From c14b9b148a619da970823b06214a7a30655b3885 Mon Sep 17 00:00:00 2001
From: Jannis Klinkenberg <j.klinkenberg@itc.rwth-aachen.de>
Date: Sat, 16 Nov 2024 18:24:42 +0100
Subject: [PATCH] also reduced complexity on single GPU case

---
 tensorflow/cifar10/train_model.py             | 84 +++++++------------
 tensorflow/cifar10_distributed/train_model.py |  5 +-
 .../train_model_horovod.py                    |  4 +-
 3 files changed, 31 insertions(+), 62 deletions(-)

diff --git a/tensorflow/cifar10/train_model.py b/tensorflow/cifar10/train_model.py
index b505879..05648eb 100644
--- a/tensorflow/cifar10/train_model.py
+++ b/tensorflow/cifar10/train_model.py
@@ -6,7 +6,6 @@ import argparse
 import datetime
 import tensorflow as tf
 from tensorflow.keras.optimizers import Adam
-from tensorflow.keras import backend as K
 from tensorflow.keras.datasets import cifar10
 import tensorflow.keras.applications as applications
 
@@ -15,82 +14,57 @@ def parse_command_line():
     parser.add_argument("--device", required=False, type=str, choices=["cpu", "cuda"], default="cuda")
     parser.add_argument("--num_epochs", required=False, type=int, default=5)
     parser.add_argument("--batch_size", required=False, type=int, default=128)
-    parser.add_argument("--verbosity", required=False, help="Keras verbosity level for training/evaluation", type=int, default=2)
-    parser.add_argument("--num_intraop_threads", required=False, help="Number of intra-op threads", type=int, default=None)
-    parser.add_argument("--num_interop_threads", required=False, help="Number of inter-op threads", type=int, default=None)
     parser.add_argument("--tensorboard", required=False, help="Whether to use tensorboard callback", action="store_true", default=False)
     parser.add_argument("--profile_batches", required=False, help='Batches to profile with for tensorboard. Format "batch_start,batch_end"', type=str, default="2,5")
     args = parser.parse_args()
 
-    # specific to cifar 10 dataset
-    args.num_classes = 10
-
     print("Settings:")
     settings_map = vars(args)
     for name in sorted(settings_map.keys()):
         print("--" + str(name) + ": " + str(settings_map[name]))
     print("")
-    sys.stdout.flush()
 
     return args
 
-def load_dataset(args):
-    K.set_image_data_format("channels_last")
+def preprocess_data(images, labels):
+    images = tf.image.resize(images, (224, 224))  # Resize for ResNet-50
+    images = images / 255.0  # Normalize to [0, 1]
+    return images, labels
 
-    # load the cifar10 data
+def load_dataset(args):
+    # load the cifar10 data and generate input pipelines
     (x_train, y_train), (x_test, y_test) = cifar10.load_data()
 
     # convert class vectors to binary class matrices.
-    y_train = tf.keras.utils.to_categorical(y_train, args.num_classes)
-    y_test = tf.keras.utils.to_categorical(y_test, args.num_classes)
-
-    # normalize base data
-    x_train = x_train.astype("float32") / 255
-    x_test = x_test.astype("float32") / 255
-    x_train_mean = np.mean(x_train, axis=0)
-    x_train -= x_train_mean
-    x_test -= x_train_mean
-
-    # dimensions
-    print(f"original train_shape: {x_train.shape}")
-    print(f"original test_shape: {x_test.shape}")
-    n_train, n_test = x_train.shape[0], x_test.shape[0]
-    resize_size = 224 # use bigger images with ResNet
-
-    # Generating input pipelines
-    ds_train = (tf.data.Dataset.from_tensor_slices((x_train, y_train))
-                .map(lambda image, label: (tf.image.resize(image, [resize_size, resize_size]), label))
-                .shuffle(n_train).cache().batch(args.batch_size).prefetch(tf.data.AUTOTUNE)
+    y_train = tf.keras.utils.to_categorical(y_train, 10)
+    y_test = tf.keras.utils.to_categorical(y_test, 10)
+
+    ds_train = (
+        tf.data.Dataset.from_tensor_slices((x_train, y_train))
+        .map(preprocess_data)
+        .shuffle(x_train.shape[0])
+        .cache()
+        .batch(args.batch_size)
+        .prefetch(tf.data.experimental.AUTOTUNE)
     )
-    ds_test = (tf.data.Dataset.from_tensor_slices((x_test, y_test))
-               .map(lambda image, label: (tf.image.resize(image, [resize_size, resize_size]), label))
-               .shuffle(n_test).cache().batch(args.batch_size).prefetch(tf.data.AUTOTUNE)
+
+    ds_test = (
+        tf.data.Dataset.from_tensor_slices((x_test, y_test))
+        .map(preprocess_data)
+        .cache()
+        .batch(args.batch_size)
+        .prefetch(tf.data.experimental.AUTOTUNE)
     )
 
     # get updated shapes
     train_shape, test_shape = ds_train.element_spec[0].shape, ds_test.element_spec[0].shape
-    print(f"final train_shape: {train_shape}")
-    print(f"final test_shape: {test_shape}")
+    print(f"train_shape:", x_train.shape, " -> ", train_shape)
+    print(f"test_shape:", x_test.shape, " -> ", test_shape)
 
     return ds_train, ds_test, train_shape
 
 def setup(args):
-    if args.num_intraop_threads:
-        tf.config.threading.set_intra_op_parallelism_threads(args.num_intraop_threads)
-    if args.num_interop_threads:
-        tf.config.threading.set_inter_op_parallelism_threads(args.num_interop_threads)
-
-    gpu_devices = [] if args.device == "cpu" else tf.config.list_physical_devices("GPU")
-
-    print(f"Tensorflow get_intra_op_parallelism_threads: {tf.config.threading.get_intra_op_parallelism_threads()}")
-    print(f"Tensorflow get_inter_op_parallelism_threads: {tf.config.threading.get_inter_op_parallelism_threads()}")
-
-    
-    print("List of GPU devices found:")
-    for dev in gpu_devices:
-        print(str(dev.device_type) + ": " + dev.name)
-    print("")
-    sys.stdout.flush()
+    print(f"Number of GPU devices found on worker {args.world_rank}", len(tf.config.list_physical_devices("GPU")))
 
     tf.keras.backend.clear_session()
     tf.config.optimizer.set_jit(True)
@@ -113,9 +87,8 @@ def main():
     # callbacks to register
     callbacks = []
 
-    model = applications.ResNet50(weights=None, input_shape=train_shape[1:], classes=args.num_classes)
-    # model.summary() # display the model architecture
-
+    # create and compile the model
+    model = applications.ResNet50(weights=None, input_shape=train_shape[1:], classes=10)
     cur_optimizer = Adam(0.001)
     model.compile(loss="categorical_crossentropy", optimizer=cur_optimizer, metrics=["accuracy"])
 
@@ -134,7 +107,6 @@ def main():
     # evaluate model
     scores = model.evaluate(ds_test, verbose=args.verbosity)
     print(f"Test Evaluation: Accuracy: {scores[1]}")
-    sys.stdout.flush()
 
 if __name__ == "__main__":
     main()
diff --git a/tensorflow/cifar10_distributed/train_model.py b/tensorflow/cifar10_distributed/train_model.py
index 5a742e6..c80076d 100644
--- a/tensorflow/cifar10_distributed/train_model.py
+++ b/tensorflow/cifar10_distributed/train_model.py
@@ -108,11 +108,10 @@ def main():
     # callbacks to register
     callbacks = []
 
+    # create and compile the model
     with strategy.scope():
         model = applications.ResNet50(weights=None, input_shape=train_shape[1:], classes=10)
-
-        # create optimizer and scale learning rate with number of workers
-        cur_optimizer = Adam(learning_rate=0.001 * args.world_size)
+        cur_optimizer = Adam(learning_rate=0.001 * args.world_size) # scale learning rate with number of workers
         model.compile(loss="categorical_crossentropy", optimizer=cur_optimizer, metrics=["accuracy"])
 
     # callbacks to register
diff --git a/tensorflow/cifar10_distributed/train_model_horovod.py b/tensorflow/cifar10_distributed/train_model_horovod.py
index e18aff6..6cae19e 100644
--- a/tensorflow/cifar10_distributed/train_model_horovod.py
+++ b/tensorflow/cifar10_distributed/train_model_horovod.py
@@ -110,13 +110,11 @@ def main():
         hvd.callbacks.BroadcastGlobalVariablesCallback(0),
     ]
 
+    # create and compile the model
     model = applications.ResNet50(weights=None, input_shape=train_shape[1:], classes=10)
-    # model.summary() # display the model architecture
-    
     # Horovod: create Horovod DistributedOptimizer and scale learning rate with number of workers
     cur_optimizer = Adam(learning_rate=0.001 * hvd.size())
     opt = hvd.DistributedOptimizer(cur_optimizer, compression=compression)
-
     model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
 
     # callbacks to register
-- 
GitLab