLMV68eBGLFy/GW2+9hX/961+9voa1d+9eLF26FEeOHGkhVfTMM8+AEIL9+/cDMA4uwsLC8O677zJrSu+88w6Ki4uZ18ycORM8Ho9dU6J3gA1KlsdgMCA9PZ0pnvj777/h7+9vti7VVjMh7SpqSWFYS6NSAVlZHDPnWLlcBqXS6HUkFIpQVlaGgoJLWLv2ZXC5xoITjUaDrKwsODg4WEX+yJaYmibGx8f3Sl8M7SBLByqFQgEXFxez5l5L9T8pFAqkp6fDz88PoaGhNjkvDQYDNm/ejOPHj2P//v2IiIjo9X34+OOPsXr1ahw7dgzJyckttqempva2/5GlsfkNhw1KvQAt/5OamoqUlBRcuXIFjo6OZutSMpkMO3fuxNNPP42YmBi7Tmft2nUQrq7JrebwKyuroFZL4eEhQXHxTSQmJsLNzY1Je8bGxnbJ5bYvoNFokJGRAT6fj+joaJtWa5qWo9NyPabNve2Jn7YGXfFZUlKChIQEm6WZqqurMX/+fCQlJeG///2vza4PDocDBweHFrNEuVzO/H8v+x9ZGjYo/RMhhEAsFuPChQs4d+4cvvvuO8hkMtx5552YOHEixowZg/DwcLta2Dbl559PQq+PRUhIcIttP/64CzExAjz11L8B3CoXJoTAwcEBOp2OSTnRC/j2OBvsLFVVVSgsLERMTAy8vb1tvTstMLVPkUgkUKlUjJVER15TOp0OWVlZ4HK5NlWdOHv2LJYtW4Y1a9bggQce6NPnSx/A5l8uG5RsSHFxMWbMmIHRo0djxYoVSE9PR2pqKs6fP4+ioiLExMQwxRNJSUl2I0Wj0QAZGebn7tq172LhwocwduwgAMbAW1FRgZKSErMbtmkXvlgsZjTNPD0921RAsEfoGzaHw0FsbGyfSUWaek2JxWIzYz5Trynaq4pW1LAFer0ea9euxYULF3DgwAGmAIfFqrBB6Z+MVCpFQUEBBg8e3GKbwWBAZmYmsy518+ZN+Pr6MutSycnJndZZszQLF76KoKDJmDRpEv788088+OAI1NffRHx8LJycnKBSqZCZmcl4VHUUTE0N+SQSidlN0sPDw+56dujqs9uljL2515RMJgMhBMHBwfD19e0VM8rmVFRUYO7cuRg7dizeeecduxmQ/QNggxJL56AX0mmx2cuXL4PL5WLEiBFMoPL19e2VINXQIEdurgucnQk++mghtm79kFk3KisrQ3l5OWJjY7stfGt6kxSLxdDpdC16dmy10J6Tk8NI6dhbsOwpKpUK6enp8PDwgJ+fH+N51JteU4QQnDhxAm+99RY2btyIe++91yqfw9ImbFBi6R6EEEgkEly8eJGZTUkkEgwaNIgJUpZUaDbl2LGTeOutT/Dnnz+AyzWew0qlEpmZmRAKhRb3BGot5UeLntJVZtZO+dHprP79+3fKt6uvQTcxx8XFtTqYoL2m6NmUqdeUpQYKWq0W7777Lv7++2/s37/fZmnDfzg2P7HZoHQbodVqceXKFaZfqqCgAFFRUUy/1MCBAy2y9kG7pIaEhDD/X1FRgbi4OIspTnT0+XSVmVgshlQqBYfDYW6QHh4eFhvJ0w7IYrEYCQkJXfYFsncMBgOys7Oh1+sRHx/f6fOjI6+pror+FhcXY+7cuZgyZQpWrFjRJ9YVb1PYoMRiPSiKQlZWFpPyu3HjBry9vZniieTk5B7ZWigUCmRmZsLd3R0RERE2vZGYyvRIJBKLpPzkcjkyMjJs2ptjTaRSKTIyMixmnmgq+iuVSkFRlFlzb2troIQQHDlyBGvWrMHWrVtx55139mgf7BmKouy2otYEm5/kbFD6B0H3nNBB6tKlSyCEmK1LdUadm3YVra6uRlxcnF0aqNGNpfRNsispP9PjS0hIgEgk6uW9ty5031x1dTUSExOtphhCu8c295qSSqVQKpUYPnw4PvzwQ5SWlmLv3r026V8zGAxYsWIF9u3bB7VajXvvvRefffaZRfaFEIK1a9ciKSkJU6dO7QsBCWCDUvdRKBQYOHAgiouLodfrzbatX78emzdvhlgsxujRo7Fz506z7u9jx45h6dKlKCgoQGRkJD766KN/5IIqIQRSqRR//PEHsy7V0NCAgQMHMkEqOjra7GKSSCTIycmxioyONWkt5cflcs2q/OjKwYyMDIu7ptoLGo0G6enpzNpfbx4f/RtcvHgRu3btwpUrV+Dg4ICHHnoIY8eOxZgxY3q97PuDDz7AF198gWPHjsHb2xuzZs2CUqnEr7/+apH3f/3115GVlYWamhqsXbsWY8aMsfdzig1K3WXBggXIzMzEmTNnzILSoUOHsHjxYhw7dgxxcXFYsWIFTp06hbS0NPB4PBQUFGDAgAHYuXMnHn/8cXzzzTeYN28e0tPTERYWZrsDshO0Wi2uXbvGBKm8vDxEREQgOTkZ+fn5jKX87SAgaZryE4vFUKlU0Ov16N+/PwIDA21Wcm8taDdfWzb6EkLw9ddfY8uWLfjss8+QmJiIy5cv48KFC1Aqlfjggw96dX9CQ0Px9ttvY/bs2QCA/Px8REVFobCwsEf3A4PBYDYTf+qppyCRSDBmzBi8/vrrPd1ta2LzE75PBqVz585h4cKFWL9+PaZMmWIWlMaPH48777wT7733HgDjuoCfnx9+/fVXjB8/HqtWrcKpU6eQkpLCvGbcuHGYOHEiVq1a1evHYu9QFIWjR49i8eLF6NevH9RqNdzc3Jh1qREjRkAkEvXpm7dGo0FmZiYcHR0REBDApJzodJOnp2eH6gf2jMFgQF5eHpRKpU0db5VKJZYtW8ZIanW3ZcBSSCRGt+Nr166Z9Qq6u7vjwIEDeOihh3r8GXRwEovF2Lt3L/bu3YvFixfjueee6/F7WwmbX8h9riNNqVRi7ty5OHjwIBQKRYvtaWlpWLx4MfNvoVCI6OhopKWlYfz48UhLSzPToQKMJlu0CReLOenp6fjwww/x448/IikpiVH5TklJwcmTJ7FmzRoYDAYMHz4cY8eOxejRo+Hv799nghQtgBsdHc2sI3h5eSE0NNRM/aCiogIymazVlJ89Qxdr+Pv7IyYmxma/S0ZGBubPn485c+Zg/vz5dpHCoj2MLOlv1HyGRP+/h4cHnnrqKTQ2NmL79u0YP368TQRl+wJ2E5SeffZZfPHFF21uf+ONN/D+++9j5cqVePDBB5GcnIwzZ860eF53TbbS09N7fhC3IQMGDMDZs2eZ8l4OhwN/f3889thjeOyxxxjfH3pdau/evairq8OAAQOYdanY2Fi7uAmZotPpkJ2dDYqi2vRz4nA4EAgEEAgECAwMZF5HL9yXlJRAr9ebafnZS8qPbrYuLy+3abEGRVE4ePAgdu7ciT179rSqXmIr6O+kNf+j7qSnCSFMEPrqq6/g7OyMQYMGMV5Kfn5+eOCBB3Dz5k0cP34cL7zwQg+P4PbEboLS1q1bsWHDhja3CwQCpKam4pdffml3VtOWyRZ9knW0ncUcWhW5ve0ikQiTJk3CpEmTABhv3NevX0dKSgrWrFmD7OxshIWFYcyYMRg9ejQGDx5sUzWEhoYGZp+6OqtzdHSEr68v4wNlah9Bp8j4fL5ZlV9vB2SdToeMjAw4OTnZzBUWMA4AX3nlFTg4OODcuXM2s0tvCw8PD4SEhODq1atMsCwoKIBUKjWzOO8IQozWLBwOB1qtFpMnT0ZpaSl4PB7Cw8OxcOFCTJkyBQAwYsQIeHl54erVqwD6TJl4r2I3QUkoFHZ40v7+++8oKytDSEgIAOPFZzAY4OPjg7179+LBBx/EoEGDcPXqVUybNg2AMX2Rm5uLQYOMQqGDBg3C6dOnzd732rVruOeeeyx/UP9QHB0dkZycjOTkZCxZsgQURSEvLw8pKSnYv38/lixZApFIxKxLjRw5Em5ublafYdBrKwqFAkOGDLGIWymdznN3d2815ZeVlQUej2dmK2/NlB8dcCMjI+Hn52e1z+mI69ev46WXXsLChQvx7LPP2sXssTXmzZuHDz/8EBMmTIC3tzeWL1+O++67r9NFDqbpOkIIMjMzMXjwYJw6dQo3b97Ejh07sHHjRsTExDAzpoULF+Lhhx9GXV3dbWfjYgn6VKGDVCo1y/VevHgR//73v1FUVARvb2/w+XwcOnQIS5YsYarvVq5ciRMnTuDGjRvg8XjIz89HUlISdu/ejX/961/49ttvMWfOHLb6rhchhKCmpgbnz59HSkoK/vzzT+h0OgwbNoxRn7BEM6cpEokEmZmZCAoKQv/+/Xv1Jkmn/EwlekQiEaOMbomUH608IZFIkJiY2Ov24Kb7sWvXLnz55ZfYt28fEhISbLIfncVgMGD58uXYt28fNBoNJk2ahJ07d3YqWNAzJABYvXo1I7CcnJzMVNidOXMGmzZtgqenJ/bt2wcAKC0txezZs3Ho0CF7dF62+eihTwWl5pw5cwYTJ05s0ae0bt26Fn1K9CgFMO9TioiIwKZNm/6RfUr2hFwux59//smUotONnXSQio2N7VYaiqIoFBYWoqGhAQkJCXZhLU9RlJnHUU9TfrQFu4+PD8LCwmw2K2lsbMTLL78MX19fbN68+baTZFKpVODz+aDvmRwOB2q1GvPmzcOlS5cwadIk/O9//8O0adPw+eefM687cOAAdu7ciXHjxmHNmjUAgE2bNpkVZNkRbFBiYWkNvV6PtLQ0JkhlZWUhODiYCVKdSb8pFApkZGTA29sbYWFhdpu7b+5xJJVKzVJ+Hh4ebWrSVVZWori4uNcs2Nvi0qVLWLRoEVauXIknnnjCbtN13aWhoQGPP/44du3axWRUrl69iqNHj6KyshLbt28HABw/fhxTp07Ft99+i+nTpwMwrlmvW7cO/fr1w8KFC+39u7H5zrFByYJoNBosXLgQp06dQlVVFTw9PfHEE0/gvffeM7uBsooTXYdOT9FB6urVq3B1dcWoUaMwevRojBw5Eh4eHuBwODAYDLhx4wa0Wi3i4+P7ZBGLqSq3WCyGwWBgbM3pIJWdnQ0AiIuLs5nfEEVR+OSTT3DkyBF88cUXiI6Otsl+WJvi4mLMmTMHR44cYa7ldevW4YMPPkBSUhLOnj3LzOTffPNN7NixA9euXWMUKuRyud0VerQBG5RuJxQKBdasWYMZM2YgOjoaZWVleOSRR3DHHXdgy5YtAFjFCUtBCEFdXR2zLnXx4kWo1WrExcUhIyMDd955J95///3bxhzONOVXW1sLqVQKoVAIf39/prG3t2eCdXV1eP755xEdHY1169bddv5SzRkwYAAWLVqEuXPnMo8tWrQI169fx9tvv80US1EUhQkTJqCmpgaZmZm22t3uwgal251PP/0UO3fuZMrYWcUJ60AIwZ49e7B27VrcddddKCkpQUVFBRISEpiUX3x8fJ9UZKAhhKCoqAh1dXVMAYGprbmpEV97KT9LkJKSgtdeew3vvvsuHn74YXtPSfUIumz7gw8+QG5uLjZs2MAUQlRUVGDmzJkIDw/H0qVLERcXB8A4szpw4ADefPNNW+56d7D5D3l7DCPtmJMnT5r1PLCKE9bhzJkzuHDhAv766y8mXafX63Hz5k2kpKRgw4YNTPUdHaSGDRtmsyq1rqJWq5Geng53d3cMGzaMmRW5uroiKCgIgDHlRwepoqKiFik/Pp/f4+Ch1+uxYcMGnD17FkeOHEFoaGiPj81eMK2mM/03/V1HRkbi+PHj+OOPP/DAAw8AAAIDA/Haa69h9erV+Pbbb/Hiiy8yiiB9MCDZBWxQ6iSdVZwwZfPmzUhNTcWVK1eYx1jFCeswYcIETJgwwewxBwcHDBkyBEOGDMHChQtBCEFhYSFSUlLwzTffYMWKFXBxcWHWpUaNGgVPT0+7G/XTUkixsbHw8vJq83lOTk7w8/Nj+pNMU345OTlQqVQQCARMkOpqyq+qqgpz585FcnIyfv/9d6vOxGwB/btfuXIFgwcPbpH6ffLJJ3Ho0CHs3r0bgYGBGDp0KADgvvvuw9WrV/HFF19g5MiRTBM5S/ewz3IkO2Tr1q2ora1t86+58u+mTZuwdu1anDp1imn2BVjFCVvC4XAQERGBZ555Bjt37sSVK1dw+PBhjB8/Hn/++SeeeOIJjBs3DgsXLsSXX36J4uJidJDetioGgwEZGRmorKzE8OHD2w1IrcHlcuHh4YGwsDAMHjwYo0aNQlRUFBwcHFBWVoZLly7hypUryMvLQ11dHXQ6XavvQwjByZMnMW3aNLz66qv473//a9WApNFoMH/+fERHR0MkEiEkJASvvfYa1Gq12fPWr1+PoKAguLq6YuLEiSgoKDDbfuzYMSQmJoLP52PAgAH47bffOvzsn376CbNnz4bBYABFUczjBoMBAPDJJ5+gqqoK27dvN0uxr1y5EmvXrmUDkgVgZ0qdpDOKEzTvvfcePvvsM5w9exaxsbFm21jFCfuBw+HAx8cHDz30EKMIrVQqcenSJaSmpmLJkiUoKytDXFwck/JLSEjoleIJmUyGjIwMBAUFISgoyCKzNw6HA1dX11ZTfg0NDSgsLGRSfnK5HG5ubggPD8eaNWtw7do1HDt2jNEAtCZ6vR4+Pj44cuSIWcGQVqs1Kxhav369WcHQQw89ZFYw9Mgjj5gVDE2fPr3NgiE6Veft7Q2ZTNZC/ofH44GiKISFhWHDhg04dOgQ5s+fj23btiExMRG+vr7MNd08DcjSNdhCBwvz2muv4euvv8apU6fMGnZpWMWJvoXBYMDff//NlKKnp6cjICCAkUgaPnw4+Hy+xT6PEILS0lJUVVUhISGh18uIDQYDpFIpfv75Z+zbtw8FBQWM+d2dd96JwYMH2yRt11sFQz/99BNWrFiBjIyMdvdHJpNhz549+Pnnn6FSqfDjjz/azKPKwtg8mrIzJQtSXFyMDRs2wMnJiZn5AEYjMXpN6KmnnkJ5eTnuv/9+pk/pp59+YqrCIiMj8f3332Pp0qWYNWsWIiIi8MMPP7AByUbweDwMGjQIgwYNwssvv8xYpaekpOCHH37AG2+8AScnJ4wcOZJZl/L29u7WSFmr1SI9PR0CgQDDhg2zSaUg3bTr5eUFuVyOL7/8EoGBgUhNTcW2bdvg7OyMHTt29Pp+WatgaPXq1fDx8cHkyZMRGRmJxMREuLm5obKyEgEBAW3uj0gkwqJFi/DMM89AIpHcLgHJLmCDkgWhBTk7YtmyZVi2bFmb2ydPnozJkydbctfaxWAwYMWKFdi3bx/UajXuvfdefPbZZ6xYZCtwOByEhYUhLCwMM2bMACEEjY2NuHDhAlJSUvDJJ59ALpdjyJAhGDVqFMaOHYvQ0NAOCwrq6+uRk5Nj5utkCzQaDd5++23k5+fj999/Z4om4uLiMGfOnB6/vz0VDMlkMjQ0NODrr7/G5s2bkZycDKlUCr1ezwSZtlJx9ON00QiL5WCDEgvWrl2Lw4cP488//2RSNTNmzMCvv/5q612zezgcDry8vPDAAw8wZcJqtZpZl1q2bBlKSkoQExPDrEsNGDCAWZdSq9XIzs6GwWDA0KFDbdqAWlhYiDlz5mD69OnYvHmzVWZqnbGoMWXTpk348MMPrVIwJBKJsGXLFqhUKuTl5eHnn3/G6dOnUVVVhYMHD2LWrFltznjZNSPrwa4psSA0NBRvv/02Zs+eDQDIz89HVFQUCgsL2bShBaCr6Oh1qZs3b6Jfv36Ii4vDiRMnsHDhQjzzzDM2u9ERQvD9999jw4YN2L59O8aMGWOT/WgOXTB08uTJFgVD48ePx/jx4/Huu+8CaH1N6fTp0zh37hzzmjvvvBP33HNPizUl06IGqVSKpUuXorGxEYsXL8bYsWP/aYULtj9QQkh7fyy3OWKxmAAg165dM3vczc2NHD582DY7dZtjMBjIunXrSHh4OHn66afJ8OHDyciRI8nChQvJV199RYqKiohcLicKhcLqf3V1dWT27Nlk2rRppL6+3tZfDcOrr75KQkJCSF5eXqvbDx48SPz8/MjVq1eJUqkkixYtIgkJCUSv1xNCCMnLyyN8Pp98+eWXRKvVki+//JIIBAJSWFjY5mfSr7106RKZNm0amT17NiktLbX4sdk5HcUEq/+x6bt/OHQOvr38PItlOXDgAHJzc3Hz5k24urqCEAKxWIyLFy8iJSUF27dvh0QiYXqLxo4di/DwcItr22VlZWH+/PmYMWMGXn75ZbtRUbdVwRD92uTkZEybNg2ffPIJLl++jP79+1vvYFlawKbv/uGIxWJ4enri2rVrjCU0YAxSBw4cYPp3WCxHZyywNRoNrly5wqT8CgsLERMTw5SiJyUldbs0mxCCL7/8Etu2bcOuXbtaVKn9kyEmqbqrV68yqg3/IGyevmODEgtCQ0OxatUqzJo1CwAYywx2Tcl+oCgKmZmZTJC6ceMGfHx8MHr0aIwePRrJyclwdXXtcO1DLpdj6dKl0Ov12LFjh009mOwV08DU2r9vc2x+oGxQYsEHH3yA/fv349ixY/D29sbs2bMhk8lw7NgxW+8aSxsQQlBRUYFz584hNTUVly9fBofDwYgRI5hA5efnZ3YzvXnzJl588UU8//zzmD17tt2k61jsCjYosXSeM2fOwMvLy6yJkKYnozmDwYDly5dj37590Gg0mDRpEnbu3Mn2KfUhCCGQSqXMutT58+chFosxcOBAjBo1ClVVVfjll1+wd+9eJCUl2Xp3WewXNiixdJ5NmzZh9+7dOHr0KJNW0+v1UKvVfcXVkqUX0Wq1uHr1Kn777TecOHECx44dg6urq613i8W+sXlQYufvfYjFixdDLBbjxo0bzGPvvPMOYmJicOnSpU69RweDEJuxfPlyRuIlMDAQc+fORUNDg9lz9u/fj8jISAgEAowcORJ//fWX2fYrV65gxIgREAgEiIyMxMGDB3vzEOwOJycnjBo1Cm+//TZSUlLYgMTSJ2CDUh/jlVdewdq1awEYg9Tnn3+Oo0ePIjk5ucVz6QD0yy+/4O6770Z+fr7dLtjyeDwcPHgQ9fX1SEtLQ1lZGZ577jlme2pqKl544QVs374djY2NePTRRzF16lSmbF0ikWDKlCl49NFH0djYiB07duD555/HxYsXbXVILCws3aGDRiYWO8FgMBBCCPnrr79IdHQ0ueOOO8iwYcPIn3/+SQghhKKoVl+Xk5NDgoODyYkTJ5jH2nquPXH06FHi5ubG/HvmzJnk6aefZv5NURQJDg4m+/btI4QQsmfPHhIcHGx2bE8//TR59tlne2+nWVj6PjZvnmVnSn0E0jTrqa+vh1KphFQqxZ49ezBixAhQFNWihBUASktLsXHjRowZMwYTJ05kjMro51IUBb1eb5cpvdZUoU37aTgcDoYMGcKoPqelpWHo0KFm3wNrI8/C0vdgg1IfgBACHo+Hn3/+Gf/+978xfvx48Hg8+Pr6AkCL0l7aMfPw4cMoLy/H/PnzARhTZHl5eSgtLWVe5+DgYHYjb+64CRgXzP/++2+rHV9zvvvuO3z++eeMoRvQfVVoVpXC+igUCkRGRrZqfmgNd1iW2xs2KPUBOBwOvvzySzz33HN47733sH37digUCqSmprb5fAA4evQooqOjzbrSt27diieeeAJLly7Ffffdh6VLl6K8vJzZzuPxWgS59PR0PP/88ygqKrL8wTXjm2++wdy5c/HTTz+Z7TdrI2+/rFixAuHh4S0ep91hjxw5gtraWiQkJOChhx5iZuy0O+zKlSshkUiwcuVKTJ8+vVfOMxb7hQ1Kdg5FUXj55Zfx1ltv4YMPPsALL7wANzc3PPvss/joo4+Y55jC5XKh1WpRWlqKpKQksxlEdXU10tPTMXjwYCxatAinTp3C9u3bcePGDSxYsABPPfUUTp8+zaT0CCEYMmQIwsLC8P333zOPWYO9e/di/vz5OHLkCCZMmGC2jbaRpyGE4Pr162Y28teuXTN7zbVr18y001gsz7lz55CSkoLly5e32LZz507Mnz8fQ4cOhUAgwJo1a1BQUMAMpr744gsMGzYMTz/9NJycnPDUU09h6NCh7fotsdz+sEHJzuFyuXjiiSewZ88ezJ07l3l8ypQpkEqlOHnyZKud+QUFBfDz84NIJGIeq62tRVFREV599VXMmDEDU6dOxZtvvomPPvoIq1atwpQpUxAQEIAXXngB+fn5AG4FvMbGRmi1WgDW8ZL5+OOP8eqrr+L48eMYO3Zsi+1z587F999/j5MnT0Kr1WLjxo1Qq9WYPn06AGD69OlQKpVYv349tFotTp48ie+//x7z5s2z+L6yGFEqlZg7dy4+//zzVnX4mq8DmrrDtrYdYNcBWdig1CcYN24cxo8fb/bY4MGDMXLkSFy+fLnV1zg7O8PNzQ1qtZp57Pr160yBAI1Op4Orqys+/vhjTJ06FevWrYOrqyuOHj0K4JZyckREBKqqqqDX6y19eACARYsWQSqVYsKECRAKhcwfzR133IFt27Zh7ty5cHd3x9dff41ffvmFSc95eHjgl19+wTfffAN3d3fMnTsXO3bswOjRo62yv7czzz77LDgcTpt/b775JgBg5cqVePDBB1ttRwDYdUCW7sFaV/QBSBsSQnv27Gn1+RRFITw8HGVlZWY39qtXr8LHx8dMZPW3337DyJEjERwcDMA4w4qKijK7MchkMjg4OKCqqqrVxWxL0JmU4MyZMzFz5sw2tycnJ3e6iZilbTrjDpuamopffvml3VkNuw7I0h3YmVIfoK10WfO1JBo6nZecnIzi4mLmhn/69Gl4enoiMDCQee4ff/yBu+++m/l3cXExqqurERMTwzzW2NiIwsJC1lfmH4JQKISPj0+bfwKBAL///jvKysoQEhICHx8fPPzwwzAYDPDx8cGRI0cAtFwHlMvlyM3NNVsHNN0OsOuALGxQ6tN0pPL8/PPP49KlS+BwONDr9Xj00UcxadIkeHl5AQAqKyuRlZWFu+66i3lNUVER9Hq9WeVbWloaamtrzYIXixGKojBmzBhwOByUlZUxj9/ukkhLlixBbm4url+/juvXr2PXrl3g8Xi4fv06Jk6cCACYN28ePvvsM1y7dg0qlQpvvvkmwsPDcccddwAwznyvXLmCr776CjqdDl999RX++usvPPPMM7Y8NBZb00F3LcttTEFBAZk+fTpRq9WEEEK0Wi1ZuHAhueuuu8ye95///IfMmjWLNDY22mAv7ZsNGzaQe+65hwBgrLNTUlKIQCAgx48fJ2q1mnz44YfEz8+PSCQSQojRgt7Hx4esXbuWqNVq8ttvvxFXV1dy4cIFWx5Kjzh9+jTh8XgtHv/www9JQEAA4fP55O67725hb/7rr7+ShIQE4uLiQhISEsjx48d7a5dZWsfmig5sUPoH0ZG8kEKhIFu3biUrV65kHvvzzz9JYGAguXbtmpX3ru+RnZ1NIiIiyLVr18yCEiuJxNKHsXlQYgsd/kE0X5ui5YnoxwUCAV566SVm++HDh7F79248//zzGDx4cJsFF/9EKIrCrFmzsH79enh4eJhtS0tLw7PPPsv8u7OSSAcOHOiNXWdhsWvYoPQPprU1KYqimMd9fX0xb948TJkyBYB1+pP6Klu2bIG/vz8eeeSRFgoEbCk0C0v3YYMSixmmgWrMmDE23BP7JS8vDxs3bsSVK1da3d5WqXNkZCSzvXkgY0uhWViMsNV3LCxdJDU1FbW1tRgwYAB8fHyYSsWBAwdi27ZtrCQSC0sPYO3QWVi6iFKpNHPFLSsrw+jRo3H58mXExcXh+vXrmDx5Mg4fPoxx48bh448/xvr165Gbmws3NzeIxWJER0dj2bJlWLRoEVJSUvDwww/jxIkTrAIFi62xeY6eTd+xsHQRgUAAgUDA/JuWXvL394dQKDSTRKqsrERSUlKrkkgvvfQS3n77bQQEBLCSSCwsTbAzJRYWFhYWGpvPlNg1JRYWFhYWu4ENSiwsLCwsdgMblFhYWFhY7AY2KLGwsLCw2A1sUGJhYWFhsRvYoMTCwsLCYjewQYmFhYWFxW5ggxILCwsLi93ABiUWFhYWFruBDUosLCwsLHYDG5RYWFhYWOwGNiixsLCwsNgNbFBiYWFhYbEb2KDEwsLCwmI3sEGJhYWFhcVuYIMSCwsLC4vdwAYlFhYWFha7gQ1KLCwsLCx2AxuUWFhYWFjsBjYosbCwsLDYDWxQYmFhYWGxGxw62M7plb1gYWFhYWEBO1NiYWFhYbEj2KDEwsLCwmI3sEGJhYWFhcVuYIMSCwsLC4vdwAYlFhYWFha7gQ1KLCwsLCx2w/8DnlIBoi6ukOIAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 504x504 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ax = plotObj3D()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 14,
+        "hidden": true,
+        "row": 14,
+        "width": null
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "4cca45b8-6d74-43f2-b3aa-2f1f3ece54f3"
+    }
+   },
+   "source": [
+    "# Planewave app\n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- Field: Type of EM fields (\"Ex\": electric field, \"Hy\": magnetic field)\n",
+    "- AmpDir: Type of the vectoral EM fields \n",
+    "\n",
+    "    None: $F_x$ or $F_y$ or $F_z$\n",
+    "    \n",
+    "    Amp: $\\mathbf{F} \\cdot \\mathbf{F}^* = |\\mathbf{F}|^2$\n",
+    "    \n",
+    "    Dir: Real part of a vectoral EM fields, $\\Re[\\mathbf{F}]$\n",
+    "    \n",
+    "- ComplexNumber: Type of complex data (\"Re\", \"Im\", \"Amp\", \"Phase\")    \n",
+    "- Frequency: Transmitting frequency (Hz)\n",
+    "- Sigma: Conductivity of homogeneous earth (S/m)\n",
+    "- Scale: Choose \"log\" or \"linear\" scale \n",
+    "- Time: "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 21,
+        "hidden": false,
+        "row": 0,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "nbpresent": {
+     "id": "d4efa881-fa5c-4ecc-87b0-47f53e865a5f"
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b371dec79c8744d4a4db2b068455ad9f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='Field', options=('Ex', 'Hy'), value='Ex'), ToggleButtons(desc…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "dwidget = PlanewaveWidget()\n",
+    "Q = dwidget.InteractivePlaneWave()\n",
+    "display(Q)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 4,
+        "height": 4,
+        "hidden": true,
+        "row": 13,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "# Profile app\n",
+    "\n",
+    "We visualize EM fields at vertical profile (marked as red dots in the above app). \n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Field**: Ex, Hy, and Impedance \n",
+    "- ** $\\sigma$ **: Conductivity (S/m)\n",
+    "- **Scale**: Log10 or Linear scale\n",
+    "- **Fixed**: Fix the scale or not\n",
+    "- **$f$**: Frequency\n",
+    "- **$t$**: Time\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 17,
+        "hidden": false,
+        "row": 21,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "125cc6340f1b40cd8e322f62ba9fb736",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='Field', options=('Ex', 'Hy', 'Impedance', 'rhophi'), value='E…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "display(InteractivePlaneProfile())"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 8,
+        "height": 4,
+        "hidden": true,
+        "row": 14,
+        "width": 4
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "# Polarization Ellipse app"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 13,
+        "hidden": false,
+        "row": 38,
+        "width": 8
+       },
+       "report_default": {}
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "348ec372c8e241e191ff47a74d372a29",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=0, description='itime', max=999, step=10), Output()), _dom_classes=('wid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Polarwidget = PolarEllipse(); \n",
+    "Polarwidget.Interactive()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "grid_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "nbpresent": {
+   "slides": {
+    "18cc87f9-a29c-43fe-a307-094e80f187ec": {
+     "id": "18cc87f9-a29c-43fe-a307-094e80f187ec",
+     "prev": "47ebf514-9d62-497c-ae0e-da3d22b7a793",
+     "regions": {
+      "81dc0ef7-16af-48ca-9707-b6626f7b5ef3": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c59bfd9b-4293-433e-83db-820c33f4c378",
+        "part": "whole"
+       },
+       "id": "81dc0ef7-16af-48ca-9707-b6626f7b5ef3"
+      }
+     }
+    },
+    "245f2cbf-072e-429f-b8c2-3a155572cae5": {
+     "id": "245f2cbf-072e-429f-b8c2-3a155572cae5",
+     "prev": "d4aec013-fcfb-4601-928a-08cb129f1ab6",
+     "regions": {
+      "f58b4744-dda4-46e7-a2b6-132966aebb6c": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "9cbd4d35-95ab-4b4c-bc7b-ef4c7a5bd601",
+        "part": "whole"
+       },
+       "id": "f58b4744-dda4-46e7-a2b6-132966aebb6c"
+      }
+     }
+    },
+    "47ebf514-9d62-497c-ae0e-da3d22b7a793": {
+     "id": "47ebf514-9d62-497c-ae0e-da3d22b7a793",
+     "prev": null,
+     "regions": {
+      "201b2767-c7c4-42a9-8972-0fb07ea027df": {
+       "attrs": {
+        "height": 0.7999999999999999,
+        "width": 0.8,
+        "x": -0.02479871175523355,
+        "y": 0.1261227410985866
+       },
+       "content": {
+        "cell": "e3a4dd9c-3f24-48d6-ad9b-4edbe3248df9",
+        "part": "whole"
+       },
+       "id": "201b2767-c7c4-42a9-8972-0fb07ea027df"
+      }
+     }
+    },
+    "4cff681d-a824-462c-82c4-6c9dab0650f1": {
+     "id": "4cff681d-a824-462c-82c4-6c9dab0650f1",
+     "prev": "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3",
+     "regions": {
+      "402b6864-2649-41f1-9713-ae5f6bf3b115": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "3bd63ed4-b758-48e5-a662-b68e4b2ce034",
+        "part": "whole"
+       },
+       "id": "402b6864-2649-41f1-9713-ae5f6bf3b115"
+      }
+     }
+    },
+    "51a59c43-c682-499d-b8a9-bf6c793cbe75": {
+     "id": "51a59c43-c682-499d-b8a9-bf6c793cbe75",
+     "prev": "b2754f55-e10b-4a02-b5e1-618bc5d423f0",
+     "regions": {
+      "15926dd2-ff48-4df3-a8be-e4b86ea2cd4f": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "baf63d98-9356-4c2d-81d7-8f8cd1a6da2d",
+        "part": "whole"
+       },
+       "id": "15926dd2-ff48-4df3-a8be-e4b86ea2cd4f"
+      }
+     }
+    },
+    "5dd85aee-5025-4fe2-a90c-d80de7f8d456": {
+     "id": "5dd85aee-5025-4fe2-a90c-d80de7f8d456",
+     "prev": "bf7c1942-c97d-4023-8cc8-62a6369c6229",
+     "regions": {
+      "a022dc82-caf9-430a-8e77-7a155085aee5": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "d4efa881-fa5c-4ecc-87b0-47f53e865a5f",
+        "part": "whole"
+       },
+       "id": "a022dc82-caf9-430a-8e77-7a155085aee5"
+      }
+     }
+    },
+    "7dad038d-3585-4d4a-acb4-d2388b117b7e": {
+     "id": "7dad038d-3585-4d4a-acb4-d2388b117b7e",
+     "prev": "5dd85aee-5025-4fe2-a90c-d80de7f8d456",
+     "regions": {
+      "e526da6b-003d-4015-8900-386d21051974": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c3075a3b-0158-49f6-9d38-ed7372a4761c",
+        "part": "whole"
+       },
+       "id": "e526da6b-003d-4015-8900-386d21051974"
+      }
+     }
+    },
+    "81c72ec7-c7a8-45e6-9649-080db72a3bf9": {
+     "id": "81c72ec7-c7a8-45e6-9649-080db72a3bf9",
+     "prev": "4cff681d-a824-462c-82c4-6c9dab0650f1",
+     "regions": {
+      "98e755fa-d098-4ebf-9481-63e3fed6a783": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "09257b6f-48e9-426c-a0f3-d1a60beb3ad0",
+        "part": "whole"
+       },
+       "id": "98e755fa-d098-4ebf-9481-63e3fed6a783"
+      }
+     }
+    },
+    "8a528caa-079f-4215-b8b8-28302cc93a3e": {
+     "id": "8a528caa-079f-4215-b8b8-28302cc93a3e",
+     "prev": "7dad038d-3585-4d4a-acb4-d2388b117b7e",
+     "regions": {
+      "8304fb51-067b-42fd-b53a-e3a1d9e04272": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "0053bec8-5b59-4ae4-b760-37bdf85ed0d8",
+        "part": "whole"
+       },
+       "id": "8304fb51-067b-42fd-b53a-e3a1d9e04272"
+      }
+     }
+    },
+    "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3": {
+     "id": "a0099cd8-0e6d-497b-8eee-1c9a9352e2a3",
+     "prev": "245f2cbf-072e-429f-b8c2-3a155572cae5",
+     "regions": {
+      "11eb3f79-3a55-4a7b-a77f-7a29de426686": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "c0138e15-c392-4695-9627-578e85ae9c0a",
+        "part": "whole"
+       },
+       "id": "11eb3f79-3a55-4a7b-a77f-7a29de426686"
+      }
+     }
+    },
+    "a3506cf3-dd45-4e72-86bb-af1f5dc15b15": {
+     "id": "a3506cf3-dd45-4e72-86bb-af1f5dc15b15",
+     "prev": "8a528caa-079f-4215-b8b8-28302cc93a3e",
+     "regions": {
+      "c31fa94d-0be2-484b-8fc7-21f845ecd9e7": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "3eafb99a-a449-44ad-92ca-c5759984f87c",
+        "part": "whole"
+       },
+       "id": "c31fa94d-0be2-484b-8fc7-21f845ecd9e7"
+      }
+     }
+    },
+    "b2754f55-e10b-4a02-b5e1-618bc5d423f0": {
+     "id": "b2754f55-e10b-4a02-b5e1-618bc5d423f0",
+     "prev": "c1556db0-f27c-4a07-a6ee-218b6da5228f",
+     "regions": {
+      "6ce0b2c5-9f8e-414c-b578-d1fb9537a350": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "53198a70-4798-4da9-8ce3-43a14b3086f2",
+        "part": "whole"
+       },
+       "id": "6ce0b2c5-9f8e-414c-b578-d1fb9537a350"
+      }
+     }
+    },
+    "bf7c1942-c97d-4023-8cc8-62a6369c6229": {
+     "id": "bf7c1942-c97d-4023-8cc8-62a6369c6229",
+     "prev": "f2016771-0d1f-4b36-a992-3ed37d96db8d",
+     "regions": {
+      "d2c780fd-f02d-4b23-855d-7268418a9a6b": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "4cca45b8-6d74-43f2-b3aa-2f1f3ece54f3",
+        "part": "whole"
+       },
+       "id": "d2c780fd-f02d-4b23-855d-7268418a9a6b"
+      }
+     }
+    },
+    "c1556db0-f27c-4a07-a6ee-218b6da5228f": {
+     "id": "c1556db0-f27c-4a07-a6ee-218b6da5228f",
+     "prev": "81c72ec7-c7a8-45e6-9649-080db72a3bf9",
+     "regions": {
+      "e8e03a1b-fce6-4369-b5e0-6f4c0d98fd48": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "b9b7af2b-084a-4f24-9c1f-6c681e30fd35",
+        "part": "whole"
+       },
+       "id": "e8e03a1b-fce6-4369-b5e0-6f4c0d98fd48"
+      }
+     }
+    },
+    "d4aec013-fcfb-4601-928a-08cb129f1ab6": {
+     "id": "d4aec013-fcfb-4601-928a-08cb129f1ab6",
+     "prev": "18cc87f9-a29c-43fe-a307-094e80f187ec",
+     "regions": {
+      "959cec78-5304-4c08-be1c-372309852edb": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "95f1e819-0749-42ff-ad94-6d428298a5a7",
+        "part": "whole"
+       },
+       "id": "959cec78-5304-4c08-be1c-372309852edb"
+      }
+     }
+    },
+    "f2016771-0d1f-4b36-a992-3ed37d96db8d": {
+     "id": "f2016771-0d1f-4b36-a992-3ed37d96db8d",
+     "prev": "51a59c43-c682-499d-b8a9-bf6c793cbe75",
+     "regions": {
+      "f238a22f-46b8-43ff-b102-98cb6289f575": {
+       "attrs": {
+        "height": 0.8,
+        "width": 0.8,
+        "x": 0.1,
+        "y": 0.1
+       },
+       "content": {
+        "cell": "100a2463-b8e6-4c4c-9cfc-5ea61334779e",
+        "part": "whole"
+       },
+       "id": "f238a22f-46b8-43ff-b102-98cb6289f575"
+      }
+     }
+    }
+   },
+   "themes": {}
+  },
+  "widgets": {
+   "state": {
+    "6711a1c5fb74421a8cb9f258aafb0c70": {
+     "views": [
+      {
+       "cell_index": 7
+      }
+     ]
+    },
+    "97e35c898161466e89cc45034dcbd498": {
+     "views": [
+      {
+       "cell_index": 9
+      }
+     ]
+    },
+    "e1d82c42c7af4010b72f3dc56080cc6c": {
+     "views": [
+      {
+       "cell_index": 11
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_Groundedsource-checkpoint.ipynb b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_Groundedsource-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a5d9c2505582dd3533564a781a93d7358bf2c6b7
--- /dev/null
+++ b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_Groundedsource-checkpoint.ipynb
@@ -0,0 +1,294 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from ipywidgets import interact, interactive, FloatSlider, IntSlider, ToggleButtons\n",
+    "from geoscilabs.em.TDEMGroundedSource import choose_model, load_or_run_results, PlotTDEM\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exploring fields from a grounded source"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from a grounded source. Both electric currents and magnetic flux will be visualized to undertand physics of grounded source EM. Both charge buildup (galvanic) and EM induction (inductive) will occur at different times. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Load simulation results (or run)\n",
+    "\n",
+    "Three models are considered here. \n",
+    "\n",
+    "- Halfspace (0.01 S/m)\n",
+    "- Conductive block in halfspace (1 S/m)\n",
+    "- Resitive block in halfspace (10$^{-4}$ S/m)\n",
+    "\n",
+    "Using below widget, you can choose a model that you want to explore. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4af9cb7d009c48b6917d7b456df63b4a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='model', options=('halfspace', 'conductor', 'resistor'), value…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = interact(choose_model, \n",
+    "         model=ToggleButtons(\n",
+    "             options=[\"halfspace\", \"conductor\", \"resistor\"], value=\"halfspace\"\n",
+    "         )\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Then here we are going to load results. If you want to rerun, you can set `re_run` as `True`. \n",
+    "With that option, you can change conductivity value of the block and halfspace you can alter values for `sigma_halfspace` and `sigma_block`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "file already exists, new file is called C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_groundedsource.tar\n",
+      "Downloading https://storage.googleapis.com/simpeg/em_examples/tdem_groundedsource/tdem_groundedsource.tar\n",
+      "   saved to: C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_groundedsource.tar\n",
+      "Download completed!\n"
+     ]
+    }
+   ],
+   "source": [
+    "import matplotlib\n",
+    "matplotlib.rcParams['font.size']=16\n",
+    "options = load_or_run_results(\n",
+    "    re_run=False, #better just run the results, high computational effort\n",
+    "    fname=choose_model(Q.widget.kwargs['model']),\n",
+    "    sigma_block=0.01,\n",
+    "    sigma_halfspace=0.01\n",
+    ")\n",
+    "tdem = PlotTDEM(**options)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c886e50d880145879205836ffc5b59cb",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=30.0, description='elev', max=180.0, min=-180.0, step=10.0), FloatSlid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.show_3d_survey_geometry, \n",
+    "    elev=FloatSlider(min=-180, max=180, step=10, value=30),\n",
+    "    azim=FloatSlider(min=-180, max=180, step=10, value=-45),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "0cc44e813f5d4028bf01e919a754462f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Toggl…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_input_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False),\n",
+    "    scale=ToggleButtons(\n",
+    "        options=[\"linear\", \"log\"], value=\"linear\"\n",
+    "    ),\n",
+    "    \n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b816cb64aaa04a369f1d1b9578352fd2",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Outpu…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_electric_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "69e4ce557d7746ca9d63f1472609890a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Outpu…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_magnetic_flux, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_HorizontalLoop_LayeredEarth-checkpoint.ipynb b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_HorizontalLoop_LayeredEarth-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a384dc079061f5dcca6db38eea721942cd047235
--- /dev/null
+++ b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_HorizontalLoop_LayeredEarth-checkpoint.ipynb
@@ -0,0 +1,267 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Horizontal Current Loop over a Layered Earth (time domain)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Populating the interactive namespace from numpy and matplotlib\n"
+     ]
+    }
+   ],
+   "source": [
+    "%pylab inline\n",
+    "from IPython.display import display\n",
+    "from geoscilabs.em.TDEMHorizontalLoopCylWidget import TDEMHorizontalLoopCylWidget\n",
+    "APP = TDEMHorizontalLoopCylWidget()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from matplotlib import rcParams\n",
+    "rcParams['font.size'] = 16"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Introduction\n",
+    "\n",
+    "Here, we show the transient fields and fluxes that result from placing a vertical magnetic dipole (VMD) source over a layered Earth. The transient response in this case refers to the fields and fluxes that are produced once a long-standing primary magnetic field is removed.\n",
+    "\n",
+    "There are [two commonly used models](https://em.geosci.xyz/content/maxwell1_fundamentals/dipole_sources_in_homogeneous_media/magnetic_dipole_time/index.html) for describing the VMD source that produces a transient response: 1) as an infinitessimally small bar magnet that experiences a long-standing vertical magnetization which is then instantaneously removed at $t=0$, and 2) as an infinitessimally small horizontal loop of wire carrying a constant current which is then instantaneously shut off at $t=0$ (step-off current waveform).\n",
+    "\n",
+    "True dipole sources do not exist in nature however they can be approximated in practice. For geophysical applications, we use small current loops to approximate transient VMD sources. These EM sources may be placed on the Earth's surface (ground-based surveys) or flown through the air (airborne surveys). According to the Biot-Savart law, a primary magnetic field is produced whenever there is current in the loop. When the current is shut-off, the sudden change in magnetic flux induces anomalous currents in the Earth which propagate and diffuse over time. The distribution and propagation of the induced currents depends on the subsurface conductivity distribution and how much time has passed since the current in the VMD source was shut off. The induced currents ultimately produce secondary magnetic fields which can be measured by a receiver.\n",
+    "\n",
+    "In this app, we explore the following:\n",
+    "\n",
+    "- How do the fields and currents produced by the transient VMD source change over time?\n",
+    "- For a layered Earth, how does changing layer thickness and conductivity impact the fields and currents produced by the transient VMD source?\n",
+    "- How do the secondary fields measured above the Earth's surface change over time?\n",
+    "- For a layered Earth, how does changing layer thickness and conductivity impact secondary fields measured above the Earth's surface?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Setup\n",
+    "\n",
+    "The geological scenario being modeled is shown in the figure below. Here, we assume the Earth is comprised of 3 layers. Each layer can have a different electrical conductivity ($\\sigma$). However, a constant magnetic susceptibility ($\\chi$) is used for all layers; where $\\mu_0$ is the magnetic permeability of free space and $\\mu = \\mu_0 (1 +\\chi)$. The thicknesses of the top two layers are given by $h_1$ and $h_2$, respectively.\n",
+    "\n",
+    "In this case, a transient VMD source (*Tx*) is used to excite the Earth, and the Earth's TEM response (secondary magnetic field) is measured by a receiver (*Rx*). In practice, the transmitter and receiver may be placed near the Earth's surface or in the air. The receiver may also measure secondary fields at a variety of times after the source is shut off.\n",
+    "\n",
+    "To understand the fields and currents resulting from a transient VMD source we have two apps:\n",
+    "\n",
+    "- **Fields app:** Models the fields and currents everywhere at a particular time after shutoff\n",
+    "- **Data app:** Models the secondary magnetic field observed by the receiver as a function of off-time\n",
+    "\n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/LayeredEarthTEM.png?raw=true\"></img>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exercise\n",
+    "\n",
+    "**Follow the exercise in a linear fashion. Some questions may use parameters set in a previous question.**\n",
+    "\n",
+    "- **Q1:** Set $\\sigma_1$, $\\sigma_2$ and $\\sigma_3$ to arbitrary conductivity values. Based on the geometry of the problem, which components (x, y, z) of each field (E, B, dBdt or J) are zero? Run the *Fields app* and set *AmpDir = None*. Next, try different combinations of *Field* and *Comp*. Does the simulation match what you initially thought?\n",
+    "\n",
+    "\n",
+    "- **Q2:** Re-run the *Fields app* to set parameters back to default. What happens to the *Ey* and *Jy* as you increase *time index* starting at 1? How does the diffusion and propagation of the EM signal change if the conductivity of all the layers is increased to 1 S/m?\n",
+    "\n",
+    "\n",
+    "- **Q3:** Re-run the *Fields app* to set parameters back to default. Set $\\sigma_1 = 0.01$ S/m, $\\sigma_2 = 1$ S/m and $\\sigma_3 = 0.01$ S/m. Now increase *time index* starting at 1. Is the signal able to effectively penetrate the conductive layer? Why/why not? What if the layer was resistive (i.e. $\\sigma_2 = 0.0001$ S/m) instead?\n",
+    "\n",
+    "\n",
+    "- **Q4:** Repeat Q3 but examine the current density. Where is the highest concentration of current density at late time channels? Does this support your answer to Q3?\n",
+    "\n",
+    "\n",
+    "- **Q5:** Re-run the *Fields app* to set parameters back to default. Set *Field = B*, *AmpDir = Direction*. What happens to the magnetic flux density as the *time index* is increased starting at 1? At (x,z)=(0,0), what is the vector direction of the magnetic flux density? Repeat Q5 for dBdt.\n",
+    "\n",
+    "\n",
+    "- **Q6:** Re-run the *Fields app* to set parameters back to default. Set $\\sigma_1 = 0.01$ S/m, $\\sigma_2 = 1$ S/m and $\\sigma_3 = 0.01$ S/m. Examine how B and dBdt are impacted by the conductive layer."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Fields app\n",
+    "\n",
+    "We use this app to simulate the fields and currents everywhere due to a transient VMD source. The fields and induced currents depend on time and the subsurface conductivity distribution. You will use the app to change various parameters in the model and see how the fields and currents change.\n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Update:** If *True* is selected, the simulation is re-run as parameters are being changed. If *False* is selected, the simulation will not be re-fun as parameters are being changed.\n",
+    "- **Field:** Type of EM fields (\"E\": electric field, \"B\": total magnetic flux density, \"dBdt\": time-derivative of the magnetic flux density, \"J\": current density and \"Model\": conductivity model)\n",
+    "- **AmpDir:** If *None* is selected, then the *x*, *y* or *z* component chosen on the next line is plotted. If *Direction* is chosen, a vector plot is plotted (only possible for B and dB/dt)\n",
+    "- **Comp.:** If *None* is selected on the previous line, the user chooses whether the *x*, *y* or *z* component is plotted.\n",
+    "- Time index: The time channel at which fields are being plotted\n",
+    "- $\\boldsymbol{\\sigma_0}$: Conductivity of 0th layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_1}$: Conductivity of 1st layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_2}$: Conductivity of 2nd layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_3}$: Conductivity of 3rd layer in S/m\n",
+    "- $\\boldsymbol{\\chi}$: Susceptibility of 1-3 layers in SI\n",
+    "- $\\boldsymbol{h_1}$: Thickness of the first layer in metres\n",
+    "- $\\boldsymbol{h_2}$: Thickness of the second layer in metres\n",
+    "- **Scale:** Plot data values on *log-scale* or *linear-scale*\n",
+    "- $\\boldsymbol{\\Delta x}$ (m): Horizontal separation distance between the transmitter and receiver\n",
+    "- $\\boldsymbol{\\Delta z}$ (m): Height of the transmitter and receiver above the Earth's surface\n",
+    "- **Time index:** Time index for the set of frequencies models by this app"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "694d57600323447c85d64a311340c867",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(Checkbox(value=True, description='Update'), ToggleButtons(description='Field', options=('E', '…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q1 = APP.InteractivePlane_Layer()\n",
+    "display(Q1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Data app\n",
+    "\n",
+    "Using this app, we show how the fields observed at the receiver location depend on the parameters set in the previous app. *Note that if you want to see changes in the data due to changes in the model, you MUST* re-run the previous app. \n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Field:** Type of EM fields (\"E\": electric field, \"B\": magnetic flux density, \"dBdt\": time-derivative of the magnetic flux density)\n",
+    "- **Comp.:** Direction of EM field at Rx locations        \n",
+    "- **Scale:** Scale of y-axis values (\"log\" or \"linear\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a90c48a35cc7486fae01f58bc1a82333",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(ToggleButtons(description='Field', index=1, options=('E', 'B', 'dBdt'), value='B'), ToggleButt…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q2 = APP.InteractiveData_Layer()\n",
+    "display(Q2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Explore\n",
+    "\n",
+    "EM fields will be depenent upon a number of parameters, using a simple half-space model ($\\sigma_1=\\sigma_2=\\sigma_3$) explore how EM fields and data changes upon below four parameters. \n",
+    "\n",
+    "- E1: Effects of frequency?\n",
+    "\n",
+    "\n",
+    "- E2: Effects of Tx height?\n",
+    "\n",
+    "\n",
+    "- E3: Effects of Conductivity?\n",
+    "\n",
+    "\n",
+    "- E4: Effects of Susceptibility?\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "c0dd4dbce2ff4d0cacf7363e6fdfed13": {
+     "views": [
+      {
+       "cell_index": 6
+      }
+     ]
+    },
+    "d6ee822b25404d33979ba6ec5f19963c": {
+     "views": [
+      {
+       "cell_index": 8
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_InductiveSource-checkpoint.ipynb b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_InductiveSource-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..bfd056888e048f99c9a541574a16b6dd4aacda82
--- /dev/null
+++ b/Notebooks/em/TEM/.ipynb_checkpoints/TDEM_InductiveSource-checkpoint.ipynb
@@ -0,0 +1,310 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Populating the interactive namespace from numpy and matplotlib\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\tobia\\anaconda3\\lib\\site-packages\\IPython\\core\\magics\\pylab.py:160: UserWarning: pylab import has clobbered these variables: ['interactive']\n",
+      "`%matplotlib` prevents importing * from pylab and numpy\n",
+      "  \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n"
+     ]
+    }
+   ],
+   "source": [
+    "from ipywidgets import interact, interactive, FloatSlider, IntSlider, ToggleButtons\n",
+    "from geoscilabs.em.TDEMInductiveSource import choose_source, load_or_run_results, PlotTDEM\n",
+    "%pylab inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exploring fields from inductive sources"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from inductive sources. Both electric currents and magnetic flux will be visualized to understand physics of inductive source EM. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Load simulation results (or run)\n",
+    "\n",
+    "Two inductive sources are considered:\n",
+    "\n",
+    "- Vertical magnetic dipole(VMD)\n",
+    "- Horizontal magnetic dipole(HMD)\n",
+    "\n",
+    "Using below widget, you can choose a model that you want to explore. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e8014266cd4349248b0c4d4a83e26516",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='src_type', options=('VMD', 'HMD'), value='VMD'), Output()), _…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = interact(choose_source, \n",
+    "         src_type=ToggleButtons(\n",
+    "             options=[\"VMD\", \"HMD\"], value=\"VMD\"\n",
+    "         )\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Then here we are going to load results. If you want to rerun, you can set `re_run` as `True`. \n",
+    "With that option, you can change conductivity value of the block and halfspace you can alter a value for `sigma_halfspace`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "file already exists, new file is called C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_inductivesource.tar\n",
+      "Downloading https://storage.googleapis.com/simpeg/em_examples/tdem_inductivesource/tdem_inductivesource.tar\n",
+      "   saved to: C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_inductivesource.tar\n",
+      "Download completed!\n"
+     ]
+    }
+   ],
+   "source": [
+    "import matplotlib\n",
+    "matplotlib.rcParams['font.size']=16\n",
+    "options = load_or_run_results(\n",
+    "    re_run=False, #better just run the results, high computational effort\n",
+    "    fname=choose_source(Q.widget.kwargs['src_type']),\n",
+    "    src_type=Q.widget.kwargs['src_type'],\n",
+    "    sigma_halfspace=0.01\n",
+    ")\n",
+    "tdem = PlotTDEM(**options)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dfbb28c42ea44bbdbab975d4ed41ed41",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=30.0, description='elev', max=180.0, min=-180.0, step=10.0), FloatSlid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.show_3d_survey_geometry, \n",
+    "    elev=FloatSlider(min=-180, max=180, step=10, value=30),\n",
+    "    azim=FloatSlider(min=-180, max=180, step=10, value=-45),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ff6dca3d9ba046a9a022d828daba8081",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, description='itime', max=50, min=15), ToggleButtons(description='sca…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_input_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, contiusous_update=False),\n",
+    "    scale=ToggleButtons(\n",
+    "        options=[\"linear\", \"log\"], value=\"linear\"\n",
+    "    ),\n",
+    "    \n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6ef2cf16465f4b0694cea8a877904118",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='itime', max=50, min=10, step=2), Output()), _dom_classe…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_electric_currents, \n",
+    "    itime=IntSlider(min=10, max=50, step=2, value=10, contiusous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e45f7f54007748e99845855aff5a0a78",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='itime', max=50, min=10, step=2), Output()), _dom_classe…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_magnetic_flux, \n",
+    "    itime=IntSlider(min=10, max=50, step=2, value=10, contiusous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/TDEM_Groundedsource.ipynb b/Notebooks/em/TEM/TDEM_Groundedsource.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a5d9c2505582dd3533564a781a93d7358bf2c6b7
--- /dev/null
+++ b/Notebooks/em/TEM/TDEM_Groundedsource.ipynb
@@ -0,0 +1,294 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from ipywidgets import interact, interactive, FloatSlider, IntSlider, ToggleButtons\n",
+    "from geoscilabs.em.TDEMGroundedSource import choose_model, load_or_run_results, PlotTDEM\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exploring fields from a grounded source"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from a grounded source. Both electric currents and magnetic flux will be visualized to undertand physics of grounded source EM. Both charge buildup (galvanic) and EM induction (inductive) will occur at different times. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Load simulation results (or run)\n",
+    "\n",
+    "Three models are considered here. \n",
+    "\n",
+    "- Halfspace (0.01 S/m)\n",
+    "- Conductive block in halfspace (1 S/m)\n",
+    "- Resitive block in halfspace (10$^{-4}$ S/m)\n",
+    "\n",
+    "Using below widget, you can choose a model that you want to explore. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4af9cb7d009c48b6917d7b456df63b4a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='model', options=('halfspace', 'conductor', 'resistor'), value…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = interact(choose_model, \n",
+    "         model=ToggleButtons(\n",
+    "             options=[\"halfspace\", \"conductor\", \"resistor\"], value=\"halfspace\"\n",
+    "         )\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Then here we are going to load results. If you want to rerun, you can set `re_run` as `True`. \n",
+    "With that option, you can change conductivity value of the block and halfspace you can alter values for `sigma_halfspace` and `sigma_block`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "file already exists, new file is called C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_groundedsource.tar\n",
+      "Downloading https://storage.googleapis.com/simpeg/em_examples/tdem_groundedsource/tdem_groundedsource.tar\n",
+      "   saved to: C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_groundedsource.tar\n",
+      "Download completed!\n"
+     ]
+    }
+   ],
+   "source": [
+    "import matplotlib\n",
+    "matplotlib.rcParams['font.size']=16\n",
+    "options = load_or_run_results(\n",
+    "    re_run=False, #better just run the results, high computational effort\n",
+    "    fname=choose_model(Q.widget.kwargs['model']),\n",
+    "    sigma_block=0.01,\n",
+    "    sigma_halfspace=0.01\n",
+    ")\n",
+    "tdem = PlotTDEM(**options)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c886e50d880145879205836ffc5b59cb",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=30.0, description='elev', max=180.0, min=-180.0, step=10.0), FloatSlid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.show_3d_survey_geometry, \n",
+    "    elev=FloatSlider(min=-180, max=180, step=10, value=30),\n",
+    "    azim=FloatSlider(min=-180, max=180, step=10, value=-45),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "0cc44e813f5d4028bf01e919a754462f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Toggl…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 10,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_input_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False),\n",
+    "    scale=ToggleButtons(\n",
+    "        options=[\"linear\", \"log\"], value=\"linear\"\n",
+    "    ),\n",
+    "    \n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b816cb64aaa04a369f1d1b9578352fd2",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Outpu…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_electric_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "69e4ce557d7746ca9d63f1472609890a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, continuous_update=False, description='itime', max=50, min=15), Outpu…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_magnetic_flux, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, continuous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/TDEM_HorizontalLoop_LayeredEarth.ipynb b/Notebooks/em/TEM/TDEM_HorizontalLoop_LayeredEarth.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2ff5a53f0b9a302176436c8d710a3805ee1a170e
--- /dev/null
+++ b/Notebooks/em/TEM/TDEM_HorizontalLoop_LayeredEarth.ipynb
@@ -0,0 +1,267 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Horizontal Current Loop over a Layered Earth (time domain)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Populating the interactive namespace from numpy and matplotlib\n"
+     ]
+    }
+   ],
+   "source": [
+    "%pylab inline\n",
+    "from IPython.display import display\n",
+    "from geoscilabs.em.TDEMHorizontalLoopCylWidget import TDEMHorizontalLoopCylWidget\n",
+    "APP = TDEMHorizontalLoopCylWidget()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from matplotlib import rcParams\n",
+    "rcParams['font.size'] = 16"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Introduction\n",
+    "\n",
+    "Here, we show the transient fields and fluxes that result from placing a vertical magnetic dipole (VMD) source over a layered Earth. The transient response in this case refers to the fields and fluxes that are produced once a long-standing primary magnetic field is removed.\n",
+    "\n",
+    "There are [two commonly used models](https://em.geosci.xyz/content/maxwell1_fundamentals/dipole_sources_in_homogeneous_media/magnetic_dipole_time/index.html) for describing the VMD source that produces a transient response: 1) as an infinitessimally small bar magnet that experiences a long-standing vertical magnetization which is then instantaneously removed at $t=0$, and 2) as an infinitessimally small horizontal loop of wire carrying a constant current which is then instantaneously shut off at $t=0$ (step-off current waveform).\n",
+    "\n",
+    "True dipole sources do not exist in nature however they can be approximated in practice. For geophysical applications, we use small current loops to approximate transient VMD sources. These EM sources may be placed on the Earth's surface (ground-based surveys) or flown through the air (airborne surveys). According to the Biot-Savart law, a primary magnetic field is produced whenever there is current in the loop. When the current is shut-off, the sudden change in magnetic flux induces anomalous currents in the Earth which propagate and diffuse over time. The distribution and propagation of the induced currents depends on the subsurface conductivity distribution and how much time has passed since the current in the VMD source was shut off. The induced currents ultimately produce secondary magnetic fields which can be measured by a receiver.\n",
+    "\n",
+    "In this app, we explore the following:\n",
+    "\n",
+    "- How do the fields and currents produced by the transient VMD source change over time?\n",
+    "- For a layered Earth, how does changing layer thickness and conductivity impact the fields and currents produced by the transient VMD source?\n",
+    "- How do the secondary fields measured above the Earth's surface change over time?\n",
+    "- For a layered Earth, how does changing layer thickness and conductivity impact secondary fields measured above the Earth's surface?"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Setup\n",
+    "\n",
+    "The geological scenario being modeled is shown in the figure below. Here, we assume the Earth is comprised of 3 layers. Each layer can have a different electrical conductivity ($\\sigma$). However, a constant magnetic susceptibility ($\\chi$) is used for all layers; where $\\mu_0$ is the magnetic permeability of free space and $\\mu = \\mu_0 (1 +\\chi)$. The thicknesses of the top two layers are given by $h_1$ and $h_2$, respectively.\n",
+    "\n",
+    "In this case, a transient VMD source (*Tx*) is used to excite the Earth, and the Earth's TEM response (secondary magnetic field) is measured by a receiver (*Rx*). In practice, the transmitter and receiver may be placed near the Earth's surface or in the air. The receiver may also measure secondary fields at a variety of times after the source is shut off.\n",
+    "\n",
+    "To understand the fields and currents resulting from a transient VMD source we have two apps:\n",
+    "\n",
+    "- **Fields app:** Models the fields and currents everywhere at a particular time after shutoff\n",
+    "- **Data app:** Models the secondary magnetic field observed by the receiver as a function of off-time\n",
+    "\n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/LayeredEarthTEM.png?raw=true\"></img>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exercise\n",
+    "\n",
+    "**Follow the exercise in a linear fashion. Some questions may use parameters set in a previous question.**\n",
+    "\n",
+    "- **Q1:** Set $\\sigma_1$, $\\sigma_2$ and $\\sigma_3$ to arbitrary conductivity values. Based on the geometry of the problem, which components (x, y, z) of each field (E, B, dBdt or J) are zero? Run the *Fields app* and set *AmpDir = None*. Next, try different combinations of *Field* and *Comp*. Does the simulation match what you initially thought?\n",
+    "\n",
+    "\n",
+    "- **Q2:** Re-run the *Fields app* to set parameters back to default. What happens to the *Ey* and *Jy* as you increase *time index* starting at 1? How does the diffusion and propagation of the EM signal change if the conductivity of all the layers is increased to 1 S/m?\n",
+    "\n",
+    "\n",
+    "- **Q3:** Re-run the *Fields app* to set parameters back to default. Set $\\sigma_1 = 0.01$ S/m, $\\sigma_2 = 1$ S/m and $\\sigma_3 = 0.01$ S/m. Now increase *time index* starting at 1. Is the signal able to effectively penetrate the conductive layer? Why/why not? What if the layer was resistive (i.e. $\\sigma_2 = 0.0001$ S/m) instead?\n",
+    "\n",
+    "\n",
+    "- **Q4:** Repeat Q3 but examine the current density. Where is the highest concentration of current density at late time channels? Does this support your answer to Q3?\n",
+    "\n",
+    "\n",
+    "- **Q5:** Re-run the *Fields app* to set parameters back to default. Set *Field = B*, *AmpDir = Direction*. What happens to the magnetic flux density as the *time index* is increased starting at 1? At (x,z)=(0,0), what is the vector direction of the magnetic flux density? Repeat Q5 for dBdt.\n",
+    "\n",
+    "\n",
+    "- **Q6:** Re-run the *Fields app* to set parameters back to default. Set $\\sigma_1 = 0.01$ S/m, $\\sigma_2 = 1$ S/m and $\\sigma_3 = 0.01$ S/m. Examine how B and dBdt are impacted by the conductive layer."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Fields app\n",
+    "\n",
+    "We use this app to simulate the fields and currents everywhere due to a transient VMD source. The fields and induced currents depend on time and the subsurface conductivity distribution. You will use the app to change various parameters in the model and see how the fields and currents change.\n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Update:** If *True* is selected, the simulation is re-run as parameters are being changed. If *False* is selected, the simulation will not be re-fun as parameters are being changed.\n",
+    "- **Field:** Type of EM fields (\"E\": electric field, \"B\": total magnetic flux density, \"dBdt\": time-derivative of the magnetic flux density, \"J\": current density and \"Model\": conductivity model)\n",
+    "- **AmpDir:** If *None* is selected, then the *x*, *y* or *z* component chosen on the next line is plotted. If *Direction* is chosen, a vector plot is plotted (only possible for B and dB/dt)\n",
+    "- **Comp.:** If *None* is selected on the previous line, the user chooses whether the *x*, *y* or *z* component is plotted.\n",
+    "- Time index: The time channel at which fields are being plotted\n",
+    "- $\\boldsymbol{\\sigma_0}$: Conductivity of 0th layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_1}$: Conductivity of 1st layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_2}$: Conductivity of 2nd layer in S/m\n",
+    "- $\\boldsymbol{\\sigma_3}$: Conductivity of 3rd layer in S/m\n",
+    "- $\\boldsymbol{\\chi}$: Susceptibility of 1-3 layers in SI\n",
+    "- $\\boldsymbol{h_1}$: Thickness of the first layer in metres\n",
+    "- $\\boldsymbol{h_2}$: Thickness of the second layer in metres\n",
+    "- **Scale:** Plot data values on *log-scale* or *linear-scale*\n",
+    "- $\\boldsymbol{\\Delta x}$ (m): Horizontal separation distance between the transmitter and receiver\n",
+    "- $\\boldsymbol{\\Delta z}$ (m): Height of the transmitter and receiver above the Earth's surface\n",
+    "- **Time index:** Time index for the set of frequencies models by this app"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6efb6028efd64a11b5cececc2579c9e6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(Checkbox(value=True, description='Update'), ToggleButtons(description='Field', options=('E', '…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q1 = APP.InteractivePlane_Layer()\n",
+    "display(Q1)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Data app\n",
+    "\n",
+    "Using this app, we show how the fields observed at the receiver location depend on the parameters set in the previous app. *Note that if you want to see changes in the data due to changes in the model, you MUST* re-run the previous app. \n",
+    "\n",
+    "## Parameters:\n",
+    "\n",
+    "- **Field:** Type of EM fields (\"E\": electric field, \"B\": magnetic flux density, \"dBdt\": time-derivative of the magnetic flux density)\n",
+    "- **Comp.:** Direction of EM field at Rx locations        \n",
+    "- **Scale:** Scale of y-axis values (\"log\" or \"linear\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4d35d874e87f486d81659bcf2bed2ee7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "MyApp(children=(ToggleButtons(description='Field', index=1, options=('E', 'B', 'dBdt'), value='B'), ToggleButt…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q2 = APP.InteractiveData_Layer()\n",
+    "display(Q2)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Explore\n",
+    "\n",
+    "EM fields will be depenent upon a number of parameters, using a simple half-space model ($\\sigma_1=\\sigma_2=\\sigma_3$) explore how EM fields and data changes upon below four parameters. \n",
+    "\n",
+    "- E1: Effects of frequency?\n",
+    "\n",
+    "\n",
+    "- E2: Effects of Tx height?\n",
+    "\n",
+    "\n",
+    "- E3: Effects of Conductivity?\n",
+    "\n",
+    "\n",
+    "- E4: Effects of Susceptibility?\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "c0dd4dbce2ff4d0cacf7363e6fdfed13": {
+     "views": [
+      {
+       "cell_index": 6
+      }
+     ]
+    },
+    "d6ee822b25404d33979ba6ec5f19963c": {
+     "views": [
+      {
+       "cell_index": 8
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/TDEM_InductiveSource.ipynb b/Notebooks/em/TEM/TDEM_InductiveSource.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..bfd056888e048f99c9a541574a16b6dd4aacda82
--- /dev/null
+++ b/Notebooks/em/TEM/TDEM_InductiveSource.ipynb
@@ -0,0 +1,310 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Populating the interactive namespace from numpy and matplotlib\n"
+     ]
+    },
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\tobia\\anaconda3\\lib\\site-packages\\IPython\\core\\magics\\pylab.py:160: UserWarning: pylab import has clobbered these variables: ['interactive']\n",
+      "`%matplotlib` prevents importing * from pylab and numpy\n",
+      "  \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n"
+     ]
+    }
+   ],
+   "source": [
+    "from ipywidgets import interact, interactive, FloatSlider, IntSlider, ToggleButtons\n",
+    "from geoscilabs.em.TDEMInductiveSource import choose_source, load_or_run_results, PlotTDEM\n",
+    "%pylab inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Exploring fields from inductive sources"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from inductive sources. Both electric currents and magnetic flux will be visualized to understand physics of inductive source EM. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Load simulation results (or run)\n",
+    "\n",
+    "Two inductive sources are considered:\n",
+    "\n",
+    "- Vertical magnetic dipole(VMD)\n",
+    "- Horizontal magnetic dipole(HMD)\n",
+    "\n",
+    "Using below widget, you can choose a model that you want to explore. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e8014266cd4349248b0c4d4a83e26516",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButtons(description='src_type', options=('VMD', 'HMD'), value='VMD'), Output()), _…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = interact(choose_source, \n",
+    "         src_type=ToggleButtons(\n",
+    "             options=[\"VMD\", \"HMD\"], value=\"VMD\"\n",
+    "         )\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Then here we are going to load results. If you want to rerun, you can set `re_run` as `True`. \n",
+    "With that option, you can change conductivity value of the block and halfspace you can alter a value for `sigma_halfspace`."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "file already exists, new file is called C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_inductivesource.tar\n",
+      "Downloading https://storage.googleapis.com/simpeg/em_examples/tdem_inductivesource/tdem_inductivesource.tar\n",
+      "   saved to: C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\em\\TEM\\tdem_inductivesource.tar\n",
+      "Download completed!\n"
+     ]
+    }
+   ],
+   "source": [
+    "import matplotlib\n",
+    "matplotlib.rcParams['font.size']=16\n",
+    "options = load_or_run_results(\n",
+    "    re_run=False, #better just run the results, high computational effort\n",
+    "    fname=choose_source(Q.widget.kwargs['src_type']),\n",
+    "    src_type=Q.widget.kwargs['src_type'],\n",
+    "    sigma_halfspace=0.01\n",
+    ")\n",
+    "tdem = PlotTDEM(**options)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dfbb28c42ea44bbdbab975d4ed41ed41",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=30.0, description='elev', max=180.0, min=-180.0, step=10.0), FloatSlid…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.show_3d_survey_geometry, \n",
+    "    elev=FloatSlider(min=-180, max=180, step=10, value=30),\n",
+    "    azim=FloatSlider(min=-180, max=180, step=10, value=-45),\n",
+    ")\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "ff6dca3d9ba046a9a022d828daba8081",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=15, description='itime', max=50, min=15), ToggleButtons(description='sca…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_input_currents, \n",
+    "    itime=IntSlider(min=15, max=50, step=1, value=15, contiusous_update=False),\n",
+    "    scale=ToggleButtons(\n",
+    "        options=[\"linear\", \"log\"], value=\"linear\"\n",
+    "    ),\n",
+    "    \n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "6ef2cf16465f4b0694cea8a877904118",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='itime', max=50, min=10, step=2), Output()), _dom_classe…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_electric_currents, \n",
+    "    itime=IntSlider(min=10, max=50, step=2, value=10, contiusous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e45f7f54007748e99845855aff5a0a78",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='itime', max=50, min=10, step=2), Output()), _dom_classe…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function ipywidgets.widgets.interaction._InteractFactory.__call__.<locals>.<lambda>(*args, **kwargs)>"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "interact(\n",
+    "    tdem.plot_magnetic_flux, \n",
+    "    itime=IntSlider(min=10, max=50, step=2, value=10, contiusous_update=False)\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/em/TEM/tdem_groundedsource.tar b/Notebooks/em/TEM/tdem_groundedsource.tar
new file mode 100644
index 0000000000000000000000000000000000000000..67d8ab19c285b86a645435b9a56813772d7e521f
Binary files /dev/null and b/Notebooks/em/TEM/tdem_groundedsource.tar differ
diff --git a/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_conductor.h5 b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_conductor.h5
new file mode 100644
index 0000000000000000000000000000000000000000..8d6c2928d8c06c31daacaa50ad5fc0c5b73b6dde
Binary files /dev/null and b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_conductor.h5 differ
diff --git a/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_half.h5 b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_half.h5
new file mode 100644
index 0000000000000000000000000000000000000000..987f69a8867982f16652ebaf4c58110050fea642
Binary files /dev/null and b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_half.h5 differ
diff --git a/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_resistor.h5 b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_resistor.h5
new file mode 100644
index 0000000000000000000000000000000000000000..ca24529d24ad23ca7c54ac6da7f6bd148f10b8c5
Binary files /dev/null and b/Notebooks/em/TEM/tdem_groundedsource/tdem_gs_resistor.h5 differ
diff --git a/Notebooks/em/TEM/tdem_gs_half.h5 b/Notebooks/em/TEM/tdem_gs_half.h5
new file mode 100644
index 0000000000000000000000000000000000000000..66a52f8c1ef198a4da65b842e0ade67546b49813
Binary files /dev/null and b/Notebooks/em/TEM/tdem_gs_half.h5 differ
diff --git a/Notebooks/em/TEM/tdem_inductivesource.tar b/Notebooks/em/TEM/tdem_inductivesource.tar
new file mode 100644
index 0000000000000000000000000000000000000000..3a3a10fac3e97d2e92e74743286379dba95d88c5
Binary files /dev/null and b/Notebooks/em/TEM/tdem_inductivesource.tar differ
diff --git a/Notebooks/em/TEM/tdem_inductivesource/tdem_hmd.h5 b/Notebooks/em/TEM/tdem_inductivesource/tdem_hmd.h5
new file mode 100644
index 0000000000000000000000000000000000000000..0828e90e3c3b93d2fbea842386f827b4dff6d632
Binary files /dev/null and b/Notebooks/em/TEM/tdem_inductivesource/tdem_hmd.h5 differ
diff --git a/Notebooks/em/TEM/tdem_inductivesource/tdem_vmd.h5 b/Notebooks/em/TEM/tdem_inductivesource/tdem_vmd.h5
new file mode 100644
index 0000000000000000000000000000000000000000..6cd9c830ec72e43185bec8e7d6c097834344caa0
Binary files /dev/null and b/Notebooks/em/TEM/tdem_inductivesource/tdem_vmd.h5 differ
diff --git a/Notebooks/em/TEM/tdem_vmd.h5 b/Notebooks/em/TEM/tdem_vmd.h5
new file mode 100644
index 0000000000000000000000000000000000000000..df27e8882076638e57057026b1f2fc2a6e35c7ad
Binary files /dev/null and b/Notebooks/em/TEM/tdem_vmd.h5 differ
diff --git a/gpr/.ipynb_checkpoints/GPR_Attenuation-checkpoint.ipynb b/Notebooks/gpr/.ipynb_checkpoints/GPR_Attenuation-checkpoint.ipynb
similarity index 100%
rename from gpr/.ipynb_checkpoints/GPR_Attenuation-checkpoint.ipynb
rename to Notebooks/gpr/.ipynb_checkpoints/GPR_Attenuation-checkpoint.ipynb
diff --git a/gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb b/Notebooks/gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb
similarity index 88%
rename from gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb
rename to Notebooks/gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb
index ad8d903034ff53c29f448d60676c7097d6c503a0..eb235d5d53136f58e72e0c03fe827ffc713720e2 100644
--- a/gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb
+++ b/Notebooks/gpr/.ipynb_checkpoints/GPR_Lab6_FitData-checkpoint.ipynb
@@ -34,7 +34,10 @@
    "source": [
     "%matplotlib inline\n",
     "from geoscilabs.gpr.GPRlab1 import downloadRadargramImage, PipeWidget, WallWidget\n",
-    "from SimPEG.utils import download"
+    "from SimPEG.utils import download\n",
+    "\n",
+    "import os\n",
+    "from PIL import Image"
    ]
   },
   {
@@ -57,13 +60,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "30003d3acf5343ffa9ab616b53ae5ea7",
+       "model_id": "5114d488ae354db19842dc1c412e0567",
        "version_major": 2,
        "version_minor": 0
       },
@@ -80,14 +83,18 @@
        "<function geoscilabs.gpr.GPRlab1.PipeWidgetFcn(epsr, h, xc, r, imgcmp)>"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 2,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
-    "radargramImage = downloadRadargramImage(URL)\n",
+    "#URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
+    "URL = os.getcwd()+ \"/ubc_GPRdata.png\"\n",
+    "\n",
+    "#radargramImage = downloadRadargramImage(URL)\n",
+    "radargramImage = Image.open(URL)\n",
+    "\n",
     "PipeWidget(radargramImage)"
    ]
   },
@@ -111,7 +118,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 3,
    "metadata": {
     "scrolled": false
    },
@@ -119,7 +126,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "7cf4887036f047e4a2a4e8c958734e19",
+       "model_id": "0e40457b4ed34dc58b654d19c9725c60",
        "version_major": 2,
        "version_minor": 0
       },
@@ -136,14 +143,18 @@
        "<function geoscilabs.gpr.GPRlab1.WallWidgetFcn(epsr, h, x1, x2, imgcmp)>"
       ]
      },
-     "execution_count": 4,
+     "execution_count": 3,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
-    "radargramImage = downloadRadargramImage(URL)\n",
+    "#URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
+    "#radargramImage = downloadRadargramImage(URL)\n",
+    "\n",
+    "URL = os.getcwd()+ \"/ubc_GPRdata.png\"\n",
+    "radargramImage = Image.open(URL)\n",
+    "\n",
     "WallWidget(radargramImage)"
    ]
   },
diff --git a/gpr/.ipynb_checkpoints/GPR_TBL4_DOI_Resolution-checkpoint.ipynb b/Notebooks/gpr/.ipynb_checkpoints/GPR_TBL4_DOI_Resolution-checkpoint.ipynb
similarity index 100%
rename from gpr/.ipynb_checkpoints/GPR_TBL4_DOI_Resolution-checkpoint.ipynb
rename to Notebooks/gpr/.ipynb_checkpoints/GPR_TBL4_DOI_Resolution-checkpoint.ipynb
diff --git a/gpr/GPR_Attenuation.ipynb b/Notebooks/gpr/GPR_Attenuation.ipynb
similarity index 90%
rename from gpr/GPR_Attenuation.ipynb
rename to Notebooks/gpr/GPR_Attenuation.ipynb
index 9dcd6bf8d84a0e7554d93889d49b56f90d269a93..57e133d953b4817826338b1475249d69e8ad717c 100644
--- a/gpr/GPR_Attenuation.ipynb
+++ b/Notebooks/gpr/GPR_Attenuation.ipynb
@@ -57,13 +57,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "33e25b12a4174c048ea647727c6b586e",
+       "model_id": "dc3b14b7fccc4f4f88914e5b5aad3a3d",
        "version_major": 2,
        "version_minor": 0
       },
@@ -73,6 +73,16 @@
      },
      "metadata": {},
      "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<function geoscilabs.gpr.Attenuation.WaveVelandSkindWidgetTBL(epsr, log_sigma, log_frequency)>"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
     }
    ],
    "source": [
diff --git a/gpr/GPR_Lab6_FitData.ipynb b/Notebooks/gpr/GPR_Lab6_FitData.ipynb
similarity index 88%
rename from gpr/GPR_Lab6_FitData.ipynb
rename to Notebooks/gpr/GPR_Lab6_FitData.ipynb
index 0f10a42e6c895d4d28c55039ad31c1b8351c0627..eb235d5d53136f58e72e0c03fe827ffc713720e2 100644
--- a/gpr/GPR_Lab6_FitData.ipynb
+++ b/Notebooks/gpr/GPR_Lab6_FitData.ipynb
@@ -34,7 +34,10 @@
    "source": [
     "%matplotlib inline\n",
     "from geoscilabs.gpr.GPRlab1 import downloadRadargramImage, PipeWidget, WallWidget\n",
-    "from SimPEG.utils import download"
+    "from SimPEG.utils import download\n",
+    "\n",
+    "import os\n",
+    "from PIL import Image"
    ]
   },
   {
@@ -63,7 +66,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "11c9969799104002bacd4dd8b11d872e",
+       "model_id": "5114d488ae354db19842dc1c412e0567",
        "version_major": 2,
        "version_minor": 0
       },
@@ -86,8 +89,12 @@
     }
    ],
    "source": [
-    "URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
-    "radargramImage = downloadRadargramImage(URL)\n",
+    "#URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
+    "URL = os.getcwd()+ \"/ubc_GPRdata.png\"\n",
+    "\n",
+    "#radargramImage = downloadRadargramImage(URL)\n",
+    "radargramImage = Image.open(URL)\n",
+    "\n",
     "PipeWidget(radargramImage)"
    ]
   },
@@ -119,7 +126,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "fe04a72dc0fa4fdab47146e0f44aeaef",
+       "model_id": "0e40457b4ed34dc58b654d19c9725c60",
        "version_major": 2,
        "version_minor": 0
       },
@@ -142,8 +149,12 @@
     }
    ],
    "source": [
-    "URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
-    "radargramImage = downloadRadargramImage(URL)\n",
+    "#URL = \"http://github.com/geoscixyz/geosci-labs/raw/main/images/gpr/ubc_GPRdata.png\"\n",
+    "#radargramImage = downloadRadargramImage(URL)\n",
+    "\n",
+    "URL = os.getcwd()+ \"/ubc_GPRdata.png\"\n",
+    "radargramImage = Image.open(URL)\n",
+    "\n",
     "WallWidget(radargramImage)"
    ]
   },
diff --git a/gpr/GPR_TBL4_DOI_Resolution.ipynb b/Notebooks/gpr/GPR_TBL4_DOI_Resolution.ipynb
similarity index 100%
rename from gpr/GPR_TBL4_DOI_Resolution.ipynb
rename to Notebooks/gpr/GPR_TBL4_DOI_Resolution.ipynb
diff --git a/Notebooks/gpr/ubc_GPRdata.png b/Notebooks/gpr/ubc_GPRdata.png
new file mode 100644
index 0000000000000000000000000000000000000000..ebc5cdefa2be26c06c451a4f8caec1dcc187d5ee
Binary files /dev/null and b/Notebooks/gpr/ubc_GPRdata.png differ
diff --git a/Notebooks/gravity/.ipynb_checkpoints/gravityDike-checkpoint.ipynb b/Notebooks/gravity/.ipynb_checkpoints/gravityDike-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cdc63c4697642a9fb82156da86280647ca5894bd
--- /dev/null
+++ b/Notebooks/gravity/.ipynb_checkpoints/gravityDike-checkpoint.ipynb
@@ -0,0 +1,243 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Gravity anomaly from a dike\n",
+    "\n",
+    "## Introduction\n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a 2D dipping dike that is infinite along one horizontal direction and buried in the subsurface.\n",
+    "\n",
+    "Three plots are produced:\n",
+    "\n",
+    "(1) Data measured along a profile on the surface across the dike\n",
+    "\n",
+    "(2) Cross-sectional diagram of the dike model\n",
+    "\n",
+    "(3) Plan view of data measured over a grid on the surface"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from geoscilabs.gravity.gravityDike import interact_gravity_Dike, printResult"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Setup\n",
+    "\n",
+    "The following parameters are adjustable.\n",
+    "\n",
+    "$\\Delta \\rho$: Density contrast defined as the density of the dike minus the density of the host rock (in $g/cm^3$)\n",
+    "\n",
+    "$z_1$: Depth to the top of the dike (in $m$)\n",
+    "\n",
+    "$z_2$: Depth to the bottom of the dike (in $m$)\n",
+    "\n",
+    "$b$: Horizontal width of the dike (in $m$)\n",
+    "\n",
+    "$\\beta$: Dipping angle of the dike from vertical (in $degree$)\n",
+    "\n",
+    "$Step$: Spacing between measurements on the surface (in $m$)\n",
+    "\n",
+    "\n",
+    "The vertical component of the gravity anomaly at a point on the surface can be calculated as\n",
+    "\n",
+    "$\\Delta g_z = 2 G \\Delta \\rho [ z_2 (\\theta_2-\\theta_4) - z1 (\\theta_1-\\theta_3) + \\mathbf{sin}\\beta \\mathbf{cos}\\beta \\{x (\\theta_2-\\theta_1) - (x-b) (\\theta_4-\\theta_3)\\} + \\mathbf{cos}^2\\beta \\{x \\mathbf{ln}(r_2/r_1) - (x-b) \\mathbf{ln}(r_4/r_3) \\} ]$ in mGal,\n",
+    "\n",
+    "where $G = 6.674 \\times 10^{-8} cm^3 \\cdot g^{-1} \\cdot s^{-2}$ is the gravititional constant and $\\theta$'s are in radian.\n",
+    "\n",
+    "<img style=\"width: 800px\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/gravity/gravityDike.png?raw=true\">\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b349a68808bd4d87a6946dd3fd350bd9",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "VBox(children=(HBox(children=(VBox(children=(FloatSlider(value=1.0, continuous_update=False, description='$\\\\D…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "interact_gravity_Dike()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Print data\n",
+    "\n",
+    "Run the cell below to print the measurement locations and the measured data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    X        Δgz    \n",
+      "  -6.000   0.000352 \n",
+      "  -5.879   0.000368 \n",
+      "  -5.758   0.000384 \n",
+      "  -5.636   0.000402 \n",
+      "  -5.515   0.000421 \n",
+      "  -5.394   0.000441 \n",
+      "  -5.273   0.000463 \n",
+      "  -5.152   0.000487 \n",
+      "  -5.030   0.000512 \n",
+      "  -4.909   0.000539 \n",
+      "  -4.788   0.000568 \n",
+      "  -4.667   0.000600 \n",
+      "  -4.545   0.000635 \n",
+      "  -4.424   0.000672 \n",
+      "  -4.303   0.000713 \n",
+      "  -4.182   0.000758 \n",
+      "  -4.061   0.000806 \n",
+      "  -3.939   0.000860 \n",
+      "  -3.818   0.000919 \n",
+      "  -3.697   0.000984 \n",
+      "  -3.576   0.001056 \n",
+      "  -3.455   0.001135 \n",
+      "  -3.333   0.001224 \n",
+      "  -3.212   0.001323 \n",
+      "  -3.091   0.001433 \n",
+      "  -2.970   0.001557 \n",
+      "  -2.848   0.001697 \n",
+      "  -2.727   0.001855 \n",
+      "  -2.606   0.002034 \n",
+      "  -2.485   0.002238 \n",
+      "  -2.364   0.002470 \n",
+      "  -2.242   0.002735 \n",
+      "  -2.121   0.003038 \n",
+      "  -2.000   0.003385 \n",
+      "  -1.879   0.003782 \n",
+      "  -1.758   0.004236 \n",
+      "  -1.636   0.004754 \n",
+      "  -1.515   0.005342 \n",
+      "  -1.394   0.006005 \n",
+      "  -1.273   0.006748 \n",
+      "  -1.152   0.007571 \n",
+      "  -1.030   0.008474 \n",
+      "  -0.909   0.009450 \n",
+      "  -0.788   0.010484 \n",
+      "  -0.667   0.011550 \n",
+      "  -0.545   0.012597 \n",
+      "  -0.424   0.013536 \n",
+      "  -0.303   0.014234 \n",
+      "  -0.182   0.014569 \n",
+      "  -0.061   0.014493 \n",
+      "  0.061    0.014028 \n",
+      "  0.182    0.013223 \n",
+      "  0.303    0.012135 \n",
+      "  0.424    0.010830 \n",
+      "  0.545    0.009400 \n",
+      "  0.667    0.007977 \n",
+      "  0.788    0.006697 \n",
+      "  0.909    0.005635 \n",
+      "  1.030    0.004785 \n",
+      "  1.152    0.004109 \n",
+      "  1.273    0.003565 \n",
+      "  1.394    0.003123 \n",
+      "  1.515    0.002759 \n",
+      "  1.636    0.002455 \n",
+      "  1.758    0.002199 \n",
+      "  1.879    0.001982 \n",
+      "  2.000    0.001795 \n",
+      "  2.121    0.001633 \n",
+      "  2.242    0.001493 \n",
+      "  2.364    0.001369 \n",
+      "  2.485    0.001261 \n",
+      "  2.606    0.001165 \n",
+      "  2.727    0.001079 \n",
+      "  2.848    0.001003 \n",
+      "  2.970    0.000934 \n",
+      "  3.091    0.000872 \n",
+      "  3.212    0.000816 \n",
+      "  3.333    0.000766 \n",
+      "  3.455    0.000720 \n",
+      "  3.576    0.000677 \n",
+      "  3.697    0.000639 \n",
+      "  3.818    0.000604 \n",
+      "  3.939    0.000571 \n",
+      "  4.061    0.000541 \n",
+      "  4.182    0.000513 \n",
+      "  4.303    0.000488 \n",
+      "  4.424    0.000464 \n",
+      "  4.545    0.000442 \n",
+      "  4.667    0.000422 \n",
+      "  4.788    0.000402 \n",
+      "  4.909    0.000385 \n",
+      "  5.030    0.000368 \n",
+      "  5.152    0.000352 \n",
+      "  5.273    0.000338 \n",
+      "  5.394    0.000324 \n",
+      "  5.515    0.000311 \n",
+      "  5.636    0.000299 \n",
+      "  5.758    0.000287 \n",
+      "  5.879    0.000276 \n",
+      "  6.000    0.000266 \n"
+     ]
+    }
+   ],
+   "source": [
+    "printResult()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/gravity/.ipynb_checkpoints/gravitySphere-checkpoint.ipynb b/Notebooks/gravity/.ipynb_checkpoints/gravitySphere-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2b26fe4d3364c0c4fe40bf666bd6a19fbda191a3
--- /dev/null
+++ b/Notebooks/gravity/.ipynb_checkpoints/gravitySphere-checkpoint.ipynb
@@ -0,0 +1,238 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Gravity anomaly from a sphere\n",
+    "\n",
+    "\n",
+    "## Introduction\n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a sphere buried in the subsurface.\n",
+    "\n",
+    "Three plots are produced:\n",
+    "\n",
+    "(1) Data measured along a profile on the surface across the sphere\n",
+    "\n",
+    "(2) Cross-sectional diagram of the sphere model\n",
+    "\n",
+    "(3) Plan view of data measured over a grid on the surface"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from geoscilabs.gravity.gravitySphere import interact_gravity_sphere, printResult"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Setup\n",
+    "\n",
+    "The following parameters are adjustable.\n",
+    "\n",
+    "$\\Delta \\rho$: Density contrast defined as the density of the dike minus the density of the host rock (in $g/cm^3$)\n",
+    "\n",
+    "$a$: Radius of the sphere (in $m$)\n",
+    "\n",
+    "$z$: Depth to the center of the sphere (in $m$)\n",
+    "\n",
+    "$Step$: Spacing between measurements on the surface (in $m$)\n",
+    "\n",
+    "\n",
+    "The vertical component of the gravity anomaly at a point on the surface can be calculated as\n",
+    "\n",
+    "$\\Delta g_z = G \\Delta \\rho a^3 4/3 z / r^3$ in mGal,\n",
+    "\n",
+    "where $G = 6.674 \\times 10^{-8} cm^3 \\cdot g^{-1} \\cdot s^{-2}$ is the gravititional constant and $r = \\sqrt{x^2+z^2}$ is the distance between the sphere's center and the observation point on the surface.\n",
+    "\n",
+    "<img style=\"width: 600px\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/gravity/gravitySphere.png?raw=true\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a720d923881d477688f37268d185d582",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=1.0, continuous_update=False, description='$\\\\Delta\\\\rho$', max=5.0, m…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "interact_gravity_sphere()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Print data\n",
+    "\n",
+    "Run the cell below to print the measurement locations and the measured data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    X        Δgz    \n",
+      " -10.000   0.000028 \n",
+      "  -9.798   0.000029 \n",
+      "  -9.596   0.000031 \n",
+      "  -9.394   0.000033 \n",
+      "  -9.192   0.000035 \n",
+      "  -8.990   0.000038 \n",
+      "  -8.788   0.000040 \n",
+      "  -8.586   0.000043 \n",
+      "  -8.384   0.000046 \n",
+      "  -8.182   0.000050 \n",
+      "  -7.980   0.000054 \n",
+      "  -7.778   0.000058 \n",
+      "  -7.576   0.000063 \n",
+      "  -7.374   0.000068 \n",
+      "  -7.172   0.000074 \n",
+      "  -6.970   0.000080 \n",
+      "  -6.768   0.000087 \n",
+      "  -6.566   0.000095 \n",
+      "  -6.364   0.000105 \n",
+      "  -6.162   0.000115 \n",
+      "  -5.960   0.000127 \n",
+      "  -5.758   0.000140 \n",
+      "  -5.556   0.000155 \n",
+      "  -5.354   0.000173 \n",
+      "  -5.152   0.000193 \n",
+      "  -4.949   0.000217 \n",
+      "  -4.747   0.000245 \n",
+      "  -4.545   0.000277 \n",
+      "  -4.343   0.000316 \n",
+      "  -4.141   0.000362 \n",
+      "  -3.939   0.000416 \n",
+      "  -3.737   0.000483 \n",
+      "  -3.535   0.000564 \n",
+      "  -3.333   0.000663 \n",
+      "  -3.131   0.000787 \n",
+      "  -2.929   0.000943 \n",
+      "  -2.727   0.001141 \n",
+      "  -2.525   0.001395 \n",
+      "  -2.323   0.001728 \n",
+      "  -2.121   0.002168 \n",
+      "  -1.919   0.002758 \n",
+      "  -1.717   0.003563 \n",
+      "  -1.515   0.004673 \n",
+      "  -1.313   0.006217 \n",
+      "  -1.111   0.008370 \n",
+      "  -0.909   0.011326 \n",
+      "  -0.707   0.015219 \n",
+      "  -0.505   0.019883 \n",
+      "  -0.303   0.024505 \n",
+      "  -0.101   0.027535 \n",
+      "  0.101    0.027535 \n",
+      "  0.303    0.024505 \n",
+      "  0.505    0.019883 \n",
+      "  0.707    0.015219 \n",
+      "  0.909    0.011326 \n",
+      "  1.111    0.008370 \n",
+      "  1.313    0.006217 \n",
+      "  1.515    0.004673 \n",
+      "  1.717    0.003563 \n",
+      "  1.919    0.002758 \n",
+      "  2.121    0.002168 \n",
+      "  2.323    0.001728 \n",
+      "  2.525    0.001395 \n",
+      "  2.727    0.001141 \n",
+      "  2.929    0.000943 \n",
+      "  3.131    0.000787 \n",
+      "  3.333    0.000663 \n",
+      "  3.535    0.000564 \n",
+      "  3.737    0.000483 \n",
+      "  3.939    0.000416 \n",
+      "  4.141    0.000362 \n",
+      "  4.343    0.000316 \n",
+      "  4.545    0.000277 \n",
+      "  4.747    0.000245 \n",
+      "  4.949    0.000217 \n",
+      "  5.152    0.000193 \n",
+      "  5.354    0.000173 \n",
+      "  5.556    0.000155 \n",
+      "  5.758    0.000140 \n",
+      "  5.960    0.000127 \n",
+      "  6.162    0.000115 \n",
+      "  6.364    0.000105 \n",
+      "  6.566    0.000095 \n",
+      "  6.768    0.000087 \n",
+      "  6.970    0.000080 \n",
+      "  7.172    0.000074 \n",
+      "  7.374    0.000068 \n",
+      "  7.576    0.000063 \n",
+      "  7.778    0.000058 \n",
+      "  7.980    0.000054 \n",
+      "  8.182    0.000050 \n",
+      "  8.384    0.000046 \n",
+      "  8.586    0.000043 \n",
+      "  8.788    0.000040 \n",
+      "  8.990    0.000038 \n",
+      "  9.192    0.000035 \n",
+      "  9.394    0.000033 \n",
+      "  9.596    0.000031 \n",
+      "  9.798    0.000029 \n",
+      "  10.000   0.000028 \n"
+     ]
+    }
+   ],
+   "source": [
+    "printResult()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/gravity/gravityDike.ipynb b/Notebooks/gravity/gravityDike.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..11e16d3bde46627587e00357632f1393df2faa4e
--- /dev/null
+++ b/Notebooks/gravity/gravityDike.ipynb
@@ -0,0 +1,243 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Gravity anomaly from a dike\n",
+    "\n",
+    "## Introduction\n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a 2D dipping dike that is infinite along one horizontal direction and buried in the subsurface.\n",
+    "\n",
+    "Three plots are produced:\n",
+    "\n",
+    "(1) Data measured along a profile on the surface across the dike\n",
+    "\n",
+    "(2) Cross-sectional diagram of the dike model\n",
+    "\n",
+    "(3) Plan view of data measured over a grid on the surface"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from geoscilabs.gravity.gravityDike import interact_gravity_Dike, printResult"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Setup\n",
+    "\n",
+    "The following parameters are adjustable.\n",
+    "\n",
+    "$\\Delta \\rho$: Density contrast defined as the density of the dike minus the density of the host rock (in $g/cm^3$)\n",
+    "\n",
+    "$z_1$: Depth to the top of the dike (in $m$)\n",
+    "\n",
+    "$z_2$: Depth to the bottom of the dike (in $m$)\n",
+    "\n",
+    "$b$: Horizontal width of the dike (in $m$)\n",
+    "\n",
+    "$\\beta$: Dipping angle of the dike from vertical (in $degree$)\n",
+    "\n",
+    "$Step$: Spacing between measurements on the surface (in $m$)\n",
+    "\n",
+    "\n",
+    "The vertical component of the gravity anomaly at a point on the surface can be calculated as\n",
+    "\n",
+    "$\\Delta g_z = 2 G \\Delta \\rho [ z_2 (\\theta_2-\\theta_4) - z1 (\\theta_1-\\theta_3) + \\mathbf{sin}\\beta \\mathbf{cos}\\beta \\{x (\\theta_2-\\theta_1) - (x-b) (\\theta_4-\\theta_3)\\} + \\mathbf{cos}^2\\beta \\{x \\mathbf{ln}(r_2/r_1) - (x-b) \\mathbf{ln}(r_4/r_3) \\} ]$ in mGal,\n",
+    "\n",
+    "where $G = 6.674 \\times 10^{-8} cm^3 \\cdot g^{-1} \\cdot s^{-2}$ is the gravititional constant and $\\theta$'s are in radian.\n",
+    "\n",
+    "<img style=\"width: 800px\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/gravity/gravityDike.png?raw=true\">\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "9c80473d5a22404daaeeb7f5f2c5439b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "VBox(children=(HBox(children=(VBox(children=(FloatSlider(value=1.0, continuous_update=False, description='$\\\\D…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "interact_gravity_Dike()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Print data\n",
+    "\n",
+    "Run the cell below to print the measurement locations and the measured data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    X        Δgz    \n",
+      "  -6.000   0.000352 \n",
+      "  -5.879   0.000368 \n",
+      "  -5.758   0.000384 \n",
+      "  -5.636   0.000402 \n",
+      "  -5.515   0.000421 \n",
+      "  -5.394   0.000441 \n",
+      "  -5.273   0.000463 \n",
+      "  -5.152   0.000487 \n",
+      "  -5.030   0.000512 \n",
+      "  -4.909   0.000539 \n",
+      "  -4.788   0.000568 \n",
+      "  -4.667   0.000600 \n",
+      "  -4.545   0.000635 \n",
+      "  -4.424   0.000672 \n",
+      "  -4.303   0.000713 \n",
+      "  -4.182   0.000758 \n",
+      "  -4.061   0.000806 \n",
+      "  -3.939   0.000860 \n",
+      "  -3.818   0.000919 \n",
+      "  -3.697   0.000984 \n",
+      "  -3.576   0.001056 \n",
+      "  -3.455   0.001135 \n",
+      "  -3.333   0.001224 \n",
+      "  -3.212   0.001323 \n",
+      "  -3.091   0.001433 \n",
+      "  -2.970   0.001557 \n",
+      "  -2.848   0.001697 \n",
+      "  -2.727   0.001855 \n",
+      "  -2.606   0.002034 \n",
+      "  -2.485   0.002238 \n",
+      "  -2.364   0.002470 \n",
+      "  -2.242   0.002735 \n",
+      "  -2.121   0.003038 \n",
+      "  -2.000   0.003385 \n",
+      "  -1.879   0.003782 \n",
+      "  -1.758   0.004236 \n",
+      "  -1.636   0.004754 \n",
+      "  -1.515   0.005342 \n",
+      "  -1.394   0.006005 \n",
+      "  -1.273   0.006748 \n",
+      "  -1.152   0.007571 \n",
+      "  -1.030   0.008474 \n",
+      "  -0.909   0.009450 \n",
+      "  -0.788   0.010484 \n",
+      "  -0.667   0.011550 \n",
+      "  -0.545   0.012597 \n",
+      "  -0.424   0.013536 \n",
+      "  -0.303   0.014234 \n",
+      "  -0.182   0.014569 \n",
+      "  -0.061   0.014493 \n",
+      "  0.061    0.014028 \n",
+      "  0.182    0.013223 \n",
+      "  0.303    0.012135 \n",
+      "  0.424    0.010830 \n",
+      "  0.545    0.009400 \n",
+      "  0.667    0.007977 \n",
+      "  0.788    0.006697 \n",
+      "  0.909    0.005635 \n",
+      "  1.030    0.004785 \n",
+      "  1.152    0.004109 \n",
+      "  1.273    0.003565 \n",
+      "  1.394    0.003123 \n",
+      "  1.515    0.002759 \n",
+      "  1.636    0.002455 \n",
+      "  1.758    0.002199 \n",
+      "  1.879    0.001982 \n",
+      "  2.000    0.001795 \n",
+      "  2.121    0.001633 \n",
+      "  2.242    0.001493 \n",
+      "  2.364    0.001369 \n",
+      "  2.485    0.001261 \n",
+      "  2.606    0.001165 \n",
+      "  2.727    0.001079 \n",
+      "  2.848    0.001003 \n",
+      "  2.970    0.000934 \n",
+      "  3.091    0.000872 \n",
+      "  3.212    0.000816 \n",
+      "  3.333    0.000766 \n",
+      "  3.455    0.000720 \n",
+      "  3.576    0.000677 \n",
+      "  3.697    0.000639 \n",
+      "  3.818    0.000604 \n",
+      "  3.939    0.000571 \n",
+      "  4.061    0.000541 \n",
+      "  4.182    0.000513 \n",
+      "  4.303    0.000488 \n",
+      "  4.424    0.000464 \n",
+      "  4.545    0.000442 \n",
+      "  4.667    0.000422 \n",
+      "  4.788    0.000402 \n",
+      "  4.909    0.000385 \n",
+      "  5.030    0.000368 \n",
+      "  5.152    0.000352 \n",
+      "  5.273    0.000338 \n",
+      "  5.394    0.000324 \n",
+      "  5.515    0.000311 \n",
+      "  5.636    0.000299 \n",
+      "  5.758    0.000287 \n",
+      "  5.879    0.000276 \n",
+      "  6.000    0.000266 \n"
+     ]
+    }
+   ],
+   "source": [
+    "printResult()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/gravity/gravitySphere.ipynb b/Notebooks/gravity/gravitySphere.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d90106da0f5d7b4c6322314892d872ca5ed4d582
--- /dev/null
+++ b/Notebooks/gravity/gravitySphere.ipynb
@@ -0,0 +1,238 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Gravity anomaly from a sphere\n",
+    "\n",
+    "\n",
+    "## Introduction\n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a sphere buried in the subsurface.\n",
+    "\n",
+    "Three plots are produced:\n",
+    "\n",
+    "(1) Data measured along a profile on the surface across the sphere\n",
+    "\n",
+    "(2) Cross-sectional diagram of the sphere model\n",
+    "\n",
+    "(3) Plan view of data measured over a grid on the surface"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "from geoscilabs.gravity.gravitySphere import interact_gravity_sphere, printResult"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Setup\n",
+    "\n",
+    "The following parameters are adjustable.\n",
+    "\n",
+    "$\\Delta \\rho$: Density contrast defined as the density of the dike minus the density of the host rock (in $g/cm^3$)\n",
+    "\n",
+    "$a$: Radius of the sphere (in $m$)\n",
+    "\n",
+    "$z$: Depth to the center of the sphere (in $m$)\n",
+    "\n",
+    "$Step$: Spacing between measurements on the surface (in $m$)\n",
+    "\n",
+    "\n",
+    "The vertical component of the gravity anomaly at a point on the surface can be calculated as\n",
+    "\n",
+    "$\\Delta g_z = G \\Delta \\rho a^3 4/3 z / r^3$ in mGal,\n",
+    "\n",
+    "where $G = 6.674 \\times 10^{-8} cm^3 \\cdot g^{-1} \\cdot s^{-2}$ is the gravititional constant and $r = \\sqrt{x^2+z^2}$ is the distance between the sphere's center and the observation point on the surface.\n",
+    "\n",
+    "<img style=\"width: 600px\" src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/gravity/gravitySphere.png?raw=true\">"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "929948c8163f4508bbaf98cd5eced47f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=1.0, continuous_update=False, description='$\\\\Delta\\\\rho$', max=5.0, m…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "interact_gravity_sphere()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Print data\n",
+    "\n",
+    "Run the cell below to print the measurement locations and the measured data."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "    X        Δgz    \n",
+      " -10.000   0.000028 \n",
+      "  -9.798   0.000029 \n",
+      "  -9.596   0.000031 \n",
+      "  -9.394   0.000033 \n",
+      "  -9.192   0.000035 \n",
+      "  -8.990   0.000038 \n",
+      "  -8.788   0.000040 \n",
+      "  -8.586   0.000043 \n",
+      "  -8.384   0.000046 \n",
+      "  -8.182   0.000050 \n",
+      "  -7.980   0.000054 \n",
+      "  -7.778   0.000058 \n",
+      "  -7.576   0.000063 \n",
+      "  -7.374   0.000068 \n",
+      "  -7.172   0.000074 \n",
+      "  -6.970   0.000080 \n",
+      "  -6.768   0.000087 \n",
+      "  -6.566   0.000095 \n",
+      "  -6.364   0.000105 \n",
+      "  -6.162   0.000115 \n",
+      "  -5.960   0.000127 \n",
+      "  -5.758   0.000140 \n",
+      "  -5.556   0.000155 \n",
+      "  -5.354   0.000173 \n",
+      "  -5.152   0.000193 \n",
+      "  -4.949   0.000217 \n",
+      "  -4.747   0.000245 \n",
+      "  -4.545   0.000277 \n",
+      "  -4.343   0.000316 \n",
+      "  -4.141   0.000362 \n",
+      "  -3.939   0.000416 \n",
+      "  -3.737   0.000483 \n",
+      "  -3.535   0.000564 \n",
+      "  -3.333   0.000663 \n",
+      "  -3.131   0.000787 \n",
+      "  -2.929   0.000943 \n",
+      "  -2.727   0.001141 \n",
+      "  -2.525   0.001395 \n",
+      "  -2.323   0.001728 \n",
+      "  -2.121   0.002168 \n",
+      "  -1.919   0.002758 \n",
+      "  -1.717   0.003563 \n",
+      "  -1.515   0.004673 \n",
+      "  -1.313   0.006217 \n",
+      "  -1.111   0.008370 \n",
+      "  -0.909   0.011326 \n",
+      "  -0.707   0.015219 \n",
+      "  -0.505   0.019883 \n",
+      "  -0.303   0.024505 \n",
+      "  -0.101   0.027535 \n",
+      "  0.101    0.027535 \n",
+      "  0.303    0.024505 \n",
+      "  0.505    0.019883 \n",
+      "  0.707    0.015219 \n",
+      "  0.909    0.011326 \n",
+      "  1.111    0.008370 \n",
+      "  1.313    0.006217 \n",
+      "  1.515    0.004673 \n",
+      "  1.717    0.003563 \n",
+      "  1.919    0.002758 \n",
+      "  2.121    0.002168 \n",
+      "  2.323    0.001728 \n",
+      "  2.525    0.001395 \n",
+      "  2.727    0.001141 \n",
+      "  2.929    0.000943 \n",
+      "  3.131    0.000787 \n",
+      "  3.333    0.000663 \n",
+      "  3.535    0.000564 \n",
+      "  3.737    0.000483 \n",
+      "  3.939    0.000416 \n",
+      "  4.141    0.000362 \n",
+      "  4.343    0.000316 \n",
+      "  4.545    0.000277 \n",
+      "  4.747    0.000245 \n",
+      "  4.949    0.000217 \n",
+      "  5.152    0.000193 \n",
+      "  5.354    0.000173 \n",
+      "  5.556    0.000155 \n",
+      "  5.758    0.000140 \n",
+      "  5.960    0.000127 \n",
+      "  6.162    0.000115 \n",
+      "  6.364    0.000105 \n",
+      "  6.566    0.000095 \n",
+      "  6.768    0.000087 \n",
+      "  6.970    0.000080 \n",
+      "  7.172    0.000074 \n",
+      "  7.374    0.000068 \n",
+      "  7.576    0.000063 \n",
+      "  7.778    0.000058 \n",
+      "  7.980    0.000054 \n",
+      "  8.182    0.000050 \n",
+      "  8.384    0.000046 \n",
+      "  8.586    0.000043 \n",
+      "  8.788    0.000040 \n",
+      "  8.990    0.000038 \n",
+      "  9.192    0.000035 \n",
+      "  9.394    0.000033 \n",
+      "  9.596    0.000031 \n",
+      "  9.798    0.000029 \n",
+      "  10.000   0.000028 \n"
+     ]
+    }
+   ],
+   "source": [
+    "printResult()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/mag/.ipynb_checkpoints/Mag_Dipole-checkpoint.ipynb b/Notebooks/mag/.ipynb_checkpoints/Mag_Dipole-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8f5ae134814c6ff250d398aa8f867e9ef3816255
--- /dev/null
+++ b/Notebooks/mag/.ipynb_checkpoints/Mag_Dipole-checkpoint.ipynb
@@ -0,0 +1,1201 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "from mpl_toolkits.mplot3d import Axes3D\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "from geoscilabs.mag.MagDipole import MagneticLongDipoleLine, MagneticLongDipoleField"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define a magnetic dipole\n",
+    "\n",
+    "A dipole is defined in the section below using\n",
+    "* dipoleloc: x, y, z location of the dipole center\n",
+    "* dipoledec: declination of the dipole's direction in degree; north = 0; positive clockwise\n",
+    "* dipoleinc: declination of the dipole's direction in degree; horizontal = 0; positive down\n",
+    "* dipoleL: length of the dipole *L* or the distance between two opposite charges *Q* that make the dipole\n",
+    "* dipolemoement: $m=\\frac{QL}{\\mu_0}$\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# define a dipole\n",
+    "dipoleloc = (0.,0.,-50.)\n",
+    "dipoleL = 100.\n",
+    "dipoledec, dipoleinc = 0., 90.\n",
+    "dipolemoment = 1e13"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define the Earth's magnetic field $B_0$\n",
+    "$B_0$ is used to calcualte the total field anomaly, which is the projection of the anomalous vector field onto the earth's field (inner product).\n",
+    "* B0: the magnitude of the earth's field\n",
+    "* Binc: inclination of the earth's field\n",
+    "* Bdec: declination of the earth's field"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# geomagnetic field\n",
+    "B0, Binc, Bdec = 53600e-9, 90., 0. # in Tesla, degree, degree\n",
+    "B0x = B0*np.cos(np.radians(Binc))*np.sin(np.radians(Bdec))\n",
+    "B0y = B0*np.cos(np.radians(Binc))*np.cos(np.radians(Bdec))\n",
+    "B0z = -B0*np.sin(np.radians(Binc))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define the observations\n",
+    "Four data plots will be generated in the figure: magnetic anomalous field map (contour) at a certain elevation, magnetic anomalous field data (curve) along a x-profile and a y-profile, and the magnetic field lines of the dipole. \n",
+    "* xmin, xmax, ymin, ymax: the outer bounds of the survey grid\n",
+    "* z: elevation at which the data map is measured\n",
+    "* profile_x, profile_y: x-coordinate of y-profile, y-coordinate of x-profile\n",
+    "* h: grid interval\n",
+    "* radii: how far the field lines expand; can plot multiple layers if given (r1, r2, ...)\n",
+    "* Naz: number of azimuth angles for the field line"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# set observation grid\n",
+    "xmin, xmax, ymin, ymax, z = -5., 5., -5., 5., 1. # x, y bounds and elevation\n",
+    "profile_x = 0. # x-coordinate of y-profile\n",
+    "profile_y = 0. # y-coordinate of x-profile\n",
+    "h = 0.2 # grid interval\n",
+    "radii = (2., 5.) # how many layers of field lines for plotting\n",
+    "Naz = 10 # number of azimuth"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate data for plotting"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# get field lines\n",
+    "linex, liney, linez = MagneticLongDipoleLine(dipoleloc,dipoledec,dipoleinc,dipoleL,radii,Naz)\n",
+    "\n",
+    "# get map\n",
+    "xi, yi = np.meshgrid(np.r_[xmin:xmax+h:h], np.r_[ymin:ymax+h:h])\n",
+    "x1, y1 = xi.flatten(), yi.flatten()\n",
+    "z1 = np.full(x1.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x1)), np.zeros(len(x1)), np.zeros(len(x1))\n",
+    "\n",
+    "for i in np.arange(len(x1)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x1[i],y1[i],z1[i]),dipolemoment)\n",
+    "Ba1 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))\n",
+    "\n",
+    "# get x-profile\n",
+    "x2 = np.r_[xmin:xmax+h:h]\n",
+    "y2, z2 = np.full(x2.shape,profile_y), np.full(x2.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x2)), np.zeros(len(x2)), np.zeros(len(x2))\n",
+    "for i in np.arange(len(x2)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x2[i],y2[i],z2[i]),dipolemoment)\n",
+    "Ba2 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))\n",
+    "\n",
+    "# get y-profile\n",
+    "y3 = np.r_[ymin:ymax+h:h]\n",
+    "x3, z3 = np.full(y3.shape,profile_x), np.full(y3.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x3)), np.zeros(len(x3)), np.zeros(len(x3))\n",
+    "for i in np.arange(len(x3)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x3[i],y3[i],z3[i]),dipolemoment)\n",
+    "Ba3 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3D plot of field lines and data\n",
+    "* Color bar in nT\n",
+    "* Spatial distance in meter\n",
+    "* Profile data only reflects shape of anomaly and positivity"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch (cursor) {\n",
+       "        case 0:\n",
+       "            cursor = 'pointer';\n",
+       "            break;\n",
+       "        case 1:\n",
+       "            cursor = 'default';\n",
+       "            break;\n",
+       "        case 2:\n",
+       "            cursor = 'crosshair';\n",
+       "            break;\n",
+       "        case 3:\n",
+       "            cursor = 'move';\n",
+       "            break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = 'image/png';\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.which === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.which;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which !== 17) {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    if (event.altKey && event.which !== 18) {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    if (event.shiftKey && event.which !== 16) {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data']);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager) {\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "    }\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(-9.0, 7.5)"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "fig = plt.figure()\n",
+    "ax = fig.gca(projection='3d')\n",
+    "\n",
+    "# plot field lines\n",
+    "for lx,ly,lz in zip(linex,liney,linez):\n",
+    "    ax.plot(lx,ly,lz,'-',markersize=1)\n",
+    "\n",
+    "# plot map\n",
+    "ax.scatter(x1,y1,z1,s=2,alpha=0.3)\n",
+    "Bt = Ba1.reshape(xi.shape)*1e9 # contour and color scale in nT \n",
+    "c = ax.contourf(xi,yi,Bt,alpha=1,zdir='z',offset=z-max(radii)*2,cmap='jet',\n",
+    "                  levels=np.linspace(Bt.min(),Bt.max(),50,endpoint=True))\n",
+    "fig.colorbar(c)\n",
+    "\n",
+    "# auto-scaling for profile plot\n",
+    "ptpmax = np.max((Ba2.ptp(),Ba3.ptp())) # dynamic range\n",
+    "autoscaling = np.max(radii) / ptpmax\n",
+    "\n",
+    "# plot x-profile\n",
+    "ax.scatter(x2,y2,z2,s=2,c='black',alpha=0.3)\n",
+    "ax.plot(x2,Ba2*autoscaling,zs=ymax,c='black',zdir='y')\n",
+    "\n",
+    "# plot y-profile\n",
+    "ax.scatter(x3,y3,z3,s=2,c='black',alpha=0.3)\n",
+    "ax.plot(y3,Ba3*autoscaling,zs=xmin,c='black',zdir='x')\n",
+    "\n",
+    "ax.set_xlabel('X')\n",
+    "ax.set_ylabel('Y')\n",
+    "ax.set_zlabel('Z')\n",
+    "\n",
+    "ax.set_xlim(xmin, xmax)\n",
+    "ax.set_ylim(ymin, ymax)\n",
+    "ax.set_zlim(z-max(radii)*2, max(radii)*1.5)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/mag/.ipynb_checkpoints/Mag_FitProfile-checkpoint.ipynb b/Notebooks/mag/.ipynb_checkpoints/Mag_FitProfile-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..319e2064a26d2697d9701e838d1933a34566a210
--- /dev/null
+++ b/Notebooks/mag/.ipynb_checkpoints/Mag_FitProfile-checkpoint.ipynb
@@ -0,0 +1,285 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 10,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) \n",
+    "\n",
+    "This notebook uses code adapted from \n",
+    "\n",
+    "SimPEG\n",
+    "- Cockett, R., S. Kang, L.J. Heagy, A. Pidlisecky, D.W. Oldenburg (2015, in review), SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers and Geosciences\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true,
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 10,
+        "width": 6
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "## View the model\n",
+    "\n",
+    "- dx: width or prism in x-direction (m)\n",
+    "- dy: width of prism in y-direction (m)\n",
+    "- dz: vertical extent of prism (m)\n",
+    "- x0: x location of the center of the prism (m)\n",
+    "- y0: y location of the center of the prism (m)\n",
+    "- depth: depth to the top of the prism (m)\n",
+    "- prism_inc: inclination of the prism (reference is a unit northing vector; degrees)\n",
+    "- prism_dec: declination of the prism (reference is a unit northing vector; degrees)\n",
+    "- View_dip: dip angle of view (degrees)\n",
+    "- View_elev: elevation of view (degrees)\n",
+    "- View_azim: azimuth of view (degrees)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 29,
+        "hidden": false,
+        "row": 21,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.mag import Mag, Simulator\n",
+    "from discretize import TensorMesh\n",
+    "from SimPEG import utils\n",
+    "from SimPEG.potential_fields import magnetics as mag\n",
+    "from ipywidgets import widgets\n",
+    "import matplotlib\n",
+    "%matplotlib inline\n",
+    "\n",
+    "from SimPEG.utils import download\n",
+    "import os"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "77bbf8705d2a4626bbe0658fcd3a6416",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=2.375, continuous_up…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Input parameters\n",
+    "\n",
+    "#fileName = 'http://github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/Lab1_Wednesday_TA.csv'\n",
+    "#synData  = download(fileName,overwrite=True,verbose=False)\n",
+    "\n",
+    "fileName = os.getcwd()+ \"/Lab1_Wednesday_TA.csv\"\n",
+    "\n",
+    "data = np.genfromtxt(fileName, skip_header=1, delimiter=',')\n",
+    "xyzd = np.c_[np.zeros(data.shape[0]), data[:,0], np.zeros(data.shape[0]), data[:,1]]\n",
+    "B = np.r_[60308, 83.8, 25.4]\n",
+    "survey, dobj = Mag.createMagSurvey(xyzd, B)\n",
+    "# View the data and chose a profile\n",
+    "# Define the parametric model interactively\n",
+    "model = Simulator.ViewPrism(survey)\n",
+    "display(model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Fit the data\n",
+    "- Binc: Inclination of the Earth's background field (degree)\n",
+    "- Bdec: Declination of the Earth's background field (degree)\n",
+    "- Bigrf: Strength of the Earth's background field (nT) \n",
+    "- depth: vertical distance from the sensor to the top of the rebar (m)\n",
+    "- susc: magnetic susceptibility\n",
+    "- comp: Total field (tf) of component of the field to plot\n",
+    "- irt: Type of magnetization \n",
+    "- Q: Koenigsberger ratio ($\\frac{M_{rem}}{M_{ind}}$)\n",
+    "- rinc: inclination of the remanent magnetization (degree)\n",
+    "- rdec: declination of the remanent magnetization (degree)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 29,
+        "hidden": false,
+        "row": 21,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "012534ac73914e05a943624e10942b80",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=90.0, continuous_update=False, description='Binc', max=90.0, min=-90.0…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = Simulator.fitline(model,survey,dobj)\n",
+    "display(Q)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "grid_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "8789ea09a28443d0b196412593e51195": {
+     "views": [
+      {
+       "cell_index": 3
+      }
+     ]
+    },
+    "8bd53575b8d6470cb6158b113159182e": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/.ipynb_checkpoints/Mag_Induced2D-checkpoint.ipynb b/Notebooks/mag/.ipynb_checkpoints/Mag_Induced2D-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a348ba91f2463c06f0869e30a9db0efd2bf58344
--- /dev/null
+++ b/Notebooks/mag/.ipynb_checkpoints/Mag_Induced2D-checkpoint.ipynb
@@ -0,0 +1,419 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) \n",
+    "\n",
+    "This notebook uses code adapted from \n",
+    "\n",
+    "SimPEG\n",
+    "- Cockett, R., S. Kang, L.J. Heagy, A. Pidlisecky, D.W. Oldenburg (2015, in review), SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers and Geosciences"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 3,
+        "hidden": true,
+        "row": 11,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.mag import Mag, Simulator\n",
+    "from SimPEG.potential_fields import magnetics as mag\n",
+    "from SimPEG import utils, data\n",
+    "from discretize import TensorMesh\n",
+    "%matplotlib inline\n",
+    "\n",
+    "import os"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 21,
+        "hidden": false,
+        "row": 22,
+        "width": null
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# How do we define direction of an earth magnetic field?\n",
+    "\n",
+    "Earth magnetic field is a vector. To define a vector we need to choose a coordinate system. We use right-handed system: \n",
+    "- X (Easting), \n",
+    "- Y (Northing), and \n",
+    "- Z (Up). \n",
+    "\n",
+    "Here we consider an earth magnetic field ($\\vec{B_0}$), of which intensity is one. To define this unit vector, we use inclinatino and declination:\n",
+    "- Declination: An angle from geographic North (Ng) (positive clockwise)\n",
+    "- Inclination: Vertical angle from the N-E plane (positive down)\n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/raw/main/images/mag/earthfield.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 18,
+        "hidden": false,
+        "row": 43,
+        "width": null
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# What's data: total field anomaly\n",
+    "\n",
+    "We consider a typical form of magnetic data. To illustrate this we consider an suceptible object embedded in the earth. \n",
+    "Based upon the earth magnetic field ($\\vec{B}_0$), this object will generate anomalous magnetic field ($\\vec{B}_A$). We define an unit vector $\\hat{B}_0$ for the earth field as \n",
+    "$$ \\hat{B}_0 = \\frac{\\vec{B}_0}{|\\vec{B}_0|}$$ \n",
+    "We measure both earth and anomalous magnetic field such that\n",
+    "\n",
+    "$$ \\vec{B} = \\vec{B}_0 + \\vec{B}_A$$\n",
+    "\n",
+    "Total field anomaly, $\\triangle \\vec{B}$ can be defined as\n",
+    "\n",
+    "$$  |\\triangle \\vec{B}| = |\\vec{B}|-|\\vec{B}_E| $$ \n",
+    "\n",
+    "If $|\\vec{B}|\\ll|\\vec{B}_E|$, then that is total field anomaly $\\triangle \\vec{B}$ is the projection of the anomalous field onto the direction of the earth field:\n",
+    "\n",
+    "$$ |\\triangle \\vec{B}| \\simeq \\vec{B}_A \\cdot \\hat{B}_0=|\\vec{B}_A|cos\\theta$$ \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/raw/main/images/mag/totalfieldanomaly.png?raw=true\" style=\"width: 50%; height: 50%\">"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# Define a 3D prism\n",
+    "Our model is a rectangular prism. Parameters to define this prism are given below:\n",
+    "\n",
+    "- dx: length in Easting (x) direction (meter)\n",
+    "- dy: length in Northing (y) direction (meter)\n",
+    "- dz: length in Depth (z) direction (meter) below the receiver\n",
+    "- depth: top boundary of the prism (meter)\n",
+    "- pinc: inclination of the prism (reference is a unit northing vector; degree)\n",
+    "- pdec: declination of the prism (reference is a unit northing vector; degree)\n",
+    "\n",
+    "You can also change the height of the survey grid above the ground\n",
+    "- rx_h: height of the grid (meter)\n",
+    "\n",
+    "*Green dots show a plane where we measure data.*"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 28,
+        "hidden": false,
+        "row": 61,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "82d6267941c242a3acd81042ed90a234",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=557366.1875, continuous_update=False, description='East', max=558589.8…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Input parameters\n",
+    "\n",
+    "#fileName = 'https://github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/DO27_TMI.dat'\n",
+    "\n",
+    "fileName = os.getcwd()+ \"/DO27_TMI.dat\"\n",
+    "\n",
+    "\n",
+    "xyzd = np.genfromtxt(fileName, skip_header=3)\n",
+    "B = np.r_[60308, 83.8, 25.4]\n",
+    "survey, dobj = Mag.createMagSurvey(xyzd, B)\n",
+    "# View the data and chose a profile\n",
+    "param = Simulator.ViewMagSurvey2D(survey, dobj)\n",
+    "display(param)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4a98e5f0cd294c96a2f78c89ea44ac08",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=152.953125, continuo…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Define the parametric model interactively\n",
+    "model = Simulator.ViewPrism(param.result)\n",
+    "display(model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# Magnetic applet\n",
+    "Based on the prism that you made above, below Magnetic applet computes magnetic field at receiver locations, and provide both 2D map (left) and profile line (right). \n",
+    "\n",
+    "For the prism, you can alter:\n",
+    "- sus: susceptibility of the prism\n",
+    "\n",
+    "Parameters for the earth field are:\n",
+    "- Einc: inclination of the earth field (degree)\n",
+    "- Edec: declination of the earth field (degree)\n",
+    "- Bigrf: intensity of the earth field (nT)\n",
+    "\n",
+    "For data, you can view:\n",
+    "- tf: total field anomaly,  \n",
+    "- bx :x-component, \n",
+    "- by :y-component, \n",
+    "- bz :z-component\n",
+    "\n",
+    "You can simulate and view remanent magnetization effect with parameters:\n",
+    "- irt: \"induced\", \"remanent\", or \"total\"\n",
+    "- Q: Koenigsberger ratio ($\\frac{M_{rem}}{M_{ind}}$)\n",
+    "- rinc: inclination of the remanent magnetization (degree)\n",
+    "- rdec: declination of the remanent magnetization (degree)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 28,
+        "hidden": false,
+        "row": 61,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "9c43af169fe743a9832809433addb4c7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=0.1, continuous_upda…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plotwidget = Simulator.PFSimulator(model, param)\n",
+    "display(plotwidget)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "report_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "2c77e5c891dd44069234331d87475ef2": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/.ipynb_checkpoints/MagneticDipoleApplet-checkpoint.ipynb b/Notebooks/mag/.ipynb_checkpoints/MagneticDipoleApplet-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b47fe04580c156ffdb3c2a7538ab7dc478c4f4cf
--- /dev/null
+++ b/Notebooks/mag/.ipynb_checkpoints/MagneticDipoleApplet-checkpoint.ipynb
@@ -0,0 +1,163 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.mag.MagDipoleApp import MagneticDipoleApp"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Magnetic Dipole Applet\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a small buried dipolar magnet. In geophysics, this simulates the observed anomaly over a buried susceptible sphere that is magnetized by the Earth's magnetic field.\n",
+    "\n",
+    "## What is shown\n",
+    "\n",
+    "- <b>The colour map</b> shows the strength of the chosen parameter (Bt, Bx, By, Bz, or Bg) as a function of position.\n",
+    "\n",
+    "- Imagine doing a two dimensional survey over a susceptible sphere that has been magentized by the Earth's magnetic field specified by inclination and declination.  \"Measurement\" location is the centre of each coloured box. This is a simple (but easily programmable) alternative to generating a smooth contour map.\n",
+    "\n",
+    "- The anomaly depends upon magnetic latitude, direction of the inducing (Earth's) field, the depth of the buried dipole, and the magnetic moment of the buried dipole.\n",
+    "\n",
+    "\n",
+    "## Important Notes:\n",
+    "\n",
+    "- <b>Inclination (I)</b> and <b>declination (D)</b> describe the orientation of the Earth's ambient field at the centre of the survey area. Positive inclination implies you are in the northern hemisphere, and positive declination implies that magnetic north is to the east of geographic north.\n",
+    "\n",
+    "- The <b>\"length\"</b> adjuster changes the size of the square survey area. The default of 72 means the survey square is 72 metres on a side.\n",
+    "\n",
+    "- The <b>\"data spacing\"</b> adjuster changes the distance between measurements. The default of 1 means measurements were acquired over the survey square on a 2-metre grid. In other words, \"data spacing = 2\" means each coloured box is 2 m square.\n",
+    "\n",
+    "- The <b>\"depth\"</b> adjuster changes the depth (in metres) to the centre of the buried dipole.\n",
+    "\n",
+    "- The <b>\"magnetic moment (M)\"</b> adjuster changes the strength of the induced field. Units are Am2.  This is related to the strength of the inducing field, the susceptibility of the buried sphere, and the volume of susceptible material.\n",
+    "- <b>Bt, Bg, Bx, By, Bz</b> are Total field, X-component (positive northwards), Y-component (positive eastwards), and Z-component (positive down) of the anomaly field respectively.\n",
+    "\n",
+    "- Checking the <b>fixed scale</b> button fixes the colour scale so that the end points of the colour scale are minimum and maximum values for the current data set.\n",
+    "\n",
+    "- You can generate a <b>profile</b> along either \"East\" or \"North\" direction\n",
+    "\n",
+    "- Check <b>half width</b> to see the half width of the anomaly. Anomaly width is noted on the botton of the graph.\n",
+    "\n",
+    "- Measurements are taken 1m above the surface.\n",
+    "\n",
+    "- For gradient data (<b>Bg</b>), measurements are taken at 1m and 2m\n",
+    "\n",
+    "- Note that magnetic moment (M) for monopole is equal to the charge (Q): "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a8add133a23c4749a81f269ec705d44f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='field', options=('Bt', 'Bx', 'By', 'Bz', 'Bg'), value=…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag = MagneticDipoleApp()\n",
+    "mag.interact_plot_model_dipole()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Two monopoles (pseudo dipole)\n",
+    "\n",
+    "Different from the previous app, here we focus on a situtation where we have to monopoles having negative\n",
+    "and postive signs. Their horizontal location: (X, Y) are same, but depths are different. By default depth of the negative pole, <b>depth$_{-Q}$ </b>, is located 0m and that of the positive pole, <b>depth$_{-Q}$ </b>, is 10m. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3e22ddaaa4fb439eb9e967b48d81568f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='field', options=('Bt', 'Bx', 'By', 'Bz', 'Bg'), value=…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag.interact_plot_model_two_monopole()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/mag/.ipynb_checkpoints/MagneticPrismApplet-checkpoint.ipynb b/Notebooks/mag/.ipynb_checkpoints/MagneticPrismApplet-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cf568dcd894c70fe9cca2f3da1e347f63be168d7
--- /dev/null
+++ b/Notebooks/mag/.ipynb_checkpoints/MagneticPrismApplet-checkpoint.ipynb
@@ -0,0 +1,230 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.mag.MagDipoleApp import MagneticDipoleApp"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Magnetic Prism Applet\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 3,
+        "hidden": true,
+        "row": 11,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "From the Magnetic Dipole applet, we have learned how anomalous magnetic field observed at ground's surface look\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a retangular susceptible prism. \n",
+    "\n",
+    "\n",
+    "## What is shown\n",
+    "\n",
+    "- <b>The colour map</b> shows the strength of the chosen parameter (Bt, Bx, By, or Bz) as a function of position.\n",
+    "\n",
+    "- Imagine doing a two dimensional survey over a susceptible sphere that has been magentized by the Earth's magnetic field specified by inclination and declination.  \"Measurement\" location is the centre of each coloured box. This is a simple (but easily programmable) alternative to generating a smooth contour map.\n",
+    "\n",
+    "- The anomaly depends upon magnetic latitude, direction of the inducing (Earth's) field, the depth of the buried dipole, and the magnetic moment of the buried dipole.\n",
+    "\n",
+    "\n",
+    "## Important Notes:\n",
+    "\n",
+    "- <b>Inclination (I)</b> and <b>declination (D)</b> describe the orientation of the Earth's ambient field at the centre of the survey area. Positive inclination implies you are in the northern hemisphere, and positive declination implies that magnetic north is to the east of geographic north.\n",
+    "\n",
+    "- The <b>\"length\"</b> adjuster changes the size of the square survey area. The default of 72 means the survey square is 72 metres on a side.\n",
+    "\n",
+    "- The <b>\"data spacing\"</b> adjuster changes the distance between measurements. The default of 1 means measurements were acquired over the survey square on a 2-metre grid. In other words, \"data spacing = 2\" means each coloured box is 2 m square.\n",
+    "\n",
+    "- The <b>\"depth\"</b> adjuster changes the depth (in metres) to the top of the buried prism.\n",
+    "\n",
+    "- The <b>\"magnetic moment (M)\"</b> adjuster changes the strength of the induced field. Units are Am2.  This is related to the strength of the inducing field, the susceptibility of the buried sphere, and the volume of susceptible material.\n",
+    "- <b>Bt, Bx, By, Bz</b> are Total field, X-component (positive northwards), Y-component (positive eastwards), and Z-component (positive down) of the anomaly field respectively.\n",
+    "\n",
+    "- Checking the <b>fixed scale</b> button fixes the colour scale so that the end points of the colour scale are minimum and maximum values for the current data set.\n",
+    "\n",
+    "- You can generate a <b>profile</b> along either \"East\" or \"North\" direction\n",
+    "\n",
+    "- Check <b>half width</b> to see the half width of the anomaly. Anomaly width is noted on the botton of the graph.\n",
+    "\n",
+    "- Measurements are taken 1m above the surface."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "## Define a 3D prism\n",
+    "Compared to the MagneticDipoleApplet, there are additional parameters to define a prism.\n",
+    "\n",
+    "- $\\triangle x$: length in North (X) direction (m)\n",
+    "- $\\triangle y$: length in East (Y) direction (m)\n",
+    "- $\\triangle z$: length in Depth (z) direction (m) below the receiver\n",
+    "- depth: top boundary of the prism (meter)\n",
+    "- I$_{prism}$: inclination of the prism (reference is north direction)\n",
+    "- D$_{prism}$: declination of the prism (reference is north direction) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "64d0ad8c47ad4681b4bbb15180cb6042",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='plot', options=('field', 'model'), value='field'), Rad…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag = MagneticDipoleApp()\n",
+    "mag.interact_plot_model_prism()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "report_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "2c77e5c891dd44069234331d87475ef2": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/DO27_TMI.dat b/Notebooks/mag/DO27_TMI.dat
new file mode 100644
index 0000000000000000000000000000000000000000..ea4d95c3a7ac408f6e077563d44b3b817b426ac5
--- /dev/null
+++ b/Notebooks/mag/DO27_TMI.dat
@@ -0,0 +1,126 @@
+83.8 25.4  60308
+83.8 25.4  1
+123
+5.579463129999999655e+05 7.134230500000000000e+06 4.696576537999999914e+02 -3.899999999999999911e+00 5.195000000000000284e+00
+5.578891250000000000e+05 7.134228500000000000e+06 4.694557495000000245e+02 -4.099999999999999645e+00 5.205000000000000071e+00
+5.578316879999999655e+05 7.134226000000000000e+06 4.715105896000000030e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.577408129999999655e+05 7.134223500000000000e+06 4.712752686000000040e+02 -9.000000000000000000e+00 5.450000000000000178e+00
+5.576823750000000000e+05 7.134222500000000000e+06 4.693045958999999812e+02 -1.250000000000000000e+01 5.625000000000000000e+00
+5.576238750000000000e+05 7.134220500000000000e+06 4.667829285000000255e+02 -1.469999999999999929e+01 5.735000000000000320e+00
+5.575653129999999655e+05 7.134219500000000000e+06 4.639395446999999990e+02 -1.550000000000000000e+01 5.775000000000000355e+00
+5.574978750000000000e+05 7.134217000000000000e+06 4.620816649999999868e+02 -1.610000000000000142e+01 5.804999999999999716e+00
+5.574471250000000000e+05 7.134216000000000000e+06 4.610025939999999878e+02 -1.619999999999999929e+01 5.809999999999999609e+00
+5.573961879999999655e+05 7.134214500000000000e+06 4.599175720000000069e+02 -1.530000000000000071e+01 5.764999999999999680e+00
+5.573451250000000000e+05 7.134213000000000000e+06 4.584447632000000112e+02 -1.330000000000000071e+01 5.665000000000000036e+00
+5.572851250000000000e+05 7.134212500000000000e+06 4.559057922000000076e+02 -1.040000000000000036e+01 5.519999999999999574e+00
+5.572336250000000000e+05 7.134212000000000000e+06 4.538994751000000178e+02 -6.700000000000000178e+00 5.334999999999999964e+00
+5.571736879999999655e+05 7.134211000000000000e+06 4.511697998000000212e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.571223129999999655e+05 7.134211500000000000e+06 4.507529906999999980e+02 -8.199999999999999289e+00 5.410000000000000142e+00
+5.570713750000000000e+05 7.134212500000000000e+06 4.511019286999999736e+02 -1.290000000000000036e+01 5.644999999999999574e+00
+5.569958750000000000e+05 7.134214500000000000e+06 4.517804565000000139e+02 -1.469999999999999929e+01 5.735000000000000320e+00
+5.569298129999999655e+05 7.134216000000000000e+06 4.532593994000000066e+02 -1.719999999999999929e+01 5.860000000000000320e+00
+5.568726250000000000e+05 7.134218500000000000e+06 4.551995850000000132e+02 -2.000000000000000000e+01 6.000000000000000000e+00
+5.568161879999999655e+05 7.134222000000000000e+06 4.582608031999999980e+02 -2.010000000000000142e+01 6.004999999999999893e+00
+5.567603750000000000e+05 7.134224000000000000e+06 4.609667053000000010e+02 -2.039999999999999858e+01 6.019999999999999574e+00
+5.579780000000000000e+05 7.134006000000000000e+06 4.653915405000000192e+02 -1.559999999999999964e+01 5.780000000000000249e+00
+5.579238750000000000e+05 7.134008500000000000e+06 4.644563292999999931e+02 -1.619999999999999929e+01 5.809999999999999609e+00
+5.578618750000000000e+05 7.134010500000000000e+06 4.634571533000000159e+02 -1.780000000000000071e+01 5.889999999999999680e+00
+5.578076250000000000e+05 7.134013500000000000e+06 4.629100341999999841e+02 -1.850000000000000000e+01 5.924999999999999822e+00
+5.577298750000000000e+05 7.134017500000000000e+06 4.638599854000000278e+02 -2.189999999999999858e+01 6.094999999999999751e+00
+5.576588750000000000e+05 7.134020000000000000e+06 4.666421508999999901e+02 -2.389999999999999858e+01 6.195000000000000284e+00
+5.575871879999999655e+05 7.134022500000000000e+06 4.633637084999999729e+02 -2.539999999999999858e+01 6.269999999999999574e+00
+5.575308750000000000e+05 7.134025500000000000e+06 4.617167357999999808e+02 -2.430000000000000071e+01 6.214999999999999858e+00
+5.574656879999999655e+05 7.134028000000000000e+06 4.610299072000000251e+02 -2.760000000000000142e+01 6.379999999999999893e+00
+5.574078750000000000e+05 7.134028500000000000e+06 4.592264708999999812e+02 -2.660000000000000142e+01 6.330000000000000071e+00
+5.573576250000000000e+05 7.134030000000000000e+06 4.596013793999999848e+02 -2.189999999999999858e+01 6.094999999999999751e+00
+5.573068129999999655e+05 7.134030000000000000e+06 4.607453002999999967e+02 -1.669999999999999929e+01 5.834999999999999964e+00
+5.572383129999999655e+05 7.134029500000000000e+06 4.609534302000000139e+02 -1.480000000000000071e+01 5.740000000000000213e+00
+5.571865000000000000e+05 7.134027500000000000e+06 4.624313354000000231e+02 -1.519999999999999929e+01 5.759999999999999787e+00
+5.571086879999999655e+05 7.134024500000000000e+06 4.642018127000000050e+02 -1.730000000000000071e+01 5.865000000000000213e+00
+5.570478750000000000e+05 7.134022000000000000e+06 4.657513427999999749e+02 -1.769999999999999929e+01 5.884999999999999787e+00
+5.569871879999999655e+05 7.134018500000000000e+06 4.664633483999999726e+02 -1.710000000000000142e+01 5.855000000000000426e+00
+5.569265000000000000e+05 7.134015000000000000e+06 4.689655151000000046e+02 -1.860000000000000142e+01 5.929999999999999716e+00
+5.568573750000000000e+05 7.134012000000000000e+06 4.723402404999999931e+02 -2.169999999999999929e+01 6.084999999999999964e+00
+5.568058129999999655e+05 7.134009500000000000e+06 4.732115479000000278e+02 -2.169999999999999929e+01 6.084999999999999964e+00
+5.567543750000000000e+05 7.134007500000000000e+06 4.728241272000000208e+02 -2.080000000000000071e+01 6.040000000000000036e+00
+5.579656879999999655e+05 7.133816500000000000e+06 4.740531920999999898e+02 -3.200000000000000178e+00 5.160000000000000142e+00
+5.578983129999999655e+05 7.133814500000000000e+06 4.728134459999999990e+02 -4.099999999999999645e+00 5.205000000000000071e+00
+5.578308129999999655e+05 7.133814000000000000e+06 4.723793944999999894e+02 -8.699999999999999289e+00 5.434999999999999609e+00
+5.577798750000000000e+05 7.133813000000000000e+06 4.721419983000000116e+02 -1.269999999999999929e+01 5.634999999999999787e+00
+5.577033129999999655e+05 7.133812500000000000e+06 4.726217651000000046e+02 -1.650000000000000000e+01 5.825000000000000178e+00
+5.576431879999999655e+05 7.133812000000000000e+06 4.721657104000000231e+02 -1.430000000000000071e+01 5.714999999999999858e+00
+5.575913750000000000e+05 7.133812000000000000e+06 4.724811096000000248e+02 -4.200000000000000178e+00 5.209999999999999964e+00
+5.575306250000000000e+05 7.133812500000000000e+06 4.732846984999999904e+02 1.919999999999999929e+01 5.959999999999999964e+00
+5.574783750000000000e+05 7.133812000000000000e+06 4.695707092000000102e+02 4.229999999999999716e+01 7.115000000000000213e+00
+5.574175000000000000e+05 7.133812500000000000e+06 4.651741943000000106e+02 7.429999999999999716e+01 8.714999999999999858e+00
+5.573563129999999655e+05 7.133812000000000000e+06 4.626608886999999868e+02 1.024000000000000057e+02 1.011999999999999922e+01
+5.573035000000000000e+05 7.133812500000000000e+06 4.610194702000000007e+02 1.059000000000000057e+02 1.029499999999999993e+01
+5.572508129999999655e+05 7.133812500000000000e+06 4.598157653999999752e+02 7.559999999999999432e+01 8.779999999999999361e+00
+5.571983129999999655e+05 7.133813500000000000e+06 4.594464416999999798e+02 3.660000000000000142e+01 6.830000000000000071e+00
+5.571463750000000000e+05 7.133813500000000000e+06 4.602953491000000099e+02 1.109999999999999964e+01 5.554999999999999716e+00
+5.570956879999999655e+05 7.133813500000000000e+06 4.591211243000000195e+02 -1.100000000000000089e+00 5.054999999999999716e+00
+5.570453750000000000e+05 7.133813000000000000e+06 4.582433166999999798e+02 -7.000000000000000000e+00 5.349999999999999645e+00
+5.569953129999999655e+05 7.133812500000000000e+06 4.591010436999999911e+02 -1.040000000000000036e+01 5.519999999999999574e+00
+5.569288750000000000e+05 7.133812000000000000e+06 4.609853209999999990e+02 -1.430000000000000071e+01 5.714999999999999858e+00
+5.568466250000000000e+05 7.133810000000000000e+06 4.655796814000000268e+02 -1.669999999999999929e+01 5.834999999999999964e+00
+5.567893750000000000e+05 7.133809000000000000e+06 4.677268981999999937e+02 -1.739999999999999858e+01 5.870000000000000107e+00
+5.579598750000000000e+05 7.133596000000000000e+06 4.670661316000000056e+02 -5.999999999999999778e-01 5.030000000000000249e+00
+5.578868129999999655e+05 7.133595000000000000e+06 4.660676574999999957e+02 -2.399999999999999911e+00 5.120000000000000107e+00
+5.578296250000000000e+05 7.133594500000000000e+06 4.653871765000000096e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.577638129999999655e+05 7.133595000000000000e+06 4.636830444000000284e+02 -7.599999999999999645e+00 5.379999999999999893e+00
+5.576971879999999655e+05 7.133594500000000000e+06 4.620211181999999894e+02 -8.000000000000000000e+00 5.400000000000000355e+00
+5.576383129999999655e+05 7.133594500000000000e+06 4.599868774000000258e+02 6.299999999999999822e+00 5.315000000000000391e+00
+5.575871250000000000e+05 7.133594500000000000e+06 4.583079223999999954e+02 4.089999999999999858e+01 7.044999999999999929e+00
+5.575355000000000000e+05 7.133594500000000000e+06 4.599373168999999848e+02 7.979999999999999716e+01 8.990000000000000213e+00
+5.574833750000000000e+05 7.133595500000000000e+06 4.582080078000000185e+02 8.770000000000000284e+01 9.384999999999999787e+00
+5.574223750000000000e+05 7.133597000000000000e+06 4.567227477999999792e+02 8.440000000000000568e+01 9.220000000000000639e+00
+5.573698129999999655e+05 7.133598500000000000e+06 4.554114379999999755e+02 8.240000000000000568e+01 9.119999999999999218e+00
+5.572903750000000000e+05 7.133602000000000000e+06 4.552346802000000139e+02 8.109999999999999432e+01 9.054999999999999716e+00
+5.572283750000000000e+05 7.133606000000000000e+06 4.564498290999999881e+02 6.979999999999999716e+01 8.490000000000000213e+00
+5.571753750000000000e+05 7.133609000000000000e+06 4.585342406999999980e+02 4.310000000000000142e+01 7.155000000000000249e+00
+5.571225000000000000e+05 7.133612000000000000e+06 4.611535033999999769e+02 1.760000000000000142e+01 5.879999999999999893e+00
+5.570606879999999655e+05 7.133615000000000000e+06 4.658390807999999765e+02 2.799999999999999822e+00 5.139999999999999680e+00
+5.569901879999999655e+05 7.133618500000000000e+06 4.653735962000000086e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.569286879999999655e+05 7.133621000000000000e+06 4.673797301999999831e+02 -9.000000000000000000e+00 5.450000000000000178e+00
+5.568583750000000000e+05 7.133622500000000000e+06 4.710006104000000278e+02 -1.219999999999999929e+01 5.610000000000000320e+00
+5.567973129999999655e+05 7.133624500000000000e+06 4.728702698000000169e+02 -1.400000000000000000e+01 5.700000000000000178e+00
+5.579493750000000000e+05 7.133404000000000000e+06 4.702997742000000017e+02 -1.300000000000000044e+00 5.065000000000000391e+00
+5.578955000000000000e+05 7.133403500000000000e+06 4.677225037000000043e+02 -2.000000000000000111e-01 5.009999999999999787e+00
+5.578416250000000000e+05 7.133401500000000000e+06 4.653916930999999977e+02 -1.000000000000000056e-01 5.004999999999999893e+00
+5.577788129999999655e+05 7.133401000000000000e+06 4.641203613000000132e+02 -1.699999999999999956e+00 5.084999999999999964e+00
+5.577248750000000000e+05 7.133399500000000000e+06 4.639480896000000030e+02 -4.000000000000000000e+00 5.200000000000000178e+00
+5.576533129999999655e+05 7.133398500000000000e+06 4.637218627999999967e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.575905000000000000e+05 7.133396000000000000e+06 4.643732605000000149e+02 -1.899999999999999911e+00 5.094999999999999751e+00
+5.575281250000000000e+05 7.133395000000000000e+06 4.632385558999999944e+02 1.600000000000000089e+00 5.080000000000000071e+00
+5.574746879999999655e+05 7.133394500000000000e+06 4.626676636000000258e+02 3.100000000000000089e+00 5.155000000000000249e+00
+5.574213750000000000e+05 7.133394000000000000e+06 4.606142578000000185e+02 6.099999999999999645e+00 5.304999999999999716e+00
+5.573681879999999655e+05 7.133394500000000000e+06 4.594113464000000135e+02 1.480000000000000071e+01 5.740000000000000213e+00
+5.573063129999999655e+05 7.133396500000000000e+06 4.588820190000000139e+02 2.310000000000000142e+01 6.155000000000000249e+00
+5.572533750000000000e+05 7.133399500000000000e+06 4.576690674000000172e+02 2.289999999999999858e+01 6.144999999999999574e+00
+5.571918750000000000e+05 7.133402000000000000e+06 4.561456603999999970e+02 1.900000000000000000e+01 5.950000000000000178e+00
+5.571303750000000000e+05 7.133406500000000000e+06 4.547695922999999993e+02 5.299999999999999822e+00 5.264999999999999680e+00
+5.570606250000000000e+05 7.133411000000000000e+06 4.533713683999999944e+02 -7.900000000000000355e+00 5.394999999999999574e+00
+5.570088129999999655e+05 7.133414500000000000e+06 4.498254699999999957e+02 -9.500000000000000000e+00 5.474999999999999645e+00
+5.569488129999999655e+05 7.133418500000000000e+06 4.520502930000000106e+02 -8.300000000000000711e+00 5.415000000000000036e+00
+5.568980000000000000e+05 7.133420000000000000e+06 4.577249755999999934e+02 -7.000000000000000000e+00 5.349999999999999645e+00
+5.568226250000000000e+05 7.133423000000000000e+06 4.649453735000000165e+02 -9.699999999999999289e+00 5.485000000000000320e+00
+5.579446250000000000e+05 7.133221500000000000e+06 4.588012390000000096e+02 -4.200000000000000178e+00 5.209999999999999964e+00
+5.578886879999999655e+05 7.133220500000000000e+06 4.574097899999999868e+02 -5.099999999999999645e+00 5.254999999999999893e+00
+5.578245000000000000e+05 7.133220000000000000e+06 4.552058410999999865e+02 -7.400000000000000355e+00 5.370000000000000107e+00
+5.577683129999999655e+05 7.133220500000000000e+06 4.537174987999999871e+02 -7.599999999999999645e+00 5.379999999999999893e+00
+5.577118129999999655e+05 7.133220000000000000e+06 4.528049621999999772e+02 -5.700000000000000178e+00 5.285000000000000142e+00
+5.576468750000000000e+05 7.133219000000000000e+06 4.528950500000000261e+02 -4.400000000000000355e+00 5.219999999999999751e+00
+5.575731879999999655e+05 7.133217000000000000e+06 4.510212096999999858e+02 -4.000000000000000000e+00 5.200000000000000178e+00
+5.574826250000000000e+05 7.133213500000000000e+06 4.500859985000000165e+02 -4.799999999999999822e+00 5.240000000000000213e+00
+5.574246250000000000e+05 7.133212000000000000e+06 4.515762023999999997e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.573661879999999655e+05 7.133210500000000000e+06 4.502280883999999901e+02 -4.299999999999999822e+00 5.214999999999999858e+00
+5.572905000000000000e+05 7.133209500000000000e+06 4.519324646000000030e+02 -1.800000000000000044e+00 5.089999999999999858e+00
+5.572398129999999655e+05 7.133208000000000000e+06 4.530024414000000093e+02 -2.399999999999999911e+00 5.120000000000000107e+00
+5.571891879999999655e+05 7.133207500000000000e+06 4.544243164000000093e+02 -1.800000000000000044e+00 5.089999999999999858e+00
+5.571218750000000000e+05 7.133206500000000000e+06 4.567738646999999901e+02 -6.599999999999999645e+00 5.330000000000000071e+00
+5.570715000000000000e+05 7.133206000000000000e+06 4.583690186000000040e+02 -8.500000000000000000e+00 5.424999999999999822e+00
+5.570213129999999655e+05 7.133205500000000000e+06 4.609089966000000231e+02 -1.019999999999999929e+01 5.509999999999999787e+00
+5.569628750000000000e+05 7.133204500000000000e+06 4.624603270999999722e+02 -1.190000000000000036e+01 5.594999999999999751e+00
+5.568963750000000000e+05 7.133203500000000000e+06 4.635772704999999974e+02 -1.280000000000000071e+01 5.639999999999999680e+00
+5.568215000000000000e+05 7.133202000000000000e+06 4.646427611999999954e+02 -1.340000000000000036e+01 5.669999999999999929e+00
+5.567548750000000000e+05 7.133199500000000000e+06 4.660346984999999904e+02 -1.540000000000000036e+01 5.769999999999999574e+00
diff --git a/Notebooks/mag/Lab1_Wednesday_TA.csv b/Notebooks/mag/Lab1_Wednesday_TA.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ebc9df34171d3a6ade4ad25cecc6cb05b15a946a
--- /dev/null
+++ b/Notebooks/mag/Lab1_Wednesday_TA.csv
@@ -0,0 +1,24 @@
+station,MAG_MEAN,STDEV
+1,54401,1.15
+2,54401,2.52
+3,54400,2.08
+4,54400,1.53
+5,54400,3.79
+6,54401,1.73
+7,54398,2.08
+8,54395,1.15
+9,54401,2.5
+10,54405,2.08
+11,54420.5,3.86
+11.5,54436.5,6.4
+12,54487.83333,19.32
+12.5,54692.83333,63.79
+13,54789.25,48.3
+13,54070.44444,20.55
+13.5,54042.88889,57.83
+14,54031.33333,9.87
+14.5,54017.77778,4.03
+15,54000.22222,20.7
+16,54369.66667,2.22
+18,54384.11111,1.15
+20,54390.22222,2.08
diff --git a/Notebooks/mag/Mag_Dipole.ipynb b/Notebooks/mag/Mag_Dipole.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..76db5aeea37264db94947d5677eeb28515727a22
--- /dev/null
+++ b/Notebooks/mag/Mag_Dipole.ipynb
@@ -0,0 +1,1201 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib notebook\n",
+    "from mpl_toolkits.mplot3d import Axes3D\n",
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "from geoscilabs.mag.MagDipole import MagneticLongDipoleLine, MagneticLongDipoleField"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define a magnetic dipole\n",
+    "\n",
+    "A dipole is defined in the section below using\n",
+    "* dipoleloc: x, y, z location of the dipole center\n",
+    "* dipoledec: declination of the dipole's direction in degree; north = 0; positive clockwise\n",
+    "* dipoleinc: declination of the dipole's direction in degree; horizontal = 0; positive down\n",
+    "* dipoleL: length of the dipole *L* or the distance between two opposite charges *Q* that make the dipole\n",
+    "* dipolemoement: $m=\\frac{QL}{\\mu_0}$\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# define a dipole\n",
+    "dipoleloc = (0.,0.,-50.)\n",
+    "dipoleL = 100.\n",
+    "dipoledec, dipoleinc = 0., 90.\n",
+    "dipolemoment = 1e13"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define the Earth's magnetic field $B_0$\n",
+    "$B_0$ is used to calcualte the total field anomaly, which is the projection of the anomalous vector field onto the earth's field (inner product).\n",
+    "* B0: the magnitude of the earth's field\n",
+    "* Binc: inclination of the earth's field\n",
+    "* Bdec: declination of the earth's field"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# geomagnetic field\n",
+    "B0, Binc, Bdec = 53600e-9, 90., 0. # in Tesla, degree, degree\n",
+    "B0x = B0*np.cos(np.radians(Binc))*np.sin(np.radians(Bdec))\n",
+    "B0y = B0*np.cos(np.radians(Binc))*np.cos(np.radians(Bdec))\n",
+    "B0z = -B0*np.sin(np.radians(Binc))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Define the observations\n",
+    "Four data plots will be generated in the figure: magnetic anomalous field map (contour) at a certain elevation, magnetic anomalous field data (curve) along a x-profile and a y-profile, and the magnetic field lines of the dipole. \n",
+    "* xmin, xmax, ymin, ymax: the outer bounds of the survey grid\n",
+    "* z: elevation at which the data map is measured\n",
+    "* profile_x, profile_y: x-coordinate of y-profile, y-coordinate of x-profile\n",
+    "* h: grid interval\n",
+    "* radii: how far the field lines expand; can plot multiple layers if given (r1, r2, ...)\n",
+    "* Naz: number of azimuth angles for the field line"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# set observation grid\n",
+    "xmin, xmax, ymin, ymax, z = -5., 5., -5., 5., 1. # x, y bounds and elevation\n",
+    "profile_x = 0. # x-coordinate of y-profile\n",
+    "profile_y = 0. # y-coordinate of x-profile\n",
+    "h = 0.2 # grid interval\n",
+    "radii = (2., 5.) # how many layers of field lines for plotting\n",
+    "Naz = 10 # number of azimuth"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Calculate data for plotting"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# get field lines\n",
+    "linex, liney, linez = MagneticLongDipoleLine(dipoleloc,dipoledec,dipoleinc,dipoleL,radii,Naz)\n",
+    "\n",
+    "# get map\n",
+    "xi, yi = np.meshgrid(np.r_[xmin:xmax+h:h], np.r_[ymin:ymax+h:h])\n",
+    "x1, y1 = xi.flatten(), yi.flatten()\n",
+    "z1 = np.full(x1.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x1)), np.zeros(len(x1)), np.zeros(len(x1))\n",
+    "\n",
+    "for i in np.arange(len(x1)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x1[i],y1[i],z1[i]),dipolemoment)\n",
+    "Ba1 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))\n",
+    "\n",
+    "# get x-profile\n",
+    "x2 = np.r_[xmin:xmax+h:h]\n",
+    "y2, z2 = np.full(x2.shape,profile_y), np.full(x2.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x2)), np.zeros(len(x2)), np.zeros(len(x2))\n",
+    "for i in np.arange(len(x2)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x2[i],y2[i],z2[i]),dipolemoment)\n",
+    "Ba2 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))\n",
+    "\n",
+    "# get y-profile\n",
+    "y3 = np.r_[ymin:ymax+h:h]\n",
+    "x3, z3 = np.full(y3.shape,profile_x), np.full(y3.shape,z)\n",
+    "Bx, By, Bz = np.zeros(len(x3)), np.zeros(len(x3)), np.zeros(len(x3))\n",
+    "for i in np.arange(len(x3)):\n",
+    "    Bx[i], By[i], Bz[i] = MagneticLongDipoleField(dipoleloc,dipoledec,dipoleinc,dipoleL,(x3[i],y3[i],z3[i]),dipolemoment)\n",
+    "Ba3 = np.dot(np.r_[B0x,B0y,B0z], np.vstack((Bx,By,Bz)))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### 3D plot of field lines and data\n",
+    "* Color bar in nT\n",
+    "* Spatial distance in meter\n",
+    "* Profile data only reflects shape of anomaly and positivity"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/javascript": [
+       "/* Put everything inside the global mpl namespace */\n",
+       "/* global mpl */\n",
+       "window.mpl = {};\n",
+       "\n",
+       "mpl.get_websocket_type = function () {\n",
+       "    if (typeof WebSocket !== 'undefined') {\n",
+       "        return WebSocket;\n",
+       "    } else if (typeof MozWebSocket !== 'undefined') {\n",
+       "        return MozWebSocket;\n",
+       "    } else {\n",
+       "        alert(\n",
+       "            'Your browser does not have WebSocket support. ' +\n",
+       "                'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
+       "                'Firefox 4 and 5 are also supported but you ' +\n",
+       "                'have to enable WebSockets in about:config.'\n",
+       "        );\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n",
+       "    this.id = figure_id;\n",
+       "\n",
+       "    this.ws = websocket;\n",
+       "\n",
+       "    this.supports_binary = this.ws.binaryType !== undefined;\n",
+       "\n",
+       "    if (!this.supports_binary) {\n",
+       "        var warnings = document.getElementById('mpl-warnings');\n",
+       "        if (warnings) {\n",
+       "            warnings.style.display = 'block';\n",
+       "            warnings.textContent =\n",
+       "                'This browser does not support binary websocket messages. ' +\n",
+       "                'Performance may be slow.';\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.imageObj = new Image();\n",
+       "\n",
+       "    this.context = undefined;\n",
+       "    this.message = undefined;\n",
+       "    this.canvas = undefined;\n",
+       "    this.rubberband_canvas = undefined;\n",
+       "    this.rubberband_context = undefined;\n",
+       "    this.format_dropdown = undefined;\n",
+       "\n",
+       "    this.image_mode = 'full';\n",
+       "\n",
+       "    this.root = document.createElement('div');\n",
+       "    this.root.setAttribute('style', 'display: inline-block');\n",
+       "    this._root_extra_style(this.root);\n",
+       "\n",
+       "    parent_element.appendChild(this.root);\n",
+       "\n",
+       "    this._init_header(this);\n",
+       "    this._init_canvas(this);\n",
+       "    this._init_toolbar(this);\n",
+       "\n",
+       "    var fig = this;\n",
+       "\n",
+       "    this.waiting = false;\n",
+       "\n",
+       "    this.ws.onopen = function () {\n",
+       "        fig.send_message('supports_binary', { value: fig.supports_binary });\n",
+       "        fig.send_message('send_image_mode', {});\n",
+       "        if (fig.ratio !== 1) {\n",
+       "            fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n",
+       "        }\n",
+       "        fig.send_message('refresh', {});\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onload = function () {\n",
+       "        if (fig.image_mode === 'full') {\n",
+       "            // Full images could contain transparency (where diff images\n",
+       "            // almost always do), so we need to clear the canvas so that\n",
+       "            // there is no ghosting.\n",
+       "            fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
+       "        }\n",
+       "        fig.context.drawImage(fig.imageObj, 0, 0);\n",
+       "    };\n",
+       "\n",
+       "    this.imageObj.onunload = function () {\n",
+       "        fig.ws.close();\n",
+       "    };\n",
+       "\n",
+       "    this.ws.onmessage = this._make_on_message_function(this);\n",
+       "\n",
+       "    this.ondownload = ondownload;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_header = function () {\n",
+       "    var titlebar = document.createElement('div');\n",
+       "    titlebar.classList =\n",
+       "        'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n",
+       "    var titletext = document.createElement('div');\n",
+       "    titletext.classList = 'ui-dialog-title';\n",
+       "    titletext.setAttribute(\n",
+       "        'style',\n",
+       "        'width: 100%; text-align: center; padding: 3px;'\n",
+       "    );\n",
+       "    titlebar.appendChild(titletext);\n",
+       "    this.root.appendChild(titlebar);\n",
+       "    this.header = titletext;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n",
+       "\n",
+       "mpl.figure.prototype._init_canvas = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var canvas_div = (this.canvas_div = document.createElement('div'));\n",
+       "    canvas_div.setAttribute(\n",
+       "        'style',\n",
+       "        'border: 1px solid #ddd;' +\n",
+       "            'box-sizing: content-box;' +\n",
+       "            'clear: both;' +\n",
+       "            'min-height: 1px;' +\n",
+       "            'min-width: 1px;' +\n",
+       "            'outline: 0;' +\n",
+       "            'overflow: hidden;' +\n",
+       "            'position: relative;' +\n",
+       "            'resize: both;'\n",
+       "    );\n",
+       "\n",
+       "    function on_keyboard_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.key_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keydown',\n",
+       "        on_keyboard_event_closure('key_press')\n",
+       "    );\n",
+       "    canvas_div.addEventListener(\n",
+       "        'keyup',\n",
+       "        on_keyboard_event_closure('key_release')\n",
+       "    );\n",
+       "\n",
+       "    this._canvas_extra_style(canvas_div);\n",
+       "    this.root.appendChild(canvas_div);\n",
+       "\n",
+       "    var canvas = (this.canvas = document.createElement('canvas'));\n",
+       "    canvas.classList.add('mpl-canvas');\n",
+       "    canvas.setAttribute('style', 'box-sizing: content-box;');\n",
+       "\n",
+       "    this.context = canvas.getContext('2d');\n",
+       "\n",
+       "    var backingStore =\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        this.context.webkitBackingStorePixelRatio ||\n",
+       "        this.context.mozBackingStorePixelRatio ||\n",
+       "        this.context.msBackingStorePixelRatio ||\n",
+       "        this.context.oBackingStorePixelRatio ||\n",
+       "        this.context.backingStorePixelRatio ||\n",
+       "        1;\n",
+       "\n",
+       "    this.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
+       "\n",
+       "    var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n",
+       "        'canvas'\n",
+       "    ));\n",
+       "    rubberband_canvas.setAttribute(\n",
+       "        'style',\n",
+       "        'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n",
+       "    );\n",
+       "\n",
+       "    // Apply a ponyfill if ResizeObserver is not implemented by browser.\n",
+       "    if (this.ResizeObserver === undefined) {\n",
+       "        if (window.ResizeObserver !== undefined) {\n",
+       "            this.ResizeObserver = window.ResizeObserver;\n",
+       "        } else {\n",
+       "            var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n",
+       "            this.ResizeObserver = obs.ResizeObserver;\n",
+       "        }\n",
+       "    }\n",
+       "\n",
+       "    this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n",
+       "        var nentries = entries.length;\n",
+       "        for (var i = 0; i < nentries; i++) {\n",
+       "            var entry = entries[i];\n",
+       "            var width, height;\n",
+       "            if (entry.contentBoxSize) {\n",
+       "                if (entry.contentBoxSize instanceof Array) {\n",
+       "                    // Chrome 84 implements new version of spec.\n",
+       "                    width = entry.contentBoxSize[0].inlineSize;\n",
+       "                    height = entry.contentBoxSize[0].blockSize;\n",
+       "                } else {\n",
+       "                    // Firefox implements old version of spec.\n",
+       "                    width = entry.contentBoxSize.inlineSize;\n",
+       "                    height = entry.contentBoxSize.blockSize;\n",
+       "                }\n",
+       "            } else {\n",
+       "                // Chrome <84 implements even older version of spec.\n",
+       "                width = entry.contentRect.width;\n",
+       "                height = entry.contentRect.height;\n",
+       "            }\n",
+       "\n",
+       "            // Keep the size of the canvas and rubber band canvas in sync with\n",
+       "            // the canvas container.\n",
+       "            if (entry.devicePixelContentBoxSize) {\n",
+       "                // Chrome 84 implements new version of spec.\n",
+       "                canvas.setAttribute(\n",
+       "                    'width',\n",
+       "                    entry.devicePixelContentBoxSize[0].inlineSize\n",
+       "                );\n",
+       "                canvas.setAttribute(\n",
+       "                    'height',\n",
+       "                    entry.devicePixelContentBoxSize[0].blockSize\n",
+       "                );\n",
+       "            } else {\n",
+       "                canvas.setAttribute('width', width * fig.ratio);\n",
+       "                canvas.setAttribute('height', height * fig.ratio);\n",
+       "            }\n",
+       "            canvas.setAttribute(\n",
+       "                'style',\n",
+       "                'width: ' + width + 'px; height: ' + height + 'px;'\n",
+       "            );\n",
+       "\n",
+       "            rubberband_canvas.setAttribute('width', width);\n",
+       "            rubberband_canvas.setAttribute('height', height);\n",
+       "\n",
+       "            // And update the size in Python. We ignore the initial 0/0 size\n",
+       "            // that occurs as the element is placed into the DOM, which should\n",
+       "            // otherwise not happen due to the minimum size styling.\n",
+       "            if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n",
+       "                fig.request_resize(width, height);\n",
+       "            }\n",
+       "        }\n",
+       "    });\n",
+       "    this.resizeObserverInstance.observe(canvas_div);\n",
+       "\n",
+       "    function on_mouse_event_closure(name) {\n",
+       "        return function (event) {\n",
+       "            return fig.mouse_event(event, name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousedown',\n",
+       "        on_mouse_event_closure('button_press')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseup',\n",
+       "        on_mouse_event_closure('button_release')\n",
+       "    );\n",
+       "    // Throttle sequential mouse events to 1 every 20ms.\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mousemove',\n",
+       "        on_mouse_event_closure('motion_notify')\n",
+       "    );\n",
+       "\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseenter',\n",
+       "        on_mouse_event_closure('figure_enter')\n",
+       "    );\n",
+       "    rubberband_canvas.addEventListener(\n",
+       "        'mouseleave',\n",
+       "        on_mouse_event_closure('figure_leave')\n",
+       "    );\n",
+       "\n",
+       "    canvas_div.addEventListener('wheel', function (event) {\n",
+       "        if (event.deltaY < 0) {\n",
+       "            event.step = 1;\n",
+       "        } else {\n",
+       "            event.step = -1;\n",
+       "        }\n",
+       "        on_mouse_event_closure('scroll')(event);\n",
+       "    });\n",
+       "\n",
+       "    canvas_div.appendChild(canvas);\n",
+       "    canvas_div.appendChild(rubberband_canvas);\n",
+       "\n",
+       "    this.rubberband_context = rubberband_canvas.getContext('2d');\n",
+       "    this.rubberband_context.strokeStyle = '#000000';\n",
+       "\n",
+       "    this._resize_canvas = function (width, height, forward) {\n",
+       "        if (forward) {\n",
+       "            canvas_div.style.width = width + 'px';\n",
+       "            canvas_div.style.height = height + 'px';\n",
+       "        }\n",
+       "    };\n",
+       "\n",
+       "    // Disable right mouse context menu.\n",
+       "    this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n",
+       "        event.preventDefault();\n",
+       "        return false;\n",
+       "    });\n",
+       "\n",
+       "    function set_focus() {\n",
+       "        canvas.focus();\n",
+       "        canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    window.setTimeout(set_focus, 100);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'mpl-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'mpl-button-group';\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'mpl-button-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        var button = (fig.buttons[name] = document.createElement('button'));\n",
+       "        button.classList = 'mpl-widget';\n",
+       "        button.setAttribute('role', 'button');\n",
+       "        button.setAttribute('aria-disabled', 'false');\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "\n",
+       "        var icon_img = document.createElement('img');\n",
+       "        icon_img.src = '_images/' + image + '.png';\n",
+       "        icon_img.srcset = '_images/' + image + '_large.png 2x';\n",
+       "        icon_img.alt = tooltip;\n",
+       "        button.appendChild(icon_img);\n",
+       "\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    var fmt_picker = document.createElement('select');\n",
+       "    fmt_picker.classList = 'mpl-widget';\n",
+       "    toolbar.appendChild(fmt_picker);\n",
+       "    this.format_dropdown = fmt_picker;\n",
+       "\n",
+       "    for (var ind in mpl.extensions) {\n",
+       "        var fmt = mpl.extensions[ind];\n",
+       "        var option = document.createElement('option');\n",
+       "        option.selected = fmt === mpl.default_extension;\n",
+       "        option.innerHTML = fmt;\n",
+       "        fmt_picker.appendChild(option);\n",
+       "    }\n",
+       "\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n",
+       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
+       "    // which will in turn request a refresh of the image.\n",
+       "    this.send_message('resize', { width: x_pixels, height: y_pixels });\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_message = function (type, properties) {\n",
+       "    properties['type'] = type;\n",
+       "    properties['figure_id'] = this.id;\n",
+       "    this.ws.send(JSON.stringify(properties));\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.send_draw_message = function () {\n",
+       "    if (!this.waiting) {\n",
+       "        this.waiting = true;\n",
+       "        this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    var format_dropdown = fig.format_dropdown;\n",
+       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
+       "    fig.ondownload(fig, format);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_resize = function (fig, msg) {\n",
+       "    var size = msg['size'];\n",
+       "    if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n",
+       "        fig._resize_canvas(size[0], size[1], msg['forward']);\n",
+       "        fig.send_message('refresh', {});\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n",
+       "    var x0 = msg['x0'] / fig.ratio;\n",
+       "    var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n",
+       "    var x1 = msg['x1'] / fig.ratio;\n",
+       "    var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n",
+       "    x0 = Math.floor(x0) + 0.5;\n",
+       "    y0 = Math.floor(y0) + 0.5;\n",
+       "    x1 = Math.floor(x1) + 0.5;\n",
+       "    y1 = Math.floor(y1) + 0.5;\n",
+       "    var min_x = Math.min(x0, x1);\n",
+       "    var min_y = Math.min(y0, y1);\n",
+       "    var width = Math.abs(x1 - x0);\n",
+       "    var height = Math.abs(y1 - y0);\n",
+       "\n",
+       "    fig.rubberband_context.clearRect(\n",
+       "        0,\n",
+       "        0,\n",
+       "        fig.canvas.width / fig.ratio,\n",
+       "        fig.canvas.height / fig.ratio\n",
+       "    );\n",
+       "\n",
+       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n",
+       "    // Updates the figure title.\n",
+       "    fig.header.textContent = msg['label'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n",
+       "    var cursor = msg['cursor'];\n",
+       "    switch (cursor) {\n",
+       "        case 0:\n",
+       "            cursor = 'pointer';\n",
+       "            break;\n",
+       "        case 1:\n",
+       "            cursor = 'default';\n",
+       "            break;\n",
+       "        case 2:\n",
+       "            cursor = 'crosshair';\n",
+       "            break;\n",
+       "        case 3:\n",
+       "            cursor = 'move';\n",
+       "            break;\n",
+       "    }\n",
+       "    fig.rubberband_canvas.style.cursor = cursor;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_message = function (fig, msg) {\n",
+       "    fig.message.textContent = msg['message'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n",
+       "    // Request the server to send over a new figure.\n",
+       "    fig.send_draw_message();\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n",
+       "    fig.image_mode = msg['mode'];\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n",
+       "    for (var key in msg) {\n",
+       "        if (!(key in fig.buttons)) {\n",
+       "            continue;\n",
+       "        }\n",
+       "        fig.buttons[key].disabled = !msg[key];\n",
+       "        fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n",
+       "    if (msg['mode'] === 'PAN') {\n",
+       "        fig.buttons['Pan'].classList.add('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    } else if (msg['mode'] === 'ZOOM') {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.add('active');\n",
+       "    } else {\n",
+       "        fig.buttons['Pan'].classList.remove('active');\n",
+       "        fig.buttons['Zoom'].classList.remove('active');\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Called whenever the canvas gets updated.\n",
+       "    this.send_message('ack', {});\n",
+       "};\n",
+       "\n",
+       "// A function to construct a web socket function for onmessage handling.\n",
+       "// Called in the figure constructor.\n",
+       "mpl.figure.prototype._make_on_message_function = function (fig) {\n",
+       "    return function socket_on_message(evt) {\n",
+       "        if (evt.data instanceof Blob) {\n",
+       "            /* FIXME: We get \"Resource interpreted as Image but\n",
+       "             * transferred with MIME type text/plain:\" errors on\n",
+       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
+       "             * to be part of the websocket stream */\n",
+       "            evt.data.type = 'image/png';\n",
+       "\n",
+       "            /* Free the memory for the previous frames */\n",
+       "            if (fig.imageObj.src) {\n",
+       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
+       "                    fig.imageObj.src\n",
+       "                );\n",
+       "            }\n",
+       "\n",
+       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
+       "                evt.data\n",
+       "            );\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        } else if (\n",
+       "            typeof evt.data === 'string' &&\n",
+       "            evt.data.slice(0, 21) === 'data:image/png;base64'\n",
+       "        ) {\n",
+       "            fig.imageObj.src = evt.data;\n",
+       "            fig.updated_canvas_event();\n",
+       "            fig.waiting = false;\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        var msg = JSON.parse(evt.data);\n",
+       "        var msg_type = msg['type'];\n",
+       "\n",
+       "        // Call the  \"handle_{type}\" callback, which takes\n",
+       "        // the figure and JSON message as its only arguments.\n",
+       "        try {\n",
+       "            var callback = fig['handle_' + msg_type];\n",
+       "        } catch (e) {\n",
+       "            console.log(\n",
+       "                \"No handler for the '\" + msg_type + \"' message type: \",\n",
+       "                msg\n",
+       "            );\n",
+       "            return;\n",
+       "        }\n",
+       "\n",
+       "        if (callback) {\n",
+       "            try {\n",
+       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
+       "                callback(fig, msg);\n",
+       "            } catch (e) {\n",
+       "                console.log(\n",
+       "                    \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n",
+       "                    e,\n",
+       "                    e.stack,\n",
+       "                    msg\n",
+       "                );\n",
+       "            }\n",
+       "        }\n",
+       "    };\n",
+       "};\n",
+       "\n",
+       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
+       "mpl.findpos = function (e) {\n",
+       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
+       "    var targ;\n",
+       "    if (!e) {\n",
+       "        e = window.event;\n",
+       "    }\n",
+       "    if (e.target) {\n",
+       "        targ = e.target;\n",
+       "    } else if (e.srcElement) {\n",
+       "        targ = e.srcElement;\n",
+       "    }\n",
+       "    if (targ.nodeType === 3) {\n",
+       "        // defeat Safari bug\n",
+       "        targ = targ.parentNode;\n",
+       "    }\n",
+       "\n",
+       "    // pageX,Y are the mouse positions relative to the document\n",
+       "    var boundingRect = targ.getBoundingClientRect();\n",
+       "    var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n",
+       "    var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n",
+       "\n",
+       "    return { x: x, y: y };\n",
+       "};\n",
+       "\n",
+       "/*\n",
+       " * return a copy of an object with only non-object keys\n",
+       " * we need this to avoid circular references\n",
+       " * http://stackoverflow.com/a/24161582/3208463\n",
+       " */\n",
+       "function simpleKeys(original) {\n",
+       "    return Object.keys(original).reduce(function (obj, key) {\n",
+       "        if (typeof original[key] !== 'object') {\n",
+       "            obj[key] = original[key];\n",
+       "        }\n",
+       "        return obj;\n",
+       "    }, {});\n",
+       "}\n",
+       "\n",
+       "mpl.figure.prototype.mouse_event = function (event, name) {\n",
+       "    var canvas_pos = mpl.findpos(event);\n",
+       "\n",
+       "    if (name === 'button_press') {\n",
+       "        this.canvas.focus();\n",
+       "        this.canvas_div.focus();\n",
+       "    }\n",
+       "\n",
+       "    var x = canvas_pos.x * this.ratio;\n",
+       "    var y = canvas_pos.y * this.ratio;\n",
+       "\n",
+       "    this.send_message(name, {\n",
+       "        x: x,\n",
+       "        y: y,\n",
+       "        button: event.button,\n",
+       "        step: event.step,\n",
+       "        guiEvent: simpleKeys(event),\n",
+       "    });\n",
+       "\n",
+       "    /* This prevents the web browser from automatically changing to\n",
+       "     * the text insertion cursor when the button is pressed.  We want\n",
+       "     * to control all of the cursor setting manually through the\n",
+       "     * 'cursor' event from matplotlib */\n",
+       "    event.preventDefault();\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n",
+       "    // Handle any extra behaviour associated with a key event\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.key_event = function (event, name) {\n",
+       "    // Prevent repeat events\n",
+       "    if (name === 'key_press') {\n",
+       "        if (event.which === this._key) {\n",
+       "            return;\n",
+       "        } else {\n",
+       "            this._key = event.which;\n",
+       "        }\n",
+       "    }\n",
+       "    if (name === 'key_release') {\n",
+       "        this._key = null;\n",
+       "    }\n",
+       "\n",
+       "    var value = '';\n",
+       "    if (event.ctrlKey && event.which !== 17) {\n",
+       "        value += 'ctrl+';\n",
+       "    }\n",
+       "    if (event.altKey && event.which !== 18) {\n",
+       "        value += 'alt+';\n",
+       "    }\n",
+       "    if (event.shiftKey && event.which !== 16) {\n",
+       "        value += 'shift+';\n",
+       "    }\n",
+       "\n",
+       "    value += 'k';\n",
+       "    value += event.which.toString();\n",
+       "\n",
+       "    this._key_event_extra(event, name);\n",
+       "\n",
+       "    this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n",
+       "    return false;\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n",
+       "    if (name === 'download') {\n",
+       "        this.handle_save(this, null);\n",
+       "    } else {\n",
+       "        this.send_message('toolbar_button', { name: name });\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n",
+       "    this.message.textContent = tooltip;\n",
+       "};\n",
+       "\n",
+       "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n",
+       "// prettier-ignore\n",
+       "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n",
+       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
+       "\n",
+       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
+       "\n",
+       "mpl.default_extension = \"png\";/* global mpl */\n",
+       "\n",
+       "var comm_websocket_adapter = function (comm) {\n",
+       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
+       "    // object with the appropriate methods. Currently this is a non binary\n",
+       "    // socket, so there is still some room for performance tuning.\n",
+       "    var ws = {};\n",
+       "\n",
+       "    ws.close = function () {\n",
+       "        comm.close();\n",
+       "    };\n",
+       "    ws.send = function (m) {\n",
+       "        //console.log('sending', m);\n",
+       "        comm.send(m);\n",
+       "    };\n",
+       "    // Register the callback with on_msg.\n",
+       "    comm.on_msg(function (msg) {\n",
+       "        //console.log('receiving', msg['content']['data'], msg);\n",
+       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
+       "        ws.onmessage(msg['content']['data']);\n",
+       "    });\n",
+       "    return ws;\n",
+       "};\n",
+       "\n",
+       "mpl.mpl_figure_comm = function (comm, msg) {\n",
+       "    // This is the function which gets called when the mpl process\n",
+       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
+       "\n",
+       "    var id = msg.content.data.id;\n",
+       "    // Get hold of the div created by the display call when the Comm\n",
+       "    // socket was opened in Python.\n",
+       "    var element = document.getElementById(id);\n",
+       "    var ws_proxy = comm_websocket_adapter(comm);\n",
+       "\n",
+       "    function ondownload(figure, _format) {\n",
+       "        window.open(figure.canvas.toDataURL());\n",
+       "    }\n",
+       "\n",
+       "    var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n",
+       "\n",
+       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
+       "    // web socket which is closed, not our websocket->open comm proxy.\n",
+       "    ws_proxy.onopen();\n",
+       "\n",
+       "    fig.parent_element = element;\n",
+       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
+       "    if (!fig.cell_info) {\n",
+       "        console.error('Failed to find cell for figure', id, fig);\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.cell_info[0].output_area.element.on(\n",
+       "        'cleared',\n",
+       "        { fig: fig },\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_close = function (fig, msg) {\n",
+       "    var width = fig.canvas.width / fig.ratio;\n",
+       "    fig.cell_info[0].output_area.element.off(\n",
+       "        'cleared',\n",
+       "        fig._remove_fig_handler\n",
+       "    );\n",
+       "    fig.resizeObserverInstance.unobserve(fig.canvas_div);\n",
+       "\n",
+       "    // Update the output cell to use the data from the current canvas.\n",
+       "    fig.push_to_output();\n",
+       "    var dataURL = fig.canvas.toDataURL();\n",
+       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
+       "    // the notebook keyboard shortcuts fail.\n",
+       "    IPython.keyboard_manager.enable();\n",
+       "    fig.parent_element.innerHTML =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "    fig.close_ws(fig, msg);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.close_ws = function (fig, msg) {\n",
+       "    fig.send_message('closing', msg);\n",
+       "    // fig.ws.close()\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n",
+       "    // Turn the data on the canvas into data in the output cell.\n",
+       "    var width = this.canvas.width / this.ratio;\n",
+       "    var dataURL = this.canvas.toDataURL();\n",
+       "    this.cell_info[1]['text/html'] =\n",
+       "        '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.updated_canvas_event = function () {\n",
+       "    // Tell IPython that the notebook contents must change.\n",
+       "    IPython.notebook.set_dirty(true);\n",
+       "    this.send_message('ack', {});\n",
+       "    var fig = this;\n",
+       "    // Wait a second, then push the new image to the DOM so\n",
+       "    // that it is saved nicely (might be nice to debounce this).\n",
+       "    setTimeout(function () {\n",
+       "        fig.push_to_output();\n",
+       "    }, 1000);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._init_toolbar = function () {\n",
+       "    var fig = this;\n",
+       "\n",
+       "    var toolbar = document.createElement('div');\n",
+       "    toolbar.classList = 'btn-toolbar';\n",
+       "    this.root.appendChild(toolbar);\n",
+       "\n",
+       "    function on_click_closure(name) {\n",
+       "        return function (_event) {\n",
+       "            return fig.toolbar_button_onclick(name);\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    function on_mouseover_closure(tooltip) {\n",
+       "        return function (event) {\n",
+       "            if (!event.currentTarget.disabled) {\n",
+       "                return fig.toolbar_button_onmouseover(tooltip);\n",
+       "            }\n",
+       "        };\n",
+       "    }\n",
+       "\n",
+       "    fig.buttons = {};\n",
+       "    var buttonGroup = document.createElement('div');\n",
+       "    buttonGroup.classList = 'btn-group';\n",
+       "    var button;\n",
+       "    for (var toolbar_ind in mpl.toolbar_items) {\n",
+       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
+       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
+       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
+       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
+       "\n",
+       "        if (!name) {\n",
+       "            /* Instead of a spacer, we start a new button group. */\n",
+       "            if (buttonGroup.hasChildNodes()) {\n",
+       "                toolbar.appendChild(buttonGroup);\n",
+       "            }\n",
+       "            buttonGroup = document.createElement('div');\n",
+       "            buttonGroup.classList = 'btn-group';\n",
+       "            continue;\n",
+       "        }\n",
+       "\n",
+       "        button = fig.buttons[name] = document.createElement('button');\n",
+       "        button.classList = 'btn btn-default';\n",
+       "        button.href = '#';\n",
+       "        button.title = name;\n",
+       "        button.innerHTML = '<i class=\"fa ' + image + ' fa-lg\"></i>';\n",
+       "        button.addEventListener('click', on_click_closure(method_name));\n",
+       "        button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n",
+       "        buttonGroup.appendChild(button);\n",
+       "    }\n",
+       "\n",
+       "    if (buttonGroup.hasChildNodes()) {\n",
+       "        toolbar.appendChild(buttonGroup);\n",
+       "    }\n",
+       "\n",
+       "    // Add the status bar.\n",
+       "    var status_bar = document.createElement('span');\n",
+       "    status_bar.classList = 'mpl-message pull-right';\n",
+       "    toolbar.appendChild(status_bar);\n",
+       "    this.message = status_bar;\n",
+       "\n",
+       "    // Add the close button to the window.\n",
+       "    var buttongrp = document.createElement('div');\n",
+       "    buttongrp.classList = 'btn-group inline pull-right';\n",
+       "    button = document.createElement('button');\n",
+       "    button.classList = 'btn btn-mini btn-primary';\n",
+       "    button.href = '#';\n",
+       "    button.title = 'Stop Interaction';\n",
+       "    button.innerHTML = '<i class=\"fa fa-power-off icon-remove icon-large\"></i>';\n",
+       "    button.addEventListener('click', function (_evt) {\n",
+       "        fig.handle_close(fig, {});\n",
+       "    });\n",
+       "    button.addEventListener(\n",
+       "        'mouseover',\n",
+       "        on_mouseover_closure('Stop Interaction')\n",
+       "    );\n",
+       "    buttongrp.appendChild(button);\n",
+       "    var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n",
+       "    titlebar.insertBefore(buttongrp, titlebar.firstChild);\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._remove_fig_handler = function (event) {\n",
+       "    var fig = event.data.fig;\n",
+       "    if (event.target !== this) {\n",
+       "        // Ignore bubbled events from children.\n",
+       "        return;\n",
+       "    }\n",
+       "    fig.close_ws(fig, {});\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._root_extra_style = function (el) {\n",
+       "    el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._canvas_extra_style = function (el) {\n",
+       "    // this is important to make the div 'focusable\n",
+       "    el.setAttribute('tabindex', 0);\n",
+       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
+       "    // off when our div gets focus\n",
+       "\n",
+       "    // location in version 3\n",
+       "    if (IPython.notebook.keyboard_manager) {\n",
+       "        IPython.notebook.keyboard_manager.register_events(el);\n",
+       "    } else {\n",
+       "        // location in version 2\n",
+       "        IPython.keyboard_manager.register_events(el);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype._key_event_extra = function (event, _name) {\n",
+       "    var manager = IPython.notebook.keyboard_manager;\n",
+       "    if (!manager) {\n",
+       "        manager = IPython.keyboard_manager;\n",
+       "    }\n",
+       "\n",
+       "    // Check for shift+enter\n",
+       "    if (event.shiftKey && event.which === 13) {\n",
+       "        this.canvas_div.blur();\n",
+       "        // select the cell after this one\n",
+       "        var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
+       "        IPython.notebook.select(index + 1);\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "mpl.figure.prototype.handle_save = function (fig, _msg) {\n",
+       "    fig.ondownload(fig, null);\n",
+       "};\n",
+       "\n",
+       "mpl.find_output_cell = function (html_output) {\n",
+       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
+       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
+       "    // IPython event is triggered only after the cells have been serialised, which for\n",
+       "    // our purposes (turning an active figure into a static one), is too late.\n",
+       "    var cells = IPython.notebook.get_cells();\n",
+       "    var ncells = cells.length;\n",
+       "    for (var i = 0; i < ncells; i++) {\n",
+       "        var cell = cells[i];\n",
+       "        if (cell.cell_type === 'code') {\n",
+       "            for (var j = 0; j < cell.output_area.outputs.length; j++) {\n",
+       "                var data = cell.output_area.outputs[j];\n",
+       "                if (data.data) {\n",
+       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
+       "                    data = data.data;\n",
+       "                }\n",
+       "                if (data['text/html'] === html_output) {\n",
+       "                    return [cell, data, j];\n",
+       "                }\n",
+       "            }\n",
+       "        }\n",
+       "    }\n",
+       "};\n",
+       "\n",
+       "// Register the function which deals with the matplotlib target/channel.\n",
+       "// The kernel may be null if the page has been refreshed.\n",
+       "if (IPython.notebook.kernel !== null) {\n",
+       "    IPython.notebook.kernel.comm_manager.register_target(\n",
+       "        'matplotlib',\n",
+       "        mpl.mpl_figure_comm\n",
+       "    );\n",
+       "}\n"
+      ],
+      "text/plain": [
+       "<IPython.core.display.Javascript object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/html": [
+       "<img src=\"\" width=\"640\">"
+      ],
+      "text/plain": [
+       "<IPython.core.display.HTML object>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "(-9.0, 7.5)"
+      ]
+     },
+     "execution_count": 12,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "fig = plt.figure()\n",
+    "ax = fig.gca(projection='3d')\n",
+    "\n",
+    "# plot field lines\n",
+    "for lx,ly,lz in zip(linex,liney,linez):\n",
+    "    ax.plot(lx,ly,lz,'-',markersize=1)\n",
+    "\n",
+    "# plot map\n",
+    "ax.scatter(x1,y1,z1,s=2,alpha=0.3)\n",
+    "Bt = Ba1.reshape(xi.shape)*1e9 # contour and color scale in nT \n",
+    "c = ax.contourf(xi,yi,Bt,alpha=1,zdir='z',offset=z-max(radii)*2,cmap='jet',\n",
+    "                  levels=np.linspace(Bt.min(),Bt.max(),50,endpoint=True))\n",
+    "fig.colorbar(c)\n",
+    "\n",
+    "# auto-scaling for profile plot\n",
+    "ptpmax = np.max((Ba2.ptp(),Ba3.ptp())) # dynamic range\n",
+    "autoscaling = np.max(radii) / ptpmax\n",
+    "\n",
+    "# plot x-profile\n",
+    "ax.scatter(x2,y2,z2,s=2,c='black',alpha=0.3)\n",
+    "ax.plot(x2,Ba2*autoscaling,zs=ymax,c='black',zdir='y')\n",
+    "\n",
+    "# plot y-profile\n",
+    "ax.scatter(x3,y3,z3,s=2,c='black',alpha=0.3)\n",
+    "ax.plot(y3,Ba3*autoscaling,zs=xmin,c='black',zdir='x')\n",
+    "\n",
+    "ax.set_xlabel('X')\n",
+    "ax.set_ylabel('Y')\n",
+    "ax.set_zlabel('Z')\n",
+    "\n",
+    "ax.set_xlim(xmin, xmax)\n",
+    "ax.set_ylim(ymin, ymax)\n",
+    "ax.set_zlim(z-max(radii)*2, max(radii)*1.5)\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/mag/Mag_FitProfile.ipynb b/Notebooks/mag/Mag_FitProfile.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..319e2064a26d2697d9701e838d1933a34566a210
--- /dev/null
+++ b/Notebooks/mag/Mag_FitProfile.ipynb
@@ -0,0 +1,285 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 10,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) \n",
+    "\n",
+    "This notebook uses code adapted from \n",
+    "\n",
+    "SimPEG\n",
+    "- Cockett, R., S. Kang, L.J. Heagy, A. Pidlisecky, D.W. Oldenburg (2015, in review), SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers and Geosciences\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": true,
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 10,
+        "width": 6
+       },
+       "report_default": {}
+      }
+     }
+    }
+   },
+   "source": [
+    "## View the model\n",
+    "\n",
+    "- dx: width or prism in x-direction (m)\n",
+    "- dy: width of prism in y-direction (m)\n",
+    "- dz: vertical extent of prism (m)\n",
+    "- x0: x location of the center of the prism (m)\n",
+    "- y0: y location of the center of the prism (m)\n",
+    "- depth: depth to the top of the prism (m)\n",
+    "- prism_inc: inclination of the prism (reference is a unit northing vector; degrees)\n",
+    "- prism_dec: declination of the prism (reference is a unit northing vector; degrees)\n",
+    "- View_dip: dip angle of view (degrees)\n",
+    "- View_elev: elevation of view (degrees)\n",
+    "- View_azim: azimuth of view (degrees)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 29,
+        "hidden": false,
+        "row": 21,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.mag import Mag, Simulator\n",
+    "from discretize import TensorMesh\n",
+    "from SimPEG import utils\n",
+    "from SimPEG.potential_fields import magnetics as mag\n",
+    "from ipywidgets import widgets\n",
+    "import matplotlib\n",
+    "%matplotlib inline\n",
+    "\n",
+    "from SimPEG.utils import download\n",
+    "import os"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "77bbf8705d2a4626bbe0658fcd3a6416",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=2.375, continuous_up…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Input parameters\n",
+    "\n",
+    "#fileName = 'http://github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/Lab1_Wednesday_TA.csv'\n",
+    "#synData  = download(fileName,overwrite=True,verbose=False)\n",
+    "\n",
+    "fileName = os.getcwd()+ \"/Lab1_Wednesday_TA.csv\"\n",
+    "\n",
+    "data = np.genfromtxt(fileName, skip_header=1, delimiter=',')\n",
+    "xyzd = np.c_[np.zeros(data.shape[0]), data[:,0], np.zeros(data.shape[0]), data[:,1]]\n",
+    "B = np.r_[60308, 83.8, 25.4]\n",
+    "survey, dobj = Mag.createMagSurvey(xyzd, B)\n",
+    "# View the data and chose a profile\n",
+    "# Define the parametric model interactively\n",
+    "model = Simulator.ViewPrism(survey)\n",
+    "display(model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Fit the data\n",
+    "- Binc: Inclination of the Earth's background field (degree)\n",
+    "- Bdec: Declination of the Earth's background field (degree)\n",
+    "- Bigrf: Strength of the Earth's background field (nT) \n",
+    "- depth: vertical distance from the sensor to the top of the rebar (m)\n",
+    "- susc: magnetic susceptibility\n",
+    "- comp: Total field (tf) of component of the field to plot\n",
+    "- irt: Type of magnetization \n",
+    "- Q: Koenigsberger ratio ($\\frac{M_{rem}}{M_{ind}}$)\n",
+    "- rinc: inclination of the remanent magnetization (degree)\n",
+    "- rdec: declination of the remanent magnetization (degree)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 29,
+        "hidden": false,
+        "row": 21,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "012534ac73914e05a943624e10942b80",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=90.0, continuous_update=False, description='Binc', max=90.0, min=-90.0…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q = Simulator.fitline(model,survey,dobj)\n",
+    "display(Q)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "grid_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "8789ea09a28443d0b196412593e51195": {
+     "views": [
+      {
+       "cell_index": 3
+      }
+     ]
+    },
+    "8bd53575b8d6470cb6158b113159182e": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/Mag_Induced2D.ipynb b/Notebooks/mag/Mag_Induced2D.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a348ba91f2463c06f0869e30a9db0efd2bf58344
--- /dev/null
+++ b/Notebooks/mag/Mag_Induced2D.ipynb
@@ -0,0 +1,419 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) \n",
+    "\n",
+    "This notebook uses code adapted from \n",
+    "\n",
+    "SimPEG\n",
+    "- Cockett, R., S. Kang, L.J. Heagy, A. Pidlisecky, D.W. Oldenburg (2015, in review), SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers and Geosciences"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 3,
+        "hidden": true,
+        "row": 11,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.mag import Mag, Simulator\n",
+    "from SimPEG.potential_fields import magnetics as mag\n",
+    "from SimPEG import utils, data\n",
+    "from discretize import TensorMesh\n",
+    "%matplotlib inline\n",
+    "\n",
+    "import os"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 21,
+        "hidden": false,
+        "row": 22,
+        "width": null
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# How do we define direction of an earth magnetic field?\n",
+    "\n",
+    "Earth magnetic field is a vector. To define a vector we need to choose a coordinate system. We use right-handed system: \n",
+    "- X (Easting), \n",
+    "- Y (Northing), and \n",
+    "- Z (Up). \n",
+    "\n",
+    "Here we consider an earth magnetic field ($\\vec{B_0}$), of which intensity is one. To define this unit vector, we use inclinatino and declination:\n",
+    "- Declination: An angle from geographic North (Ng) (positive clockwise)\n",
+    "- Inclination: Vertical angle from the N-E plane (positive down)\n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/raw/main/images/mag/earthfield.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 18,
+        "hidden": false,
+        "row": 43,
+        "width": null
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# What's data: total field anomaly\n",
+    "\n",
+    "We consider a typical form of magnetic data. To illustrate this we consider an suceptible object embedded in the earth. \n",
+    "Based upon the earth magnetic field ($\\vec{B}_0$), this object will generate anomalous magnetic field ($\\vec{B}_A$). We define an unit vector $\\hat{B}_0$ for the earth field as \n",
+    "$$ \\hat{B}_0 = \\frac{\\vec{B}_0}{|\\vec{B}_0|}$$ \n",
+    "We measure both earth and anomalous magnetic field such that\n",
+    "\n",
+    "$$ \\vec{B} = \\vec{B}_0 + \\vec{B}_A$$\n",
+    "\n",
+    "Total field anomaly, $\\triangle \\vec{B}$ can be defined as\n",
+    "\n",
+    "$$  |\\triangle \\vec{B}| = |\\vec{B}|-|\\vec{B}_E| $$ \n",
+    "\n",
+    "If $|\\vec{B}|\\ll|\\vec{B}_E|$, then that is total field anomaly $\\triangle \\vec{B}$ is the projection of the anomalous field onto the direction of the earth field:\n",
+    "\n",
+    "$$ |\\triangle \\vec{B}| \\simeq \\vec{B}_A \\cdot \\hat{B}_0=|\\vec{B}_A|cos\\theta$$ \n",
+    "\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/raw/main/images/mag/totalfieldanomaly.png?raw=true\" style=\"width: 50%; height: 50%\">"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# Define a 3D prism\n",
+    "Our model is a rectangular prism. Parameters to define this prism are given below:\n",
+    "\n",
+    "- dx: length in Easting (x) direction (meter)\n",
+    "- dy: length in Northing (y) direction (meter)\n",
+    "- dz: length in Depth (z) direction (meter) below the receiver\n",
+    "- depth: top boundary of the prism (meter)\n",
+    "- pinc: inclination of the prism (reference is a unit northing vector; degree)\n",
+    "- pdec: declination of the prism (reference is a unit northing vector; degree)\n",
+    "\n",
+    "You can also change the height of the survey grid above the ground\n",
+    "- rx_h: height of the grid (meter)\n",
+    "\n",
+    "*Green dots show a plane where we measure data.*"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 28,
+        "hidden": false,
+        "row": 61,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "82d6267941c242a3acd81042ed90a234",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=557366.1875, continuous_update=False, description='East', max=558589.8…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "#Input parameters\n",
+    "\n",
+    "#fileName = 'https://github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/DO27_TMI.dat'\n",
+    "\n",
+    "fileName = os.getcwd()+ \"/DO27_TMI.dat\"\n",
+    "\n",
+    "\n",
+    "xyzd = np.genfromtxt(fileName, skip_header=3)\n",
+    "B = np.r_[60308, 83.8, 25.4]\n",
+    "survey, dobj = Mag.createMagSurvey(xyzd, B)\n",
+    "# View the data and chose a profile\n",
+    "param = Simulator.ViewMagSurvey2D(survey, dobj)\n",
+    "display(param)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "4a98e5f0cd294c96a2f78c89ea44ac08",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=152.953125, continuo…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Define the parametric model interactively\n",
+    "model = Simulator.ViewPrism(param.result)\n",
+    "display(model)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "# Magnetic applet\n",
+    "Based on the prism that you made above, below Magnetic applet computes magnetic field at receiver locations, and provide both 2D map (left) and profile line (right). \n",
+    "\n",
+    "For the prism, you can alter:\n",
+    "- sus: susceptibility of the prism\n",
+    "\n",
+    "Parameters for the earth field are:\n",
+    "- Einc: inclination of the earth field (degree)\n",
+    "- Edec: declination of the earth field (degree)\n",
+    "- Bigrf: intensity of the earth field (nT)\n",
+    "\n",
+    "For data, you can view:\n",
+    "- tf: total field anomaly,  \n",
+    "- bx :x-component, \n",
+    "- by :y-component, \n",
+    "- bz :z-component\n",
+    "\n",
+    "You can simulate and view remanent magnetization effect with parameters:\n",
+    "- irt: \"induced\", \"remanent\", or \"total\"\n",
+    "- Q: Koenigsberger ratio ($\\frac{M_{rem}}{M_{ind}}$)\n",
+    "- rinc: inclination of the remanent magnetization (degree)\n",
+    "- rdec: declination of the remanent magnetization (degree)\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 6,
+        "height": 28,
+        "hidden": false,
+        "row": 61,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "9c43af169fe743a9832809433addb4c7",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(ToggleButton(value=False, description='Refresh'), FloatSlider(value=0.1, continuous_upda…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "plotwidget = Simulator.PFSimulator(model, param)\n",
+    "display(plotwidget)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "report_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "2c77e5c891dd44069234331d87475ef2": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/MagneticDipoleApplet.ipynb b/Notebooks/mag/MagneticDipoleApplet.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b47fe04580c156ffdb3c2a7538ab7dc478c4f4cf
--- /dev/null
+++ b/Notebooks/mag/MagneticDipoleApplet.ipynb
@@ -0,0 +1,163 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.mag.MagDipoleApp import MagneticDipoleApp"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Magnetic Dipole Applet\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a small buried dipolar magnet. In geophysics, this simulates the observed anomaly over a buried susceptible sphere that is magnetized by the Earth's magnetic field.\n",
+    "\n",
+    "## What is shown\n",
+    "\n",
+    "- <b>The colour map</b> shows the strength of the chosen parameter (Bt, Bx, By, Bz, or Bg) as a function of position.\n",
+    "\n",
+    "- Imagine doing a two dimensional survey over a susceptible sphere that has been magentized by the Earth's magnetic field specified by inclination and declination.  \"Measurement\" location is the centre of each coloured box. This is a simple (but easily programmable) alternative to generating a smooth contour map.\n",
+    "\n",
+    "- The anomaly depends upon magnetic latitude, direction of the inducing (Earth's) field, the depth of the buried dipole, and the magnetic moment of the buried dipole.\n",
+    "\n",
+    "\n",
+    "## Important Notes:\n",
+    "\n",
+    "- <b>Inclination (I)</b> and <b>declination (D)</b> describe the orientation of the Earth's ambient field at the centre of the survey area. Positive inclination implies you are in the northern hemisphere, and positive declination implies that magnetic north is to the east of geographic north.\n",
+    "\n",
+    "- The <b>\"length\"</b> adjuster changes the size of the square survey area. The default of 72 means the survey square is 72 metres on a side.\n",
+    "\n",
+    "- The <b>\"data spacing\"</b> adjuster changes the distance between measurements. The default of 1 means measurements were acquired over the survey square on a 2-metre grid. In other words, \"data spacing = 2\" means each coloured box is 2 m square.\n",
+    "\n",
+    "- The <b>\"depth\"</b> adjuster changes the depth (in metres) to the centre of the buried dipole.\n",
+    "\n",
+    "- The <b>\"magnetic moment (M)\"</b> adjuster changes the strength of the induced field. Units are Am2.  This is related to the strength of the inducing field, the susceptibility of the buried sphere, and the volume of susceptible material.\n",
+    "- <b>Bt, Bg, Bx, By, Bz</b> are Total field, X-component (positive northwards), Y-component (positive eastwards), and Z-component (positive down) of the anomaly field respectively.\n",
+    "\n",
+    "- Checking the <b>fixed scale</b> button fixes the colour scale so that the end points of the colour scale are minimum and maximum values for the current data set.\n",
+    "\n",
+    "- You can generate a <b>profile</b> along either \"East\" or \"North\" direction\n",
+    "\n",
+    "- Check <b>half width</b> to see the half width of the anomaly. Anomaly width is noted on the botton of the graph.\n",
+    "\n",
+    "- Measurements are taken 1m above the surface.\n",
+    "\n",
+    "- For gradient data (<b>Bg</b>), measurements are taken at 1m and 2m\n",
+    "\n",
+    "- Note that magnetic moment (M) for monopole is equal to the charge (Q): "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a8add133a23c4749a81f269ec705d44f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='field', options=('Bt', 'Bx', 'By', 'Bz', 'Bg'), value=…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag = MagneticDipoleApp()\n",
+    "mag.interact_plot_model_dipole()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Two monopoles (pseudo dipole)\n",
+    "\n",
+    "Different from the previous app, here we focus on a situtation where we have to monopoles having negative\n",
+    "and postive signs. Their horizontal location: (X, Y) are same, but depths are different. By default depth of the negative pole, <b>depth$_{-Q}$ </b>, is located 0m and that of the positive pole, <b>depth$_{-Q}$ </b>, is 10m. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "3e22ddaaa4fb439eb9e967b48d81568f",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='field', options=('Bt', 'Bx', 'By', 'Bz', 'Bg'), value=…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag.interact_plot_model_two_monopole()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/mag/MagneticPrismApplet.ipynb b/Notebooks/mag/MagneticPrismApplet.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cf568dcd894c70fe9cca2f3da1e347f63be168d7
--- /dev/null
+++ b/Notebooks/mag/MagneticPrismApplet.ipynb
@@ -0,0 +1,230 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 0,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "This is the <a href=\"https://jupyter.org/\">Jupyter Notebook</a>, an interactive coding and computation environment. For this lab, you do not have to write any code, you will only be running it. \n",
+    "\n",
+    "To use the notebook:\n",
+    "- \"Shift + Enter\" runs the code within the cell (so does the forward arrow button near the top of the document)\n",
+    "- You can alter variables and re-run cells\n",
+    "- If you want to start with a clean slate, restart the Kernel either by going to the top, clicking on Kernel: Restart, or by \"esc + 00\" (if you do this, you will need to re-run the following block of code before running any other cells in the notebook) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from geoscilabs.mag.MagDipoleApp import MagneticDipoleApp"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Magnetic Prism Applet\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 3,
+        "hidden": true,
+        "row": 11,
+        "width": 12
+       },
+       "report_default": {
+        "hidden": true
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "From the Magnetic Dipole applet, we have learned how anomalous magnetic field observed at ground's surface look\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a retangular susceptible prism. \n",
+    "\n",
+    "\n",
+    "## What is shown\n",
+    "\n",
+    "- <b>The colour map</b> shows the strength of the chosen parameter (Bt, Bx, By, or Bz) as a function of position.\n",
+    "\n",
+    "- Imagine doing a two dimensional survey over a susceptible sphere that has been magentized by the Earth's magnetic field specified by inclination and declination.  \"Measurement\" location is the centre of each coloured box. This is a simple (but easily programmable) alternative to generating a smooth contour map.\n",
+    "\n",
+    "- The anomaly depends upon magnetic latitude, direction of the inducing (Earth's) field, the depth of the buried dipole, and the magnetic moment of the buried dipole.\n",
+    "\n",
+    "\n",
+    "## Important Notes:\n",
+    "\n",
+    "- <b>Inclination (I)</b> and <b>declination (D)</b> describe the orientation of the Earth's ambient field at the centre of the survey area. Positive inclination implies you are in the northern hemisphere, and positive declination implies that magnetic north is to the east of geographic north.\n",
+    "\n",
+    "- The <b>\"length\"</b> adjuster changes the size of the square survey area. The default of 72 means the survey square is 72 metres on a side.\n",
+    "\n",
+    "- The <b>\"data spacing\"</b> adjuster changes the distance between measurements. The default of 1 means measurements were acquired over the survey square on a 2-metre grid. In other words, \"data spacing = 2\" means each coloured box is 2 m square.\n",
+    "\n",
+    "- The <b>\"depth\"</b> adjuster changes the depth (in metres) to the top of the buried prism.\n",
+    "\n",
+    "- The <b>\"magnetic moment (M)\"</b> adjuster changes the strength of the induced field. Units are Am2.  This is related to the strength of the inducing field, the susceptibility of the buried sphere, and the volume of susceptible material.\n",
+    "- <b>Bt, Bx, By, Bz</b> are Total field, X-component (positive northwards), Y-component (positive eastwards), and Z-component (positive down) of the anomaly field respectively.\n",
+    "\n",
+    "- Checking the <b>fixed scale</b> button fixes the colour scale so that the end points of the colour scale are minimum and maximum values for the current data set.\n",
+    "\n",
+    "- You can generate a <b>profile</b> along either \"East\" or \"North\" direction\n",
+    "\n",
+    "- Check <b>half width</b> to see the half width of the anomaly. Anomaly width is noted on the botton of the graph.\n",
+    "\n",
+    "- Measurements are taken 1m above the surface."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "extensions": {
+     "jupyter_dashboards": {
+      "version": 1,
+      "views": {
+       "grid_default": {
+        "col": 0,
+        "height": 11,
+        "hidden": false,
+        "row": 11,
+        "width": 6
+       },
+       "report_default": {
+        "hidden": false
+       }
+      }
+     }
+    }
+   },
+   "source": [
+    "## Define a 3D prism\n",
+    "Compared to the MagneticDipoleApplet, there are additional parameters to define a prism.\n",
+    "\n",
+    "- $\\triangle x$: length in North (X) direction (m)\n",
+    "- $\\triangle y$: length in East (Y) direction (m)\n",
+    "- $\\triangle z$: length in Depth (z) direction (m) below the receiver\n",
+    "- depth: top boundary of the prism (meter)\n",
+    "- I$_{prism}$: inclination of the prism (reference is north direction)\n",
+    "- D$_{prism}$: declination of the prism (reference is north direction) "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "64d0ad8c47ad4681b4bbb15180cb6042",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(RadioButtons(description='plot', options=('field', 'model'), value='field'), Rad…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "mag = MagneticDipoleApp()\n",
+    "mag.interact_plot_model_prism()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "extensions": {
+   "jupyter_dashboards": {
+    "activeView": "report_default",
+    "version": 1,
+    "views": {
+     "grid_default": {
+      "cellMargin": 10,
+      "defaultCellHeight": 20,
+      "maxColumns": 12,
+      "name": "grid",
+      "type": "grid"
+     },
+     "report_default": {
+      "name": "report",
+      "type": "report"
+     }
+    }
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "widgets": {
+   "state": {
+    "2c77e5c891dd44069234331d87475ef2": {
+     "views": [
+      {
+       "cell_index": 5
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/DO27_TMI.dat b/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/DO27_TMI.dat
new file mode 100644
index 0000000000000000000000000000000000000000..ea4d95c3a7ac408f6e077563d44b3b817b426ac5
--- /dev/null
+++ b/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/DO27_TMI.dat
@@ -0,0 +1,126 @@
+83.8 25.4  60308
+83.8 25.4  1
+123
+5.579463129999999655e+05 7.134230500000000000e+06 4.696576537999999914e+02 -3.899999999999999911e+00 5.195000000000000284e+00
+5.578891250000000000e+05 7.134228500000000000e+06 4.694557495000000245e+02 -4.099999999999999645e+00 5.205000000000000071e+00
+5.578316879999999655e+05 7.134226000000000000e+06 4.715105896000000030e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.577408129999999655e+05 7.134223500000000000e+06 4.712752686000000040e+02 -9.000000000000000000e+00 5.450000000000000178e+00
+5.576823750000000000e+05 7.134222500000000000e+06 4.693045958999999812e+02 -1.250000000000000000e+01 5.625000000000000000e+00
+5.576238750000000000e+05 7.134220500000000000e+06 4.667829285000000255e+02 -1.469999999999999929e+01 5.735000000000000320e+00
+5.575653129999999655e+05 7.134219500000000000e+06 4.639395446999999990e+02 -1.550000000000000000e+01 5.775000000000000355e+00
+5.574978750000000000e+05 7.134217000000000000e+06 4.620816649999999868e+02 -1.610000000000000142e+01 5.804999999999999716e+00
+5.574471250000000000e+05 7.134216000000000000e+06 4.610025939999999878e+02 -1.619999999999999929e+01 5.809999999999999609e+00
+5.573961879999999655e+05 7.134214500000000000e+06 4.599175720000000069e+02 -1.530000000000000071e+01 5.764999999999999680e+00
+5.573451250000000000e+05 7.134213000000000000e+06 4.584447632000000112e+02 -1.330000000000000071e+01 5.665000000000000036e+00
+5.572851250000000000e+05 7.134212500000000000e+06 4.559057922000000076e+02 -1.040000000000000036e+01 5.519999999999999574e+00
+5.572336250000000000e+05 7.134212000000000000e+06 4.538994751000000178e+02 -6.700000000000000178e+00 5.334999999999999964e+00
+5.571736879999999655e+05 7.134211000000000000e+06 4.511697998000000212e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.571223129999999655e+05 7.134211500000000000e+06 4.507529906999999980e+02 -8.199999999999999289e+00 5.410000000000000142e+00
+5.570713750000000000e+05 7.134212500000000000e+06 4.511019286999999736e+02 -1.290000000000000036e+01 5.644999999999999574e+00
+5.569958750000000000e+05 7.134214500000000000e+06 4.517804565000000139e+02 -1.469999999999999929e+01 5.735000000000000320e+00
+5.569298129999999655e+05 7.134216000000000000e+06 4.532593994000000066e+02 -1.719999999999999929e+01 5.860000000000000320e+00
+5.568726250000000000e+05 7.134218500000000000e+06 4.551995850000000132e+02 -2.000000000000000000e+01 6.000000000000000000e+00
+5.568161879999999655e+05 7.134222000000000000e+06 4.582608031999999980e+02 -2.010000000000000142e+01 6.004999999999999893e+00
+5.567603750000000000e+05 7.134224000000000000e+06 4.609667053000000010e+02 -2.039999999999999858e+01 6.019999999999999574e+00
+5.579780000000000000e+05 7.134006000000000000e+06 4.653915405000000192e+02 -1.559999999999999964e+01 5.780000000000000249e+00
+5.579238750000000000e+05 7.134008500000000000e+06 4.644563292999999931e+02 -1.619999999999999929e+01 5.809999999999999609e+00
+5.578618750000000000e+05 7.134010500000000000e+06 4.634571533000000159e+02 -1.780000000000000071e+01 5.889999999999999680e+00
+5.578076250000000000e+05 7.134013500000000000e+06 4.629100341999999841e+02 -1.850000000000000000e+01 5.924999999999999822e+00
+5.577298750000000000e+05 7.134017500000000000e+06 4.638599854000000278e+02 -2.189999999999999858e+01 6.094999999999999751e+00
+5.576588750000000000e+05 7.134020000000000000e+06 4.666421508999999901e+02 -2.389999999999999858e+01 6.195000000000000284e+00
+5.575871879999999655e+05 7.134022500000000000e+06 4.633637084999999729e+02 -2.539999999999999858e+01 6.269999999999999574e+00
+5.575308750000000000e+05 7.134025500000000000e+06 4.617167357999999808e+02 -2.430000000000000071e+01 6.214999999999999858e+00
+5.574656879999999655e+05 7.134028000000000000e+06 4.610299072000000251e+02 -2.760000000000000142e+01 6.379999999999999893e+00
+5.574078750000000000e+05 7.134028500000000000e+06 4.592264708999999812e+02 -2.660000000000000142e+01 6.330000000000000071e+00
+5.573576250000000000e+05 7.134030000000000000e+06 4.596013793999999848e+02 -2.189999999999999858e+01 6.094999999999999751e+00
+5.573068129999999655e+05 7.134030000000000000e+06 4.607453002999999967e+02 -1.669999999999999929e+01 5.834999999999999964e+00
+5.572383129999999655e+05 7.134029500000000000e+06 4.609534302000000139e+02 -1.480000000000000071e+01 5.740000000000000213e+00
+5.571865000000000000e+05 7.134027500000000000e+06 4.624313354000000231e+02 -1.519999999999999929e+01 5.759999999999999787e+00
+5.571086879999999655e+05 7.134024500000000000e+06 4.642018127000000050e+02 -1.730000000000000071e+01 5.865000000000000213e+00
+5.570478750000000000e+05 7.134022000000000000e+06 4.657513427999999749e+02 -1.769999999999999929e+01 5.884999999999999787e+00
+5.569871879999999655e+05 7.134018500000000000e+06 4.664633483999999726e+02 -1.710000000000000142e+01 5.855000000000000426e+00
+5.569265000000000000e+05 7.134015000000000000e+06 4.689655151000000046e+02 -1.860000000000000142e+01 5.929999999999999716e+00
+5.568573750000000000e+05 7.134012000000000000e+06 4.723402404999999931e+02 -2.169999999999999929e+01 6.084999999999999964e+00
+5.568058129999999655e+05 7.134009500000000000e+06 4.732115479000000278e+02 -2.169999999999999929e+01 6.084999999999999964e+00
+5.567543750000000000e+05 7.134007500000000000e+06 4.728241272000000208e+02 -2.080000000000000071e+01 6.040000000000000036e+00
+5.579656879999999655e+05 7.133816500000000000e+06 4.740531920999999898e+02 -3.200000000000000178e+00 5.160000000000000142e+00
+5.578983129999999655e+05 7.133814500000000000e+06 4.728134459999999990e+02 -4.099999999999999645e+00 5.205000000000000071e+00
+5.578308129999999655e+05 7.133814000000000000e+06 4.723793944999999894e+02 -8.699999999999999289e+00 5.434999999999999609e+00
+5.577798750000000000e+05 7.133813000000000000e+06 4.721419983000000116e+02 -1.269999999999999929e+01 5.634999999999999787e+00
+5.577033129999999655e+05 7.133812500000000000e+06 4.726217651000000046e+02 -1.650000000000000000e+01 5.825000000000000178e+00
+5.576431879999999655e+05 7.133812000000000000e+06 4.721657104000000231e+02 -1.430000000000000071e+01 5.714999999999999858e+00
+5.575913750000000000e+05 7.133812000000000000e+06 4.724811096000000248e+02 -4.200000000000000178e+00 5.209999999999999964e+00
+5.575306250000000000e+05 7.133812500000000000e+06 4.732846984999999904e+02 1.919999999999999929e+01 5.959999999999999964e+00
+5.574783750000000000e+05 7.133812000000000000e+06 4.695707092000000102e+02 4.229999999999999716e+01 7.115000000000000213e+00
+5.574175000000000000e+05 7.133812500000000000e+06 4.651741943000000106e+02 7.429999999999999716e+01 8.714999999999999858e+00
+5.573563129999999655e+05 7.133812000000000000e+06 4.626608886999999868e+02 1.024000000000000057e+02 1.011999999999999922e+01
+5.573035000000000000e+05 7.133812500000000000e+06 4.610194702000000007e+02 1.059000000000000057e+02 1.029499999999999993e+01
+5.572508129999999655e+05 7.133812500000000000e+06 4.598157653999999752e+02 7.559999999999999432e+01 8.779999999999999361e+00
+5.571983129999999655e+05 7.133813500000000000e+06 4.594464416999999798e+02 3.660000000000000142e+01 6.830000000000000071e+00
+5.571463750000000000e+05 7.133813500000000000e+06 4.602953491000000099e+02 1.109999999999999964e+01 5.554999999999999716e+00
+5.570956879999999655e+05 7.133813500000000000e+06 4.591211243000000195e+02 -1.100000000000000089e+00 5.054999999999999716e+00
+5.570453750000000000e+05 7.133813000000000000e+06 4.582433166999999798e+02 -7.000000000000000000e+00 5.349999999999999645e+00
+5.569953129999999655e+05 7.133812500000000000e+06 4.591010436999999911e+02 -1.040000000000000036e+01 5.519999999999999574e+00
+5.569288750000000000e+05 7.133812000000000000e+06 4.609853209999999990e+02 -1.430000000000000071e+01 5.714999999999999858e+00
+5.568466250000000000e+05 7.133810000000000000e+06 4.655796814000000268e+02 -1.669999999999999929e+01 5.834999999999999964e+00
+5.567893750000000000e+05 7.133809000000000000e+06 4.677268981999999937e+02 -1.739999999999999858e+01 5.870000000000000107e+00
+5.579598750000000000e+05 7.133596000000000000e+06 4.670661316000000056e+02 -5.999999999999999778e-01 5.030000000000000249e+00
+5.578868129999999655e+05 7.133595000000000000e+06 4.660676574999999957e+02 -2.399999999999999911e+00 5.120000000000000107e+00
+5.578296250000000000e+05 7.133594500000000000e+06 4.653871765000000096e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.577638129999999655e+05 7.133595000000000000e+06 4.636830444000000284e+02 -7.599999999999999645e+00 5.379999999999999893e+00
+5.576971879999999655e+05 7.133594500000000000e+06 4.620211181999999894e+02 -8.000000000000000000e+00 5.400000000000000355e+00
+5.576383129999999655e+05 7.133594500000000000e+06 4.599868774000000258e+02 6.299999999999999822e+00 5.315000000000000391e+00
+5.575871250000000000e+05 7.133594500000000000e+06 4.583079223999999954e+02 4.089999999999999858e+01 7.044999999999999929e+00
+5.575355000000000000e+05 7.133594500000000000e+06 4.599373168999999848e+02 7.979999999999999716e+01 8.990000000000000213e+00
+5.574833750000000000e+05 7.133595500000000000e+06 4.582080078000000185e+02 8.770000000000000284e+01 9.384999999999999787e+00
+5.574223750000000000e+05 7.133597000000000000e+06 4.567227477999999792e+02 8.440000000000000568e+01 9.220000000000000639e+00
+5.573698129999999655e+05 7.133598500000000000e+06 4.554114379999999755e+02 8.240000000000000568e+01 9.119999999999999218e+00
+5.572903750000000000e+05 7.133602000000000000e+06 4.552346802000000139e+02 8.109999999999999432e+01 9.054999999999999716e+00
+5.572283750000000000e+05 7.133606000000000000e+06 4.564498290999999881e+02 6.979999999999999716e+01 8.490000000000000213e+00
+5.571753750000000000e+05 7.133609000000000000e+06 4.585342406999999980e+02 4.310000000000000142e+01 7.155000000000000249e+00
+5.571225000000000000e+05 7.133612000000000000e+06 4.611535033999999769e+02 1.760000000000000142e+01 5.879999999999999893e+00
+5.570606879999999655e+05 7.133615000000000000e+06 4.658390807999999765e+02 2.799999999999999822e+00 5.139999999999999680e+00
+5.569901879999999655e+05 7.133618500000000000e+06 4.653735962000000086e+02 -5.000000000000000000e+00 5.250000000000000000e+00
+5.569286879999999655e+05 7.133621000000000000e+06 4.673797301999999831e+02 -9.000000000000000000e+00 5.450000000000000178e+00
+5.568583750000000000e+05 7.133622500000000000e+06 4.710006104000000278e+02 -1.219999999999999929e+01 5.610000000000000320e+00
+5.567973129999999655e+05 7.133624500000000000e+06 4.728702698000000169e+02 -1.400000000000000000e+01 5.700000000000000178e+00
+5.579493750000000000e+05 7.133404000000000000e+06 4.702997742000000017e+02 -1.300000000000000044e+00 5.065000000000000391e+00
+5.578955000000000000e+05 7.133403500000000000e+06 4.677225037000000043e+02 -2.000000000000000111e-01 5.009999999999999787e+00
+5.578416250000000000e+05 7.133401500000000000e+06 4.653916930999999977e+02 -1.000000000000000056e-01 5.004999999999999893e+00
+5.577788129999999655e+05 7.133401000000000000e+06 4.641203613000000132e+02 -1.699999999999999956e+00 5.084999999999999964e+00
+5.577248750000000000e+05 7.133399500000000000e+06 4.639480896000000030e+02 -4.000000000000000000e+00 5.200000000000000178e+00
+5.576533129999999655e+05 7.133398500000000000e+06 4.637218627999999967e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.575905000000000000e+05 7.133396000000000000e+06 4.643732605000000149e+02 -1.899999999999999911e+00 5.094999999999999751e+00
+5.575281250000000000e+05 7.133395000000000000e+06 4.632385558999999944e+02 1.600000000000000089e+00 5.080000000000000071e+00
+5.574746879999999655e+05 7.133394500000000000e+06 4.626676636000000258e+02 3.100000000000000089e+00 5.155000000000000249e+00
+5.574213750000000000e+05 7.133394000000000000e+06 4.606142578000000185e+02 6.099999999999999645e+00 5.304999999999999716e+00
+5.573681879999999655e+05 7.133394500000000000e+06 4.594113464000000135e+02 1.480000000000000071e+01 5.740000000000000213e+00
+5.573063129999999655e+05 7.133396500000000000e+06 4.588820190000000139e+02 2.310000000000000142e+01 6.155000000000000249e+00
+5.572533750000000000e+05 7.133399500000000000e+06 4.576690674000000172e+02 2.289999999999999858e+01 6.144999999999999574e+00
+5.571918750000000000e+05 7.133402000000000000e+06 4.561456603999999970e+02 1.900000000000000000e+01 5.950000000000000178e+00
+5.571303750000000000e+05 7.133406500000000000e+06 4.547695922999999993e+02 5.299999999999999822e+00 5.264999999999999680e+00
+5.570606250000000000e+05 7.133411000000000000e+06 4.533713683999999944e+02 -7.900000000000000355e+00 5.394999999999999574e+00
+5.570088129999999655e+05 7.133414500000000000e+06 4.498254699999999957e+02 -9.500000000000000000e+00 5.474999999999999645e+00
+5.569488129999999655e+05 7.133418500000000000e+06 4.520502930000000106e+02 -8.300000000000000711e+00 5.415000000000000036e+00
+5.568980000000000000e+05 7.133420000000000000e+06 4.577249755999999934e+02 -7.000000000000000000e+00 5.349999999999999645e+00
+5.568226250000000000e+05 7.133423000000000000e+06 4.649453735000000165e+02 -9.699999999999999289e+00 5.485000000000000320e+00
+5.579446250000000000e+05 7.133221500000000000e+06 4.588012390000000096e+02 -4.200000000000000178e+00 5.209999999999999964e+00
+5.578886879999999655e+05 7.133220500000000000e+06 4.574097899999999868e+02 -5.099999999999999645e+00 5.254999999999999893e+00
+5.578245000000000000e+05 7.133220000000000000e+06 4.552058410999999865e+02 -7.400000000000000355e+00 5.370000000000000107e+00
+5.577683129999999655e+05 7.133220500000000000e+06 4.537174987999999871e+02 -7.599999999999999645e+00 5.379999999999999893e+00
+5.577118129999999655e+05 7.133220000000000000e+06 4.528049621999999772e+02 -5.700000000000000178e+00 5.285000000000000142e+00
+5.576468750000000000e+05 7.133219000000000000e+06 4.528950500000000261e+02 -4.400000000000000355e+00 5.219999999999999751e+00
+5.575731879999999655e+05 7.133217000000000000e+06 4.510212096999999858e+02 -4.000000000000000000e+00 5.200000000000000178e+00
+5.574826250000000000e+05 7.133213500000000000e+06 4.500859985000000165e+02 -4.799999999999999822e+00 5.240000000000000213e+00
+5.574246250000000000e+05 7.133212000000000000e+06 4.515762023999999997e+02 -4.700000000000000178e+00 5.235000000000000320e+00
+5.573661879999999655e+05 7.133210500000000000e+06 4.502280883999999901e+02 -4.299999999999999822e+00 5.214999999999999858e+00
+5.572905000000000000e+05 7.133209500000000000e+06 4.519324646000000030e+02 -1.800000000000000044e+00 5.089999999999999858e+00
+5.572398129999999655e+05 7.133208000000000000e+06 4.530024414000000093e+02 -2.399999999999999911e+00 5.120000000000000107e+00
+5.571891879999999655e+05 7.133207500000000000e+06 4.544243164000000093e+02 -1.800000000000000044e+00 5.089999999999999858e+00
+5.571218750000000000e+05 7.133206500000000000e+06 4.567738646999999901e+02 -6.599999999999999645e+00 5.330000000000000071e+00
+5.570715000000000000e+05 7.133206000000000000e+06 4.583690186000000040e+02 -8.500000000000000000e+00 5.424999999999999822e+00
+5.570213129999999655e+05 7.133205500000000000e+06 4.609089966000000231e+02 -1.019999999999999929e+01 5.509999999999999787e+00
+5.569628750000000000e+05 7.133204500000000000e+06 4.624603270999999722e+02 -1.190000000000000036e+01 5.594999999999999751e+00
+5.568963750000000000e+05 7.133203500000000000e+06 4.635772704999999974e+02 -1.280000000000000071e+01 5.639999999999999680e+00
+5.568215000000000000e+05 7.133202000000000000e+06 4.646427611999999954e+02 -1.340000000000000036e+01 5.669999999999999929e+00
+5.567548750000000000e+05 7.133199500000000000e+06 4.660346984999999904e+02 -1.540000000000000036e+01 5.769999999999999574e+00
diff --git a/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/Lab1_Wednesday_TA.csv b/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/Lab1_Wednesday_TA.csv
new file mode 100644
index 0000000000000000000000000000000000000000..ebc9df34171d3a6ade4ad25cecc6cb05b15a946a
--- /dev/null
+++ b/Notebooks/mag/github.com/geoscixyz/geosci-labs/raw/main/assets/mag/data/Lab1_Wednesday_TA.csv
@@ -0,0 +1,24 @@
+station,MAG_MEAN,STDEV
+1,54401,1.15
+2,54401,2.52
+3,54400,2.08
+4,54400,1.53
+5,54400,3.79
+6,54401,1.73
+7,54398,2.08
+8,54395,1.15
+9,54401,2.5
+10,54405,2.08
+11,54420.5,3.86
+11.5,54436.5,6.4
+12,54487.83333,19.32
+12.5,54692.83333,63.79
+13,54789.25,48.3
+13,54070.44444,20.55
+13.5,54042.88889,57.83
+14,54031.33333,9.87
+14.5,54017.77778,4.03
+15,54000.22222,20.7
+16,54369.66667,2.22
+18,54384.11111,1.15
+20,54390.22222,2.08
diff --git a/Notebooks/seismic/.ipynb_checkpoints/2D-LinearInversion-Crosswell-Tomorgraphy-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/2D-LinearInversion-Crosswell-Tomorgraphy-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..11ce189a952e70ffcb70ba7d80314a53a07cd5b1
--- /dev/null
+++ b/Notebooks/seismic/.ipynb_checkpoints/2D-LinearInversion-Crosswell-Tomorgraphy-checkpoint.ipynb
@@ -0,0 +1,369 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 2D Linear Inversion of Crosswell Tomography Data "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.inversion.TomographyInversion import TomographyInversionApp\n",
+    "import matplotlib.pyplot as plt\n",
+    "from ipywidgets import interact, IntSlider\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Purpose\n",
+    "\n",
+    "From the Linear inversion notebook (1D), we learned important apsects about the linear inversion. \n",
+    "However, real world geophysical inverse problem are not often 1D, but multidimensional (2D or 3D), and this extension of dimension allows us to put more apriori (or geologic) information through the regularization term. \n",
+    "In this notebook, we explore these multidimensional aspects of the linear inversion by using 2D traveltime croswell tomography example. \n",
+    "\n",
+    "## Outline\n",
+    "This notebook includes four steps:\n",
+    "- Step1: Generate a velocity model\n",
+    "- Step2: Simulate traveltime data and add noise\n",
+    "- Step3: Run $l_2$ inversion"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step1: Generate a velocity model\n",
+    "\n",
+    "Here we set up a velocity model using a following app. Controlling parameters of the app are:\n",
+    "\n",
+    "- `set mesh`: use active **only** when you want to change the 2D mesh\n",
+    "- `add block`: use active when you want to add block (if not stay inactive)\n",
+    "- `model type`: background or block\n",
+    "- `show grid?`: show grid of the mesh\n",
+    "\n",
+    "- `v0`: velocity of the background\n",
+    "- `v1`: velocity of the block\n",
+    "- `xc`: x center of the block\n",
+    "- `yc`: y center of the block\n",
+    "- `dx`: width of the block\n",
+    "- `dy`: thickness of the block\n",
+    "- `nx`: # of cells in x-direction (this is only active when `set_mesh=active`)\n",
+    "- `ny`: # of cells in y-direction (this is only active when `set_mesh=active`)\n",
+    "\n",
+    "### Changing # of cells in $x$- or $z$- direction\n",
+    "Related parameters for this task are: `set mesh`, `nx`, `ny`. \n",
+    "Size of the 2D domain are fixed to 200m $\\times$ 400m, but the number of cells in each direction can be changed such that you can alter size of the cells in each direction. When you change either `nx` or `ny` make sure you choose `set mesh=active` otherwise `set mesh=inactive`. Note that once mesh setup is changed, velocity model is reset to a background value (`v0`). \n",
+    "\n",
+    "### Changing a parameter of a single block\n",
+    "Although you can change the location, size, and velocity of the block there are few rules that you need to follow to do so. \n",
+    "\n",
+    "1. If you want to change the parameter of the block: first set `add block=active` then change parameters of the block (`v1`, `xc`, `zc`, `dx`, `dy`)\n",
+    "\n",
+    "2. Once you changed the parameters, make sure first choose `model type=background` then change that to `model type=block`\n",
+    "\n",
+    "### Adding more blocks\n",
+    "You can also add multiple blocks. To add a block follow below steps:\n",
+    "\n",
+    "1. Set `add block=inactive`, then change the parameter of the new block using: `v1`, `xc`, `zc`, `dx`, `dy`. Velocity model will not change, but you can see the white lines which illustrate boundary of the new block.\n",
+    "\n",
+    "2. Once you are happy with the new block, set `add block=active`, then velocity model will be updated with the new block that you have set. \n",
+    "\n",
+    "3. Repeat 1 and 2 if you want to add more blocks. \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "58a1dbadf6f9499ca06c052f2653299a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(FloatSlider(value=1000.0, continuous_update=False, description='v0', max=3000.0,…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app = TomographyInversionApp()\n",
+    "app.interact_plot_model()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step2: Simulate travel time data and add noise\n",
+    "\n",
+    "Within this app, by using the velocity model set up, we simulate traveltime tomography data and add Gaussian noise. This syntehtic data set will be used in the following inversion module. Controlling parameters are:\n",
+    "\n",
+    "- `percent (%)`: percentage of the Gaussian noise\n",
+    "- `floor (s)`: floor of the Gaussain noise\n",
+    "- `random seed`: seed to generate random variables having normal distribution\n",
+    "- `tx_rx_plane` or `histogram`: choice of the plotting data\n",
+    "- `update`: this buttion is for the interactin between the first app. If the velocity model is changed by altering the first app, you can simply click `update` to run simulation again with the updated velocity model. \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "e6dd36a9bb6a435cb5f4aff7cdb1a47a",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(Output(), Box(children=(Box(children=(BoundedFloatText(value=0.0, description='percent ($\\\\%$):…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_data()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step3: $l_2$ inversion\n",
+    "\n",
+    "- `maxIter`: maximum number of iteration\n",
+    "- `m0`: initial model\n",
+    "- `mref`: reference model\n",
+    "- `percentage`: percent standard deviation for the uncertainty\n",
+    "- `floor`: floor value for the uncertainty\n",
+    "- `chifact`: chifactor for the target misfit\n",
+    "- `beta0_ratio`: ratio to set the initial beta\n",
+    "- `coolingFactor`: cooling factor to cool beta\n",
+    "- `n_iter_per_beta`: # of interation for each beta value \n",
+    "- `alpha_s`: $\\alpha_s$\n",
+    "- `alpha_x`: $\\alpha_x$\n",
+    "- `alpha_z`: $\\alpha_z$\n",
+    "- `use_target`: use target misfit as a stopping criteria or not"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-1: Run inversion"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "1\n",
+      "\n",
+      "        SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.\n",
+      "        ***Done using same Solver and solverOpts as the problem***\n",
+      "SimPEG.SaveOutputEveryIteration will save your inversion progress as: '###-InversionModel-2021-06-17-14-51.txt'\n",
+      "model has any nan: 0\n",
+      "=============================== Projected GNCG ===============================\n",
+      "  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment   \n",
+      "-----------------------------------------------------------------------------\n",
+      "x0 has any nan: 0\n",
+      "   0  2.39e+06  3.40e+02  4.00e-02  9.60e+04    1.41e-02      0              \n",
+      "   1  1.20e+06  6.76e+02  3.53e-06  6.81e+02    3.20e+05      0              \n",
+      "   2  5.98e+05  6.60e+02  1.37e-05  6.68e+02    3.15e+05      0              \n",
+      "   3  2.99e+05  6.30e+02  5.14e-05  6.45e+02    3.05e+05      0   Skip BFGS  \n",
+      "   4  1.50e+05  5.77e+02  1.83e-04  6.04e+02    2.87e+05      0   Skip BFGS  \n",
+      "   5  7.48e+04  4.94e+02  5.91e-04  5.38e+02    2.59e+05      0   Skip BFGS  \n",
+      "   6  3.74e+04  3.84e+02  1.66e-03  4.46e+02    2.17e+05      0   Skip BFGS  \n",
+      "   7  1.87e+04  2.66e+02  3.93e-03  3.40e+02    1.67e+05      0   Skip BFGS  \n",
+      "   8  9.35e+03  1.65e+02  7.79e-03  2.38e+02    1.18e+05      0   Skip BFGS  \n",
+      "   9  4.67e+03  9.27e+01  1.32e-02  1.54e+02    7.65e+04      0   Skip BFGS  \n",
+      "------------------------- STOP! -------------------------\n",
+      "1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 9.6048e+03\n",
+      "1 : |xc-x_last| = 4.0147e-04 <= tolX*(1+|x0|) = 1.0141e-01\n",
+      "0 : |proj(x-g)-x|    = 7.6521e+04 <= tolG          = 1.0000e-10\n",
+      "0 : |proj(x-g)-x|    = 7.6521e+04 <= 1e3*eps       = 1.0000e-07\n",
+      "0 : maxIter   =      20    <= iter          =     10\n",
+      "------------------------- DONE! -------------------------\n"
+     ]
+    }
+   ],
+   "source": [
+    "model, pred, save = app.run_inversion(\n",
+    "    maxIter=20,\n",
+    "    m0=1./1000.,\n",
+    "    mref=1./1250.,\n",
+    "    percentage=0,\n",
+    "    floor=0.01,\n",
+    "    chifact=1,\n",
+    "    beta0_ratio=1e2,\n",
+    "    coolingFactor=2,\n",
+    "    n_iter_per_beta=1,\n",
+    "    alpha_s=1/(app.mesh_prop.hx.min())**2 * 1e4,\n",
+    "    alpha_x=1,\n",
+    "    alpha_z=1,\n",
+    "    use_target=True\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-2: Plot recovered model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "118c205b4a3a4a32980d288bce96a376",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='ii', max=10), Checkbox(value=False, description='fixed'…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_model_inversion(model, clim=None)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-3: Plot predicted data "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "7c17a3df42624acbb4f036b7d4445e0b",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, continuous_update=False, description='ii', max=10), Checkbox(value=F…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_data_inversion(pred)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-4: Plot misfit curves"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACaCAYAAACkCE/LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAApy0lEQVR4nO3dd3wVVdrA8d9DQgogXRYpCipShERp0uSChTeAbERXEYKCCKwuILq8Ii4WRAUpuwu+4K6IIiwgq4CY4EbEwgJBKRo6SAsl9E6A9DzvHyeEgAmk3rn35nw/n/nITDIzz8R755lzzpxzRFWxLMuySq5STgdgWZZlOcsmAsuyrBLOJgLLsqwSziYCy7KsEs4mAsuyrBLOJgLLsqwSzt/pAIpSqVKlNDg42OkwLMvyMakXL2oKTAeiUI1yOp6iJr7Uj6Bs2bJ64cIFp8OwLMvHiMhFVS3rdBzFxVYNWZZllXA2EeSBquJLJSfL8impqXDxotNReDWfaCMQkW5At8DAwGI5/rlz56hUqRJBQUEEBwcTHBxMmTJlsv6dfSns9jJlylC+fHlKlbI52rKuoAoHD8KmTbBxo/nvpk2wbRtMnAjPP+90hF7L59sIUlNTiY+PJykpqcDHTU9PJz4+vrDh5UupUqWyFhHh1KlTrFq1iuDgYCpXrpy1VKpU6Yp/BwUFuTVOy8quKL5vAKUuXCBw504Cd+zIWoJ27MDv3Lkcf/9E//4c//OfC3VOgKCgIGrVqkXp0qWv2F5RJPkMzMI2Fnu+nBJBXFwcN9xwA1WqVEFECnxsVSUjI4OMjIwr/n31ktvP8rNPenr6b86flpbGmjVrGDp06DXjzJ4osieJq9erVatGnTp1qFWrFv7+PlEwtDxAvr9vaWmwc+flp/tLT/pxcTn/fuXKEBICTZpc/u+dd0K5coWOXVU5efIkCQkJ1K1b94qf+Xpjsc/fAZKSkqhTp06hkgCAiODn54efn18RRZY7VSU9PZ20tDTS0tJIT08nNTUVEWH06NGcOnUqazl9+vQV64mJiRw8eJCDBw/m6Vz+/v7Url2bunXrcuutt1K3bt0rlmrVqhX6b2eVHLl+31Th6NErq3Q2boStWyE5+bcHCgiARo3MjT77Tf+mm6CYPo8iQpUqVTh+/HixHN+T+XwiALzuRiYi+Pv7/+ZJ/fjx47z22mu57qeqXLx4McckcXXCOHLkCHFxcRw8eJC4uDji4uL4/vvvf3PMMmXKUKdOnRyTRN26dSlfvnyRX7/l3QRg925YuRJiYy/f9E+cyHmHW265fKO/dNOvVw+uqp5xB2+7VxSVEpEISgoRoWzZspQtW5batWvnaZ+kpCT27duXlQwuLXv27CEuLo7Tp0+zdetWtm7dmuP+lStXzjVJ3HLLLRRXA77lQdLTYcMGWLmSml99ZW76R4789vcqVLjy6T4kBBo3BvswcZnIw0BXoBowFdVv3HFan0gExf3WkC8LCgqifv361K9fP8efnz17NscEERcXx969e7NKGOvWrfvNviJCgwYNaNu2LW3atKFt27bUq1evxD51+YyLF2HNGlixwjz1//gjJCQAkHVLv/FGaNcOWrQwN/yQEKhVq9iqdTyCyMfAQ8AxVBtn2x4GTAb8gOmovpvrMVQXAYsQqQRMBNySCHy+sXjbtm00bNjQoYh+a+HChSxbtoz33nsv3/t62rWoKkePHs0xScTFxXHgwIHfNHxXrVo1Kym0bduWZs2a2TedPN3Jk+aGf2n5+Wfz7n52t94K997L4dtu46bHH4c77vCIm35Bvm85fc/y1Fgs0h44D8zKSgQifsAO4EEgHlgL9MQkhbFXHaEfqscy9/srMAfVX/IceCH4RInAm8TGxtK0aVOnwygSIkL16tWpXr06rVu3/s3Pk5OTiY2NJSYmhlWrVhETE8PRo0eJjIwkMjISgICAAJo1a3ZFqaFatWruvhTrElXYu/fyTX/FCvOefnalSsHdd5sn/nvvhbZtoUYNAM5s28ZNuZQuneDW75vqckTqXLW1JbAL1T0AiMwDwlEdiyk9XMkUl98Fot2VBMAmArfZsWMHgwYN4qeffqJKlSqcOXOGF154wemwilVgYCCtWrWiVatWDBs2DFVlz549WUkhJiaGLVu28OOPP/Ljjz9m7Xf77bdfUWpo2LCh7WBXXNLTYfPmyzf9lStNp63sgoLgnnsu3/hbt/b4ev2i/r5VBX9Estd/TkN1Wh52rQkcyLYeD9xzjd8fAjwAVEDkdlT/mf9oC+DS8Am+sJQpU0avtnXr1t9sc7ekpCQNDQ3VjRs3at26dfXw4cNaqVIlTUxMzNdxPOFaitrp06c1OjpaX331Vb3vvvu0bNmyClyxVKxYUTt37qxvv/22fv/993r+/Hmnw/Ze6emqa9eqvvOOaufOqhUqqJpywOWlUiXVbt1Ux49XXbVKNTk5z4f3hM9oYb9vOV1DBUhSmKbQTa91H4I6CpuzrT+mMD3b+pMK/3fNYziwlKwSQXHVWV6nnWXp0qWEhoZSo0YNypcvT/Xq1QkKCsqx41hJU7FiRcLCwggLCwNMx7mNGzdmlRhiYmKIj48nOjqa6OhoAPz8/Lj77ruzSg3t2rWjRmbVhJWDpCT44Qf48kuIioJDh678+S23mCf9du3M0rChqf4ppOJ6KUCL4Pu2ZMkSjh07xpNPPlksMWYTD2R/ha8WcCiX33WMTyQCT39raP369TRp0oQNGzYQEhLCsWPHuOGGG0hISKBLly507dqVLVu20KZNG5YuXcqoUaNo3Ljx9Q/sg/z9/WnatClNmzZlyJAhABw4cOCKdoYNGzawbt061q1bl9UI2LZtW/r06cPjjz9OhQoVnLwEz3DiBPznP+bmv2QJZH+JomZNeOghcLnMjT+Prxp7i9y+b6VLl2bw4MGUL1+e1atXM3Xq1Dwf8yykozqwAOGsBeohUhc4CDwB9CrAcYqVfWvIDd577z02btxI48aNSUtLY/fu3TRs2JB69eqxY8cOhg4dysMPP8zChQv5/PPPKVeuHF27dv3NcTzhWjzB+fPnWbNmTVZyWL58ORczR58MCgqie/fu9OnThwceeMAtPcE9xs6dEBlpbv4xMZCRcflnd90F4eHw+9+bht5ielr3hM9obt83VaVNmza0aNGCdu3asWLFihxLLTldQ57GGhL5FOgAVAWOAm+g+hEiXYBJmDeFPkb1naK72iLidN1UUS6e2kZw8uRJbd++vVaqVElvvfVW/ctf/qIZGRk6ZswY3bZtm6akpGi/fv1UVfXVV1/Vffv25XgcT7gWT5SQkKCffPKJdujQ4Yq2hRo1aujLL7/su3+3tDTVmBjVl19WbdDgynr+0qVVH3xQdcoU1Vw+T8XBE/7WuX3f+vTpo4mJiXru3DkNDw/Pdf+crgG4oB5wjyuuxfEAinLx1ERwSUhIiJ44cSJrvV+/fpqenq6xsbE6YcIEVVXt3bt3rvt70rV4qri4OB09erTedtttVySFFi1a6JQpU/TkyZNOh1g4Fy6oLlqk2q+farVqV978K1ZU7dVL9d//Vj1zxpHwPOkzevX3be7cudqnTx997rnn9KWXXsp1v0I1Fnvp4ngARbl4ciJISkrSunXrFuoYnnIt3iAjI0NXrlyp/fv31/Lly2clhICAAH300Uc1MjJSU1JSnA4zbw4fVv3wQ/MmT1DQlTf/OnVUhw5V/f57VQ+4Hk/5jBbm+1YSSwS2jcCL+NK1uFNiYiKLFi1i5syZLF26lIzMuvNq1aoRERFBnz59CA0NdTjKbFTNqJyRkWZZvfrKN9NatjR1/eHhZghmD+jBe4kvfEYL3EbgxWwi8CK+dC1OOXjwILNnz2bmzJlsy9ZjNjQ0lL59+9KrVy/nejZv2ACzZpnG3t27L28PDIQHHjA3/oceMkMxeyhf+IwWeIgJL2YTgRfxpWtxmqqybt06Zs6cydy5czl9+jRgXl/t3Lkzffr04aGHHir+0VNPn4ZPP4WPPoJfso0oULWquemHh8ODD0JZ77gH+cJn1JYIvJxNBFZBJCcns3jxYmbOnMl//vOfrI5HlStX5oknnqBv3740b9686DpIZWSYDl4ffwwLF5oOXwCVKkGvXtCzJ7RqBV746qsvfEZLYonAJwZwEZFuIjItt566vpDsfOEaPFVgYCCPPvookZGRHDp0iL///e+EhoZy6tQp3n//fVq2bMmdd97JpEmTCjcX7/79MHo03HabqeqZO9ckgQceMKWCQ4dgyhQziJsXJoFLvPmz6s2xF4bPlwiKas5iJ6nmPpeqVXw2bNjAzJkzmTNnDseOmdGBa9euzVtvvUXv3r3z1lktOdnU+X/8MXzzzeVG35tvhqefhr59oU6dYrsGd/Pm79u1vme+XiLw+USQmppKfHx84Z7kPEBQUBC1atWitAPT95V0qampfPXVV4waNYoNGzYA0KRJE8aNG0dYWFjON7wNG8zNf/ZsOHXKbAsIgEcegX794P77i2Q8H0/j7d+33L5nto3Ai+SUCCyrqGRkZDBnzhxeffVV9u/fD0CHDh0YP348LVq0gDNnLjf8/vzz5R3vugueecbU/1eu7EjsVuHYEoEXsYnAcoekpCTef/993nnnHU6fOkUH4M2bb6bt0aOUSk42v1SxIkREmARw990ORmsVBZsIvIhNBJbbHDhA4j//ycWpU6ly9mzW5u21anHTyJFU6NMHgoMdDNAqSr6eCHyvktKyiktyMnz+OYSFwS23EDxmDFXOniWtRg0i77qLW0VoGB9PrZde4s3x4zl//rzTEVtFpAL4ITINM+S9z7ElAsu6ngMHYPJk+OQTM5E7mIbf7t0vN/z6+bFlyxZeeeUVoqJMW+Lvfvc73njjDfr3728b+b2cr5cIbCKwrNxs3gwTJpj3/dPSzLbQ0MsNv1Wq5Ljb8uXLefnll/npp58AqFevHmPGjOHRRx/1ulcqLcMmAi9iE4FVaKpmAvdx4+Crr8y2UqXg8cfhz3+G5s3zNMibqvLFF1/wyiuvsGPHDgDuuecexo8fT/v27YvzCqxiYBOBF7GJwCqwjAwz0ue4cZD5JE9QkHn6//Of4dZbC3TY1NRUPvroI0aNGsXRo0cB6Nq1K++++26JnY7UG7ktEYg0BIZiZjn7DtV/FPs5wTfmIwC6AdMCAwPVsvIlKUl1+nTV+vU1a4z/ypVVX39d9dixIjtNQkKCjh49WsuVK6eAioj27dtX9+/fX2TnsIoPeZmPAD5WOKaw+artYQq/KuxSGHHd45h9Sil8lKffLYp7qLtO5I4lp4lpLCtHZ86ojhunetNNlxPAzTerTp6smpBQbKc9evSoDhkyRP39/RXQoKAgHT58uJ46darYzmkVXh4TQXuFplckAvBT2K1wq0KAwgaFRgpNFBZftVTL3Of3CqsUel33nDYR2ERgFcDBg6rDh6uWL385AYSEqM6e7dYZvnbt2qU9evTImjmtUqVKOmHCBE1MTHRbDFbe5SkRmJt4nasSQWuFJdnWX1F4JY/H+ipPv1cEi+1HYJUM27dD//5Qty6MHw/nzkHHjhAdDevXm17AbnzF87bbbmPevHmsXbuW++67j9OnT/PSSy9xxx13sGjRIrfFYeVNVfBHZF22ZWAed60JHMi2Hp+5LWciHRB5D5EPgP8UOOB8sonA8m0//mje92/UyIwBlJoKjz5qpn/8/nvTOczBVzqbN2/Ot99+S3R0NCEhIRw4cIDu3bszYMAA2yHNg6SaktsvwJuoNkd1Wh53zenDlfsbOqrLUH0e1T+iOrUAoRaITQSW78nIgMWLoX17aNMGFi0yHcAGDoRff4X58828vx5CRAgLCyM2NpbJkycTGBjI9OnTadq0KWvXrnU6PAs4C+moDiT/I4/GA7WzrdcCDhVdZEXDJgLLd6SkwMyZEBIC3brBihVQoQK88grs3QsffAD16jkdZa5KlSrF888/z7p162jSpAk7d+6kTZs2jBkzhtwmXbLcoxBDTKwF6iFSF5EA4AkgsugjLBybCCzvl5AAf/ubmfmrb1/YsgVq1oS//tUMDzFmDFSv7nSUeda4cWPWrFnDiy++SFpaGiNHjqRjx47s27fP6dCsaxH5FPgRqI9IPCLPoJoGDAaWANuAz1Dd4mSYObEdyizvlZAAkyaZJHDmjNnWqBEMH27m/Q0IcDK6IvHNN9/Qp08fjhw5QoUKFfjHP/5Bz549nQ6rxPH1nsW2RGB5n6QkkwBuuw1ef90kgXbtICoKNm2CPn18IgkAdOrUiU2bNhEeHs7Zs2fp1asXTz75JGezDX1tFT87+qgXsSUCH5eWZkYAffNNiI8321q3NlU/HTo4GVmxU1WmT5/OCy+8wMWLF7nllluYPXs27dq1czq0EsGWCCzLaRkZ8NlncOedMGCASQIhIaYEEBPj80kAzJtFAwYM4JdffqFZs2bs27cPl8vFa6+9RmpqqtPh+TxbIvAitkTgY1Th669h5EiIjTXbbr8dRo+GHj18cvL3vEhJSWHUqFG8++67qCotW7Zkzpw53H777U6H5rNsicCynLBihekH0KWLSQI1a5rXP7duNQ3BJTQJAAQEBDBmzBh++OEHateuzZo1a7jrrruYMWMGvvRgZ+WTSCNEOiNSK7+75vvbJCIRInJHfvezrDyJjTU3//btzbwAVarAxImwc6fpEGZn+sricrnYsGEDPXr04MKFC/Tr14/HHnuMU6dOOR2az/GSqqE3gRuAgYjMzM+O+a4aEpFOwHAgADgB7FDVEfk6SBET8z+nW2Bg4ICkpCQnQ7EKascOeO010xYAUK4cDBtm5gIoX97Z2DycqjJ79mwGDRpEQkICNWvWZNasWdx3331Oh+YzvKJqSGRgPoa+uHLXghQlReQdVR0pIjcAY1V1cEFOXtRsG4EXOnDAvAX0ySeQng6BgTBokOkNXLWq09F5lbi4OHr37s2qVasA+N///V/efvttAgMDHY7M+3lJIvgEKA+cBLah+re87lrQitbyItIMSAY8+49jeabjx+HFF03j70cfmW0DBsCuXaZHsE0C+Va3bl3++9//8uabb+Ln58fEiRNp1aoV27Ztczo0r+clVUObUX0EeA74Lj875qtEIGasDD8gFfgTcDfwtar+Oz8nLS62ROAFzp41N/q//x0uja7Zs6cpFXjwOEDe5qeffiIiIoI9e/YQFBTEX//6V5577jnEwZFWvZmXlAiWAQuAJajuyM+ueS4RiMhQ4DCwC9gEZKjq056SBCwPl5gIEyaYuX/fesskga5dzVwAc+faJFDEWrVqxfr16+nbty9JSUkMGjSIbt26cezYMadDs4qaSAAiwUAPYCfwCCIf5usY15u5BpgEPAXsIXMqNeBG4H1gtLtm0MnLYmco80ApKar/+IdqjRqXZwRr31515UqnIysxPvvsM61YsaICWq1aNf3qq6+cDsnrkNcZyty9wFCFkwoHFbYpDC7IcfJSIvgvcDtQFVglIr8AE4DdQE8RqZivzGOVDBkZ5km/QQN47jk4dAiaNjUdxJYtg7ZtnY6wxHjsscfYuHEjHTp04NixY3Tt2pUhQ4aQnJzsdGhWQYlMQuQpYCjQENWaQHugESKj83u46yYCVf1CVV8HfgLCgQeAmUAaUBlYJiK78ntiy4fFxECrVmb6xz17oH59+PxzWLcO/ud/HJ0RrKSqXbs23377LePGjaN06dJMmTKFTp06cfLkSadD8woe2Fh8xQM6Vz2gk88H9Dw3FotIPeAzYD2mjaAhUE9VO4hIgKqm5OfExcE2Fjts7154+eXLfQFq1DDtAU89Bf7+joZmXbZu3TrCw8M5dOgQt99+O4sXL6Z+/fpOh+XRPLaxWOQb4EVM+20oEAK8jpknuRyqeRp3pCBvDT0I3AWcA2ar6ul8BV6MbCJwyLlzMHaseRMoORmCg+Gll8y8AGU977tjwcGDB+nWrRuxsbFUrFiRhQsX0rFjR6fD8lgenAhyfEBHtQMiAeTxAd0OOmcVXHo6zJgBr74KR4+abRERJinUrn3tfS3HnT9/nt69e/Pll1/i7+/PBx98QL9+/ZwOyyN5bCIAyOEBnXw+oNtEYBXM99+b4R82bDDrrVubEsE99zgbl5Uv6enpjBgxgokTJwIwfPhwxo4dS6kSPKhfTtyaCETKAsuBN1Bd7I5T2v/bVv7s3AkPPwz332+SwM03w7x5poHYJgGv4+fnx4QJE5g2bRr+/v6MHz+eP/zhD9gHqgIQ+RiRY4hsvmp7GCK/IrILkbyMy/YyprrHbWyJwMqb06dNw++UKZCaagaFe+UVM0xEcLDT0VlF4LvvvuPRRx/l7NmzNGvWjMjISGrUqOF0WB4hTyUCkfbAeWAWqo0zt/kBOzBVN/HAWqAnZoSGsVcdoR+msbcqEASccFeJwCYC69pSU808AKNGwcmT5tXPp5+Gt9+Gm25yOjqriG3fvp2uXbuyZ88eatasSVRUFHfffbfTYTkuz1VDInWAxdkSQWtgFKr/k7n+CgCqVyeBS/u/gxm/rRGQCHRHNaOw8V+PrRqychcdDaGhMGSISQIdOsDPP5tB4mwS8EkNGjRg9erVtGvXjoMHD3LvvfcSFRXldFiOqwr+iKzLtgzM4641Ma9yXhKfuS1nqiNRfQGYC3zojiQANhFYOdmyBcLCzAQx27bBbbfBF1+YBmL7dOjzqlatyrfffkvv3r25cOEC4eHh/O1vfyvRs5+lggK/AG+i2jwf4/7n1Hvy+n9I1U/cVS0ENhFY2Z04YeYCCA2FJUugQgUzO9iWLaaB2PYILjECAwOZNWsWb731FqrKsGHDePbZZ0lNTXU6NG8TD2R/l7oWcMihWHJl2wgsSEkxjcCjR5thokuVgj/+0QwNfeONTkdnOeyzzz7jqaeeIjk5mQceeIDPP/+cihUrOh2WWxWijcAf01h8P3AQ01jcC9UtxRZsAdgSQUmmCosWwZ13mmkhz56FTp1g40Z4/32bBCwAHn/8cZYtW0a1atX49ttvadOmDXv27HE6LLfK01hDIp8CPwL1EYlH5BlU04DBwBJgG/CZpyUBsCWCkmv9evPq57JlZr1BAzNhTOfOtgrIytHevXvp1q0bmzdvpmrVqixatIi2JWQU2YoiyWdgFhCFqs+1ntsSQUlz/LiZErJpU5MEKleG//s/Uwro0sUmAStXderUISYmhrCwME6cOMF9993HnDlznA7LLc5COqoDfTEJgAcnAhF5WEQ+FJEvRaST0/F4vbQ00w5wxx0wfTr4+cELL5g5ggcPhtKlnY7Q8gLly5cnKiqKwYMHk5KSQu/evXnjjTd8/o0iDxyGumi5czYd4GPgGLD5qu1hwK+YaTBHXPWzSsBHeTm+naEsF8uXq4aEXJ4hrFMn1W3bnI7K8nLvvfeelipVSgF94oknNDEx0emQig2eOkNZES3uLhF8knnTzyKmC/ZUoDOmN11PEWmU7Vdezfy5lV+HDpnRQNu3N1U/deqY/gBff23aBCyrEIYMGUJUVBTlypVj3rx5dOzYkaOXRqG1vIpbE4GqLgdOXbW5JbBLVfeoGTt7HhAuxjggWlV/cWecXi8lBcaPNzODzZ0LQUFmiIitW21/AKtIdenShVWrVnHzzTfz008/cc8997Bli8e9FFNovl415AltBLl1wR6CmRbzDyLybG47i8hAEVknIuvS0tKKN1JvsGQJNGliZgo7fx66dze9g994ww4OZxWLJk2asHr1alq2bMm+ffto06YNS5YscTqsImUbi4tfjl2wVfU9VW2mqs+q6j9z21lVp6lqc1Vt7l+Sp0OMizM3/bAw2LHDNAp//TUsXGiqhCyrGFWvXp1ly5bx2GOPce7cObp27cr777/vdFhWHnlCIvCKLtgeKzHR9ABu1Mh0DitXzlQLbdpkJoq3LDcJDg5m3rx5jBw5kvT0dAYNGsSLL75IRoZbxk0rVr5eNeT2DmWS2QVbM7tgSy5dsLUAve9KVIcyVfjyS9MpbO9esy0iwiQBO4a85bBZs2bRv39/UlNTiYiIYMaMGZT24leUPXqqyiLg1hKBZOuCLSLxIvKM5tAFO79JQES6ici09PT0og/aE/36q6kC6t7dJIGQEPjvf2H2bJsELI/w1FNPER0dTbly5ZgzZw7du3fn4sWLTodl5cIOMeFNEhLMLGGTJpkJYypWNOvPPgsluX3E8lhr166lc+fOnDx5knbt2hEVFeWVA9bZEoHlPFXzGmj9+jBhgukl3L+/aRQePNgmActjtWjRghUrVlCrVi1WrlyJy+XiyJEjTodlXcUmAk+3cSO4XKb+//BhaNkSVq+GDz+0o4NaXqFhw4bExMRQv359Nm7cSNu2bb1u9FLbWOxFfKpq6PRpeP11Mxx0Roa56Y8bB336mPkCLMvLHD9+nM6dO/Pzzz9TvXp1lixZQkhIiNNh5YmtGvICPtVYnJFhBoW74w4zSJwIPP+8qQZ6+mmbBCyvdeONN/LDDz/QsWNHjhw5gsvlIiYmxumwLGyJwLOsXWumily71qy7XGaI6CZNnI3LsopQUlISvXr14osvviA4OJj58+fTpUsXp8O6JlsisIrfqVPmzZ977jFJoGZNmDcPfvjBJgHL5wQFBfHZZ5/xzDPPkJiYSHh4OHPnznU6LM8g0gGRFYj8E5EO7jqtTQROysiAjz82bwN98IGZI2D4cNi+HXr0sIPDWT7L39+fDz/8kOHDh5OWlkZERARTpkxxOqzCEfkYkWOIbL5qexgivyKyC5ER1zmKAueBIMyoC+7h9DjYRbl41XwEsbGqbdpcniOgQwfVLVucjsqy3G78+PGaeQPUN954QzMyMpwO6TfIy3wE0F6hqWafbwX8FHYr3KoQoLBBoZFCE4XFVy3VFEpl7vc7hTnXPWcRLT7xArqYV7q6BQYGOh3K9Z09a94GmjLFlAiqVzdzBffsaUsAVon00ksvUaVKFQYMGMCbb77JyZMnmTx5MqW87cUI1eWYIXSyawnsQtW8LysyDwhHdSzw0DWOdhpw2w3Ny/7SOVPVKFUd6Ofn53QouVOFOXPMhDDvvWe2DR1qqoF69bJJwCrR+vXrx/z58wkICGDKlCn07t2blJQUp8PKUhX8EVmXbRmYx11zG2Y/ZyKPIPIB8C/AbXVlPlEi8Hhbt5q3gZYtM+utW5v+AXfd5WRUluVRunfvztdff83vf/97Pv30U86cOcP8+fMpU6aM06GRaqqufgGi8jknQY7D7Of626oLgYX5i67wfKJE4LHOnzeNv6GhJglUrWoah1eutEnAsnLQsWNHfvjhB6pWrUp0dDQPPvggp0+fdjqswvCKYfZtIigOqrBgATRsaMYGSk+HP/7RjBpqO4VZ1jU1b96clStXUrt2bVatWkX79u05fPiwozEVYoaytUA9ROoiEgA8AUQWfYSFY+9IRW3nTujcGf7wB4iPh2bNzNhA//wnVK7sdHSW5RXq169PTEwMDRo0YPPmzbRt25bdu3c7Fk+exhrKNsw+IvGIPEMOw+xTgLlWiptP9CzO9tbQgKSkJGeCSEyEsWPNeEApKWaI6DFjYOBA0z/Asqx8O3HiBF26dGHt2rX87ne/Y8mSJYSGhro9Dl/vWewTieASx4aYWLzYjAcUF2fW+/Y1CaFaNffHYlk+JiEhge7du/Pdd99RoUIFoqKiuPfee90aQ0WR5DMwi/w3FnsFmwgKY+9e8wpoZGaVX0gITJ0K7dq5LwbLKgGSk5OJiIhgwYIFBAUFMX/+fLp27eq28/t6icC2ERREcjK8846ZMD4yEm64Af7+d/j5Z5sELKsYBAYG8u9//5sBAwaQlJREeHg4s2fPdtv57XwEXsQtJYKlS82sYDt2mPWePWHiRDtXsGW5gaoycuRIxo4dC8DkyZN5/vnni/28tkRgGfHx8Pjj0KmTSQINGsB335kpJG0SsCy3EBHGjBnDxIkTARg6dCivv/46xf1A6+slAscHiivKJb+DzrlcLp0xY4aqqqakpKjL5dJ//etfqqp64cIFdblcOm/ePNU1azSjbFlV0NTAQNV339XjBw+qy+XSyMhIVVU9fPiwulwujY6OVlXV/fv3q8vl0qVLl6qq6u7du9XlcumyZctUVXX79u3qcrk0JiZGVVU3bdqkLpdL16xZo6qqsbGx6nK5NDY2VlVV16xZoy6XSzdt2qSqqjExMepyuXT79u2qqrps2TJ1uVy6e/duVVVdunSpulwu3b9/v6qqRkdHq8vl0sOHD6uqamRkpLpcLj1+/Liqqi5YsEBdLpeeOXNGVVXnzZunLpdLL1y4oKqq//rXv9TlcmlKSoqqqs6YMUNdLlfW33LatGl6//33Z61PnTpVw8LCstYnTZqk3bp1y1qfMGGCPvLII1nrY8eO1R49emStjx49WiMiIrLWX3vtNe3bt2/W+ogRI3TAgAFZ68OGDdM//elPWetDhw7VoUOHZq3/6U9/0mHDhmWtDxgwQEeMGJG13rdvX33ttdey1iMiInT06NFZ6z169NCxY8dmrT/yyCM6YcKErPVu3brppEmTstbDwsJ06tSpWev333+/Tps2LWs9z589VT1z5oy6XC5dsGCBqqoeP37cfvYy/35+fn4K6M0335z1t73eZ68gyMugc168+ESJoNhnKAsNJaNWLZZXrcrSyZPh5ZchIKB4zmVZVp707duXBQsWEBgYSKVKlZwOx6vZNoK8OnPG9A2wLMujnDx5kipVqhTrOWwbgWXYJGBZHqm4kwD4fhuBLRFYlmVdhy0RWJZlWT7Np0oEIpIBJBbjKfyBtGI8vjvZa/FcvnQ9vnItwarqsw/OPpUIipuIrFPV5k7HURTstXguX7oeX7oWX+azGc6yLMvKG5sILMuySjibCPJnmtMBFCF7LZ7Ll67Hl67FZ9k2AsuyrBLOlggsy7JKOJsI8kBEwkTkVxHZJSIjnI6nMESktoj8ICLbRGSLiAx1OqbCEhE/EYkVkcVOx1IYIlJRROaLyPbM/z+tnY6poETkxczP12YR+VREgpyOycqdTQTXISJ+wFSgM9AI6CkijZyNqlDSgGGq2hBoBQzy8usBGIqZGNzbTQa+VtUGQCheek0iUhN4Hmiuqo0BP+AJZ6OyrsUmgutrCexS1T2qmgLMA8IdjqnAVPWwqv6S+e8EzM2mprNRFZyI1AK6AtOdjqUwRKQ80B74CEBVU1T1jKNBFY4/ECwi/kAZ4JDD8VjXYBPB9dUEDmRbj8eLb5zZiUgd4G5gtcOhFMYkYDiQ4XAchXUrcByYkVnNNV1EvHJsG1U9CEwE9gOHgbOq+o2zUVnXYhPB9UkO27z+VSsRKQcsAF5Q1XNOx1MQIvIQcExVf3Y6liLgDzQF/qGqdwMXAK9sjxKRSphSc12gBlBWRHo7G5V1LTYRXF88UDvbei28vJgrIqUxSWCOqi50Op5CaAv8XkT2Yqrs7hMR981oXrTigXhVvVQ6m49JDN7oASBOVY+raiqwEGjjcEzWNdhEcH1rgXoiUldEAjCNXpEOx1RgIiKYeuhtqvo3p+MpDFV9RVVrqWodzP+X71XVK588VfUIcEBE6mduuh/Y6mBIhbEfaCUiZTI/b/fjpQ3fJYW/0wF4OlVNE5HBwBLM2w8fq+oWh8MqjLbAk8AmEVmfue0vqvof50KyMg0B5mQ+cOwBnnY4ngJR1dUiMh/4BfOWWiy2h7FHsz2LLcuySjhbNWRZllXC2URgWZZVwtlEYFmWVcLZRGBZllXC2URgWZZVwtlEYHkFETmf+d86ItKriI/9l6vWVxXl8S3L09lEYHmbOkC+EkHmCLLXckUiUFXbC9YqUWwisLzNu8C9IrI+c8x7PxGZICJrRWSjiPwRQEQ6ZM67MBfYlLltkYj8nDlO/sDMbe9iRslcLyJzMrddKn1I5rE3i8gmEemR7djLss0dMCezB61leSXbs9jyNiOA/1XVhwAyb+hnVbWFiAQCMSJyaaTLlkBjVY3LXO+nqqdEJBhYKyILVHWEiAxW1btyONcjwF2YuQGqZu6zPPNndwN3YsadisH02F5Z1BdrWe5gSwSWt+sEPJU5XMZqoApQL/Nna7IlAYDnRWQD8BNmIMF6XFs74FNVTVfVo8B/gRbZjh2vqhnAekyVlWV5JVsisLydAENUdckVG0U6YIZyzr7+ANBaVS+KyDLgetMnXqu6Jznbv9Ox3yXLi9kSgeVtEoAbsq0vAZ7LHFobEbkjlwldKgCnM5NAA8w0nZekXtr/KsuBHpntEDdiZhBbUyRXYVkexD7FWN5mI5CWWcXzCWae3zrAL5kNtseBh3PY72vgWRHZCPyKqR66ZBqwUUR+UdWIbNu/AFoDGzCTEQ1X1SOZicSyfIYdfdSyLKuEs1VDlmVZJZxNBJZlWSWcTQSWZVklnE0ElmVZJZxNBJZlWSWcTQSWZVklnE0ElmVZJZxNBJZlWSXc/wOM4wlHHExAAAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 360x144 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "save.plot_misfit_curves()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAI4CAYAAABUVDNLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGkElEQVR4nO3deZgU5bn38e/NDCCr7COCCiqoiIA4EYxicA2oiHnjgooQ9URjjDEmJpqYk+S8eWOMnuSoJy4HDSeAUTAucYwoMeAaBQQdQFB2IuDIIKsjyDDD/f7RNZNm6OnuWbqqe+b3ua6+urvqqa672+bnM09VP2XujoiIhK9F1AWIiDRXCmARkYgogEVEIqIAFhGJiAJYRCQi+VEXkA26devmffr0iboMEWmiFi5c+Km7d6+5XAEM9OnThwULFkRdhog0UWb2z0TLNQQhIhIRBbCISEQUwCIiEdEYsIhImiorK9m7dy/l5eV1utVGASwikXF3Kisrq4OqPuFW3+3qs82+ffsa9f0rgEWaGHenoqKiUQInjHDLpQnBzIxWrVrV6dayZUuKiooSvp4CWKQOysvLKSsry/pwyyV5eXkHBFZ9Qi6MbfLy8ur1Hs0s4XIFsDRr7s62bdsoLS2t9bZp06bqx9u3b4+65LTk5+dHHlbpbNeyZct6h1pToACWJmf37t1pB+rmzZupqKhI+7Xz8vLo0KEDrVu3Dj2s0t2mZcuWtGihE5xygQJYsl5lZSVbtmxJGaZVt7Kysjq9/sEHH0yPHj3o0aMHBQUF1Y8T3Tp37qxwk0ajAJbQuTtlZWVpB+qnn35apwM1rVq12i80k4Vq9+7dad26dQbfrUjtFMDSKPbu3cvmzZvTCtTS0lK++OKLOr1+165d0w7Vjh071nrQQySbKIAlIXdn+/btaYVpaWkp27Ztq9Prt2nT5oAQrS1Uu3XrRn6+vqrS9OhbLdU2b97MCy+8QFFRES+//HKdxlJbtGhB9+7dEwZoomBt165dBt+JSG5QADdj7s6yZct4/vnnKSoqYu7cufuNtXbs2LHWP/NrhmqXLl10cEqkjhTAzUx5eTlvvPEGRUVFPP/886xdu7Z6XatWrTjzzDMZM2YMF1xwAYcffniElYo0fQrgZmDr1q28+OKLFBUV8dJLL7Fz587qdd26deOCCy5gzJgxnHPOOXTo0CHCSkWal5wIYDPrBDwKDAQcuAZYDswA+gDrgEvdfVvQ/sfAtUAl8F13nxV60RFbsWJF9dDCP/7xDyorK6vXHX/88YwZM4YxY8YwbNiwZv1LJJEo5UQAA/cBL7n7xWbWCmgL/ASY7e53mdntwO3AbWY2ABgHHA8cCvzdzPq7e2VtL94UVFRU8NZbb1WH7ooVK6rX5efnc9ZZZ1WH7pFHHhlhpSJSJesD2Mw6AqcD3wBw93Kg3MzGAiODZlOAV4HbgLHAdHffA6w1s1XAycDboRYegh07djBr1iyKiop48cUX2bp1a/W6zp07c9555zFmzBhGjRrFwQcfHGGlIpJI1gcwcCSwGfhfMxsMLARuBgrcvQTA3UvMrEfQvhcwN277DcGy/ZjZdcB1QE4dbFq7dm11L/e1117bbx6D/v37V/dyTz31VJ07K5LlcuFfaD4wFLjJ3eeZ2X3Ehhtqk+gnUAf8jtXdJwGTAAoLC7N2QtLKykrmz59ffdbC0qVLq9e1aNGC008/vTp0jznmmAgrFZG6yoUA3gBscPd5wfOniAXwJjPrGfR+ewKlce0Pi9u+N/BxaNU2grKyMl5++WWKiop44YUX2Lx5c/W6jh07MmrUKC688EJGjx5Nly5dIqxURBoi6wPY3T8xs/Vmdoy7LwfOApYFt4nAXcH9c8EmRcDjZvY7Ygfh+gHzw6+8bvbs2cMf//hH/vKXvzBnzpz9JtXu27cvF154IWPGjGHEiBG0atUqwkpFpLFkfQAHbgL+FJwBsQa4mtgVnZ80s2uBj4BLANx9qZk9SSygK4Abs/0MiLKyMi666CJmz54NxGbPP+WUU6pDd8CAAZpcRqQJyokAdvdioDDBqrNqaf8r4FeZrKmxbN++nfPOO4+3336bQw45hDvvvJPzzz+fHj16pN5YRHJaTgRwU1VaWspXv/pViouLOfzww5k9ezZHH3101GWJSEgUwBHZsGED55xzDh9++CH9+/fn73//O4cddljqDUWkydD0VRFYvXo1I0aM4MMPP2TQoEG8/vrrCl+RZkgBHLJly5YxYsQI1q1bx7Bhw3jllVcoKCiIuiwRiYACOEQLFy7k9NNPp6SkhJEjR/Lyyy/rPF6RZkwBHJI333yTM888ky1btnD++eczc+ZMTf0o0swpgEPw8ssvc+6557Jz504uvfRSnnnmGdq0aRN1WSISMQVwhj377LNccMEF7N69m2uuuYbHH39cv2QTEUABnFGPPfYYl1xyCeXl5Xz3u9/lkUce0eTnIlJNAZwhDz/8MBMmTKCyspKf/vSn3HvvvbpopYjsR4mQAffccw833HAD7s5vfvMbfvnLX2ouBxE5gH4J14jcnZ/97Gf8v//3/zAzHnjgAW644YaoyxKRLKUAbiTuzi233MJ9991HXl4ef/zjHxk/fnzUZYlIFlMAN4LKykquv/56/vCHP9CyZUtmzJjB1772tajLEpEspwBuBFdffTXTpk2jTZs2PPvss3z1q1+NuiQRyQEK4AZauHAh06ZNo127drz44ouMGDEi6pJEJEfoLIgGmjRpEgDf/OY3Fb4iUicK4AYoKyvj8ccfB2IBLCJSFwrgBpg+fTplZWWcdtppDBgwIOpyRCTHKIAboGr44brrrou4EhHJRQrgenrvvfd455136NSpExdffHHU5YhIDlIA19MjjzwCwIQJEzS1pIjUiwK4Hj7//HMee+wxQAffRKT+FMD1MGPGDD777DNOOeUUBg4cGHU5IpKjFMD1oINvItIYFMB1tHjxYubNm8fBBx/MpZdeGnU5IpLDFMB1VHXwbfz48bRt2zbiakQklymA62DXrl1MmzYN0ME3EWk4BXAd/PnPf2bHjh0MGzaMwYMHR12OiOQ4BXAd6OCbiDQmBXCa3n//fd566y06dOjAZZddFnU5ItIE5EQAm1memb1nZn8Nnncxs5fNbGVw3zmu7Y/NbJWZLTezRpsZPf7gW7t27RrrZUWkGcuJAAZuBj6Ie347MNvd+wGzg+eY2QBgHHA8MAp40MzyGrrz3bt3M3XqVEDDDyLSeLI+gM2sN3A+8Gjc4rHAlODxFOCiuOXT3X2Pu68FVgEnN7SGp556iu3bt1NYWMiQIUMa+nIiIkAOBDBwL/AjYF/csgJ3LwEI7nsEy3sB6+PabQiWHcDMrjOzBWa2YPPmzUkL0ME3EcmEjAawmQ0ws3rvw8wuAErdfWG6myRY5okauvskdy9098Lu3bvX+oLLli3jzTffpH379owbNy7NMkREUsv0RTl/BxxjZluBRcDiqnt335LG9qcCF5rZecBBQEczewzYZGY93b3EzHoCpUH7DcBhcdv3Bj5uyBt49NHYyMcVV1xBhw4dGvJSIiL7yWgP2N1HuXtfYBrQDugC3AqUmtnaNLb/sbv3dvc+xA6uzXH38UARMDFoNhF4LnhcBIwzs9Zm1hfoB8xvyHsoKioCYpeeFxFpTGFdln6iu59Y9cTMzgImNOD17gKeNLNrgY+ASwDcfamZPQksAyqAG929sr472blzJ6tXr6ZVq1acdNJJDShXRORAYQVwmZkd5+4fALj7bDO7uy4v4O6vAq8Gj7cAZ9XS7lfArxpUbWDx4sUAHH/88bRs2bIxXlJEpFpYAXw9MNnM3iE2BnwCUO+eaVgWLVoEoFPPRCQjQjkNzd2XAacBbwB9gHXA6DD23RDFxcUAmnhHRDIiYz1gMzsTGAGUA2+6+xvAn4NbTlAPWEQyKSM9YDP7d+DvwDXAvwFzzGydmZ2eif1lQkVFBUuWLAFg0KBBEVcjIk1RowWwmd1iZiODiXFuJnYGwhHufhRQADwM/NXMzm6sfWbSypUr+eKLLzjiiCPo3Llz6g1EROqoMYcgrgTuBFoFzy8ws67Au0Cxu99lZpuJnUJW2Ij7zQiN/4pIpjVaD9jdC4H2wGBi475bgbOBPwHrzayU2JDEIDO7xMyOa8jPlDNN478ikmmNGoDuXunu7xM722G1u490985Af+AGYCGxXvd9wFLg88bcf2NSD1hEMi1TZ0HcCrxmZkcRG/stBuYApwMb3f0wM+sGDMzQ/htMPWARybSMBLC7LzazocCDxH69VtXTrgCuDtp8GqzLOps2beKTTz6hQ4cO9OnTJ+pyRKSJyth5wMGE6KODnu5woDUwz903ZGqfjaWq9zt48GBatMjaYWoRyXEZ/yly0NP9a6b305g0/isiYVD3LgGN/4pIGBTACagHLCJhUADXsHv3bpYvX06LFi0YODBrT9IQkSZAAVzD0qVLqays5JhjjqFNmzZRlyMiTZgCuAaN/4pIWBTANWj8V0TCogCuQT1gEQmLAjiOu+/3IwwRkUxSAMdZt24dO3fupKCggEMOOSTqckSkiVMAx1m9ejUAxx57bMSViEhzoACOs2FDbJqK3r17R1yJiDQHCuA4GzduBBTAIhIOBXCcqh5wr169Iq5ERJoDBXAc9YBFJEwK4DgaAxaRMCmA42gIQkTCpAAO7Nmzh82bN5OXl0dBQUHU5YhIM6AADnz88ccA9OzZk7y8vIirEZHmQAEc0AE4EQlb1gewmR1mZq+Y2QdmttTMbg6WdzGzl81sZXDfOW6bH5vZKjNbbmZfTWc/OgAnImHL+gAmdin7H7j7ccSurnyjmQ0Abgdmu3s/YHbwnGDdOOB4YBTwoJmlHFPQATgRCVvWB7C7l7j7u8Hjz4APgF7AWGBK0GwKcFHweCww3d33uPtaYBVwcqr9aAhCRMKW9QEcz8z6ACcC84ACdy+BWEgDPYJmvYD1cZttCJbVfK3rzGyBmS3YvHmzesAiErqcCWAzaw88DXzP3Xcma5pgmR+wwH2Suxe6e2H37t3VAxaR0OVEAJtZS2Lh+yd3fyZYvMnMegbrewKlwfINwGFxm/cGPk61Dx2EE5GwZX0Am5kBfwA+cPffxa0qAiYGjycCz8UtH2dmrc2sL9APmJ9qP1XnAR966KGNVLmISHL5UReQhlOBq4AlZlYcLPsJcBfwpJldC3wEXALg7kvN7ElgGbEzKG5098pkO9i7dy+VlZV0796d1q1bZ+htiIjsL+sD2N3fJPG4LsBZtWzzK+BX6e6jvLwc0AE4EQlX1g9BhGHv3r2Axn9FJFwKYP4VwBr/FZEwKYCBiooKALp37x5xJSLSnCiA+VcAd+3aNeJKRKQ5UQDzrwDu1q1bxJWISHOiAEY9YBGJhgIY9YBFJBoKYNQDFpFoKIBRD1hEoqEABvbt20d+fj4dO3aMuhQRaUYUwIGuXbsSm/dHRCQcCuCAxn9FJGwK4IDGf0UkbArggHrAIhI2BXBAPWARCZsCOKAesIiETQEc6NKlS9QliEgzowAOdOrUKeoSRKSZUQAHFMAiEjYFcKBVq1ZRlyAizYwCOLBo0aKoSxCRZkYBHHjxxRejLkFEmhkFcODdd9/FzKpvZ599dtQliUgTpwAOlJeXVz9u27YtP/3pTyOsRkSaAwVwDW3btuWFF15g5MiRUZciIk2cAjjOQQcdxIwZMxS+IhKK/KgLyAZV4775+fls37496nJEpJlQDxg4+uijGTx4MLt27WLy5MlRlyMizYQCGOjYsSPvvPMOd999ty5LJCKhMXePuobIFRYW+oIFC6IuQ0SaKDNb6O6FNZerBywiEhH1gAEz2wz8M+o66qEb8GnURdSTao+Gao/GEe7eveZCBXAOM7MFif6syQWqPRqqPbtoCEJEJCIKYBGRiCiAc9ukqAtoANUeDdWeRTQGLCISEfWARUQiogAWEYmIAjgHmNkoM1tuZqvM7PYE6680s8XB7S0zGxxFnYmkqj2u3ZfMrNLMLg6zvmTSqd3MRppZsZktNbPXwq6xNml8Zw42s+fNbFFQ+9VR1JmImU02s1Ize7+W9WZm9wfvbbGZDQ27xkbj7rpl8Q3IA1YDRwKtgEXAgBptvgx0Dh6PBuZFXXe6tce1mwPMBC6Ouu46fO6dgGXA4cHzHlHXXYfafwL8JnjcHdgKtIq69qCe04GhwPu1rD8PeBEwYHi2fN/rc1MPOPudDKxy9zXuXg5MB8bGN3D3t9x9W/B0LtA75Bprk7L2wE3A00BpmMWlkE7tVwDPuPtHAO6eLfWnU7sDHczMgPbEArgi3DITc/fXidVTm7HAVI+ZC3Qys57hVNe4FMDZrxewPu75hmBZba4l1jvIBilrN7NewNeAh0OsKx3pfO79gc5m9qqZLTSzCaFVl1w6tf8eOA74GFgC3Ozu+8Ipr8Hq+m8ia2lC9uxnCZYlPHfQzM4gFsCnZbSi9KVT+73Abe5eGeuMZY10as8HTgLOAtoAb5vZXHdfkeniUkin9q8CxcCZwFHAy2b2hrvvzHBtjSHtfxPZTgGc/TYAh8U9702s17IfMxsEPAqMdvctIdWWSjq1FwLTg/DtBpxnZhXu/pdQKqxdOrVvAD5198+Bz83sdWAwEHUAp1P71cBdHhtUXWVma4FjgfnhlNggaf2byAUagsh+7wD9zKyvmbUCxgFF8Q3M7HDgGeCqLOh9xUtZu7v3dfc+7t4HeAr4dhaEL6RRO/AcMMLM8s2sLTAM+CDkOhNJp/aPiPXcMbMC4BhgTahV1l8RMCE4G2I4sMPdS6Iuqj7UA85y7l5hZt8BZhE7uj3Z3Zea2beC9Q8DPwO6Ag8GPckKz4JZo9KsPSulU7u7f2BmLwGLgX3Ao+6e8NSpMKX5uf8S+KOZLSH2J/1t7p4VUz2a2RPASKCbmW0Afg60hOraZxI7E2IVsItYbz4n6afIIiIR0RCEiEhEFMAiIhFRAIuIREQBLCISEQWwiEgtUk0MlKD9pWa2LJjg6PGU7XUWhIhIYmZ2OlBGbO6JgSna9gOeBM50921m1iPV/CDqAYuI1CLRxEBmdpSZvRTM//GGmR0brPom8EDVxFjpTM6kABapAzO7wsyWmNkuM1tpZpdGXZOEbhJwk7ufBNwKPBgs7w/0N7N/mNlcMxuV6oX0SziRNJnZBcAfgOuBN4FrgEfM7Gl3r4y0OAmFmbUnNv/2n+Mmj2od3OcD/Yj9iq838IaZDXT37bW9ngJYJH23Av/t7lMBzOw5YhOb58o0jtJwLYDt7j4kwboNwFx33wusNbPlxAL5nWQvJiIpBJPtnAa8ELd4FLDIdSS72Qim61xrZpdA9eWRqi4B9hfgjGB5N2JDEkknOFIAi6RnELF/L++ZWRszu4pY7/eeaMuSTAomBnobOMbMNpjZtcCVwLVmtghYyr+uNjIL2GJmy4BXgB+mmhpWp6GJpCGYSewHwGXAAmIziM0CLnD3rLiUj+Qe9YBF0nMi8C6xydaHA98J7n8XZVGS23QQTiQ9Q4hdgLOM2FUj5ptZH2JHvEXqRT1gkRTMLA84gQOvdjEIeCP8iqSpUA9YJLVjiF108w4z2wh8BkwEvgTcEGVhktsUwCKpnQhsArYBrwK7gbnASHfPleuoSRZSAIukNgR4x93HRF2INC0aAxZJ7URiF94UaVQKYJHUBqMAlgzQDzFERCKiHrCISEQUwCIiEVEAi4hERAEsIhIRBbCISEQUwCIiEVEAi4hERAEsIhIRBbCISEQUwCIiEVEAi4hERNNRAt26dfM+ffpEXYaINFELFy781N2711weaQCb2SjgPiAPeNTd76qx3oL15wG7gG+4+7tmdhgwFTgE2AdMcvf7gm26ADOAPsA64FJ335asjsrKSmbPns3BBx/ciO9ORCTGzP6ZaHlkQxDBdbYeAEYDA4DLzWxAjWajgX7B7TrgoWB5BfADdz+O2JVpb4zb9nZgtrv3A2YHz5Pavn07zz//fAPfkYhI3UQ5BnwysMrd17h7OTAdGFujzVhgqsfMBTqZWU93L3H3dwHc/TNiF0vsFbfNlODxFOCidIqZPHlyg96MiEhdRRnAvYD1cc838K8QTbtNcGnwE4F5waICdy8BCO57JNq5mV1nZgvMbAHAP/7xD8ys+nb22WfX712JiKQpyjFgS7Cs5uzwSduYWXvgaeB77r6zLjt390nApOB1vLy8vHpd27Zt+elPf1qXlxMRqbMoe8AbgMPinvcGPk63jZm1JBa+f3L3Z+LabDKznkGbnkBpXYpq27YtL7zwAiNHjqzLZiIidRZlAL8D9DOzvmbWChgHFNVoUwRMsJjhwA53LwnOjvgD8IG7/y7BNhODxxOB59It6KCDDmLGjBkKXxEJRWRDEO5eYWbfAWYROw1tsrsvNbNvBesfBmYSOwVtFbHT0K4ONj8VuApYYmbFwbKfuPtM4C7gSTO7FvgIuCSdelq0aEF+fj7bt29vjLcnIpKSLspJbAz4xBNPZNGiRXzlK19hzpw5UZckIk2ImS1098Kay/VT5MC8efO4++676dixY9SliEgzoR4w/zoLomXLllGXIiJNkHrAKVRUVERdgog0MwrgQGVlZdQliEgzowAOqAcsImFTAAfUAxaRsCmAAwpgEQmbAjigIQgRCZsCOKAesIiETQEcUA9YRMKmAA6oBywiYVMAB9QDFpGwKYAD6gGLSNgUwAEFsIiETQEc0BCEiIRNARxQD1hEwqYADqgHLCJhUwAH1AMWkbApgAMKYBEJmwI4oCEIEQmbAjigHrCIhE0BHFAPWETCpgAOqAcsImGLNIDNbJSZLTezVWZ2e4L1Zmb3B+sXm9nQuHWTzazUzN6vsc0vzGyjmRUHt/PSqUUBLCJhiyyAzSwPeAAYDQwALjezATWajQb6BbfrgIfi1v0RGFXLy/+Xuw8JbjPTqUdDECIStih7wCcDq9x9jbuXA9OBsTXajAWmesxcoJOZ9QRw99eBrY1VjHrAIhK2KAO4F7A+7vmGYFld2yTynWDIYrKZdU7UwMyuM7MFZrYA1AMWkfBFGcCWYJnXo01NDwFHAUOAEuC3iRq5+yR3L3T3QlAPWETCF2UAbwAOi3veG/i4Hm324+6b3L3S3fcBjxAb6khJPWARCVuUAfwO0M/M+ppZK2AcUFSjTREwITgbYjiww91Lkr1o1Rhx4GvA+7W1jacesIiELT+qHbt7hZl9B5gF5AGT3X2pmX0rWP8wMBM4D1gF7AKurtrezJ4ARgLdzGwD8HN3/wNwt5kNITZUsQ64Pp16FMAiErbIAhggOEVsZo1lD8c9duDGWra9vJblV9WnFg1BiEjY9Eu4gHrAIhI2BXBAPWARCZsCOKAesIiETQEcUACLSNgUwAENQYhI2BTAgb1790Zdgog0MwrgwJ49e6IuQUSaGQVw4Isvvoi6BBFpZhTAAQWwiIRNARxQAItI2BTAAQWwiIRNARxQAItI2BTAAQWwiIRNARzYvXt31CWISDOjAA6oBywiYVMABxTAIhI2BXBAASwiYVMABxTAIhI2BXBAASwiYVMABxTAIhK2Bl2U08y+D/wbsANYUnVz91cbXlq4FMAiEraGXhX5O8CZwBfAQOAEYDzwagNfN3R79+6lsrKSvLy8qEsRkWaioQFcDHzq7mXAJ8DfG1xRBMwMd+eLL76gXbt2UZcjIs1EQ8eAfw3MMrNxZta3rhub2SgzW25mq8zs9gTrzczuD9YvNrOhcesmm1mpmb1fY5suZvayma0M7junqqNFi9jHoGEIEQlTQwP4MeB9YDjwqJmtMbN/pLOhmeUBDwCjgQHA5WY2oEaz0UC/4HYd8FDcuj8CoxK89O3AbHfvB8wOnielABaRKDR0CGKru18fv8DMDklz25OBVe6+JthuOjAWWBbXZiww1d0dmGtmncysp7uXuPvrZtYnweuOBUYGj6cQG4++LVkhZgYogEUkXA3tAc81s3+LX+Dun6S5bS9gfdzzDcGyurapqcDdS4JaSoAeiRqZ2XVmtsDMFsTyXQEsIuFqaAAfBfzEzNaa2Qwzu8PMxqS5rSVY5vVoUy/uPsndC929MD8/9oeAAlhEwtSgIQh3vxDAzNoTOw1tIHAW8Hwam28ADot73hv4uB5tatpUNUxhZj2B0lSFaAxYRKJQ5wA2szOBEUA58Ka7vxGchjY3uKXrHaBfcPbERmAccEWNNkXAd4Lx4WHAjqrhhSSKgInAXcH9c6kKUQCLSBTqNARhZv9O7Fzfa4j9Am6Oma0zs9PrumN3ryD2Q45ZwAfAk+6+1My+ZWbfCprNBNYAq4BHgG/H1fIE8DZwjJltMLNrg1V3AeeY2UrgnOB5qvcFKIBFJFwpe8BmdgvwHrAIuBm40d0fCtZ1IXZ62F/N7P+4e51+iOHuM4mFbPyyh+MeO3BjLdteXsvyLcSGQdKmHrCIRCGdIYgrgTuBVsHzC8ysK/AuUOzud5nZZmI9zcLMlJlZVQGsyxKJSJhSDkG4eyHQHhhMbNx3K3A28CdgvZmVEhuSGGRml5jZcWaWU7OsaQhCRKKQVlC6e6W7vw+8Aax295Hu3hnoD9wALCTWm74PWAp8nqF6M0JDECIShbqeBXEr8JqZHQU8TGwynjnA6cBGdz/MzLoROx0tZyiARSQKdQpgd6+aEOdBYj/xrepBVwBXB20+Jcemo9QQhIhEoc7nAbv7WmB00NMdDrQG5rn7hsYuLizqAYtIFOr9S7igp/vXRqwlMuoBi0gUcupshUxRD1hEoqAAhurLEG3fvj3aQkSkWVEAA1WzoZWWppy3R0Sk0SiAgZYtWwKwadOmiCsRkeZEAYwCWESioQDmX0MQmzdvprKyMuJqRKS5UAATOw2tc+fO7Nu3j61bt0Zdjog0EwrgQEFBAaBhCBEJjwI40KNH7NqdCmARCYsCOFDVA9apaCISFgVwQEMQIhI2BXBAASwiYVMABzQGLCJhUwAHNAYsImFTAAc0BCEiYVMABxTAIhK2SAPYzEaZ2XIzW2VmtydYb2Z2f7C+6nJISbc1s1+Y2UYzKw5u56VTS9UYcGlpKe7eCO9ORCS5yALYzPKAB4DRwADgcjMbUKPZaKBfcLsOeCjNbf/L3YcEt5np1NOuXTvatWvHnj172LlzZ0PemohIWqLsAZ8MrHL3Ne5eDkwHxtZoMxaY6jFzgU5m1jPNbetMwxAiEqYoA7gXsD7u+YZgWTptUm37nWDIYrKZdU60czO7zswWmNmCzZs3AzoVTUTCFWUAW4JlNQdfa2uTbNuHgKOAIUAJ8NtEO3f3Se5e6O6F3bt3B3QqmoiEq95XRW4EG4DD4p73Bj5Os02r2rZ19+ruq5k9Qh2u3KwhCBEJU5Q94HeAfmbW18xaAeOAohptioAJwdkQw4Ed7l6SbNtgjLjK14D30y1IASwiYYqsB+zuFWb2HWAWkAdMdvelZvatYP3DwEzgPGAVsAu4Otm2wUvfbWZDiA1JrAOuT7em+FPRREQyLcohCIJTxGbWWPZw3GMHbkx322D5VfWtRz1gEQmTfgkXpyqAN27cGHElItIcKIDjnHDCCeTl5bFw4UK2bdsWdTki0sQpgON07tyZESNGUFlZyUsvvRR1OSLSxCmAaxgzZgwAzz//fMSViEhTpwCuoSqAX3zxRfbu3RtxNSLSlCmAa+jXrx/HHnss27dv580334y6HBFpwhTACWgYQkTCoABO4MILLwSgqKhIcwOLSMYogBM45ZRT6Nq1K6tXr+bDDz+MuhwRaaIUwAnk5eVx3nmxC2loGEJEMkUBXIv4YQgRkUxQANfi3HPPpWXLlrz99tt8+umnUZcjIk2QArgWHTt2ZOTIkezbt4+ZM9O6rJyISJ0ogJPQMISIZJICOImq84FnzZqlKyWLSKNTACdxxBFHcNJJJ1FWVsbw4cN1SpqINCoFcApPPPEEAwYM4IMPPuBLX/oSTz/9dNQliUgToQBOoV+/fsybN4/LLruMsrIyLr74Yn70ox9RUVERdWkikuMUwGlo3749TzzxBP/1X/9FXl4e99xzD+eee66uHSciDaIATpOZ8b3vfY9XXnmFgoICXnnlFYYOHcrcuXOjLk1EcpQCuI5GjBjBu+++y6mnnsrGjRs5/fTTeeihhzRpj4jUmSk4oLCw0BcsWFCnbcrLy/nhD3/I/fffD8BXvvIVhg4dSv/+/atvvXr1wswyUbKI5BAzW+juhQcsVwDXL4CrPP7443zzm99k165dB6xr27btfoEcf+vcuXNDyxaRHJGVAWxmo4D7gDzgUXe/q8Z6C9afB+wCvuHu7ybb1sy6ADOAPsA64FJ3T3qJ44YEMEBJSQlvv/02K1asYMWKFSxfvpwVK1YknUOie/fuB4Ty0UcfTYcOHWjVqtUBt7y8vHrXJyLRyroANrM8YAVwDrABeAe43N2XxbU5D7iJWAAPA+5z92HJtjWzu4Gt7n6Xmd0OdHb325LV0tAArs3WrVtZuXJldTDH3xL1mJPJy8tLGMxVt9atWzf6+hYtWmBm1cMoVY8T3VKtb0qvUbU+mUyvbyr7yIYawthHixYtEgZwfsrKMudkYJW7rwEws+nAWGBZXJuxwFSP/V9irpl1MrOexHq3tW07FhgZbD8FeBVIGsCZ0qVLF4YNG8awYcP2W75v3z4+/vjjA0J5zZo17Nq1i/Ly8v1ue/bsobKykt27d7N79+4o3oqIZECUAdwLWB/3fAOxXm6qNr1SbFvg7iUA7l5iZj0S7dzMrgOuAzj88MPr+Rbqp0WLFvTu3ZvevXtz5plnpmzv7lRWVu4XyDVDOlFoN6TNnj172LdvX/XZHe5e6y3V+qb4Gqn+e2VyfVPZRzbUENY+ahNlACfqs9d8J7W1SWfbpNx9EjAJYkMQddk2bGZGfn4++fn5tG3bNupyRKSOahuiiPI84A3AYXHPewMfp9km2babgmEKgnv9XE1EslKUAfwO0M/M+ppZK2AcUHPi3SJggsUMB3YEwwvJti0CJgaPJwLPZfqNiIjUR2RDEO5eYWbfAWYRO5VssrsvNbNvBesfBmYSOwNiFbHT0K5Otm3w0ncBT5rZtcBHwCUhvi0RkbTphxhk7jQ0ERHIwvOAs4mZbQb+GXUd9dANyNUrhqr2aKj2aBzh7t1rLlQA5zAzW5Do/6q5QLVHQ7VnF82GJiISEQWwiEhEFMC5bVLUBTSAao+Gas8iGgMWEYmIesAiIhFRAIuIREQBnAPMbJSZLTezVcEcxzXXX2lmi4PbW2Y2OIo6E0lVe1y7L5lZpZldHGZ9yaRTu5mNNLNiM1tqZq+FXWNt0vjOHGxmz5vZoqD2q6OoMxEzm2xmpWb2fi3rzczuD97bYjMbGnaNjSbV1Hu6RXsj9lPr1cCRQCtgETCgRpsvE5t4HmA0MC/qutOtPa7dHGI/Pb846rrr8Ll3IjYH9eHB8x5R112H2n8C/CZ43B3YCrSKuvagntOBocD7taw/D3iR2KyIw7Pl+16fm3rA2a964np3LweqJp+v5u5v+b8uuzSX2Oxw2SBl7YGbgKfJrpnr0qn9CuAZd/8IwN2zpf50anegg8XmSWxPLIArwi0zMXd/nVg9tam+UIO7zwWqLtSQcxTA2a+2Selrcy2x3kE2SFm7mfUCvgY8HGJd6Ujnc+8PdDazV81soZlNCK265NKp/ffAccSmcV0C3Ozu+8Ipr8Hq+m8ia0U5IbukJ+3J583sDGIBfFpGK0pfOrXfC9zm7pXpXLsrROnUng+cBJwFtAHeNrO57r4i08WlkE7tXwWKgTOBo4CXzewNd9+Z4doaQ4MvyJAtFMDZL52J6zGzQcCjwGh33xJSbamkU3shMD0I327AeWZW4e5/CaXC2qV7wYBP3f1z4HMzex0YTOyCsVFKp/argbs8Nqi6yszWAscC88MpsUHS+jeRCzQEkf1STlxvZocDzwBXZUHvK17K2t29r7v3cfc+wFPAt7MgfCG9CwY8B4wws3wza0vsuoQfhFxnIunU/hGxnjtmVgAcA6wJtcr6q+1CDTlHPeAs5+lNXP8zoCvwYNCTrPAsmDUqzdqzUjq1u/sHZvYSsBjYBzzq7glPnQpTmp/7L4E/mtkSYn/S3+buWTHVo5k9QezK5t3MbAPwc6AlJL9QQy7ST5FFRCKiIQgRkYgogEVEIqIAFhGJiAJYRCQiCmARkVqkmhgoQftLzWxZMMHR4ynb6ywIEZHEzOx0oIzY3BMDU7TtBzwJnOnu28ysR6r5QdQDFhGpRaKJgczsKDN7KZj/4w0zOzZY9U3ggaqJsdKZnEkBLFIHZnaFmS0xs11mttLMLo26JgndJOAmdz8JuBV4MFjeH+hvZv8ws7lmNirVC+mXcCJpMrMLgD8A1wNvAtcAj5jZ0+5eGWlxEgoza09s/u0/x00e1Tq4zwf6EfsVX2/gDTMb6O7ba3s9BbBI+m4F/tvdpwKY2XPEJjbPlWkcpeFaANvdfUiCdRuAue6+F1hrZsuJBfI7yV5MRFIIJts5DXghbvEoYJHrSHazEUzXudbMLoHqyyNVXQLsL8AZwfJuxIYkkk5wpAAWSc8gYv9e3jOzNmZ2FbHe7z3RliWZFEwM9DZwjJltMLNrgSuBa81sEbCUf11tZBawxcyWAa8AP0w1NaxOQxNJQzCT2A+Ay4AFxGYQmwVc4O5ZcSkfyT3qAYuk50TgXWKTrQ8HvhPc/y7KoiS36SCcSHqGELsAZxmxq0bMN7M+xI54i9SLesAiKZhZHnACB17tYhDwRvgVSVOhHrBIascQu+jmHWa2EfgMmAh8CbghysIktymARVI7EdgEbANeBXYDc4GR7p4r11GTLKQAFkltCPCOu4+JuhBpWjQGLJLaicQuvCnSqBTAIqkNRgEsGaAfYoiIREQ9YBGRiCiARUQiogAWEYmIAlhEJCIKYBGRiCiARUQiogAWEYmIAlhEJCIKYBGRiCiARUQiogAWEYmIpqMEunXr5n369Im6DBFpohYuXPipu3evuVwBDPTp04cFCxZEXYaINFFm9s9EyzUEISISEQWwiEhEFMAiIhFRAAM7duyIugQRaYYUwMCaNbqwrYiETwEM7Nu3D12aSUTCpgAO7NmzJ+oSRKSZUQAHysrKoi5BRJoZBXBg27ZtUZcgIs2MAjiwadOmqEsQkWZGARxQAItI2BTAgdLS0qhLEJFmRgEcUA9YRMKmAA4ogEUkbArgwKpVq6IuQUSaGQVwYMmSJVGXICLNjAIYaNGiBZs2bdKBOBEJVU4EsJl1MrOnzOxDM/vAzE4xsy5m9rKZrQzuO8e1/7GZrTKz5Wb21VSv36ZNG0C9YBEJV04EMHAf8JK7HwsMBj4Abgdmu3s/YHbwHDMbAIwDjgdGAQ+aWV6yF1cAi0gUsj6AzawjcDrwBwB3L3f37cBYYErQbApwUfB4LDDd3fe4+1pgFXBysn0ogEUkClkfwMCRwGbgf83sPTN71MzaAQXuXgIQ3PcI2vcC1sdtvyFYth8zu87MFpjZgvLycgAWL16cwbchIrK/XAjgfGAo8JC7nwh8TjDcUAtLsOyAyX7dfZK7F7p7Yc+ePQFYunQplZWVjVCyiEhquRDAG4AN7j4veP4UsUDeZGY9AYL70rj2h8Vt3xv4ONkO8vLy6N27N7t379bVMUQkNFkfwO7+CbDezI4JFp0FLAOKgInBsonAc8HjImCcmbU2s75AP2B+qv2ccMIJgIYhRCQ8WR/AgZuAP5nZYmAIcCdwF3COma0Ezgme4+5LgSeJhfRLwI3unnJcYdCgQQC88847GShfRORApmuhQWFhof/nf/4nZ5xxBn379mX16tWYJRpKFhGpOzNb6O6FNZfnSg8440aMGEGvXr1Yu3Yt8+bNS72BiEgDKYADeXl5XHbZZQA8/vjjEVcjIs2BAjjOFVdcAcCMGTOoqKiIuBoRaeoUwHGGDh1K//79KS0tZc6cOVGXIyJNnAI4jplV94I1DCEimaYAruHyyy8H4JlnnmH37t0RVyMiTZkCuIb+/ftTWFjIZ599xsyZM6MuR0SaMAVwAlW9YA1DiEgmKYATuOyyyzAzXnjhBbZv3x51OSLSRCmAE+jVqxcjR45kz549PPvss1GXIyJNlAK4FjobQkQyTQFci69//eu0bNmSOXPmUFJSEnU5ItIEKYBr0blzZ0aPHs2+fft48sknoy5HRJogBXASGoYQkUxSACcxZswY2rVrx/z581m5cmXU5YhIE6MATqJt27ZcfPHFANx0001o7mQRaUwK4BTuvPNOunTpwqxZs3j44YejLkdEmhAFcAqHHnoo//M//wPAD37wA1asWBFxRSLSVCiA03DxxRczfvx4du/ezfjx49m7d2/UJYlIE6AATtN///d/c9hhh/HOO+9w5513Rl2OiDQBCuA0derUiSlTpgDwy1/+UldPFpEGUwDXwRlnnMEtt9xCZWUl48ePZ9euXVGXJCI5TAFcR3feeScDBgxgxYoV/OhHP4q6HBHJYQrgOjrooIN47LHHaNmyJQ888ACzZs2KuiQRyVEK4Ho48cQT+Y//+A8Arr76arZs2RJxRSKSixTA9fSjH/2IL3/5y5SUlHDDDTfoV3IiUmcK4HrKy8tj2rRptG/fnj//+c+asEdE6kwB3ABHHnkk9957LwA33ngj69evj7YgEckpCuAGuuaaaxgzZgw7duzgG9/4Bvv27Yu6JBHJEQrgBjIzHnnkEbp3786cOXO4//77oy5JRHKEArgRFBQU8MgjjwBw++23s3Tp0ogrEpFckBMBbGZ5Zvaemf01eN7FzF42s5XBfee4tj82s1VmttzMvhpWjWPHjuWaa65hz549XHXVVZSXl4e1axHJUTkRwMDNwAdxz28HZrt7P2B28BwzGwCMA44HRgEPmlleWEXee++99O3bl/fee6/6PGERkdpkfQCbWW/gfODRuMVjgSnB4ynARXHLp7v7HndfC6wCTg6pVDp06MDUqVMxM+666y7eeuutsHYtIjko6wMYuBf4ERB/ekGBu5cABPc9guW9gPhzwTYEyw5gZteZ2QIzW7B58+ZGK/a0007jtttuY9++fVx11VWUlZU12muLSNOS0QA2swFmVu99mNkFQKm7L0x3kwTLEv5Ezd0nuXuhuxd27969viUm9B//8R8MHjyYNWvW8P3vf79RX1tEmo5M94B/B6w2s4VmNtnMvmdmZ5hZ1zS3PxW40MzWAdOBM83sMWCTmfUECO5Lg/YbgMPitu8NfNwYb6QuWrVqxWOPPUarVq145JFHmDFjRtgliEgOyGgAu/sod+8LTAPaAV2AW4FSM1ubxvY/dvfe7t6H2MG1Oe4+HigCJgbNJgLPBY+LgHFm1trM+gL9gPmN+Z7SNXDgQH79618DMG7cOG699VadGSEi+wlrDHiiu1/m7j9z9/OBc4HXG/B6dwHnmNlK4JzgOe6+FHgSWAa8BNzo7pUNK73+brnlFn71q1+Rl5fHb3/7W7785S+zatWqqMoRkSxjYcziZWZvANe5+wdxyxa6+0kZ33kaCgsLfcGCBRl7/bfffpvLL7+cf/7zn7Rv356HHnqI8ePHZ2x/IpJdgrwrrLk8rB7w9cBkM7vfzK41s3uByHqmYTvllFMoLi7mkksuoaysjKuuuoqJEyfqDAmRZi6UAHb3ZcBpwBtAH2AdMDqMfWeLTp06MWPGDCZNmkSbNm2YOnUqQ4cO5d133426NBGJSMaGIMzsTGAEUA686e5vZGRHjSDTQxA1LVu2jMsuu4z333+fli1bcvfdd3PzzTdjlugsOhHJdaEOQZjZvwN/B64B/g2YY2brzOz0TOwv1wwYMID58+fz7W9/m71793LLLbdwwQUX0Jg/CBGR7NdoAWxmt5jZyGBinJuJnYFwhLsfBRQADwN/NbOzG2ufuaxNmzY88MADPPPMM3Tu3JmZM2cyePBg5syZE3VpIhKSxuwBXwm8CHwKdAYuMLOfmtl5wEHufhdwC8EpYxLzta99jeLiYk477TRKSko4++yzueOOO9i7d2/UpYlIhjVaAAfjG+2BwcTGfbcCZwN/AtabWSmxIYlBZnaJmR3XkJ8pNyWHH344r7zyCj//+c8xM+68806+8pWvsG7duqhLE5EMatQAdPdKd3+f2NkOq919pLt3BvoDNwALgXzgPmAp8Hlj7j+X5efn84tf/II5c+bQq1cv3n77bYYMGcKf//znqEsTkQzJVA/0VuBmM5tmZqcCnwBziE2Ms9HdDyU2g1mzOhUtHV/5yldYtGgRY8eOZceOHVx66aVcd9117Nq1K+rSRKSRZSSA3X0xMBToBrwK7CQ2Nvwt4Lagzafu/mom9p/runbtyrPPPsvvf/97WrduzSOPPMKXvvQllixZEnVpItKIMjYG6+5r3X000JPYROmXAke5++OZ2mdTYmbceOONzJs3j2OPPZZly5Zx8skn89BDDxHGz8dFJPMyfhAs6On+1d2fdvcNmd5fUzN48GAWLFjAtddeyxdffMG3v/1tvv71r7N169aoSxORBtJZCDmgXbt2PProo0yfPp2OHTvy7LPPMmTIEN54I2t/XCgiaVAA55DLLruM4uJihg0bxvr16xk5ciT/9//+Xyorm828RiJNigI4x/Tt25c33niD22+/HXfn5z//OWeddRYbNmh0RyTXKIBzUMuWLfn1r3/N3/72Nw455BBee+01Bg8eTFFRUdSliUgdKIBz2Nlnn82iRYsYPXo0W7duZezYsdx000188cUXUZcmImlQAOe4Hj168Ne//pXf/va3tGzZkt///vcMHz6cDz/8MOrSRCQFBXAT0KJFC77//e/z1ltvcfTRR7No0SJOOukkJk+erHOGRbKYArgJKSws5N1332X8+PHs2rWLa6+9liuuuIIdO3ZEXZqIJKAAbmI6dOjAtGnTmDp1Ku3atWP69OkMGDCAO+64g+XLl0ddnojEUQA3UVdddRXvvfcehYWFfPzxx9x5550ce+yxDB8+nIceeki/pBPJAgrgJqxfv37MmzePV199lauvvpr27dszb948vv3tb9OzZ08uvvhiioqKNPm7SEQydlHOXBL2RTmjsmvXLp599lmmTp3Kyy+/XH2Arnv37lxxxRVMmDCBE088URcHFWlktV2UUwFM8wngeBs3buRPf/oTU6ZMYdmyZdXLBw4cyIQJE7jyyis59NBDI6xQpOlQACfRHAO4iruzcOFCpk6dyuOPP86WLVuA2Klt55xzDhMnTmTs2LG0bds24kpFcpcCOInmHMDxysvLefHFF5k6dSrPP/989dhwhw4duPTSS5kwYQKnnXYaLVro0IFIXSiAk1AAH2jLli1Mnz6dqVOnMn/+/Orlffv25aqrrmLChAkcddRREVYokjsUwEkogJP74IMPmDZtGtOmTdtv1rVTTz2ViRMncskll9CpU6foChTJcgrgJBTA6amsrOTVV19lypQpPP3009UXCm3dujUXXXQREyZM4NxzzyU/Pz/iSkWyiwI4CQVw3ZWVlfH0008zdepUXnnllepT2goKCrjyyiuZOHEigwYNirhKkeyQswFsZocBU4FDgH3AJHe/z8y6ADOAPsA64FJ33xZs82PgWqAS+K67z0q2DwVww3z00Uc89thjTJkyhRUrVlQvHzx4MBMnTuSKK66goKAgwgpFopXLAdwT6Onu75pZB2AhcBHwDWCru99lZrcDnd39NjMbADwBnAwcCvwd6O/utV63RwHcONyd+fPnM2XKFKZPn862bdsAyMvLY9SoUUyYMIELL7yQgw46KOJKRcJVWwBn/flE7l7i7u8Gjz8DPgB6EbvU/ZSg2RRioUywfLq773H3tcAqYmEsGWZmDBs2jAcffJCSkhKeeuopLrzwQsyMF154gcsuu4xDDjmE66+/nrfeektTZUqzl/UBHM/M+gAnAvOAAncvgVhIAz2CZr2A9XGbbQiW1Xyt68xsgZkt2Lx5c0brbo5at27N17/+dZ577jk2btzIfffdx9ChQ9mxYweTJk3i1FNPpX///vzyl79k3bp1UZcrEomcCWAzaw88DXzP3Xcma5pg2QFdLXef5O6F7l7YvXv3xipTEujRowff/e53WbhwIUuWLOGHP/whPXv2ZNWqVfzsZz+jb9++jBw5kv/93/9l585k/2lFmpacCGAza0ksfP/k7s8EizcF48NV48SlwfINwGFxm/cGPg6rVklu4MCB3H333axfv56XXnqJK664gjZt2vDaa69xzTXXcMghhzB+/Hj+9re/UVlZ67C9SJOQCwfhjNgY71Z3/17c8nuALXEH4bq4+4/M7Hjgcf51EG420E8H4bLXzp07eeqpp5gyZQqvv/569fJDDz2U8ePHM3HiRAYMGBBhhSINk8tnQZwGvAEsIXYaGsBPiI0DPwkcDnwEXOLuW4Nt7gCuASqIDVm8mGwfCuDssWbNGh577DGmTp3K6tWrq5efdNJJTJw4kXHjxqEhI8k1ORvAYVAAZx9356233mLKlCk8+eST1de1y8/P5/zzz2fChAmcf/75tG7dOuJKRVJTACehAM5uu3fvpqioiKlTpzJr1qzqseEuXbpw8cUXM3z4cIYMGcKAAQMUyJKVFMBJKIBzxyeffMLjjz/OlClTWLx48X7r8vPzOe644xgyZEj1bfDgwXTt2jWiakViFMBJKIBzU3FxMTNnzmTRokUUFxezcuXKhD/u6N279wGhfOSRR2peYwmNAjgJBXDT8Pnnn7NkyRKKi4spLi5m0aJFLF68uHrWtnjt27dn8ODB+4XywIEDadOmTQSVS1OnAE5CAdx0VVZWsmrVqv1Cubi4mJKSkgPatmjRgmOPPXa/UB4yZAg9evRI8Moi6VMAJ6EAbn42bdrEokWLqgO5uLiYDz/8kH379h3QtmfPnvsF8pAhQzj66KPJy8uLoHLJRQrgJBTAArGzLZYuXVodyFU95rKysgPatm3blhNOOGG/seUTTjiBdu3aRVC5ZDsFcBIKYKnNvn37WLt27QFDGOvXrz+grZnRr1+/Aw749ezZk9gPOqW5UgAnoQCWutqyZcsBQxjLli2joqLigLbdu3c/IJSPOeYYXbqpGVEAJ6EAlsawZ88eli1btl8oFxcXV/+KL95BBx3EwIED9xtbHjRoEB07doygcsk0BXASCmDJFHfno48+OmBcee3atQnbH3XUUQcc8Ovdu7eGMHKcAjgJBbCEbfv27SxevHi/ceX333+f8vLyA9p26dJlv0AeMmQIxx13HC1btoygcqkPBXASCmDJBnv37uXDDz/cL5SLi4vZsmXLAW1btWrFgAEDDhhb7tSpU/iFS0oK4CQUwJKt3J2NGzceMK68atWqhO2POOKIA0K5T58+GsKImAI4CQWw5JrPPvtsv59dFxcXs2TJEr744osD2h588MHVQxhV93379qVTp04K5pAogJNQAEtTUFFRwcqVK/c72Pfee+9RWlqasH3r1q055JBDUt4KCgo0R0YDKYCTUABLU/bJJ5/sN668aNEiNm7cWKcLoB588MHVgdyzZ89aw7pbt276iXYCCuAkFMDSHO3atYtNmzbxySefVN9KSkr2e15127t3b1qv2aJFC3r06HFAMCcK7Q4dOjSbIZDaAlg/xRFpptq2bUvfvn3p27dv0nbuzrZt2w4I5URh/emnn1Y/TqVNmzZJhz6qQrugoIBWrVo11tvOKuoBox6wSGPZu3cvpaWlCXvR8aFdUlKScJ7m2nTp0iXlWHXPnj3p0qVLVk60ryGIJBTAIuErKyurNajjA3vTpk3V1wFMJT8/n4KCgrQOLrZv3z7D7zBmx44ddOrUabu7dz6g3lAqEBGpoX379hx99NEcffTRSdvt27ePLVu2pAzrTz75hK1bt7Jx40Y2btyYcv/t2rVLekCx6tajR48G/eqwqKgIoFOideoBox6wSFOxZ8+eAw4s1tazTnTOdG26deuW1lkgnTt3PuDA4hlnnMGrr76Kux9wxFEBjAJYpLlxdz777LOkZ35U3UpLSxNeKSWRli1b0qJFC/bs2VO9LC8vj8rKyoQBrCEIEWl2zIyOHTvSsWNH+vfvn7RtZWXlfmd3JAvsRFOPJhu/VgCLiCSRl5dHQUEBBQUFDB48OGnb3bt3s2nTJl544QV+8IMf7NcTTiT7ztcQEclRbdq0oU+fPtx444089dRTHHTQQUnbK4BFRDJg+/bt5OfnV52XnHAQWQEsIpIBf/jDH9i1a1fVsMXqRG0UwCIiGXDwwQdzzz33EJxhlXDmIx2EExHJgL/85S8p2+g8YMDMNgP/jLqOON2AT6MuIpBNtYDqSSWb6smmWiDaeo5w9+41FyqAs5CZLUg0cUcUsqkWUD2pZFM92VQLZF89oDFgEZHIKIBFRCKiAM5Ok6IuIE421QKqJ5VsqiebaoHsq0djwCIiUVEPWEQkIgpgEZGIKIAzwMxGmdlyM1tlZrcnWG9mdn+wfrGZDU21rZndY2YfBu2fNbNOwfI+ZrbbzIqD28Mh1PILM9sYt8/z4tb9OGi/3My+GtJnMyOulnVmVpzOZ9MI9Uw2s1Ize7/GNl3M7GUzWxncd45bl8nPp7Z6ovju1FZLVN+d2uqp93enUbi7bo14A/KI/e77SKAVsAgYUKPNecCLgAHDgXmptgXOBfKDx78BfhM87gO8H3ItvwBuTbC/AUG71kDfYPu8TNdTY/vfAj9L9dk0tJ5g3enA0Jr7AO4Gbg8e3x733ypjn0+KekL97qSoJfTvTrJ66vvdaaybesCN72RglbuvcfdyYDowtkabscBUj5kLdDKznsm2dfe/uXtFsP1coHdUtSQxFpju7nvcfS2wKnidUOoxMwMuBZ5I+ck0vB7c/XVgay2fw5Tg8RTgorjlmfp8aq0ngu9Oss+mNpF8NlXq8d1pFArgxtcLWB/3fEOwLJ026WwLcA2x/9NX6Wtm75nZa2Y2IqRavhP8mTc57k/sVNtk+rMZAWxy95Vxy2r7bBpaTzIF7l4CENz3SPO1MlVPvDC+O6mE/d1JR12/O41CAdz4DrjuE1DzXL/a2qTc1szuACqAPwWLSoDD3f1E4PvA42bWMcO1PAQcBQwJ9v/bNPeX0c8GuJz9ezDJPpuG1lMfmfx8Uu88vO9OMlF8d9JR1+9Oo1AAN74NwGFxz3sDH6fZJum2ZjYRuAC40oOBquBPti3B44XExsmqLnKVkVrcfZO7V7r7PuAR/vWnYqr9ZfKzyQf+DzCjalmKz6ah9SSzqepP3+C+NM3XylQ9YX93ahXRdyepen53GkemB5mb243YFJ9riB1IqDpYcHyNNuez/8GC+am2BUYBy4DuNV6rO8HBCmIHKDYCXTJcS8+47W8hNnYHcDz7H0hZw/4HUjJST9zn81q6n01D64lb34cDDzTdw/4H4e7O9OeTop5Qvzspagn9u5Osnvp+dxotLzIRQs39Ruxo7Api/9e8I1j2LeBbwWMDHgjWLwEKk20bLF9FbHyrOLg9HCz/OrA0+EK+C4wJoZZpQdvFQFGNf1R3BO2XA6PD+GyCdX+seo24ZUk/m0ao5wlif6ruJdb7ujZY3hWYDawM7ruE9PnUVk8U353aaonqu5OwnoZ8dxrjpp8ii4hERGPAIiIRUQCLiEREASwiEhEFsIhIRBTAIiIRUQCLiEREASwiEhEFsEgKZrbQzH4QdR3S9CiARZII5gk4ntgvyEQalQJYJLljic1PUBxxHdIEKYBFEjCzQWb2MrAgWLTCzH4WZU3S9ORHXYBItjGzvsDrwP3EppLsAvwV+L2ZveXuf4+yPmk61AMWOdCDwEx3/xmxOWXfdvcHiM0olpErI0jzpAAWiWNm3YFzgIeD64QNBt4LVlcA5VHVJk2PAlhkf8OJXYH3PWITcR8MFJtZV+Bw4B8AZva8md1rZnMtdvn5k4NLvq8zs1sjq15yigJYZH+tg/tWxK5btsXd1wPfJHZ5m9eD9QOBD9x9OPAKcB/wDeAM4NoQ65UcpoNwIvubR2yo4efErrCw0sz+Dfgpsasi7DOzDkALd/+fYJvdwH+7+w4zawvsjKJwyT0KYJE47r7ezK4GfgMcClQS6xV/3d1fCZoNBObHbXYCsTMmqtYtCalcyXEaghCpwd0fc/dewCfAeHcf6u6z4poMJHZNsypVF5GEWBgrgCUtCmCRBMysG3AIicP0BIIADi47/4n/6+KK6gFL2nRRTpEEzOwM4CWgnbtXRF2PNE0KYBGRiGgIQkQkIgpgEZGIKIBFRCKiABYRiYgCWEQkIgpgEZGIKIBFRCLy/wG/DpiYs35xswAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 360x576 with 3 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "save.plot_tikhonov_curves()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/seismic/.ipynb_checkpoints/LinearInversion-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/LinearInversion-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c45f5adc9663a0f0def415f95ef0780115e6e849
--- /dev/null
+++ b/Notebooks/seismic/.ipynb_checkpoints/LinearInversion-checkpoint.ipynb
@@ -0,0 +1,593 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "8hoXeANtrV3ZUHZuBUa8",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     },
+     "outputId": {
+      "block": "c3ct5bmxGb0kJAJA80y1",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from geoscilabs.inversion.LinearInversionDirect import LinearInversionDirectApp\n",
+    "from ipywidgets import interact, FloatSlider, ToggleButtons, IntSlider, FloatText, IntText"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "XoBdBeGBCevcAMVqqZtM",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     },
+     "outputId": {
+      "block": "nzHSDMZI4foQGe88I1D5",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "app = LinearInversionDirectApp()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "GAKaomYwcnkDpl2fpbAI",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "# Linear Inversion App\n",
+    "\n",
+    "This app is based upon the inversion tutorial: \"INVERSION FOR APPLIED GEOPHYSICS\" by Oldenburg and Li (2005).\n",
+    "\n",
+    "Douglas W. Oldenburg and Yaoguo Li (2005) 5. Inversion for Applied Geophysics: A Tutorial. Near-Surface Geophysics: pp. 89-150.\n",
+    "eISBN: 978-1-56080-171-9 \n",
+    "print ISBN: 978-1-56080-130-6 \n",
+    "https://doi.org/10.1190/1.9781560801719.ch5 \n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "wzGxtmJjFucP0mYtZzVD",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 2
+     }
+    }
+   },
+   "source": [
+    "## Purpose\n",
+    "\n",
+    "By using a simple decaying and oscillating kernel function, which emulates the physics of electromagnetic (EM) survey, we understand basic concepts of inverting data. Three items that we are going to explore are:\n",
+    "\n",
+    "- Step1: Create a model ($\\mathbf{m}$)\n",
+    "- Step2: Generate a sensitivity kernel (or matrix), $\\mathbf{G}$\n",
+    "- Step3: Simulate data ($\\mathbf{d} = \\mathbf{G}\\mathbf{m}$)\n",
+    "- Step4: All three steps together\n",
+    "- Step5: Invert the data, and explore inversion results"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "TVYiH721oymtWnC2zQ1w",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 2
+     }
+    }
+   },
+   "source": [
+    "## Forward problem\n",
+    "\n",
+    "\n",
+    "Let $g_j(x)$ denote the kernel function for $j$th datum. With a given model $m(x)$, $j$th datum can be computed by solving following integral equation:\n",
+    "\n",
+    " $$ d_j = \\int_a^{b} g_j(x) m(x) dx $$\n",
+    "\n",
+    "where \n",
+    "\n",
+    "$$ g_j(x) = e^{p_jx} cos (2 \\pi q_jx) $$ \n",
+    "\n",
+    "By discretizing $g_j(x)$ we obtain"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "s9H8M9Mtzk7wkXBPF8iZ",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 2
+     }
+    }
+   },
+   "source": [
+    "$$ \\mathbf{g}_j(\\mathbf{x}) = e^{p_j\\mathbf{x}} cos (2 \\pi q_j \\mathbf{x})$$\n",
+    "\n",
+    "where\n",
+    "\n",
+    "- $\\mathbf{g}_j$: $j$th row vector for the sensitivty matrix ($1 \\times M$)\n",
+    "- $\\mathbf{x}$: model location ($1 \\times M$)\n",
+    "- $p_j$: decaying constant (<0)\n",
+    "- $q_j$: oscillating constant (>0)\n",
+    "\n",
+    "By stacking multiple rows of $\\mathbf{g}_j$, we obtain sensitivity matrix, $\\mathbf{G}$: \n",
+    "\n",
+    "\\begin{align}\n",
+    "    \\mathbf{G} = \n",
+    "    \\begin{bmatrix}\n",
+    "        \\mathbf{g}_1\\\\\n",
+    "        \\vdots\\\\\n",
+    "        \\mathbf{g}_{N}\n",
+    "    \\end{bmatrix}\n",
+    "\\end{align}\n",
+    "\n",
+    "Here, the size of the matrix $\\mathbf{G}$ is $(N \\times M)$. \n",
+    "Finally data, $\\mathbf{d}$, can be written as a linear equation:\n",
+    "\n",
+    "$$ \\mathbf{d} = \\mathbf{G}\\mathbf{m}$$\n",
+    "\n",
+    "where $\\mathbf{m}$ is an inversion model; this is a column vector ($M \\times 1$). \n",
+    "\n",
+    "In real measurments, there will be various noises source, and hence observation, $\\mathbf{d}^{obs}$, can be written as \n",
+    "\n",
+    "$$ \\mathbf{d}^{obs} = \\mathbf{G}\\mathbf{m} + \\mathbf{noise}$$"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "UY71pbGgRaPr7PBxH3OT",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "##  Step1: Create a model, $\\mathbf{m}$\n",
+    "\n",
+    "The model $m$ is a function defined on the interval (-2,2). Here we generate a model that is the sum of a: (a) background $m_{ref}$, (b) box car $m_1$ and (c) Gaussian $m_2$. The box car is defined by\n",
+    "- `m$_{background}$` : amplitude of the background\n",
+    "- `m1` : amplitude\n",
+    "- `$m1_{center}$` : center\n",
+    "- `$m1_{width}$` : width\n",
+    "the Gaussian is defined by \n",
+    "- `m2` : amplitude\n",
+    "- `$m2_{center}$` : center\n",
+    "- `$m2_{sigma}$` : width of Gaussian (as defined by a standard deviation)\n",
+    "- `M`: # of model parameters"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "80ec4d5942d74227b59639192f817751",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=0.0, continuous_update=False, description='m$_{background}$', max=2.0,…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q_model = app.interact_plot_model()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "0zUv3gNqulptgg5RQABq",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "##  Step2: Generate a sensitivity kernel (or matrix), $\\mathbf{G}$\n",
+    "\n",
+    "By using the following app, we explore each row vector of the sensitivity matrix, $\\mathbf{g}_j$. Parameters of the apps are:\n",
+    "\n",
+    "- `M`: # of model parameters\n",
+    "- `N`: # of data\n",
+    "- `p`: decaying constant (<0)\n",
+    "- `q`: oscillating constant (>0)\n",
+    "- `ymin`: maximum limit for y-axis\n",
+    "- `ymax`: minimum limit for y-axis\n",
+    "- `show_singular`: show singualr values"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "x9PxRUeZbvYukM3fIzi0",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     },
+     "outputId": {
+      "block": "xjP1IRGiznblm7UECCWU",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     }
+    }
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "fee53dd89d6e44bbb00f4bb390a2ffaa",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=20, continuous_update=False, description='N', min=1), IntSlider(value=10…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "Q_kernel = app.interact_plot_G()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "B3aFbgUWKTzmqttCPDu3",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "## Step3: Simulate data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "fOWoINnfZAyspfxAKRnr",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "The $j$-th datum is the inner product of the $j$-th kernel $g_j(x)$ and the model $m(x)$. In discrete form it can be written as the dot product of the vector $g_j$ and the model vector $m$."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "xeKrzyj4YLEYLfraRG1y",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "### $$ d_j = \\mathbf{g}_j \\mathbf{m} $$\n",
+    "\n",
+    "If there are $N$ data, these data can be written as a column vector, $\\mathbf{d}$:\n",
+    "\n",
+    "\\begin{align}\n",
+    "    \\mathbf{d} = \\mathbf{G}\\mathbf{m} = \n",
+    "    \\begin{bmatrix}\n",
+    "        d_1\\\\\n",
+    "        \\vdots\\\\\n",
+    "        d_{N}\n",
+    "    \\end{bmatrix}\n",
+    "\\end{align}"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "k5SdPFYbjSTR0Unuprld",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "### Adding Noise\n",
+    "\n",
+    "Observational data are always contaminated with noise. Here we add Gaussian noise $N(0,\\epsilon)$ (zero mean and standard deviation $\\sigma$). Here we choose \n",
+    "\n",
+    "$$ \\epsilon = \\% |d| + \\text{floor} $$\n",
+    "  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "AttributeError",
+     "evalue": "'LinearInversionDirectApp' object has no attribute 'interact_plot_data'",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
+      "\u001b[1;32m<ipython-input-5-6d6bcf7ec2cf>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mQ_data\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mapp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0minteract_plot_data\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
+      "\u001b[1;31mAttributeError\u001b[0m: 'LinearInversionDirectApp' object has no attribute 'interact_plot_data'"
+     ]
+    }
+   ],
+   "source": [
+    "Q_data = app.interact_plot_data()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "Kfas1vohMX9B1w8haaeF",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "## Step4: All three steps together"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "gpeg40wOdccGxZMMBIxU",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     },
+     "outputId": {
+      "block": "yFInpwVxV9MsRBuL5pNr",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     }
+    }
+   },
+   "outputs": [],
+   "source": [
+    "app.interact_plot_all_three_together()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "I5cRNN1g9FcrGvbH7UKL",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "## Inverse Problem\n",
+    "\n",
+    "In the inverse problem we attempt to find the model $\\mathbf{m}$ that gave rise to the observational data $\\mathbf{d}^{obs}$. The inverse problem is formulated as an optimization problem: \n",
+    "\n",
+    "\n",
+    "$$\\text{minimize} \\ \\ \\ \\phi(\\mathbf{m}) = \\phi_d(\\mathbf{m}) + \\beta \\phi_m(\\mathbf{m}) $$\n",
+    "\n",
+    "where \n",
+    "\n",
+    "- $\\phi_d$: data misfit\n",
+    "- $\\phi_m$: model regularization\n",
+    "- $\\beta$: trade-off (or Tikhonov) parameter  $0<\\beta<\\infty$\n",
+    "\n",
+    "Data misfit is defined as \n",
+    "\n",
+    "$$ \\phi_d = \\sum_{j=1}^{N}\\Big(\\frac{\\mathbf{g}_j\\mathbf{m}-d^{obs}_j}{\\epsilon_j}\\Big)^2$$\n",
+    "\n",
+    "where $\\epsilon_j$  is an estimate of the standard deviation of the $j$th datum.\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "DPEqdTQucMMV6G5ONR7c",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "The model regularization term, $\\phi_m$, can be written as \n",
+    "\n",
+    "$$ \\phi_m(\\mathbf{m}) = \\alpha_s \\int (\\mathbf{m}-\\mathbf{m}_{ref}) dx + \\alpha_x \\int (\\frac{d \\mathbf{m}}{dx}) dx$$\n",
+    "\n",
+    "The first term is referred to as the \"smallness\" term. Minimizing this generates a model that is close to a reference model $m_{ref}$. The second term penalizes roughness of the model. It is generically referred to as a \"flattest\" or \"smoothness\" term.  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "j7hVPYIA73jbxv0bAinV",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 2
+     }
+    }
+   },
+   "source": [
+    "## Step5: Invert the data, and explore inversion results\n",
+    "\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "8k53qHfi1hcwT29TMxNC",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 1
+     }
+    }
+   },
+   "source": [
+    "In the inverse problem we define parameters needed to evaluate the data misfit and the model regularization terms. We then deal with parameters associated with the inversion.\n",
+    "\n",
+    "### Parameters\n",
+    "\n",
+    "- `mode`: `Run` or `Explore`\n",
+    "    - `Run`: Each click of the app, will run `n_beta` times of inversion\n",
+    "    - `Explore`: Not running inversions, but explore result of the inversions\n",
+    "\n",
+    "\n",
+    "- `noise option`: `error contaminated` or `clean data`\n",
+    "\n",
+    "#### Misfit\n",
+    "- `percent`: percentage of the uncertainty (%)\n",
+    "\n",
+    "- `floor`: floor of the uncertainty (%)\n",
+    "\n",
+    "- `chifact`: chi factor for stopping criteria (when $\\phi_d^{\\ast}=N \\rightarrow$ `chifact=1`)\n",
+    "\n",
+    "#### Model norm\n",
+    "- `mref`: reference model\n",
+    "\n",
+    "- `alpha_s`: $\\alpha_s$ for smallness\n",
+    "\n",
+    "- `alpha_x`: $\\alpha_x$ for smoothness\n",
+    "\n",
+    "#### Beta\n",
+    "- `beta_min`: minimum $\\beta$\n",
+    "\n",
+    "- `beta_max`: maximum $\\beta$\n",
+    "\n",
+    "- `n_beta`: the number of $\\beta$\n",
+    "\n",
+    "#### Plotting options\n",
+    "\n",
+    "- `data`: `obs & pred` or `normalized misfit`\n",
+    "    - `obs & pred`: show observed and predicted data\n",
+    "    - `normalized misfit`: show normalized misfit\n",
+    "\n",
+    "\n",
+    "- `tikhonov`: `phi_d & phi_m` or `phi_d vs phi_m`\n",
+    "    - `phi_d & phi_m`: show $\\phi_d$ and $\\phi_m$ as a function of $\\beta$\n",
+    "    - `phi_d vs phi_m`: show tikhonov curve\n",
+    "    \n",
+    "- `i_beta`: i-th $\\beta$ value\n",
+    "\n",
+    "- `scale`: `linear` or `log`\n",
+    "    - `linear`: linear scale for plotting the third panel\n",
+    "    - `log`: log scale for plotting the third panel     "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "iooxa": {
+     "id": {
+      "block": "zYsKlEza7On1cZcJUO1x",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     },
+     "outputId": {
+      "block": "XHsuSTVmGPtaRtV3WO9m",
+      "project": "VNMrkxzChhdveZyf6lmb",
+      "version": 3
+     }
+    },
+    "scrolled": false
+   },
+   "outputs": [],
+   "source": [
+    "app.interact_plot_inversion()"
+   ]
+  }
+ ],
+ "metadata": {
+  "iooxa": {
+   "id": {
+    "block": "lb7CgEnVPzfs79VcKpB1",
+    "project": "VNMrkxzChhdveZyf6lmb",
+    "version": 5
+   }
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/seismic/.ipynb_checkpoints/Seis_NMO-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/Seis_NMO-checkpoint.ipynb
similarity index 100%
rename from seismic/.ipynb_checkpoints/Seis_NMO-checkpoint.ipynb
rename to Notebooks/seismic/.ipynb_checkpoints/Seis_NMO-checkpoint.ipynb
diff --git a/seismic/.ipynb_checkpoints/Seis_Reflection-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/Seis_Reflection-checkpoint.ipynb
similarity index 100%
rename from seismic/.ipynb_checkpoints/Seis_Reflection-checkpoint.ipynb
rename to Notebooks/seismic/.ipynb_checkpoints/Seis_Reflection-checkpoint.ipynb
diff --git a/seismic/.ipynb_checkpoints/Seis_Refraction-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/Seis_Refraction-checkpoint.ipynb
similarity index 100%
rename from seismic/.ipynb_checkpoints/Seis_Refraction-checkpoint.ipynb
rename to Notebooks/seismic/.ipynb_checkpoints/Seis_Refraction-checkpoint.ipynb
diff --git a/Notebooks/seismic/.ipynb_checkpoints/Seis_VerticalResolution-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/Seis_VerticalResolution-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..18c102e67303882d9345dfe757d3db2e95ef4fe4
--- /dev/null
+++ b/Notebooks/seismic/.ipynb_checkpoints/Seis_VerticalResolution-checkpoint.ipynb
@@ -0,0 +1,107 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Seismic Resolution and Forward Modelling"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# Import the necessary packages\n",
+    "%matplotlib inline   \n",
+    "from geoscilabs.seismic.syntheticSeismogram import InteractSeismogramTBL"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "When referring to vertical resolution, the question to ask is: \"Can the two arrivals (one from the top, and one from the bottom of the layer) be distinguished?\" \n",
+    "\n",
+    "Adjust the layer thickness for the middle layer (by adjusting d2 and/or d3) and the frequency of the input pulse to investigate vertical resolution. You can also add noise to the trace. \n",
+    "\n",
+    "The geologic model is:\n",
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/seismic/geoModel.png?raw=true\" style=\"width: 50%; height: 50%\"></img>\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Parameters of the below widget are:\n",
+    "\n",
+    "- d2: depth of the interface between layer 1 and 2\n",
+    "- d3: depth of the interface between layer 2 and 3\n",
+    "- rho1: density of the layer 1 ($kg/m^3$)\n",
+    "- rho2: density of the layer 2 ($kg/m^3$)\n",
+    "- rho3: density of the layer 3 ($kg/m^3$)\n",
+    "- v1: velocity of the layer 1 ($m/s$)\n",
+    "- v2: velocity of the layer 2 ($m/s$)\n",
+    "- v3: velocity of the layer 3 ($m/s$)\n",
+    "- wavef: peak frequency of the Ricker wavelet\n",
+    "- waveA: amplitude of Ricker wavelet\n",
+    "- AddNoise: swith for adding noise \n",
+    "- usingT: switch for considering transmission coefficient for reflectivity"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "5ec1451066644b66be4c8aa47088ebb6",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=9.0, description='d2', min=1.0), FloatSlider(value=9.5, description='d…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "InteractSeismogramTBL();"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/seismic/.ipynb_checkpoints/SeismicApplet-checkpoint.ipynb b/Notebooks/seismic/.ipynb_checkpoints/SeismicApplet-checkpoint.ipynb
similarity index 100%
rename from seismic/.ipynb_checkpoints/SeismicApplet-checkpoint.ipynb
rename to Notebooks/seismic/.ipynb_checkpoints/SeismicApplet-checkpoint.ipynb
diff --git a/seismic/fourier_transform.ipynb b/Notebooks/seismic/.ipynb_checkpoints/fourier_transform-checkpoint.ipynb
similarity index 100%
rename from seismic/fourier_transform.ipynb
rename to Notebooks/seismic/.ipynb_checkpoints/fourier_transform-checkpoint.ipynb
diff --git a/Notebooks/seismic/2D-LinearInversion-Crosswell-Tomorgraphy.ipynb b/Notebooks/seismic/2D-LinearInversion-Crosswell-Tomorgraphy.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2f65fe53dda1974a2cc83fdbf2cc556737610899
--- /dev/null
+++ b/Notebooks/seismic/2D-LinearInversion-Crosswell-Tomorgraphy.ipynb
@@ -0,0 +1,369 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# 2D Linear Inversion of Crosswell Tomography Data "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np\n",
+    "from geoscilabs.inversion.TomographyInversion import TomographyInversionApp\n",
+    "import matplotlib.pyplot as plt\n",
+    "from ipywidgets import interact, IntSlider\n",
+    "%matplotlib inline"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Purpose\n",
+    "\n",
+    "From the Linear inversion notebook (1D), we learned important apsects about the linear inversion. \n",
+    "However, real world geophysical inverse problem are not often 1D, but multidimensional (2D or 3D), and this extension of dimension allows us to put more apriori (or geologic) information through the regularization term. \n",
+    "In this notebook, we explore these multidimensional aspects of the linear inversion by using 2D traveltime croswell tomography example. \n",
+    "\n",
+    "## Outline\n",
+    "This notebook includes four steps:\n",
+    "- Step1: Generate a velocity model\n",
+    "- Step2: Simulate traveltime data and add noise\n",
+    "- Step3: Run $l_2$ inversion"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step1: Generate a velocity model\n",
+    "\n",
+    "Here we set up a velocity model using a following app. Controlling parameters of the app are:\n",
+    "\n",
+    "- `set mesh`: use active **only** when you want to change the 2D mesh\n",
+    "- `add block`: use active when you want to add block (if not stay inactive)\n",
+    "- `model type`: background or block\n",
+    "- `show grid?`: show grid of the mesh\n",
+    "\n",
+    "- `v0`: velocity of the background\n",
+    "- `v1`: velocity of the block\n",
+    "- `xc`: x center of the block\n",
+    "- `yc`: y center of the block\n",
+    "- `dx`: width of the block\n",
+    "- `dy`: thickness of the block\n",
+    "- `nx`: # of cells in x-direction (this is only active when `set_mesh=active`)\n",
+    "- `ny`: # of cells in y-direction (this is only active when `set_mesh=active`)\n",
+    "\n",
+    "### Changing # of cells in $x$- or $z$- direction\n",
+    "Related parameters for this task are: `set mesh`, `nx`, `ny`. \n",
+    "Size of the 2D domain are fixed to 200m $\\times$ 400m, but the number of cells in each direction can be changed such that you can alter size of the cells in each direction. When you change either `nx` or `ny` make sure you choose `set mesh=active` otherwise `set mesh=inactive`. Note that once mesh setup is changed, velocity model is reset to a background value (`v0`). \n",
+    "\n",
+    "### Changing a parameter of a single block\n",
+    "Although you can change the location, size, and velocity of the block there are few rules that you need to follow to do so. \n",
+    "\n",
+    "1. If you want to change the parameter of the block: first set `add block=active` then change parameters of the block (`v1`, `xc`, `zc`, `dx`, `dy`)\n",
+    "\n",
+    "2. Once you changed the parameters, make sure first choose `model type=background` then change that to `model type=block`\n",
+    "\n",
+    "### Adding more blocks\n",
+    "You can also add multiple blocks. To add a block follow below steps:\n",
+    "\n",
+    "1. Set `add block=inactive`, then change the parameter of the new block using: `v1`, `xc`, `zc`, `dx`, `dy`. Velocity model will not change, but you can see the white lines which illustrate boundary of the new block.\n",
+    "\n",
+    "2. Once you are happy with the new block, set `add block=active`, then velocity model will be updated with the new block that you have set. \n",
+    "\n",
+    "3. Repeat 1 and 2 if you want to add more blocks. \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "b68b953b597c4cf281679c6a5ab2b2fb",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(VBox(children=(FloatSlider(value=1000.0, continuous_update=False, description='v0', max=3000.0,…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app = TomographyInversionApp()\n",
+    "app.interact_plot_model()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step2: Simulate travel time data and add noise\n",
+    "\n",
+    "Within this app, by using the velocity model set up, we simulate traveltime tomography data and add Gaussian noise. This syntehtic data set will be used in the following inversion module. Controlling parameters are:\n",
+    "\n",
+    "- `percent (%)`: percentage of the Gaussian noise\n",
+    "- `floor (s)`: floor of the Gaussain noise\n",
+    "- `random seed`: seed to generate random variables having normal distribution\n",
+    "- `tx_rx_plane` or `histogram`: choice of the plotting data\n",
+    "- `update`: this buttion is for the interactin between the first app. If the velocity model is changed by altering the first app, you can simply click `update` to run simulation again with the updated velocity model. \n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "dfb3a20158ab4e6b96ac1caa1a06f945",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "HBox(children=(Output(), Box(children=(Box(children=(BoundedFloatText(value=0.0, description='percent ($\\\\%$):…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_data()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Step3: $l_2$ inversion\n",
+    "\n",
+    "- `maxIter`: maximum number of iteration\n",
+    "- `m0`: initial model\n",
+    "- `mref`: reference model\n",
+    "- `percentage`: percent standard deviation for the uncertainty\n",
+    "- `floor`: floor value for the uncertainty\n",
+    "- `chifact`: chifactor for the target misfit\n",
+    "- `beta0_ratio`: ratio to set the initial beta\n",
+    "- `coolingFactor`: cooling factor to cool beta\n",
+    "- `n_iter_per_beta`: # of interation for each beta value \n",
+    "- `alpha_s`: $\\alpha_s$\n",
+    "- `alpha_x`: $\\alpha_x$\n",
+    "- `alpha_z`: $\\alpha_z$\n",
+    "- `use_target`: use target misfit as a stopping criteria or not"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-1: Run inversion"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "1\n",
+      "\n",
+      "        SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.\n",
+      "        ***Done using same Solver and solverOpts as the problem***\n",
+      "SimPEG.SaveOutputEveryIteration will save your inversion progress as: '###-InversionModel-2021-06-22-19-34.txt'\n",
+      "model has any nan: 0\n",
+      "=============================== Projected GNCG ===============================\n",
+      "  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment   \n",
+      "-----------------------------------------------------------------------------\n",
+      "x0 has any nan: 0\n",
+      "   0  2.39e+06  3.40e+02  4.00e-02  9.60e+04    1.41e-02      0              \n",
+      "   1  1.20e+06  6.76e+02  3.53e-06  6.81e+02    3.20e+05      0              \n",
+      "   2  5.98e+05  6.60e+02  1.37e-05  6.68e+02    3.15e+05      0              \n",
+      "   3  2.99e+05  6.30e+02  5.14e-05  6.45e+02    3.05e+05      0   Skip BFGS  \n",
+      "   4  1.50e+05  5.77e+02  1.83e-04  6.04e+02    2.87e+05      0   Skip BFGS  \n",
+      "   5  7.48e+04  4.94e+02  5.91e-04  5.38e+02    2.59e+05      0   Skip BFGS  \n",
+      "   6  3.74e+04  3.84e+02  1.66e-03  4.46e+02    2.17e+05      0   Skip BFGS  \n",
+      "   7  1.87e+04  2.66e+02  3.93e-03  3.40e+02    1.67e+05      0   Skip BFGS  \n",
+      "   8  9.35e+03  1.65e+02  7.79e-03  2.38e+02    1.18e+05      0   Skip BFGS  \n",
+      "   9  4.67e+03  9.27e+01  1.32e-02  1.54e+02    7.65e+04      0   Skip BFGS  \n",
+      "------------------------- STOP! -------------------------\n",
+      "1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 9.6048e+03\n",
+      "1 : |xc-x_last| = 4.0147e-04 <= tolX*(1+|x0|) = 1.0141e-01\n",
+      "0 : |proj(x-g)-x|    = 7.6521e+04 <= tolG          = 1.0000e-10\n",
+      "0 : |proj(x-g)-x|    = 7.6521e+04 <= 1e3*eps       = 1.0000e-07\n",
+      "0 : maxIter   =      20    <= iter          =     10\n",
+      "------------------------- DONE! -------------------------\n"
+     ]
+    }
+   ],
+   "source": [
+    "model, pred, save = app.run_inversion(\n",
+    "    maxIter=20,\n",
+    "    m0=1./1000.,\n",
+    "    mref=1./1250.,\n",
+    "    percentage=0,\n",
+    "    floor=0.01,\n",
+    "    chifact=1,\n",
+    "    beta0_ratio=1e2,\n",
+    "    coolingFactor=2,\n",
+    "    n_iter_per_beta=1,\n",
+    "    alpha_s=1/(app.mesh_prop.hx.min())**2 * 1e4,\n",
+    "    alpha_x=1,\n",
+    "    alpha_z=1,\n",
+    "    use_target=True\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-2: Plot recovered model"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "c858a8932b744d309ba953148fa07700",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, description='ii', max=10), Checkbox(value=False, description='fixed'…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_model_inversion(model, clim=None)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-3: Plot predicted data "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a937a37991b94b9cac911daece8cc129",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=10, continuous_update=False, description='ii', max=10), Checkbox(value=F…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "app.interact_data_inversion(pred)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Step 3-4: Plot misfit curves"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAACaCAYAAACkCE/LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAApy0lEQVR4nO3dd3wVVdrA8d9DQgogXRYpCipShERp0uSChTeAbERXEYKCCKwuILq8Ii4WRAUpuwu+4K6IIiwgq4CY4EbEwgJBKRo6SAsl9E6A9DzvHyeEgAmk3rn35nw/n/nITDIzz8R755lzzpxzRFWxLMuySq5STgdgWZZlOcsmAsuyrBLOJgLLsqwSziYCy7KsEs4mAsuyrBLOJgLLsqwSzt/pAIpSqVKlNDg42OkwLMvyMakXL2oKTAeiUI1yOp6iJr7Uj6Bs2bJ64cIFp8OwLMvHiMhFVS3rdBzFxVYNWZZllXA2EeSBquJLJSfL8impqXDxotNReDWfaCMQkW5At8DAwGI5/rlz56hUqRJBQUEEBwcTHBxMmTJlsv6dfSns9jJlylC+fHlKlbI52rKuoAoHD8KmTbBxo/nvpk2wbRtMnAjPP+90hF7L59sIUlNTiY+PJykpqcDHTU9PJz4+vrDh5UupUqWyFhHh1KlTrFq1iuDgYCpXrpy1VKpU6Yp/BwUFuTVOy8quKL5vAKUuXCBw504Cd+zIWoJ27MDv3Lkcf/9E//4c//OfC3VOgKCgIGrVqkXp0qWv2F5RJPkMzMI2Fnu+nBJBXFwcN9xwA1WqVEFECnxsVSUjI4OMjIwr/n31ktvP8rNPenr6b86flpbGmjVrGDp06DXjzJ4osieJq9erVatGnTp1qFWrFv7+PlEwtDxAvr9vaWmwc+flp/tLT/pxcTn/fuXKEBICTZpc/u+dd0K5coWOXVU5efIkCQkJ1K1b94qf+Xpjsc/fAZKSkqhTp06hkgCAiODn54efn18RRZY7VSU9PZ20tDTS0tJIT08nNTUVEWH06NGcOnUqazl9+vQV64mJiRw8eJCDBw/m6Vz+/v7Url2bunXrcuutt1K3bt0rlmrVqhX6b2eVHLl+31Th6NErq3Q2boStWyE5+bcHCgiARo3MjT77Tf+mm6CYPo8iQpUqVTh+/HixHN+T+XwiALzuRiYi+Pv7/+ZJ/fjx47z22mu57qeqXLx4McckcXXCOHLkCHFxcRw8eJC4uDji4uL4/vvvf3PMMmXKUKdOnRyTRN26dSlfvnyRX7/l3QRg925YuRJiYy/f9E+cyHmHW265fKO/dNOvVw+uqp5xB2+7VxSVEpEISgoRoWzZspQtW5batWvnaZ+kpCT27duXlQwuLXv27CEuLo7Tp0+zdetWtm7dmuP+lStXzjVJ3HLLLRRXA77lQdLTYcMGWLmSml99ZW76R4789vcqVLjy6T4kBBo3BvswcZnIw0BXoBowFdVv3HFan0gExf3WkC8LCgqifv361K9fP8efnz17NscEERcXx969e7NKGOvWrfvNviJCgwYNaNu2LW3atKFt27bUq1evxD51+YyLF2HNGlixwjz1//gjJCQAkHVLv/FGaNcOWrQwN/yQEKhVq9iqdTyCyMfAQ8AxVBtn2x4GTAb8gOmovpvrMVQXAYsQqQRMBNySCHy+sXjbtm00bNjQoYh+a+HChSxbtoz33nsv3/t62rWoKkePHs0xScTFxXHgwIHfNHxXrVo1Kym0bduWZs2a2TedPN3Jk+aGf2n5+Wfz7n52t94K997L4dtu46bHH4c77vCIm35Bvm85fc/y1Fgs0h44D8zKSgQifsAO4EEgHlgL9MQkhbFXHaEfqscy9/srMAfVX/IceCH4RInAm8TGxtK0aVOnwygSIkL16tWpXr06rVu3/s3Pk5OTiY2NJSYmhlWrVhETE8PRo0eJjIwkMjISgICAAJo1a3ZFqaFatWruvhTrElXYu/fyTX/FCvOefnalSsHdd5sn/nvvhbZtoUYNAM5s28ZNuZQuneDW75vqckTqXLW1JbAL1T0AiMwDwlEdiyk9XMkUl98Fot2VBMAmArfZsWMHgwYN4qeffqJKlSqcOXOGF154wemwilVgYCCtWrWiVatWDBs2DFVlz549WUkhJiaGLVu28OOPP/Ljjz9m7Xf77bdfUWpo2LCh7WBXXNLTYfPmyzf9lStNp63sgoLgnnsu3/hbt/b4ev2i/r5VBX9Estd/TkN1Wh52rQkcyLYeD9xzjd8fAjwAVEDkdlT/mf9oC+DS8Am+sJQpU0avtnXr1t9sc7ekpCQNDQ3VjRs3at26dfXw4cNaqVIlTUxMzNdxPOFaitrp06c1OjpaX331Vb3vvvu0bNmyClyxVKxYUTt37qxvv/22fv/993r+/Hmnw/Ze6emqa9eqvvOOaufOqhUqqJpywOWlUiXVbt1Ux49XXbVKNTk5z4f3hM9oYb9vOV1DBUhSmKbQTa91H4I6CpuzrT+mMD3b+pMK/3fNYziwlKwSQXHVWV6nnWXp0qWEhoZSo0YNypcvT/Xq1QkKCsqx41hJU7FiRcLCwggLCwNMx7mNGzdmlRhiYmKIj48nOjqa6OhoAPz8/Lj77ruzSg3t2rWjRmbVhJWDpCT44Qf48kuIioJDh678+S23mCf9du3M0rChqf4ppOJ6KUCL4Pu2ZMkSjh07xpNPPlksMWYTD2R/ha8WcCiX33WMTyQCT39raP369TRp0oQNGzYQEhLCsWPHuOGGG0hISKBLly507dqVLVu20KZNG5YuXcqoUaNo3Ljx9Q/sg/z9/WnatClNmzZlyJAhABw4cOCKdoYNGzawbt061q1bl9UI2LZtW/r06cPjjz9OhQoVnLwEz3DiBPznP+bmv2QJZH+JomZNeOghcLnMjT+Prxp7i9y+b6VLl2bw4MGUL1+e1atXM3Xq1Dwf8yykozqwAOGsBeohUhc4CDwB9CrAcYqVfWvIDd577z02btxI48aNSUtLY/fu3TRs2JB69eqxY8cOhg4dysMPP8zChQv5/PPPKVeuHF27dv3NcTzhWjzB+fPnWbNmTVZyWL58ORczR58MCgqie/fu9OnThwceeMAtPcE9xs6dEBlpbv4xMZCRcflnd90F4eHw+9+bht5ielr3hM9obt83VaVNmza0aNGCdu3asWLFihxLLTldQ57GGhL5FOgAVAWOAm+g+hEiXYBJmDeFPkb1naK72iLidN1UUS6e2kZw8uRJbd++vVaqVElvvfVW/ctf/qIZGRk6ZswY3bZtm6akpGi/fv1UVfXVV1/Vffv25XgcT7gWT5SQkKCffPKJdujQ4Yq2hRo1aujLL7/su3+3tDTVmBjVl19WbdDgynr+0qVVH3xQdcoU1Vw+T8XBE/7WuX3f+vTpo4mJiXru3DkNDw/Pdf+crgG4oB5wjyuuxfEAinLx1ERwSUhIiJ44cSJrvV+/fpqenq6xsbE6YcIEVVXt3bt3rvt70rV4qri4OB09erTedtttVySFFi1a6JQpU/TkyZNOh1g4Fy6oLlqk2q+farVqV978K1ZU7dVL9d//Vj1zxpHwPOkzevX3be7cudqnTx997rnn9KWXXsp1v0I1Fnvp4ngARbl4ciJISkrSunXrFuoYnnIt3iAjI0NXrlyp/fv31/Lly2clhICAAH300Uc1MjJSU1JSnA4zbw4fVv3wQ/MmT1DQlTf/OnVUhw5V/f57VQ+4Hk/5jBbm+1YSSwS2jcCL+NK1uFNiYiKLFi1i5syZLF26lIzMuvNq1aoRERFBnz59CA0NdTjKbFTNqJyRkWZZvfrKN9NatjR1/eHhZghmD+jBe4kvfEYL3EbgxWwi8CK+dC1OOXjwILNnz2bmzJlsy9ZjNjQ0lL59+9KrVy/nejZv2ACzZpnG3t27L28PDIQHHjA3/oceMkMxeyhf+IwWeIgJL2YTgRfxpWtxmqqybt06Zs6cydy5czl9+jRgXl/t3Lkzffr04aGHHir+0VNPn4ZPP4WPPoJfso0oULWquemHh8ODD0JZ77gH+cJn1JYIvJxNBFZBJCcns3jxYmbOnMl//vOfrI5HlStX5oknnqBv3740b9686DpIZWSYDl4ffwwLF5oOXwCVKkGvXtCzJ7RqBV746qsvfEZLYonAJwZwEZFuIjItt566vpDsfOEaPFVgYCCPPvookZGRHDp0iL///e+EhoZy6tQp3n//fVq2bMmdd97JpEmTCjcX7/79MHo03HabqeqZO9ckgQceMKWCQ4dgyhQziJsXJoFLvPmz6s2xF4bPlwiKas5iJ6nmPpeqVXw2bNjAzJkzmTNnDseOmdGBa9euzVtvvUXv3r3z1lktOdnU+X/8MXzzzeVG35tvhqefhr59oU6dYrsGd/Pm79u1vme+XiLw+USQmppKfHx84Z7kPEBQUBC1atWitAPT95V0qampfPXVV4waNYoNGzYA0KRJE8aNG0dYWFjON7wNG8zNf/ZsOHXKbAsIgEcegX794P77i2Q8H0/j7d+33L5nto3Ai+SUCCyrqGRkZDBnzhxeffVV9u/fD0CHDh0YP348LVq0gDNnLjf8/vzz5R3vugueecbU/1eu7EjsVuHYEoEXsYnAcoekpCTef/993nnnHU6fOkUH4M2bb6bt0aOUSk42v1SxIkREmARw990ORmsVBZsIvIhNBJbbHDhA4j//ycWpU6ly9mzW5u21anHTyJFU6NMHgoMdDNAqSr6eCHyvktKyiktyMnz+OYSFwS23EDxmDFXOniWtRg0i77qLW0VoGB9PrZde4s3x4zl//rzTEVtFpAL4ITINM+S9z7ElAsu6ngMHYPJk+OQTM5E7mIbf7t0vN/z6+bFlyxZeeeUVoqJMW+Lvfvc73njjDfr3728b+b2cr5cIbCKwrNxs3gwTJpj3/dPSzLbQ0MsNv1Wq5Ljb8uXLefnll/npp58AqFevHmPGjOHRRx/1ulcqLcMmAi9iE4FVaKpmAvdx4+Crr8y2UqXg8cfhz3+G5s3zNMibqvLFF1/wyiuvsGPHDgDuuecexo8fT/v27YvzCqxiYBOBF7GJwCqwjAwz0ue4cZD5JE9QkHn6//Of4dZbC3TY1NRUPvroI0aNGsXRo0cB6Nq1K++++26JnY7UG7ktEYg0BIZiZjn7DtV/FPs5wTfmIwC6AdMCAwPVsvIlKUl1+nTV+vU1a4z/ypVVX39d9dixIjtNQkKCjh49WsuVK6eAioj27dtX9+/fX2TnsIoPeZmPAD5WOKaw+artYQq/KuxSGHHd45h9Sil8lKffLYp7qLtO5I4lp4lpLCtHZ86ojhunetNNlxPAzTerTp6smpBQbKc9evSoDhkyRP39/RXQoKAgHT58uJ46darYzmkVXh4TQXuFplckAvBT2K1wq0KAwgaFRgpNFBZftVTL3Of3CqsUel33nDYR2ERgFcDBg6rDh6uWL385AYSEqM6e7dYZvnbt2qU9evTImjmtUqVKOmHCBE1MTHRbDFbe5SkRmJt4nasSQWuFJdnWX1F4JY/H+ipPv1cEi+1HYJUM27dD//5Qty6MHw/nzkHHjhAdDevXm17AbnzF87bbbmPevHmsXbuW++67j9OnT/PSSy9xxx13sGjRIrfFYeVNVfBHZF22ZWAed60JHMi2Hp+5LWciHRB5D5EPgP8UOOB8sonA8m0//mje92/UyIwBlJoKjz5qpn/8/nvTOczBVzqbN2/Ot99+S3R0NCEhIRw4cIDu3bszYMAA2yHNg6SaktsvwJuoNkd1Wh53zenDlfsbOqrLUH0e1T+iOrUAoRaITQSW78nIgMWLoX17aNMGFi0yHcAGDoRff4X58828vx5CRAgLCyM2NpbJkycTGBjI9OnTadq0KWvXrnU6PAs4C+moDiT/I4/GA7WzrdcCDhVdZEXDJgLLd6SkwMyZEBIC3brBihVQoQK88grs3QsffAD16jkdZa5KlSrF888/z7p162jSpAk7d+6kTZs2jBkzhtwmXbLcoxBDTKwF6iFSF5EA4AkgsugjLBybCCzvl5AAf/ubmfmrb1/YsgVq1oS//tUMDzFmDFSv7nSUeda4cWPWrFnDiy++SFpaGiNHjqRjx47s27fP6dCsaxH5FPgRqI9IPCLPoJoGDAaWANuAz1Dd4mSYObEdyizvlZAAkyaZJHDmjNnWqBEMH27m/Q0IcDK6IvHNN9/Qp08fjhw5QoUKFfjHP/5Bz549nQ6rxPH1nsW2RGB5n6QkkwBuuw1ef90kgXbtICoKNm2CPn18IgkAdOrUiU2bNhEeHs7Zs2fp1asXTz75JGezDX1tFT87+qgXsSUCH5eWZkYAffNNiI8321q3NlU/HTo4GVmxU1WmT5/OCy+8wMWLF7nllluYPXs27dq1czq0EsGWCCzLaRkZ8NlncOedMGCASQIhIaYEEBPj80kAzJtFAwYM4JdffqFZs2bs27cPl8vFa6+9RmpqqtPh+TxbIvAitkTgY1Th669h5EiIjTXbbr8dRo+GHj18cvL3vEhJSWHUqFG8++67qCotW7Zkzpw53H777U6H5rNsicCynLBihekH0KWLSQI1a5rXP7duNQ3BJTQJAAQEBDBmzBh++OEHateuzZo1a7jrrruYMWMGvvRgZ+WTSCNEOiNSK7+75vvbJCIRInJHfvezrDyJjTU3//btzbwAVarAxImwc6fpEGZn+sricrnYsGEDPXr04MKFC/Tr14/HHnuMU6dOOR2az/GSqqE3gRuAgYjMzM+O+a4aEpFOwHAgADgB7FDVEfk6SBET8z+nW2Bg4ICkpCQnQ7EKascOeO010xYAUK4cDBtm5gIoX97Z2DycqjJ79mwGDRpEQkICNWvWZNasWdx3331Oh+YzvKJqSGRgPoa+uHLXghQlReQdVR0pIjcAY1V1cEFOXtRsG4EXOnDAvAX0ySeQng6BgTBokOkNXLWq09F5lbi4OHr37s2qVasA+N///V/efvttAgMDHY7M+3lJIvgEKA+cBLah+re87lrQitbyItIMSAY8+49jeabjx+HFF03j70cfmW0DBsCuXaZHsE0C+Va3bl3++9//8uabb+Ln58fEiRNp1aoV27Ztczo0r+clVUObUX0EeA74Lj875qtEIGasDD8gFfgTcDfwtar+Oz8nLS62ROAFzp41N/q//x0uja7Zs6cpFXjwOEDe5qeffiIiIoI9e/YQFBTEX//6V5577jnEwZFWvZmXlAiWAQuAJajuyM+ueS4RiMhQ4DCwC9gEZKjq056SBCwPl5gIEyaYuX/fesskga5dzVwAc+faJFDEWrVqxfr16+nbty9JSUkMGjSIbt26cezYMadDs4qaSAAiwUAPYCfwCCIf5usY15u5BpgEPAXsIXMqNeBG4H1gtLtm0MnLYmco80ApKar/+IdqjRqXZwRr31515UqnIysxPvvsM61YsaICWq1aNf3qq6+cDsnrkNcZyty9wFCFkwoHFbYpDC7IcfJSIvgvcDtQFVglIr8AE4DdQE8RqZivzGOVDBkZ5km/QQN47jk4dAiaNjUdxJYtg7ZtnY6wxHjsscfYuHEjHTp04NixY3Tt2pUhQ4aQnJzsdGhWQYlMQuQpYCjQENWaQHugESKj83u46yYCVf1CVV8HfgLCgQeAmUAaUBlYJiK78ntiy4fFxECrVmb6xz17oH59+PxzWLcO/ud/HJ0RrKSqXbs23377LePGjaN06dJMmTKFTp06cfLkSadD8woe2Fh8xQM6Vz2gk88H9Dw3FotIPeAzYD2mjaAhUE9VO4hIgKqm5OfExcE2Fjts7154+eXLfQFq1DDtAU89Bf7+joZmXbZu3TrCw8M5dOgQt99+O4sXL6Z+/fpOh+XRPLaxWOQb4EVM+20oEAK8jpknuRyqeRp3pCBvDT0I3AWcA2ar6ul8BV6MbCJwyLlzMHaseRMoORmCg+Gll8y8AGU977tjwcGDB+nWrRuxsbFUrFiRhQsX0rFjR6fD8lgenAhyfEBHtQMiAeTxAd0OOmcVXHo6zJgBr74KR4+abRERJinUrn3tfS3HnT9/nt69e/Pll1/i7+/PBx98QL9+/ZwOyyN5bCIAyOEBnXw+oNtEYBXM99+b4R82bDDrrVubEsE99zgbl5Uv6enpjBgxgokTJwIwfPhwxo4dS6kSPKhfTtyaCETKAsuBN1Bd7I5T2v/bVv7s3AkPPwz332+SwM03w7x5poHYJgGv4+fnx4QJE5g2bRr+/v6MHz+eP/zhD9gHqgIQ+RiRY4hsvmp7GCK/IrILkbyMy/YyprrHbWyJwMqb06dNw++UKZCaagaFe+UVM0xEcLDT0VlF4LvvvuPRRx/l7NmzNGvWjMjISGrUqOF0WB4hTyUCkfbAeWAWqo0zt/kBOzBVN/HAWqAnZoSGsVcdoR+msbcqEASccFeJwCYC69pSU808AKNGwcmT5tXPp5+Gt9+Gm25yOjqriG3fvp2uXbuyZ88eatasSVRUFHfffbfTYTkuz1VDInWAxdkSQWtgFKr/k7n+CgCqVyeBS/u/gxm/rRGQCHRHNaOw8V+PrRqychcdDaGhMGSISQIdOsDPP5tB4mwS8EkNGjRg9erVtGvXjoMHD3LvvfcSFRXldFiOqwr+iKzLtgzM4641Ma9yXhKfuS1nqiNRfQGYC3zojiQANhFYOdmyBcLCzAQx27bBbbfBF1+YBmL7dOjzqlatyrfffkvv3r25cOEC4eHh/O1vfyvRs5+lggK/AG+i2jwf4/7n1Hvy+n9I1U/cVS0ENhFY2Z04YeYCCA2FJUugQgUzO9iWLaaB2PYILjECAwOZNWsWb731FqrKsGHDePbZZ0lNTXU6NG8TD2R/l7oWcMihWHJl2wgsSEkxjcCjR5thokuVgj/+0QwNfeONTkdnOeyzzz7jqaeeIjk5mQceeIDPP/+cihUrOh2WWxWijcAf01h8P3AQ01jcC9UtxRZsAdgSQUmmCosWwZ13mmkhz56FTp1g40Z4/32bBCwAHn/8cZYtW0a1atX49ttvadOmDXv27HE6LLfK01hDIp8CPwL1EYlH5BlU04DBwBJgG/CZpyUBsCWCkmv9evPq57JlZr1BAzNhTOfOtgrIytHevXvp1q0bmzdvpmrVqixatIi2JWQU2YoiyWdgFhCFqs+1ntsSQUlz/LiZErJpU5MEKleG//s/Uwro0sUmAStXderUISYmhrCwME6cOMF9993HnDlznA7LLc5COqoDfTEJgAcnAhF5WEQ+FJEvRaST0/F4vbQ00w5wxx0wfTr4+cELL5g5ggcPhtKlnY7Q8gLly5cnKiqKwYMHk5KSQu/evXnjjTd8/o0iDxyGumi5czYd4GPgGLD5qu1hwK+YaTBHXPWzSsBHeTm+naEsF8uXq4aEXJ4hrFMn1W3bnI7K8nLvvfeelipVSgF94oknNDEx0emQig2eOkNZES3uLhF8knnTzyKmC/ZUoDOmN11PEWmU7Vdezfy5lV+HDpnRQNu3N1U/deqY/gBff23aBCyrEIYMGUJUVBTlypVj3rx5dOzYkaOXRqG1vIpbE4GqLgdOXbW5JbBLVfeoGTt7HhAuxjggWlV/cWecXi8lBcaPNzODzZ0LQUFmiIitW21/AKtIdenShVWrVnHzzTfz008/cc8997Bli8e9FFNovl415AltBLl1wR6CmRbzDyLybG47i8hAEVknIuvS0tKKN1JvsGQJNGliZgo7fx66dze9g994ww4OZxWLJk2asHr1alq2bMm+ffto06YNS5YscTqsImUbi4tfjl2wVfU9VW2mqs+q6j9z21lVp6lqc1Vt7l+Sp0OMizM3/bAw2LHDNAp//TUsXGiqhCyrGFWvXp1ly5bx2GOPce7cObp27cr777/vdFhWHnlCIvCKLtgeKzHR9ABu1Mh0DitXzlQLbdpkJoq3LDcJDg5m3rx5jBw5kvT0dAYNGsSLL75IRoZbxk0rVr5eNeT2DmWS2QVbM7tgSy5dsLUAve9KVIcyVfjyS9MpbO9esy0iwiQBO4a85bBZs2bRv39/UlNTiYiIYMaMGZT24leUPXqqyiLg1hKBZOuCLSLxIvKM5tAFO79JQES6ici09PT0og/aE/36q6kC6t7dJIGQEPjvf2H2bJsELI/w1FNPER0dTbly5ZgzZw7du3fn4sWLTodl5cIOMeFNEhLMLGGTJpkJYypWNOvPPgsluX3E8lhr166lc+fOnDx5knbt2hEVFeWVA9bZEoHlPFXzGmj9+jBhgukl3L+/aRQePNgmActjtWjRghUrVlCrVi1WrlyJy+XiyJEjTodlXcUmAk+3cSO4XKb+//BhaNkSVq+GDz+0o4NaXqFhw4bExMRQv359Nm7cSNu2bb1u9FLbWOxFfKpq6PRpeP11Mxx0Roa56Y8bB336mPkCLMvLHD9+nM6dO/Pzzz9TvXp1lixZQkhIiNNh5YmtGvICPtVYnJFhBoW74w4zSJwIPP+8qQZ6+mmbBCyvdeONN/LDDz/QsWNHjhw5gsvlIiYmxumwLGyJwLOsXWumily71qy7XGaI6CZNnI3LsopQUlISvXr14osvviA4OJj58+fTpUsXp8O6JlsisIrfqVPmzZ977jFJoGZNmDcPfvjBJgHL5wQFBfHZZ5/xzDPPkJiYSHh4OHPnznU6LM8g0gGRFYj8E5EO7jqtTQROysiAjz82bwN98IGZI2D4cNi+HXr0sIPDWT7L39+fDz/8kOHDh5OWlkZERARTpkxxOqzCEfkYkWOIbL5qexgivyKyC5ER1zmKAueBIMyoC+7h9DjYRbl41XwEsbGqbdpcniOgQwfVLVucjsqy3G78+PGaeQPUN954QzMyMpwO6TfIy3wE0F6hqWafbwX8FHYr3KoQoLBBoZFCE4XFVy3VFEpl7vc7hTnXPWcRLT7xArqYV7q6BQYGOh3K9Z09a94GmjLFlAiqVzdzBffsaUsAVon00ksvUaVKFQYMGMCbb77JyZMnmTx5MqW87cUI1eWYIXSyawnsQtW8LysyDwhHdSzw0DWOdhpw2w3Ny/7SOVPVKFUd6Ofn53QouVOFOXPMhDDvvWe2DR1qqoF69bJJwCrR+vXrx/z58wkICGDKlCn07t2blJQUp8PKUhX8EVmXbRmYx11zG2Y/ZyKPIPIB8C/AbXVlPlEi8Hhbt5q3gZYtM+utW5v+AXfd5WRUluVRunfvztdff83vf/97Pv30U86cOcP8+fMpU6aM06GRaqqufgGi8jknQY7D7Of626oLgYX5i67wfKJE4LHOnzeNv6GhJglUrWoah1eutEnAsnLQsWNHfvjhB6pWrUp0dDQPPvggp0+fdjqswvCKYfZtIigOqrBgATRsaMYGSk+HP/7RjBpqO4VZ1jU1b96clStXUrt2bVatWkX79u05fPiwozEVYoaytUA9ROoiEgA8AUQWfYSFY+9IRW3nTujcGf7wB4iPh2bNzNhA//wnVK7sdHSW5RXq169PTEwMDRo0YPPmzbRt25bdu3c7Fk+exhrKNsw+IvGIPEMOw+xTgLlWiptP9CzO9tbQgKSkJGeCSEyEsWPNeEApKWaI6DFjYOBA0z/Asqx8O3HiBF26dGHt2rX87ne/Y8mSJYSGhro9Dl/vWewTieASx4aYWLzYjAcUF2fW+/Y1CaFaNffHYlk+JiEhge7du/Pdd99RoUIFoqKiuPfee90aQ0WR5DMwi/w3FnsFmwgKY+9e8wpoZGaVX0gITJ0K7dq5LwbLKgGSk5OJiIhgwYIFBAUFMX/+fLp27eq28/t6icC2ERREcjK8846ZMD4yEm64Af7+d/j5Z5sELKsYBAYG8u9//5sBAwaQlJREeHg4s2fPdtv57XwEXsQtJYKlS82sYDt2mPWePWHiRDtXsGW5gaoycuRIxo4dC8DkyZN5/vnni/28tkRgGfHx8Pjj0KmTSQINGsB335kpJG0SsCy3EBHGjBnDxIkTARg6dCivv/46xf1A6+slAscHiivKJb+DzrlcLp0xY4aqqqakpKjL5dJ//etfqqp64cIFdblcOm/ePNU1azSjbFlV0NTAQNV339XjBw+qy+XSyMhIVVU9fPiwulwujY6OVlXV/fv3q8vl0qVLl6qq6u7du9XlcumyZctUVXX79u3qcrk0JiZGVVU3bdqkLpdL16xZo6qqsbGx6nK5NDY2VlVV16xZoy6XSzdt2qSqqjExMepyuXT79u2qqrps2TJ1uVy6e/duVVVdunSpulwu3b9/v6qqRkdHq8vl0sOHD6uqamRkpLpcLj1+/Liqqi5YsEBdLpeeOXNGVVXnzZunLpdLL1y4oKqq//rXv9TlcmlKSoqqqs6YMUNdLlfW33LatGl6//33Z61PnTpVw8LCstYnTZqk3bp1y1qfMGGCPvLII1nrY8eO1R49emStjx49WiMiIrLWX3vtNe3bt2/W+ogRI3TAgAFZ68OGDdM//elPWetDhw7VoUOHZq3/6U9/0mHDhmWtDxgwQEeMGJG13rdvX33ttdey1iMiInT06NFZ6z169NCxY8dmrT/yyCM6YcKErPVu3brppEmTstbDwsJ06tSpWev333+/Tps2LWs9z589VT1z5oy6XC5dsGCBqqoeP37cfvYy/35+fn4K6M0335z1t73eZ68gyMugc168+ESJoNhnKAsNJaNWLZZXrcrSyZPh5ZchIKB4zmVZVp707duXBQsWEBgYSKVKlZwOx6vZNoK8OnPG9A2wLMujnDx5kipVqhTrOWwbgWXYJGBZHqm4kwD4fhuBLRFYlmVdhy0RWJZlWT7Np0oEIpIBJBbjKfyBtGI8vjvZa/FcvnQ9vnItwarqsw/OPpUIipuIrFPV5k7HURTstXguX7oeX7oWX+azGc6yLMvKG5sILMuySjibCPJnmtMBFCF7LZ7Ll67Hl67FZ9k2AsuyrBLOlggsy7JKOJsI8kBEwkTkVxHZJSIjnI6nMESktoj8ICLbRGSLiAx1OqbCEhE/EYkVkcVOx1IYIlJRROaLyPbM/z+tnY6poETkxczP12YR+VREgpyOycqdTQTXISJ+wFSgM9AI6CkijZyNqlDSgGGq2hBoBQzy8usBGIqZGNzbTQa+VtUGQCheek0iUhN4Hmiuqo0BP+AJZ6OyrsUmgutrCexS1T2qmgLMA8IdjqnAVPWwqv6S+e8EzM2mprNRFZyI1AK6AtOdjqUwRKQ80B74CEBVU1T1jKNBFY4/ECwi/kAZ4JDD8VjXYBPB9dUEDmRbj8eLb5zZiUgd4G5gtcOhFMYkYDiQ4XAchXUrcByYkVnNNV1EvHJsG1U9CEwE9gOHgbOq+o2zUVnXYhPB9UkO27z+VSsRKQcsAF5Q1XNOx1MQIvIQcExVf3Y6liLgDzQF/qGqdwMXAK9sjxKRSphSc12gBlBWRHo7G5V1LTYRXF88UDvbei28vJgrIqUxSWCOqi50Op5CaAv8XkT2Yqrs7hMR981oXrTigXhVvVQ6m49JDN7oASBOVY+raiqwEGjjcEzWNdhEcH1rgXoiUldEAjCNXpEOx1RgIiKYeuhtqvo3p+MpDFV9RVVrqWodzP+X71XVK588VfUIcEBE6mduuh/Y6mBIhbEfaCUiZTI/b/fjpQ3fJYW/0wF4OlVNE5HBwBLM2w8fq+oWh8MqjLbAk8AmEVmfue0vqvof50KyMg0B5mQ+cOwBnnY4ngJR1dUiMh/4BfOWWiy2h7FHsz2LLcuySjhbNWRZllXC2URgWZZVwtlEYFmWVcLZRGBZllXC2URgWZZVwtlEYHkFETmf+d86ItKriI/9l6vWVxXl8S3L09lEYHmbOkC+EkHmCLLXckUiUFXbC9YqUWwisLzNu8C9IrI+c8x7PxGZICJrRWSjiPwRQEQ6ZM67MBfYlLltkYj8nDlO/sDMbe9iRslcLyJzMrddKn1I5rE3i8gmEemR7djLss0dMCezB61leSXbs9jyNiOA/1XVhwAyb+hnVbWFiAQCMSJyaaTLlkBjVY3LXO+nqqdEJBhYKyILVHWEiAxW1btyONcjwF2YuQGqZu6zPPNndwN3YsadisH02F5Z1BdrWe5gSwSWt+sEPJU5XMZqoApQL/Nna7IlAYDnRWQD8BNmIMF6XFs74FNVTVfVo8B/gRbZjh2vqhnAekyVlWV5JVsisLydAENUdckVG0U6YIZyzr7+ANBaVS+KyDLgetMnXqu6Jznbv9Ox3yXLi9kSgeVtEoAbsq0vAZ7LHFobEbkjlwldKgCnM5NAA8w0nZekXtr/KsuBHpntEDdiZhBbUyRXYVkexD7FWN5mI5CWWcXzCWae3zrAL5kNtseBh3PY72vgWRHZCPyKqR66ZBqwUUR+UdWIbNu/AFoDGzCTEQ1X1SOZicSyfIYdfdSyLKuEs1VDlmVZJZxNBJZlWSWcTQSWZVklnE0ElmVZJZxNBJZlWSWcTQSWZVklnE0ElmVZJZxNBJZlWSXc/wOM4wlHHExAAAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 360x144 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "save.plot_misfit_curves()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAI4CAYAAABUVDNLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGkElEQVR4nO3deZgU5bn38e/NDCCr7COCCiqoiIA4EYxicA2oiHnjgooQ9URjjDEmJpqYk+S8eWOMnuSoJy4HDSeAUTAucYwoMeAaBQQdQFB2IuDIIKsjyDDD/f7RNZNm6OnuWbqqe+b3ua6+urvqqa672+bnM09VP2XujoiIhK9F1AWIiDRXCmARkYgogEVEIqIAFhGJiAJYRCQi+VEXkA26devmffr0iboMEWmiFi5c+Km7d6+5XAEM9OnThwULFkRdhog0UWb2z0TLNQQhIhIRBbCISEQUwCIiEdEYsIhImiorK9m7dy/l5eV1utVGASwikXF3Kisrq4OqPuFW3+3qs82+ffsa9f0rgEWaGHenoqKiUQInjHDLpQnBzIxWrVrV6dayZUuKiooSvp4CWKQOysvLKSsry/pwyyV5eXkHBFZ9Qi6MbfLy8ur1Hs0s4XIFsDRr7s62bdsoLS2t9bZp06bqx9u3b4+65LTk5+dHHlbpbNeyZct6h1pToACWJmf37t1pB+rmzZupqKhI+7Xz8vLo0KEDrVu3Dj2s0t2mZcuWtGihE5xygQJYsl5lZSVbtmxJGaZVt7Kysjq9/sEHH0yPHj3o0aMHBQUF1Y8T3Tp37qxwk0ajAJbQuTtlZWVpB+qnn35apwM1rVq12i80k4Vq9+7dad26dQbfrUjtFMDSKPbu3cvmzZvTCtTS0lK++OKLOr1+165d0w7Vjh071nrQQySbKIAlIXdn+/btaYVpaWkp27Ztq9Prt2nT5oAQrS1Uu3XrRn6+vqrS9OhbLdU2b97MCy+8QFFRES+//HKdxlJbtGhB9+7dEwZoomBt165dBt+JSG5QADdj7s6yZct4/vnnKSoqYu7cufuNtXbs2LHWP/NrhmqXLl10cEqkjhTAzUx5eTlvvPEGRUVFPP/886xdu7Z6XatWrTjzzDMZM2YMF1xwAYcffniElYo0fQrgZmDr1q28+OKLFBUV8dJLL7Fz587qdd26deOCCy5gzJgxnHPOOXTo0CHCSkWal5wIYDPrBDwKDAQcuAZYDswA+gDrgEvdfVvQ/sfAtUAl8F13nxV60RFbsWJF9dDCP/7xDyorK6vXHX/88YwZM4YxY8YwbNiwZv1LJJEo5UQAA/cBL7n7xWbWCmgL/ASY7e53mdntwO3AbWY2ABgHHA8cCvzdzPq7e2VtL94UVFRU8NZbb1WH7ooVK6rX5efnc9ZZZ1WH7pFHHhlhpSJSJesD2Mw6AqcD3wBw93Kg3MzGAiODZlOAV4HbgLHAdHffA6w1s1XAycDboRYegh07djBr1iyKiop48cUX2bp1a/W6zp07c9555zFmzBhGjRrFwQcfHGGlIpJI1gcwcCSwGfhfMxsMLARuBgrcvQTA3UvMrEfQvhcwN277DcGy/ZjZdcB1QE4dbFq7dm11L/e1117bbx6D/v37V/dyTz31VJ07K5LlcuFfaD4wFLjJ3eeZ2X3Ehhtqk+gnUAf8jtXdJwGTAAoLC7N2QtLKykrmz59ffdbC0qVLq9e1aNGC008/vTp0jznmmAgrFZG6yoUA3gBscPd5wfOniAXwJjPrGfR+ewKlce0Pi9u+N/BxaNU2grKyMl5++WWKiop44YUX2Lx5c/W6jh07MmrUKC688EJGjx5Nly5dIqxURBoi6wPY3T8xs/Vmdoy7LwfOApYFt4nAXcH9c8EmRcDjZvY7Ygfh+gHzw6+8bvbs2cMf//hH/vKXvzBnzpz9JtXu27cvF154IWPGjGHEiBG0atUqwkpFpLFkfQAHbgL+FJwBsQa4mtgVnZ80s2uBj4BLANx9qZk9SSygK4Abs/0MiLKyMi666CJmz54NxGbPP+WUU6pDd8CAAZpcRqQJyokAdvdioDDBqrNqaf8r4FeZrKmxbN++nfPOO4+3336bQw45hDvvvJPzzz+fHj16pN5YRHJaTgRwU1VaWspXv/pViouLOfzww5k9ezZHH3101GWJSEgUwBHZsGED55xzDh9++CH9+/fn73//O4cddljqDUWkydD0VRFYvXo1I0aM4MMPP2TQoEG8/vrrCl+RZkgBHLJly5YxYsQI1q1bx7Bhw3jllVcoKCiIuiwRiYACOEQLFy7k9NNPp6SkhJEjR/Lyyy/rPF6RZkwBHJI333yTM888ky1btnD++eczc+ZMTf0o0swpgEPw8ssvc+6557Jz504uvfRSnnnmGdq0aRN1WSISMQVwhj377LNccMEF7N69m2uuuYbHH39cv2QTEUABnFGPPfYYl1xyCeXl5Xz3u9/lkUce0eTnIlJNAZwhDz/8MBMmTKCyspKf/vSn3HvvvbpopYjsR4mQAffccw833HAD7s5vfvMbfvnLX2ouBxE5gH4J14jcnZ/97Gf8v//3/zAzHnjgAW644YaoyxKRLKUAbiTuzi233MJ9991HXl4ef/zjHxk/fnzUZYlIFlMAN4LKykquv/56/vCHP9CyZUtmzJjB1772tajLEpEspwBuBFdffTXTpk2jTZs2PPvss3z1q1+NuiQRyQEK4AZauHAh06ZNo127drz44ouMGDEi6pJEJEfoLIgGmjRpEgDf/OY3Fb4iUicK4AYoKyvj8ccfB2IBLCJSFwrgBpg+fTplZWWcdtppDBgwIOpyRCTHKIAboGr44brrrou4EhHJRQrgenrvvfd455136NSpExdffHHU5YhIDlIA19MjjzwCwIQJEzS1pIjUiwK4Hj7//HMee+wxQAffRKT+FMD1MGPGDD777DNOOeUUBg4cGHU5IpKjFMD1oINvItIYFMB1tHjxYubNm8fBBx/MpZdeGnU5IpLDFMB1VHXwbfz48bRt2zbiakQklymA62DXrl1MmzYN0ME3EWk4BXAd/PnPf2bHjh0MGzaMwYMHR12OiOQ4BXAd6OCbiDQmBXCa3n//fd566y06dOjAZZddFnU5ItIE5EQAm1memb1nZn8Nnncxs5fNbGVw3zmu7Y/NbJWZLTezRpsZPf7gW7t27RrrZUWkGcuJAAZuBj6Ie347MNvd+wGzg+eY2QBgHHA8MAp40MzyGrrz3bt3M3XqVEDDDyLSeLI+gM2sN3A+8Gjc4rHAlODxFOCiuOXT3X2Pu68FVgEnN7SGp556iu3bt1NYWMiQIUMa+nIiIkAOBDBwL/AjYF/csgJ3LwEI7nsEy3sB6+PabQiWHcDMrjOzBWa2YPPmzUkL0ME3EcmEjAawmQ0ws3rvw8wuAErdfWG6myRY5okauvskdy9098Lu3bvX+oLLli3jzTffpH379owbNy7NMkREUsv0RTl/BxxjZluBRcDiqnt335LG9qcCF5rZecBBQEczewzYZGY93b3EzHoCpUH7DcBhcdv3Bj5uyBt49NHYyMcVV1xBhw4dGvJSIiL7yWgP2N1HuXtfYBrQDugC3AqUmtnaNLb/sbv3dvc+xA6uzXH38UARMDFoNhF4LnhcBIwzs9Zm1hfoB8xvyHsoKioCYpeeFxFpTGFdln6iu59Y9cTMzgImNOD17gKeNLNrgY+ASwDcfamZPQksAyqAG929sr472blzJ6tXr6ZVq1acdNJJDShXRORAYQVwmZkd5+4fALj7bDO7uy4v4O6vAq8Gj7cAZ9XS7lfArxpUbWDx4sUAHH/88bRs2bIxXlJEpFpYAXw9MNnM3iE2BnwCUO+eaVgWLVoEoFPPRCQjQjkNzd2XAacBbwB9gHXA6DD23RDFxcUAmnhHRDIiYz1gMzsTGAGUA2+6+xvAn4NbTlAPWEQyKSM9YDP7d+DvwDXAvwFzzGydmZ2eif1lQkVFBUuWLAFg0KBBEVcjIk1RowWwmd1iZiODiXFuJnYGwhHufhRQADwM/NXMzm6sfWbSypUr+eKLLzjiiCPo3Llz6g1EROqoMYcgrgTuBFoFzy8ws67Au0Cxu99lZpuJnUJW2Ij7zQiN/4pIpjVaD9jdC4H2wGBi475bgbOBPwHrzayU2JDEIDO7xMyOa8jPlDNN478ikmmNGoDuXunu7xM722G1u490985Af+AGYCGxXvd9wFLg88bcf2NSD1hEMi1TZ0HcCrxmZkcRG/stBuYApwMb3f0wM+sGDMzQ/htMPWARybSMBLC7LzazocCDxH69VtXTrgCuDtp8GqzLOps2beKTTz6hQ4cO9OnTJ+pyRKSJyth5wMGE6KODnu5woDUwz903ZGqfjaWq9zt48GBatMjaYWoRyXEZ/yly0NP9a6b305g0/isiYVD3LgGN/4pIGBTACagHLCJhUADXsHv3bpYvX06LFi0YODBrT9IQkSZAAVzD0qVLqays5JhjjqFNmzZRlyMiTZgCuAaN/4pIWBTANWj8V0TCogCuQT1gEQmLAjiOu+/3IwwRkUxSAMdZt24dO3fupKCggEMOOSTqckSkiVMAx1m9ejUAxx57bMSViEhzoACOs2FDbJqK3r17R1yJiDQHCuA4GzduBBTAIhIOBXCcqh5wr169Iq5ERJoDBXAc9YBFJEwK4DgaAxaRMCmA42gIQkTCpAAO7Nmzh82bN5OXl0dBQUHU5YhIM6AADnz88ccA9OzZk7y8vIirEZHmQAEc0AE4EQlb1gewmR1mZq+Y2QdmttTMbg6WdzGzl81sZXDfOW6bH5vZKjNbbmZfTWc/OgAnImHL+gAmdin7H7j7ccSurnyjmQ0Abgdmu3s/YHbwnGDdOOB4YBTwoJmlHFPQATgRCVvWB7C7l7j7u8Hjz4APgF7AWGBK0GwKcFHweCww3d33uPtaYBVwcqr9aAhCRMKW9QEcz8z6ACcC84ACdy+BWEgDPYJmvYD1cZttCJbVfK3rzGyBmS3YvHmzesAiErqcCWAzaw88DXzP3Xcma5pgmR+wwH2Suxe6e2H37t3VAxaR0OVEAJtZS2Lh+yd3fyZYvMnMegbrewKlwfINwGFxm/cGPk61Dx2EE5GwZX0Am5kBfwA+cPffxa0qAiYGjycCz8UtH2dmrc2sL9APmJ9qP1XnAR966KGNVLmISHL5UReQhlOBq4AlZlYcLPsJcBfwpJldC3wEXALg7kvN7ElgGbEzKG5098pkO9i7dy+VlZV0796d1q1bZ+htiIjsL+sD2N3fJPG4LsBZtWzzK+BX6e6jvLwc0AE4EQlX1g9BhGHv3r2Axn9FJFwKYP4VwBr/FZEwKYCBiooKALp37x5xJSLSnCiA+VcAd+3aNeJKRKQ5UQDzrwDu1q1bxJWISHOiAEY9YBGJhgIY9YBFJBoKYNQDFpFoKIBRD1hEoqEABvbt20d+fj4dO3aMuhQRaUYUwIGuXbsSm/dHRCQcCuCAxn9FJGwK4IDGf0UkbArggHrAIhI2BXBAPWARCZsCOKAesIiETQEc6NKlS9QliEgzowAOdOrUKeoSRKSZUQAHFMAiEjYFcKBVq1ZRlyAizYwCOLBo0aKoSxCRZkYBHHjxxRejLkFEmhkFcODdd9/FzKpvZ599dtQliUgTpwAOlJeXVz9u27YtP/3pTyOsRkSaAwVwDW3btuWFF15g5MiRUZciIk2cAjjOQQcdxIwZMxS+IhKK/KgLyAZV4775+fls37496nJEpJlQDxg4+uijGTx4MLt27WLy5MlRlyMizYQCGOjYsSPvvPMOd999ty5LJCKhMXePuobIFRYW+oIFC6IuQ0SaKDNb6O6FNZerBywiEhH1gAEz2wz8M+o66qEb8GnURdSTao+Gao/GEe7eveZCBXAOM7MFif6syQWqPRqqPbtoCEJEJCIKYBGRiCiAc9ukqAtoANUeDdWeRTQGLCISEfWARUQiogAWEYmIAjgHmNkoM1tuZqvM7PYE6680s8XB7S0zGxxFnYmkqj2u3ZfMrNLMLg6zvmTSqd3MRppZsZktNbPXwq6xNml8Zw42s+fNbFFQ+9VR1JmImU02s1Ize7+W9WZm9wfvbbGZDQ27xkbj7rpl8Q3IA1YDRwKtgEXAgBptvgx0Dh6PBuZFXXe6tce1mwPMBC6Ouu46fO6dgGXA4cHzHlHXXYfafwL8JnjcHdgKtIq69qCe04GhwPu1rD8PeBEwYHi2fN/rc1MPOPudDKxy9zXuXg5MB8bGN3D3t9x9W/B0LtA75Bprk7L2wE3A00BpmMWlkE7tVwDPuPtHAO6eLfWnU7sDHczMgPbEArgi3DITc/fXidVTm7HAVI+ZC3Qys57hVNe4FMDZrxewPu75hmBZba4l1jvIBilrN7NewNeAh0OsKx3pfO79gc5m9qqZLTSzCaFVl1w6tf8eOA74GFgC3Ozu+8Ipr8Hq+m8ia2lC9uxnCZYlPHfQzM4gFsCnZbSi9KVT+73Abe5eGeuMZY10as8HTgLOAtoAb5vZXHdfkeniUkin9q8CxcCZwFHAy2b2hrvvzHBtjSHtfxPZTgGc/TYAh8U9702s17IfMxsEPAqMdvctIdWWSjq1FwLTg/DtBpxnZhXu/pdQKqxdOrVvAD5198+Bz83sdWAwEHUAp1P71cBdHhtUXWVma4FjgfnhlNggaf2byAUagsh+7wD9zKyvmbUCxgFF8Q3M7HDgGeCqLOh9xUtZu7v3dfc+7t4HeAr4dhaEL6RRO/AcMMLM8s2sLTAM+CDkOhNJp/aPiPXcMbMC4BhgTahV1l8RMCE4G2I4sMPdS6Iuqj7UA85y7l5hZt8BZhE7uj3Z3Zea2beC9Q8DPwO6Ag8GPckKz4JZo9KsPSulU7u7f2BmLwGLgX3Ao+6e8NSpMKX5uf8S+KOZLSH2J/1t7p4VUz2a2RPASKCbmW0Afg60hOraZxI7E2IVsItYbz4n6afIIiIR0RCEiEhEFMAiIhFRAIuIREQBLCISEQWwiEgtUk0MlKD9pWa2LJjg6PGU7XUWhIhIYmZ2OlBGbO6JgSna9gOeBM50921m1iPV/CDqAYuI1CLRxEBmdpSZvRTM//GGmR0brPom8EDVxFjpTM6kABapAzO7wsyWmNkuM1tpZpdGXZOEbhJwk7ufBNwKPBgs7w/0N7N/mNlcMxuV6oX0SziRNJnZBcAfgOuBN4FrgEfM7Gl3r4y0OAmFmbUnNv/2n+Mmj2od3OcD/Yj9iq838IaZDXT37bW9ngJYJH23Av/t7lMBzOw5YhOb58o0jtJwLYDt7j4kwboNwFx33wusNbPlxAL5nWQvJiIpBJPtnAa8ELd4FLDIdSS72Qim61xrZpdA9eWRqi4B9hfgjGB5N2JDEkknOFIAi6RnELF/L++ZWRszu4pY7/eeaMuSTAomBnobOMbMNpjZtcCVwLVmtghYyr+uNjIL2GJmy4BXgB+mmhpWp6GJpCGYSewHwGXAAmIziM0CLnD3rLiUj+Qe9YBF0nMi8C6xydaHA98J7n8XZVGS23QQTiQ9Q4hdgLOM2FUj5ptZH2JHvEXqRT1gkRTMLA84gQOvdjEIeCP8iqSpUA9YJLVjiF108w4z2wh8BkwEvgTcEGVhktsUwCKpnQhsArYBrwK7gbnASHfPleuoSRZSAIukNgR4x93HRF2INC0aAxZJ7URiF94UaVQKYJHUBqMAlgzQDzFERCKiHrCISEQUwCIiEVEAi4hERAEsIhIRBbCISEQUwCIiEVEAi4hERAEsIhIRBbCISEQUwCIiEVEAi4hERNNRAt26dfM+ffpEXYaINFELFy781N2711weaQCb2SjgPiAPeNTd76qx3oL15wG7gG+4+7tmdhgwFTgE2AdMcvf7gm26ADOAPsA64FJ335asjsrKSmbPns3BBx/ciO9ORCTGzP6ZaHlkQxDBdbYeAEYDA4DLzWxAjWajgX7B7TrgoWB5BfADdz+O2JVpb4zb9nZgtrv3A2YHz5Pavn07zz//fAPfkYhI3UQ5BnwysMrd17h7OTAdGFujzVhgqsfMBTqZWU93L3H3dwHc/TNiF0vsFbfNlODxFOCidIqZPHlyg96MiEhdRRnAvYD1cc838K8QTbtNcGnwE4F5waICdy8BCO57JNq5mV1nZgvMbAHAP/7xD8ys+nb22WfX712JiKQpyjFgS7Cs5uzwSduYWXvgaeB77r6zLjt390nApOB1vLy8vHpd27Zt+elPf1qXlxMRqbMoe8AbgMPinvcGPk63jZm1JBa+f3L3Z+LabDKznkGbnkBpXYpq27YtL7zwAiNHjqzLZiIidRZlAL8D9DOzvmbWChgHFNVoUwRMsJjhwA53LwnOjvgD8IG7/y7BNhODxxOB59It6KCDDmLGjBkKXxEJRWRDEO5eYWbfAWYROw1tsrsvNbNvBesfBmYSOwVtFbHT0K4ONj8VuApYYmbFwbKfuPtM4C7gSTO7FvgIuCSdelq0aEF+fj7bt29vjLcnIpKSLspJbAz4xBNPZNGiRXzlK19hzpw5UZckIk2ImS1098Kay/VT5MC8efO4++676dixY9SliEgzoR4w/zoLomXLllGXIiJNkHrAKVRUVERdgog0MwrgQGVlZdQliEgzowAOqAcsImFTAAfUAxaRsCmAAwpgEQmbAjigIQgRCZsCOKAesIiETQEcUA9YRMKmAA6oBywiYVMAB9QDFpGwKYAD6gGLSNgUwAEFsIiETQEc0BCEiIRNARxQD1hEwqYADqgHLCJhUwAH1AMWkbApgAMKYBEJmwI4oCEIEQmbAjigHrCIhE0BHFAPWETCpgAOqAcsImGLNIDNbJSZLTezVWZ2e4L1Zmb3B+sXm9nQuHWTzazUzN6vsc0vzGyjmRUHt/PSqUUBLCJhiyyAzSwPeAAYDQwALjezATWajQb6BbfrgIfi1v0RGFXLy/+Xuw8JbjPTqUdDECIStih7wCcDq9x9jbuXA9OBsTXajAWmesxcoJOZ9QRw99eBrY1VjHrAIhK2KAO4F7A+7vmGYFld2yTynWDIYrKZdU7UwMyuM7MFZrYA1AMWkfBFGcCWYJnXo01NDwFHAUOAEuC3iRq5+yR3L3T3QlAPWETCF2UAbwAOi3veG/i4Hm324+6b3L3S3fcBjxAb6khJPWARCVuUAfwO0M/M+ppZK2AcUFSjTREwITgbYjiww91Lkr1o1Rhx4GvA+7W1jacesIiELT+qHbt7hZl9B5gF5AGT3X2pmX0rWP8wMBM4D1gF7AKurtrezJ4ARgLdzGwD8HN3/wNwt5kNITZUsQ64Pp16FMAiErbIAhggOEVsZo1lD8c9duDGWra9vJblV9WnFg1BiEjY9Eu4gHrAIhI2BXBAPWARCZsCOKAesIiETQEcUACLSNgUwAENQYhI2BTAgb1790Zdgog0MwrgwJ49e6IuQUSaGQVw4Isvvoi6BBFpZhTAAQWwiIRNARxQAItI2BTAAQWwiIRNARxQAItI2BTAAQWwiIRNARzYvXt31CWISDOjAA6oBywiYVMABxTAIhI2BXBAASwiYVMABxTAIhI2BXBAASwiYVMABxTAIhK2Bl2U08y+D/wbsANYUnVz91cbXlq4FMAiEraGXhX5O8CZwBfAQOAEYDzwagNfN3R79+6lsrKSvLy8qEsRkWaioQFcDHzq7mXAJ8DfG1xRBMwMd+eLL76gXbt2UZcjIs1EQ8eAfw3MMrNxZta3rhub2SgzW25mq8zs9gTrzczuD9YvNrOhcesmm1mpmb1fY5suZvayma0M7junqqNFi9jHoGEIEQlTQwP4MeB9YDjwqJmtMbN/pLOhmeUBDwCjgQHA5WY2oEaz0UC/4HYd8FDcuj8CoxK89O3AbHfvB8wOnielABaRKDR0CGKru18fv8DMDklz25OBVe6+JthuOjAWWBbXZiww1d0dmGtmncysp7uXuPvrZtYnweuOBUYGj6cQG4++LVkhZgYogEUkXA3tAc81s3+LX+Dun6S5bS9gfdzzDcGyurapqcDdS4JaSoAeiRqZ2XVmtsDMFsTyXQEsIuFqaAAfBfzEzNaa2Qwzu8PMxqS5rSVY5vVoUy/uPsndC929MD8/9oeAAlhEwtSgIQh3vxDAzNoTOw1tIHAW8Hwam28ADot73hv4uB5tatpUNUxhZj2B0lSFaAxYRKJQ5wA2szOBEUA58Ka7vxGchjY3uKXrHaBfcPbERmAccEWNNkXAd4Lx4WHAjqrhhSSKgInAXcH9c6kKUQCLSBTqNARhZv9O7Fzfa4j9Am6Oma0zs9PrumN3ryD2Q45ZwAfAk+6+1My+ZWbfCprNBNYAq4BHgG/H1fIE8DZwjJltMLNrg1V3AeeY2UrgnOB5qvcFKIBFJFwpe8BmdgvwHrAIuBm40d0fCtZ1IXZ62F/N7P+4e51+iOHuM4mFbPyyh+MeO3BjLdteXsvyLcSGQdKmHrCIRCGdIYgrgTuBVsHzC8ysK/AuUOzud5nZZmI9zcLMlJlZVQGsyxKJSJhSDkG4eyHQHhhMbNx3K3A28CdgvZmVEhuSGGRml5jZcWaWU7OsaQhCRKKQVlC6e6W7vw+8Aax295Hu3hnoD9wALCTWm74PWAp8nqF6M0JDECIShbqeBXEr8JqZHQU8TGwynjnA6cBGdz/MzLoROx0tZyiARSQKdQpgd6+aEOdBYj/xrepBVwBXB20+Jcemo9QQhIhEoc7nAbv7WmB00NMdDrQG5rn7hsYuLizqAYtIFOr9S7igp/vXRqwlMuoBi0gUcupshUxRD1hEoqAAhurLEG3fvj3aQkSkWVEAA1WzoZWWppy3R0Sk0SiAgZYtWwKwadOmiCsRkeZEAYwCWESioQDmX0MQmzdvprKyMuJqRKS5UAATOw2tc+fO7Nu3j61bt0Zdjog0EwrgQEFBAaBhCBEJjwI40KNH7NqdCmARCYsCOFDVA9apaCISFgVwQEMQIhI2BXBAASwiYVMABzQGLCJhUwAHNAYsImFTAAc0BCEiYVMABxTAIhK2SAPYzEaZ2XIzW2VmtydYb2Z2f7C+6nJISbc1s1+Y2UYzKw5u56VTS9UYcGlpKe7eCO9ORCS5yALYzPKAB4DRwADgcjMbUKPZaKBfcLsOeCjNbf/L3YcEt5np1NOuXTvatWvHnj172LlzZ0PemohIWqLsAZ8MrHL3Ne5eDkwHxtZoMxaY6jFzgU5m1jPNbetMwxAiEqYoA7gXsD7u+YZgWTptUm37nWDIYrKZdU60czO7zswWmNmCzZs3AzoVTUTCFWUAW4JlNQdfa2uTbNuHgKOAIUAJ8NtEO3f3Se5e6O6F3bt3B3QqmoiEq95XRW4EG4DD4p73Bj5Os02r2rZ19+ruq5k9Qh2u3KwhCBEJU5Q94HeAfmbW18xaAeOAohptioAJwdkQw4Ed7l6SbNtgjLjK14D30y1IASwiYYqsB+zuFWb2HWAWkAdMdvelZvatYP3DwEzgPGAVsAu4Otm2wUvfbWZDiA1JrAOuT7em+FPRREQyLcohCIJTxGbWWPZw3GMHbkx322D5VfWtRz1gEQmTfgkXpyqAN27cGHElItIcKIDjnHDCCeTl5bFw4UK2bdsWdTki0sQpgON07tyZESNGUFlZyUsvvRR1OSLSxCmAaxgzZgwAzz//fMSViEhTpwCuoSqAX3zxRfbu3RtxNSLSlCmAa+jXrx/HHnss27dv580334y6HBFpwhTACWgYQkTCoABO4MILLwSgqKhIcwOLSMYogBM45ZRT6Nq1K6tXr+bDDz+MuhwRaaIUwAnk5eVx3nmxC2loGEJEMkUBXIv4YQgRkUxQANfi3HPPpWXLlrz99tt8+umnUZcjIk2QArgWHTt2ZOTIkezbt4+ZM9O6rJyISJ0ogJPQMISIZJICOImq84FnzZqlKyWLSKNTACdxxBFHcNJJJ1FWVsbw4cN1SpqINCoFcApPPPEEAwYM4IMPPuBLX/oSTz/9dNQliUgToQBOoV+/fsybN4/LLruMsrIyLr74Yn70ox9RUVERdWkikuMUwGlo3749TzzxBP/1X/9FXl4e99xzD+eee66uHSciDaIATpOZ8b3vfY9XXnmFgoICXnnlFYYOHcrcuXOjLk1EcpQCuI5GjBjBu+++y6mnnsrGjRs5/fTTeeihhzRpj4jUmSk4oLCw0BcsWFCnbcrLy/nhD3/I/fffD8BXvvIVhg4dSv/+/atvvXr1wswyUbKI5BAzW+juhQcsVwDXL4CrPP7443zzm99k165dB6xr27btfoEcf+vcuXNDyxaRHJGVAWxmo4D7gDzgUXe/q8Z6C9afB+wCvuHu7ybb1sy6ADOAPsA64FJ3T3qJ44YEMEBJSQlvv/02K1asYMWKFSxfvpwVK1YknUOie/fuB4Ty0UcfTYcOHWjVqtUBt7y8vHrXJyLRyroANrM8YAVwDrABeAe43N2XxbU5D7iJWAAPA+5z92HJtjWzu4Gt7n6Xmd0OdHb325LV0tAArs3WrVtZuXJldTDH3xL1mJPJy8tLGMxVt9atWzf6+hYtWmBm1cMoVY8T3VKtb0qvUbU+mUyvbyr7yIYawthHixYtEgZwfsrKMudkYJW7rwEws+nAWGBZXJuxwFSP/V9irpl1MrOexHq3tW07FhgZbD8FeBVIGsCZ0qVLF4YNG8awYcP2W75v3z4+/vjjA0J5zZo17Nq1i/Ly8v1ue/bsobKykt27d7N79+4o3oqIZECUAdwLWB/3fAOxXm6qNr1SbFvg7iUA7l5iZj0S7dzMrgOuAzj88MPr+Rbqp0WLFvTu3ZvevXtz5plnpmzv7lRWVu4XyDVDOlFoN6TNnj172LdvX/XZHe5e6y3V+qb4Gqn+e2VyfVPZRzbUENY+ahNlACfqs9d8J7W1SWfbpNx9EjAJYkMQddk2bGZGfn4++fn5tG3bNupyRKSOahuiiPI84A3AYXHPewMfp9km2babgmEKgnv9XE1EslKUAfwO0M/M+ppZK2AcUHPi3SJggsUMB3YEwwvJti0CJgaPJwLPZfqNiIjUR2RDEO5eYWbfAWYRO5VssrsvNbNvBesfBmYSOwNiFbHT0K5Otm3w0ncBT5rZtcBHwCUhvi0RkbTphxhk7jQ0ERHIwvOAs4mZbQb+GXUd9dANyNUrhqr2aKj2aBzh7t1rLlQA5zAzW5Do/6q5QLVHQ7VnF82GJiISEQWwiEhEFMC5bVLUBTSAao+Gas8iGgMWEYmIesAiIhFRAIuIREQBnAPMbJSZLTezVcEcxzXXX2lmi4PbW2Y2OIo6E0lVe1y7L5lZpZldHGZ9yaRTu5mNNLNiM1tqZq+FXWNt0vjOHGxmz5vZoqD2q6OoMxEzm2xmpWb2fi3rzczuD97bYjMbGnaNjSbV1Hu6RXsj9lPr1cCRQCtgETCgRpsvE5t4HmA0MC/qutOtPa7dHGI/Pb846rrr8Ll3IjYH9eHB8x5R112H2n8C/CZ43B3YCrSKuvagntOBocD7taw/D3iR2KyIw7Pl+16fm3rA2a964np3LweqJp+v5u5v+b8uuzSX2Oxw2SBl7YGbgKfJrpnr0qn9CuAZd/8IwN2zpf50anegg8XmSWxPLIArwi0zMXd/nVg9tam+UIO7zwWqLtSQcxTA2a+2Selrcy2x3kE2SFm7mfUCvgY8HGJd6Ujnc+8PdDazV81soZlNCK265NKp/ffAccSmcV0C3Ozu+8Ipr8Hq+m8ia0U5IbukJ+3J583sDGIBfFpGK0pfOrXfC9zm7pXpXLsrROnUng+cBJwFtAHeNrO57r4i08WlkE7tXwWKgTOBo4CXzewNd9+Z4doaQ4MvyJAtFMDZL52J6zGzQcCjwGh33xJSbamkU3shMD0I327AeWZW4e5/CaXC2qV7wYBP3f1z4HMzex0YTOyCsVFKp/argbs8Nqi6yszWAscC88MpsUHS+jeRCzQEkf1STlxvZocDzwBXZUHvK17K2t29r7v3cfc+wFPAt7MgfCG9CwY8B4wws3wza0vsuoQfhFxnIunU/hGxnjtmVgAcA6wJtcr6q+1CDTlHPeAs5+lNXP8zoCvwYNCTrPAsmDUqzdqzUjq1u/sHZvYSsBjYBzzq7glPnQpTmp/7L4E/mtkSYn/S3+buWTHVo5k9QezK5t3MbAPwc6AlJL9QQy7ST5FFRCKiIQgRkYgogEVEIqIAFhGJiAJYRCQiCmARkVqkmhgoQftLzWxZMMHR4ynb6ywIEZHEzOx0oIzY3BMDU7TtBzwJnOnu28ysR6r5QdQDFhGpRaKJgczsKDN7KZj/4w0zOzZY9U3ggaqJsdKZnEkBLFIHZnaFmS0xs11mttLMLo26JgndJOAmdz8JuBV4MFjeH+hvZv8ws7lmNirVC+mXcCJpMrMLgD8A1wNvAtcAj5jZ0+5eGWlxEgoza09s/u0/x00e1Tq4zwf6EfsVX2/gDTMb6O7ba3s9BbBI+m4F/tvdpwKY2XPEJjbPlWkcpeFaANvdfUiCdRuAue6+F1hrZsuJBfI7yV5MRFIIJts5DXghbvEoYJHrSHazEUzXudbMLoHqyyNVXQLsL8AZwfJuxIYkkk5wpAAWSc8gYv9e3jOzNmZ2FbHe7z3RliWZFEwM9DZwjJltMLNrgSuBa81sEbCUf11tZBawxcyWAa8AP0w1NaxOQxNJQzCT2A+Ay4AFxGYQmwVc4O5ZcSkfyT3qAYuk50TgXWKTrQ8HvhPc/y7KoiS36SCcSHqGELsAZxmxq0bMN7M+xI54i9SLesAiKZhZHnACB17tYhDwRvgVSVOhHrBIascQu+jmHWa2EfgMmAh8CbghysIktymARVI7EdgEbANeBXYDc4GR7p4r11GTLKQAFkltCPCOu4+JuhBpWjQGLJLaicQuvCnSqBTAIqkNRgEsGaAfYoiIREQ9YBGRiCiARUQiogAWEYmIAlhEJCIKYBGRiCiARUQiogAWEYmIAlhEJCIKYBGRiCiARUQiogAWEYmIpqMEunXr5n369Im6DBFpohYuXPipu3evuVwBDPTp04cFCxZEXYaINFFm9s9EyzUEISISEQWwiEhEFMAiIhFRAAM7duyIugQRaYYUwMCaNbqwrYiETwEM7Nu3D12aSUTCpgAO7NmzJ+oSRKSZUQAHysrKoi5BRJoZBXBg27ZtUZcgIs2MAjiwadOmqEsQkWZGARxQAItI2BTAgdLS0qhLEJFmRgEcUA9YRMKmAA4ogEUkbArgwKpVq6IuQUSaGQVwYMmSJVGXICLNjAIYaNGiBZs2bdKBOBEJVU4EsJl1MrOnzOxDM/vAzE4xsy5m9rKZrQzuO8e1/7GZrTKz5Wb21VSv36ZNG0C9YBEJV04EMHAf8JK7HwsMBj4Abgdmu3s/YHbwHDMbAIwDjgdGAQ+aWV6yF1cAi0gUsj6AzawjcDrwBwB3L3f37cBYYErQbApwUfB4LDDd3fe4+1pgFXBysn0ogEUkClkfwMCRwGbgf83sPTN71MzaAQXuXgIQ3PcI2vcC1sdtvyFYth8zu87MFpjZgvLycgAWL16cwbchIrK/XAjgfGAo8JC7nwh8TjDcUAtLsOyAyX7dfZK7F7p7Yc+ePQFYunQplZWVjVCyiEhquRDAG4AN7j4veP4UsUDeZGY9AYL70rj2h8Vt3xv4ONkO8vLy6N27N7t379bVMUQkNFkfwO7+CbDezI4JFp0FLAOKgInBsonAc8HjImCcmbU2s75AP2B+qv2ccMIJgIYhRCQ8WR/AgZuAP5nZYmAIcCdwF3COma0Ezgme4+5LgSeJhfRLwI3unnJcYdCgQQC88847GShfRORApmuhQWFhof/nf/4nZ5xxBn379mX16tWYJRpKFhGpOzNb6O6FNZfnSg8440aMGEGvXr1Yu3Yt8+bNS72BiEgDKYADeXl5XHbZZQA8/vjjEVcjIs2BAjjOFVdcAcCMGTOoqKiIuBoRaeoUwHGGDh1K//79KS0tZc6cOVGXIyJNnAI4jplV94I1DCEimaYAruHyyy8H4JlnnmH37t0RVyMiTZkCuIb+/ftTWFjIZ599xsyZM6MuR0SaMAVwAlW9YA1DiEgmKYATuOyyyzAzXnjhBbZv3x51OSLSRCmAE+jVqxcjR45kz549PPvss1GXIyJNlAK4FjobQkQyTQFci69//eu0bNmSOXPmUFJSEnU5ItIEKYBr0blzZ0aPHs2+fft48sknoy5HRJogBXASGoYQkUxSACcxZswY2rVrx/z581m5cmXU5YhIE6MATqJt27ZcfPHFANx0001o7mQRaUwK4BTuvPNOunTpwqxZs3j44YejLkdEmhAFcAqHHnoo//M//wPAD37wA1asWBFxRSLSVCiA03DxxRczfvx4du/ezfjx49m7d2/UJYlIE6AATtN///d/c9hhh/HOO+9w5513Rl2OiDQBCuA0derUiSlTpgDwy1/+UldPFpEGUwDXwRlnnMEtt9xCZWUl48ePZ9euXVGXJCI5TAFcR3feeScDBgxgxYoV/OhHP4q6HBHJYQrgOjrooIN47LHHaNmyJQ888ACzZs2KuiQRyVEK4Ho48cQT+Y//+A8Arr76arZs2RJxRSKSixTA9fSjH/2IL3/5y5SUlHDDDTfoV3IiUmcK4HrKy8tj2rRptG/fnj//+c+asEdE6kwB3ABHHnkk9957LwA33ngj69evj7YgEckpCuAGuuaaaxgzZgw7duzgG9/4Bvv27Yu6JBHJEQrgBjIzHnnkEbp3786cOXO4//77oy5JRHKEArgRFBQU8MgjjwBw++23s3Tp0ogrEpFckBMBbGZ5Zvaemf01eN7FzF42s5XBfee4tj82s1VmttzMvhpWjWPHjuWaa65hz549XHXVVZSXl4e1axHJUTkRwMDNwAdxz28HZrt7P2B28BwzGwCMA44HRgEPmlleWEXee++99O3bl/fee6/6PGERkdpkfQCbWW/gfODRuMVjgSnB4ynARXHLp7v7HndfC6wCTg6pVDp06MDUqVMxM+666y7eeuutsHYtIjko6wMYuBf4ERB/ekGBu5cABPc9guW9gPhzwTYEyw5gZteZ2QIzW7B58+ZGK/a0007jtttuY9++fVx11VWUlZU12muLSNOS0QA2swFmVu99mNkFQKm7L0x3kwTLEv5Ezd0nuXuhuxd27969viUm9B//8R8MHjyYNWvW8P3vf79RX1tEmo5M94B/B6w2s4VmNtnMvmdmZ5hZ1zS3PxW40MzWAdOBM83sMWCTmfUECO5Lg/YbgMPitu8NfNwYb6QuWrVqxWOPPUarVq145JFHmDFjRtgliEgOyGgAu/sod+8LTAPaAV2AW4FSM1ubxvY/dvfe7t6H2MG1Oe4+HigCJgbNJgLPBY+LgHFm1trM+gL9gPmN+Z7SNXDgQH79618DMG7cOG699VadGSEi+wlrDHiiu1/m7j9z9/OBc4HXG/B6dwHnmNlK4JzgOe6+FHgSWAa8BNzo7pUNK73+brnlFn71q1+Rl5fHb3/7W7785S+zatWqqMoRkSxjYcziZWZvANe5+wdxyxa6+0kZ33kaCgsLfcGCBRl7/bfffpvLL7+cf/7zn7Rv356HHnqI8ePHZ2x/IpJdgrwrrLk8rB7w9cBkM7vfzK41s3uByHqmYTvllFMoLi7mkksuoaysjKuuuoqJEyfqDAmRZi6UAHb3ZcBpwBtAH2AdMDqMfWeLTp06MWPGDCZNmkSbNm2YOnUqQ4cO5d133426NBGJSMaGIMzsTGAEUA686e5vZGRHjSDTQxA1LVu2jMsuu4z333+fli1bcvfdd3PzzTdjlugsOhHJdaEOQZjZvwN/B64B/g2YY2brzOz0TOwv1wwYMID58+fz7W9/m71793LLLbdwwQUX0Jg/CBGR7NdoAWxmt5jZyGBinJuJnYFwhLsfBRQADwN/NbOzG2ufuaxNmzY88MADPPPMM3Tu3JmZM2cyePBg5syZE3VpIhKSxuwBXwm8CHwKdAYuMLOfmtl5wEHufhdwC8EpYxLzta99jeLiYk477TRKSko4++yzueOOO9i7d2/UpYlIhjVaAAfjG+2BwcTGfbcCZwN/AtabWSmxIYlBZnaJmR3XkJ8pNyWHH344r7zyCj//+c8xM+68806+8pWvsG7duqhLE5EMatQAdPdKd3+f2NkOq919pLt3BvoDNwALgXzgPmAp8Hlj7j+X5efn84tf/II5c+bQq1cv3n77bYYMGcKf//znqEsTkQzJVA/0VuBmM5tmZqcCnwBziE2Ms9HdDyU2g1mzOhUtHV/5yldYtGgRY8eOZceOHVx66aVcd9117Nq1K+rSRKSRZSSA3X0xMBToBrwK7CQ2Nvwt4Lagzafu/mom9p/runbtyrPPPsvvf/97WrduzSOPPMKXvvQllixZEnVpItKIMjYG6+5r3X000JPYROmXAke5++OZ2mdTYmbceOONzJs3j2OPPZZly5Zx8skn89BDDxHGz8dFJPMyfhAs6On+1d2fdvcNmd5fUzN48GAWLFjAtddeyxdffMG3v/1tvv71r7N169aoSxORBtJZCDmgXbt2PProo0yfPp2OHTvy7LPPMmTIEN54I2t/XCgiaVAA55DLLruM4uJihg0bxvr16xk5ciT/9//+Xyorm828RiJNigI4x/Tt25c33niD22+/HXfn5z//OWeddRYbNmh0RyTXKIBzUMuWLfn1r3/N3/72Nw455BBee+01Bg8eTFFRUdSliUgdKIBz2Nlnn82iRYsYPXo0W7duZezYsdx000188cUXUZcmImlQAOe4Hj168Ne//pXf/va3tGzZkt///vcMHz6cDz/8MOrSRCQFBXAT0KJFC77//e/z1ltvcfTRR7No0SJOOukkJk+erHOGRbKYArgJKSws5N1332X8+PHs2rWLa6+9liuuuIIdO3ZEXZqIJKAAbmI6dOjAtGnTmDp1Ku3atWP69OkMGDCAO+64g+XLl0ddnojEUQA3UVdddRXvvfcehYWFfPzxx9x5550ce+yxDB8+nIceeki/pBPJAgrgJqxfv37MmzePV199lauvvpr27dszb948vv3tb9OzZ08uvvhiioqKNPm7SEQydlHOXBL2RTmjsmvXLp599lmmTp3Kyy+/XH2Arnv37lxxxRVMmDCBE088URcHFWlktV2UUwFM8wngeBs3buRPf/oTU6ZMYdmyZdXLBw4cyIQJE7jyyis59NBDI6xQpOlQACfRHAO4iruzcOFCpk6dyuOPP86WLVuA2Klt55xzDhMnTmTs2LG0bds24kpFcpcCOInmHMDxysvLefHFF5k6dSrPP/989dhwhw4duPTSS5kwYQKnnXYaLVro0IFIXSiAk1AAH2jLli1Mnz6dqVOnMn/+/Orlffv25aqrrmLChAkcddRREVYokjsUwEkogJP74IMPmDZtGtOmTdtv1rVTTz2ViRMncskll9CpU6foChTJcgrgJBTA6amsrOTVV19lypQpPP3009UXCm3dujUXXXQREyZM4NxzzyU/Pz/iSkWyiwI4CQVw3ZWVlfH0008zdepUXnnllepT2goKCrjyyiuZOHEigwYNirhKkeyQswFsZocBU4FDgH3AJHe/z8y6ADOAPsA64FJ33xZs82PgWqAS+K67z0q2DwVww3z00Uc89thjTJkyhRUrVlQvHzx4MBMnTuSKK66goKAgwgpFopXLAdwT6Onu75pZB2AhcBHwDWCru99lZrcDnd39NjMbADwBnAwcCvwd6O/utV63RwHcONyd+fPnM2XKFKZPn862bdsAyMvLY9SoUUyYMIELL7yQgw46KOJKRcJVWwBn/flE7l7i7u8Gjz8DPgB6EbvU/ZSg2RRioUywfLq773H3tcAqYmEsGWZmDBs2jAcffJCSkhKeeuopLrzwQsyMF154gcsuu4xDDjmE66+/nrfeektTZUqzl/UBHM/M+gAnAvOAAncvgVhIAz2CZr2A9XGbbQiW1Xyt68xsgZkt2Lx5c0brbo5at27N17/+dZ577jk2btzIfffdx9ChQ9mxYweTJk3i1FNPpX///vzyl79k3bp1UZcrEomcCWAzaw88DXzP3Xcma5pg2QFdLXef5O6F7l7YvXv3xipTEujRowff/e53WbhwIUuWLOGHP/whPXv2ZNWqVfzsZz+jb9++jBw5kv/93/9l585k/2lFmpacCGAza0ksfP/k7s8EizcF48NV48SlwfINwGFxm/cGPg6rVklu4MCB3H333axfv56XXnqJK664gjZt2vDaa69xzTXXcMghhzB+/Hj+9re/UVlZ67C9SJOQCwfhjNgY71Z3/17c8nuALXEH4bq4+4/M7Hjgcf51EG420E8H4bLXzp07eeqpp5gyZQqvv/569fJDDz2U8ePHM3HiRAYMGBBhhSINk8tnQZwGvAEsIXYaGsBPiI0DPwkcDnwEXOLuW4Nt7gCuASqIDVm8mGwfCuDssWbNGh577DGmTp3K6tWrq5efdNJJTJw4kXHjxqEhI8k1ORvAYVAAZx9356233mLKlCk8+eST1de1y8/P5/zzz2fChAmcf/75tG7dOuJKRVJTACehAM5uu3fvpqioiKlTpzJr1qzqseEuXbpw8cUXM3z4cIYMGcKAAQMUyJKVFMBJKIBzxyeffMLjjz/OlClTWLx48X7r8vPzOe644xgyZEj1bfDgwXTt2jWiakViFMBJKIBzU3FxMTNnzmTRokUUFxezcuXKhD/u6N279wGhfOSRR2peYwmNAjgJBXDT8Pnnn7NkyRKKi4spLi5m0aJFLF68uHrWtnjt27dn8ODB+4XywIEDadOmTQSVS1OnAE5CAdx0VVZWsmrVqv1Cubi4mJKSkgPatmjRgmOPPXa/UB4yZAg9evRI8Moi6VMAJ6EAbn42bdrEokWLqgO5uLiYDz/8kH379h3QtmfPnvsF8pAhQzj66KPJy8uLoHLJRQrgJBTAArGzLZYuXVodyFU95rKysgPatm3blhNOOGG/seUTTjiBdu3aRVC5ZDsFcBIKYKnNvn37WLt27QFDGOvXrz+grZnRr1+/Aw749ezZk9gPOqW5UgAnoQCWutqyZcsBQxjLli2joqLigLbdu3c/IJSPOeYYXbqpGVEAJ6EAlsawZ88eli1btl8oFxcXV/+KL95BBx3EwIED9xtbHjRoEB07doygcsk0BXASCmDJFHfno48+OmBcee3atQnbH3XUUQcc8Ovdu7eGMHKcAjgJBbCEbfv27SxevHi/ceX333+f8vLyA9p26dJlv0AeMmQIxx13HC1btoygcqkPBXASCmDJBnv37uXDDz/cL5SLi4vZsmXLAW1btWrFgAEDDhhb7tSpU/iFS0oK4CQUwJKt3J2NGzceMK68atWqhO2POOKIA0K5T58+GsKImAI4CQWw5JrPPvtsv59dFxcXs2TJEr744osD2h588MHVQxhV93379qVTp04K5pAogJNQAEtTUFFRwcqVK/c72Pfee+9RWlqasH3r1q055JBDUt4KCgo0R0YDKYCTUABLU/bJJ5/sN668aNEiNm7cWKcLoB588MHVgdyzZ89aw7pbt276iXYCCuAkFMDSHO3atYtNmzbxySefVN9KSkr2e15127t3b1qv2aJFC3r06HFAMCcK7Q4dOjSbIZDaAlg/xRFpptq2bUvfvn3p27dv0nbuzrZt2w4I5URh/emnn1Y/TqVNmzZJhz6qQrugoIBWrVo11tvOKuoBox6wSGPZu3cvpaWlCXvR8aFdUlKScJ7m2nTp0iXlWHXPnj3p0qVLVk60ryGIJBTAIuErKyurNajjA3vTpk3V1wFMJT8/n4KCgrQOLrZv3z7D7zBmx44ddOrUabu7dz6g3lAqEBGpoX379hx99NEcffTRSdvt27ePLVu2pAzrTz75hK1bt7Jx40Y2btyYcv/t2rVLekCx6tajR48G/eqwqKgIoFOideoBox6wSFOxZ8+eAw4s1tazTnTOdG26deuW1lkgnTt3PuDA4hlnnMGrr76Kux9wxFEBjAJYpLlxdz777LOkZ35U3UpLSxNeKSWRli1b0qJFC/bs2VO9LC8vj8rKyoQBrCEIEWl2zIyOHTvSsWNH+vfvn7RtZWXlfmd3JAvsRFOPJhu/VgCLiCSRl5dHQUEBBQUFDB48OGnb3bt3s2nTJl544QV+8IMf7NcTTiT7ztcQEclRbdq0oU+fPtx444089dRTHHTQQUnbK4BFRDJg+/bt5OfnV52XnHAQWQEsIpIBf/jDH9i1a1fVsMXqRG0UwCIiGXDwwQdzzz33EJxhlXDmIx2EExHJgL/85S8p2+g8YMDMNgP/jLqOON2AT6MuIpBNtYDqSSWb6smmWiDaeo5w9+41FyqAs5CZLUg0cUcUsqkWUD2pZFM92VQLZF89oDFgEZHIKIBFRCKiAM5Ok6IuIE421QKqJ5VsqiebaoHsq0djwCIiUVEPWEQkIgpgEZGIKIAzwMxGmdlyM1tlZrcnWG9mdn+wfrGZDU21rZndY2YfBu2fNbNOwfI+ZrbbzIqD28Mh1PILM9sYt8/z4tb9OGi/3My+GtJnMyOulnVmVpzOZ9MI9Uw2s1Ize7/GNl3M7GUzWxncd45bl8nPp7Z6ovju1FZLVN+d2uqp93enUbi7bo14A/KI/e77SKAVsAgYUKPNecCLgAHDgXmptgXOBfKDx78BfhM87gO8H3ItvwBuTbC/AUG71kDfYPu8TNdTY/vfAj9L9dk0tJ5g3enA0Jr7AO4Gbg8e3x733ypjn0+KekL97qSoJfTvTrJ66vvdaaybesCN72RglbuvcfdyYDowtkabscBUj5kLdDKznsm2dfe/uXtFsP1coHdUtSQxFpju7nvcfS2wKnidUOoxMwMuBZ5I+ck0vB7c/XVgay2fw5Tg8RTgorjlmfp8aq0ngu9Oss+mNpF8NlXq8d1pFArgxtcLWB/3fEOwLJ026WwLcA2x/9NX6Wtm75nZa2Y2IqRavhP8mTc57k/sVNtk+rMZAWxy95Vxy2r7bBpaTzIF7l4CENz3SPO1MlVPvDC+O6mE/d1JR12/O41CAdz4DrjuE1DzXL/a2qTc1szuACqAPwWLSoDD3f1E4PvA42bWMcO1PAQcBQwJ9v/bNPeX0c8GuJz9ezDJPpuG1lMfmfx8Uu88vO9OMlF8d9JR1+9Oo1AAN74NwGFxz3sDH6fZJum2ZjYRuAC40oOBquBPti3B44XExsmqLnKVkVrcfZO7V7r7PuAR/vWnYqr9ZfKzyQf+DzCjalmKz6ah9SSzqepP3+C+NM3XylQ9YX93ahXRdyepen53GkemB5mb243YFJ9riB1IqDpYcHyNNuez/8GC+am2BUYBy4DuNV6rO8HBCmIHKDYCXTJcS8+47W8hNnYHcDz7H0hZw/4HUjJST9zn81q6n01D64lb34cDDzTdw/4H4e7O9OeTop5Qvzspagn9u5Osnvp+dxotLzIRQs39Ruxo7Api/9e8I1j2LeBbwWMDHgjWLwEKk20bLF9FbHyrOLg9HCz/OrA0+EK+C4wJoZZpQdvFQFGNf1R3BO2XA6PD+GyCdX+seo24ZUk/m0ao5wlif6ruJdb7ujZY3hWYDawM7ruE9PnUVk8U353aaonqu5OwnoZ8dxrjpp8ii4hERGPAIiIRUQCLiEREASwiEhEFsIhIRBTAIiIRUQCLiEREASwiEhEFsEgKZrbQzH4QdR3S9CiARZII5gk4ntgvyEQalQJYJLljic1PUBxxHdIEKYBFEjCzQWb2MrAgWLTCzH4WZU3S9ORHXYBItjGzvsDrwP3EppLsAvwV+L2ZveXuf4+yPmk61AMWOdCDwEx3/xmxOWXfdvcHiM0olpErI0jzpAAWiWNm3YFzgIeD64QNBt4LVlcA5VHVJk2PAlhkf8OJXYH3PWITcR8MFJtZV+Bw4B8AZva8md1rZnMtdvn5k4NLvq8zs1sjq15yigJYZH+tg/tWxK5btsXd1wPfJHZ5m9eD9QOBD9x9OPAKcB/wDeAM4NoQ65UcpoNwIvubR2yo4efErrCw0sz+Dfgpsasi7DOzDkALd/+fYJvdwH+7+w4zawvsjKJwyT0KYJE47r7ezK4GfgMcClQS6xV/3d1fCZoNBObHbXYCsTMmqtYtCalcyXEaghCpwd0fc/dewCfAeHcf6u6z4poMJHZNsypVF5GEWBgrgCUtCmCRBMysG3AIicP0BIIADi47/4n/6+KK6gFL2nRRTpEEzOwM4CWgnbtXRF2PNE0KYBGRiGgIQkQkIgpgEZGIKIBFRCKiABYRiYgCWEQkIgpgEZGIKIBFRCLy/wG/DpiYs35xswAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 360x576 with 3 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "save.plot_tikhonov_curves()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/Notebooks/seismic/InversionModel-2021-06-17-14-51.txt b/Notebooks/seismic/InversionModel-2021-06-17-14-51.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3259043a6ae236eaf55b36f6e9c7c11b91eed55a
--- /dev/null
+++ b/Notebooks/seismic/InversionModel-2021-06-17-14-51.txt
@@ -0,0 +1,11 @@
+  #     beta     phi_d     phi_m   phi_m_small     phi_m_smoomth_x     phi_m_smoomth_y     phi_m_smoomth_z      phi
+   1 1.1963e+06 6.7640e+02 3.5279e-06 3.4919e-06 1.7688e-08 1.8347e-08  0.0000e+00  9.6047e+04
+   2 5.9817e+05 6.6019e+02 1.3666e-05 1.3526e-05 6.8431e-08 7.1515e-08  0.0000e+00  6.8062e+02
+   3 2.9908e+05 6.2997e+02 5.1361e-05 5.0832e-05 2.5664e-07 2.7214e-07  0.0000e+00  6.6836e+02
+   4 1.4954e+05 5.7710e+02 1.8264e-04 1.8074e-04 9.0978e-07 9.9172e-07  0.0000e+00  6.4533e+02
+   5 7.4771e+04 4.9419e+02 5.9126e-04 5.8495e-04 2.9386e-06 3.3657e-06  0.0000e+00  6.0441e+02
+   6 3.7386e+04 3.8417e+02 1.6637e-03 1.6451e-03 8.3255e-06 1.0325e-05  0.0000e+00  5.3840e+02
+   7 1.8693e+04 2.6622e+02 3.9335e-03 3.8849e-03 2.0414e-05 2.8144e-05  0.0000e+00  4.4637e+02
+   8 9.3464e+03 1.6468e+02 7.7947e-03 7.6821e-03 4.4344e-05 6.8183e-05  0.0000e+00  3.3975e+02
+   9 4.6732e+03 9.2702e+01 1.3211e-02 1.2975e-02 8.7874e-05 1.4814e-04  0.0000e+00  2.3753e+02
+  10 2.3366e+03 4.9649e+01 1.9637e-02 1.9182e-02 1.6175e-04 2.9389e-04  0.0000e+00  1.5444e+02
diff --git a/Notebooks/seismic/InversionModel-2021-06-22-19-34.txt b/Notebooks/seismic/InversionModel-2021-06-22-19-34.txt
new file mode 100644
index 0000000000000000000000000000000000000000..3259043a6ae236eaf55b36f6e9c7c11b91eed55a
--- /dev/null
+++ b/Notebooks/seismic/InversionModel-2021-06-22-19-34.txt
@@ -0,0 +1,11 @@
+  #     beta     phi_d     phi_m   phi_m_small     phi_m_smoomth_x     phi_m_smoomth_y     phi_m_smoomth_z      phi
+   1 1.1963e+06 6.7640e+02 3.5279e-06 3.4919e-06 1.7688e-08 1.8347e-08  0.0000e+00  9.6047e+04
+   2 5.9817e+05 6.6019e+02 1.3666e-05 1.3526e-05 6.8431e-08 7.1515e-08  0.0000e+00  6.8062e+02
+   3 2.9908e+05 6.2997e+02 5.1361e-05 5.0832e-05 2.5664e-07 2.7214e-07  0.0000e+00  6.6836e+02
+   4 1.4954e+05 5.7710e+02 1.8264e-04 1.8074e-04 9.0978e-07 9.9172e-07  0.0000e+00  6.4533e+02
+   5 7.4771e+04 4.9419e+02 5.9126e-04 5.8495e-04 2.9386e-06 3.3657e-06  0.0000e+00  6.0441e+02
+   6 3.7386e+04 3.8417e+02 1.6637e-03 1.6451e-03 8.3255e-06 1.0325e-05  0.0000e+00  5.3840e+02
+   7 1.8693e+04 2.6622e+02 3.9335e-03 3.8849e-03 2.0414e-05 2.8144e-05  0.0000e+00  4.4637e+02
+   8 9.3464e+03 1.6468e+02 7.7947e-03 7.6821e-03 4.4344e-05 6.8183e-05  0.0000e+00  3.3975e+02
+   9 4.6732e+03 9.2702e+01 1.3211e-02 1.2975e-02 8.7874e-05 1.4814e-04  0.0000e+00  2.3753e+02
+  10 2.3366e+03 4.9649e+01 1.9637e-02 1.9182e-02 1.6175e-04 2.9389e-04  0.0000e+00  1.5444e+02
diff --git a/seismic/Seis_NMO.ipynb b/Notebooks/seismic/Seis_NMO.ipynb
similarity index 99%
rename from seismic/Seis_NMO.ipynb
rename to Notebooks/seismic/Seis_NMO.ipynb
index 37209ca86be3768414bf6a648b10daf608937105..0b96c72d709b8a981fda4c6e36c0467c439c4f4a 100644
--- a/seismic/Seis_NMO.ipynb
+++ b/Notebooks/seismic/Seis_NMO.ipynb
@@ -37,7 +37,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [
     {
@@ -107,7 +107,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 2,
    "metadata": {},
    "outputs": [
     {
@@ -168,13 +168,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 3,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "ab3fd9c34cdf42ad875deb54e14d6c2d",
+       "model_id": "43a9862229f44dd3926af983f2d4b8d0",
        "version_major": 2,
        "version_minor": 0
       },
@@ -210,13 +210,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 4,
    "metadata": {},
    "outputs": [
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "cbdb2fe92e5440b88a565d3b30b47228",
+       "model_id": "6c48406c9ab8474689af93c7c954a8ab",
        "version_major": 2,
        "version_minor": 0
       },
@@ -252,7 +252,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [
     {
diff --git a/seismic/Seis_Reflection.ipynb b/Notebooks/seismic/Seis_Reflection.ipynb
similarity index 99%
rename from seismic/Seis_Reflection.ipynb
rename to Notebooks/seismic/Seis_Reflection.ipynb
index 45da57d45feed14393974fd3604ffff98ad79dcd..78a0bc787a4c9992c2e58279df409a6a7527f8b1 100644
--- a/seismic/Seis_Reflection.ipynb
+++ b/Notebooks/seismic/Seis_Reflection.ipynb
@@ -152,7 +152,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "fe4a877307f247ed89387159d0575b85",
+       "model_id": "02c58095c4ad4a3e9c4f8d4bf01c2970",
        "version_major": 2,
        "version_minor": 0
       },
@@ -191,7 +191,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f7b67f595e0a4b7ebe279b40e59da28b",
+       "model_id": "8acc94ac2fe74ababc6bb7b89f4c2018",
        "version_major": 2,
        "version_minor": 0
       },
@@ -235,7 +235,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f6e30d9df4e04ec0b803c6780d1147f3",
+       "model_id": "1a42473c00bd42d88fa7a7c40e9e427d",
        "version_major": 2,
        "version_minor": 0
       },
@@ -312,7 +312,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "29534e192ee04e0bb3c7f74f127dbd99",
+       "model_id": "1af155fad1cc488a820695945b236f63",
        "version_major": 2,
        "version_minor": 0
       },
@@ -439,7 +439,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "C:\\Users\\tobia\\Desktop\\Uni\\_Python Scripts Allgemein\\geosci-labs-main-notebooks\\notebooks\\seismic/zeit.npy\n"
+      "C:\\Users\\tobia\\einfuehrung-in-die-geophysikalische-erkundung\\Notebooks\\seismic/zeit.npy\n"
      ]
     },
     {
@@ -497,7 +497,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "71675c9e172549668e660cb4f44c1381",
+       "model_id": "6d5e108a43fc4fe18c41d7a099798954",
        "version_major": 2,
        "version_minor": 0
       },
@@ -540,7 +540,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "ba6a7b777ed14de9b1eeb5db201ec944",
+       "model_id": "32ede16fe7bb44a985342ed5fd303aa3",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/Notebooks/seismic/Seis_Refraction.ipynb b/Notebooks/seismic/Seis_Refraction.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b2de02159b536b303332ed5722dfb2195ba26fd8
--- /dev/null
+++ b/Notebooks/seismic/Seis_Refraction.ipynb
@@ -0,0 +1,297 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "%matplotlib inline\n",
+    "import matplotlib.pyplot as plt\n",
+    "from geoscilabs.seismic.SeismicRefraction import (\n",
+    "    plotWavelet, viewTXdiagram, plotWiggleTX, makeinteractSeisRefracSurvey,\n",
+    "    makeinteractTXwigglediagram\n",
+    ")"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Interpretation and data acquisition strategies of seismic refraction data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In the <a href=\"https://www.3ptscience.com/app/SeismicRefraction\">3pt Science app</a>, you explored the expected arrival times for refractions and reflections from a two-layer over a half-space model. \n",
+    "\n",
+    "In this notebook, we will use synthetic seismic data to examine the impact of survey parameters on the expected seismic data."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Source "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "In an ideal case, the source wavelet would be an impulse (ie. an instantaneous spike). However, in reality, the source energy is spread in space and in time (see the <a href=\"http://gpg.geosci.xyz/content/seismic/wave_basics.html#waves-and-rays\">GPG: Waves and Rays</a>). The source wavelet used for these examples is shown below. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAEdCAYAAAAPaoscAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqhElEQVR4nO29eZhUxdm/f38aRAFlFAbUlyg7KPLDV0HAEAYQBSQKqHEhvnFAiAtRXEICRlyiccMYIiagoiKJaFwiiv7ccEFxFzdiwiLBDUFEjKKyCVPfP6qaNE33zPT0Nt3z3Nd1ru5zajlPnT5PV506VZ+Scw7DMAqDSL4NMAyj+pjDGkYBYQ5rGAWEOaxhFBDmsIZRQJjDGkYBYQ6bBSQNl/SCpM8lbZT0kaSHJA3Ot22ZRNK+kpykSxOELQ5hneOOHxSOn5M7S3c4f+tw/pE1SHu+pOOzYFa1MYfNMJLGAXOA94HRwI+B34XgI/JlVzZwzq0GlgNlscclNQcOADbEh8Xsv5B1AzPP+UBeHbZ+Pk9epIwHHnLOjY459iwwQ1JO/yAl7eqc25zl07wAnCJpF+fc9+FYGfA1/o+rDLg5Jn4Z8CXwjyzbVZRYDZt5mgKfJQpwzlXE7kvqIelpSd9K+k7SM5J6xMWZL2l+fF6SPpR0Z8z+yNDUK5N0v6SvgNdCWH1JEyT9S9ImSWslPSHpgJj0pZKmS/pU0mZJSySdUY3yPg80ArrFHCsDXg5h8TVsH+BF55yT1FzSLZKWSdog6RNJd0tqGWPXSaFcXRNcg8clvROzX1/SRcH2zZJWSbpB0m5VFUJS33D9vwm/xZOSusSEfwi0Ak4N9rjY658rzGEzz+tAuaRfSeqYLFK4AZ8H9gJGAqcBTYDnJR2cxvlnAx8APwEmhmN/A64CHgOGAz8H/gXsG2xpAryEb75fHj4fAaZLOreK80WbtrGOWQYsCFtLSW3DedoBLWPSNAU2ARcBg4FfAR2Al2KcbC6+tv6/2JNK2hs4EvhrzOG7gEnA3aEM1+AfS2ZXVgBJPwaeAb4N5/kpsAewQNJ+Idpx+D/iJ4HDw3ZlZflmBeecbRncgI7AIsCF7QvgHmBgXLwHgK+APWOONcE3Fx+MOTYfmJ/gPB8Cd8bsjwznmxIX74hwfFwlNl+Cd5wOccdnBPvrV1Hmj4BHw/cSYBvwo7C/ChgZvo8KtnRPkk89YL8Q57g4O1YCkZhj5wNbgX3Dfp+Q7rS4PE8Nx/837LcO+yNj4iwHnolL1ySU/Y9x1/yufN5fVsNmGOfcMuAQoC++VnsH/+/8pKRJMVHL8Df5VzFp1+NrlL5pmDAnbn8g/gadUUmawfjm8wehWVlfUn18bdIM6FxJWvA1Zu/wjP4j4HvgjRD2Iv+tfcuAb4C3owklnS3pXUnf4h3w4xDUKSb/v+Jr5thOu58BTzvf8RUtwxbg73FleCrm3DshqQPQDpgdl24D8EqydPnCHDYLOOe2OedecM5Ncs4dCbTFd7JcJmmvEK0psDpB8s/wzeSaEp9nM+BL59zGStK0wN+Y38dt98fkURkvAHsCXUM+r7v/dnYtYEeHfdk5tw0gNLenAU/je197AL1C3NjnzgX42u1nId2BwKHs2BxuATTAN2tjy/B5FWVoET5vZ+fyH1ONsucU6yXOAc65VZJuA27EP6O9jm/67pMg+j4hLMomfPMsnqbJThe3/wXQVFLDSpx2Hf7GPi9J+NIkx6PEPseW4XvFoywApko6DP/HdVtM2Cn4pugvowcktYnP3DnnJN0FnC/pbLzjfsuOrYl1+GvVJ4mNq5IcXxc+L8L/ccSzJUm6vGA1bIaJ6aSIJ9ojG+1Bfh74saQ9YtLuARwbwqJ8BHSU1CAmXhm+U6Q6PAUIGFNJnCeCfR875xYm2L6p7ATOuaWhXIPxvcULYoIXAevxnUGw4/vXRviaLJZRSU7zV2B3fE18KvB359yGuDLsBpQkKUMyh12Kr70PSpJuUUzczUDDJPnkhnw+QBfjhu/RfAgox9c2x+CbfRXAvTHxugIb8bXtCfgb8bVw7OCYeP3xteZd+F7RnwOL8R1Wd8bEGxnitU9g0wN4x5iMd6pjgeuBfiG8JOS5FDgrnPMY/Dvlh6tZ7vtCGbcBTeLCHg9hG4AGMcevCcd/E8p2NbAslOPyBOd4Fd/55IABCcLvBv6D70QbBBwVrtccoGOI05qdO52GhOtzb/gt+gInAX8ELoyJNwffEjkG6A60zvn9le8bvNi2cMPPxdeMm4Dv8J0sv469WUPcnvhm2Lch3jNAjwR5nokfObUR/36zG8l7iRM5bH3g4uAMW4C1+Fc8nWLi7AVMwb8S2hJuzAXA+dUs9y/C+d9KEPabEPZc3PGGwPRgzzfAo0CbShw2eo4deoxjwiP4Zv274dp/Hb5Pxte8CR02HD88nP8/Ie2H+Ndhh8fEOSBckw0hjzurc20yuSkYYhhGAWDPsIZRQJjDGkYBYQ5rGAWEOaxhFBB1duBEaWmpa926dcrptmzZQoMGDaqOmAPMlsTUFltqasebb775hXOueaKwOuuwrVu3ZuHChSmnW7p0KZ06dao6Yg4wWxJTW2ypqR2SPkoWZk1iwyggzGENo4AwhzWMAsIc1jAKCHNYwyggzGENo4AwhzWMAsIc1jAKCHNYwyggzGENo4AwhzWMAsIc1jAKCHNYwyggcu6wkgZLWippuaSJCcIlaWoIXyTp0KrSSmoqaZ6k98NnOkLchlFryfXyh/WAPwNH45d/GKG4BX9DWIewnYFX1asq7US8IHUHvPLgTn8EhlEM5LqG7QEsd86tcM5twctIDouLMwz4i/O8Cuwpad8q0g4DZoXvs/ArtBk5Yu7cuXz11Vf5NqNOkOsJ7C2BT2L2V+K1eauK07KKtHu7sCiSc261pBYkIKx3egZAy5YtWbq0qhUodmbFihUpp8kWtcGWVatWMWzYMCTRtWtXjj76aAYMGMB++yVbACH71IbrAtmxI9cOqwTH4oWRk8WpTtpKcc7dCtwK0L17d1dTVYLaoGYQJd+2dOjQgSuuuIJLL72URYsW8e6773LttdfSvn17TjzxRIYPH0737t2JRHLbmMv3dYmSaTty3SReiV//M8oP2HmRomRxKku7JjSbCZ+fY+SESCRCu3btaNSoUVQdn0gkwooVK7jmmmvo2bMnzZs3Z8yYMcydO5dvv/02zxYXNrl22DeADpLahMWdTsEvaxHLXOC00FvcC/g6NHcrSzsXv5YN4fPhbBfESE5FRQUVFRXb99evX8/tt9/OsGHD2Guvvejbty9Tpkxh6dKl2MoTqZFTh3XObQXOwS8UvBi4zzn3T0lnSTorRHsMWIFfFXsGMLaytCHNtcBRkt7HL4B0bY6KZFSDrVu37rC/YMECLrzwQg444AB+8IMf8Itf/ILHHnuMDRs2JMnBiJJz1UTn3GN4p4w9dnPMd4df9KhaacPxdcCAzFpqZINY541EIqxZs4Zp06Yxbdo0dtllF/r06cPw4cMZMmQI7dq1y6OltRMb6WTkjYqKCrZt27bDsWeffZZx48bRvn179ttvP8aNG8dTTz3Fpk2b8mRl7cIc1qg1fP/9f9d2jkQirF69mptuuolBgwZRUlLCwIEDufnmm/noo6SyvUVPnRUSN2o3sZ1W0f158+Yxb948AFq1asXxxx/PscceS+/evWuF0n8usBrWKAhin30lsXLlSqZMmcIRRxxBSUkJQ4YM4fbbb2fVqvi3hMWF1bBGweGc2+HZd+vWrTz++OM8/vjjAOy///6ccsopHHvssfTq1Yv69YvnNrca1ih4EtW+kydPpk+fPpSUlHDcccfxl7/8hS+++CKPVmYGc1ijqHDO7fD8u2XLFh566CHKy8tp0aIFPXv2ZOrUqXzyySeV5FJ7MYc1ipr4975vvPEG5513Hvvvvz8HHnggV111FYsXL86jhalhDmvUGbZt27Z9KKQkli1bxqRJk+jcuTOtWrXi0ksvZdmyZXm2snLMYY06SWzTWRKffvopV155JZ06deLAAw9kypQprF69Os9W7ow5rFHnie11jta8F154IS1btqR379488MADOwzqyCfmsIYRQ3zN+8orr3DiiSdSWlrK+PHj+eCDD/JqnzmsYSShoqJi+zPvd999xw033EDbtm058sgjee211/JikzmsYVSD2CbzM888Q69evejWrRvPPvtsTu0whzWMFIidcP/2228zYMAAevfuzZIlS3Jy/mLRJb5e0pIQf46kPXNUHKMOE3Xel19+mc6dOzNu3Lisd04Viy7xPKCLc64rsAy4KMtFMYyduOmmm+jQoUNWp/8VhS6xc+6pICED8CpeoM0wcka0tv3oo4848MADWbRoUVbOk2uHTaY5XJ041UkLcDrweNqWGkYN2bhxI7169WLdunUZz7uodIklXQxsBWYnPLkJiWeFVatW7TThvK6zceNGysvLefTRRzOab64dNh1d4gaVpZVUDhwDDHBJtDNNSDw7vPnmmzkXCi8Eli9fTpMmTdh3330zlmdR6BJLGgxMAIY650wr06g1zJkzJ6P55bSGdc5tlRTVFq4H3BHVJQ7hN+NlTIfgdYk3AKMqSxuy/hOwKzBPEsCrzrmzMIw8E+7HjFEsusTtM2ymYaRNJBKhrKwss3lmNDfDMLZzwAEHcNBBB2U0T3NYw8gCu+++O9OnT894vsUjJ2cYtYSSkhJef/31rCz0ZTWsYWQISXTv3p3ly5fTsWPHrJzDHNYwMsCuu+7K9OnTef311yktLc3aecxhDSMN6tWrx5gxY1i9ejVnnnlmxl/jxGPPsIZRA+rXr89Pf/pTrr322oyOZKryvDk7k2EUOJJo2LAhv/zlL7ngggvYa6+9cm6DOaxhVEEkEqFz585ceeWVHHPMMXldq8cc1jASEIlEaNKkCWPHjmXs2LG0bJloJmfuMYc1jEAkEmHXXXflxBNPZNy4cRx66KFZ70RKFXNYo04TiURo0KABw4YN4xe/+AW9e/eu1VMFzWGNOkckEqFx48Ycf/zxnHnmmfTs2bNWO2ks5rBGnSASibDPPvtQXl7OqaeeSufOnWtdc7c6mMMaRYkkIpEIXbp04eyzz2b48OHsvffe+TYrbcxhjaIh2tTt06cP5513Hn379mXXXXfNt1kZpSiExGPCx0tykrI3mNOoNURr0QMOOIDrrruOJUuWsH79ev7whz8wcODAonNWyHENGyMGfhRebO0NSXOdc/+KiRYrJN4TLyTes6q0kvYLYR/nqjxG7onWooMGDWLUqFH079+fhg0b5tusnJHrJvF2MXAASVEx8FiH3S4kDrwqKSok3rqKtFOAXwMP56IgRm6QhCQ6derE6aefznHHHUe7du3ybVbeyLXDJhID71mNOMmExHsCSBoKfOqce7eynj/TJc4OmdYllkTjxo0pKyvjhBNO4LDDDqNBgwYAbN26tcrfrbZcl2zYUfBC4pIaARcDA6s6uekSZ4d0dYmjtWjnzp05/fTTOeGEE9h///3Tsqk2XBfIvB3FICTeDmgDRGvXHwBvSerhnPsso9YbGUMSe+yxB0cffTRjxoyhrKxsey1qJCfXDrtdDBz4FC8G/tO4OHOBc8Izak+CkLiktYnSBm3iFtHEkj4Eujvnvsh6aYxqE61F27dvz+mnn87JJ59M69at821WwVEsQuJGHnHOJXyGjUQi7LLLLvTv358zzzyTgQMH0qhRozxYWDwUhZB4XJzW6VtpVMW2bdt4+eWXmTNnDnfddRebNm0CvJOWlJRw8sknM3r0aLp161aQQwBrKzbSyag2zjkWLlzIPffcw9/+9jdWr15NgwYN6NGjB40aNWLkyJGcdtpptG3bNt+mFi3msEaVLF68mHvuuYd77rmH5cuXs8suuzBkyBBOOeUUhgwZQpMmTVi6dGmt6ZktZsxhjYR8+eWXzJ49mzvuuIN33nmHSCRC//79mThxIscff3xe9IwMc1gjBuccL7zwAjNmzOCBBx5g8+bNdOvWjT/+8Y+cdNJJOVUHNBJjDmvw7bffMnPmTP70pz+xbNkySkpKGD16NGPGjOGQQw7Jt3lGDOawdZiVK1dy0003ceutt/LVV1/Rq1cvZs2axU9+8hN7/VJLMYetg3zyySdceeWVzJw5k4qKCk444QQuuOACDj/88HybZlSBOWwdYs2aNVxzzTVMnz4d5xxnnnkm48ePtxFHBUS1HVZSS/x8017A/wANgS+ApcDzwPPOucxN2TAyxtatW5k2bRqTJk1iw4YNjBw5kksuuYRWrVrl2zQjRap0WEn9gPHAIPyQwJXAWmAjcDBwDHApsFrSDOAPzrn1WbLXSJG3336b0aNH8/bbbzNw4ECmTp1q70sLmErnREl6FD8U8DvgJKC5c25/51w359yPnHOdgRLgf4FpwInAvyUNyq7ZRlU455g6dSq9evXis88+47777uOJJ54wZy1wqqphlwNjKpumFprBi8J2VZhMXpI5E41U2bJlC6NGjeLuu+/m2GOPZebMmTRr1izfZhkZoFKHdc6dn2qGzrm5NbbGSJuNGzcybNgw5s2bx+9+9zt+85vf2OD7IiLtXmJJzZxz6zJhjJEeFRUVlJeX8/TTT3PHHXcwatSofJtkZJhq63pI+rmkX8Xs/3+SVgKfS1ooaZ+sWGhUmxtuuIH777+f66+/3py1SElFiOdcfM9wlD8AXwHn459Zr6hOJtnSJZZ0bgj7p6TJKZSrKPj444+59NJLGTZsGBdeeGG+zTGyRCpN4v2BJQCSSoC+wHDn3GOS1gHXVJVBtnSJJfXHS552dc5tltSCOsaUKVPYunUrU6dOtWfWIiaVGrYeEB0Y8SO8kuH8sP8JMbpKlbBdl9g5twWIagvHsl2X2Dn3KhDVJa4s7dnAtc65zQDOuc9TKFfB45zj3nvvZdiwYWmrDRq1m1Rq2PeBHwPP4gXQXnbObQhh/wN8WY08sqJLDHQE+ki6CtgEjHfOvRF/8mLVJV61ahWrV6+mS5cuNSpTJm2pDdQWW/KtS/x74K+SyoG98IMkovTHv4etiozrEofP+sGmXsBhwH2S2gZ9qP9GLlJd4vXr/cCybt265dW22nZdagN50yV2zt0t6WN8rfaGc+6FmOA1eHnSqsiGLnE0zYPBQV+XVAGU4odQFj277bYb4N/BGsVNSu9hnXMvAi8mOH5ZNbPIuC5xSPMQcAQwX1JHvHPXGV3iNm3aEIlE+Oc/TfW12KlqLHGNNEGSvZN1zm0FotrCi4H7orrEUW1i/NjlFfhhkTOAsZWlDWnuANpKeg/fGVUe3xwuZnbffXcOOeQQnnzyyXybYmSZKscSS7oNmO6cW1JZREkNgePwK8g9APwuUbxs6BKHXuP/q7QkRc6IESMYP3487733Hl26dMm3OUaWqOq1ThnQBfinpLfDgIbRkoZKGiTpFEm/kfQQ/jl2GnAfvoPKyCEjR45kjz324Le//W2+TTGySFWD/98EBoTRRj/Hz309Jy7aJuA1fM062zn3TTYMNSqnWbNmXHDBBVxxxRXMnz+ffv365dskIwtUa+CEc+4t59zZzrm2wD7AocAPgU5AiXOuv3PuZnPW/DJhwgTatWvHmDFj2LBhQ9UJjIIj5UU9nXOfO+fecc696px73zn3fTYMM1KnUaNG3Hbbbfz73//mnHPOoQ71u9UZar4Kr1Er6devH5MmTWLmzJnMmDEj3+YYGcYctgi5/PLLGTRoEOeeey4vvrjTa3OjgDGHLULq1avH7Nmzad26NUOHDmXx4sX5NsnIEOawRUqzZs144oknaNCgAYMHD2bVqvgRoEYhYg5bxLRp04bHHnuML7/8kqOPPpqvvvoq3yYZaZKyw0oqlXSMpHJJTcOx3SSZ89dCDj30UB588EEWL17M0KFDbYJAgZOKppMkXY+fGTMXP363dQh+GLg449YZGeGoo47irrvu4sUXX+Tkk09m69at+TbJqCGp1IoX4Uc5XYGfRRM7P/UR/Cgoo5Zy0kkn8ec//5lHHnmEMWPGUFFhq6oUIqlMrxsDXOGcuyboK8WyHGiXObOMbHD22Wezdu1aLrvsMkpLS7n++utN/6nASMVhWwKvJgnbAjRO3xwj21xyySWsXbuWG264gebNmzNhwoR8m2SkQCoO+yl+5s5zCcIOBj7IiEVGVpHEjTfeyLp165g4cSKlpaWMHj0632YZ1SSVZ9j7gUsl9Y455oLCwy/xE8erJBu6xJL+V9Krkt4JouY9UihXnSMSiXDnnXcyePBgzjjjDObMmZNvk4xqkorDXo7XJX4Br6AI3on/EfavrSqDGG3ho4HOwAhJneOixeoSn4HXJa4q7WTgt865/8UvfVnnhMRTpUGDBjzwwAP07NmTESNG8NxziRpORm2j2g7rnNsI9ANGAi8DT+M1ms4AjgqqD1WRLV1iBzQJ30vYWdjNSEDjxo159NFHad++PcOGDeOtt97Kt0lGFaQqwrYN+GvYakK2dInPB56U9Hv8n9APE528WHWJ02XatGmMGDGCo446itmzZ9OmTZu82ZIJaost+dYl3oFEI5vCWrGVJktwLBO6xGcDFzjn/i7pJOB24MgE9hWlLnEm8njuuef40Y9+xFlnncVLL71Ey5Yt82JLpqgttmTajlRGOjWUdK2kf0vaDHwft1WnSZyOLnFlacuBB8P3+/HNZyMFOnbsyOOPP86XX37JoEGDtouTG7WLVGrYacCp+FFNf6N6DhpPtnSJV+EX55qP1yd+HyNlunXrxpw5cxg0aBBjxozh3nvvtYEVtYxUHHYofs2aqTU9mXNuq6SotnA94I6oLnEIvxkvYzoEP3pqAzCqsrQh658DN0qqjxeFO6OmNtZ1BgwYwNVXX82ECRMoKyvjnHPiNfeMfJKKw27GC3inRZZ0iV8EuqVrm+EZP348CxYs4MILL6Rnz54cdthh+TbJCKTyHvZOfDPUKHIikQizZs1i7733pry8nE2bNuXbJCOQisNeAmyT9JSkX0o6PX7LlpFG7mnatCm33XYbixcvNnHyWkQqTeJu+OfYFiR4ZYJ/xXJHJowyageDBg1i9OjRTJ48mRNOOIHu3bvn26Q6Tyo17M3AOvzook5Am7itbcatM/LODTfcQIsWLRg3bpzpHNcCUnHYA4BfOeceCQLiH8Vv2TLSyB8lJSVcddVVvPLKK9x77735NqfOk4rDLsXmvNZJysvLOeSQQ5gwYQKbN2/Otzl1mlQcdiIwSVKrbBlj1E7q1avH5MmT+fjjj5k1a1a+zanTpOKwk/AdTssk/UPSC3Hb81my0agFDBgwgB49enDdddeZiFseScVht+Hnw74MfBH2YzdT9SpiJHHRRRexYsUK7r///nybU2ep9msd51y/LNphFABDhw6lXbt23HLLLYwYMSLf5tRJTPzbqDaRSITRo0fz/PPPs2zZsnybUyep1GEllUnaPeZ7pVtuTDbyyciRI6lXrx4zZ87Mtyl1kqqaxPOBXsDr4XuyN+cKYfF6xUaRse+++zJgwAD+/ve/c/XVV9v0uxxTlcP2B/4Vvh9Bcoc16hDDhw9n7NixLF68mM6d4zX0jGxSqcM6556P+T4/69YYBcHQoUMZO3YsDz/8sDlsjklFImaFpIOThHWRVC3FqTR1ie+Q9Lmk9+LSNJU0T9L74XOv6pbLSJ2WLVvStWtXnn322XybUudIpZe4NbBrkrDdgCpHQKWjSxy4ExicIOuJwDPOuQ7AM2HfyCJ9+/bl5Zdf5vvvv8+3KXWKVF/rJHuG7Q58VY306egS45x7AfgyQb7DgOiYuVnA8GrYYqRBWVkZGzZsYOHChfk2pU5R6TOspAuAC8KuAx6RFC++1hBoSvWW6khHl3h1Jfnu7ZxbDRAE21okimS6xJmjRQt/iR999FGaNm1q1yUB+dAlXoFvYoKXEl0IrI2Lsxnfk3xbNc6Xji5x2pgucebo2LEjpaWlrFmzZrsNdl12JtN2VNVL/DB+dfXo+7YrnHPprFKXji5xZayRtG+oXfcFPk/DRqMaSKJr164sWrQo36bUKVJZW2dUms4KMbrEkhrgRd3mxsWZC5wWeot7EXSJq8h3Lr4FQPh8OE07jWpw8MEH895779lq7jkkp2OJnXNbgai28GLgvqgucVSbGC9jugKvSzwDGBtNL+ke4BWgk6SVkqILm14LHCXpfeAoqrGSnpE+HTp0YOPGjXz22Wf5NqXOUOO1dWpKmrrECaeIOOfWAQMyaKZRDVq3bg3Ahx9+SLNmzfJrTB3BZusYNSbWYY3cYA5r1JhWrfxYmQ8+SLdrw6gu5rBGjWnUqBF77rkna9asybcpdQZzWCMtSktL+eKLL/JtRp3BHNZIi9LSUtaujR9LY2QLc1gjLZo3b241bA4xhzXSwmrY3GIOa6RFSUkJ69evz7cZdQZzWCMtGjduzHfffWcLZeUIc1gjLRo1akRFRYVNZM8R5rBGWjRu7NdH27BhQ54tqRuYwxppEXXYjRs35tmSuoE5rJEWjRo1Asxhc4U5rJEW5rC5xRzWSItddtkFgG3btuXZkrpBzh02S7rE10taEuLPkbRnDopiAPXr+ynVtmZsbsipw2ZRl3ge0MU51xVYBlyUWcuNZFgNm1tyXcNmRZfYOfdUkJ8BeBUv3GbkgGgNaw6bG3ItEZMtXeJYTgfuTRRgusSZ59NPPwVg5cqVNbqe2aA2XBfIjy5xpsmqLrGki4GtwOxE4aZLnHm+/vprwM/aybctsdQWW3KqS5wFsqVLjKRy4BhggLOBrTnDmsS5JdfPsFnRJZY0GJgADHXO2Ri5HGK9xLmlWHSJ/wTsAcyT9I6k7bKpRnaxGja3FIsucftM2mhUn0jE/+ebw+YGG+lkpEVYc8nmw+YIc1gjLaIOa+QGc1jDKCDMYY20sCZxbjGHNdLCmsS5xRzWyAhWw+YGc1gjLayGzS3msEZGsBo2N5jDGmlhnU65xRzWSAtrEucWc1gjI1gNmxvMYY20sCZxbjGHNdLCmsS5xRzWMAoIc1gjLayGzS1FoUscEz5ekpNUms0yGDtjz7C5oVh0iZG0H3AU8HFmrTYqwzqdcktR6BIHpgC/ppoKi0ZmsCZxbsm1wybTHE41zg5IGgp86px7NxNGGqljNWxuKHhdYkmNgIuBgVWe3ITEM86aNWsAWLt2rQmJx1EMQuLZ0CVuB7QB3g3Nsx8Ab0nq4Zz7LDaiCYlnnj322AOA0tLSvNsSS22xJdN2FLwusXPuH865Fs651s651niHPzTeWQ2jGCgWXWLDqBMUhS5xXJzWaZpoGLUWG+lkGAWEOaxhFBDmsIZRQJjDGkYBYQ5rGAWEOaxhFBDmsIZRQOT8PaxRXDRp0oQbb7yRNm3a5NuUOoHVsEZa7L777owbN46OHTvm25Q6gTmsYRQQ5rCGUUCYwxpGAWEOaxgFhDmsYRQQ5rCGUUCYwxpGAVE0QuKSzg35/lPS5GyXwzDyQVEIiUvqj9cz7uqcOwj4fcaNN4xaQLEIiZ8NXOuc2xzifZ61EhhGHsn1WOJEIuE9qxGnJZBUORHoCPSRdBWwCRjvnHsjPpLpEmcPs2VnikGXOONC4oH6wF5AL+Aw4D5JbV2cHL3pEmcXs2VnCl2XOBtC4tE0D4Zm9OtABWAr2BlFR8ELiQceAo4AkNQRaAB8kVHLDaMWUCxC4ncAbcPrnr8B5fHNYcMoBopCSDz0OP9fBs00jFqJ6mpFJGkt8FENkpZSe5rbZktiaostNbWjlXOueaKAOuuwNUXSQudc93zbAWZLMmqLLdmww8YSG0YBYQ5rGAWEOWzq3JpvA2IwWxJTW2zJuB32DGsYBYTVsIZRQJjDGkYBYQ5bBZJODJPiKyQl7aKvamJ+hmxpKmmepPfD515J4n0o6R+S3pG0MIPnr7H4QKaphi39JH0drsE7ki7Noi1JhRVCeOaui3POtko24ECgEzAf6J4kTj3g30Bb/Djmd4HOWbBlMjAxfJ8IXJck3odAaYbPXWUZgSHA4/gZV72A17L0m1THln7Aozm6R8qAQ4H3koRn7LpYDVsFzrnFzrmqJs5WZ2J+JhgGzArfZwHDs3COZKQlPpAHW3KGSy6sECVj18UcNjMkm3SfafZ2YeZS+GyRJJ4DnpL0Zpi0nwmqU8ZcXYfqnudwSe9KelzSQVmwo7pk7LrY6nWApKeBfRIEXeyce7g6WSQ4VqP3ZZXZkkI2vZ1zqyS1AOZJWhJqgXTIlvhAtmx5Cz8m91tJQ/BTMDtkwZbqkLHrYg4LOOeOTDOLmky6T9kWSWsk7eucWx2aVAm1q5xzq8Ln55Lm4JuQ6TpstsQHsmKLc259zPfHJE2TVOqcy8ekgIxdF2sSZ4bqTMzPBHOB8vC9HNip9pfUWNIe0e/AQCBh72WKZEt8ICu2SNpHksL3Hvh7fV0WbKkOmbsuuehFK+QNOA7/D7kZWAM8GY7/D/BYXE/gMnzv5cVZsqUZ8AzwfvhsGm8Lvuf03bD9M5O2JCojcBZwVvguvIztv4F/kKRXPUe2nBPK/y7wKvDDLNpyD14k8Ptwr4zO1nWxoYmGUUBYk9gwCghzWMMoIMxhDaOAMIc1jALCHNYwCghz2DSQNFzSC2GmxkZJH0l6SNLgmDgjJTlJrfNoatSWyyVV+7WApIZhxouTdHA2bauGLU7S5TH7O5RF0p7hWMZnCEmaL2l+pvOtCeawNUTSOGAO/p3oaODHwO9C8BExUf9/4HAqX8yrtnI80CR8Py2fhiTgNvx1jbIncBl+1kzRYkMTa8544CHn3OiYY88CMyRt/yN0zq0F1ubauAxRjp+F8j5wqqRfO+e25dkmAJxzK/GDFOoUVsPWnKbAZ4kCnHMV0e+JmsSSGkmaLmmdpG8kzZH0wxBvZEy8O+WXJDlE0gJJG+Qnr58Vez5JzSXdImlZiPOJpLsl1XimTEg7AD917TZgb2BQgngfSrpL0s/ChPKNwdYOYZjkLaGcayTdIKl+TNp+ocwnhLL+R9J6SbMlNavCvu1N4nBtPwhBM0Ke269lsPHOBHns0MwOx06RtETSZnnhguOSnL80/IafhrhLlLmZUUkxh605rwPlkn4lvwBXKtwKnI5fKf54YCkwO0ncJsDdwF34eZVvANPlV52P0hS/Lu5F+BXqf4WfmfKSpN1StC3Kz/D3x1+A+0L+5UniluHXQJoQ4rQD/h7K9A1+rO+twIWE9Xnj+CN+9soI/KykocADKdi6Gn8dAa7BN5UPxz+OVBtJR+Kv9fshv+uBG/ECBrHxmgAv4R+DLg+fj+B/l3NTOWfKZGt8ZbFv+EWkF+FvNIdfkuEeYGBcvJEhvHXY74RfDvPXcfGmhngjY47dGY71jzm2azjXrZXYVg8/O8QBx8Ucv5ywfFE1yvcvYEnM/j14p90zLt6H+GZzScyxceHct8XFfQt4Lma/X4j3RFy8U8PxATHHHHB5srIArUOcMQnK8iFwZ4Lj8Xm+FModiTnWM8SbH3PsknAtOsTlNyP8NvWzdd9ZDVtDnHPLgEOAvsBVwDv4iQJPSppUSdKe+MHg98cdT1ajbHDOPRdz3s34GmD/2EiSzpafrP0tsBX4OASlvKJwmN1yIPDXmMOz8H8WJyVI8opz7uuY/SXh88m4eEvYcZpZlPvi9u/H/6kdniBuVpBUD78Y+AMu5pHGOfca3uFjGQy8BnwgqX50w5e3GdA5W3aaw6aBc26bc+4F59wk5+extsXPxrhMSQTSgKg0SPxc1jVJ4v8nwbHNwPambmiGTQOexjfleuC1g4iNlwLRpu8j4XXJnvim+FoSN4vjbdxSyfFE9uxQdudlX/5DdtQqklEK7BJvSyD+WAv8Y8D3cVv0T7jS5+90sF7iDOK8ysNt+OeeDvjn3Hiir3da8N+OEvCdOjXlFOAZ59wvowcktalJRvrv/FLwU9PiaS6pvXNueU3yT8IOZQ827AV8mqH8N+HF2mLP0TQuzhd4p0v0O+zNjisdrsP/4Z6X5HxVaYDVGKtha4ikRE07gAPCZ8IeZHxTygEnxh2P30+FRvibLZZRNczrWHwn1m+B/nFb1JEz/U42vpl9Iv7efCWFPDaHz4YJwj4CusQdOyZ2x/nXVW8AP4l9LSepJ/75OJYn8L/zx865hQm2b1KwOyWshq0570l6Dj944gN8b+4Q/MTl+5xzHydK5JxbKulu4MpwY7yJH2hxbIhSkShdFTwBTJD0G3ytfgTwkxrkA77J+y3we+fct/GBki7Aqydc5kJPSwY4SNJM/Cukjvg+geedc8+kkMcafM13iqRFwHfAB865dSHfOyRNAR4FDsZ3BsZzGfAU8JCkW4Dm+D+u+D/fKcDJwIKQ51KgMd6J+zjnsqbgaDVszZmAv35X4H/ke/GdJBPxr0Qq4wzgDuDXeIc/iP+uOv91skSVcAVwC3BByK8rCd6ZVoWk5sDR+D+cnZw1cDvQCt/ZlinOw3fE3QtcjXeqlP5wQkfRGHxT+ml8bRn9E5yFd8bj8a9fBuE7COPzeBrfQ90JeBD/eux84pq4oYPth8Bj+PvgSfzvOQx4jixiihO1BEm/Aq7Dv/5JWDsXG5L64W/wo4KzGFVgTeI8IOkY/DPVO/gmcB/8UMekTWnDAHPYfPENXrV/Iv7Z51P8wInL8miTUQBYk9gwCgjrdDKMAsIc1jAKCHNYwyggzGENo4AwhzWMAuL/AShMQrkxqpQcAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 216x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "text/plain": [
+       "<AxesSubplot:title={'center':'Source Wavelet'}, xlabel='Signal Amplitude', ylabel='time (s)'>"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "plotWavelet()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Data\n",
+    "\n",
+    "Below, we show 3 plots:\n",
+    "- **left**: expected arrival times for the direct, refracted waves and reflection from the first layer\n",
+    "- **center**: clean data - the wavelet arriving at the expected arrival time. Each line represents what would be recorded by an ideal geophone.\n",
+    "- **right**: noisy data - clean data + random noise. \n",
+    "\n",
+    "The model used is the same as is in the lab write-up: \n",
+    "- v1 = 400 m/s\n",
+    "- v2 = 1000 m/s\n",
+    "- v3 = 1500 m/s\n",
+    "- z1 = 5m (depth to layer 1)\n",
+    "- z2 = 15m (depth to layer 2)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAGICAYAAAD7zzUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddVhVyf/HXwe4NAgiEoKdiCKKCCq2KLarrt259q66dtfava6NrWt+1XWtNVgTA2yxu1AU6Ty/Py7wQ1fhnoOxq/N6Hh6RO++ZOTfmns/MJyRZlhEIBAKBQCAQCAQCwbeF3peegEAgEAgEAoFAIBAIPj/CGBQIBAKBQCAQCASCbxBhDAoEAoFAIBAIBALBN4gwBgUCgUAgEAgEAoHgG0QYgwKBQCAQCAQCgUDwDSKMQYFAIBAIBAKBQCD4BhHGoOBfgSRJHSRJOvqJx8gtSVKkJEn6WewnryRJsiRJBiq0lyVJqpKV8QUCwcdFkqQxkiSt+dLzEAgEAqVIkvSnJEntv/Q8BP9dhDH4H0WSpLuSJMWkGDepP/O/4HwOS5LU5ROPYZZynbvV6GVZvi/Lsrksy0kfe26pvPN6JL/zGrWWZbm4LMuHP9X4AoHg/UiS1EqSpDMpn8UnKTdQFb/wnA5LkhQrSVKEJElvJEk6K0nSEEmSjBT0IUuSVPBTzlMgEHw6Uu7nnkmSZJbub10kSTqsi16WZT9Zlld+5DnJkiRFpayXLyVJ+kuSpOYK9FUkSXr4Meck+HQIY/C/Tf0U4yb1p/eXntAnpikQB/hKkuTwoUbvO7FTc4qnhvSvB3Cft1+jtZ9jDgKB4G0kSfoJmA1MAuyA3MCvQMMvOK1UesuybAE4AAOAFsBuSZKkLzstgUDwGTEA+n3pSbyDW8q9TBHAH5gvSdLoLzslwadAGINfIZIkLZQkaXO6/09J2dWRUndrJEkaJknSi5Qdqdbp2hpJkjRdkqT7KTtVv0mSZJLu8YaSJAWn7GLfkiSptiRJEwEftAtF2gmlJElFJUnaL0lSmCRJIZIkfZ+uHxtJknak9BMIFNDh0toDvwEXgNbpH0i5jsGSJF0AoiRJKpiys9VZkqT7wMH07p2SJLWQJOnMO338KEnSjpTf60qSFJQyvweSJI3R9fnPiJR51kj5fYwkSZskSVqTcjJwUZKkwpIkDZUk6XnKuL7ptNkkSVqWcqrxSJKkCVKKy2vK9R6RJCk85XXd+DHmKxD815EkKRswDugly/JWWZajZFlOkGV5pyzLgz6g8ZIk6bgkSa8lSTovpXPtliSpoyRJV1M+s7clSeqe7rHU9XVAymf4iSRJHXWZZ8q8DgMNAG+gbkqfnpIknUiZyxNJkuZLkmSY8lhAivx8ytrbXJIka0mSdkmSFCpJ0quU350UP3ECgeBzMg0YKEmS1fselCSpvCRJp1O+409LklQ+3WNpnlkfuheQJGmBJEkz3ulzpyRJ/TObmCzLL2RZXg38AAyVJMkmRf/etVDSnnD+CThK/+8Z5ZjRWib4sghj8OtkAFBS0sbh+QCdgfayLMspj9sDOYBcaA2sxZIkFUl5bApQGCgFFExpMwq0NyXAKmAQYAVUAu7Ksjwc+BvtDre5LMu9UxaD/cA6ICfQEvhVkqTiKeMsAGLR7oZ3Svn5IJIk5QaqAGtTftq9p1lLtDdQVkBiyt8qA8WAWu+03QEUkSSpULq/tUqZL0BUyhhWKX3+IElSo4zmqJL6wGrAGggC9qL9XOZCewO7KF3blWivqyDgDvgCqa6544F9Kf04AfM+wVwFgv8i3oAxsE2XxpIk5QL+ACYA2YGBwBZJkmxTmjwH6gGWQEdgliRJpdN1YQ9kQ/sZ7gwskCTJWtfJyrJ8HziDdoMNIAn4Ee2a7Q1UB3qmtK2U0sYtZe3diHb9WAHkQXsCGgN8sRACgUCgE2eAw2jXm7eQJCk72jVpLmADzAT+SDXK3uFD9wIrgZaSJOml9JkD7VqyXsEc/4f2BNMz5f/vXQtlWY4C/IDH6TyjHpPBWib4sghj8L/N9pQdltSfrgCyLEcDbdAuGGuAPrIsv+u7PVKW5ThZlo+gXWS+lyRJAroCP8qyHCbLcgRat6oWKZrOwHJZlvfLspwsy/IjWZavfWBu9dAaiitkWU6UZfkcsAVomnKa1QQYlbIbfgntQpUR7YALsixfQbt4FZckyf2dNnNlWX4gy3JMur+NSRkj/d9Sn6P/oTUgSTEKi6I1EpFl+bAsyxdTrvNCypiVM5mjGv6WZXmvLMuJwCbAFvhFluUEYAOQV5IkK0mS7NAurv1Truc5MIv/f20S0N78OcqyHCvL8idNxiMQ/IewAV6kfMZ0oQ2wW5bl3Smf//1ob9TqAMiy/Icsy7dkLUfQ3nj5pNMnAONSTh93A5Fo3ayU8BitIYosy2dlWT6Zso7eRbtB9MG1SJbll7Isb5FlOTplDZ+YUXuBQPCvYRTQJ93GUyp1gRuyLK9OWQfWA9fQbia/y3vvBWRZDgTC0RpgoL13OCzL8jNdJ5dyX/KC/1+bMlsL39UrWssEnw9hDP63aSTLslW6nyWpD6R88G8DEvD7O7pXKTs3qdwDHNEaIqbA2VQDE9iT8ncAZ+CWjnPLA5RLb6yide20T+nPAHjwzhwyoh3aE0FSdpiOoD3VTM+Dd0Uf+Fsq60gxBtGeCm5PMRKRJKmcJEmHUlytwoEeaHezPjbpF+IYtDetSen+D2CO9vnUAE/SPZ+L0J66AvyM9rUOlLQZSzM8aRUIviFeAjkk3eOG8wDN3lm7KqL1YkCSJD9Jkk5KWvf312iNxPRrw8t3DM9otJ9hJeQCwlLGK5zi6vlUkqQ3aDfoPrgWSZJkKknSIkmS7qW0DwCspCxmURYIBJ+WlI3xXcCQdx5y5J/3SPfQrhPvktG9wEq0m12k/LtayfwkSdKgvX9LXZsyWwvf1StaywSfD2EMfqVIktQLMEK7w/zzOw9bS+myVqF1JXqMdscnBiiezsDMlhJADFrD6kOxffI7/38AHHnHWDWXZfkHIBStu6PzO3P40LWUBwqh9VV/KknSU6AcWpeH9Dd4787hQ39LZR/am8RSaI3CdekeW4f2lNBZluVsaGMVv2RChwdok+fkSPd8WsqyXBxAluWnsix3lWXZEeiO1iVXZBgUCOAEWpf0Rjq2fwCsfmftMpNl+RdJm+VzCzAdsJNl2QrYzUdcGyRJcgbKoHW9B1iI9hSgkCzLlsCwTMYbgPYkslxK+1RXUpGQRiD49zMarYdWekPvMdpNqvTkBh69K87kXmAN0FCSJDe04TPbFc6tIdp7t0Ad1sL33XspXcsEnwlhDH6FSJJUGG28SxugLfBzisGTnrGSJBmmxBTWAzbJspwMLEHr950zpa9ckiSlxtstAzpKklRdkiS9lMeKpjz2DMifrv9dQGFJktpKkqRJ+SkrSVKxlJOvrcCYlF1sF/55ypee9mjjD13QxjKWAlzRnmL6KXx60kjZvd+MNnA7e8oYqVgAYbIsx6bESrZSO87HQJblJ2iN1xmSJFmmPP8FJEmqDCBJUjPp/5NEvEK7EH+yEhoCwX8FWZbD0bpfLZAkqVHKmqNJ2dWe+h7JGqC+JEm1JEnSlyTJWNImhnECDNFusoUCiZIk+aGN3c0yKfOqjNZ9PRDtjRVo16I3QGTKevvDO9J3114LtJt6r1NijUT2P4HgP4IsyzeBjUDfdH/ejfZ+qpWkTYDXHO390K539RndC6SEC51GeyK45d3wmQ8hSVJ2SZtocAEwRZbll2S+Fj4DbCRtAq9UMlvLBF8IYQz+t9kpvV3XblvKSdkatB/Y87Is30C7+7Ja+v/aVU/RLhKP0bpe9kgX+zcYuAmcTDnGP0BKvEuK62lHtLFq4WhdNVN3q+agjQd8JUnS3JRYFV+0fumPU8acgnbxAOiN1nXqKdqUxSved4GSJBkD3wPzUna8Un/uoF3QslpodR1QA60xnN61qycwTpKkCLQ3ku+62n4J2qFdgK+gff02k+K6BpQFTkmSFIn2RLNfynMkEHzzyLI8E/gJGIH25uUB2jVo+3vaPkC7Az4sXdtBgF7KutYX7XrwCu0m0Y4sTm9+yjrzDG35iy1A7ZTNOdAmlGgFRKDdrHs3U/AYYGWKS+v3KX2YoPX0OInW1V8gEPx3GAekeW+lGF/10J76v0Tr7VVPluUX79Fmdi+wEiiBbi6i51P6uYk2Wd2PsiyPSplThmthyj3leuB2ytrkSOZrmeALIclyRl50gq8NSZsifY0syyLVuEAgEAgEAsE3giRJldAeGORNt+Ek+MYRJ4MCgUAgEAgEAsFXTEoCmH7AUmEICtLz2Y1BSVukPESSpJuSJL2bMQlJy9yUxy9I6eo3ZaYVCAQCtYi1SSAQ/FsR65MgK0iSVAx4jTa0ZPYXnYzgX8dndROVtKmtrwM1gdRA1paytnZcaps6QB+0KWrLAXNkWS6ni1YgEAjUINYmgUDwb0WsTwKB4FPyuU8GPYGbsizflmU5Hm1R7YbvtGkIrEopYnkSbX0kBx21AoFAoAaxNgkEgn8rYn0SCASfjM9tDObi7SLgD/ln0cwPtdFFKxAIBGoQa5NAIPi3ItYngUDwyTDIvMlH5X3FJd/1U/1QG1202g4kqRvQDcDExKRM/vz539csjYSEBDQaTYZtdG33sdqIvkRfX3q8f3Nfly9ffiHLsm2mDXXns69NZmZmZYoW1ZbpDAkJwdHREQsLC50nnMqNGzews7PD0tJSsfbmzZvkyJEDKysrxdrbt29jZWVF9uzZFWvv3r2Lubk5OXLkUKy9f/8+JiYm2Noqf/kfPHiAoaEhdnZ2irWPHj1CT08PBweHzBu/w5MnT0hOTiZXLuX34M+ePSMhIQEnJ+UJoJ8/f05sbCy5c+dWrH3x4gWRkZHkzZtXsTYsLIzw8HDy5cunWPv69WtevnxJgQIFFGvDw8N5/vw5hQoVUqyNiIjg8ePHFClSRLE2KiqK+/fvU6xYMc6ePfux1yb4DOvTh9amsLAwXr9+TWb3Ue8jPDyc0NBQChYsmHnjd4iMjOTRo0eqXo+svJbR0dHcvXsXFxcXxdqYmBhu375N8eLFFWvj4uK4fv06JUqUUKxNSEjg6tWrlCxZ8rNqk5OTOX/+PO7u7oq1AGfPnqVMmTKqtOfOncPd3R1JUl6zPjg4mBIlSqCvr69Ye/78eVxcXHS6T/mY2itXrpA3b15MTU2zpP3g+iTL8mf7AbyBven+PxQY+k6bRWj92VP/H4I24DVT7ft+ihcvLstHjshyYqL8Ia5du/bBx5S2+1htRF+iry893r+5L+CM/B9fm8qUKZN2PZUqVZJ37typ07W/i6+vr7xnzx5V2oYNG8rbtm1TpW3RooW8bt06VdoOHTrIy5cvV6X94Ycf5AULFqjS/vjjj/KMGTNUaYcNGyZPmDBBlXb8+PHy8OHDVWmnTZsmDxgwQJV2/vz5cs+ePVVply1bJnfs2FGVdu3atXLLli1Vabdu3So3atRIlXb37t1y7dq1VWkPHTokV65cWZX25MmTsqenpyzLH39tkr/A+pR+bfL395cbN24sJ2ZwD/Uhdu3aJfv5+SnWybIsnz59Wk4/DyUcOnRI9vHxUaW9dOmSXLRoUVXaixcvyi4uLqq0N27ckPPmzatK+/DhQ9nBwUGV9tatW3K+fPlUacPDw2Vzc3NV2vj4eNnAwECVVpZl2dDQUI6JiVGlzZ49u/zixQtVWgcHB/nhw4eqtFZWVnJYWJgqbdmyZeVjx46p0pYuXVo+ffq0LMsfXp8+t5voaaCQJEn5JEkyRFuQ/N2CvTuAdimZsbyAcFmWn+io/Qeax4+hcmVY8d6a5gKBQABfYG1KT9GiRWnatCkODg58//33LFu2jJCQkNSbN4FA8G3zxdanokWLcujQIczNzfH29mbMmDEcPHiQqKioTLX6+vokJibqOtRbmJqaEhkZqUory7KqE6NUrVokSVKtlySJ5GR11R6yMm5sbCxGRkaqtLIso6enzoxITk5WrZVlmaSkJFV6WZaJjY3F0NBQ1dhZfa6NjY1VaZOSklS/p3WZ82c1BmVZTgR6A3uBq8DvsixfliSphyRJPVKa7QZuAzeBJUDPjLSZjZlsZqb9ZdgweP36Y16OQCD4SvgSa1N6WrRoQVxcHE+fPmXTpk3069ePMmXKkD17dnr27MnZs2eFYSgQfKN8yfWpXLly2NnZERsby8mTJ5k4cSKNGzfG2toab29v/P39efPmzXu1+vr6xMfHq7pmfX19YmNjVWkTExMxMFAXBfXq1StVru9ZRZIk1Tf7ag0jyJqBAuqN56wYg4mJiciyrMrdMiIiAkmSVIVkAOjp6aky2mVZJi4uTrXh/fLlS1XhDaB9byUlJWXY5nPHDCLL8m60i1b6v/2W7ncZ6KWrNjOSsmWDvHnh6FEYNw5mzlQ+aYFA8NXzudemjEi/67548WJWrVqFlZUVmzdvxsvL62MNIxAI/iP8W9anxMTENOPv5MmTXLp0iR49etCiRQv8/f3faqunp5fpTeiHuHLlCqlxi0oJDQ1VFVP8McjKpp1a7bNnz8iZM6cqbVZOBs3MzIiKilJ1EpucnKza+NVoNFhYWKgy3E1MTIiNjVVtjBobGxMdHa1YFxcXh4GBgeprVmuEgnbOmZ3kf3Zj8Iswdy6UKQPz5kG3bqBygREIUklISCA+Pp6rV6/q1Dazdh+rzdfWl7GxMU5OTqp2AL8WkpKSiI6OxtjYWPXOoEAgEHwKIiMjMTExeW+Sonv37uHs7Kyq38TERMzNzVVpDQwMVBuh1tbWvHz5UpX2/v37qpJEgTa5lVqtg4MD9+/fV2Xg2NjY8OLFC1Xj3rt3D0dHR1UGTlZcTEFr1MXExCjWaTQaTE1NiYiIIFu2bIr15ubmOrlIv4uRkRHW1tbcvXtXcWKtVK8hR0dHxeOC9r7KxMQkwzbfhjHo7g5dusCSJfDjj7B7N6i0zgUCgIcPH5IjRw7s7e0zXQh1ccP4WG2+pr5kWebly5c8fPhQVVbC/zoajQYTExPi4uIoW7Ys/v7+3+TzIBAI/n1YWFgQFxeHg4MDgwcP5ocffvhHm7CwMFUZg0E317YPYWxsrMpQAPU3+6DNGqzW+I2Li1NtHNnZ2REZGUl8fLxil08HBweePn2qatzHjx+rvt6suImm8iXiM9XGskqShLOzMw8ePFBlDOrr66uesyzLmcbufhvGIMDEifD777Bnj9YYrFv3S89I8B8mNjZWJ0NQoB5JkrCxsSE0NPRLT+WTEhsbS3BwMEDaCairqysNGjSgRo0aeHp6qg52FwgEArUkJydz8eJFwsLCAO36ZGdnh6+vL35+flSuXDlDd0xnZ2dOnTqlauxnz55hb2+vSpuVBCHh4eGqSu2A1kD+UPxkZri4uHDp0iVV2idPnpA9e3ZVsX/6+vqqjSorKyvV15tVY9DAwEBVPGpMTAxxcXGqX2M9PT3VmwVRUVGq4lEtLS0pUaIER44coa4K28XKyopHjx5l2ObbMQZtbWH0aPjpJ+3pYM2aIG6wBFlAGIKfnq/5OY6NjaVu3boEBASQL18+fH196du3L1WrVlVVS0ggEAg+BklJSXTv3p0tW7aQPXt28uTJw9ChQ2nZsqUiA+3Nmzeq6p+C1n1Rrbtm/vz5uX79uiptVozBfPnycfPmTVXaY8eOUb58eVVaS0tL1ZlXsxKLZmVlxWuViRmzagxaWVnx+PFjxfUvY2JiMDU1VX1voa+vr9oYTPX0UYONjY3qE9zUGqgZ8e0YgwC9e8PixXDtGsyZA4MGfekZCQQfhTFjxmBubs6bN2/w8vKiTp06WeovODiYx48fU61atY80Q8G7hISE8MMPP7Bu3TpVsQsCgUDwKbh8+TIVKlQgODgYJycn1f2YmpqqSrYBWYv7K1q0KDdv3iQpKUlxYfHw8HDV63FERIRq49fExET1CZ2lpSVxcXGqslVmxWUyMjJSdVxnVhLIyLLMkydPyJMnj2JtfHx8ljxtoqOjVWebNTIyUm20GxkZqd4ciYuLy/R9+bnrDH5ZNBqYPVv7+/jxoNLKFgj+rYwbN+69BpzSL9Xg4GB27/5oyTEF78HBwYFevXoJQ1AgEPzrGDVqVJYMQQA3NzcOHTqkyqjLkSMH9+7dUzVuaGhopgkzPoSNjQ13795VpQXl37XpUWsMhoWFYWRkpOqk7fXr16oNWGNjY8LDw1XN28LCgpiYGFWbBUlJSbx+/RoHBwfFWjMzMyIiIlQbwImJiapLcURGRqrWxsbGqn5PW1tbZ3qq+G0ZgwC1akG9ehARoa09KBD8R5k4cSJFihShRo0ahISEANChQwe2bt0KQN68eRk3bhwVK1Zk06ZN7Nu3D29vb0qXLk2rVq3SdqhOnz5N+fLlcXNzw9PTk/DwcEaNGsXGjRspV64cGzdu/GLX+DXz5MkTjh079qWnIRAIBG+RI0cOatSowbNnz7LUT4ECBXj9+jVPnjxRrC1RooROWarfx9GjR6lWrZriU0HQxmuHhIRkmnDjfRQrViztu1gpDx48UF0e4tKlS7i6uqrKuh0aGoq1tbWqcR0dHQkLC1OVrMfIyIgcOXJw//59xdqEhAQMDQ1VuVyamZkhy7KqEzpZltNKaajh2bNn7826qwvPnz+nVKlSqrTZs2fP9DP47RmDoK01qNHAihVw+vSXno3gv44kZfhjbGKirk0GnD17lg0bNhAUFMTWrVs5/YH3sbGxMUePHqVGjRpMmDCBAwcOcO7cOUqXLs3MmTOJj4+nefPmzJkzh/Pnz3PgwAHMzMwYN24czZs359SpUzRv3vxTPGvfPPny5aNx48bs3bv3S09FIBAI0nB0dKRJkyb4+fllqZ/169fj4+Oj6oTx8ePHqk5+APLkycPjx49VaU+fPk2pUqVUFa3XaDSqs5jWqlWLPXv2qNLmzJkzLcmPUooUKcLdu3dVGVaHDx/Gw8NDVYy7LMs8ffpUlXF0+PBhypYti5mZmWLtnTt3yJEjh6rT0MuXLxMTE5Ol2E61MZZ6enpZMkIzq7v51cYMSpJUH6jv6Oj43p0a23btyL5sGTFdu3J70iSd+rx9+/ZnayP6+nf3lZCQkLZ4qjv0z5zY2Ni3/p9+sT548CD169dHT08PQ0ND6tSpQ0JCAklJSSQmJhIbG4ssyzRs2JDY2FgCAgK4cuVK2iIWFxeHl5cXFy5cwM7OjhIlSqRlYEtMTCQhIYHExESdviB0/RJR21dCQoLq3dZ/M5aWlqxYsYJGjRpx8OBBSpQo8aWnJBAIBAAMHDiQyZMnq4q7S0VPT0+1QRcYGIiHh4cqbZEiRbh27ZoqrYuLCyEhIapiyzZs2ECtWrVUjfvq1SvVJ4OphdTV8Pr1a0xNTVXF0Z08eZJKlSqpGleSJHLlykVISAju7u6KtJGRkapLlkRFRal2i42IiMDBwUF14hsrKytCQ0MzTebyPqytrbl165aq57t06dJMmjQpQ+1XawzKsrwT2Onq6tq1SJEi/2wwcybs2oXJ+fOUunwZBx0Tbry3r0/URvT17+3r6tWrGBkZaf2/M9mtUVur732K1DYajQaNRpP2fwMDAzQaDfr6+hgYGGBsbJxWmsHY2BiNRkPNmjVZv379W+NduHABfX39f4yt0WgwMDD4/2vMBF394NX0pdFodH7N/mtUqFCBESNGMGbMGLZs2fKlpyMQCASANvmLj48PgwYNYubMmar6ePTokepkG8nJyarcHkFrLChNpJLK7du3MTMzU3XDHxUVpdr4tbS05MWLF6qybObIkYMXL16oMtwtLCwwNDRk//79+Pr6KtLmzJmT/fv3K9Kkx9bWlocPHyo2Bj08POjWrRvPnj3Dzs5OkTZfvnw8efIkzbVWqfb69euqN0gsLCxUJ4FJTExU/XmIiorK9PPwbbqJAlhawi+/AJBj+nRQmeFHIPgSVKpUiW3bthETE0NERAQ7d+7MsL2XlxfHjh1LS3sdHR3N9evXKVq0KI8fP05zM42IiCAxMRELCwsiIiI++XUIoFOnTuzevVt1ymmBQCD42EiSxO+//86KFStUxfwB7N69W3Vmaycnp0xro32IS5cuUaZMGVXajRs30qdPH1VuotWqVVMdB16kSBH09PRUxUkaGhqSnJysykXVxMSEnDlzqkoY16hRIw4dOqRYl4q+vr6qhDt58+Yle/bsHwyPyQgLCwsKFCjAkSNHFGutrKxISEhQXVtRT0+PhIQEVdqHDx/i5uamSnvu3Dn69euXYZtv1xgEaNcOypZF8/w5TJ78pWcjEOhM6dKlad68OaVKlaJJkyb4+Phk2N7W1hZ/f39atmxJyZIlqVy5MteuXcPQ0DDty8/NzY2aNWsSGxtL1apVuXLlikgg8xmwsLAgV65c3Llz50tPRSAQCNKwtramaNGi3Lp1S7E2MTGRwMBASpcurWrsu3fv4ujoqEqblcyLGo1GdUZQe3t7Hjx4oKoYemrCGjVJey5evEj+/PlVlXm4fv06Dx8+ZMyYMYq1L1++VHwyl0pSUhKhoaGqTrtOnjyJLMvUrl1bsTYxMZHz58/TpEkTxdq///6bkiVLqk648+rVq0xj9z5EVtxbPTw82LRpU4Ztvlo3UZ3Q04O5c8HbG2bMgM6dQWEBS4HgSzF8+HCGDx/+j7+nxg68mx67WrVqaTtp6d1Sy5Yty8mTJ//Rz+nTp3VycRVkHXNzc9WJBwQCgeBTYW1tTXh4uGKdgYEBrVu3ZtasWUycOFGxvkaNGgwdOlSVS16ePHlUF3+vX78+P/zwAyNHjlSsdXJywtrampUrV9K1a1dF2qlTp5IvXz4qV66seFwbGxtVrxFA7ty5iY+PVxVzWKBAAR48eEB0dLTiJDKzZs3C1tZWVYzl9u3badOmjarTWwMDA1xcXDh48CCtWrVSpLWzs1OdqAfA2dmZHTt2ULVqVcVaKysrXrx4oaq24tOnT2nUqFGGbb7tk0EALy/CGzaEuDgYMOBLz0YgEHyDaDQa1e4jAoFA8KnIygldgwYNVJeHiI2NxdTUVFVhcgMDgyzV7LOyslKlBW3JBDWZTE1MTDAyMlIVi+bs7ExoaKiqDcVJkyaRP39+VddsaGhIUlKSqtfoyZMn1K9fX5VBly1bNl69eqVYl4qzszMnTpxQrHNxcSE0NFRV/cuYmBiCg4NVn5RrNBrVtRH19fUzjUMVxiAQ+tNPYGYG27fDgQNfejoCgeAbw8DAQFVdK4FAIPiUPH78WHVtNDUZOVM5d+4cVapUUZXIZd++fapvuvfs2aP4xCg98fHxqrJFfvfddwQGBqq64Y+Li8PAwEDVhuLmzZsZOHCgKg+goKAg8uTJo8olt1q1aqriFEGbMEdt6ZDo6GguX75Mrly5FGsNDAywtrZWNfbly5cxNjambdu2irWpqL1HMDAw4Pnz5xm2EcYgkGRnB6nudv37g7gpEwgEnxFxMigQCP6NFCxYkAsXLqjSJiUlqU7Dny1bNqKiolRpN2/eTMmSJVVp37x5o/oEJiYmhnv37lG/fn3F2qNHj1KhQgVVz1dgYCAlS5ZUFVM2Z84cpk2bplgHsGPHDho3bqxKW7NmTc6fP6/qhG/v3r2Z5kn4EAsXLiRfvnwMHjxYsfb58+c8efKEcuXKKdYWLVqUJ0+e8PDhQ8Va0J7CvnjxQpX2zJkzwk1UZ378URsvePky/Pbbl56NQCD4hlDjZiMQCASfmubNm+Pv769Kq9FoVGdetLKyUl2ge9GiRYwcOZKzZ88q1v7www9MmTJF1bgmJibY2NjoXM84PTVr1uTEiROqjKPY2FhVyWNAm/RGLffu3aNAgQKqtIaGhpiamhIdHa1Y27t3b2bMmKHKFbhs2bK8ePFC1Xeura0tOXLk4Pz584q15ubmVK9enV69einWhoaGcu3aNapUqaJYC1q32KdPn2bYRhiDqRgba5PIAIwaBSprgQgEAoFAIBB8Dfj6+nL06FHFOlmWmTlzJvXq1VM1rrW1teq4sEKFCqGnp6fqpOzEiROq3DxTsba25vDhw4p1OXPmxMnJiR07dijW3rlzR1ViEYBr165RqFAhVdqKFSuyefNmVVrQGqJqDCsrKyvVie1iY2NVZ+WUJIkiRYrw999/q9Lb2NioMmBPnz6Nh4cHFhYWqsY1MzPLNEGQMAbT07Ah1KgBr16BikxSAoFAIBAIBF8LZmZmqk5vkpKSuH79OtWqVVM1rpWVlerMjWfPnsXd3V2VkXPv3j3FxchTiY+P5/Xr16pu2hMSEggPD1flJpqQkKDaHff58+c4ODio0tarV48zZ86o0t66dYsHDx6oLtMQERFBpIr64JGRkapPUUGbUVRtbcXg4GBVJS1y5szJ+fPnVbuYmpiYiJhBRUgSzJ4N+vqwaBGo9JMXCP5NzJ07l2LFitG6dess9+Xv7/9W8HSXLl1UZ4sLCAigdOnSGBgYZGl3USAQCASfhuPHj6sq4J5aWmLr1q2qxk1OTlZVrw+0dejUJAgB6NevH6tWrVKlXbhwISVLllSVJCQgIIBs2bLRpk0bxdqaNWuyfft2VSepdnZ2PHjwQLEO4NixY7i4uKjSTpgwgR49euDt7a1Y6+7ujomJCQcPHlSs9fHx4fjx44p1qeTOnZtz584p1oWHh3PlyhVatGihWOvh4UHp0qWZNWuWYm1iYiIvX77M1JAUxuC7FC8OPXtCcjL06wcq0xMLBJ8TWZY/GPT+66+/snv3btauXfvW39VkpnrXGFy6dKlql5rcuXPj7++fpcxtAoFAIPh0bN68me+++06VNnv27KqKqAMcOnRIVc29hw8fMmHCBMaNG6dq3GvXrqkyfgHWrVtHt27dVMWjFS9enMePHxMXF6dYW6xYMWxtbZk0aZJibbVq1Th06JCq+4GJEyfy888/K9aBNjGRWmM/KCiI2NhYVUXnc+TIQXR0tKrnGbSnv2pOys3MzEhISFCdHyApKQl3d3fFuokTJ2JqakrPnj0zbPfVFp2XJKk+UN/R0ZGQkJAM274b7KvXpg35Vq/G4PBhHs2dS2TKG06XoOCP1Ub09e/uKyEhQefFRJd2atrcu3ePhg0bUrlyZU6dOkX9+vXZvXs3sbGxNGrUiJEjR9KnTx9u375N/fr1adeuHW/evOHJkyfcuXMHW1tbxo0bR6dOndIWt5kzZ6bt1M2YMYN169ahr6+Pr68vpUuX5syZM7Rq1QoTExMOHz5Mw4YNGTduHF5eXmzcuJFp06YhyzK1a9dOKzScI0cOevXqxR9//IGpqSmbNm3Czs4Oe3t77O3tkWU5rejt+56HhISETD/DAoFAIPj4lC1blgMHDtCpUyfF2nbt2lGqVCm6d+9O0aJFFWmvXLlC2bJlFY9pb29PhQoVWLx4MVOnTlWs/+uvv/D19VWsA+jYsSMDBgygTp06isstpH4fLliwgAEKa17HxsYSGhpKjRo1FOlAm9gkPj5eVX3DbNmyqaoTCFCuXDnGjh2rSps7d26io6OJiIjAyMhIkVaSJGxsbHj+/DnOzs6KtDdu3GDZsmXMSM0vogADAwOKFCnC6dOnqVChgmJ9eHg4+fLlU6yrWrUqixYtIjIyMkOX3K/WGJRleSew09XVtWuRIkUybf+PNpMmQc+e5Jo1C7p1g5QPtqq+VLYRff17+7p69SpGRkYYGxuT+UaPLoHO/2zzvkPp9EHTRkZGXL9+HX9/f5o0acLmzZs5c+YMMTExfP/99wQGBrJkyRL279/P4cOHyZEjB2PGjCE4OJgDBw5gbW1NdHQ0f/31F8bGxty4cYOWLVty5swZ/vzzT/744w/+/vtvsmfPTlhYGNmzZ2fx4sVMnz4dDw8PAPT09NBoNISFhaVlb7O2tsbX15c9e/bQqFEjoqKiqFixImPHjmXUqFGsXr2aESNGpF2Hvr4+hoaGadf2bmC4RqPR+TX7VklKSvrSUxAIBF8hLi4uqhKiAOTPnx8jIyOePXum2Bi8desWXl5eisc0MDBgzJgx9O/fX7EWtCeLVatWVaWtU6cOgwYNIj4+XlXtPUtLS4KCghTrkpKSiIuLUxUjuWPHDjw8PFSdWNWvX58NGzbg5+enWFugQAHu37+vWAfaRCzFihVj7969qsJf8ufPz9q1axkyZIgi3YULF/Dw8KBjx46KxwT1LrmyLHPr1i1VxmClSpVwcHDg6tWrlC9f/oPthJvoh+jWDUqWhHv3YPr0Lz0bgeC95MmTBy8vL/bt28e+fftwd3fH29uba9eucePGjfdqGjRokPZFlZCQQNeuXSlRogTNmjXjypUrABw4cICOHTtiamoKaN19MuL06dNUqVIFW1vbtFiRgIAAQJtCOjWjXJkyZbh79+7HuHRBCrly5aJRo0a4urry008/sXPnTl6KbMgCgeAj8OzZM1WnRqBN8pGQkED9+vWpXr06U6dO5dixY5lmNgTtJqGamDDQbiBGRESoytxobGys0/zeR1BQEDly5ECj0ajSx8bGUrBgQcU6MzMzcuXKpSqxycGDB6lTp45iHUD79u3Zvn27qu8bS0tLwsPDVb1GoH2uHj16pErr6urKmjVrFOsqVarE6dOnVRe8f/bsGba2top1kZGRREdHkzNnTlXjxsfHZ5rUSBiDH0JfH+bM0f4+eTKoDLAVfP3IcsY/MTGxqtrogpmZWcocZIYOHUpwcDCnTp3i5s2bdO7cOUMNwKxZs7Czs+P8+fOcOXMmzYdflmVFO4UZLegajSatL319fVWxCYIP07VrVxISErh8+TJz5syhTZs2ODo6ki9fPsaPHy+Mb4FAoJoOHTpw/PjxtI1CJVhaWpI/f34iIiI4ePAgI0eOpE6dOlhaWlK5cmWOHTv2Qe3ChQtZt26dqlILZcuW5dmzZx/cEM0IU1NT1cXuGzRoQGRkJBMmTFClT0hIwNDQULFOlmXu3Lmjyqhr1KgRO3fuVKwDbQhIoUKF2Lhxo2KtjY0NGo2GO3fuKNYeP36c169f07t3b8Va0GZQVRMXamtrS7ly5dJCYJRw8uRJIiIiVNUKtLCwIF++fKrKcIA2xCizzKvCGMyIKlWgaVOIiYHBg7/0bASCD1KrVi2WL1+e9oF/9OhRpqmEQeuH7uDggJ6eHqtXr05zN/T19WX58uVpsYSpKb4tLCyIiIj4Rz/lypXjyJEjvHjxgqSkJNavX68q+F+QNZKTk3nz5g3x8fHcvXuXiRMnUqxYMdzc3FQVYBYIBN82r1+/RpIk8ubNm+W+4uPjefPmDQkJCQQEBODr64uHh8d7C2Lb2tpia2vLtGnTFI/z8uVL4uPjcXJyUqx1dnZWZaCANkOmiYlJpsk63sf58+d5+vQpHTp0UKyVJAkHBwcuqMiAX6lSJS5evKj6NNTMzIxr166p0hYpUkRV5ta7d+9SpkyZNM8lpYSGhqp2BXZwcFDl6jl69GiGDx+u+pTdwsJCdd3NmjVr0qFDhw8mGYRvwBiMi4ujRo0aqj/cTJ+uLUi/fj0m4mZK8C/F19eXVq1a4e3tjYeHB02bNn2v0fYuPXv2ZOXKlXh5eXH9+vW0U8PatWvToEEDKlSoQKlSpZie4irdoUMHevToQalSpYiJiUnrx8HBgcmTJ1O1alXc3NwoXbo0DRs2zHDs06dP4+TkxKZNm+jevTvFixfPwjPw30dNzaTMiIuLIzY2luvXr6sO9BcIBN8uly5dwtXVVXWR74yIiYnh4cOHGbpVKo1li42N5bvvvqN79+6qjIV69eqxbNkyVRkj9fT0yJEjh2J3vsTERDp16sTMmTNxdHRUPO6BAwcICwujQIECirXGxsbY29sTHBysWAtaY1Bt7B+gyjiqUKECBw8eZN++fYq1169f58qVK9StW1exFrTfqdmyZVOss7e35+LFi6rGBHBzc6Ndu3aqXFR9fX15/PgxR44c+WCbr94YfPbsGX/99RelSpXi999/V95BnjyQkjo358SJIBI1CP4l5M2bl0uXLqX9v1+/fly8eJEzZ85w4sSJtC+Gu3fvkiNHDgDGjBnDwIED0zSFChXiwoULnDx5ksmTJ79lkAwZMoSgoCCCg4PTUlY3adKEkJAQgoOD0zKKprpbtGrViosXL3Lp0qW3sril77Np06b4+/sDWleehw8fEhUVxcuXL7l8+fJHfob+OxQuXJgmTZrg6OhIy5YtWbFiBTdu3FAdTwFaFy0jIyPy58/PkSNHcHNz+4gzFggE3wJ2dnZcu3YNCwsLqlatyrRp0zh16hQJCQmq+zQxMcHY2JgiRYpw7NgxbGxs3tsuISGB5s2bK+r75MmThIeHp21gKsXDwwMDAwNVp2yurq5cu3aNJ0+eKNKFhYVx9epVVaUSQHsiuXDhQlXxhqD9rjhx4oQqbVRUlCrjCLSnzmo8iPLkyUOtWrUYPny4Yu3Vq1fR19fnxYsXirURERGcOHGCSpUqKdbOnj2bNWvWqI5zrF69Oq9eveLAgQOKtW/evCE5OTnNw+t9fPXGYK5cuWjcuDFv3ryhefPmdOvWTfmOz88/g5MTxleuwIoVn2aiAoHgm6VVq1bExcXx5MkTNmzYQN++fXF3d8fGxoY+ffoQFBT0XsNQluW0XVk9PT2MjY1xdHSkQ4cOLF26lAcPHnDr1i08PT0/9yUJBIKvADc3N+zs7IiOjubw4cOMGjWKWrVqYWFhgZeXF2PHjuXw4cNveYqA1iU0KCgoLbmIRqPB0NCQcuXKMXXqVEJCQrh69eoHT7MSEhKIiIhQnFHU3t6ep0+fqt5cfPDgAa9fv1ac/fTFixd8//337N69mzx58ijS5syZk/79+9OiRYt/PI+68OzZM9X1fm/dusXLly91LruVnpcvX3Lx4kVGjRqlWJuYmEhkZKTqHAJv3rxRpWvYsCF58uRRFV85Y8YMXF1d6dKli2KttbU17u7u7NmzR7EWtIl+cuXKpaou84YNG+jYsSNNmjT5YJuv3hjU19dny5YtLFiwACMjI5YsWULZsmWVHdeamUGq3/qwYfD69SeZq0AgEID2NDUqKopXr16xcOFCfHx8yJMnD6dOnQLg6dOndOvWDWdnZ/r160eJEiWYM2cO169f59GjR6xYsYJmzZqpylwmEAgEHyI2Npbw8HDi4uI4deoUEydOpFGjRlhaWuLm5sZPP/2Eh4cHVlZWtG3bFjMzMzp27Mi+fft4+fIlJ0+epHfv3uTOnTvDcVasWEHRokUpXbq0ovkVLVqUSZMmUalSJVUGTvv27enfvz9WVlaKdDY2NhQsWBA9PXW31ePGjePhw4fUr19fke7hw4fcunVLlXvprFmzKFeuHA0aNGDKlCmK9bNnz6ZJkyaq3FMXLFhArly5VCVUWbFiBUFBQaxbt06xdtSoUTx79oxNmzYp1qp9T6Wip6f33vjYzAgJCWHTpk3s3LlTVbhHYmIiFStWzHhuinv9DyJJEj179uTUqVMULVqUK1eu4OnpyaJFi3R3w2renOgyZSA0FMaP/7QTFggEghSSkpKIjo4mKiqKnDlzsmnTJtzc3LCxseHQoUM8efKECxcu0Lt3b8VFdAUCgSArJCUlkZSUhKWlJeXKlWPp0qXMmDGD0NBQLl26xNWrV1m+fDlVqlTB3Nxc536vXbtGkyZNVNW/69KlCzY2NhnGSH0IFxcXzp49q9hFX5IkSpcurTp7c+oGYLly5RTpbG1t6dKlC4UKFWL9+vWKtGZmZjg7OzN79mxV8ZVPnjxR7XVSoEAB7t69q+qEL1++fMTFxal6b7x584Z27dql1UpWQtWqVYmNjVVV8mTevHlcvnyZZs2aKdY+fPgQNzc3Vae/UVFRnDlzJtPsqd+EMZiKm5sbZ86coVOnTsTGxtKjRw+aNWum25tRkng+fDhIEsydCyqzJwkEAoEuaDQaLC0tMTQ0xNvbm1OnTpEvXz4WLFjAgAEDmDx5MoUKFVL1hSgQCARq0dPTw9zcnOzZs9OjRw/279/PixcvGD9+PAYGBuTNm/etEkZqsLKyIjQ0VLVeX1+f/fv3K9bNmDGD4OBgVbFZBQoUUO0GeObMGRwdHRWXpTAyMuLXX3+lYsWKdO/eXZG2a9euAGkeJ0pxc3Nj9+7dqrT16tXD1taWv/76S7G2SpUquLi4sHbtWsXaOnXqqI6PlCQJR0dHbt68qVi7fft2OnbsSOHChRXpwsPDGT9+vOoEe0ePHqVEiRIUKlQow3bflDEI2p2QZcuWsW7dOiwsLNiyZQuNGjXS6c0R5+ICXbpAYiL8+KPuxeAEAoHgA8TFxaXVD9JoNGg0GkqVKsWQIUPYtWsXERERHDt2LC05wMiRI5kzZ47qmkMCgUCgCwkJCQQGBqYlnjA0NMTGxoYffviB/fv3ExoayoIFC/Dy8kKSJOzs7Bg0aBB169YlKCgoS2O/fPlSdXHvxMREYmNjOX78uGKtkZEROXLkYP78+Yq1/fv35/fff1cV91eiRIksuSAaGxsrjr+TJIly5coxbdo04uLiFI/ZqVMn/vzzT50yl78PWZZVJ0kzNDTMsFTCh7C1teXixYtcvXpVsVaWZYKDg2ncuLFi7cqVK1m8eDG3bt1SpJs+fTp37txR5cYL2iQ9usRmfnPGYCotW7YkKCgIDw8PHj9+jI+PD5MnT878zTVhAmTLBnv2gModEYFAIIiNjaV+/frkyJGDpUuXUrNmTbZs2cKrV68ICgpi3Lhx+Pj4/KMIcfXq1Zk1axY1a9YkICDgC81eIBB8rYSFhVG1alWsra3p2rUruXPnZvz48Vy9epXQ0FDmz5+Pl5fXe+PjhgwZwuDBg6lVqxa7du1SNf6yZcvYs2eP6oyg3333HSYmJhw9elSVXk9PT1VsVnBwMIUKFcLExESx1s7ODgMDA9VupsHBwaqer5kzZ3Lq1CnFsYqgdRFOPSVWyu3bt3n06JGqRC6gLRyvJhOpu7s7pUqVwsPDQ/HJc3R0NHFxcariQp2cnChTpoziqgbDhg3D29sbX19fVcl2mjZtysuXL5k4cWKG7b7awlOSJNUH6js6OhISEvLBdsuXL2fs2LFs2bKFYcOGsWvXLqZMmZKWeCExEVLXhNu3b0P+/Fj/8AM5f/mF+F69uJM7N6S7WdNlZ0fX3R/R17+3r4SEBJ130nRp97HavK/dggULWLJkCaVKlUor66C2r9WrV1O9evW0YPUffviBHj166FS24N2+5syZg7+/PwYGBuTIkYPffvsNe3v7f+gSEhIy/Az/VwkJCaF79+6sXr1acbKC77//Hmtra5o1a8aRI0cUZ74TCASCDxEaGsrMmTOpVq0alpaWirSSJNG2bVuCgoI4f/489erVUzx+sWLFiIqKUmVUgXazv3Pnzpw4cUJVjFZsbCw+Pj6KNHFxcfTo0YMxY8YoHi8VAwMDVSdl0dHRPHz4kG7duinShYWF0alTJ0BbmkopBw8epHz58qpCFQ4ePEitWrVUF46PiorCyclJkSYyMpK+ffty6tQpevXq9cGSJh/CzMyMmjVrUrJkSQIDAxWNL8syDx48oGTJkorGNDExYf369ZQuXZoFCxYoep1kWaZPnz7IspxhJlH4io1BWZZ3AjtdXV27FilSJMO2EydOpHPnzrRv357jx4/z3XffsWrVKooWrU3t2jBlCnz/vbZtkSJFYNw42L4dw2vXKLJ3L6Sr25bWJhN0aSP6+vf2dfXqVYyMjHQuxKtLu6y0SXW3SN2xSt9uyZIl/Pnnn+TLl+8tjYGBgU67n+n7Wrt2Le7u7uTPnx/QZvWKjY1V9Tx4enrSp08fTE1NWbhwIaNGjWLlypX/6Euj0ej8mv2XcHBwoE+fPqr1NWvWZNCgQYwYMYJNmzaJ2EGBQPBRMDY2xsXFRbEhmJ6aNWvSrl07Ll++zJIlSxTFEJYvX55y5cqxatUqevbsqXjsli1bMnToUA4dOqTYGNy9ezehoaE0bdpUkS4uLo6YmBji4+MV6dJjZGTEy5cv075fdUWj0WBnZ0fHjh1ZsWKFzqea4eHhHDhwgL/++ktx4hrQJjZRU9vwxIkTDB8+nNWrVyvWpmJvb8+vv/7K7NmzddZERkayefNmduzYoSqLKUDlypX566+/CA0NVWQMLlq0CFNTU/z8/BSPKUkSbdq0YejQoYDuhnt8fDy//fYbr169yrQW5DfrJvoufn5+nD9/nurVqxMaGoqfnx8tWgzi7t14mjeHVq0gPDzl6dJoYNYs7e/jxoGKVLECQVa5e/cuxYoVo2fPnpQuXZrx48dTtmxZypYty+jRowHo0aMHt2/fpkGDBsyaNYsxY8bQrVs36tWrR7t27bh79y4+Pj6ULl2a0qVLvxVjMXXqVDw8PHBzc2PIkCFs3ryZM2fO0Lp1a0qVKkVMTAxVqlTh7NmzAKxfv54SJUrg6urK4MGD0/oxNzdn+PDheHp64uXlxbNnzwBtZq7UXUEvLy8ePnz4uZ66fwVPnjxRFdOSnh49enDu3DmyZctGtWrVmDZtGidOnFAV/yEQCASg3SisVq1alvpIvafav38/NjY2+Pj4MG/ePJ29cwoVKsTp06dVjx8ZGUnNmjUV6+bNm4exsTHbtm0jKipKZ52lpSWbNm1i0KBBiscEbZbLmJiYtLqMStBoNFSsWJF169Ypco3Nly8fs2bNYsSIEYrHBG3x93v37inWjR07lmLFilG+fHlV4wKUK1eORYsWKdLY29szcOBAVSUpUrl8+TI2NjaKE8EsW7ZM9SkqaA3C2NhYhg4dqnMGViMjIwoUKKBTlllhDKbDwcGBvXv3MmnSJPT19Tl1ajp58lTE2Pg+69dDgwZ52bcvpXHt2lCvHkREaGsPCr5ZpLFShj8mU0xUtdGFkJAQ2rVrx5QpU3j06BGBgYGcOnWKs2fPEhAQwG+//YajoyOHDh3ixx9/BODs2bNs2rSJdevWkTNnTvbv38+5c+fYuHEjffv2BeDPP/9k+/btBAQEcP78eX7++WeaNm2Kh4cHa9euJTg4+C0XnsePHzN48GAOHjxIcHAwp0+fZvv27YDWncPLy4vAwEAqVarEkiVL/nEdy5YtU7Vj9l8mb968NGzYkH1pi4pyzM3NWbNmDRERERw6dIhhw4alFYROdSt58eLFR5y1QCD42rG1teXNmzdcunQpS/04Ojri5OREXFwcR48eZfDgwbi6upIrVy4GDhzImTNn3usWee/ePWbOnMnPP/+seuxcuXKluUAqYdeuXTg5OfHjjz9ia2urKEQhf/78qk8GBw8eTLVq1ahVq5ZibVJSEmfOnKFt27aK4+j8/PwIDAxUPCZoy3BcuXJFsW7Tpk04OzurivlL5dq1a7Rs2VKx7ubNm6rKSqRSqFAhnj59mnavpCvbtm1j+/btLF26VPGY8+fPZ9CgQfTo0YOHDx8qOrH/448/GDNmDIcOHcqwnTAG30FfX5+hQ4cSEBBA7ty5uXfvNHny1MfTM4ZnzzTUqgW9e0NUFDBzpvaUcMUKyMIOlkCgljx58uDl5cW+ffvYt28f7u7ueHt7c+3aNW7cuPFeTYMGDdIMuYSEBLp27UqJEiVo1qxZ2sJ+4MABOnbsmHZylz179gzncfr0aapUqYKtrS0GBga0bt06LbmJoaFhWtxImTJl/hEgv2bNGs6cOaN6R/W/SrZs2di2bRtt2rTJ0k1X+p3GxMREIiIiSEhIICgoiJ9//plcuXJRqVIl/P39hWEoEAgyxdDQkOnTp1O1alXmzJnz0fqNiYkhJiaGx48fM2fOHKpWrUrOnDnp06cPx48fT0vg5+TkxPfff0+XLl1UZ5uMi4vD1dVVlTYiIgJjY2PGjBmjqKC6LMuqT34KFChAbGwsCQkJirWjR4/G2tqaJUuWKB5/06ZNqk5QQXuy+Pz5c8XZRC0sLKhQocI/Qld0JTo6mtOnTzNkyBDF2qdPnyqONUzVNWrUiKlTp9KwYUNGjRqlSO/k5ETZsmVVZQFv3LgxLi4u7Nu3T/HrW7hwYWrUqMHWrVszbPfVxgxmlfLlyxMUFISXlxchIRfo3n0A5cuPZf58WxYsgH37YNWqQnj17w/TpkG/fnDs2JeetuALII/O+MtKl5g6JXF36UmNw5BlmaFDh9K9e/dM+0ofuzFr1izs7Ow4f/48ycnJaTqlX2oZfWFrNJq0vvT19d/KiHXgwAEmTpzIkSNHMDIyIjY2VucxvwYqVqzIsGHDGDNmDJs3b/7o/UdHRwPw999/c+7cObp3707RokVp3bo1rVq1+ujjCQSCr4Nu3brh7e2Nn5+fquQimZGYmEhkZCSRkZEsXLiQlStXoq+vT7NmzejQoQPW1taq6rkBPHr0iMePH6uqQzdhwgSyZcvG0aNHyZEjhyLt8+fPFSclSaVr16789ttvFCxYkDVr1lCpUiWdtXZ2doSEhHDo0CF8fX0VjZsjRw4uXLhAdHS04mQuO3fuxMHBASMjI0U60J4aBwYGEh4enmk827v4+/vj4+Oj2FUToEKFCsyfPx8/Pz9F9ziJiYkEBASwceNGVV5MW7du5a+//srUKHsff//9N8+fP8fBwUGxFrT3GT/99FOGSZHEyWAGZM+enY0bN2JoaMiiRQvJm3cdgYFQvDjcuAEVKsBIxhOf0wlOnIAs+CELBFmhVq1aLF++nMjISED7Zfj8+fNMdeHh4Tg4OKCnp8fq1atJSkoCwNfXl+XLl6cZE6l1piwsLN67C1iuXDmOHDnCixcvSEpKYv369Zm6gAQFBdG9e3d27NhBzpw5FV3v10Tnzp35448/PnmcX1RUFPHx8Vy4cIEhQ4YwadKkTzqeQCD4b1OsWDGeP3+uKqW9EpKSkoiIiOD169csXbqUBg0asGHDBnx8fFSdtB07dgwLCwvFyU3i4uKYMmUKW7duVWwIwv8buGo2NZOTk8mWLRsPHz5k3LhxirR9+vShYMGCqrxrWrduzYsXL7hw4YJi7fbt2+nUqdM/yh/pQoMGDbCxsVFlHF2/fp24uDhV78uhQ4dy5coVxfH6uXLlwsfHR3W5lNQalEpjcd+8eUPHjh0ZPXo0wcHBWFtbK9K/ePGCkydPEhcXx/Llyz/YThiDmeDu7s6MGTMAGDFiBNmy3ebMGW0CUVmGCdOM8DIO5jIu8PPPSAoCjgWCj4Wvry+tWrXC29sbDw8PmjZtqpPrRs+ePVm5ciVeXl5cv3497dSwdu3aNGjQgAoVKlCqVKm0+kUdOnSgR48eaQlkUnFwcGDy5MlUrVoVNzc3SpcuTcOGDTMce9CgQURGRtKsWTNKlSpFgwYNsvAM/HexsLAgV65cqutLKcHc3BxTU1NatGjxUd2//kuodTsTCL41DAwMcHR05OTJk598LH19fSwtLbGysiIgIIBTp06xePFinZJfvEvt2rUJDw9Py76oKw8fPsTMzOy9JY50wc3NDY1Gw5YtWxTpnjx5gpOTE2ZmZvz111/s379f8dhPnz5Nu1dVwrlz55BlmdKlSyvWduvWjWXLlqkq/g6oLh3yyy+/cPr0aX799VfFWo1Gg6WlJSdOnFCk27FjB3v27FFcviOVQoUK6Zz4JT2WlpZMmTJFcX1C0OaUyJ07N+Hh4ezcuZM///zzg22Fm6gO9OrVi4MHD7Jt2zZatGjB0aNHmTbNkPr1oX17CLprQxnpHJMeD6XtoiWwaOGXnrLgGyBv3rxvxZr169ePfv36/cNNNL2RkVoDKXXnslChQm/tCE6ePDnt9yFDhtC/f/+3+mrSpMlb9WoOHz6c1lerVq3e63qYeloJ2gKoqSm7Dxw48I+235qbaCrm5uZpp7AfC2NjYwwNDYmJiSFv3rxUrFgRHx8fPD09cXFx+SZLUXyL1ywQZIUJEybQtm1b7ty581H7NTMzQ5IkEhMTcXNzo0aNGlSsWBFvb+80t0FLS0suXryoKFHI+fPnqVOnDuXKlWPs2LGK5pQ/f35cXFxYuXKlquQzz5494/Xr11SvXl2Rzt7enmbNmpGUlETVqlUVj/vy5Utev36tKgOsu7s7tra29OzZU3FyE29vbyRJYt++fdSuXVvx2K9evVJVNsrf3x9ra2vatGmjWDt06FD09PTo2rWrIp2fnx8jR47Ex8eHdevWKa6f2bdvX4YPH069evUUhwT17NmTGTNm8Pfffyuqf5kvXz6yZ89O165dqVOnToZthTGoA5IksWzZMk6dOsXp06cZOnQoM2bMoFIlOH8efvoJli0zYgAz2bHkCP6t75O3Uu4vPW2BQPAfQaPRKE4c8OrVKw4dOsQff/yR1ocsy+TJkwcPDw8qVqyIp6cnbm5uqmI6BAKB4PXr14pjumRZJjAwkMDAQB48eIC+vj6SJGFsbEzBggXx9PSkXLlyeHl5UbRo0bT6uO/2kZiYiLu7u6Kxs2fPjoODAy9fvkwLe9AVSZKoWbOm6lhFU1NTDAwMuHbtmqLTRUmS6N27t2IDJZUxY8bQqlWr9z6PmaGvr0+uXLnSSj4ppVSpUrRp04arV69ia2ursy4hIYG7d+9SvHhxxWOGhYVRrVq1TBPbvY+zZ88yceJExe9pQ0ND7O3tMTAwUBXW0qBBA6ZOncr333/P//73P0UbkwYGBvj5+TFixAiOHDmiaM6rVq2iWbNm1K9fX7iJfgysra2ZOXMmBgYGzJw5M81v2NISli6FHTsgp3E4R+TKlKyegxUrtG6kAoFAkBkGBgY6xT/cvn2b2bNnU61aNfLkycOSJUuwsbHB39+fS5cuERsby82bN9mwYQO9e/fG09NTGIICgUA1ixYtYsGCBTq1ffXqFXPmzMHV1ZX27dtz9epVfvzxR/bv38+TJ0+IiIggKCiIRYsW0alTJ1xcXD5owMiyTHh4uOIyAM7Ozpw4cYJ79+6pcre0srLi8uXLinWgdfnPkSNHWiZtJZiamvL48WNV3jEbN25kmMoSZ2vXruXs2bMMGDBAlb5gwYLExcUpLk+RkJBArly5yJMnD3369OHixYs6a42MjHjy5InSqQLQsGFDunTpoqgeYyorVqygY8eOeHp6KtZKkoS9vT3Hjx9XVX7Ex8eHgIAAxS65hQsXJn/+/Pzvf//j9evXH2wnjEEFlCpVKi3pQvv27d8qkl2/Plw6FU0j/f8RkWhKp07QqBGo3GwRCATfELqcDC5ZsoRy5cpx6dIl+vfvz9OnT/nzzz+ZOnUq7du3p3Dhwujr63+mGQsEgm+BV69eYWCQsRNZTEwM48aNo0CBApw6dYpff/2Vq1ev8uuvvzJ8+HCqVq2qOCGLnp4etra2qgqE3717F0NDQ5o3b65Y26FDBw4dOsSjR48Ua7dt20ZYWBh9+vRRrC1YsCDx8fGKE5uAtkzR06dPFevOnj1L27Zt2bZtG1WqVFGsBwgNDSU5OVmxe6upqSmtWrUiPDycBQsWULJkSZ1r7s6dO1fVcwzQu3dv/Pz8qF69+lshLLqwceNG1q5dy8aNGxWPe+rUKQICAggKClK8QXv16lVWrlyJiYmJ4ph3X19frly5wvTp0zM8DRXGoEIGDBiAn58fYWFhtGzZ8q3dfNuSDizqfZhVtMVSL4IdO6BECUipvS0QCATvRReXkbVr1/LLL7+kZdtTmgb8fSQnJ7N27Vr++OMPXr16leX+BALB14Msy9SuXZsff/zxg22ePn2Ki4sLwcHBBAUFsW7dOipXrvxR4nONjIxYvHgxCxcu5OLFizq7fT5+/JhChQqpynJpbm6OnZ2dYqPs8OHDdOvWjZ07dyrO+AjaWDYPDw9VRtmAAQMYMGCA4hOn0qVL07p1a1auXKl4zFSOHTvGrFmzFH8fybLMzZs3MTc3Tzu50rXeYcOGDZk1a5aa6QJQtGhREhMTFcfuOTk50alTJ9q2bcv169cVaYsUKUJcXBzm5uaKdN9//z0+Pj5pOSKUbvgGBATQpk0bunXrlqFb7VcbMyhJUn2gvqOjIyEhIRm2vX37tk59prYbOXIkZ8+e5ejRo/Tp04f+/funtblbtQrNt/ah8oPitM57iKN3C9C4MTRqFM7w4c+xsEhWPN7HnLvo6+P0lZCQoHMpAF3afaw2X2NfCQkJmX6GvwX69u1L9+7def36Nf379/8op4Dt2rWjefPm7Nu3j9jYWOzt7alatSq1a9emXr16ir+4BALB18HevXsZNGgQBgYGb93jvIuVlRWFCxdGlmXi4uKyVHj9XbJnz86pU6cYMGBAWo3aUqVK4evrS/PmzXFxcXmvztjYOEsJuYyMjFizZg3NmjXTWZMnTx4kSUKj0aga8+DBgyxZskRV3F/Xrl2ZPXs2LVu2VJTJVJIk5syZQ+7cuVmxYoWq75THjx/TokULRZqgoCB69+7N3bt3+e2332jZsqVO1x0TE0PPnj3Zv3+/zq7L7+PkyZNUr1490xPv93HkyBFcXFwU1/yzsrKifPnyDB06lN9++01nXY0aNTh48CB58uRRVWcwR44c1KlThxUrVmBmZvbBjKZfrTEoy/JOYKerq2tXXbIV6ZrRKLVdar2QRYsW0aRJE2rUqJHWxnDuXHI3bsyR157Mn3SfwePM2L49G+fOZcPfH/LnVz7ex5y76CvrfV29ehUjIyOdd5Z0afex2nxtfWk0GlUZx742vvvuO9zd3enQoQO///47ixYtolSpUlnqs2DBgiQnJ6d9Qdy/f5+VK1eyZcsWEhMT8fX1pXv37tSsWVP1TY5AIPjvcfLkSW7dusX06dMzzOZpbGzMjh07GDp0KNWqVcPIyAg/Pz/8/PyoWrVqljwYUo3K9GWMTp48yZkzZ5g2bRp16tRh6tSp5M+f/y1d0aJFuX37NidOnMDb21vxuDly5ODYsWOKNPny5ePXX3+lUaNGXL58WXGCkgcPHuDs7KxIk4q+vj7e3t74+/uTkJCgaK22srIiMTGR2NjYtNJSupKYmEh8fLziEhEhISFcvnyZkiVLUrhwYZ0N4PDwcM6cOYOdnV2WNh5ev35N3bp1FesSExO5ePEip06dwsLCQpH2wIEDnDt3TrFB161bN2rVqkXr1q2ZOnUqo0aNomfPnoqe8z179uDs7ExgYOAH3bWFm6hKKleuzKhRo5BlmTZt2rztr92wIVSvjt7rMPo+/Jlz56BMGbh/H6pVg8mTbUm3tgkEn5S5c+dSrFgxWrdujb+/P71791bVz7tFysuXL696TvPnz6dgwYJIksSLFy9U9/OtkS9fPg4dOkS3bt2oWbMmmzZt+iTjpBZO3rFjBy1atMDKyorGjRuzadMmVbWSBALBf4vRo0fz119/0a9fP7ZnEutiZGTEzJkzefDgAdu2bcPZ2ZkpU6bg4eGhU71bpSQmJhITE8P//vc/XFxcKFasGKNHj+bMmTNpxdvt7e0ZPny4qv7Dw8NVbX41bdoUAwMDxTXhZFkmOTlZVVKTVP3Vq1fJnj274nnfvn2bHDlyKDYEAaKiotBoNISFhSnStWjRgnv37hEVFUWFChV09i6yt7fn/Pnz/Pzzz7Rv356zZ88qnrMsy7x584YrV64o1hoYGFCxYkXmzp2rSBcVFUX9+vVp0KABK1asUDxuapKdN2/eMHDgQEWnorIss3r1av744w9sbGw+2E4Yg1lgxIgRVKlShWfPntG2bdv/z/IjSTBnDujrw2+/USzhAidOwOjR2j+tXJmdMmVAxftYIHgvqV8m7+PXX39l9+7drF27NktjvGsMqgl0T6VChQocOHCAPHnyZGlO3yJ6enp07tyZAwcO0LdvX52D7tUSERFBdHQ027dvp3Pnztja2jJo0KBPOqZAIPjy/P777xQrVoz69evr1F6SJEqWLMngwYMJCAigfPnyNG7cWFVyE11ITEwkLi6Oa9euMXnyZKpWrUr27NkJCAhAT09PcUwYwM2bN7l16xa7d+9WrH3z5g1hYWGKT50kSWLXrl20bduWGzduKB53woQJ3L9/X5VxdOjQIVX1CUGbPdXe3p6RI0cq1mbLlo3nz5+zePFiRQlV9PT0qFatGgYGBpQsWVLxuLNmzeL+/fvMnDlTsRagXLlyrFixQlFWTzMzM44cOcLmzZvZsGGDqnHnzJlD3rx52bZtm6LMrzExMcTHx1O0aNEM2wljMAvo6+uzdu1abG1tOXDgAL/88sv/P1i8OPzwAyQnQ//+aAxkxoyBEycgX744rl4FLy8YPx50yCgvEPyDu3fvUqxYMXr27Enp0qUZP348ZcuWpWzZsowePRqAHj16cPv2bRo0aPCPgOvQ0FCaNGmSpkl1i4mMjKRjx46UKFGCsmXLsmXLFoYMGUJMTAylSpWidevWAGnxZLIsM2jQIFxdXSlRokRapq3Dhw9TpUoVmjZtStGiRenQoUNaJix3d3fy5s37OZ6mrxY3NzcWLFjAiBEjPtuYkZGRGBkZ0aBBg882pkAg+DJ06dIFQ0NDSpcuzd27dxXrFyxYQEhICAUKFMj0dDGrJCQkpHk0ODk5YWZmRmBgoOLsi7a2tiQnJ2d4ivIhVq1aRY0aNXB0dFSsffHiBVZWVjg5OSnW1q9fn6ioKE6cOKFYqyapCcCjR4+oUKEChoaGGSYYyojo6Ghq1aqlWGdtbY1Go+HevXuKtY0bN8bMzIyaNWuqiis9duwYdevWVRzbmZCQgIGBAeXKlVM8JmhP3wcMGECjRo0UucYeO3ZMp/IswhjMIo6OjqxatQrQJpY5c+bM/z84dizY2MChQ7B1KwBly8LWrffo21drBI4aBRUqgMiP8d9FkqQMf0xMTFS10YWQkBDatWvHlClTePToEYGBgZw6dYqzZ88SEBDAb7/9hqOjI4cOHfrHgt2vXz9+/PFHTp8+zZYtW+jSpQsA48ePJ1u2bFy8eJHTp09TrVo1fvnlF0xMTAgODv7HCeP27dsJDg7m/PnzHDhwgEGDBqXVAAoKCmL27NlcuXKFO3fuKI7DEGRMo0aNCAkJ4eXLl5+kf0NDQywtLTEwMCB37tw0b96c06dP4+Pj80nGEwgE/x5cXFw4ceIEYWFhFC9enNmzZ+t8InLjxg3Gjx/P8+fPMTU1JSoq6qPOTV9fH0tLS8zNzTEwMCBXrlxUr16d+fPnk5iYyK1bt/D09FR045ycnMzkyZMxMzNTlcjF39+fnj17KtYBWFpaEhMTQ4UKFRR73ZQqVYp8+fJx7tw5RbrExERWr15N6dKlFelAe+J08+ZNBgwYQLFixRTrAQoUKMCyZcsUaZKSkhg2bBimpqZYWloqHjNfvnyULFmSBw8eZFrO6V2ePHnC6dOnVbl6Pn78mHz58qneBC9WrBh//fWXYt2ePXuoXbt2pu2EMfgRqF27NoMHDyY5OZmBAwf+/41Z9uzaoz+AAQNIDRQ0MZGZMwcOHAAnJwgMBHd3mD9fe5AoEOhKnjx58PLyYt++fezbtw93d3e8vb25du1apu4mBw4coHfv3pQqVYoGDRrw5s0bIiIiOHDgAL169Uprl1ma7OPHj9OyZUv09fWxs7OjcuXKnD59GgBPT0+cnJzQ09PDzc1N1e6y4MPo6elRoEAB7ty5o0r/bjyPiYkJBgYG5MyZkzp16jBp0iR27drFq1evuHfvHuvXrxfJfASCbwgDAwOsrKyIjo5mwIABOp/GdO/enWnTpjFx4kSeP3+e5lGiC8nJydy6deutWDQjIyMMDAzImzcv9erVY+TIkSxfvpxTp04RFRXFw4cPOXDgAF26dGHSpEk4Ozvzxx9/KLrWO3fuMGfOHDw9PRXH0KXOWW2irSpVquDn50dQUBCNGzdWfKL56tUrxQnFDhw4QHJyMp07d1akA23ysSNHjvDDDz8oLoSeSunSpZk+fbqia7116xZz5syhXr16GZZK+BBBQUEEBgZy+vRpxUl+rl+/jrW1teKEOaA1fC9duqQ65t7a2lpV7cubN2/qZIB+tdlEPzfjx48nICCAEydO0KFDB3bs2KHdkeraFRYuhIsXYcYMSOfSVb269s99+8Lq1dCnD/zvf7BihdZIFPw3yGwhi42NzTR2QZc27yP1C0uWZYYOHUr37t117is5OZkTJ078Y2FTmqEro+tPHwugp6f3Vl1OwcfByMhI5/pSMTExHDx4kB07drBv3z5CQ0NxcnLCzc2N6tWrU65cOUqUKKE4U5pAIPh6iY+Px9jYmD///JN8+fLppNm9ezdTp05l6NCh1KtXL8OYpeTkZM6fP8/evXvZt28fp0+fJnv27Jibm/Pdd9/h5+dH+fLlKVSokE7G1i+//ELu3LlZv349rVq10vk6CxQowM2bNylbtizOzs48ffpUZxdKPT09Vq5cyXfffce4cePo3Lmz4u/0R48eYWtry99//604S2apUqXo0aMHzZo107m+4vPnz0lKSuLevXuqT6wsLCxUnaKCNtQkMjKS58+fY2dnp5OmcOHCXLhwgbJly3Lr1i3279+vaMzVq1fTqVMnVe64lSpVwsrKihkzZjBkyBBF2hYtWtCnTx/FBmgqjx49Ijw8XLHOw8ODvXv30q5duwzbiZPBj4RGo2H9+vVYWlqya9cuZs+erX3AwABSMw9NngwPH76ls7KCVatg82atR+mBA+DqCmvXgsKNIcE3TK1atVi+fDmRkZGAduF4/vx5hhpfX1/mz5+f9v/g4OD3/j21GLlGo3mvW0XFihXZuHEjSUlJhIaGEhAQgKenZ1YvSaAjH3pd0nPjxg0aN26Mvb0906ZNo0iRIuzevZs3b97w4MEDdu3axY8//kj58uWFISgQCN5CX1+f5ORkypYtq7PG2NiYiIgIypYtS8GCBd/b5uXLl7Rr1w4HBweaN2/Oo0eP+Omnn7h//z737t3j8uXLaSEMLi4uOhmCERER1KpVi4oVK+qc+CY99vb26Ovr06FDB8Wngw0aNKBEiRIMGjQIe3t7xclCQkNDmTFjBoULF1akA8iZMyfx8fFvleHIjO+//57atWtTvHhxdu3apWi8xMREvv/+eyZPnqx0qmn633//nT59+pAzZ06ddW/evEkz5qZNm6Z4XG9vbwICAhSfvII2JKhmzZr88ssvije2582bx5IlS97OLaIjXbt25dChQ6xZs0aR7sKFC8ydO1enmM7PbgxKklRbkqQQSZJuSpL0D9Na0jI35fELkiSVTvfYXUmSLkqSFCxJ0pl3tV+aPHnypGVcHDx4cJqrHFWqQNOmEB0Ngwe/V9ukCVy6BPXqQXg4tGkD/fs7IrLuC3TB19eXVq1a4e3tjYeHB02bNs00pffcuXM5c+YMJUuWxMXFJa0Q6ogRI3j16hWurq54enpy6NAhQFvvpmTJkv9w92nYsCElS5bEzc2NatWqMXXqVOzt7TMd28nJiYcPH1KyZMm0eMUvyX91bdJoNJl+MU2dOpVcuXJx+/ZtDh8+zE8//USxYsVU7+im8rHjgAQCwfv5kutTXFwclpaWil0gk5KScHR0zLC4944dO1i8eDHXr19n3rx51KtXL9PQhIx4/fo19+/fZ/v27ao2tk6dOoWZmRlz585VdDp39+5dpk6dyqVLl4iPj6dYsWKKjBzQJhnJSoZtIyMjLl26pHP7EydOcPDgQaysrBS7XEZERHDv3j26deumdJqA9r0RGRlJjx49FD3PBgYGaTGdVlZWisdt1KgRDx48YPPmzYq1586dY+XKlVSsWFHxyW2tWrUoVqwYr1+/Vjyus7Mzr1+/ZuvWrYqM2PDwcGxsbHB3d8+07Wc1BiVJ0gcWAH6AC9BSkiSXd5r5AYVSfroBC995vKosy6VkWc48Pc4XoEaNGvTt25eEhASaN2/+/8e606aBsTGsW4fJB4J87e1hxw5YuhTMzWHvXgtKlACFbu+Cb4S8efO+tfD369ePixcvcubMGU6cOEGBAgUA7ZdUaqHRDh06pJ365ciRg40bN3LhwgWuXLmSZgyam5uzcuVKLl26RGBgIN999x0AU6ZM4erVq2kJZFJPISVJYtq0aVy6dImLFy/SvHlzQBsDkX63cfbs2XTo0AGAvn378vDhQxITE3n8+DFLly79VE+TTvyX1yZ9ff1MjcGEhAQuXbqkaNc4MwoXLkzv3r2xs7OjadOmLFmyhKtXr6racRUIBB/mS69PsbGxtGzZUmf3Q9AaZY8fPyYoKOiDa4KNjQ3z5s2jQ4cOtGnT5u0EfCpxdnamVq1a2Nra4uTkRMuWLVm9ejV37tzJcG2KjY1l+vTpNGzYkD59+ijaKNu1axeenp7cu3ePBQsWEBkZyYkTJxSVbDhx4gTPnz9XbJQ9efKEuXPnsmPHDhISEhQlRRk7diwxMTFcvXpVcd3gbNmykTNnzre8iJTw4sULJEni4TvecplhamrKnj17SEhIUHXfYGBgQPbs2fn7778Va2fMmIGfnx+7du1CX19fkTYxMZFTp06pKsMxatQoxo4dy/Tp0xVlUK1YsSIFChSgePHibNmyJcO2n/tk0BO4KcvybVmW44ENQMN32jQEVslaTgJWkiQ5fOZ5ZompU6dSunRp7ty5ww8//KD9Y968kFKbK+eECZCU9F6tJEHnznD+PJQpE83Tp9rTwu7dIeXeWyAQfHz+s2uTLjuUy5Ytw9fXF1dXVypUqED37t2ZN28e27dvJyAgQNW4rVq1Ii4ujufPn7Nlyxb69++Pp6cn2bJlo0uXLpw8eVIYhgLBx+GLrU+RkZHExcURGBioSNe2bVuOHz/Ozp07M1yj2rZty+3bt3Fzc6NJkya4uLjQo0cP1q5dy759+1StIRs2bMDb25tHjx6xYcMGunXrhouLC05OTmzYsOG9CU9atWrFihUrOHLkyFsJ1DLj6dOnNGrUiNy5c+Pu7o61tbUioxm0cfcNGjRg0qRJuLq66qw7f/48Tk5OrFmzhlGjRhEeHk6VKlV01u/atYtChQpRtWpVHj9+rGjOenp67Nmzh+HDh3P//n1FWoDOnTvTs2dPqlevrlgbExPDkydP6NOnj2LtyZMnCQoKonjx4iR94D78QwwZMoQ9e/YoHlOWZTZu3IihoaHiMVN5/vw5hoaGODs766xJrV+ZP39+mjZtmmHtzM9tDOYCHqT7/8OUv+naRgb2SZJ0VpIkdWfTnwEjIyM2btyIqakp69evZ+fOndoHBg8GJyeMr1wBf/8M+8ifH1atesDUqWBoCIsXg5sbHD366ecvEHyDfNVrk76+PsOGDePWrVtMmjSJkiVLcvXqVcaNG0flypXRaDQUK1aMPn36sHv37rRTXyVER0cTGRlJREQEK1asoGbNmjg4OPDnn39+gisSCL4pvsj6dOnSJYoVK4abm5viOoELFy7Ew8ODChUqcOvWrQzbWltbM2jQIG7fvs3q1aspWrQoW7dupW7dupiamuLn58eiRYu4du2azsZh+pO92NhYYmNjefz4MV26dKF48eI8ePDgrfZjx47l1atXXL9+XdF12tvbExISQo8ePTh06BANGzbEzMyM7t2769yHJEn069ePDRs26JwMDKBkyZL4+/vz4MEDXr16pdgINTc3Z9OmTYC2jIjSbJXJycnIsoypqakiHWiNG7X1am/fvo21tXWax5MSvLy86Nq1K/369cPZ2Zlr167prC1evHha0h1dSUpKonr16kydOpWDBw+qKoexd+9eFi1apPhEMjY2lqpVq3LhwgWmT5+eYU3Hz51N9H3bQ+9+sjNqU0GW5ceSJOUE9kuSdE2W5X9sa6csdt0A7OzsCMmkiN/t27cznbiu7dK36devH5MnT6Zr167s2rULCwsLLPr3x3HgQBIHD+aOmxvJGfi037t3mwYNoEgRQwYPduDaNWMqVZLp0iWMPn1eYmgof7K5i74ybpeQkEBcXJxOfenS7mO1+Rr7SkhIyPQz/BH47GtT7ty5szJfVdjY2FC5cmUqV64MaJMGubu7k5iYyLVr1wgJCWHVqlXExMRQuHBhGjRoQMeOHSlUqJCicZKTk4mMjESW5UzjRwUCQaZ88vXpfWvTmzdvsLKyUuU9cOPGDYKDgylWrJjON+36+vqUKVOGMmXK0L9/f7y8vDh16hR79uzh8OHD6OnpoaenR7ly5ahTpw5NmjRRHGMXFRXF9evX8fX1JTg4OC3jdYkSJVi2bBmjRo2iUaNGivosUKAABQoUoEuXLjRq1Ii9e/cqziQ6dOhQVq1aRatWrXSOZ5MkiSZNmjBjxgzVcZbLly8nJCQEX19fnfuIjIzk559/ZtOmTYwePVqVUVahQgXWr1+Ph4eH4vi7QoUKYWpqSu3atdm9e7eiWFZJknBxcSEuLo7Xr19z/PjxDDPdpicyMhKNRqPIhVhPTw9PT0/WrFmjyNBPj7W1NQYGBri5uSnSGRkZ4eHhwfnz5zEyMsrQkPzcxuBDIP0ZpxPw7tn0B9vIspz673NJkrahdZ34xyoly/JiYDGAq6urrEtdLF1rZynpa/z48Rw8eJBTp06xbNkyFi5cCIULE71uHabnzlFowwaYPj3TvooUgdq1YcwYmDJFYskSG06dsmH1au0J4qeYu+gr43ZXr17F0NBQ5wVfl3Yfq83X1Jcsy2g0ms9R2+6zr00eHh7/Oh9KWZbT6iBdvnyZkJAQjI2NGTVqlE56fX19zM3NiYmJwcXFhaVLl+oUvC4QCDLkk69P71ubPD09uXbtGomJiRkmgXkfx44d4/nz5+TJk4fHjx+rSqmf3kiIjY1N+/2vv/7i6NGjDB8+nMaNGzN+/Pi0GPlU3nUFNTc3R09Pj+joaCwtLbG1tSUyMvKt8ke+vr5069aNixcvUqJECcXzBe2GZnJyMmPHjlWk09fXp2DBguzZs0dReaewsDCePHnC3bt3VZWFmjdvHq1atWLx4sU66x48eMDq1auZMWMGXbt21VmXnp9//ply5coREBDA4sWLFRW+NzY2plGjRkybNo2XL18q2nCMiYkhMDAwLRFNmTJlMtXIssyOHTsYMGAAzZs3V/QcS5LEL7/8grW1NQsWLEjbiFWCp6cntra2XL58GR8fH0VjT58+ndjYWGbOnEnv3r0/2PZzu4meBgpJkpRPkiRDoAWw4502O4B2KZmxvIBwWZafSJJkJkmSBYAkSWaAL6B72qQvgL6+PkuXLkWj0fDbb79pd9ckiefDh2uDA+fMAR1PPAwNYdIk+PtvKFAALlwADw9YsiT7h8IPBZ8QY2NjXr16JWKiPiGyLPPy5UtV9RdV8E2tTZmhr6+PpaUl2bJlo2/fvv94PDExkQsXLqS11Wg0FC1alP79+7Np0yZevXpFUFCQTl+0AoEgU77I+mRgYIC1tTUvVKQ1HzFiBDdu3ODq1au4u7tz4MABxX1kRFxcHJIksX79esqXL5/muhcVFcXkyZMJDAzE3t6eKlWqMHDgQBYsWMCBAwcICwvj5cuXBAQEYGNj81af+vr61KpVS3HtuvQkJycjSRL79u1TpLt//z7nzp1jyJAhiowNJycnzp49y9q1a5kzZ46iMSVJYufOnWzbti0tMZwuFCtWjICAAMaOHcvq1asVjZmKs7MzHTt25OzZs3h4ePD06VNF+mvXruHn56fIEHzz5g3u7u48fPiQdevW8fTpU51O286ePUujRo1wdXVlxowZiuaZiiRJ3Lt3T1WtQNCWC1MSL5jK7du3+fPPPxk6dGiG7T7ryaAsy4mSJPUG9gL6wHJZli9LktQj5fHfgN1AHeAmEA10TJHbAdtSPiQGwDpZlpVHcn5mXF1dGTp0KOPGjaNr166cP3+euOLFtVlili6FH3+EDII636V8eQgOhp9/1taynzHDlpMnYeVKrZEo+Dw4OTlx7do1nT7YCQkJmboxfKw2X1tfxsbGqorDKuVbXJuAt2IfzM3NiY+Pp2DBgjRs2JDatWvj5eX1VhzKgwcPGDRoEHv27MHe3p7y5cvTu3dv/Pz8VKX5FggEmfMl1yc7Ozvu3Lmjyt3bwcEBe3t7nj17Rr9+/bh8+bIiffrTPVNTUwwNDYmKiiJ37tx4eXlRoUIFypQpg6urK2fOnGHbtm2sXLmSKlWqsHfvXkWnKKn8/fff/5/4TyFXr14lICCAkSNH0qxZM0W6qlWr0rFjR4YPH654XCcnJwoVKsS8efPo37+/Iq2zszM1atSga9eulC5dmmLFiumkc3d3Z/v27VSsWBFvb2/FoQSg3VTU09PDy8tL0fsrNjaWR48ekS9fPkXj/fzzz3h5eeGfSc6Od/Hw8OD06dNMmTKFQoUKsXHjRnx9fRX10b9/f/bu3Yurqyu3b99WXKalaNGibNy4kcEfKE/3Ph49ekTZsmXp3LlzpuW7PrebKLIs70a7aKX/22/pfpeBf6RykmX5NqDMYfZfwrBhw9i0aVNawob27dvDxInw++/w559aY7BOHZ37MzeHX3+FBg2gXbtEjh0zwM0NZs6Erl21h46CT4tGo8HQ0FAn98WQkJBM232sNt9KX5+Cb2VtSkpKYs2aNezatYv9+/djamqKr68vHTp0oEqVKh9051q3bh39+vWjb9++zJkzBzs7u888c4Hg2+VLrU/t2rVj2LBhafVmlRAcHMz9+/fJnTu3zgXCN23axJ49ezh79iwXL14ke/bslCtXjrp161K2bFlKliyZ5i1y//59pk6dyvbt27G0tKRx48bs379fUUbOd7l//z4uLu9W7dCN3Llz4+DggL+/P+3bt9d5I7Nbt27069cv09ObDzF//nzOnTuXVh5KKanlLJR44URERPDTTz9RpUoVVRu2a9asYeHChVSvXl2RcbZt2zb69etHrly5mDBhgqIxK1euzJgxY4iOjlac9MbDw4NNmzbRvXt3evfurTjRkKGhIe3ataNXr148ePCA/Pnz66ydOnUq9+7dUxzLmjNnTnr06MH8+fPR19dn9OjRH2z72YvOf4sYGRmxbNkyJEli6tSpXL16FXLmhNQX5scfQUVgae3asHPnHZo3h6gobfmJevXgyZOPfAECgeCr4Pr161SqVImlS5dSv359Lly4QFRUFNu2baNhw4YZxvXs2LGDbt26MXLkSGEICgTfCCYmJqpd2yZPnkzv3r25c+cOdXTY8I6Li6NNmzZ4eHiwePFi3rx5w8uXL9m9eze9evXC09PzLYPlxo0bLF++nD///JMrV64wceLELBmCSUlJxMfHqw5NMDMzo1SpUty5cyfDG+/0yLJMkSJFmDJlStq/ERERisY9f/48jo6Oqso0AJw5c4YyZcooOmkLDg7mzZs37N69GxMTE0XjPXr0iL59+/LXX3+xb98+HB0dddbeuHGD8PBwnJ2dMTc311kXGxvLwYMH0dPT0znp3fuIjo5WrT137hyGhoaKa0m+fv2ayMhIRo8ezfPnz3XWaTQaJk6cyJQpU5g7d26GbqbCGPxMeHt707t3b5KSkhg+fLi2SHTv3lCkCFy/DnPnqurXyiqZDRtg/XqwstIeMrq6Qkq2YIFAIEijS5culC5dmiNHjtCuXTtFGU1HjhzJ4sWLM6xVJBAIvi78/f0VlUlIj56eHkePHtXZmNy7dy9FihThhx9+wNPTEzMzswzbV69endq1azNw4EDFMWfvIzk5mWzZsrFt2zZV+tjYWB48eICenl5aTHVmSJLE0qVLefjwIbGxsQwZMoTpmSQWfJfFixej0WgU1UcErZvmwIEDefnypeLSITY2NkRFRSkuvg6wdu1amjVrRtmyZRVrf/75Z65evcr+/fvp1k33Kk779u1j6dKlNGnSRLUxGBYWxh9//KH4uUpl586dbN26VVFIRXx8PFWrVqVIkSJs3LhR52Ru6XF0dCQ6OjrD2F9hDH5GJk2aRO7cubly5QqzZs3SZoWZNUv74Lhx8OyZ6r5btIBLl8DXF8LC4PvvoU0bePXqI01eIBD85+nRowcBAQGEhYUp1hYvXpwdO3bQuXNn1q9fn+W5zJs3j9mzZ3P27Fnt5phAIPjXMWjQINVJM+bPn8+JEycoWbKkTsnWfv75Z8qWLavoZGzjxo14enpSunRpXmXxhkej0bBz507at29P48aNWbBgAUFBQTqtT48fP8bZ2ZnHjx+zcuVKTp48qWjsJk2aEBYWxubNmxkzZowirSRJ2NjYKK4P27dvX4KDgzl16tQ/kulkRtGiRXn9+rXi6wS4ePEi5ubm/8j4qitr1qwhT548rFq1SmdNgwYNuHDhAnfv3qVo0aKqylWNHTuWRo0aqXYjTkhI+EfW24w4deoUOXPmpGHDhri5uXHw4EHVrsCmpqYZhuAIY/AzYm5uzqJFiwAYNWoUN2/eBD8/qFsXIiJg2LAs9Z8rF+zZo40nNDWFtWuhRAnIQmIsgUDwFdGyZUvq1auHl5eXzjU30+Pt7c2BAwfo378/f//9t+p59O3bl6CgIIYMGULVqlUxNzfH09OTMWPGfI6akgKBQEcCAgKoVKmSIo0sywwdOpTChQuTN29eVqxYoVOGzJUrV/LmzRvy5s3LiBEjdDIgNRpNWmmJDRs2KCoI/j4qVKiAh4cH27dvZ9CgQVSuXBlzc3PKlCnDsGHDPlik3N7enjFjxvDq1Su2bt2quHbeqFGjMDIyYujQody/f1+RNiIigtu3bytOfKPRaKhWrZpiQxC0p76LFy+mXr163Lt3T5F25MiRHDx4kCZNmqgyCMPDw6ldu7bi2oolSpTA398fR0dHniiMp5ozZw779+9n6tSpinTvomTjs1SpUsycORMvLy82btzIlClTFLupyrKcVnZkyZIlH2wnjMHPTO3atWnQoAGxsbF069ZNu9jNnAkaDaxYAWfOZKl/SYIfftBmHPXygkePtKeF48fnJAuuzgKB4CtAkiQmTpxIv379qF27NqGhoYr7KF68OHPnzmXIkCGq55EaMxEXF0dERARxcXGcPn2aSZMm4e7uTuHChZk5c6aqE0yBQPDxuHDhAm3atFGse/jwITY2Nqxfv54aNWropClXrhxr1qzB3d2dq1evKjKoRowYwYoVK8idOzdDhgzhypUriuecSmpykZiYmLT16dy5c0ybNo3SpUtTsmRJVqxY8VYRcT09Pb777jssLCx48eKFYmOwQoUKFC1alKdPnyoyaK9fv065cuXw8/OjYcOGisb09vYmKChIkSY93333HXny5OH48eOKdE+fPiUyMhIDAwNV5blatGjBkiVL6N27tyLj6sKFC3h7e5M9e3bFZY+MjIyIiIjg4cOHSqebhouLC/3799f5mo2MjOjUqRMHDx6kXr16nD9/Xiftq1evWLlyJW3atMHBwYHJkyfj7e2d4YmmMAa/AEOHDiVHjhwcOnSIZcuWQeHC0K8fyPL//5tFChXS1iScOBEMDGDtWmvc3eHUqY9wAQKB4D9Nnz598PPzU5XGHLQuTSEhIVn6YnwfCQkJxMTEcOPGDQYOHMjKlSs/av8CgUAZOXPmVLxpJEkSq1atom3btopS4YPWuDlx4gTZs2fnjILN8Vq1ahEYGMj+/fu5ffu24vg5XUhMTCQmJoaLFy/SuXNnjh07BmhPX9asWUOpUqXo2rUrf/31l2JjEODmzZvs3LlTUabJZcuWIcsys2fPVjxmgQIFuHXrltJpppGcnMyLFy9wcHBQpJs4cSLR0dE0atQIPT3lZkiJEiXo0aMHK1aswNvbm8ePH+ukmzdvHjdv3qRv375YWFgoGrNHjx7MnDmTGjVqcOmSujLCTZs25cCBA/j5+fH69WudNHFxcfz8888cOXKEw4cPZxpHC7B582Z69uzJ2rVr8fHxYejQofj7+2d4AiyMwS+AtbU1c1MSxgwcOFD7Rh45Upth9PhxWLfuo4xjYKD1PA0MhEKF4rh+HSpUgFGjICHhowwhEAj+owwfPpyNGzcSExOjWGtgYICLiws3btz46PMyMjLCzMyMNm3a0K9fv4/ev0Ag0A1ZlomKilKc3RK0BmFqXJkSV8ASJUpw9+5d4uLi8PLy4s6dO4rHvXfvHn5+fkqnrBNGRkZYWFhQrlw5qlSpAsDSpUtp27YtTZo0oU2bNqoMHNCWdohXmFl+woQJ6OnpMWLECMXjXb58OcOkIplx+vRpXr58SYkSJRTpdu/ezbRp0+jXrx916tRRfM2gfa6io6M5e/aszm7MixcvZvr06TRv3pwVK1YoGk+WZfLnz4+5uTnfffed4vmCtrxEdHQ0Bw4c0OkUNyoqiqpVqxISEsL58+d1LrvVtWtXXr16RUBAAK6urixevDjNXftDCGPwC9GiRQvq1q1LeHg4vXr1QrawgMmTtQ/+/DMoDATOCHd32Lz5HgMHQnIyjB+vdSHNgheFQCD4j5MzZ06cnJwU10tKxdzcPEtptlPRaDRky5YNIyMjvL29GTt2LIcPH2blypWqb6oEAkHWWb58OY8ePaJ58+aq9A0aNODWrVtMmjRJkS40NJR9+/bRp08f8ubNq7Nu9uzZuLm50aBBA3788UeFs9USHh6e5p5uaGiIpaUlGo2GXLly0bBhQyZNmsSuXbs4dOhQ2klc27Zt2bRpE6GhoZQsWRI3NzfFcX+7du0iISEBHx8fRboBAwaQnJzMTz/9pEjXp08fxo8fz+bNmxXp0lO2bFlcXV0pWbKkog0DfX19WrVqRffu3Tly5AgtW7bUWRsfH0/79u355ZdfcHZ2ZtSoUezXMTHG7du3GTduHM2bN+f777/XecyAgABKlChBs2bNqFq1Kjt37tRZm57Q0FBMTEwoWLAgv/76a6btU0PJNm/eTI4cORSNZWhoiI+PD6NHj2bixIkkJydn+Dn87EXnPxeSJNUH6js6OmaakEDXRAq6tFPSZuDAgRw+fJjt27czd+5cavv6ktvVFZNLl3g5aBC3GzT4KOMBPHp0my5dZEqWNGHIEAfOndPg7p7MTz+9oF27V+jpff7nQfT17x7v39yX4ONga2urOi5Po9GQoNDF4PTp0+zcuZM///wTSZLIly8fLVq0wM/PD09PTwwNDVXNRSAQfHycnJx48eIFoaGhOrmnvUtQUBAxMTEUK1ZMkc7S0hJjY2NsbW0VuT4WLVqU6tWrM3XqVFatWsXQoUNp3779B/uIiYnhf//7HxcuXODChQtcvHiRly9fYmhoiJubG61atcLb25tSpUpl6FZobGxM06ZNadq0KQ0bNuSvv/7i+vXrOpfumT59OjNmzOD3339XXOOwTJkybNiwgT59+uDv759hrdj0FC1alPXr1xMYGEiZMmVUlYjQ09OjYsWKzJs3j+joaMWul/r6+sTExPBMQSZ9PT099u/fz//+9z+dY1FTsbCwwNLSEhMTE0XfNba2ttjZ2XH79m08PT0pXLiwonFTDbEpU6bQvXt3pkyZotP49evXT6sPWLlyZUaPHq0ok2lsbCzz589n1qxZWFlZ8dNPP9GzZ8/3tv1qjUFZlncCO11dXbvqcrSq6/Hrx+qrSJEiFClShGnTptGzZ08mT55M27ZtMVm8GMqXx2bFCoo0bUr+jzz3IkWgYUP46SdYtkyPX37JycmTOfH3h/z5P//zIPr6d4/3b+5LkHUMDAxUl3VQYgy+efOGQYMGsXv3btq0acPYsWPx8vJSXHxXIBB8PmrVqkXXrl0ZM2YM/v7+irQPHjygUaNGrFu3TnFiE1tbWzw8PNixYwfDFGRZr127NrVr1yYsLAxvb286derE999/n5YQ5l3u3LnD8OHDuX37NsWLF2fmzJk0atSI2NhYVcYvaG/AUwvJ60JycjJbt27F1NSUXbt24eHhoaiIe/v27alTpw65c+cmMDCQmjVr6qTr1asXNWrUoFu3bsycOZP58+dTp04dnccFbYmI9evXU6ZMGezs7BRpb968yfbt2zExMWFyqlecDuzYsYOEhAQ0Go2i8UDrDXPs2DEqVapElSpV2L17t07Gc7FixVi8eDGNGzdmxowZtG/f/oPvqfcRHh7OihUrcHBwwMfHR+e5t2jRghYtWnDjxg06duzIoEGD+OOPP3Qe9+7du0ydOhVzc3PWrl1LlSpVPmgMCh+cL0z37t3x8fHh2bNnDBw4ELy9oXVriIvDdsqUTzKmpSUsXQr/+582TPHwYW0Jiq1bLT9G7hqBQPAfQc3pXiqmpqb07t2btm3bsmrVKm7fvv3BTGcdOnTg8ePHXLp0icmTJ1OnTh1hCAoE/wE6dOjApk2bWL16taLMj9OnT6dhw4aKDUHQ1ifctWuXIkMwPdmzZyd79uwYGBiwZ8+eD87bxcWFmzdvEhAQQExMDE2bNmXt2rWqDUGAe/fuMXToUJydnXVqr6enx7Fjx1i6dGlaqQZdefDgATNnzsTPzw8vLy/FJ2VFihTh8OHDZM+enbp163LixAmdtVFRUZQtW5Z69epx9OhRReO+efOG4sWLkydPHp48eaKza+zdu3dp2rQplpaWLFmyhHHjxnHhwgVF32GWlpa0bduWM2fOUKxYMQ4fPpypJj4+Hjc3Nxo2bMiFCxcUGYKgzRNy7do1fHx8aNq0Kdu2bdNZGxcXR2BgIA8fPlR8Ilm0aFHu3LlD1apVqVWrVoY1CoUx+IXR09NjyZIlGBkZsWLFCg4cOABTpoCZGRb798PBg59s7AYNtIXqGzdOLXPowHffwfPnn2xIgUDwLyIrxuDgwYN5/vw5a9asoVevXri6umJtbU39+vXZvn07cXFxaW2bNm3KkydPRAygQPAfI3/+/OTIkYNOnTrRokULnXXt27fnf//7Hy9fvlQ8Zt++fZk+fTrff/89PXr0UFV+wMTEhISEBNq2bUvZsmUZOXIkmzZt4sqVK2+teWvWrEkrJP7HH3/QunVrxWOlIssycXFxlC5dWpEuOTk5LSOmLqdkr1+/xsfHBzc3Ny5fvsykSZPYt2+fqgyms2fP5ubNmyxatAgvLy+ddWZmZixdupQtW7Yofo0tLS3x9/fn6NGjijLG5s2blydPnvDrr7/y4sULRo8eTenSpTExMSF//vxs2bJFp3709fWJj4/nyZMnVK1alXHjxmXY3tDQkPr16xMdHa3o1DYVWZY5f/48165do0yZMtStW1cn3d69e8mdOzf+/v6MGDGCadOmKR7bzMyMhg0bEh8fT58+fT7YTnwz/wsoUqQIo0aNArQBo1FWVv9fgL5fP1DpxqULtrawZQusXAnm5kls3w6urtpTQ4FA8HWjp6en6kYLtC6mqURGRhITE0N4eDi7du2iXbt22NjY0K5dO27evEmLFi0oU6YMPj4+PHr0KMvzvn//vqosqAKBQBmLFi3i+fPn5MmTh3bt2umsK126NE2bNlWVyEWj0dC7d29KlCjB6tWrFbuopic14+SkSZPo3Lkz5cqVw9TUlNy5c+Pn58fBgweRZZlhw4ZRp04dVbFzqcybN4+kpCRFSWB27tyJi4sLv/76Kzt37sTT0zNTjYWFBRUqVEBPT4/ChQtTpkwZVW6Thw8fZtq0aVy6dIlu3bopNiYbNGhAXFycqrFbtmxJgwYNqFevHhs2bNBZZ2dnR61atahcuTIASUlJJCUl8ejRI5ycnDLVHzlyhA0bNmBgYJC2yVG/fv1MdTNnzuTAgQP0799f57nKssyCBQtwc3Pj+++/p3z58uzfvx8jIyOd9AULFsTKyoqiRYvSqVOnt75zlXDjxg3MzMxokEEeEmEM/ksYNGgQbm5u3LlzR2sY/vQT8U5O2qO7RYs+6diSBO3awY4dd6laFUJDoVEj6NQJ3rz5pEMLBIKvkIiICKKiolizZg3nzp1DT0+P3377jSZNmlC7dm2dayy9D29vbxYuXEi2bNkoXrw4P/74Izt27FB1AiEQCD7Mo0ePGDJkCPv27ePmzZs6n2ikMn78eLZu3apzHbh3MTAwIDk5mYsXL6rSpyc5OZmIiAgiIyNJTEzkwYMH7Nmzh9WrV1O2bFmaNGlCs2bNslSsPiYmhrCwMIoUKcKPP/7IuXPnMt1su3jxIrIsc+XKFTp37kyzZs3Yv39/hpma9fX1+eWXXzh+/Djnz58nf/78lChRgqlTp/JGwU3b06dPARRnPk0lNjY27ZRNCc+ePWPevHkcPHiQ5ORkbt68qWp80J58WVtbs23bNsqVK5dp+zlz5pA3b16uXLlCaGgoy5Ytw93dPVOdg4MDAQEB+Pv761x3MzExkT/++IMbN27QpUsXhgwZgpWVlU5a0NaBDAwMZO/evRw/flxnXfrxJ0yYwOTJk9NOcT+EMAb/JWg0GpYuXYqenh6zZ8/m9MWLhKYWax05Ej7DjY6jYyIHDsDs2WBsDCtWQMmS2phCgUAg0AU9PT0sLS0xNDRk3rx5aSm8JUlixIgRVKhQgUGDBqnuv1atWrx584aEhASuXLnCnDlzaNu2LY6Ojnh5eeHv76/ohkggEPyTxMRExo0bh4+Pj+JyB6lYW1tjZWXF8uXLVenj4+NJSEjI1I1PDebm5pibm2NiYsLChQu5efMmnp6eVKpUiSNHjqjqc/Dgwfj6+vLkyRNmz56Nj48POXLkoGvXrhw8ePC9LvnDhg3j+vXrXLt2DXt7ezZv3oyvr2+GLn2pFC5cmHXr1nHv3j0iIiIYPHgwP/zwg87zbdGiBYsWLaJu3braECWFJCYmoq+vz0EF4UxBQUG4uLgQGBjImDFjiIiIUFQj8fnz58ydO5cFCxZgbW3NL7/8wuPHj3VOftO6dWtOnjypKmQhW7ZsFChQgBYtWnDt2rVM22s0Gnbv3s3JkycJCQnB3d2dSIVl47Jly0bXrl3p1q0bly9fVqTdu3cvI0eOpH379jRu3DjDtsIY/Bfh4eHBTz/9RHJyMp07dyasUiWoVg1evYLRoz/LHPT0tJ6p585BmTJw7552CgMGQGzsZ5mCQCD4D5CUlJT2u4WFBYaGhhQuXJi+ffvy+++/8/LlS3r16vWWRpKktNpW4eHhH2Uesizz5s0b4uPjOXXqFH369CFnzpwZBssLBIKM+eGHH1i1ahUdO3bMUmFyY2Nj1q9fr0qr0WgwNTVVfDKYlJT01smaoaEhZmZmGBkZ4erqSvfu3VmwYAEnT57k9evX5M+fH1NTUwYNGsTSpUtp3rw5v//++1trnK6kd7WMjo4mLCyMZcuW0ahRI6ysrOjTp897DQI7Ozuio6OxtrZmwYIFLFy4UKfx7t+/T4kSJTA1NWXZsmWsXLlS0Xzr169P1apVadiwIStXrtQ5bODNmzd4e3vTrVs3RXUoW7RoQePGjVmxYgWdO3dWVOJhwoQJODo6Mm3aNHr16kVoaCi9e/dWVI6jSZMmeHh4UKZMGcWGGWgTKh0+fBhXV1ed3Zfd3NxYuXIlefPmZcKECYrH7NWrFyYmJpQqVYqrV6/qrKtbty5///03+/fvx8nJKUMDVhiD/zLGjh1LgQIFuHjxIsuWL4c5c0BfHxYuhI/gKqErxYrBiRNaG1RPD2bO1BqH5859tikIBIJ/Idu3b6dRo0Z4e3unBaevXLmSp0+fEhISwqxZs6hVqxbm5ubv1dva2lK4cOGP4vr1PiIjIzE2NqZixYqfpH+B4Ftg4MCBDBkyhClTpmBvb4+bmxt//vmn4n40Gg0PHjxQNYekpCSSk5N1ckP09/enQ4cOlClTBktLSy5evIizszMtWrRg+fLlBAYGEhUVxcWLF/ntt99o164dxYsX/0eMYKNGjXBycqJz5844OzuzY8cOVXNPjyzLREREEB0dzW+//Ua+fPk4efLkP9qFhoayZs0aevbsqbORZGNjQ0xMDFu2bFEdV5YrVy6io6Pp2bMn1atXJ1aHnf/9+/dTrFgxJk+erCjWcO7cuVy/fp1ChQoxZ84cRXVuW7VqxYQJEyhSpAhjxozB3t6eESNGkJycrHMfABUrViQ2NvatJGe6YmBggJGREQUKFKBq1aqKtJUqVWLTpk06t7958yatWrXC0dERWZYZMmQIBQsWVDRmxYoVmTBhAi9evMjwO1EYg/8yTE1NWbx4MQC//vorN4yM4IcfIDlZe2Snw65NyIsQYhKynlxBo4ExY+D4cShcGK5cgXLlYOHC7J8yp41AIPgX8/TpU86dO4elpSUNGzZkwYIFNG7cGGtra537cHZ2Vh1H9D5MTU0xNzfH0tKS+vXrc+LECVxdXT9a/wLBt0aRIkUYPXo0J0+exM7OjkuXLimK7Xr27BkDBgzg1q1btGnTRmddcnIy//vf/2jSpAnBwcF4enpSpkyZTHUPHz4kMDCQoKAgatSoQZcuXQgKCmL9+vW0bt0aFxcXnZLDPHnyhMjISBISEkhMTMxyLLKxsTHZsmXD1NQUjUZD7ty5KVeu3HsTYOXKlYsmTZrg7e3N9u3bdTqlMzMzY8qUKXh7e7Nnzx5VcwwLC8PIyIikpCQ0Go1OxvfSpUtp1qyZ4rFq1apFQEAA69evZ+XKlTg6OuLn55dhCZBU8ufPz+DBgxk0aBD58uUjLCyMkJAQxcZg6gaDkvi9VGRZRpIkWrRoQZ48eRRpraysFMXLR0REcOHCBezs7OjVqxejR49WlawnlVevXn3wMWEM/gupVq0a7du3JyEhgV69eiGPGQPZs8OhQ5BJfRJZlmnyexNyz87NuCPjeBmd9VhDT08ICoK+fbWJTefMsaViRbh+PctdCwSC/xg9evTg7t27TJgwgXXr1pE/f/60G8egoCCdbmAKFSpEmzZtKFasGH379mX79u06BeWHhYWlFd01MDDAxMSEmjVr8ssvv3Dq1Clev37Njh07KFasWJavUyD41nn9+jW9evUiMjKSP//8U6c4tlQGDx7M5cuXCQ4O5tdff9VZd/XqVVq3bs3//vc/fHx8GDZsmE7p/EeMGMGVK1e4c+cOdevWZd26deTKlYvmzZsTHBys8/jTpk0jJCQEY2Nj2rVrh5OTExERERlqZFnmwoULjBs3jr/++gtjY2M8PDzo3Lkz06ZNY9OmTVy7do3Y2Fhu3brFrl273nuqlC9fPmJjYzl58iRNmjQhJCREpzl37tyZChUq0LhxY27fvq3ztQIcP36cP/74I81w37t3L5aWlhlqkpKSuHLlCkuWLGHEiBGqEoJ5eXlRt25d4uLi2LdvH999951OG4TPnj2jadOmPHjwgCVLlrBx40ZFp6GyLHPw4EFy5cqlOHOsLMuEhIQQFxfH4sWLFRuhR44coXjx4jq3d3d35+LFi8ycOZMZM2ZQsWJFVS7bqS7TGZ02C2PwX8q0adPIli0b+/fv5/cDB2D8eO0DAwZABinVn0c9x0RjwovoF4w+PJrcs3PTZ3cfHkY+zNJ8TE21Hqv794O9fQKnTkGpUrBggfbQUiAQfDvo6eml1aSKj4/n+vXrTJ48GR8fH3Lnzk1UVFSG+h49epCQkMC1a9eYP38+7du3x8nJCWdnZ0aMGMGNGzfean/58mWqVKlC3rx5WbduHc2aNePvv/8mIiKCffv20adPH1xcXFTV2RIIBP/kxYsXuLq6kpz8f+yddVhV29aH3wWbDgWVNBBUQMRAMFEwQFGxC8XuwO7uxG7swk4ssBsVUVRUVCzEwATpWt8fXPg8R4G10XOMs9/n4bn3uOeYc6zN3pM11hzjN9K5ceMGrq6uctk3adKE1NRUSpcuLZedjY0N79+/JyAggLt37+Li4oK+vn6W8mVuFCtWjJ49e2Jra0tSUhK7d++mevXq1KxZU1Jbm/nz5+Pi4kJ0dDTz5s2jWbNm6OvrU7x4cRo0aMC4cePw9fXl+vXrfP78mR07dmBlZUXjxo35+PEjM2bM4PPnz1y7do01a9bQv39/XFxcKFKkiGTREj09Pc6ePYuVlZWk8ZChdpmamsrChQsl2wB0796d8ePHM336dExNTSXZKCsrEx4eztixY9mxYweGhobcuHFDrnUhI9XU0NCQuXPn8vLlS0nrGxkZ8fLlS6pUqUK3bt3kFjdauXIlDx8+/Gaabm40btyYI0eOMHv2bJ4+fSr595mamsq4ceO4c+cOu3fvlmtNQRBo2LAh48aN49q1a9SuXVsu+9u3b9OlSxesrKxyrN1VBIO/KIUKFWLo0KEADBo0iOg2bcDWFp4+hXnzsrUz1DbkavernO50GrcSbsSnxLP02lJcD7vSdndbrr+8/l1+1a2b0YLC0zMjJu3fH+rXhxffF2sqUKDgNyclJYW4uDjevn0r+Yk2/FUA5sWLF8ydO5eyZctibW3NyZMnWb16NU5OTrRp04Z3795lPCDbuZMqVap8V08wBQoUZM/69euxsLBg/vz5FC9eXG778uXLf/VQRyqqqqocPnyYT58+4eDgwObNmzE0NMzTXOnp6cTHx3Pp0iUsLS0lSfR/mYoXFxdHamoqT58+5ejRo8yYMYPevXvj7OyMrq4u7dq1A6BOnTqMHz+evn375rkfHGSklU6ZMkWummdRFLly5QpWVlZyKzWPGzeOqVOn8uTJE7nsZDIZ7u7u1K9fH2VlZblPJCGj3tHc3JwhQ4ZITtmMj4+nZ8+eBAYGUq9ePVbJ2Xpt69atLF68WHLg+yUhISFs2bKFoUOHSu4VmJycTO3atQkICODSpUsYGBjIve7Dhw8ZN24cJUqUYO3atXLZWltb06pVK548eZKjaFveP7G/OIIguAPuJiYmud6YSP0QSxn3o8ZARtPW8uXLc/PmTfoPGsT0oUMp2rkz6TNm8KRGDVKNjLKdyxhjFtgvoHeJ3qy7v45Dzw6xI3QHO0J3UMWgCt2su+Fo5PiXJ+lS/Xr37jHjxqVjb6/NpEmGHD8uw8YmjfHj39Co0WcE4d9/T/8Lc/3Ovv/ouRT8WigpKaGlpYWysjItW7bE3Nw8z3Nl1quEh4cjiiKPHj2iWbNmckmmK1Cg4PuoVq0aJ06cwNTUFDMzM5YtW0bVqlUl2+vq6uaaXpkdgiDw5MkTKleuzOnTp/PUBuDLdHVdXV2Sk5OzArjvIVMMBjKCxpSUFF6+fEl0dPR3Zya8fv0aNTU1WrRoIZedIAgkJSXh6elJkSJFJNsFBwczf/58ihYtKjm4yeT27dssWLCAbdu2UaVKFbnFVCDjgYG3tzfv37+nQIECkmxkMhmCIKCmpoa7u7tcaZfJyckEBwfnuVXKqFGjcHFxoV69eqxevVpSnbwgCDg4OLBp0ybc3Nzo2rUrXl5ecn1Wdu3aRd26dVm1apXcnzGZTEbjxo3Zs2dPjt/HPzYYFEXRD/ArU6ZMD0tLy1zHSxkjddyPXG/jxo3Y2dnh6+vLoEGDKNqiBUp79mDh4wNbt+Y6lyWWNK7cmDPBZzj07hCrrq8iMCqQwKhAyhqWZXi14bSxaYOKsopcfllaWmJpCa1bQ48ecPiwMsOHm3D1aobwqbxz/Ygx/4W5fmfff/RcCn4OiYmJnD59mi1btgCgr69Pu3bt8PDwoEqVKnm6cctER0eHlJQU8ufPz9q1a6lbty7lypXDzs4Ob29vhg4d+l03XFJl0xUo+K9TvXp1/P39CQ4OplKlSgwdOlSuxtfa2toYGBhgb2/Ppk2b5E4XHTBgAPXr1+fDhw8ULFhQks3r1685deoUJ0+eJDAwEA0NDRo3boynpyd169aVqwXBt9DS0iI1NRVjY2MaNmxIvXr1sLW15cCBA6xfv56SJUtSsmRJWrZsSZcuXdDX15dr/vfv31OwYEG5m7hDxgmQj48PEyZMkGwzZswYGjZsyPjx4+U+zZw9e3ZWD71y5crJ6y6QcdImk8m+KaaTHaqqqvj6+tK7d2+GDx+OoaEhLVu2zNUuPj6ezp074+TkhKamZp787du3L3FxcYwbN469e/fSrVu3XG1UVFSYN28eY8aMoXz58owdO5aOHTvKJV6jp6fHunXrePLkSZ4etJ44cQIHBwf69euXbd2vIk30F6ds2bIMHDiQ9PR0evfuTdrs2aCmBr6+cPGi5HmMtYzxdvUmYnAEs+rMwkjbiFtvbtFhXwcsFluw4PICYlPk77libAx+frB6NWhrw65dUKYMnD2rJfdcChQo+HURRZFVq1ZhZGTEzJkzsbCw4MCBA7x7944lS5ZQrVo1yYHgq1evgIynppqamujp6dGiRQsWL17M/fv3efXqVVYT4UKFCnHp0iU2b97M2LFjv+sa1NTUmDNnDt26dWP79u28UOS3K1CQI126dKFmzZqcOXNGLjs1NTVCQkKIiIjA1taWZ8+eyWU/ePBg5syZIykQvHLlCrVq1cLa2ppdu3ZRoUIF1q9fT1xcHNu3b6dRo0ZyBYJftlbQ1NREXV0dV1dXFi5cSHh4OE+ePGHp0qW4u7tjZmbGwIEDuXDhAosXLyY0NJRhw4ZRsGBBuYJngNKlS/PkyROsra1xcXHJmk/KQ6y0tDQSExPlUnx1cHAgJCQkTw/J1q9fT82aNRkzZozctpDREP3w4cMsW7aMwoULy2X7/v173r9/T0JCAlOmTJFkM2rUKE6dOsXq1avz4m4WGhoapKSkULNmTbnsOnXqhKamJo8fP5YrEIyKikJDQ4P379/j5uYmp7cZ3L9/n2bNmuX4IFURDP4GTJo0icKFCxMUFMQqf3/IzAkfOFBu9Zb86vkZ6TiSpwOfsrbxWqwKWhERE8GQgCHUPlibMSfH8DpWWqF2JoIA3btDSAg4OsLr19CrV2F69YI89PRUoEDBL0ivXr1YsWIFgYGBnDt3jilTptC4cWPJJ3XR0dEMGzaMUqVK0aBBAywsLJgyZQo3btzg/fv37N69m86dO39TrrtIkSKcPHmS3bt3S270+y2GDRtGVFQU69ato2fPnpQsWZJChQrRvHlzDh48mKcn8goU/MnMnz+fK1euEJyHJsOXLl0iOTmZcePGUbRoUblsW7ZsycmTJ3Md16NHD5o0aYKnpydv375l37599O/fn7Zt28qVRZCeno6Xlxfm5uZcunSJ0qVLM2bMGE6dOkVMTAz+/v507979q1qzkSNHUqZMGQwNDVm8eDE2NjYMGzaMO3fuyJVWCxkPx9LT00lISODEiROMGjWKypUrky9fPpo3b56jkqSRkREfPnzAxsaGixIPCsaMGcOzZ8/o0KGDXH5ChsDQxYsXGTVqlNy2AHXr1sXd3Z1evXrRvn17STYvX76kdu3aGBoaZtXRnTp1SpLt5MmTad++fdaDgrwik8lQVlamSZMmcgXRc+fO5f3795KD0du3b1O1alVKlSrFoUOHGDBgAMePH8+Tzw0aNGDs2LFZ2TzfQhEM/gbo6OiwaNEiAEaPHs3rLl3A1BSuXyff3r15mlNNpkbXCl0J7RvKwbYHcSzqSExKDDMvzKTYwmL0ONiDsHfSRSAAzM3hzBmYMwdUVNLx8YFy5eQ6wFSgQMEvSmpqKvXq1ZNL4S6TU6dOYWtrS3R0NLt27eLdu3c8evSIcePGUapUKUk3bQULFmTr1q1MnDiRR48e5elp9pfCEJ8/fyYxMZF3796xb98+PD090dfXp0uXLty/f1/uuRUo+BOpU6cOurq6DBo0SLJNSEgIdevWpUePHsydO5fJkyfLFZiJokhQUBAWFha5jnVwcCA1NZXHjx/LLfX/Jdu2bePSpUscOnSIuLg4QkNDmT59OpUrV86xt1vFihUpVqwYysrKFChQgIYNG+Lp6Ym5ufl31xAmJCQQFxfH58+f8fPzo3Llyl/1PXz+/DmjR49m9+7daGpq0q5dO8zMzHKd++jRo9SsWZOEhASaNWsmt28ymYyUlJQ8t/FRVlamfPnyJCcns3fvXkl6AXp6etSqVQsHBwfCwsLYtm0bvr6+kn7venp6LFq0iFOnTjF69Gh69+6dp78hqampqKqqYmdnJ9fv9/Dhw6Snp2NnZydpfKFChdDS0sLMzIxx48YxefJkuR+oZGJlZUVcXFyOdfeKYPA3oVmzZjRo0ICYmBiGjh+fEXEBBRcsgBwUgnJDSVDC3dKd813Os63uNppZNSMlLYU1N9ZgvcyaZjuacSlCeqqDsnLGweXu3c8pWxYeP4aaNWH0aEhKyrObChQo+MlMnTqVbdu2MWPGDLn/iK5evZpmzZqxevVqypUrl+e6QgcHBxo2bIitrS26uro4OTkxa9YsLly4IFfdybf4/PkzcXFxbNq0iX259HNVoOC/hIaGhmSF4PT0dFq2bEmjRo24d++epLqqL8kUQomKimLGjBm5ju/Zsye3bt3ixo0bNG/e/C8pnlJ48eIFnTt3ZujQoSxevJjSpUvLtT+1bt2aw4cP8+LFCzp06MDGjRupUaMG2tramJiY4OLiktWC4c6dO3nOPlBRUeHdu3dERET85d/PnDmDt7c3mzdv5vPnz6xfv16SUuaxY8e4e/cuhoaGWW085KFQoUL07NkTJycnST1iv0V6ejoymUxyI3UNDQ3Gjx/PxYsXcXNz4/Hjx8ybN0+uPoe2trZ4eXmxefNmudN4AS5fvoytra1cGSqiKBIYGEhiYiIjRoxgzZo1ufpsZGTE8ePH6dq1K71795bLx48fPxIYGMjGjRsZM2YMs2bNAiA2h1Q9RTD4myAIAkuXLkVdXR1fX19OFCoE1asje//+/3sQficVClZgb5u93O9/n552PVFVVmX//f1UX1cdx3WOHLh/gHRR2pM3S8skrl7NCAIBZs3KaF5/69YPcVWBAgX/MqampgQGBrJ7925GZ36xJTJq1Ch8fX05f/78d/sxadIkEhMTiY2N5dy5c4wfP56GDRuip6dHw4YNOXDgAEl5ePKko6ODmpoa/fv3z3PqkwIFfxIxMTGsWLGCV69eSVa4fPr0KU+ePCEsLIzg4OAc5ey/xebNm/H19aV27dqSU1NNTEw4cOAAOjo6WQqkUk8JGzVqxNGjRzl37hzVq1eXy9cv0dXVpW3btpQtW5bPnz+TlpbGq1evOHHiBDNnzsTT0xNbW1vq1Kkj17yqqqpoamoycOBAIiIiKF++/F9e79ixI4MHD2b69OmkpqZKnnfRokW8e/eOYcOGERgYSNmyZbl27Zpcvs2ePRtNTU3atGkjl11aWho7d+5k7dq12NnZcffuXbmEUaZOnUpoaCi+vr48efJEbqEeFRUV0tPTuXz5slx2z5494+TJkyxYsEAuwR1BENi9ezfe3t7cvn2b3r17SxLdEQSBXr168eTJExYvXixprfDwcAoWLEjVqlUZMmQIaWlptG3blvXr1xMTE5OtnSIY/I0oXrw448ePB6Bf//4kzZ2LKAgZ3eDl6OuVG6UKlGKV+yqeDXrG2Bpjya+en4sRF2m6oymll5Vmd/huklJzv9lSU4MZM+DcuYwU0lu3wMEh41AzLe2HuatAgYJ/CRMTE44fP86+ffvYtGmTZLty5cqxdetWWrRowYEDB36oT6mpqcTExJCUlMSRI0fo0KED+vr6ufqnqamJhoYGBgYGtGvXjpUrV/LkyRMWLVqkaF6v4D/P1q1bMTEx4fDhw8ycORMfHx9Jdubm5jx+/JjChQvj6emJlZWVpGbvmXTr1o1Lly7x9u1bnJyccHZ2lpSJoKKigq+vL+PHj6dr1640btxY0roBAQG0b9+eqlWrcvDgQcl+yoO6ujqGhoYsX76co0ePSrJRVlZGXV2dtm3b8ujRI2bOnJltW4xZs2bx9u1bPD09iYuLk+yXhoYGbm5uFC1aFGVl5W/Wa+eEIAjY2NjIlVYfHR2Nra0t8+fPZ/r06QQGBsotIHPz5k369u1L27Zt85RlsnPnTqpVq5atsmZ2NGzYkOHDh8tdC5pJpoqpqqoqS5culWSjpqbGuXPnmDNnDj169Mj1u2BhYcHz589Zvnw5tra2LF68mMjISDp37oyOjk62dopg8Ddj2LBhWFtb8+DBA+acOEF0ixaQmgpDhvzwtQy1DZlWexoRgyNYWG8hRfMVJex9GOOujcNskRkzz8/kY8LHXOepXj1DXKZXL0hOhpEjwckpI4VUgQIFvxcFChRg7dq1TJ06Va4aHVdXV44cOUL37t25cuXKP+bf58+fUVZWpmzZskBGis6hQ4fo1q0btra2yGQyqlWrxsKFCwkNDeXNmzds3bqVdu3aYWxs/I/5pUDB70SVKlWoXbs2t2/fRk1NTa4HJEWLFmXs2LGMHj0aTU1NuU5uBEGgatWqrFy5Ejs7O4KCgggNDZVs27JlS+7du0dYWBiWlpasWLEixxtoAwMD5syZg66u7j/2ECg1NZXo6GgMDQ3R1tb+y2tv3rxh3bp1dOrUiQMHDqCiokLFihWZMmUKISEhbNy4Mdd9SUlJCUdHR/z8/ChZsiQhISGS/Fq0aBHm5uaEhYWxZs2aPDVEf/78OZUqVZI8XktLCxUVFTw9PenUqVOe3vMhQ4YwYcIEVq5cKbctZLThuHz5MqdPn5bLTkNDQ+4WKZmEh4fj7e2NgYEBu3fvxt3dXbKtpaUl06ZNw9fXlzn/KxHLCVNTU0RR5OHDh1SoUEHSWopg8DdDVVWV5cuXAzB9+nSut2oFurpw5EjGzz+Atqo2A6sM5JHXI7Y024JVfitex75mzKkxFF1YlKH+Q4mIjsh5Dm1YuTLDRSOjDFGZsmVh5858KFp/KVDwe1G9enWSk5MJDw+Xy87e3p4FCxYwbNiwH+qPmpoaurq6aGho4OzszLlz5yhfvjxv3ryhZcuWjBgxAjs7O44ePUpiYiIXL16kR48eFC9e/If6oUDBn4KFhQUHDx5k69atjB07Fjc3txzVLL/F1atX6dmzJxoaGnnyQUlJCSUlJeLj4+WyU1dXp0iRIsTFxTF8+HCaNm2aY71UWloaVapUwdPTE1dXV/r27cuHDx/y5PPfUVJSQl1dHRUVlax6v8zAwNHREUtLS/z9/alWrRoXL14kMTGRoKAgxowZQ6lSpSSvI5PJSEpK4uPHj5Ja5oiiyO3bt/n48SP58+cnOTmZlJQUua4tM+AYIsdhhEwmY8OGDWzevBkDAwO6du36VR1kbtSoUYNWrVpJCoy+5MaNG4wePZqjR4+irKzM69fyKee3adOGw4cPy2WTyaBBg3B3dycyMjKrbZI8aGpqEh8fz6RJk7JaM2WHKIo8e/YMExMTbt68Sdu2bSlWrBgdO3bM1kYRDP6GODs706FDB5KSkpi4eDFiZpPRwYMzjt7+IVSUVWhftj376u3D39OfuuZ1iU2OZX7gfMwXm9NxX0duvcm5KNDNDe7cgVatIC4OJkwwwt09ox2FAgUKfg8EQaBEiRI8ffpUbtu2bdvy4MEDufuOAcTFxWX1O5PJZKiqqlKlShUmTpzI8ePHiYmJ4fTp01l1NaNGjSIlJYXg4GD69etH6dKlUVZWlntdBQr+qzg6OlKwYEFOnTqFhYUFGzZskJS2ef36dYKCgnj+/Hme137//j3q6upUrFgxz3PExcVx+PDhHNPG1dTU2LZtG8HBwcTGxrJixQr69++fp/UyA1dNTU10dHTo1KkThw8f5t27dwwcOBBRFKlTpw7Dhw/n9evXLFy4kAULFtCrVy/Kli2bZ3GtDx8+IIoiTZo0wcHBIdfxgiCwZs0awsLCePHiBd27d8ff31/uNd+9e8fRo0flEvCqUKECV65coUWLFqxfvx5ra+tcA5xM3r17x8KFC/Hz86NEiRKS14yKisLZ2ZlZs2ZhYGCQVWsulejoaC5evCiXWE0m6enpXL9+ncOHDzNlyhS5H6r8ndxqOwVBYPbs2Vy7do2YmBhGjRrF8+fP2bx5c7Y2imDwN8Xb25v8+fNz8eJFdhkbg6UlPHgAS5b842sLgoCrhSvHOxznes/rtC3TlnQxnc23NlNuZTnctroR+CYw2z8YBQrAjh2wdSvo6qZx+HBGo/rdu/9x1xUoUPCDUFdXz5NQi0wmw9bWVq46k/DwcBo1aoShoSELFy6kfv36HD58mJiYGC5fvszo0aOpVKnSV0X9PXv25NKlS/Tr14/Fixdz6tQpuVXzFCj4r6OkpERKSgoxMTF07dqVnj175jh+27ZtVKpUic6dO0sWvvg7Dx48IDw8nLVr1+bpAU7mKZeGhgYjRozIVZFx8eLFlCpVCn19fVavXs3WrVvlXrNz586cP38ed3d39u/fz4cPH1i3bh01atTICvIEQeDx48eEhIQwYMAADhw4gK2tLdbW1t+VPl+gQAFEUWTnzp0UKVJEkjhKVFQUZcuW5d27d/Tr148SJUrIlfpfoEAB2rVrx5w5cyhTpozcrT2MjIyADAXZhQsX5jp+06ZNlChRguDgYObNmydX8GpgYMD79++5cuUKFhYWjBw5EgMDA8qUKSNJeMfZ2ZmQkBAmT54sec1MlJSUePr0KZUrV2bq1KkYGBjI/b14/vw5GhoaDBkyRK4UU5lMllUTmqOPcnmj4JfBwMAgSy520LBhxEyfnvHClCnw5s2/5oedsR3bWmzjkdcjvCp5oamiybFHx+h8ujMOqx3YGbqT1PSvv2iCAO3awcGDT3FxgffvM04LPT0hDw9eFChQ8C+joqIil3rdl+TLly/HtK0v2bx5M5UrV8bZ2Zk3b95w6dIljh49iqurK2pqajnaVq1alYCAAOzt7bl79y6jRo3CxsYGDQ0N7OzsGDNmDGfPnpUs93779m3CwsLy1J9KgYLfldTUVNTU1LIETYYPH57jeBcXF1q0aMHSpUu5c+dOntY0NzenWLFitGzZknnz5km2i46OpmfPnly9epVatWpx8uRJZsyYkeuJW4sWLejXrx+XLl3iyJEjOSov/p309HTOnDnD3r17iYqK4uDBg7i4uGSrOKmkpETZsmUZMGAA+/bt4+3bt0yaNIn69euzevVqgoKCJJ+0ZZ7q7dy5Ey0tLRo2bMimTZsk9bMrVKgQu3btokqVKixfvpzy5cujoaFBmTJl8PLyyvEULDU1NatlRtmyZVm9enWeTzVVVFRo1apVruMuXrzI0KFD2bRpE56ennLXGyYkJLBx40YuXryIrq4uHTp0YOXKlZKUQZctW0aVKlWyFGH/3u8xJ3x8fHBycmLr1q0UL16cGTNm0LZtW8n2fn5+TJs2jblz5zJ9+vQ81VmmpaXl+PdSujbqb4YgCO6Au4mJSa79caQ0u5Q67keNkTKuZs2aWFlZcf/+fbwOHmSZkxPaZ8/yqX9/3kyb9q/71c+8H+1M27Ht4TY23t/I9VfXabO7DYW1CtPFqgvNizdHQ/bX2oH4+McsXpyKr29+5s4txNatSpw8mcKMGa+pVi3+h/gl75hfda7f2fcfPZeCn09m0+F/2vbGjRu0bNkyz3WGdnZ2WTdGMTEx5MuXj8TERG7cuMGtW7dYtmwZycnJODg40Lx5c5o2bfrNps2NGzemTp06HDp0CCUlJSpXrkz9+vWpWbMmFStWzPONkAIFvzLr1q0jIiKCbt26MWHChKzTnJwoWLAgO3fuZOvWrTg5OXHhwgVsbW0lrxkVFcW6det4/fo1mpqakvvQpaen0759e/T19Xn27JkkXzMxNTVl8eLFjB8/nmrVqmFvb8+5c+dyFG+5c+cOGzZsYMeOHeTPn59FixZlKUbKg5KSEm3atGHlypUMGjQIZWVlEhISMDIyonz58lSvXp3y5ctTs2bNr+ZPT08nMTGRlJQUdHV1KVasGEWKFJH0wEoQBGrVqkXFihW5fPkySUlJaGpq8vjxY2xsbLKdIy0tjd69e/Ps2TNu3rwpV7rml7x48QINDQ18fHywt7fPdXzbtm3p1KkT169fZ/bs2VhaWsq1niiKnDp1ChcXF7Zv3y5XUFWtWjWqVavG3LlzGTt2LH379mXHjh2SbOPj44mIiMDIyIi2bdsyYMAAuT4nmSeunz9/lmyT0zzfRBTFP/rHxsZGzI379+/nOkbquB81Ruq4ffv2iUpKSqKSkpJ4fe9eUVRREUVBEMWgoJ/q1807N8UV11aIFossRCYhMgmxwOwC4sTTE8Wo2KhvzhUWJoqVK4siZPx4eYliXNy///v5Vef6nX3/0XMBQeIvsL98z0/FihWzrqdmzZrimTNnJF3733F1dRWPHTuWJ9smTZqI+/bty5NtmzZtRF9f3zzZtm/fXty8ebOksa9evRKNjIzE5cuX52mtL4mOjhaBbH9kMpno7Oz8Tdvk5OSvxqupqYna2tpiwYIFxWHDhomhoaHftJ06dao4duzYPPk8d+5ccejQoXmyXbp0qdi3b9882a5du1bs0qVLnmy3bt0qenh45Ml27969YtOmTfNke+TIEbF+/fp5sj19+rTo5OSUJ9vAwECxUqVKoij+WXtTTEyMWKhQIdHa2lp8/Pix3O9LVFSUqKWlJQ4bNkwuu1atWonNmzcXDx06JKanp0u2e/XqlWhsbCza2NiILVq0EC9fviyXfSZubm6iTCYT9fT0xJMnT2Y7zsnJSdTQ0BAPHz4s9xrfon379t/cl1RUVERtbW3R1tZWjI2N/aZt165ds8br6OiIMplMLFKkiNikSRNxzpw54vHjx8W3b99+ZRcZGSna2tqKqqqqYuvWrcUjR46ISUlJ31zj8+fP4uLFi0ULCwuxVq1a4ufPn/N0nbGxseKIESPE/Pnzi35+fpJsnj59Kq5YsUJ0dXUVBUEQBw8eLHm9pKQk8fjx4+LAgQPFokWLikWLFpXb97i4OPHgwYOio6OjKAiCWKpUKbnsU1NTxT59+oiAuHfvXrls37x5I9rZ2Yna2tpiXFycXLaiKIoHDhwQlZSUMj8f39yfFI8yf3Osra0ZMGAA6enp9J45kzQvr4xYasCAjP/9SajL1Olt35uw/mHsbrWbSqaVeJ/wnslnJ1NsYTH6He5H+Ie/KhGWKgUXLsC0aSCTZZQ/VqgAt26p/6SrUKBAQXZ8jwy7mpoakyZNYtSoURw7dizHxtRGRkZcuHCBRYsWMT0zHf4fQENDAxUVFab9LasiJ5KSkoiNjeXdu3csWrSIcuXKMWLEiH/MRwUK/k10dHR49OgRz549o2TJkjx58kSSXXx8PMuWLcPOzg5PT09mz54tec179+5x+fJlhg0bRsOGDeXaZ4yMjIiIiGDVqlVcvXoVR0dHTE1NWblypVz1zYIgkJqaysePH2nUqBFt2rT5Zo2zv78/o0ePpmPHjnTt2pWTJ0/+MBXSL0lJSSE5OZk7d+4wY8aMb475MjPh8+fPpKamEhERwYEDBxg3bhxNmjShUKFCVKtWLWvc06dPMTc3x8rKiufPn7Njxw7c3NxQVVX9av7k5GRKlCjBwIEDad++PUePHv2qTYYUkpOTqVixIpGRkQQHB9OoUaNcbQYMGICZmRl9+vRBQ0ODwMBAhg8fjijhHvfVq1cUKlQIFxcXTp8+zapVq7hx44ZcvoeFhVGgQAFatWpFyZIluXjxYq4Zh39HWVmZ58+fY2pq+pffQW6kpKRga2vLgwcP2LBhQ56VeXOr51QEg38AU6ZMwdTUlGvXruFjagqGhnDpEmzb9rNdQ1lJmRalWxDYLZCznc/SsGRDElITWB60nFJLSzHo4iCuRf6/MpJMBmPHwpUrULp0hiaOh0dRJk6EPGakKVCg4Bdj+PDhhIeHM3fuXNq0aUOhQoUwNzenV69eXLhw4as/XBYWFpw5c4Y1a9aw7QftayoqKlntKGrXrs3s2bO5efMm1atXz9N8aWlp5M+fP1dxDQUKfhcSExOzarnWr1//zfTpv7Nr1y6KFy/O8ePH2bVrFytXrpScQr13714cHR0ZP348VapUyZPPysrKVK9enRIlSpCWlsarV68YNGgQxsbGHDt2TO75EhIS2LNnDxUqVKB+/fqcPn06KwhRU1Nj/Pjx3Lp1izJlyjBixAiKFCnC+PHj5V5HFMWsOkV1dXV0dXWRyWQULlyYJk2aMH36dE6cOMGYMWPknltJSYn09HQ8PT1Zs2ZN1r8XLVqUZs2aIQgChQoVynEOVVVVTp48meWHgYEBzZo1442cGhUHDhzIavlRtGhRSTZTpkzh6NGjTJ06FYDmzZtjYWGBqakpO3fuzNHW2NiYc+fOMX/+fMzMzPDw8KB06dJ06tRJss+lSpViz549uLm5sX379qz2bvLi5ubG27dvMTc3Z+3atZJsVFRUOHnyJK6urrRu3Ro9Pb0svZAfiSIY/APQ0dHJUmIaPWUKb0aOzHhhxIiM/g2/AIIgULNYTQ61O8SdPnfoXL4zyoIyxyKOUWlNJWptrMXRh0ezNlk7O7h+HYYOhfT0DF2cKlVAIQSoQMHvT+bTzfT0dGJiYkhJSeHJkyesWbMGNzc3jIyMGDFiBJGRkVk2RkZGbNmyhXHjxpGWlibXerdu3WLKlCm4ubkBULx4cUaOHIm/vz8xMTGcPHkSLy8vufp6CYKArq4uqqqqlCpVigEDBhAUFJTn+hkFCn41VFRUqFKlCunp6YwaNYpZs2bl2vPPwMAALS0tBEFAXV1d0ulNJkZGRqirq/Pw4UO5ewv+nU+fPqGqqoq2tjbq6uq4urpiamqap7nS0tJITEzE39+fxo0bY2pqyuzZs0lMTATAxMQkK8gQBEFykPPkyROWLFlC69atMTEx4eTJk9ja2jJr1iwCAgKIjo4mIiKC/fv3M2zYMGrXro2WlpakuWUyGZqampiZmTFhwgQiIiLYvHnzX5qmKykpsX79eoKCgiTVZNvY2DB69OisPq1hYWG5inj9HTs7O5o0aUKLFi3Q09PDzs6OLVu25ChGlj9/furXr8+4cePYv38/ERERVKlShQ8fPpAvX75c1yxXrhyDBw/mwIED3Lp1i+TkZLlOnAVBQF9fn4SEBNTV1fO8x2tra2eJlX38+FGyXZkyZWjTpg3p6ekkJCRI/gyEh4ezZMkSFi1ahCAIOT6UUQSDfwgtWrSgfv36REdHM+z6dahYESIjYebMn+3aV9gY2LC+yXqeDHxCN6tu6KjqcObpGRr4NqDcynJsCtlEcloy6urg7Q0bN0ZQrBgEB2cEiQsXZgSIChQo+LNIT08nNjaWt2/f4u3tzf79+//yerVq1VBRUeHWrZz7mWaSkJDA0KFDqVevHp8/f2bs2LG8efOGx48fM3XqVKpUqSJJSe7vqKmpUalSJbZu3UpUVBRhYWEsWLCAYsWKyT2XAgW/KsrKynTu3BltbW1evXqFt7c3Dx8+zNHGycmJu3fvUqlSJZo3b06+fPmoW7cuW7ZsyVWBsVq1aoSEhBAZGUnx4sXx8PDIc0+2169fk5KSwtixY/n48SPbt2+XS8QmO2JjY3nz5g2TJk3i0aNHWf9+5coVdu/ejaOjY67S/8+ePaN79+44ODgQEhJCo0aNuHz5Mm/evOHWrVsMHDiQypUr50mMBjJ6HPbs2ZPAwECePHnC6NGjKViw4DfHqqmpkT9/fvz8/CTPL4oit27dIjo6Gi8vr1w/E19iYWHB0qVLefToER07duTGjRv06NGDRo0aSUrlTUlJoWfPnrx7947Q0FDq1asneW2Avn370qNHD9avXy+X3bp16zhz5gyzZ89mQmZvbzkQRZGQkBBUVVUpW7YsAwcOlHsOHR0dVq5ciZeXl6Txfn5+TJ8+nVOnTpE/f/4cVYAVweAfgiAILF26FHV1dbZs3cqpzCNwb2+QmOf/b2Oqa8rw8sOJGBzB7LqzMdY25nbUbTrt74TFYgvmXZpHTFIMlSolcOsWdO0KSUkweDDUrQvf0ctWgQIFvyhaWlqoq6szZMgQ+vbt+5fXBEHA2tqa8PDwbKz/ipeXF8HBwdy+fZu5c+fSoEEDDAwMvtvHpKQk7t69S/78+SU9mVag4HcjLS0NLy8vKleuTOXKlTlx4gRv376lXLlyudqqq6szevRowsPDKVy4MCdPnqRDhw4YGBgQERGRo23BggXx9fXl/PnznDp1iuLFi8udCQBgaWmJKIpMmjSJ7du3y23/LdTV1dHQ0KBmzZo8fPiQMmXKZL3WtGlTwsPDefDgARYWFtmeiMbHx2NtbU1cXBwPHz5kzZo1dOzYETMzszzV4H2LxMRE0tPTef/+fa7tf65cuUJwcDAbNmyQPL8gCAQEBHDs2DFCQ0OxsbEhJCREbj/19fWz/D1z5gyLFi3KcXxmHejLly+5ePEiFhYWcq3n7++f1StQ3pr3VatWsW/fPkaNGiV3qcKzZ89o1KgR+/fvZ9OmTVy6dEmyQi7A/fv32bBhA0lJSTRs2FCy3aBBg3j16hUrV67k48ePOdbuKoLBPwgLCwvGjh0LQN9ly0hq2zYjesqjJPu/RT71fIyoPoInA5+wrvE6ShcqzYuYFww7PoyiC4oyL2QeccIr1q6FAwfAwABOnwZbW9i48afq5ChQoOA7ybzB0tfXz+pNdv/+fby9vb/5B1tTUzMrPSs3mjdvzqtXr/6Rtg+fP3/G1dX1q9NLBQr+BPr378/mzZs5cuQI+/bto3bt2nJ/jwRBID4+HjU1NVq0aMHVq1cpUqSIJFtLS0uKFClCSkpKnprOZ+4RysrK1K1bV277TLS0tFBVVaVy5cpMnz6d4OBgTp06ReHChb8aa2JigomJCebm5tkGG5qamqxbt45Tp05x9OhRuRu1SyE9PR0fHx8aN25M/vz5mThxYrZjbW1tMTc3p3bt2gQFBcm1jq2tLXXr1kVNTS3P/SQzUVJSokaNGtm+PnnyZKpUqULDhg3x8/OTO3COi4vD09OTWrVqcf36dbnbIgmCQKVKlVBSUqJSpUqS7U6fPo2NjQ1lypTh/v37tGnTRnIgmpaWRoMGDahYsSIGBgYEBwfL/TBTEASMjY1RUVHJ8XukCAb/MIYPH46lpWVG2pKZGWhqwt69aAYG/mzXckVNpkaXCl243ec2fh5+1Chag+ikaFbfW43ZIjO6H+xOqWr3uXMHmjWDmBjo3BlatIC3b3+29woUKMgrHTp04N27d+zevZvOnTvnmG6poqIi+Q+5m5sb7u7uVK1aVbISojwoKSn9sKf5ChT8Snh6etKqVSuaNGlC/vz5ad68uVzpgJmoqKigpKREqVKlqFixomQ7URR5+/atJLXJTD58+MC4ceOwtbXlxo0bODs7c+zYsVzFUXIiLS2N+/fvExgYyJAhQ7CyssrxZl4URdTVc1ZAb9u2Lfv372fhwoVUqlSJAwcOfHeN5N9JT08nLS0NTU1Nqlat+pfXEhMT8fb2pm7duhgZGZGamkqnTp3kPmmDjOtNTU0lNjZWsk10dDSTJk1i7dq1yGQyHB0dWbNmTY6iQfXr16dz584sWbIEBwcHBg8eTEJCguQ1NTQ0mDdvHioqKrRo0QJ1dXUsLCzw8vLi9u3budp/+vSJOnXq0L17d7lqBi0tLWnRogVr1qxh5MiRvHz5UrKtsrIyTZs2xdjYmMDAwDydvmaSkpKSoxKpIhj8w1BTU2PJkiUATF28mOf/S7MymD4dckkX+FVQEpRoVKoR57qc43K3y7gUdiElLYW1N9Zivcya7iebMGTBRTZuBF1d2LcPypSBU6ekFdUqUKDg1yExMZHNmzczfPjwXFOaIOPmUso4yHgqOnfuXPr164eLiwtRUVHf6y5AlihFu3btqFOnzg+ZU4GCX4nq1auzevVqQkNDEQQBPz8/bty4kae5BEHgzJkzkk/B7ty5g6urKykpKcybN0/yOi9evGDHjh1ERkbSrVs3/Pz8cjxtkoKSkhJWVlaULVuW2bNn5xoQ6+npERoayvDhw3O83qpVq3LlyhWGDx/O/PnzMTQ0xMrKin79+nHv3j3J/iUkJHD58mVCQ0OBjP1RJpNRqlQphg8fzrNnz6hfv/5fbD58+MDs2bMpVKgQkZGRhIeH4+Pjg56enuR1o6OjWbZsGRs2bPhmwJkTL1++5MCBA7x584batWszY8YM2rZtm2OQXblyZVauXMns2bN5/PgxBw8e5K0cpwBKSkp07NiRNWvW0KlTJ9LT03ny5Albt26V9Ll+//49L1++RE1NTS5RJBMTEzZu3Mj169cJCwvDwsKCJk2aECjxgKZnz56EhYXh7u5Ot27dck2zzomcAnZFMPgH4uLiQqtWrYiPj2fIo0dQvDhqDx/CqlU/2zW5qVK4CksclxDWP4xeFXuhpqzGwbCD1NjgyMqUangf2o9zrXSioqBv38J065ZxYqhAgYLfh4SEBJYuXcru3btzHSuTyeRO8RkwYAAtW7b8qgZRComJiezZs4fWrVujrKxMrVq1WLduHe/fv8fHx0dSyo+hoSHe3t5UqVKFSZMmcfr06R9+EqBAwT/BhAkTSEhIYOfOnbRu3Vou25iYGJ48eYKHhwcXL16UlGYqiiJubm48f/6cw4cPSxZlyqwrHDhwIDo6OixfvpyRmcrq30F8fDzJycncvn2bMWPGULp06RyFcFRUVEhISMDb25sLFy7kOLcgCLRp04azZ88SGRmJoaEhy5cvp3Tp0pLSLl+9eoW1tTVeXl4YGhoybdo0rl69Snx8PGFhYUyaNOmbp0EmJiacP3+eoKAgzM3NKV++PK6urkyaNImAgAAiIyNzDXj69OnDkCFDmDJlCu/evaNs2bK5+puJtbU1N27coFevXgQEBFCzZk0CAgJytfPx8aFbt244Oztz5swZyaqtX5IphKSpqcmOHTt49+4dHTt2zNXOwsKCuXPnMnnyZK5fvy73ukWLFqVKlSokJiZy8OBBHB0dJQd2ysrKqKurk5aWxqlTp+RaN/NhAZBjnaIiGPxDmT9/PlpaWuzZvx9/T8+Mfxw/HnJR8/pVKVmgJCsbreTZoGeMqzEOPXU9Lr+4TM9TzXjZzJo2s1ejqhnPunVQrhycPfuzPVagQIFUlJSUUFNTk1Qcn9dm9+PGjeP06dOS03REUWTatGmYmJiwfPly3NzcuHTpEqdOnaJVq1ZyKf316NGDlJQUrly5wvTp02natCn58+endOnSzJ49mxcvXuTpmhQo+KeZN28ehQoVwsPDg6FDh8plq6uri7m5Odu2bWP+/PmSbARB4Nq1a9SqVQtHR0dJdWxTpkyhQIECODo6cuPGDSZPnszu3btZunSpXP7mhKamJtbW1ly7do0CBQp8c8z9+/e5fPkydnZ2XLp0iZo1a0qeX1dXFy0tLTQ1NZkwYcJfxGm+JC4ujpMnTzJp0iScnZ3p0aMHQUFB7Nu3j7Fjx1K+fHlJ4iRWVlY8ePCA0NBQSpYsyfHjx5k8eTKNGjXC3NwcDQ0NSpcuzfDhwzl79uxXD+B8fHzo3r07kydP5unTp5KvM5OEhASCgoIoUKAA+/bt++r08lv069eP06dPExMTQ+nSpbOCHHkwNjZmzJgxJCYm0rZtW1ZJPCTZtGkTXbt2ZfXq1djb28u15r59+zAyMmLhwoXUqlWL7du38/79e0n1s3fu3KFZs2asW7cOHx8fSYFrJitXrsTY2JgTJ04wYMCAHINPRTD4h1K4cOEs+Vuv7dv5UKkSfPwIORQS/w4YahsytfZUng9+zqL6iyiWrxgPPjxgR0JPNMcUw6TNDJ6+/kitWhm6ORJ1JhQoUPAv8urVKyAj3TJfvnz07NmTS5cuoaOj84+tqa2tjYODA8HBwZLGDxo0iH379hESEsLJkyfp2bOnXMIBfycziE1NTc3qrXjv3j0mTZpEiRIlsLe3x8fHR+4mzgoU/JOoqKiQL18+ZDKZpKbzf0dLS4v4+HjGjx8v+bNtZGTE0qVL0dHRkaRy2aZNG3r37k3BggU5f/48jx8/xt3dPc8Pjv6OhoYGEyZM4NatW5QvX/6bY27duoWzszPjx48nKChIrrRJgLFjx3L+/HnmzZvH5MmT//Lahw8fGD58OJUrV8bAwIAJEyaQmJjIokWL8tSEPhNBEDA0NPyLGE5KSgrJyckkJSVx7949FixYQOPGjdHV1aVOnTqsW7eOpKQktLW1WbZsGaVLl5YrQAGIioqiRo0aFCpUiKdPn9K0aVPJ/r569Yo7d+7QuHFjbGxs5Fo3k/v376OqqkqTJk2yes/mRt26denYsSNDhw7NUZXzW1SvXp1OnTqRkpLCx48fqVy5cq4q1J8+fcLDw4O6devi6OjIo0eP6Ny5s1yf6W3btjFnzhyuXbvGokWLMDQ0zHas/A2WfhMEQXAH3E1MTAgLC8tx7OPHjyXNKWXcjxrzI+Zyc3Nj1apVPHz4kFGNG7NKWRlWrOCpqyvJlpY/za8fNVe9/PWoU68OxyKOsfbeWu59uscn67HIrKaTdqUH89YM4cABQ+bMeUXp0kn/ml//1Fy/s+8/ei4Fvx+fPn1i586d+Pr6cvPmTRwdHZk8eTJOTk55UgvMCyYmJpJvSG/fvo2Hh4dk9cO8kql6eP36dYYMGYKXlxclS5akXbt2tGrV6h9dW4GC3Pj06RNv377F1taWXr165XkeJSUljhw5QpcuXbIdk5SUxJEjR9i/fz+HDx9GEASqVauW69yWlpbMmjWLmTNncv36dQYMGEDhwoXp2bOnXD5m9s979OhRlvBNzZo1mTlzZq7iN69fv0ZFRQVPT888BaGnT59m9OjR9O7d+6vX4uPjOXv2LPfv32fFihV4enr+IwrJ3yItLY2Y/9XenDp1iitXrjB06FBGjx5NzZo1uXPnjtwPyYYPH07VqlVZtGiR3NcxdepUNm/ejIuLS56D/cePHzNs2DCmTp0q2UZLSwtTU1NSU1PlrtszMDBgxowZ3Llzh/PnzxMdHZ2rTUJCAqdOnWLWrFk5fmdyonnz5kybNo3Zs2fj5OTE9OnTsx37xwaDoij6AX5lypTpYfmNwOfvSBkjddyvtJ6Pjw9169Zlc0AAY9u3p9imTRRfuBBOnoRvfJH+7ffhR8xlY23DEJchbDi3gW3Pt3H88XGosggqLeXRbQ9a9R/O5L5lySwf+B2v8Wet9yvPpeD34f79+7i6ulKpUiUGDRpErVq10NHR+dduaDKRyWSSxWd8fHyoVq0aenp6dOvW7R/2LIO4uDgAQkNDmTBhAhs3bqRHjx7/ytoKFPydsLAwGjduTMuWLVm+fDkyWd5vGePi4nJ9MB8QEECLFi0wMTFh7969VKhQQa5sAUEQEASBpKQkgoKCJAWDCQkJnD59mkOHDnHo0CFUVFSoVq0aixcvplatWqiqqkpa29XVlaZNm1KhQgV8fX1zVMb8FgsWLMDDw+ObJ32FCxfmypUrHDt2jHHjxrFjxw42b96c1afv3yQuLg4VFRVGjRqFg4MDCQkJNGjQgOTkZEnvlSiK+Pv7M2HChDzt/wYGBqxdu5by5cvnuWds3bp18fb2xsjIiL59+0oKKnfu3Mn06dNxdXWlX79+ktcKDw9n7dq1bNiwgTJlyvDo0SOMjIxytTM2NiYgIAA3Nzd27txJhw4daNu2rVzv2cCBA/Hy8mLChAlMnz49R/VVRZroH06dOnVo06YNiYmJDH7/HvT1M5r07dv3s137oQiCQDWjagR0CCC4ZzDtbNuhrAyU20Jaz3KMu1+fsk1O8uTJH/v8Q4GCX5K0tDScnJwYNWoUu3fvpmnTpuTLl+9fDwRBPiXSEiVKcP78eWbPni3XE+TvRSaToaOjQ9GiRTlx4sS/tq4CBV8SGxtLlSpVGDRoED4+Pt8VCAKoqqpibGyc4xh3d3fCw8MpU6YMzs7OHDhwQK419u/fT7169ejXrx8rV67MdfzRo0cxNDRk9uzZFC9enICAAB49esTmzZupV6+e5EAwk8WLF1OwYEFq167NgAED5BKJSktL49OnT+zYseObAlmCIODm5kZgYCDW1taULVuWyZMn/6vZNBoaGlhYWDB9+nRevHjB5cuXcXV1xcvLCwsLiywRn5wQBIGzZ88yZ84cPD095fb/yJEjFClShDJlyrBu3bo89Wk0NjYmMTERLy+vLPX93OjRowf37t0jJSUFW1tbRo0alavNkiVLKFGiBCtXrmTq1Kls2LAhx1TNv1OuXDkeP35Mq1at6NmzJ/Xq1ZNsm4mSkhKHDx+mYcOGrF+/Pvtxcs+s4Ldj3rx5aGpqsu/wYY62bZvxj0OHghw9Wn4nKhhXYGvzrTwa8IiBlQeirqQJJfy5V6kuDQ60puv87aSk/R5tNhQo+N1RVlamcePGXLly5R9psCwP8iqRWlpacuHCBTZu3MjGjRt/uD+CIKCrq4u6ujq6uro4OTkxfvx4du3axZ07d/7xFFUFCrJDS0uLihUrEh4ezrt37757PiUlpVxFQsLDw+ncuTN3795l1qxZNG7cWK41LC0tkclkkmvJLC0tUVVVZfTo0QwcODDXHoK5IQgCRYoUISEhgbVr12JhYSG5N2OVKlWwsbGhQ4cOGBoaZlsrqaKigre3NwcOHODdu3dUqVIFR0fHPImpyIOmpibz58/n0aNHDB8+HBMTE5KSknj58iX58uVjyZIlktP9LS0tuX79Os+ePaNUqVK0a9dO8t8GTU1NvL29adWqFV5eXtja2srdMujmzZuoq6vTrVs32rdvL9nOysqK1q1bk5aWxpIlS3J9zzt27Jh1qrds2TLMzc0pVKgQ3t7ektdUVVXl+PHjGBgYMGXKFMl2X1KrVi2uXr2aVZLwLRTB4H8AU1PTrGNtL39/Em1s4OlTkKN/z++IWX4zFtZfSOSwCMZWnYZ6qgGiUTDrP3ugO64kUwOWEJcc97PdVKDgj2fevHk8efKE5s2by9Wc+EejrKwsd0BqYGDArl27GDNmDMnJyXLZpqenExQUxKpVq0hPT0dZWRmZTEa+fPmoUqUKQ4cOZcOGDTx8+JBPnz5x5swZJkyYQL169eRSK1Wg4EcjCAI+Pj68fPkSY2NjKlWqxP79+/M8n5mZWa4lAJltGUxNTalZs6bcglLW1taMHz8eT09PDAwMGD16dI77jbm5OfPmzWPq1KkYGRnRoUMHDhw4IFcfub+TnJyMsrIyoihiaWmJmppajmP37NnDyJEjqVOnDoGBgSgrK1OmTJlsFUszqVixIkuWLOHRo0eEhYXx4cMHufxMSkri/PnzbN68mWvXrgEZv3NVVdWsVgaFCxemWrVqdO7cmeXLl/+lnjEiIgJHR0dMTU158uSJZBEYyBCQWbNmDWFhYaipqWFqaiqX73fu3OHatWskJydTvHhxuU+tlZSUUFJSonbt2rm+z9khimKu2S358uWjVatWLFq0iODgYLp27crHjx9JSkqSvE5UVBQBAQHcvXtXblGiTHR0dBBFMcdgXREM/kfo2LEjpUuXJjw8HO/MYt+ZM+E/IGmur6HPNNexfJjwlFYas1D6WJJE9adMuDwAo9lFmXB6Am/jpDcvVaBAgXzo6upy4sQJdHV1adasmdxB1c+mQoUKmJqaSnr6Hh8fz8GDB+nevTsmJiZ06tSJK1euMHLkSAICAnjz5g2fPn3i8uXLzJ07l2bNmlG4cOEfpnyoQMGPwtzcHF9fX8zMzAgKCqJTp05yP8xJTExEQ0ODcePG5Tq2aNGiBAYG0qNHD9q2bYupqWlW43QpvH79Gn19fZycnPj48SOLFi3KtSdcp06duHjxInfu3MHY2JjWrVt/l6LvgwcPqF+/PtevX8+1F15ISAgdOnRg/fr19OnTh1u3bpGQkMC5c+dwd3eXtN6bN29ITU3l4MGDOZ78QEa93+7du/Hw8MDIyIhhw4bh7+9PhQoVmDZtGn5+fgQHB/PhwwcSEhKIiIjg4sWLrF+/nk6dOv1lrgkTJlCrVi127tyZqzLm35k/fz6HDh1i/fr1fP78mblz50oqG3j58iVdunShbt261K1bl4iICA4dOiRX7WRmEJecnCy53UkmcXFxBAQEIJPJ6NGjB5UrV5bL/siRI+zZs4exY8dKtvn8+TP58+dHXV1drrW+5OHDh6ipqXHv3r1sxyiCwf8IKioqWT13pm/bxtP69SE+Hn5AU9bfBQ0VDaY2acrzEfeo+HAvvKhMbPoHpp6bStEFRel7uC+PPjz62W4qUPBHoqqqyrp169DQ0GDib9jipkyZMrmmfN29excTExMWLlxImTJluHTpEqGhoaxbt46ZM2dSu3ZtuUUfNDU1Wb9+PR07dmTLli08ffr0u04uFCiQSlhYGDNnzuTly5dYW1tz+/ZttLW15Zrj5cuXqKurc+fOHQ4dOsTbtzk/eFVSUqJr1648fvwYPT09vL29MTMz4/jx4znaLVy4EGNjY9q3b09SUhLz588nNjYWJycnSX6amJgQFRWFgYEBc+fOJSQkRO7vWUxMDI8ePaJbt25YW1vnOt7BwYEHDx5QvXp1Jk+eLMnm72TWpK1evRoPD49sx71+/RpjY2NWr16Ns7Mz9+/f58qVK2zZsoUVK1YwduxYGjZsiI2NDbq6urmu++zZM/z8/Khfvz6dO3fGx8eHwMBASSeUtra2vHz5knv37uUawGaSmppKhQoV2LFjB1OmTMHT01OSEMvfmTBhAgcOHGD9+vVcuXJFLlt7e3vi4uK4fPkyixYtknttU1NTzp07J9fnqmDBgkRFRTF69OhcvzvZ0aZNGyIjI3F2ds52jCIY/A9Rq1YtPDw8SExMZFBaGqipga8vXLz4s137VzE1Ueba5mb4VLqMxrZzENaIxLREVgStoNSSUrTa1Ypb72/9bDcVKPjjkMlkLFmyBB8fH7nEFX4FtLS0clRjA9i+fTutWrXi1KlTDBo0CHNz8+9et1evXsTHx7N582b69OlD6dKlKVCgAA0aNGDixIls3bqVK1euyJ0mpkBBdkRHR2NjY4OVlRUhISFMnDiRkJCQHE+5sqNo0aJ8/PiROXPm0KZNGwwMDDAwMKBNmzbZZggkJyezfft23r17h5mZGVu3bqVWrVo5rtOnTx8CAgIYPHgwwcHBjBgxAnd39yyFXiksXbqUJUuWsHXrVsqXL4+enl5Wv2Yp6OrqUrVqVdq3b8/gwYMl2RQuXJj4+HhatGgheR3IOOHy9fXF1taWCRMm0LNnT9asWZPt+JSUFOLj49m7dy+9evWSS8jkWxw8eJCtW7eiqqrKxo0b6dWrF87OzhgaGqKlpZVVX7ds2TJu3LjxF+EuDw8Pli1bxqpVq9DX12fs2LG5pk7KZDKuXLmCt7c3fn5+2NnZYWpqyqFDh+Ty293dnU+fPmFpaSm3iNmLFy/YuXOn3E3nM2ndujWrVq366pQ1J/T09Lh8+TKXL1/GxMSEOXPmyL1uZtaJQk1UQRbe3t5oa2tz4PhxDmfmeA8YAD9Z2OHfRhCgRw+BO0dq4BjhB8tC4UYXBFHG7ru7aX28Nc4bnDny8IjiKbwCBT+QYsWKUaxYMUJDQ3+2K3KhoqKSq/iMu7s7x44dY/DgwbkGjlJRVlbOqvWIjY0lISGBjx8/cvToUaZNm0afPn1wdXXF2NgYLS0tLC0tcXd3Z+zYsVy9evWH+aHgv0NmQ+7atWtz9OhRJk6cSIUKFZg6dSovX77M1T41NZXr16/j4+PD69evkclkyGQy0tPTKV26NG5ubri4uHxV65WYmMiUKVMwMzNj7dq1rFmzhvDwcNq1a5drXZiamhouLi7MmzeP0NBQKlasyKlTp3JtzZKens6ePXsYNWoULVu2pHfv3nz48IFChQrh6uoqqc/hlxgaGpKQkMDy5csli1U1adKEFStWsHnzZknjw8PDcXZ2Zu7cuSxatIj79++zcuXKbOvf5s+fT4UKFRgxYsQPq0XW1tbG3t6e0qVLZ/1bUlISqampxMfHExYWxq5duxg+fDhOTk5oaWlhZ2fH8OHDOX78OC4uLnh4eJCUlMSCBQuwtrbO9W+CmZkZffv2xc/PjzFjxvDy5Utat27NwYMHc/X30aNHdO3alXr16tGoUSO5xbmio6MRRVHuOtYvyZ8/P/Hx8Wzfvl2S8momZcqUoW/fvigpKUlOYU5MTOT48eNMmTKFadOmIQhCjvWrCp39/xgmJiZMnjyZoUOHMuDqVeqYmqIeHAzr14Oj489271/H3BzOnIH580szbtw6kk9NI3+9RSSVXcHZZ2c5++wsNoVsGF5tOB62Hqgqyyc1rUCBgq8pUqQIkZGRODg4/GxXJCOlR6GDgwM3b96kT58+lC1blpUrV1KnTp1/zKf09HQ+f/6c9d/Jyck8ePCABw8ecPjwYVRUVEhPT6dkyZIMHjz4u+pOFPx30NDQYMaMGUCGWEe1atW4c+cOkZGR2NvbY2Ji8pfxsbGxBAYGcvHiRS5cuMCVK1coUqQIlSpVon///lSpUgVbW1uMjY1zrI19+fIlq1atomjRovj4+GBhYZHna1BXVyclJYVr164himK26yYmJrJy5UrOnDmDqqoqPXr0oFKlSnh4eOSpjjcuLg5NTU0MDQ0lP0ju27cv1apVo3bt2pQsWTLXHoW3b9/m3bt3PH/+nClTpnD8+HHS09Pp3bv3V9kIKSkpHDlyhJSUFF69eoW/vz916tRBRUVF7mvLC18+jLpx4wY3b95kxYoVqKioZNUaJiUlkZCQwM2bNyUrwX7p/4kTJ3JVnl23bh0vX77k4cOH6Ovry30qmJaWhoqKCu/evctTf8OQkBC2bt2KkpIStra2pKWlSVZfzURVVTXHBvTPnj3jyJEjHDlyhLNnz2Jra4ujoyMDBgygatWqmJubZ3vd//rJoCAI9QVBCBME4ZEgCF816hAEwUoQhMuCICQJgjBMHlsF0vDy8sLGxobHT54wJ1OdaMwYlL64qfgvoawMw4dDUBCUMzfh0+7ZJM6IoHbqXEx1TAl9G0rnA50xX2SO9yVvYpJifrbLCv4BFHvTv4eqqqpcLR5+BaS2pShQoAA7d+5k/vz5dOnShenTp/8L3n2NKIokJycjiiJjxozJurlX8Hvyb+5PHz58oEePHpibm+Pm5oarqyvnzp3j3bt3uLm5fTXe2toaFxcXJk2aRGhoKD179mT8+PH06dMHa2tratSogYmJSa7Blbm5OQ8ePMDd3R17e3sKFy5M3bp1mTp1KgEBAbm2EEhLS+Py5ctMmDCBoKAg9PX1OX36dI7rampqcvz4cd6/f8/WrVtJTEykU6dObN26Nbe36S+EhobSo0cPLly4wIgRI7h//75cfQpLlSqFhoYGs2bNynVs06ZNCQ0NJSIigrFjx6Kpqcm2bduwsLDg4t/KflRUVDhx4gR3796lXLlyDBs2LNfT0n8SURSJi4vj06dPPHv2DDs7Oz58+MCrV6/kavMAGan7w4cPl1S/5+zsTHx8PAULFsxTj1t9fX08PT3p2LGj5DrHTIKCgihfvjzXr1/n4MGDXL9+Xe4elpDx3k2YMIEnT5589drt27ezTk7v3bvHggUL2LlzJ7Nnz8bT0xMLC4scvwf/ajAoCIIysAxwA0oDHoIglP7bsA/AAMA7D7YKJKCiosKyZcsAmHnoEI8rVoSoKAosX/6TPfu52NrClSswejQIybqcmjYM/c2PmVpxAzaFbIj8HMnw48MpsqAII4+P5E1C3hXHFPxaKPamfxcpp2y/GvKeEri7u3PlyhV8fX2Z9y+08clsVq+lpYW6ujp2dnY4OTlRp04dHj58yOTJk/9xHxT8M/zb+1NkZCSlS5fGz8+P58+fs3v3bmrUqJHtTfTjx4959OgRAQEBTJw4EZlMxt69e+nbty/t2rVDS0sLAwMDSXV0WlpajB07lqioKPT19Tl58iQTJkygefPmGBkZoaenR9vMfslfsGDBAgoVKkTz5s1JTk5m4sSJvHjxgsKFC+e6JmTU+zVt2pQRI0agpaVFo0aNJNlBhlq7vb09RYoU4datW0ycOFGum/1Pnz7h4OBAmTJlsu0v+C3y58+Pq6srEyZMwM7ODnV1dcqXL//NsaampgwaNIgmTZrw6NEjTp069VNUnVVUVNDU1CRfvnwUKFCAGzdu0KBBA7lryN+9e0dSUhIjRoyQtDdXqFCBmzdvsnPnTrnqSL9k3rx5vH///psPRHLC3t6e4OBgbGxscHd3Z/To0XlaPy4uDj8/P0qWLMmqVav+8pqtrS1v377lyJEjdOjQgb1791K+fHlMTU1p1qwZ27Zty/G6/+2TwUrAI1EUH4uimAxsB5p8OUAUxShRFK8Bf38Em6utAuk4OTnRvn37DDEZLS0QBPQ2b4awsJ/t2k9FTQ1mzIAtWyKwsIDbN1WZ2qITHWNvc7DtYZyKORGTFMOcS3Oo61eXrge6cvft3Z/ttoLvR7E3/YtIqb/7EzA2NsbPz4+ZM2cSHR0tt31iYiLXr18nJSUFQRDQ1tZGV1cXDQ0NZDIZJiYmVKlShc6dOzN9+nTWrVvHjRs3iIuL4/r167Rq1QoNDQ10dXUVrSt+b/7V/UlJSYkJEybQv39/xo4dy9OnT3N0TkVFBQsLC1xcXOjVqxezZs1i586dBAUFYWtrC8Dbt285efKk5AtWUVHJqnHS1NREFEUKFixI06ZN6dat21fjXVxcaNeuHaIo4u/vz5MnT/L0mS9YsCCQERBLpXXr1lhYWHDkyBHevXsn95qzZ8+mQoUK+Pv7kz9/frntISMwFASBKlWq8OrVq2zH9ezZE1dXV0aPHo2hoSGtWrViy5YtP1TQS0lJCR0dHXR1dZHJZOjp6VGxYkU6d+7MnDlzOHz4MB8+fKBv376IokhISAjLli2T3AN2y5YtrF69mpkzZ6KlpSXJplChQmzcuJGVK1diZGRE27Zt5a6nlslklCpVSu5gMjY2ltDQUMLDwylevDhNmuT99kBNTQ17e/tvquQWLFgQNzc3Jk6cyOHDh4mKiuLChQsUKVKEzp07o6enl+28/3bNoCkQ8cV/vwCkNuqQbCsIQk+gJ2QU84blEuA8fvxYkgNSxv2oMf/GXL169WL//v34nTvHturV8bh4kdiePYn08fmpfv0Kc+XP/5idOxOZM8eAHTvyM3KkgP0uZ2bNsqJfqeusvb+W4xHHWX9zPetvrsfZxJnuVt2pWKjiV3+A/rTPza8w1z/Av7435UWZ709BSUlJrgL63xlzc3Ps7Oxy7R0WHR1NcHBwVl3NjRs3ePToESVLlqRcuXI0aNAACwsLihcvTvHixTE2Ns413al69epMnDiRIkWKULBgQZycnHB1dcXR0ZESJUr86EtV8M/xj+9Pf9+bbty4wY4dO+jfvz+1a9fGzMwsT46np6ejrKyMqqoqffr0yXXslStX8Pf359ixY9y4cYOKFSvSsWNH6tevT8mSJbMN8MqUKcPSpUtZtGgR58+fp379+owePVruhuY3b94kLS1NcmAC0KhRIxo0aJAlZlIps5ezRAwMDFi1ahV16tRh2bJlWFlZyWUPGan3CQkJ3Lt3j5YtW3LhwoVvvlfFihVjwoQJTJgwgTdv3nD06FGmT59Or1698PDwYNCgQZQpU+YvNqmpqYSHh/Ps2TOePn3Ks2fPsn5CQkKy1jcxMaFMmTLY29tjZWWFpaUlJUuWzDVgi4uLY8qUKcybN4/+/fvTpUuXb/7e0tPTGT9+PNu3b+fcuXPZnoJmh4uLCxEREQQFBXHt2jViY2PR0NDI1e727dv4+vqybds20tPTWblyZa42mad4u3bt4sSJE1SrVo3Vq1fj5uaW5wdzKioqVK1alYCAgGznePr0KWFhYTx48ICHDx/y4MEDQkJCSE5ORkNDI9uHsP92MPgt76VKNUq2FUXRB/ABKFOmjGhpaZnr5FLGSB33K673rXGWlpZMmzaNwYMHMzYiAnctLbTPncMyPBwaNPhpfv06c5Vi+3bo1Am6dYOgIE2aNjVnwQJzjnZrxfHrAex/s5/1N9dz5uUZzrw8Q2XTyoyoPoImlk1QVlL+Yq4/53Pzq8z1g/nX9yZ7e/v/rEztf+2UysrKKscHHTdv3sy62S1fvjxOTk4MGjSI0qVLo66uTnx8fJ5UAMuXL48gCCQnJ/Py5Uu2bdvGwYMHSU9Px9DQkB49etChQwe5lfUU/Ov84/vT3/cmfX19zp49y+TJk6lbt650T7/g06dPREREUKdOHVatWpVrQHnx4kXq1KlDSkoKZmZmuLm50blzZ+rXry/5BEhZWRlnZ2fU1NT48OGDXMHguXPnaNmyJdu2bcs60ZRKZiPzLVu2oKOjQ8+ePXM8ifmSwYMH06FDB2rXro2dnR2nTp3KVUQmk6SkJG7dusXduxkZSoIgEBwcTGRkZK4psoaGhnTu3JnAwEBWrVrF2rVr8fPzIzIyEplMxvv371m9ejXLli1DTU2N4sWLZ6lBu7q6YmZmRnx8PDY2Nt+9h8TGxhIbG8v06dOZNm0aampqlCpVCnt7eypWrIiNjQ2qqqrMmzeP4sWLM2PGDBwcHOjYsaPkNhmTJ0/G39+fHTt2SE71jI+Px8nJiU+fPjFmzBj69u37lYDSt1i8eDFjxoyhUqVKhISE5PlhSmpqKoGBgWzbto3U1FRu3ryZ7diXL19StmzZLFGxwoUL07ZtW1q1aoWjoyOWlpbZ/u39t9NEXwBffmIKA7nrFH+/rYJs6N+/P7a2tjx5/pzJmU9ZBg+Gn5BL/qvi5ga3b0Pr1hAbCz16QOPGoJlozvKGy3k26BkTak5AX0OfK5FXaLGzBdbLrFkVtIqEFIWs+2+CYm/6TRAEAR8fHxYuXEhwcPBvUXuorq6ebR+txMRE6tSpQ8+ePTl//jxLliyhW7duWTVAwA+Tg4eMJ9YJCQk8ffqUqVOnUqJEiVxPbBT8dH7K/vTx40cuX77M7Nmzefjwodxtlrp27YpMJmPq1KkUK1Ys1/E1atQgNjaW69evM2bMGK5evUrLli3R1tbG2tparlRGIyMjRo4cKXl8eHh4ViAoT73gl+zfv58iRYowduxYjI2NadKkCadOnZJ0yliwYEGsrKxISEigadOmkt7rrl27oqurS+vWrZHJZAwcOJCrV6/y+fNnybWSixYtYsuWLTg4OLB161aePHmCTCbj/PnzFClShAkTJtCpUyeOHz9OQEAAa9asYfz48XTs2JGaNWtSv379H/owKTExkaSkJGJiYggKCmLlypX07t2batWqYW9vj56eHt26dePt27eMGDECIyMjzMzMchUXAmjZsiXR0dFy1fxpamry/PlzNmzYQGBgIJaWlpKa1Y8aNYrz589jZmaWlRkiL6dOnaJQoUJZKZ4bN27k1atX2QZ0JiYmfPz4kdDQUDZu3EizZs24dOlSlqJvTj0ZJQeDgiBUEQRhkiAIxwRBuCUIwsP/KVdtEAShiyAIUh6BXANKCoJQXBAEVaAtkHuDkO+3VZANMpksS0xm8bVrhBcvDg8ewJIlP9mzX4sCBWD7dvD1hfz54dAhcHc3Y88eMNAyYHKtyTwf9Jwlbkswy2/Gww8P6X24N2aLzFgRuoIPCYqG0P8Uir3pv4WXlxchISGMHj0aZ2dntLW1qVy5MpMnT+b+/fs/271vklONpLq6OosWLWL16tX06NGDFy9e/Gt+JSYmIpPJ5G54rUA6v/P+5OPjg7u7O9OnT8fa2hpdXV3q1asn+cZ25syZKCkpUbNmTQoUKICXl1euoiWqqqrY2dnRo0cPdHR00NDQoGLFisyYMUOuhyLq6uo51s79nU2bNtG+ffvvagWjpKSEgYEBaWlpJCUlcfDgQZo0aYKxsTFTp04lJubbSuQfPnygc+fOHDx4kGrVqrFjxw5J2RNeXl54eHjw8eNHVFVVmTx5MhUqVMi1J2MmCxYsYNmyZdy+fZurV6/Srl27rPfYwcGBbdu2MWbMGG7dukWNGjXQ19enTp06jBgxgg8f/pl7GiUlpazaaJlMRv78+SlbtiwdO3ZkxowZVK1aFV9fXy5duoShoSFdunTBx8eHQoUK5Tr3uXPnMDc3lysFGDJ6Knbs2BF3d3fy58+PtbV1rjaCIODo6MiOHTuwsrIiODhYbsEee3t7unXrxsePHylZsiSenp65/m6VlZUpXbo0HTt2ZPHixVy8eBFfX18+ffpE69ats7XLNRgUBKGTIAi3gUvAIEATeAhcAT6SkXu+Boj83+ZWPLu5RFFMBfoD/sA9YKcoiqGCIPQWBKH3/9YzEgThBTAEGCcIwgtBEHSzs83NfwW5U6NGDTp06EBycjIDChbMyB+ZMgUkNrf8ryAI4OEBd+6Aqyt8+iSjZUvo2BE+fQItVS36V+rPQ6+HbG+xHTtjO6Liolh0exFFFxRl4NGBPP309Gdfxh+DYm/6b6Kvrw9kBDKfP38mKSmJq1evMn36dOzs7LC0tGT+/Pm8f//+J3v6/+TWlsLT05N79+5l3fj06dOH58+f/yO+aGhooKWlha6uLg0bNsTf3z/PaYAKsudP2J+KFStG7969MTExIS0tjcTERC5evJhtUJNJeno6J0+exNfXl7i4OFJSUtDU1JT7FD9TLTIoKIhmzZpJtrty5Qrh4eFytVAoWbIkfn5+kpt6SyU2NpaoqChmzpxJ4cKFmTt37ldBQWxsLNu2bePRo0dcvHjxm+Ig36JChQps2LCBx48fExYWJunE6kuSk5NRUlL6ZoChrq5OkyZNmDRpEgcPHuTFixfcv3+f4cOHc/ToUQIDA+VaSyrq6uooKyuzc+dOPnz4wMePHwkODmbjxo3079+f2NhYHj58yMqVK3n9+jXr1q3D1dVVUvBsY2PDhw8fMDY2pkuXLnI9LICMtNrk5GSsrKxYunSp5BYTHTp0YNu2beTPn58SJUowZ84cSZ8zXV1dvL29CQoKYuPGjfTo0UPu03nICEyVlJTy3lpCEIQQYBZwBKgI6ImiWFMUxRaiKHqKothAFEVrQB/oARgAoYIgtMluTlEUj4iiWEoURQtRFKf/799WiqK48n///7UoioVFUdQVRTH///5/THa2Cn4Mc+bMQVtbmyPXruFnbw8xMTBmzM9265fE1BSOHYMJE96goQGbN0PZspAplCZTktGmTBuCegRxosMJHI0ciUuJY/HVxZRYXIL2e9tz8/XNn3oNfwClUexNCr4gJSWFhIQEHjx4wLBhw1j+C7XKkdJKI3/+/MydO5ewsDD09PSwt7dn586dP8wHZWVlihUrxty5c7l27RqfPn3i0KFDODo6/rA1FGTwp9w7ZQYpL168QCaT0b59e549e5ZrGuWNGzdwc3MjJSWFhQsX8v79e168eMGKFSvkarmQL18+li9fnm2KdXaMGTOGKVOm0LdvX8k2tWvXJjY2loCAALnWkkpiYiLJyclMmjQpq77v9evXLF68mNatW5M/f365T6wy0dfXR11dHR0dHbnsRo4cSdOmTZk4caKk8enp6Rw9epTIyEiMjY3z4mqOZPqfnJxMdHT0X67n8+fPnDx5Mutkb8qUKXL3+2vQoAE3b96kXbt2bNiwATMzM2rXrs2hQ4ckPaho27YtEydO5NWrVwwYMIDjx49LWrdPnz5cuXKFiRMnEh4ezsiRIyX1RkxPT8+q5/z06RN79+7NU1uMhw8foqenx61bt7Idk9vJ4HqguCiKI0VRvCFmE5KKohgtiuJWURQbAFWBT3J7q+CnYmRkxIABAwAY8OoV8TIZrF+f0YldwVcIArRr94mbN6FyZYiIgLp1YeBAyCxrEASBOuZ1WOO8hpu9btLeNqOhqu9tXyqsqoDrZleOhx/P05MeBbxDsTcp+BsqKipoaWnRtGnTPPdy+ieQRzCnUKFCzJgxg2PHjjF69OgfFtSmpaXx7t077OzssLa2/s+J+PzL/Pb3Ts+ePcPQ0BAvLy86derEu3fv2LBhAwUKFMjRLiEhgaCgIFJSUujXrx/dunXLc7sEHR0dEhISOHhQvqx7Q0NDyamSmbRq1YpevXrh6ekpl11uaGpqUqBAAbp164afnx8fP36kfPny7N69m2LFihEUFMSkSZN48eLFdylMp6WlcfXqVbntnJycJKl4R0VFYWFhwdq1a1mwYMEPEXrbsWMHkKEEO2DAAHx8fAgJCSE2NvYvKY0BAQHo6+szePBgSpUqxbVr1wgLC8uqqZYHQRCy6leTk5M5ffo07u7uVK9eXZJ9poKzpqamXKqvDx8+ZNq0aTRq1Ijg4GBmzJiR43hRFKlYsSLVqlUjOTmZFStW8Pr1a7S1tSWvCRkBZUhICIUKFcLCwiLbcTkGg6IoLhRFUa7QWxTFEFEU/eWxUfBr0K5dO8qWLcuzyEhmOziAKGZEN4pgJVtKlYILF2DaNJDJYPFisLODa9f+Oq6cUTm2NN9C+IBwBlUehJaKFscfH8d1iyt2PnYcenaI1PRfXwjjFyJKsTcpyGy0rqqqioODAxMmTOD48ePs3r1b7pvBXw07OzuOHDnCxIkT89S77FvExcVRp04dtmzZIml8aGgoJ0+eJDY29oes/1/hT7h3Klq0KL6+vujo6LBlyxZu376dq8369espUqQIa9eu5eTJk5iamn7Xw860tDREUaR48WwzaL/i6NGjnDx5Msf6qG9hYmLChw8fiIiI+GEPaDU0NGjatClv375l9erVuLi4ZJ2M1qlTBwsLCwwNDbG1tUVFReW71i1fvjxjxoyhX79+ctkdOnRIUp2kgYEBZ8+eZdSoUaxZswZDQ0NcXFy+K13U2dkZTU1NXr9+TevWrWnbti0lSpT4qmWOk5MTixYtIi0tDX9/f/z9/Tlx4gQvXrz4rvdMS0sLTU1NevbsyaZNm+SyTUxMpHTp0kyYMEHyeDU1Nfz8/KhQoUKu4wVBYN26dTRt2hRfX19CQkLkar0VGRnJli1bqFOnDrdu3co1y+S71EQFQdAXBKGiIAhq3zOPgl+DL8VkZgcHE66vD5cuZaimKMgWmQzGjoUrV6B0aQgLg6pVYdIk+HuZULH8xVhQfwERgyOYXns6hlqG3Hx9k2GXh1FicQkWX1lMXLL8aQAK/opib/pvIJPJaNy4MZ8/f+bq1auMGzeOqlWr5tp/73fB0tKSqlWrcubMmR82pyAIREdH5zqufv36PHr0iObNm6Ovr4+lpSX9+vVj7969iuDwO/nV96ePHz/SvXt3+vfvjyiKlChRQpJAR7FixahTpw7h4eF4eXkxePDgrNMfeXn8+DEPHjygQYMG2NnZ5Tr+w4cPtG/fnj59+rBjxw6MjIzkWm/atGnExcVhZ2eHkZER/fv3l6RQmRMpKSksWLDgm6fwenp6+Pv7ExMTg62tLW5ubqxYsSLP6siZwi/yPgTT1NTMakWQGw4ODowbN47z588TGRlJ5cqVJaU7ZkeBAgWIj4/PtXWOmpoaffv25eHDh3h6evL48WO8vLwwMzNDTU0Nc3NzmjZtire3N2fOnJEcIKampnL58mVWrVol+aQzM5VXQ0MDY2NjSWIyq1atonbt2gwePFjSGplUqFCBvXv3cuLECa5cuUK5cuUoXLgwY8aMISIi4i9j09PT2b17N3369MHS0pJy5cqxb98+2rdvz40bN3JtlSKPmug4QRBmfvHfNYGnwFXgoSAIJeW5SAW/Jo6Ojnh6epKUlMTgTLngESMyeiooyBE7O7h+HYYMgfR0mDw5IygMD/+6RkJPQ48xNcbwdNBTfBr5YKZjxrPoZww8NpAiC4ow/tR4ouK+7w/RfwXF3vTfJTExkT179uDt7S35BuB3S8u2srLi4cOHebbPvF41NTXU1dUpV64c3bt3z9XOxMQELS0tYmJiSElJ4cGDB6xYsYLOnTtTsGBBmjRpwuHDh3MUxlHwe+5Pr1+/ZsOGDQiCgIeHBzVq1MDAwCBXu9q1a+Pt7c3UqVOJi4tjyZIlLF26NE8+nDp1ClEUmTVrlqSHO6GhoVy8eJGEhAR8fHzo0qULt2/flvx9t7S0ZN26dbx+/ZqCBQuybNmy764fVFNTo3DhwpQpU4bBgwdz4MCBv5zyFylShFWrVvHixQs6dOjArFmzsLCwwM/PL1e/RVEkNDSU2bNnU7NmTXbs2EH9+vWZP3++XD727t2bNWvW0KpVK8niOU+fPmXatGmsWrVKco+/9PR07t+/z6ZNm+jfvz+VKlVi7ty5FCpUiAMHDkg6LVNTU6NDhw4sWbKE7t27k5aWRkpKCk+ePOHAgQOMGjUKd3d3ypYty8WLF7Od582bN6ioqCCTyeR+sBUbG4uamhoymYwpU6bkKmyUnJxMv379CAgIYOzYsXKtlZaWxr1797h582ZWH8vIyEhWrVqFv/9fkwjevXvH4sWLOXjwIA8ePEBHR4dPnz4RGBhI3759adGiRY4ZIfI8PvUEvjyjnAOEAE2BN8BUOeZS8AszZ84cdHR08AsJ4XCJEvDyJcya9bPd+i1QV4d58+DUKShWLCM4bN68GIsWZQSIX42XqdOjYg+ONDjCvjb7qFq4Kh8TPzLt/DSKLihK70O9efg+7zeC/xEUe9N/mMTERKZOnSop9fF3rJPT1NSUWyhBFEWCg4MZNmwYMTExFC9enIkTJxIWFsalS5dQU8vbgZQoilkKrgcPHqR58+Y0btw4T3P9h/jt9idra2s+ffrE2rVrUVFRYcWKFRQoUCDX1i2nT5+maNGiDBgwgJYtWxIVFSVZZOPvdO/enQIFCuDg4CCpjUGNGjV4+vQpgYGB1K1bl6NHj1KhQgV69+4t17oymYzXr19jZmaGoaEhaWlpefIfyFJSDQ0NZdGiRXTs2BFTU1OaNGnyl9N5TU1N2rVrR40aNXj+/DmNGzdm+/btOc49ffp0ypQpw+jRoylevDjr1q1j9+7dKCsry+WjsrIyVlZW7N69m1q1auU6/vXr15QoUYItW7Zw7NgxFi5cKGmdpk2bYm1tzcGDBzE3N2f+/Plcu3aNN2/e/DA147S0NGJjY7lz5w6Ojo7fTGF9/vw5s2fPpnDhwoSGhlKtWjW51tDV1SUpKYlPnz7RpUsXWrZsmeN4VVVVqlevjoeHBw0aNKBbt27s2rWLp0+f5hrwV65cOatNxMePH5k+fTrv3r3j/fv3Xz3QMzAw4Ny5c0RGRpKQkIC/vz8DBw5EQ0MDPz8/9u7dS4cOHbJdS55g0JQMWWQEQSgEOADjRVH0I0M1q4Yccyn4hTE2NmbSpEkADExIIBHA2xuePPmZbv1WODvDrVvQpQskJSkxaBC4uEB2avFKghJNrZpyqdslLnS5QGPLxiSlJbHq+iosl1rSYmcLQt6H/JuX8Duh2Jv+4wiCgKur68924x9BQ0ODhIQEyeP37t2LtbU1rVq1QkNDg02bNvH48WNGjx79XQIVf0cmk6GhocHcuXN/2Jx/KL/l/qSjo4OLiwsNGzZERUWFZcuW5ZpK5+zszNWrVxk+fDgHDx6kQoUK+Pn55dkHAwMDYmJi5GoeX7x4cbp27Yq1tTVpaWkcOHBA7nUrVKjA06dPad68OYUKFeLo0aNyz/F3RFEkJiaG5ORk/Pz8sLGx+So989OnT2hoaGQF0zkxatQorl69ire3N9HR0XTv3h1tbW1JyqAfPnxgypQplC5dmkqVKiEIArNnz+bChQu52hoZGXHlyhXs7OxwcnJizZo1udoALF26FBcXF169esWgQYNwdHSkfPny/8gDOk1NTYYMGULlypW/eq1o0aIMGjSI58+fU7JkScnBLMCtW7eYO3cuGhoaNGzYkJ07d7Jt27Zc7QICAti+fTuFCxdm3bp1tGnThlKlSqGurk7p0qXZu3fvN+1OnjzJwYMHGThwIC9fvmTcuHE0bdqU+EyVwm8QGRlJq1ataNCgAc2bN+f48eOYm5tjZ2fHqFGjsrWTJxhMAzLz3WoCiUDmOexbMiSSFfwheHl5YW1tTXhkJPPKlYOkJBg27Ge79Vuhqwvr1sGyZZEUKpRxWmhrC5s25azJU71odQ60PcDdvnfpVqEbKsoq7L23lzbH2+C0wYlDDw6RLuZNgvoPRbE3/YfIlNbW1NRETU0NNzc3jhw5Ijld6XdDWVlZsuT8mjVr8PLyYtWqVTx69IipU6fStm3bH+ZHvnz5UFVVzRKrCA4OpkyZMj9k/j+Y33p/evr0KXZ2drRo0SLXG3dBEHBwcGDmzJmEhYVhbGws14OMLzlw4AChoaFYWFjQqVMnuWyPHDnCjRs3MDY2ZsGCBXKvnXlyLooiRYoUoWTJ78vk1dbWRltbGxUVFaysrOjUqRPTpk1DS0sra0xISAjnz59nzZo1LFq0CBUVlRznlMlkODg4MGTIEPbv34+npyfx8fHMmTMn2/0iOTmZkSNHUqJECZ49e8aGDRt4/fo1Fy9eZMSIEVk9XHMiJCSEuXPncuHCBRo3boyDg4Ok96Bo0aIsWbKEe/fuyd18XSra2tqYmZmxceNG5s2b983P6969ezl69GiG2nudOtSsWVPy/Hp6erx+/ZorV65w6NAhWrVqJamdh5qaGuXLl89SLFVRUUFFRQU9PT1q166d7R6aL18+3N3dWbBgAXPmzMnqV5tTZoe+vj716tWjYsWKGBgY8PnzZ5SUlKhZs2aODwrkqTS9A3gKgnAJ6AqcFUUxs1igCPBLFTgJguAOuJuYmBAWFpbjWKkKPVLG/agxv8JcI0eOpHPnzky7f5/2amqY7d1LxMaNPJZQO/C7XOO/MVfx4o/Zvz+BiRMNOXFCh06dYMuWz0ye/AZ9/bRs51JCieGWw+lUtBObH2zG94Ev556d49yzc5TQLUEXqy64F3NHVfmvNYm/6vvwI+f6G7/V3qRAflJSUggICMDX15dDhw5RsmRJxo8fT9OmTeXurfUnc/jwYTp16iS5afW3SE1NJTg4mFOnThEVFYWSklKWQIOrqyvVq1fPUexBwVf81vtT7dq1GTRoEEWLFkVPT4/q1avj6upKtWrVKF26dLb1fIIgUKhQIcaNG0fJkiXlTscLDAwkOTmZlJQUTp06hYGBAaVKlZJke/XqVVJSUkhMTGTv3r0oKytTp06dXNtiQMbDpvv376OlpYW3tzc9e/bM9hqjo6O5f/8+YWFhWT8nTpwAMk70S5QoQbVq1ahWrRp2dnZYWVllK/ASEBBAs2bNaNeunaRrzCQ+Pp5Dhw5x8uRJlJWVqVKlCunp6d/0+dOnT5w4cQJ1dXVKliyJmZmZ3GJbN2/e5PTp05iamuLg4CBJWCgTmUyGtbU1RkZG1KlTB3NzcwYPHoyJiYkk+3fv3nHr1i1u3brFnj17gIzPma6uLuXLl2fw4MG4u7vneE1eXl6MHDmS7t27S97HPn/+jK+vL6tWrUJXV/e7BbQyPwMtW7akVatWmJubS7JTV1dnzJgxOaYCa2ho0L9//yzxp8ePH2fV7uZYKy6KoqQfoB4ZT7TS/ve/Tl+8thXYJ3Wuf/PHxsZGzI379+/nOkbquB815leZq3Xr1iIgtrSxEUUQxTJlxPt37vx0v37HudLTRXHDBlHU0cl4Kw0MRPHAAelzBd0OEuddmicWnl9YZBIikxBN5pmIcy7MET8lfPpHff/V5gKCxN98b6pYsWLW9dSsWVM8c+aMpGv/O66uruKxY8fyZNukSRNx3759ebJt27at6Ovrmyfbzp07i+vWrZM09tWrV2K5cuXEqlWrisuWLROfPXsmJiYm5mndIUOGiN7e3nmyHTNmjDht2rQ82U6dOlUcO3Zsnmznzp0rDh06VNLYZ8+eiQYGBuL69evztNbly5dFa2tr0cbGRhw4cKA4Z84c8ePHj3LPExAQIKqqqooVKlQQR40aJfr7+4vR0dGSbPfu3Ss2bdpU7jVFURSPHDki1q9fP0+2p0+fFp2cnPJkGxgYKFaqVEkUxb/uTeJvuj99uTeJoihaWlqKwFc/27dvz/F9SU9PF4sVKyaqq6uLffv2FRMSEuR6XytVqiQCoiAIorKysvjmzRvJts7Ozn/x1dLSUpLdoEGDxIoVK4qvX7/OcVx6erpYpEgRUUNDQ/Tw8BAnTZokbtu2TVy/fr0YEREh2c9Mjh07lvUZkodevXqJgNi9e3fx7du3kmyuXbsmdu3aVcyXL5/YqFEjcebMmeLnz58lr5mSkiIGBASIXbp0EXV0dER7e3tx1apV4vv373O1fffunejj4yOamJiIgGhgYCBpzaSkJFFPT08ExDZt2ojjxo0Tt23bJnlfyaRly5airq6uaGlpKbZp00ZcsmSJeO7cuRx9d3d3Fx0dHUV/f38xLi5OrvVEURTj4uLE27dviwMHDvzm92jZsmW5zrFjxw4REM3MzCT/nkUx456qVq1aYr58+cSUlJSv9qfMH8mPBMSM/jfWQGvARhTFs1+8fA6YLXUuBb8P3t7eaGpqsjs0lBNGRnDnDvnzKBX9X0cQoFMnuH07o6YwKgqaNIFu3SA2NvevoraKNkOqDiF8QDgbm26kjEEZXn5+yYgTIyiyoAgjjo8gMibyn7+QXwzF3vTnIooitWrVwt3dnYsXL9K3b1+KFi2aZwGUP52iRYty5swZpk2bllX3LZU9e/ZQvXp1jIyMWLNmDbNmzaJPnz55ahju4uJC4cKFuXHjBnPmzKFVq1YULFiQEiVKMH78eB49eiT3nL8rv/v+lJqaSlxcXFaNaMmSJZk2bRoPHjygTZs2OdoKgoCenh6JiYmsXbuWChUqZAbBuZKSksKrV69QV1enY8eOPHjwQJKi6Zdk+jxgwIAc1SW/pE6dOqSkpOSadi4IAseOHUNTUxNbW1smTpxI27Zt6dy5M4ULF5bLT4CDBw8SFxfH6tWruXv3ruTU8AULFjB+/Hi2bdvGnDlzeP36da429vb2rF27loiICFq3bs2KFSvQ09PDx8dH0poymQwXFxfWrVtH9+7dCQoKYujQoZiYmDAsm3Kily9fUr58eQoWLEifPn2oUqUKU6ZM4dmzZ5LWVFVVJSQkhJ49e3L8+HGioqKwsLCQOzNk586dDB06lLCwMHbs2MHAgQNxc3PDyMiI/PnzU6dOHc6fP/8XmwYNGhAbG0tsbKxk9eSXL19Sq1YtjI2NKVCgAK1atSIwMJAKFSrQtWtXtmzZwp07d4iLi6Nv376S/X/+/Dn169fPddydO3fw8PDA0dERW1tbHj58mGPbEbnOh0VRfCKK4h5RFMP/9u+rRFHMe+dJBb8sRYoUYdy4cQB4KSuTDBRcvBjev/+5jv3GFCsGJ0/C/PmgppZRV9ikSTHOnZNmr6qsSsdyHbnV+xZH2h2hllktPid/Zu6luRRfVJzRV0YTGhX6z17EL4Zib/ozyaxB+lFN1/8LWFtbc+nSpay0JqnUqlWL1atXU6pUKfr27Yu+vj4GBgbUrl2bDRs2SL5pyyQzlSk9PT2rPUV4eDhz5szB1taW0qVL4/sf6WH7O+5Pr1+/pmfPnpiYmBAfH8/gwYO5ffs2Dx48YOzYsZLr6DLVOJWUlOjRo4ckwZCnT59SrVo1ChUqRHh4OBs2bJCcSgcZCsOPHj3CxsaGhw8fsmjRIkkpogBLliyhQYMGuY5LTk5m4sSJGBsb/xBF3WHDhqGhoUGfPn2wt7dHS0sLBwcHxo4dm2MfQA0NDaZMmULDhg1ZvHgxxYsXp23btpJ6iero6NCoUSPs7e1RVlbOk3JqZoARGxuLkpLSN0VbAAwNDZk6dSrTp0+nbdu2PH78mClTpqCtrU3JkiXp3r07d+7cyXGtzFYc169f59GjRzg6OmJiYsL48eM5efKkpL8TmWmlmaSnp2epvkZHR3Pq1Cnq16+Pg4MDd+/eBcjqublkyRJMTU1xcXHh7du3Oa6zdOlSlJWVuXjxInFxcdy7d4/AwECCg4NZu3Yt7du3x8bGRnKq6tGjR1FXV6ds2bJ4e3tnO+7169e0aNGCsmXLkpyczNmzZ/H29s41nTfHYFAQhNw7fX5toy4IgpW8dgp+XYYMGULJkiW5HxnJ4hIlUI6OBgmKVQqyR0kJBg+G4OCM/oSRkao4O2do9EhVkRcEAbeSbpzqdIprPa7R2qY1aWIa+57so8yKMjTybcS5Z+ckP4n9zZC7aEmxN/2eLFy4kMDAQLp06UJSUtLPdue3wMDAAD8/P8aMGSO5vkVfX5+uXbuycuVKgoODef/+PTo6Opw+fZr+/ftjZWWFgYEBbdu2ZfPmzZJOIL5FcnJy1s16Zn3Vn8afcO/0+fNnrl+/jqqqKh4eHkyZMgULCwtJtpGRkSxbtoz69esTGhqKpaUle/bsYciQIbnapaFPAQABAABJREFUvn79mrp169K6dWuuXbsmuZ7sS1JSUlBRUeH+/fu0a9eOLVu25KjAmIkoikRHR6Oq+nVv4G+tcefOHRo1aiSp8Xh2PH78mAMHDrBz504+fPhAWloaSUlJWb48efJE0r6X2fJAEAQCAwO/ut709HSCgoLYsGEDw4YNo379+hQuXJiiRYty6dIlnJycvktsShAEWrRoQatWrb75urKyMu7u7owZM4YtW7awbt06qlevTnp6Oo8fP87ac6RgZmZG3bp1SU5O5vXr18yePZvmzZtjamqKvr4+NWvWZPTo0ezZs4cXL17IfS3x8fHcuXOHGzduABkBb7du3Th9+jRubm5cunQpxwAdwNbWls+fP1O+fHmaNGnC0qVLefr0qdy+ZJKQkIBMJuPOnTt06dIFT09P1q5dy717974aV6BAARo2bMizZ89wcXFBQ0MDmUyWY5ZHbieD5wRBOCgIQn1BEHILHIsKgjAGeAI0knZ5Cn4H1NTUWLx4MQCTX74kUkkJVqzIyHdU8F2ULg2BgdC37zuUlDJ6FNrbw//2IMnYm9izo+UOHvR/QLsS7dCQaXD44WGcNjhRZW0V9tzdQ1p63vsl/YJYKvam/wb6+vpcuHCBT58+0bp1a1JTU3+2S78FlpaWVKpUKc+y+BoaGlnpuHFxcSQmJvL27Vt27NhB7969cXZ2lntOJSUl8uXLh4qKCh4eHqxevTpPvv0G/Pb3TiVLliQoKIjNmzezadMmDA0NmTRpkqSef3379qV///7Y29tz//597t+/j5ubm6R1jxw5QkREBHv27KFBgwasXLky11OYv6Ojo4OZmRlJSUmcO3eO7t27M2/evFztBEFg165dLF68mNq1a3P9+vVsx2ppaXH27FnOnDlDsWLFGDx4MJcuXSImJkayn8nJydSsWZOmTZsyc+ZMKlasyP79+3nz5g2JiYk8ePAAX19fChYsKGk+ZWVlChYsyN27dzE2Nv7La0FBQTg5OdGlSxdWrVpFqVKl8Pf3Jzo6mtDQUPz9/dHT05PseyZv375FSUkJNTU1+vfvL8lm165dNGjQADMzM3bv3k1MTAzBwcF5Fr5KSUnJatvx8eNHzp8/z6xZs2jZsmWuTeH/joqKClpaWhgZGdGiRYu/vHbr1i1Onz7NhQsXcj2p9vDw4MqVKzx58oR69eoxZMiQPAfb8fHx2NnZERsbS2pqKk+fPmXr1q10796devXqZSlsQ0ZrFR8fH/z8/AgKCiIyMpJdu3aRlpaW42lxbsGgJfAOOAC8+d/mNlUQhAGCIPQSBGGUIAg+giDcJKOpahdgqCiK2Z9hKvgtqV+/Pk2aNCE2Pp5BRYtmdFAfODDnHgkKJKGiAgMGvOfiRShVCkJDoVIlmD4d5L3vtdC3YIL9BJ4NesZEp4kU0CjA1cirtNzVEqtlVqwMWklCSt6kvn8x7qDYm/4zaGlpsXPnTuLj45kyZcrPdue3oVy5crmqaecFURRzrItKS0sj8X8pDpqamqiqqlKyZEm8vLzYtm0bHz58YOPGjXI3yP6N+CPunQRBoFatWpiYmBATE8OsWbMwNjbOSp/Ljt27d7N06VLWrFnD1q1b5Vqza9eufPz4kdmzZ3P79m369OmDgYEB5cqVy/N1KCsrU7t2bUljixQpgp2dHadPn8be3p5ly5ZlO9bAwIDLly9z7Ngx8uXLR48ePbC0tOTNmzeS1lJVVeXp06cEBATQokULDh48mFWPmRfS0tKIjIxk1qxZX71WqVIlPn78yLlz5xg6dCg3b96kSpUqeHp6yr2OKIocO3aMevXqcfDgQYYMGUJERES2KaJfEhQUxMCBA9m1axcbNmygefPmf2mx8T1oa2ujrq6OhYUF48aNIzg4mKtXr+Zqp66ujrq6OsWLF2f48OGcP3+ex48fo66u/pdx48ePZ9SoUVSoUEGSPy9evGDhwoVMnTqV/v37c/z4cbmu5/nz5xQvXhx9fX18fHywsbHBw8ODlStXcu3aNaKjo3n+/HmO79/MmTMltWbJsbWEKIqRQFdBEEaRsVnVA4YAGl8Me0JGEfQowF/8Q3PSFGQUKvv7+7P76VPO6ehQ8/Rp2LcPmjf/2a79EVSunHEiOHIkLF0K48bBoUMZfQnlbXNUSKsQk5wnMaL6CNbfWM+8y/N49OERfQ73YcLpCXiYezChyAQKaEqro/gFSRFFUbE3/YdQVVVl9erVVKxYkZEjR/6wG4g/GV1d3VzTmXIi8yujrKyMhoYG6enp1KxZk5YtW9K0adOvxh84cICNGzdy5swZ0tLSqFevHj169KBWrVqSephl8vTpUy5evIi9vf1vKRb0p947KSsrU6tWrVzrBVVUVOjXrx/VqlXDwcGBmjVrSg7GPn36xObNmzlw4ABRUVGYmZnRtm1bPDw85PJVFEU0NDRQV1dn6dKlWT3ecmL//v0sWrSIixcvUrZsWXr37i1pXRsbG2xsbJg0aRJWVlZs2bKFoUOHSvIzU4zFxcWF+Ph4tm/fTo0aNXB2dubIkSOSPv93794lICCAfPny0b9/f7y8vL45TlVVlRo1alCjRg0mTZpEbGwsQ4cOxd7enqtXr0o6gTx+/DiDBg1CJpMxZMgQDh48KPk76uvrS79+/fDx8cHR0VGSzbeIjY3lyJEjaGtrk5SUhLm5Oc7Ozjg7O1O9enWKFCnyTbtz586xfPnyrDYcxYoVo2bNmri6ulK1alXMzMxyXLdhw4asXLkSKysrqlevnu1JamxsLF26dMnq/3jmzBmsra3lLtkxNTWlb9++zJ49m6lTp8r9HQDo2bMnCQkJTJ06FUEQsvVBUp9BURSjyFC8mg0gCEJ+QB14L/5/vxwFfzjFixdn1KhRTJo0if46OgR//oxs6FBwcwMNjdwnUJArmpqwZAk0bgxdumSkkJYvD3PngsS/pX+dT0WTfpX60cu+F3vv7WXOxTlcf3WdxXcWsyZsDd0qdGNI1SGY5Tf70Zfyr6DYm/5bmJmZYWFhQUhIiNx9y/6LyGQyudNqIyMj2bdvH8eOHePly5cYGRnRoUMHmjVrhoODwzcV6d6/f0/fvn25efMm48ePZ9myZV+lqUmlWrVqREVF0aBBAxITE7G0tMTV1ZVatWpRq1at36rH4Z+0PykpKWFra8v+/ftzVCW8ffs2u3fv5tChQzx58oTSpUtLUgG9d+8e8+fPZ/fu3dSvXx8vLy/27t37F7EPeUlLSyMhIYGAgABq1KiRbZAAGb0Je/bsiY+PD0eOHEEjj/c0ycnJcqVbPn/+nGPHjhEYGMiRI0dQUlKiePHilCtXTnLwIAgCHz9+ZNSoUYwZM0by2qqqqiQmJqKqqirplD46OhpPT0+WLl1Ky5YtJYkBfUm+fPnInz8/Pj4+GBkZ4ejoKPccAGfPniU2Npbjx49Tvnz5r07wskNFRYWUlBQ+f/5MgQIFaNy4MX369JHcv7J79+74+/vj4eFBUlISJiYm1K5dm/r161OjRo2sPU8QBIoXL06lSpXYuXMnt27dolq1apiZmdG5c2fJYkbKysoMHz6cIkWKsH79ermCwaioKC5evMiTJ08IDg7O8iu7z5R83Sb/hyiKn0RRfP27bWYKvp8RI0ZQuHBhbr98yXJjY3j6NEMWU8EPxcUloySzfXuIj4d+/aB798JE5rFzhExJRmub1lzrcY1THU9R07gm8SnxLLm6hBKLS+Cxx4PgV8E/9iJ+Aoq96c/HzMyM58+f/2w3fgsyb36kIIoiq1atonz58gQFBdGhQwfu3bvHq1evmDNnDlWrVs02CNi1axd37tzh5s2beHp65jkQhAzVwYIFC2bVAN2+fZv58+fTrl07ChYsSKtWrTh+/HielA9/Nr/j/pSens7Hjx/R1tZm8+bNOQaCkNFI++XLlyxYsICoqCiuXbtGmTJlcl1nxYoVrFmzhvbt27No0SKaNGnyXYGgIAhZYkVbtmzB2dk5x+Dq6tWrJCYmsmbNGsaMGSNZzORL4uPjefHiBR06dJBsM3nyZCZPnkylSpXYtWtXlrjS/PnzJQc5Hz9+RF1dnZUrV0puSQEZ4jW7d+/Gzc2NfPny5To+IiICPT09OnToQKlSpWjcuDHu7u507doVf39/Pn36lKN9w4YNCQsLo02bNnTp0gVLS0vmz5+flVIuFU1NTaKjoylXrpzk9wigatWq7Nmzh2nTphEVFcXChQsZP368ZHslJSVcXFyyWkw8e/aM9evX07VrV8zMzDAyMqJNmzbs2rWL3r17c+HCBT58+MDSpUsxMzPD19cXc3Nztm7dmuNnURRF7t69i7e3N3Xq1KFHjx5UrFhRsp8Aq1atonnz5gQGBlKlShVWrFhBUFBQ9tcm1+wK/vNoaGhkPXkaHxPDG4AZMyAPik0KckZPD7ZsgZ07QV8fLl7UokwZ2LYt73MKgkCt4rXwcfIhpHcIHcp2QBAEtt/ZTkWfitTdVJeA8IA/VYFUwR+Ampqa5ADnv448weCiRYvw9vbm3LlzbNiwgTb/x95Zh0W1dn343kMjgoKEgYIBIoKgIIJgKwYgJnZ3d+uxu7vBwjh2i92doCC2tIhB9/7+4GU+g5hBz/F4ztzXNRcxT+2ZPc/stddav+XlJfMd806dOvHhwwcOHjz4A6vNHVEUiY2NJSkpib179+Lu7k6tWrX+krkU/D+hoaHSGmwBAQEylZOoWLEi79+/R1tbG2VlZZlDCJcvX87Dhw9JSUnB3NycZs2aMWHChAIpMKampn6loisIAi9fvsyzdMGgQYMIDQ2lQ4cObNu2DQMDg3xzI79FXV0dJSUlzp49K3OfKVOmEBUVRf369WnUqBEqKipyzblt2zZatmzJkCFDePHiBRKJ7Jf12SGtS5cuZfbs2fm2r1y5MkFBQcTGxnL48GG6d+/O58+f8fb2pnHjxhQtWpRGjRrlOYaqqiq9evUiODiYatWqMWbMGJluFnyJoaEh0dHRbN++Xa5+2QQEBKCurs68efN+SnmbhIQEUlNTiYqKYs+ePQwYMIBy5crRunVr1NTUcHR0ZOTIkQwYMIDY2Fg6derEzjwu5Hr06IGzszMvX75k2LBhREZGyvT+fMmkSZOYPn0658+fx9/fH0EQ8hS9URiDCuSmbt26NGnShNiEBMaXKZPluho37lcv619LmzYQEAC1a8fz6RN06ADt2v14qUdrQ2u2ttjKyyEvGVFjBFqqWpx9dRbX7a7YrrNlx6MdpGUqLroV/LNQVlZWGIMyIk8IVsOGDYmNjZW7iDNkCTf4+fkxbtw4mVQbfwRBEFBWVs5RJEPBz+PSpUvY2tri7OzMnTt38gyx/JKtW7fi5OSEm5sbDRs2/K6Ad15YW1uzYcMGXr9+TdeuXdmwYQPly5enVKlS+V74x8bG0rlzZypXrkzhwoV59uwZ5ubmdO/eHV9fX54/f46VlVWeYyQnJ5OamoqSkpK0nIo8SCQSrK2tadq0Kd7e3jL1GTt2LJaWlujq6srl1cumXLlyqKurU7JkSSIiImTuJ4oinTp1YsCAAQwZMoThw4fL3FdVVRULCwvq16/Phw8fUFVVpUaNGqxbt05mA00ikVChQgXU1dVpKYfuxMSJE6lTpw6DBw+WSRjlSzIzM5kyZQonT57k0qVLjBkz5qeLWAmCgEQioX79+l/thXv27GHUqFGYmpqyY8eOXEtwAAwZMgRlZWUaNGiAu7t7gfLjBUFg8uTJ3Lp1iyJFitCvX788c0IVxqACuREEgWXLlqGqqor3mzdcV1GBHTvg2rVfvbR/LcWLw9q1YaxfD4UKwe7dYGUFBVSN/wpjHWMWuS4iZHgIc+rPwUjLiIdRD+l0oBOuR11ZemMp8amy1SpToOCvRh5vlwLZsbS0ZNy4cTg6OvLgwQO5+1tZWXHt2jVWrlzJsmXLZCpBIAuCIKCjo4OqqiomJib079+fK1eu4OLi8lPGV5Az2TXJ3Nzc5PJW6ejoMHr0aF6+fEn79u1xdXWldu3avHnzRq4x2rZtS/ny5aUKmQMGDMgznFBdXZ1q1aphZmaGjo4OKSkpqKqqYmlpScOGDXOtkRgREcGsWbNwdHTEzMyMY8eOsXjxYpYtWyazly0zM5P169dTr1497t+/j6OjIzY2NjL1bdeuHaamppiammJiYsKIESO+KhWQH46OjkyYMEFaB1JXVxdPT098fHxITU3Ns+/evXvx9/dn2bJlBTI4NDQ0yMjIoHLlyvj5+dGnTx+Z8kO/JCkpifXr13Pz5s182/r7+7N582YCAwOZPXu2TPUgs0lOTqZVq1bs3r2b27dvY29vL9c6AdLT06X1VQVBoHDhwlIPuJGREXXr1mX06NEcOHCAM2fOfCVIU65cOUqXLk14eDgXL17Ms8yDra0tR44cYdy4cbRr146PHz/KvdZsTE1NadasmXT9uSGTgMzviCAI7oB7iRIl8pXWfvnypUxjytLuZ7X5p49VtmxZunXrxvr16+mno8O99+9J69OHN3/+CRLJv+IY/2ljvXr1klq14MABFcaNM+LePU2aNoV27T4xevQ7ChUSf3i+FvotaNakGYdfH2ZT0CZexb1i+KnhTD0/lXbl29HZrDPF1IvJNJascxZkLAX/XZSUlH7LfLHfgeHDh1OqVCmaNGnCpUuXZAoL/JKSJUty4sQJBgwYwOjRo9HW1qZatWo0btwYJycnbGxscg0bFEWR4OBgzp07x5s3b5BIJBQrVoxmzZrRpEkT6tSpg76+/s84TAX5EB8fz/Tp06UFwWWV0v8SVVVVWrduzbhx47h69Sq3bt2iTJkyco2Rnp6OIAhoampiYGBAQkJCrjliqqqqDBs2jGHDhiGKIo6Ojty8eZNx48ZhZmaGu7t7jv0ePHiAr68vT548oWbNmlSsWJEnT57w4cMHmRVwP378yPjx42nevDn79+/Ps7j3t3h6elK7dm02bdrEuHHj2Lx5Mz169JA5dFIQBPr06cPt27fZuHEjHz9+5NChQ/j5+XHkyBH27t2bY4SAIAi4urrSp08ftm/fXiBhJkEQ0NXV5d69e4SEhFCpUiWZ+yYkJEjDF5OTk7l161a+pSn27NkjlwDLl8TExJCQkEB6ejply5ZFRUUFAwMDypQpQ+XKlbG1taVcuXKYmppiZGTEmzdvePz4sfTx5MkTnj17RuHChXF0dMTFxQVra2sqVapExYoV8xQcSk5O5t27dxQrVgx/f3/27dtH586d81RUdXBw4OHDh/Tr14/hw4fj4+Mj9zHLw7/WGBRF8QhwpHLlyr3Nzc3zbS9LG1nb/RPn+yvGWrx4McePH+dRaCgbixSh7+PHmF+/Dj16/NJ1/ZvHMjc3x9w8S1l04UKYPBl27SrC7dtF2LoVsgUWf3Q+q0pWjG8ynnXn17Hj9Q6uhlxl3ZN1+Dz1oUuVLox0HIl5MXOZxpJ1TnnHUvDfpCDqcwpkp02bNnz48IE2bdpw//59uV/vihUrcu7cOSpUqMDz58/x8/Pj7NmzaGhokJqaSt26denRowfNmjWTeiOePn1Kz549efPmDfXr16d///706dMHU1PTv+IQFeTD06dPiYqKYs6cOdSsWZOYmJgCXYB36NABY2Nj7ty5Q+nSpfNtL4qitAC6n58f/v7+uLm5MWbMGGrWrCnzuSgIAhoaGlJDskGDBrm2bdKkCU2aNOHjx49cv36dq1evsnbtWubPn0/79u1ZuHBhvt4uPT09zp07h6urK+3bt6dhw4YyrTP7mCtWrEjdunXZsGEDXbp0+Smhi5mZmezfvz9PI2vhwoVUq1aNZcuWMX78eJnHfvfuHT4+PmzcuBF9fX2Cg4PzDCNOT08nKCiIO3fuSB8BAQFUqVKFNWvW0LFjR5mM0aioKM6ePUtqaioVK1akdevWMiu3lixZEj8/PwAWLVrEqFGjePPmDW/evOHSpUtIJBLU1dXJyMhAVVVVWpKnRYsWtGjRgjFjxlCxYkWSkpLk/iy4uLggkUhwcXFh+vTpODk5yXQua2hosGLFCipXrkytWrVo3rw5vXv3LrCwUl7q0nKHiQqCYC0IwiBBEP4QBMHof/8rLwiC/IkGCn5rChUqxOL/KYlOSE8nBmD8eMjD/a3g56CklFWP8M4dsLaGFy/AxQUmTIB8IkNkRiJIqFeyHld6XOFqj6t4VvQkNSOVDfc2YLHKgpa7W3I95PrPmewnoNibFMjCwYMH2blzJyEhIb96Kf9Y+vTpQ1pamlz5Xt/y5cVORkYG8fHxpKamcurUKXr16oWenh7jx4/Hz8+PmjVr0q5dO968eYOPjw9z5swpkCEokUgICAhg9erVBAQEFCgH66/id9qfKleuzOzZs/Hz88PCwoKKFStK5enlYfjw4bx9+1am92HLli0YGxtjZWXFxYsX6devH/fv3+fw4cMFKkEQFhZG2bJluXPnjkxlIooWLUrTpk2ZNWsWNWrUID09nd27d1OmTBmuyZACU6VKFby9venQoQMbNmzIV1kzm6SkJKKjoylcuDD3799nzpw57Nixg7Nnz+Lv709UVJTMkRASiQQ1NTUsLCyYOnUqz549y9UQvHbtGra2tnh4eDBs2DCZxoeswuslS5Zk2bJlzJgxAz8/v1wNwdevX+Pi4oKOjg42NjYcPHiQcuXKsWDBAiIjI7l69Sq9e/eW2Su5Zs0adu7cSZEiRZgxYwZ6enq4ubnJLXiXk7GdmZlJYmIigiAwYMAAjh8/Tt++fblx4wazZ89GRUUFTU3NAt0UUVNTo3bt2gwePFiumxqQVSs2KCiIsmXLMmrUKHR1dRkyZIhc869fvx5BEOjSpUuubWQ2BgVBUBME4U/gPrAcmAKU+N/T84GJcq1Owb+C1q1bU69ePT7ExzPR0BDevYMZM371sv4zWFvDrVtZhqEowpw50LZtGfz9f+48TsZOHPA6QODAQHrZ9kJFSYUDQQdw2uxExzMdOfz0MJnir7nwUuxNCmSlZ8+eXLlyhb59+2JmZoa+vj6enp6sXbuWd+/e/erl/WMQBIFGjRrJlMdTEOLi4pBIJNja2qKvr4+amhpdu3aVSwkxJ2rVqoWKigqjRo3C0dGRwoUL4+LiwuzZs3n8+PFPWr18/I77k5qaGv3792f//v1cvXqVxMREuXPBAOrXr4+mpiZVq1bNU8kTwNnZmcGDB+Pu7s61a9cYPnw4bm5uLFiwIN/ct2/5+PEjYWFh3LlzR+5Q5y9RVlamcuXKMo/RpEkTzMzMGD58OEZGRjRt2jTf/FtNTU1OnDiBvb09Fy9eZPLkyXTu3JmmTZvi4OBA6dKlUVVVpVChQpQsWZIqVarQqFEjevbsyfTp09m2bZvUGMrMzEQikTBlyhTGjRtH+fLlc53XwsKC4cOHc/HiRczMzFi3bp1Mx9iqVSumTJlCtWrVGDZsGAYGBpQoUYJBgwZ9J2BjZGREz5496dq1K7a2tvj5+eHt7Y2Pjw+HDh2Sab4vEQQBdXV1VFRUiI+Pp1SpUnTt2vWnRYuoqqpSvnx5Jk2aRJMmTVizZg0NGjRAIpFQqlSpAo+7du1aYmJiqFSpEubm5vj6+uaZMwjw4cMHlixZQtu2bbGwsGDv3r3o6+vTrVs3OnXqJNf8Dg4OaGhosGvXrlzbyLPzzgIaAJ0BQ+DLV/8E4CrX6hT8KxAEgRUrVqCsrMz6d++4C7BsGSqK3K+/DTU1mDsXLl2CsmUhKEgdO7usQvU/O7XKvJg5Gzw28GbYGyY4T6CIehHuvr9L813NsVxtyaZ7m0hJT/m5k+aPYm9SIBPZX+hxcXEkJyfz/v17Dh06xMiRIyldujTOzs5s27ZNLgGHfyvyqhPmh5KSEjo6OqioqFC5cmW2bNlC27ZtsbW1pWXLltSpU4fw8PAfmkNDQwN9fX2SkpKIj48nMTGRK1euMHXqVKpXr065cuWYP3/+D88jJ7/t/iSKIgMGDGD27NkFvhjW1dXl48ePTJkyJc925cqVY+zYsRw+fJjo6GhOnToFZJVesLKyIigoSOY509PTUVZW5v379wVaczZOTk5cv35d5lzV9PR0JBKJVOjm4cOHPH/+PN9+2bl72WqnoiiSmppKUlISqampUq9VeHg4jx494syZM2zevJmFCxdy/Pjx7zyHz549y3M+URR5/vw5oiiio6PDhw8fuH37tkzHaGNjw+TJkzl8+DDh4eF4enry7t07tm/fTtg3hZDV1dXp1q0bq1ev5vbt23z8+JFNmzahrq7O1KlT850rMzOT27dvs2jRIpo3b06xYsVo3bo1r1694sSJE7x9+zZPVU550NTUxNLSkkuXLqGlpQVkRTQoKSnx8eNHrK2t6dy5M6NGjeLhw4dyjV25cmU2bdrEkiVLCA4Opm/fvhgYGFCtWjUWLlz41fuVmZmJt7c3lSpV4sGDB7i7u3P69Gk+fvzIu3fv2LhxI9WrV5dr/ipVqpCYmEhiYmKubeQxBtsDk0RR9AW+lQl7BZjItToF/xoqVarE0KFDEUWRgfr6ZKanYzBv3q9e1n8OZ2d4+BC8vD6RmgpjxkCdOvBX2OVGWkbMqj+Lt8PeMs52HMbaxgS9D6LXkV6YLjNl3pV5fEr+9PMnzhnF3qTgh0hMTCQlJYWrV6/SrVs3mS5U/u2oqKjkqT6XGxkZGdy5c4cPHz4gCAIqKipUqFCBIUOGsGvXLj58+IC/v/9XF3HLly+nRYsW1K5dm+jo6J95GACkpaWRmJjIy5cvmThxYr610H4yv93+lJCQwOjRo6WepUGDBv3QWGpqanLdWBAEATMzMzQ1NaVF2GUNZUxPT+fEiROkpqZy4MABmefMLvS9ePFibt26hbKyMiNGjEBZWTZpjYcPH2JnZ0d0dDQTJ07k/v37hIWF0bp1a5nXkB/ZnnMbGxtu3LjBp0+f2Llzp7TcjkQiYfbs2fkWUg8KCsLBwYGdO3eyevVqXr9+zcaNG+VejyAI3Lt3j1KlSvHq1Svs7OzybK+mpoa9vT1mZmaEhoZiZmZGvXr1mD17NlevXpXm6WVz7tw5XFxcGDVqFIcPH6ZSpUp4enpSpUoVLl68yMaNG2UOx80NLS0tVFVVGThwILdu3foqB1FZWRlvb2/CwsI4e/YsRYoUYdGiRdSsWZOUFPlvemeLZ2WHzN+7d4/JkydTpUoVrl/PSrkJDAykb9++SCQSihYtirq6OlpaWj9U+znbs56XB1UeY1APCMxjHNkqiyr4VzJlyhSMjIy4GR3NFnV1tC5ehOPHf/Wy/nNoacG0aVEcOwZGRnDlClSpAhs3ZoWR/mwKqxWmm3k3Xgx5wbYW27A2tCYiPoJxZ8dReklpRvmNIjQ29OdP/DWKvUnBT0FZWRlbW1uFMYj8JTzi4+MZOnQo+vr6dOnSBQsLC9avX09kZCTBwcEsXryYxo0bS++6f4kgCEyaNIm2bdvSpk2bH7rwyQtNTU20tbXZu3fvXzJ+Lvx2+9Pz589RU1Nj3759nD9/vkCCJhkZGXTp0oWYmBjmzZvHxYsXZe4bERFBmTJlePHiBd26dePatWscz+V6QhRFXrx4wfbt2xkwYAAVKlTA29ub1atXM2rUKJnmCw0NxcTEBEtLS27fvk2PHj2IioqiSZMmMvW/du0adnZ2WFhYcPPmTaZNm4aFhYXMxysr2bmXz549o1GjRrx69Yq0tDQePXrEq1evyMzMZNKkSXl6gCArRPTevXuoqKgwefLkH1LprV27NiEhIfTv31/mPkOHDiU6OhpnZ2fOnz/PxIkTqV+/Prq6upQqVUrqBW7QoAGJiYlERERw/fp1Bg0ahK6uLo8ePWLjxo307t2bokWLoqGhgYODg0z7hiiKrF27lkKFCtGyZUu8vb2Jjo5m/vz5uRr+giCwaNEi9u3bx6BBg3jx4kWuqsjykpycTFJSEsOGDSMtLQ1LS0s+f/7M7t27KV68ONu2bcPa2pry5cvL5R3PZsuWLXTu3BljY2MmTsw9Il0eY/AV4JjLc9WBvOs3KPhXo62tzYIFCwAYp6zMZ4Dhw3+emokCuWjaNKtQfZs2EB8PvXuDhwf8r0TOT0dFSYVO1p140PcBJzuepJ5pPeJS41h0fRGmy0zperArTz/9ZVuEYm9S8FNIT0+nXLlyBaq59W9DHs/gvXv3sLKyIjY2Fn9/f548ecLly5fp1auXzPL8ADNmzCA0NFQmwQ5ZKFSoEFpaWmhra+Pm5sbSpUt5/Pix3MXEf5Dfcn968+YNcXFxBRbhGT9+PKGhoYSFhTF06FC5asIZGhoydOhQUlJSCA4Oxtzc/Lt8Ul9fX1q0aIGRkRG1a9fm8OHDmJmZsX//fs6fP0/37t1lziUrUaIE8+bNw8PDg+PHj3Pq1Clev34t83ptbW1ZsWIFb968oXjx4nTu3JnAwNzs/x8nISEBiURCu3btKFKkCF5eXsTExNC2bVuOHz+eryBLaGgoGzduJC4ujtGjRxdoDc+fP2fixIls374dZ2fnfL2R36KlpfVV6HFKSoo0iuDL+nwSiQQjIyNq1KhBu3btGDduHGvXrqV79+7SNsnJyURERMj0fguCQEpKCpcuXWLfvn20bt06X3XO169fs2PHDoKCglixYgWGhoZyHass3Lt3T5oLqKGhgYuLizRsevr06QB5KrbmRqNGjahRowbv37/HzMws13byGINbgXGCIHQEsj/VoiAIdYHhwGa5V6ngX0XHjh2pWbMm7+LjmaytDcHBsGLFr17WfxY9vazi9Dt2QJEicPQoVK4M+/b9dXMKgoBreVfOdjnLnd538LL0IlPMZOvDrTQ/2ZymO5py/tX5n33nX7E3KfgpaGpqFqim2r8RiUQis4rhq1ev0NLSYvPmzZQsWfKH5mzTpg1nz56Vq19CQgIHDx5k8ODB+Pv7o6ysTM2aNZk9e7Y0nO7IkSP07t0bIyOjXMfJyMj4K7ySv93+ZGVlRaVKlRg8eDDFixfH2tqaXbt2yfzapKamsnr1anbt2pVrXcBvefLkCevXr6dPnz5Uq1aNyZMnU6hQIXR0dHI8D2NjYwkKCiItLY127doxZswYhg0bVqDPb7ZhdejQIV6/fk1aWhr16tXj7du3MvXX0NCgX79+XLt2DWdnZ3bu3Em1atWwt7dn7969P+2cUlZWRl1dHSsrK+Li4hgwYABRUVEEBgbi7+/P7t27qVWrVq79r1+/Ttu2bbG2tkZJSUlaukNWYmJiWL58OQ4ODjg7O5OQkMCDBw+4ePEilpaWP3x8RYoU4dSpU/meM69fv+bKlSsoKSlJozlWrVol0xynT58mLi5OLoNOXV0dOzs7qlevjq+v709RKRYEAW1tbTQ0NChUqBBVq1bN9dw1MjJCIpFQokQJhg0bRnBwsMzzFC9enOHDh5OUlETfvn1zbSePMTgfOAZs4//j3q8AZ4CToigqrvr/4wiCwMqVK5FIJKyOjycAYPp0iIr61Uv7zyII0KED+PtDgwYQEwOtW8PYsUb8YKh9vlQrUY1drXfxbPAzBtkPQl1JnRPPT1Bvaz2qb6zOn4//JCPzpyjcKPYmBT+EhoYGampqjBgxgnHjxv3q5fwjkEehr0WLFmhpadGvXz+5Qktzoly5crx69Urm9mfOnMHS0pKVK1dibGzMnj17SE5O5sqVKwwZMgRLS0uZjqVEiRI8evQIXV1dmjZtyooVK3jw4IHMBnEe/Hb7k0QiYfz48Tx48IBr164RHBxM586dZRJDgSyBJl1dXZycnGjQoIH0PcmLbt260b9/fzZs2MDnz58ZMWIErVq1YsKECTnWkuvXrx9Pnjzh0qVLaGpq0qpVKzp16vRDojHh4eHs3r2b6Oho4uPjOX/+vFz9IyIiiIuLIyMjg5SUFO7cuUP//v2/E1aRBy0tLTQ1NdHS0qJr1648evSIhw8fsnbtWoYPH06zZs1YtmxZvmVgRFFk4MCB7N27lx49ejBw4EC5vPZhYWHY2dlx8+ZNpk+fTmhoKEuXLs1TsTQ/snPZ1NXVUVVVZdiwYTJ5kKdMmcLx48fR0NBg1qxZHD58GHd3d5nm3Lp1K2XKlJGp3Eg2RkZGnD9/nmXLljFt2jSMjIyYMWMGkTKGWn348IGNGzdKQ1EdHR0ZM2YM3t7eBAYGEhcXx82bN3P97mnZsiXz5s0jNjaWFStWYGNjQ+nSpRk9ejQ3b96U2ThNSkrK9TmZjUFRFDNEUWwH1AYWARvJkkmuJ4piR1nHUfDvxsbGhr59+5KRmckQPT3E2FjII05Zwd9DqVJw6hSsXAkaGnDokA5WViDnDfgCUbZoWVY0XcF5j/NMrT2VYprFuBN+h7Z722K20ozVt1eTmJZ3jkNeKPYmBQVBIpFQqFAhSpQowbRp0wgJCWGGoixOgZBIJPj5+UnV/QoiPJONnp4ehw8fpk+fPuzZsydP5c9Dhw7Rvn171q1bx5kzZxgzZgxubm4FynEzMzPDxsaGT58+ceLECcaMGUOtWrXQ0tLCzc2NI0eOyF3iAH7v/en9+/d069YNCwsLHj9+LHOJBT09Pd68ecO+ffsICAjAy8uLIkWK8PRp7hGxt27dknqapk+fTnp6OgcPHsTFxQU1NTV27NjxXR9BEKhcuTLTp08nMDAQQ0NDKlWqxMiRIzlz5oxcxzpz5kwsLS25fPkyffv2JTo6mq5du8rUVxRFqlatSokSJQgPD8fLy4udO3cSGhpKdHR0vkqsoigSHBxMUFAQSkpKqKqqUqpUKTp27Ci9KREbG8vGjRul70GvXr2IjIxk+PDhrFixgtq1a+ep2CoIAnfv3uXatWukpaXh4OAgV4ho//79ycjIoEmTJlStWlVmYZ3cePjwIcuXL8fOzo4VK1YQERHBmDFjZOq7detWhg0bRnx8PGPHjsXY2JiBAwfm2+/Dhw80atSIx48fU69ePbnWKwgCrq6uDB8+nOjoaGbPno2JiQnm5uZ4eHgwZcoUfH19uX379leiNufOncPQ0JD58+dLc1GvXbvG3LlzadmyJWXKlJE5vBWy8kaTkpIICQlhyZIlNGjQAH19ff788898x8jL4yp3UR9RFC+LojhJFMU+oiiOF0VR9qxgBf8JZsyYgY6ODudjYtgrkcDmzXD37q9e1n8eiQQGDoQHD8DaOonQ0Cxv4dChkE+++U+hqFpR/qjzB2+GvWF109WULVqWlx9fMvD4QMosLcO0C9P4mPKxwOMr9iYFuZGSksKePXvo0qULysrKmJiYMHr0aM6fP09oaCijR4/+IREFBVC4cGEOHTpEYmIiI0eOLPA4zZs3p2jRomzYsIFevXpRrlw5DAwMaNWqFXv37v3Kw2RnZ0dGRgblypX7GYfw1UVZcnKytATJsWPH6NixI3p6egwfPrxAY/9u+1NcXBw1a9YkPT2dffv2yV2vTxAEzp49y+fPn6latSo7d+7Mdwx1dXWqVKlCp06dmDhxojTkWEVFhRo1auTZV1NTk0WLFnHlyhU0NTVxd3fHyMiIkydP5rvWjIwMTp8+zcaNG9mxYwczZszI0RuZ17Fu3LiRLl26EBkZiYqKCm3bts0zZDo1NZVTp04xYMAAypUrR7169VBSUmLx4sVEREQQEhLC9u3b6datGxUqVMjRYFi1ahX9+vWjcOHCDBo0KN9zUxAEatSowYABA1BWVqZdu3YyH+P69euZPHky+/fvp3z58jg4OLB//36Z+39L6dKlUVZW5tSpUzLnFsfHx9OrVy8sLCxYs2YNxYsXp0OHDuzfvz/PG3mHDh3CyckJQ0NDdu3aRe/evX9YRCo5OVma03rkyBFmzpxJ3759adCgAQYGBhQuXBhLS0tWr14tFSTbtm3bD6uffklGRgbx8fF8+PCBbt260apVq++8hElJSdy5cwcNDY08Q4jlNgaFLEoIglD224f8h6Lg38iXX5gjCxUiQRSzLI6/SCFOgXyYmYGv71tmzABlZVi+HKpWBRnLDP0wmiqa9LfvT/CgYPa03oN9CXveJ75n6sWp1D1cl8HHB/Pqo+xhYtko9iYF3xIUFMTgwYMpWbIk69ato3nz5oSGhvLq1Svmzp2Lvb39TytYrCCraPOff/7J9u3bZc63+pZsjy38fz3I6Oho9u/fT48ePdDV1aV9+/bcvHmTkiVLMn/+fFxcXLhx48bPPJTviIuLIz09vcAXc7/b/qSiokKXLl3Q19fH3NwcDQ0NrK2tGTFihExet0+fPjFp0iTu3LnD3bt3adGixXciMF9y+fJl5s6di5eXF2ZmZhgZGRESEoKjoyO7du2S2eA3MzNj4sSJFC9enOTk5HzFQZ4/f07NmjWRSCTUrVtXpjly49OnTygrK2Nqaprj86Iosm/fPtq3b4+hoSHTp0/HxMSEw4cPExISws2bNxkyZIjM4ZvGxsaYm5vz+vVrrl69ytGjR2XKTzx79ixNmjShWrVqMh+bkZERvXv3Zv/+/WzevJmAgAC5RIG+pWjRolSqVIkVcuhKqKioEBQUhL6+Pi9evCA8PJwdO3bQokWLPF+zYsWKYWFhgampKdevX+fy5ctMnTo133qM8iCK4lch5erq6ujr61OuXDm6d+/OkydPCA0N/a58xs8iMTGRkydPsmXLFpKSkli/fj0eHh4YGhqyf/9+Bg0axLFjx3LtL7OfVxAEPWAV0CKPfvLHZvxFCILgDriXKFEiz9AEgJcyFmKTpd3PavO7j1WtWjUqVarEkydPmKWhweyrVwlftIi4b+K6f+dj/J3Pm7dvX9KmDVhYqDF2bHGePlXD0VGkX78Y+vWLQUXl71mXtbI1W122cuvdLTYHbeZixEVW3l7J6juraWzcmB4Ve1BZt3Ke4/5ue5OCv4eYmBjq1KlD3759uXPnzlcKdQr+OnR0dGjRogWHDx/+ofp0OZF9IbVnzx4iIiK4cOECvXr1okSJEnh4eHDmzBmsra1/6pwaGhooKyuTmZlJjx49WLp0qVz9f9f9SV1dXSpFb25uTnBwMP7+/vj7+3Po0CGePHmSp7x+bGwsFSpUoGrVqpQvXx43NzeaNm2Kg4NDjuFq06dPl+botW3bls2bN2NiYiJ3sftHjx7RsWNHKlWqxJYtW9DT08uz/bVr14iMjOTjx494enpStWpVPn/+TLt27ahXrx4q2V+G+bB69WquXbvG3bt3c1WrTUhIYOTIkXz69In9+/fLHar4JYmJiejp6VG7dm3ev3/PgwcPmD17Nm3atMlXgKVMmTLMmjWL8uXL07hxY4oXL87gwYPzNZyzuXz5MmpqavTp0wdDQ0OMjY1p3749derUoXjx4vn2j4iIYNWqVQQEBFClShWZ5oSsOn1+fn4MGDAAc3Nz1NXVcXR0xNPTk9q1a1OuXLkcb+7VrFmTmjVrSuceP3681Gja9xMU9bLPkRkzZlCjRg0qV66Mjo7OV21SUlJITU2VWVBJHjQ1NaXHHRERwePHjxk+fDgWFhZS4zm/81ieoN9NQF1gJRAE/KNrBoiieAQ4Urly5d7m5ub5tpeljazt/onz/YqxNmzYQM2aNVmUlkZPoNzSpdC/P3wj2/47H+Pvft6Ym2eVoZg0CZYsEVi1qhg3bxZj2zbI/j77O9ZVsWJFutTqwpGbR9gXsY8d/js4/vY4x98ep55pPcY4jaFRuUa5eXF+q71Jwd/D5s2bKVu2LFOnTlV4//5mKlWqJLPYiDyoqqqipqZGmTJlOHjwoPT/2YIvzZs3Jzg4WOYL+C+JjY2Vio9oaGggiiIODg54eHhQv359rKys8vRs5cFvvz9lZmaioaGBtrY2c+bMoXPnzvnmjJUuXZqHDx9iZWVFQEAAT548Yfny5QiCQHR09HflW7JVHi9dusTZs2fp2LEjhQsXJiAgQOZ1xsbGUrNmTVauXEmnTp1kyh3t0qWLtB7igwcPuH//Pnv27GHLli2oqakRGRn53YV9Tqxbtw5BEOjdu3euYi6ZmZnMnj2bwYMH4+rqSlhYGAYGBjIfXzabNm1i2LBhWFlZUbt2bRYvXoyhoSE2NjYy9W/WrBmhoaH4+/tz8uRJZs+ezcyZM/nw4YNMwipLly5lyZIlvH79mmHDhnH48GGpV3LixInMnDkz176JiYmYmZmRkZHB+PHjmTRpkqyHDWQZPj4+PlSoUIFJkyZx9OhRjh49CkDfvn1Zu3Ztnv0NDQ1JS0tDTU1N5jqU+aGsrExSUhIxMTFSo/Nb1NTUaNq0KaNGjeLIkSNyjZ+ZmflV7rSKigoSiYTChQvj4uKCq6srLi4uVKxYUbpHBQYG0rNnT0aOHMnOnTvzPwY51lMXGCqKoo9cR6HgP4uTkxOdO3dm27ZtDNfR4XBYGMydCwqRhn8UGhqwaBG4u0PXrnDnDtjaZr1VjRr9vWsxK2KGj4MPM+vNZNmNZay7u45zr85x7tU5rA2tGe00Gi9Lr2+7KfYmBd/Rt29f9uzZw7Bhw1i0aNEPCx4okB1NTc181SPzIjvvRUlJCS0tLZKTk6lSpQoeHh40aNCAatWqffd+enl5sWrVKg4fPkyrVq1kmkcURbZs2cLatWt5/Pgx+vr69OzZk549e2JnZyezUSkIAm/fvsXb2zunp3/r/Sk+Pp7o6GiaNWvGtm3b5PZsfPk+CYLAjBkzcq3jWbhwYZo1a0b9+vXZvXs3VlZWxMTE5Ovdy0ZTU5P09HTatGkjt4iQnp4e9evXp169ehw+fJiIiAgyMjLQ0tKSqb9EIiEgIIBevXp999y7d+9o3749ly5dQktLi0GDBtGtW7cCGYLbt2+nV69eDB48mKZNm1K+fHlMTEzkFm0SBAFra2vpcW7fvl0uhU1BEDA1NZXWrlNTU8PCwiLfvEVNTU3u37/Pjh07mD9/PkuXLuXUqVPY2dnJtf6MjAwKFSpEeno69evXp0ePHjRp0iTPPqmpqdSpU4cHDx6wZ88eHB1zK//5PaIosmPHDlatWoWqqioqKiqYmZnh6OhIjRo1qFKlChYWFnmO4ezszMiRI0lLS8t1b0lNTeXJkyfcv3+fe/fucf/+fR4+fIiWlhZly5alTp06eHp6Ymdnl6cX1tjYGD09PZlLrcjz7fgBUNQIUCAX8+bN4+DBgxz5/JnjQNMFC6BHD8glpl7Br6NOnawSFEOHgo8PDBsGNWqUYvduKF36711LKe1SLGi0gIm1JrLuzjqW3VzGo6hHdD7QmQlnJ3zbXLE3KfgObW1tTp06Rfv27alXrx579uzJs8acgp+HioqK3CUmnj17hq+vL+fOnePJkyeULFkSLy8vPDw8qFGjRp4hidm4ublx/fp1mYzBd+/e0aVLF969e8e8efNwcXEpcAhXlSpV0NXVZfDgwTk9/VvvT5qammhoaHD69GnOnz+f7wV3XmRmZsoUFqiqqsq0adMYO3YsRkZGmJiY4OXlxeDBg/OsD6esrIyuri4fP37Mt/D6l4iiyNatWzlx4gTnz58nMTGRmjVrMmnSJJmNykuXLhETE/NVMfRstLW1adeuHRYWFvj7+7Ny5UrWr1+PtbU1VlZWVK1alfbt28s0l6OjI4sXL+bZs2fSnxEREaipqaGkpISNjQ2NGjWiffv2lClTJt/xTExM5Kop+iU+Pj5s3bqVIkWKMHLkSEaNGiXTZ+jx48dcunQJURRxcXGRaZ3fIpFIyMzM5OLFizg4OMjUR0VFhZ49e7Jw4UJatmyJpaUlffv2pX///rlGj2RkZPDgwQNmzJjBixcvmD17NnZ2dhgZGckdcRITE/OdwZ2UlISPjw93797l/v37BAYGYmpqiq2tLba2trRs2RIbGxu5BI0AxowZw5kzZxg0aBDR0dHo6urmeX7JE/OwAugnKOJtFMhB8eLF+eOPPwAYqqVFSkoKyCFnrODvRVsbvL3hwAHQ14cbNwphZQVbt/4a/Z8i6kUY6zyWV0NfscljExbFLAiJDfm2mWJvUpAjurq6nDhxAhcXFxo2bMiHDx/y76Tgh1FWVpbZU5Gens78+fNxdHQkNjaW8ePH8+7dO0JDQ1m0aBG1a9eWyRAEKFWqFKGhoTK1zQ4JvHHjBg0bNvyhXB41NTVKly5NQkJCTk//1vuTRCJBWVmZ5ORkmcs1ZGZmEhgYiI+PDyEhIQiCgJKSEqVLl5ZJ4EQikeDp6UnRokXJzMzk+fPn7Nq1S6b6k5UrV85TKCMn0tLS2LJlC7t378bT05NHjx5x5coVGjduLPMYmZmZxMbGYm9vz9WrV796Tl1dnd69e7Ny5UouXLjAxYsX8fLy4urVq6xevZpdu3ZlXRvJQLly5Rg+fDirV6/Gz8+PwMBADh8+jL6+Ph8/fuT8+fOsX7+eJ0+eyDSeubk5lSpVkjt3LjMzk82bN5OZmcmlS5eYNGmSzJ+hP/74A2dnZ6Kiojh48KDcSs5hYWHs378fiUQiV0i4IAj07NmTPn36kJGRQUBAAKtWrfqq/l5GRgb37t1j8eLFeHh4UKxYMbp06YKtrS137tzB3d2d4sWLFyj1QBAEMjIyKFKkCJ6enuzcuZOnT58yceJEgoKCWLlyJe/fv+fx48ds376dkSNHUrduXbkNQcgyMq2srOjTpw/ly5dHRUUlT8+vzJ5BURQXC4JQAngiCMIZ4FsNeFEUxT/kXrGCfz2DBw9m48aNBAUFsURFhXH79sH58/CDyl0K/jo8PcHJCTp0iOPs2cJ07QqHDsHatVlG4t+NmrIaPWx70M2mG8eCj+Ex1UP6nGJvUpAXEomEmTNnEh8fz8CBA2XKn1DwYygrK8vsGdy6dSurV6/m9u3buaowyoqKiorMRmjDhg0pV64cY8aMYdGiRQWqTSgLv/v+FBsbS0REhFx16f78809p2QIbGxt2796Ns7OzzEa9KIo4OTkRGhrKwoUL8y3TkN3n8uXLJCQksGvXLvr06SPTXJDliTx37py0xqG7u7tcuYoA5cuXZ+zYsYwePZratWsTHh6eYxjopUuXqFOnDgAlS5akX79+ODg4EBcXx7t37+QWuurYsSMPHz6kRo0aTJ06FTc3N4oUKSJT35iYGJYsWcLjx49ZuXKlXPNKJBIWLVpE3bp1adq0KSEh392kzZX27dvz6NGjXMOFc+PevXusXLmSAwcO0KFDB86fPy9TPue3PH78GD09PTZs2ICnp+dXht369esZMGCAdJ137tz5KaVrstWI4+PjgaxyF4cOHcLW1pabN2/SsmVLmjZtipmZ2f/0HMylv1eoUIH4+Hi5jOYv38/Dhw/TvHnzPEP3ZfYMCoLQFBgImP/v56QcHgoUfIeqqirLly8HYKYgEAZZsYg/UJhYwV+PgQGsXBmOtzcULgz790PlyiBn7vNPRSJIcDf/WpFWsTcpyI/sXKVTp04RERHxq5fzr0eeu+bNmzcnPj7+p7wv8oSnCoLA0aNHefDgAe3bty9QmJyM8/zW+5O2tjZlypTh1q1bGBsbs2fPnnz7eHl5ERgYyNSpUwkKCqJly5ZMnTr1KxGM3EhKSuLu3bu0b9+elJQUfH198zUEAVxdXenZsyedOnWS2zOYjY2NDdbW1hQpUoTY2FiZ+rx69QobGxtsbW25e/cuw4YNIzIyMtd8wNq1axMXF8eNGzf4448/ePfuHbNmzaJChQpYWFjIHYbbtm1bRFHE0NBQ6kmVhStXrmBqasq1a9e4ePGiXGUmIMsIrV69OoaGhvj6+sr1+RkwYADnzp3j3r17MvfJLoVx7tw5li1bRteuXWW+uZCNKIrcuXOHhw8fYmpqSosWLb7bq/r3709wcDBLliwhOjoaGxsbGjRowPTp0zl37hyRkZEyebezyS4fYmRkxM6dO7G0tKRXr17s27ePV69ecefOHSpUqMCjR4+kob916tQhLi4OX19f2rVrR9GiRbG0tKRly5ZyHa88yBMmuhi4DVQB1ERRlHzz+MdJIyv459CwYUNatmxJQmoqowsVykpOW7/+Vy9LQT4IAnTrlvV21akD796Bhwf06gUyflf+HSj2JgX5oq2tjb29PXfv3v3VS1HwBXp6emzfvh1PT88flnlXVlYmLCyMZ8+eyXTBpqury6lTp4iJiWHEiBE/NHce/Nb7U2BgILGxsaioqNCnT588C1d/ScWKFfnjjz8wNzcnNjaWJUuWULZsWdzc3AgLC5O2S05OZt68eXh5eWFhYYGuri69evXi1atX1K9fn0WLFsk0X7YxValSJbnzVb+ka9euBAUFYWRkxOrVq/NtP2PGDMzNzQkNDWX79u0sXLiQYsWK5dlHS0sLBwcHevfuTc+ePaWePAsLC4YMGSLXetu2bcvy5cs5e/YszZs3x9DQEAMDA5o3b86ff/6Zaz9ra2tGjhxJUFAQ7du3l7tO58iRI5k3bx4qKirUqVMHdXV1KlSoQI8ePbidT9HiQoUK0aVLF8aOHSvzfFOmTGHFihW4u7uzfft2XF1dpQq3VatWZdCgQTx69CjHvlFRUQwePJjSpUvTsWNHTExMWJ/H9WeFChUYNmwYp0+fJjw8nKFDh5KQkMDkyZMxMTGhSJEidOrUSaawZXV1dQwNDTl69Cg3b94kICCADRs20LJlS2m+JmTdnCpWrBg1a9akR48ezJ07lwkTJlChQgXU1dWxsbGhX79+Mr9eX/Lx40fpHLkhj4BMaWCIKIr+BVqNgv88ixYt4vjx4+xMSKAvUHvyZCRy3o1S8GsoUwbOnoWlS2HCBNi0KevvLVsgj3z+vwvF3qRAJkqWLElU1G+r5fGvpXHjxvj5+eHq6oqOjg4NGjQo0DhVq1aV3s1XUlLCwcGBJk2a4OLiQtWqVXMMBVVTU2P//v2YmZlJ65fJSlpaGlevXuXcuXPcuHFDKmrxDb/1/nTy5EmqVavGvn375A7rA6SGmaqqKikpKbx//57Y2Fipty8tLY03b97w6dMnMjIyEEWRyMhI1NXViYyMZNSoUdSsWZP69etjaWmZayjxwoULGT9+PGPGjMHf3x9lZWWKFy9O3bp1cXNzw9HR8bvC5IGBgQQEBBAYGCh9BAcHI4oiRYsWJTo6Ot/js7GxwdvbG0NDQ5ydndHQ0GDs2LHY29vL9PrExMSQmJgoVaT9448/ePbsGR4eHjKFjAqCgJOTE/r6+mRkZKChoUFMTAyBgYF5lnfR1tbGw8OD27dvc+nSJZm8tl9SuXJlYmNjOXbsGE+fPkUQBEJDQ3n8+HGOe2x4eDgnT57k9OnTnD17lqJFi8qs+gtZwjmWlpbcvn2bR48eERMTw71794iLi+PVq1cULlxYWhrmW1asWEFYWBh+fn5YWFggiqJM0QsxMTHcvn2bwMBAwsLCiIuLIzMzk6SkJF69esXnz5/zHWPQoEGEhYUxadIk7t+/T2ZmJmXKlKF69erUr18fGxsbLC0tc8x99PX1pUiRIoSEhKClpSXTmgMCAqQKpA8fPuTRo0ckJiaio6ODl5dXrkawPMbgfaCEHO0VKPgKExMTxo0bx9SpUxlcqBD3Pnyg2IoVIKMSlIJfi0QCI0aAqyt07gz372d5C7t312fVKvgLaqnKimJvUiAT8gibKPh7sbGxYc+ePXh5efH69esCCbqUKFECIyMj3r59C8CZM2e4fPkyqqqqKCkp0blzZ3r06EGVKlW+urDS0dGhc+fO7Nq1Syp4lh/37t2je/fuKCkp4erqyuLFi2nbtm1OpQh+6/3J2dmZP/74g127dtGjRw+5QoBTU1N58+YNrVu3xsvLi0aNGn1X2Lxw4cJfeeCSkpK4cuUKJ06cYO3atbx584bbt2+zdOlSSpQoQVBQEIULF/5uLg0NDZYuXQpkiRI5OTlx+/Ztnj59ytq1a+nevTubN2+Wtg8LC6Nhw4ZERERIDXg9PT0aN25MZGQkxYsXJyMjg0OHDmFhYYGRkRGFCxf+7viHDBnCkCFDeP/+PT4+PowZM4aTJ08SHR0tU6mGevXqUa9ePTIyMnB3d+fEiRPcvn2bNWvW8OTJE5le71mzZnHmzBm0tLSYO3cu3bt3z1dNVRRF+vbty+3bt7Gzs+PGjRtSMRlZ5jx69CitW7dGIpHQv39/RowYkWvRd8gq9XP06FEkEgnt2rWjdevWaGpqkpmZKXP9zrFjx7Jv3z68vLxo0aIF06ZNo06dOnmW/4iKisLHx4d9+/ZJSz/Ieg6PGjUKHx8fIGuPaNu2Le3ataNt27aUL19epjE0NTVZtmwZkKW+2r17d4KDgwkODmbXrl2oq6uTmpqKpaUljRo1onbt2jg6OlKkSBGcnJzo168fxYoVo1OnTvmWiYiMjMTe3p709HSGDx/OsGHDqFKlCqqqqujq6qKsrJyrMShPmOgQYJQgCDlXVFSgQAbGjBmDiYkJ/gkJrBUEiuzaBXImaiv4tVhawo0bMHlyloG4ebMudnZZxuEvQrE3KZAJeQRGFPz91K5dGxsbG/bv3//TxkxJSSEuLo5Pnz6xevVqHB0dqZuDeJmNjQ1Pnz6VaczLly9Tr149Ro0axd27d5kzZw7du3fPzXP2W+9P9vb26OrqMnToUBo1akRiYqJM/VJTU5k6dSqVK1fmzz//pHXr1t8Zgl/y7NkzKlWqRNGiRRk8eDAvX77E0dGRoUOHcu7cOT58+EBYWFiOhuC3REdHSwVg7OzsuHTp0leGIGRFCYSGhpKamkpkZCT3799n+/btuLu7ExMTw/79+5kxYwaenp6Ym5ujo6MjVY29du3ad3MGBgYyYcIESpQowYMHD+Sq2QdZNTX9/f1RV1dn8+bNPHjwQGajZd68edSpU4f4+HgGDRpEz5498+0jCAI3b97k2bNnCILAggULqFy5MkWLFuW+DF/mLVu25MWLF1SvXp21a9cyb968PNd75MgRoqOjOXr0KGZmZmzcuBEPDw90dHRkCrcEmDAhq6xU7dq1mTRpEm5ubvnWgRw9ejSpqakcPnyYXbt28fjxY0JCQmTKcfT29iY2NpbLly8zY8YM0tLSWLNmDRUqVMDMzAx/f/mc/d++PtmCMqmpqdy/f58FCxbQrl079PT0aNq0KW3atOHu3bsoKSlRp04dXFxcOHDgQK5h0EZGRjx79ozu3bvj7e2NlpYWpUqVwsDAIN86u/IYgwcBY+CSIAixgiC8/ebxRo6xFPxH0dDQYMmSJQBMVlXlfUZGlpjMr6hboKDAqKrC9Olw9SqUKZPK48dZDt7Zs3+JLtBBFHuTAhmQR+VSwa+hdu3acglLyENGRgaCINC3b9/vntPW1pYq/eWHhYUFSkpK2Nvby3LBfpDffH9SV1cnISGBCxcuUKtWrXxFSp49e0bVqlV5+PAhu3fvlmmOmTNnUqFCBcLDwwkKCuLgwYOcPXuWpUuXyi2vb2RkRMWKFREEgeDgYBo0aECpUqXo2LHjd0JFSkpKqKqqEh0dzb179zh//jwxMTEoKyujoqJCyZIlqVWrFoMHD2bNmjVs3749xxDQ6tWr4+PjgyiKVKxYEQcHB5nLO2STfV5NmTKF69ev59t+x44dNG7cGD09PR49eoSNjQ0LFixg7ty5+fbdunUr7u7uODk5SWvbDRo0iH379mFtbS3TepWUlMjMzMTAwECqwJkXxYoVo0mTJvTt25dy5cqhpqbGyJEjKS1jIWNjY2OOHz/OmDFjGDhwoEzlOObPn8+aNWtQUVHhzz//pEWLFpQrV45ChQrh4uLC2bNn8+xfuHBhnJ2dGTx4MN7e3kycOBHIOsft7Oy4fPmyTGuXhczMTFJTU9HX15fmU5qYmDB//nxWrlzJlStX6Nq1K8WKFWPq1Kk5jlGqVCnWr1+Pr68vbdu2zTWP8lvkCRM9Cyiu2BX8MM2bN6dRo0b4+fkxXkWFjefOwcGD0KLFr16aAjlxcIADB16zaZMZq1bBxIlw9GhWLmGFCn/bMhR7kwKZyL54UfDPxdDQkODg4J82noaGBkpKSgiCgIuLC0OGDMHV1fW7dvKEEBcrVozFixdTt25d9u7dS82aeTr9fsv9KSIiAj8/P65du8arV6+QSCSULVuWRo0a5SvOM3/+fNzd3Zk9e7bM3q3GjRuzadMmypQpg729PY0bN6Zx48YyGyZfIggCRYoUQRRFEhMTUVdXJy4uDsgqifDw4UMuXrzIrVu3uHXrFhEREVSrVg17e3vq1q0rrc1maGiY7/pFUeTDhw8EBgby5MkTEhISkEgkaGtr5+uN+RYDAwMSEhJISEjA3d2dhw8fUrZs2Vzbx8fHc/78eRYuXMjgwYPlmis7SiI7n8zCwoLWrVtTu3btfPuePn2aFStWcOXKFTw9PTl+/Ph3+Zg5ER4ezty5c9m+fTudOnXixYsXctcYtLOz4969e9SvXx8rKytOnjyZ52tkZGREq1atMDc3p3DhwmRmZhIWFkZaWppMdQrT09M5c+YM9+/f5/79+1y4cAHIeq+cnZ3z9Uzmh6qqKurq6iQnJ2NlZUXz5s0ZPnz4d+Nm38TMzMxEEIR8192wYUNWrFhB/fr1WbNmDa1bt86zvTx1BrvJ2vafgCAI7oB7iRIl8g39ePnypUxjytLuZ7X5t481bNgwzp07x+a0NPoB1kOG8LpcOcQcpIJ/12P82WP9U9ceGfmSwYNFbG01mTjRiOvXVahSJZMxY6Jp1+4T2d+lP3NdX/K77U0KFCjIHXnKQ3zJp0+fuHjxIm/evJFe5Dk5OeHh4SEVH8krN0ler3HXrl0xNDTE09NTKrKSE7/j/vT+/Xusra2pV68eNWvWZN++fbi6uuZ5AZqSksLevXtZtWoV4eHhXL16Va78wvbt29O+fXvi4+O5cOECmzdv5sCBAzJ5yHLi8+fPFCpUiIEDB9KqVSvs7Oyk73/Xrl05e/Ys6enp1K1blylTplCzZk1MTExyXHNmZiYRERG8ePGC58+ff/XzxYsXiKJIhQoVqF+/Plu3bqVp06ZyG4LfkpiYSLVq1fjzzz9zFVTq27cvgiAwdepUBg0aVKDX+/nz59SvX5/jx4/z+PFjgoODUVVVzbVfRkYG06ZN48aNG5QvX57Xr18zZswYunTpgr29fa7hsTt37mTo0KF07tyZJ0+eYGRkJPNavyQ2NpajR4+SlJTE8+fPOXLkCEOHDs23X3a48eTJk/njjz+wtraWKVcxODiY/v378/r1a5SVlbG3t2f48OEMGDAg3xqHiYmJBAcHExQURGBgICdPngSyblYULlwYGxsbmjRpQp06dahatSopKSk8e/aMY8eOERwczLNnz6SPxMREjI2NGTduHN26dcsxJ/T9+/dSozX7kZCQwM6dO3+eMfi7IYriEeBI5cqVe8uiDiargtjPGuvvnu+fNpa5uTnDhw9nwYIFDNLQ4FpoKGZHj2ZJVf7Cdf3Tx/onr93cHFq2hEGDwNdXwrRphty4YcimTZBdJupnrkuBAgX/PuTN63z37h1Dhgzh2LFjODo60qBBA3r27ImLi4tcF+QFMUIbN27M+vXrad68Oc+ePZM7T+yfyps3bxg2bBhTpkyROTzT0dGR+/fvU7JkSQYMGMDt27eJjY0lPj4eOzs7mQ0VFRUVEhMTCQ0NlbmMxbe8fPmSly9fsmXLlhwVK0+ePEliYiL37t3j+vXrHDhwgDFjxqCjo8ODBw++ql9348YN6tWrR1JSkvR/6urqVK9eHVdXV5ydnbG0tMTIyAhVVVUCAwNzVK2Vl8zMTD59+kSjRo0ICAigUqVKObbbsWMHHTt2lMsQzObIkSM0b94cURSpVKkS/fv35+bNm5iZmWFgYJDjmEpKSly5coWkpCTu37/PgAEDOH/+PJs2bUIikbBlyxY6der0VZ9jx47RoUMH6Xf7oUOHMDMzQxAEbGxspKU18iMkJIQKFSqgpaVF//79GThwoMxG5cmTJ1mzZg0zZszgxIkT2NjY4ObmJlVizY1KlSrx6tUrIiIiuHnzJmvWrGHChAlMnDiRFStWMHDgwBz7DRgwAG9vb8qXL0/FihWpWLEi7u7udOvWjY4dO36XP9ugQYOvQlazX5tatWoxevRo0tLSKFWqFDVq1Mjx/OrSpQvbtm0DshSS3dzcmDNnDk2bNiUhISFfBdU8d0pBELoAx0RRjPnf73kiiuLW/NooUJDN5MmT8fHx4WZ0NFuBbrNnQ9eu/285KPjtKFoUduyA5s2hf384dQqsrGD1ashHCEte9ARB0FPsTQr+Ti5fvszZs2dxcHD44fAgBTkjj4fu1q1beHh40KVLF6KiovJVUMyLglxMA7Ro0YINGzawa9cuunfvnj3Wb33tVK5cOUJCQihdujRNmjRh27Zt+Rb49vPz4/Hjxzx9+pTg4GA2bdrE06dPef78OSoqKpibmzNjxgyaN2+e6xje3t6MGTMGVVVV5s2bV6Ai2+Hh4Tg5OdGgQQNa5JF6oqmpibOzM87OzkBWuGe9evUYPXo0Xl5eODg4oKysjIODAwEBAURGRhIREUFkZKT094cPH3Lq1CkiIiJ49+4d2trapKenI4oi9vb2rFmzBjMzM7mPAbLCB9XU1Fi6dKlUBTMnli9fjoeHBx8/fqRp06Y4OjpSvHhxmeZo2rQp/v7+jB49mhMnTjB48GDU1dWloYjGxsbY2tqyYcOGr7xgO3bsYN26ddy/fx9NTU1peKO7u3uOipdNmjQhICBAqqJ569Yttm/fLvVc6erqYmtri7e3N8bGxrmut1SpUhw8eJCZM2fi7e2Nk5MTTZo0kelYVVRUGDJkCN27d2fMmDGsXbuWrVu3kpaWhoGBAU2aNMHb2zvX/sWLF8fT05PIyEj8/PwoVKhQnuenubk5tWrVYt++fTJ9V+zdu5fXr18THh5ORESE9PH27VsWLFjA8+fPef/+PYIgUKhQIYoXL06lSpVYsWIFxsbGrFy5kj59+hAYGCj1RI4YMYKOHTtiYGCAjo4Ox44dy3X+/G6b+QA1gJj//Z4XIvCP2tAU/LMpXLgwo0ePZsyYMYxVU6NFQgI6Y8fC9u2/emkKfpC2bcHFBXr2hBMnoH17aNq0ONu2gQypBbJgApRDsTcp+Jvo2LEj8+fP5/r16yQlJWFiYkKDBg1o0KABjRs3/iFDRMH/I09ep0QiQUlJiWnTpv1Sr1zz5s25cuWK1BjkN792UlFRISkpCU1NTSpXrpxn2GA2xYoVo3bt2t/lnFlaWvLs2TMiIyPz9eJk561duXKFAQMGMHLkSBo0aED//v2pWbOmTAa7jo4Offr0YenSpRQuXJhmzZoxdOjQ/PI6EQSBNWvWsG7dOpo2bUpSUhJVqlTBy8uL3r1755mXBlmevJiYGNq3b8/Zs2e5du2a1MuWH2FhYWzbto0zZ86gpKRE+fLl8fLyYtCgQfnm1FWpUoWbN2/i5ubGrl27SEtLQ0dHhxo1atCoUSM6deqUq+dNSUkJS0tLypUrJ/1fcnIykJVrGxkZSZkyZb4r87JlyxY8PDw4fPiwTF49iUSCpaUllpaWX/1/ypQpzJgxg7i4OMLDw/OtYykIAo0bN8bV1ZWePXvSqlUrxo4dK3M5GMgqwB4eHi6NGtDR0aFq1ar5nh/fkpmZSZ8+fdi5c2eOxl6vXr24d++e1GDL6yYIQJEiRbCxscHGxibH57dv307nzp1RUlIiMTGR+Ph4ypcvL1XX1dbW/urmRjaJiYn07NmT06dP51muJ7+AWVOyauRk/57XI+9PigIFOeDu7k7NmjV5l5LCVCWlLLdSDrLNCn4/iheHY8dg3TooVAiOH9emcmX4X9j8j+KPYm9S8DdSoUIF0tPTiY2NJS0tjWfPnrFmzRq6detGsWLFaNWqFX5+forSFX8jdnZ2uLq60rhxYz58+PDL1mFsbExYWNiX//qtr50+f/7M2bNnsbW1pWLFijkWEc+P27dv06VLF549e0aPHj14+fIlDvnUFK5RowZr1qzB39+f169fU7RoUXx9fWncuDElS5Zkzpw5vHv3Lse+GRkZBAYGcvDgQRISEqQXzSdOnGDnzp0yrblixYosWbIEGxsb0tLSuHPnDvPmzSMwMDDfvhKJBH19fbS1tREEQWpoycLt27fx8fEhKiqKkiVL0rBhQ5ydnfP1xmZjZGSEra0tCQkJpKamSks4TJgwQVpi41uSk5O5d+8e3t7eUkVMiUSChoYG9vb2rF69mujoaBYsWPDdOpydnZkzZw5z5szhxYsXMq3xS+Li4ti+fTs7d+5ESUmJdu3acffuXZlEaCDLKFRVVSUzM5N9+/bJJQq2Y8cO/P398fb25tmzZ3z8+JHjx4/Tq1evPPslJydz6dIljh8/DmTlyAYGBhIeHp5j+0KFCrFlyxa2bdvGoEGD8vQ65sSHDx84cuQIY8aMwcnJiV69elG8eHHGjx/Pw4cPCQsLY+HChfka4x8+fODMmTOcOHGCYsWK5douP2PwPFAJQBTFN/k95DpSBQrI+lCvXLkSiUTCisxMHkNWqQmF4t+/AkGAPn3g4UOwtU0iIgKaNMkKIU1I+KGhzVHsTQr+AcTFxZGUlMT+/ftp1qwZw4YN+9VL+k+xceNGHBwcqFWrFp8+fSrwONra2ly/fh0nJydmzJjBxYsXv8oTywtVVdVvQ1t/62unEiVKEBUVRfv27dm0aROWlpYyK7yKosjIkSNp1aoVVlZWPHjwgLVr18odVq2rqyvNV0xISCAiIoIpU6Zgbm6eY424nj17UqlSJXx9fdHX12fcuHG8fPmSuLg4Vq5cKdOccXFxdOzYkYCAAHr27MnVq1eJioqiRo0aMq87JiYGbW1tbt++TdWqVWXq4+npSVBQEM2aNePt27esXLmSRo0aUaJECakKqryoqakxcOBA4uPjef/+/VfPZWRkULp0aapVq8b06dOxtbVl7dq1hIaGkpCQwK1bt+jWrVuunqQpU6Zw9+5dUlJSqFq1KgcPHpRrbc7OzixZsoTevXsTExPD1q1b5fLsBwcHs27dOiZNmsSDBw9kLloPWR67yMhI2rdvL3NJC8jKHRw+fDi6urqsXbuW9+/f8/z583w9v7Vr1+bMmTP0799f5v0pJCQEIyMjPDw8WLBgAWFhYbi5udG0aVNKlixJeno6nz9/zlXVVxRF7t69y6hRo3BwcGDo0KE5lkP5kvxeQRNAtlsTChQUEBsbG/r27UuGKDJETQ3xzh3w8fnVy1LwEylXDrZvf8ucOaCiAmvXQpUqUEChOABVFHuTgn8QEomEUqVKMWXKlF+9lP8UEomEefPmUb9+fby8vPIte5AbVatWpVq1aly/fp3p06dLC2JXqlSJGTNm8Pr161z75iB6Y8Jvvj/p6OjQtWtXTp06hZqaGi4uLiTIcAdv48aNLF26lPHjx+Pl5YWJiclPWY+qqip6enqcOnUqRwGNxYsX07FjR4KDg+nVqxdjx47F1NQ033EzMzO5d+8ec+fOpWrVqhQqVIjQ0FA2btyIk5OTXIYGQGpqKsnJyVSsWFHmPnPmzMHExITTp09jbm7OoEGDOHXqFKGhodIwQHlJTk5m4cKFeHl5UbJkSfT19WnXrh3R0dEoKSkREBDA2LFjCQ0N5ciRI9jZ2VG8eHGZc2dNTExYunQpzZs3p0OHDnTv3p2NGzdy7969fOv/TZs2jejoaIYPH56vImdOmJmZ4erqysqVK4mMjJSrb7FixUhNTZU7gkNdXZ2OHTuycuVK+vbtK7PoDSAtc5KamipTe2NjYz5+/EhQUBCnT59m6tSpSCQSNm3aRL9+/ahatSp6enqoqalRvHhx6tSpI30d/P39MTMzw9PTE3V1dfz8/Jg0aVK+c8p3litQ8BcxY8YMdHV1OZeSwn6A8eMhNvZXL0vBT0RJCcaNg9u3s0RlXrwAZ+es2oQy7pEKFPxjyczMxM7ODgMDg1+9lP8cgiCwePFinj9/zo0bNwo8TnZu3JfhwIGBgcyaNQsLCwuqVKkiVez7EnnLUvxuaGtrk5ycLNNr6+rqyty5c/Hz88Pe3p6iRYtSqVIl5s+fn6NHT1aUlZVZsWIF1atXz/F5XV1dNm3ahImJCTt27Mh3vH379tG+fXsMDQ3p2LEj4eHhrFmzhvXr1xco/zQ4OJhGjRoRFBTEwoUL5RIkatCgAXXq1AGyzuVGjRrRqFEjuQyOnMg+j1NTU3n//j379++nbNmyeHp6UqtWLdavX0+zZs3o0KEDFQpYGNjIyIikpCR8fHwYOnQoderUQUtLi7Jly+Ll5cWaNWu+M7xcXV2JiIggMTGxwMdWu3ZtYmJiqFevnlzjPHz4EFNTU5lDcLPZvHkzZ8+epWTJkvTu3Rt/f3+ZbzwZGBgwaNAgLC0tOXfunEx9ChUqhLm5OQ0aNKB79+5flYYQRZHMzEyUlZVJSEigfv366OnpAVCmTBmaNWtGQkICcXFxX+WD5oUsxuBvVyxVwe+Hnp4eM2fOBGCEqiqJ797BjBm/eFUK/gqqVMkyCMeMAVGE2bOhenXIJbUhLxR7k4J/DJqamgWunaXgx1FSUqJDhw7SnJ6fSUpKCsnJyTx58oT169fnOHcOhs6/an9KSEigY8eOeXpIAUqXLs3o0aM5cOAAr1+/RkdHh8DAQHbv3i0VJ8kNURR5/fo1+/btY8KECQQGBiIIApqamtja2n4nrpGRkcHNmzeZO3cujRo1olixYnz69Cnf8L9Hjx4xcOBAGjZsyL179wgMDGT58uW51vOThZCQEN6+fQvAzZs3c83Vywl7e3t8fHxo0aIFQUFBLF26tMDryAslJSVSU1MJDAwkIiICdXV16d+TJ0/m0aNHcuXffUtiYiJxcXEoKyvz5s0bjh8/zqlTp77zFAqCgJubG8WLF6d27dqcO3euQPOmp6cTHh4uLQQvC6dOncLV1VXuuWrUqMGxY8cYPnw4W7duxdHRkaJFi9KmTRt8fX2/C8X9EkEQWLRoEV26dKFFixZ8/vxZ7vlzIvsm1KVLl/D29iY0NBRtbW0GDhyIpaUlp0+fljnMWJYiPNMEQcj9KP8fURTFrjLNqkBBDvTp04f169fz4MED5gHTli2D3r1/9bIU/AWoqcG8eeDuDl26ZOUUVqsGQ4cWZc6cLC+iDCj2JgW/HGVlZVRUVPD09GTZsmW/ejn/aSpUqICfn99PH7dw4cKkpaVhZ2cnLRz9Jbl4gf5V+1NGRgbR0dH07duXU6dOydRn8+bNREdH06NHD9asWfOVKqkoirx584a7d+9+9VBVVcXOzo5q1aoxadIkWrVqlWu458mTJ2nZsqU0/K5mzZpYWVnx5MkTTpw4QZkyZWjYsCGWlpZfKVWeP3+e9PR0Xr169dM8uvXr1ycwMJAGDRqwfft2tm/fTmRkJIaGhjKPoaysTOHChenTp89PWZOysjKampqkpaUhkUgYMmQIo0ePpmjRooiiyNu3b7l06RLDhg3jzJkzLF++nAMHDuDp6Sn3XJqamgiCgIuLC82aNaNu3bpUqlQpx8+Guro6Bw4cYMSIESxZsgQ3NzcsLS3Zs2ePTKG9ABEREcD/36iRlcjISHx8fLhw4QJ16tShQYMGVK9enRIlSsjU38jIiNTUVOk5t2/fPvbu3UvNmjW5cuVKnn2tra3JyMjgyJEj39ViLAjZht6ZM2c4c+YMJiYmvHz5kgYNGtCvXz9GjRqFioqKTGPJYgzaAHkHAGch010wQRAaA8sAJWCjKIpzv3m+IuANVAUmiqK48IvnXgNxQAaQLoqinSxzKvg9UFJSYsWKFbi4uDBPSYluaWmYjhgBixb96qUp+Itwds4yBEeOhA0bYMECA27cgC1bQIbvBBsUe5OCX0S2IEaXLl0YOHBgrkWhFfx9ZHs6Ckr2RaWqqirKyspoaGhQv3593NzcqFu3LqVKlZJnOBt+8/0pPT2dFy9efOVdkKXMRDYDBgxg0aJF+Pj4cOLECV68eIGGhgaLFy9m9uzZxMTEoKqqipubG3369MHJyUnmGnkAzZo1Izk5mffv3xMSEkJoaKj0cfjwYaKiopg0aZJUfbJUqVL4+vpKwxm9vb1xcHDA3NwcFxcXHB0dcXR0RE1N7bui4LIgCII0tLNs2bIyG4Lp6ek8ePCAwMBAkpKS5FLGjYiI4OLFi1y5cgUtLS2Sk5MxNDSkSpUqODo6YmNjg7W1NcbGxl8ZZoIgsG7dOhYvXoylpSWDBg2if//+Mkc3iKLIpUuXOHjwIHp6ekyZMoXevXvLFWKbvYcmJSVx9+5dLCwsCAgIoHz58l+1y8jIICgoiDt37nDnzh0uX75MeHg4PXv2ZOLEiTIbkABLlixBT0+PyZMn8/jxYzZt2kRqaipFihTB19c3T69hfHw8586do1ChQmRmZlKjRg2aN29O/fr181SODQ8P58aNG9LSH7mVj8iLnEJhs2sOSiQSRo8ezeDBgxEEgffv3zN48GCZDUGQzRj0FEXxlhxrzhVBEJSAVUBDIBS4LQjCYVEUn3zR7AMwBPDMZZi6oijKcrdNwW+Is7MzHTp0wNfXl5HKyuw/doxCzZuDufmvXpqCv4jChWH9+qxC9d26pXP5sjLW1rB0KfTokaVImguKvUnBX44oily7do2dO3eioqKCuro6jRs3pkOHDjRu3DjP2k0K/l4Kkrt369YtNm7cyLlz5wgNDcXW1pbu3bvTpEkTypUrV+Bi9PzG+9OrV6+wtbXl6dOnFC9enPT0dBo0aEC7du1o2rRpvv0/f/7MlStXOHLkCGFhYVSpUoXJkydLDYV27dpRokQJnjx5wpMnTwgMDKRTp06UKlWKSpUqYWlpyahRo2QqNSAIAvr6+ujr63+l3nn9+nWioqJQU1NDEAQqVqxIv379sLa2BrLq8y1dupR58+Zx4cIFrl+/zsqVK+ncuTMZGRlYWFgwf/586tatK8tL9h1RUVGkp6dL69l9y+vXr9mxYwcXL17kxo0blC5dGg0NDWbPnp2n1yjb+Ltw4QIXLlzg3bt31KpVCzs7O7Zs2YK1tbXMe1KLFi3YsGEDZcuWZerUqTKd66IocurUKWbNmkVkZCQ9e/ZkxIgRct0k+BYtLS10dXUZP3681LALDw9n4cKF3Llzh/v372NkZIS9vT12dnZ4eXnh6OiYo5CQrPNlo6KigpaWFkOHDs1TNXb27NksXryYSpUqcejQIerUqZPn/EeOHGHHjh1cv36duLg4HB0dKVasGDt37qRy5cq59hNFkZUrV/L48WPevn0rDT9OSUlBRUWFYsWKUaZMGaysrLCzs6NcuXI4Ojp+Vee2WLFinDx5Eg8PD5nfF1mMwZ9JdeC5KIovAQRB2AU0B6QbmiiK74B3giA0+5vXpuAfwvz58zl06BAHEhI4DdSaMwe6doUf2GwU/PNp1gyOHHnNwoXl2bcPevWCgwezPIZ/QyqWYm9S8BVRUVF4e3vj7e2NIAh07NiRW7duUaVKlR8xEBT8heSg6pkrycnJTJ48mW3btknvqltaWsqtHvk38bfuT58/f+b9+/ds3LiRdu3aIQhCnud8UlISp0+f5sKFC1y8eJHg4GAcHBxo0KABL168+M6jWqJECdq1a/fV/9LS0nj+/DkTJkxgy5YtDBkypEBrj4+Px8fHhzt37lCkSBGGDx9O165dKVOmTI7t1dTUcHV1pW7duhw5cgRdXV327NnDu3fviI+PL9AaIMtIvXz58lfGpCiKHDlyhLVr13Lr1i3at2/P4MGD2blzJ3p6eoii+N3r/OnTJ06dOiU1/qKioqhVqxZ16tShX79+WFlZoaSklGPfnHj79i3Hjh3j7NmznD9/HkNDQ/T09MjMzMzXuDpw4ACzZs0iJSWFCRMm0LZtWyQSyQ/thxKJhLS0NLy9valXr570/2lpaURGRhIYGEjRokVp1qwZrq6u1KpVK9/i9PKSmZnJ58+fiY6OzlHdVBRF4uLiyMzMJC0tjQ8fPuT7WiUmJpKWloaamhrR0dFSwZy1a9eirKxMgwYNvjLgshEEgWPHjnH//n3WrFlDuXLlMDY2pkiRIjLvTTNnzmThwoX06tWLevXqYW1tzcCBA9HX18+1z99tDJYEQr74OxTIuwrp14iAnyAIIrBOFMXvM7kBQRD6AH0ADA0Nefr0aZ6Dvnz5UqbJZWn3s9r818fq168fixYtYrCKCv6vXvFuyhQ+du/+y9f1K8f6ndcua7uPH18yc2YGNWoUZvp0Q44eVcLCIp3p06No1KjgX8wy8LfvTfLUOFLw95KYmEjNmjWpXbs2Pj4+1KhRQ2EA/gYoKSnJbAyePHmSrVu3EhAQkOdF0j+Ev3x/+nJvMjY2ZtasWcyfP58jR47g4+OTp/riqVOnGDJkCFFRUaSmpmJsbExiYiI3b95k3759aGtrU65cOSwsLLC2tqZUqVIYGhqio6Mj/VypqKggkUi4cuUK169fL7AYk5+fH2PGjCE9PZ26detSoUIFmZQjL126ROvWrZk6dSqPHj3K03uTF5mZmQiCQHp6+ndlD6Kjo+nfvz/h4eE0bdoUU1NT9PX1pZ6qnPaYTZs2MWbMGJSUlBg0aBDjx4/P8XyVdX8aP348vr6+FC1alMmTJ9O9e3e0tbXzNTQ+fvzIsGHDCA0NpUmTJrx69YqLFy+ip6dHlSpVZJr7S968ecP9+/fJzMwkPT2d+fPnf2UMlilTBl9fXzIzM7l//z6nTp1i3rx5tG3bFgcHB8qXL0/Lli1p2LDhD+3NcXFxKCkpsXDhQl6/fs2ff/4pfS49PZ2nT59y7949kpOTKVu2LDdu3GDgwIG4ubnlGRLr5eWFl5cXkCW+9PjxY9auXYu3tzdnzpxhxowZ1KlTh1evXvH69WtevXolfYSHh2NoaIi5uXme4ae50blzZzp37sydO3fo1KkTBw4cIDU1ldmzZ+feSRTFXB9AJlA9rzbyPIA2ZMW6Z//dGViRS9upwKhv/lfifz8NgIdArfzmtLS0FPMjKCgo3zaytvtZbf7rYyUnJ4sVKlQQAXERiKK2tihGRv7ydf3KsX7ntRdkrLdvRbF+fVHM0hwVxc6dRfHjx6znyLq4+a33pmrVqkmPtVatWuKFCxdkeh2/pVGjRuLJkycL1Ld58+bigQMHCtS3Xbt2oq+vb4H6duvWTdy8eXOB+vbv319ctWpVgfoOHz5cXLRoUb7tVq1aJVatWlXMzMws0DzfMmPGDHHixIkF6rtgwQJx5MiRBeq7cuVKccCAAQXqu2nTJrF79+4F6rtjxw6xffv2Beq7f/9+0dPTs0B9jx8/LjZu3FimtqmpqWLZsmXFDRs2FGiuL7lx44ZYvXp1URRFEbjzu187Ze9NiYmJoqenp2hlZSUeOXJEzMjIyPN1yMzMFD99+iQ+ffpUvHTpkrh3716xVKlS2fv1dw9lZWWxVKlS4ps3b0RRFMVJkyaJTk5O4qdPnwr+ZoiimJKSIlaqVOmruRo2bJhvvz/++EO0srISo6KiCjy3iYmJaG9vL96/fz/H5zMzM8WXL1+K27dvFwcMGCDa2NiImpqa4tatW3Md8/379+KWLVtEBwcHUUlJSdyxY0eB15eZmSmeO3dOrFWrlgiISkpKec79LSEhIeL69evFypUrS1/bHj16yLWGjh07ioBYtGhRceLEiWJISIjMfWNjY8XDhw+LNWrUEAVBEHV1dcW4uDiZ+mZmZorBwcGil5eXCIjq6upiyZIlxYkTJ4qPHz/+qu3evXtFDQ0NERCbNm0qzp07Vzx9+rR47do1MT09Xeb1ZmZmim/fvhUPHDggenh4fPcZMDAwELt27SquX79ePH36tPjs2TMxJSVF5vFz4/Dhw6IgCGKRIkXEuXPniklJSaIoZu1PYg6f+Tw9g6Io/ux4iVDA+Iu/SwHhsnYWRTH8fz/fCYJwgKzQiUs/dYUK/hGoqamxdOlSmjVrxlQlJTrExmI0aVJWzKCC/wTGxuDnB6tXZ5Wh2LYNLlwAb28A7oo/KR/nfyj2JgVSvLy8WL16NVOnTuWPP/74p4YOKvgBVFRUOHbsGM2aNSM8PJwpU6b80HiRkZGcOHEC+PdcO2loaLB3716MjY1p27YthoaGHDp0SJp39y3ZZSDWr1/P8+fPefv2LVFRUQiCQOHChdHX16dMmTJUrFiRypUrY2JigomJiTRKYvjw4URGRmJpacno0aNxc3OTuU4aZIXHnTlzhgcPHpCWloapqSkuLi64ubnh5OSUb/8//viDhIQE6taty5kzZ+QSs4Gs8NqUlBRat26dq0iIIAiYmppiampKx44dAbC1taVYsWK5jqunp0d4eDjPnj1jwoQJuLu7y7UugJ07d0rDZzU0NKhevTpz5szB3t6emjVr5tvf39+fRYsWcePGDcLCwqhWrRpjx45FTU2NwYMHy7WWOXPmYGtrK83ZfPz4Mb6+vjKJzxQuXBh3d3cCAgK4ceMGycnJOYZbfsmbN28YM2YMly5dQllZmdKlS9OnTx+GDx+Oubl5jp7FZs2asXHjRnbs2MGVK1fQ0dGhePHiuLi4yJSr6Ovry9atW7l37x6fPn2ibt266OjoMGzYMKpXr867d+8IDAwkMDCQEydOcODAASpWrEjFihVxcnKiWbNm8gpWfUWjRo04cuQIfn5+rFixgokTJ+aZ//p3h4neBioIgmAKhAHtgA6ydBQEoRAgEUUx7n+/NwKm/2UrVfDLadq0Kc2aNePYsWOMFwS8N22Cfv2yahAo+E8gkcCgQdCwIXTunFWf8AdKQeWFYm9SIEVPT4/Tp0/TsmVL7t+/z5YtWyhatOivXpaCn0zFihW5fv06tWrVQldXl0GDBhVonMqVK6Ourv5dHtxP5JfsT3FxcWzevJnPnz+TkZGBtbV1viqb6enpLF26lG3btlG+fHlKly6Nvr6+TDdUdHV12bBhA9euXWPjxo2MGTMGbW1tWrVqxYABA3I1QrPR19cnPT2d9PR0SpUqxZAhQ+jZs6fMgiqCIDB//nyOHz9OxYoV8fX1pVmz/FMws0Npz5w5Q5kyZeQWnfHw8GDgwIEcOHAg15BLXV1dqVjOlwIosqKnp4ehoSFFihTh48ePpKamIooiBgYG+b4+69atY9KkSYwfP54RI0ZQqVKlXIVxZMHY2JiRI0fy+fNnZsyYwcWLF+W+4ZaRkYGmpiZDhgzJt6+6ujrv3r1DTU0Nb29vmd4fdXV1OnToQIcOHXj37h379+/n6NGjDB48mNTUVOzt7WnXrh0dOnSQKsh+ib6+Pubm5oiiSFBQEJcvX6ZYsWKkpKTw5s0bmjdvzvTp0zEwMADgw4cPBAUF8eTJE86fP8+ECRMoU6YMbm5udOrUCTMzM7leHzU1NZo1a0azZs2oX78+zZs358yZM7m2/1tvd4qimA4MAk4BgcAeURQfC4LQTxCEfgCCIBgJghAKjAAmCYIQKgiCNmAIXBEE4SFwCzgmiuL3BX8U/KtYunQpKioq+IgiN0QRhg7NihpU8J/C3ByuXYNp0+AHvoNyRbE3KfiW4sWLc/HiRYyNjXF1dZW5eK+C3wsDAwNOnDjB5MmTv8vxkpVChQpRtmxZYmNjf/LqsvhV+9OjR49YuHAhiYmJODg44O7unq8RoKGhgbu7OytXrkRLSwtDQ0O5L/SdnJyYPHkyxYsXJyYmhg0bNrBq1ap8+/Xt25crV67w4sULBEFg5MiRmJiYcOTIEZnnFgQBExMTYmNjZRKxSU1NZezYsZw8eZKNGzdy584d7O3tZZ4PYNq0aUydOhVPT08yMjJybNOnTx+mT5/OtGnTSEpKkmt8yPIUbd26lRcvXvD48WP09PSYMGEC8+bNy7NfZmYmy5Ytw9HRkT59+mBtbf1DhmBOJCYm0qhRI/bu3ftdgfq8+oiiyPLly2ncuDHr1q3j1atXObY1NDTk3LlzLFiwgF69emFjY8O+ffuyQ6jzxcDAgH79+rFnzx7mzp1LcnIyly9fZsiQIcycOTPHPg0bNmTZsmWcOnWKN2/e8PbtWxwcHHj37h0HDhxg4MCBX9VE1dXVxcnJiV69erF9+3YOHTpEeno6s2bNwtfXV6Z1/gh/e+yLKIrHRVE0E0WxnCiKs/73v7WiKK793++RoiiWEkVRWxTFIv/7PVYUxZeiKFb538Myu6+Cfzfly5en+/+EYwYrK5N59Srs2vWLV6XgV6CsDFOmwPXrf834ir1JwbeoqqqycuVKqRqbgn8npqamtG7dmu3bt//qpeTKr9ifatasydu3bzE1NeXy5cv07t0bY2Njtm7dmme/ffv20bFjR2rVqsWWLVvkPlZvb2/Kli3LmzdvaNy4MU+ePGHdunUy9zc0NKREiRKkpKQQFRWFh4cHx48fl2sNKioqNG7cON92qqqq7Nu3DwsLC9q2bfuVAIk8WFpaEh4ezu3bt3NtM2fOHAoVKsSQIUNYunQpp0+fJiIiAlEU+fz5s8xzHT58mMOHD3P06FG2bduWZ1uJRMLNmzfR1dXFwcGB0NBQmeeRlZSUFC5dukSXLl1wdnaWqU/hwoVJSkoiMTGRU6dOMXDgQMqWLcvatWtzbC8IAnXr1mX27Nm8ffuW1q1b53sef0tkZCRPnvx/NRclJSWZStkEBQVRoUIFXrx4Qe/evbl58yafP3/OtYTI6tWrcXFx4dmzZ0yaNAlPT09CQkLIzMyUa73yoEiEUPCPp2/fvpQsWZI76el4A4weDQkJv3pZCn4Rdopy7gr+RgRBYNGiRRw9epTwcJnTtBT8Zjg6OuLv7/+rl/GPQxAEUlJSUFNTo2HDhhw+fJgOHfKOUJVIJHTs2JHhw4fTvXv3rzwgstClSxfu3LlDmTJlOHnyJFZWVhgaGubrxcrm4cOHBAQEoK2tTc+ePbl8+XKuhl18fDxPnz7l3LlzbNu2jTlz5hAQEICGhgZ//PFHnvNcv36dKlWqUK9ePRwcHDh37lyBQoU3b96Mg4MDw4cPx8Ehd5FYf39/duzYgZ2dHc+fP2f27NlYWVlRrFgxqlSpwo4dO2Sar02bNhQtWpSMjAyZlDgLFy6Mj48PXbt2xdnZmWnTpnHw4EFev35NcnKyzMeZH4IgMHbsWLn7aGhoYGVlxc6dO+nRo8d3bXbv3o21tTX6+vrMnj0bd3d3Dhw4kGc9x2xevXpFkyZNMDIywtLSkosXL1K9enXmzZvHnTt3WLRoUb5jZJd5uHfvHuvXr6d69ep55h327duXu3fvsnjxYt6+fUuHDh2oUKECJUqU4Nq1a/nOVxD+7pxBBQrkplChQixYsIAOHTowXlmZVmFhFJk3D6Yr0rIUKFDw16Ojo4OTkxO3bt3C09PzVy9HwV+Anp4enz59+tXL+McikUgoU6YMrq6uuYYJXr16lb1793Lp0iWePn1K9erVadKkidzy+EpKSlSrVo3ixYvz5s0b0tLS+PTpk8yCGgYGBqSnp9O7d28WLlxIUFAQ69atIywsjNDQUMLCwqSPtLQ0SpYs+dWjWrVqTJ06VZrPlRsPHz7EzMyMe/fuFbgAOoC9vT0dO3ZkyZIlHD58mD/++IO2bdt+Z6gVKVIEZ2fnr7xnoijy5MkT3N3dOXHihFSUJi90dXWZNWsWixcvxsrKChMTE5mMwjFjxlC1alXOnTvHhg0bePDgATExMWhqauLo6EjLli3p0qULKioq+Y51+/Ztzpw5g5qaGhKJhHr16tGrVy+Z9ld/f3927tyJqqoqrVq1Yvz48VhZWeXavnLlyrRs2RJjY2Nu377N69ev8fPz4/Tp0/Tv3z/PMiJFihQhKioKFxcXdu7cWaAQWU9PT3r06CF9jfJDWVmZqlWrUrVqVfr27cvs2bOZP38+JiYmudbL/FEUnkEFvwXt2rXDxcWF6PR0pgIsWACvX//aRSlQoOA/g7GxscIz+C9GWVlZ5hqF2WSLQ6xevZr79+//a1Vns0PyfH19uXLlSq7tLly4wJkzZ3j48KHUsEpJSeHYsWNER0fLPF9oaCibNm0iODgYiURC6dKl8fX1lcnQgax8X319fQ4cOIAoity9e5dt27axatUqtmzZwvnz59HV1WX48OEcOHBAWoB9x44dzJ8/nz///DNfsRrIym28ePGi3OGG32JlZcWWLVto0aIFgYGB9OjRAxcXl+9CMj99+sTVq1dZv349Q4YMoX79+hgZGVGzZk0yMjLkUhl1d3dHX18fZ2dntLS0MDExoX379uzYsYNnz57lmk/XoEEDaY7juHHjMDIy4uPHj5w+fZotW7aQkEfUVkZGBvv27aNmzZq0bduWWrVqceHCBeLi4jh69KjMN9ouXLhAYGAgJ0+exNfXN09DELJCcMeOHcvYsWMZOnQoGhoaREZGsmfPHq7nk3dStGhRzp8/z8ePH3F1deXdu3cyrfFL3NzcOHLkCEOGDKFq1arcu3dP5r7x8fHs3bsXHR0dBg4cSIkSJeSeXxYUnkEFvwWCILBixQqqVq3KSlGkV3IylUeNgr17f/XSFChQ8B9ARUVFpvwQBb8n8r6/r169omfPnjx//pwGDRrQr18/unfvjomJyV+3yH8448ePp3Pnzjx69IiDBw9y4MABPnz4wNmzZxk8eDBv3rzJt5h8TEwM5ubmJCYmIpFIcHZ2xs3NDV1dXcLDwylevLhMXqyoqCimT5+OIAh07NiRjh07IooikZGRUkn/wMBA5s+fT2BgIElJSdja2lK1alWUlJRo3rw5Dg4OOXr8Pn78yPXr17ly5Qq6urr06dOHRo0aUbJkyQK/doDU65SYmMjNmzepXr06YWFhCIJAcnIy5cqV48OHD0CWWmWbNm2YPn06jo6OvH//Pl9P5pdoaWlJ8xt79OiBt7c3b968Ye/evYiiyNq1a+nVq1eOffv378+xY8fw8PCgW7duuLq64uDgkO/NkJ07d9K5c2dMTExYuHAh1tbWVKhQQeY1ZzN48GCuXbuGm5sbHz9+RFVVNd8+3bt3Z/fu3dK/ixcvTvny5Tlz5gzPnj3D1NSUkiVLoq+vj76+PgYGBhQuXJiQkBAuXrxIqVKl2Lp1K5MnT5YrfzUbBwcHpk2bRq9evbCzsyMmJkYmhWptbW32799PgwYN6NKlC2ZmZnmGEn+JKIqEhYVx61b+VbgUxqCC34YqVarQr18/Vq9ezRCJhLP79iGcPw9yyjgrUKBAgbwojMF/N8rKyjK/v7dv36Zx48aMGzeOESNG/FCI4D+Z9+/fc/PmTd6/f4+6ujoDBw7MUZZ/165dzJo1ixcvXlC0aFHMzMwwMzNjwoQJBAQE0LlzZ5ydnWW6aM8O13358iUeHh5cunSJS5cuoaqqSnp6OsrKylSoUIFt27Zha2ub6zjly5dn3LhxKCkpMWDAAARBQBAEihcvTvHixalXr95X7aOjo7l37x737t1j+fLlzJ8/H2VlZSpVqsTKlStxcXHh8ePHtGvXjoCAACBLYGfUqFG0bt1aWl4gLS1NpjDJ/EhPTycyMpKIiAhKlCiBuro6ERERPH36lEePHvHo0SP8/f3x8vIiLi6O0qVL07lzZzp37ix3fcRChQpJf8/MzERDQyNPL13v3r05fvw4CxYsyLfUyJd06tSJ6tWrs337drp160ZSUhJubm4cPHgwz37x8fGEhoZ+9Xjx4gXJyckEBwfnGeaZza5du9i8eTPR0dEsW7aMJUuWEBER8VUbZWVlRFH8TtFVEAQqVarE7du3KV++PKIoynRD4ksSExPx9/dHEAScnZ1lLlXUr18/9u7dK1WDldUQHDBgAH/++ae0rqWzszNt2rRh6NChObZXGIMKfiumT5/Orl27OP/hA/uA1kOHwr17f029AQUKFCj4HwUJI1Tw+yCRSGSWms8O1Wrfvv2/0hB89eoVZmZmREZGUr16dUxNTZk8eTLu7u45XgQrKSmRkpLCiRMnqFmz5g+XHlBRUcHc3BxdXV0AaVFxDQ0N6tSpg7u7e75117S1tUlKSmLMmDEcPHiQY8eO5WmM6uvr4+rqiqurK1euXOH48eOkp6fz6NEjXF1dGTZsGJMnT+aPP/7g+fPnPHv2jOfPnzNlyhQGDx5M2bJlKV++PO/evWPixIm4ubnJfLyiKHL8+HFu3LiBmpoahQoVomHDhrRq1eorT6qqqipWVlZYWVl9FTIbExNDp06dmDp1KlOmTMHe3p4FCxZQo0aNfOddtWoVhw4dQklJCVNTU1q0aEGnTp0oVqxYrv0cHBxwdXVl7NixrFixQqb3++bNm3h7e3PlyhXevHmDg4MDhQsX/qp8x/379zl8+PBXRl9ISAipqakYGxtTqlQp6cPMzIxevXpRsWLFfOfORlNTk0KFCvHy5UskEgnq6uooKSkhiqK0pIWuri4GBgbo6+tL+8XGxvLhwwecnZ3R1tYmPT2dxo0b06VLFxo1apSnYfjnn3/i4+PDpUuXKFOmDD179mTWrPwFfZOTk3n79i1xcXHo6+uzYcOGr4z2/GjevDnnzp2jVKlSzJs3j2r/q8+tMAYV/CvQ09Nj1qxZ9O/fn5FKSjT190dz/XoYMOBXL02BAgX/YpSUlHKtAabgv0XJkiWZOHEiLi4uHD16VG6BlH86ycnJvH79GktLSywsLPj8+TNWVla5XvQ2b96cy5cvM2DAAEJCQrC3t8fJyQknJyecnZ0pXLhwgdeipKREcnIyo0aNYs6cOXLnZSYmJnLhwgWio6MLHMYpCALPnj1DQ0OD1q1bf/d8QkIC9+/fZ9CgQQQEBPDgwQOZjcFbt25JC7APGzYMV1dXypcvL7PnSRRFPnz4QGxsLCkpKSgpKREVFUVYWJhMfQMCAoiOjsbQ0JAePXrQpUsXmV6nefPm4eXlhbGxMdOnT6dbt255ekSjoqJ4+/YtHz58QFlZmczMTGk+nL6+PpUrVyYqKoqgoCDevn1LSEgIYWFhaGhoYG1tTZkyZShdujTGxsaULl0aCwsLPD095brx8ObNG1xdXbGxsWHu3LmUKFGC4sWLS39qa2vn+bqnpqYya9Yspk+fjq+vL4cOHaJ06dIsXLiQpk2b5tjn7du3REZGSr2Jr1+/5s6dO9SvX1/q4Xz9+vV3j5iYGIyNjTExMaFWrVpyR6W4urri7+/Pxo0bady4MaVLl2bDhg25tv/XGoOCILgD7iVKlODp06d5tn358qVMY8rS7me1UYyVe5tatWphYWFBYGAgc4E/JkzgZbVqvPxfLP2vWtdfPdbvvPafPZYCBX838oYFKfh3M2LECAwMDKhfvz6XLl3K11P1O2FhYcHly5e5e/cu169fZ/r06ezevZsSJUrQqVMn2rZtS+XKlaWfCVVVVZYvXw78fz7dtWvXmD9/Pu3bt2fu3Ln06dOnQAI72TdgVq1axaZNm+jYsSNdunShatWqeX4m4+PjgSxvYqVKlWQ2BDMzM/n48SMA6urqaGhosG7dOtq0aZNrn0KFCrFnzx5KlSrF9u3bZQpbhCxjrEWLFri6urJhwwaZvMxJSUnS9+XatWtcu3YNFRUV7O3t2bRpE+7u7ujp6ck0v0QiYebMmbx48YIzZ84wYcIEbt26xYEDB/Lta2BgwLlz5/Dy8mLIkCEMGjQICwsL6tevj4uLC46OjhgaGkrbe3h44OHhAWR5nlesWMGqVas4c+YMPj4+BAUF0bhx469KgKSnpxMeHk5ISIjUQAwODubMmTPcuXOHXr164ebmxqBBg6hVq1aO55coily5coUNGzZw+PBhpk2blqt3LD9UVVW/CsFNSkoiODgYLy8vXr9+nePrPnLkSKmxP336dBYvXsyZM2dYtGgRixcvJjw8XBqRIJFIsLGxoXXr1tjb21O6dGmpEFNUVBTa2tpyfYaya2VevnyZnTt34uXllWvbf60xKIriEeBI5cqVe5ubm+fbXpY2srb7J873bxtr/fr1uLi4MF8iofvnz1TYvp3MQYN++br+6rF+57X/7LEUKFCg4FfSqVMnUlJScHNz4/Hjxz8lV+yfgoaGBk5OTpiamrJy5Urevn3L69evmTlzJjNnzqRSpUoEBAR8Z5AVLVqUpk2bSj0lpqamDBgwgEuXLuHr61vg9SQkJJCQkMCKFStYvnw5FStW5MmTJ1/NL4oihw8fZsqUKYSEhNC1a1cGDRokDZHLj8jISGxtbYmLi6N79+707dsXe3t7mS7AP3z4wKdPn9i5cyceHh5Uq1YtX6+VIAjs378fd3d3ZsyYQbdu3fIUIBo6dChr1qwhLS2NIkWK0KFDB44ePYqdnR0fP36UhtXKSrdu3di6dSuqqqr06tWLMWPGUL58eZn7C4KAiYmJtNbgw4cPefjwIYsXLway3vs7d+58ta7ly5czevRozMzM8PLywt3dHU9Pzxw/O8rKypQuXZrSpUtTs2bNr56bM2cOEyZMYP/+/Zw6dQotLS1pCbIv3y9XV1fOnDnDxIkTef78eZ7hr3nx7t07Tp06xaZNm1BXV8fQ0JCWLVvi4eGBk5NTvvmwOjo6WFtbo6qqiqWlJUOGDGHEiBGkpqYSEREhLXWSXfrk+PHj0r9DQkJQV1enVKlS353zedGnTx82bdqEp6cnPj4+dOrUKddz8l9rDCr4d+Ps7EzHjh3ZsWMHI4ADa9ag2qgRKAwJBQoU/AMJCAjg0aNHVK5c+V9bguC/SM+ePdm2bRv79u0rUMHxfyJPnz6lbNmyhIWFUbRoURITEylVqhQVKlTA3t4eBwcHLCws8rwoffHiBUOGDCEiIoJ27dox/QfqAmtpaZGZmYmSkhIODg40btyY+vXrfzX/+/fvadWqFYGBgWzatImmTZvKnc9paGjIzJkzGTJkCMHBwTIXZQdYsmQJfn5+TJo0iTlz5qCkpISVlRV9+/alb9++ufZzcHDg6tWrTJgwgQoVKtC1a1c2bNiQ47xjx46lbt26PH36lKCgIO7fv8+uXbvIyMhAVVUVAwMDevbsSbdu3WQSKJkyZQq2trYsXbqUzZs3c/LkSTp16sSsWbNk2qPu3buHn58fmpqapKWloaGhQfny5bGzs8Pe3p4qVap8t442bdoQGBjI9u3b6dChQ54eV1kQRZH4+Hji4+Pp3r07s2bNws/PD2NjYyDLaDQ0NGTlypVERETQpEkTHB0dZS7RsGrVKnx8fHj27Bn16tWjcePG7N+/Xzq+vKSmpvL06VOsra05d+4cRkZGlClTJsf6gQ8fPmTEiBGEhYVRq1YtBg8eLFeEyqBBg3jy5AlPnz7F3Nw8z8+DwhhU8Nsyf/58Dh48yMGEBPwyMqg5eza4uYEinEuBAgX/IDw9PZk7dy5nz54lIyODqlWr0qRJE2rXro2jo+O/UoTkv0Tr1q05f/78v8YYjI+Px93dnSlTpsgl0PEl48ePx8LCgj///FMqAFNQUlJSuHz5MtWrV8/1YlgikWBpaUl0dDRdu3alSJEiNGvWjKFDh8rs7RIEgZ49e/Lnn3/i5+dHo0aNMDIyYuzYsXTv3v0rr0pycjKXL1/m+fPnXz3evn2LIAgUK1YMAwMD1NTUcpzr/fv3HD9+nKtXr3L16lVp2Y28vHslSpTIUeXz/fv3dO/enaNHjzJx4kQmTJhAmzZtmDBhQp7vX9myZRk6dCjPnz9n5cqVhIaGsmLFChwdHaUhnXmRlpbGixcvsLe3Z+/evXl63dLS0jh79iz79+/n0KFDlC1b9odyST99+gRkhfKqqqqSlJSEiYnJd/tptWrV2LZtG1FRUWzduhVvb2+6dOkCgK2tLa1atcLDw4Ny5crlOM/Hjx95/PgxGzdupEOHDgVeryiKPHr0SKqKW65cuXwNOyUlJYyNjSlTpgwXLlzg7t27NG3alHbt2tGgQYN8DXZra2suX77MyJEjqVu3bp51KBXGoILflhIlSjB58mTGjRvHEImERzduwMGD0KLFr16aAgUKFEipXLkyycnJ0vynq1evcuvWLdTV1ZFIJHTs2JEePXrkmwel4J+Jqakpx44d+9XL+Gmoq6uza9cuTExMmD17ttz9N2/ezI0bN9i8eXOBDMHo6GjOnz8vVX1UVVUlOTn5u89GfHw8r1694uXLl7x8+RJlZWXKli1LTEwMr169Yu3atcTFxeHj4yPX3DExMYiiSHJyMi9evGDy5MnUrl37q7zQmzdvMmjQIEJCQkhKSgLA2NgYc3NzSpcujZ2dHc7Ozpibm5OamvpdGOGff/7JrFmzCAsLQ11dnYYNG5KYmMiHDx84evQo1atXx8DAIMf9QBRFPn78yKtXr6SPFy9eAFl5bIIgcODAAQoVKsSaNWtkPnbICsf18vKiZcuW/PHHH3nmwjo4ONC5c2d8fHyYOXMmS5cu/a7Nw4cP2bJlC76+vpiamtK6dWuuX79O2bJl5VrXt+zevZumTZtKaxxWqVIFdXX1XNsbGhoyevRoRo8ezeLFixk5ciRXr17l2rVrnD59muPHj+fYb9KkSXz8+JFx48bRrl27Akd1TJ06lUOHDrFo0SI6deokLUWSF+XLl2fgwIE4OTmxefNmqSLrmTNnuHLlCqVLl853DEEQqFOnDkuWLMmzhIfCGFTwWzNs2DA2bdrE02fPWEFWsi5NmkAem4ICBQoU/GrS0tKkCnHr1q1jy5Yt6Ojo0KZNG1q3bq3wGP5GqKmp/atqUEokEvz8/HKsKZgfT58+ZezYsVy9ehUtLS25+48bN441a9bg4uJCkyZN6N27N46Ojl9dhIuiiLm5Oc+ePaNIkSLUrFmTsmXLYmpqSv369ZkzZw4vXrzAzc1NLrXJ3r17s3HjRiArx6tv37707t07R89i7dq1efr0KaIoEhMTQ0hICCEhIUyZMoVTp05x6tQpIEvEIyMjA1NTU54/fy7t379/f/r37098fLy0VMWsWbM4e/YsmzZtQklJCQ0NDZ4+ffpVSOOzZ8+oXr06nz59olChQjRo0ICyZcvi5OREy5YtcXNzw9ra+oe8scnJyezevZv9+/dTunRpnJ2dcXFxwc7ODgsLC5SUlHj//j337t3j8ePHJCUlsWzZMoYPH/5VuOO0adOYOnUqADY2NtjZ2ZGUlMTZs2fx9/cnLi4OLS0tXFxcZBa9gSyhuU+fPnH48OEC7ZHZ55K6ujrVqlVjz549ubZ98eIFixcvplatWqxcuRJjY2OcnZ2/Kj2RH7t27cLX15dr165hYGAgU58tW7bQs2dPMjIyKFKkCPXq1WPBggX07t0bHR0dmef+krz2KIUxqOC3Rk1NjaVLl9KsWTOmSSR0fPUKo8WLYcKEX700BQoUKJCJjIwMqUDGypUr2bx5MwAdO3bMNXxJwT8HeQrW/w5oaGgwYMAA3r17R40aNfDw8KB79+5oaPwfe+cdVsW5ve1705sURUBABem9SgfFLoKiqLFrrNGoEXuLMfYWey+xl9h7790oFgREQEAQsaCoIB3294eH+TRSNia/eE4y93XtS9i878w7w2acZ9Zaz1KVab6GhsYXuau+ffuWVatWERcX94kT5R+RSCQcOnSIX3/9lc2bN/P69WsCAwNp2LAhTk5OyMnJfeJ2Kiu//PILXbp04fvvv+fBgwfMnz+fOXPmULNmTVxcXFi6dCkWFhafrUVXVxddXV1cXFzYuHEj9+7dE35e+rkor9WDhoYGzs7OODs7c+DAAWGusrIyNjY2nwlqc3Nzjh8/zr59+9i8eTO3b98mMDDwix0yy6O4uJji4mLi4uKIi4vjt99+o6ioiIKCAhQUFJCTk8Pb2xtFRUWGDRvGgAEDPqt7GzNmDB07duT58+efvG7cuMHz58+5ffs2T58+BT4INDU1NXR1dTE2NqZ169aMGjWqzLWNHj2aXr16VVkISqVS0tLSiIqKAj6IwaNHj1b40MLMzIyoqChu3LjB77//zrx580hNTaVWrVr07du30lrYgoICRowYwdq1a2UWgvChh6mZmRnXrl3j2rVrnD17lgMHDrB//3527dr1iatpeezatYuNGzcSGRkp9FXMyckpc6woBkX+5wkKCiI4OJjDhw8zDlg/Ywb07Alf2FNIRERE5GtRXFxMVlYWKioqFaY9ifz3oKio+I8SgyYmJty6dYuXL19y5coV+vXrx9ixYxk+fDgTJkyo0DV127ZtODg4CH3VqkJptFyWqIuVlRWzZ89m+vTpnDhxgqNHj7J27VpevHhBw4YN0dPTY9asWTJFUUpKSoiJiSEiIoLo6GgyMjKQk5NDKpViaGiIvb09fn5+Zab25eXlcfDgQaEJ/YULF5BIJEgkEqpXr069evVwcXGhSZMmVToXOTk5xMbGUrNmTRwcHPjmm2/o3bs3r1+/5siRI5w+fZqcnByaNGnyxXWdsqKqqoqcnBzFxcVUr14dZWVlMjMzefnyJdWqVUNPT6/M86yiooKNjQ02NjZlbnfSpElMnToVOTk5VFVVyc7ORltbG2Nj4wqPKTQ0lO+//56kpCTWr19fbp1lfn4+e/bs4c6dO9y5c4e7d+8iJydHjRo1aNKkCbNmzUJTU7PS47ezs8PW1hYtLS1+//13nj59ip6enkz9RRUUFOjQoQN9+/ZlwYIFtG7dWqbrupKSEn5+fvj5+fHu3Tu+//57duzYQc2aNWWOuNeqVYv09HTevHnDvHnzCA8PL/dvUhSDIv8IFixYwIkTJ9hQWMh379/jOXYsbN78tZclIiIiIhNKSkqoqKiQm5uLoaEhI0eOZPDgwcybN+9rL02kEuTl5YV60H8C2dnZrFy5kujoaKKjo8nMzEQqlbJ792769etXYc++wsJCfv/9d2rVqoWXlxd5eXn06NGDkJCQcg1DYmNjWb9+PZs2bcLV1ZWioqJKrfpLUVBQoGXLlhgaGmJmZsa2bdvYu3cvNWvWpFevXnh6en42Jy8vj5s3b3L58mUuX77MtWvXqFGjBvXr18fe3p65c+fi5eWFubl5pdGnyMhIevbsyQ8//ICvry8hISG4u7tjbGz8p12D379/j6qqKhEREbx69Qp3d3fi4uI4ePAgcXFxaGho8OLFC3bv3s2qVaswNTWlR48eWFtbl2tcU1VKr0na2toMHjyYxo0b4+Xlhba2Nvfu3WP06NFMnjyZn3/+GQsLC7p3705YWJjMGQ2lDegVFRX55Zdf6NmzZ6Upo926dSMuLo6ZM2cSEBDAjRs3UFdX/2zc06dPmTZtGg8ePMDOzo61a9fSpk0bCgoKqnx+iouLWb9+PUlJSUgkErKysvjtt99IT0/H2dkZe3v7Mg105OTkWLhwIaGhoQwePJju3bvj6upKp06dCAoKwtzcvEyBVlxczLlz59iwYQOHDx+mcePG3L59GwcHB5nX7Ofnx8WLF3FycmLFihUMGzas3LGiv7XIPwJzc3N69eoFwBCJhJItW+Data+7KBEREZH/UNpYGD6klqmrq6OoqIi+vj6tWrVixowZHDlyhMzMTJKTkxk8ePBXXK1IVfinmf48efKEmzdvYmpqytixY9m6dSv5+flERUVV2rx9xowZpKenc+PGDbp06cLt27fp2rUrNWrUEBwgPyY2NhYbGxvmzJlDUFAQs2bN+uRvRRZ++OEHXF1duXnzJqNHj+bZs2fExsaWKQThQ6QnICCA8ePH8+TJE6ZNm8ahQ4fYuHEj48ePp2fPnpVa8Zfi6uqKtrY2DRo0oG/fvrRr1446depUWQgWFRWRlpYmGObY29szbNgwduzYIRjiBAYGMmDAAO7evUt2dja3b9/mp59+ws3Njfj4eObPn4+rqyuampocP368Svsvj7y8POTk5Hj79i0LFy4kJCQEPT097t69i6amJtWrV6egoED4fIwZMwZzc3MuX74s83GXlJTw5s0bfvrpJ4yMjGjYsCF79uwhPz//s/FZWVmcP3+emzdvUlRURHR0NBs3bixz26ampsTExBAVFUVYWBhjx47FwMCA5s2bM2jQIE6fPk1WVpZM65SXl2fdunUMGDCAoqIiEhMT2bdvH+Hh4QQGBlKzZk12795d7nwPDw/at29PQUEB169fZ9iwYVhaWrJjx44yx8+bN4+mTZuyd+9ehgwZQpcuXWRqF/JHZsyYQWJiIu3atSMjI6PccWJkUOQfw3fffceRI0e4+fQpG4DeQ4fCjRsg9vQSERH5m3n58iVHjhzh2LFjREREIJFIMDIywsnJicDAQOrXr4+jo+MX/QcvIvJ/iYGBAbNnzxYiHVVN+ZRIJKioqKChoSEYoUyYMKHMNEtra2uePHnClStXuHTpEm3atCErKwsPDw+2bt0qUz+36dOnU1JSwr59+zA0NKS4uBhra2t0dHTKXHdUVBSxsbFER0cTExPDiRMnmD9/PmlpacKD5REjRsh0rAoKCuzZs4c2bdowefJkunXrVmWDj4sXL9K5c2cUFRWZOnUqgwcPrjR9UU5ODmNjY4yNjWnUqBG3bt0iKiqKkpISCgoKCAsL4+nTp5+tRSqVcufOHbZu3cq9e/d4/vw5ycnJSCQSlJSUBIGnr6+PkZERdevWxdTUFH19fTIzM1m5ciVPnz7F19cXIyMjoYm6k5MTDRo0wNXVFVNT0yoZwpSSnZ0NwIULF7hw4QIaGhosXbqUnj17snHjRubMmUNsbCz169enevXqhIeHM3DgwEpbh9jZ2QlmNk+ePOHHH39kxYoVrFmzhuLiYurUqcOCBQto+wcn+vj4eAYPHkxycjIpKSmCMNbW1sbe3h4XFxe8vb2xtLSkbt26ZR5zeHg4R44c4fHjxxgaGmJtbY2fnx8hISG4urqW+3Bl5MiRhISEcOPGDfbv38+MGTMoKSmhTp06bNu2DV9fX5nO6eTJk3n79i2zZ89mzpw55Y4TxaDIPwZ1dXXmzp1L165dGSsnR7tbt9DeuBG+/fZrL01ERORfQGFhIYsXL2b//v1ERkbStGlTgoODmTx5MhYWFlVyNhQR+Vq8fPkSMzMzjIyM8PPzw8vLi969e1c459mzZ6xdu5Zbt24RERHB+/fvcXNzw9DQkEWLFpXbXDw/P59du3Zx4cIFLl++jJycHB06dCAgIEBmx0ZNTU2WLVtGnz59OHHiBLt37+bIkSMUFRVRr149mjRpQt++fXF1dQU+1MC5uLjg4uICfEjJmzNnDosWLcLQ0BAfH58qnC3w8fHhxIkTTJkyhdGjRzNgwADmzZsnc3TQwsICGxsbkpKScHNzk+k68fr1azZs2MD9+/eJiori7t27KCkpYWpqiq+vL02bNv2ktiw/P5/58+ezefNm8vLy6Nq1K6NHj0ZfXx89PT1q1qxZ6X5TU1MZPXo0PXr0oFOnTlhbW3+RYyxATEwMV65cQV5eHhUVFUHE6unpYWZmhoODA/b29oLoKTUyUlBQID4+Xmhu/0dDn4qQSCQoKCjw7t071NTUKCoqwsLCgnbt2gmfhY8xNDSkR48ePHnyhLS0NNLS0rh9+zbJyclcvnyZ33//nd9++01IUba1tcXd3f2THo2tWrUiMzOT169fI5FI8PX1ZdmyZeWmQefl5bFhwwbu3btHdHQ0UVFRyMvLY2NjQ0FBAb169arUnCkyMpKdO3cSERHB7du3ycvLQ0dHh+bNm5cbiRT/ZxL5R9G5c2eWL1/OlStXmALMHzcOwsJAhiJhERERkT/Dnj172Lx5MzNnziQwMFA0gBH5n8TCwoLr169z//591q1bx/z58ysVgykpKSxfvpzCwkLWrFlDmzZtkEgklJSUVCiK3r9/T0REBJmZmejo6JCWlsaBAwe4efMmkyZNQk1NDRMTE+zs7HB3d8fc3BxDQ0M0NTVJSUkhNTWVJ0+efPJvamoqhYWFlJSU8Pz5c65du4aPj48gBv9Ifn4+M2bMYNeuXbRo0eKLzpmrqyvLly/H0dGRQ4cOMWPGDJn//mvVqsWpU6fw8fGhY8eO5ObmYm1tTXBwMM2aNcPb2/uzGreMjAx27tzJjRs3cHV1ZfHixQwYMKDccz1z5kzOnTvHmjVr8PHx+aLU5tq1a3Po0CFmz57Nt99+y6NHj1BUVERZWVkQZ/7+/lhZWWFlZVVuXV5GRgbNmjUjJCSE9u3bY2lpibm5OcbGxuWm5lpZWTFz5kxmzpzJkydP6N27N6NGjZKpEXxOTg779+9n06ZN3Lhxg1atWrF+/XqaNGlSrvkMfAgwdO3aVfi+qKiIqVOnCg6ixcXFZGRk8OLFCx4+fEh0dDQ5OTmfiMEmTZpgbm6OgYEB8+bN4+zZs7x7967M+kKAKVOmcPHiRb755hs6duyInZ0denp6FBUVyfwwMT4+nrt37/LkyRNyc3MFZ9jff/+93Dn/WDEokUhCgBBDQ0MePnxY4djExESZtinLuL9qjLitL9/WiBEjuHr1KkukUvo+f47B8OG8/I9F8f/yMf4vr/2v3paIyH8jsbGxqKqq4uzsLApBkf9pFBQUcHFxwd/fn9WrV2NhYYG3tzd+fn64ublhb2//yc2+h4cHjx49YsWKFQwcOJB+/frh4OCAvLw89evXF/rf/TGSVL16dTZ/ZPYmlUp59+4dCQkJhIWFCQ3lz549K4yRl5enZs2aPHv2jDp16tCiRQtq165N48aNMTY2pnbt2qSmpuLh4VGuac3HqKmpMWLECMLCwrC3t0dLSws3NzdCQ0MrbWYOH/7uFy1axI4dO+jTpw8zZ86s0HG1LCQSCWZmZly/fh2A+/fvExMTw9y5cxk7dixTp079ZLylpSXXr1/n0aNH7Nixg59++omxY8cSFBREx44dadKkCdWqVUMqlbJ06VJWrFhBREQExsbGVVrXH/H09GTv3r3ABxfWQYMGsWrVKl6+fMm1a9dYvnw58vLydO7cmQ0bNpS5jQMHDpCXl0ezZs0+S82UBWNjY2xtbTl//jwtWrSgT58+tGrVqtzeijNmzGD69OksXLiQvXv3VrkHY2FhIRs3bmTatGlIpVI8PT1xdnbGzc0NGxsbrKys0NXVLVdgN2vWjPj4eGrVqoWtrS07duwgICAAa2vrzyKEW7ZsISgoiD59+nyyzqpklYSFhdGuXTsyMzNJTU1l06ZNzJ8/v8L7q3+sGJRKpYeAQ/b29v2srKwqHS/LGFnH/Tfu79+0LSsrK/r378+qVav4ATi5cSPVR4+G/4TW/5eP8X957X/1tkRE/tuYOHEiUqkUV1dXFixYwDfffPOPMxcR+XfxzTff8OOPPwqtE3bt2kV+fj5ycnI4Oztz+fJlQSypqqoyfPhwwsPDSU9P5/79+/Tu3ZvTp08L9Uo6Ojp07NiRKVOmlFljNWLECHbu3MmrV6/Q0NDAysoKa2trPDw8cHNzw9zcnDp16pCXl8fatWtZsGABkZGR6OjooKWlha2tLbVq1aJOnTpVeiAzefJkRowYwb179xgwYACnTp1i7ty5wAfx0bdvX7777jshovPu3Tv279/Pli1buHfvHt999x0PHjzAwMDgz55yAQUFBTQ1NQkPDy93jJmZGRMmTCApKYl169axY8cOduzYgby8PMOGDaNGjRqMHz+eSZMm/eWOt3Jycp/VNpaUlKCkpMQ333xT7rzevXujo6ND7969uX79OrNnz67yvvX19SksLOTEiRNcvXqVwsJCVq9eTffu3T8bW3rss2fPJjExEXd3d1q2bFludO5jioqKcHR0JDY2lgYNGtCiRQv09fVxdXXFxMREpvrQhw8fkpKSwoIFC1i0aBFHjhwRXFQtLCw4c+aMUDv4+++/Ex4ejp2dHQMHDqRbt24YGhrKfF5mzJjBhg0bePLkCUpKShgbG1OtWjVsbGyoV68eR44cKXPeP1YMivy7mTZtGjt37uR0Zib7i4poO3w4HD78tZclIiLyD0ZBQYGff/6Zli1b0q9fPzZu3Mj69ev/0htEEZGvgby8POrq6uTm5mJra0vLli1p2bJlmYJLIpFgaGiIoaEhenp6PH36VBAiGRkZrFy5kl9//ZX58+czcODAT+bWrVuXmjVr8vjx4wrdPBUVFQkPD2fw4MGcPXuW69evs3r1avr06YOGhgYKCgqMGTOG/v37y3yM1apVw8/PDxMTE2JiYoQ1P378mClTpjB58mSaN2+OkpISx48fx9TUlDFjxnDw4ME/lQmwcOFCLl26xMmTJ5GXl6dOnTr4+PjQtGlTmjZtWm4qY0xMDKtXryYyMpJr166hqKhI7dq18fDwoEmTJkKqupaWFufPn8fDwwM1NTUaNGjAkCFDcHNz+6L1RkdHs3btWqKiorh+/Try8vIYGBjg4OBAYGAgXl5e+Pv7lztfIpHQrl07Tpw4waZNm75IDH5MVlYWqqqq5fYmVFJSYubMmXTu3JmjR48yffp0evbsSa1atQgNDWXq1KnlnmMFBQU2bdpEbGwsKSkpHDlyhMuXLwu9JOXl5alevTpGRkZYWlri6urK8OHDP/nsSiQS6tatK9QlamhokJ+fT8OGDenXr98nDeQNDAzYvn07V69eZd26ddjZ2eHp6cmECRMqPKeldOrUiXfv3rFlyxZq1qxJx44dcXR0xNraGhMTk3IjjKIYFPlHoqurK7hyDZdIaHHkCKrHjkG9el97aSIiIv9wvLy8uH37NpMnT6ZBgwacOXPmT6dniYh8LbKysrCxsWHhwoV4e3sL6Ws5OTn8/vvvvHz5khcvXvDixYvPvo6Ojha2o6Kigra2NgYGBtStW/czsSeVSnFxcWHhwoUytXWAD6KwcePGSCQS8vPzefPmDREREWhpaVVopV8Wqamp3Lt3j6SkJOBD5EtRUZHCwkK0tLSoV68eysrKaGho4OvrS1JSEv3792fChAmYmJhgampKQkICpqamdOvWDW9vb5ncglNSUjh79izKyspMmzaNgQMHytRnccKECejq6jJ27FgcHBwwMDAoMxNh0KBBDBo0CKlUyt27dwkICKBFixZfLAZzcnKIiori3LlzGBoaMm7cOIYOHVplM5kHDx5UmgkklUq5f/8+Dx48ID4+Xnjdu3cPAG1tbezs7OjevTv169evcFuOjo44OjqioqJCeHg4T58+ZfXq1Tx//rzCthD169cXtq2srMzly5eRSqWoqKggkUh4/vy54DSqr69PSUlJhZ/fUhEZGRnJjh07yMzMpEmTJp+Y4fj4+ODj48OSJUvYtWsXrVu3Zu/evTRs2LDCbJN69eoxa9Yspk+fzvnz5zl06BA//fQTkZGRlJSUlDtPFIMi/1gGDBjAqlWruH//PvOAH8PDYdeur70sERGRfwGKiopMnz4dFRUVevXqxenTp7/2kkREvgiJRMKwYcNo3LjxJ+/v2rWL77//nvfv3wMfoodeXl40b96cTp06oaenx5MnT7C3t8fMzEy4iZVKpbx48YLo6GiWLl0qtHiIjo6mpKSE+fPnV2l9N27coFOnTmRmZlK9enWGDh1KTk4OISEhVWqL0aFDB6GfX4cOHfDw8MDS0hITE5NyawCLiop4+vQpSUlJJCUlceHCBa5fv8727dsZO3YsM2fOrHS/8+fPZ8aMGTRp0oSRI0diaGhYrvvqxxQWFrJlyxauXLmCpqYmxsbGhISE4OvrS7169T4zk5FIJJw8eZJmzZpVmMZZGfXr1+fUqVO8fv2abt26MWnSJK5cuVJuCmJZFBUVERMTg6OjIzExMdja2pY57uXLlzRs2JDMzEzq16/PgAED6Nu3LyoqKlhbW8tUE1rZOvbt20dhYWG5v+Pnz5+zd+9edu3axe+//46rqyvu7u64urpiZ2eHra1thUY0f6S0t2FRUREHDhzg4MGDeHt7c+XKlc/Gqqmp0bNnT2JiYmjVqhUlJSWYmZnh5uZG/fr1cXBwwMHB4bOUa3l5eRo3bkzjxo05ePAgbdq0qXBNohgU+ceioKDA4sWLCQwMZKZEQs+HD9HZtg1kuDiLiIiI/BWMHTuWNWvWcP/+fRwcHL72ckREqkxJSUmZKXg9e/ake/fuJCQkcPfuXeG1fPlyCgoKWLhw4Wc1XLdu3aJFixa8evVKeK9WrVo0atSIHj164OTkhL6+Pvn5+cTExGBjY1NpCqavry+vXr3i9u3bQs3ckydPWL58Odra2ty7d486depUepzbtm3Dx8eHMWPGlNlqoCwUFBSoXbs2SUlJ/Pbbb7x584bevXszYsSIcgVOWaioqFCnTh2uXbuGqampTHMOHz5Mfn4+sbGxDBs2jD179rBnzx6UlJSQSqUsWbKEAQMGfDJn+/btVK9enVWrVhEQECC0LCjP+bMiqlevjr29PceOHePMmTNs27ZNJndP+HDe+vbty7x583B3dyc4OJgZM2Z81jNQT0+P1NRUtm7dypIlS1iyZAnbt2/Hxsamyustj9K03+Dg4M8eHKxevZqBAwdSUlKCpaUlgwYNwsTEBD8/P8zNzcs1o8nLyyMmJobIyEjhFRERgaqqKubm5nh4eODl5YWTkxN2dnaVmtq4ubmRm5sLfEgPjomJYevWrUK0z9DQkIiICLS1tYmLi/vkAcvt27c/+ZyWhSgGRf7RNGzYkI4dO7Jz505GAduWLoXwcNDT+9pLExER+RegqKhIQEAAERERohgU+Z/jwYMH5OTkoK6uXubP5eTksLS0xNLSko4dOwrvR0ZG0qRJE9LT02ncuDFOTk4oKCjg6urK2bNnef78Oc+fP+fFixfC17t372bZsmVCmmlJSQklJSVoa2tTt25dHBwcmDx5MvX+U+4RGxvL7NmzefjwIXFxcUI9Y4MGDXj06BH+/v507dpVpsb18CHFTkdHhzt37uDo6ChTqmpKSgqdOnXixYsXjB07ln379v2p+sGSkhL8/Pw4e/asTP0OlZWVcXJywtzcnPPnzwMfWh6oqakRFBT02fiDBw9y5swZLl68yJw5c8jKysLExISNGzdWSbz+kfz8fHr16sW+ffvYJWMGlpKSEsXFxeTm5rJnzx52795N//79Wbly5Sfj1NXV6d+/P/369ePXX38lICCAvn37YmFhQd26dalbty7GxsZffN7z8vJo27YtdevW5ciRI588+OjWrRsODg4kJyeTnJzM0aNHmTt3riAaVVRU0NfXx8zMDCcnJ54+fcq9e/dITEzEwsJCSE0dMWIEjo6OGBoaVtlULD8/n4iICJSVlVFWViYvL0+okfTw8KCwsJCHDx8SEBBASkoK9erVEyKWnTp1YsqUKVhZWaGoqFjuvkUxKPKPZ+7cuRw6dIidubl8l51N4IQJsGbN116WiIjIvwQDA4Mq1y+JiHwtiouLWbBgAVu2bOHZs2c0bdoUe3v7Km3D0dGRI0eOEBISwpQpUygqKsLe3p4WLVrQsmVLmjZtWuF8qVSKh4cHt27dIjMzk8zMTO7evcvly5e5f/8+6urqqKqqYmhoSFZWFtnZ2SQkJJCenk61atV4/fq1kLqpqalJ3bp1ZWoCP2LECEaOHMmwYcPo3r07w4cPx8zMrNzxqqqqGBgYkJiYyOvXr6vk2CmVSjl79iznzp3j8uXLQrpns2bNynRalZXSvnJeXl6MGTOGgQMHCimQderU4dtvv6VXr15s376dUaNGkZubi6qq6hftKysrCzk5OVRVVdHS0sLDw6PM1NzExEShFUZpu5C7d+8CH86hsbExDg4OuLu7l7sviURCnz59cHd3Jzw8nPnz5wtR0Ly8PNTV1dHX18fExAQrKytBLDZs2PAT18/s7Gzgg5BTVFQkLy8Pc3NzGjZs+NlDDzU1Nby9vfH29gY+uOGW1gyqq6tTUFDA69evsbKywsDAgKKiIqpXr05qaiq5ubkUFhYKx1gVISiVSjl+/Djbt2/n0KFDGBkZMXbsWBo0aICDg8MnTqjHjx9n27ZtpKSkCBFmBwcHvL29cXBwQF9fv9L9imJQ5B9PnTp1GD9+PD/++CNDgTtr16IwcCCU04BWRERE5K9EQUGBoqKir70MERGZyMnJYdGiRaSkpNC8eXPev3/Pvn37CAoKKjdCCB9ESHp6OsnJySQlJZGcnExhYaFQUxgREUF8fDw3b97kxIkTFa6hsLCQ/Px84IMIUFVVpaCgAKlUSnp6Oubm5tStW5fp06cLc0pKSkhNTSUuLo7vv/+e3bt3c/jwYeTk5CguLsbExARnZ2c8PDxwcHDA3t6eatWqER8fT2xsLA8ePCA2NpbCwkKys7PZsmULhoaGTJgwodx11qxZk7179xIVFcWUKVMwMTFh+fLltG/fvtIb8IKCAsaOHcutW7eoVasWnTp1Yvbs2WW2EigsLPzEnKc0olr69ZkzZz4Zn5+fT05ODmvXriUoKOiz9MtTp04xYcIEtmzZgr+/f5X62H1MUlISysrK5ObmYmZmxqNHj9i4cSMuLi7Y2toKInTTpk1s3bqVlJQUCgoKkJOTw8jICDMzM6FZvZOTE3Xr1q10n05OTjRt2pRz585RUFAgvP/u3TuhR+WpU6cEF88lS5YQHBwsjHv48CFKSkrk5eVhYGDA0KFDady4Mfb29hU+MLhz5w7r1q1DWVmZkJAQWrZsib+/P+bm5p/9rouLi4mLiyMiIoLbt2/Tv39/3Nzc2Lhxo0zmQAUFBbRq1Yp58+Yxa9YsatasWW5NY4sWLWjRogXwob7x+vXrXL16lWnTphEVFUVRUREaGhoVRn5FMSjyr2DkyJH8+uuvRCUlsRIYPHQoXLoEYg8wERGR/2NKHQlFRP4XKC4uZvTo0URERHDgwAFevXrFiRMnkJeX5969e9jZ2X0258GDB7i4uAgCDj6k92loaNC6dWsGDx6Mv7+/TKl8z549w8zMjJycHAD8/f0ZOHAgISEhFYpROTk56tati66uLjVq1CA+Pp68vDzh5w8fPuThw4f89ttvn8xTUFCgdevW2NnZ0bZtW/z9/QkNDZU5vRTA3t6enTt34u/vT48ePRg2bBi+vr40atQILy8v7O3tPxNcysrK3Lx5k7S0NI4dO8bPP/9MnTp18PPzE5yIJRIJ33zzDTt37vxkrpWVFX5+fpiZmWFpaYmRkRGqqqr4+/vj6upaqbPnjh070NLS4vXr17x+/Rq9LyydcXR0FIR9aW3c6tWrBbfNR48eYWhoyOTJk5k8eTIlJSU8f/6cx48fM2fOHPbt28edO3dY81G2lpeXF9euXatwv6UisDQyqKWlJaRNOjs7Y29vj7W1dZkRTzc3N7Zs2QJAcnIyw4cPB8Dd3Z2bN2+Wub89e/bw3Xff0adPH06dOoW2tnaF65OXl8fGxgYbGxu6devGlClT8Pf3F1oOVYaysjL169fnyJEjqKio4OXlhbOzc6XRbX19fdq0aSMYxkilUjZv3kzPnj15+vRpufNEMSjyr0BFRYX58+fTtm1bfpRI6HTlCro7dkDnzl97aSIiIv9wFBQURDEo8j9DRkYGkZGR1K1bl5kzZ3Lo0CE6dOhA06ZNy+2ZaWNjQ1JSEikpKcIrNTWV9evXc/DgQQ4ePIhEIhFcL1u2bCk0df8jBgYGPHz4kMaNGxMXFydEOkrr49auXSsYiEyfPp0rV64IrSxevnyJVCpFXl4eTU1NtLW1qVmzJoaGhpiYmGBpaSn0MtTW1ubGjRssX76ce/fuMW7cuArTFGVBT0+PvLw8nj59yq5duzh8+DAKCgrk5eVhZ2fHwoULadCgwSdzjIyM6Nu3L+fPn2fr1q1cuHCB4OBg6taty/nz51m/fj1jxozh4cOHxMbG8vDhQ6Kjo1m3bh1GRkZYWVkxdOjQSh0jP2bJkiXs2bOHOXPm0L17d2bOnMkPP/zwxcddKrrU1NRo2LAhrVq1omHDhp9FOeXk5KhVqxa1atXC3t6effv2oaCggKKiIsbGxgwcOJCuXbtWuK8RI0awbNkyzM3NGT58OB07dpQ5rfbNmzds3rxZSBF1dnamcePG+Pj4VNiaQk9PT3CqrUwIloWGhgYdO3YUmsLLki56+vRpTpw4wcGDBxk5ciQaGhqcOHFCJnMjqVTK8+fPiY6O5tKlS8jLy6OioiJE6f+IKAZF/jW0adMGHx8frl69ykRg5ejR0Lo1VPCkUUREROTPIi8vL4pBkf8ZcnJyuHfvHq9eveLNmzdkZGSgo6NTrhDMz89nz549pKSk8OTJE9LS0khLS+PJkydCTZmmpia1atXC0tISJycnvLy8KlxDaV9OZWVllJSUKCwsxMnJiaCgoE+iWB4eHmRlZREZGcmzZ8+QSqW4urry+vVr2rVrx6hRoyq8ebe2tqZbt24MGjSI7du3/2kx+EcKCgoEYerj44OJiUm5Y6VSqfD1+/fvSU5ORkVFBTU1NUxNTbl+/Trp6elCzV2paYmzszOWlpZVWld6ejoXL14kLi4OKysrPDw8vvQQATA1NeXIkSMVHt/HXLt2jR07dqCsrEyvXr344YcfZHYI9fPzY//+/aSmpnL9+nVatGghsxjU0NAQostLliyhZ8+eMs3z8fEhNDQUa2trxo0bx7hx42SaV0p6ejpbtmyhdevWMtcNltbCpqamoqioiJubG0ZGRmWOff78Obt27SI6Olp4wYeItYaGBgMHDqRfv344OTmVOV8UgyL/GiQSCRMmTKBNmzasLipiwJMnuMyeDVOmfO2liYiIiIiI/FdgbW3NvHnzSE1N5cmTJzx48ID27dtz69atMo1k3rx5w7Zt23j48CFJSUkUFxejo6NDQEAAz549IyQkhI4dO2JqaipzbZpUKuXdu3fk5+fTvn17li1b9okJSCkNGjRAT09PcE88f/48V69eRUFBgR07dvDNN998JgYLCgq4desWly5d4tKlS1y5cgV9fX3GjBnzRecrIyOD27dvc+fOHW7cuAF8eABkYmJCcHAwXbp0wcXFhWfPnpGWlsatW7cEwfzxq9T2X01NjTp16jBq1Cihj15KSgq7d+8mNjaW9PR0LCwsqF+/PjY2NlhbWwstKWR11IyIiGDbtm20bduWX375pVyhLyuPHz/m+PHjDBgwQCaxc+nSJdLS0tDR0UFLS4vCwkKZe0K2bduW2NhYxo8fz5YtW6hXrx4//fSTTOssLi5GX19f6C8oixh8/vw5Bw4c4N69exQUFHDq1CnGjh0rU03o4cOHWb9+PZcvX6ZPnz7MmTOn3PGpqamcP3+eCxcucOHCBV6/fk2DBg0YPHgwLVq0qDBFOj4+nqNHjwp1pFlZWaiqqpKeno6ysjK3b9/m0qVL5c7/x4pBiUQSAoQYGhry8OHDCscmJibKtE1Zxv1VY8Rt/d9sSyKR0K1bNzZs2MAQ4MLs2SQ3aEDRf55Cfq11/Tfu7795WyIiIiIi/zdkZmayd+9eQaS8f/+ewsJCTp8+XaYY1NfX5/Dhw8AHo5Pk5GTi4+OJj49n2rRpTJw4kYkTJ9K/f39WrVol0xqePHki3Pxu3boVJSUlfv3118/G9enThy1btmBpaUmvXr2YMmUKjo6O5OTklBst69KlC5GRkbRs2ZJvv/2WdevWoa+vL+vp+YSnT59iYmJCYWEhzs7OtG/fnrCwMLy9vT8Rvn369Clz/SoqKtjZ2eHn54exsTG1a9fG09MTBwcHzM3NKSgoQElJCScnJ86ePQvA27dviY2NFV5btmzh/PnzjB8/npSUFJkMSr755htsbGwEwf5HA5qq8v79ewYOHIiZmVmlTrEAo0eP5t27d0yfPp25c+cyZ84czpw5Q6NGjSqdW1RURHx8PPAhBb9hw4Yyr3PmzJkcPXqUM2fOEBAQINO+HBwcyMzMZNasWaxYsULmPpCTJ09m5n/6Wvv6+pKYmEj79u1xdHTE09MTc3NzateujYqKCqmpqYJ5TmnPyMoMbT7Gz8+Po0ePCt9LpVLevn3LkydPWLduHQsXLuTZs2flzv/HikGpVHoIOGRvb9/Pysqq0vGyjJF13H/j/sRt/X8WLlzI0aNHufLiBTsKCui6ciWU0Rfnv/EY/1vP6dfYloiIiIjIX09BQQH6+vq4urpiZGTE6dOnGT58ONWrV690rqKiIhYWFlhYWACwbNkysrOzcXZ2ZtasWZXOP3LkCIMHDyY5ORn4kOb2/fffExQURFFR0WeRxdWrV+Pt7c3cuXM5c+YM/fr1+8R2vyysrKx4+/YtYWFh+Pn5yXzDXRaGhoYkJyezY8cOtmzZwvr168nLyyM3N5cGDRoIzdzXrVvH0qVLef36Na9eveLVq1effP3q1SsuXLjAuXPn2LRp0yf7UFBQQF1dHV1dXWxsbDh48CCenp54enoKY/r168eOHTs4cuQIbdu2rXTdERERtGjRgm+//ZZJkyZV+biLi4uJjo7m7t27yMnJoa6uzooVK2jSpInM2yg978rKyixfvpzAwMBK5xw5coRvv/2Wly9f4uLiwuLFi/H19ZVpf1KplEaNGjFr1iy2b98ukxhUUFDgzp07LFy4kEmTJqGkpMSQIUNk2t+MGTMYM2YMqamppKSksHPnTjZu3Mi+ffuEbZeUlKCqqkqtWrX45ZdfSEtLY8OGDURFRdGqVSuaNm2KjY0NJSUlMvW9BFixYgVr1qzhyZMnvHnzBh0dHWrUqIG+vj4xMTFlzvnyvwARkf9RtLS0hP+URkkkZO3eDefOfeVViYiIiJTN48ePK3yqKyLyV5KRkcHmzZvZunUrO3bs4NatW+UaT5TH/fv3ady4Menp6fz4449cvHgRHR2dSud5eHgwa9Ys5s6di4GBAVFRUQwZMgRzc3OUlZXR0tLC0tKSJk2aMGjQIH799Vf69etHfHw89evXp0GDBuzYsYMrV66QmppaZkuX0aNH06RJE77//ntMTU0ZN24cly9f/sQJtSoYGhoyfPhwbt++jYeHB6tXr6ZDhw5oa2vTpEkTDh48CHwwWTEyMsLR0ZHAwEDCwsIICQlBTk6O3Nxc8vPzkZeXR0FBATk5OXR0dLCxsaFp06b07t2bUaNGMWLEiM/2L5VKycjIEKJYsvDkyRPMzMwYOHCgzIYo2dnZ/PzzzzRr1ozq1avTsWNHMjMzGT16NAkJCXTt2rXKDdXhQ8aWrq6uTHM9PDyYM2cOfn5+3L17l0aNGqGsrIyFhQUdO3Zk9erVn815+fIlP/zwAyYmJvTp04fg4GAGDRok09revXtHXFwcT548oU6dOp+Z/1SGlpYW9vb2BAUFfSZ2i4qKhHpYX19fwsLChPTsfv36ER0dTVBQEMbGxgQFBQmfo8rw8vLi5cuXmJubk5GRwfPnz8nIyBDqCMviHxsZFBGpiJ49e7JixQpu3rzJDGDmDz/A7dvwhb12RERERP4vCAwMZMaMGZiYmKCjo4O/vz/NmzfHz88PS0vLL7r5EhGpCAcHBzZu3MiNGzcYM2YMhYWFvHjxokqtFh4/fsy1a9c4ePCgTNGikpIS4uLiSE9Pp6SkBDk5OeGzXVRUJESRsrKykEqlFBYWkpubS1FREUVFRaiqqjJz5kzq1avHnj17OHfuHFlZWRQVFVGtWjX09PSoW7culpaWWFtbY21tzaZNmygsLGTv3r0MGzaMhw8f4unpiaKiIkOGDKF58+YyR2Nyc3O5ceOGYGKTl5cn9ER89OhRmXOKiopo3749JiYmeHp6Mn/+fOrVq0edOnWoWbNmpX/bMTExbN++nd9++42XL18yderUz/oJlkeDBg3YvXs3zZo14+XLlxgaGhIcHEzbtm3x8vIqM9U0OzubY8eOcfv2baZNm0afPn3Q0tL64h6FpRQWFnL58mVCQkLKHfP27VtiYmJITEwkNTWVnJwcpFKpIPYzMjKIi4ujZs2an83NzMzk2LFjqKurs2HDBlxcXMrs2VdSUsKtW7f4/fffuXnzJjdv3iQlJQUnJycaN27MunXrUFNT+6Lju3XrltCCQ1FREYlEgq2tLWFhYQwcOPATAxxVVVU6dOhAhw4dkEqlJCQkMGvWLDp37ky3bt1YvHixEHGGD5H8Usfdq1evcu3aNVRVValTp84nfRgrQrzzFflXIicnx5IlS/Dy8mI+0Pv+fSzWrIGBA7/20kREREQE3NzcKCgoID8/n2fPnrFr1y6OHj2KVCpFV1eXfv360b17d5maNYuIyMKLFy/o378/Dx48YODAgfzwww9lNkKviODgYLZt20br1q0xNzene/fuhIWFUa9evTLHX7hwgVatWpGbmyu8p6GhQUBAAN26dcPDwwNDQ0Nq1KhRYVpnv3796NevH40aNeLcfzJ+3r59y9u3b4mPj+f06dPCWEVFRaZNmyZkCkVHRzNmzBiOHDnCyZMnOX36tEypi/AhNW/UqFGUlJSgqakp9KSzsLAoV9Q9evSI+/fv8/jxY968eYOSkhIODg60b9+e6tWrVyiyiouLCQ4OJikpiT59+tCvX79P0kYrQ1tbm82bNwPw7bffsmHDBhYuXMiqVavw9/fn+PHjn63bwMCAa9euceHCBWbPns2sWbN4+/YtysrKaGhooKWlRY0aNdDT08PQ0BAjIyMMDAyEvo81atRAV1eX6tWro6ioKIh+JSUlevToUeF6f/jhB6Fhe+/evWnbti3fffcdjRo1om7duhWeK0tLS6Kjo1mzZg2dOnUiNTUVdXV1DAwMMDU1xdraGhsbG16/fs24ceMIDg6mdevWhIeHY2dnV26zd1nIysoiJCSEjIwMIVW6devWWFlZyZSeLJFIsLCwwNLSkpycHNasWUNYWBjNmjUTxuzatYuePXtSXFyMq6srq1atok2bNjI/yABRDIr8i/H09KRXr15s2LCBcODwxInwzTcgQ12EiIiIyNeiNGUvJSWFadOmMX36dMzNzenWrRtt27atss28iMjHlJSUMHPmTHx9fT+JQFSV0NBQLCwsiIyM5Mcff2T06NGEhISUme4WGBhIdnY2KSkpxMTEEBMTw5w5c7h48SIXL15EU1OTFStW0KVLl3L3l5CQwJEjRzh27Bi3bt1CXl6e6tWrY2xsjIWFBXZ2dpiZmWFqaoqJiQkGBgbCDXmnTp347bffUFBQwMvLi3Xr1mFrayvzsQ4fPpz+/fsTFBTEpUuXBFMUTU1Ntm7dSnBw8GdzrKysePPmDY8fPyYyMpJJkyaxf/9+pk+fjkQiISAgQDCN+SPy8vLExsZy/PhxtmzZgp+fH2vXrpW5VcLHfOxAmpuby8mTJ7l8+TL+/v6fjZVIJDRs2FAwbRk5ciS//PILubm5vHz5koSEhE/GKyoqoqioiLy8PFKplPfv3yOVSgUxaGBgwPnz54Ua0/JYv349vXv3ZtWqVWzfvp0NGzYQGhoq8zEqKioyaNAgBg0axLx58xg1ahRv377l4cOHHD9+HDk5OUpKSgA4fPgwJ06cwMbGhr59+wqfFxMTE7Kzs9HR0ZH572LAgAFEREQwa9YsbGxs8Pb2FnoyykrHjh3ZtWsXioqK9OvXj+zsbO7cuSNki3Tt2pXg4GAuXrzImTNn+PHHH+nduzc7d+78RDRWhCgGRf7VzJo1i71793Lk3TuOvn5N0OTJsHjx116WiIiIiEyU1jlFRUUxefJkfv75Z6pXr8633377xQ6JIv9usrKyUFdX/1NCsJTCwkJBbLRp06ZCsxI5OTnhptvGxoaFCxcKTpp9+vShVatWn4zPzs7m8uXLnDp1iiNHjvD27VtatWrFgAEDWLNmDYaGhjJHR6ZPn05QUBB3795l48aN2Nvbo6Kigo2NDS1atGDMmDFoamqWOTcnJ4eoqCju3r1Leno6KioqqKur07RpU9q2bVthdFFOTg5TU1NMTU3ZtWsXkZGRgigpb3+lKCkp0bp1a6Kjo7l+/TqNGzeW6VgBQUTeu3eP2NhYNDU1sbGxoVmzZvj7++Pt7S3TdiqLbhUWFiKRSFBQUCA/P59q1apRUlKCiooKHTp0YNKkSTK1tSgVxwEBAXz77bccOHAAfX197OzsKj1Pf+T69euoq6ujoKBAQUEBhYWF6OvrY2Jigq2tLZqamsjLyyMvL8+DBw84duwYycnJJCcnIy8vT15eHmZmZjRs2JAZM2ZUaKw0e/ZsGjduzNWrV5k+fTrPnj3D3Nycdu3a0bp1azw9PSv9jM6ZM4e6desyb948li9fzrp164TetfLy8ujr62NqaoqNjQ3ff/89CQkJ1KpVq0q9I0UxKPKvRl9fn59++okRI0YwDGiybBlK/fvDn0gLEBEREfka5OXlAR8MEyIjI2V+Kiwi8jHy8vLcuXOnSmmHH1NSUsKFCxdYtGgRiYmJ9O/fn9GjRwuN5GVBKpWSm5uLra0tO3bsENJLf//9d6E1wJ07d3Bzc6Nx48Zs3boVFxeXL3YGNTMzw8zMjB49evDw4UOOHj1Kbm4ut2/fJjo6mnXr1rF//348PDw4d+4cd+7c4c6dO9y9e5ekpCSsrKxwcXFh5MiRNGnShHr16n1xPa+Kigo1atRg7ty5lY4tLCxk6dKlnD17tkrnFz6I2GfPngn1Ze3bt6dz587lNjb/UhQVFcnOzqZ169bUq1dPaMD+pb+rLl26MH78eBo3bkxhYSHVqlXD0tIST09P3N3d8fb2rrB28tWrVxQWFrJkyRKaN2/+SYT4jxQWFnLmzBlu377NrVu3OH78OMXFxeTk5FBYWFjpWmvXrk2fPn3o06cPGzdupFevXsTHx/PLL7+wfPlyiouLCQwMpEOHDrRt27ZMYWtiYkL9+vWF7z82OiosLCQtLY2UlBQKCwtp3749AQEBLF26tErpraIYFPnXM3jwYFavXs3Dhw9ZVFLCqGHDYOnSr70sEREREZmpVq0axcXFSCQS+vfvz7x581ixYsXXXpbI/yAKCgqMGDGCzZs34+fnR2FhIaNHj64wgpOfn8/Zs2fZv38/Bw8epGbNmgwaNIjVq1ejp6dXpf0XFxfz6NEj5OTkuHv3Llu3buXHH3+kuLiY3r17Ex0dTdu2bUlISPjTzdJlIT8/n8zMTGbOnMncuXMZOnQoaWlpvH37Fnl5edzc3DAxMUFbW5vjx49z9epV/Pz88PPzo06dOhU2C/8jqqqqtGzZkk2bNpU5r6CggFu3bnHhwgXOnz/PtWvXcHFxqTTN8o+0aNGCFi1aIJVK6d69O1u3bmXUqFEkJiayfPnyKm2rMgoKCpBKpezfvx9VVVVmzZr1p9p5NG3alMuXL3Pr1i3gg0HMjRs3uHHjBsrKyrRt25bt27eXO79169ZcvHiRQYMGYWBgQPv27QkNDcXT0/Oz2sPIyEjCw8NJS0sjKysLRUVF9PX10dXV5dWrV8yaNQs7Ozvq1q2LoaEhhoaGaGhofLZPqVTKu3fvhO+LioqEh3dHjhzh999/R1VVlY4dO5a55uzsbOFreXl5lJWVKSgooE6dOvTp00eIlo4YMYIGDRpU2dRHFIMi/3qUlJRYuHAhLVu2ZArQ7cwZNM6cAWvrr700EREREaRS6Sffq6ioIC8vT1FREdbW1gQEBODn50f9+vUxMTERHUZF/hT16tXjwoUL3Lhxg9WrV/Pbb7+xYMECfvzxR6ZMmfLZ+Ldv32JqakpmZiZOTk5s27ZNZuOVsvDy8uLdu3e0a9eOSZMmCZEqeXl5IiMjOX36NKtXr8ba2hoPDw+8vb3x8fHB09NT5jYJVUFBQYF27dqxefNmFBQUBIv+9+/fk56eTlpaGk+fPuXp06ccOnSIhIQENm3ahEQiQSqVoqamxr59+yqM1Kenp3Pjxg1q1qzJ1q1bP6njKyUpKQkHBwfq1KlD8+bNGThwINu2bfvEiVJW3rx5w7Vr17h8+TLnzp2jWrVqLF68uMo1h3+8NmloaAh1gaWUlJTg6upKUFAQjo6O6OnpERsbS0ZGBtra2tja2lZJHHbo0IHdu3djbGyMnZ0dPj4+uLq6CqKssm1JJBJKSkrIy8sjOTmZX375hXnz5mFiYkJCQsInaZtubm48ePAA+JA+PX/+fCZPnsyzZ8+4c+dOmdvX0NBg165dtGjRAvjwe3NzcyMzMxMVFRV8fX1xc3PDzc0NKysrzM3NK3xgUFrPCh+u/aGhofTo0YPAwMBPPiffffcdtra2tGrViri4OCZPnizT+QRRDIqIAB+ekrVu3ZqDBw8yFlgzaxb06QNlXJBFRERE/i8pKCjgwoULHD16lIiICPLz81FXV8fc3BwfHx/8/f1xcnLCysqqSo5xIiKyMnXqVLZu3YpEIsHR0ZEhQ4bQqVOnMsdqaWlx9epVzp49y/nz52nXrh3Vq1enZcuWLJUhy+b9+/ekpaWRlpbGkydPUFNT4+XLlyxatOgzUSQnJ0ezZs1o1qwZr169Eqz0Z82axa1bt6hTpw6+vr507tyZhg0b/iUPRoqKiti5cycdOnSgXbt2wvulf5MfpyRevXqVhIQElJSUkJOTw9XVlREjRtCoUaMyt52YmMiKFSv49ddfadSoEStXrvzsmKVSKU+ePCE+Pp5atWqhpqbG/Pnzv+jYJk+ezN69e4mKisLExIQuXbowbNgwBg4cWGZEqywKCgrYtWsXe/bs4cyZM0JtZfPmzWnUqBFWVla8ffuWly9f8uLFC+Hf58+fs23bNuG9lJQU8vLykEgkaGhoULNmTaEXYEVGQZMnT+batWvUrFmTkJAQnJ2dcXR0pFq1ajKtvzTNUl1dncLCQqytrenSpQtt27at8HqamZnJ77//jqamJiUlJeTm5qKjoyPUGtrb22NhYYG5uTk2NjbCPFNTU44dO8aUKVM4fvw4N2/exNnZmfbt28skglesWIGlpSVTp04lLy+PAwcOsHfvXhQUFDAzMyM0NFR4SLN8+XLU1NTo3r27TOeiFFEMioj8h/nz53P8+HE2FRTw3ZMneM+fD+PHf+1liYiI/AuQSqXs3LmTvXv3cvLkSaytrQkODuann37CyckJXV3dr71EkX8RVlZWGBkZkZiYiIKCAi4uLhWKhaKiItLS0khOTqa4uBhra2vs7e2Fn1+/fp379+8Lgq/03ydPnpCbm4uxsTFGRkYYGRnh6elJ586dK33QUaNGDUJCQoT+dEVFRdy/f5+zZ88SGhqKkpISw4YNo0OHDhW2eIAP0ZtTp04RGxvLzZs3kUgkSCQSatSogZWVFV5eXpW69O7bt49Lly6hpqZG//79GTJkSLmtNE6ePMn8+fO5desW3bt35+7du9SuXZvCwkL27NlDTEwMsbGxxMbG8vDhQzQ1NbG2tqZp06a4uLgglUq/SAza2dmRmZlJrVq1ePDgAb/88gsaGhosWrSIgIAAWrVqRbt27cp0vHz37h0LFixg5cqV2NnZ0atXL3755Zcvyka4fPkyEydO5NKlS8AHgaaqqoqFhUWlbXLs7Oz47rvv+PHHHxk1ahRKSkrk5ORQo0YNnJ2d8fX1FcxmSikoKOD48eNs376dAwcOYGZmxvjx42ndunWl19aEhATmz5/Pb7/9Ru/evfn+++8xNzfHxMSkzH6MZeHp6UnHjh05evQo7969Y8WKFbx//16mVH4dHZ1P/pZK268UFBQQExNDhw4dhJ8FBQXx5s0bXFxc8PLyolWrVvTp06dSoS+KQRGR/2BmZsbIkSOZMWMGQ4Eb06cj17Mn/MXF1CIiIiJ/5MSJE4wbN44JEyawaNGiv6UWSkSkPL799lu+/fZbEhMTsbW1Zc6cOUKqWlls376dGTNm0LJlSxITEz+7wV63bh137tzhxYsXvHjxQojOmJmZYW1tjb6+Pnp6etSsWRM9PT309PQYMWIErVu3JiAgQKab7lLR6uLiwuHDhzl//jzTpk1j5syZSKVSnJ2dadq0Kb6+vnh4eKClpSXMPXnyJAsWLCA+Pp6SkhLq1KlDmzZtaNmyJc7OzhgYGFQoeEpKSli1ahUZGRn4+/vToEGDCnszbtmyhTNnztCoUSOcnJyEZuYvX75k4cKF3L9/n7dv36Kjo0P79u3x9fXF3t7+i9wzP6a0mXkpb9++JTg4mMuXL7N9+3YuXbqEm5sb1mWUyZw5c4atW7dy+vRp7OzsvngNAFOmTOHChQsMGzaMQYMGYWZmVqVU0dIHBbm5uYI4evHiBcePH+fMmTOEhITg6+vL+fPn2b59O/v27cPOzo7OnTszZ84cateuXeH24+Li2L17N7t27SI9PZ2ePXsSGxtbZlN7WSlNnVVWVqakpISoqCiZRf2bN2+Er9XV1cnPz6du3brMnTuXtm3bCj/r0aMHPXr0IDs7m9OnTzNr1iykUinDhg2rcPuiGBQR+Yhx48axceNGbqWlsSEnh95jx8J/GrOKiIiI/F9x69YtjIyMaNeuHTo6Ol97OSIiwIeImaamJr/++muF46ZPn07nzp2ZOXMm5ubmNGjQgBYtWmBubk7Tpk1Zs2aNMFYqlZKVlSWkD36cSpiSkkJERAQvXrzgwoULLFmyBPhgshEUFCTzuktvsEtNOuBDCufVq1eBD2Li4cOHmJmZAR/6wQ0YMICcnByaNm3K1atXWbJkCStXrkROTg5nZ2fOnDlTbm2XnJwcx48fJygoiGPHjnH58mW8vLy4cuVKmeM3bdrEokWLOHz4MPv27WPo0KEYGxvToEEDfvrpJ3x8fHj9+jXR0dFERUVx9epVVq9ezYMHD/Dx8eHnn3+Wuf1DRUyYMIHLly9jb2/P5s2bcXJyQiKRUFRURHx8vLD/qKgo7ty5g66u7p8WgvChtUWbNm1Yvnw5J06cICwsjODgYNzd3SuNCBcXF5Oamgp8cCotbcweEhJC8+bN8fb2RllZmWHDhrF48WJ+/vlnIfIqC2fPnqVx48Y4OTmxcOFC/P39/5J0/KNHj6Kjo8OwYcPo0aMHJiYmlc65fPkykyZNIiIiAldXV5o3b07Tpk2pX79+hdE+DQ0NQkNDOXny5CfmM+XxjxWDEokkBAgxNDTk4cOHFY5NTEyUaZuyjPurxojb+nrbCg8PZ+TIkYwF2m3ZwttWrchzcfnq6/pfPqd/9bZERP5pjBw5khcvXuDi4sLq1avFthAi/xX4+PhQUFBAdHR0pX3L7O3t2bp1Ky9fvuTUqVMcP36coUOHUq1aNZo1a4azszPW1tZYWloKrRxKxRh8iIrdvHmTmzdvkp6ejoKCAiEhIYwePbpKPdM+Rl1dXYgc+fv706pVK1xcXHByciozyqOmpvaJCU1p+4A7d+7Qrl07Tpw4UeH+VFVVUVVVpW7dumzatKnCsTo6OnTv3p3u3buTl5dHcHAwK1euZOPGjRQUFODh4cHx48dp3ry5MKegoICNGzfSuXNnPD09K4zWysLcuXOJi4vj/PnzBAQE4OnpybNnz4iLi6OgoAAlJSV8fX1p0qQJo0ePxsnJ6ZP5pWOqipycHI6Ojhw+fJgHDx4wffp0pk2bhrq6OoMGDWLOnDllzuvbty979uyhWrVqNGnShIEDB9KkSZMyo6WlRi/bt2+nsLBQMG2pUaNGhY3fAwMD2bt3L+PHj2fChAn4+/tjbW2NtbU1xsbGGBoaVtkNtbCwkKKiItTV1SvstfkxnTt3Zu/evSxatIgTJ07I3CpCKpUSGRnJsWPH+O2337h//36lc/6xYlAqlR4CDtnb2/ezsrKqdLwsY2Qd99+4P3Fbso+xtLRk+/btREREMAWY/8svcOMGlPHHL35uvt62RET+SaioqLB48WKCgoIYMGAAPj4+LF26VIwSinxVFBUVUVJS4v79+zILspo1a9KlSxe6dOlCZGQk9+7d47fffmPPnj2oqakhlUrJyclBR0cHNTU15OXlefv2LcXFxbi5uVG/fn1++OEHjh49WqarZlV4//49ampqKCoqcu3aNe7evYuFhQWurq54eXnRo0ePSqM+SkpKqKqq0qdPnwrHFRUV8erVK6RSKREREULqpyyoqKigr68PIDQSb9eu3WemKEpKSvTr14/Q0FBMTEzIyMj4U/XEqqqqWFlZcerUKQoLC7l06RISiYTmzZtjZGREeno6z549Y/Xq1UyZMgVlZWUMDAyoVasWBgYGJCYmoqmpybfffss333xTZkuD1NRU9u7dS2pqKikpKcK/z549Q05ODm1tbYyNjbG1tcXNzQ0/P79y1ysvL0/jxo3ZvXt3pcemra3N9u3bOXnyJJcuXWLlypVERESQm5uLqqoqISEhtGrVCltbW8zMzASxJZFIaNu2LSEhIRw9elRwsF26dClRUVFCk3onJycaNWrEt99+W+7voLi4mKlTp7J69Wp0dHT4+eefZfzNfBCDT58+5ccff+T27dvMnDmzQufYy5cvs379eo4fP46ysjKtWrXi8OHDFaYrl/KPFYMiIl+KRCJhwoQJhIWFsUQqpe+tW9hu3Ajffvu1lyYiIvIPp0WLFkRFRTFq1CgCAwM5derUn6pTERGpKlKplGPHjrFnzx4OHDiAvLw8jo6OX7Stj+uhioqKhF5rcnJyvH37loyMDOTk5JBKpdSqVQv4UMf26NEjBg4cyHfffYebm5vMfdPy8/NJSkri1atXwnu5ublIpVJhn/Hx8WRnZ/Pu3bvPjGoePXpESkoKEokERUVFtLS0aNu2LTNnzqR69eqf7evGjRtcvHiRS5cuce3aNRQVFZk0aVKVhODHqKmp0bNnT5YsWVJhLZmmpiZBQUGYmZnh4OCAkZERI0eO/KQ5+ZeQn5+PkpISb9++5eDBg5/8TCqV8ubNG549eya8Vq9ezZkzZ7h69SpTpkxh+/btuLq6fjIvNTWV06dPk5iYSGJiInl5edSqVQsHBwcUFRUJCAigefPmWFtbU7t27XKP+9GjR0RGRlZJ/JYK29LoqlQqZfLkyUyZMoVff/2VXbt2IZVKycvLw8DAAFtbW+rXr4+9vT22traC03xOTg63bt1i4cKF7Nu3j/T0dF6/fs3r169p1apVuWvKzs4mMjKSkpISnj59yrRp0/j9998JCwvDy8tLEPslJSUkJCQQHR1NdHQ0MTExREdHEx8fj4GBAQkJCbx8+bJCMRgVFUVSUhLy8vI8ffqUU6dOkZSUhKqqKq9fv6Zz587lzhXFoIhIGdja2tK/f39WrVrFD8DJsWORhIXBnyjcFhEREZEFdXV1li1bxrhx4+jWrVulqWkiIn8lGRkZBAUFYWNjw+nTpzExMfnEbOXPoKSkhLu7OwEBAXh7e+Pu7o6hoSHFxcWkpKQQFxdHfHw88fHx7Nu3j82bN1OrVi22bt36iTtkeYSHh7N161bq1atHixYtsLGxwd7eHlNTU+rWrYuxsXG5aY2vXr0Set7NnTuX9u3bV+hs+csvvzBhwgQ0NDSYNGkS27ZtQyKRfCYaZUUikZCTk8O6deswMzNj2LBhZQqjwsJCHj16RIcOHahXrx6//vorV65cYc+ePcTGxn7S6uJLKCgoQE9PT0gdLU2JlEgk6OjooKOjQ506dXjw4IGQbpmbm0tcXBwdO3YkPj7+k3X7+Phw6NAh4IMYe/78OYmJicyePZuDBw9y69Yt5s+fj5ycHJcuXcLHx6fMdY0YMYLr16/TvHlzevbsiaWlJZ07d8bU1FRmN9PSYyglKytL+LrU3fbkyZPCe1OnTmXixIkMHz6cVatW4ejoyOzZswkNDa3UoRY+tF3Zu3cvUqmU+fPnM3LkSFatWsWqVasIDQ1l3759ABw7dozg4GAAmjdvTpcuXRgxYgTW1taoq6tTVFRU6QOR7777ju+++w748PtISkoiPj6eAwcOsHv3bs6ePVvu3KolvYqI/IuYNm0a2tranAYOvHgB06Z97SWJiIj8S5BIJEyZMoWYmBgiIyO/9nJE/kXUrFmTK1eu4OzsTMOGDenduze7d+/+5MZZVj5uPq6kpETv3r25cuUKM2fOpHXr1kIKm7y8PKampjRv3pzBgwezaNEibGxsKC4u5smTJzRo0OATE5ryGDx4MIqKipw/f55jx44xf/58evfuTWBgIPXq1auwvq1GjRrcv38fbW1tpk+fTnFxcYX7GjduHDdv3qRv377Mnz+fsLCwPyWaS89VXl4ew4cP/8wB8vHjxzg7O6OhoYGjoyMbNmxAWVmZZcuWsWbNGrKysv60ECxlz549tGzZEgMDA1JSUoT3Dx8+jLm5OdWqVSMsLIzMzExCQ0PZvHkzycnJnwnBPyKRSDAwMODNmzecO3cOHR0dunbtyt69e8nIyChXCMKH1h0pKSkMHDiQJ0+eMHHiRCwsLFBTU2PUqFEyH9vHn+Nq1aqhoKBA9erV8fLyYvDgwaxbt45r167x9u1bJk6cCMCSJUuYMmUKkZGRvHnzBktLS5kFaEZGBvv27eP48eOoqqpiZ2fH1q1bP6n3bNWqFfHx8fz444/ExMSwatUqXF1dBcMiWSPjpaiqqmJra0uTJk3Q1dVFSUmpwgwTMTIoIlIOurq6TJ06lSFDhjAcaLFgASp9+0IlvYZERERE/gqUlJRo0qQJN27c+OI0PRGRL8HHxwcfHx+ePXuGk5MTJ06cID8/H3d3d8aMGUNoaGi5c0ujIKdOnSIqKgptbW38/Pxo3779J03bKyMjIwN1dXWqVatGv379aN26daVzbG1tsbKyYsOGDfTq1avK4szS0hIXFxdOnDjBsGHDPkuV/BiJRIK7uzvu7u7Mnj2b2rVrk5iYiIWFRZX2efjwYbZs2cLhw4dRUVHBxcWFdu3aERYW9sk4Y2NjJk+ezMWLF9m3bx9nz54lKysLqVTKuHHjKjRFqSqKiorIy8vzww8/fFJz5ufnx6hRozh27Bjnzp2jpKQEHx8funbtWqk4Ki4uJjMzk4yMDPLz85GTkyMnJ4fAwMBP2iOUh0QioXbt2tSuXZuYmBjOnj2Luro69erVqzAFEiA6OppFixZx8eJF4uLiMDQ0pFu3brRp0wZ7e/sK23VkZ2czbNgw9uzZQ6tWrejVq1ela3327BnTp0/n/PnzpKSk4Ovri6mpKVOmTCnXBdbc3JwpU6YQFRVFTk4O+fn5X1wzGxMTIzS5Nzc3Z/To0YwdO7ZcB1JRDIqIVMB3333HqlWriIqK4peiIiaMGAH/SXcQERER+b/G0NCQ58+ff+1liPzLSEhI4Pr169y5c4fs7GzBdKP0hr4icnNzGTNmDDt37mTTpk3o6el90RqSkpI4f/48vr6+VWpqPnHiRHr37s2oUaMwNTWldevWBAUF0aBBg3JdIIuLizlz5gz79+/n3LlzVKtWTWbDnFu3bjFw4EAsLCyEuseqcO/ePQ4fPsyJEyfw8fFBIpHw6tUr7t+/z6VLl3j8+DEpKSnCvykpKaioqGBjY0P16tXJysqqNIoJH0TNnTt3SE5OJjk5mcePH5OcnMytW7eAD9EnXV1dLC0t8fPzIzw8/LNaOG1tbXr06IGKigqvX7/mxo0b3L17l8OHD/P69WsyMjKE18uXLz/5/s2bN2hpaaGrq4uuri76+voUFxdTUFBQpfMVGxvLxo0b0dXVZcWKFYSFhVX6+cjNzaWkpITatWuTmZlJeno6CxcuZNOmTRgZGWFubo6DgwOWlpbUqVMHZ2dnlJWVgQ9puWfOnGH48OFMnDhRps9iTk4ON2/e5PHjx8yaNYtu3bpRrVo1meY6OTlx+PBhdHV1cXFxwd/fH0tLSzp16iSzODx16hSvX78mPj4eXV3dSvcrikERkQpQUFBg8eLFNGrUiBlAj8OHqX38OLRo8bWXJiIi8i9AUVFRsLcXEfm7CAgIoFatWnTo0IF58+YRGhoqs9BRVFTEwsKCvn37UqtWLTw9PenYsSM+Pj5VapherVo1rl+/XqG75B8pKSnB3NycGjVqCC0S5s2bx9q1a7l48SIODg6fzZFKpfTv35/ff/9dqNGVpT6xoKCAn376ifXr1zN79mx69OhRJdFayvjx4ykpKRH6xw0cOJBLly6xatUqQeS5u7sTFhZGy5YtqVev3mcuo7LQp08fHjx4gL29PSYmJtSvX58OHTpQXFyMg4ODzH34zp07x4ABA5BKpRgbG3Pjxo3Porby8vJYWVlhb29P8+bNcXBwwMbGBmNjYyH18cWLF1/0oOC7777Dw8ODNWvWCIKtMtzd3Vm7di0ACxcuJDw8nIKCAsEIJyIiQkjbVFFRYceOHbRp0wapVMr9+/cxNDRkw4YNTJgwQabfcb169bh27RqXLl1i7ty5jB49murVq6Orq0vDhg1p0aKF0ObiY6RSKT169MDR0ZFLly6xceNGLl++jJqaGhoaGrRv316m4/Xy8mL27Nm8ePFCJgMyUQyKiFRCYGAgHTp0YNeuXYwGtg8bBmINj4iIyN+AgoKC0CdNROTvYs2aNXz//feMHTu2ynMVFRV58OABz549w9vbm/Xr17N582bgQ6pjmzZtaNOmDb6+vhXW8JmamvLTTz+xb98++vbtS5s2bSo0Z9m3bx89e/YkKysLU1NTunTpQmhoKN7e3hgZGZV7E79v3z5+/fVXRowYgaenJ3Xq1Kn0GPPz8wkMDKRmzZrcu3dPaAshK1KplHfv3pGWlsaTJ08wMjLCxMSEixcvcvHiRVRUVLh06RLwIfJ48+ZNNm3axLRp07C3t8fR0RFHR0ecnJxwcHAgPz+/0jXExMRgbGyMl5cXPj4+ODk5ydy7Dj4I7VJxsX79enbu3MnBgwcpKSlBIpHw448/EhwcLAis0rYUd+7c4dixY8L3ioqKeHt7f7Ex1uDBgxk2bBhLliyhV69eVW6tUVRUBICysjJSqZTq1avj4+ND48aN8fHxwd7eXqjR++mnn5g6dSo1a9ZkxIgRbN68GSsrK+rXr19pSxKJREJAQAABAQEUFRUxZ84cJkyYwJ07d1i6dCkABgYGxMfHo6yszJEjR+jSpQvv3r1DXl6e4OBgli9fjru7O9WrV69SmyFPT0/mzZtHgwYNCAgIwMHBgVatWpU7/m8XgxKJpAWwCJAH1kql0ll/+HlXYMx/vs0GBkql0nuyzBUR+b9i7ty5HD58mB25uQx8+JCAZcsgKOhrL0vkL0S8Non8N6KoqCjY8Yv8e/m7r09NmjQhNTWVPXv24OPj80XpjwYGBkID99Ib8OTkZJYsWcKSJUtQVFTE39+f5cuXl1lnp6CgQE5ODlevXuXatWv07dsXDw8PwdXxj7Ro0YIZM2YwZ84cHj9+TI0aNfD09MTY2LjCdbZq1YqjR49y/vx5xowZQ0REBAYGBkybNq3c+rApU6aQmprK1KlTkUqlSKVSJBKJ8O8fOXDgAPv27ePJkyeCAMzNzcXMzIzatWtjbGyMlpYWzZo1IzQ0FC8vL5ycnJCTk/ukxuzdu3dERkYK/Ru3bt3K/fv3kUgk1KhRg0mTJtG7d+8y13z06FHOnTvHlStXWLNmDcnJydSvXx8PDw+hlYK1tbXQFqO0tUhpb8AnT54gJyeHra2tULvXsmVLdHR06NmzJ56enhVGLKVSKR07dmT37t24u7sTHx+PiYlJlQQpQPv27Tl+/DgTJkxg7NixNGnShN9++63C+tDc3FwhDXjHjh3Uq1eP8PBwvvnmmwojZ8OHD8ff35/Y2FgePnzIhg0biI2NFc63ra0tvXv3pmfPnhWuWUFBASMjI+H7wsJCVFRUaNKkiRDdbNq0Kfv37yciIoLbt28TERFB7969cXBwwNvbm1mzZskcCQXo0qULXl5eLFq0iClTpjBrVvl/9n+rGJRIJPLAMqAp8AS4KZFIDkql0piPhiUBDaRSaaZEImkJrAY8ZZwrIvJ/Qt26dRkzZgyTJ09mCBDx00/Ie3p+7WWJ/EWI1yaR/1bk5eUpKSn52ssQ+Yp8jeuTkpIS8+bNY/369XTq1AlVVVXc3d1p27Ytbdq0qTB6VlhYyNmzZ0lKSuLp06fAh5thOTk5ioqK0NTUpGbNmujo6KCgoMDKlSvJy8vj2bNnPH/+XPj3/fv3SCQSqlWrhoGBAWZmZtjb26Ours6jR4+4du0a8fHxJCQkCP8WFxcLwtLa2lqmm2dlZWVatmxJy5YtSUlJwdPTk3fv3pVrtgHg7+/P69ev+fnnn4mOjgY+mNdkZmbi5OREv379aNCggSAMNTU1hRq5UtfQp0+fkpqaKtTNvXjxghcvXnDu3DnhPP6xblFTUxM/P79PUmdLSkro1KkTu3btIjw8nG+//bZMQVq7dm169OhBjx49AHjz5g3Xr19n8uTJLF26FDk5OXJzc9HW1sbKyoqaNWuSl5eHlpYW8vLyKCkp8fTpU2JiYnjz5g0ZGRm8fv2a9+/fk52dTUxMDK6uruXWeEqlUgICAtDW1ub69essX76ct2/foqamRq1atbC0tMTNzQ17e3t8fX0/EU8fb6O0EXxxcTE6OjrlCsp3796xfft2Dh8+zIULF3BzcyMkJITY2NhKHxCUoq2tTdOmTWnatCkAy5cv5/vvv0cikZCZmcnTp08r/JwAJCYmcuTIEaH1iIKCAvb29oSGhjJmzBhhnJKSEoGBgQQGBgrHunLlSsLDw7G2tq6yoyh8SFdt3LgxixcvrrA28++ODHoACVKpNBFAIpHsANoAwkVJKpVe/Wj8dcBY1rkiIv+XjB49mvXr1xP5+DFrsrLovHAhVGCDLPI/hXhtEhER+W/lb78+SSQSwsPDCQ8Px8rKiri4OM6dO8fFixc5ffo0Bw4cKHduYmIio0eP5uHDh+Tn5wNgZmYmGLk4ODiwYcMGVq5cyZ07dzh+/DjwwQ6/fv36QkPuCxcu8PPPP5cZ8Rk7diz79u3j6dOnZGdnAx/EX2kD9nv37lFSUsK+ffvw8/OjTp06Mhl4HDhwgOfPn7N27drP3Dw/pkWLFrRo0YIXL15w584dTp48yfbt20lPTycmJoaoqCiuX78uOHx+fJP/Mc+ePeP06dOcPHmSmzdvkpeXR2JiIvv378fV1ZUrV65UmI5YUlLC1atXiY6ORl5eHiMjI0pKSipNYYQPQqdFixYcOXKEGzduCO+XirySkhJUVFTo27cvS5YsEX6enZ1Neno66enpQtZUSkoK+/fvp27dukRGRn5SGyqVSnn16hXp6elYWlpSrVo1TE1NycrK4ubNm7x//56EhAQSEhI4ffo0BgYGDBkyhJEjR3625sePH9OxY0fGjRvHpk2bsLa2Lvf4rl+/zrx583j06BF169bFyMiIwsJCNm3ahK+vLwEBARV+HqRSKY8ePeLWrVvC68aNG6ipqdGhQweGDBmCm5tbped506ZNLF26lFevXqGtrU1wcDAhISF4eHiUmyZ9+/ZthgwZQn5+PufOnSvXgVQWioqKkEgkqKiolFty8HeLQSMg9aPvnwAVhVf6AMe+cK6IyF+Kqqoqv/zyC+3bt2ci0HHXLrh9G1xdv/bSRP484rVJRETkv5Wven36+IZZUVERy0raK1lZWXHv3j2ysrJwcnIiKSmJhw8fMnfuXObOnQtAWFgY8fHxFBcXk56eTlJSEsnJySQlJZGUlMTixYu5evUqixcvRldXFwsLC1xcXHBycsLa2poRI0Ywc+ZMJBIJWVlZpKen8/TpU+HfPXv2cO7cOSEaIycnh7y8PLVq1cLCwgInJydsbGywsLDAwsICAwMDJBIJoaGhTJ8+nT59+qClpVWhIBw8eDDLli0DPkQKZ86cSX5+Pp07d5bJ4GX+/PmMGDFC+L527dqEhIQwfPhwTE1Ny3U+/Zhu3bpx6dIlmjdvzvbt2/9UCxo5OTkhCyEgIIChQ4cSEhLyWURKQ0NDOG+HDh3i6NGjlJSU4O7uzujRo3n9+rUgvC9cuECzZs2EqJS8vDze3t74+Pjg6OiIh4cH9evXx8vLizp16lTaHqM0mnz+/HkKCwsJCwvD3t6+zHPVrFkz4uLiSE1N5eDBg+zdu5ft27cLx2hlZUVsbGy5+6pfvz6pqan4+vri7u7O+PHj0dTUxM3NrUqprZMnT+ann35iwYIFjBgxgi1btrB9+3aKi4vx9/fn4sWLn4wvTd81MDBg7ty5mJubC26+FfHu3TtBVH8cLY+KisLHx4dly5bh7Oxc5ty/WwyWJcGlZbyHRCIJ5MMFrTQWXpW5/YH+APr6+jx8+LDCRSUmJlb486qM+6vGiNv679yWnZ0dXl5eXL9+nZ+AOf36kbp1K1TwdEn83Pz12/o/4G+/NsliUiAiIiLC33B9Ku/aVFJSQl5eHvDhgeigQYOYOnVqmYuUSqX88MMP3Lp1i8TERN68eYOysjK1a9fGwsICNzc3vLy8MDc3F5qjy8vLY2xsjLGxMf7+/p9sz9vbm+vXr/Py5UtevnzJ1atXUVNTQ1FRkby8PKFRfefOnZkwYcInIvXIkSOkpqYK6youLqa4uJjHjx/z+PFjTp8+jby8vODWqaSkJIghJycnli9fTps2bco8zlJmz55NUFAQJ0+e5ODBg4wYMYIGDRrQv3//CueVMmTIEBo3bsz9+/eJjIxky5YtLF++nNWrV2Nqasr48eMr7Wk3cOBAzp49i6mpKW/fviUnJ0eo+asqH6ejX7t2jfPnz6OmpoaLiwsrVqwo04lVIpEI8yIiIujTpw85OTmoqKjg5OTEypUrhfrG0tfdu3eJjIxEV1eXn3/+mW7dusm8Ri0tLR48eEB4eDhTpkxh9uzZyMvL07hxY3bv3o2SkhLFxcX079+fyMhIEhISKCoqEoT/xIkTefv2LdbW1nTq1KnCffXu3ZulS5fi6OiIoaEhysrK6OjoCGm+VaG0xrAUVVVVXFxc+PXXXz8ba2JiQlRUFKdPn+a3335j0KBB1KhRg86dOzN8+PBPTJTGjRvHxYsXSUhIICMjAzs7O0Go+/r60rNnT0xNTalbt26F6/u7xeAT4GPvWmPg6R8HSSQSR2At0FIqlb6qylwAqVS6mg/58tjb20utrKwqXZgsY2Qd99+4P3Fbf9221qxZg7OzMyuKi+l/+zaOd+5AJQ1Pxc/NX7+tv5i//drk7u5e9f9RRESqyKtXr2R6qizyX83/+fXpj9emgwcPsmfPHo4fP8779+8JCwtjwoQJuLi4lLtIiUSCkZERq1evZvDgwQwZMqTSm9CqkpOTI+xLSUmJkpIS7Ozs2LNnDy9evOD169e8evWKBw8eCONKUyaLi4uRl5dHTU2NatWqoa2tja6uLnp6etSoUYOdO3fSvn17li5dKlPkR0VFhbS0NB4+fEhGRga+vr74+vrKfCyKioo4OTnh5OQEfKgh3Lp1K0VFRSQlJcnUEsDf35+tW7fyww8/MHXqVIqLi6lduzYNGzYkNDT0s5YPH1NQUMDly5e5d+8egCAi8/PzqVatGo6Ojjg4OGBvb4+BgUGF65CTk0NDQ4P8/Hy0tLRwdXUlMDAQAwMDatasiZWVFR07dhTGz5s3j4kTJ8pcu/cxhoaGODs7s3PnTvLz81FVVUVdXV34ncnJyREQEICioiISiYTo6Giys7ORSCRoaWnRt29fmdpoDBw4kOrVqwsN7pOSkoiOjiYzMxNVVVX09PSwsLDA1dUVZ2dnwsLCKnTHzcnJEda6cuVK2rVrV26aqo2NDTY2NgwZMoTCwkJmzpzJzJkz+eWXX+jXrx+zZs1CTU0Nb29vCgsL0dDQ4P79+6SkpKCpqYmenh4FBQU4OjpW6MBbyt8tBm8CFhKJxBRIAzoBXT4eIJFI6gB7ge5SqTSuKnNFRP4O7O3t+f7771m8eDFDgXOjRiFp3Rr+0ztH5H8S8dok8o/D3d2dSZMmoaWlhaWlJU2bNqVRo0b4+Ph81t9K5L+av/X69O7dO77//nvGjRvH5MmTMTIyqvAm92PGjBlD69at+fHHH6lfvz45OTlYWloSEhJCixYtcHV1ldkR8eMIjIKCAurq6uTm5qKjo4O/vz8jRozAy8uLV69eERYWxuXLlykuLsbU1JSmTZvSokULateuTY0aNQRr/or2PWDAAJo1a0ZQUFClUUH4UDu3c+dOLl26hLm5OS4uLuTn5/+p6Bx8iBpt2LChwlYAH9O4cWO8vb0FI5vHjx+zfv16UlJSCA4O/iSFMiMjg6NHj3Lo0CFOnTqFtbU1dnZ2tGnTBmtraywsLDAxMZH59w0fxJeKigrv3r3D3Nyc9u3b4+fnh6enZ7ltH168eIGamhotWrTAxsaGJk2aEBgYiIeHR6WtIhITEzl//jzy8vJoaGjw448/Mnz4cIqLi0lJSSEhIYH379+jrq5OrVq1ePPmDQ8ePODNmzekpKRgZWVVrhiUSqW8efNGaI1RUlKClpYW+vr6lJSU8PLlSzIzM8nNzeXx48e8ePGC2NhY7t69S5MmTSoU8K9evaKkpIRmzZrRuHHjCusVS0pKSEhI4O7du9y7d49jx46Rl5eHgoICFy5c4Pnz55iamtK6detPBH9GRgb379/n/v37HDhwgNu3bwv9FSvibxWDUqm0SCKRDAZO8MHi+FepVBotkUi++8/PVwKTgBrA8v+cqCKpVOpe3ty/c/0iIqVMnjyZzZs3cyEzk11paXScPRumTPnayxL5QsRrk8g/EU9PT+Tk5CgsLCQ6OpqYmBh+/fVX8vLysLOzY+DAgXTo0EGw/xf57+Tvvj5lZGSgrq5OYmIiCQkJ5OXlYWNjI/N6bWxs2L17N1KpFDs7O+7cucOdO3eYMmUKrVq14vDhw5Vuo6SkhJSUFKpXr467uzsNGjTAw8MDV1fXzyIdNWrU4Pz587x584ZTp05x9OhRfvvtNyIiIhg1ahTu7u6VRsZLaxfr1KnDsGHDZBKDWlpa7Nixg2vXrrFs2TJmzpwJwKFDh7h69Wols8snJCTkkyhaVZBIJHTt2pUJEyZ8lmVTVFSEra0tL1++xNzcnLVr19K6dWshgvallJSUCBHbhIQE5syZI7RBeP78eZkGQHPmzEFFRYWpU6dy9+5d7t69y4oVKygsLERZWZm6detia2uLs7MzlpaWWFpaCrVzNjY2FBQU4OXlxYIFC6hfvz4SiYQBAwZ8lnZpY2ND48aNmTx5MpaWlhgbG/Ps2TNevnxZpnA7evQowcHBn72vpaWFi4sLJiYmGBkZMXz4cFq0aFGhUU9WVpZQuxcfH8/x48fJz89n27ZtKCgosHHjxnLnTp8+nUmTJgnf6+jo4OzsTNu2bQUzmYKCAkG05+fnExsbS3R0NFFRUURHR/PgwQOSkpLK3cfH/O19BqVS6VHg6B/eW/nR132BvrLOFRH5Gujo6BAeHs6kSZMYCQTPmYNa795gYvK1lybyhYjXJpF/OqWNrgHu3LlDeHg4Q4YMwc/Pj27duhEcHFzlBs4ifw9/5/WpXr16LF26lBMnTjB06FDi4uLo0KEDO3bsqPK6MzIykEgkNGjQgFGjRtGkSROZ5q1cuZKcnBwePHggc49DbW1tOnToQIcOHUhOTub8+fP069ePIUOGcODAARo1alTmvPv37xMUFMSTJ0/w8/Pj559/5u3btxX2rZszZw4rVqwgOTkZZWVlgoOD2bRpE9nZ2TLXDP6RkpISlJSUqpRq+kdKzV7KKrdQUFAgKSmJy5cvc/z4cXr16oVUKiU0NJStW7d+8Zo/prTNQv/+/Rk6dGiF5/CPvH//HvggcqKiooiKimLv3r2oqakhlUrJzc1FU1MTOzs7cnJyuH79Ot7e3qioqPDdd9+xdu1a5s2bR1pamtDLsfTrbdu2CV+XOqUaGhri6ekpRFZLG7Pn5OTw7NmzTwyJSv+9efMmDx484OzZs0gkEtTU1DAwMOCnn36ie/fupKWl0bVrVx4+fMizZ8/Q0tIiMDAQKysrPDw8CAwMpF+/fpWmqU6cOJEhQ4YIPR737dvHunXruHv37ifjSiPdhYWFlJSUULNmTYKCgujSpQtz5szBzMyM/Pz8SqPxf7sYFBH5pxAWFsa+ffu4c+cOs/Pz+XnUKNi162svS0REREQmSm++zpw5w/Xr1xkwYADW1tb069dPrDH8F1NcXExMTAyXL18mPT0dKysr+vXrV+XtlPYIzMnJ4dq1a0ycOJG4uDjCwsIqvRkODg5m2rRpgkHMtGnTyuw790ekUilXr14lKSkJFRUVatWqRc+ePct1UYQP4nfOnDlCY/EhQ4bQs2dPVFRUqF27Nk5OTjRs2JCBAwcKKZchISFoaGgQExPDgwcPuHr1KidOnEBRUZEFCxbQvn17xowZI7MYevv2LVeuXMHV1bVKhip/RFFRkXbt2pX5s/z8fJYsWSL8vVtbWxMYGEhQUJDM23/06BFHjx4V0hcjIyNRUVHBwsKCwMBAGjVqRPPmzVFRUfniY/iYoqIi4QEWwOvXr3n9+rXwvZycHHXr1sXCwgKJRIKOjg46OjrY29uXu8158+YxatQo0tLS2Lt3L8eOHUNBQYH8/HxsbW1p1KgR4eHhZYrylStXMnDgQODDZ+39+/c8fvyYevXqAaCnp8egQYOEcxMZGcnp06d59uwZGhoaNGzYkOrVq1caib1y5QqnT58mJSWFlJQUYmI+dIJRUFBAS0sLQ0NDzM3NqV27Nvn5+WhqavLixQvhIcj27dsxMDDAxMQEeXl5CgsLBSffshDFoIjIFyIvL8+SJUvw8/NjNtBr925Mz52DMnoJiYiIiPw3UyoMY2JiWL9+PYMGDfrKKxL5WkRGRnL48GH69+/PgQMHUFVV/eI0Qk1NTcEl+s6dOyQkJDB+/HhMTEzo0aMH33zzDaampp/Nq1OnDnXr1iU9PZ0tW7bw22+/MWbMGEaPHl3mg4q0tDQ2btzIhg0bkJeXp2/fvnzzzTdCA/qKUFdXp/NHJnCtWrXi6NGj5OXlCSl++/btIywsTDBSsbGxwdramvv37xMREUFERARnz57lwYMH5ObmcuPGDbKzs2UWg0ePHsXCwoITJ07I1COwFKlUyvnz5zl+/DhqamosWrSI0NDQMsfm5+cLAqVatWo4Ozvj4uKCnZ1dhfuIjIxkz5497Nu3jxcvXtCqVSvq169Pnz59sLGxQUdHR+b1/lUoKyujpKQk1NFVhT+O/7j33v3793n27Bldu3b9zNxGKpWSnJwMfDDbKSwsxMLCgrFjxwrCUVFRkY4dO36S5puZmcn9+/dZs2YN06dPZ86cOYwbN46hQ4eWW1ualJTEtWvXiI6OJi0tDTU1NWrXrk1gYCBt2rTB3d29XEfy9PR0wYn0xIkTSCQSNDU1SUhIKP+clH+6REREKsPX15euXbuydetWRgJ7hg2DiAio4sVJRERE5GuhrKyMsrIyOTk5hISEsG3bNrZt2/a1lyXylTAwMGDatGnY2Nj8qVqyssjKykJOTo64uDihcXhp1KM8ioqKKCoqYs6cOSxYsIBhw4YxZMiQT0yQBg4cyOHDh1FUVMTf35+TJ09y//59vLy88Pb2xszMDF1d3U+ORyqV8vr1a54+fcrTp09JS0vj6dOnREVFCWPk5OSQSqXo6up+Juz27t3LoEGDaNq0Ka6urrRv355q1arh6upa5fOWk5ODkpKSTEKw9Gb/5MmTnD59murVqzN06FCGDBlSYUROU1OTbdu2kZ2dLdQ4rlu3jqCgII4cOVLmnDdv3tCqVSvS0tKEGtAnT54Ijqe//vorJSUluLi44O3tTb169dDR0ZHp+Ctq0SAnJ4eysrLQ/iM3Nxc5OTn09fXx8fEhMDAQLy8vHB0dZe75J5VKSU9P/0wUKSsrU1RUhLGxMT///DNdu3YtU2Devn2b2bNnExoaSp8+fQgICEBTU7PS/ero6ODl5cXJkyfJzc0lLy+P8ePHY2hoSI8ePcqc0717d7p3705WVhZXrlxh9uzZnD9/nk2bNrFp0yZq1apFUlJSmemfjRo1QkVFRagdrV27NrVq1UJeXp7u3buXuT/xjlVE5E8ye/Zs9u/fz9737zkTGUnjNWvgP2kEIiIiIv9NlFrA5+XlUb16dTw8PGjYsCEeHh64uLj8KRdEkX8GBQUFBAUFUVRUREBAABYWFoSGhuLo6FilqFUpioqKyMvLo6ysjKOjIw0aNKB+/fq4ublhaGgo83ZKTUpmzJjBzJkzuXDhAl5eXgAcPPLe4IoAAG2NSURBVHiQ/Px8UlJSSExMZOjQoVy6dImdO3ciJycntJiwsbFh8ODBzJgxg6dPnyKRSKhXrx6GhoYYGRlhaGhI/fr1CQoKIjAwEG9vbwwMDMoUHNHR0VSrVk0QBO/evSM3N5d3795VqVYOoHPnzowePZqjR49WmLbZsGFDLly4gLq6OkOHDuXKlStCiqIsrF69mqFDh2JsbMyECRMICgrC1ta23PHa2tqkpqZSVFTEy5cvefbsmfB6/vw5Z86cISIigvXr1wtz5OTk0NHRoXXr1oKhy9u3b7l27RqXLl3i6tWrJCcn8/TpUxQUFKhWrRrVq1dHT08PIyMj6tati6mpKQYGBujr66Ovr09OTg7Tp0/nypUrbNiwQahNlJWgoCAuXbqEgoICRkZGuLq6Cu0vnJycMDMzq1BIP378mOjoaLS0tMjJySnTZOaPSKVSLly4wJIlSzh16hQGBgY0b96c3r1706xZswqNu+7evUvbtm1JTk5GSUkJLy8vQkND+eabb2jYsCH6+vrlCu758+fTu3dv1NXVcXR0RF0Gp3tRDIqI/EmMjIyYMGEC48eP5wfgzoQJKH7zDcjQ20VERETkr0QqlfLgwQOOHDnCrVu3ePfuHfLy8ujr6wu1T25ubri6un6V9C6R/37q1q3LzZs3SUhI4NKlSwwfPpwZM2YgJyeHvb093377LYMHD5ZpW6UC7urVqxX2KJQVdXV1FBQUGDdu3Gd1gMrKykLDbSMjI+LiPnTYKBVyfn5+jB07FldXV6RSKUeOHOHcuXNoa2vj6+uLubk5JiYmDBo0SIikVMQPP/yAh4eH4Bh55swZLl68SHZ2tlBv6OzszMCBAwmspHxETU0NNzc3OnbsyOzZs/Hx8cHe3v4zEbp48WLOnDnD5cuX+fXXX9m4cSO+vr54eHhgbW2NlZUVpqam5aZOhoaGkpqaypo1azhx4gS6urqoq6tjUon5nYKCArVq1RLMfAoKCpg+fTpZWVlCZE1XV1cwSnF1dRX65F26dIlHjx5Rv3594Xdgbm6Ovr5+lURdSEgIqampMombP/LTTz+xaNEijh07Rv369Vm5cmWlpiqJiYlMmTKFCxcukJOTQ4MGDejRowfff/99pfu7dOkSgwcPJiEhgYkTJ7JmzRqZ+v2VYm9vz5IlS7h06RKXLl3ixo0bKCkpYWBgQFhYWIWR15YtW7Jz504WLFjAjz/+yLfffsu4ceMq3L8oBkVE/gLCw8NZt24d0Y8esSIzk6GTJ8PixV97WSIiIv8SLl++zN69ezl48CCFhYUEBwcTEhLChAkTsLGxkTmVSkQEPpi/lAqrOXPm8PDhQ+BD/Vhpk3JZkJeXR0lJCW9vbxo2bEj//v0JDQ39pPcdfHiI8fbtW9LT03n48CGRkZHExcUhkUiQSCQYGBjg4uJCSEiIYO5SFqVGLrdv30ZOTg4LCws6depE3759P6kB69evH/369SM/P58LFy5w4cIFjh49SnJyMnfu3CE/Px8NDQ309fWpV68ejo6O2NvbY2pqire3N3FxccTGxvL48WOSk5N5/PgxaWlp5OfnC8f9cbN7WdDT0+P9+/eMHj0aeXl58vLyMDc3x9/fH19fXxo1aoSjoyOOjo6Eh4cjlUpJSkriypUrzJs3j8TERKRSKfn5+Z80RLe3t8fe3p769eujp6fH1KlTmThxInv37uXAgQMMGTIEiUSCr68vnTt3xtPTE2Nj40qFmlQq/USU5OTkkJGRwePHj6lRowYlJSU8fvyYBw8e0K5dO77//nt8fX2/OPW4Vq1aJCQkcODAgXLrIsvD09OTbdu2sXnzZiZMmFBhimopJSUlvHjxgmfPntG9e3cGDRpUoRHRx8jJyeHm5oaKigozZsxgyZIl1KhRg6KiItq2bUubNm3w9PQsd76CggLBwcEEBweTm5tLt27d2LdvH8+ePZPp/Pn7++Pv709ycjKDBw/GxMSExRXck4piUETkL0BFRYX58+fTpk0bJgGdly2jZv/+UIGjlYiIiMhfwc2bN2nXrh2DBw9m9+7dODk5/eW1XiIi6urqDBgwgHnz5lU6trCwkJiYGLKysnj//j0SiYQTJ05w48YNLl++TGFhIenp6Z+8FBUVqVWrFubm5jg6OjJu3DgaN25cZoSsLHJycujfvz/R0dEoKCjQrFkzunbtSkBAQLlOpMrKyjRr1oxmzZoBHwROkyZNOHv2LFlZWUKvuJMnTyKRSDAyMuK7775j0aJF+Pr6CimNDRs2pG7duhQVFeHo6Pin3HhLo6kKCgrExcXx4MEDNm/ezIABA1iwYIEwrjTFtU6dOhw5coTIyEjhZ6WtEC5cuICioiLm5uZcvHhRaB2jrKxM586d6dy5M4MHD2bZsmWcOHGC8+fPo6ioKBiz1KxZEyMjI0xMTLCwsKBOnToYGxtjZGREeHg4ubm5wuchKyuL2NhYYmJi2LVrF2pqagwaNIh169axadMmevfujba2NiNHjqRdu3ZVNn5p0qQJY8aMYfLkyVUWgwBRUVGMHj2aLVu2VOp2WlRUxOvXr2nYsCHp6emsWbOGFy9esH//fpn25evrK5jKSKVSUlNTWbRoEfPnz2fmzJksWLCAtLQ0maKFv//+O4cOHcLDw4O5c+dWet6Ki4uJi4vj1q1b3Lp1i0ePHpGVlcXPP/9c7hxRDIqI/EWEhITQvHlzTpw4wcSSElYNGwanTn3tZYmIiPzDOXfuHLa2towcOVKs+RP5P0FRURElJSWMjIyIiIjA2dm5zJtSqVTK2LFjWbJkCQB5eXnC+/DBkGTBggUYGxtja2uLh4cHNjY22NjYYGRkhLa2NlpaWsjLy3Pt2jVMTExkjmqrqakRFRVFZmYmgYGBHD9+nOPHjwMf2kckJCRU+JDkxIkThIWF8f79ezQ0NITaRicnJywtLalXrx6KiorUqFEDXV1dlJWVhXpIiUQiRDffv39fZTEYERHB+fPnUVBQwNjYGEdHR7y8vHBwcMDe3p46dep8Fk0FGDRoEKtXr6a4uBgDAwPs7e1xcHDAyckJc3Nz6tWrh76+fplzS/n4nOTn5wvRzaKiIlJTU0lNTeX69euVHoOpqSm9evXC09MTOzs7jIyMhG2PGDGC8PBwDh48yLx58xg5ciSBgYF07NiRZs2ayfw7XrZsGT4+PiQlJZXpQlsRXbp0oaioiIULF7JhwwYhalqvXj1q164tNHB/8eIFVlZWvHnzBgBvb29Wr16Nh4cH0dHRwudUViQSCbq6uuTk5CAvL4+enh4nT56USQiWGguFhISwd+9eLC0tuXjxIn5+fp+MKyws5MSJE2zcuJETJ06gp6eHu7s7bm5ujB07FhcXFxwdHcv9/P9jxaBEIgkBQgwNDYX0hvIotT2uDFnG/VVjxG39b27rhx9+4Mzp06wpLmbAmTPoL19OogzF3f8Na/9f2paIiMj/Z8CAAdy7dw93d3c2bNiAh4fH116SyD+MwsJCMjMzGT9+PEpKShQWFuLk5MTgwYPp2rWrcJO5ZMkSFixYwJo1a3B0dAQgOzubN2/eCK/MzEzh68ePH3Pv3r1P3n/37p1gclRQUICGhobQM61Pnz506tSp0vW+ffsWJSUlbGxs6NKlC+3atas0Wt64cWMOHDhA3759SU1N5dKlS9jY2HwWhYqJieHRo0eCUIqLi+P06dOkpqYSExNDQUEBysrK1KpVC1tbW2bPnl1h37tffvmF0aNH06tXL5YvX15pLdvHTJ06FQ8PDyZPnkxqaippaWmMGjVKiHSWx5kzZ9i8eTOvXr3i7t27KCkpIZVKKSoqQkFBATU1NTQ1NdHW1kZXVxc9PT0MDQ0xNDREV1eXGjVqUL16dRYsWMCePXuQl5cnKSmJyZMnU7t2bZo0acLq1as/qbuUk5MjNDSU0NBQ7t+/z9ChQwkJCUFJSYlWrVqxfft2QZCVx5EjRxg0aBCWlpb07duXFStWyHyuTp8+zcOHD1m5ciVbtmxhy5YtKCgoCH34NDU1MTIywsrKioMHD5Kdnc2jR4949OgRhw4dYuHChcTHx1NYWEjNmjWF2sOKemZKpVIGDRrEtm3bsLCwYPLkyYSHh1dY9/jmzRuGDRvGzZs3SUpKwtbWFj09PTp06EB4ePhn6aXz5s1jzpw5vHv3jsGDBxMfH4++vv4na6jss/+PFYNSqfQQcMje3r6flZVVpeNlGSPruP/G/Ynb+nu2ZWVlxdAffmD+/PkMBS7Nm8f7AwewFD83f/m2REREPqClpcXWrVvZtm0brVu3pmPHjsyYMaPKjnsiIpXxceToxo0b3Llzh/Xr17Njxw5q1qyJh4cHQ4cOZdu2bYwbN44XL16gra2Ns7MzLVq0IDg4GGtr6wr3cebMGY4dO8bKlSspKCggLy8POTk5IUWxMkrbpPTv35/x48djYGAgU9p0Wload+/eJSsrCwAzMzNB0H5MqSj6I5GRkXTu3JmEhAQKCgqQl5fHzMys0iiSk5MTPXv2ZM+ePWzatAlLS0tatWpFx44dcXd3r3BujRo16NWrF1euXGHt2rU8ePCANm3acOLECQICAiqc9+7dO44ePYq2tjazZs2iS5cu6OjofCLIUlNTuXr1Kunp6Tx79oyoqCjh6/T0dF69egV8OOe6urqYmJhgY2ODq6trmdHIyMhIjh49yvXr17l58yYKCgrY2dnh6elZrmHP48eP2b17N5cvX+bKlSuoqqri6upa6bn5I3p6eujp6RERESG0ziltWwIIDyji4+NZvHhxmanFEydOZN68ebx584YaNWpUamYjkUiwtLRES0uL7OxstLW1K52jrKxMvXr1iI2NRVFRESMjI7y9vWnbti2WlpaffZatra3p1q0bsbGx7N27l2XLllGvXj2sra2xtrZGR0eHdu3aVeg6+48VgyIiX4tJkyaxZcsWrrx4wfbkZJpu2ADz53/tZYmIiPzD6dKlC82bN2fw4ME0a9aMY8eOVdniXkREKpXy5MkTof9eZmbmJz9XVFREKpVSUlKCuro6z549Iy4ujpo1a+Ll5SW0ewBwcHAgKiqKM2fOcO7cOW7dusWOHTsq3P+iRYu4cOEC79+/x9DQkI4dO9KyZUvc3d1lSq1TU1PDzMyMDRs2sHbtWuTl5bG0tMTDwwN3d3ccHByws7MTHpZcv36d+fPnc+bMGcLCwli8eDFt2rSR2bXyypUrTJ8+nXv37hEcHMyMGTNo0KBBpSKwqKiIxMREsrKyMDMzQ0dHh7dv3xITE0NaWhrv3r2rUPD8v/bOO66q+v/jz8Peyt5LliKIgIi4xb1n5kozbKilpeVoqJWa5teRVqZpmuU2y71H7oUbRVRUQARZIsjmnt8fwPmBAoKZoH2ej8d5wD33M1733Mub+z6f9+f9VqlUREREEBoaqoRxqqmpoaOjw8GDB9HX11f2Dhbtyyz++/3795XrefDgQT766KMn5ti7dy/jx48nISFBCVd8++23cXV1xcrKivz8fCVktiKsWrWKuXPnoqWlRa9evfjuu++emtX4r7/+4uOPP6Zr166cOXMGBwcHcnNznxpa+ujRI+Lj45UyGEU/d+/eXaKdJEmoqalhZGSEhYUFkyZNKnOP6YULF8jLy2Pz5s3llgApzpAhQ8jJyeHzzz9n/vz5vPfee+Xu+9PV1WXSpElMmjSJxMRE9uzZw+LFi5k6dSqSJBEQEEDHjh1p2rQp/v7+SqKZIjIzM7l+/Trh4eGEh4ezefNmvvjiC9zc3MqcUziDAsFzpkaNGnzzzTeEhITwCXD1p59g7Fgow7gIBALB88LU1JSVK1fywQcfMHDgQLZu3VrVkgQvGefOnaNhw4ZK3b06derQqlUrateujY+Pj1KXz9TUtMy9aOnp6Vy8eFHZd6WhoYGWlhbTp09/6vybN29GpVLh5+fHhQsXmDdvHvPmzQNgz549tGnTpkT7vLw8UlJSSEpKIjk5maSkJFJSUkhPTy/xms6dO8eiRYuAAqfp8uXLxMbG0qZNG0xMTJg9ezbdu3dHU1Ozwo7g33//TcuWLalduzY7d+7ExcWlwvt2XV1dycjIIDAwEE9PT/r06aPUOKzIqn6bNm2IiIggKCiIRo0aMWbMGOrXr0+jRo2YPHkykydPRl9fn/bt2+Pp6Um9evXo0KGDUiLCysoKLS0tYmJiylxxHTp0KEOGDOHChQvs2rWL3bt3M2zYMLZv346VlVWFXmdxZsyYwcSJE9myZQtfffUVlpaW9OvXj88++6zMqKDRo0cTGBjI+++/z9ChQ1m+fHm5oZkAH3zwAYsXL8bGxqZEvUIrKyuaNGlCgwYN8PPzo2HDhjg4OFQ4iqJz585s3bqVPn364OHhweDBg+nZs2eZpTlkWaZRo0Zcv36dxo0bM27cuArNU4SZmRn9+/dHXV2dgwcPAgV7xI8ePUpeXh5OTk4l9sJmZWURFxfHw4cPkWUZAwMDTE1NycrK4tKlS2XOI5xBgeBf4M0332ThwoWcOXOGGZmZTJ8wAX77raplCQSC/wBqamrMmTMHFxcXLl68WGqom0BQFp6enly8eFFx9Ir2kVWEzz//nPXr13P9+nVkWcbU1JR+/frx3nvv4e/vX6Ev3bIsM3/+fKKjo9HV1aVRo0b07t2bNm3acPz4cTp06FDC8UtPT8fY2BgTExNlL5ssy9SuXRsbGxucnJzw8PBQktQUtTM0NKR27dqEhYWxe/dulixZQkhICE5OTuzcubPclZQimjdvzqlTp1i5ciVNmjTB0tKSo0ePYmFh8dS+06dPZ9y4cTg7O2Nubk6NGjWwtrYmNTUVXV3dcuscxsbGkp+fz7Bhw5gyZUqJ527fvs3JkyeVY/fu3Vy+fJlRo0aVmoWzvNDb9PR0YmNjSU1NxcHBgU6dOpGdnU2fPn2UguiVpUaNGgwaNIiIiAi+/vprVq1axcqVK+nXrx8rV64stU+jRo04efIkM2fOxN/fn6+//pphw4aVeY06d+7Mli1beOedd5S6qkWZVFUqVbkJdSpCZmYm58+f59KlS4wZMwYPDw/+/PNP6tSpU6KdJEmcOnWKQ4cO8f3339OjRw80NDRo3bo1W7durXRG1SI0NDRwcHDgf//7H507d+bu3bvcvXuXpKQk1NTU8Pb2xs3NTdnj2b59ezp37syoUaNKH++ZVAgEgnJRU1NjwYIFBAUFMRsI+f13XEaMgKCgqpYmEAj+A2hra9OxY0eOHj0qnEFBpYiIiMDQ0BAPDw9q167NrVu3mDVr1hMZDEujY8eOmJqaKrX3du3axdq1a1m/fj01a9bE3t4eDw8PfH198fb2pkWLFiVW4fLy8hgwYAARERHs3LkTPz+/El/48/PzSU1NVRJ73Lx5k9u3b6OpqYmFhQUuLi64uLgwatSopyZRgYLi6Vu2bGHHjh1cuHCB1q1b4+LiohRXfxpxcXFcu3aNs2fPYmRkROvWrZ8a9ljEgAEDsLGx4fz580RHR7NgwQKioqJQV1dHpVJhaGiIpaWlsg/PwcEBExMTNm7cyJEjR+jTpw/9+/d/Ylxra2t69OhBixYt+Oqrrzh79iy5ublYW1vz6NEj9PT0Suw7CwsLY+/evUpYcGxsLHfv3iU2Npa8vDxlhbjoKNp/9qyOzOPo6Ohga2vLa6+9Vm47dXV1Pv30Uzp06EDv3r2ZPn06f/31F76+vk+0bd++PXPmzOHo0aN88803nD17lpo1a+Ln54exsTGffvoprq6uldJ5+fJltm3bhoaGBhoaGuTn5+Pk5ETDhg1p3LhxqftIAWrWrEmrVq3YvHkzBgYGGBoaKk5hRcjIyGDTpk3o6OigUqkICgrijTfe4I033iArK4vk5GSioqJKHNeuXSMmJgZHR0c0NTWJiYkRYaICQVXQqFEjBg8ezIoVKxgDbBo9Gk6cgH94R0ogEAgqgoODAzExMVUtQ/CSUa9ePfbv38+1a9cIDw/nnXfeYeHChRVyBovXVwPw9fXl/Pnz5Ofnk5SUpGSvXL9+vZIxtF69erz22mt06tQJe3t7srKyuHXrFp07dyYwMJBhw4bRqlUrjIyM8PT0xNPTs8Sc+fn53L17l7CwMD799FNWrFjBRx99VCFnMCUlhU2bNnHixAlCQkIYPnw4vr6+ZSaciY6O5uDBgxw6dIi///6bhIQEmjVrxgcffKB8wa9IshqVSkVsbCx6eno4OTmhpaWFoaGh8nokSeLhw4c8fPiQqKgoDh06RF5eHkFBQYSEhLB69eqnrrImJCRw9+5d/P39SUpKYvTo0SQlJaFSqTA1NVWOGzdukJSUhIaGBmpqauTn55OdnU1eXh5mZmbK3rysrCwePHigZN9csmQJp06dIisri549e9KwYUMsLS0rtVqoo6NDTk4OHh4e6OnpkZ+fX+6K6O3bt9m1axdZWVmkpqZy9erVUp1BSZLo1asXPj4+HDt2jNq1a7Nhwwa2b9+Oo6MjERERlXYG586di0qlYsWKFfj5+eHq6lqu1szMTLZv387q1avZs2cPTZs2Ze3atXTo0KFSK5MPHjzg2rVr5OfnU6NGDczNzVFTUyMqKgpXV1eGDh36RB9ZlklISCAqKoo//viDGTNm8P3335c5h3AGBYJ/kRkzZrBhwwY2Z2Sw6/Rp2q9YAW++WdWyBALBfwBNTc0S+6YEgopiZGREQEAAjx49QkNDg5kzZz61jyzLPHr0iJSUFOUo2jP4OCqVioyMDCRJUopjT548mRMnTrB582Zyc3Px9fVl69at7N69G5VKhYWFBb6+vvj4+GBsbIwkScTExBAREUFERATR0dG0a9eO33777QmHsSysrKyUsgHffPMNy5cvJzIystQ9aSkpKfj4+CgJdYyNjWnRogU2NjZcuXKF5ORkbt68iampKS1btiyz+HxGRga9e/fm7NmzODg4KCtuDRs2pH379vj4+ODt7c3WrVuZNGkS2dnZyt4xb29vnJycePjwIfr6+uU6nu7u7qxbt055nJ2dTXJyMjExMVy/fp2IiAiuX7/OlStXyMzMLHWMhIQEHj16xFdffYWampoSmlv0Wg8dOsT169eV8M4BAwaUGepZhEqlIioqioiICKUO5ZYtW9i6dSvr16+nd+/epfbLycmhUaNGxMfHK2VDNm3aRFRUFF5eXjg7O+Pk5KSsNIeHh+Pl5UV+fj5169Zl0aJFdO7cmfz8/ErXY7127RqHDx/m66+/5vXXX69Qnz59+pCWlsbgwYNZvHhxhZIflYa1tTXDhg1j+PDhJCYmsmHDBjZs2ICGhgZhYWG4u7sDBX9/aWlpJCcnlzjK+hssjnAGBYJ/EWtra0aOHMmsWbMYDVwcPx6tXr3AyKiqpQkEglccTU1NcnNzq1qG4CXl4cOHdO/eHR8fH8LCwjAyMsKo2P+u8PBwhg4dSnJysuL8aWpqYmxsrBySJOHm5oapqSmWlpbY2dnh4OBArVq1sLa2LtFWR0dHGVulUikZKnNycgCUEMZt27Yp7bS1tenevTs//fQTjRo1UhyB+Pj4ErXWyuK9995jxYoVdOjQgV9++YUuXbqU+aXd2NhY2aMYFxf3RJbKM2fOsHXrVuLi4pQ+Ghoa1KhRg6ZNm/LXX38BBUlZwsLCCA0NLXe/nq+vL2PGjOHmzZuK43b8+HF+/fVXrl+/zqNHj3Bzc6NFixZ06dKF1q1bl3AO58+fz/Lly5UV2UePHpUY39TUFFdXV8zNzTE2NqZ+/fp4eHjg5eWFu7s7ZmZmmJiYlOrQFjFu3Dh+/PFH9PX1mTp1Km+Wc7M7MzOT9u3bc+7cOSRJwsnJiebNm9O+fXvatWuHp6dnuU6alpYW9+7dIzExkcmTJ7Nw4UIuXLjAunXr0NDQQJZl8vPzMTAwoHbt2mzbto379++zY8cOtmzZQkhICK6urgQFBdGuXTtatmxZoT2st2/fpkGDBri4uKCpqUlycvJTHbvk5GR27NjB7Nmzy/1MPY2xY8fy66+/kp+fj6OjI/7+/rRv357AwEBMTEwYNGgQ9+/fVxw/LS0t5X0r2j+bm5uLl5cXtra27Nq1q9R5hDMoEPzLvPHGG/z1119cu36d7+/fZ8zUqfDtt1UtSyAQvOJoamoqNbQEgspiaGjI2rVrGTBgAJ07d0alUmFvb09wcDATJkzAzs6O3NxcnJycmDBhAgEBAXh4eDw15X9mZiY//vgjp06dIiUl5YmVjJSUFLKzs5EkqUQBdC0tLfT19dHV1UVbWxuVSkVmZiZXrlxh0KBBJCYmKuUBihwyLy8vmjRpwtixYzE3N39CS9++fdmxYwdmZmYMGDDgqfu4JEnC0NAQQ0PDUvdg9e7dm40bNyqPi4qaDxkyRDk3ceJEvv/+e7y9vWnWrBkzZswocyVTX1+fevXqlbrvNzU1lYiICLZv385rr71GXl4eQ4cOZdasWWhrayt7+4oc9eJOe/Hf79y5Q0ZGBteuXUNDQwMdHR0MDQ0xMTHB0tISW1tbHB0def311/Hy8npCh4aGBkuWLKFr167lXjsdHR0mTJjA+vXrWbduHcnJybRp04aJEydWKLQWCq6/ubm5sqdTTU0NAwMDcnJy0NbWxsfHh+bNmxMUFISZmRlqamoMHDiQgQMHkpubq+wh/PHHH5EkiVq1atGjRw8mT55cpiPq4ODAihUrOH78OOPGjSMyMhJTU1NatGjB+PHjCQgIeKKPsbExGzduZP369Xz11VfUrVuXt99+u8TnoCL06tWLdevW4eDgwF9//VXiM6xSqRg/fjyhoaFKttykpCTs7e3x9fUlJCSE+vXrP3H9SkM4gwLBv4yWlhbz5s2jc+fOTAEGzJ2L1dtvQwUylQkEAsGzUrT/RyCoDHfu3KFr165P1Bk0NDREX1+fhw8fkpGRgYGBAdu3b2fq1KmsXr2ar776itjYWBwcHHBzc8PNzY3z58/Tv39/evbsqazU5eXlcePGDc6cOcPFixfJycnBysqKNm3a0KZNGzp37oypqSkqlarcPVnFyczM5MiRI+zfv59du3YpoXHXrl1TUuuXRnBwMJcuXaJLly4sWrSIkSNH/vMLWAyVSkVkZGSJJDmOjo7UqVMHY2Nj7ty5w8OHD59p7Bo1ahAQEEBAQADR0dEsXbqUpUuX0qJFC3r37o2dnV25K49QsA9w0KBB/PHHHyXOpaenK3UJExMTyczMJC0trdQx0tPTef311/H19eXLL78sUfojLS2NkydPEhYWRlhYGJcvXyYsLAxDQ0O0tbVJTEys8OuNj49n69atbNu2jR07dmBhYcHQoUNp3LgxDRo0KDOBSxGampoYGRmho6NDfn4+GhoaSvKV8m6aqamp0bNnT3r27EmtWrWUcM2NGzfy+uuvl+oMSpJEjx496NGjB9nZ2ezbt4/+/fvTrl27cpMTZWdnExoaytGjRzl69CjHjh1DV1e31M+wmpoanTp1KlHv8P79+/Tv35/ffvuN7t27l3s9iiOcQYHgBdCpUyc6d+7Mtm3b+DQvj1/GjIEtW6palkAgeIWp6N12gaA4WlpavP3221hbW2NjY0N0dDT169cvEcZZhIWFBfPnz1ceZ2dnExkZyfXr15W9ZMOHD2fBggWEhYUBBU7lwoULAcjNzeXKlSucO3eOs2fPMnfuXHbv3s3KlSsr7AgCrF+/nhEjRvDo0SPU1NRwcHCgd+/e9O/fn3r16pVbFN3IyIgvvviCzz777Lk7g5qamnz55Zd8WywaaNWqVUyYMIGaNWvSp08fEhISSE5OpmbNmhVOLCLLMtHR0Zw/f54LFy6wb98+oOD6x8fHV1jfunXr+OOPP7CysuL111+nTp061KpVC2dnZxwcHCqUDCY/P5/MzExOnDhB7969uXv3rhJ++fPPPzNjxgwSExORZRmAunXrUqdOHVJSUoiOjmbYsGHUrl1b2Q9pYWGhXAtZljl27BgLFixg165dtGvXjh49ejB16tQK7wstIjExkcDAQJo3b87ixYvp3LnzUx3IslBTU0NNTY1Zs2YRHh5O69atCQgIKHVVXFtbm06dOtG6dWscHR1xc3NTwlTr1KnDtWvXFOfv3LlzuLu706RJE/r168eCBQuwt7d/amKdIm7dusXx48dxdnbmxIkTGBsb4+vr+9TPlUhrKBC8IObOnYumpibLgFNbt8LOnVUtSSAQCASCEsTHx/Ppp5+yefNmkpKSqFOnTqmOYGloa2tTp04dunXrxtixY7G1tUVDQ4PatWsDBU5McnIyYWFh7Nu3j3Xr1rF3717CwsJITk5GX1+f1atXV2rFCGDw4ME8fPiQmzdvsnHjRtTV1Zk7dy4NGzZEV1eXjh07ltn3wYMHrFq1ilq1alVqzsfJycl5ImFTRkYGs2bNYmex//cjR47kwYMHrF27FgMDAxYsWICNjQ39+vWr0Dxbt27F1NSUwMBAFi5cyKNHj+jVqxe7du0iOzubESNGVFjz4MGD6dq1KykpKRw7dgxNTU0CAgJwdXWtVFZQPT09Jk2aRFRUVIl9eGPGjOH+/fvk5uZy//59Ll++zIIFC+jTpw+ampocPHiQX375hXHjxtGxY0fq1KmDqakpmpqamJubExQURNOmTXF1deX27dusXbuWwYMHV9oRhIIC7osWLeLq1atKuOmzolKpyMvL4/Tp00yaNIkmTZpgZGTE9u3by+zTvXt35ebHvHnz6NGjBx4eHnTr1o0lS5ZQv3599u7dy5EjR1iwYAH9+vVTEhlV9MZIYGAgycnJzJ07l6SkJAYOHIitrS2xsbHl9ntlVwYlSeoKdLWxseHatWvlto2MjKzQmBVp97zaiLFezbGGDBnCkiVLGAUcGD6cqC1bQFPzpdBencYSCAQCwb9D/fr1+eGHH9iwYQPdunUjMTGRzz//nAkTJpTbT6VSERcXp9Q627t3LxEREdSsWZPIyEgcHByIj49HT08Pa2trrKysShze3t5YWVlhb2+vFAivDGpqatjZ2bF48WJSUlLQ1tbG39+fvn37lrmfbceOHQwePBgXFxclVFKW5Qqtqh85coSlS5dy69Ytbt26RVxcnJLAw9nZGV9fXxo3boy7u/sToYT6+voEBwcTHBzM/PnzCQsL4/3336/Q61y7di2tW7fmo48+wtvbG0NDwwprLg07Ozuys7M5ffo0oaGhvPPOO7Rq1Yrly5dja2tbbt+i1T5NTU0+++yzMvdcqqurY25ujrm5OXXr1gVg+fLlGBkZIcsyGRkZGBsb4+rqquyRdHd3x9LSkh9//JEff/wRTU1NJk+e/EyvsYi33nqL0NBQRo0axYQJE/j111/p3LnzU/tlZGQwffp0tm7dira2Nrm5uZiYmODi4oKvry9+fn7Url2bwMDAJ/pevHiR2bNnc+jQIdTU1DA0NMTd3Z169ephbm6OtrY2KSkp3Lx5kzfffJPbt28ryX1cXFzo2LEjvXv3rvCqsY6ODu3ataNdu3bMnTsXOzs7fvvtN5o1a1Zmn1fWGZRleQuwxcvL620PD4+ntq9Im4q2q47zibGqx1hz5sxh69atnIyLY93t2wzZswc++uhfm+9VHksgEPy7ZGZm/qMvmYKXl8DAQAIDA/n2229xcHBg0qRJfPzxx6hUKg4ePMidO3eeKHQdExODsbExDg4OODg4oKmpSevWrdHT0+POnTvk5OQgyzLGxsZYWlri4OCAo6Mjjo6OODs707x580qFhj6OLMu88847REVFsXPnTvz9/Z+aEMbY2Jju3btz6tQp3N3d8fb2Jjs7mz59+tCzZ0/c3d3LHGPSpEnY2dkxduxY6tati729/VOT55SGrq4ukiSVG8panIEDB7JhwwZGjx7NlStXsLa2Rl1dHUdHR0JCQujRo0eJse7cucPZs2e5d++esg+w+M+iVVh9fX2sra1xdXXFx8en3Ndy7949li5dyrJly9DX1+ett96qtJ0ongFUS0sLDw8PgoODadasGW3atFHG++mnn/jwww9p3LjxP3YGoeCmhZqaGvr6+kptx/LIzMyka9euGBsbM2XKFDw8PHBxcanwyqmOjg7GxsbKe5Kfn09+fj5GRkY0aNCAzp07l1h5L6qbeePGDW7cuMG0adOYOXMmK1aseKYV0V69ejFlypRy9b6yzqBAUB0xNDRk5syZDBkyhAlAz8mTMRo4sKplCQQCQQk8PDz48MMPlXpzHTt2pHnz5vj6+lYqfEzw8pGamsrUqVO5cOECFy5c4O7du7i6uirF4IcNG0Z0dDRQkIAlJCSEwMBA7O3tnwgnffxmQlZWFtHR0dy5c0dxKA8dOsSsWbMIDg7m+++/f+abDzk5Ody4cYOLFy8SHByMmZkZHh4eBAQE0KBBA2rXrv3El/hGjRrRqFEjoCARytmzZ3n33XeZNGkSM2bMIDs7G3t7e/z8/GjUqJFSA9DS0hJ7e3uOHDnChg0b0NLSwtramtzcXLS0tHB0dMTDwwMfHx/c3NywsbHB2tq61DINb7/9NsbGxrRv356aNWsSEhLCwIEDywxb7dChAx06dAD+PxnPiBEj2LNnDwcPHuTdd99lwYIFQIHj07hxY/z8/LC1tcXGxoZGjRopeqytrcnKysLKyqrcEhKPs3nzZubOncvDhw+pX78+ZmZmXLx4EW9v76c64EUU1ZEs4vjx4xw9ehR3d3eOHz9eohyDo6MjBgYGzJgxg/Hjx/+jG1QHDx5EkiTmz59f7mpZEbdu3eLKlSuYmZmxdetWjI2NqVOnToXnc3d3Z968efz666+8+eabyufs7NmzLFy4kPHjxzNlyhQyMjKIiIggPDxcOa5evcr169fR09Njw4YNTJo0qdKvt0WLFixYsKDMJEognEGB4IUzaNAgFi5cyIkTJ5ialsa3n38OY8dWtSyBQCBQaNKkCTVr1iQ6OpoDBw5w9OhRdHR0yMrKIjg4mPfee4+OHTsKx/AV5MaNG5w4cYIBAwbw5ZdfkpGRQYMGDQDw9vbmzp073Lhxg71797Jv3z5GjRpFzZo1qVOnDrVr16ZOnTrK70lJSUpRbChYJSnKNFqcU6dO0ahRIwYOHEjjxo2fSbe2tjZHjhxBlmWCgoI4efIkUVFR7NmzR2mjrq7OmjVr6NOnzxP9DQwMaN68ObVq1SI8PFzZ/xcZGUlkZCQbNmxQ2nbv3l2pGyjLMqmpqcTGxvLuu+9y5MgRrl69quwT1NTURF1dndzcXGrWrMnBgwefKNHQp08fNm7cyOrVq5k6dSqTJk1i1apV9O/fv9TX+vDhQ27fvq0cCQkJQIFzuHbtWsUZjIqK4t69e9y8eZOHDx+SkJBAbGwsd+7cwczMDHNzcxISEtDR0cHf3x9PT88SmU9LIysri5YtW7Jy5Uo+//xzzpw5w5kzZ/jss88wMzPj7t27T7ULsiwTHh6Ojo4OWlpatGrVih49etCmTZtSM6Dq6upy/PhxunXrxi+//KKsPgcHB+Pr64ubm1uFbFFcXByBgYGEh4fTo0cPZs6cybhx48rt4+npyd27dzl27BiTJk2idevWGBgYYGNjo2TOdXV1xd7eHnt7exwcHDA3N38irLMopLaIolXw0NBQ5syZw8cff4ympiZdunTB09OTrl278sknn+Du7q6EpVaGq1evMm7cOHbv3o2ZmRm1atXi1KlTpbYVzqBA8IJRU1Nj/vz5BAYGMk+WGfbzz2h36AAiPFIgEFRTcnJylOLfO3fu5OjRo6hUKnr27En//v0JDg6ucJIRQfXGzMyMq1ev8tFHH9GpUyeWLl1a4vmiQvJubm4MHz6c/Px8bt68ydWrVwkPD+fIkSP8/PPPhIeHk5GRgampKR06dKBz5860atXqif2AW7ZsoW/fvrRu3RoTExMljK+iGRShwDkaOXIk165dIzIyktTUVGrWrImdnR116tShYcOGeHl54eLigouLi9IvLS1NKaFRdFy5cgUDAwMkSSIjI0NZYfTz86NevXrUqVNH2fdWdD1q1qxJzZo1sbCweEJbbm4uubm5ACQlJREcHExUVNQTfy/FnQcjIyOcnJyUa3Hp0iUmT56sOH9F5T5MTEzw9/fHyMiIoUOHMmTIEHx8fJRxnJyciIuL4/79+yQmJpKQkEBiYiKJiYlERkZy6NAhDh06RFJSUgkdurq6yutxd3dHR0eHGzducOvWLRITE7G3t8fZ2RktLS2aNGlCmzZtaNu2LR4eHk91ypKTk2nXrh2JiYksWbKEAQMGVGilz9bWlpMnTxIeHs60adNYtmwZy5cvR0tLi7y8PCwtLalfvz6zZ89WEhYVMWHCBDZs2EBSUpJSW3DUqFEVvvGgpqZG06ZN6du3LwcOHCA1NZXU1FSuXr3Krl270NbWRltbm7y8PDIyMlBXV8fU1BRbW1vlZsD58+fR0dHBwcEBf39/goOD8fHxwcvLC0mSMDY2ZsGCBVy6dAlbW1tiYmJQqVSkpqZiYmKitKkI3377LZ9++ikjRowgKSlJSeoj6gwKBNWIgIAAhg4dyi+//MJHwPrp06FnTxB7cwQCwUtAUc2x33//nc2bN5OdnU3z5s0JCQmpYmWCf4qjoyPHjh2jZcuW5OXlPTVxhbq6Ou7u7ri7u5eobSbLMt7e3oSFhfHrr7+yceNGJeyyc+fOdO3alVatWlGnTh0mTJjA+fPn6dixI4mJiXh7e5OcnEy/fv0YN25cmQXBi9DV1cXd3Z0DBw5gZmbGF198oWTV3LRpE1FRUezbt4/ffvuthOOnUqmU8MmiUhp169Zl0KBB1K1bFzc3t398k6OoMHp2djb+/v7069ev3P14OTk5qKmp0a5dO1QqFUFBQbRs2ZImTZrg6+tLUlJSiSMyMpLo6GiOHTvGr7/+iqamJlpaWujo6CiHpqYmkiSRn5+PJEmkpKTw4MEDpd4eFKysGhkZYWpqqiTycXFxwcHBgbS0NC5dukRaWhoffPAB48ePf+ZsnPr6+nh5ebFt2zYsLCwqFfKpoaGBl5cX9erVY82aNciyTHZ2NoCyB/Lw4cNs27atRAho7dq1SU9Pp02bNkpSleeBrq6u8l5mZWUhyzI2NjbY2Njg4uKCu7s72dnZXLx4EVmW8fHx4fvvv1dW2oszdOhQ3nzzTY4fP86pU6eIjY3l4sWLxMbGcu3aNe7du6fsdTQzM8POzg43Nzc8PT1xd3enc+fOyt9qUFAQAwcOZM2aNWzatAk3Nzf+97//lX1dn8vVEAgElWb69OlsWL+e7WlpHAgNpfPatVDB1NICgUBQXSgqmr1v3z4iIiKYOnVqFSsS/FNSU1OJi4vDysqKc+fO4evrW+kxJEkq4fQU3UC4efMm33//PcuWLUNDQ4OQkBCGDRumJAd58OABK1euZNSoUcyZM4fXXnutxEpcaWhqavLFF18wceJEtm7dysiRI5k2bRpjx47l8OHDREdHExMTQ3JyMgDm5ua0aNGCOnXqKMXZiw4TE5NK7Z97GhoaGmhqarJo0SJ69+5doSQzWVlZ6OnpkZ+fz99//01iYiK//vpriVW/4rz99tssWbIElUpFdnY22dnZpRaJ19XVpUWLFnTq1AlPT09q1arFoUOHeOONN3B2dn6ifXx8PMePH+fq1avo6uoqBdR79OhRaWcwPj6eAwcOsG/fPg4dOkRWVhYHDx6kbdu2lRqnPGRZJi0tjY4dO3Lo0CH8/PyQZZlatWrh4+PDvn37uHz58j92BrW1tZXr3KJFC4YOHUqbNm0wNjYu07n97rvv+PDDDxk9ejRHjx4ttY0kSTRu3PiJFct169bx+uuvo1KpSEtLIy0tjVu3bnH48GEkSUJXV5fJkycrIa/NmjWjWbNmqFQq5syZwyeffFLuKqhwBgWCKsLS0pLJU6YwduxYPgLafPwx2l27wlPi9QUCgaC6IEkSBgYG5OXl4enpya5du9i1a1dVyxL8Q8zNzQkLC2PWrFk0b96cw4cPU79+/ec2ftGXWoDZs2cze/ZsoqOjSU9PZ8qUKezfv5+xY8cyZcqUp64KFkdDQ4MePXowf/58Dhw4wMSJExk1apSSqCQjI4PY2FhiYmKU48aNGxw8eFB5nJycjKurKy1btqR58+YEBgbi6Oj41BUsWZZLTdKhUqlISkqif//+TJo0iS+//LLU/tHR0Whra2Nra0tQUBAtWrQgICCAunXrVjhLqZqaGiqVCj09Pd566y0CAgKwtbXF0NCQ1NRUJaPovXv32LVrF/fu3ePixYt8+eWX6OvrK2UwGjRogImJCX379iUvLw8ocCTbtWuHi4sLhw4dIjw8nPj4eNTV1WnUqBG+vr4YGRmVep3S0tKoVasWGRkZdOrUiT///BNbW9tnKiHyNCRJIi8vj7Fjxyr7nVu0aIGpqSnz5s3DycnpH89RtBqpUqnYvXs3O3fuZNeuXbRr165Eu7y8PC5dusTRo0dZvXo1ampqZTr0z0pRaY4pU6bw8ccfl1jJV1NTU/bsZmZmljmGcAYFgirk/fffV/ZWfHf3LuO+/RbK+EchEAgEVU1Rcoki569ly5Y0btyYhg0bYm9vL8pQvELo6uoyadIk5s+fT5s2bYiLi6twpsiKoKenh0qlol+/fowfP55169bx8ccfU69ePXbu3Imrq2ulHEEoWFE7duwYkZGR6Orq8sYbbzB9+vQSc7q6uuLq6lrmGG3btmXv3r1cuXKFH3/8EUDZkzdv3jwePnxIWFgYly9f5vLly1y9epXbt28THR2NmpoaZmZm2NjY4ObmpuwJc3JywtHRscw9X0uWLOHq1ascPHhQyW76LKhUKqAgdPeXX36hefPmtG7dusz2mZmZjBgxguXLl5OWlkZoaCihoaEl2lhYWNC1a1def/117t+/rxw3b97k77//5ubNm0rbojBGc3NzmjdvzrJly4CCTOrXr19n3bp1rF69mrZt27Js2bIK1fh7nJycnBJ7HIter66uLurq6vTo0YP+/fvTsmVLAJo2bcrNmzfZvn078+fP59y5czRs2JBjx479I3ulrq6OlpYWgYGBfPnllyXCUmVZZsCAAWzduhUrKytatmxJcHAw06ZNIzg4+JnnLA1NTU00NTVZs2ZNqSHdSUlJ6Orq4unp+cR7W4RwBgWCKkRLS4t58+bRoUMHvgbemDkT67feAkfHqpYmEAj+gyQmJrJr1y5Onz5NQkICGhoaaGlp4erqqoQv+fv74+Hh8Y9qwgmqP4mJibz77rtkZmYyY8aM5+II6uvrk5eXh4+PD4MHD6Z///5KlkQNDQ3y8vI4deoUPXr0IDY2FisrK3r27Mn48ePLLICemprK4sWL2bNnD8ePH6du3bq4uLiwZs2ach0rlUrF8uXLCQ8PJyoqSil3UeT0mpiY4OTkhKWlJdnZ2YSGhuLk5ERCQgJ16tTBy8sLb29v2rdvj7OzMw4ODk/NxFkW2traODs7/yNHsDhpaWno6elx5MgRjh8/TkpKCsnJySQnJyu/p6SkoFKp0NDQQE1NDT09PWrUqIGZmRnW1tY4Ojri4uKCra2tsk+vaOxFixaRnJxMbm6u4oDUqFEDBwcHvLy88Pf3JyAgoIQmGxsbRo8eTWhoKI8ePXoio2pp7Ny5k8OHD3P79m3u3LnD7du3uX//Pvr6+ujp6eHs7Iyfnx9NmzbF19cXf3//UrN47t69m7Vr13Ljxg0CAwN57733KuUInj17ll9++YU///wTdXV16taty2uvvUafPn2eSFYDBauT/fr1Iy4ujqtXr2JmZsawYcPKLBfyNIpWnDU0NNDX1yczM5MaNWrg7+9PixYtaNeuHX5+fqX2PXfuHK1atWLbtm0igYxAUF1p3749wcHB7N+/nwnZ2fz68cewfn1VyxIIBP8Rbty4waZNm9i0aRMXLlwgODiYoKAg1q9fT4MGDbCysqpqiYIq4MGDBzx48IDc3FyWLVuGpqYmvXr1KjVjJqAkyggLC+PKlSuEhYURFhYGFISdBgQE0KdPH7p164apqekT/V1dXfnkk0+Ux/7+/pw9e5affvqJtm3bluoM7t27l5CQEJo3b87IkSNZt24dNWvWfKK+YWnIssyZM2e4dOkS169fJz4+HlNTU5ycnLCysqJNmza0adOGyMhINm7cSExMDPHx8RgYGKClpUV+fj5paWkkJiZSo0YNLC0tK+0MRkdHM2/evAqtkmVnZxMREaE4rcWPS5cuAQVOpY2NDV5eXhgYGBAREaEkyyleXL5u3bp07NgRFxcXzp07h729PYMHD6Z27dpPTZjz4MEDfvzxRx48eMDcuXNp1qwZDg4OFbpZkJOTQ35+PtHR0XTt2pUePXowevToUj8PeXl59OrVi/Hjx9O+fXtlddXW1hZZliscOguwcuVKcnNziY2NRVdXt9IrglFRURw+fJj4+Hh8fX355JNP6NKlS7kr1927d6d79+6Eh4ezePFi6tevj52dHV999RU9evR46vVKTk5m06ZN/Pnnn+zduxcXFxeGDh1Kw4YN8fPzK/WalYYkSUpYa1kIZ1AgqAZMmDCBI0eOsCInh+EbNtDo4EEoDHEQCASCf4vr16/TsGFD+vbty4QJE0SJCAF5eXkcO3aMiIgIGjZsyIkTJzh37hzDhw9n27ZtbNmypdR+S5cuZcyYMcoXz6LVtaKSDH5+fnh4eKBSqUp11h49ekRYWBgXLlzg4sWLXL9+HUmSsLKyemIvFkB+fj4ffPABMTEx7N+/n6tXr7JkyRJsbGyIjY3FxMQEHx8fGjZsiLOzM5aWliW+gKurqythoFCQCOnGjRuEhIRw/Phxjh8/zrRp0wgICGD//v1ERUVx+/ZtTp48yYEDB1i3bp1SbkWSJDp27Mi2bdsqfJ1TUlJo0KABb7zxBufPny9z5bOIxYsX8/HHHytzAlhbW9OsWTNMTExo0qQJISEhWFpalursZGRkEBoaytGjRzly5Ah//vmnUqICYN68eUydOpVPP/20XB329vZcunSJ0aNHs2XLFoYMGVLh16ytrc2qVat49OgRgwcPZurUqcycORNXV1f69OlDly5dlNW9hw8foquryx9//EFwcDA1a9akXr16lV6hliSJ7du307t3b5ydnQkICKBDhw4MGTIEQ0PDMvulpaVx8+ZNbty4wc2bNwkMDOTevXucOXOGfv36MWPGjKfWKISCTKZz5syhZs2aTJ48mb59+7J3795yw0VlWaZp06Z4eHjw+uuvM2/ePJydnSvtxMqyrIQ1l4dwBgWCaoCDgwNjx47lm2++YRRwYtQo1M6ehee4P0MgEAgeZ+fOnUq688rcaRe8uly6dIkPP/wQd3d3PDw86NmzJz179qR9+/ZKvbLSGDFiBMOHDyc5OZm7d+8SExPDe++9x86dO5UC7JIkIcsy6urqWFhYMHHiRLp27UqHDh2IiIjA2dmZZs2aUa9ePd59913efffdMvf3qaurc/XqVXJzc4mPj+fevXvExsYSHh7OX3/9xf3795/oY2RkhIeHB4cPH0ZbW/uJ5+zs7JS/A3V1dSRJ4vr16yVW/Ly8vGjWrBlDhgxRVqvs7OwqVPS8OMuWLUOWZWrWrMnVq1dJS0vD09OzzC/8H3zwASNHjiQ+Pr7EqmBkZCS7du1ix44dfP7552hoaODs7MyePXtwdHRk9+7dDB8+nKioKCUZjJaWFv7+/jRu3Jj79+/Tvn17Xn/99Qo7Wvr6+rz//vs0a9aMdu3aKXUniwqv29vbY2lpWWZZElmWsbKyQpZlcnJyuHLlCl999RVfffUVNWvWZOvWrTRp0oT4+HjOnDnDDz/8QK9evZBlmZ49e7Jhw4ZKXWtDQ0N2797NzZs3GTRoEB988AGjR49m+vTpjB8/vkTbTz75hBUrViifHwMDA1q1akXr1q2xsrKidu3a9O3bt1JO6ejRo1mxYgWDBw9mypQppWZuTU1N5ezZs4SGhnLy5ElycnLYuHHjP9rX+NNPP3HgwAH+/vvvctu9st80JUnqCnS1sbHh2rVr5baNjIys0JgVafe82oix/ntj9enTh6VLlnA6IYFfL12i47RppBYrNVGdtb/osQQCwfOhf//+7Ny5kyZNmrBixYpS978I/lv4+vpy6tSpZ+orSRKmpqaYmppSr149JaRSR0eHrKwscnJysLa2pm3btrRt25b27dtjamrKtGnTWLNmDbt37yYpKYkWLVrg7+9f5jzp6enMnj2bu3fvEhcXR3x8PPHx8cTFxZGdnY2Ojg4GBgaYmpoq9fK8vLxwdXXFycmphCM4Z84cDh48yNmzZ0lISMDU1JRmzZoxcOBAPD09SUhI4M6dO8q+wqioKNavX8+yZcuwt7fHwcEBR0dH6tWrx+jRoyt8rUJCQrC3t+f06dPMnDmTI0eOoKamhp+fH2PHjqV3795P9FFTU6NGjRps376dy5cvEx4ezq1bt9DS0sLS0hJvb2/atm1LYGAg9vb2QEGZgSVLlpTIJBoXF8e9e/fYvn07kZGR/Pbbb7z55pvUrFkTW1tb3NzcCA4OZvjw4WXq9/HxoXv37qxcuZI9e/agqamJjo4OkiSRk5NDbm4uRkZGyr5jdXV1tLW1iYuLIy8vD11dXQwMDLC0tMTZ2RkvLy/8/Pywt7enQYMGzJgxg/3793Py5EnMzMzo168fQUFBz5SAZdWqVaxatYpjx46hqamJl5cXISEh9O/f/4m2o0aNIigoiMjISG7evMnNmzcJCwtj165dGBgYkJmZyaJFixg1alSp71FptG7dmj/++IO5c+cqe2RTU1NZtWoVhw4dIjQ0lNjYWHx8fPD396dLly7MnTv3Hyfkcnd3Jz8//6kZVF9ZZ1CW5S3AFi8vr7c9PDye2r4ibSrarjrOJ8Z6OcaaM3cugwYNYgLQ67vvsBo1CoplH6vO2l/0WAKB4J9jZmbG1q1bWbhwIc2aNWPkyJFMnDjxiVUTgeBZUalU5OXloaOjg66uLunp6axfv57ff/8dDQ0NDA0NqVGjBsbGxjRs2JD4+Hjatm3Lhx9+iIODA2ZmZpiamuLr66uEMMuyTF5eHurq6ujp6SlZOrW1tUlJSSExMVGpA5ecnMyNGzc4fvw4JiYmmJubY2Vlha2tLba2tly4cIH09HRMTU3JysoiISGBtLQ0EhIS8PT0JCgoCG9vb9566y1q1KgBFNy4XLNmDcuWLWP//v34+flVumRB0Qpp0SFJknKtcnNzy+2XmZlJamoq9+/fR0dHhxo1amBhYUHHjh3p3Llzif+jurq6NGnShFOnTinzFF2/nJwc7t69S3Z2NiqVitzcXLKzs8nKyiq1TAYUhOdevHiRu3fvkpCQUOJ8bm4usiyTm5uLlpYWGhoa5Ofn8/DhQ9LT0zEwMKBjx44EBwfTsGHDcutX5uXlKQlTilabb9y4gb6+Purq6krJhIqQk5NDeno62dnZmJub4+LiQkBAQKmlLYpWNkvTM2LECH755RfOnj3LgwcPKjx/0XVQqVRcu3aN7777jtWrV9OuXTs6derEZ599Ru3atZ9btt5Hjx6xdOlSpk+fXqE6jq+sMygQvIwMGDCAH3/8kWPHjvF1Sgr/mzwZ5s+valkCgeAVRpIkRowYQbdu3Xj33Xfp2rUrf/31V6XT+gteDcLCwli4cCGDBg0qd09VRdDW1iYvL08JT3ycojIBSUlJyiqILMsAShF6SZLQ0dGhV69e9OzZE3d3d1xdXfn6669LHTM7O5tWrVpx/PhxcnNzyc3NJS0tjbi4uFLbq6mpYWxsTL169bhw4QLt2rVjz549hIeHEx4ezsaNG4GCPXWjR49GlmWaNGlC586dmT59Oq1atXqmenlr1qzhiy++IDExEXV1dZydnalfvz4dO3bEz89PcYYeR19fn1mzZinX6t69e7z11ltKFuBvv/32idd68uRJ3nrrLe7fv8/Dhw9LjGVsbIytrS316tXD3d0db29vXF1dsbCwICcnBy0tLWRZ5tSpU6xevZp169ZRo0YNnJ2dMTAwICQkBDc3N1xdXbGxscHa2horK6sn9h5nZGRw4cIFQkNDOXHiBCNGjCArK6vM8PTPP/9c+T0+Pp4LFy5w4cIF9uzZw4cffsj58+cr7IC/+eabvPnmmzx69IixY8eyaNEi9uzZo9SlHDRoEC1btixTy5EjR5g2bRrnz59nxowZDB8+vFLJgvbv38+DBw9wd3dHS0uLtLQ0cnJyOHbsGHfv3mXHjh3Y29tjZ2dX4rCysqpw1ubY2Fi2bt3K5s2b+fvvvwkODmbXrl0VqmsonEGBoBohSRLz588nICCA72SZYT/8QO1334W6datamkAgeMWxs7Nj8+bNvPXWW7zxxhv88ccfVS1JUAU4ODiwd+9ePv30U+rXr4+xsTGNGjWiSZMm1K1bl5o1az7TuOrq6qipqSHLMkZGRsoqnY2NDXZ2dtja2mJhYaEcw4YN4/z588pK2KpVq1izZg35+flIkkTnzp1LJLOZPn06M2fOLOHs6Onp4enpiYuLCw4ODkqmUAsLC8zNzTE3N6dmzZol9rYVdwiKVtEmTpzI+++/D0BoaChqamosWbLkma5DEe+99x4hISFcvHiRPXv2MG/ePDZs2KDsh1NXV2fKlCklnKLHkSQJS0tLZb+itrZ2qaGdzZo14/r160BBbcGEhASlXuDs2bOVBDyloauri7GxMQYGBvTv358DBw48UwSPnp4eQUFBBAUFAfDbb78pjv/TsLS0pG3bttjY2CgJYZYtW8aXlajLnJGRQWxsrOJgZ2RkALBixQpWrFiBhYUFd+7cecKJ/eCDD9i2bRsTJkxg48aN6OrqVnjOIv73v//h6elJSEiIck5XV5f79++TlJREjRo10NPTU2o3RkdHExMTQ1JSElZWVjg5OWFjY0Pz5s3x8/PD09MTIyMjZaxvv/2W8ePHo6GhwXvvvceyZcswNzevsD7hDAoE1Qx/f39CQkJYsmQJH6pU7Bg9GmnPnqqWJRAI/gOoq6uzaNEiatWqxaVLl/D29q5qSYIXjKGhIX/88QcJCQmcP3+egQMH8ueffyrlFAwMDPDw8KB9+/Z8+OGHyh6o0igqgg4FYYT5+fl89NFHzJkz56k6ir6Uq6mpKXu1HBwcCA4OJjg4WCkqXsTo0aNp2bIl169fZ/Lkydy5c4fMzEzOnDnDlStXsLe3x8/PjwULFlQ4LX+RszJz5kx++uknpk6dyg8//ICHhwe//vortra22NjYYGNjQ40aNcjPzy831G/NmjX88ccfREdHEx0dTUJCApaWljg4OGBsbIy5uTn+/v60atUKLy+vcvfwPnjwgOHDh7Nr1y7S09Np06YNEydOpEWLFuW+Jl1dXRwcHLC2tmbp0qXcu3cPfX19ZRXQzs4ODw8PvLy82LhxI9euXeO1115j5MiRODk5lXCWK1LCoyzMzc0JCwsrN1S0aI7333+fTZs2cffuXZycnOjTpw+DBg0qc/X0ypUrfPvtt8TGxnL37l0lFNbGxgZ1dXXFwapbty4NGzakTp06ODk5lXAE8/LyWL16NRs2bODatWslnK9n4fEVvszMTOX33bt3s3fvXmbNmsX8YtFgOTk5xMTEsHjxYmbOnMm6devQ1tYmOzubGjVq4OHhQUhICCNHjsTT05MDBw5w4MABatWqRVBQEPXr18fMzAxLS0usra3L1CacQYGgGjJt2jTWr1vHrocP2bpvH103bYI6dapalkAg+A+go6NDjx49OHDggHAG/8OYm5vTtm1bTExMSEhIUEoapKamcurUKS5evMisWbMYPHgwjRo1Ij4+XnFyio7k5GTU1dUxNTXF2dkZX19f2rRpUykdKpWK/Px8HB0dmT17Np06dUJDQwOVSsXu3bu5ffu28oW/+AEFq3wmJibY2dlRu3Zt6tWrV+5+2PDwcO7cuYMkSejp6Sl739zc3AgICMDNzY0xY8YQERHB3r17lRp+sbGxJQqwW1pa4ubmho+PD/Xq1aNRo0a4uLigUqn466+/mDFjBn379sXa2vqZ94lpaWnh6+uLpqYmO3bsYN++fRw/flwpn9C4cWPatm2Lo6PjE3137tzJ6NGjcXR05IsvvlDCPIuv+ubk5GBubs7Vq1e5fPkybdu25d69e9ja2uLq6oqLiwv37t2jU6dOvPXWW5V+HQ0bNqRly5asXLmSTp06lZl5VJIkfH19qVGjhpL4Ztu2bSxduhRZltHS0sLIyAgzMzNsbW2pVasW5ubmPHjwgIyMDOLi4pBlmXbt2tGgQQNatWpF06ZNy9SlUqn44YcfmDt3LjY2Nqxfv/4fO4Kloa6urhSQt7S0pGnTptR9LAosIyODiIiIEp/nvLw8DA0NqVWrFj4+Pjg6OqKvr0+XLl3o0qULUFCj8NChQ4SHh3PkyBG2bNlSbrZb4QwKBNUQCwsLpnz5JR999BEfAe3GjEH666+qliUQCP4jODk5ERUVVdUyBFVIbm4ud+/eVcLpitDW1kZNTY2cnBz09fXZvHkzW7duJTY2Fij47HTr1o3u3btjbGxM/fr1/3FWxEePHnHjxg0GDhyIuro6b775Jv369eP999/n+vXr+Pv78/bbb9OzZ0+lKLmnp2elEyGtXr2aq1evoq6uzrBhw/jkk0+eWv+viMjISHr37s358+eJjIxUSj5YWFgwZswYxo8fz4ABA9DQ0OCTTz7hp59+onfv3vTu3ZsGDRpU+hrp6ekpde7efvttlixZwqNHj7h8+TKXL1/mt99+o1evXqxdu/aJvm+88QY///wzPXr0KHN8LS0tPvzwQwCSkpIICwvj/PnzbNu2jQMHDrBnzx60tLS4ePEiXbp0wcbGplL6fXx82Lx5M/3790dDQ4O+ffsycOBAmjRp8sQq2rBhw4ACRy0xMZGvvvqKH374AShwWhMTE0lMTCQ8PJx9+/ahq6uLjY0NAwYM4PDhw1y8eJH333+fSZMm0bZtW3bt2lXm9U5JSWHFihXcvXsXV1dXDh06hJqaGg0aNKh0+ZDExERCQ0M5c+aMsvdUS0sLHx8f2rZtS7NmzQgMDFQSIKWkpLB582YOHjzI33//TUREBAEBAXh4eDB37lxlFdO4WGLB0jAxMVHe282bN7Nly5YS9SkfRziDAkE1ZeTIkSxevJirV68y99YtQpYvhwqE1ggEAsE/RUtLq9yMhoJXm9u3b+Ph4VHiC6QkSXh7e9OiRQsaN25MUFAQ9vb2yopOYmIi586d4+zZs5w7d4733nuPe/fu8ffff+Pn51fmXLIs8+jRI1JSUkhOTlZ+llYnMD09HUmS+O677/juu+/YtGkTWVlZfPPNN6xZs4aNGzc+9YtyeXz55ZccO3aMvXv3Mn/+fG7fvs1fZdyIlWWZs2fPsm7dOtavX09qairW1tZ069aNVq1aERgYiJeX1xNJePr27ctrr73G2bNn+eOPPxg0aBApKSnUqlWL+vXr06lTJxo2bIiVldUzvw5ACfmEgvfm+PHjypGenl6hLJNQECI7YcIEAGxsbHjnnXcYO3Ysnp6eZGZm4ubmVqFx8vLyuH//vlIP8uzZs0DBewqwePFiFi9ezLBhw/j555+Vfrm5uezatYsVK1awbds2JXust7c3jo6OuLu74+npibOzs7L39PHkLiEhIYSGhtK4cWPatWvHqVOnaNiwYakOoampKadPnyYlJYXDhw9z8OBB3n//fWJjYzl9+nSpmUZLY+3atfQrLA+mpqZG/fr1GTt2LF9++WUJfeHh4SxevJhNmzZx+fJlgoKCaNGiBQsWLHgmB/RZEM6gQFBN0dTU5LvvvqNdu3ZMBQYtXAhjx0IF71IKBALBs6KpqSmcwf8wTk5OxMfHExMTQ8eOHYmJiUGWZS5evMiVK1f44YcfUKlUSt07a2trGjVqxNKlS0s4Gc7OzrRq1Yrbt29jbGzMnj17+O677xSHr8j5y83NxczMDGtra4yNjTExMUGSJGrXro2NjQ2Ojo64ublRp04d7OzsMDY2Vg5JkujTpw+ffPIJQUFBfPDBB7Rp0+YflSnS0dHB29ubRYsWlfr8vn37eOedd4iMjMTOzo7Ro0fTuXNnDA0NsbW1feoqnyRJ+Pv74+/vz7Rp04iJiWHQoEEsWrSIpUuXKmGqLVq0YOPGjSVWyopWx2JjY5W6gefOnQMKsoOqVCq6du2qOEBubm7cv3+fhg0bEhQUxLhx42jUqFGFs2GOHTuWVq1asW/fPvbv38///vc/6tatS2BgIC4uLiQkJODt7f2E0xseHs4nn3yi6IyPj8fQ0BBnZ2esra1JTU2lfv36eHl50ahRI/z9/ZUMmgARERH89NNP/P7777i5ufHGG2+wcOHCCu/3LM6BAwc4fvw469evZ/LkyWRkZKCtrU2TJk3YvHlzqdfC2NiYbt260a1bNwC+/vprunXrxqBBgwgMDMTX17fca9i3b18CAwO5fPkyly5d4rfffmP27NnMnj0bY2NjPDw8SE5OJiIiAg0NDbp06cLw4cOxtrbGxMQEU1NTcnJy0NTU5NGjR2hoaDyR3OZ5IZxBgaAa07ZtW3r06MFff/3FxKwsfps4EVasqGpZAoHgFUc4g/9ttm3bxpUrV4iNjSU1NRVJkpRaaUWF5c3NzbGzs8PFxQVXV9cnkp3ExMSQmZlJ48aNFUehdu3adO/evUQB9KIjPj5eSTKjqalJeno65ubm+Pr60rp1a9q2bVvmvjQ1NTVmz55Ny5Yt2bBhA2PGjEFfX5/XXnuNzz//vMKrOVBQEy4nJ4dz587Ru3dv5s2bR4MGDUq08fDwYPz48creyB07drB48WIiIyNRqVQYGBhgZWWFq6sr9evXJyAggB49epTqJEqSVKK2XVEZjkePHhEXF8fIkSNLOH73799XHPCiQ01Njddee41BgwbRtm1bdHV1yc3NpVevXsydO5d+/fo9c5kQDQ0NGjZsSMOGDZk4cSJZWVmcOHGC0NBQfv75Z8aMGQOgJBYKCgqiXbt2NGnShC5dunD9+nWuX79OREQEt2/fJjk5GTMzM1QqFf7+/kyZMkVZwQQ4dOgQX3/9NRcvXiQkJIRjx47h6upaYb0qlYq1a9cSHh7OrVu3uH37Nrdu3eL+/ftKsp/09HRatGhB165dK+xgTZw4kZs3bzJhwgR0dHTIysrC2tqawMBAgoODeeutt9DW1ubhw4esXLmSGzducPPmTW7cuEFkZCSamppoa2vj6upKkyZN8PX1RUtLS7kpkpSUxObNm0lKSlIeJycnk5eXh56eHg8ePEBXVxcTExOsrKxwcHDAzc0NFxeXZwrTLY5wBgWCas7s2bPZsX07v+fkMPy332g8YgQ0alTVsgQCwSuMuro6+fn5VS1DUEVs2LCB33//HU1NTTp37syIESOws7PD2toaAwODMvvl5eWxfft2fv75Z44ePcqbb77JrFmzlJUte3t73n777VL7qlQqkpOTFadnxIgRyv63RYsWoaOjw+jRo3n33XfLTJvftWtXunbtSlhYGBcvXmTVqlX06dPnCWdQlmViYmK4devWE8fp06dRqVRoa2uTnJzMpUuXnnAG7ezseOedd56Yv1evXvz555+kpaWRlpbG9evX2bFjBz4+PnTv3r1UZzA2NpYjR45w5swZJElCTU0NOzs7TE1N0dDQYM+ePcTFxZGRkYGOjg716tXD3t4eS0tLrKyssLS0RKVS4eDggKurqzJHfn4+3bt3Z8GCBYwaNQoLCwtq166tHB4eHtSpU6fcLJOloaOjQ8uWLWnZsiXx8fFcvnwZ+P/EQqdOneKnn35iypQp6OrqKqucZmZmpKenExUVRUZGBurq6sTFxTFkyJASzuCJEyc4fvw4wcHBtGrVilq1alVKX15eHrt27eL27dtKwpmHDx8qq47Z2dnK6urp06cBcHd3Vxzrsur6aWhoEBAQwK+//kp6ejp6enrcvXuX7du3k5ycTJ8+fTA3NychIYH9+/eTmJhIUlISDx48UMqjSJJETEwM27dv58SJEyVKqzRo0ABLS0tMTU0xNTXFzMwMMzMzsrKyWL58OcOHDyczM1NJkBQaGgoUrGB6eno+1RnU09N7Yv+v8toqdYUFAsELp1atWnz8ySdMmzaNUcCpDz5A7eRJKCPzlkAgEPxT/mnCD8HLzbJly5g+fTrLly/ns88+49NPP63Q3rA1a9bwxhtvUL9+fUJDQ3F0dCwzS+TjqKmpKV+Avb29MTc35+bNm0DBvrKcnBy++OILjh07xvbt28scJyIigmvXrjFz5kzeffdd9PT0nmizd+9e2rdvr5SOcHV15fXXX2fIkCEkJSXRokULLCwsKqS7OMX/bgwNDcnOzmbw4MF8//33pV6HR48e4ebmhpaWFgMGDGDOnDkEBweXulqVnp5OfHw8cXFxJX6eP3+ev//+m6ioKKZNm0bHjh3Zvn07Ojo6rFy5EihwDO/cuUN4eDjh4eGcO3eO1atXc+HCBZYuXUqfPn0q/VpLQ01NDZVKRXZ2NhMnTgQKQleDgoJo27YtTZo0ITAwEAMDA6KiorC3t3/C1owbN4733nuPlStXMm7cOO7cuUPjxo1p2rQpTZs2pUGDBuWu5mlpabF8+fIS54qyisbFxfHzzz+zfPlyIiMj2bdvX4l28+bNY/To0WWOvWXLFqytrQkODqZ169YEBQXh7u5e4r11cXFh/fr1T/RdvHgx7777Ljk5OaSmphITE1PmPFDgfJ48eRI/P78S5Vu0tbXR0NDAyMiISZMmMXTo0HITJRV9xsur6SicQYHgJWDixIks+flnQu/fZ9mZM4SsWAFvvlnVsgQCgUDwimJtbY2fnx+urq74+PhUqM/AgQPx8PBg0aJF+Pr6Mnz4cL755ptKz3369Glu3ryJpqYmLi4uNG/eXMm8+LSQwfv37+Pt7c1HH31UZpu2bduSkpJCaGgop0+f5tSpU/z666/89NNP9OrVi9dee63Smm/evMnx48fR19enTZs29O3bl3bt2mFmZlZmH319fU6ePElISAiRkZF07NixzBsxBgYGGBgY4OLiUuL8vXv32LJlCy4uLnzxxRdK0pLiqKurU6tWLWrVqkWnTp2U83v27OH999+nR48elS4N8ejRI/788080NTWVrLHNmzfHx8cHCwsL0tPTuX37tnLs3buXJUuWEB8fj7W1Nc7Ozuzdu7fUlTgjIyOGDx/O8OHDuXfvHkePHuXo0aN89NFHXLlyhfr167Nnz55SHf3S0NPTo1atWjg7OzNixAilHEX9+vVp0aIFAQEB+Pv7l/teAVy7do29e/fi6elZqWsFsHLlSgwNDcnKykJNTQ1TU1Osra1xdHTExcUFJycnbG1tsbW1xc7ODgsLC8XJ/Pnnn9HS0qJu3br07duXzp074+XlVaGbdt9//z3Ozs78/vvvNGnSpNQ2Unme4suMJEldga42NjZv79+/v9y2kZGRFVqGrki759VGjCXGepxffvmFb7/9FnPgiokJKbt3oyolXKc6an/eY9WuXTtUluUGT21YjWnQoIF85swZAM6ePUutWrVK1HiqKBcuXFBCiirLpUuXsLKyKjPkqjzCwsKUYraV5erVq9SsWbPS4UlQ8M/YwMCgwunei3P9+nV0dHQqtX+oiMjISNTU1HBycqp039u3b6NSqSod7gQQFRVFTk5OpfbMFBETE0NGRgbu7u6V7nvv3j0ePHhAnWeobxofH09iYuITNbMqQkJCAnFxcc9U3zApKYmYmJgKOy7FSUlJ4fbt208tgF0aDx8+JCIioqg8wCtlm1JTU4mOjsbLy6vS4zx48ICoqCjq1atX6b4pKSncuHEDHx+fSmdTfPDgAbdu3Xqm97Io06W/v3+l+2ZnZ3Pu3DkCAgLKDDUsi/z8fM6ePUtAQECl55VlmePHjxMUFFTpFX1Zljlx4gSNGjV6pmiAv//+m3r16lUqg2tRIfWYmBiaN29e6TnT09M5e/bsM/UFOHr0KB4eHk91/B5HlmUOHz5M06ZNK7zaXZwTJ05gZGSEnZ1dpesWnj59Gg8Pj2eqdxgaGkq9evXQ1NQs2z7JsvxKH3Xr1pWfRnh4+FPbVLTd82ojxhJjPc7Vq1flpk2byoD8EcjyuHH/6nzVeSzgjFwN7Ms/Ofz9/Sv0WgUCwcuDsE0CgaC6UpZ9EpuOBIKXBEmSmD9/PpIksQC4OmcOXL9e1bIEAoFAIBAIBC8pwhkUCF4ifH19eeedd8gDPszLQy5nT4RAIBAIBAKBQFAewhkUCF4ypk6dSs0aNdgNbN62DXburGpJAoFAIBAIBIKXEOEMCgQvGWZmZnz19dcAjAGyRo8GURxaIBAIBAKBQFBJhDMoELyEDB8+nLqenkQCcyMi4Pvvq1qSQCAQCAQCgeAlQziDAsFLiIaGBt/Nnw/ANODu5Mlw/37VihIIBAKBQCAQvFQIZ1AgeElp3bo1PXv25BEwPi0NPv+8qiUJBAKBQCAQCF4iXrgzKElSB0mSrkmSdEOSpAmlPD9QkqSLhccxSZJ8ij13W5KkS5IknZck6cyLVS4QVD9mz56NtpYWK4GjP/8MZ89WtaSXFmGbBAJBdUXYJ4FA8G/xQp1BSZLUgR+AjoAn0F+SJM/Hmt0CWsiyXA/4Glj82POtZFmuL8tyg39dsEBQzXF2duaTceMAGAXkjxoFsly1ol5ChG0SCATVFWGfBALBv8mLXhlsCNyQZTlSluUcYA3QvXgDWZaPybKcUvjwBGD3gjUKBC8VEyZMwM7GhrPAsqNHMdy+vaolvYwI2yQQCKorwj4JBIJ/jRftDNoC0cUexxSeK4sQYEexxzKwW5KkUEmS3vkX9AkELx36+vrMmj0bgE8BzZkz4dGjqhX18iFsk0AgqK4I+yQQCP41NF7wfFIp50qNaZMkqRUFBq1psdNNZFmOlSTJAtgjSVK4LMuHSun7DlBk8LIlSbr8FF01gNSnqq9Yu4q0MQMSX+B8QteroeupbRIAi/v3zTAweJquF/2Zh4pdr4qO5VaBNpWhKmxTuiRJ16j45+hFUh01gdBVGaqjJqieup6nJsfnNE5x/nX79BLZJqieuqqjJhC6KkN11AQvwj7JsvzCDiAI2FXs8URgYint6gE3AfdyxpoCfFyBOc9UoM3iCup/arsKtnmqpuc5n9D1auiqhPZq95mvCl2VOarCNlX2c/Qij+qoSeh6+TVVV13VUdNj+qrEPlXX61IddVVHTULXy6/pRel60WGipwE3SZKcJUnSAvoBm4s3kCTJAdgIvCHLckSx8/qSJBkW/Q60A5624ldRtjzHdhUd60XPJ3RVbr7qqOtFa6pou+qqqzJUV9skEAgEwj4JBIJ/jRcaJirLcp4kSe8DuwB14BdZlsMkSXqv8PmfgEmAKfCjJEkAeXJB9itL4M/CcxrAKlmWdz4nXRX6YlmRdhUd60XPJ3RVbr7qqOtFa6pou+qqq5LzVkvbJBAIBMI+CQSCf5MXvWcQWZa3A9sfO/dTsd+HAcNK6RcJ+Dx+vgI8nl65OlAdNYHQVVmErspRXXUBVWKbiqiO16U6agKhqzJUR01QPXVVR00lqCL7VF2vS3XUVR01gdBVGaqjJngBuqTCeFSBQCAQCAQCgUAgEPyHeNF7BgUCgUAgEAgEAoFAUA14ZZ1BSZI6SJJ0TZKkG5IkTahCHfaSJB2QJOmqJElhkiSNLjxvIknSHkmSrhf+NK4CbeqSJJ2TJGlrddFUqKOmJEkbJEkKL7xuQVWtTZKkjwrfv8uSJK2WJEmnqjRJkvSLJEn3i5dMKU+LJEkTC/8OrkmS1P4FappV+B5elCTpT0mSar5ITdUdYaMqpK3a2Shhn8rVUe1sUzm6hH0qh+pgn6qzbSrUUa3sU3W0TYW6hH2qnKYXbpteSWdQkiR14AegI+AJ9JckybOK5OQBY2VZrgM0AkYWapkA7JNl2Q3YV/j4RTMauFrscXXQBPAdsFOW5doU7HW4WpXaJEmyBUYBDWRZ9qJgA3+/KtS0HOjw2LlStRR+1voBdQv7/Fj49/EiNO0BvGRZrgdEUJAO/UVqqrYIG1VhqqONEvapbJZT/WxTWbqEfSqDamSfqrNtgupnn6qVbQJhn55R04u3TS+qTsaLPKhgTZ4q0rYJaAtcA6wLz1kD116wDjsKPvjBwNbCc1WqqXBeI+AWhftZi52vMm2ALRANmFCQdGkrBem5q1KTE3D5adfn8c8+Bdnogl6Epsee6wmsfNGaqushbFSFdFQ7GyXsU4X0VDvbVJqux54T9qnk9aiW9qm62KbCeauVfaqOtqlwTmGfKqnpsedeiG16JVcG+f8PXxExheeqFEmSnABf4CRgKcvyPYDCnxYvWM48YBygKnauqjUB1AISgGWF4RdLpILaSFWmTZblu8D/gCjgHpAqy/LuqtRUCmVpqS5/C28BOwp/ry6aqpJqeQ2EjXoqwj5Vnupum0DYp8epdtegmtkmqH72qdrZpsI5hX36Z7wQ2/SqOoNSKeeqNG2qJEkGwB/Ah7IsP6xiLV2A+7Ish1aljjLQAPyAhbIs+wKPqLoQEAAKY8i7A86ADaAvSdKgqtRUCar8b0GSpM8oCPdZWXSqlGb/tbTG1e4aCBtVIYR9en5Ui78BYZ9KpVpdg+pkmwr1VEf7VO1sEwj79I8EvEDb9Ko6gzGAfbHHdkBsFWlBkiRNCgzZSlmWNxaejpckybrweWvg/guU1AToJknSbWANECxJ0u9VrKmIGCBGluWThY83UGDgqlJbG+CWLMsJsiznAhuBxlWs6XHK0lKlfwuSJA0BugAD5cK4hqrWVE2oVtdA2KgKI+xT5amWtqlQj7BPpVNtrkE1tE1QPe1TdbRNIOzTM/GibdOr6gyeBtwkSXKWJEmLgg2Xm6tCiCRJErAUuCrL8pxiT20GhhT+PoSCWPgXgizLE2VZtpNl2YmCa7NfluVBVampmLY4IFqSJI/CU62BK1WsLQpoJEmSXuH72ZqCjdlVfr2KUZaWzUA/SZK0JUlyBtyAUy9CkCRJHYDxQDdZljMe01olmqoRwkaVQ3W1UcI+PRPVzjaBsE9PoVrYp+pom6B62qdqaptA2KdKUyW26XlsPKyOB9CJgiw8N4HPqlBHUwqWcS8C5wuPToApBZuPrxf+NKkifS35/83P1UVTfeBM4TX7CzCuam3Al0A4cBn4DdCuKk3Aagpi73MpuFMUUp4W4LPCv4NrQMcXqOkGBfHtRZ/7n16kpup+CBtVYX3VykYJ+1Sujmpnm8rRJexT+desyu1TdbdNhRqrjX2qjrapUJewT5XT9MJtk1Q4uEAgEAgEAoFAIBAI/kO8qmGiAoFAIBAIBAKBQCAoB+EMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCiqNJEntJEnaIUlSkiRJWZIkRUiSNFOSJONS2lpJkrRZkqRkSZJkSZI+LDzfVZKkS4X9ZUmSaj5HfW9KkvRWJfv0liQpXpIkveekoackSXGSJBk8j/EEAsHTEbapQuMJ2yQQVAHCPlVoPGGfqgBRZ1BQKSRJ+hSYRkFB0xVAMuAPjAfSgFayLEcXa/8jMBB4k4LCmreBxMJ+x4DpQA5wWpbl/Oek8SCgIcty0wq21wDCgJ9lWf7fc9IgAeeATbIsT34eYwoEgrIRtqnCGoRtEgheMMI+VViDsE9VgHAGBRVGkqRWwD7gO1mWP3rsOWcgFLggy3KrYucPAOqyLDcvds6RAsMWIsvyL/+CzoNUzqD1BlYB1rIsJz9HHSOArwFbWZaznte4AoGgJMI2VVqHsE0CwQtC2KdK6xD26UUjy7I4xFGhA9hBwZ0pnTKeHwfIQCDgVPj748fyUs4dLOzfHjgKpALpwDVg0mNz+ACbgRQgs7B9s2LPHyxr/Ke8rk2lnJeBqcBY4A7wCNgGWBQe6wq1RgPjS+lvBuQDA6r6vROHOF7lQ9gmYZvEIY7qegj7JOxTdT/EnkFBhSgMB2gB7JHLvlOzufBnMAVhDUHARQqW/IMKj8nAa4XtphaeGyFJUq3C/reB14FuwBxAv5gGPwrCI0yAt4HeQBKwV5Ik/8JmIwrnu1hszhHlvC5toCVwuIwmbxS+nhHAB0AzCkI8/iycozewHZghSVKn4h1lWU4ErgIdyppfIBD8M4RtErZJIKiuCPsk7NPLgEZVCxC8NJgCuhQYnLIoes5eluVs4IQkSWlAnizLJ4oaSZKkWfjrzaLzkiT1AbSA4bIsPyx8fv9j488CooBgWZZzCvvtAi4DXwA9ZFm+IknSQwpCHU7wdOoDOsCFMp7PBrrLspxXOJ8X8BHwhSzLUwvPHQR6UmCotz/W/xzQqAI6BALBsyFsE8I2CQTVFGGfEPapuiNWBgUVRfqXxz8P5AJrJEnqI0mSRYnJJUmXgrtr6wGVJEkahXfcJGAv0Jxnw6bwZ0IZz+8pMmaFhBf+3FV0ovD5G4B9Kf0Tis0hEAieP8I2FSBsk0BQ/RD2qQBhn6oxwhkUVJRECuLMncppU/RcdDltSkWW5RsUxL2rAb8BcZIknZQkqUVhExNAnYK7WLmPHe8DxpIkPcvnWafwZ3YZz6c89jinnPM6PElmGecFAsHzQdimAoRtEgiqH8I+FSDsUzVGhIkKKoQsy3mSJB0C2kqSpFNG7Hu3wp+PhyhUdI4DwIHCWPQmwFfANkmSnIAHgAr4gYK489L6q55h2qTCn0/U+XlOmBSbQyAQPGeEbXpmhG0SCP5lhH16ZoR9eoEIZ1BQGWZREFYwHRhT/InC9MjjgUOyLJ/8J5MUxszvLyw6uglwlmX5tCRJhynIiHX2KcYrGzCs4HRFoQu1KNhg/bxxpiCzl0Ag+PcQtqnyCNskELwYhH2qPMI+vUCEMyioMLIs75MkaRLwVeEdpxUULPn7ARMoSBX8xrOMLUnSexTErm+nIFTCDJgIxFKwyRkKjOghYJckSUspyLplVji/uizLEwrbXaEgy9brwE0gTZblUo2KLMtRkiTdARoCvz+L9nJekwQEAAuf57gCgaAkwjZV+jUJ2yQQvCCEfar0axL26QUj9gwKKoUsy18DHSlIW7wM2E1B6uAVQANZlqOecegLhWN+Uzjm98AtCrJfZRbOfZYCA5EEzC9s9x3gTYGhK2ImBQVelwCngUVPmXst0OUZdZdHYwpCHdb8C2MLBIJiCNtUKYRtEgheIMI+VQphn14wklxQ4FEg+M8iSZILBeEILWVZPvIcx10IeMmy3Ox5jSkQCP47CNskEAiqK8I+vToIZ1AgACRJ+hmwlmX5udzlkiTJCogEOsiyfOhp7QUCgaA0hG0SCATVFWGfXg1EmKhAUMAXwGlJkvSe03hOwFhhzAQCwT9E2CaBQFBdEfbpFUCsDAoEAoFAIBAIBALBfxCxMigQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0H+D9MQM2bHlKIHAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1080x432 with 3 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots(1, 3, figsize=(15,6))\n",
+    "ax[0].set_title('Expected Arrival Times')\n",
+    "ax[1].set_title('Clean Data')\n",
+    "ax[2].set_title('Noisy Data')\n",
+    "ax[0]=viewTXdiagram(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[0])\n",
+    "ax[1]=plotWiggleTX(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[1])\n",
+    "ax[2]=plotWiggleTX(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[2], noise=True)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Setup for the seismic refraction survey"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Consider a shot gather for seismic refraction survey, which means we have one shot (source), and multiple receivers (12). Shot location is fixed at x=0. There are two survey parameters: \n",
+    "\n",
+    "- x0: offset between shot and the first geophone\n",
+    "- dx: spacing between two consecutive geophones\n",
+    "\n",
+    "In the widget below you can alter x0 or dx to change your survey setup. Run the next cell then try to change x0 and dx in the cell below that. Note that the next two cells are designed to help you visualize the survey layout. The x0 and dx parameter adjustment sliders here are not linked to the widget at the end of this notebook."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "cbb07e5d8f7940838bad1d30f63a799d",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=0, description='x0', max=10), IntSlider(value=8, description='dx', max=1…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "makeinteractSeisRefracSurvey()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Interpretation of seismic refraction data"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Assume that you have seismic refraction data. The structure of the earth is unknown and you may want to obtain useful information about the subsurface. We will assume that the subsurface in the survey area has a three-layer structure and that the velocities increase with depth. \n",
+    "Thus, there can be four unknowns:\n",
+    "\n",
+    "- v1: velocity of the first layer (m/s)\n",
+    "- v2: velocity of the second layer (m/s)\n",
+    "- v3: velocity of the third layer (m/s)\n",
+    "- z1: depth of the first layer (m)\n",
+    "- z2: depth of the second layer (m)\n",
+    "\n",
+    "Based on the above information, we may expect to have up to four arrivals at a geophone, related to \n",
+    "\n",
+    "- Direct\n",
+    "- Reflected: interface 1\n",
+    "- Refraction: interface 1\n",
+    "- Refraction: interface 2"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The widget below will allow you to estimate the layer depths and velocities. The parameters for the widget are:\n",
+    "\n",
+    "- x0: offset between shot and the first geophone\n",
+    "- dx: spacing between two consecutive geophones\n",
+    "- Fit: checking this activates fittting function (if you click this red line will show up)\n",
+    "- tI: intercept time for a line function (s)\n",
+    "- v: inverse slope of the line function (m/s; which can be velocity of either direct and critically refracted wave)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Run below widget and find useful subsurface information!"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "scrolled": false
+   },
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "f0c9443284824c85855acdb4fd904cde",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(IntSlider(value=4, description='x0', max=10, min=1), IntSlider(value=4, description='dx'…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "makeinteractTXwigglediagram()"
+   ]
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  },
+  "latex_envs": {
+   "bibliofile": "biblio.bib",
+   "cite_by": "apalike",
+   "current_citInitial": 1,
+   "eqLabelWithNumbers": true,
+   "eqNumInitial": 0
+  },
+  "widgets": {
+   "state": {
+    "58141af61d2a4d6393c0f5e35a09cccf": {
+     "views": [
+      {
+       "cell_index": 10
+      }
+     ]
+    },
+    "75727a01f50445469ade2c7092094a5b": {
+     "views": [
+      {
+       "cell_index": 15
+      }
+     ]
+    }
+   },
+   "version": "1.2.0"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/seismic/Seis_VerticalResolution.ipynb b/Notebooks/seismic/Seis_VerticalResolution.ipynb
similarity index 79%
rename from seismic/Seis_VerticalResolution.ipynb
rename to Notebooks/seismic/Seis_VerticalResolution.ipynb
index ea4e65c48510723c8bdd4922220ebf125087ca0e..ae75a6b91f85b5d8b955ba629b8d1f2917719ff5 100644
--- a/seismic/Seis_VerticalResolution.ipynb
+++ b/Notebooks/seismic/Seis_VerticalResolution.ipynb
@@ -9,7 +9,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 1,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -27,7 +27,7 @@
     "Adjust the layer thickness for the middle layer (by adjusting d2 and/or d3) and the frequency of the input pulse to investigate vertical resolution. You can also add noise to the trace. \n",
     "\n",
     "The geologic model is:\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/seismic/geoModel.png?raw=true\" style=\"width: 50%; height: 50%\"></img>\n"
+    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/seismic/geoModel.png?raw=true\" style=\"width: 50%; height: 50%\"></img>\n"
    ]
   },
   {
@@ -52,9 +52,24 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 2,
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "application/vnd.jupyter.widget-view+json": {
+       "model_id": "a28d8c0796884516afa0eedb9d041a7e",
+       "version_major": 2,
+       "version_minor": 0
+      },
+      "text/plain": [
+       "interactive(children=(FloatSlider(value=9.0, description='d2', min=1.0), FloatSlider(value=9.5, description='d…"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
    "source": [
     "InteractSeismogramTBL();"
    ]
@@ -84,7 +99,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.7.6"
+   "version": "3.7.10"
   }
  },
  "nbformat": 4,
diff --git a/seismic/SeismicApplet.ipynb b/Notebooks/seismic/SeismicApplet.ipynb
similarity index 96%
rename from seismic/SeismicApplet.ipynb
rename to Notebooks/seismic/SeismicApplet.ipynb
index d973a6cec20ca93b2c046c59d432588d6a60dd3f..8676a31feac5d0cc18a344eaa9866da4649a44c1 100644
--- a/seismic/SeismicApplet.ipynb
+++ b/Notebooks/seismic/SeismicApplet.ipynb
@@ -35,7 +35,7 @@
     {
      "data": {
       "application/vnd.jupyter.widget-view+json": {
-       "model_id": "d83e8275a0ab4e38bc2d00f300f1929e",
+       "model_id": "413a452191f141fb8e08f7b9d5ced268",
        "version_major": 2,
        "version_minor": 0
       },
diff --git a/Notebooks/seismic/fourier_transform.ipynb b/Notebooks/seismic/fourier_transform.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..aa51756d1041190978e8c3843eb574433b8736ba
--- /dev/null
+++ b/Notebooks/seismic/fourier_transform.ipynb
@@ -0,0 +1,518 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<div style='background-image: url(\"../share/images/header.svg\") ; padding: 0px ; background-size: cover ; border-radius: 5px ; height: 250px'>\n",
+    "    <div style=\"float: right ; margin: 50px ; padding: 20px ; background: rgba(255 , 255 , 255 , 0.7) ; width: 50% ; height: 150px\">\n",
+    "        <div style=\"position: relative ; top: 50% ; transform: translatey(-50%)\">\n",
+    "            <div style=\"font-size: xx-large ; font-weight: 900 ; color: rgba(0 , 0 , 0 , 0.8) ; line-height: 100%\">Signal Processing</div>\n",
+    "            <div style=\"font-size: large ; padding-top: 20px ; color: rgba(0 , 0 , 0 , 0.5)\">Fourier Transformation - Solution</div>\n",
+    "        </div>\n",
+    "    </div>\n",
+    "</div>"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Seismo-Live: http://seismo-live.org\n",
+    "\n",
+    "##### Authors:\n",
+    "* Stefanie Donner ([@stefdonner](https://github.com/stefdonner))\n",
+    "* Celine Hadziioannou ([@hadzii](https://github.com/hadzii))\n",
+    "* Ceri Nunn ([@cerinunn](https://github.com/cerinunn))\n",
+    "\n",
+    "<br>\n",
+    "Some code used in this tutorial is taken from [stackoverflow.com](http://stackoverflow.com/questions/4258106/how-to-calculate-a-fourier-series-in-numpy/27720302#27720302). We thank [Giulio Ghirardo](https://www.researchgate.net/profile/Giulio_Ghirardo) for his kind permission to use his code here.\n",
+    "\n",
+    "\n",
+    "---"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<h1>Tutorial on Fourier transformation in 1D </h1>\n",
+    "<br>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {
+    "code_folding": [
+     0
+    ]
+   },
+   "outputs": [],
+   "source": [
+    "# Cell 0 - Preparation: load packages, set some basic options  \n",
+    "\n",
+    "%matplotlib inline\n",
+    "from scipy import signal\n",
+    "from obspy.signal.invsim import cosine_taper \n",
+    "from matplotlib import rcParams\n",
+    "import numpy as np\n",
+    "import matplotlib.pylab as plt\n",
+    "plt.style.use('ggplot')\n",
+    "plt.rcParams['figure.figsize'] = 15, 3\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## The Fourier transformation\n",
+    "\n",
+    "In the world of seismology, we use the *Fourier transformation* to transform a signal from the time domain into the frequency domain. That means, we split up the signal and separate the content of each frequency from each other. Doing so, we can analyse our signal according to energy content per frequency. We can extract information on how much amplitude each frequency contributes to the final signal. In other words: we get a receipt of the ingredients we need to blend our measured signal. \n",
+    "\n",
+    "The *Fourier transformation* is based on the *Fourier series*. With the *Fourier series* we can approximate an (unknown) function $f(x)$ by another function $g_n(x)$ which consists of a sum over $N$ basis functions weighted by some coefficients. The basis functions need to be orthogonal. $sin$ and $cos$ functions seem to be a pretty good choice because any signal can be filtered into several sinusoidal paths. In the period range of $[-T/2 ; T/2]$ the *Fourier series* is defined as:\n",
+    "\n",
+    "$$\n",
+    "f(t) \\approx g_n(t) = \\frac{1}{2} a_0 + \\sum_{k=1}^N \\left[ a_k \\cos \\left(\\frac{2\\pi k t}{T} \\right) + b_k \\sin\\left(\\frac{2\\pi k t}{T}\\right)\\right]\n",
+    "$$\n",
+    "\n",
+    "$$ \n",
+    "a_k = \\frac{2}{T} \\int_{-T/2}^{T/2} f(t) \\cos\\left(\\frac{2\\pi k t}{T}\\right)dt\n",
+    "$$\n",
+    "\n",
+    "$$\n",
+    "b_k = \\frac{2}{T} \\int_{-T/2}^{T/2} f(t) \\sin\\left(\\frac{2\\pi k t}{T}\\right)dt\n",
+    "$$\n",
+    "\n",
+    "At this stage, we consider continuous, periodic and infinite functions. The more basis functions are used to approximate the unknown function, the better is the approximation, i.e. the more similar the unknown function is to its approximation. \n",
+    "\n",
+    "For a non-periodic function the interval of periodicity tends to infinity. That means, the steps between neighbouring frequencies become smaller and smaller and thus the infinite sum of the *Fourier series* turns into an integral and we end up with the integral form of the *Fourier transformation*:\n",
+    "\n",
+    "$$\n",
+    "F(\\omega) = \\frac{1}{2\\pi} \\int_{-\\infty}^{\\infty} f(t) e^{-i\\omega t} dt \\leftrightarrow f(t) =  \\int_{-\\infty}^{\\infty} F(\\omega)e^{i\\omega t}dt\n",
+    "$$\n",
+    "\n",
+    "Attention: sign and factor conventions can be different in the literature!\n",
+    "\n",
+    "In seismology, we do not have continuous but discrete time signals. Therefore, we work with the discrete form of the *Fourier transformation*:\n",
+    "\n",
+    "$$\n",
+    "F_k = \\frac{1}{N} \\sum_{j=0}^{N-1} f_j e^{-2\\pi i k j /N} \\leftrightarrow f_k = \\sum_{j=0}^{N-1} F_j e^{2\\pi i k j /N}\n",
+    "$$\n",
+    "\n",
+    "Some intuitive gif animations on what the *Fourier transform* is doing, can be found [here](https://en.wikipedia.org/wiki/File:Fourier_series_and_transform.gif), [here](https://en.wikipedia.org/wiki/File:Fourier_series_square_wave_circles_animation.gif), and [here](https://en.wikipedia.org/wiki/File:Fourier_series_sawtooth_wave_circles_animation.gif).\n",
+    "Further and more detailed explanations on *Fourier series* and *Fourier transformations* can be found [here](https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/) and [here](www.fourier-series.com).\n",
+    "\n",
+    "---"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### The Fourier series and its coefficients \n",
+    "\n",
+    "In the following two code cells, we first define a function which calculates the coefficients of the Fourier series for a given function. The function in the next cell does it the other way round: it is creating a function based on given coefficients and weighting factors."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "code_folding": [
+     1
+    ]
+   },
+   "outputs": [],
+   "source": [
+    "# Cell 1: code by Giulio Ghirardo  \n",
+    "def fourier_series_coeff(f, T, N):\n",
+    "    \"\"\"Calculates the first 2*N+1 Fourier series coeff. of a periodic function.\n",
+    "\n",
+    "    Given a periodic, function f(t) with period T, this function returns the\n",
+    "    coefficients a0, {a1,a2,...},{b1,b2,...} such that:\n",
+    "\n",
+    "    f(t) ~= a0/2+ sum_{k=1}^{N} ( a_k*cos(2*pi*k*t/T) + b_k*sin(2*pi*k*t/T) )\n",
+    "    \n",
+    "    Parameters\n",
+    "    ----------\n",
+    "    f : the periodic function, a callable like f(t)\n",
+    "    T : the period of the function f, so that f(0)==f(T)\n",
+    "    N_max : the function will return the first N_max + 1 Fourier coeff.\n",
+    "\n",
+    "    Returns\n",
+    "    -------\n",
+    "    a0 : float\n",
+    "    a,b : numpy float arrays describing respectively the cosine and sine coeff.\n",
+    "    \"\"\"\n",
+    "    # From Nyquist theorem we must use a sampling \n",
+    "    # freq. larger than the maximum frequency you want to catch in the signal. \n",
+    "    f_sample = 2 * N\n",
+    "    \n",
+    "    # We also need to use an integer sampling frequency, or the\n",
+    "    # points will not be equispaced between 0 and 1. We then add +2 to f_sample.\n",
+    "    t, dt = np.linspace(0, T, f_sample + 2, endpoint=False, retstep=True)\n",
+    "    y = np.fft.rfft(f) / t.size\n",
+    "    y *= 2\n",
+    "    return y[0].real, y[1:-1].real[0:N], -y[1:-1].imag[0:N]"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {
+    "code_folding": [
+     1
+    ]
+   },
+   "outputs": [],
+   "source": [
+    "# Cell 2: code by Giulio Ghirardo  \n",
+    "def series_real_coeff(a0, a, b, t, T):\n",
+    "    \"\"\"calculates the Fourier series with period T at times t,\n",
+    "       from the real coeff. a0,a,b\"\"\"\n",
+    "    tmp = np.ones_like(t) * a0 / 2.\n",
+    "    for k, (ak, bk) in enumerate(zip(a, b)):\n",
+    "        tmp += ak * np.cos(2 * np.pi * (k + 1) * t / T) + bk * np.sin(\n",
+    "            2 * np.pi * (k + 1) * t / T)\n",
+    "    return tmp"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "---  \n",
+    "Now, we can create an arbitrary function, which we use to experiment with in the following example.   \n",
+    "1) When you re-run cell 3 several times, do you always see the same function? Why? What does it tell you about the Fourier series?  "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3oAAADeCAYAAABrNnIdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABx+UlEQVR4nO3deZxN9RvA8c+5+519NbY2kUK2sobIUCFJi2xlicoaEaXil5SKyppCtlRKlFKUFAole0RkqWSbfbv7Pb8/zsw1dxZmGGZ73q/XvGbm3nPPec753nvuec53U1RVVRFCCCGEEEIIUWboijsAIYQQQgghhBBFSxI9IYQQQgghhChjJNETQgghhBBCiDJGEj0hhBBCCCGEKGMk0RNCCCGEEEKIMkYSPSGEEEIIIYQoYwzFHcClmD17Njt27CA0NJSpU6eed9mvvvqK77//Hr1eT0hICE8++STR0dFXKFIhhBBCCCGEuHKU0jyP3v79+7FYLMyaNeuCid7vv/9OjRo1MJvNfPvtt+zbt48RI0ZcoUiFEEIIIYQQ4sop1TV6tWrV4syZM36PnTp1ivnz55OSkoLZbObxxx+nSpUq1KlTx7dMjRo12LRp05UOVwghhBBCCCGuiFKd6OXlvffeY8CAAVSqVIlDhw4xb948xo8f77fM+vXrqV+/fvEEKIQQQgghhBCXWZlK9Ox2OwcPHuTNN9/0PeZ2u/2W2bhxI0eOHGHChAlXODohhBBCCCGEuDLKVKLn9XoJDAzkjTfeyPP5PXv2sHLlSiZMmIDRaLzC0QkhhBBCCCHElVGmplcICAigQoUKbNmyBQBVVTl27BgAR48eZe7cuTzzzDOEhoYWY5RCCCGEEEIIcXmV6lE33377bfbv309qaiqhoaE89NBD1KlTh7lz55KUlITb7ea2227jgQceYOLEifz999+EhYUBEBUVxZgxY4p3B4QQQgghhBDiMijViZ4QQgghhBBCiNzKVNNNIYQQQgghhBCS6AkhhBBCCCFEmSOJnhBCCCGEEEKUMaV6eoX//vuvuEPIJSoqiri4uOIOQxQDKfvyS8q+fJJyL7+k7MsvKfvyq6SWfeXKlfN9Tmr0hBBCCCGEEKKMkURPCCGEEEIIIcoYSfSEEEIIIYQQoowp1X30hBBCCCHExVFVFbvdjtfrRVGU4g6nVDh9+jQOh6O4wxDFoDjLXlVVdDodFoulUJ9VSfSK2oEDBL/7LmnDh6MGBRV3NEIIIYQQebLb7RiNRgwGuRwsKIPBgF6vL+4wRDEo7rJ3u93Y7XasVmuBXyNNN4uYftIkgmfPxvzDD8UdihBCCCFEvrxeryR5QpQSBoMBr9dbqNdIolfElMwpHwyHDxdzJEIIIYQQ+ZPmmkKULoX9zEqiV9TS0gDQxccXcyBCCCGEEGVDkyZNSEhIyPX44sWL+fTTTwFYtmwZp06dutKhFYlRo0bx559/Fnj5ZcuWMW7cOMD/GFyKy7HO/EyfPv2SXn/48GHatWtH+/btOXbsGJ07d77ga7If40vdfpbLdZweeOABdu/efcnrkfr6IqYkJgKgS0oq3kCEEEIIIcoAj8eT73OPPPKI7+9PP/2UG2+8kYoVK+a5joL0r3K73Ve8OavH42HKlCkX/frsx6CoFMU6z3fMZ8yYwbBhwy563WvWrOHOO+9k1KhRAKxateqCr8l+jC91+1kux7EvSiUm0UtPT2fOnDn8888/KIrCk08+yQ033FDcYRVeZoIniZ4QQgghxPn169eP//77D4fDQf/+/enVqxcANWrUYODAgWzYsIEXX3wRgHfeeYfNmzcDMHPmTK677jqmTp1KYGAgVatWZffu3QwZMgSLxcKqVato3bo1Dz/8MBs2bKBv376kpaWxdOlSnE4n1113HdOnT8dqtfLUU08RFhbG77//Tu3atVm3bh2rVq0iMjISr9dLy5Yt+fLLL4mIiMhzH5YtW8aaNWtwOp38/fff3HfffYwcORKAzz77jPfffx+n00mDBg149dVX0ev1ufbv9ddf54UXXqBevXp8/vnnzJgxA1VVadu2ra+WbdmyZcyYMYOYmBiqVauGyWQC8B2DJ554gqNHjzJ27Fji4+PR6/W8++67XHvttfke/4Ksc/78+SxZsgSDwUCNGjV45513SE9P5/nnn2fPnj0oisKIESPo2LFjrv36559/cu3/a6+9ht1up127dtSsWZOZM2fme5zy8v333zNv3jz0ej1bt25l+fLl1KhRg0OHDrF582befPNNwsPDOXjwIHXr1mXGjBkoisIDDzzACy+8wOrVqy9q+xMnTmTt2rUYDAZatWrFiy++6Hecdu3axahRo7BarTRu3JgffviB9evXs2zZMr777jtsNhvHjh3j7rvv5vnnnwdg7Nix7N69G7vdTseOHX2Ja1EpMYneggULqF+/Pk8//TRut7t0Dl3r8aAkJwOgy6zZE0IIIYQo6UJefBHj/v1Fuk5XrVqkvPTSeZeZOnUq4eHh2Gw2OnbsSIcOHYiIiCAjI4OaNWsyevRo37JBQUGsXr2aTz/9lPHjx7N48WLfc506dWLhwoW+ZCmL2Wzm888/ByAhIYGePXsC8Nprr/HRRx/Rr18/AI4cOcKyZcvQ6/WEhoayYsUKBgwYwKZNm6hVq1a+SV6WXbt28f3332O1WunYsSNt27YlICCAVatW8fnnn2M0Gnn22WdZsWIFDz74YJ77B3Dq1CkmTZrEmjVrCA0NpXv37qxZs4YGDRowZcoU1qxZQ3BwMA8++CB16tTJFcfQoUMZPHgwd999N3a7HVVV84359OnTBVrnrFmz2LJlC2azmeTM69y3336b4OBgvv/+ewCSMis4su/XoUOHmDVrVq79f+6551iwYAHfffcdAIcOHcr3OOWlbdu29O7d25dg5fT777+zfv16KlasyL333su2bdto3Lix7/mL2X5iYiLffPMNGzZsQFEU33HIbuTIkbz22ms0atSIV155xe+5ffv2sXbtWkwmE61ataJv375UqVKFMWPGEB4ejsfjoVu3buzfv59atWrlW2aFVSISvYyMDP744w8GDx4MaKPKlMZRoJRshS41ekIIIYQQ5/f+++/zzTffAPDff/9x9OhRIiIi0Ov1dOzY0W/ZLl26+H5PmDChQOvP3nfr4MGDvP7666SkpJCens7tt9/ue65Tp06+Gpxu3brRr18/BgwYwMcff8xDDz10we20bNnSlwzefffd/PrrrxgMBvbu3UuHDh0AbTqLqKgogDz3D2D37t00a9aMyMhIALp27crWrVsB/B7v3LkzR44c8XttWloaJ0+e5O677wbAYrGcN+adO3decJ0AN910E0OGDOGuu+7irrvuAmDTpk3Mnj3bt0xYWFiu/frpp5/y3f/sCrpcQdWvX5/KlSsDULt2bf755x+/RO9ith8cHIzZbGbUqFG0bduW2NhYv+eTk5NJS0ujUaNGgPYeXbdune/5Fi1aEBISAsANN9zAiRMnqFKlCl9++SVLly7F4/Fw+vRpDh06VPYSvTNnzhASEsLs2bM5fvw41apVo0+fPrneoOvWrfMdtMmTJ1/Sm+CyyEzu1JAQ9MnJJS8+cVkZDAYp83JKyr58knIvv8pK2Z8+fdp3Yz0jRw1EUTnfhebPP//MTz/9xNdff01AQAD33Xefr4+c2WzGbDb7llUUxVcRkDV5tMFgQKfT+f5WFAW9Xu/bJ0VRCA4O9v0/YsQIFi1aRO3atfn444/ZvHmzbx3Zl7vmmmuoUKECW7ZsYefOncyZM8evGV/Oygi9Xu+3XZ1Oh16vR1EUHnroIV8zvezy2r+s12TtT9a6sn5ybiPnMch6fUErSwqyToPBwIcffsiWLVtYu3Yt06ZNY+PGjQB5zsGYfb/Ot//Zj+OFlssv9uzHKWt9er0es9nse9xoNKKqap7vj8Js32AwsGbNGjZt2sTnn3/OwoULWbFiRb7HPuv9khWTxWLxe05VVU6cOMG7777L2rVrCQsLY9iwYbhcrjxjzX58C3PuKRGJnsfj4ejRo/Tr148aNWqwYMECPv/8cx5++GG/5WJjY/0y6Li4uCsd6nkZjx0jGnBdcw3G338n7vRpkEk1y42oqKgS954UV4aUffkk5V5+lZWydzgcxToBdFJSEiEhIZhMJg4cOMD27dvxeDy43W4A328AVVVZuXIlQ4YMYcWKFTRs2BC3243X68Xr9eJ2uwkICCA5Odn3OlVV/daXlpZGZGQkNpuN5cuXU7FiRd86si8H8PDDDzN48GDuv/9+VFXF7XbzzTffsHv3bsaOHeu3Hx6Phw0bNnD27FksFgvffPMNU6dOxWq10rdvXx577DGioqJITEwkPT2dqlWr5rl/Ho+HevXq8fzzz3PmzBlfE9J+/fr5PR4cHMyqVauoVauW3zGwWq1UrFiRr776irvuuguHw+F7vFWrVr4ELUtB1ul0Ojlx4gRNmzbllltuYcWKFSQnJ9OqVSvmzp3LS5lNc5OSkny1eln71bx583z332g0YrPZMBqN511u2LBh9O3blwYNGvjFnr3cs7jdbjwej6+8spbLKtvs74eCbj9Leno6TqeT1q1bU69ePVq0aOF3nIKCgggMDOSXX37xHafsMWWPNSuOpKQkrFYrAQEBnDx5ku+//54mTZrkijU7h8OR69yTVXuZlxKR6EVGRhIZGUmNGjUAaNq0qa89dWmipKYC4KlcGdPevSgZGajBwcUclRBCCCFEydO6dWuWLFlCbGws1apVo2HDhudd3ul00qlTJ7xeL7Nmzcr1/EMPPcTYsWN9g7HkNHr0aDp16kTVqlW58cYbScucEisv7du3Z+TIkXTr1s332PHjxwnO57quUaNGDBs2jGPHjnHffff5+gk+88wzdO/e3VerNGnSJL8EIqeYmBieffZZHnzwQVRV5Y477uDOO+8E4Omnn6Zz587ExMRw88035zka6fTp0xkzZgxTpkzBYDDw7rvvEhwcnGdfvZiYmAuu0+PxMHToUFJTU1FVlQEDBhAaGsrw4cN57rnnuOOOO9DpdIwcOdLX9DHLDTfckO/+9+zZk9jYWG6++WZmzpyZ73J//PEHFSpUyPd4XayCbj9LWloa/fr1w+FwoKoq48ePz7XOKVOm8Mwzz2C1WmnevHm+75UstWvXpk6dOrRp04arr77a1+yzKCnq+XppXkEvvvgiTzzxBJUrV+aTTz7B4XDQu3fv877mv8zJyUsK87ffEtm3L+k9ehD44Yec2rEDb0xMcYclrpCycodXFJ6Uffkk5V5+lZWyz8jIICAgoLjDKJF2797NhAkTWLlype+xoUOHMnHiRF/NVZZly5axZ88eJk2adIWjLJjvvvuOv//+m/79+xd3KIWSmprK008/zXvvvVfcoQBaM8ycNWzZpaenExgYCGijwp45c8ZX41lU8vrMlvgaPdCG150+fTput5sKFSowaNCg4g6p0BSbDQBvZmdcJSOjOMMRQgghhBCFNHPmTBYvXszMmTP9Hp8xY8YFL/ZLonbt2hV3CBclODi4xCR5BbFu3TpmzpyJx+OhSpUqvP3228UdUsmp0bsYJa1Gz7psGeEjR5I8fjyh//sfZ779Fnft2sUdlrhCysodXlF4Uvblk5R7+VVWyl5q9AqvNCZ6omiUhLIvbI2e7nIHVJ74avQyh6mVGj0hhBBCCCFEcZBErwgpdjtwLtHTZSZ+QgghhBAlTSlu1CVEuVTYz6wkekVI+ugJIYQQorTQ6XTF3hRNCFEwbrcbna5wqVuJGYylLFBsNlSzGW/miDuS6AkhhBCipLJYLNjtdhwOB4qiFHc4pYLZbMbhcBR3GKIYFGfZq6qKTqfDYrEU6nWS6BUhxWaDgADUzE6SkugJIYQQoqRSFAWr1VrcYZQqZWUgHlF4pbHspelmEcqV6KWnF3NEQgghhBBCiPJIEr0ipNjtYLVKjZ4QQgghhBCiWEmiV4QUmw3VagWjEdVo9A3OIoQQQgghhBBXkiR6RSir6SaAarH4plsQQgghhBBClE6W1atRNm4s7jAKTRK9IqTYbJDZqVkSPSGEEEIIIUq/kFdfRTdvXnGHUWgy6mYRSpw7l4iQEABUsxlFht8VQgghhBCidHM6wWQq7igKTWr0ipA3KgoqVwYya/Qk0RNCCCGEEKJUU1wuSfRENmazNN0UQgghhBCilFOkRk9kp5rNIDV6QgghhBBClG6S6InsZDAWIYQQQgghSj/F5QKzubjDKDRJ9C4T6aMnhBBCCCFEKef1Sh894U9q9IQQQgghhCjlXC4gs1tWKSOJ3mUi0ysIIYQQQghRuilOp/aH0Vi8gVwESfQuE6nRE0IIIYQQonRTMmv0pOmmOEemVxBCCCGEEKJ0y2qhJ003L43X6+WZZ55h8uTJxR3KJZPpFYQQQgghhCjdpEaviHz99ddUqVKluMMoEr6mm6pa3KEIIYQQQgghLkZWHz2p0bt48fHx7Nixg7Zt2xZ3KEVCNZtRVNU3Uo8QQgghhBCidMkajEWVGr2Lt3DhQnr16oWiKMUdSpFQLRYA6acnhBBCCCFEKVWam24aijsAgO3btxMaGkq1atXYt29fvsutW7eOdevWATB58mSioqKuVIgFZjAYiIqKQhcZCUBkYCCUwDhF0csqe1H+SNmXT1Lu5ZeUffklZV/+KFYrAHqrtdSVfYlI9A4ePMhvv/3Gzp07cTqd2Gw2pk+fzrBhw/yWi42NJTY21vd/XFzclQ71gqKiooiLi8Pq8RAOJP73Hx69vrjDEldAVtmL8kfKvnySci+/pOzLLyn78sd09ixRgEevL5FlX7ly5XyfKxGJXo8ePejRowcA+/bt48svv8yV5JU6mR02ZdJ0IYQQQgghSidf000ZjEVkyeqjh/TRE0IIIYQQonTKGnVT+uhdutq1a1O7du3iDuOSqVk1epLoCSGEEEIIUSopMr2CyEmVpptCCCGEEEKUar7pFYzGYo6k8CTRu0xkegUhhBBCCCFKuVI8vYIkepeJ1OgJIYQQQghRuknTTZGL1OgJIYQQQghRuimleDCWQiV6brebP/74g82bNwNgt9uxSyKTt6xET2r0hBBCCCGEKJ1K8fQKBR518++//+a1117DaDQSHx9P8+bN2b9/Pxs2bGDEiBGXM8ZSyTe9giR6QgghhBBClEq+ShuTqdRNm1bgGr25c+fSrVs33n77bQwGLT+sVasWBw4cuGzBlWYyvYIQQgghhBClm2/C9LI86ua///5Ly5Yt/R6zWCw4s9qtCj+S6AkhhBBCCFHKOZ2oJhMoSnFHUmgFTvSio6M5cuSI32OHDx+mYsWKRR5UmWA0our1kugJIYQQQghRSilOZ6mcQw8K0UevW7duTJ48mXbt2uF2u1m5ciXfffcdjz/++OWMr1RTzWYZjEUIIYQQQohSSnG5tBq9UqjANXq33HILzz77LCkpKdSqVYuzZ88yatQo6tWrdznjK9VUi0Vq9IQQQgghhCitnM5SObUCFKJGD6BatWpUq1btcsVS9kiNnhBCCCGEEKWWktVHrxQ6b6K3bNmyAq2kW7duRRJMWaNaLDK9ghBCCCGEEKWU4nSWyhE34QKJXnx8vO9vp9PJL7/8QvXq1YmKiiIuLo7Dhw/TpEmTyx5kaSVNN4UQQgghhCjFSnEfvfMmeoMGDfL9/fbbbzN8+HCaNm3qe+yXX35hy5Ytly+6Uk4GYxFCCCGEEKL0Ks1NNws8GMvOnTtp3Lix32ONGjVi586dRR5UWSE1ekIIIYQQQpRepbnpZoETvYoVK7JmzRq/x9auXSvz6J2HajZLoieEEEIIIURpVVabbmb3xBNPMGXKFFatWkVERAQJCQno9XqefvrpyxlfqaZaLChnzhR3GEIIIYQQQoiLoDgceENCUIo7kItQ4ETvuuuuY9q0afz5558kJSURFhbGDTfcgMFQqBkayhVpuimEEEIIIUQp5nKV2qabhcrSDAYDtWrVulyxlDmq1YpisxV3GEIIIYQQQoiLoJSHpptPPvlkvs+98847lxREXFwcs2bNIikpCUVRiI2NpUOHDpe0zhJBavSEEEIIIYQotRSHo+wnekOHDvX7PzExka+//prbbrvtkoPQ6/X07t2batWqYbPZGDt2LHXr1qVq1aqXvO7iJE03hRBCCCGEKMVcLijriV5eTTZr167NpEmTLrn2LTw8nPDwcACsVitVqlQhISGh9Cd6VquW6KkqKOe6cOr/+QfdmTO4brmlGKMTQgghhBBCnI/idKKW0j56BZ5eIS8Gg4EzRTyq5JkzZzh69CjVq1cv0vUWB9Vi0f7IUasX1bEj0Z07o/vvv2KISgghhBBCCFEQ5aKP3rJly/z+dzgc7Ny5kwYNGhRZMHa7nalTp9KnTx8CAgJyPb9u3TrWrVsHwOTJk4mKiiqybRcVg8Hgi0sXGQlAVEAAZP7NmTPo4+O1x3fuxFu3brHEKYpe9rIX5YuUffkk5V5+SdmXX1L25Y/idGINDUUphWVf4EQvPjM5yWI2m+nUqROtWrUqkkDcbjdTp06lZcuWNGnSJM9lYmNjiY2N9f0fFxdXJNsuSlFRUb64ArxewoCEEyfwqioA5u+/JzPlw75jBykdOxZLnKLoZS97Ub5I2ZdPUu7ll5R9+SVlX/5UcjrJcLsxu90lsuwrV66c73MFTvR69OhBWFhYrsez5tS7FKqqMmfOHKpUqUKnTp0uaV0lSVbTzewDsuj//RcAT1QU+iNHiiUuIYQQQgghxAV4vShuN6rZXNyRXJQC99EbPnx4no+PGDHikoM4ePAgGzdu5Pfff2f06NGMHj2aHTt2XPJ6i5sv0cs2l54+Lg5Vp8N5660Y/vqruEITQgghhBBCnI/Tqf0upYOxFLhGT81sephdRkYGOt0ljecCwI033sgnn3xyyespaVSrFfCv0dPFxeGNiMBzzTVYfvwx14icQgghhBBCiOKnuFwAZXcwlqyJ0p1OZ65J09PS0opkHr2yKq+mm7r4eLyRkXgqVkSx21GSk1EvsemrEEIIIYQQomgpmTV6ZTbRGzp0KKqq8uqrr+aaND0sLOy8HQDLO1+NXramm75ELyYGAP2pU7gl0RNCCCGEEKJkKetNN7MmSp8/fz7mUtoRsbjkORhLXByuOnXwVqqk/X/6NO4bbyyW+IQQQgghhBB5K9NNN1esWEHXrl0B+Pzzz/Ndrlu3bkUaVFmRX9NNT1SUr0ZPd+pUscQmhBBCCCGEyF9W003KYqKXfe68nPPoiQvL1XTT6USXnKwNxlKhAqA13RRCCCGEEEKUMGW5j96AAQN8fw8aNOiyB1PW5KzR02Umy96oKLBa8YaFoT99utjiE0IIIYQQQuTNNxhLWeyjd7qASUhMZjNE4S/nPHp+iR7gqVhRmm4KIYQQQghRAmX10SuTTTeHDRtWoJUsW7asSIIpc8xmVEXx1ejpcyZ6MTHoz5wptvCEEEIIIYQQ+SjLTTclgbtEioJqsZyr0YuLA8ATEQGAt0IFjH/+WWzhCSGEEEIIIfJW2ptu6gr7goSEBA4fPkxCQsLliKfMUQMCciV62Wv0dGfPgtdbuJUWdnkhhBBCCCFE4WQ13SylU8xdcB69LHFxcUyfPp0///yToKAg0tLSqFGjBsOGDSM6OvpyxliqqUFBKOnpgNZHTzUaUUNCAK2PnuJ2o0tI8CV/+uPHCX3xRdJ79sTRvn2u9ZnXrSOiXz/SBwwg5YUXrtyOCCGEEEIIUY4oDgdQDmr0Zs2aRbVq1Vi4cCHz5s1j4cKFXH/99cyaNetyxlfqqYGBKGlpgDZZujcyEhQF0JpuAuiyDXoTOH8+lnXrCHvuuTxr7kJeew3F4yFw3jx0UqsqhBCijFIyMjAcPFjcYQghyjHfhOllPdE7cuQIvXr1wpI5kqTFYqFXr14cOXLksgVXFniDgtBlJnq6+Hgt0cuUNWl69ikWTL/9pj128iTGHTv81qU7cQLj/v1kPPggituN5ZtvLnf4QgghxBWnpKcTddddVLjjDgIWLrxyG/Z4CBs+nAq33Yb+2LGLXo3u5Emsn30GmYOxCSFKqawJ00tp080CJ3o1atTg8OHDfo/99ddf3HDDDUUeVFmSs+mmJ7OJJoA3R6Kn2GwY9+0jvXt34FzSl8X8888ApA0ciKdCBUxbt172+IUQQogrLWDZMox//YWnQgVCXnkFJTX1imzX8s03BCxfjuHYMYLfeuviVqKqRPTvT/iwYYS8+mrRBljCGbdtw7h9e3GHIUSRKe2DsRS4j15MTAyvvvoqDRs2JDIykvj4eHbu3EmLFi38Rufs1q3bZQm0tFIDAlCOHwe0wVjc113ne86To+mmcfduFLcb+513Yv75Z0zbt5OebV3GvXvxBgTgvvFGnE2aYN6yBVTV1xT0krndoNcX3fpKClVFf+IE3vBw1MDA4o5GCCHEBVi/+AJX7dokvf460R07EvDpp6T363fZtxvw8ce4q1bF0bIl1lWr4I03Cj1/lunXXzHt3q2t78MPSX3mmXLx3WP69Vciu3ZFUVXOfvEFrltvLe6QhLhkvqabpXR6hQLX6LlcLpo0aYLRaCQlJQWj0Ujjxo1xOp3Ex8f7foQ/b1AQuqwavbg436ArAJjNeMLDfTV6WTV4rltuwVWvHsbff/dbl3HfPty1aoFOh6NpU/QnT6L/++8iidP0009UqlGDsPPMnag7exbLF1/4RhEtFVwuwgcOJKZJE2IaNsSydu0FX2L+8UcqtGxJRK9eKImJVyBIIS4P8/r1hD77LPoTJ/JfyOkkYOHCXE3Fi4yqYty5E+Pu3dqNqZy8Xixffolp06bLs31R6ihJSRh37MDerh2u+vVx1q9PwNKleb9/ipLdjnnLFux33okjNhZdejqmi6idMq9fj6rXkzBvHrqMDEybN1+GYEueoBkzUIOD8QYEEDxjRnGHI8oijwf90aOX/1yQXVbTzVKa6BW4Rm/QoEGXM44yK2swFiUjA53N5tdHD8BbsSK6U6cAMG7fjrtaNbwREbhq1cL65ZcoycmooaHg9WLctw/b/fcD4GzcGADTtm3YrrnmwoHYbISPGIGq05E0bRrkqIIOmTQJxekkYMUK0oYNw12jhv/r3W4ievXC9Pvv2O66i8R580pFzV/w669j/fprUgcNwrx5M+FPPkncypW46tXLc3nd6dOEP/443tBQzJs2EfrCCyTNnFn0gakq1s8/B49HK9NScCwLTFXB4YDM/ryieBgOHCCiTx8UjwfDn38Sv3x5nu+z4DffJHjGDLwBAZzZvBlvUY6i7PEQNmoUAZ98AkD6o4+SPGmSXxwhL75I0IIFACTMno393nuLbvuiVDLt2YPi9eJo2hSAjG7dCHv2WYx79+KqW/fybffXX1HsdhytWuG85RbtsR07cDZrVrj1/PILrvr1sd9xB16LBfPGjTjatbscIZcYSlIS5g0bSHvySRSXi8AFC1BSU1GDg4s7NFGGhLz0EkHz5pEyejRpTz11RbZZ2ptuFmoePYfDwfHjxzl48KDfj8hfVh8932Tp2Wv0APfVV2M4fhxUFdNvv+HMbOrgql0bAOMffwCg/+cfdGlpvsfdNWviDQ7GtG1bgeIImjMH65dfEvDFF9qd0Wx0p09j2rOHtAEDUHU6LF9+mev15h9+wPT771oCumYNxhz9By2rVxM2ciSGEjQBvPnbbwmePZv03r1JHTeO+CVL8IaHE/bUU/l2kM9KeOM//pi0J5/E+vnn6HP0TS0KltWrCR8yhPDhw3OVR0kVNGsWMQ0aYM28aM+LYrMR1aULlW64gcA5c65gdCWQ10vQrFkEv/bauTuCV1DQnDmoViupI0di3roV4549uRfyeAhcsgRXrVoodjuBixYVaQzBU6YQ8MknpA4eTFr//gQuWkTg++/7njdt3EjQggWk9+iBq3ZtQiZPlnlCBca9ewFw1akDgO3ee1HNZgKydRO5HCwbN6IajTibNUMND8d91VV5f27Ox+vFuH8/zrp1wWzG2bw55g0bci1m3LXrwjV9qoqSnFy47RcT06+/ong8OFq3xn7XXShOJ+b164s7LFGGKElJvu+ooLlzr9hAR1mJXs4KktKiwInehg0bGDhwIC+99BJvv/2234/InxoUhKKq6P/5ByBXjZ7n2msxHD+O/sgR9AkJvruIvkRv/37td2YzzqzH0etx3nprwRI9VSVw6VLsrVtrTWA+/tjvafPGjQBkPPAArlq1MOcxyIv1q6/whoUR9+mneIODCcy8Aw9g2rqViIEDCVi2jMju3Yv8i0n333++Ws/8KDYbAR98gHXZMpTkZAx//EH4sGE469QhecIEANSICJLeeAPjn38S/OabudZh+vVXAj77jLTHH8dTrZrWH0SnI+DTT4t0fwCCp0/HdcMNOG+9VYulGBKBwjAcOEDw5Mnoz5wh9IUX8p3aI3DuXEy//Yb7hhsInTix7HbKV1Wsy5YR+swzGHftynORgKVLCXnlFYKnTydw/vwrGp6Sno5l9Wps99xD2mOPoZpMWg1yDsbdu9ElJZE6ZAjOJk2wfP11kcVgWbWK4OnTSe/endRnnyVlwgRs7dsTMnGi1h85KYmwUaNwXX89yS+9RNrjj2P4++/L14S0BNLFxWFZvVpGZszB+PvvuK+6CjU8HAA1NBTbXXdp7+HMOa0uB/OGDThvvdXXn851882+pLOg9EePoktPx535Xe247TaMf/3l9x1m3L2bqM6diXrwQcw//JD3ilSVsMGDqVSrFsGFHdDF7b6yTdsA8y+/oJpMOBs0wHnLLXgiIrCsW3dFYxDFSxcXR1SHDoT36wceT5Gv37x1K4rLRepTT6FLSsKS32enqLlcWv+8UtryqsCJ3gcffMDTTz/N/Pnzeeedd/x+RP68oaEAGDJrhbw5a/Suuw7Fbsf61VcAvho9b0wMnogIDPv2AdoXn6rX46pZ0/da5623Yjx4ECUp6bwxGPbtQ3/yJLbOnbHdcw+mvXv9+vaZN27EExWFu1YtnE2aaBfnORIP05YtOFq2RA0LI+Phh7GuXo3uxAlwuQh99lncVasSt3w5+lOn/O7YF5R5wwZtuogcX07m9euJue02Ym67Lf+k1u0mondvwsaMIXzkSCrWq0f0nXeiWq0kvv++XxNCxx13kN6zJ0GzZ2PKTHABbT+eew5PpUqkZfZT9FaogOP22wlYvrxIaxn0hw9j3LePjF69SB08GP3p075ku6QK+OgjMBiI+/RTdGlpWFatyr2Qx0PA0qU4WrQg7osv8MTEEDp+fJmsoQmcM4fwkSMJ+PBDIh94AA4c8F/A4yFo5kwcjRphb9WKoHnzruhxsKxejS4jA9tDD6GGhmqDN+XxHjNv2ICqKDhbtsQeG4vx4EF0Z85c2sZVFcvXXxM+YgSORo3ONdXU6Uh680080dFE9OlD5MMPoz99mqTp08Fqxd6+ParZrA2AcZF0CQmYv/++0ImTkpxMyPjxVGjUiIjevdGdPJn/wk4n+n//vegYs28z+s47iRg4kMhevS7LhVGheL2EPvccFRo1Ou+NCeP27QR8+KFvNOnLwbh3r682L4utWzd0SUlYC3IzQlUJfu01otu0IWDx4gJtU3f2LMb9+3HcfrvvMVfduhiOH7/gd6xf7Jnf2VnxO5s3B9AGT8sU/OabqEFBeCIiCJo2Lc/1mH/4gYAvvsB99dUEz5yJKdvrzydw3jwqXX89kfffn+9IpcZt27QbDEWYDJq2bsXZoIH2favX47j9dq0mM/t5z+Ui+PXXCXn++ZJ1c8PtJvyJJ4hu3RrDoUPFHc05TmfByugKJ/X5CXz3XUy7d2Ndu/ay1OaatmzBa7GQNmQI3rCwQk8xZtq06aJuPitOZ6kdiAUKkegZDAZq1ap12QLZtWsXw4cPZ+jQoXyex53n0iqrBs+Y2aQxZ42e+8YbAQh69128oaG4s6arUBTctWufq9Hbu1d7zmr1vdbXTy9HM8qcsu56ONq0wd6hg/bYmjWZAXoxb9iAo1Ur0OlwNm2Kzm73a66iO3ECw4kTvu2lP/aYFvM77xA0Zw7GP/8keeJEnM2aYW/XjqB581AyMs69/swZrB9/jO6///KML+CDD4js0YOIxx7zu3Op2GyEjhmDp0oVvOHhhLzwQp4nNOtnn2HesoWkyZM5u3o1aQMGkPbEE5z9+ms8VarkWj5lwgTc1asTPnSor1lm8JQpGP/4g+SXX0YNCPAta7v/fvSnTmH69dfzHuPCMP/0EwD22FgcrVvjDQvD+sUXRbb+Ij/pezxYv/wS+x134GzeHFfNmr4bE9mZtm3D8O+/pPfogRoYSMpzz2HaufO8TT193G6CZswgOjaW6HbtCBk/vsBNZhWbjaBZs/wT95xUFf1ffxXJxanhzz8JefVVbJ06cXrbNjCZMIwY4XfczRs2aMeiXz/feyi/mr/LIeDTT3Ffey3ORo0AcLRsifHAgVxJnHnDBlx16+KNiMDZpAmg9S+6GLr4eILefJPotm2JGDAAV82aJM6f7zf3kBoeTsKSJXijotCfPk3i9Om46tfXngsOxnHbbXk2cyvo9qPbtyfykUeI7NFDq9U4H1XFuGsXIS+8QEzz5gTOn4+7dm1Mv/xC5COPQOZIa37bOHuWCm3aENOkCUEXO/R+pqB589CdPk16z56Yt2zx9WMsLgFLlmjNooxGQl98Mc/EwrRxI1FduhA2ejQR/ftf/LnG4cg3CVFSUzEcPZor0XO0aIGrZk2C33jjgkmCdflygqdPR5ecTNizz57/3JApq2bN0bq177GcXSgKwrhvH6rBgCvzu9xVuzbe0FBfM03dqVOY168nvXdv0vv3x7xtW543FgI+/BBPdDRnv/0WT0wMwfkkhNnpjxwh5OWXcVevjunXX7VjlTO+XbuI7tKFiIEDCZo1q8D7dT5KWhrGvXt95xDQrjf08fF+g8oFT59O8LRpBC1YQMjrrxfJtotCwIcfYv3yS4yHDhH29NMlInEKmjWLStWrnzdh18XFEdm1K5WuvZawYcNQMudsLiq606fR//VXgZPNgM8+w37HHXiiovJsQXKpjAcO4L7pJlSrFXtsLJbvvz93nvZ6saxZgz6fub31//xD1MMPE925M0o+LZLyozidpbZ/HhQi0evWrRuLFy8mJSWlyIPwer3Mnz+f5557jrfeeouff/6Zf4vgjmlJ4MlM7LJq5rKmVMjirFsX1WhEl5yMvXVr0J0rEletWhgPHgSXC+OePbhuvtn/tQ0a4LVatTf7eZh//FH7sqlQAc/VV+O68UZfkwrD/v3o4+O1RA/8OqBnyUoksy4aPVWrktGtm3aynjwZW4cOONq3ByB18GB0SUm+5qG6kyeJvusuwp9+mugOHXx9FX3sdoInT8bRpAkZDzxA0OzZvjsuQTNnYvjvP5KmTiV1+HBMe/fm2V8icPFiXDfdREavXrjq1yd13DhSn3sOb6VKeR4PNSCAxLlzQVWJ7tCByAceIHjmTNJ79MB+113+4bVrh9diKVwipqrnPTGaf/kFT6VKeK6+GkwmbB07aqOBFsFopuaNG6l4442EDxhQZF9Wpq1b0Z8+jS1zkAzHHXdg+u03v2QetAslVa/H0aYNoCXJjsaNCZk0Kd8kH0B/7BhR991HyOTJeMPC8ERHE7hkCRVatybsqacuOH9W2IgRhLzyCpE9e+abkIeMH09Mq1baJMiX2OcyePJk1IAAkl99FW+lSqSOHIlu/XrM2UaNDPjgAzyRkdjvugvHHXcA5+bBLDSHA9NPP2lfuDnojx1Dnzl9S/bHzJs3k/HAA76mJlmf76ybDABKSgqmHTt8z7nq1MFrtV7UTQ3DgQNEt25N8Jtv4g0NJemNN4hbuTLXjS3Qbm6d/e47Tu/cmWvgFUfz5hgPH/ZNOeP/QjeBc+ZofT/zaOocOGeOljj16oX5l1/OWzNo2rqV6HbtiO7YkcClS3Hcdhtn16whYeFCkqZPx7h/f54tE0JeeQX9yZM4mjTRmlwXIgHwo6pYP/kER6tWJL/2Gs66dQmaOfPCyWk+6zJ/9x2h48YR+uyz2l31X38t3OjIqkrg/Pk469fn7Pff465SJXdtvMdD6PjxeK69lpTRozFv2oT5u+/yXJ1x504MOWu5M+lOnaJCixbE1K+f53st6+Zmzu879HqSJ0zAcPw44UOG5N/cPbNvrKt2bU7//DPu664j7NlnL9jk07JuHZ6KFf0STFfmze2smArCuG+fNphZ1g0OvR5HkyaYMxO9gE8/RfF6yXj4YeyZA7SYc/bVczgwb9iA/e67UYODSRswAPOmTRe8WRTy8suoJhPxH31ExsMPE7h0aa5m9sFvvYU3LAxH48YETZ9eqNrK/Ji2b0fxeHBmDp4D+GpGs2p2lORkAt97D1vHjmTcfz8BS5YUem5EXUICYU89RdSddxL82msF6iZi2rSJ8AEDCFi4MN/vxMDFi3HWq0fSpEmYtm/HuHNnoeIqasY9ewh+9VVctWtj2rZN6+edh7BRozDt3o3tvvuwrlxJVKdOeX5PXIzgKVOIueUWYlq1IrptW+2zfp5rCsPBg9p1QqdO2g27rVuLPGE2HDzoqwyx3303uqQk33zSge+9R0T//kR16ZLr2gTQWnpk/V3YOahdrlI7WToUItGrXLkyv/32GwMGDKBbt25+P5fq8OHDVKxYkZiYGAwGA82bN2dbAQcZKel8NXp792pJX86RCM1mbJm1bFkjamZx1a6N4nBg/ukn9PHxWufu7KxWHLGxWFetQklNxbh9O5avvvK7E62kpWH67TfsmRffoNUkmX75BSUlBcuPPwLnLgS9MTG4q1b1G1La/OuveAMDcd10k++xlP/9j7S+fUnr25ekbP3dXI0a4WjUiMA5c1CSk4kYOBAlNZWkKVPQJSXl6htnXbMGfWIiaU89RfKkSXgqVSJ8+HCM27cTNHs2GV264GzSBNs996AajVhXrvR7vf7IEUy7dvld1BaEu0YN4r76Cnu7dlofpREjSJ48OddyamAgjnbttGYuBbgI0509S/Qdd1CxVq28my6oKqZfftFGk8uM13bPPejS07FcalMHl4uwkSNR0tOxfv219l4oAtYvvsAbEOAbNc7RsiWKy5XrIs3XvyUkRHtAUUh+7TUUl4uoe+8l+JVXCH79dYJfe43AefOwfPMNQdOnE92+PYbDh0mYPZv45ctJ+PBDTv/6K+lPPIF1xQqiOnfO92LEuGcP1i+/JO2JJ/BWqJDnF6Lp118Jmj9f+5x5PEQMHOhfI6Cq6I8cKVBtn2nbNqxr15I2aBDeiAgA0nv3Rr36aoJff903Z6Nl3ToyHn4YTCZtFN0aNS4qgdIlJBDdoQNR3boR06oV4f37Y9i/H+O2bUQ8+qjWrLl5c78BhgI+/BBVpyMj27nZVbs2nvBwv+ab5p9/9g2eoB1MI65bbin0l6D+33+J7NkTjEbOrltH/MqVZPTocVFfjHk1c8sS/MYbhE6cSOjEiYS89JLfc0p6OoEffIC9Y0eSX30VV40aBL3zTp4XGqZt24js0QPFZiPp9dc5tXMnie+9hzvzAt9+553Y27QhePp0vwtJ/bFjWD/7jPTevbVRh41G9Bc54JDh8GEM//6LvWNHUBTShg/HcOxY4e+C2+2EP/YYkX36YP30U6xffEHoSy8Rdd99VLzxRqLuvpvQceMwXGDQNNOmTRj/+ov0vn21AXyeeQbjvn1+09FYvvoK459/kjJqFGlDhuC+9lqtlinHMQ6aMYPoTp2Ijo3Ns4l3yCuvoE9IQA0MJPTZZ3O93tcfPUeNHoCzVSuS//c/rN98o5VhHucF8/r1GA8dIu3JJ8FqJfnllzEcO3beLgWKzaYlVm3b+n2P+LpQFKZG7/ffc8XuvO02DMeOof/rLwI+/BBHs2Z4rrsO9403arV9OT5zpl9/RZeR4fvezujdG29Y2HkncDf99JN2bho2DG+FCqQPGIBit/sN9mXcswfLunWkDRxIyv/+hy49Pc/WGYVl2rIFNXPcgCzeqCic9ephzrzGCFyyBF1aGqnDhpHRqxe6jIzCNe/zeIh49FGsq1ahBgYSNGMGFVq21PYvn2bP5g0biOzdG8u6dYSNG5fr+gFAf/w4xj/+wNa1K7auXbXm43n1Z965E8sXXxSuibWqas37H3qI4MmTC9wXP+jtt/GGhxP/8cdkdO+uJew5bn4Zfv8dy3ffkTp0KElvv038Rx+hi4sjumNHrRXNJSRZ5vXrCX7rLWz33kvSK6+gOJ1E9ulD+OOP55tcZ92scN52G87GjdGfOpXvtD6mLVu0xLsQN7Z0CQnoz571dV9y3H67dhN+zRqUtDSCZs7Ea7Ggj4/Ps0mnaft2vGFhqCZTnlOm6P/6i5CJE/PcP8XhKB81ejNmzKBVq1a88cYbTJs2ze/nUiUkJBCZ7c5vZGQkCYWsWi2psvrk6ex2PJUr57lM0tSpnN60CUfbtn6POzOnAAjObOKQVaOWXdoTT6BLStL6pXXuTMTjjxP+xBO+D7lp82YUt9uXyIGW6CluN+YffsDy7bc469TBGxNzbru33OL3QTBt24arYUMwnJuNQ7VaSXn5ZVJefjnX8MmpzzyD4cQJYm69FdOOHSS99RYZ3buTcf/92mAp2eamC1i6FPfVV+No0QI1KIikGTPQHz9OdOfOeIOCSPnf/7TthYVhb9MG65df+t1ltn7+Oaqi+GqbCsNz9dUkzZrF2XXrSB01SpssPg+2e+9FHx+f+65rTqqqjTx67BjeoCCtKUWO5EF/7Bj606f9mrg4mzXTmjpcqNZQVQmaNYvo2FgC8hgd0bJuHfqTJ0l4/33cVaoUzQh1TifW1auxZ/Z5BK3JsGoy+dVg6eLiMO3d69e/BcB9ww3Ef/gh3pgYgt59l6Dp0wmaOZPQ8eOJeOwxQl57DWeTJpxdt86vdscbFUXK888T/8EHGI4dI3z48Dy/uAI++gjVYiF1+HDS+/XDvHVrrjuagfPm4QkPJ3H6dJJmzMB48CAhmU2alLQ0woYMIaZlSyrcdlu+tRCA1u9n0iQ8MTG+5suANh9mZjNV83ff+fo3ZTz66LnD2Lix9pkqTD89VSVsxAgMR46QOGMGKU8/jXnTJiq0a0d0ly6YfvuNlFGjSB08mIBPPyWyVy8MBw4QuGgR9rvuwpv9fKPT4bztNq3MMo+jecMGvIGBOBs29C3maNoUwx9/5PllZzh8mNAxYwieOtX3vC4+nojMpCl+6VJfU/SL5apTB29ISK7RCJWEBILmziWja1fS+vYlcNEiv740AcuWoUtJIW3gQNDpSB8wAOP+/bmbtXs8hD77rNYk7ssvyejZU5u+xm9jCiljx6JLSiIoWyIXPH06GAy+JN/WoQO6jz7KXRPvdhM6ZgxRd92V70AeWZ8dR8uWANjbt8dVq5Z2IZ/tRp1x2zYC58zJNcqxdrBchA8ahHXNGpJfeIFT+/Zxav9+Tu3aRfyCBaQ9+SRqcDDWTz4hun17rCtW5BkLQOCCBXgiI7Hdcw8Ati5dcF93nXZjzusFt5vgN9/EVbMm9k6dtOMwYACmXbv8Bs/RHz9O8JQp2GNjcdWtS+jzz/vV2uhOncK6ahXpPXuS8txzGA8cyLVvxr178VSo4PedlF36Y4+ROH06pt9+I6pLF62veDZBc+bgrlwZW6dO2jFu3Rp7bCzBb799rumyqmrn5szPgnXFCnRpablutqIouG+6qcA1erozZ7SL0axB0zLZOnRAVRQie/TA8PffpD/ySOYB0+Ns3DjXzRXLhg3a6J8tWmjhBgWR9sQTWNatw5StVt7H5SJ0wgTcV11FWua5yV2zJo6WLQlcuNCXYARl1ual9+uH6+abcVWvnmfyU1jmzZtx1a2ba1J4R5s2mLZvx3D4MIHvvou9dWvcdepog7VERRVoXtssge+9p11PvPkm8StWcHbNGtzVqxP2zDNE33knQdOmaZ+3zHOsce9ewh97DHeNGpzasQNnvXratVSOc3BWiyh727aoISHY27bVrjOyJXSmzZuJuuceIgYNIvS55woWsNdLyPjxhI0ejf7ffwmeMYPQF1+84Mt0p0/7bhSqoaHaDQu3O9eNiuBp0/CGhGiDxgHOFi2I++YbXDfdRPiIEUT06XNR/a2V5GTCRo/GVbMmSW++Scajj3Jm/XpSnn0Wy9q1Wn/iPFoLmH7+Gfc11+CpWtV3o8OQx+dG/9dfRPboQdi4cQRNn+73nGH/fsL798+zpUDWzSp3ZqKnWq04WrfGsmYNge+/jz4xkfhPPsETE+NXe5fFuHs3jiZNcN10k68fbXYhkycTNGeONh5BzmNSyvvooRZQnz59VK/XW9DFC2Xz5s3qO++84/t/w4YN6vz583Mt991336ljxoxRx4wZo6qqqjocjhL34/F4/B+z21Wv0aiqoHo6dSrc+ux21XvDDaoKqrdKFdVht+e5nPPDD1X3ww+rrtmzVffYsaoKqmvJEtXhcKjuxx9XvQEBqiMl5dxrMjJUb3S06q1eXVv2f//zW59r6lRVBdXx11+q4/Rp1avTqa4XXihU7K65c1XP7berrrlzz8W5fbu2vUmTtMf27tX+f+kl//359lvVPXq06ti713+d77+vqqA6N206d3xq1FA9rVtf3nJNTla9wcGq+5FHzl/2M2dq+/PWW6pzwwbt77ff9t+HOXO0Y7trl9/j7ieeUL1Wq+qIj893/c5ly7T3QlSUdhy++cZ/++3bq96qVVVHerrqHjlS9RqNqiMh4cL7l5iouiZNUj2tW6vuPn20cs/a5qefatv64gv/bbVurXpuvvncfi1YoC23eXOB3teOEydU55YtquOPPy78XnrtNW3dn3zi/1xKiuoND1fd3bpp/x89qnp1OtX9zDPnljl+XPUaDKp7xIhzx3rAANWrKKp71CjVW7269ppBg1RvxYqqp04d1ZGRkffxX7FCK9OZM3OXvd2urSsoSFtf797++zBvnrYPO3fmXndGhuoeNkz1NGmiuj74INfn0DV16rll//lHdc2Yobref191nD17btnFi33nGW9wcK7PjsPhUF2zZ/u997zXXZfrnOT89lstzpUr/V8fF6edMywW1asoqrdCBdU9dqy2z1ar6ly/vsg+b56OHVXv9df7x555LJy//aY6/v1X9QYFqe777/cdP+9116meZs3OvSY+XvvM9uzpv565c/3Oj+f7cT/4oOoNDFQdf/+tOvbsUb16veoeNOjcsfr6ay2mDz/038bEiVo5GI3afqSm5t7He+5Rvdde63/sP/vs3Pn45EnV/eCDWY3AVRVU94MPqo6TJ8+9Z7p3951vzrsvJ06ontatVa9erzrXrs39/MGD2udh7Fj//cg63y5bproyz23Ojz/2P8YhIec+fw6H6u7ZUzuPHTumOjdv1uJ+/vlzz48dq3oVRXXs3686zp5VvUaj6h450v/Y1Kmjeu6884Ll41y7VvWGhKieBg1UR3Ky9thPP2nHZPJk/+X37lW9ZrPqqVdPdQ8bpnqrVdPK6OqrVfeTT6reyEjV07hxnt+x7mHDVK/Fkuu84Dl6VHXs2+cf08qV2nH67rvc6+nTR7sOqF9fdaSlnTvOr76qfS6PHTu37ltuUT0tWvivIyFB9V5/veqtWFErx2zxuEePzvMc6fzyS+14zJ2rOn/5Rft7/Phz237xRa08sm270D/x8do5Nvt5N+vnzz9Vr16vegMCtPg2bjwXc9++qjckxO9Y5Puze7dWfvfe619Gdrvq+uAD1dOwoe9z4o2JUT1duqje4GDVe/XVquPoUW1fP/gg7++ydu1Ub/Xq547ZRx9py61e7fuseerVU73XXKO6H31UK8M9e84fb3q66n7kEe39P3So6rDZVPdTT2nr/eGH877WNWmS9n7Itg1Ply6qNyzs3PXBrl15fmYdDofqsNlU1xtvqF6rVfXUrq06kpLy3tbp06rrtddU1/z5qiM9/Vy5PPKIdq7I47s86xrE/fTT/s9lZKjesDDV3bev9n9cXJ7Xlg6HQ3U//bTqNRhUT/Pm2ndV1vdYSorqveYarQxDQlTHmTP+x+Xtt7XjcuTIucfmz/eVu6djR23999+veq+5xn+7aWnae3TMGNX98MO5n3do34cqqJ6uXXM957nnHt/1Tq5r/BLycz4FnjC9devWbNy4kdtz3LEvCpGRkcTHx/v+j4+PJzxzWOXsYmNjiY2N9f0fl7O/VwkQFRWVK64KFSti+OcfMmJiSClkzNZBgwgdO5aUoUPJyHaM/Nx+u/YD4PEQtXo1+tGjiW/YkAorVmBv1YrE1FTIdmc1qF8/Ql57DW9AAHFduuDNFpexZk2igbR161DNZiK9XpLq1cNZmNg7dNB+ALJeV7Eikbfdhn72bOJ69SJk1iyMBgNx99zjt31q19Z+sr8WUJo0oaLBgP2jj0itVg3j7t1EHzpE8sCBZFzm90Joly4EfPwxZ4cMwZvHAC+G338nevRo7G3akPDgg6AoRN90E+oHHxD34IO+5cLWrUOJiCAuKspv30zt2xM1Zw7pH3+MrUuX3AF4PEQ//zyuGjWI++Ybolu3Rh09mrhvvgGdDt2JE8R89x1pw4eTmpSE+dZbiXS5SP3mG7/BBXLSHztGRJ8+GA4dwlmnDoatW9GvWkXC4sW4GjQgYvZsdNHRnK1f3y/eoObNCXnlFRJ+/x1vxYqEffklSmQkZ6+6ym+587r6au33hZZ/+GGi33sPXnyRuGbNfP1YLV99RURiIkmdO+OIiwOTiYg2bTAuWkTc4MFgMGijq7rdxHXtiidzO8ozzxD+119YpkzBfdVVJH36Kc6mTbHcfDMRTz5J+rvvYnvoIf8YvF6ix43Dfe21nOnUKVfMUVFRJM2eTdioUXijo0kcMwY12zKGGjWoAKStX48tRz/doJkzCZk+HU/Fihh69SLt559x1q9P+Nix2Nu1I6Fbt3Pb0+mga1ftb6fz3ONt22JcsQLL+vXYOnTAHRGRK0Z9w4bEALYvvsCenEzM0aMkP/aY/2enWjUqGY04vv2WlMzBl7JiNJ09y9lVq8BoJOSllzBPnoy7alWSPvwQZ82aBS/3Cwhs3JjQ1atJ3L4dzzXXaH1p583DWa8ecZn9boMfe4zgt98m4YcfMBw8SPjRoyQ+9xz2bDGEdu1KwMcfc2bsWNSICBSbjQovvICzfn3i2rS5YLz6oUOpsGIFnsGD0cXHo1osnB048Ny5qk4dKlWqhHvxYhIzz79KWhoxU6dij40lo0cPIvr1I+2jj7Qmmlncbipu2EBGp04kZ4+hSRPCunQhYPx41FdeAY+HlFGjyOjRg4APPyT47bdh0yZSxo7FsnYtpm++IWXsWNIeeuiC+6K8+y5RnTqh696ds+vW+dWWBU+bhlGn42zXrv7n4bZtia5eHX3//lqrkKZNiW/Rwm9bId26EbhgAWefeUZrZvzhh6Q9+SSpRiNccw3hd9+Nedo04rt3B7OZCu++i71dOxJDQ8HpJKJ5cwyff07c009rcdpsVPzjD9LuuIPUC72f6tTBPG0akX374ho0iOTXXydi/Hj0YWGcve8+v88fERGY332XsFGj0M2Zg6NpU5wPPIBp2zbM8+bhueoq4t94A08e37HW664j3G4nads23NWrA1ptUVSXLhhdLuKXLsWZWTMbvGkTBp2OuGuu8d8+wPjxWFq0wNGkCWq2GnNj3bra9+3XX2O/916UlBQq7typnctzrMPw3ntE9O6N8c47UY1GPFWqoOr16P/6i/QePUi+7Tb/90KDBkTfdBPKhAkQGoonPJyzDz/si81wxx1UeOklMj74gIy+fc97uHWnTxM0axa6pCTSBwzw9aE0f/89kW43SQ0aaOfh7AIDCRw3jpBXXyV1+HBSr7/eF5+leXMiFiwgZe1av759ubhcRGU2KT4zYQLenGXUpg20aYMuLg7zjz9i/uEHzFu34mzUiOTJk/GYTNo2b7uNmMhI3O++S2JmE1PFZqPixo2k9+597tqscWMqhoTgev99kurXx7psGeG7d5MwezbOli2JWbYM9e23iZs4Me94nU7ChwzBtHo1KU8/TdqIEZCQgDJkCBUWL8YzcSIJS5bk/VpVpcK8eTgaNyY+MtJ3rIx9+hD9+efYZs8mvV8/wv73PwwWC2d79vT/zGbp0QNzlSpE9uiB44UXSB071u9pJS2NqM6dfbVkjoULSZw1C9NPPxGxeDGpQ4eSes01uc8rLVoQ2r07AW+/TdyDD+K56iotvt27iU5KIuWWW7BlvqbC1Vfj+u03EnOsI3rVKlwtWpA6ejTRHTtq+/TYYwR88AFhx4+TMnYsIZMnkzF/PhlZNd9A6I4d6EJCiMsqT0C5/XYimjVDFxdHwosv4omLI7BOHUI/+4yEP/7AGx0NaLWIMW43KRUrYnC5CPr7b+JOnPB1L1DS0qh09CgAnj/+yHUNH5GWhk6nIy4uLs9r/JKgcj4tBqEQTTcPHz7MnDlzGD58OOPHj/f7uVTXX389J0+e5MyZM7jdbjZv3syt2dp6l3bezKQ1Z3OOgrA9+CCnDh8mo3fvgr1Aryf5lVfQnT5NdPv26M+e9eurkyXtySdJeuUV4pctyzXlg6t2bVSLBdOOHZi3bEE1m7Vhk4tAev/+GE6cIHDuXAI++gh7+/Z4c1z45kcNC8PRooU2vLaqYl2+HNVsxpb9IuoySRs6FNA6P1vWrCHkxReJ7NKFyIcfJuypp4js3h2iokh6661zfe86d8b022/nhmJXVUxbtmhfajn6EzobNcJduTIBH36Y5/atK1diPHSI1FGjtD40o0Zh+v13X9OXgBUrUFSVjMyk0te8Mq9mPpn0x44R1bkz+rNnif/wQ+LWruXs2rWoQUFEPvggoePGYfnhB9L79/drtgtoAweBb/hs848/as02dQU+pRScwUDaiBEYDxzw63cY8OmneCpW9DV/A8jo0UObrmL9enC7CViyBEeLFniqVfMtowYEkLB4Mad27ODMTz/5LjLs99yD8+abtX5HOfoOWFetwvjHH6SOHp3vpKnu2rWJ++YbEhYv9s3/5XuuWjWtSWLOOeJsNoLeeQd7bCynt24lvXdvgt55h4jHH8ddvTqJ06cXuO+pq2FDUkeNwp3P6Mieq67CVaMGlq+/9vXLsWcOonRuR60469f36zOkpKcTOGcO9jZtcN1yC666dYlfvpyTf/7Jma1bfaPxFhV71uA1maMgGvbtw/jHH37nsbTHH8cTEUH4k08S8vLLuGrXzjWQUnqvXigOh28ezMD33kN/6hQpL7xQoGPquf560gYNwvrll5g3byZlwgTfhQMAej3eBx/Esn69r69YwNKlWp/f4cOxx8biiYnB+tlnfus17t2LLiUFR2azPB9FIWnqVFLGjSO9Z0/Ofv01aSNG4I2JIW3ECOK++gpvcDDhTz2F5fvvSX7xRd956ULUoCAS585FycjQmkFnNl9T0tII/PBD7HfemfsGlsFA4vz5uOrUwdG0KYmzZ+c6bul9+oDHQ8grrxA6bhzesDDSBg3yPZ86ciS61FSCMs/3+sRE0p94wve8vX17DEeO+AZIMv7+uzaoRwG/bxzt25M6ZAiBS5cS0b07lu+/J23wYNSgoNzLtmvH6Z07OfnnnyR89BFpw4eT8MEHnDx0iDMbN+LJTOJyyhqQxZCtuVfwK69AUJA2hUy20aCNu3bhrlEjVxNGAEwmbXCVzL69vvXXqYM3ONg3WJNp61YUrxdHZn/V7Nw33sjZH34gccYM0h5/HGe9erivv56kl1/Os485ikLyq6+ij4/HcOAAyZMmnetDjdZX3VWzJtbVq/Pcd1/omzYR3b49gUuWYFm3jqguXXzNqy3ffIM3KAhHPueB9Mcf5+TRo6Q+84zf446WLVENhvznEQStqfW4cVqTzVdeOe+1gjcqCtsDD5A0axant28nYckS/1G3TSZsXbpg+f57X9Nz088/ozgcWt/MLBYLts6dsaxejf7wYa17QcOG2Dt3xhsRQcZ996H7+OM8B5JRbDYi+vXDunq19vkcOdL3mVGtVtIHDMCyfj2GbCORZmf65RcMR4+S0b273+OuRo1wNmyoNV/dvJmAlStJ79/f1088L47bbyfjvvsInDs316iuQZldGOI/+ICkKVMw/fILFZo3J3zIEByNGpE6cmS+600dORJ0OoJmz/Y9ltX3O/s5zXXTTbn6tirJyRgPHcLZuDGu+vVx3nqrNiez3U7QzJk4GzTQ+v9ecw2WHM03DYcOaYMcZTsHqVYr8cuXc/bHH/FUrerbLuDXDcOQORKnu1o13Ndei6KqGLJNMWbIHBXfU7FinnM2l/ammwW+Kmvbti2PP/449913H23atPH7uVR6vZ5+/foxadIkRowYQbNmzbgq805BWZD88svY7rnH/65uYRRykkZXw4akDR2K4cQJ7G3b+gbR8GM0kvHoo1rfu5xMJl8nasu332odrHMOInOR7O3a4bz1VkJffhklPZ3UzDu5BWXr3BnDsWNY1q4lYMUK7O3a5e5jcxl4qlQh+ZVXMP/8MxH9+xO4dCnodChpaZg3bMBdsyau1av9LgSz+g1mjf6n//tvDCdO5PkFjk6nDbX988+5J4x2uQh+802cder4psew3XffuT40bjcBy5bhaNIEz7XXAtoJ0NmgQa6+Tj52OxF9+qB4PMR98YWvb52nenXivvgCd/XqBC5ciKNxY63fUw7uWrXwVKiAZf16jDt2oE9I8I22eTnYOnfGVb26b391Z85g/uEHbRCebH0r7W3b4qlQgcBFi7CsXo3hv/98fRj8KIpWq5E9gVUU0kaM0AbFyN6fyeUi+I03cN10E7bOnS9uB3Q6LYHKMZqb5YcftDvk/fuD0Ujyq68S98knJE6fTtyqVX4XZUXB9tBDmH/5hZA33sDRooV/P75MzqZNMe7d6+tfGrB4MfrERFJHjPBbTg0MvCwTyHoyv4yzBicKWL4c1WTyO/ZqSAhJM2ZofVDcbhLffDPXTQZ3rVrahcTixRgOHyZo+nRsd911/tqDHFLHjCFu+XLOfvONNsBMDt6HH0bJ7MeK00nQ3Lk4mjXTzqt6Pbb77tMuLLMNGpJ188V52225N2ixkDZoECkTJ/om3M7iuvlmzq5ZQ9yKFdpNgccfL/B+gHZRn/K//2HetInAd98FIHDhQnRJSX7Jmd9rqlcn/rPPSFi6NM8+c55rryW9Xz8CPvsM86+/kjJ+vN9NDnetWtg6diRo2jRCJkzA0ayZ340BR2YLnaxRoLNGO8yacqMgUkePJuP++7WRZrt2zfN85aPT5b5RYzSe933srlEDVa/39dMzHDqEZeNGPMOHkzpmDMZDh7RkRVUx7t6NK7NvfYEZDNo8l5nnavPmzdrN1by+m9GSdlvXrqQ++yxJs2eTuGCBVhuXTx9zZ6NGnN6yhTMbN+Ya5RbA3rEjpq1bc/XnUpKSsH78MRG9exPZvTve8HDOrl3LmU2bcF9zDRF9+mD+9lusq1Zhv/vu818j5HF81eBgnI0a5TlquP7ffwmZMIGYxo0JXLqU1CFD8oy9sGxdu6I4HL65GC3r1+MNCPDrMw/a2AeK202FNm3QnT1L8sSJvn3I6NULJSMjd99Gr5fwJ57A/OOPJL3+ep6fz/Q+ffAGBfklSdkFLF2KNzhY6webQ8qYMej//ZeoBx/EU7EiaUOGXHB/U595BsXj8RvER//PP1p/5/vvx9GmDRndu3P2q6+w33UX6Y89RsKiRXCepMZbuTIZDz1EwMcf+5Ii84YNuGrV8rv+cd94I4ajR/0GPjPt3g3gu5GT9thjGI4dI+qhhzD884/2HaMoWt/OLVv8+isbDh3CVaPGBfc5qw9f1pRmkCPRy2xJpP/nH79jAuBo0gR9YmLuEXqdzvMek5KuwIle69atqV+/PkFBQaiqitfr9f0UhYYNGzJt2jRmzJhB16ymSWWE65ZbSJwzJ8+7jJdL6pgxnNq5k4SFCy/qYszWtSvGgwe1u0sPPFB0gel0xC9YQOrIkcR/+mmhB2+w3XsvnooViejf/7wXKJdDRvfunPn5Z+I+/5xTv/9O/IoVxH31Fad37iR++XLINpk9gOeaa3A2bOhLGnyjUuWV6AEZPXviiY4mdNw4v9G5AhcvxnD8uFablHUxazCQOmIExv37ibr/fgxHj5Keo+mN74I9jzuPQe++i/HQIRJnzvQ1R8rirVCBuC+/5Mz69dp+5TV6oqJg79ABy7ffEjJlCt6AgNy1Q0VJr9dGAjx0iMDFiwl6913wesnI2cTSaNTumv74IxGDBuG66Sbs2Zp7X4i9fXtctWtrA29k1uoFvfcehmPHSHn22UuqsXQ1bIjhwAG/oZ8tX32FJyLiXPKvKDhvuw3b/ff7zedYVNL79MF10014AwK0/cmDs1kzFLdbu9udkaHVON5+O67MqVeuBPsdd2D++Wd0p09jXbkSe2xsrlpSR+vWnNqzh9M7dvhGzMwpdehQDMeOUeH227VEOsdonRekKDibNcOVc8TjTGrDhrhuvJHAuXMJXLQI/cmT2uAJmWz33IPidvsNOmHetEkrgxwtKQrEYsHZpEm+A5VcSEbPntg6dCBk8mSCX32VoLfewt6uHa5LaLGRMn48CfPmEbd8ObZszdSzJE2ejP3OO3HcfjuJ06b5fR95qlbFddNNvkTPtGMH7sqVC9zKAwCDgaTp0zl5/DhJM2bkan1wycxm3Dfe6KuND1i6FNVoxNu3L7bOnfFUrEjQnDkY9u3TpioqxI2ELI7bbsNw9Ci6Eycwr1+vDbxWRDdXQTune667Ls/nbJ06oajqucRFVQlYuJCYRo0If/ppDIcOkTZ4MHFff437hhvwRkYS/9FHeKOjiezbF8XpJG3w4IuKy3HHHRj/+MOvxsnw++9E33EHgYsW4axfX7teyOdcVViuevVwV6um1bJ7vZjXrdNqoXJ8x3muu47EGTNw1atHUra5PrPW4a1bl8APPvAbICz4zTexrFtH8sSJZPTsmef21ZAQMnr3xvrll+iz1SiBNuCUdfXqfM/9zhYtSFi4kLSBA4lbvjzXIHh58Vx9NemPPELAxx+fmzP41VdRMwecyuKuXZukadO0GzUFuHGeNngweDwEvfceuvh4TNu2+Y3sDuCqWRPF48GQbXA0444dqIriO572jh1xtGyJaft2bNmmInI0b47OZvNNJ6IkJqKPi9Nq9C7AGx2NNyzMb6Rhw5Ej2oibERG+5qbZEz1D5oBOWRUf+pw3PZxO1PIwvcKvv/7KsGHD+OSTT3jvvfdYs2YNc+fOZVO2kfdEyeKtUOGiL0wz7r8f2513YuvUKe8+Y5dAjYgg9emnL67Jl8VCwty5OJo2JemNNwp/9/QSea66CmejRr4RKC8ko2tXjH/8geHAASxr1+KpVMk3D0xOanAwya+8gmnPHsKffBIlORnDn38S/MYb2Fu3zjUqq+2++7B16IDpt9+w3X13rhpjR9OmKF4vphxTlSiJiQTNmIHt7rvzr4UzGrU7Y/ncJQZI69cPdDrMmzaR3qfPZb+RYe/QAXvr1oS+8AJBc+aQ0a0bnuuvzx3XgAGkP/IIjiZNSJwz57z7kIuikDpiBIajR7EuX45h3z6C3nxT+xLKcfwLy9mgAYrXe24uSJsNy3ffaXfDi/riNB9qQABn16zh9J49+daaOJo1wxsWRsBnnxG4YAH6+PhctXmXW0a3bih2O9EdOqCPiyM92wimfiyW895pdcTGkjhzJhnduhH/6ad59q+9JIpCSmatTuiECThuu813sQKZF5ZXXeVrKqukpWH69dfz9pu9rBSFpDfewNmgAcEzZ+K57jqSLnXiar0e+91342zWLM+n1YgIEufPJ2HJkjyPvz02VptOICEB86ZNedd0FjNH8+baXHGpqVgzW5IQHQ0mkzbH3c8/EzphAqqi+JV/gdef+ZrQiRMx/vXXFemOkMVdsyaOZs0ImjMHXUICoc89R9i4cTibNuXs119zZssWUp991i/58MbEEPfJJ6QOHkz8xx8X6AI8L1nNtLNuhOjOniWib1/UkBDObNxI4vz5vjl6i4SiaLW/W7YQNGsWhhMn8r2+sXfuTNxXX2G7775c6/D264dx3z7fudz87bcEv/UWGQ8+SEafPucNIa1/f9DrCXzvPb/HA5csQXE4SO/VK9/XOmJjSRk/Pt+kPc/tDRuGajYTOn485g0bCPjiC9IffzzP1hwF5bnmGmz33kvA4sXayLpud64Ra7Nu4huzNaE07diBu3r1cy1VdDriFy3i7Jdfkvjuu76bQFnnkqxpdoyZSWrOm9J5UhRcN96ozUGdyXDkCO7M7hveChVQTaZzXWoA/YkTeENDfevP2Xyz3DTdXLZsGU8++SSvv/46FouF119/nYEDB3JdId5wohSxWkl8/33tw1fC3uCuhg2J/+yzPJtSlTT2zp1RjUZCx43D/OOPWvOz89Sw2jt0IPl//8Py7bdUbNiQ6HbtUM1mrf9FztfpdCS+9x6nfv2VxPfey5XUu269FdVgyDVHU8DHH6Oz2c7bDr8gPNdfT/zHH5M8YYJW23i5KQqJs2eT1r8/aY8/TsrLL+e9XGYTyPgVKwr2xZCD/c47cd56K2FjxhB1772o4eEkT5p0icHjqzXJap5m+eEHdBkZvmHgrxiD4fw3Kkwm0nv2xPrVV4S88opW45PH1C6Xk7tOHdL79EF/6hQZ3br5hpm/GLb77iPpzTdzT8BdRBzt25Mwezapw4eTMG+e/+dUUbB37Ih50yaU5GRt7kKXy9fHtTioYWHEr1zJqd9+4+zatYWrPbsM7HfdheLxEPbUU+iSkvz7S5UQjjvuQHE4CBs2DH18vF9LgoyePfFERWHesgXbvff69+MsIHf16jiaN8f65Zd4w8IuarqgS5Eydiy6+Hgq3nwzgYsXk/bkkyQsWqTdSM3n+8pbpQqpzz1XqKbQOblr1sRZt67WT8tm01rqJCSQsGCBr+alqKU/+ijesDBCJk/Gfd11ufr2FoS3e3e8VitBM2Zg2LeP8GHDcN58M0mvvnrBFlTeSpWwde2q9VnNrFXSJSQQ9O672GNjcWebr7goeKOiSBk3DsuPPxLZoweu6tUvugY2u9SxY8FsxrpqFbZOnXxNJrO4q1VDNRrP1aypKsadO3O3HjCbc03f5Y2IwHXTTVrzTc71oSvoDQX3DTdor8mscc2e6KHT4alcGUP2ppsnTuCpXBlPZisL/dmzfutTHI4Sdx1cGAW+jRwXF0ezHHfsbr/9dgYOHMgj2UbGEUKc442MJL1/f4LmzMFrsfjmODqf9Mcew9G0KQHLl2sDkfTrl//dN0XJt5ZCDQjAVa8e5i1b8DXe9Hi0vnfNmuU7aEdhOBs1ynN+x8tFDQ0lpbDN7wpLpyNhwQKCp0zR+pGOGIG3YsVLXq03MhL3tddi3rKF9CefxPrFF3giIvJtyluc0oYNQ//vv+iSk0maMqVYYkh++WVShwwpkmN/udnvvRd7Ps/Z7rmHoDlzsH79Naaff8YbElLkA9gUmqLgzRzBtLi56tfH0aQJlu+/x1OpEvY77yzukHJxtGiB+9prsX77La5atXDccQdZDefU4GDiPvsM65o1pOfTZK8gEqdNI/jNN7Wbg1eg33l2rltvJeGDD7Bkzpl6MbWSF0VRSH/8ccIHDyamSRP08fEkvPvuZbspA6CGhxO3bBkBH3+szXV6MU3ywsJIGz6ckMmTsX7zDZ5KlUicPx8K2NIn9emnsXz1FeGDB5M4cyahzz2HYrP5NacsShl9+uCNicHw559k9OqV92BBheSpUoWza9di2rw5zz6FGI24q1f31ejp//4bfUJCwQdaatZMm9PO6cTw55+oFotvwJULcdWsSWBKCrpTp1ADA9GfOuWXJHquuipXjZ6nShVf9wBdznlkS3mNXoETvZCQEJKSkggLCyM6Opo///yT4ODgIuujJ0RZlfLcc7huvhn39dcXuLmEu04dUvLpd1QYWU1ylIwM1IAALN99h+Hff0kpwMSt5Zk3IoLkV14p8vXa27YlcOlSdCdPYvn2W9J7975izTYLQw0KIimfAQOumBKUjFwKV716uG66iZCXXkJJTdVGqizFFw2XQ9KMGQTOm6c1oyuJx0anI2HuXAI++URrRpyjObinevUCDY5xPt7KlUkuppsqAI5WrXC0anXFt2u7914Mf/yBZf16UsaPzztpKGLuOnXybxFSQGlDhuANDdX6x/fr5z/C5wV4qlQh6a23CB80iJjMCpSk118v8tq87Ox33w13312k6/RUrZp7KqJsXDVrYvrtNwBfH9f8BhnKydm8OUHvv49p926Me/Zoo98WsBuGb0CWgwfxZjYTzZ7oua+6Csu33/r+1//3H85GjfBm3mBRciR6pb2PXoGvMNq2bcuBAwdo2rQpHTt25H//+x+KotDpSjc7EqK00euLvJ9jQTmbNkWZORPTb7/haNWKwIULS+xd8/LAfs89BM2fT1SXLihOZ+7BZETZoygkT5pERK9eeCtWJO2pp4o7ohLHU6UKKUUwVdPl5K5Vi5QJE4o7jLJHUUh99tkiG3DlilEUv3neCsvesSNnV6/G/NNP2nQDBUyAShN3zZoEfP45Smoqpm3b8AYFFXgAPkeTJqiKgnnDBkx79py372JOWVMsGPfuxZPZND37iJ2eqlXRx8WBzYbi8aBLStJq9AIDUfV6dNlGSQYt0ctvWqXSoMCJXpdsF6q33347tWvXxm63U7WAValCiCvP2bgxqsWCZc0aPJUqYd60iZTRo0tkLVJ54Lz1VhwtWmD+6ScyunTJd7RIUbY4mzTh9G+/ac1/Cti8SwhRtrnr1CnT3wFZTXCNu3Zh+vVXrTavgNceakQE7ptu8k0NUZguDmpYGO5rr8W4axdKtWqoJhOezGkVAF//T8OJE77Rtd1Vq2qtSEJDy2/TzZyiLmZoaCHEFaUGBmLr0AHr8uUY9+zBGxhIRiHujIkipigkLFyIcfv24u+nJa6oK93vSgghipOzUSNUvR7rV19hOHAAW+Y8wAVlb9cO4/79eMPCck3fcMFtN2iAecsWdCkpuGrW9Esws/r66f/5Bzwev8fU0NC8m26Wx0RPCFE6pD79NJa1azHt3EnSK69c3PxdosioVusljSIphBBClHRqUBDOxo21OQfJ7CdYCGlDhoBer811WMhEy1W/PgErV6I/dYq0gQP9nnNnT/QyxxnJSvS8YWH+TTe9XhS3u3z00RNClE6ea6/lzA8/oEtMLNPNRIQQQghRcqQNGYJp61YcrVsXerAZNSCA1Kefvqjt2jp1IjSz32/O+YK9MTGoRqM28qaqoppMvmlRvKGh/omew6H9lho9IURJ5q1SpegnixZCCCGEyIejdWtO79rlG9HySvFWrEjitGno//sPR8uW/k/q9XiqVPHNpeepXNk3D7EaEoKSbY49xenUHpdETwghhBBCCCHOKa7uIrYHHsj3OU/Vqr6mm+5sA7V4g4PRpfpmHi4TiZ6uuAMQQgghhBBCiCvBfdVV6I8fx3jwoN+UD2pwMEoeiV5pbropiZ4QQgghhBCiXHDXrIk+IQHFbtcmY8/kDQpCZ7OBy6U9kNlHT2r0hBBCCCGEEKKEc9x+u+9vZ7bJ6tXgYACUtDTtd2bCV5oTPemjJ4QQQgghhCgX3DVqkN6jB6rViuf6632PezMTPV1qKp7w8HNNN2V6BSGEEEIIIYQo4RSF5DfeyPWwr0Yvq5+eNN0UQgghhBBCiNIte40eyKibQgghhBBCCFHq5azRk0RPCCGEEEIIIUo5X41e5mAslIE+epLoCSGEEEIIIco1X41eSor2O6uPntFYbDFdKkn0hBBCCCGEEOWamqNGT6ZXKAJLlixh+/btGAwGYmJiGDRoEIGBgcUdlhBCCCGEEKKcUC0WVIPBV6MnTTeLQN26dZk6dSpTpkyhUqVKrFy5srhDEkIIIYQQQpQnioIaFHSuRs9uB7QEsLQq9kSvXr166PV6AG644QYSEhKKOSIhhBBCCCFEeeMNCTnXR89mA0p3olfsTTezW79+Pc2bN8/3+XXr1rFu3ToAJk+eTFRU1JUKrcAMBkOJjEtcflL25ZeUffkk5V5+SdmXX1L2ZZsuLAyL00lUVBQ6nVYfFlm1KhgMpbLsr0iiN3HiRJKSknI9/vDDD9OoUSMAVqxYgV6vp2XLlvmuJzY2ltjYWN//cXFxRR7rpYqKiiqRcYnLT8q+/JKyL5+k3MsvKfvyS8q+bIsMCID4eOLj4ghOSCDIaCQuM4cpqWVfuXLlfJ+7IoneCy+8cN7nf/zxR7Zv386LL76IoihXIiQhhBBCCCGE8FGDgtCdOgVoTTdLc7NNKAF99Hbt2sUXX3zBmDFjMJfiUW2EEEIIIYQQpZc3JARdaiqgDcZS2hO9Yu+jN3/+fNxuNxMnTgSgRo0aDBw4sJijEkIIIYQQQpQnalAQSlaiZ7OhWq3FHNGlKfZEb8aMGcUdghBCCCGEEKKc8wYH+02vUNpr9Iq96aYQQgghhBBCFDc1OBjF6QS7XRI9IYQQQgghhCgLvMHBAOjS0mQwFiGEEEIIIYQoC9TMRE9JSZEaPSGEEEIIIYQoC/xq9Oz2Uj8YiyR6QgghhBBCiHJPavSEEEIIIYQQoozJ2UcPSfSEEEIIIYQQonRTg4KAzBq99HS8mf+XVpLoCSGEEEIIIco9NSQEAF1KCkpamq8pZ2kliZ4QQgghhBCi3MuqwdOdPo2iqr6mnKWVJHpCCCGEEEIIYTKhWizo//sPQGr0hBBCCCGEEKIs8AYFoT950vd3aSaJnhBCCCGEEEKg1eL5avQy++yVVpLoCSGEEEIIIQTaFAtZiZ7U6AkhhBBCCCFEGaAGB6N4PL6/SzNJ9IQQQgghhBAC/EbalFE3hRBCCCGEEKIM8EZHn/s7KqoYI7l0kugJIYQQQgghBOCpVAkAr9UKZnMxR3NpJNETQgghhBBCCMB97bUAvn56pZkkekIIIYQQQggBOJs0QTUaSe/Xr7hDuWSG4g5ACCGEEEIIIUoCb8WKnNq3D9ViKe5QLlmJqdFbtWoVDz30ECkpKcUdihBCCCGEEKKcUgMDQa8v7jAuWYlI9OLi4ti7dy9RpXxkGyGEEEIIIYQoCUpEordo0SJ69uyJoijFHYoQQgghhBBClHrF3kfvt99+IyIigmszR7g5n3Xr1rFu3ToAJk+eXCJrAA0GQ4mMS1x+Uvbll5R9+STlXn5J2ZdfUvblV2ks+yuS6E2cOJGkpKRcjz/88MOsXLmS559/vkDriY2NJTY21vd/XFxcUYVYZKKiokpkXOLyk7Ivv6Tsyycp9/JLyr78krIvv0pq2VeuXDnf565IovfCCy/k+fjff//NmTNnGD16NADx8fGMGTOGV199lbCwsCsRmhBCCCGEEEKUOYqqqmpxB5Fl8ODBvPrqq4SEhBR3KEIIIYQQQghRapWIwVjKkrFjxxZ3CKKYSNmXX1L25ZOUe/klZV9+SdmXX6Wx7It9MJbsZs2aVdwhCCGEEEIIIUSpJzV6QgghhBBCCFHGSKJXxLKPCirKFyn78kvKvnySci+/pOzLLyn78qs0ln2JGoxFCCGEEEIIIcSlkxo9IYQQQgghhChjStRgLKXZrl27WLBgAV6vl7Zt29KlS5fiDkkUscGDB2OxWNDpdOj1eiZPnkxaWhpvvfUWZ8+eJTo6mhEjRhAUFATAypUrWb9+PTqdjr59+1K/fv3i3QFRYLNnz2bHjh2EhoYydepUgIsq6yNHjjBr1iycTicNGjSgb9++KIpSXLslCiCvsv/kk0/4/vvvfVP/dO/enYYNGwJS9mVFXFwcs2bNIikpCUVRiI2NpUOHDvK5LwfyK3v53Jd9TqeT8ePH43a78Xg8NG3alIceeqhsfe5Vcck8Ho86ZMgQ9dSpU6rL5VJHjRql/vPPP8UdlihigwYNUpOTk/0eW7Jkibpy5UpVVVV15cqV6pIlS1RVVdV//vlHHTVqlOp0OtXTp0+rQ4YMUT0ez5UOWVykffv2qX/99Zc6cuRI32MXU9Zjx45VDx48qHq9XnXSpEnqjh07rvi+iMLJq+yXLVumfvHFF7mWlbIvOxISEtS//vpLVVVVzcjIUIcNG6b+888/8rkvB/Ire/ncl31er1e12Wyqqqqqy+VSn332WfXgwYNl6nMvTTeLwOHDh6lYsSIxMTEYDAaaN2/Otm3bijsscQVs27aN22+/HYDbb7/dV+7btm2jefPmGI1GKlSoQMWKFTl8+HBxhioKoVatWr67d1kKW9aJiYnYbDZuuOEGFEWhVatWcl4oBfIq+/xI2Zcd4eHhVKtWDQCr1UqVKlVISEiQz305kF/Z50fKvuxQFAWLxQKAx+PB4/GgKEqZ+txL080ikJCQQGRkpO//yMhIDh06VIwRictl0qRJALRr147Y2FiSk5MJDw8HtC+LlJQUQHtP1KhRw/e6iIiI835xiJKvsGWt1+tznRfkPVB6rV27lo0bN1KtWjUeeeQRgoKCpOzLqDNnznD06FGqV68un/tyJnvZHzhwQD735YDX62XMmDGcOnWKO++8kxo1apSpz70kekVAzWPg0hLRLlcUqYkTJxIREUFycjIvv/wylStXznfZvN4TomzKr6zlPVB2tG/fngceeACAZcuWsXjxYgYNGiRlXwbZ7XamTp1Knz59CAgIyHc5KfuyJ2fZy+e+fNDpdLzxxhukp6czZcoU/v7773yXLY1lL003i0BkZCTx8fG+/+Pj4313AkTZERERAUBoaCiNGjXi8OHDhIaGkpiYCEBiYqKv03bO90RCQoLv9aJ0KmxZ53VekPdA6RQWFoZOp0On09G2bVv++usvQMq+rHG73UydOpWWLVvSpEkTQD735UVeZS+f+/IlMDCQWrVqsWvXrjL1uZdErwhcf/31nDx5kjNnzuB2u9m8eTO33nprcYclipDdbsdms/n+3rNnD1dffTW33norGzZsAGDDhg00atQIgFtvvZXNmzfjcrk4c+YMJ0+epHr16sUWv7h0hS3r8PBwrFYrf/75J6qqsnHjRjkvlFJZX/gAv/76K1dddRUgZV+WqKrKnDlzqFKlCp06dfI9Lp/7si+/spfPfdmXkpJCeno6oI3AuXfvXqpUqVKmPvcyYXoR2bFjB4sWLcLr9dKmTRu6du1a3CGJInT69GmmTJkCaB12W7RoQdeuXUlNTeWtt94iLi6OqKgoRo4c6RvIYcWKFfzwww/odDr69OlDgwYNinMXRCG8/fbb7N+/n9TUVEJDQ3nooYdo1KhRocv6r7/+Yvbs2TidTurXr0+/fv2kWXcJl1fZ79u3j2PHjqEoCtHR0QwcONDXakPKvmw4cOAAL774IldffbWvnLp3706NGjXkc1/G5Vf2P//8s3zuy7jjx48za9YsvF4vqqrSrFkzHnjggYu6tiupZS+JnhBCCCGEEEKUMdJ0UwghhBBCCCHKGEn0hBBCCCGEEKKMkURPCCGEEEIIIcoYSfSEEEIIIYQQooyRRE8IIYQQQgghyhhJ9IQQQgghhBCijJFETwghRJkTFxdH79698Xq9l31bgwcPpmfPnsyYMeOybWPWrFn07NmTJ5544rJtQwghRNkiiZ4QQohSb/DgwezZs8f3f1RUFEuWLEGnuzJfc2PGjGHo0KGXbf2DBw/mueeeu2zrF0IIUfZIoieEEEIIIYQQZYyhuAMQQgghLsWMGTOIi4vjtddeQ6fT8cADD9CsWTOGDBnCRx99hF6vZ8KECdx44438/vvvHD9+nNq1azN48GAWLFjA9u3bqVy5MiNGjKBChQoAnDhxgvfff58jR44QEhJCt27daN68eYHiUVWVRYsW8dNPP+FyuYiOjmbYsGFcffXVuFwuPvroI7Zs2YLb7aZRo0b06dMHk8kEwLZt2/jkk084c+YMISEh9O/fn/r161+uQyeEEKIMk0RPCCFEqTZ06FAOHDjA448/Tt26dQE4c+ZMruV+/vlnxo0bR0hICOPGjeP555+nf//+DB48mHfeeYfly5czaNAg7HY7L7/8Mg899BDPPfccx48fZ9KkSVx11VVcddVVF4xn9+7d/PHHH0ybNo2AgABOnDhBYGAgAEuXLuX06dO88cYb6PV6pk2bxvLly+nRoweHDx9m5syZPP3009SpU4ekpCRsNlvRHiwhhBDlhjTdFEIIUS60adOGihUrEhAQQIMGDYiJiaFu3bro9XqaNm3K0aNHAdixYwfR0dG0adMGvV5PtWrVaNKkCVu3bi3QdgwGA3a7nRMnTqCqKlWrViU8PBxVVfn+++959NFHCQoKwmq10rVrV37++WcA1q9fT5s2bahbty46nY6IiAiqVKly2Y6HEEKIsk1q9IQQQpQLoaGhvr9NJlOu/+12OwBnz57l0KFD9OnTx/e8x+OhVatWBdpOnTp1uPPOO5k/fz5xcXE0btyY3r1743K5cDgcjB071resqqq+kUHj4+Np0KDBpeyiEEII4SOJnhBCCJFNZGQktWrV4oUXXrjodXTo0IEOHTqQnJzMW2+9xapVq3jooYcwmUy8+eabRERE5LndU6dOXUroQgghhI803RRCCFHqhYWF5dkv72LccsstnDx5ko0bN+J2u3G73Rw+fJh///23QK8/fPgwhw4dwu12YzabMRqN6HQ6dDodbdu2ZeHChSQnJwOQkJDArl27ALjjjjv48ccf2bt3L16vl4SEBE6cOFEk+ySEEKL8kRo9IYQQpV6XLl14//33+eCDD+jatStNmza96HVZrVaef/55Fi1axKJFi1BVlWuuuYZHH320QK+32WwsWrSI06dPYzKZqFevHp07dwagZ8+eLF++nHHjxpGamkpERATt2rWjfv36VK9enUGDBrFo0SLOnDlDaGgo/fv3l356QgghLoqiqqpa3EEIIYQQpdXw4cNJSkqiUaNGDBky5LJs45133mHr1q2EhIQwY8aMy7INIYQQZYskekIIIYQQQghRxkgfPSGEEEIIIYQoYyTRE0IIIYQQQogyRhI9IYQQQgghhChjJNETQgghhBBCiDJGEj0hhBBCCCGEKGMk0RNCCCGEEEKIMkYSPSGEEEIIIYQoY/4Pxh0Me7ZdyjsAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 1080x216 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Cell 3: create periodic, discrete, finite signal\n",
+    "\n",
+    "# number of samples (intial value: 3000)\n",
+    "samp = 3000\n",
+    "# sample rate (initial value: 1)\n",
+    "dt = 1\n",
+    "# period\n",
+    "T = 1.0 / dt\n",
+    "length = samp * dt\n",
+    "# number of coefficients (initial value: 100)\n",
+    "N = 100\n",
+    "# weighting factors for coefficients (selected randomly)\n",
+    "a0 = np.random.rand(1)\n",
+    "a = np.random.randint(1, high=11, size=N)\n",
+    "b = np.random.randint(1, high=11, size=N)\n",
+    "\n",
+    "t = np.linspace(0, length, samp)             # time axis\n",
+    "sig = series_real_coeff(a0, a, b, t, T)\n",
+    "\n",
+    "# plotting\n",
+    "plt.plot(t, sig, 'r', label='arbitrary, periodic, discrete, finite signal')\n",
+    "plt.ticklabel_format(axis='y', style='sci', scilimits=(-1,1))\n",
+    "plt.xlabel('time [sec]')\n",
+    "plt.ylabel('amplitude')\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "---  \n",
+    "Now, we can play with the signal and see what happens when we try to reconstruct it with a limited number of coefficients.  \n",
+    "2) Run the cells 4 and 5. What do you observe?  \n",
+    "3) Increase the number of coefficients $n$ step by step and re-run cells 4 and 5. What do you observe now? Can you explain?   \n",
+    "4) In cell 5 uncomment the lines to make a plot which is not normalized (and comment the other two) and re-run the cell. What do you see now and can you explain it?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "coefficient a0 =  273\n",
+      "array coefficients ak = [1084 2337 2338  584 1091]\n",
+      "array coefficients bk = [1003 2002 2500 1007 1756]\n"
+     ]
+    }
+   ],
+   "source": [
+    "# Cell 4: determine the first 'n' coefficients of the function using the code function of cell 1\n",
+    "T = 1        # period\n",
+    "n = 5        # number of coeffs to reconstruct\n",
+    "a0, a, b = fourier_series_coeff(sig, T, n)\n",
+    "a_ = a.astype(int)\n",
+    "b_ = b.astype(int)\n",
+    "print('coefficient a0 = ', int(a0))\n",
+    "print('array coefficients ak =', a_)\n",
+    "print('array coefficients bk =', b_)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAADTCAYAAADH5O1aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACjBklEQVR4nOzdd3hT1RvA8W920r1b9t7Ikr03yBJwIEsQFQQUBEHWD0GRIaDI3qIIArIREBBB9t57byh0z+zc3x9pQ0MLtNDSlp7P8+SBJvfevMlNbu655z3vkUmSJCEIgiAIgiAIgiAICeSZHYAgCIIgCIIgCIKQtYiGoiAIgiAIgiAIguBENBQFQRAEQRAEQRAEJ6KhKAiCIAiCIAiCIDgRDUVBEARBEARBEATBiWgoCoIgCIIgCIIgCE5EQ1EQBEEQBEEQBEFwoszsADLT/fv3MzuEZPz8/AgNDc3sMIRMIPZ9ziX2fc4k9nvOJfZ9ziX2fc6VVfd97ty5n/qY6FEUBEEQBEEQBEEQnIiGoiAIgiAIgiAIguAky6Sezpo1i+PHj+Pp6cmPP/6Y7HFJkli0aBEnTpxAo9HQp08fChcuDMDJkydZtGgRNpuNRo0a0bZt21ccvSAIgiAIgiAIwusjy/Qo1q9fn+HDhz/18RMnThAcHMy0adPo2bMnCxYsAMBms7Fw4UKGDx/OlClT2LdvH3fv3n1VYQuCIAiCIAiCILx2skyPYunSpXn06NFTHz969Ch169ZFJpNRvHhx4uLiiIiIICQkhKCgIAIDAwGoWbMmR44cIW/evK8q9PR18SLuc+cS278/kptbhj1NnDmOkyEnOR92nuD4YGJMMSjlSrw0XhT0KEgF/woU8yqGTCbLsBgEQRAEQRAEQciaskxD8XnCw8Px8/Nz/O3r60t4eDjh4eH4+vo63X/lypUUt7F9+3a2b98OwIQJE5y2l1WoBg5EvWIF2tq1kd55J123bbaaWXVhFcvOLWPHzR2YbWYAtEotXhovLDYL4YZwbJINgEDXQNqXbM+Hb3xIpVyV0jUWITmlUpklP5NCxhP7PmcS+z3nEvs+5xL7PufKjvs+2zQUJUlKdp9MJnvq/Slp3LgxjRs3dvydFUvUBt27hwzQHz9ObL166bJNs83M4vOLmX16Ng/iHpDXLS8fl/2YWrlrUd6vPD5aH8d7ZrKauB1zm6MPj7Lzzk5+OfkLs4/NpkauGnz15lfUyFUjXWISksuqZZOFjCf2fc4k9nvOJfZ9ziX2fc6VVff9s6bHyDYNRV9fX6c3NywsDG9vbywWC2FhYcnuz7ZiYwGQJ3lNL2Pf/X2M2DeCK5FXqB5UnR9q/0DDfA2f2phWK9QU9SpKUa+ifFDiAyKNkay8vJLZp2fz7sZ3aVGwBd/W+Jbcbk//UAmCIAiCIAiCkL1lmWI2z1O5cmV2796NJElcvnwZFxcXvL29KVKkCA8ePODRo0dYLBb2799P5cqVMzvcFyaLiABAHhn5UtsxWo18e/Bb3t/0PkarkUVNF7Gq1Soa5W+UpnGHXhovPn3jU/Z12MewKsPYcWcH9VfV58/Lf75UfIIgCIIgCIIgZF1Zpkfx559/5vz588TExPDZZ5/x/vvvY7FYAGjatCkVK1bk+PHj9OvXD7VaTZ8+fQBQKBT06NGDsWPHYrPZaNCgAfny5cvMl/JyEhqIL9NQDI4Lpse2HpwKPUW30t0YWW0kOqXupcLSKXV8XuFz2hRuw8DdAxmwawAHHhxgbM2xuKhcXmrbgiAIgiAIgiBkLTIppUF+OcT9+/czOwRnViu58+cHwFShAqGbNqV5E+fCztFtazeiTdFMrTeVtwq9ld5RYrVZmXJiCj8f/5kyvmVY3HwxgS6B6f48OU1WzV0XMp7Y9zmT2O85l9j3OZfY9zlXVt33zxqjmG1ST3MCWVSU4/8v0qN48MFB2v3VDgmJNa3XZEgjEUAhVzDozUH81uw3rkddp/X61lyOuJwhzyUIgiAIgiAIwqsnGopZiDyhoWhzd09zQ/Hgg4N02dKFXK65+KvNX5T1LZsBETprlL8Ra1qvwWw10+6vdpwNPZvhzykIgiAIgiAIQsYTDcUsJLGhaClY0N67aLWmar0jwUfouqUredzysLLlyldakfQNvzdY32Y9ripXOmzuwLmwc6/suQVBEARBEARByBiioZiFyGJiALDmzo1MkpDFxz93nauRV+m+rTtBrkGsbLmSAJeAjA4zmfwe+VnZciU6pY4OmzpwMfziK49BEARBEARBEIT0IxqKWYhMrwfA5utr//s5DcWQ+BC6bumKUq5kafOlmdJITFTAowArW65Eo9DQeUtn7sdmsUJBgiAIgiAIgiCkmmgoZiGOhqKPj/3vZzQU9RY9H237iEfxj/it2W/k98j/SmJ8lkKehVjcfDGxpli6bulKtCk6s0MSBEEQBEEQBOEFiIZiFiIzGIDU9SiO3D+SEyEnmNlwJhX8K7yK8FKljG8Z5jeez9XIq3z6z6eYbebMDkkQBEEQBEEQhDQSDcUsJLWpp8suLmPZpWX0q9CP5gWbv7L4Uqtu3rpMrDuRvff38v2h7zM7HEEQBEEQBEEQ0kiZ2QEIjz3ZoyhPaDgmdTb0LCP2j6B27toMenPQK40vLToU78C50HMsOLuACv4VaFe0XWaHJAiCIAiCIAhCKokexSzkeWMU9RY9vXf0xlvrzayGs1DIFa88xrQYWX0k1YOqM2j3IM6GiTkWBUEQBEEQBCG7EA3FLESm1yNpNNhcXe1/P9FQ/P7Q91yPus7UelPx1flmRohpopKrmNNoDl5aL3r+05MYU0xmhyQIgiAIgiAIQiqIhmIWItPrwcUFycXF/neShuLOOzv59fyvfFr2U2rnqZ1ZIaaZv4s/cxrO4U7sHYbvG57Z4QiCIAiCIAiCkAqioZiFJGsoxsUBEG4IZ+CugZTwLsHQKkMzM8QXUiWoCgMqDmDN1TWsvrI6s8MRBEEQBEEQBOE5REMxC5EZDKDTJetRHH1gNOGGcKY1mIZWqc3MEF9Yv4r9qBpYlWH7hnEz+mZmhyMIgiAIgiAIwjNkmaqnJ0+eZNGiRdhsNho1akTbtm2dHt+wYQN79uwBwGazcffuXRYuXIibmxt9+/ZFq9Uil8tRKBRMmDAhE17By5Pp9Ug6HahUSCoVMr2e3Xd3s/rqavpX7E9Z37KZHeILU8qVzGg4gyarm/D5zs9Z13odSnmW+fgJgiAIgiAIgpBEljhTt9lsLFy4kP/973/4+voybNgwKleuTN68eR3LtGnThjZt2gBw9OhRNm3ahJubm+PxUaNG4eHh8cpjT0+JqacAklaL3hjL0L1DKeRRiH4V+mVydC8vj1sextceT58dfZh7ei59K/TN7JAEQRAEQRAEIUNpN21CVqgQlC6d2aGkSZZIPb169SpBQUEEBgaiVCqpWbMmR44ceery+/bto1atWq8wwldDpteDTgfYG4oTXY5wK+YWE+tMzLYpp09qU7gNLQq2YPKxyVyOuJzZ4QiCIAiCIAhChvIYPx75ggWZHUaaZYmGYnh4OL6+j6d78PX1JTw8PMVljUYjJ0+epHr16k73jx07liFDhrB9+/YMjTUjRcyfj2XRIgBO5ZLxs/cFPij+ATVz18zkyNKPTCZjXK1xuKpcGbBrABabJbNDEgRBEARBEISMYzKBWp3ZUaRZlkg9lSQp2X0ymSzFZY8dO0aJEiWc0k7HjBmDj48PUVFRfP/99+TOnZvSKXTtbt++3dGQnDBhAn5+fun0CtKJnx9KpRJfs5kPasfgbVUxpcUUfHQ+mR1ZuvLDj+nNp9NlfReWXFvCoBqDMjukLEGpVGa9z6TwSoh9nzOJ/Z5ziX2fc4l9nzMprFbQarPdvs8SDUVfX1/CwsIcf4eFheHt7Z3isvv27aN2bed5BH187A0pT09PqlSpwtWrV1NsKDZu3JjGjRs7/g4NDU2P8NOVn58fiw4vYk+AnhlXS2GLsxEal/XifFn1/evTolALvt39LbX9a1PUq2hmh5Tp/Pz8suRnUsh4Yt/nTGK/51xi3+dcYt/nTEEGA5JSmSX3fe7cuZ/6WJZIPS1SpAgPHjzg0aNHWCwW9u/fT+XKlZMtFx8fz/nz550eMxgM6PV6x/9Pnz5N/vz5X1ns6S3eHM/3h7+nXJSO7rez11WHtJDJZIyrOQ6dUsfQvUNT7FUWBEEQBEEQhGxPpJ6+OIVCQY8ePRg7diw2m40GDRqQL18+tm3bBkDTpk0BOHz4MOXLl0erfVzYJSoqismTJwNgtVqpXbs2FSpUeOWvIb38dPAn7sXe49fLZVAajJkdTobyd/FnWNVhDN07lJVXVvJ+8fczOyRBEARBEARBSFcysxlJo8nsMNJMJuXgrpz79+9ndghO7sXeo97KejTO35g/f41DHhZG6ObNmR1WhrJJNtpuaMuN6Bvsem8XPtrXazxmWoh0lJxL7PucSez3nEvs+5xL7PscyGbDr2A+FMP+x8PevTM7mmSyfOqpYPf9oe+RkPhf1f8habXIDIbMDinDyWVyfqjzA9HGaMYeGpvZ4QiCIAiCIAhCupFMJpp3gf6q7Dczg2goZhGSJFHOrxwj64wkr3teJI0GmfH1Tj1NVMqnFD3f6Mnyy8s59OBQZocjCIIgCIIgCOlix61/2FkIiisCMzuUNBMNxSxCJpPRu3xvBlW3TxWRU3oUEw2oNIC8bnkZsncIZps5s8MRBEEQBEEQhJdisVn4/sQkioXBp7raz18hixENxaxKo8lRDUUXlQtjao7hSuQVFp1blNnhCIIgCIIgCMJLWXl5JZdjrjF+O6i0LpkdTpqJhmIWJWk0kENSTxM1yd+Ehvka8tOxnwiJD8nscARBEARBEAThhRgsBn48/iOVPMvQ/gLZcnoM0VDMohyppzmoKK1MJmNU9VEYrAYmHJmQ2eEIgiAIgiAIwgtZenEpD+IeMKzgx8gAsuH0GKKhmEVJGg0ySQJzzhqvV9SrKJ+U/YTll5dz4tGJzA5HEARBEARBENIk3hzPtJPTqJmrJnXd3gBAEj2KQnqRtFqAHDVOMVH/iv0J0AUwcv9IbJIts8MRBEEQBEEQhFT75dwvhOpD+brK18gSO31EQ1FIL1JC93ROmSIjKXe1O8OrDudEyAlWXlmZ2eEIgiAIgiAIQqpEm6KZfXo2DfM1pEpgFWQmk/0B0VAU0ouk0wE5s0cR4J1i71ApoBLjD48n2hSd2eEIgiAIgiAIwnPNOzOPSGMkQyoPsd8hGopCusvBPYoAcpmc72t+T6g+lKknpmZ2OIIgCIIgCILwTOGGcOadmUfLQi0p61cW4HHqqShmI6SXxDGK5NAeRYDy/uV5r/h7/HL2F25F38rscARBEARBEAThqeacnkO8OZ5Bbw56fKfoURTSm2OMYg5uKAJ8XflrFHIF4w6Py+xQBEEQBEEQBCFFEYYIfj3/K22KtKG4d3HH/Y4xiqJHUUgvObmYTVK5XHPRp1wfNt7YyJHgI5kdjiAIgiAIgiAks/DcQuLMcfSr0M/p/sSGoqRSZUZYL0U0FLOonDw9xpM+K/cZQS5BfHvwWzFdhiAIgiAIgpClRJuiWXh2IW8VfIuSPiWdH8zG02MoMzuARCdPnmTRokXYbDYaNWpE27ZtnR4/d+4cEydOJCAgAIBq1arx7rvvpmrd7Ej0KD7monLh6ypfM3DXQDZc20Dbom0zOyRBEARBEARBAGDRuUVEm6LpX7F/sseyc+pplmgo2mw2Fi5cyP/+9z98fX0ZNmwYlStXJm/evE7LlSpViqFDh77QutmN6FF09l4xe1GbcUfG0axgM3RKXWaHJAiCIAiCIORwceY45p+ZT6N8jXjD741kjzvNoyhJrzi6l5Om1FOLxcKFCxfYv38/AAaDAUM6NGSuXr1KUFAQgYGBKJVKatasyZEjqRuP9jLrZmmJDUXRowjYp8v4pvo33Iu9x4KzCzI7HEEQBEEQBEHg9wu/E2GMSLE3EXicepoNexRT3VC8ffs2/fv3Z+7cucyePRuA8+fPO/7/MsLDw/H19XX87evrS3h4eLLlLl++zODBgxk3bhx37txJ07rZjWN6DNFQdKiVuxbNCjRj+snphMSHZHY4giAIgiAIQg6mt+iZc3oOdfLU4c3AN1NcxtHp8zqPUZw/fz4dOnSgbt26fPTRRwCULl2auXPnvnQQUgrdsDKZzOnvQoUKMWvWLLRaLcePH2fSpElMmzYtVesm2r59O9u3bwdgwoQJ+Pn5vXTs6U2pVNrjSrjq4CaX45IF48wsk5tNpuKCisw4P4OZzWdmdjjpyrHvhRxH7PucSez3nEvs+5xL7PvXy4wjMwjRh7Cs/rKn7ldFQrVTpU6HXzZrLKa6oXj37l3q1KnjdJ9Wq8WUmHf7Enx9fQkLC3P8HRYWhre3t9MyLi4ujv9XqlSJhQsXEh0dnap1EzVu3JjGjRs7/g4NDX3p2NObn5+fPS6zmdxAfHg4sVkwzszigw/dSnXjl5O/0LFwx+SVpbIxx74Xchyx73Mmsd9zLrHvcy6x718fRquRSQcmUT2oOqVcSj11v7pHRuKmVmOxWrPkvs+dO/dTH0t16qm/vz/Xr193ui9xfODLKlKkCA8ePODRo0dYLBb2799P5cqVnZaJjIx09B5evXoVm82Gu7t7qtbNllQqJIVCFLNJwZeVvsRd5c6YQ2MyOxRBEARBEAQhB1p9ZTXBccFPH5uYQGYyZcs5FCENPYodOnRgwoQJNGnSBIvFwtq1a/nnn3/o1avXSwehUCjo0aMHY8eOxWaz0aBBA/Lly8e2bdsAaNq0KQcPHmTbtm0oFArUajVffvklMpnsqeu+DiSNRhSzSYGP1ocvK33Jtwe/ZeednTTI1yCzQxIEQRAEQRByCJtkY/bp2bzh9wZ18tR55rIysxkpm6WcJpJJKQ3ye4rr16+zY8cOQkJC8PX1pXHjxhQuXDgj48tQ9+/fz+wQkkmakhD4xhsYWrUiavz4TI4q6zFZTTRY1QCNQsO29ttQyrPETC8vRaSj5Fxi3+dMYr/nXGLf51xi378ettzcwsf/fMyshrN4u8jbz1zWc/BgtP/+i/X27Sy575+Vepqms+vChQtn64ZhtiN6FJ9KrVAzouoIPt3+KcsuLaNrqa6ZHZIgCIIgCILwmpMkiZmnZpLfPT8tC7V87vIykynb9ig+s6G4YsWKVG2kQ4cO6RKM4EzSasX0GM/wVsG3qBZUjUlHJ9G2SFvc1e6ZHZIgCIIgCILwGjvy8AjHHx1nbM2xqcpok5lMkE3HKD6zmE1YWJjj9uDBA9atW8fZs2cJDg7m7NmzrFu3jgcPHryqWHMcSasVxWyeQSaTMar6KMIMYcw4NSOzwxEEQRAEQRBec7NPz8Zb402HEqnsKMvGYxSf2Qzu06eP4/8///wz/fv3p3r16o77Dh06xIEDBzIuuhxOFLN5vvL+5Xmn6DvMPzOfriW7ktc9b2aHJAiCIAiCILyGrkRcYdutbXxV6St0Sl2q1snOqaepnh7jxIkTVK1a1em+KlWqcOLEiXQPSrATPYqpM6TKEGTIGH9EFP0RBEEQBEEQMsac03PQKrR0L9M91eu8tqmnSQUFBbFlyxan+7Zu3Zou8ygKKZM0GtFQTIU8bnnoVa4X666t49jDY5kdjiAIgiAIgvCaCY4LZvXV1XxQ4gN8tD6pX/F1TT1N6rPPPmPy5Mls2LABHx8fwsPDUSgUfPXVVxkZX44mabXIHj3K7DCyhb7l+7Ls4jK+Pfgt69usRyaTZXZIgiAIgiAIwmti4dmFWCUrPd/omab1ZEYjNg8PsuOZaaobioUKFWLq1KlcvnyZyMhIvLy8KF68OEpl9p+/LqsSqaep56py5evKXzNozyA23thI68KtMzskQRAEQRAE4TUQbYrm9wu/06pQKwp4FEjbymZztk09TVMrT6lUUrp06YyKRXiCpNMh0+szO4xs4/3i77Pw3ELGHR5Hk/xN0Cq1mR2SIAiCIAiCkM0tvbCUGHMMvcv1TvO6spyQetq799PfmNmzZ6dLMMITRI9imijkCr6p/g0dN3dk0blF9C6f9i+zIAiCIAiCICQyWo0sOLuA2rlrU86/XJrXlxmNr39D8YsvvnD6OyIigs2bN1OrVq10D0qwE6mnaVc3T10a5WvE1BNTeb/4+/jqfDM7JEEQBEEQBCGbWnd1HcHxwfxU76cX24DZDNm0oZjqqqelS5d2utWqVYvBgwezc+fOjIwvR5N0OntDUZKc7lfcuYPqmKju+TQjq40k3hLPT8df8AstCIIgCIIg5Hg2ycbs07Mp7VOaunnqvtA2ZCYTUjYdo5jqhmJKlEolj0RVzgwjaRPG2D3Rq+jXsiX+bdogv38/E6LK+op5F6Nrqa78fuF3rkRcyexwBEEQBEEQhGxo++3tXIm8Qp/yfV64on6OGKO4YsUKp7+NRiMnTpygYsWK6R6UYJfYUJTp9Ug6HQDy0FAUYWEAaPbsQd+hQ6bFl5UNrDSQNVfXMObQGBY3X5zZ4QiCIAiCIAjZzOxTs8njlodWhVu9+EaMxtc/9TQsLMzpZjabadWqFX379s3I+HK0xMZh0nGKqhMnHv//8uVXHlN24avzpX/F/vx7519239ud2eEIgiAIgiAI2cjRh0c5/PAwPd/oiUr+4qmjMrM526aeprpHsVOnTnh5eSW7P3FOxZd18uRJFi1ahM1mo1GjRrRt29bp8T179rB+/XoAtFotn3zyCQULFgSgb9++aLVa5HI5CoWCCRMmvHQ8WYGjRzFJQ1Fx9y4AVj8/FNevZ0pc2cVHZT7it/O/8d3B79jabisKuSKzQxIEQRAEQRCygTmn5+Cl8aJjiY4vvhGbDZnFgqTRpF9gr1CqexT79++f4v0DBgx46SBsNhsLFy5k+PDhTJkyhX379nE3oUGUKCAggNGjRzN58mTeeecd5s2b5/T4qFGjmDRp0mvTSATn1NNEitBQJLkcU+XKKK9dy6zQsgWNQsPwqsO5EH6B5ZeXZ3Y4giAIgiAIQjZwNfIqW25uoVvpbriqXF98QyaT/d9s2qOY6oai9ETlTYD4+Hjk8peqhwPA1atXCQoKIjAwEKVSSc2aNTly5IjTMiVKlMDNzQ2AYsWKEZYwTu91llLqqTw0FJuPD9YCBVDeu5esIqrgrFWhVlQLqsaEIxOINEZmdjiCIAiCIAhCFjfvzDzUCjU9yvR4qe3IzGaA17eYTe/e9knLTSaT4/+JYmNj02UexfDwcHx9H8935+vry5UrT69WuWPHjmRFdMaOHQtAkyZNaNy4cYrrbd++ne3btwMwYcIE/Pz8Xjb0dKdUKh1xyQIDAfDSaJAS7lPGxEBAANoiRZAZDPgpleDtnWnxZgczWsyg2qJqzDg3g5+b/pzZ4TxV0n0v5Cxi3+dMYr/nXGLf51xi32d9wbHBrLyykm7lulEyX8mX21hCh46rtzfybLjvn9tQ/OKLL5AkifHjx/PFF184Pebl5UXu3LlfOoiUeiufVoL27Nmz7Ny5k++++85x35gxY/Dx8SEqKorvv/+e3LlzU7p06WTrNm7c2KkRGRoa+tKxpzc/Pz9HXCqTCX8gOjgYY8J9vg8egJcXcW5u+ACR585hKfmSH+LXXG5FbrqV6sbc43NpV6AdZXzLZHZIKUq674WcRez7nEns95xL7PucS+z7rG/SkUmYrWa6Fev20vtKHhxMEBBrMuFisWTJff+sttxzG4qJDa6FCxeiyaCBmL6+vk6ppGFhYXin0Et269Yt5s6dy7Bhw3B3d3fc7+PjA4CnpydVqlTh6tWrKTYUs5sUi9mEhmIuWxZbrlz2vx8+FA3FVBhUeRDrr6/nf/v+x5rWa154LhxBEDKOJEnEmmMx28zYJBtymRwPtQdKearrrgmCIAjCC4s1xbL4/GJaFGpBIc9CL7291zr1dM2aNbRv3x6AdevWPXW5Di85l1+RIkV48OABjx49wsfHh/3799OvXz+nZUJDQ5k8eTKff/65U8vXYDAgSRI6nQ6DwcDp06d59913XyqerCKlhqI8LAyrnx/WhLRUeXBwpsSW3XhpvBheZTiD9gxi7bW1tC/aPrNDEoQcy2AxcCLkBGdDz3Ip4hKXIy4THB9MSHwIJpsp2fKuKlcCXQIp7FmYwp6FKetbliqBVcjnnk9c9BEEQRDSzdKLS4k2RdO7XO/nL5wKssRiNq9jQ/HJXr6MolAo6NGjB2PHjsVms9GgQQPy5cvHtm3bAGjatCmrVq0iNjaWBQsWONaZMGECUVFRTJ48GQCr1Urt2rWpUKFChsX6KjmK2SRWPTWZkEdF2YvZBAQAoBANxVTrUKIDSy4uYczBMTTJ3wR3tfvzVxIEIV1cjrjM5hub2Xt/L8cfHcdoNQLgo/WhhHcJauSqQYAuAF+dLyq5CoVcgdVmJdoUTaQxkgdxD7gedZ299/ZisNovngW6BFI/b32aFmhK3Tx1cVG5ZOZLFF4DJquJUH0oMaYYos3R2Gw2lHIlaoUaH60P/jp/1IrsecInCMKzmawm5p+dT41cNagYUPH5K6Rqo/aG4mvZo/jpp586/t+nT58MDaRSpUpUqlTJ6b6mTZs6/v/ZZ5/x2WefJVsvMDCQSZMmZWhsmeXJHkV5QmPd5ucHOh02Ly8UDx9mWnzZjVwmZ2ytsbRa14qfT/zMyGojMzskQXit3Y25y/LLy/nr+l9cjbyKDBll/crSvXR3auSqQQX/Cvi7+Kdpm1ablUsRlzjy8AgHHxzk75t/s+LyCrQKLa0Kt6JjiY5UC6omehqF53oQ94Djj45z4tEJzoWd42b0Te7G3sUm2Z65nq/Wl+LexSnhXYLSvqWpFlSNIp5FxGdOELK59dfW8yDuARPrTEy3bSb2KErZdHqMZzYUH6ayERKYkAYppK8n51F0aigC1qAgkXqaRhX8K9CxREcWnFlAh+IdKO5dPLNDEoTXitVm5d87//L7hd/ZeWcnADVy1eCjMh/xVsG3CHR5ud8LhVxBad/SlPYtTbfS3TDbzBx8cJC/rv/F+mvrWXVlFYU9C/NJ2U94v/j76JS69HhZwmvAJtk49ugY229tZ/vt7VyMuAiAWq6mlE8pKgVUon3R9gS5BuGh9sBD7YFCpsBsM2O2mQkzhPEo/hH3Yu9xOeIyq6+s5tfzvwIQoAugZu6aNCvQjEb5G73cvGuCILxykiQx+/RsSnqXpEHeBum23cQxiq9l6umT4wSfZsWKFekSjPAEjQZJJnP0KCqebCgGBqJ49CjTwsuuhlYZyuabmxmyZwirW69GLnv5uUAFIaczWU2subqGmadmcj3qOkEuQfSv2J+OJTqS1z1vhj2vSq6iTp461MlTh9HVR7PpxiZ+O/8bw/cN56fjP9GjTA96lOkhUs1zsNvRt1l5ZSUrL6/kTuwdlDIlVYOqMrLaSKoGVaWMbxk0irQX65MkietR1zkYfJAD9w+w+95u1l1bh0ahoUHeBnQo0YGG+RqKYkyCkA3suLODSxGXmFp/avpmB7zOqaeiAZjJZDIkrfZxj2JCSV1rQpVXW0AAqsuXMy287MpX58s31b5h4O6B/HHxD7qU6pLZIQlCtmW0Gll6YSmzTs/iQdwDyvqWZXbD2bQo1OKVnyC7qFx4r/h7vFvsXQ4GH2TWqVlMPDqRhWcX8mXFL+lSqosYX5ZDSJLE4eDDzD49m39u/4MMGbXz1GZw5cE0zt8YT43nSz+HTCajiFcRingVoXPJzlhtVg4/PMzfN/5mw/UNbLm1hUCXQN4v/j4flvqQ3G4vP52YIAgZY/bp2eR2zc3bRd5O1+2+1qmnKQkPDyc8PBwfHx/HtBRCxpFcXJI1FJP2KMpDQsBmA3kaesXSuvxr6P3i77PyykrGHh5LkwJNXjodThByGptkY8O1Dfxw9Adux9ymWlA1JteZTL289TJ9rJZMJqNGrhrUyFWDUyGnGHt4LCMPjGT+2fmMqDqCloVaZnqMQsaQJIl/bv/DtJPTOPHoBN4ab76s+CWdSnYij1ueDH1uhVzh+NyNrD6Sf2//yx8X/2DmqZnMPjWbdkXb0btcb0r4lMjQOARBSJvjj45z4MEBRlUfhUqezg26xNTTDJpiMKOlurUQGhrKN998Q58+fZgwYQJ9+vRh5MiRhISEZGR8OZ7k5oYsLg6wj1GUVCokDw/APkZRZrEgDw93LK+4dQufbt3QJFSMfZJm+3ZyFSyIx5gxGR98FiaTyfih9g8YrUZGHRiV2eEIQray995eWqxrQd+dfXFTubG0+VJWt1pN/Xz1s1wDrLx/eVa0WMHS5ktxVbnS699edN3SlZvRNzM7NCGdHXpwiLZ/teWjbR8Rrg9nbK2xHOl0hMGVB2d4I/FJKrmK5gWbs7j5YvZ32M+HpT/kr+t/0XB1Q7pv7c7ph6dfaTyCIDzd7FOz8dJ40blk53Tftsxor/CdXXsUU91QnDlzJoULF+bXX39lwYIF/PrrrxQpUoSZM2dmZHw5nuTqiiw2FgBFaCg2X19IOBGzJUyRIU9SdMh14UK027fjNXy4vefwCR4//IDMasV1wQKnBmZOVMSrCP0r9uev63/xz61/MjscQcjyHsQ94LN/P6PD5g5EGCKYVn8aW9tvzZINxKRkMhn189VnS7stfFvjW448PELDVQ2ZcnwKJmvyeRuF7OVa5DW6be1G+43tuRNzhx9q/8Cu93fxUcH3cb92O7PDI597PsbUHMORTkf4qtJXHA4+TJVfqtB3R19uRN3I7PAEIUe7FnmNv2/+zYelPsyQIlSJxWxe+4bi9evX6dKlC9qESpxarZYuXbpw/fr1DAtOAJubG/KEhqI8LMzeUExgTag2m3SKDPXRo/b7HjxAdfy407bk9+6hOn+e+PfeQ2axoP3774wOP8vrXa43JbxLMGL/COLMcZkdjiBkSWabmTmn51BvZT3+ufUPg94cxK73dvFOsXeyVTEopVzJJ2U/4b/3/qNpgaZMPjaZ1utbcyH8QmaHJrwAvUXPxKMTaby6MYceHGJYlWHs67DPPhZVb8KveXMCGjbE5ddfX11QVite/fsTUKsWips3nR7y0fow8M2B7P9gP1/X+Jqtt7ZSb2U9huwZQpjeea5q+YMH6FavhoRidoIgZIy5Z+aiVqjpUaZHxjxBwhjF1z71tFixYly9etXpvmvXrlG8uJheICM9mXpqTRifCGB7oqEo0+tRnTtHXMeOwONGYyLNvn0AxPbsiTUgAPXBgxkef1anVqiZWGci92PvM/bw2MwORxCynMPBh2m2phljDo2helB1dry7gwGVBqBVajM7tBeWyzUXcxrNYWGThQTHB9NibQtmnpyJ1WbN7NCEVPr39r80XNWQqSem0qpwK3a/v5vPK3zumA7FZcUKVNeuYQ0IwGPcOGQxMa8kLu3ff+OyahXKmzdxnzIlxWW8NF6MqT/GnpJa6kOWX1pO7T9rM//MfMw2M0gSPh9/jHe/fniMH/9K4s4qVEeOoDp2LLPDEHKIR/GPWHVlFe8Vey/Nc/qmVnYvZpPqhmJgYCDjx49n6tSpLFmyhKlTpzJ+/HiCgoJYsWKF4yakL8nFxZF6Kk9MPU1gfSL1VHXqFDKLBUOzZljy50f9xMFWdeYMNhcXLCVLYqpWDc2BAyBJ6ResxZK+23tFKgdW5pOyn/Db+d/YfW938gUkCcXdu44GuyDkBHHmOP6373+0+6sdceY4FjVdxOLmiyngUSCzQ0s3zQs2Z8c7O2hcoDHjjoyj3V/tuB2d+amKwtNFGaPo/19/Ptz6IRqFhj9b/sn0BtMJcAlwWk63fj3mMmUIX7QIeVwcLitXvpL4XJYvx5I3L3EdO9qzdkxPT20OcAng+1rfs/2d7VQKqMTog6NpsroJ+/6dh/rUKfv2/vgjx/z2qA8fxq9dO/zbtEH1xIVuQcgIv5z7BZPVRK9yvTLsORypp9l0eoxUNxTNZjPVqlVDpVIRHR2NSqWiatWqmEwmwsLCHDchfdnc3JAn9iiGhjoqngKg0WD19nb0KCb2IJrffBNz+fKozp512pbq3DkspUuDXI6xenUUDx6guJ0+J0XqvXvJVawYXs+Ye1MeEoJ2/XpHFdesZEiVIRTxLMJXu74i2hT9+AGzGe+ePQmsVo3ASpXQbt363G1p/vuPgDp18OnSBVlERAZGLQgZY8+9PTRa1Yhfz/9K76iS7Kq5lKYFmqa8sMmEy6+/Jkt1TzeShOrECVSnTqV8IcpmQ/vXX6j37HmhzfvqfJnXaB4zGszgSuQVmq1txqYbm14yaCEj7Lyzk4arG7L26lq+rPgl29pvo1buWsmWk0VGojp+HEOTJpgrVMBUoQIuS5dm/IVMgwHNgQMYmjXD2Lgx8ri4ZBdsU1LMuxhLmi9hUdNFmG1m3r/xHe90gLNzJyGPj0e9f3/Gxp1FuE2fjuTujs3FBffp0zM7HOF1ZLWiuHEDJIlYUyyLzy/mrUJvUdizcMY9Z+LFomzaUEz19Bh9+vTJyDiEp0gsZiOLj0eu1zv1KALYgoKQBwcDoDp2DEvhwth8fDCXLo3ur7+QRUUheXqCzYbq3Dn077wDgKlqVQDUR46gL5CKHgK9Hu8BA5DkciKnToUnutA9xo5FZjLhsmYNsf36YSlWzHl9iwWfLl1Qnz2LvnlzIhYscBTlyQp0Sh1T60+lzYY2fHvgW36s9yMA7hMnotu8mZg+fdDs3493796Erl2LuXz5FLcjf/gQ7169sHl6otmzB8+RI4mcMSP9A5YkdOvWgdVq36dZ6L18aZIERiNos29qY3YVY4phzKExLL24lMK6POz6VUadmxcxHhhC2KpVKX7O3H/6Cffp07G5uPBo/35s/umYvmO14jVoEC5//glAXLduRI0d6xSHxzff4LZoEQDhs2ZheDvtc2DJZDLaFW3HmwFv0mdHH3pu70m30t34pto32TrF9nURZ47j24PfsvTiUop7FeeXt3+hvH/Kx2AA9enTyGw2jNWrAxDfoQNew4ahOnMGc7lyGRan+vBhZAYDxrp1Mb35pv2+48cx1ajx3HVlMhlNCzSlXt56LPm6DuOK32db6LeMr6mk6+7/MDZpkmFxZwWyyEg0u3YR27s3MrMZ10WLkMXEILm7Z3ZowmvE47vvcFuwgOjBg5nXyIUoUxR9ymVs+ybHpJ4CGI1Gbt26xaVLl5xuQsZJHKOYOIdi0jGKAJb8+VHeugWShProUUyVKwNgLlMGANUFe5EGxZ07yGNjHfdbSpTA5u6O+siRVMXhNmcOur/+wmX9evuV2STkDx+iPn2a2E8/RZLL0f71V7L1NTt3oj571t6A3bIlWVqJdtMmvAYORHn5cqriyQgVAyrSt3xfll9ezj+3/kGzbRvus2YR17UrMSNGEPb779i8vfH68sunFhhIbDCHLV9ObO/e6NatQ/HE2N70oN20Ce/PP8e7f/9k+yOrcps5k8CKFdElnPSnRKbX49e2LbmKF8d1zpxXGF0WZLPhNnMm7j/88Mz0tfSy885OGq5qyLJLy/is3GccPlaNWqEuxAwciObgQVSnUyjnb7Xi+vvvmEuXRmYw4Prbb+kak/vkybj8+ScxffsS+/HHuP72G66//OJ4XL17N26LFhHXqRPmMmXwmDAhxWrPqZXfIz9rWq+h1xu9+O38b7Re35prkdfS46UIL+hS+CVarGvBskvL6FOuD3+3+/uZjUSwD7MAMJctC4D+7beRNBpcMnh4jHb3biSVClONGkje3ljy5Uv5e/MMGpmKEX9Fcii4PZUCKvFFUwtNdcs4H3beaTnVyZPP72mUJGRRUWl9GZlCffgwMqsVY/36GJo3R2YyodmxI7PDEl4jsshIx2+U6pd5zD09lxq5alAxoGLGPm/i7/fr3lDctWsXPXv25LvvvuPnn392ugkZR3JzQyZJKO7cAUjWo2gtWBDlrVsorl9HER7uuIrpaCiet/+4JKahJt6PQoGpcuXUNRQlCdelSzHUr29P4Vm+3OlhzW77uL74d9/FXLo0mhSK5Og2bsTm5UXoypXY3N1xTegBAFAfPIhPz564rFiBb8eO6f7DJr9/39Hr+jQyvR6XJUsYfi0fpT1L8PXOgViHfI6pbFmiRo8GQPLxIXLSJFSXL+P+00/JtqE+fBiX1auJ7dULa+HCxPXoAXJ5hoyNcZ82DXPx4pgqV7bH8goaEi9DefEi7hMmoHj0CM+RI586NYvr/Pmojx7FUrw4nmPGvL5FDSQJ3YoVeH79NaqTJ1NcxGXpUjzGjcN92jRcFy7MsFCijFEM3DWQLlu64KpyZX2b9XxTdiDeG7egb92a2E8+QVKr7T3YT1CdOoU8MpKYzz/HVK0a2s2b0y0u7YYNuE+bRlzHjsQMG0b06NHomzbFY8wY+3jsyEi8Bg3CXKQIUd99R2yvXihv337pFFi1Qs031b/ht2a/8SDuAW+teyvLpqLKQ0PRbtr02lbG/PPyn7RY14IoYxTLWyxnRLURqerhVZ09iyVfPiRvbwAkT0/0zZvbP8MJc5plBM2uXZgqV0ZytZfYN7/xhqPRmlqKGzeQx8WRv0QN/njrD+bZ2nLDxUjztc0Ze2gseose1alT+LVpg99776HZuTPlDUkSXn37kqt0adzTWhAnE+oNaA4dQlKrMVWsiOnNN7H6+KDdvv2VxiBkLnloKH4tWuDdowdY07+wmObgQWRmMzFffsmSAlEExwfzRYUv0v15kjGb7eMTs2nmV6obikuWLOGrr75i4cKFzJ492+kmZBybpycAyoReKduTPYqFCiEzGNBt3Ajg6FG0BQZi9fFBee4cYP/hlBQKzCVKONY1Va6M6tIlZJGRz4xBee4cigcP0Ldpg751a9RnzjiNbdTs3o3Vzw9L6dKYqlWzn9w/0XBRHziAsU4dJC8v4j/4AN2mTcjv3QOzGc9hw7DkzUvoqlUogoOdegxSS7Nrl71wwBM/bpodOwisVYvAWrWe3ii2WPDp2hWvIUMI+uprlk6+RqQ+nB4tzIQvXOiUAmls2JC4zp1xmzUL9e4khW/MZjyHD8eaKxexCeM0bQEBGOvVw2XVqpfq5XiS4upVVOfOEd+lCzF9+6J4+NDRWM+qXJYtA6WS0JUrkcfGot2wIflCVisuS5dirF2b0PXrsQYG4jlqVLq+d1mF65w5eA8ciMsff+D77rtw8aLzAlYrbjNmYKxSBUPdurgtWJAh78N/d/6j0epGrLqyii8qfMHW9lupFFAJ7aZNyOPj0b//PpKnp734VQqfMc2uXUgyGaY6dTA0bozq0iXkjx69XFCShHbzZrwHDMBYpcrjVFO5nMiffsLq749P9+74fvABiocPiZw2DXQ6DE2bImk06FL6bKWSPDwczb//gsFA4/yN2dZ+G8W9i9Nze0/GHR6HxWZJcT1ZVBQeo0YRUKUKPl27In/w4OlPYjKhuHv3hWNM+pz+zZrh07Mnvl26ZMiJVZrYbHgOH05AlSrPvLChOnbsuQVa9BY9X+36igG7BlAxoOJTxyI+9TnOnHH0Jjq22aED8shIdKm5mCFJuP/wA/4NGuCyeHGqnlMeEoLq/HmM9eo57jOXK4fy1q3n/sY6xZ7wm20uWxaZTEbbGr24MAM+UFdl1ulZNFzVkEO/jEByc8Pq44Pb1Kkpbkezcycu69djyZ8f9xkzUB84kKrnd12wgFxFiuD7zjtPrRSrOnLEfoEiHRuT6oMHMVWsaP+9VSgw1quHZtcu5+Oe2Yz7xIl4/O9/WeviiMWC92ef4V+/PsorVzI7msdMptTtoyxShNB17lzUp06h27o1Q3qT1QcOYNNqiezzGRPqynkz3pu6eeqmfv09e17o4rXMZMq2hWwgDQ1FpVJJ6dKlMyyQkydP0r9/f7744gvWpXDlWpIkfvnlF7744gsGDRrkNH/j89bNzhJ7EFUJKZlP9ihaSpYEwG3uXGyenlgSpyuRybCUKfO4R/HMGftjOp1jXcc4xedUF9MmXLE0NmiAoUUL+31btiQEaEOzaxfGunVBLsdUvTpyg8Ep3UZ+7x7Ke/cczxf3ySf2mGfPxm3OHFSXLxM1ZgymGjUwNGmC24IFyOLjH6//6BG65cuR37+fYnwuS5bg26kTPp984nTlVKbX4zlkCNY8ebB5e+MxcmSKB0Td6tVoDhwgcsIEQjZtosjbPfleX4dNBU3MjUg+12T06NFYihbF+4svHGml7pMno7pwgajvv0dycXEsq3/nHRTBwagPH37me5wWmr17ATA0boyxfn1sXl7o1q9Pt+2n+4+G1Yrur78wNGyIqWZNzCVKOC5sJKU+cgTl3bvEdeqE5OpK9PDhqE+ceGaqqoPFgtv06fg3box/kyZ4jBqV6pRfmV6P28yZzg3/J0kSimvX0qX6oPLyZTzGj0ffqhUPjxwBtRrlgAFO77tm1y77e9Gjh+Mz9LSexxcRa4rl6z1f03lLZ9xUbmx4ewNDqwxFo7DP8+SyciWWggUxVakCgLFOHVQXLyZrBGp27cJcrhw2Hx9M1aoBoD506IVikoeF4fbTT/g3aoTPp59iLlGCiIULneaekry9Cf/9d2x+figePiRi2jTMFSrYH3N3x1irlv3k8gWf379pU3w//BDfTp3AYiG3W25Wt1pNl5JdmHlqJl22dCHckNAbLkmoTp7EY+RIAmvWxHXhQixlyqA+dAjfDz+EhEp3Ts8REkJAgwYEVquG21OmTkgttwULkD98SFznzmgOHHCM48wsLr//bk/rUqnw/OabFBsm6t278WvbFq/Bg/H5+OMUjzVXI6/Sen1rVlxeQf+K/VnRYkWyiqYYjU9txMhiYlDeuJGsoWisXRtziRK4T5r03EaGbtUq3KdNQx4VhdewYc8+NiRI7Nkz1q/vuO/JISCpoTp3DkmpxJzwW24uUwZvtSdzzxRiVatVqGwyWpc9QafeQdz6uCOaI0dSvDDh8scfWP39Cdm2DWtgIO5PaVAmpbh+HY/vv8dStCjqw4ft79WT8Z08iX/btvj07InbzJmpfl3PIouNRXXmjOMYAvbzDUVYmFNRPvdp03CfOhW3RYvwmDgxXZ47Pbj88Qe6v/5CdeUKXl99lSUaXm4zZ5KraNFnNvjloaH4tm9ProIF8erXz1FhP73IHz5Ece1aqhurLqtXY2jYEKufX4oZLC9LdfEillKlWP/gH6572Rix3YTMknDxz2ZDu2ULiqfMDa+4cwe/Dz7Av00bZE/JiHoamcmUbccnQhoaih06dGDx4sVER0c/f+E0stlsLFy4kOHDhzNlyhT27dvH3SeuuJ44cYLg4GCmTZtGz549WbBgQarXzc6sCQ3DxJ7BxCkxEpnKlUNSqZBHRWGoXx/kj3epuXRpVJcugdmM6vRpzG+84bxuxYrYdDq0//77zBg0//2HuUwZbAEBWPPnx1yypCMlRHn+PIqwMHtDEZwG8CdKbIgmnnRa8+YlvkMH+8F+wgT0LVpgbGqvqBjTty/yyEhHeqv8wQP8mzfH+6uv8G/RwjFW08FgwH3CBIzVqhH/7ru4zZrluOLjNmMGyvv3ifzxR2L690d95kyK40VcFy/GXKoU8V26YK5QgZgRI+g0YBnNCjRj7OGxnAo55bS85OJCxPz5IEn4t2iB77vv4j5jBnGdOmFo3tw5vCZNsGm1aWvISdIzD6yaQ4ew5sqFNX9+UKvRt2xpr8aaDtVkNbt3E1SyJN6ffppuP3bqgwdRPHyIPqHIiLFhQ9RHjzpdDAD7iZakUGBs0ACwN7KNVaviMXbsUy8SAChu3sSvXTs8JkzA5uWF1d8f199/J6B+fby+/PK586d5DRiAx7hx+Hbu/NQGvceoUQTWrWufRPslx5y6T5iA5OJC1Pjx2HLlImbgQOQ7dqBJUrXTZckSrL6+GJo3x9iwIfB4HtQ0MxpR791r/8EG9t7bS6PVjVh2aRl9C3bmnzfnUcG/gmNxxc2baPbvJ/7ddx2pMonf78SLFACy6GjUx487HjOXLYtNp3uhiyLKixfxr18f959+wubpSeSkSYSuXZvswhjYL46F/PMPD0+cSFa4xlizJqqrVx1TBjmvaMF1zhz72NcUUrVd58yxN7y6dEFz6JCjZ1Kj0PBDnR/4se6PHA4+TPO1zbmwcyn+TZrg37IlrkuXYqxVi5AtWwj/9Vcip01Ddf58ipkRHuPGoXjwAGO1avaU8TQ0IJxIEro//8RYty5RP/yAqVw53GbMsKcMvsC2NP/8g+eIEXgOG2a/qn/4cNqqU0sSrgsXYqpQgZB//8WSJ0/ybACrFc9Ro7AWLEj04MFo9uxB888/TptZf209Lda14FH0PZaVHc/Xlb9GIVc4LSMPDiagdm0CK1RI8bOWeHH0yd87FAqiRo9GeesW3p9//vR0/YSxweYyZXi4bx+WQoXwGjbsuSmr2u3bsQYFOTVQzQkX1xNjSg3VuXP2YnCJF0gUCozVqqHZv58auWqwP+w9Ru6CNbprVPH8ncXlQf3kscFoRLNrF4a33kJydyf200/R7Nnz3ItNHt9/j6RWE7ZsGfEffIDr0qXJhgm4T5mCzcsLY9WquE2blqbe0qdRHzuGzGrFlFB8CHD0zCb2LMmionCdNw99y5bEv/MOLr//nua5MeXh4Xh9+SV+zZrh/sMPqRrmot6zB+9PP8Xl11+f+pvoungxpvLliRw7FvWxY6hOnEhTXOlNdfo07uPHYy5TBvWRI/Zx7inwGjQI9alT6Nu1Q7d2LX6tWjl+J16W++TJBL75JoF16+LfqJH9u/6McwrlpUv284RWrewX/A4eTPcGt/LSJUzFizH9xHRKqfLw9ok4x3zirvPm4fPxx/i1bZvs3ASwZ5ok/j+tc5CbzU4XPLObVDcUc+fOzdGjR/n000/p0KGD0+1lXb16laCgIAIDA1EqldSsWZMjT6QJHj16lLp16yKTyShevDhxcXFERESkat3szNGjeOaMvdH4ZCVIjQZ9Qi9fYkXTROYyZZAZjWj27kURFobpyWpvOh3Gxo3RbdiALCYG1bFjaDdudLoSLouNRX30KIaEk3ew92SpDx1CFh2N9r//gMcnkrbAQCx58zqVBNccPozN1RVzqVKO+6K//ZbYjz4i9qOPiEwy3s9cpQrGKlVwnTMHWVQUPj17IouJIXLyZOSRkcnGBuq2bEEREUHsl18SNXYs1ly58O7fH9WxY7jNmkV827aYqlVD37o1kkqFbu1ap/UV16+jPnnS6aQY7BXofqz7I/46f/rs6EOMyfkHyVKsGKEbN2Jo0sQ+RmvAAKImTOBJkqsrxiZN7Gk6qTiJk4eE4N+wIUGlS6eceiFJqA8dslfzS4hX37o18rg4tC+bqmE24zVwILK4OHSbN9s/C+lAt349NhcXR9U+Y506yMzmZCd5jvE9Hh72O2Qyon74AZnZjN/bb+M+bhzuEyfi/sMPuC5YgPbvv3GbNg3/pk1RXr1K+KxZhK1aRfgff/Dw8GHiPvsM3Zo1+LVp89STGdXp0+j++ovYzz7DFhCQ4g+q+vBh3BYutH/PrFZ8evZ07pGQJBTXr6eqt1F95Ai6rVuJ7dMHm48PAHFduyLlz4/7xIn2bd27h3b7duI/+ADUansV42LFXqgBJg8Px79FC/w6dMCtUV2+G1ODDps7oDbb+PdkJWZ0X0qBOg2cCjS5/PEHklxOfJJju7lMGaze3k7pp5p9+xzFJ+xvpgrzm2+m+UdUcfcuvp07g0pFyPbthK1dS3ynTi/0w2qqWdMeWwq9We6TJuE5ZgyeY8bg8d13To/J4uJwXbIEQ8uWRI0fj7lYMdxmz3Y6UfmgxAesbb0WjEZaXvyaxXkeETlxIsEnThAxbx6WhAaCoVkzDA0a4D5tmtOJqOLmTXSrVxPXtau96rNKheIFCzYpr15FefcuhpYtQSYjtn9/lDdvpv0qvMGA9yef4Nu9O7qVK9GtX4/nd9/h164dQSVL4vfWW3iOGIHyOUXr1Hv2oLp2jbiPPkLS6Yj5+mtU5845TSek3bgR1eXLRA8aROznn2MpWNDeyyVJGK1Ghu8bTp8dfXjD6M3JidG8/96wFFPUPcaNQxEejuTqiuewYclOJh3j8Z/oUQQw1a1L1Lffovv7b3w7dUrxuKDZsQPVlSvE9u4NOh1R33+P8ubNZw6JkOn19oZZo0ZOvyOOISBp6VE8ezZZ7KZatVDevIni2jV8/viTEYYabG2/jcI+xejWDt69O56b0Tcdy6sPH0YeH+/43Y7v2hWblxfuz+jFVu/daz829euHLSCAuE8/RWYwOBVLU50+jXb7dmJ79iT622+Rx8WlmB2SVuoDB5AS6iYksvn5YSpfHk3COYbr778jj40lpl8/4rt0QR4fn7b0RKsVn27d0G3YgOTqitv06QTUqWN/fU9J29bs2oVv165ot2/Ha8SIZOcPAIpbt1BduIC+fXv07dvb099TGs994gTa9evTliIuSfbhCe+/j/uECamuReD288/YvL0JW76c+I4d7Q3+Jy6eKc+eRfvPP8R88QWRP/9M2LJlyEND8W/Z0p7F8xKNNM2OHbhPmYL+7beJHDcOmcmEb/fuePfq9dTGuSahMJOpVi1MVauiCA5Gce9eisuqDxywN9zTcGFMHh6OIiSEtSUkLkde5vOqg0CjRbdlC7LYWNxmzMCm1aIIC7MPY3ryOY8dw+blhaRWpzjljeLaNTzGjEnx9cmMxpzRozh9+nTq1q3LpEmTmDp1qtPtZYWHh+Ob5Mqxr68v4U9cxQoPD8cvyfi8xGVSs252ljgmUW4wYM2dO8VlIn/8kYd79mBs1MjpflPCFA7uCSkaiT16ScV+9hnyyEiCypfHv00bfHr1wvuzzxwHCfX+/cgsFkdDEOwNRZnFgmbnTrTbtmEqWxZbYODj533zTacvkvrIEcyVKoHy8Wwskk5H9PffE/3998nKX8d8/TXKe/cIrFwZ9fHjRE6ZQnzHjsS/8w66FSuc5iZ0WboUS/78GGvXRnJzI3L6dBS3buHfpg02Nzeiv/3W/nxeXhgaNED3119OV7l169YhyWSO3q6kvLXezGo4izsxdxi4ayDSEwdOa/78RM6cScj27cQMGgQKRbJtgL3iniIszHEgfCpJsld+vXkTm5ubPRXkicaH4uZNFA8fOqXomGrUsKdqPK/XUpJwmzkT/8aNcUmhOqV2+3YUDx4Q/ssvWPLkSZ8KgSYTuk2bMDRrhpSQ9myqWhVJrXbqQZOHhqI+c8ZpfA+ApXhxwv74A1tgIG5z5+I2bRpuM2bgOWoUPp98gscPP2CqVo2Q7dudepdsfn5E/+9/hC1ZgvLmTbz790/xh89l2TIkrZaY/v2J69EDzcGDya6oui5YgNXbm4hp04icPh3VpUt4JKRkyWJj8fr8cwLr1CGgVi2UT441TEqScB87FmtgoCP9GrDPh5qQZqv55x/H+K74bt0ev41Vq9q/U2kZpyhJeA0YgPL6df7+6UveGObFvMDbfHkAznxzn7o7rxI9aBAxffvisnIlvl26oLx4EdfffsPQvDm2pMcbuRxTrVr2fZbwPmp27cLm6oqpUiXHYsbq1VFeuJDij6Xy6lU8hwzB/ccfHY/Lw8Lw6dQJmV5P2NKljlT6F2UuWxabh0eyapCy8HDc5s8nvn17Yj/6CNfffnMaS+SyYgXy6Ghie/YEuZy4Tz9Fdf58srT88j5lObzSm5oPNXxSO4x+Bc5gcHvi4p1MRvTQocgjI3FL0hB0nzYNlErHRQJ9ixbIly1LnglgseA5ZAh+zZs/tRBK4nfHWKcOAIamTTGXLm1vCCS50Kc6cgTXOXNSnrzcbMa7Tx90W7YQNXIkwefOEXz+PMEnTxK2aBGxvXsjubuj+/NP/Js2RbdmTcpvOuC6aBFWX1/0rVsDoG/bFkuhQvYLezYbWCy4//QT5hIlMLRqZX8fPv0U9cmT3DuwmbYb2vLb+d/oU7AzuyY8wK9qY8zlyuH5v/859RrJg4PRbdhAXOfORA8fjurixWSvTXXmDNaAAKffpKTiPvmEiGnTUB89il/btvax8km4zZmDJXdu9K1a2d/j+vUxNG6M+88/P069liT7sTnhu6BbswZ5bGyyi7XIZFhKlUp1j6L80SMUISGPi84l0LdogSST4dupE8rbt4n78ENK+JRgbZt1TL1WkqOqhzRa1YiZJ2ditpnR7tplr75au7Y9XDc3Yj/7DO327aiTZAU4mM14jh6NJV8+YhOOTZYSJTDWqYPrr786GihuCb2JcT16YH7jDcxFi6bYeEorzf79mMuVcxQBSmRs0AD1sWMor17Fde5cDPXrYylb1l7sxs8vVfMaJ3KdN89+PvHTT4StWUPIli1YihbF6+uv8W/WDLepU+3ft4RjrOrMGbw/+QRLsWIEHz+OqXx5+7nUE8fgxIwsQ6NGSB4eGBo1sp9nJGkQqvfvx691a3z69MFz+PDUBWyz4TFqFF6DB6O4exf36dPx/Oab564mf/jQcaFR8vS0X/CwWJJd6HCfOhWbh4e96B5gql2b0L//xlyqFN4DBuDTvfsLjTeXRUXhNXgw5hIliPzpJ+K7dePRjh1EDxuGdutW+3jqFLIV1Pv2YSlQAGvevI4LJcoUvjeKa9fw7dQJrxEjcJs2zekx5fnzeH/8cbJMBbD3JkrAZN0RCnoUpHXJdzDWr492yxZcf/kFRUQEYX/+iTUw0Kn3MJHq1CmM1aphLlXKMY44KY8JE3CbM8dej+HJ9ySbj1FESqXu3btLNpsttYunyf79+6XZs2c7/t61a5e0cOFCp2XGjRsnXbhwwfH3t99+K127di1V6yb6559/pCFDhkhDhgyRJEmSjEZjlrtZrVbn+wwGyaZSSRJI1lat0rY9g0GyFS8uSSDZ8uSRjAZDisuZ/vhDsnzwgWSeNUuyDB0qSSCZf/9dMhqNkqVXL8nm4iIZo6MfrxMfL9n8/SVb0aL2Zb/91ml75h9/lCSQjNeuScaHDyWbXC6ZR45MU+zm+fMla716knn+/MdxHjtmf76xY+33nTlj//u775xfz7ZtkmXwYMl45ozzNn/5RZJAMu3Z8/j9KVZMstav/8xYJu6ZKDEa6dsd36bpNThuUVGSzd1dsnz44bP3/YwZ9tczZYpk2rXL/v+ff3Z+DXPm2N/bkyed7rd89plk0+kkY1jYU7dvWrHC/lnw87O/D3//7fz8TZtKtrx5JWNcnGQZOFCyqVSSMTz8+a8vIkIyjx0rWevXlyzdu9v3e+Jzrlxpf671652fq359yfrGG49f16JF9uX270/V59p4755kOnBAMl648PzP0g8/2Lf955/Oj0VHSzZvb8nSoYP97xs3JJtcLlm+/vrxMrduSTalUrIMGPD4vf70U8kmk0mWQYMkW9Gi9nX69JFsQUGStWxZyRgfn/L7v2aNfZ/OmJF83xsM9m25udm317Wr82tYsMD+Gk6cSL7t+HjJ0q+fZK1WTTIvWeL0PYxVIfUfW1eSjZZJhX4uJG0/vFIyT58umX/5RTKGhDxedvFix3HG5u6e7LtjNBol86xZTp89W6FCyY5Jpm3b7HGuXeu8fmio/Zih1Uo2mUyyBQRIlqFD7a9Zp5NMO3a82Hcrpe9Ry5aSrUgR59gTjkmmo0cl4927ks3NTbK8847j/bMVKiRZa9R4vE5YmP0727mz83bmz5ckkPSLf5UG/j1QYjRStXnVpOuh15PFYXnvPcnm6ioZb9+WjKdPSzaFQrL06fP4vdq82R7TH384P8eYMfb9oFLZX0dMTPLX2Lq1ZCtY0Pm9X7368fH4wQPJ8t57iUnskgSS5b33JOODB48/Mx07Oo43z3xP792TrPXrSzaFQjJt3Zr88UuX7N+HoUOdX0fi8XbFCsmccGwzLV/u9B6vqaiTPEeqJK8JXtKqs6skS+fO9uPYzZuSaf9+e9z/+9/j93ToUMkmk0nG8+clY0iIZFOpJMvAgc7vTdmykrVZs+d+Tkxbt0o2Dw/JWrGiZIyKst+3d6/9PZkwwXn5M2ckm0YjWcuXlyz9+km2woXt+yh/fsnSu7dk8/WVrFWrpvgba+nXT7JptcmOC9YbNyTjuXPOMa1da3+f/vkn+Xa6d7efB1SoIBljYx+/z+PHS3fdkd7+pZnEaKRys8pJBxuWlKy1aztvIzxcshUpItmCguz7MUk8lsGDUzxGmv76y/5+zJ8vmQ4dsv9/1KjHz/3NN/b9cfPmi39nw8Lsx9ikx93E2+XLkk2hkGwuLvb4du9+HPNHH0k2Dw+n9+Kpt1On7Pvv7bed95HBIJmXLJGslSo5vie2wEDJ2ratZHN3l2z580vGGzfsr3XJkpR/y5o0kWxFiz5+z5Ytsy+3aZPju2YtX16yFSggWbp1s+/D06efHW9cnGT58EP75/+LLySjXi9ZvvzSvt2dO5+5rnnsWPtxOslzWNu2lWxeXo/PD06eTPE7azQaJaNeL5knTZJsOp1kLVNGMkZGpvxcDx9K5h9+kMwLF0rGuLjH++XDD+3HihR+yxPPQSxffeX8WHy8ZPPykiwffWT/OzQ0xXNLo9EoWb76SrIplZK1Zk37b1Xi71h0tGQrUMC+Dz08JOOjR87vy88/S38XRWI00pzDc+z3LVzo2O/Wli3t23/nHclWoIDz88bG2j+jQ4ZIlg8+SP640f57KIFkbd8+2WPW1q0d5zvJzvGzyO1ZlM9vStrVr1+f3bt3U++JK/7pwdfXl7CwMMffYWFheCeUtU66TGiS8WmJy1gslueum6hx48Y0btzY8Xfok+PdsgA/P79kcQUEBaG8c4f4wECi0xizrk8fPIcOJfqLL4hP8j45qVfPfgOwWvHbtAnF4MGEVapEwJo1GOrWJSImBpJc2XXr0QOPH37A5uJCaNu22JLEpSpRAn8gdvt2JI0GX5uNyPLlMaUl9hYt7DeAxPWCgvCtVQvFrFmEdumCx8yZqJRKQlu3dnp+ypSx35KuC8iqVSNIqcSwbBkxhQujOnUK/ytXiOrZk/hnxNapUCcOFj3I6N2jKaAtQJMCaZ/42LNtW1yWLyfk88+x5cmT7HHl2bP4Dx6MoUEDwt97D2Qy/EuVQlqyhND33nMs57V9OzIfH0L9/Jxem7ppU/zmzCFu+XL0bdsmD8Bqxf9//8NcrBihf/+Nf/36SIMHE/r33yCXI793j8B//iG2f39iIiPRVK6Mr9lMzN9/OxVneJLi5k18undHeeUKprJlUR48iGLDBsIXL8ZcsSI+s2Yh9/cnpEIFp3jdatbEY9w4ws+exRYUhNdffyHz9SUkXz6n5Z4pf377v89b/oMP8J83D775htAaNRzjeLUbN+ITEUFkmzYYQ0NBrcanQQNUv/1GaN++oFTaq9taLIS2b4814XlkX3+N97VraCdPxpIvH5ErV2KqXh3tG2/g07s3cXPnon//fecYbDb8R4zAUrAgj1q1Shazn58fkbNm4TVoEDZ/fyKGDEFKsoyyWDECgNgdO9A/MU7ZbcYMPKZNwxoUhLJLF2L37cNUoQJH5n5Nr6+03DLvplvpboyoOgJXlSuP2iesaDI9jqNRI1Rr1qDdsQN9ixZYfHySxaioVIlAQL9+PYaoKAJv3CDqk0+cvzuFC5NLpcK4bRvRCcWrEmNUh4QQsmEDqFR4fPcdmgkTsOTNS+Qff2AqUSL1+/05XKtWxXPTJiKOHcNaoIB9LPGCBZjKlyc0Vy4A3D/5BPeffyZ8506Uly7hfeMGEcOHY0gSg2f79rgsX86joUORfHyQ6fUEjByJqUIFwhs25itZE4q7FWfgroFUXViVOY3mUCPX44nVFV98QcCaNVj79kUeFoak1RLSs+fjY1XZsuTKlQvL4sVEJBx/ZbGxBP74I4bGjYnv1AmfHj2IXbbMnmKayGIhaNcu4lu1Iirpe1atGl5t2+IyahTSuHFgtRI9aBDxnTrh8scfuP/8M+zZQ/TQoWi3bkX9999EDx1K7PvvP/e9l82di1+rVsg7diRk+3an3jr3qVNRyeWEtG/vfBxu1Aj/okVRfPyxPSulenXCateG0FDMNjPjDo9j3tt6Kt+HmV0XU/CBDvkffxDbuzcxKhUUKID3W2+hmTqVsI4dQaMhYO5cDE2aEOHpCSYTPjVroly3jtCvvrLHqdcTdOECsQ0bEvO8z1PZsmimTsX3o48w9+lD1MSJ+IwahcLLi5B27Zy+f/j4oJk7F69Bg5DPmYOxenVM776L+sgRNAsWYM2Xj7BJk7Cm8BurK1QIb4OByCNHsBQtCth7q/zatkVlNhO2dCmmhJ5h9z17UMrlhBYo4Pz8AKNGoa1dG2O1akhJeuxV5cqRJwZ+MbzN2sbv8b99w6lZ+xG9zBX58v5N3NRujmWV8+bh07UrqmbNkFQqrHnyICkUKK5dI65TJ6Jq1XL+LFSsiH+pUshGjwZPT6ze3oR88IEjNmXDhgR89x3xS5YQ/9FHz3y75Q8f4jZzJvLISOI+/dQxhlTz77/4WixEVqxoPw4n5eqK64gReIwfT0z//sQUKeKIT1uzJj6LFhG9davT2MZkzGb8ElKiH40eje3JfdSgATRogDw0FM1//6HZuRPNwYOYqlQhasIErGq1/Tlr1SLQ1xfL3LlEJKTIyvR6gnbvJq5r18fnZlWrEuThgfmXX4isUAHdihV4nzpF+KxZmOrUIXDFCqSffyZ0zJiU4zWZ8P78c9SbNhH91VfEDhgA4eHIPv+cgMWLsY4ZQ/jvv6e8riQRsGABxqpVCfP1dbxXqu7d8V+3Dv2sWcT16IHXt9+i1GoJ6dzZ+TubqFMnNHny4NupE8aRI4kZOtTpYVlsLH5t2jhS0o2//krEzJmo9+7FZ/FiYr74gpgCBZIfV2rXxrNjR1x+/pnQ997Dmi+fPb5Tp/CPjCT6zTfRJ6wTkD8/5qNHiXhiG/4bNmCuXZuYwYPxb9nS/po++QSXJUvwunWL6KFD8ZgwgfiFC4n/8EPHep7HjzO2voLcroE0C2pGaGgosnr18KlRA3loKOHffIM1NBTXsmXxXL2a8AsXsPn7A/ZezECLheigIJRmM263bxN6755jeIQsNpZcN24AYL1wIdk5vE9sLHK5nNDQ0BTP8bOC3E/JWIQ0pJ5evXqVOXPm0L9/f0aNGuV0e1lFihThwYMHPHr0CIvFwv79+6mcJFcdoHLlyuzevRtJkrh8+TIuLi54e3unat3szpbQ8H0yHSU19O+9R/DVq8R37Zq6FRQKosaNQ/7wIf5Nm6IICXEaq5QotndvIseNI2zFimRTdpjLlEHSalEfP47mwAEkjcZe9jodxH38Mcp793CdPx+XZcswNG2K7YkT56eRvLww1q5tL48uSehWrULSaNAnPQlLgUwmY2KdiZT1K8sXO7/gamTai5nEfmGfq8dr0CC0W7bg8c03+LZti+8HH+D15Zf4duwIfn5ETpnyeOxhmzaojx59XEpfklAfOGD/UXxiPh5TlSpYcufG5Y8/Unx+3dq1qK5cIWbQIPsYokGDUJ8960jdcVmzBpkkEZ/QKHWkh6aUppRAcfMmfm3aoAgJIeyPPwjdupWQrVuR3Nzwfe89PEeMQLtzJ3Eff+yUdgzYCy+Bo/y55r//7Gmn8lQfklJPqSR2wABUFy86jbt0WbkSa1CQI30PIL5TJ/t0Izt2gMWCy++/Y6xdG2vhwo5lJBcXwhcvJvj4cR7t3es4STG0bo3pjTfs466eGDuh27AB1YULxAwe/NRJdy1lyhD699+EL17smP/N8VjhwvaUyifnCNTrcZs9G0Pjxjw8eJC4rl0x/Dab/lt60byTFZV/bta0WsO4WuNwVTmndT3JXKkSMYMGYXlKdWtrvnyYixVDu3mzY1ySIaEI1eMXqsNUoYKjQAAkjP+bMwdDgwaY33wTc7lyhK1axYPLl3l08KCjGnJ6MSQW/0moQqk8dw7VhQtOx7HYXr2w+vjg3bs3Ht9/j7lMmWSFqOK6dEFmNDrmQXWdNw9FcDDRI0c6vn+tC7dmU9tNeKg96LCpA/POzHOkqFuLFCG2Tx90f/2FZv9+okePdpx4AKBQYHvvPbQ7djjGyrksXWof89y/P4bGjbEGBqJbvdopLtWZM8ijozEmpBU6yGRE/vgj0SNGENe5MyGbNxM7YAC2wEBiBwwgdONGbO7ueH/5Jdp//yXqm28cx6XnkdzciJg/H1l8vD2NOyH9ThYbi+sff2Bo1iz5BTClkoiFCzGXLYuxenUiZs0CmYx7sfdo/1d75p2Zx8f53mXPL1D259/wHDECm5cXsX36ODYRM3Ag8pgY3BKO94qICOI++8zxuKFpU5TXrzsKTKnOnrUXRUnl742xaVNiPv8c16VL8enYEe2//xLbty+Sm1vyZZs04eGJEzy4fJnwZcuI7d+f8CVLeHDlCo9278aa0Ah8UmJBG2WSdDX3cePAzc0+BVCSatyqkyexFCuWLAUTALXaXpwmYWyzY/tly2Jzd0ezbx9vFXqL/X6j+OwozNGcpMGqBmy//XguQkvJkoTs3EnE9OnE9uqFqXx5LEWKEPn99ymOsUcmI2r8eBRhYSgvXiRq7NjHY8ixj9U3lyiBbtOz5xlV79mDf9OmuP7+O9rt2/Fr29aRHq79+29sbm4Yn3IciOvViwc3bhDz9ddO9xvr1EFSKp8+jyTYCyiNGGFPOR037pnnCjY/P/TvvkvkzJk8PHaM8N9/x5r0M61Wo2/bFu2//zpS59X79iEzGu1jUxNptejbtEG7aROKq1ftwyMqVcLQpg02Hx/i27VDvnx5ioV4ZHo9Pj16oNu0yf79HDjQcayRdDriPv0U7Y4dKJNUgk1KfegQyhs3iO/Y0el+c5UqmCpVsqff7t+Py9q1xH38sWOcfEqM9eoR364drvPnJ6uq65YwBCNsyRIiJ09GfegQATVr4v355xirVCFm4MCnbjdm4ECQy3GbNctxX+LY96THNHOpUsnG9sqiolBduYKpalXMFSpgqlzZPie3wYDbjBmYKla0j38uUADtE+mnB0KPsTevld7leqNW2NNAJZ2OsFWrCPnvP6x58zqeF3AaRqJMqIRqKVwYS8GCyCQJZZIp4pQJsxJYg4JSnLM7u6eepvqsrFGjRvTq1Yt27drRoEEDp9vLUigU9OjRg7FjxzJgwABq1KhBvnz52LZtG9u2bQOgYsWKBAQE0K9fP+bOncsnCXn0T1v3dRL1/ffoW7d2vqqcFmmc5NNcqRKxX3yB8t49DI0aOYqQOFGpiO/WzT728ElqtWMQunbbNvsA9SeL8LwgQ5MmmCpXxvP775HFxRGTcCU5tfRt2qC8eRPt1q24rFmDoUkTpIS5Kp9Fp9SxsMlC1Ao13bd2f1wiP5WsefIQNW4cmn378Pn4Y1yXLgW5HFlsLJpdu7CUKIF50yanE8nEcZOJ1RcVt2+jvHcPY0LBDidyOXEff4xm377kE46bzbj/9BOmsmUd05vo27V7PIbIYsFlxQqM1aphLVgQsB9ATRUrJhvr5WAw4NO9OzKrldD16x1jC61FixK6fj2WokVx/fVXjFWr2sd9PcFSujTWgAC0O3agOn4cRXi4o9ppRtC3aYO5aFHH65U/eoRm5057EaMkY0sNjRphDQjA9bff0G7ahPL+fccYDicymb1XJWkDWCYjdsAAe1GRpOO5zGbcJ03CXKoU+jZtXuwFyOX2BtgT1fS0O3far9B//DGSUskvPSpTcpg7K8orGPDG52x7bzvVclV7ykbTTv/++2gOHcJj0iSMtWs7j2NMYKpeHdWZM47xtS6LF6OIiCBmwACn5SRX1wyZgNia8GOeWNzJZdUqJLXa6b2XPDyInD7dPgbHYiHip5+SXaSwlC5tPxFZvBjl1au4TZuGvnnzZL0Xxb2Ls7ntZprkb8K3B7+l786+xJvtVfNihgwhdNUqQv7+216g5wm2Dz5AljCOF5MJt/nzMdaoYT+uKhTo27Wzn5gmKbqSePHGVCuFeQW1WmL79CF6zBgsT1xYNL/xBiFbthC6Zo39okKvXql/U7E3CqK//RbNnj24zp0LgOuvvyKPjHRq3DmtU7QoYatXE750KbbAQP69/S9N1zTlcsRl5jSaw3fNp2Lp9jEuq1ejOXyY6FGjnC6SWEqXRt+yJW5Tp+IxejTGGjWcLiwYEzKEEqtwJ1abTJwyJTViBg8m/p137JV+27dP8XjlIJcnv9CjUj3zc2wpVgxJoXCMU1ReuYJ2926s/fsTM2QIqitX7I0dSUJ16hTmhNoCqaZU2uc5TThW+x88yYx/NaxttgJ3tTvdtnaj1/Ze3Iu1j8WU3NzQt29PzLBhRM6aRcSiRfbewKeMsTdVqcLDAwd4tHt3sirDAIaWLVEfPJhsPJssMhLd8uX4dO2Kb8eO2Ly9Cdm6lUd79mApUACf7t3RbNuGbsMGDG+99exzhBTeX8ndHVOVKilWbVfcvYvH6NEEVq2K69KlxHz+eYqxp5W+fXtkRqNjLk7tjh3YXFycagaAvfaDzGIhoEED5CEhRI0Z43gN8V26IIuPTz6202bD+7PP0Pz3H5ETJ6b4/Yzr3h2bm5tTIyspl6VLsbm728cBPyF6yBAUd+/i9957WIOCiP388+e+3pivv0ZmtToVQVLcuWMf7/3OOxgbNCC+Y0dCNm7E0Lw5cZ98Qvhvv8EzGkW23LmJf/99XJYvdzSqNLt2YS5d2un8x1KyJMobN5wKx6lP2SvQJ14Iiv3kE5Q3b+L3/vso79yx/8bIZPaxrQcOOI3XHp/rMv4WDR1LOjein2RJmGs8cUo6eKKhmJDJpLhzx+k9ATBWq4YiIiJ5hWST6ZnvSVaX6oZi/fr1qVChAm5ubkiShM1mc9zSQ6VKlZg6dSrTp0+nfXt7blTTpk1pmnDFWiaT8cknnzB9+nR+/PFHihQp8sx1XyfmN98kYs6cFK9yZpSYIUMIPnGC8F9/faGTOX379qguXbJf3Xr33fQLTC4nbNEiYgYOJGzlyjQXv9C//TbWoCB8Pv74mSc4KcnjloeFTRbyIO4B3bZ2Q29J23QU8R078mjfPkLXrSP47FnC1qwhdONGHp44QdiqVZBwgEpkLVAAU6VKjkaHoypYSg1FIL5zZ6z+/niOGOFUHc118WKUt27Ze7MST4aVSmIGDEB1/jx+77yD8sYN4p5IHXKc8Kdw5dNt7lxUV64QMWOGI50qkS0ggNC//uLRjh3215VS9UqZDEOLFmi3bcNj8mRsLi7Je6fSk0Jhr8R45QquixfjNncu2GzEP5kiqlLZr9r+9x8+ffpgLlUKQ5J09ecxNG2KuUwZe+GShF5Ft3nzUN68SfSwYS/VY2quVAnlxYtOpbu1Gzdi9fHheEkv3t34Lv129aegb3G2vvMPg6oPc8yLmF7iunfHXKoUNhcX++tJgalGDWQWi/1qe3y8vcezXj3MCVPnvAqGhg3R7NuH/OFDdGvXYmjcOFkvrbF+fYJPn+bh8eOOiqVPivniC5Q3bxJQrx6oVEQ9US01kbvanflN5jO0ylA2XNtA6/WtuR51HWQyTDVqYH6y4nQCqVIlzCVL4jp/Pq6//YbiwQN78YkE+tatkVksTkU7NHv22PfBE5kcqaLVYqpW7amFXp4nvnNn9C1a4DFhAu7jx+M2ZQqGJk0wP6cHLzHV9MOtH5LbNTd/t/ub1oXthW+iR40ifMECQletQp8kzT5R5IQJGJo1w1ivHhFTpzr9Hlnz5sVcqpSjoag+fhxL7typzjIBQKkkcto0Hty6ReT06cmyH16aRoOlZElHNoDL0qVIKhW2jz5C36YN1qAg3ObMQXnunH2qqWelUT6FsVYtlDduIL93D82OHZiqVKFK/lpsabeFwW8OZvvt7dT9sy6Tj012XMRIC1tAANZChVJ8TN+qFTJJetzwkSRcfv2VwCpV8P7qK5RXrhDbty+hmzdjKV4cm68vYcuWYfP3x/ejj5CZTMT27ZvmmMA+1ZLqwgWnHi/l2bP4N2yI62+/YapQwX6+8JRjVVqZy5fHUriwvZffZkOzfbu9F+yJ3zhroUJETJ+OuXx5IpPM9Zq4DVu5crguWeJUYM39p5/Qbt9O1JgxxHfunOLzSx4exHftiu6vv1Ak6dECe8Eu3aZN6N95x2ku50Sm2rUJ//VXYnv2JHTVqmRFBFNizZ+fuA8/xGX58sdzRo8fj5RQsCuRpUwZIqdOtV/oScWF99i+fcFqxW3ePORhYaiPHHGqrA9gLlECmdWKMklxOdXx40gymeP9NLRsibFOHdTHjqFPMpWUsWZN5Hq9YzqYg5e3sSOfmQHyeuiUOp7F5u+PzcvLqdKz8vp1e8VTHx9HumzShqIyoSBWYseJ4smLJiYTUk6YHuPw4cP069ePP//8k3nz5rFlyxbmz5/PniSVC4XXiy0g4IVPbOPfeQd9s2boW7VKeczcS5B8fIj56qsXS1nTagmfPx9j9epETpqU5qu3VYKqMKPBDE48OkGfHX2w2NI2b5k1Xz5MVao4KoA+T3z79qguXEB58SLarVux5sqFJWEi5idJ7u5EjRuH+vRpvHv3RhYVhfLyZdwnTcJQv36yqrj6du3Qt2iB+uhR9G+9lazH2li9OjKbDfUT083IIiJwmz4d/VtvPb0XUKWyX5l7ylVqgNgePUAuR7NnD3Hdu2f4hRBDixYY6tfHc+RI3ObMIb5DB6xJLjg54vr0U+I+/BBjtWpEzJnzzNeQjExGzIABKG/cQLdqFcpz53D76Sf7j9gT739amSpWRGazPZ4LVK8nbs82en/oS/MNLbkUcYkJtSewrs06SviUePbGXpDk4kLIli08PH36qb02xho1sHl54bJ6Na6LFqEIC0vWm5jR4jt0QGYw4N+iBYrQUOKSVJB1otU+80qvsXFjImbMIL5DB8JWrkxxfHEiuUzOFxW+YOlbSwmOD6blupb8cyt59T0nMhnRCb1KnqNHY6xVy3GyAwknpvnyOVJ9ZbGxqA8ffua44QwlkxE5aRKmihVxnzEDa6FCRD5n4vN7sfd4d+O7zDw1k84lO7Ph7Q0U9nycyo1CgeGttzDVqJHi+pKPDxELFxL+++8pvv+Gxo3t00GEh6PZsyflntZMZqxZ0z5XYEwMuoRMFvz9Qa22z3G4bx+eo0cjyWRO+z/V209Yx3PMGFTXrjmGU6gVar6s9CW73ttFs4LNmHJ8CnVW1mH1ldXYpPS5yG8pUQJjjRq4zZmDPDwcz+HD8RoxAlP16oRs3syjAweIGTbMqfFiCwwk9M8/ienbl7Dly+3zRr6AxDTzxAsp8pAQfD76CMnDg0e7dxOxcKFjjuZ0IZPZe58PHMBt5kyU9+499fzG0KYNoRs3om/XLtk2bD16oDp3znEs12zbhvuUKcS/9x7x3bs/M4TYjz8GhQLXefOc7nf9/XdkRiNxXbo8dV1j48ZEjxr11EZ/is/Xrx+SRoPnqFFodu3CZf164nr1SjGbJLWsBQqgf/ttXBYvtlc2tliSVQxO7ARQJUkBVR8/jqVo0cfpz3I5Yb/9RshffxExd67jIlLisURz4ACSJDH56GRyxUDXQskvRCUjk2EuWdI+B3kC5fXrWBKGn9gCApDU6sdDggDFvXvYPD0dF82fTD/NMamnK1asoHfv3kycOBGtVsvEiRPp2bMnhdLwgRNyEJ2OiF9+sX95s9gXxFypEmGrV6eYCpYabxV6izE1x7Dt1jaG7xuebNqM9GRo0wZJpcJzxAg0//1nT597Rg+voUULor79Fu22bQRVqoR/kyZIGo19/MmT68nlRMybR/Dhw0TMm5fsooC5cmUkpdJpvBlgTxnR6585DiE1rEWKELZ8OVGjR9t7OzOaTEbErFnEfvwxsb16Ef399ykvp1IRNX48YWvWJOstTQ1Ds2aYKlfGa8gQ/N5+G8nbm6ixY18yeBy9NqoTJzBZTSz56xtKfqJnoddVupfuzt4Oe+laqityWQaM80xKqXz2hQ61mrjOndFt3IjHuHH2HqcUpubJSJayZYnr3h1FcDDxHTo4pgl4Efp27Yj86afkE7g/Rb289djSbgsFPArQfVt3Jh2dhNX29LnTjE2bEj5rFjH9+xO+YIHz91Qmw9CyJZo9e5BFRdnnrjSbHWN8M4Pk5UXY2rUEHz1KyNatz+y923ZrG03XNOVC+AVmNZzFxDoTn3tFP60MzZsjs1rx+vJL5JGRzuPFsghjw4bIjEa8+vVDERbmlMkQ37kzVj8/NAcOoH/7bedxrKlkKVoUY82a6P76C5uXV7LpnvK652VWw1msa72OQF0g/f7rR6t1rfjvzn/p8vsVPXQo8rAwgt54A9fFi4nt3Zvw336zX4h9yu+VLU8eYoYPf3YhmuewlCiBqVw5+zg1vd6eKRQeTviiRY6en/QW160bNi8vPCZMwFKoULKxzalh69gRm06H2/TpKM+dw7tfP0xvvEHk+PHPzeCy5cqFvn17+5jdhF4teXg4bnPnYmjcGEuS+arTg83Pj+gRI9D+9x++nTphLlr0hXuAk4oZOhQ0GnQbNqBv1cqR8pnIUrgwkkr1uGdPklCdOJE8e0GjSTb9ms3HB3OpUqgPHGDv/b0ciDvH8D2gKpG6Oh+W4sXt4w4TvhtJG4rI5Vhz50aZNPX03j2suXNjTcjyUISEOG1PZjRmufPgtEh1jkVoaCg1nrjiV69ePXr27MmHSSoLCUJO8FGZjwiOD2bGyRloFBq+q/EdsgwYb2Xz9SXu449xmzMHm1brmOPqWeI++QRj9eq4rFplL+TSo8fTr/7JZE/tJZFcXDCXL4/mwAEcyadWq33sYY0aTy16khamKlVSnN8zo0ienkQ/JX0w3cjlhC9ahPvkyfZxtAMGYAsKeunN2nx9MRYqwJqraxi9cjG3Y25TL1zJyI6bKBWQcupkZont1w/F3bvIo6KInDw5U2KI+v57Yj7/PF3e+7TK556Pta3XMnzfcH4+8TOHgw8zrcE0crnmSnF5w9tvY0jxEXv6qducOeg2b0a9bx82D490LwCUZjIZtlwpvxYAk9XE+CPjmXdmHmV8yzCn0RznXsR0ZK5QAWO1amj//RdrrlwYmjXLkOd5GcbatbEULIhu2zbMpUtjbNiQxMQ/yd2d0NWr0W3ZQtxTUg5TI2LqVNx/+sl+cfEp6X9Vgqqwse1GVl9ZzaRjk+i8pTNVA6vydZWvnSr2ppW5cmXClyxBmzBn7ov0ir4QmYy4Xr3w7tuXwGrVUISFET53bqov6rwIydub0BUrcFm+3D7X7YukFHp5Edu/Px4TJqD7+2+suXIRsXAhpDLTKOarr9Bu3Ih3375EzJiB5/DhyPR6p3TQ9BTfvTu2wECUly8T36VLysWW0siaJw8hW7ei3r8/xTGVqFRYihZ19Cgqbt9GER6e+kJVNWqgW/YHk4/EkcfiysfnLEQkFKx5HnOJErhGRyMPDkZydUURHOzU623Nly9Zj6I1Tx7H8Ab5k/MIZ/MexVQ3FD08PIiMjMTLywt/f38uX76Mu7t7uo1RFITsZmjloRgtRuafnY9cJmd09dEZ0liMHj4c8xtvYClSJNXpHpayZYl+yrirtEhMKZLFxyO5uKD95x+Ud+8SnYqJf3Mym48PUePGpd/2JBvbbm3jx47RnFffoqysOJuWK6lT60NislgjEewFMyKfUnDhlXlOYyaj6ZQ6fqr7E9WDqjNi/wiarG7CT/V+ommBtKXCmcuXx1yqFB7ffYcsJoa47t2z9NXpa5HX6PdfP06GnKRb6W58U+0btMr0KWb2NJHTp+O6YIE9DTArvjdyOeHz5+Py55/2NOgn0tmtRYumqrjIs9hy5yYqFRdl5DI57xV/jzZF2rDs0jKmn5jOuxvfpXbu2vSt0Jc6ueu80O+YsW5djHXrvkjoL0X/9tsoL1xAu2MH0aNGpdzoSGeWsmWfnpGSSrGff47N09NeH6BHD+cKq89hzZOHyClT8O7Th8CEDpzIiRPTvTcxKcNbb8Fbb6XrNq158yafSioJc4kSqI8eBXCM8TWlVEAxBaaaNdm36xeOhhxj+oWCKEr4pHoYiaOgzaVL2BLSXJM2FC358qFNKLQJoLh/H1OVKtgSLtDInmgoZvcxiqluKDZq1IiLFy9SvXp1WrZsybfffotMJqPVK/hSCkJWJJPJGFV9FDZsLDi7AEmSGF1jdPqn/ikU6T7OM7VM1asjmzED9dGjGOvWxfXXX7PsVfvXkclqYu3Vtcw+PZsrkVco7J6b5UsiaBcVh/quhUdTk09dI2QdMpmMDiU68Gbgm/Td0ZePtn3ER6U/4n/V/pf6xpNMRtTYsfh06YItKIjYL7/M0JhflCRJ/HbhN8YcHINWqWVuo7m0Kvxqzg+sefIQnQ5TdWUkS+nSRI8endlhOGgUGrqX7k6H4h34/cLvzDo1i46bO1LapzS9yvWiTeE2jmkEsjSZjJhhw9KtYM0rI5M5zfOXVoaWLQnZtAnN3r326SJS2YDKTiwlSuCybh2ymBjUR45gc3NLdQFDQ9WqjGwI+W0efPr3A0ydUl+ULnGKDNWZM1gTUuvNSXsU8+ZFERoKej0yqxV5ZKS9R9HVFUmhQJ6kSjXYG4pPmxYrO0h1Q7FtkhPVevXqUaZMGQwGA3lT2ZUrCK8jmUzGt9W/RY6c+WfnE2YIY0q9KdnjBzYVTFWrImm1aLdswZorF5o9e4gePPilKwNKkkS0KZpYcyzx5nj0Fj16ix4bNpQyJXKZHIVcgUahwUPtgZfGCxelS4b02GZFj+IfseLyCn499yvB8cGU9inNjAYzaF2oFYGbuqA+t5f4tm2fWq1TyFqKehVlw9sbGH94PPPPzudg8EGm1JtCA7/UTQljqlaNh0eP2tOXUpme9ioFxwXz1e6v+O/uf9TPW58f6/5IkOurT/kV0k6n1NHzjZ58WOpD1l1bx5zTc+j/X3/GHxlPxxId6VC8A/ncX68px14XlrJlX+vfgMQUYtXJk6gPH7b3Jqby3OOf2OMcyQML1kejiYe4p1SLT4nk5YWlYEFUJ08iK1wYSa3GmjAtBuAY/6q8d89R3dySN689i8XTM+emnj7J70VKcwvCayixZ9Ff58+4I+MIM4Qxv/F83NXPLz+d1UmuruhbtEC3ahWq06exuboS/4yqakmF6cO4HnWda1HXuB51nRtRN3gQ/4CQ+BBC9CEYrcbnbyQJhUyBh9qDQJdAcrvlJpdrLsetgEcBCnkUItAlMNs2Jq02K3vv72XJxSVsu7kNi2ShVu5a/Fj3R+rlred4XeG//orq2LHMH6cmpIlGoWF0jdHUzVuXQbsH0XJdSwbXGEzPkj1TNY1JasrOv2qSJPHn5T/57tB3GK1GxtUax4elPsy238GcTKvU8kGJD3i/+PvsvLOThWcX8vPxn/n5+M/UzlObD4p/QOP8jXFTv7ppuoSczVSlCpJCgW7jRpQXL6JPmAf6eaw2Kz8c/YFCVk8+PBWFzcsr2fQbz33uihXRHDiAPDoac4kSTg1Ua0IHmeLOHbBane6TPD1TTj3NiQ1FQRAek8lk9K3QFz8XPwbvHkyr9a1Y2GQhRb3SXjUzq4n56iu0W7eiPnGCyHHjUpy/LdwQzolHJzgdetp+CzlNcPzjEtEquYoCHgXI7ZqbwkGFCXQJxE/nh6fGE51Sh06pQ6vUIkeOTbJhlaxYJSsGi4FoUzTRpmiijFFEGiN5GP+QB3EPOBN6hhC9c3UxV5UrhTwKUdizsNOtiFcRPNQeGf5epZXVZuVg8EH+OfoPay+uJVQfirfGm4/Lfkynkp1S/PxIOt1LVfEUMlfDfA3Z8e4Ovjv4HRP2T2DN+TX8WO9HKgVkr9Sxq5FXGbp3KAceHKBqYFUm151MEa/k080I2YtcJqdR/kY0yt+IuzF3+fPyn6y4vIK+O/uiUWiom6cubxV6i0b5GuGnEx0GQsaR3NwwVa1qn3OShHGSqbD22lp7peW6UzDE3bHPdZnGhpq5QgVc1q5FERxMbM+eTo9ZkjYUE+q0JDYUbV5ezqmnNhsyiyVbj1GUSRlZ2z+Lu3//fmaHkIyfnx+hoaGZHYbwEvbd38dn/36GyWpiWv1pNCuYuvF8WXnfy+/dQx4R4UhzsdgsHH90nP/u/sd/d/7jdOhpJCRkyCjiVYRyfuUo61uWol5FKeJVhLxueVHK0/+6lNFqJDgumFvRt7gedd1xuxF9g9sxt53mCgvQBVDEq4i94ehZhCJeRSjqVZR8bvlQyNMwV+JLkCSJG9E32HtvL3vu72H//f1EGiNxUbnQMG9DWhVuRZP8TTK8+IeQNRyLOsZnmz7jQdwDOpXsxJDKQ/DV+WZ2WM8Ub45n1ulZzDw5E51Sx/+q/Y8PSnyQ8dOyvGay8vH+STbJxuHgw/x982/+vvk392LtE4yX8ilFzdw1qZmrJuX9yxPkEpQlepNNVhORxkgijZFEm6Kx2CyPb5IFpUyJVqlFq9SiUWjw0njhp/NDJX8148iy077PbJr//sOnSxeM9esTntBgfBaDxUDdlXXx1fqyqe2mFz4uyYODCXrzTQDCli1zLtRktZKrSBF7A1KScFuwgAfXroFcjk/nzsgjIwndtMm+rF5P7qJFiR42jNjPP8+y+z73MwolioZiFpNVP0RC2tyLvcen/3zKqdBTfFT6I0ZUG/Hc+cOy+r6/F3uPXXd3sfPuTvbe20u0KRq5TM6bAW9SL289queqTlnfslkm5dZkNXEr+hbXoq5xLfKa/d+oa1yNvEqkMdKxnFqupqBHQYp4FaGIZxEKexUmr1teAl0CCXQJxE3lluaTH0mSCNWHcjvmNrdibnEh7AJnws5wJvSM47lzu+ambp66NMjXgPcrvk98VHw6vnohO/Dz8+PG/Rv8dPwnfjn7Cy4qFwZWGkj3Mt1f2UlralltVlZdXcXEIxMJjg+mbZG2jK4+Gn+XtM/7J2T94/3TSJLEmdAz7L63m73393Ik+AgGq31yFz+dH2/4vkEJnxLkd89PAfcC5PfIT4AuAFeVa5qPo2ab2ZFJkvQWYYggwhjh+H+kMZIIY4Tj/7Hm2Bd6bT5aHwJdAingXoCi3kUp6lmUEt4lKOVbKl2/j9l132cWeWiovaJoKgrCzD09l+8OfceKFiuoneflMm90q1ahuH+f2C++SDa/ZUCtWpjLlQNAdfo0j/btA8C7d2+U584Rsns3YK+Amqt0aaJGjSKuZ88su+9FQ/EpRENRyEgGi4FxR8ax8OxCCnsWZkq9KVQOrPzU5bPavjdYDBx+eJj/7vzHf3f/41KEfeLbINcgGuRtQP289amdpzZeGq9MjfNFhBvCHzcekzQib0bdxCJZnJbVKXUEugTirnbHVemKi8oFV5UrSpkSGzasNis2yUaMOcZ+ImOIJNQQit6id2xDJVdR0qckb/i+QTn/ctTKXYtCHoUcJ05Zbd8Lr0bS/X418iqjDoziv7v/UdCjIP0r9qd90fYZ0hOfFpIk8c/tf5h0dBLnw89TMaAio6qNokrQq5v/9HX0unznjVYjp0NOcyb0jONi2PWo68nGoKvkKrw13nhpvNAoNSjlSlQyFUq5EovNgtFqxGQzYbAYMFjtQw7izHFPfV65TI6n2hMvjRfeWm+8Nd54a+3bT/p/D7UHKrn9eRRyBUqZEotkwWAxYLQa0Vv0RBojCYkP4ZH+EQ/jH3I96rrTb4FWoaW8f3kqB1amTp46VAuq9lIF616XfZ/VRBmjqLmiJhX8K7D0raUZ+ly+HTogi4sDmw2bpyfhy5YB4Pn112j/+YeHJ04AIA8JIahCBSLHjiW+e/csu++f1VAUYxQFIYNolVq+q/EdTfM3ZeDugby94W3eL/4+w6sMz5JX4RPTIhMbhvsf7Edv0aOWq6mWqxrvF3+fBnkbUNy7eJZIL3oZPloffIJ8kp3smm1m7sTc4X7sfR7pH/Eo/hHBccGE6EOIMcUQb4knTB/GrehbWCWrvTqrTIFcJsdN5Ya/zp9iXsXw0fqQ3z2/41bQs2CqCpYIOVdRr6Isab6Ef+/8y6SjkxiwawDTTkyjX8V+vF3k7Vf++bHYLGy+sZlpJ6dxIfwCBdwLMKvhLNoUbpPtv/9C+tEoNFQJquJ0LLVJNh7FP7JnVETfIlQf6tTjZ7QasdgsmG1mLDYLSrkSN7UbarkajVKDRqHBU+2Jp8YTb403nhp7gzDx78T/Z2S6s9lm5lb0Lc6FnePYo2Mcf3iceWfmMfPUTFxVrtTJXYfmBZvzVsG3RIGfLGLmqZlEGaMYXnV4hj+XJV8+tFu3Io+PJy7JNCeSuzuymBjH3zKTyf4fUcxGEISnqZ2nNjve2cHUE1OZf3Y+m29s5tM3PuXjMh/jrfXO1NjizHHsu7/PMdbwVswtAAp5FKJjiY7Uy1uPmrlq4qJyydQ4XxWVXOUogCMIr5pMJqNx/sY0yteIrbe28uOxHxmwawDfH/qeziU707VUV3K7Pf3Kb3p4GP+QPy7+wdKLS3kQ94CiXkWZWn8qbYu0zfTeTSF7kMvkBLkGEeQaRNWg7FmdWSVXUdSrKEW9ivJ2kbeBx7+XO+7s4N/b/7Ll1haG7h1K0wJNebfYuzTI10CM1c0k92LvsfDsQtoXbU8Z3zIZ/nyWEiVQJPQimkuXdtxvc3NDrteD2WxPlTXae9ZF1VNBEJ7JTe3GiGoj6FCiAxOOTGDK8SnMPzOfrqW60rlkZwp5FnolcVhtVk6Hnmb3vd3subeHow+PYraZcVG6UCt3LXqW60n9vPUp6FHwlcQjCEJyMpmM5gWb07RAU/be28ui84uYfnI6009Op3qu6rxd5G3eKvhWulWdDDeEs+XmFjbd2MTee3uxSBbq5qnLmBpjaFqg6Ssr9iQIWZmrypWmBZrStEBTJEni6KOjrL26lg3XNrDh+gYKuBegW+ludCjRIVsOycjOxh4eC8DXlb9+Jc9nrFfP8X9TpccVqyV3e40GWWwskrc3MrPZfn82biiKMYpZTFbNXxbS1/mw80w7OY3NNzZjlazUyl2LTuU6UdO3JgEuAen2PEar0Z468/AYh4IPsf/+fqJM9jl+yvqWpU6eOtTPW58qQVVEamQmEt/7nCkt+/129G1WXVnFumvruBZ1DbBXnayduzZvBr5JKZ9SFPIo9NxGndVm5Wb0TS5FXOLIwyMceHCAs6FnkZAo4F6A1oVb80GJD17ZxaucSnznXx9mm5m/b/zNonOLOPzwMDqljk4lO9GnXB+CXIOSLS/2ffo69OAQ7Te2Z2ClgXz15lev5kklCc+vv0bS6Yj+7jvH3boVK/AeOJCHBw5gzZ8f1Zkz+DdvTvgvv2Bo1izL7vssXcwmNjaWKVOmEBISgr+/PwMGDMDNzTnfOzQ0lJkzZxIZGWlPzWncmBYJE2/++eef/Pvvv3h42OdI69ixI5UqpW4+KtFQFDJbcFwwyy8tZ8XlFdyOuQ1AOb9yVA6sTKWAShT3Lk5Bj4K4qlyfuR2zzcyj+Edci7zGlcgrXIm8wrmwc5wNPYvJZs+Rz+uWlzp56lAnTx1q566d5cvw5yTie58zvch+lySJc+Hn2HF7B3vv7+Xow6OOwiEahYYglyD8Xfzx0fqglCmRyWSYbWbCDeGE6cO4H3ffaflKAZWokasGzQo0o4xvGTH+8BUR3/nX09mwsyw8u5DVV1ajlCvpWKIjfcv3dUoZF/s+/VhtVt5a9xYRhgh2v7/7udXlM5p282Z8Pv2UR9u2YSlTBtXRo/i//TZhS5ZgbNAgy+77LN1QXLJkCW5ubrRt25Z169YRGxtLly5dnJaJiIggIiKCwoULo9frGTp0KIMHDyZv3rz8+eefaLVa2rRpk+bnFg1FIauQJImH0kOWn1zO3vt7ORly0qlqpo/Wx1HBTafUYbaZMVvN6C16QvQhRBgjnLbnqfakpE9JKgVUctxSurIpZA3ie58zpcd+N1gMXI28yvnw81yKuMTDuIc80j8i3BCOTbIhSRIKuQIfrQ++Wl9yu+WmuHdxinsVp5RPKTFnZyYR3/nX263oW8w4OYM/L/+JQq7g0zc+5fPyn+Oudhf7Ph39fuF3hu4dyuyGs2lTJO3tgPSm3rMHvw8+IHT1akzVq6Pevx+/994j9M8/MdWqlWX3fZauenrkyBFGjx4NQL169Rg9enSyhqK3tzfe3vaiHzqdjjx58hAeHk7evHlfdbiCkCFkMhll/cvyZaUv+bLSl1hsFi5FXOJ61HVuRd/iTswdok3RxJhiMFgN6JQ6PNQeaBVaqueqToBLAP46fwp5FqKYVzH8df6iZ0AQcgCtUktZv7KU9Sub2aEIgpCggEcBJtWdRL+K/Zh4dCIzTs5g+aXlDH5zMJ/X+jyzw3stRBoj+eHID9TIVYPWhVtndjhAkjGKCZVPE6ueZucxipneUIyKinI0Ar29vYmOjn7m8o8ePeLGjRsULVrUcd/WrVvZvXs3hQsX5sMPP0yWuppakiRhMBiw2WyZdpL98OFDjEbj8xcUXjlJkpDL5Wi12gz/fCjlSsr4lnkl1bsEQRAEQUh/+dzzMb3BdD4u+zHfHfyOIXuHsOTyEsZWH8ubgW9mdnjZ2sSjE4kyRfFtjW+zzIVxW0JDUR4ba78jcXoMTfatAfFKGopjxowhMjIy2f0ffPBBmrZjMBj48ccf6d69Oy4u9nL9TZs25d133wVgxYoVLF68mD59+qS4/vbt29m+fTsAEyZMwM/PuWJcWFgYWq0WlUqVprjSmyYbf6Bed2azGblcjq9v+o/vUyqVyT6TQs4g9n3OJPZ7ziX2fc7S2K8xjUo2Yt2ldQz6dxBvb3ibnpV6MqbeGDy1npkdXrZz8O5BFp9fTN/KfalXot7zV3hVLBYA3G02XP38kCWcz3sFBCD5+WXL7/0raSiOHDnyqY95enoSERGBt7c3ERERjqI0T7JYLPz444/UqVOHatWqOe738vJy/L9Ro0b88MMPT32uxo0b07hxY8ffT+YJx8XF4erqiiVhR2cGpVKZqc8vPJtMJiM2NpaMGNqbVXPXhYwn9n3OJPZ7ziX2fc5Ux68OJz85yZBtQ5h/Yj7rLq5jTM0xtCzUMrNDyzbMNjO9NvYiyDWIL8p8kaW+RzKzmVxAfHAwsaGh6MLC8AbC4+KwhoZm2e/9s8YoZvrMoJUrV2bXrl0A7Nq1iypVqiRbRpIk5syZQ548eWjVqpXTYxERj4t4HD58mHz58r1wLFml61rI2sTnRBAEQRCEF+Gucee7Gt+x8e2N+Ov86bm9J3139CXCEPH8lQXmnJ7DxYiLjKs1Djf1iw01yyiSVoukVCJLHEb3GqSeZnpDsW3btpw+fZp+/fpx+vRp2rZtC0B4eDjjx48H4NKlS+zevZuzZ88yePBgBg8ezPHjxwF71dSvvvqKQYMGce7cObp165ZZL+WV6tq1K1FRUc9cZtKkSezevfuFtr9//34+/PDDVC//IlVn0zsGQRAEQRCE7KC8f3k2td3EoDcHsfH6RhqtbsSOOzsyO6ws7UbUDaYcn0LLQi1pWqBpZoeTnEyG5ObmGKMoMxgAewMyu8r0Yjbu7u588803ye738fFh2LBhAJQsWZI///wzxfW/+OKLDI0vq5EkCUmS+P3335+77ODBg19BRHYbNmx4Zc8lCIIgCIKQ3SnlSgZUGkDj/I3p/19/um7pSueSnfmm2jdZrrcss1ltVr7a/RVquZrvanz3/BUyic3Dw9GjKNPbpznLzg3FTO9RFJzNmTOHhg0b0rBhQ+bPnw/AnTt3qFevHsOGDaNZs2bcv3+fatWqER4eDsCUKVOoW7cuH3zwAX369GHOnDkAfPnll2zcuBGAatWqMXnyZJo1a0ajRo24evUqACdOnKBNmzY0bdqUNm3aOO5/mkuXLtGyZUuaNGlC48aNuX79OgDFihUDwGazMWzYMBo0aMCHH35I165d0z0GQRAEQRCE18Ubfm+wue1mepfrzR8X/6DZ2macDjmd2WFlKfPPzudQ8CHG1ByTpeeFltzckIkexdefxzffoDp/Pl23aS5dmujvnn4V5PTp0yxbtoyNGzciSRKtWrWiRo0aeHp6cu3aNX766SdHOm6iU6dOsXnzZrZu3YrVaqVZs2aUK1cuxe37+PiwdetWfv31V+bMmcPkyZMpWrTo/9u797gqq7T/45994IwQKEoqVpZWnoBRPGWaBzxlqcRYjpqa01Rimo6TmjJNqQ+amqdMe+YlRuZUjqOok3kufVJL1J/WmJogmUcUURQEYe99//4w90sSHDF0A/v7/gv2vg/Xva97ARdr3WuxfPlyrFYrW7duZerUqc4CtTiLFy9myJAhxMTEUFBQgN1uL/L+mjVrOH78OJs2bSIzM5MnnniCZ599tkxjEBEREalMvK3eTGgxgU51OjHsy2E8veppxkWN48XGL2I2uXe/zsGsg0xNmUq3+7sRWy/W1eHclCMgAPO1dRTz8zE8PMBaccutiht5JbRz5066d+/uXPqjW7dufPvtt3Tu3JnatWvTtOmNa+7s3LmTLl264OPjA0B0dHSJx+/WrRsATZo04YsvvgDg4sWLvPbaa6Snp2MymSgsLLxpjE2bNmXOnDmcOnWKbt26Ubdu3Rvi6dGjB2azmerVq9O6desyj0FERESkMmp5b0vWx6xn9NbRvP3t23x98mtmtZtFVZ+yX5arIiiwFzD8q+EEeAUwtc3Ucj+hoOHvj/n0aeDq0NOK3JsIKhRLdLOevzvlZksuXCseS7PPr11bn9FisTh7AqdNm0br1q1ZuHAhx44dc65JWZLevXsTGRnJpk2b6NevH9OmTaNNmzZ3NQYRERGRyirYO5iF0QtJ+iGJt799m+jl0cx5Yg5tat3631uVRUJKAvvP7ScxOrFCFMuOgACshw8Dv/QoVvBC0b37ssuZli1b8sUXX5CXl8fly5dZu3ZtkTUji9O8eXM2bNhAfn4+ubm5bNq0qVTnvHTpEqGhV8d6lzRh0PWOHj3Kfffdx5AhQ4iOjubAgQNF3o+KiuLzzz/H4XBw9uxZduzYUeYxiIiIiFRmJpOJQQ0Hsbrnavw9/HluzXNMSZmCzeE+a21/kf4F//v9/zK4wWC63N/F1eHcEsPfH9O1oad5eRi/jPirqFQoliONGzfmueee48knn6RHjx707duXRo0a3XSfiIgIOnfuTHR0NH/84x8JDw+nSpUqt3zOV155hYSEBHr27HnD84bFWbVqFR06dCA6Opq0tLQbev+efPJJ7r33Xjp06MCYMWOIjIwkICCgTGMQERERcQcNqzZkbe+1PFv/Webuncsz/36G45eOuzqsO+7oxaOM2jqK8GrhxLeMd3U4t8xRpUqR5TEqeo+iySjN2MVK5uTJk0W+v3z5colDPO8Wq9WKzVa6/xbl5ubi5+dHXl4eMTExvPPOOzRu3PgORXjr8WRlZdGjRw+Sk5OpXr26y+Ipa3fqPqlWrRqZmZllflwp/5R796S8uy/l3n39ltyvTFvJ6//3OhaThWltp/HkA0+WcXTlQ54tj5jVMRy9eJS1vddSJ6COq0O6Zf5z5xIwZQon09IIfvFFzJmZZP4yJ0d5bfc1a9Ys8T09o1gJvP766/z4449cuXKF3//+9y4tEgEGDhxIdnY2hYWFjBgxolIViSIiIiKu0PPBnoSHhBO3OY4/bfwT/R/pz99a/Q0fa8Ue3ng9wzAYvXU032V+x6LOiypUkQhXexQBzDk5msxGyod58+a5OoQili1b5uoQRERERCqd+wPuZ8VTK3hn1zvM/24+uzJ28X6H93k4+GFXh1YmZv2/WSSnJTM2aiyd7+vs6nBKzfilUDRdvIgpP99ZOFZUekZRRERERKSC8LR4MqHFBJZ0XUJmfibdk7vz8YGPSzUTfnm0Mm0l03dPJ7ZeLMPCh7k6nNtSpEcxP1+T2YiIiIiIyN31RNgTbIjZQFRoFGO+HsPLm14m+0q2q8O6LV8e+5IRX42geY3mvPP4O+V+vcSS/LpHsaIPPVWhKCIiIiJSAVX3rc4/uv2DN6LeYO1Pa+m8vDO7Mna5OqxS+fbUt/xxwx+pH1SfD7t8iJfFy9Uh3bZfP6OICkUREREREXEFs8lMXEQcy59ajgkTvVf3JmFnAvm2fFeH9l+lZKQwcN1AavnX4h/d/kGgV6CrQ/pNDH9/4JcexdxcHL98X1GpUJQbzJkzp8yOlZ2dzYcffljq/WbMmMGCBQtuadt9+/YRH1/2a+yUJgYRERERV2paoynrn1nPs/Wf5b1979FtRTf2nt3r6rBKtOX4Fvqu6Us1n2p82v1TqvlUc3VIv5nxy9rh5osXMeXkOIeiVlQqFMspwzBwOBwuOffcuXOLff12Yrp48SIfffRRWYRVovDwcCZOnHhHzyEiIiJS3gV4BjC97XQ+7voxlwov8dTKp0jYmUCeLc/VoRWRnJrMwHUDeSDgAVY8tYKa/iWv5VeRXOtBNGdkYDKMCj/rqcuXx8jJyWHmzJmcPXuWkJAQRo4ciX8x3bRxcXF4e3tjNpuxWCxMmTKlVPtXBMeOHWPAgAG0atWK3bt3k5iYyOrVq1m9ejUFBQV07dqV0aNHA/DPf/6TDz74AIBHH32UuXPncvz4cUaNGkVWVhbBwcHMnDmTWrVq8dprr1GlShX27dvH2bNnGT9+PD169CAjI4NXXnmFS5cuYbfbSUhIYNOmTeTn5xMdHc3DDz/MmDFj6N+/P61bt3bG1L59ew4fPgzAv//9bzZu3MisWbM4e/YsY8eO5ejRowAkJCSQmJjI0aNHiY6Opm3btsTHxzN//vxir2n27NksW7aMmjVrUrVqVZo0aXLDZ7R69WpmzpyJ2WwmICCA5cuXs337dhYsWMBHH33EuXPniIuL4/z584SHh/PVV1+xdu1acnNz6d+/P82bN2fXrl2EhoaSmJiIj48PS5YsYcmSJRQUFPDAAw8wZ84cfCr4LFUiIiLivtqHtWdz7Gbe2vEW7+17j1VHVvFWq7dcvuSE3WHnnV3v8N6+92gZ2pLEzokVfrhpEZ6eGN7eWE6eBKjwPYouLxSTk5Np3LgxvXr1Ijk5meTkZPr371/stm+++SYBv3Tp3s7+pfHXHX/lh3M//ObjXK9B1Qa83ertm26TmprKjBkzSEhIYMuWLaSnp/P5559jGAaDBg3im2++ISgoiDlz5rBy5UqCg4M5f/48AOPHjyc2NpY+ffrw6aefEh8fT2JiIgAZGRkkJyeTmprK4MGD6dGjBytWrKBdu3aMGDECu91OXl4eLVq0YNGiRWzYsAG4WrympaXx7rvvkpCQcNPY4+PjadmyJQsXLsRut5Obm8sbb7zBoUOHnMcr6Zp8fX1ZtWoV69evx2az0bVr12ILxVmzZrFkyRLuvfdesrNvnNnr3Xff5bHHHuPVV1/lyy+/ZMmSJc730tPTmTdvHtOmTeOll15izZo1PPPMM3Tr1o1+/foBMHXqVD755BNeeOGFm16riIiISHkW4BnAjHYziKkXw4RtExi8fjAdwzryVqu3eCDwgbsez5nLZxi1ZRRfHv+S/o/0Z2LriXhaPO96HHeaw98fy6lTzq8rMpcPPU1JSaFdu3YAtGvXjpSUlLu6f3lTu3ZtmjZtClwtqrZs2ULnzp3p0qULaWlppKens23bNp588kmCg4MBCAoKAmD37t307t0bgGeeeYadO3c6j9u1a1fMZjP169fn7NmzAERERLB06VJmzJjBgQMHSuyJvT6mm9m2bRvPP/88ABaL5Yai/mbX9O2339K1a1d8fHyoUqUK0dHRxZ6jWbNmjBw5kiVLlmC32294f+fOnfTs2ROA9u3bc8899zjfCwsLo1GjRgA0adKEY8eOAXDo0CF69+5Nx44dWbFiBYcOHfqv1yoiIiJSETxW8zHWP7Oe+BbxfHP6G5745xO8/n+vczLn5F2LYU36Gjos68COUzuY0mYKUx+fWimLRLjai+jsUSzmb+GKxOU9itnZ2c5CJygoiIsXL5a47eTJkwGIjo6mU6dOpd5/48aNbNy4EYApU6ZQrVrRh2YzMjKwWq9+JP/z+P/c5hXdPovFgq+vrzMGk8nEiBEjnMXXNX//+9+xWCzO7a4xmUxYrVasViuGYWA2m7FarZjNZnx8fJzbG4aB1WqlTZs2rFy5kg0bNjBixAji4uLo06cPgHPbX8d0/XkAbDab8zzXn//6a7r+eCVd0wcffFDkmsxms/O415sxYwa7d+9m48aNdOnShU2bNmGxWIrE9OvPxmKxYLFY8PLycr7u4eFBQUEBVquVkSNHkpSURMOGDfn000/Zvn2783MrLgYvL68b7p2yYLVa78hxpfxT7t2T8u6+lHv35crcT+gwgSHNhzBl2xQW7l3IssPLeDHyRYY3H859gffdkXMeOneIv2z8C+uOrCMyNJJFTy3i0WqP3pFzlRfmoCBM+/YBEFC7NsYv+a6I7f6uFIoTJ07kwoULN7z+3HPPleoYwcHBZGdnM2nSJGrWrEmDBg1KFUenTp2cBSZAZmZmkfevXLniLGxc4VoPmc1mA6Bt27ZMmzaNnj174ufnx6lTp/Dw8KB169YMGTKEIUOGOIeeBgUF0bRpU/71r38RGxvL0qVLiYqKwmaz4XA4sNvtzuNeO8fx48cJDQ2lb9++5OTksHfvXmJiYvDw8CAvLw8PD48bYgIICQnhwIEDPPjgg3z++ef4+flhs9l47LHHSExM5MUXX8Rut3P58mW8vb3Jycn5r9fUvHlzRo4cySuvvILdbmfdunUMGDCgyHkBfvrpJ8LDwwkPD2fdunX8/PPP2O12DMPAZrMRFRVFcnIycXFxbNmyhQsXLmC322+4DofDgcPhwGazkZOTQ9WqVcnLy2PZsmWEhoY6P7dr21zvypUrN9w7ZaFatWp35LhS/in37kl5d1/Kvftyde498CC+aTyD6g9i5p6ZzN89n/d3v0/X+7syqMEgWt3bCrPptw84TL2QyoLvFrDs8DK8Ld7Et4jnhYYv4Ilnpb/3q/r44PXL353n7XZsv1yvq3Nfkpo1S55I6K4UijdbuiAwMNBZ6Jw/f77Y4YqAc5hlYGAgUVFRpKam0qBBg1vevyJq164dhw8f5umnnwbA19eXuXPn8vDDDzN8+HBiY2Mxm800atSIWbNmMXHiREaNGsWCBQuck9nczLVJYKxWK35+fsyePRuAfv360alTJxo3bsyYMWNu2G/cuHEMHDiQmjVr8vDDD5ObmwvA22+/zeuvv86nn36K2WwmISGBZs2aERUVRYcOHWjfvj3x8fHFXlPjxo156qmn6Ny5M7Vr16ZFixbFxjxp0iTS09MxDIM2bdrQsGFDduzY4Xx/1KhRDB06lFWrVtGyZUtq1KiBn5+fM8bi/OUvf6FHjx7Url2bRx55hJycnJt+biIiIiIVWViVMN5t9y5/bvpnkn5IYsnBJaxJX0OoXyhP132abvd3IyIkolTDQy8VXGLtT2tJTktmy/EteFm8+MMjf2Bk5EhCfEPu4NWUL9fPdFrRZz01GYZhuDKAxYsXU6VKFedkNDk5OTdMRpOfn49hGPj4+JCfn8+kSZOIjY0lIiLilvYvycmTRcdmX758GV9f3zK7ttthtVpv6MGSW3etV9hqtbJr1y7GjRvnnEinrNyp+6S8/qdJ7jzl3j0p7+5LuXdf5TX3ebY81h9dz4rUFXx1/CsKHYX4WH1oWr0pjwY/Sr2getTwrcE9Xvfgafbkiv0KFwsucuzSMY5kHyElI4X95/ZjN+yE+YcRWz+WQQ0GVYq1EUsrcOxY/BYvBuDkkSPg5QWU39y7vEfxZnr16sXMmTPZvHkz1apVY9SoUQBkZWXxwQcfMG7cOLKzs5k+fTpwdXhmmzZtiIiIuOn+4p5OnDjByy+/jMPhwNPTk2nTprk6JBEREZFyzcfqQ88He9LzwZ5cuHKBHSd3sP3Udnae3sniA4vJt+eXuK+3xZvI6pEMixhGh7AONK3eFJPJdBejL1/s994LgMPHx1kkVlQu71F0JfUoyu1Qj6KUNeXePSnv7ku5d18VMfcOw8GJnBNk5mVy/sp5bA4bXhYvfD18qVOlDiE+IWXyXGNl4b1yJcFDh2J4enIqPd35ennNfbnuURQRERERkfLJbDITViWMsCphrg6lQiho0QLDw4PcSrAmtwrF67hx56qUgu4TERERESmOIzSU0/v3Y3h7uzqU30z9xNcxm80a9ik3dW3dSBERERGR4hh+fuDCJffKinoUr+Pt7U1+fj5Xrlxx2UO4Xl5eXLlyxSXnlpszDAOz2Yx3JfgPkYiIiIjIzahQvI7JZMLHx8elMZTXB11FRERERMR9aAydiIiIiIiIFKFCUURERERERIpQoSgiIiIiIiJFmAzN9S8iIiIiIiLXUY9iOTN27FhXhyAuoty7L+XePSnv7ku5d1/KvfuqiLlXoSgiIiIiIiJFqFAUERERERGRIlQoljOdOnVydQjiIsq9+1Lu3ZPy7r6Ue/el3Luviph7TWYjIiIiIiIiRahHUURERERERIqwujoAuWrv3r0sWrQIh8NBx44d6dWrl6tDkjIWFxeHt7c3ZrMZi8XClClTyMnJYebMmZw9e5aQkBBGjhyJv78/ACtWrGDz5s2YzWYGDx5MRESEay9Abtn777/Pnj17CAwMZMaMGQC3lesjR44wb948CgoKiIyMZPDgwZhMJlddltyC4nK/dOlSNm3aREBAAAB9+/bld7/7HaDcVxaZmZnMmzePCxcuYDKZ6NSpE927d1e7dwMl5V7tvvIrKCjgzTffxGazYbfbadmyJX369Klc7d4Ql7Pb7cawYcOM06dPG4WFhcbo0aONY8eOuTosKWNDhw41srOzi7y2ePFiY8WKFYZhGMaKFSuMxYsXG4ZhGMeOHTNGjx5tFBQUGBkZGcawYcMMu91+t0OW27R//34jLS3NGDVqlPO128n12LFjjUOHDhkOh8OYPHmysWfPnrt+LVI6xeX+s88+M1auXHnDtsp95ZGVlWWkpaUZhmEYly9fNoYPH24cO3ZM7d4NlJR7tfvKz+FwGHl5eYZhGEZhYaExbtw449ChQ5Wq3WvoaTmQmppKaGgoNWrUwGq10rp1a1JSUlwdltwFKSkptGvXDoB27do5856SkkLr1q3x8PCgevXqhIaGkpqa6spQpRQaNGjg/O/hNaXN9fnz58nLy6N+/fqYTCbatm2rnwsVQHG5L4lyX3kEBQVRt25dAHx8fKhVqxZZWVlq926gpNyXRLmvPEwmE97e3gDY7Xbsdjsmk6lStXsNPS0HsrKyqFq1qvP7qlWrcvjwYRdGJHfK5MmTAYiOjqZTp05kZ2cTFBQEXP1lc/HiReDqPVGvXj3nfsHBwTf9xSPlX2lzbbFYbvi5oHug4lq3bh1bt26lbt26PP/88/j7+yv3ldSZM2dIT0/noYceUrt3M9fn/uDBg2r3bsDhcDBmzBhOnz5Nly5dqFevXqVq9yoUywGjmIlny8W4ZClTEydOJDg4mOzsbCZNmkTNmjVL3La4e0Iqp5JyrXug8ujcuTOxsbEAfPbZZ3z00UcMHTpUua+E8vPzmTFjBoMGDcLX17fE7ZT7yufXuVe7dw9ms5lp06aRm5vL9OnT+fnnn0vctiLmXkNPy4GqVaty7tw55/fnzp1z/idCKo/g4GAAAgMDiYqKIjU1lcDAQM6fPw/A+fPnnQ+9//qeyMrKcu4vFVNpc13czwXdAxXTPffcg9lsxmw207FjR9LS0gDlvrKx2WzMmDGDxx9/nBYtWgBq9+6iuNyr3bsXPz8/GjRowN69eytVu1ehWA48+OCDnDp1ijNnzmCz2di+fTvNmjVzdVhShvLz88nLy3N+/d1331GnTh2aNWvGli1bANiyZQtRUVEANGvWjO3bt1NYWMiZM2c4deoUDz30kMvil9+utLkOCgrCx8eHH3/8EcMw2Lp1q34uVFDX/mAA2LlzJ2FhYYByX5kYhsGCBQuoVasWPXr0cL6udl/5lZR7tfvK7+LFi+Tm5gJXZ0D9/vvvqVWrVqVq9yajPPd3upE9e/aQlJSEw+Ggffv2xMTEuDokKUMZGRlMnz4duPrAc5s2bYiJieHSpUvMnDmTzMxMqlWrxqhRo5wTYSxfvpwvv/wSs9nMoEGDiIyMdOUlSCnMmjWLH374gUuXLhEYGEifPn2Iiooqda7T0tJ4//33KSgoICIighdeeEHD0su54nK/f/9+fvrpJ0wmEyEhIfzpT39yjhpR7iuHgwcP8te//pU6deo489S3b1/q1aundl/JlZT7bdu2qd1XckePHmXevHk4HA4Mw6BVq1bExsbe1t925TX3KhRFRERERESkCA09FRERERERkSJUKIqIiIiIiEgRKhRFRERERESkCBWKIiIiIiIiUoQKRRERERERESlChaKIiIiIiIgUoUJRRETkVzIzMxkwYAAOh+OOnysuLo5+/foxd+7cO3aOefPm0a9fP15++eU7dg4REalcVCiKiIjbi4uL47vvvnN+X61aNRYvXozZfHd+TY4ZM4ZXX331jh0/Li6ON954444dX0REKh8ViiIiIiIiIlKE1dUBiIiIuNLcuXPJzMxk6tSpmM1mYmNjadWqFcOGDeOTTz7BYrHwt7/9jUceeYT//Oc/HD16lIYNGxIXF8eiRYvYvXs3NWvWZOTIkVSvXh2AEydOkJiYyJEjRwgICODZZ5+ldevWtxSPYRgkJSXx9ddfU1hYSEhICMOHD6dOnToUFhbyySefsGPHDmw2G1FRUQwaNAhPT08AUlJSWLp0KWfOnCEgIIAhQ4YQERFxpz46ERGpxFQoioiIW3v11Vc5ePAgL730Ek2aNAHgzJkzN2y3bds2xo8fT0BAAOPHj2fChAkMGTKEuLg45s+fz7Jlyxg6dCj5+flMmjSJPn368MYbb3D06FEmT55MWFgYYWFh/zWeffv2ceDAAWbPno2vry8nTpzAz88PgCVLlpCRkcG0adOwWCzMnj2bZcuW8Yc//IHU1FTee+89/vznP9OoUSMuXLhAXl5e2X5YIiLiNjT0VERE5Ba0b9+e0NBQfH19iYyMpEaNGjRp0gSLxULLli1JT08HYM+ePYSEhNC+fXssFgt169alRYsWfPPNN7d0HqvVSn5+PidOnMAwDGrXrk1QUBCGYbBp0yYGDhyIv78/Pj4+xMTEsG3bNgA2b95M+/btadKkCWazmeDgYGrVqnXHPg8REanc1KMoIiJyCwIDA51fe3p63vB9fn4+AGfPnuXw4cMMGjTI+b7dbqdt27a3dJ5GjRrRpUsXFi5cSGZmJs2bN2fAgAEUFhZy5coVxo4d69zWMAznzKznzp0jMjLyt1yiiIiIkwpFERGRMlS1alUaNGhAfHz8bR+je/fudO/enezsbGbOnMmqVavo06cPnp6evPvuuwQHBxd73tOnT/+W0EVERJw09FRERNzePffcU+xzibejadOmnDp1iq1bt2Kz2bDZbKSmpnL8+PFb2j81NZXDhw9js9nw8vLCw8MDs9mM2WymY8eOfPjhh2RnZwOQlZXF3r17AejQoQNfffUV33//PQ6Hg6ysLE6cOFEm1yQiIu5HPYoiIuL2evXqRWJiIh9//DExMTG0bNnyto/l4+PDhAkTSEpKIikpCcMwuO+++xg4cOAt7Z+Xl0dSUhIZGRl4enoSHh7O008/DUC/fv1YtmwZ48eP59KlSwQHBxMdHU1ERAQPPfQQQ4cOJSkpiTNnzhAYGMiQIUP0nKKIiNwWk2EYhquDEBERcVcjRozgwoULREVFMWzYsDtyjvnz5/PNN98QEBDA3Llz78g5RESkclGhKCIiIiIiIkXoGUUREREREREpQoWiiIiIiIiIFKFCUURERERERIpQoSgiIiIiIiJFqFAUERERERGRIlQoioiIiIiISBEqFEVERERERKSI/w96jK4Keo/ATgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 1080x216 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Cell 5: reconstruct the function using the code in cell 2\n",
+    "g = series_real_coeff(a0, a, b, t, dt)\n",
+    "\n",
+    "# plotting\n",
+    "#plt.plot(t, sig, 'r', label='original signal')          # NOT normalized \n",
+    "#plt.plot(t, g, 'g', label='reconstructed signal')\n",
+    "plt.plot(t, sig/max(sig), 'r', label='original signal')  # normalized \n",
+    "plt.plot(t, g/max(g), 'g', label='reconstructed signal')\n",
+    "\n",
+    "plt.ticklabel_format(axis='y', style='sci', scilimits=(-1,1))\n",
+    "plt.xlabel('time [sec]')\n",
+    "plt.ylabel('amplitude')\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "---\n",
+    "\n",
+    "### Fourier series, convergence and Gibb's phenomenon\n",
+    "\n",
+    "As seen above the convergence of the *Fourier series* can be tricky due to the fact that we work with signals of finite length. To analyse this effect in a bit more detail, we define a square wave in cell 6 and try to reconstruct it in cell 7.  \n",
+    "5) First, we use only 5 coefficients to reconstruct the wave. Describe what you see.  \n",
+    "6) Increase the number of coefficients $n$ in cell 7 step by step and re-run the cell.  What do you see now? Can you explain it?"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAADTCAYAAAA78caQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvx0lEQVR4nO3dfXRV1bnv8d9aO29EIIQE4aZQKyhVtCoIgrQHRSLHYXtahqNXOqreWvUcLShKtaOi2KO1KPWlKhY9jiMCbc/w2trW+kePtakebMUXLMFaLYVor1UEQt54D5C95v1DsiVNkL3nk2RlZ30/Y3SUJBsyuzrXnPN51jPnCpxzTgAAAACARAnjbgAAAAAAoPcRDAIAAABAAhEMAgAAAEACEQwCAAAAQAIRDAIAAABAAhEMAgAAAEACEQwCAAAAQAIVxN2A3vDBBx/E3QQkUGVlpRoaGuJuBhKIvoc40f8QF/oe4tTX+19VVVWX3+fJIAAAAAAkEMEgAAAAACQQwSAAAAAAJBDBIAAAAAAkEMEgAAAAACQQwSAAAAAAJBDBIAAAAAAkEMEgAAAAACRQn3np/EMPPaS1a9eqrKxM9957b6efO+e0fPly1dbWqri4WHPmzNHo0aNjaCkAAAAA5L8+82Tw7LPP1k033XTYn9fW1mrLli1asmSJ/u3f/k2PPvpoL7YOAAAAAPqXPvNkcNy4caqvrz/sz1977TVNmzZNQRBo7Nix2r17t5qbm1VeXn7Efzv67a+6s6n9X5hSMHmagoGD425J3nJ/f0e7V9co2r077qbkneCYMQrGnhx3M/KW279Pe575paLmpribkn+KihVMPUdBYVHcLclb7q9vaPfqrYx9HoITT1Ew8ti4m5G33M4d2vPK84p27Ii7KfnnqEEKzpyuIAjibgli0GeCwSNpampSZWVl5uuKigo1NTV1GQzW1NSopqZGkrR48WK5ny7rtXb2FwOPKlXpFy6Muxl5q/nB72rXn16Luxl5KRzxCVU+/LO4m5G3Wl/9vbY/cnfczchbZZ8ao+LTz4y7GXlr201LtGvb1ribkZcKx09R+Xd+EHcz8tbuF5/VzhU/jLsZeWvoxDNVUDUq7mbktYKCgg6xSr7Im2DQOdfpe4fLYFRXV6u6ujrzdfjA4z3Wrn5nf6uib31du1qataehIe7W5K30nt0qHHeq0lfeGHdT8op7/BGl17+hBvqet6ixUZIU3niX9L+Y2LO26V1Fd92oHY0NCuh/3qLWVpWcc772f+mSuJuSV6Ilt2n/nt2MfQZRS4skKbz3R1JBYbyNySNu3ctyyx9Qc/1WBUUD4m5OXqusrOzT93BVVVWX38+bYLCioqLDBW5sbMyqRFSSgtKjeqpZ/Y4rONgloijehuS7KFJQWETfy5ErLJIcfc8kSn/436UD6X85cANKD/6B/mfiIgVFxfS9XKUKPrp34ad93XLUIAWpVLxtySclA+Qk1n0J1mcOkDmSiRMn6oUXXpBzThs2bFBpaWnWwSByEB7sEgwKNlH00bVE9oKQvmfVHszQ/3Jz8Ho5+p9NFEkhC/GchYx9ZhFjn5f260UiLLH6zJPB+++/X2+99ZZ27typq666ShdeeKHa2tokSTNnztT48eO1du1azZs3T0VFRZozZ07MLe6nCAa7B8GgHxZEdiyI/DD2dY8oUkDfyx1jn10USUHAISi5Cg4mb+h/idVngsHrrrvuY38eBIGuuOKK3mlMkgVkiLoF2XE/LIjsCAb9EAx2DxJhfhj77FyavueDsS/xuGvQQRAElOp1B0d23AsLIrv26xfQ/3ISsCDqFiTC/AQhSVgr+p4fgsHEY7WAzliQ25Ed9xOGH2Z34Y8ng37aF5Ec4mHjGPu8MO/aMe/6IRhMPO4adMakZEeG0g9Ppe04QMYPhyh0D/YM+mHetaPv+ckEgyTCkoq7Bp0xKdlFaSYlH/Q9O54M+iE7buack5wjEeaDsc+OJKwfzopIPFYL6Cxk74IZ5Sp+WBDZEQz6IRi0o+95C8IUfc+KEmU/jH2Jx12DzoKQcgErR4bSC+96s2NB7ocFkR19zx8HyNhRJuqHsS/xuGvQGU9n7Hgy6IdJyS5zmijJiJxwmqjdwWvHgtwD864dZaJ+mHcTjxEbnTEp2ZGh9MPeBbv2p/r0v9xwgIxd+0nALMhzx7xrRxLWD8Fg4nHXoDMmJTsylH4yx/vT/7xxmqgfFkR2lIn6Y961Ixj0QyIs8bhr0BmTkh2Tkh8W5HYsyP3Q9+woE/UXslffjIocPwe3FLBXP7m4a9AZG9ntONXMDwtyuyiSgkBBEMTdkvxC37Nrv3YpqiJyxinedhzc5oexL/FYraIzngzakaH0w6Rkx1NpPxwgY8dTaX8B866Vi9L0PR/Mu4nHXYPOeN+RHXsG/WT2LlAu5Y2+5yUIAhbkVgSD/kjC2pEI80MwmHjcNegsDKkdt2JS8sPTGTtKlP2FIYkIC9e+Z5BkRM4IBu2iSAElyrnLBIOMfUnFigGdMSnZUSbqhwylHX3PH2OfDU8G/dH37EjC+uGVTonHXYPOOEDGxDnHRnZfBIN2lIn6Y0FuQzDojwNk7KiK8MO8m3jcNeiMBZFN+4Se4vbKGZOSHdlxf4x9NplgkGREzgL26ptFESXKPph3E48VAzrjfUc2ZMf9MSnZUSbqjwNkbHjPoL8wlJz7sLIEfkiE+WHeTTzuGnRGdtwmsyAiQ5kz9i7YUaLsj1I9m/bDd1iQ544FuR3BoB/6XuJx16AzgkEbngz6aw9i6H/+eNeWP8Y+G8pE/bEgt2O/tJ+QJGzSsWJAZ2THbQgGvQUsiOzIjvsjGLRh7PPH2GfnKJH3EpCETTruGnTGvhkbR3bcGwsiO/YM+iMYtGHPoL/M0xn263sjEeaHeTfxuGvQGQsiGxZE/piU7CiV8kcizIYyUX8BY58ZY58f5t3EY7WKzggGbSiV8peZlMiOeyM77o+xz4axzx8Lcjv2S/uh7yUedw06C3nfkQnZcX+cJmrmePGyvzBF37NwVEV4Y0FuR4m8lyAIpCCg7yVYQdwNaLdu3TotX75cURRpxowZmjVrVoefv/nmm7rrrrt09NFHS5ImT56sL3/5yzG0NAHIjtuQHffHgsguihSkUuJtZR7CUI6n0v5IhPlj7LOjTNRfGLJfNcH6RDAYRZGWLVumhQsXqqKiQgsWLNDEiRM1cuTIDp878cQTdeONN8bUygQJOE3U5OBikgylBxZEdpSJ+iMRZkMizB9jnx1VEf7YL51ofeKuqaur04gRIzR8+HAVFBRo6tSpWrNmTdzNSi4WRDacJuqPBZEdwaA/FkQ2BIP+KJG3Y+zzx7ov0frEk8GmpiZVVFRkvq6oqNDGjRs7fW7Dhg361re+pfLycl1yySUaNWpUl/9eTU2NampqJEmLFy9WZWVlzzS8n2oZMEBtQcB189S2b7caJaUKC7mGOdq/baiaJQ0eNFDFXDsvzQUpuVSBKrh+OWssKlJYUKByrp2XfQMHqkVSQVERY1+O9paVaYek8rIyFXDtvDQEgcKCAvqeh/pUSgOKizWIa2dSkKf9r08Eg8513t0SBEGHr4899lg99NBDKikp0dq1a3X33XdryZIlXf571dXVqq6uznzd0NDQvQ3u56IDB+QO7Oe6eXKNjZKkyDmuYY7cjh2SpB0tLQq4dl7S+/apMAjoex7SUSTta+XaeXLbmyVJaefUxDXMSbR7jySpubFRQUFxzK3JT+kDB+TE2OfDBYH27t6tfVw7k8rKyj7d/6qqqrr8fp94nl5RUaHGgwtoSWpsbFR5eXmHz5SWlqqkpESSNGHCBKXTae04uHBEN6NcwIZDFPy1XzP6nz9Kpfwx9tlQJuqPEnk7xj5/IWdFJFmfuGvGjBmjzZs3q76+Xm1tbVq9erUmTpzY4TMtLS2ZJ4h1dXWKokiDBg2Ko7n9HwfI2LAg8seCyC5Kk4jwRTBoQyLMH2OfnePVEt7YL51ofaJMNJVK6bLLLtOiRYsURZGmT5+uUaNG6dlnn5UkzZw5Uy+//LKeffZZpVIpFRUV6brrrutUSopuwoLIxhEMemNBZMe7tvwx9pm4iPcM+grC8MPXwXC8vz9eLeGP90snWp8IBqUPSz8nTJjQ4XszZ87M/Pm8887Teeed19vNSiYWRDaZBRGTUs4OLiJdFIlUjydKpfwFoZRmMe6Nqgh/AYkwM8Y+f6z7Ei2nu6atrU1/+ctftHr1aklSa2urWltbe6RhiBGDgg0LIn+ZJ4MsyL2RHffHvhkbykT9URVhF0VSinnXC+u+RMv6yeDf//53ff/731dhYaEaGxs1depUvfXWW1q1apXmz5/fk21Eb2NQsGm/dkxKueNdW3a8eNkfY5+No0zUG8GgXRRRkeOLsS/Rsh6x//M//1OzZ8/W/fffr4KCD2PIcePGaf369T3WOMQkTLEYtyA77o8FkR17Bv2xb8aGqgh/jH12Lk3f88XBgYmW9V3z/vvv65/+6Z86fK+kpET79+/v9kYhZpwqZXOwxJEFuQcWRHaUifoLQ0qULUiE+WPss2PPoL8wlGPsS6ys75phw4bpnXfe6fC9uro6jRgxotsbhZhRLmDDaaL+WBDZsSDyRyLMhieD/iiRtyMR5o91X6JlvWdw9uzZWrx4sc4991y1tbXpl7/8pX7729/qyiuv7Mn2IQ4MCjZkx/0RDNoRDPpj7LM59NUSnMqam/b5gv7njxJ5f4x9iZb1XXP66adrwYIF2rFjh8aNG6dt27bphhtu0KmnntqT7UMc2Ddjw6sl/LVfM7Lj/lykIEXf8xFwmqhN+zvy6H+5S5EIs2h/xyV9zxPrvkTL6T2Do0eP1ujRo3uqLegrDi6InHMKAt72ljNOE/XHk0E7SqX8kR23oSrCH+8ZtKFE2YZEWKJ9bDD4xBNPZPWPzJ49u1sagz4iPGTvQsCknjMmJX8Eg3aUifojGLQ5tEwUuaFM1MZRkWPC2JdoHxsMNjY2Zv68f/9+vfLKKzruuONUWVmphoYG1dXVafLkyT3eSPSyQxfkDKy5c2THvREM2rFvxh8HyNiQCPOXScKy19ILfc+GYDDRPjYYnDNnTubP999/v6699lpNmTIl871XXnlFL730Us+1DvFgQW7iyI77C8iOm0VpEhG+WBDZUCbqj3nXhmDQhrEv0bK+a2pra3XGGWd0+N6kSZNUW1vb7Y1CzJiUbJiU/GX6Htlxb44yUW/sm7Fh7PPHvGtDIsKGqohEy3rEHjFihJ555pkO3/vNb37Dewb7Izay2zAp+Tt0vyr8sGfQH9lxG0dVhLeD18zR//xQkWNDIizRsj5N9KqrrtI999yjp59+WkOHDlVTU5NSqZSuv/76nmwf4sCC3IZJyR/ZcTv2DPojGLQhEeGPJKxN+15L+p8fxr5EyzoYPPbYY/XAAw9ow4YNamlp0ZAhQzR27FgVFOT0dgrkAxbkNhGTkq8gCKQgoO9ZcPCTP961ZUMw6I9514aKHBvGvkTLKZIrKCjQuHHjeqot6CuYlGwOPU3UxduUvESG0oYFuT/2zdjQ9/xRkWPDflWbMGSvfoJlHQx+4xvfOOzPHn744W5pDPoIgkGbQyelNNFgzliQ2zjKRL2FIUf7W0S8m9Yb864N2zNsmHcTLetg8JprrunwdXNzs37961/rs5/9bLc3CjFj74LNoZNSmoVlztjIbkOZqD+eSttwkq0/gkEbykRtGPsSLetgsKvy0JNOOkmLFi3S+eef362NQszaB1NKBvx0mJS4hjljUvLmnJOck1IsyL3Q92yiNMGgL4JBG8pETYIwlCMJm1imu6agoED19fXd1Rb0FexdsGFSsmFB7o++Z0Pfs2HPoL/28lr6nx9ea2LD2JdoWT8ZfOKJJzp8vW/fPtXW1mr8+PHd3ijEjAyljWNBbsKk5C9TokyplJfgo3e9saj0QDDoL5OEpZrEC2WiNsy7iZZ1MNjY2Njh6+LiYn3hC1/QtGnTur1RiBnBoA0Lchs2svvjyaDNoWMf1zB3UfTRnnPkhnnXhrHPhnk30bIOBr/61a9qyJAhnb7f/s5B9B9BGH74RgQGBj9MSjZhihJlX7x42YYSeRuCaH8EgzbMuzY8GUy0rO+aa6+9tsvvz58/v9sagz6C00RtmJRseN+RP0qlbFiQ23CaqD/6ng0VOTac4p1oWY/aznV+X9qePXsUMvD3P2THbQgGbchQ+uNdWzYsyG14MuiPJKxNRFWECfNuoh2xTLT9ZfP79+/v9OL5Xbt2ddt7BtetW6fly5criiLNmDFDs2bN6vBz55yWL1+u2tpaFRcXa86cORo9enS3/G78AxZENgf3zQRBEHdL8hOTkj8SETaMfTYEg/7oezbtyWteq+OHeTfRjhgMXnPNNXLO6c477+z04vkhQ4aoqqrK3IgoirRs2TItXLhQFRUVWrBggSZOnKiRI0dmPlNbW6stW7ZoyZIl2rhxox599FHdcccd5t+NLjAp2TjetWXCRnZ/lInacLy/ieMAGW8BFTk2jH02YYpxL8GOGAy2v2x+2bJlKi4u7pFG1NXVacSIERo+fLgkaerUqVqzZk2HYPC1117TtGnTFASBxo4dq927d6u5uVnl5eU90qZEIxi0ITtuQ4bSH08GbTje34axz4axzx8l8jYkYRPtY4PBX/ziF7rgggskSU899dRhPzd79mxTI5qamlRRUZH5uqKiQhs3buz0mcrKyg6faWpq6jIYrKmpUU1NjSRp8eLFHf4ejmz/kHI1SyobNEhFXLuc7Swu1t5USgUFBfQ9Dw2FhSooLNQQrl3O0tEBNUhKFRbS9zzsGTxYOyUNHTJEqaFcv1w1FxYoKipi7PO0NUxpQHGxBnHtcrZv0CC1iLHP186jjtIeF3HtjPJ17PvYYPDQdwv+43sGu1NXh9P8436rbD7Trrq6WtXV1ZmvGxoajC1MFrdzlyRpe3OTAq5dzqLdu+WCQG1tbfQ9D2nnlG7dy7Xz4A6O05Fj3PMR7dkjSWpqaFAQsec3V+nWVilyjH2+wkB7d+/WPq5dzlxzsyQp7aRmrl/Oon37pCjNfWtUWVnZp6/h4bb2fWww+K//+q+ZP8+ZM6d7W3SIioqKToHnPz7xq6io6HCBu/oMugl7F2zYN2NDqZQ/ykRtKJG3idgvbRKwb8ubo0zUhHk30T42GNy6dWtW/0j7Xj9fY8aM0ebNm1VfX6+hQ4dq9erVmjdvXofPTJw4Uc8884w++9nPauPGjSotLSUY7CksiGx415YNexf8sW/GhuP9bdgzaMO73vyRCLMhGEy0jw0G/zEgO5wnnnjC1IhUKqXLLrtMixYtUhRFmj59ukaNGqVnn31WkjRz5kyNHz9ea9eu1bx581RUVNSjTyoTj2DQhgWRDZOSP07Us2Hss6EqwiYMP3pfHnJDMGhz8L51UUQyMYE+Nhi0Bnm5mDBhgiZMmNDhezNnzsz8OQgCXXHFFb3WnkRjQWRDMGhDdtyf48XLJpTI21AVYUMizB+JMJtD133cw4mT8//jTU1NqqurU1NTU0+0B30BpVI2DKY2LIj8kR03CUiE2TD22TD2eXOUyNuQCEu0I75nsF1DQ4OWLFmiDRs2aODAgdq1a5eOP/54zZs3T8OGDevJNqK3MSjYUCplE6YolfKVWRCRHfdCMGhDMGjDfml/EVURJox9iZb1XbN06VKNHj1aK1as0KOPPqoVK1ZozJgxWrp0aU+2D3EIP6odhwcWRDZkx/3xZNCGBZENY58NY58/R5moCWNfomU9ar/zzju6+OKLVVJSIkkqKSnRxRdfrHfeeafHGoeYMCjYuIgJyYLsuL/265ZiQe4lOHjf0v/8UBVhw35pfyTCbFj3JVrWd83xxx+vurq6Dt97++23NXbs2G5vFGLGoGDieNeWDdlxfxyiYJMZ+yhT9sKTQRvGPn/sGbQhEZZoWe8ZHD58uO68805NmDAh85L42tpafe5zn+tw6ujs2bN7pKHoRRwgY8OCyIbsuD9evGzDfmkbThO1IRj0RyLMJjP2kQhLoqyDwQMHDmjy5MmSpB07dqiwsFBnnHGG9u/fr8bGxh5rIGLQPpiSHfdDqZQNCyJ/lErZUBVhQyLMJgjZq+/r0LGPS5g7xr5EyzoY5CXvCUJ23IYFkQ3BoD+y4zYsiGyiiJNsLRj7/B1aFcE1zB1jX6JlHQxK0r59+7Rlyxa1trZ2+P6nP/3pbm0UYsagYEOplElAdtwf+2ZsKJG3idJURVhQIu+vQyKMa5gz1n2JlnUwuGrVKj322GMqKChQUVFRh589/PDD3d4wxIhBwYYngzZkdv1RJmrD2GfD2GcTpuh7vjhJ2YZEWKJlHQz+5Cc/0fXXX69TTjmlJ9uDvoAFkQ0LIhuy4/4cL142oUTehqoImzBkr74vEmE2rPsSLeu7pqCgQOPGjevJtqCvIENkQzBow5NBf+wZtGFBZMPYZ8PY5y9TIs/Y54VEWKJlPWrPnj1bP/rRj7Rjx46ebA/6AgYFG04TtWFB5I89gzYEgzYEgzYBY5+3iKoIi4CxL9GyLhOtqqrST3/6U/3mN7/p9LND3zOIfoBBwcZFUlgYdyvyF/tmvDlKpWwY+2wIBm0okffnGPtMGPsSLetg8MEHH9S0adM0derUTgfIoJ9hULBhQWQTsG/GG2WiNsGH181FkYKYm5KXqIqwCUOp7UDcrchPjH02rPsSLetgcNeuXZo9e7aCgCmy32NQsIkiJiQLsuP+eDJokxn7SEZ44QAZG0rk/UWRFASsUX0dTITR/5Ip61H77LPP1gsvvNCTbUFfwQEyNlGaBZEFCyJ/jj2DJuyXtqEqwoaxzx99z4ZEWKJl/WSwrq5OzzzzjH7xi19oyJAhHX522223dXe7EKMgCNjIbkGplA0LIn+UStlQFWHDgtyGedcf864NibBEyzoYnDFjhmbMmNGTbUFfEoYfvbMMuWFBZEMw6O/QMlEuYe4IBm0Y+2wY+/xRomzD2JdoOZWJnnbaaRo4cKCcc4qiKPMf9ENMSv5cRJmeBdlxf7xawoYSeZso+mjvEXLHfml/JCJsCAYTLesng6+++qp++MMfasSIEXrvvfc0atQovffeezrhhBN0zjnn9GQbEQeCQX9MSjYsiPx1KBPlGuaMBZE35xxPZ6yYd/0x79qQCEu0rIPBJ554Qt/4xjd05pln6utf/7ruuusuPf/883rvvfd6sn2IC5OSPyYlG/qev/bS7hT9zwv7ZvzxnjezIEx99K5Q5IZ514ZEWKJlfec0NDTozDPP7PC9s846ixNG+ytK9fyxkd0mDCXnPnzSgNzwagkbFkT+6Ht2vGPVH/OuDYmwRMv6zhk8eLBaWlokScOGDdOGDRu0detW9gz2V5Tq+SNDacOC3F9mzyD7trzQ9/wRDNpRFeHP8X5fE8a+RMvpNNH169drypQp+vznP6/bbrtNQRDoC1/4Qk+2D3FhUvLHvhmbQ/cupJjcc8KC3IYFkT/6nh1JWH+839eGsS/Rsg4GZ82alfnzWWedpZNOOkmtra0aOXKkqQG7du3Sfffdp23btmnYsGGaP3++Bg4c2Olzc+fOVUlJicIwVCqV0uLFi02/F0dAMOiPJ4M27dld+l/uWJDbBPQ9b+3XjFI9f8y7/ph3bQgGEy3rYPAfVVZWdksDnnrqKX3mM5/RrFmz9NRTT+mpp57SxRdf3OVn//3f/12DBw/ult+LI2BS8sekZJPZu8DemZzx0nmbzIKIvpczDpCxY971x7xrczAR5qJIQcxNQe+L/c5Zs2aNzjrrLEkfPnFcs2ZNzC2CJA6QsYjYu2BChtKfi6QgUBAwnXvhEAV/PJW2Ixj0xwEyNiTCEs37yWB32b59u8rLyyVJ5eXl2rFjx2E/u2jRIknSueeeq+rq6sN+rqamRjU1NZKkxYsXd9tTzCRpKCxUYVGhyrh2Oat3TgNKS1VQUEDf87Bn0CDtlFQxpFzh4LK4m5NXdhUXa3cY0vc8OedUL6m0pEQDuX45SacCNUgaOHgw/c/TjtKj1CrHtfPQUliotsJC+p6ntv171Shp0FFHaQDXz1u+9r9eCQZvv/32zEmkh/rKV76S078xdOhQbd++Xd/73vdUVVWlcePGdfnZ6urqDsFiQ0NDzm1OurSTor17uXYeXNSmvfv2a1BbG9fPQ7R3rySpsWGbgv0HYm5Nfol275aCUG30PX9BoD27dqmV65cT19woSdq1Z49K6X9eon375NJprp2HdOteyTnGPk9u+3ZJ0s4d27Wb6+etsrKyT/e/qqqqLr/fK8HgLbfcctiflZWVqbm5WeXl5Wpubj7snsChQ4dmPj9p0iTV1dUdNhhENwhDOcoF/LB3wSagTNQbfc+OUj0/HCBjR9/zx9hnw/aMRIv9zpk4caJWrVolSVq1apUmTZrU6TOtra3ae/BpQWtrq/70pz/pk5/8ZK+2M3GYlPwxKdkwKfmj79mxX9pPe/KQ/dL+mHf9MfbZkIRNtNj3DM6aNUv33XefnnvuOVVWVuqb3/ymJKmpqUmPPPKIFixYoO3bt+uee+6RJKXTaX3uc5/TaaedFmOrE4AFkT8mJRsO8fDHOy7teNebH04TtSMY9McBMjYkYRMt9mBw0KBB+s53vtPp+0OHDtWCBQskScOHD9fdd9/d201LNiYlL45SKTsmJX+8eNmOsc8Pp4naBSn6ni+SsDYkYRONOwddIzvuhwWRHcGgP7LjdgSDfhj77A7Ou865uFuSf6iKsGHeTTTuHHSNBZEfSqXs2Lvgj3dc2jH2+Tl4zQLGPn88nfHHk0EbgsFE485B11gQ+SE7btcezND/cseCyI790n4okbdjQe4vSpMIs6DvJRqjNrpGMOiHYNAs82TB8WqTnBEM2oUpnsz4oCrCjgW5P8Y+m4AkbJJx56BrZMf9EAzasSDyx74ZuzD86DUJyB5jnx1jnz/2S9tk+h5jXxJx56BrHCDjJ1MqRbmKNxZE/lgQ2VEV4Ydg0I790v54MmjDftVE485B11gQ+WkvbWRS8kcw6I8FkR1jnx+CQTsW5P6oirBh3k007hx0LeR9R15YENmRHffmCAbtKJH3wwEydizI/TH2mQRBIAUBfS+huHPQNfbN+CEYtGNB5I8FkR1PBv20zxec6OiPsc8fY58dY19iceega2TH/RAM2lEq5Y9SKbswlKPv5Y7TRO0IBv1FkQKeStuw7kss7hx0jQyRH0ql7FgQ+eMAGTvGPj8kwuwokffHk0E7Dg5MLO4cdClgUPDDgsiOYNBflKbvWREM+mHss2svsWWLRu6oirBj7Ess7hx0jUHBD6VSdmTH/ZEdt6NUyg/BoB0l8v4Y++xY9yUWdw66xqDg5+A1C5iU/GWy4/S/nLEgsmPs80OJvB1VEf4Y++wY+xKLOwddIzvuh+y4XSY7TqlUzlzEaY5WlMj7oSrCjmDQX8TYZ8a6L7EYtdE1MkR+CAbtWBD5Iztux9jnxTH2mQWMff6iNE+lrcIUibCE4s5B18iO+8mUSpGh9MaCyB+nidqFKQ7w8EEwaMd+aX8cIGPH+6UTizsHXSM77ifz4mVuLW8Hr52j/+WOJ4N2jH1+CAbtOEDGH2OfHWNfYnHnoGsMCn7YN2NHdtwfCyI79s344QAZO6oi/DH22bHuSyzuHHQtTDEo+CA7bseCyB8LIjsWRH4yVRGUyHtj7PPH2GdHIiyxuHPQNQYFPwSDdpRK+WPfjB37pf1QFWFHMOiP/dJ2JMISizsHXQtDjvb3QamUHQsif1GkgL5nw4LID4kwO0rk/ZEIswtDORJhicSdg66xIPLDgsiOYNAfpVJ2jH1+GPvs2ktsOdExd4x9dox9icWdg64xKPihVMqOYNBflKbvGQWUyPshGLSjRN6Lc05yjr5nxbovsbhz0DUGBT8siOza39FI/8sd2XE7xj4/lMjbkQjzw7zbPUiEJVZB3A146aWX9LOf/UybNm3SHXfcoTFjxnT5uXXr1mn58uWKokgzZszQrFmzerehSRN89K63gAE2e0xKdpnsOKVSOWPfjB0HyPihKsKOYNAPiYjuQSIssWK/c0aNGqUbbrhBJ5544mE/E0WRli1bpptuukn33XefXnzxRb3//vu92MoEYlLyQzBoR9/zF0Uc7W/FgsgPY58dY5+fTN9j7DMhEZZYsT8ZHDly5BE/U1dXpxEjRmj48OGSpKlTp2rNmjVZ/V14OjgpuZ+vlEsxuWfLbdn04R8CJiVv7X3v9TWKdrTE25Z8s2c32XGrMJR27VT05PK4W5JX3Nt//fAPBIP+Dt670Yu/U1D3VsyNySNtbR/+N33PJgylrZsY+3yUDlR4/v+OuxXeYg8Gs9HU1KSKiorM1xUVFdq4ceNhP19TU6OamhpJ0uLFi1VZWdnjbexv9p14irY/Uyr3wjNxNyXvhBVHq2LMcSooKKDveXDptJqOGaO2/7dR7v8d/j5HF4JAA0/8DH3PYM+4U7XztRflnv913E3JOwXHHq+hw0fQ/zxFRQVqrBim6K1aubdq425OXglKj1LZCSfT9wx2nvAZ7fnNU4x9HlLDhqvy/3wjb/tfrwSDt99+u1paWjp9/ytf+YomTZp0xL/vnOv0vSAIDvv56upqVVdXZ75uaGjIrqH4yLGfVrjk/8bdirzV1LpflW1t9D1fC+8Tz1b97JFUSt/zd8bZSp1xdtytyEtOUmNjoyorK+l/noLFyxj7PO2UVMzY5++LFyn1xYvibkXeamho6PNjX1VVVZff75Vg8JZbbjH9/YqKCjU2Nma+bmxsVHl5ubVZAAAAAJBYeVFgPWbMGG3evFn19fVqa2vT6tWrNXHixLibBQAAAAB5K/Zg8NVXX9VVV12lDRs2aPHixVq0aJGkD/cJ3nnnnZKkVCqlyy67TIsWLdL8+fN15plnatSoUXE2GwAAAADyWuC62pDXz3zwwQdxNwEJ1Ndrx9F/0fcQJ/of4kLfQ5z6ev873J7B2J8MAgAAAAB6H8EgAAAAACQQwSAAAAAAJBDBIAAAAAAkEMEgAAAAACQQwSAAAAAAJBDBIAAAAAAkEMEgAAAAACRQIl46DwAAAADoqN8/GbzxxhvjbgISir6HuND3ECf6H+JC30Oc8rX/9ftgEAAAAADQGcEgAAAAACRQvw8Gq6ur424CEoq+h7jQ9xAn+h/iQt9DnPK1/3GADAAAAAAkUL9/MggAAAAA6Kwg7gZ0h3Xr1mn58uWKokgzZszQrFmzOvzcOafly5ertrZWxcXFmjNnjkaPHh1PY9HvHKn//f73v9evfvUrSVJJSYmuuOIKfepTn+r9hqLfOVLfa1dXV6ebb75Z8+fP15QpU3q3keiXsul7b775plasWKF0Oq1Bgwbptttu6/2Gol86Uv/bs2ePlixZosbGRqXTaf3Lv/yLpk+fHk9j0a889NBDWrt2rcrKynTvvfd2+nlexhwuz6XTaXf11Ve7LVu2uAMHDrgbbrjBvffeex0+88c//tEtWrTIRVHk/vrXv7oFCxbE1Fr0N9n0v/Xr17udO3c655xbu3Yt/Q/dIpu+1/65W2+91d1xxx3upZdeiqGl6G+y6Xu7du1y1113ndu2bZtzzrmWlpY4mop+KJv+9/Of/9z9+Mc/ds45t337dnfppZe6AwcOxNFc9DNvvvmme/vtt903v/nNLn+ejzFH3peJ1tXVacSIERo+fLgKCgo0depUrVmzpsNnXnvtNU2bNk1BEGjs2LHavXu3mpubY2ox+pNs+t+nP/1pDRw4UJJ0/PHHq7GxMY6mop/Jpu9J0n//939r8uTJGjx4cAytRH+UTd/7wx/+oMmTJ6uyslKSVFZWFkdT0Q9l0/+CIFBra6ucc2ptbdXAgQMVhnm/5EUfMG7cuMyariv5GHPk/Z3R1NSkioqKzNcVFRVqamrq9Jn2CelwnwF8ZNP/DvXcc89p/PjxvdE09HPZjn2vvvqqZs6c2dvNQz+WTd/bvHmzdu3apVtvvVXf/va3tWrVqt5uJvqpbPrfeeedp02bNunKK6/U9ddfr69//esEg+gV+Rhz5P2eQdfFYahBEOT8GcBHLn3rz3/+s55//nl997vf7elmIQGy6XsrVqzQRRddxCII3SqbvpdOp/W3v/1Nt9xyi/bv36+FCxfq+OOPV1VVVW81E/1UNv3v9ddf1zHHHKPvfOc72rp1q26//XadcMIJKi0t7a1mIqHyMebI+2CwoqKiQ9ldY2OjysvLO32moaHhYz8D+Mim/0nSu+++q0ceeUQLFizQoEGDerOJ6Key6Xtvv/22HnjgAUnSjh07VFtbqzAMdcYZZ/RqW9G/ZDvvDho0SCUlJSopKdGJJ56od999l2AQZtn0v+eff16zZs1SEAQaMWKEjj76aH3wwQc67rjjeru5SJh8jDnyPl08ZswYbd68WfX19Wpra9Pq1as1ceLEDp+ZOHGiXnjhBTnntGHDBpWWlvb5/2OQH7Lpfw0NDbrnnnt09dVXsxBCt8mm7y1dujTznylTpuiKK64gEIRZtvPu+vXrlU6ntW/fPtXV1ekTn/hETC1Gf5JN/6usrNQbb7whSWppadEHH3ygo48+Oo7mImHyMeboFy+dX7t2rVauXKkoijR9+nRdcMEFevbZZyVJM2fOlHNOy5Yt0+uvv66ioiLNmTNHY8aMibnV6C+O1P/+4z/+Q6+88kqmhjyVSmnx4sVxNhn9xJH63qGWLl2q008/nVdLoFtk0/eefvppPf/88wrDUOecc44+//nPx9lk9CNH6n9NTU166KGHMgd3fOlLX9K0adPibDL6ifvvv19vvfWWdu7cqbKyMl144YVqa2uTlL8xR78IBgEAAAAAucn7MlEAAAAAQO4IBgEAAAAggQgGAQAAACCBCAYBAAAAIIEIBgEAAAAggQgGAQAAACCBCAYBAInV0NCgSy65RFEU9fjvmjt3ri666CI9+OCDPfY7li5dqosuukhXXXVVj/0OAED/QTAIAEiMuXPn6k9/+lPm68rKSv34xz9WGPbOdPjtb39b11xzTY/9+3PnztVNN93UY/8+AKB/IRgEAAAAgAQqiLsBAAD0hgcffFANDQ36/ve/rzAM9eUvf1lnnnmmrr76aj3++ONKpVK69dZbdcIJJ+jPf/6z3n33XZ100kmaO3euli9frj/+8Y+qqqrS/PnzdfTRR0uSNm3apMcee0zvvPOOBg8erNmzZ2vq1KlZtcc5p5UrV+oPf/iDDhw4oGHDhmnevHn65Cc/qQMHDujxxx/XSy+9pLa2Nk2aNEmXXnqpioqKJElr1qzRT3/6U9XX12vw4MG6/PLLddppp/XUpQMA9FMEgwCARLjmmmu0fv16XXnllTrllFMkSfX19Z0+9+KLL+rmm2/W4MGDdfPNN2vhwoW6/PLLNXfuXD388MN68sknNWfOHLW2tup73/ueLrzwQt1000169913tWjRIo0aNUqjRo06Yntef/11/eUvf9EDDzyg0tJSbdq0SUcddZQk6b/+67+0detW3X333UqlUnrggQf05JNP6qtf/arq6ur0wx/+UNdff71OPvlktbS0aO/evd17sQAAiUCZKAAAh5g+fbpGjBih0tJSjR8/XsOHD9cpp5yiVCqlKVOm6G9/+5skae3atRo2bJimT5+uVCql0aNHa/LkyXr55Zez+j0FBQVqbW3Vpk2b5JzTyJEjVV5eLuecfve73+lrX/uaBg4cqAEDBuiCCy7Qiy++KEl67rnnNH36dJ1yyikKw1BDhw7VJz7xiR67HgCA/osngwAAHKKsrCzz56Kiok5ft7a2SpK2bdumjRs36tJLL838PJ1Oa9q0aVn9npNPPln//M//rGXLlqmhoUFnnHGGLrnkEh04cED79u3TjTfemPmscy5z4mljY6PGjx9v+Z8IAIAkgkEAALxUVFRo3LhxuuWWW7z/jfPPP1/nn3++tm/frvvuu09PP/20LrzwQhUVFekHP/iBhg4d2uXv3bJli6XpAABIokwUAJAgQ4YM6XKfoI/TTz9dmzdv1gsvvKC2tja1tbWprq5O77//flZ/v66uThs3blRbW5uKi4tVWFioMAwVhqFmzJihFStWaPv27ZKkpqYmrVu3TpJ0zjnn6H/+53/0xhtvKIoiNTU1adOmTd3yvwkAkCw8GQQAJMasWbP02GOP6Sc/+YkuuOACTZkyxfvfGjBggBYuXKiVK1dq5cqVcs7pmGOO0de+9rWs/v7evXu1cuVKbd26VUVFRTr11FP1xS9+UZJ00UUX6cknn9TNN9+snTt3aujQoTr33HN12mmn6bjjjtOcOXO0cuVK1dfXq6ysTJdffjn7BgEAOQuccy7uRgAA0N9de+21amlp0aRJk3T11Vf3yO94+OGH9fLLL2vw4MF68MEHe+R3AAD6D4JBAAAAAEgg9gwCAAAAQAIRDAIAAABAAhEMAgAAAEACEQwCAAAAQAIRDAIAAABAAhEMAgAAAEACEQwCAAAAQAL9f1Fb61dLxky3AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1080x216 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Cell 6: define a square wave of 5 Hz\n",
+    "freq = 5.\n",
+    "npts = 500\n",
+    "dt_ = 0.002\n",
+    "length = npts * dt_\n",
+    "t_ = np.linspace(0, length, npts, endpoint=False)\n",
+    "square = signal.square(2 * np.pi * freq * t_)\n",
+    "\n",
+    "plt.plot(t_, square)\n",
+    "plt.xlabel('time [sec]')\n",
+    "plt.ylabel('amplitude')\n",
+    "plt.xlim(0, 1.05)\n",
+    "plt.ylim(-1.2, 1.2)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAADTCAYAAAA78caQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACV0klEQVR4nOydd3yT1ffH3xlt070HhbI6KXsPFZAlKm4UFSeiKENRcIDgABEQQXHiQn/iBMXNVxBEBNlQRoFOoKxC955Jnt8faUpH0iZp2qTkvl8vX7bJTfLpw815zjn33HNlkiRJCAQCgUAgEAgEAoHAoZDbWoBAIBAIBAKBQCAQCFoeEQwKBAKBQCAQCAQCgQMigkGBQCAQCAQCgUAgcEBEMCgQCAQCgUAgEAgEDogIBgUCgUAgEAgEAoHAARHBoEAgEAgEAoFAIBA4ICIYFAgEAoFAIBAIBAIHRGlrAS3BhQsXbC2hHgEBAWRlZdlahuAKRcwvQXMj5pigORHzS9DciDkmaE7scX6FhoYafFysDAoEAoFAIBAIBAKBAyKCQYFAIBAIBAKBQCBwQEQwKBAIBAKBQCAQCAQOiAgGBQKBQCAQCAQCgcABcYgGMlci5ZpyPj/2OUm5Sbgp3bi/y/1E+0XbWhblmnK+TfiWI1lHcFY4c1+X++jm383WsgQWcDjzMN8kfEOltpJegb24O/punBXOtpbF8ezjfJ3wNaXqUrr4deHB2AftQpfAPErVpayOX01qfiruTu48GPsgET4RtpZFmbqMrxO+5lj2MVwULjwQ+wBd/LrYWpbAAg5mHOS7xO9Qa9X0C+7HnVF34iR3srUs4rPi+Trha8o15XTz78b9sffbhS6BeZSqS/nk6CecLjiNh7MHD3Z5kHCfcFvLolRdypoTa0jISUClVPFQ7ENE+UbZWpbAjpFJkiTZWkRzc6V1E03JS+GhjQ9xquAUIe4h5JfnU64p57Huj/HigBeRy2yz4Hss+xiPbHqEs0VnCXYLpqiyiFJ1KU/1forZfWfbRJOj0pT5JUkSi/ct5oPDH+Du5I6b0o2M0gw6enXk8zGf2+ymopW0vLLrFVYfW41KqcLb2ZuLJReJ9Ink8zGf08m7k010OSpNmWMJOQlM2jSJtMI0QtxDyCvLo0JbwdSeU3mh3wvIZDIrqzWNI5lHmLx5MueLzhPiFkJBRQHlmnJm9Z3FU72fsokmR6WpNmzBngV8cvQT3J3ccVW6klmaSbh3OKvHrLZZ0kGj1fDizhdZc2INbko3PJ09uVRyiRjfGL647gvCPMNsostRacoci8+OZ/KmyZwtOlttwyq1lTzV+yme6fOMzWzYwYyDPLr5US4WXyTELYT8inwqNZU83/95pvacahNNjoroJipoNgorCnl408MUVBTwzfXfcODeA+y9Zy/3RN/DqiOrmLNjDlpJ2+K64rPiueuPu1BLar69/lsOTjzI3nv2cmv4rbx18C2+T/y+xTUJLOPLE1/y/uH3mRA1gX337uPgxIOsGbuGUnUp438fz4mcEy2uSaPVMOvfWXx27DMeiH2A/ffu58DEA/zfdf9HZmkmk/+aTEllSYvrEphPXnkekzZNolRdync3fFdtw8ZHjue9Q+/x0q6XsEWOMi4jjgkbJiBDxvc3fM+BiQfYc88ebux0I2/sf4P1KetbXJPAMj6N/5SPj37MvTH3cuDeA8RNjOPzMZ+TX5HPnb/fSXJucotrUmvVPPXPU6w5sYbJ3SZzYOIBDk48yOrRq0kvTmfyX5MpVZe2uC6B+eSU5TBp0yQqpUp+GPcDB+49wO67d3NL+C2sOLiChXsW2sSG7bu0j3s23INKoeLHcT/qbNjdexjTcQyL9i7i95O/t7gmQetArAzaCEszBo9veZwNpzbw/Y3fM7jN4OrHJUliyb4lvHf4Peb0n8P0XtOtKbdBMksyGbN+DE4KJ9bduI4OXh2qn1Nr1Uz830T2XdrHH7f+IcqtWghL59eRzCPc/OvNXNP2Gv7vuv+rtcqcmpfKXX/chUwmY9Ptm/BT+VlTcoMsP7CcFQdXMKvPLJ7p+0yt5/499y/3/u9e7oi8g5XDV7aYJkfH0jn2yKZH2HJ2Cz+M+4F+wf2qH5ckiVd3v8on8Z/w8qCXeaz7Y9aU2yAXiy8yZv0Y3J3cWXfjOtp5tqt+rlJbyd1/3M2hzEP8edufRPpGtpguR8bS+XXg0gFu++02RrcfzaejP621QpOUm8Rdf9yFSqFi4+0b8XbxtqbkBlm8bzHvHXqPF/q/wIxeM2o9t/nMZh7c+CATYybyxjVvtJgmR8eSOSZJEg9sfIAd53fw880/0zOwZ63n5u2cxxfHv2DRkEU81PUhKys2zvmi84xZPwZfF1/WjVtHG/c21c9VaCq44/c7SMxNZONtG0UVTQshVgYFzcL+S/v57eRvPN3n6VqBIIBMJuOF/i8wrtM43tj/Bnsv7m0RTRqthhn/zKCgooAvxnxRKxAEUMqVfDDiA1yVrizZt6RFNAks5/V9r+Pl7MW7175br9w43EdXYpVVmsXT255usczn9vPbeevgW4yPHF8vEAQY2m4o03pN44fkH4jPim8RTQLL2JW+iz/T/mR239m1AkHQ2bCXB73MdR2u4/W9rxOXEdcimtRaNdO3TqdEXcKX131ZKxAEcJI78eHID3GSO/HGAeGo2zOSJLFo7yICXQN5a/hb9Ur1onyj+HT0p6QXpzP739ktZsO2nt3Ke4feY2LMxHqBIMCo9qOY0n0K3yR8Q2JOYotoEljG9vPb+fvs38wZMKdWIAg6G7ZwyEJGhI3g1d2vcjTraItoqtRW8sSWJ6jUVvLl2C9rBYIAzgpnPhr5EVpJy/IDy1tEk6B1IYLBVsSKAyvwV/kbzZjLZDKWDV1GmGcYT259skXK5tYkrGH7+e0sGLKAWP9Yg2P8Xf2Z0n0Km89s5lDmoWbXJLCM3em72X5+O9N6TsPHxcfgmJ6BPXlp4EtsPrOZrxO+bnZNJZUlPLPtGcJ9wnn9qteNjpvaYyrezt4sPyhudPaKJEm8uf9NglyDeKTbIwbHyGQyVgxbQbBbMNO3Tm+RsrnVx1azK30Xr1/1utFVvyC3ICZ3n8yGUxs4ln2s2TUJLGPHhR3subiHGb1m4OXsZXBMv+B+zBkwhw2nN7AueV2zayqsKOSZbc/Qxa8Lrw5+1ei46b2m4+7kzoqDK5pdk8AyJEli2YFlhLqH8mDsgwbHyGVyVg5fiZ+rHzO2zqBcU97suj4+8jEHMg6w7JpldPbubHBMqEcok7pO4ufUn0nKTWp2TYLWhQgGWwn7Lu1j2/ltTO05FXcnd6PjvJy9WD50OWeLzjb7TSWnLIdl+5dxVehV3Bt9b4NjJ3WdhK+Lr8hK2TErDq4g0DWQB2IfaHDcw10fZnCbwSzau4hLJZeaVdO7h97lQvEF3rzmzQbnvbeLN492f5RNaZs4knmkWTUJLGNn+k52X9zN9F7TcVW6Gh3n4+LDm0Pf5HTBad6Je6dZNWWUZLDiwAqubXctd0be2eDYR7s9ipezF28dfKtZNQksZ/mB5bRxb8M9Mfc0OO6x7o/RL7gfC3YvILs0u1k1vR33Npmlmbw59M0G572fyo9Huj3C76d+t8m+bEHjbDu3jYMZB3my95O4KFyMjvNT+fHG1W+QnJfMB4c/aFZN6cXpvB33Ntd1uI5bwm9pcOzjPR7HzclN2DBBPUQw2EpYc3wNXs5ePNClYUcdYFCbQUyMmcjHRz9u1iz2kn1LKKwoZOHghY12zvJw9mBS10n8ffZvzhWeazZNAstIzUvlvwv/8Wi3Rxt0WEC3erP06qWUa8p5ZdcrzabpVP4pVh1ZxR0Rd9A/pH+j4yd3m4yr0pWvEr5qNk0Cy1lzYg2+Lr5MjJnY6Nhr2l7D+MjxfHD4g2bNYr++93XKNGW8OvjVRm2Yt4s3D8Q+wMa0jVwsvthsmgSWcSLnBPsu7WNK9ykNOuqgW7154+o3KKosYsGeBc2mKTk3mU+Pfsrd0XfTK7BXo+Mf7fYoLgoXvj7R/FUXAvNZc2INga6BTIia0OjYke1HcnPnm3kn7h1O5p9sNk2v7XkNjaThlUGvNDrWT+XHxJiJbDi1odmTIILWhQgGWwFFFUVsOL2BmzrfhJuTm0mvmTtgLt4u3ry86+Vm2RdxJPMI3yR8w6Suk0w+3/DOKF3mvSVKcwTmsS55HXKZnPFR400aH+4TzrSe0/j15K/sTt/dLJpe2f0KzgpnXhz4oknjPZ09uaHjDfya+qvoymdn5JXnsSltE7eG34pKqTLpNS8NfAl3J/dms2H7L+1nXfI6Huv+mMlng90VeRdaSSs6i9oh65LWoZQpuT3idpPGR/tFM6XHFH5I/oEDlw5YXY8kSczfNR93J3fm9J9j0mt8Vb5c1+E6fk79mQpNhdU1CSwnuzSbzWc2c3vE7Safa/vq4FdxVjjz6m7j5cFNYXf6bn5O/ZmpPafS3qu9Sa+ZEDUBtaTmp9SfmkWToHUigsFWwB+n/qBUXVodTJmCj4sPz/V7jl3pu/j9lHXbCWslLS/ufJEA1wCDDT2MEeYZxuA2g/kh+QebtF0WGEYrafkx+UeGtR1GsFuwya+b2nMqoe6hvLTrJTRajVU1bT6zmc1nNvN0n6fN0nRX1F0UVhayKW2TVfUImsZvJ3+jXFPOXVF3mfwaf1d/ZvWdxb/n/+WvM39ZVY9Gq2HeznmEuIWYdX5guE84fYP6si5pnbBhdoRaq2Z9ynpGth+Jv6u/ya97steTBLsF8/Kul61+JNP/Tv+P7ee3M7vvbLM03Rl1J7nluWw5s8WqegRN4+fUn1FLarP8sCC3IGb2nsnmM5vZenarVfWotWrm7ZxHO492TOs5zeTXxfjF0D2gO+uSRFJecBm7CQY/+OADJk+ezKxZsww+L0kSq1evZsaMGcyePZuTJ5tv2d3eWJe8jk5enegX1K/xwTW4N/peYv1iWbhnoVVXSn5I/oGDGQeZO2Cu0U36xrgz6k5OF5xm/6X9VtMjaBr/XfiPC8UXzLrJAbgqXZk3cB7Hso/xbeK3VtNTpi7j5V0vE+ETwaSuk8x67ZDQIbT1aCtudHbGuqR1RPtG0z2gu1mveyD2AaJ8onh196tWbcTwbeK3HM06yvyB8xvci2qIO6PuJCkviSNZYm+qvbDt3DYySzMb3fdZF3cnd+YOmEtcZhw/JP9gNT2l6lJe3f0qXfy6NLoHuy5D2w4lyDVIVNDYGeuS19HNv5vZx2NN6jaJjl4deWX3K1RqK62mZ82JNZzIOcHLg15udGtHXe6MvJP47HixN1VQjd0Eg8OHD2fu3LlGn4+Li+PixYu88847PPbYY3z66actqM52ZJdmszt9N7dF3Nbonpa6KOQKFgxZwPmi86w6ssoqegoqCnh97+v0CerD+EjTSgprcmPHG3FRuPDHqT+sokfQdDac2oCb0o0xHcaY/dqbO9/MwJCBLN2/lPzyfKvo+fjox5wuOM3CwQtNLsfRI5fJuS38Nraf3241PYKmkV6czoGMAxbZMCe5E68OfpXTBaf59Kh1bH5uWS5L9i1hUMigRhsuGOKmzjehlCnZcGqDVfQIms6GUxvwcvZiZPuRZr/29ojb6RPUh8V7F1NUUWQVPR8c/oBzRedYOGQhSrnSrNcq5UpuCb+FrWe3UlxZbBU9gqZxpuAMR7OOclvEbWa/1kXhwiuDXiElL4Uvjn1hFT3Zpdks27+Ma9pew/Udrzf79beG34oMmbBhgmrMs1LNSGxsLBkZGUaf379/P0OHDkUmkxEVFUVxcTG5ubn4+vq2oMqmIyspwWXLFmReXqgKChodv710NxISN6a5oLrwm9mfdy1wi6oP7x9YyQNn/GiraNpB4a8VrCOrNIvv3Cbj9rv5AZ0KuEoRzt8nfmVJVt9Gx2uDg6kYMMACpY6LPDMT2bZtJs0vSZL4O/N3hjtF4vu/zRZ93pLKkYwo28u7P8zgNS/zMvN1Oa/J4d2stxjn0psxcfkQZ/6cv6FCxXuSml2/rOBW10ZW02Uyyq+6CqmV2RFb47xjBzKNxjQbVrIdgHEnnVCdNf/fcwww1qUHK/cvZ+Jpb0IUTTsofEXBt+SX5/FG5Shcfze/hD4EGOTUmb+P/cSrl7o1Ol4TEkJl/8YbIAkuI790yWQbppW0bM3cwAjnSLw2bLTo85aoRzOmdCkf/PAkL3ma7/DXJE2dxftZ73C7qh/X7s8CLLBh5e58oq1gz88ruEHVq+HBcjnlV1+N5N2074VDIUk4b9+OTJJMmmPbinUlnjelKlGlmf/vOU6SGOEcy4o9S7nnpDsBck+z36Mmy/LXUFxRyNLyERbZsLZAf6dO/H3kR168ENXoeE3btlT26WOBUkFrQSbZ0caHjIwMli5dyvLl9Y8fWLJkCbfeeisxMTEALFiwgIkTJxIeXn/j/+bNm9m8eXP16yoq7Ggj9qlTOFf9DaZw152woz2cWwFyC/+l0rwhZjrclgDf/GjZewAcC4SeT8AjB+GjJmxDfG8AzLgBkt6ByJyGx0oyGZXp6SCcdZNRTJmC4osvTBp7NAh6TIVPfoXJBy3/zMdugs97wdEPISbL8veZMB5+jYYT70PHPMveQyODoGdhXBL8388mjH/6aTRLllj2YY7I6dM4R5vWNArg1rvhUAicehvMWxe8TIofdJ0K9x6Fz3+x8E3Q6ej7GEzdB+/+z/L3WT4YZl8HaW9B+0YWoCW5nMqsLHA3rxzVkVE8/DCKb74xaez+UOj/GHy5Hu5vQuXuQ7fCt93g+PsQnmv5+9w2Af4Kh4T3oF3jcYZBKhQQ+CxMOAYfmxB7aJ5/Hs2C5uuKesWRmIhzjx4mD79+IqT6QdK7ln/kiQDo8QQ8EgermuA/7QuFgY/CM7vgzSZsjX/9GnhxJFx4E9o0siAuKZVU5uaCs3mVOo6OUqlErVbbWkYtnI38G9rNymBjGIpZjZUcjRo1ilGjRlX/npXVBO/U2ri4oPz7b3x9fcnNbfiOU6lV8+eu27gpcBhZW2Zb/JGuwLTTX7Dc6UvuuW8lA73N27cDuuv/+NHZeBalMHPGl2Q8Y3kWcmBpOuybyHdvT2VKO+Olpq6//47nihXknD+PVmPdBiVXMr7Z2ag6dCDz888bHfv9mW/g9KcMWLSWDJcAiz9zZkUe3++7n2nzu/JNt8VmlwMC7MiLY+2RWTzX4SHc1j+A8TqBxrk24XX+8N5H+owfUMgURscF3H47ZdnZ5NuTjbBzlOfOEQSoly4lp5EVrzJtBZt23srdwdeR+bfpjVrq4gU8dupj3lN+x4SH36ePl3n7dqDKhh2eiW/pGWbM/JKMZy3Pzg8qOQP7H+K795/ioVDjpaau69fj+d57ZJ8/j+TXtKoMR8I3JwdVZCSZH33U6Ni1af+HLO1L+r7xIxnOPhZ/5qzybH7Y/wDTF/Th/7outOg9tubs4+f453mx42Scf763STZs2PFX+M3rGJdmrm3QngbcdBOlWVkUCBtmMk7nzxMIqN96i5yePRscW6wpZevOW3ko9BYy/p5q8Wf6A5NS3+djxXrueuwjunlEmP0eWknLlEPTCSzP4InZ/0fGC5YnmAYXpcLBR/n+42e5N8R4qanb2rV4rFpFdno6kkhomUVAQIB9xR9AaGiowcdbTTDo7+9f66JmZ2e3uhJRAJydUUdHIwUEoG5kkuy6sJNCTTEjut2OupPpmXhDPN55Pt+s+4s55z7mj35/4CR3Muv1v6T+wo68OBYNWYR31wE0JdfRlmgikyP5q/woj0QbPzZAc0DX7lsmAkHz0GiQ3NxQm7B681fiEboHdCegx1VN+jf1AZ5mNq/ufpUNqjSu63idWa8v15QzZ/3jhHmE8diIeajN3BBflxGK2/hx62b2+5bSN9h4ObLk7AxifplHVaZT6tix0Tm24+w/lGrLuLbHHajbN82Gzej0KmvX/s2c85/wa99fUciNB/mGWJe0jj0FR1l2zTI8Yvo1ab53lKLokNiBTeXx3Bf9nNFxmjZtAJ0Ns5sSnFaATK1Gcnc3zYadOEzvoN74dB/YpH9Tf+Ap7dO8vu91/nK7wLVh15r1+jJ1GXMPT6aTVyceGTEXdSNnHTbGtbJb+W3bvxwOUNMtoIFyZCcncY80FzNs2La0TZRLlVzbczzqtk2zYTM7LuSHtVt54fwnrL9pPXKZeW07vk74mrjCBFYOX4lrZJ8mzfcoKYo2iW34q+IYd0XPNDpOE1zVzdvOVrgE1sVuGsg0Rr9+/fj333+RJImkpCTc3NxaZzBoBtvObUMpU3JN22ua/F5uTm4sGLyAY9nHzG4mk1OWw/yd8+kZ0JP7utzXZC0AI8JGsDt9d4NdTiVFlbMnbnTmodGAonFHubCikP0Z+7m2nXlOjzEe7vowXfy6MOe/OWY3b3n30Lsk5SXx2lWvmd0ZzRDD2g1Dhoxt57Y1PFAuF/PLTGTaqhb88sZvH/+c+wcXhQtDQoc0+XM9nD14edDLHMo8xKfx5jWTySjJ4JXdr9A3qC93R9/dZC0ymYwRYSP478J/DZ8Hp79GYo6Zh1Zrkg3LKcvhUOYhRoSNsMrHTu4+mUifSJ7b/hyFFYVmvfatg29xMv8kr1/1eqOH3pvCiHa6v+mfc/80OE4SNsx89NfLhDn2z7l/cFO6MTBkYJM/1tvFm3kD57Hv0j6+PP6lWa9NL05n4e6FDG4zmDsi7miyFr0N235+e8NHQwk/zCGwm2Dw7bffZt68eVy4cIHHH3+cv//+m02bNrFpk64ounfv3gQFBfHkk0/y0UcfMXnyZBsrbn52pe+iR2APPJw9rPJ+N3S6gRs73ciKAytIzEk06TWSJDFv5zwKKgpYPmy52Z3RjDG4zWAqtZUczGhgo5owQhYh02hA2fi/075L+9BKWqs46qDr/Lhi6AqySrPMOmQ3Pjued+Pe5Y6IOxjVflTjLzABX5Uvsf6x7Erf1eA4SakUWXVz0V8vE+bY7ou76RPUxyoBPsAt4bcwuv1o3tj/Bql5qSa9RpIkXvzvRUrVpawYtsLsbLwxBocOpkxTxuGsw8YH6a+RmGPmYaIN23txLwBD2ljHhrkoXFg+dDnpxem8tuc1k193KPMQHx75kHui72Fou6FW0RLoFkikTyS703c3PFCp1AXPApOpTmiZYsPSd9M/uL/Zna2NcVfkXQxvN5xFexdxpuCMSa+RJInntz9PpbaSN4e+adE2DEMMaTOEwspCjmUfM/7ZVX6YTMyxKxq7CQZnzpzJxx9/zLfffsuqVasYMWIEY8aMYcwYXbt7mUzG5MmTeffdd1m+fLnBxjFXEiWVJRzOPMzgNoOt+r6LhizC09mTx7Y8ZlIb7TUn1vBL6i/M7D3T7PN1GmJAyABkyBq+0Ylg0DJMzKrvTt+Nk9yJfsHmnV/ZED0CezCt5zS+T/qetUlrGx2fX57PlM1T8Hf155XBr1hNB8CgNoM4mHGw4fPpFAoxv8zFxKx6QUUBx7KPMajNIKt9tEwmY8nVS1ApVUzZMoWSypJGX7P62Go2nN7As32fJcLH/H06xhgUovu7GrJhwpGyDJmJ1Q270nehUqjoFdTLap/dN7gvU3pM4auEr/g55edGx+eU5TBl8xSC3YKZP3C+1XSAzobtvbQXtbaBEj2xMmg+JtqwnLIcEnMTrW7Dll69FKVcyWNbHjPpDOhVR1ax5ewW5g6YS0evjlbTov+7GkyaCj/MIbCbYFBQmwMZB1BLaqsaIdBlGz8c+SEn808yc9vMBm8ye9L38NKulxgRNoInez9pVR3eLt509e/asCNVVWIlHCkzMcOR6hnY02qrNnpm9Z3FkDZDmLNjToMrv5XaSmZsncG5wnN8NOoj/FTWbbAxOES3cnMks4EWg3K5yKqbSfX3sZE5tu+ibuVZHzRZixD3ED4Y8QEJOQnM+ndWgyVOO87vYMHuBYzpMIYpPaZYVYe/qz9RPlHsSd9jfJAoE7UME23Ynot76B3U2yplmTV5of8LDAgewOztsxu0H+Wacqb9PY2Mkgw+Gf0J3i7WPd5hcJvBFFcWN7pyI6obzMTEYFD/3bZ2Ur6dZzveGf4OR7OO8vz259FKxu9B/5z9h9f3vc64TuOY1HWSVXWEuIfQ0asjuy+KpLyjI4JBO2V3+m7kMjn9g61/PtVVoVfx8qCX+d/p//HE308Y3POy4/wO7vvzPsI8w3hn+DtWK62qSaMrN8IIWYQpWfWSyhKOZB6xuqMOukOTPxz5IUFuQdyz4Z7qUq6alKnLePSvR9lydgsLhyxslnk+sI1uj0dDWU/hSFmAiY6UfuW5oQY+ljKs3TDmDpjLryd/5cl/nqRSW1lvzLZz23hw44N09u7MyuErm82GNbhyI2yYZZhQ3aBfeba2ow66kvdVo1bhp/JjwoYJHLh0oN6YUnUpj2x6hH/P/8uSq5fQK7CX1XWYvHIj5pdZmJrQ2nVRt/LcI9D0YyhMZXSH0czuO5sfU37kmW3PGLQhm89sZtJfk4j2jWb50OVWKw+tyaCQQey9uNdoQCqqGxwDEQzaKbvTd9Pdvzuezk07nNQYk7tN5uVBL7Ph1AauW38dm9I2kV+eT0peCi/vepl7/3cvYZ5h/DjuR3xVzdOoZ3Cbqj03mUb23AhHyjJMCAb3X9rfLCvPegJcA/hx3I8EuQVx5+93snDPQk7mnySvPI8/T//JmPVj+OvMXyy6ahEPxD7QLBr8VH5E+0Y3Xoos5pd5mBgM7rq4i16Bvay+8qxnas+pzOk/h59Tf+b6n65ny5ktFFQUkJKXwrz/5nHfn/fR2bszP4z7AS9nr2bRMKjNIIori4nPjjf4vHCkLEOm0TTaoEjvwDaXDQt2C2b9uPX4qfy44/c7WLx3MafyT5FXnscfp/5g1I+j+OfcPyy7ZhkToic0m4ZOXp0atmGiusF8zEho9QnqY/WVZz0ze89kdt/ZrEtex40/38g/Z/+hoKKApNwkXtjxAg9tfIgY3xjW3rjWar0j6jKozSDyyvM4kXPC8ABR3eAQtJqjJRyJCk0FcZlxPBj7YLN+zmPdH6OTVyfm75zPw5sern5choz7utzHC/1fwMfFp9k+f0DIAEBX6qP/uSbVjpQwQuah0TR6OOyei3uabeVZT6hHKL/c/Auv732dVUdW1epi29GrI1+N/crs9u3mMqjNINYlrUOj1Rg+ikDstzEbmQmOVKm6lKOZR3m85+PNqmV6r+lE+ETw0q6XeGDj5aSCXCbngS4P8Hz/55stEITLKzd70vcYXhnSO1KiLbt5mJDQ2ntxL05yJ/oE9Wk2Ge082/Hrzb+ycM9C3jv8Hu8dfq/6uc7enfnmhm8Y2tY6DWOMMbjNYDac3oAkSQZXhiSFApmYX+ahv14NzLHCikKOZx/n6T5PN5sMmUzG032eJtInkpd3v8zEPydWP6eQKZjUbRLP9X2u2QJBuFwCu/fiXrr6d60/QH+NxBy7ohHBoB1yPOc45Zpy+gZZv7yqLqM7jObqtlezK30Xx7OPE+gaSP+Q/nT27tzsn+2n8qOzd2fiMuIMDxArgxZhSploXEYc0b7RzXqTAd2/8ZtD3+TxHo+z7+I+cspy6OrflcGhg5st21qTPkF9+L/j/0dSXpLBBkiim6gFmNBN9GjWUdSSukVs2NiOYxnWbhg7L+zkRM4JAt0CGRgy0KqNFowR7BZMO492xGUasWGim6hlmNBN9GDGQbr6d222lWc9/q7+vD38bab1nMa+S/vIK8+jm383BrUZZLUOkw3RJ6gP3yR+w8n8k4T7GGicJ7qJmo0p3UQPZR5CQmoRGzau87jqo2oSchMIcQthYMhA2nu1b/bPbuvRliDXIA5mHOThrg/Xe15UNzgGIhi0Q/TBUe+g3i3yea5KV0aEjbDaWU3m0CuwFzvO7zCc9RTBoGU0st9GkiQOZR7ixk43tpikCJ8Iq3ZyNJXegbrv0KGMQ4a74SoUwpEyFxNWBqttWGDL2bCR7Ucysv3IFvm8mvQK7GU0oSUcKctoLKGl0Wo4knWEOyPvbDFNkb6RRPpGttjn6dF3Sj2UechwMCiqG8zHBBt2KPMQAD0De7aAIN1Z0KM7jGZ0h9Et8nl6ZDIZvYN6V/+99RB+mEMg9gzaIXEZcQS5BhHqHmprKc1On6A+ZJRmcKH4Qr3nRDdRC2nEkTqZf5L8ivwWSzbYkk7enfB29ja+ciMcKbMxpflCXGYc7TzaEegW2EKqbEfvoN6cKzpHZklm/SfFfhvLaCShlZyXTHFlsUPYsCifKNyUbg0mHER1g5mYmNDq5NWp2Xom2BO9AntV7+mvhwgGHQIRDNohcZlx9Arq1Sydo+wN/T4bgzc6YYQsorGsuj4D2Bzd7+wNuUze6MqNcKTMxJSsesYhh5hfcHn102DCQdgwy2jEhum/z44wxxRyBT0Deza8ciMSpmahT2hJRpoUSZJEXEacQyQb4HIVmqFmfqK6wTEQwaCdkVeex8n8ky1WXmVrYv1jcZY7G77RCUfKMhrJqh/KPISb0o1o3+gWFGU7egX1IjE30fAB5aKbqPk0EgxmlWZxtuiswzhS3QO6o5ApGrRhwpEyE42m2gk1RFxmHN7O3i2yt90e6B3Ym2PZxwwfwySqG8ynERuWXpxORmmGw/hhPQN7IkNmOGkqqhscAhEM2hn6zIx+n8CVjovCha7+XRtcGRQrN2aiVjeaVe8R0MNwd80rkN6BvdFIGo5mHa3/pHCkzEb/fTSWVW/p/YK2xs1Jl1gxZMMk0U3UIhqrbojLiKNnYM9mOTvSHukV1IsKbQXHs4/Xf1J0EzWfRrqJ6lf5HSWh5eXsRYRPRMPVDWKOXdE4hiVtRThS+Yue3kG9OZx1GI22tlMuiYyURcgayKpXaCo4ln3MYZINcPmGbuxGJ5INZtJIVv1Q5iHkMjndA7q3oCjb0juoN4czDyNJUu0nRHWDZTQQDJaqS0nMTXSse6S+EZaB1WdJlImaTWP7ng9lHMJJ7kSsf2wLqrItvQJ76TqoGrFhorrhykYEg3bGsexjdPTq2KxnY9kb3QK6Uaou5VTBqdpPiLbslqHVGm2ZnZSXRIW2gh4BPVpYlO0IcA2gjXsbjmUfq/ecJNqym08jR0vEZ8cT6ROJm5NbC4qyLd0DupNfkc/ZwrO1n6i6RsKRMpMGjpY4kXMCjaRxKBvWxr0N/ip/4rPi6z8pSt3NxwQbFuMX0yLHH9kLPQJ6kFWaxaWSS7Uel0RCyyEQwaCdEZ8dTzf/braW0aLo/966NzqxcdlCGsiqH8vSBUQGD5e9gunm382wIyXKRM2nkax6fHa8Q84v0P3tNRHVDZYha2Dfs/573C3Ace6TMplMZ8OyDQeDorrBTBqobpAkyTH9sADDNkxUNzgGIhi0I/LL8zlTeMahbnIAkT6ROMud6xsh4UhZRgPBYHx2PG5KNzp5dWphUbalq39XUvJTKFWX1npcdBM1H1kDjlR2aTYXiy86nCMV4xeDXCYXjpS10Ggu2/86xGfH4+3sTTuPdi0syrZ0C+hGYm4iFZqKWo+LMlELaCChlV6cTk5ZjsMltPTn8NZLmoqkvEMggkE74niObnO4oxkhZ4UzUb5R9cv4hCNlEQ1l1Y9lH6OLXxeHaR6jp5t/N7SSloSchNpPCEfKfBoIBvXfYUezYa5KVyK8I4zaMOFImUkDCa3j2ceJ9Y91iKOXatLVvyuV2kqS8pJqPyGqG8ymoYSW/jvsaAktT2dPOnp15FhObRsmqhscAxEM2hHV5S8OZoSA6hKYWpuXhSNlGUay6lpJy7HsYw638gwNlMAIR8p8Gsiq66+vowWDoJtjokzUOhhLaKm1ak7knHDIe6T+O6Uv9a9GVDeYTwPBYHx2PDJk1StljkQ3/24G5xcgbNgVjggG7Yj47HiCXIMIcguytZQWp1tAN3LKckgvTq9+TLRltxAjR0ukFaRRVFnkkI5UO492eDt7GyyBEW3ZzUPWQFv2+Ox42nm0w1fl28KqbE9X/65cLL5Idmn25QdFW3bLMGLDUvNSKdOUOWRCq7N3Z9yUbvVWnyXRQMZsGlsZ7OjVEQ9njxZWZXu6+nclrTCNgoqCyw+KI74cAhEM2hGOumoDl1dDa93oRDdRi5AZ6SbqqCV8oGvAEOsfW78ERnQTNZ8GOvEdyz7mkPMLGrZhorrBTIx0E9V/fx1xjsllcmL9Yw3vSxX3SPNoxIY5rB9W9XfXPM9SdBN1DEQwaCeUa8pJzk12qHNtatLFrwsyZLVvdKJM1DKM7Lc5ln0MhUxBtG+0DUTZnq7+XTmRfaL2eZaiTNR8jJSJlqpLSc1LdciVZ7gcoNS0YaJM1DKMlYkeyz6Gi8KFCJ8IG6iyPV39u3Is+1i97RRi1cZMjKwMFlQUcKbwjEMmG8CwDRNloo6BCAbthNS8VNSSmlg/xwwGPZw9aO/ZnsTcxOrHhCNlIUaCwRM5Jwj3DkelVNlAlO2J9YulTFNGWmHa5QdFVt1sjJVYJeYmIiE55F4bAF+VLyHuIbWbFAlHyjKM2bDsE0T6ROIkd7KBKNvTxa8LRZVFnC86X/2Y6CZqAUYSWvrvrqPasCDXIPxUfiTmXPbDqq+RmGNXNCIYtBOScnUdwqJ8o2ysxHZE+UZVXwdAOFIWYiyrnpCTQIxfjA0U2Qf671bNOSYpFGLl2VyMBIN6R8qR51i0T3Ttbo/CkbIMI8FgQq5j2zB9VUfNpKmobjCf6oRWnUZrJ3JOAI4bDMpkMqJ9ow0m5cXq85WNCAbthMTcRBQyBZ29O9tais2I9o0mNS/18jlKwpGyDAOOVFFFEWeLzjq0I6UPBmut3AhHynyMZNVP5JxApVDRwauDDUTZB1G+USTnJleXIgtHygK0WmSSdHmvUhU5ZTlcKrnksI46GE5oieoGC9Bo6s0v0N0bvJy9CHUPtYEo+0CflK8uRRZJeYeg/u5ZG3Ho0CE+//xztFotI0eO5NZbb631/LFjx3jjjTcICtJ12hw4cCDjx4+3gdLmITE3kc7enXFRuNhais2I9otGLak5lX+KaL/oy46U6MRnFjIDnfj0mT5HdqTcndwJ8wirv3Ij5pdZVH8f62TVE3MTifaNRi5z3BxjjF8MZZoyzhSeoZN3J9FN1BIaKEMGiPF13ISWj4sPIW4hJOReTmhJYs+g+RhZedbbMEc7w7Im0b7RFFYWcqH4Am092opg0EGwi2BQq9Xy2WefMW/ePPz9/ZkzZw79+vWjXbt2tcZ16dKFF154wUYqm5fE3ESH3bSsR5/1TMxNJNovWhghSzC2F6LKeXDU5jF66pYiizJRC9BodImaOg5TQk4CI8JG2EiUfVBz5aZWMCjmmOk0UoYc7SdsWK2VQVHdYDYyvQ2rgSRJJOQkcFPnm2ykyj7Q+whJuUm09WgrqhscBLtI4aakpBASEkJwcDBKpZIhQ4awb98+W8tqMUrVpaQVpDm8ox7hHYFcJr+8ciPasptPlcGW6rTMTshJwE3pRphnmC1U2Q3RvtGk5KVQqa3UPSBKrMzHwNEl2aXZZJZmOrwNi/K5nNCCy23ZhSNlOrIGypD1K2OOjD4Y1EpV10mpFDbMXAwcXZJenE5+Rb5DV89A7aQ8II74chDsYmUwJycHf3//6t/9/f1JTk6uNy4pKYlnn30WX19f7r//fsLCDDu2mzdvZvPmzQAsWbKEgICA5hHeBJRKZbWuuItxSEj0a9/PLrW2JJ19OnOq+JTuOpSVAeCmUqFy8OtiMlXXTO7kVGsunSw6SbegbgQFBtlKmV3Qr30/PjjyAXnyPLoEdEHh4YFMq3X47505KJydQaGoZcPi03StyAd2GujQ1zKAANp7ted0yWnddXDSdb10V6lwdeDrYhYFugOv5c7OtW1Y4Um6B3UnMDDQVsrsgr5hffk0/lMKlYWE+4ajcHdHLkkO/b0zF4WzMzKlspYNO5B/ABA2LIAAgt2DSStJ012Hqr2DHq6uuDnwdbGEmvPL3rGLYLDWmTlV1K3Z7tSpEx988AEqlYqDBw+ybNky3nnnHYPvN2rUKEaNGlX9e1ZWlnUFW4GAgIBqXXtO7QEgVBlql1pbkkjvSI5ePKq7DpWVhAIlBQUUOfh1MRVZSQltAC2X570kSRy5dITrOlzn8PMr1EnXGGDPyT0EEohnRQUeGo3DXxdz8Coqwk0uR61W17dhCmHDIrwjOHLxCFlZWciKi2kDFBcWUuzg18VUZHl5Bm1YfEY8t0fe7vDzq61TW0Bnw7w7eONVUYFbje+ioHG8i4tRyWRoaly3vaf3AhAiD3H4axnpHXnZhlV9H4sLCoQNM5Oafr69EBpquDmSXZSJ+vv7k52dXf17dnY2vr6+tca4ubmhUunOR+vTpw8ajYaCqgxiaycpNwknuRMdvTvaWorNifKN4nTBacrUZWK/jSUY2G+TVZpFTlmOw5fwAUT4RCBDdrkERuy3MR8DR5ck5ibi4+JDoKtjr9rA5a7Iaq1a7LexAENloheKL1BYWShsGAbK+ESpu/kYaCCTkJtAsFswvipfIy9yHKJ9oy+XIoveDQ6BWcGgWq3mxIkT7Ny5E4CysjLKqsrSmkJ4eDjp6elkZGSgVqvZuXMn/fr1qzUmLy+vegUxJSUFrVaLp6dnkz/bHkjISSDcO9xhD9KtSbRvNBpJQ2p+anW3QtFN1Az016rGjS4lPwVw7DMs9bgqXeng1aGWIyXml3nI1Op6nURT8lKI8oly6C58eqJ8o6jQVnC64LToJmoJhmxYnrBhejydPQl1D60+GFx0E7UAA8Fgal4qkT6RNhJkX0T5RlGiLuFc4TkRDDoIJpeJnjlzhqVLl+Lk5ER2djZDhgzh+PHjbNu2jaeffrpJIhQKBZMmTWLRokVotVquvfZawsLC2LRpEwBjxoxh9+7dbNq0CYVCgbOzMzNnzrxiHI+k3CT6BPextQy7oGYnq67+XXUNGIQRMhlDWfXkXN3+2wifCFtIsjv0WU+43OADrbZegCMwgoEzupLzkhnbYayNBNkX+qMPEnMTifDspHtQVDeYjoHqhuS8KhvmLWwY6I4wEdUNliPTaGrZe0mSSM5LZnzklXNcWVPQd+xNzE2kfdDVgKhuuNIxORj85JNPmDBhAkOHDuXhhx8GIDY2lo8++sgqQvr06UOfPrUDojFjxlT/PHbsWMaOvfKcjeLKYs4WneXu6LttLcUu6OzdGaVMWbuTlXCkTEdvsGt0SkvJT8FN6UYb9zY2EmVfRPtGs/nMZso15XjUzHqKYNA06nQTzSnLIacsRyQbqoj0jUSGjKTcJG7seAMgHClzqE5o1bRheSn4uPgQ4No6mjE0N1G+Ufx34T/UWjUolWJ+mYtGU6vj9qWSSxRVFomVwSr0XZGTcpMYHTpc96CYY1c0Jns/586d45prrqn1mEqloqKiwuqiHAn9CoXYC6HDWeFMJ+9Ol1uzy+XiRmcOBrLqqXmphPuEO/Rh4DXRlyKfzD8pSmAsoG5WPTUvFRArz3pcla6092yvOxdPJhPVDeZiwIal5KUQ7h1+xVQDNZUo3yjKNeWcLjhdu7pBYBp19j3ry5DDfcJtpciu8HbxJsQ9RHc+sZhfDoHJ3mFgYCAnT56s9Zj+fECB5VQHgw5+kG5Napbxic3x5mGwTDQvWWQ8a1DdgCEn8fI5cOJGZzp1ykT1JXxijl0m2q+ODRPzy3SMBINifl1GX4qclJt0OTEj7pMmUzehpQ8GxRy7TIxvTK35JZLyVzYmB4MTJkxgyZIlrF27FrVazU8//cSKFSu4+25R3tgUEnMTUSlUdPDsYGspdkO0bzRpBWmUqkuFI2UudRypksoSzhedJ9xbZDz1hPuEo5ApdKvPwpEyHwNZdZVCRVuPtjYUZV9E+UZxMv8kFZoKUd1gLnVsWF55HpmlmWLluQb6oCUxN1FUN1hCnYRWSl4KHk4eBLsF21CUfRHlG0VKXgoarUZUNzgAJgeDffv2Zc6cORQUFBAbG0tmZiazZ8+mZ8+ezanviicpN0nnnMoVjQ92EKJ8o5CQSMlLEY6UudRxpFLzRQlfXVwULnTy7qTLegpHynzqZNWT85Lp5N1J2LAaRPtGo5bUnMo/JaobzKRudYMo4auPm5Mb7T3b17JhorrBDOoktJLzknXHDoky5GqifaMp05RxpvCMSMo7AGYdOt+5c2c6d+7cXFockoTcBAa3GWxrGXZFjJ+uBCYhJ4FRCoVoy24GsjrBoCh/MUy0bzTHso8hKS53SpNsrKm1IFOra2XVU/NS6RkokoI10e8BT8hNYJgIBs2jyt7r55h+T6qwYbWJ9o0mMTcRSV713RP3SZOpezxOSn4KV4debUNF9ofehiXmJjJYLhdHMF3hNBgMfv/99ya9yYQJE6wixtEorCgkvThdNI+pQ0evjjjLnXVZT9FN1DzqdBNNyUtBLpPT0buj7TTZIdG+0Ww4tYFSZy0+IJx1c6jRTbRMrcsc3xF5h41F2Rfh3rqGTUm5SeIcOHMxsDLoLHcmzDPMhqLsj2jfaLae3Uqlomo1S8wx06nRTbSoooiLxRdF9UwdqvfW5ybq7L2YX1c0DQaD2dnZ1T9XVFSwZ88eIiIiCAgIICsri5SUFAYOHNjsIq9UxKqNYZRyJZ28O5GclyzKRM2l6lrps+rJecm092yPi8LFlqrsjgifCF0psjyHNiBudOZQo0z0ZP5JJCThSNVBpVTR3rO9rrmOWBk0i7rVDfoyZKXcrEKmK54InwjUkpqTinwC0JWJiuoGE6lRJpqSr/PDxBmWtXF3cifUPVTnp4oy0SueBq3r1KlTq39+++23eeqppxg0aFD1Y3v27GHXrl3Np+4KR+yFME6ETwTHs48LR8pc9Aa7yllPzUsVyQYD6K9JEllcg9hvYw6yGs0X9DZMBIP1ifSJ1JU4CkfKPAyUusf6x9pQkH0S6auzYcmybAaAuE+aQc1uotVJeV9xn6xLpE+k6N3gIJjcQCYuLo4BAwbUeqx///7ExcVZXZSjkJKfglKmpIOX6CRalwifCM4UnqHcSS4cKTOomVXXaHVn6QlHvT6dvDshQ0aylKl7QNzoTKdGVj01PxUZMjp7i73kdYnwieBk/kk0CplwpMyhhg0r15RzpvCMsGEG0HeITiJL94CYY6ZTJ6El/DDDRPhE6IJBhVzMrysck+suQkJC+PPPP7nhhhuqH9u4caM4Z7AJpOal0tG7I05yJ1tLsTsifSLRSBpSvDVECSNkOjUcqTOFZ6jQVoiVQQPoDwZPKhfBoNnUyKon5yUT5hmGq9K1+mlJkigrK0Or1Tp0d77b299OB1UHUuarcPcOorKkxNaS7AJJkpDL5ahUKoPzo2Y30dP5p9FIGmHDDODp7EmIe0i1DRPVDWZQs0w0L0X4YUaI8ImgRF3COS83AsX8uqIxORh8/PHHefPNN/n111/x8/MjJycHhULBrFmzmlPfFU1KXoqoUzeCPhOc4KsmSnSxMpmaK4OiDLlhwn3CSb6QCIgDdc1B301URpUNq7NqU1ZWhpOTE0qlY+/x6uDUgUplJU4eSlROnji5udlakt2gVqspKyvD1dXV0JO6/ysUl/dziZVBg0R4R5B08YzuF3GfNBmZWo3kottHL/ww41T7YX5agsT8uqIx+W7dqVMnVq5cSVJSEnl5efj4+BAVFeXwN3xLqdRUcrrgNNd1uM7WUuwSfQlMgo+am0tERspkDASDwpEyTIRPBDvPbkcrQ6wMmkNVVl0raUnNS2VImyF1ntaK+wJUN20qU4KXJFp71ESpVFJeXm74yRo2LDk3Gbh8PxDUJsIngh8u7NM1jhE2zHSqykTVmkpO5Z8SfpgR9L7DCX8NQ8X8uqIx646tVCqJjRUbua3BqbxTVGorxaqNEdyc3Gjr0ZZE7yJkhcIImUyNoyVSslIIdA3Ex8XHppLslUifSMqoJM0b3MWNznQ0GnB25kz+Gco0ZfUaLzhyaWhNlHIlSrmSMoUEahEM1sXYPKkud1QqSc1Ppa1HW9ycxKqqISJ9IiminHRPUIoyPtOpOh7nZN5J1JJaJEyNEOgaiLezN4m+WqgQ8+tKxuRg8IknnjD63IcffmgVMY5EYo6uPE0YIeNEeEeQ6LVXZDzNoebKYH79Ej7BZapLYAKgr3CkTEam0aBVKEjMrrJhrbjE6v777+e9997D29vb6Jhly5YxcOBAhg4davb7nzhwgu8++5qflr5l0vibb76ZX3/91ezPaYidO3eyatUqvvzyS6u+b7NRp7qhNc+v5kafTE4IgG7iPmk6Vfueq22YuE8aRCaTEe4TTqL3cbgo5teVjMnB4IwZM2r9npuby4YNG7jqqqusLsoR0BshUf5inAifCL7z3I5WK4yQqeiz6pJcTkpeCuM6jbOxIvulZjDYTzhSplNVJpqQnQC0TkdKkiQkSWLNmjWNjn322Wct/hwnuZOuDNnEMlFrB4KtkqrvolYuIyUvhXui77GxIPuluoxPBINmoT8ep9oPExVaRonwieBfn8PIzov5dSVj8tESsbGxtf676qqrePbZZ9m6dWtz6rtiScpOIsg1CG8X4xlpRyfCJ4JipZYLylJbS2k9VDkEmdpC8srzxNlJDeCn8sNf7smJQMTqsznUyKr7uvji7+pva0X1+OijjxgxYgQjRozgk08+AeDs2bMMGzaMOXPmcN1113HhwgUGDhxITk4OAG+99RZDhw7l7rvvZurUqaxatQqAmTNn8vvvvwMwcOBA3nzzTa677jpGjhxJSopuX25cXBw333wzY8aM4eabb65+3EnhhBYJtaz2ynNiYiI33ngjo0ePZtSoUZw8eRKAyEjd91Wr1TJnzhyuvfZaHnjgAe6//36LNbQ29Amt85U5lKhLWmWyoaUIcQvBQ6YiIQBxBJM5VCW0ErMTCXELwcvZy9aK7JZIn0guumrIkxnZ4yu4ImjSLn+lUklGRoa1tDgUidmJIhvVCHonIFFVRG8ba2k1VAU1iaVngdZdwtcSRLqEkhCQKIJBM9Bn1ZOykxp11L1eegmn48et+vmVsbEULFhg9PkjR46wdu1afv/9dyRJYty4cQwePBhvb29SU1NZsWIFixcvrvWaw4cPs2HDBjZu3IhGo+G6666jR48eBt/fz8+PjRs38sUXX7Bq1SrefPNNIiIiWL9+PUqlkn///ZelS5fyySef4KxwBqBMpqVm38w1a9bwyCOPcPvtt1NRUYGmzvzbsGED586dY8uWLWRlZTF8+HAmTJhgkYZWR7UN03XJFMGgcWQyGZFObUgIOCU6IptDjYSW8MMaRv/9S3IuQKSWr1xMDga///77Wr+Xl5cTFxdH797CTTcXSZJIzE4UJXyNoD9bKtGtWASDJqJ3CBKqHCmxMtgwEc5t+TMgUThS5qDRVJeJjg4bbWs19di7dy9jx47Freooh+uvv549e/YwZswY2rVrR9++fQ2+5rrrrqs+6mD0aON/1/XXXw9Ajx49+N///gdAQUEBM2fO5NSpU8hkMiorKwFwllcFg3JNrWCwb9++vPPOO6Snp3P99dfTuXPnenrGjRuHXC4nKCiIIUNqd2w1R0Oro6qF/YniNABxxmAjRDmHsiPwlDhawgxkajVahZyE7ARuD7/d1nLsGhEMOgYmB4PZ2dm1fndxcWHcuHEWbap3dHLKcsgtyxUZz0YIcA3Ap1JBops4rNlk9Fn1krO4Kl1p497GxoLsmyjXML5yh+zyXDxtLaa1oNGQ7awhsySz0ax6Qyt4zYXUwP48NyNn/TX0mrq4VJ1PplAoqlf0li1bxpAhQ/jss884e/Ys48eP142RKZAho0xeu4Tvtttuo3fv3mzZsoWJEyeybNkyrr766mbR0NrQl4kmFqfh7exNgGuAjRXZN5GqdnzvBcWVxTjbWkxrQavlokslBeUFwg9rhPae7XHSykh0LeZGW4sRNBsm7xm89957mTp1avV/jzzyCCNHjqS4uLg59V2RVJ//Jkr4GkQmkxFV4kaiu9gzaDJVjuGJ4tOEe4cjl5n8FXdIIlzDAEgpPWdjJa0HmUZDorsuQWOPjtSgQYPYuHEjpaWllJSU8OeffzJw4MAGXzNgwAD++usvysrKKC4uZsuWLWZ9ZmFhISEhIQCsXbu2+nGZTIZcol4wmJaWRocOHXjkkUcYPXo0J06cqPV8//79+eOPP9BqtWRmZrJr1y6LNbQ69AmtwlOE+4SLo0oaIcKlLQDJJWdsrKQVodFUJ5lFmWjDKOVKIopdSHQVvv6VjMme4lNPPWXw8aefftpqYhyFlHxxGLipxJR6kOhZZmsZrQZ9Vj2p6LQorzIBfTCYXC6CQZPRakly1TlS9jjHunfvzp133smNN97IuHHjuOeee+jWrVuDr+nVqxdjxoxh9OjRTJ48mZ49e+Lpafpa8RNPPMHixYu55ZZb6u3/UxhYGfz1118ZMWIEo0ePJjU1td4q3o033kibNm0YMWIEzz//PL1798bLq+EmFw1paFXUCAbtcX7ZG1Gu7QFIrtonLmgcmUZDoqoIsE8bZm/EFLmS6CaCwSsZk8tEDZXRlJSUIJeLlQdzSclLwVXpSqhHqK2l2D1Rpe58GZJOfnm+6LxqChoNJU6QVnKBO0XGs1HCXENQVUJy+XlbS2k9VDlSLgoX2nm0s7Uag0yZMoUpU6bUeiwsLIy///671mN79uyp/vnxxx9n1qxZlJaWcvvtt1e//u233zY4vmfPnvzwww8A9OvXjx07dlQ/99xzzwEwZMgQItsv4oK8Aq2krV6pnzFjRr3jmgCSk5MBkMvlvPTSS7i7u5OTk8O4ceOIiYmxWEPdPYf2jEyrJU8FF8syRcLUBDq6hqLUQHKZSGiZjFZLkqoID2cPQtxCbK3G7okqcePX4FwqNBXVTbEEVxaNBoP6w+YrKirqHTxfVFRktXMGDx06xOeff45Wq2XkyJHceuuttZ6XJInPP/+cuLg4XFxcmDp1ar1N962FlLwUovyjRAmfCUSV67LzKXkp9A2u3/hBUAeNhsSqTv/CkWochdKZqGxI9rpgaymtBl1WvZBIv0gUcoWt5ViN5557jqSkJMrLy7nzzjvp3r27Vd7XRau7RuXqclydXBsZfZkHH3yQ/Px8KisreeqppwgKCrKKHrtHo9EdlYCwYaagVDgTngvJXiIYNBmNhkTnfKL9okUZsglEl7ihkcPpgtNE+UbZWo6gGWg0GJwxYwaSJLF48eJ6mUwfHx9CQ5u+uqXVavnss8+YN28e/v7+zJkzh379+tGu3eWsc1xcHBcvXuSdd94hOTmZTz/9lNdff73Jn20LUvNSGdiu4T0sAh0x5brSqJR8EQyagqyGIyXKXxpHksvpkgV72opg0GQ0GpJcSugTYJ1EoL3w/vvvN8v7qiRd0q9MU2ZWMKhf8XM41GoRDJqDQkGXTDjeRtgwU5FpNCQ5lzI8YKStpbQKoss8gKqFDBEMXpE0GgzGxsYC8Nlnn1V3MLM2KSkphISEEBwcDOjKWvbt21crGNy/fz9Dhw7VNRWJiqK4uJjc3Fx8fX2bRVNzUaYu40zhGR7wf8DWUloFHSvdcdboAmiBCVQFg3KZnE7enWytxv5RKIjJgrWaLMrUZaiUKlsrsnvKUHPaqZh7/KJtLaVVoJIUyIByjTi02RRkWi0JAbpjOdp7tre1HPunyob9UXmJSm0lTnInWyuyewrlas4rS4j2FzbMFKJqBIOCK5MGg8H169dz++26M1h+/vlno+NqHoZrCTk5Ofj7+1f/7u/vX713ouaYgICAWmNycnIMBoObN29m8+bNACxZsqTW62xNYnYicpmcLkFd7EqXvaJw9ySy0Im0kjRxvUxA7urKiUDo7NmBtsFtbS3H/gkIICYLJCTy5Hl0C2i40YgAErzVaGUSsUGxBr+Tly5dQqk0eTv6lY9MjrNGRoW2QlyXGri4uBicP3KVihMBEOnTmZAgsZ+rMWQBAXTJgko0FCgKRIBjAod9dGcyGrNhgtooXTwJK3HibOlZcb3MQKlUtprr1eCdqebZgnXPGbQmhprT1K3jNmWMnlGjRjFq1Kjq37Oyspqo0Hr440/Kwyn4+/vblS57xaeykuhcJYcyjovrZQLuBQUkBECUT7i4XiagKCigS6bu572n9hIiF85nY5zw0h1mHukbaXCOlZeXo1BcOXsJm4oCUGlklKpLUYuDwaspLy83OH/0NqyrkfklqI2yoICYqsu0/9R+/CX/hl8gIMFX17E2widCzDET8NVoiC5w5tilY+J6mUFAQIDdXS9jW/saDAYfffTR6p+nTp1qXUU18Pf3rxd41l3xqxs8GRrTWnBWOOOidKGQQltLsX8UCqLzlPxSkCY6WZmARlNJkj+M8hX7BU1CoSAyB2TISM0XpcimkOCrRiZBpF8kJfkltpbTKlBpZBRqKpAkSTSsaIRKbSWpfnC7n9ibZBIKBdFVrlFyXjLXcZ1t9bQCTvhpUEgywn3DKcgtsLUc+0ehILrAmV35KcKGXaE02M7y0qVLJv3XVMLDw0lPTycjIwO1Ws3OnTvp169frTH9+vXj33//RZIkkpKScHNza7XBoMB0JIWCLjlyNJKG0wWnbS3H7jmjyaZcCTFiP5dpKBS4VUKYzFfshzCRBF8N7TWeuDm52VqKXfPOO+/ofpDJUGlkaCUtFdoKi94rPz+fL774wuzXLV++nFWrVpk09vDhw8yfP9/sz7CmBoCT2iw0cogJiLG6lisRSS7HuxzayL2FDTORRD8tnbU+IrlsKnI5MXlKiiuLSS9Ot7UaQTPQ4Mrgk08+adKbfP/9900SoVAomDRpEosWLUKr1XLttdcSFhbGpk2bABgzZgy9e/fm4MGDPPnkkzg7OzfrSqXAjlAoiM7R5SxEJ6vGSZZ0NY/RASIYNAWp6pzUKHkQyXnJjYwWACT6S0RqW0ciTpIkJEmyyXm47777bvU9VFVVHVquLsdZ7my2poKCAr788kseeuihZlCqo2fPnvTs2bPZ3t9UkqptWBcbK2klVJVkR8qDSMkXwWCjSBIJ/hCl9bO1klaDpFAQk60LF1LyU8QZ2VcgDQaDTQ3yzKFPnz706dOn1mNjxoyp/lkmkzF58uQW0yOwE+TyWiUwgoZJlDIAiA6IQSu2JzVOlSMVRQA78vbXOhhcUB+tpCXBX+Jhtf06UmfPnuW+++5jyJAhHDhwgNWrV/Pbb7/x22+/UVFRwdixY5k9ezYA69at46OPPgKgS5cuvPvuu5w7d45nnnmGnJwc/Pz8eOutt2jbti0zZ87E09OTw4cPk5mZyYsvvsi4ceO4dOkSTzzxBIWFhWg0GhYvXsyWLVsoKytj9OjRxLRrx/MP3M+Uh+cyaPAgjh8+zurVq7n22murG6X9/vvvbN68mbfffpvMzExeeOEF0tLSAFi8eDGrV68mLS2N0aNHM3ToUObPn8+HH35o8G9auXIlP/zwA6Ghofj7+9OjR4961+i3337jrbfeQi6X4+Xlxfr169m5cyerVq3iyy+/JDs7m2nTppGbm0vPnj35559/+PPPPykuLua+++5jwIAB7N+/n5CQEFavXo2rqytff/01X3/9NRUVFXTq1Il33nkHV1fTj9LQk4TO4EcFxlBWKDqwNoo+GJQFsTb3iCjjawR1ZTnJ/jBGI/ZWmoxCQXRuVVI+N4WhbYfaWJDA2pjd2iwnJ6f6JunnZ78OgeDKQFIq8SyXCHUPFSUwJpBENkFF4OcRRFZenq3l2D9V3R0j8adMU8b5ovOEeYbZWJT9cqHwPKVOEF1pmiP10q6XOJ593KoaYv1jWTB4QYNjUlNTWbFiBYsXL2bbtm2cOnWKP/74A0mSeOihh9i9eze+vr688847/PLLL/j5+ZGbmwvAiy++yPjx47nrrrv47rvvmD9/PqtXrwZ0Wyd+/vlnUlJSePjhhxk3bhw//fQTw4YN46mnnkKj0VBaWsrAgQP5/PPP+euvv1CcO8fZpCTOnT7HdYuv4+1lbzeoff78+QwaNIjPPvsMjUZDcXExc+fOJTExkb/++gvA6N/k5ubGr7/+yqZNm1Cr1YwdO9ZgMPj222/z9ddf06ZNG/Lz8+s9v2LFCq666ipmzJjB1q1b+frrr6ufO3XqFO+//z7Lli1jypQpbNiwgTvuuIPrr7+eiRMnArB06VK+/fZbJk2a1ODfaogkWTZh+eDh4imCQROQ9AktWSCFFYVklGYQ7BZsY1X2S1r+KSoVEK1pHV0e7QKFgpAi8HL2EqvPVygmB4NZWVm88847JCUl4eHhQVFREZGRkTz55JMEBgY2p0aBIyOXg0ZDhE+EOGvQBJJl2brOcqKbo0noy0SjJZ1jkJKXIoLBBkjJ1a1kRWLfjlS7du3o27cvoAuctm3bVl1pUlJSwqlTpzh+/Dg33nhjdVJTvwf9wIEDfPrppwDccccdvPbaa9XvO3bsWORyOVFRUWRm6soZe/XqxaxZs1Cr1Vx33XV062bgeBJJIjg0mMjujTd2+u+//1i5ciWg20Lh5eVVL2Az9jcVFRUxduzY6hW50aNHG/yMfv368fTTT3PTTTdx/fXX13t+7969fPbZZwBce+21+Pj4VD8XFhZW/Tf26NGDs2fPApCYmMgbb7xBQUEBxcXFDBs2rNG/1RBJ8hxissXKlsnog8GqLqIpeSkiGGyA1FxdMBMlE36rqUgKBXKNlnCfcJGUv0IxORh8//336dy5M3PnzkWlUlFWVsZ3333H+++/zyuvvNKMEgUOjUIBGg2RPpF8l/SdKIFpAEmSSJTncGcWIK6Raegdqar9Iyl5KVwbdq0tFdk1yblJAERjmiPV2Apec+Hmdrm5jSRJTJ8+nfvvv7/WmM8++8wkW1JzjLPz5YYT+uOOBg0axI8//siWLVt46qmnePzxx7nzzjtrvgFIEm5ubpSpy6ptWM33LS83bwXM2N/0ySefmPQ3LV26lIMHD7JlyxbGjBlTvT+/7t9mCBcXl+qfFQoFZWVlADz99NN89tlndO3ale+//55du3aZ8ydVf26yIperc0SptsnUCQaT85K5KvQqWyqya/TbTSLkQTZW0opQKECrJdInkm3nttlajaAZMNninjx5kvvuuw+VSgWASqXivvvu4+TJk80mTiBAoUCm1WWkRCerhskpyyFXXkaMcKRMp8qR8te44OPiI/alNkJKXgp+JeCv8LC1FJMZPnw433//PcXFxQCkp6eTlZXF1VdfzW+//UZOTg5AdZlov379+OWXXwBYv349AwYMaPD9z507R0BAABMnTuTuu+/m6NGjADg5OVFZWYk+rJIhQyNp0Ei6M84CAwNJTk5Gq9Xy559/Vr/f1VdfzZdffgmARqOhsLAQd3d3ioqKGv2bBg0axJ9//klpaSlFRUXVZaV1OX36NH369OHZZ5/Fz8+PCxcu1Hp+wIAB/Pbbb4BuFTLPhJLzoqIigoODqays5Keffmp0vCHSi9MpkldWNw0TmECVDQvVeuDu5C4qaBohJT+VNoXgLRfdkE1GX6HlHcGlkksUVIjjOIxxvug80/+eTnx2vK2lmIXJK4ORkZGkpKQQE3O53XNqaipRUaK7o6D5kKpWBiN8IgCdMyo6WRlGH8jE5IoSUZOpcqTkWolIn0jhSDVCSn6Krgw51Ozt5jZj2LBhJCcnc/PNNwO6VcN3332X6OhonnzyScaPH49cLqdbt268/fbbLFy4kGeeeYZVq1ZVN5BpCH3jFaVSibu7e3WJ58SJExk1ahTdw8OZe8891St2ZeoyPJw9mDNnDg8++CChoaFER0dXB3YLFizgueee47vvvkMul7N48WL69etH//79GTFiBNdeey3z5883+Dd1796dm266iTFjxtCuXTsGDhxoUPNrr73GqVOnkCSJq6++mq5du9ZayXvmmWeYOnUqv/76K4MGDSI4OBh3d/dqjYZ49tlnGTduHO3atSMmJqZW8Goq+hK0mLzWM79sjb7UXabVEuEXIRJajZBScFJnw7zFfdJkDPhhfYL6NPIix+REzgl+Sv2JB7s+aGspZiGTGqoHqcEnn3zCjh076NOnT/Uh8XFxcVx99dV4enpWj5swYUKzibWUullPeyAgIICsrCxby7B7PJcuxePddzmcdJDeX/dm4eCFTOpmflMCR+CrE1/x/I7nOfmhC23PFIj5ZQrl5YR27kzB88/zeK8z/HXmLw7fd9jWquyWnl/24JZd2Szv9RKuL75ocI6VlJTUKtN0dOQXLqDIzqY4NpoTOSdo59EOf1f77mRYXl6OQqFAqVSyf/9+5syZY3SV0VIMzZPV8auZv2s+5z/2IuBUprBhJiArLKRNTAz58+fzSPRxdqbvZP+9+20tyy6RJInYL2K4b2cRi65ahNvs2WKOmYDXSy/htm4d/+36naHrhvLWsLe4K+ouW8uyS1YdWcXCPQs5ev9RotpF2d38Cg01vJhicvqtsrKyOstYUFCAk5MTAwYMoKKiguzsbOuoFAjqolQikyQCVQGik1UjpOSl4KpVEFbihNbWYloLVd1E9VnPbxO/JbcsF19V6zhHryXJLcslq7yqQZFSrNyYTNWeQSe5E3KZnHKN/XfIPH/+PI8//jharRZnZ2eWLVvWIp+bkp+Ct8aJoHKlsGGmUvVdlFXZsB9TfqSooggP59ZTyt1SZJZmUqAuEk3WzKVqZbC9V3uc5E6igqYBUvNS8Vf546dqXactmHxHF4e8C2xBzRKYcJ9wknNFCYwxUvJSiFR7I1dohSNlKjVLrPQlMPkp9Ff1t6Uqu0SfiInJutzOXmA6MpkMF4ULZZoyW0tplM6dO9drKtMSJOcmE1XhhUzML5PR3yNrlvGl5qfSM7CnDVXZJ9VbKUQwaB5VwaCT3ImOXh1FKXIDJOclE+nTeNdoe8OsXdrl5eWkpaWRmJhY6z+BoNnQG+yqjqKp+SIjZYyUvBSiK7wuOweCxpHJdNerpiMlsp4G0V+XLplUB9ECE6haGUSScFG4UK62/5VBW5Gan0p0hZeYX+ZQ5x4JiPb/RtBfly4ioWUWUlUjP4BIn0gxvxogJS+FcJ9wW8swG5NXBrdt28bq1atRKpW12msDfPjhh1YXJhAA1Tc6mVZLhHcEa5PWUlBRgJezl42F2Rel6lLOFZ0jqrw7KIw3eRAYoCrrGeYRhovCRWQ9jZCSl4KL3JmOeRUUNuBImbgN3XGocdSDSqEirzwPraRFLnPsgKfuPCmoKOBSySWiyrojKSpspKoVUuMe2cGrAwqZQjjrRkjNS8Vd4UrbglLyRMLBdKoSpgDhPuFsSttEpbYSJ7mTjYXZFzllOeSW51YnllsTJgeDX331FbNmzaJHjx7NqUcgqIVUM+vpeznrKTpZ1SY1PxUJiegyT1Bk2FpO66LqDCWFXEFn787CkTJCcl4ynd3bo5BSGsyqy+Vy1Go1SrGvsDaShItSd0ZfuaYcV6WrjQXZDrVajbyOM17dSbTUAxT5tpDVOpHJkGQy0GhwVjjT0aujsGFGSM5LJsKtAzISRJmoOSgUyDQakHRdt9WSmtP5p6t9MoEO/Tam1lgmavLdWqlUEhsb25xaBIL66B0GtZpwb93SuwgG66Mv4YsudRdlomYiyeXI1GoAwr3DW935QC1FSl4K3d06AykNlvGpVCrKysooLy836QD0Kx3l+fM4HTtGaadOlGpKOXLhCCqNijCvMFtLswmSJCGXy6vPLNajD2CiSt1Fmai5VFU3AET4RIhg0AgpeSkMce8KJIgyUTOovlY199bnpYhgsA76ffVX9MrghAkT+PLLLxk/fjxeXqJET9BC1CyB8emAk9xJ3OgMkJyXjFwmJ6LUVWQ8zaWGIxXpG8mG0xsoU5ehUqoaeaHjUKYu40zhGW7zG6Z7oIE5JpPJcHV13FWvurjv2YP3a6+RftttyN18mbtvLk/1forZIbNtLc2uSMlLwUnuROcSF+Gom4t+5QadI/r32b9Ra9Uo5WJ1Xk9xZTEXii8QEXCd7gGRcDCdGk2K9En55Lxkrud6G4qyP5Jzk1EpVLT1aGtrKWZjsqUIDQ1l7dq1bNy4sd5z33//vVVFCQR6apaJKuVKOnl1EsGgAVLyUgjzCEOlkYlg0FyqykQBIrwj0EpaThecJsYvxsbC7IfTBafRSloiXXWrWZIoATWdGjZMpfSgvWd7YcMMkJKXQkevjig1kji6xEykOiuDldpK0grSWmUji+ZCXz0T6VLlqIs5Zjo1jmDycPWgjXsbYcMMkJqfSmfvzq1yP7jJ34Z3332XoUOHMmTIkHoNZASCZqOGIwW6G11iruhgW5ek3CSifKOQaTQiq24mUp2sOuiyniIYvIz+Oxejaq97QGTVTaeODQv3DheOlAEScxPp6t8VtBoxv8ylTjAIOsdUBIOXqWvDxH3SdKQaFVoSujkmOrvXJzE3kQHBA2wtwyJMtrhFRUVMmDCB9u3bExISUus/gaDZqOtI+YRzuuA0FRrRbU5PhaaC1LxUon2jdddJ3OTMo4YjpXeehLNem6TcJOQyOeEuoboHxBwzmZqOFOgcqZP5J9FoNbaUZVeUqktJK0gj2jdaJLQsoWZ1gz6hJc7krUVSbhLOcmc6OQXrHhAJB9OpUSYKugqalLwU0Tm6BoUVhZwvOk+Ub5StpViEyd+G4cOH8++//zanFoGgHnUdqUifSDSShrSCNFvKsitO5Z9CLal1RkirFY66ucjl1Y6Uq9KVdh7txFmDdUjMTaSjV0dc9cUkYo6ZTh1HKtInknJNOeeKztlQlH2RkpeChKSzYSKhZTaSXF5d3eDl7EWwW3B1MwuBjoTcBMJ9wlFqqx4Qc8x06lZo+UZQVFnExZKLNhRlXyTlJgG02ooik8tEU1JS+PPPP1m/fj0+Pj61nnv11VetrUsg0FE3I1WjjE90stKhL3+J9otGpvlNZDzNpGaZKOjmmDhrsDaJuYnE+MZUfw9Fx1ozMFDqDjob1sGrg61U2RXVJXy+MbrEjJhf5lGjugF0pcjChtUmKTeJfsH9qhPLIhg0nXplot6XbVgb9zY2VGY/6IPB1royaHIwOHLkSEaOHNmcWgSC+ugNdlXr/5ptjQU6kvJ0JXwR3hEgSqzMR6Gonl+gm2N7Lu4RB4NXUaYu43TBaW7ufPPl6yTmmMlUO1IGSpFHtR9lM132RFJuEk5yJzp6d9Qd8yLml3nUCQYjfSP5KeUnJEkSx7ug6yR6rugc98bcC6U6GyYSWmZQ44gvoDoRn5qXytC2Q22lyq5IzE1EpVDR3rO9raVYhFllor169cLDwwNJktBqtdX/CQTNRd0yUXcnd9HJqg6JuYl08OygOwpBlFiZT439NqALBkvVpaQXp9tQlP2Qmp+KVtLqGhTpr5PoxGc6dVYG/VR++Kv8RSlyDRJzEwn3DsdJ7qRLaIn5ZRb1qhu8IyioKCCzNNOGquwH/apN9b56EDbMHGp0EwUIcg3C08lT+GE1SMxNJMo3qtUmkE3+Nuzdu5f33nuPkJAQzp49S1hYGGfPniUmJoYRI0Y0p0aBI1PHkQJxqG5dEnMSq+vUZSIYNBtDZaKga8DQGs8Lsja1SvgycgCRVTcLIzZMlPFdJjEnkT7BfXS/iH3P5lNnZbBmKXKQW5CtVNkN1VspfKORpZ3RPSjmmMnUTcrLZDJhw+qQlJvE1W2vtrUMizH5jv7999/zxBNP8MYbb6BSqXjjjTd47LHH6NSpU3PqEzg6BhypSJ9IUvJFJyuAck05pwtOX65TF2Wi5lO3xMpHVwIjGjDoSMxNRClT0sm70+XrJOaYydR1pEAktGpSXFnM2aKzRPnobJhIaFlAjSZYILZT1KVWCZ/Y92w+dXo3QNXxEqK6AYC88jwullzUrTy3UkxeGczKymLw4MG1Hhs2bBiPPfYYDzzwgMUCioqKeOutt8jMzCQwMJCnn34aDw+PeuOmTZuGSqVCLpejUChYsmSJxZ8paD0YcqTCfcIpriwmvTidUI9QW0mzC1LzUtFImstGSDRfMJ86jpS/yh8fFx/Rmr2KpNwkOnt3xlnhLJovWIIRRyq3PJfs0mz8Xf1tJMw+0K8uVNuwqoSW2OlmOnWrG9q4t8FN6SaCwSqScpOI8IlAIVeIhJYlGKluWJe8joKKArycvWwkzD6oVYbcSjHZa/Ty8iIvLw+AwMBAkpKSuHTpUpP3DP788890796dd955h+7du/Pzzz8bHfvyyy+zbNkyEQg6EgYcKX0GWZQo1C5/AZFVt4S6jpRMJiPSJ1LMryoScxKJ9rvsqIPIqpuFAUdKb8OS8pJsociuSMy53A0ZEAktS6hT3SCTyYjyjap2Uh2dhNyEy/dIkdAyG0NJeX01kkia1vfDWiMmW9yRI0eSkJAAwI033sirr77Ks88+y5gxY5okYN++fQwbNgzQrTTu27evSe8nuMKo000ULp/jciLnhC0U2RX6Er7O3p11D4gyUfOp40iBzqgn5CQ4fClyqbqUM4VnLt/kRDdR86nTTRQuBz4JOQk2kWRP6Ev4OnjqjtkQ3UQtwJgNyxXzK788n4vFF+vZMJHQMoM63UThcuAj5pguoeXu5N6qewyYXCZ66623Vv88bNgwunbtSllZGe3atWuSgPz8fHx9fQHw9fWloKDA6NhFixYBMHr0aEaNMt6Se/PmzWzevBmAJUuWEBAQ0CSNzYFSqbRLXfaGrGpu+Hh6IlVdrwACCHEPIa0kzeGv4eni00T4RRAarCuXVcpkoFKBmF8mo3RxAbm81vXq174fXyV8RblLOe28mmbjWjMH0w8iIdGvfT8CAgKQubsD4OPvj0LMMZOQVZ3LW9OG+fv746vy5VTJKYe/hqeKTxEdEE1wUDAACpkMhaursGFmoHB2RqFQ1LpefcP68n3S92hdtQS5O24TmeRzupWrfh10NkxeZcN8AwKEDTMRvR/m6+VVbcP8/P1wd3LndMlph7+Gp4pP0TWwK4GBgbUeb01+vsW9dc35AxcuXFhdYlqTu+++26z38PPzIz8/n9dee43Q0FBiY2MNjh01alStYDErK8vkz2kpAgIC7FKXveFcXEwAkJ+TQ0WN6xXlE8Wh9EMOfw2PXjpKV/+u1dchsLwcjVaLXK12+GtjKv6SBGVlZNe4XmHOYQDsTN3JiDDH7Za8+9RuANoo25CVlYUqLw8/ILewEB8xx0zCpaQEfyAvO5vKGtcr2ieaQxeEDTt66SiD2wy+bMMqKlBrNCjE/DKZAEBbVkZOTRvmUmXDUna26i6HTWXPqT0AtFHobJhrXh6+CBtmDsZsWJRvFHEX4hz+GsZnxDMqbFS962CPfn5oqOE+Gy1y0Mr8+fONPuft7U1ubi6+vr7k5ubi5WV4I6qfn1/1+P79+5OSkmI0GBRcQRjYbwO6EoU1J9ag0Wp0m8IdkFJ1KWkFadwRccflB7VaUSZqLkZKrEBX/uHIwWBSbhLOcmc6enXUPSCaL5iPgf02oCsV/TH5R4c+GLygooD04vTae23Evmfzkcvr2bAYX912ioTcBIcOBpNyk3BTutHOs6rCQ+x7Nh8DvRtAN8f+PP2nQ9uw7NJsskqzLu95bqXY/NvQr18/tm3bBsC2bdvo379/vTFlZWWUlpZW/3zkyBHat2/fojoFNsKII9XFrwtlmjLSCtNsocouSMlLQUK6fKwE6Iy1uMmZR51uogC+Kl9C3EIcfl9qYm4i4T7hKOVVeUPRfMFspAYcqaLKIs4XnbeBKvtA3+Ckpg2TiX3P5lOnCRZAoGsgfiq/6gY9jkq9w8BFQst8jCTlY/xiyC3PJbM00wai7IMroXkM2EEweOutt3LkyBGefPJJjhw5Ur03MScnh8WLFwO6fYUvvfQSzz77LHPnzqVPnz706tXLdqIFLYZRR6qqiYwjN2DQ/+0iq95EDDhSoJtjjr45PjE3sdb8komsuvkYcaS6+HUBHLsRlkFHSnQTNRvJQHWDTCYjxjeGE7mOO7/gcjBYjUhomY+RpHz16rMD+2GGElqtkRYpE20IT09PXnrppXqP+/n5MWfOHACCg4NZtmxZS0sT2ANGHKko3yhkyEjISeCGTjfYQJjtqS7h8+5Y/ZjIqptP3aMl9MT4xbDr2C7UWvXllTEHoqhCt2p1X8x9lx8UWXXzaaBMFHTO6ugOo1tclj2QmJuIq9KVMM+wyw+KhJb5GKhuAF3C4dvEb9FK2ssrYw5ETlkOmaWZIqHVRIwl5fUJrYTcBIa2G9rSsuyChNwEvJ29CXELsbWUJiG+DQL7xkBbdgBXpSsdvDo4dNZTX8LnJHe6/KAoEzUfA/ttQLdaUa4p51T+KRuIsj36M/DqrTyDcNbNQDLQlh3Ay9mLUPdQh14ZTMpNIsonqlagIhJaFqBQ6I7kqEO0XzQl6hLOFp61gSjbY/AwcHE8jvkYOOILwN/VnwDXAGHDfKNa/Z5J4TUK7BrJyMogQKx/LMezj7ewIvvhWM6x6sxcNRoNKB1vFaspSEqlwZXBWH9dg6rjOY45x45lHwOoNceqs+rCkTId/fdR2LBaSJLEsWwjNkzML7OQlEqDK4OxflU2zEHnmCEbVn2dxH3SdKquVd3qBtDNMUedX1pJy/Hs4/VtWCtEBIMC+6aBYLCbfzdOF5ymsKKwhUXZnuzSbC4WX6Srf9daj8tEN1HzUSgMOlJRPlE4yZ2Iz4q3gSjbE58Vj7ezd/0SPhDOujkYKRMFnQ1LyU+hVF3a0qpsTnpxOjllOXQL6Fb7CREMmo+R6oYYvxgUMgXx2Q5qw7LjCXANINgtuPoxUSZqPsbKREFnwxJzE6nQVLSwKttzpvAMhZWF9W1YK0R8GwT2TSOOFDhm1lN/c9dfg2pEmaj5GHGknBXORPtGO6wjdSz7GLH+sbXLX0TzBbNpzJHSSlqHbMCgX7Wpa8NEQssCjOx7dlW6EuET4bA2LD4rnm7+3WrbMJHQMp+GkvIB3ajUVlZvK3AkjNmw1ojwGgV2TUOOlH5VTP+FdCT0f3PdlUGRVbcAA5349HT178qx7GNIktTComyLWqvmRM6J+o66yKqbTwOOlP7764jOenx2PDJkhstExfwyC8lIdQNctmGORoWmguS85Pr3SJHQMh/9tTIwxxzZD4vPikchU7T6YyVABIMCe6cBRyrYLZgA1wCHdaTaerTFV+Vb63GRVTcfY91EQZfxyy7L5mLJxRZWZVtO5p+kTFNmuIQPhCNlDg04UmGeYXg7ezukI3U8+zgdvTri4exR+wmR0DIfI9UNoHPW9SW5jkRSbhKV2sr6WylEQsts9NfK0H2yk1cnXJWuHMtyPBt2LPsYkT6RqJQqW0tpMuLbILBvjHQTBd05St38uzlmMFhV/lIPtVpk1c2lAUdKHww52r5B/XfK4MozCGfdDKodKQPdHmUyGbH+sY5pw7LjDe61Ed1ELcBIN1G4XMLmqDas3n1SdBM1HyPdRAEUcgWxfo5pw45lH6t/j2ylCK9RYNc01E0UdM5qUm6SQ21eLq4s5mT+ScNGSHQTNR+l0uj80pewOdqNLj4rHheFCxE+EbUeF91ELaCBbqKgs2Ensk+g0Rp+/kokvzyfM4VnjNswMb/Mwlg3UXDcUuT4rHjclG508u5U+wnRTdR89NeqkVJkrWT4+SuRrNIsLpbUb+LXWhHBoMC+MSEYrNRWVp8n5AgczzmOhGRwZVCUiZqPpFAYbFAE4OnsSUevjg5XxhefHU+Mb0ztMyxBrAxaQgNloqBbuSjTlJGan9qComxLg40XRDBoPg1UN/iqfGnr0dbxgsHseGL9Y2udYQk1qoxEBY3JNFQmCroKmqLKItIK0lpSlk3Rr7RfCZ1EQQSDAnunEUeqZ2BPAA5lHmohQbbncOZhAHoE9qj/pGi+YD4NOFKgm2OONL+0kpYjmUcMzy/RfMFsGnOkHNqGBdSZY5KETJJEQstcGmiCBdAzoGf1NXcE1Fo18dnx9AzoWf9JUYZsPo0k5fXX2ZHmmN5edw/oblshVkJ4jQK7pjFHqoNnB3xdfB3KkTqUcYgQ9xDauLep/6TIqptPI45U78DepBenc7HYMZrInMw/SWFlIb0De9d7TmTVLaARRyrcOxwPJw+HsmFxmXG092yPv6t/7SfE/LKIhqobAHoF9uJ0wWmHaSKTmJtIqbqU3kH1bRharbhHmksjSflov2hUChVxmXEtKMq2HMo8RIRPBF7OXraWYhWExRXYN404UjKZjN5BvYnLcBwjFJcZZ9BRR6tFJkniRmcmjTpSQb0Ax8l66r9LBh0pjUaXoKl5bpegYRpxpBRyBT0DezqWDcuIMzq/AGHDzKWR6gb9tXYUG6ZPrPQK7FXvOZnehglMprGkvJPcie4B3R0moSVJEocyDxn2w1op4hshsG8a6Caqp1dgLxJzEymqKGopVTYjpyyH0wWnDRsh0TLbMuRyg13S9HTz74ZSpuRg5sEWFGU74jLj8HDyINw7vP6TYuXZbBrqJqqnd2Bvjmcfp0xd1lKybMalkktcKL5g1FEHxBwzF4WiQRvWI6AHMmQOk3CIy4jDx8WHjl4d6z+pVov5ZS4NdBPV0zuoN/FZ8VRqK1tIlO04X3SezNLM6kTxlYDwGgV2TUOHzuvpHdQbCYkjWUdaSJXt0Gd2DRoh4UhZRiNloq5KV7r4d+FQxqGW02RDDmUcomdgTxTy+vNIJoJB82mkugF0NkwtqR2iyYf+e9TQyqBIaJlHY9UNHs4eRPtGO0wZn37VRmaogkGUiZpPI9UNoEvKl2nKSMhJaCFRtkP/PeoT2MfGSqyHsLgC+6aRtuxwuRTEEbKecRlxyJAZ3BgvEy2zLUJSKht0pEC3cnM48/AV3zq7TF3G8ZzjxstfRPMF82mkLTs4lg07mHkQhUxhvJMoCBtmLo0ktEA3x+Iy4pAkqYVE2YbiymIScxMNJxsQ51hagmRChVafIF1gdDDjyq+gicuIw0XhQoxfjK2lWA0RDArsGxMyUn4qPzp4dmixrOfu9N088OcDdF/TnZ5f9eShjQ+x79K+FvnsuMw4onyj8HD2qP+kyKpbRiP7bUC3EltYWUhKXkqzyymqKGLxvsWM+nEU4avDGbN+DCsOrKBUXdrsn30s+xiV2kqDJXyAyKpbQGP7bQBC3EMIcQ9pMRu24/wO7v/zfrp92Y1eX/Vi0qZJLebEHco4RBe/LrgqXes9p0/KCGfdTEwJBoN6kVueS1ph87f/L6goYNGeRYz8YSThq8MZ+9NYVsatbBEbdiTrCFpJa9yGieoG8zGhuqGdRzv8Vf4tltDadm4bE/83kW5fdqPP132Y/NdkjmS2THXYocxDdPXvirPCuUU+ryUQXqPAvjHBkQLoG9yXfZf2NWvWU61V89z257jj9zs4lnOM0e1HMzJsJEeyjnDrr7cy7795zXpwtEarYf+l/fQN6mtkgCgTtQgTHKl+Qf0Amj3o33dpH0PXDeX9Q+8T5BrExJiJeDt7s/zgcoavG159tlFzfj7ovk+GkImjS8zHBEcKdHNs78W9zWrDKrWVPLPtGSZsmEBCTgJjO45leLvhHMw4yE2/3MQru15p1tXvSm0lBzMOGp1fopuoZTRWJgrQL7jKhl1sXhu2K30XQ9cO5cMjH9LGvQ0TYybi4eTBG/vfYOQPIzmRc6JZP3/vxb2AkTJkEAktSzAhKS+TyegX3K/Z75HlmnJmbJ3Bvf+7l5S8FK7veD3XtL2GfZf2ccPPN7Boz6JmtWHlmnIOZR4y7oe1UkQthsDukUxw1ge1GcT6lPWk5qcS4RNhdQ0Vmgqm/T2NDac38ESPJ5jVd1Z1Zru4spil+5fyWfxn5JbnsnL4SpRy63+1TuSeoKCigEFtBhl8XibOgLMISaHQdWGVJKNdMjt7dybQNZDd6buZGDOxWXT8d+E/Htr4EMFuwfx2y2+1nJnd6bt58p8nufOPO/n6+q+rS3Ksza70XXT27kyQW5DhAaLEynxMcKRAZ8N+P/U7ZwvP0t6rvdVllGvKmbJ5Cn+d+YsZvWYws/dMVEoVoFuNfn3f63wS/wl55XksH7rc4J7RpnI06ygl6hIGhRi2YSKhZSEmVDdE+0bj4+LD7vTd3Bl1Z7PI2HZuG5M2TaKdZzu+vO7LWmeV/nfhP57c+iTjfx/Pt9d/a/gcUyuwO303Xfy64KfyM/i8SGiZjynVDQADQwayMW0jF4svEuIeYnUdpepSHv3rUbae28ozfZ5heq/puChcAN1q9Gt7XuODIx+QV57H0muWIpdZ/9/5UMYhyjXlDG4z2OrvbUvEN0Jg/ygUjTtSVc7FrvRdzSLhpV0vseH0Bl4Z9ArzBs6rVeLk7uTOgsELmNt/Lj+n/szCPQubRcPu9N0ARoNBUSZqISY0KZLJZAxqM4hd6buaZeUmJS+Fhzc9TJhnGOtvWl8vqz2ozSDWj1uPn8qPB/58gHOF56yuQaPVsPfi3oZvciKrbj4mOlL67/Wui9a3YZIkMWfHHP468xevX/U6L/R/oToQBF2DkUVDFjG772zWJa9j6f6lVtcAptswMcfMxISEqVwmZ2DIQHZf3N0sEk7knOCRvx6hs3dn1o9bXy/Yuyr0KtbftB5PJ0/u33g/F4ouWF1DpbaS/Zf2G082gEhoWYKJ1Q36e4f+e25NJEni2X+f5Z9z//DmNW8yq++s6kAQwMvZi6VXL+XJXk/yTeI3rDi4wuoaQOdjypAxIGRAs7y/rRBeo8DukeTyBtuyg27lJsg1iD3pe6z++WuT1rLmxBqm9pjKo90fNTpuWq9pTOo6iU/jP+WX1F+srmN3+m7ae7anrUdbwwP010jc6MzDhLbZoHNg04vTOVN4xqofX1RRxOS/JqNSqPhq7FdGV+XaebZjzdg1qLVqHt38qNWPITiR0/DKM1QdjyCSDeYhk+kSNI3ML/3KTXPYsK8Tvub7pO+Z2XsmD8Y+aESmjKf7PM19Mffx/uH32XBqg9V17E7fTbh3uNE5LhMJLcvQVzeYsPp8uuA06cXpVv34gooCJv81GU8nT766/iv8Xf0Njuvg1YE1Y9dQqi5lypYplGvKrarjSOYR3cpzAzZM7Bm0ABODwa7+XfF08myWpPznxz7np9SfmN13NvfE3GNwjEwm47l+z3FX1F28dfAt/kr7y+o6dl/cTYxfDL4qX6u/ty0RFldg/yiVjRqh6pWbi9ZduTlTcIa5/81lSJshPN//+UbHzx84n/7B/Xlu+3OcLzpvNR1aScvu9N0NO+qim6hFSFXXq7E9N4NDmifruWDPAlLzU/lw5IeEeoQ2OLazd2feufYdjmQd4c0Db1pVh/4GPjBkoPFBGk319RKYgVLZqKMul8kZFDLI6vMrNS+Vl3e9zPB2w3mmzzONjl8wZAG9A3sz+9/ZXCq5ZDUd+pXnRh11EDbMTCQbr9y8vOtlzhae5aNRHxHsFtzg2EjfSFYMXcHBjIOsjFtpVR2NrjwjjsexCBOrGxRyBf1D+lt99TkxJ5GFexYyuv1onuz9ZINjZTIZr1/1Ot38u/HMv8+QXZptNR36lecrrUQURDAoaA2YUCYKMLDNQC4WX7RatzRJkpi9fTYKmYK3h79t0j5AZ4UzK4evRCNpeGHHC1YLTJNyk8gtz220/AVEVt1sTCgTBZ0T4+via9Ws547zO/g64Wse6/4YV4VeZdJrxnQYw8SYiXx09COrdm5rdOUZRJmohUhyeaOOFOic2LTCNKuV0GklLbP/nY2LwoUVw1aYtA/QReHCyuErKdeUM3fHXKvZsOM5xymsLDQtGBRzzDxMDAZj/WKtvnKz9exW1iatZVrPaSaXzo3rPI7xkeN579B7Vm2KtfvibiJ8IghwDTA+SJSJmo9MZlLvBtBt2UnJSyGzJNMqH63Rapj17yw8nD1YPnS5SfsAXZWuvDP8HQorCpm3c55VdIDunOdSdWnDCdNWis29xl27dvHMM88wYcIEUlNTjY47dOgQTz31FDNmzODnn39uOYECm2OqI3V16NUA/HvuX6t87tqktfx34T/mD5zfsINchw5eHZjTfw5/n/2bn1N/toqWf8/r/qYhoUOMDxKOlGWY6EjJZXIGhw5m+4XtVnGQy9RlPLf9OTp5dWJ239lmvXbewHkEuQUx+9/ZqLUNlx+aQqW2kp3pOxnSpoH5BbprJJIN5mOiI6X/fm8/v90qH/vVia/Ye2kvrwx+pdEVm5qE+4Qzu+9s/kz7kw2nrVMuqrfLDWXVq4+WEHPMPPTnwDWSNFXIFQxqM4jt561jw0rVpTy/43kifSKZ2WemWa99ZdAr+Kn8mL19tlW6cJdrytmdvrtxGyYSWpZhYlK+2oZdsI4N+/z458RlxvHakNeMlh8bItovmpm9Z/LryV/ZlLbJKlq2n9+ODJlYGWwOwsLCmD17Nl26dDE6RqvV8tlnnzF37lzeeust/vvvP86ds34DBYGdYqIjFe4dTnvP9mw5u6XJH1lYUcjr+16nX3A/i7pHPhT7ED0DevLantcoqihqsp4tZ7YQ5RNFmGeY8UEiGLQIyURHCmBU2CguFl/kWM6xJn/uJ/GfkFaYxuKrFxs8c60hvJy9WDRkEQm5Cfzf8f9rspb9l/ZTUFHAyPYjGxwnDmy2EBMdqVi/WELcQ9h8dnOTPzK3LJc39r/B4DaDuTPS/O6Rj3Z/lC5+XXh196tWOR9uy9ktdPXvShv3NsYHCRtmEZKJ1Q0AI8JGcKbwjFXOTP3g8AecLzrP0quX1mrmYQq+Kl9eHfwqR7OO8k3iN03Wsjt9NyXqkkZtmEhoWYapSfmegT3xV/mz5UzT/bDs0myWH1jO8HbDubnzzWa/flqvaUT5RPHKrlesssd+y5kt9ArqZVZQ2lqweWF+u3btGh2TkpJCSEgIwcG6zOaQIUPYt2+fSa8VXAEoFLhs347PtGmNDr2hrYL/89+Ky/THcZUsdyjeCI0nOzCLnw91w3fjdIveY6WbN8OjDrPqjXG8lt7VYi0F8kr2dPuPaZnhDV4DeUEBILLqZlN1vbyfew7JpWGH5hZlGc90g53vz+TqS9EWf+QFp1LejdnMzYVtuOn174DvzH6PCUh80zmI5TsWcP8nuwhSm+eM1WRHm3icAmXctOJnPLV/GB3nfOAAWi8viz/HYZHLUf39N/Lsxvev3NBOxbqCTbj9/ATOkuXf5dfaHiE/IJe3tqrw/Z9lNuxtd3+uizzBp4tvZP5F4wnbxshRVLCv2x5mX4rCZ0sDNiw/X/eDCAbNo+p6+TzzDJJzwwdh3+ZUwpyu8N/KafTPjLT4I884lfBBl82Mz2/Lda99CXxp9ns8gMR34QG88c987v3wX/w1lh/ivb3tEVT+cm54Yx1u0k9GxzkfOYImMNDiz3FYFApcNm3CJ73x5kNj27uxoegPPH7UomzCmtNL7Q5R4l/I8r8U+P5umQ1b4RHIuIj/+L/Xx/F8E+7Zl5RlHOoax7yLMfhsatwXLZo6FYYNs/jzWhqbB4OmkJOTg7//5Ujc39+f5ORko+M3b97M5s26zOqSJUsICGigftxGKJVKu9Rll9x0E4p//sE1vvG9Bbdkl7FqpIbd2fu54YK7RR+X5FnBB93P8FCqJ0P2nQMsW4UeCjwk9+S9Tsk8tqec6ALLbnQbwoqolEvccrgU14yGr4G2e3c8rrpKzC8zkA0fjjY2FlUDNkVPJ6BfGxc2Kk/ycnylxZ+5YMglKtGw4h9nXIss3zPz3hkVPW5Us0C1g892m14GWJeNHdMYdklF0JHEhge6u8O4cQQEBIg5ZgbSLbeg+O8/k2zYzXnlrB6uZn/mfkZedLPo8455l/Nxj7M8luTFgP1ngbMWvc9o4F6lB2+1T2Ly7jI6FzlZ9D7/dixEK4NbD5Xg2sgeMW2PHngMHizmlxnIrr0W7fffo0pKanRsFNAj1JlNylTmxFvezfPlqy8i00q8uVWJa4nlNuzdc670uSGL15138ME+I+ebNoKExMbwM4xIV+F/NKHhwR4ewoZZgHTLLSj37kVpig0rqOTroZUcunSAazLNq3rRc8i3nNU9z/Jkgje9D1jeB+IGYLyTO8vaJjBpVwntSyyzYf90LkCSwa0Hi3HNbfwaOMnlKFrR/GqRYHDhwoXk5eXVe/zuu++mf//+jb7eUG27zMjh0ACjRo1i1KhR1b9nZWWZJrQFCQgIsEtddsmrr5o8NEpdhuuabqybPobeV71u0cdN3/ggLuk5PPnyv6QbO3zbRGaWZPLj2mt4Ympnvhr7VYPz1hg/bHsGr9P/o9P3/5EuN82QBajVYn6ZSocO8JfpLaiHHljOWwffIv7P9RaVixy4dIA1v97M9F7TcX18Dk1p8u4FTN7zGh8qPuSOWd/WO5/QFM4UnOHE94OZMPZF0l8yfnRKLbKyhA0zh9dNt0VdK0twWdON72feQOxg022fHkmSmPa/e/HILGDaaztIN3L4tqk8U5zOz2uHMvWpaD4f87lF7/HD39PxO7+Ndut2km7iYfbChplBRARsNr20eOi+xXx4+EMSNv2Kt4u32R+3O303a3+/g1l9ZuH0xDNNsmEBwEM7X+Jjxefc9sI6ugV0M/s9UvJSOLluGI+MfZX0Vx4y7UXChpnHsmUmD+1RUYDyy+6sfe5WIgbMNfujJEli6u/j8c0r5rHF20l38TH7PWryXNF5fl87lOmzuvPRqI8seo8fNz9GyKUDBP+0i3QT/Th7tGGhoYY7lrdIPdn8+fNZvnx5vf9MCQRBtxKYXaO8Jjs7G1/fK+uMD4F1UClVDGs7jI2nN1q0KX3r2a1sPrOZmb1nGj0LyxwC3QKZ1XcW/5z7x6JNzBWaCv468xfXhl2Lk4mBoKB5Gd1+NBISf6b9afZrtZKWl3a9RLBbME/2arhFtqnM7D2TYLdg5u2ch1ZqfF9aXfQNQka1H9XISEFL4ObkxlWhV/Hn6T8t+vfclLaJf8//y6y+s/BrYiAI0Ma9DU/3eZpNaZv4++zfZr++TF3GlrNbGBk20qRupoLmZ3T70WgkjUX3JI1Ww/yd8wl1D+WJnk9YRc+svrPwdfFl3s55FjW20Z+JOSpM2DB7wMvZi4FtBrLh1AaL/j1/P/U7uy/u5rl+z+HTxEAQoK1HW6b3ms7vp363qDlXSWUJ/5z7h5HtR1qU0G8NtIrNReHh4aSnp5ORkYFarWbnzp3069fP1rIEdsptEbdxseSi2V/6Sm0lL+96mU5enXik2yNW0/NQ14eI9o3m5V0vm92IYevZreSU5XBb+G1W0yNoGt0DuhPhE8EPST+Y/dofkn/gUOYh5g6Yi7uTZWXMdfFw9mDewHkcyjzE94nfm/VaSZJYl7SO3kG96eTdySp6BE3n9ojbOVd0zuzz4Mo15by6+1WifKJ4IPYBq+mZ3G0ynb0789LOl8w+KHxT2iYKKgq4PeJ2q+kRNI2+QX3p4NmBH5LNt2HfJn7L8ZzjzB843+zGV8bwdvFm7oC57Lu0j/Up6816rSRJrEtex8CQgbTzFH0k7IU7Iu7gVMEpDmQcMOt1pepSFu5ZSKxfLPdG32s1PU/0eIIOnh14aedLVGrN2+Kx4fQGiiuLr2gbZvNgcO/evTz++OMkJSWxZMkSFi1aBOj2CS5evBgAhULBpEmTWLRoEU8//TSDBw8mLKyBrooCh2Z0h9H4uPiwLnmdWa/74tgXpOan8vKgl3FWWL6RvS5OcicWDlnI2aKzrDqyyqzXrk1aS6BrIMPDhltNj6BpyGQy7oy8k72X9nIq/5TJryuqKGLx3sX0Cepj9ZvKbeG3MSB4AK/ve5288jyTXxefHU9CboJF3SYFzcfYjmPxcPJgbdJas1736dFPSStM49XBr1q1ksBZ4czCwQs5VXCKT49+atZr1yWvo417G5PP0RQ0PzKZjPGR4/nvwn+cLzpv8uvyy/NZun8pA0MGclPnm6yq6a6ou+gd2JvX9rxGYUWhya87kHGAk/knuSvqLqvqETSNGzvdiKvS1WwbturIKs4XnWfBkAVWrSRQKVW8MvgVkvKS+PyYeeXu65LW0d6zvcnnaLZGbB4MDhgwgFWrVvHNN9/wySef8OKLLwLg5+fHnDlzqsf16dOHlStX8u6773L77VdudC5oOi4KF27ufDN/nv6TgooCk15zqeQSKw6uYHi74c1SLndV6FXc1Pkm3jv0HmcLTWvmkFOWw5azW7gt4jZRImpn3B5xOzJkZmXWVxxcQUZpBgsGLzDp4FxzkMlkLLxqIXnleSw/sNzk161LWoez3Nmitt2C5sNV6cpNnW/ij1N/UFxZbNJrzhedZ+WhlYzpMIah7YZaXdPwsOFc1+E63o57m/Ri03aJXSq5xD/n/uGOyDtEiaidMT5yPBKSWTZs2f5l5JblsmDwAquXy8llcl676jUySzN5O+5tk1+3LmkdKoWKGzvdaFU9gqbh4ezB9R2v57eTv5lcEXWm4AzvHXqPcZ3GNctZfqPbj2ZE2AhWHFhBZkmmSa85X3Se/y78x/jI8Va/b9sTV+5fJnBo7oq6izJNmcllc/ryp+a4yemZP3A+MpmMBbsXmDT+m4RvqNRWilUbOyTUI5ShbYfyXeJ3Jp1fdDTrKJ/Ef8LEmIkWNXkxhW7+3bi/y/18cfwLjmcfb3R8YUUhP6b8yJgOY/BViT3Y9sZdUXdRoi4xyVmXJIl5O+eh0Wp4dZD5TWdM5ZVBr6CRNLy25zWTxn994mu0klbYMDukvVd7BrcZzDcJ31ChqWh0/MGMg3xx/Asein3IoiYvptArsBd3R9/Np0c/NekcxLzyPH5J/YUbOt2Ap7Nns2gSWM5dUXdRUFHAL6m/NDpWkiTm/jcXhVzBS4NeahY9MpmMVwa9QpmmjNf3mdbU68sTXyIhMT5yfLNoshdEMCi4Iukd1JvBbQbz/uH3G81KbUrbxO+nfuep3k8R7hPebJraerRlRq8ZbDi9ga1ntzY4tqiiiA+PfMiIsBHE+sc2myaB5UztOZWLJRf5JqHhA5MrtZU8t/05/FX+zLWgs5o5PNv3WbydvasDg4b4LP4z8srzmNpzarNqElhG/+D+9Avux7uH3m10n94fp/5gU9omZvedTXuv9s2mqb1Xe6b2nMrPqT+z4/yOBsfml+fzSfwnjO0wlgifiGbTJLCcqT2ncq7oXKOlfOWacp7b/hzB7sE83//5ZtX0Qv8XcHNy48X/Xmy0gdLHRz+msLKQJ3pYp5GNwLpcHXo1PQN6sjJuZaP79H5K/Ymt57byfL/naevRttk0hfuE81j3x1ibtJa9F/c2ODanLIfPj33OTZ1vooNXh2bTZA+IYFBwxTK772wySzP58rjxw3AvFF3gmW3PEOsX2yI3lCndpxDpE8nT254moyTD6LjVx1aTV57HrL6zml2TwDKuCr2KwW0G897h9xpMOCzZt4QjWUdYdNUiq3RGawhflS/zB85nz8U9vHvoXaPjCioK+Pjox4zpMIaegT2bVZPAMmQyGbP6ziK9OJ1vE741Ou5s4Vme2/4cPQJ6MLn75GbXNa3nNDp5deKpbU+RU5ZjdNwn8Z9QUFHAM32faXZNAsu4tt219AnqwzuH3mkw4fDantc4kXOCxVctbvYVuADXAOYOmMuOCzv46IjxYwByynL4LP4zxnUaJxKmdorehp0pPMO6JOM9HE7ln2LOjjn0DerLQ7EPNbuup3o/RZhHGNO3Tie3LNfouFVHVlFSWcIzfa58GyaCQcEVy6A2g7im7TWsjFtJWkH9Q0tL1aVM/XsqFdoKPhz5oVWbxhhDpVSxauQqCisKmfb3NIM34JS8FN4//D6j2o+iV2CvZtcksAyZTMbsvrO5VHKJpfuWGhzzv1P/Y9WRVTzQ5YEW29NyV9Rd3BZ+G8sPLuffc/8aHLNg9wLyK/KZ1UckG+yZa0KvYVDIIN488KbBRh8llSU8seUJtJKWD0d+2CJ7i12VrqwauYqc0hym/z3dYIlhYk4iq46s4oZON9DVv2uzaxJYhkwm49m+z3K+6DwrDqwwOOaX1F9YfWw1k7tNZkyHMS2i676Y+7ix040s3reYnRd21ntekiRe3vUyxZXFDuGot2ZGhI2gd1Bvlu5fanCvcVFFEY9veRylXMkHIz5okb3F7k7ufDjyQzJKMnjqn6dQa9X1xsRnx/NZ/GfcEn4LUb5Rza7J1ohgUHBFs/TqpchkMib/NZmSypLqx0sqS3ho40Psv7SfN695s0XLmGL8Ylh6zVJ2pu9k8l+Ta+05K6wo5NG/HsVZ4czrV5l+ULXANgxqM4iHYx/mk/hP6u2L2Hh6I0/8/QS9A3vz8qCXW0yTTCZjydVLiPKJ4uFND9cLCL868RXfJn7Lk72ebLa9PwLrIJPJeOOaN1Br1Tz616O1VqCLK4t5YOMDHM46zFvD3qKjV8cW09UtoBuLrlrEtvPbmLJlSq2kVn55Po/89QieTp68NsS0vYUC2zG03VAmxkzkvcPvVZ/Xp+e3k78xY+sM+gf358UBL7aYJplMxptD36STdyce3PhgvYDw82Ofsz5lPbP6ziLaL7rFdAnMRyaTsWLoCkoqS5iyeUo9f2finxM5kXOClcNXtujRIL2DevPq4FfZcnYLT/z9RK2kVk5ZDo/+9Sg+Kh9eHdx8e7DtCZlkyYmQrYwLFy7YWkI9AgICyMrKsrUMh+Dvs3/zwJ8P0M6jHY/3fBy1Vs0nRz/hQvEF3hr2ls02Bn+d8DXPb3+e9p7tmdxtMnKZnPcPv6/bh3b9N1zT9hqL31vMr5ajQlPBXX/cxf5L+7k35l76B/fn3/P/8lPKT/QK6sXXY7/G28W7xXVll2YzYcMEEnMTmRA1gYEhA9lxYQc/JP/AsLbDWDN2TZOysGKOtRwbT29k0l+T6OjVkSndp1CmKePjox+TUZLBu9e+yy3ht9hE1xfHvuDFnS/SyasTk7tNRitpef/I+2SVZLH2xrUMbDPQ4vcW86vlKNeUc/tvt3Mk6wj3d7mf3oG9+fvs3/x68lcGBA9gzdg1eDh7tLiujJIM7vrjLk7mn+Tu6LvpH9yfbee28VPqT4xqP4rPx3zepA6PYo61HL+d/I3HtzxOZ+/OPNb9MYori/nk6CdklWbxwcgPbNYN9uOjH/Pq7lcJ9w5nUrdJqLVq3j/0Prnlufw47kf6Bve1+L3tcX6FhoYafFwEgzbCHifJlcyu9F3M2TGH5LxkAHoE9GDewHk2P/vq33P/snDPQo7n6Lo/xvjGsOTqJfQP6d+k9xXzq2Upqihi2YFlrD62Gq2kRaVQMbnbZGb0mmETJ0pPXnkebx18iy+Pf0mFtgInuRNTekxhZu+ZTT4wWsyxlmX7+e3M/W8uJ/NPAtA7sDfzB85vUsBlDf4++zeL9iwiITcBgFi/WJZcvaRJThSI+dXSFFQU8Ma+N/ji+BdISLgqXXms+2NM7zkdNyc3m+nKKcvhrYNvsebEGiq1lTjLnZnacyrTe00XNqyV8c/Zf3hx54ucLjgNQN+gvswfNJ/+wU3zd5rKprRNvL739Vr+4ZKrlzR5P709zi8RDNoZ9jhJrnTUWjXni84jl8lp69HWbs6M0UpazhedR5Ik2nq0tUrNvJhftiGnLIfCikJ8Vb54OXvZWk41eeV55Jfn4+nsiZ/KzyrvKeZYy6O3YQqZgrYebZvtGBxz0Wg11XsahQ1r3WSXZlNUWYSfys+ujmvILculoKIAL2cvqx2FI+ZYy1OpreRC0QW7tWEymcxq/qE9zi9jwaCyhXUIBDZDKVfaZXtguUxOmGeYrWUIrICfys9qwZY18XHxafZOpoLmx15tmEKuaNYjLQQth7+rP/6u/raWUQ9fla84D/UKwEnuJGyYHWIfSyMCgUAgEAgEAoFAIGhRRDAoEAgEAoFAIBAIBA6ICAYFAoFAIBAIBAKBwAERwaBAIBAIBAKBQCAQOCAiGBQIBAKBQCAQCAQCB8QhjpYQCAQCgUAgEAgEAkFtxMqgjXjhhRdsLUFwBSPml6C5EXNM0JyI+SVobsQcEzQnrWl+iWBQIBAIBAKBQCAQCBwQEQwKBAKBQCAQCAQCgQMigkEbMWrUKFtLEFzBiPklaG7EHBM0J2J+CZobMccEzUlrml+igYxAIBAIBAKBQCAQOCBiZVAgEAgEAoFAIBAIHBClrQVcyRw6dIjPP/8crVbLyJEjufXWW2s9L0kSn3/+OXFxcbi4uDB16lQ6d+5sG7GCVkljc2z79u388ssvAKhUKiZPnkzHjh1bXqigVdLY/NKTkpLCiy++yNNPP82gQYNaVqSgVWPKHDt27BhffPEFGo0GT09PXn311ZYXKmiVNDa/SkpKeOedd8jOzkaj0XDTTTdx7bXX2kasoNXxwQcfcPDgQby9vVm+fHm951uNny8JmgWNRiNNnz5dunjxolRZWSnNnj1bOnv2bK0xBw4ckBYtWiRptVopMTFRmjNnjo3UClojpsyxhIQEqbCwUJIkSTp48KCYYwKTMWV+6ce98sor0uuvvy7t2rXLBkoFrRVT5lhRUZE0c+ZMKTMzU5IkScrLy7OFVEErxJT59eOPP0pr1qyRJEmS8vPzpYceekiqrKy0hVxBK+TYsWNSamqq9Mwzzxh8vrX4+aJMtJlISUkhJCSE4OBglEolQ4YMYd++fbXG7N+/n6FDhyKTyYiKiqK4uJjc3FwbKRa0NkyZY9HR0Xh4eAAQGRlJdna2LaQKWiGmzC+A//3vfwwcOBAvLy8bqBS0ZkyZYzt27GDgwIEEBAQA4O3tbQupglaIKfNLJpNRVlaGJEmUlZXh4eGBXC5cY4FpxMbGVvtYhmgtfr6Y8c1ETk4O/v7+1b/7+/uTk5NTb4z+BmdsjEBgDFPmWE3+/vtvevfu3RLSBFcAptqwvXv3MmbMmJaWJ7gCMGWOpaenU1RUxCuvvMLzzz/Ptm3bWlqmoJViyvwaO3Ys58+fZ8qUKcyaNYuHH35YBIMCq9Fa/HyxZ7CZkAw0aZXJZGaPEQiMYc78iY+PZ+vWrSxYsKC5ZQmuEEyZX1988QUTJ04UzpPAIkyZYxqNhlOnTjF//nwqKiqYN28ekZGRhIaGtpRMQSvFlPl1+PBhOnTowEsvvcSlS5dYuHAhMTExuLm5tZRMwRVMa/HzRTDYTPj7+9cqycvOzsbX17femKysrAbHCATGMGWOAaSlpfHRRx8xZ84cPD09W1KioBVjyvxKTU1l5cqVABQUFBAXF4dcLmfAgAEtqlXQOjH1Punp6YlKpUKlUtGlSxfS0tJEMChoFFPm19atW7n11luRyWSEhIQQFBTEhQsXiIiIaGm5giuQ1uLni3RuMxEeHk56ejoZGRmo1Wp27txJv379ao3p168f//77L5IkkZSUhJubm11OEoF9Ysocy8rK4s0332T69OnCeRKYhSnz6/3336/+b9CgQUyePFkEggKTMfU+mZCQgEajoby8nJSUFNq2bWsjxYLWhCnzKyAggKNHjwKQl5fHhQsXCAoKsoVcwRVIa/HzxaHzzcjBgwf5v//7P7RaLddeey233347mzZtAmDMmDFIksRnn33G4cOHcXZ2ZurUqYSHh9tYtaA10dgcW7VqFXv27KmuWVcoFCxZssSWkgWtiMbmV03ef/99+vbtK46WEJiFKXPs119/ZevWrcjlckaMGMGNN95oS8mCVkRj8ysnJ4cPPviguqnHLbfcwtChQ20pWdCKePvttzl+/DiFhYV4e3tz1113oVargdbl54tgUCAQCAQCgUAgEAgcEFEmKhAIBAKBQCAQCAQOiAgGBQKBQCAQCAQCgcABEcGgQCAQCAQCgUAgEDggIhgUCAQCgUAgEAgEAgdEBIMCgUAgEAgEAoFA4ICIYFAgEAgEAoFAIBAIHBARDAoEAoHAYcnKyuL+++9Hq9U2+2dNmzaNiRMn8u677zbbZ7z//vtMnDiRxx9/vNk+QyAQCARXDiIYFAgEAoHDMG3aNI4cOVL9e0BAAGvWrEEub5nb4fPPP8+MGTOa7f2nTZvG3Llzm+39BQKBQHBlIYJBgUAgEAgEAoFAIHBAlLYWIBAIBAJBS/Duu++SlZXF0qVLkcvljB8/nsGDBzN9+nS+/fZbFAoFr7zyCjExMcTHx5OWlkbXrl2ZNm0an3/+OQcOHCA0NJSnn36aoKAgAM6fP8/q1as5efIkXl5eTJgwgSFDhpikR5Ik/u///o8dO3ZQWVlJYGAgTz75JO3bt6eyspJvv/2WXbt2oVar6d+/Pw899BDOzs4A7Nu3j7Vr15KRkYGXlxePPPIIvXr1aq5LJxAIBIIrFBEMCgQCgcAhmDFjBgkJCUyZMoUePXoAkJGRUW/cf//9x4svvoiXlxcvvvgi8+bN45FHHmHatGl8+OGH/PDDD0ydOpWysjJee+017rrrLubOnUtaWhqLFi0iLCyMsLCwRvUcPnyYEydOsHLlStzc3Dh//jzu7u4AfP3111y6dIlly5ahUChYuXIlP/zwA/feey8pKSm89957zJo1i27duv1/O/fzCl0Ux3H889zhaiTDlShKyUoaJmFW6pLULKRZ2Eij7KRsFf4FFhZW5JallT1JqVlJWc6UjcnvaSaLGbmcZzepx8LDo6fc92t1b/ee+z3n7D6dc64KhYJKpdK/nSwAQCCwTRQAgDdc11Vra6tqa2sVi8XU0tKiaDSqUCikeDyui4sLSdLp6amam5vluq5CoZA6Ozs1NDSkdDr9oTpVVVUql8vK5XIyxqi9vV2NjY0yxujg4ECpVEp1dXUKh8NKJpM6OTmRJB0eHsp1XUWjUVmWJcdx1NbW9m3zAQD4uVgZBADgjUgkUrm2bfuP+3K5LEm6u7tTJpPR7Oxs5fnLy4uGh4c/VKenp0fj4+Pa2trS/f29BgcHNTMzo+fnZz09PWlpaanyrjGm8sfTh4cHxWKxrwwRAABJhEEAAD6lqalJ3d3dWl1d/fQ3EomEEomEisWi1tfXtb+/r6mpKdm2rbW1NTmO827d6+vrr3QdAABJbBMFAARIQ0PDu+cEP6O/v19XV1c6Pj6W7/vyfV/ZbFaXl5cfap/NZpXJZOT7vmpqalRdXS3LsmRZlkZHR7Wzs6NisShJyufzOjs7kySNjIzo6OhI5+fnen19VT6fVy6X+ydjAgAECyuDAIDAmJyc1Pb2tnZ3d5VMJhWPxz/9rXA4rJWVFXmeJ8/zZIxRR0eHUqnUh9qXSiV5nqebmxvZtq3e3l5NTExIkqanp7W3t6fl5WU9Pj7KcRyNjY2pr69PXV1dmp+fl+d5ur29VSQS0dzcHOcGAQB/7ZcxxvzvTgAA8NMtLi6qUChoYGBACwsL31Jjc3NT6XRa9fX12tjY+JYaAICfgzAIAAAAAAHEmUEAAAAACCDCIAAAAAAEEGEQAAAAAAKIMAgAAAAAAUQYBAAAAIAAIgwCAAAAQAARBgEAAAAggH4DWwTP9SDc33oAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 1080x216 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Cell 7: reconstruct signal using convergence criterion\n",
+    "n = 5                 # number of coefficients (initial: 5)\n",
+    "T_ = 1/freq           # period of signal\n",
+    "\n",
+    "# determine coefficients\n",
+    "a0 = 0\n",
+    "a = []\n",
+    "b = []\n",
+    "for i in range(1,n):\n",
+    "    if (i%2 != 0):\n",
+    "        a_ = 4/(np.pi*i)\n",
+    "    else:\n",
+    "        a_ = 0\n",
+    "    a.append(a_)\n",
+    "    b_ = (2*np.pi*i)/T_\n",
+    "    b.append(b_)\n",
+    "\n",
+    "# reconstruct signal\n",
+    "g = np.ones_like(t_) * a0\n",
+    "for k, (ak, bk) in enumerate(zip(a, b)):\n",
+    "    g += ak * np.sin(bk*t_)\n",
+    "\n",
+    "# plotting\n",
+    "plt.plot(t_, square, 'r', label='original signal')                  \n",
+    "plt.plot(t_, g, 'g', label='reconstructed signal')\n",
+    "plt.ticklabel_format(axis='y', style='sci', scilimits=(-1,1))\n",
+    "plt.xlabel('time [sec]')\n",
+    "plt.ylabel('amplitude')\n",
+    "#plt.ylim(-1.1,1.1)\n",
+    "plt.legend()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "---\n",
+    "\n",
+    "### Fourier transformation\n",
+    "\n",
+    "Let us now do the Fourier transformation of the signal created in cell 3 and have a look on the amplitude spectra. In computer science the transformation is performed as fast Fourier transformation (FFT).    \n",
+    "\n",
+    "7) Why do we need to taper the signal before we perform the FFT?  \n",
+    "8) How do you interpret the plot of the amplitude spectra?  \n",
+    "9) Which frequency contributes most to the final signal?   "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "samp = 3000  Need to be the same as in cell 3.\n",
+      "T = 1  Need to be the same as in cell 3.\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "Text(0, 0.5, 'Amplitude')"
+      ]
+     },
+     "execution_count": 18,
+     "metadata": {},
+     "output_type": "execute_result"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5UAAAF0CAYAAACzLx3dAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADVxklEQVR4nOzdd3gU1dfA8e+dhDRIIYUeOoiCSJMOUsWCIBbwFUXEDnYsWBAFVEB/ijQVFAERRRB7p0sv0ot0CAES0hPSd+77xyRLQjZkEzYFcj7P4yOZmZ05u7Nlztxz71Vaa40QQgghhBBCCFEERmkHIIQQQgghhBDi8iVJpRBCCCGEEEKIIpOkUgghhBBCCCFEkUlSKYQQQgghhBCiyCSpFEIIIYQQQghRZJJUCiGEEEIIIYQoMkkqhRBClBlz5sxBKcWcOXNKOxThQN26dalbt25phyGEEKKMkaRSCCFEsVBKFeq/yzGRzE6Cc/5XqVIlatWqRa9evXjjjTc4ePBgaYcphBBCFCv30g5ACCHElWnMmDF5lk2ePJn4+HieeeYZAgICcq1r0aIF9erVo3379lSvXr2EonSN6667jttvvx2AlJQUIiMj2bhxI+PGjePtt9/mqaee4v3338fd/fL+2V22bFlphyCEEKIMUlprXdpBCCGEKB/q1q3L8ePHOXr06BVRRjlnzhwefPBBHnjgAYctrStWrGDo0KGcOHGCxx57jE8++aTkgxRCCCGKmZS/CiGEKDPy61OZ3ZcvKSmJ5557jtDQULy9vWnRogU//PADAJmZmbzzzjs0atQILy8vGjRowLRp0/I91p9//sktt9xCcHAwnp6eNGjQgBdffJG4uDiXPZ/u3bvz559/4uHhwcyZM/n333/zbPPtt9/StWtX/P398fb25tprr+Xdd98lLS0tz7aufB3S09OZNm0at9xyC3Xq1MHT05PAwEB69erF77//7vD5OOpTmfOcrVixgm7duuHr64ufnx+33nor+/btK/wLJ4QQ4rIiSaUQQojLQkZGBr179+a3336jf//+3H///Rw+fJg777yTZcuWMWjQIGbMmEG3bt14+OGHSUpK4qmnnmLhwoV59jV27FhuuukmNm7cyK233srTTz9Nw4YNef/99+nUqRMJCQkui7tJkyYMHDgQrTVff/11rnWvvvoqgwYNYt++fdx77708+eSTaK159dVX6dOnDxkZGcX2OsTExPDMM8+QmJhI7969ef755+nXrx/btm3jlltu4bPPPivU8/zll1+48cYb8fPz4/HHH6dLly789ttv3HDDDURFRRX+hRNCCHH50EIIIUQJqVOnjgb00aNHHa7/4osvNKC/+OILh4/r27evTk1NtS9fvXq1BnTlypV1mzZtdGxsrH3d4cOHdYUKFXSLFi1y7Wv58uUa0B06dMi1fc7jP/vss049n+ztH3jggYtu99lnn2lAd+3a1b5s3bp1GtChoaH69OnT9uUZGRm6b9++GtBvv/12sb0OqampOiwsLE+scXFxumnTprpy5co6OTk5z/Hr1Knj8DVwc3PTS5cuzbVu1KhRGtATJ0686OsjhBDi8iYtlUIIIS4bkydPxtPT0/53ly5dqFevHrGxsUycODHX4D/169enU6dO7Nq1C5vNZl8+ZcoUAGbNmpVnsKChQ4fSokULvvrqK5fGXbNmTQDOnj1rXzZ79mwAXn/9dapVq2Zf7u7uzv/+9z8Mw8i3tdAVr4Onpye1atXKs29/f3+GDRtGbGwsmzdvdvo53nPPPfTs2TPXskcffRSATZs2Ob0fIYQQl5/Lexg6IYQQ5UZAQAANGjTIs7xGjRocPXqU1q1b51lXs2ZNbDYbZ86csSd269evp0KFCixatIhFixbleUx6ejpnz54lOjqaoKAgl8Sus8bEU0rZl2X3r+zRo0ee7Rs3bkytWrU4evQocXFxuZJEV70OAHv27OG9995j9erVnD59mtTU1FyPCw8Pd/o5tmnTJs+y0NBQAGJjY53ejxBCiMuPJJVCCCEuC/7+/g6XZ0/T4Wh99rqcfROjo6PJzMzkrbfeuujxkpKSXJZUnjp1CoCQkBD7svj4eIB8p0+pXr06J06cID4+PldS6arXYcOGDfTo0YPMzEx69uxJv3798PPzwzAMtm/fzo8//uhwsKD8XNjqm/O4OVtIhRBCXHkkqRRCCFGu+Pv7Y5omMTExJXbMFStWANCuXbtccQCcOXPGYcvj6dOnc23nauPHjyclJcU+YmtO7777Lj/++GOxHFcIIcSVR/pUCiGEKFfat29PbGwse/bsKZHj7d+/n0WLFqGU4t5777Uvb9myJQArV67M85hDhw5x8uRJ6tWr57AF0BUOHTpEYGBgnoQSYNWqVcVyTCGEEFcmSSqFEEKUK8899xwAjzzyiL0sNadz586xYcMGlxxr1apV3HTTTaSnp/PEE09w3XXX2dcNGzYMsFoMcw7gY7PZeOGFFzBNk4ceesglcThSt25dYmJi2LlzZ67ln3/+OX/++WexHVcIIcSVR8pfhRBClCs9e/ZkwoQJvPLKKzRq1IhbbrmFevXqkZSUxPHjx1m1ahWdO3fmjz/+cHqf27dv58033wQgLS2NiIgINm7cyN69ezEMg+eff55JkyblekzHjh156aWXmDRpEs2aNeOuu+6iYsWK/P777+zevZvOnTvz4osvuvKp5/Lss8/y559/0rlzZwYOHIi/vz9btmxhzZo13HXXXSxevLjYji2EEOLKIkmlEEKIcufll1+mU6dOTJkyhTVr1vDjjz/i7+9PzZo1efTRR3OVqTpjx44d7NixAwAfHx8qV65MkyZNuOuuu7j//vtp2LChw8dNnDiRli1bMm3aNObNm0dGRgYNGjRg/PjxjBw5Eg8Pj0t+rvm56aab+Pnnnxk/fjwLFy7Ezc2Ntm3bsmLFCo4cOSJJpRBCCKcpnT3OuRBCCCGEEEIIUUjSp1IIIYQQQgghRJFJUimEEEIIIYQQosgkqRRCCCGEEEIIUWSSVAohhBBCCCGEKDJJKoUQQgghhBBCFJkklUIIIYQQQgghiqxczFN56tSp0g4hj+DgYKKioko7DFEK5NyXX3Luyy859+WTnPfyS859+VVWz32NGjWKdf/SUimEEEIIIYQQosgkqRRCCCGEEEIIUWSSVJYSMyUZc8En6NTk0g5FCCGEEEIIIYpMkspSkrF7G3rFb7B3R2mHIoQQQgghhBBFJkllKck8HQaAjih7gwgJIYQQQgghhLMkqSwlZsxZCAiE2LI3OpQQQgghhBBCOEuSylJixkRB3cbo2OjSDkUIIYQQQgghikySylJii4lC1WsEcZJUCiGEEEIIIS5fklSWEjMmClVXkkohhBBCCCHE5U2SylJiJiVA1ZqQlFjaoQghhBBCCCFEkUlSWQq01ujkJPAPADQ6I720QxJCCCGEEEKIIpGksjSkp4ObG8q9AvhUgnNJpR2REEIIIYQQQhSJJJWlIeUchk8l698+lSBZkkohhBBCCCHE5cm9pA/45ptvcvDgQQzDymcDAwP56KOPANi1axeff/45UVFRNGrUiOHDhxMSEgJYJaNfffUVy5cvB6BHjx4MHjwYpVRJP4VLl5KMyk4qK0pSKYQQQgghhLh8lXhSCTBs2DB69uyZa1lCQgLvv/8+jz/+OK1bt2bhwoVMnjyZt99+G4ClS5eyefNm3nvvPZRSjBs3jipVqnDjjTeWxlO4NCnnUD4V0ZBV/nqutCMSQgghhBBCiCIpVPnryZMnWb16NUuWLCEuLg6AM2fOkJKScsmBbNq0idDQUDp06ICHhwd33303x44dIzw8HIBVq1Zx2223ERQURGBgILfddhurVq265OOWipRkjIpWS6XyqWgN2iOEEEIIIYQQlyGnWipTU1OZMWMGGzduxM3NDZvNRosWLQgICGDBggUEBwczZMgQpw+6YMECFixYQI0aNbjnnnto2rQpYWFh1KlTx76Nl5cX1apVIywsjJo1a+ZZX6dOHcLCwgrxVMuQrJZKAHwqQrK0VAohhBBCCHE504kJmO7lc8gap5LKuXPncuDAAUaPHk2TJk0YPHiwfV2rVq34+eefnT7g4MGDqVWrFu7u7qxdu5aJEycyadIkUlNT8fPzy7Wtj48PqampgJXY+vj45Fmntc7Tr3Lp0qUsXboUgAkTJhAcHOx0fCUhNaAytlp1CQgOJrFyEIabomIZi1EUH3d39zL3nhQlQ859+SXnvnyS815+ybkvn86t/JWU9DSC7320tEMpcU4llZs2bWLo0KE0a9YM0zRzrQsODubs2bNOH7BRo0b2f3fr1o21a9eybds2vLy88pTRJicn4+XlBZBnfUpKCl5eXg4H6unVqxe9evWy/x0VFeV0fCWiYVOC299AVFQUpqkhJoqUshajKDbBwcFl7z0pSoSc+/JLzn35JOe9/JJzXz6ZsbH4BASUyXNfo0aNYt2/U+2z6enp+Pr6OlyXmppqH8m1KJRSaK0JDQ3l+PHjufYbERFBaGgoAKGhoRw7dsy+/tixY/Z1lzUvH0i99D6pQgghhBBCiFKUnoby8CztKEqFU9lggwYN8h0UZ8OGDVx11VVOHezcuXNs376d9PR0bDYb//zzD/v27aNFixa0bduWEydOsGHDBtLT01m8eDF16tShZs2aAHTt2pVff/2VmJgYYmJi+OWXX7jhhhucfJplmJe3JJVCCCGEEEJc7tLTUJ5epR1FqXCq/PWee+5h3LhxjBs3jvbt2wOwbds2fv31VzZs2MBbb73l1MFsNhsLFy4kPDwcwzCoWbMmL774or05duTIkcyePZupU6fSqFEjnnnmGftje/fuTWRkJCNHjgSgZ8+e9O7du1BPtixSXt6YklQKIYQQQghxeSvHSaXSWmtnNty/fz8LFizg4MGD9n6VjRs3ZvDgwTRp0qRYg7xUp06dKu0Q8siutdd7tmH+uQS358eVdkiihEg/i/JLzn35Jee+fJLzXn7JuS+fbB9PwL/nLSQ1bl7aoeRR3H0qnWqpBGjSpAljx44lPT2dpKQkKlasiKdn+awZdikpfxVCCCGEEOLyl5FeblsqnU4qs3l4eBAYGFgcsZRPklQKIYQQQghx+SvHA/Xkm1TOmDGjUDsaPnz4JQdTLnl6QVpqaUchhBBCCCGEuBTluE9lvkllWFhYrr+joqJISEjAz88Pf39/4uPj7X/L5K6XQFoqhRBCCCGEuPylp1kNRuVQvknlu+++a//3li1bmDt3Li+88EKu6UP279/P9OnTufPOO4s3yiuZlzekpaC1RilV2tEIIYQQQgghiqIcl786NU/lggULGDRoUJ75KJs0acKgQYP46quviiW48kC5VwClIDOjtEMRQgghhBBCFFU5Ln91KqmMiIjId6RXDw8PIiMjXRpUuSMlsEIIIYQQQlze0svv6K9OJZX169dn0aJFxMbG5loeExPDokWLqF+/frEEV254SlIphBBCCCHEZa0cl786NaXIo48+yvjx4xkxYgT169fHz8+PhIQEjhw5gq+vL0899VRxx3llk5ZKIYQQQgghLls6MxO0Ce6FnrHxiuDUsw4NDWXq1KmsWLGCw4cPExcXR40aNejSpQvdu3fHw8OjuOO8sklSKYQQQgghxOUrIx08PMvtwJtOp9IeHh706dOnOGMpvySpFEIIIYQQ4vKVngbltPQVnEwq09LSCtwmv4F8hBM8vdGpKZTP+xpCCCGEEEJc5iSpLNiQIUMK3GbhwoWXHEx5pby8ITW5tMMQQgghhBBCFIUklQV74okn8ixLSkpi586dnDx5kjvvvNPlgZUrXt6QJuWvQgghhBBCXJbS06FC+R1nxqmkslu3bg6X9+3bl88++4ywsDBXxlT+SJ9KIYQQQgghLl/paVCOuwM6NU/lxbRt25bVq1e7IpbyS5JKIYQQQgghLl/lvPz1kpPKw4cPU6FCBVfEUn55eUNaamlHIYQQQgghhCiKcp5UOlX+On/+/DzLMjMzCQ8PZ9euXdxyyy0uD6xc8ZSWSiGEEEIIIS5XOj0NJUnlxa1fvz7PMg8PDwIDA3nwwQfp1auXywMrT5SXN2aKjP4qhBBCCCHEZUlaKgs2ffr04o6jfPP2kZZKIYQQQgghLlcZaeV69Fen+lQuXryYmJgYh+tiY2NZvHixS4Mqd7x9QFoqhRBCCCGEuDylle+WSqeSykWLFl00qVy0aJFLgyp3vHwgNW9SqbVGS7IphBBCCCFE2ZaeLknlpYiOjqZSpUquiKX88nHcUql/W4T59D3oc0mlEJQQQgghhBDCKdKn0rGVK1eyatUq+9+fffYZ3t7eubbJyMjgxIkTNG/evPgiLA+88kkqN6yAgED0rs2o9t1LITAhhBBCCCFEgSSpdMzT0xNfX1/73z4+PnlaJN3d3WnRogV9+vQpvgjLgwoeoE10RgYqa85PnZwEsTGo/vfCoX0gSaUQQgghhBBlkySVjnXo0IEOHToAMGPGDO68806qVq1aYoGVJ0qprBFgk6GCv7UwKgJCqqIaNMHcsKJ0AxRCCCGEEELkS6enYXiU39FfnZpSZPjw4cUdh8gugfXNSirPRkBwVageChGn0KaJMi65C6wQQgghhBDC1TLK90A9+SaV8+fP5+abbyYoKIj58+cXuKP77rvPpYGVOxeMAKujIlDBVVHePuBdEWKjIKhKKQYohBBCCCGEcEjKXx1bv349nTt3JigoiPXr1190J0opSSov1YUjwEZFQLVa1r+r14LTJyWpFEIIIYQQoiySpNKx6dOnO/y3KCYXjACro85gNGsNgKpWE30mDNWsVWlFJ4QQQgghhMhPOU8qpZNeGaG8fNCpF7RUhmQNjFStFpwOL53AhBBCCCGEEBeXngYyUE9e//77b6F21KqVtKJdkhzlr9o0IfosBFlJpapWE/Pfi5cgCyGEEEIIIUpJOW+pzDepnDhxYqF2tHDhwksOplzzqQTnkqx/x8eCtw/KM+uNWa0WnMnbUqmPH4bgqqiKlfKuM0302qWohtegqtcqzsiFEEIIIYQo3ySpdGzatGklGYeo5AfRkda/oyIgpNr5dQFBkJqMTkm2RoMF9MljmOOfg8ZNMV54x5rrMge9+g/074vRKIyxM84nqEIIIcQVRKemwKkTULdRiU69pbWGlGSUT8USO6YQogxLlylFHAoJCSnJOEQlPzh+CAB99gwqq/QVsH4kq1S3WivrNbK22bQKdePt6O0b4egBqH9Vrt3pdcsxHngac/kv6PXLUd1uLrGnIoQQQpQEnZmB+d4rEBeDuqYFDHsuz03WYjmuaWJ+/C7s2Izx1GjUta2Ltp9jBzF/XIBx+2BUnYYujrLs0qYJNhuqQoXSDkUIl9CZmaBNcMs3tbriFeqW3o4dO/juu+/47LPP+O6779i5c2dxxVXuqEq+6KQE64+oCAiumnt9tVroiJOAdXdUb/oH1a4bqnUnK7HMQcfFQMQpaNwMo8et6H/+cmms+uyZ3IMKXSG0aaIP70eHn3D+MSnJ6LTUYoxKCCFEfvTaZeDrj/HuLKtLyI6NBT/IFcfd/A/ExWA8NRrzm1lWklTYfZg2zJnvoQJDMD+dZF2UlgM6JRlz3HOYLzyAPnm0tMMRwjUyrFbKkripVVY5lVTGxMTw6quv8s477/DHH3+wf/9+/vjjD95++21eeeUVYmJiijvOK18lP0hKtP6dc+TXbNVqnh8B9sh/UMEDQuuhWrTLm1Tu2IRq1hrl7g5NmkNSAvrEEadD0ccPofdsc7zuv92YY57EnPAyOiPd8TYH92L76M08cZVlOiYKc8JLmHOnYn70JraP30Unn7voY8xlv2C+PAzzpQfROzYXX2wpyejY6GLbvxDmL99ge2kY5tql+W6jExOwTR2H+dUnaNPm8hh05GnMedOsi+uDex0f/5MJ2KaOQ8ecdfnxxeVJb1qN0b0vysMT456HMb+dne9vk0uPu+xnjFsHQrNW1miPB/cUfid7tkElP4z7h0PlYPS28jEgn/7re1RoPdRdQzHnTbfKiIVwIR0XjTlvGjr8eMkdND3NujYvx5xKKmfOnElsbCxjx45l1qxZvP/++8yaNYu33nqLuLg4Zs6cWdxxXvkq+UFWS6WOOoO6sKUytD76RFZ57OZ/UNd3se6G1G1kJY1nz9i31ds3oFq2sx5nuKE69kSvW+ZUGPrEEczJYzDnTMHcuCrPevPnr1EPPAWVg9Drl+d9vM2GOXMSqvG1mHOnosNy34XUe7dhzpmC/m+3U/GUBB12FPPdF1Et22O8NQ3j7U9Rvv6Yk0ahox1fvJprl6KX/ojxxkcYT4/BnDsl320vKbbos5hvDLf+27DS5fsvDnrXVmwTXsJcm/97TmuNufBzbC8Pw/zju3J/UWGuW4b53dxSqQDQB/agV/+FMexZ9OI5aAeDggHob2ai/Cujw46gV7u4+mHnZswJL0HlYLj6OsxPJ2L++b39faFjojAnjUIFV0WF1sP8ZGKRWobElUUnJUDYEbi6OQDqmpZQsw76rx+K97hH/rN+r5u3QSmFat2xSDdR9faNqDadAVBd+6Ad3NTRxw9jblx10fe7zsxAH9yLTk8rdAwlTZs29LplqBtvR3XqBecS4fC+0g5LlDCdnHS+Oq8YmPM/RkdFYE5/G21z/U1Qh8r5ID3gZFK5e/du7rvvPq66Kne/vSZNmjB48GD27CnCHboiSEpK4r333uP+++9n+PDhrFmzpkSOWyJ8/SAx3rqIiorMPVAPQL3GcOQA2mZDb1mLatsFsPpbqmat0LutKWB0SjIc2mfdPc2iOvZAb1yFzsgoMAzz+y9R/e/DeOwl9JJ5uT6MOvwEnAlHte6I0eM29Lq8SSW7/4XAEIyb70TdPQzzs//Z7xrr7RsxP/8QqtbE/HQi+vD+wr5K6HNJuRJo+/KMDMwl8zC/nI5OjM//8Yf3Y3v3RWxvPY05ezLmVx9jfvA6auBDGDffZV0gVKiAGvwEqmMPzAkvWSVVOfexYzN6yTyMZ8ZYF7kNmlgXBD/OL/TzKfD5fj8P1aUPxqj30N/MQsfHuvwYrqSTkzC/mIzq1Av93Zw8NxXs261fjj6wC2PE6+iNq9E/uP61Kwt0Yjy2aeOxjbgLc+Z71oAiFzA3rED/uggdeQq94NOSjc9mw/z6U9TdD6KaNEd1vwX99w95t4uKQO/dZn1O7h6G/ut7lyR1OuYs5qLZmF/OwBj+KsZt92B07YPxyvvoDSvQX3yEuXEV5sSXUJ17Y9z1IKrfvWCasGNT0Y+rNTouumgli+EnMP9cYt1YKuA71VWJr7lhJbaJL2Ou+dsl+7tUOvw45s/f5PluzLVNWhr65NFiTf71rq1wVXNUjgs5Y+BD6L9/dPg74XAfkacx/1yS73eVw8es+BXV7WaU4QaAat4WvWNToW6Oaa3Ru7airm1j7aNlezh2CB0TdX6buGjMyWPQv3yD/u1bx/sxTcyp4zE//wBz/PNOX6jruBjMxXMwV/6e7znSaano7AEEXWXvdvCrjKpV17p+6dEXvfTnvMc+dQK9+98yd8NRHzuI+fePV2QXoJKi42MxxzyFOXq41V3L1fuPjYZD+zBGvG41gGz+p3CPT01BJ8QV/sCSVDqXVPr7++ORz2SeHh4e+Pr6ujSo/Hz22We4u7sza9Ysnn76aWbNmkVYWFiJHLu4KS8fcK8AsVGQGG+N+JpzfUAg+Fe2EpeAQFS1HNOENGuN3r0VwPp/w2us/WU/NqQa1KpbYF8TfeYkHD+E6tQT1fBqCApB55gfU6/8FdX1RpR7BevO8OmTuX4AAcw1f6M697aO26E7VKuF/maWdWE4bxrGk6Mxbr7TGkRo5qRcP4A6KgLzpwXofTscx3f0AObrj2O+8wLmVx/b+59o00TP/hB98hgohfnJBIc/RDryFOb0t1G9+mEMfdoa3CikGsZrH2Bc3zn3660Uxo0DMO55xGq53bgKnZiAueoPzLlTMJ58Pdc5UDcOsH4AT7vu/ajPJaF3bkH17IuqWRvVoQf6V9dN3aNPnyzaF+fF9vnbIlSLdhhdbkTddCf698V5t8nMRH//JcZ9w1G162M8Pxb973pMJ1oXdEIc5o8LsE0che3tkZiff4i5bpl1M6Wgx6alYv78DeaK3/K/iMrMRG9dhz6Ut/yysHTyOcz3XkVVD8WYOBvc3Ih77/VcpaP6XCJ60RcYj4zEePBZ6z0UceqSj+10jKv/gIq+51tLut+K3rIGnZj7wlSv+dvqw+3lbX1uPL1hv+PPaYHHPBOOuegLbG+MwBz3HCSfw3jjI+s7J4sKCsF4eQJUrITeuApj8BMYfQZY6wwD4+Y7Mf9cUrTjZ2RgThuP+drjmB++gU67eOuOToi1vr+++tiKefIYiI5Eb1yF+f6rDi8udXoatulvYw6/C3PJ3CLFad/XsYPoRbMxevVD/7LwohUATu1P60u6UNfHDmK+/xokJWB+9KbDrhI6PhbzzScxPxqLOeUtdGbBNzQdHivmLPq/Xfl/XndsRLVom2uZCqmG6jvQaqG44Pcpz+NjozEnvgwRp6z3ghOtjToxHr1zs9XKli20HmRkWGMZOCv8GLi7W11bAOXhiWrTyd5aqbXGnP8xqtvNGM+OtRJlB99zevM/kHIO451PUde2tsrHC2iZ0UkJ1uBGGenodcvQ33+Zd5uIU5ijh1t9H3//zvnnVQBzzd+5XjvVsSd6/85cyavetwPz/dcwv56J/uGrIh1H22zWzbBC9FPVaakXLe3XZ05mvef/xZz+TpmoltBb12J7cSi2917Jt5uMTj6HOXsythcfxPbxhEJ1hyrw+KZpna8NK9CnTzr3mGU/o1q2sxo8/nDde8u+/91bUU1bojw9Mfrcgf77h/NVL1pbNwR3bXX8WK2t996rjzq8CXxR5XzkV3AyqRwwYADffvst0dG537DR0dEsWrSIO+64o1iCyyk1NZWNGzcyaNAgvLy8aNKkCW3atGH16tXFfuwSE1zVanGsUh3l5pZnteraB/37dxg35X69VdOWcGA3OiMdvWUNqlWHvI/t1MsaCdY0rbIDB3eQ9fJfUV36oLJqwo3et6P/XGJdhCSfQ29ajerax9qfewXUdW3R/647//iEWPhv1/kLVKUwhoxAx8ei//rBGiEva/Radd31qFadMOdOs2LavRXz3RfhXBLm7A/R2zbkji0jA/PzDzHuewLj3ZlWOdxHb6ITE9ALPkEnxGI8MQp17+OQmgo54spmLpmH6nkbxvVdUHUaYnS7GePGAXlKjXO9bq07Yjz5OnrFr5ivP4beuhbj+XGoeo1zb+dTEXXj7ZiFaHEz1y6z+qdFnna4Xm9abX0xVrRu2qhb7kJv+sfpO/AXP/ZSqw/pm0+5ZH+Q1Zq1ZqnVkgSoLjei927PUxas/10HVWvaX0Pl64/x3Fvo5b9YNwv+XYf+dz161xb0gd3o8OPow/sxF3yCOXo4JMRh9Ps/jP97FBpejd62AfPlhzB//OqiF6/628/RRw+g1y5F/5r3rr/WGnPmJKsV6vMPMRfPyXPxrVNTnLpI0aYNc9b7qKuuxbjzAVQlP9TQZ6yLuBzvEb14Dqp1R1TdRigvb1T7bg7Lyp2h92zD9r/XsX30Fuayn9Gx0ehzSZgbVmDOfA/btPGY65bbL5p0TBT6528w/u9R+8ACytff+lyvPd8ipm029Npl528WKYXq3MtxpcJFXxMT8/fF1kW8m4Hx4LMY/5uL8cBTKF+/PNsrLx+MQQ/j9vQbqObX517Zoj3ERDlsXdLRZ7GNfQbb8/c77Ousf14AgPHRAlRF33xbyXVmpvWee304estaCKluxTzxM4x7H8d49i1UzTqYn3+Y97v065koN3eMiZ9b789C3inPta+/f0TdfBeqdSeMZ960KgCOHSz8fvbvxPbhGMynBmE+PgDb8/dbZeqff4j5yzf2G2cX3UdGBuZnH6DufRzj/x7FeHwU5ucf5LoRojMyMD9+F9WhB8aEz8BwQ/+0IO++YqKwTX8H24djHN6M0+EnMMc/b/WLWvSFw1jYuyPvewNQPfuh2t2AOe5Zq1XJwfeCNm2Ysz9EdbsFY8iTGE+/YR3rv10Xfw3+/gHVupP9exmyPhNNW+Y7FoHD/ezaao19kGNQD9W9L3rlb9Zv+eZ/4OwZ1C0DUUEhqKtbOO5ysvJ3jJvutLq63PkAKIX+Mf9ETGdmYH4yEdWivXUOn3rDqmTau/38NjYb5ucfoPoMwHhzqnVRfvKY088t32MnJljnrG3X88/Z28dKLpb/Ym2TlIA5ezLGw89jvDwBvfr3fH8j8z3O9o3WeAcTX8Z88QHMRV9YN83z2z4jA/O7uZjPDsZ8/Yl8bw6bP8xH3XQXxtNvQEoyeuvavPtKPmddXxXyxo1OT8P8569CtXjrqAiryuPxUVaXoxnv5Kme0FpjfvERaI3x0ruoxk0xp4y1xo04vP/SbjAlJ2F+MBpz4WewcwvmB69jG/uM9Tzy+S3WmRnWHOrd+6JuuAm9aXW+ibxOTipajPt3WuOJADRrbbUgZvV51n8uQf/1g/W95eg9ceIwJCdBo2vQDqphspNohzdu0tOs/tXlmFPj3u7cuZPExESeeuop6tWrh7+/P/Hx8Rw9ehR/f3927txpHwlWKcVzzz3n8kBPnz6NYRjUqFHDvqxOnTrs3XvpLQplRnBV6w5ojdoOV6sefa0foaw7m/blFX2hXmP0n9/Dvp1Wn8cLH9umE3r9cswXh0JaGlTyhao1MZ58DVXBA52abLUIjJly/kHXtYUf5sPuregTR1DXtkHlaEFV13fG/GUh9OoHgF6/EtWyvX0uzezY3J583fHzuWMIevIbmK8/DpmZGI+9hGrcDN3uBsxp4zHqNkJVto6n//gOqtdCte4EgDHiVfTiOZjP3wdNmmM8Ofp8MnzHEMyvZ2K0aG9PzvXRA3B4P+rBwr83VYMmuI2aVPB2PfqiX38CfXg/qkGTfLfTWlv953ZsQrXsgPm/1zDGTEH5VMq93dqlGLffd37/vv5WS9LP36CGPXvRWMxVf1h3A5u1Qt011F6mBVZJlV48B2PURPS2Dejvv0Q9+mKBzw+yyvlizoK3T66LKgD9/XxUj1utVnWyLhba3YBe/SdqwPnnoZf/gnHj7bkeqwJDMF77AL3sJ8x1y0EpyMyE1GQ4lwQVPFDNWmGMnY7yr3z+cfWvghtusm4yzJ+BnjreakW+YJh6ffQAesdmjLHTID0N862n0e26oqqc/z7RG1fB2TMYr30AqcmYk9+EuVPhvicgNtqa93XTavD0wnh4JOrq6/J/nb6bC7ZM1KCHz8fq5ob/yLGcHfkgZrVaoAz0vh25PnOqXTerpb3/YIcjyOmMDDh7GqrVss/Hp7W2Lvr++hHj/x6xLiq3b8T8cQHYMuDqFqgW7VAentYF61/fo3r3R6/4DdXzNlTNOrnPRfe+Vnn6jbdb75tdW6ByEKpW3fPbXN/FSuJTk3NVRQDosKNWC7VhQJPmqGatrNd8/seQkYEx+kNU4KVNWaXc3KybFqt+R903/Pyxtcb87H/WRf9VzTBnvIsx4jX751EfO4hesxTjzSlWxcXgxzHHPInu2AMVWi/XfvTXn6KjIjHenYWqWOnCEKzX/97H0O+/ZrXQ9x0EWDeL9KF9GK/9D+XljTH0GcyPJ2B265P7dTJt6O/moff8i9F/sFX+eAGdEIvevRVj8OPWMavXwhj8BOYnEzFe+wDl62ddkO3fhd652TpPHXqg/ALO7yMt1eoru2MTasD9qMdesu6mJ8VD5Bn02dMQeRq9dS16wSeoXv1Rt9zt8Mam/nMJVKtpr+xQjZui+g/GnP42xqvvgac3+utPwTcA1XeQ1ao89CnMt55Bt2hvfV4BnZqMOXmM9X1eyQ9z8hiMV96z/77ozEyrjP72wajWnTHfGI7u3Cv3e/W/nVCzNsrXP++5UQp1813oFu2shGLl7xgPPIlq3CzHc/ne+ozeerf1mLqNMB55AfPTSRhPvAINr4a4GIgIt76LqlSHhFj0P3/l/p3MPmazVtZ3V8++edY5onduwcg6tn0fNWtDw2swP50ER/7DeOoN+3eZuuEmzEWzocf5/euTxyDqDGQl1spww3h4JObbz2NWq4XRsUfuY5o29Nyp4OmFunOI9RhfP4whT2LOnZr1O1TRqojx9rGuOZRC3fZ/mItm4/bcWKeeW77Pef1y64byBfN6qp79MMc/i+7QA/O7Oah2Xa3+sWQl2r9+i3rwGaeOYW5YiV78BcYTr6AaNLFGq1/1O+Z7r0IlP+u7oF5j6/9BVeDYQcxvZkFwVesm0PYN1ufr9Q/s1xSAdfP1v12ooc9Yr/MdQ6yboC07WIMiknUj5MM3QClUk2vRL71d8GuitVUd8t1cqFEbHRuF2rIGHnz2onOuaq0xF3yK6t3fei71r7L6u/+8AHXHA+e3W/4rxEahXp5ode3peRu6843of/7A/PwD8PLGGPQI6qpm+R7L4fGTz2F+8IbV/WfQwyjDyPou2on5+3fWZ+6p13NdMwJWg0H1UFT1rEovX384ftjq4pVzu4wMzAkvQ1ICqnNv1B1Dzq87HYb53VzUtW0wbrgp7+u5f6f92kkZBqp3f8wfv8K4cQD67x8xXv2fdXN5+S9WQ0TOx2/fZDXMVKkBu7dCuxtyP/HtGzA/noAa+nTuagWA9FTw9CrU63ilcSqpTExMpHr16lSvXh2AlJQUPDw87H0sExMTiy/CLKmpqfj45L548fHxITU173QOS5cuZelSq4RkwoQJBAcHF3t8heXu7p4nrsS6DUhe8iU+9z5CpfxirlLF4eL0IcOJfe0JKt37KBVr13W4jR43DVvEKdyCq4DhRvyHb8KX0/AfOZbkH38no0VbAhrnTobShj1D/JRxAAROmIl7jrh0l16cnTOFgMw03KrWIHrDCvyeeAmPQrze+p2PyTx2GLcaoRjZyWhwMEm33k3G158SMPp/2CJOEbPiV4L/9wVuOfc9/GXMB0ZYrYQ5LsB1117E/rUE7z1b8e5xC1prYj9aQMX/ewSfmjUpTilDniD5608JnDgL5eDLRWekkzRjAm7HD1N5wkwMP38SzAz49Vv8nnjJvl3GsUPEJSUQ3KVnros7855hRA0fSEBKIu45LoJzSt2wisTfFxPw/Fuc++Yz3JbMw+/x80lj/JfTcOtzO5WubYnZoDFRj91JZZ2J24X9eHPGnZlJ8u/fkfzzQrBlolNTqNCiHb5DhuNWtQZp2zeScGQ/Qc+OPn8egczb7yX2jScJGjoCVaECGQf3EpcQR3DPW1AXzuUUHAwPP1vQS+xYcDB6zAfEv/c6askc/IaPsr8ntM1GzITPqDR0BN5Zn41zA+4jfck8Kr/+PgBmfCzR382h8quTqFDNeh3Mdz8hYep40p+7H9zd8blpAD4zl5B54ghx771O5bFTca/TIE8oKav/4tyOTQS+NxvjghY4d3d3Al97z/rsmSb+r02iQuj5m0g6KIhoD0/8485SodE1uR5rxsUQM+Y5dFoqyt2digOH4dGsJUnzPyEz/DgB7312/hze2M9+dzfXZ+PmAaRt+ofUZb9Qoeet+PQdmDd5DQ4m+tsgKh0/hOf1nYhd8xde/e7BO+dnLziY2KYt8TqwG+8et9gXZxw/TOzkMVQa+CDK04u0HZtI/84q/6x0x3349Lsn73kvIlv/QUQ/cx+Bj43E8LYuUlNW/kGyNgm87zGUmxtp7m4kzJhI5UmzMCr5ET3nI/weeQ7v+o3szyP5vsdJXTiLyu98Yr+IO/fzQlKPH6Lyu5/Y951vHK9OJOalh/GpXhPDvzIJS+YSNH467rVCs47Rmfh1bUj98WuC73nI/rikhbNJP3mEig8+RfxH46jcrAXu1Wvl2ve5lb9i69QTv5zf6X36kRR9htSJL1Hh6utI37EZIzAYrw7dyDwTTtqYEXh1vwWvzr2xnT1N0lef4tG4Kb5T5mNUyvl+rAYNc4+TYIuKJGHKONTn/8P/hXG5+ipmngojZvkveb6H9R2DSTwThm3mexiVg8g8dYLK46aef92Cg0l95HmS5s8g6P3Z4OZO/HvvYzRtge+wp1BKkYRJ+uzJVB47FeXuTtLC2WQEBhEwwLq5cu6O+8n48zsCXnrHftyE/3bi1rE7FS/2exMcDNe2JG3zGhKmv4vPwGF433wHGbv/JX7ZzwS99zluOUda79KTNC9PEj59HzMuGsPXH7fqoagKFcg8Ew7paQQ8/QaeF7xuAGbnHkTNm0aQv589GdGZmSTN/gi3k8fxfeR5+/m1xcUQfeo4wR275XqNAczn3iD5hwVUGDAYz+vOt8LqTt2J+nI6/gnRVMhKzhOWzMW48XYqVcvx3R0cTMborO/CZT/hVqsuhn9lVIUKpO/aihEQSMCrE3P/PnW7kYR92zC/+RTPNp1IWvM3Qe/Pxi3r5o8ecC/Ry37C78wJPHKM1+CItmWStnU9ZsxZPFt3tH8naZuN6NV/4Pfcm3mvEYKDSRn6FAnjn8OzbVf8H37OnqiZdw0havhAKhvgFnjxa4vUtctIXDKXwLFTca9d375vrm6GfuQ5Mo8dIuO/PWT8t4uMv77HFn0Wt6o18Lt7KF5deqOUQtdrQPyB3biv/oNKg4bZ953443zo3R/f7M91117ELv8Zz82r8LltEGZcDNHTx+M39Em8OnQn5tXHSF/xG8E9bs033owDe0n84iN0ehq+z43Bo2lLdFoasW89i8fKX6k08MGLPNflJMVFE3TvI/YbD+azbxD9/AP4db0RjybXknFoH7G/fUvQhJm4Z12/293zEHrgg6Rt+oeEjyfi9/TreLbumOc4KSv/IGnedEDh3ac/Pn0HQkYGcR+/i2fTFvg+fMG8sFV6o7v04tziOaROGUvQpM+sbhNZYtYuxee2QXhlvQcSW3fAOH6QitfnPnbyXz+QVqMW/k+9TvTIofi274pn8zaY5xKJmf42FbvfQsqvC/G/rjUVcnSdyDxxhDhvH4KvznEDqf//EX9oLxnzZ1D55XfwuOpqMv18iX31cYKefDVX8h574hA+tw3CrUp14pb+mOc6PX7/TmyNm2Ic3ENA/3tynxMPD1J9/QgIDnZ4jV8eKF3WekHn4+jRo4wePZr588+XKv3888/s2bOHUaNGXfSxp06VXB8lZwUHBxMVlbu/hz6wG/O9V607+bXzXqwWRNtsDu8u57t9RjrmtPGQmmK10Lw8EVW1Rt7tDu8Hn0rn7yzlYC74xLor3fBqzAWfWi1JLpijR2dmYk54ybrTeHg/6vrOGH2cL7PWB3ZjfvERxrgZsGMT5k9fW/22CvH6FIXWGj1vmtWye00LiItBR52xWts8vSAuBs+rm5Nx7+P2L1p9Lglz9BMYL7xtb6U2v5kFnt4YOVr4spl//4jevgFj5PhcLZBgtRKZH4y2BhGq28hqEXjnRVSv2zC63mSVkX4yEWP8x/aLCvObWeBdEaP/vY6fU8Qpa5LvysEY/e/N2m8KeulP6KU/oZq3Qe/+F+ORFxy23tnefw3VtQ9G267WndFadQt1LgtDp6ZY75uufTCy7uibK35Db16N8eK75xPNzAzMt57GuPMBuK4d+tNJEBiMMfChvPtMSgDvirmT+7XL0H8usVqjclyc6ROHMT8cY52bHC172Rx97i9kfv8l2GwYdw3Ntdw2ZSwqtB7GgPvRB/Zg/rQATp1Ate2KGjAE5em6vhzmuuXo1X9g9L0H88tpGOM/zdv6u2UN5qo/cBs53vo7Ix3z7ZGo3v0xctzBzS5tuvC96gq2j99FXX0dRrdbrD6zo4djPPpirv6Z5p9L0Ct/t1pnGjTBuH9E7udhmpgTX0a1747R/Rarf+/Xn2KMmoQKcnwT70L6dBjmvGmQmopx72OoC24I6Oiz6PHPoUZPRgUGW5/D6W9jvDEZFRBkjYB8aF+uqg5ts2G++gjGiNdR2RfIOfd5cC/6zElUw6tR1UPPL4+LsQZS+m8XVPLH6NEXdV3eEtF8n0tmBvrzD9GJ8RjDX0H5VLK+jz98A3Vd2zxVBvbHLP8FUlNRvW7LW3WhNeanEyEjw6qMSUrAeOZN+3tKmybmtPFWZUqT69Bff4oxevL5SpXUFMxXHrFaM6tUt0pXXxqG8cI7eSp38n1ekacxZ7wDPhXhdBjGYy+jskvkLtxWa6sV072Cw/X5sU14yWp1zvoeNH9fjPuB3WQ2vAa9YQXG65NRnp6Yq/+EfTswHnupgD3mZv64AJKTMP7vUeu7fdQj1nvIQcu/Nm1w/LDVwpaUAOlp1u9Ls9YOW8B0Whp64Sx0RDjG3cNQdRvlPvaGFVbr08sT8/zGa60hNgq9a6tVVeRfGVWlBnrXFtQdQ1Cde6M3rkQv/9U6h4W8RjAXfGL9Rg24P2/cqclWS/32jVar/9NjclUdFIWOjsQc95z1/R5SzWqVe+URjDen2t+TAPr0ScxJozAefAbz98Woxtfaf7P1yaPoD8egxkzJVTkA1m+KXvg5et8O1ID7UB26X1BNFIM5/jmMR19CNW6aN77kJMwxT1rVXQ0v+K75dx3mt7NRt92D/uErq3uDgy5RuR5zeL9VHfbcW7muPc3Na9CLZ2OMeA3cK6D/WJLV5UlZVUm333fR1lRz9ofg5o6RVT2nTx7FnPwWxoRZ9s+W3rkZ868fcHshd6uu7f3XMHrdhmrRHr37X+t3aPRkzHnTUAFBGPc+hrn0Jzh6EOORkeePueJXOH4IY2jBLdu21x7HePxl+/tF22yYz95rle17V7T+/c5MVI6bcbaXH0LdNRT967e4vTk19/Ndtwz27cR46DmnfutLQ85qz+LgmlvGJaB69erYbDZOnz5tbzE9fvw4oaGhBTzy8qEaN8N4f26u8r5CPb6QCZOq4IHx5Gj0tvWo2vUdJpTARUs5Vfe+1tQbG1aibhvksklflbs7xpOvoX/6GtW2C6r37YV7fONmEFoPc8pYOHnMujgq5oQSslqF7h+B2rbBqtdvci1GSG+o6AdpKeBdkYBrW+T6slEVK6FuuhPzu7m4PTXaStg2rMQY/aHjY/Tsa/U3/HIGDH78/JdzbLQ1ENG9j9kvCJSXD8aI16y+JTab1T9r4LBciZDq3Atzyjj0bYPyJqnRZ63BZvoOQt1w0/m+d17eqL6D0B17oLdtwOh9e74/5Ebv/lb/RA9P9J5tGPc8WvQXuADKy9t6vu++iK5SAwIC0T8twHjxndx9l9wrYNw33Jp4fPMa60LqIcel0aqSg/5+HXvAfzvRCz61l2VlD1+u7n3cYULp9HNo3Qnz43fRdz5wPgn+bzecDkMNf8XapnHTPD/CrqTa34DesQlzxjtZJfIOLq6vawvzP0ZHnrIuIJfMg6o1UB175t5XMSST2YwbbrYG8+jcG/37YivBypFQAtZADXUbWzfPrm2dZx9WiebTmP97Hdv+HXBwr5XwOJlQAqjqobi9PDH/9UEheN80gHPfzMS4exjmzPcw7h9hLw1TPW9Dr/gNfWjf+fh3bYbKwQ4TSgDV6Jo8yStYg7opBzdHnH4u7hXgkZHw7WzMd19C3Xo3ettG8PBA9bwt38eoGwfkv0+lMB563prqQ5sYvfrnek8pw8B46HnMeVPhzyUYw1/NdfGuvLxRXW+yvr8GP271mQoIcjqhBFBVqmO88h7s2wGh9VFB+ZdgK6WsgfMKSTVrbf2eXn2d1cf8r+/xe282ce6emKfD0Evmov7vUfT65Ri9+hd+/x17YL7zAvquoei1y6HJtfmWkivDzSrzvKCsMN99e3qihjyZ//q2XdG/LbbK4bPKbXXYUfRfP1iD65k2aHQNxkPP2RMdHX4C87P3rf7XEeFWOW8RrhFUr/7Wd/rNd52/GZuSbCXBW9dZz7NZK4w7huRJ4IpCBVWxSia//Ry3Ea9ZZfbNWud6T0JWOfr9IzB/XGCNf5DjxqyqVQ+v7jeT8t3cXKW7Ovy49TvR/HqM8TPydB8A6zNs3P8k5uwPrZvhF5QL68VzUM2vz5NQAqhWHVEZGegtazDueaTAhBKsazxj8OPWja5X3kcFBFp9Gb/+FOO5sfbfdjXsWfS9j4Fp5onJ4X7vfQxz/EjMdcswOvZE/77E6nKR87PVuBnMfN+qwMm6LtEJcXDiCGSXQDdrhbq+K+YLQ6HRNahHrMor1b4b5k9fo5OTzt/I+m+3/f1ZYHxXN0fv33n+2iX8mPWdm921p1ZdCDsKWTeJ9LkkOJeEurYN+ouP0KYt9+9bWhq48Obu5cjplsqYmBi2bt1KTEwMGQ6GUb/vvrwtKq42efJkAB5//HGOHTvGu+++y/jx4wtMLC+XlsrLld65GR0XbQ3y46Kk0hV0Wpo1H1bt+hdNjEuaw1bqjAzMN4ZjPPAU+uhB9LGDuD2Rfwu8Tk3GnPU/iI5EdekD7u5Wv64etzpsBdSH9mL++QPq2tYYXfvkWW97eyRGv3tROS66tdZW68RV11qTfBeR1hr97Wz0ln8whjxpH0K/OOkDu61+SelpqPtHYOQYGCLXdgf3og/tRXW50WHyeNFjpKVa85s2bgYNmlgXjH3usLeQOuLM515rjfnaY1ZLSp0G1t+TRqFuuAmjffdCxXip8vxoXsD89Vv0f7tQrTqgf19stS4V8nW8pPi0xpzxrtXP9Fwixqv/y3Ph5/S+Ys6i925HXdMSVUCZXVEE+VYi8t1RsHc7asD9GL1zJxXm2qXodcus1jelsL33KqrLjRjtu7k8FmfpLWswN65C1ahj9bMsxQsmHR+L+cYIjLemYn71KarJtRj5JLmlRUdHWi1M4z/FnPUeqlFTqjwwnKioKKsi5a2nrYTzyH6MN6cV6UanbcY7KE9v9L7t1uB3dRq6/onkQ+/ZhvnFR1Yf+f07rc9Lnzus/sDBVfPvB75rC9Ssk++Na2fYPn4XVb8JRp8BVvXM9LdRjZpaLaEO+jxfKp2Rgfnmk6iW7a3xDV6eVKibGACBFb05O+L/MB58xjrv2zZYLW2DHnLqu9ycPwNSUlAPP3/+BuO/6zAXfYEx5iOHCemlMH/5xpqyrmNP9B/fYTz4bK5rgqLQp05gvv+aNQDcvh0Ok2Tbe69YU7o1s45lrvoD/tuFccFYDzohzuoXm6N11PxkIlx9HcYNN1m/ByOHWC3MTtwU1FvWYK5bjtvTb1j7Wv4LhB21t6ya38yyKrSyRh7XB3ZjLpmH26hJ2EY9bA3aWOV8WbH55/cQH4Mx8KEye41f3C2VTiWVa9euZfr06Wit8fPzw909dwOnUopp06YVW5DZkpKSmDFjBrt27aJSpUoMHjyYzp07F/g4SSpFWZLfudc7NmN+/j9wr2CVCF2kjyNklRzt3mpN+2LLRLXvZh/coLDM1X+g92zD7YlXzi9b+bv1YzpqUom08rqazswEbeYabMHlxziXaM3nGheD0f0W+49ifpz93JvffwmpKVaZ255tmN/MwnhrarG2+hWFttmsAW3OhFtlVhcM+lMiMWRmwK6tUP+qIld5lITsc6+1dnzxbbNhvvmUVYJdoYI1cMr4Ty7Lz15xMX/+Br3qd6trwJiP8vRHLAvMrz62WnYDgzFemkBItWr2z7wOP4Fe+Zs1TVS1vN1JnKET4tCLZsPVLfIMxFMS9M7N6PUroHZ9VLdbcg3MV6zHPRNulam37ojeug51+315Bmlx+THDjlqt4+1vKNJva3BwMGdX/405632oWReiIqzy/Pp5++Q6PH5aqpWQVQ9F3XSHdRP0x6+sFt96jQreQSFprdHrllmDGnbsmafqo8j7DTuK/nedtU8H1zXmLwutsu6sCgvbB6Mxut2MapW3j2eefe/YjPn7ItxGTbIS2CljcZvwmXNxJSZgvvYoxgfzUe7uVoLavA1GVrWNuXYp7N1hL681l/8C4Scw7h9uJcL97kVdde355/HT11YlRv/BZfYav0wklU899RQNGzbkkUceyTNYzuVAkkpRllzs3OuYs+DhWaKtPWCVEpmjHsIY9zHKLwB99gzmOy9YQ5BXv3JKzEubs597HRdj9Zl5ZRLmp5NQtwzMM5equLw41Uq9eyvm7MnWhckDT6NatCuZ4C4TWms4sAdq1HY4DU1ZkD0CJg2uRnl6yW+9C+nTYdbonM3blMoNrMKy30iKioDw43DVtbkGrXGGTklGf/+lNQd51RrWFFW1Lq3PaFmjj/yHOW8abm9OteYFHj0cY9IcpyojdGYm5svDMF5815riJT4W497HnD62bewzGP/3GDS8GvOFB6wb+lnTzOkTRzA/+x9uY6cDWP3mQ+tjdL8Fc+Z70Pz6XJUk5uI5ULESxs13ldnPfZnoU5mYmEiPHj0uy4RSiMvJpU61UOTjevtYZT6r/4Sb7rDmKLvpTkkoS4kKCETdNghz9HBrOPU2nUo7JFECVLPWGCPftlrYL6Ff7pVKKQWFnPqgpCnDzd4XTLiWqh56Wf4mqeCqcJH5sC/6WG8fVCGSpMtS3YaQEIeOPG1Nq9e8rdOl9srdHdW+O/rXheiDezEeeaFQh1bXtUNv32DdpHKvkHve8hqhEB2BTktDeXqiw47aWzEJCIT4mNw7S0+FyuVvxNec8h+2KYe2bduyZ8+e4o5FCFGK1C13o5f/gvn2C+Drj+pd+IEkhOsYvfpjzFiM8cBTZaqvsiheqmZtSSiFEOWGMtxQ7bqhf1tkzZ/cqWfBD8r5+FvvRp8+aQ3oU8jxM1SrDuit69AbV6EuGOBHuVeAarUg/BjaZoNTJ6BWVgt5QJA1j21O6WngUXzdbS4HTrVUPvTQQ3z88cd88sknNGvWzGGLZatWF5+7SAhRtqkqNTBefR9OHoVrr7/oUOGiZBRnf1AhhBCiLFC33I353iuoRlfnO9VPvo/1qYTb6x8U7cC16kJINfQvCzHGTMm779D61hRx3j4QEHh+cKSAQDjyX+6N09KsqePKMaeSytOnT3P48GEiIyNZsWKFw20WLlzo0sCEECXvUsp0hBBCCCEKS/n62fsuluhxlcIY/irExTici53Q+hB2BO3tAzn6siq/AMzE+Fyb6vQ0jDI4eFhJciqpnDFjBt7e3owaNYpq1arlGf1VCCGEEEIIIS4nytsH8hnFWNWuj7luGcqWaU0fls03AC5IKklLlZZKZzY6ffo0I0eOpEWLFsUcjhBCCCGEEEKUsnqNIS4afeIwxts55uv284fEuNzbpqeBtFQWrGHDhmVyaFwhhBBCCCGEcDXl7o5x/wh0dCSqSvXzKypWgpRkdGYmKrt6Mz0NnBy19krlVFI5ZMgQZsyYgYeHB82aNaNixYp5tvEs5y+kEEIIIYQQ4sqhWrTjwvHXleEGPpUgKcEatAes8ldpqSzYqFGjAJg+Pf9OtDJQjxBCCCGEEOKK5xdg9avMTirT08BD+lQW6Iknnrjo+szMTJcEI4QQQgghhBBlml9A7n6VMqWIc0llt27d8izTWrNnzx7WrFnDpk2b6NWrl6tjE0IIIYQQQogyRfn6oxPiUVg5kQzU42RSmdPBgwdZu3Yt69evJy4ujkqVKtGxY8fiiE0IIYQQQgghyhZf//PTimSkg5uBcnMr3ZhKmVNJ5YkTJ1i7di3r1q0jMjISd3d3MjMzeeCBB+jTpw9u5fxFFEIIIYQQQpQTvv6QEGf9OzUZvPMOYlre5JtURkREsHbtWtauXcvJkydxc3OjefPmDBw4kGuuuYbhw4dTt25dSSiFEEIIIYQQ5YdfAJw9bf07ORm8fUo1nLIg36Ty6aefBqBRo0Y8+uijtGvXjkqVKgGQnJxcMtEJIYQQQgghRBmifP0xE7LKX1OTwUuSSiO/FcHBwQCEhYWxZ88eDhw4gM1mK7HAhBBCCCGEEKLMydmnMkVaKuEiLZXTp0/nwIEDrFmzhg0bNrB27VoqVqxI27ZtadmyZUnGKIQQQgghhBBlQ/Y8lQCpKeDlXarhlAUXHaincePGNG7cmKFDh7J7927WrFnDxo0bWbFiBQDLli3D09OTBg0alEiwQgghhBBCCFGqsuap1FqjU5JR0lLp3OivhmHQvHlzmjdvTmZmJv/++y/r1q1j06ZNrFmzhho1avDhhx8Wd6xCCCGEEEIIUaqUpxegIC3FKn+VPpWFn6fS3d2dtm3b0rZtW1JTU9m8eTNr164tjtiEEEIIIYQQouzx9YeE+KwpRSSpLHRSmZOXlxddunShS5curopHCCGEEEIIIcq27H6VyUlQyb+0oyl1+Y7+KoQQQgghhBDCAV9/SIyzEku/gNKOptRJUimEEEIIIYQQhaB8/dEJ8ejEeJSftFRKUimEEEIIIYQQhZFd/poQb7ValnOSVAohhBBCCCFEYfj5Q0KclVj6BpR2NKVOkkohhBBCCCGEKAzfgKykMs5KMMs5SSqFEEIIIYQQohBU5SD0sYPg5Y2q4FHa4ZQ6SSqFEEIIIYQQojBq1IaoCAipXtqRlAmSVAohhBBCCCFEIahKflCtFqppy9IOpUxwL+0AhBBCCCGEEOJyY4ydjlKqtMMoE6SlUgghhBBCCCEKSRLK8ySpFEIIIYQQQghRZJJUCiGEEEIIIYQoMqW11qUdhBBCCCGEEEKIy5O0VJaSUaNGlXYIopTIuS+/5NyXX3Luyyc57+WXnPvyq7yee0kqhRBCCCGEEEIUmSSVQgghhBBCCCGKTJLKUtKrV6/SDkGUEjn35Zec+/JLzn35JOe9/JJzX36V13MvA/UIIYQQQgghhCgyaakUQgghhBBCCFFkklQKIYQQQgghhCgySSqFEEIIIYQQQhSZe2kHUN4kJSXx8ccfs3PnTnx9fbn33nvp3LlzaYclXODNN9/k4MGDGIZ1ryYwMJCPPvoIgF27dvH5558TFRVFo0aNGD58OCEhIQBorfnqq69Yvnw5AD169GDw4MEopUrniYgC/fHHH6xcuZITJ07QqVMnRowYYV93Kec6MjKSjz/+mIMHDxIcHMywYcNo3rx5yT9Bka/8zn1kZCRPPvkknp6e9m379+/PXXfdBci5v9xlZGTw2WefsWvXLpKSkqhWrRr/93//R8uWLQH53F/JLnbu5XN/5ZsyZQq7d+8mLS2NgIAA+vXrR8+ePQH53OehRYn68MMP9QcffKBTUlL0vn379JAhQ/SJEydKOyzhAmPGjNFLly7Nszw+Pl4PGTJEr1u3Tqelpel58+bpV1991b7+r7/+0k8//bSOiorS0dHR+tlnn9V//vlnSYYuCmnDhg1648aNeubMmXratGn25Zd6rl999VU9Z84cnZaWptevX68feOABHR8fX6LPTVxcfuc+IiJC33333TozM9Ph4+TcX95SUlL0woULdUREhLbZbHrLli36/vvv1xEREfK5v8Jd7NzL5/7Kd+LECZ2enq611vrkyZP64Ycf1ocPH5bPvQNS/lqCUlNT2bhxI4MGDcLLy4smTZrQpk0bVq9eXdqhiWK0adMmQkND6dChAx4eHtx9990cO3aM8PBwAFatWsVtt91GUFAQgYGB3HbbbaxataqUoxYX065dO9q2bYuvr2+u5Zdyrk+dOsXRo0cZOHAgHh4etG/fntq1a7Nhw4YSf34if/md+4LIub+8eXl5MXDgQKpUqYJhGLRu3ZoqVapw5MgR+dxf4S527gsi5/7yFxoaSoUKFQBQSqGU4syZM/K5d0DKX0vQ6dOnMQyDGjVq2JfVqVOHvXv3lmJUwpUWLFjAggULqFGjBvfccw9NmzYlLCyMOnXq2Lfx8vKiWrVqhIWFUbNmzTzr69SpQ1hYWGmELy7RpZzrkydPUrVqVby9vXOtP3nyZMk9AXHJhg8fjlKK5s2bc9999+Hn5wfkfW/Iub+8xcXFcfr0aUJDQ/nrr7/kc1+O5Dz32eRzf2X77LPPWLlyJenp6dSrV49WrVrx9ddfy+f+ApJUlqDU1FR8fHxyLfPx8SE1NbWUIhKuNHjwYGrVqoW7uztr165l4sSJTJo0idTUVPsPTLac5/3C90X2Oq219Ku8zFzKuc7v+yEmJqb4AxeXzM/Pj3fffZe6deuSmJjI559/ztSpU3nttdcAOfdXkszMTKZOncoNN9xAzZo15XNfjjg69/K5v/I9/PDDDBs2jAMHDrBnzx7c3d3lc++AlL+WIC8vL1JSUnItS0lJwcvLq5QiEq7UqFEjvL29qVChAt26deOqq65i27ZtDs97cnKy/bxfuD77PSEJ5eXnUs61l5cXycnJuR6bkpKS606mKLu8vLxo0KABbm5uBAQE8NBDD7Fjxw77OZVzf2UwTZNp06bh7u7OsGHDAPnclxf5nXv53JcPhmHQpEkToqOj+euvv+Rz74AklSWoevXq2Gw2Tp8+bV92/PjxXCUU4sqhlEJrTWhoKMePH7cvT01NJSIiwn7eQ0NDOXbsmH39sWPH5D1xmbqUc12rVi0iIyNz/QgdP36cWrVqlUzwoljJub/8aa355JNPiI+PZ+TIkbi7W8Ve8rm/8uV37gsi5/7KY5qm/fMtn/vcJKksQV5eXrRr146FCxeSmprK/v372bx5M127di3t0MQlOnfuHNu3byc9PR2bzcY///zDvn37aNGiBW3btuXEiRNs2LCB9PR0Fi9eTJ06dahZsyYAXbt25ddffyUmJoaYmBh++eUXbrjhhlJ+RuJibDYb6enpmKaJaZr2834p57pGjRrUrVuXRYsWkZ6ezqZNmzh+/Djt27cvzacqLpDfuT948CCnTp3CNE0SExP54osvaNq0qb3ESc795W/WrFmEh4fz8ssv4+HhYV8un/srX37nXj73V7b4+HjWrl1Lamoqpmmyfft21q5dS7NmzeRz74DSWuvSDqI8SUpKYsaMGezatYtKlSoxePBgmafyCpCQkMC7775LeHg4hmFQs2ZNBg0aZJ9zaOfOncyePZuzZ8/a5zKqUqUKcH4uo2XLlgHQs2dPmaeyjPv2229ZvHhxrmV33XUXAwcOvKRzHRkZyYwZM+zzVj300EOX/7xVV5j8zn2NGjX4+uuvSUhIwNvb2z5gR0BAACDn/nJ39uxZRowYQYUKFexzEQM8+uijdOnSRT73V7CLnXullHzur2AJCQn873//4/jx42itCQ4O5uabb6ZXr17ApV3bXYnnXpJKIYQQQgghhBBFJuWvQgghhBBCCCGKTJJKIYQQQgghhBBFJkmlEEIIIYQQQogik6RSCCGEEEIIIUSRSVIphBBCCCGEEKLIJKkUQgghhBBCCFFk7qUdgBBCCFESBg4cWOA2Y8aMYcaMGbRr144hQ4aUQFR5RUZG8uSTT9r//uKLL6hYsWKhHzdv3jy8vLyKJUYhhBAiJ0kqhRBClAvjx4+3/zs9PZ2xY8dyxx130KpVK/vyWrVq8cILL+Dr61saIeZy//33c9VVV+Ht7e3U9pUrV2b8+PH8+++/LFmypJijE0IIIc6TpFIIIUS50LhxY/u/U1NTAahWrVqu5QD16tUr0bjyU6NGjTyxXUyFChVo3Lgxp06dKsaohBBCiLwkqRRCCCFyGDFiRK7y1+nTpxMWFsbAgQP58ssvOXv2LE2bNuWpp54iKSmJTz/9lEOHDlGzZk2eeOIJ6tSpY9+XaZr89NNPLFu2jOjoaEJCQhgwYADdunUrUmzff/89y5cvJyYmBh8fH+rWrcuIESMICAhwwTMXQgghikaSSiGEEKIAUVFRLFy4kHvuuYe0tDS++OILPv30U86ePUvPnj3p168fCxYsYPLkyXzwwQcopQCYPXs2q1at4q677qJevXrs3LmTjz/+GF9fX1q3bl2oGFatWsX333/P4MGDCQ0NJTExkd27d9tbXYUQQojSIkmlEEIIUYCkpCTGjx9PtWrVADhx4gQ//fQTI0aM4IYbbgBAa82ECRMIDw+nVq1anDlzhr///psnnnjC3jLZvHlz4uLiWLx4caGTykOHDtG8eXP69OljX9auXTvXPEEhhBDiEsiUIkIIIUQBQkJC7AklYP93s2bN8iyLiYkBYNeuXSilaNu2LTabzf5fs2bNOHbsGKZpFiqGunXrsm3bNr799lsOHTpU6McLIYQQxUVaKoUQQogCXDilh7u7e57l2csyMjIASExMxDRNhg4d6nCfsbGxBAUFOR1D9+7dSUlJYdmyZSxevBhfX1969+7NwIEDMQy5RyyEEKL0SFIphBBCFINKlSrh5ubGuHHj7H0sc/L39y/U/gzDoG/fvvTt25eoqCjWrFnD119/TWBgIDfeeKOrwhZCCCEKTZJKIYQQohg0a9YM0zRJTk6mefPmLt13cHAwt99+OytWrODkyZMu3bcQQghRWJJUCiGEEMWgRo0a9O7dm8mTJ9OvXz8aNGhARkYGYWFhnD59mscff7xQ+5s5cyaVKlWiUaNG+Pj4sGfPHs6cOcPgwYOL6RkIIYQQzpGkUgghhCgmDz30ENWrV2fZsmV8++23eHt7U6tWLXr06FHofTVu3Jhly5bx999/k5GRQbVq1Xjsscdo27ZtMUQuhBBCOE9prXVpByGEEEIIS2RkJE8++SQvvfQSLVu2xM3NzenH2mw2Vq1axSeffMK8efPw8vIqxkiFEEIIi7RUCiGEEGXQpEmTAPjiiy/yjD7rSHYyKoQQQpQ0aakUQgghypDMzEyOHz9u/7tevXpOTRlS1McJIYQQl0qSSiGEEEIIIYQQRSa3MIUQQgghhBBCFJkklUIIIYQQQgghikySSiGEEEIIIYQQRSZJpRBCCCGEEEKIIpOkUgghhBBCCCFEkUlSKYQQQgghhBCiyCSpFEIIIYQQQghRZJJUCiGEEEIIIYQoMkkqhRBCCCGEEEIUmSSVQgghhBBCCCGKTJJKIYQQQgghhBBFJkmlEEIIIYQQQogik6RSCCGEEEIIIUSRSVIphBBCCCGEEKLIJKkUQgghhBBCCFFkklQKIYQQQgghhCgySSqFEEIIIYQQQhSZJJVCCCGEEEIIIYpMkkohhBBCCCGEEEUmSaUQQgghhBBCiCKTpFIIIYQQQgghRJFJUimEEEIIIYQQosgkqRRCCCGEEEIIUWSSVAohhBBCCCGEKDJJKoUQQghR5syZMwelFHPmzCntUIQQQhRAkkohhCiHlFIX/U8u5MumunXr5jpPFSpUICgoiGuvvZb777+fRYsWkZ6eXtphCiGEKGeU1lqXdhBCCCFKllIKgDFjxjhcf/vtt9OiRYsSjEg4o27duhw/fpxnnnmGgIAATNMkISGB//77j3/++Ydz587RqFEjvvzyS9q1a1fa4V6S+Ph4Tp8+TfXq1fH39y/tcIQQQlyEJJVCCFEOZSeV8hNweclOKo8ePUrdunVzrYuPj2f06NFMnToVf39/NmzYQJMmTUonUCGEEOWKlL8KIYRw6NixYyilGDp0KAcOHGDQoEFUqVIFwzBYuXKlfbs///yTW265heDgYDw9PWnQoAEvvvgicXFxDve7dOlSunTpQsWKFQkMDOT2229n//79DB06FKUUx44ds2+7cuVKlFK8+eabDvdVt27dPMlVtq+//pru3btTuXJlvLy8uPrqqxk/fjxpaWl5tlVK0a1bN6Kionj00UepXr06np6eNG3alC+++CLf1+ivv/7itttuo0qVKnh6ehIaGkr//v1ZunQpAH/88QdKKYYNG+bw8WlpaQQHBxMcHOwwrsLw9/dnypQpDBkyhPj4eEaNGpVnm9OnTzNixAjq1q2Lh4cHISEh3HHHHWzdujXPtjn7NP7999906dKFSpUqERISwoMPPmg/v9u2baNv375UrlyZSpUq0a9fv1znMNvWrVt55plnuO666wgMDMTLy4tGjRoxcuRIYmNjL3r8nLLPeXJyMi+++CK1a9fG09OThg0bMnHiRLlRIoQQpUCSSiGEEBd1+PBh2rVrx7Fjxxg8eDCPPvoofn5+AIwdO5abbrqJjRs3cuutt/L000/TsGFD3n//fTp16kRCQkKufS1evJg+ffqwZcsW7r77bh577DGio6Pp0KEDR48edVnMDz30EPfeey+HDh3ijjvuYMSIEQQGBjJ69GhuuukmMjMz8zwmLi6OTp06sX79eu666y6GDBnCqVOnGDZsGHPnzs2z/ZgxY+jTpw8rV66kT58+jBw5kp49e7Jv3z7mz58PQJ8+fWjQoAELFy4kPj4+zz6+++47oqOjGTp0KJ6eni557tklzb/88kuu1//o0aO0adOGGTNm0KBBA0aOHEmfPn349ddf6dixI7/88ovD/f3000/ceuuthISE8Pjjj9OoUSPmzJnD7bffzoYNG+jcuTOZmZk89NBDdOrUiZ9//plbb70V0zRz7WfWrFl88803XHXVVTz44IM8/vjjVK9enQ8++IBOnTqRmJjo9HPMyMjgxhtv5LvvvuPmm2/m4YcfJiUlhVGjRjF27NgivGpCCCEuiRZCCFHuABrQY8aMyfPfF198obXW+ujRo/btXnnllTz7WL58uQZ0hw4ddGxsbK51X3zxhQb0s88+a1+WmJioAwMDtbu7u968eXOu7Z999ln7sY4ePWpfvmLFCnucjtSpU0fXqVPH4bEHDBigk5OTc60bM2aMBvTkyZMdvh4PPfSQzszMtC/fs2ePdnNz01dffXWu7f/8808N6Hr16umTJ0/miSssLMz+7/fee08DeurUqXm2u+GGGzSg//vvP4fPz9HzvfA1cqRWrVoa0MuXL7cvu/HGGzWgx48fn2vbtWvXajc3Nx0YGKgTExPty7NfRzc3N71y5Ur7cpvNpnv16qUBXblyZT1//vxc+xs2bJgG9A8//JBr+bFjx3K9ttk+++wzDegJEybkWp59/Oz344Wvwc0335zr/EZERGh/f3/t7++v09PTL/r6CCGEcC1JKoUQohzKTqIc/XfDDTdorc8nlVWrVtWpqal59nH77bdrQO/evdvhMVq0aKFDQkLsf8+fP18DesiQIXm2jYuL0/7+/i5JKlu0aKHd3d3zJLpaa52ZmamDgoL09ddfn+f18PHx0fHx8Xke07VrVw3ohIQE+7K+fftqQC9ZssRhXDlFRUVpLy8v3axZs1zL9+/frwHdvXv3AveRzdmksl27dhrQCxcu1FpbSS6ga9eu7TDhuu+++zSg586da1+WndTdd999ebafO3euBnSXLl3yrFu5cqUG9JtvvunUczJNU/v5+eV5HQpKKg8ePJhnX0OGDNGA3rVrl1PHFkII4RruLm74FEIIcRnRTvQ/u+666xyWZq5fv54KFSqwaNEiFi1alGd9eno6Z8+eJTo6mqCgIP79918Abrjhhjzb+vv706JFC1atWlWEZ3FecnIyO3bsIDg4mMmTJzvcxtPTk3379uVZ3qhRI3tZb06hoaGAVR7r6+sLwIYNG1BKcdNNNxUYU1BQEAMHDmTevHmsW7eOjh07AjBz5kwAHn/8caeeW2Fkn9fsAZm2bdsGQJcuXahQoUKe7Xv06MH8+fPZtm0bQ4YMybWuTZs2ebavUaMGAK1bt86zrmbNmgCcPHky1/KMjAw+/fRTvvnmG/bu3Ut8fHyuEtnw8HCnn5+/vz8NGzbMszz7XDnqoymEEKL4SFIphBDioqpVq+ZweXR0NJmZmbz11lsXfXxSUhJBQUH2PoVVq1Yt1HEKIzY2Fq01Z8+eLTCuCwUEBDhc7u5u/VTabDb7sri4OCpXroy3t7dT+x4+fDjz5s3j008/pWPHjqSlpTF37lyqVKnC7bffXqg4nXHq1CkAQkJCAOyvffXq1R1un73c0eBKjqbzyH5NLrYuIyMj1/JBgwbx/fffU79+ffr370+1atXsNysmT55cqIGKCnOuhBBCFD9JKoUQQlxUdmvXhfz9/TFNk5iYGKf2k52AREREOFx/5syZPMsMwxpPztHAOmAlSzkTm+x/t2zZ0t4yWhwCAgKIjo4mJSXFqcSyXbt2tGrVim+//ZbJkyfz+++/Ex0dzcsvv4yHh4dLYzt06BAnT57E3d3d3pKY/bo4eo3BGhU253autmXLFr7//nt69erFb7/9lqu11DRNJk2aVCzHFUIIUTJk9FchhBBF0r59e2JjY9mzZ49T27dq1QrAYYlrfHw827dvz7O8cuXKAISFheVZd+jQoTwta5UqVaJp06bs2bPH6WS3KNq3b4/Wmj/++MPpxzzxxBOkpqYyb948Zs6ciVKKRx55xOWxZY9+etttt9nLdVu2bAnAmjVrHCboK1asAM6fI1c7dOgQAP369ctTfrtp0yZSUlKK5bhCCCFKhiSVQgghiuS5554D4JFHHrGXW+Z07tw5NmzYYP+7f//+VK5cmQULFrBly5Zc27755psOp9xo0qQJfn5+/Pjjj0RGRtqXp6Sk8PTTTzuM6/nnnyc9PZ1hw4Y5LOeMjY295FbMp556CoCRI0c67AvoaNm9996Lv78/kyZNYtWqVfTu3ZsGDRpcUhw5JSQk8PTTT/Pll18SEBDAhAkT7Otq1apF7969OXbsWJ6+phs3bmTBggVUrlyZAQMGuCyenLLnEs05vylAZGQkI0aMKJZjCiGEKDlS/iqEEKJIevbsyYQJE3jllVdo1KgRt9xyC/Xq1SMpKYnjx4+zatUqOnfubG/Nq1SpEjNnzmTQoEF06dKFQYMGUb16ddasWcPu3bvp2rUrq1evznWMChUq8MwzzzBu3DhatmzJgAEDyMzM5O+//6ZGjRr2AWNyGjZsGFu3brXPx9inTx9q165NTEwMR48eZfXq1Tz44IN88sknRX7uN954I6NHj2bcuHFcffXV3H777YSGhhIREcGaNWto3749c+bMyfUYHx8fHnjgAaZMmQLAY489VuTjT548mYCAALTWJCQk8N9//7F69WrOnTtH48aNmT9/Po0bN871mE8++YROnTrx4osv8tdff9GmTRvCwsJYtGgRhmHwxRdf2Fs2Xe3666+nU6dOLFmyhI4dO9K5c2ciIiL4/fffueqqqxyeRyGEEJcPSSqFEEIU2csvv0ynTp2YMmUKa9as4ccff8Tf35+aNWvy6KOPcu+99+ba/q677uKPP/7grbfe4ttvv8XT05OuXbuyfv16JkyYkCepBHjrrbfw8fFh1qxZzJw5k2rVqnHPPffw5ptvcs011ziMa/r06dx888188sknLF26lLi4OAIDA6lduzYvvvgi99133yU/97Fjx9K+fXumTJnCL7/8wrlz56hSpQpt2rTJM4JqtmHDhjFlyhSqV69Ov379inzsjz76CLAGpvH19aVmzZoMGDCA/v37069fP4f9NOvXr8+WLVsYP348v/32GytXrsTPz4+bbrqJ1157jeuvv77I8RTEzc2Nn376iddff53ffvuNKVOmULNmTR5++GFef/31fM+jEEKIy4PSzownL4QQQhSzoUOHMnfuXI4ePWovl7zSzJkzhwcffJDXX3+dcePGlXY4QgghhEtIn0ohhBCiBGRmZvLBBx/g7u5+SaWvQgghRFkj5a9CCCFEMVqzZg2rVq1i5cqV7Nq1iyeffJJatWqVdlhCCCGEy0hSKYQQQhSjpUuX8tZbbxEYGMgjjzwiczIKIYS44kifSiGEEEIIIYQQRSZ9KoUQQgghhBBCFFm5KH91NCm3KDuCg4OJiooq7TBEPuT8lH1yjso+OUdlm5yfsk/OUdkm56fsK+75gKWlUgghhBBCCCFEkUlSKYQQQgghhBCiyCSpLCR99CD6+KHSDkMIIYQQQgghygRJKgtBpyZjTnkL8+uZpR2KEEIIIYQQQpQJ5WKgHlfRS3+CpARwk5dNCCGEEEIIIUBaKp2mkxLQf/0AyoCEWHRmRmmHJIQQQgghhBClTpJKJ+k/lkBqCqrXbaA1xEaXdkhCCCGEEEIIUeokqXSCjotGr/gF1a4bqllra2GMzMUjhBBCCCGEENI50An610Vgs6H6/R/YMq1lMWdRpRyXEEIIIYQQQpQ2SSoLoM+eQf/zJ6pzb1RINXRamrUi5mzpBiaEEEIIIYQQZYCUvxZA//w1GG6oWwcBoDw9oZKflL8KIYQQQgghBJJUXpQOP4HesBLV/VZU5aDzKwJD0NJSKYQQQgghhBCSVF6M+dNX4OmFuunO3CsCg6X8VQghhBBCCCGQpDJf+uhB+Hc9qvftKF+/XOtUYIgklUIIIYQQQgiBJJX5Mn+YD5V8Ub37510ZGAKpKejkcyUfmBBCCCGEEEKUIS5NKk+ePMnq1atZsmQJcXFxAJw5c4aUlBRXHqbY6f92w95tqJvvQnn75N0gMMT6v7RWCiGEEEIIIco5l0wpkpqayowZM9i4cSNubm7YbDZatGhBQEAACxYsIDg4mCFDhrjiUCXC/PsH8A9EdbvF4XoVGIwGK6msVbfkAhNCCCGEEEKIMsYlLZVz587lwIEDjB49mnnz5uVa16pVK3bs2OGKw5Sck8dQV12L8vB0vD6rpVJGgBVCCCGEEEKUdy5JKjdt2sTgwYNp1qwZhpF7l8HBwZw9e/kkXzo9zWqBrFYz/438A8DNTeaqFEIIIYQQQpR7Lkkq09PT8fX1dbguNTU1T6JZpkWeAq2hWq18N1GGGwQESZ9KIYQQQgghRLnnkmyvQYMGrFq1yuG6DRs2cNVVV7niMCVCnw4HQF2spRIgKETKX4UQQgghhBDlnkuSynvuuYdNmzYxbtw4li1bBsC2bduYOnUq69ev5+6773bFYUpGxElQCqrUuOhmqnKwlL8KIYQQQgghyj2XJJVNmjRh9OjRZGRkMHv2bAC+/fZbIiMjGT16NA0bNnTFYUrG6XAIDEF55jNIT7bAEIiLRpu2kolLCCGEEEIIIcogl0wpAlZiOXbsWNLT00lKSqJixYp4FpSYlUE6IhyqFlD6ClZSabNBfBxUDir2uIQQQgghhBCiLHL5CDoeHh4EBgZengml1nAmHFU9/0F6sqkga1oRGaxHCCGEEEIIUZ4VuaVyxowZhdp++PDhTm97+vRpXnjhBdq1a8fTTz8NwK5du/j888+JioqiUaNGDB8+nJCQkELFUKC4GEhLca6lsnIwYM1VqRo0cW0cQgghhBBCCHGZKHJSGRYWluvvqKgoEhIS8PPzw9/fn/j4ePvfwcHBhdr3559/ToMGDex/JyQk8P777/P444/TunVrFi5cyOTJk3n77beLGr5jZ04CToz8Clb5K0hLZTmhY6JQgYV7HwshhBBCCFEeFDmpfPfdd+3/3rJlC3PnzuWFF17INX3I/v37mT59OnfeeafT+127di0+Pj40btyYM2fOALBp0yZCQ0Pp0KEDAHfffTcPPfQQ4eHh1KzpRALoJH3Gmk7kYnNUZlM+FcHbR0aALQd02FHMcc9iPD8O1aR5aYcjhBBCiDJGp6ZgvvMCxsCHUM1alXY4QpQ4l/SpXLBgAYMGDcozH2WTJk0YNGgQX331lVP7SU5O5ttvv2XIkCG5loeFhVGnTh37315eXlSrVi1Pa+kliwgHT28ICHRu+0CZq7I80Pu2g9boE4dLOxQhhBBClEXHDsLpMPSB3S7drQ4/jjZNl+5TiOLgktFfIyIi8h2Yx8PDg8jISKf2s3DhQrp3756nXDY1NRU/P79cy3x8fEhNTXW4n6VLl7J06VIAJkyY4HT5bWx0BGatOgQ52VcztloNzNhoggpZ3ityc3d3L3SJdEmKO3GENMArPga/MhxncSnr50fIObocyDkq2+T8lH1l/RydiwwnCfBIjCPARXFmnj5J9FtP4//i23h16OaSfRaXsn5+RPFzSVJZv359Fi1aRMOGDalcubJ9eUxMDIsWLaJ+/foF7uPYsWPs2rWLSZMm5Vnn5eVFSkpKrmXJycl4eXk53FevXr3o1auX/e+oKOdKVG1hx1ANrnZ6e7OiP/q/3U5vLxwLDg4us6+h1hpz73YAUo4fIb2MxlmcyvL5ERY5R2WfnKOyTc5P2VfWz5Ft9zYA0k6FuSxOvetf0JqEg/tIatTMJfssLmX9/AioUaNGse7fJUnlo48+yvjx4xkxYgT169fHz8+PhIQEjhw5gq+vL0899VSB+9izZw9nz57liSeeAKzWSdM0efnll+nduzerVq2yb5uamkpERAShoaGuCB8AnZYG0ZHQuVfBG2cLDIakRHRaGuoynEJFOCHiFCTGg4eH9W8hhBBCiAsdPWj9PyrCZbu0j/UhXa3EZcAlSWVoaChTp05lxYoVHD58mLi4OGrUqEGXLl3o3r07Hh4eBe6jV69edOrUyf73Tz/9xNmzZ3nkkUcA+PLLL9mwYQOtWrVi8eLF1KlTx6WD9BCZlTBULXiQHrvsuSpjzzo1uI+4/OhDewFQrTqiN6xEp6WiPB23kAshhBCi/NGx0RAXDf6VIT4WnZ6G8nBBY0NWUqllUEhxGXBJUglW38k+ffoU+fGenp65+mV6eXlRoUIFe1/KkSNHMnv2bKZOnUqjRo145plnLjnmnHT2dCLVnU9UVWAIGqw7SJJUXpkO7YVKvtC8LWxYCZGnIbReqYWjtYazp1FVireEQQghhBBOOvofAKp1J/TyXyD6LFS/9OtCHSEtleLy4ZKkMi0trcBt8hvIJz8DBw7M9Xfz5s2ZPHlyofZRKGfCQSkozMV6ZatDso4+iyqmsC5GHzsIvgGoIOcGFhKFpw/ugwZXo6rVtG4gRISXalLJzi2Y08ZhjJqEatCk9OIQQgghBAD66EFwc0e1aGcllVERl5xUaq3tLZWSVIrLgUuSygunAHFk4cKFrjhU8TkTDoEhhStXqBxkJaKxJV+WoDPSMT8YDfUa4/bc2BI/fnmgE2Ih8hSq641Qpbq1LOJUqdxAsMd08qj1/7VLJakUQgghygB99ADUqmtPJHV0xKVfKyQlQHKS1YARG4VOPmfNkS5EGeWSpDJ7cJ2ckpKS2LlzJydPnuTOO+90xWGKlT5zEqoVro+mcq9g1c+Xxh2kXVshJRn27UTHRaMCgko+hivdof0AqIbXWP0oA4KslsrSlHV8vfkf9KBHZIAoIYQQohRp0wbHDqE6dge/yuBewTWD9WS1Uqqrr0OvW2Zda0pSKcowlySV3bp1c7i8b9++fPbZZ4SFhbniMMVGaw0R4ahG1xT+wYEhpdKBWm9ZA55ekJaK3vQP6sbbSzyGK50+tBcqeEDtBtaCqjXQkadLN6bI0+BTCZKT0NvWodp3L9V4hBCiJGnTBkmJKL+A0g5FCMvpk5CWAnUbowwDgqpAlHPzs19M9lgfXNMCspPKWnUveb9CFBejuA/Qtm1bVq9eXdyHuTSx0ZCWWuiWSrAG6yG6ZFsqdVoqescmVLtuUKcheuPKEj1+eaEP7YN6jVAVKgCgqtYoEy2VqnVHCKmGXrusdGMRQlwxtM2GPrjXuslahum/fsB87TFrGjAhygB99AAAqn5ja0FwFbQrWiojwsHdHdWoqXUc6VcpyrhiTyoPHz5MhayL8jIrK1FQVYswRUlgVq17Cf4Q651bID0NdX1nVPtucOII+tSJEjt+eaDTUuHEYVTDHK3XVWtY85KeSyydmM4lQVIiVK2J6tgD9u9ER1/63VAhhNBb1mBOGoX+pWyPf6C3roPUFDgtv3mijDh6ALwr2gd6VEFVrXnPL5E+Ew4h1SEgENzcZbAeUea5pPx1/vz5eZZlZmYSHh7Orl27uOWWW1xxmGJjLzEoykhdgSGQkW51qPb1d21g+dBb/rH6cjZuiqoRil40G71xFWrA/SVy/HLh6AGw2VANr7YvUlVqZI0AewrqX1XyMWXNpaqqVofQ+uifvkavW4667Z6SjyWL1hqlSnPoIiGES2TNyat/WoAZFILRsWcpB5SXToiFY9YE8/rkMVTdRqUckRBZLZX1GlmlrwDBVSEpAZ2agvLyLvqOI8Kheqi138BgiJa5KkXZ5pKWyvXr1+f5b8eOHZimyYMPPsjgwYNdcZjicyYcPL3BP7DQD1WBWdN5lNAdJJ2aDLu2olp1RBluKL/KcE0L9MZVaNMskRjKA31orzWyb/0cI6xmtWTriFOlE1N26W3VmqigKtCkOXrdslI77+bmfzBfeAAdWTqvh7jy6cR4zD+XyHusBOjD+6FxM7j6OvS8aei920s7pDz0rn/P/xF+vPQCEVcE85+/LnmcBJ2WBuHHUXUbn18YXMX6/yW0VurMTDh7BpXdLSswRMpfRZnnkpbK6dOnu2I3pSZ75NcitbhkJ5XRZ6FOQ9cG5oDevgky0lFtu9iXqXbd0J9/AIf2QeOmxR5DeaAP7YMatVEVK51fGFIVlFF6/SojTlvHD64GgOrY0zrvB/fAVdeWfDyH9kFCHOank6x5Myt4lHwM4oqkExPQfy5Br/gV0tPg9EnU0KdLO6wrlk5NgZPHUbfejep9O+akUZifTMB4aQKqDA0MondttkoBA4LQJ4+VdjjiMqbDjqLnTYOet6HueaToOzpxGEzzfH9KQAVXtaqaoiKgZp2i7TcqAmw2qGpV0KnAYPR/u4sepxAlwCUtlYsXLyYmJsbhutjYWBYvXuyKwxSfM+Hn7wYVVmAwUHIdqPXmf6w5i3K0oKmW7cHT64obsEebtlIZNEKbNji8P89owMq9gnUHsrRGgI08BYHB5wcOatkBvH1KbcAeffYMePtYfXoXzS6VGMSVRScmYC6Zi/nKw+i/vke1aA+Nm6H3bS/zA8hc1o4fAm2i6l+F8qmI8fQb4OmFOWUsOja6tKMDslpu9m5HXdsGFVoPTh6T94QoMr3mb+v/p09e2n6O/mf9o16OUuwgq6VSX8oIsNljfeRoqSQuGm2zFX2fQhQzlySVixYtumhSuWjRIlccpljotFSrdLWoSWUlP2vaidjir3XX55JgzzZUm07na/cB5emFatEOvWUNOiOj2OMoCTr5HOZz92O+MQLzpwXo0yU4Lc3J49ZAEA0dTDFTtcb5MtQSpiNO2UtwAZSnJ6pNZ/TWtVZZdEmLPA3XtED17o9e8Rt669qSj0EUmU5LRWeWje8LnZSAuWQe5iuPoP9Ygmp+PcZb0zAeGYlq1xViouxztgnX04etOXmpZ7W2qMAQjKfHQMo5K7FMKYXvlwsd2gspyahr20DNutY4BglxpR2VuAzp9DT0hhXWH2cu8dri6EEIqmJ1Rcrm6w8enpc0V6X9OiNnUmmaEO/4WluIsqDYR3+Njo6mUqVKBW9YWrL6x6lqRRikB6yS2RKaVkRv3wC2TNT1XfKsU+27QfI52L212OMoEccPQXISKIX+ZSHmGyOwvfkU5q/fFnv/Kp01YIVykFSqqjUh4lSJ3yHXWkPkKWuQnpzxdOoF6WnoLSWb0GnTBlERqJDqqDuGQL3GmHOnWq2XoszTWmNOeAn99azCPzbylHWDy1WxmDbMt0ei//gO1bwNxpipGI++iKoeCoC6uoW13d5tLjtmUejEeGzP3VfqcRQHfeQ/q692JT/7MhVaD+PxUXDqOOYnE62WwlKkd20Bd3e4+jpUraySQimBdYpOS7tibji7gt62wbpeatIcYqKs8u+i7uvogTwDRimlIKgKOvoSphU5Ew6V/FAVfa19lvD4HUIURZH7VK5cuZJVq1bZ//7ss8/w9s49ylVGRgYnTpygefPmRY+wmOW5G1QUgcElUv6qN/9jjSrmaMS7q1uArz/mhpW4tWxf7LEUN33iMADGS+9CZgZ66zr05n/QP8xH/zAfajdAte2CatPZGrTGlQ7ts8pMg0LyrqtS3ZrTND7W6ttTUhLjICU5V0slYI1CW60met0y6Ny75OKJiQJbJlSpjnKvgPHoi5jjnrX6V7480V6iK8qo8ONW+WAhLzS11pgTR6Gua4sa8qRrYjkTbt2guG84xg035VmtQqpBlerWwDE9b3PNMYviwB5rRMc921HXtCy9OAqgTRvs2Q7NWjk1ToDWGo78h2rWOs861bQl6v4R6LlT0fNnwANPldpoz3rnFmjcDOXljc7qp6ZPHkM1LbvnoqwwZ70Hxw5hPP5yrhHNyyv9z18QUg2j2y2Y+3fCmZOOr6sK2k9CrDUYT49b864MrnrpLZU5r0uzrkd09FlU8Q/fIUSRFLml0tPTE19fX3x9rbsoPj4+9r+z/6tSpQr9+vXjsccec1nALnf6pDXKZ9b8QkWhAkOsi+xipBMTYN8OK4ly8KOu3NxQbbvCzk3oZNe1IpSa44etkpJKfqiAIIyet+E2ahLGhM9Rdz9otWAunoM56mFsE17CXPYLOj72kg+rtUYf3INq4PiH1z6XaUmPABth9eNUF7xPlVKojj3h4N6SHSEzq0VShWQNGhRcFWPoM3D8EPq7OSUXhygS/e966x8R4ejkc84/8OxpSIizT/btkliOWlNEqMbN8t1GXdMC/ttVquW6+ohVIqrDjpRaDM7QW9dhTnkLdm1x7gFnz0BiPDRo4nC10bk36ua70GuXWoOSlAJ99gycOWmVvoLVohoQJC2VTtCmCQd2Q3wM5vuvYa76o1z3RdWRp+G/XVaVTw2rGqLI/Sqzv7tyjvyaRQVXubS5Ks+E5547vbI1fkdxX2sKcSmK3FLZoUMHOnToAMCMGTO48847qVq1qssCKzER4RAYgvLwLPo+AoMhIRadmWEN5lIM9LZ11ghjDkpfs6n23dDLfkZvXYfqcmOxxFFS9PFDULt+nuUqKAR14wC4cQA68rTVerllDfqbmeiFs6w72W27oDr0KNpopNGREBcDjRz0pwSoaiV1OiIcdVX+F8GuZk8YLyh/BVAduqO/n49euxw14L4SiidrsKIq5+NRLdujet5mvQcbN0O16lAisYjC09vWW9MopaVYpeZXX+fc47Iuojgdhs7IcE2L9LGD1oBPVfO/saeuaYle+Tsc/g9K8HOXk73f4YkjZXt+1j3WtBt6x2ZU8+sL3FwfsQYaUReZe1f16of+fTF6zzZUCYxyfiG900qQVfM25xfWqoMOP1bisVx2os5YfVHvfAD93y6rxfn4Ifi/x8plRYleuxSUYd2M9fUHNzco4pgN+ugBMAyo0yDvyqCqkHwOnZyE8ilcFzCdfM7qL5yjpVJ5eUNFXyl/FWWaS/pUDh8+/PJMKDk/ncglCQwBraEYR8nTm9dYpY+h9fLfqE5DqxRyw8pii6Mk6ORzEHm6wIsXVaU6xq0DcRszBeOtaahbB0FcDPrLGZgTR6GL0M9VH9pn7dvRID1g3UBwd7dGYi1JEeHWj19Q3s+ZCgiCpi3R65dbpW8l4expcK9gtRbkjOWuoVC3EebcKdK/soToE0fILMScfTryFJw8hurdz/r7+CHnD5bdQmmzwSnXzBOojx6AOg1zDT6Wx1XXgmEUau5EffIYOiP90gMEq4X0+GHrou5cYpltLdBao/dst/69c7NzLVJH9oOnF9Ssne8myi8AatUrtbkr9a7NVp/PHJUaqmZd6+ZGKff1LPNOWC3rqklzjKdGo265G/3PX5jvvYIuY+9jHXEKfS6x+PZvs1mjpV/bGlU5COXuDiHVi9xSqY8egBp1UJ5eedap4Kzf6qKMAHvhyK/ZSqirlRBFVeSkcv78+URHR9v/XdB/ZZE2zazpRIo2SE+28x2oi+cLWifEwn+7Udc7Ln21x6EUqt0NcGB3kRKqMiOrxEo5uvuXD1WjNkb/ezHGzcAY/ipEnsIc/xx6347CHfvQXqvVJJ8LLGW4WT9CJVz+qiNOQ3A1lJub47g69rRGIN6/s2TiiTwNIdXyJALZ/SvRYE55C3PxHMy1S9GH9xfrxUJ5pbXGnP42cRNfdbqkTW/bAIDq3BtCqqGPHXT+eMcO2suw9IlLLwPVGelWglvv4v2ZlE9FqNfY6UFydOQpzLHPon//7pJjBCDsKGRmoDr1zPq7dMpAC3Q6DOKirVLWuGgr7gLow/9B3UbWd9tFqGtawOF91mTvJUinpVq/f9e2yb2iVl3IzCz5rgiXGX3iiNWaVrMOynDDGHA/xhOj4FSY9Rt5YE9phwhYgwmZ74xEfze3+A6yeyvEx2B0yTH+QPVaRRoBVpsmHDuYa37KXIKzxnooQr9KnT3SddULrk0DQ6SlUpRpRU4q169fT2Jiov3fF/tvw4YNLgvYpeKirYm1XdFSSfHNVam3rrPmEGuTf+lrNtWum/WYTauLJZaSoI9nXbAVocxKKYVq2R7j1f9ZAxd9OAbzzyXOX3Af2gcNmlz8AitrBNgSFXnq4uWBLdqCT6WSm7Py7BnI6k+ZJ5aQahiPvgCGG3rpT+g5UzAnvIT57GBsz9+PbeIozN8WFbpfj448hd6yxhXRXznCj0HMWWxhR+HgXqceov9db7UMBlWxRi085lxLpc7MhBNHUK07gpe3vQXkkoQdtUa0dtAn6ULqmpZWn92khIJjXf0XaNMqj3dB/7Hs0lfV9SarP7crnnsxyG5JNAY+ZP1dQL9KnZYGJ4+i8ulPmZO6+joriTtYwknIvh1WQt88d1KpatUFkBLYAuiwI1A9NFd3ENWqI8ar74F3RcwPXsdc/kup97PU29ZZ5aKFuMlVWOY/f4F/ZWh2/r2kqodC5OnC99eOPGWNIJvfAD9ZLZW6KP0qz4RbNwJCclcmKUkqRRlX5D6V06dPd/jvy8qZ7BKDS2upPN+BupiSyk3/QI3aqIuUJ2VTIdWgQRP0hhXom+4ou/1+LubEYWv0VV//Iu9CVauJ8er76DlT0IvnWB3qhz5t9UvIhz6XBOHHL9pvFUBVrY7evQVt2gq8u+8K2jSt6USa5N/vTVXwQLXril6zFJ2UkGtqAJfHo7VVntwk/1GdVbPWuDVrbU3UHB0Bp8PRESfhTDj62EH091+imrZy3BclH+bCz2HnZgxPr7ytFuWUva+Zlw961e+oxk0vvn1stDXS5+1ZfW/rNITN/6AT4wv+vJ06Dhnp1ojDxw+5ZMAaex/Nes4klS3QP39ttca36Zz/PjMzrNGQPb2tUR1PnYCs0UKL7Mh/1ndS1RpQtWbZTiqr1rT6R9ZthN65GW4dmP8Djh+0+urXLzippFFTcHdH79uOatbKZTEXRO/aYt3EuLCfe7WaVpeAk8egbdcSi8dZ5j9/wbFDqPueKN3f4RNHHI6Qq2rUxnjtf5izP0R/PdO6STT4iVLrZ2m/IXoqrFjGp9Bx0bBrC6rPAKvsNVv1Wtb8j5GnoUbB11j2/WUP0pNfX2SfStb7tigtlREnrcqkC1+DoBAr8U5JRnn7FHq/QhS3Yp+nsizQZxzXy9uXX2JLpfL0hEp+xVL+qmOi4NBe1PX5X0Tliad9N+tC6jIdGU8fPwy1L30wCOXljXrsJdRdD6L/XY/5zgvny0ocOVxAf8psVWtad+xLqsQ4LgbS0x0O0pOTuuEWyMxE/7aoeOOJj7Va+PNpqcwVk5sbqkoN1HXXY9w4AGPIkxgjx1sXp+uXO31IHR9rlS4pZc2HmVhwa1V5oHdtgdoN8Op5qzXtTgGTwevtWaWvWYMo2edXc6Jfpf0iqm4jVO0GEHb00vvwHjsAAYGoykEFb1uvMXj7FNivT2/bCInxqHsfBWW4ZA5XfXi/PfFSteu7ppXWxXRGhjWq5TUtAKxBeo4eQCfG5/+Yw9YgPeRXwpeD8vSEhte4rF+lNk10ARfcWmv0rq1wTYs8F9jKvQJUq4V28ndOJ8Si/12HTi/+8l0dH4v+ZhZ69R+wtWTnEM4VR1yMNeCLg0HvwCorN4a/iuo7CL12Keb7r1rJVwnT0ZHWzaKadaypqoo6GuvFjrFuuXUDpVPuqbey58Mt9DGP/mfduKruuFFCKQXBVYveUunourSYu1oJcamKnFT++++/hfqvNJlTxzuerPtMuHUnyd8F8w0Ghly0/FWfPFakgUt01g+SM6Wv2VSbzuDmht64quCNyxidkgwR4YXqT3kxSimMPgMwnnsLEuMx3xmJuXgOOmsEx1zHPrQX3NwLnK9KZZehllQJbHan/QvnqLyAqlkb1aknevmvxTtITvZ0IlUunuTmR1X0hevaojeucrrkSG9caV0QPDwSkhIx588o9XKt0qaTEuDwf6jmbfDpMwBsmQWWP+ttG6BarfMXUrXrW+WczpScHT0AlXytsq7a9a0bC1lT3RT5ORw96PT8cMrNDZo0R+/dftFzr1f/YU1H1L47NG6K3rr2kt4rOi7aqkJpkNUiUbs+xEaVvRsbh/dBelqOpLINZCdl+dBH/rPmmnWyKkRd08Ka3zTBBdM3LZqN+cojmJv/yX+jk8cgNirfygRVq65VAu7M8b6fj/nxBMwXH8T89vNi7Revf10ImRlQpQbmoi9KJJF1KKuaQIXm/3uqDAOj/2CMx0dB+HHM8SPPj3RcQvQ66wajcdeD1t8unrZHa41e87c1OvyF3UiyKtV0IUeAtb67Gl68WimoSqFbKnVWq2meQXoAVcxVcUJcqiKXv06cOLFQ2y9cuLCoh7p00ZGYn07EeObNXAOd6Ihwq1TIFaUpgSH5jgiqD+/H/N/r4BeA8dZ0646vE7RpWq05tes7/ILJj6rkZ91R3rfd6ceUGdkj1bkoqcymrr4O4/UPMb/+FL30R/SfS6yL6+u7oNp2RVWriT64z3qtCzo/WSMQ6shTKIq/DOz89B0Fz6Wq+t+L3rQavWQe6rGXijmeoiWVAEaHnphb11mtjy3aX/x4WlsXHfUaY7TtihkdiV4yD71hJapD9yLHcLnTu/+1+lo3vx730LrQuBl69R/oPgMcjqSqkxKslqyb7rQvU94+VjmnE/0q9bGDULex9X1Zuz4a0CcOo/K5U1/g/pKTrBtIhTiH6poWVmIcccrhnXwdcQr270Tdfh/KMFCtO6EXfHJpJbCHs6fcyGqpDLWeO2GH4Zq8ZYWlRe/dZpWDXnWttSC0vnXDdOdm6Ngj7/Zaw5H9Vl9VJ6lrWlifvX07rUHhihrr8UPoZb+Apxd69odovwBUdtw5t9u52TpufuXuNevCxlUFTtugTdPaV6NrUP6B6OW/oP/+Ea5pidH9Zri24KlXnKXPnkGv/hPV5UbU9V2t1r+/fkD1HeSyYzgdS3aL+sVGjc+iWnfEqFoDc8Y7mO+/irpvOEanXsUcYda5WbcMmjSHa64DDw8IO+bagxzYDWfPoPr9X55VytPLun4rRFKpM9Ih7Ciqd/+LbqeCq6L37yrcFEQxZ61uBo7GUMgevyP2LAXtTSclYH7xEUavflZ/aCFKQJGTymnTprkyjmKl7h9u9a1bNBt1zyPnV5w5iWp08T5ITh8jKAS9P+9Io/pMOOa0cVZ9fXQk+vdF5/szFUD/85f1xfXgs4WP56pr0T9/jT6XaLUMXSbs0xu4OKkE6xy5Pfk6OjHBKoPa/A/6l2+sflq1G8Cp46gefQvekX9lq+ylpFoqI09BBQ9wokRQBQShbhxgPa9e/ZwagEMf2INe8Stq2HPO9ac5e9oaRCCwijPRO9a0JfgFYK5djlsBSSUnDlt9XQc/AYDqM8CaLuHrT635MINCih7H5WzXFmuetawBrVS3m9Ez34O926BZ6zyb6x2brdbeC+YPVXUbFThKsk5NgVNh5x9bLdSaUibsCBQ1uchKZJUT/SntsV7T0kpm925zeKNN//MnuLlZE5tjlfnqrz9Fb1mLKmJSqY/st55rdglh1v/1iSOFSsiKm967A+pfZe9rpQwD1byNNY9vZmbufmRgzcmbEGf1kXVWaD1rWpW924t83rXNhjlvOvj5Y7w8EXPqOMzp72C8PCHPOdK7tliDSvlXdrgvVauuleCfPA4X6098/BAkxKHuHobRvhs6Lga95i/0qj8xp78DgcEk3zkE2nYr0nPKFfMPX1nvwb6DrOmeWne05vjs2BMVGHzJ+y9ULCeOWKN0+1R0antVq67Vz/LTSdYAayeOoO4elve940oH90BUBKr/vVarX826rm+p/Ocv8K6IatXR8QbVaxWupTJ7gLECRq0muIo1F3BSIvg6Oc5B9lgfF478ChBQ2frtjS64/FXv3Q47N2Pu3YbxyIsyb7QoEUUufw0JCSnUf6XJ6NQL1bs/etnPmKv/ALCGKY+Jspc+XLLKwZCaYs2xmEUnxGFOeQtQGC+9g2rfDf3nkvMT2V+Ejo+1hta+6toitcaoJs1Ba/hvd6EfW6qOH4aAIJSf44sIV1C+fhg33ITbC29jTJyNGviQdYc/MxPl4GI8z+OVgqo1rJbuEqAjTlklahebxy8H1WeAlbAt/qLAsj999gzmx+9Yo6qecHKahMjTVnnhJVxoKHd3q6Vj15YCywj12mXgXsE+gJIy3DAefBZME/OLyVa5UDHT5xLRB/dirvoD8+uZ2D4YjfnJRPTJgqdsKJZ4bDb07n9RzVrb3xeqZXtrxOOVvzt+zLb11p3u2hfcsKnbEOJjLt6X6sRhq1U0q1RVubtDzTqXNGCNzp7zsq7z/adVlepWPyUH/fp0Rob1XrmuLSrA6tKg/CtbLbiX0K9NH94PdRrY+/SpSn7WfLVlqF+lToyHE4fzJLnq2jaQkmxNlXThY7JHtG3gfFKpDDeUEyXIF411xa9WrIMesUaKfmYMeHhifvRWrnkTdVICHDlw8UG5nBwBVu/YBMqwDzCkAgIx+t6DMeEzjCdegaAqJM764JLeJ2AlcXrTKlTPflZCSVZJp2milxTjVBn5CTuSb3/K/KiKvlZVV+/+Vovut58VU3AWvXYpePugWloJnwqtb/XXdlH3Bn0uCb11Har9DSgPx1VIqnooRIQ7/Vti/+6qd/HPjn2uymjnS2Dt1xWOyl8NN+ta05ny16MHrZvRtRtg/n975x0eVZX+8c+56QmQEJKQQgqEXkKV3hQUdFUsKCsKNnBXVNayq677cy2sq64oiwVdQFfBBoqKqIuCSJcmJRCkhhBKCAmhJKTnnt8fJxkyZCZTMml4Ps8zD2Tm3nvOzJlz57znfd/v+87LmHWlDK/5TeNRoZ4dO3awaNEi5s6dy6JFi0hOrpuaec4gxt4FXXshP/4Pcu8u+8Vl3cWSQK0muywqxHxjmqqJ9NDTSqzk5rvA2wfzkzmOF/sL5kJJEcYdU9wLz23dDnz9kHt3un5uPSLTD9SKl9IeonkLjCvH4PXUdIw3P3M6TES0jFbGVV1QblQ6i/APQIy5HQ78Ctt+tnucLCzAnPVPKFF5jdJJo1JWU07EFcTAK1QeYDXlb2RJCXLTakTP/oigC+FtIiIKMW4S7N2JXLGkxn2p0u75PMzvv6Dstacp+/OdmA/fjvmvJ5EfzlKGS0E+cvd2zOcfxpz7au3msNoidS/k51mVWRDePqr2ZPKWKvndsjAfUrYheg2ocj+xiPVUEwJrUWmtlP8o4trAkaq5yc4i0/ZDZEy1YYu2EJ17wp6dVYrey20/Q945jKGjrY/vPQgyjiCPpbvex9ISOHywqsc/to3HvSk1Qf66A6SsqvLZqbsSxSoPI7UidS/4+qkQUlfo3EOV47IjgFdtP3OylSevay9En0EAiBYRyrAsOI/5+nOWjdkL4d3VGJUhocpzevRw9e3u2AxtO1ZRxRZeXoheAzAe/Qfe7TpjznuzRqXBzC/nQ2ATxOibLrQR1lJFj2xcVae5ijL/vAr5jHXNqAT1uRi33gs9+qtxqCVkYb4y+PoMvpB2EpsA+XkeE6ORG1eqkjSDr7R/UFQrJYbnrKjOIScFxlqUG5Wu5FWeOKZqZTcLsf16aJhT31GZtg/i2mA88jx0SkK+PxNz+dfO90OjcQOPGJU5OTk89dRT/POf/2Tp0qXs2bOHpUuX8sILL/DXv/6VnJwcTzRTI4ThhTH5LxAehfnOixdulB7yVFrCWnKyVHjP7Ffg8EEVdlAeXiRCQhFjxqs8sh0b7V5L7voFuXkN4ppb3TZ6hbcPtO3UqIxKWZgPmccRbtSn9ATO5roCKt8h+6RSXKxFpFmmFgYORHouRgwaCVGxmIs+sCmGI6XE/O9MOJauBBqaBjulAAooEYEa5FNa+tiqtcrNq04FNnkznM9VBujF5w++Ugn+LJqHPO66wWALeTID85PZmE/co0rRnM9DdO2FGHs3xtRnMF56F+ONT/H626sYL85GjLoJue1nzKfvx/zobaW2WAfI5M3Ku36xZ2roKECqcK/Kx+/cqhZWPW2EQLVqDYZRvVjPoX3KO115oRPbRoV1nXZ98SelhEP7nKpPeTGiSw8VUpa61/qaq79XIkIXbQyJXgOUGNEvbtQ4TU9Vn9tFJTdEXBvIPK7CghsCu7epFIuLNuSEfwB06GazXqVM3QsJ7ax0BpyhQgjIHRVYc8EcMMswxv/RanNDxLZWHsMTRzFn/VPdVy8K77bZFyGUx7waT6XMyVK1OLv3tX8db2+CH3kWykzMd2e4pWos9+6CXb8grr65ykaJuPpmCA7F/HROnURWACpEE5RSs5uINu0h64RtoUMPILesU+JSA0dcaLPCCPbQpo1cswziEqv9HERkuXCZkxsl8tA+p8og0UKliLiiAOtI68OZWpWyrExFA7Ruj/APwHjwaeg1ALlgLubXH//mRe40tYdHjMrZs2dz+vRpnn/+eebMmcP06dOZM2cOzz33HGfOnGH27NmeaKbGiMAgjAf/D0yJ/HI+CFEjsREryvO6ZE4W8uP/QPJmxPj7ED36Wffh8mshJh7z07mq8PRFyKIizA/fViIylQQ13EF06AbHDjssM9BgSD+kdtvr0FPpNi2jQZqQXcseqlNZSmLdxe+p8PLCuOVuVdR51fdVXpffLoSt6xFj71QhYfGJqpSLA+T5XLWL7AFPJYAYcIWqeXjMtqfB/HmF8kaUL2StzhUCY+ID4B+gFoKuFq8uR0qJ3L+bsln/xPy/PyJXLVXFwf8+E6+nZ2Dc9SeMUTciuvVGtAi3/NiLoKYYN9+J8cJ/EEOuQq75AfNv92F+8UGtLcIsfd65Bdp2rpIrJcJaQtfeyDXLrD15235WC/S2VXNshZ8fRMdfyGe21V7a/iq5j6IirM6dMNDTp1RpGieVX63omATCsBIikyeOKRGiIVdVCRMXwc2hXRe3SovI1HLP0kUhoiIuUaUXNICyTVJKZMp26JRkU4lSdLtM1YetlAMui4vgSKpLoa+W64W1hPBIh3m4Vfq5YxNs/Rlx3e9VPeWLr9u5B+KuqSr64L//rhLebbc/rRLg6GG7xppF7CepejEe76hWiNvug327kN9/6dybqmhDSswv5ynvlY28fOEfgLj5Tkjbj9yw0qVru4s8Un4/dzH8tTKWDV5nUyNcRK77UYV5Vo4EiIlXm0AeSC2QJ4+rDQVHKUTlatjO5FXKc2fUxqoztXUDg9Rmj4ueymqdCaHhcPpU9Rsfx9OV57UiXcHHB+O+x5U6/JJPVbmbutrc0Pym8IhRuWvXLu644w46dLD+gerYsSO33347KSkpTl2npKSEt99+mylTpjBx4kQef/xxtm3bZnl9586dPPzww9xxxx0899xzZGW5HqYiWkZj/PGJcqGRcLsx9i7TLESV8Vj6BXL1UsTVN2MMv6Zq+15eGOP/oER7ln5e5XX5zadw6iTGhCk1LkJcUZxeNpK8SpleIdJTP55KVxAVSqy1LdZTfn1XPZWAEmvp1B35zSdKabMcuX0DcvFHiP7DEVfeoK4f1xaOpzuWvj9Zs3IiFyP6DVPzZn1Vb6U8d1oVq+5/uV3ZdtGsOcaEByD9IPIb1xWmZdp+zH/+GfNfT8K+FMTVt6g8q3seRjihmAhKHMm4/X6M52chegxALv0Cc/rfal7D0V6fT2Up4SI7YYHGsNFwNgd2bFLHlxQjk7cgevSz/zkmtFULXhs72PLcGRUWdrEoRasEtfhzx6gs94o6FLqw1dfAJtC6HTLlwm/DxQI9Vc7p42YI7MG9EBpmyY+zUCHW0xBCYE8chTOn7IoGVXxP5M5KIbCHD0JZmf3C7Q4QnXso4++iEGR7yMICzI//A9FxlnuOLYz+lyNumojcvKZKeLddWiUoz7Udb5DcsVltgjkRlSQGXoHoMxi5+KMLId/OsGMjHNyDuO42+3l7/YZB6/ZKPbcuPNzpqRDc3K7IkVOUb/BWt+HkLjLzuKrBPXCEtdfaPwAiopFHPGBU7ijfUKjGSw1KZ4EmzZyqVVnhoXdaUTWsJTLbOU+lLCpUkR/V/d6HhquN5mqcBRU5n5Xvr8LLCzHxIcTI8lzZ92c6PX81GmfxiFEZHByMr6+vzdd8fX1p2tQ59dGysjJatGjBs88+y/vvv8+4ceOYMWMGJ0+e5Ny5c0yfPp1x48bx3nvv0aZNG/7973+71V/Rqbvatblxglvn27ym4QUhLeDUSUTfYYgb7F9btO+K6DcMuXSRlWiPPJqGXPYVYtBIRPuuNe9UfFtVh3Ov87mt8sRRVSuyPjh8EIJDa/YjWFeUy33XZq0zq+vbkhd3gBBCiUScz0N+pzYw5LF0zLkzlKLihAcueN3iE8E0HXpeZFZ5Hmm4h4zKpsHQrQ9y40oVslO5rQ2rlFqpjdBXq2v0GqDm0/dfWBnPzmB+MhtyshC3/xHj5fcwbrzDIvLiKiIiCmPyY4h7H4Wjh2rNI1FhHAh7ZRC69YbQMMxV5YI9u3dAUUH16n8J7VQoq62FeYUBeJFXUfj5q3IkbhhWMm2fqgnrpOF+MaJzT0g7oEQ4SkpUSYLu/eyrhPYa6FYIrEzdUyX0FVBiGU2aNgixngrjWtjw5gPKKxgVi0y+EAIrK0KHa2JUFhaosGhn+rjkE8jJUpulDgS+xOibESOuUyrbTqjrWhRjbYTAyqJCVWKme1+ntAmEEIg7pkBwc5Ur7YTxJ80yzC/mq5DFakpwCMPAGDdJiWL9r+qGsqeR6akqRL0GiKDyurROlBxyFbl+hRJPsuFFFK0SLOG7NWpjxyaIibfpGa9CdKxzCrAp25QB6mxYcZgLtSqd0PqwqJ2fqsapkrZfeUgv+p0WhoG49R7EmNuRP/+kdALqWg9Ac0njEaPyxhtvZOHChZw6Za0eeOrUKT777DNuuukmO2da4+/vz6233kpERASGYdC7d28iIiJITU1l06ZNxMbGMmDAAHx9fbnllltIS0vj2DH3FDhF74EYNaizZfOa7btA196Iu6Y6DtkZe7eVaI80Tcz5bynZ67F3eaY/Xl4q7MvJvEqZn4c57REVGlwPyMMH61SkpyaIoKbqh6W2FWBPHlflS+wl7TtAxLVRqsM/LkGmp2LOegH8/DCmPGW9o17uHXYYAlshThTmmfBXAGPAFSoUslKOlqpN+SO0bq+U+RwgRlwHpaXIX9Y73a48mQGpexFXjsEYfo1rObXV9aXvUIhvi1z8sapn5mx/tqxVKryOjkveUu55sb3wEIYXYsgo+HUHMvO4ErAJCFRho/b6XKHAaiOvUh7aD8KwuYgScW3cMqzkof3QKgHhY3sz0hGicw8Vfr4nGbl1PeTlYgwbZf94N0Jg5elTSizERoioEEKJ9TQEo3L3dmXQVChN2kAkXQb7UiwbhjJ1D4S1dF9luyIE2Ym8SnnkEHL51yo0uW1nh8cLITB+PxnjpXedK4URHVceLplW9bVft6ucWAehr1btBzXBuOdRyMpQgnkOkD+vhIwjakPKQX6qSOyo7sc/fOXWYl4WFSpVXEfHlRRDxpELIeo1QMS3dVrEzVmkWaZy6bv0rBoFAGqzKetEjTa45fk82J/i9NiLyFjIOFptvqE0TVXOqHMP59XYw1qqyDQn8hjlCfvKrxYqalVWI2Skcj7b2dxIEUJgXDtOReydOKrWfDVUPdZoKvBI8aHk5GRyc3N56KGHaN26NcHBwZw9e5ZDhw4RHBxMcnKyRQlWCMEjjzzi1HXPnDlDRkYGsbGx/PDDD8THX6hh5e/vT2RkJEeOHCEmxnoCLl++nOXLlwPw0ksvERZWR7WhHn/B+SK3YWGcv20yef99naapv2KeziY3dS/N/vQ0AQk1/yGo4Hyv/uR98CbNDYlXhUKtHfJ/WEtucRHGvp1195kB3t7ehAYFknXiKEFDr6RJHbZdE3Ji4uB0NqG12N/Tp7MxY+JoUYOyPGX3TCX7l3WYLz8Opknz59/Et72190W2aEFWsxD8Mo8SfNH78fb2tnwfzuaepjg0jPAYN8Jx7SAvH03Wh7Pw2bqWkMuVYVBycC85xw7T9A9/IdCJz1e2aMGpqFiMresJvXG8U+3mrVjCeSFoMfoGvDw8hkX3TOXMM1MJ3LKGoOscFz0vObSfnLmvgoTQxPb4tLO9+JZFhZzcm0zAlWNoVuk7UXmMAMrG/J7sbz7Ff8MKCpI343/ZYIIj7XuXZXAwJ7198D95jKYXfRanj6VhxrWmRauqxv35jt3I27SaUF8fjGbBDt8nqIVZ1uED+A8bTTM3P3cZMpCsgED8Un+l9Fg6ZstoWgweUe1CL3/YKHLnvEpIQS7eTnhIC/clcxZo3qs/Pjb6mduhK/nfLKRFSIhT5XUuHiNPIEuKOblvFwFX/K7az7J4yAhOf/8FTY8exK//cLIP7ce3W68qc915wshp1wkOpFR7/5NlZZx+5a/IJs0Im/wohrO1+lwkOzIG75MZhFzUl7N7d1IUGERY/6EO00msxidsOHmHJnB+0TyaDByOv52cPFlcRPa3n+LVtiOhV13v1G9/2aRHyN62Ae8v5xHy15edVnc3C86T88yD4OVFi5kfVnteyYFfyTFNmnXpjn8Nv3PnOyeR98s6Qv19MZp4ZvyKtm/kzOlsgu/9k83+FXXtwZmvPiQ49zS+sXGW512ZQwW/buWcaRIy9Ep8nTgnv20HclcvJdTHCy870Solh/aRc+4MTfsNJcDJfuTHtyG3pJhQbwMvB2qxebmnOS8EYZ2S7G5ymoEBZAFBRfkE2eiDLCzg5PF0ggZcXv1aatQYynpcxplX/07pOy8TMOpGmt49tUabq7Vxj9M0LjxiVObm5hIVFUVUlFq0FBQU4Ovra8mxzM3NdfmapaWlvPHGGwwbNoyYmBgKCwtp1sz6hhYYGEhhYWGVc0eOHMnIkRfCULKzPSNN7Wlk3+Hw/VecnT1d1RLrmERelz6c92B/ZXn4y6n1qzD6D6/22LIflNx02bF0sg7sczsM0FXCwsI4tX0LSElBeDSFDXS8LsYMjUD+ur1Wv19lR9MQCe1q2IaXyqP47jPEhAc4Fx4NNq4nY1tTuDeFkoteCwsLs7Rflp4GYS09/577DKZozQ9kHU5DBDXB/G4RePtwvlNP8p1sy+wzmLJvPiVr3x6HRcallJg/fQftunAaL5ufR42IToBO3clb+F/yewywFKS32ZfSUsx/P6fClXx8yHn1GYynZ6jw0ouPTd4MxcUUtetqNQaVx6gC0aM/+d99DqZJcZdejsesVQL5u5MpqnSclBJzfwqiR3+b58tyyfxTO7Y4nWMkM44gC/IpjIqluAafu2zflYK1P6rcu5smcsqByrjskARCkLPsG4zrb3N4fXPHFvD24UyzUISNfpphkVBaQvbObU7l39oao5oi9yRDUSFFbTpWe20ZFg2BQZxbtwIRGol5OpuimIQa9cds2wW59HOy0g/b9SiaX3+C3JeCuPdRcoqKoah27pVlka0oO7TP6v1I08TcvBbRuSenzp51eI2Lx0eOvAG2buDsmy+S2yJSpbecyVEezJMZSgTt0D7IyoQJD1aJ1LKPQFx/G8Wf/Zesj+dijLrR4RlSSuSc6RaV6+yNa6r1+prJSt0+NyScvBp+52SYWted2rrJboi1q5jffQGBTcht08lm/2SwMr7O7NqGEXFhA9OVOWSuXQFNgzkbGmFz/lZps5la7+Sk7FAihzav+RMAeXFtnV6nST81N3L2/Vq1NNHF10/dD6HhnMrNherWzQFBnD+SRoGtz25fCpgmBS1bOV5LefkiH52G+OpDCr7/koKUbRj3/cWp6CBb1MY9TuNZoqNdT6VyBY8Ylc8884wnLmPBNE3efPNNvL29ueeeewDlmSwosM5vyM/Px9+/6sKrsSC8vTHG/xFz+lPg7YNx+/3u1aSsjtjWEBgEe3dCNUalPHFMCQ30GazC8PbuVMICdYRFCKCRhL8CKs/x5xXIwgIlLuBhZGkJZJ8ED4yDGDMecdlgVcbD3jHxbVVeYkmx/bDErBOIro7znFzu36ARyJ++VeGfA0cgN66qUpvS4TX6D0Mu+QS5eTVilIOQ+/RUpbJ35Zga9tw+xk0TMV94DPnDV6qUkB3k919Aeqoq7RLUBPO1p5Gfvadyuy4+ducW8PMHJ3KuxbDRKqzJ1xe69HJ8fEJbVUvPNC94/LIzVa6lPZXWCsGa9FTnjcoKEQl3lF8r97dLT5Uz5eWFGDTC8fHBzaFdZ/WZOGFUyoN7ID5RlWeydb24RCTl793N3NCaIndvV6Vl7CyCKxBeXoiuvVXodKce6jk38ykt1+zcA/ndQti3E3r0r/K6uWopcsknSmirln9LRKsE5PZNyKKiC56WwwdVWL0Loa9W1/T2xpj0KObzj2A+/zAUF0HlcHZvbwiLRFw91nnRloprX3kDMnUvctEHyNjWDo01ufr78jJjt6hUhnU/Vh9KfCRVhbxXExLtNJVSI5w1KitCPW2tZ+T5POS2DYghV9r/nQkOVeklbuZVytJS5K5fED362xUnq0KUEnKSGUfsGpUyZasK23dlw718DGR2pkOjUp44Vr1ITwXV1KqUaeV5zq2dEzwU3j6IsXcjOyRhvjcD8x+PIsb/oYqAkkbjDB7JqfQkUkreeecdzp49y2OPPYZ3eVhRbGwshw9fKDtQWFhIZmYmsbHu7ag0FESHroixd6s8TDdrUlZ7fcML2nd1mFcpf/5JJc3fcjcElBuhdUn6QaVUZyu/ooEiKsRzKvIMPU12psobi6j5zpIwvKo1KKFcrKeszK5YjywqVKqiHhLpsSIuEaLjVJ7NTvu1KatDREQrdcUNqxweKzeuBC9vRO9BbnbYif4ktEP0HoRc9pVSsrXVj2PpyG8+RfQehOg9ENExCXHlGOSqpVUK1kspy42C7s4pQ3dMUgugHgNsej2rkNBORUxUFg+zoSJo9R6bNIPQMNfyKg/tVwJiNbzfVaidih79nc4NFL0HKZVjB3VNZWkJHD5Y/SKwZRT4+nmsnp47yN3boU2Haj3hFrr1gdyzyJ++BR9fVZ+0JiR2AD9/m3mV8pf1yI/ehm59EHc+VOuLU9EqQd0rMy6Mq0zepH7TuvV2/7oR0Rj3PgLtuyAuvwZxxxSMR6cphei3PsNr2iyMmya6fl0hMO6aCpExmHNeQVYj5CLTU5GfzlH5h2NuV/eULWvV/biac4ht7XTeX7V9DWqicrhdUIA1Z/wd8+HxlL30OOa8NzGXL0ambEOePoXcvFrluVYnaiQExLZ2XwH24K+Qfx7R3YUNheZhSr/AjgKsLCyAA7/aVVm2i0VYp3oFWCmlqtPtzH2xulqVh/aX1xR2LV9adOuN8cxM9Rv6/uuqXuwZZ73vGo3CY0ZlTk4Oy5YtY8GCBXz44YdVHs4yZ84cjh07xhNPPGGlKNu3b1/S09PZsGEDxcXFfP7558THx1fJp2yMGKNu9LhoUGVEh24q6d2e5LppIjesgC49VGHd9s6L+3gKefig82pqDYXyHUV3FGDl4YOUPTaxeqGPinIinqql6gjLjrSdxUOF8mst9EcIoYzIg3swlyywW5vS4XX6DVfKq3bqXkK5SMTmNdCttxJcqkXEDXdASTHym4VV+1FWhvnB6+AfiBj/h0rnTFC1bD94A5lbKWzveLpSqu3mRJkFyheuT76CuHuqc8dXjH9lpcdD+5UBEh1v5yyUYI0LhpVM26/Uh531INgjIgpx230IFxb1FhVYR4I96alq4WtL+bXiWoaXWvjWUg0/R8jcs6rAuZOLXNG1lxJcOrhHff5O5IFWez1vH7VheVG9SrknGXPudGjTAeMPT9S4HadolaDarrQhJpM3Q2JHtfFRA0TP/nhNeQrjlnswho1GdOqOaBFR4++v8A/EeOBvUGZivv2izXJOsiAf8z//giZNMe59VKl3DhoBhQXIrT/bvK401cagqKHyq1Vf4xKdLisiz5yCX3coASUvL+S2n5EL3sX89zOYj9+N/OgdVYvSwe+9iG2j6mxfpAruVB92bFKeZBcMQCEERMbYV4DduwvKShFdXDMqhX+AqhHsSAH2TI4qjeOEUSla2DcqZdp+t6NAREgLjEefV2KRKdsw//4g5rrlTokMaTTgIaNy3bp1PPjgg7z33nusWLGCn3/+2eqxYcMGp66TlZXF8uXLSUtLY/LkyUyYMIEJEyawZs0amjVrxmOPPcann37K3XffzYEDB/jTn/7kie5f8oiOKpRD7rFjKO7dCTnZiIEqhEx06KbyRapRF/MksrAAMo4qT1ljosK4ckMBVq75Hs6dwfzK/oaLxVitBQ+2TULDVZkEewqwHq5ReTGi33C16D16qNralNVe47LBYBjKE2mPvbvgTA6ib+2Hd4vIGMTgq1T42kVqj3L5Yji0TxlGldR9hY8PxqTHID8Pc96blh90SxF3J41KAOHnZzd8swpRscrzVmnxKNP2QVybag0DEdcGThxDFjmocQrIkhI4csipwuGOEEJgXHGtS99HERJ6IQS2GmTqHvUfG8qvVteLbQNHDrldSFzmnqVs1j8xF8xV3r2ztj3aNs/9dQdI6XRIomjSzFJkXjh4X84iOndXY1++wJXpBzHfegHCozAeetpjisoOCYtU393yzSSZkw3pqS6pvtYHomU0xqRH1Xdo/ltWi3cpJXL+W5B9AmPyX1T5JYB2XSA8Erluue2LZh5XoboeUH61EN8WsjOR5x3rY8iU7QAYt/8Rr7+8iNeMjzBenYfx5xdUWOXlv8MYN8mx9zq2NZSWwAk3fl93bIYO3VxOSxFRsfY9lSlbVSqBHRG1amkRYXdT38IJ1a5TNalDwyEvt4q3WuaeVcarG/V/KxCGF8aomzD+PhNaxSuv5b+fddx/jQYP5VR++umn9OvXj8mTJxMY6EQYjh3Cw8NZuLDqjn4FSUlJbtem/E0THa/yE/Ymg43cI7l+hSpl0qMfoIxKCch9OxH9baveeZKStAMgzUZnVAo/fyXecNI1T6UsLVGekoBA2LkFeeBXRNtOVQ/MPA5BTWvdm1aBEALi2trdkb5Qo9Jz5USs2g8JhS49YdcvLoe+Wq7RLAQ690BuXI28YYLN8C+5cRX4B7gWGlUDxHXjkBtWIBd/hJj0mOrDiaPIrz6CHv0Rlw2pek6rBMSNE5GfvYdcuwwx5CoV+hrXBuFAQdDtfnp5QVwb5UlEeVJJP6jKk1R3XlwbpDTh6CGL0WKXo4fUbn8NFj01RfQehPxkNvJ4OiI6zvZBB/dCaLjjcPy4NrDyO8g64VYtWfm/z2H7JqS3N3K5EkojPFLdD9p2Vv9GxtjeYNm9XeXLJziXOwUgkvogD+yu1gPrCqJTD/VbsXs7tO+C+e9nITAI4+Hn6uy+Bah5HhNv8VRaNmDqaI7XBJF0GeL625CLP4aEdqo8EqgQ+M1rEDdNVOXKKo4vj+qQiz9WeXoX5U1WRL94opyIpc2EtkhQG46ONjFStqqcyJiEC+c3C4FmIXZzFW22GdtafbeOpCJi7MxTG8gTR+HkccTI65w+x0JUK9jwE7Igv0pIuUzZBu27uVUGSYS1dBjR4NImcoWSf062JRcUqFRT2AObdpExGH/+p/oeLnof85mHEDffiRg22iNh1ZpLE498M3Jzc7niiitqZFBqag9hGNBB5VVeHMYgC/ORW9crEZeKm2WrBKVEac+z6WFKD5Z7BeKcXxw1GFpGux7+unu7yhm8Ywo0DcZc/JHNw+TJ424tVGuCiE9UOWe26iuePAFNmiICnRfPcRXj5omI39/ntvoclHs8c7LgwK9VXpMlxcitPyN6DrCu01mLiJAWiBHXITetVjX7zDLMD94AXz+M2/9od8dejLweOiYhF8xVdR0P7nHJS+lWX+PbQnqqMiiPp0NxMTjyKsaqzSBnQmArcjTxwKLHXUSvgeDtjfnOy2qO2UCm7nEoqgEXFu7u1KuUZ3KQK/+H6D8c4/VPMP76isppj0lA7tqKnP8W5jMPYk69TeWmffQO5pofkGn71fd493aVX+uCR18MGoEYNtqt0HKbRMdBcChy8xplUEoT4+HnHaov1waiVQIcTSvPPd6sNr9qcB+pS8Q1t0L3vsiF7yL37kKmH1Q1Mrv2sik6JgaMUGHc61dUvVh6Knj7QKQH33t5qKqjEFhpliFTtiG69qx5Hm3LGPU+XMyrlDvKNxTc8FJbfndOWHsrZdYJZai6GPpqoUUEnMqqPqIh85jytjuhKyEsRqV1CKw8tE9F+3hog14YBsbl12A8+wYkdkB+/A7mq39zmJOu+e3iEaOyb9++pKSkeOJSmlpCdEhSu1pZ1qIy8pf1UFxkCX2FciPUCXEfT1FycK/KOaglD0xtIlrGWHIfnUVuXA2BTRC9BiCuuUUVcL8oLwlQP2IeEOlxBRHftlysp2pOoszKqB2Rnsrtt2qNMeLaml2jRz/w9bMdArtzCxScr1NlYwAx6mYICMT8cj5yxbdK8GHcpGpVBIVhYNz9J/Dywpzxd+XNr2WjkoR2KnQu44hDkR4LoWEQ1NQ5sZ5D+yG4eb3OdRESijH1Gcg9o9R5U7ZZvS5Pn1L3yjZOGL7R8Up99YjreZVy6SLltb12nFJgbNMB46ob8XrgKRUuOO1txF1/Qgy+UoV0b/gJOe9NzBcew3zwVjid7bJoiGjWHOOOKR5TqxZCKOXT3dvh7GmMh/6OqOw5qUti4iHvnAr/25OsPICNRL1SGAbGPY9ARBTmf17GfOdlaNIM455HbHqFRItwteG0/scqhoo8kgox8R7NZa0Q63GYV3loP+TnQRf3xZEsbXp7K++zi0JYMnmTEihrEeF6o5UUYK2uWX6PEE6oaNskrCWUlaq8STso5ddo57yA5UblxQqw8tB+iI71uBq9CGupog/umgpH0zCf/xPmZ+8hC/I92o6m8eMRo/Lee+/lxIkTvPPOO6xdu5atW7dWeWjqF3t5lXL9CqUuepG8vOjYTeVQ1EEcfWmFcEQjWQBY0TIKzuci8845dbgsKkRu34DoM0gtJIeNhpAWmIs/ss6nKSpSC9uWdSTSU0F8NTvSJzMQtWxUegLhH4Do0R+5ZZ1S8ayEuXE1NAtRyqh12aegJoirx6pw50XvK1VMOwXVrc4LDUfcfj8UnFch7LUcNioSKok1pe1XEQsOxlyFTbdxylsn0/apEL96nuuiU3eMp16F5mGYM5/D/OGrC/OvPJ/SmRBR4eMDUbEueyplTjZy1VIl228jJ1QIocLPBo3A+P1kvB5/CWPmJxgv/Afjj08gRt+MGHA5ovdAl9qtDcRlg8HPH+P+J2tcpqRG/agQ61n2FZQUN/h8yosRgUEYU/6mypacOqnqBVbkUdo6fuAIpSi6/8KGvpRS5ZJ6Mp+yor34tvbz7SvaT9kKwlC5tp5oM7a1xfvsDPJ8rtqwS+rrXoPhUeDlXSWvUu7epgw5N/UNRFi5gVvdeirzGCLSyQ2ZkFDlkaxkVEopIW1fjUs12UMIgTFoJMY/3kEMHIFcthjz6SmYG1ZqIR+NBY9sZWVkZHDw4EFOnjzJTz/9ZPOYBQsWeKIpjbtEtlIegr07YajKkZJZJ2DfLsQNd1RZ5FnyKvfsdKoGnLvIoiLKjqYhrq5lD0wtIVrGqFyT40egUt6LPeSOTcozXC4SI3x8EdeOQ344C3b9omT/4YJH2ZmkfU/SIqLc62S9eJClJcrIHdDwjUoA0X84ctMq9ZmW19CT+echebPKCfGqofKoO3264lrkj0ugqFB5i5w0rIy+QzGPHIKmzWqumOqIiGiV65u2X3kqWztnAIrYNsgV3yBLS+16SGR+nqoNWgd52s4gwiMxnvwX5n9nIj97T4XZTZii6lN6+zgtdCJi2yB3/YKU0ukxlf/7XIns/O5W5/trGEocLCKqVkvhuIpIugxj5if1MqesiFEKxXLtclWyxon7cUNDRLXCePQfkHcO4UAQRvQcgAwIRK5bfiFXMScLzud6VqSngvhE2LIWmXfOrqKu3LVV3TM8lU/bqjWsXaZKWTkRFip3/gKm6XYurfDygogoK0+lLC1Vnu8+g93fDKtcq9LGuMqSiprUw53vZ/NQOFXJU1lRU9gDImjVtt00GDHxQeSQqzA/egf57mvI1Usxxv8Bwuo+7F3TsPCIUTlr1iwCAgJ48skniYyMtNSW1DQchBDKUCzPqxRClNemFLY9JtFx5eI+O22K+3iMo4fUj0B8I8ynBCVM4uePXPmdlZiCPeSm1erHsdIPixg0Arl0EeZXH2J07a1+uE5WlBOp4/BXISDehnx89klVB66WRHo8Tuce0DQYuWEVosKo3LpelYmo49DXCoSvn1owlpW6nHNm3HxnLfXKGmEYEJeI3LtL7Zx3d3LHP65NuVLjUUt5hyqUeznqU6TnYoR/AMYfn0B+uxC5+CO1mCwtgfhE51Vz49rAzyucX/ieykKu+QExeGQVkZXGSr0blJSr24a0gDOnIGmg8+PXwHB2fgg/P0SfwciNq5Dj/4DwD7SEoHuynIilvfhysZ70gzZLdci8c5C2H3Ht7z3XZrlYD0cOOTW3SN6sIlFq4q2LirWu1XxoHxTkux/6CmqzFuBU1bIiUkrkp7NVeoMzIfcVhIZbhb86na7gIUTr9hhPTUeuXYb8ch7mtEc4d/VNyJE31LiMj6bx4pHw14yMDMaPH0/Pnj2JiooiPDy8ykPTAOjQDc6eVhLwpqkKzXdMupD0XYnKeZW1GdpgUURrbDUqyxFNmikP1OY1VjXSbCHzzill075DrfImhLcP4rrfqwXBNlV7zCL+U9fhr5SL9RxLV7unFZR7TuusZmYNEV5easG1Y5PyUFJu0EdE1WzBUdN+RbWyhOk1VERCO8g4ojZ7nNz1dkawxiLSE99wjEooD+u6dpyqGZh5DI4ddkqkx3J+hVfIyRBY+d1CEKh8ao1naaW8lW6HPzYyxKCRUFxkqbsq01NVWGSr1p5vzCLWYzsEVu7errzvXWtgfF1MRUizM6H1paXIXVsR3frUSJ1URLVSdb3Lf/9kylYwDOjkfsqE8PFVirgX1aqUUiIXvY9c/T3i6rGulYsKvahWpTM1hT2MMAyMoaNUSOzQURT87wvMp/6AuXSRzbqrmksfjxiVbdu2JTu7bmoaatznQl5lMhzYDdmZ1ZZuEB27qZuWo6K91SDP51E2/W+UvfUC5k/fIk8cszZSDx9QcuP1oBboKcSoG8E/AHPJJ9UeJ7euh7IyRL+hVa/RfzhEtsJc/LEqXp15HIKbq93nOkaJ9ZTCsTTLc7K8RiURjcRTCcojWVqiim+fOaVCmPoOq/d8voaOqFyiwlkDvGW0Ui6sRlRDHtoPLWOU6EcDRPToh/HXVyDpMqfyXS3EOq8AK7NOqHDFIaNsbuZpaoaISwQvr9oXtGootOkAkTHIdT8C5SI9kTG1Uh/UItaTZkesZ9dWlTrhQokbh20GBqnoGGcUYPenKBE2Z6Mr7BEVq6JyyutPy5Rt0Lp9zVXPwyKQ2dY5lfJ/nyO//xIx/BrEjRNcu15oOJzOtgg1ybT9DmsK1xYiqCnG7ffT4rUPoG0n5KIPMP/vfsx1P6r1jOY3g0e+fRMnTmTWrFn4+vrStWtXgoKCqhzjV1dFkDX2CY+C5mHIvcmqwLlfAKLnALuHX8irTEa4EfYoTRPz3ddUaYeQUOT2jSqUJTRcFezu3AOZug/fxA6UNeKFvghqihg5BvnNp8j0g2phYwO5cbXKbbURmiQML8T145Gz/4XcvFZ5KuvLK1hpR9qS9J+VAX4B0DSkfvrkDm06qEXQxlVwPk/totdT6GujoiIUPTQcEdzcqVOE4QWtEuwaVjJlG+zb2eAX+yI6Dq+HnnbtnIBAlYflTEmVbxcqIZNrxrrbRU01iFE3IXr2RzT9bYTfqZqVI5FffKB+M9JTEe1qL5dUxLe9EHFQCWmayJStiM49PJ/33SrBYRQQlNcm9fapcbkcEdVKrXsyjirv4uEDiOtuq9E1AUSLlsiDF8pcmT99h/xyPqL/cMRt97m+2RkaDqWlkHsW2aQZpB9wWFO4tvGOT8Rr6t+Re3difv4+8v2ZyGVfYdx8lyqP04jXeRrn8IhR+eSTTwLw1ltv2T1GC/XUP0IIRMduyOQtSlCjzyCEn7/9E6JiVamPfbtgyFUutye/+wx2bkGM/wNi+DWQlYHcvV09flmvEvABn4GX09j3ssSV1yNXLMH8+hO8Hvy/Kq/LnCzYn4K4/jb7dQl7D0S2SkB+/bHK4ajpjqu7hLVUqp+V8irlyQxVlL0R/SgIIRD9hiO/XYDMzlQKw26q9/2mCGsJTYNdVvIUcW2QG1dbCdbIzOOYn70HOzap789VN9ZGj+sdEdvGYbmF0oyjyJ9XIK64FuFMfpjGZURgUL2Gt9cHYsBw5JfzkT98Baeza0ekp4KEtrbFeo6mwbkz4MnQ13JEbBu1IV1YYPcYKaUSweuYVP2axhlatgIhVFklaarNSHfrU1YmLAK2rEGWlal0mY/fge59EXdOdStcV4SGq036nCz12TtTU7iOEB26qXzLLetUvuXrz0HHJIwx4xFtqxeg0jRuPGJU3n///dW+Xlpa6olmNJ6gQxL8rBR6qwt9hUriPnt2uqRsCMozIb/+GNFvGGL4NerciGglPDP8GlVcPW0/8tBeAq4aQ2E1NYEbAyKwCeKqG5FffYg8tK9KLprcvFb9OPWtGvpquYZhYIy5HfOtF9QTdSzSY+mHRaynUu5MVkad5mp4CtFvGPKbTyHrBOLWe+u7O40CIQTGI88roS5XiG0DK/+nShEFNVXiNz8uAW8fxM13IkZcr0pwXIrEtYFf1iHz8+yGyZ1f+B54eyNG31zHndNcyoiQFtClJ3LND+rvWjQqRVyiMmQOH4RKhpZMUWXjXK2b6lSbsa1Vysyxw9Aq1vZBJ46qe/xVN9S8PT8/Jaxz4qgqARLYxDMhvWEtwTSRK/+HXDgXOnTD+MPj7oertihPGcrJVqVUaGAiaEIgLhuM7NkPuep75LcLMF9+UhmX1/0e0b5rfXdRUwt4xKgcPnx4leeklKSkpLB27Vo2bdrEyJEjPdGUpoaIjiqklfBIcGbHqEM32LIWTmaovCknkKdOYs6dDtFxiAkP2DRGhZcXJHZEJHbEKzQMLoGcXDHiWuTyxZiLP8Lr4eesXpObVqm8DEeGYve+aqc9bT+iHkR6KhDxbZHLFiNLStQGQHYmonu/euuPu4jIGPV5Hj6IuGxIfXen0SBiXRf6EHFtVNjYkk9UaYG8c6oO440TnA6jbaxceO8LoNcASGirxDnKkRlHKVz9A2LkmEv+s9DUPcagEZi7flF/1KanslId48reO7lrK8S2RoSEer7NipzlI6nQb7DNQ+SOTQCeq00aFYs8ng7ncxGdunskpFe0iFD3iE9nQ+v2GA/+zeoe4TLlOdkyJ0sJqzlRU7g+EN4+am00+Erk6qXI77/AfOUpZVRfOw46dGtUEVCa6vF4Ru/+/ftZt24dP//8M2fOnKFJkyYMHFj/BZo1CtEiAnoNQHTt7VTIRYURKvcmI5wwKmVJMebbL0FZGcb9f615KEojQvgHIkbdhFz0AfLAbkuYh8w4onJdxk1yfA0hMMbejTn7X/WrUhqfiCwrheOHMb1QuRuNRPn1YoyxdyOPpdXOgkdzgZh4MAxVqqhtJ4w/PdN4SwW5SpuOENsauXwxcvli8PaGhHaItp0RbTthrl+B8PVDjL6pvnuquRTp3lcZFf4BnqsRaQMR2ETlD1eKYpEF+XDwV494CW0SGgaBQXAkzebLsqwMufVnZdR6SPxKRLVC7tyi/vBE6CtcKMcVE6/ujTUV4QsIUjoHOVku1RSuL4SfH+LKMchho5Grv0cu/QLz1f+Ddp0xrv09dOreoPuvcQ6PGJXp6emsW7eO9evXc/LkSby9vSktLeXOO+9k1KhReDWAGlaaC3jd/1fnD24Zo5LV9+yEoaMdHi4/nQOHD2A88JRTRuilhrj8d8gfvsJc/DFej/0DKC9lIQxEH9u7rFWu0aErXq/Oq81uOqbcGJCHD1Dqo24T7og1NQREh66IDjrUprYRPr6ICQ8oAbA+g35TCwQRGITX32cic8/CwV+RB8ofyxYjly4CIOCmCRQ1Da7nnmouRYSPr9q0LKv9VCMR3xaZuvfCE3uSlap5l961054QENvGphCWPJqG+f7rSkxnnAfTGyJbXWi/JvUpKyHCIxH3PILo0tMjhr8QAkLD1Kb1sXREj8YRSSR8/RAjry83Ln9ALv0cc8bflXLtlWMQfQY32hqzmhoYlZmZmaxbt45169Zx9OhRvLy8SEpK4tZbb6Vz585MmTKFhIQEbVA2cix5lXuTHeZVmut+LK+3dLOl4PxvDeHnj7hmLHLBu8i9O1Wtz42roGO3xuUps4j1HKSsSXmOWD3leGoaD8bgK+u7C/WKaBoMPfpb7n+yuAjSDiCPHybod2MpOp9fzz3UXKoYDjQSPEZ8ImxeYxHrkbu2gn8AJLom7OUKIra1Cp0sU5J+srQE+d1nyO8+h8AgjD88Dr0Hea69qFiVJhQVi/BguTPDlVJFztAiHH5NBmkiEhqGSI+zCB9fFRY79Crkzz8hl3+NfHcGctEHSsxs6OgGW35KYx+3jcqpU6cC0K5dO+677z769etHk/LFZ36+/uG8pOjQFTatghPHIKqVzUNkeiryo7eV+tqYO+q4gw0LMXQ08vsvMRd/hDH2biUg0MgKnVcW6ykLDVNS7c21YqVG4wrC1w/ad0G074IREAjaqNQ0ckR8W4tYj+zcQ4n0dEyqXe9SbGsoLqYs4wjyRIbyTh47rIQAx032fAmZqFgQAlELaraeRISGqzQVgNaNM9VA+Pgiho5CDr4SUrZhLvsK+cU85DcLEINGIkZe51iLQtNgcNuoDAsLIzs7myNHjpCSkkLz5s3p3r279kxegljlVdowKuWuXzDnvQVBTTEm/1mJ8PyGEb5+iGtuQX78H8yP/6MUH3vZrwfaUBFxicgfv6Y0vCWEtXRL9lyj0Wg0lxAVdYzT9qscxlMna13RWLRqjQTO/Wc6Zsp2CA7BePBpRHcPCfNc3F5QE4yHn7tQs7ehUpFD2iIC0axxC4AJw4BuvfHq1ht59BBy2dcq9/Knb6FzD4yho1QJFh0a26Bx26h866232LdvH2vXrmXDhg2sW7eOoKAg+vbtS8+enpeV1tQj4VHQPEzlVQ6/xvK0zDqBuWCuqkHXMkYZlM1C6q+fDQgx+CqVS3X4APTsb7fMQIMmvi2UllKcvBk6dq/v3mg0Go2mnhGBQUqsJ/0g+Pmp5zwlZmOP6Fjw8qZk11bEkKsQY++q9d9U0blHrV7fI1QYlZ4oedKAEK1aI+7+E/LGCcg1PyDXLsN852VVP3ngFYjBV+ma0w2UGgn1tG/fnvbt23PXXXexa9cu1q5dy8aNG/npJ1UH8ccff8TPz4/ExESPdFZTP1jyKlO2qnpRxcXIpYuU0eTlpWrQjbxe7yBVQvj4IH43Djn/LYx+w+u7O24h4strkhUXN1qRHo1Go9F4lgqxHllUCJExtf77ILx9MCb/meCYVpyLjKvVthoTIjQcCVXqYl8qiJBQxHW/R/7uFkjZjrn6eyV+9v2XqhTJ4CsRPfv/pqoMNHQ8ov5qGAZJSUkkJSVRWlrK1q1bWb9+PZs2bWLt2rVER0czY8YMTzSlqS86doMNPyG//wK58n8q5KXvUMTYuxE6184mYvCVSgG3sRb5DY9UUu755xttORGNRqPReJj4trB5DZzNQQy7uk6aFL0H4ht2adS09hjxiSoSqtelXbZPGF4XQmPP5CDXLUeuXYZ89zWkrx+ie19Ev2HQpad2btQzHq9T6e3tTd++fenbty+FhYVs3ryZdevWeboZTR0j2ndVeZWLPlB1lv78T12mwQHCMKBDt/ruhtsIIVT+zJ5kRAMsqqzRaDSauscSxVJa2uDFbC5lhH8AXlOequ9u1CkiJBTxu1uRV4+F/SnITWuQW9chN6+BwCBEr4GIvkOhQ1dljGrqFI8blZXx9/dnyJAhDBkypDab0dQBIjwSMeomaB6GGH71b16M57eCiE9E7knWnkqNRqPRKMrFevDxbbyROJpGTcWmvejQDXnbffDrduSm1cjNa5Frl0GzEETSZYiky6BzDx0iW0fUqlGpubQwxt5V313Q1DFi0Ej8vb0oCm9Z313RaDQaTQNABAZBdJxSHfX1q+/uaH7jCG9v6NYH0a2Pqg28cwvyl/XqsXaZKonWsRsiqS8iqQ+iRUR9d/mSRRuVGo3GLiIqlmaTHiVb57FoNBqNphzjT88oT6VG04AQvn7QexCi9yBkaSkc2I1M3ozcsRn58TvIj4GYeETHJET7ripMNqhpfXf7kkEblRqNRqPRaDQapxEV5Sw0mgaK8PaGjkmIjklw673IE8eQyZuQu7Yi13yP/HEJCAExCYiO3ZROSLuuiKBGWAKugaCNSo1Go9FoNBqNRnPJIiJjEJE3wlU3IktL4NB+5N6d6rFqKXL51+rAljGIhLaQ0E6Va4ltrcO8naRRGZV5eXm8/fbbJCcn07RpU8aPH8/gwYPru1sajUaj0Wg0Go2mESC8faBdZ0S7znDtOGRJCRzai9y/G5l2ALl3F2xcpVSOvbwgOg4R3xZi4hBRcSqnOCRUqeRrLDQqo3Lu3Ll4e3szZ84c0tLSePHFF4mPjyc2Nra+u6bRaDQajUaj0WgaGcLHB9p3VXmW5cgzpyBtP/LQAWTafuT2jbB2mTI0AQKCIDoWER0HkTGIsJZQ/hCBv80Q2kZjVBYWFrJx40ZeffVV/P396dixI3369GH16tXcfvvt9d09jUaj0Wg0Go1GcwkgQlpAjxaIHv0tz8ncs3A8HXk8HY4fQR5PR27bAHnnLhibAIFBFwzM0AgIaQ7NmiOCm0PFI6ipladTlpVBSTGUlJT/WwxFhVBcCEVFUFSILC6E4iIoLoayUigtVf+WlV34v1kGUoIpAan+LyVIE556uVY/s0ZjVGZkZGAYBtHR0Zbn4uPj2b17dz32SqPRaDQajUaj0VzqiKbBlvqYlZHncyE7E7IzkZX/PZ6O3PWLMgLB2vD08gb/ACgtNyJN0/2OeXmVP3zAMNQDyv8VSpCoDkJ1G41RWVhYSGBgoNVzgYGBFBYWVjl2+fLlLF++HICXXnqJsLCwOumjxj28vb31GDVg9Pg0fPQYNXz0GDVs9Pg0fPQYNWx+0+MTFgbxrW2+JKVEFuRjnj6lHmfUv2WnTyEL8hG+vggfX/D1Q/j6IXx9wUc9J/wDEP7+CL/yf3391XO+fuDtrRRuvbwRFUZkPdNojEp/f38KCgqsnisoKMDf37/KsSNHjmTkyJGWv3WNvYZNWFiYHqMGjB6fho8eo4aPHqOGjR6fho8eo4aNHh8H+AVCZCBE1lAHRgJFxerhIpWjPWuDhmHaOkFUVBRlZWVkZGRYnjt8+LAW6dFoNBqNRqPRaDSaeqTRGJX+/v7069ePBQsWUFhYyJ49e9i8eTNDhw6t765pNBqNRqPRaDQazW+WRmNUAkyaNIni4mImT57MzJkzmTx5svZUajQajUaj0Wg0Gk09IqSU0vFhGo1Go9FoNBqNRqPRVKVReSrd4cknn6zvLmgcoMeoYaPHp+Gjx6jho8eoYaPHp+Gjx6hho8en4VPbY3TJG5UajUaj0Wg0Go1Go6k9tFGp0Wg0Go1Go9FoNBq3ueSNysr1KjUNEz1GDRs9Pg0fPUYNHz1GDRs9Pg0fPUYNGz0+DZ/aHiMt1KPRaDQajUaj0Wg0Gre55D2VGo1Go9FoNBqNRqOpPbRRqdFoNBqNRqPRaDQat/Gu7w44Q15eHm+//TbJyck0bdqU8ePHM3jwYJvHfvPNNyxevJji4mL69evH5MmT8fHxceo6O3fu5N133yU7O5t27doxZcoUwsPD6+Q9NmbqYnxOnjzJgw8+iJ+fn+VaY8aMYezYsbX/Bi8BPDVGS5cuZeXKlaSnpzNo0CAeeOABq3P1HHKfuhgjPY/cxxPjU1JSwty5c9m5cyd5eXlERkZy22230bNnT8u5eg65T12MkZ5D7uOpe9zrr7/Orl27KCoqIiQkhOuvv54RI0ZYztVzyH3qYoz0HKoZnhqjCjIyMvjzn/9Mv379mDp1quV5t+aRbATMmDFDvvbaa7KgoED++uuvcuLEiTI9Pb3Kcdu2bZOTJk2S6enpMjc3Vz7zzDPyww8/dOo6Z8+elRMnTpTr16+XRUVFct68efKpp56qs/fYmKmL8cnMzJS33HKLLC0trbP3dSnhqTHasGGD3Lhxo5w9e7Z88803rc7Vc6hm1MUY6XnkPp4Yn4KCArlgwQKZmZkpy8rK5JYtW+SECRNkZmamlFLPoZpSF2Ok55D7eOoel56eLouLi6WUUh49elROmjRJHjx4UEqp51BNqYsx0nOoZnhqjCqYNm2afPrpp+XMmTMtz7k7jxp8+GthYSEbN25k3Lhx+Pv707FjR/r06cPq1aurHLtq1Souv/xyYmNjadKkCTfffDMrV6506jqbNm0iNjaWAQMG4Ovryy233EJaWhrHjh2ry7fb6Kir8dG4j6fGCKBfv3707duXpk2bVjlXzyH3qasx0riHp8bH39+fW2+9lYiICAzDoHfv3kRERJCamgroOVQT6mqMNO7hyXtcbGysxdsihEAIwYkTJwA9h2pCXY2Rxn08OUYA69atIzAwkK5du1o97+48avBGZUZGBoZhEB0dbXkuPj6eI0eOVDn26NGjJCQkWB139uxZcnNzHV7nyJEjxMfHW17z9/cnMjLSZjuaC9TV+FQwZcoU/vjHPzJr1izOnTvn+Td0CeKpMXKEnkPuU1djVIGeR65RW+Nz5swZMjIyiI2NBfQcqgl1NUYV6DnkGp4en7lz53LHHXfw8MMP07x5c3r16gXoOVQT6mqMKtBzyHU8OUb5+fksXLiQiRMnVjnX3XnU4I3KwsJCAgMDrZ4LDAyksLDQ4bEV/y8oKHB4HVfa0VygrsanWbNmvPjii8yaNYuXXnqJgoIC3njjDU+/nUsST42RJ9vRWFNXY6TnkXvUxviUlpbyxhtvMGzYMGJiYlxuR2NNXY2RnkPu4enxmTRpEvPmzeP555+nb9++eHt7u9yOxpq6GiM9h9zHk2O0YMECLr/8csLCwmrUTmUavFHp7+9f5UZfUFCAv7+/zWPz8/OtjgMICAhweB1br+fn59tsR3OBuhyfxMREvLy8CAkJ4d5772XHjh1W19PYxlNj5E47eg45R12OkZ5HruPp8TFNkzfffBNvb2/uueeeatvRc8g56nKM9Bxyndq4xxmGQceOHTl16hQ//PCD3Xb0HHKOuhwjPYfcw1NjlJaWxs6dO7n22mudbseZedTgjcqoqCjKysrIyMiwPHf48OEqoSgArVq14vDhw1bHBQcH07RpU4fXiY2NtTq3sLCQzMxMm+1oLlBX46NxH0+NkSP0HHKfuhojjXt4cnyklLzzzjucPXuWxx57zLJ7D3oO1YS6GiONe9TmPc40TTIzMwE9h2pCXY2Rxn08NUYpKSlkZWVx//33M3nyZJYsWcLGjRt54oknAPfnUYM3Kv39/enXrx8LFiygsLCQPXv2sHnzZoYOHVrl2GHDhrFixQqOHj1KXl4eixYtYvjw4U5dp2/fvqSnp7NhwwaKi4v5/PPPiY+Pt4S8aGxTV+Ozf/9+jh8/jmma5Obm8t///pcuXbpUcc9rquKpMQIoKyujuLgY0zQxTZPi4mLKysoAPYdqQl2NkZ5H7uHJ8ZkzZw7Hjh3jiSeewNfX1+pcPYfcp67GSM8h9/DU+Jw9e5Z169ZRWFiIaZps376ddevWWYRG9Bxyn7oaIz2H3MdTYzRy5EjeeOMNXnnlFV555RWuvPJKevXqxd/+9jfA/XkkpJTS4+/aw+Tl5TFr1ix27txJkyZNuP322xk8eDDZ2dk88sgjzJgxwxIT7KgOoq3rVJCcnMx7771HVlaWpSZLREREvbznxkRdjM/atWv55JNPOHfuHAEBASQlJXHHHXcQEhJSX2+7UeGpMVq4cCGff/651bXHjh3LrbfeCug5VBPqYoz0PHIfT4xPVlYWDzzwAD4+PhjGhT3d++67jyFDhgB6DtWEuhgjPYfcxxPjc+7cOV599VUOHz6MlJKwsDCuvvpqRo4caWlHzyH3qYsx0nOoZnhqrVCZhQsXcuLECas6le7Mo0ZhVGo0Go1Go9FoNBqNpmHS4MNfNRqNRqPRaDQajUbTcNFGpUaj0Wg0Go1Go9Fo3EYblRqNRqPRaDQajUajcRttVGo0Go1Go9FoNBqNxm20UanRaDQajUaj0Wg0GrfRRqVGo9FoNBqNRqPRaNzGu747oNFoNBqNrfqaAN26dePpp5+uhx41TlJSUnjuuecACAwM5P333wfg5MmTPPjggzzxxBP07t3b5jnTp08nLi7OqXYqatMCLp2n0Wg0mksTbVRqNBqNpkEQGBjIU089VeU5jetMnTqVqKioWrv+P/7xDw4dOsS7775ba21oNBqNpvGgjUqNRqPRNAi8vLxo3769U8cWFxfj6+tbyz1qvMTFxdWq97B9+/aUlJTU2vU1Go1G07jQRqVGo9FoGjQVoZsPPfQQO3bsYMuWLSQmJvL000+Tl5fHxx9/zObNm8nPz6d169bceeedtGvXznL++fPnmTt3Llu2bCEgIIDRo0eTl5fHxo0beeuttwAVfvv9999X8bzdeuut3HPPPYwePdry3I8//si3337LiRMnCAkJYdSoUYwZM8by+ltvvcWRI0cYP3488+bNIzMzk4SEBO677z5iY2Mtx5mmyeLFi1m5ciVZWVk0a9aMbt268cADD7B06VI+/vhjZs+ejb+/v+WcXbt28fzzz/PKK68QHx/v8c+64rOwFYocHh5u+bw0Go1Go6mMNio1Go1G02AoKyuz+tswLujJzZ8/n759+/Loo49iGAYlJSVMmzaN8+fPc8cddxAcHMwPP/zAtGnTeP311wkJCQFg1qxZ7N69mzvvvJOQkBCWLFlCZmYmXl5eLvfv66+/5pNPPuH666+nS5cupKamsmDBAvz8/KwMz+zsbObPn89NN92Er68v8+fPZ8aMGbz66qsIIQCYPXs2q1atYsyYMXTu3Jm8vDw2bNgAwJAhQ5g/fz4bNmxg+PDhluuuXLmS1q1bu21QSimrfMamaVr9PWLECHr06GH5u6ioiH//+9+1Gk6r0Wg0msaNNio1Go1G0yDIzc3ltttus3ru//7v/4iMjASgXbt2TJo0yfLaihUrSE9P57XXXrMYPN26dePhhx9myZIlTJgwgSNHjrB582YefvhhBg4cCEDXrl25//77Xc7XzM/P57PPPuOmm27illtuASApKYmioiIWLVrEVVddZTGC8/LymDZtmqVfpmkyffp0jh8/TkxMDMeOHWPFihXcddddXHPNNZY2KvoYFBREv379+OmnnyxGZWFhIRs3buT22293qd+V+de//uXwmBYtWtCiRQvL3zNmzMDb25sHHnjA7XY1Go1Gc2mjjUqNRqPRNAgCAwOrKL1GR0eTm5sLQK9evaxeS05Opk2bNkRERFh53zp16kRqaioABw8eBKBPnz6W1/39/UlKSuLAgQMu9W/fvn0UFRUxYMAAq/a6du3KokWLOHXqFOHh4YAKFa3s2WvVqhUAp06dIiYmhpSUFAArL+TFXHHFFUybNo3MzExatmzJ+vXrMU2TwYMHu9Tvytx555107NjR6rnU1FTmzJlj8/ivvvqKTZs28eyzz9K8eXO329VoNBrNpY02KjUajUbTIPDy8iIxMbHK8xVGZXBwcJXn9+/fX8W7CdCyZUsAzpw5Q0BAQBVRn4uv5QwV/Xj00Udtvl7ZqAwKCrJ6zdtb/dxWiNvk5ubi5+dXrbe0S5cuREREsHLlSsaNG8fKlSvp06cPTZo0cbnvFURGRlb5jAsLC20eu2PHDj755BPuvvtuOnTo4HabGo1Go7n00UalRqPRaBoFFbmIFTRp0oTExESrkNgKfHx8AAgJCaGgoKCKWuzZs2etjvf19aW0tNTquby8vCrtATz55JM2jdLo6Gin30vTpk0pKioiPz/frmEphODyyy/nxx9/ZOjQoezZs6dKyZXaIjMzk5kzZzJkyBCrXFGNRqPRaGxhOD5Eo9FoNJqGR7du3Thx4gRhYWEkJiZaPSrKaVR45bZs2WI5r7CwkOTkZKtrhYaGUlBQQE5OjuW5i49p3749vr6+5OTkVGkvMTGRgIAAp/vetWtXAFavXl3tccOHD+fUqVO8/fbbhIaGkpSU5HQb7lJYWMj06dMJDw/nvvvuq/X2NBqNRtP40Z5KjUaj0TRKhg4dyrJly3j22We57rrraNmyJbm5uRw4cICQkBCuvfZaYmNj6dOnD3PmzCE/P5/mzZvz9ddf4+fnZ3WtHj164Ovry9tvv821117LyZMnWbZsmdUxQUFB3HLLLbz//vtkZ2fTqVMnpJQcP36clJQU/vKXvzjd9+joaEaOHMm8efM4e/YsnTp1Ij8/nw0bNvDwww9bjgsNDaVHjx5s3bqVG264wUoNt7b44IMPOHr0KA8++CBpaWmW5318fGjdunWtt6/RaDSaxoc2KjUajUbTKPH19eWZZ55hwYIFfPbZZ5w5c4bg4GDatm1rJcwzZcoU5s6dywcffIC/vz+jRo0iMTGRjRs3Wo5p1qwZjz32GPPnz+eVV16hTZs2TJ06tUr+5JgxY2jevDnffvstS5YswdfXl6ioKItqqytMmjSJsLAwVqxYwVdffUVwcLBNT+Rll13G1q1bufzyy11uwx0yMjIoKytj5syZVs/rOpUajUajsYeQUsr67oRGo9FoNHXJvHnz2LhxY6Mwkl577TXOnDnD888/7/DYlJQUnnvuOf71r38RFxdXa57NsrIydu/ezbRp05g+fbol3Fij0Wg0v020p1Kj0Wg0mgZIeno6Bw8eZNOmTVYhsc7w+OOPExgYyPvvv18rfbOluKvRaDSa3y7aqNRoNBqNpgHy8ssvc+7cOa666ir69+/v1Dlt2rThxRdfBFSJltqiog1QZUo0Go1G89tGh79qNBqNRqPRaDQajcZtdEkRjUaj0Wg0Go1Go9G4jTYqNRqNRqPRaDQajUbjNtqo1Gg0Go1Go9FoNBqN22ijUqPRaDQajUaj0Wg0bqONSo1Go9FoNBqNRqPRuI02KjUajUaj0Wg0Go1G4zb/D9lReUPT2JzwAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 1080x648 with 2 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Cell 8: FFT of signal\n",
+    "# number of sample points need to be the same as in cell 3\n",
+    "print('samp =',samp,' Need to be the same as in cell 3.')\n",
+    "# number of sample points need to be the same as in cell 3\n",
+    "print('T =',T,' Need to be the same as in cell 3.')\n",
+    "# percentage of taper applied to signal (initial: 0.1)\n",
+    "taper_percentage = 0.1\n",
+    "taper = cosine_taper(samp,taper_percentage)\n",
+    "\n",
+    "sig_ = sig * taper\n",
+    "Fsig = np.fft.rfft(sig_, n=samp)\n",
+    "\n",
+    "# prepare plotting\n",
+    "xf = np.linspace(0.0, 1.0/(2.0*T), (samp//2)+1)\n",
+    "rcParams[\"figure.subplot.hspace\"] = (0.8)\n",
+    "rcParams[\"figure.figsize\"] = (15, 9)\n",
+    "rcParams[\"axes.labelsize\"] = (15)\n",
+    "rcParams[\"axes.titlesize\"] = (20)\n",
+    "rcParams[\"font.size\"] = (12)\n",
+    " \n",
+    "#plotting\n",
+    "plt.subplot(311)\n",
+    "plt.title('Time Domain')\n",
+    "plt.plot(t, sig, linewidth=1)\n",
+    "plt.xlabel('Time [s]')\n",
+    "plt.ylabel('Amplitude')\n",
+    "\n",
+    "plt.subplot(312)\n",
+    "plt.title('Frequency Domain')\n",
+    "plt.plot(xf, 2.0/npts * np.abs(Fsig))\n",
+    "plt.xlim(0, 0.04)                                \n",
+    "plt.xlabel('Frequency [Hz]')\n",
+    "plt.ylabel('Amplitude')"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "tags": [
+     "solution"
+    ]
+   },
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/seismic/obsdata1.npy b/Notebooks/seismic/obsdata1.npy
similarity index 100%
rename from seismic/obsdata1.npy
rename to Notebooks/seismic/obsdata1.npy
diff --git a/seismic/syndata1.npy b/Notebooks/seismic/syndata1.npy
similarity index 100%
rename from seismic/syndata1.npy
rename to Notebooks/seismic/syndata1.npy
diff --git a/seismic/zeit.npy b/Notebooks/seismic/zeit.npy
similarity index 100%
rename from seismic/zeit.npy
rename to Notebooks/seismic/zeit.npy
diff --git a/dcip/.ipynb_checkpoints/DCIP_2D_Overburden_Pseudosections-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DCIP_2D_Overburden_Pseudosections-checkpoint.ipynb
deleted file mode 100644
index de72a7087d2c510ef919e3b1d6727e68b93c3c7e..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DCIP_2D_Overburden_Pseudosections-checkpoint.ipynb
+++ /dev/null
@@ -1,159 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "from geoscilabs.dcip.DCIP_overburden_PseudoSection import (\n",
-    "    DCIP2DfwdWidget, DC2Dsimulation, PseudoSectionWidget, mesh\n",
-    ")\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly Conductive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR)  or Induced Polarization (IP) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity and chargeability contrasts current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a bloc target embedded in a halfspace below a highly conductive surface layer, and investigate what are happening in the earth when static currents are injected. The conductive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating in data upon different physical properties contrasts, we explore the sensitivity of these surveys to the target."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/Dcapps_Overburden_draw.png?raw=true\" />"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Parameters\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the overburden\n",
-    " - **$\\rho_{3}$**: Resistivity of the target\n",
-    " - **$\\eta_{1}$**: Chargeability of the half-space\n",
-    " - **$\\eta_{2}$**: Chargeability of the overburden\n",
-    " - **$\\eta_{3}$**: Chargeability of the target\n",
-    " - **Overburden_thick**: thickness of the overburden\n",
-    " - **target_thick**: thickness of the target\n",
-    " - **target_wide**: width of the target\n",
-    " - **ellips_a**: x radius of ellipse\n",
-    " - **ellips_b**: z radius of ellipse\n",
-    " - **xc**: x location of ellipse center\n",
-    " - **zc**: z location of ellipse center\n",
-    " - **predmis**: Compare the Observed data to the ones without a target, see either the data (Overburden), or the difference between the two\n",
-    " - **Array Type**: Type of array\n",
-    " - **Rx per Tx**: How many receivers per sources\n",
-    " - **Survey**: DC or IP\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **When typing modifications to values, do not forget to PRESS ENTER**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [],
-   "source": [
-    "test = DCIP2DfwdWidget();\n",
-    "display(test)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Appendix: Building Pseudosections \n",
-    "\n",
-    "2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines as shown below. For pole-dipole or dipole-pole surveys the $45^{\\circ}$ line is simply extended from the location of the pole. By using this method of plotting, the long offset electrodes plot deeper than those with short offsets. This provides a rough idea of the region sampled by each data point, but the vertical axis of a pseudo-section is not a true depth.\n",
-    "\n",
-    "In the widget below the red dot marks the midpoint of the current dipole or the location of the A electrode location in a pole-dipole array while the green dots mark the midpoints of the potential dipoles or M electrode locations in a dipole-pole array. The blue dots then mark the location in the pseudo-section where the lines from Tx and Rx midpoints intersect and the data is plotted. By stepping through the Tx (current electrode pairs) using the slider you can see how the pseudo section is built up.\n",
-    "\n",
-    "The figures shown below show how the points in a pseudo-section are plotted for pole-dipole, dipole-pole, and dipole-dipole arrays. The color coding of the dots match those shown in the widget.\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/PoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/DipolePole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-pole array. \n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-dipole array.\n",
-    "<br />\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "surveyType = 'DipoleDipole'\n",
-    "simulation, xzlocs = DC2Dsimulation(np.ones(mesh.nC), surveyType)\n",
-    "PseudoSectionWidget(simulation, surveyType)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Building_Pseudosections-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Building_Pseudosections-checkpoint.ipynb
deleted file mode 100644
index bb41b22a722300e88b49946bb1815a1baae9ec25..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Building_Pseudosections-checkpoint.ipynb
+++ /dev/null
@@ -1,165 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DC_Pseudosections import MidpointPseudoSectionWidget, DC2DPseudoWidget\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Building Pseudosections \n",
-    "\n",
-    "2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines as shown below. For pole-dipole or dipole-pole surveys the $45^{\\circ}$ line is simply extended from the location of the pole. By using this method of plotting, the long offset electrodes plot deeper than those with short offsets. This provides a rough idea of the region sampled by each data point, but the vertical axis of a pseudo-section is not a true depth.\n",
-    "\n",
-    "In the widget below the red dot marks the midpoint of the current dipole or the location of the A electrode location in a pole-dipole array while the green dots mark the midpoints of the potential dipoles or M electrode locations in a dipole-pole array. The blue dots then mark the location in the pseudo-section where the lines from Tx and Rx midpoints intersect and the data is plotted. By stepping through the Tx (current electrode pairs) using the slider you can see how the pseudo section is built up.\n",
-    "\n",
-    "The figures shown below show how the points in a pseudo-section are plotted for pole-dipole, dipole-pole, and dipole-dipole arrays. The color coding of the dots match those shown in the widget.\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/Polepole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-pole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/PoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipolePole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-pole array. \n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "3339a8be3c8f48588a37abbfcde855a0",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(IntSlider(value=0, description='i', max=17), Output()), layout=Layout(align_items='stretch', d…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = MidpointPseudoSectionWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the cylinder\n",
-    " - **xc**: x location of cylinder center\n",
-    " - **zc**: z location of cylinder center\n",
-    " - **r**: radius of cylinder\n",
-    " - **surveyType**: Type of survey\n",
-    " - **Run Interact**: Use this button to update your plot\n",
-    " \n",
-    "\n",
-    " **Note:** The numerical results shown in this plot are generated from a 2d code such that the  source is a line of current. This greatly speeds up the computation. Accurate potentials obtained from point current sources require the 2.5D code.  "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1b38cf8550b5499fab8724addbf7dbe9",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=1000.0, description='$…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = DC2DPseudoWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "anaconda-cloud": {},
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  },
-  "widgets": {
-   "state": {
-    "6e3f6835704641c7a49dfd241e063265": {
-     "views": [
-      {
-       "cell_index": 3
-      }
-     ]
-    },
-    "8be2bc831de14196a3a3189fddb922bb": {
-     "views": [
-      {
-       "cell_index": 2
-      }
-     ]
-    }
-   },
-   "version": "1.2.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Inversions-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Inversions-checkpoint.ipynb
deleted file mode 100644
index c1bafb6c3470616c24b050921f77252632075d6b..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Inversions-checkpoint.ipynb
+++ /dev/null
@@ -1,90 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DC_Pseudosections import DC2DfwdWidget\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Inverting Data\n",
-    "\n",
-    "In this final widget you are able to forward model the apparent resistivity of a cylinder embedded in an otherwise uniform halfspace. Pseudo-sections of the apparent resistivity can be generated using dipole-dipole, pole-dipole, or dipole-pole arrays to see how survey geometry can distort the size, shape, and location of conductive bodies in a pseudo-section.  Due to distortion and artifacts present in pseudo-sections trying to interpret them directly is typically difficult and dangerous due to the risk of misinterpretation. Inverting the data to find a model which fits the observed data and is geologically reasonable should be standard practice.   \n",
-    "\n",
-    "By systematically varying the model parameters and comparing the plots of observed vs. predicted apparent resistivity a parametric inversion can be preformed by hand to find the \"best\" fitting model. Normalized data misfits, which provide a numerical measure of the difference between the observed and predicted data, are useful for quantifying how well and inversion model fits the observed data. The manual inversion process can be difficult and time consuming even with small examples sure as the one presented here. Therefore, numerical optimization algorithms are typically utilized to minimized the data misfit and a model objective function, which provides information about the model structure and complexity, in order to find an optimal solution.\n",
-    "\n",
-    "Definition of variables:\n",
-    "- **$\\rho_1$**: Resistivity of the halfspace\n",
-    "- **$\\rho_2$**: Resistivity of the cylinder\n",
-    "- **xc**: x location of cylinder center\n",
-    "- **zc**: z location of cylinder center\n",
-    "- **r**: radius of cylinder\n",
-    "- **predmis**: toggle which allows you to switch the bottom pannel from predicted apparent resistivity to normalized data misfit\n",
-    "- **suveyType**: toggle which allows you to switch between survey types.\n",
-    "- **Run Interact**: Use this button to update your plot\n",
-    " \n",
-    " ###  **This app can be slow. You need to hit* Run Interact* to update the figure after you made modifications to the parameters**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "c0c0342348074acd9bee4257df7ce34a",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=500.0, description='$\\\\rho_2…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = DC2DfwdWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2_5D-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2_5D-checkpoint.ipynb
deleted file mode 100644
index de3081a50794c6b680e35eee91109a339db95953..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Layer_Cylinder_2_5D-checkpoint.ipynb
+++ /dev/null
@@ -1,153 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetResLayer2_5D import ResLayer_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 16"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly resisitive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a cylinder target embedded in a halfspace below a highly resistive surface layer, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, the resistive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating changes in currents, electric fields, potential, and charges upon different geometry, Tx and Rx location, we understand geometric effects of the resistive layer for DCR survey. "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_ResLayer_Setup.png?raw=true\"> </img>"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Question\n",
-    "\n",
-    "- How does the cylinder affect the apparent resistivity without the resistive layer?\n",
-    "- How does the resistive layer affect the apparent resistivity? Is there a difference if you add or remove the cylinder target?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Plate model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **survey**: Type of survey\n",
-    " - **A**: Electrode A (+) location\n",
-    " - **B**: Electrode B (-) location\n",
-    " - **M**: Electrode A (+) location\n",
-    " - **N**: Electrode B (-) location\n",
-    " - **$dz_{layer}$**: thickness of the resistive layer\n",
-    " - **$zc_{ayer}$**: z location of the resistive layer\n",
-    " - **xc**: x location of cylinder center\n",
-    " - **zc**: z location of cylinder center\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the layer\n",
-    " - **$\\rho_{3}$**: Resistivity of the cylinder\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "0ad9d0ce2b0a48659cbc06b458fa96c3",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "app = ResLayer_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Overburden_2_5D-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Overburden_2_5D-checkpoint.ipynb
deleted file mode 100644
index d024be0c2b06b064ec9558df56340a85fa9b9568..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Overburden_2_5D-checkpoint.ipynb
+++ /dev/null
@@ -1,142 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidget_Overburden_2_5D import valley_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 14"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly Conductive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a bloc target embedded in a halfspace below a highly conductive surface layer, and investigate what are happening in the earth when static currents are injected. The conductive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating changes in currents, electric fields, potential, and charges upon different geometry, Tx and Rx location, we understand geometric effects of the conductive layer for DCR survey. "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/Dcapps_Overburden_draw.png?raw=true\" />"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Question\n",
-    "\n",
-    "- How does the Target affect the apparent resistivity? Is there a difference if you add or remove the target?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Overburden model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **survey**: Type of survey\n",
-    " - **A**: Electrode A (+) location\n",
-    " - **B**: Electrode B (-) location\n",
-    " - **M**: Electrode A (+) location\n",
-    " - **N**: Electrode B (-) location\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the overburden\n",
-    " - **$\\rho_{3}$**: Resistivity of the target\n",
-    " - **Overburden_thick**: thickness of the overburden\n",
-    " - **target_thick**: thickness of the target\n",
-    " - **target_wide**: width of the target\n",
-    " - **whichprimary**: which model to consider as primary: either uniform background or Overburden model\n",
-    " - **ellips_a**: x radius of ellipse\n",
-    " - **ellips_b**: z radius of ellipse\n",
-    " - **xc**: x location of ellipse center\n",
-    " - **zc**: z location of ellipse center\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **When typing modifications to values, do not forget to PRESS ENTER**\n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [],
-   "source": [
-    "app = valley_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Plate2_5D-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Plate2_5D-checkpoint.ipynb
deleted file mode 100644
index 549588da16980062f73b5b6bc5ed922763f9f069..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Plate2_5D-checkpoint.ipynb
+++ /dev/null
@@ -1,140 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetPlate2_5D import plate_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 16"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected into the earth, and flow. \n",
-    "Depending upon the subsurface conductivity structures current flow in the earth will be distorted and charges will accumulate on interfaces between regions of different conductivites. These changes can be measurable at the sufurface electrodes. \n",
-    "\n",
-    "Here, we focus on a plate target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. Different from the sphere case, which is symmetric, \"coupling\" between the Tx, target (conductor or resistor), and Rx will be significanlty different with various scenarios and geometries. \n",
-    "Using this app we can investigate what effect different targets and survey geometries have on the currents, electric fields, potentials, charges, and sensitivities."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set up\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_PlateApp_Setup.png?raw=true\">"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Questions\n",
-    "\n",
-    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
-    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
-    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
-    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Plate app\n",
-    "\n",
-    "## Parameters:\n",
-    "\n",
-    " - **survey**: Type of survey\n",
-    " - **A**: (+) Current electrode  location\n",
-    " - **B**: (-) Current electrode  location\n",
-    " - **M**: (+) Potential electrode  location\n",
-    " - **N**: (-) Potential electrode  location\n",
-    " - **dx**: width of plate\n",
-    " - **dz**: height/thickness of plate\n",
-    " - **xc**: x location of plate center\n",
-    " - **zc**: z location of plate center\n",
-    " - **$\\theta$**: rotation angle of plate from the horizontal\n",
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the plate\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "b083a21e92e746dca7ae47a4e2e2773e",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "app = plate_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Plate_2D-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Plate_2D-checkpoint.ipynb
deleted file mode 100644
index bce40d8415810de2d6cc1f0ce466b7f9782cba3a..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Plate_2D-checkpoint.ipynb
+++ /dev/null
@@ -1,111 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetPlate_2D import plate_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected into the earth, and flow. \n",
-    "Depending upon the subsurface conductivity structures current flow in the earth will be distorted and charges will accumulate on interfaces between regions of different conductivites. These changes can be measurable at the sufurface electrodes. \n",
-    "\n",
-    "Here, we focus on a plate target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. Different from the sphere case, which is symmetric, \"coupling\" between the Tx, target (conductor or resistor), and Rx will be significanlty different with various scenarios and geometries. \n",
-    "Using this app we can investigate what effect different targets and survey geometries have on the currents, electric fields, potentials, charges, and sensitivities."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set up\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/master/images/em/DC_PlateApp_Setup.png?raw=true\">"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Questions\n",
-    "\n",
-    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
-    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
-    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
-    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Plate app\n",
-    "\n",
-    "## Parameters:\n",
-    "\n",
-    " - **survey**: Type of survey\n",
-    " - **A**: (+) Current electrode  location\n",
-    " - **B**: (-) Current electrode  location\n",
-    " - **M**: (+) Potential electrode  location\n",
-    " - **N**: (-) Potential electrode  location\n",
-    " - **dx**: width of plate\n",
-    " - **dz**: height/thickness of plate\n",
-    " - **xc**: x location of plate center\n",
-    " - **zc**: z location of plate center\n",
-    " - **$\\theta$**: rotation angle of plate from the horizontal\n",
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the plate\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "app = plate_app();\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/.ipynb_checkpoints/DC_Sphere_Constant_E-checkpoint.ipynb b/dcip/.ipynb_checkpoints/DC_Sphere_Constant_E-checkpoint.ipynb
deleted file mode 100644
index facd50261cb3b17102c66c0633f98e0460adc933..0000000000000000000000000000000000000000
--- a/dcip/.ipynb_checkpoints/DC_Sphere_Constant_E-checkpoint.ipynb
+++ /dev/null
@@ -1,237 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.sphereElectrostatic_example import (\n",
-    "    interact_conductiveSphere, interactive_two_configurations_comparison\n",
-    ")\n",
-    "from IPython.display import display\n",
-    "from ipywidgets import *"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# **Conductive or Resistive Sphere in a wholespace with a constant, uniform electric field $E_0$**\n",
-    "\n",
-    "Parameters:\n",
-    "\n",
-    " - **Log_sig0** : log10 of the conductivity of the background (for example, a value of -5 means a conductivity of $10^{-5}$ S/m)\n",
-    " \n",
-    " - **Log_sig1** : log10 conductivity of the sphere\n",
-    " \n",
-    " - **$ R $**: radius of the sphere\n",
-    "     \n",
-    "The following example allows the user to plot any of the following physical values: \n",
-    "\n",
-    " - **Electric Potential** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Electric Field** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Current Density** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Charges density**\n",
-    " \n",
-    "To visualise configuration and primary potential, clic on \"Configuration\" (*Note that others buttons are then deactivated*)\n",
-    "\n",
-    "Buttons FigureX**a** allow to choose to plot either Total or Secondary Field.\n",
-    "\n",
-    "Buttons FigureX**b** allow to choose the physical value to plot.\n",
-    "\n",
-    "Please visit http://em.geosci.xyz/content/maxwell2_static/fields_from_grounded_sources_dcr/electrostatic_sphere.html for more information"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "d7ad67ce6ca34006911562245bc1b880",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatSlider(value=50.0, description='R', max=50.0, step=10.0), FloatSlider(value=-3.0, d…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "#Function to visualise and compare any two plots for the same configuration\n",
-    "    \n",
-    "interact(interact_conductiveSphere,\n",
-    "        R=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "        log_sig0=FloatSlider(min=-5., max =0., step=0.5,value=-3.),\n",
-    "        log_sig1=FloatSlider(min=-5., max =0., step=0.5,value=-1.),\n",
-    "        Figure1a=ToggleButtons(options=['Configuration','Total','Secondary'],value = 'Total'),\n",
-    "        Figure1b=ToggleButtons(options=['Potential','ElectricField','CurrentDensity','ChargesDensity'],value = 'ElectricField'),\n",
-    "        Figure2a=ToggleButtons(options=['Total','Secondary'],value = 'Secondary'),\n",
-    "        Figure2b=ToggleButtons(options=['Potential','ElectricField','CurrentDensity','ChargesDensity'],value = 'ElectricField'));"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Building some intuition for DC problem"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "In real life, we do not know the underground configuration. We only see the\n",
-    "data (in DCIP survey, Potentials difference between two electrodes) and we are trying to model the underground based from them. \n",
-    "\n",
-    "**There are several set of parameters that can fit perfectly a given data set**. Even in the simple\n",
-    "case presented here, where we know it is a sphere, and whose response can be calculated analytically, \n",
-    "we can find several configuration that can produce the same data along the same profile."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This code allow to plot and compare two differents configurations responses to the same survey.\n",
-    "\n",
-    "- **Log_sig0**: background log10 conductivity for both configurations\n",
-    "\n",
-    "- **Log_sig1**: sphere log10 conductivity in configuration 0\n",
-    "\n",
-    "- **Log_sig2**: sphere log10 conductivity in configuration 1\n",
-    "\n",
-    "- **R0**: Sphere's radius in configuration 0\n",
-    "\n",
-    "- **R1**: Sphere's radius in configuration 1\n",
-    "\n",
-    "- **E0**: uniform E field value\n",
-    "\n",
-    "- **start**: start point for the profile start.shape = (2,)\n",
-    "\n",
-    "- **end**: end point for the profile end.shape = (2,)\n",
-    "\n",
-    "- **dipole_number**: number of dipoles\n",
-    "\n",
-    "- **electrode_spacing**: Space between the M and N electrodes\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### **Are you able to find two spheres whose outside potentials are the same?**\n",
-    "\n",
-    "(one solution with \"matching_spheres_example\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1565415c288b44c3814c51e04f2b0b9c",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatSlider(value=-3.0, description='log_sig0', max=0.0, min=-5.0, step=0.5), FloatSlide…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "<function geoscilabs.dcip.sphereElectrostatic_example.interactive_two_configurations_comparison(log_sig0, log_sig1, log_sig2, R0, R1, xstart, ystart, xend, yend, dipole_number, electrode_spacing, matching_spheres_example)>"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "#Visualisation of the responses of two configurations to a (pseudo) DC resistivity survey\n",
-    "interact(interactive_two_configurations_comparison,\n",
-    "         R0=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "         R1=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "         log_sig0=FloatSlider(min=-5., max =0., step=0.5,value=-3.),\n",
-    "         log_sig1=FloatSlider(min=-5., max =0., step=0.5,value=-5.),\n",
-    "         log_sig2=FloatSlider(min=-5., max =0., step=0.5,value=-1.),\n",
-    "         xstart = FloatSlider(min=-200., max =200., step=10.,value=-200.),\n",
-    "         ystart = FloatSlider(min=-200., max =200., step=10.,value=100.),\n",
-    "         xend = FloatSlider(min=-200., max =200., step=10.,value=200.),\n",
-    "         yend = FloatSlider(min=-200., max =200., step=10.,value=100.),\n",
-    "         dipole_number = IntSlider(min=1, max=40, step=10,value=22),\n",
-    "         electrode_spacing = FloatSlider(min=0., max =100., step=5.,value=20.),\n",
-    "         matching_spheres_example = ToggleButton())"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "anaconda-cloud": {},
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  },
-  "widgets": {
-   "state": {
-    "17ef604df6f34b91875cedb051f996e3": {
-     "views": [
-      {
-       "cell_index": 2
-      }
-     ]
-    },
-    "8a8a311386e349b191248f5b8a7780ba": {
-     "views": [
-      {
-       "cell_index": 7
-      }
-     ]
-    }
-   },
-   "version": "1.2.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/dcip/DCIP_2D_Overburden_Pseudosections.ipynb b/dcip/DCIP_2D_Overburden_Pseudosections.ipynb
deleted file mode 100644
index ced291ca01af614147d9fa92b8639bb5b04e8fab..0000000000000000000000000000000000000000
--- a/dcip/DCIP_2D_Overburden_Pseudosections.ipynb
+++ /dev/null
@@ -1,189 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "import numpy as np\n",
-    "from geoscilabs.dcip.DCIP_overburden_PseudoSection import (\n",
-    "    DCIP2DfwdWidget, DC2Dsimulation, PseudoSectionWidget, mesh\n",
-    ")\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly Conductive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR)  or Induced Polarization (IP) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity and chargeability contrasts current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a bloc target embedded in a halfspace below a highly conductive surface layer, and investigate what are happening in the earth when static currents are injected. The conductive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating in data upon different physical properties contrasts, we explore the sensitivity of these surveys to the target."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/Dcapps_Overburden_draw.png?raw=true\" />"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Parameters\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the overburden\n",
-    " - **$\\rho_{3}$**: Resistivity of the target\n",
-    " - **$\\eta_{1}$**: Chargeability of the half-space\n",
-    " - **$\\eta_{2}$**: Chargeability of the overburden\n",
-    " - **$\\eta_{3}$**: Chargeability of the target\n",
-    " - **Overburden_thick**: thickness of the overburden\n",
-    " - **target_thick**: thickness of the target\n",
-    " - **target_wide**: width of the target\n",
-    " - **ellips_a**: x radius of ellipse\n",
-    " - **ellips_b**: z radius of ellipse\n",
-    " - **xc**: x location of ellipse center\n",
-    " - **zc**: z location of ellipse center\n",
-    " - **predmis**: Compare the Observed data to the ones without a target, see either the data (Overburden), or the difference between the two\n",
-    " - **Array Type**: Type of array\n",
-    " - **Rx per Tx**: How many receivers per sources\n",
-    " - **Survey**: DC or IP\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **When typing modifications to values, do not forget to PRESS ENTER**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "d4418a577bdb43af800cc53441aa0143",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=100.0, description='$\\\\rho_2…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "test = DCIP2DfwdWidget();\n",
-    "display(test)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Appendix: Building Pseudosections \n",
-    "\n",
-    "2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines as shown below. For pole-dipole or dipole-pole surveys the $45^{\\circ}$ line is simply extended from the location of the pole. By using this method of plotting, the long offset electrodes plot deeper than those with short offsets. This provides a rough idea of the region sampled by each data point, but the vertical axis of a pseudo-section is not a true depth.\n",
-    "\n",
-    "In the widget below the red dot marks the midpoint of the current dipole or the location of the A electrode location in a pole-dipole array while the green dots mark the midpoints of the potential dipoles or M electrode locations in a dipole-pole array. The blue dots then mark the location in the pseudo-section where the lines from Tx and Rx midpoints intersect and the data is plotted. By stepping through the Tx (current electrode pairs) using the slider you can see how the pseudo section is built up.\n",
-    "\n",
-    "The figures shown below show how the points in a pseudo-section are plotted for pole-dipole, dipole-pole, and dipole-dipole arrays. The color coding of the dots match those shown in the widget.\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/PoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipolePole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-pole array. \n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-dipole array.\n",
-    "<br />\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "f03cac0367314845948fe94b0759b4ce",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(IntSlider(value=0, description='i', max=30), IntSlider(value=0, description='j', max=7), Toggl…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "surveyType = 'DipoleDipole'\n",
-    "simulation, xzlocs = DC2Dsimulation(np.ones(mesh.nC), surveyType)\n",
-    "PseudoSectionWidget(simulation, surveyType)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
diff --git a/dcip/DC_Building_Pseudosections.ipynb b/dcip/DC_Building_Pseudosections.ipynb
deleted file mode 100644
index 7d9b53af1f721b76c18141393c0aa1a4e5b02a3d..0000000000000000000000000000000000000000
--- a/dcip/DC_Building_Pseudosections.ipynb
+++ /dev/null
@@ -1,165 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DC_Pseudosections import MidpointPseudoSectionWidget, DC2DPseudoWidget\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Building Pseudosections \n",
-    "\n",
-    "2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines as shown below. For pole-dipole or dipole-pole surveys the $45^{\\circ}$ line is simply extended from the location of the pole. By using this method of plotting, the long offset electrodes plot deeper than those with short offsets. This provides a rough idea of the region sampled by each data point, but the vertical axis of a pseudo-section is not a true depth.\n",
-    "\n",
-    "In the widget below the red dot marks the midpoint of the current dipole or the location of the A electrode location in a pole-dipole array while the green dots mark the midpoints of the potential dipoles or M electrode locations in a dipole-pole array. The blue dots then mark the location in the pseudo-section where the lines from Tx and Rx midpoints intersect and the data is plotted. By stepping through the Tx (current electrode pairs) using the slider you can see how the pseudo section is built up.\n",
-    "\n",
-    "The figures shown below show how the points in a pseudo-section are plotted for pole-dipole, dipole-pole, and dipole-dipole arrays. The color coding of the dots match those shown in the widget.\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/Polepole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-pole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/PoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img> \n",
-    "<center>Basic skematic for a uniformly spaced pole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipolePole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-pole array. \n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DipoleDipole.png?raw=true\" style=\"width: 60%; height: 60%\"> </img>\n",
-    "<center>Basic skematic for a uniformly spaced dipole-dipole array.\n",
-    "<br />\n",
-    "<br />\n",
-    "<br />\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "fd9e198f0a8d49c1a253e3d62a37f180",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(IntSlider(value=0, description='i', max=17), Output()), layout=Layout(align_items='stretch', d…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = MidpointPseudoSectionWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the cylinder\n",
-    " - **xc**: x location of cylinder center\n",
-    " - **zc**: z location of cylinder center\n",
-    " - **r**: radius of cylinder\n",
-    " - **surveyType**: Type of survey\n",
-    " - **Run Interact**: Use this button to update your plot\n",
-    " \n",
-    "\n",
-    " **Note:** The numerical results shown in this plot are generated from a 2d code such that the  source is a line of current. This greatly speeds up the computation. Accurate potentials obtained from point current sources require the 2.5D code.  "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "4bcf46e21a77461ea388399a31f9e677",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=1000.0, description='$…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = DC2DPseudoWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "anaconda-cloud": {},
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  },
-  "widgets": {
-   "state": {
-    "6e3f6835704641c7a49dfd241e063265": {
-     "views": [
-      {
-       "cell_index": 3
-      }
-     ]
-    },
-    "8be2bc831de14196a3a3189fddb922bb": {
-     "views": [
-      {
-       "cell_index": 2
-      }
-     ]
-    }
-   },
-   "version": "1.2.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/dcip/DC_Inversions.ipynb b/dcip/DC_Inversions.ipynb
deleted file mode 100644
index c1bafb6c3470616c24b050921f77252632075d6b..0000000000000000000000000000000000000000
--- a/dcip/DC_Inversions.ipynb
+++ /dev/null
@@ -1,90 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DC_Pseudosections import DC2DfwdWidget\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Inverting Data\n",
-    "\n",
-    "In this final widget you are able to forward model the apparent resistivity of a cylinder embedded in an otherwise uniform halfspace. Pseudo-sections of the apparent resistivity can be generated using dipole-dipole, pole-dipole, or dipole-pole arrays to see how survey geometry can distort the size, shape, and location of conductive bodies in a pseudo-section.  Due to distortion and artifacts present in pseudo-sections trying to interpret them directly is typically difficult and dangerous due to the risk of misinterpretation. Inverting the data to find a model which fits the observed data and is geologically reasonable should be standard practice.   \n",
-    "\n",
-    "By systematically varying the model parameters and comparing the plots of observed vs. predicted apparent resistivity a parametric inversion can be preformed by hand to find the \"best\" fitting model. Normalized data misfits, which provide a numerical measure of the difference between the observed and predicted data, are useful for quantifying how well and inversion model fits the observed data. The manual inversion process can be difficult and time consuming even with small examples sure as the one presented here. Therefore, numerical optimization algorithms are typically utilized to minimized the data misfit and a model objective function, which provides information about the model structure and complexity, in order to find an optimal solution.\n",
-    "\n",
-    "Definition of variables:\n",
-    "- **$\\rho_1$**: Resistivity of the halfspace\n",
-    "- **$\\rho_2$**: Resistivity of the cylinder\n",
-    "- **xc**: x location of cylinder center\n",
-    "- **zc**: z location of cylinder center\n",
-    "- **r**: radius of cylinder\n",
-    "- **predmis**: toggle which allows you to switch the bottom pannel from predicted apparent resistivity to normalized data misfit\n",
-    "- **suveyType**: toggle which allows you to switch between survey types.\n",
-    "- **Run Interact**: Use this button to update your plot\n",
-    " \n",
-    " ###  **This app can be slow. You need to hit* Run Interact* to update the figure after you made modifications to the parameters**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "c0c0342348074acd9bee4257df7ce34a",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(FloatText(value=1000.0, description='$\\\\rho_1$'), FloatText(value=500.0, description='$\\\\rho_2…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "out = DC2DfwdWidget()\n",
-    "display(out)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/DC_Layer_Cylinder_2_5D.ipynb b/dcip/DC_Layer_Cylinder_2_5D.ipynb
deleted file mode 100644
index e3d51d1df867f917dcb3b68c0db43180e9a74766..0000000000000000000000000000000000000000
--- a/dcip/DC_Layer_Cylinder_2_5D.ipynb
+++ /dev/null
@@ -1,153 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetResLayer2_5D import ResLayer_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 16"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly resisitive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a cylinder target embedded in a halfspace below a highly resistive surface layer, and investigate what are happening in the earth when static currents are injected. Different from a sphere case, which is a finite target, the resistive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating changes in currents, electric fields, potential, and charges upon different geometry, Tx and Rx location, we understand geometric effects of the resistive layer for DCR survey. "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_ResLayer_Setup.png?raw=true\"> </img>"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Question\n",
-    "\n",
-    "- How does the cylinder affect the apparent resistivity without the resistive layer?\n",
-    "- How does the resistive layer affect the apparent resistivity? Is there a difference if you add or remove the cylinder target?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Plate model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **survey**: Type of survey\n",
-    " - **A**: Electrode A (+) location\n",
-    " - **B**: Electrode B (-) location\n",
-    " - **M**: Electrode A (+) location\n",
-    " - **N**: Electrode B (-) location\n",
-    " - **$dz_{layer}$**: thickness of the resistive layer\n",
-    " - **$zc_{ayer}$**: z location of the resistive layer\n",
-    " - **xc**: x location of cylinder center\n",
-    " - **zc**: z location of cylinder center\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the layer\n",
-    " - **$\\rho_{3}$**: Resistivity of the cylinder\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": true
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "86ea1e481db04bd198ed0ce844f59980",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "app = ResLayer_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/DC_Overburden_2_5D.ipynb b/dcip/DC_Overburden_2_5D.ipynb
deleted file mode 100644
index e7d5a73f8978d7f77093cddc7bf0a297927b7654..0000000000000000000000000000000000000000
--- a/dcip/DC_Overburden_2_5D.ipynb
+++ /dev/null
@@ -1,157 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidget_Overburden_2_5D import valley_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 14"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Effects of a highly Conductive surface layer"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. \n",
-    "Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes \n",
-    "can be measurable on the sufurface electrodes. \n",
-    "Here, we focus on a bloc target embedded in a halfspace below a highly conductive surface layer, and investigate what are happening in the earth when static currents are injected. The conductive layer will also impact the illumination of the target (conductor or resistor).\n",
-    "By investigating changes in currents, electric fields, potential, and charges upon different geometry, Tx and Rx location, we understand geometric effects of the conductive layer for DCR survey. "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Setup"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/Dcapps_Overburden_draw.png?raw=true\" />"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Question\n",
-    "\n",
-    "- How does the Target affect the apparent resistivity? Is there a difference if you add or remove the target?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Overburden model"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    " - **survey**: Type of survey\n",
-    " - **A**: Electrode A (+) location\n",
-    " - **B**: Electrode B (-) location\n",
-    " - **M**: Electrode A (+) location\n",
-    " - **N**: Electrode B (-) location\n",
-    " - **$\\rho_{1}$**: Resistivity of the half-space\n",
-    " - **$\\rho_{2}$**: Resistivity of the overburden\n",
-    " - **$\\rho_{3}$**: Resistivity of the target\n",
-    " - **Overburden_thick**: thickness of the overburden\n",
-    " - **target_thick**: thickness of the target\n",
-    " - **target_wide**: width of the target\n",
-    " - **whichprimary**: which model to consider as primary: either uniform background or Overburden model\n",
-    " - **ellips_a**: x radius of ellipse\n",
-    " - **ellips_b**: z radius of ellipse\n",
-    " - **xc**: x location of ellipse center\n",
-    " - **zc**: z location of ellipse center\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **When typing modifications to values, do not forget to PRESS ENTER**\n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "c37bdce5224147579d46cedf2fbc19dc",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "app = valley_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/DC_Plate2_5D.ipynb b/dcip/DC_Plate2_5D.ipynb
deleted file mode 100644
index 549588da16980062f73b5b6bc5ed922763f9f069..0000000000000000000000000000000000000000
--- a/dcip/DC_Plate2_5D.ipynb
+++ /dev/null
@@ -1,140 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetPlate2_5D import plate_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from matplotlib import rcParams\n",
-    "rcParams['font.size'] = 16"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected into the earth, and flow. \n",
-    "Depending upon the subsurface conductivity structures current flow in the earth will be distorted and charges will accumulate on interfaces between regions of different conductivites. These changes can be measurable at the sufurface electrodes. \n",
-    "\n",
-    "Here, we focus on a plate target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. Different from the sphere case, which is symmetric, \"coupling\" between the Tx, target (conductor or resistor), and Rx will be significanlty different with various scenarios and geometries. \n",
-    "Using this app we can investigate what effect different targets and survey geometries have on the currents, electric fields, potentials, charges, and sensitivities."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set up\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_PlateApp_Setup.png?raw=true\">"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Questions\n",
-    "\n",
-    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
-    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
-    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
-    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Plate app\n",
-    "\n",
-    "## Parameters:\n",
-    "\n",
-    " - **survey**: Type of survey\n",
-    " - **A**: (+) Current electrode  location\n",
-    " - **B**: (-) Current electrode  location\n",
-    " - **M**: (+) Potential electrode  location\n",
-    " - **N**: (-) Potential electrode  location\n",
-    " - **dx**: width of plate\n",
-    " - **dz**: height/thickness of plate\n",
-    " - **xc**: x location of plate center\n",
-    " - **zc**: z location of plate center\n",
-    " - **$\\theta$**: rotation angle of plate from the horizontal\n",
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the plate\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization\n",
-    " \n",
-    "###  **Do not forget to hit Run Interact to update the figure after you made modifications**"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "b083a21e92e746dca7ae47a4e2e2773e",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "MyApp(children=(ToggleButtons(description='survey', options=('Dipole-Dipole', 'Dipole-Pole', 'Pole-Dipole', 'P…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "app = plate_app()\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/DC_Plate_2D.ipynb b/dcip/DC_Plate_2D.ipynb
deleted file mode 100644
index d375801f6d49e22f67375fca7ca7ab0f764c3c63..0000000000000000000000000000000000000000
--- a/dcip/DC_Plate_2D.ipynb
+++ /dev/null
@@ -1,111 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.DCWidgetPlate_2D import plate_app\n",
-    "from IPython.display import display"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Purpose \n",
-    "\n",
-    "For a direct current resistivity (DCR) survey, currents are injected into the earth, and flow. \n",
-    "Depending upon the subsurface conductivity structures current flow in the earth will be distorted and charges will accumulate on interfaces between regions of different conductivites. These changes can be measurable at the sufurface electrodes. \n",
-    "\n",
-    "Here, we focus on a plate target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. Different from the sphere case, which is symmetric, \"coupling\" between the Tx, target (conductor or resistor), and Rx will be significanlty different with various scenarios and geometries. \n",
-    "Using this app we can investigate what effect different targets and survey geometries have on the currents, electric fields, potentials, charges, and sensitivities."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Set up\n",
-    "\n",
-    "<img src=\"https://github.com/geoscixyz/geosci-labs/blob/main/images/em/DC_PlateApp_Setup.png?raw=true\">"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Questions\n",
-    "\n",
-    "- Is the potential difference measured by a dipole over a conductive (/resisitive) target higher or lower compared to the half-space reference?\n",
-    "- how do the field lines bend in presence of a conductive (/resistive) target?\n",
-    "- Compared to the positive and negative sources (A and B), how are oriented the positive and negative accumulated charges around a conductive (/resistive) target?\n",
-    "- How would you describe the secondary fields pattern? Does it remind you of the response of an object fundamental to electromagnetics?"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Plate app\n",
-    "\n",
-    "## Parameters:\n",
-    "\n",
-    " - **survey**: Type of survey\n",
-    " - **A**: (+) Current electrode  location\n",
-    " - **B**: (-) Current electrode  location\n",
-    " - **M**: (+) Potential electrode  location\n",
-    " - **N**: (-) Potential electrode  location\n",
-    " - **dx**: width of plate\n",
-    " - **dz**: height/thickness of plate\n",
-    " - **xc**: x location of plate center\n",
-    " - **zc**: z location of plate center\n",
-    " - **$\\theta$**: rotation angle of plate from the horizontal\n",
-    " - **$\\rho_1$**: Resistivity of the halfspace\n",
-    " - **$\\rho_2$**: Resistivity of the plate\n",
-    " - **Field**: Field to visualize\n",
-    " - **Type**: which part of the field\n",
-    " - **Scale**: Linear or Log Scale visualization"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "app = plate_app();\n",
-    "display(app)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/dcip/DC_Sphere_Constant_E.ipynb b/dcip/DC_Sphere_Constant_E.ipynb
deleted file mode 100644
index facd50261cb3b17102c66c0633f98e0460adc933..0000000000000000000000000000000000000000
--- a/dcip/DC_Sphere_Constant_E.ipynb
+++ /dev/null
@@ -1,237 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "from geoscilabs.dcip.sphereElectrostatic_example import (\n",
-    "    interact_conductiveSphere, interactive_two_configurations_comparison\n",
-    ")\n",
-    "from IPython.display import display\n",
-    "from ipywidgets import *"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# **Conductive or Resistive Sphere in a wholespace with a constant, uniform electric field $E_0$**\n",
-    "\n",
-    "Parameters:\n",
-    "\n",
-    " - **Log_sig0** : log10 of the conductivity of the background (for example, a value of -5 means a conductivity of $10^{-5}$ S/m)\n",
-    " \n",
-    " - **Log_sig1** : log10 conductivity of the sphere\n",
-    " \n",
-    " - **$ R $**: radius of the sphere\n",
-    "     \n",
-    "The following example allows the user to plot any of the following physical values: \n",
-    "\n",
-    " - **Electric Potential** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Electric Field** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Current Density** (**Total** or **Secondary**)\n",
-    " \n",
-    " - **Charges density**\n",
-    " \n",
-    "To visualise configuration and primary potential, clic on \"Configuration\" (*Note that others buttons are then deactivated*)\n",
-    "\n",
-    "Buttons FigureX**a** allow to choose to plot either Total or Secondary Field.\n",
-    "\n",
-    "Buttons FigureX**b** allow to choose the physical value to plot.\n",
-    "\n",
-    "Please visit http://em.geosci.xyz/content/maxwell2_static/fields_from_grounded_sources_dcr/electrostatic_sphere.html for more information"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "d7ad67ce6ca34006911562245bc1b880",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatSlider(value=50.0, description='R', max=50.0, step=10.0), FloatSlider(value=-3.0, d…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "#Function to visualise and compare any two plots for the same configuration\n",
-    "    \n",
-    "interact(interact_conductiveSphere,\n",
-    "        R=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "        log_sig0=FloatSlider(min=-5., max =0., step=0.5,value=-3.),\n",
-    "        log_sig1=FloatSlider(min=-5., max =0., step=0.5,value=-1.),\n",
-    "        Figure1a=ToggleButtons(options=['Configuration','Total','Secondary'],value = 'Total'),\n",
-    "        Figure1b=ToggleButtons(options=['Potential','ElectricField','CurrentDensity','ChargesDensity'],value = 'ElectricField'),\n",
-    "        Figure2a=ToggleButtons(options=['Total','Secondary'],value = 'Secondary'),\n",
-    "        Figure2b=ToggleButtons(options=['Potential','ElectricField','CurrentDensity','ChargesDensity'],value = 'ElectricField'));"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Building some intuition for DC problem"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "In real life, we do not know the underground configuration. We only see the\n",
-    "data (in DCIP survey, Potentials difference between two electrodes) and we are trying to model the underground based from them. \n",
-    "\n",
-    "**There are several set of parameters that can fit perfectly a given data set**. Even in the simple\n",
-    "case presented here, where we know it is a sphere, and whose response can be calculated analytically, \n",
-    "we can find several configuration that can produce the same data along the same profile."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "This code allow to plot and compare two differents configurations responses to the same survey.\n",
-    "\n",
-    "- **Log_sig0**: background log10 conductivity for both configurations\n",
-    "\n",
-    "- **Log_sig1**: sphere log10 conductivity in configuration 0\n",
-    "\n",
-    "- **Log_sig2**: sphere log10 conductivity in configuration 1\n",
-    "\n",
-    "- **R0**: Sphere's radius in configuration 0\n",
-    "\n",
-    "- **R1**: Sphere's radius in configuration 1\n",
-    "\n",
-    "- **E0**: uniform E field value\n",
-    "\n",
-    "- **start**: start point for the profile start.shape = (2,)\n",
-    "\n",
-    "- **end**: end point for the profile end.shape = (2,)\n",
-    "\n",
-    "- **dipole_number**: number of dipoles\n",
-    "\n",
-    "- **electrode_spacing**: Space between the M and N electrodes\n"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### **Are you able to find two spheres whose outside potentials are the same?**\n",
-    "\n",
-    "(one solution with \"matching_spheres_example\")"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "1565415c288b44c3814c51e04f2b0b9c",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(FloatSlider(value=-3.0, description='log_sig0', max=0.0, min=-5.0, step=0.5), FloatSlide…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "<function geoscilabs.dcip.sphereElectrostatic_example.interactive_two_configurations_comparison(log_sig0, log_sig1, log_sig2, R0, R1, xstart, ystart, xend, yend, dipole_number, electrode_spacing, matching_spheres_example)>"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "#Visualisation of the responses of two configurations to a (pseudo) DC resistivity survey\n",
-    "interact(interactive_two_configurations_comparison,\n",
-    "         R0=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "         R1=FloatSlider(min=0., max =50., step=10., value=50.),\n",
-    "         log_sig0=FloatSlider(min=-5., max =0., step=0.5,value=-3.),\n",
-    "         log_sig1=FloatSlider(min=-5., max =0., step=0.5,value=-5.),\n",
-    "         log_sig2=FloatSlider(min=-5., max =0., step=0.5,value=-1.),\n",
-    "         xstart = FloatSlider(min=-200., max =200., step=10.,value=-200.),\n",
-    "         ystart = FloatSlider(min=-200., max =200., step=10.,value=100.),\n",
-    "         xend = FloatSlider(min=-200., max =200., step=10.,value=200.),\n",
-    "         yend = FloatSlider(min=-200., max =200., step=10.,value=100.),\n",
-    "         dipole_number = IntSlider(min=1, max=40, step=10,value=22),\n",
-    "         electrode_spacing = FloatSlider(min=0., max =100., step=5.,value=20.),\n",
-    "         matching_spheres_example = ToggleButton())"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "anaconda-cloud": {},
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  },
-  "widgets": {
-   "state": {
-    "17ef604df6f34b91875cedb051f996e3": {
-     "views": [
-      {
-       "cell_index": 2
-      }
-     ]
-    },
-    "8a8a311386e349b191248f5b8a7780ba": {
-     "views": [
-      {
-       "cell_index": 7
-      }
-     ]
-    }
-   },
-   "version": "1.2.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}
diff --git a/index.ipynb b/index.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..15236887cdc8bf5e589a6e1cf7e352d60dfaa4e2
--- /dev/null
+++ b/index.ipynb
@@ -0,0 +1,226 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "<a href=\"http://em.geosci.xyz\"><img src=\"https://www.gge.eonerc.rwth-aachen.de/global/show_picture.asp?id=aaaaaaaaaakevlz\" style=\"width: 25%; height: 25%\" align=\"right\"></img></a>\n",
+    "\n",
+    "# Jupyter Notebooks für die Veranstaltungen EdgE 1+2\n",
+    "\n",
+    "Die Jupyter Notebooks sind begleitendes Lehrmaterial für den RWTH Kurse \"Einführung in die Geophysikalische Erkundung 1+2\". Es werden verschiedene in den Vorlesungen unterrichtete Themen behandelt. Sämtliche Notebooks laufen direkt auf dem JupyterHub ohne die Notwendigkeit, Python auf dem eigenen Rechner installiert zu haben (einfach auf die jeweiligen Notebooks links in der Leiste klicken). Alternativ können die Notebooks auch lokal verwendet werden. Allerdings benötigt man hierfür gewisse geophysikalische Programme. Die Installation kann in der Dokumentation von **<a href=\"https://github.com/geoscixyz/geosci-labs \">Geoscilabs</a>**, den Urhebern der Notebooks nachgeschlagen werden.\n",
+    "\n",
+    "Weiterführende Literatur ist unten verlinkt:\n",
+    "- **<a href=\"http://gpg.geosci.xyz\">gpg.geosci.xyz</a>**, allgemein für angewandte Geophysik.\n",
+    "- **<a href=\"http://em.geosci.xyz\">em.geosci.xyz</a>**, speziell für elektromagnetische Themen.  \n",
+    "- **<a href=\"https://wiki.seg.org/wiki/Main_Page\">wiki.seg.org</a>**, das offizielle Wiki der  Society of Exploration Geophysicists (SEG).  \n",
+    "\n",
+    "\n",
+    "\n",
+    "Unten sind die betreffenden Notebooks aufgezählt inklusiver einer kurzen Erläuterung zu deren Inhalten. Die Notebooks können durch direktes anklicken der Links geöffnet werden. Bei weiteren Fragen, wendet euch an den Norbert eures Vertrauens (nklitzsch@eonerc.rwth-aachen.de). \n",
+    "\n",
+    "Viel Spaß mit den Notebooks!"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**[DCIP](#DC-Resistivity-und-Induced-Polarization) | [EMI](#Electromagnetics) | [GPR](#Ground-Penetrating-Radar-(GPR))  | [Magnetics](#Magnetics) | [Seismic](#Seismic) | [Gravity](#Gravity)** \n",
+    "\n",
+    "\n",
+    "## Table of Contents\n",
+    "\n",
+    "### DC Resistivity und Induced Polarization\n",
+    "- [DC_SurveyDataInversion.ipynb](./Notebooks/dcip/DC_SurveyDataInversion.ipynb): \n",
+    "\n",
+    "This Notebook introduces the fundamentals of DC resistivity surveys. It is divided into 4 major parts:\n",
+    "\n",
+    "1. Investigation of currents, fields, charges and potentials: All governing physical parameters are investigated in the environment of a cylinder target embedded in a homogeneous halfspace. Here, different subsurface characteristics such as cylinder and electrode geometry or resistivities $\\rho$ of the half space and the cylinder can be varied.\n",
+    "\n",
+    "2. Potential differences and Apparent Resistivities: Using the widgets contained in this notebook you will develop a better understand of what values are actually measured in a DC resistivity survey and how these measurements can be processed, plotted, inverted, and interpreted. The principles of Apparent Resistivity are introduced an further depicted in the widget.\n",
+    "\n",
+    "3. Building Pseudosections: 2D profiles are often plotted as pseudo-sections by extending $45^{\\circ}$ lines downwards from the A-B and M-N midpoints and plotting the corresponding $\\Delta V_{MN}$, $\\rho_a$, or misfit value at the intersection of these lines. Pseudosections build the foundtion of the following inversion. Pseudo-sections of the apparent resistivity can be generated using dipole-dipole, pole-dipole, or dipole-pole arrays to see how survey geometry can distort the size, shape, and location of conductive bodies in a pseudo-section.  \n",
+    "\n",
+    "4. Parametric Inversion: A pseudosection indicates how the parameter varies with location and depth, but it can only be converted into a 2D model by inversion. Inverting the data to find a model which fits the observed data and is geologically reasonable a standard practice. In this final widget you are able to forward model the apparent resistivity of a cylinder embedded in a two layered earth. \n",
+    "\n",
+    "\n",
+    "- [DC_LayeredEarth.ipynb](./Notebooks/dcip/DC_LayeredEarth.ipynb): \n",
+    "\n",
+    "Using the widgets contained in this notebook we will explore the physical principals governing DC resistivity including the behavior of currents, electric field, electric potentials in a two layer earth. The measured data in a DC experiment are potential differences, we will demonstrate how these provide information about subsurface physical properties. (ALREADY IN FIRST NOTEBOOK)\n",
+    "\n",
+    "- [DC_Cylinder_2D.ipynb](./Notebooks/dcip/DC_Cylinder_2D.ipynb): \n",
+    "\n",
+    "For a direct current resistivity (DCR) survey, currents are injected to the earth, and flow. Depending upon the conductivity contrast current flow in the earth will be distorted, and these changes can be measurable on the surface electrodes. Here, we focus on a cylinder target embedded in a halfspace, and investigate what is happening in the earth when static currents are injected. By investigating changes in currents, electric fields, potential, and charges upon different geometry of cylinder and survey, Tx and Rx location, we understand geometric effects of the target for DCR survey (ALREADY IN FIRST NOTEBOOK).\n",
+    "\n",
+    "- [DC_Layer_Cylinder_2D.ipynb](./Notebooks/dcip/DC_Layer_Cylinder_2D.ipynb): \n",
+    "\n",
+    "In some situations the presence of a near surface layer can have large implications for the detectability of targets beneath the layer. If the near surface layer is very conductive current channelling occrurs and when the layer is very resistive it has a shielding effect. In both cases the near surface layer dramatically reduces the strength of currents beneath the layer and therefore also reduces the strength of charge build up on the surface of the target. This notebook is simillary built up like the previous Notebook except for the addition of a near surface layer.\n",
+    "\n",
+    "- [PhyProp_ColeCole.ipynb](./Notebooks/dcip/PhyProp_ColeCole.ipynb): \n",
+    "\n",
+    "Using a simple Cole-Cole model, we parameterize complex resistivity with four parameters: resistivity at zero frequency ($\\rho_0$), chargeability($\\eta$), time constant ($\\tau$), and frequency dependence ($c$). Based upon those parameters, we understand how resistivity and conductivity changes when medium is chargeable both in frequency domain and time domain.\n",
+    "\n",
+    "### Electromagnetics\n",
+    "\n",
+    "#### Frequency domain (FDEM)\n",
+    "- [EM31.ipynb](./Notebooks/em/FEM/EM_EM31.ipynb): \n",
+    "\n",
+    "In this app, we compute apparent resistivity using the response curves for a two-loop Frequency domain system for a two-layer earth. Below figure shows horizontal coplanar (HCP) configuration. \n",
+    "\n",
+    "- [FDEM EM_Pipeline.ipynb](./Notebooks/em/FEM/EM_Pipeline.ipynb): \n",
+    "\n",
+    "In the following app, we consider a loop-loop system with a pipe taget. Here, we simulate two surveys, one where the boom is oriented East-West (EW) and one where the boom is oriented North-South (NS). \n",
+    "\n",
+    "- [FDEM_Planewave_Wholespace.ipynb](./Notebooks/em/FEM/FDEM_Planewave_Wholespace.ipynb): \n",
+    "\n",
+    "We visualizae downward propagating planewave in the homogeneous earth medium. With the three apps: a) Plane wave app, b) Profile app, and c) Polarization ellipse app, we understand fundamental concepts of planewave propagation. \n",
+    "\n",
+    "#### Time Domain (TDEM)\n",
+    "- [TDEM_Groundedsource.ipynb](./Notebooks/em/TEM/TDEM_Groundedsource.ipynb):\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from a grounded source. Both electric currents and magnetic flux will be visualized to undertand physics of grounded source EM. Both charge buildup (galvanic) and EM induction (inductive) will occur at different times. \n",
+    "\n",
+    "- [TDEM_HorizontalLoop_LayeredEarth.ipynb](./Notebooks/em/TEM/TDEM_HorizontalLoop_LayeredEarth.ipynb):\n",
+    "\n",
+    "Here, we show the transient fields and fluxes that result from placing a vertical magnetic dipole (VMD) source over a layered Earth. The transient response in this case refers to the fields and fluxes that are produced once a long-standing primary magnetic field is removed. There are [two commonly used models](https://em.geosci.xyz/content/maxwell1_fundamentals/dipole_sources_in_homogeneous_media/magnetic_dipole_time/index.html) for describing the VMD source that produces a transient response (both models are used in the Notebook): \n",
+    "\n",
+    "1) as an infinitessimally small bar magnet that experiences a long-standing vertical magnetization which is then instantaneously removed at $t=0$\n",
+    "\n",
+    "2) as an infinitessimally small horizontal loop of wire carrying a constant current which is then instantaneously shut off at $t=0$ (step-off current waveform).\n",
+    "\n",
+    "- [TDEM_InductiveSource.ipynb](./Notebooks/em/TEM/TDEM_InductiveSource.ipynb):\n",
+    "\n",
+    "We explore time-domain electromagnetic (EM) simulation results from inductive sources. Both electric currents and magnetic flux will be visualized to understand physics of inductive source EM. \n",
+    "\n",
+    "\n",
+    "\n",
+    "### Ground Penetrating Radar (GPR)\n",
+    "\n",
+    "- [GPR_Attenuation.ipynb](./Notebooks/gpr/GPR_Attenuation.ipynb):\n",
+    "\n",
+    "This Notebook focuses on the principles of EM wave attenuation. To simplify the GPR problems, we often assume that we do not have conductivity effect. However, in practice, this is not true. For instance, the earth medium can have considerably high conductivity values. In this case, EM wave attenuates as a function of conductivity ($\\sigma$), permittivity ($\\epsilon$), and frequency ($f$). How these factors influence attenuation is investigated in this Notebook.\n",
+    "\n",
+    "- [GPR_Lab6_FitData.ipynb](./Notebooks/gpr/GPR_Lab6_FitData.ipynb):\n",
+    "\n",
+    "This notebook contains two apps:\n",
+    "\n",
+    "+ **Pipe Fitting App**: This app simulates the radargram signature from a cylindrical pipe and lays it over a set of field collected data.\n",
+    "+ **Slab Fitting App**: This app simulates the radargram signature from a rectangular slab and lays it over a set of field collected data.\n",
+    "\n",
+    "By using the models provided (pipe/slab) to fit data signatures within field collected radargram data, we can determine the existence, location and dimensions of pipes and slabs. You may also use this app to learn how radargram signatures from pipes and rectangular slabs change as the parameters provided are altered.\n",
+    "\n",
+    "- [GPR_TBL4_DOI_Resolution.ipynb](./Notebooks/gpr/GPR_TBL4_DOI_Resolution.ipynb):\n",
+    "\n",
+    "This notebook contains two apps:\n",
+    "+ **GPR Zero Offset App**: This app simulates radargram data from two reflectors buried in a homogeneous Earth. The range of parameter values for this app are set such that we may assume we are operating in the wave regime.\n",
+    "+ **Attenuation App**: This app computes the propagation velocity and skin depth for GPR signals as a function of operating frequency.\n",
+    "\n",
+    "\n",
+    "\n",
+    "### Magnetics\n",
+    "\n",
+    "- [Mag_Dipole.ipynb](./Notebooks/mag/Mag_Dipole.ipynb): \n",
+    "\n",
+    "Define a magnetic dipole, the Earth's magneitc field and the observation point to compute 3D plots of field lines and data. This notebook aims to provide the basic principles of magnetic methods in geophysics.\n",
+    "\n",
+    "- [MagneticDipoleApplet.ipynb](./Notebooks/mag/MagneticDipoleApplet.ipynb): \n",
+    "\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a small buried dipolar magnet. In geophysics, this simulates the observed anomaly over a buried susceptible sphere that is magnetized by the Earth's magnetic field.\n",
+    "\n",
+    "- [MagneticPrismApplet.ipynb](./Notebooks/mag/MagneticPrismApplet.ipynb): \n",
+    "\n",
+    "From the Magnetic Dipole applet, we have learned how anomalous magnetic field observed at ground's surface look\n",
+    "The objective is to learn about the magnetic field observed at the ground's surface, caused by a retangular susceptible prism. \n",
+    "\n",
+    "- [Mag_Induced2D.ipynb](./Notebooks/mag/Mag_Induced2D.ipynb): \n",
+    "\n",
+    "An induced magnetic anomaly can be modelled in this Notebook. The model of the is a rectangular prism. Its geometry and the height of the survey grid above the ground can be adjusted. Moreover, you can change the Earth's field characteristics as well. Based on the prism that you made as well as the defined Earth's magnetic field, the total magnetic field at the receiver locations is computed. In the end, a 2D map and a profile line is produced. \n",
+    "\n",
+    "- [Mag_FitProfile.ipynb](./Notebooks/mag/Mag_FitProfile.ipynb): \n",
+    "\n",
+    "In this Notebook, the fit of one magnetic profile from field observation can be performed.\n",
+    "\n",
+    "### Seismic\n",
+    "- [SeismicApplet.ipynb](./Notebooks/seismic/SeismicApplet.ipynb): \n",
+    "\n",
+    "This Notebooks allows you to model a simple subsurface model to interactively explore seismic raypaths dpending on the applied parameters.\n",
+    "\n",
+    "- [Seis_Refraction.ipynb](./Notebooks/seismic/Seis_Refraction.ipynb): \n",
+    "\n",
+    "A Seismic refraction survey is demonstrated. In this notebook, we will use synthetic seismic data to examine the impact of survey parameters on the expected seismic data.\n",
+    "\n",
+    "- [Seis_Reflection.ipynb](./Notebooks/seismic/Seis_Reflection.ipynb): \n",
+    "\n",
+    "A synthetic reflection seismogram is produced. This Notebook aims to introduce you to the basic principles of reflection seismics. This Notebook also includes vertical resolution and NMO correction widgets. \n",
+    "\n",
+    "- [Seis_NMO.ipynb](./Notebooks/seismic/Seis_NMO.ipynb): \n",
+    "\n",
+    "Consider a reflection event on a CMP gather. The difference between the two-way time at a given offset and the two-way zero-offset time is called normal moveout (NMO). Reflection traveltimes must be corrected for NMO prior to summing the traces in the CMP gather along the offset axis. \n",
+    "We have two CMP gathers generated from different geologic models. One data set is clean and the other is contaminated with noise. In this notebook, we will walk through how to construct a normal incidence seismogram from these data sets. The processing steps include plotting the data, fitting a hyperbola to the reflection event in the data, performin the NMO correction and stacking.\n",
+    "\n",
+    "- [Seis_VerticalResolution.ipynb](./Notebooks/seismic/Seis_VerticalResolution.ipynb): \n",
+    "\n",
+    "When referring to vertical resolution, the question whether two arrivals (one from the top, and one from the bottom of the layer) can be distinguished. In this Notebook, adjust the layer thickness for the middle layer and the frequency of the input pulse to investigate vertical resolution. You can also add noise to the trace. \n",
+    "\n",
+    "- [fourier_transform.ipynb](./Notebooks/seismic/fourier_transform.ipynb): \n",
+    "\n",
+    "In the world of seismology, we use the *Fourier transformation* to transform a signal from the time domain into the frequency domain. That means, we split up the signal and separate the content of each frequency from each other. Doing so, we can analyse our signal according to energy content per frequency. We can extract information on how much amplitude each frequency contributes to the final signal. \n",
+    "\n",
+    "- [2D-LinearInversion-Crosswell-Tomorgraphy.ipynb](./Notebooks/seismic/2D-LinearInversion-Crosswell-Tomorgraphy.ipynb):\n",
+    "\n",
+    "Real world geophysical inverse problems are multidimensional (2D or 3D). This extension of dimension allows us to put more apriori (or geologic) information through the regularization term.  In this notebook, we explore these multidimensional aspects of the linear inversion by using 2D traveltime croswell tomography example. \n",
+    "\n",
+    "\n",
+    "### Gravity\n",
+    "- [gravitySphere.ipynb](./Notebooks/gravity/gravitySphere.ipynb): \n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a sphere buried in the subsurface.\n",
+    "\n",
+    "- [gravityDike.ipynb](./Notebooks/gravity/gravityDike.ipynb): \n",
+    "\n",
+    "This notebook demonstrates the gravity anomaly generated by a 2D dipping dike that is infinite along one horizontal direction and buried in the subsurface. "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### <center>We love open source!</center>\n",
+    "\n",
+    "<center><a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\"><img alt=\"Creative Commons License\" style=\"border-width:0\" width=60 src=\"https://i.creativecommons.org/l/by/4.0/88x31.png\" /></a> \n",
+    "\n",
+    "This work is licensed under a <a rel=\"license\" href=\"http://creativecommons.org/licenses/by/4.0/\">Creative Commons Attribution 4.0 International License</a>.</center>"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "anaconda-cloud": {},
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.7.10"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}
diff --git a/requirements.txt b/requirements.txt
index 764e08f618d19c42391d8fb3cd049428d1705668..20307cb97f5cf326b6edd6eb90d542aefea158de 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -6,6 +6,7 @@ ipywidgets
 SimPEG>=0.14.1
 discretize>=0.4.14
 empymod>=2.0.0
+pandas==0.24
 jupyter
 ipywidgets
 deepdish
diff --git a/seismic/Seis_Refraction.ipynb b/seismic/Seis_Refraction.ipynb
deleted file mode 100644
index ae2b2af7538ee8b2ac88fdbbb649125de92d8383..0000000000000000000000000000000000000000
--- a/seismic/Seis_Refraction.ipynb
+++ /dev/null
@@ -1,297 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 6,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "%matplotlib inline\n",
-    "import matplotlib.pyplot as plt\n",
-    "from geoscilabs.seismic.SeismicRefraction import (\n",
-    "    plotWavelet, viewTXdiagram, plotWiggleTX, makeinteractSeisRefracSurvey,\n",
-    "    makeinteractTXwigglediagram\n",
-    ")"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "# Interpretation and data acquisition strategies of seismic refraction data"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "In the <a href=\"https://www.3ptscience.com/app/SeismicRefraction\">3pt Science app</a>, you explored the expected arrival times for refractions and reflections from a two-layer over a half-space model. \n",
-    "\n",
-    "In this notebook, we will use synthetic seismic data to examine the impact of survey parameters on the expected seismic data."
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Source "
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "In an ideal case, the source wavelet would be an impulse (ie. an instantaneous spike). However, in reality, the source energy is spread in space and in time (see the <a href=\"http://gpg.geosci.xyz/content/seismic/wave_basics.html#waves-and-rays\">GPG: Waves and Rays</a>). The source wavelet used for these examples is shown below. "
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 7,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOwAAAEdCAYAAAAPaoscAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAqhElEQVR4nO29eZhUxdm/f38aRAFlFAbUlyg7KPLDV0HAEAYQBSQKqHEhvnFAiAtRXEICRlyiccMYIiagoiKJaFwiiv7ccEFxFzdiwiLBDUFEjKKyCVPfP6qaNE33zPT0Nt3z3Nd1ru5zajlPnT5PV506VZ+Scw7DMAqDSL4NMAyj+pjDGkYBYQ5rGAWEOaxhFBDmsIZRQJjDGkYBYQ6bBSQNl/SCpM8lbZT0kaSHJA3Ot22ZRNK+kpykSxOELQ5hneOOHxSOn5M7S3c4f+tw/pE1SHu+pOOzYFa1MYfNMJLGAXOA94HRwI+B34XgI/JlVzZwzq0GlgNlscclNQcOADbEh8Xsv5B1AzPP+UBeHbZ+Pk9epIwHHnLOjY459iwwQ1JO/yAl7eqc25zl07wAnCJpF+fc9+FYGfA1/o+rDLg5Jn4Z8CXwjyzbVZRYDZt5mgKfJQpwzlXE7kvqIelpSd9K+k7SM5J6xMWZL2l+fF6SPpR0Z8z+yNDUK5N0v6SvgNdCWH1JEyT9S9ImSWslPSHpgJj0pZKmS/pU0mZJSySdUY3yPg80ArrFHCsDXg5h8TVsH+BF55yT1FzSLZKWSdog6RNJd0tqGWPXSaFcXRNcg8clvROzX1/SRcH2zZJWSbpB0m5VFUJS33D9vwm/xZOSusSEfwi0Ak4N9rjY658rzGEzz+tAuaRfSeqYLFK4AZ8H9gJGAqcBTYDnJR2cxvlnAx8APwEmhmN/A64CHgOGAz8H/gXsG2xpAryEb75fHj4fAaZLOreK80WbtrGOWQYsCFtLSW3DedoBLWPSNAU2ARcBg4FfAR2Al2KcbC6+tv6/2JNK2hs4EvhrzOG7gEnA3aEM1+AfS2ZXVgBJPwaeAb4N5/kpsAewQNJ+Idpx+D/iJ4HDw3ZlZflmBeecbRncgI7AIsCF7QvgHmBgXLwHgK+APWOONcE3Fx+MOTYfmJ/gPB8Cd8bsjwznmxIX74hwfFwlNl+Cd5wOccdnBPvrV1Hmj4BHw/cSYBvwo7C/ChgZvo8KtnRPkk89YL8Q57g4O1YCkZhj5wNbgX3Dfp+Q7rS4PE8Nx/837LcO+yNj4iwHnolL1ySU/Y9x1/yufN5fVsNmGOfcMuAQoC++VnsH/+/8pKRJMVHL8Df5VzFp1+NrlL5pmDAnbn8g/gadUUmawfjm8wehWVlfUn18bdIM6FxJWvA1Zu/wjP4j4HvgjRD2Iv+tfcuAb4C3owklnS3pXUnf4h3w4xDUKSb/v+Jr5thOu58BTzvf8RUtwxbg73FleCrm3DshqQPQDpgdl24D8EqydPnCHDYLOOe2OedecM5Ncs4dCbTFd7JcJmmvEK0psDpB8s/wzeSaEp9nM+BL59zGStK0wN+Y38dt98fkURkvAHsCXUM+r7v/dnYtYEeHfdk5tw0gNLenAU/je197AL1C3NjnzgX42u1nId2BwKHs2BxuATTAN2tjy/B5FWVoET5vZ+fyH1ONsucU6yXOAc65VZJuA27EP6O9jm/67pMg+j4hLMomfPMsnqbJThe3/wXQVFLDSpx2Hf7GPi9J+NIkx6PEPseW4XvFoywApko6DP/HdVtM2Cn4pugvowcktYnP3DnnJN0FnC/pbLzjfsuOrYl1+GvVJ4mNq5IcXxc+L8L/ccSzJUm6vGA1bIaJ6aSIJ9ojG+1Bfh74saQ9YtLuARwbwqJ8BHSU1CAmXhm+U6Q6PAUIGFNJnCeCfR875xYm2L6p7ATOuaWhXIPxvcULYoIXAevxnUGw4/vXRviaLJZRSU7zV2B3fE18KvB359yGuDLsBpQkKUMyh12Kr70PSpJuUUzczUDDJPnkhnw+QBfjhu/RfAgox9c2x+CbfRXAvTHxugIb8bXtCfgb8bVw7OCYeP3xteZd+F7RnwOL8R1Wd8bEGxnitU9g0wN4x5iMd6pjgeuBfiG8JOS5FDgrnPMY/Dvlh6tZ7vtCGbcBTeLCHg9hG4AGMcevCcd/E8p2NbAslOPyBOd4Fd/55IABCcLvBv6D70QbBBwVrtccoGOI05qdO52GhOtzb/gt+gInAX8ELoyJNwffEjkG6A60zvn9le8bvNi2cMPPxdeMm4Dv8J0sv469WUPcnvhm2Lch3jNAjwR5nokfObUR/36zG8l7iRM5bH3g4uAMW4C1+Fc8nWLi7AVMwb8S2hJuzAXA+dUs9y/C+d9KEPabEPZc3PGGwPRgzzfAo0CbShw2eo4deoxjwiP4Zv274dp/Hb5Pxte8CR02HD88nP8/Ie2H+Ndhh8fEOSBckw0hjzurc20yuSkYYhhGAWDPsIZRQJjDGkYBYQ5rGAWEOaxhFBB1duBEaWmpa926dcrptmzZQoMGDaqOmAPMlsTUFltqasebb775hXOueaKwOuuwrVu3ZuHChSmnW7p0KZ06dao6Yg4wWxJTW2ypqR2SPkoWZk1iwyggzGENo4AwhzWMAsIc1jAKCHNYwyggzGENo4AwhzWMAsIc1jAKCHNYwyggzGENo4AwhzWMAsIc1jAKCHNYwyggcu6wkgZLWippuaSJCcIlaWoIXyTp0KrSSmoqaZ6k98NnOkLchlFryfXyh/WAPwNH45d/GKG4BX9DWIewnYFX1asq7US8IHUHvPLgTn8EhlEM5LqG7QEsd86tcM5twctIDouLMwz4i/O8Cuwpad8q0g4DZoXvs/ArtBk5Yu7cuXz11Vf5NqNOkOsJ7C2BT2L2V+K1eauK07KKtHu7sCiSc261pBYkIKx3egZAy5YtWbq0qhUodmbFihUpp8kWtcGWVatWMWzYMCTRtWtXjj76aAYMGMB++yVbACH71IbrAtmxI9cOqwTH4oWRk8WpTtpKcc7dCtwK0L17d1dTVYLaoGYQJd+2dOjQgSuuuIJLL72URYsW8e6773LttdfSvn17TjzxRIYPH0737t2JRHLbmMv3dYmSaTty3SReiV//M8oP2HmRomRxKku7JjSbCZ+fY+SESCRCu3btaNSoUVQdn0gkwooVK7jmmmvo2bMnzZs3Z8yYMcydO5dvv/02zxYXNrl22DeADpLahMWdTsEvaxHLXOC00FvcC/g6NHcrSzsXv5YN4fPhbBfESE5FRQUVFRXb99evX8/tt9/OsGHD2Guvvejbty9Tpkxh6dKl2MoTqZFTh3XObQXOwS8UvBi4zzn3T0lnSTorRHsMWIFfFXsGMLaytCHNtcBRkt7HL4B0bY6KZFSDrVu37rC/YMECLrzwQg444AB+8IMf8Itf/ILHHnuMDRs2JMnBiJJz1UTn3GN4p4w9dnPMd4df9KhaacPxdcCAzFpqZINY541EIqxZs4Zp06Yxbdo0dtllF/r06cPw4cMZMmQI7dq1y6OltRMb6WTkjYqKCrZt27bDsWeffZZx48bRvn179ttvP8aNG8dTTz3Fpk2b8mRl7cIc1qg1fP/9f9d2jkQirF69mptuuolBgwZRUlLCwIEDufnmm/noo6SyvUVPnRUSN2o3sZ1W0f158+Yxb948AFq1asXxxx/PscceS+/evWuF0n8usBrWKAhin30lsXLlSqZMmcIRRxxBSUkJQ4YM4fbbb2fVqvi3hMWF1bBGweGc2+HZd+vWrTz++OM8/vjjAOy///6ccsopHHvssfTq1Yv69YvnNrca1ih4EtW+kydPpk+fPpSUlHDcccfxl7/8hS+++CKPVmYGc1ijqHDO7fD8u2XLFh566CHKy8tp0aIFPXv2ZOrUqXzyySeV5FJ7MYc1ipr4975vvPEG5513Hvvvvz8HHnggV111FYsXL86jhalhDmvUGbZt27Z9KKQkli1bxqRJk+jcuTOtWrXi0ksvZdmyZXm2snLMYY06SWzTWRKffvopV155JZ06deLAAw9kypQprF69Os9W7ow5rFHnie11jta8F154IS1btqR379488MADOwzqyCfmsIYRQ3zN+8orr3DiiSdSWlrK+PHj+eCDD/JqnzmsYSShoqJi+zPvd999xw033EDbtm058sgjee211/JikzmsYVSD2CbzM888Q69evejWrRvPPvtsTu0whzWMFIidcP/2228zYMAAevfuzZIlS3Jy/mLRJb5e0pIQf46kPXNUHKMOE3Xel19+mc6dOzNu3Lisd04Viy7xPKCLc64rsAy4KMtFMYyduOmmm+jQoUNWp/8VhS6xc+6pICED8CpeoM0wcka0tv3oo4848MADWbRoUVbOk2uHTaY5XJ041UkLcDrweNqWGkYN2bhxI7169WLdunUZz7uodIklXQxsBWYnPLkJiWeFVatW7TThvK6zceNGysvLefTRRzOab64dNh1d4gaVpZVUDhwDDHBJtDNNSDw7vPnmmzkXCi8Eli9fTpMmTdh3330zlmdR6BJLGgxMAIY650wr06g1zJkzJ6P55bSGdc5tlRTVFq4H3BHVJQ7hN+NlTIfgdYk3AKMqSxuy/hOwKzBPEsCrzrmzMIw8E+7HjFEsusTtM2ymYaRNJBKhrKwss3lmNDfDMLZzwAEHcNBBB2U0T3NYw8gCu+++O9OnT894vsUjJ2cYtYSSkhJef/31rCz0ZTWsYWQISXTv3p3ly5fTsWPHrJzDHNYwMsCuu+7K9OnTef311yktLc3aecxhDSMN6tWrx5gxY1i9ejVnnnlmxl/jxGPPsIZRA+rXr89Pf/pTrr322oyOZKryvDk7k2EUOJJo2LAhv/zlL7ngggvYa6+9cm6DOaxhVEEkEqFz585ceeWVHHPMMXldq8cc1jASEIlEaNKkCWPHjmXs2LG0bJloJmfuMYc1jEAkEmHXXXflxBNPZNy4cRx66KFZ70RKFXNYo04TiURo0KABw4YN4xe/+AW9e/eu1VMFzWGNOkckEqFx48Ycf/zxnHnmmfTs2bNWO2ks5rBGnSASibDPPvtQXl7OqaeeSufOnWtdc7c6mMMaRYkkIpEIXbp04eyzz2b48OHsvffe+TYrbcxhjaIh2tTt06cP5513Hn379mXXXXfNt1kZpSiExGPCx0tykrI3mNOoNURr0QMOOIDrrruOJUuWsH79ev7whz8wcODAonNWyHENGyMGfhRebO0NSXOdc/+KiRYrJN4TLyTes6q0kvYLYR/nqjxG7onWooMGDWLUqFH079+fhg0b5tusnJHrJvF2MXAASVEx8FiH3S4kDrwqKSok3rqKtFOAXwMP56IgRm6QhCQ6derE6aefznHHHUe7du3ybVbeyLXDJhID71mNOMmExHsCSBoKfOqce7eynj/TJc4OmdYllkTjxo0pKyvjhBNO4LDDDqNBgwYAbN26tcrfrbZcl2zYUfBC4pIaARcDA6s6uekSZ4d0dYmjtWjnzp05/fTTOeGEE9h///3Tsqk2XBfIvB3FICTeDmgDRGvXHwBvSerhnPsso9YbGUMSe+yxB0cffTRjxoyhrKxsey1qJCfXDrtdDBz4FC8G/tO4OHOBc8Izak+CkLiktYnSBm3iFtHEkj4Eujvnvsh6aYxqE61F27dvz+mnn87JJ59M69at821WwVEsQuJGHnHOJXyGjUQi7LLLLvTv358zzzyTgQMH0qhRozxYWDwUhZB4XJzW6VtpVMW2bdt4+eWXmTNnDnfddRebNm0CvJOWlJRw8sknM3r0aLp161aQQwBrKzbSyag2zjkWLlzIPffcw9/+9jdWr15NgwYN6NGjB40aNWLkyJGcdtpptG3bNt+mFi3msEaVLF68mHvuuYd77rmH5cuXs8suuzBkyBBOOeUUhgwZQpMmTVi6dGmt6ZktZsxhjYR8+eWXzJ49mzvuuIN33nmHSCRC//79mThxIscff3xe9IwMc1gjBuccL7zwAjNmzOCBBx5g8+bNdOvWjT/+8Y+cdNJJOVUHNBJjDmvw7bffMnPmTP70pz+xbNkySkpKGD16NGPGjOGQQw7Jt3lGDOawdZiVK1dy0003ceutt/LVV1/Rq1cvZs2axU9+8hN7/VJLMYetg3zyySdceeWVzJw5k4qKCk444QQuuOACDj/88HybZlSBOWwdYs2aNVxzzTVMnz4d5xxnnnkm48ePtxFHBUS1HVZSS/x8017A/wANgS+ApcDzwPPOucxN2TAyxtatW5k2bRqTJk1iw4YNjBw5kksuuYRWrVrl2zQjRap0WEn9gPHAIPyQwJXAWmAjcDBwDHApsFrSDOAPzrn1WbLXSJG3336b0aNH8/bbbzNw4ECmTp1q70sLmErnREl6FD8U8DvgJKC5c25/51w359yPnHOdgRLgf4FpwInAvyUNyq7ZRlU455g6dSq9evXis88+47777uOJJ54wZy1wqqphlwNjKpumFprBi8J2VZhMXpI5E41U2bJlC6NGjeLuu+/m2GOPZebMmTRr1izfZhkZoFKHdc6dn2qGzrm5NbbGSJuNGzcybNgw5s2bx+9+9zt+85vf2OD7IiLtXmJJzZxz6zJhjJEeFRUVlJeX8/TTT3PHHXcwatSofJtkZJhq63pI+rmkX8Xs/3+SVgKfS1ooaZ+sWGhUmxtuuIH777+f66+/3py1SElFiOdcfM9wlD8AXwHn459Zr6hOJtnSJZZ0bgj7p6TJKZSrKPj444+59NJLGTZsGBdeeGG+zTGyRCpN4v2BJQCSSoC+wHDn3GOS1gHXVJVBtnSJJfXHS552dc5tltSCOsaUKVPYunUrU6dOtWfWIiaVGrYeEB0Y8SO8kuH8sP8JMbpKlbBdl9g5twWIagvHsl2X2Dn3KhDVJa4s7dnAtc65zQDOuc9TKFfB45zj3nvvZdiwYWmrDRq1m1Rq2PeBHwPP4gXQXnbObQhh/wN8WY08sqJLDHQE+ki6CtgEjHfOvRF/8mLVJV61ahWrV6+mS5cuNSpTJm2pDdQWW/KtS/x74K+SyoG98IMkovTHv4etiozrEofP+sGmXsBhwH2S2gZ9qP9GLlJd4vXr/cCybt265dW22nZdagN50yV2zt0t6WN8rfaGc+6FmOA1eHnSqsiGLnE0zYPBQV+XVAGU4odQFj277bYb4N/BGsVNSu9hnXMvAi8mOH5ZNbPIuC5xSPMQcAQwX1JHvHPXGV3iNm3aEIlE+Oc/TfW12KlqLHGNNEGSvZN1zm0FotrCi4H7orrEUW1i/NjlFfhhkTOAsZWlDWnuANpKeg/fGVUe3xwuZnbffXcOOeQQnnzyyXybYmSZKscSS7oNmO6cW1JZREkNgePwK8g9APwuUbxs6BKHXuP/q7QkRc6IESMYP3487733Hl26dMm3OUaWqOq1ThnQBfinpLfDgIbRkoZKGiTpFEm/kfQQ/jl2GnAfvoPKyCEjR45kjz324Le//W2+TTGySFWD/98EBoTRRj/Hz309Jy7aJuA1fM062zn3TTYMNSqnWbNmXHDBBVxxxRXMnz+ffv365dskIwtUa+CEc+4t59zZzrm2wD7AocAPgU5AiXOuv3PuZnPW/DJhwgTatWvHmDFj2LBhQ9UJjIIj5UU9nXOfO+fecc696px73zn3fTYMM1KnUaNG3Hbbbfz73//mnHPOoQ71u9UZar4Kr1Er6devH5MmTWLmzJnMmDEj3+YYGcYctgi5/PLLGTRoEOeeey4vvrjTa3OjgDGHLULq1avH7Nmzad26NUOHDmXx4sX5NsnIEOawRUqzZs144oknaNCgAYMHD2bVqvgRoEYhYg5bxLRp04bHHnuML7/8kqOPPpqvvvoq3yYZaZKyw0oqlXSMpHJJTcOx3SSZ89dCDj30UB588EEWL17M0KFDbYJAgZOKppMkXY+fGTMXP363dQh+GLg449YZGeGoo47irrvu4sUXX+Tkk09m69at+TbJqCGp1IoX4Uc5XYGfRRM7P/UR/Cgoo5Zy0kkn8ec//5lHHnmEMWPGUFFhq6oUIqlMrxsDXOGcuyboK8WyHGiXObOMbHD22Wezdu1aLrvsMkpLS7n++utN/6nASMVhWwKvJgnbAjRO3xwj21xyySWsXbuWG264gebNmzNhwoR8m2SkQCoO+yl+5s5zCcIOBj7IiEVGVpHEjTfeyLp165g4cSKlpaWMHj0632YZ1SSVZ9j7gUsl9Y455oLCwy/xE8erJBu6xJL+V9Krkt4JouY9UihXnSMSiXDnnXcyePBgzjjjDObMmZNvk4xqkorDXo7XJX4Br6AI3on/EfavrSqDGG3ho4HOwAhJneOixeoSn4HXJa4q7WTgt865/8UvfVnnhMRTpUGDBjzwwAP07NmTESNG8NxziRpORm2j2g7rnNsI9ANGAi8DT+M1ms4AjgqqD1WRLV1iBzQJ30vYWdjNSEDjxo159NFHad++PcOGDeOtt97Kt0lGFaQqwrYN+GvYakK2dInPB56U9Hv8n9APE528WHWJ02XatGmMGDGCo446itmzZ9OmTZu82ZIJaost+dYl3oFEI5vCWrGVJktwLBO6xGcDFzjn/i7pJOB24MgE9hWlLnEm8njuuef40Y9+xFlnncVLL71Ey5Yt82JLpqgttmTajlRGOjWUdK2kf0vaDHwft1WnSZyOLnFlacuBB8P3+/HNZyMFOnbsyOOPP86XX37JoEGDtouTG7WLVGrYacCp+FFNf6N6DhpPtnSJV+EX55qP1yd+HyNlunXrxpw5cxg0aBBjxozh3nvvtYEVtYxUHHYofs2aqTU9mXNuq6SotnA94I6oLnEIvxkvYzoEP3pqAzCqsrQh658DN0qqjxeFO6OmNtZ1BgwYwNVXX82ECRMoKyvjnHPiNfeMfJKKw27GC3inRZZ0iV8EuqVrm+EZP348CxYs4MILL6Rnz54cdthh+TbJCKTyHvZOfDPUKHIikQizZs1i7733pry8nE2bNuXbJCOQisNeAmyT9JSkX0o6PX7LlpFG7mnatCm33XYbixcvNnHyWkQqTeJu+OfYFiR4ZYJ/xXJHJowyageDBg1i9OjRTJ48mRNOOIHu3bvn26Q6Tyo17M3AOvzook5Am7itbcatM/LODTfcQIsWLRg3bpzpHNcCUnHYA4BfOeceCQLiH8Vv2TLSyB8lJSVcddVVvPLKK9x77735NqfOk4rDLsXmvNZJysvLOeSQQ5gwYQKbN2/Otzl1mlQcdiIwSVKrbBlj1E7q1avH5MmT+fjjj5k1a1a+zanTpOKwk/AdTssk/UPSC3Hb81my0agFDBgwgB49enDdddeZiFseScVht+Hnw74MfBH2YzdT9SpiJHHRRRexYsUK7r///nybU2ep9msd51y/LNphFABDhw6lXbt23HLLLYwYMSLf5tRJTPzbqDaRSITRo0fz/PPPs2zZsnybUyep1GEllUnaPeZ7pVtuTDbyyciRI6lXrx4zZ87Mtyl1kqqaxPOBXsDr4XuyN+cKYfF6xUaRse+++zJgwAD+/ve/c/XVV9v0uxxTlcP2B/4Vvh9Bcoc16hDDhw9n7NixLF68mM6d4zX0jGxSqcM6556P+T4/69YYBcHQoUMZO3YsDz/8sDlsjklFImaFpIOThHWRVC3FqTR1ie+Q9Lmk9+LSNJU0T9L74XOv6pbLSJ2WLVvStWtXnn322XybUudIpZe4NbBrkrDdgCpHQKWjSxy4ExicIOuJwDPOuQ7AM2HfyCJ9+/bl5Zdf5vvvv8+3KXWKVF/rJHuG7Q58VY306egS45x7AfgyQb7DgOiYuVnA8GrYYqRBWVkZGzZsYOHChfk2pU5R6TOspAuAC8KuAx6RFC++1hBoSvWW6khHl3h1Jfnu7ZxbDRAE21okimS6xJmjRQt/iR999FGaNm1q1yUB+dAlXoFvYoKXEl0IrI2Lsxnfk3xbNc6Xji5x2pgucebo2LEjpaWlrFmzZrsNdl12JtN2VNVL/DB+dfXo+7YrnHPprFKXji5xZayRtG+oXfcFPk/DRqMaSKJr164sWrQo36bUKVJZW2dUms4KMbrEkhrgRd3mxsWZC5wWeot7EXSJq8h3Lr4FQPh8OE07jWpw8MEH895779lq7jkkp2OJnXNbgai28GLgvqgucVSbGC9jugKvSzwDGBtNL+ke4BWgk6SVkqILm14LHCXpfeAoqrGSnpE+HTp0YOPGjXz22Wf5NqXOUOO1dWpKmrrECaeIOOfWAQMyaKZRDVq3bg3Ahx9+SLNmzfJrTB3BZusYNSbWYY3cYA5r1JhWrfxYmQ8+SLdrw6gu5rBGjWnUqBF77rkna9asybcpdQZzWCMtSktL+eKLL/JtRp3BHNZIi9LSUtaujR9LY2QLc1gjLZo3b241bA4xhzXSwmrY3GIOa6RFSUkJ69evz7cZdQZzWCMtGjduzHfffWcLZeUIc1gjLRo1akRFRYVNZM8R5rBGWjRu7NdH27BhQ54tqRuYwxppEXXYjRs35tmSuoE5rJEWjRo1Asxhc4U5rJEW5rC5xRzWSItddtkFgG3btuXZkrpBzh02S7rE10taEuLPkbRnDopiAPXr+ynVtmZsbsipw2ZRl3ge0MU51xVYBlyUWcuNZFgNm1tyXcNmRZfYOfdUkJ8BeBUv3GbkgGgNaw6bG3ItEZMtXeJYTgfuTRRgusSZ59NPPwVg5cqVNbqe2aA2XBfIjy5xpsmqLrGki4GtwOxE4aZLnHm+/vprwM/aybctsdQWW3KqS5wFsqVLjKRy4BhggLOBrTnDmsS5JdfPsFnRJZY0GJgADHXO2Ri5HGK9xLmlWHSJ/wTsAcyT9I6k7bKpRnaxGja3FIsucftM2mhUn0jE/+ebw+YGG+lkpEVYc8nmw+YIc1gjLaIOa+QGc1jDKCDMYY20sCZxbjGHNdLCmsS5xRzWyAhWw+YGc1gjLayGzS3msEZGsBo2N5jDGmlhnU65xRzWSAtrEucWc1gjI1gNmxvMYY20sCZxbjGHNdLCmsS5xRzWMAoIc1gjLayGzS1FoUscEz5ekpNUms0yGDtjz7C5oVh0iZG0H3AU8HFmrTYqwzqdcktR6BIHpgC/ppoKi0ZmsCZxbsm1wybTHE41zg5IGgp86px7NxNGGqljNWxuKHhdYkmNgIuBgVWe3ITEM86aNWsAWLt2rQmJx1EMQuLZ0CVuB7QB3g3Nsx8Ab0nq4Zz7LDaiCYlnnj322AOA0tLSvNsSS22xJdN2FLwusXPuH865Fs651s651niHPzTeWQ2jGCgWXWLDqBMUhS5xXJzWaZpoGLUWG+lkGAWEOaxhFBDmsIZRQJjDGkYBYQ5rGAWEOaxhFBDmsIZRQOT8PaxRXDRp0oQbb7yRNm3a5NuUOoHVsEZa7L777owbN46OHTvm25Q6gTmsYRQQ5rCGUUCYwxpGAWEOaxgFhDmsYRQQ5rCGUUCYwxpGAVE0QuKSzg35/lPS5GyXwzDyQVEIiUvqj9cz7uqcOwj4fcaNN4xaQLEIiZ8NXOuc2xzifZ61EhhGHsn1WOJEIuE9qxGnJZBUORHoCPSRdBWwCRjvnHsjPpLpEmcPs2VnikGXOONC4oH6wF5AL+Aw4D5JbV2cHL3pEmcXs2VnCl2XOBtC4tE0D4Zm9OtABWAr2BlFR8ELiQceAo4AkNQRaAB8kVHLDaMWUCxC4ncAbcPrnr8B5fHNYcMoBopCSDz0OP9fBs00jFqJ6mpFJGkt8FENkpZSe5rbZktiaostNbWjlXOueaKAOuuwNUXSQudc93zbAWZLMmqLLdmww8YSG0YBYQ5rGAWEOWzq3JpvA2IwWxJTW2zJuB32DGsYBYTVsIZRQJjDGkYBYQ5bBZJODJPiKyQl7aKvamJ+hmxpKmmepPfD515J4n0o6R+S3pG0MIPnr7H4QKaphi39JH0drsE7ki7Noi1JhRVCeOaui3POtko24ECgEzAf6J4kTj3g30Bb/Djmd4HOWbBlMjAxfJ8IXJck3odAaYbPXWUZgSHA4/gZV72A17L0m1THln7Aozm6R8qAQ4H3koRn7LpYDVsFzrnFzrmqJs5WZ2J+JhgGzArfZwHDs3COZKQlPpAHW3KGSy6sECVj18UcNjMkm3SfafZ2YeZS+GyRJJ4DnpL0Zpi0nwmqU8ZcXYfqnudwSe9KelzSQVmwo7pk7LrY6nWApKeBfRIEXeyce7g6WSQ4VqP3ZZXZkkI2vZ1zqyS1AOZJWhJqgXTIlvhAtmx5Cz8m91tJQ/BTMDtkwZbqkLHrYg4LOOeOTDOLmky6T9kWSWsk7eucWx2aVAm1q5xzq8Ln55Lm4JuQ6TpstsQHsmKLc259zPfHJE2TVOqcy8ekgIxdF2sSZ4bqTMzPBHOB8vC9HNip9pfUWNIe0e/AQCBh72WKZEt8ICu2SNpHksL3Hvh7fV0WbKkOmbsuuehFK+QNOA7/D7kZWAM8GY7/D/BYXE/gMnzv5cVZsqUZ8AzwfvhsGm8Lvuf03bD9M5O2JCojcBZwVvguvIztv4F/kKRXPUe2nBPK/y7wKvDDLNpyD14k8Ptwr4zO1nWxoYmGUUBYk9gwCghzWMMoIMxhDaOAMIc1jALCHNYwCghz2DSQNFzSC2GmxkZJH0l6SNLgmDgjJTlJrfNoatSWyyVV+7WApIZhxouTdHA2bauGLU7S5TH7O5RF0p7hWMZnCEmaL2l+pvOtCeawNUTSOGAO/p3oaODHwO9C8BExUf9/4HAqX8yrtnI80CR8Py2fhiTgNvx1jbIncBl+1kzRYkMTa8544CHn3OiYY88CMyRt/yN0zq0F1ubauAxRjp+F8j5wqqRfO+e25dkmAJxzK/GDFOoUVsPWnKbAZ4kCnHMV0e+JmsSSGkmaLmmdpG8kzZH0wxBvZEy8O+WXJDlE0gJJG+Qnr58Vez5JzSXdImlZiPOJpLsl1XimTEg7AD917TZgb2BQgngfSrpL0s/ChPKNwdYOYZjkLaGcayTdIKl+TNp+ocwnhLL+R9J6SbMlNavCvu1N4nBtPwhBM0Ke269lsPHOBHns0MwOx06RtETSZnnhguOSnL80/IafhrhLlLmZUUkxh605rwPlkn4lvwBXKtwKnI5fKf54YCkwO0ncJsDdwF34eZVvANPlV52P0hS/Lu5F+BXqf4WfmfKSpN1StC3Kz/D3x1+A+0L+5UniluHXQJoQ4rQD/h7K9A1+rO+twIWE9Xnj+CN+9soI/KykocADKdi6Gn8dAa7BN5UPxz+OVBtJR+Kv9fshv+uBG/ECBrHxmgAv4R+DLg+fj+B/l3NTOWfKZGt8ZbFv+EWkF+FvNIdfkuEeYGBcvJEhvHXY74RfDvPXcfGmhngjY47dGY71jzm2azjXrZXYVg8/O8QBx8Ucv5ywfFE1yvcvYEnM/j14p90zLt6H+GZzScyxceHct8XFfQt4Lma/X4j3RFy8U8PxATHHHHB5srIArUOcMQnK8iFwZ4Lj8Xm+FModiTnWM8SbH3PsknAtOsTlNyP8NvWzdd9ZDVtDnHPLgEOAvsBVwDv4iQJPSppUSdKe+MHg98cdT1ajbHDOPRdz3s34GmD/2EiSzpafrP0tsBX4OASlvKJwmN1yIPDXmMOz8H8WJyVI8opz7uuY/SXh88m4eEvYcZpZlPvi9u/H/6kdniBuVpBUD78Y+AMu5pHGOfca3uFjGQy8BnwgqX50w5e3GdA5W3aaw6aBc26bc+4F59wk5+extsXPxrhMSQTSgKg0SPxc1jVJ4v8nwbHNwPambmiGTQOexjfleuC1g4iNlwLRpu8j4XXJnvim+FoSN4vjbdxSyfFE9uxQdudlX/5DdtQqklEK7BJvSyD+WAv8Y8D3cVv0T7jS5+90sF7iDOK8ysNt+OeeDvjn3Hiir3da8N+OEvCdOjXlFOAZ59wvowcktalJRvrv/FLwU9PiaS6pvXNueU3yT8IOZQ827AV8mqH8N+HF2mLP0TQuzhd4p0v0O+zNjisdrsP/4Z6X5HxVaYDVGKtha4ikRE07gAPCZ8IeZHxTygEnxh2P30+FRvibLZZRNczrWHwn1m+B/nFb1JEz/U42vpl9Iv7efCWFPDaHz4YJwj4CusQdOyZ2x/nXVW8AP4l9LSepJ/75OJYn8L/zx865hQm2b1KwOyWshq0570l6Dj944gN8b+4Q/MTl+5xzHydK5JxbKulu4MpwY7yJH2hxbIhSkShdFTwBTJD0G3ytfgTwkxrkA77J+y3we+fct/GBki7Aqydc5kJPSwY4SNJM/Cukjvg+geedc8+kkMcafM13iqRFwHfAB865dSHfOyRNAR4FDsZ3BsZzGfAU8JCkW4Dm+D+u+D/fKcDJwIKQ51KgMd6J+zjnsqbgaDVszZmAv35X4H/ke/GdJBPxr0Qq4wzgDuDXeIc/iP+uOv91skSVcAVwC3BByK8rCd6ZVoWk5sDR+D+cnZw1cDvQCt/ZlinOw3fE3QtcjXeqlP5wQkfRGHxT+ml8bRn9E5yFd8bj8a9fBuE7COPzeBrfQ90JeBD/eux84pq4oYPth8Bj+PvgSfzvOQx4jixiihO1BEm/Aq7Dv/5JWDsXG5L64W/wo4KzGFVgTeI8IOkY/DPVO/gmcB/8UMekTWnDAHPYfPENXrV/Iv7Z51P8wInL8miTUQBYk9gwCgjrdDKMAsIc1jAKCHNYwyggzGENo4AwhzWMAuL/AShMQrkxqpQcAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 216x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    },
-    {
-     "data": {
-      "text/plain": [
-       "<AxesSubplot:title={'center':'Source Wavelet'}, xlabel='Signal Amplitude', ylabel='time (s)'>"
-      ]
-     },
-     "execution_count": 7,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "plotWavelet()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Data\n",
-    "\n",
-    "Below, we show 3 plots:\n",
-    "- **left**: expected arrival times for the direct, refracted waves and reflection from the first layer\n",
-    "- **center**: clean data - the wavelet arriving at the expected arrival time. Each line represents what would be recorded by an ideal geophone.\n",
-    "- **right**: noisy data - clean data + random noise. \n",
-    "\n",
-    "The model used is the same as is in the lab write-up: \n",
-    "- v1 = 400 m/s\n",
-    "- v2 = 1000 m/s\n",
-    "- v3 = 1500 m/s\n",
-    "- z1 = 5m (depth to layer 1)\n",
-    "- z2 = 15m (depth to layer 2)"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 8,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAAGICAYAAAD7zzUQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd1gVR9uH7wEOXUGKBbtGBQsWRLH3rmheNXZj19hrYjT2FjV2jb3HFmvsLdYkiliwg72CgoBIr/v9cYAPjcLZtUbnvi4ukTO/mdk9MGefmacIRVGQSCQSiUQikUgkEsmXhdHHnoBEIpFIJBKJRCKRSD480hiUSCQSiUQikUgkki8QaQxKJBKJRCKRSCQSyReINAYlEolEIpFIJBKJ5AtEGoMSiUQikUgkEolE8gUijUGJRCKRSCQSiUQi+QKRxqDkk0AI0UkI8dd7HiOPECJCCGH8lv3kE0IoQggTDdqrQojqbzO+RCJ5twghxgohfvvY85BIJBK1CCH2CSG+/djzkPx3kcbgfxQhxD0hRHSycZPyNf8jzueYEKLbex7DKvk692rRK4ryQFEUa0VREt/13FJ45f1IeuU9aqcoSjFFUY69r/ElEsnrEUK0FUKcTf5bDEh+gKr8ked0TAgRI4QIF0K8EEKcE0IMF0KYqehDEUJ89T7nKZFI3h/Jz3NPhRBWaX7WTQhxzBC9oigNFEVZ/Y7npAghIpPXy2AhxJ9CiFYq9NWFEI/e5Zwk7w9pDP63aZJs3KR89f3YE3rPtABigbpCiBxvavS6Ezstp3haSPt+AA94+T1a9yHmIJFIXkYIMRiYDUwGsgF5gF+Bph9xWin0VRQlE5ADGAK0BvYKIcTHnZZEIvmAmAADPvYkXqFk8rNMEWAVMF8IMebjTknyPpDG4GeIEGKhEGJLmv9PTd7VESm7NUKIEUKIZ8k7Uu3StDUTQvwihHiQvFO1SAhhkeb1pkIIn+Rd7NtCiPpCiElAFfQLReoJpRDCWQhxSAgRIoTwE0J8k6YfeyHEzuR+zgAFDbi0b4FFwCWgXdoXkq/jByHEJSBSCPFV8s5WVyHEA+BIWvdOIURrIcTZV/oYJITYmfx9IyHEheT5PRRCjDX0/qdH8jxrJ38/VgixWQjxW/LJwGUhRGEhxI9CiMDkceum0doIIZYnn2o8FkJMFMkur8nXe1wIEZb8vm56F/OVSP7rCCFsgPFAH0VRtimKEqkoSryiKLsURRn2Bo2HEOIfIcRzIcRFkca1WwjRWQhxPflv9o4Qomea11LW1yHJf8MBQojOhswzeV7HAE+gAtAouc9yQohTyXMJEELMF0KYJr92Ill+MXntbSWEyCKE2C2ECBJChCZ/n0v1jZNIJB+S6cBQIYTt614UQlQUQngnf8Z7CyEqpnkt1TPrTc8CQogFQogZr/S5SwgxMKOJKYryTFGUtcB3wI9CCPtk/WvXQqE/4dwHOIn/94xySm8tk3xcpDH4eTIEcBX6OLwqQFfgW0VRlOTXswMOQE70BtYSIUSR5NemAoWBUsBXyW1Gg/6hBFgDDANsgarAPUVRRgIn0e9wWyuK0jd5MTgErAeyAm2AX4UQxZLHWQDEoN8N75L89UaEEHmA6sC65K+Or2nWBv0DlC2QkPyzaoALUO+VtjuBIkKIQml+1jZ5vgCRyWPYJvf5nRCiWXpz1EgTYC2QBbgAHED/d5kT/QPs4jRtV6O/rq+A0kBdIMU1dwJwMLmfXMC89zBXieS/SAXAHNhuSGMhRE5gDzARsAOGAluFEI7JTQKBxkBmoDMwSwhRJk0X2QEb9H/DXYEFQogshk5WUZQHwFn0G2wAicAg9Gt2BaAW0Du5bdXkNiWT195N6NePlUBe9Ceg0cBHCyGQSCQGcRY4hn69eQkhhB36NWkuYA/MBPakGGWv8KZngdVAGyGEUXKfDujXkg0q5vgH+hPMcsn/f+1aqChKJNAA8E/jGeVPOmuZ5OMijcH/NjuSd1hSvroDKIoSBbRHv2D8BvRTFOVV3+1RiqLEKopyHP0i840QQgDdgUGKooQoihKO3q2qdbKmK7BCUZRDiqIkKYryWFEU3zfMrTF6Q3GloigJiqKcB7YCLZJPs5oDo5N3w6+gX6jSoyNwSVGUa+gXr2JCiNKvtJmrKMpDRVGi0/xsbPIYaX+Wco/+QG9AkmwUOqM3ElEU5ZiiKJeTr/NS8pjVMpijFk4qinJAUZQEYDPgCPysKEo8sBHIJ4SwFUJkQ7+4Dky+nkBgFv//3sSjf/hzUhQlRlGU95qMRyL5D2EPPEv+GzOE9sBeRVH2Jv/9H0L/oNYQQFGUPYqi3Fb0HEf/4FUljT4eGJ98+rgXiEDvZqUGf/SGKIqinFMU5XTyOnoP/QbRG9ciRVGCFUXZqihKVPIaPim99hKJ5JNhNNAvzcZTCo2Am4qirE1eBzYAvug3k1/ltc8CiqKcAcLQG2Cgf3Y4pijKU0Mnl/xc8oz/X5syWgtf1atayyQfDmkM/rdppiiKbZqvpSkvJP/h3wEE8PsrutDknZsU7gNO6A0RS+BcioEJ7E/+OUBu4LaBc8sLlE9rrKJ37cye3J8J8PCVOaRHR/QngiTvMB1Hf6qZloevit7wsxTWk2wMoj8V3JFsJCKEKC+EOJrsahUG9EK/m/WuSbsQR6N/aE1M838Aa/T3UwcEpLmfi9GfugJ8j/69PiP0GUvTPWmVSL4gggEHYXjccF6g5StrV2X0XgwIIRoIIU4Lvfv7c/RGYtq1IfgVwzMK/d+wGnICIcnjFU529XwihHiBfoPujWuREMJSCLFYCHE/uf0JwFa8ZRZliUTyfkneGN8NDH/lJSf+/Yx0H/068SrpPQusRr/ZRfK/a9XMTwihQ//8lrI2ZbQWvqpXtZZJPhzSGPxMEUL0AczQ7zB//8rLWUSarFXoXYn80e/4RAPF0hiYNskBxKA3rN4U26e88v+HwPFXjFVrRVG+A4LQuzvmfmUOb7qWikAh9L7qT4QQT4Dy6F0e0j7gvTqHN/0shYPoHxJLoTcK16d5bT36U8LciqLYoI9V/JgJHR6iT57jkOZ+ZlYUpRiAoihPFEXpriiKE9ATvUuuzDAokcAp9C7pzQxs/xBY+8raZaUoys9Cn+VzK/ALkE1RFFtgL+9wbRBC5Abc0LveAyxEfwpQSFGUzMCIDMYbgv4ksnxy+xRXUpmQRiL59BmD3kMrraHnj36TKi15gMevijN4FvgNaCqEKIk+fGaHyrk1Rf/sdsaAtfB1z15q1zLJB0Iag58hQojC6ONd2gMdgO+TDZ60jBNCmCbHFDYGNiuKkgQsRe/3nTW5r5xCiJR4u+VAZyFELSGEUfJrzsmvPQUKpOl/N1BYCNFBCKFL/nIXQrgkn3xtA8Ym72IX5d+nfGn5Fn38YVH0sYylgOLoTzEbqLw9qSTv3m9BH7htlzxGCpmAEEVRYpJjJdtqHeddoChKAHrjdYYQInPy/S8ohKgGIIRoKf4/SUQo+oX4vZXQkEj+KyiKEobe/WqBEKJZ8pqjS97VnvYayW9AEyFEPSGEsRDCXOgTw+QCTNFvsgUBCUKIBuhjd9+a5HlVQ+++fgb9gxXo16IXQETyevvdK9JX195M6Df1nifHGsnsfxLJfwRFUW4Bm4D+aX68F/3zVFuhT4DXCv3z0O5X9ek9CySHC3mjPxHc+mr4zJsQQtgJfaLBBcBURVGCyXgtfArYC30CrxQyWsskHwlpDP632SVermu3Pfmk7Df0f7AXFUW5iX73Za34/9pVT9AvEv7oXS97pYn9+wG4BZxOPsY/THK8S7LraWf0sWph6F01U3ar5qCPBwwVQsxNjlWpi94v3T95zKnoFw+Avuhdp56gT1m88nUXKIQwB74B5iXveKV83UW/oL1todX1QG30xnBa167ewHghRDj6B8lXXW0/Bh3RL8DX0L9/W0h2XQPcAS8hRAT6E80ByfdIIvniURRlJjAY+An9w8tD9GvQjte0fYh+B3xEmrbDAKPkda0/+vUgFP0m0c63nN785HXmKfryF1uB+smbc6BPKNEWCEe/WfdqpuCxwOpkl9ZvkvuwQO/pcRq9q79EIvnvMB5I9d5KNr4aoz/1D0bv7dVYUZRnr9Fm9CywGiiBYS6iF5P7uYU+Wd0gRVFGJ88p3bUw+ZlyA3AneW1yIuO1TPKREIqSnhed5HND6FOk/6Yoikw1LpFIJBKJRPKFIISoiv7AIF+aDSfJF448GZRIJBKJRCKRSD5jkhPADACWSUNQkpYPbgwKfZFyPyHELSHEqxmTEHrmJr9+SaSp35SRViKRSLQi1yaJRPKpItcnydsghHABnqMPLZn9UScj+eT4oG6iQp/a+gZQB0gJZG2j6GvHpbRpCPRDn6K2PDBHUZTyhmglEolEC3JtkkgknypyfZJIJO+TD30yWA64pSjKHUVR4tAX1W76SpumwJrkIpan0ddHymGgViKRSLQg1yaJRPKpItcniUTy3vjQxmBOXi4C/oh/F818UxtDtBKJRKIFuTZJJJJPFbk+SSSS94ZJxk3eKa8rLvmqn+qb2hii1XcgRA+gB4CFhYVbgQIFXtcslfj4eHQ6XbptDG33rtrIvmRfH3u8T7mvq1evPlMUxTHDhobzwdcmKysrN2dnfZlOPz8/nJycyJQpk8ETTuHmzZtky5aNzJkzq9beunULBwcHbG1tVWvv3LmDra0tdnZ2qrX37t3D2toaBwcH1doHDx5gYWGBo6P6t//hw4eYmpqSLVs21drHjx9jZGREjhw5Mm78CgEBASQlJZEzp/pn8KdPnxIfH0+uXOoTQAcGBhITE0OePHlUa589e0ZERAT58uVTrQ0JCSEsLIz8+fOr1j5//pzg4GAKFiyoWhsWFkZgYCCFChVSrQ0PD8ff358iRYqo1kZGRvLgwQNcXFw4d+7cu16b4AOsT29am0JCQnj+/DkZPUe9jrCwMIKCgvjqq68ybvwardb3MiIigkePHpFyDWpI+16qJTo6mjt37lCsWDHV2tjYWG7cuEGJEiVUa+Pj47l+/Tqurq6qtYmJiVy+fJlSpUqp1iYlJeHj40OZMmUybvwKiqJw/vx53NzcVGsBzp8/T+nSpRFCfc36CxcuULJkSYyM1J+HXbx4kWLFimFiot58unTpEs7OzpiamqrWXr16lYIFC2Jubq5ae/36dfLkyYOVldWb1ydFUT7YF1ABOJDm/z8CP77SZjF6f/aU//uhD3jNUPu6r2LFiinK8eOKkpCgvAlfX983vqa23btqI/uSfX3s8T7lvoCzyn98bXJzc0u9nqpVqyq7du0y6NpfpW7dusr+/fs1aZs2baps375dk7Z169bK+vXrNWk7deqkrFixQpP2u+++UxYsWKBJO2jQIGXGjBmatCNGjFAmTpyoSTthwgRl5MiRmrTTp09XhgwZokk7f/58pXfv3pq0y5cvVzp37qxJu27dOqVNmzaatNu2bVOaNWumSbt3716lfv36mrRHjx5VqlWrpkl7+vRppVy5coqivPu1SfkI61Patem3335TmjVrpiSk8wz1Jvbu3avUrVtXtU5RFGXHjh2Kp6enJu2pU6cUd3d3TdozZ84oZcuW1aS9ePGiUqJECU3au3fvKnny5NGkDQgIULJmzapJ+/z5cyVTpkyatOHh4YqlpaUmbWRkpGJhYaFJqyiKYmJiosTGxmrSmpmZKdHR0Zq0WbJkUZ49e6ZJmzNnTuXhw4eatM7OzsrVq1c1aStUqKD8/fffiqK8eX360G6i3kAhIUR+IYQp+oLkrxbs3Ql0TM6M5QGEKYoSYKD2X+j8/aFaNVj52prmEolEAh9hbUqLs7MzLVq0IEeOHHzzzTcsX74cPz+/lIc3iUTyZfPR1qfChQtz/PhxrK2tqVixIhMmTOD48eNERUVlqDU1NSUmJsbQoV4iISFB0+kLgLm5OZGRkZq0iYmJmk6M3hZjY2MSExM1a5OStFeKeJvPGS0nc/B27y/o5/w2YxsbG2vSJiUladbGxMRgZmamSRsXF2eQ19TrMDY2JiEhId02H/Q3XlGUBKAvcAC4DvyuKMpVIUQvIUSv5GZ7gTvALWAp0Ds9bUZjJllZ6b8ZMQKeP3+XlyORSD4TPsbalJbWrVsTGxvLkydP2Lx5MwMGDMDNzQ07Ozt69+7NuXPnpGEokXyhfMz1yd3dnaxZsxITE8OpU6cYP348np6e2NraUr16dTZu3PhGw9DS0lKzUaYoimbjyNbWlucan/eioqKwSnlu/IAo/39yq1mvhfj4eM0GytvM92MZgym/V1oNurfZLAgNDSVLliyatGFhYdjY2GjSgv59To8PHTOIoih70S9aaX+2KM33CtDHUG1GJNrYQL588NdfMH48zJypftISieSz50OvTemR9gFqyZIlrFmzBltbW7Zs2YKHh8e7GkYikfxH+FTWp4SEBF68eAHA8ePHOX/+PF26dKFPnz5Mnz79pbbm5uYGnSC+jnz58nHz5k1N2vDwcE0x1KBfey0sLDRpQbuBFBgYqCkOGvRztra21qR9mxOntz2d+xjGYFJSEkZGRpoNurcxJE1MTDRft729PUFBQWTNmlW11tzcPMOTwQ9uDH4U5s4FNzeYNw969AANQcUSSVri4+OJi4vj+vXrBrXNqN27avO59WVubk6uXLk0f1h9DiQmJhIVFYW5ubmmxCcSiUTyvggPD8fCwuK1yYIuXbqkKQEM6E8V4+LiNGmfPXum6aE5ZVytBqyJiUmGJzBvIikpSfPnXFhYmGbj19ramoiICE1a+O+5ib6Niyj8vzGpBQsLC2JiYjQlgQkPD9eUYC4FaQwClC4N3brB0qUwaBDs3Qsaf4ElEoBHjx7h4OBA9uzZM1yQDPnjf1dtPqe+FEUhODiYR48eacpK+F9Hp9NhYWFBbGws7u7urFq16ou8DxKJ5NMjc+bMxMTEkDt3biZMmECbNm3+1ebu3buaMlyCPjOnVnfN+Ph4zQ/8WbNm5cmTJ5q0ZmZmmmMk3yZm0NTUVLMBm+LKq8W4SrleLVqdTkdsbKwqzatoMQYTExPfygh9GyP2beI63+b0V1GUT89N9KMxaRL8/jvs3683Bhs1+tgzkvyHiYmJMcgQlGhHCJHqGvE5ExMTg4+PD0DqznDx4sXx9PSkdu3alCtXTlMqaolEInlbAgICCAsLA/SeGpkyZaJevXo0btyYmjVrpuvamC1bNi5cuKBp3KioKCwtLTVp38agc3R05NmzZ5q0sbGxmk+NYmNjNa/zBQoU4N69e5pOraKjo7G0tNT0LJPyeRUbG6v6tMve3p7Q0FDNJ21GRkYkJCSoPk01MjIiKSmJuLg41fc75XRNywmuoihER0drjs/MkycP9+7d01TKyRDX1g+fMulj4egIY8bovx80CDS6H0gkKUhD8P3zOd/jmJgYGjVqhKOjIytXrqRu3bps376d58+fc/78ecaOHUvlypWlISiRSD44S5cupUSJEhQrVgw7OztGjx7N5cuXefr0KWvXrqVVq1YZxrjlyJEDf39/TeNHRUVpPglxcHDQbNBZWFgQHR2tSXvy5EkqVqyoSZsjRw4eP36sSRsYGIiDg4Mmo+ptjO7Hjx9jZ2enye1RCPFWSXMcHR01Gfzm5ubkzZuX8+fPq9a+TTZQIQQuLi6aN0eEEJo3Gm7cuJFh7csv52QQoG9fWLIEfH1hzhwYNuxjz0gieSeMHTsWa2trXrx4gYeHBw0bNnyr/nx8fPD396dmzZrvaIaSV/Hz8+O7775j/fr1b5UlTCKRSN4l165dY+3atSxYsIBKlSppdrm0s7MjJCREk/ZtsnrevHmTvHnzatK+ePFCsxGaLVs2AgMDNWnfJtOko6MjL1680GTYRUZGar7P9vb2vHjxgujoaNVJd4QQ5M6dGz8/P4oWLap6bAcHBx4/fkzu3LlV6RITEwkKCiJXrlyqx3ybshKgz3Kbcsqulvj4eM0xpXZ2djx79owCBQq8sc2XczIIoNPB7Nn67ydMAI1uBBLJp8r48eNfa8CpjUXw8fFh7953lhxT8hpy5MhBnz59pCEokUg+KZKSkjh27BhVq1Z9q4ff4OBgzYaGhYWF5vIQfn5+lCxZUpP26dOnmhN1ubq64ufnp0lrbGysOd5QCIEQIsMkIa/j2rVr5MuXT9O40dHRmJiYaDrdS4lj0xr3FxQUpMl4jomJITo6WpMxmBLDrzWxUWhoqCY3TwAbGxsePXqkSZuYmJhhvOKXZQwC1KsHjRtDeLi+9qBE8h9l0qRJFClShNq1a6d+AHXq1Ilt27YB+tTc48ePp3LlymzevJmDBw9SoUIFypQpQ9u2bVMziHl7e1OxYkVKlixJuXLlCAsLY/To0WzatIny5cuzadOmj3aNnzMBAQH8/fffH3saEolE8hI6nY62bdsSHh7+Vv08ffpU82lG4cKFNRtWJiYmml0uw8PDNW/QvU1mzuLFi3P37l1NSVVu376Nk5OTpoyi169f56uvvlKtA/Dy8qJs2bKa3EyfPXtGeHg4zhqy+/v5+ZEpUyaKFCmiWpsyVy0Jd3Q6HQ4ODprcU5OSkrhx4wYlSpRQrQXIlSsXf/31l2pdYmIit27donjx4um2+/KMQdDXGtTpYOVK8Pb+2LOR/NcRIt0vcwsLbW3S4dy5c2zcuJELFy6wbds2vN/we2xubs5ff/1F7dq1mThxIocPH+b8+fOUKVOGmTNnEhcXR6tWrZgzZw4XL17k8OHDWFlZMX78eFq1aoWXlxetWrV6H3ftiyd//vx8/fXXHDhw4GNPRSKRSFIpVKgQmTNnxsPDQ7ObJ0D79u05fvw4d+7cUa3NmzcvwcHBmorWt23blr/++ovbt2+r1r5NvKG1tbXmrJ7x8fEoiqIpRtzExETzadXXX3/Njh07NGlz5cqlOSbU0dGRzJkzc+PGDdXapKQkzbH0QggyZ86s+fdaa5zj8+fPsbCw0ByfaW9vj6+vr2qdsbExRYsW5eLFi+m2+2xjBoUQTYAmTk5Or91dcuzYEbvly4nu3p07kycb1KchC9q7aiP7+rT7io+PT93BUx86bRivuoyk3TE8cuQITZo0wcjICFNTUxo2bEh8fDyJiYkkJCSkpntu2rQpMTExnDhxgmvXrqUGt8fGxuLh4cGlS5fIli0bJUqUICYmBlNTUxISEoiPjychIcGgXUpDdzK19hUfH695h/hTJnPmzKxcuZJmzZpx5MgRzTuGEolE8i4xMjJiyZIlDB48mDZt2rB//35N7nwREREYGRmRI0cO1VpjY2Ps7Oy4efMmpUqVUqVNKe7t4OCgety3KT1gYWFBXFycpsLkR48epXz58pru8759+6hWrZpqHeiNDK21EYsVK8aTJ094/PgxOXPmVKWNjY0lLCwMJycn1ePmyZOH+/fva8pE6u/vT0JCgqbfyRs3bqTGOqrl6dOnmmtfgt6TqFKlSpq0ISEhGbo+f7bGoKIou4BdxYsX7/7ao+SZM2H3biwuXqTU1avkMDDhhiHH0u+qjezr0+3r+vXrmJmZ6bNoZbBLpLVW3+sUKW10Oh06nS71/yYmJuh0OoyNjTExMcHc3Dy1NIO5uTk6nY46deqwYcOGl8a7dOkSxsbG/xpbp9NhYmLy/9eYAYZmE9PSl06n0+QO8l+gUqVK/PTTT4wdO5atW7d+7OlIJBJJKtOmTSNr1qwEBQVpepA9fvw41apVU51cBPRJYCIjI1UbGaDPrmljY6PJ3fPs2bO4uLio1gHExcVhbGysuRi61kyV/v7+mpKwgL5gvVa32HPnzmFiYqIpLvTgwYOUKVNGUyF1S0tLYmNjNZ3QRUdHY21trSkW1tLSkujoaCIiIlS75ObIkYPAwECePHlC9uzZVY99+fJlJk6cqFoXHBxMWFhYuslj4Et1EwXInBl+/hkAh19+AY1+3hLJx6Bq1aps376d6OhowsPD2bVrV7rtPTw8+Pvvv7l16xag95e/ceMGzs7O+Pv7p7qZhoeHk5CQQKZMmd46XkRiGF26dGHv3r1vXYBXIpFI3iUmJia4uLhw/fp1Tfpbt25lmNL+Tfzxxx+0bt06w/IVryMwMFBzoo5z585pPoFJyUSqpQSAk5MTDx8+1DRu9uzZCQgI0KR9+PChJuME4MCBAzRo0ABbW1vV2pQ4Ry1ERUVhYWGhyaBzcnLSXIMyV65c5MmTh7Nnz6rW2traUqBAAc6dO6daGxsby8OHDzOM+3sdcXFxCCEyzP3w5RqDAB07grs7usBAmDLlY89GIjGYMmXK0KpVK0qVKkXz5s2pUqVKuu0dHR1ZtWoVbdq0wdXVlWrVquHr64upqSmbNm2iX79+lCxZkjp16hATE0ONGjW4du2aTCDzAciUKRM5c+bk7t27H3sqEolE8hLFihXDx8dHkzbFbVILuXPn1hzXdevWLQoWLKhJ6+DggJeXl6ZTJ51Op/l6Dx06RP369TVpc+bMyYMHDzRpz58/r9oNN4UePXqwa9cuTXF/nTp1Yvfu3Zoyxqa4H2shOjoaU1PTDLNrvgl/f39NnkpxcXH4+vpStWpV1VozMzOsrKw03ascOXIwdOhQ2rVrx82bN9/Y7rN1EzUIIyOYOxcqVIAZM6BrV8jgKFUi+VQYOXIkI0eO/NfPU2IN792799LPa9asmXoCmNYt1d3dndOnT/+rH29vb4NcXCVvj7W1teZCxxKJRPK+qFevHnPmzGHAgAGqtVZWVpo9TAoUKJDqyaKWkiVLapovwODBgylQoAC//vorffr0UaX19fXVnJnzyZMnGbryvYmyZcsycOBATVpnZ2fNIQrZsmXD3d2dLl26qM50meLqqcU1dtmyZbRs2VK1DvQ19xwdHTl79izlypVTpQ0MDCQhIUHTiWZsbCxGRkaa3GJTktZoNYB3795N69at0/3d/LJPBgE8PAhr2hRiY2HIkI89G4lE8gWi0+k0B/FLJBLJ+8LS0lJTDBzoww60PPyCPtuyliykoE8CozXb5J49e4iPj9cUg5ctWzYePHigqd7f28TuOTg4aDa6K1WqxLlz5zRnQY2OjtaUjEWn01GsWDHatm2r+hS2SJEiHD9+XPMGavbs2Xn69Klq3eXLlylRooSmv4e3KVh/9epVbG1tNf9+WFpaYmFhke68pTEIBA0eDFZWsGMHHD78sacjkUi+MFKy30kkEsmnxMWLFylbtqwmrSHFrt9EShF1LfpHjx5pLqS+cuVKOnToQI0aNVRrY2JiUrN5q8XU1FRzjcJ79+5pjvuztrYma9asmk9hb9++rSmxiRCC/Pnzc+zYMdVGXatWrTAzM+PYsWOqxwV9UhUtCZFCQ0M1FboH/caI1rISISEhqZnetdC5c2fWrl2bbhtpDAKJ2bJBirvdwIEgH8okEskHRJ4MSiSST5GLFy9SsmRJTdpixYpx+fJlTVpvb2/Kly+vyTUupfSAFlavXs3q1asJCgpSrZ0zZw79+vXD2tpatbZ8+fKaEpPA/xdhT0xM1KQHNGuNjIw0vUe+vr6cPHmSo0ePajKSbG1tNSWCiYyM5MGDB7i5uanWOjs7a06m9PjxY3LlyqVJW6VKFSwsLDh06JAmvbW1NUlJSeluNkhjMIVBg/TxglevwqJFH3s2EonkC0KrG5ZEIpG8Ty5fvqwpiyHoM1Xmz59fk/bp06eaH57z5s2Lv7+/plPFXLlyIYRAp9Op1rq6uvLo0SPVOtDXnY2MjNSkbdasGcHBwcyaNUu1Nj4+XnNSlKCgICIjIzXFOo4aNYrBgwdrTl4jhNBksMfHx6eWzlJL4cKFefDggSYX09jYWM35F4QQBAcH4+zsrElvZGSEubk5x48ff3MbTT1/jpib65PIAIweDcHBH3c+EolEIpFIJB+RvHnzppuFMD38/f3JmzevJu2ZM2c0n0haWFiQmJioKSMo6A0zLUbdgwcPNBuwT5480VRGA/SeJVZWVppKPJiYmJA9e/bU5HJqCAgIIHfu3Jpi4apXr86aNWs0GcAPHjzgypUrNGrUSLXWxsYGExMT/P39VWtNTU2pV68eNWrUUO3aam9vz7Nnz1SPmUJ0dLSm9xdg3bp1ODo6Ur58+Te2kcZgWpo2hdq1ITQURo362LORSCQSiUQi+Wi0bNmSxYsXa9La2NhoLnkQHh6uqZg56BNuODg4aHJfVBRFc6xjQECA5ljFAgUK8Mcff2iugRcaGkr16tVV64QQZMuWjZMnT6rW/vXXX5pPq3r37k1MTIymjYZjx45Rt25dzTUsdTqdprhOAHNzc548eaLaiI2NjX0rD6DMmTPz4sUL1bqQkBD279/PuXPncHBweGM7aQymRQiYPRuMjWHxYrh06WPPSCJ5a+bOnYuLiwvt2rV7675WrVr10o5at27dNPvQnzhxgjJlymBiYsKWLVveem4SiUQiebd4eHjwzz//aDplq1atmuqSAynUr1+fPXv2aNL+9ddfVKpUSdPD96NHj0hKSqJEiRKqtRUrVuTAgQOqdQANGzbExsaGKRprXpubm2uqQwf6Iu5aDOc///xTU928FJ49e6bJxTQkJETzRsHTp09JSEjQ5L4cGhrKli1b+OOPP9I1rF7H5cuXNbvEgv60W0v21DNnzuDm5oadnV267aQx+CrFikHv3pCUBAMGgEY3A4nkQ6Ioyht3Mn/99Vf27t3LunXrXvq5lsxUrxqDy5Ytw8XFRXU/oA/yX7VqFW3bttWkl0gkEsn7ZdKkSQwYMECTYRUeHq4pmQro6xseOXJEU2KTRo0acfjwYU1JuczNzUlISNB0va1bt+bAgQMEawwzMjU11XSy+OzZM549e6bJgPXy8iI0NJR+/fqp1vbv359Zs2Zp2igIDg5GURRNsXsbNmzQdAoK+hO2qKgoTaU0smTJQtWqVRk7dqxqbdasWTX/XsTFxREUFKSptISXl1e67qEpfLZF54UQTYAmTk5O+Pn5pdv21Vo2Ru3bk3/tWkyOHePx3LlE1K//2naG9KW1jezr0+4rPj6e2NhYg/oypJ2WNvfv36dp06ZUq1YNLy8vmjRpwt69e4mJiaFZs2aMGjWKfv36cefOHZo0aULHjh158eIFAQEB3L17F0dHR8aPH0+XLl1SF8aZM2dSoUIFAGbMmMH69esxNjambt26lClThrNnz9K2bVssLCw4duwYTZs2Zfz48Xh4eLBp0yamT5+OoijUr1+fSZMmAfoaSH369GHPnj1YWlqyefNmsmXLRvbs2cmePTuKohAXF0dMTMxr70N8fHyGf8MSiUQieffY2tpmeKrwJsqXL8/Nmzc5e/as6vIUdnZ2ml35cuXKlRoXpjZm8fbt25rjHG1sbHBwcODmzZvY29ur1kdHR2tyfVyzZg3NmjXTVMA9ICAANzc3TfUgq1WrRnx8PFeuXFFtiNrb2+Pi4kLbtm3ZsWOHKu3gwYPp1asXrq6uqk/bLC0tKV26NOPHj2fq1KmqtH/99Rfnz59nzZo1qnTwdhlu582bh4eHh6Z6jufOnTNow/2zNQYVRdkF7CpevHh3Q7Ik/avN5MnQuzc5Z82CHj3AwuL17QzpS2Mb2den29f169cxMzPD3NycjDcQDckg9e82r9tsS5uNyszMjBs3brBq1SqaN2/Oli1bOHv2LNHR0XzzzTecOXOGpUuXcujQIY4dO4aDgwNjx47Fx8eHw4cPkyVLFqKiovjzzz8xNzfn5s2btGnThrNnz7Jv3z727NnDyZMnsbOzIyQkBDs7O5YsWcIvv/yS+sFuZGSETqcjJCSEUaNGce7cObJkyULdunXZv38/zZo1IzIyksqVKzNu3DhGjx7N2rVr+emnn1Kvw9jYGFNT09RrezXjlk6n05Tp7EvibVKKSyQSyZuoV68eU6ZM4YcfflCtjYmJQVEUzYlc7Ozs8Pb2xsPDQ5UuKiqK2NhYMmfOrHrMQ4cOaT51Av3nlZZ6gbNmzSIuLk71tYK+TEPlypVV6wAKFSqEj48PiqKoPg1NTEwkNjZWUwIZIQRly5ZVbQiCPvmMEIKwsDDV2hT9r7/+ypQpU1S5x44aNYoFCxbg6empeswCBQrw4MED4uLiMDU1VaVNTEzUXHqqevXqDBs2jOLFi6ebFVi6ib6JHj3A1RXu34dffvnYs5FIXkvevHnx8PDg4MGDHDx4kNKlS1OhQgV8fX3fGJjt6emJRfLmRnx8PN27d6dEiRK0bNmSa9euAXD48GE6d+6cWv8no51hb29vqlevjqOjIyYmJrRr144TJ04AeteXxo0bA+Dm5sa9e/fexaVLksmZMyfNmjWjePHiDB48mF27dml2R5FIJJK0ODs7a/bMOH/+PHFxcTRv3pyuXbuyefNmg9PyCyGwsLDg4MGDqse9ePEizs7OmgqEnz59WlPBeYCkpCTCwsJUnwomJSUxadIk5s6dq8mANTEx0WwsFC1aFCGEprj9+/fvo9PpKFq0qKaxr169Sr169VTrtmzZQvXq1alWrZqmce/evUtcXJzqGLwbN25oThCUUq5ES1znoEGD8PX15cqVK6q1ffr0wczMLMNYVGkMvgljY5gzR//9lCnw8OHHnY/kk0VR0v+Kjo7R1MYQUoKoFUXhxx9/xMfHBy8vL27dukXXrl3T1YB+NzJbtmxcvHiRs2fPEhcXl9qfml3C9HZ+dTpdal/GxsaaYhUlb6Z79+7Ex8dz9epV5syZQ/v27XFyciJ//vxMmDBBGt8SiUQzu3bt0vzQXadOHZydnXn48CErVqyga9eu5MmThzx58jBkyBBOnTqVbtZOIyMjTQZdUlKSpoQooHeL1erOd/bsWSwtLVW7LhoZGfHLL78wI6W8mUoePnyIk5OTJq0QAldXVwYMGKBa6+joSGhoqKaT34CAAE6dOsX333+vWpvifqyF7du3s3v3bry9vVUnoZk+fTp9+vTRdL2HDx/G1dWVrFmzqtbqdLrUL7V8//33ODg4sHz58nTbSWMwPapXhxYtIDoaNLhISCQfinr16rFixYpU95THjx8TGBiYoS4sLIwcOXJgZGTE2rVrU90N69aty4oVK1JjCUNCQgDIlCkT4eHh/+qnfPnyHD9+nGfPnpGYmMiGDRs0P0BItJOUlMSLFy+Ii4vj3r17TJo0CRcXF0qWLMm5c+c+9vQkEsl/iAcPHjBhwgQmTJiguY+0m4rh4eHExcXx8OFD5syZQ7169ciSJQtdu3b91yZhSEgIISEhNGnSRPWYhQsX5tKlS5piDgcNGsTYsWM1neAUKVKEoKAgTdqvvvpKk3upoij8888/uLu7q9am8OjRI7755hvVupTkQKGhoaq12bNnp2rVqtSqVUt1OQ0HB4fXPocYQo0aNcicOTP//POPam2bNm2IiIjQlDE2T548PH78WFNIR2BgIMHBwXz11VeqtR06dOD27dsZ3uPP3hiMjY2ldu3a3L17V1sHv/yiL0i/YQMW8mFK8olSt25d2rZtS4UKFShbtiwtWrQwaLHs3bs3q1evxsPDgxs3bqTulNWvXx9PT08qVapEqVKl+CXZVbpTp0706tWLUqVKveRikSNHDqZMmUKNGjUoWbIkZcqUoWnTpumO7e3tTa5cudi8eTM9e/bUXDPoc0HLg0BGxMbGEhMTw40bNzRlbZNIJF8uFhYWODg4sHjxYs3JXN5EYmJiqnH45MmTl+LOAgMDqV69Op06dVLtlufn50etWrWoUaOGpoQqRYoUIT4+XlOdQRsbG5ycnNi6datqbbFixfD39+fHH39UpRNCULBgQc0lPA4dOsSzZ89SE76p4eeff8bZ2VlTlkshBFZWVpiYmKiOocuaNSuBgYGpnkxqsLW1pXTp0ppcn4UQFCpUCF9fX9Xa4sWLY2Njoylr65MnT8idO7emz/CyZctStGjRDK/3szcGnz59yp9//kmpUqX4/fff1XeQNy8kH2NnnTQJZKIGySdCvnz5XvIhHzBgAJcvX+bs2bOcOnWKggULAnDv3r3Umjhjx45l6NChqZpChQpx6dIlTp8+zZQpU14ySIYPH86FCxfw8fFh8uTJADRv3hw/Pz98fHxSM4q6ubkB0LZtWy5fvsyVK1eYNm1aaj9p+2zRogWrVq0CwN3dnUePHhEZGUlwcDBXr159x3fov0PhwoVp3rw5Tk5OtGnThpUrV3Lz5k3NiRdAn0LbzMyMAgUKcPz4cUqWLPkOZyyRSD53HB0dOXbsGOvXr8fW1pYaNWqwcOFCzW6UKWTKlAkLCwuyZMmSGuec9gTR29ubu3fv8vXXX6vue8eOHQQGBjJnzhzVCVEURWHo0KF4enpqzqCq0+k0fZZlyZIFd3d3TaUavvvuO02JWABOnTpF2bJlNdXt27RpE+PHj9eUQAb0MXgLFixQfa/v3buHmZmZ5g2KkJAQqlSpokkrhNBUlsLIyIgCBQrwxx9/qH5/7ezsCAgI0JwoLjg4OEP31M/eGMyZMydff/01L168oFWrVvTo0UP9G/n995ArF+bXrsHKle9nohKJ5Iulbdu2xMbGEhAQwMaNG+nfvz+lS5fG3t6efv36ceHChdd+gCiKwoMHDwD9h425uTlOTk506tSJZcuW8fDhQ27fvk25cuU+9CVJJJLPACcnJ+zt7YmNjeXYsWMMHToUZ2dnChYsyMSJE9MtwxQXF8fz588xNjZGp9NRsGBBunbtyuLFi/H19SU4OJhJkyb9K76vUaNGrFixAk9PT9UPwN9//z1NmzalZcuWqq/V29ubbdu2sXjxYtVagOfPn/P06VNNLpcA/v7+1KhRQ7URe/36dXLmzKlpzMGDB3Po0CFu376tWtuzZ0/NdQZBf8K3f/9+1bopU6bg7u6uufD8gwcPKFy4sCZtYmIiDzXkELlw4QK7du3i77//Vv3+5sqVCysrK65fv656XNAn+smfP3+6bT57Y9DY2JitW7eyYMECzMzMWLp0Ke7u7ly+fNnwTqysYPp0/fcjRoAGf3CJRCIxlIiICCIjIwkNDWXhwoVUqVKFvHnz4uXlBejdRnr06EHu3LkZMGAAJUqUYM6cOdy4cYPHjx+zcuVKWrZsiaOj40e+EolE8jkRFRVFTEwMd+7cYeLEiRQrVoyiRYu+9KCqKApjx47FyckpNVPm06dPuXXrFsuWLaNNmzbkyZMn3YfiYsWK4eDgoPrUKSQkhO3bt2uKc3R1dcXS0lLzQ3fPnj1p2rRpaq1eNdy9e5fbt28zb948VTo/Pz9WrVrFkCFDVI8J+oL1ZmZmmmorduvWDV9fX00GXVxcHL6+vnTv3l21dvr06dy5c+etymns2rVLtc7Pzw9vb29NZVZcXV0pVKgQ27dvV6199uwZz58/12zAZsmSJcM41s/eGAT9sW7v3r3x8vLC2dmZa9euUa5cORYvXmz4jkarVkS5uUFQELxFMLVEIpGoITExkaioKCIjI8maNSubN2+mZMmS2Nvbc/ToUQICArh06RJ9+/Yld+7cH3u6EonkCyElJtnX15fZs2en/nz69On88ccfeHt7c//+fX744QfVWUHv3r2rqWSBmZkZpqammrI2mpub07p1a03lLEBv4FSqVEmTduvWrbRt21Z1kpDQ0FDy5Mmj+WTQzs6OxMTEVA8TNYSEhBAVFUWuXLlUa42NjTE2Nv5XXWFDyJo1K5aWlqmhMGoxMzMjNjZWtS6lnqOW8hLGxsY0b96c6dOnqz5JNTc3f6tagzqdLsMs7l+EMZhCyZIlOXv2LF26dCEmJoZevXrRsmVLXrx4kbFYCAJHjgQhYO5c0BBAKpFIJIai0+nInDkzpqamVKhQAS8vL/Lnz8+CBQsYMmQIU6ZMoVChQqpdTiQSieRtMTY2Tl2fsmfPToECBQBISEhgwoQJ7NixI0PXtPQ4ffo0Li4uqnXW1tbMmjWL1q1ba8o46enpyZw5c3j06JFqbdOmTTl06JBqHehPf7R4cpQoUYLnz58zfPhwTe6amTNnpnjx4ppOUnfv3k29evUoUaKEKl18fDwTJ04kLi5OUxKYp0+fcv/+fVZqCNsKDQ3lwoUL1KxZU7XWxcWFkydPsmHDBtVa0CdG0pKYyNramrJly6o+NQb9ZnJgYGBq3og38UUZg6CvsbZ8+XLWr19PpkyZ2Lp1K82aNePUqVMZamOLFoVu3SAhAQYNMrwYnEQikbyB2NhYLl68CPx/PaFSpUoxfPhwdu/eTXh4OH///XfqjvGoUaOYM2dOqkYikUjeF4GBgalGlZmZGebm5pQvX54ffviBjRs34u/vj7+/f6rrXHBw8Fslvkph3759NGvWTJO2ZcuWJCYmsnbtWtXaSpUqkSVLFoYPH65aW7JkSf7++29NBk7WrFm5du2aap2VlRUnT55k+fLlmjOK5s6dW1PReX9/f02nc4sXL2bFihWcPXuW0qVLq9Y7OjqiKIqmWoObNm3CxsZGUxx94cKF6dy5Mx06dNCURGbjxo3s379f0wZu/fr1mZ4SrqaCR48eYWNjg62tbbrtvjhjMIU2bdpw4cIFypYti7+/P1WqVGHKlCkZW+0TJ4KNDezfD3v3fpjJSiSSz46YmBiaNGmCg4MDy5Yto06dOmzdujV153L8+PFUqVLlX2m3a9WqxaxZs6hTpw4nTpz4SLOXSCSfK3FxcYwbN47ixYtTuHBhrKys6NevH3///TcRERGcPn2aSZMm0aBBA+zt7V/SZsuWjUmTJlGvXj2uX7+u2TC0s7PTVK8vhcTERM2191LKHqildOnSmJiYsGLFClW6Fy9eMHbsWE3ZU0Ff2snBwSG1HrBa7t+/rynhzpMnT8iWLZtqXYcOHVAUhcePH6vWApiYmFC6dGnatWunWtuxY0dCQ0Pp27evprEfPnyIp6cnlpaWqrVWVlZkzpxZ07ihoaGa4joVRflXgqbX8dkWnhJCNAGaODk5pVtfY8WKFYwbN46tW7cyYsQIdu/ezdSpU1OP6xMSIKW0x507d6BAAbJ89x1Zf/6ZuD59uJsnD6R5WEsvs5aaNrKvT7uv+Ph4g33ODWn3rtq8rt2CBQtYunQppUqVSi3roLWvtWvXUqtWLZycnAB9SutevXoZVLbg1b7mzJnDqlWrMDExwcHBgUWLFpE9e/Z/6eLj4zXVBPrU8fPzo2fPnqxduzbDXbtX+eabb8iSJQstW7bk+PHjODs7v59JSiSSL45r165RtWpVli9fjpubm+r6ZgMGDMDCwoKqVasycuRIBg4cqEofHBzM2bNnKVu2rCpdWhRFSS2Krobbt28TEBCg2VhIce9XQ6ZMmRg3bhzdunVj//79rFixQtU99/b25tmzZ1SrVk3tdAG94X3w4EHi4+PR6XQG6/LkyaMpC6mNjQ0jRoxg3rx5VK1aVZU2KSmJgQMHcvnyZRYuXKhKe+DAAfr27UvOnDnp0aOHKm0KKbGOWihdujSzZ89m7ty5qrX58+fn+vXrPH36VJUB/uzZs39t2LyOz9YYVBRlF7CrePHi3YsUKZJu20mTJtG1a1e+/fZb/vnnH/73v/+xZs0anJ3rU78+TJ0KKZmCixQpAuPHw44dmPr6UuTAAUhTty21TQYY0kb29en2df369VSXGUMwpN3btFEU5aUdoLTtli5dyr59+/4Vv2FiYmLQB07avtatW0fp0qVT40NWrlxJTEyMpvtQrlw5+vXrh6WlJQsXLmT06NGsXr36X33pdDqD37P/Ejly5NBUgDaFOnXqMGzYMH766Sc2b94sYwclEsk7wdbWlnHjxhn0EPkmevToQf78+enfv79qY/Dx48c4OjqSI0cOTWPHxMQQFRWlepMNIDIyEoDLly+rjoXbv38/oaGhNGjQQJVOCMGgQYPYsWMHu3btIiEhQZUx6OPjQ4MGDTRdb1hYGH5+flhbW5OQkKDKGNSa0ATQnBAlKSmJ48eP06FDB1q1aqVKe+rUKSwtLTlz5ozqQvcp5M6dm507d2rSlipViq1bt2rSent7Y2ZmptoF2dTU1CCX1i/WTfRVGjRowMWLF6lVqxZBQUE0aNCA1q2Hce9eHK1aQdu2EBaWfLt0Opg1S//9+PHw5MnHm7jki+XevXu4uLjQu3dvypQpw4QJE3B3d8fd3Z0xY8YA0KtXL+7cuYOnpyezZs1i7Nix9OjRg8aNG9OxY0fu3btHlSpVKFOmDGXKlOGff/5J7X/atGmULVuWkiVLMnz4cLZs2cLZs2dp164dpUqVIjo6murVq3Pu3DkANmzYQIkSJShevPhLqZetra0ZOXIk5cqVw8PDg6dPnwJQo0aNVFcLDw8PTQH7/2UCAgJeut9a6NWrF+fPn8fGxoaaNWsyffp0Tp06pSlTmkQikYC+ZqmHhwfPnj17q36cnJy4d+8eX331FQMGDGDfvn1ERERkqHNxcSE4OJgrV65oGnf9+vW4u7trMiZdXV3Jnj07ffr0UZ3sY9myZTg6OhIcHKx6XNC7ay5cuFB1hs28efNqygYKpHrkXLx4EQsLC1XaO3fu8PjxY03F0A8ePKjJjdfExIRDhw6xdOlS/P39VWlHjRqFk5PTW23C2tvb8+jRI03JiZ48eaI6qy7oNyh+++031q5dqzpjeLFixXj27FmGvx/SGExDjhw5OHDgAJMnT8bY2Bgvr1/Im7cy5uYP2LABPD3zkZpxuH59aNwYwsP1tQclXyxinEj3y2KqhaY2huDn50fHjh2ZOnUqjx8/5syZM3h5eXHu3DlOnDjBokWLcHJy4ujRowwaNAiAc+fOsXnzZtavX0/WrFk5dOgQ58+fZ9OmTfTv3x/QB+/v2LGDEydOcPHiRb7//ntatGhB2bJlWbduHT4+Pi99cKQkEDhy5Ag+Pj54e3uzY8cOQL+QeXh4cObMGapWrcrSpUv/dR3Lly9XvZv6Xydfvnw0bdpUcxpz0Bvav/32G+Hh4Rw9epQRI0ZQr149MmXKRJkyZViwYMFbP9BJJJIvizx58tCiRQsaNWqkOQ4N9A+ihQsX5vbt28yfP5/WrVtjZ2eHq6sr48eP5/z58681uHQ6HT/99BMDBw7UFHM4ceJETdkxAU6cOMGtW7fYvn27QbFWaVm/fj0Azs7OnD9/XpX2wIEDJCYmaordu3v3rqbyDqD3MHn8+LGqE8EUZs+ejZeXF5MnT1at/fnnn5kxY4amTWALCwuEEKrjFY2Njdm4cSN79+7l999/Vz0u6E/NFUVh48aNqrUHDx7UdK+srKzo1q2bJiNWCEHu3Lk5fPhwuu2kMfgKxsbG/Pjjj5w4cYI8efJw/743efM2oVy5aJ4+1VGvHvTtC5GRwMyZ+lPClSvB2/tjT13yBZI3b148PDw4ePAgBw8epHTp0lSoUAFfX983Ztry9PRMNeTi4+Pp3r07JUqUoGXLlqnZzA4fPkznzp1TT+7s7OzSnYe3tzfVq1fH0dERExMT2rVrl5rcxNTUlMaNGwPg5ubGvXv3XtL+9ttvnD17lmHDhmm+D/9FbGxs2L59O+3bt9e8Aw685B6akJBAeHg48fHxXLhwge+//56cOXNStWpVVq1aJQ1DiURiEJMmTaJq1apUrlz5rRK5pBhUSUlJvHjxgvj4eC5fvsykSZOoVq1aauzz3r17Xzph6tOnDz4+PpoKmj9//lxzWQt3d3cKFiyIp6en6o06nU5HXFwcVatWVVUj8fr167Ru3Zq1a9dqikerVasWe/bsMejU9VVKly5NYmIiJ0+eVK3NnDkzmTNn1hSz7uLiQqFChTQZVQkJCRgbG2sKjbCxsaF+/fqp3lNq8fb2xtbWliZNmqjWOjk58fDhQ03jFihQQJNbbdeuXTE1Nc0wOdFnGzP4tlSsWJELFy7g4eGBn98levYcQsWK45g/35EFC+DgQVizphAeAwfC9OkwYAD8/ffHnrbkI6CMSX/n0pCYOjVxd2lJyXimKAo//vgjPXv2zLCvtFnSZs2aRbZs2bh48SJJSUmpOkVRVC206e3e6nS61L6MjY1fKn56+PBhJk2axPHjxzEzMyMmJsbgMT8HKleuzIgRIxg7dqym1N4ZkRIrcPLkSc6fP0/Pnj1xdnamXbt2tG3b9p2PJ5FIPg+MjIxSi8ffv39fUzxaeqStMbdlyxYOHDiAiYkJ3bt3p1+/fjx48ICYmBhN47Zt25b69evz999/q04io9PpMDY21nQi+ezZM4KCgrh69aqqmDQTExPy589Pt27d+O233/Dw8FA1boECBUhMTCQmJkb19QohyJUrF/Pnz9eUgMbc3JxDhw6pPtFcu3Yt169fx83NTfWYtra2ODk5MXHiREaPHq1aX6hQodRkemoJCQmhbt26r012lx6xsbH4+/trjsO9deuWpjIcVlZWBAYG8uDBg3RdVOXJYDrY2dmxadMmTE1NWbx4IfnyrefMGShWDG7ehEqVYBQTiMuaC06dgmQXAYnkQ1OvXj1WrFiRujP4+PFjAgMDM9SFhYWRI0cOjIyMWLt2berObN26dVmxYkWqMZHiKpQpU6bX+sqXL1+e48eP8+zZMxITE9mwYUOGHywXLlygZ8+e7Ny5k6xZs6q63s+Jrl27smfPnvce5xcZGUlcXByXLl1i+PDhmtxVJBLJl0NCQgIPHz6kUKFC732s8PBwQkNDmTFjBtOmTWPBggUMGTKEChUqqO5r7ty5PHv27LUhCRmRUgfuxo0b1K1bV5U2JCQEOzs71clJChUqxK5du3jy5AkjNIQd3b59Gzs7uwwLi78ORVGIjY3VfGJVqVIl1q5d+y+Pn4zGnDRpEu7u7pQvX171mEIIGjVqxNSpU1VrQR/WorXEg5OTk6ZY/61bt1KoUCEaNmyoadzg4GBNifTmzJmDTqfjl19+SbedNAYzoHTp0syYMQOAn376CRubO5w9q08gqigwcboZHuY+XKUofP89IjkTlUTyIalbty5t27alQoUKlC1blhYtWhgU4Ny7d29Wr16Nh4cHN27cSD01rF+/Pp6enlSqVIlSpUqlLiSdOnWiV69eqQlkUsiRIwdTpkyhRo0alCxZkjJlytC0adN0xx42bBgRERG0bNmSUqVK4enp+RZ34L9LpkyZyJkzp6oPU61YW1tjaWlJ69atmTNnznsf71PkXRTElki+BIKDgzEyMiI0NPS9j2VpaYmVlRVVq1Zl+vTpuLm54ePjo6kvIyMjjI2NNbnfh4WF4erqqin5TL58+Xj8+LHqjI+KolCxYkVq166t2i02MTGROXPmqD5NTGHPnj0EBweza9cuTXpzc3NMTEw4deqUwRohBJs2beLvv//WFCMJeldgLbUgAY4cOZL6XK+Wc+fOMfSVCgKGcPLkSU2noCkULVqU33//XbWr6KJFi8iSJQtLlixJt510EzWAPn36cOTIEbZv307r1q3566+/mD7dlCZN4Ntv4cI9e9zEeSb7/0iHxUthsbraJxKJFvLly/fSh92AAQMYMGDAv9xE0xoZY8eOBUh1xyxUqBCXLl1KfX3KlCmp3w8fPpyBAwe+1Ffz5s1p3rx56v+PHTuW2lfbtm1f63qYNo6hRYsWtGjRAuC1Ac1fmptoCtbW1galf1aDubk5pqamREdHky9fPipXrkyVKlUoV64cRYsW/SJLUXyJ1yyRaCVbtmwMGDCAhg0bcvHixXfWr4WFBSYmJsTExJA3b14qVKhA5cqVcXNzo1SpUjx58oTJkyezbds2Tf2vXr2ahIQExo0bp1rr4uLCmDFjVIdKAJiZmWFvb8+5c+dUnWgKIZg8eTL9+/cnICBAVXHxFi1acPv27QwThLyJ6Oho3NzcUmtrqyUlO3j9+vUNaq8oCj179mTz5s00a9aMmTNnqh7zxo0bbNu2LTVhjxp8fX0JCAigffv2qrWPHj3i2rVrmkIsBg4cSLly5fjmm2801c9MybD7888/M2rUKIN1Tk5O2NnZZZgpVp4MGoAQguXLl+Pk5IS3tzc//vgjAFWrwsWL0LUrxCpmDGEmLZe25t4JbSl+JRLJl4lOp1O94xcaGsq2bdtYtmxZah8mJiYULFiQVq1aMX36dA4dOkR4eDg3btxgxYoVdO7cmWLFikmjSCKRGESRIkVUrxeJiYl4eXkxe/Zs7t+/j4mJCcbGxuTLl482bdowe/Zsjh07RkREBDdv3mTNmjX06NEDNzc3jI2Nsba2JmvWrBw9elTTnL29vfn+++81ZdgsWbIk0dHRrFixQtPYuXPnpn79+nirTCrYrl07cubMmeEJzqvUrl2b0NBQKleuzL59+1RpQV8qQWtiscePH7Nr1y4WL15scMkEIQQuLi6YmJgQERGhKWFOv379GD16tKYM5NmyZcPExIR58+ap0j1//pyGDRsycuRI1XGZiqKwfv16bG1tNYXEKIrC4cOHU0u+qKF69er8/fffGW60S2PQQLJkycLMmTMxMTFh5syZ7N69G4DMmWHZMti5E7Kah3FcqYZrLQdWrtS7kUokEklGmJiYvJRY503cuXOH2bNnU7NmTfLmzcvSpUuxt7dn1apVXLlyhZiYGG7dusXGjRvp27cv5cqVw8zM7ANcgUQi+dxQFIVp06ZlGG8E+uQp69ato3379mTPnp1u3brh5+fHyJEj8fLyIioqirt377J+/Xp69OhBmTJl3hhbl5Jpefbs2ZrmXadOHUaPHs3SpUs1uYULIfDy8tI0tp2dHXFxcZoMszx58jB79mwOHDhgsKZ3797MmTOHu3fvMn/+fNVjPn/+XPNnxM6dO6lTp47qk7JBgwaxb98+9u/fz98aEi/evHkTJycn1TrQP8tXrFhRdWmJhQsXUqJECb7//nvVY27dupWNGzdy+vRp8uTJo0p7+/Zt6tWrh7e3N+fPn6dOnTqq9Pv378fKyirDzWZpDKqgVKlSqUkXvv3225fqozRpAle8omhm/AfhCZZ06QLNmkHyCbpEIpG8EUNOBpcuXUr58uW5cuUKAwcO5MmTJ+zbt49p06bx7bffUrhwYU27rBKJRPI6AgIC8PPzIygoKN129+/fJ0eOHGzevJmqVaty/vx5Ll++zMKFCxkyZEi6ht+bsLGx0ezB0LhxY7JkyUKPHj04dOiQKu3WrVtJSkpSfXIE+vIZ586dY8yYMapc+UBveCcmJhIVFUXLli0NLuT++++/06dPH5YvX556SGEoERERTJs27aXQDzVkzZpVdXxkCkOGDKF79+7873//U63dvHkzvXv31myw+/n50aNHD1WaU6dOERwcrGnMuXPnMmDAANVxqIqiULNmTa5fv868efMoXLiwKn1kZCSdOnWiffv2GZ5mSmNQJUOGDKFBgwaEhITQpk2bl3bzHV1zsLjvMdbQgcxG4ezcCSVKQHLtbYlEInkthjz0rFu3jp9//plly5bh6emZWgPybUhKSmLdunXs2bPngySJkEgk/x2cnJzYv38/HTt2fCme/FVy585Njhw5aNWqFd27dyd37txvPXZAQACKorBixQru3Llj8Anfw4cPKVq0KDqdju3bt6s+SWnSpAkREREcOXJE9Zy9vLywtbVl+PDhqgzZp0+fUqZMGby9venXrx/Xr183eGOvfPnyxMfH06ZNG9XGc5s2bciTJw/dunVTpUtBURTNCbkmTJjA5s2bUzOVq8HNzY3GjRtTq1Ytnjx5olpfrFgxhg0bZpA3Tgrr1q2jevXq1K1bly5duqgab9y4cYwfP567d++q0gkhOHXqFJ07d6ZJkyZUqlRJ1f22srLi5MmTbNu2LcPs7p9tAhkhRBOgiZOTE35+fum2vXPnjkF9prQbNWoU586d46+//qJfv34MHDgwtc29GtVpta0f1R4Wo12+o/x1ryBffw3NmoUxcmQgmTIlqR7vXc5d9vVu+oqPjze4FIAh7d5Vm8+xr/j4+Az/hr8E+vfvT8+ePXn+/DkDBw58J6eAHTt2pFWrVhw8eJCYmBiyZ89OjRo1qF+/Po0bN1YdGyGRSD4fUmLnMmfOTK1atd7YzsjIiI0bN9K9e3dWr17N0qVL39ogLFq0KFmyZKF///4kJSVhaWlJ9erVadKkCZ6enm+MUTM1NSUgIICgoCBN7o8zZswgU6ZMuLq6qtZ+9dVXPH36lKtXr1KsWDGDdTY2NlhbW9OiRQvmzp2rasx8+fLh4OCAr68vJUqUUKX9+uuvGT58OEePHk33/X0Tbm5u9OzZk7i4ONUnv1WrVkWn0xEZGYmdnZ3qsePi4nBwcFBdh3LhwoXs3buXPn36qPoMzZQpE8OHD8fHxyc1aY6h1KhRg+HDh9OsWTOOHTtmcHwl6Ddkxo8fT65cuRgwYIBqg79cuXLUq1ePmzdvptvuszUGFUXZBewqXrx4d0NqcxhavyOl3e+//07NmjVZvHgxzZs3p3bt2qltTOfOJc/XX3P8eTnmT37AD+Ot2LHDhvPnbVi1CgoUUD/eu5y77Ovt+7p+/TpmZmYGF4o3pN27avO59aXT6TTV1/nc+N///kfp0qXp1KkTv//+O4sXL6ZUqVJv1edXX31FUlISL168AODBgwesXr2arVu3kpCQQN26denZsyd16tRBp9O9g6uQSCT/FV68eMHZs2fJlStXhokvKlasiI+PDz/99BMdO3bkyJEjb5WoyszMjGzZsqWepkRHR7N161b2799Pz549qVy5Mr169aJRo0YvZUrMli0bNWrUYMyYMfz888+qx92wYQNr1qwhZ86cqrV+fn4kJSWp9rL4888/efLkieaC5BUqVODYsWOqjcEuXbpgYWHBxIkTNRmDgYGBGBkZkZCQoNoYBL2BdebMGU0bBzExMSQlJREcHGzwezVr1iyWLFmCl5cXRYsWVTVebGwsEydO5MCBA+zcuVP1fAcMGMCxY8fInz8/8+bNo3379qr+PiIjI1UbvimEhITg7u6ebhvpJqqRatWqMXr0aBRFoX379i8fVTdtCrVqYfQ8hP6Pvuf8eXBzgwcPoGZNmDLFkTQl2iSS98rcuXNxcXGhXbt2rFq1ir59+2rq59Ui5RUrVtQ8p/nz5/PVV18hhNCcyexLJH/+/Bw9epQePXpQp04dNm/e/F7GiYiIICYmhp07d9K6dWtsbW35+uuv2bx5c6rhKJFIPm+yZcuGj48Pfn5+tGrVKsP2Op2OSZMmERkZSZs2bTKMNdRCZGQksbGx/Pnnn3Tp0gVbW1tKly7NiBEj+PPPP4mKiuLnn39mwYIFmvpv1qwZ69at06QdMmQIxYoVo2TJkgZr/P39adasGQ4ODpoKzoO+VIevr68mbYkSJVSfdKUwbtw4Jk+erDlkwdbWlo0bN2rSOjo64u/vb3Dh+djYWMaMGUPZsmU1zXfz5s1MnDiRPn36UKlSJdV6IQR16tQhLCyMb7/9VnUNzEuXLpEtWzbV4/r6+uLr68s///yTbjtpDL4FP/30E9WrV+fp06d06NCBpKQk/QtCwJw5YGwMixbhEn+JU6dgzBj9j1avtsPNDc6d+7jzl3w+KIry/79/r/Drr7+yd+9ezR9wKbxqDGa0uKRHpUqVOHz4sKp6ShI9RkZGdO3alcOHD9O/f38OHjz4XscLDw8nKiqKHTt20LVrVxwdHRk2bNh7HVMikXwaDBkyBEtLS7Zv325QexMTE44dO0bu3LkpUaKE5iQfhhAeHk5cXBw+Pj5MmzYNT09PMmXKxLfffkv58uU19Tl48GC2bNnCmTNnVGv37dvHkydPyJcv30v1ddPDycmJ27dvU6lSJapUqcKvv/6qasyjR4+yZMkSTXXzQG9cm5hocxK8f/++6uyYKRw6dIjHjx+rdosF/e/kH3/8waxZs5g1a5ZBGjMzM/z8/LCxsaFkyZKcPn1a1Zjt2rXj4MGDLFq0SJNHzp9//snw4cNp3Lgx169fV3WKe+3aNdauXav6pHvz5s2UKFGCunXrZpihVhqDb4GxsTHr1q3D0dGRw4cPv/xGFSsG330HSUkwcCA6E4WxY+HUKcifP5br18HDAyZMABUxrBJJKvfu3cPFxYXevXtTpkwZJkyYgLu7O+7u7owZMwaAXr16cefOHTw9Pf+1aAYFBdG8efNUTUqK54iICDp37kyJEiVwd3dn69atDB8+nOjoaEqVKkW7du0AUuPJFEVh2LBhFC9enBIlSrBp0yZAX5C+evXqtGjRAmdnZzp16pQa/Fy6dGny5cv3IW7TZ0vJkiVZsGABP/300wcbMyIiAjMzMzw9PT/YmBKJ5OPRq1cvEhMTKV++POcM3MG2tLRk+vTpLFy4kAYNGmhK8qEWc3NzkpKSaNKkCa1bt9ac5dLe3p5ChQpRv3591SdmdnZ2ZM2aFUdHR6ysrAzW5cmTh/Lly2NlZUWNGjVUjenu7s73339PzZo16dy58xs3hd9EiRIluHv3LpcuXVKlA33+jLZt23Lr1i3V2ri4OIoVK6Y6wyboDeiqVavSr18/VXF/OXLkSE3uo3YjWgjBoUOHSEpKYujQoWqnjLOzMzqdjp9//ll12MtXX31FixYtaNq0KX369DE4iUyVKlWoW7cue/fuzfBvUBqDb4mTkxNr1qwB9H8YZ8+e/f8Xx40De3s4ehS2bQPA3R22bbtP//56I3D0aKhUCWR+jP8uQoh0vywsLDS1MQQ/Pz86duzI1KlTefz4MWfOnMHLy4tz585x4sQJFi1ahJOTE0ePHmXQoEEvaQcMGMCgQYPw9vZm69atqRnFJkyYgI2NDZcvX8bb25uaNWvy888/Y2FhgY+Pz79OGHfs2IGPjw8XL17k8OHDDBs2jICAAAAuXLjA7NmzuXbtGnfv3tVUU0jyZpo1a4afnx/BwcHvpX9TU1MyZ86MiYkJefLkoVWrVnh7e1OlSpX3Mp5EIvm0KFmyJNmyZSMoKMjgBGygr1+3efNmzMzMVGVtzAhTU1NsbGywtLTE1NSUggUL0qxZM6ZPn05AQAA7duygU6dOnDt3jmgN8Tjx8fG8ePFC07y9vLy4fv06K1euVB0vGRUVBehPO9VgbW3N5MmTcXNz488//zRYpygKmzdvpnz58mTPnv2luEtDad26NQUKFFBd0gL0pdouXryoWgeQOXPm1PulhsTERDp16sSgQYM0lXl49uwZOp1O071SFAUhRIYlpF6HqakpjRs3xsjIiPPnzxusy549O7t376ZAgQIZuk1LY/AdUL9+fX744YfUHYPUBzM7O/3RH8CQIaQEClpYKMyZA4cPQ65ccOYMlC4N8+frDxIlEkPJmzcvHh4eHDx4kIMHD1K6dGkqVKiAr69vhtmjDh8+TN++fSlVqhSenp68ePGC8PBwDh8+TJ8+fVLbZZT56p9//qFNmzYYGxuTLVs2qlWrhre3N6DPZJUrVy6MjIwoWbIk9+7de+trlvw/RkZGFCxYUHXK6hReffCwsLDAxMSErFmz0rBhQyZPnszu3bsJDQ3l/v37bNiwQSbzkUi+EGJjY1myZAkPHjygQYMGtGjRwmDtkiVLCAwM5OrVq+TKleut5mFpaYmLiwtt27Zl8uTJbNiwgWvXrhEdHc2tW7fYvn073333XWqCDTs7OxwcHJg4caLqsWbPnk3WrFm5du2a6iQya9asQafTcebMGWJiYlRpv/32W3Lnzv1Sdno1hIWF0b59e4yMDHusv3//Pq1atWLAgAFcuXKFQoUKaRo3Li7O4ARyaUlKSiIyMlLTRsGePXto3bq1at2CBQuIjY1l5MiRqrVCCFasWEG9evXo2LGjwXUgU9i/fz86nU7TvQK4evUqOp2OP//8U9VGQ3h4OI8ePcpww1gag++ICRMmUKFCBZ48efKSOxzdu+uLDd6/DzNmvKSpVQsuX4YOHfR2Yr9+UK8epKllL/kPkFJr501f0dHRmtoYQooriqIo/Pjjj/j4+ODl5cWtW7fo2rVrutqkpCROnTqFj48PPj4+PH78mEyZMqXuYKm5/jeRNrV3StYxybvFzMzMYJeo6Oho9uzZQ8+ePcmfPz8NGjQgV65cNGrUiJkzZ3L48GFCQkJ4+vQpe/bsYciQIVSpUkWWmJBIvjAURaFs2bKMHz+eBQsWsH37dlWfC6VLlyYmJsbgsgGKohAUFMTJkydZtmwZw4YNw9fXF1NTU8aNG8e1a9dYt25daq3nvHnzpmv45MiRgylTpnD16lWD5wywceNGunXrpir9fwrz58+nePHiDB48mIIFCxr8eZeUlMS2bdt4/Pix5njsokWLMnv2bE6cOGFQ+3z58jF+/HiWLFmi6QQV9KEqjx8/1hSvuHLlSpo0aaIpXtHd3R0fHx9VmqSkJEaPHk3u3Lk5dOiQamMuhcDAQNXuqQBdu3alcuXKlClTRtP9LlGiBLGxsezbt0+VrlWrVhgbG7N48eJ020lj8B2h0+nYsGEDmTNnZvfu3cyePVv/gokJpATITpnyL0vP1hbWrIEtW/QepYcPQ/HisG4daKzlKfkCqVevHitWrEgNWn/8+DGBgYHpaurWrcv8+fNT/5+yuL7685Q02Tqd7rUuDpUrV2bTpk0kJiYSFBTEiRMnKFeu3NteksRA3vS+pOXmzZt8/fXXZM+enenTp1OkSBH27t3LixcvePjwIbt372bQoEFUrFiRTJkyfaCZSySSTxUhBPPnz8fOzo6ZM2canBAlhUqVKnHu3DkiIyPf2Obq1at07tyZChUqYG9vT+HChfn+++/566+/sLe35+uvv+bixYuqY7RiY2O5e/cunTp1wtnZWZV24sSJ9O/f/+WQHwMJDAzkzp075MuXj1WrVhlk6Fy+fJlSpUoxZcoUpk2bRrNmzVSPC3rXyejoaOrVq8e1a9cM0owYMYKSJUtSp04d1bGGAKdOndK8Wdi2bVv279/PqVOnVGurV6/OkSNHVGmMjIw4fvw4BQoUoFOnTlhbWzNgwABVRdwBnj17Rv369VVpABISEvDx8eG7777T5Ga6YsUK3NzcVI89adIk/P39admyZbrtPrgxKISoL4TwE0LcEkIMf83rQggxN/n1S0KIMmleuyeEuCyE8BFCqP9Lfc/kzZs3NePiDz/8kOoqR/Xq0KIFREXBDz+8Vtu8OVy5Ao0bQ1gYtG8PAwc6IbPuSwyhbt26tG3blgoVKlC2bFlatGiRYezB3LlzOXv2LK6urhQtWpRFixYB+iy5oaGhFC9enHLlynH06FEAevTogaura2oCmRSaNm2Kq6srJUuWpGbNmkybNo3s2bNnOHauXLl49OgRrq6uqfGKH5P/6tqk0+ky3IGeNm0aOXPm5M6dOxw7dozBgwfj4uJisEvRm0jvQU8ikbw7Psb6VKlSJcqUKUNCQoLqk5B58+ZRrFixdAu/JyUl8fvvv/O///0PX19fQkJCOHXqFKtWrWL48OGsWLFCtTEH+ri/8PBwRowYoXqNa9CgAdmzZ2fr1q2qxzU1NUUIgY2NjcHu9GvWrKFu3bqcOXOGLl26aK7NGBISgpWVFQULFjQ4ec2RI0c4ePAgLi4uqsdLSEhg6tSpBpUceR1fffUVlSpVYty4caq15cqVw9/fX/XpYPbs2dHpdCQlJaHT6ciWLZvq+x0YGKgpC3pwcDBhYWH88ssvqrWgzw+xevVqVYmJXrx4wbp164iIiMgwYd8HLTovhDAGFgB1gEeAtxBip6IoabcxGgCFkr/KAwuT/02hhqIon6yJVLt2bfr378/cuXNp1aoVFy5cwMbGBqZPh927Yf16LBo3htcsFNmzw86dsGIFDBwIBw5kokQJWLYMGjX68Nci+bTJly/fS7VqBgwYwIABA4iJiXnJLz1tnF6nTp3o1KkTMTExODg4pGb+TIu1tTWrV68GeKmvqVOnvlTTJ2WnWAjB9OnTmT59+kv9VK9enerVq6f+f/bs2al99e/fn/79+2u88nfPf3ltMjY2ztAYjI+P5+bNm5rdgV5H4cKF6du3LyNHjqRKlSrUq1ePypUr4+zs/FbFpiUSyct8rPXpyZMnbNq0iW3btqk6zbhw4QIzZ87k3Llz6Z6OpWSf7ty5M5cvX+ann36icOHCaqb4WqytrcmXLx8lSpTAxMSE4sWLU7lyZcqXL0/p0qUpUKDAG9coRVGIjY3VdNr14MEDjI2NuXjxIn/++SedO3fOUPPkyRNq1ar1VmvmqVOnOHz4MNOnT6dnz54GG8Dff/89P/30E926dVM9/t27d3n69KlmYxAgd+7cbEtOrqgGnU5HoUKF+Oeff1SVedi3bx8TJ06kcOHC/Pbbb5QuXVr12PHx8Zreqxs3buDg4KBJ6+PjQ1RUVLobK6/j/PnzLFiwgEaNGjFq1Kh0237ok8FywC1FUe4oihIHbASavtKmKbBG0XMasBVCqM89+xGZNm0aZcqU4e7du3z33Xf6H+bLB8m+4FknToQ3+CsLAV27wsWL4OYWxZMn+tPCnj1BpZeGRCIxnP/s2mTIh8vy5cupW7cuxYsXp1KlSvTs2ZN58+axY8cOg2NMXqVt27bExsYSGBjI1q1bGThwIOXKlcPGxoZu3bpx+vRp1S44EonktXyU9Slnzpy0atVKdRzbL7/8QrVq1XBycsqwbePGjbl16xaFChWiUqVKuLm50atXL5YtW8aGDRs0l4jInj07MTExREREcPr0aWbMmEGXLl1wdXXF2tqapk2bsmnTJl68ePGSbuvWrdjY2Ki+5h07dlCqVCksLCx49OiRQYYg6DPSr1y5UnUR8hQURaF169ZUqFCBTp06qToJLVu2LDExMZoMlPz58xMZGcnDhw9Va1Pw9fXVZJDFxcXx8OFD1dpOnTpx//597OzsKFOmjOpag6AvEbFx40bVug0bNmBubs6FCxdUa/v27YujoyPHjh1TlZioevXq3Lx5k2vXrmVYd/NDG4M5gbS/OY+Sf2ZoGwU4KIQ4J4To8d5m+ZaYmZmxadMmLC0t2bBhA7t27dK/8MMPkCsX5teuwapV6fZRoACsWfOQadPA1BSWLIGSJeGvv97//CWSL5DPem0yNjZmxIgR3L59m8mTJ+Pq6sr169cZP3481apVQ6fT4eLiQr9+/di7d6/q+CDQp0aPiIggPDyclStXUqdOHXLkyKE64F0ikfyLj7I+dezYkT179qguhD5t2jQePnxImzZtDNoQsrGxYdSoUTx48IB58+ZRtGhRjh8/TpcuXTA3N6dQoUL07t2btWvX4uvrqym+TVEUwsPDiYqKIioqip07d9KtWzfs7OyoVq1aqlG4f/9+PD09MTU1VdV/48aN2bRpE48ePaJUqVL4GVgvbNy4cTRr1oyaNWvSq1cv1UnWhBAcOHAAX19fsmfPrsp10sHBgatXr2q6nyYmJgwcOJB+/fppKpewa9curl27xpIlS1Rr58+fj7W1dYYGzuvIli0b/v7+VKtWDXd3d9X6atWqMWnSJNU1KKdNm0a2bNkoU6aM6tPUHTt2UKVKFTp37oytrS0DBgwwWHvv3j3u3r37Uh6I1/FB3USB120/vLpSpNemkqIo/kKIrMAhIYSvoij/2tZOXux6gP6Nz+iP0tDaOYa0S9tmwIABTJkyhe7du7N7924yZcpEpoEDcRo6lIQffuBuyZIkpZOs4f79O3h6QpEipvzwQw58fc2pWlWhW7cQ+vULxtRUeW9zl32l3y4+Pp7Y2FiD+jKk3btq8zn2FR8fb/AH61vwwdemPHnyvM18NWFvb0+1atWoVq0aoHc/KV26NAkJCfj6+uLn58eaNWuIjo6mcOHCeHp60rlzZ9Vpx5OSkoiIiEBRlAzjRyUSSYa89/XpdWtT06ZNuX37NvXq1aNDhw5Mnz5dH/aSATlz5uTYsWO4ubmxd+9eGhkY52JhYUHFihWpWLEiALdu3eL06dPcunWL27dvs27dOpKSkkhISMDFxYWqVavSsGFD6tata1D/aTE3NychIYECBQpQr1691Fisb7/9loYNG3Lv3j1WrFhhsGvegQMHWLZsGQkJCdSoUYNs2bIZPI9BgwbRpUsX3Nzc6Ny5M2vXrlV1LTY2NiiKQp48eVStt127dqVly5ZUqlSJnTt34ujoqGrc4cOH4+bmRpUqVfjzzz8Njmd7+vQp3bt3Z/v27Zo+B2vUqMGcOXPIly8fGzduTP19MQQjIyNKly7Nvn37KFiwICNHjqR79+4G67Nnz46xsTEnTpzIMCkLwMOHD1myZAn79u3j+vXrFCpUiK+//trg8UBvtNepU4dly5YhhFB1OpgvXz5cXFzo1KlTunGwH9oYfATkTvP/XIC/oW0URUn5N1AIsR2968S/HrgURVkCLAEoXry4Ykggr6HBvmr6mjBhAkeOHMHLy4vly5ezcOFCKFyYqPXrsTx/nkIbN0IGwaRFihShSBGoXx/GjoWpUwVLl9rj5WXP2rX6E8T3MXfZV/rtrl+/jqmpqcE1Ywxp967afE59KYqCTqf7ELXtPvjaVLZs2U/Oh1JRlNQd8qtXr+Ln54e5uTmjR482SG9sbIy1tTXR0dEULVqUZcuWaXIDkkgkL/He16dX1yZFUcifPz+VK1fGy8uLP/74g379+lGiRAmDJuzj48Pz588JCwsz+CLTI+3aBPq4xAsXLnDjxg2DjUETExNMTU1xcnKiW7dutGzZkgIFCrzUpkqVKri6uvL7778zdepUg2skjhgxgq+//pqtW7dqysjs5+dHWFgYFy9eJCkpSZW753fffUezZs2YOXOmqkQ/BQsWxMvLi/z58/PXX38ZbKTEx8dz/PhxtmzZwoMHD8iSJQtBQUEGGYOKotCzZ086d+6syohLITo6mhs3bmBubs7t27c5duyYqn6EEFSuXJmtW7fi7+/PjBkz6NSpEzqdziD9w4cPSUhIMNhwPnfuHL/88guVK1fm7t27ZM2a1eC5vg4bGxtmzZplcPvcuXMzduxYmjVrRpcuXd7Y7kO7iXoDhYQQ+YUQpkBrYOcrbXYCHZMzY3kAYYqiBAghrIQQmQCEEFZAXUCbk/UHwtjYmGXLlqHT6Vi0aJE+NkcIAkeO1AcHzpkDBp54mJrC5Mlw8iQULAiXLkHZsrB0qd2bwg8l7xFzc3NCQ0NlTNR7RFEUgoODNRdpVckXtTZlhLGxMZkzZ8bGxua1iX4SEhK4dOlSaludToezszMDBw5k8+bNhIaGcuHCBdzc3D701CWSz5EPvj4dOXKEsmXLsmjRIvr06cOTJ08MNgQVRaF58+Z4eHjQtOmroY1vh06nw9LSEldXV/7880/27t37rzYpBc1B//BvYWFBlixZ6Nu3L15eXty8eZMffvjhX4ZgCkFBQfTr189gQxD0MdSrV69mxIgRql0Inz59SoUKFRgxYgQ+Pj6qDMHnz5+zZ88eJk6cqDrj682bN+nduzcxMTHUqVPHYN3EiROpU6cO169fZ8eOHTx69CjDbJUp3L17lz/++IOsWbMSFRWlar6gN3w7dOhAhw4dCAkJYcSIEar7CAwMxNzcnKFDh3Lp0iWDDUGA7du3M2PGjJeS46VHs2bN8PPz4+bNm4wZM0b1XFPw9vbGzMyMhQsXYmlpqUobHR2NkZFRurGhH/RkUFGUBCFEX+AAYAysUBTlqhCiV/Lri4C9QEPgFhAFpEThZgO2J1+MCbBeUZT9H3L+WihevDg//vgj48ePp3v37ly8eJHYYsX0WWKWLYNBg+A1i9mbqFgRfHzg++9h4UKYMcOR06dh9Wq9kSj5MOTKlQtfX1+Ddj3j4+MzXGzeVZvPrS9zc3NVH8ha+RLXJuClwrvW1tbExcXx1Vdf0bRpU+rXr4+Hh8dLsTMPHz5k2LBh7N+/n+zZs1OxYkX69u1LgwYNsLW1/QhXIJF8/nyM9alWrVpcuXKF9evXM336dLZu3Yq3t7dBSWGEEBw/fpxu3bpRvXr1/y+zpYKU5C8p/VlaWmJjY0PHjh1p3749xYoV+5fmxo0bjBo1isOHDwP60hgtW7akXr16FClSxOBEKTY2NuzevZuZM2caPN/vv/+e6tWr88033/Drr78yatQoxo4da5A2a9asODs7kz9/ftWlMGxtbalSpQqLFi1SlfRm0qRJjBkzhqFDh3LlyhVV2VNHjRpFsWLFmDFjBt26dePMmTMGu8UWKFCA8+fP8+OPPzJ37lx8fHwMcj1OYfbs2Tx//pzff/9dkyH4/PlzVq9ezZw5c+jRQ314f86cOXmmsubb/v37iYuL01RGA2DQoEFs27aNrVu3GuxyncKTJ0/o378/jRo1YsWKFW880fzQbqIoirIX/aKV9meL0nyvAH1eo7sDlHzvE3wPjBgxgs2bN6cmbPj2229h0iT4/XfYt09vDDZsaHB/1tbw66/g6QkdOybw998mlCwJM2dC9+76Q0fJ+0Wn02FqamqQ+6Kfn1+G7d5Vmy+lr/fBl7I2JSYm8ttvv7F7924OHTqEpaUldevWpVOnTlSvXv2NH8zr169nwIAB9O/fnzlz5hj84S+RSN6ej7E+FStWjIkTJ7J8+XKsrKyws7MzWFuwYEEOHz6MqampQRuBSUlJrFq1ir///ptz585x48YNTExMcHV15ZtvvqFx48a4urq+1qBTFIVRo0axaNEifvjhB2bNmmWQ0fomYmJiDD7pSkEIgbm5ObGxsRQoUIAmTZqo0i5YsABPT09OnjxJyZLq3q7FixdTvnx5IiMjDTZAGzVqxN9//826dev46quvVNX6NTEx4ZtvvqFatWrkz59fdRmO0qVLp24ovnjxQpUxGBoayuXLl+nQoYOmOrkjR46kcePGmgxBgLCwMNXlT2rUqMHMmTOZMGECc+fOVZW9VVEU1qxZw+XLlzX9TmfJkgVzc3N69+6Ng4PDG9t98KLzXyJmZmYsX74cIQTTpk3j+vXrkDUrpBwZDxoEGtIn168Pu3bdpVUriIzUl59o3BgCAt7xBUgkks+CGzduULVqVZYtW0aTJk24dOkSkZGRbN++naZNm6b7obxz50569OjBqFGjpCEokXwB3Lp1i/r162NkZMS+fftUu+yPGTOGQoUKZei+GB8fT8eOHVm6dCnu7u4sWbKEkJAQQkNDuXjxIiNHjqRkyZLp1gbcsWMHQ4cOZdiwYW9lCIK+gPvgwYNVabZv307t2rWZOHEifn5+qlzkFUXh8uXLJCUlERoaqna6FCpUiJo1azJnzhyDNaVKlWLv3r3MmzfvpfrBanFwcKB8+fKcOXNGle7BgwfExcWpTjA2b948/ve//xls9L7Kli1b+OmnnzRpT58+jb+/v2rX55SkMVrKLa1YsYKvvvpK8++0sbExFhYWhISEpNtOGoMfiAoVKtC3b18SExMZOXKkPn1w37764vM3bsDcuZr6tbVNYuNG2LABbG31h4zFi8Pmze92/hKJ5L9Pt27dKFOmDMePH6djx46qMrmNGjWKJUuWvDZGRyKRfH706dOHFy9ecP36dQqqjEN5/vw5M2bM4Ouvv87wBOfs2bNs2rQJe3t7smTJQtGiRTE3Nzc4Bs7IyIjt27czZ84cfvrpJ821CQHmzp2Lubm5qhg6RVEYOHAg+fLlw9LSUnXdvnv37jFkyBAqVKhA8eLF1U6ZqKgorl69qmmT7u+//6ZChQqqdaDP1l+1alWuXbtGixYtVBk6K1asoEWLFqri9QBu376tOrt1CoqiEBQUpNmwWrZsGYMHD1a9KRIeHs6MGTNYtGiR6tPMTZs24ejomKEx9yZu3LjBw4cPqV+/frrtpDH4AZk8eTJ58uTh2rVr+mxApqaQkhVo/HhQGXScltat4coVqFsXQkLgm2+gfXvQsMkkkUg+U3r16sWJEyc0fbAUK1aMnTt30rVrVzZs2PDWc5k3bx6zZ8/m3LlzqmtrSSSS98/q1auJiopixIgRqmvR2dracubMGebNm8eMGTPSbVuhQgWePn3K//73PxYvXkzWrFnZtm2bqvEKFSrEhQsXuHjxIlWqVDG45FFajhw5woABA8iVKxdTp07l4MGDPHjwIMNrF0Jw7do1unTpQs+ePTN88H6V/Pnzc+nSJU6fPk3OnDm5ceOGwVpFUahUqRIFChTAy8tL1bhnzpxhxowZdOjQQZUuhZEjR7Ju3ToGDhzI9evXDTaCFUVhwYIFmur8DR06lIkTJ76UWVYNRkZGPHnyRLUuLCyMS5cukSNHDtXaTJkyMW7cOHr16qU6udD27dspWLAgrq6umk6NixYtSp06dejYsWO67aQx+AGxtrZm8eLFAIwePZpbt25BgwbQqBGEh4OGYNi05MwJ+/fr4wktLWHdOihRAg4dehezl0gk/3XatGlD48aN8fDwMLjmZloqVKjA4cOHGThwICdPntQ8j/79+3PhwgWGDx9OjRo1sLa2ply5cowdO/ZD1JSUSCQGkD17do4fP86GDRto166dan2JEiXIkiWLQW3t7Ozw9PTk+fPn1KlTJ7UWqhqyZ8/Ozp07yZ49O1OmTFGtr1y5MgcOHODZs2eMHDmSJk2aULhwYczNzcmXLx8NGzZkwoQJXL58+V+nYFZWVnz33XfkypVLlYtoTEwMPXr0oGLFijg5OTFjxgxVp7C3b98mMDCQPXv2qIq9A72r6LRp02jatCnNmzd/KaGYIXTr1o3ixYvz66+/Mn36dIN1QgiWL1/O0KFDadOmjaoTxSpVqlCvXj1VyXLSjjt+/HgaN25MfHy8wbqbN29SpkwZ3NzcVNcITOGHH37AycmJwoULc+WK4cnGraysmDNnDnnz5uXgwYOaxm7cuDFHjhxJ9z5LY/ADU79+fTw9PVMXAEVR9JlfdDpYuRLOnn2r/oWA777TZxz18IDHj/WnhRMmZEVDFl+JRPIZIYRg0qRJDBgwgPr16xMUFKS6j2LFijF37lyGDx+ueR4piShiY2MJDw8nNjYWb29vJk+eTOnSpSlcuDAzZ87U7BojkUjeDba2tpiZmfHo0SNNehMTE2bMmEGAAckMbt26RXR0NDt27MDe3l7TeEII5s+fz6xZs/D3f7UUY/qYmppSt27d1OQxcXFxxMbGEh8fz/3799m3bx8TJkzAw8ODXLlyMXz4cHx9fV/qw8zMjN27dxt8cqUoCvHx8SQlJZEpUyacnZ1VlYhwcHDA2Ng43YLib8LU1JShQ4fSokULdu3apfr0N3/+/JQoUQIjIyPV9SQ9PT3p2bMnu3btUm3ktG/fnsuXL6vSpGBkZERSUpIqAzQpKSk1qZDWUld+fn7cvn0bCwsL1W7EANWrV6dz587MmzdPlc7b25uxY8dSu3btdMeVxuBH4Mcff8TBwYGjR4+yfPlyKFwYBgwARfn/f9+SQoX0NQknTQITE1i3LgulS4NKLwKJRPIZ0q9fPxo0aMDIkSM16Zs3b46fn5/mB8Q3ER8fT3R0NDdv3mTo0KGsXr36nfYvkUjUkZSURFhYGKtWrdKkF0IQFBTEkSNHMmzr6upKVFQUo0ePVn1KlZbcuXNjb2+v2tXUEFLWqKCgIKZNm8aoUaNeer1AgQLcvHmTatWqER4enmF/FhYWrFy5krt37xIQEEDbtm1VGSq2trZs376d7t27qzZ+UwgODqZMmTKq4/dAn1Rl8uTJqgqhpxASEkJCQgJXr15VpTMyMuLOnTuqvVsURWHx4sX07t37pZJJGVGkSBFOnz7NyJEjef78uaoxU/jll18ICAjgzJkzry2LkhElS5YkOjqaIUOGpJZcMXRcIyMjpk2blm47aQx+BLJkycLc5IQxQ4cO1f8BjxqlzzD6zz+wfv07GcfERO95euYMFCoUy40bUKkSjB4NKk7IJRLJZ8jIkSPZtGkT0dHRqrUmJiYULVqUmzdvvvN5mZmZYWVlRfv27RkwYMA7718ikRhOaGgo8fHxBAcHq9LFxsbSvXt3YmJiOHDggEFuppaWlpw5c4aTJ09qcgNMISYmhsjISE0nMG/C2toanU5HoUKF6NevH9u3byc0NJTNr2TrE0IQExPD5cuX+eGHHwzuPyQkhICAAMaNG6d63nnz5sXExIRffvlFlS6FZ8+e0aBBA9W6K1euEB0drckIvXbtGps3b2bp0qWqM7dWqVIFNzc3GqooyQb692b48OEMHTpUdZKhlKycastopLB48WLc3d0pX768Jj3oP3crV66sypBdt24dtWrVokyZMunGK0pj8CPRunVrGjVqRFhYGH369EHJlAlSfNy//x5UWP4ZUbo0bNlyn6FDISkJJkzQu5Beu/bOhpBIJP8xsmbNSq5cuVQlK0iLtbU1Ue/A91yn02FjY4OZmRkVKlRg3LhxHDt2jNWrV2uqIyWRSN4d9vb2ODg4UKFCBZYsWWKQJj4+nho1ahAcHIyfnx81a9Y0eLxs2bKxcOFCfv/9dwIDA1XPNyEhgVq1alG8eHG6dOmiWh8WFpZaVDxTpkyYmZlRp04dFi1aRGBgIDdu3GDOnDk0atToXzF6L1684NKlS2TOnJmRI0cyYcIEg8ctUKAAlSpVYvDgwTRs2NBgl809e/bg4uJC1apV/3VKaSiKoqhyEQ0PD6dFixbUrl2bFi1aaBr34cOHuLu7a05eY2VlhYWFhaoT5LVr1zJq1ChWr16tyqACyJEjB+7u7ixatCjjxq/BxMQEOzs7KlasqEmvKAoJCQmcOHECFxcXg08oTUxM8PT0RAiR7knqBy86/6EQQjQBmjg5OWWYkMDQo2ZD2qlpM3ToUI4dO8aOHTuYO3cu9evWJU/x4lhcuULwsGHc8fR8J+MBPH58h27dFFxdLRg+PAfnz+soXTqJwYOf0bFjKEZGH/4+yL4+7fE+5b4k74a3SVmt0+lUBeGDPn5h165d7Nu3DyEE+fPnp3Xr1jRo0IBy5cqp/oCWSCTvjytXrjBnzhyCgoIoXrw4RYsWNUhnYmJC1qxZDSo2/zqcnZ1p3749BQsWZNWqVTRv3txgrbGxMdmzZycgIMCgzaS7d++yc+dOvL298fb25vHjx1hYWFC/fn26detG/fr1sbKyMmjsxYsXU6xYMS5duoSFhYXBcwb9yWBKDHeZMmUMPh20s7PDyMiIqlWrGpys51Xy58/P9OnTCQ0NZfbs2eneN0VR6NKlC9bW1ty5cwdLS0tNY/7xxx+aS1oA5MmTh7179+Ls7MzatWvx8PDIUJNyr9QWjYf/j0WtVKkStWrVwsXFRXUfOXLkYMWKFdy7dy81LjU9zpw5w4EDB1JPy42NjXFxceHrr782OHbxwYMHjBgxAhcXF1xdXd/Y7rM1BhVF2QXsKl68ePciRYpk2N6QNoa2M7RNkSJFmD59Or1792bKlCl06NABiyVLoGJF7FeupEiLFhR4x3MvUgSaNoXBg2H5ciN+/jkrp09nZdUqKFDgw98H2denPd6n3Jfk7TExMdFc1kGNMfjixQuGDRvG3r17ad++PePGjcPDwyM1kYxEIvn06NOnD2XKlMHPz09VhkshBJs3b6Z9+/ZUq1aNo0ePqjIahBD8/PPP7Nq1iw4dOqgyBp8/f06WLFk4fPgwQUFB5MqVK932y5cvZ9asWcyePZsffvgBFxcX4uPjVRtzoM/sWbhwYU3a2bNnU6hQIU6ePImjo6PBurx58+Ls7MzGjRvp37+/qjEjIiI4cOAAFy9eJDY2lgMHDvDixQtsbW3fqElJphMSEsKvv/5K27ZtNdXtu3Tp0lslIbO3tycyMpJ79+4ZbAxaWlqSlJSEl5eXpnqORYsW5auvvuL48eOajMGUmNitW7cyZMiQDNvPnj2bDRs24Obmxs6dO6lUqZKq5EKg34C9e/cuLVq0SNeTR/rgfGR69uxJlSpVePr0KUOHDoUKFaBdO4iNxXHq1PcyZubMsGwZ/PGHPkzx2DF9CYpt2zK/i9w1EonkP4KW070ULC0t6du3Lx06dGDNmjXcuXPnjYkPOnXqhL+/P1euXGHKlCk0bNhQGoISySeOlZUVLi4uqgvOh4SEsHv3buzt7Tlz5gyzZ8/WNH58fDyJiYmqNqw6derE8uXLKVu2LAcPHsywptyYMWOoXLkyq1at4smTJ6mxYVoYPnw4ixcvNihz6qtcv36ddu3aqTIEQV82IFeuXAYl6ElLUlIShQsXpm/fvjRp0gRfX1/8/PzSNQRBn4HUy8uLWbNmMXbsWNzc3FRnIQW9YfXPP/+o1qXg7++PpaUlq1evZv78+Rm2DwoKonbt2tSqVYtWrVppGjMxMZGrV68SHx+vKslPWiwsLMiTJ49BbdevX8/FixcpXbo0TZs25fbt26rHa968Ob/++ivr169P12CWxuBHxsjIiKVLl2JmZsbKlSs5fPgwTJ0KVlZkOnQIVP6Bq8HTU1+o/uuvU8oc5uB//wMNbvoSieQ/yNsYgz/88AOBgYH89ttv9OnTh+LFi5MlSxaaNGnCjh07Xir63KJFC4PdtiQSyafB5MmTGTlyJIcMLFZ84cIF3NzcyJo1K4sWLSJ//vwsWbJEVSKVFMaPH09YWBgnT57ExMRwJ7aNGzdy/Phx7t27R9euXcmdOzeOjo588803rFu37l9JNHQ6HXv27KF37960a9eOKlWqqE4ukkK+fPnInTs3IzTUjL5x44Ymr5iff/6Zw4cP4+Pjo0pnZGTEH3/8QebMmQkNDVVl8K9evZpWrVpRpkwZDh48qHpdv3DhAlu2bKFv376qdGnx8/OjR48etG3b1iCXWkdHR06fPk1oaChFihRh+/btqsc0NjZm4MCBDBs2jE6dOqnSKorCrVu3iIuLo0CBAgbrXF1dWbp0KQ0bNtTnF9FghK5atQoXFxf27Nnzxjbyk/kToEiRIowePRqAHj16EGlr+/8F6AcMAI1uXIbg6Ahbt8Lq1WBtnciOHVC8uP7UUCKRfN4YGRlp3uFM+4AWERFBdHQ0YWFh7N69m44dO2Jvb0/Hjh25desWrVu3xs3NjSpVqvD48eO3nveDBw80ZUGVSCSGU6pUKdauXUvTpk1p27ZthhtH+fLlo3Hjxjg7O3PlyhUePHhAnTp1VLu2gT6hiqmpqcFxiilYWFhQtWpV8ubNC+gTyjx79ozNmzfTq1cv8ubNS758+ejbt29qjcAjR44wf/58MmXKRLt27TTFOaZgb2/PyZMnDa4zmMLTp0/JkSOH6vHq1q3LkiVLqF27NkuXLlWldXd35/z58xw5coRBgwYZrPPw8KBnz574+/tTuXJlateuzfXr1w3W586dGxsbG06ePKlqvmmxsbHB29tblcbd3Z39+/fTrFkz2rdvj6enJ5GRkQbrFUXBx8cHnU5H06ZNDdZt376dcuXKsXTpUvr370+ZMmVUzRugQYMG/PPPP6pda5OSkrhx4wb79u3D2dn5je2kMfiJMGzYMEqWLMndu3f1huHgwcTlyqU/ulu8+L2OLQR07Ag7d96jRg0ICoJmzaBLF1C5nkkkEgnh4eFERkby22+/cf78eYyMjFi0aBHNmzenfv36mms1AVSoUIGFCxdiY2NDsWLFGDRoEDt37lSd+l4ikWRMSmKnEydOZFjfLEuWLIwcOZKRI0dibm7Otm3buHXrluoxHz16xPbt24mLizOoVp+hREREEBsby4MHD1i0aBHnz58HYPPmzQghuHHjBt99991blaSwsbHhyZMnODo6Uq5cOWbPnp2he19QUBCxsbHY29trGrNJkyZkz56dvXv3qtZeunSJFy9eqEre5uzszNSpU5k8eTJGRkb89ddfXLhwwWC9g4MDY8eO/VdZDjVERERoindPKSCfkJDApUuXCA0NNVibkJDA5cuX6dy5M//73/8M0jx8+JCuXbsyevRoHj58yM8//6zp98vU1JSoqCiDs5kmJSWxbds2SpUqRb58+TL83ZLG4CeCTqdj2bJlGBkZMXv2bLwvXyYoxbVi1Cj4AA86Tk4JHD4Ms2eDuTmsXAmurvqYQolEIjEEIyMjMmfOjKmpKfPmzeObb74B9EkhfvrpJypVqvRWNcTq1avHixcviI+P59q1a8yZM4cOHTrg5OSEh4cHq1atUr0rL5FIXs/kyZOJiIhg5syZGcaTAaxYsYK2bdtiaWnJ9u3bKVu2rOox27Vrh42NDdeuXdN0WpYelpaWlCtXjuvXr9O2bVtAn6gjJiaGdu3apWb01IpOpyMyMpK4uDi8vb358ccfKV68OKVLl2bTpk2vPV29ffs28fHxNGvWjIMHD6qKwQsNDaVFixY4OjqyXmWN6oSEBJo2bYqpqSnff/+9Ku2UKVOYNGkS48aN4/nz56n30hAURWH//v2akrgALFmyhIsXL7J161bV2uPHj7NixQp69uzJnTt3MkwwlBadTkePHj2YN28e9+7dM0hz6tQpFEXh6tWrmmJJAeLi4jh16hRGRkYGzTc2NpZvvvmG8ePHM3nyZE6fPp1hfURpDH5ClC1blsGDB5OUlETXrl0JqVoVataE0FAYM+aDzMHISO+Zev48uLnB/fv6KQwZAjExH2QKEonkP0Da+k6ZMmXC1NSUwoUL079/f37//XeCg4Pp06fPSxohBBMmTGDLli2EhYW9k3koisKLFy+Ii4vDy8uLfv36pcYsSSSSt2Pq1KnY29vTqlUrqlWrlmH7Xr16cfnyZTw9PWnQoAHFihVTfbpXr1494uPjNZ+UvQ5jY2MsLS3p1q0b//zzD4UKFUp9zcrKir/++ovcuXNTokQJHj58+M7GjYmJISYmBh8fHzp37kz27Nl58ODBS208PDy4ceMGAQEBNGzYECcnJ4NqLCYkJODm5kZkZCR//vmn6sQ3JiYm+Pr6kj9/fmrUqEHt2rVVaT08POjfv7/BZQ5S2LVrF7t376ZXr16qdABbtmyhZ8+ezJw5k5w5c6rW16hRg86dO7N48WJ+++03VdqIiAj27t1L06ZNDSoNAfDNN99w5MgRrl+/TtGiRdmxY4eqMX///Xfy5MnDiRMnmD59ukEnsD179uTGjRt4eXnRuHFjg04ipTH4iTFu3DgKFizI5cuXWb5iBcyZA8bGsHAhXL78webh4gKnTultUCMjmDlTbxwme1VIJJIvlB07dtCsWTMqVKiAlZUVTZs2ZfXq1Tx58gQ/Pz9mzZpFvXr13rgT6ejoSOHChbn8ntaziIgIzM3NqVy58nvpXyL5Urh48SLNmzcnJCSE6tWrM3HiRIN0+fPn5+bNm6mnbRmdSqQlICCABQsWaM74+PTpU4YPH86lS5cwMTHB1taWGjVqMGHCBA4fPsycOXNem/DE0tKS6dOn4+7ursndMiNS4hD79u372lIMOXPmTPWo6Ny5s0GGsImJCRMnTsTX15d69epp2mCzs7PDysoKc3NzevToYbCuS5cu7N27l2XLlqnOJlqlShWaNGlCmTJl+O2333j06JHB2po1azJ27Fh69uxJvnz5OHr0qKqxQe+mamxsrCp27/Lly5QqVQonJyfWrFmjarzSpUuzevVq6tatqypOcu7cuQwZMoRdu3Zx7tw5Bg8ebFAt3j59+iCEoHHjxgZvbEhj8BPD0tKSJUuWAPDrr79y08wMvvsOkpL0R3YGJHvwe+ZHdPzbJ1fQ6WDsWPjnHyhcGK5dg/LlYeFCu/eZ00YikXzCPHnyhPPnz5M5c2aaNm3KggUL+Prrr1UVPM6dOzf+/v7vbE6WlpZYW1uTOXNmmjRpwqlTpzS7IEkkEj1//fUXQUFBPHv2jKNHj1K1alWDdHFxcWTKlIm8efMyc+ZMcufOTdu2bdm4ceO/snm+SmxsLIqiEBISomnOFy9eZP369axatYqAgABCQ0M5cuQIP/74o0FFznv37s0PP/xA4cKF2bBhg+bMoqA/jbS2tiZLlix07tyZmzdvMm7cuDdmRw0KCmL+/PlMmTLF4KQ7bdu2xc/Pj9u3b3Pp0iVN8wwNDaVDhw6pLv2GkCNHDnbt2sWECRNwcnJi6dKlBmemzpIlC+vXr6dKlSr07t2bQoUKkTVrVlq2bMny5cu5f//+G7V2dnaMGTOGYcOGcf/+fZo3b/5S5ur0SEpKYsaMGSxatIhFixap+owICAggIiKC5cuXkzlzZoN1KRw9epQjR45Qp04dgzWBgYFkzpyZbNmyqRrL3d2dc+fOUb16dSpWrGhQpllpDH6C1KxZk2+//Zb4+Hh9KtmxY8HODo4ehQzS4SqKQvPfm5Nndh7GHx9PcNTbxxqWKwcXLkD//vrEpnPmOFK5Mty48dZdSySS/xi9evXi3r17TJw4kfXr11OgQAGKFCnCmDFjuHDhgkHZSQsVKkT79u1xcXGhf//+7Nixw6BYnZCQkNT02CYmJlhYWFCnTh1+/vlnvLy8eP78OTt37tRUEFgikehRFIVNmzaxYsUKLCwssLGxUaXPkiULy5cv59q1axQtWpTHjx+zYcMG2rRpw+DBg9PV5suXj5kzZzJ8+HBNmY7d3NywsLCgefPmlClThvr16zNu3Dh27tzJ7du3X3Jvfx0NGjSgYsWK3Lx5k+7du5MlSxaaNWvGli1b0k2gExwczIYNGzh79ixGRkbkyJGDAQMG8Oeff/Ls2TMWL16coVujlqyrAGZmZkRERKSbLTI9nJ2dWbdunSqNv78/fn5+2NnZ8fTpU/r166faGC1SpAjh4eHExMQQFBTE1q1b6datGx06dHijJiX+7uTJkwghiImJ+Zfb7ZtISdCYN29eTExMMvxdSEvdunVp0aIFrVu3VqVLYeLEiTg7O1OxYkWDNRMmTKBLly6UK1dOtUuriYkJI0eOZPr06VSvXp18+fKlm4lUGoOfKNOnT8fGxoZDhw7x++HDMGGC/oUhQyCdlOqBkYFY6Cx4FvWMMcfGkGd2Hvrt7cejCMOP4V+HpaXeY/XQIciePR4vLyhVChYs0B9aSiSSLwcjI6PUArZxcXHcuHGDKVOmUKVKFfLkyZNhuu5evXoRHx+Pr68v8+fP59tvvyVXrlzkzp2bn376iZs3b77U/urVq6kfaOvXr6dly5acPHmS8PBwDh48SL9+/ShatOhbZQGUSCR6fH19GT16NGPGjOHgwYOa+/nzzz959OgRdnZ2DBw4kIsXLxpkdCxevJiWLVtqKmZub2+Pn58f5cuX5+HDhxw4cICxY8fSpk0bXF1dsbCwoEWLFun2kbKOREZGEhUVxR9//EGXLl1wcHBg6tSpL7WNioqiefPmFChQgA0bNtCgQQN8fHzw9/dnxowZlCtXTlUdPi2unpGRkURHR3PmzBlNBnRCQgJWVlYGtVUUhRo1apAzZ07GjRtHqVKl2LFjBxEREbi5uakaNz4+HktLS8zMzKhSpQpz5szh5s2bnDhx4o2acuXK0bBhQ6ysrFi9ejXPnz9/Kf4zPQoWLMi1a9eIj4+nXbt2uLq6qrpfM2fO5OrVq5ri0f/44w9MTU1xd3c3WCOEYMiQIWzbto2+ffuydu1a1eO2bt2alStXcv/+faZNm/bGdtIY/ERxdHRkyJAhAAwcOJCwVq2gRAm4dw9mzHijLpt1Ns50O8PRb4/S4KsGRMVHMd97PnX31KX1ltac8z/3VvOqXVtfgqJ9e71N2rcv1K8PKly+JRLJZ0h8fDyRkZEEBQXh5+dnsC5tAphHjx4xffp0XF1dcXFx4c8//2Tp0qVUq1aNVq1a8ezZM/0G2e+/4+HhoXknXSKR/B97Zx0WVfY+8M+FoUNEEAVBURQBAQUMLEzsRMXuWLuwe+3E7u7GFhMDwQ4QBUUBWxSlG+7vD77wc3cF7rDuGjuf55ln15n3Pee9w8yZ+57zRu4YGxvz+fNn7t69y+3btyWH/2WTmppK69at6dKlC1OmTOHDhw94enpiZ2cnSX/hwoWcPHmS3r17F8R8gL+EYiYmJpKYmEhaWhrHjh3jxo0bco0XFxdHSkoKM2bMyMlTi42NpXHjxmhraxMZGcmxY8dYu3Yttra2BbI5KSkJGxsbufW0tbWpV68e7u7u1K5dW67eeZDV8L5r166SZAVByMlli4mJ4ezZsyQlJeUa+pob6enpHD58mEaNGvH582euXLnC0KFDsbCwyFPP2NiYwYMHc+jQIbp16yYphw5gzZo1VK5cGVtbW9TU1OjWrVtOSxGp+Pr6kpKSQuvWrSXrZKOtrU3NmjXl/i5BlrOvpqYmV4GfbN6+fcuRI0dywpVzQ76/3k+EIAgtgBbGxsb53phI7a8iRe5byQA4ODhQsWJF7t+/z5ARI5g9ejRmPXuSOWcOYbVqkV6sWK5jFac4nk6e/GbxG5uDN3Mi4gT7gvaxL2gf1YpWo49VH2oWq/mHL4JUuz5+fM7kyZk4OWkzfboR587JsLHJYMqU9zRvHocg/Pvv6X9hrJ/Z9m89loIfCyUlJbS0tFBWVqZdu3aULl26wGNl5+g8e/YMURQJDQ2lTZs2DBw48FuZq0CBgjwoVKgQJ0+eZOXKlfTp04fg4GBKly5Nx44d6dKlC+XKlctTX0lJCUtLS27evMncuXP59OkTY8eORUdHR9L8lpaWGBkZffOTfiUlJdTU1KhSpQrFihUr0BhJSUkcOnSIihUr0qhRIxwdHVm1apVcp3+5oaamxpUrV3B1dZVbt0iRIoiiSEZGhlybZIcPH+b169eMy25lJgFbW1sWLVrEnDlzKFGihKTKp39GEAQSExPp27evXFVQ58yZQ9u2bfHx8WH37t2Sc9V1dHQQBAF1dXWKFStG165dsba2ljxvcnIy/fv3Z9u2bQWqYhoeHs6mTZuy+ojLwcOHD+nSpQsHDhyQq83KrVu3WLx4MWfOnKFDhw6cPXuWqlWr5vrZ+GWdQVEUjwPHK1So0M/S0jJfeSkyUuW+5Xzbtm3DwcGB3bt3M2LECMzc3FA6dIgy69fD/8It8hrLEktaVm3JpbuXOPHxBOvurON65HWuR17HzsiOMdXH4G7jjoqyilx2WVpaYmkJHTpAv35w8qQyY8YYc/NmVuFTecf6FjL/hbF+Ztu/9VgKvg/Jycn4+Pjk5DDo6+vTuXNnOnXqRLVq1f7WTZGOjg5paWno6emxadMmGjRogL29PQ4ODixatIjRo0f/rRvEgoRQKVDwX6RcuXIsX76cDx8+YG1tzZMnT5g5cyYfPnxg9erVeerKZLKcpuRmZmbMmjULZ2dnmjZtKmnukydP5vReLgjR0dE5BWiUlZWRyWSoqqrSuHFjpk6dWuDiUqqqqigpKVGuXDn8/f159uwZFy9e/CaOIGSFMXp6ejJ27FjJRUpiYmJYsGABR48eZdSoUUyfPl0uZ/DQoUMMGDAAAwMDue399OkTqampHDt2jHr16sn1viorK2Nra8uWLVskfy4AbGxsuH//PlWrVmX+/PnMmzdPkl7Xrl3p2rUrYWFhDBs2jGbNmpGQkCD5ZPHdu3ckJSUxZswY7ty5w4gRI+Sqknv+/HmUlJTkKtIDcP36dZKTk5k1axZPnjyhV69ekk5hV6xYwb59+xgwYEBO3mFeKMJEf3Ds7OwYPnw4mZmZ/Pbbb2TMnw9qarB7N1y7Jnmc4lrFWeS6iJcjXzKv/jyKaRcj4H0A3by6UWZ5GTz9PYlPyz05Otdxi8Px47BhA2hrw4EDUKECXL4sLf5cgQIFPweiKLJu3TqKFSvG3LlzKVOmDEePHuXjx4+sWLGC6tWrS74pym6+KwgCmpqaFC5cGDc3N5YvX05wcHBOvy3ICpn38/Njx44dTJo06W9dg5qaGgsWLKBPnz7s3btXrpLmChT817h58ybFihWjUKFCrF27lqioqHwdwS9RUlIiNjaW5s2by3XaZWpqyqNHj5g5c2aeRVu+JD09nX379lG9enVMTU1JSUmhU6dO7Ny5kydPnhATE8P+/fvldgQFQUBHRwctLS0GDRrEkydPGDZsGE2aNKF169ZUqVKFefPmERYWJte4XyP75LRSpUpMmDABX1/fPMMKo6KisLa25u3bt/j5+TFz5ky5Q+cnTZrEqlWrCnS6V6xYMTp27MiFCxews7OTVLUymydPnhASEiL5tPhLNDQ0qFChAjdv3pRb19zcnPr166Oqqsrp06cl65UqVYqIiAhq167NlClTMDc3lyuntU+fPlSsWFFuZ7Bv375ERERgampK//79adSokSS97du38/jxYwoVKkSTJk1o1KhRnn9jhTP4EzB9+nRKlCjB7du3WXfmDIwZk/XC8OFyV2/RU9djXM1xhA8PZ1PLTZQ3KM/L2JeMOjuKesfqMfHCRN7Fv5NrTEGAvn3hwQOoWRPevYMBA0owYABIXMcVKFDwgzNgwADWrFnD9evXuXLlCr///jstW7aUfFIXExODh4cH5cqVo2nTppQpU4bff/+de/fuERUVxcGDB+nZsyclS5b8i66pqSkXLlzg4MGDbN26tcDX4OHhQWRkJJs3b6Z///6ULVsWQ0ND2rZty7Fjx/5WGXkFCn41nJycmDdvHq9fv8be3l6u9jGQ5UiZmJhw8eJFypUrJ6liMECNGjU4fPgwK1euxMDAgOXLl+cpf+XKFUqXLs3cuXMZO3Ysnz9/5vHjx+zevZuOHTtiZmYmaZ26c+cOvXr1wtfXFzU1NSpXrsyUKVM4fvx4Tt6jqalpzrVt2LCBNWvWEBERQZUqVahatSq+vr6SrjE3EhMTef78OQsXLqRp06bo6urSsGFDvL29/xLZsGDBAurUqcPmzZuxt7cv0HzW1taULVs2p0aFVFJSUujWrRvbt2/HxcWFixcvSrZh5syZVKpUiSZNmrBixYqCmE1GRobkojd/Ji4uLqfwz+3btyXrpaamEhISgpGREYcPH5brRFgQBMqUKSN5c+NL1NTUuHbtGo6OjnKdlpcvX5758+ezfv16fHx88gzvVjiDPwE6OjosW7YMgAkTJvCuVy8wMYE7dyh0+HCBxlSTqdG7Um+CBgVxrOMxaprVJDYtlrm+cym5tCT9jvUj5KP0IhAApUvDpUuwYAGoqGSyfj3Y28t1gKlAgYIflPT0dBo1alSg8uUXL17E1taWmJgYDhw4wMePHwkNDWXy5MmUK1dO0o2agYEBu3btYtq0aYSGhhYo5DO78TOQU9L848ePeHl50bVrV/T19enVqxfBwcFyj61Awa+GkpISiYmJaGtrFzjHDrJuhC0tLeU6BapZsyYWFhYoKyujrq6ep6yZmRkNGzYkIiKCjRs3cu7cObns8/Pzo3HjxrRq1QobGxv8/f1JTEzk5s2bzJgxAxcXl6/mtSkpKeHi4sKaNWt4+/YtI0eOpHnz5ly5coX0v9mMOSMjI2eNOn/+PO3bt6dMmTLs378/R6ZRo0ZcuHCBOXPmSO619zVsbGw4ePAgsbGxknWmTZtGdHQ0b9684dKlS9SpU0fyxqCjoyMlS5bk9OnTeVYOzQtRFCWfzKWlpbFhwwZ69OhB2bJlmTNnDsWKFWPo0KGYmZlJGiM8PBxnZ2cMDAx4+vQptWrVksveoKAgdu/eLVduZjbZoazdu3fH3Nxcbn0VFRXS0tLy/IwonMGfhDZt2tC0aVNiY2MZPWVKlscFGHh6QgFKEWejJCjRwrIFV3tdZU+DPbQp34a0jDQ23tuI1Sor2uxrg99LP8njKStnHVwePPgCOzt4/hxq14YJE+BvrFUKFCj4zsycOZM9e/YwZ84cuR2xDRs20KZNGzZs2IC9vX2Bc2wqV65Ms2bNsLW1RVdXFxcXF+bNm4evry9JebTckUJcXBwJCQls374dr3z6uSpQ8F9AFEU2btzItm3bKFWqlFx6ly9fpkWLFrx48YL58+dz6tSpfJ26P5OcnIyWlhb9+vXLU65UqVJs2rSJV69e0aFDB7p168azZ8/yHT8kJIQ2bdrQqVMn3NzcePbsGR4eHlhbW8u9RslkMjp27IilpSXNmzdHR0cHFxcXFi9ezL179wrUJuNL4uPjefnyJQsXLsx5rl69ety6dYtr165hZGTE8OHD+fjxo1zjfvr0iWvXrqGlpSVXFdLNmzezfPly9PT05JoPoGnTpjx8+BAdHR08PT3l0k1KSmLevHmcOnWK2rVrS9J5//498+fPZ/fu3XTv3p0PHz7w9u1bPD09KVq0qKQxnjx5wrt373j06BFr1qwhOTlZLrvXr1/PkCFD8m1r8jVkMhm//fYb48eP5+rVq5L1RFHk6tWrLF68GGVlZX777bdcZRXO4E+CIAisXLkSdXV1du/ezXlDQ6hRA1lU1P/3IPybVDKoxGH3wwQPCaa/Q39UlVU5EnyEGptrUHNzTY4GHyVTlLagWVqmcPNmlhMIMG9eVvN6OXuSKlCg4AfBxMSE69evc/DgQSZkf7ElMn78eHbv3i3XD1luTJ8+neTkZOLj47ly5QpTpkyhWbNmFC5cmGbNmnH06NEC7ZLr6OigpqbGkCFD8mzOq0DBf4H379+zdOlSBEHgmpzhPVeuXKFOnToULlyYkJAQBg8eXKDCT0lJSaSlpUnWTU5OJioqCmVlZc6cOZOnbHp6OjVr1uTevXv4+PjQr18/1NTU5Lbxz5QoUSLnRO/KlStMmjQJR0dHZhbwPk1VVZVChQqhqqpKs2bN/nKSZmpqysmTJ6lfvz4rVqzAxcVFrvE7d+6MnZ0dYWFhclWrlMlkbNu2Te42FpDVKuH333/nxYsXrFy5Ui7d3r17c/XqVXx8fCSfsmWnWdWrV4+pU6f+4XRVCqIo5pwoZldeHTp0qFxj6OnpsWfPHlavXl2gdAQTExOSkpJo27atZJ1z585Ru3ZtHj58yLp161iyZEmusgpn8CfC3NycKVOmADB4yBBSFi5EFISsbvBy9PXKj3JFyrGuxToiRkQwqdYk9NT1uPbyGq33tcZ6lTUHnx0kJT3/my01NZgzB65cyQohDQiAypWzDjUzMr6ZuQoUKPiXMDY25ty5c3h5ebF9+3bJevb29uzatQs3NzeOHj36TW1KT08nNjaWlJQUTp06Rbdu3dDX18/XPk1NTTQ0NChatCidO3dm7dq1hIWFsWzZMkXzegX/aV6+fImJiQm+vr5s3bpVbkemdu3aeHl5cfnyZdZklxeXkzNnzvDhw4d8nbpsli9fjomJCdu3b+fAgQP0798/T3mZTMa9e/do3bo1Tk5OjBw5skD5XPmRnp5O6dKlGTlyZJ5y4eHh3Lt3Dx0dHWQyGaVKlaJt27bMmTOHQ4cO8fr1a44cOfLVcNXY2FiCg4MpWbIkR44ckcu+5ORkevbsKXchF39/f+7evYu9vb1cxXNevXpF2bJlc3pY5tem5M88f/6cQYMGydW8/dChQ5iZmREXF8eFCxfo1auXZN01a9ZgampKuXLlOH36NJ07d+bo0aNyN56fNm0azZs3Z9iwYRQtWpQHDx7IpZ9dHffjx4+SexW6urry8OFDXF1d6devH/r6+rnKKpzBnwwPDw+srKx48uQJC86fJ8bNDdLTYdSobz6XkbYRs+rN4uXIlyxttBSzQmaERIUw+dZkSi0rxdyrc/mc9DnfcWrUyCouM2AApKbCuHHg4pIVQqpAgYKfiyJFirBp0yZmzpwpV+iTq6srp06dom/fvnI3fJaHuLg4lJWVcxpci6LIiRMn6NOnD7a2tshkMqpXr87SpUsJCgri/fv37Nq1i86dO8u1M65Awa9K4cKFad68OT4+Phw8eJDAwEC59AVBoHXr1rRq1arAIeFz585l3bp1+ZbEz6ZRo0YMHTqUuLg4unXrRtOmTXn8+HGeOiVKlGDp0qUEBwfz+fNnbG1t8fOTnhYjhYyMDF6/fs2lS5f+8pooity6dYuuXbvi6OiIvb09ly9fJj4+nrCwMA4dOsTo0aOpX79+rq0f7ty5g52dHVZWVgQGBlK2bFm57GvVqlWBTi1LlizJ0aNHMTc3p3r16pKLAxUtWhQ3Nzfu3r3Lmzdv5J539OjR9O3bl6CgIMk6VatWpVevXoSEhLBo0SL8/f0l69avX5/u3btTrlw5rl27Rnh4OGXKlJG7aquSkhIlSpRAXV2datWqScr9E0WRpUuXUq1aNTw8PLCxsWH//v1/yH3PDxsbGzp16oQoikRHR+dun+QRFfwQqKqq5pR2nj17NnfatwddXTh1KuvxD6Ctqs3wasMJHRrKzjY7Ka9Xnnfx75h4cSJmS80YfWY0L2Ne5j2GNqxdm2VisWJZRWXs7GD//kIoWn8pUPBzUaNGDVJTUyXl5XyJk5MTnp6eeHh4fFN71NTU0NXVRUNDgzp16nDlyhUqVqzI+/fvadeuHWPHjsXBwYHTp0+TnJzMtWvX6NevX4GS8RUo+NXR1tbmyJEjBAQEYGRkRPXq1SlfvjybN2+WKzf3+PHjdOnSpUA2pKSkSD4Bgaz+tAsXLuTp06ecOnWK0NBQHB0dmTZtWr7jFC1alK1bt2JnZ4ePj0+B7M0NbW1tVFVVc052AD5//syKFSuoWLEi7u7u2Nra8vz5c3bt2kWlSpXkClc9cuQIjRs35sCBA5L73omiiI+PD126dGHGjBmYmZnJnQeekZHB3r17efDgATKZTFK4aGZmJmfOnCE4OJiMjIwCOYMdOnRg6tSp9OvXT7LNJUqUYNmyZbx8+RI3NzdatGiR094oP8qVK8ecOXMICgri6tWr+Pn5FXjDIDo6mvT0dBYvXiypj2R6ejrXr1/n7t27ODk5MW7cOMk5h5mZmdy7d4/169fnVGzNa2NG4Qz+hNSpU4du3bqRkpLCtOXLEadOzXph5Miso7d/CBVlFbrYdcGrkRdnup6hQekGxKfGs+T6EkovL013r+4EvM87KbBJE3j4ENq3h4QEmDq1GC1aZLWjUKBAwc+BIAhYWFgQHh4ut27Hjh158uQJERERcusmJCTk7LBnN5KuVq0a06ZN49y5c8TGxuLj40PFihWBrFzFtLQ07t69y+DBg7G2tpZ7R1eBgv8qJUqUYNq0aZQoUSIn909KPm1qaipjxoxBJpMVqPowwPz58xkyZIhcveAga22ysbHBwMCA5ORkZs6c+dVTua9x+/ZtGjRoILetaWlpPHjwgM2bN3Pv3j0gq6m6tbV1Tg+/nj17AlkOgYODA/7+/nh6ehIaGsq4ceMoVKhQgcLTmzdvzuHDh+VquRMeHk6TJk1ympK3bdtWbmfwyJEjjBo1imXLlvHixQtJBYYCAwNp27Yt9+7dY8GCBZJPfbPJyMjA29ubM2fOEBAQwOfP+UemfYmmpiZ9+vTBxsaGdevWyaULWY59fHy8JEfua6SmppKeni65aI6Kigp79+7lzZs3mJub07dvXw4ePChJ18/PjypVqjBgwACePHnClClTSExMzFVe4Qz+pCxatAg9PT2uXbvGgeLFwdISnjyBAvZskQdBEHAt48q5bue40/8OHSt0JFPMZEfADuzX2tNkVxOuv7+e6+JSpAjs2we7doGubgYnT2Y1qpf4GVegQMEPgLq6eoEKtchkMmxtbeVq3/Ds2TOaN2+OkZERS5cupXHjxpw8eZLY2Fj8/f2ZMGECVapUQSaT/UGvf//++Pn5MXjwYJYvX87Fixd59OiR3DYrUPBfJttJSU9Pl3Si0rVrV9auXcuOHTvkrrqYjaWlJSoqKjRt2pSLFy/Kpdu3b19u375Nv379eP78OQ0bNpSkN3LkSAYNGiS50FVKSgotW7ZET0+Pjh074uPjQ7Vq1di+fTvR0dEEBQXRvXv3P5z0zZ49m0+fPqGnp8ft27c5ePAgN2/eJDIykvDwcDLkLKhQtWpVjh49yqhRo+jfv7+klhbm5uZERUVx9OhRQkNDcXd3R19fn3dy7MrXqlWLpKQkGjRoINmJtbe35/379yxYsIDFixdTrlw5yc5NSkoK5cuXx93dncaNGxMWFpZnDlxuvHnzhsjISLlCLbMpVqwYAwcOpGPHjpw4cUIu3dGjR7Nnzx6WL1/O+vXr5dI1MDDAwcGBjIwMyfmZNWvWJCoqigMHDqCsrMzMmTPzDCFWOIM/KUWLFmXevHkAjPDwIHb27KwXfv8d3r//1+xwKO7AHrc9hA4NZWiVoWiqaOId6k1Pn55U3lCZ/UH7Sc/86+IkCNC5Mxw7Fk7DhhAVlXVa2LUr5BHWrECBgh8EFRWVAvfSKlSokORiDTt27KBq1arUqVOH9+/f4+fnx+nTp3F1dc03nMrZ2ZmzZ8/i5OTEo0ePGD9+PDY2NmhoaODg4MDEiRO5fPmy5OpugYGBhISEFKjHoQIFPyNPnz7l8+fPaGlpMXjwYJYuXZqvzowZM+jbty+tWrWidOnSkm/4AXbt2kX16tWxtLRET08PT09PnJ2d5bJ56NChFClShH379slVqGPkyJH07duXRo0aUb9+/XzXhalTp6KsrMy7d+94/PgxO3bsYPfu3XTr1i3XkM2xY8eye/durK2tiYyMZP/+/QwaNAhra2ssLCxQV1enVKlStGnThiVLlnDlypV810pnZ2datmzJrl27qFu3Li9evMj3Wi9evMi8efO4ePEiTk5OLFq0CCMjo3z1silatCj9+vVj2LBhknUg63Tt0qVLhIWF0blzZ+rXry9JT01NjYULF1K2bFmWL18uV85gNgsWLMDa2prq1aszZMgQufXv3LnDrl27aNGihdx9Bp88ecKcOXMYNGiQXHm06enp9OzZk8mTJ9O5c2cGDBggeb5BgwYxcOBAMjIyqFWrFps3b85VXpbrKz85giC0AFoYGxsTkk+lzecSK5lIkftWMlLkateuTfny5QkODmbosWOscnFB+/JloocM4f2sWf+6XYNLD6azSWf2PN3DtuBt3Hl7B/eD7pTQKkGv8r1oa94WDdkfK2ElJj5n+fJ0du/WY+FCQ3btUuLChTTmzHlH9eqJ38QueWV+1LF+Ztu/9VgKvj8ymUyunJ6C6t67d4927doVOM/QwcEBBwcHIKvqXqFChUhOTubevXsEBASwatUqUlNTqVy5Mm3btqV169ZfDXlq2bIl9evX58SJEygpKVG1alUaN25M7dq1cXR0LHChDAUKflRSUlJo164dgwcPxsPDA01NTUl6VlZWeHp6smDBAiwtLenRowf37t1j1qxZ+Z4ipaSk8O7dO0xMTKhSpQo9evT4agXN3Hjw4AFbtmwhNjYWAwMDuYpcKSsrM3DgQI4ePcrFixd59+5dnk3JZTIZnz9/livHz9DQkGbNmn31NXd3d/bv309ERAQRERGcPn0adXV1EhMTKVasGFWrVqV27drUqlUrJxQ+G1VVVRITE7l+/TqWlpZ07dqVCRMmYG5u/tX3PDk5mbCwMOzt7fHw8KB58+aSryEbdXV1uTcEMzIy0NbWRkNDg3PnzjFgwABmzJiBlZVVvrqtW7fGzMyMevXqERsbK7e9MpksxxmdNWsWU6ZMkSvkMyMjAyUlJRISEkhMTKRQoUL56kRGRjJ48GBCQkKoVq2a3Da/f/+egwcP8vLlSwoXLixZLzo6mgMHDnDlyhWqVKmS/+mtKIq/9MPGxkbMj+Dg4HxlpMp9Kxmpcl5eXqKSkpKopKQk3jl8WBRVVERREETx9u3vatf9h/fFNbfWiGWWlRGZjsh0xCLzi4jTfKaJkfGRXx0rJEQUq1YVRch6DB0qigkJ//7f50cd62e2/VuPBdwWf4D15e88HB0dc66ndu3a4qVLlyRd+59xdXUVvb29C6TbqlUr0cvLq0C67u7u4u7duwuk26VLF3HHjh2SZN++fSsWK1ZMXL16dYHm+pKYmBgRyPUhk8nEOnXqfFU3NTX1L/Jqamqitra2aGBgIHp4eIhBQUFf1Z05c6Y4adKkAtm8cOFCcfTo0QXSXblypTho0KAC6W7atEns1atXgXR37doldurUqUC6hw8fFlu3bl0g3VOnTomNGzcukK6Pj4/o4uJSIN3r16+LVapUEUXx11qbHj58KGpoaIj79+8v0PsiiqJYsWJFERC1tLREHx8fSToZGRmij4+PqKOjI3p4eMg1X61atUQlJSVx+PDhYmZmptz2fvr0STQxMRFLly6dr356errYvn17sXbt2uL79+/lnuvPdOnSJc/1CRAFQRBLlCghpqen/0G3b9++f5BTVVUV1dXVRV1dXbFOnTrizJkzxfPnz4sxMTE5OikpKeKWLVtEQ0NDccSIEWJGRoZc9taqVUs0NzcX169fL6alpUnWy8zMFO/evSuamZmJgOjq6ipJLy0tTSxdurS4d+9euez8kvT0dHHAgAGisrKyOGfOHLl0ExISxJYtW4qAuGTJEkk669evFwVBEBcsWCAmJyfLbW9mZqZoZWUl9ujRQ279mTNninZ2duK7d+9ynsttfVJsZf7kWFlZMWzYMDIzM/lt7lwyhg7N8qWGDcv673dCXabOb06/ETIkhIPtD1LFpApRSVHMuDyDkktLMvjkYJ59+mMlwnLlwNcXZs0CmSwr/bFSJQgIUP9OV6FAgYLc+Du9+NTU1Jg+fTrjx4/H29ubmJiYXGWLFSuGr68vy5YtY3Z2OPw/gIaGBioqKsz6U1RFXqSkpBAfH8/Hjx9ZtmwZ9vb2jB079h+zUYGCfxMbGxuOHj1Kp06dePky74rh+ZGamoqvr2++cklJSVy8eJEzZ86QkZFBmTJl5Jrn4sWLbN++nQ0bNjB69Gi57WzSpAkfP35k/Pjxea5LkHWSuHfvXmrVqoWTk5PkXEN5UVJSQldXF3V1dXr27MnDhw/zLYSVmppKcnIysbGxXLp0iRkzZuDq6oqenl5Os3ZVVVV69uxJy5YtWbt2LcuWLZPLrkuXLlGxYkUGDhxInTp1JOsNHDgwJ6ri2rVrkntJ+vn58erVK96/f8+TJ0/ksjUbZWVlSpcujbq6ulzhx6IoUqlSJUJCQvD19c23b2Q2/fr14/bt21y+fJkyZcqwY8cORDnuzQVBwM/PD39/f3r06CFZD2DSpEm0atWKNm3a5CurcAZ/AX7//XdMTEy4desW601MwMgI/Pxgz57vbRrKSsq4Wbtxvc91Lve8TLOyzUhKT2L17dWUW1mOEddGcOv1rRx5mQwmTYIbN8DaOqsmTqdOZkybBgWMSFOgQMEPxpgxY3j27BkLFy7E3d0dQ0NDSpcuzYABA/D19f1LaFeZMmW4dOkSGzduZM83WtdUVFRy2lHUq1eP+fPnc//+fWrUqFGg8TIyMtDT08u32bUCBT8Loiji6+uLg4MDJUqUKPA4GhoaVKhQgUGDBuUq4+PjQ926dSlcuDBTp05FJpMxb948+vXrJ9dcMpmMLl26UKRIEaytreW2df/+/ZQpU4ZBgwZhaGiInZ0dkyZNYs+ePTx48OAvrTWUlJSYNWsWa9asoX379qxatUruOSHrvX7//j3q6uro6uoik8kwMjKiQYMGTJo0iW3bthESEsLmzZslhSd+iYaGBsrKyjg4OLB27dq/VIQVRRFBEOQOFRUEAWVlZVRVVRkzZoxkveww2RUrVlC9enXJejVr1uT48ePcunULe3t7KlWqxKtXr+SyOSAggH379tGoUSNcXFwk6wmCwNKlS3n37h2nT5/mvRy1ORwcHDhx4gTdu3enf//+VKxYMd+Nhi9JTU3l7du31K1bV25HcsSIEdy6dSvftAyFM/gLoKOjk5PUPeH333n/v10fxo7N6t/wAyAIArVL1uZE5xM8HPiQnhV7oiwo4/3Smyobq1B3W11OPz2d80F3cIA7d2D0aMjMzKqLU60aKAoBKlDw85OdA5SZmUlsbCxpaWmEhYWxceNGmjRpQrFixRg7diyvX7/O0SlWrBg7d+5k8uTJclfcCwgI4Pfff6dJkyZAVjW9cePGcebMGWJjY7lw4QJDhw6lXLlykscUBAFdXV1UVVUpV64cw4YN4/bt21hYWMhlmwIFPyKpqan06tWLI0eOcOjQob8VCZCWlsbz58+5e/durjIGBgZYWlpSokQJnj9/zvPnz4mIiJD7u56NlpYWHh4ekttKZGNmZkapUqVIT08nPT2dwMBA5s6dy4ABA6hVqxa6uroYGRlRq1YtRo4cyZYtW3j37h2amppkZmbKVYQFshyxHTt24ODgwP3795k6dSre3t58/vyZd+/ece7cOX7//fecfDl50NbWxsDAgGnTphEWFsatW7fo37//X3LPYmJiKFmypFwN67dv346trS3+/v5s2bKFVq1aSdI7cOAAAwYMoEmTJqiryxf1paSkhKurKzt27GDcuHEEBgbSuXPnfB2k9PR0Vq5ciaOjI82aNaNBgwbs3LlT7s90kyZNGD16NIsXL6ZkyZI0a9aMGzduSNY3MjJCSUkJPT09ufJMNTU1qVu3LsOHD6dEiRJMmTJFkjP6/PlzateuTc+ePf9SafvPKJzBXwQ3NzcaN25MTEwMHnfugKMjvH4Nc+d+b9P+gk1RG7a02kLY8DD6lO+DjqoOl8Iv0XR3U+zX2rP9wXZSM1JRV4dFi2DbtpeULAl372Y5iUuXZjmIChQo+LXIzMwkPj6eDx8+sGjRIo4cOfKH16tXr46KigoBAXn3M80mKSmJ0aNH06hRI+Li4pg0aRLv37/n+fPnzJw5k2rVquX7I/k11NTUqFKlCrt27SIyMpKQkBA8PT0pWbKk3GMpUPAj8uHDBy5fvgzAvHnziIuLk0s/MzOT27dv8+7dOzIzM0lMTOTUqVO5ytva2rJ27VpCQ0Px9/enbt26bNy4kb179xbI/uLFixMTE8PAgQMLpP8loigSFxdHXFwc6enpREZG4uvry9KlS+nduzcHDx5k4sSJrFixQnJT8Gy2bdvGnDlzmDNnDi9fvmTChAk4OztLbiCfGxoaGqxfv563b98ybtw4ihcvnqtsRkYGqqqqksdOSUlhyZIlvHz5krZt29KoUSPJukeOHCEzM5OjR49ib29PlSpVGDt2LD4+PkRFRUkeR01NjYyMDG7fvs2zZ8/ylH337h1r167l/v37VK1alczMTJ4+fSp5ri8xNDQkOTmZ1NRUTp06xZo1ayTrvnjxgrS0NDQ1Nbl9+7bkUz5tbW26dOlCSkoKb968Yc6cOZJaW9y6dYsXL17w6NEjFi1alGcrKIUz+IsgCAIrV65EXV2dnbt2cTE7tnjRIpDYl+TfxkTXhDEVx/By5EvmN5hPce3iBEYG0uNID8osL8Niv8XEpsRSpUoSAQHQuzekpMDIkdCgAUionqxAgYKfDC0tLdTV1Rk1atRfwsoEQcDKyirfH/9shg4dyt27dwkMDGThwoU0bdqUokWL/m0bU1JSePToEXp6enKHbClQ8DNgYmLCs2fPmD9/Ptu2bZPr1Cg6OhpHR0e6du1K1apV8fLyIjY2liVLlkjSz26wXahQIcn5ZLlRkH5yeSEIAtra2ujq6qKmpkavXr0YPHgwWlparF+/nkWLFpEgISLr48ePTJkyhVGjRrFz584CnZTlhbKyMo8ePSI0NDRPufj4eIKCguQKqVVTU+PevXscP36cs2fPUqJEiXznyWbXrl28e/eOoKAgSpcuza1bt1i4cCH16tXDwMCA5cuXS7YDsv4e+fW+LFGiBA8fPuTFixc0b96cCxcuUKlSJfbt2yfXXNmoqKigp6fH9evX2bp1q2Q9Ozs70tLS8Pb2pm7dumzZskXuuTU1NXFxcaFXr175yrq7u/P27VvKly/P2LFjady4ca6yCmfwF6JMmTJMmjQJgEGrVpHSsWOW91TAkuz/FoXUCzG2xljChoexueVmrA2teRX7Co9zHph5mrH4wWIShLds2gRHj0LRouDjA7a2sG3bd62To0CBgr+Juro6Ghoa6Ovr4+bmxsqVKwkODmbRokVfDePR1NSU3Mi6bdu2vH379h9p+xAXF4erq+tfTi8VKPhVUFJSonHjxujr61OkSBHJej179qRWrVo8fvyYI0eO0LJlS7kdnczMTNTV1dmzZ0++7cHy0u/evbvcuikpKWhoaKCjo4NMJkNXVxcbGxvatGnDlClTWLNmDadPnyYiIoLNmzcjCAJHjhyhe/fuTJ06lUKFCjFz5sxcx9+5cyclS5Zk8+bNbN26FXt7e4AC9239GvHx8SxYsAAHBwdKly7No6/k2Lx69QpHR0fKly/Phg0b5BpfEARq165N48aNSUxMpFOnTpL0Zs2aha2tLWXKlOHevXtYWFjQrVs39uzZw5MnTyT3/3v79i0qKirUqlWLmjVrStIxMTGhffv2WFpaoqamRr169STp/Zm0tDRiYmIYNmyY5NM9URT58OEDkPXeFSlSBDc3N8lzrlq1CgMDA5YtW8bZs2cl/6ZduHCBgwcP0q5duzyd31+2z+B/lTFjxrBz586ssKU2bRivqQmHD6PZsiVYWn5v8/JETaZGr0q96FGxB6eenmLBtQVcfXGVDY83sO3JNrrZdcOjugcPH5ZnwADw8oKePbMcxHXrvrf1ChQoKCjdunVj7dq1knI4VFRUJPcobNKkCT4+Pjg7O+Pt7Y25ufnfNfUPKCkp/e1wLgUKfnSUlJTybXz+JW/fvmXIkCEFyjMMDQ1l9erV7Nu3j6SkpJw8KXnIzlF0cHAoUJioTCYjJSUFJSUlihQpwogRIxg9evRXTxnT09NZvXo158+f58qVK6irq1OrVq08T2GqVq3K5MmTuXfvHh4eHnTq1AkbGxtSUlJo06YNkydPLlD4+p9JTU1FU1OT0qVL/yVMNC0tjXbt2tGtWzcmT54s99j+/v4sXbqUo0ePYmVlJXkMa2trXr9+zYgRI5gzZ47cnxEvLy/mz59PSEgIvXr1YvHixZLG+PDhAzNmzGDPnj2Ym5vj5eWFoaGh5HljYmJYunQpW7ZsQSaTUbVqVYYNG5bn3K9evWLr1q3cuHGDGzdukJaWRvHixenUqRODBw+WK6rEz8+PT58+oaOjI1kH4OzZs4wfP54JEybkKac4GfzFUFNTY8WKFQDMXL6cF/8Lsyo6ezZ8w12nfxIlQYnm5ZpzpdcV/Pv407BEQ9Iy0th0bxNWq6zoe6EVozyvsW0b6OpmOYUVKsDFi1rf23QFChTISXJyMjt27GDMmDGSdsZVVFQk76ALgsDChQsZPHgwDRs2JDIy8u+aC2TlcKirq9O5c2fq16//TcZUoOBHRU1Njffv3/NCYm5G//796dChA8OHD5ccPgiwd+9enJ2d0dTU5Pz580RGRuLp6YmWlny/7S9evCAuLo5Lly7JrQtZIZaZmZkkJCTw/v17pk6dmqszHBsby9atWzl9+jTjx4/n5cuXnDlzhsqVK+c6ftmyZZkwYQL79+/nyZMnvHv3Dg8PDx4/fsy6devkbqguimJOdUoVFRW0tbVRVVWlUqVKbNiwgXPnzv2laExSUhLR0dGEhITIVdkym/Pnz+Pl5cWhQ4cICgqSXECmbdu2BAYGcu7cOebPny/3vAMGDGDo0KG8e/eOdevWSd6Me/36NQEBAaSkpPD582dmzZrF1q1beffunST9N2/esHnzZhISEjh+/Di+vr506NAhT53g4GCWLl3KrVu32LZtG5GRkbx584bFixdTunRpSfNmU6lSJbp06UJqamq+sqIo4uPjQ6NGjThy5IikqqkKZ/AXpGHDhrRv357ExERGhYaCuTlqT5/+lMdn1UpUY0XNFYQMCWGA4wDUlNU4FnKMWltrsjatOotOHKFO3UwiI2HQoBL06QNyrqMKFCj4ziQlJbFy5UoOHjyYr6xMJpN8MpjNsGHDaNeuXZ6l7XMjOTmZQ4cO0aFDB5SVlalbty6bN28mKiqK9evXS9qVNjIyYtGiRVSrVo3p06fj4+NDYmKi3LYoUPA9yP6Mr169WpJ8nz59ePToEe/evcv3hjmb9+/f07VrVzp06MCMGTOwsrIq8OmYr68v6enp+fbik4qmpiYHDx78agEOfX197ty5g7e3N+fPn6devXqSbti/JLsifOfOnQkLC0NfX18u/ZMnT3Ly5EkaN27MokWLuHz5MgkJCdy9e5fOnTt/dY3S1dXlzp07aGpqYmhoiLGxMQ0aNGDChAns3buXwMDAPAuOTJkyhZ07d9K1a1c8PDzkWs9MTEzw8vJi8eLFNGvWjDt37kjWtbCwYO/evTnFjaRSsWJFrly5QlRUFM2bN8fX15c+ffpQokQJSbZbWVnx9OlTGjRoQJMmTfLNUwRo0KAB4eHhdOjQgTZt2sj9u5WQkMDFixf5/fffiY+P5/jx43h7e+erFxoaSsOGDbl06RIdOnTg4cOHPHz4ME8dhTP4i7JkyRK0tLQ4dOQIZ7p2zXpyyhSQo1rTj0TZImVZ23wtESMimFxrMoXVC+P/yp/+F9vwpo0V7vM3oKqZyObNYG8Pcq4TChQo+I4oKSmhpqaW038qLwpa4n7y5Mn4+Pjw5s0bSfKiKDJr1iyMjY1ZvXo1TZo0wc/Pj4sXL9K+fXs0NTUlz92vXz/S0tK4ceMGs2fPpnXr1ujp6WFtbc38+fPl7pWlQMG/RVxcHAkJCaSkpLBs2TLJN7TFihVDXV0dPT09SWXwjYyMuHfvHkFBQVSsWJFFixZx//59ue2dPXs2c+bMkSuvKj9iYmIYMGAApqamX70WQRCoX78+Z8+e5f379zRp0oRbt259ZaTcqVSpEra2tpJzK0VRJDQ0lF27drF9+3asrKw4ffo0w4YNw8HBQZIjraWlxbp16+jbty9v377lwoULzJs3j759+1K9enW0tLQwNjZm7dq1X9Xv0KEDnTp1YvXq1ZibmxMYGCj5ek1NTenTpw+nT5+mcuXKkvtJXrhwgYYNG9KqVasC9XRVU1P7Q7pArVq1JK3loijy8OFDIiIisLe3z7M665eEhIRw5swZPD09Jf9mpKenU7duXQwMDJg8eTIJCQn069ePx48f07Jly3z1y5Yty+fPnzl58iS6urqsXr0aW1vbPMOtFc7gL0qJEiWYOnUqAEP37uVTlSrw+TNMm/adLft7GGkbMbPeTF6MfMGyxssoWagkTz49YV9SfzQnlsTYfQ7h7z5Tt25W3RyJdSYUKFDwL5K9q6qtrU2hQoXo378/fn5+cudDyIO2tjaVK1fOs9fZl4wYMQIvLy8ePHjAhQsX6N+/P1WqVCnw/NlObHp6ek5vxcePHzN9+nQsLCxwcnJi/fr1cjUzVqDgnyAlJYXhw4fj6OhI8eLFSUxMpE2bNhw7dkyu6pwTJkzg4cOHmJmZ0bx583xD8mxtbfHx8WHx4sU8ffqUKlWqYGhoyMSJEyU5oS9evGDmzJmsWLHib31Xs+fS0NBAS0uLwoUL06FDB1auXJlnNWIlJSXs7e3x8fGhevXq2NnZcfPmTUlzymSyfMPfMzIyWLhwIc2bN8fQ0JB69epx5MgRqlatWqDKlNn8+QQ1ISGB+Ph4MjIyePv2LaNGjcLHx+erxVK0tbVJSkoiMjISZ2dnHj9+LGnOjIwMgoKC0NDQoFq1apKdQXV1dYKCgihUqFCBigNBVi6lIAjo6+tLet82bNiAra0t7dq1w9raOs8WKdmIooiHhweNGzdm4sSJcuWuymQyevXqRZEiRShVqhSDBg1i5MiRlC9fXvIYOjo6NGjQgOnTpzNx4kTU1NTy7FP5yxaQEQShBdDC2Ng430pUz58/lzSmFLlvJfMtxmrSpAnr1q3j6dOnjG/ZknXKyrBmDeGurqR+pZjMv/0+/N2xGuk1on6j+ni/9GbT4008jn5MtNUkZOVnk3GjH4s3juLoUSMWLHiLtXXKv2bXPzXWz2z7tx5Lwc9HdHQ0+/fvZ/fu3dy/f5+aNWsyY8YMXFxcvlk4V34YGxtLdrYCAwPp1KkTpqam/6hN2ZVR79y5w6hRoxg6dChly5alc+fOtG/f/h+dW4GCr5GZmcnr1695+/YtmpqaaGhooKenh4aGBpmZmZJP3GJjY8nMzEQURd6+fSup5YIgCLi6uuLq6sqDBw+4ceMGS5cupUyZMvTp0ydPXSUlJdq3b8/QoUN5/vx5TnP4li1bUqdOnVxPczIzM7l16xZnzpzh7Nmz3LhxA2tra3r37k3jxo2xtrbONSIhMTGRGzduEBAQQEBAAFeuXEEURTQ0NNDV1SU6OjpPm9PT05kxYwYHDhzINwQwMzOToKAgzp8/j5OTE5MnT6ZRo0YFjpaQSnJyMi1atEBPT4/BgwfTq1cvIiIiuHbtGkePHkUQBNTV1XFycpLktPv5+TF48GBUVVW5cOEC1apVk2xLZmYmcXFxpKSk4O3tTeXKlSU3cA8KCmLt2rVs3rwZW1tbDh06RKlSpfLVe/36NZ8/f6ZQoUIkJSURERGBsbFxnjqiKJKSkkJmZibr168nNjYWd3d3ya2NunfvjpubG4sWLcLBwYF27dqxYMECuYrOiKLI/v37GTJkCDVr1uTYsWO559CKovhLP2xsbMT8CA4OzldGqty3kvlWY50/f14ERHV1dTG8e3dRBFGsW1cUMzO/q13feqzMzExx86XNYsPtDUWmk/WYqizSpquobPxAnDVLFNPSfu5r/Jlt/9ZjAbfFH2B9+TsPR0fHnOupXbu2eOnSJUnX/mdcXV1Fb2/vAum2atVK9PLyKpBux44dxd27d0uSffz4sWhqaiq6ubmJXl5eYnR0tJiRkVGgeQcOHCiuWrWqQLr9+vUT165dK0n26dOnoqGhobhx48YCzfVnlJWVRUDyQ1lZWSxXrpy4cOFCcfTo0QWac+XKleKgQYMKpLtp0yaxV69eBdLdtWuX2KlTpwLpHj58WGzdunWBdE+dOiU2bty4QLo+Pj6ii4tLgXSvX78uVqlSRRTFX2NtKlu2rLhq1Spx1KhRYqVKlXI+k7q6uuKdO3ckvSfJyclikSJFRH19fTEoKEietzOHatWq5cxdtWpVuXRr1qz5h+/Tnz8XaWlp4oULF8RBgwaJxYoVE21sbMTRo0eLZ86cEcPDwyXP4+npKQJinz59xLVr14o7d+4UP3z4IFnfz89PlMlk4vPnzyXrfPr0SVy9erVoYmIinj17VrJebgwZMkTyuqSuri5qa2uLampqOe9rUFCQmPmVe8rcqFKliqiqqio2b95cXLNmjRgXFye3zR06dBAB8cSJE5J1nJ2dRUB0cXERjx49KtdvUEZGhrhhwwZRWVlZLFq0qGTdlJQU8cSJE2KDBg0KvK69fv1adHFxEQ0NDUV/f3/Jes+fPxdVVFTEM2fO5DyX2/qkCBP9xalfvz7u7u4kJyczMioK9PWzmvR5eX1v074pgiBQvVh1znY7y93+d+ls2xllZcB+Jxn97Zkc3Bi7VhcIC/tlD8MVKPghycjIwMXFhfHjx3Pw4EFat25NoUKF/pHef/khTyVSCwsLrl69yvz58/PsGfatkclk6OjoYGZmxvnz5/+1eRUoyObdu3c8ePAAIyMjJk2axJQpUwgLCyMmJgYHBwdJY6ipqREUFERaWhqurq5k3YcWDJlMJndVUJlMhrKyMlpaWsyfP5+jR4/mvPb582dMTEyoX78+CQkJXL58mYcPH7Jo0SJcXV0pWbKk5HmGDBmCm5sbgYGBFC5cmCZNmmBgYCBZ39nZmQ4dOtC5c2dmzZolKae5cOHCDBw4EDc3N+bMmcOJEyf4/Pmz5Dn/DsnJyaSkpJCens6UKVO4efMmDRo0YNKkSdy/f1/S3/n69evcuXOHpKQkBg4ciJ6eHrt27ZJsQ2RkJN7e3mzatElSnnk2165d49atW6iqqtKmTRsMDAx48OCBJN3Dhw/Tv39/SpQowfHjxyX/fqmqqtKsWTMaNWpEVFRUgSq3iqKIg4MDHz58oEaNGl/tGflnUlJSuHz5Munp6VSoUCFfeYUz+B9g8eLFaGpq4nXyJKc7dsx6cvRoSEr6vob9Q1QqXoldbXcROiyU4VWHo66kCRZneFylAU2PdqD3kr2kZfwcbTYUKPjZUVZWpmXLlty4cYPMzMzvaou8lUgtLS3x9fVl27ZtbNu27ZvbIwgCurq6qKuro6uri4uLC1OmTOHAgQM8fPjwHw9RVaDga6SkpKClpUX9+vVp27YtM2bMkBRO92du3LhBeno6CxculDuUMSEhgbdv36KhoUHv3r3ZsWOHXPqvX7/G3Nyc4OBgxo4di6qqas5rhQsXZu/evQwePJhz587RunVrli9fLtf42chkMvbu3cuoUaNYvXo1pqamzJ07V64xNm/ejIeHB5s2bcLMzIxy5cpx7NixfPVmzZqFu7s7c+bMoUSJEvTu3TvPCqDyoq2tja6uLjKZDAMDA2rUqMGwYcNYt24dfn5+zJgxg969e/P27VsWLVqEk5MTRkZG+fa0S09P59OnT6SkpKChocGQIUPkcuqUlZURRVGu8FLIWm+dnJxo2rQpmZmZfP78mUaNGpEk4V64adOm7N27F2NjY5ydnSlSpAiDBw8mIyND0tx9+/ZFSUkJU1NT9u/fn6/TfP/+fdzd3TEzM6NixYr4+vri6urK6dOnsbKyylN3w4YNmJmZsXr1ak6ePCmp2I3CGfwPYGJiwuDBgwEYeuYMyTY2EB4Oixd/X8P+YUrplWJp46W89njJJOdZqKcXRSx2ly1xndCdXJaZZ1eQkJp/DoMCBQr+HosXLyYsLIy2bdvK1bz6W5PdP0weihYtyoEDB5g4caLcJeMzMzO5ffs269atIzMzE2VlZWQyGYUKFaJatWqMHj2arVu38vTpU6Kjo7l06RJTp06lUaNGclUrVaDgW2JhYYG2tjbt27fH1taWzp07E1WASuQ6OjooKSlx5MiRfHPnviQsLAxnZ2fs7OwICwtj3bp1+eZo/RllZWXevXvHmTNnvvp63bp1WblyJS9fvqRp06b4+PjINf6XpKenk5iYSHx8PCoqKujq6sqlr6amhpubGzVq1CAjI4OwsDBJ66SOjg6//fYbfn5+NGvWjD179tCiRQvJ0Q/ZfOmYaGhooKamRtu2bVm9ejUXL14kOjqaDx8+4Ovry7Jly+jRowfx8fEsWbKEU6dOIQgCGRkZFC5cGFtb2686H7GxsWzYsAE3NzcMDQ0ZOXIkVatW5enTpyxduhQ9PT3J9urr61OrVi2cnJyoVKkSe/bskXQiGRERwdKlS9mwYQOCIGBiYkKnTp0knfJpamrSoUMHunXrlpO3mJycLPmEUE9Pj169ehEXF0fv3r1xdHTMs1qukpIS165dw8HBgVevXnHz5k3OnDmDq6trvhsr+vr6VK5cmZCQEMaPH0+HDh1Yt25dnu+Rwhn8j9C9e3esra159uwZi7KrbM2dC/+Bkub6GvrMcp3Ep6nhtNeYh9LnsiSrhzPVfxjF5psx1WcqHxI+fG8zFSj4ZdHV1eX8+fPo6urSpk0buZ2q702lSpUwMTHB398/X9nExESOHTtG3759MTY2pkePHty4cYNx48bllJ6Pjo7G39+fhQsX0qZNG0qUKPGPF4FQoEAqGhoa/P7774SGhrJmzRqOHTsm98mZKIqoqKigrKzM4cOH5Wq1cOXKFV6/fo2vry/t27dn6dKlPHz4UK6NnOLFixMfH89vv/3Gp0+fcpVTUlIiIyODjx8/yh1qme0QlSlThn379jFjxgxev36ds/kuD9nVhVVVVVm8eDGdO3eWpJeZmYm/vz/BwcGkpqZy//79vxTJiouL49GjR3h7e7N+/XomT55M9+7dqVOnDqVLl2bNmjUoKSlRpkwZpk+fzuvXrzl06BDdunXD0dHxLyG6QUFBtGnThoiICHr27Mnly5eJi4vjw4cPXLhwgWHDhv3FTl9fXzw8PDh27Bi9e/dm9+7dLFy4EBMTE0nX+fnzZ/z8/Ni0aRMeHh6EhoaSlJTEgwcPmDFjBh8/fsx3jNGjR3PmzBlGjRrF27dvefXqFZ6enpIL0EBWmKyKigoTJkxg06ZNBVq3ExISCAwMZN68ebnK2NnZERAQQFxcHAsWLJBrfDc3N06cOMHjx4+xsrLi4MGDjBs3Ls8NGYUz+B9BRUWFlStXAjB7zx7CGzeGxEQYN+47W/bvoaGiwcxWrXkx9jGOTw/Dq6rEZ35i5pWZmHmaMejkIEI/hX5vMxUo+CVRVVVl8+bNaGhoMO0nbHFToUIFnj59mqfMo0ePMDY2ZunSpVSoUAE/Pz+CgoLYvHkzc+fOpV69enI3lNbU1GTLli10796dnTt3Eh4e/rfyrxQokIqSkhK1atVCR0eHwoULy6W7cOFCatWqhSiKrF+/Xq5WDz169ODDhw+Ymppy9epVRo4cia2tLWXLlpX3EhAE4Q8hol9j0aJFVK5cmYoVK7JmzRoiIyMljV2zZk0WLFjA0aNH8fb2plmzZnLnNmYzduxY7t69S/v27albt67k73iHDh2oXr06UVFRHD9+nPfv3+c4WOnp6ZQsWRJdXV1sbGxwc3Pj3LlzqKmpUa9ePaZOncrZs2c5c+YM0dHRhIaGMnbsWIoUKZLnnDKZjOTkZG7cuIG3tzdLly5l7ty5HDhwgFu3bvH+/fu/OO5Nmzblw4cPnDx5kuTkZOrVq4ednR3Hjh3L91q7deuGvr4+NWvW5MSJExQtWpTevXtz7Ngx0tLSCA4OxtDQMN/3qmzZskRHR6Orqyu5quef0dDQIC0tjYULF0puG/JnstMD1qxZk6ecvr4+69evz3l/5dlEffr0KSVLliQqKopdu3YRGRmZ53dY4Qz+h6hbty6dOnUiOTmZERkZoKYGu3fDtWvf27R/FRNjZW7taMP6Kv5o7LkCIc1Jzkhmze01lFtRjvYH2hMQFfC9zVSg4JdDJpOxYsUK1q9fT2Ji4vc2Ry60tLTyzS3Zu3cv7du35+LFi4wYMYLSpUv/7XkHDBhAYmIiO3bsYODAgVhbW1OkSBGaNm3KtGnT2LVrFzdu3Mjz9EOBgr+DKIpy3/gOGzaMixcvoqWlRd++fTEwMMDc3JzNmzfnq5uamsq4ceMICwtDW1ubpk2bsnXrVq5evSpp7rCwsJx8w+nTp6OtrZ2nvLKyMkuWLGHPnj3s27eP0qVL5xpe+iW7du3CysqKPn36MGfOHE6dOlXgzZqZM2fi4uLC7t27qVy5MoULF2b8+PH56q1bt46NGzeipKREy5YtcXV1zWlXI5PJ8Pf35+DBg4wZMwYnJye8vb3ZvXs3165dw8TEBAsLCxo0aCBXj1crKyvCw8NZunQpWlpaHD58OCd/sVatWpiZmaGqqoqhoSEVK1bE3d2dU6dOoaysjKurK6tXr+bly5dYWVnh7u6OnZ1dnm1Hli9fzpYtW2jatCkXLlzAz8+P8uXL07RpU7naEk2fPp1+/foxdOhQTE1NefjwoWTdP5OcnMymTZsKpCuKIjExMTg5OeX7O1imTBkuX77M3r17KVGihOQ+jhYWFixcuJCAgADU1NTy3RBROIP/MRYtWoS2tjZHz53jZOvWWU8OGwbfubDDv40gQL9+Ag9P1aLmy+OwKgju9UIQZRx8dJAO5zpQZ2sdTj09pdiFV6DgG1KyZElKlixJUFDQ9zZFLlRUVPItPtOiRQu8vb0ZOXKkpKIEUlBWVs654YmPjycpKYnPnz9z+vRpZs2axcCBA3F1daV48eJoaWlhaWlJixYtmDRpEjdv3vxmdij476KhoYGvr69cOurq6tStW5dixYqRmZlJeno6b9++zTecLzk5mZYtWxIUFISfnx+xsbGcPHmSHj165Jo3mJGRwc6dO+nZsyelSpWievXqZGRkMH/+/HyLmWTz4MED1qxZw/3797GyspK0kWNjY8PFixeZPXs20dHReHp6YmlpiZqaGpaWlvTv319SIRjIKtaiqqqKhoYGkFW8qmrVqvnqFSlShD59+lC3bl3U1NRQV1f/Q9ijsbExbm5uLFiwgMuXL/P582f27t1LqVKlqFmzJgMHDiQ2NlaSjV9SvHhxnJ2d/9AIXRSzeuulpqbmhN4+ePCA/fv307FjR4yMjJg2bRr3798nIyOD8uXLk5yczJMnT/Ksslm4cGF69uzJiRMnePHiBa1bt2bo0KEUKVKEOXPmSC7ioqamRu/evRk7diyvX7/G1dVV7uqer169QktLi1KlStGtWzdJOhkZGWzatIn169ejrKyMuro6zs7ODBs2TFKIaoUKFZg4cSIfPnygbdu2knJCBUFgxIgReHl5MWzYMOrVq0dcXFyu8gpn8D+GsbExM2bMAGDYzZskm5jA3buwZct3tuz7ULo0XLoEC8ZYo3p6M5lLwtF7OBYNJR0uR1ym2e5m2K6xZdv9baRm/Fx5TgoU/KiYmpry+vXr722GXMhksnx/hCtXrsz9+/d5/fo1dnZ2XLhw4R+1KbuQQWxsLKmpqSQmJvLkyRNOnDjB3Llz2bt3Lzt27GDu3Lk5pwUKFBSEv/v50dTUxMLCgqFDh+Yp9+nTp5x2D/Xq1aNu3bqsWrWKkJCQXDdm4+Li2LRpE7t37yY9PZ1+/frRu3dv+vfvLzmn6/Lly9y5c4eUlBRevHiBu7s7Y8aM4fz583k6sIIg0Lx5cxYsWMC5c+do1qwZaWlpPHnyhA0bNjBz5kzJFYyfPXtGu3btCA8P58aNG7Rp00aSHmRtFKWnp2NhYZHn30omk2Fvb0+XLl2oXr06hw4dIiIiQvI8BSUuLo6oqCjmz59PzZo10dDQyMmZs7S0JCoqSpJTp6Ojg7m5OcbGxsTGxrJt2za5ihMBOUVfoqKi5P4dunLlCkOHDuXp06fUrFlTks7Hjx9ZuHAh/v7+dOzYkY8fP3L16lWGDx+e78lmQkIChw4dYsWKFQiCgIqKilwbfKVKlaJMmTLcuHGDV3nUCPnXnUFBEBoLghAiCEKoIAh/OQMXBKG8IAj+giCkCILgIY+uAmkMHToUGxsbnoeFscDZOevJiRNRymPX4FdGWRnGjIHbt8G+tDHRB+eTPOcl9dIXYqJjQtCHIHoe7UnpZaVZ5LeI2BT5d9EU/Pgo1qZ/D1VVVblaPPwISG1LUaRIEfbv38+SJUvo1asXs2fP/hes+yuiKJKamoooikycOJE5c+Z8FzsUfBu+1/qUkZFBXFwcffv2LZDdmZmZqKur4+Hhwf3793NOvnLD0NCQjRs3snXrVjIyMrh8+TJDhgyhfPnyeHp6flVHT08PHx8foqOj2bJlC7GxsUyYMEGudgXDhg3j0aNHfPr0CQsLC+7du8eiRYto2LAhhoaGuVZ+FEWRsLAwdu/ezbBhw/Dx8UFFRYV27dpx8+ZNbt26hYqKiiQbihcvzr179zAyMpJsdzZFihQhNTWVdevW0aRJkzxl4+PjqVSpEhUrVuTZs2fY2trKPV9BSUlJISEhgYyMjJz1NDAwEDs7OwYOHJivvpubG0OHDqVatWoEBAQQEhKSb45jbqioqPD8+XO5or9kMhlWVlZyhacaGRnx6NEjunfvzq5du+jSpYtk3QYNGjBjxgwaN27M48ePCQgIkCukt0WLFgQGBnLlypU8W1L8q86gIAjKwCqgCWANdBIEwfpPYp+AYcCiAugqkICKigqrVq0CYO6JEzx3dITISIqsXv2dLfu+2NrCjRswYQIIqbpcnOWB/o7nzHTcio2hDa/jXjPm3BhMPU0Zd24c75Pe5z+ogp8Cxdr07yLllO1HQ96qcS1atODGjRvs3r2bxf9CG5/sZvVaWlqoq6vj4OCAi4sL9evX5+nTpzkRIQp+Pr7n+jR79mxSU1PpmN2jWA6io6N5+/YtFSpUYMaMGchkslxlhw0bhqWlJTo6OjRr1oytW7diYWGREx747t07Ro4cmed8mpqa1KpVC29vbxwcHNizZ4/cNkdFRREZGYmmpiampqZMnz6dp0+fUrFixb/Ijh07luLFi1O6dGlGjBiBTCZj2LBhREdHc+DAASpXrizX3IULF+bRo0d/q81FUlIS/v7+PHnyJFeZ58+fA1mRDOrq6v9o/9fsHqpaWlooKytjYGCAra0tFStWzPk81KtXjzdv3rB27do8x7py5Qo+Pj5cv349p0jX3yEhIYGWLVvi4uIi2SFUUVEhLCxM7rl27NjBrl27aNCggVw9MydMmEB0dDT6+vqSiuT8GW9vb+rWrUu1atXyDJn+t08GqwChoig+F0UxFdgLtPpSQBTFSFEUbwF/3oLNV1eBdFxcXOjSpUtWMRktLRAECu/YASEh39u074qaGsyZAzt3vqRMGQi8r8pMtx50jw/kWMeTuJR0ITYllgV+C2hwvAG9j/bm0YdH39tsBX8fxdr0LyIl/+5XoHjx4hw/fpy5c+fKnZsCWaF5d+7cIS0tDUEQcppAa2hoIJPJMDY2plq1avTs2ZPZs2ezefNm7t27R0JCAnfu3KF9+/ZoaGigq6uraF3xc/Pd1id3d3dUVVWpUqUKpUuXZsGCBfneOGdmZjJhwgTKlClD6dKl2b9/f77znDx5km7duvH8+XNCQ0M5efIkN27cYMuWLTRr1gwjIyNJn2E1NTV69erFo0eP2Lhxo9TL5PHjx7Rt2xY7OzvMzc3x9/fnxYsXTJs2DQsLi6/qdOjQgXHjxtG/f3/Kly/Pzp07mTt3LkZGRjg7OzNt2jRJlUkfP35MixYtuHDhAj179sTR0VGy3V/DwMAgz5YNVlZWzJkzh3nz5mFsbEyrVq3+0o4iL0RR5P3799y8eZOQ/90zampqoquri4qKCoUKFcLBwYG+ffuyePFiDh8+TEBAAEePHqVt27aIosjTp08xMzPD1dWVKVOmULx48Xx79tnZ2VGzZk1cXV3lbgPype3Xrl1DW1sbdXV1mjdvzvjx4yWvj1WrVmX+/PmcPn1arnldXFxo2LAhly9fpkyZMnh4eEgKvW7ZsiVr165l+/btFC1alOrVq3Py5EnJ8xoaGtKzZ0/S09PzbA+T+zbNP4MJ8PKLf78C8s+QlVNXEIT+QH/IOp4NycfByd4lyQ8pct9K5t8Ya8CAARw5coTjV66wp0YNOl27Rnz//rxev/672vUjjKWn95z9+5NZsKAo+/bpMW6cgNOBOsybV57B5e6wKXgT516eY8v9LWy5v4U6xnXoW74vjoaOf1lUfrXPzY8w1j/Av742mZmZyW/lL0J2b6//AqVLl8bBwYErV67QokWLXOViYmK4e/cu9+7d4/79+9y7d4/Q0FDKli2Lvb09TZs2pUyZMpibm2Nubi7p5qlGjRpMmzYNU1NTDAwMcHFxwdXVlZo1a+Z6g6vgh+QfX59yW5ssLS0pUqQInz9/5sWLF5w+fZqRI0fmGfqYnJxMWFgYmZmZhIaGMnr0aAYMGEDdunVzrWo4cOBAjh49ysKFC9HW1sbe3p6PHz/SoEEDOnfuLDk0TxAExo0bx4YNGzhw4IDkAjJhYWF4e3szc+ZMRo4cKamZuJOTE05OTgC8ePGCS5cuMWHCBN68ecOdO3cQBIFOnTrl28bgzZs3REREoKyszLt377h//z61atWS3NA8JSWFkJAQ1NTUMDY25vDhw3m2uFBRUWHgwIEMHDiQsLAw6tevz969exk+fDiQ5TC9ePGC8PBwIiIiePHiBRERETmPFy9eoK2tTcmSJUlLS2Po0KFUrFgRa2trypcvn2sD+RMnThAeHk5SUhJpaWl8/vyZ+/fvM3HiRBwdHalRowaWlpaUK1fuq/br6elx/Phxypcvz8OHD6lVq5ak9+dLsq8tKSmJ6dOnM2rUKDQ1NSXrGxoaIggCjx49yjccN5vU1FRCQ0MRBIH09HQ+f/7MzZs3iYuLQ11dPV/9pk2bEh8fj7u7O/7+/nTo0IG6deuyefPmfD9bGRkZ3LlzB2Vl5Tyjcf5tZ/BrrrfUYF3JuqIorgfWA1SoUEG0tLTMd3ApMlLlfsT5viZnaWnJrFmzGDlyJJNevqSFlhbaV65g+ewZNG363ez6ccYqx9690KMH9OkDt29r0rp1aTw9S3O6T3vO3TnLkfdH2HJ/C5feXOLSm0tUNanK2BpjaWXZCmUl5S/G+nU+Nz/KWN+Yf31tcnJy+s+Wqf2vnVKVL18+z42O+/fv07hxY8qWLUvFihVxcXFhxIgRWFtbo66uTmJiolw3LNlUrFgRQRBITU3lzZs37Nmzh2PHjpGZmYmRkRH9+vWjW7dumJqa/p3LU/DP84+vT19bm968ecPq1auJiIigbt26zJs3T1Loo6amJnv37iU9PZ0yZcrg5eWFl5cXW7dupUePHl/V8fDwwMPDA1EUiYiIICAggMGDBzN37lw8PT1RUVGhcePGuLu74+rqmm/eVGJiIhMnTszX1myaNm3KnTt3aNGiBVZWVjTN5x7oSzIyMrCzs8PS0pIuXbrQpk0bqlSpIjmvrH79+gQEBNCyZUuOHz/OxYsXKV++PAcOHKBMmTL56m/bto3r169z5MgRmjRpItf6am5ujoGBAcnJyYiiyMmTJ5k9ezZhYWGULVsWMzMzSpYsiZOTE25ubpQsWRIzM7McZy0hIUFyb8Vhw4blNKRPS0tj5MiRrFq1isjISPz9/VmzZg3q6uqkpqZiYmJCjRo1qFOnDlWrVsXa2hplZWVEUeT58+dy9a38EiUlJZo1a8bNmzeZMmUKhQsXZvDgwZL1Q0JCUFZWlpTfmM3OnTvp06cPBgYGbN68mS5dukjOI/0aSUlJnDx5knnz5rFkyZKvynz8+JFNmzaxevVq9PX1mTdvHn379s211+C/HSb6CvjyV6cE8OZf0FWQC0OGDMHW1pawFy+YkR0TP3IkyNHc8lenSRMIDIQOHSA+Hvr1g5YtQTO5NKubrSZiRARTa09FX0OfG69v4LbfDatVVqy7vY6kNEVZ958Exdr0kyAIQk4j3rt37/4UuYfq6uqkpKR89bXk5GTq169P//79uXr1KitWrKBPnz44ODjk7BoXxBHMjYSEBJKSkggPD2fmzJlYWFjIdWOj4Lvwr69Pu3btwtramujoaI4cOcKFCxfkzoEbM2YML168oFWrVgQFBeXqCH6JIAiUKlWKli1bUqJECSDrOxIXF8eBAwdo164d+vr6zJo1K89xjIyMGDFiBN7e3pLttbKyolu3bpw9e1ayDmS1f9m8eTPh4eG8fPmSwMBAQkJC5M7F09XVBbJu9h88eICNjQ2hoaG5yqekpHD9+nViYmJyToDkcQQ/fvzInj17ePXqFY8ePaJ169a0aNECXV1dTp8+jY+PD7t27WLOnDkMGDCAxo0bY2Vl9QfnT6oj+GdUVFTQ19f/w3MZGRkkJCSQlpZGeHg4u3btYvDgwdjZ2aGlpcXkyZNzTksLEnYPWbl7M2fOpFmzZty5c0cuRxCy2omkpqYyefJkyTq9e/fm1q1blC1bln79+sndpiUbmUyGuro67dq1w9fXN9dcdC8vL8qWLUtwcDCHDx/m3r17eHh45HpiC3I4g4IgVBMEYbogCN6CIAQIgvD0f5WrtgqC0EsQhNxb2/8/t4CygiCYC4KgCnQEpDVh+Xu6CnJBJpPlFJNZfusWz8zN4ckTWLHiO1v2Y1GkCOzdC7t3g54enDgBLVqU4tAhKKpVlBl1Z/BixAtWNFlBKb1SPP30lN9O/kapZaVYE7SGT0mKhtD/FIq16b/F0KFDefDgARMmTKBOnTpoa2tTtWpVZsyYQXBw8Pc276vklSOprq7OsmXL2LBhA/369cuz/Pe3Jjk5GZlMhpub278253+Nn3V9sre3R0VFhWnTpkkOh/szAwYMwMDAgNOnT+Ph4cGHDx/y1UlOTmbGjBm4u7vz8OFDlJSU0NDQoEyZMjRv3pwZM2awb98++vTpk+c4hQsXJi4uDjc3N1q1aiV506hLly5s27ZN7v6cbdu25cyZMzx69IiBAwfi6OiIpqYmjo6OTJw4kfj4eLnGU1NTY9CgQZQqVeoPz3/69IlRo0bh7OyMvr4+gwYNIiwsjBEjRkje1Jk/fz5VqlTB3NycvXv30qZNG+bPn8+8efNYuXIlRkZGdOrUCT09PWrVqsXo0aO5e/euXPb/XbJz+nR0dGjVqhVLly5lwIABOWHAnTt3LlAP6Hr16mFmZkZUVBRly5aVrJeUlMTt27fx9fVFSUlJ7oJKTk5OODo6YmBggJ2dnbxmI4oiGhoanD17lv3791OjRo1cHX8tLS2MjY1p27YtBgYGkt6nfJ1BQRB6CIIQCPgBIwBN4ClwA/hMVuz5RuD1/xY38zwuJh0YApwBHgP7RVEMEgThN0EQfvvffMUEQXgFjAImC4LwShAE3dx0871CBflSq1YtunXrRmpqKsMMDLLiR37/HeRIKP4vIAjQqRM8fAiurhAdLaNdO+jeHaKjQUtViyFVhvB06FP2uu3FobgDkQmRLAtchpmnGcNPDyc8Ovx7X8Yvg2Jt+m+SvZucfVqQkpLCzZs3mT17Ng4ODlhaWrJkyRKioqK+s6X/T35tKbp27crjx4/R09PLKbH+4sWLf8QWDQ0NtLS00NXVpVmzZpw5c4YGDRr8I3P9l/nZ1ycjI6M/lP8vCOXLl6dEiRKkpqZy7do1SWOJosinT594+PAh8fHxmJmZMXbsWI4fP87x48eZOnUqbdu2pXjx4nmOk5SUhJqaGpmZmWhoaEg+pXv//j0qKioFCmWvWLEiFhYWZGZmkpycTEpKCnfv3mXJkiVUrVo1V2c4MTGRrVu34uPjg7KyMjVr1uTMmTMsWbLkLxVYMzMzSf0icis+Pp7Pnz8TGhrK+fPnJb3HaWlpOdEGjx8/xt/fnylTppCRkcHgwYPZvn07wcHBvHr1imnTpqGrq0vLli1p0KABZ86cKZATJg/KysokJSWxb98+Pn78yJEjR/jtt99ywtn/TjVqExMTBg0axN27d3F1df1qxEZSUhKnT59m3rx5dOrUCWtra/T19enTpw9v3rzh0KFDBQ5TTUlJybNvZW7cuHEDPT09qlWrlq9s3bp1adeuHatWrcLZ2RltbW0KFy6Mi4tLrjp5OoOCIDwA5gGnAEegsCiKtUVRdBNFsasoik1FUbQC9IF+QFEgSBAE99zGFEXxlCiK5URRLCOK4uz/PbdWFMW1//v/d6IolhBFUVcURb3//X9sbroKvg0LFixAW1ubU7ducdzJCWJjQY54+/8SJibg7Q1Tp75HQwN27AA7O8juLy1TkuFewZ3b/W5zvtt5aharSUJaAstvLsdiuQVdDnfh/rv73/UafgGsUaxNCr4gLS2NpKQknjx5goeHB6t/oFY5Um5e9PT0WLhwISEhIRQuXBgnJydJVRiloqysTMmSJVm4cCG3bt0iOjqaEydOSG6crEA6v8K909OnT8nMzMTNzQ13d3cCAgIK9F7ExcWhra2Nj48PxsbG+conJibSqlUr+vbtS6FChQgPD+f3339nwIABkue8fPkygYGBDBs2jOfPn7N3795cC9f8mZs3b5KQkEC/fv0KfM1/JjMzk+DgYM6fP//V18+fP0+fPn1QUVEhNDSUq1ev5locxcDAgJUrV+Lv709MTAyHDx+mSZMmPHv2jO7du3PsWP4HxpMnT+bSpUtER0dz8OBBZDIZGzdupFWrVn9w9PT09GjQoAHTpk3j+fPndOvWDQ8PDypWrMjOnTv/kYrQampqaGlpIQgCV65c+cvroigyf/58du7cWSCHPTk5mYCAANLT07l//z5Pnz79i8y5c+do3rw5s2fPxtHRkT179hATE8ODBw84c+ZMgU/KVVRUiI2NZd++fXLppaamsn//fnbt2iUp11BFRYUZM2bg5eXFsWPHcHNzIzo6+qvvZzb5nQxuAcxFURwniuI9MZftAFEUY0RR3CWKYlPAGYjO11oFPxTFihXLSewd9vYtiTIZbNmS1YldwV8QBOjcOZr796FqVXj5Eho0gOHDITExW0agfun6bKyzkfsD7tPFNqvR6O7A3VRaVwnXHa6ce3buH99l+0X5iGJtUvAnVFRU0NLSonXr1pKrCP4byHPTYmhoyJw5c/D29mbChAnfzKnNyMjg48ePODg4YGVl9Z8r4vMv89PfO1WvXp3IyEhmzJjB2bNncXR0pFKlSn84lcqPjIwMXr9+jbOzMzKZLN/fuipVqmBgYED9+vXZt28fLi4uHD16lMTExDxvZL/kzZs3uLm5sWvXLhYsWJDvCeKfGTZsWE6bCHt7e+bOnSuX/p8RBAE7OzuePXtGp06dvirTsmVLgoODycjIwMrKitjYWEljy2QyKlSoQPfu3SlZsiTKysoUK1ZMsm2pqakcPXqU4OBgxo4dS2BgYK7rgqqqKj169CAgIIB58+axefPmnKqefxcVFRWKFi1KixYtmD9/PmfPniU+Pp5Fixb9RVYQBEqUKEF0dLRcc6Snp7Ns2TJMTU15/PgxixcvJioq6qu9Clu2bMmTJ0/o0qULc+bMISYmJmczQeqmwp9Zv349np6erFixgqlTp8qle/bsWYyNjeWqnjp+/HiKFClC3759iYmJoXPnznluFOTpDIqiuFQUxfwbYfxR54Eoimfk0VHwY9C5c2fs7OyIeP2a+ZUrgyhmeTcKZyVXypUDX1+YNQtkMli+HBwc4NatP8rZF7NnZ9udPBv2jBFVR6ClosW55+dw3emKw3oHTkScID3zxy+E8QMRqVibFGQ3WldVVaVy5cpMnTqVc+fO5ex2/8w4ODhw6tQppk2bVqCwoq+RkJBA/fr12blzpyT5oKAgLly4IHe+03+dX+XeSVVVFVdXV4yMjEhPT+fJkycsW7ZMsn72abSPjw/VqlWjZMmSHDlyJFf5AwcOsH37dgYOHEhycjInTpxg4MCBbNmyRfKcJ06cwNXVlVat5Gv1Gh4eTps2bTA0NCQiIoJ69eqxd+9ehgwZItc4f0YURUJCQqhTpw5+fn65yhUpUoSkpCS6deuWU0hGCunp6bRt25abN2+yatUqqlevLknv4cOHWFtbc/fuXQICApg/f76kQlWCINCkSRMuXrzI5MmTqV27NhEREZLt/RpKSko8fvyYY8eOMXz4cKpWrYqamlqu8k2bNpWrcXtkZCROTk4cPHiQK1eucPPmTUaMGJHn9ZYpU4a1a9eyYcMGBg0aJNf1fI2OHTvSqFEjRo0axfHjxyXrpaWlERMTw+PHjyX1JczG1NSU1q1bc//+fY4ePcquXbvybG30t6qJCoKgLwiCoyAIuf/VFPw0fFlMZv7duzzT1wc/v6yqKQpyRSaDSZPgxg2wtoaQEHB2hunT4c9RFCX1SuLZ2JOXI18yu95sjLSMuP/uPh7+Hlgst2D5jeUkpCZ8l+v4lVCsTf8NZDIZLVu2JC4ujps3bzJ58mScnZ0l9+f60bG0tMTZ2ZlLly59szEFQZBUia9x48aEhobStm1b9PX1sbS0ZPDgwRw+fFjhHP5Nftb1KSUlRa5m38nJySQlJaGurk5GRgZly5bNM1S0ZMmSdOvWjd69e+Pk5ISSkhJaWlp5NlD/M6dPny5QGJ+mpiaiKCKTyRg8eDDnz5/H3d093xYWUoiPjyciIoLu3bvnmruorq6OsbExO3bsoEKFCqxdu1ZSL1ZlZWVSU1OpXLkyPXr0kHzir6uri7m5OcHBwQQGBsp1PZCVV+ft7U3x4sULXFE0G1EUqVmzpuQT0VGjRrFp0ybmzZvHkydPSMwOx8oFDQ0N7OzsCAkJwcvLS67T7VOnTlG6dGnJ8rmhq6tL2bJlUVZWplChQnnKZmZmsmvXLtzd3SlatCjLli1jwoQJcm1wOjo65lmJ9s/IU010siAIc7/4d20gHLgJPBUEQXpZHgU/LDVr1qRr166kpKQwMrv31NixWT0VFOSJgwPcuQOjRkFmJsyYkeUUPnv217CCwhqFmVhrIuEjwlnffD2ldEoRERPBcO/hmHqaMuXiFCITIr/DVfx8KNam/y7JyckcOnSIRYsWSQ63/tnCssuXL//VvBapZF+vmpoa6urq2Nvb07dv33z1jI2N0dLSIjY2lrS0NJ48ecKaNWvo2bMnBgYGtGrVipMnT/4jeUO/Ej/z+hQdHc2BAwd4+/ZtTghi9+7d89X78OEDM2bMoFSpUpiYmLBy5UoiIyO5cOGCpMIbK1asYOvWrfz+++88efKEli1bSrI3NTWVixcv0qhRI0nyX1K0aFGOHDnC8OHDWbJkSYFbF+TFmzdvcnVENDU1sbOzIzk5mUePHjFq1ChJlYUFQeDgwYPcu3ePe/fuSbbFzMyMCxcuUK9ePWbMmCFZL5vXr1/ntLWYNm3a3zodTE1NJSIighs3bkiSL1WqFD169MjJ6dPV1UVLSwtzc3Nq1apFz549mTVrFtu3b+fixYu8e/eOtWvXsmfPHqZOnUp4eLikedLT0wkLC8v53I4cOZJZs2YVODQ2PDyctLQ0fvvtNyZNmoSvr+9X18/IyEiGDRvGkydPCAwM5ObNm0ycOFGyM5iYmMisWbO+GgKbG/Jsn3YFvuyauwB4ALQG3gMz5RhLwQ/MggUL0NHR4fiDB5y0sIA3b2DevO9t1k+BujosXgwXL0LJklnOYdu2JVm2LMtB/Iu8TJ1+jv041fQUXu5eOJdw5nPyZ2ZdnYWZpxm/nfiNp1EFvxH8j6BYm/7DJCcnM3PmTEmhjz9jnpympqZc4UGQ5QDevXsXDw8PYmNjMTc3Z9q0aYSEhODn55dnCFZ+42ZXcD127Bht27aVfKP+H+anXJ/evXtHsWLF6NChA4UKFcLX15dXr15Rvnz5PPUyMjKoVKkSM2bMoF+/fqxcuZIePXrkexryJVu3bmXgwIFMnDiRO3fuSNZ79uwZqampHDp0iMhI+TdTDx8+zLJlyzhx4kSePdkKgqamJmvXrs3pHZoXoijSvn17yRst6urq6Ovr4+npKdepvSAI7N27F09PT8k62VhYWBAWFkbt2rVZvXo15cqVk1zwKruYyc2bN4Gs000VFRW5ilkZGBgQHx9PfHw8GRkZJCYmEh4ejq+vL9u2bWPatGkMHjyYtm3bYmtri5aWFrNnz6Zo0aIcPHhQUui9TCbj4sWLREVFsWTJEoyMjNi3bx/29vYF6s3arl07UlNTefz4MfPnz6dWrVrUqVPnL3LFihUjMDAQQ0NDevXqRUKCfNFiixcv5uTJk6Snp7NhwwbOnz/Pp095tzeTxxk0IassMoIgGAKVgSmiKB4nq2qW9MxGBT80xYsXZ/r06QAMT0oiGWDRIggL+55m/VTUqQMBAdCrF6SkKDFiBDRsCLlVi1cSlGhdvjV+ffzw7eVLS8uWpGSksO7OOixXWuK2340HUQ/+zUv4mVCsTf9xBEHA1dX1e5vxj6ChoSFXz7PDhw9jZWVF+/bt0dDQYPv27Tx//pwJEyZgZmb2zeySyWRoaGiwcOHCbzbmL8pPuT4VK1aM4OBgZs+ezZs3b3B2dqZ8+fKEhITkqaesrMzt27dZv349Dx48oEqVKtjZ2cmV9zpw4ECOHz+Op6cnDg4OkvWsrKzw8fHh5MmTWFhYcOLECcm6Xl5edOzYkYMHD1K7dm3JelLQ1NRk0KBBkk5Vs9m5cydly5bFxsaGMAn3Xo6Ojhw+fBgLCwtev34taY6PHz9iYWHByZMnJdv1JUpKSjkhvKmpqV8t+JJNSkoK7u7umJubU6JECcaNG0dqaiqdO3fm3LlzvHr1Cg0NjQLZ8TUyMzOJj48nKSkJJSUlpkyZwuHDh1m1ahV79+7FyMiI3r17SxpLXV2dmjVrMn78eAYPHkxmZiZbt27NMwc0v/HU1NQYNWoUhw4d+qqMsbExp0+fxsTEhM6dO8s1/oQJE7h79y7Ozs5cvXqVHj16YGBgQMWKFXPVkSfDPgPIjnerDSQD1/737w9klUhW8IswdOhQNm7cmFV1yd6eSQ8egIcH5PLBVfBXdHVh82ZwcnrN9OkmXLwItrawYgV065ZVkfRr1DCrwVGzozz+8JjF/ovZEbCDw48Pc/jxYVY9WcWY6mNoWrYpSsKvkRf1DVCsTf8hsndJNTU1ycjIoF69eowdOxYjI6PvbNk/g7KysuQeaRs3bmTatGns3r2b2rVrf9OTUGVlZbS1tUlKSsLa2pqWLVvSo0ePb5JP84vz061Pr169okmTJgQEBBAXF4eGhgaWlpZ06NBBUrXKYsWK0bdvX/r27YudnR2PHj2S/FlMTU1l27ZtREZGFihfr1q1apw4cQI7Ozvatm3LuXPn8uyvlk3FihVp06YNbm5utGvXjlmzZlGkSBG55hZFMSd/LXt9qlSpEgMGDKBHjx5f1Tl+/Dg3b94kODiYc+fOIQgCmpqalCpVCicnJ5ydnTE0NMx3bjU1NZKTk8nMzMy34qW/vz+LFy/m/PnzNG/eHHf3XDua5MquXbtyej9qaWnRsGHDPIvtqKqqEhcXh729PYcPH/5H8rqzN6iSkpIwMjLCyckJFxcX2rZtS8mSJQEoVKgQ0dHR6Ovr07Rp0wLPpampibl5rq1B8yQ9PZ0KFSqwYMEClJWVc5VTVlamXr167NmzR67xZTIZlSpVolKlSgwcOJBhw4axbt067OzsePDg64cK8jiDD4GugiD4Ab2By6IoZp9hmwI/VIKTIAgtgBbGxsb57mQ9f/48z9flkftWMj/CWOPGjcuKvQ4OpouaGqUOH+bltm08L1r0u9r1s41lbv6cI0eSmDbNiPPndejRA3bujGPGjPfo62fkOpYSSoyxHEMPsx7seLKD3U92cyXiClcirmCha0Gv8r1oUbIFqsp/XPh/1PfhW471J36qtUmB/KSlpXH27Fl2797NiRMnKFu2LFOmTKF169bfpMDDr8LJkyfp0aOHpJvf3EhPT+fu3btcvHiRyMhIlJSUKF26NK1bt8bV1ZUaNWpIqjqoIIefbn36+PEj3t7eNG/enD59+mBtbU25cuUKNJaSkhKqqqps3bqV0aNH5yv/5MkTzMzMJH+vRVHk2bNnPHjw4A+PV69eUaRIEd6+fStpHHNzc/bt28eTJ09o3rw527Zto3fv3kyYMCHXAjbv37/n1q1b3L59O+e/sbGxVKxYkQEDBuDm5pavI+fl5cWePXsQBIEGDRqwfv16udpD/BllZWUMDAzylLl79y7h4eGkpqZy69YtevfujYmJCV26dKF27dr5FuzJyMhg7969nDhxgurVq7Nhwwasra3z1BEEIcexKagjmJKSQkBAAHfv3sXLyytnXENDQ6pWrUr9+vVxcnLC3t4ebW3tr45x79490tPTiYmJ4ffff8ff35+GDRtSrVo1SaHBgYGBaGlpcfbsWbnblsTFxeV8H5SVlUlOTpZUfOfly5dER0cXOHT56dOnCIKQd49CURQlPYBGZO1oZfzvvy5fvLYL8JI61r/5sLGxEfMjODg4Xxmpct9K5kcZq0OHDiIgtrOxEUUQxQoVxOCHD7+7XT/jWJmZorh1qyjq6GS9lUWLiuLRo9LHuh14W1zst1gssaSEyHREpiMaLzYWF/guEKOTov9R23+0sYDb4k++Njk6OuZcT+3atcVLly5JuvY/4+rqKnp7exdIt1WrVqKXl1eBdDt27Cju3r27QLo9e/YUN2/eLEn27du3or29vejs7CyuWrVKjIiIEJOTkws076hRo8RFixYVSHfixInirFmzCqQ7c+ZMcdKkSQXSXbhwoTh69GhJshEREWLRokXFLVu2FGguf39/0crKSrSxsRGHDx8uLliwQPz8+bPc45w9e1ZUVVUVK1WqJI4fP148c+aMGBMTI0n38OHDYuvWreWeUxRF8dSpU2Ljxo0LpOvj4yO6uLgUSPf69etilSpVRFH849ok/qTrk6Ojo3jnzp2c3//KlSsX6H0RRVG0t7cXBUEQVVRUxNjY2HzlL126JFpYWEj+jh87dkwEch41a9YU161bJ3p6eooZGRly2ZqcnCzeuHFDtLa2zhkvt2uPjo4WdXR0REDU1NQUhw0bJj59+lQMCwuTa05RFMXY2Fhx586doomJiVioUKF8x8jIyBBfvHghnj17VlyxYoU4ZMgQ0cTERAREdXV1MTo6Ok/9bNLS0sSHDx+KDRs2FAFREARRVVVV8u/J06dPRQsLC1FVVVVMSkrKUzYzM1MsVqyYaGpqKnbt2lVcunSpuH79evHly5eS5goMDBRLliwp2tnZib169RInTJgg7t+/X0xISJCk/yWenp5/+Mxoa2uL6urq4pw5c/L9zBgaGopHjhyRa76kpCRx1qxZop6enuju7i7evXtXsm5qaqpYtmxZcfHixXLNmc3Hjx/FiRMnfnm9f1ifsh+S3XMxq/+NFdABsBFF8fIXL18B5ksdS8HPw6JFi9DU1ORgUBDnixWDhw/R27fve5v1UyII0KMHBAZm5RRGRkKrVtCnD8TH5/9V1FbRZpTzKJ4Ne8a21tuoULQCb+LeMPb8WEw9TRl7biyvY6XlCvxKKNamXxdRFKlbty4tWrTg2rVrDBo0CDMzswIXQPnVMTMz49KlS8yaNSsn71sqhw4dokaNGhQrVoyNGzcyb948Bg4cWKDd6IYNG1KiRAnu3bvHggULaN++PQYGBlhYWDBlyhS5Sp7/7Pys69OWLVvYv38/3bt3Z3cB20s9evSIly9fUr16dQIDAyWd9tWuXRtbW1tat27NkSNH8m2v0KJFC2JjY/Hz82Pt2rXY2dmxY8cOPDw80NDQoEuXLtmOd64kJSVRq1YtdHV1qVq1KgkJCYwaNYqAgAD8/f2/qlOoUCHevXvHuXPn6NOnD+vXr6dChQqMGzcu32v8M2lpaZiamlK8eHFiYmJwc3P7qty9e/eoVKkSOjo6mJmZ4erqypYtW9DR0aFJkyacP3+e+Ph4ycV6ZDIZNjY2WFpaAlnrbWpqKvsk3uMVK1aMd+/e4ejoiLe3N69fv871vRYEgZcvX3LixAnq1q1LSEgI06dPx9TUFGNj45xiMl/j/fv31KxZE2tra44fP87mzZuZNWsW7du3/yZRCvHx8SQnJzNr1iwqVarEkSNHSE//a9/nzMxMjI2NOX/+vOSxU1NTsbW1Zfbs2cyfP59t27ZRqVIlSbppaWl07tyZcuXKMXjwYMlzQlYYr42NDaVLl+bChQu0bNmS06dP5yov11mtKIphoigeEkXx2Z+eXyeK4nW5LFXwU2BqasrkyZMBGKqsTCpgsHw5REV9X8N+YkqWhAsXYMkSUFPLyits1aokV65I01dVVqW7fXcCfgvgVOdT1C1Vl7jUOBb6LcR8mTkTbkwgKDLon72IHwzF2vRrIggClStX/mZN1/8LWFlZ4efnx+7du1m3bp1kvbp167JhwwbKlSvHoEGD0NfXp2jRotSrV4+tW7fKXTo+OxcmMzMzpz3Fs2fPWLBgAba2tlhbWxfYyfjZ+BnXp379+jF69GiuXbtGhQoVaN++PdHR0ZL1z58/T506dRg/fjxXr17NcTjyQxAEduzYQdOmTenWrRt6enqMGjUqz8qaOjo6ODs7M2DAAFatWsXVq1epVasWqamp7N+/n7Nnz+Y5p7q6OlOmTGHy5Mm0bt2a9+/fs3TpUlq1akX//v159OjRX3Q+fvzIjBkzmDRpEps3b6ZKlSqMGzdO0k37gwcPGD16NI0aNcLExAQTExPGjRtHSkoKPXr0YP369V/VK1++PNOmTWPOnDmMHDmSNm3aALB+/Xq2bNlCo0aNKFmyJI0aNeL3338vUD9QZWVlSpQoIUlWS0uLxo0b4+/vT7du3bCwsEBPTw8XFxemT5/+l4quMpkMOzs7evfuzerVq+nTpw8Ab9++zXPzytDQkHXr1lGkSBEcHR2xs7Nj8ODBBAV92/ucxMREAgIC6NatG0ZGRsyZMyfn5OzmzZs0aNCA1NRUuZrQq6qqsnz5cgYMGMDs2bPR1NTExsZGUjukXr168fz5cw4cOCB5AzQlJYWePXsyc+ZM1qxZQ1RUFNevX+fo0aM0btw4V708nUFBEKSXcfp/HXVBEPKuPazgp2LUqFGULVuW4NevWW5hgXJMDEyb9r3N+qlRUoKRI+Hu3az+hK9fq1KnTlaNHqlV5AVBoEnZJlzscZFb/W7RwaYDGWIGXmFeVFhTgea7m3Ml4kq+C85PitzbgYq16edk6dKlXL9+nV69epGSkvK9zfkpKFq0KMePH2fixImSbwj19fXp3bs3a9eu5e7du0RFxlKYggABAABJREFURaGjo4OPjw9DhgyhfPnyFC1alI4dO7Jjxw7evXtXINtSU1NJTk4mNDRUrh32n4lf4d7JysqKmjVr4ujomOPIy1Pi/vXr12hoaNCxY0e5CxlpaWkxdOhQbGxsSE5O5tixY/kWUQoPD2fPnj14eHhQt25dfH19UVVVxcnJKd+TsuxqxFOmTMHLy4t69eqRmZlJWFgY27Zt+2r/vqSkJMLDw3nx4gU6OjqYmJhQvHhxSb3gPn/+zMePH0lPT0dbWxtBEHj8+DFv3rzh5MmT9O3bl06dOrFo0SK8vb0JCgpCFEU0NDRo3bp1Ti/Ew4cPc+fOHT5+/IibmxsZGRm8ffsWHx8frl+/nut6+ejRI/bs2cPEiRNp2bIl27dvB7KcrsaNG0vqQ5r9vmUXUck+XYuNjeXKlSvMmTOHsmXLcvTo0Vz1s+9NNDQ08jwtU1JSwt3dPWfdWb9+PU+fPqVy5co4OTlx8ODBfE+Q5SE+Pp5Pnz4xbdo0Zs2aha2tLZ07d6Z169YEBARgZWUl13hNmjTB09OT6dOnk5mZyePHj7l27VqeOqIoYmxsTHx8PGZmZri4uPDbb7/xIreS9GSdJLq7uxMbG8udO3eoXbu25N6E+Z0MXhEE4ZggCI0FIe/ShYIgmAmCMBEIA5pLml3BT4GamhrLly8HYMabN7xWUoI1a7LiHRX8Layt4fp1GDToI0pKWT0KnZxAjt6xADgZO7Gv3T6eDHlCZ4vOaMg0OPn0JC5bXai2qRqHHh0iI/PbLZY/AJaKtem/gb6+Pr6+vkRHR9OhQ4evhu8o+CuWlpZUqVIlz9CgvNDQ0MjZjU5ISCA5OZkPHz6wb98+fvvtt6/2x8oPJSUlChUqhIqKCp06dWLDhg0Fsu0n4Ke/dzp8+DB9+vShXr16BAYGcvfu3XwLi3xJjx49GD58OJaWlrRu3ZqLFy9KroqbTXZ/zdTUVMaOHYu3t3euDmnNmjVZtGgR+vr6jB8/Hl9fX5KTk/H396datWqS5/z06RNv3rwBsk51KleuTMeOHf8iZ2pqyr59+3jz5g1Xr16lQYMGXLp0CRcXl3z7A9apU4dt27Zx4cIFQkJCiIuL49KlS5QqVYqPHz9y//599u7dy5gxY2jSpAm1a9f+6ulkNunp6fj4+NCyZUsOHjxIdHQ0p06d+mo11A8fPlCrVi06d+7MsmXLKFWqFKtXryY+Pp7IyEhOnDjxt1vQaGpqoqGhkRNum9uanZCQkFPwxtTUVFIEiLKyMtWqVaN+/fokJSVx584devbsmXPK+K3Q1NRESUmJqVOnIooiixcvpl+/fpKdq6/x4MEDihcvzrVr1/Dy8spzk0QQBBYsWEBISAh3797FxsaGdevWUbVq1Vx1Hj58yOnTp9HS0iI4OFgu2/JzBi2Bj8BR4P3/FreZgiAMEwRhgCAI4wVBWC8Iwn2ymqr2AkaLoph7sxEFPyWNGzemVatWxCcmMsLMLKuD+vDh8GueOv2rqKjAsGFRXLsG5cpBUBBUqQKzZ4O8971l9Msw1WkqESMimOYyjSIaRbj5+ibtDrSj/KryrL29lqQ06T3LfmAeolib/jNoaWmxf/9+EhMT+f3337+3OT8N9vb2+VbTLgiiKOYZSpaRkZFzI6+pqYmqqiply5Zl6NCh7Nmzh0+fPrFt27Y8y6r/5Pz0905NmjQBsk6LClpJdNSoUZQqVYqjR49Sv3597O3t5YpU0dDQID09nZcvX7JixQqaNGlCoUKFWLx48V9k16xZw7t377CyssLV1ZWqVavKfSI5bdo0DA0NCQgIoGPHjgQHB+Pv75/n51QQBCwsLOjduzeOjo7UrFkz76qNX5CZmYmjoyOampo4Ojry6dMnqlSpQv/+/dm+fTt37twhOjqaqKgobGxsch3nypUrREdHY2pqiiiKxMTE5CpraGjI+/fv8fX1ZdSoUfj5+dGvXz/u3LkjyeZsPn78yMaNG/Hy8kJNTQ0dHR0cHBzo168fS5Ys4eTJk3z48IFnz57l6kBpaGiQkZHBy5cvGThwIEZGRqxdu1YuOyDLqdy+fXu+p22QtcEQlUuak5qaGlpaWhgbGzNv3jyioqIICwujf//+LF26lGLFijF37ly57cu20c/PDzc3N5ydneXSNTU1pUaNGigpKeXpDFaqVImXL19iY2ND27ZtJZ/wQj6tJURRfA30FgRhPFmLVSNgFPBlZ8gwspKgxwNnxF80Jk0BeHp6cubMGQ6Gh3NFR4faPj7g5QVt235v034JqlbNOhEcNw5WroTJk+HECdi+HcqWlW8sQy1DpteZztgaY9lybwuL/RcT+imUgScHMtVnKp1Kd2Kq6VSKaMrXR+kHIk0URcXa9B9CVVWVDRs24OjoyLhx4ySV5P6vo6urS1xcXIH1s78yysrKaGhokJmZSe3atWnXrh2tW7f+i/zRo0fZtm0bly5dIiMjg0aNGtGvXz/q1q2Lvr70dnrh4eFcu3YNJyenn7JY0K9w76Srq8vhw4dp0aIFDRs2zLU5dm6sW7eObdu28fTpUywsLHB3d8fd3V0uBy0mJgYdHR1SU1PR19enfv36NGnS5Ku5Ty1atEBDQ4ORI0eyfPlyDhw4kG+LhT8zZMgQLCwsmDhxIvv37+fo0aNUq1aNefPmUaVKlTx1PT09mT9/PtevS08BVVJSYv369Rw+fJh9+/bx+vVrypQpw7x58yhcuLDkcVxcXGjQoAGrVq1i69atpKWloaOjQ7Vq1Zg1a9Zfmo3LZDJq1KhBjRo1GDp0KKampsTExJCRkZHvBo2vry/Tpk3j8uXL1KxZk/79+9OjRw+KSmg5BhAcHMyCBQt48OABgYGBaGtrY2lpSd26dalbty41a9bMd4yYmBhevnwJZDlwKioqTJ069Q9/o/T0dGbPnk1oaChv377l7du3vHnzhoSEBHR0dNDU1Mw5kSxXrhz29vaULVsWExMTbG1tc9pfaGtrM3z4cIYPH87Lly+pUqUKoaGh1K9fHwsLC8qUKYO+vn6en+uQkBCaNWuGjY1NgTYzIyMjmTp1Ks7OzvlGUxQtWpTx48cTGxub00KkZMmS+X7vJJ13iqIYSVbFq/kAgiDoAepAlPj//XIU/OKYm5szfvx4pk+fzhAdHe7GxSEbPRqaNAENjfwHUJAvmppZTelbtoRevbJCSCtWhIULoV69AoynosngKoMZ4DSAw48Ps+DaAu68vcPyh8vZGLKRPpX6MMp5FKX0Sn3rS/lXUKxN/y1KlSpFmTJlePDgAdWrV//e5vzwyGQyucNqX79+jZeXF97e3rx584ZixYrRrVs32rRpQ+XKlb+6yx8VFcWgQYO4f/8+U6ZMYdWqVXL34MqmevXqREZG0rRpU5KTk7G0tMTV1TXnZvFn6nH4s65PkZGRNGvWjKtXr1KhQgVKlSol9xhBQUEkJiby/v17uTYCsnn48GHOiaCrqyvGxsb56jRo0IALFy5gbm4u9+c+ODiYixcvcvv2bWJiYhBFET09PQwNDSVtSGRXxaxcuTKdO3dmypQpefYLfPXqFd7e3ty4cYPr16/z7t079PT0MDAwkLsP37Nnz4iNjUUQBDIzM8nMzKRQoUIUKVIk31NKdXV1bG1t6dSpE5mZmTg7O9OmTRvatm371fdcTU0NS0tL0tLSCAgI4NatW8yfP59KlSrRtGlTXFxccHDIPWU2Pj6enTt3snv3bpo0aZLnpl5mZiaXLl0iKCiI4OBggoODefz4MbGxsRQqVIhSpUrRvXt3hg8f/pfPmLKyMteuXSMwMJD169dTqlQpihcvjr6+foH7HJqamjJ8+HAmTZrE/v37UVJSIjk5OafoTtmyZbG1tcXS0hI7OzscHR1zdD9//sykSZPkcvKzUVJSIjU1lYoVK+bbtzKbhg0b8uzZM6pVq0ZmZiaFCxfmt99+y1W+QMGvoihGF0RPwc/P2LFj2bhxI4GvXrG6eHGGhYdnlcWcNOl7m/ZL0bBhVkrm0KGwaxcMHgw1apRg3z6QI20jB5mSjA42HWhv3Z5L4ZeYfm46V95eYcXNFay+tZr2Nu0ZU30MDsXlrnvwQ6FYm359SpUqxYsXLxTOoARUVFTyzV/KRhRF1q9fz+TJk2nWrBndunVjyZIlkkIEDxw4wMOHD7l//z4af3Nj0MjICAMDg5y8rcDAQB4+fMiGDRtIS0ujWbNm9O/fn3r16v10YaY/y/qU3Q4iPDwcfX39AhXnWLRoEZ06dcLY2JgKFSrQpUsXWrZsSZkyZSTp+/n5kZGRwZMnT3KqZkrh9evXqKmpsXr1ambMmCH5JHLy5MkcOnSI1q1bs3v3bho0aIC6urrkedu1a4ebmxv16tVj7dq1bNu2DU9PT/r27ftVG7Zv386SJUuIiorCyMiIvn37EhcXR9u2beXe8Jg/fz7Xrl1DQ0ODiRMnMnLkyDydrLS0NCIiIggNDSU0NJT09PScXMyLFy9y//59kpKSGDNmzF90K1euTOXKlYGsNWPw4MGsWbOG8+fPc+HCBQRBID09Pdf33cnJienTp9O3b18KFy6MnZ0d/fv3/+pGz8uXL/ntt994+n/snXVYVGvXh+8ZOiQtQAUERJC0EBRQRMXEbgzw2N3HRPHYLXZ3YmNgYWJgIgoGKIqiGChIM/P9wct8BjGDnuPRM/d1zSUyT+09ex722mut33r4EMgtOzJr1ixat25NVlZWoWVvBAIBY8eOpXHjxpiammJjY1PoOZQWHR0dRCLRN8JcDx8+5OHDhxw5cgTIdZ48ePAARUVFLC0tWb16NR06dODevXtS7ZFZWVncuHGD0NBQzp49y9u3bzlw4ABz586V6rrMe3iWF4IbHBzM6NGjC2xfPPNYzn+WvM0GYOLHj7wCmD4dnj//qev6HdHVhS1bYNcu0NODixc1sLGB7duLP6ZAIKCeaT1Wua/idt/b+Nj5IBAI2HF3B9VWVcNzkychj0N+VwVSOb8BKioqUhs4/3VkMQYXLVrE3LlzOXfuHBs2bKBDhw5S54p17dqVd+/esX///u9YbcGIxWI+fvxIWloae/bsoXnz5ri5uf0tc8kBCwsLgoKCJPXmimN0KysrExQUhIWFBdevX2f48OGYm5sXekP6Ob1796ZSpUrMnTsXMzMzqf8mOTo6cunSJQIDA+nQoYPU/Xbv3s3u3bu5ceMGjx49kskQzEMgEKCpqYlIJOLTp0/07t27wDIR48aNIzExkefPn7N27VpKly7NyZMnadasGerq6pw9ezbffvmxdu1aOnToQFpaGhMnTsTV1bXAtqtWrUJNTQ0LCwuGDRvGvXv3qF69OhMnTuTatWukpqby9u3bfA3Bgo43D7FYjEAgkBhvBZF37HXr1uXgwYM0b94cHR0dnjx58kU7Y2NjHjx4QEJCAkFBQVSvXp2lS5dSunRpAgICCv1ss7KyaN26Nfr6+sybN4+//vqLnTt3cv36dW7cuMH79++LPL7iIBQKWbx4MVFRUV9EUbRu3Ro9PT127NhR5BjJycmULVuWWrVqMXbsWEQiERMmTCA4OFim6zIoKEhSe3b8+PGF5pLKjUE5MlOvXj0aN27Mx0+f+NPYGFJTYezYn72s35Z27eDuXXB3TyEpCTp3ho4dv7/Uo10ZOza12kTM4BiG1xqOprImp2JP0WhLIxxXOrL1zlayRPKbbjn/LhQVFeXGoJTIkp/VoEEDPn78KFVh8K/R1NQkJCSEsWPH5ivu8SMRCAQoKioyc+bMv3We/zIvXrxAX18fe3t7cnJyii3bHxAQQGxsLDo6OnTq1IkDBw4wWYayVGpqapLyBa9evZK6X+XKlalSpQr79u1j7dq1UvURCAS0bdsWPT09qb2Xn7Nt2zaqVq1KSEgIFStWZOjQoZw9e5aePXsWOqeRkRFNmzZl3LhxXxhx06dPZ/v27URGRha434lEIi5evMigQYMIDg6mfPnyBAQEFFrOoUePHhw4cICePXuSmJhIeHg4f/zxB1OnTqV69erf7dnPycnBxcWlyFzl1NRUEhMT0dDQwMrKiv3792NsbJxv2zJlytC6dWvmzZvH5cuXefr0KUFBQbRo0YL4+Ph8+ygpKREVFcX27dupU6cOKSkp7Nmzh169euHi4oKenh5lypShTZs2pKamftcxf45YLCYxMRFlZeUvfp+SkkJiYiJ2dnZFjlGiRAlu377NkSNHmDNnDgYGBqxfvx57e3tUVVWxsbFh165dRY7TokULDh06RLVq1ZgxYwaenp4Fti2+Rqqc/ywCgYBFixZx6tQp1j99yh9KSjhv3Qr9+4M8dOtvwcAAVqyI5/x5S4YNg5074dw5WLs2N2XzeyivXZ55jeYx0X0iK8JXsOjKIm6/uk3XfV0xVDdk1IdR9KraC01lzaIHkyPnb0YWb5cc6alSpQpjx47F2dmZQ4cOfSM6URS2trZcunSJOnXqoKioiI+PT7Fyxb5GIBCgpaVFWloahoaGNGnShD/++EPm9cmRnpIlS+Lm5kbPnj158eIFioqKODs7M2jQIInKqDQcPnyYNWvWyCwc8zmZmZncu3cPExMTzM3N8fHxYcCAAV94pD4nKyuLBQsWEB4eTpUqVSQhjdLSvn17evbsydmzZwtV8PwaMzMzTExMuHv3Lvr6+jRr1qzY3uvs7GxOnDhBWFgYYrGY9PR0KlSoQNWqValVqxaOjo4cO3aMnTt3oqmpSadOnbhx4wYWUijNKSsr07RpU5o2bUpaWhoVKlQoVrmerKwsdu/ezalTpySeYz09PapXr07Dhg3zzbMUi8WcOXOGtWvXEhwcjKWlJbt378bLy0um66NkyZL07NmTv/76C3Nzc8nPX+fjlS1blrJly+Lu7v7F7xcsWMDw4cN58+YNurq6UnvbxGIxt2/fBnJzLZWUlMjMzASgXLlyWFpaSnInP+fjx480atSIOnXqFJpP+TnlypWjXLlyNG7cmNu3b5OYmMiTJ09QUlLCysqKihUrFjmGkpISzZo1QyQSce7cOW7cuFFg29/WGBQIBM2B5oaGhkVKa8fExEg1pjTtflSbf/tYFStWpEePHqxatYq+2trcePOGrN69ebp7NwiFv8Ux/tvGio2Nwc0N9u1TYuzYsty4oU6TJtCxYxKjRr1GQ0P83fO1KtWKpo2bcvDJQdZGrSU2OZZhx4fhf8afjuYd8ankQ0nVklKNJe2cxRlLzn8XBQWFH1pgWM7/M2zYMMkNyLlz56S6ufwcIyMjjh49Sv/+/Rk1ahRaWlpUq1YNLy8vXFxccHBwKFCMQywW8+DBA06fPs3Tp08RCoWULFmSpk2b0rhxY+rWrSu1eIKc76NkyZKSQuTv3r3DwsKCo0eP8vbtW5lu3CtVqkR6enqxDcE88jw3kZGRTJ48GV1dXXr37p1v2507d7Jz507OnTsnsyEI4OrqypQpU7h48aJUxuCnT58IDw/n8uXLkjDJW7dusWXLFurXry/1vHkF2/MQi8WkpaWhoqKCgoICMTExJCYmcu/ePZydndm3bx8lSpRgyJAhtGvXrljCJOnp6ejp6TFw4EBWrVol0/maPn06Bw8epEWLFsyePZvq1aujra2db9u0tDS2bNnCokWLEAgE9O7dm8WLF6Ojo1PsvF9lZWWysrLIyspi7dq1HD9+nEuXLlGmTJki+woEAlRVVRGJRDx9+pQdO3bQvHnzIqMiUlNTCQoKQlNTk5kzZ2JnZ0elSpUoXbp0odf4q1evEAgE7Nu3Dx0dHYl6qru7O46OjkWKbYWEhBAREUFOTg5KSko8ffqUNWvWcOfOHaytrbGysirw3H9OYef6tzUGxWLxIeCQjY3NH5aWlkW2l6aNtO3+jfP9HWPNnz+fI0eOcOf5c9bo6NAnMhLLsDDw9f2p6/qdx7K0tMTSMldZdO5cmDgRduzQ4do1HTZt+n/H7PfOZ2tty5+N/2TlmZVsfbKVi88usvLeSjZEb6CbfTdGOI/AsqSlVGNJO6esY8n5b/K9N5ZyCqddu3a8e/eOdu3acfPmTZnPd+XKlTl9+jQWFhY8evSIkJAQTp06hZqaGpmZmdSrVw9fX1+aNm0qEbmIjo7Gz8+Pp0+fUr9+ffr160fv3r0xNTX9Ow5RjgzExsaSkpLC1q1b6dixo9TXQ1paGs+ePSMpKanYc38dAaCurk5WVlahoYx79uxh6NChxTIEk5OT8fLyYt26dXTu3LnI9iKRCFNTUxITE7GxsWHs2LH06tULLy8vqY2cnJwcpk6dypw5c9DW1sba2hoTExOsrKywsrLC2NgYY2Njypcv/4UHa9myZRw9epQtW7bw559/Ehoaiq2trUzHq6amxowZM+jatSvOzs68efOmUFGWPB4/fsySJUu4efMm5cuXL7K9n58f27dvp0SJEjRr1ozXr19z4MAB0tPTMTY2pmHDhlLXZsyPzMxM4uLiGD16NBs3bpSqT14d1JMnT3L58mX++OMP1q5dS8eOHb9p++HDB8LDwwkPD0dfX5+oqCjevHlTaG7m51hYWHDp0iXWrl1Lr169uHbtGteuXWP27NkA7N+/H29v7wL7jxo1CmNjYzp06MD79+8l/VeuXAnk5ineu3evwHunY8eOoa2tzbZt22jatGm+bWQ2BgUCgR3gBugDK8VicYJAIDAHXonF4uIXNJLzy6GhocH8+fNp374947KzaQvo//kntGnzs5f226OgkFuPsHFj8PGBO3fA1TX3d506/Zg5hAIhHkYe9PPox6Vnl5hzaQ4Hog6w+sZq1txYQ8vKLRnlMgo9vj8U7Ecg35vkSMP+/fsxNDSkTp06Ut3I/BfJe3J//vz5Yoe6fW405OTkSNT38p7gZ2ZmMmzYMOrVq0fnzp3x9/enf//+xZZ9h9ybort377Js2TLc3Nywtrb+rvF+JL/q/mRnZ4eysjKOjo5Sn8vMzEyaNGmCoaEh/fv3l2m+d+/e0blzZ27fvs27d+8oV64ctra21K1blxo1alClSpUCa9rdvXuX06dPs2HDBpnmzENVVZXs7GySkpJISkoq0jASCoVERkayc+dONm3axKhRo2jWrBkKCgq4u7tLlX/XsWNH9uzZQ+/evTEzM8PU1BRzc3OMjIwKLTOhrKyMt7c33t7erFu3jnbt2nHlyhWpPEQxMTH89ddf7N27Fzs7O7p168bYsWOlMgQBxo8fT7ly5QgNDaVixYrUqFHjmxy5z9myZQuzZ88mNjZW8jp79iyhoaHExcUBuXUtbWxsCAoKKrQkR36oq6tTs2ZNFi5cKFO/PPL2Jl9fX549eyYRz5k5cybr168nPj4eBwcHatSoQevWralfvz5169aVevxLly4xdOhQbt26hUAgwNHRkYYNG+Lm5oajo6PUx6uqqopQKEQgEGBvb4+HhwfOzs7UrFmzwJqaZ86cYfXq1Vy9ehVHR8cCx5baGBQIBCrAFqA1IADEwCEgAZgNPCC3eKqc/xBt27bFw8OD06dPM75MGVa8egUBAfDHHz97af8J7Ozg6lWYPBlmz4YZM2DfPmN27QIZHxIWikt5F/Z12Ef0m2jmXprLpjub2Be1j31R+6hWshqTmESzSs0QCv75Gy/53iRHWvz8/Jg/fz63b98mKysLTU1NateujZeXF61bt5a6cPLvjkAgoGHDhly5cuVvUe1MTk5GTU0NR0dHSR237t27f7fh5ubmhpKSEiNHjkRBQQGRSETVqlVp3Lgx3t7eMuWA/Sh+9f0pLi6OjIwMPn78KFVRcgB/f38yMzPZsmWLzJ/pvXv3SEhI4OrVq5QrV05qT+Tu3bvp3r07Y8aMKTCfsCiUlJTYv38/PXv2ZMiQIbi4uDBjxoxCy9iUKlWKgQMHMnDgQKKiomjbti1bt24lOzubGjVq4Ovri+//oqXyY9SoUXh6ehIfH8+qVat4/PgxCgoKkpqBmpqalCxZknLlylGxYkUqVapE48aNv8iZ7dmzJ0uXLsXDw4OgoKAC60JmZGQwdOhQNm/ezIgRI7h3716x6oGOGTOGkJAQjhw5QkhICO/fv6dUqVJUq1aNJk2a0Ldv3y+UNIVCoSQHztXVlaioKA4cOEBYWBgKCgro6Ojg6uqKt7c3+vr6Uq0hJycHZWVllJSUmDZtGoMHD/7u/SMtLY3AwEBGjRrFjh07mD9/PseOHcPOzi7f+qrSYmlpia+vL9u3b+fChQvcunWLhIQEoqOj8fT0pGHDhpibmxc6xps3bxAIBBw5cgQ3Nzepvxe2tra4ublRu3ZtFixYUGA7Wc7cX4An4AOUIXdTy+Mo0EiGseT8JggEApYsWYKioiKrXr/mOsCiRSjJc7/+MVRUYObMXEGZihUhKkqV6tVzC9X/6NQqy5KWrG6xmqdDnzKuzjh0VHW4/uY63ju8qbKsCmtvrCUjO+PHTlo08r1JjlSUK1cOyDVG0tPTefPmDQcOHGDEiBFUqFCBOnXqsHnzZknNrf8yRkZGvHz58oeNp6CggLa2NkpKStjY2LBx40bat2+Po6MjrVu3pm7dupLagsVFTU2NUqVKkZaWRkpKCqmpqVy4cAF/f39q1qyJmZkZs2fP/u55ZOSX3p/EYjH6+vp4enqipqZGpUqV6NixIwsXLuTMmTP5hoFqa2vz4sULTExMcHR0ZNWqVUWqS+bNtWDBApo2bUr58uVlClF+9+4dtWvXZsOGDWhqaqKjo0OFChVo2LAh/v7+HD16VKqcdAMDA0n48p07d4iIiJBq/vT0dBISEiS5fnk1Ei9dulRov5o1a9KnTx+mTp1KrVq1gFxDJzs7G5FIxMePH4mJiZGUfBk3bhznzp37Yow8b9Pdu3exsrKiWrVqbNiw4Zt9LCUlhTdv3lCyZEkWLVpE165dGTNmDMOGDSMqKkqq44Tc8h0tWrSgSZMmmJiYIBaLef36NdeuXePMmTMSUZXPefnyJfPnz6datWp4eHjw/PlzAgICeP78OW/evGHfvn306NFD6nDRrKwsSRmHoUOHfrchKBAIUFNTo3bt2kBuCHDZsmXx9PSkU6dOrFmzhmfPnhVrbH19ffr27Yuvry8ikQiRSMSLFy/Yt28fI0eOxM7ODgMDA/r06cPRo0clD18OHDjAwIEDqVy5MmPHjqVGjRrUqlVLZrGdIUOGkJaWxqBBgwpsJ8vZ6wRMEIvF24B3X70XC5jIMJac3whra2uGDBmSW4C0VClE2dmUnjXrZy/rP0edOnD7NnTokERmJoweDXXrwt9hl5fVLMtf9f8ibmgcYx3HUl6rPFFvouh1qBemi0yZdWEWSelJP37i/JHvTXK+i9TUVDIyMrh48SI9evTA39//Zy/pp6OkpFQslcGcnBzCw8N59+4dAoEAJSUlLCwsGDx4MDt27ODdu3dERETQrl07SZ/FixfTqlUr3N3dSUxM/JGHAeTeOKamphITE8P48eNp2LDhD5+jEH7J/SkzM5MnT56QkJCAQCAgJSWFrKwsHj58yM6dOxk2bBj169enR48e3/QdM2YMMTExhISEkJCQQJ8+fRgxYkSRc75+/ZoTJ06wdetW2rZtS/v27Vm5cqVUDyX69OnDiRMniI2N5fXr1xgZGfHs2TNOnDjBlClTaNKkCdbW1ty9e7fAMd69e0edOnV4/PgxNWvW5MCBA4V69T5n6dKlkiLfS5YsIT4+ntevX7NmzRqp+kuDQCCgUaNG39zUJycn8/r1azIzM0lPT+fGjRv07NmTWV/dh+nr67N7926ePHnCw4cPJfmRCxcupGrVql8I2BTG0aNHqVOnDsHBwbi7u7N7927ev39PYmIiQUFB3xSPB/Dx8WHEiBF4eXlJzlGHDh1kDgkFePLkCVevXiUzM5Ply5fL3P9z1NXVUVFRoX79+ly5coVt27YB0LlzZ+7cucPdu3dp2rQpp0+fxsHBgW7duhVar09W0tLSSEtLIyEhgdWrV9OkSROWLl1KmzZtmD17NhUqVGD79u08efKEs2fPFijA9TWvX7/m+PHjzJw5U5KbWJgRKYsxqA/cL2Qc6VYo57dk0qRJlC1bliuJiWxUVUXz7Fk4cuRnL+s/h6YmTJnyiuBgKFsWLlwAe3tYswb+jjryJVRK0MOyB48HP2Zzq83YlbHjZcpLxp4aS4UFFRgZMpLnH5//+Im/RL43yfkhKCoq4ujoKDcGkb2ER0pKCkOGDKFUqVJ069YNKysrVq1aRUJCAg8ePGD+/Pl4eXnlG8InEAiYMGEC7du3p127dlIXCpcVdXV1tLS02LNnz98yfgH8cvvT7du30dTUxN3dnTFjxlCiRAlq166Nn58fgYGBnD9/nidPnpCens7+/fvzHUMgEFC2bFkyMzNp3749ixYtKnLeMmXK8P79e44dO4a3tzcnTpygb9++GBoaoq2tXaQ4SFxcHDY2NhKRDzs7O/r27cuuXbuIjo7m06dP2NjYFNhfT0+PxMREatasyaVLl2jUqBElSpRg3bp1Ra59+PDhnD9/HshV5X369GmRfWRFLBYTGhoqeUgTERGBhYUFWlpaHDp0CCsrKyZNmsS5c+f48OEDU6dOzXecFy9eUKNGDWbNmkWnTp2YO3cub9++RUtLq8g1ZGVlsWvXLrp27SoJpWzbtm2R+YbBwcGsWbOGvXv3UqdOnWJHHXTu3Jnq1aujoKDAtm3buHz5stR9ExISWLduHRs2bEBFRYWaNWsyd+5cnjx5wokTJ/IV4DE0NKRHjx5s2LCBtWvXsmfPHkxNTcnI+LERUCoqKqirq7NkyRKGDh2KkpISpUqVwsjIiDJlykhd//H48eOUK1cOMzMzZs2aRWJiIo0bN2bbtm2FRrzIEgQbCzgDp/N5ryZQeP0GOb81WlpazJkzBx8fH8YqKtIa0B42DDw9oZDEYjl/D02a5Baq79cPdu/OTeE8cABWr841En80SgpKdLXrShfbLoQ8DmH2pdmcjj3NvLB5LLqyiM62nWlj0AZL/halUPneJOeHkJ2djZmZmSRM7L+MLJ7BGzdu0KZNG+rWrUtERARGRkbFmjMgIIBKlSpx6dIlSbjW96ChoYFAIEAoFOLm5kaLFi1o3rx5sbwR38Evtz8ZGhoSHByMmZnZdxUh9/HxwcXFhR07dkgV2rZz504OHz7M3bt3iY6ORiAQYGJigpubG02bNi20aDbkhoHPnDmT06dPs3LlSu7evYtAIKBGjRpUqlRJqjWrqqpKxDgyMzPR09MrNG/29evX3Llzh5s3b7Jx40aUlZUZOnSozMqe0qCmpsbUqVMloZSVK1dm/vz5XLt2jfXr1xMVFcWcOXM4duwY7du3Z/jw4fme97JlyzJs2DCmT5/Ohw8fMDExISEhARMTk0I/pxcvXki+PzNnzpRp7SoqKvj5+dGtWzd69OiBm5sbly9fljpHMI/Q0FCpVUwhN09y/vz57Nu3j4cPH9KwYUO6du1Kz549pZp727ZtbNq0iUuXLmFpaYmXlxedOnWS2kNXGEKhEDU1NbS1tenbty9+fn4YGhoCsHr1avbt20dQUBCDBg1CXV0dS0tLFixYUGjheicnJzp27Mj69etxcXEhICBAqu+eLMbgJmCcQCB4Auz93+/EAoGgHjAM8JdhLDm/IV26dGHFihVcvHiRiVpaLH7wAJYsASnCQ+T8ePT1c4vTt2wJAwbA4cNgYwMrV+b++3cgEAhoZN6IRuaNuP7iOnMuzWH3vd1sur2JTbc30fhRY0a5jKKuSd0fWSJAvjfJ+SGoq6sXqrj2X0IoFEpdzzE2NhZNTU3WrVv3Xd9roVBIu3btOHXqlEzG4KdPnzhx4gSnTp0iIiICRUVFnJycaN++PfXr18fa2lqqdeXk5Ehqxf1Afrn9KSkpidatWxMXF0fJkiVJTU2ldOnS1KhRg/r16+Pg4PCFgElB2NnZMW/ePKysrBgxYgRdu3Yt1LhMSUkhLi6OyMhIqlSpQokSJRgzZgxNmjQp9DO5ceMGd+7c4f79+9y7d4/79++Tnp6OsrIyioqKkjIC0pCSksLjx49RUVHBycmJjRs3SgRZ7ty5w/Xr1yW5hBEREWRlZWFnZ4etrS1LlizB3d39b1Ow7du3LyNHjpT8X0lJiebNm9O8eXNevnzJmjVrSEtL49q1a9jY2BR4zoRCIUOGDKFHjx4sX76cMWPG8OzZMwQCAZUqVcLFxYU6depQp06dL8RosrKySEhIoEuXLlKLbYlEIk6fPs3Fixe5cOECV65coVy5ctStWxeRSCTzOTA1NeXevXtSGYOJiYm0bt0aHR0dZs2aRZ06dVBSUpLpO3716lUePXpEdHQ0BgYGUvd99uwZd+/e5cGDB5LXzZs3AdDU1MTCwgJXV1c6d+5MzZo1vxnTyMhIIkyUk5PDnDlzGDduHLVq1aJr165MmzYt389AR0eHGTNmEBUVxZ07d6Q+TlmMwdmAPbAZyAuCvgCoAjvEYvESGcaS8xsiEAgIDAykWrVqLEtJoTdgM3UqdO0KUhQClfPjEQigc2dwc4OePeHkSWjbFry9y7JhA0ipJF0sqhlWY0fbHUx/P50FYQtYc2MNRx8d5eijo1Q3rM5ol9G0tmqNgrB4RWc/Q743yfku1NTUEIlEDB8+nLFj/7XCjv8oshhErVq1Yu7cufTt25fAwMDvqhlmZmbGxYsXpW5/8uRJevXqhbm5OQ0bNmTXrl00btxY5mLWhoaG3LlzBz09PZydnWncuDGurq7Y2toWuzD2//jl9icLCwvCw8P59OkTR48exdfXl+joaKKjo9myZQvGxsbcvHmzyELnf/31F4cPH+bOnTv07t0bAwMDmjVrVmB7Hx8fbGxsOHHiBIGBgdy6dYuIiAju3LlT4M3/hw8f8PDwIDk5mSFDhuDr64uVlRVCoRALCwuZDftTp07x6NEjTE1N6d+/v+SGOy0tjbZt2/Lw4UMEAgHNmzdn27ZteHh4/O21T0uUKCGp0VkUKioqnDlzBmdn5yLbamtrM3bsWOLj4wkMDASQGLkrV66kQYMGhISESNobGxsTFhZGq1atWLNmDQMHDqR169aFetqjo6Np1aoVKSkpdOrUicjISJlL+nz8+JFDhw6xa9cuIiIiePv2rVT9tm7dysePHzl79uwXBrosn9ecOXN4+fIllSpVombNmlhYWODp6UmrVq2+2Bc+fPjAmTNnOHHiBCdOnCApKQlHR0cqVaqEpaUlzZs3R1tbG3Nzc0qVKiX9wZMrvlWxYkWJONGmTZvYuHEjBgYGNGjQgEaNGuHu7i4Zd8KECWRlZXHw4EGp55D68YVYLM4Ri8UdAXdgHrmb2mLAQywWd5HpyOT8tjg4ONCnTx9yRCIG6+sj/vgRxo//2cv6z1OuHBw/DoGBoKYGBw5oY2sLp079/XNX1K3IkiZLONPiDP7u/pRUL0n4i3Da72lPpcBKLLu2jNSs1GKPL9+b5BQHoVCIhoYGhoaGTJkyhWfPnhEQEPCzl/VLIhQKCQkJIS4ujnbt2hVLeCYPfX19Dh48SO/evdm1a1ehyp8HDhygU6dOrFy5kpMnTzJ69GhJnTdZqVSpEg4ODiQlJXH06FFGjx6Nm5sbmpqaNGvWjEOHDuWrklgUv+L+9Pz5cxwdHSlZsiQBAQFUrlyZgQMHcuLECd6/f8+TJ0+KNATzSEpKQkNDg+3btxdqCB4/fhwdHR1q1apFZGQkc+fOZdeuXbx7965Q40FbW5uHDx/Sr18/Nm/ezIsXL7CwsKBSpUrFMtK8vb3x8PDg0aNH+Pr6UrJkScLDw1FTU+PBgwfExsaybt06dHV18fX1pWzZsnh5eTFq1Cg2bdrE7t27f4jAiKamJqqqqrRo0YL169fz9u1bmjdvXmD7vO+ctra2VIZgfqipqaGurk6PHj24cuUKx48f/6aNvr4+ixYtonLlygwYMABLS8tChWesrKxISEhgy5YtvHv3Djs7O7p27cr+/fulyhsMDw+ndOnSbN68mTZt2hAXF0fnzp2lOp7evXuTmprKnDlzip2HrKSkxM6dO4mPj2fo0KE8ePCA9u3bo6WlJckLXbt2Lfr6+rRq1Yrdu3fTrl07QkJC2LdvH0uWLGHw4MF4eXnh7OwssyGYHxkZGWRmZvL06VPWrFmDr68v5cqVw93dnRcvXjB37lwMDAw4e/Ys6enpUu3HMvuyxWLxebFYPEEsFvcWi8V/isXis8U6Gjm/LQEBAWhra3Pm7Vv2CIWwbh1cv/6zl/WfRyjMDRe9dQvs7NJ4/jw3pXPIEEgtvi0mNboqukyuO5mnQ5+yrMkyKupWJOZ9DAOODMB4oTFTQqfwPuN9sceX701yCiIjI4Ndu3bRrVs3FBUVMTExYdSoUZw5c4bnz58zatSoH/JH+r9MiRIlOHDgAKmpqVIpRxaEt7c3urq6rF69ml69emFmZkbp0qVp06YNe/bs+SLkr3r16uTk5GBmZvYjDuEL4yE9PV1SgiQ4OJguXbqgr6/PsGHDijX2r7Y/LV26lKSkJG7fvs2VK1dYsmQJnp6eUhcmh9zi5Onp6YSFhdGxY8dC23p4eLBlyxZat27NkSNH2LdvH56enlIZdKVKlSIwMJDQ0FB27txJrVq1uHbtmtTr/Jo8z3Zqairp6emsX79e8p6JiYlEUOTp06dcu3aNAQMGoKury7Fjx+jVqxc6Ojro6Ojg7u5eZGmJz3n16hUaGhqYm5sTGBjI+/fvOXDgAG3atCk0j/n06dPs3bsXd3d3zpw5I/PxPnr0CDU1NYYOHUpiYiLr16//InTx/fv3+Pn5YWtri56eHsOHD6ds2bKsWbOGQ4cOFSk8o6GhQZcuXTh27Bj37t3DxcWFxYsXU7FiRdzc3Ar19NnZ2eHu7o6hoSE+Pj4yXX/q6uqcOnWKvXv34u3tza1bt6Tu+zVaWlo0b96c9u3bIxaLyczM5PTp04SFhdGwYUPOnj3LunXr8PX15d69e5L9wtjYmIYNGzJx4sS/TRgrOTmZzMxMrl69yuHDh7ly5QpmZmZMmTKF0qVLU7duXUmIakHIbAwKcjEUCAQVv34V+0jk/FZ8/gdzhIYGn8TiXIvjb/oiyJGNSpVg27Y4AgJAUREWL4aqVeE7/nbKhLqSOv1q9OPBwAfsaruLGoY1eJP6Bv+z/tQ7WI9BRwYR+z5W5nHle5Ocr4mKimLQoEEYGRmxcuVKvL29ef78ObGxscycOZMaNWr87SFe/yWUlZXZvXs3W7ZsIS4urlhj5Hls4f/rQSYmJrJ37158fX3R09OjU6dOXLlyBSMjI2bPno2rq6tMqoLFITk5mezs7Hzr6knDr7Q/JSYm0qRJE5ydnWnbti3m5ub88ccfMhk2ly5dYtOmTdy/f18qMRUlJSVat25NUFAQT58+5fXr1xw6dEimdVepUoWzZ88yYMAA6tati4+PD6nf+aRTTU1NUv8vP3R0dEhOTiYpKYk3b96QkZGBgoICJUuWxMLCQibj5d27d3h5efHgwQO6d++OqqqqVP3OnTtHjx49CA0NxdraWur58lBQUEAsFmNvb59vWQhlZWWMjY2pUKECWlpaPH/+nBcvXvDq1SuZvfAGBgb079+f06dP079/fy5fvsy4ceMKbK+srMzevXu5f/8+w4cPl6pe5edUqFCB8+fP4+LiQvPmzalduzbbt2+XaYz8yMnJkXj8zM3NadCgATNmzCAyMhJra2vGjh1LREQEGzZs4PLly5JSO38X6urq6OrqYmdnR/Xq1Zk4cSIXL17k6dOnvHr1ikePHhXaX+qcQYFAoA8sBVoV0u+7k39+FAKBoDnQ3NDQkOjowsW6pClEKm27H9XmVx+rWrVqWFtbc+/ePf5SU2P6xYu8mDeP5K/CHH7lY/yVr5u4uBjatQMrKxXGjDEgOloFZ2cxffu+pW/ft+Sl/Pzd67JTtGOT6yauvr7Kuqh1nH15lsBrgSwLX4ZXeS98K/tio1e42s2vtjfJ+Wd4+/YtdevWpU+fPoSHh38hhCDn70NbW5tWrVpx8OBBBg4c+EPHzrsR3LVrFy9fviQ0NJRevXphaGhIixYtOHnyZKFKe8VBTU0NRUVFRCIRvr6+LFy4UKb+v+L+5OjoyPHjx4mJieHx48ccOXKENWvWcPnyZW7fvi2VQMrq1asZNWoUenp6Ms+vo6ND79696devHyNHjsTT05OWLVvi4eEhUfrMj/T0dEJDQwkPDycnJ4fDhw8TExNTaDmJrxGJRLx9+xZFRUUUFBTo3bs3Pj4+Bba/desW06dP58GDB2RlZVG2bFlsbW1p3Lgx9erVo2JF6Wz9O3fuEBsbS/369WU2Gho0aEC7du2YPHlyoedbLBaTkJBAZGQkkZGR3L17l8jISK5fv45IJOLgwYN06NDhm34aGhpMmjQJyM2NW7ZsGbNnz+bgwYM0bdpUZqM9JyeH0NBQTp06RU5ODq9fvy60vYaGBsHBwfj4+GBgYICtrS3ly5enfv36+Pj45GvAfn7MsbGxaGhoYGNjQ0hICCKRiLZt235XbrNYLCYlJeWL3z18+JCHDx9y+PBhlJSUCAgIwMLCAkVFRW7cuMHgwYPp0aMHVatWlXqezMxM4uLiuH379he/V1FRQSQSIRQKJV7TP//885sHCLq6upQvX54uXbowY8aMAueRRUBmLVAPCASiANmD5/9BxGLxIeCQjY3NH5aWRcvZS9NG2nb/xvl+xlirV6+mdu3azMvKwg8wW7gwt9bBV+EOv/Ix/urXjaVlbhmKCRNgwQIBS5eW5MqVkmzeDJUr/3Prqly5Mt3cunHoyiGCXgaxNWIrR+KOcCTuCB6mHox2GU1Ds4YF/ZH8pfYmOf8M69ato2LFivj7+8u9f/8w1tbWRT6JLg7KysqoqKhgbGz8RX27Jk2asGTJEry9vXnw4EGxbvI+fvzImzdvgFwDUCwW4+TkRIsWLahfvz62trbFVYn8JfcnfX199PX1uXHjBunp6WzYsAEfHx+pzkFMTAzHjx//rocBPj4+LF26lCtXrrB9+3aJN+fixYu4uLh8014sFmNra0tcXBzjx49n69attG7dWubv/pQpU7hy5Qpjx45l5MiRRZYfcHNz4+7du2RlZfHo0SN69uwpERGBXE93WFgYNWvWLHCMtLQ0atWqxaRJkxgzZoxM63316hU3btzg/fv3rFixolAvW7du3diyZQsAjRo1okWLFvj4+JCRkYG7uzvKRZQBS01NpUKFCnz8+JF+/frh7+9frPD6Dh06cP/+fby8vAgKCpIqzFtPT4/g4GDS0tIICwtj2rRp9O3bl2HDhpGYmFhgGK2/v7+k3qK7uzvBwcGYmpp+ryjUN6irq5OTk4Orqyt+fn40a9ZMUlO1WbNmnDlzhhkzZlCjRg2CgoJo2bJlkWOGhYVRp04dRCIRDg4OEkErJycnrK2tqVixIrq6uvle4yKRiFevXhEbG4ujoyNnzpwpNFRUlp2tHjBELBaPEIvFq8Vi8cavXzKMJec/gIuLCz4+PmRmZzNMWxvi40HG2jRy/n7U1GDePDh9GipUgPBwcHSERYugGMrP30UlnUpsaLmB2CGxjHQeSQnlEpyOPY3XVi8cVjqw5c4WsnK+KYQt35vkfEOfPn3Iyspi6NCh3yVoIkd21NXVZZLz/5o8yXkFBQW0tbUlBaInTZrEiRMnuHnz5jfhdx06dKB8+fIyKeiJxWI2bNhArVq1MDIyIjU1FT8/P06dOsXHjx8JDQ1l+PDh2NvbF2oECQQC4uLivsgt+4xfen/q1q0benp6zJgxg/nz53P+/PlCi1e/e/eOOnXqYGdnR9myZcnK+ma/LpK0tDSCgoJ4/vw5KioqVK5cGX9/f27fvl2gOIpAIODgwYM0aNCATZs2FatsAcDIkSMxMTFh2bJlUqtWQm6Yq5WVFWXLlkVVVRVVVVW8vb05e/YsNWrUKLSvmpoarVq1IiMjQ2rjNTMzk2bNmmFpacnVq1eZPXs2o0aNKrTPihUr2L9/P7169eL27dssWbKEDx8+0KBBgyINQcj9Xl+/fp1JkyZx9OhRPDw8WL58uczCSlWqVKF+/frMmzdP5nxfNTU1PDw8JNfV8OHDC51/woQJXL9+nRUrVmBmZsbo0aOxs7OjVKlSXzxQKg4CgQANDQ2MjY2ZMWMGCQkJnDhxgo4dO0oMQch9iNWoUSPq1auHlpYWHh4eUo3v5OREYGAgmpqaPHv2jBkzZrB06VK6detG9erV0dPT++J6CQ0NxcvLC0tLS9TV1SUew/DwcKpUqYKfn1+Bc8liDL4DXsnQXo4cZs2aRYkSJTj04QNHAObMgVjZ88Hk/P3UrQsREdCjB6Snw9Ch4OtbjmKm/nwX5bTKMafhHOKGxTGz/kwMNA248+oOPvt8MFv8zR8P+d4k5xu0tLQ4fvw4UVFReHh4kJCQ8LOX9J9BSUlJZiPg4cOHTJkyBXd3d+7du4eRkRFDhgzhwIEDfPjwgStXrjB+/HicnJxQVMw/qKlZs2aEhYVJNd/r169p3LgxixcvJiAggMTERGJiYlizZg3Ozs4yeRft7e3R09Nj0KBB+b39S+9Pampq6OvrEx0dzfjx42nWrBm6urqYmJjQqVMnVq9e/cXNeIkSJZgwYQIaGhrY29ujo6ODm5sbR48eLXKusLAwunTpgoGBAcuWLcPPz4/Y2Fju37/P5MmTsbOzK9RYsrKy4vDhw6xYsYLevXtjZ2cns2iIiooKSkpKGBoayuz1Sk9P5+bNm1SrVo2nT5+yf/9+6tSpI5WBN2LECDZu3Ci1yIiSkhIqKirUq1ePpUuXMmjQoCKvWQ0NDby9vVm9ejXx8fGYm5tz8+ZNmYRNzM3NmTJlCo8fP2bp0qXMnz+fsmXLsnnzZqnH6NOnD9u3b+fYsWOkpaVJ3e9zLC0tUVRUZMmSJZQpU4ayZcvSrFkz5s2b90XYqZKSElWrVqVPnz6sXbuWO3fu4OnpiUgkkil14Ny5cwwbNozp06cjFAoxMzNj6NChhISEEBsby+DBg4vMD33y5AnVqlUrVHDn/Pnz/Pnnn3h6eqKvr8/MmTNp1KgR3bp1w9zcvNDxzczMJHUnmzVrRtWqVUlKSuLq1atERUVx7NixAvvKYgwuAfoK5PE2cmTAwMCAyZMnAzBEU5OMjAwo4umVnJ+HlhasXw/79kGpUnD5sga2trBp08/R/9FR1WFMnTHEDollbYu1WJW04tnHZ183k+9NcvJFT0+Po0eP4urqSoMGDXj37t3PXtJ/AkVFRam9sdnZ2cyePRtnZ2c+fvzIn3/+yevXr3n+/Dnz5s3D3d0dFRUVqcYqV64cz58/l6rtrVu3uHnzJpcvX6ZBgwZSi3Xkh4qKChUqVCjIY/bL7095S8/MzCQ5ORkVFRXi4uI4dOgQO3bs+KK0gJKSEv3792fLli0sXbqUnJwcLl68yK5du4qc5+TJk+zYsYP+/ftz9OhR/P39MTAwkHm9np6eODg4cPfuXVxcXFixYoVUBs/58+dxdHSkQoUKXLlyReryGXl8/PgRBQUFSdH35s2bs2jRIq5evVqk98zR0ZH09HQuXLgg1VwCgYBt27aho6ODqamppOyCtAiFQmrXrs26devQ0dGhatWqzJ8/X+rwbqFQiLu7O40bN+bTp08FecXzxdDQkGXLltG3b1+0tLQwMzPDz8+PHTt2FHkMOTk5PHz4kIyMDLKzs/n48SNCoZBXr15x/vx5du/eLSn5UBCJiYmUKFFCphIgAQEBvH79mg0bNvDp0ycePXrE/PnzcXFxKdDYF4lEXL58mbFjx1K5cmUOHjxI48aNi5znwYMHDB8+nOjoaJ4+fcqePXuYN28eZYqo112+fHkGDBjA3Llz2bNnD9evX+ft27esX7+enJwc4uPjC+wrdc6gWCyeLxAIDIF7AoHgJPC1BrxYLBZPlnY8Of8dBg0axJo1a4iKimKBkhJjg4LgzBmQooCqnJ9Dy5bg4gKdOydz6lQJuneHAwdgxYpcI/GfRkVRBV9HX3o49CD4QTAt/FtI3pPvTXIKQygUMm3aNFJSUhgwYMAPUZKTUziKiopSewY3bdrEsmXLuHbtGqampt81r5KSktRGaIMGDSRhY/PmzfvhOUR5/Or7U0pKCq9fv0ZFRYUqVarg5uaGi4sLNWrUwNjY+Jsb4ZcvXxIYGMiqVatwcHBg3LhxDBkyBG1t7SLnmjhxIi1btqR///5MnDiRWbNmFWvNb968kYR4ZmZmMmDAABo2bFiomEtKSgoNGzbE2dmZjRs3FlkuIT9Kly6No6MjsbGxJCYmcvjwYQ4fPgxA//79Wbp0aYF9BQIBJUuWZPfu3bi6uko1n4qKCgsWLMDY2JgpU6Zw48YNYmWIvBo7dixjx46le/fubNq0iZs3bzJixAju3r1LlSpViuyfnJzMvn378PPzY/HixVLPC9CuXTsiIiIICAggJiaGmJgY1q1bh1AoJDIyksp5ogWfcf36dYlCbLly5WjXrh2urq5Ur14dKysrqZVb69aty5w5c/D09OT169dSGf1t27Zl8eLFlCpVSuoHR4cOHaJly5YoKyszbtw4OnfujIWFRaF9evbsia+vL9HR0VSuXFnyUlVVxcTEhOrVq0s19+cUJrCThyxqok2AAYAKkJ8KhBj4125ocn4eysrKLF68mIYNGzJNIMAHMBoyBG7c+NlLk1MIpUtDYOALLl+2ZPBg2LsXLlyANWugkNq3fytCgZDmll9OLt+b5BSFQCAgICAAExMTXr58WSxvgxzpkcUJ5u3tzejRo3n58uUPMQalNUIFAgGHDx+mdevWdOrUie3bt/8tBuGvvD9lZmZib2/Pp0+fCAwMpFGjRpQvX77Az3fDhg306dMHLy8vwsLCigxryw9bW1t69erFkiVLuHr1aqHCK19z5coVunfvTnR0NCYmJnTs2JFu3bpRu3btIo07TU1NIiIiGD9+PLa2tty8eRNjY2Op537z5g2hoaHcvHkTDQ0NxGIxLi4ukiL2VlZWkrZisZhXr17x5MmTL17Pnj2jadOmUs85ceJEZs+eTU5ODh4eHixbtgyxWCyzaI6qqipqamo4OjqycOHCIg1BsVjMuXPnmDhxIh4eHixdurRYIl0fPnxAQUEBJSUlzM3N6dWrF+3atcPQ0PCbtsePH8fHx4dFixbRqVMnmefKo1WrVhw4cIBu3boxffp0qQzBvO+BhoYGTk5O3Lx5UyrRPG9vbx4+fMiBAwc4cOAAs2fPZujQofz1118F9unUqZOkX1RUFFFRURw5coSQkBDevn2LqqoqDRs25MCBAzIdd1HIEiY6H7gG2AMqYrFY+NXrXyWNLOffRYMGDWjdujWfMjMZpaGRm5y2atXPXpacIhAIcnMIIyJycwpfv4YWLaBXL/gsMuhnI9+b5BSJlpYWNWrU4Pr16z97KXI+Q19fny1bttCyZUuCgoK+ayxFRUXi4+N5+PChVGGBenp6HD9+nLdv3zJ8+PDvmrsQftn9SVlZmeXLl1OiRAkGDBiAmZkZmpqaODk5MWbMGF69+jIVsn79+vTr148LFy4wdOhQ7t27V6x527VrR6tWrXBzc8POzq7Igtl5VKlShX79+lGzZk1evnxJZmYmtra2Unv5zM3N2bFjB9nZ2VIJID179ozhw4fj4OCAmZmZpFj7uXPnSE5O5sSJE/Ts2ZMjR47Qv39/vLy8qFy5Murq6tjZ2TF48GD27t3Lu3fvsLOzIzAwkIYNG0q1VoAuXbqwePFi+vXrx/3797GyskJFRQVzc3M6derEvn37pBpHJBKRk5PDhQsXihS7OXToEI6OjjRv3pwmTZqwdu1amQ3BtLQ0evXqxerVq+nQoQNRUVFEREQwZMiQfA1BgBcvXtC4cePvMgQBBg4ciJWVFTt27GD8+PFfhDh/ztu3bxk7diyurq7o6enRr18/atSowZw5c6QuFwK519SIESM4d+4cI0eOZOXKlYSEhBAXF1egyJG6ujr29vaoqqry4MEDLl++THp6OqVLl6Zr166MHj1aqrmzsrKIiYmRlKUoKNcaZCstUQEYLBaLI2ToI0eOhHnz5nHkyBG2f/pEH8B94kSE1ar97GXJkQJjYzh1ChYuhHHjYO3a3P9v3AhFhLH/E8j3JjlSYWRk9M0NrJyfj5eXFyEhITRq1AhtbW08PT2LNU7VqlVJTEzEwcEBBQUFnJycaNy4Ma6urlStWjVfz5+Kigp79+6lUqVK9O/fX+oyOZB7s3Xx4kVOnz7N5cuXEQqF+d3g/XL7U2JiIuPGjeP58+c8f/6cjx8/kpWVhVAoRFlZmdTUVGJiYr7JkSxfvjwLFy5k+vTpDBo0iLVr1zJv3jyZ51dXV2f8+PEcPHiQGzducPz4cRwdHYvsp6mpyZAhQxgyZAi1atVi//79nDt3jvPnz+cbdlgQZcuWpWrVqvj6+jJmzBjKlSuXb7vk5GRiYmKIi4tDX18fAwMDFBUVKV26tER9NjMzk0ePHvH48WOePHnC06dP0dDQwNzcHFNTU0xMTDAxMcHU1LTIMhZfkxdCCLnhuUFBQSgqKvL48WNEIpHU9ewUFBQQiURSeRXfvn2LqakpIpGIadOmERAQgLKyMhUqVMDe3p7atWtjbW2NnZ1dgaHB6enppKSkIBQKOXLkCFlZWXTu3BlPT88vVDg/R1VV9bsUivOoX78+f/zxB8OGDWPHjh0MHjw43/OUnJzM2bNnuX79OuPHj2f48OGUKFGiWJ7XPIyNjUlOTqZ9+/ZkZmaSk5NDuXLlsLKyktTmrly5sqSMzaNHjzhx4gTKysoMGzaMESNGfBMKm5KSQkREBLGxscTGxhITEyP5+cWLF5QtWxYtLS3c3Nzw8PDA398/37XJYgzeBPI32eXIkQITExPGjh2Lv78/gzQ0uPHuHSWXLAEnp5+9NDlSIBTC8OHQqBH4+MDNm7newp49S7F0KXyH/sL3It+b5EiFLMImcv5ZHBwc2LVrFx06dODJkyfFEnQxNDSkbNmyEhGKkydPcv78eZSVlVFQUMDHxwdfX1/s7e2/uKHT1tbGx8eHHTt2SATPiuLGjRv07NkTBQUFGjVqxPz582nfvn1+N7O/3P4UFxfH/v37adOmDT4+Prx+/ZratWtLpb4oEokICgrixIkTTJw4UaZ5s7OziYiI4NKlS1y6dInbt2+joqJCmzZtCu2XF3YZFRVFdHQ00dHRPHz4EJFIxLt371i1ahXz588vtG9ev+joaJKSkkhNTWXp0qVkZmaycuXKfPtaW1uzf/9+RCIRkZGRzJo1i61bt3Lnzh0uXboE5Bb9XrFihaRPTk4OL1++JDY2lidPnhAbG0tYWBjbtm3jxo0bqKur06FDBzp06ICTk5NUdR0zMjI4evQoqqqqLFiwgNatWxeohPru3Ttu377NnTt3vvhX2rl69OhBjx49JOduwIABLF++nKSkJO7cuSNRFe3Tp88Xx/05urq67Nixg4kTJzJt2jR2795NcHAwQqEw9/5w0KBvSl2oq6sTHBxM7dq18fDwwNDQkI4dO0ot8vP+/XuuXbvGlStX2LFjBwKBAH19/XwfEojFYlJTU+nQoQMJCQlMmTKFsmXL0qdPn++qWaugoEBmZuYXYkJ5+ZJHjx5FQ0ODnJwcmjVrxo4dOxgxYgSDBw/m+PHjBAQEsHHjRu7du/fFHrNw4UL8/f3JyckBcsOs27Rpw4IFC7CyskJZWZmPHz9KvOMFGYOyhIkOBkYKBILasp4AOXLyGD16NCYmJkR8+sQKgQCdHTvg7t2fvSw5MlClCly+DBMn5hqI69bpUb16rnH4k5DvTXKkQhaBETn/PO7u7jg4OLB3794fNmZGRgbJyckkJSWxbNkynJ2dqZePeJmDgwPR0dFSjXn+/Hk8PDwYOXIk169fZ8aMGfTs2bOgwte/3P5kZGSEtbU1GzZsoFOnTgQGBrJw4UJ27tzJgwcPCq3h17FjR/r378+GDRv4448/pJ5z586d6Ojo0KRJE27evEn9+vVZvnw5Hz9+LFR0Y9KkSejo6GBgYMC4ceO4evUqBgYGdO7cmaNHj5Kenl6gIThx4kRJ37p16zJu3DhevXqFs7Mz+/fvJz09vUBD8HOEQiEhISFs3bqVevXqcebMmQLbKigoUK5cOVxdXfHx8WHSpEmsW7eOM2fO0KxZMxISEli8eDEuLi4YGhpKVetQRUWFVq1aIRKJGDlyZL5tIiMjKV++PPr6+nTp0oXo6GicnJxYsmQJly5dklrF9HMEAoHEMFFXV6d06dKMGjWKiIiIAg3Br/vnkZqaSkpKCiNHjqR27W+/Kt7e3iQmJjJ16lREIhEzZsygZMmSRc4jEolwcXFBT0+PcePGkZycTKdOnQgLCyM+Pv4bcZXExESMjY2pUqUKw4YNQ1VVlYCAAMqUKcOVK1e4cuWK1GHosiASiUhOTiY1NZXdu3ezZcsWIPdvVrNmzRgxYgSvXr1iypQpX/SbMGECycnJXLlyhRUrVuDs7Mzhw4dxdnamWrVqzJkzp8BQ2M+RxTO4H9ACzgkEgk9A0lfvi8VisfTZtnL+k6ipqbFgwQJatWrFRGVlOmRkUGrIEDh5MjdBTc4vgbIyTJ0KTZtChw6ZREYq4+QE/v4wejQUEpr+d7Af+d4kRwpkUbmU83Nwd3fnxo0bdO7c+YePnZOTg7KyMn369PnmPS0tLVJSUqQax8rKCgUFBWrUqCGNp2A/v9j+VLZsWfbs2QPk5mrVrFmTy5cvs2bNGkl+mbm5ObVr12b27NlfhK5NnDiRlJQUevXqxfTp02nfvr1UHqdGjRoxfPhwli1bRnZ2Nl27dpWqEHrfvn3R1NRk+/btPHnyhDp16jBy5EipPDiDBg3CxcWFx48fS143b94kKiqKQ4cOUapUKWxtbenRowddu3YtdKzu3bsjFosJCAigVKlS9O3bl8GDBxcYYvo5z58/x9/fnyNHjqCkpESVKlVo0aIFDRs2RE9Pr8j+kHtvlZmZiaamZr59KleuzPLlywkODiY4OJhjx44hEAhQUVHBxsaG1NRUqVQnvyYpKQk1NTUCAgIYNmyY1J6zqKgogoODUVdXJzMzE2NjY5ydnXF3dy9QTVVNTY369evj4uLC+fPnUVJSKlJwRygUMnv2bBYsWMCZM2dwdXWlX79+BYbklixZkoMHD/Ls2TNevHjBy5cviYuL4/Lly7x8+ZJHjx7x4cMHhEIhmpqalC1bVvJdGDdunFTHXhCampro6OgwYsQIWrVqJfn9ixcvCA4ORlVVFV9f33zPS82aNb8QW8rKyuLatWusWLGCKVOm4ObmVqjojCy3bKfIVb2SI+e78Pb2pmHDhoSEhPCnkhJrTp+G/fvhs4tfzq+BkxPs2/eEtWsrsXQpjB8Phw/n5hIWoaD8I5HvTXKkIi83Rs6/lzJlyvDgwYMfNp6amhoKCgoIBAJcXV0ZPHgwjRo1+qadLCHEJUuWZP78+dSrV489e/bk68n4jF92f3r69CkXL16U5GplZ2eTnZ2Nrq4uurq6lChR4htDz9bWliNHjnD27FmGDBmCv78/+/fvLzJnT0dHh6lTp1KiRAm2bNkilQEJuaHBo0ePZvTo0ezevZuRI0dKXZKidOnSX9R9u3btGqdPn2b+/PkkJiby6dMnsrKypDJKS5YsyciRI7l06RL79u1j0aJFLF68GA8PDyZNmkStWrUK7Dt79mwyMjIIDQ3Fxsbmu1RtMzIyqFu3Llu2bPlCDVVBQYFmzZrRrFkzxGIxd+/e5dixY5w8eZLRo0fz5s0btLW1sbS0xMXFBWdnZzw8PArNY7xx4wa7du3ir7/+YtiwYTKtUygUSrye69ato2vXrlIZkleuXKFbt27Y2Nhw6NAhqUqW1KlThzp16hAXF8esWbMwNzdn1qxZ9O7d+5u2AoEABwcHHBwc8h1rxYoV9OvXD5FIRGpqKg8ePCAzMxNnZ+ci15EXvq6kpISamhrp6emoqqpiaWmJk5MTrVu3pm7duggEAmJjY1m0aBEHDhzg0aNH1KpVi7Nnz36hSlsYSkpKuLi44OLigpubG3379pWEkuaHLHUGe0jb9t+AQCBoDjQ3NDQsMvQjJiZGqjGlafej2vzuYw0dOpTTp0+zLiuLvoDd4ME8MTNDnE9x4V/1GH/0WP/WtSckxDBokBhHR3XGjy9LWJgS9vYiRo9OpGPHJInD90eu63N+tb1Jjhw5BSNLeYjPSUpK4uzZszx9+hShUCi5GWrRogX169enSpUqhRoYsnqNu3fvTpkyZWjZsiXHjh2jWgFiaL/y/rRo0SI2bNjA+/fvEQgEWFpa0rFjR5ydnbG2tqZ06dIF9nV3dyc8PBwTExOqVavGunXr6NChQ5FzXr9+nfj4ePr27YulpSVDhw5FSUlJqvWWKFGClJQU7O3tKVeuHH/88QdNmzaVypiLj4+nfv36+Pr6MnHiRJo1a5ZvHcWCSE1N5f79+5Ib/szMTBQVFTl58iQqKiqFKnuePn2aTZs2YW9vL9VchfHp0yfCwsLYsGFDgfmvAoEAW1tbbG1tgVwPaWBgIElJSZJQyAULFjB//vxCjbyNGzdiZGSUr6e9KCpVqoSPjw/Tpk2jb9++XLhwgeXLlxf5ECDvs5k7d67M+XsVKlRg6dKlKCsrM3ToUGJiYpgxY4bU42RnZ3P58mWUlJSwsLDA19eXVq1aSaUuKhaLWbVqFWpqavj7+1O9enVsbW0LzO1ctWoVc+bMkYS3VqtWrUADtSjOnDlDzZo1C83D/meDuf5BxGLxIeCQjY3NH9Kog0mrIPajxvqn5/u3jWVpacmwYcOYM2cOA9XUuPT8OZUOH86VqvyJ6/q3j/VvXrulJbRuDQMHwrZtQqZMKcPly2VYuxaMjH78uuTIkfP7IWte5+vXrxk8eDDBwcE4Ozvj6emJn58frq6uhUqp5zevrEaol5cXq1atktQFU1NTk6n/v5358+czb948LCwsePz4MXfu3OHOnTuoq6uTnZ1NyZIlefDgQUG5kigqKqKlpUV8fDwdO3akcuXKRRo8O3bs4OnTp+zZs4dx48axZMkSnj59KtUNu5eXF69eveLixYu0aNGCo0ePoq+vT3x8PCr5PGjO4/nz54wdOxYXFxcWLlxY5DxfM336dCZMmIBYLEZFRYUmTZrQtWtXnJycMDExKdLAUVFR4cGDB1KrfxaGmpoaAwYMkFm8Jw91dXU0NTVZv349TZo0KbTtnDlzMDQ0ZNiwYVLlVn5N3meamprKqlWrqFevHh07diy0z9ixY+nRowcjR44sVr3YuLg43rx5Q1paGrNmzcLDw0Pqch6dOnXi8ePH7Nu3T6p6kGKxmBcvXhAREcHdu3cpWbIkz58/JzExEQ8Pj0L7zpgxg7Fjx3Ly5EmCg4MZPXo0Xbp0kQj0SDP3hQsXWL16NWfOnCE8PLzQ9oVeoQKBoJtAIND/7OdCX1KtUI6c/zFx4kRKlSrFlbQ0NgFMnw7x8T97WXK+A11d2LoVdu4EPT04fhxsbWHHjh8+lb58b5LzT3P+/HlOnToldW6ZHNmRxUN39epV7OzsqFChAq9evSIkJIQtW7ZQr149mQxBoNgqga1atcLOzo4dn21yv9O9k0Ag+OZcpqamkpmZyZs3bzh16lS+/SIjI6lVqxZPnjyhRYsWnDt3Djs7O6nmNDY2xtDQEFVVVdasWSP1Z5OTk0OvXr3w9vYmMzMTPz8/Ll68WKghuGTJEszNzVFXV2fr1q1SzfM1w4YN49SpU0ybNg1dXV2OHj1Kv379GDNmTKGheXksW7aMwYMHM2/ePBISEoq1hqSkJFRUVFi4cCFz5syROswWcg0HZWVl1NXVGTt2LE+ePCnSEMzOzqZHjx6ULl26QIXKwvhcedTCwoKdO3cWqRoL4OHhQYcOHWjSpInUIf9ZWVn4+flhbGxM9erViY6OpkOHDoSFhclUxiY1NRV/f/8iDcEFCxZI6hNWq1aNuXPn8vz5c9zd3Vm7di1Tp06Vaj5tbW3q1atHYmIitra2BAQESNXv6tWrWFtb07x5c+zs7Lhz506B9RvzKGq33ADUAt7+7+fCEEPuPb0cOdJQokQJRo0axejRoxmjokKrT5/QHjMG/qeiJOfXpX17cHUFPz84ehQ6dYImTQzYvDnXSPwBmABmyPcmOf8QXbp0Yfbs2YSFhZGWloaJiQmenp54enri5eVVLPEFOd8iS16nUChEQUGBKVOm/FSvnLe3NxcuXKBnz555v9rAb3TvlCeFX6JECXJychAIBNjb21O/fn2qV6+ebx8dHR1SUlJwd3cnMDCQ8uXLyzTnihUr2L59u0xF2IVCIbVr10YoFLJ7927Wr1/P4cOHqVatGg0aNKB9+/bf3BTb2trSuHFjduzYwbNnz2jfvj1du3aVOjQVcr1x9erVo169ety4cYO9e/fy6dMnnj17JtVDCScnJ44ePUqHDh34888/qVKlCv3798fPz09qo05FRQUFBQWOHz9OzZo1sbS0lPo7cfPmTczNzTlz5kyhob95iMVi+vbty9u3b7lx40axysCULFkSU1NTiUhLly5dKFGiBBYWFlSrVo2qVavSvHlzynxVyHj16tVs2LBBpjIPioqKqKur8+nTJ/bt21egQE1RGBkZ8fTp0yLbGRsb8+bNG0qWLMlff/1F+/btizXfjRs3aNWqFa1btyYoKEiqcGcAAwMDvLy8OHr0KHPnziUkJITGjRszYMCAAvsUdZWZklsjJ+/nwl5FB83KkfMVzZs3p3bt2rzOyMBfQSHXrfS/+jxyfm0MDCA4GFauBA0NOHJECxsbOHbshwwfgXxvkvMPYmFhQXZ2tqQA98OHD1m+fDk9evSgZMmStGnThpCQEHnpin+Q6tWr06hRI7y8vHj37t1PW0f58uWJ/zKq5be6d0pLS0NRURGhUMi8efP48OEDFy9eZOrUqQV6HIyMjAgLC+POnTtUqlQJAwMDunXrxs6dO3n9+nWRcyYlJUmtpJmHQCDgjz/+YN26ddSoUQORSMSrV684evQo48aN4+LFi9/0qVu3Lvv27SM+Pp4ePXqwceNG3Nzcvsv7LxAIMDAw4OjRo1IbLNWqVaNWrVpkZWVx69YthgwZIlO5BzU1NVJTUzly5Ahubm5oaWlRunRpXF1dGTp0KOvWrSMsLIykpKRv+iYkJDBhwgSpDEGAyZMnc/v2bYKCgoplCEKu8E+dOnXIzMwkJSWF7Oxs3r9/z9WrV1m+fLmkbMvniMViDh48SGZmJleuXGHr1q1S7bcCgQB/f39KlSpVaO5mfojFYkJCQmjevDn79u3D1NS0yD6tW7cmMjKSBQsWMH78+GKF0EKuka6goMDGjRtxdXXFy8uLvXv35vsZfk758uVZsGABUVFRhIWFYWZmxrhx4wpVti3KGDwDWAOIxeKnRb1kPE45chAIBAQGBiIUClkiEhEJMGQIyBX/fgsEAujdG27fBkfHNF6+hMaNoV8/+PTpu4a2RL43yfkXkJycTFpaGnv37qVp06YMHTr0Zy/pP8WaNWtwcnLCzc2tyJukwtDS0iIsLAwXFxcCAgI4e/YsaWlpUvVVVlb+OrT1t7p30tbWJjs7mw8fPtCvXz/mzp1bZJ/k5GRiY2NRUVEhPT2dhIQENm/eTMeOHTE0NOTx48eF9vf09CQoKOi71q2mpoa5uTmrV68mMTGRdu3aFdhWSUkJPT097O3tuXz5MrNnzy7WnBkZGSgrKxMaGip1QfT8EAgEfPjwQeZ+6enpJCcnk52dTWJiIhcuXGDRokUMGDAAFxcXdHV1WbZsGevWrWPkyJE0bdqUFy9esH79eqnGf/bsGdOmTcPCwoLIyEg+fecf8s9RUVHB09OT/fv3k5iY+E2oqkAg4NChQ9y7dw9lZWV69OhRZDhrHlOnTiUqKoqoqCh69uzJxIkTuXbtmkQptyA2bNhAo0aNSE1N5eHDhzRr1kyq+YRCIc2aNePIkSNMnjyZNm3asGnTJpnykv38/IiJieH+/fu4ublx/Phx2rVrR+nSpTE0NKRZs2bMmTOH06dP8/79+3zHMDU1pUGDBqSnp5OYmFjweotYiwlQcLC1HDk/AAcHB/r06UOOWMxgFRXE4eGwYcPPXpacH4iZGWzZEseMGaCkBCtWgL09hIUVe0hl5HuTnH8RQqGQcuXKMWnSpJ+9lP8UQqGQWbNmUb9+fTp06FDsYtBVq1alWrVqhIWFMXXqVFq0aIG2tjbW1tYEBATw5MmTAvvmI3pjwi++PyUkJHD69GmWLFlCQkIC6urq2Nvbs2fPHkaMGJFvn7Vr11KzZk1KlSpFmTJl6NSpEyKRiJo1a9K3b1+2b9/O7du3ef/+PWZmZoXO37t3b5YvXy5Vzl1BKCgo4OTkhK6uLu/fvy/w2ujUqROlS5dmypQplCpVivXr1xcrDw5yvai6urpSKUwWhIaGBt27d5fa8CgKVVVVMjMzUVNTQ1lZmfXr1xMaGkrJkiXp06cPGzdu5MiRI1KNVb58eR49eoSVlRU+Pj5UqlSJXr16sWbNGsLDw6V+gPI1KioqtGjRgm3btuHt7V1omK6RkRF16tQhJydH6oc2CxYs4NGjR/Tp04dXr14xbdo0atWqhYaGBmXKlGH06NH59uvevTvBwcEoKChgZWVFz549Wbp0KeHh4UUakpAbUfLgwQMaNWrEmDFj0NPTK1LM5WvKlClDjRo1gNzi9FlZWbx8+ZLg4GAmTJhAq1atKFOmDGXKlGHChAlkZ2cTHh7OwoULad26Nd27d8fQ0JBBgwYVOIf0GaZy5PyNBAQEoKenx+mMDPYC/PknfPz4s5cl5weioABjx8K1a7miMo8fQ506ubUJ/5eSIkfOL4tIJKJ69epSh1rJ+XEIBALmz5/Po0ePuHz5crHHycvJ+Twc+P79+/z1119YWVlhb2+fr5qfrGUp/u3cunWLKlWq4O/vz71793Bzc+PChQvcunWLNm3aFJgHV716dVRVVVFVVWXXrl1ERkby5MkTrly5wvLly+nYsSN2dnaUKFGi0PlfvnzJmjVrsLW1lUkI5WtSUlLYtm0bPXv2xMLCAl1dXerWrcvUqVO/EGpJTk5m3LhxXLhwgQkTJtCjR49izfv27VtiYmL4448/irXevFzZ7OxsevfuXWxRo6/Jyspi7ty5eHl5oaamhlgspkKFCvj6+tKiRQvat28vk+BSxYoVmThxItHR0Xh4eLB27VqGDBlC/fr10dLSokKFCrRs2ZI5c+ZI7d3MyMjg8OHDlClTBltbW2bPni3JVS2MPPGbohAKhZiZmeHt7U3dunWB3O+7kpISdnZ2BRreQqGQJk2aEBISwqlTp/j06RODBw/G3d0dTU1NjI2Nad26NYGBgQWuNyUlhUuXLpGcnIynp2eRD0JkITMzU7JXvXnzhv3796Onp0ePHj2IioqiTZs2PHr0iPj4eBYvXlzgONJ8+r9ksVQ5vxb6+vpMmzaN/v37M1xZmcavX6MeEABz5vzspcn5wdjb5xqEkyblfrzTp+fmFm7Zkus1lAH53iTnX4O6ujply5b92cv4z6KgoEDnzp05cuSIVAWgZSEjIwOAe/fusWrVKnx8fL6ZOx8P1i+7P1WpUoVbt25JjBGRSCSVcWRvb8/Zs2c5evQoAwYMIDQ0lJkzZxZpaLx69YozZ84QGhpKaGgor1+/xs3Nje3btxfLIHr58qUkh1QsFpOZmYlAICA5OZmHDx+iqKiIt7c3ZcuWJTg4mOvXr39RfF4WxGIxZ8+eZfXq1QQHB+Pl5SVVWYfU1FRu3brF7du3Jf9ev34dZWVlqlatKlUxdWlQV1enWbNmDBs2jGHDhpGVlcWlS5do2rQpDRo0+K6HV3m5kXnHk8ezZ8949uwZBw8epEWLFigpKfHkyRNevnzJixcvJKIxISEhX4yVlZWFvr4+AoGA69evk56e/o2hJxaLCQsLY8eOHSgqKjJkyBAUFBQKXWdGRgYXL14kNDSUM2fOcPXqVcqWLcuAAQPw8/OTukSFtbU17u7u7N69m9TUVNTV1Xn27BlJSUlkZWXRvXv3fA3T8PBwLly4wNOnT9HX15dqruIgFou5d+8elStXplWrVnh4eODi4lKomm4e0hiDUwQCwRvp1iHuLkU7OXLypXfv3qxatYpbt24xC5iyaBEU8wmbnH83KiowaxY0bw7duuXmFFarBkOG6DJjRq4XUQrke5Ocn46ioiJKSkq0bNmSRYsW/ezl/KexsLD44gbzR1GiRAmysrKoXr06x/JRwCrAYPll96enT58yefJkHB0dcXR0JDMzk0qVKknVVyAQ0KRJE9avX4+HhwceHh5F5nV5enpy9+5dhEIhbdu2xc/Pj5o1axZLjCkpKQlLS0uSk5MpVaoU/fv3p3r16lhaWmJqavqFYZqWlkanTp1wdnYusr5dQUyZMoWtW7cyaNAglixZgra2dpHGCcCYMWMIDAwEoE6dOvz555/o6+vj4uLyXd7QzxEKhaSmpnLz5k06dOhAzZo1JYXOxWIx48aNw8vLCxMTEzp16iRzOZb8UFBQQENDg7S0NP744w8sLS3x9fX9JifRwMCAUqVK0aBBA0aOHEmdOnWKVGTOyclh6NChHD58GB8fH86cOSOVyNDMmTMJCAhg5MiRTJo0CVNTU8zMzIp80CAWi3n06BHXrl2TvMLDwzE0NKRu3bo0bNiQOnXqULFixS/GyszM5Pbt24SFhXH58mUuXbqEQCD4Ww3BPIRCIffv32fatGlMmzaNhg0b0rJlS4yNjQt94CHNJ+8AZEjRTqqnYAKBwAtYBCgAa8Ri8cyv3q8MrAeqAuPFYvHcz957AiQDOUC2WCzOX9NYzi+JgoICS5YswdXVlVkKCvTIysJ0+HCYN+9nL03O30SdOrmG4IgRsHo1zJlTmsuXYeNGkEK0ywH53iTnJ6GpqQlAt27dGDBgANbW1j95RXLycqOKS14OkLKyMoqKiqipqVG/fn2aNWtGvXr1ClXjywcHftH9SV9fH5FIxJo1azhx4gQikYiBAwdKXZA9KiqKxo0bY2Vlxf379zEwMKBKlSoFhvPduXOHmJgYwsLC2LJlC15eXojFYkqVKsX58+extLSUal7ILWnx/PlznJycePToEXPnzqV///7Url37G2NHTU2N6OhoAgICsLS05PTp01LXQgSIiYkhICCA1q1bIxQKuXnzJlpaWlStWrVIg3Dx4sUMHjyY48ePc/z4cbp164aRkRHe3t40bdqUWrVqfbdxlhd2+vDhQx4+fMiuXbsk72loaKCtrU1SUhJDhw6lV69e7Nq1C29vb5nmiI2NRUNDA5FIhL29PQ0aNKB27do4OTmho6MDwLp161i6dClPnjwhNjaW2NhY7t27x86dO7lz5w4nTpxASUkJc3NzTpw4gZGRUb5zDR8+nIiICG7duiWT53TUqFGcO3eO8PBwHBwcsLe3L9IQDAgIYP78+SQlJVG1alXatWvHlClTMDQ0xMrKqsB+Pj4+7N69m4yMDIRCIXXr1mXMmDHUq1eP2NhYdHR0iiUslJycDOQae5qammRkZCASiShVqhQVKlTA3NwcS0tLTExMMDQ0JDMzk1evXhEZGcnq1au5efNmodeTNFdaS7FYfFXmleeDQCBQAJYCDYDnwDWBQHBQLBbf+6zZO2Aw0LKAYeqJxWJpnrbJ+QWpU6cOnTt3Ztu2bYxQVGRvcDAa3t4gwx8DOb8WJUrAqlXg7Q09emRz/rwidnawcCH4+uYqkhaAfG+S87cjFou5dOkS27dvR0lJCVVVVby8vOjcuTNeXl7FllaX8+MpTu7e1atXWbNmDadPn+b58+c4OjrSs2dPGjduLJX3oBB+2f1JV1cXZWVloqKiMDY2xtjYuNAaZV9jYWHBnj17uH37NtOmTWP06NEIBALKlClDtWrV6Nq1q6T2WkhICDt27OD27dvcv3+f8uXL07ZtWxwcHFBUVCxWfpWWlhYGBgZERUWRnZ3NkiVLCAwMZNasWd+IaBgYGLBs2TJevnzJjRs3ZDIGTUxMOH78OJGRkdy9e5ddu3Zx5coVsrKyKF26NI6OjnTu3PmbsGLI9aBaWFhgYWHBwIEDycjIoEmTJsyePZvZs2ejrKxMnTp1GDt2LPXr1893fpFIxKNHj7h586ak3p+SkpIk5DIjIwMNDQ309fUxMDCgQoUKVKxYkXLlymFoaIiNjQ3m5uZkZmayYsUKDh06RJ06dYr0YInFYuLj47l27RqhoaHs3LmTxo0bF+rRPHfuHAcOHODhw4c8ePCAV69eoampScmSJbG1taV+/fo4OzsXGLKZlJTEmjVrePjwocwhtOrq6gQHB7Nz5042bdpEz549sbKyYvLkyTRp0iRfsZru3bujr6/PuXPnOHfuHEuXLsXV1ZUmTZpgbm5eoMDNhAkTaNmyJfHx8Tx//pz4+Hh27NjBvHnziIuLIysrC1VVVcqUKYO5uTmOjo6MGjUq33DdrKwsAgICOHLkCPfu3aNcuXL06NGDFi1aYGpqKgmpLYoDBw7QqVMnVFVVC1Qd/X6fsGzUBB6JxeIYAIFAsAPwBiQbmlgsfg28FggETf/htcn5lzB79mwOHDjAvk+fOAG4zZgB3buDlAU35fyaNG0Khw49Ye5cc4KCoFcv2L8/12P4D6RiyfcmOV/w6tUr1q9fz/r16xEIBHTp0oWrV69K9VRZzs8hH1XPAklPT2fixIls3ryZUaNGMWjQIKpUqfLDQvR+MP/4/vTy5UsSEhLw8/Nj4MCBWFhYSN1XQUGBpk2bUrFiRZYvX87Hjx9RVFTkzZs3vHz58gtRkU+fPvHhwwdJWRBdXV309PTQ1dVFXV1dqpDL/MjL89TU1CQzMxNjY+NCr42uXbvSt29fbt++jb+/v1QGh1AoxNPTE09PTwBu375Nly5duH//Pq9fvyYmJkYi5y8Wi7l16xbx8fFf5M3l/fzixQtevXqFWCxGU1MTIyMjSbgl5Bp+d+/e5fr169y8eZObN29y+/Zt9PT0cHR0xMvLiz/++AMDAwMMDQ0xMDCgTJkyhapyfk52dja7du1i8+bNmJqa4u3tTYsWLahduzZpaWmcPXv2i3DJnJwcatasycyZM2natOhL7tOnT3z69InMzEzEYjEikUiSZ/vu3Tuio6PR19dHUVGRatWqoaGh8UV/BQUFPDw8cHZ2ZvLkyTKL/KiqqtK9e3e6d+/OX3/9xYQJE/Dx8UEgENCtWzcGDhz4hQe6QoUK9O/fn/79+yMWi3n8+DHnz59n5syZDBw4kPHjxzNw4EDU1NS+mMfS0pIKFSpw/fp19PX10dXVpUSJEqirq5OWlsaLFy8koi/v3r3jzZs3hV6Xe/fupWrVqly8eFGq3L/8EIlEiESiQtVP/2lj0Ah49tn/nwNOMvQXAyECgUAMrBSLxavyayQQCHoDvSFXkjU6OrrQQWNiYqSaXJp2P6rNf32svn37Mm/ePAYpKRERG8vrSZN437PnT1/XzxzrV167tO3ev49h2rQcatUqwdSpZTh8WAErq2ymTn1Fw4bFLwIsBf/43lShQoViLlXO301qaiq1a9fG3d2dDRs2UKtWLbkB+AugoKAgtTF47NgxNm3axN27dylVqtTfvLLv5m/fn77em5YvX86ECRPw8vLi9evX7NixQ+rJsrOzmTBhAhs2bKBmzZqMGTMGd3d3rK2tvzHuWrVqRatWrQD4+PEjYWFhTJ48mZUrV6Kmpoa7uzsmJiYyHGou8fHxQG4ZgvXr1xcpKtSmTRvc3NwYPXo01atX59KlSzJdFzk5OXh6emJgYMCuXbvw9PT8wqB89OgRTZo0kaiYqqioUL9+fVq0aEG1atUwNDTk7du3mJiYSNRWX758yYkTJ+jSpQsnTpxAW1ubmjVr4ujoiLe3N46OjlLlzElLXihidHQ0c+bMITAwkGfPnhEaGkrHjh3Jysqiffv2nDlzBktLS5n2xNatW9O6dWvJ/zMzMxkxYgSBgYEkJSVx+/ZtNm/ejEAgYOXKld8ospYoUYJDhw4RGhqKh4cH1atXl9qLm5OTw/Pnz4mJiSEmJobQ0FDJ8ebNFx8fz969e/PtLxAIMDc3x9zcnPT0dPr378/o0aOxsbHJNw/v4MGD9OnTR/LQQ1NTk4YNG9KmTRsaNGhA8+bNpVq3kpISI0aMwN/fXyrF1IJQUFCQPBwpiH/aGMzvypFFcau2WCx+IRAISgMnBAJBlFgsPvfNgLkb3SoAGxsbsTTx5tLGpP+osf7p+X61sf766y8OHjxI9MOHLAGGL19O6WHDoEyZn7qunz3Wr7x2WcaqXBk6dICePeHUKUUGDzbCxwcWL4b/pSH8aP7xval69eq/rNrg786GDRvQ1tZmzZo1ciPwF0KWz6pp06Zoampy4MABevXq9Teu6ofwt+9Pn+9NVlZW4jlz5nDmzBk+ffrE/PnzZVrspEmTuHjxIhERETIZVCkpKbRr1w59fX127txJrVq1ZH5oJhaLef36Nbq6ujx9+pTo6GhcXFyYP38+w4YNK7RvqVKlWLduHZUrV8bV1ZW7d+9KnbenoKDA4cOHadCgAVpaWt94Fi0sLHjx4gXx8fGEh4dz8eJF1qxZw5EjRzAzMyMyMhJDQ0NJ+8GDB7NkyRIg92/ipEmTaNCgARUrVpTa21dcVFRUcHV1ZfPmzejp6dG6dWtevXrF/v372b59O7Vq1cLZ2Vny+TRu3FhmJeW8vFzIzd3U0dGhX79++Pr6FpgzCLn1L5WVlVm2bBkeHh40atSoUC9u27ZtOXjwIGXKlKFixYpUrFiR8uXL06tXL5o0aYKLiwulS5eWeu84ceIEAAMGDCjwAUOHDh1o37498fHxREREEBERwd27dwkKCmLJkiV4eXlx9OjRIucSi8WMHj0aY2NjJkyYgJ2dHY0aNZLkYsqCsrIyCgoKBdZkLNTHKhaLhT8q5v1/PAfKf/b/csALaTuLxeIX//v3NbCP3NAJOb8hKioqkmR1fwUFEj5+hAkTfu6i5PyjlC8PISGwZAmoqcHmzWBnB6dOAXBdvjfJ+bvo0KEDGRkZ+Pv7S0QY5PxeKCkpERwczIwZM5g6dep3j5eQkCC5wfvV752ePHlCXFwcfn5+3Lhx4wsjRRoMDAxQVVUlNTW1wELvBfVbtWoVCgoKrFmzRmqvV3Z2NiNGjKBu3bqULl0aa2trXr58iaOjI2PHjuX06dP07t1bqrEEAgEVKlQgJiaGtWvXSr12ACcnJ+zt7WnatCm3b9/Od+zs7GzWr1/PypUrsba2Ztq0aezbt++bEEB/f39OnjzJ0qVL8fLyIjg4mMaNG1OiRAksLS1p3rw5U6dO/aKkw48iIyODmzdvfrEmXV1devbsSUhICI8ePaJfv36SPdLQ0BB9fX3atm0rCfctjKSkJFq0aMHixYtxdHTk+PHjxMfHM3HixEINQcj14AYHB/Pw4UM6duyIvr4+xsbGjBkzJt/2Y8aMwdTUFBcXF5YsWcL69etZu3Ytq1evlhRrl+UhkqurKwCrVq1CX1+f2rVrc//+/W/aCQQCypUrR+PGjRk9ejS9evUiMzOTmjVrMkfKkmkCgYDLly8zdOhQbt68SceOHdHV1UVfX5/GjRvnO29+nD9/HmVlZR4/flxgm3/aM3gNsBAIBKZAPNAR6CxNR4FAoAEIxWJx8v9+bgh8/w4u519LkyZNaNq0KcHBwfwpELB+7Vro2ze3BoGc/wRCIQwcCA0agI9Pbn3C/6Vn/Gjke5McCfr6+pw4cYLWrVtz8+ZNNm7cWCwFODn/bipXrkxYWBhubm7o6ekxcODAYo1jY2ODqqpqscsTSME/uj9VqVJF4pUqDj169ODBgweS3K9p06blK6KSz1pxcHCgRIkSqKmpSR0aJxAI2LFjB2PGjGHHjh0y3+BDbijh1q1b2blzJ2fPnsXe3p6qVatK3V8kErFixQpu3ryJra1tgd4bdXV1DA0N0dTU5MOHD6SlpfHhwwfevn37hXCLnp4e9evX/0Y8Jj09ncePH/PgwQN27txJ9erV2bhxIzVq1JDpeF++fMnJkyeJjIzk8OHDCAQCBAIBJUuWpEqVKri6uhZ4/kuWLEmLFi1o0aIF2dnZzJkzh5SUFOLj46X6zJSVlXFwcCAyMpI7d+7QvHlzSd5jvXr1qFGjRoGfX2ZmJtnZ2WRlZaGgoCARJirIg1yjRg1u3rzJ/Pnzadq0KRUqVMDPzw9fX98i15mRkcGFCxe4d+8e0dHRREdHc/36dSDXm1mpUiVq1qwpUZYuDDU1NbKysujYsaNUokipqakS4ZjIyEgiIiKAXBXYChUqUKlSpW/yKguizP8i6ipXrlxgm3/UGBSLxdkCgWAgcJxceeR1YrE4UiAQ9P3f+ysEAkFZIBzQAkQCgWAoYA2UBPb97wJRBLaJxeJvC/7I+a1YuHAhISEhbMjKog9Qa8gQOH++UIlJOb8flpZw6VJugfqAAChG+alCke9Ncr7GwMCAs2fPMmzYMBo1asSpU6ckuTxyfh9Kly7N0aNHqVq1Km3btpU53A1yb9AqVqzIgwcP/oYV/vP70507d6hduzampqaYmJhw69YtXFxcaNOmjVRhiiVKlGDAgAGoqqoyd+5cJk+eTPv27aUSwDh69ChRUVH07NmT7OxsqYwLBQUFJkyYwMyZM6lRo0axPsPnz5/Tr18/2rVrR1xcnMxjvHnzhlGjRjF58mRGjx5dYLvSpUuzfPlyli5dyrVr19i/fz/Dhw8nOjqa7OxsdHR0MDc3p1q1ajg5OVG5cmXMzc0lN/6qqqpUqVKFKlWq0KpVK7Zs2ULLli3R0tJi4MCB9OrVS6rzvHz5clavXs2AAQMYN24ctWrVwsrKqtjlLLS1tQkNDZVqbnV1dYk3PiAggA8fPhAaGsr58+dRVVWlfPny+Pv706ZNG0QiEVevXuXUqVOcOnWKGzduULVqVWrVqsXUqVNxcXEp8hpRU1OjefPmJCUlsXjxYt69e0eHDh3yNaZycnIIDQ1l+/bt7Nu3j0qVKmFvb4+lpSVNmzalVKlSWFtbF1kT8Wtq1KjB6NGjmThxImPHjsXKyoqmTZtKVFS/FqKJiIhgxIgRxMXFoauri5eXF8OHD6d6ddmrVlWqVImUlMI1F/5x2SyxWHxELBZXEovFZmKx+K///W6FWCxe8b+fE8RicTmxWKwlFot1/vfzR7FYHCMWi+3/96qS11fO7425uTk9/yccM0hREdHFiyBDIruc3wdFRZg0CcLC/p7x5XuTnK9RVlYmMDAQOzs7maT15fxamJqa0rZtW7Zs2fKzl1Ig/+T+VLlyZWbMmEHDhg1RUlLi/PnzjB8/nsqVK6OiosKRI0cK7b9jxw4cHR0RiUTs3r2bx48fS62EOGzYMMLCwggODqZt27ZS9QHo168fgYGBeHt74+HhQd++fblw4YJEsbIojI2NCQ0N5fjx43Ts2FFSK64o0tLSCA0NZcWKFZQtW1bqa0goFOLk5MSMGTO4evUqSUlJNG7cmBcvXnDu3DkWLFhAx44dcXBwQFNTs8CQ1a5du/LkyROMjIwYMmSI1B7CoUOHArmGWc+ePbG1tf2uuoafPn2iRo0a7Nu3T+pz/jU5OTl8+vSJqKgoOnbsyPDhw6lUqRKurq74+/sjEAhYsWIFq1atokePHlIZgpDrVHBwcGDevHk0aNAAHx8fjh8/nm/+XKdOnfD09GTt2rVUqFABGxsbSpYsiaKiIsnJyURGRrJz506ePHkiVQh0VlYWz58/58qVKyQkJEgUVW/fvs306dOpX78+pUqV4u3bt1/0c3Jy4smTJ0RFRTFlyhSio6OpVasWNjY2zJgxg/v378sUgl0U/3SYqBw5MtOnTx+Cg4MJj49nPeA3ahS0aAFSusjl/F4U48GYHDnFRiAQMG/ePExNTXnx4oXM+VNyfg2cnZ05e/bsz17GvwJlZWXc3Nxwc3MjISGBwMBA1NXVsbKywt/fHy8vr0L7N2rUCH19fYn3StaQTQcHB1auXImDgwMhISHUr19fqhITzZs35/Hjx5w9e5Z+/fqxevVqlJSUaNq0KUFBQUX2r1GjBtHR0dSpU4euXbuiqKiIv78/o0aN+qbtzZs3GTRoEDdv3sTOzg43NzcWL14sU2hpHnleyQsXLqCgoECZMmWwsrLC2dmZqlWrUqVKlUJDC5WUlDA1NeXUqVNF5tzloaenx8WLF2nfvj3Hjh0jJCRE5nV/TmpqKhEREbRr145SpUpx/PhxmWo2qqiooKCgQIkSJWjRogWtWrWibt26TJ06lfv37xMVFcX9+/fZuXMn48aNIz4+HkVFRWrXrs3evXsLFVUZNGgQXl5ekpDL3bt3c+vWLQQCAdra2lSpUkVStmLBggXMmjWLV69e8erVKxISEnj16hVRUVGcPXuWW7duSXLvBAIBqqqq6OvrU6FCBf7880+0tLSYM2eORCzo9evXKCsrS8rWmJqaUqlSJRwcHKhVqxZmZmYYGRnlmx8rEAiwtLTE0tKSMmXK0KFDByIjI5kwYQLjxo3D0NCQwMBAiRrv9yA3BuX869HQ0GDOnDl07tyZPxUVaRMfj86sWfADkv7lyJEjpyi0tbVxcXHh6tWrtGzZ8mcvR87fgL6+vlTiF/8Vbty4wV9//cXp06extLRk2bJlUhs6urq6HDp0iF69ejF9+nQ2btyIs7OzTHXhjI2N0dfXp2XLlqiqquLr68uff/5ZaEF0kUhEXFwcz549Iy0tDaFQiIODAy1atJB6Xi0tLcqXL09ERASZmZmsWrUqX2PQyMgIe3t77t27R5kyZWjevDl16tSRep7P0dXVRVdXl/T0dAIDA+nevfs3YYOFIRKJuH37NqVKlWLu3LlS9zt58iRRUVEMGDAAsVhcLOXkrKwsIPe8paenU6lSJVq3bk358uWL6Pn/qKmpUaNGDdasWfNNPcu89+7du0dSUhLx8fG8efOGMmXKoKOjQ/PmzYvMnVNUVMTKygorKyvatGmDlpYWt27dQiwWk5SUxMWLF7l8+TIaGhqkp6ejo6ODk5MT9erVo1u3bl9ccytWrKBfv35AbshuRkYGAoGAatWqYWlpiYqKCg0bNuTp06c8efKEp0+f8vTpU+7du4e2tjYfP35EU1MTY2NjUlNT8w3NffPmDWfPniU6OprHjx/z+PFj7t69C/x/zqmNjQ21atXC2tpa6vNc6Dn6IaPIkfM307FjR5YvX8758+fxBxbOmQO+vlCM+kNy5MiRIyvly5fnxQupBRzl/GIoKipKXaMwD7FYTHR0NKdPn+bmzZsIhcLfRn322rVrREREIBKJePnyJQsXLqR79+44OztLlS/l6OjI1atXMTExwcvLC2VlZdq3b0/nzp1xcXFBQUGBt2/f8vz5c549e5bvv0+ePEEkEqGkpMS5c+fo3LnzFzfmCQkJXLlyRfIKDw+nVKlSuLi4sHjxYpo3b/5deb7q6urUrJm/8Grp0qVZunQps2bNYvv27bRp04Zt27Z9I/giDRoaGmzatImEhARGjhzJ8OHD8fLyws/PjwYNGhQaCpmVlYWvry8CgYDIyEiZSnncvXuXypUrs2TJEubPny/xcFlbW+Po6EilSpWoWLEiJiYmBYb5pqSkoKSkRPv27ZkzZ47UZQ/evXtHaGgoSkpKtG7dmnXr1hV4nO/fv2fChAkYGBiwbNky7O3tUVBQ+K7ae1+Tk5NDcnIympqavHnzhhMnTvDixQvc3Nwk19zDhw8JCgpCQUGBqlWr0rNnT5o0aYKxsfEXYw0aNOib8fNKtEyaNIm7d+8SEREhEc9RU1PjypUrHD9+nGPHjhEdHY2rqyvW1tbUrFmTTp06YWBggJmZGaqqqjIdV0xMDHv27EEoFKKurl5g7qDcGJTzSyAQCFiyZAlVq1YlUCymV3o6NiNHwp49P3tpcuTI+Q+gpKQkeQou5/dD1s83NjYWPz8/Hj16hKenJ3379qVnz57FKpD+b6RPnz507NiRo0eP0rNnTzZv3szmzZtp1KgRx45Jp4+VmpqKmpoaz58/B3K9KitWrGDNmjVUrVqVatWqSfKeSpcuLQkNLF++POXKlePx48e4urqipaX1zdgvX77E1NSUjIwMlJWV6dy5M/PmzcPBweG7jz0zMxN1dXX69u1bZBkATU1N/vjjD8zNzenUqZOkqHxxKF26NJ8+fQJg//797Nu3jylTpjBp0qQC+wQHB7NlyxZcXFzYsGEDHTt2lNort3jxYiDXeAkMDJSERl67do2NGzdK2jVs2JDjx49/0VcsFhMVFcWjR4/IysoiKCiIlStXSn2seaI3d+/epVKlSoW2LVWqFFOnTqV3796oqKjI5DUtDKFQiJqaGgoKCtjY2FCnTh1q1KiBo6MjpqamX3iy09LSqFatGtnZ2Wzbto327dtLPc/79+9ZtmwZCxYswMHBAT8/vy/EqmbMmMG4ceOA3GugW7duWFlZSeoimpiY8ObNG6nzbp89e8auXbvYuXMnT58+pWHDhuzZs4cWLVoUmBcqNwbl/DLY29vTt29fli1bxmChkFNBQQjOnIF69X720uTIkfObIzcGf28UFRWl/nyvXbuGl5cXY8eOZfjw4VLls/1KfPjwgcqVK/Pw4UOcnJywtbWlcePGdOrUqcgbd4AFCxawZMkSYmNj0dTUpFatWnh4eODp6YmdnZ3E0/Lu3TuuXbvG5cuXuXLlCnv27CE4OBg/Pz/8/f0LlcI3MDDgzZs3hIeHc/nyZcLCwmjYsCHKysqMHj2awYMHF/v4Hz9+TNu2bZk3b57UferWrUtqaioLFy7Ez89Pao9kamoqt2/f5vr164SFhaGuro62tjadO3emQ4cORapHtmzZkri4OLp06cLo0aMZPXo0FSpU4NixY1hZWRXYLy+k9u7du1y/fh2BQICmpibp6emYmZnh6uoqMY4sLS2/6Hv16lU6duxIbGysJIS4W7duMoUBA3Tu3Fmq6ynPWOrSpQuqqqqIRCKysrKkNo7yyMjIYM+ePaxatQpNTU06dOjAH3/8Qc2aNYsMkVVTUyMqKopevXrRuXNn1qxZw86dO4ssOXTmzBm8vb2xtrbm2LFj+Xqa//zzT/r3709MTAwxMTE8fvyYO3fusH//fmJiYnj27BlaWloYGhoSHh5eoJqvSCSiWbNmXLlyhVatWvHXX39Rr149qYSB5MagnF+KqVOnsmPHDs68e0cQ0HbIELhxI1dqUo4cOXL+JooTRijn10EoFEqtzpcnItSpU6ffzhCE3LDFNm3asHXrVhISEnBycmLs2LFSe2SaN29OdnY258+f58iRI0RERKCrqysRlslDR0eHBg0a0KBBAyDX2/To0SOaNWuGqakp3bt3L3QeTU1N6tatS926dYFcw6pnz568efOmeAf+2boOHTpEcHAwHh4eUh23QCDg8OHDdO7cmTFjxtCmTRuWL1+Otrb2N203b97MyZMnuX79OjExMVhbW1OtWjU8PT0ZPHgw1tbWUufvZWRksGHDBh48eICSkhI1a9akW7dumJqaftFOLBazYcMGLl68yN27d4mMjERbWxsbGxsEAgGjR4+mffv22NjYFBl+aW1tzfjx4zl79iwHDhxgyJAhbN68mZ49e+Lr6yvVd2Lq1Kl4e3tTtmxZPDw8Cm3boUMH1NTUuHr1Ks2aNePt27eULl0aW1tblixZUqSol1gsZvr06SxevBhTU1OmT59O06ZNiyyR8jWGhoa0aNGCo0ePSmpRhoWFFSra4+DgwIgRI1i3bh2dOnVi1KhR9O3b95t22traODo64ujoCOQadlu2bGHz5s0kJiZibW1Nly5dCl1zeno6J06cIC4uDgMDA5mO7R8vLSFHzvegr6/PX3/lKmOPUFAgNSICVq36yauSI0fO746CgkKxJdPl/F4YGRkxfvx4XF1diYyM/NnL+eEoKioyceJE7t+/T1BQECEhIRLRDGkwNzdn1KhRrF27ljJlypCens7ly5clKowFIRAIsLCwICgoiLFjx7J06dIi5xKJRISEhNC9e3eMjIx49+4dPXr0kHqt+WFgYMD79+/p3Lkzurq6uLq6smTJEp48eVLgGs6fP8/x48f59OkTOTk5PHv2TBLy+TX37t0jJCSEp0+fMmjQIFatWiUJoa1SpYpMQi5ZWVnExMSQnp6OgoICIpGI9+/f53tdXr58mY0bN5KVlcXRo0eJjY3l2LFjXLhwgZkzZ1K1alWp8vA0NTXx8/Nj06ZN9OnTh6ysLMLCwhg6dChOTk48ffq0yDHyvHqvXr0qsm3FihUZMGAAvr6+tGvXDn19fYkoy4cPH4rsn5OTQ2JiIiYmJkRERNC7d2/Mzc3p0qULu3btIi4ursgxviYzM5PXr19/UxLia3R1dZk8eTInTpzgzZs3XL58ucixb9++jYuLCytWrKBPnz68ePGC0NBQevfuXWi/PKElKysrunbtyvnz56XOYf5t3SkCgaA50NzQ0JDo6OhC28bExEg1pjTtflQb+VgFt3Fzc8PKyor79+8zE5g8bhwx1aoR8+7dT13X3z3Wr7z2Hz2WHDn/NMVR2pPz+zJ8+HBKly5N/fr1OXfunFThbr8SCQkJhIaGcvr0aZKTkzlw4AAZGRlSheaJRCJWrlzJxIkTcXFxYciQIdSrV0/qMEIbGxv27NmDl5cX/fv3L/S7FxERQePGjalduzb37t2T2SOSH3kPfT5+/IhAIODChQtcuHCBDRs2cP369W/aX7t2jaZNm5KcnIyKigq1a9fGzc2Nu3fvIhKJMDIy+uIYZsyYwV9//cWVK1fYv38/7du3RygUUqtWLUaPHo2NjY3Ua9XU1GT9+vUoKiqyZs0awsLCCAsLQ0VFhUePHlGuXDkgd/9auXIlkydPZvny5XTt2pUXL16gp6eHuro6KioqGBkZYWZmhrW1NZUqVcLIyAhDQ0P09fUL/Aw+r9UnEom4fv06ixYtYv78+YWuOyAgABUVFd6/fy/VdbVw4ULWrl1Lhw4d2LhxIxUrVizQI5iTk8ObN29ISEiQvAwMDHBxccHExITjx4+TmJjItm3b2LFjB5UrV5b5oY5QKMTQ0DBfz29+LFu2jJSUFMLDwxkxYgRNmjTByckJTU3NL9plZ2dTt25dZs+ejZ+fn0yht0KhkJUrV0oUfPv27UtCQgIODg6YmZnl65HM47c1BsVi8SHgkI2NzR9fxzvnhzRtpG33b5zvdxtr1apVuLq6MlsopOeHD1hs2YJo4MCfvq6/e6xfee0/eiw5cuTI+Zl07dqVjIwMmjVrRmRkpMxhZ/9W7t+/j5WVFW5ubtSrV4/AwEB69eol9Y3p0KFDOXDgAOfOnSuW9H1cXByBgYF4enoW+RDG3t6eY8eO0bRpUxYtWsTMmTNlni8PsVhM3bp1OX/+PKVLl6ZatWq4u7tTo0YN7O3tCyxr4eTkxIcPH4iLi6N169acO3eOc+fOSd5XVVWlT58+LFy4UPI7oVCIs7Mzzs7OTJgwgVWrVvHnn3+yefNm2rdvz86dO2Vae0pKiiR6oWrVqgQEBOQrvGNoaEhAQAABAQHk5OTw+vVrhgwZwu7du4mKiuLUqVPf9FFUVKRs2bIsXrxYUtNOJBLh5OTEnTt3qFy5Mp6enhIDJ7+aeV9z6NAhOnXqxMCBA5k4cSJPnz79xjD6nMePH9O8eXOmTJlSYBsfHx9OnjzJ69evEYlEmJqaYmZmRtmyZSlbtizlypWjevXqVKtWjczMTDp06ICZmVmh17VYLObt27eSuoEXL16UHH9sbCxVqlThxYsX+Z7rz1m4cCHm5uYMGjSIyMhIli9fTlZWFnZ2dgQFBUmEp2JjY8nIyKBcuXLFfgCpr6/P8OHDGT58OHFxcYwYMYLVq1ezevXqAvv8tsagnN+bOnXq0KVLF7Zu3cpwYN/y5Sg3bAhyQ0KOHDn/Qu7evcudO3ewsbGRWWhBzr8XPz8/Nm/eTFBQEB07dvzZy/khiMVihg0bRpMmTbCxsUFFRUWmG9NevXpx6NAhDh8+LJMxKBaLGT58OEuXLsXNza3Qm9c8li5dyrhx46hcufIXCo/FqZsnEAgICAigXbt2pKSkUK9evXxrDOaxaNEiwsPDJbXkXr58iZKSEtra2pQrVw4rKytq1qyJjY3NNyqn4eHhLF68WNLfzs4OBwcH6tevX6gHpyA0NDQkHs379+/TqVMn0tLS0NHRwcbGhpYtW34hqrNq1SquXr1KfHw84eHhkj1JQ0ODkiVLYmRkhKmpKVZWVpiYmGBkZPSFmI1QKGT48OH4+vrSu3dvhg0bJtN6Dx8+zKlTpzA3N2f27NmFGoIAo0aNolGjRhgYGDB8+PB820yZMgUPDw/Cw8O5du0ad+/eRUNDg3LlymFqakr16tWxs7Mr8Hq+c+cO69atIz4+nhcvXvDixQtevnyJhoYGhoaGGBkZ8enTJ8zNzXFycqJhw4bY29sXaQjm8bmoUJ5H9ebNm9ja2nL58mWqVKmCubk569evZ9SoUUyaNInZs2dTT0aRxMePHzNz5kxu3bpFZGQkenp6lCtXjkaNGrF27dp8+8iNQTm/LLNnz2b//v3s//SJkJwcak+fDs2agTycS44cOf8iWrZsycyZMzl16pTkyX3jxo1xd3fH2dn5txQh+S/Rtm1bzpw589sYg+XLl+fx48f4+vry8OFDFBUVMTMzw9vbm6ZNmxZYey8POzs7Ro4cSWhoaLHmbtOmDdHR0VhYWKCgoEDZsmWxsrLCxcUFBwcHXF1dJSqOenp6tGzZkqioKDw8PFBQUMDS0pLExEQsLS3p3LnzN8I1heHm5kb16tU5cuQIEydOpFmzZgWqcr5//56goCAsLS3ZunUrNWvWlLr2XV5NyuTkZLS0tDAxMUFdXZ0BAwZIQjtl4XPjJiMjAyUlJYRCoUT06mtFSQUFBYlokkgkQiwWo6CggIqKCiVKlKBkyZIYGxtLynzUrl1bYjBmZmaydetWAv+PvfMOi+Je//a99CIqqCBFmvQuICoIAoqAYkOxx941do3G3mKLGks0do29R+y9YVcsgIggXURFmtLLvn942FciZcnJL+Ykc1/XXMDut83s7DCfedq6daiqqkothj6noKCAgoICFi5cSOfOnatt37hxY6ZPn86ZM2cqFYNlpRgGDhwoWWdYWJhEHG7atIkXL17QoEED1NTU6NOnD927d6dx48aSY5ifn09SUpKkxqaXlxfNmzfH3t4eT09PqeooJiYm8vTpU169esWrV69ITk7m1atX5VxRVVRUaNCgAYaGhlhZWUnqB4pEInr06EFQUBBHjhyhf//++Pn5sWLFCqkz1JaUlHDq1ClcXFw4efIkWlpakvcEMSjwj0NHR4dZs2Yxbdo0xsrI8PTOHfjtN/iPG4OAgIDA3wEbGxvy8/MlT+5v3rzJvXv3UFJSQkZGhj59+jBo0CAcHR2F2MT/QYyMjDh16tTXXsafhpqamqTOXH5+Pubm5jx58oQnT56wbNkyMjMzq43xys7O5uLFi7i7uzNjxgzatm1brUVcJBIxceJExGIxycnJ+Pj4EBUVRWJiIomJiZw7dw4NDQ2WLVvGoEGDSEtLw8zMDCUlJRITE0lISODBgwfcvn2b4uJiYmJiCAkJYdGiRYwePbrCOcViMSkpKYSHh0uybJa5AioqKhIfH1+pGJw7dy4jR45k+fLldOzYkd69ezN06FDs7e2rO8Q4Ojqye/duxGIxz549Y9CgQdy7d49atWqxevXqavtXRlnW49zcXNq3b0+HDh1wcHDA2tq6XLvBgwczePBg4P/XGSwuLiYtLY20tDRJaQP4VPvu5s2bmJiYkJiYSFBQELVq1WLRokV4eHigoqJS43U2adIENTU1Fi1aJHXNvuqStfweBQUFnJyccHJyonv37jx69IiQkBBWr15NYmIis2bN4vnz55Jz3dbWll9++QX4JKhiYmJ48uQJjx8/ZsOGDYwbN479+/fTokWLKuf98ccfOXHiBG/evCkXU6mpqYmOjg52dnaYmJhgZWWFpaUl2tra1KtXr5w1WyQS0ahRI5ycnCSuw23atJFqv83MzHjw4AGDBg3C2NgYAwMDNDU16dWrV6V9BF8Vgf9pxo8fj6mpKVGlpawFmDQJ8vO/9rIEBAQEqqSoqIgPHz6QlZXFxo0badWqFXp6eowfP56QkBAhc+n/EIqKiv/YGpRKSkoSy7WSkhLr1q2TKonM4MGDWbZsGXfu3MHf35+AgACp5ktOTqZevXqS2m/t2rVj6dKl3Lhxg/fv3/P+/XtkZWVRUVFBU1OTb775hh07dhATE4O2tjajR4/m+vXrbNy4kdTUVDIzMysVgtnZ2Whra6Onp4efnx8///wzenp6DB48mLi4OLKysvD3969yvVpaWixfvpxDhw6xf/9+mjZtytu3b6Xa1zI6duyIjo4Ox44d+6+EICCxBBYXF0vKPrRs2RJVVdVyheSrouzzdnNz486dO7x+/RoTExMuXLiAi4sL3bp14+LFi/j5+f0hIZiWloaNjQ1FRUUsWLBA6u/OsGHDOHnyZLVZaX/PmDFj0NXVZfbs2bx//57Ro0dz9OhR8vPzKz0mZRbm7t2788MPP3Du3DlWrVpF+/bt6dy5M6dOnap03WvWrCEuLo6cnByys7OJjo4mJCSE7t27k5KSwtmzZ1m3bh2jRo3C29sbCwsL1NXVUVRUlFg9V6xYQYsWLbh69SpLlixBXl6e7OxsqfdZR0eHs2fP8v79e/r378+1a9f+nQlkBP4dKCoq8tNPP9G+fXvmycjQJy6OhitXwvfff+2lCQgICEhFSUkJOTk55OTksG7dOrZt2wZAnz59JC5MAn9falKw/n+JJ0+eMHToUFJTU+nRowdTpkzBycmp0vZZWVmMGjWKW7dukZmZSdOmTWnatCkDBgygW7duUs2po6ODsbExU6ZMoUePHhW26dWrF0pKSmzbto3Q0FBcXV0xMDDAyMhIsjk7O1eb0Kd27drcvn2bBw8eEBoayqNHj/jll1/Iysri6NGjDB06lCFDhqCpqVlh/8jISA4cOMDBgwf5+PEjAwYMoGXLlpW2r4jc3Fxev35dY4EjLYWFhcjJyTF9+nSpP4OSkhJEIhFPnz6lTZs2dO7cGW1tbX788UfGjBlDx44dKSkpQU5OjtLS0hrHQNevX5+7d+8ybtw4OnfujIKCAu3atePAgQNVfmY//vgjtWrV4u7du6SlpWFlZSWV62Tv3r05dOgQPXr0wNPTEwsLiz+U7CkwMJCXL18ydepUTp8+jYKCAqNHj2bp0qUVtheJRKipqaGmpoaJiQkxMTGS92RlZVFVVSUvLw8zMzN8fX1p3bo17u7uAIwePZqmTZty//59bt26xQ8//MC7d+8wMTGhU6dO+Pj44OrqWm2spZKSksSyraKiQm5uboXtBDEo8D9Pu3btCAgI4OTJk0wHtv/wA/TvD1UUAhUQEBD4O1JSUsKHDx9QUlKSxJEI/L2Rl5f/R4rBWrVqERcXx9atW6t0MStDUVGRly9fYmNjw4IFCzA0NJQqxupzZGRkmDdvHrNnz6Zr165fxLqVzdOzZ0969uxJfHw8J06cIDY2lpCQEOLi4oiLiyMvLw8FBQV0dXWxsbHB1dWVli1b0rx583JjlYnHoKAg4JPbaJs2bbh8+bIk66avry/Tp0+nWbNmvHv3jo0bN3LgwAEyMjIICgpi27ZtuLi4/KHEUC9fvqRhw4YUFxdXuK+/p6SkhDNnzhAbG0tSUhJJSUmSGDX4dC5qaGjQqFEjrKyssLe3p3v37jWOQxSLxXz48AGA3bt3o6KigpycHEePHuXo0aOkp6djZmZGaWkpenp6TJw4USo3xgsXLnD58mXu3bvH3bt3UVBQoEmTJnh4eFQbO+3v749YLObYsWOEhITw5s0bFBUV0dbWxtramubNm9O0aVN8fHzKudu7urqye/duDhw4wJo1a3j9+jWampoMGjSIIUOG0LBhw2qPxeHDh7l58ybBwcGIRCJq166Nq6trtfGzlSEnJ8eRI0dwc3NDWVn5i/eVlZVp1aoVrVq1AuDgwYP06NGD6OhoVq5cyaZNm8jJycHMzIx27drRrVu3L87t31NVzUFBDAr8I1i1ahXnzp1jR1ERI3JyaDZtGuza9bWXJSAgICAVCgoKKCkpkZeXh46ODpMnT2bMmDH8+OOPX3tpAtVQltL/n8TNmzfZtGkTRUVFhIWFSSUGlZSUOHv2LKNGjaJv374kJCRQWFhIrVq10NHRoXHjxtja2mJjY4OhoSEGBgZoaWl9ESfr7+8vcdlctWoVPXv2rDSW1tDQkG+//bbca2KxGA8PD0JCQoiOjiY6Oppjx47h5uZGSEhIlfsgEokkD2Hy/xNyEhwcLHGR7NmzJ0eOHOHFixcYGBjw6tUrLl26RFpaGvb29jUuCaCsrIyamhqampoYGxvTsWNHhg0bVqlA+fDhAz///LNEDJbFpNWrVw89PT2srKxwdHTExcVFkgDmj7hy/p7c3Fzk5OR49eqVJE4yMjKSWbNmcfbsWWJiYoiKiqpy30tLS5kzZw63b99m4sSJbNmyBSMjI6nX4ObmhpubG0VFRUyaNIm1a9eSn59PfHw8cXFxXLlyBVdXV1q3bv2FsPTx8cHHxwf4FOs5b9485s6dy08//cS1a9e+iKn8nKysLGbMmEFMTAz9+vUjNDS0xg85fo+cnBzdunWjXbt2krjOgoIC0tLSJO7Qn2/h4eGSvqWlpWRnZyMvL09qairBwcEUFhZWKwbzqwihEsSgwD8CExMTBgwYwObNm/lWJOLO7t3IjBoF1QT6CggICPwViMViye8ikQgVFRUKCwvR0NDA2dkZLy8vmjVrRpMmTVBVVf2KKxWoKf+0pD8ZGRm0bNkSZ2dnwsPDa1TIvW7duuzduxf4dM7b2dkRHh5Oeno64eHhHD9+vJx47tixI8ePHy83hoyMDKdOncLCwoLevXtTUlJC3759q5w3KytLYhUs2+DTZyMrK0uvXr3YtGlTTQ6DBLFYTF5eHteuXePGjRu8fv2aunXr8vz5c0linbVr1/LkyRMKCwvx8PCgW7dutG3btlqXUVNTU548eUJKSgpdu3Zlzpw5LFq0iAMHDlSYZbNu3bqcOXNGsq6MjAySkpKYOnUq58+fJyoqimPHjpXrc+7cOdq2bVvj/VZUVERBQUFitRw6dCg9e/bk3bt3rFixggcPHnDz5k1atGjBqVOnqv0eyMjI8Ntvv9GtWzdWrlxJp06daiQGy3BwcODZs2fIyclJMoI6ODigra0t1XexTMiVlJTw/v17unTpwosXL6psHxkZKcnu2aRJE8aNG1fjdX9OTk4OAPv27WPfvn2S1w0NDXF2dqZevXrUq1cPfX19mjRpQosWLUhJScHBwYGmTZuip6f3p2ahFsSgwD+GESNGcOrUKe6npLADGDR2LNy9C0JNLwEBgb+Yd+/ecerUKc6cOcPDhw8RiUTo6upib2+Pl5cXTZs2xc7OTpIiX0Dg74K6ujr79+9n1KhRNGnShEOHDuHp6SlV37KMlO/evePt27cSV8My1NTUKCoqwt/fn4EDB1aaoEUkEvHhwwfat29faezgxIkTuXr1KnFxcRQXF2NkZIShoSFGRkZYW1vTrVs3evbsiaWlJXXq1JFq/R8/fuTt27eSeK/8/HzMzMxo06YNnp6etGjRggYNGgCfsk/a2tqWE6o+Pj4cP36c4OBgxGIx5ubmHD16tNp6i2WW0zt37lBYWMj3339fbckFkUiEhoYGsrKyxMfHo6ioiJKSEra2tnh4eNCsWTOcnJzQ0dEBPiXMiYuLIzY2ltjYWMnvDx48QFZWFmVlZRo2bCix4FpZWUnKNSxatIiDBw+ycuVKlJSUaNeuHb169WLEiBH4+/tLJcIWLFjAwoULCQoK4s6dO3/YxfL27duMGDGCffv2sXPnTkJCQjh//vwfeiijpqbGnj17qm0nKyvL69evMTQ0lJSuqA6xWMybN2+IjIwkMjKSo0ePoqamRkFBAerq6jg7O9OqVSvq1atHeno69+7d48aNG9y+fRtvb2+CgoLw8vL6S+rSCmJQ4B+Dqqoqy5cvp0+fPkyTkSHwwQPq7twJUn5xBQQEBP4bioqKWLNmDb/99htPnz7Fx8eHgIAA5s6di6mpqVQxQQICX5vIyEiGDBlCixYtaN26dTkXuqysLPbt28ebN28kgu/zLSsrCw0NDTQ1NdHU1OTDhw/o6+tjZ2dHy5YtsbOzw9PTs8I4qd+jqqpKSEgIT548KVfwvIzw8HB8fX2ZNGkS9erV+8MW2pSUFLZt28aFCxcIDQ1FTU2NIUOGMGDAAJycnCrNnioWi9mzZw+PHj0iKiqK58+fExcXh5KSEgYGBri4uNCqVSsaNWok1Tqys7NRVVVFTU2NhQsXSr1+RUVFkpKSuHfvHnZ2dpJ13blzh71790rEX15enkTcGRkZYWZmhp+fn0REV+WR0KNHDxo3bszLly+JjY3l8ePHnDx5EiUlJUpLS7GxscHb25vBgwdjbGxc4Rje3t5cvHiRW7du0axZM+rUqYOZmZnUYqe0tJSYmBju3btHREQEcnJyGBsbM2DAAIngrY7i4mJJtldVVVWuX7+Og4NDtf2ePn3KrFmzCA0NrbSuYnp6Ojt27ODZs2cSASgSiSQlJMzNzZk8eTLNmjWr9CGgWCzm5cuXnD59milTppCens6AAQMYMGAAhoaGUu3jH0H4zyTwj6JXr16sX7+emzdvMh9YOX06dO0Kf6AoqoCAgEBNOHLkCLt27WLx4sV4eXkJCWAE/meJjIysMOlIeno6v/76K7dv30ZFRYUBAwYwePBg9PT00NTUlFiqyigoKJCqFMXnfPz4kQMHDpCamgp8KjdRkRicOnUqAwcO5MGDB0ydOpU2bdrUSBCWlpayefNmZs6cSffu3Zk2bRoeHh7lymlUx+XLl7ly5Qrx8fEYGxvTqlUr+vXrR2BgYI2Lsb969YpmzZpx9uzZGmW7/PjxI/Ly8tSrVw/45P54/vx5Lly4QGpqKsbGxowbN46goCAsLCxqtKYyvLy88PLyKvdaUVERo0aNYsuWLdy9e5dHjx7h6upaqRh0c3Pj2rVr3Lp1iw0bNjBv3jw+fvyIpaWlJJtms2bNJMctLi6O+/fv8+DBA0nGV3V1dZycnBgxYgSBgYHlCqp/TklJCVFRUURERPDs2TPJFhMTQ61atTAxMWHr1q1SCUH4dIxNTExwcnLCysqKKVOm0K5du3LX+Pfv33PlyhXCwsJISEjAyMgIb29v7O3tsbOzw9bWFg0NjSrnEYlEmJiYMHbsWMaOHcujR4/Yvn079vb2aGlpMX36dHr27FntwxSxWMyrV6949OgR+/fvB6qObf7HikGRSNQB6KCjo0NUVFSVbWNjY6UaU5p2f1YbYaw/PtakSZO4desWa8Vihrx5Q8OJE3k3ZcpXX9f/2nx/57EEBP6OPH/+HGVlZRwcHAQhKPA/S25uLj/88APr16//4j0jIyNu3bpFfHw8+/fvZ9++fWzevJnatWujra1Nw4YNy/189uwZRkZGeHh4YGtrS+3atasUbGKxmLZt26Kurs7KlSsZOHBgpRb1Nm3a8PLlS/bt28eECRPIzc0lKCiI7t27Y2JiUq1r6IMHDxgxYgTdunVjxowZUluXyhCJRJIyMK9fv+bOnTtMmzaNQYMGMWzYMBo3bkynTp3w9fXF1dW1WlGso6PD+fPn8fb2pn///nTu3Jn69etXu46QkBCKior48ccfmThxIo0aNeLXX39FLBYTExPD9evXuX79Ok2aNOHGjRsVCus/gry8POrq6sjIyKCgoMC9e/ewtbWttp+rqyuurq7Mnj2bBQsW8PjxYx4/fszSpUvp1KkTv/32G2/fvsXCwoLCwkI6dOjA1KlTcXZ2lup4AOzZs4f+/fsTEBCAnZ0dHTt2ZNq0aVhYWJCZmVmjONiyNYeGhrJo0SJmzpxJ79690dTU5ObNmxLLr6mpKSdOnAAgMzOT8PBwnj59SlhYGPv37+fJkyeoqanRrFkzfHx8aNGiBba2tl8If7FYzNu3b3nx4gUvXrxAWVkZY2NjHj9+zKBBg3j16hUzZ86UtH316lU50Vv2u6KiIk2aNMHExISlS5fSpUsXzMzMKty/f6wYFIvFJ4ATNjY2Q83NzattL00badv9Hef7N41lbm7OsGHD2LhxI+OA8zt3ojF1KvznS/C/vI//y2v/s8cSEPi7MXPmTMRiMY6OjqxatYoePXr845KLCPzzMTMzY8GCBYjFYkQiEa9evUL3d6WaDA0NmTZtGtOmTaO0tJS0tDRSU1N5/fo1r1+/JjU1lfj4eA4fPkxmZibwSTzJyMhQp04dPD09OXLkyBdzP3z4kHv37rF161a8vLyqda1WUFCgf//+9OvXjydPnnDw4EG6dOlCUVERz549qzIm18XFhaioKNasWSMpTVBmgfH09MTa2hoFBQWpjpm2tjZdunRh9+7dvHjxgqKiIp4/f050dDTLli1DTk6OiRMnsmTJkkrHqFOnDoWFhYSEhPDo0SNGjBjBqFGjWLNmTYXtc3JyiIuLQ1ZWFgMDA3766SdWr17NkiVLmDp1KiKRCFNTU0xNTRk0aBCHDh1i/fr1uLu74+joiJWVlaQsyh+pu1cWH1paWkp+fj7u7u7Ex8dLlWkzKSmJjRs3oqioiLu7O507d6Z169aS//+ampokJiayfft2Nm/ezHfffUdAQABt27alxX8SA1b12fTq1Ytdu3bx/v17Pn78SFZWFunp6bx//x5FRUVKSkr+UAKWMutrQUEBKSkpNGvWjOTk5C9cXevWrUvLli1p2bKl5LXt27czaNAgjh8/zpkzZygqKkJOTo7u3buze/duCgoKaNOmDWFhYWRlZaGiooKfnx9OTk506dKFIUOGMHDgQEl22ICAAG7cuEF2djYyMjK4ubnRqVMn+vbti5WVlSS2VRr+sWJQ4N/NwoULOXjwIBczMvituJguEyfCyZNfe1kCAgL/YOTk5Jg3bx7+/v4MHTqUnTt3sn379mrrWAkI/J1ITEzE1NSUjx8/oqWlRVpaGvLy8piZmeHi4sLgwYPLFZ+XkZGRxAja2dmVG+vq1asSMQhIxqksG6O9vT3bt2/n8OHDDBo0CCsrK9atWyept1YZIpEIQ0NDzMzMKCoqonPnzlKJEjMzM9atW8eCBQu4du0aYWFhLFu2jEmTJiESidDU1MTe3p4OHTowevToasf7fD+VlZUpLCzE2dmZTp060aVLF6n7i8VidHV1JclpYmJi2Lp1a7lsqR8+fJAkzFFSUsLb25vevXtXmJRHJBJx5coVbt26xaVLl1i+fDnx8fFYW1ujrKzMDz/8UE64VMaDBw/YsmULjx49Ijw8HCUlJQwNDfH39ycwMFDqRD3a2trY2toSEhKCjo4OQ4cO/ULcaWlpMW3aNKZOnUpISAjnzp1j8uTJvHjxAkNDQ6ZOnUqfPn0qHF9eXp7jx49z+fJloqKiePz4MQcOHCAqKoqMjAwArKysaNeuHbNnz66xKzN8ut63adOm2phHsVhMUlIST58+lSQmysvLw9bWli5duhAYGAh8iv1cvHgxDx484OnTpzx9+pQzZ87w+PFj6tWrh6WlJf369ZOMu2DBAh49eiSxIL548YKZM2fSoEEDTE1NMTMzw8bGBl9fX0xMTKrelxrvvYDA/wD169dnwYIFjBkzhokiEX6nTqF85gxU4ssuICAg8GfRvHlzQkNDmTt3Lq1ateLSpUs1LvosIPC1sLa25sGDB+Tn5/P27Vvc3d1JTEzk4cOHPHz4kJ07d3L27Fnc3d0lfV6/fs2jR48kdf1evHhBdHQ0CQkJyMvLY2xsjIeHByNGjMDR0fGLOcViMTdv3uT27dvcuXNHkuGyuLiYjx8/VrrWjIwMjhw5wpEjR7h58yaenp4cOHAAd3d3qa3yBQUFhIWF8e7dOzIzMykpKZGUgikoKCAzM5N3795VOYZYLObChQuEhIRQq1Ytxo8fT/v27XFycqqx1U1JSYm2bduyb9++cjUPY2NjJaUt3N3d6dq1K61bt8bGxkZixa2MMqtYQUEBpaWlyMrKIhaLycnJoaSkpMpj/DkZGRkcOnQICwsLXrx4gY6Ozh/yfpCTk8PV1ZVLly5x+PBhmjVrxqhRoypsKyMjg4eHBx4eHixatIg1a9YwceJEEhMTq5xDRUWFgIAAAgICJK8lJSUxaNAgLl26xPPnz7GwsKiyGPvvSUhIkAjHwMBAfvnll3LvFxUVcefOHcLCwiRbeHg4Kioq1K9fn169etG7d29atWpFrVq1vhj/99bE4uJiYmJi2LhxIz///LMkS7VIJKJJkyY0adKkXP+SkhKSkpIk4vDhw4fMmjWL4uJi2rVrV+l+CWJQ4B/L8OHD2bhxI2FhYfwIzJowAQ4d+trLEhAQ+BcgLy/PokWLUFJSYsCAAVy8ePFrL0lAoEYoKSmhr6//RbKK3Nxc2rZty9ixY5k3bx5KSkpMnz6dffv2UVhYCHyyuHXt2pXk5GRmzpyJtbV1laIhISEBPz8/cnJy+Oabb7h27Rq1atWq1qq+fft2Fi1aRHp6Onp6ehQUFLBr1y6WLVuGnp4e3t7euLi4oKenV6nL6ZkzZwgKCqK4uJiAgACmTJmCl5cXdnZ2UrmJisViZs+ezb59+5g5cybDhw+X2r0UPt3wX79+nfv37yMrK4uhoSG//vprubhjGxsbDhw4gFgsJi4ujpCQEEJCQli4cCE7d+6s8kYfPpXeio2NxdPTE19fX6ZMmYKlpSVKSkrk5eVJld0VPpXOeP78Od999x22trZ4enoyY8aMcpbimlJaWsr169crFYOfk5+fz5IlS9DW1paUaaiJVW/27NlcvHiRNm3acOjQoRoVjxeLxZJkLqdPn5a4jH7OzZs3CQgIICcnB3V1dYYNG8aePXswMDAgJyenRjVk3759y/3797l//z5Xr16lqKiIu3fvkpaWVqkLaNn5Y2hoiI+PD1FRUaioqPDzzz9z4MCBSucSCrAJ/GORk5OT+NovFolIjIpC/T/FcAUEBAT+CqZNm8aLFy8ICwv72ksREPjTKCwsZNmyZRKry44dO8jNzeXZs2esWrUKAwMD1q5dy4EDB7C1tUVVVVVSLL0iDA0Nef36NRs3biQyMhJfX18ePnxY7TomTpzI+/fv+fDhA+fOnWP8+PFYWlpy9+5dNm7cSI8ePTAyMkJBQQF9fX1JWYHP6dy5M8nJySxfvpzo6GjWrFnDhQsXJO6E1bFv3z6OHj3KrVu3+Pbbb2skBNPT09HR0WHs2LG0aNGCO3fuEBkZiZqa2hdti4uLefnyJVFRUWRmZqKoqEj9+vWZPHlytfOUCUtFRUXq1q2LlpaW5DVphWAZDRo0YNu2bTx9+pTU1FSaN2+OpaUl06ZN48qVK+Tn51fa9+3bt5w7d47Fixdz+PBhFBQUGD58OLt27ZJqbiUlJeLj43F3d2fcuHHUr1+fo0ePSr32bdu2MWbMGC5fvoyenh5paWlS9xWJRIwZM+aTgeHHHyts4+npSUZGBiEhIYwfP57bt29jbW3NxIkTpRaCYrEYKysrzMzM+OmnnygsLKRfv35cv36d9+/fSxUL+O7dOxo2bEjLli2Jj49nxIgRPH78uNL2gmVQ4B+Np6cn3bt35+DBg0wB9q5bBxMmgKbm116agIDAvwB5eXk8PDx4+PChVJn2BAT+Tuzfv5+MjAxUVVUpKChAS0sLW1tbSbIVFRUVBg4cKClgnpycjKqqKs7OzvTr14/Q0FBatmxJz549q81iqaamxrBhwxg2bBgnT56kU6dOzJ49m9mzZ1fZ7+rVq2zbtk1STy89PR1FRUW0tbUxNTXFxcWFFi1aYG5ujmYl//u1tLSYPHkykyZNwtXVlXnz5jFv3jw8PDzYvn37Fwl0PufKlSuMHDmy0rGrQl1dnYEDB3Lu3DlWrlz5RemBstp20dHRxMXFISMjQ7NmzbC1tcXU1BR/f39JbcGqLK9r164lJCSEe/fu8csvvzB48GCUlJRwcXFhwoQJ5Vx+pUVPT4+WLVty+/ZtSbKcDRs2kJ+fj4ODA4sXL8bb25vg4GC2bNlCaGgoOTk5ODo60qRJE3x9fRk0aFCNr4sKCgrY2tqyb98+Pn78SLdu3SRJc6pDJBKhra2NoqIibdu2rbbUw+/R0NAgLy+PZcuWoampyYQJE75oIy8vj5ubG25ubsyePZunT5/i5uaGg4NDuZi/qtaYnZ3N1KlTcXJywtzcnEaNGtUo4Y2qqirt27dnz549BAUF0b9//yrbC2JQ4B/P8uXLOXHiBAfz8hjx8SNeM2bA5s1fe1kCAgL/Eho2bFijJ9ACAl+bvLw8xowZw61bt1ixYgV2dnaYm5t/4ZL34sUL9PX1kZOTo1atWtSvX5+UlBRCQkKIiooiOzubhIQEbty4gaWlJc7OzpiZmeHp6VmhpSQ+Pp7169eze/duNDQ0aNy4cbVrVVNTo3bt2pSWlpKZmYmenh6lpaW4uroyatQoXF1dpd5vkUiEhoYGBQUFwKc6gm3atCE0NLRCC1pKSgpHjx5l+vTpUs/x+/mWLFlCfn4+/v7+XLt2rZx7qI6ODh8+fEBVVZUGDRrw6tUr7t69S0REBDo6Oujq6qKjo0NkZCQaGhr06dOHgICAL2oc1qlTh/bt29O+fXsAibtp2Wf8R8Tg7ykpKaG4uBiRSISysrLEBbOkpIRz586xefNmvvnmm/8qw/KzZ884ffo0u3btQiQSUatWLVq0aIGNjY3UY5TFol64cAENDQ3at29P7969Jcfm91y7dk2SfCckJARFRUXc3Nywt7evdI4bN25w7Ngxzp49y7t37+jYsWONMqVv2bKFEydOcPnyZZ4/f867d++QlZXFyMiI5s2b4+XlRZs2bSRu1KGhoVy7do3Q0FAePXpEbGwsVlZW9O/fH319/WrnE8SgwD8efX19vv/+e2bNmsVY4NGWLciNHAkVBLELCAgI/NnIyclRXFz8tZchICAVBQUFtGjRAktLS+7fv19hoosyzMzMmDdv3hevFxUV8ebNG7y9vYmOjub9+/c8evSIvXv30rBhQw4fPoybm9sX/Q4ePMjy5cuZOnUqs2fPrta1Li8vD3l5eVq1akXDhg0xNDTkzJkzZGZmkpiYSGJiItevX6/5QfgPcnJyJCUlkZSUVK5G27t371i1ahUbN25kypQplRZalwaRSMTKlSuxtbXF0NCQdevW0bVrV0QiESNHjvyifWlpKe/fvyclJYVXr17x6tUrnjx5wunTpzl79ix9+/Zl586d1c5pbGyMq6srP/zwA2/evGHmzJk1tpQVFhYiEolQUVHBwMCAUaNG0aNHj3L1ALt06UJwcDD9+vUjPDycuXPnSsoj1JTNmzezY8cOMjMz0dHRoXPnzrRv375GtRMVFRUpKiqiqKgI+GT9vnDhAgkJCV8I/pKSEubNm8eDBw/48OEDBgYG6Orq4u7ujqqqKh8/fvzi+5GVlYWfnx/Tpk1j586dODo61riMhZ+fH35+fhQWFvLs2TNWr17Njh07JLUEjx8/zuLFixk6dCgAq1at4u7du6SkpJCTk4O+vj6qqqpkZ2ezadMmZs2aVaV4FWIGBf4VTJ48GSMjI8KBXwDGjoX/ZAsTEBAQ+L+krJaXgMD/AtHR0URGRlJcXMyiRYsYN24c+/btIzk5WerMi/Ly8ujp6ZGdnU3t2rUJCgpi+/btxMXF8fr16wqFIMDUqVMlFhgzMzPGjh3LzZs3K5x3z549qKqqYm9vT/fu3dm/fz8WFhacOnWKnTt3kp+fL7UQzM/P5/79+2zevJnw8HBEIhGKiooMGzbsCyFYUlIicYP08/PDwsKClJQUAIlFsabIysri6OjImzdvGDBgAJaWluzatavC8WRkZGjQoAH29va0a9eOoUOHSjK0lpaWcvXqVannnTlzJh06dGDNmjUYGRnV6DqVk5PD7t27adeuHRcvXiQiIoLRo0dXWBje19eXsLAwkpKSMDc3Z/Hixbx48ULqucpYtWoV6enpTJ48mZSUFNavX0/79u3R0tKq1p24IpSUlPDy8iIqKqpCy6+srCyXL18mMzOTO3fuYGZmxq1bt5g3bx7NmzdHTU2NrVu3luuTlZVFUVERFy5cYMuWLaxdu5bz588TEhJSrYdIaWkpDx484IcffsDT05O6devSp08f3r17R79+/QgODiYtLY20tDSJEATYtWsXL1684OPHj2RnZ3P+/HnmzZtHx44dUVZW5ubNm6xfv77SeQUxKPCvQElJiZUrVwIwSyQi7eZN2L//K69KQEDg34CcnJwgBgX+Z7C0tOTmzZt07doVVVVVduzYQe/evTEwMEBBQQFtbW28vb1JSkqqdiwVFRWUlZVZs2YNAwYMwNDQsNo+LVq0ICQkBDU1NdatW0fLli1RV1dn8eLF5dr17NmTsLAw9uzZw9SpU9HT02PDhg0EBAQwY8YMzp07V+1cEydOxMbGBnV1dYYMGcLNmzext7dnx44dvHnzhjVr1nxRuF5WVpZHjx5x4sQJGjduzMaNG7Gzs0NXVxdvb2/27dv3h0UhfBJZUVFRDB8+HE1NTU6dOlWj/qmpqZw4cUJq4a6urk5JSQnZ2dnExMRIPc+1a9eoV68ehw8fpnnz5tW219TUZO/evaxevZpffvkFKyurcoKmOkpKSoiJieHEiRM8ffoUJSUlFBUV8fLy4tChQ3z//ffVjlFYWFiuTEh+fj4qKipffMZlTJ06laZNm6Kurk6HDh0kYrZ///7s37+fqKgoBgwYUK6Pvr4+SUlJzJ07Fzs7O2JiYliyZAkBAQE0aNAALS0tBgwYQFZWVrl+ZXGnTZs25fbt20yePJl3794RERHBiRMn2LlzJx06dKgwi+nnqKmpYW5ujqenJ71796Zz585A1YmCBDdRgX8NnTp1wtXVlVu3bjET+GXqVOjYEWqQ6ldAQECgpsjKygpiUOB/BllZWZydnSWud7t37yY7O1siLt6/f09JSYlUafnr1KlDUlISDg4O3Lp1q0J3ysLCQg4ePChJQhIdHU1MTAx5eXnUqlULc3Nz3N3dv4hrk5WVxdraGmtra3r37i15/e3btzg4OPDy5ctq1+fi4sLt27clN/vTpk2r0i22DE1NzXI17Mpi8Hr06CFJgtOvXz8mTZr0h1xIVVVVKSkpwdfXt0axZvDpePbu3RsNDQ2WLFlCr169pOonIyODo6MjQUFBrF27ttoC8s7OzsjIyKCvr8+BAwfw8vL6os2HDx/Ys2ePpIh6WFgYtWrVws7ODgsLi0rj9ADu3r3LpUuXePbsGREREURFRdGgQQOsra0Ri8UsXLiQ/v37V2iJLC0t5ejRozx//pzY2FhJgqPU1FRq1aqFiooKFhYWtGrViq5du1a6BkVFRRISEnjw4AGmpqZVHo/P0dLSQktLC29vb8lrO3fuZMCAAbx9+5Z9+/Zx6dIlrl27Jjk/2rZti5qaGhEREYSFhdGjRw8sLCywtrZGWVmZwYMH4+LiIvUayjh8+DBycnKMHj260iyoghgU+NcgEomYMWMGnTp1YlNxMcOTk2mydCnMn/+1lyYgICAgIPC3Iy0tjezsbGRkZJCTk6NBgwZMnjyZcePGSZ0IpLi4mMzMTKKioioURtnZ2Rw8eJCoqChiY2MpLi7G0dGRvLw8zMzMCAgIwM3NTWpRpampiZKSEiYmJlW2Ky0tpVGjRri4uBAREUFwcDDffPNNjcUX/P8YPH19fR48eADApk2b2LZtG3369GHRokVoaWlJNZacnBx5eXn069ePRYsWoaOjU+P1fPz4kby8PJYuXSq1GCwtLSU/P589e/Ywfvx4ietpZWhqatKhQweWL1/O+PHjefLkyRdtYmJiGDVqFNOmTWPhwoXY2tpKLFslJSVVxtKdO3eO5cuXk5+fz+DBgwkODqZRo0ZS9S0oKGD//v1ERETw8uVLioqKMDIyol+/fuTm5qKhocHQoUOxsLCosBRIaWkpp06d4tq1aygrK1dZLkMakpOTuXfvHvDp8y0tLUVBQYG4uDjJed2lSxe6dOkCfPpO/Pbbb/z000/s2rULDQ0NyblaE4qLi0lKSkJRUZFVq1ZV2u4fKwZFIlEHoIOOjg5RUVFVto2NjZVqTGna/VlthLH+b8YSiUT07duXHTt28C1wbelS4lu1olhP76uu6+843995LAEBAQGB/1uOHj3KoEGDsLKyYurUqXTp0gUDA4MajVF2Ez1q1Cjatm1bYZv69esTHBwMfLJq3bhxg5MnT/LLL78QGRnJ8ePHAXB3d69RMpjfu+H9noMHD9KrVy9JQpvK1lcTxJ/lIiguLkZGRoatW7fy8uVLrly5ItUYZcmmduzYwb1794iIiKi2T2FhoeR3eXl55OTk0NPT49KlS9X2LSkpAT5ZWuXl5Rk5cmS1QvD3vHz5koMHDxIUFFTuIUGTJk2YP38+CxYsYO/evejp6Um2soLxbm5uNG3aFG1t7XICb/bs2UyePJnTp0+zb98+rK2tad68OR07dsTBwQE3N7dKH0goKytz+PBhyf4lJiYSHR1NVFQUP/30E7Gxsaxbt4727dtz8uTJcn1fvHhB//79KSgoYMqUKQQFBSEn98flUlhYGHZ2dgDo6uqyYsUKAgICqkyO5O7uztOnT2nUqBF79+7F29tb6ocJnyMnJ8eECRPo1KlT1e1qPPL/CGKx+ARwwsbGZqg0T3mkfRL0Z431V88njPX/+emnnzh9+jQ3375lf2EhfX75BQ4d+urr+jvO93ceS0BAQEDg/4bIyEh69erFmTNn8PLy+sPlAMrKJGzatInz588TFhZWbqzS0lJu3LjBnj17uHPnDjExMdSrVw9zc3NsbGwwMzOjU6dONG/eHL3fPbStCpFIxJEjR/D09ERbW7vCNj169KBx48aSmEgbGxuaN2+OkZERnp6emJqaIiMjfWqNvn37cu7cOVRUVDAzM8PV1RV3d3eaNGlSrZUyPz+f2NhYVFRUKC0txcfHhwEDBuDn51dlv3PnzjF+/HhiY2PR19fHzc2N9u3b07x5c4yNjSv93OLi4rh48SIXL17k5MmTNG7cmP79+9OzZ88auUOWid+cnBx69OjBiRMnviggP3PmTKZMmUJKSgpJSUkkJyeTnJzM4cOHuX//PitWrACQlIowNDRk9erVeHl5oaKiQrdu3ejWrRsfP37k/PnzBAcH891331GrVi0GDx5M165dcXR0rHRfy0oyvHz5kqVLl/Lq1Svk5eXp06cPPXr0IDIyEh0dHWrXrs39+/fx9PSkcePGrFixAkdHx/9KCALY2tqSkpLCzJkz2bZtG3379sXMzIwtW7bQokWLCvvcvXuXa9eucerUKWbMmEFOTg7Dhw9n+vTpVcb+fU5cXBz9+vWTPExQVVUlJyenwrb/WDEoIFAZderUYcmSJQwaNIgpIhEdDx9G7coVqMDfXUBAQOBrk5CQQGpqqqSmlIDA/zWGhoYMHDiQPn36sHPnzj/FatasWTPJDXt+fj4LFy5k165dpKWlMWjQIDZt2oSNjY1UMXvV0bBhQ06ePMmpU6fo2LEjY8aMoUWLFuVu7EUiEU2bNqVp06asWLGCS5cuERoaypw5c0hLS0MkEmFoaIirqyt9+/bFx8en0vkKCgr48OEDTk5OXLt2TWrxXFRUxIwZM9i+fTsaGhps3ryZwMDAcrUGq+svJydHZmZmtSLh4cOHbNy4kUuXLpGTk0ObNm3w8/Pjp59+qlQwV8SHDx9YvXo1d+/e5fLly8jLy2NlZUX79u0JCgqqsI+ioiJGRkYYGRmRmZnJuXPnkJWVRVFREbFYjJycHGZmZjRr1ozmzZvj4ODwxRi1atUiMDCQwMBATExMmDVrFsuXL2fNmjUoKCjQuXNn5s+fX+lDgyZNmrBq1Sr27t3Lb7/9xs6dO9m3bx8yMjIUFRUhEomoW7cu9erV4+PHjwwaNIj09HQ0NDRwdHSkSZMmjBw58g9dh7W1tfHw8GDbtm0UFxfz7NkzWrZsyfLly5k4ceIX7ZWUlPD19cXX15fVq1ezcuVKZs2axcaNGzl48CCtWrWqdk5dXV1Gjx7NgQMHOH78eJWuroIYFPhX0r9/fzZs2MD9+/f5AVg8bhyEhsJ/+QRIQEBA4M/Ey8uLH374AUNDQ9TV1XF3d8fX15eWLVtiZmb2XxVwFhCoiPfv3zNw4EDOnz+PgYFBueyLNUUsFqOkpISzszMbN26UvF5YWMj79++xs7MjNTWVY8eOsXHjRtTU1GjYsCENGzaUWMosLCxwcnLC2dkZXV1dTE1NK4zz+hxFRUVJRs/Dhw9z5swZxGIxfn5+9OrVCz8/P0mtuzL3wejoaF6/fk1xcTElJSWIRCLev39PZGTkFyEM8fHx3Lx5k7t373L37l3Cw8MxNTXF2dm5Rt/JgoIC4uLiKCgooKSkhEePHuHp6Sl1nKCPjw8///wzpqambN26FV9f3wrbicVi+vfvT9euXTl+/DjW1tZ/+NqRm5tLbGwsubm5KCkpkZeXJymMfvHiRUxMTLC1taVx48bo6+tjYmLChw8f+O233zhx4gT379/Hw8ODDh06MHv2bOzt7dHW1q7ResrcSYuLi1FSUuLDhw88fvyY9+/fVyoG69WrR1BQEImJifz222+IxWIKCgqQlZVFWVkZsVgsKe5er149GjVqRJs2bZg4cSInT55k7ty5BAYGSi0GU1NTCQ8P58WLF0RHR3P58mXJe2pqahgbG5OXl1ftOCKRiNzcXEpKSsjNzSU5ObnaPqWlpTx79ozi4mJkZWURi8XlXJh/j3DnK/CvREZGhrVr19K8eXNWAoPCwjDdvBkqKPAqICAg8LVwcnKisLCQgoICUlNTOXToEKdPn0YsFlO/fn2GDh3KN998U+NYLgGByoiPjyc+Ph5LS0tcXFw4ePAgL168wM/PDxsbG9TU1KQeq6SkhOLiYqKiohg0aBC+vr54eHjQqFEjNmzYUK5taWkp6enpvH79mtTUVEaOHCkpsn306FFJu23btjFw4ECp11BaWsqHDx9QVFTk8OHDHD16lJUrVzJu3Dju37+Pl5cX7u7umJqaYmlpyaxZs2jRokWlLoJisZg2bdpIspW2bt2aHTt24OnpWSO3Uvhk7dq5cyenT59m4MCB/Pjjjzx58oTz589X2ufDhw+Eh4cTFhZGWFgYubm5pKSk0L9/f5KTkytc84cPH3j9+jVnzpyRCOk/Kgi1tLTYtm0b8Kn0wvLlyykoKCAlJYWUlBRJohRlZWXk5OQoLCxEQUGBDx8+0KhRI1atWkVAQMAfioErIz8/HyUlJVq3bk3v3r3x8/NDQ0Oj0vZl7sj79u1jz549aGtrY2BggKmpKRYWFhgZGWFgYICBgQHa2tpffI7Hjx9HXl6eqVOn4unpybBhw6ot8dCuXTsePXoEfPqcHR0dmT59OrNmzZLa1TMrK4tx48Zx6dIllixZwvDhwyUPMarizJkzdOvWjU6dOmFoaMjKlSvx9/fH0tKywvaCGBT419KsWTMGDBjAjh07mACcnDkTevSAKi4oAgICAl+bsriPxMREFi5cyKJFizAxMaFv37506dKlXIFsAYGa4ujoyIEDB3j58iUvX77k0KFDBAcHs2DBAuBT7NGUKVOkKvItKytLcXExqamp7Nq1SxJPVpZ1s0GDBpK2MjIyqKurk56ezsePHyWWPRUVFerUqcOwYcOqrFX48eNH7t69y61btwgPD0dJSQlZWVksLCxo3rw5zs7O2NvbY2VlhaKiImFhYaxZs4ZWrVrVqJafSCQiOjqapKQk7t+/z/379/nll1/o27cv6urqPH78WGrr0fbt2xk1ahT5+fmoqqoyePBgBg0aRGpqKlpaWuXEWnx8PK1btyYlJQVra2vs7OywtbWlU6dOFBQU0K5du0rFXe3atUlNTeXatWsEBwfTvn17FBUVOXDgAE2aNJF632vC51avgoICRCIRcnJyLF26lCFDhuDv78/p06erHae0tJTExESioqJ4/vw5UVFRkn0oSxJTGe/fv2fDhg388ssv1KtXj169enHp0iWps3IWFRXx6tUrPDw8kJeX58cff+T8+fN8//33jBgx4osHGp8TGhrK69evCQ0N5eHDh/z2228sXryYFStWsGHDBgYNGlTl3Pn5+TRp0gRfX18iIyOrdZ8Wi8W8fPmSO3fucPnyZQoLC9myZYtUbteCGBT4V7NkyRKOHj3KqexsTqen027uXFiz5msvS0BAQEAqym6Yw8PDmTt3LvPmzUNDQ4OBAwf+V0/eBf69iEQiTExMMDExkZQnyMjIQFVVFZFIxNChQ6u8kf3pp5+4d+8e0dHRREREICcnR/369TE2NsbR0RFnZ2csLCwk9eEOHz7MsWPHiIiI4MWLF2hpaWFtbY2Ghga9e/emd+/e2NnZVSh0MjIymDNnDiEhIYSFheHs7Iy7uzujRo1i6NCh6OjofNHv1q1bTJw4kefPnzNmzJgvitlLe4z09fXR19fH19eXvn37oqmpyZAhQ2r0vQsMDERXV5e4uDjWrFnD1q1b2b59OzIyMhLrv6GhIdbW1owcOZIhQ4awYsUK2rVrh5+fH05OTigqKko1l7y8PG3atKFNmzasXr2aQ4cO4efnx4ULFyTZLv+vUFZWpn79+hQWFlJUVMTkyZPp06dPpe1Xr17NrVu3JLUny5IKWVhYYGlpiYODA998802l/cViMVOmTGHr1q0EBgZy5swZbG1tq1zjx48fWbx4MbGxsSQkJJCYmMjbt29p2LAhBgYG6Ovr07x5c3Jzc+nfvz9t2rSpdr+1tbXx9vZGXV2dZ8+e8fz5c9q3b19lfcUybt26Rb169aoUnPAp6+zhw4e5c+cOCgoKuLm50bx5c27duiV1/K0gBgX+1WhpaTFnzhwmTZrEeKDNzz+jMGwYyMt/7aUJCAgI1IiyBAHv3r3j6dOnf0rSD4F/H2/fvqV///6Ehoby8uVLRCIRHh4ejBgxgsDAwGrFR0FBAVFRUYSGhqKjo8OYMWMYPnx4pW58hYWF3Llzh/T0dBYvXszw4cOlTqACn+IDGzZsSHp6Ok+ePCEvL4/s7Gzu3LlDnz59aNu2bTmBJiMjg4GBAQkJCfz666/ExcXh4eGBv78/+vr6Us9bxu3bt0lOTiY6OrpG6/7w4QP37t0jKSmJlJSUcgk+SkpKUFRUREFBAXl5eWRlZZGTk2P69OkEBQWxbt06vv32W6KionB0dERBQYF+/frRt29fqVxVRSIR3bt3JyIigt27d7Ns2bIa77c0cygqKuLq6srSpUu5cOECp0+f5tGjR9y4cYPw8HCCgoIYMGDAF2suKioiLi6O8PBw3N3d6dq1K23atMHc3Fyq/SsuLmbVqlXEx8dLahNKQ15eHjExMTx69AhtbW1Gjx6Np6cnNjY26OrqSvX5xsbGcvnyZe7du8f9+/eJiorCysoKU1NTrly5QrNmzaodIzExkYEDB7Jw4cJq24pEIlRUVKhXrx5JSUm8fPkSVVVVZGRkyMvLo1WrVtW6AwtiUOBfz5gxY9i0aRNRUVGsLi1lyvjxsG7d116WgICAgNSoqalJkl4MGzaMH3/8sdonygICFZGfn4+7uzvjxo3D2tqanJycKuOxfs93333Hd999R2pqKi4uLsyaNYv169fz6NEjiTXwc3r37k3Pnj05f/48a9asYfXq1fz444906dKl2ptYdXV1li9fLvn748eP3L9/n27dunHu3DnOnz/PnDlzmDNnjqRN8+bNOXDgAGKxmJiYGK5fv87x48fZs2dPjeoYllFYWEi9evVqJAQBTp8+Lclcmp6eLknwoaioiL6+Prq6ujRs2BA9PT0MDAyIjY0lKyuL+vXrM23aNElB9jt37tCrVy+uXr2Ki4sLFhYWVc5bWlrKtWvX2LVrF8eOHaswm6U0ZGdn8/r1a8nfZeKvuLgYVVVVPD09WbBggcQi5+zszPTp08nLy+PGjRt0796dixcvSuI1P2fy5MlMnjyZtLQ0Ll26xLlz51ixYgXZ2dk0b96c+vXr4+zsTP/+/alTp84Xa5OXl6dVq1b07t2bFStWSOUWWqtWLVauXAl8csW/d+8eISEhbNiwgaioKFJSUlBWVkZBQQFtbW0MDQ2xtLTExsYGAwMDGjVqhK6uLvPnz2fnzp0oKSkxZswYLly4QP369SkpKSlXR7Eqjh07hqamJn379q22bf/+/enfv79k3RERETx+/Jj58+eTnp5OZGRktTHlghgU+NejoKDATz/9hL+/P/OBvpcuUevSJajmgiogICDwV/D7LHBlsVDFxcVYWFjg4eFBy5Ytadq0KYaGhkKGUYH/ilq1amFlZYWWlhby8vKkpaXVSAyW0bBhQ4m14s2bNwQFBVVaeF1GRgY/Pz/c3NwYN24cXbt2ZfXq1YwdO7ZGc2ZkZNCuXTvy8/Pp0aMHq1evrtRtUyQSYWpqKkkiMnXq1BrvI4C9vT23b9/G19cXDQ0N7O3t8fDwwNraukKhUkaPHj3o0aMH8MkS2LNnTw4fPkxeXh5RUVFERUVVO7eioiJ6enqoqalx8eLFSoVgQUEBV65c4cSJEwQHB1OvXj2++eYbFi1aVKOyEsXFxWzatImlS5eSlpaGlpYWzs7OkiLwtra2mJmZVZpkKCsrix07drB27Vrs7OzYsWMHxsbGlc5Xv379cscpIiKCzZs3s2nTJnbt2sW4ceP44YcfmD59+hd9L1y4wM6dO+nSpQtubm7MmTMHa2trqfZTVVUVLy8vvD4rOVZSUsLcuXNZuHChxPsiODi4XD+RSISzszOvXr3i+PHj/PbbbxgbG3PlyhWcnJykmhtg5MiR7Nq1i3bt2jFgwAA8PT2lcj9WVVXFxcWF27dv8+rVK2xtbZk9ezaKioo0bdq00n6CGBQQAPz8/OjYsSPBwcFMAzYvWQKDB0MNn/QJCAgI/LcUFhZy7do1Tp8+zcOHDykoKEBVVRUTExNJIWt7e3vMzc2lftIsICAtmZmZTJgwgYSEBDIyMhCLxdSuXRt3d3d++OGHSjMSVkRpaSnwye0vJCSEgoKCCt1M8/PzGTx4MCdPnqRVq1bs3buXTp061XjtjRo14tq1a3Tv3p0jR44QHByMj48PvXr1wtfXF3V19Ur7pqam8ujRI+zs7Gr0vdLT0yMiIoInT54wffp09u/fj5ycHGKxGFVVVczMzBg2bBhDhw6tdIyUlBTCw8MlIqq4uJiCggJUVFTQ0NBAS0sLXV1dDAwMSE5O5ubNm6SmptKiRQvGjx+Pj49PhVkmMzMzGTJkCGfPniU3N5d27drxyy+/0KZNG8nnIK3FKiYmhg4dOqCrq8uRI0dwdHSsUfbURYsWsXjxYnx8fNixYwdubm5SPbg6efIk69ev5+nTp6SmptKsWTNcXFzQ1NRkxIgRlRZul5WVZdCgQfTo0YP169fj7e1Nq1at8Pf3x9PTs8oHZ2lpaUyfPp2UlBRSU1N58+YNb9++RV5eHiUlJerUqUODBg3Q09OjcePGWFlZYWBgQMOGDdHX16dBgwaMHDmSkSNH4ubmVmWNv4pQUFDg2rVrHD16lG3btjF48GB8fHw4duyYVP1HjBhBq1atSEhI4OTJk2zevJnNmzdX2l4QgwIC/2HlypWcPXuWXwsLGZGcTIuVK+H777/2sgQEBP4FiMViDh48yNGjRzl//jwWFhYEBAQwZ84c7O3tK3SvExD4v8DY2Ji7d+8Cn2KorK2tiYuL4/jx45w+fZqNGzcyYMCACvvevXuXK1eu8OTJEx4/fkxUVBRqamo4OTnRpUsX5CuJx4+IiODWrVvExsZWm7K/OlxcXDA2NiYhIYHi4mKCg4O5cuUKBQUFWFtb07NnTwYNGlTuO9W0aVN69epF165dycjIICgoiPnz50udFbRRo0Y0atSI7du3Ex4eTnFxMfDJlfLBgwdYWFhUKQbV1NRQUFBALBaTn5+PiooKgYGBBAQEEBQUVE6sXbx4kUaNGknKSwwYMEAiGnv06EGHDh2wt7cHPlkOW7VqhaGhIcnJySQnJzN69GhSUlKoW7cuenp6ZGVlUVRUhIuLiyTBjImJyRdr3Lt3Lx4eHvzyyy9/yPvA0tKSpk2bcvXqVerUqUNpaSkeHh7V9tPR0cHW1haxWExpaSkRERFoaGiQlpbGvXv3MDc3R1dXt9L+ZdlvR4wYwa5du1i9ejXDhg1DWVmZZs2a0alTJ3r37l3O+q2srIyOjg6PHz/m0aNHODk58f333zN8+PAaP4BLT0//Qw/tVFVV+eabb+jWrRudO3cmKytL6r6Kioo4ODjg4OCASCRiy5YtVbYXxKCAwH9o3LgxkydP5ocffmAscHfRImT694cqLjICAgICfwbnzp1j+vTpzJgxg9WrV0t9Eyog8GeTn5/PqVOniI6OJiYmhjdv3kjeU1VV5fz585WKwenTpxMXF8f8+fOZPn06DRs2RFNTs9o51dXVUVBQoFmzZvTp04c+ffrUuERKaWkpqampxMfHl1uzjIwMhYWFFBcXEx0dza+//oqjo2O5bJAKCgosXLiQBQsW0LJlS7Zv306TJk0YWU3t4YyMDGJjY4mLiyM2NlZSVw7+f2IPAwMDJkyY8EXfnJwcYmNjefnyJbGxseTl5fHx40fgk4gMDg4mNjYWLy+vci6CZYKtjHfv3jFgwABOnz5NREQEixcvxtTUlBkzZtClSxe+/fbbL45TfHw8ly9f5syZM5w8eZLCwkKSkpK4fv06eXl5kvW+f/+e/fv3s2PHDlJSUjh06NAfdkMPDAwkMDBQMk5gYCB79uzB19e3yn6Ojo44OjpK/n769Ck9e/YkIiKC+fPn06hRowozk5YVkY+PjycuLk7yMz8/n+LiYj58+MCNGzdITk7GysoKb29vSV9VVVWmTZtG06ZN2bJlC8ePHyc3N5eOHTtWWtS+Mlq1aoWvr68kM+yIESPw9fWldu3alfaJjo7m7NmznDlzhhs3buDo6MjBgwernauoqIi3b9+Smpoq2Spzzf4cQQwKCHzG9OnT2blzJw9evWJHbi6Dpk2D/9RFEhAQEPi/4sGDB+jq6hIYGFilK5uAwP810dHRrFmzRhJPN3bsWNq2bYubm5ukYHll7N+/HxsbG+zt7aUqV5CTk0N0dDQvXrygb9++HDhwgPnz5zN//nxCQkJwc3OTet1ubm7cuXMH+CTErKysCAwMpHnz5jRu3Bh9ff1qC3aLRCLU1NQoLS3l5MmT6Onp0bZt2wpdWxcvXsz3v/MeUlRUxNjYmA4dOtCxY0fMzMwksZefc+nSpXKCTllZGT09PYYNG8bIkSOxsLCQKiGNWCxGRkZGUmheLBaTm5vLkydP6N69O6NGjeLnn38u12fw4MHs2LEDADs7O3r37k1AQAD+/v7ljs+BAwcYMWIE/v7+LFq0iNatW/8pbuk6OjqMGzeOM2fOMHz4cOLj46XuGxsbK6m9N3v2bLp27Yq8vDxisZi4uDgePHgg2R4+fIicnByGhoYYGRlhaGiIra0tlpaW1K1bl86dO1cZ0+nj48PNmzdp3749L168+CLJjbRs2LCBSZMm8e2333Lu3DkuX76MkpISKSkpFV7rg4OD6dSpE7KysowZM4Zdu3ZJZS2PiIjA3t6ekpKSL96TkZGhQYMG5R6SfM4/VgyKRKIOQAcdHZ1qg3BjY2OlGlOadn9WG2GsrzfWhAkTmDx5MtOAwN27yWrfnvwKirIK583XG0tA4J/G5MmTefv2LU2aNGHTpk1CWQiBr4axsTHHjx+XiJHS0lKpY8PU1dXJy8urMnvhkydPmDBhAi9evODVq1eoqanh5eWFlZUVkyZNwszMDDMzs3IF6aXh8uXLPHnyhAcPHrBo0SJJXTcDAwNWrlxZbZbNMmRlZSktLeX06dNcvXqV0tJSZs+e/UWSku+++47BgweTkpIi2VauXElkZCSrV69mzZo1yMjIUFJSgqqqKvXr18fc3JydO3fi7e1NSkoKkZGRPHv2jGfPnnHkyBE2bdrEtm3bMDIy4ueff8bHx6fCNU6dOpWLFy8SGxtLSUkJtWvXlsSuubq60rRpU0xMTCq0Ym3cuJFBgwZx6dIlLl26xJ49ewgJCeH+/fu0bNmSZs2aERISQp8+fTh58iR+fn41+hykIT09nXv37rF///4a9TMyMsLT0xNTU1M6d+7Mx48f6d27N3fv3iUjIwORSETTpk1p3749y5Ytw9raGmVl5XJjVBa3+nuCg4PZvXs3mzdvxs/Pj+nTpzNgwACJ8K6OwsJCevToQUhICDk5Odja2uLr68uQIUPw8vKq9KFfhw4dePjwIcePH+f48ePs3buXuXPnMmrUqCrns7a2Jisri/T0dNLT03n//j3p6elcuXKF9evXVyoE4R8sBsVi8QnghI2NzVBzc/Nq20vTRtp2f8f5hLGkb2NmZsa+fft4+PAh84GVK1bA3btQwT9D4bz5emMJCPyTUFJSYs2aNbRr147hw4fj6urKunXrBCuhwF9OQkICGhoamJub4+TkRJ06dVi6dKlUN8Fv375FVlaWxMREzM3NK7QkGhgY0LNnT54/f87z58+JjIzk/PnzvHz5EgsLC2JjY3n//j0BAQE1SlCirKxM8+bNad68OUePHiU1NZXS0lLi4uKYOXMmnTt3rnYMsVhMTk4O8CmranFxMX5+fhUWGJeRkUFTUxNNTU1sbGyIiYlhy5YtyMjIUKtWLUQiETk5OTRo0AALCwucnJxo0qQJ6urqiEQitLW1JUXJ4ZNr6J49e5CTk6Nhw4ZVusn6+/sjFotRVlbm8ePHFBUV0bhxY0aPHl2t26WCggLu7u64u7szd+5chg8fzqZNm1i+fDkbNmwgPz+f2rVr06hRI7p27Yqvry99+/alSZMmf0q24vz8fCIjI8nJyaF58+Y16isSidi1axe+vr7o6uqyaNEiPDw88PDw4MOHD7x584Y3b95w4sQJtmzZwps3b1BUVERTUxMtLS20tLR48+YNWVlZ9OzZk+HDh1f60EFDQ4OxY8fy7bffcvv2bYYPH85PP/3E8ePHady4cbVrlZeXp3v37qipqXHp0iViY2PR1dWV1ASsah8dHR0xNzcnMjKShIQEqe+LVFVVUVVVLVdbUUFBgfXr11fZ7x8rBgUE/igikYgZM2bQtWtX1orFDHnwAKudO2HgwK+9NAEBgX84fn5+hIeHM2XKFLy8vLhw4UKNLSQCAv8NIpEIWVlZYmNjkZWVRVlZmcLCQqnEYO3atfH396d79+7Ex8ejpKSErq4uLVu2xNfXFwcHB4yMjBg2bFi5frm5uURHRxMZGcnz58+ZP38+48ePZ9euXTVyFYVPcVNlVqIyt0dXV9cK27579467d+9y7949SZHwvLw8mjVrxujRo+nSpQu1atWStC8pKSEqKopnz54REREhserFxMSgq6uLlpYWkyZNwsbGBmtraywsLFBVVa12zWlpady8eRNNTU127txZrTXu87IHBQUFBAUFceLECbp06cLFixcr3d/P+fjxI8+fP5e4aZaWlpKfn49YLCY7Oxs1NTXatGmDh4cH27Zt48mTJ2RnZ2Nvby/Z5OTk6NWrV4WWttzcXMkxKrOARkZGkpycjLGxMa1bt67QpbE6dHR06N27N99//z1TpkxBRkaG/Px8ZGVl0dPTw9TUFG9vb8zNzWncuDFaWlqIRCLevn3LmzdvmD9/PhEREaxdu5aOHTtWeH1NSEggNDSU0NBQHj16xKNHj8jNzUVPT4+kpCSpxKBIJKJXr1706tULsVjMkiVL+P7775kwYQLt2rWrtn9WVhYlJSXo6enRvn174FO5FnNzc5o2bYqzs7PElbs69+3qEMSggEAFWFlZMWzYMDZu3Mg44Py0aYi6doUqAn4FBAQE/gxUVVX5+eefmT59On379uXcuXNfe0kC/yL09fW5ceMG9erVQyQSkZubW22sXRlqamrs3buXd+/e8fjxY3r37k1ERAQRERFs3LgROTk5QkNDJYXIy1BRUZEIDIDZs2fToEED2rRpQ0ZGRo0Kuv/yyy88fvwYgLZt2zJ58uQKa6zl5OSgr6+Pu7s7Li4ujBo1iqZNmyIWi9HR0alw7J07dzJ48GDgkzupv78/c+bMoV27dqioqFBYWPiHbswnTJiAkZERJ0+elPpYl6GoqChJMJOXl4e3tzft2rVjzJgxeHp6Vmpd7dSpE5cvXwY+ufcOGzaMgIAATE1N0dTULGcBHD9+PPCpvMTmzZvZvn0769atAyA0NJQ1a9Z8Mf6IESPYvXu3pE6qSCTCzs6OAQMGoKury9u3b5k5cyYODg64uLhgZGSEmppajSyPZQl3yoiOjiY6OprTp09LXlNWVub58+e4u7vz4sULwsLC6NGjB7t3767wAUd8fDyWlpaSchDW1taMGzeO9u3bU1hYKDlHpSU/P5/Lly9z/vx5ZGRkpA4B0NHR4ciRI8CnWNxevXqRkJBAQkIC58+fl7SbO3cuc+bMqXCM0tJSEhISqp1Levu7gMC/jIULF1K3bl0uAsffvoWFC7/2kgQEBP4liEQi5s+fz7Nnz3j69OnXXo7Av4jY2FiioqIkN+U1ESdt27alXr16aGlp8d1336GtrU2PHj3YuXMnL168IC8v7wshWBEbN24kPT2dHTt21EgIAnz77bcSy1hZnUFVVVUmTZpUrl1WVhZisZimTZvi6upKy5Yt0dbWrrKMy6BBg0hPT+fChQssWLAAeXl5JkyYQKNGjfD19WXSpEkcOXKElJSUGq151KhRPHnyhAULFnDt2jUKCgpq1P9zCgoKOHbsGB07dkRXV7fSWLELFy4QFhaGh4cHGRkZrFixgk6dOrF48eIv1h8ZGYmFhQWmpqaSWLydO3dy/PjxCoUgwK+//kphYSGpqak8ffqUCxcu8N1332FhYUFeXh4hISGsX7+eYcOG4eDgQN26dZGTk6Nu3brY2NhIBL00KCkpIScnh5aWFt7e3nz//fccOHCAZ8+ekZ2djb6+PvDJRdnb25sDBw6wcePGCscyNDQkOzubZ8+ecfDgQQIDA7lz5w4dO3bExcUFXV1dqZPerFmzBi0tLZYsWYKtrS1Xrlxh7dq1Uu9XGT/99JMkeY+RkRHz5s3j/PnzvHv3rlIhOGbMGDQ0NFi2bBlNmjRh/vz5lY4vWAYFBCqhfv36LFiwgG+//ZaJgN+qVSgNGQI1THctICAg8EdQUFCgTZs23L17V6rMjAICfwaysrLk5eX9ob6zZs3i7NmzXLlyhadPn6KkpETr1q3p3bu31Ik3ADp37syiRYv45ptvWLZsGZs2bcLJyUnq/p9n7ywtLcXb25t+/fqVa6Otrc2JEye4ceMGK1eu5N69ezRq1AhVVVXWr1+Ps7NzhWOrq6t/Ud7h9evXPHjwgClTprBhwwZkZGRQVlbG3t6egIAApkyZUqXFq0WLFjg5ObF8+XLWr19PQUEBTk5ODBo0SGKJ/CO0a9euUnErIyODjY0NdnZ2XL9+neLiYtLT01m3bh1r166la9eubNmyhdq1a2NiYsLy5cslbp8RERGMHDkSWVlZ5OXladu2LfPnz/8i42aZQPu8NEYZsrKyklIccnJyKCsrS2oPBgUFYWlpKfV+FhQUIBKJCAwM5Oeff/7iWD948IClS5dy4cIFNDU1GTJkCF27dq10PHl5eSwtLbG0tCQoKIiNGzfy6NEjGjVqxKBBg8rF5FVFYmIiU6dOZcaMGVLvS0V06tSJu3fvoqysTGpqKgsWLMDY2JgWLVowevToLyzfjx8/ZuvWrZw7d46WLVtKrMOzZ8+ucHxBDAoIVMGIESPYuHEj4eHhrCguZsakSXDixNdeloCAwL8EHR2dKrPACQj82dStW5f+/fuzbt06unTpUqO+ZYlJ4JMLn4GBAcHBwfz4449S9X/27BlXr17l1q1bpKWlSUonfPjwodq+d+/e5fLly1y7do2QkBDq1q1L165dmTx5coWZREUiET4+PpKMncXFxYSFhdG1a1fGjRvHzZs3pd5vbW1tOnTowI4dO4iKiqKkpAQZGRlCQ0OlzmKqqalJSUkJ2dnZANy6dYunT5/+ITGooqLyqWby2LHlXi8pKSE0NJT4+HgSEhKIj4/n1KlTwKfjISMjg4aGBgYGBqipqVFUVAR8EkcdOnSgQ4cO5cZq06aN5HiXrfuPYGxszM6dO2natGml5SvEYjEPHz6UJByCT4JSLBZLsqmqqqoiFou/EIMpKSkEBwdz6dIl3NzcapwEJzs7m9q1axMTE8Ovv/6KrKwsffr0kVgcK1vvhw8f0K1hreri4mIeP35MQkICiYmJJCYmSs7FvLw8RCIRtWvXRk5OjqysrAq/G2pqagQGBjJgwADevXtH7dq1q4xTFMSggEAVyMnJsWbNGry9vfkB6HfyJI3OnoX/g1TLAgICAr9HXl5eckMmIPBXoKqqioyMDGPHjiUgIOCLGnnSUqtWLYqKitiyZYtUVsGy5CTffPMNXl5e9OvXDx8fH6lu3FNTUwkKCiIpKQmRSISxsTHNmjWjVatWyMrKUlJSUm2NPDk5OZo0aYKRkRH379+Xej/hU/zh8ePHuXXrFvLy8vj7+zN06FDatm37h2II5eXlUVBQqNQ69vHjR6KioiQZWS9evAh8EnSampr8+uuvFcamlZWPABgwYAA2NjZMmDCBxo0b07x5czQ0NKQWSkeOHCEuLo7Dhw/TuXPnL2ITy4q+JyUlkZycTFJSkmRLTk4mLCwM+OTiOW7cuGoziz579oxWrVqRm5uLhYUFq1atwtPTEzMzs2pdmTt27MiGDRto3749BgYGeHp6MnbsWExMTKTa1ylTpjBlyhSWLl3KtGnT+P7777l+/TpnzpyR7GtiYiIPHz4st5W5EdeE27dv4+PjQ0FBAVZWVgwYMIDBgwczfvx4PDw80NHRqTbLbuPGjdmzZw/wKc51wIABbNmypdL2ghgUEKgGLy8vgoKCOHToEFOBfePHgxDDIyAg8BcgJyf3h132BAT+CDExMdjZ2fHTTz+Rm5tLYWHhH85oW7duXXr06EGrVq1wdXWVJImpyHWxTKzFxMTw4cMHSkpKOHr0KCYmJpiYmKCtrS1xOfx97biGDRuSmJhIVlYWkZGRDBw4kL1797J3717g0/do5MiRlca3lVGWyv/jx4/VCkixWMydO3fYtGkTx44dw83NjcGDB/Pdd9+hpqZW00NFYWEhSkpKaGlp0bdvX3r06IGNjU25Nunp6Tg7OxMXFyd5zdbWFj09PUaOHMmYMWOqFEbNmzfn+fPnzJs3j99++43Y2Fjq1KlDVFQUqampmJubY2RkhLa2drWCY+/evaioqBAaGkr9+vVxdnZGRUWFkpISHB0def78OYWFhcAnl9QmTZrQsmVL/P39adSoEeHh4Xh4eEjtAm9tbc3r16/Zt28f8+fPZ+XKlZLENtIwaNAgevfuzYgRI1i7di1r166ld+/eEtEkDQ8ePADA0tKSUaNGkZaWxtu3b2nVqhVpaWmSdX7zzTf88ssvGBgY1NgK6e7uzuvXr9m7dy8zZ85k7969hIaG/uGSHurq6sjLy1O3bl3evXtXYZu/XAyKRCI/YDUgC2wRi8VLfvd+H+C7//z5ERgpFoufSNNXQOD/iuXLl3Py5En25+UxMioKj59/BilSAwv87yBcmwT+jsjLy/9X7lcC/wz+yuuTkZER3t7eLFq0iMePH1NSUoKTkxPbt2//IiasOjQ0NHjy5AlHjhzhxIkTKCkpkZ+fj4qKClZWVvTp00dSTFtVVZWoqCgSExN58+YN3333nSQTokgkQl5eHpFIRFFREXJyctSpU4f69eujra2NoaEhM2fOxMjICHV1dXJzc1FUVKRWrVq0adOG9u3bV5nF8dy5c0yfPp3Xr19jZWXFvn37qhSCly5dYvz48RQUFDBs2DCWLl2KpqZmjY7N70lPT6dOnTocPHgQR0fHCq2pGhoanDx5kujoaOLi4oiPjycuLo4bN24QEhLC9OnTqVevHsbGxnh6erJkyZcftYmJCbt27SI5OZnIyEgWL17Mb7/9BiCxYpaUlFCvXj309fWxsrJi4cKFX8TJbdq0iSFDhrBo0SJWrFhBcXEx+vr6+Pn5cejQIaKjo4mPj5esMT4+XlLE3dDQkKKiIoKDgwkMDKRp06bY2tpWa0WtXbs2w4cP5+rVq4SFhVXoEloZT5484bvvvuPatWsYGhoyZMiQL+JIq8PV1ZXDhw8TFRVF3759yc3NRUNDAysrK9q1a0dGRgaRkZFs3bqVOXPmYGhoiKWlJd26daNPnz5Sz6OkpMRvv/1Gw4YNWbVq1X9d27GoqEhSP7Mi/lIxKBKJZIGfAR8gGbgvEomCxWLxs8+axQGtxGJxhkgk8gc2Ac2k7Csg8H+CgYEB3333HXPnzuVb4OGcOcg2a/a1lyXwJyFcmwT+rsjKylJaWvq1lyHwFfmrr0+qqqoYGhoSGxuLvLw8YrGYevXqVVhLToq1S34vLCyUWIpEIhEvX778ogafsbExxsbGZGRksGDBAsnrCgoK5eYvs9qVFfDW1taWvK+kpCQRjx8/fiQxMZFXr16Rnp5eYSIT+BRjpampKSl4X102UGVlZTIyMvDz82PYsGHU/hPKTtWpU4f09HTatGlDcXExzZo1o3PnzgQFBZUrdWFlZYWVlVW5vt988w27d+9GSUmJtLQ0tLS0qFu3bpXz1apVi5ycHMlnIicnh4yMDEVFRaioqKCuro62tja6uroVfvaampoYGhoC/z92T1ZWlgYNGmBiYoJZJcn2srOzSUhIYNGiRRw4cICQkBDk5OTIz8/H2NiYli1b4u7uTvv27StNfqOlpUVwcDB+fn7s2rVLKiGurKyMsrIyIpEIXV1dPDw80NPTq7bf5yQnJwOfzrGyc1BbWxs7Ozt69+5dTjBHR0fTq1cvbt26Ra9evWo0j6ysLMbGxoSGhnLq1Cns7OzQ0NCo0Ri/Jzc3t9L3/mrLoAsQIxaLYwFEItF+oBMguSiJxeJbn7W/A+hJ21dA4P+SqVOnsn37dp4mJLD5wwd6/fQTSFHYVeB/AuHaJCAg8HflL70+PX/+nPDwcHr16sXGjRupVatWucLrVZGbm0tsbCwvX74kJiaGpKQk/jMv8Mlt1NHRkUmTJuHr60t2dja3bt2S1CIs2z5+/Ej9+vVp164dpqamNG7cmEaNGtGoUSP09fWpX79+pdYSAwMDjIyMJFbFsqLyiYmJrF+/vlxbsVgsiWMzNzfn5cuXPH36lBkzZhAQEFCpddDV1ZVnz54RFBTEli1bmDhxolTHpyqUlZUpKiqSxAhfv36da9euATBu3Lgq+yYnJyMrK4ucnBybN2+mb9++1Yr3K1euMGHCBMlx0tTUpGfPngQFBeHs7FxpnGd2djbBwcEcOHCACxcu0KpVK/r06UP79u0rrM8oFovJzMwkNTW13JaYmAggcYMXiURERUWRlJTE1atXkZOTq9SapqWlRW5uLpcuXWLEiBEcPXq0yn0FMDMz49ixYyxYsIDZs2fj5+dHw4YN+e677+jbt2+1cYebN2/mwIEDDB8+HHd3d5ycnDAzM6vUnXbfvn1kZGQQExNTY7fhnJwcXFxcJG7I3t7e+Pv712gM+P/Hvjr+ajGoCyR99ncyUJV5ZTBw5g/2FRD4U1FWVmbFihV069aNmUD3Q4cgNBQcHb/20gT+e4Rrk4CAwN+Vv/T6VGZxy8zMJCoqio8fP+Lr61ttEpg5c+Z8UctMSUkJOzs7goKC8Pf3l7hxikQipk+fXs6NUVFREQ8PDyZOnEizZs14/vw5rVu3xtjYuMp5s7OzywnJ8PBw7t69S/369Wnfvj2BgYF4e3tXKGi//fZb1q9fT8eOHXF1dWXbtm2oqanh4OBQ5ZylpaWEhITw7t27Ki0ufwRFRUXk5OQYOnQoEyZMkGSsLMtO+fbtW968eSP5WbaVZSIdMmQIK1euJCIiotI58vLysLGxYfv27cyePZuQkBBSUlJYuXIlK1eupFatWsTFxX1hmcvMzKRRo0Z8/PiR2rVr4+fnh4ODA2ZmZigoKHzhtnnlyhX8/Pwk1kczMzMcHBxo2LAhlpaWmJubY2dnh7OzMyYmJjRo0KDK86y4uJjIyEhCQ0Mlx+TGjRs1Or5lwqzswcXw4cNZu3atJKHN58fo7t27XL9+nevXr/P06VNu3LiBubm5VPNMnTqV3377jZ49ezJ27FhatWolVc3M1NRUjIyMyM/PR1tbm8mTJ5OcnCyxhEqTkOjly5fMnz+fgwcPoqysjK6uLnp6ety9e7fC9n+1GKzoMY64woYikRefLmgt/0DfYcAw+PT0ICoqqspFxcbGVvl+Tdr9WW2Esf6eY1lbW9O8eXPu3LnDHGDZ0KEk7dkDVfhzC+fNnz/W/wF/+bWpqpTUAgICAp/xf359+vza1KBBA/T19Xnw4AG7du3i9u3biEQiGjVqxMiRI/nuu+++GBBgxowZ9OvXj5SUFF6/fk1KSgqLFy/m6dOnPH36tFxx7Nq1a1O/fn3c3d0ZOHAgCgoKvHr1ilevXnHnzh2OHj3Kw4cPKSwsRFZWlrp162JgYMCYMWMYOHAgDx8+ZObMmURERJCUlISFhQUuLi7Y2Njg4+PD9OnT8fLyqjbW6rvvvuP27dvUqlWLb7/99ovENBURExNDhw4deP78OUOHDmXIkCGS96TJWloRb9++JTIyEmVlZfr27cvy5cs5dOgQo0ePLif8ZGVl0dTUlCTSKfvdxMQES0tL/Pz8aNmy5Rfuj8eOHWPr1q0kJyeTnJzMx48fJQLh48eP2NnZ4eDggLu7Ow4ODhLr6++pW7cuMTExREdH8/LlSzZu3Mi8efOYN28esrKyErfJsrW0bduWO3fucO3aNa5cuSIRVVpaWgwYMICWLVtKFQ+3fv16duzYQVhYGHp6etSrV4+AgACGDBkiKWVSE8qsqIqKisyYMYO+fftK3rt+/Trff/899+7do6ioCBsbG3r27Mn69evR0dGhtLS02uQ68OlBSEhICDt27CAoKIg6depw4sSJah80NGzYkJcvX/L8+XNevHhBVFQUR48e5fHjx8Cnz8DCwoKuXbsyYMCALz6nhQsXMn/+fCZMmEBKSgrq6uqS9yo71n+1GEwGPo9A1QO+cMwWiUR2wBbAXywWv69JXwCxWLyJT/7y2NjYiKVR8dIq/T9rrL96PmGsP2+szZs34+DgwIaSEoaFhmL36BFU4w8unDd//lh/Mn/5tcnZ2bnCmzkBgT+T9+/fk5eXJ9VNrsDflv/z69Pn1yZbW1txcXExWVlZpKSkSMoVtGzZkmZVxMorKCjQuHFjGjduTGpqKlevXkVGRgYZGRmUlJQoLS2lqKiIBg0aYGRkhLW1NdbW1gQEBJTLVpqXl8f27duJjo4mKysLsViMlpYWbm5ukuya2traeHl50aBBA8LDw3n+/DkFBQVkZmaSmZlJgwYNcHBwqDbOqlGjRty4cYPBgwfj4eHB8ePHK3R1/BwtLS2GDh1KREQET58+xczMDFVVVaytrXn//j0dOnRg6tSpUrnW3r59m+XLl3P58mVsbW0JCQnB8T/eRra2trx+/ZoXL14gEonIzMxEVlYWLS0tzMzMMDMzo0mTJlXWjyvD1NQUBwcHioqKSExMpH79+tjZ2dG0aVO6d+8udYmFsv3X0tKiZcuWREREcPv2beCTEC4pKSEhIYGEhASuXr0qOQ5t27Zl6NChHD16lCdPnnDq1CkCAwMpLCxk4MCBBAYGYm1tTb169Sqcs2ytZZZRVVVVzMzM0NfX/0Pxmp+L9lmzZrF//378/Pzo06cPBgYG9OjRAw8PD8mDjf3797Nq1SoyMzMpLS2lVq1aNGjQAENDQ6ysrLCxscHLy0sSJ5mdnc2WLVs4f/48N2/exNramiZNmkhdc1BHRwcdHR28vb0BOHjwID169AA+WWfv3LnDo0ePmDZtGj4+PsyZM0dSmqNFixa0adOGzZs38/79e/r27Yu7u3uVDyn+ajF4HzAViURGwCugJ9D78wYikUgfOAp8IxaLX9Skr4DAX4GNjQ2jR49mzZo1jAWuTJmCqGNH+F0gvMD/FMK1SeAfh7OzM7Nnz6ZOnTqYmZnh4+ODt7c3rq6uld50Cfwt+UuvTx8+fGDatGlMmjSJhQsXoqurW62wEYvFPHv2jODgYI4fP05UVBSenp5069YNW1tbSdyfrq5utZaz5ORkfvjhBz58+MDWrVvp1avXF66DOjo6TJ06VfJ3cXExL1++JDw8nLCwMH788UemTZuGg4MD/fr1o0uXLmhra1c4n4qKCnv37mX+/Pn4+PgQEhJSzprye9TU1MrFCJbFHUZERDB16lR++OEHiouL+eGHH6rcT/jkRnn16lUaNmwoSf1fZnlq1qxZOfFdVrfvxYsXkm306NH88MMP1SYosbGxYeHChZJxYmNj+eWXX5gxYwbq6upSi8Hc3Fzevn0r2X7vWglI6lIWFhYiLy+PnJwcYWFhHD16lICAABwdHXF0dKSwsJCFCxeybt06tm/fTn5+PkpKSpiYmODo6IiTkxNWVlZYW1vTsmVLSX3ElJQUJkyYwJo1a9i8eTMFBQVYWFjg7e1Ny5Ytad68uVSi6/OERo8ePeLx48fIysqyYMECvv3223Lt4uPjiY2NZevWrRw+fJgPHz7w4cMHYmNjuXv3LgYGBigpKUnEYExMDFOnTmXevHns27cPdXX1KjOfisVi0tPTefv2Le/evZMc37LfHz58WGG/evXqkZyczNWrVyVisHXr1rRu3ZqUlBR2797NsGHDePXqFX5V1Mf+S8WgWCwuFolEY4BzfEpxvE0sFkeIRKIR/3n/F2A2UA9Y/5+DViwWi50r6/tXrl9AoIy5c+eya9curmVkcOjVK7ovXQq/i5UQ+N9BuDYJ/BNp1qyZJDtgREQEz549Y9u2beTn52Ntbc3IkSMJCgqqNuugwNflr74+1a9fn2XLljF69GgGDx4slYXrypUrtG7dGvjk5jZ8+HBsbW158+aNpK6ctJiamhIREYGOjg6DBw8mMDCw2nhFOTk5zM3NMTc3x9vbm+PHj/Pq1Svu3r3L3bt3mTZtGq9fvy6XvTQrK4uIiAjCwsIkIjIyMpLt27fXKCGMSCRCX18ffX19tmzZQnh4OCtXriQtLY3x48d/kfnzc77//numTp3KnTt3GD58OAEBAejr63PkyJEv3AnLLLRlVlqA7t274+XlxdSpU9HX16dFixa4urpiY2ND48aNKxTez58/Z/ny5QQHB3Po0CG6desm1X6+efMGIyOjL+qeysjIYGhoiJubG61atZLEBNavX7/KJDZlwqgs1hE+Ca/Q0FBCQ0PZs2cPCgoK5OXl4ePjw6ZNmyQWMwcHBw4ePMiHDx8AJK7IP/30E/BJ3FXnjllGWW3EUaNGfRHzCuDv78/ly5eBT66fLi4uDBkyhGbNmmFsbFzh98PR0ZFx48Zx7949ZsyYUW5/K2L58uXl3K/V1dXx9fXF1NQUS0tLTE1Nadu2Lc7Ozjg7O6OlpVXhZysWi0lLS5NYZ8u+F9HR0VUm2fnL6wyKxeLTwOnfvfbLZ78PAYb8vl9lfQUEvgbq6upMmDCB2bNnMxkIWLYMlUGD4D9plgX+9xCuTQL/dMRiseSm69GjR0yYMIFvv/2Wli1b0rdvXwICAipN5S7wdfmrr0/du3cnIyODTp060a1bN/z8/GjatGml7sbe3t5kZWVJYpyioqIIDg7m2LFjTJo0CSUlJZycnDhz5ky1mRVzcnJo2rQpdevW5fz581+Un6iMhQsXsmXLFt6/f4+6ujoeHh60a9eO1q1bY2NjI0neMWHCBI4ePSrJZqmlpYWvry8jRoxg//791QpPaSgoKGDLli1s3ryZ9u3bc/LkyQrbicViMjIyUFFRoX79+jx79ozY2FicnJw4efJktRkkHR0deffuHT169OC3337j1q1brFixAvgkkE1NTdmyZQuu/8l8Pn36dJYuXcqECRN48eJFjcoVaGlpkZmZyevXryUZWH/55ReuX79ObGwscXFx7NmzB7FYTN26dTE2Nmbbtm1SF5X/PXl5eRLhee7cOczMzOjSpYvEfRM+CbmioiKMjIxo27YtrVu3xs3NrZzbcRkfPnzgzp07nDlzBlVVVYqLi3F1daVnz560b9++UmviuXPnCAsL486dO+zcuZO7d+8SGhpKq1atuHjxYoV9CgoK2L59O1ZWVkybNg1NTU1UVFSoXbs2lpaWaGtrU79+fcm5NmXKFLp37869e/ck24kTJ2jUqBE//fQTvr6+VR6rYcOGERISQkJCgiQ5kLGxsSSzbo8ePejZsyddunSpsP9fLgYFBP4pdO3alWPHjvHo0SOWFhQwb8oUOHToay9LQEBAQCrKihBfunRJYpmwsLBg6NChQoyhAMOGDUNHR4f+/ftLioqbmpri4+PD+PHjady4cbn2tWvXxs7Ojhs3bvD8+XPu379PaWmpJPYpMDBQKmGnoqLCpEmTGD9+PN26dWPv3r00adKk2n6Ojo5kZmZy4MCBKuPo+vbti42NDcnJybx69Yrk5GQePXrEiRMnyMvLQ0ZGBrFYjKGhIQ4ODrRo0YL27dtXmdX00KFDXLp0SRInWbt2baytrfHy8pK45924cYOLFy+SlJREYmKiRFApKSmhr69Peno6RkZGuLq64uPjI3H7+5zIyEiOHTsmSQRTtr1//16SaEdbW1uStdPMzKycZbJbt27Ex8ezdetWMjIyWLp0aYXCqTIUFBQwMDDAwMAAgDt37nDjxg1q1apFaWkpxcXFmJub4+rqSvPmzb84R/4oxcXFFBcXs3v3bo4ePUpJSQnwyW1VWVmZb775hrFjx34RPxgREcHmzZsJCQnh+fPnODo6Ur9+fbZv305AQIBU1zk5OTmaNGlCkyZNEIlE3L17l+LiYm7fvs27d+8qPH4KCgocPHiQhIQE3r59S2JiInfv3uXOnTsAknNMQUFBkkxJW1sbfX19jI2NGTRoEO/evaNx48bY2tpWu8YBAwZgaGgosarGx8dTp04dDAwMaNWqFZ07d/5bxQwKCPxjkJWVZe3atbRs2ZKlwIDDhzG6cgW8vL720gQEBARqRJkwfPbsGdu3b2fUqFFfeUUCX4uUlBSGDh0qEUtZWVmUlpaipKREXl4eL1684O3btxXe6B85coSdO3cyefJkFixYgLGxsSSGrDri4uK4ceMGN2/e5NatWxQWFpKbm0tKSopUYtDf358WLVrw6NGjKsWgk5MTTk5OFb6Xk5NDu3btuH79OpGRkURGRnLkyBGmTp2KgYEBgwcPpnfv3l9YkZ49e8aDBw/IzMykVq1auLi4EBAQgJubm2TtCQkJhIWFSQRcamoq6urqmJubo6enR3x8PCoqKlhYWGBqaioRPL+fZ8aMGV8swPQAAG5lSURBVEydOpVBgwahp6eHrq4udevWrVLYvHnzhsuXL3Pt2jWePHkieS0jI6NGYvD3FBQUoKioiLGxMXv37sXCwkKqTJv/Db8v5ZGXl8eCBQuYP38+hoaG+Pv707ZtW1q1akVqairR0dG8fv0aOTk5ZGVlyc/P59y5c5iammJvby9VNtPK0NPTw8zMjN69exMYGChJgCcSiWjTpo3EipqamkpWVpZEDJaWliInJ0dRURHv3r0jKyuLtLQ0UlNTef36NXZ2dhQVFZGUlMTRo0fp27dvle78rq6uEusvQHp6Oo8fPyY0NJQ5c+YwYsSIKmNYBTEoIPBf4ObmRp8+fdizZw+TgSPjx8PDh/AnuJkICAgI/BUoKiqiqKhIbm4uHTp0YO/evezdu/drL0vgK+Ls7Eznzp3R1dUlKSkJDw8P6tSpU22/+Ph4Xrx4wapVqyRJQjp37oyvr2+VRb0LCwtxc3Pj9evX6Ovrs2jRImxtbbG3t5d6zdnZ2Vy8eJEtW7ZI3aeMsgQeKSkpX8TEFRYWoqCgQFRUFNOmTePChQucP3++XJs5c+YwZ84cOnfuzPHjxzl//jznz59HRkaG0NBQ7O3t6du3b7kSBoWFhbx+/ZrExESuXbvGpUuXSE9P59q1a8yaNQsXF5cv6sJ17dqVH3/8kc2bNzN58mSphdw333zDhQsXkJOTo1+/fowdOxZbW9v/Wrjl5eVRUFBAWFgY2dnZ/+dCED5Z1UQiUTmxXFhYiEgkIjo6mujoaLZs2cLkyZOZN2+eJJb17du3PHnyhDVr1rB161Z+/fVX9u7dK1XMZH5+PklJSTx//lzyWm5uLiKRiPDwcL7//ns2bNjAixcvJO7IhYWFNG3alFevXgGfEutYW1vTqVMnrK2tMTQ0pGHDhmhpaVVoMV+yZAlXr15l/fr1bN68mdDQUKnLlqiqqqKmpoaKigpaWlpEREQwcuTIStsLd6wCAv8lS5cu5bfffuNoTg6Xnj6l9ebNUMWXTkBAQOBrISMjQ61atcjPz0dDQwMXFxc8PT1xcXGhSZMmVd6wC/w7yMnJITMzE3t7e6ytrTExMZEqiQx8ikkbN24cT58+5erVq8ydO5dff/0VAEtLSx4+fFihBUtBQYGEhARu3LjBsWPHmD59OoWFhTRv3hxXV1fs7e2xtbVFR0enUktOnTp1GDNmDJ06dSIgIIA+ffpgampa5XoPHDjA999/T0pKCkpKSujo6FBUVIS9vT1GRkZYWlri4OCAsbExurq6aGpqVnlDLisri7KyMhoaGowZM4YBAwbQsGHDCtsqKChw+PBhFixYIHHpa9OmDUFBQbi5uVWa/XTSpElkZmbi4uJCmzZtsLOzQ1NTE09PT7S0tCrsc+7cOeLj4yUF1Lt27UpGRgYHDhygTZs2VR6j35OTk8OBAwfYuHEjsbGxjBkzhu+++07qsgk1oeyzFolEqKqqUr9+ffT09BCJRBQWFmJpaYmFhQXW1taYmpqioaFB3bp1K4z71NTUxMfHh4iICE6ePElRURErVqzAwcHhi2yqpaWlBAcHs27dOsLDw8nIyEBXV5fatWtjY2MjKevh7OyMsbExjRo1+uK8VlBQIDExkaioKG7evMnmzZu5d+8e0dHRbNiwoZwlryJkZGTw9vbGy8sLU1NTzp8/X20MKUCnTp04c+YMRUVF6Ojo4OHhwerVqxk+fHilRe8FMSgg8F+iq6vLjBkz+P777xkHPJoxA/kePaAGgdkCAgICfwZisZjIyEhOnTrFgwcPyM7OltQms7e3x9PTEycnJxwdHatMny/w76V+/fqkpKQwePBgievipEmTmDZtWrV9161bx6VLl3jy5Alv3rxBRUVFYg3x9/ev0pVRXl4eb29vvL29WbNmDfb29gQHB3P69GlUVFQoLCxERkYGc3NzXFxcmDt37hdCa9myZZw4cYIxY8awaNEiNDQ06N27Nz/++GOFIs7BwYG0tDRWrFiBv78/hoaG/5XboFj8qXzswYMHq73ZB9DX18fU1JT79+/XaJ758+fTvn17Hj16xNOnT1m4cCFv376VuJn6+fmxYMECiaVOJBJhZGSEkZER/fv3Z86cOQQHB0tqGla3T8nJydy7d49Lly5x4MABXF1dmTVrFv7+/lJbq34/5sePHyV/y8jIoKKiQn5+PvLy8tSpU0dirdXV1cXOzg5ra2tJqQkLC4s/Ja75/v372NraEhgYyM6dO5GTk+Py5cuMGjUKWVlZZs+eTcuWLWnYsOEf2s/c3FzCwsK4cOEC4eHh6OvrM2bMGDp37lxlv+LiYhISEoiJiSEsLIysrCyaNm0q1ZxLly4lMDCQ8PBwwsPDuXDhAvv375eUFqkIQQwKCPwJTJgwga1btxLx8iUbMjIYO3curFnztZclICDwLyEkJISjR48SHBxMUVERAQEBdOjQgRkzZmBpaSl13JaAQEZGBpcuXSI2NhZDQ0OysrKk7ltQUEBCQgLJyckEBgbSqFEj5s+fX+Mb9zJLEHy6Mc7OzkZBQUFSI8/MzEwivD5HXl6ewMBA1q1bx+vXr8nIyCAhIaFSgWdubs7+/fvZtm2b5GZZVVUVT09PiSulNGRlZXH79m2uXr2Kvr6+1FayunXrfuGWKu187969IzMzkw8fPlBcXAyUL9dQFQoKCmRnZ/P27dsvMooWFxdz6dIl7t27x/3797l37x5isZimTZvi6urK48ePpS4VkpeXx61bt4iJieHly5eSny9fvkQsFqOoqIiNjQ0+Pj64ubnRtGnTctbNoqIiYmJiJKVxTpw4wZIlS4iKikJeXh4DAwOaNWuGt7c3LVq0qNYS/HtKSkpQUFAgNja2nBXSxMSE69evs3LlSsLDw/Hx8cHOzk6qMjz5+fkcOXKEw4cPc/nyZVq0aEHXrl1Zu3Ytmpqa5dpmZmZy+/ZtYmJiiImJITo6mpiYGBITE2nYsCEmJiaYmJhw5MgRqTM9W1hYkJOTQ05ODhkZGbx48YL3799TVFRUaR9BDAoI/AkoKSmxcuVKOnXqxGyg188/02DYMLCx+dpLExAQ+Idz//59AgMDGTNmDIcPH/6vkyII/LvJyMhAWVmZPn36YGVlxb179zAyMiI7O/uLbI2/Z9KkSUyaNInk5GROnz7NxIkTUVZWrrB+W00QiUQMGzaMwYMHS3V+l2Vq7N27N9u3b6+yrb+/P/7+/ojFYuLj4+nSpQtbtmzhzJkzJCcnA5/cBl+/fi0RMp9vsbGx5OfnY2lpyapVq+jXr1+F68vLy+Phw4eS2od37twhJydHUhuvJhw6dIgxY8ZQWFiIu7s733//PQMHDpS6VERQUBAbNmxg9+7dX1iMwsPDmThxIhkZGWRkZJCfn4+mpiYxMTG8f/+ekJAQ1NXVUVdXJzk5mczMTBo1akTjxo0xMzPDwsKCBg0aoK6uzsGDBxk/fjzdu3fHxMSEXr160bhxYxo3bkxOTk6l9fLKkJeXx9LSEktLy3Kvz5s3j7lz5/L8+XOeP3/Or7/+io+PD+fOnavxsSwoKGDEiBESK6qXlxdeXl4UFBRw69Ytzp8/z+TJk4mMjEROTg41NTVMTU1p2rQpzZo1w8LCAmNjY0lNxdu3bzN58mRSU1NxcnLCzs4ONTU17ty5g7e3dzmX64MHD7Js2TLev39PZmYm8Emo29vbo6urS/369albty6HDh1i8eLFWFpa0qRJExwdHdHW1qZu3bpfxGnOmzePLVu24Ofnh5OTE0FBQTg4OKClpVXp90YQgwICfxIdOnTA19eXc+fOMbO0lI3jx8OFC197WQICAv9wrly5gpWVFZMnTxZi/gT+a6ytrVmyZAmxsbHExsZy8uRJDhw4gEgkonbt2pw5c4YWLVpUOYacnJwkfX5Z9kppyc3NlQiPMspixKorJJ6WlsaTJ09ISkqisLCQHTt2MHjwYEmR9orIz88nIiKCp0+fSvrWqlWLs2fPAvDrr78yfPhw8vPzgU+WQx8fH/z9/fn2229p3LgxmpqaVQrUXbt2MWjQIIkFz8bGhmHDhuHt7Y2hoSGlpaXExcVhbGws1YOcbt26oaWlxaJFiyQZWC0tLavMolpGTk4OTk5OtGzZkrlz537xvoODAxEREeWOT5kwLNsyMzPJyMjg4cOHkgyZFVF2DtSqVYspU6aUE37SJCT6PTExMSxZsoS9e/diYGCAr68v7dq1w93dvUY1Ez9HLBYzYMAAZGVlyyX4UVRUlAjDsnY//PADM2fOJCkpSVKIvmw/hwwZwsaNG/Hy8uL169e8fv2aR48eERoayqFDh7h+/TqZmZlcunQJDw8P4FP5lmHDhgGfrKDp6em8f/+etLQ0yc+0tDQiIiI4e/as5JwsQyQSoa6uztmzZ2natCmXL19m7ty5uLq6Sh7cZGRkEBYWRr169So9Bv9YMSgSiToAHXR0dIiKiqqybWxsrFRjStPuz2ojjPW/Oda4ceO4dPEim0tKGH7pElrr1xNbRW2i/3a+f+tYAgIC/5/hw4fz5MkTnJ2d2bFjBy4uLl97SQL/wygpKREQECD5++zZs0RFRSEWi8nKyqJdu3YkJiZWWDz+0qVLzJgxg3v37tG2bVsGDRrEggULqpyvoKCABQsWcO/ePaKionj79i3GxsYUFBTg5uaGr68v3t7elWYWvXLlCitXruTx48ckJyfTsGFD6tevz7fffku/fv0qjIt79eoVU6dO5fHjx8TGxmJiYoK9vT329vaMGDGCiRMnSm6ee/bsiZWVlcQK9fz5c6Kiohg3bhxaWlqYm5tjZWWFo6MjTZo0wdLS8gtrV48ePbCzsyMhIUGyPXnyhGPHjvH06VNkZGRQUFBAVlYWLy8vtm3b9kVM7/3791m0aBGPHz/m/fv32NnZ4ezszJAhQ1BVVaVt27ZVHucyVFVVCQ4OZtasWdja2nLs2DEsLCwqba+oqMibN284evQo0dHRpKamkpqayps3byTuu7Vq1aJevXpoa2tjaGiIubk5jRs3pmHDhuTk5LBkyRJatmzJhQsXpE5G9DlisZgRI0awZcsW3N3duX37NnZ2dlJ7QGRlZXHo0CHOnTvH9evXkZWVRUdHB0dHR1q3bo2zs3OF5UaysrKYMmUK0dHRxMbGShINNWjQgMaNG2Nvb4+zszMmJiZfWC+1tbXR1tamXbt2pKWlsWzZMpYvX866deskYvBz5OXl0dLSqjAJ0IEDBzh58iSysrKoqqqSn5+Pvb09nTp1kqwfwNPTkydPnkjcTkNDQ7ly5QovX76s8vj8Y8WgWCw+AZywsbEZWlb3oyqkaSNtu7/jfMJY/6+9846uovr+9jPpBQLpvTfSCCUECC1EekcRqdIElV4s8AWxURVp4o+moCBKE0GK0ptBegkJKUBICARIIJX0Mu8fSeYlpN0gkqDnWWvWTWbOnPOZuXP3uvueffZ+MX25u7szcdIkFi9ezETg5KJFZOzahZt4bp57XwKBoIh69eqxadMmfvrpJ3r16kX//v2ZN2/eM33pEgie5MGDByQlJaGvr09ubi7u7u7069cPLS2tctubm5vTqlUrNDU1+fPPPzl58iQnTpzgjTfeYMiQIdjZ2ZVqn56eTq9evahXrx6TJ0/G3d0de3v7crNBVoSZmRnNmjXDzMyMmJgYYmNjuXbtGhEREfz888/Y2dnh6emJn58f3t7eBAUFcfv2bY4dO8aWLVto1qyZEuJXHlpaWvj5+SlfuEsoKCggJiaGiIgIJUPl2LFjycrKwtbWljZt2tCxY0d69erF8ePHiY2NLVVsvqT+nKmpKba2tjx48AADAwOaNGlSbtbHlJQU/vzzT1atWkX79u0xMjJ65nDwpk2bYmpqSmZmZoWhv3FxcaxevZqtW7eSl5dH//796dmzp1IOwcLCAkNDQ5XKSVhbW9O5c+dnSsJSQsns7rVr12jZsiW5ublYWlri6+tLUFAQfn5+NGvWrNT61OPHj7Nq1Sp27txJ8+bNGTFiBJ9++ilubm4qPWNqamps2bKFDz/8kP79+2Nvb1/l+mtZltm9ezfnzp3j0qVLXL58mfT0dCwtLWnWrBlvv/22ytd8584dVq5cybp169DT02P48OEMGDAAf3//Us/sqVOnCAsLU2pY3rlzh7i4OO7cuUNeXh6SJGFkZFRqtv1J/rXOoEBQU8yePZsff/yR4IQEfo6JoeP338PixTUtSyAQ/MsZNGgQnTt3Zvz48XTq1Inff//9mUKxBAIo+lL72muv0apVK958802CgoKqfJ68vb2ZPn06Z86c4dSpUyxatIiQkBDi4uKwsLBg5MiRpdrfuXOHxMRELl26REFBAe3btycwMBBfX1+VHQcvLy+8vLxK7Wvfvj3Hjh1TwuwuXrzIjz/+iJ+fH3/99Rfe3t54eHjQpUsX3N3dadWqlbLZ2NioNK66urqy/q179+4AvPrqq/z666/ExsYSExPDoUOHsLS0ZPny5Tx8+JCkpCSSkpLIyMhQMnxaWFhgZGREVlYWBQUFHD9+nFu3buHi4qI4x0ZGRvj5+dG3b18++eQTRo4ciSzL2NnZYWtrS1paGpqamvj5+dG+fXs8PDywsbGp0Mm9deuWst6xXbt2ODg4MGjQIDp06KCUbjhx4gT79+8nLS2NpKQkNm/eTHBwMDY2Ntja2mJra8vNmzcxNzdnyJAh2NjYVOgYrl69mgkTJjxzBlBJkhg6dChDhw4FYN68ecycOVNxfH7//XelZI6bmxtdunThlVdeYdu2bdy8eRNra2tCQkIYNWoUOjo6yLKMvr4+BgYGGBkZYWpqiqWlJba2ttjZ2WFmZoaRkRFGRkbMmjWLlStX8uWXX+Lk5ISZmRkjRozglVdeKTf08uzZs0r458iRI2nUqBGOjo7k5ORUWNqhIk6ePMn3339PUlISHh4eODg4YG5uXubHmKVLl3Lo0CGSk5MB8Pf3Z/DgwfTu3RtbW1u0tLTQ1dUVawYFghdFvXr1mD9/PqNGjeJ9IHzVKpg2Df6BGjwCgUDwJMbGxmzatIkJEyYwePBg9uzZU9OSBC8pUVFRBAcH06FDBzIyMlQ6Z+/evUqIqYmJCc2bN2fdunUVZnn08PAgNDSUhIQEjh8/ztGjR1m7di0pKSkMGDCAjz/+WKUMjiXk5ORw+fJlpdC3trY2Ojo6jBgxgtGjR+Pp6QlA3bp1OXToEDk5OVy4cIHg4GB+/vlnxo8fj5qaGk2aNKF79+60bt0aHx+fCh1TWZa5ceMGx48f5/jx4xw4cABTU1MGDx7M4MGDadq0KZIklanll5OTQ3JysrJGLCkpiQULFnD69GmuXbtW4fXp6upy/fp1rK2tSU1N5fbt29y+fZv58+crNQQXL16MhoYG+fn5BAcHl1viwtfXl5CQENLT0+nXrx8HDhzg0KFDACxZsoTJkycr1wBFBdTv3r2rzDbFxcURFRXF/v37uXHjBh999BHa2tqcOnWKOnXqcO3atVLb9evXuXTpksrvY1U87dQUFhaSlpYGQFhYGKGhoSxatAhtbW1u3bql1GwsKChgwYIFzJo1i8zMTBITE6sMoSxh8eLFSo3AAwcOoK6ujr+/P0uXLi01a5yWlkZycjI7d+7kwoULisOurq6OJEl07twZDw+PCmfXn2TgwIEMGDCA5cuXM3nyZK5cucIHH3zA559/zqxZs5R2W7duRZZlYmNjuXjxIhcvXiQ4OJjly5eTl5eHvb09bdq0qXAc4QwKBP8Aw4cPZ+XKlZw/f54FWVnMmz4dNm6saVkCgeA/gJqaGosXL8bZ2ZmQkBAaNmxY05IELyHu7u5ER0fTokULhg8fjpqaGt7e3syaNYu+ffuWO8vQrVs3rl+/zqlTp/j111/ZuXMn7u7uNGjQgO3btyvO2NOYmZnRr18/AgMDGTFiBLt372bOnDl88803fPfdd8qMUEUEBwczZcoUQkNDcXNzw8DAgPfee49hw4aVu4avBG1tbQICAggICOD9999HlmUCAwP5448/OHjwIAUFBWhra9OiRQt+/fVX9PX1uXz5Mn/99Rd//fWXsv6sXbt2tG3bljfeeIPu3btXGb6ZlZXF2bNnOXLkiBLed/PmTTQ0NKhXrx4WFhbY29vj5uaGp6en4lDY2NgoYZ316tXDx8cHT09PNj71/UJLS4upU6fSokWLcseXZZlly5axdu1abt26haenJ6+//jq9e/cud22mlpaWUqfwST744AO+/PJLCgsLycrKokmTJsiyjLW1Nd27d6d9+/aMGzcODw+PKjPRVsXVq1f58MMPiY+P5+bNm0r5EWNjYywsLJS1ii4uLlhZWWFtbY2VlVWpcUvW3D19bbq6uuTm5pKfn4+1tTUuLi40bNiQBg0a4OrqqvS5Zs0aoMj5LCwsJDg4GH9/f0aMGMF3330HQMeOHbl37x5xcXGKsx4XF8fx48c5ffo0H374IQB6enpYWFjQqVMnVq5cWeF1S5KkOLN6enq0bNmSiRMnltvOwcEBBwcHXn31VaDoff7+++8ZOXIkly9frnAM4QwKBP8AampqfP3117Rs2ZKvgFE//ojz2LFQRQY2gUAgeB5oa2vTtWtXgoODhTMoeGYcHR0xNDQkISGBgoICLl26xKBBg3BwcOD7779XnI2CggK+//57Ll26pBS7hqI6em5ubgwYMKBU7b3bt2+zY8cObt26pWwxMTFoamri4OCAo6Mjrq6udOrUqUKH5klsbW3Jzc2la9eubNmypVprDmVZ5vjx4wQHBxMWFsalS5eQJAldXV1cXFywt7cnJyeH7t27c/HiRUxNTZVyFPPmzcPR0VGltXsRERGsX7+eI0eOEBERQcuWLQkKCqJr165lHL2KSElJYcWKFUqCkBs3bhATE4OGhgYGBgZ4enrSvn17OnXqRGBgYLl9FBYWMmTIEI4ePcqaNWvo2rVrte7Xk/ft6tWr1K1bl+zsbJycnHBxcUGSJG7dusWPP/7I9u3bFSeyZGvatClNmjSp9pglYa1r167F3d0dExMTldYrlqe7xJHU09NjzJgxdOzYERcXFywtLVVeh1kSburv78+AAQNKHSsJMS1xrA8fPkxISAgaGhpIkoSWlhYeHh60adOGzp07q6RZV1eXLl26sHXrVpVCqHfv3s1ff/3F0aNHlWsqrzYnCGdQIPjHaNGiBW+++SYbNmxgKrBr0iQ4fRqewXgJBAJBdbGzs1PqpAkE1SE5OZnIyEiioqJITEwEUL54a2pqoqmpSXh4uOKoZWVl8fXXXxMWFsacOXPYvHkz5ubm5Ofnl5tw49atW5w4caJUGv3s7GzU1NRISUkhLi6O9PR0du3axenTp5U6dh4eHjg6OmJiYoKJiQkWFhZIksS9e/fQ09Pj5s2bZGRkqLRWNjk5mR9++IGVK1cqP5506dKFsWPH0rhxY2UG6f/+7//4/fffgaLP1KNHj1i3bh2//PILxsbGihZjY2PCwsLIz8/H3d1dyfZpY2ODqakpUVFRXLx4kcTERPLy8rh9+zbBwcEkJCTg6upKdHQ0w4YNw8vLq0KHJDExkf379xMZGUl0dDRqamq0adOG7OxsbGxsGDx4MM2bNy83I2UJWVlZqKmpYWtry8iRI0lNTUVHRwdLS0tcXFxo1KgRjRs3xtHRERcXl0rvZcmzIcsyycnJPH78WHGOPDw8MDU1JT4+XnH4L168yMqVK4mNjcXe3h4vLy8mTJiAv79/lc5hQEAAdnZ2dOvWDUdHR2U219nZudLznqawsBAdHR1ycnKwtrZGlmW0tbWVZ0kVdHR06NevHwsXLsTKyqrK9iUh0FpaWnz66aeMHz++WusHCwsLgaLvlao4gmfOnGHMmDG8++67jBs3jpUrV9KgQYMK12wKZ1Ag+AdZsGAB27dv57fMTPafO0fnDRtg+PCaliUQCP4DaGpq8vjx45qWIXjJiI6OVkLuSpJxNG3alLZt2+Lu7l5uSYk6depw4cIF1q9fz+zZs9m7dy/Dhw8nICCg3LIF7dq1o127dqX2ybLMw4cPCQ8PJywsjE8//VTJunn+/Pkyfairq7N161a6d+9Oz549SUxMpF27dsyYMUOppdejRw8cHBzKnUEaO3YsW7ZsYeXKlYwZM6ZCR2Ds2LGMHTu21L6CggKSk5PL1IM7d+6cMru4efNmpb2GhgaXLl3iYHHt4ezsbG7evMn169eV9XS7du1i6dKlGBsbM3LkSIYPH46bm1upcV1dXdm9ezdQtI7v1q1bRERE8N5773Hq1Cm2bt2KtrY2sbGxFTqE+vr6/Pjjj0CRkzF06FB++ukn0tPTiYqKYt++fUpbZ2dnbty4UW4/kiQRFBTEhQsXAEhISFDWfpYwceJEli1bRvPmzYGiGodXr17l0KFDfPHFF1y9epXNmzezatWqKrNsmpmZceDAAZKTk+nUqROrV6/mhx9+ULKwqoq6ujpZWVkAREZGMn/+fObOncvevXsrrdOYlZWlhFoWFhYyfvx4lRxBKCoEn5+fz/z583n//ffJzs4uteZPVc0ff/wxXbt2xdvbu9L2S5cuZebMmYwfP16l/oUzKBD8g1haWjJu3Di+/PJLJgEhH36I1quvwt+MnRcIBIKq0NTUJC8vr6ZlCF4y9PX1CQ8Pr3ZpkpKi3Y0aNeKrr75i1KhRqKur8+233zK8kh9BP/nkE7Zv3879+/d59OgRxsbGSibMkqyYzs7OeHp60qBBAywtLTE3N8fY2Fhx8u7fv09cXJxSA/CLL75gw4YNTJo0CXV1dRwdHdm2bVupovXr16/H39+f2bNns337dlxdXXF0dERXVxdfX188PT3LLd9QUFCgzHZFR0crs14lYZt169bF1dWV5s2b07JlS2Xt2ZOZPXV0dMpkQc3MzGTTpk08ePCARYsWsXTpUlxcXPjjjz/KdTokSeKXX37hm2++IS8vj27dujFmzBheeeWVKt+7jRs3MnfuXG7dukVubi6mpqa4u7vj4+ND8+bNcXd3x8nJCVNT00r7KUFLS0sp9fDGG2/QunVrmjdvrmRmPXXqFCNHjuT27dt4eHjQqFEj+vfvT6NGjRgyZAj169cnKyuLR48elZotLu//ixcvYmRkxMyZM5k6dWq11yIWFBQof+vr62Nqasrq1asrrdO4efNm3n77bZydnfnwww+ZOnUqZmZmKo0XHx9Pu3btuHHjBq6urnz33XdKmYzqkpuby4oVK1i1alWl7f7880+Sk5OJjo6mfv36GBgYlHr2n0Y4gwLBP8zQoUPZuXMnkdevsyIhgalz5sAXX9S0LIFA8C9HU1OT/Pz8mpYheMkwNzdX2RG8ffs2K1eu5Nq1a4SHh3Pz5k2cnJxo2LAhs2bNIjExsdLZFoAhQ4ZgamrK+fPnOX/+PNHR0WhpaWFmZsb//vc/evXqVWVonJqaGpaWlvz000+cPn1aqafm6OhIp06deOWVV8rMUOro6DBlyhRGjRrFiRMnFKfup59+4sGDB6ipqaGmpoaenh46OjpoamoiyzKPHj3CyMgIJycnZR1cUFAQb731Ft7e3hgZGal07yojLy+PvLw8wsPDad26NVevXi2V+CQ2NpZevXqRk5PDvn37yk36UhmdOnUiPz+f8+fP88svvyhrQuvUqUOHDh1UWqf5JLm5uejp6fHw4UO2bNlCenq6MhsIYGNjw+3btwkKCkJDQ4MHDx6QlZXFhQsXWLhwIY8ePaKwsBBjY2Ml9Lbkb2NjY+zs7GjcuDEmJiZ4eHjg5ORULX1Q5ABv3ryZI0eOUL9+fTp37syQIUPo2rVrlc+Xv78/ZmZmvPrqq9Wa0YOiz9OiRYtYtWoVBw4coH379tjY2NChQwdmz55dpvZmZZTMSFfF7t27CQ8P5+7du5w4cUKZTa4I4QwKBP8wWlpaLF26lO7du/MJMGjJEixGj4YKUm0LBALB80BNTa3Ur+ACwfMmMzOTpKQkZFnGwMAAc3NzYmNjSUtLIzo6mrt373LgwAFcXFzw9fXF398fe3t7PD09FYfTxcUFFxcXpc/Hjx9z+fJlhgwZwptvvomenh4ffvghY8aMqdRJLSgo4NGjR2hpaaGnp0dhYSGxsbHK+r6PP/4Ya2trHBwccHV1VbJNOjo6KuUwoCh0cN++fUrGyLS0NKVsgba2NoWFhRQUFJCVlUVaWhqPHj1CV1cXNTU1du3axdixY6u9jq0i8vPzSUhIIDY2tlQm1pycHHx8fLhy5QotWrSgbt26GBsb06lTJ3r06EGrVq3Q09OrsF9zc3OGDh2KjY0NZ8+eJTExkeTkZG7dusW9e/eq1BUVFcXVq1c5ffo0UDQrnJubi4aGBnXr1iU1NZXs7GylvZ2dHWPGjGHPnj2kpKTw+PFjcnJygKIZTlmW0dHRoaCggIKCAtTV1dHV1UVHRwctLS00NTXR0NBATU2NxMRE1NTUsLe3V3mNHxS9rwcOHODtt99m0aJF1Vqz5+TkxIkTJ3BxceGDDz5QqSxECerq6vTu3ZuUlBT++OMPAOLi4ti6dSuTJ09WqY/Y2Fh0dXXR1dVl1KhRFbZLS0sjIiKC+/fvk56eTlZWlko/CApnUCB4AXTr1o3u3buzd+9e/pefz7qpU6GKX2oEAoHg71CdL0oCwbPQoEEDVq9eXWpfQUEBCQkJ3Lt3j379+ikzbgcPHlQyKQ4dOpS1a9eW22edOnVo3bo1lpaWxMbG8vjxY2bOnMnx48fZtWtXhVp0dXVZtGgRAEFBQRw9ehQoWt9VsqYvPDy83GsIDQ2tcnZIXV2dWbNmMWPGDBISErhz5w53795VCp+HhYWxf/9+VqxYwfz585k6dWql/amKuro69vb2pfa5ubkp6/6ys7MZOHAgO3fuJCIiguXLl7NmzRpGjx5dab+nT5+mW7duqKurs2jRIsaMGVOm7EJ5ZGZm4uPjQ4sWLXB1daVr1660bt0aDw8PTExMKjxv6dKlLF26VPl/5syZzJs3T8lwmZ2dTXZ2NqmpqURHR/P111+Tnp5OUlISkZGRJCUlKVt0dDR5eXkEBATQo0cPAgMD8fT0rNTmzZkzh0GDBjFw4ECMjIzo0qULw4cPp3PnzqVCeCsiJCQETU1NMjIyquUMPo26ujrOzs4cPnxYCaOtik2bNlFQUMCiRYto3759he2WLl3KZ599pvwI6Orqip+fHx999BGNGzdWSk48jXAGBYIXxJIlSzhw4ADr8/J4Z88e/P/4A7p0qWlZAoFAIBAo/N3QYnV1dSwtLbG0tCyTbEaSJCRJqlYheSgKm9yzZw8ZGRkqOSxPjqevr092djbm5uZ4eHjQtGlTfHx88PDwwN3dXeX+SrQ/eX3NmjUr1aZPnz7s2rWLadOmYW9vz2uvvVat6yyPYcOGkZ6eXqFOHR0dMjMz0dHRISAggIULF5Yqgl4RrVu35tatW/Tu3Zv3338fIyMjhg0bVqZdcnIyN2/e5ObNm9y4cYObN2+ir69PmzZtmDNnzjNdU35+PhkZGeUek2WZ/Px8XFxcSpXHKPmRIT4+nmXLlrFx40b++OMPZbbNyMiIc+fOVRpC6unpyYgRI5gyZQq//vorhw4dIj8/n+bNm9OtWzfatm1LkyZNymTAvXv3Lj179qRly5acOHGCTp06VZiZsyoKCwtxc3Pj5MmTtGrVSqUw0enTpzNw4EDeeust5s6dS1RUVLlJkWbPns20adM4f/68UguzJCFQRYmA4F/sDEqS1BPoaWVlRWRkZKVto6OjVepTlXbPq43o69/Z17Bhw/j222+ZCBx9911u794Nmpovhfba1JdAIBAI/hlCQ0MxNjbG3d0dd3d3PDw8aNiwIT4+PlhZWVU6+xIREcH3339PWFgYERERREdHo6+vj52dHb6+vrRu3RovL68yTtTTLF26lKioKDQ1NfHy8uLVV1+le/fuKjtuDx8+REdHh7Zt2/L555/TuHHjcktcVAc9PT1GjBhRal9qairXrl3j2rVrnDlzhgMHDtCgQQPee++9KtdKqsp3333H6tWr8fT0ZPny5bRp06bU8U8++YTDhw+zceNGBg4cWK2+jY2NqVOnDgYGBnTo0AGAbdu28euvvyqOX25uLi4uLjg7O+Pi4kJAQABDhw6ladOmKo2xf/9+tm/fTnx8PPfu3SM+Pl4JrdXT08PY2BhbW1vc3Nzw8fHBzc2NwsJCtm7dyrJly7h79y7x8fEkJCRgaGiIlZUVubm5WFtb06BBA/z8/GjRooWyfrM6pKenA3Ds2DFOnjxJQUEBmpqa+Pj4MHbsWCUk08rKisOHD7NgwQJeffVVJEnC29ub2bNnVzjbVhGyLLNnzx6OHTtGVlYWBgYGBAQE8MUXX5QKBYYip/n06dNs27YNHR0dWrduzWeffVZpfUV9ff1S2Xo3b97MoEGD/pvOoCzLu4Hd3t7eo93d3atsr0obVdvVxvFEX7Wjr8WLF7Nnzx7O3L/P1pgYhh08CFOm/GPj/Zv7EggE/yxZWVlKgWbBf4dGjRqxb98+IiMjiYyM5H//+x/Z2dnk5eWhpqaGq6srzZo1w9/fn3bt2uHm5saZM2eYO3cuZ86cYdSoUYwaNQp3d3ecnZ2fKaRu5cqVLFmyhP79+1drbdeTaGpqcurUKf7v//6PcePGVemAVoWPjw/79u3j2rVrhIWFERYWRkpKCh4eHnh5edGwYUMiIiKqlRBEFUo+f/Xr1y93zaSbmxt2dna8+eabTJo0icDAQHr06EHfvn3LLQMC8ODBA5YsWcK6deuwsbHh6NGjWFtbA0XOhCzL3Lt3j5ycHDp16kSrVq0ICAjAx8en2llmdXR0uH//PocOHcLExISxY8cyefLkSrOARkVFMXDgQAYOHEifPn3w8PDAzc2NevXqqWyPZFkmNDSUW7du8eDBA2U7efKk0kZNTU0p6F6vXj3MzMywtrbG2dm5VMjrvXv3CA0NJSEhQWlvbm6ucibThw8fEhoaChTlkdDW1iY7OxsDAwPc3NxwcnJSnvPU1FS2bNnC/v37OXLkCA4ODnTp0oX58+eXKTWiClpaWqirqyvOfnn8a51BgaA2UrduXRYuXMiwYcOYDvT9+GMMBg+uaVkCgUBQCnd3d+ULW7NmzejatStt27alcePGf2u9jODlwMzMDDMzM9q0acOiRYtKRVhduXKFK1eu8O2339KrVy927dqlZA4tmQn8uwQGBjJ37lxatGhRrS/AeXl5XL16lZycHNLT01FTU2PTpk2kpaWxY8eOv6Xp9OnTREZG8vDhQwAaNmzI66+/jqurq5IEJzc395n6LiwsJCUlBShyUEqSqTRr1oyRI0fSt2/fMqG1GRkZREREUFhYiIGBAfn5+SQmJrJt2zaCg4OxsLCosFzCoUOHWL58OW5ubnTt2rXUjFq3bt2UWc3bt28THBzMn3/+yU8//UR4eDiWlpb4+Pjg4+NDdnY27dq1o0uXLmWKxiclJSnPiqmpKQ4ODly/fp2NGzfSvn37MjOcT+Lm5saGDRtYsGABJ0+eJDU1lbS0NPLy8jAwMFAS1ujp6VGnTh3q1atH/fr1MTY2RkNDg/j4eK5du4Ysyzg7O2NmZoaVlRU2NjaMGDECY2NjfHx8sLGxwdDQsNKZNkDRMXLkSDZu3Ii7u3uFTmlmZiaXLl3i7Nmzyvbw4UO8vb0ZPnw4zZs3x8fHBy8vr3LDpY8cOcI777xDnz59CA8Px8LColJtVaGhoUF+fn6l4d/CGRQIXjBDhgxh5cqVnD59mjnp6XwxaxZMm1bTsgQCgUChVatW1K9fn7i4OI4ePUpwcDA6OjpkZ2cTFBTEO++8Q9euXYVj+B9FT0+P/v37K/XOtm7dipubG7/++itDhgz52/2vWrUKJycnGjduTFRUlDJrVRn37t3D1dWVjIwM1NXV6dGjh5I44++GiELRmrV69eop9QVL6gpevnyZ7du3c+PGDeLj43nttddYu3ZtterfeXt7Ex4ejpqaGv369WPq1Kn4+flVmNRm2bJlTJ48GUdHR5o1a4aXlxe9evWiT58+eHp6VjmbOnjw4FKO/FdffcWDBw+oV69eqXZ2dnbY2dkp4acFBQXcuHGDkJAQrl69ys6dO1m0aBGampqEhoYqjvvUqVNZsmSJ0o+6ujrNmzfn9ddfx8HBgaSkJNatW4eGhgYtW7bE2dm5jEP22muvlVlzmZubS3p6OgsWLGDRokWkpqZWep1qamqkpqYqmZVLnHUtLS2mTZvGvHnzKj2/hAEDBvDzzz9z8+ZNunXrVqEjGBwcTLt27ZQELvr6+nTu3Jm2bdsCRWGf3t7e+Pj4VDhr27dvX4KDg+nXrx9Hjhxh0KBBKml8kry8PM6ePcuBAwfYsmUL2tratG3bloMHD5bbXjiDAsELRk1NjeXLl9O8eXOWyjJvrV2LdpcuIMIjBQJBLSU3N1f5IvXHH38QHBxMYWEhffv2ZeDAgQQFBT1zOJ/g5UFLSwtdXV3WrVtXaq3U999/T1paGvn5+YSHh+Pq6oqGhoZSJkBVZFnmwYMHREVFIUkSOTk5bNu2TaUU/JaWloSEhBAcHMz06dPZu3cvf/zxBw0aNGDFihXKGqq/g76+PnXq1KFhw4Y0bNiwzPESB+v48eNcunQJS0tLlfo9duwY/fr14+TJk/z222/s2LEDJycnvvjiC3r37l2m/ciRI7l16xabN2/G2toaGxsbGjRoQJ06dVQOo9TT08PT0xMLCwseP36skvOqrq6Ou7s7Li4uNGzYkCtXrnDjxg309PRKzS7Onz+fcePG8fDhQxITE0u9njp1iocPH3Lx4kXu3r2rnKOlpUXdunUxMTHB1taWGTNmEBQUVGp8LS0tjI2NVa7lWFhYSE5ODhoaGsiyjJOTE507d+a1114jICBApT4AAgICOHToEBMnTsTV1ZXAwED2799f5keGgIAAbt26xf3797l//z4PHjzg/v37XL9+nTNnznD+/HmlrZqaGnXq1MHU1BQ7OztmzJhBx44dAWjatCnp6ekqJQJ6koyMDIYNG8bBgwdJS0vD2dmZrl27MmLECNzc3Cp0QIUzKBDUAM2aNWPEiBGsW7eOKcC2efOgb18Qa3MEAsFLQEnihR9//JHffvuNnJwc2rZtW2kNLMHLRXp6Ordu3SItLU1xMkaPHs2MGTPKlBAICgpi+vTp7Nq1izlz5hAfH4+7uzsPHz6kU6dOjBo1ipYtW5ZyVGRZZteuXYSEhBAZGUlUVBRRUVFoaWnh5uZGQUEBb775Jt27d1dZs5OTE05OTqxfv574+Hjy8/MJDQ3l/fff5/jx49XOAFm3bl1yc3MxMzOjS5cuvPvuu5W219TUJCcnh9zc3GqFy5qZmSlrDbOzs9HT0yMvLw8HB4cKdS1dupThw4dz8OBB1q5dy/Xr19HQ0FBCKW1sbHB3d8fX1xdvb2969+5NVlYW3333HUeOHOHEiROYm5tjZmbGjh07KnUio6Ki2LNnD1evXiUkJISIiAjMzc3R1NSkS5cufPLJJ6UcI21tbZydncutt5iSksL27dt5+PAhd+/eRVtbm7y8PLS1tTE3N8fT05MmTZqUKafxrOjp6TF48GB0dXW5du0aP/74I6tXr8bCwoImTZrQoUMHXn/9daysrCrsIyUlhV9++YWwsDClYP3TYbFQtL7T1tYWW1vbMsfWrl1byhnU0dEhPT0dQ0NDvLy8Sl2vpqYmXbt2ZfTo0ezdu1fldZra2tr06NEDX19fxSE9dOgQK1asqPT9Fc6gQFBDzJs3j+3btrEvPZ2jFy7QfcsWGDCgpmUJBAJBtSgpyH348GGioqKeOd28oHYQHh6OiYkJWVlZODg4YGZmxsKFC+nfv3+F9dh8fX3x9fVV/s/IyCAsLIx+/fqxbt06tmzZgrW1NbNnz6Z///6K0zRr1izCw8OZOXMmEyZMwM3NTZn1ycnJUan+mypcu3YNIyMjgoKCGD58OF27dq3yC7auri7p6ekEBAQwYcIEOnfujKGhYZVj6erq8vHHH1crTPRJSoqs379/Hz8/P4yMjLC0tMTJyQl3d3ccHR2xsLBQZuLt7OwwMDBQCrZDkfOSkpJCdHQ0Fy5cwMfHhy5durB27Vo2b97MpEmTWLlyJZaWlirN3p46dYqNGzdy7do1CgoK6NChA61atSIlJYU33nijWjNY4eHhTJgwATs7OzZt2oSnpycuLi7VTkxTHbZs2cKYMWNYuHAh33zzDevWrVOym167do0GDRpU6gxGRkaycOFCZs2axaxZs8o4Vunp6Uq9ySdrTz75f0pKCpIkYWVlRcuWLenduzcdOnRQ1gTKskxUVBQHDhxg//79nDhxAjc3NxISElS+NxoaGgwfPrzUvt9++43evXsr9RzLPU+l3gUCwXPH3Nycjz/5hGnTpjEF6PDee2j37AnPYfG9QCAQvAgkSaJOnTrk5+fj6enJ/v372b9/f03LEvwNDA0N+fXXX2ncuDEaGhrcu3dP5XDHEvT19fH398fY2Ji4uDgyMjKIiopi9OjRnD59mq+//hodHR0uXrzIsmXLmDNnDqtWrcLKykrZkpKSsLCwwNfXl8aNG2NnZ4epqWkpx6WgoIDk5GQePXpEUlKS8hoXF1dKT0ZGBpIksW/fPvbt20fbtm05fvx4pdeQlZUFFDlCp06dwsbGhtu3b1c6w5KUlARQpkRAdXgyJBsgISGBhIQErly5Um77Ll26YG1tzfDhw/Hx8VFm1aysrMo40yWzcRcuXMDGxgZTU9NyZ7ieRJZlevbsiY+PD9evX+fgwYPs2bNH+ZwvXryYL7/8kvfee0+l62vZsiUXLlygc+fOjBkzBkdHR7y9vWnSpAkNGjSgQYMGODo6VqlLVTIzMwFYtGgRixYtQldXl0aNGvHmm28ybNgwlUJOmzdvzpEjR+jVqxfz5s3D0NAQExMTLC0t0dfX59dff1Xa6urqEhgYSMeOHenWrRs2NjbY2NiQlJRE/fr1K0wIc+DAAboU156WJIn27dvTsGFDduzYgSzLZGZmEhgYiJ+fn0qzzrIsk5ycTExMTJVthTMoENQg48ePZ+3atURERLDs7l0++OIL+PTTmpYlEAgE5VLyJaTE+QsMDCQgIAB/f39sbW1FGYp/AampqfTt25fExESsra3R1dXl1KlTZZKLPAtPh09qaWnx/vvvM23aNBITE4mPjyc+Pp67d+/y2WeflVpTVoKamhrq6upoaGiQk5NDvXr1MDY2VtaSGRsbY2BggJ+fH/b29ri6uuLt7Y27u7vSrqK1U0+joaGBhoYGgwYN4rPPPqv0+d61axcXL15k7dq1ytqv6lAyqwdgYGBAYWEhWVlZ1K1bFysrK5ycnEhNTeX06dMsXryYjh07YmdnV63Q188//5xXX32V3377jUmTJhEXF0erVq3w9/fH39+fxo0bY2xsDMCkSZM4fPgwsbGxPH78GCgKw23dujXTp0/H0dGR0NBQ+vfvj6ura7Wu1dPTk+HDhzNnzhxCQ0MJDQ3ll19+QVdXl8LCQrKzszE3N2fs2LH873//q1bfVZGVlcXly5e5fPkys2bNYtKkSSolkmnVqhVz5sxh7Nix3Lt3j3v37nH16lXleInjnZuby++//87vv/+OJEno6upibGzMgAEDGDBgAIaGhuXOeHfu3JmMjAzu3bun1FYseT158iTnzp1T2mpoaGBsbIyXlxc7duxQPpuXLl1i8uTJynk5OTnY2Ngo2VQvX75c7rUJZ1AgqEG0tLRYunQpXbp04XNg6MKFWI4cCc8pVl4gEAiqw8OHD9m/fz/nzp0jMTERDQ0NtLS0lGLTAQEBNG3aFHd392olBhG8PLi7u3P+/HnWr1/PhAkTKq1XpyqSJKGjo0PPnj2ZOnVqmeNqamqYm5tjbm6Or68v3333Hfn5+WhrayNJEnl5eZiYmCiOnCRJZGRkEBMTg6amJjY2Nnh4eODr68vo0aOrLBVQGbIsK05gv379mDt3rkq1AwsKCnBxcWFwNcpF5eXlsWTJEvbv38/JkycxNzenb9++9O7dG2dnZ2xtbUslZrp27Roff/wxn376KY8ePWL27NnVujZJkmjSpAlNmjThk08+4fbt24wcOZKPPvoIPT09MjMzqV+/Pg0bNsTZ2ZkRI0aUCoG8c+cOu3btYvv27djY2JCdnc2yZcsICAigZ8+ejBo1SuUfhJ5ul5eXR15eHlCUqCY1NZWWLVuWapOWlsaRI0eUWoHq6upKHT1JkigsLKSgoICcnBzU1NTQ0NBAkiRkWSYvLw8tLS20tLQoLCzE29ubHj160LNnz2rdv6fR1NRER0cHSZLIzc1FkiQsLS2xsLDA0NAQXV1d8vLy2Lt3L19++SWSJKGvr4+dnR0+Pj60bNmSt99+Gx0dHRITE/nll1+Ii4sjLi6OO3fuEBcXx6NHj1BTU6N+/fpYW1vj4eFB06ZN8fT0LBVC6uLiwsiRI5W1nSEhISQlJSHLcqUlKoQzKBDUMJ07dyYoKIgjR44wPSeHH957D7Ztq2lZAoHgP8KNGzfYtWsXu3bt4sqVKwQFBdGyZUu2bduGn5/f365zJXg5WblyJRs2bKBv375/e8bXzMyMAwcOlJuB82kKCgrYuXMnDx48oGPHjixevBh3d/dyy0PIskx8fDzh4eGEh4czbdo0evbsWen6r6q4c+cOrq6u7NmzBycnpyrbR0dHs3TpUn788Ud69OhRrbFyc3PZvHkz9+/f5+zZszRq1KjS9p6enmzbto3r16/TtGlTxowZU2UIryzLxMTEKLNZJYlFSv4OCQmhsLCQx48fK6GZCQkJGBgYMHHiRCRJIjY2ltjYWGJiYoiNjSU0NJTw8HDU1dWRZZkrV65gZGT0XBJIaWlpYW9vz+HDh7G1tSU8PJw9e/bw+++/c+7cOVq2bImbmxuzZ8/G1NQUQ0PDUpuRkRH169cvU/amsLCQ+Ph4FixYwDfffMPp06dxc3NT6ZmEolDjS5cuKRqNjIzo3LkzXl5eODg4YG9vj729PWZmZsrnRZZlrl+/TkREBJs2beLatWsAPH78mBs3bpCdnU1hYSHDhg1DR0eHS5cu8cknnzB37lwCAwOxtbVVaiGWOJyVUbduXYYNG1Zq34YNGxg2bBh//PFHhecJZ1AgqAVMnz6dP//8kw25uby7fTstjh2DwMCaliUQCP7lXL9+HX9/f/r378/06dNFiQiBQqdOnRg9ejQLFy7kjTfe4I033lCp3l8Jsizz6NEj9PT02Llzp8pfujU1Ndm7dy8uLi4cPHiQixcv4u3tXW5bSZKwtrbG2tqaDh068M033xAfH19tZzA/P599+/axdu1aYmJi+Ouvv1RyBAHefvttDh06RKNGjcjIyGD58uX069evQg25ubmEhYVx6dIlLl26hJaWFvfu3eObb75h7dq1VY4XGxvLggUL0NfXVymhTUhICC1atCA7Oxsomk0LCAigW7du9O7dm/79+2Nubk7r1q3LrEVbvXo148aNK1U3r0OHDkyePJlOnTrx8OFDPD090dPTq1KHqhQUFPDo0SNGjhyJn58fX3/9NRkZGfj4+PDjjz/SuXPnZ7JRampq2NjY4OLiouyrrBD703z00Ufs3r2bzz77jIEDB5bqpyJCQkJo1KgRgYGBODo68uGHHxIUFISPjw8WFhalnLv8/Hxu3ryJLMsMHDjwuf0IV15h+6d59nl0gUDw3LCzs2NaceH5iUDhxIlQDSMlEAgEz8Iff/yBr68vK1asoFu3bsIRFCjMmTOH8+fPExUVxbRp07Cxsaly5upJPv/8c9TU1Dhz5gwtWrSo1tixsbE8ePCAFStWMHTo0Erbpqenc+zYMRYuXEh+fj67du2q1liJiYk4ODjQu3dvzp07R79+/Th06BBHjhzhxo0bSiKZijh48CB3797l008/5dq1a0yaNAlra2uMjIzKzMZ06tSJOnXq0KRJE0aNGsXx48d55ZVXCA4OZty4cUqyk4ooyTC5ceNG3njjDX7++WeOHDnCkSNHlOQ1T+Pr60t6ejpXr17lhx9+YOzYsURERDBjxgwmTJiAl5cXnTt3Ljcpydtvv01mZiZXr15l8+bNTJs2DQ0NDZYsWUKDBg3o27cvixYtUjIKq0peXl6F11pQUEBSUhKHDh1iwYIFZGRkAEU/XE2ZMgVDQ0NWrFhRrfGepKQsDsDWrVurfH9LGDduHDk5OfTp00clRxCK7v3w4cORJIlRo0axYMECOnXqhKWlZSlHMDU1ldatW7Nv3z5CQkJeeDTGv3ZmUJKknkBPKysrIiMjK20bHR2tUp+qtHtebURf/72++vXrx3fffsu5xER+uHqVrnPnkvpEqYnarP1F9yUQCJ4PAwcO5I8//qBVq1Zs2LCBBg0a1LQkQQ2TlZXFW2+9xYULF4iMjERdXZ1GjRrRp0+faq2vOnr0KN98802Fs3rlURLSePDgQTQ1NRk7dmy5oXEhISEsW7aMs2fPEhYWhoaGBq1bt2bMmDEMGDAAWZZVDm01MTHhl19+ITY2lrt37/L111+zfv16JElCQ0ODgoICJSzQ0tISR0dHGjduzPTp05W1iVZWVgQEBChtra2t+fDDD2nTpk2psZYtW0ZERAR3795VSg789ddfbN++nZs3b1JQUICuri5mZma4urri5+fHrFmzFEetefPm7N27VwnbPHbsGLGxsVy4cIHHjx+jqamJqakpLi4u+Pn58dFHH1G/fn00NDRIS0tj9+7dHD16FBMTE15//XVeeeUVfHx8Kr0/WlpaeHt7l3kfk5OTGTJkCJ999hkLFy5k0aJFDBgwgOXLl5OUlERaWhqpqamkpqYqf5e8lqzfK1nzp6urS926dZVkQCYmJlhYWGBkZISmpibZ2dmkpaVx6NAhAgMDq/UcQlE5iy+//JI///yTO3fuYGNjQ+/evRk0aJDKCXicnZ3p27cvbdu25cKFCyrPHK9atYpVq1bRo0cPHB0dGTlyJNbW1lhZWWFtbY2FhQUDBgygUaNGrFy58rkk4crPzyc6Oprw8HC2bduGnp4enp6epeocPsm/1hmUZXk3sNvb23u0u7t7le1VaaNqu9o4nujr5ehr8ZIlDBkyhOnAq8uWYTFxIjwRBlKbtb/ovgQCwd/HxMSEPXv2sHLlStq0acO4ceOYMWPGc6vvJnj5KCwsZMeOHXTs2JGTJ0+ir6//TF9Q+/bty+DBg9mxYwdBQUHltgkJCeHs2bNcvnyZK1euEBISQt26dfH19WXIkCEVjltYWIihoSHNmjXDxcWFpKQkHj58yPLly/n000/JyspCTU0NbW1t9PX1MTAwwMjISMmqaG9vj42NDUZGRhgZGeHt7U3z5s0BOHToELdu3VKSjqipqaGmpkZ8fDypqamoqanh5ORUpm5bYWEh6urqaGtrEx8fz3vvvcfq1atp1qwZ/v7++Pn54evri4eHR5nrSUtLo3v37vz555/k5uZy+/ZtNDQ0cHZ2LjWOtrY2HTp0KHVueHg4o0ePJjg4mMLCQh48eIC+vj6pqamlzi2pQ1hYWKjoLZmFK28mqrCwkLNnzxIbG8vt27fLbJmZmejq6qKtrU3jxo3R0dFBlmVSU1O5ceMGkZGR3Lp1i8LCQkxMTGjWrJmyeXt7Y2VlhZqaGqdPn1bGKHkNCwvj999/R01NDXt7e+zs7LCzs+Ozzz7j1VdfrfbzWFhYSF5eHjk5OWhoaKCjo6Nknq0Ofn5+rF+/nokTJ7J7926VdGhrazNp0iT09PQYM2YM77//PlpaWkpipKysLCXRzYULF/D29sbJyQkbGxusra3x8fGpdF3o1atXuXz5MhEREURERBAeHk50dDTW1tY0aNAAd3d3jh8/jp+fX4V6/7XOoEDwMjJo0CD+7//+j1OnTvF5cjKLPv4Yli+vaVkCgeBfjCRJjB07ll69evH222/Ts2dPdu7c+VzXAQleHvT19bl8+TIjRozAzc0Nf39/FixYUO1Z44kTJ7Js2TJ69OiBubk5o0ePZsiQIUpmzsLCQoYPH64k5fDx8eHzzz+nW7duODs7K05LeTRq1KjSkNXAwECOHz9OZmYmmZmZJCYmcvPmzXLbamtrs3jxYsaOHVtmv5OTE3379qVZs2ZKrcOKvlCbmZnh6elJREQEADk5OVy5coVLly6xZs0aPD09uXjxYrk/tPzwww8EBwczffp0unTponItOSgqUfXXX38BYGxsTP/+/WnTpg1eXl6lMk22adOGNm3aUFBQQEhICEeOHOGHH35gxIgRaGpq0rhxY1555RUlY3B8fDzDhg3jzp07SkinJEl4enry6quv0qhRIy5fvoytrS1vvPEGLi4uqKurs3jxYmXM3NxcoqOjiYyMJCoqiqioKL744gtiYmKIj49HU1NTWbdXUFCgOK/a2tp4eHjg6upaqmxIeno6e/bsITw8nLS0NLp164afn1+ZZDFP4+XlxcaNGwGYNWsWc+fO5fPPP+f48eNV1pt8msLCQo4cOYKXlxcff/wxr732WpmaiLIsk56eTkpKirKFhoYCkJ2drazfLKEki+r58+eV2TstLS2MjY3p168fyyv4Hpifn89bb73FjRs3lDBhAwMDXnnlFZydnbGysiInJ4c1a9YQHx9f4TUJZ1AgqEVIksTy5ctp1qwZy2SZt775hgZvvw1eXjUtTSAQ/MuxsbHht99+Y+TIkQwdOpRffvmlpiUJagg7OzsOHz7MtWvXaN26NQ0bNsTd3Z0xY8YoCUdUwcDAgOjoaGJiYpg5cyYzZ85k06ZNDBo0CDU1NS5evEhqaioXLlzg3LlznDhxgkWLFpGRkUH37t2ZPXu2yuuznqS80hK6urqoq6uTm5tLo0aN6NGjB0FBQTRr1qxcZ0KSJMaPH1/GSayIzMxMrly5goaGBhYWFvj7+9O6dWtlRtDAwKDc8woLC3FyckJdXZ26devSrl07lcbLzs4mISGBBQsW8L///Y9Dhw6RkJDAihUrlDV1GhoaLFiwQMlJAEUJZBo3bkyDBg3o3bs377//Pjt37uTo0aMcPXpUufb33nuPyMhIZbavJLS1ZAsNDeXo0aPcvHmTjz/+GEmScHBw4ObNm4rDrKWlpRSSf5oSp+xptLS0UFNTIywsjCtXrtCoUSP69u1LXFwcV65c4dGjR1y9epXbt28r52tra9OvXz9+/PHHcu9VQUEBwcHB7Nixg59++okmTZrw6aef0q1bN5Xu9dNkZWURHh7OW2+9xeTJk1m7di09evRg4cKFfPHFF6SkpCg/Zjg6OmJtbU1hYSFeXl4YGhpiamqKpaUl1tbW2NnZYW1tjaGhIfXq1ePevXucOXOGI0eOcOLECU6cOMGYMWMIDAykV69epRx8DQ0Nzpw5AxQ9D/fu3VNqdZZsZ8+e5dixY5UmJxLOoEBQy2jatCmjRo3i22+/ZXJhIb9PmoR08GBNyxIIBP8B1NXVWb16NU5OTly9erXK9USCfzeenp6YmZmRnJxMaGgoU6ZMYdKkSfj7+7Np0yacnZ0rPDcuLo6EhAS0tLQwMzOjV69e9OjRg/bt25dqV69ePYKCgpRQUlmWuXDhAkFBQWzcuJHOnTuze/fucktLPMm5c+fYuHEjYWFhnD59GnV1dczMzHBzc6N58+ZKfUwPD48qZ5KgyHlUtWZgamoq7dq1w83NjYsXL1bo+D3Nb7/9xsSJE8nNzWXChAlMnDixTBtZlvnggw+Ijo7mwYMHJCQk8ODBA9LS0jAxMcHOzo7k5GTFsXBzc8PX1xcvLy8sLCxwdXVFlmXef/99oqKilPp1aWlpWFtbU1BQoGTZ9PX1pWXLljg7OysOnCRJ1K9fn/r16+P11A/TU6dOZcmSJYpOTU1NlUM4K6oFmZubCxTNUDds2JCNGzfi7OxMWFgYFy9e5Pz581y5cgV1dXUcHBwICgqiS5cuZdZnljBt2jQ2btxIenq6kvlV1cy2VfH48WMeP35M79696d27Nxs2bKB58+ZcuXJFCX2OiIhAU1MTOzs7Zs6cWaUD6ujoSEBAAFOmTCEvL49z586xdOlSBg8ejCRJuLu7M3/+fPr06VPqPB0dHRwdHXF0dCy1/7fffuPYsWOVjimcQYGgFjJ37ly2bd3K/rQ09hw+TM9du6CcdQYCgUDwvNHR0aFPnz4cPXpUOIP/QTIzM1m1ahU3btzgxo0b3Lp1CyiafbG0tMTDw4NmzZpVWYi+JMxYW1ubhw8fcvXqVVxcXGjatKmStVaWZQ4cOEBISAjh4eHKuidJkpAkCR8fH4KCgip0HGRZZsuWLSxdupT79+8zevRoevToQYMGDbCxsflbxedzc3MJCAhgxYoVZRzYp9m3bx+Wlpbs3bu3WuvZrK2tCQoK4vDhw6xZs4ajR4/y7rvvMmzYsFLhpCV1Fkucsnr16nH//n0SEhK4ceMGkiQphdYlSUJdXR0NDQ1ycnJwc3MDigqSp6WlkZSUREFBAfr6+lhZWZGZmYmzszNTpkwhICCgQq3Xr1/n+PHjynsUERFBTEwMmpqaODk50aZNG9555x2Vr/1pdHR0UFdXR11dnebNm+Pg4IAsywwdOpSrV6/i4OCgOPXDhw+nUaNGKq1t9vHxoU+fPoSFhbF+/XrWrVuHhoYGTZs2pWfPnnTt2hVXV9dn0qulpUVeXh7NmjWjS5cu6OvrExgYSOATpcHy8vKIjIxk6dKlvP766/Ts2ZNvvvmm0vWKp0+fJjg4mNDQUMLCwggJCVHWT7Zo0ULlEi/R0dH89ttvSJKElpYWOTk55bYTzqBAUAsxMzPjk08/ZcqUKUwBOk2dirRzZ03LEggE/xEcHBy4fft2TcsQ1ACJiYlMnz6d1NRU6tWrh6urK3PmzKF79+5lZudKQtNKwtOe/jspKUlZH3XhwgUePHiAo6OjMqvx+PFjBgwYQOPGjRk4cCAjRoygQYMGmJqakp6eXqXDuWnTJj777DO+/PJLevTogbq6+nO7DxkZGVy7do0ePXrQuXNnVq1ahZmZWak2sizz008/MWXKFNauXVstR1CWZYyNjenUqRMGBgasWbOGy5cvs2DBAgIDAxUnTpIk3nrrrQr7uHPnDkOHDuX48ePExcURFxfHqVOn0NTUxN3dHRcXFzw8PEo5arIsk5CQwJkzZxgxYgSXLl3i/v37nDhxosJr2Lp1K59++imyLPP222/z5ZdfYmhoiLm5+d/OgKmpqYmmpiY///wz3bp1Y9OmTaxatYq0tDTS0tLQ19fn5s2b3L59m/379yNJEtnZ2ejq6lKnTh0MDAyoX7++konU3NwcKysrTE1Nsbe3x8fHBwMDA+rWrcvy5cuZP3++Uj5k+vTpLF26lDFjxpSrLS0tjZMnT3L06FG2bt2KmpoaLVq0oGfPngQFBdGkSZMyawafvjZvb2/atGnDd999x86dO9m9ezeTJk3igw8+KLcO4IcffsiJEyf48MMPGTNmjJJ9tLJxymPPnj3s2rULWZapX78+Dx48KLedcAYFglrKuHHjWLNmDeHh4Sy5dYtR338PTyzMFggEgn+Kkl+8Bf89bG1tWbNmDTt37uSHH34gLCyMvn374urqSlRUlNLu66+/LhPWaGZmpiQqGTBgAL6+vnTt2pU2bdqgrq5OQkICUVFRfPfdd0pCEU1NTVJSUhg9enSpvqpyBAG+/PJLmjZtStu2bZ+LI1hQUFCm/l1OTg6//vor8fHxnD59utSxY8eOMWTIECZMmEDnzp2rNda8efOYNWsW9erVY+rUqSxcuJABAwZgamqq0vnHjx/ns88+4/Tp01haWhIYGEjLli1p2bIl3t7e2Nvbl5kZTUxM5K+//lK2S5cu0aJFC2bOnEnbtm0rHW/mzJm88847/PTTT6xfv57t27fTpEkTOnbsSL9+/bC1ta3W9T9JXl6ekgzl7t27DBkyhCFDhpRqI8syWVlZJCYmMn/+fFavXk1qauozjwlF6zWzsrKYPHkyzs7OvPLKK6WOP3jwAHt7e3JycnB1dWXo0KF88MEH1KtX75nHLJmdmz9/PkeOHCnzTAEcPnyYpUuXMn/+fG7fvk2vXr147bXXqj3WxIkTlRqaFTmCIJxBgaDWoqmpybJly+jUqRNzgCErV8K0aaBieIBAIBA8K5qamsIZ/I9y6dIlmjVrhq6uLi1atMDMzIzJkyfTt2/fUu3GjRtHr169lHDSmzdvKiUFfvnlF0xNTcnPz+fSpUskJycTFRWlFPw2MjKiRYsWtGzZkvHjx+Pv719GR2ZmZpUZbfft28fHH3+Mm5sb48ePZ/To0VhZWVV5jbIsc/fuXc6dO6esQbt+/TqxsbFKncCSOn8tW7bEzc2t3PWRgYGBHDx4kK+++gpHR0cmTZrE5MmTlTDYynjvvfdwdXVl7dq1fP311yxcuFAlR1CWZbp3787vv/9OUFAQ+/fvV0ovVMS8efNYt24dN2/epE2bNgQFBTFjxgyaN29e7sxURRgbGzN+/HiGDh3Kn3/+ybRp0/j999+ZOnUqFhYWLF68mIEDB1bZT35+PlevXqVOnTrk5eXRunVrBg0aRI8ePVBTU2PXrl189913ysxgyZaamkphYSHa2tpoa2ujo6NTZnbQyMgIU1NTzM3NsbS0xMTEBAMDA2XbsmULn3zySZl7Wl55DXNzc27cuMHWrVtZvnw58+bNY8WKFfz0009079690muUZZmoqCiCg4MJDg7mwIEDaGpq4uHhQZcuXejYsaNSzuRpNDQ0eO+99xgxYgQ//fQTM2bMYNSoUezatatMaRFV0dHRKZPFVBnvmXoUCAQvhI4dO9KnTx927tzJjOxsNs6YARs21LQsgUDwL0c4g/9dLCws6NatGw8fPiQxMZGrV6/y5ptvAkXPhb6+PvXr18fU1BQbGxvs7OxITEwkMzOThIQEYmJicHBwoFGjRjx69Ig33niD/Px8Hj16VGbbsGEDS5YsITU1lbp16yplBIyNjTl//jza2to0atSIgIAAunfvXibxh7W1Nd9++y3Tpk1j+fLluLm50blzZ2bNmkXjxo1LtY2KimLz5s2KA5iQkIC/vz8dOnTgrbfews3NDScnJ5UcuRIkSaJDhw506NCB0NBQunbtyqJFi/jhhx+qdBa0tbXp378//fv35+zZs/Ts2ZPBgwdXuQ6upBSMv78/UVFRTJ48mZCQEAoKCjA1NcXT05PWrVvTp08fmjRpAkC7du1ITk7mzz//5MKFC+Tm5vL48WMyMjJo0qQJ9vb2ZUI9Y2Nj2bNnD3fu3FEyiJb8raamho2NDTk5OZiamtKkSROCgoJo2rRplfds3bp1fP7552hqarJu3Tp69OhRpvC7j48PnTp14tatW8TExHDr1i0ePXqEJEk0aNCAgoIC8vLyeO2113jrrbeqlXG2JLlP3bp1yc3NpXnz5owaNQpPT0+lzbZt2zh79iyhoaGEhoaSkpKCl5cXtra2ODo6lkmkU0JycjJr164lODiYU6dOkZubS5cuXWjbti0TJ07E29u7WjPYxsbGTJgwAXNzc4YPH05sbKzK5z5NRY4gCGdQIKj1fPXVV/y+bx8/5uby7saNBIwdCy1a1LQsgUDwL0ZdXZ2CgoKaliGoAaytrVmyZAl37twhPj6eoUOHcv/+faAonC81NZWUlBRiYmK4evUqhoaGZGRkkJaWRtOmTdm/f7+SiKSgoEClL78FBQWkpKQoTmJJSvw7d+5w584dTp8+jampKQ0bNqSwsJDo6GjCw8NLbREREejp6ZGYmMi1a9fKOIORkZFcunSJx48fY2FhgY6ODhEREZw9e1ZxcA0NDXn48CF5eXnKGjRzc3MlU6ejoyNmZmZKEpfU1FTCwsI4d+4cZ8+e5d69e+jp6XHhwoUqncEn8ff3x8TEBD8/P/bt21dlyGWPHj3o0aMHUDQD1a9fP3bs2EFiYiJHjx4lMjISKysrxRls1aoVrVq1AopmXM+dO8eff/7JunXrGDFiBNnZ2Tg5OREQEEBgYKBSZ/DQoUMkJyeX2jIzMzE0NCQ3N5f8/HwKCgqIjIzk4cOHHD9+HGtra+zt7XFycsLc3BxDQ0OlnIKenh7nzp1DU1OTmJgYxo0bx9q1a+ncuTOtWrWiYcOG6Onp4eTkxPjx48tcd0pKCmfOnOGdd94hJiaG1atXExAQUC1nsGRmMTc3FwMDAxwcHNDS0iIhIUEpmXLw4EGuX7/OvXv3SE1NJT8/n4SEBDQ1Nbl58ybh4eG4uLjg4+ODr68vNjY2WFlZ8ejRI06fPk1ycjImJiYkJibyyy+/cPjwYXR0dHj8+DGGhoaYmZlha2uLk5MT7u7u2NnZYWpqiqmpKRYWFuV+ZjQ0NFTKgpqbm0t8fLySdfbAgQNVniOcQYGgluPk5MR777/P3LlzmQicnTABtTNn4G9kSRMIBILK+LsJIQQvL7IsY29vT0pKCq6urri6utKmTRtcXV3x9PTE3t4eKysrLC0tS83o3Lx5k++++47XXnsNf39/Pv/8c5VT+KurqyszggDvvPMOenp6jB8/nn79+uHl5aU8k1u3bi0VimhlZUWfPn2YM2cOLVu2rLBYe8+ePenZs2eZ/YWFhUqB8OTkZN555x3OnDlDYmIi169fV0m/n58fs2fPVhywZ/n8eHp6snPnTiZOnMivv/6q8nk7d+7kwIED9OvXjz59+tC+fftKQ2X19PRo166dUs9wwoQJrFixQskQum7dOgDWr19fro68vDzlXn322Wds2rSJpKQkYmJiKtXp5uZGZGQkK1euBIqSpHzxxRccPHiQg8Xls1577TW2b99eYR/169dn2rRpmJiYsGLFCrp27VrtjLHq6urKur3ExEQ2bNjAhg0bMDExIT4+Hk1NTdasWVPqnIyMDO7du8fKlStZvHgx9+7d4/z582zevFlpo6GhQUhICDt27Ch1bn5+PklJSXz77bfMnDmT1NRUYmJiOHv2bLn6vv766zKOcHx8PHl5eRXOSD7J1KlT+eabb4CiRGB+fn707NkTR0fHCovXC2dQIHgJmDFjBt+uXcuFhATWnz/PqA0bYPjwmpYlEAgEgn8ZkiQRERHBsmXLWLNmDQMHDuTTTz+t8jxnZ2fmzZvHRx99xKpVq+jUqRNvvvkmX3zxRbU1+Pv78+jRozJruwAGDBhAr169iIyMJCIiQpkVnDp1KtevX8fc3JxevXpV+MX3adTU1KhXrx716tUjMzOTO3fuoKenR3Z2NvXq1cPS0hIHBwdl3aCtra2yRi8nJ4c9e/awc+dOBg8eTO/evdm4cWO1rzc2NpajR48ydOhQlXWX4OzsjJWVFdu2bav2uElJSezdu1cpD9GxY0eCgoIICAhQZsmeRlNTE1NTU/T19ZVZ1aysLOrWravcK3d3d5ydnbGzs8Pe3h47OzsMDQ2VPrKzs9m5cydaWlo0atSIV199lc6dO6v048GCBQsYO3Ysbdq0qbYjKMsyP/zwg3INLVu2JCgoiBYtWuDj41NhLUt9fX1cXFwIDg5GR0cHDQ0NGjRoQPPmzfHz88PX1xcPD49yQ4w1NDQwMzNj//796Ovrk52djbGxMY6Ojnh4eODl5YWLiwsuLi44OTmVWScryzIbN25k3rx5Va6hBVi+fDlDhgxh27ZtbNu2jdDQUHbu3Im7u3uFz5Yky7IKt+/lQ5KknkBPKyur0UeOHKm0bXR0NE5OTlX2qUq759VG9CX6epp169bxxRdfYApcMzIi+cABCuvUeSm0P+++GjRocEGWZb8qG9Zi/Pz85PPnzwNw8eJFnJycqrWQv4QrV65gY2NTac2iirh69SoWFhYqZ697krCwMCWFd3UJDw+nfv36WFpaVvvcyMhI6tSpo3KdpSe5fv06Ojo6z5T1Ljo6GjU1NRwcHKp9bkxMDIWFhSo9209z+/ZtcnNzqxUGVcKdO3fIzMxUUtRXh3v37pGSkoLHM9Q3ffDgAQ8fPlTpV+ynSUxM5P79+89U3/DRo0fcuXMHX1/fap+bnJxMTExMmdBCVUhLSyMqKgo/Pz8kSfpX2abU1FTi4uLw9vaudj+PHz8mOjr6mQp8p6SkEBsbW+33sqCggJiYGNLS0p7pvUxPTyckJARbW9tqp/JPT08nMjISP7/qv/2FhYWcO3euwoQilVFQUMCpU6cqLLpeGbIsc+LECZo1a6aSo/H0ucePH8fOzg5ra2uVav49yZ9//knTpk3LrBdUhTNnzuDv7/9MM7CnTp3Cw8OjlHOqKn/99RcODg5YWFhUe+wzZ85gYmKCnZ1dhU5nRZw9exY/P79ncn7Pnj2Lr68vOjo6FdsnWZb/1ZuXl5dcFREREVW2UbXd82oj+hJ9PU14eLjcunVrGZCngCx/8ME/Ol5t7gs4L9cC+/J3tqZNm6p0rQKB4OVB2CaBQFBbqcg+iUVHAsFLgiRJLF++HEmS+BoIX7wYVFzPIBAIBAKBQCAQPI1wBgWCl4jGjRszZswY8oHJ+fnIU6bUtCSBQCAQCAQCwUuKcAYFgpeMOXPmUL9ePQ4Av+3dC3/8UdOSBAKBQCAQCAQvIcIZFAheMkxMTPjs888BmApkT5oEoji0QCAQCAQCgaCaCGdQIHgJeffdd/Hy9CQaWBIVBStW1LQkgUAgEAgEAsFLhnAGBYKXEA0NDZYV14uZC9z9+GNISKhZUQKBQCAQCASClwrhDAoELymvvPIKffv2JQP4MD0dZs2qaUkCgUAgEAgEgpeIF+4MSpLURZKkSEmSbkiSNL2c44MlSQop3k5JkuT7xLEYSZKuSpJ0WZKk8y9WuUBQ+/jqq6/Q1tJiExC8di1cvFjTkl5ahG0SCAS1FWGfBALBP8ULdQYlSVIHvgG6Ap7AQEmSPJ9qdgtoJ8tyQ+BzYM1Tx9vLstxIlmW/f1ywQFDLcXR05P0PPgBgIlAwcSLIcs2KegkRtkkgENRWhH0SCAT/JC96ZtAfuCHLcrQsy7nAZqD3kw1kWT4ly3Jy8b+nAZsXrFEgeKmYPn06NlZWXATWBwdTd9++mpb0MiJsk0AgqK0I+yQQCP4xXrQzaA3EPfH/neJ9FTEK+P2J/2XggCRJFyRJGvMP6BMIXjr09fX58quvAPgfoLlwIWRk1Kyolw9hmwQCQW1F2CeBQPCPofGCx5PK2VduTJskSe0pMmitn9jdSpbleEmSzICDkiRFyLJ8opxzxwAlBi9HkqTQKnTVA1KrVK9aO1XamAAPX+B4Qte/Q1eVbRIBs4QEE+rUqUrXi37mQbX7pWpfriq0qQ41YZseS5IUierP0YukNmoCoas61EZNUDt1PU9N9s+pnyf5x+3TS2SboHbqqo2aQOiqDrVRE7wI+yTL8gvbgJbA/if+nwHMKKddQ+Am4FZJX58A76kw5nkV2qxRUX+V7VRsU6Wm5zme0PXv0FUN7bXuma8JXdXZasI2Vfc5epFbbdQkdL38mmqrrtqo6Sl9NWKfaut9qY26aqMmoevl1/SidL3oMNFzgKskSY6SJGkBA4DfnmwgSZIdsAMYKsty1BP79SVJqlvyN9AJqGrGT1V2P8d2qvb1oscTuqo3Xm3U9aI1qdqutuqqDrXVNgkEAoGwTwKB4B/jhYaJyrKcL0nSeGA/oA6sk2U5TJKkd4qPrwJmA8bA/0mSBJAvF2W/Mgd+Ld6nAfwky/Ifz0mXSl8sVWmnal8vejyhq3rj1UZdL1qTqu1qq65qjlsrbZNAIBAI+yQQCP5JXvSaQWRZ3gfse2rfqif+fgt4q5zzogHfp/erwNPplWsDtVETCF3VReiqHrVVF1AjtqmE2nhfaqMmELqqQ23UBLVTV23UVIoask+19b7URl21URMIXdWhNmqCF6BLKo5HFQgEAoFAIBAIBALBf4gXvWZQIBAIBAKBQCAQCAS1gH+tMyhJUhdJkiIlSbohSdL0GtRhK0nSUUmSwiVJCpMkaVLxfiNJkg5KknS9+NWwBrSpS5J0SZKkPbVFU7GO+pIkbZckKaL4vrWsaW2SJE0pfv9CJUn6WZIknZrSJEnSOkmSEp4smVKZFkmSZhR/DiIlSer8AjV9WfwehkiS9KskSfVfpKbajrBRKmmrdTZK2KdKddQ621SJLmGfKqE22KfabJuKddQq+1QbbVOxLmGfqqfphdumf6UzKEmSOvAN0BXwBAZKkuRZQ3LygWmyLHsALYBxxVqmA4dlWXYFDhf//6KZBIQ/8X9t0ASwDPhDluUGFK11CK9JbZIkWQMTAT9Zlr0pWsA/oAY1fQ90eWpfuVqKn7UBgFfxOf9X/Pl4EZoOAt6yLDcEoihKh/4iNdVahI1Smdpoo4R9qpjvqX22qSJdwj5VQC2yT7XZNkHts0+1yjaBsE/PqOnF26YXVSfjRW6oWJOnhrTtAjoCkYBl8T5LIPIF67Ch6MEPAvYU76tRTcXjGgC3KF7P+sT+GtMGWANxgBFFSZf2UJSeuyY1OQChVd2fp599irLRtXwRmp461hfY9KI11dZN2CiVdNQ6GyXsk0p6ap1tKk/XU8eEfSp9P2qlfaottql43Fpln2qjbSoeU9inamp66tgLsU3/yplB/v/DV8Kd4n01iiRJDkBj4AxgLsvyPYDiV7MXLGcp8AFQ+MS+mtYE4AQkAuuLwy++lYpqI9WYNlmW7wKLgNvAPSBVluUDNampHCrSUls+CyOB34v/ri2aapJaeQ+EjaoSYZ+qT223TSDs09PUuntQy2wT1D77VOtsU/GYwj79PV6Ibfq3OoNSOftqNG2qJEl1gF+AybIsp9Wwlh5AgizLF2pSRwVoAE2AlbIsNwYyqLkQEACKY8h7A46AFaAvSdKQmtRUDWr8syBJ0kyKwn02lewqp9l/La1xrbsHwkaphLBPz49a8RkQ9qlcatU9qE22qVhPbbRPtc42gbBPf0vAC7RN/1Zn8A5g+8T/NkB8DWlBkiRNigzZJlmWdxTvfiBJkmXxcUsg4QVKagX0kiQpBtgMBEmS9GMNayrhDnBHluUzxf9vp8jA1aS2DsAtWZYTZVnOA3YAATWs6Wkq0lKjnwVJkoYBPYDBcnFcQ01rqiXUqnsgbJTKCPtUfWqlbSrWI+xT+dSae1ALbRPUTvtUG20TCPv0TLxo2/RvdQbPAa6SJDlKkqRF0YLL32pCiCRJEvAdEC7L8uInDv0GDCv+exhFsfAvBFmWZ8iybCPLsgNF9+aILMtDalLTE9ruA3GSJLkX73oFuFbD2m4DLSRJ0it+P1+haGF2jd+vJ6hIy2/AAEmStCVJcgRcgbMvQpAkSV2AD4FesixnPqW1RjTVIoSNqoTaaqOEfXomap1tAmGfqqBW2KfaaJugdtqnWmqbQNinalMjtul5LDysjRvQjaIsPDeBmTWoozVF07ghwOXirRtgTNHi4+vFr0Y1pC+Q/7/4ubZoagScL75nOwHDmtYGfApEAKHARkC7pjQBP1MUe59H0S9FoyrTAsws/hxEAl1foKYbFMW3lzz3q16kptq+CRulsr5aZaOEfapUR62zTZXoEvap8ntW4/apttumYo21xj7VRttUrEvYp+ppeuG2SSruXCAQCAQCgUAgEAgE/yH+rWGiAoFAIBAIBAKBQCCoBOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCgQCgUAgEAgEAsF/EOEMCqqNJEmdJEn6XZKkR5IkZUuSFCVJ0kJJkgzLaWshSdJvkiQlSZIkS5I0uXh/T0mSrhafL0uSVP856hsuSdLIap7zmiRJDyRJ0ntOGvpKknRfkqQ6z6M/gUBQNcI2qdSfsE0CQQ0g7JNK/Qn7VAOIOoOCaiFJ0v+AuRQVNN0AJAFNgQ+BdKC9LMtxT7T/P2AwMJyiwpoxwMPi804B84Bc4JwsywXPSeMxQEOW5dYqttcAwoC1siwvek4aJOASsEuW5Y+fR58CgaBihG1SWYOwTQLBC0bYJ5U1CPtUAwhnUKAykiS1Bw4Dy2RZnvLUMUfgAnBFluX2T+w/CqjLstz2iX32FBm2UbIsr/sHdB6jegbtNeAnwFKW5aTnqGMs8DlgLcty9vPqVyAQlEbYpmrrELZJIHhBCPtUbR3CPr1oZFkWm9hU2oDfKfplSqeC4x8AMtAccCj+++nt+3L2HSs+vzMQDKQCj4FIYPZTY/gCvwHJQFZx+zZPHD9WUf9VXNeucvbLwBxgGhALZAB7AbPibWux1jjgw3LONwEKgEE1/d6JTWz/5k3YJmGbxCa22roJ+yTsU23fxJpBgUoUhwO0Aw7KFf9S81vxaxBFYQ0tgRCKpvxbFm8fA68Xt5tTvG+sJElOxefHAG8AvYDFgP4TGppQFB5hBIwGXgMeAYckSWpa3Gxs8XghT4w5tpLr0gYCgZMVNBlafD1jgQlAG4pCPH4tHuM1YB+wQJKkbk+eKMvyQyAc6FLR+AKB4O8hbJOwTQJBbUXYJ2GfXgY0alqA4KXBGNClyOBURMkxW1mWc4DTkiSlA/myLJ8uaSRJkmbxnzdL9kuS1A/QAt6VZTmt+PiRp/r/ErgNBMmynFt83n4gFPgI6CPL8jVJktIoCnU4TdU0AnSAKxUczwF6y7KcXzyeNzAF+EiW5TnF+44BfSky1PueOv8S0EIFHQKB4NkQtglhmwSCWoqwTwj7VNsRM4MCVZH+4f4vA3nAZkmS+kmSZFZqcEnSpejXtW1AoSRJGsW/uEnAIaAtz4ZV8WtiBccPlhizYiKKX/eX7Cg+fgOwLef8xCfGEAgEzx9hm4oQtkkgqH0I+1SEsE+1GOEMClTlIUVx5g6VtCk5FldJm3KRZfkGRXHvasBG4L4kSWckSWpX3MQIUKfoV6y8p7bxgKEkSc/yPOsUv+ZUcDz5qf9zK9mvQ1myKtgvEAieD8I2FSFsk0BQ+xD2qQhhn2oxIkxUoBKyLOdLknQC6ChJkk4Fse+9il+fDlFQdYyjwNHiWPRWwGfAXkmSHIAUoBD4hqK48/LOL3yGYR8Vv5ap8/OcMHpiDIFA8JwRtumZEbZJIPiHEfbpmRH26QUinEFBdfiSorCCecDUJw8Up0f+EDghy/KZvzNIccz8keKio7sAR1mWz0mSdJKijFgXqzBeOUBdFYcrCV1womiB9fPGkaLMXgKB4J9D2KbqI2yTQPBiEPap+gj79AIRzqBAZWRZPixJ0mzgs+JfnDZQNOXfBJhOUargoc/StyRJ71AUu76PolAJE2AGEE/RImcoMqIngP2SJH1HUdYtk+Lx1WVZnl7c7hpFWbbeAG4C6bIsl2tUZFm+LUlSLOAP/Pgs2iu5JgloBqx8nv0KBILSCNtU7WsStkkgeEEI+1TtaxL26QUj1gwKqoUsy58DXSlKW7weOEBR6uANgJ8sy7efsesrxX3OL+5zBXCLouxXWcVjX6TIQDwClhe3Wwb4UGToSlhIUYHXb4FzwOoqxt4C9HhG3ZURQFGow+Z/oG+BQPAEwjZVC2GbBIIXiLBP1ULYpxeMJBcVeBQI/rNIkuRMUThCoCzLfz7HflcC3rIst3lefQoEgv8OwjYJBILairBP/x6EMygQAJIkrQUsZVl+Lr9ySZJkAUQDXWRZPlFVe4FAICgPYZsEAkFtRdinfwciTFQgKOIj4JwkSXrPqT8HYJowZgKB4G8ibJNAIKitCPv0L0DMDAoEAoFAIBAIBALBfxAxMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0GEMygQCAQCgUAgEAgE/0H+H7S+HHhWQ5EVAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 1080x432 with 3 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "fig, ax = plt.subplots(1, 3, figsize=(15,6))\n",
-    "ax[0].set_title('Expected Arrival Times')\n",
-    "ax[1].set_title('Clean Data')\n",
-    "ax[2].set_title('Noisy Data')\n",
-    "ax[0]=viewTXdiagram(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[0])\n",
-    "ax[1]=plotWiggleTX(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[1])\n",
-    "ax[2]=plotWiggleTX(x0=1., dx=8, v1=400., v2=1000., v3=1500., z1=5., z2=15., ax=ax[2], noise=True)\n",
-    "plt.show()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Setup for the seismic refraction survey"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Consider a shot gather for seismic refraction survey, which means we have one shot (source), and multiple receivers (12). Shot location is fixed at x=0. There are two survey parameters: \n",
-    "\n",
-    "- x0: offset between shot and the first geophone\n",
-    "- dx: spacing between two consecutive geophones\n",
-    "\n",
-    "In the widget below you can alter x0 or dx to change your survey setup. Run the next cell then try to change x0 and dx in the cell below that. Note that the next two cells are designed to help you visualize the survey layout. The x0 and dx parameter adjustment sliders here are not linked to the widget at the end of this notebook."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "2527ba625e124e389cae2fa4756b7a25",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(IntSlider(value=0, description='x0', max=10), IntSlider(value=8, description='dx', max=1…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "makeinteractSeisRefracSurvey()"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Interpretation of seismic refraction data"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "Assume that you have seismic refraction data. The structure of the earth is unknown and you may want to obtain useful information about the subsurface. We will assume that the subsurface in the survey area has a three-layer structure and that the velocities increase with depth. \n",
-    "Thus, there can be four unknowns:\n",
-    "\n",
-    "- v1: velocity of the first layer (m/s)\n",
-    "- v2: velocity of the second layer (m/s)\n",
-    "- v3: velocity of the third layer (m/s)\n",
-    "- z1: depth of the first layer (m)\n",
-    "- z2: depth of the second layer (m)\n",
-    "\n",
-    "Based on the above information, we may expect to have up to four arrivals at a geophone, related to \n",
-    "\n",
-    "- Direct\n",
-    "- Reflected: interface 1\n",
-    "- Refraction: interface 1\n",
-    "- Refraction: interface 2"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "The widget below will allow you to estimate the layer depths and velocities. The parameters for the widget are:\n",
-    "\n",
-    "- x0: offset between shot and the first geophone\n",
-    "- dx: spacing between two consecutive geophones\n",
-    "- Fit: checking this activates fittting function (if you click this red line will show up)\n",
-    "- tI: intercept time for a line function (s)\n",
-    "- v: inverse slope of the line function (m/s; which can be velocity of either direct and critically refracted wave)"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "### Run below widget and find useful subsurface information!"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "data": {
-      "application/vnd.jupyter.widget-view+json": {
-       "model_id": "a8f3a610738544e9aeb0814fcf7b4bae",
-       "version_major": 2,
-       "version_minor": 0
-      },
-      "text/plain": [
-       "interactive(children=(IntSlider(value=4, description='x0', max=10, min=1), IntSlider(value=4, description='dx'…"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "makeinteractTXwigglediagram()"
-   ]
-  }
- ],
- "metadata": {
-  "anaconda-cloud": {},
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.10"
-  },
-  "latex_envs": {
-   "bibliofile": "biblio.bib",
-   "cite_by": "apalike",
-   "current_citInitial": 1,
-   "eqLabelWithNumbers": true,
-   "eqNumInitial": 0
-  },
-  "widgets": {
-   "state": {
-    "58141af61d2a4d6393c0f5e35a09cccf": {
-     "views": [
-      {
-       "cell_index": 10
-      }
-     ]
-    },
-    "75727a01f50445469ade2c7092094a5b": {
-     "views": [
-      {
-       "cell_index": 15
-      }
-     ]
-    }
-   },
-   "version": "1.2.0"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 1
-}