MPI + OpenMP Correctness Checking with MUST

Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke (jenke@itc.rwth-aachen.de)

High
Performance
Computing

How many issues can you spot in this tiny example?

A
lleast 8issye Si

int main (int argc, char** argv) n thIS C
{ Ode
int rank, size, buf[8]; example,
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);
MPI Datatype type;
MPI Type contiguous (2, MPI INTEGER, &type);
MPI_Recv (buf, 2, MPI INT, size - rank, , MPI_COMM WORLD, MPI_STATUS_IGNORE) ;
MPI Send (buf, 2, type, size - rank, , MPI_COMM WORLD) ;
printf ("Hello, I am rank %d of %d. n", rank, size);
return 0O;
}
2 MPI + OpenMP Correctness Checking with MUST N H R (,\Zl:ngs:afional i Rm“
ig

Debugging, Testing and Correctness Workshop Series 2023

J Engineering Performance
Joachim Jenke (E S Science Computing

Motivation

* MPI programming is error prone
« Portability errors (just on some systems, just for some runs)
* Bugs may manifest as:

- Crash Error more
— Application hanging obvious
— Finishes

* Questions:
- Why crashing/hanging?
- Is my result correct?
- Will my code also give correct results on another system?

* Tools help to pin-point these bugs

/1 NHR for
3 MPI + OpenMP Correctness Checking with MUST N H R "~ Computational o Imm

Debugging, Testing and Correctness Workshop Series 2023

) Engineering) Performance
Joachim Jenke (: E S Science Computing

Must detects deadlocks

What? Where? Details

\ / Message /
he application iss¥ed a set of MPI calls that can cause a deadlock! A graphical representabw_ Xthis situation is available in Ailed de...
Details:
Message References | /
References of 4
representative process:
reference 1 rank 0:
The application issued a set of MPI calls that can cause a deadlock! A graphical representation of this situation is available in a detailed MPI_Recv (1st occurrence)
deadlock view (MUST Output-filessMUST Deadlock.html). References 1-2 list the involved calls (limited to the first 5 calls, further calls may called from:
be involved). The application still runs, if eadlock manifested (e.g. caused a hang on this MPI implementation) you can attach to the #0 main@example.c:15

involved ith a debugger or abort the application (if necessary).
reference 2 rank 3:
MPI_Recv (1st occurrence)
called from:

#0 main@example.c:15

Click for graphical representation of the
detected deadlock situation.

] . NHR for
4 MPI + OpenMP Correctness Checking with MUST N H R Computational o R“‘I'H

Debugging, Testing and Correctness Workshop Series 2023 Engineering

4 Performance
Joachim Jenke (|- S Science Computing

Visualization of deadlock situation

The application issued a set of MPI calls that can cause a deadlock! The graphs below show details on this situation. This includes a wait-for graph that shows active wait-for

dependencies between the processes that cause the deadlock. Note that this process set only includes processes that cause the deadlock and no further processes. A legend

details the wait-for graph components in addition , while a parallel call stack view summarizes the locations of the MPI calls that cause the deadlock . Below these graphs, a
message queue graph shows active and unmatched point-to-point communications. This graph only includes operations that could have been intended to match a point-to-poinfj
operation that is relevant to the deadlock situation. Finally, a parallel call stack shows the locations of any operation in the parallel call stack. The leafs of this call stack graph

show the components of the message queue graph that they span. The application still runs, if the deadlock manifested (e.g. caused a hang on this MPI implementation) you
can attach to the involved ranks with a debugger or abort the application (if necessary).

percowewore®
Rank 0

waits for
°°“""=A"“F rank 1 and
V.

| in@/rwthfs/rz/cl /t /pj416018/must-example/VI-HPS/example.c: 15

i Simple call

MPI_Recy | stack for this

example.

Message queue

stack

. . NHR for
5 MPI + QpenMP Qorrectness Checking with MUST N H R £..= computational High
Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (: E S Science 12 Computing

MUST detects errors in transfer buffer sizes / types

Rank(s,
2(28793)

Error

f

Size of sent message
receive operation uses a (datatypq

y the send it matches! The first element of the send...

Details:

] larger than receive

Messa | [From " |References

A receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first location: 0 main@esnmple izl o 18
element of the send that did not fit into the receive operation is at (contiguous)[0](MPI INTEGER) in the send type (consult : P o

the MUST manual for a detailed description of datatype positions). The send operation was started at reference 1, the
receive operation was started at reference 2. (Information on communicator: MPI COMM WORLD) (Information on send of

b u ffe r Y, References of a representative

process:

reference 1 rank 2: MPI_Send
Representative |[(1st occurrence) called from:

MPI Send (1st
occurrence) called |reference 2 rank 1: MPI_Irecv

; & — = from: (1st occurrence) called from:
count 2 with type:Datatype created at reference 3 is for Fortran, based on the following type(s): { MPI INTEGER}) : : ; i ;
(Information on receive of count 2 with type:MPI INT) Ll mz;ll}x:l@,)ce.)l(gmple Alumme sl Lo

reference 3 rank 2:
MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fixl.c:13

Joachim Jenke

1(28792) Error IA receive operation uses a (datatype,count) pair that can not hold the data transfered by the send it matches! The first element of the send...
0-3 Error IArgument 3 (datatype) is not commited for transfer, call MPI Type commit before using the type for transfer!(Information on datatypeData...
2(28793) Error [The memory regions to be transfered by this send operation overlap with reglons spanned by a pendlng non-blocking receive operation!(In...
1(28792) Error [The memory regions to be transfered b%ggﬁd oEeratlon overla;r =~ receive operation!(In...
3(28795) Error [The memory regions to be transfered by this Al | d ete Cted errors are receive operation!(In...
3(28795) Error IA receive operation uses a (datatype,count) pair that can T [element of the send...
0(28794) Error [The memory regions to be transfered by this send operation overla) receive operation!(In...
0(28794) Error IA receive operation uses a (datatype,count) pair that can not hold] COI Ia pSEd fo rove er ew element of the send...
\ -clicktoexpand
6 MPI + OpenMP Correctness Checking with MUST N H R NHR for R“‘I'H
i | "
Debugging, Testing and Correctness Workshop Series 2023 Computationa High

Engineering Performance
‘ |- S Science Computing

MUST detects errors in handling datatypes

'he application issued a set of MPI calls that mismatch in type signatures! The graph below shows details on this situation. The first differincg
communication request is highlighted.

MPI_Send:send

'

MPI_Type_contiguous(count=2) MPI_Irecv:recy

N
e [wna

Graphical representation of the type
mismatch

)) NHR for
7 MPI + OpenMP Correctness Checking with MUST N H R 4_ Computational o Imm

Debugging, Testing and Correctness Workshop Series 2023

J Engineerin Perf A\
Joachim Jenke (:ES Sc%nce 9 "12 Computing Ul

Graphical representation of the race condition

rap in communication buffers! e grph below shows details on this situation. The first colling i
communication request is highlighted.

Graphical representation of the
data race location

MPI_Send:send(buf= Ox7ffe1308ebcc)

'

MPI_Type_contiguous(count=2) | MPI_Irecv:recv(buf= +0x0)

. . NHR for o
8 MPI + OpenMP Correctness Checking with MUST N H R 4_ Computational i Imm
Debuggmg, Testing and Correctness Workshop Series 2023 Engineering ' 7 Petformance AT
Joachim Jenke C E S Science 1V Computing Uil

MUST detects leaks of user defined objects

Rank(s,
0-3

Message

Error

here are 1 datatypes that are not freed when MPI Finalize was issued, a quality application should free all MPI resources before calling ...

Details:

Message

[From " |References

There are 1 datatypes that are not freed when MPI Finalize was issued, a quality application
should free all MPI resources before calling MPI Finalize. Listing information for these

-Datatype 1: Datatype created at reference 1 is for C, commited at reference 2, based on the

References of a representative process:

reference 1 rank 1: MPI_Type_contiguous
(1st occurrence) called from:
#0 main@example-fix4.c:13

Representative location:
MPI_Type_contiguous (1st
occurrence) called from:
#0 main@example-fix4.c:13

datatypes:

reference 2 rank 1: MPI Type_commit (1st
occurrence) called from:
#0 main@example-fix4.c:14

following type(s): { MPI INT}

0-3

| Error [There are 1 requests that are not freed when MPI Finalize was issued, a

application should free all MPI resources before calling M...

Details:

Message

There are 1 requests that are not freed when MPI Finalize was issued, a quality application should free all
MPI resources before calling MPI Finalize. Listing information for these requests:

Representative
MPI Irecv (1st occu
called from:

#0 main@example-fix4.c:1

-Request 1: Point-to-point request activated at referd\qe 1

« User defined objects include

Unfinished non-blocking
receive is resource leak
and missing
synchronization

Leak of user
defined datatype
object

MPI_Comms (even by MPl_Comm_dup)
MPI_Datatypes
MPI_Groups

/\

\

J

NHR for
MPI + OpenMP Correctness Checking with MUST N H R Computational) Rer
Debugging, Testing and Correctness Workshop Series 2023 Engineering Eﬁ:‘orma"ce
Joachim Jenke (E S Science Computing

Finally

| | Information | MUST detected no MPI usage errors nor any suspicious behavior during this application run.

MUST detected no MPI usage errors nor any suspicious behavior during this application run.

No further error
detected

Hopefully this message
applies to many
applications

NHR for
10 MPI + QpenMP Qorrectness Checking with MUST N H R A_ Computational i
Debugging, Testing and Correctness Workshop Series 2023 19

) Engineering) Performance
Joachim Jenke < E S Science 'i'f 2 Computing

MUST - Basic Usage

* Apply MUST as an mpiexec wrapper, that’s it:

o\°

mpicc -g source.c -0 exe
$ mustrun --must:mpiexec SMPIRUN -n 4 ./exe

% mpicc source.c -0 exe

% SMPIRUN -n 4 ./exe .
or simply

% mustrun -n 4 ./exe

« After run: inspect “MUST _Output.html”

* “mustrun” (default config.) uses an extra process:

- l.e.: “mustrun -np 4 ...” will use 5 processes
— Allocate the extra resource in batch jobs!
— Default configuration tolerates application crash; BUT is slower (details later)

RWNTH

NHR for
1" MPI + QpenMP Qorrectness Checking with MUST N H R Computational High
Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

Hands-on 1

12

NHR for
Computational

Engineering

C E S Science

High
Performance
Computing

RWNTH

$ module use ~dc-protl/.modules
$ module load clang comp/13.0.0 intel mpi/2020-update2

Hands-on 1 . :
must/1.9.2/clang_13.0.0_intel _mpi_2020-update2

AV

 Clone https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

* Run MUST on the the example code in the Hands-on-1 directory
module use ~dc-protl/.modules

module load clang comp/13.0.0 intel mpi/2020-update2
must/1.9.2/clang 13.0.0 _intel mpi_ 2020-update2

mpigcc -g example.c
mustrun -np 2 ./a.out

—

To receive the MUST html report by mail add To get the report on command line add
--must:output-email-report <addr> --must:output stdout

) X NHR for
13 MPI + OpenMP Correctness Checking with MUST N H R Computational o Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

Advanced Usage

MUST - At Scale (highly recommended for >10 processes)

* Provide a branching factor (fan-in) for

0 e e e ANl e e | | e e [e

$ mustrun -n 40 ./exe \ | <:> <:> <:> (ij _______ ||
- ' | - local type ma.tdfing
- _mus t . fanln 8 E i - data race detection .

- buffer overlap detectio

__

« Get info about the number of processes:

Distributed analysis
- distributed deadlock analysis
- point-to-point matching
- p2p type matching
o t d - collective matching
$ mustrun -n 40 ./exe \ Q three
[J process
--must:fanin 8 --must:info B application
E MUST - -
Centralized analysis
MPI communication - deadlock graph analysis
. . . shared-memory - HTML output
Th IS WI I I g Ive you the n u m ber Of communication

processes needed with tool attached

)) NHR for
15 MP! + OpenMP Correctness Checking with MUST N H R Computational i R“‘I'H
Debugging, Testing and Correctness Workshop Series 2023 19

J Engineering Performance
Joachim Jenke (|- S Science Computing

MUST - Execution Modes

Application might crash Application never crashes
Centralized analysis --must:nocrash
= 1 extra process = 1 extra process
= Blocking communication = Non-blocking communication
Distributed analysis --must:nodesize 8 --must:fanin 8
= 1 extra process per 7 = 1 extra process per 8 app
application processes + tree processes + tree

= Nodesize must be divisor of
ranks sharing memory

) X NHR for
16 MPI + OpenMP Correctness Checking with MUST N H R Computational i Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

MUST - Multithreading Support

By default, MUST supports MPI_THREAD FUNNELED
* For higher threading levels: O i

O process
[application
B MUST
MPT cc
shared-memory

n i

% mustrun -n 40 ./exe --must:hybrid

» This will raise the required level to MPI_THREAD MULTIPLE!
« Some MPI might need env like: MPICH_MAX_ THREAD SAFETY=multiple
« Get info about the resources needed:

% mustrun -n 40 ./exe --must:hybrid --must:info

> This will give you the number of processes needed with tool attached

) X NHR for
17 MPI + OpenMP Correctness Checking with MUST N H R Computational o R“TH

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

MPI runtime correctness checking with MUST — Advanced Usage

« We use Backward-cpp (or Dyninst) as an external lib for
stacktraces

« Collecting stack traces can be costly. Select with
--must:stacktrace [backward]|dyninst|none]

« Supposed your application has no faults you won’t need
stacktraces ©

Representative
location:

MPI _Init thread (1st
occurrence) called
from:

#0 MAIN @bt.f:90
#1 main@bt.f:319

Representative
location:

MPI Comm_split (1st
occurrence) called
from:

#0 MAIN @bt.f:90

MUST detected no MPI usage errors nor any : ;
e suspicious behavior during this application run. #1 main@bt.£:319
18 MPI + OpenMP Correctness Checking with MUST N H R ’C“fnf;j{aﬁono, RWTH

Debugging, Testing and Correctness Workshop Series 2023

J Engineering
Joachim Jenke ‘ E S Science

MUST - Filter file

« Use filter files to selectively exclude error/warning messages (avoid cluttered output)

* Format: messageType:MUST_MESSAGE_TYPE:source
— MUST_MESSAGE_TYPE: kind of message to ignore (e.g. MUST_WARNING_COMM_NULL)
— source: specific file (filename. c), specific function (function_name) or all sources (*)

- Example: Ignore NULL comm. warnings originating from main. c (needs stacktraces)

messageType:MUST_WARNING_COMM_NULL:src:main.c

« Example: Ignore all data type leak errors

messageType:MUST_ERROR _LEAK DATATYPE:*

 Define and use a filter file:
— --must:filter-file <path-to-filter-file>

) X NHR for
19 MPI + OpenMP Correctness Checking with MUST N H R Computational o Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

MUST - More options

* Print help:
— --must:help
« Select output format:
- --must:output {html|json|stdout}
« Use with ddt:
— Record error message information:
= --must:capture
— Replay under control of ddt:
= --must:reproduce --must:ddt

20 MPI + OpenMP Correctness Checking with MUST N H R

Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

NHR for
Computational
Engineering
Science

High
Performance
Computing

RWNTH

Tool Overview - Approaches Techniques

* Debuggers:

v/ Helpful to pinpoint any error

— Finding the root cause may be hard
- Won't detect sleeping errors

- E.g.: gdb, TotalView, Allinea DDT

« Static Analysis:

— Compilers and Source analyzers

v Typically: type and expression errors
- E.g.: MPI-Check

MPI_Recv (buf, 5, MPI_INT,
-1,
123, MPI_COMM_WORLD, &status);

« Model checking: -1” instead of MPI=ANY=SOURCE]

v/ Can find hidden errors

. C if (rank == 1023)
- Requires a model of your applications

_ . abort ();
- State explosion possible
- E.g.: MPI-Spin Only works with less than 1024 tasks J
. . NHR for
v UL penti Corecinees Checing it MUST o NHRZ: comitoiona w | RWTH

J Engineering Performance
Joachim Jenke (|- S Science Computing

Tool Overview - Approaches Techniques (2)

* Runtime error detection:
v/ Inspect MPI calls at runtime
— Limited to the timely interleaving that is observed
— Causes overhead during application run
- E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

| Task 0 Task 1
MPI Send(to:1, type=MPI_¥NT) MPI Recv(from:0, type=MPI FLOAT)
Type mismatch
22 MPI + OpenMP Correctness Checking with MUST N H R g:nsgs:aﬁonal o R“TH

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

Tool Overview - Approaches Techniques (3)

 Formal verification:

— Extension of runtime error detection
— Explores all relevant interleavings (explore around nondet.)
— Detects errors that only manifest in some runs
— Possibly many interleavings to explore

- E.g.. ISP

Task 0

Task 1

Task 2

[spend_some_time()
MPI Send (to:1)
_ MPI_Barrier ()

[MPI Recv (from:ANY)
MPI Recv (from:0)

MPI Barrier ()

)&‘

Y

J

MPI Send (to:1)
 MPI_Barrier ()

[Deadlock if MPIl_Send(to:1)@0 matches MPI_Recv(from:ANY)@1

23 MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023

Joachim Jenke

NHR

CES

NHR for
Computational
Engineering
Science

Approaches to Remove Bugs (Selection)

Repartitioning?
Representative input?

Our conirjbution: Grid? Reproducibility? I_ I_ I_
EIMUST

Runtime Checking

o/ 2 Umpire op,

Node Memory?

Debuggers

\ \,,"' _QlllllmEE
giﬁﬁnmow- DAMPI ;DDT
Static Code Analysis
TASS ; Barrier Analysis
pCFG S y Sghl:a!l!ed
24 MPI + OpenMP Correctness Checking with MUST N H R grnfgg:aﬁ onal - RWNTH

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (: E S Science Computing

MUST - Summary

MPI runtime error detection tool

Open source (BSD license)
http://www.itc.rwth-aachen.de/MUST/

Wide range of checks, strength areas:

— Overlaps in communication buffers
— Errors with derived datatypes
— Deadlocks

Largely distributed, able to scale with the application

25

NHR for
MPI + OpenMP Correctness Checking with MUST N H R Computational _
Debugging, Testing and Correctness Workshop Series 2023 Engineering ﬂﬁ;‘ormance

Joachim Jenke (E S Science Computing

RWNTH

Compiler-Aided Analysis

How many issues can you spot in this tiny example?

int main (int argc, char** argv)

{

S .
t3 ISsueg In this
Code

int rank, size, buf[8], provided = 0, requested = MPI_THREAD MULTIPLE; exampl ,
MPI Init_ thread (&argc, &argv, MPI THREAD SINGLE, &provided); EB-
printf (“provided: %d. ", provided);

MPI Comm rank (MPI_COMM WORLD, &rank); MPI Comm size (MPI_COMM WORLD, &size);

MPTI Request request;

{
MPI_Send (buf, 4, MPI FLOAT, size — rank - 1, , MPI_COMM WORLD) ; // thread 0

MPI_Irecv (buf, 4, MPI_FLOAT, size - rank - 1, , MPI_COMM WORLD, &request); // thread 1
}
MPI Wait (&request, MPI_STATUS_IGNORE);
MPI Finalize();
return 0;

27

NHR for
MPI + OpenMP Correctness Checking with MUST N H R Computational i Rwrl.l
g

Debugging, Testing and Correctness Workshop Series 2023

J Engineering Performance
Joachim Jenke (E S Science Computing

Using MUST + Archer

Compile the MPI(+OpenMP) application just like described for Archer

Using clang to compile with OpenMPI/IntelMPI/MPICH:
- export OMPI_CC=clang; export MPICH CC=clang;
— export OMPI CXX=clang++; export MPICH CXX=clang++;

Run MUST with TSan support:

— =--must:tsan

For integration of TSan output into the MUST report, a helper-library must be linked

into the application (not necessary for the setup on cosma):
- -W1l,--whole-archive ${MUST ROOT}/lib/libonReportLoader.a
-W1, --no-whole-archive

28

NHR for

MPI + OpenMP Correctness Checking with MUST N H R Computational R“TH
High

Debugging, Testing and Correctness Workshop Series 2023 Engineering

4 Performance
Joachim Jenke (|- S Science Computing

TSan Output in MUST report

IMUST_WARNING_DATARACE

Data race between a read of size 8 at .omp outlined. debug .53@]1 and a previous write of size 8 at .omp outlined. debu...

Data race between a read of size 8 at
.omp_outlined. debug .53@]1 and a previous write of
size 8 at .omp_outlined. debug .53@2.

Representative location:

.omp_outlined._debug__.53 (0th occurrence) called from:
#0 .omp_outlined. debug .53@lulesh.cc:2258

#1 .omp_outlined..54@lulesh.cc:2240

#2 kmp invoke microtask@libomp.so:0xbad72

#3 EvalEOSForElems(Domain&, double*, int, int*,
int)@lulesh.cc:2240

#4
ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401
#5 LagrangeElements(Domain&, int)@lulesh.cc:2439

#6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617

#7 main@lulesh.cc:2748

References of a representative process:

reference 1 rank 1: .omp_outlined._debug__ .53 (Oth occurrence)
called from:

#0 .omp_outlined. debug .53@lulesh.cc:2258

#1 .omp_outlined..54@lulesh.cc:2240

#2 kmp invoke microtask@libomp.so:0xbad72

#3 EvalEOSForElems(Domain&, double*, int, int*,
int)@lulesh.cc:2240

#4 ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401
#5 LagrangeElements(Domain&, int)@lulesh.cc:2439

#6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617

#7 main@lulesh.cc:2748

reference 2 rank 1: .omp_outlined._debug__ .53 (0th occurrence)
called from:

#0 .omp_outlined. debug .53@lulesh.cc:2246

#1 .omp_outlined..54@lulesh.cc:2240

#2 kmp invoke microtask@libomp.so:0xbad72

#3 EvalEOSForElems(Domain&, double*, int, int*,

int)@lulesh.cc:2240

#4 ApplyMaterialPropertiesForElems(Domain&)@lulesh.cc:2401
#5 LagrangeElements(Domain&, int)@lulesh.cc:2439

#6 LagrangeLeapFrog(Domain&)@lulesh.cc:2617

#7 main@lulesh.cc:2748

#8 main@lulesh.cc:2715

29 MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023

Joachim Jenke

CES

/1 NHR for
Engineering Performance
Science Computing

Slides gracefully provided by Dr. Alexander Hiick

MPI Type Correctness

MPI libraries provide only minimal error checking

« Buffers are passed as void*
« At the same time, users have to specify buffer length and the datatype manually

> Error-prone!

MPI_Send(buffer, n, MPI_DOUBLE, ...)

/\\\A

1. Data is transferred as a 2. Data length and type is
type-less void* buffer user-specified
30 MPI + OpenMP Correctness Checking with MUST N H R gsn':gs:aﬁonal o Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

Th ree phases Of message transfer Slides gracefully provided by Dr. Alexander Hiick

1. Data is pulled out of the (send) buffer for message assembly
2. Data is transferred from sender to receiver
3. Datais disassembled and put into the (receive) buffer

Rank 1 ! Rank 2
buffer [T 1L L L1]eee | HEEEEEEEXY Application
V ; V Level
MPI_Send Yiessnge MPI_Recv
- Transfer —
Message i Message
Assembly /:—\ Disassembly
I Library
! Level
LI1 I 1 1] Joeee | FTTTTIT I]eee
Adapted from https://dl.acm.org/doi/10.1145/3431379.3460652
31 MPI + OpenMP Correctness Checking with MUST N H R E:nfgﬁfraﬁom, i Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering

4 Performance
Joachim Jenke (I_ S Science Computing

Distributed Checking Of Type MatCheS Slides gracefully provided by Dr. Alexander Hiick

A message transfer from sender (rank 1) to receiver (rank 2)

Rank 1 Rank 2

Distributed analysis of phase 2 with MUST

| I \/

MPI_Send(data, size, MPI_FLOAT,...); ! MPI_Recv(data, size, MPI_DOUBLE, ...);

i Message envelope matches

) X NHR for
32 MP! + OpenMP Correctness Checking with MUST N H R Computational i R“TH
Debugging, Testing and Correctness Workshop Series 2023 19

J Engineering Performance
Joachim Jenke (|- S Science Computing

Limitation of Dynamic Checking

Slides gracefully provided by Dr. Alexander Hiick

MUST needs to check type-less void*

buffer data

- Phase 1, e.g., MPI_Send
* Phase 3, e.g., MPIl_Recv

Answer the questions:
« Is it of type MP]_FLOAT?

« Is it of length buffer_size?

— Can not be answered by MUST
without further tooling

Rank 1

Memory Allocation
double* buff= ...;

v

MPI_Send(data, buffer_size, MPI_FLOAT,...);

| 179

Local analysis only
possible with tooling

33 MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

NHR for
Computational High

Engineering
‘ E S Science Computing

Exam ples Slides gracefully provided by Dr. Alexander Hiick

AMG2013, a CORAL performance and parallel scaling benchmark [Coral20]
* In parcsr_mv/par_csr_matrix.c:1236, reported by [DKL LLVM’15]:

Ve

MPI Bcast(&global data[3], global size-3, MPI_INT, ...);

A

alias

HYPRE_BigInt —J» long long
104.milc, a SPEC MPI benchmark (specvpro7
* In com_mpi.c:480:
(MPI Allreduce(cpt, &work, 2, MPI_FLOAT, ...);

\
. . NHR for
34 MP! + OpenMP Correctness Checking with MUST Computational o R“TH
Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

https://www.reddit.com/r/cpp/comments/uk9wto/memory_layout_of_struct_vs_array/

Slides gracefully provided by Dr. Alexander Hiick

TypeART

TypeART is a tool to track allocations and their type information
« Consists of

— a LLVM compiler plugin to instrument allocations (LLVM IR level),
> Heap, stack, global: Memory address, element count and type

— aruntime with a C API to provide type information to MUST

)) NHR for
35 MPI + OpenMP Correctness Checking with MUST N H R Computational o R“‘I'H

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

Slides gracefully provided by Dr. Alexander Hiick

MUST & TypeART Usage

1. Compile and link your application with TypeART compiler wrapper

- mpicc — typeart-mpicc Filters allocation
if never passed

— mpicxx — typeart-mpic++ to MPI

2. Replace “mpiexec” with command “mustrun” and activate TypeART, e.g.,

— mustrun -np 4 --must:typeart ./my-app.bin

3. Inspect “MUST _Output.html” in run directory for (type-related) issues

)) NHR for
36 MPI + OpenMP Correctness Checking with MUST N H R Computational o Rwrl.l

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

Slides gracefully provided by Dr. Alexander Hiick

Compiling with TypeART

make CMake
e Often compiler selection possible _ , ,
. p. P e During the configuration, CMake
with env variable . :
_ executes internal compiler checks,
Makefile content where we do not need TypeART
MPICC 7= mpice instrumentation:
demo: example.c "1 Need to disable wrapper
$(MPICC) -O1 -g -¢ $< -0 $@.0
$(MPICC) $@.0 -0 $@ v
_ . $> TYPEART_WRAPPER=OFF cmake .. \
$> MPICC=typeart-mpicc make -j 1 -DCMAKE_C_COMPILER=typeart-mpicc
$> make -j 1
37 MPI + OpenMP Correctness Checking with MUST N H R grnsgg:aﬁona, i R“‘I'H

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance
Joachim Jenke (E S Science Computing

MUST Output in case of type error Slides gracefully provided by Dr. Alexander Hiick

TypeART type-related errors may look as follows (mustrun -np 4 --must:typeart ./app)

* Here, MPI_Irecv expects an MPL_INT buffer, but a float* buffer handle was passed

MUST Output, starting date: Sun Jun 11 17:06:48 2023.

IMUST ERROR TYPEMATCH MISMATCH |Incompatible buffer of type 5 (float) - expected MPI INT instead

Representative location:

. MPI_Irecv (1st occurrence) called from:
R L R 2 S s A AL #0 CommRecv(Domain&, int, int, int, int, int, bool, bool)@/pc2/users/a/ahueck/nhr/lulesh/lulesh-

instead
comm.cc:119
#1 main@/pc2/users/a/ahueck/nhr/lulesh/lulesh.cc:2723

0-7 IMUST ERROR TYPEMATCH MISMATCH [Incompatible buffer of type 5 (float) - expected MPI INT instead
7 IMUST ERROR TYPEMATCH MISMATCH [Incompatible buffer of type 5 (float) - expected MPI INT instead

MUST has completed successfully, end date: Sun Jun 11 17:06:48 2023.

MUST Version: v1.9.0

/1 NHR for
38 MPI + OpenMP Correctness Checking with MUST N H R "~ Computational o Imm

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (: E S Science 1 Computing

ConCIUSion Slides gracefully provided by Dr. Alexander Hiick

MUST & TypeART combine dynamic analysis with compile-time instrumentation to enable
type checking for all phases of message transfer

Rank 1

Memory Allocation

double* buff=...;
v b) D/str/buted analysis with MUST

MPI1_Send(data, buffer_size, MPI_FLOAT,) MPI_Recv(data, buffer_size, MPI_DOUBLE, .

Rank 2

a) Local analysis
with TypeART

NHR for

39 MPI + OpenMP Correctness Checking with MUST N H R Computational)
Debugging, Testing and Correctness Workshop Series 2023 Engir'?eering High Rer

4 Performance
Joachim Jenke (I- S Science Computing

Hands-on 2

40

NHR
CES

NHR for
Computational
Engineering
Science

High
Performance
Computing

RWNTH

($ module use ~dc-protl/.modules

$ module load clang comp/17.0.6 intel mpi/2020-update2
must/1.10.0-preview/clang_17.0.6_intel mpi_2020-update2

Hands-on 2

8
 Clone https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

* Run MUST on the LULESH code in the Hands-on-2 directory

« The README.md file contains instructions for this Hands-on

. . NHR for
41 MPI + OpenMP Correctness Checking with MUST N H R Computational o R“‘I'H

Debugging, Testing and Correctness Workshop Series 2023 Engineering Performance

Joachim Jenke (E S Science Computing

https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

