
2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 1/7

How to solve "Introduction to Reverse
Engineering 1"
Reverse engineering is an art form. The art of understanding a mechanism step by step in order to
finally understand it so well that it can be exploited or even bypassed. In concrete terms, reverse
engineering is about analyzing binary executables. These can be programs of most different
programming languages on most different operating systems. Especially in the subject area of
reverse engineering, one learns to be flexible and to quickly grasp new contexts.

Often one has to do in CTFs with compiled Unix programs. Therefore for this introduction task also
an ELF file was created, which is to be analyzed with most different approaches. In the following
sections different techniques and programs are presented, which make such an analysis possible.
Not all methods lead to the goal, but each method reveals something about the program to be
analyzed.

The structure of a binary Linux program would go beyond the scope of this introduction. It should be
said, however, that the program is in the form of machine instructions. These are understood by the
processor and processed sequentially. The beginning of each program is called an EntryPoint ,
usually in the function main .

The programs and methods discussed now are only touched upon and actually deserve their own,
multi-page explanations. But with this basic information it is possible to learn more about the tools
and methods and to experiment by yourself!

Get an overview of the program

At the beginning it is useful to get to know the program to be analyzed. The easiest way to do this is
to run it and play around with it to get to know its functionality:

$./rev1
Give me your password:
I_DONT_KNOW
Thats not the password!

The program seems to ask for a password and quits as soon as it encounters an incorrect password
entry, in this case I_DONT_KNOW . So we have to find out the password hidden in the program to get
the desired flag.

The determined password has to be entered later at the server of the CSCG platform to get the final
flag.

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 2/7

Static methods

Static methods are suitable for the thorough, structured analysis of binary programs. This is done
mainly in the form of disassemblers and decompilers. Disassemblers turn binary machine instructions
into readable assembly code. This lowest form of any programming language reduces the program to
arithmetic operations, comparisons and jumps within the program. The machine instructions are
thereby in the CPU architecture in which the program is later executed. Usually this is x86_64 , but it
can also be ARM , MIPS or RISC-V .

file

If you have no idea what kind of file it might be, file often helps. This little program recognizes
many different file formats and spits out information about them. In a CTF some time ago file gave
the decisive hint by recognizing a MS DOS Bootloader in a binary file.

A call to file is done via the console:

file rev1
rev1: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, inte

This output tells us that it is an x86_64 , i.e. 64 bit, ELF program in the x86 architecture whose
metadata has not been stripped (non stripped).

objdump

objdump is a program that is often pre-installed in Linux environments. Among other things, it is
suitable for examining ELF files and disassembling the machine instructions they contain. The
machine instructions are obtained by calling objdump -M intel -d rev1 .

One is often overwhelmed by the many instructions, so objdump is usually only suitable as a rough
aid for basic orientation. One notices here very fast that it makes sense to use a real disassembler.

Ghidra

The entire IT security scene was excited when this tool, developed by the NSA, was released for free
use a few years ago. Ghidra can open a wide variety of architectures and file formats and combine
the metadata present there in a meaningful way.

In addition to a clear disassembly display, Ghidra attempts to reconstruct the C code that led to the
generation of the machine instructions. In more demanding tasks, however, the reconstructed C code
is often erroneous and more confusing than the individual instructions of the program. Therefore, one
should never rely on the reliability of this reconstructed code.

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 3/7

After loading and initial analysis of the program by Ghidra, the ELF headers are displayed. These are
not relevant for the task at hand. By pressing g (go to) and entering main it is possible to jump
directly to the entry point. In this function the actual program starts after it has been loaded into
memory by the so-called loader . In the disassembly one identifies different calls and conditions:

CALL initialize_flag => Reads the flag from the current directory
[...]
CALL puts => Console output of "Give me your password".
[...]
CALL read => Read console input
[...]
CALL strcmp => Compare two strings, return to EAX
TEST EAX,EAX => If EAX == 0
JNZ LAB_0010093a => Jump, if the last result was not correct
CALL puts => Output of "Thats the right password!"
[...]

The C functions like puts , read and strcmp can be found in References. For this case the
function strcmp is of interest. You can see from the documentation that this function returns 0 if the
two strings to be compared are exactly the same. From this one can draw the conclusion that
probably a password is checked there. If the two strings are identical, Thats the right password!
is returned and the flag is printed.

The password itself can be read directly in the C representation, the so-called decompilate. Before
the strcmp function is called, the memory pointing to the password but also some instructions
before the strcmp is loaded into the register RDI . This corresponds to the first argument in the
x86_64 calling convention and thus the first parameter of the strcmp function.

Finding this string is left to the reader.

Strings

Strings are representations of ASCII characters, i.e. numerical values that lie in a specific range. For
example, an A corresponds to the number 0x41 = 65 in the decimal system. With time, one knows
the ASCII range and is able to recognize ASCII in numerical values. Until then, however, an ASCII
table helps. The program 'strings' tries to read as many ASCII values as possible from binary data.
So if many numeric values fall one after the other into the ASCII range that can be displayed, they
are recognized as strings and output.

This small utility is usually pre-installed and can be called via strings rev1 :

Give me your password:

Give me your password:
****** [REDACTED PASSWORD] ********
Thats the right password!

https://en.cppreference.com/
http://www.cplusplus.com/reference/cstring/strcmp/
http://www.asciitable.com/

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 4/7

Flag: %s
Thats not the password!
./flag.txt
flag.txt
File "%s" not found. If this happens on remote, report to an admin. Otherwise, please
;*3$"
GCC: (Debian 8.3.0-6) 8.3.0

[...]
strcmp@@GLIBC_2.2.5
[...]]
main
fopen@@GLIBC_2.2.5
initialize_flag

Strings finds a lot of information in the program to be analyzed, e.g. the used compiler gcc 7.4.0 ,
the already known console outputs and functions registered in the program like strcmp and
initialize_flag . Since the password to be guessed can also be found via strings and again left

to the reader to practice. In the above output the password has been replaced by the string ******
[REDACTED PASSWORD] ******** .

Dynamic methods

Programs often calculate elaborate checksums or decrypt their program code at runtime. These
tricks, which should make life difficult for a reverse engineer, are difficult to capture using static
methods. It would therefore help to be able to observe individual functions and their parameters and
return values at runtime.

ltrace and strace

A trace program observes the program flow and stores the called functions during this time. In doing
so, the tracer usually hangs between the program to be executed and the operating system. ltrace
observes the usercalls , i.e. the already known C-functions like puts and strcmp , while strace
records the syscalls . Syscalls are direct interactions with the operating system, e.g. to do a
console output.

For the program at hand, usercalls and thus ltrace are more interesting. An execution of ltrace
./rev1 intersects all known C functions and prints their call, parameter and return value on the
console. In addition to the already known strings of the console output, one also sees the comparison
between the user input and the password to be found:

fopen("./flag", "r")
fread(0x5598546e2040, 256, 1, 0x559855172260)
fclose(0x559855172260)
puts("Give me your password: "Give me your password:
) = 24

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 5/7

read(0I_DONT_KNOW
, "I_DONT_KNOW\n", 31)
strcmp("I_DONT_KNOW", "****************")
puts("Thats not the password!"Thats not the password!
) = 24
+++ exited (status 0) +++

First the flag file is read via fopen and stored in memory. Then puts is called, followed by a
read to read the console input. After that, the comparison between the secret password and the

user input takes place, which returns a return value not equal to 0 . This causes the error message
to be issued. Deciding the correct password via ltrace is again left to the reader.

gdb

Probably the best known debugger under Unix is gdb , the abbreviation for GNU Debugger . This
console based debugger is very powerful, but without extensions it is unintuitive to use, especially in
the beginning. Therefore I recommend to use a GDB extension like pwndbg or gef . These plugins
have advantages and disadvantages, but each one allows a much better handling of gdb . In this
example, pwndbg is used.

The debugger can be started with the command gdb ./rev1 . To run the program, it is sufficient to
type run in the debugger console. Since no further settings were made, the program follows its
program flow until it is terminated.

pwndbg> run
Starting program: /home/theuser/Downloads/cscg20/challenges/intro_rev/deploy/rev1/rev1
Give me your password:
I_DONT_KNOW
Thats not the password!
[Inferior 1 (process 12333) exited normally]
pwndbg>

It gets interesting when we follow the program step by step. For this purpose it is sufficient to set a
breakpoint at the entry point main :

pwndbg> br main
Breakpoint 1 at 0x11a9

The debugger stops the program as soon as a function with a breakpoint is reached. From now on
the values of the registers can be inspected in peace and the execution can be continued in single
machine instructions. With n the next instruction is executed. Before each function call pwndbg
displays the passed parameters, if the function is known. For example, the first puts call after n
has been entered seven times:

https://github.com/pwndbg/pwndbg

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 6/7

 0x5555555551a9 <main+4> sub rsp, 0x30
 0x5555555551ad <main+8> mov eax, 0
 0x5555555551b2 <main+13> call initialize_flag <initialize_flag>

 0x5555555551b7 <main+18> lea rdi, [rip + 0xe4a]
 ► 0x5555555551be <main+25> call puts@plt <puts@plt>
 s: 0x555555556008 ◂— 'Give me your password: '

 0x5555555551c3 <main+30> lea rax, [rbp - 0x30]
 0x5555555551c7 <main+34> mov edx, 0x1f
 0x5555555551cc <main+39> mov rsi, rax
 0x5555555551cf <main+42> mov edi, 0
 0x5555555551d4 <main+47> call read@plt <read@plt>

Using this technique we can reach the strcmp function:

pwndbg>
0x00005555555551f7 in main ()
LEGEND: STACK | HEAP | CODE | DATA | RWX | RODATA
──[REGISTERS
 RAX 0x7fffffffe4c0 ◂— 'I_DONT_KNOW'
 RBX 0x0
 RCX 0x7ffff7ece311 (read+17) ◂— cmp rax, -0x1000 /* 'H=' */
 RDX 0x1f
*RDI 0x7fffffffe4c0 ◂— 'I_DONT_KNOW'
 RSI 0x555555556020 ◂— 'm4gic_passw0rd'
 R8 0x3
 R9 0x77
 R10 0x0
 R11 0x246
 R12 0x5555555550c0 (_start) ◂— xor ebp, ebp
 R13 0x7fffffffe5d0 ◂— 0x1
 R14 0x0
 R15 0x0
 RBP 0x7fffffffe4f0 —▸ 0x5555555552b0 (__libc_csu_init) ◂— push r15
 RSP 0x7fffffffe4c0 ◂— 'I_DONT_KNOW'
*RIP 0x5555555551f7 (main+82) ◂— call 0x555555555080
───[D
 0x5555555551e2 <main+61> cdqe
 0x5555555551e4 <main+63> mov byte ptr [rbp + rax - 0x30], 0
 0x5555555551e9 <main+68> lea rax, [rbp - 0x30]
 0x5555555551ed <main+72> lea rsi, [rip + 0xe2c]
 0x5555555551f4 <main+79> mov rdi, rax
 ► 0x5555555551f7 <main+82> call strcmp@plt <strcmp@plt>
 s1: 0x7fffffffe4c0 ◂— 'I_DONT_KNOW'
 s2: 0x555555556020 ◂— '**********************************'

 0x5555555551fc <main+87> test eax, eax

2/27/23, 10:19 PM How to solve "Introduction to Reverse Engineering 1"

https://md2pdf.netlify.app 7/7

 0x5555555551fe <main+89> jne main+129 <main+129>

Both in the displayed parameters, but also in the corresponding registers 'RDI' and 'RSI' the
searched password can be read out.

Conclusion

As shown in the last sections, in this very simple task the password can be found in several ways.
Each of the tools takes a different approach and allows meaningful insights to be gained from the
binary 1s and 0s.

Heavy reverse engineering tasks take active countermeasures to prevent such techniques: strings
are often stored "encrypted" so that they cannot be recognized as ASCII. There are programming
techniques that terminate the program as soon as an active debugger is detected. Thus a cat-and-
mouse game develops between the Reverser and the programmer, who wants to prevent the
Reverse engineering. In the next two tasks, such initial measures have been taken to prevent the
easy reading of the password using at least some of the techniques shown here. Have fun!

