diff --git a/Immobilienpreise.ipynb b/Immobilienpreise.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..101973cbc98bc4a5dc75725f2a0d152ecfdb5c83
--- /dev/null
+++ b/Immobilienpreise.ipynb
@@ -0,0 +1,967 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "1. Importieren der Daten mit pandas"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import pandas as pd\n",
+    "pd = pd.read_csv('housepricedata.csv')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>LotArea</th>\n",
+       "      <th>OverallQual</th>\n",
+       "      <th>OverallCond</th>\n",
+       "      <th>TotalBsmtSF</th>\n",
+       "      <th>FullBath</th>\n",
+       "      <th>HalfBath</th>\n",
+       "      <th>BedroomAbvGr</th>\n",
+       "      <th>TotRmsAbvGrd</th>\n",
+       "      <th>Fireplaces</th>\n",
+       "      <th>GarageArea</th>\n",
+       "      <th>AboveMedianPrice</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>0</th>\n",
+       "      <td>8450</td>\n",
+       "      <td>7</td>\n",
+       "      <td>5</td>\n",
+       "      <td>856</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>8</td>\n",
+       "      <td>0</td>\n",
+       "      <td>548</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1</th>\n",
+       "      <td>9600</td>\n",
+       "      <td>6</td>\n",
+       "      <td>8</td>\n",
+       "      <td>1262</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1</td>\n",
+       "      <td>460</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2</th>\n",
+       "      <td>11250</td>\n",
+       "      <td>7</td>\n",
+       "      <td>5</td>\n",
+       "      <td>920</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1</td>\n",
+       "      <td>608</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>3</th>\n",
+       "      <td>9550</td>\n",
+       "      <td>7</td>\n",
+       "      <td>5</td>\n",
+       "      <td>756</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>7</td>\n",
+       "      <td>1</td>\n",
+       "      <td>642</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>4</th>\n",
+       "      <td>14260</td>\n",
+       "      <td>8</td>\n",
+       "      <td>5</td>\n",
+       "      <td>1145</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>4</td>\n",
+       "      <td>9</td>\n",
+       "      <td>1</td>\n",
+       "      <td>836</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>...</th>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "      <td>...</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1455</th>\n",
+       "      <td>7917</td>\n",
+       "      <td>6</td>\n",
+       "      <td>5</td>\n",
+       "      <td>953</td>\n",
+       "      <td>2</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>7</td>\n",
+       "      <td>1</td>\n",
+       "      <td>460</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1456</th>\n",
+       "      <td>13175</td>\n",
+       "      <td>6</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1542</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>3</td>\n",
+       "      <td>7</td>\n",
+       "      <td>2</td>\n",
+       "      <td>500</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1457</th>\n",
+       "      <td>9042</td>\n",
+       "      <td>7</td>\n",
+       "      <td>9</td>\n",
+       "      <td>1152</td>\n",
+       "      <td>2</td>\n",
+       "      <td>0</td>\n",
+       "      <td>4</td>\n",
+       "      <td>9</td>\n",
+       "      <td>2</td>\n",
+       "      <td>252</td>\n",
+       "      <td>1</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1458</th>\n",
+       "      <td>9717</td>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1078</td>\n",
+       "      <td>1</td>\n",
+       "      <td>0</td>\n",
+       "      <td>2</td>\n",
+       "      <td>5</td>\n",
+       "      <td>0</td>\n",
+       "      <td>240</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1459</th>\n",
+       "      <td>9937</td>\n",
+       "      <td>5</td>\n",
+       "      <td>6</td>\n",
+       "      <td>1256</td>\n",
+       "      <td>1</td>\n",
+       "      <td>1</td>\n",
+       "      <td>3</td>\n",
+       "      <td>6</td>\n",
+       "      <td>0</td>\n",
+       "      <td>276</td>\n",
+       "      <td>0</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>1460 rows × 11 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      LotArea  OverallQual  OverallCond  TotalBsmtSF  FullBath  HalfBath  \\\n",
+       "0        8450            7            5          856         2         1   \n",
+       "1        9600            6            8         1262         2         0   \n",
+       "2       11250            7            5          920         2         1   \n",
+       "3        9550            7            5          756         1         0   \n",
+       "4       14260            8            5         1145         2         1   \n",
+       "...       ...          ...          ...          ...       ...       ...   \n",
+       "1455     7917            6            5          953         2         1   \n",
+       "1456    13175            6            6         1542         2         0   \n",
+       "1457     9042            7            9         1152         2         0   \n",
+       "1458     9717            5            6         1078         1         0   \n",
+       "1459     9937            5            6         1256         1         1   \n",
+       "\n",
+       "      BedroomAbvGr  TotRmsAbvGrd  Fireplaces  GarageArea  AboveMedianPrice  \n",
+       "0                3             8           0         548                 1  \n",
+       "1                3             6           1         460                 1  \n",
+       "2                3             6           1         608                 1  \n",
+       "3                3             7           1         642                 0  \n",
+       "4                4             9           1         836                 1  \n",
+       "...            ...           ...         ...         ...               ...  \n",
+       "1455             3             7           1         460                 1  \n",
+       "1456             3             7           2         500                 1  \n",
+       "1457             4             9           2         252                 1  \n",
+       "1458             2             5           0         240                 0  \n",
+       "1459             3             6           0         276                 0  \n",
+       "\n",
+       "[1460 rows x 11 columns]"
+      ]
+     },
+     "execution_count": 2,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "pd"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "datensatz = pd.values"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "2. Aufteilen des Datensatz (Splitting)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X = datensatz[:, 0:10]\n",
+    "\n",
+    "Y = datensatz[:, 10]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "3. Skalieren der X-Werte"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "array([[0.0334198 , 0.66666667, 0.5       , ..., 0.5       , 0.        ,\n",
+       "        0.3864598 ],\n",
+       "       [0.03879502, 0.55555556, 0.875     , ..., 0.33333333, 0.33333333,\n",
+       "        0.32440056],\n",
+       "       [0.04650728, 0.66666667, 0.5       , ..., 0.33333333, 0.33333333,\n",
+       "        0.42877292],\n",
+       "       ...,\n",
+       "       [0.03618687, 0.66666667, 1.        , ..., 0.58333333, 0.66666667,\n",
+       "        0.17771509],\n",
+       "       [0.03934189, 0.44444444, 0.625     , ..., 0.25      , 0.        ,\n",
+       "        0.16925247],\n",
+       "       [0.04037019, 0.44444444, 0.625     , ..., 0.33333333, 0.        ,\n",
+       "        0.19464034]])"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "from sklearn import preprocessing\n",
+    "\n",
+    "skalierer = preprocessing.MinMaxScaler()\n",
+    "X_skaliert = skalierer.fit_transform(X)\n",
+    "\n",
+    "X_skaliert"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "4. Aufteilung in Trainings-, Validierungs- und Testdaten"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "from sklearn.model_selection import train_test_split\n",
+    "\n",
+    "X_training, X_valid_und_test, Y_training, Y_valid_und_test = train_test_split(X_skaliert, Y, test_size=0.3)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "X_valid, X_test, Y_valid, Y_test = train_test_split(X_valid_und_test, Y_valid_und_test, test_size=0.5)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "5. KI Trainieren\n",
+    "\n",
+    "- Neuronales Netz mit 3 Hidden Layers\n",
+    "- Aktivierungsfunktion relu\n",
+    "- Inputschicht 10, Outputschicht 1, 32 Neuronen pro Schicht\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "/opt/conda/lib/python3.11/site-packages/h5py/__init__.py:36: UserWarning: h5py is running against HDF5 1.14.3 when it was built against 1.14.2, this may cause problems\n",
+      "  _warn((\"h5py is running against HDF5 {0} when it was built against {1}, \"\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Epoch 1/200\n",
+      "32/32 [==============================] - 1s 7ms/step - loss: 0.7008 - accuracy: 0.5010 - val_loss: 0.7011 - val_accuracy: 0.4475\n",
+      "Epoch 2/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6955 - accuracy: 0.5000 - val_loss: 0.6958 - val_accuracy: 0.4521\n",
+      "Epoch 3/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6919 - accuracy: 0.5098 - val_loss: 0.6923 - val_accuracy: 0.4977\n",
+      "Epoch 4/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6887 - accuracy: 0.6018 - val_loss: 0.6892 - val_accuracy: 0.5753\n",
+      "Epoch 5/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6858 - accuracy: 0.6409 - val_loss: 0.6861 - val_accuracy: 0.6027\n",
+      "Epoch 6/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6829 - accuracy: 0.6742 - val_loss: 0.6831 - val_accuracy: 0.6530\n",
+      "Epoch 7/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6798 - accuracy: 0.7006 - val_loss: 0.6798 - val_accuracy: 0.6804\n",
+      "Epoch 8/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6767 - accuracy: 0.7299 - val_loss: 0.6766 - val_accuracy: 0.7078\n",
+      "Epoch 9/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6736 - accuracy: 0.7495 - val_loss: 0.6733 - val_accuracy: 0.7443\n",
+      "Epoch 10/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6703 - accuracy: 0.7730 - val_loss: 0.6700 - val_accuracy: 0.7443\n",
+      "Epoch 11/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6669 - accuracy: 0.7798 - val_loss: 0.6665 - val_accuracy: 0.7443\n",
+      "Epoch 12/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6634 - accuracy: 0.7877 - val_loss: 0.6630 - val_accuracy: 0.7489\n",
+      "Epoch 13/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6597 - accuracy: 0.7886 - val_loss: 0.6591 - val_accuracy: 0.7671\n",
+      "Epoch 14/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6557 - accuracy: 0.7935 - val_loss: 0.6546 - val_accuracy: 0.7763\n",
+      "Epoch 15/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6512 - accuracy: 0.7935 - val_loss: 0.6498 - val_accuracy: 0.7808\n",
+      "Epoch 16/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6459 - accuracy: 0.7984 - val_loss: 0.6438 - val_accuracy: 0.7900\n",
+      "Epoch 17/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6398 - accuracy: 0.7994 - val_loss: 0.6373 - val_accuracy: 0.7945\n",
+      "Epoch 18/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6333 - accuracy: 0.8033 - val_loss: 0.6303 - val_accuracy: 0.8037\n",
+      "Epoch 19/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6267 - accuracy: 0.8072 - val_loss: 0.6236 - val_accuracy: 0.7991\n",
+      "Epoch 20/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6197 - accuracy: 0.8141 - val_loss: 0.6162 - val_accuracy: 0.8037\n",
+      "Epoch 21/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6121 - accuracy: 0.8200 - val_loss: 0.6082 - val_accuracy: 0.8037\n",
+      "Epoch 22/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.6040 - accuracy: 0.8249 - val_loss: 0.5999 - val_accuracy: 0.8219\n",
+      "Epoch 23/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5953 - accuracy: 0.8288 - val_loss: 0.5898 - val_accuracy: 0.7991\n",
+      "Epoch 24/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5858 - accuracy: 0.8307 - val_loss: 0.5796 - val_accuracy: 0.8037\n",
+      "Epoch 25/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5756 - accuracy: 0.8268 - val_loss: 0.5693 - val_accuracy: 0.8082\n",
+      "Epoch 26/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5649 - accuracy: 0.8415 - val_loss: 0.5585 - val_accuracy: 0.8265\n",
+      "Epoch 27/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5535 - accuracy: 0.8366 - val_loss: 0.5444 - val_accuracy: 0.8265\n",
+      "Epoch 28/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5417 - accuracy: 0.8395 - val_loss: 0.5342 - val_accuracy: 0.8311\n",
+      "Epoch 29/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5297 - accuracy: 0.8434 - val_loss: 0.5199 - val_accuracy: 0.8219\n",
+      "Epoch 30/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5170 - accuracy: 0.8434 - val_loss: 0.5073 - val_accuracy: 0.8219\n",
+      "Epoch 31/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.5039 - accuracy: 0.8513 - val_loss: 0.4917 - val_accuracy: 0.8356\n",
+      "Epoch 32/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4912 - accuracy: 0.8444 - val_loss: 0.4804 - val_accuracy: 0.8265\n",
+      "Epoch 33/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4778 - accuracy: 0.8483 - val_loss: 0.4637 - val_accuracy: 0.8402\n",
+      "Epoch 34/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4653 - accuracy: 0.8513 - val_loss: 0.4496 - val_accuracy: 0.8447\n",
+      "Epoch 35/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4527 - accuracy: 0.8523 - val_loss: 0.4370 - val_accuracy: 0.8356\n",
+      "Epoch 36/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4408 - accuracy: 0.8591 - val_loss: 0.4261 - val_accuracy: 0.8402\n",
+      "Epoch 37/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4290 - accuracy: 0.8483 - val_loss: 0.4097 - val_accuracy: 0.8539\n",
+      "Epoch 38/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.4187 - accuracy: 0.8542 - val_loss: 0.4030 - val_accuracy: 0.8402\n",
+      "Epoch 39/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.4089 - accuracy: 0.8562 - val_loss: 0.3891 - val_accuracy: 0.8539\n",
+      "Epoch 40/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.3986 - accuracy: 0.8601 - val_loss: 0.3778 - val_accuracy: 0.8493\n",
+      "Epoch 41/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3899 - accuracy: 0.8591 - val_loss: 0.3723 - val_accuracy: 0.8630\n",
+      "Epoch 42/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3826 - accuracy: 0.8630 - val_loss: 0.3609 - val_accuracy: 0.8721\n",
+      "Epoch 43/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3751 - accuracy: 0.8620 - val_loss: 0.3552 - val_accuracy: 0.8721\n",
+      "Epoch 44/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3680 - accuracy: 0.8620 - val_loss: 0.3404 - val_accuracy: 0.8813\n",
+      "Epoch 45/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3616 - accuracy: 0.8601 - val_loss: 0.3394 - val_accuracy: 0.8813\n",
+      "Epoch 46/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3558 - accuracy: 0.8630 - val_loss: 0.3283 - val_accuracy: 0.8813\n",
+      "Epoch 47/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3502 - accuracy: 0.8630 - val_loss: 0.3161 - val_accuracy: 0.8904\n",
+      "Epoch 48/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3468 - accuracy: 0.8669 - val_loss: 0.3107 - val_accuracy: 0.8950\n",
+      "Epoch 49/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3417 - accuracy: 0.8611 - val_loss: 0.3095 - val_accuracy: 0.8858\n",
+      "Epoch 50/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3380 - accuracy: 0.8679 - val_loss: 0.3041 - val_accuracy: 0.8950\n",
+      "Epoch 51/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3341 - accuracy: 0.8650 - val_loss: 0.2946 - val_accuracy: 0.8950\n",
+      "Epoch 52/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3305 - accuracy: 0.8669 - val_loss: 0.2918 - val_accuracy: 0.8950\n",
+      "Epoch 53/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3269 - accuracy: 0.8669 - val_loss: 0.2946 - val_accuracy: 0.8995\n",
+      "Epoch 54/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3250 - accuracy: 0.8630 - val_loss: 0.2848 - val_accuracy: 0.8995\n",
+      "Epoch 55/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.3236 - accuracy: 0.8659 - val_loss: 0.2825 - val_accuracy: 0.9087\n",
+      "Epoch 56/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3209 - accuracy: 0.8708 - val_loss: 0.2801 - val_accuracy: 0.9132\n",
+      "Epoch 57/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3176 - accuracy: 0.8640 - val_loss: 0.2687 - val_accuracy: 0.9041\n",
+      "Epoch 58/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3162 - accuracy: 0.8699 - val_loss: 0.2699 - val_accuracy: 0.9178\n",
+      "Epoch 59/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3127 - accuracy: 0.8620 - val_loss: 0.2682 - val_accuracy: 0.9224\n",
+      "Epoch 60/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3101 - accuracy: 0.8679 - val_loss: 0.2710 - val_accuracy: 0.9178\n",
+      "Epoch 61/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3099 - accuracy: 0.8699 - val_loss: 0.2612 - val_accuracy: 0.9178\n",
+      "Epoch 62/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3068 - accuracy: 0.8659 - val_loss: 0.2609 - val_accuracy: 0.9269\n",
+      "Epoch 63/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3057 - accuracy: 0.8708 - val_loss: 0.2569 - val_accuracy: 0.9269\n",
+      "Epoch 64/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3022 - accuracy: 0.8787 - val_loss: 0.2704 - val_accuracy: 0.9132\n",
+      "Epoch 65/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.3012 - accuracy: 0.8767 - val_loss: 0.2571 - val_accuracy: 0.9224\n",
+      "Epoch 66/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2997 - accuracy: 0.8748 - val_loss: 0.2452 - val_accuracy: 0.9224\n",
+      "Epoch 67/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2977 - accuracy: 0.8796 - val_loss: 0.2413 - val_accuracy: 0.9087\n",
+      "Epoch 68/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2963 - accuracy: 0.8757 - val_loss: 0.2459 - val_accuracy: 0.9315\n",
+      "Epoch 69/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2969 - accuracy: 0.8728 - val_loss: 0.2496 - val_accuracy: 0.9224\n",
+      "Epoch 70/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2958 - accuracy: 0.8796 - val_loss: 0.2432 - val_accuracy: 0.9315\n",
+      "Epoch 71/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2924 - accuracy: 0.8826 - val_loss: 0.2363 - val_accuracy: 0.9315\n",
+      "Epoch 72/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2917 - accuracy: 0.8738 - val_loss: 0.2329 - val_accuracy: 0.9361\n",
+      "Epoch 73/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2916 - accuracy: 0.8787 - val_loss: 0.2372 - val_accuracy: 0.9315\n",
+      "Epoch 74/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2906 - accuracy: 0.8738 - val_loss: 0.2329 - val_accuracy: 0.9361\n",
+      "Epoch 75/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2871 - accuracy: 0.8787 - val_loss: 0.2273 - val_accuracy: 0.9178\n",
+      "Epoch 76/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2875 - accuracy: 0.8748 - val_loss: 0.2291 - val_accuracy: 0.9361\n",
+      "Epoch 77/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2865 - accuracy: 0.8806 - val_loss: 0.2399 - val_accuracy: 0.9224\n",
+      "Epoch 78/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2854 - accuracy: 0.8836 - val_loss: 0.2240 - val_accuracy: 0.9361\n",
+      "Epoch 79/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2821 - accuracy: 0.8826 - val_loss: 0.2317 - val_accuracy: 0.9269\n",
+      "Epoch 80/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2816 - accuracy: 0.8816 - val_loss: 0.2363 - val_accuracy: 0.9224\n",
+      "Epoch 81/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2818 - accuracy: 0.8845 - val_loss: 0.2268 - val_accuracy: 0.9224\n",
+      "Epoch 82/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2796 - accuracy: 0.8826 - val_loss: 0.2245 - val_accuracy: 0.9269\n",
+      "Epoch 83/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2792 - accuracy: 0.8855 - val_loss: 0.2217 - val_accuracy: 0.9361\n",
+      "Epoch 84/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2775 - accuracy: 0.8865 - val_loss: 0.2163 - val_accuracy: 0.9361\n",
+      "Epoch 85/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2789 - accuracy: 0.8796 - val_loss: 0.2169 - val_accuracy: 0.9361\n",
+      "Epoch 86/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2773 - accuracy: 0.8826 - val_loss: 0.2166 - val_accuracy: 0.9361\n",
+      "Epoch 87/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2754 - accuracy: 0.8845 - val_loss: 0.2183 - val_accuracy: 0.9361\n",
+      "Epoch 88/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2738 - accuracy: 0.8855 - val_loss: 0.2123 - val_accuracy: 0.9315\n",
+      "Epoch 89/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2738 - accuracy: 0.8836 - val_loss: 0.2106 - val_accuracy: 0.9361\n",
+      "Epoch 90/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2742 - accuracy: 0.8885 - val_loss: 0.2165 - val_accuracy: 0.9315\n",
+      "Epoch 91/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2706 - accuracy: 0.8826 - val_loss: 0.2089 - val_accuracy: 0.9269\n",
+      "Epoch 92/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2719 - accuracy: 0.8924 - val_loss: 0.2183 - val_accuracy: 0.9269\n",
+      "Epoch 93/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2701 - accuracy: 0.8885 - val_loss: 0.2074 - val_accuracy: 0.9315\n",
+      "Epoch 94/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2672 - accuracy: 0.8875 - val_loss: 0.2480 - val_accuracy: 0.9087\n",
+      "Epoch 95/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2716 - accuracy: 0.8865 - val_loss: 0.2108 - val_accuracy: 0.9361\n",
+      "Epoch 96/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2673 - accuracy: 0.8865 - val_loss: 0.2136 - val_accuracy: 0.9315\n",
+      "Epoch 97/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2681 - accuracy: 0.8875 - val_loss: 0.2105 - val_accuracy: 0.9315\n",
+      "Epoch 98/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2691 - accuracy: 0.8855 - val_loss: 0.2102 - val_accuracy: 0.9315\n",
+      "Epoch 99/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2659 - accuracy: 0.8875 - val_loss: 0.2103 - val_accuracy: 0.9315\n",
+      "Epoch 100/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2673 - accuracy: 0.8865 - val_loss: 0.2025 - val_accuracy: 0.9315\n",
+      "Epoch 101/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2648 - accuracy: 0.8845 - val_loss: 0.2089 - val_accuracy: 0.9315\n",
+      "Epoch 102/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2649 - accuracy: 0.8855 - val_loss: 0.2034 - val_accuracy: 0.9315\n",
+      "Epoch 103/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2630 - accuracy: 0.8855 - val_loss: 0.2155 - val_accuracy: 0.9224\n",
+      "Epoch 104/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2629 - accuracy: 0.8865 - val_loss: 0.2055 - val_accuracy: 0.9269\n",
+      "Epoch 105/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2649 - accuracy: 0.8836 - val_loss: 0.1999 - val_accuracy: 0.9269\n",
+      "Epoch 106/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2639 - accuracy: 0.8875 - val_loss: 0.2073 - val_accuracy: 0.9269\n",
+      "Epoch 107/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2619 - accuracy: 0.8855 - val_loss: 0.2007 - val_accuracy: 0.9315\n",
+      "Epoch 108/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2607 - accuracy: 0.8826 - val_loss: 0.1985 - val_accuracy: 0.9315\n",
+      "Epoch 109/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2608 - accuracy: 0.8894 - val_loss: 0.2164 - val_accuracy: 0.9269\n",
+      "Epoch 110/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2604 - accuracy: 0.8875 - val_loss: 0.2028 - val_accuracy: 0.9224\n",
+      "Epoch 111/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2630 - accuracy: 0.8885 - val_loss: 0.2008 - val_accuracy: 0.9315\n",
+      "Epoch 112/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2608 - accuracy: 0.8904 - val_loss: 0.2024 - val_accuracy: 0.9224\n",
+      "Epoch 113/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.2576 - accuracy: 0.8894 - val_loss: 0.1977 - val_accuracy: 0.9269\n",
+      "Epoch 114/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2599 - accuracy: 0.8924 - val_loss: 0.2090 - val_accuracy: 0.9178\n",
+      "Epoch 115/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2587 - accuracy: 0.8904 - val_loss: 0.2069 - val_accuracy: 0.9269\n",
+      "Epoch 116/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2584 - accuracy: 0.8924 - val_loss: 0.2109 - val_accuracy: 0.9224\n",
+      "Epoch 117/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2594 - accuracy: 0.8914 - val_loss: 0.1964 - val_accuracy: 0.9269\n",
+      "Epoch 118/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2572 - accuracy: 0.8885 - val_loss: 0.1954 - val_accuracy: 0.9269\n",
+      "Epoch 119/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2564 - accuracy: 0.8845 - val_loss: 0.1950 - val_accuracy: 0.9315\n",
+      "Epoch 120/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2545 - accuracy: 0.8875 - val_loss: 0.1966 - val_accuracy: 0.9224\n",
+      "Epoch 121/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2565 - accuracy: 0.8865 - val_loss: 0.2184 - val_accuracy: 0.9269\n",
+      "Epoch 122/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2577 - accuracy: 0.8865 - val_loss: 0.2005 - val_accuracy: 0.9224\n",
+      "Epoch 123/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2549 - accuracy: 0.8875 - val_loss: 0.1941 - val_accuracy: 0.9315\n",
+      "Epoch 124/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2573 - accuracy: 0.8855 - val_loss: 0.1946 - val_accuracy: 0.9224\n",
+      "Epoch 125/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2568 - accuracy: 0.8894 - val_loss: 0.1991 - val_accuracy: 0.9224\n",
+      "Epoch 126/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2538 - accuracy: 0.8904 - val_loss: 0.1949 - val_accuracy: 0.9224\n",
+      "Epoch 127/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2530 - accuracy: 0.8865 - val_loss: 0.1947 - val_accuracy: 0.9224\n",
+      "Epoch 128/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2549 - accuracy: 0.8885 - val_loss: 0.1933 - val_accuracy: 0.9269\n",
+      "Epoch 129/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.2544 - accuracy: 0.8914 - val_loss: 0.1972 - val_accuracy: 0.9178\n",
+      "Epoch 130/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.2534 - accuracy: 0.8885 - val_loss: 0.2089 - val_accuracy: 0.9224\n",
+      "Epoch 131/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2538 - accuracy: 0.8855 - val_loss: 0.1932 - val_accuracy: 0.9269\n",
+      "Epoch 132/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2531 - accuracy: 0.8855 - val_loss: 0.1948 - val_accuracy: 0.9178\n",
+      "Epoch 133/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2518 - accuracy: 0.8855 - val_loss: 0.1982 - val_accuracy: 0.9178\n",
+      "Epoch 134/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2529 - accuracy: 0.8836 - val_loss: 0.1972 - val_accuracy: 0.9178\n",
+      "Epoch 135/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2535 - accuracy: 0.8885 - val_loss: 0.1960 - val_accuracy: 0.9178\n",
+      "Epoch 136/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2507 - accuracy: 0.8875 - val_loss: 0.1925 - val_accuracy: 0.9224\n",
+      "Epoch 137/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2529 - accuracy: 0.8894 - val_loss: 0.1933 - val_accuracy: 0.9224\n",
+      "Epoch 138/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2526 - accuracy: 0.8855 - val_loss: 0.1963 - val_accuracy: 0.9178\n",
+      "Epoch 139/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2522 - accuracy: 0.8885 - val_loss: 0.2069 - val_accuracy: 0.9269\n",
+      "Epoch 140/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2508 - accuracy: 0.8885 - val_loss: 0.2062 - val_accuracy: 0.9224\n",
+      "Epoch 141/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2532 - accuracy: 0.8914 - val_loss: 0.1967 - val_accuracy: 0.9178\n",
+      "Epoch 142/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2504 - accuracy: 0.8875 - val_loss: 0.1930 - val_accuracy: 0.9178\n",
+      "Epoch 143/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2525 - accuracy: 0.8826 - val_loss: 0.2008 - val_accuracy: 0.9178\n",
+      "Epoch 144/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2522 - accuracy: 0.8865 - val_loss: 0.1934 - val_accuracy: 0.9178\n",
+      "Epoch 145/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2517 - accuracy: 0.8924 - val_loss: 0.1984 - val_accuracy: 0.9178\n",
+      "Epoch 146/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2509 - accuracy: 0.8924 - val_loss: 0.1980 - val_accuracy: 0.9178\n",
+      "Epoch 147/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2515 - accuracy: 0.8845 - val_loss: 0.1990 - val_accuracy: 0.9132\n",
+      "Epoch 148/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2506 - accuracy: 0.8855 - val_loss: 0.1926 - val_accuracy: 0.9178\n",
+      "Epoch 149/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2505 - accuracy: 0.8875 - val_loss: 0.2005 - val_accuracy: 0.9132\n",
+      "Epoch 150/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2495 - accuracy: 0.8924 - val_loss: 0.2105 - val_accuracy: 0.9178\n",
+      "Epoch 151/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2495 - accuracy: 0.8885 - val_loss: 0.1924 - val_accuracy: 0.9178\n",
+      "Epoch 152/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2492 - accuracy: 0.8855 - val_loss: 0.1907 - val_accuracy: 0.9269\n",
+      "Epoch 153/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2495 - accuracy: 0.8914 - val_loss: 0.1958 - val_accuracy: 0.9178\n",
+      "Epoch 154/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2493 - accuracy: 0.8855 - val_loss: 0.2010 - val_accuracy: 0.9132\n",
+      "Epoch 155/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2488 - accuracy: 0.8875 - val_loss: 0.1904 - val_accuracy: 0.9269\n",
+      "Epoch 156/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2493 - accuracy: 0.8875 - val_loss: 0.1931 - val_accuracy: 0.9178\n",
+      "Epoch 157/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2464 - accuracy: 0.8914 - val_loss: 0.2023 - val_accuracy: 0.9178\n",
+      "Epoch 158/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2489 - accuracy: 0.8865 - val_loss: 0.1931 - val_accuracy: 0.9178\n",
+      "Epoch 159/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2454 - accuracy: 0.8933 - val_loss: 0.2190 - val_accuracy: 0.9087\n",
+      "Epoch 160/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2487 - accuracy: 0.8933 - val_loss: 0.1959 - val_accuracy: 0.9178\n",
+      "Epoch 161/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2464 - accuracy: 0.8865 - val_loss: 0.1904 - val_accuracy: 0.9269\n",
+      "Epoch 162/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2497 - accuracy: 0.8875 - val_loss: 0.1903 - val_accuracy: 0.9269\n",
+      "Epoch 163/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2470 - accuracy: 0.8943 - val_loss: 0.1921 - val_accuracy: 0.9178\n",
+      "Epoch 164/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2482 - accuracy: 0.8845 - val_loss: 0.1912 - val_accuracy: 0.9224\n",
+      "Epoch 165/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2472 - accuracy: 0.8953 - val_loss: 0.1899 - val_accuracy: 0.9224\n",
+      "Epoch 166/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2492 - accuracy: 0.8894 - val_loss: 0.1910 - val_accuracy: 0.9224\n",
+      "Epoch 167/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2471 - accuracy: 0.8894 - val_loss: 0.1906 - val_accuracy: 0.9224\n",
+      "Epoch 168/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2451 - accuracy: 0.8875 - val_loss: 0.2076 - val_accuracy: 0.9269\n",
+      "Epoch 169/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2488 - accuracy: 0.8904 - val_loss: 0.1912 - val_accuracy: 0.9224\n",
+      "Epoch 170/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2457 - accuracy: 0.8875 - val_loss: 0.1915 - val_accuracy: 0.9178\n",
+      "Epoch 171/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2465 - accuracy: 0.8992 - val_loss: 0.1931 - val_accuracy: 0.9178\n",
+      "Epoch 172/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2517 - accuracy: 0.8855 - val_loss: 0.2003 - val_accuracy: 0.9087\n",
+      "Epoch 173/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2457 - accuracy: 0.8894 - val_loss: 0.1906 - val_accuracy: 0.9269\n",
+      "Epoch 174/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2463 - accuracy: 0.8904 - val_loss: 0.1896 - val_accuracy: 0.9224\n",
+      "Epoch 175/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2485 - accuracy: 0.8894 - val_loss: 0.1933 - val_accuracy: 0.9178\n",
+      "Epoch 176/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2468 - accuracy: 0.8943 - val_loss: 0.1900 - val_accuracy: 0.9224\n",
+      "Epoch 177/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2438 - accuracy: 0.8943 - val_loss: 0.2056 - val_accuracy: 0.9224\n",
+      "Epoch 178/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2470 - accuracy: 0.8904 - val_loss: 0.1911 - val_accuracy: 0.9224\n",
+      "Epoch 179/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2458 - accuracy: 0.8875 - val_loss: 0.1960 - val_accuracy: 0.9132\n",
+      "Epoch 180/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2452 - accuracy: 0.8885 - val_loss: 0.1936 - val_accuracy: 0.9178\n",
+      "Epoch 181/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2463 - accuracy: 0.8885 - val_loss: 0.1895 - val_accuracy: 0.9224\n",
+      "Epoch 182/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2427 - accuracy: 0.8963 - val_loss: 0.1908 - val_accuracy: 0.9224\n",
+      "Epoch 183/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2486 - accuracy: 0.8914 - val_loss: 0.1960 - val_accuracy: 0.9132\n",
+      "Epoch 184/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2439 - accuracy: 0.8924 - val_loss: 0.1889 - val_accuracy: 0.9224\n",
+      "Epoch 185/200\n",
+      "32/32 [==============================] - 0s 3ms/step - loss: 0.2471 - accuracy: 0.8904 - val_loss: 0.1893 - val_accuracy: 0.9224\n",
+      "Epoch 186/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2451 - accuracy: 0.8924 - val_loss: 0.1953 - val_accuracy: 0.9132\n",
+      "Epoch 187/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2465 - accuracy: 0.8943 - val_loss: 0.2014 - val_accuracy: 0.9132\n",
+      "Epoch 188/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2454 - accuracy: 0.8894 - val_loss: 0.1893 - val_accuracy: 0.9269\n",
+      "Epoch 189/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2459 - accuracy: 0.8904 - val_loss: 0.1932 - val_accuracy: 0.9178\n",
+      "Epoch 190/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2428 - accuracy: 0.8924 - val_loss: 0.1894 - val_accuracy: 0.9269\n",
+      "Epoch 191/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2450 - accuracy: 0.8904 - val_loss: 0.1926 - val_accuracy: 0.9178\n",
+      "Epoch 192/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2444 - accuracy: 0.8865 - val_loss: 0.1900 - val_accuracy: 0.9224\n",
+      "Epoch 193/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2448 - accuracy: 0.8894 - val_loss: 0.1962 - val_accuracy: 0.9087\n",
+      "Epoch 194/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2435 - accuracy: 0.8914 - val_loss: 0.1980 - val_accuracy: 0.9087\n",
+      "Epoch 195/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2446 - accuracy: 0.8914 - val_loss: 0.1927 - val_accuracy: 0.9178\n",
+      "Epoch 196/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2417 - accuracy: 0.8933 - val_loss: 0.1946 - val_accuracy: 0.9087\n",
+      "Epoch 197/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2434 - accuracy: 0.8865 - val_loss: 0.1899 - val_accuracy: 0.9224\n",
+      "Epoch 198/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2443 - accuracy: 0.8914 - val_loss: 0.1888 - val_accuracy: 0.9269\n",
+      "Epoch 199/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2453 - accuracy: 0.8992 - val_loss: 0.1894 - val_accuracy: 0.9224\n",
+      "Epoch 200/200\n",
+      "32/32 [==============================] - 0s 2ms/step - loss: 0.2427 - accuracy: 0.8894 - val_loss: 0.1980 - val_accuracy: 0.9087\n"
+     ]
+    }
+   ],
+   "source": [
+    "from keras.models import Sequential\n",
+    "\n",
+    "from keras.layers import Dense\n",
+    "\n",
+    "model = Sequential([\n",
+    "Dense(32, activation='relu', input_shape=(10,)),\n",
+    "Dense(32, activation='relu'),\n",
+    "Dense(32, activation='relu'),\n",
+    "Dense(1, activation='sigmoid')\n",
+    "])\n",
+    "\n",
+    "model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy'])\n",
+    "model_hist = model.fit(X_training, Y_training, epochs=200, batch_size=32, validation_data=(X_valid, Y_valid))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "6. Testen der Genauigkeit der Vorhersagen"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "7/7 [==============================] - 0s 2ms/step - loss: 0.2772 - accuracy: 0.8858\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "0.8858447670936584"
+      ]
+     },
+     "execution_count": 9,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "model.evaluate(X_test, Y_test)[1]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Dritte Immobilien im Test-Array: Richtiges Ergebnis"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "0\n"
+     ]
+    }
+   ],
+   "source": [
+    "print(Y_test[2])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Dritte Immobilien im Test-Array: Vorhersage"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "7/7 [==============================] - 0s 1ms/step\n"
+     ]
+    },
+    {
+     "data": {
+      "text/plain": [
+       "array([0.01198033], dtype=float32)"
+      ]
+     },
+     "execution_count": 11,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "Y_test_vorhersage = model.predict(X_test)\n",
+    "\n",
+    "Y_test_vorhersage[2]"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "7. Visualisierung der Ergebnisse mit matplotlib"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 12,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIhCAYAAAB5deq6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAACyR0lEQVR4nOzdZ1RUVxeA4XeG3ougWBCwYe8VYzcao4klicbEGjXdxCTmS++9d0sSNWpsMTFVY6KxV+xdbCCgFOlIZ+Z+Pw4zMNIRRGU/a7GYuW3OHQa4+5599tFpmqYhhBBCCCGEEKJY+upugBBCCCGEEEJc7yRwEkIIIYQQQohSSOAkhBBCCCGEEKWQwEkIIYQQQgghSiGBkxBCCCGEEEKUQgInIYQQQgghhCiFBE5CCCGEEEIIUQoJnIQQQgghhBCiFBI4CSGEEEIIIUQpJHASQohr7PDhw0yZMoXGjRvj4OCAg4MDTZs25aGHHmLv3r3V3bwK0el0vP766xXa19/fn2HDhlVKO3744Qd0Oh1hYWHmZUuXLuXzzz+/6mP7+/szadKkqz5Oeeh0OnQ6XbGv++abb5q3KXjOV2vSpEn4+/tXaN++ffvSt29fi2VX8/kQQojrhQROQghxDc2dO5dOnTqxe/dunnzySf766y9Wr17NjBkzOHbsGF26dOHs2bPV3cxy27lzJ1OnTq3uZjB06FB27txJ3bp1zcsqK3CqLi4uLqxcuZLU1FSL5Zqm8cMPP+Dq6lpNLRNCiJpFAichhLhGtm/fzqOPPsqQIUPYv38/TzzxBAMGDKB///489thjbNu2jZ9++gkHB4fqbmq5de/enQYNGlR3M/D29qZ79+7Y2dlVd1MqzfDhw9E0jeXLl1ss37BhA6GhoYwZM6aaWiaEEDWLBE5CCHGNvPvuu1hZWTF37lxsbW2L3Oaee+6hXr16Fsv27t3LnXfeiaenJ/b29nTo0IGffvrJYhtTitrGjRt55JFH8PLyolatWowaNYqLFy9abLtixQoGDRpE3bp1cXBwoEWLFjz//POkpaVZbFdUyhUUncZVVCrWtm3b6NGjB/b29tSvX59XXnmF77//vkxpZbNmzcLa2prXXnvNvGz9+vUMGDAAV1dXHB0d6dmzJ//991+R74Pp+H379mX16tWcP3/enNKm0+lKfO2cnBz+97//4ePjg6OjI7fccgvBwcFFbhsdHc1DDz1EgwYNsLW1JSAggDfeeIPc3FyL7WbPnk27du1wdnbGxcWF5s2b8+KLL5bYDhM3NzdGjhzJ/PnzLZbPnz+fnj170qxZsyL3mz9/Pu3atcPe3h5PT09GjhzJiRMnCm33ww8/EBgYiJ2dHS1atGDRokVFHi87O5u3336b5s2bY2dnh7e3N5MnT+bSpUtlOo+C0tPTmTlzJgEBAeb2de7cmWXLlpX7WEIIca1YV3cDhBCiJjAYDGzcuJHOnTtbpJGVZuPGjdx2221069aNOXPm4ObmxvLlyxkzZgzp6emFxr5MnTqVoUOHsnTpUiIiInj22WcZN24cGzZsMG9z+vRpbr/9dmbMmIGTkxMnT57kgw8+IDg42GK7q3H48GFuvfVWmjVrxsKFC3F0dGTOnDn8+OOPJe6naRrPPvssX375Jd9//735/H788UcmTJjA8OHDWbhwITY2NsydO5fBgwfzzz//MGDAgCKPN2vWLB588EHOnj3Lr7/+Wqa2T5s2jUWLFjFz5kxuvfVWjh49yqhRowqlykVHR9O1a1f0ej2vvvoqjRs3ZufOnbz99tuEhYWxYMECAJYvX86jjz7K9OnT+fjjj9Hr9Zw5c4bjx4+XqT0AU6ZMYcCAAZw4cYIWLVqQlJTEqlWrmDVrFvHx8YW2f++993jxxRcZO3Ys7733HvHx8bz++uv06NGDPXv20LRpU0AFTZMnT2b48OF88sknJCcn8/rrr5OVlYVen39v1Wg0Mnz4cLZu3cr//vc/goKCOH/+PK+99hp9+/Zl79695eopffrpp1m8eDFvv/02HTp0IC0tjaNHjxZ5LkIIcd3QhBBCVLno6GgN0O69995C63Jzc7WcnBzzl9FoNK9r3ry51qFDBy0nJ8din2HDhml169bVDAaDpmmatmDBAg3QHn30UYvtPvzwQw3QoqKiimyX0WjUcnJytM2bN2uAdujQIfO6Pn36aH369Cm0z8SJEzU/Pz+LZYD22muvmZ/fc889mpOTk3bp0iXzMoPBoLVs2VIDtNDQUPNyPz8/bejQoVp6erp21113aW5ubtr69evN69PS0jRPT0/tjjvusHhNg8GgtWvXTuvatat5mel9KHj8oUOHFmpvcU6cOKEB2lNPPWWxfMmSJRqgTZw40bzsoYce0pydnbXz589bbPvxxx9rgHbs2DFN0zTt8ccf19zd3cv0+lcCtMcee0wzGo1aQECANnPmTE3TNO2bb77RnJ2dtdTUVO2jjz6yOOfExETNwcFBu/322y2OFR4ertnZ2Wn33Xefpmnq/atXr57WsWNHi89cWFiYZmNjY/GeLVu2TAO0X375xeKYe/bs0QBt1qxZ5mVFfW6u/Hy0bt1aGzFiRIXeEyGEqC6SqieEENWsU6dO2NjYmL8++eQTAM6cOcPJkye5//77AcjNzTV/3X777URFRRESEmJxrDvvvNPiedu2bQE4f/68edm5c+e477778PHxwcrKChsbG/r06QNQZCpXRWzevJn+/fvj5eVlXqbX6xk9enSR28fHx9O/f3+Cg4PZtm2bRQ/Sjh07SEhIYOLEiRbvgdFo5LbbbmPPnj2F0gwrauPGjQDm99xk9OjRWFtbJmn89ddf9OvXj3r16lm0a8iQIeb3AKBr164kJSUxduxYfv/9d+Li4srdLlNlvcWLF5Obm8u8efMYPXo0zs7OhbbduXMnGRkZhXojfX196d+/vzm9MSQkhIsXL3LfffdZpC/6+fkRFBRU6Fzd3d254447LM61ffv2+Pj4sGnTpnKdT9euXfn77795/vnn2bRpExkZGeXaXwghqoOk6gkhxDXg5eWFg4ODRQBjsnTpUtLT04mKirIIfGJiYgCYOXMmM2fOLPK4V16E16pVy+K5qUiC6cL08uXL9OrVC3t7e95++22aNWuGo6MjERERjBo1qtIuYOPj46lTp06h5UUtAzh16hSJiYlMmzaN1q1bW6wzvQ933313sa+XkJCAk5PTVbRYMaWK+fj4WCy3trYu9N7GxMTw559/YmNjU+SxTD+b8ePHk5uby3fffcddd92F0WikS5cuvP3229x6661lbtvkyZN54403ePfdd9m/fz9fffVViedQVEpovXr1WLduXYnnalpWcBxaTEwMSUlJxY7NK28w+OWXX9KgQQNWrFjBBx98gL29PYMHD+ajjz4ypxEKIcT1RgInIYS4BqysrOjfvz///vsvUVFRFhe1LVu2BChUMMHUW/PCCy8watSoIo8bGBhYrnZs2LCBixcvsmnTJnMvE0BSUlKhbe3t7UlOTi60vCwXybVq1TIHPAVFR0cXuX2PHj245557mDJlCqCKKZjG2Jjeh6+++oru3bsXuX9xAVl5mYKj6Oho6tevb16em5tbaPyNl5cXbdu25Z133inyWAWLfEyePJnJkyeTlpbGli1beO211xg2bBinTp3Cz8+vTG3z9fVl4MCBvPHGGwQGBhbqFbryHKKiogqtu3jxovn9LHiuV7pymanYyNq1a4t8TRcXlzKdg4mTkxNvvPEGb7zxBjExMebepzvuuIOTJ0+W61hCCHGtSOAkhBDXyAsvvMDff//Nww8/zM8//1xsT4VJYGAgTZs25dChQ7z77ruV0gZTStaV5brnzp1baFt/f39WrlxJVlaWefv4+Hh27NhR6txBffr0Yc2aNcTFxZkv1I1GIytXrix2n4kTJ+Lk5MR9991HWloaCxcuxMrKip49e+Lu7s7x48d5/PHHy3W+oM61rD1ppiqCS5YsoVOnTublP/30U6FKecOGDWPNmjU0btwYDw+PMh3fycmJIUOGkJ2dzYgRIzh27FiZAyeAZ555BgcHB+65555it+nRowcODg78+OOPFttFRkayYcMGc89dYGAgdevWZdmyZTz99NPmz8b58+fZsWOHReA3bNgwli9fjsFgoFu3bmVub1nUqVOHSZMmcejQIT7//HPS09NxdHSs1NcQQojKIIGTEEJcIz179uSbb75h+vTpdOzYkQcffJBWrVqh1+uJioril19+AbAISubOncuQIUMYPHgwkyZNon79+iQkJHDixAn2799fYiBSlKCgIDw8PHj44Yd57bXXsLGxYcmSJRw6dKjQtuPHj2fu3LmMGzeOadOmER8fz4cfflimCVdfeukl/vzzTwYMGMBLL72Eg4MDc+bMMY9FKlixraC7774bR0dH7r77bjIyMli2bBnOzs589dVXTJw4kYSEBO6++25q167NpUuXOHToEJcuXWL27NnFtqVNmzasWrWK2bNn06lTJ/R6PZ07dy5y2xYtWjBu3Dg+//xzbGxsGDhwIEePHuXjjz8udN5vvvkm69atIygoiCeeeILAwEAyMzMJCwtjzZo1zJkzhwYNGjBt2jQcHBzo2bMndevWJTo6mvfeew83Nze6dOlS6ntZ0KBBgxg0aFCJ27i7u/PKK6/w4osvMmHCBMaOHUt8fDxvvPEG9vb25hLver2et956i6lTpzJy5EimTZtGUlISr7/+eqH0vXvvvZclS5Zw++238+STT9K1a1dsbGyIjIxk48aNDB8+nJEjR5b5PLp168awYcNo27YtHh4enDhxgsWLF9OjRw8JmoQQ16/qrk4hhBA1zcGDB7XJkydrAQEBmp2dnWZvb681adJEmzBhgvbff/8V2v7QoUPa6NGjtdq1a2s2Njaaj4+P1r9/f23OnDnmbUzV5Pbs2WOx78aNGzVA27hxo3nZjh07tB49emiOjo6at7e3NnXqVG3//v0aoC1YsMBi/4ULF2otWrTQ7O3ttZYtW2orVqwoU1U9TdO0rVu3at26ddPs7Ow0Hx8f7dlnn9U++OADDdCSkpLM25mq6l3ZbmdnZ+22227T0tPTNU3TtM2bN2tDhw7VPD09NRsbG61+/fra0KFDtZUrVxZ6HwpW1UtISNDuvvtuzd3dXdPpdFpp//qysrK0Z555Rqtdu7Zmb2+vde/eXdu5c6fm5+dnUVVP0zTt0qVL2hNPPKEFBARoNjY2mqenp9apUyftpZde0i5fvmx+D/v166fVqVNHs7W11erVq6eNHj1aO3z4cIntML2vjz32WInbXFlVz+T777/X2rZtq9na2mpubm7a8OHDzZX+rtyuadOmmq2trdasWTNt/vz5Rf6Mc3JytI8//lhr166dZm9vrzk7O2vNmzfXHnroIe306dPm7cpSVe/555/XOnfurHl4eGh2dnZao0aNtKeeekqLi4sr9T0RQojqotM0TauuoE0IIUTNMmjQIMLCwjh16lR1N0UIIYQoF0nVE0IIUSWefvppOnTogK+vLwkJCSxZsoR169Yxb9686m6aEEIIUW4SOAkhhKgSBoOBV199lejoaHQ6HS1btmTx4sWMGzeuupsmhBBClJuk6gkhhBBCCCFEKYouaySEEEIIIYQQwkwCJyGEEEIIIYQohQROQgghhBBCCFGKGlccwmg0cvHiRVxcXMyzpAshhBBCCCFqHk3TSE1NpV69esVOzm5S4wKnixcv4uvrW93NEEIIIYQQQlwnIiIiaNCgQYnb1LjAycXFBVBvjqurazW3RgghhBBCCFFdUlJS8PX1NccIJalxgZMpPc/V1VUCJyGEEEIIIUSZhvBIcQghhBBCCCGEKIUETkIIIYQQQghRCgmchBBCCCGEEKIUNW6MU1lomkZubi4Gg6G6myKuIRsbG6ysrKq7GUIIIYQQ4jokgdMVsrOziYqKIj09vbqbIq4xnU5HgwYNcHZ2ru6mCCGEEEKI64wETgUYjUZCQ0OxsrKiXr162NrayiS5NYSmaVy6dInIyEiaNm0qPU9CCCGEEMKCBE4FZGdnYzQa8fX1xdHRsbqbI64xb29vwsLCyMnJkcBJCCGEEEJYkOIQRdDr5W2piaR3UQghhBBCFEciBCGEEEIIIYQohQROQgghhBBCCFEKCZxEsfr27cuMGTPKvH1YWBg6nY6DBw9WWZuEEEIIIYSoDlIc4iZQ2ticiRMn8sMPP5T7uKtWrcLGxqbM2/v6+hIVFYWXl1e5X0sIIYQQQojrmQRON4GoqCjz4xUrVvDqq68SEhJiXubg4GCxfU5OTpkCIk9Pz3K1w8rKCh8fn3LtI4QQQgghxI1AUvVKoWka6dm51fKlaVqZ2ujj42P+cnNzQ6fTmZ9nZmbi7u7OTz/9RN++fbG3t+fHH38kPj6esWPH0qBBAxwdHWnTpg3Lli2zOO6VqXr+/v68++67PPDAA7i4uNCwYUO+/fZb8/orU/U2bdqETqfjv//+o3Pnzjg6OhIUFGQR1AG8/fbb1K5dGxcXF6ZOncrzzz9P+/btK/TzEkIIIYQQoipIj1MpMnIMtHz1n2p57eNvDsbRtnJ+RM899xyffPIJCxYswM7OjszMTDp16sRzzz2Hq6srq1evZvz48TRq1Ihu3boVe5xPPvmEt956ixdffJGff/6ZRx55hN69e9O8efNi93nppZf45JNP8Pb25uGHH+aBBx5g+/btACxZsoR33nmHWbNm0bNnT5YvX84nn3xCQEBApZy3EEIIIYQQlUECpxpixowZjBo1ymLZzJkzzY+nT5/O2rVrWblyZYmB0+23386jjz4KqGDss88+Y9OmTSUGTu+88w59+vQB4Pnnn2fo0KFkZmZib2/PV199xZQpU5g8eTIAr776Kv/++y+XL1+u8LkKIYQQQghR2SRwKoWDjRXH3xxcba9dWTp37mzx3GAw8P7777NixQouXLhAVlYWWVlZODk5lXictm3bmh+bUgJjY2PLvE/dunUBiI2NpWHDhoSEhJgDMZOuXbuyYcOGMp2XEDeMpAj13d238LrkC5CdBt7NCq9Li4P0hKLXpSdAykXwaX11bYs9CXGnKrZv7Rbg1bTw8oxESI1W6ytLTiZEH4H6nUAmKhdCCHGNSeBUCp1OV2npctXpyoDok08+4bPPPuPzzz+nTZs2ODk5MWPGDLKzs0s8zpVFJXQ6HUajscz7mCoAFtznyqqAZR3bJcQNI2w7LB6pHk/4DfyC8tdFH4EFt4MhB2YcAWdvy32X3A3RR+GR7eAdaLlu5SQI3Qzjf4PG/SrWtqQImNsbDFkV2x8djF4ELe/MX5R4HuYNgsvRcMcX0GlSBY99hc0fwLZPoe29MHIOlFJRVAghhKhMN35EICpk69atDB8+nHHjxgEqkDl9+jQtWlTi3eEyCAwMJDg4mPHjx5uX7d2795q2QYgqFXMMlo3ND0yW3QuT10KdlpAYBj/eBVkpal34Dmg5PH/fy7Fw8YB6fPwP6POs5brQLerxts8qHjjtnqPa5uwDHv7l2zcrBWKPwy9TwXEV+N8CafHqnC5Hq23+egqcvKH50Iq1r6DIPer74eXgUgduffPqjymEEEKUkQRONVSTJk345Zdf2LFjBx4eHnz66adER0df88Bp+vTpTJs2jc6dOxMUFMSKFSs4fPgwjRo1uqbtEKJKJIXnBUbJ4Nsd0CBit1o2dhn8/ABcjsnfPiLYMnCKCM5/fOpvy8Dp1D/qeKB6naIOQ938tNgyyUyGfQvV4+FfQ9Nby7e/0QA/TYCTf8Gy+2DcL7D2eYg/Da4NoGE3OPqLOs8Jv0PD7uU7/pXiz+Q/3v6FCvZ6PFr89kIIIUQlksCphnrllVcIDQ1l8ODBODo68uCDDzJixAiSk5OvaTvuv/9+zp07x8yZM8nMzGT06NFMmjSJ4ODg0ncWojpEBIOLD7g3LLwufBdcOqkeaxrsmgWpUeDdXAVKAAuGqG2+7Qto4OYLXabA+tctAyWAyALPL+yD1BjV0wJwaq36bm0PuZmw82sY9S3lsm8hZKeq9jUZWL59AfRWcNf3sHiU6i2bd6s6JwcPGL8KPBursVun1sLS0fDAP6WPeUpPUO9D00GW45iyUtV7CdBzBmz/HP55QQV/rnXL3/aSuNYvfxB5pch9EHMk/7m9GwTeDtZ2Je936RRkX4b6Ha/u9csqMxlCt0LgEPXzLCtDLpz+Bxr1A1vHqmufEEJcR3RaDRtQkpKSgpubG8nJybi6ulqsy8zMJDQ0lICAAOzt7aupheLWW2/Fx8eHxYsXX9PXlZ+/KNWlUzCrm7qwnr4frG3z18WehNk9QLtizJ9rfZjyL7g1UM+TI9X4n5QL4OCpggkra/iyA1jZwvMRYJP3+Zt/G4TvBHSABnd+BR0nqCIJHwZATroaQ/Tnk6C3hicPg1v9sp2LIQe+aKfacefX0HF86fsUJyNRjdOKPQ7WDjDxD/DtqtZlp8Oi4SoIvPK9uFJaHMwfrHqW7l4ArQtUAr14EL7tA45e8OwZ1bO1e07F21ya+3+BphUIJgEOLYdfHyq8vMmtKoC2KmYC8sxk+LytChIf3Vl4TFtly0yGBUNVgDfgNej1dNn33fiuGnPW7j4YObvq2iiEEFWspNjgStLjJKpVeno6c+bMYfDgwVhZWbFs2TLWr1/PunXrqrtpQhQWGawCo+QIlYLWfmz+up1fqXWejVUPDqhehl7PWAYKbg1gwh/qor/TRFUtT9PUOKC0SxB1SKW45WbDhf1qnzZ3w5GVELJWBU5hW1XQ5FIPOk6Ewyvh/DZ1zEFvle1cjv2qgian2tB29NW9Lw4eMG6V6gVqOTw/aALVG3HfChUExoWoNMXJf4Ojp+UxstNUr5QpHS8i2DJwMi2v1UQVhRj8nur5i9hzdW2/UlK4CiS2f16xwOn0evj9MfW4YQ8VHKPB2Y1wZh388QSMmFV0YYt9CyEzST3e+bUKlKtKTiYsvz+/V2z3HOjxWOk9YqB+VrvnqsdHfoL+L5c9YBdCiBuYBE6iWul0OtasWcPbb79NVlYWgYGB/PLLLwwcWME7vUJUpZhj+Y93fg3t7lUXwKkxcPgntXzEbBX4lMSrCQz9OP+5TgcNukLIahWcNeymqu0ZstSFd4/HVeB0bqO64A35W+3XbLDaN2i6Cpz2/QC9nwX7ku+YoWmwI++ivNuDZbtYLo1rXRjyQdHrHD3V+Kd5g1Sa4rKxqrqgjYNab8iBnyaqdESTmKOWxzAFTl5N1He9Hm556urbfaWkCNUTF7ZVBbF125V938h98NN4MOZCm9Ewcm5+umHIWlh+HxxaCs614dY3LPc15Fj2oB1aAf1fUdtWNqMBfn1QnaOti+rhvByjPmMdxpW+/8Gl+QGeMbd8AbsQQtzAJHAS1crBwYH169dXdzPEzSgnEw4sVmlPJl5NocUdFT9mwYv5mKNwbpOqZrfnOzBkq+CntKCpOL55gVPEbmB63ve85XXbqTS3lAuqEMSpf9S6wCHqe9NBUKupKsqwfxEEPV7ya4VugejDKq2u85SKtbe83H1V8LTgNojYpaoLBqiJsYnco3pjrB3UBfiamSpI1bT8npmCPU5V3c7Wo1QQseNruOu7/HVJ4XDsNxUsXEkzqjFtOenQuD8M/8ZyjFbgbXDnl6o3avvnqres+yP56wv2ALrVV9UU93wP/V7M3ybqkGpDUZ/huDMQdRBajSw8Vik5Uh3fkJN/nOO/q9TQsUvVa617VZ1v+/vz3/OMRDj1r/qcmYJxo0HdNABodpsav1bWgL0o8Wchcq/q9SytvPzJ1eBaD+p1KP/rVETsSYg9Bi1H3ljzhsWfVTdeWg4v/T099a/6vNVpVXmvH7k3v+InqDTi1ndVXq+kpsHpdep3qLwFcQrKyVCZA00HF54G4kZlNKpz8gsq/H5rmvq992kDtRpfm/ZcPKAqrVY07fk6JIGTEOLmtPVj2PJR4eUPba3YP1tNU/MpgUrBCt+pem18u6oLXCg9YCmJb17AFRGsXqtg4KTTqd6lvfNh6yeQEqmCjIDeahu9Xr32n0+qcSeN+qh/jkVJi1MlwgE63F84Za4q1WkJY5fDohEq6Dy3KX+dzgpGL1TB1N//g4wENYGuqfBD3Gn1vVYRk+1WNlMP39FfYOBrKr0y4ZzqMUu7VPK+ddurea0Kjn8z6TBOndOGt2DtC6o3qfVdhXsAazWFlRMh+DtVCMPWUX0uFt4JuRmF5+0yGtR8X4mhqkDJ7R/lXzAXnFPLgk71iAX0Bp+2sPlDuHQCzvynLnIyU2DhHeoCvEEXVRXR1kkFL4lhKj3zrnnwXT81efKBxSrVrzziTqu2ZSSAZoD29xW/7fYvYd0rYOcGTx2tWJBWHoYclVaaEgk99sPgd6r29SqL0aDanRgKd89Xn6/iXDwIS+8Bx1pqDjlbp+K3LauMRPX7nZ1qufz0vzDpr6s/PsCOL1Wgb2WrUoQDelXsOHvmwb8vqd+3B/4Bp1qV077qdGSl6k2u1wGmbbQMnI/9Cj9PBnc/NUbXqopDgLMbYMloMObAbR9A94er9vWukRvoFooQQpRRdlp+MNN8mLpg9Wqmnp9cXbFjXo5RF3g6PQz7XH0/+x/8+4q6WPDwV69VUfXag95GvU5SeP6cRQ3yxgs1y+tdMgVUjfvlp7qBGqTv11PNrfTjXeqC+UpZl2HJPZBwFtwaQp/nKt7eivILgol/qklxO4xTXx0nqN6oZoNV2pgpODKlRmqauosOVd/jBOpn4d9LXczvnqPmzFo8UgVNXs3y233l1y1PqQs5O5fij93rGej6IKDBqodU8HhlD2CLO9TFTUYCHFoGl0LU+K/cDHUMU5BlcvIvdaEMqvdza14aaFo8/DhKBU21mhRo63g17sw0hszBXY2VAzVWLzcLVtyvgiZQn8WVk1UwYXrtzlPAzjk/WNo1W1XaK6uUKFWNMSMh/5yKq1V1aLkKmkCV9t+/qOyvU1HHflVBE6getivf8+vViT/zPwvbvyz+PQX1uQFIj1fpl5Vh3w8qaHLzVZ+19uNUj1PY1vwxm1fj0HIVNIHq5V9+X/7ntLzCtqnv8afV71d22tW3r7qd+EN9v3gg//xAfQ62f6EeJ52Hk39WbTsuHoAV41XQBKqYz9FfqvY1rxEJnIQQN5+DS/OCmQB193/4N+rOPaj5kCrC1NtUqwnUbp6fLrV3nvre/bHylXO+ko1Dfk/YsVUqbUtnlV+WOqA32BQo+9zsNsv9rW3h3qVQu5UKvn4cpXqXTHKz1ZxLF/ercVPjV1XN+JmyaNhNVQMc/o36uvMryx4Un9bquyk18nKMuhjT6cEz4Nq0MWi6+r5vYV4gGqaCmYl/5bf7yq+Br5d+11qng9veh5Yj1EXF8nH5QYGpB1BvBd3z5qfa8WVegJEIddrkB+wFx9uZLupN47E2vK2KNyy9R6U4uvmqYNXc1q9VkFpQ94fV5+3cJnW+oVvA1hmGfqoCutP/qOAxMljd6e/6oNqv7b2q0mFyBBz/rWzvbUaSeo3kcFVMxdZZVWQ8+1/hbQsW2zCd367Z+WmHVUHT1Pte8DX/fVmNO7ueFey5BJW6eX578duHrM1/vPMb1Vt1NXKz84uG9HtRfdZGfJPf62VK8ayogp+Fbo+UfqOoJAV79a1s4cJeWDmpaj9XVS0nUxWhMSn4WTi/XX0eCq6rqqLa8Wfhx7vVtAoBfaDLVCxuFN3gJFVPCHFjOf6HKmZw5YWfidGgLgJA3Q03BTNNBwE6Nb4j5aIaK2ESuS/voi/vH4lOD61GqZ4HE9NFvGksQNATKl8cwN5dXfReLd9uqkCC6eLDp01++oyNvZozJySvx6yo83dwzyvCcKu6YF40Ahr3zWv/MZU6YeMI969U472uV3VaqbuTpvfcNL7JvWHlFLIoiya3glegqgQYfVgFB+N/zZ9H62rordScW+nx+UUo0OUHS6Du1m96VwVsoHrhJvwOq59Sn7ud36jqfOG7VY+QlS3ct1L1kG37VKU7Qn7Fw4Kf96K4N4RWI9T7HrZV9X6O+VEFtK71VAW+sK1q27aj898HG3sVRG16V5UoL3hxVpyw7WrskLOPek93zYbds9UYq4LziV3Yp4J9U7GNO7+Ez9uonqDjv6tqk+WVkaRSXk09XQDeLVSaoCmtKXSL6sWwdlBpkVs+hl3fwO+PqsC4InOeXQsRu1UAYJX39/HEH+o99b+l8LZJEaqiok6vekgTQyFkzdWNAT36i5przdkHWhf42fR4HA6vUOMDB76hxhGCutDf90N+z15JjEbYtyD/szD4XRU0LRiigu4fR+Wl23mVra3xZ9VnwMpO3UT68W6VTlhc1csL+9X/iCunmzBx9FL/b4qbagBUoHJkpfp7YmLjpG5aOHhYbpsWD8Fz1ZhJkzptoN2Y4o8ftg1y0tT/o8xkdbPjUoia1mBHXtDa4k41RvbCPpXW69dDLTcaVbqtV7P8ZRWRFqd+FulxKgV4zI/qf1hanHr/lo+DyWuubmxaNZPASQhx49g1W3X5Q/FzD51crS4CHDwsx0w4e6uxGpHBakB75wfU8twsWD5W9WoUFLIWHi8wAa3pDr8pcGrQOX+sU5cplTM+wLdr/qS5kD/uyaT5UBU4NeiiBkYXxbWuulCeP0hdGBWchFVvrXrgGnS++rZWpTqmHqe89/xajm8yMY0b+2O6uri5f2XlDqi2toN7l+TPo9R8qOXx7ZxVOty2T/MCjFXqot0UsB/+CQa8qlLrANqOUcHMgFfVZ/ngEnXhf99PquR9WfR4PD+dZuSc/F7AwCFwx+fqvTBtV1CXqbDtM5UCWtaUNjtXGPczePipIhnBc1XVyOijqscx7oxKK81Jyy+2YZ3X07XxHdUj1Pqu0osfFJSdpsaCmdJgC4o7lV/p0NQz0mGc6gEc9LZ6T4/+DCsmqLE612qC4vIwvfftxkDQkypt79Tf6vfnyhslpgm0fbup9Nmtn6j9Kxo4FarUWWCMX922quchdLMK7Ae/o25wrZqq2lgeBQuvmG8UDVI3V5aOVj2rZflbbOptqtdBBZb3/JBf9dKljuo9Njm/Q92EMmSVfExr+5LH8Wx6Hza/X3j55Rj1+1XQulfh4I+Ft63VuPi/36ZsilYjVKBy8i91gyVoet46nZqvzcFdpbvu/FoFSZqmelR3faOyEWaervj4px1f5ffO3/9z/ljEkXPzbxStf139PbtBSeAkhLgxHPk5P2gCVQjByVtVKyvIdNHTuYhgJvA2FTiFFAicjqxU/7ic66iLTzTYNUf1NMSfzb+YNQdOrfOPN+o7dVe3sirTmcYzmfhe8bzdWMjNzK9GVxzvZjBlnRofY0o90enUOKmruZt4rZiC07hTKrC9VhX1rtT+fnVX3LdL1VRys3dTZdkPLlEpb1fq/ay6yGlxh+oRAnXR5NtdVSZc+wKcyBunYgpmdDqVBunbVRWqKNhrWpr6HdXEwzaOhX+vOk7In5OqdgvLdU611MS+ZzeU7XX01tDmHlUsBFTw1HK4Gle082t10frjSHWhdWWxjc5TYOunqpcubFvZCwMYctQ4rcg96qZKh3GATt2Z378wv9Jho36q5wFdftVDvV5NM5Aep1KNltyjJnK+VpXJyiL+bP74zR6Pq7L9gUNUL9LOr9VnoiBT4NTsNjWtwo6vVDAREVz4705ZnNuoehFtnKDT5MLrg6arwGnfQujzP3XxfOJP1VPaZar6TJTGxUeNjSwYlLnWy79RdGGfmtagpEmmTSLzboqZzrVg1cttn6mbFd0fhpjjqgKoIUulBtbvVPhYiWHq/8CuWdB1WtEp23vm5QdN7fMC8qwU1eN2aJmaC83UW5YarXroIP//WPgu1eYdX6kiOlfStPzUy2ZD1N+Wk3+pMWHp8XnnOER9Lno8rgKnk6vzPjd/qaAJVC9cxG7w71ny+1cc01QZA1+z7J23sVdpv990UcFTVmrJY0GvYxI4CQD69u1L+/bt+fzzzwHw9/dnxowZzJgxo9h9dDodv/76KyNGjCAsLIyAgAAOHDhA+/btr0mbRQ1ydiP8mncnr+uD6s7xwSUqJ33iH/n//CKC1R/9gmMwCmo2BP57U/0Dz05X44pMKQw9HoOeT6rH0UfUBVLI36rXITdbBVJgWbbX3bf8lcRK4lYfXBvkp65ceQGj16verbLwaqp6H25ErvXVP/7MZBU8mQtDXOMLVb2VuntelZy88j93V7J1LHpd0HRYsUuNhQOVhlq7ef56Kxt1gVkRBScdvlKLEoqfNO5nOU6tvIKmq8DpyM+q2ltSOHg2UnetC15gOdVSPcl756mAoCyBk6bBnzNU6pKpF67g75aHn/q7sPb5/GqULYZZft6sbVXa0Q9DVdC2eKS6OVEZqZuVYdcsQFOltb0D1bKg6SpwOrQc+r2cX3I763J+ufDAISogaTNa9XDs+ArGLC7/65v+jpp66a7UZKCaGPzSSVWt0ZSeOuo71UNyNbybqTTVhXeUPsm0SYQpcCrQq29R9fJ5VRxmx9fq75Bvd9W7VbAgj0l2ugrik86rYPDK8znxp5piAVRBHtMUA5qmPutRB1Vg1TevWE/wt2r8o283GPapWhZ9FOb0VAFaYpgqRlRQzNH8aquN+qjer/qdVeqmqQiIadymd2D+VAIrJ+YX13CpB6kXVe9URQKnhHPq/6Teuuh0Vq+m6nc64Zy6ydJyePlf4zoggdNN4I477iAjI6PI+ZB27txJUFAQ+/bto2PHsqcW7NmzByensqce+fr6EhUVhZdXGfOLhSir6KOwYpz6R9JqpBpYrxlVhbPT/6q7v6ZqdhfzqjYVHINRUO0W6s59UrgKjKxsVQlmWxfLC81mQ9T6U2tV4BR3SuXW27mpgfZVybcrHIsEl7pV/1rXK51O9eyd3656+uLzUvWu53FZ11LgkPwLECicOncjqt8JGgZB+A71O+lUW/UkFDW/To/H1DilU2vVDRVdKUVZLseoC2qdlUrJuvKGxC1Pq0msg+fmX0T2mF74OHYuKpCbN0ilAy8cVriXuCL8gizHWJkcXaV6CzpPKTyP1Kl/1EW0aXy/KcWy4JQIDXtAvY7q72Lwt9D/JbX83EZVkc4jIL/aaI/HVOB08i/49RE19ulKNvbqvbpyfqCYY6qwh05vOTdZQTqd+pz+8Xhe0IQqm3+1QZOJbxfVE7NsrEq3S4tVvUamdvd8Mr/XNjMZYk/k7XfFz6/XM+rzEvwt/JMX4Hg3V71YRQVNoG5wdJkKWz5UgWfB+bPCtsPPU9T/rE6ToO8L+fuZJi//ZYp6vZ5PqO325BUcCirwGfRprdIUz25QGRFDrkj5M/U2Neqb386gx9XNRVCfg4YFsg16PK5+f8yf98fV7+DPk9WxBr1d9LmCmhcu+Dv1mSlYYMjUBr8gdePrSqash13fqG0lcBLVZcqUKYwaNYrz58/j5+dnsW7+/Pm0b9++XEETgLd3+SaDs7KywsenmDEXZZSdnY2tbRFzn4iabfP7qjqPfy+VJ623AvIugBbeqe6oWeSC64q/kDT94Q6eq+6qmSoxdZxg+Yc+8DZY+5zKbc9ItCwMUZ4xFRUR0Fv1JAT0rvrXup7VaaUCp4sHCxRIuMapetcrvZX6jK9+WlV9M83ndaPr+YQKnGxd1Pin4ioo1mqsxoSd/EulOZXVnV8WTkGE/EqHabGq16ukiayda6vxGfMGqRsqcafK/vrFOfijeu1bnspftmee+vmC+vwXnEfq6Cr4+QHyo6Y8ddurv5MFzytouroY3vaZStNt3D//AjdwSP7fmDotVUGUM+tU4FGcjEQ1P1RBpmI8Le4ouepl29Gq4uPlaJWG2nVa8dtWRLPB+el2Z664kZwarcYUgpqgF0312lxZWdT0Wbgcq4oZuNZXPU2lzXfXdZoq931hr8p6aNhdBZTLxqo0v8ChcPsnhf+mtxyh0haTI1R6Xm42ZCapoDbwdsttezyuAqf9i1TvVMGCEqbxTQU/383vUOeYGKZ+twq+tv8tKv344gHV23jrW6pyqd5a3agqmKZ+pb+eUjctkyPh7nn5y0PWqO+mqTOKEnibCpxO/6PGuV1NJdpqIoFTaTTNsqrJtWTjWKYLp2HDhlG7dm1++OEHXnvtNfPy9PR0VqxYwTPPPMPYsWPZunUrCQkJNG7cmBdffJGxY8cWe8wrU/VOnz7NlClTCA4OplGjRnzxhWW+dFGpesePH2fmzJls2bIFJycnBg0axGeffWbulerbty+tW7fG1taWRYsW0apVKxYuXFjoOElJSXh4eLBx40b69u3Lpk2b6NevH+vXr+e5557j+PHjtG/fngULFhAYGGhu09tvv82XX35JRkYGY8aMwcvLi7Vr13Lw4MEyvPniupCTCWfyxk0Metuyopqtk6rIdWSlyhU3qdOm8BiMggJvU4HT0VUqINNZFR7Q6+GvKm2ZJgS9sqJeVeo4Qd3ZbnQVaU83A9N7HbJa9fbZOKpUEqF0mqyC/Ybdb54Au9ltcM9C1QtiGv9UnGGfqzEnpQ3YN6nXUaUwFUevh5HfqjYUVYWuIM9GMG2DKtJhLMfcVUVJCle9Z+tfV+Ms299nmdoFKiXRxSdvnNAW+PUhQFN37E1j73RWlj0dJi1HQOu/VI/UivEqtfn0P2rdlVMaDP9GFcAwZBduZ3a66lE59psag2bqvUmJUoVKQBUuKYm1nfqbHXeq6nobOoxTbbuwTz3PyVQ330zjeWo1LjpNryC9lUohbHGH+oyZJuEuiXNtVZRj/yLV6+RaX5VJz8pL87t7XtEFF6ysVS/dPy+qANT03hesCGvSuL+abiL2mBobZQq0U2Pyz7fgz9TKWvXaxhxV1fQK0unU2MHzO1V6rl6v/p749VSp7KY09SvFnswbA4i6yTDwdZWynpGkCiVB0TcnTBr2UJkb6fEqgC3uBsV1TAKn0uSkw7vV9M/6xYtlqg5jbW3NhAkT+OGHH3j11VfR5f3hXLlyJdnZ2UydOpVly5bx3HPP4erqyurVqxk/fjyNGjWiW7fSP7RGo5FRo0bh5eXFrl27SElJKXHsE0BUVBR9+vRh2rRpfPrpp2RkZPDcc88xevRoNmzIH0C8cOFCHnnkEbZv345WzjkFXnrpJT755BO8vb15+OGHeeCBB9i+Xc1ZsWTJEt555x1mzZpFz549Wb58OZ988gkBAddoDhhROUzlVV3q5c+nUpC9a9nH/Jj43aLuaJtmtm81Iv8ioKDA21TgFPJ3funiaxE46a0qVmb5ZlMnb6xJUrj67tm4cLpSTabX33yfE52u7Klbzt7Q49HStysPa1tVKKEs3BtaplJdDVsndbH9++PqLv6Wj/NTuzwbqQpr/76sxibtmqUurlvcqQp5lHbH3lTYIi1OXRD/MExd19i5qZSqglzqlDxmMzJYpTDvmgO3vauWmcfjdC9btc46LUsPiq9WQG/LXtiLB1SwuGsWDP0kv6JeSUUwrG3L//tVsOhCzFFVHbW0ND9QE1Jvej+/99LBQxWmuZJOp4KZ3x5RU1Z0f0y10xQI1+tQuNpqrcbF9xy5Nyz8v6/ZbepzYkpTv1LBubhME4QPfkf18Blz1RQOno2KP1crG2g6UAXyp/6+IQMn+S90k3jggQcICwtj06ZN5mXz589n1KhR1K9fn5kzZ9K+fXsaNWrE9OnTGTx4MCtXrizTsdevX8+JEydYvHgx7du3p3fv3rz77rsl7jN79mw6duzIu+++S/PmzenQoQPz589n48aNnDqVn9rQpEkTPvzwQwIDA2nevHkJRyzsnXfeoU+fPrRs2ZLnn3+eHTt2kJmZCcBXX33FlClTmDx5Ms2aNePVV1+lTZs25Tq+uIZCt6pSx2nxlstN6QfNBlfeXXVrW2jSP/95cWl9pnSDM+vy88ALVtQTVat2c6DAz9xL0vTETWrgm6qip2ZQpdYLpnYFPaEukEH1nGSlqJs/o74re5qTtZ0qbOHTNj+DpsmA0ivPXck07mv/QtXDkHVZ9ZZB5QWRVcEUABxYogLIyL3qeXE9ThXlHaiKc6Cp9LiypvnZu1qOse0yVY2bKkrru9X419QoWDRcpQJu+UitKylFrqxMvUWmNPWCUmPyq/31flZ937dQjRkzV2ksZn7FgkztLDgB8w1EepxKY+Ooen6q67XLqHnz5gQFBTF//nz69evH2bNn2bp1K//++y8Gg4H333+fFStWcOHCBbKyssjKyipz8YcTJ07QsGFDGjRoYF7Wo0fJJY337dvHxo0bcXZ2LrTu7NmzNGumBqR27lzx+WTats2fQK1uXdWVHhsbS8OGDQkJCeHRRy3vRnbt2tWit0tcJ8J3q7lVcjPVZ37IB2p5wfKqgZXwD6GgliNUmk1An+LnY2nQGRxr5ZdyRVdyCqCoXLZOeQUQTBX1JHASNym9XqXJpcWpIgsNe1imdhWcR6p2KzVWx8a+fK9h75o/OXZiWMVS5ZoMyE9h3r9QVW7LTFK/p5X9N7oy+fdSQWP0YVjzrMo2sHWG2lXQ89XzSdUDZO+u0uTcGpS6CwDdHla9dzo9dClh7Je1rUrtW/eqGg9YUElVL8vKs1H+xN9n/rPsddvznertbNAF+r2kUkovnVTj8U6vU9uU5XPQdKBKLb10ougKgdc5CZxKo9NVzsSW18CUKVN4/PHH+eabb1iwYAF+fn4MGDCAjz76iM8++4zPP/+cNm3a4OTkxIwZM8jOLiKPuQhFpdDpSrn7bzQaueOOO/jggw8KrTMFOUCh4E2fl4pT8DVzcnKKfA0bm/y7Zab2GI3GQstMypsKKK6B2JNq0sJc1VPI/sXQ93mVqlCwvGplD35vNVLlc5c0N4/eSt09NA2U9gxQk5KKa6dOqwKBk1TUEzcxKxuV0hW6VaXQFUzt0utVYZz2Y1XhCtOkouXlXBumblAFDJoOKv/+plSx3x9T6XqmHqvuj17fg/x1OtVzt2pqfgn/+p2qps3+PWHiXypgKqlQxpXc6sPUvMqEpZW47/6YqrialZq/zLNR5aWSB96mAqeQv/MDp+x0y2p/Baskbnpf9ZI6eJStyqSDh7o5cH6bujla0qTB1yFJ1buJjB49GisrK5YuXcrChQuZPHkyOp2OrVu3Mnz4cMaNG0e7du1o1KgRp0+fLvNxW7ZsSXh4OBcv5ve87dy5s8R9OnbsyLFjx/D396dJkyYWXyX1dJmq+UVFRZmXVaSYQ2BgIMHBwRbL9u7dW+7jiCqUHAk/jlJ3LBt0UXcyc9LUoFcourxqZdHp1N3T0lIoCqYdXIvxTcJSwdRI6XESNztrO3U3vqg0Lau8uXEqGjSZONW6utTnNveoIhapF9W8RQ6eRY/Hud60GqFS50wqO02voIBe5QuaTHxal238l5W1KujQaWL+V1kngi6LgmnqpgnUDy1VY309/POn/2g7Wk0bYCrQ0nRQ0QUwimJKCTSl499AJHC6iTg7OzNmzBhefPFFLl68yKRJkwA1jmjdunXs2LGDEydO8NBDDxEdHV3m4w4cOJDAwEAmTJjAoUOH2Lp1Ky+99FKJ+zz22GMkJCQwduxYgoODOXfuHP/++y8PPPAABoOh2P0cHBzo3r0777//PsePH2fLli28/PLLZW6ryfTp05k3bx4LFy7k9OnTvP322xw+fLjUnjJxjWSnqYpDKRdUBa37flLlUkENes3NLrq86rXWuD/o8+6qyvima69gsHqtJ78VQhRmbWdZRrzLlOLH41xPrGxUOpxJSYUhajrfriogzkyG7weo0vv/vaXWFexdtLaznGj+yiqNJTEFZ2HbITOl5G2vMxI43WSmTJlCYmIiAwcOpGFDVS3llVdeoWPHjgwePJi+ffvi4+PDiBEjynxMvV7Pr7/+SlZWFl27dmXq1Km88847Je5Tr149tm/fjsFgYPDgwbRu3Zonn3wSNzc3czpecebPn09OTg6dO3fmySef5O23S5iIrRj3338/L7zwAjNnzqRjx46EhoYyadIk7O3LmRcuqsa+hSo32tknf/Bs67vV89QoVf2oqPKq15q9a37Otn8l3tETZVO/k5qkuFYTcHCv7tYIIUBNyGvvrqqTljQe53rTaSI4eqmKgg26VHdrrl96q/wxcFGHVBXCzCT13l3Zu9gl77Ng766yOMrKq4n6u27MUeP6biA6rYYN/EhJScHNzY3k5GRcXS27vDMzMwkNDSUgIEAusG9Ct956Kz4+PixevLjI9fLzv0YMufBlB0gOh2GfQecH8tdt/RT+e0NNwmfMVWOQHtxUbU0FVB55Yhj4SFXGahF7UgVNV5bZFUJUn6RwVTL9BhvYT3Kk+t9yo7X7WstOh7CtlnN61W1X9NQdSeGqmJOHX/le4+RqVUOgYZAqelGNSooNriTFIcRNKT09nTlz5jB48GCsrKxYtmwZ69evZ926ddXdNHHiDxU0OdaCdldMwtx5sprDJCdNPa+M8qpXy85FgqbqVLt80xQIIa6Boi6gbwRlrXJX09k6lq20OFT8s9B8aMX2q2aSqiduSjqdjjVr1tCrVy86derEn3/+yS+//MLAgQOru2k1m6apiR5BpXhcWfTBwQM6js9/Xp3jm4QQQgghCqj2wGnWrFnm1KhOnTqxdevWErf/5ptvaNGiBQ4ODgQGBrJo0aJr1FJxI3FwcGD9+vUkJCSQlpbG/v37GTVqVHU3S4TvhIv71fwfXaYWvU33R1TufO2Wau4NIYQQQojrQLWm6q1YsYIZM2Ywa9Ysevbsydy5cxkyZAjHjx83FzYoaPbs2bzwwgt89913dOnSheDgYKZNm4aHhwd33HFHNZyBEKJcdnytvre7F5y9i97Gwx+m71MTPEoVRCGEEEJcJ6q1OES3bt3o2LEjs2fPNi9r0aIFI0aM4L333iu0fVBQED179uSjjz4yL5sxYwZ79+5l27ZtZXrNshSH8Pf3x8GhkueNEde9jIwMwsLCpDhEVYk7A193BjR4bA94N6vuFgkhhBCihrshikNkZ2ezb98+nn/+eYvlgwYNYseOHUXuk5WVVeiC1sHBgeDgYHJycrCxsSlyn6ysLPPzlJTi68Wb9k9PT5fAqQbKzlbVY6ysruMZ0G8kMcfgt0dUFSOA3CxAUwUfJGgSQghRxWJTMvl+WyhTbwmgtqvcEK1OyRk5zNp0hhHt69Oi7lVO5FyNqi1wiouLw2AwUKdOHYvlderUKXZy1sGDB/P9998zYsQIOnbsyL59+8xz/sTFxVG3bt1C+7z33nu88cYbZWqTlZUV7u7uxMbGAuDo6CgTptYQRqORS5cu4ejoiLW1FJu8aknhaoLb1CjL5To99Hq6etokhBCiRnnv75P8euACiWnZfHRPu+puTo32wdqTLN0dzrbTcfw1/ZYb9vq62q8Qr3zjNE0r9s185ZVXiI6Opnv37miaRp06dZg0aRIffvhhsb0EL7zwAk8/nX+hlpKSgq+vb7Ht8fFRc4WYgidRc+j1eho2bHjD/jJfN9ITYPEoFTR5t4BR36pJTEFVzXOpU/L+QgghxFXKyDbwzzF1I35jSCxGo4Zef/38f9c0jYwcA4621X4pXuXC4tL4aU8EAMcuprA/PIlOfh7V3KqKqbaflpeXF1ZWVoV6l2JjYwv1Qpk4ODgwf/585s6dS0xMDHXr1uXbb7/FxcUFLy+vIvexs7PDzs6uzO3S6XTUrVuX2rVrk5OTU/YTEjc8W1tb9PpqLzR5Y8tOg6WjIf40uDaAcb+AW/3qbpUQQojr3OWsXGJSMmns7Vwpx1t/Iob0bAMAcZezORiZRMeG18/F+ndbz/He3yd5ZWhLHrgloLqbU6U+XXeKXKOGXgdGDRbtDJPAqbxsbW3p1KkT69atY+TIkebl69atY/jw4SXua2NjQ4MGahKz5cuXM2zYsEq/4LWyspKxLqJmykiCZWNBM8DEP8G6wI0HTYOfJsCJP4vZOa/WjL07jF8lQZMQQgiz0Lg0IhLS6d2scFXVx5fuZ1PIJb4a24E72tW76tf6/eBFAKz0OgxGjf9OxFQ4cIpMTOe/E7EY8+qpWel19Ausja+nY4WOF3c5i8/Xn0bT4K3Vx2no6cjAlhXLxth3PpHUzBz6Btau0P5V7fjFFP44pH4W749qy/9+OcyaI1G8NLQFtV1uvHFn1do/+PTTTzN+/Hg6d+5Mjx49+PbbbwkPD+fhhx8GVJrdhQsXzHM1nTp1iuDgYLp160ZiYiKffvopR48eZeHChdV5GkLcPHIyYfl9EJ5XoOXIz9Dh/vz14TvhxB8lH8OxFty7DLwDq66dQgghqs0v+yLZH55ofm5jpWdSkD/+Xk7F7pOckcM9c3YQdzmbpdO6EdQ4P1MoLC6NTSGXAHjp1yN08vOgnnvFi3Qlp+ew+ZQacvFg70bM3nSW/07E8uzg5uU+VmhcGiNnbScp3TILydU+hIUPdKVDBYKxWRvPkp5twNZaT3aukSeWH+Dnh4NoWa9sRRM0TWNTyCVmbTrDnjD1c3jjzlZMDPIvd1uuRmpmDqv2X8DVwZqRHRoUuc0n/4YAMKxtXUZ38WX5nnD2hyexPDiCJwY0vZbNrRTVGjiNGTOG+Ph43nzzTaKiomjdujVr1qzBz88PgKioKMLDw83bGwwGPvnkE0JCQrCxsaFfv37s2LEDf3//ajoDIW4iRgOsmgrnt+cv2/k1tL8vfz6lHV+p7+3HwcDXij6OvZtlL5UQJcjMMfDq70dpVc+NCT38ZIxhGZ2KSeWL9adpUdeF8T38cXNQVWE1TWPn2XiW74nA3kZPF39PugZ40tBTih1dD/adT+Dz9afJzjWal3X292DmoMBy/XwW7zrPyagU/ndbc/PP/loJDk3gmZWHCi3fH57Ir4/2xKqYcUSf/htC3GVVvfaH7WEWgdPP+yLNj1Myc3nmp0MsmdqtwmOS/j4aRY5Bo7mPCw/2asTczWc5GZ1KREJ6uXqJktNzmPLDHpLSc2jk7USrem4AnIpOJSQmlXHf7+b7iV3o0bhWmY95ISmDH3edB2DuuE58v+0c28/EM3XhHhZN6UpYXDp7whI4F5dG30Bv7urYAHsblQFlMGqsORLFrE1nORGlqkSbetTe+PMY/l5O9CmiN0/TNHacjWfV/gvU93BgYg8/ajlX/P90/OUsftgRxsIdYaRk5gJQ28Wenk0sh83sDUvgv5OxWOl1PH2rqqY7Mcif/eEHWbo7nEf6NsbG6sYaIlGt8zhVh/LUaheixtA0WP0M7J2nCjnc8wOsehCyL6txSk0GyjxMokos3hnGK78fA+Ch3o14fkhzucAvwJA3LsD0nmiaxsIdYbz790nzxbeznTXjuvvRpr4b3209x8GIpELHqe/uwGt3tGRQK59r2XwAjEYNg6aVeoG0JyyBt/46TrM6LrwyrOU1DwjKKiPbwIf/nGRPWAJvj2hDe1/3Mu2XmJbN4M+3EJuaVWjdwge6FnnBW5TlweE8v+oIAK3qubLoga7FXgRfSMrgsSX76dXUi2cGlT0LIDY1k//9fBhPR1vev6stttbqZ5drMDLsq22cjE6lV1MvOvt5oqExb2soqVm5vDOyNfd38yt0vKMXkrnz620Y86449TrY8r9+NPBwxGDU6Pn+BqJTMnl2cCBfbzhDRo6Bl25vwbTejcrU3lyDEesCn6+x3+5i57l4/ndbII/2bcLoOTsJDkvg9TtaMqln0eOJDEYNY4HPaY7ByKQFwWw/E089N3t+e7ynObUsLSuXaYv2suNsPHbWeuaM70S/MqbK/e/nQ/y0N5LujTxZNq07KRm5jJy1nXNxaUVuX9vFjqm9AnC1t2HulnOE5m3naGvFuO5+TLklgI/+CeHnfZG42Fmz6tEgmtZxAdTv3voTMXyz6SyHCvxdsLfRc2+XhjzYu1GJPXsGo8bqI1HM2xbKhcR08/KUjFyyDfl/fy5n5dLY24m/n+xt8VkZ8+0u9p1P5N4uvrx/V1sAsnONBL2/gbjLWcy6vyO3tylcEftauyHmcRJCXEf2LVBBEzoY9R00HwodJ8CuWbDjaxU47foGmYdJVCZN01i087z5+dwt50jLzuXNO1tfV9WvKltiWjZGTSvxju+JqBRmbzrL6iNReDvb0SXAky7+Hmw4GWtOaerZpBZxqdmExKQyZ/NZ87521npGd/bF0c6KPaEJHLmQzIWkDB5cvI/7ujXklaEtcbCt2jG8RyKT2XYmjr1hCew9n4imacwd37nIO/M5BiNf/XearzeewajB4chkdp6N57Mx7eka4Fml7UxOzyEjx4CPW9nGWhy7mMyTyw9yJvYyAPd/t4v5k7rQrVHJPQ6apvHir0eITc2isbcTT+XdfV93PIbfD17ko39O0quJV6mf+x1n43j5t6MA2FrrOXYxhTHf7mLJ1G7UuWKeIoNR4+kVBzkYkcTBiCTaNnDn1jKMo7mQlMG473ebL9BtrPS8f1cbdDqd6umKTsXd0YYv7+2Ah5OqmOruYMPrfx7nw7UhDGldF8+85aAu3l/9/ShGTaVrJaRls+NsPEt2h/Pcbc3ZevoS0SmZeDjaMLVXAB6Otrz46xE++ieEhrUc8XJWx3KysyawjovFjZXkjBxe/f0ofx+JZnJPf54ZFEhCWja7QuMBuKOtGis1oEVtgvN6P0yBk6ZpHIhIYufZeIJDE9h/PpHMXANt6rvRJcCTqKRMtp+Jx9HWiu8ndrEYj+NkZ838SV14fOl+1p+I5cFFe3nutuY80DOgxJ/hmdjL5t61/92mbhK5Odowf1IX7pq9g/i0bBp5O9HFz5N67g4s3xNOVHIm7645aT6Gu6MNk4L8mRTkj7ujem/eHdmG8Ph0gsMSeGDhHsZ182Pv+UT2hiWQmJdiaGetZ1TH+hy7mMLhyGR+2BHG0t3hfDy6HXdeMaYsO9fIqv2RzNl8lrD4dIrSpr4bj/VrTPdGtRj46WbOXkpjwfZQHurTGIA3/zrOvvOJONhYWaTk2Vrrua+rL19uOMPCHWHXReBUHtLjJERNZ8iFL9tDcgQMfB1ueUotTzyvlmtGmPA7LB0DuZkwaTX431KNDRY3Gk3TCA5NoHldV4tehB1n47jvu9042lrx9K3NeGfNCTQNRrSvx5MDm+Ff6+ZLL4tNzWTI51tJzshhePv6PNK3EU1qq7vDqZk57A1L5Mdd5/nvZPFTYtha63np9hZM6OGHpsGGk7HM2XyWyMQMRnaszwM9A/B2yQ/KMrINfLb+FN9uOQdAI28nvhrbwZx2VJk0TeP9tSeZu/lcoXV21nrmjOtEv+b5d+bPxF5m5spD5l6yoW3rciQymfCEdPQ6eLRvE54c2PSq0nlORKVwMSmDjg09zBf6F5Iy+G7LOZbvCcdg1Ph8TAeGtrW8gItISGfn2Xi0vKI3kYkZzNl8lhyDRm0XOxp4OLA/PAl7G3VeJQ3O/3lfJDNXHsJar+O3x3rSur567+MvZ9H7w42kZRv45r6OhdpQUGhcGiO+2U5yRg53tKvHkwOaMn7ebqKSM2no6ciPU7rRsFZ+GtqczWd5/+/8C25PJ1vWzuhV4oD8sLg07v9+NxeSMqjtYkfc5SyMGrx0ewuGd6jHgI83k5qVy7sj23Bft4bm/XINRu74ejsnolIsehcAVu6N4NmfD+Noa8WGZ/pyMCKJh3/ch6eTLTue788zPx1i9ZEoJvf057U7WqFpGtMW7WX9icK/A+0auPFovybc2qIOe88n8tSKg1xIyjCvb1XPlU5+HizaeZ7Ofh78/EgQoD5nAz/djI2Vjv2v3IqTrTWv/H6UJbvDC71GQTodfDe+c7GFG3IMRp756ZC5+EGvpl58ck87arvak2MwcuxiCqdiUjFdav9x6CLbz8QzsEUdvp/Y2eJYqZk5ZOcaLW6oZOca+e3ABeZtCyUz18D47n6M7doQJ7vC/R4JadmM+GY74QmWgY6LnTXje/jxwC0BeDnboWka28/E8+V/pwkOS0Cng/dHtWFMl4Z571UqTy4/yLGLKhXQ3dGGyUEB3NqyDqY6bHbWVhZ/n02fb0dbK/57pg//HovhtT+OodPBnHGdGHxFT3d0ciY9P9iAwaixdkYvmvtU7/V4eWIDCZyEqOmO/Ay/TAEnb5hxFGwK/FNdORmOrQI7V8hKgXodYNrG/DFPQpTBp/+G8OWGMzTycuKvJ24xz1vy8OJ9rD0WzbjuDXl7RBt+P3iBp386hCEvn8fL2Y6uAR509lPjdFrUdS1y/ERsSibBYQmExaXRr3ntQgHBuUuX+ftoNPXc7ens50kDD4dKD8jOxF7mn2PRDGtbF79axQ+Qf3rFQVYduGB+rtNBr6bexKVmcTI6xZzKpNPB7W3qMq1XI9Kzc9kTmsiesATsrPX877bmBPq4lLuN207H8czKg8SkZKm76BM6E1RgTILBqPHnoYvEp2XT2c+DVvVcLdKfTC6lZrE3LIGzly5zS1Nvc6qa0ajx6h9H+XGXuhgd2KIO3Rt50tHPg1kbz7D+RCw2Vjq+vLcDvp6OzN50ljVHo9A0cLG35p2RbbizXT0uZ+Xy2u/H+GW/ujPfztedL8a0L7HwQHH2nU9k7He7zGmNTWo741/LkU0hl8g15l/+6HXwwV1tuaezL5qmsWR3OG+vPk5mjrHQMW9tWYcP7mqLo60Vjy7Zz4aT6ry+GtuR21oXToUMj09nyBdbSMs28OzgQB7r18Ri/WfrTvHFf6dp5O3EvzN6F/meh8alMeWHPZyLS6O9rzvLH+yOvY0VEQnpjJu3m/Px6bjaW/PuqDYMa1uPYxeTGfHNdnIMGm+NaM2SvJ6ifoHezJ/UBZ1OR3J6Div3RZhTBzVN47eDF7mUmkUjLyd+nNqNv49G89Zfx9HpoG19Nw5FJtOugRurihjLtDcsgbvn7ARg1aNBBNRyYu/5RJ7/5TDxadm8eHtzHuzdmFyDkd4fbuRiciYvD23BB2tPkmPQWPNEL3NxhLjLWTy+dD/RyZnm40clZ5KV93Ns6OlIZGI6Rk09nhjkz1cbTlsUcHhreCvG9/A3n1u/jzcRFp/Ol2M7sPFkLL8euIBOB4Nb+tA1QP2NcbazZu/5RPaEJnAsKpn7uvpZBIhF0TSNH3eH8/Zfx8nKNeLhaEPLeq7sP59ERo6h0PY6Hax9sneFfodLcyY2led+OYKHoy1d/D3oEuBJ63pu5vS5goxGzSJ4fHVYS2yt9ebPvYejDY/1a1JsoHblsUbP3cne84m0qe/GsYvJGDV47rbmPNK3cZH7PLpkH2Fx6bwxvBVd/Ku2Z7k0EjiVQAInIQrQNPi2L0QdhL4vQt/nLNdf2Aff9c9/ftc8aHP3tWyhuEbSs3PZfz6J4LAEwuPTmD6gaaXMp/L7wQs8ufyg+fn93Rryzsg2XEzK4JYPNmDU4N+netMsLyd/86lLfPXfaQ5HJptz6E2c7axpU9/NnGamaRpnL6UVusPaN9CbR/s2wdHWyuLi3KSumz29mnox5ZZGZbp4SUjLZm9YAnvCEsjIMTCtVyOL4OhAeCIT5weTkpmLXgfD2tbjkb6NaVHX8n9McGgCo+fuRJd3kf7fiRj+ORZjsU1DT8e8tgXQqJLmsykoMS2b6csOsO1MHLbWeuaM60j/5nW4mJTBUysOsjs0wbyto60Vbeq7mS+aNE3jfHx6obEYPZvU4pE+TVi1P5JVeRej741sw71d8y84cwxGnlpxkL8OR6HTYfHzGNiiNq/f2YoGHpaD9v88dJGXfj1CSmYuTrZWvH5nK+7u1KDMQW9kYjojvtlO3OVsPBxtzClLJkGNa/FI38asPhzF8rzJOf93WyD7zyex/oT6ubSu70qdvB4anU7HoFZ1uKdAG7Jz1XmtPhKFrZWeZQ92o5Nf/kVgZo6B+7/fzb7ziXTx92D5gz0KBRypmTn0/nAjiek5fHhXW0Z38TWvO34xhVmbzrDmSBRGjUJjbQBiUjJ5aPE+c6/dXR0bcDgyidOxlxnUsg5zx3fiVMxl7vh6G9m5Rp4dHEhKZg4/7jxPWnbhC/vmPi4sntINbxe7vBTDoywLDs97D+C3R3vSrphxXTNXHuLnfZE42FhZBA1Nazuz5sle5p7Dbzae4aN/QrDW68g1arSp78af00vOZIi7nMWC7aEs2nme1LyCBHd1bMAbw1vhbGdNTEomz/x0iG1n4rCx0rHrhQEWvTdv/XWcedtCzW2z1uv4dEz7QmlqFXUmNpUnlh3keF7RBgA3Bxva1HfDrkDg0rd5bcZ3LzwOrDpomsZ7f58090abFOw5K6vjF1MY9tVW882fuzs14KO72xb7+5qWlYujrdV1kVUggVMJJHASooCwbfDDULC2h6eOg1MRefoLbleV9tx84YmDYCVDI29EmqYV+Q8qIiGdl347yvYzceaeHoC2DdxKrJBlOmZYfDp7QhMIDksgJDqVTn4eTOvdiPruDhZ3+we2qG1OvZk3sTMHwpP4euMZujfyZPmDPQodOzPHwOHIZPaEJZjHH6Rm5RbZDp0OWvi44uNmz6aQWIxF/Ffr1dSLlMxcjl1ItuhpGNiiDg/1aUSuQWNPXnB0vkBOf67ByMUCd70BnGyteHN4a0Z1rM+ucwlMXbiHtGwD3i52XCow8H9o27q8Pbw1Hk62FoPq7+vWkHdHtgFUdbx1x2No6OlIF3/PMo+1uRpZuQYeX3qAdcdjsNbrmNIrgGW7w0nJVBcyXfw9ORCeaK6WdSWdDgLruNDAw6FQz42VXseno9sxvH3hOdwMRo0XVx1hxd6IEgPMgi7kBXTBeQFdPTf7IntkQPUmPdi7Ed0CPEnLNnDXrB2ExKTSoq4rPz/cg6xcI3vDEjgde5kejWuZ5/TRNI23V59g3rZQ87FsrfQ8N6Q5k4P8Sx13ZDBqPPLjPv49HkMtJ1t+e6wnvp6OpGerAgLbz8TjbGfN30/2Krai23dbzvHOmhPUc7PnnZFt2Hs+gd3n1Pgwk/7Na/Py0BZFBtRXjhMD8Hax458Zvc3jjeZvC+XNv45b7Nfcx4XezbwxnaGbow33d/XDzdHG4tgT5wez42y8xWe3KHGXs+j/8SbzZ6extxNdA2rxaN/GFucefzmLHu9tMN8cKdg7VJqUzBx+3X+BBh4ODGhhmUJnNGqsORqFp6OtRW8q5KcGg0p3nXVfxwrPnVScrFwDv+6/QI5Ro6u/J01rO1/34zU1TePL/87w2fpT2Frp+d9tgaWO1SrOG38eY8H2MLr6e/Lj1G5F9nRdjyRwKoEETkIUsPReOPU3dH4Ahn1W9DYRe+DXh1T58ZYlT04tri2DUSPucha1XexKvGu34WQML646irujDQ/3acywtnWxttLz64FIXvntGJfzApJ6bvZ0CfBkw4nYIscxmOQYjPx+8CJzNp81D5IvyFqvY3j7+mw+FUvc5WxubVmHueM68c4adXFaK+9CLj4tu8xVlQxGjZPRKZyMSsVQ4N9WbRc7Ovp54GqvLvTOx6cxZ/M5ftkXSa7RyB3t1MW5KYfe1LO2NPg8fx+Npqz/AZvUdqaLvydnYy8THKYu4vs082bXuXiyco30bFKLb8d3JjQujdmbz7LmiOrlquNqxyf3tOdUTCpv/nUcd0cbNj7T1zzWprrkGIzMXHnIPEkoWKbEGY0ap2JTOX4xxSIw8nK2pVNDT/OFdWRiOt9vDWVZcDga8PXYDiVW7jMaNbaeicO/lmOJKY0FGYwac7ec5dN/T1m0pTid/DywtdKz81w83i52/P5Yz1LnBNI0jc/Wn+bL/07TtLYzX9zbocxz6oC6e37PnJ0cj0qhWR1nfpjclSeWHWDv+USc8ooLlFSyOjPHQN+PNhGdYhmk63UwtG09HunTuEztCQ5N4KkVB4lJyeT7iZ0txl0ZjRpTFu5hY8glOvl58Fi/xvQLrF2mO/6ZOQa2nLpE38DapV4Mn7t0mdC8lMKSCqA8/dNBVu2/gK21nj0vDrQI1qpCjsFI3482kZiezXcTOhcqnV3T7QlLwNvZrkIpsSY5BiMbT8ZyS1Mvc0r2jUACpxJI4CREnkun4JsugA4e3wteTUrdRZRdRraB41HJdGzoUSWpCEcik3ly+QHOxaXh5WxLZz9PugR40tXfkxZ1XbC20pOZY+DdNScsKtcB+Ho60Ky2i7kAQWc/D96/qy1Naqs72aY70+6ONmx4pq/5jnV2rpFlweF8u+WceUC2rbWe9g3c6RLgQWNvZ37eF8mOs/Hm1zLd7XeysyYzx8Dwr7cTEpMKgI+rPVuf61cl83gkp+dg0DSL6l5XOnvpMnM2neX3gxfxcLKhi78nXfwLj6UK8HIyH8dg1Jiz+Syfrjtl7qEb2KI2X9/X0TzXCqjyy08uP8DZSyqtzTTR5Xuj2jC2a8ljJq4V09wvK/ZEMK1Xo6sqwpCcnkOWwVBi4YGrFZOSSWRiRpHrcg1G/jx8kZ/2RprHM9lZ61nxUI8ylwsHFQjWcbWv0PsQlZzB8K+3E5uaZf55u9pbl3mS1D8PXeTJ5Qdo4OGYN/+WBz2beBVKYSxNVq6BpPScQlX2QF3YXkzKuC7m9ToVk8rds3cwposvLw1teU1eMzkjh1yD8armMBI3HwmcSiCBk6hRUi6qr6LsngNHVkLgUBi79Nq26yZ3ODKJJ5cfJDQujacGNuPJgZU3O7rBqPHtlnN88m9IsXffnWyt6OjnQVRyprlHaHJPf7yc7Zi3LZSENDUJpZVex5MDmvJo38YW6U8F08rGdvXlvVFtOXvpMjOWH+TIhWRAFW6Y2iuA+7s1xMXe8k7xgfBE5mw+S/zlbL4c28Hibv+JqBSGf72dbIORZ25txvTrYOZ4o1FDV2CupLI4GJHEm38eo0VdV16/s1WRF9oZ2QbeWXPcXCyhna87vz4SdN2l7hiMWokpmTeS2JRM5m0LZWNILM8MCixUzauqHY5MYvTcnWTmGKnlZMviKd3K1XN1M/0shLhRSOBUAgmcRI2RcA5m9VAlxEsy+W/wC7o2bbrJFZVS5GpvzY4XBuBcSlWiskjJzOGhRfvYeU716NzexofX72xlnr9jT6gaE5FaYGyKl7MdH9/T1pyyk5FtYPmecIJDE5jWu5F5nMeVChYyeLhPY37YHkZGjgF3RxueubUZ93T2tehhKY81R6JYfyKG1+9sZU6xu5mtPx7D6iNRPDGgKQFXkQYjbgzbTsexan8kj/VvUikFVoQQVUsCpxJI4CRqjNXPwJ7vwc4NHNyL3qZxPxj2uZQXL8HP+yJZezSK54e0MKeyFSU718iUhXvYejoOUEHNyahUzsWl8dLtLZjWu9FVt+WJZQf449BFHPMqjN1TRIUxg1EjJDqVPWEJXM7KZUwXX7wqmJZiGoNg0rNJLT65p/01KWAghBBCXAvliQ1unJFbQoiyS0+AA0vU4zGLoVGf6m3PdeZkdAoPLd5H09ouPNqvcbG9LuuOx/Dsz4fQNDgQnsSiKV2LnTR0/vZQtp6OswhqVu6N5H+/HOb7beeYEOSHnbXqofn7SBTvrz3JY32bWJQeBth6+hIv/3aU4e3r89TApubA6PeDF/jj0EWs9Dp+nNqt2DZb6XW0rOdarvSg4rwwpAWbQi6RmpnD/wY3Z8otFau0JIQQQtwMbow6gUKI8tkzD3IzwKctBPSu7tZcd9766zjn49NZfyKGUbN2cO+3O9l6+hIFO+CPXVSD+02Tc8anZTP2213sD08sdLyLSRl8+d9pdezhrRnd2RedTsfwDvXwcbUnJiWL3w+osWb7zify5IqDnI9P5/lVh9kUEms+zqmYVB79cT/n49P58r/TvPL7UYxGjcjEdF7+7SgAT/RvWmzQVNm8Xez496nebH++P9N6N5KgSQghRI0mgZMQN5ucTAj+Vj0Omi5peFfYfiaO7WfisbHSMapDfTVR4rkExs8L5s6vt7P2aBQxKZlMW7iX9GwDvZp6seXZfnT28yAlM5dx3+9m+5k4i2O+s/oE6dkGuvh7MKpj/vw1dtZWTLklAIA5W84SkZDOQ4v3kp1rxNPJFqMG05ce4FRMKvGXs5iycA+pWbk08nJCp4Mfd4Uz8+dDPPPTIVIzc+nQ0J3H+hU9C3tV8XK2q9JKaUIIIcSNQsY4CXGz2b8I/pgOrvXhyUNgdfMPvi8rTdMYMWsHhyKSmNjDjzeGt+ZiUgbfbT3HsuBwMnNUGWNTKeHG3k6serQnbg42pGfn8uCifWw7E4deB4/3a8ITA5qy81w84+cFY6XX8df0WwpN5nk5K5eg9/4jJTMXTydbEtKyaVnXlWXTujNt8V6CQxNo4OFAHVd79p1PpKGnI7891pOtpy/x9E+HzCWvHW2t+PvJXmWe+0YIIYQQpStPbCA9TkLcTDQNdn6jHnd7WIKmK/x7PIZDEUk42FjxeH9VBrueuwOv3dGK7c/1Z3r/JrjYW5Oda8TD0Yb5k7rg5qDeQ0dba76f2JlRHetj1ODLDWe4Z+5OXv39GADju/sVCpoAnO2smRjkD0BCWjbeLnbMm9QZN0cb5ozrhF8tRyITM9h3PhEXe2vmT+qMp5Mtw9vXZ/b9HbHNK3P92h0tJWgSQgghqpH0OAlxozu3OX+upqTzsOk9sHWBp4+BfdGFDGoig1FjyBdbOBVzmcf6NebZwc2L3C41M4e/j0bTsaFHsVX0fj94gZd/O2ou++3lbMd/z/QxB1lXir+cRd+PNpFtMBaakPNM7GVGzdpOWraBHyZ3oVdTb4t9T0anEJmQwYAWtat9wkohhBDiZiPlyEsggZO4qZzdCItHFF7e43EY/M41b05F5RiMnI9Po0ltlyp7jVX7I3n6p0O42luz9X/9cXO8ut64yMR0nl5xiH3hiXx5bweGtq1b4vYRCeloGjSs5VhoXdzlLNKzDEWuE0IIIUTVkXLkQtQU2z9X372bqzFNAA4ecMvT1dak8soxGJm0IJjtZ+L5+J523N2pgcX6y1m5bD11iYEt62BjVXx2saZp7DuvKt519ve0WBebkskHa08C8HDfxlcdNAE08HBkxUPdSc3KLdMkrr6exQdFXs52IPNkCiGEENc1CZyEuFFFH4Fzm0Cnh/t+Ag+/6m5RuWmaxiu/HWX7mXgA3ll9nIEtauPuaAuA0ajx4KK97Dgbz0N9GvHCkBaFjmE0avx3MpZvNp7hYEQSoMYDTe6pqtll5hiYtmgvMSlZNPJ2YlLeeKPKoNPpyhQ0CSGEEOLGJ8UhhLhR7fhafW854poGTUt3h/PWX8dJTMu+6mPN2xbK8j0R6HVQ182exPQcPvonxLx+/vZQdpxVQdUP28OIScm02D8kOpUhX2xl2qK9HIxIwjpvnqE3/jzONxvPYDRqPLPyEIcik3F3tGH+xC442sr9IiGEEEKUn1xBCHEjSr4AR39Wj4Mer9RDp2Xl8spvR8k1anx0T1vsrK3M6/adT+TFX48A8Nfhi3xyT3tuaeoFwNELyczefJaD4Unm7fV6uLujL08MaFKosMH64zG8s+YEAC8NbUnreq6M+XYXS4PDGdPFFxsrPR+uVUGUqYz3l/+d5p2RbQBIz87lkR/3cS4uDWc7a8Z19+OBW/xZsiucL/47zUf/hLDueAwHI5KwsdIxZ1wn/L2kKp0QQgghKkYCJyFuRMFzwZgLfj2hfqdKO2xyeg6TfgjmQF7wU9fNnhduV+lxBqNKqwM1z1FMShbj5u1mQg8/zsens/nUpSKP+dn6U8SkZvL28Nbo83qE/jh0ked/OYymwX3dGvJAT390Oh0jO9Tn1wOqYl1WjpFsg5EBzWvzUJ/GjJ67kxV7IniwdyP8ajnx7poTnItLo46rHauf6KXGCQFP3doMZztr3llzwpy6987INnRvVKvS3ichhBBC1DwSOAlxo8lKhb0/qMc9Kq+3Ke5yFuPnBXMiKgUnWyvSsg18u/UcfQNr06NxLZbsPs/xqBRc7a1Z82QvZm86y5Ld4SzaeR4AvQ7ubFePe7s2xNFW9VLtP5/IG38dZ+nucDKyDbx2R0ve/PM4qw5cAKBXUy/euLOVuTfqhSHNWXc8hsORyQB4Odvywd1t8XK2o2+gN5tCLvHpulMMb1+PH3eFA/DJPe3NQZPJtN6NcLKz5oO1J5nc05/RnX0r7X0SQgghRM0k5ciFuNHsnAX/vAC1mpD7yG6W7b2AnbWerv6e+NVyLNNcP0ajxp+HL3I65rJ52ZqjUZy7lIaXsx0/Tu3KD9vDWL4ngnpu9vw4tRvDv9lOamYubw1vxfge/gCsOx7DZ+tO0b6hOw/3blxkOe0/Dl3k6RUHyTVq2NvoycwxotfB4/2b8kT/JlhfUSlv3rZQ3vrruHo8sTMDWtQBVCrgsK+2odOBm4MNSek5TLklgFeGtSzxPE29XEIIIYQQV5J5nEoggZO44X3TDS6dJGfIpzx+qh3/HIsxr/J2saNNfTdsCwQjbRq4Ma6bn7kEd2xKJs+sPMTW03GFDm0Kkhp5O5OWlcvtX27lfHw6znbWXM7KpVU9V/54/BasyhmMrD8ew6NL95Oda6S+uwNf3Nu+UMlwk1yDkff/PkkDDwcm5VXGM3ls6X5WH44CILCOC78/3hN7G6uiDiOEEEIIUSoJnEoggZO4oSWcgy87oOmteaTeStaeycDWSk+bBm4ciUwm22AscjcnWyvGdfejRV1X3vzrOAlp2dhZ6xnVsQF21irIcraz5v7uDanr5mDeb394IvfM2YnBqP5MrHo0iI4NPSrU9IMRSew8G8/93RtWuIT3uUuXGfTZFvQ6Hb891pOW9eR3WAghhBAVJxPgCnGdSk7PwdXBukzpdCZbTl3i6Z8O4e5owwyndQwDjlm3Yu2ZDBxsrPhuQmduaepFZo6Bw5HJnIpJxXQ3JCvHwM/7IjkZncrcLefMx2xR15WvxranSW2XEl+7Y0MPZgxoyifrTnFft4YVDpoA2vu6097XvcL7AzTydmbVo0HodToJmoQQQghxTUngJMQ1snR3OC/+eoSXh7Zgaq9GZdrnn2PRTF96gGyDkbjLWXjYbAAr+DWtDS521iyY3MWc8mZvY0XXAE+6BlimwE25JYANJ2OZteksB8ITeaBnAM/eFmhRZrwkj/dvwuDWPjT2di7fCVeRtg3cq7sJQgghhKiBJHAS4hqITcnk3bw5i+ZtC2Vyz4BSxwn9duACz6w8hMGocXsbH+5u5Ur330+CBmc8bmHZ2O60ru9W6mvrdDoGtKjDgBZ1yMwxlHtMkE6no1mdknumhBBCCCFudhI4CXENvLvmBJezcgGISs5k25k4+jTzLnLbjGwDC3aE8tE/IWga3NWxAR/c1QbrE7+CZgCvZix8fGyF2iGFFIQQQgghKkYCJyGq2K5z8fx28CI6HXQPqMXOc/Gs3BtRKHBKycxh8c7zzN8WSnxaNgATevjx+h2tVEntkLVqw2a3XetTEEIIIYSo8SRwEqIK5RiMvPr7UQDu69qQsV0bMuyrbfx7LIa0fStwyo6H7o+wLzyRyQv2kJKpeqXGuh5mnG88LW9/C51eB4ZcOP2vOmjgkOo6HSGEEEKIGksCJyGqiNGo8e2Wc5yKuYyHow3PDg7E3dGWlnVdiYyKwuGvR0HL5bJPJ55YkUZKZi5NazvzeJ+G3PnvQ+jOpsKqGLjnB4jYDZlJ4OABDbpW96kJIYQQQtQ4EjgJUQbbz8RR182eRqVUlktIy2bl3gh2hyawNyzB3IP0/JDmuDvaAjC6cwP2rV6LXlPrdqz+kQtJt9HQ05FfH+uJ84VtkJWqDnjiD/j7f2CTN7dS00FgJb+2QgghhBDXmlyBCVGKracvMX5eMJ5Otmx4po85ACpqu6d/OsSl1CzzMkdbK0Z2qM89nXzNy4a3r4/nPwfMz+vHbkavu43PxrTH2c46fyyTdwu4dBL2fA9WdmqZjG8SQgghhKgWEjgJUQJN0/hwbQigepM+/jeEt0e0sdgmK9fAR2tD+H5bKACNvZ0Y27UhXfw9aVnPFRsrvcX2HvZ6BlgfBqN63kp/nueDXOjk5wGaBqf+Viv6vwQpUfD3s2DIAr01NBlQtScshBBCCCGKJIGTECX4+2g0Ry4kY2utJzvXyJLd4Yzp3JA2DdT8SbGpmUxesIdjF1MAGNe9IS/d3hIH2xLKfkfswsmYSoLmTJjmQ0f9GabUDgF6w6UQSAwDK1to1A/snOFyNGz9BJoMBPvS520SQgghhBCVT1/6JkLUTLkGI5/8q3qbHu7TmOHt66Fp8MrvRzEaNS4kZTB6zk6OXUzB08mW7yd05u0RbUoOmgBCVI/SPtsubNarQg9Wp/9R60y9TQG9VdAE0P8VeOAfGDG70s9RCCGEEEKUjfQ4CVGMVQcucPZSGh6ONkzrFUBGtoH/TsRyMCKJT9ed4tcDF7iQlEF9dweWTuuGXy2nsh34lBrD1HvYeLp7BsK8pRC6BbLTip6rSaeDht0r+eyEEEIIIUR5SI+TEEXIyjXwxfrTADzatwku9jbUdrXnqVubAfD1xjNcSMqgkZcTKx/ukR80nVkPC++AqMNFHzjuDMSfAb0NdoG34tKgFXj4qzFMR36GyGC1nRSBEEIIIYS4rkiPkxBAYlo2n60/xcWkTPU8PZsLSRn4uNozvoefebuJPfxYuTeCk9GpNPdxYfGUbni75FW8C98Fy++H3ExY9wpM+L3wC5lS8fx7gr2retxsCOyeDf+9CZoR6rQBd9/C+wohhBBCiGojgZOo8WJTMxn/fTAhMamF1j05sCn2Nvljlqyt9CyY3IW1R6MZ1aEBbo42eQc5AUvHqKAJ4NwmiD4CPpYV+PJT8YbkLwu8TQVO6XH5z4UQQgghxHVFAidxU3v6p4McCE/ih8ldihyDdCEpg3Hf7yY0Lo3aLnY8MaAp1nodAB5OtgxqWafQPnXdHJjcMyB/QXIk/HgXZCZB/c7gXAdCVsOOr2HU3PztMhIhfKd6XDA4ahgEdq6QpSrzWQRVQgghhBDiuiCBk7hpxV3OYtX+CwBMWbiXXx4Jws3Bxrw+NC6Ncd/vrliBBxNDDiy5B1IuQK2mcN9PkHReBU5Hf4YBr4JbfbXt8T9AM6iJbT38849hbavmZzr2qwq66nW4yjMXQgghhBCVTYpDiJvWttNx5sdnYi/z+NL95BrUrLN/HLrInV9vK7rAQ3mEboHY4+DgAeNXgVMtqN8R/HqCMReC83qcIvbA38+px61HFT5O+3F53+8HvfxaCiGEEEJcb6THSdy0Np+6BMDAFrXZfiaerafjeOX3Y2TlGsw9UR0auvPt+M75BR7KK6+0OM2HgXvD/OVB0+H8dtj7A7QcAUvvgdwMNYntLU8VPk7TgTDzNDjWqlg7hBBCCCFElZLASdyUjEaNLXmB05RbGnFPZ18e/nEfy4LDAdDr4PF+TZg+oCk2VhXs4dG0/GIPgVeMS2o6WKXuxZ+GeYPAmAP1OsI9C8HKpvCxAJxrV6wdQgghhBCiyklOkLgpHY9KIT4tGydbKzr5eTC4lQ/P39YcgPruDqx4qAdPDwosW9CUmQzf9YfVMy2Xxx6H5HCwsoNGfS3X6fXQ41H12JgDtZrA/SvBzvnqT04IIYQQQlxz0uMkbkqmNL2gJl7YWqvg6KE+jenfvDb1PRxwtC3HR//En3Bhn/rqNAl8WqvlIXlzMjXqA7ZFjI9qNxZ2fKUKSIxbBU5eV3FGQgghhBCiOkngJG5Km0NU4NSnmbfF8qZ1XMp/MFOABLDzGxg5Wz02jW9qVsy8SzYO8FiwmtTWuoJjqIQQQgghxHVBUvXETSclM4d94YlA4cDJgqapr5LkZsHZjfnPj6yElCi4fAki96plxQVOoMYzSdAkhBBCCHHDk8BJ3NBC49J45bejvPzbETKyDQDsOBOHwajRyNsJX0/Honc05MBPE+DjppAQWvwLhG2FnDRw9oGGPdR4peC5cPofQAOftvnzNAkhhBBCiJuWpOqJG9Kxi8nM3nSWNUeiMOZ1Gp2Oucy8SV3YfErN31Rsb5OmwR/T4cQf6vmOL2HYZ0Vva6qa12yw+grfCXvnQ/1OavmV1fSEEEIIIcRNSXqcxA1F0zQ+W3eKoV9u46/DKmjq3cwbFztrdocmcP/3u9l4MhYoIXBa/xocWgbo1PODSyEtvqgXyx/HFDgEmg0Bz8aqyt7ZDWp5SWl6QgghhBDipiGBk7hhaJrG26tP8MV/pwEY1rYua57oxaIHurJ0WnfcHW04FJFEdEomdtZ6ujeqBUYjJEfmf23/Qn0BjJgFddtDbibsnVf4BWOOQXIEWNtDQJ+8EuOP5a939lH7CyGEEEKIm56k6okbgsGo8dKvR1i+JwKAN+5sxcQgf/P6Ng3cWPFgD8bN282l1Cy6Bnhib2MFi0fB2f8KH3DAa9D+PrCyhV+mQPC3EPQE2Njnb3PKVG68L9jmjZVqNxY2vA0ZCSp1Ty/3HoQQQgghagK56hPXPaNR45mfDrJ8TwR6HXx4d1uLoMkk0MeFnx/uwdiuDXnutuaQkZgfNFnZqS9bZ+jzHNzylFrecji4+ULaJTi8wvKAIUWUG7d1hEFvgbsfdJ1W+ScrhBBCCCGuS9LjJK57H/0bwm8HL2Kt1/HFvR0Y2rZusdv61XLivVFt1JPT69R3z8bwxP6id7CygW4Pw78vqTmaOoxXvUiXY9WEt1B4HFOHcepLCCGEEELUGNLjJK5rP++LZPamsziQyWcjm5UYNBUSEay++3YrebuOE8DOFeJC4MBiiDoM+xcBmhrD5FqO1xRCCCGEEDcl6XES163g0AReWHUYO7LZ6fYy7rudodMu0FuV7QARu9V33y4lb2fvCp0mwo6v4M8nLNdJuXEhhBBCCIEETuI6FR6fzkOL95Jj0JjeJBn3yIuQBSScA6+mpR/AkJufaldajxNAj+kQtg1So/OXOXpJSp4QQgghhAAkcBLXoRyDkceX7ScxPYe2Ddx4oukpiMxbGXO0bIFT7HHIvqxS8Lybl769Sx14cNPVNFsIIYQQQtzEZIyTuO58+d9pDkcm4+Zgw9zxnbC5uCd/Zcyxsh0kMm98U/1OZU/tE0IIIYQQohgSOInryt6wBL7ZeAaAd0e2oa6rfX4QBBB9tGwHKmthCCGEEEIIIcpAAidx3UjNzOGpnw5i1GBUx/qqgl5iqJpjyaSsPU7mwhBdK7+hQgghhBCixpHASVw33vzzOBEJGdR3d+D1O1uphaaeI69A9T05HDKTSz7Q5VhIDAN00KBzVTVXCCGEEELUIBI4ievCllOXWLkvEp0OPhvTHld7G7XC1HPU9FZw81WPY46XfDBTsFW7Bdi7VU2DhRBCCCFEjSKBk6h2WbkGXv9DpeBNCvKna4Bn/sqCY5Xq5PVCxZQyzknS9IQQQgghRCWTwElUu++3hnIuLg1vFzueurVZ/orMFFVWHFQQZA6cShnnJIUhhBBCCCFEJZPASVSrC0kZfLXhNAAv3t48P0UP1AS2mhHcG4KLT9l6nHKz4eIB9biB9DgJIYQQQojKIYGTqFZv/XmczBwjXf09GdG+vuXKK3uO6rRW32OOg9FY9AGjD4MhCxw8oVbjqmm0EEIIIYSocSRwEtVmY0gsa49FY6XX8eaIVuh0OssNzGOV8gInz8ZgZQc5aZAUVviARgNs+yx/nyuPJ4QQQgghRAVJ4CSqxa5z8Ty+ZD+gCkI093G13MBohMi96rGpyIOVtaqUB4XHOWkarH4GTv4FVrZwy4yqa7wQQgghhKhxJHAS19ymkFgmzg8mLdtAj0a1eGZQs8IbxYVAVjLYOEHtVvnLzel6VwROmz+EfQsAHYz6Dhp2r7L2CyGEEEKImse6uhsgahBN4+Df3/PZ9myyDP70b16bWfd3xN7GSvUYhfydX/jBFBjV76h6mkxMBSKij+Qv27sANr2rHt/+EbQaUeWnIoQQQgghapZq73GaNWsWAQEB2Nvb06lTJ7Zu3Vri9kuWLKFdu3Y4OjpSt25dJk+eTHx8/DVqrbgaO/7+kfbBM1lm/QaPNU1kzrhOKmgC2PElLB8LG99RX8d/U8sb9rA8yJUlyU/8BaufVo97Pwtdp1X5eQghhBBCiJqnWgOnFStWMGPGDF566SUOHDhAr169GDJkCOHh4UVuv23bNiZMmMCUKVM4duwYK1euZM+ePUydOvUat1yU1+Jd57Ha9TUAjrosZsa9gm3SWbXy0HJY96p63HI4dJqsvoKegG4PWx7IFDglhsLp9fDLFFWyvOME6PfSNTobIYQQQghR0+g0TdOq68W7detGx44dmT17tnlZixYtGDFiBO+9916h7T/++GNmz57N2bNnzcu++uorPvzwQyIiIsr0mikpKbi5uZGcnIyrq2vpO4irNnfzWVavXc0fdq9gwAq9T0t00UfArSH0fR7+fAKMudDjcRj8TukH/DgQLkeD3lrtF3g7jF5smdInhBBCCCFEKcoTG1Rbj1N2djb79u1j0KBBFssHDRrEjh07itwnKCiIyMhI1qxZg6ZpxMTE8PPPPzN06NBiXycrK4uUlBSLL1G1cgxGDoQn8u2Ws0xaEMx7f59kmvVqAPRt70Y3/jdVWjw5HH5/VAU/bUbDrW+V7QV88gpEGHNV2fG75knQJIQQQgghqlS1XW3GxcVhMBioU6eOxfI6deoQHR1d5D5BQUEsWbKEMWPGkJmZSW5uLnfeeSdfffVVsa/z3nvv8cYbb1Rq20XxDkYkMeWHPcSnZZuXNdBdYqiVmsxWFzQdnLxg/CqYNwgux0Dj/jD8G9CXMY6v1wHOrAfv5jB2Odg6VsWpCCGEEEIIYVbtxSGunPRU07TCE6HmOX78OE888QSvvvoq+/btY+3atYSGhvLwww8XuT3ACy+8QHJysvmrrCl9ovwuJGUwdeFe4tOycXe0YWCLOrx4e3N+73QYPUZo1Bd82qiNPfxhyjoY9hmM+RGsbcv+Qj0egyEfwsQ/wdGzKk5FCCGEEEIIC9XW4+Tl5YWVlVWh3qXY2NhCvVAm7733Hj179uTZZ58FoG3btjg5OdGrVy/efvtt6tatW2gfOzs77OzsKv8EhIW0rFymLtxL3OUsmvu48PMjQTjbWUNGEny2Qm0UNN1yJw8/6PxA+V/MwQO6PXTVbRZCCCGEEKKsqq3HydbWlk6dOrFu3TqL5evWrSMoKKjIfdLT09Ffkc5lZaXKWVdjjYsaz2DUeHL5QU5EpeDlbMv3EzuroAlg73zIvgy1W0LjAdXbUCGEEEIIISqoWkfUP/3004wfP57OnTvTo0cPvv32W8LDw82pdy+88AIXLlxg0aJFANxxxx1MmzaN2bNnM3jwYKKiopgxYwZdu3alXr161XkqNUpoXBpv/3Wc2NQsANKzczl7KQ1baz3fTuhMA4+8MUdh22BTXnXEHo9DMSmYQgghhBBCXO+qNXAaM2YM8fHxvPnmm0RFRdG6dWvWrFmDn58fAFFRURZzOk2aNInU1FS+/vprnnnmGdzd3enfvz8ffPBBdZ1CjZOYls3kBcGExadbLNfp4KO729KxoYdaEH0Ulo0FQzY0Hwbt7q2G1gohhBBCCFE5qnUep+og8zhVXHaukQnzd7PrXAL13R14485WWOlVL5JfLUcaeTurDZPC4ftb1VxLDYNg/K9gY1+NLRdCCCGEEKKw8sQGMvmNKBNN03jlt6PsOpeAs5018yd1IdDHpfCGmcmweJQKmmq3hLHLJGgSQgghhBA3PAmcRIkycwwcikhi9ZEoVuyNQK+Dr8Z2KDpoAtg9F+JPg2sDGPcLOLhf0/YKIYQQQghRFSRwEkWKSEjn+VWH2ROaSLbBaF7+8tCW9Gteu+idcjIh+Fv1+NY3wFUKdgghhBBCiJuDBE6iSC//dpTtZ+IB8HK2o2uAB4Nb+XBnuxKCocMrIO2S6m1qOfwatVQIIYQQQoiqJ4GTKGT3uXg2n7qEtV7HL48E0baBG7rSSokbjbDzG/W4+yNgZVP1DRVCCCGEEOIakcBJWNA0jY/+CQFgTBdf2vm6l23HM+sgLgTsXKHjhKproBBCCCGEENVAX90NENeXjSGx7D2fiL2NnicGNC37jju+Ut87TgB7KfMuhBBCCCFuLhI4CTOjUeOjf04BMDHInzquZSwjfvEghG0FvbVK0xNCCCGEEOImI4GTMPvz8EVORKXgYmfNw70bl20nTYMtH6nHrUaCW4Oqa6AQQgghhBDVRAInAUBWroHP1qnepgd7N8LDybZsO256H07+Begg6Imqa6AQQgghhBDVSAInAcD3W0MJi0/Hy9mOB24JKNtOe+bB5vfV46EfQ922VddAIYQQQgghqpEEToILSRl8teE0AC8NbY6TXRmKLZ74E9bMVI97/w+6TK3CFgohhBBCCFG9JHASvPXncTJzjHT192RE+/ql7xB9BH6eApoROk6Efi9WfSOFEEIIIYSoRhI41XCbT11i7bForPQ63hzRqvSJbkEVgzBkQZOBMPRTKMs+QgghhBBC3MAkcKrBsnINvP7HMQAmBfnT3KcM8y8lhKo0PYBb3wQrmUNZCCGEEELc/CRwqsGW7Q4nNC4Nbxc7Zgws42S3u2arFL3GA6BOq6ptoBBCCCGEENcJCZxqsN2hCQBM7umPi71N6TukJ8CBxepx0ONV2DIhhBBCCCGuLxI41WAhMakAtK7nVrYd9i2AnHSo0xoa9avClgkhhBBCCHF9kcCphsrMMRAWlwZAcx+X0nfIzYLdc9XjHo9LQQghhBBCCFGjSOBUQ52JvYxRAw9HG7xd7Erf4cjPcDkGXOpC67uqvoFCCCGEEEJcRyRwqqFORqs0vUAfl7KVIN89W33v9hBY21Zhy4QQQgghhLj+SOBUQ4VEpwAQWKcMaXppcWrSW4AOE6qwVUIIIYQQQlyfJHCqofJ7nMowd1NEsPruFQhOtaqwVUIIIYQQQlyfJHCqoUIKpOqVKmK3+u7btQpbJIQQQgghxPVLAqcaKDEtm9jULKCMgVPkHvXdt1sVtkoIIYQQQojrlwRONZApTa+BhwPOdtYlb2zIgQv71GMJnIQQQgghRA0lgVMNZCoMUab5m6IPQ24m2LtDrSZV2zAhhBBCCCGuUxI41UAhMeUZ35RXGMK3K+jl4yKEEEIIIWomuRKugSpUUU8KQwghhBBCiBpMAqcaxmjUOJUXOJUpVc8cOMn4JiGEEEIIUXNJ4FTDXEjKIC3bgI2VjgAvp5I3To6ElEjQ6aFex2vTQCGEEEIIIa5DEjjVMKb5mxp7O2NjVcqP39TbVKc12DlXccuEEEIIIYS4fkngVMOYCkOUKU1P5m8SQgghhBACkMCpxilfYYjd6rsETkIIIYQQooaTwKmGMc3hFOhTSupdTgZEHVKPpaKeEEIIIYSo4SRwqkGyc42cu5QGlKHH6eIBMOaCcx1wb3gNWieEEEIIIcT1SwKnGiQkOpVco4abgw313OyL39BogB1fq8e+XUGnuzYNFEIIIYQQ4jolgVMNcjAyCYC2DdzQFRcMaRqsfgZCVoOVLfSYfu0aKIQQQgghxHVKAqca5FBEEgDtfd2L32jzB7BvAaCDUd9BQykMIYQQQgghhHV1N0BcO4cikgjSH+XOywdgWxHFIVKjYPcc9fj2j6DViGvaPiGEEEIIIa5XEjjVEJezcrl0KZrVth9ge9hQ8sa9n4Wu065Nw4QQQgghhLgBSOBUQxyJTMaXWGx1BrB1hhZ3Fr1hg87Q+YFr2zghhBBCCCGucxI41RCHIpOop4tXT7wDYeTs6m2QEEIIIYQQNxApDlFDHIpIoq4pcHKtX72NEUIIIYQQ4gYjgVMNcSgiCR9dgnri1qB6GyOEEEIIIcQNRgKnGiA2JZOLyZn5qXrS4ySEEEIIIUS5VChw2rJlC7m5uYWW5+bmsmXLlqtulKhchyKTAWhkm6QWuEngJIQQQgghRHlUKHDq168fCQkJhZYnJyfTr1+/q26UqFyHI5MAqK/P+5m5SqqeEEIIIYQQ5VGhwEnTNHQ6XaHl8fHxODk5XXWjROU6GJGEHiNuuXFqgWu96m2QEEIIIYQQN5hylSMfNWoUADqdjkmTJmFnZ2deZzAYOHz4MEFBQZXbQnFVNE3jUEQS3iSh1wygswIXn+pulhBCCCGEEDeUcgVObm5ugLoYd3FxwcHBwbzO1taW7t27M23atMptobgqYfHppGTmEmidqBa41AW9VfU2SgghhBBCiBtMuQKnBQsWAODv78/MmTMlLe8GcCgiCYCunumQghSGEEIIIYQQogLKFTiZvPbaa5XdDlFFDuUVhmjjkqYCJylFLoQQQgghRLmVOXDq2LEj//33Hx4eHnTo0KHI4hAm+/fvr5TGiat3JvYyAAG2eal60uMkhBBCCCFEuZU5cBo+fLi5GMSIESOqqj2ikp2PTwfAy2iqqCelyIUQQgghhCivMgdOBdPzJFXvxpCdayQyUQVOLlkxaqGUIhdCCCGEEKLcKjSPE0BSUhLff/89L7zwgnky3P3793PhwoVKa5y4OheSMjBqYG+jxyYtSi2UVD0hhBBCCCHKrULFIQ4fPszAgQNxc3MjLCyMadOm4enpya+//sr58+dZtGhRZbdTVEBYfBoAjT3t0CVHq4WSqieEEEIIIUS5VajH6emnn2bSpEmcPn0ae3t78/IhQ4awZcuWSmucuDrheeOb2rplABrobcDJu3obJYQQQgghxA2oQoHTnj17eOihhwotr1+/PtHR0VfdKFE5TD1OLZxS1QLXeqCvcHamEEIIIYQQNVaFrqLt7e1JSUkptDwkJARvb+nRuF6YKuo1tk1WC9wkTU8IIYQQQoiKqFDgNHz4cN58801ycnIA0Ol0hIeH8/zzz3PXXXdVagNFxZl6nOrr49UCmfxWCCGEEEKICqlQ4PTxxx9z6dIlateuTUZGBn369KFJkya4uLjwzjvvVHYbRQUYjBoRCarHqZZ5DicpRS6EEEIIIURFVKiqnqurK9u2bWPDhg3s378fo9FIx44dGThwIJqmVXYbRQVcTMogx6Bha6XHOTNv3Jmk6gkhhBBCCFEhFQqc3nvvPV544QX69+9P//79zcsNBgPjxo1j2bJlldZAUTGm8U2+ng7oUvLm1pJUPSGEEEIIISqkQql6n3/+Od9++63FMoPBwL333svBgwcro13iKpnGN/nXcgJT4CST3wohhBBCCFEhFepxWrNmDQMHDsTd3Z3Ro0eTk5PDmDFjOHnyJBs3bqzsNooKOJ8XODXysIGwS2qhTH4rhBBCCCFEhVQocOrUqRO//vorw4cPx87Ojnnz5nH27Fk2btxInTp1KruNogLC8lL1WjhfVgus7cHRsxpbJIQQQgghxI2rwrOh9u3bl8WLF3P33XcTFhbG5s2bJWi6joTnBU6NbJPUAtf6oNNVX4OEEEIIIYS4gZW5x2nUqFFFLvf29sbd3Z0HH3zQvGzVqlVX3zJRYUajxvkElarXQJ+gFkopciGEEEIIISqszIGTm5tbkcsHDx5caY0RlSM2NYvMHCPWeh0eubFqoZQiF0IIIYQQosLKHDgtWLCgKtshKpGpol4DDwesUi+qhVKKXAghhBBCiAqr8Bgncf0yVdTzq+UEiaFqoXvDamyREEIIIYQQN7YKVdXr0KEDuiIKDeh0Ouzt7WnSpAmTJk2iX79+V91AUX6minr+tRwh9Ixa6NW0GlskhBBCCCHEja1CPU633XYb586dw8nJiX79+tG3b1+cnZ05e/YsXbp0ISoqioEDB/L7779XdntFGZjncHK3gqQItbCWBE5CCCGEEEJUVIUCp7i4OJ555hm2bt3KJ598wqeffsqWLVuYOXMmaWlp/Pvvv7z88su89dZbpR5r1qxZBAQEYG9vT6dOndi6dWux206aNAmdTlfoq1WrVhU5jZtWWJzqcWpuFwdoYOcGTl7V2yghhBBCCCFuYBUKnH766SfGjh1baPm9997LTz/9BMDYsWMJCQkp8TgrVqxgxowZvPTSSxw4cIBevXoxZMgQwsPDi9z+iy++ICoqyvwVERGBp6cn99xzT0VO46akaVr+GCfyCkN4NZE5nIQQQgghhLgKFQqc7O3t2bFjR6HlO3bswN7eHgCj0YidnV2Jx/n000+ZMmUKU6dOpUWLFnz++ef4+voye/bsIrd3c3PDx8fH/LV3714SExOZPHlyRU7jphR3OZu0bAN6HXhlmdL0mlRvo4QQQgghhLjBVag4xPTp03n44YfZt28fXbp0QafTERwczPfff8+LL74IwD///EOHDh2KPUZ2djb79u3j+eeft1g+aNCgIoOyosybN4+BAwfi5+dX7DZZWVlkZWWZn6ekpJTp2DcqUynyeu4OWCecVQtlfJMQQgghhBBXpUKB08svv0xAQABff/01ixcvBiAwMJDvvvuO++67D4CHH36YRx55pNhjxMXFYTAYqFOnjsXyOnXqEB0dXWoboqKi+Pvvv1m6dGmJ27333nu88cYbpR7vZnE29jIAjb2dIT6vol6txtXYIiGEEEIIIW58FQqcAO6//37uv//+Ytc7ODiU6ThXljXXNK3IUudX+uGHH3B3d2fEiBElbvfCCy/w9NNPm5+npKTg6+tbprbdiM5eKhA4HT+tFkopciGEEEIIIa5KhQOnq+Xl5YWVlVWh3qXY2NhCvVBX0jSN+fPnM378eGxtbUvc1s7OrtSxVjeTs5dUql4L9xzISFQLPRtVY4uEEEIIIYS48ZW5OISnpydxcXEAeHh44OnpWexXWdja2tKpUyfWrVtnsXzdunUEBQWVuO/mzZs5c+YMU6ZMKWvzawxTj1MLmxi1wLUB2DpVY4uEEEIIIYS48ZW5x+mzzz7DxcUFgM8//7xSXvzpp59m/PjxdO7cmR49evDtt98SHh7Oww8/DKg0uwsXLrBo0SKL/ebNm0e3bt1o3bp1pbTjZpGZYyAiQc3h1FCLUgtlfJMQQgghhBBXrcyB08SJE4t8fDXGjBlDfHw8b775JlFRUbRu3Zo1a9aYq+RFRUUVmtMpOTmZX375hS+++KJS2nAzOR+fjlEDV3trXC6HqoUyvkkIIYQQQoirVqExTsVNUGvSsGHDMh/r0Ucf5dFHHy1y3Q8//FBomZubG+np6WU+fk1iLgxR2xldgqminszhJIQQQgghxNWqUODk7+9fYuU7g8FQ4QaJijOVIm/k5QyXTIGT9DgJIYQQQghxtSoUOB04cMDieU5ODgcOHODTTz/lnXfeqZSGifIz9Tg18baHkHNqoYxxEkIIIYQQ4qpVKHBq165doWWdO3emXr16fPTRR4waNeqqGybKz1SKvKVTKhiywMoW3MueNimEEEIIIYQoWpnLkZdFs2bN2LNnT2UeUpSRpmnmHqem+ry5sTwbgd6qGlslhBBCCCHEzaFCPU4pKSkWzzVNIyoqitdff52mTWVMTXWITskkPduAtV5HnZwItVAKQwghhBBCCFEpKhQ4ubu7FyoOoWkavr6+LF++vFIaJsrnXF6aXsNajlhJRT0hhBBCCCEqVYUCp40bN1o81+v1eHt706RJE6ytK3RIcZXMpci9nSFeAichhBBCCCEqU4WinD59+lR2O8RVMpUib+ztDCfzAieZ/FYIIYQQQohKcVXdQ8ePHyc8PJzs7GyL5XfeeedVNUqUn6miXlNPK0iWMU5CCCGEEEJUpgoFTufOnWPkyJEcOXIEnU6HpmkA5nFPMgHutWdK1Wtpd0ktsHcHx1rV1yAhhBBCCCFuIhUqR/7kk0/+v717j46yuvc//nlCksk9kARy4RICiFZQKqFUsIoHKwLi5WiLF6pQb4dWVEo9RWsVsZ6Fx7Yc1zkeONqKR470h/Wn+HMVDjTacLFUpYDlpgEFuSZEQHLPTDKzf39MZmBMyIQ4k+cZ8n6tNSsze55JvnnW5ln5sPezt4qKinT06FGlpKRo586dWr9+vUaNGqW1a9dGuESEU+tuVnlVoyRpgCn3N2YPkb6ygAcAAACAzunUiNNf//pX/fnPf1bv3r0VFxenuLg4fec739GCBQv04IMPauvWrZGuE+3Y1zJNLyctUak1u/yN3N8EAAAAREynRpy8Xq/S0tIkSTk5OTpy5IgkqbCwUGVlZZGrDh0SmKY3qHeadPwzf2P2YBsrAgAAAM4tnRpxGj58uLZt26ZBgwbp29/+tp599lklJibqxRdf1KBBgyJdI8IIWYr82B5/YzYjTgAAAECkdCo4/eIXv1BdnX962NNPP60pU6bo8ssvV3Z2tl577bWIFojwgsEpJ0XaHQhOrKgHAAAAREqngtM111wTfD5o0CDt2rVLJ06cUK9evYIr66HrHDzRIEkakuaRGqv8jUzVAwAAACLma+3jdLqsrKxIfSucpUNf1kuSiiz/vWbK7C8lJNtYEQAAAHBu6VRwqqur0zPPPKN3331XlZWV8vl8Ie/v3bs3IsUhvDp3s76sb5Ik9fGw8S0AAAAQDZ0KTvfcc4/WrVunO+64Q/n5+UzPs9Hhk/5pepnJCUqu3udvJDgBAAAAEdWp4PS///u/WrlypS677LJI14OzFJim169XsnT8U38jezgBAAAAEdWpfZx69erFPU0OcehL/4hT356nBScWhgAAAAAiqlPB6Ze//KWeeOIJ1dfXR7oenKVAcOrf0yWdaLm3jD2cAAAAgIjq1FS93/zmN/rss8+Um5urgQMHKiEhIeT9LVu2RKQ4hHe4JThdkHRS8nqkHi4ps5+9RQEAAADnmE4FpxtvvDHCZaCzAvc4DYprWYo8e7AU18PGigAAAIBzT6eC07x58yJdBzopMFWvwHvY38D9TQAAAEDEdeoeJ0k6efKkfve73+nRRx/ViRMnJPmn6B0+fDhixaF9DR6vjtd5JElZjQf8jdzfBAAAAERcp0actm3bpu9+97vKzMzU559/rnvvvVdZWVlasWKF9u/fr6VLl0a6TrTh8En/NL10V7xcJwMLQ7CHEwAAABBpnRpxmjNnjmbMmKE9e/YoKSkp2D5p0iStX78+YsWhfQcDS5H3SpaOf+ZvZA8nAAAAIOI6FZw2bdqkf/qnf2rV3rdvX1VUVHztotAxgRX1BmVaUvUhfyMjTgAAAEDEdSo4JSUlqbq6ulV7WVmZevfu/bWLQscEFoa4KPm4vyE5S0phY2IAAAAg0joVnG644QY99dRTampqkiRZlqUDBw7okUce0c033xzRAnFmgaXIh8a3jPIx2gQAAABERaeC069//Wt98cUX6tOnjxoaGjRu3DgNGTJEaWlp+pd/+ZdI14gzOHzSP+LU37Ts4cT9TQAAAEBUdGpVvYyMDL333nsqLS3V5s2b5fP5NHLkSH33u9+NdH1oR2CqXm93YCly9nACAAAAouGsRpwaGhr0xz/+Mfj6T3/6k44cOaKKigqtWrVKP/vZz9TY2BjxItFaY5NXX9S4JUlp7qP+xp6FNlYEAAAAnLvOasRp6dKl+uMf/6gpU6ZIkp5//nkNGzZMycnJkqRPPvlE+fn5+slPfhL5ShHiSMs0vdTEHopv9G9ArNQcGysCAAAAzl1nNeK0bNky3XXXXSFtv//971VaWqrS0lL96le/0h/+8IeIFoi2HTptDyer7pi/MYXgBAAAAETDWQWn3bt3a+jQocHXSUlJios79S1Gjx6tXbt2Ra46nFEgOPXvmSQ1MOIEAAAARNNZTdWrqqpSfPypj3zxxRch7/t8Prnd7shUhnYdPulfivy8jCbJ+PyNKdk2VgQAAACcu85qxKlfv37asWPHGd/ftm2b+vXr97WLQniBEaeiZP9XJWVKPRJsrAgAAAA4d51VcJo8ebKeeOKJNlfOa2ho0Pz583XttddGrDicWSA4DUhqCU7c3wQAAABEzVlN1fv5z3+uP/zhDzr//PM1a9YsDR06VJZl6ZNPPtHzzz+v5uZm/fznP49WrTjNoS/9U/Xy42v9DdzfBAAAAETNWQWn3Nxcbdy4UT/60Y/0yCOPyBgjSbIsS1dffbUWLVqk3NzcqBSKU9zNXlW27OGUE1fjb2TECQAAAIiaswpOklRUVKTVq1frxIkT+vTTTyVJQ4YMUVZWVsSLQ9vKTzbKGCkpIU6pzSf9jaksDAEAAABEy1kHp4CsrCyNHj06krWggw63bH7bt2eyrPrj/kZGnAAAAICoOavFIeAMFVX+xTnyM5Ol+pbNb7nHCQAAAIgaglMMqqj2B6fcjCSpriU4MeIEAAAARA3BKQYdbQlOeZkuKTBVj3ucAAAAgKghOMWgwFS9PEacAAAAgC5BcIpBgRGn3PTTR5wITgAAAEC0EJxiUOAep4Jkj+Rr8jcy4gQAAABEDcEpxjR7ffqiZfPb/Pg6f2NimpSQZGNVAAAAwLmN4BRjjtV65DNSjzhLPVXtb0xhYQgAAAAgmghOMSYwTa9Puks9Gri/CQAAAOgKBKcYE1hRjz2cAAAAgK5DcIoxwRX1MlxSfUtwYsQJAAAAiCqCU4wJTNXz7+HUMlWPe5wAAACAqCI4xZijgal6mUmMOAEAAABdhOAUY0JHnLjHCQAAAOgKBKcYExKcGHECAAAAugTBKcZUVvs3v83NPP0eJ4ITAAAAEE0EpxhS625WrbtZkpSXfvqqeiwOAQAAAEQTwSmGBPZwSnfFK9VyS83+14w4AQAAANFFcIohwT2cTl9RLz5JSky1sSoAAADg3EdwiiGBEafQPZxyJMuysSoAAADg3EdwiiGBFfVyQ1bU4/4mAAAAINoITjEkMFUvL9PFHk4AAABAFyI4xZCQqXrs4QQAAAB0GYJTDDl6+lQ9RpwAAACALkNwiiEVwal6SVJ9y+IQ3OMEAAAARB3BKUY0e336osYtKbCqHiNOAAAAQFchOMWIY7Ue+YzUI85SdpqLe5wAAACALkRwihGBaXp90l3qEWcx4gQAAAB0IYJTjAisqJebkeRvCN7jRHACAAAAoo3gFCOCezhlJElNjZKn1v9GCotDAAAAANFGcIoRba6oFxcvJWXaWBUAAADQPdgenBYtWqSioiIlJSWpuLhYGzZsaPd4t9utxx57TIWFhXK5XBo8eLCWLFnSRdXa5+jpU/UCC0OkZEuWZWNVAAAAQPcQb+cPf+211zR79mwtWrRIl112mV544QVNmjRJu3bt0oABA9r8zNSpU3X06FG99NJLGjJkiCorK9Xc3NzFlXe9UyNOLql6j78xrY+NFQEAAADdh63BaeHChbr77rt1zz33SJKee+45rVmzRosXL9aCBQtaHb969WqtW7dOe/fuVVZWliRp4MCBXVmybb6sb5IkZaW6pGMtwSl7iI0VAQAAAN2HbVP1PB6PNm/erAkTJoS0T5gwQRs3bmzzM2+//bZGjRqlZ599Vn379tXQoUP18MMPq6Gh4Yw/x+12q7q6OuQRi+o9/lG11MQe0vFP/Y3Z59lYEQAAANB92DbidOzYMXm9XuXm5oa05+bmqqKios3P7N27V++9956SkpK0YsUKHTt2TD/+8Y914sSJM97ntGDBAs2fPz/i9Xe1eo9XkpSSGC8dCwQnRpwAAACArmD74hDWVxY3MMa0agvw+XyyLEvLli3T6NGjNXnyZC1cuFD//d//fcZRp0cffVRVVVXBx8GDByP+O3SFerd/xCnl9BGnHIITAAAA0BVsG3HKyclRjx49Wo0uVVZWthqFCsjPz1ffvn2VmXlqCe5vfOMbMsbo0KFDOu+81lPXXC6XXC5XZIvvYsYY1Tf5R5xSVS/VtpwzRpwAAACALmHbiFNiYqKKi4tVUlIS0l5SUqKxY8e2+ZnLLrtMR44cUW1tbbBt9+7diouLU79+/aJar53czT4Z43+eWru/5Ukf9nACAAAAuoitU/XmzJmj3/3ud1qyZIk+/vhj/eQnP9GBAwc0c+ZMSf5pdnfeeWfw+Ntvv13Z2dn64Q9/qF27dmn9+vX653/+Z911111KTk6269eIujr3qeXWk6r2+p8w2gQAAAB0GVuXI7/lllt0/PhxPfXUUyovL9fw4cO1atUqFRYWSpLKy8t14MCB4PFpaWkqKSnRAw88oFGjRik7O1tTp07V008/bdev0CUCC0MkJcQp7sRn/kbubwIAAAC6jGVMYBJY91BdXa3MzExVVVUpIyPD7nI6pKyiRtc8t17ZqYna/I3/I+14Q7r6Kemyh+wuDQAAAIhZZ5MNbF9VD+EF9nBKZg8nAAAAwBYEpxgQ3MMpIU463jJVj3ucAAAAgC5DcIoBgeDUN75a8tRKVg+p10B7iwIAAAC6EYJTDAhM1Rscd8Tf0KtQik+0sSIAAACgeyE4xYDAiNMAU+5v4P4mAAAAoEsRnGJAYB+n/r7D/gbubwIAAAC6FMEpBjS0jDjlNx/yN7CHEwAAANClCE4xoL7JH5x6ew76GxhxAgAAALoUwSkG1LublaBm9XJzjxMAAABgB4JTDKj3eDXAOqo4eaXENCk9z+6SAAAAgG6F4BQD6j1eFVkV/hfZgyXLsrcgAAAAoJshOMWAek+zBlktezhxfxMAAADQ5QhOMaAuZMSJ+5sAAACArkZwigENHq8GxQUWhhhsbzEAAABAN0RwigF1nmb1Uo3/RVquvcUAAAAA3RDBKQY0eLxKtRr9L1zp9hYDAAAAdEMEpxhQ525Wuhr8LwhOAAAAQJcjOMWAhqZmpRKcAAAAANsQnBzO0+xTvLdRPSzjb0hMs7cgAAAAoBsiODlcg8ertJbRJiNLSky1uSIAAACg+yE4OVx9U7PSWhaGsFwZkmXZXBEAAADQ/RCcHK7OfWrESS6m6QEAAAB2IDg5XIPHqzSLhSEAAAAAOxGcHK7O03xqxImFIQAAAABbEJwc7vTFIRhxAgAAAOxBcHK4Ok+zUlsWhyA4AQAAAPYgODlcvcerdEacAAAAAFsRnByu3t2sVBaHAAAAAGxFcHK4+iYvi0MAAAAANiM4OVy92xvcAJcRJwAAAMAeBCeHq/ewAS4AAABgN4KTwzU0NStN9f4Xrgx7iwEAAAC6KYKTw9UxVQ8AAACwHcHJ4UKm6rE4BAAAAGALgpPD1bMBLgAAAGA7gpPDhS4OQXACAAAA7EBwcrgGt0fpbIALAAAA2Irg5HA+T/2pFwQnAAAAwBYEJ4eL89RIkozVQ4pPsrkaAAAAoHsiODlcXFOtJMmXmC5Zls3VAAAAAN0TwcnBvD6jxOY6/wsXS5EDAAAAdiE4OVhDkze4FLnF/U0AAACAbQhODlbvaVZ6y1LkVlKGzdUAAAAA3RfBycHq3af2cLISmaoHAAAA2IXg5GD1Hq9S2cMJAAAAsB3BycHqPc3BEScWhwAAAADsQ3BysHqPV2kti0PIxT1OAAAAgF0ITg4WMuLEPU4AAACAbQhODuYfceIeJwAAAMBuBCcHq/N4T7vHieAEAAAA2IXg5GANIYtDEJwAAAAAuxCcHKzO7VVqcHEIghMAAABgF4KTgzU0eVkcAgAAAHAAgpOD1XuaWRwCAAAAcACCk4PVu1kcAgAAAHACgpODNbg9SrXc/hcEJwAAAMA2BCcH87prT70gOAEAAAC2ITg5mOWukST5rAQp3mVzNQAAAED3RXByMo9/xMnLinoAAACArQhODtbD0zLilJBqcyUAAABA90ZwcjCrqU6SZBK5vwkAAACwE8HJwRKaWxaHYGEIAAAAwFYEJ4cyxgSDk5VEcAIAAADsRHByKHezT6lqlCTFJWXYXA0AAADQvRGcHKre41WaGiRJPRhxAgAAAGxFcHKoOnez0ixGnAAAAAAnIDg5VEOTV2mq979gcQgAAADAVgQnh/KPOPmn6okNcAEAAABbEZwcqsHjDS4OwYgTAAAAYC+Ck0PVebxKD4w4uRhxAgAAAOxEcHKov352XKkKBCcWhwAAAADsRHByoDp3s17ffDC4HDn3OAEAAAD2Ijg50FsfHVZNY7Mye7j9DdzjBAAAANiK4OQwxhgt3bhfkpRhsTgEAAAA4AQEJ4f5YN8JlR2tUVqCFO8jOAEAAABOYHtwWrRokYqKipSUlKTi4mJt2LDhjMeuXbtWlmW1enzyySddWHF0Lf3r55KkqRf3PNXIPU4AAACArWwNTq+99ppmz56txx57TFu3btXll1+uSZMm6cCBA+1+rqysTOXl5cHHeeed10UVR1ZFVaPe3HJIB0/UyxijiqpGrdl5VJJ0+zd7+Q/q4ZLiE22sEgAAAEC8nT984cKFuvvuu3XPPfdIkp577jmtWbNGixcv1oIFC874uT59+qhnz55dVGX0rNtdqblvbJck5WcmqWdKorw+o9FFWRoSWIGcaXoAAACA7WwbcfJ4PNq8ebMmTJgQ0j5hwgRt3Lix3c9ecsklys/P11VXXaXS0tJ2j3W73aqurg55OEWqK16XDOip+DhL5VWN+rjcX9udYwold43/IIITAAAAYDvbRpyOHTsmr9er3NzckPbc3FxVVFS0+Zn8/Hy9+OKLKi4ultvt1v/8z//oqquu0tq1a3XFFVe0+ZkFCxZo/vz5Ea8/EqZcXKApFxeowePV1oNfatO+L5UYH6fJw/Olz3b5D3JxfxMAAABgN1un6kmSZVkhr40xrdoCzj//fJ1//vnB12PGjNHBgwf161//+ozB6dFHH9WcOXOCr6urq9W/f/8IVB45yYk9NHZwjsYOzjnV6K7yf3VltP0hAAAAAF3Gtql6OTk56tGjR6vRpcrKylajUO259NJLtWfPnjO+73K5lJGREfKICXXH/F9Tsu2tAwAAAIB9wSkxMVHFxcUqKSkJaS8pKdHYsWM7/H22bt2q/Pz8SJdnv9pK/9e0jodIAAAAANFh61S9OXPm6I477tCoUaM0ZswYvfjiizpw4IBmzpwpyT/N7vDhw1q6dKkk/6p7AwcO1LBhw+TxePTqq6/qjTfe0BtvvGHnrxEddYHg1MfeOgAAAADYG5xuueUWHT9+XE899ZTKy8s1fPhwrVq1SoWFhZKk8vLykD2dPB6PHn74YR0+fFjJyckaNmyYVq5cqcmTJ9v1K0RP7Rf+r6m97a0DAAAAgCxjjLG7iK5UXV2tzMxMVVVVOft+p9+Olw5vlm79vXTBtXZXAwAAAJxzziYb2HaPE8IIjjgxVQ8AAACwG8HJiYw57R4npuoBAAAAdiM4OZG7Rmpu9D9nxAkAAACwHcHJiQJLkSemSYkp9tYCAAAAgODkSIFpeqyoBwAAADgCwcmJatnDCQAAAHASgpMT1bGHEwAAAOAkBCcnCo445dpbBwAAAABJBCdnqmOqHgAAAOAkBCcnqmWqHgAAAOAkBCcnYsQJAAAAcBSCkxMF7nFi81sAAADAEQhOThRYVS+NqXoAAACAExCcnMZdKzXV+58z4gQAAAA4AsHJaWqP+r8mpEiuNHtrAQAAACCJ4OQ8bH4LAAAAOA7ByWlqWVEPAAAAcBqCk9MElyLPtbcOAAAAAEEEJ6dh81sAAADAcQhOTsPmtwAAAIDjEJycJrj5LSNOAAAAgFMQnJwmuPktI04AAACAUxCcnCY44kRwAgAAAJyC4OQ0jDgBAAAAjkNwchJPneSp9T/nHicAAADAMQhOThKYphefJLnS7a0FAAAAQBDByUkC0/RS+0iWZW8tAAAAAIIITk4SGHFKY5oeAAAA4CQEJycJbn6ba28dAAAAAEIQnJykNjBVjxEnAAAAwEkITk4SHHFiKXIAAADASQhOTsLmtwAAAIAjEZycJLj5LVP1AAAAACchODlFTYX0RZn/OSNOAAAAgKMQnJygsUp69XtSwwkpa5DUt9juigAAAACchuBkt6ZGafk06eh2/0jTD96UEpLsrgoAAADAaQhOdvJ5pRX3SZ9vkBLTpR/8XymryO6qAAAAAHwFwclO786Xdv0/KS5BunWZlD/C7ooAAAAAtIHgZKeLb5Uy+ko3vSANGmd3NQAAAADOIN7uArq13AulWX+TElPsrgQAAABAOxhxshuhCQAAAHA8ghMAAAAAhEFwAgAAAIAwCE4AAAAAEAbBCQAAAADCIDgBAAAAQBgEJwAAAAAIg+AEAAAAAGEQnAAAAAAgDIITAAAAAIRBcAIAAACAMAhOAAAAABAGwQkAAAAAwiA4AQAAAEAYBCcAAAAACIPgBAAAAABhEJwAAAAAIAyCEwAAAACEEW93AV3NGCNJqq6utrkSAAAAAHYKZIJARmhPtwtONTU1kqT+/fvbXAkAAAAAJ6ipqVFmZma7x1imI/HqHOLz+XTkyBGlp6fLsiy7y1F1dbX69++vgwcPKiMjw+5yzjmc3+jjHEcX5zf6OMfRxfmNPs5xdHF+o8/Oc2yMUU1NjQoKChQX1/5dTN1uxCkuLk79+vWzu4xWMjIy+McYRZzf6OMcRxfnN/o4x9HF+Y0+znF0cX6jz65zHG6kKYDFIQAAAAAgDIITAAAAAIRBcLKZy+XSvHnz5HK57C7lnMT5jT7OcXRxfqOPcxxdnN/o4xxHF+c3+mLlHHe7xSEAAAAA4Gwx4gQAAAAAYRCcAAAAACAMghMAAAAAhEFwAgAAAIAwCE42WrRokYqKipSUlKTi4mJt2LDB7pJi0oIFC/Stb31L6enp6tOnj2688UaVlZWFHDNjxgxZlhXyuPTSS22qOPY8+eSTrc5fXl5e8H1jjJ588kkVFBQoOTlZV155pXbu3GljxbFl4MCBrc6vZVm6//77JdF/O2P9+vW67rrrVFBQIMuy9NZbb4W835E+63a79cADDygnJ0epqam6/vrrdejQoS78LZyrvfPb1NSkuXPn6qKLLlJqaqoKCgp055136siRIyHf48orr2zVr2+99dYu/k2cK1wf7sh1gT58ZuHOb1vXZMuy9Ktf/Sp4DH34zDryt1ksXocJTjZ57bXXNHv2bD322GPaunWrLr/8ck2aNEkHDhywu7SYs27dOt1///16//33VVJSoubmZk2YMEF1dXUhx02cOFHl5eXBx6pVq2yqODYNGzYs5Pxt3749+N6zzz6rhQsX6vnnn9emTZuUl5enq6++WjU1NTZWHDs2bdoUcm5LSkokSd///veDx9B/z05dXZ1GjBih559/vs33O9JnZ8+erRUrVmj58uV67733VFtbqylTpsjr9XbVr+FY7Z3f+vp6bdmyRY8//ri2bNmiN998U7t379b111/f6th77703pF+/8MILXVF+TAjXh6Xw1wX68JmFO7+nn9fy8nItWbJElmXp5ptvDjmOPty2jvxtFpPXYQNbjB492sycOTOk7YILLjCPPPKITRWdOyorK40ks27dumDb9OnTzQ033GBfUTFu3rx5ZsSIEW2+5/P5TF5ennnmmWeCbY2NjSYzM9P813/9VxdVeG556KGHzODBg43P5zPG0H+/LklmxYoVwdcd6bMnT540CQkJZvny5cFjDh8+bOLi4szq1au7rPZY8NXz25YPP/zQSDL79+8Pto0bN8489NBD0S3uHNHWOQ53XaAPd1xH+vANN9xgxo8fH9JGH+64r/5tFqvXYUacbODxeLR582ZNmDAhpH3ChAnauHGjTVWdO6qqqiRJWVlZIe1r165Vnz59NHToUN17772qrKy0o7yYtWfPHhUUFKioqEi33nqr9u7dK0nat2+fKioqQvqzy+XSuHHj6M+d4PF49Oqrr+quu+6SZVnBdvpv5HSkz27evFlNTU0hxxQUFGj48OH0606oqqqSZVnq2bNnSPuyZcuUk5OjYcOG6eGHH2aU+iy1d12gD0fO0aNHtXLlSt19992t3qMPd8xX/zaL1etwvC0/tZs7duyYvF6vcnNzQ9pzc3NVUVFhU1XnBmOM5syZo+985zsaPnx4sH3SpEn6/ve/r8LCQu3bt0+PP/64xo8fr82bNzt+l2on+Pa3v62lS5dq6NChOnr0qJ5++mmNHTtWO3fuDPbZtvrz/v377Sg3pr311ls6efKkZsyYEWyj/0ZWR/psRUWFEhMT1atXr1bHcJ0+O42NjXrkkUd0++23KyMjI9g+bdo0FRUVKS8vTzt27NCjjz6qv//978GpqmhfuOsCfThyXnnlFaWnp+umm24KaacPd0xbf5vF6nWY4GSj0/83WfJ3rK+24ezMmjVL27Zt03vvvRfSfssttwSfDx8+XKNGjVJhYaFWrlzZ6kKI1iZNmhR8ftFFF2nMmDEaPHiwXnnlleDNyPTnyHjppZc0adIkFRQUBNvov9HRmT5Lvz47TU1NuvXWW+Xz+bRo0aKQ9+69997g8+HDh+u8887TqFGjtGXLFo0cObKrS405nb0u0IfP3pIlSzRt2jQlJSWFtNOHO+ZMf5tJsXcdZqqeDXJyctSjR49WabmysrJV8kbHPfDAA3r77bdVWlqqfv36tXtsfn6+CgsLtWfPni6q7tySmpqqiy66SHv27Amurkd//vr279+vd955R/fcc0+7x9F/v56O9Nm8vDx5PB59+eWXZzwG7WtqatLUqVO1b98+lZSUhIw2tWXkyJFKSEigX3fSV68L9OHI2LBhg8rKysJelyX6cFvO9LdZrF6HCU42SExMVHFxcauh3JKSEo0dO9amqmKXMUazZs3Sm2++qT//+c8qKioK+5njx4/r4MGDys/P74IKzz1ut1sff/yx8vPzg9MUTu/PHo9H69atoz+fpZdffll9+vTRtdde2+5x9N+vpyN9tri4WAkJCSHHlJeXa8eOHfTrDgiEpj179uidd95RdnZ22M/s3LlTTU1N9OtO+up1gT4cGS+99JKKi4s1YsSIsMfSh08J97dZzF6HbVmSAmb58uUmISHBvPTSS2bXrl1m9uzZJjU11Xz++ed2lxZzfvSjH5nMzEyzdu1aU15eHnzU19cbY4ypqakxP/3pT83GjRvNvn37TGlpqRkzZozp27evqa6utrn62PDTn/7UrF271uzdu9e8//77ZsqUKSY9PT3YX5955hmTmZlp3nzzTbN9+3Zz2223mfz8fM7vWfB6vWbAgAFm7ty5Ie30386pqakxW7duNVu3bjWSzMKFC83WrVuDq7p1pM/OnDnT9OvXz7zzzjtmy5YtZvz48WbEiBGmubnZrl/LMdo7v01NTeb66683/fr1Mx999FHIddntdhtjjPn000/N/PnzzaZNm8y+ffvMypUrzQUXXGAuueQSzm+L9s5xR68L9OEzC3eNMMaYqqoqk5KSYhYvXtzq8/Th9oX728yY2LwOE5xs9J//+Z+msLDQJCYmmpEjR4Ysn42Ok9Tm4+WXXzbGGFNfX28mTJhgevfubRISEsyAAQPM9OnTzYEDB+wtPIbccsstJj8/3yQkJJiCggJz0003mZ07dwbf9/l8Zt68eSYvL8+4XC5zxRVXmO3bt9tYcexZs2aNkWTKyspC2um/nVNaWtrmdWH69OnGmI712YaGBjNr1iyTlZVlkpOTzZQpUzjvLdo7v/v27Tvjdbm0tNQYY8yBAwfMFVdcYbKyskxiYqIZPHiwefDBB83x48ft/cUcpL1z3NHrAn34zMJdI4wx5oUXXjDJycnm5MmTrT5PH25fuL/NjInN67BljDFRGswCAAAAgHMC9zgBAAAAQBgEJwAAAAAIg+AEAAAAAGEQnAAAAAAgDIITAAAAAIRBcAIAAACAMAhOAAAAABAGwQkAAAAAwiA4AQDQwrIsvfXWW3aXAQBwIIITAMARZsyYIcuyWj0mTpxod2kAACje7gIAAAiYOHGiXn755ZA2l8tlUzUAAJzCiBMAwDFcLpfy8vJCHr169ZLkn0a3ePFiTZo0ScnJySoqKtLrr78e8vnt27dr/PjxSk5OVnZ2tu677z7V1taGHLNkyRINGzZMLpdL+fn5mjVrVsj7x44d0z/+4z8qJSVF5513nt5+++2Q93ft2qXJkycrLS1Nubm5uuOOO3Ts2LHg+1deeaUefPBB/exnP1NWVpby8vL05JNPRvAsAQDsQHACAMSMxx9/XDfffLP+/ve/6wc/+IFuu+02ffzxx5Kk+vp6TZw4Ub169dKmTZv0+uuv65133gkJRosXL9b999+v++67T9u3b9fbb7+tIUOGhPyM+fPna+rUqdq2bZsmT56sadOm6cSJE5Kk8vJyjRs3Tt/85jf1t7/9TatXr9bRo0c1derUkO/xyiuvKDU1VR988IGeffZZPfXUUyopKYny2QEARJNljDF2FwEAwIwZM/Tqq68qKSkppH3u3Ll6/PHHZVmWZs6cqcWLFwffu/TSSzVy5EgtWrRIv/3tbzV37lwdPHhQqampkqRVq1bpuuuu05EjR5Sbm6u+ffvqhz/8oZ5++uk2a7AsS7/4xS/0y1/+UpJUV1en9PR0rVq1ShMnTtQTTzyhDz74QGvWrAl+5tChQ+rfv7/Kyso0dOhQXXnllfJ6vdqwYUPwmNGjR2v8+PF65plnIna+AABdi3ucAACO8Q//8A8hwUiSsrKygs/HjBkT8t6YMWP00UcfSZI+/vhjjRgxIhiaJOmyyy6Tz+dTWVmZLMvSkSNHdNVVV7Vbw8UXXxx8npqaqvT0dFVWVkqSNm/erNLSUqWlpbX63GeffaahQ4e2+h6SlJ+fH/weAIDYRHACADhGampqq6lz4ViWJUkyxgSft3VMcnJyh75fQkJCq8/6fD5Jks/n03XXXad//dd/bfW5/Pz8Dn0PAEBs4h4nAEDMeP/991u9vuCCCyRJF154oT766CPV1dUF3//LX/6iuLg4DR06VOnp6Ro4cKDefffdTv/8kSNHaufOnRo4cKCGDBkS8jh9pAsAcO4hOAEAHMPtdquioiLkcfqKda+//rqWLFmi3bt3a968efrwww+Diz9MmzZNSUlJmj59unbs2KHS0lI98MADuuOOO5SbmytJevLJJ/Wb3/xG//7v/649e/Zoy5Yt+o//+I8O13f//ffrxIkTuu222/Thhx9q7969+tOf/qS77rpLXq83sicDAOAoTNUDADjG6tWrQ6a8SdL555+vTz75RJJ/xbvly5frxz/+sfLy8rRs2TJdeOGFkqSUlBStWbNGDz30kL71rW8pJSVFN998sxYuXBj8XtOnT1djY6P+7d/+TQ8//LBycnL0ve99r8P1FRQU6C9/+Yvmzp2ra665Rm63W4WFhZo4caLi4vi/SAA4l7GqHgAgJliWpRUrVujGG2+0uxQAQDfEf48BAAAAQBgEJwAAAAAIg3ucAAAxgZnlAAA7MeIEAAAAAGEQnAAAAAAgDIITAAAAAIRBcAIAAACAMAhOAAAAABAGwQkAAAAAwiA4AQAAAEAYBCcAAAAACOP/A0VVNwM6I3A9AAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 1000x600 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "from matplotlib import pyplot as plt\n",
+    "\n",
+    "plt.figure(figsize=(10,6))\n",
+    "\n",
+    "plt.plot(model_hist.history['accuracy'])\n",
+    "\n",
+    "plt.plot(model_hist.history['val_accuracy'])\n",
+    "\n",
+    "plt.title('Genauigkeit des Modells')\n",
+    "\n",
+    "plt.xlabel('Epochen')\n",
+    "\n",
+    "plt.ylabel('Genauigkeit')\n",
+    "\n",
+    "plt.legend(['Training', 'Validierung'])\n",
+    "\n",
+    "plt.show()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.6"
+  },
+  "vscode": {
+   "interpreter": {
+    "hash": "369f2c481f4da34e4445cda3fffd2e751bd1c4d706f27375911949ba6bb62e1c"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/README.md b/README.md
index 1693a7a6d2d4d6dd88eaf82ea5c97fe921aa8a8a..33acadb211119529cce84598995f58008163fb91 100644
--- a/README.md
+++ b/README.md
@@ -1,92 +1,26 @@
 # Hausuebung5
+Hausübung 5 in Python - Schätzen von Immobilienwerten
 
 
-
-## Getting started
-
-To make it easy for you to get started with GitLab, here's a list of recommended next steps.
-
-Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
-
-## Add your files
-
-- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
-- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
-
-```
-cd existing_repo
-git remote add origin https://git-ce.rwth-aachen.de/tuda-iib/gdi/hausuebungen/hausuebung5.git
-git branch -M main
-git push -uf origin main
-```
-
-## Integrate with your tools
-
-- [ ] [Set up project integrations](https://git-ce.rwth-aachen.de/tuda-iib/gdi/hausuebungen/hausuebung5/-/settings/integrations)
-
-## Collaborate with your team
-
-- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
-- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
-- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
-- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
-- [ ] [Automatically merge when pipeline succeeds](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
-
-## Test and Deploy
-
-Use the built-in continuous integration in GitLab.
-
-- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
-- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing(SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
-- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
-- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
-- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
-
-***
-
-# Editing this README
-
-When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thank you to [makeareadme.com](https://www.makeareadme.com/) for this template.
-
-## Suggestions for a good README
-Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
-
-## Name
-Choose a self-explaining name for your project.
-
 ## Description
-Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
+Künstliche Intelligenz zur Vorhersage von Immobiliendaten in 5 Schritten:
 
-## Badges
-On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
+Voraussetzungen und benötigte Module/Bibliotheken
+Datenimport der Rohdaten aus csv-Datei
+Preprocessing (Datenvorbereitung und Skalierung)
+Erstellung des Künstlichen Neuronalen Netzes und Training des KI-Modells
+Testen der Genauigkeit der KI-Vorhersagen
 
-## Visuals
-Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
 
 ## Installation
-Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
-
-## Usage
-Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
-
-## Support
-Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
-
-## Roadmap
-If you have ideas for releases in the future, it is a good idea to list them in the README.
-
-## Contributing
-State if you are open to contributions and what your requirements are for accepting them.
-
-For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
-
-You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
+Jupyter Notebook Instanz des HRZ der TUDa -> https://tu-jupyter-iib.ca.hrz.tu-darmstadt.de/hub/home
+(Jupyter Notebook und Python Installation notwendig)
++ pip install tensorflow
++ pip install keras
 
 ## Authors and acknowledgment
-Show your appreciation to those who have contributed to the project.
+Idee und Code von http://python-programmieren.maximilianwittmann.de/kiselbstprogrammieren/
 
-## License
-For open source projects, say how it is licensed.
 
 ## Project status
-If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
+Finished
\ No newline at end of file
diff --git a/housepricedata.csv b/housepricedata.csv
new file mode 100644
index 0000000000000000000000000000000000000000..d51ed3f2c07916c27dcce4cc5463f83bbec11f59
--- /dev/null
+++ b/housepricedata.csv
@@ -0,0 +1,1461 @@
+LotArea,OverallQual,OverallCond,TotalBsmtSF,FullBath,HalfBath,BedroomAbvGr,TotRmsAbvGrd,Fireplaces,GarageArea,AboveMedianPrice
+8450,7,5,856,2,1,3,8,0,548,1
+9600,6,8,1262,2,0,3,6,1,460,1
+11250,7,5,920,2,1,3,6,1,608,1
+9550,7,5,756,1,0,3,7,1,642,0
+14260,8,5,1145,2,1,4,9,1,836,1
+14115,5,5,796,1,1,1,5,0,480,0
+10084,8,5,1686,2,0,3,7,1,636,1
+10382,7,6,1107,2,1,3,7,2,484,1
+6120,7,5,952,2,0,2,8,2,468,0
+7420,5,6,991,1,0,2,5,2,205,0
+11200,5,5,1040,1,0,3,5,0,384,0
+11924,9,5,1175,3,0,4,11,2,736,1
+12968,5,6,912,1,0,2,4,0,352,0
+10652,7,5,1494,2,0,3,7,1,840,1
+10920,6,5,1253,1,1,2,5,1,352,0
+6120,7,8,832,1,0,2,5,0,576,0
+11241,6,7,1004,1,0,2,5,1,480,0
+10791,4,5,0,2,0,2,6,0,516,0
+13695,5,5,1114,1,1,3,6,0,576,0
+7560,5,6,1029,1,0,3,6,0,294,0
+14215,8,5,1158,3,1,4,9,1,853,1
+7449,7,7,637,1,0,3,6,1,280,0
+9742,8,5,1777,2,0,3,7,1,534,1
+4224,5,7,1040,1,0,3,6,1,572,0
+8246,5,8,1060,1,0,3,6,1,270,0
+14230,8,5,1566,2,0,3,7,1,890,1
+7200,5,7,900,1,0,3,5,0,576,0
+11478,8,5,1704,2,0,3,7,1,772,1
+16321,5,6,1484,1,0,2,6,2,319,1
+6324,4,6,520,1,0,1,4,0,240,0
+8500,4,4,649,1,0,3,6,0,250,0
+8544,5,6,1228,1,1,3,6,0,271,0
+11049,8,5,1234,2,0,3,7,0,484,1
+10552,5,5,1398,1,1,4,6,1,447,1
+7313,9,5,1561,2,0,2,6,1,556,1
+13418,8,5,1117,3,1,4,9,1,691,1
+10859,5,5,1097,1,1,3,6,0,672,0
+8532,5,6,1297,1,0,3,5,1,498,0
+7922,5,7,1057,1,0,3,5,0,246,0
+6040,4,5,0,2,0,2,6,0,0,0
+8658,6,5,1088,2,0,3,6,1,440,0
+16905,5,6,1350,1,1,2,5,2,308,1
+9180,5,7,840,1,0,2,5,0,504,0
+9200,5,6,938,1,0,3,5,0,308,0
+7945,5,6,1150,1,0,3,6,0,300,0
+7658,9,5,1752,2,0,2,6,1,576,1
+12822,7,5,1434,1,1,1,6,1,670,1
+11096,8,5,1656,2,0,3,7,0,826,1
+4456,4,5,736,2,0,2,8,0,0,0
+7742,5,7,955,1,0,3,6,0,386,0
+13869,6,6,794,2,0,3,6,0,388,1
+6240,6,6,816,1,0,3,6,1,528,0
+8472,5,5,816,1,0,2,5,0,516,0
+50271,9,5,1842,0,1,0,5,1,894,1
+7134,5,5,384,1,0,3,6,1,572,0
+10175,6,5,1425,2,0,3,7,1,576,1
+2645,8,5,970,2,1,3,7,0,480,1
+11645,7,5,860,2,1,3,7,0,565,1
+13682,10,5,1410,3,1,3,10,1,641,1
+7200,5,7,780,1,0,2,4,0,352,0
+13072,6,5,1158,1,1,3,5,0,576,0
+7200,5,7,530,1,0,3,6,0,288,0
+6442,8,5,1370,2,0,2,6,1,484,1
+10300,7,6,576,2,0,3,9,0,480,0
+9375,7,5,1057,2,1,3,8,0,645,1
+9591,8,5,1143,2,1,4,9,1,852,1
+19900,7,5,1947,2,0,3,7,1,576,1
+10665,7,5,1453,2,0,3,7,0,558,1
+4608,4,6,747,1,0,2,4,0,220,0
+15593,7,4,1304,2,0,3,7,1,667,1
+13651,7,6,2223,2,0,3,8,2,516,1
+7599,4,6,845,1,0,2,4,0,360,0
+10141,7,5,832,2,1,3,7,1,427,1
+10200,5,7,1086,1,0,3,6,0,490,0
+5790,3,6,840,2,0,3,8,0,379,0
+1596,4,5,462,1,0,2,5,0,297,0
+8475,4,7,952,1,0,2,4,0,283,0
+8635,5,5,672,1,0,2,6,0,240,0
+10778,4,5,1768,2,0,4,8,0,0,0
+10440,5,6,440,1,1,2,5,0,440,0
+13000,6,6,896,2,1,4,8,1,509,1
+4500,6,5,1237,2,0,2,5,0,405,0
+10206,8,5,1563,2,0,3,6,1,758,1
+8892,5,5,1065,1,1,3,6,0,461,0
+8530,7,5,384,2,1,3,7,1,400,1
+16059,8,5,1288,2,1,4,9,1,462,1
+11911,6,5,684,2,1,3,6,1,400,1
+3951,6,5,612,2,1,2,4,0,528,1
+8470,3,2,1013,1,0,2,6,0,0,0
+8070,4,5,990,1,0,3,5,0,0,0
+7200,4,5,0,1,0,2,4,0,420,0
+8500,5,3,1235,1,0,2,6,0,480,0
+13360,5,7,876,1,0,2,5,0,432,1
+7200,6,6,1214,2,0,4,9,1,506,0
+9337,6,5,824,2,1,3,7,0,684,1
+9765,6,8,680,2,1,3,6,1,420,1
+10264,7,5,1588,2,0,3,6,0,472,1
+10921,4,5,960,1,0,3,6,0,432,0
+10625,5,5,458,1,0,2,5,0,366,0
+9320,4,5,950,1,1,3,6,0,0,0
+10603,6,7,1610,2,0,3,6,2,480,1
+9206,6,5,741,2,1,3,7,1,476,1
+7018,5,5,0,2,0,4,8,0,410,0
+10402,7,5,1226,2,0,3,6,0,740,1
+7758,7,4,1040,1,1,4,7,2,240,1
+9375,8,5,1053,2,1,3,9,1,648,1
+10800,4,7,641,1,0,2,6,0,273,0
+6000,5,5,789,1,0,2,5,0,250,0
+8500,5,7,793,2,0,3,7,0,0,0
+11751,6,6,1844,2,0,3,7,1,546,1
+9525,6,4,994,2,0,4,7,0,325,0
+7750,7,5,384,2,1,3,7,1,400,1
+9965,7,5,1264,2,1,4,10,1,792,1
+21000,6,5,1809,2,0,3,7,2,450,1
+7259,6,8,1028,2,1,3,9,1,180,1
+3230,6,5,729,2,1,2,5,1,440,1
+11616,5,5,1092,1,0,3,6,1,288,0
+8536,5,5,1125,1,1,2,5,0,430,0
+12376,7,5,1673,3,0,5,11,2,594,1
+8461,6,5,728,2,1,3,8,1,390,1
+21453,6,5,938,1,0,1,4,2,540,1
+6060,4,5,732,1,0,3,4,0,264,0
+9464,6,7,1080,1,0,3,5,0,288,0
+7892,6,5,1199,2,0,2,5,0,530,0
+17043,6,5,1362,2,0,3,7,1,435,1
+6780,6,8,520,1,0,2,5,0,0,0
+4928,6,5,1078,2,0,2,5,1,440,0
+4388,5,7,672,1,0,3,5,1,0,0
+7590,6,5,660,1,1,3,6,1,453,0
+8973,5,7,1008,1,1,3,6,0,750,0
+14200,7,6,924,2,1,4,8,2,487,1
+12224,6,5,992,2,1,3,7,1,390,1
+7388,5,6,1063,1,0,3,7,0,624,0
+6853,8,5,1267,2,0,2,6,0,471,1
+10335,5,6,1461,2,1,3,7,1,440,1
+10400,7,6,1304,2,0,3,7,1,530,1
+10355,5,5,1214,2,0,3,5,1,318,0
+11070,7,5,1907,3,0,5,9,0,766,1
+9066,8,5,1004,2,1,3,7,2,660,1
+15426,6,5,928,2,1,3,7,0,470,1
+10500,4,5,864,1,0,3,5,1,0,0
+11645,7,5,1734,2,0,3,7,0,660,1
+8520,5,4,910,2,0,4,6,0,720,1
+10335,7,5,1490,2,0,3,6,0,577,1
+9100,5,5,1728,2,0,6,10,0,504,0
+2522,6,5,970,2,0,3,7,0,380,0
+6120,5,7,715,1,0,2,5,0,180,0
+9505,7,5,884,2,1,3,8,1,434,1
+7500,7,5,1080,1,0,3,6,0,0,0
+6240,5,4,896,1,0,3,7,0,240,0
+10356,5,6,969,1,1,3,5,0,440,0
+13891,8,5,1710,2,0,2,6,1,866,1
+14803,6,5,825,2,1,4,8,1,495,1
+13500,6,7,1602,1,0,1,4,1,564,1
+11340,6,5,1200,1,0,4,7,0,312,0
+9600,6,5,572,1,0,2,5,0,0,0
+7200,5,7,0,1,0,2,5,0,625,0
+12003,8,5,774,2,1,4,8,1,680,1
+12552,7,5,991,2,1,3,8,1,678,1
+19378,7,5,1392,2,1,4,9,1,576,1
+11120,6,6,1232,2,0,3,6,0,516,0
+13688,9,5,1572,2,1,3,10,2,726,1
+12182,7,5,1541,2,0,3,7,1,532,1
+5500,4,6,882,1,0,1,4,0,0,0
+5400,6,7,1149,2,0,3,5,0,216,0
+10106,5,7,644,2,0,4,6,0,0,0
+10708,5,5,1617,1,0,2,7,3,303,1
+10562,8,5,1582,1,1,3,8,1,789,1
+8244,7,5,840,2,1,3,7,1,440,1
+16669,8,6,1686,2,1,2,6,1,511,1
+12358,5,6,720,1,1,2,7,0,660,0
+31770,6,5,1080,1,0,3,7,2,528,1
+5306,7,7,1064,2,0,2,5,1,504,1
+10197,6,5,1362,1,1,3,6,1,504,0
+12416,6,5,1606,2,0,3,7,1,616,1
+12615,6,7,1202,2,0,4,7,1,576,1
+10029,6,5,1151,2,1,4,8,1,521,1
+13650,5,5,1052,2,0,4,8,1,451,1
+17423,9,5,2216,2,0,1,9,1,1166,1
+8520,5,6,968,1,0,2,5,0,480,0
+2117,6,5,756,2,1,3,5,1,440,1
+7588,7,6,793,1,1,4,9,1,216,1
+9060,5,6,0,1,0,3,7,1,252,0
+11426,7,5,1362,2,1,3,6,0,484,1
+7438,5,8,504,1,0,3,5,0,576,0
+22950,10,9,1107,2,1,4,12,2,840,1
+9947,7,5,1188,2,0,3,6,0,497,1
+10410,5,7,660,2,1,3,8,0,180,0
+7018,5,5,1086,0,2,2,6,2,528,0
+4923,8,5,1593,1,1,0,5,1,682,1
+10570,8,8,853,2,1,3,10,2,440,1
+7472,7,9,725,1,1,4,7,0,484,1
+9017,7,5,1431,2,0,3,6,0,666,1
+2522,7,5,970,2,0,3,7,0,380,0
+7180,5,7,864,1,0,3,5,0,352,0
+2280,6,6,855,2,1,3,7,1,440,0
+9416,7,5,1726,2,0,3,8,1,786,1
+25419,8,4,1360,2,0,4,8,1,795,1
+5520,6,6,755,1,0,5,8,0,0,0
+9591,8,5,1713,2,0,3,7,1,856,1
+8546,4,5,1121,2,0,2,5,0,440,0
+10125,6,6,1196,2,0,3,6,2,473,1
+7000,6,6,617,2,0,2,6,0,398,0
+4438,6,5,848,1,0,1,3,1,420,0
+3500,5,7,720,1,1,2,5,0,240,0
+11851,7,5,1424,2,0,3,5,0,500,1
+13673,5,5,1140,1,1,3,8,1,349,0
+12493,4,5,1100,1,0,3,6,1,312,0
+14364,7,5,1157,2,1,3,7,1,454,1
+8250,6,7,1092,1,0,3,6,0,504,0
+5604,5,6,864,1,0,2,5,0,0,0
+10420,6,5,1212,2,0,3,6,0,460,1
+8640,7,5,900,2,1,3,7,1,644,1
+13568,5,5,990,1,0,3,5,0,576,0
+10900,6,7,689,1,1,3,6,0,299,0
+10011,5,6,1070,1,0,2,6,1,447,0
+8450,7,5,1436,2,0,3,8,0,484,1
+9906,4,4,686,1,0,3,8,0,210,0
+15660,7,9,798,1,1,3,8,2,431,1
+3010,7,5,1248,2,0,2,5,0,438,1
+8990,7,5,1498,2,0,2,5,0,675,1
+8068,6,5,1010,2,1,4,8,1,390,1
+11475,6,6,713,2,1,3,6,1,434,1
+10500,4,6,864,1,0,2,4,0,576,0
+13472,10,5,2392,2,0,3,8,1,968,1
+1680,5,5,630,2,1,3,6,0,280,0
+9950,7,5,1203,2,1,4,9,1,721,1
+1869,6,6,483,1,1,2,5,0,280,0
+8521,5,5,912,1,0,3,5,1,336,0
+3182,7,5,1373,2,0,2,7,1,430,1
+8760,6,6,1194,1,0,3,6,0,312,0
+15138,8,5,1462,2,1,4,9,1,810,1
+1680,6,5,483,1,1,2,5,1,288,0
+10650,5,6,894,1,0,3,5,0,308,0
+7851,6,5,860,2,1,4,8,2,440,1
+1680,6,3,483,1,1,2,5,0,264,0
+8773,7,5,1414,2,0,3,6,0,494,1
+9453,7,7,996,2,1,3,7,0,457,1
+12030,8,5,1694,2,0,3,7,0,818,1
+8741,6,4,735,1,1,3,7,1,220,0
+9000,8,5,1566,2,0,3,7,0,750,1
+3880,5,9,686,1,0,2,4,0,0,0
+5000,5,4,540,1,0,3,6,0,352,0
+10762,6,6,626,1,1,3,6,1,288,0
+8880,7,5,948,2,1,3,8,2,463,1
+10400,7,5,1845,2,0,3,6,1,604,1
+9142,6,8,1020,2,0,4,9,0,440,0
+11310,6,5,1367,1,0,2,5,1,451,0
+11317,7,5,840,2,1,3,8,0,500,1
+159000,6,7,1444,2,0,4,7,2,389,1
+5350,3,2,728,1,0,3,6,0,0,0
+4750,8,5,1573,2,0,2,5,1,538,1
+8366,6,5,798,2,1,3,6,0,520,1
+9350,6,7,1302,2,0,3,7,0,309,0
+8400,5,6,1314,1,0,3,5,0,294,0
+8738,7,5,975,2,1,4,8,1,429,1
+8791,6,5,864,2,1,3,7,0,673,1
+8814,7,5,1604,2,1,3,8,1,660,1
+12435,7,5,963,2,1,3,7,1,564,1
+12702,5,5,0,1,0,2,4,0,308,0
+19296,6,5,1362,1,0,3,6,1,884,1
+9588,8,5,1482,2,1,3,10,1,868,1
+8471,6,7,506,1,0,3,6,1,492,0
+5500,5,7,926,1,0,3,6,0,484,0
+5232,5,5,680,1,0,2,4,0,504,0
+12090,6,6,1422,2,0,3,7,1,576,1
+11207,6,5,802,2,1,3,8,1,413,1
+8400,5,8,720,2,1,4,8,1,240,1
+6900,5,6,740,1,0,2,4,1,924,0
+7917,6,7,1143,1,1,3,6,1,504,0
+10728,8,5,1095,2,1,3,8,1,1053,1
+39104,7,7,1385,1,0,2,5,2,439,1
+11764,8,7,1152,2,1,4,9,1,671,1
+9600,6,6,1240,2,0,3,6,1,338,0
+8314,5,7,816,1,0,2,5,0,264,0
+7264,7,7,952,2,1,3,5,0,672,1
+9196,7,5,1560,2,0,3,7,0,573,1
+19138,4,5,864,1,0,2,4,0,400,0
+14450,9,5,2121,2,1,3,8,1,732,1
+10005,7,5,1160,2,1,4,8,1,505,1
+11287,7,6,807,2,1,3,7,1,575,1
+7200,6,5,1262,2,0,2,5,0,572,1
+5063,7,5,1314,2,0,2,6,1,626,1
+9612,8,5,1468,2,0,3,6,1,898,1
+8012,6,5,1575,2,0,2,5,0,529,1
+4251,7,5,625,2,1,2,5,0,528,1
+9786,6,7,912,1,1,3,7,1,440,0
+8125,4,4,858,1,0,3,5,0,0,0
+9819,5,5,882,1,0,3,5,0,280,0
+8730,6,7,698,1,0,3,7,0,384,0
+15611,8,5,1079,2,1,3,8,1,685,1
+5687,5,6,780,2,0,6,9,0,0,0
+11409,5,4,768,1,1,3,8,1,281,0
+16659,7,7,795,2,1,3,9,1,539,1
+9600,6,5,1416,1,0,3,7,2,418,1
+7937,6,6,1003,1,0,3,6,0,588,0
+13710,5,5,910,1,1,4,6,0,282,0
+7399,7,5,975,2,1,3,7,1,576,1
+11700,6,6,702,1,2,3,7,1,539,1
+14000,6,8,1092,1,0,3,6,1,300,0
+15750,5,5,1165,1,0,2,5,2,375,0
+16226,8,5,1028,2,1,4,9,1,683,1
+13704,7,5,1541,2,0,3,6,1,843,1
+9800,5,7,894,1,0,3,5,0,552,0
+18386,7,9,1470,3,0,3,10,1,870,1
+10386,8,5,2000,2,0,3,8,0,888,1
+13474,7,5,700,2,1,4,8,1,746,1
+7920,6,7,319,1,0,3,6,0,0,0
+12342,4,5,861,1,0,1,4,0,539,0
+12378,9,5,1896,2,0,3,8,3,708,1
+7685,6,5,697,2,1,3,6,1,420,1
+8000,6,6,972,1,0,2,5,1,240,0
+7800,5,7,793,1,0,3,5,1,410,0
+215245,7,5,2136,2,0,3,8,2,513,1
+9600,7,7,728,1,1,3,6,1,546,1
+7795,7,5,716,2,1,3,6,1,432,1
+13005,7,7,845,2,1,4,10,1,484,1
+9000,8,5,1088,2,1,3,8,1,1025,1
+9900,7,5,1347,2,1,4,9,1,656,1
+14115,7,5,1372,2,0,3,6,2,588,1
+16259,9,5,1249,3,1,4,9,0,840,1
+12099,8,5,1136,2,1,4,10,1,872,1
+10380,7,5,1502,2,1,4,8,1,576,1
+5820,3,8,1162,1,0,3,6,0,220,0
+11275,7,7,710,2,1,5,11,1,564,1
+5000,5,6,720,1,0,2,5,0,360,0
+10846,8,5,1719,1,1,1,6,2,473,1
+11600,6,5,1383,1,1,3,7,0,292,0
+11888,6,6,844,2,0,5,10,0,441,1
+6402,5,5,596,1,0,3,6,0,189,0
+10624,5,4,1728,2,0,6,10,0,352,0
+8176,5,6,1056,1,0,3,6,0,308,0
+10655,8,5,3206,2,0,3,7,1,880,1
+8198,7,5,1358,2,0,2,6,1,484,1
+9042,6,5,943,2,1,3,7,2,472,1
+164660,5,6,1499,2,0,3,7,2,529,1
+14157,9,5,1922,2,0,3,8,1,676,1
+9135,7,5,1536,2,0,3,7,0,532,1
+14145,7,7,1208,2,0,3,8,0,440,1
+12400,6,7,1215,1,0,3,6,0,297,0
+14191,8,5,967,2,1,4,9,0,431,1
+8400,4,4,721,1,0,2,4,0,294,0
+8544,3,4,0,2,0,2,6,0,400,0
+8849,9,5,1684,2,0,2,6,1,564,1
+2592,5,3,536,1,1,3,4,0,336,0
+6435,6,5,972,1,0,3,6,1,312,0
+12772,6,8,958,1,0,2,5,0,301,0
+17600,6,5,1478,2,0,3,6,2,498,0
+2448,7,5,764,2,1,2,6,0,474,0
+20431,9,5,1848,2,1,4,10,2,706,1
+7820,9,5,1869,2,0,2,6,1,617,1
+5271,7,5,1453,1,1,2,6,1,445,1
+9084,5,6,616,1,0,3,5,0,200,0
+8520,6,8,624,1,0,2,5,0,484,0
+8400,6,5,940,1,0,2,6,2,240,0
+11249,6,5,1200,2,0,3,6,0,521,1
+9248,6,6,1158,2,0,3,6,0,400,1
+4224,5,5,1142,1,1,3,6,1,528,0
+6930,5,4,1062,1,0,3,6,0,288,0
+12011,8,5,1086,2,1,3,7,1,592,1
+7540,6,6,888,1,0,2,5,1,470,0
+9144,5,5,883,1,0,3,8,0,240,0
+7301,7,5,0,3,0,4,7,1,672,1
+1680,6,8,483,1,1,2,5,0,264,0
+18800,6,5,796,2,1,3,6,1,566,1
+10690,5,7,672,1,0,3,6,0,468,0
+9500,6,5,1394,1,1,3,6,2,514,0
+9150,6,5,1099,1,0,3,6,1,296,1
+7800,5,6,1268,1,0,2,7,1,244,0
+9830,5,7,1063,1,0,3,7,1,576,0
+8121,6,5,953,2,1,3,7,1,460,1
+17120,4,4,0,2,0,4,7,1,680,0
+7175,6,5,744,1,0,2,4,0,264,0
+10634,5,6,608,1,0,3,5,0,270,0
+8200,7,5,847,2,1,4,8,1,434,1
+10020,1,1,683,0,1,1,4,0,0,0
+8846,5,5,870,1,0,2,5,0,576,0
+11143,8,5,1580,3,0,4,8,1,610,1
+11394,9,2,1856,1,1,1,8,1,834,1
+8123,6,5,982,2,1,3,7,1,463,1
+5000,5,6,1026,2,0,3,6,1,308,0
+7200,7,5,1293,2,0,2,5,1,572,1
+9245,7,5,939,2,1,3,8,0,639,1
+9000,6,3,784,1,0,2,5,0,360,0
+53107,6,5,1580,2,1,3,9,2,501,1
+3182,8,5,1256,2,0,2,6,1,430,1
+8410,5,3,658,1,0,5,8,0,0,0
+7200,6,6,1041,1,0,3,6,1,352,0
+9382,7,5,1468,2,0,3,6,0,577,1
+12474,10,5,1682,2,1,3,9,1,846,1
+8405,5,8,861,1,0,4,7,0,384,0
+12209,6,5,804,2,1,3,7,1,560,1
+8339,5,7,0,1,0,3,5,0,294,0
+7446,4,5,788,1,0,2,4,2,0,0
+10134,5,6,735,1,0,2,5,0,240,0
+9571,5,6,1144,1,0,3,6,0,596,0
+7200,5,5,894,1,0,2,6,0,600,0
+7590,5,5,864,2,0,4,8,1,264,1
+8967,5,2,961,1,0,2,6,0,338,0
+8125,7,5,1092,2,0,2,7,0,438,1
+14963,8,5,1260,1,1,1,4,2,500,1
+8767,7,5,1310,2,0,3,6,1,400,1
+10200,5,8,672,1,0,2,4,0,240,0
+12090,8,5,1141,2,1,4,10,1,420,1
+10364,6,5,806,2,1,3,7,1,373,1
+9991,4,4,1281,2,0,3,8,1,490,0
+10480,6,5,1064,1,0,3,6,0,240,0
+15576,6,7,840,2,0,4,8,0,308,1
+14154,7,5,1063,2,1,3,9,1,947,1
+10800,8,5,1034,2,1,3,8,1,836,1
+9571,5,3,1276,1,0,3,5,0,350,0
+34650,5,5,1056,1,0,3,5,0,572,0
+4403,7,5,1470,2,1,2,7,1,484,1
+8960,5,6,1008,1,0,2,5,1,360,0
+11228,7,5,1080,2,1,3,9,1,678,1
+8899,7,5,1340,2,0,3,6,0,396,1
+7844,6,7,672,1,1,3,6,1,440,0
+22420,6,6,1370,2,1,4,10,1,864,1
+8160,5,6,756,1,1,3,7,0,240,0
+8450,5,6,1056,1,0,3,6,1,304,0
+7060,7,5,1344,2,0,2,8,0,784,1
+16635,6,7,1602,2,0,3,8,1,529,1
+21750,5,5,988,1,0,2,4,0,520,0
+9200,8,5,1470,2,1,4,8,1,696,1
+9000,6,5,1196,1,0,2,6,1,297,0
+3378,7,8,651,1,1,3,6,2,240,0
+12800,7,5,1518,2,0,2,5,1,569,1
+8593,4,6,907,1,0,3,5,0,352,0
+6762,7,5,1208,2,0,2,6,0,628,1
+11457,6,5,1392,2,0,3,6,1,576,1
+1680,6,5,483,1,1,2,4,0,264,0
+5586,6,7,901,1,0,4,7,0,0,0
+1920,5,5,765,1,1,2,6,0,440,0
+10839,6,5,926,2,1,3,7,1,470,1
+1890,4,7,630,1,0,1,3,0,0,0
+10667,7,6,799,2,1,3,6,1,550,1
+4400,6,8,648,1,0,2,6,0,440,0
+6000,6,7,884,1,0,2,4,0,180,0
+4280,5,6,440,1,0,2,4,1,352,0
+12354,6,8,684,1,0,3,7,0,528,0
+15431,10,5,3094,2,0,2,10,2,672,1
+12108,4,4,1440,2,0,4,8,0,0,0
+6240,5,7,1078,2,0,3,8,1,360,0
+3922,7,5,1258,2,0,2,6,1,648,1
+8750,7,5,915,2,1,4,8,1,493,1
+9855,6,5,1436,1,0,3,7,1,480,0
+16492,6,6,1517,2,1,2,6,1,578,1
+11214,7,5,930,2,1,4,10,1,431,1
+8600,6,6,780,2,0,3,7,1,198,0
+6000,3,7,649,1,1,2,6,0,308,0
+5684,6,8,813,1,0,2,5,0,270,0
+70761,7,5,1533,2,0,2,5,2,576,1
+9303,6,5,872,2,1,3,7,0,422,1
+9000,8,5,768,2,1,3,6,0,676,1
+9297,5,5,1728,2,0,4,8,0,560,1
+9600,7,6,1242,1,1,3,6,1,528,1
+4571,5,5,624,1,0,4,7,0,513,0
+53227,4,6,1364,1,0,2,6,2,529,1
+5100,8,7,588,1,0,3,7,1,228,0
+7015,5,4,709,1,0,3,5,1,352,0
+8004,8,5,832,2,1,3,8,0,552,1
+7200,7,9,560,1,0,3,6,0,576,0
+8281,5,5,864,1,0,3,5,1,360,0
+11988,6,7,715,1,1,3,6,1,240,1
+8430,5,5,1040,2,0,3,5,0,0,0
+3072,7,5,1375,2,0,2,6,1,398,1
+10628,7,5,1277,1,0,2,5,1,526,1
+9480,5,7,728,1,1,3,7,2,312,0
+11428,8,5,1626,2,0,3,7,1,866,1
+9291,6,5,832,2,1,3,7,0,506,1
+6820,8,5,1488,1,1,1,4,0,528,1
+11952,7,6,808,2,1,3,8,1,534,1
+3675,6,5,547,1,0,2,5,0,525,0
+14977,8,5,1976,2,0,2,7,1,908,1
+5330,8,5,1494,2,0,2,6,0,499,1
+8480,5,6,970,1,0,2,5,0,624,0
+13125,6,5,1478,2,0,3,7,1,508,1
+13693,9,5,2153,2,1,3,9,1,694,1
+10637,8,5,1705,2,0,3,7,1,826,1
+5925,4,7,907,1,0,2,7,0,672,0
+16033,9,5,1833,2,0,3,8,1,772,1
+11846,9,5,1792,2,0,2,6,1,874,1
+2500,7,8,910,1,1,4,7,1,164,0
+4500,6,5,1216,2,0,2,5,0,402,1
+7758,5,7,999,1,0,3,6,0,264,0
+9600,5,7,1113,1,0,3,5,1,264,0
+10289,5,7,1073,1,1,3,6,0,515,0
+12243,5,6,1484,2,0,3,7,1,487,1
+10800,5,4,954,2,0,3,10,1,520,0
+1526,4,8,630,1,0,1,3,0,286,0
+2665,5,6,264,1,1,3,4,1,336,0
+9490,6,7,806,1,0,3,5,2,240,0
+15578,6,5,728,2,1,3,8,0,429,1
+7931,5,6,1269,1,1,3,6,1,308,0
+5784,5,8,190,1,0,2,4,0,273,0
+7879,4,5,720,1,0,2,4,0,0,0
+12692,8,5,3200,3,0,4,10,1,546,1
+9120,7,6,1026,2,0,4,8,0,240,1
+7800,5,7,864,1,0,3,5,0,288,0
+7535,5,7,912,1,0,2,5,0,297,0
+1890,6,5,672,1,1,3,7,0,264,0
+9803,7,5,866,2,1,3,7,0,603,1
+9170,5,7,1214,1,0,2,6,0,461,0
+15602,7,8,1501,2,0,1,6,2,484,1
+2308,6,5,855,2,1,3,6,1,440,0
+7596,5,5,960,2,0,4,10,0,400,0
+9554,8,5,777,2,1,3,8,1,471,1
+7862,6,5,1218,2,0,2,4,0,676,1
+9600,7,9,689,2,0,3,7,1,360,0
+9600,5,6,1041,1,0,3,6,0,270,0
+14559,5,7,1008,1,0,2,6,2,288,1
+6792,7,5,1368,2,0,2,6,1,474,1
+9100,5,5,864,1,0,3,5,0,624,0
+9187,6,5,1084,1,1,3,5,0,484,0
+10594,5,5,768,1,0,2,5,0,200,0
+12220,10,5,2006,2,1,3,9,1,900,1
+10448,6,6,689,2,1,3,7,1,583,0
+10208,7,5,1264,2,1,3,7,1,889,1
+9531,6,5,794,2,1,3,7,0,546,1
+10918,7,9,1276,1,1,3,9,2,282,1
+10800,4,7,0,2,0,3,7,0,0,0
+11988,6,6,1244,1,1,3,6,2,336,0
+5000,6,7,1004,2,0,3,7,2,420,0
+40094,10,5,3138,3,1,3,11,1,884,1
+11787,7,5,1379,2,1,3,8,1,834,1
+7500,7,5,1257,2,0,3,6,1,453,1
+13300,5,7,928,1,0,2,4,0,252,0
+14948,9,5,1452,2,1,3,11,1,858,1
+9098,4,7,528,1,0,2,5,0,0,0
+32668,6,3,2035,3,0,4,9,2,484,1
+10200,6,5,1461,2,0,3,5,1,600,1
+6155,6,8,611,2,0,3,6,0,502,0
+7200,5,7,0,1,0,2,5,1,392,0
+5000,1,3,0,1,0,1,2,0,0,0
+9056,8,5,707,2,1,3,6,1,403,1
+7000,5,7,1117,1,0,3,5,0,0,0
+8924,7,5,880,2,1,3,8,0,527,1
+12735,4,5,864,1,0,3,5,0,576,0
+11553,5,5,1051,1,1,3,7,1,336,0
+11423,8,5,1581,2,0,3,6,1,670,1
+14601,9,5,1838,2,0,2,8,1,765,1
+11000,8,5,969,2,1,4,8,1,648,1
+10140,7,5,1650,2,0,3,7,1,583,1
+4058,7,5,723,1,0,1,4,0,367,0
+17104,7,5,654,2,1,3,7,1,426,1
+13837,7,5,1204,2,1,4,9,0,786,1
+8737,6,7,1065,1,1,3,6,1,440,1
+7244,5,7,768,1,0,2,5,0,624,0
+8235,5,7,825,1,0,2,4,0,720,0
+9375,7,5,912,2,1,4,8,1,615,1
+4043,6,6,1069,2,0,2,4,0,440,0
+6000,5,6,928,1,0,3,5,0,288,0
+11146,8,5,1709,2,0,3,7,1,908,1
+8777,4,5,0,2,0,2,5,0,520,0
+10625,7,5,998,2,1,3,8,1,871,1
+6380,5,6,993,1,0,2,5,1,280,0
+14850,5,5,1092,1,0,2,6,1,299,0
+11040,4,6,637,1,1,3,7,0,570,0
+21872,7,5,729,2,1,3,6,1,406,1
+3196,7,5,1374,2,0,2,7,1,420,1
+11341,5,6,1392,1,1,3,5,1,528,0
+10010,5,5,1389,1,0,2,6,1,418,1
+13907,5,6,996,1,0,3,6,1,0,0
+21780,6,7,1163,2,0,4,8,1,396,1
+13346,7,5,1095,2,1,4,9,1,590,1
+6858,6,4,806,1,1,4,6,0,216,0
+11198,9,5,1122,2,1,4,11,1,656,1
+10171,7,5,1517,2,0,3,7,0,532,1
+12327,8,8,1496,1,1,1,5,1,612,1
+7032,5,5,943,1,0,2,4,2,600,0
+13101,5,5,1728,2,0,6,10,0,576,0
+7332,6,6,864,1,0,2,4,0,288,0
+13159,7,5,846,2,1,3,6,0,650,1
+9967,7,5,384,2,1,3,8,1,400,1
+10500,5,7,372,1,0,3,5,0,288,0
+8480,5,5,832,1,0,2,6,0,336,0
+6292,7,7,861,2,0,3,6,1,216,0
+11777,5,6,1164,1,0,3,6,2,564,1
+3604,7,5,689,2,0,2,5,0,540,0
+12150,5,5,1050,2,0,4,7,0,352,0
+14585,6,6,1144,1,0,3,7,2,572,1
+12704,8,5,2042,2,1,3,8,1,1390,1
+11841,6,5,816,1,0,3,5,0,0,0
+13500,10,9,1237,3,1,3,9,1,880,1
+6120,4,7,884,1,0,3,6,0,240,0
+11443,8,5,1868,2,0,2,7,2,880,1
+10267,6,7,816,1,0,2,5,0,275,0
+8740,5,6,840,1,0,2,4,0,528,0
+25095,5,8,1437,1,0,1,5,2,452,0
+9100,5,6,742,1,0,2,4,0,308,0
+8320,7,5,770,2,1,3,6,0,520,1
+13478,10,5,1722,2,1,3,10,1,842,1
+6600,5,8,816,1,0,2,4,0,816,0
+4435,6,5,848,1,0,1,4,0,420,0
+7990,5,6,924,1,0,3,5,0,280,0
+11302,8,5,1814,2,0,3,7,1,758,1
+3600,6,7,684,1,0,3,7,0,216,0
+3922,7,5,1258,0,2,2,7,1,648,1
+12984,5,6,1430,2,0,3,7,1,621,1
+1950,6,6,716,2,1,3,6,1,452,0
+10927,8,5,1058,2,1,3,8,1,736,1
+9000,6,6,780,1,1,3,6,1,544,0
+10041,8,5,908,2,1,3,8,1,506,1
+3182,7,5,600,2,1,2,4,0,480,0
+12803,7,5,1494,2,0,3,6,1,530,1
+13600,7,6,768,2,1,3,7,3,486,1
+12464,5,5,1040,1,0,3,6,0,576,0
+7800,5,8,896,3,0,3,8,0,230,1
+12168,8,6,965,2,1,4,10,2,380,1
+7943,4,5,1029,1,0,3,5,0,261,0
+11050,9,5,1440,2,1,3,8,2,736,1
+10395,6,6,1032,2,0,3,6,1,564,0
+11885,8,5,1299,2,1,3,7,1,531,1
+8402,5,5,1120,1,0,3,6,0,0,0
+1491,4,6,630,1,0,1,3,0,0,0
+8800,6,7,936,1,0,3,6,0,480,0
+7861,6,5,783,2,1,3,7,1,393,1
+7227,6,6,832,1,0,2,4,0,528,0
+11694,9,5,1822,2,0,3,9,1,774,1
+12244,8,5,1482,2,1,4,10,2,749,1
+8248,3,3,864,1,0,2,5,0,0,0
+10800,6,7,1522,2,1,4,9,1,624,1
+7064,5,6,980,1,0,3,6,0,484,0
+2117,6,5,756,2,1,2,4,1,440,1
+10400,6,5,732,1,2,4,8,1,484,1
+10000,6,6,1116,1,1,3,5,0,440,0
+12342,5,5,978,1,0,3,6,1,286,0
+9600,6,6,1156,1,0,3,7,2,364,0
+11606,5,5,1040,1,2,5,9,2,504,0
+9020,6,5,1248,1,1,3,6,0,520,1
+9000,5,6,636,1,0,3,8,0,240,0
+4590,8,5,1554,2,0,2,6,1,627,1
+11900,7,5,1386,2,0,3,6,1,544,0
+9250,5,7,1056,1,0,3,6,0,260,0
+6979,6,5,1056,0,0,0,4,0,576,0
+10896,6,7,1440,2,0,8,14,0,0,1
+6120,2,3,264,1,0,1,4,1,0,0
+6000,5,4,811,2,0,3,7,0,256,0
+8777,5,7,796,1,0,2,4,0,0,0
+3982,8,5,1520,2,0,1,7,1,648,1
+12677,8,5,1518,1,1,1,6,1,588,1
+7050,7,5,1057,2,1,3,7,1,650,1
+13860,8,7,1952,2,1,4,9,3,538,1
+10793,5,5,780,2,1,4,7,0,462,0
+9187,9,5,1766,2,1,2,7,1,478,1
+10530,6,5,981,1,1,3,5,0,576,0
+7200,5,5,0,1,0,3,7,0,420,0
+10452,6,5,1094,1,0,3,5,2,495,0
+7700,6,5,756,1,1,4,7,1,442,0
+1936,4,6,630,1,0,1,3,0,0,0
+8125,7,6,813,2,1,3,7,0,562,1
+9084,4,5,755,1,0,4,7,1,296,0
+8750,7,5,880,2,1,2,7,1,512,1
+10320,6,7,756,1,0,3,7,0,216,0
+10437,8,6,2109,2,1,2,7,1,839,1
+1680,6,5,525,1,1,3,6,0,264,0
+10007,5,7,1053,1,1,3,5,0,312,0
+7200,7,6,776,1,1,3,6,1,270,0
+17503,6,5,912,1,0,3,6,1,330,0
+9937,5,7,1486,1,0,3,7,0,480,1
+12384,7,7,793,2,1,3,7,1,550,1
+46589,8,7,1629,2,1,4,8,1,711,1
+13560,6,3,1392,1,0,2,5,2,576,0
+10012,4,5,1138,2,0,3,6,0,588,0
+20896,8,5,2077,1,1,1,8,1,1134,1
+11194,8,5,1406,2,1,3,7,1,504,1
+18450,6,5,1021,2,1,3,7,1,596,0
+8125,6,5,1408,2,0,3,7,1,575,1
+14175,5,6,1188,1,1,3,6,1,576,1
+11600,4,5,700,1,0,2,5,1,252,0
+8633,6,5,738,2,1,3,7,0,540,1
+6629,6,6,672,2,0,3,6,0,300,0
+11250,6,6,1208,1,1,3,6,1,546,1
+14442,6,7,1477,2,0,3,7,2,416,1
+9200,6,6,1136,1,0,3,5,1,384,0
+2289,6,6,855,2,1,3,7,1,440,0
+9600,4,2,1095,2,0,4,8,0,779,0
+9022,5,8,768,1,0,2,5,0,240,0
+11844,8,5,2046,2,1,3,7,1,834,1
+9945,5,5,988,1,0,3,5,0,572,0
+8012,6,5,923,2,0,2,5,1,264,0
+4500,5,5,793,1,0,3,6,0,281,0
+2887,6,5,1291,1,0,2,6,1,431,1
+11248,9,5,1626,2,0,3,7,1,702,1
+16770,7,5,1195,2,1,4,7,0,486,1
+5062,7,5,1190,2,0,3,6,1,577,1
+10207,7,6,874,3,0,3,7,0,578,1
+5105,7,5,551,2,1,2,4,0,480,0
+8089,8,6,1419,2,0,2,7,1,567,1
+7577,6,5,1362,2,0,2,6,1,460,1
+4426,6,5,848,1,0,1,3,1,420,0
+21535,10,6,2444,3,1,4,10,2,832,1
+26178,7,5,1210,2,1,4,9,2,628,1
+5400,5,6,1073,1,0,2,4,0,326,0
+6120,5,6,927,1,1,3,5,0,576,0
+13811,6,6,1112,2,0,2,5,1,551,1
+6000,5,7,616,1,0,2,4,0,205,0
+6420,5,7,980,1,0,2,6,0,308,0
+8450,5,8,894,1,0,3,5,1,336,0
+4282,7,5,1391,2,0,2,5,0,530,1
+14331,8,5,1800,2,0,3,7,1,765,1
+9600,7,5,1164,1,1,3,6,0,528,0
+12438,8,5,1234,2,1,4,10,1,666,1
+7630,5,9,360,2,0,4,8,1,672,0
+8400,7,5,1473,2,0,3,7,0,606,1
+5600,4,5,0,2,0,3,7,0,0,0
+115149,7,5,1643,2,0,2,5,2,739,1
+6240,8,5,1324,2,0,2,6,1,550,1
+9018,7,5,728,2,1,3,8,1,400,1
+7162,5,7,876,1,0,3,6,0,408,0
+4130,3,6,270,1,0,2,5,0,0,0
+8712,4,7,859,1,0,2,7,0,384,0
+4671,8,5,1228,2,0,2,5,1,472,1
+9873,4,5,960,1,0,3,6,0,576,0
+13517,6,8,725,2,1,3,6,0,475,0
+10140,6,5,1064,2,0,3,7,1,478,1
+10800,7,8,718,1,1,3,8,0,704,0
+10000,5,6,1176,1,1,3,5,1,439,0
+10542,7,5,1311,2,1,3,9,1,983,1
+9920,5,6,971,1,1,3,5,1,300,0
+6563,8,5,1742,2,0,2,5,1,564,1
+4426,6,5,848,1,0,1,3,0,420,0
+8120,4,7,864,1,0,3,5,0,463,0
+8172,4,6,941,2,0,4,7,0,548,0
+13286,9,5,1698,2,0,3,8,1,768,1
+6960,4,6,864,1,0,3,5,0,660,0
+21695,6,9,880,2,0,3,5,1,540,1
+7314,7,5,1232,2,0,2,6,0,632,1
+11475,5,5,1584,2,0,4,9,0,888,0
+6240,4,5,780,1,0,2,5,0,539,0
+5389,8,5,1595,2,0,2,5,1,608,1
+9590,7,5,868,2,0,3,6,1,438,1
+11404,7,5,1153,2,1,3,8,1,541,1
+10000,5,6,864,1,0,3,6,1,264,0
+8978,5,5,948,1,0,3,6,0,300,0
+10800,7,7,880,1,1,2,6,2,320,0
+8544,3,4,0,2,0,2,6,0,400,0
+10463,8,5,893,2,1,3,8,1,800,1
+10800,5,5,1200,3,0,3,5,0,0,1
+9313,7,5,864,2,1,3,7,0,572,1
+9600,5,7,264,2,0,2,7,0,360,0
+6768,6,8,912,1,0,3,5,0,288,0
+8450,7,5,1349,2,0,3,6,0,539,1
+12886,5,6,520,2,0,3,6,1,480,1
+5395,8,5,1337,2,0,2,5,1,462,1
+8963,8,9,1142,3,1,4,11,2,831,1
+8795,7,5,952,2,1,4,8,1,554,1
+11700,7,7,1240,1,1,4,8,1,864,1
+10593,7,5,1720,2,0,3,7,1,527,1
+8405,4,3,0,2,0,4,9,0,240,0
+8800,4,7,576,1,0,3,7,0,0,0
+7750,7,5,660,2,1,3,6,0,400,0
+9236,6,5,1479,2,0,3,6,0,576,1
+10240,8,5,1030,2,1,3,8,1,878,1
+7930,6,8,1026,1,0,3,5,0,440,0
+3230,6,5,729,2,1,3,6,0,440,1
+10769,8,5,866,2,1,3,7,0,578,1
+11616,6,5,672,2,1,3,6,1,440,0
+2280,7,5,744,2,1,3,6,0,440,1
+12257,8,5,1318,2,1,4,9,1,752,1
+9100,6,6,864,1,0,2,5,0,300,0
+6911,5,5,1145,1,0,2,5,0,440,0
+8640,7,5,756,2,1,3,7,0,614,1
+9430,8,5,1252,2,1,3,8,1,856,1
+9549,8,5,1494,1,1,2,6,1,481,1
+14587,9,5,1498,2,0,2,6,1,592,1
+10421,7,5,980,2,1,3,7,1,496,1
+12508,6,7,983,2,0,4,7,0,423,0
+9100,7,5,1860,2,0,3,8,1,484,1
+53504,8,5,1650,3,1,4,12,1,841,1
+7252,5,5,858,1,0,2,5,0,576,0
+8877,4,5,836,1,0,2,6,0,396,0
+7819,6,5,1029,1,0,3,6,1,672,0
+10150,5,5,912,1,0,2,5,0,275,0
+14226,8,5,1935,2,0,3,9,1,895,1
+4500,6,5,1204,2,0,2,5,0,412,0
+11210,7,5,1614,2,0,3,7,0,865,1
+13350,5,5,864,1,0,3,5,1,440,0
+8400,5,5,0,2,0,4,10,2,630,0
+10530,6,5,975,1,0,2,4,0,504,0
+7875,7,5,1237,2,0,3,6,1,402,1
+7153,6,5,761,2,1,3,7,0,484,1
+16285,7,5,1413,2,0,3,6,0,605,1
+9101,5,6,1097,1,0,1,4,1,602,1
+6300,6,6,742,2,0,3,9,1,0,0
+9790,6,5,1372,2,0,3,7,1,457,0
+10800,5,6,686,2,0,4,7,0,416,0
+10142,7,5,956,2,1,4,8,0,618,1
+6000,4,7,901,1,0,2,4,0,281,0
+12205,6,8,832,2,1,5,9,0,444,1
+3182,7,5,1145,2,0,2,5,1,397,0
+11333,6,5,1029,1,0,3,5,2,539,0
+9920,7,5,1117,2,1,3,8,1,455,1
+9158,8,5,1496,2,0,3,7,0,474,1
+10832,7,5,712,2,1,3,7,1,409,1
+8400,6,6,650,2,1,3,7,1,476,1
+8197,6,5,660,1,1,3,7,1,528,0
+7677,5,5,773,1,0,2,4,0,240,0
+13518,9,5,1926,3,1,4,11,2,820,1
+7200,5,7,731,1,1,3,7,2,240,1
+12798,6,5,616,2,1,4,8,0,603,1
+4800,4,7,1196,1,0,2,5,0,440,0
+8199,7,5,728,2,1,3,7,1,410,1
+13891,9,5,1734,3,1,4,12,1,1020,1
+9000,5,5,936,1,0,2,5,0,286,0
+12274,7,5,1417,2,0,3,6,0,554,1
+9750,5,5,980,2,0,3,6,0,384,0
+21384,5,6,1324,1,1,3,6,1,528,1
+13400,5,5,1024,1,0,3,6,1,484,0
+8100,5,5,849,2,0,2,11,0,360,0
+10140,6,6,1040,1,1,3,5,1,484,1
+4438,6,5,848,1,0,1,4,1,420,0
+8712,5,5,540,1,0,2,4,0,504,0
+9750,6,6,1442,1,1,4,7,0,301,0
+8248,5,7,686,1,1,3,7,0,280,0
+12137,7,5,1649,2,0,3,6,0,598,1
+11425,5,6,1008,1,0,2,4,1,275,0
+13265,8,5,1568,2,0,3,7,2,857,1
+8816,6,7,1010,1,0,3,6,0,440,0
+6371,7,5,1358,2,0,2,6,1,484,1
+7226,7,5,798,2,1,3,6,0,595,1
+6000,4,4,936,1,0,2,4,0,576,0
+12394,7,5,847,2,1,3,7,1,433,1
+9900,6,7,778,2,0,3,7,1,240,0
+11216,8,5,1489,2,0,3,7,1,776,1
+14803,10,5,2078,2,0,2,7,1,1220,1
+6130,5,6,784,1,0,2,5,0,0,0
+8529,7,5,1454,2,0,3,6,1,527,1
+28698,5,5,1013,2,1,3,7,0,538,1
+2544,7,5,600,2,1,2,4,0,480,0
+11900,6,5,1392,1,1,3,6,2,458,1
+3180,7,5,600,2,1,2,4,0,480,0
+9548,7,6,941,2,1,3,7,1,613,1
+10004,6,6,1516,1,1,3,6,0,472,1
+7875,5,6,1144,1,0,3,6,0,456,0
+9600,4,7,1067,2,0,2,4,0,436,0
+8100,5,6,1559,1,0,2,5,0,812,0
+1680,6,5,483,1,1,2,5,0,264,0
+9525,5,6,1099,1,1,3,6,0,352,0
+11767,5,6,768,1,0,3,6,0,240,0
+12155,6,8,672,2,0,4,7,0,400,0
+10440,5,8,650,2,0,3,8,1,686,0
+9020,6,7,1127,1,1,3,6,0,490,1
+8000,5,4,1800,2,0,6,10,0,0,0
+12665,5,8,876,1,1,4,7,1,720,0
+16647,5,5,1390,2,0,3,6,2,611,1
+9317,7,5,740,2,1,3,7,1,425,1
+15523,5,6,864,1,0,3,5,1,338,0
+45600,6,8,907,3,0,5,10,1,360,1
+9600,6,7,528,2,1,3,7,1,512,1
+4435,6,5,848,1,0,1,3,0,420,0
+3196,8,5,1273,2,0,2,7,1,400,1
+7128,7,5,918,2,0,4,7,2,240,1
+12095,6,6,1127,1,1,3,7,1,645,0
+17920,5,4,1763,1,1,3,6,1,454,1
+6897,5,8,1040,1,1,3,6,0,260,0
+10970,6,6,940,1,0,3,5,0,576,0
+8125,6,5,702,2,1,3,6,1,343,1
+10400,7,5,1090,2,0,3,6,1,479,0
+11029,6,7,1054,2,1,4,9,1,619,1
+7642,7,8,912,1,1,3,7,1,216,1
+11625,5,4,1039,1,1,3,6,0,504,0
+9672,6,5,1040,2,0,3,6,0,480,0
+7931,5,5,1148,1,0,3,6,0,672,0
+8640,7,5,1372,2,0,3,6,0,529,1
+8750,5,6,1002,1,0,3,5,0,902,0
+10656,8,5,1638,2,0,3,6,1,870,1
+6970,4,5,1040,1,1,3,5,0,544,0
+14762,5,6,0,2,0,2,7,1,672,1
+9938,7,5,1050,2,1,3,8,1,574,1
+6600,5,5,894,1,0,2,5,0,308,0
+8750,6,5,804,2,1,3,7,0,523,1
+8892,5,7,105,1,0,3,5,0,414,0
+12144,5,7,832,1,0,3,6,1,288,0
+5720,5,6,676,1,1,3,5,0,200,0
+9000,8,5,1184,2,1,4,11,1,550,1
+25286,4,5,1064,1,0,3,5,0,648,0
+8834,9,5,1462,2,1,4,10,1,738,1
+11782,5,7,1109,1,0,3,6,0,576,0
+7000,5,8,864,1,0,3,6,0,336,0
+7024,5,5,1090,1,1,2,5,0,450,0
+13758,7,5,1156,2,1,3,7,1,400,1
+9636,6,5,808,2,1,3,7,1,389,1
+6204,4,5,795,1,0,5,10,0,440,0
+7150,5,5,892,1,0,3,5,0,288,0
+5119,9,5,1698,2,0,2,5,1,506,1
+8393,5,5,1626,2,0,4,8,0,588,0
+16466,5,7,816,1,1,3,8,0,300,0
+15865,8,6,2217,2,0,4,8,1,621,1
+12160,6,4,1505,1,0,2,6,1,505,0
+8064,5,7,672,1,0,3,6,1,576,0
+11184,6,5,918,2,1,3,7,1,440,1
+8414,6,8,1059,1,0,3,6,0,264,0
+13284,5,5,1383,1,0,3,6,1,354,1
+7018,5,5,0,2,0,4,8,0,400,0
+7056,6,5,780,1,1,4,8,1,483,0
+8765,4,6,951,1,0,2,6,0,327,0
+7018,5,5,0,2,0,6,12,0,528,0
+12919,9,5,2330,2,1,2,11,2,820,1
+6993,5,7,912,1,0,3,6,1,288,0
+7340,4,6,858,1,0,2,4,0,684,0
+8712,5,7,992,1,0,2,5,0,756,0
+7875,7,5,783,2,1,3,8,1,393,1
+14859,7,5,1670,2,0,3,7,1,690,1
+6173,5,6,876,1,0,3,6,0,288,0
+9920,5,5,1056,1,0,3,6,0,280,0
+13501,8,5,1623,2,0,3,8,1,865,1
+11500,7,7,1017,1,1,3,6,1,180,1
+8885,5,5,864,1,0,2,5,0,484,0
+12589,6,5,742,2,1,3,8,1,390,1
+11600,5,5,1105,2,0,5,12,0,480,0
+9286,5,7,1268,1,1,3,5,0,252,0
+6120,5,7,768,1,0,3,6,0,450,0
+6270,5,6,1001,2,0,4,8,0,871,0
+3000,6,5,612,2,1,2,4,0,528,1
+2001,4,5,546,1,1,3,6,0,286,0
+9000,2,3,480,0,0,1,4,0,308,0
+17140,4,6,1134,1,0,3,6,0,284,0
+13125,7,5,1104,2,1,4,8,1,833,1
+11029,6,8,1184,1,0,3,6,1,601,1
+8462,6,5,928,2,1,3,7,0,471,1
+8777,5,7,1272,2,2,4,9,0,0,0
+10237,6,5,1316,2,0,3,6,1,397,1
+8012,6,5,1604,2,0,2,5,1,533,1
+10240,6,6,1686,2,0,3,7,1,612,1
+15611,5,6,1126,2,0,3,6,0,540,1
+11999,8,5,1181,2,1,4,10,1,656,1
+9900,7,5,832,2,1,4,9,1,486,1
+11838,8,5,1753,2,0,3,7,1,522,1
+13006,7,5,964,2,1,4,8,1,642,1
+8925,8,5,1466,2,0,3,7,0,610,1
+9100,5,6,925,1,0,2,5,0,429,0
+11670,9,5,1905,2,0,3,8,1,788,1
+8487,7,5,1500,2,0,3,6,0,570,1
+27650,7,7,585,2,0,4,9,1,505,1
+5825,4,5,600,1,0,1,5,0,528,0
+10083,7,5,1176,2,0,2,5,0,555,1
+9675,7,5,1113,2,1,3,8,1,689,1
+8760,7,5,1391,2,1,3,7,0,868,1
+24090,7,7,1032,2,0,4,10,2,349,1
+12640,6,5,1728,2,0,4,8,0,574,0
+8755,7,5,992,2,1,3,8,1,390,1
+7711,4,3,1440,2,0,4,8,0,0,0
+25000,5,4,1632,2,0,4,8,0,576,0
+14375,6,6,819,1,0,3,7,1,525,0
+8820,5,6,1088,1,0,2,7,0,456,0
+8163,5,6,1144,1,0,3,6,1,796,0
+14536,8,5,1616,2,0,3,9,1,808,1
+14006,7,5,936,2,1,3,7,1,474,1
+9360,6,7,1161,1,1,3,5,1,676,1
+7200,5,8,864,1,0,3,5,0,720,0
+7800,5,5,828,1,0,3,6,0,300,0
+7200,5,8,768,1,0,2,5,0,396,0
+11075,5,4,784,2,1,4,7,1,530,1
+9400,6,5,945,2,0,4,4,0,0,0
+7136,6,6,979,2,0,4,8,0,492,0
+1300,6,6,561,1,1,2,5,1,462,0
+7420,5,5,1057,1,0,3,6,0,576,0
+8450,7,5,1337,2,0,3,6,0,531,1
+2572,7,5,696,2,1,3,6,0,484,0
+7207,5,7,858,1,0,2,4,0,0,0
+12227,6,7,1330,2,1,4,11,1,619,1
+2308,6,6,804,2,1,3,7,1,440,0
+11923,9,5,1800,2,0,2,7,0,702,1
+11316,7,5,817,2,1,4,8,1,510,1
+10237,6,5,783,2,1,3,8,1,393,1
+9600,5,7,728,1,1,2,7,2,256,0
+7390,5,7,1098,1,0,3,6,0,260,0
+5925,3,6,600,1,0,2,6,0,0,0
+10382,6,5,588,1,0,2,6,0,264,0
+10800,4,4,720,1,1,4,6,0,0,0
+2268,7,5,764,2,0,2,6,0,474,1
+7892,6,5,918,2,0,2,5,1,264,0
+11639,7,5,1428,2,0,3,6,0,480,1
+11414,7,8,728,1,0,3,8,0,532,1
+2651,7,5,673,2,1,3,6,0,490,1
+5900,4,7,440,1,0,2,4,0,0,0
+4274,7,5,1241,1,1,1,4,0,569,1
+9450,4,5,894,1,0,3,5,0,400,0
+8816,5,6,1121,1,0,3,5,0,480,0
+12122,7,9,944,1,0,3,6,0,588,1
+12203,8,5,1225,2,1,4,8,1,676,1
+3182,7,5,1266,2,0,2,6,1,388,0
+11250,8,5,1128,2,1,4,9,1,779,1
+10125,5,5,0,2,0,4,8,0,539,0
+10880,5,5,1164,1,0,3,5,0,240,0
+5310,6,8,485,1,0,2,5,0,255,0
+10159,9,5,1930,2,1,3,8,1,606,1
+12046,6,6,848,2,1,4,8,1,551,1
+8125,7,5,770,2,1,3,6,0,614,1
+9452,8,5,1396,2,1,3,7,1,870,1
+17671,8,9,916,1,1,4,8,1,424,1
+9760,6,8,822,2,1,3,7,1,440,1
+8846,6,5,750,2,1,3,6,0,564,1
+12456,10,5,1700,2,0,3,7,1,786,1
+4712,4,7,747,1,1,3,5,0,305,0
+10659,5,6,1050,1,0,3,6,0,368,0
+11717,6,6,1442,2,0,2,6,1,615,1
+9786,3,4,1007,1,0,3,6,1,210,0
+6762,7,5,1187,2,0,2,6,0,632,1
+10206,3,3,0,1,0,2,4,0,528,0
+5400,5,6,691,1,0,2,4,0,216,0
+11957,8,5,1574,2,0,3,7,1,824,1
+11500,5,6,1680,2,0,4,8,0,528,0
+3182,7,5,1346,2,0,1,7,1,457,1
+8385,5,8,985,2,0,3,6,0,328,0
+12155,6,3,1657,2,0,3,7,1,484,1
+2217,4,4,546,1,1,3,6,0,286,0
+12118,7,5,1710,2,0,3,7,1,550,1
+6000,5,5,1008,2,0,4,7,0,0,0
+21286,5,5,720,2,0,4,7,1,312,0
+9825,5,5,0,2,0,4,8,0,0,0
+10592,6,7,602,1,1,3,7,2,180,1
+7200,5,4,1022,1,0,2,4,0,280,0
+11664,6,5,1082,1,0,2,5,1,240,0
+8400,8,6,810,2,1,3,6,0,528,1
+11883,7,5,1504,2,0,3,6,1,478,1
+5814,8,5,1220,1,0,1,4,1,565,1
+10784,7,5,384,2,1,3,7,1,402,0
+3013,7,5,1362,2,0,2,6,1,440,1
+7024,4,5,1132,1,1,2,5,0,451,1
+7406,7,5,1199,2,0,2,6,0,632,1
+9439,5,5,912,1,0,2,6,0,160,0
+3182,7,5,1346,2,0,2,7,1,437,1
+15498,8,6,1565,2,0,2,10,1,665,1
+7700,5,5,882,1,0,3,5,0,461,0
+9300,5,5,1268,1,0,3,6,2,461,1
+9520,8,5,1638,2,0,3,7,1,800,1
+9492,5,5,768,1,0,3,6,1,240,0
+1680,6,7,672,1,1,3,7,0,264,0
+7082,5,8,686,2,0,5,10,0,0,0
+15863,7,3,824,2,1,5,12,2,672,1
+14541,8,7,1338,2,1,5,10,1,796,1
+8125,7,5,1654,2,0,3,6,0,900,1
+6305,5,7,920,1,0,2,5,1,240,0
+11500,4,3,0,1,0,3,5,0,290,0
+12898,9,5,1620,2,0,2,6,1,912,1
+9240,8,5,1055,2,1,3,7,1,905,1
+1533,4,6,546,1,1,3,6,1,0,0
+1477,4,4,630,1,0,1,3,0,286,0
+13125,5,4,1134,2,0,3,8,1,484,0
+9130,6,8,800,1,1,4,7,0,484,1
+5381,6,5,1306,2,0,1,5,1,624,1
+11839,7,5,1475,2,1,4,10,1,514,1
+9600,8,5,2524,2,1,4,9,1,542,1
+13680,3,5,0,2,0,4,8,1,452,0
+16056,9,5,1992,3,1,4,11,1,716,1
+9245,5,5,990,1,0,3,5,0,672,0
+21750,5,4,0,1,0,3,9,1,336,0
+11100,4,7,0,1,0,2,6,0,308,0
+8993,7,5,1302,2,0,3,6,0,436,1
+11175,7,5,1316,2,0,3,6,1,440,1
+9500,6,6,816,1,1,4,9,1,540,1
+8562,5,6,1216,1,0,4,7,1,364,0
+11367,8,5,1065,2,1,3,7,1,586,1
+11361,6,5,1193,2,0,3,7,1,478,1
+7052,7,5,1364,2,0,2,6,1,484,1
+29959,7,6,973,2,1,3,7,1,467,1
+11308,9,5,1104,2,1,3,10,1,836,1
+11275,6,7,854,1,1,3,7,1,432,1
+4920,8,5,1338,2,0,2,6,0,582,1
+18000,3,4,894,1,0,2,6,0,1248,0
+13600,5,5,662,2,0,5,10,0,560,0
+6000,6,6,1103,1,0,2,5,1,440,0
+11000,5,6,1154,1,1,3,6,1,480,0
+14000,7,5,1306,2,1,3,7,0,533,1
+7837,6,7,799,2,1,3,7,1,380,1
+9760,6,6,780,1,1,4,7,0,442,1
+3964,6,4,942,2,1,5,10,1,576,0
+9600,5,7,845,1,0,2,4,0,576,0
+10152,5,5,1048,1,0,3,6,0,286,0
+11700,6,6,727,1,1,4,8,0,441,0
+7585,5,3,810,1,0,4,7,1,280,0
+7950,6,6,690,1,1,3,6,0,440,0
+8556,7,5,1240,2,0,2,5,0,826,1
+13125,7,6,800,1,1,3,6,2,240,1
+10800,5,8,796,2,0,3,7,1,566,1
+15870,5,5,1096,1,0,3,6,0,299,0
+4435,6,5,848,1,0,1,3,1,420,0
+8775,5,5,990,1,0,3,5,0,299,0
+11040,6,7,1258,2,0,3,5,0,528,0
+7500,5,5,1040,1,1,3,5,0,308,0
+8749,7,5,1459,2,0,3,6,1,527,1
+8800,6,6,1251,1,0,3,6,2,461,0
+13031,6,5,691,2,1,3,6,1,409,1
+9069,6,6,936,1,0,2,5,0,564,0
+1974,4,5,546,1,1,3,6,0,286,0
+10574,8,5,1082,2,1,3,9,1,1043,1
+2522,7,5,970,2,0,3,7,0,380,0
+3316,8,5,1247,1,1,1,4,1,550,1
+8544,3,4,0,2,0,2,6,0,400,0
+2160,7,5,600,2,1,2,4,0,462,0
+8400,6,5,1181,2,0,4,7,1,576,0
+9230,5,8,864,1,1,1,6,0,884,0
+5868,5,7,936,1,0,2,4,0,308,0
+9317,6,5,1314,2,0,3,6,1,440,1
+6882,6,7,684,1,1,3,7,0,0,0
+3696,8,5,1074,1,1,2,5,0,461,1
+6000,4,6,672,1,0,3,6,0,240,0
+11880,7,5,1271,2,0,3,7,1,478,0
+8400,2,5,290,1,0,1,3,0,246,0
+9758,5,5,950,1,0,3,5,0,280,0
+7000,5,7,1010,1,0,2,6,0,254,0
+8910,6,6,655,1,0,3,6,1,539,0
+2016,5,5,630,2,1,3,6,0,440,0
+12256,8,5,1463,2,1,3,9,2,712,1
+10357,7,5,910,2,0,3,6,1,719,1
+23257,7,5,868,2,1,3,9,1,422,1
+8063,6,5,924,2,1,3,7,1,463,1
+11362,8,5,1836,2,0,3,7,1,862,1
+8000,6,5,773,2,1,3,8,1,431,1
+10480,7,6,803,2,1,4,8,1,483,1
+7100,5,7,816,1,0,2,5,0,308,0
+8923,5,7,1008,1,0,2,6,0,240,0
+5400,5,7,833,1,0,2,4,0,326,0
+12085,8,5,1734,2,0,3,7,1,928,1
+7750,8,5,408,2,1,3,7,1,527,1
+9764,5,7,894,1,0,3,5,0,450,0
+13825,5,6,533,1,0,3,6,0,300,0
+7560,5,5,1040,1,0,3,6,0,286,0
+8263,6,5,1012,1,0,2,6,1,308,0
+10084,7,5,1552,2,0,3,7,0,782,1
+8926,4,3,672,1,0,3,5,0,288,0
+9405,5,9,698,1,0,2,4,0,0,0
+9125,7,5,384,2,1,3,7,1,392,1
+10434,4,5,1005,1,0,2,5,1,672,0
+3684,7,5,1373,2,0,2,7,1,660,1
+14572,7,5,1530,2,0,3,7,1,630,1
+11796,7,5,847,2,1,4,8,1,434,1
+7200,5,5,936,1,0,2,4,0,672,0
+7804,4,3,1122,2,0,4,7,2,576,0
+10712,5,5,974,1,0,3,5,0,0,0
+9900,6,4,1008,2,0,5,8,0,205,0
+9828,8,5,1128,2,1,3,8,1,466,1
+8773,6,5,916,2,1,3,7,1,460,1
+6180,6,5,960,1,0,2,5,1,180,0
+9600,6,5,1032,1,0,3,6,0,288,0
+6342,5,8,780,1,0,2,6,0,0,0
+9819,6,5,1567,2,0,2,5,2,714,1
+8731,5,5,915,1,0,3,6,1,495,0
+7350,5,7,952,1,0,2,4,0,840,0
+10304,5,7,780,2,1,4,9,1,484,1
+9965,8,5,1466,3,0,4,11,1,1052,1
+9000,5,3,1006,1,0,3,5,0,0,0
+12180,4,4,672,1,0,2,5,0,280,0
+6240,5,6,1042,1,0,3,8,1,225,0
+11200,6,5,1298,2,0,3,5,1,403,1
+12000,7,7,704,1,1,3,7,1,234,1
+5700,7,7,572,1,0,2,5,1,288,0
+9000,7,9,650,1,0,3,7,0,324,0
+8280,6,5,932,1,0,2,4,1,306,0
+17755,5,4,1466,1,1,3,6,2,528,0
+14115,6,7,1073,1,0,2,6,1,470,1
+5890,6,8,816,1,0,2,5,0,432,0
+13700,7,6,864,1,2,4,8,2,492,1
+10768,5,8,1437,2,0,3,6,1,528,1
+9350,5,8,1219,2,0,3,6,1,502,1
+5001,7,5,1314,2,0,2,6,1,626,1
+11932,8,5,1580,2,0,3,7,0,830,1
+9120,6,6,901,2,1,4,8,1,540,1
+2280,6,5,855,2,1,3,7,1,440,0
+14778,6,7,1296,1,0,3,7,1,924,1
+8724,5,5,894,1,0,3,5,1,450,0
+12900,4,4,1198,0,2,0,6,0,400,0
+16157,5,7,1360,1,1,2,5,1,588,1
+9541,7,5,1502,2,0,3,7,0,644,1
+10475,8,5,1694,2,0,3,7,0,776,1
+10852,6,5,959,2,1,3,7,1,472,1
+13728,6,7,1127,2,0,4,7,2,540,1
+35760,10,5,1930,3,1,4,10,1,807,1
+9880,6,6,1096,1,0,3,6,1,358,1
+9120,6,6,1261,1,0,3,6,1,433,0
+4017,7,5,625,2,1,2,5,0,625,1
+18030,5,6,1598,3,0,3,12,1,0,1
+16560,6,8,952,2,1,4,9,1,360,1
+10678,8,5,1683,2,1,4,9,1,541,1
+6951,5,5,876,1,0,3,5,0,264,0
+3950,6,8,818,1,0,3,5,0,210,0
+7681,5,6,731,1,1,3,7,1,186,0
+8335,5,5,0,1,0,3,5,1,0,0
+11170,7,5,1216,2,1,4,8,0,693,1
+5587,8,5,1600,2,0,2,5,1,482,1
+15623,10,5,2396,3,1,4,10,2,813,1
+10800,5,6,1120,1,0,2,5,1,720,0
+35133,5,4,1572,1,1,3,5,2,995,1
+9738,5,7,784,1,0,4,7,0,392,0
+10615,3,5,978,2,0,3,7,0,420,0
+12461,8,5,1624,2,0,2,5,1,757,1
+8935,7,5,831,2,1,3,7,0,493,1
+7500,7,5,994,2,1,3,7,1,442,1
+32463,4,4,1249,1,0,3,7,1,1356,1
+2645,8,5,776,2,1,2,5,0,492,1
+9600,5,8,702,1,0,3,6,0,250,0
+4500,6,5,1224,2,0,2,5,0,402,1
+9364,6,7,663,1,1,4,7,0,299,0
+8029,6,5,728,2,1,3,8,0,400,1
+14054,7,5,879,2,1,4,9,1,660,1
+8850,7,6,815,1,0,3,7,1,225,0
+9100,7,5,1212,2,0,3,6,0,573,1
+11235,4,5,1051,1,1,3,6,1,459,0
+9353,4,5,864,1,0,3,5,0,280,0
+10400,7,5,866,2,1,3,6,0,546,1
+6000,5,8,884,1,0,3,5,1,216,0
+9750,7,5,1630,2,0,3,6,1,451,1
+10140,5,6,1056,1,1,3,6,0,495,0
+14684,7,7,2158,2,0,3,7,1,701,1
+8900,4,4,1056,1,0,2,5,0,384,0
+9135,6,5,1682,2,0,3,7,0,544,1
+7763,5,7,931,1,0,3,6,0,506,0
+10182,8,5,1660,2,0,3,8,1,500,1
+11218,6,5,1055,2,1,3,8,1,462,1
+12134,8,7,559,2,0,4,8,0,492,1
+9340,4,6,672,1,0,2,4,0,234,0
+10246,4,9,648,0,0,0,3,0,364,0
+10205,5,5,925,1,0,3,6,0,300,0
+7094,5,5,894,1,0,3,5,0,384,0
+8930,6,5,0,2,0,4,8,0,539,0
+8640,8,5,1300,2,0,3,6,0,552,1
+6240,4,5,0,1,0,2,3,0,0,0
+1680,6,5,672,1,1,3,7,0,0,0
+7800,5,5,912,1,0,2,5,0,288,0
+8250,5,5,952,1,0,3,5,1,322,0
+10496,6,6,1040,2,0,3,7,1,315,0
+10680,5,3,2136,2,0,4,7,0,528,0
+15384,7,5,788,2,1,3,8,1,388,1
+10482,6,8,588,1,0,3,6,0,264,0
+14598,6,5,894,2,1,4,9,1,668,1
+8872,5,8,912,1,0,2,5,0,576,0
+8769,9,5,1702,1,1,1,7,1,1052,1
+7910,5,5,1075,2,0,4,7,0,404,0
+18890,5,5,1361,2,2,4,12,1,600,1
+7728,5,6,1106,1,0,3,6,0,540,0
+9842,4,5,0,2,0,2,6,0,462,0
+12160,5,5,1188,1,0,3,6,0,531,0
+8525,5,6,940,1,1,4,7,0,0,0
+13132,5,5,747,1,1,4,9,0,180,0
+2628,7,5,764,2,1,2,6,0,474,1
+12393,7,5,847,2,1,4,8,1,434,1
+13072,6,5,1141,1,1,3,6,0,484,0
+9037,8,5,1476,2,0,2,6,1,472,1
+8158,7,5,884,2,1,3,8,0,543,1
+9849,7,6,1689,2,0,3,7,0,954,1
+10625,7,6,1053,2,0,3,6,2,528,1
+13891,10,5,2076,2,1,2,7,1,850,1
+11435,8,7,792,1,0,3,7,2,400,1
+12090,6,7,585,3,1,3,7,1,477,1
+8125,7,5,756,2,1,3,6,0,615,1
+12328,6,5,1012,1,0,3,6,0,888,1
+9600,6,5,735,1,1,3,8,1,396,0
+7200,5,7,876,1,0,3,6,0,276,0
+11160,7,5,2110,2,1,3,8,2,522,1
+3136,7,5,1405,2,0,2,6,1,478,1
+9858,5,6,864,1,0,3,5,0,288,0
+17542,7,7,1192,2,1,3,9,2,518,1
+6931,7,5,746,2,1,3,7,1,397,1
+6240,6,6,884,1,0,3,6,1,560,0
+14303,8,5,1986,2,0,2,7,1,691,1
+4060,5,8,864,1,0,2,4,0,0,0
+9587,7,5,856,2,0,2,5,0,400,1
+9750,6,8,1054,1,1,3,6,0,460,0
+24682,6,5,841,2,1,3,7,1,502,1
+9600,5,6,1050,1,0,2,5,0,338,0
+11250,4,5,1104,1,0,5,8,2,304,0
+13515,6,6,764,1,0,3,8,1,520,1
+4060,6,5,1405,2,0,2,5,0,511,1
+3735,7,5,691,2,1,3,6,0,506,1
+10120,7,4,925,1,1,4,9,1,308,0
+13214,9,5,2002,2,0,3,10,1,746,1
+14100,8,9,728,3,1,4,11,2,1014,1
+11344,5,5,874,1,1,3,7,0,315,0
+23595,7,6,1332,0,1,0,4,1,586,1
+9156,6,7,1489,2,0,3,7,1,462,1
+13526,5,6,935,1,0,3,5,0,288,0
+11512,6,7,1019,1,0,2,5,1,312,1
+5362,5,6,661,2,0,3,8,1,552,0
+11345,5,5,928,2,0,4,10,0,400,0
+12936,6,6,723,1,1,3,6,1,497,0
+17871,6,5,1680,1,1,3,7,1,480,1
+9473,8,5,1128,2,1,3,7,1,577,1
+7500,4,4,698,1,0,2,6,0,528,0
+9808,7,5,1573,2,0,3,6,0,544,1
+8049,7,5,1309,2,0,2,6,1,484,1
+8800,5,7,1040,2,0,3,5,0,484,0
+9400,6,5,912,2,2,4,8,0,0,0
+9638,6,7,804,2,0,4,10,1,336,1
+6000,6,6,780,1,0,4,6,1,280,0
+9790,6,5,1328,1,1,3,6,2,528,0
+36500,5,5,1624,2,0,4,7,0,390,1
+5664,8,5,1501,2,0,2,5,1,499,1
+11065,8,5,1085,2,1,3,8,1,753,1
+14112,5,7,1152,1,0,3,6,1,484,1
+1680,5,7,630,2,1,3,6,0,264,0
+6600,5,4,994,2,0,4,11,0,432,0
+10140,7,5,832,2,1,4,8,1,528,0
+8172,5,7,864,1,0,2,5,0,572,0
+8400,5,5,1052,1,1,3,5,0,288,0
+8700,5,6,1120,2,0,3,6,0,525,0
+3675,6,5,547,2,0,2,5,0,525,0
+63887,10,5,6110,2,1,3,12,3,1418,0
+7500,5,7,1246,1,1,3,6,0,305,0
+10762,7,5,978,2,1,3,9,1,490,1
+7500,6,7,771,1,0,3,7,2,213,1
+10120,8,5,1165,2,1,4,8,1,844,1
+8688,7,5,1616,2,0,3,7,0,834,1
+3363,7,5,976,2,0,3,7,0,380,0
+13173,9,5,1652,2,0,2,6,2,840,1
+6955,7,5,1368,2,0,2,6,1,474,1
+8072,5,5,990,1,0,3,5,0,480,0
+12000,5,7,924,1,0,2,6,0,528,0
+7153,6,5,1278,2,0,3,6,0,496,1
+17500,7,8,1902,2,0,3,7,2,567,1
+8814,7,5,1274,2,0,3,6,0,508,1
+9572,8,5,1453,2,1,4,9,1,750,1
+14774,9,5,1393,2,1,4,10,1,779,1
+8190,4,6,948,1,0,3,5,1,280,0
+11075,6,5,952,2,1,4,9,2,576,1
+10226,8,5,1622,2,0,3,8,1,860,1
+4230,7,5,1352,2,0,2,5,1,466,1
+14781,8,5,1753,2,0,3,7,1,748,1
+10215,4,5,864,1,0,3,5,0,248,0
+8400,6,3,1478,1,1,3,6,2,442,0
+6627,3,6,0,1,0,2,4,0,287,0
+10186,7,5,750,2,1,3,8,1,564,1
+5330,4,7,420,1,0,2,5,0,0,0
+9986,8,5,1795,2,0,2,7,1,895,0
+3636,4,4,796,1,0,2,5,0,0,0
+4270,3,6,544,1,0,3,6,0,0,0
+6600,5,9,816,1,0,3,5,1,264,0
+10440,6,7,1510,2,0,5,8,2,520,1
+9084,7,5,935,2,1,3,8,1,462,1
+10000,8,5,1588,2,0,3,7,1,825,1
+10780,5,5,911,1,0,3,6,0,576,0
+8877,4,6,816,1,0,2,3,1,288,0
+7200,5,6,803,1,1,2,6,0,297,0
+2368,5,6,765,1,1,3,7,0,440,0
+9650,6,5,1350,2,0,2,6,1,630,1
+9246,5,5,1656,2,0,4,8,0,506,0
+4118,4,4,693,1,0,2,4,0,0,0
+13450,7,5,916,2,1,3,8,0,492,1
+9560,5,7,864,1,0,3,5,0,288,0
+8294,4,5,858,1,0,3,5,0,480,0
+13695,6,5,1114,1,0,3,6,0,576,0
+9375,8,5,1284,2,1,3,7,1,647,1
+7558,6,6,896,1,1,3,9,1,342,1
+11103,7,5,728,2,1,3,8,1,440,0
+6000,4,4,960,1,0,2,5,0,308,0
+20781,7,7,1568,2,0,3,9,1,508,1
+15306,8,5,1732,2,0,3,7,1,712,1
+16196,7,5,1482,2,0,3,5,1,514,1
+5250,8,5,684,2,0,4,8,0,0,0
+11643,5,5,1248,2,2,6,12,0,968,1
+9247,6,6,858,1,1,4,8,1,490,1
+6000,6,9,698,1,0,2,4,0,624,0
+14720,8,5,2033,2,1,4,9,1,666,1
+10316,7,5,992,2,1,3,7,1,839,1
+10192,7,6,570,3,0,4,8,1,487,1
+9477,5,5,864,1,0,3,5,0,264,0
+12537,5,6,1078,1,1,3,6,1,500,0
+2117,6,5,756,2,1,3,5,0,440,1
+16737,9,5,1980,2,0,3,8,1,770,1
+9842,5,6,612,3,1,4,8,0,621,1
+16158,7,5,1530,2,0,3,7,1,430,1
+12513,4,4,715,2,0,4,7,1,368,0
+8499,6,5,616,2,1,3,6,1,432,0
+3180,7,5,600,2,1,2,4,0,480,0
+7500,7,5,814,2,1,3,7,0,663,1
+9179,7,5,873,2,1,3,7,0,588,1
+2665,5,6,757,2,0,4,6,1,336,0
+4435,6,5,848,1,0,1,4,0,420,0
+10635,8,5,1657,2,0,3,8,1,502,1
+5400,4,6,840,1,0,2,6,0,338,0
+9600,6,6,992,1,0,3,8,1,377,1
+9750,7,6,1108,2,1,3,8,1,583,1
+11400,10,5,2633,2,1,2,8,2,804,1
+10625,7,5,1026,2,1,3,9,1,936,1
+10991,8,5,1571,2,0,3,7,1,722,1
+6292,6,5,768,1,0,2,4,0,160,0
+10998,5,5,984,2,0,3,6,0,660,0
+1953,6,5,483,1,1,2,5,0,264,0
+9735,5,5,384,2,1,3,7,0,400,1
+8212,3,3,864,1,0,2,5,0,200,0
+12925,6,7,1205,2,1,4,7,2,550,1
+7200,7,7,596,1,1,4,8,0,576,0
+25339,5,7,816,2,0,3,7,0,576,0
+9060,6,5,560,1,0,2,6,0,280,0
+5436,4,8,796,1,0,3,7,0,240,0
+16692,7,5,1392,3,1,5,12,2,564,1
+8520,6,7,714,2,0,5,10,1,216,0
+14892,9,5,1746,2,0,3,7,2,758,1
+6000,6,6,735,1,0,3,6,1,440,0
+9100,7,5,1525,2,0,3,6,0,541,1
+8944,5,5,1584,2,0,4,8,0,792,0
+7838,5,5,864,1,0,3,6,1,288,0
+10800,6,7,482,2,0,3,7,1,672,0
+4045,7,5,1356,2,0,2,6,1,648,1
+12665,8,5,1094,2,1,4,9,1,642,1
+57200,5,5,747,1,0,3,7,2,572,0
+6120,5,8,939,1,1,4,8,0,180,0
+7200,5,4,1208,1,1,3,7,0,240,0
+6171,6,6,976,2,1,3,7,1,216,0
+6000,6,7,862,1,0,3,5,1,208,0
+7415,6,5,839,2,1,3,8,1,398,1
+6762,7,5,1286,2,0,2,6,1,662,1
+15256,8,5,1485,2,0,3,6,0,754,1
+10410,3,4,672,1,0,3,6,0,936,0
+3842,8,5,1594,2,0,2,5,1,482,1
+8445,5,7,768,1,0,2,5,0,396,0
+8780,5,5,833,1,0,3,5,0,0,0
+7740,4,7,622,1,0,3,6,0,528,0
+20544,7,6,791,2,1,3,7,1,542,1
+12420,7,5,944,2,1,3,6,0,622,1
+9600,6,8,856,1,1,3,6,0,271,0
+7200,4,5,0,2,0,2,6,0,420,0
+10994,8,5,1844,2,0,2,7,1,620,1
+13053,6,7,833,1,1,4,8,1,370,1
+3635,7,5,1386,2,0,1,7,1,660,1
+11340,4,6,777,2,0,4,11,0,560,0
+16545,8,5,1284,2,1,3,7,1,1069,1
+9204,5,5,1144,1,1,3,6,0,336,0
+16381,6,5,1844,2,0,3,7,1,540,1
+11700,6,6,708,2,1,3,7,1,776,1
+4043,6,5,1069,2,0,2,4,1,440,0
+4435,6,5,848,1,0,1,3,0,420,0
+19690,6,7,697,2,0,4,8,1,432,1
+9503,5,5,1024,1,0,2,6,1,484,0
+10721,6,6,1252,1,0,3,7,0,528,0
+10944,7,5,1223,2,1,3,5,2,525,1
+10930,5,6,913,1,1,3,6,1,288,0
+7200,5,7,788,1,0,2,4,2,240,0
+12546,6,7,1440,2,0,3,7,1,467,1
+21930,5,5,732,2,1,4,7,1,372,1
+4928,6,6,958,2,0,2,5,0,440,0
+10800,4,6,656,2,0,4,5,0,216,0
+10261,6,5,936,2,1,3,8,1,451,1
+17400,5,5,1126,2,0,3,5,1,484,0
+8400,6,9,1319,1,1,3,7,1,462,1
+9000,4,6,864,1,0,3,5,0,528,0
+12444,8,5,1932,2,0,2,7,1,774,1
+7407,6,7,912,1,0,2,6,0,923,0
+11584,7,6,539,2,1,3,6,1,550,1
+11526,6,7,588,2,0,3,11,1,672,1
+4426,6,5,848,1,0,1,3,1,420,0
+11003,10,5,1017,2,1,3,10,1,812,1
+8854,6,6,952,1,0,2,4,1,192,0
+8500,7,5,1422,2,0,3,7,0,626,1
+8400,6,5,814,1,0,3,6,0,240,0
+26142,5,7,1188,1,0,3,6,0,312,0
+10000,8,5,1220,2,1,3,8,1,556,1
+11767,4,7,560,1,1,2,6,0,384,0
+1533,5,7,630,1,0,1,3,0,0,0
+9000,5,5,896,2,2,4,8,0,0,0
+9262,8,5,1573,2,0,3,7,1,840,1
+3675,5,5,547,1,0,2,5,0,525,0
+17217,5,5,1140,1,0,3,6,0,0,0
+7500,7,5,1221,2,0,2,6,0,400,1
+7917,6,5,953,2,1,3,7,1,460,1
+13175,6,6,1542,2,0,3,7,2,500,1
+9042,7,9,1152,2,0,4,9,2,252,1
+9717,5,6,1078,1,0,2,5,0,240,0
+9937,5,6,1256,1,1,3,6,0,276,0