
MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke (jenke@itc.rwth-aachen.de)

2

How many issues can you spot in this tiny example?

#include <mpi.h>
#include <stdio.h>
int main (int argc, char** argv)
{
 int rank, size, buf[8];

 MPI_Comm_rank (MPI_COMM_WORLD, &rank);
 MPI_Comm_size (MPI_COMM_WORLD, &size);

 MPI_Datatype type;
 MPI_Type_contiguous (2, MPI_INTEGER, &type);

 MPI_Recv (buf, 2, MPI_INT, size - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
 MPI_Send (buf, 2, type, size - rank, 123, MPI_COMM_WORLD);
 printf ("Hello, I am rank %d of %d.\n", rank, size);

 return 0;
}

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

At least 8 issues in this code example!

3

Motivation

• MPI programming is error prone
• Portability errors (just on some systems, just for some runs)
• Bugs may manifest as:

− Crash
− Application hanging
− Finishes

• Questions:
− Why crashing/hanging?
− Is my result correct?
− Will my code also give correct results on another system?

• Tools help to pin-point these bugs

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Error more
obvious

4

Must detects deadlocks

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Click for graphical representation of the
detected deadlock situation.

What? Where? DetailsWho?

5

Visualization of deadlock situation

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Simple call
stack for this

example.

Rank 0
waits for

rank 1 and
vv.

6

MUST detects errors in transfer buffer sizes / types

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Size of sent message
larger than receive

buffer

All detected errors are
collapsed for overview

- click to expand

7

MUST detects errors in handling datatypes

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Graphical representation of the type
mismatch

8

Graphical representation of the race condition

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Graphical representation of the
data race location

9

MUST detects leaks of user defined objects

• User defined objects include
− MPI_Comms (even by MPI_Comm_dup)
− MPI_Datatypes
− MPI_Groups

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Unfinished non-blocking
receive is resource leak

and missing
synchronization

Leak of user
defined datatype

object

10

Finally

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

No further error
detected

Hopefully this message
applies to many

applications

11

MUST - Basic Usage

• Apply MUST as an mpiexec wrapper, that’s it:

• After run: inspect “MUST_Output.html”
• “mustrun” (default config.) uses an extra process:

− I.e.: “mustrun -np 4 …” will use 5 processes
− Allocate the extra resource in batch jobs!
− Default configuration tolerates application crash; BUT is slower (details later)

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

% mpicc source.c -o exe
% $MPIRUN -n 4 ./exe

% mpicc -g source.c -o exe
% mustrun --must:mpiexec $MPIRUN -n 4 ./exe

% mustrun -n 4 ./exe

or simply

12

Hands-on 1

13

Hands-on 1

• Clone https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

• Run MUST on the the example code in the Hands-on-1 directory

module use ~dc-prot1/.modules

module load clang_comp/13.0.0 intel_mpi/2020-update2
must/1.9.2/clang_13.0.0_intel_mpi_2020-update2

mpigcc -g example.c

mustrun -np 2 ./a.out

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

$ module use ~dc-prot1/.modules
$ module load clang_comp/13.0.0 intel_mpi/2020-update2

must/1.9.2/clang_13.0.0_intel_mpi_2020-update2

To get the report on command line add
--must:output stdout

To receive the MUST html report by mail add
--must:output-email-report <addr>

https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

14

Advanced Usage

15

MUST - At Scale (highly recommended for >10 processes)

• Provide a branching factor (fan-in) for
the tree infrastructure:

• Get info about the number of processes:

➢ This will give you the number of
processes needed with tool attached

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

% mustrun -n 40 ./exe \
 --must:fanin 8

% mustrun -n 40 ./exe \
 --must:fanin 8 --must:info

16

MUST – Execution Modes

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Application might crash

--must:nocrash

--must:nodesize 8 --must:fanin 8

Application never crashes

Centralized analysis

Distributed analysis

▪ 1 extra process
▪ Blocking communication

▪ 1 extra process
▪ Non-blocking communication

▪ 1 extra process per 7
application processes + tree
▪ Nodesize must be divisor of

ranks sharing memory

▪ 1 extra process per 8 app
processes + tree

17

MUST - Multithreading Support

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

• By default, MUST supports MPI_THREAD_FUNNELED
• For higher threading levels:

• This will raise the required level to MPI_THREAD_MULTIPLE!
• Some MPI might need env like: MPICH_MAX_THREAD_SAFETY=multiple
• Get info about the resources needed:

➢ This will give you the number of processes needed with tool attached

% mustrun -n 40 ./exe --must:hybrid

% mustrun -n 40 ./exe --must:hybrid --must:info

18

MPI runtime correctness checking with MUST – Advanced Usage

• We use Backward-cpp (or Dyninst) as an external lib for
stacktraces

• Collecting stack traces can be costly. Select with
--must:stacktrace [backward|dyninst|none]

• Supposed your application has no faults you won’t need
stacktraces ☺

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

19

MUST – Filter file

• Use filter files to selectively exclude error/warning messages (avoid cluttered output)
• Format: messageType:MUST_MESSAGE_TYPE:source

− MUST_MESSAGE_TYPE: kind of message to ignore (e.g. MUST_WARNING_COMM_NULL)
− source: specific file (filename.c), specific function (function_name) or all sources (*)

• Example: Ignore NULL comm. warnings originating from main.c (needs stacktraces)

• Example: Ignore all data type leak errors

• Define and use a filter file:
− --must:filter-file <path-to-filter-file>

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

messageType:MUST_WARNING_COMM_NULL:src:main.c

messageType:MUST_ERROR_LEAK_DATATYPE:*

20

MUST – More options

• Print help:
− --must:help

• Select output format:
− --must:output {html|json|stdout}

• Use with ddt:
− Record error message information:

▪ --must:capture

− Replay under control of ddt:
▪ --must:reproduce --must:ddt

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

21

Tool Overview - Approaches Techniques

• Debuggers:
✓ Helpful to pinpoint any error
− Finding the root cause may be hard
− Won’t detect sleeping errors
− E.g.: gdb, TotalView, Allinea DDT

• Static Analysis:
− Compilers and Source analyzers
✓ Typically: type and expression errors
− E.g.: MPI-Check

• Model checking:
✓ Can find hidden errors
− Requires a model of your applications
− State explosion possible
− E.g.: MPI-Spin

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

MPI_Recv (buf, 5, MPI_INT,
 -1,
 123, MPI_COMM_WORLD, &status);

“-1” instead of “MPI_ANY_SOURCE”

if (rank == 1023)
abort ();

Only works with less than 1024 tasks

22

 MPI_Recv(from:0, type=MPI_FLOAT)

Tool Overview - Approaches Techniques (2)

• Runtime error detection:
✓ Inspect MPI calls at runtime
− Limited to the timely interleaving that is observed
− Causes overhead during application run
− E.g.: Intel Trace Analyzer, Umpire, Marmot, MUST

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

 MPI_Send(to:1, type=MPI_INT)

Task 0 Task 1

Type mismatch

23

Tool Overview - Approaches Techniques (3)

• Formal verification:
− Extension of runtime error detection
− Explores all relevant interleavings (explore around nondet.)
− Detects errors that only manifest in some runs
− Possibly many interleavings to explore
− E.g.: ISP

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

 spend_some_time()
 MPI_Send (to:1)
 MPI_Barrier ()

Task 0

Deadlock if MPI_Send(to:1)@0 matches MPI_Recv(from:ANY)@1

 MPI_Recv (from:ANY)
 MPI_Recv (from:0)
 MPI_Barrier ()

Task 1

MPI_Send (to:1)
MPI_Barrier ()

Task 2

24

Approaches to Remove Bugs (Selection)

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Our contribution:

Bug@
Scale

Static Code Analysis

Runtime Checking

Downscaling

Debuggers

Model Checking

Grid?

Repartitioning?
Representative input?

Node Memory?

Reproducibility?

TASS
pCFG’s Barrier Analysis

Umpire ISP/
DAMPI

25

MUST - Summary

• MPI runtime error detection tool

• Open source (BSD license)
http://www.itc.rwth-aachen.de/MUST/

• Wide range of checks, strength areas:
− Overlaps in communication buffers
− Errors with derived datatypes
− Deadlocks

• Largely distributed, able to scale with the application

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

26

Compiler-Aided Analysis

27

How many issues can you spot in this tiny example?

#include <mpi.h>
#include <stdio.h>
int main (int argc, char** argv)
{
 int rank, size, buf[8], provided = 0, requested = MPI_THREAD_MULTIPLE;
 MPI_Init_thread (&argc, &argv, MPI_THREAD_SINGLE, &provided);
 printf (“provided: %d.\n", provided);
 MPI_Comm_rank (MPI_COMM_WORLD, &rank); MPI_Comm_size (MPI_COMM_WORLD, &size);
 MPI_Request request;
#pragma omp parallel sections num_threads(2)
 {
 MPI_Send (buf, 4, MPI_FLOAT, size – rank – 1, 123, MPI_COMM_WORLD); // thread 0
#pragma omp section
 MPI_Irecv (buf, 4, MPI_FLOAT, size – rank – 1, 123, MPI_COMM_WORLD, &request); // thread 1
 }
 MPI_Wait (&request, MPI_STATUS_IGNORE);
 MPI_Finalize();
 return 0;
}

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

At least 3 issues in this code example!

28

Using MUST + Archer

• Compile the MPI(+OpenMP) application just like described for Archer

• Using clang to compile with OpenMPI/IntelMPI/MPICH:
− export OMPI_CC=clang; export MPICH_CC=clang;
− export OMPI_CXX=clang++; export MPICH_CXX=clang++;

• Run MUST with TSan support:
− --must:tsan

• For integration of TSan output into the MUST report, a helper-library must be linked
into the application (not necessary for the setup on cosma):

− -Wl,--whole-archive ${MUST_ROOT}/lib/libonReportLoader.a
-Wl,--no-whole-archive

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

29

TSan Output in MUST report

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

30

MPI Type Correctness

MPI libraries provide only minimal error checking

• Buffers are passed as void*
• At the same time, users have to specify buffer length and the datatype manually
➢ Error-prone!

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

MPI_Send(buffer, n, MPI_DOUBLE, …)

1. Data is transferred as a
 type-less void* buffer

2. Data length and type is
 user-specified

Slides gracefully provided by Dr. Alexander Hück

31

Three phases of message transfer

1. Data is pulled out of the (send) buffer for message assembly
2. Data is transferred from sender to receiver
3. Data is disassembled and put into the (receive) buffer

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Adapted from https://dl.acm.org/doi/10.1145/3431379.3460652

Slides gracefully provided by Dr. Alexander Hück

32

Distributed Checking of Type Matches

A message transfer from sender (rank 1) to receiver (rank 2)

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

 MPI_Send(data, size, MPI_FLOAT,…); MPI_Recv(data, size, MPI_DOUBLE, …);

Rank 1 Rank 2

 Distributed analysis of phase 2 with MUST

Message envelope matches

Slides gracefully provided by Dr. Alexander Hück

33

Limitation of Dynamic Checking

MUST needs to check type-less void*
buffer data

• Phase 1, e.g., MPI_Send
• Phase 3, e.g., MPI_Recv

Answer the questions:

• Is it of type MPI_FLOAT?
• Is it of length buffer_size?

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

→ Can not be answered by MUST
 without further tooling

 MPI_Send(data, buffer_size, MPI_FLOAT,…);

Memory Allocation
double* buff = …;

Rank 1

 Local analysis only
possible with tooling

Slides gracefully provided by Dr. Alexander Hück

34

Examples

AMG2013, a CORAL performance and parallel scaling benchmark [Coral’20]
• In parcsr_mv/par_csr_matrix.c:1236, reported by [DKL LLVM’15]:

104.milc, a SPEC MPI benchmark [SpecMPI’07]

• In com_mpi.c:480:

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

MPI_Bcast(&global_data[3], global_size-3, MPI_INT, …);

HYPRE_BigInt long longalias

MPI_Allreduce(cpt, &work, 2, MPI_FLOAT, …);

struct{float a; float b;};

Interpreted as array of 2 floats
→ Benign today, but tomorrow?

Slides gracefully provided by Dr. Alexander Hück

https://www.reddit.com/r/cpp/comments/uk9wto/memory_layout_of_struct_vs_array/

35

TypeART

TypeART is a tool to track allocations and their type information
• Consists of

− a LLVM compiler plugin to instrument allocations (LLVM IR level),

➢ Heap, stack, global: Memory address, element count and type

− a runtime with a C API to provide type information to MUST

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Slides gracefully provided by Dr. Alexander Hück

36

MUST & TypeART Usage

1. Compile and link your application with TypeART compiler wrapper

− mpicc → typeart-mpicc

− mpicxx → typeart-mpic++

2. Replace “mpiexec” with command “mustrun” and activate TypeART, e.g.,

− mustrun -np 4 --must:typeart ./my-app.bin

3. Inspect “MUST_Output.html” in run directory for (type-related) issues

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Filters allocation
if never passed

to MPI

Slides gracefully provided by Dr. Alexander Hück

37

Compiling with TypeART

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

make
● Often compiler selection possible

with env variable

 $> MPICC=typeart-mpicc make -j 1

CMake

● During the configuration, CMake
executes internal compiler checks,
where we do not need TypeART
instrumentation:

🡪 Need to disable wrapper

$> TYPEART_WRAPPER=OFF cmake .. \

-DCMAKE_C_COMPILER=typeart-mpicc

$> make -j 1

 MPICC ?= mpicc
 demo: example.c
 $(MPICC) -O1 -g -c $< -o $@.o
 $(MPICC) $@.o -o $@

Makefile content:

Slides gracefully provided by Dr. Alexander Hück

38

MUST output in case of type error

TypeART type-related errors may look as follows (mustrun -np 4 --must:typeart ./app)

• Here, MPI_Irecv expects an MPI_INT buffer, but a float* buffer handle was passed

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Slides gracefully provided by Dr. Alexander Hück

39

Conclusion

MUST & TypeART combine dynamic analysis with compile-time instrumentation to enable
type checking for all phases of message transfer

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

Rank 1 Rank 2

 MPI_Send(data, buffer_size, MPI_FLOAT,);

Memory Allocation
double* buff = …;

MPI_Recv(data, buffer_size, MPI_DOUBLE, …);

b) Distributed analysis with MUST

a) Local analysis
 with TypeART

Slides gracefully provided by Dr. Alexander Hück

40

Hands-on 2

41

Hands-on 2

• Clone https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

• Run MUST on the LULESH code in the Hands-on-2 directory

• The README.md file contains instructions for this Hands-on

MPI + OpenMP Correctness Checking with MUST
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

$ module use ~dc-prot1/.modules
$ module load clang_comp/17.0.6 intel_mpi/2020-update2
must/1.10.0-preview/clang_17.0.6_intel_mpi_2020-update2

https://git-ce.rwth-aachen.de/hpc-public/must-tutorial.git

