
Overhead and Scalability in OpenMP
Bachelor Thesis
Jonathan Kock

Thesis written at:
Chair for High Performance Computing, IT Center,

RWTH Aachen, Seffenter Weg 23,
52074 Aachen, Germany

Supervisor: Dr. rer. nat. Christian Terboven

OpenMP is a popular library to parallelize programs.
This thesis seeks to evalue how well OpenMP constructs
perform for a variety of parameters like thread affinity
and compilers. To do this synthetic benchmarks for a
variety of constructs like for, taskloop or critical have
been performed on an Intel SkyLake cluster.
The results show clear trends like that overhead increases
as thread count increases or that OMP_PLACES=cores
combined OMP_PROC_BIND=close experiences higher over-
head because all threads are placed on the same socket
and become limited by bandwidth.

1 Introduction
The need to speedup a computer program and per-
form more and more operations at the same time
is not new. And while initially all computer pro-
grams where executed sequentially in recent years
it has become more and more difficult to perform
more operations on a single core within the same
timeframe and using the same amount of energy.
Stemming from this the current trend is to increase
the amount of cores working on a problem to speed
the computation up. But this poses a new chal-
lenges as it is rarely trivial to translate an originally
sequential program into a parallel program that
utilizes multiple cores.
The problem here is mostly that the higher the

amount of cores becomes the less efficient becomes
the computation and more and more time is spent
dealing with a number of factors like for example
contention for locks or resources, inefficient work
distribution leading to idle processors or simply a
lack off parallelism within the program [3].

There exist a number of standards that attempt
to perform the parallelization as efficiently as pos-
sible. Most notable here is the Message Passing

Interface (MPI) which is the most used API for clus-
ters and POSIX threads (pthreads) and OpenMP
which are the most prevalent for shared memory
multiprocessors.

Measuring the before mentioned efficiency is not
a new idea and specifically for OpenMP the EPCC
benchmark suit already exists [2] [1]. But the latest
version of this benchmark exists for OpenMP version
3.0 while the latest version at the point of writing is
version 5.1. In the newer versions a number of new
interesting features were introduced, most notable
here is the taskloop construct 1.
There also exist multiple implementations of

OpenMP like GOMP, CLANG or proprietary imple-
mentations like the one used by the intel c compiler.

In this thesis I will be presenting my methodology
for measuring overhead and point out familiarities
and differences between my approach and the EPCC
benchmark in section 2. I will then present my re-
sults in section section 3 which is separated into
four larger parts. In section 3.1 I will be discussing
the impact that processor affinities and places can
have on performance. I will than proceed to dis-
cuss parallel work constructs like for, task and
taskloop in section 3.2. Following this I will be
presenting results from benchmarks covering syn-
chronization constructs in section 3.3. These include
single, critical, lock, ordered, reduction and
atomic.

2 Methodology
All benchmarks were performed on the cluster
CLAIX 2018 at RWTH Aachen University. The clus-

1https://www.openmp.org/spec-html/5.0/openmpsu47.
html

https://www.openmp.org/spec-html/5.0/openmpsu47.html
https://www.openmp.org/spec-html/5.0/openmpsu47.html


ter consists of Intel SkyLake Xeon Platinum 8160
processors which have 24 cores each and has 2 sock-
ets per node. The cluster utilizes SubNUMA clus-
tering, which divides each processor into 2 NUMA
nodes with 12 processing cores each. I performed
the benchmarks for 4 different compilers:

• gcc/gomp, version 11.1.0

• clang - llvm project, version 13.0.0

• icc version 19.0.1.144

• icx version 2021.4.0

For each of these compilers I performed a bench-
marks for a set of OpenMP constructs which are:

• workload parallelization
– for/worksharing loop
– task construct
– taskloop construct

• synchronization constructs
– single

– critical

– lock

– ordered

– reduction

– atomic

• hints for critical sections: combinations of dif-
ferent hints

– contended vs noncontended
– speculative vs nonspeculative

I performed each benchmark across a verity of
parameters:

• threads: amount of processing cores utilized,
ranging from 2 to 48

• repetitions: amount of times the delay function
is executed, ranging from 512 to 32768

• for for construct:
– dynamic vs static schedule
– chunksize

• for hints benchmarks: array size of the con-
tended array

• differences between processor affinities in
OpenMP

– OMP_PLACES=cores vs
OMP_PLACES=sockets

– OMP_PROC_BIND=close vs
OMP_PROC_BIND=spread

To simulate workload I utilize a delay function
which performs a certain amount of floating
point operations (delay length). This delay
function is executed a certain amount of times
(repetitions). These repetitions can be executed
in parallel. The delay function for work par-
allelization constructs has no communication
with other instances of the function, while the
delay functions for synchronization constructs
and hints operate on a shared array to simulate
contention. The exact code can be found at: https:
//git-ce.rwth-aachen.de/jonathan.kock/
overhead-and-scalability-in-openmp.git
To measure the overhead I calculated the differ-

ence between the time a reference function takes to
perform a workload in serial fashion vs the time it
takes to perform the same workload (for synchro-
nization and hints) or a weakly scaled version of the
workload for for, task and taskloop constructs.
This means that the runtime of a perfectly parallel
version of the benchmark is the same as the run-
time of the serial reference function for worksharing
constructs while for synchronization and hints the
total workload is the same and the runtime should
theoretically be faster than reference function.

There are some differences here in comparison to
the EPCC [1] benchmark. The first difference is the
user input. While the EPCC benchmark expects
the user to provide a desired time for how long
the benchmark and the delay function should run I
expect the user to input the amount of floating point
operations the delay function should perform (delay
length) and the amount of times the delay function
should be executed in each benchmark (repetitions).
I chose this because, while it makes it harder for
a user to choose appropriate input, it guarantees
that the workload performed is guaranteed to be
the same across multiple compilers and systems.

Another difference is that I display in most plots
the ratio between the mean of the benchmark times
and the mean of the reference times (overhead ratio)
while the EPCC benchmark calculates the differ-
ence between reference and benchmark times. I find
this to be a better metric for the input methods
I have chosen because if the amount of work to
be performed varies and consequently the runtime
of the reference function varies it still allows the
benchmarks to be compared. All benchmarks were
performed 16 times to achieve a certain level of con-
fidence. I also display the maximum and minimum
times divided by the average of the reference as
error bars.

2

https://git-ce.rwth-aachen.de/jonathan.kock/overhead-and-scalability-in-openmp.git
https://git-ce.rwth-aachen.de/jonathan.kock/overhead-and-scalability-in-openmp.git
https://git-ce.rwth-aachen.de/jonathan.kock/overhead-and-scalability-in-openmp.git


3 Results
3.1 Thread Affinities
OpenMP allows the user to define where a new
thread is to be placed. This is performed via
two variables: OMP_PROC_BIND and OMP_PLACES.
OMP_PLACES defines whether a thread is pinned
to a hardware thread, core or socket while
OMP_PROC_BIND defines how for each thread the re-
spective place is chosen. Spread signifies here that
the threads should be spread as evenly as possible
across places to maximize space between threads
and close places threads as close to the master
thread as possible.

In fig. 1 displayed are the means of overhead ratios
from benchmarks performed across different repe-
titions for four different benchmarks. The bench-
marks have been performed using the gcc compiler
and a fix delay length of 16384.

Plots 1 to 3 show the four possible configurations
for the for construct with a dynamic schedule, the
task construct and the taskloop construct.
Overall there is a clear trend that cost increases

as thread count increases. This is to be expected as
an increase in core count also increases the amount
of communication between the cores. To further
illustrate this I display the linear regression corre-
sponding to the values of plots 1 to 3. This again
shows a clear trend that overhead increases as thread
count increases.
Socket-close shows the best performance for low

thread amounts across all three constructs which
largely equals out when moving to higher thread
counts. This can also be seen in the regression
formula which shows the lowest constant but second
largest scaling. Clearly seen can be that there is a
large increase in overhead when moving from 16 to
32 cores for the combinations cores-spread, socket-
close and socket-spread for all three constructs. For
the combination cores-close this jump already occurs
when increasing the amount of threads from 8 to
16. This is also to be expected as this is probably a
limitation of cache bandwidth and, as all threads
in cores-close are allocated on the same socket and
NUMA-node first this strategy runs into bandwidth
contention earlier than other strategies.
Overall when considering the regression it be-

comes clear that cores-close shows the worst per-
formance of all combinations. Both sockets-close
and sockets-spread are very competitive, with sock-
ets close performing better on lower thread counts
and sockets spread performing better on higher core
counts. I will be using sockets-spread in the follow-
ing sections unless otherwise mentioned.
Interesting here is also that the task construct

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

cores-close
cores-spread
socket-close
socket-spread

Plot 1: for construct, dynamic schedule, chunksize
= 1

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

cores-close
cores-spread
socket-close
socket-spread

Plot 2: task construct

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

cores-close
cores-spread
socket-close
socket-spread

Plot 3: taskloop construct

Figure 1: close vs spread, socket vs core
gomp, mean across repetitions, delay length

= 16384

3



2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

6.62 · 10−2 · x + 0.94, cores, close
6.18 · 10−2 · x + 0.93, cores, spread
6.41 · 10−2 · x + 0.91, sockets, close

5.65 · 10−2 · x + 0.94, sockets, spread

Plot 4: close vs spread, socket vs core
linear regression corresponding to fig. 1

seems to perform worse than the other constructs
which will be further discussed in the following
section.

3.2 Parallel work constructs
In this section I will be discussing the advantages
and disadvantages of the three different work par-
allelization constructs for, task and taskloop. In
the previous section I mentioned that the task con-
struct looks like it performs worse. This is now
relativized by plot 9 which displays the mean across
a variety of repetitions for the socket-spread affinity
combination. The plot shows the for construct with
both a static and dynamic schedule with chunksize 1,
the task construct and the taskloop construct. In
plot 10 I display the linear regressions corresponding
to the values displayed in plot 9.
Combining plot 9 and plot 10 it becomes clear

that the task construct scales the worst but also
starts the best. It is also visible that while for,
dynamic starts off worse than all other constructs it
recovers from this as the thread count increases and
ends up as the best or second best performer for
thread counts from 16 to 48. Looking at the linear
regressions and actual values it is hard to deter-
mine an overall bestperforming construct because
both for, static and taskloop perform very well
for different amounts of threads with for, static
beating taskloop for thread counts ranging from
16 to 48 while losing to it for thread counts ranging
2 to 8. This is also supported by the regressions
which display the same scaling for both with a slight

starting advantage for taskloop.
Figure 2 displays four 3d plots for the above men-

tioned four benchmarks now also showing clearly
what impact the amount of repetitions can have on
performance. This is especially drastic for the task
construct whose overhead skyrockets when using a
low amount of repetitions with 32 or 48 threads.
To further detail this plot 11 displays two plots

which have a repetitions number of 512 and 16384
respectively. It is clear that across the board the
benchmark with 16384 shows better results, espe-
cially for the thread counts 32 and 48. In my opinion
this is mainly so because the serial fraction of the
program becomes larger when the parallel fraction
of the program decreases and so the amount of
overhead increases.
Another interesting observation that can be ob-

served in fig. 2 is that plots 5 and 6 show a consider-
ably lower overhead for 48 cores and 512 repetitions
than for 1024 and 48 repetitions. This is also con-
sistent with other compilers as displayed in fig. 3.

Also observable is that for and task display con-
siderably more volatile behavior than taskloop.
Taskloop does not display the large spikes in over-
head that task displays at 2048 repetitions and 8
threads and 8192 repetitions and 4 threads in plot 7
and also does not exhibit the unpredictable behavior
displayed by for for 512 repetitions. This consis-
tency is highly valuable and combined with the
good general performance displayed by taskloop in
plots 9 and 10 shows clear advantages of taskloop
over for and task, although these display better
performance for some combinations of parameters.

3.2.1 Different compilers

To illustrate differences between the four compil-
ers gcc/gomp, clang, icc/intel classic c compiler
and icx/intel oneAPI DPC compiler, figs. 3 to 5
display 3d plots showing for, task and taskloop
constructs. For all plots a fix delay length of 16384
and the socket-spread affinity combination is used.

For construct Figure 3 on page 7 displays plots
for all four compilers and the for construct with
a dynamic schedule and chunksize 1. It is clearly
visible that all four compilers display the drastically
lower overhead for 512 repetitions and 48 threads
mentioned in the previous section. Gomp and icc
display a similar increase in overhead around 512
repetitions and 2 threads. Clang and icx do not
display this increase but rather a decrease in over-
head. Clang and icx also display some sudden
spikes in overhead which are for clang localized at
1024 and 8192 repetitions and for icx localized at
4096 and 8192 repetitions. Note that these spikes

4



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 5: 3d plot of for, dynamic

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 6: 3d plot of for, static schedule

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 7: 3d plot of task

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 8: 3d plot of taskloop

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

for, static
for, dynamic

task
taskloop

Plot 9: mean across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

4.67 · 10−2 · x + 0.96, for, static
3.76 · 10−2 · x + 1.01, for, dynamic

6.52 · 10−2 · x + 0.92, task
5.77 · 10−2 · x + 0.93, taskloop

Plot 10: linear regressions corresponding to plot 9

Figure 2: 3d plots, for static, for dynamic, task, taskloop
gomp, delay length = 16384, affinity = socket-spread, chunksize = 1

5



2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.06 1.08 1.09 1.09

1.31

1.64

0.98
1.03

1.08 1.06

1.17

1.31

threads

ov
er
he

ad
ra
tio

repetitions = 512
repetitions = 16384

Plot 11: task construct, 512 vs 16384 repetitions
gomp, delay length = 16384,

affinity = socket-spread

do not occur to the same degree for thread counts
where overhead is high for all compilers (48 and to
a lesser degree 32 threads).

To give a more general comparison of performance
I display the mean across repetitions in plot 16 and
the corresponding regression in plot 17. Here it is
clearly visible that clang performs especially well
for lower thread counts while still remaining com-
petitive at higher thread counts. Icx displays the
overall worst performance while icc performs the
best at 8 and 16 threads. Gomp, icc and icx display
similar scaling in the regression and clang displays
considerably worse scaling which probably occurs
because of the considerably better performance dis-
played at 2 and 4 threads.

Clang also displays almost linear scaling between
2 and 16 threads while the other compilers behave
less consistent, especially from 2 to 4 threads where
they all display a decrease in overhead. To contrast
this in fig. 3 gomp displays the least erratic behavior.
This split is definitely interesting as it shows that
while clang displays better overall performance and
a more linear increase in overhead it is also more
susceptible to spikes in overhead.

Task construct Figure 4 on page 8 shows task
benchmarks executed by all four compilers. Here
gomp displays drastically different behavior than
the other three compilers around 512 repetitions
and 48 threads. Gomp displays here a considerably
higher overhead than all three other compilers. This
is also consistent with plot 22 and plot 23 which
respectively display the means across repetitions
and the corresponding linear regression. Here gomp
also displays considerably worse performance than

the other three compilers, especially at 48 threads.
Also interesting is that icx displays no large

spikes in plot 21. This is in contrast to all other three
compilers which display more or less erratic behav-
ior. Gomp displays a large spike at 2048 repetitions
and 8 threads and a smaller spike at 8192 repetitions
and 4 threads while clang shows very erratic be-
havior around 1028 repetitions and 4 threads. Icc
behaves similar to gomp as that it has some localized
spikes but no larger erratic behavior. This is also
supported by plot 22 which shows that icx displays
almost linear growth in overhead until 32 threads
while gomp displays a large jump in overhead from
4 to 8 threads.

Overall there are no large difference between
clang, icc and icx with regards to plots 22 and 23,
but icx displays a considerable advantage by avoid-
ing localized spikes in overhead like those displayed
by icc and areas of volatility like the one displayed
by clang in fig. 4.

Taskloop construct Figure 5 on page 9 displays
taskloop benchmarks performed by all four com-
pilers. Clearly clang displays very erratic behavior
in plot 25 that all other compilers do not display.
Opposite to this gomp, icc and tcx all display no
spikes and almost no variation across repetitions
and show an overall very stable performance. Both
gomp and icc display a drop in overhead at 16384
repetitions while icx displays a drop in overhead
at 512 repetitions.
Interestingly the erratic behavior of clang is no

longer visible when looking at plots 28 and 29 which
display the means across repetitions and the cor-
responding linear regression respectively. Here the
erratic behavior completely evens out and clang
appears to be performing very similarly to the other
three compilers.

Overall the best performing compiler is icx, who
trumps all others in both consistency and per-
formance regardless of thread count. Both gomp
and icc perform very similar with icc performing
slightly better than gomp. Clang performs very well
at some points, but also very bad at others and is
hard to predict whether it performs good or bad at
a certain point.

Summary Overall clang showed the least consis-
tency across the three constructs, but also displayed
excellent overall performance for the for construct.
The most consistency for the for construct dis-
played gomp, but gomp showed only middling per-
formance here and for the taskloop construct and
very bad performance for the task construct. Icc
showed slightly better performance than gomp but

6



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 12: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 13: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 14: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 15: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 16: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

4.67 · 10−2 · x + 0.96, gomp
5.37 · 10−2 · x + 0.92, clang
4.67 · 10−2 · x + 0.95, icc
4.56 · 10−2 · x + 0.98, icx

Plot 17: linear regressions corresponding to for,
plot 16

Figure 3: for, schedule = dynamic, chunksize = 1, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

7



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 18: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 19: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 20: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 21: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 22: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

6.52 · 10−2 · x + 0.92, gomp
4.83 · 10−2 · x + 0.95, clang
5.19 · 10−2 · x + 0.93, icc
5.58 · 10−2 · x + 0.92, icx

Plot 23: linear regressions corresponding to task,
plot 22

Figure 4: task, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

8



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 24: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 25: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 26: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 27: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 28: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

5.77 · 10−2 · x + 0.93, gomp
4.93 · 10−2 · x + 0.96, clang
5.77 · 10−2 · x + 0.92, icc
5.6 · 10−2 · x + 0.91, icx

Plot 29: linear regressions corresponding to
taskloop, plot 28

Figure 5: taskloop, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

9



remained similar in consistency. Icx is inconsis-
tent and relatively slow for the for construct but
outperforms all other compilers in both task and
taskloop benchmarks.

3.2.2 Chunksizes and Static vs Dynamic

There are multiple strategies to distribute iterations
of a for-loop to threads. I will discuss two strate-
gies today: the static and the dynamic schedule.
The static schedule assigns each processor an equal
amount of iterations in chunks while the dynamic
schedule makes threads request a new chunk once
they have completed the previous one. The size of
these chunks is called chunksize.

In fig. 6 on page 11 I display two 3d plots of the
for construct with a static and a dynamic schedule.
In the 3d plots displayed are means across repeti-
tions for a delay length of 16384 and the socket-
spread affinity combination. It is visible that the
dynamic schedule performs largely similar to the
static schedule when considering thread counts rang-
ing from 8 to 48 but slightly better when considering
thread counts of 2 and 4. Overall chunksize seems
to have no consistent impact on performance.

3.3 Synchronization Constructs
In this section I will be presenting my results from
benchmarks performed with synchronization con-
structs. Specifically, I will be discussing single,
critical, lock, ordered, reduction and atomic.
In plot 32 I display means across repetitions for

5 constructs. Atomic is listed separately in plot 33
as it performs with such a high overhead that it
can not be included with the other constructs if the
graphic shall still be meaningful.
Considering that the workload performed across

the synchronization constructs is the same as per-
formed by the reference task plot 32 shows that
OpenMP synchronization constructs come with a
sizable overhead that increases as thread count in-
creases. This is not surprising considering that each
opening and closing of a lock takes a considerable
amount of time and each stop and restart of thread
takes a considerable amount of time as well. Be-
cause the amount of times this occurs increases with
increased thread count it is only to be expected that
overhead increases.

3.3.1 Different compilers

Similarly to section 3.2.1 I will be comparing dif-
ferent compilers in this section. I will compare the
compilers gcc/gomp, clang, icc/intel classic c com-
piler and icx/intel oneAPI DPC compiler. All plots

use a fix delay length of 16384 except atomic which
does not utilize a delay function.

Single Figure 7 on page 13 displays benchmarks
for all four compilers as well as plots 38 and 39
which display the means across repetitions and the
corresponding linear regressions respectively.
Overall all compilers deliver a fairly stable per-

formance and an increase in overhead as the thread
count increases. Clang displays a spike in overhead
at 512 repetitions and 48 threads, icc displays a
similar spike at 2048 repetitions and 48 threads.
Gomp shows decreased overhead at 16384 repetitions
and clang at 8192 repetitions.
Looking at the overall performance of the four

compilers in plot 38, icx displays comparatively
very high overhead at 2 threads which drops drasti-
cally to 4 threads. Otherwise all compilers display
similar behavior, with gomp performing slightly bet-
ter than other compilers for higher thread counts
and clang performing better than others for lower
thread counts.

Critical In fig. 8 on page 14 I present 3d plots 40
to 43 which display benchmarks of the critical con-
struct in combination with the four compilers. I also
present plots 44 and 45 which display the means
across repetitions and the corresponding linear re-
gressions respectively.

All compilers experience an increase in overhead
as thread count increases. Gomp provides a very
stable performance with a slight overhead decrease
at 16384 repetitions. Similarly clang performs also
very stable with an overhead decrease at 8192 repe-
titions. Icc displays a slight overhead increase at
2048 repetitions and performs otherwise stable, icx
displays a slight cost decrease at 4096 repetitions.

Looking at the means across repetitions it is visi-
ble that icc performs clearly worse than all other
compilers and clang clearly better. Gomp and icx
perform roughly equally well, with gomp performing
slightly better for lower thread counts.

Overall all compilers display an overhead increase
as thread count increases. Clang performs clearly
better than the other compilers and also displays
similar consistency. In general all four compilers
display good consistency. With regards to perfor-
mance the four compilers can be clearly ordered
from best to worst: clang, gomp, icx and icc.

Lock Figure 9 on page 15 presents four 3d plots
that display benchmarks of OpenMP locks in com-
bination with the four compilers.
Overall the benchmarks look very similar to the

critical construct benchmarks displayed in fig. 8.

10



2 8 32 128
4

16
64

0.9

1
1.1
1.2
1.3
1.4

chunksize
threads

ov
er
he

ad
ra
tio

Plot 30: 3d plot of for, static schedule

2 8 32 128
4

16
64

0.9

1
1.1
1.2
1.3
1.4

chunksize
threads

ov
er
he

ad
ra
tio

Plot 31: 3d plot of for, dynamic schedule

Figure 6: 3d plots, for static vs dynamic
means across repetitions, gomp, delay length = 16384, affinity = socket-spread

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

single
reduction
ordered
lock

critical

Plot 32: synchronization constructs, means across
repetitions

gomp, affinity = socket-spread

This only makes sense as a critical section and a
lock are similar. Gomp displays the same overhead
decrease at 16384 repetitions, clang at 8192 repe-
titions, icx at 4096 repetitions and icc displays a
cost increase at 2048 repetitions. Also the overhead
increases for all compilers as thread count increases.
There are some new spikes in overhead for gomp and
icx but overall the benchmarks show very similar
performance.
This is also visible when looking at plots 50

and 51, which display the means across repetitions
and the corresponding linear regression respectively.
Here again clang clearly displays the best per-
formance, followed by gomp, icx and finally icc.
Clang also displays the best consistency. Overall

2 4 8 16 32 6435

40

45

50

threads

ov
er
he

ad
ra
tio

Plot 33: atomic construct, means across
repetitions

gomp, affinity = socket-spread

lock performs slightly worse than the critical section
and are less consistent.

Ordered In fig. 10 on page 16 displayed are 3d
plots for benchmarks of the ordered construct in
combination with the four compilers as plots 52
to 55. Here gomp displays an overhead increase
at 4096 repetitions, clang displays an overhead
decrease at 8192 repetitions, icc two overhead in-
crease at 2048 and 8192 repetitions and icx displays
a number of overhead spikes.
In plots 56 and 57 clang displays the best per-

formance again for all thread counts. Icc again
displays the worst performance while gomp and icx
perform roughly equally. All compilers experience

11



an increase in overhead as thread count increases.
Overall clang exhibits the best performance and

consistency, followed by gomp and icx and icc dis-
plays again the worst performance.

Reduction Figure 11 on page 17 shows 3d plots of
the reduction construct in combination with the four
compilers as plots 58 to 61. Plots 62 and 63 show
the means across repetitions and the corresponding
linear regression respectively.
All compilers show good consistency with gomp

and clang displaying an overhead increase at 4096
repetitions, icc displaying overhead increases at
2048 and 8192 repetitions. Compared to previ-
ous synchronization constructs, reduction displays
higher overheads which can also be observed in
plot 32. Nevertheless for reduction is the trend that
overhead increases as thread count increases equally
applicable.
Overall all four compilers display very similar

levels of performance and consistency.

Atomic In fig. 12 on page 18 displayed is the fi-
nal synchronization construct we will be discussing.
Figure 12 contains 3d plots 64 to 67 which present
benchmarks of the atomic construct performed with
the four compilers. Atomic differs drastically from
previous synchronization constructs.

For one only icc displays the previously so preva-
lent trend of increasing overhead with increasing
thread count. Another large difference is the amount
of overhead. With icx performing the best it is still
exhibiting almost 30 times as much overhead as the
previous constructs. Both gomp and clang display
their highest overhead between 2 and 8 threads,
while icx experiences the highest overhead at 48
threads.
Overall icx performs clearly the best, with icc

performing the worst because of the scaling it expe-
riences. The consistency of all four compilers is low
especially if you consider the scale of plots.

Summary Overall clang shows the best perfor-
mance for the most constructs. This is further re-
inforced by clang also displaying a very consistent
behavior. Icx shows by far the best performance
for atomic, which is not worth a lot because atomic
shows overheads that are by a magnitude of almost
30 larger than overheads from all other constructs.
Icc shows the worst performance with regards to
critical,lock and ordered. Here both gomp and icx
perform roughly equally. Single performs worse
than critical, lock and ordered with all compilers
performing roughly equally.

To summarize I would recommend using clang
when using synchronization constructs and avoiding
the intel classic c compiler.

4 Conclusions
In this thesis I presented the results from
a large series of benchmarks which aim to
point out trends with regards to overhead and
threads scaling in OpenMP. The first observa-
tion here is that the overhead increases as the
thread count increases. For the combination
of OMP_PLACES=cores and OMP_PROC_BIND=close
this starts to show earlier than for other com-
binations when moving from 8 to 16 threads.
This occurs probably because of bandwidth lim-
itations as all threads are pinned to the same
socket. Another observation is that the combina-
tions OMP_PLACES=cores, OMP_PROC_BIND=spread;
OMP_PLACES=socket, OMP_PROC_BIND=close and
OMP_PLACES=socket and OMP_PROC_BIND=spread
show largely equal performance as displayed in sec-
tion 3.1 and begin to experience a large increase in
overhead when moving from 16 to 32 threads.
In section 3.2 I showed that the taskloop con-

struct is a competitive construct to parallelize work,
especially if combined with compilers that perform
especially well with it like icx (see fig. 5). Icx over-
all to performs very well with tasking considering
that in fig. 4 the icx compilers shows a considerably
more consistent performance when compared with
other compilers, but performs badly while execut-
ing for constructs. Clang has very good average
performance when executing for constructs but
shows some spikes in overhead. To avoid those it is
preferable to use gomp or icc which show compara-
ble performance but display no overhead spikes. I
also showed that chunksize has little to no impact
upon overhead for the for construct, regardless
of whether a static or a dynamic schedule is used.
Overall has the dynamic schedule slightly lower
overhead compared with the static schedule.

With regards to synchronization constructs I have
found that clang displays excellent performance
and consistency for all except atomic. Atomic per-
forms best when compiled with the icx compiler.
The Intel classic c compiler (icc) shows higher over-
head than the other compilers and also displays
a large amount of erratic behavior for some con-
structs. Gomp and icx perform adequately and
roughly equally.
As this thesis was performed on an Intel cluster

it would be interesting how different vendors or
architectures impact these statistics. How does a
program compiled with an Intel compiler perform

12



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 34: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 35: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 36: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 37: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 38: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

6.09 · 10−2 · x + 0.91, gomp
7.11 · 10−2 · x + 0.88, clang
7.34 · 10−2 · x + 0.89, icc
5.35 · 10−2 · x + 0.97, icx

Plot 39: linear regressions corresponding to
single, plot 28

Figure 7: single, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

13



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 40: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 41: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 42: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 43: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 44: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

5.34 · 10−2 · x + 0.92, gomp
5.71 · 10−2 · x + 0.9, clang
5.28 · 10−2 · x + 0.95, icc
5.09 · 10−2 · x + 0.94, icx

Plot 45: linear regressions corresponding to
critical, plot 28

Figure 8: critical, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

14



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 46: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 47: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 48: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 49: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 50: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

5.57 · 10−2 · x + 0.92, gomp
5.49 · 10−2 · x + 0.91, clang
5.34 · 10−2 · x + 0.96, icc
5.46 · 10−2 · x + 0.94, icx

Plot 51: linear regressions corresponding to lock,
plot 28

Figure 9: lock, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

15



1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 52: gomp

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 53: clang

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 54: icc

1,020 4,090
16,400

4
16

64

0.9

1
1.1
1.2
1.3
1.4

repetitions
threads

ov
er
he

ad
ra
tio

Plot 55: icx

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 56: means across repetitions

2 4 8 16 32 640.9

1

1.1

1.2

1.3

1.4

threads

ov
er
he

ad
ra
tio

4.94 · 10−2 · x + 0.96, gomp
6.16 · 10−2 · x + 0.89, clang
5.04 · 10−2 · x + 0.99, icc
5.57 · 10−2 · x + 0.94, icx

Plot 57: linear regressions corresponding to
ordered, plot 28

Figure 10: ordered, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

16



1,020 4,090
16,400

4
16

64

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

repetitions
threads

ov
er
he

ad
ra
tio

Plot 58: gomp

1,020 4,090
16,400

4
16

64

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

repetitions
threads

ov
er
he

ad
ra
tio

Plot 59: clang

1,020 4,090
16,400

4
16

64

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

repetitions
threads

ov
er
he

ad
ra
tio

Plot 60: icc

1,020 4,090
16,400

4
16

64

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

repetitions
threads

ov
er
he

ad
ra
tio

Plot 61: icx

2 4 8 16 32 640.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 62: means across repetitions

2 4 8 16 32 640.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

threads

ov
er
he

ad
ra
tio

0.12 · x + 0.92, gomp
0.11 · x + 0.94, clang

0.1 · x + 0.94, icc
0.1 · x + 0.95, icx

Plot 63: linear regressions corresponding to
reduction, plot 28

Figure 11: reduction, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

17



1,020 4,090
16,400

4
16

6430

40

50

60

repetitions
threads

ov
er
he

ad
ra
tio

Plot 64: gomp

1,020 4,090
16,400

4
16

6430

40

50

60

repetitions
threads

ov
er
he

ad
ra
tio

Plot 65: clang

1,020 4,090
16,400

4
16

64
30

60

90

120

150

repetitions
threads

ov
er
he

ad
ra
tio

Plot 66: icc

1,020 4,090
16,400

4
16

6430

40

50

60

repetitions
threads

ov
er
he

ad
ra
tio

Plot 67: icx

2 4 8 16 32 64

30

40

50

60

threads

ov
er
he

ad
ra
tio

gomp
clang
icc
icx

Plot 68: means across repetitions

2 4 8 16 32 64

30

40

50

60

threads

ov
er
he

ad
ra
tio

−0.75 · x + 43.53, gomp
−0.52 · x + 40.26, clang

22.31 · x + 5.43, icc
0.33 · x + 27.97, icx

Plot 69: linear regressions corresponding to
atomic, plot 28

Figure 12: atomic, gomp vs clang vs icc vs icx
delay length = 16384, affinity = socket-spread

18



on a non Intel machine? How do ARM or AMD
perform? This is especially interesting considering
AMDs and ARMs more affordable prices in compar-
ison with Intel. OpenMP is also being developed
further and in the future there will probably be new
features that need to be evalued as well.

References
[1] url: https : / / www - staging . epcc . ed .

ac.uk/research/computing/performance-
characterisation - and - benchmarking /
epcc-openmp-micro-benchmark-suite (vis-
ited on 01/01/2022).

[2] J Mark Bull. “Measuring synchronisation and
scheduling overheads in OpenMP”. In: Proceed-
ings of First European Workshop on OpenMP.
Vol. 8. Citeseer. 1999, p. 49.

[3] Mark Roth et al. “Deconstructing the over-
head in parallel applications”. In: 2012 IEEE
International Symposium on Workload Char-
acterization (IISWC). 2012, pp. 59–68. doi:
10.1109/IISWC.2012.6402901.

19

https://www-staging.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www-staging.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www-staging.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www-staging.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://doi.org/10.1109/IISWC.2012.6402901

	1 Introduction
	2 Methodology
	3 Results
	3.1 Thread Affinities
	3.2 Parallel work constructs
	3.2.1 Different compilers
	3.2.2 Chunksizes and Static vs Dynamic

	3.3 Synchronization Constructs
	3.3.1 Different compilers


	4 Conclusions

