diff --git a/dynamics_learning/dynamics_learning/preprocessing/dataset_analysis.py b/dynamics_learning/dynamics_learning/preprocessing/dataset_analysis.py index ff50461f4aead6dd61349b26eb61280e848a49c7..c45524fc2c805a27d27c9015a01086f56067f4e8 100644 --- a/dynamics_learning/dynamics_learning/preprocessing/dataset_analysis.py +++ b/dynamics_learning/dynamics_learning/preprocessing/dataset_analysis.py @@ -1,154 +1,177 @@ - -# Import and variables +# Import necessary libraries and modules import sys -sys.path.append("src") -sys.path.append("..") +sys.path.append("src") # Add 'src' directory to system path +sys.path.append("..") # Add parent directory to system path import numpy as np import matplotlib.pyplot as plt import pandas as pd import rwth_style -import panda_limits +import panda_limits import os from scipy.optimize import curve_fit from sklearn.metrics import r2_score from rich import print from rich.progress import track -def gauss(x, *p): +# Define a Gaussian function for curve fitting +def gauss(x: np.ndarray, *p: float) -> np.ndarray: + """ + Gaussian function for curve fitting. + + Args: + x (np.ndarray): The input data. + p (float): Parameters A, mu, sigma. + + Returns: + np.ndarray: The Gaussian function applied to the input data. + """ A, mu, sigma = p - return A*np.exp(-(x-mu)**2/(2.*sigma**2)) + return A * np.exp(-(x - mu)**2 / (2. * sigma**2)) +# Initial guess for Gaussian parameters p0 = [1, 0, 1] -def analize(): - for directory in ["dataset_v1", "dataset_v2", "dataset_v3"]: - for dataset in ["train", "test"]: - attained_freqs = np.empty([0,1]) +def analyze() -> None: + """ + Analyzes datasets in specified directories, generates statistics, and creates plots. + + This function processes datasets, performs statistical analysis, and saves the results + and plots for each dataset. + + Returns: + None + """ + directories = ["dataset_v1", "dataset_v2", "dataset_v3"] + datasets = ["train", "test"] + + for directory in directories: + for dataset in datasets: + # Initialize empty arrays for data collection + attained_freqs = np.empty([0, 1]) duration_meas = np.empty(0, np.float32) num_samples_meas = np.empty(0, np.float32) - q_command = np.empty((0,7), np.float32) - qd_command = np.empty((0,7), np.float32) - qdd_command = np.empty((0,7), np.float32) - q_meas = np.empty((0,7), np.float32) - qd_meas = np.empty((0,7), np.float32) - tau_meas = np.empty((0,7), np.float32) - directory_in = "data/{}/{}".format(directory, dataset) + q_command = np.empty((0, 7), np.float32) + qd_command = np.empty((0, 7), np.float32) + qdd_command = np.empty((0, 7), np.float32) + q_meas = np.empty((0, 7), np.float32) + qd_meas = np.empty((0, 7), np.float32) + tau_meas = np.empty((0, 7), np.float32) + + directory_in = f"data/{directory}/{dataset}" file_list = list(filter(lambda k: 'meas.csv' in k, sorted(os.listdir(directory_in)))) for filename in track(file_list): - data2 = np.genfromtxt(os.path.join(directory_in, filename), dtype=float, delimiter=',') - t_meas = data2[:,0] - time_diffs = np.diff(t_meas) - attained_freq = np.mean(1/time_diffs) - attained_freqs = np.append(attained_freqs, attained_freq) - num_samples_meas = np.concatenate((num_samples_meas, [data2.shape[0]])) - duration_meas = np.concatenate((duration_meas, [data2[-1, 0]]), axis=0) - q_meas = np.concatenate((q_meas, data2[:, 1:8]), axis=0) - qd_meas = np.concatenate((qd_meas, data2[:, 8:15]), axis=0) - tau_meas = np.concatenate((tau_meas, data2[:, 15:22]), axis=0) - filename2 = filename.replace("meas", "com") - data1 = np.genfromtxt(os.path.join(directory_in, filename2), dtype=float, delimiter=',') - q_command = np.concatenate((q_command, data1[:,1:8]), axis=0) - qd_command = np.concatenate((qd_command, data1[:, 8:15]), axis=0) - qdd_command = np.concatenate((qdd_command, data1[:, 15:22]), axis=0) + # Read measurement data + data2 = np.genfromtxt(os.path.join(directory_in, filename), dtype=float, delimiter=',') + t_meas = data2[:, 0] + time_diffs = np.diff(t_meas) + attained_freq = np.mean(1 / time_diffs) + attained_freqs = np.append(attained_freqs, attained_freq) + num_samples_meas = np.concatenate((num_samples_meas, [data2.shape[0]])) + duration_meas = np.concatenate((duration_meas, [data2[-1, 0]]), axis=0) + q_meas = np.concatenate((q_meas, data2[:, 1:8]), axis=0) + qd_meas = np.concatenate((qd_meas, data2[:, 8:15]), axis=0) + tau_meas = np.concatenate((tau_meas, data2[:, 15:22]), axis=0) + + # Read command data + filename2 = filename.replace("meas", "com") + data1 = np.genfromtxt(os.path.join(directory_in, filename2), dtype=float, delimiter=',') + q_command = np.concatenate((q_command, data1[:, 1:8]), axis=0) + qd_command = np.concatenate((qd_command, data1[:, 8:15]), axis=0) + qdd_command = np.concatenate((qdd_command, data1[:, 15:22]), axis=0) - df = pd.DataFrame({"# trajecotries":[duration_meas.size], - "Duration Sum [s]": np.sum(duration_meas), - "Duration Min [s]": np.min(duration_meas), - "Duration Max [s]":np.max(duration_meas), - "Duration Mean [s]":np.mean(duration_meas), - "# Samples Sum":np.sum(num_samples_meas), - "# Samples Min":np.min(num_samples_meas), - "# Samples Max":np.max(num_samples_meas), - "# Samples Mean":np.mean(num_samples_meas) - }) + # Create DataFrame for trajectory analysis + df = pd.DataFrame({ + "# trajectories": [duration_meas.size], + "Duration Sum [s]": np.sum(duration_meas), + "Duration Min [s]": np.min(duration_meas), + "Duration Max [s]": np.max(duration_meas), + "Duration Mean [s]": np.mean(duration_meas), + "# Samples Sum": np.sum(num_samples_meas), + "# Samples Min": np.min(num_samples_meas), + "# Samples Max": np.max(num_samples_meas), + "# Samples Mean": np.mean(num_samples_meas) + }) df.index = ['Value'] - df1 = df.T - df1.to_csv('data/{}/analysis/trajectory_analysis_{}.csv'.format(directory, dataset), float_format='%.3f') - + df.T.to_csv(f'data/{directory}/analysis/trajectory_analysis_{dataset}.csv', float_format='%.3f') + # Attained frequency analysis freq_mu = np.mean(attained_freqs) freq_sigma = np.std(attained_freqs) freq_worst_case = np.max(freq_mu - attained_freqs) + with plt.style.context("default"): - num_col = 1 - num_row = 1 - fig, axs = plt.subplots(num_row, num_col, figsize=(10,4)) - count, bins, ignored = axs.hist(attained_freqs, density=True, bins=50, color=rwth_style.blue) - plt.plot(bins, 1/(freq_sigma * np.sqrt(2 * np.pi)) * - np.exp( - (bins - freq_mu)**2 / (2 * freq_sigma**2) ),linewidth=2, color=rwth_style.red) - axs.grid() - axs.set_title(r'$\mathrm{Histogram\ of\ Frequency:}\ \mu=%.3f Hz,\ \sigma=%.3f$ Hz' %(freq_mu, freq_sigma)) - axs.set_ylabel("Probability") - axs.set_xlabel("Frequency") + fig, ax = plt.subplots(figsize=(10, 4)) + ax.hist(attained_freqs, density=True, bins=50, color='blue') + bins = np.linspace(min(attained_freqs), max(attained_freqs), 50) + ax.plot(bins, 1 / (freq_sigma * np.sqrt(2 * np.pi)) * np.exp(-(bins - freq_mu)**2 / (2 * freq_sigma**2)), linewidth=2, color='red') + ax.grid() + ax.set_title(f'Histogram of Frequency: μ={freq_mu:.3f} Hz, σ={freq_sigma:.3f} Hz') + ax.set_ylabel("Probability") + ax.set_xlabel("Frequency") fig.tight_layout() - fig.savefig("data/{}/analysis/hist_freq_{}.png".format(directory, dataset)) + fig.savefig(f"data/{directory}/analysis/hist_freq_{dataset}.png") plt.close(fig) - + + # Feature analysis values = [q_command, qd_command, qdd_command, tau_meas] names = ["q", "qd", "qdd", "tau"] - labels_y = ["Position [rad]", "Velocity [rad-s]", "Acceleration [rad-s^2]", "Torque [Nm]"] - units = ["[rad]", "[rad-s]", "[rad-s^2]", "[Nm]"] + labels_y = ["Position [rad]", "Velocity [rad/s]", "Acceleration [rad/s^2]", "Torque [Nm]"] + units = ["[rad]", "[rad/s]", "[rad/s^2]", "[Nm]"] titles = ["Command Position", "Command Velocity", "Command Acceleration", "Measured Torque"] labels = ['Axis 1', 'Axis 2', 'Axis 3', 'Axis 4', 'Axis 5', 'Axis 6', 'Axis 7'] - # phyiscal limits + min_limits_phys = [panda_limits.q_lim_min_phys, panda_limits.qd_lim_min_phys, panda_limits.qdd_lim_min_phys, panda_limits.tau_lim_min_phys] max_limits_phys = [panda_limits.q_lim_max_phys, panda_limits.qd_lim_max_phys, panda_limits.qdd_lim_max_phys, panda_limits.tau_lim_max_phys] - # Moveit limits min_limits_moveit = [panda_limits.q_lim_min_moveit, panda_limits.qd_lim_min_moveit, panda_limits.qdd_lim_min_moveit, panda_limits.tau_lim_min_moveit] max_limits_moveit = [panda_limits.q_lim_max_moveit, panda_limits.qd_lim_max_moveit, panda_limits.qdd_lim_max_moveit, panda_limits.tau_lim_max_moveit] - length= len(values) - - for i in range(length): + + for i in range(len(values)): value = values[i] std = np.std(value, axis=0) mean = np.mean(value, axis=0) - min = np.min(value, axis=0) - max = np.max(value, axis=0) - phy_mean = (max_limits_phys[i]+min_limits_phys[i])/2 - cov_max_phys = (max-min) / (max_limits_phys[i]-min_limits_phys[i]) * 100 # Percentage of used working space - cov_std_phys = (2*std) / (max_limits_phys[i]-min_limits_phys[i]) * 100 # Percentage of used working space based on standard deviaton - cov_max_moveit = (max-min) / (max_limits_moveit[i]-min_limits_moveit[i]) * 100 # Percentage of used working space - cov_std_moveit = (2*std) / (max_limits_moveit[i]-min_limits_moveit[i]) * 100 # Percentage of used working space based on standard deviaton + min_val = np.min(value, axis=0) + max_val = np.max(value, axis=0) + phy_mean = (max_limits_phys[i] + min_limits_phys[i]) / 2 + cov_max_phys = (max_val - min_val) / (max_limits_phys[i] - min_limits_phys[i]) * 100 + cov_std_phys = (2 * std) / (max_limits_phys[i] - min_limits_phys[i]) * 100 + cov_max_moveit = (max_val - min_val) / (max_limits_moveit[i] - min_limits_moveit[i]) * 100 + cov_std_moveit = (2 * std) / (max_limits_moveit[i] - min_limits_moveit[i]) * 100 - df = pd.DataFrame({"Att. Mean {}".format(units[i]):mean, - "Phys. Mean {}".format(units[i]):phy_mean, - "MoveIt Mean {}".format(units[i]):phy_mean, - - "Att. Min {}".format(units[i]):min, - "Phys. Min {}".format(units[i]):min_limits_phys[i], - "MoveIt Min {}".format(units[i]):min_limits_moveit[i], - - "Att. Max {}".format(units[i]):max, - "Phys. Max {}".format(units[i]):max_limits_phys[i], - "MoveIt Max {}".format(units[i]):max_limits_moveit[i], - - "Phy. Coverage Min/Max [\\%]":cov_max_phys , - "MoveIt Coverage Min/Max [\\%]":cov_max_moveit , - - "Att. Std {}".format(units[i]):std, - "Phy. Coverage Std [\\%]":cov_std_phys , - "MoveIt Coverage Std [\\%]":cov_std_moveit , - }) - df.index = ['Axis_1', 'Axis_2', 'Axis_3', 'Axis_4', 'Axis_5', 'Axis_6', 'Axis_7'] - df1 = df.T - df1.to_csv('data/{}/analysis/feature_analysis_{}_{}.csv'.format(directory, dataset, names[i]), float_format='%.3f') + df = pd.DataFrame({ + f"Att. Mean {units[i]}": mean, + f"Phys. Mean {units[i]}": phy_mean, + f"MoveIt Mean {units[i]}": phy_mean, + f"Att. Min {units[i]}": min_val, + f"Phys. Min {units[i]}": min_limits_phys[i], + f"MoveIt Min {units[i]}": min_limits_moveit[i], + f"Att. Max {units[i]}": max_val, + f"Phys. Max {units[i]}": max_limits_phys[i], + f"MoveIt Max {units[i]}": max_limits_moveit[i], + "Phy. Coverage Min/Max [%]": cov_max_phys, + "MoveIt Coverage Min/Max [%]": cov_max_moveit, + f"Att. Std {units[i]}": std, + "Phy. Coverage Std [%]": cov_std_phys, + "MoveIt Coverage Std [%]": cov_std_moveit, + }) + df.index = ['Axis 1', 'Axis 2', 'Axis 3', 'Axis 4', 'Axis 5', 'Axis 6', 'Axis 7'] + df.T.to_csv(f'data/{directory}/analysis/feature_analysis_{dataset}_{names[i]}.csv', float_format='%.3f') + # Create bar plots for limits and measured values x_pos = np.arange(len(labels)) with plt.style.context("default"): - f4, ax = plt.subplots(figsize=(10,5)) + fig, ax = plt.subplots(figsize=(10, 5)) bar1_alpha = 1 bar1_hatch = '' - plt.rcParams.update({'hatch.color': rwth_style.blue_light}) - if (i==2 or i==0): - ax.bar(x_pos, max_limits_moveit[i] - min_limits_moveit[i], 0.4, bottom = min_limits_moveit[i], color=rwth_style.blue_light, label='MoveIt Limits', zorder=3) + if i == 2 or i == 0: + ax.bar(x_pos, max_limits_moveit[i] - min_limits_moveit[i], 0.4, bottom=min_limits_moveit[i], color='lightblue', label='MoveIt Limits', zorder=3) bar1_alpha = 0.5 bar1_hatch = '//' - bar1 = ax.bar(x_pos, max_limits_phys[i] - min_limits_phys[i], 0.4, bottom = min_limits_phys[i], color=rwth_style.blue_light, alpha=bar1_alpha, hatch=bar1_hatch, label='Physical Limits', zorder=2) - ax.scatter(x_pos, (max_limits_phys[i] + min_limits_phys[i])/2, c=[rwth_style.blue], s=400, marker='_', label='Physical Mean', zorder=4) - errorbar_1 = ax.errorbar(x_pos, mean, std, fmt='o', capsize=5, label='Mean/Std Attained {}'.format(titles[i]), c=rwth_style.blue, zorder=5) - scatter_min = ax.scatter(x_pos, min, c=[rwth_style.blue], s=20, marker='x', label='Min/Max Attained {}'.format(titles[i]), zorder=6) - ax.scatter(x_pos, max, c=[rwth_style.blue], s=20, marker='x', zorder=6) + ax.bar(x_pos, max_limits_phys[i] - min_limits_phys[i], 0.4, bottom=min_limits_phys[i], color='lightblue', alpha=bar1_alpha, hatch=bar1_hatch, label='Physical Limits', zorder=2) + ax.scatter(x_pos, (max_limits_phys[i] + min_limits_phys[i]) / 2, c='blue', s=400, marker='_', label='Physical Mean', zorder=4) + ax.errorbar(x_pos, mean, std, fmt='o', capsize=5, label=f'Mean/Std Attained {titles[i]}', c='blue', zorder=5) + ax.scatter(x_pos, min_val, c='blue', s=20, marker='x', label=f'Min/Max Attained {titles[i]}', zorder=6) + ax.scatter(x_pos, max_val, c='blue', s=20, marker='x', zorder=6) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.08), ncol=2) box = ax.get_position() ax.set_position([box.x0, box.y0 + box.height * 0.15, box.width, box.height]) @@ -158,37 +181,34 @@ def analize(): ax.set_xticklabels(labels) ax.yaxis.grid(True) ax.set_axisbelow(True) - f4.savefig("data/{}/analysis/errorbar_{}_{}.png".format(directory, dataset, names[i])) - plt.close(f4) - - with plt.style.context("default"): - num_col = 3 - num_row = 3 - fig, axs = plt.subplots(num_row, num_col, figsize=(20,10)) + fig.savefig(f"data/{directory}/analysis/errorbar_{dataset}_{names[i]}.png") + plt.close(fig) + # Create histograms for the values + with plt.style.context("default"): + fig, axs = plt.subplots(3, 3, figsize=(20, 10)) for k, label in enumerate(labels): - count, bins, ignored = axs[k//num_col, k%num_col].hist(value[:,k], density=True, bins=40, color=rwth_style.blue) + count, bins, _ = axs[k // 3, k % 3].hist(value[:, k], density=True, bins=40, color='blue') bins = bins[:-1] try: - coeff, var_matrix = curve_fit(gauss, bins, count, p0=p0, maxfev = 2000) - # Get the fitted curve + coeff, _ = curve_fit(gauss, bins, count, maxfev=2000) hist_fit = gauss(bins, *coeff) r_squared = r2_score(count, hist_fit) - axs[k//num_col, k%num_col].plot(bins,hist_fit, color=rwth_style.red) - t = axs[k//num_col, k%num_col].text(0.15,0.85, f"mean: {round(coeff[1],3)}\nstd: {round(coeff[2],3)}\nr squared: {round(round(r_squared,4)*100,2)}%", horizontalalignment='center', verticalalignment='center', transform=axs[k//num_col, k%num_col].transAxes) + axs[k // 3, k % 3].plot(bins, hist_fit, color='red') + t = axs[k // 3, k % 3].text(0.15, 0.85, f"mean: {round(coeff[1], 3)}\nstd: {round(coeff[2], 3)}\nr squared: {round(r_squared * 100, 2)}%", horizontalalignment='center', verticalalignment='center', transform=axs[k // 3, k % 3].transAxes) t.set_bbox(dict(facecolor='white', alpha=0.5, edgecolor='black')) except Exception as e: print(e) - axs[k//num_col, k%num_col].grid() - axs[k//num_col, k%num_col].set_title(labels[k]) - axs[k//num_col, k%num_col].set_ylabel("Probability Density") - axs[k//num_col, k%num_col].set_xlabel(labels_y[i]) - axs[k//num_col, k%num_col].set_xlim([min_limits_phys[i][k],max_limits_phys[i][k]]) - - fig.delaxes(axs[-1,-1]) - fig.delaxes(axs[-1,-2]) + axs[k // 3, k % 3].grid() + axs[k // 3, k % 3].set_title(label) + axs[k // 3, k % 3].set_ylabel("Probability Density") + axs[k // 3, k % 3].set_xlabel(labels_y[i]) + axs[k // 3, k % 3].set_xlim([min_limits_phys[i][k], max_limits_phys[i][k]]) + + fig.delaxes(axs[-1, -1]) + fig.delaxes(axs[-1, -2]) fig.tight_layout() - fig.savefig("data/{}/analysis/hist_{}_{}.png".format(directory, dataset, names[i])) + fig.savefig(f"data/{directory}/analysis/hist_{dataset}_{names[i]}.png") plt.close(fig)