
SecMOD MILP Documentation
Release 1.0

Niklas Nolzen, Christiane Reinert,
Julia Frohmann, Dominik Tillmanns,

André Bardow

Feb 24, 2023





CONTENTS:

1 Quickstart 3
1.1 Set up a working directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Installation 5
2.1 Editable Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Package Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Data in SecMOD 7
3.1 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Units in SecMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Developer reference 9
4.1 secmod.classes module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 secmod.data_preprocessing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 secmod.data_processing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4 secmod.evaluation module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 secmod.helpers module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 secmod.optimization_MILP module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.7 secmod.setup module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Troubleshooting 39

6 Indices and tables 41

Python Module Index 43

Index 45

i



ii



SecMOD MILP Documentation, Release 1.0

SecMOD MILP provides an open-source framework for optimizing the design and operation of industrial energy sys-
tems. The framework, including the entire equations and all features, is published in an open-source Git Repository.

This tutorial explains how to install and use the SecMOD MILP extension of the SecMOD framework. More informa-
tion and explanations can be found in the following peer-reviewed publication:

Note: Nolzen, N., Reinert, C., Frohmann, J., Tillmanns, D., Bardow, A. (2023): “Design of low-carbon multi-energy
systems in the SecMOD framework by combining MILP optimization and life-cycle assessment”. Computers & Chem-
ical Engineering. 10.1016/j.compchemeng.2023.108176.

For further descriptions please refer to the SecMOD LP framework described in the following publication:

Note: Reinert, C.; Schellhas, L.; Mannhardt, J.; Shu, D.; Kämper, A.; Baumgärtner, N.; Deutz, S., and Bardow, A.
(2022): “SecMOD: An open-source modular framework combining multi-sector system optimization and life-cycle
assessment”. Frontiers in Energy Research. DOI: 10.3389/fenrg.2022.884525.

CONTENTS: 1

https://git-ce.rwth-aachen.de/ltt/secmod-milp
https://www.sciencedirect.com/science/article/pii/S0098135423000455
https://git-ce.rwth-aachen.de/ltt/secmod
https://www.frontiersin.org/articles/10.3389/fenrg.2022.884525/full


SecMOD MILP Documentation, Release 1.0

2 CONTENTS:



CHAPTER

ONE

QUICKSTART

In order to improve the distributability of SecMOD the package code is separated from the handled input data. This
allows to use a single installation of SecMOD for several projects or scenarios in multiple working directories.

To get started with SecMOD, the following two steps must be completed:

1. Installation of SecMOD

2. Set up a working directory

For the first step follow the instructions for the installation of SecMOD. Afterwards return to Step 2 to set up your first
working directory.

1.1 Set up a working directory

Create a new directory where you want. Note that this directory will contain all input and results data and can become
large in size, depending on the size of your examined model.

1. Open a terminal with an activated Python environment (e.g. Anaconda prompt)!

2. Navigate to your newly created directory in the terminal (e.g. “cd D:/WorkingDirectory”)!

3. Run the command “python -m secmod.setup” in the terminal!

SecMOD will now create the necessary folders for the input data and furthermore copy the sample data provided in the
SecMOD repository. Afterwards all necessary data to run SecMOD is available in the working directory. Furthermore,
a file called “start.bat” is created at the top level of your working directory. This file allows you to start SecMOD
with a simple double click. Depending on your Python installation, you might need to edit the file (right click > edit)
according to the instructions.

If you encounter problems during the automatic setup, please refer to Troubleshooting.

3



SecMOD MILP Documentation, Release 1.0

4 Chapter 1. Quickstart



CHAPTER

TWO

INSTALLATION

The installation of SecMOD is easily done. If you want to edit its source code, you need to follow Editable Installation.
If you just want to use the published package, follow Package Installation.

2.1 Editable Installation

To edit the source code and therefore contribute to the development of SecMOD, you need to clone the repository to
your local machine recursively. Using SSH as authentication to the git server the following command needs to be
used:

git clone --recurse-submodules -j8 git@git-ce.rwth-aachen.de:ltt/secmod-milp.git 01-
→˓SecMOD

Note: If you don´t know yet how to clone a repository have a look here. Make sure that you have Python already
installed on your PC.

After the clone process is completed, open a python terminal e.g. in your IDE (Visual Studio Code, Spyder, . . . ) or the
Anaconda prompt. Afterwards you can install SecMOD in form of your local repository by using the following install
command:

pip install --user -e PATH

Note: The PATH at the end of the command stands for the directory of your local repository. You can either use an
absolute path or a path relative to the currently active directory of the terminal.

Your local repository should now be installed, if no errors occurred during the process. You can now proceed to the
quickstart guide to complete your setup.

5

https://git-ce.rwth-aachen.de/ltt/secmod-milp
https://git.rwth-aachen.de/help/#new-to-git-and-gitlab


SecMOD MILP Documentation, Release 1.0

2.2 Package Installation

Error: SecMOD is not yet packaged and therefore not available through PyPI. Use the Editable Installation
instead.

If you don´t need to edit the source code of the SecMOD package, but just want to use the modules, you can install the
package directly from PyPi using the following command:

pip install secmod

SecMOD should now be installed, if no errors occurred during the process. You can now proceed to the quickstart
guide to complete your setup.

6 Chapter 2. Installation



CHAPTER

THREE

DATA IN SECMOD

Please refer to our publication for a detailed description of required data:

Note: Reinert, C., Nolzen, N., Frohmann, J., Tillmanns, D., Bardow, A. (2023): “Design of low-carbon multi-energy
systems in the SecMOD framework by combining MILP optimization and life-cycle assessment”. Computers & Chem-
ical Engineering. DOI: 10.1016/j.compchemeng.2023.108176.

3.1 Input data

Input data is used to model a given multi-sector system with the desired spatial, technical and temporal resolution.
Therein, the model entails continuous sizing of discrete components and detailed component behavior, such as minimal
part-load, load-dependent efficiencies. Input data can be added manually in the sampledata folder or in some cases be
obtained automatically from open webpages, such as the open power system database by the scripts in sampledata/00-
EXTERNAL.

3.2 Units in SecMOD

SecMOD employs unitizing to automatically convert units. All units used in the model must be defined in the sample
data file.

3.3 Output data

The objective of the optimization is to determine an optimal design and operation of the multi-energy system according
to the given objective and constraints. The output data of the optimization is saved in the working directory in 01-
MODEL-RESULTS/InvestmentModel_year.pickle. Additionally, the optimization variables stated in config.py can
be written out. These variables are stored as .csv-files in the working directory in 01-MODEL-RESULTS/Extracted
Results. Usually, the evaluation will start automatically. To start the evaluation without the optimization, type:

python -m secmod.evaluation

This will open a graphical user interface (GUI). In the user interface, the capacity, product flows, and impacts can
be shown for all products in different plot types. Clicking on a capacity will open a second layer to investigate the
construction years. Further, all raw results are shown as a table next to the plot. The data can be exported in several
formats including tikz, png, xlsx and pdf.

7



SecMOD MILP Documentation, Release 1.0

8 Chapter 3. Data in SecMOD



CHAPTER

FOUR

DEVELOPER REFERENCE

4.1 secmod.classes module

class secmod.classes.Grid(grid_path: Optional[pathlib.Path] = None, name: Optional[str] = None, nodes:
Optional[pandas.core.frame.DataFrame] = None, connections:
Optional[pandas.core.frame.DataFrame] = None)

Bases: object

This class is used to manage grids of nodes and connections.

This class represents a grid, which consists of a name, nodes and connections between these nodes. It can be
created from scratch by providing at least a unique name and optionally pandas dataframes for data about the
nodes and connections. It can alternatively be created from a path to a directory of an existing grid. The name
will then be taken from the name of the grid directory and the node data and connection data will be loaded from
.csv-files.

Furthermore the class has a static list of all created instances and a single static variable which represents the
selected grid for the optimization.

Parameters

• grid_path (Path ) – A path of the directory of an existing grid definition, which includes a
CSV-file with data about nodes and connections in the grid.

• name (str) – Name for a new grid, if no grid_path is provided. The name has to be unique,
since no two grids can have the same name.

• nodes (pd.Dataframe) – A pandas dataframe which has all the information about the
nodes of a new grid, if no grid_path is provided. This dataframe must have the columns
[“node”,”latitude”,”longitude”].

• connections (pd.Dataframe) – A pandas dataframe which has all the information about
the connections of a new grid, if no grid_path is provided. This dataframe must have the
columns [“connection”,”node1”,”node2”].

grids
Static list of all instanciated grids.

Type list

_selected
Static reference to a single Grid instance which is selected to be used in the optimization. Can be reached
via the selected()-method.

Type Grid

Raises

9



SecMOD MILP Documentation, Release 1.0

• ValueError – If no name is provided, if no path is provided as well.

• FileNotFoundError – If “nodes.csv” or “connections.csv” does not exist in the provided
directory.

• NotADirectoryError – If the provided path is no directory.

CONNECTION_NODES = {None: ['node1', 'node2']}

grids = []

_selected = None

classmethod load_grids_from_directory(grids_category_path: pathlib.Path)
Loads all grids of a specific class into their class.

property name
This property contains a unique name for the grid.

Getter: Gets the value of this property.

Returns: Name of the grid as string.

Setter: Sets the property to the provided name, if it isn’t already used by another grid.

Raises: ValueError: If the name is already used by another grid.

Type: str

property nodes
This property contains all information about the nodes of a grid.

Getter: Gets the value of this property.

Returns: Dataframe with the information about the nodes of the grid.

Setter: Sets the property to the provided dataframe, if the dataframe has the columns
[“node”,”latitude”,”longitude”].

Type: pd.dataframe

static get_list_of_node_ids()
Return a list of all node ID numbers of the selected grid.

property connections
This property contains all information about the connections between nodes of a grid.

Getter: Gets the value of this property.

Returns: Dataframe with the information about the connections of the grid.

Setter: Sets the property to the provided dataframe, if the dataframe has the columns [“connec-
tion”,”node1”,”node2”].

Type: pd.dataframe

static get_list_of_connection_ids()
Return a list of all node ID numbers of the selected grid.

setup_distances()
Sets up the distances of all connections, using pint units.

Uses geodesic distance from the package GeoPy (https://geopy.readthedocs.io/en/stable/#module-geopy.
distance) to calculate the distance between the two nodes of a connection.

10 Chapter 4. Developer reference

https://geopy.readthedocs.io/en/stable/#module-geopy.distance
https://geopy.readthedocs.io/en/stable/#module-geopy.distance


SecMOD MILP Documentation, Release 1.0

static calculate_distances(connection)
Calculates the distance or takes it from existing data.

Uses geodesic distance from the package GeoPy (https://geopy.readthedocs.io/en/stable/#module-geopy.
distance) to calculate the distance between the two nodes of a connection, if no distance is provided in the
data.

Parameters connection – An itertuple from the connections DataFrame.

static selected()
This methods gets the value of the static variable “selected”.

This method returns the Grid object which is selected to be used as grid for the optimization. The static
variable “selected” can only contain one Grid object and is set using the method “select()” of an instance
of the Grid class.

Returns Value of _selected, which is either None or a Grid instance.

select()
This methods sets the value of the static member “selected”.

The static member “selected” is set to reference the Grid instance which called this method.

class secmod.classes.Product(product_path: pathlib.Path)
Bases: object

This class is used for all product related data, e.g. demand, impacts, etc.

DEFAULT_COST = 3000

products = []

classmethod load_products_from_directory(products_path: pathlib.Path)
Loads all products of a specific class into their class.

property name
This property contains a unique name for the grid.

Getter: Gets the value of this property.

Returns: Name of the grid as string.

Setter: Sets the property to the provided name, if it isn’t already used by another grid.

Raises: ValueError: If the name is already used by another grid.

Type: str

_get_price_time_series(year: int)
Returns the absolute price time series

_get_selling_price_time_series(year: int)
Returns the absolute selling price time series

_get_cost_non_served_demand(reference_year: int, invest_year: int)
This method gets the costs of non-served demand of a product, i.e. for purchasing a product.

Calculates the present value of the selected impact year and its investment period in the reference year for
a product.

Parameters

• reference_year (int) – Reference year of the optimized time horizon, e.g. 2020

• invest_year (int) – An investment year of the optimized time horizon, e.g. 2025

4.1. secmod.classes module 11

https://geopy.readthedocs.io/en/stable/#module-geopy.distance
https://geopy.readthedocs.io/en/stable/#module-geopy.distance


SecMOD MILP Documentation, Release 1.0

_get_revenues_add_served_demand(reference_year: int, invest_year: int)
This method gets the costs of add-served demand of a product, i.e. for selling a product.

Calculates the present value of the selected impact year and its investment period in the reference year for
a product.

Parameters

• reference_year (int) – Reference year of the optimized time horizon, e.g. 2020

• invest_year (int) – An investment year of the optimized time horizon, e.g. 2025

get_impact_non_served_demand(impact_categories: list, reference_year: int, invest_years: list)
This methods gets the impact of non-served demand of a product in one or multiple impact categories for
a specific year.

If the impact category is “cost”, the corresponding method Product._get_cost_non_served_demand is used.
In all other cases the impacts of all ecoinvent processes defined by the process itself as the impacts of non-
served demand, are multiplied with their corresponding weight factors and summed up together.

static get_combined_impact_non_served_demand()
Returns the combined impact time series for all products and years.

get_impact_add_served_demand(impact_categories: list, reference_year: int, invest_years: list)
This methods gets the impact of add-served demand of a product in one or multiple impact categories for
a specific year.

If the impact category is “cost”, the corresponding method Product._get_cost_non_served_demand is used.
In all other cases the impacts of all ecoinvent processes defined by the process itself as the impacts of non-
served demand, are multiplied with their corresponding weight factors and summed up together.

static get_combined_impact_add_served_demand()
Returns the combined impact time series for all products and years.

get_nodal_demand_time_series(year: int)
Returns the absolute nodal demand time series.

static get_combined_demand_time_series()
Returns the combined demand time series for all products and years.

get_required_total_secured_capacity(invest_years: list)
Return the required secured capacity in the whole grid for product in a specific year.

static get_combined_required_total_secured_capacity()
Returns the combined required total secured capacity for all products and years.

get_required_nodal_secured_capacity(nodes: list, invest_years: list)
Return the required secured capacity in the whole grid for product in a specific year.

static get_combined_required_nodal_secured_capacity()
Returns the combined required nodal secured capacity for all products and years.

class secmod.classes.ImpactCategory(impact_category_path: pathlib.Path)
Bases: object

This class is used to manage impact categories, their corresponding limits and costs of overshoot.

impact_categories = []

FRAMEWORK = 'ReCiPe Midpoint (H)'

MANUAL_IMPACT_CATEGORY_SELECTION = []

property name
This property contains a unique name for the impact categoy.

12 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

Getter: Gets the value of this property.

Returns: Name of the impact categoy as string.

Setter: Sets the property to the provided name, if it isn’t already used by another impact categoy.

Raises: ValueError: If the name is already used by another impact categoy.

Type: str

property ecoinvent_name
This property contains a unique name for the impact category, which is used by ecoinvent.

Getter: Gets the value of this property.

Returns: ecoinvent name of the impact category as string.

Setter: Sets the property to the provided ecoinvent name, if it isn’t already used by another impact category.

Raises: ValueError: If the ecoinvent name is already used by another impact category.

Type: str

classmethod load_impact_categories_from_directory(impact_categories_path: pathlib.Path)
Loads all impact categories of a specific class into their class.

static get_list_of_active_impact_categories()
Returns a list of the all active impact categories in the currently selected framework.

static get_list_of_names_of_active_impact_categories()
Returns a list of the ecoinvent names of all impact categories active in the currently selected framework.

_get_operational_nodal_impact_limits(nodes: list, invest_years: list)
Return the operational nodal impact limit for an impact category in a specific year.

static get_combined_operational_nodal_impact_limits()
Returns the combined operational nodal impact limit for all impact categories and years.

_get_invest_nodal_impact_limits(nodes: list, invest_years: list)
Return the invest nodal impact limit for an impact category in a specific year.

static get_combined_invest_nodal_impact_limits()
Returns the combined invest nodal impact limit for all impact categories and years.

_get_total_nodal_impact_limits(nodes: list, invest_years: list)
Return the total nodal impact limit for an impact category in a specific year.

static get_combined_total_nodal_impact_limits()
Returns the combined total nodal impact limit for all impact categories and years.

_get_operational_impact_limits(invest_years: list)
Return the operational impact limit for an impact category in a specific year.

static get_combined_operational_impact_limits()
Returns the combined operational impact limit for all impact categories and years.

_get_invest_impact_limits(invest_years: list)
Return the invest impact limit for an impact category in a specific year.

static get_combined_invest_impact_limits()
Returns the combined invest impact limit for all impact categories and years.

_get_total_impact_limits(invest_years: list)
Return the total impact limit for an impact category in a specific year.

4.1. secmod.classes module 13



SecMOD MILP Documentation, Release 1.0

static get_combined_total_impact_limits()
Returns the combined total impact limit for all impact categories and years.

_get_objective_factor_impact(invest_years: list)
Return the total impact limit for an impact category in a specific year.

static get_combined_objective_factor_impact()
Returns the combined total impact limit for all impact categories and years.

_get_objective_factor_impact_overshoot(invest_years: list)
Return the objective factors for impact overshoots for an impact category in a specific year.

static get_combined_objective_factor_impact_overshoot()
Returns the combined objective factors for impact overshoots for all impact categories and years.

class secmod.classes.ProcessImpacts(process_path: Optional[pathlib.Path] = None)
Bases: abc.ABC

This class is used as an interface for process impacts.

In this class two abstract methods are defined which need to be implemented by subclasses. Therefore this class
acts as an interface which is implemented by the inheriting classes. This way it is assured that the methods used
to get the impacts of investment and operation can be called in all inheriting classes.

Furthermore it includes static variables for the economic time period and assumed interest rate. And since costs
are special impacts, which all processes must have, the instance variables for costs are defined in this class.
Furthermore the initialization of this class imports the costs from a processes directory, if provided. Methods to
get costs of investment and operation are implemented as well.

Parameters process_path (Path ) – A path of the directory of an existing process definition, which
includes a CSV-file with data about the costs of the process.

interest_rate
The interest rate used for economic impacts as share of 1.

Type float

economic_period
The time period used for the calculation of all annualized impacts.

Type pint quantity

Raises FileNotFoundError – If no file “costs.csv” can be found in the process directory.

IMPACT_SOURCES = {None: ['operation', 'invest']}

interest_rate = 0.05

economic_period = <Quantity(30, 'year')>

invest_years = [2016, 2020, 2025, 2030, 2035, 2040, 2045, 2050]

construction_years = []

processes = []

property name
This property contains a unique name for the grid.

Getter: Gets the value of this property.

Returns: Name of the grid as string.

Setter: Sets the property to the provided name, if it isn’t already used by another grid.

14 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

Raises: ValueError: If the name is already used by another grid.

Type: str

abstract get_impact_invest(impact_categories: list, construction_year: int, invest_year: int)
This method gets the annual investment impacts of a process

Parameters

• impacts_categories (list) – List of strings, which define for which impact categories
the yearly investment impacts shall be returned

• construction_year (int) – Year of construction of an instance of this process

• invest_year (int) – Year for which the impact is calculated

abstract get_impact_operation(impact_categories: list, construction_year: int, reference_year: int,
invest_year: int)

This method gets the operational impacts of a process

Parameters

• impacts_categories (list) – List of strings, which define for which impact categories
the yearly investment impacts shall be returned

• construction_year (int) – Year of construction of an instance of this process

• invest_year (int) – Year for which the impact is calculated

static _get_investment_period_duration(invest_year: int)
Gets the duration of the period between this and the next invest year.

If it is the last year in the list of invest years, a period duration of one year is returned.

Parameters invest_year (int) – A year, e.g. 2020.

_get_cost_invest(construction_year: int, reference_year: int, invest_year: int)
This method gets the annual investment costs of a process

Calculates the present value of the selected impact year and its investment period in the reference year for
a process instance build in the construction year.

Parameters

• construction_year (int) – Year of construction, e.g. 2016. Earliest year is used, if
construction year is earlier than the earliest year in the data.

• reference_year (int) – Reference year of the optimized time horizon, e.g. 2020

• invest_year (int) – An investment year of the optimized time horizon, e.g. 2025

_get_cost_operation(construction_year: int, reference_year: int, invest_year: int)
This method gets the annual investment costs of a process

Calculates the present value of the selected impact year and its investment period in the reference year for
a process instance build in the construction year.

Parameters

• construction_year (int) – Year of construction, e.g. 2016. Earliest year is used, if
construction year is earlier than the earliest year in the data.

• reference_year (int) – Reference year of the optimized time horizon, e.g. 2020

• invest_year (int) – An investment year of the optimized time horizon, e.g. 2025

4.1. secmod.classes module 15



SecMOD MILP Documentation, Release 1.0

classmethod get_combined_impact_matrix()
Method that is used to return the combined impact matrix of all process of a process category.

static _get_single_combined_impact_matrix(combined_impact_matrix_list, process,
impact_categories, construction_years, reference_year,
invest_years)

Returns impacts for component investment and operation

get_lifetime_duration(construction_years: list)
Return the lifetime duration of the process for a list of construction years

classmethod get_combined_lifetime_duration()
Returns the combined lifetime durations of all processes in the class using the construction years of the
class.

abstract classmethod setup_construction_years()
Abstract method to setup the construction years from existing capacity data.

setup_years()

_abc_impl = <_abc_data object>

class secmod.classes.EcoinventImpacts(process_path: Optional[pathlib.Path] = None)
Bases: secmod.classes.ProcessImpacts

This class provides impacts based on a list of ecoinvent processes.

An instance based on this class gets its impacts from the ecoinvent database. The impacts are calculated by
adding a list of ecoinvent processes multiplied with a scaling factor, which are used to define the environmental
impact of a process in SecMOD.

Parameters process_path (Path ) – A path to the directory of an ecoinvent process. If no path is
provided, an empty instance will be created.

Raises NotADirectoryError – If provided path is not a directory.

database = None

subassemblies = {}

static load_ecoinvent_database(database_path: pathlib.Path, units_to_change_path:
Optional[pathlib.Path] = None)

Loads the impacts of all ecoinvent processes from a multiindexed CSV-file.

Additionally this methods loads new unit defintions to be used in pint and translates ecoinvent units to the
necessary format to be used with pint.

Furthermore the process names are edited to match previous naming logic from SecMOD 1.0.

Parameters

• database_path (Path ) – A path which includes the filename of the CSV-file.

• units_to_change_path (Path ) – A path to a JSON-file which defines a dictionary of
existing units and the units they shall be replaced with.

• new_pint_units (Path ) – A path to a TXT-file which includes new unit definitions to be
used as pint units. E.g. “car = []” or “mass_CO2_equivalent = [GWP100] = CO2_eq”

static _translate_process_name_to_ecoinvent_identifier(process_name: str)
Modifies a process name to match the ecoinvent identifiers.

Deletes special charaters, spaces, commas, dots, etc. and replaces them by underscores. Furthermore
secures that there is only one underscore in a row. e.g.:

16 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

“passenger car, electric, without battery//[GLO] passenger
car production, electric, without battery” becomes “passen-
ger_car_electric_without_battery_GLO_passenger_car_production_electric_without_battery”

static _translate_units_to_pint(json_path: pathlib.Path)
Modifies units of impacts to match pint unit definitions.

This method simply exchanges some units from the ecoinvent database to fit the corresponding unit defini-
tions in pint. It uses a dictionary to replace the units. This dictionary is provided as a JSON-file. The path
to the file has to be given to this method or preferably to the method load_ecoinvent_database.

Note: If new units are needed they have to be added to this JSON-file. e.g. like this

“kg PM2.5-.”: “kg PM2_5_eq”

static load_ecoinvent_subassemblies(subassemblies_path: pathlib.Path)
Loads ecoinvent subassemblies from a directory.

This methods automatically detects all CSV-files in a directory and assumes that all of them are ecoinvent
subassemblies.

get_impact_invest(impact_categories: list, construction_years: list, reference_year: int, invest_years:
list)

This method gets the invest impact of a process in one or multiple impact categories for a specific year.

This method determines the value of the requested impact categories for a process in a specific year. It takes
into account when the process capacity was constructed, which year is the reference year of the current
optimization horizon and which year is actually the current invest year.

If the impact category is “cost”, the corresponding method ProcessImpacts._get_cost_invest is used. In
all other cases the impacts of all ecoinvent processes defined by the process itself as the invest phase, are
multiplied with their corresponding weight factors and summed up together.

It returns the results as a dictionary of impact categories and their corresponding value, including the correct
units.

Parameters

• impact_categories (list) – A list of one or more impact categories to be determined.

• construction_year (int) – The year in which the process capacity was build. It is used
to determine the actual impact a capacity build in that year has. Earliest year is used, if
construction year is earlier than the earliest year in the data.

• reference_year (int) – The reference year of the current optimization horizon. It is
only used to discount the cost of the process during the whole optimization horizon to the
reference year value.

• invest_year (int) – The invest year investigated right now. It is used to determine
whether a process still got invest annuities to pay, only maintenance costs remaining or
is already beyond its lifetime duration and therefore has no invest impacts anymore at all.

get_impact_operation(impact_categories: list, construction_years: int, reference_year: int, invest_years:
int)

This method gets the operational impact of a process in one or multiple impact categories for a specific
year.

This method determines the value of the requested impact categories for a process in a specific year. It takes
into account when the process capacity was constructed, which year is the reference year of the current
optimization horizon and which year is actually the current invest year.

4.1. secmod.classes module 17



SecMOD MILP Documentation, Release 1.0

If the impact category is “cost”, the corresponding method ProcessImpacts._get_cost_operation is used. In
all other cases the impacts of all ecoinvent processes defined by the process itself as the operational phase,
are multiplied with their corresponding weight factors and summed up together.

It returns the results as a DataFrame of impact categories and their corresponding value, including the
correct units.

Parameters

• impact_categories (list) – A list of one or more impact categories to be determined.

• construction_year (int) – The year in which the process capacity was build. It is used
to determine the actual impact a capacity build in that year has. Earliest year is used, if
construction year is earlier than the earliest year in the data.

• reference_year (int) – The reference year of the current optimization horizon. It is
only used to discount the cost of the process during the whole optimization horizon to the
reference year value.

• invest_year (int) – The invest year investigated right now. It is only used to discount
the cost of the process during the whole optimization horizon to the reference year value.

static _get_ecoinvent_process_impact(construction_year_attribute_name, process, impact_category:
str, construction_year: int, impact_year: int)

Get the impact of a process in a specific impact category and construction year.

Takes in an interable tuple from a process list (e.g. self._processes_invest) and returns the corresponding
impact value.

Parameters

• process_list (pd.Dataframe) – A DataFrame, which represents a list of processes, e.g.
self._processes_invest

• process – An element of process_list.itertuple() which is currently evaluated.

• impact_category (str) – The name of the evaluated impact category.

• construction_year (int) – The year of construction for which the impact is determined.
If the year of construction is earlier than the earliest year in the data, the earliest year is used.

• impact_year (int) – The year in which the impact actually occurs. For invest impacts the
impact_year is equal to the construction_year. If the impact_year is earlier than the earliest
year in the data, the earliest year is used.

Raises KeyError – If the searched process does not exist in the ecoinvent database and seems to
be used, since its weight factor is not zero.

static _isSubassembly(process_name: str)
Checks whether a process is actually a subassembly

static _recursively_get_impact(process_list: pandas.core.frame.DataFrame, impact_category: str,
construction_year: int, impact_year: int)

Recursively calculates the impact of a process list

_abc_impl = <_abc_data object>

class secmod.classes.ManualImpact(process_path: Optional[pathlib.Path] = None)
Bases: secmod.classes.ProcessImpacts

This is the class for manual impact definitions, when own databases are used. Currently, this is not fully imple-
mented yet.

18 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

get_impact_invest(impact_categories: list, construction_year: int, reference_year: int, invest_year: int)
Get manual invest impacts.

get_impact_operation(impact_categories: list, construction_year: int, reference_year: int, invest_year:
int)

Get operational invest impacts.

_abc_impl = <_abc_data object>

class secmod.classes.Process(process_path: pathlib.Path)
Bases: secmod.classes.ProcessImpacts

This is the base class for processes of all kind.

It inherits from ProcessImpacts, since all processes have impacts and costs.

Parameters process_path (Path ) – The path to a process directory.

construction_years = []

locations = []

classmethod load_processes_from_directory(process_category_path: pathlib.Path)
Loads all processes of a specific class into their class.

get_numerical_property(property_to_return: str)

abstract get_existing_capacity(locations: list, invest_years: list)

abstract get_potential_capacity(locations: list, invest_years: list)

add_capacity(location: int, construction_year: int, new_capacity: <module 'pint.quantity' from
'C:\\Users\\nnolzen\\AppData\\Roaming\\Python\\Python38\\site-
packages\\pint\\quantity.py'>)

Abstract method that adds capacity to a specific node or connection in a specific construction year.

classmethod get_combined_existing_capacity()
Returns the existing capacity

classmethod get_combined_potential_capacity()
Returns the potential capacity

classmethod setup_construction_years(combined_existing_capacity=Series([], dtype: float64))
Looks up the required construction years for this process class.

A matrix of combined existing capacity can be provided to speed up the process. Otherwise the method
will create a new combined_existing_capacity matrix.

_abc_impl = <_abc_data object>

class secmod.classes.NodalProcess(process_path: pathlib.Path)
Bases: secmod.classes.Process

This is the class for nodal processes. It inherits from Process.

Parameters process_path (Path ) – The path to a process directory.

locations = []

get_existing_capacity(nodes: list, invest_years: list)
Returns existing capacity.

get_potential_capacity(locations: list, invest_years: list)
Returns potential capacity.

4.1. secmod.classes module 19



SecMOD MILP Documentation, Release 1.0

get_secured_capacity_factor(construction_years: list)
Returns secured capacity factor.

classmethod get_combined_secured_capacity_factor()
Gets the secured capacity factors for all processes of a process category.

abstract get_technologymatrix(construction_years: list, products: list)

classmethod get_combined_technology_matrix(products: list)
Returns technology matrix for all production processes.

get_maximum_production_share(nodes: list, invest_years: list)
Returns maximum production share.

_abc_impl = <_abc_data object>

class secmod.classes.ConnectionProcess(process_path: pathlib.Path)
Bases: secmod.classes.Process

This is the class for connection processes. It inherits from Process.

Parameters process_path (Path ) – The path to a process directory.

locations = []

get_existing_capacity(connections: list, invest_years: list)
Returns existing capacity.

abstract get_potential_capacity(locations: list, invest_years: list)
Returns potential capacity.

_abc_impl = <_abc_data object>

class secmod.classes.ProductionProcess(process_path: pathlib.Path)
Bases: secmod.classes.NodalProcess

This is the class for production processes. It inherits from nodal process.

Parameters process_path (Path ) – The path to a process directory.

processes = []

construction_years = []

get_technologymatrix(construction_years: list, products: list)
Return technologymatrix for a single process.

For MILP, the technology matrix consists of several part-load sections

get_availability_timeseries()
Returns availability timeseries

static get_combined_availability_timeseries()
Returns combined availability timeseries

get_technology_matrix_timeseries()
Returns time-dependent technologymatrix

static get_combined_technology_matrix_timeseries()
Returns combined availability timeseries

get_cornerpoints()
determines the number of corner points/part-load sections to discretize the process in an MILP

static get_combined_cornerpoints()
determines the number of cornerpoints for all processes”

20 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

get_reference_products()
determines the reference product of a production process

static get_combined_reference_product()
determines the reference products for all production processes

get_gradient_technologymatrix(construction_years: list, products: list)
determines the gradient between two cornerpoints/in a section for the defined process

get_combined_gradient_technologymatrix(products: list)
get gradients for all processes

get_relative_partload_capacity(construction_years: list, products: list)
get the amount of capacity that can be used at each cornerpoint

get_combined_relative_partload_capacity(products: list)
get the amount of capacity that can be used at each cornerpoint for all processes

get_minimal_capacity(locations: list, invest_years: list)
get minimal capacity to be built for a production process

classmethod get_combined_minimal_capacity()
get minimal capacities to be built for all processes

_abc_impl = <_abc_data object>

class secmod.classes.StorageProcess(process_path: pathlib.Path)
Bases: secmod.classes.NodalProcess

This is the class for storage processes. It inherits from nodal process.

Parameters process_path (Path ) – The path to a process directory.

DIRECTIONS_STORAGE = {None: ['deposit', 'withdraw']}

STORAGE_LEVEL_FACTOR = {'deposit': 1, 'withdraw': -1}

processes = []

construction_years = []

get_technologymatrix(construction_years: list, products: list)
Returns the technologymatrix for storage process

_abc_impl = <_abc_data object>

get_flow_to_storage_capacity_factor(construction_years: list)
Returns the flow-to-storagecapacity-factor

static get_combined_flow_to_storage_capacity_factor()
Returns the combined flow to storagecapacity factor

static get_combined_storage_products(products)
Return a dictionary of all storage processes and their storeable product.

get_minimal_capacity(locations: list, invest_years: list)
get minimal capacity to be built for a storage process

classmethod get_combined_minimal_capacity()
get minimal capacity to be built for all storage processes

get_min_rel_storage_level_factor(construction_years: list)
return minimal relative storage level

static get_combined_min_rel_storage_level_factor()
return minimal relative storage level for all storage processes

4.1. secmod.classes module 21



SecMOD MILP Documentation, Release 1.0

get_rel_storage_loss_factor(construction_years: list)
returns storage loss between to time steps for a single storage process

static get_combined_rel_storage_loss_factor()
returns storage loss between to time steps for all storage processes

class secmod.classes.TransshipmentProcess(process_path: pathlib.Path)
Bases: secmod.classes.ConnectionProcess

This is the class for transshipment processes. It inherits from connection process.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

DIRECTIONS_TRANSSHIPMENT = {None: ['forward', 'backward']}

DIRECTION_FACTOR_TRANSSHIPMENT = {'backward': -1, 'forward': 1}

processes = []

construction_years = []

get_transshipment_efficiency()
Return a dataframe with the efficiency of every connection for a transshipment process.

get_potential_capacity(locations: list, invest_years: list)
Return potential capacity.

classmethod get_combined_transshipment_efficiency()
Return a dataframe with the efficiencies of every connection for every transshipment process.

classmethod get_combined_transhipment_products()
Returns a dictionary with the names and products of all transshipment processes

class secmod.classes.TransmissionProcess(process_path: pathlib.Path)
Bases: secmod.classes.ConnectionProcess

This is the class for transmission processes. It inherits from connection process.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

PRODUCTS = {None: ['electricity']}

processes = []

construction_years = []

per_unit_base = <Quantity(500, 'megavolt_ampere')>

reference_node = 1

get_potential_capacity(locations: list, invest_years: list)
Returns potential capacity

_get_process_connection_properties(connections: list, invest_years: list)
Returns connection properties, such as circuits, power limit, safety margin, and more.

static _get_process_by_voltage(voltage: <module 'pint.quantity' from
'C:\\Users\\nnolzen\\AppData\\Roaming\\Python\\Python38\\site-
packages\\pint\\quantity.py'>)

Returns processes sorted by voltage.

static get_connection_properties()
Returns connection properties.

22 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

static get_combined_power_limit_per_circuit()
Returns a dictionary of the power limits per circuit of all transmission processes.

static get_combined_safety_margin()
Returns a dictionary of the safety margin of all transmission processes.

class secmod.classes.ProductionProcessEcoinvent(process_path: pathlib.Path)
Bases: secmod.classes.ProductionProcess, secmod.classes.EcoinventImpacts

This is the class for ecoinvent production processes. It inherits from ProductionProcess and EcoinventImpacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.ProductionProcessManual(process_path: pathlib.Path)
Bases: secmod.classes.ProductionProcess, secmod.classes.ManualImpact

This is the class for manually defined production processes. It inherits from ProductionProcess and Manu-
alImpact.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.StorageProcessEcoinvent(process_path: pathlib.Path)
Bases: secmod.classes.StorageProcess, secmod.classes.EcoinventImpacts

This is the class for ecoinvent storage processes. It inherits from StorageProcess and Ecoinvent Impacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.StorageProcessManual(process_path: pathlib.Path)
Bases: secmod.classes.StorageProcess, secmod.classes.ManualImpact

This is the class for manually defined storage processes. It inherits from StorageProcess and ManualImpact.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.TransshipmentProcessEcoinvent(process_path: pathlib.Path)
Bases: secmod.classes.TransshipmentProcess, secmod.classes.EcoinventImpacts

This is the class for ecoinvent transshipment processes. It inherits from TransshipmentProcess and EcoinventIm-
pacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.TransshipmentProcessManual(process_path: pathlib.Path)
Bases: secmod.classes.TransshipmentProcess, secmod.classes.ManualImpact

This is the class for manually defined transshipment processes. It inherits from TransshipmentProcess and Ecoin-
vent Impacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.TransmissionProcessEcoinvent(process_path: pathlib.Path)
Bases: secmod.classes.TransmissionProcess, secmod.classes.EcoinventImpacts

4.1. secmod.classes module 23



SecMOD MILP Documentation, Release 1.0

This is the class for ecoinvent transmission processes. It inherits from TransmissionProcess and EcoinventIm-
pacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

class secmod.classes.TransmissionProcessManual(process_path: pathlib.Path)
Bases: secmod.classes.TransmissionProcess, secmod.classes.ManualImpact

This is the class for manually-defined tranmission processes. It inherits from TransmissionProcess and Ecoin-
ventImpacts.

Parameters process_path (Path ) – The path to a process directory.

_abc_impl = <_abc_data object>

secmod.classes.calculate_power_line_power_limit(power_limit, safety_margin, circuits)

secmod.classes.calculate_power_line_resistance_per_unit(specific_resistance, distance, circuits,
voltage, per_unit_base)

secmod.classes.calculate_power_line_susceptance_per_unit(reactance_per_unit, resistance_per_unit)

secmod.classes.calculate_voltage_switch_power_limit(target_power_limit, base_power_limit,
safety_margin, circuits)

secmod.classes.calculate_voltage_switch_resistance_per_unit(target_voltage, base_voltage,
target_specific_resistance,
base_specific_resistance,
per_unit_base, circuits, distance)

4.2 secmod.data_preprocessing module

secmod.data_preprocessing.download_datapackage(url: str, download_path: pathlib.Path)→ bool
This method is used to download an Open Source Data Package.

Using the URL to the meta data JSON-file of the data package, the complete data package is downloaded into a
download folder. If the download has been successfull a boolean True is returned.

Parameters

• url (str) – URL to the directory of the meta data JSON-file of the data package (e.g. https:
//data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json)

• download_path (Path ) – Path of the directory where the data package is to be saved

secmod.data_preprocessing.datapackage_update_available(url: str, download_path: pathlib.Path)→
bool

This method checks if there is an update available for a remote data package.

First the methods tries to open the remote data package to check its availability. If it is not available, False is
returned.

After that the local data package is opened, if it exists. If it does not exist, True is returned.

If both sources are accessible the version information from the meta data is compared. Because the remote source
is expected to have the newest version, any difference in the version information returns True.

Parameters

• url (str) – URL to the directory of the meta data JSON-file of the data package (e.g. https:
//data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json)

24 Chapter 4. Developer reference

https://data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json
https://data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json
https://data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json
https://data.open-power-system-data.org/renewable_power_plants/latest/datapackage.json


SecMOD MILP Documentation, Release 1.0

• download_path (Path ) – Path of the directory where the data package is to be saved

secmod.data_preprocessing.download_file(url: str, save_to: str, expected_size: Optional[int] = None)
This method downloads files using streaming.

A get request is used to download the file from the URL. The response is streamed into a local file to minimize
RAM usage.

Parameters

• url (str) – URL to the file

• save_to (str) – local path and filename to be saved to

secmod.data_preprocessing.is_setup(working_directory: pathlib.Path)→ bool
This method checks if SecMOD has been set up before.

This is achieved by checking if the folder “SecMOD” exists in the working directory and returning a boolean. If
it does not exist, the method returns False.

Parameters working_directory (Path ) – Path of the working directory

secmod.data_preprocessing.create_directory(path: pathlib.Path)
This method creates a new directory, if it does not exist, yet.

The method uses pathlib to check for the existence of a path. If the path does not exist yet, it get created.

Parameters path (Path ) – Path of the directory to be created

4.3 secmod.data_processing module

secmod.data_processing.load_raw_input(raw_input_directory: pathlib.Path)
Loads all data from raw input.

secmod.data_processing.load_all_processes(processes_directory: pathlib.Path)
Loads all processes in their corresponding class.

secmod.data_processing.generate_input_dictionary(computed_input_path: pathlib.Path, load: bool =
False)

Takes all loaded data and generates an input dictionary for the optimization model.

secmod.data_processing.deunitize_input_dictionary(input_dictionary: dict)
Removes all units from the input dictionary to make it handle

secmod.data_processing.get_dimensionalities_from_input_dictionary(input_dictionary: dict)
Returns a list with all unique dimensionalities and an example unit

4.4 secmod.evaluation module

class secmod.evaluation.AbstractFrame_evaluation(parent, optimization_results, working_directory,
frac_height=0.8, frac_width=0.8)

Bases: tkinter.Frame

This is the abstract GUI Frame class

It is used to define the common parts of the MainFrame and the DetailedFrame.

startPlot()
start setup or plot of figure

4.3. secmod.data_processing module 25



SecMOD MILP Documentation, Release 1.0

setupFigure()
set up figure in north frame

calculateFrameGeometry(idxrow=0, idxcolumn=0)
Calculate width and height of frame in GUI

plotFigure()
plot balance

getbalanceUnits(grouped_balance, unit_time_summation, b_extendedDataframe=False)
Get units of balance in optimization

selectPlotType()
plots the data according to specified plot type

createLegend()
creates seperate Legends

setColors()
return list of colors for plot

highlightMouseSelection(event)
highlight selection over which mouse currently hovers

showTable(extendedDataframe=False)
Show table with values of dataframe

adjustManualColumnWidths()
Adjust column width of table. Copied from pandastable documentation and cleared line “if w > 200

savePlotData()
opens new Save Frame

groupBalanceByIndex(input_balance)
in mainframe no grouping necessary. Method overwritten in Detailed Frame

getNonzeroIndizes(summed_level=None)
get indizes of balance whose values are nonzero

abstract getTitleString()
abstract method. Needs to be implemented in Child Class

class secmod.evaluation.MainFrame_evaluation(parent, optimization_results, working_directory)
Bases: secmod.evaluation.AbstractFrame_evaluation

This is the Main Frame of the evaluation GUI

It is a child class of AbstractFrame_evaluation

setUpRadiobuttons(*args)
Set up and change radiobuttons for product flows/impacts/processes

getDataframeFromSelection(*args)
Create Dataframe which contains the information representing the selection, i.e. selection of Product,
Balance and Impact/Capacities

disableEnableRadiobuttons()
Disable radiobuttons of balance specification, which is not available for product

Only necessary for single product

plotFigure()
plot balance

inherited from AbstractFrame_evaluation but click functionality added

26 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

openDetailedWindow(event)
open Detailed Frame to further inspect line/bar/area clicked on

getTitleString()
Get Title String depended on selection of balance

class secmod.evaluation.DetailedFrame_evaluation(parent, optimization_results, working_directory,
reduced_balance, mainframe)

Bases: secmod.evaluation.AbstractFrame_evaluation

This is the Detailed Frame of the evaluation GUI

It is a child class of AbstractFrame_evaluation

disableEnableCheckbuttons()
Disable checkbuttons of aggregation level, which is not available in balance

groupBalanceByIndex(input_balance)
Group balance by level of aggregation. Index selected by checkbuttons

showTable()
show table

select whether detailed or entire dataset shown in table

getTitleString()
Get Title String depended on selection of balance

Same Title as MainFrame, only ‘Detailed’ added

class secmod.evaluation.SaveFrame(parent, mainframe)
Bases: object

New Frame in order to save plot and Data

toggleSaveButton()
disables the SaveButton if no checkbutton selected

browseFolder()
Browses Folder and selects new Folder

saveSelection()
saves the selection as <filename> in <folderpath>

secmod.evaluation.evaluate(working_directory)
Evaluates the results of the optimization.

secmod.evaluation.start_evaluation(working_directory)

4.5 secmod.helpers module

secmod.helpers.isInteger(text: str)
Checks if string could be an integer.

secmod.helpers.unitize_dataframe(dataframe: pandas.core.frame.DataFrame, units:
pint.registry.UnitRegistry)

Multiplied every row of a dataframe with the corresponding unit and drops the unit column.

secmod.helpers.log_heading(message: str)
Takes a message and creates a nicely formatted heading log message.

secmod.helpers.clear_filename_special_character(filename: str)

4.5. secmod.helpers module 27



SecMOD MILP Documentation, Release 1.0

secmod.helpers.convert_date(date_old, correct_dateformat, partially_correct_dateformat, wrong_dateformat)
converts date to correct dateformat

secmod.helpers.correct_time_stamp_of_timeseries(timeseries)
corrects time stamp of timeseries

format desired, which is given in config (e.g. dd.mm.yyyy HH:MM)

secmod.helpers.get_rwth_colors()
return RWTH colors as array

4.6 secmod.optimization_MILP module

class secmod.optimization_MILP.Optimization_MILP
Bases: abc.ABC

This is the class for optimization models.

It includes all declarations of Sets, Parameters, Variables and Constraints. Furthermore it contains all optimiza-
tion methods.

setupSets()
This method sets up all Sets required by all optimization models.

Some Sets are initialized with default values, if no other values are specified in the input file.

setupParameters()
This method sets up all Parameters required by all optimization models.

setupVariables()
This method sets up all Variables required by all optimization models.

setupConstraints()
This method sets up all Constraints required by all optimization models.

setupObjective()
This method declares the pe.Objective required by all optimization models.

instantiate_model(input_dict: Optional[dict] = None, filepath: Optional[str] = None, skip_instantiation:
bool = False)

This method creates a model instance and fixes variables

run(input_dict: Optional[dict] = None, filepath: Optional[str] = None, solver: str = 'glpk', solver_options:
Optional[dict] = None, debug: bool = False, skip_instantiation: bool = False)
This method is used to start an optimization.

To start an optimization it is necessary to provide a file with the necessary input data. This file includes all
information required to instantiate the optimization problem.

Parameters

• input_dict (dict) – Input dictionary that contains all the necessary data for the opti-
mization

• filename (str) – Filename of the previously generated input file

• solve (str) – Name of the solve to be used. Standard is ‘gurobi’

fix_transmission_reference_node_phase_difference()
This method is used as rule for fixing the transmission phase difference of one node to zero.

28 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

This is necessary for the calculation in the DC load flow model of the transmission grid. Furthermore the
reference node should be a node at which no loads of any kind occur. Therefore extractions or feed-in must
not take place at this node.

fix_unneeded_variables()
Fixes unneeded variables to 0 for all processes.

static get_dataframe_from_result(model_instance_variable, unstack: Optional[list] = None)
Returns a dataframe with the results from the optimization model.

static get_dataframe_from_parameter(model_instance_variable, unstack: Optional[list] = None)
Returns a dataframe with the results from the optimization model.

get_used_capacity_from_result()
Return a dictionary of dataframes with the used capacities from the optimization.

get_non_served_demand_from_result()
Return a dictionary of dataframes with the non_served_demand from the optimization.

static constraint_product_balance_rule(model, node: int, product: str, year: int, time_slice: str)→
pyomo rule

This method is used as rule for the product balance equation.

This expression represents the product balance equation which is unique for each node, product, year and
time slice. It can be summarized as:

Production + (Transshipment) + Storage + (Transmission) + Purchase = Demand +␣
→˓Selling

Therefore it takes the named above as parameters.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• product (str) – A product at which is constrained

• year (int) – A year at which the pe.Constraint is active

• time_slice (str) – A time_slice at which the pe.Constraint is active

static constraint_restrict_export_rule(model, node: int, product: str, year: int, time_slice: str)→
pyomo rule

Restrict exports of products you dont want to sell/you dont want to allow sell.

static constraint_restrict_import_rule(model, node: int, product: str, year: int, time_slice: str)→
pyomo rule

This method is used as rule for preventing import of non-importable products.

static constraint_usable_production_rule(model, node: int, process_production: str, year: int,
year_construction: int, time_slice: str, vertex: int)→
pyomo rule

This method is used to constrain the used production to the available production in each time slice.

static constraint_production_limit_binaries_rule(model, node: int, process_production: str,
year: int, year_construction: int, time_slice:
str)→ pyomo rule

This method is used as rule for limitting the number of binaries which are allowed in partload behaviour of
components, i.e. one partload segment can be chosen at maximum.

4.6. secmod.optimization_MILP module 29



SecMOD MILP Documentation, Release 1.0

static constraint_production_limit_by_capacity_upper_rule(model, node: int,
process_production: str, year: int,
year_construction: int, time_slice:
str, vertex: int)→ pyomo rule

This method constrains the used_production to the upper capacity available in a part-load segment by the
parameter processes_rel_partload_capacity.

static constraint_production_limit_by_capacity_lower_rule(model, node: int,
process_production: str, year: int,
year_construction: int, time_slice:
str, vertex: int)→ pyomo rule

This method constrains the used_production to the lower capacity available in a part-load segment by the
parameter processes_rel_partload_capacity.

static constraint_production_potential_capacity_by_input_rule(model, node: int,
process_production: str,
year: int, year_construction:
int)→ pyomo rule

This constraint sets a limit for the potential capacity of production processes. If exist-
ing_capacity_production is >0, this component already exists. Thus, new_capacity_production is fixed
to existing_capacity_production in this rule.

static constraint_production_glovers_1a_rule(model, node: int, process_production: str, year:
int, year_construction: int, time_slice: str, vertex:
int)→ pyomo rule

The glover constraints 1a, 1b, 2a, 2b model part-load behavior using the time-dependent auxiliary
capacity xsi_production. Here: If used_production_binary = 0, then xsi_production = 0 OR If
used_production_binary = 1, then xsi_production <= potential_capacity_production.

static constraint_production_glovers_1b_rule(model, node: int, process_production: str, year:
int, year_construction: int, time_slice: str, vertex:
int)→ pyomo rule

The glover constraints 1a, 1b, 2a, 2b model part-load behavior using the time-dependent auxiliary
capacity xsi_production. Here: If used_production_binary = 0, then xsi_production = 0 OR If
used_production_binary = 1, then then minimal_capacity_production <= xsi_production.

static constraint_production_glovers_2a_rule(model, node: int, process_production: str, year:
int, year_construction: int, time_slice: str, vertex:
int)→ pyomo rule

The glover constraints 1a, 1b, 2a, 2b model part-load behavior using the time-dependent auxiliary
capacity xsi_production. Here: If used_production_binary == 0, then new_capacity_production-
potential_capacity_production <= xsi_production <= potential_capacity_production If
used_production_binary == 1, then xsi_production=new_capacity_production

static constraint_production_glovers_2b_rule(model, node: int, process_production: str, year:
int, year_construction: int, time_slice: str, vertex:
int)→ pyomo rule

The glover constraints 1a, 1b, 2a, 2b model part-load behavior using the time-dependent auxiliary
capacity xsi_production. Here: If used_production_binary == 0, then new_capacity_production-
potential_capacity_production <= xsi_production <= potential_capacity_production If
used_production_binary == 1, then xsi_production=new_capacity_production

static constraint_storage_level_limit_by_capacity_rule(model, node: int, process_storage: str,
year: int, year_construction: int,
time_slice: str)→ pyomo rule

This method is used as rule for limiting the storage_level up to the existing (if exist) or new capacity.

30 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

static constraint_storage_level_limit_by_capacity_lower_rule(model, node: int,
process_storage: str, year: int,
year_construction: int,
time_slice: str)→ pyomo rule

This method is used as rule for setting the lower bound for to the existing (if exist) or new capacity * minial
relative storage level.

static constraint_used_storage_limit_by_capacity_rule(model, node: int, process_storage: str,
direction_storage: str, year: int,
year_construction: int, time_slice: str)
→ pyomo rule

This abstract method is used as rule for limiting the output and input of storage processes.

The maximum flow out of or into a storage instance is limited by the available storage capacity multiplied
with a flow-to-storage-capacity factor:

storage usage <= flow-to-storage-capacity factor * (existing capacity)

or:

storage usage <= flow-to-storage-capacity factor * (new capacity)

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• process_storage (str) – A storage process which is constrained

• direction_storage (str) – A direction of “withdraw” or “deposit” a product

• year (int) – A year at which the pe.Constraint is active

• year_construction (int) – The year of construction of a specific capacity

• time_slice (str) – A time_slice at which the pe.Constraint is active

static constraint_storage_potential_capacity_by_input_rule(model, node: int,
process_storage: str, year: int,
year_construction: int)→
pyomo rule

This method is used as rule for limitting the capacity of the storage processes by the maximum potential,
if the storage exists.

static constraint_storage_minimal_capacity_by_input_rule(model, node: int, process_storage:
str, year: int, year_construction:
int)→ pyomo rule

This method is used as rule for setting a lower limit to a newly built storage process, if the storage unit is
built.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• process_storage (str) – A storage process which is constrained

• year (int) – A year at which the pe.Constraint is active

4.6. secmod.optimization_MILP module 31



SecMOD MILP Documentation, Release 1.0

static constraint_storage_deposit_withdraw_decision_rule(model, node: int, process_storage:
str, direction_storage: str, year: int,
year_construction: int, time_slice:
str)→ pyomo rule

This method restricts the storage usage to deposit or withdraw depending on the existing capacity/potential.

static constraint_storage_restrict_storing_per_timeslice_rule(model, node: int,
process_storage: str, year:
int, year_construction: int,
time_slice: str)→ pyomo
rule

This method is used as a rule for deposit/withdrawel decision.

We can either withdraw or deposit in the storage, but never both at the same time in a time step.

static constraint_storage_level_rule(model, node: int, process_storage: str, year: int,
year_construction: int, time_slice: str)→ pyomo rule

This method is used as rule for the calculation of the storage level.

Since the storage should not act as a source or sink, this method calculates the storage level after each
time_slice and couples it with the storage level at the beginning of the next time slice.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• process_storage (str) – A storage process which is constrained

• year (int) – A year at which the pe.Constraint is active

• year_construction (int) – The year of construction of a specific capacity

• time_slice (str) – A time_slice at which the pe.Constraint is active

static constraint_transshipment_limit_by_capacity_rule(model, connection: int,
process_transshipment: str,
direction_transshipment: str, year: int,
year_construction: int, time_slice:
str)→ pyomo rule

This method is used rule for limiting the used transmission up to the sum of existing and new capacity.

The rule is applied to every year of operation AND every year of construction. This means that for every year
the capacity of existing infrastructure is used as limit, creating a constraint for every year of construction
as well. This way the operation can differentiate between older and newer capacities which might have
different impacts. Additionally for the years of construction which also are investment years, the newly
build capacities are added to the limit.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• process_transshipment (str) – A transshipment process which is constrained

• direction_transshipment (str) – A transshipment direction which is constrained

• year (int) – A year at which the pe.Constraint is active

• year_construction (int) – The year of construction of a specific capacity

• time_slice (str) – A time_slice at which the pe.Constraint is active

32 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

static constraint_transshipment_potential_capacity_by_input_rule(model, connection: int,
process_transshipment:
str, year: int)→ pyomo
rule

This method is used as rule for limitting the capacity of transshipment processes by limits from the input
e.g. maximum potential.

Some transshipment technologies like pipelines have local capacity limits based on the availability of
ressources or regulatory restrictions. These limits are given to the optimization as parameter and can change
by time.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• connection (int) – A connection of the grid

• process_transshipment (str) – A transshipment process which is constrained

• year (int) – A year at which the pe.Constraint is active

static constraint_transmission_limit_by_capacity_positive_rule(model, connection: int,
year: int, time_slice: str)
→ pyomo rule

This method is used as rule for limiting the load flow through a transmission power line.

The load flow needs to be limited by the available capacity, which is why this abstract rule exists and is
used for a constraint in the base class for all optimizations. Although the available capacity can be defined
differently, e.g.:

load flow <= installed capacity

or:

load flow <= installed capacity + capacity from switching + capacity from new␣
→˓power lines

Because of this, the abstract pe.Constraint rule needs to be defined in a subclass.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• connection (int) – A power line which is constrained

• year (int) – A year at which the pe.Constraint is active

• time_slice (str) – A time_slice at which the pe.Constraint is active

static constraint_transmission_limit_by_capacity_negative_rule(model, connection: int,
year: int, time_slice: str)
→ pyomo rule

This method is used as rule for limiting the load flow through a transmission power line.

The load flow needs to be limited by the available capacity, which is why this abstract rule exists and is
used for a constraint in the base class for all optimizations. Although the available capacity can be defined
differently, e.g.:

load flow <= installed capacity

or:

4.6. secmod.optimization_MILP module 33



SecMOD MILP Documentation, Release 1.0

load flow <= installed capacity + capacity from switching + capacity from new␣
→˓power lines

Because of this, the abstract pe.Constraint rule needs to be defined in a subclass.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• power_line (int) – A power line which is constrained

• year (int) – A year at which the pe.Constraint is active

• time_slice (str) – A time_slice at which the pe.Constraint is active

static constraint_transmission_potential_capacity_by_input_rule_rule(model, connection:
int, pro-
cess_transmission:
str, year: int)→
pyomo rule

This method is used as rule for limitting the capacity of transmission processes by limits from the input e.g.
maximum potential.

Some transmission technologies have local capacity limits based on the availability of ressources or regu-
latory restrictions. These limits are given to the optimization as parameter and can change by time.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• connection (int) – A connection of the grid

• process_transmission (str) – A transsmission process which is constrained

• year (int) – A year at which the pe.Constraint is active

static constraint_operational_nodal_impact_rule(model, node: int, impact_category: str, year:
int)→ pyomo rule

This method is used as rule for the calculation of the operational impact vector summed over all processes
at each node.

The operational impact of one node over all time slices is calculated in this method. By summing over the
construction years of all capacities, the corresponding impact matrices from the actual construction year
can be used. Furthermore the impact calculated for each time slice is multiplied with the weight in hours
of a year the time slice has.

The operational impact of production processes equals the sum of the products of process usage and the cor-
responding impact matrix. The same method is used for calculating the impact of transshipment processes,
but the resulting impact is shared equally between the corresponding nodes.

The operational impact of storage processes is calculated based on the withdrawn product flow.

For the electric transmission grid it is assumed that the operational impact is negligible.

Furthermore, a credit is given for sold products.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

34 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

static constraint_operational_nodal_impact_limits_rule(model, node: int, impact_category:
str, year: int)→ pyomo rule

This method is used as rule for the limitation of the operational impact vector summed over all processes
at each node.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_operational_impact_rule(model, impact_category: str, year: int)→ pyomo rule
This method is used as rule for the calculation of the operational impact vector summed over all processes
and nodes.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_operational_impact_limits_rule(model, impact_category: str, year: int)→
pyomo rule

This method is used as rule for the limitation of the operational impact vector summed over all processes
and nodes.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_invest_nodal_impact_rule(model, node: int, impact_category: str, year: int)→
pyomo rule

This method is used as rule for the calculation of the invest impact vector summed over all processes at
each node. The method consider the existing and new capacities.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_invest_nodal_impact_limits_rule(model, node: int, impact_category: str, year:
int)→ pyomo rule

This method is used as rule for the limitation of the invest impact vector summed over all processes at each
node.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

4.6. secmod.optimization_MILP module 35



SecMOD MILP Documentation, Release 1.0

static constraint_invest_impact_rule(model, impact_category: str, year: int)→ pyomo rule
This method is used as rule for the calculation of the invest impact vector summed over all processes and
nodes

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_invest_impact_limits_rule(model, impact_category: str, year: int)→ pyomo
rule

This method is used as rule for the limitation of the invest impact vector summed over all processes and
nodes

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_total_nodal_impact_rule(model, node: int, impact_category: str, year: int)→
pyomo rule

This method is used as rule for the calculation of the total impact vector summed over all processes at ecah
node.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_total_nodal_impact_limits_rule(model, node: int, impact_category: str, year:
int)→ pyomo rule

This method is used as rule for the limitation of the total impact vector summed over all processes at each
node.

Parameters

• model – The equivalent of “self” in pyomo optimization models

• node (int) – A node at which the pe.Constraint is active

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static constraint_total_impact_rule(model, impact_category: str, year: int)→ pyomo rule
This method is used as rule for the calculation of the total impact vector summed over all processes and
nodes

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

36 Chapter 4. Developer reference



SecMOD MILP Documentation, Release 1.0

static constraint_total_impact_limits_rule(model, impact_category: str, year: int)→ pyomo rule
This method is used as rule for the limitation of the total impact vector summed over all processes and
nodes

Parameters

• model – The equivalent of “self” in pyomo optimization models

• impact_category (str) – An impact category which is assessed

• year (int) – A year at which the pe.Constraint is active

static objectiveRule(model)
This method is used as an pe.Objective for the optimization, using weight factors for all impact categories.

Parameters model – The equivalent of “self” in pyomo optimization models

_abc_impl = <_abc_data object>

4.7 secmod.setup module

secmod.setup.setup(working_directory: pathlib.Path, reset: bool = False, download_ext_datapackages: bool =
False)

This methods sets up SecMOD for the first use in the working directory.

This method copies the embedded sample data to the working directory. Furthermore it downloads
the external data packages for the first time. Last but not least it creates a python file and a batch file
to easily start SecMOD.

Please note that you need to acitvate the download of external data packages here.

Args:

working_directory (Path): The folder which is used as working directory by SecMOD

reset (bool): Boolean value which decides whether an existing working directory is over-
written

download_external_datapackages (bool): Boolean value which decides whether external
datapackages are downloaded

secmod.setup.copy_sample_data(working_directory: pathlib.Path)
This method copies sample data from the package to the working directory.

Parameters working_directory (Path ) – The folder which is used as working directory by Sec-
MOD

secmod.setup.create_startup_helper(working_directory: pathlib.Path)
This method creates startup helpers in the working directory.

The startup helpers created by this method allow to run SecMOD with one click.

Parameters working_directory (Path ) – The folder which is used as working directory by Sec-
MOD

secmod.setup.download_external_datapackages(working_directory: pathlib.Path)

4.7. secmod.setup module 37



SecMOD MILP Documentation, Release 1.0

38 Chapter 4. Developer reference



CHAPTER

FIVE

TROUBLESHOOTING

SecMOD is programmed to handle most things internally, if possible. If you still encounter an error, SecMOD
mostly provides you with an error message which should help to resolve the issue.

39



SecMOD MILP Documentation, Release 1.0

40 Chapter 5. Troubleshooting



CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

41



SecMOD MILP Documentation, Release 1.0

42 Chapter 6. Indices and tables



PYTHON MODULE INDEX

s
secmod.classes, 9
secmod.data_preprocessing, 24
secmod.data_processing, 25
secmod.evaluation, 25
secmod.helpers, 27
secmod.optimization_MILP, 28
secmod.setup, 37

43



SecMOD MILP Documentation, Release 1.0

44 Python Module Index



INDEX

Symbols
_abc_impl (secmod.classes.ConnectionProcess at-

tribute), 20
_abc_impl (secmod.classes.EcoinventImpacts attribute),

18
_abc_impl (secmod.classes.ManualImpact attribute), 19
_abc_impl (secmod.classes.NodalProcess attribute), 20
_abc_impl (secmod.classes.Process attribute), 19
_abc_impl (secmod.classes.ProcessImpacts attribute),

16
_abc_impl (secmod.classes.ProductionProcess at-

tribute), 21
_abc_impl (secmod.classes.ProductionProcessEcoinvent

attribute), 23
_abc_impl (secmod.classes.ProductionProcessManual

attribute), 23
_abc_impl (secmod.classes.StorageProcess attribute),

21
_abc_impl (secmod.classes.StorageProcessEcoinvent at-

tribute), 23
_abc_impl (secmod.classes.StorageProcessManual at-

tribute), 23
_abc_impl (secmod.classes.TransmissionProcess at-

tribute), 22
_abc_impl (secmod.classes.TransmissionProcessEcoinvent

attribute), 24
_abc_impl (secmod.classes.TransmissionProcessManual

attribute), 24
_abc_impl (secmod.classes.TransshipmentProcess at-

tribute), 22
_abc_impl (secmod.classes.TransshipmentProcessEcoinvent

attribute), 23
_abc_impl (secmod.classes.TransshipmentProcessManual

attribute), 23
_abc_impl (secmod.optimization_MILP.Optimization_MILP

attribute), 37
_get_cost_invest() (secmod.classes.ProcessImpacts

method), 15
_get_cost_non_served_demand() (sec-

mod.classes.Product method), 11
_get_cost_operation() (sec-

mod.classes.ProcessImpacts method), 15

_get_ecoinvent_process_impact() (sec-
mod.classes.EcoinventImpacts static method),
18

_get_invest_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_get_invest_nodal_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_get_investment_period_duration() (sec-
mod.classes.ProcessImpacts static method),
15

_get_objective_factor_impact() (sec-
mod.classes.ImpactCategory method), 14

_get_objective_factor_impact_overshoot()
(secmod.classes.ImpactCategory method), 14

_get_operational_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_get_operational_nodal_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_get_price_time_series() (secmod.classes.Product
method), 11

_get_process_by_voltage() (sec-
mod.classes.TransmissionProcess static
method), 22

_get_process_connection_properties() (sec-
mod.classes.TransmissionProcess method),
22

_get_revenues_add_served_demand() (sec-
mod.classes.Product method), 11

_get_selling_price_time_series() (sec-
mod.classes.Product method), 11

_get_single_combined_impact_matrix() (sec-
mod.classes.ProcessImpacts static method),
16

_get_total_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_get_total_nodal_impact_limits() (sec-
mod.classes.ImpactCategory method), 13

_isSubassembly() (secmod.classes.EcoinventImpacts
static method), 18

_recursively_get_impact() (sec-
mod.classes.EcoinventImpacts static method),
18

45



SecMOD MILP Documentation, Release 1.0

_selected (secmod.classes.Grid attribute), 9, 10
_translate_process_name_to_ecoinvent_identifier()

(secmod.classes.EcoinventImpacts static
method), 16

_translate_units_to_pint() (sec-
mod.classes.EcoinventImpacts static method),
17

A
AbstractFrame_evaluation (class in sec-

mod.evaluation), 25
add_capacity() (secmod.classes.Process method), 19
adjustManualColumnWidths() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

B
browseFolder() (secmod.evaluation.SaveFrame

method), 27

C
calculate_distances() (secmod.classes.Grid static

method), 10
calculate_power_line_power_limit() (in module

secmod.classes), 24
calculate_power_line_resistance_per_unit()

(in module secmod.classes), 24
calculate_power_line_susceptance_per_unit()

(in module secmod.classes), 24
calculate_voltage_switch_power_limit() (in

module secmod.classes), 24
calculate_voltage_switch_resistance_per_unit()

(in module secmod.classes), 24
calculateFrameGeometry() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

clear_filename_special_character() (in module
secmod.helpers), 27

CONNECTION_NODES (secmod.classes.Grid attribute), 10
ConnectionProcess (class in secmod.classes), 20
connections (secmod.classes.Grid property), 10
constraint_invest_impact_limits_rule() (sec-

mod.optimization_MILP.Optimization_MILP
static method), 36

constraint_invest_impact_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 35

constraint_invest_nodal_impact_limits_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 35

constraint_invest_nodal_impact_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 35

constraint_operational_impact_limits_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 35

constraint_operational_impact_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 35

constraint_operational_nodal_impact_limits_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 34

constraint_operational_nodal_impact_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 34

constraint_product_balance_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

constraint_production_glovers_1a_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 30

constraint_production_glovers_1b_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 30

constraint_production_glovers_2a_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 30

constraint_production_glovers_2b_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 30

constraint_production_limit_binaries_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 29

constraint_production_limit_by_capacity_lower_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 30

constraint_production_limit_by_capacity_upper_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 29

constraint_production_potential_capacity_by_input_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 30

constraint_restrict_export_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

constraint_restrict_import_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

constraint_storage_deposit_withdraw_decision_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 31

constraint_storage_level_limit_by_capacity_lower_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 30

constraint_storage_level_limit_by_capacity_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 30

46 Index



SecMOD MILP Documentation, Release 1.0

constraint_storage_level_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 32

constraint_storage_minimal_capacity_by_input_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 31

constraint_storage_potential_capacity_by_input_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 31

constraint_storage_restrict_storing_per_timeslice_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 32

constraint_total_impact_limits_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 36

constraint_total_impact_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 36

constraint_total_nodal_impact_limits_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 36

constraint_total_nodal_impact_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 36

constraint_transmission_limit_by_capacity_negative_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 33

constraint_transmission_limit_by_capacity_positive_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 33

constraint_transmission_potential_capacity_by_input_rule_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 34

constraint_transshipment_limit_by_capacity_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 32

constraint_transshipment_potential_capacity_by_input_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 32

constraint_usable_production_rule() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

constraint_used_storage_limit_by_capacity_rule()
(secmod.optimization_MILP.Optimization_MILP
static method), 31

construction_years (secmod.classes.Process at-
tribute), 19

construction_years (secmod.classes.ProcessImpacts
attribute), 14

construction_years (sec-
mod.classes.ProductionProcess attribute),
20

construction_years (secmod.classes.StorageProcess
attribute), 21

construction_years (sec-
mod.classes.TransmissionProcess attribute),
22

construction_years (sec-
mod.classes.TransshipmentProcess attribute),
22

convert_date() (in module secmod.helpers), 27
copy_sample_data() (in module secmod.setup), 37
correct_time_stamp_of_timeseries() (in module

secmod.helpers), 28
create_directory() (in module sec-

mod.data_preprocessing), 25
create_startup_helper() (in module secmod.setup),

37
createLegend() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

D
database (secmod.classes.EcoinventImpacts attribute),

16
datapackage_update_available() (in module sec-

mod.data_preprocessing), 24
DEFAULT_COST (secmod.classes.Product attribute), 11
DetailedFrame_evaluation (class in sec-

mod.evaluation), 27
deunitize_input_dictionary() (in module sec-

mod.data_processing), 25
DIRECTION_FACTOR_TRANSSHIPMENT (sec-

mod.classes.TransshipmentProcess attribute),
22

DIRECTIONS_STORAGE (secmod.classes.StorageProcess
attribute), 21

DIRECTIONS_TRANSSHIPMENT (sec-
mod.classes.TransshipmentProcess attribute),
22

disableEnableCheckbuttons() (sec-
mod.evaluation.DetailedFrame_evaluation
method), 27

disableEnableRadiobuttons() (sec-
mod.evaluation.MainFrame_evaluation
method), 26

download_datapackage() (in module sec-
mod.data_preprocessing), 24

download_external_datapackages() (in module sec-
mod.setup), 37

download_file() (in module sec-
mod.data_preprocessing), 25

E
ecoinvent_name (secmod.classes.ImpactCategory

property), 13
EcoinventImpacts (class in secmod.classes), 16

Index 47



SecMOD MILP Documentation, Release 1.0

economic_period (secmod.classes.ProcessImpacts at-
tribute), 14

evaluate() (in module secmod.evaluation), 27

F
fix_transmission_reference_node_phase_difference()

(secmod.optimization_MILP.Optimization_MILP
method), 28

fix_unneeded_variables() (sec-
mod.optimization_MILP.Optimization_MILP
method), 29

FRAMEWORK (secmod.classes.ImpactCategory attribute),
12

G
generate_input_dictionary() (in module sec-

mod.data_processing), 25
get_availability_timeseries() (sec-

mod.classes.ProductionProcess method),
20

get_combined_availability_timeseries() (sec-
mod.classes.ProductionProcess static method),
20

get_combined_cornerpoints() (sec-
mod.classes.ProductionProcess static method),
20

get_combined_demand_time_series() (sec-
mod.classes.Product static method), 12

get_combined_existing_capacity() (sec-
mod.classes.Process class method), 19

get_combined_flow_to_storage_capacity_factor()
(secmod.classes.StorageProcess static method),
21

get_combined_gradient_technologymatrix()
(secmod.classes.ProductionProcess method),
21

get_combined_impact_add_served_demand() (sec-
mod.classes.Product static method), 12

get_combined_impact_matrix() (sec-
mod.classes.ProcessImpacts class method),
15

get_combined_impact_non_served_demand() (sec-
mod.classes.Product static method), 12

get_combined_invest_impact_limits() (sec-
mod.classes.ImpactCategory static method),
13

get_combined_invest_nodal_impact_limits()
(secmod.classes.ImpactCategory static
method), 13

get_combined_lifetime_duration() (sec-
mod.classes.ProcessImpacts class method),
16

get_combined_min_rel_storage_level_factor()
(secmod.classes.StorageProcess static method),

21
get_combined_minimal_capacity() (sec-

mod.classes.ProductionProcess class method),
21

get_combined_minimal_capacity() (sec-
mod.classes.StorageProcess class method),
21

get_combined_objective_factor_impact() (sec-
mod.classes.ImpactCategory static method),
14

get_combined_objective_factor_impact_overshoot()
(secmod.classes.ImpactCategory static
method), 14

get_combined_operational_impact_limits()
(secmod.classes.ImpactCategory static
method), 13

get_combined_operational_nodal_impact_limits()
(secmod.classes.ImpactCategory static
method), 13

get_combined_potential_capacity() (sec-
mod.classes.Process class method), 19

get_combined_power_limit_per_circuit() (sec-
mod.classes.TransmissionProcess static
method), 22

get_combined_reference_product() (sec-
mod.classes.ProductionProcess static method),
21

get_combined_rel_storage_loss_factor() (sec-
mod.classes.StorageProcess static method),
22

get_combined_relative_partload_capacity()
(secmod.classes.ProductionProcess method),
21

get_combined_required_nodal_secured_capacity()
(secmod.classes.Product static method), 12

get_combined_required_total_secured_capacity()
(secmod.classes.Product static method), 12

get_combined_safety_margin() (sec-
mod.classes.TransmissionProcess static
method), 23

get_combined_secured_capacity_factor() (sec-
mod.classes.NodalProcess class method),
20

get_combined_storage_products() (sec-
mod.classes.StorageProcess static method),
21

get_combined_technology_matrix() (sec-
mod.classes.NodalProcess class method),
20

get_combined_technology_matrix_timeseries()
(secmod.classes.ProductionProcess static
method), 20

get_combined_total_impact_limits() (sec-
mod.classes.ImpactCategory static method),

48 Index



SecMOD MILP Documentation, Release 1.0

13
get_combined_total_nodal_impact_limits()

(secmod.classes.ImpactCategory static
method), 13

get_combined_transhipment_products() (sec-
mod.classes.TransshipmentProcess class
method), 22

get_combined_transshipment_efficiency()
(secmod.classes.TransshipmentProcess class
method), 22

get_connection_properties() (sec-
mod.classes.TransmissionProcess static
method), 22

get_cornerpoints() (sec-
mod.classes.ProductionProcess method),
20

get_dataframe_from_parameter() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

get_dataframe_from_result() (sec-
mod.optimization_MILP.Optimization_MILP
static method), 29

get_dimensionalities_from_input_dictionary()
(in module secmod.data_processing), 25

get_existing_capacity() (sec-
mod.classes.ConnectionProcess method),
20

get_existing_capacity() (sec-
mod.classes.NodalProcess method), 19

get_existing_capacity() (secmod.classes.Process
method), 19

get_flow_to_storage_capacity_factor() (sec-
mod.classes.StorageProcess method), 21

get_gradient_technologymatrix() (sec-
mod.classes.ProductionProcess method),
21

get_impact_add_served_demand() (sec-
mod.classes.Product method), 12

get_impact_invest() (sec-
mod.classes.EcoinventImpacts method),
17

get_impact_invest() (secmod.classes.ManualImpact
method), 18

get_impact_invest() (sec-
mod.classes.ProcessImpacts method), 15

get_impact_non_served_demand() (sec-
mod.classes.Product method), 12

get_impact_operation() (sec-
mod.classes.EcoinventImpacts method),
17

get_impact_operation() (sec-
mod.classes.ManualImpact method), 19

get_impact_operation() (sec-
mod.classes.ProcessImpacts method), 15

get_lifetime_duration() (sec-
mod.classes.ProcessImpacts method), 16

get_list_of_active_impact_categories() (sec-
mod.classes.ImpactCategory static method),
13

get_list_of_connection_ids() (sec-
mod.classes.Grid static method), 10

get_list_of_names_of_active_impact_categories()
(secmod.classes.ImpactCategory static
method), 13

get_list_of_node_ids() (secmod.classes.Grid static
method), 10

get_maximum_production_share() (sec-
mod.classes.NodalProcess method), 20

get_min_rel_storage_level_factor() (sec-
mod.classes.StorageProcess method), 21

get_minimal_capacity() (sec-
mod.classes.ProductionProcess method),
21

get_minimal_capacity() (sec-
mod.classes.StorageProcess method), 21

get_nodal_demand_time_series() (sec-
mod.classes.Product method), 12

get_non_served_demand_from_result() (sec-
mod.optimization_MILP.Optimization_MILP
method), 29

get_numerical_property() (secmod.classes.Process
method), 19

get_potential_capacity() (sec-
mod.classes.ConnectionProcess method),
20

get_potential_capacity() (sec-
mod.classes.NodalProcess method), 19

get_potential_capacity() (secmod.classes.Process
method), 19

get_potential_capacity() (sec-
mod.classes.TransmissionProcess method),
22

get_potential_capacity() (sec-
mod.classes.TransshipmentProcess method),
22

get_reference_products() (sec-
mod.classes.ProductionProcess method),
20

get_rel_storage_loss_factor() (sec-
mod.classes.StorageProcess method), 21

get_relative_partload_capacity() (sec-
mod.classes.ProductionProcess method),
21

get_required_nodal_secured_capacity() (sec-
mod.classes.Product method), 12

get_required_total_secured_capacity() (sec-
mod.classes.Product method), 12

get_rwth_colors() (in module secmod.helpers), 28

Index 49



SecMOD MILP Documentation, Release 1.0

get_secured_capacity_factor() (sec-
mod.classes.NodalProcess method), 19

get_technology_matrix_timeseries() (sec-
mod.classes.ProductionProcess method),
20

get_technologymatrix() (sec-
mod.classes.NodalProcess method), 20

get_technologymatrix() (sec-
mod.classes.ProductionProcess method),
20

get_technologymatrix() (sec-
mod.classes.StorageProcess method), 21

get_transshipment_efficiency() (sec-
mod.classes.TransshipmentProcess method),
22

get_used_capacity_from_result() (sec-
mod.optimization_MILP.Optimization_MILP
method), 29

getbalanceUnits() (sec-
mod.evaluation.AbstractFrame_evaluation
method), 26

getDataframeFromSelection() (sec-
mod.evaluation.MainFrame_evaluation
method), 26

getNonzeroIndizes() (sec-
mod.evaluation.AbstractFrame_evaluation
method), 26

getTitleString() (sec-
mod.evaluation.AbstractFrame_evaluation
method), 26

getTitleString() (sec-
mod.evaluation.DetailedFrame_evaluation
method), 27

getTitleString() (sec-
mod.evaluation.MainFrame_evaluation
method), 27

Grid (class in secmod.classes), 9
grids (secmod.classes.Grid attribute), 9, 10
groupBalanceByIndex() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

groupBalanceByIndex() (sec-
mod.evaluation.DetailedFrame_evaluation
method), 27

H
highlightMouseSelection() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

I
impact_categories (secmod.classes.ImpactCategory

attribute), 12

IMPACT_SOURCES (secmod.classes.ProcessImpacts at-
tribute), 14

ImpactCategory (class in secmod.classes), 12
instantiate_model() (sec-

mod.optimization_MILP.Optimization_MILP
method), 28

interest_rate (secmod.classes.ProcessImpacts at-
tribute), 14

invest_years (secmod.classes.ProcessImpacts at-
tribute), 14

is_setup() (in module secmod.data_preprocessing), 25
isInteger() (in module secmod.helpers), 27

L
load_all_processes() (in module sec-

mod.data_processing), 25
load_ecoinvent_database() (sec-

mod.classes.EcoinventImpacts static method),
16

load_ecoinvent_subassemblies() (sec-
mod.classes.EcoinventImpacts static method),
17

load_grids_from_directory() (secmod.classes.Grid
class method), 10

load_impact_categories_from_directory() (sec-
mod.classes.ImpactCategory class method), 13

load_processes_from_directory() (sec-
mod.classes.Process class method), 19

load_products_from_directory() (sec-
mod.classes.Product class method), 11

load_raw_input() (in module sec-
mod.data_processing), 25

locations (secmod.classes.ConnectionProcess at-
tribute), 20

locations (secmod.classes.NodalProcess attribute), 19
locations (secmod.classes.Process attribute), 19
log_heading() (in module secmod.helpers), 27

M
MainFrame_evaluation (class in secmod.evaluation),

26
MANUAL_IMPACT_CATEGORY_SELECTION (sec-

mod.classes.ImpactCategory attribute), 12
ManualImpact (class in secmod.classes), 18
module

secmod.classes, 9
secmod.data_preprocessing, 24
secmod.data_processing, 25
secmod.evaluation, 25
secmod.helpers, 27
secmod.optimization_MILP, 28
secmod.setup, 37

50 Index



SecMOD MILP Documentation, Release 1.0

N
name (secmod.classes.Grid property), 10
name (secmod.classes.ImpactCategory property), 12
name (secmod.classes.ProcessImpacts property), 14
name (secmod.classes.Product property), 11
NodalProcess (class in secmod.classes), 19
nodes (secmod.classes.Grid property), 10

O
objectiveRule() (sec-

mod.optimization_MILP.Optimization_MILP
static method), 37

openDetailedWindow() (sec-
mod.evaluation.MainFrame_evaluation
method), 26

Optimization_MILP (class in sec-
mod.optimization_MILP), 28

P
per_unit_base (secmod.classes.TransmissionProcess

attribute), 22
plotFigure() (secmod.evaluation.AbstractFrame_evaluation

method), 26
plotFigure() (secmod.evaluation.MainFrame_evaluation

method), 26
Process (class in secmod.classes), 19
processes (secmod.classes.ProcessImpacts attribute),

14
processes (secmod.classes.ProductionProcess at-

tribute), 20
processes (secmod.classes.StorageProcess attribute),

21
processes (secmod.classes.TransmissionProcess at-

tribute), 22
processes (secmod.classes.TransshipmentProcess at-

tribute), 22
ProcessImpacts (class in secmod.classes), 14
Product (class in secmod.classes), 11
ProductionProcess (class in secmod.classes), 20
ProductionProcessEcoinvent (class in sec-

mod.classes), 23
ProductionProcessManual (class in secmod.classes),

23
products (secmod.classes.Product attribute), 11
PRODUCTS (secmod.classes.TransmissionProcess at-

tribute), 22

R
reference_node (secmod.classes.TransmissionProcess

attribute), 22
run() (secmod.optimization_MILP.Optimization_MILP

method), 28

S
SaveFrame (class in secmod.evaluation), 27
savePlotData() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

saveSelection() (secmod.evaluation.SaveFrame
method), 27

secmod.classes
module, 9

secmod.data_preprocessing
module, 24

secmod.data_processing
module, 25

secmod.evaluation
module, 25

secmod.helpers
module, 27

secmod.optimization_MILP
module, 28

secmod.setup
module, 37

select() (secmod.classes.Grid method), 11
selected() (secmod.classes.Grid static method), 11
selectPlotType() (sec-

mod.evaluation.AbstractFrame_evaluation
method), 26

setColors() (secmod.evaluation.AbstractFrame_evaluation
method), 26

setup() (in module secmod.setup), 37
setup_construction_years() (sec-

mod.classes.Process class method), 19
setup_construction_years() (sec-

mod.classes.ProcessImpacts class method),
16

setup_distances() (secmod.classes.Grid method), 10
setup_years() (secmod.classes.ProcessImpacts

method), 16
setupConstraints() (sec-

mod.optimization_MILP.Optimization_MILP
method), 28

setupFigure() (secmod.evaluation.AbstractFrame_evaluation
method), 25

setupObjective() (sec-
mod.optimization_MILP.Optimization_MILP
method), 28

setupParameters() (sec-
mod.optimization_MILP.Optimization_MILP
method), 28

setUpRadiobuttons() (sec-
mod.evaluation.MainFrame_evaluation
method), 26

setupSets() (secmod.optimization_MILP.Optimization_MILP
method), 28

Index 51



SecMOD MILP Documentation, Release 1.0

setupVariables() (sec-
mod.optimization_MILP.Optimization_MILP
method), 28

showTable() (secmod.evaluation.AbstractFrame_evaluation
method), 26

showTable() (secmod.evaluation.DetailedFrame_evaluation
method), 27

start_evaluation() (in module secmod.evaluation),
27

startPlot() (secmod.evaluation.AbstractFrame_evaluation
method), 25

STORAGE_LEVEL_FACTOR (sec-
mod.classes.StorageProcess attribute), 21

StorageProcess (class in secmod.classes), 21
StorageProcessEcoinvent (class in secmod.classes),

23
StorageProcessManual (class in secmod.classes), 23
subassemblies (secmod.classes.EcoinventImpacts at-

tribute), 16

T
toggleSaveButton() (secmod.evaluation.SaveFrame

method), 27
TransmissionProcess (class in secmod.classes), 22
TransmissionProcessEcoinvent (class in sec-

mod.classes), 23
TransmissionProcessManual (class in sec-

mod.classes), 24
TransshipmentProcess (class in secmod.classes), 22
TransshipmentProcessEcoinvent (class in sec-

mod.classes), 23
TransshipmentProcessManual (class in sec-

mod.classes), 23

U
unitize_dataframe() (in module secmod.helpers), 27

52 Index


	Quickstart
	Set up a working directory

	Installation
	Editable Installation
	Package Installation

	Data in SecMOD
	Input data
	Units in SecMOD
	Output data

	Developer reference
	secmod.classes module
	secmod.data_preprocessing module
	secmod.data_processing module
	secmod.evaluation module
	secmod.helpers module
	secmod.optimization_MILP module
	secmod.setup module

	Troubleshooting
	Indices and tables
	Python Module Index
	Index

