From 7c3f5d41a8f82b61cbc3246866938427160d0e81 Mon Sep 17 00:00:00 2001 From: Hu Zhao <zhao@mbd.rwth-aachen.de> Date: Sat, 22 Apr 2023 05:07:01 +0200 Subject: [PATCH] docs: add ref for active learning --- docs/source/refs.bib | 33 +++++++++++++++++++++++++++++++++ 1 file changed, 33 insertions(+) diff --git a/docs/source/refs.bib b/docs/source/refs.bib index d997e61..c3bfd22 100644 --- a/docs/source/refs.bib +++ b/docs/source/refs.bib @@ -62,6 +62,16 @@ author = "Jon Herman and Will Usher" } +@article{Kandasamy2017, + title = "Query efficient posterior estimation in scientific experiments via {Bayesian} active learning", + journal = "Artificial Intelligence", + volume = "243", + pages = "45--56", + year = "2017", + doi = "https://doi.org/10.1016/j.artint.2016.11.002", + author = "Kirthevasan Kandasamy and Jeff Schneider and Barnab{\'a}s P{\'o}czos", +} + @article{LeGratiet2014, title = "A {Bayesian} approach for global sensitivity analysis of (multifidelity) computer codes", journal = "SIAM/ASA Journal on Uncertainty Quantification", @@ -106,6 +116,17 @@ author = "Andrea Saltelli and Paola Annoni and Ivano Azzini and Francesca Campolongo and Marco Ratto and Stefano Tarantola" } +@article{Wang2018, + title = "Adaptive {Gaussian} process approximation for {Bayesian} inference with expensive likelihood functions", + journal = "Neural Computation", + volume = "30", + number = "11", + pages = "3072--3094", + year = "2018", + doi = "10.1162/neco_a_01127", + author = "Hong Qiao Wang and Jing Lai Li" +} + @article{Zhao2021a, title = "Emulator-based global sensitivity analysis for flow-like landslide run-out models", journal = "Landslides", @@ -124,3 +145,15 @@ year = {2021}, doi = {10.18154/RWTH-2021-11693} } + +@article{Zhao2022, + title = {Bayesian active learning for parameter calibration of landslide run-out models}, + journal = {Landslides}, + volume = {19}, + number = {}, + pages = {2033--2045}, + year = {2022}, + doi = {https://doi.org/10.1007/s10346-022-01857-z}, + author = {Zhao, Hu and Kowalski, Julia} +} + -- GitLab