From 3994ab22fc7e552dabae29880769bf7c9085bc21 Mon Sep 17 00:00:00 2001
From: Nassim Bouteldja <nbouteldja@ukaachen.de>
Date: Wed, 13 Apr 2022 21:39:00 +0200
Subject: [PATCH] Upload New File

---
 nnUnet/generic_UNet.py | 451 +++++++++++++++++++++++++++++++++++++++++
 1 file changed, 451 insertions(+)
 create mode 100644 nnUnet/generic_UNet.py

diff --git a/nnUnet/generic_UNet.py b/nnUnet/generic_UNet.py
new file mode 100644
index 0000000..de31b2b
--- /dev/null
+++ b/nnUnet/generic_UNet.py
@@ -0,0 +1,451 @@
+#    Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
+#
+#    Licensed under the Apache License, Version 2.0 (the "License");
+#    you may not use this file except in compliance with the License.
+#    You may obtain a copy of the License at
+#
+#        http://www.apache.org/licenses/LICENSE-2.0
+#
+#    Unless required by applicable law or agreed to in writing, software
+#    distributed under the License is distributed on an "AS IS" BASIS,
+#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#    See the License for the specific language governing permissions and
+#    limitations under the License.
+
+
+from copy import deepcopy
+from .nd_softmax import softmax_helper
+from torch import nn
+import torch
+import numpy as np
+from .initialization import InitWeights_He
+from .neural_network import SegmentationNetwork
+import torch.nn.functional
+
+
+
+class ConvDropoutNormNonlin(nn.Module):
+    """
+    fixes a bug in ConvDropoutNormNonlin where lrelu was used regardless of nonlin. Bad.
+    """
+
+    def __init__(self, input_channels, output_channels,
+                 conv_op=nn.Conv2d, conv_kwargs=None,
+                 norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
+                 dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
+                 nonlin=nn.LeakyReLU, nonlin_kwargs=None):
+        super(ConvDropoutNormNonlin, self).__init__()
+        if nonlin_kwargs is None:
+            nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
+        if dropout_op_kwargs is None:
+            dropout_op_kwargs = {'p': 0.5, 'inplace': True}
+        if norm_op_kwargs is None:
+            norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
+        if conv_kwargs is None:
+            conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True}
+
+        self.nonlin_kwargs = nonlin_kwargs
+        self.nonlin = nonlin
+        self.dropout_op = dropout_op
+        self.dropout_op_kwargs = dropout_op_kwargs
+        self.norm_op_kwargs = norm_op_kwargs
+        self.conv_kwargs = conv_kwargs
+        self.conv_op = conv_op
+        self.norm_op = norm_op
+
+        self.conv = self.conv_op(input_channels, output_channels, **self.conv_kwargs)
+        if self.dropout_op is not None and self.dropout_op_kwargs['p'] is not None and self.dropout_op_kwargs[
+            'p'] > 0:
+            self.dropout = self.dropout_op(**self.dropout_op_kwargs)
+        else:
+            self.dropout = None
+        self.instnorm = self.norm_op(output_channels, **self.norm_op_kwargs)
+        self.lrelu = self.nonlin(**self.nonlin_kwargs)
+
+    def forward(self, x):
+        x = self.conv(x)
+        if self.dropout is not None:
+            x = self.dropout(x)
+        return self.lrelu(self.instnorm(x))
+
+
+class ConvDropoutNonlinNorm(ConvDropoutNormNonlin):
+    def forward(self, x):
+        x = self.conv(x)
+        if self.dropout is not None:
+            x = self.dropout(x)
+        return self.instnorm(self.lrelu(x))
+
+
+class StackedConvLayers(nn.Module):
+    def __init__(self, input_feature_channels, output_feature_channels, num_convs,
+                 conv_op=nn.Conv2d, conv_kwargs=None,
+                 norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
+                 dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
+                 nonlin=nn.LeakyReLU, nonlin_kwargs=None, first_stride=None, basic_block=ConvDropoutNormNonlin):
+        '''
+        stacks ConvDropoutNormLReLU layers. initial_stride will only be applied to first layer in the stack. The other parameters affect all layers
+        :param input_feature_channels:
+        :param output_feature_channels:
+        :param num_convs:
+        :param dilation:
+        :param kernel_size:
+        :param padding:
+        :param dropout:
+        :param initial_stride:
+        :param conv_op:
+        :param norm_op:
+        :param dropout_op:
+        :param inplace:
+        :param neg_slope:
+        :param norm_affine:
+        :param conv_bias:
+        '''
+        self.input_channels = input_feature_channels
+        self.output_channels = output_feature_channels
+
+        if nonlin_kwargs is None:
+            nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
+        if dropout_op_kwargs is None:
+            dropout_op_kwargs = {'p': 0.5, 'inplace': True}
+        if norm_op_kwargs is None:
+            norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
+        if conv_kwargs is None:
+            conv_kwargs = {'kernel_size': 3, 'stride': 1, 'padding': 1, 'dilation': 1, 'bias': True}
+
+        self.nonlin_kwargs = nonlin_kwargs
+        self.nonlin = nonlin
+        self.dropout_op = dropout_op
+        self.dropout_op_kwargs = dropout_op_kwargs
+        self.norm_op_kwargs = norm_op_kwargs
+        self.conv_kwargs = conv_kwargs
+        self.conv_op = conv_op
+        self.norm_op = norm_op
+
+        if first_stride is not None:
+            self.conv_kwargs_first_conv = deepcopy(conv_kwargs)
+            self.conv_kwargs_first_conv['stride'] = first_stride
+        else:
+            self.conv_kwargs_first_conv = conv_kwargs
+
+        super(StackedConvLayers, self).__init__()
+        self.blocks = nn.Sequential(
+            *([basic_block(input_feature_channels, output_feature_channels, self.conv_op,
+                           self.conv_kwargs_first_conv,
+                           self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
+                           self.nonlin, self.nonlin_kwargs)] +
+              [basic_block(output_feature_channels, output_feature_channels, self.conv_op,
+                           self.conv_kwargs,
+                           self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
+                           self.nonlin, self.nonlin_kwargs) for _ in range(num_convs - 1)]))
+
+    def forward(self, x):
+        return self.blocks(x)
+
+
+def print_module_training_status(module):
+    if isinstance(module, nn.Conv2d) or isinstance(module, nn.Conv3d) or isinstance(module, nn.Dropout3d) or \
+            isinstance(module, nn.Dropout2d) or isinstance(module, nn.Dropout) or isinstance(module, nn.InstanceNorm3d) \
+            or isinstance(module, nn.InstanceNorm2d) or isinstance(module, nn.InstanceNorm1d) \
+            or isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm3d) or isinstance(module,
+                                                                                                      nn.BatchNorm1d):
+        print(str(module), module.training)
+
+
+class Upsample(nn.Module):
+    def __init__(self, size=None, scale_factor=None, mode='nearest', align_corners=False):
+        super(Upsample, self).__init__()
+        self.align_corners = align_corners
+        self.mode = mode
+        self.scale_factor = scale_factor
+        self.size = size
+
+    def forward(self, x):
+        return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode,
+                                         align_corners=self.align_corners)
+
+
+class Generic_UNet(SegmentationNetwork):
+    DEFAULT_BATCH_SIZE_3D = 2
+    DEFAULT_PATCH_SIZE_3D = (64, 192, 160)
+    SPACING_FACTOR_BETWEEN_STAGES = 2
+    BASE_NUM_FEATURES_3D = 30
+    MAX_NUMPOOL_3D = 999
+    MAX_NUM_FILTERS_3D = 320
+
+    DEFAULT_PATCH_SIZE_2D = (256, 256)
+    BASE_NUM_FEATURES_2D = 30
+    DEFAULT_BATCH_SIZE_2D = 50
+    MAX_NUMPOOL_2D = 999
+    MAX_FILTERS_2D = 480
+
+    use_this_for_batch_size_computation_2D = 19739648
+    use_this_for_batch_size_computation_3D = 520000000  # 505789440
+
+    def __init__(self, input_channels, base_num_features, num_classes, num_pool, num_conv_per_stage=2,
+                 feat_map_mul_on_downscale=2, conv_op=nn.Conv2d,
+                 norm_op=nn.BatchNorm2d, norm_op_kwargs=None,
+                 dropout_op=nn.Dropout2d, dropout_op_kwargs=None,
+                 nonlin=nn.LeakyReLU, nonlin_kwargs=None, deep_supervision=True, dropout_in_localization=False,
+                 final_nonlin=softmax_helper, weightInitializer=InitWeights_He(1e-2), pool_op_kernel_sizes=None,
+                 conv_kernel_sizes=None,
+                 upscale_logits=False, convolutional_pooling=False, convolutional_upsampling=False,
+                 max_num_features=None, basic_block=ConvDropoutNormNonlin,
+                 seg_output_use_bias=False):
+        """
+        basically more flexible than v1, architecture is the same
+
+        Does this look complicated? Nah bro. Functionality > usability
+
+        This does everything you need, including world peace.
+
+        Questions? -> f.isensee@dkfz.de
+        """
+        super(Generic_UNet, self).__init__()
+        self.convolutional_upsampling = convolutional_upsampling
+        self.convolutional_pooling = convolutional_pooling
+        self.upscale_logits = upscale_logits
+        if nonlin_kwargs is None:
+            nonlin_kwargs = {'negative_slope': 1e-2, 'inplace': True}
+        if dropout_op_kwargs is None:
+            dropout_op_kwargs = {'p': 0.5, 'inplace': True}
+        if norm_op_kwargs is None:
+            norm_op_kwargs = {'eps': 1e-5, 'affine': True, 'momentum': 0.1}
+
+        self.conv_kwargs = {'stride': 1, 'dilation': 1, 'bias': True}
+
+        self.nonlin = nonlin
+        self.nonlin_kwargs = nonlin_kwargs
+        self.dropout_op_kwargs = dropout_op_kwargs
+        self.norm_op_kwargs = norm_op_kwargs
+        self.weightInitializer = weightInitializer
+        self.conv_op = conv_op
+        self.norm_op = norm_op
+        self.dropout_op = dropout_op
+        self.num_classes = num_classes
+        self.final_nonlin = final_nonlin
+        self._deep_supervision = deep_supervision
+        self.do_ds = deep_supervision
+
+        if conv_op == nn.Conv2d:
+            upsample_mode = 'bilinear'
+            pool_op = nn.MaxPool2d
+            transpconv = nn.ConvTranspose2d
+            if pool_op_kernel_sizes is None:
+                pool_op_kernel_sizes = [(2, 2)] * num_pool
+            if conv_kernel_sizes is None:
+                conv_kernel_sizes = [(3, 3)] * (num_pool + 1)
+        elif conv_op == nn.Conv3d:
+            upsample_mode = 'trilinear'
+            pool_op = nn.MaxPool3d
+            transpconv = nn.ConvTranspose3d
+            if pool_op_kernel_sizes is None:
+                pool_op_kernel_sizes = [(2, 2, 2)] * num_pool
+            if conv_kernel_sizes is None:
+                conv_kernel_sizes = [(3, 3, 3)] * (num_pool + 1)
+        else:
+            raise ValueError("unknown convolution dimensionality, conv op: %s" % str(conv_op))
+
+        self.input_shape_must_be_divisible_by = np.prod(pool_op_kernel_sizes, 0, dtype=np.int64)
+        self.pool_op_kernel_sizes = pool_op_kernel_sizes
+        self.conv_kernel_sizes = conv_kernel_sizes
+
+        self.conv_pad_sizes = []
+        for krnl in self.conv_kernel_sizes:
+            self.conv_pad_sizes.append([1 if i == 3 else 0 for i in krnl])
+
+        if max_num_features is None:
+            if self.conv_op == nn.Conv3d:
+                self.max_num_features = self.MAX_NUM_FILTERS_3D
+            else:
+                self.max_num_features = self.MAX_FILTERS_2D
+        else:
+            self.max_num_features = max_num_features
+
+        self.conv_blocks_context = []
+        self.conv_blocks_localization = []
+        self.td = []
+        self.tu = []
+        self.seg_outputs = []
+
+        output_features = base_num_features
+        input_features = input_channels
+
+        for d in range(num_pool):
+            # determine the first stride
+            if d != 0 and self.convolutional_pooling:
+                first_stride = pool_op_kernel_sizes[d - 1]
+            else:
+                first_stride = None
+
+            self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[d]
+            self.conv_kwargs['padding'] = self.conv_pad_sizes[d]
+            # add convolutions
+            self.conv_blocks_context.append(StackedConvLayers(input_features, output_features, num_conv_per_stage,
+                                                              self.conv_op, self.conv_kwargs, self.norm_op,
+                                                              self.norm_op_kwargs, self.dropout_op,
+                                                              self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs,
+                                                              first_stride, basic_block=basic_block))
+            if not self.convolutional_pooling:
+                self.td.append(pool_op(pool_op_kernel_sizes[d]))
+            input_features = output_features
+            output_features = int(np.round(output_features * feat_map_mul_on_downscale))
+
+            output_features = min(output_features, self.max_num_features)
+
+        # now the bottleneck.
+        # determine the first stride
+        if self.convolutional_pooling:
+            first_stride = pool_op_kernel_sizes[-1]
+        else:
+            first_stride = None
+
+        # the output of the last conv must match the number of features from the skip connection if we are not using
+        # convolutional upsampling. If we use convolutional upsampling then the reduction in feature maps will be
+        # done by the transposed conv
+        if self.convolutional_upsampling:
+            final_num_features = output_features
+        else:
+            final_num_features = self.conv_blocks_context[-1].output_channels
+
+        self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[num_pool]
+        self.conv_kwargs['padding'] = self.conv_pad_sizes[num_pool]
+        self.conv_blocks_context.append(nn.Sequential(
+            StackedConvLayers(input_features, output_features, num_conv_per_stage - 1, self.conv_op, self.conv_kwargs,
+                              self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin,
+                              self.nonlin_kwargs, first_stride, basic_block=basic_block),
+            StackedConvLayers(output_features, final_num_features, 1, self.conv_op, self.conv_kwargs,
+                              self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs, self.nonlin,
+                              self.nonlin_kwargs, basic_block=basic_block)))
+
+        # if we don't want to do dropout in the localization pathway then we set the dropout prob to zero here
+        if not dropout_in_localization:
+            old_dropout_p = self.dropout_op_kwargs['p']
+            self.dropout_op_kwargs['p'] = 0.0
+
+        # now lets build the localization pathway
+        for u in range(num_pool):
+            nfeatures_from_down = final_num_features
+            nfeatures_from_skip = self.conv_blocks_context[
+                -(2 + u)].output_channels  # self.conv_blocks_context[-1] is bottleneck, so start with -2
+            n_features_after_tu_and_concat = nfeatures_from_skip * 2
+
+            # the first conv reduces the number of features to match those of skip
+            # the following convs work on that number of features
+            # if not convolutional upsampling then the final conv reduces the num of features again
+            if u != num_pool - 1 and not self.convolutional_upsampling:
+                final_num_features = self.conv_blocks_context[-(3 + u)].output_channels
+            else:
+                final_num_features = nfeatures_from_skip
+
+            if not self.convolutional_upsampling:
+                self.tu.append(Upsample(scale_factor=pool_op_kernel_sizes[-(u + 1)], mode=upsample_mode))
+            else:
+                self.tu.append(transpconv(nfeatures_from_down, nfeatures_from_skip, pool_op_kernel_sizes[-(u + 1)],
+                                          pool_op_kernel_sizes[-(u + 1)], bias=False))
+
+            self.conv_kwargs['kernel_size'] = self.conv_kernel_sizes[- (u + 1)]
+            self.conv_kwargs['padding'] = self.conv_pad_sizes[- (u + 1)]
+            self.conv_blocks_localization.append(nn.Sequential(
+                StackedConvLayers(n_features_after_tu_and_concat, nfeatures_from_skip, num_conv_per_stage - 1,
+                                  self.conv_op, self.conv_kwargs, self.norm_op, self.norm_op_kwargs, self.dropout_op,
+                                  self.dropout_op_kwargs, self.nonlin, self.nonlin_kwargs, basic_block=basic_block),
+                StackedConvLayers(nfeatures_from_skip, final_num_features, 1, self.conv_op, self.conv_kwargs,
+                                  self.norm_op, self.norm_op_kwargs, self.dropout_op, self.dropout_op_kwargs,
+                                  self.nonlin, self.nonlin_kwargs, basic_block=basic_block)
+            ))
+
+        for ds in range(len(self.conv_blocks_localization)):
+            self.seg_outputs.append(conv_op(self.conv_blocks_localization[ds][-1].output_channels, num_classes,
+                                            1, 1, 0, 1, 1, seg_output_use_bias))
+
+        self.upscale_logits_ops = []
+        cum_upsample = np.cumprod(np.vstack(pool_op_kernel_sizes), axis=0)[::-1]
+        for usl in range(num_pool - 1):
+            if self.upscale_logits:
+                self.upscale_logits_ops.append(Upsample(scale_factor=tuple([int(i) for i in cum_upsample[usl + 1]]),
+                                                        mode=upsample_mode))
+            else:
+                self.upscale_logits_ops.append(lambda x: x)
+
+        if not dropout_in_localization:
+            self.dropout_op_kwargs['p'] = old_dropout_p
+
+        # register all modules properly
+        self.conv_blocks_localization = nn.ModuleList(self.conv_blocks_localization)
+        self.conv_blocks_context = nn.ModuleList(self.conv_blocks_context)
+        self.td = nn.ModuleList(self.td)
+        self.tu = nn.ModuleList(self.tu)
+        self.seg_outputs = nn.ModuleList(self.seg_outputs)
+        if self.upscale_logits:
+            self.upscale_logits_ops = nn.ModuleList(
+                self.upscale_logits_ops)  # lambda x:x is not a Module so we need to distinguish here
+
+        if self.weightInitializer is not None:
+            self.apply(self.weightInitializer)
+            # self.apply(print_module_training_status)
+
+    def forward(self, x):
+        skips = []
+        seg_outputs = []
+        for d in range(len(self.conv_blocks_context) - 1):
+            x = self.conv_blocks_context[d](x)
+            skips.append(x)
+            if not self.convolutional_pooling:
+                x = self.td[d](x)
+
+        x = self.conv_blocks_context[-1](x)
+
+        for u in range(len(self.tu)):
+            x = self.tu[u](x)
+            x = torch.cat((x, skips[-(u + 1)]), dim=1)
+            x = self.conv_blocks_localization[u](x)
+            # seg_outputs.append(self.final_nonlin(self.seg_outputs[u](x)))
+            seg_outputs.append(self.seg_outputs[u](x))
+
+        if self._deep_supervision and self.do_ds:
+            return tuple([seg_outputs[-1]] + [i(j) for i, j in
+                                              zip(list(self.upscale_logits_ops)[::-1], seg_outputs[:-1][::-1])])
+        else:
+            return seg_outputs[-1]
+
+    @staticmethod
+    def compute_approx_vram_consumption(patch_size, num_pool_per_axis, base_num_features, max_num_features,
+                                        num_modalities, num_classes, pool_op_kernel_sizes, deep_supervision=False,
+                                        conv_per_stage=2):
+        """
+        This only applies for num_conv_per_stage and convolutional_upsampling=True
+        not real vram consumption. just a constant term to which the vram consumption will be approx proportional
+        (+ offset for parameter storage)
+        :param deep_supervision:
+        :param patch_size:
+        :param num_pool_per_axis:
+        :param base_num_features:
+        :param max_num_features:
+        :param num_modalities:
+        :param num_classes:
+        :param pool_op_kernel_sizes:
+        :return:
+        """
+        if not isinstance(num_pool_per_axis, np.ndarray):
+            num_pool_per_axis = np.array(num_pool_per_axis)
+
+        npool = len(pool_op_kernel_sizes)
+
+        map_size = np.array(patch_size)
+        tmp = np.int64((conv_per_stage * 2 + 1) * np.prod(map_size, dtype=np.int64) * base_num_features +
+                       num_modalities * np.prod(map_size, dtype=np.int64) +
+                       num_classes * np.prod(map_size, dtype=np.int64))
+
+        num_feat = base_num_features
+
+        for p in range(npool):
+            for pi in range(len(num_pool_per_axis)):
+                map_size[pi] /= pool_op_kernel_sizes[p][pi]
+            num_feat = min(num_feat * 2, max_num_features)
+            num_blocks = (conv_per_stage * 2 + 1) if p < (npool - 1) else conv_per_stage  # conv_per_stage + conv_per_stage for the convs of encode/decode and 1 for transposed conv
+            tmp += num_blocks * np.prod(map_size, dtype=np.int64) * num_feat
+            if deep_supervision and p < (npool - 2):
+                tmp += np.prod(map_size, dtype=np.int64) * num_classes
+            # print(p, map_size, num_feat, tmp)
+        return tmp
-- 
GitLab