From 678f11e16438583fe6dd89bc6b075f76bf7a689c Mon Sep 17 00:00:00 2001 From: Hu Zhao <zhao@mbd.rwth-aachen.de> Date: Thu, 8 Dec 2022 17:21:02 +0100 Subject: [PATCH] docs: add info about noisy data --- .../examples/emulator/robustgasp/plot_scalargasp.py | 13 ++++++++++++- 1 file changed, 12 insertions(+), 1 deletion(-) diff --git a/docs/examples/emulator/robustgasp/plot_scalargasp.py b/docs/examples/emulator/robustgasp/plot_scalargasp.py index e4143bc..710b163 100644 --- a/docs/examples/emulator/robustgasp/plot_scalargasp.py +++ b/docs/examples/emulator/robustgasp/plot_scalargasp.py @@ -104,4 +104,15 @@ plt.fill_between(testing_input, predictions[:, 1], predictions[:, 2], alpha=0.3, plt.xlabel('x') plt.ylabel('emulator-predicted y') plt.xlim(testing_input[0], testing_input[-1]) -_ = plt.legend() \ No newline at end of file +_ = plt.legend() + + +# %% md +# +# Above example shows how to train a GP emulator based on noise-free training data, +# which is often the case of emulating a deterministic simulator. If you are dealing +# with noisy training data, you can +# +# - set the parameter ``nugget`` to a desired value, or +# - set ``nugget`` to :math:`0` and ``nugget_est`` to `True`, meaning that ``nugget`` +# is estimated from the noisy training data. \ No newline at end of file -- GitLab