From 94bd5f859871c04a633f0da07b913e46e2523c60 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?Leon=20Michel=20Gori=C3=9Fen?=
 <leon.gorissen@llt.rwth-aachen.de>
Date: Fri, 25 Oct 2024 14:47:22 +0000
Subject: [PATCH] Update TODOs [ci skip]

---
 TODOs | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/TODOs b/TODOs
index 02c30e2..562bcd2 100644
--- a/TODOs
+++ b/TODOs
@@ -25,8 +25,8 @@ dynamics_learning/benchmark_number_of_runs.py:214:        # TODO load ITA model
 dynamics_learning/benchmark_number_of_runs.py:265:        # TODO load ITA model instead of dummy model
 dynamics_learning/dynamics_learning/testing/__init__.py:256:        # somewhere FIXME: Daten scheinen zu kurz zu sein?
 dynamics_learning/dynamics_learning/testing/__init__.py:640:        # somewhere FIXME: Daten scheinen zu kurz zu sein?
-dynamics_learning/dynamics_learning/training/__init__.py:265:    )  # TODO implement another naming schema, as soon as a custom application profiles for the models is available in coscine.
-dynamics_learning/dynamics_learning/training/__init__.py:271:        f"{decision_metric}_val_loss"  # TODO implement custom coscine application profile for the models based on MITM base profile
+dynamics_learning/dynamics_learning/training/__init__.py:275:    )  # TODO implement another naming schema, as soon as a custom application profiles for the models is available in coscine.
+dynamics_learning/dynamics_learning/training/__init__.py:281:        f"{decision_metric}_val_loss"  # TODO implement custom coscine application profile for the models based on MITM base profile
 dynamics_learning/train_instance.py:38:    # TODO download data from ita / use data from ita
 dynamics_learning/train_instance.py:71:        # TODO save model and hyperparameters locally
 franka_lock_unlock/README.rst:1:.. TODO describe docker compose up for individual component
-- 
GitLab