diff --git a/acknowledgments.aux b/acknowledgments.aux index ac9bcc6b25c7639b148e0089b1819b26f85a0b31..597ab47b51cf33380f5392cfbafeba0e3b523355 100644 --- a/acknowledgments.aux +++ b/acknowledgments.aux @@ -1,6 +1,6 @@ \relax \providecommand\hyper@newdestlabel[2]{} -\@writefile{toc}{\contentsline {chapter}{Acknowledgments}{ix}{chapter*.131}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{Acknowledgments}{ix}{chapter*.120}\protected@file@percent } \@setckpt{acknowledgments}{ \setcounter{page}{10} \setcounter{equation}{1} @@ -22,16 +22,16 @@ \setcounter{section@level}{4} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{67} +\setcounter{bookmark@seq@number}{66} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} -\setcounter{NAT@ctr}{22} +\setcounter{NAT@ctr}{23} \setcounter{caption@flags}{2} \setcounter{continuedfloat}{0} \setcounter{subfigure}{0} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{11} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/appendix.aux b/appendix.aux index 54dd9dde6461377a5cfe780106f70c42a08af149..1fcad7bc381d0157015411f5fb7b1929439e0269 100644 --- a/appendix.aux +++ b/appendix.aux @@ -1,51 +1,51 @@ \relax \providecommand\hyper@newdestlabel[2]{} -\@writefile{toc}{\contentsline {chapter}{Appendix}{i}{chapter*.97}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{Appendix}{i}{chapter*.86}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {A}LockIn amplifier settings}{i}{section.5.1}\protected@file@percent } \newlabel{app:lock_in}{{A}{i}{LockIn amplifier settings}{section.5.1}{}} -\@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded.}}{i}{table.caption.98}\protected@file@percent } -\newlabel{fig:app_lock_in}{{5.2}{i}{Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded}{table.caption.98}{}} +\@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded.}}{i}{table.caption.87}\protected@file@percent } +\newlabel{fig:app_lock_in}{{5.2}{i}{Settings used for the Lock-in amplifier in the experiment. Sensitivity is increased a step at a time until the Lock-in is no longer in overload. Source is chosen as internal. Ground is set to grounded}{table.caption.87}{}} \@writefile{toc}{\contentsline {section}{\numberline {B}Walker principle diagram}{ii}{section.5.2}\protected@file@percent } \newlabel{app:walker_diagram}{{B}{ii}{Walker principle diagram}{section.5.2}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.14}{\ignorespaces Overview of the entire signal generation and amplification process of the new Mask Aligner controller.}}{ii}{figure.caption.99}\protected@file@percent } -\newlabel{fig:electronics_diagramm}{{5.14}{ii}{Overview of the entire signal generation and amplification process of the new Mask Aligner controller}{figure.caption.99}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.14}{\ignorespaces Overview of the entire signal generation and amplification process of the new Mask Aligner controller.}}{ii}{figure.caption.88}\protected@file@percent } +\newlabel{fig:electronics_diagramm}{{5.14}{ii}{Overview of the entire signal generation and amplification process of the new Mask Aligner controller}{figure.caption.88}{}} \@writefile{toc}{\contentsline {section}{\numberline {C}Walker circuit diagrams}{ii}{section.5.3}\protected@file@percent } \newlabel{app:circuit_electronics}{{C}{ii}{Walker circuit diagrams}{section.5.3}{}} \@writefile{toc}{\contentsline {section}{\numberline {D}New driver electronics}{vi}{section.5.4}\protected@file@percent } \newlabel{sec:appendix_walker}{{D}{vi}{New driver electronics}{section.5.4}{}} -\@writefile{toc}{\contentsline {paragraph}{pulse?}{vi}{section*.100}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{pol x}{vi}{section*.101}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{amp x}{vi}{section*.102}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{volt x}{vi}{section*.103}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{channel x}{vi}{section*.104}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{maxmstep x}{vi}{section*.105}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{step x}{vi}{section*.106}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{mstep x}{vi}{section*.107}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{cancel}{vii}{section*.108}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{help}{vii}{section*.109}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{pulse?}{vi}{section*.89}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{pol x}{vi}{section*.90}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{amp x}{vi}{section*.91}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{volt x}{vi}{section*.92}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{channel x}{vi}{section*.93}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{maxmstep x}{vi}{section*.94}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{step x}{vi}{section*.95}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{mstep x}{vi}{section*.96}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{cancel}{vii}{section*.97}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{help}{vii}{section*.98}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {E}Raycast Simulation}{vii}{section.5.5}\protected@file@percent } \newlabel{sec:appendix_raycast}{{E}{vii}{Raycast Simulation}{section.5.5}{}} -\@writefile{toc}{\contentsline {paragraph}{radius\_1}{vii}{section*.110}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{angle}{vii}{section*.111}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{radius\_mask}{vii}{section*.112}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.113}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{distance\_sample}{vii}{section*.114}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.115}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{running\_time}{vii}{section*.116}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{deposition\_gain}{vii}{section*.117}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{penalize\_deposition}{vii}{section*.118}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.119}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{oscillation\_period}{vii}{section*.120}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.121}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.122}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{save\_intervall}{viii}{section*.123}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{oscillation\_dir}{viii}{section*.124}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.125}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.126}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{random\_seed}{viii}{section*.127}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.128}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{resolution}{viii}{section*.129}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{path}{viii}{section*.130}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{radius\_1}{vii}{section*.99}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{angle}{vii}{section*.100}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{radius\_mask}{vii}{section*.101}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.102}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{distance\_sample}{vii}{section*.103}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.104}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{running\_time}{vii}{section*.105}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{deposition\_gain}{vii}{section*.106}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{penalize\_deposition}{vii}{section*.107}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.108}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{oscillation\_period}{vii}{section*.109}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.110}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.111}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{save\_intervall}{viii}{section*.112}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{oscillation\_dir}{viii}{section*.113}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.114}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.115}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{random\_seed}{viii}{section*.116}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.117}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{resolution}{viii}{section*.118}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{path}{viii}{section*.119}\protected@file@percent } \@setckpt{appendix}{ \setcounter{page}{9} \setcounter{equation}{1} @@ -67,16 +67,16 @@ \setcounter{section@level}{4} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{66} +\setcounter{bookmark@seq@number}{65} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} -\setcounter{NAT@ctr}{22} +\setcounter{NAT@ctr}{23} \setcounter{caption@flags}{2} \setcounter{continuedfloat}{0} \setcounter{subfigure}{0} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{11} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/bibliography.aux b/bibliography.aux index cecf34fbe5d9189b5970fcbc69620a4dea3a123b..0f32e07a813029cf427dc5e793b94c9d2874e339 100644 --- a/bibliography.aux +++ b/bibliography.aux @@ -14,7 +14,7 @@ \bibcite{tungsten_evaporation}{{10}{}{{}}{{}}} \bibcite{afm_physics}{{11}{}{{}}{{}}} \bibcite{afm_bio}{{12}{}{{}}{{}}} -\@writefile{toc}{\contentsline {chapter}{Bibliography}{80}{chapter*.95}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{Bibliography}{74}{chapter*.84}\protected@file@percent } \bibcite{SEM_image_01}{{13}{}{{}}{{}}} \bibcite{SEM_image_02}{{14}{}{{}}{{}}} \bibcite{SEM_book}{{15}{}{{}}{{}}} @@ -25,8 +25,9 @@ \bibcite{arduino_datasheet}{{20}{}{{}}{{}}} \bibcite{arduino_cpu_datasheet}{{21}{}{{}}{{}}} \bibcite{switch_datasheet}{{22}{}{{}}{{}}} +\bibcite{grain_growth}{{23}{}{{}}{{}}} \@setckpt{bibliography}{ -\setcounter{page}{82} +\setcounter{page}{76} \setcounter{equation}{1} \setcounter{enumi}{4} \setcounter{enumii}{0} @@ -46,16 +47,16 @@ \setcounter{section@level}{2} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{59} +\setcounter{bookmark@seq@number}{58} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} -\setcounter{NAT@ctr}{22} +\setcounter{NAT@ctr}{23} \setcounter{caption@flags}{6} \setcounter{continuedfloat}{0} \setcounter{subfigure}{3} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{11} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/bibliography.bib b/bibliography.bib index 166834b4d5b87da5fc6cfab8f7c641cfaeb4e5d2..9558cb618d4dc7e38cc1ed2c155a21d7b31a769f 100644 --- a/bibliography.bib +++ b/bibliography.bib @@ -317,4 +317,18 @@ title = {An Atomic Force Microscopy Study of Single-Layer FeSe Superconductor}, volume = {6}, journal = {Applied Physics Express}, doi = {10.7567/APEX.6.113101} -} \ No newline at end of file +} + +@article{grain_growth, +url = {https://doi.org/10.1524/zkri.1958.110.16.372}, +title = {Phänomenologische Theorie der Kristallabscheidung an Oberflächen. I}, +title = {}, +author = {ERNST BAUER}, +pages = {372--394}, +volume = {110}, +number = {1-6}, +journal = {Zeitschrift für Kristallographie - Crystalline Materials}, +doi = {doi:10.1524/zkri.1958.110.16.372}, +year = {1958}, +lastchecked = {2024-10-01} +} diff --git a/chap02.aux b/chap02.aux index 579914bd8458af663ce49de10dc5359131bce888..5bf3cc7b1f1a7b06d221d3e5e98177da32c0331e 100644 --- a/chap02.aux +++ b/chap02.aux @@ -29,25 +29,25 @@ \@writefile{lof}{\contentsline {figure}{\numberline {2.5}{\ignorespaces (\subref {fig:screw_firmness_screw_image}) shows a frontal view of the motor Z2 marked in red is the screw used for calibration of the motors on the Mask Aligner. (\subref {fig:screw_firmness_plot}) shows example curves of how the screws of Z2 and Z3 affect the given motor's step size. The $0.0$ screw rotation is arbitrary. $+$ means retraction and $-$ means approach (Fig. \ref {fig:mask_aligner_nomenclature_motors}). The jumps in signal result from the \ce {CuBe} plate slipping across the winding of the screw. }}{21}{figure.caption.19}\protected@file@percent } \newlabel{fig:screw_firmness}{{2.5}{21}{(\subref {fig:screw_firmness_screw_image}) shows a frontal view of the motor Z2 marked in red is the screw used for calibration of the motors on the Mask Aligner. (\subref {fig:screw_firmness_plot}) shows example curves of how the screws of Z2 and Z3 affect the given motor's step size. The $0.0$ screw rotation is arbitrary. $+$ means retraction and $-$ means approach (Fig. \ref {fig:mask_aligner_nomenclature_motors}). The jumps in signal result from the \ce {CuBe} plate slipping across the winding of the screw}{figure.caption.19}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {2.3.2}Motor calibration}{21}{subsection.2.3.2}\protected@file@percent } -\newlabel{fig:calibration_uhv_example_driving_z1}{{2.6a}{22}{\relax }{figure.caption.20}{}} -\newlabel{sub@fig:calibration_uhv_example_driving_z1}{{a}{22}{\relax }{figure.caption.20}{}} -\newlabel{fig:calibration_uhv_example_driving_z2}{{2.6b}{22}{\relax }{figure.caption.20}{}} -\newlabel{sub@fig:calibration_uhv_example_driving_z2}{{b}{22}{\relax }{figure.caption.20}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) shows the top of motor Z1, inset shows a zoom in of the top plate with the image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) shows the same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps.}}{22}{figure.caption.20}\protected@file@percent } -\newlabel{fig:calibration_uhv_example_driving}{{2.6}{22}{Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) shows the top of motor Z1, inset shows a zoom in of the top plate with the image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) shows the same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps}{figure.caption.20}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement.}}{23}{figure.caption.21}\protected@file@percent } -\newlabel{fig:calibration_screw_diff_explain}{{2.7}{23}{Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement}{figure.caption.21}{}} -\newlabel{fig:calibration_uhv_points_of_interest_z1}{{2.8a}{24}{\relax }{figure.caption.22}{}} -\newlabel{sub@fig:calibration_uhv_points_of_interest_z1}{{a}{24}{\relax }{figure.caption.22}{}} -\newlabel{fig:calibration_uhv_points_of_interest_z2z3}{{2.8b}{24}{\relax }{figure.caption.22}{}} -\newlabel{sub@fig:calibration_uhv_points_of_interest_z2z3}{{b}{24}{\relax }{figure.caption.22}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Points of interest for the calibration of the step size of the 3 piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination.}}{24}{figure.caption.22}\protected@file@percent } -\newlabel{fig:calibration_uhv_points_of_interest}{{2.8}{24}{Points of interest for the calibration of the step size of the 3 piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination}{figure.caption.22}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit.}}{25}{figure.caption.23}\protected@file@percent } -\newlabel{fig:calibration_example}{{2.9}{25}{Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit}{figure.caption.23}{}} +\newlabel{fig:calibration_uhv_points_of_interest_z1}{{2.6a}{22}{\relax }{figure.caption.20}{}} +\newlabel{sub@fig:calibration_uhv_points_of_interest_z1}{{a}{22}{\relax }{figure.caption.20}{}} +\newlabel{fig:calibration_uhv_points_of_interest_z2z3}{{2.6b}{22}{\relax }{figure.caption.20}{}} +\newlabel{sub@fig:calibration_uhv_points_of_interest_z2z3}{{b}{22}{\relax }{figure.caption.20}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.6}{\ignorespaces Points of interest for the calibration of the step size of the 3 piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination.}}{22}{figure.caption.20}\protected@file@percent } +\newlabel{fig:calibration_uhv_points_of_interest}{{2.6}{22}{Points of interest for the calibration of the step size of the 3 piezo motors in UHV. (a) motor Z1, \textcolor {tab_red}{red:} top of sapphire prism, \textcolor {tab_green}{green:} end of top plate used for step size determination (b) motors Z2/Z3, \textcolor {tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor {tab_green}{green:} lines used for step size determination}{figure.caption.20}{}} +\newlabel{fig:calibration_uhv_example_driving_z1}{{2.7a}{23}{\relax }{figure.caption.21}{}} +\newlabel{sub@fig:calibration_uhv_example_driving_z1}{{a}{23}{\relax }{figure.caption.21}{}} +\newlabel{fig:calibration_uhv_example_driving_z2}{{2.7b}{23}{\relax }{figure.caption.21}{}} +\newlabel{sub@fig:calibration_uhv_example_driving_z2}{{b}{23}{\relax }{figure.caption.21}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.7}{\ignorespaces Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) top of motor Z1, inset shows a zoom in of the top plate. The image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) shows the same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps.}}{23}{figure.caption.21}\protected@file@percent } +\newlabel{fig:calibration_uhv_example_driving}{{2.7}{23}{Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref {fig:calibration_uhv_example_driving_z1}) top of motor Z1, inset shows a zoom in of the top plate. The image after driving $1000$ approach steps superimposed. \textcolor {tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref {fig:calibration_uhv_example_driving_z2}) shows the same as (\subref {fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps}{figure.caption.21}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.8}{\ignorespaces Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement.}}{24}{figure.caption.22}\protected@file@percent } +\newlabel{fig:calibration_screw_diff_explain}{{2.8}{24}{Top view of the Mask Aligner with the motors Z1-Z3 and the screws on the mask frame displayed. The triangle and line construction shows the derivation for the motor movement from screw movement}{figure.caption.22}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.9}{\ignorespaces Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit.}}{24}{figure.caption.23}\protected@file@percent } +\newlabel{fig:calibration_example}{{2.9}{24}{Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref {fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit}{figure.caption.23}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.10}{\ignorespaces Step size as a function of voltage (DC peak) with linear fit and resulting slopes marked.}}{25}{figure.caption.24}\protected@file@percent } \newlabel{fig:calibration_voltage}{{2.10}{25}{Step size as a function of voltage (DC peak) with linear fit and resulting slopes marked}{figure.caption.24}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Optical alignment}{26}{subsection.2.3.3}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.3}Optical alignment}{25}{subsection.2.3.3}\protected@file@percent } \newlabel{fig:camera_alignment_example_low}{{2.11a}{26}{\relax }{figure.caption.25}{}} \newlabel{sub@fig:camera_alignment_example_low}{{a}{26}{\relax }{figure.caption.25}{}} \newlabel{fig:camera_alignment_example_high}{{2.11b}{26}{\relax }{figure.caption.25}{}} @@ -56,73 +56,50 @@ \newlabel{sub@fig:camera_alignment_example_good}{{c}{26}{\relax }{figure.caption.25}{}} \@writefile{lof}{\contentsline {figure}{\numberline {2.11}{\ignorespaces Examples of camera views for different alignment situations. (a) camera placed or angled too low, (b) too high and (c) placed in good alignment. }}{26}{figure.caption.25}\protected@file@percent } \newlabel{fig:camera_alignment_example}{{2.11}{26}{Examples of camera views for different alignment situations. (a) camera placed or angled too low, (b) too high and (c) placed in good alignment}{figure.caption.25}{}} -\@writefile{tdo}{\contentsline {todo}{Fix}{26}{section*.26}\protected@file@percent } -\newlabel{fig:optical_approach_a}{{2.12a}{27}{\relax }{figure.caption.27}{}} -\newlabel{sub@fig:optical_approach_a}{{a}{27}{\relax }{figure.caption.27}{}} -\newlabel{fig:optical_approach_b}{{2.12b}{27}{\relax }{figure.caption.27}{}} -\newlabel{sub@fig:optical_approach_b}{{b}{27}{\relax }{figure.caption.27}{}} -\newlabel{fig:optical_approach_c}{{2.12c}{27}{\relax }{figure.caption.27}{}} -\newlabel{sub@fig:optical_approach_c}{{c}{27}{\relax }{figure.caption.27}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length.}}{27}{figure.caption.27}\protected@file@percent } -\newlabel{fig:optical_approach}{{2.12}{27}{The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length}{figure.caption.27}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Capacitive distance measurements}{28}{subsection.2.3.4}\protected@file@percent } -\newlabel{fig:mask_aligner_nomenclature_capacitances_motors}{{2.13a}{28}{\relax }{figure.caption.28}{}} -\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_motors}{{a}{28}{\relax }{figure.caption.28}{}} -\newlabel{fig:mask_aligner_nomenclature_capacitances_mask}{{2.13b}{28}{\relax }{figure.caption.28}{}} -\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_mask}{{b}{28}{\relax }{figure.caption.28}{}} -\newlabel{fig:mask_aligner_nomenclature_capacitances}{{\caption@xref {fig:mask_aligner_nomenclature_capacitances}{ on input line 281}}{28}{Capacitive distance measurements}{figure.caption.28}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces (\subref {fig:mask_aligner_nomenclature_capacitances_motors}) shows a cross-section of the Mask Aligner showing the labeling and rough positioning of the capacitance sensors on the mask (inner \textcolor {tab_red}{red} triangle) in relation to the $3$ piezo motor stacks. (\subref {fig:mask_aligner_nomenclature_capacitances_mask}) shows a diagram of the mask's dimensions as well as labeling of the mask's sensors. The inset shows the dimensions of the holey part of the mask, which is used to create patterns. Below is a cross section of the materials used.}}{28}{figure.caption.28}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven.}}{29}{figure.caption.29}\protected@file@percent } -\newlabel{fig:diagram_MA_circ}{{2.14}{29}{Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven}{figure.caption.29}{}} -\newlabel{eq:plate_capacitor}{{2.1}{29}{Capacitive distance measurements}{equation.2.3.1}{}} -\newlabel{fig:approach_curve_example_cap}{{2.15a}{30}{\relax }{figure.caption.30}{}} -\newlabel{sub@fig:approach_curve_example_cap}{{a}{30}{\relax }{figure.caption.30}{}} -\newlabel{fig:approach_curve_example_cap_diff}{{2.15b}{30}{\relax }{figure.caption.30}{}} -\newlabel{sub@fig:approach_curve_example_cap_diff}{{b}{30}{\relax }{figure.caption.30}{}} -\newlabel{fig:approach_curve_example_first}{{2.15c}{30}{\relax }{figure.caption.30}{}} -\newlabel{sub@fig:approach_curve_example_first}{{c}{30}{\relax }{figure.caption.30}{}} -\newlabel{fig:approach_curve_example_second}{{2.15d}{30}{\relax }{figure.caption.30}{}} -\newlabel{sub@fig:approach_curve_example_second}{{d}{30}{\relax }{figure.caption.30}{}} -\newlabel{fig:approach_curve_example_full}{{2.15e}{30}{\relax }{figure.caption.30}{}} -\newlabel{sub@fig:approach_curve_example_full}{{e}{30}{\relax }{figure.caption.30}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces (a) A capacitance (approach) curve. (b) the difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample.}}{30}{figure.caption.30}\protected@file@percent } -\newlabel{fig:approach_curve_example}{{2.15}{30}{(a) A capacitance (approach) curve. (b) the difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample}{figure.caption.30}{}} +\newlabel{fig:optical_approach_a}{{2.12a}{26}{\relax }{figure.caption.26}{}} +\newlabel{sub@fig:optical_approach_a}{{a}{26}{\relax }{figure.caption.26}{}} +\newlabel{fig:optical_approach_b}{{2.12b}{26}{\relax }{figure.caption.26}{}} +\newlabel{sub@fig:optical_approach_b}{{b}{26}{\relax }{figure.caption.26}{}} +\newlabel{fig:optical_approach_c}{{2.12c}{26}{\relax }{figure.caption.26}{}} +\newlabel{sub@fig:optical_approach_c}{{c}{26}{\relax }{figure.caption.26}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.12}{\ignorespaces The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length.}}{26}{figure.caption.26}\protected@file@percent } +\newlabel{fig:optical_approach}{{2.12}{26}{The progression of optical alignment up from $65 \pm 5$ $\mu $m (a) to $25 \pm 5$ $\mu $m (c) mask sample distance. Measurement was obtained optically using measurement software and the sample's edge as a reference length}{figure.caption.26}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.4}Capacitive distance measurements}{27}{subsection.2.3.4}\protected@file@percent } +\newlabel{fig:mask_aligner_nomenclature_capacitances_motors}{{2.13a}{27}{\relax }{figure.caption.27}{}} +\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_motors}{{a}{27}{\relax }{figure.caption.27}{}} +\newlabel{fig:mask_aligner_nomenclature_capacitances_mask}{{2.13b}{27}{\relax }{figure.caption.27}{}} +\newlabel{sub@fig:mask_aligner_nomenclature_capacitances_mask}{{b}{27}{\relax }{figure.caption.27}{}} +\newlabel{fig:mask_aligner_nomenclature_capacitances}{{\caption@xref {fig:mask_aligner_nomenclature_capacitances}{ on input line 279}}{27}{Capacitive distance measurements}{figure.caption.27}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.13}{\ignorespaces (\subref {fig:mask_aligner_nomenclature_capacitances_motors}) shows a cross-section of the Mask Aligner showing the labeling and rough positioning of the capacitance sensors on the mask (inner \textcolor {tab_red}{red} triangle) in relation to the $3$ piezo motor stacks. (\subref {fig:mask_aligner_nomenclature_capacitances_mask}) shows a diagram of the mask's dimensions as well as labeling of the mask's sensors. The inset shows the dimensions of the holey part of the mask, which is used to create patterns. Below is a cross section of the materials used.}}{27}{figure.caption.27}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {2.14}{\ignorespaces Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven.}}{28}{figure.caption.28}\protected@file@percent } +\newlabel{fig:diagram_MA_circ}{{2.14}{28}{Diagram showing how communication with the RHK and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ one after another. The RHK relay controls, which motor is currently driven}{figure.caption.28}{}} +\newlabel{eq:plate_capacitor}{{2.1}{28}{Capacitive distance measurements}{equation.2.3.1}{}} +\newlabel{fig:approach_curve_example_cap}{{2.15a}{29}{\relax }{figure.caption.29}{}} +\newlabel{sub@fig:approach_curve_example_cap}{{a}{29}{\relax }{figure.caption.29}{}} +\newlabel{fig:approach_curve_example_cap_diff}{{2.15b}{29}{\relax }{figure.caption.29}{}} +\newlabel{sub@fig:approach_curve_example_cap_diff}{{b}{29}{\relax }{figure.caption.29}{}} +\newlabel{fig:approach_curve_example_first}{{2.15c}{29}{\relax }{figure.caption.29}{}} +\newlabel{sub@fig:approach_curve_example_first}{{c}{29}{\relax }{figure.caption.29}{}} +\newlabel{fig:approach_curve_example_second}{{2.15d}{29}{\relax }{figure.caption.29}{}} +\newlabel{sub@fig:approach_curve_example_second}{{d}{29}{\relax }{figure.caption.29}{}} +\newlabel{fig:approach_curve_example_full}{{2.15e}{29}{\relax }{figure.caption.29}{}} +\newlabel{sub@fig:approach_curve_example_full}{{e}{29}{\relax }{figure.caption.29}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.15}{\ignorespaces (a) capacitance (approach) curve. (b) difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample.}}{29}{figure.caption.29}\protected@file@percent } +\newlabel{fig:approach_curve_example}{{2.15}{29}{(a) capacitance (approach) curve. (b) difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac {1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample}{figure.caption.29}{}} \citation{Beeker} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}Reproducibility}{31}{subsection.2.3.5}\protected@file@percent } -\@writefile{toc}{\contentsline {subsubsection}{Reproducibility when removing sample/mask}{31}{section*.31}\protected@file@percent } -\newlabel{fig:approach_replicability_cap}{{2.16a}{31}{\relax }{figure.caption.32}{}} -\newlabel{sub@fig:approach_replicability_cap}{{a}{31}{\relax }{figure.caption.32}{}} -\newlabel{fig:approach_replicability_cap_diff}{{2.16b}{31}{\relax }{figure.caption.32}{}} -\newlabel{sub@fig:approach_replicability_cap_diff}{{b}{31}{\relax }{figure.caption.32}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces (\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier.}}{31}{figure.caption.32}\protected@file@percent } -\newlabel{fig:approach_replicability}{{2.16}{31}{(\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier}{figure.caption.32}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.6}Capacitance correlations}{32}{subsection.2.3.6}\protected@file@percent } -\newlabel{subsec:cross_cap}{{2.3.6}{32}{Capacitance correlations}{subsection.2.3.6}{}} -\@writefile{tdo}{\contentsline {todo}{Replace with approach curve}{32}{section*.33}\protected@file@percent } -\newlabel{fig:cross_cap_approach_difference}{{2.17a}{33}{\relax }{figure.caption.34}{}} -\newlabel{sub@fig:cross_cap_approach_difference}{{a}{33}{\relax }{figure.caption.34}{}} -\newlabel{fig:cross_cap_approach_difference_2}{{2.17b}{33}{\relax }{figure.caption.34}{}} -\newlabel{sub@fig:cross_cap_approach_difference_2}{{b}{33}{\relax }{figure.caption.34}{}} -\newlabel{fig:cross_cap_approach_sim}{{2.17c}{33}{\relax }{figure.caption.34}{}} -\newlabel{sub@fig:cross_cap_approach_sim}{{c}{33}{\relax }{figure.caption.34}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.17}{\ignorespaces (\subref {fig:cross_cap_approach_difference}, \subref {fig:cross_cap_approach_difference_2}) approach curves of two example measurements of 2 different masks normalized to ensure the same scale. (\subref {fig:cross_cap_approach_sim}) shows a simple simulation of the approach with tilted sample.}}{33}{figure.caption.34}\protected@file@percent } -\newlabel{fig:cross_cap_approach}{{2.17}{33}{(\subref {fig:cross_cap_approach_difference}, \subref {fig:cross_cap_approach_difference_2}) approach curves of two example measurements of 2 different masks normalized to ensure the same scale. (\subref {fig:cross_cap_approach_sim}) shows a simple simulation of the approach with tilted sample}{figure.caption.34}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.18}{\ignorespaces Diagram showing a cross section of the mask at a gold pad location. A small tear in the \ce {SiO2} layer removes insulation between the gold wire and the Si of the mask. Parallel black lines depict plate capacitors illustratively. Larger plate shows larger capacitance. }}{34}{figure.caption.35}\protected@file@percent } -\newlabel{fig:leakage_current}{{2.18}{34}{Diagram showing a cross section of the mask at a gold pad location. A small tear in the \ce {SiO2} layer removes insulation between the gold wire and the Si of the mask. Parallel black lines depict plate capacitors illustratively. Larger plate shows larger capacitance}{figure.caption.35}{}} -\@writefile{lot}{\contentsline {table}{\numberline {2.1}{\ignorespaces Table of cross capacitance measurement results. }}{35}{table.caption.36}\protected@file@percent } -\newlabel{tab:cross_cap}{{2.1}{35}{Table of cross capacitance measurement results}{table.caption.36}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.19}{\ignorespaces The 3 capacitance curves of the Mask labeled "old" scaled to be within the same range. The lower plots show deviations from comparison curve. }}{36}{figure.caption.37}\protected@file@percent } -\newlabel{fig:mask_old_correl}{{2.19}{36}{The 3 capacitance curves of the Mask labeled "old" scaled to be within the same range. The lower plots show deviations from comparison curve}{figure.caption.37}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {2.20}{\ignorespaces Circuit diagram of the measurement setup with the cross capacitances and parasitic capacitances for the mask shuttle. The $C_i$ refer to the main capacitances that are used for mask alignment. $C_{ij}$ refers to a cross capacitance between capacitance sensor $i$ and sensor $j$. $C_{mask-sample}$ refers to the capacitance between the Si of the Mask and the Si of the Sample, usually this should not be measured since the Si of the Mask is separated from the gold pads with a SiN layer, but should that layer be pierced or otherwise allow a leakage current (if the resistances $R_{i, Leak}$ are small enough) this will be measured instead of $C_i$, since it is an order of magnitude larger.}}{37}{figure.caption.38}\protected@file@percent } -\newlabel{fig:cross_cap_diagramm}{{2.20}{37}{Circuit diagram of the measurement setup with the cross capacitances and parasitic capacitances for the mask shuttle. The $C_i$ refer to the main capacitances that are used for mask alignment. $C_{ij}$ refers to a cross capacitance between capacitance sensor $i$ and sensor $j$. $C_{mask-sample}$ refers to the capacitance between the Si of the Mask and the Si of the Sample, usually this should not be measured since the Si of the Mask is separated from the gold pads with a SiN layer, but should that layer be pierced or otherwise allow a leakage current (if the resistances $R_{i, Leak}$ are small enough) this will be measured instead of $C_i$, since it is an order of magnitude larger}{figure.caption.38}{}} -\@writefile{toc}{\contentsline {paragraph}{Leakage current}{37}{section*.39}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Improved gold pin fitting}{37}{section*.40}\protected@file@percent } -\@writefile{tdo}{\contentsline {todo}{Image of gold pins}{37}{section*.41}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {2.4}Mask Aligner operation}{38}{section.2.4}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Sample preparation}{38}{subsection.2.4.1}\protected@file@percent } -\newlabel{sec:sample_prep}{{2.4.1}{38}{Sample preparation}{subsection.2.4.1}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {2.3.5}Reproducibility}{30}{subsection.2.3.5}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{Reproducibility when removing sample/mask}{30}{section*.30}\protected@file@percent } +\newlabel{fig:approach_replicability_cap}{{2.16a}{30}{\relax }{figure.caption.31}{}} +\newlabel{sub@fig:approach_replicability_cap}{{a}{30}{\relax }{figure.caption.31}{}} +\newlabel{fig:approach_replicability_cap_diff}{{2.16b}{30}{\relax }{figure.caption.31}{}} +\newlabel{sub@fig:approach_replicability_cap_diff}{{b}{30}{\relax }{figure.caption.31}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {2.16}{\ignorespaces (\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier.}}{30}{figure.caption.31}\protected@file@percent } +\newlabel{fig:approach_replicability}{{2.16}{30}{(\subref {fig:approach_replicability_cap}) 3 subsequent approach curves. (\subref {fig:approach_replicability_cap_diff}) corresponding differences in capacitance. \textcolor {tab_green}{Green} is the initial curve. The \textcolor {tab_blue}{blue} curve is after sample has been carefully removed and reinserted. For the \textcolor {tab_red}{red} curve the mask was removed and reinserted. Larger fluctuations in the signal visible on the \textcolor {tab_blue}{Blue} curve are due to an accidental change in time constant of the LockIn Amplifier}{figure.caption.31}{}} +\@writefile{toc}{\contentsline {section}{\numberline {2.4}Mask Aligner operation}{31}{section.2.4}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {2.4.1}Sample preparation}{31}{subsection.2.4.1}\protected@file@percent } +\newlabel{sec:sample_prep}{{2.4.1}{31}{Sample preparation}{subsection.2.4.1}{}} \@setckpt{chap02}{ -\setcounter{page}{39} +\setcounter{page}{33} \setcounter{equation}{1} \setcounter{enumi}{10} \setcounter{enumii}{0} @@ -137,21 +114,21 @@ \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} -\setcounter{figure}{20} -\setcounter{table}{1} +\setcounter{figure}{16} +\setcounter{table}{0} \setcounter{section@level}{2} \setcounter{Item}{10} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{20} +\setcounter{bookmark@seq@number}{19} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} \setcounter{NAT@ctr}{0} -\setcounter{caption@flags}{2} +\setcounter{caption@flags}{6} \setcounter{continuedfloat}{0} -\setcounter{subfigure}{0} +\setcounter{subfigure}{2} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{3} +\setcounter{@todonotes@numberoftodonotes}{0} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/chap02.tex b/chap02.tex index 4c0bb0d1aae51e628213690bc99d4fced364a06e..73c9d46199108b0793b9273cf7c211679f40c00b 100644 --- a/chap02.tex +++ b/chap02.tex @@ -112,7 +112,25 @@ control of the camera angle. \\ The procedure for step size calibration is very simple: $2000$, $4000$, $6000$, $8000$ and $10000$ steps are driven and after each set of steps the distance -the prism has traveled in the image of the camera is measured. This is done with the Bresser MicroCam II software. In the software a line is drawn at the initial position, from a remarkable point on the motor. After driving another line is drawn at the end position. The distance between these are measured using the software. An example for motor Z1 and Z2 can be seen in Figure \ref{fig:calibration_uhv_example_driving} for a $1000$ step measurement. If changes to the motors have been performed a calibration has to be performed outside of UHV before reinsertion into UHV. Afterwards the motors have to be calibrated in UHV. \\ +the prism has traveled in the image of the camera is measured. This is done with the Bresser MicroCam II software. In the software a line is drawn at the initial position, from a remarkable point on the motor (Fig. \ref{fig:calibration_uhv_points_of_interest}). After driving another line is drawn at the end position. The distance between these are measured using the software. An example for motor Z1 and Z2 is shown in Figure \ref{fig:calibration_uhv_example_driving} for a $1000$ step measurement. If changes to the motors have been performed a calibration has to be performed outside of UHV before reinsertion into UHV. Afterwards the motors have to be calibrated in UHV. \\ + +\begin{figure}[H] + \centering + \begin{subfigure}{0.42\textwidth} + \includegraphics[width=\linewidth]{img/CalibrationUHV_Z1.pdf} + \caption{} + \label{fig:calibration_uhv_points_of_interest_z1} + \end{subfigure} + \begin{subfigure}{0.42\textwidth} + \includegraphics[width=\linewidth]{img/CalibrationUHV_Z2_Z3.pdf} + \caption{} + \label{fig:calibration_uhv_points_of_interest_z2z3} + \end{subfigure} + \caption{Points of interest for the calibration of the step size of the 3 piezo motors in + UHV. (a) motor Z1, \textcolor{tab_red}{red:} top of sapphire prism, \textcolor{tab_green}{green:} end of top plate used for step size determination (b) + motors Z2/Z3, \textcolor{tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor{tab_green}{green:} lines used for step size determination.} + \label{fig:calibration_uhv_points_of_interest} +\end{figure} \begin{figure}[H] \centering @@ -128,18 +146,17 @@ the prism has traveled in the image of the camera is measured. This is done with \caption{} \label{fig:calibration_uhv_example_driving_z2} \end{subfigure} - \caption{Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref{fig:calibration_uhv_example_driving_z1}) shows the top of motor Z1, inset shows a zoom in of the top plate with the image after driving $1000$ approach steps superimposed. \textcolor{tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref{fig:calibration_uhv_example_driving_z2}) shows the same as (\subref{fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps.} + \caption{Comparison of photographs recorded prior and after $1000$ steps were driven. (\subref{fig:calibration_uhv_example_driving_z1}) top of motor Z1, inset shows a zoom in of the top plate. The image after driving $1000$ approach steps superimposed. \textcolor{tab_red}{Red} lines show the top edge difference and resulting travel length. (\subref{fig:calibration_uhv_example_driving_z2}) shows the same as (\subref{fig:calibration_uhv_example_driving_z1}) for the screw used to determine step size for motor Z2. Inset shows both approach and retract for $1000$ steps.} \label{fig:calibration_uhv_example_driving} \end{figure} %Outside UHV the best points are small scratches on the prisms %\ce{Al2O3} plate, since these are already in a focal plane with the motors. -The distance measurement using the camera is calibrated by using an object of known size in the focal plane. One example that can be used are the \ce{Nd} magnets ($5$ mm diameter). - -Inside UHV the process is more complicated, the motors Z2 and Z3 cannot be directly observed. Instead, the 2 -screws very close to the motors are (seen in Figure +The distance measurement using the camera is calibrated by using an object of known size in the focal plane. One example that can be used are the \ce{Nd} magnets ($5$ mm diameter). \\ +The motors Z2 and Z3 cannot be directly observed in the Mask Aligner chamber. Instead, the 2 +screws very close to the motors (seen in Figure \ref{fig:calibration_uhv_points_of_interest} -\subref{fig:calibration_uhv_points_of_interest_z2z3}) observed. For camera calibration their diameter is chosen as this is also known to be $3$ mm. +\subref{fig:calibration_uhv_points_of_interest_z2z3}) are observed. For camera calibration their diameter is chosen as this is also known to be $3$ mm. The screws are a little closer to the camera than the motors themselves, this is accounted for by using a simple trigonometric model seen in Figure \ref{fig:calibration_screw_diff_explain}. With this one gets that for each unit of distance the motor moves, the screws move by $h' = \frac{17.8}{23.74} \approx 0.75$. \\ @@ -150,34 +167,15 @@ With this one gets that for each unit of distance the motor moves, the screws mo \label{fig:calibration_screw_diff_explain} \end{figure} - \begin{figure}[H] - \centering - \begin{subfigure}{0.45\textwidth} - \includegraphics[width=\linewidth]{img/CalibrationUHV_Z1.pdf} - \caption{} - \label{fig:calibration_uhv_points_of_interest_z1} - \end{subfigure} - \begin{subfigure}{0.45\textwidth} - \includegraphics[width=\linewidth]{img/CalibrationUHV_Z2_Z3.pdf} - \caption{} - \label{fig:calibration_uhv_points_of_interest_z2z3} - \end{subfigure} - \caption{Points of interest for the calibration of the step size of the 3 piezo motors in -UHV. (a) motor Z1, \textcolor{tab_red}{red:} top of sapphire prism, \textcolor{tab_green}{green:} end of top plate used for step size determination (b) -motors Z2/Z3, \textcolor{tab_red}{red:} screws on the motor plate that are close to motor Z2 and Z3 respectively, \textcolor{tab_green}{green:} lines used for step size determination.} - \label{fig:calibration_uhv_points_of_interest} + \centering + \includegraphics[width=0.8\linewidth]{img/Plots/Calibrations/80V.pdf} + \caption{Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref{fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit.} + \label{fig:calibration_example} \end{figure} A linear fit is performed for the given data. The slope gives the step size. Results are shown in Figure \ref{fig:calibration_example}. After each set of steps it has to be ensured, that the mask frame is not tilted. Excessive tilt will affect the step size. It should also be taken care that the movement range of the piezos is not exceeded. The \ce{Nd} magnets should not detach from the frame. Moreover, the sapphire prism can fall out of the motor if it is driven too far down. The measurement has to be done for both driving directions separately, since the step sizes will be different. Indeed, in Fig. \ref{fig:calibration_example} shows that the positive retract direction has consistently larger step sizes. The Z3 motor also shows a larger difference in step size for approach and retract than the other $2$ motors. -\begin{figure}[H] - \centering - \includegraphics[width=0.8\linewidth]{img/Plots/Calibrations/80V.pdf} - \caption{Upper curves: Measured distance of motors traveled as a function of steps driven with linear fit and marked results step size. $+$ is retract $-$ is approach (see Fig. \ref{fig:mask_aligner_nomenclature_motors}). Lower curves: deviation of the data points from fit.} - \label{fig:calibration_example} -\end{figure} - This calibration has been performed for various voltage amplitudes. This can be seen in Figure \ref{fig:calibration_voltage} @@ -228,7 +226,7 @@ can see the surface of the sample holder. Additionally, the side of the sample i placed or angled too low, (b) too high and (c) placed in good alignment. } \label{fig:camera_alignment_example} \end{figure} -\todo{Fix} + When the camera is aligned with the sample, the mask can be moved close to the sample. A visible gap must remain between sample and mask (Fig. \ref{fig:optical_approach_a}). Then the mask is moved toward the sample until only a five pixel gap remains (Fig. \ref{fig:optical_approach}\subref{fig:optical_approach_b}, \subref{fig:optical_approach_c}). The length of the gap can @@ -343,7 +341,7 @@ least once. \\ \caption{} \label{fig:approach_curve_example_full} \end{subfigure} - \caption{(a) A capacitance (approach) curve. (b) the difference of each capacitance value. + \caption{(a) capacitance (approach) curve. (b) difference of each capacitance value. Only one sensor is shown. Marked with blue dashed lines are the important points where the slope of the $\frac{1}{r}$ curve changes. Below are images of the geometry between mask and sample at First (c), Second (d) and Full contact (e). Red lines or points indicate where the mask is touching the sample.} @@ -422,172 +420,176 @@ One question concerning reproducibility is whether the approach curve is strongl \label{fig:approach_replicability} \end{figure} -Reinserting the mask, the approach curve changed drastically, which can likely be attributed to newly induced tilt on the mask. This can be seen in the shift between the \textcolor{tab_green}{green} and \textcolor{tab_red}{red} curves in Figure \ref{fig:approach_replicability}. The process of moving the mask out and back in to the mask frame might induce enough perturbation to the mask holder to move it slightly in the mask. This fault could potentially be fixed by better gold pin design, when designing newer mask discussed further in \ref{subsec:cross_cap}\\ +Reinserting the mask, the approach curve changed drastically, which can likely be attributed to newly induced tilt on the mask. This can be seen in the shift between the \textcolor{tab_green}{green} and \textcolor{tab_red}{red} curves in Figure \ref{fig:approach_replicability}. The process of moving the mask out and back in to the mask frame might induce enough perturbation to the mask holder to move it slightly in the mask. This fault could potentially be fixed by better gold pin design. Another reason might be small movement of the mask frame on the \ce{Nd} magnets tilting the mask. This problem cannot be fixed without a complete redesign of the Mask Aligner. \\ Reinserting the sample also induced a difference in approach curves, but this difference is much smaller as can be seen in Figure \ref{fig:approach_replicability} (\textcolor{tab_blue}{blue} and \textcolor{tab_green}{green}). The trend of the curve remains the same, but the absolute value changes slightly. However, the peak in $dC$ changed significantly. A stop condition determined on the \textcolor{tab_green}{green} curve (for example $0.04$ pF) would overshoot the point of first contact on the \textcolor{tab_blue}{blue} curve. This means that after switching a conservative stop condition has to be chosen. \\ - -\subsection{Capacitance correlations} \label{subsec:cross_cap} -The biggest alignment problem with the current set of masks is heavy correlation -between mask sensors, \todo{Replace with approach curve} $C_i$ see Figure \ref{fig:cross_cap_approach}~\subref{fig:cross_cap_approach_difference}-\subref{fig:cross_cap_approach_difference_2}. If the -alignment were perfect, these curves should indeed appear to be very similar -since moving any of the motors affects all capacitance sensors. If the distances from the \ce{Si} is different for each sensor, their approach curves should be distinct. A simulated approach curve for a difference of $440$ nm between $C_1$ and $C_2$ and $560$ nm between $C_1$ and $C_3$ is shown in Figure \ref{fig:cross_cap_approach_sim}. The model assumes no capacitance between the 3 capacitance sensors and to the environment. Additionally, the model assumes all motors drive exactly the same. It also assumes the mask first makes contact with the sample at the corner that is aligned with $C_1$ such that the motor aligned with $C_1$ stops moving. After that, the same happens for $C_2$. - -\begin{figure}[H] - \centering - \begin{subfigure}{0.32\textwidth} - \centering - \includegraphics[width=\linewidth]{img/Diagram/cross_example_1.pdf} - \caption{} - \label{fig:cross_cap_approach_difference} - \end{subfigure} - \begin{subfigure}{0.32\textwidth} - \centering - \includegraphics[width=\linewidth]{img/Diagram/cross_example_2.pdf} - \caption{} - \label{fig:cross_cap_approach_difference_2} - \end{subfigure} - \begin{subfigure}{0.32\textwidth} - \centering - \includegraphics[width=\linewidth]{img/Diagram/ExplanationCurveDifference.pdf} - \caption{} - \label{fig:cross_cap_approach_sim} - \end{subfigure} - \caption{(\subref{fig:cross_cap_approach_difference}, \subref{fig:cross_cap_approach_difference_2}) approach curves of two example measurements of 2 different masks normalized to ensure the same scale. (\subref{fig:cross_cap_approach_sim}) shows a simple simulation of the approach with tilted sample.} - \label{fig:cross_cap_approach} -\end{figure} - -For the gold pads, this would result in a capacitance of $\approx 0.40$ fF, at a distance of $\approx 50$ micron (measured optically). The capacitance values of the curve $C_1$ was $\approx 2.4$ -pF, which deviates by $4$ orders of magnitude. This corresponds more closely to the -value expected for capacitance from the \ce{Si} of the mask to the \ce{Si} of -the sample. The expected value for a plate capacitor would be $\approx -1.44$ pF. The deviation in this case can be explained by the oversimplification -of the model. It does not take into account any stray capacitances the system -might have. \\ - -The model in Figure \ref{fig:cross_cap_approach_sim} assumes a distance between the sensors on the z-axis of $440$ nm for C1-C2 and $220$ nm for C2-C3. A distance that is well within the optical accuracy of $\approx 5$ $\mu$m for maximum zoom and resolution. Even for such a small difference, the deviation between the curves, is easily visible. \\ - -However, measured capacitances show a deviation in behavior from the model (Fig. \ref{fig:cross_cap_approach_difference}). The different capacitances vary by $1$-$2$ order of magnitude. The largest capacitance was measured to $19.12$ pF. The curves (Fig. \ref{fig:cross_cap_approach_difference}) start with large deviation and converge near full contact. This is the opposite to the expected behavior (Fig. \ref{fig:cross_cap_approach_sim}). The general shape of the curves is identical for all $3$, while it is expected that the first contact affects the $3$ capacitances differently. \\ - -Another mask (Figure \ref{fig:cross_cap_approach_difference_2}) shows behavior more close to the expected, with a difference for the $3$ capacitances at first contact. However, $C_2$ and $C_3$ behave identically again. The largest capacitance was measured to be $19.78$ pF and $C_2$ and $C_3$ varied by $2$ orders of magnitude from $C_1$. \\ - +% +%\subsection{Capacitance correlations} \label{subsec:cross_cap} +% +%%\begin{figure}[H] +%% \centering +%% \begin{subfigure}{0.32\textwidth} +%% \centering +%% \includegraphics[width=\linewidth]{img/Diagram/cross_example_1.pdf} +%% \caption{} +%% \label{fig:cross_cap_approach_difference} +%% \end{subfigure} +%% \begin{subfigure}{0.32\textwidth} +%% \centering +%% \includegraphics[width=\linewidth]{img/Diagram/cross_example_2.pdf} +%% \caption{} +%% \label{fig:cross_cap_approach_difference_2} +%% \end{subfigure} +%% \begin{subfigure}{0.32\textwidth} +%% \centering +%% \includegraphics[width=\linewidth]{img/Diagram/ExplanationCurveDifference.pdf} +%% \caption{} +%% \label{fig:cross_cap_approach_sim} +%% \end{subfigure} +%% \caption{(\subref{fig:cross_cap_approach_difference}, \subref{fig:cross_cap_approach_difference_2}) approach curves of two example measurements of 2 different masks normalized to ensure the same scale. (\subref{fig:cross_cap_approach_sim}) shows a simple simulation of the approach with tilted sample.} +%% \label{fig:cross_cap_approach} +%%\end{figure} +% +%%For the gold pads, this would result in a capacitance of $\approx 0.40$ fF, at a distance of $\approx 50$ micron (measured optically). The capacitance values of the curve $C_1$ was $\approx 2.4$ +%%pF, which deviates by $4$ orders of magnitude. This corresponds more closely to the +%%value expected for capacitance from the \ce{Si} of the mask to the \ce{Si} of +%%the sample. The expected value for a plate capacitor would be $\approx +%%1.44$ pF. The deviation in this case can be explained by the oversimplification +%%of the model. It does not take into account any stray capacitances the system +%%might have. \\ +%% +%%The model in Figure \ref{fig:cross_cap_approach_sim} assumes a distance between the sensors on the z-axis of $440$ nm for C1-C2 and $220$ nm for C2-C3. A distance that is well within the optical accuracy of $\approx 5$ $\mu$m for maximum zoom and resolution. Even for such a small difference, the deviation between the curves, is easily visible. \\ +%% +%%However, measured capacitances show a deviation in behavior from the model (Fig. \ref{fig:cross_cap_approach_difference}). The different capacitances vary by $1$-$2$ order of magnitude. The largest capacitance was measured to $19.12$ pF. The curves (Fig. \ref{fig:cross_cap_approach_difference}) start with large deviation and converge near full contact. This is the opposite to the expected behavior (Fig. \ref{fig:cross_cap_approach_sim}). The general shape of the curves is identical for all $3$, while it is expected that the first contact affects the $3$ capacitances differently. \\ +%% +%%Another mask (Figure \ref{fig:cross_cap_approach_difference_2}) shows behavior more close to the expected, with a difference for the $3$ capacitances at first contact. However, $C_2$ and $C_3$ behave identically again. The largest capacitance was measured to be $19.78$ pF and $C_2$ and $C_3$ varied by $2$ orders of magnitude from $C_1$. \\ +% +%%\begin{figure}[H] +%% \centering +%% \includegraphics[width=0.9\linewidth]{img/SimilarityApproach.pdf} +%% \caption{} +%% \label{fig:cross_cap_approach_sim} +%%\end{figure} +%%\todo{Plot of heavily correlated approach curves} +% +%The masks used for approach and subsequent evaporation are in theory supposed to have $3$ independent capacitance sensors that together give a measurement of the distance and tilt of the mask. However, the masks show strong correlation between the $3$ sensors(Fig. \ref{fig:example_correlation_capacitances}). This prohibits precise control of the alignment. \\ +%In his master thesis Jonas Beeker looked at the possibility of capacitances between the $3$ sensors as a possible reason for this strong correlation. It was determined that for a cross capacitance of more than $150$ fF the capacitance curves cannot be distinguished anymore\cite{Beeker}. +% +%\begin{figure}[H] +% \centering +% \includegraphics[width=0.9\linewidth]{img/MA/CorrelationExample.pdf} +% \caption{3 capacitance curves of a mask scaled to be +% within the same range. The lower plots show deviations from comparison curve.} +% \label{fig:example_correlation_capacitances} +%\end{figure} +% +% +% +%\begin{table}[H] +% \centering +% \begin{tabular}{|l|l|l|l|} +% \hline & C C1-C2 (pF) & C C1-C3 (pF) & C C2-C3 (pF) \\ +% \hline \hline +% Mask 1 & $7.11 \pm 0.02$ & $3.20 \pm 0.12$ & $0.19 \pm +% 0.06$ \\ \hline +% Mask 2 & $0.64 \pm 0.06$ & $0.64 \pm 0.06$ & $0.85 \pm +% 0.02$ \\ \hline +% Mask 3 & $3.33 \pm 0.04$ & $3.94 \pm 0.07$ & $0.86 \pm +% 0.02$ \\ \hline +% Mask old & $0.50 \pm 0.02$ & $0.29 \pm 0.09$ & $0.35 \pm +% 0.14$ \\ \hline \hline +% Mask shuttle 1 & $0.24 \pm 0.02$ & $0.25 \pm 0.02$ & $0.041 \pm +% 0.004$ \\ \hline +% Mask shuttle 2 & $0.30 \pm 0.04$ & $0.29 \pm 0.03$ & $0.041 \pm 0.004$ +% \\ \hline +% Mask shuttle 3 & $0.23 \pm 0.02$ & $0.25 \pm 0.02$ & $0.049 \pm +% 0.004$ \\ \hline \hline +% Shuttles average & $0.26 \pm 0.03$ & $0.26 \pm 0.02$ & $0.043 \pm 0.004$ +% \\ \hline +% \end{tabular} +% \caption{Table of cross capacitance measurement results. } +% \label{tab:cross_cap} +%\end{table} +% +%The reason for this large deviation is a leakage current from the cable connecting +%the gold pads to the Si of the Mask. This most likely happens +%due to accidental piercing of the insulating \ce{SiO2} layer during assembly of the gold cable. This is depicted in Figure \ref{fig:leakage_current}. The capacitance measured is in this case dominated by the leakage capacitance from \ce{Si$_\text{Sample}$} to \ce{Si$_\text{Mask}$} (Figure \ref{fig:leakage_current}). +% +% %\begin{figure}[H] % \centering -% \includegraphics[width=0.9\linewidth]{img/SimilarityApproach.pdf} -% \caption{} -% \label{fig:cross_cap_approach_sim} +% \includegraphics[width=0.5\linewidth]{img/LeakageCurrent.pdf} +% \caption{Diagram showing a cross section of the mask at a gold pad location. A small tear in the \ce{SiO2} layer removes insulation between the gold wire and the Si of the mask. Parallel black lines depict plate capacitors illustratively. Larger plate shows larger capacitance. +%} +% \label{fig:leakage_current} %\end{figure} -%\todo{Plot of heavily correlated approach curves} - -The reason for this large deviation is most likely a leakage current from the cable connecting -the gold pads to the Si of the Mask. This most likely happens -due to accidental piercing of the insulating \ce{SiO2} layer during assembly of the gold cable. This is depicted in Figure \ref{fig:leakage_current}. The capacitance measured is in this case dominated by the leakage capacitance from \ce{Si$_\text{Sample}$} to \ce{Si$_\text{Mask}$} (Figure \ref{fig:leakage_current}). -\begin{figure}[H] - \centering - \includegraphics[width=0.5\linewidth]{img/LeakageCurrent.pdf} - \caption{Diagram showing a cross section of the mask at a gold pad location. A small tear in the \ce{SiO2} layer removes insulation between the gold wire and the Si of the mask. Parallel black lines depict plate capacitors illustratively. Larger plate shows larger capacitance. -} - \label{fig:leakage_current} -\end{figure} - -\newpage - -Another reason for the correlation of capacitances are cross capacitances between the gold pad sensors. \\ - -\begin{table}[H] -\centering -\begin{tabular}{|l|l|l|l|} - \hline & C Ch1-Ch2 (pF) & C Ch1-Ch3 (pF) & C Ch2-Ch3 (pF) \\ -\hline \hline -Mask 1 & $7.11 \pm 0.02$ & $3.20 \pm 0.12$ & $0.19 \pm -0.06$ \\ \hline -Mask 2 & $0.64 \pm 0.06$ & $0.64 \pm 0.06$ & $0.85 \pm -0.02$ \\ \hline -Mask 3 & $3.33 \pm 0.04$ & $3.94 \pm 0.07$ & $0.86 \pm -0.02$ \\ \hline -Mask old & $0.50 \pm 0.02$ & $0.29 \pm 0.09$ & $0.35 \pm -0.14$ \\ \hline \hline -Mask shuttle 1 & $0.24 \pm 0.02$ & $0.25 \pm 0.02$ & $0.041 \pm -0.004$ \\ \hline -Mask shuttle 2 & $0.30 \pm 0.04$ & $0.29 \pm 0.03$ & $0.041 \pm 0.004$ - \\ \hline -Mask shuttle 3 & $0.23 \pm 0.02$ & $0.25 \pm 0.02$ & $0.049 \pm -0.004$ \\ \hline \hline -Shuttles average & $0.26 \pm 0.03$ & $0.26 \pm 0.02$ & $0.043 \pm 0.004$ - \\ \hline -\end{tabular} -\caption{Table of cross capacitance measurement results. } -\label{tab:cross_cap} -\end{table} - -In order to quantify the effect of this source, cross capacitances were measured directly between $3$ masks holders inside mask shuttles, as well as -3 empty shuttles. For the measurement Input and output of the Lock-in were connected to two of the capacitance sensors of the mask. Measurements were performed inside the Mask Aligner with a sample inserted. Additionally, mask shuttles without any mask inserted were tested for cross capacitance. The results are shown in Table \ref{tab:cross_cap} \\ - -The shuttles themselves have large cross capacitance values. It is of the same order of magnitude as the capacitance expected from gold pad to sample. When adding the mask -the cross capacitances increase, often by an order of magnitude. \\ - -To check if this is also the dominant cause of correlation, the mask labeled "old" is looked at more closely. The cross capacitance values for this mask were small compared with the other masks (Table \ref{tab:cross_cap}). The approach curve of this mask however, shows the heaviest correlation of all masks tested. This indicates that in this case a leakage current from gold to mask \ce{Si} is the main cause. \\ - -To confirm the similarity between the different capacitance sensors signals, the data of each was overlaid over one another. The data was normalized to allow for comparison. Then an offset was fitted. The result of this can be seen in Figure \ref{fig:mask_old_correl}. The $3$ different capacitance sensors give the same signal. Systematic deviations in the residuals are only visible near the jump in capacitance signal, which is of unknown cause. The deviations are within $0.1$~\%, which is on the same order as the expected measurement error for the given LockIn parameters. - +% +%\begin{figure}[H] +% \centering +% \includegraphics[width=0.75\linewidth]{img/CrossCapacitances.pdf} +% \caption{Circuit diagram of the measurement setup with the cross +% capacitances and parasitic capacitances for the mask shuttle. The $C_i$ refer to +% the main capacitances that are used for mask alignment. $C_{ij}$ refers to a +% cross capacitance between capacitance sensor $i$ and sensor $j$. +% $C_{mask-sample}$ refers to the capacitance between the Si of the Mask and the +% Si of the Sample, usually this should not be measured since the Si of the Mask +% is separated from the gold pads with a SiN layer, but should that layer be +% pierced or otherwise allow a leakage current (if the resistances $R_{i, Leak}$ +% are small enough) this will be measured instead of $C_i$, since it is an order +% of magnitude larger.} +% \label{fig:cross_cap_diagramm} +%\end{figure} +% +% +%\newpage +% +%Another reason for the correlation of capacitances are cross capacitances between the gold pad sensors. \\ +% +%%In order to quantify the effect of this source, cross capacitances were measured directly between $3$ masks holders inside mask shuttles, as well as +%%3 empty shuttles. For the measurement Input and output of the Lock-in were connected to two of the capacitance sensors of the mask. Measurements were performed inside the Mask Aligner with a sample inserted. Additionally, mask shuttles without any mask inserted were tested for cross capacitance. The results are shown in Table \ref{tab:cross_cap} \\ +%% +%%The shuttles themselves have large cross capacitance values. It is of the same order of magnitude as the capacitance expected from gold pad to sample. When adding the mask +%%the cross capacitances increase, often by an order of magnitude. \\ +%% +%%To check if this is also the dominant cause of correlation, the mask labeled "old" is looked at more closely. The cross capacitance values for this mask were small compared with the other masks (Table \ref{tab:cross_cap}). The approach curve of this mask however, shows the heaviest correlation of all masks tested. This indicates that in this case a leakage current from gold to mask \ce{Si} is the main cause. \\ +%% +%%To confirm the similarity between the different capacitance sensors signals, the data of each was overlaid over one another. The data was normalized to allow for comparison. Then an offset was fitted. The result of this can be seen in Figure \ref{fig:mask_old_correl}. The $3$ different capacitance sensors give the same signal. Systematic deviations in the residuals are only visible near the jump in capacitance signal, which is of unknown cause. The deviations are within $0.1$~\%, which is on the same order as the expected measurement error for the given LockIn parameters. +% %\begin{figure}[H] % \centering % \includegraphics[width=0.9\linewidth]{img/Plots/Mask_Old_Caps.pdf} % \caption{The 3 capacitance curves of the Mask labeled "old". Of note is the difference in scale of the capacitance signal.} % \label{fig:mask_old_caps} %\end{figure} - -\begin{figure}[H] - \centering - \includegraphics[width=0.95\linewidth]{img/Plots/Mask_Old_Correl.pdf} - \caption{The 3 capacitance curves of the Mask labeled "old" scaled to be -within the same range. The lower plots show deviations from comparison curve. } - \label{fig:mask_old_correl} -\end{figure} - - -This leads to the conclusion that while the cross capacitances have a strong influence on -the correlation, they are not the dominating -factor. Both leakage currents and cross capacitances have to be considered and their sources minimized. \\ - -Figure \ref{fig:cross_cap_diagramm} shows a circuit diagram for the known sources of capacitance correlation. - -\begin{figure}[H] - \centering - \includegraphics[width=0.75\linewidth]{img/CrossCapacitances.pdf} - \caption{Circuit diagram of the measurement setup with the cross -capacitances and parasitic capacitances for the mask shuttle. The $C_i$ refer to -the main capacitances that are used for mask alignment. $C_{ij}$ refers to a -cross capacitance between capacitance sensor $i$ and sensor $j$. -$C_{mask-sample}$ refers to the capacitance between the Si of the Mask and the -Si of the Sample, usually this should not be measured since the Si of the Mask -is separated from the gold pads with a SiN layer, but should that layer be -pierced or otherwise allow a leakage current (if the resistances $R_{i, Leak}$ -are small enough) this will be measured instead of $C_i$, since it is an order -of magnitude larger.} - \label{fig:cross_cap_diagramm} -\end{figure} - -In order to decrease the correlation between the sensors the following methods are proposed: - -\paragraph{Leakage current} -The leakage current between the Si of the Mask and the Si of the sample seems, -for many of the current masks, to be the main source of correlation. In order to -ensure no leakage current, a better mask preparation method has to be found that -ensures no piercing of the \ce{SiNi} layer. This however goes beyond the scope of -this thesis. - -\paragraph{Improved gold pin fitting} -The gold pins for the current set of masks were cut to correct size by hand. -This causes a problem with the fit between male and female side of the gold pins. -The mask stage can move inside the holder slightly. This changes both distance to sample and gives a loose contact. -Instead, they should be machined with precision by a workshop. The stability of the fit should be tested after assembly. - -\todo{Image of gold pins} - -The cross capacitances of the mask holders should also be reduced. No proposal is made in this thesis about how to accomplish this, because the cause is undetermined. The other $2$ factors play a larger role and should be improved first. +% +%\begin{figure}[H] +% \centering +% \includegraphics[width=0.95\linewidth]{img/Plots/Mask_Old_Correl.pdf} +% \caption{3 capacitance curves of the Mask labeled "old" scaled to be +%within the same range. The lower plots show deviations from comparison curve. } +% \label{fig:mask_old_correl} +%\end{figure} +% +% +%This leads to the conclusion that while the cross capacitances have a strong influence on +%the correlation, they are not the dominating +%factor. Both leakage currents and cross capacitances have to be considered and their sources minimized. \\ +% +%Figure \ref{fig:cross_cap_diagramm} shows a circuit diagram for the known sources of capacitance correlation. +% +%In order to decrease the correlation between the sensors the following methods are proposed: +% +%\paragraph{Leakage current} +%The leakage current between the Si of the Mask and the Si of the sample seems to be the main source of correlation. A better mask preparation method has to be found that ensures no piercing of the \ce{SiNi} layer. This will be investigated in the near future in a Bachelor thesis. +% +%\paragraph{Improved gold pin fitting} +%The gold pins for the current set of masks were cut to size by hand. +%%This causes a problem with the fit between male and female side of the gold pins. +%%The mask stage can move inside the holder slightly. This changes both distance to sample and gives a loose contact. +%Instead, they should be machined with precision by a workshop. The stability of the fit should be tested after assembly. %\subsection{Stop Conditions} %During recording of a calibration approach curve two different scenarios can arise: diff --git a/chap03.aux b/chap03.aux index a5347210ac1e327a18a3e7bc82c1c381737ce918..ec242969e5dc837dce35691f018702a757161e5d 100644 --- a/chap03.aux +++ b/chap03.aux @@ -1,80 +1,80 @@ \relax \providecommand\hyper@newdestlabel[2]{} -\@writefile{toc}{\contentsline {chapter}{\numberline {3}Electronics}{39}{chapter.3}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{\numberline {3}Electronics}{33}{chapter.3}\protected@file@percent } \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {3.1}RHK piezo motor controller}{39}{section.3.1}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Overview}{39}{subsection.3.1.1}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{amplitude}{39}{section*.42}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{sweep period}{39}{section*.43}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{time between sweeps}{39}{section*.44}\protected@file@percent } -\@writefile{tdo}{\contentsline {todo}{Maybe image explanation}{39}{section*.45}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Pulse shape}{39}{subsection.3.1.2}\protected@file@percent } -\newlabel{fig:RHK_pulse_shape_approach}{{3.1a}{39}{\relax }{figure.caption.46}{}} -\newlabel{sub@fig:RHK_pulse_shape_approach}{{a}{39}{\relax }{figure.caption.46}{}} -\newlabel{fig:RHK_pulse_shape_retract}{{3.1b}{39}{\relax }{figure.caption.46}{}} -\newlabel{sub@fig:RHK_pulse_shape_retract}{{b}{39}{\relax }{figure.caption.46}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Oscilloscope data showing both an approach step (\subref {fig:RHK_pulse_shape_approach}) and a retract step (\subref {fig:RHK_pulse_shape_retract}) for the RHK Piezo motor controller given at a voltage of $80$ V, as specified per setting. }}{39}{figure.caption.46}\protected@file@percent } -\newlabel{fig:RHK_pulse_shape}{{3.1}{39}{Oscilloscope data showing both an approach step (\subref {fig:RHK_pulse_shape_approach}) and a retract step (\subref {fig:RHK_pulse_shape_retract}) for the RHK Piezo motor controller given at a voltage of $80$ V, as specified per setting}{figure.caption.46}{}} -\newlabel{fig:RHK_pulse_shape_fast_flank_z1}{{3.2a}{40}{\relax }{figure.caption.47}{}} -\newlabel{sub@fig:RHK_pulse_shape_fast_flank_z1}{{a}{40}{\relax }{figure.caption.47}{}} -\newlabel{fig:RHK_pulse_shape_fast_flank_z2}{{3.2b}{40}{\relax }{figure.caption.47}{}} -\newlabel{sub@fig:RHK_pulse_shape_fast_flank_z2}{{b}{40}{\relax }{figure.caption.47}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Plots showing the fast flank of the RHK signal, set to 80 V. (\subref {fig:RHK_pulse_shape_fast_flank_z1}) shows larger timescale of the same signal than (\subref {fig:RHK_pulse_shape_fast_flank_z2}).}}{40}{figure.caption.47}\protected@file@percent } -\newlabel{fig:RHK_pulse_shape_fast_flank}{{3.2}{40}{Plots showing the fast flank of the RHK signal, set to 80 V. (\subref {fig:RHK_pulse_shape_fast_flank_z1}) shows larger timescale of the same signal than (\subref {fig:RHK_pulse_shape_fast_flank_z2})}{figure.caption.47}{}} -\@writefile{toc}{\contentsline {section}{\numberline {3.2}KIM001}{40}{section.3.2}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Overview}{40}{subsection.3.2.1}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Pulse shape}{40}{subsection.3.2.2}\protected@file@percent } -\newlabel{fig:kim0001_pulse_shape_approach}{{3.3a}{41}{\relax }{figure.caption.48}{}} -\newlabel{sub@fig:kim0001_pulse_shape_approach}{{a}{41}{\relax }{figure.caption.48}{}} -\newlabel{fig:kim0001_pulse_shape_retract}{{3.3b}{41}{\relax }{figure.caption.48}{}} -\newlabel{sub@fig:kim0001_pulse_shape_retract}{{b}{41}{\relax }{figure.caption.48}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Plots showing both an approach step (\subref {fig:kim0001_pulse_shape_approach}) and a retract step (\subref {fig:kim0001_pulse_shape_retract}) for the KIM001 device.}}{41}{figure.caption.48}\protected@file@percent } -\newlabel{fig:kim0001_pulse_shape}{{3.3}{41}{Plots showing both an approach step (\subref {fig:kim0001_pulse_shape_approach}) and a retract step (\subref {fig:kim0001_pulse_shape_retract}) for the KIM001 device}{figure.caption.48}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Voltage behavior}{41}{subsection.3.2.3}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {3.1}RHK piezo motor controller}{33}{section.3.1}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Overview}{33}{subsection.3.1.1}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{amplitude}{33}{section*.32}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{sweep period}{33}{section*.33}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{time between sweeps}{33}{section*.34}\protected@file@percent } +\@writefile{tdo}{\contentsline {todo}{Maybe image explanation}{33}{section*.35}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Pulse shape}{33}{subsection.3.1.2}\protected@file@percent } +\newlabel{fig:RHK_pulse_shape_approach}{{3.1a}{33}{\relax }{figure.caption.36}{}} +\newlabel{sub@fig:RHK_pulse_shape_approach}{{a}{33}{\relax }{figure.caption.36}{}} +\newlabel{fig:RHK_pulse_shape_retract}{{3.1b}{33}{\relax }{figure.caption.36}{}} +\newlabel{sub@fig:RHK_pulse_shape_retract}{{b}{33}{\relax }{figure.caption.36}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Oscilloscope data showing both an approach step (\subref {fig:RHK_pulse_shape_approach}) and a retract step (\subref {fig:RHK_pulse_shape_retract}) for the RHK Piezo motor controller given at a voltage of $80$ V, as specified per setting. }}{33}{figure.caption.36}\protected@file@percent } +\newlabel{fig:RHK_pulse_shape}{{3.1}{33}{Oscilloscope data showing both an approach step (\subref {fig:RHK_pulse_shape_approach}) and a retract step (\subref {fig:RHK_pulse_shape_retract}) for the RHK Piezo motor controller given at a voltage of $80$ V, as specified per setting}{figure.caption.36}{}} +\newlabel{fig:RHK_pulse_shape_fast_flank_z1}{{3.2a}{34}{\relax }{figure.caption.37}{}} +\newlabel{sub@fig:RHK_pulse_shape_fast_flank_z1}{{a}{34}{\relax }{figure.caption.37}{}} +\newlabel{fig:RHK_pulse_shape_fast_flank_z2}{{3.2b}{34}{\relax }{figure.caption.37}{}} +\newlabel{sub@fig:RHK_pulse_shape_fast_flank_z2}{{b}{34}{\relax }{figure.caption.37}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Plots showing the fast flank of the RHK signal, set to 80 V. (\subref {fig:RHK_pulse_shape_fast_flank_z1}) shows larger timescale of the same signal than (\subref {fig:RHK_pulse_shape_fast_flank_z2}).}}{34}{figure.caption.37}\protected@file@percent } +\newlabel{fig:RHK_pulse_shape_fast_flank}{{3.2}{34}{Plots showing the fast flank of the RHK signal, set to 80 V. (\subref {fig:RHK_pulse_shape_fast_flank_z1}) shows larger timescale of the same signal than (\subref {fig:RHK_pulse_shape_fast_flank_z2})}{figure.caption.37}{}} +\@writefile{toc}{\contentsline {section}{\numberline {3.2}KIM001}{34}{section.3.2}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.1}Overview}{34}{subsection.3.2.1}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.2}Pulse shape}{34}{subsection.3.2.2}\protected@file@percent } +\newlabel{fig:kim0001_pulse_shape_approach}{{3.3a}{35}{\relax }{figure.caption.38}{}} +\newlabel{sub@fig:kim0001_pulse_shape_approach}{{a}{35}{\relax }{figure.caption.38}{}} +\newlabel{fig:kim0001_pulse_shape_retract}{{3.3b}{35}{\relax }{figure.caption.38}{}} +\newlabel{sub@fig:kim0001_pulse_shape_retract}{{b}{35}{\relax }{figure.caption.38}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Plots showing both an approach step (\subref {fig:kim0001_pulse_shape_approach}) and a retract step (\subref {fig:kim0001_pulse_shape_retract}) for the KIM001 device.}}{35}{figure.caption.38}\protected@file@percent } +\newlabel{fig:kim0001_pulse_shape}{{3.3}{35}{Plots showing both an approach step (\subref {fig:kim0001_pulse_shape_approach}) and a retract step (\subref {fig:kim0001_pulse_shape_retract}) for the KIM001 device}{figure.caption.38}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.2.3}Voltage behavior}{35}{subsection.3.2.3}\protected@file@percent } \citation{arduino_datasheet} \citation{arduino_cpu_datasheet} -\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Retract steps of the KIM0001 for a set Voltage of $125$ after different amount of steps. The voltage spikes beyond the desired voltage at the start and after $200$ steps settles on a voltage of ~$118$ V. }}{42}{figure.caption.49}\protected@file@percent } -\newlabel{fig:kim0001_voltage_behaviour}{{3.4}{42}{Retract steps of the KIM0001 for a set Voltage of $125$ after different amount of steps. The voltage spikes beyond the desired voltage at the start and after $200$ steps settles on a voltage of ~$118$ V}{figure.caption.49}{}} -\@writefile{toc}{\contentsline {section}{\numberline {3.3}Mask Aligner controller "Walker"}{42}{section.3.3}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Overview}{42}{subsection.3.3.1}\protected@file@percent } -\@writefile{tdo}{\contentsline {todo}{Check if erklärt}{42}{section*.50}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Signal generation}{42}{subsection.3.3.2}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Retract steps of the KIM0001 for a set Voltage of $125$ after different amount of steps. The voltage spikes beyond the desired voltage at the start and after $200$ steps settles on a voltage of ~$118$ V. }}{36}{figure.caption.39}\protected@file@percent } +\newlabel{fig:kim0001_voltage_behaviour}{{3.4}{36}{Retract steps of the KIM0001 for a set Voltage of $125$ after different amount of steps. The voltage spikes beyond the desired voltage at the start and after $200$ steps settles on a voltage of ~$118$ V}{figure.caption.39}{}} +\@writefile{toc}{\contentsline {section}{\numberline {3.3}Mask Aligner controller "Walker"}{36}{section.3.3}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}Overview}{36}{subsection.3.3.1}\protected@file@percent } +\@writefile{tdo}{\contentsline {todo}{Check if erklärt}{36}{section*.40}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.2}Signal generation}{36}{subsection.3.3.2}\protected@file@percent } \citation{switch_datasheet} -\newlabel{fig:bessel_filter_unfiltered}{{3.5a}{43}{\relax }{figure.caption.51}{}} -\newlabel{sub@fig:bessel_filter_unfiltered}{{a}{43}{\relax }{figure.caption.51}{}} -\newlabel{fig:bessel_filter_filter}{{3.5b}{43}{\relax }{figure.caption.51}{}} -\newlabel{sub@fig:bessel_filter_filter}{{b}{43}{\relax }{figure.caption.51}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces (a) aliased simulated signal. (b) 8th order Bessel filtered simulated signal. The amount of aliasing is exaggerated to make the effect more clear. }}{43}{figure.caption.51}\protected@file@percent } -\newlabel{fig:bessel_filter}{{3.5}{43}{(a) aliased simulated signal. (b) 8th order Bessel filtered simulated signal. The amount of aliasing is exaggerated to make the effect more clear}{figure.caption.51}{}} -\@writefile{tdo}{\contentsline {todo}{Aliases Signal}{43}{section*.52}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Fast flank}{43}{subsection.3.3.3}\protected@file@percent } -\newlabel{fig:signal_switch_entry}{{3.6a}{44}{\relax }{figure.caption.53}{}} -\newlabel{sub@fig:signal_switch_entry}{{a}{44}{\relax }{figure.caption.53}{}} -\newlabel{fig:signal_switch_switched}{{3.6b}{44}{\relax }{figure.caption.53}{}} -\newlabel{sub@fig:signal_switch_switched}{{b}{44}{\relax }{figure.caption.53}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces (a) normal and the inverted signal. (b) the signal achieved by switching between normal and inverted. }}{44}{figure.caption.53}\protected@file@percent } -\newlabel{fig:signal_switch}{{3.6}{44}{(a) normal and the inverted signal. (b) the signal achieved by switching between normal and inverted}{figure.caption.53}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.4}Amplification}{44}{subsection.3.3.4}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.5}Programming}{45}{subsection.3.3.5}\protected@file@percent } -\@writefile{tdo}{\contentsline {todo}{What to write}{45}{section*.54}\protected@file@percent } -\@writefile{toc}{\contentsline {subsubsection}{Parameters}{45}{section*.55}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Amplitude (amp)}{45}{section*.56}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Voltage (volt)}{45}{section*.57}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Channel}{45}{section*.58}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Max Step}{45}{section*.59}\protected@file@percent } -\@writefile{toc}{\contentsline {paragraph}{Polarity}{45}{section*.60}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.6}Measured pulse shape}{45}{subsection.3.3.6}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces (a) approach step and a (b) retract step for the new Walker device \textcolor {tab_red}{(red)} and for comparison the RHK in \textcolor {tab_blue}{(blue)} in an unloaded state for a nominal voltage of 80 V. The dashed \textcolor {tab_green}{green} lines show a timeframe of 1000 $\mu $s around the fast flank, which should be the length of 1 pulse exactly.}}{46}{figure.caption.61}\protected@file@percent } -\newlabel{fig:walker_pulse_shape_slow}{{3.7}{46}{(a) approach step and a (b) retract step for the new Walker device \textcolor {tab_red}{(red)} and for comparison the RHK in \textcolor {tab_blue}{(blue)} in an unloaded state for a nominal voltage of 80 V. The dashed \textcolor {tab_green}{green} lines show a timeframe of 1000 $\mu $s around the fast flank, which should be the length of 1 pulse exactly}{figure.caption.61}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Plots showing the fast Flank of the Walker Signal and the fast flank of the RHK Signal, for both (a) approach and (b) retract, for a nominal voltage of 80 V (without load). }}{47}{figure.caption.62}\protected@file@percent } -\newlabel{fig:walker_pulse_shape_fast}{{3.8}{47}{Plots showing the fast Flank of the Walker Signal and the fast flank of the RHK Signal, for both (a) approach and (b) retract, for a nominal voltage of 80 V (without load)}{figure.caption.62}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.7}Operation with the Mask Aligner}{47}{subsection.3.3.7}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Diagram showing how communication with the Walker and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ in order. }}{48}{figure.caption.63}\protected@file@percent } -\newlabel{fig:diagram_MA_circ_walker}{{3.9}{48}{Diagram showing how communication with the Walker and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ in order}{figure.caption.63}{}} -\@writefile{tdo}{\contentsline {todo}{Write that the script was written by me}{48}{section*.64}\protected@file@percent } +\newlabel{fig:bessel_filter_unfiltered}{{3.5a}{37}{\relax }{figure.caption.41}{}} +\newlabel{sub@fig:bessel_filter_unfiltered}{{a}{37}{\relax }{figure.caption.41}{}} +\newlabel{fig:bessel_filter_filter}{{3.5b}{37}{\relax }{figure.caption.41}{}} +\newlabel{sub@fig:bessel_filter_filter}{{b}{37}{\relax }{figure.caption.41}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces (a) aliased simulated signal. (b) 8th order Bessel filtered simulated signal. The amount of aliasing is exaggerated to make the effect more clear. }}{37}{figure.caption.41}\protected@file@percent } +\newlabel{fig:bessel_filter}{{3.5}{37}{(a) aliased simulated signal. (b) 8th order Bessel filtered simulated signal. The amount of aliasing is exaggerated to make the effect more clear}{figure.caption.41}{}} +\@writefile{tdo}{\contentsline {todo}{Aliases Signal}{37}{section*.42}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.3}Fast flank}{37}{subsection.3.3.3}\protected@file@percent } +\newlabel{fig:signal_switch_entry}{{3.6a}{38}{\relax }{figure.caption.43}{}} +\newlabel{sub@fig:signal_switch_entry}{{a}{38}{\relax }{figure.caption.43}{}} +\newlabel{fig:signal_switch_switched}{{3.6b}{38}{\relax }{figure.caption.43}{}} +\newlabel{sub@fig:signal_switch_switched}{{b}{38}{\relax }{figure.caption.43}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces (a) normal and the inverted signal. (b) the signal achieved by switching between normal and inverted. }}{38}{figure.caption.43}\protected@file@percent } +\newlabel{fig:signal_switch}{{3.6}{38}{(a) normal and the inverted signal. (b) the signal achieved by switching between normal and inverted}{figure.caption.43}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.4}Amplification}{38}{subsection.3.3.4}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.5}Programming}{39}{subsection.3.3.5}\protected@file@percent } +\@writefile{tdo}{\contentsline {todo}{What to write}{39}{section*.44}\protected@file@percent } +\@writefile{toc}{\contentsline {subsubsection}{Parameters}{39}{section*.45}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{Amplitude (amp)}{39}{section*.46}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{Voltage (volt)}{39}{section*.47}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{Channel}{39}{section*.48}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{Max Step}{39}{section*.49}\protected@file@percent } +\@writefile{toc}{\contentsline {paragraph}{Polarity}{39}{section*.50}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.6}Measured pulse shape}{39}{subsection.3.3.6}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {3.7}{\ignorespaces (a) approach step and a (b) retract step for the new Walker device \textcolor {tab_red}{(red)} and for comparison the RHK in \textcolor {tab_blue}{(blue)} in an unloaded state for a nominal voltage of 80 V. The dashed \textcolor {tab_green}{green} lines show a timeframe of 1000 $\mu $s around the fast flank, which should be the length of 1 pulse exactly.}}{40}{figure.caption.51}\protected@file@percent } +\newlabel{fig:walker_pulse_shape_slow}{{3.7}{40}{(a) approach step and a (b) retract step for the new Walker device \textcolor {tab_red}{(red)} and for comparison the RHK in \textcolor {tab_blue}{(blue)} in an unloaded state for a nominal voltage of 80 V. The dashed \textcolor {tab_green}{green} lines show a timeframe of 1000 $\mu $s around the fast flank, which should be the length of 1 pulse exactly}{figure.caption.51}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {3.8}{\ignorespaces Plots showing the fast Flank of the Walker Signal and the fast flank of the RHK Signal, for both (a) approach and (b) retract, for a nominal voltage of 80 V (without load). }}{41}{figure.caption.52}\protected@file@percent } +\newlabel{fig:walker_pulse_shape_fast}{{3.8}{41}{Plots showing the fast Flank of the Walker Signal and the fast flank of the RHK Signal, for both (a) approach and (b) retract, for a nominal voltage of 80 V (without load)}{figure.caption.52}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {3.3.7}Operation with the Mask Aligner}{41}{subsection.3.3.7}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {3.9}{\ignorespaces Diagram showing how communication with the Walker and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ in order. }}{42}{figure.caption.53}\protected@file@percent } +\newlabel{fig:diagram_MA_circ_walker}{{3.9}{42}{Diagram showing how communication with the Walker and the Lock-in amplifier is done and how they interact with elements in vacuum. Red lines are input, black lines are output lines. The capacitance relay is used to measure $C_i$ in order}{figure.caption.53}{}} +\@writefile{tdo}{\contentsline {todo}{Write that the script was written by me}{42}{section*.54}\protected@file@percent } \@setckpt{chap03}{ -\setcounter{page}{49} +\setcounter{page}{43} \setcounter{equation}{1} \setcounter{enumi}{10} \setcounter{enumii}{0} @@ -94,7 +94,7 @@ \setcounter{section@level}{2} \setcounter{Item}{10} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{36} +\setcounter{bookmark@seq@number}{35} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} \setcounter{NAT@ctr}{0} @@ -103,7 +103,7 @@ \setcounter{subfigure}{0} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{8} +\setcounter{@todonotes@numberoftodonotes}{5} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/chap04.aux b/chap04.aux index 502d911888b0627a7d9a202d5492f6908dce8a96..8ca43f2712966e549240a20595c7cbe67e2324ce 100644 --- a/chap04.aux +++ b/chap04.aux @@ -1,87 +1,87 @@ \relax \providecommand\hyper@newdestlabel[2]{} \citation{Olschewski} -\@writefile{toc}{\contentsline {chapter}{\numberline {4}Mask Aligner repairs and optimizations}{49}{chapter.4}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{\numberline {4}Mask Aligner repairs and optimizations}{43}{chapter.4}\protected@file@percent } \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {4.1}Overview}{49}{section.4.1}\protected@file@percent } -\newlabel{fig:Repair_Diagram_diagram}{{4.1a}{49}{\relax }{figure.caption.65}{}} -\newlabel{sub@fig:Repair_Diagram_diagram}{{a}{49}{\relax }{figure.caption.65}{}} -\newlabel{fig:Repair_Diagram_image}{{4.1b}{49}{\relax }{figure.caption.65}{}} -\newlabel{sub@fig:Repair_Diagram_image}{{b}{49}{\relax }{figure.caption.65}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces (\subref {fig:Repair_Diagram_diagram}) diagram of front view of a single piezo motor with associated nomenclature. Front plate is turned around and moved to the side. (\subref {fig:Repair_Diagram_image}) shows a roughly corresponding image as a photo of the Mask Aligner. The lower right solder anchor is detached in the image and the lower left solder anchor is bridged with a technique discussed in Section \ref {ch:solder_anchors}}}{49}{figure.caption.65}\protected@file@percent } -\newlabel{fig:Repair_Diagram}{{4.1}{49}{(\subref {fig:Repair_Diagram_diagram}) diagram of front view of a single piezo motor with associated nomenclature. Front plate is turned around and moved to the side. (\subref {fig:Repair_Diagram_image}) shows a roughly corresponding image as a photo of the Mask Aligner. The lower right solder anchor is detached in the image and the lower left solder anchor is bridged with a technique discussed in Section \ref {ch:solder_anchors}}{figure.caption.65}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.2}General UHV device preparation}{50}{section.4.2}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}UHV compatible Soldering}{50}{subsection.4.2.1}\protected@file@percent } -\@writefile{toc}{\contentsline {section}{\numberline {4.3}Soldering anchors}{50}{section.4.3}\protected@file@percent } -\newlabel{ch:solder_anchors}{{4.3}{50}{Soldering anchors}{section.4.3}{}} -\@writefile{tdo}{\contentsline {todo}{Cite Torrseal data}{50}{section*.66}\protected@file@percent } -\newlabel{fig:solder_anchors_diagram_base}{{4.2a}{51}{\relax }{figure.caption.67}{}} -\newlabel{sub@fig:solder_anchors_diagram_base}{{a}{51}{\relax }{figure.caption.67}{}} -\newlabel{fig:solder_anchors_diagram_SmallerDot}{{4.2b}{51}{\relax }{figure.caption.67}{}} -\newlabel{sub@fig:solder_anchors_diagram_SmallerDot}{{b}{51}{\relax }{figure.caption.67}{}} -\newlabel{fig:solder_anchors_diagram_AlO}{{4.2c}{51}{\relax }{figure.caption.67}{}} -\newlabel{sub@fig:solder_anchors_diagram_AlO}{{c}{51}{\relax }{figure.caption.67}{}} -\newlabel{fig:solder_anchors_diagram_GlueTop}{{4.2d}{51}{\relax }{figure.caption.67}{}} -\newlabel{sub@fig:solder_anchors_diagram_GlueTop}{{d}{51}{\relax }{figure.caption.67}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces (\subref {fig:solder_anchors_diagram_base}) solder anchor interfering with the prism due to deterioration over time. (\subref {fig:solder_anchors_diagram_SmallerDot}) making the solder dot smaller. (\subref {fig:solder_anchors_diagram_AlO}) replacing the solder anchor ceramic with a much smaller \ce {Al2O3} plate. (\subref {fig:solder_anchors_diagram_GlueTop}) putting the anchor with glue on the top/bottom of the solder ceramic. The prism is depicted in blue, the cable in brown, black represents the Mask Aligner body, solder ceramic in yellow and solder in gray.}}{51}{figure.caption.67}\protected@file@percent } -\newlabel{fig:solder_anchors_diagram}{{4.2}{51}{(\subref {fig:solder_anchors_diagram_base}) solder anchor interfering with the prism due to deterioration over time. (\subref {fig:solder_anchors_diagram_SmallerDot}) making the solder dot smaller. (\subref {fig:solder_anchors_diagram_AlO}) replacing the solder anchor ceramic with a much smaller \ce {Al2O3} plate. (\subref {fig:solder_anchors_diagram_GlueTop}) putting the anchor with glue on the top/bottom of the solder ceramic. The prism is depicted in blue, the cable in brown, black represents the Mask Aligner body, solder ceramic in yellow and solder in gray}{figure.caption.67}{}} -\newlabel{fig:solder_anchors_examples_shear_01}{{4.3a}{52}{\relax }{figure.caption.68}{}} -\newlabel{sub@fig:solder_anchors_examples_shear_01}{{a}{52}{\relax }{figure.caption.68}{}} -\newlabel{fig:solder_anchors_examples_shear_02}{{4.3b}{52}{\relax }{figure.caption.68}{}} -\newlabel{sub@fig:solder_anchors_examples_shear_02}{{b}{52}{\relax }{figure.caption.68}{}} -\newlabel{fig:solder_anchors_examples_glue_bottom}{{4.3c}{52}{\relax }{figure.caption.68}{}} -\newlabel{sub@fig:solder_anchors_examples_glue_bottom}{{c}{52}{\relax }{figure.caption.68}{}} -\newlabel{fig:solder_anchors_examples_AlO}{{4.3d}{52}{\relax }{figure.caption.68}{}} -\newlabel{sub@fig:solder_anchors_examples_AlO}{{d}{52}{\relax }{figure.caption.68}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Examples of the different approaches taken to solve the issues with the solder anchor points. (\subref {fig:solder_anchors_examples_shear_01}) initial state of a solder ceramic interfering with the prism. (\subref {fig:solder_anchors_examples_shear_02}) solder ceramic from before after some of the solder was carefully taken off. (\subref {fig:solder_anchors_examples_glue_bottom}) a solder anchor attached to the bottom of a previously used solder ceramic. (\subref {fig:solder_anchors_examples_AlO}) replacement of a solder ceramic with a thinner \ce {Al2O3} plate. }}{52}{figure.caption.68}\protected@file@percent } -\newlabel{fig:solder_anchors_examples}{{4.3}{52}{Examples of the different approaches taken to solve the issues with the solder anchor points. (\subref {fig:solder_anchors_examples_shear_01}) initial state of a solder ceramic interfering with the prism. (\subref {fig:solder_anchors_examples_shear_02}) solder ceramic from before after some of the solder was carefully taken off. (\subref {fig:solder_anchors_examples_glue_bottom}) a solder anchor attached to the bottom of a previously used solder ceramic. (\subref {fig:solder_anchors_examples_AlO}) replacement of a solder ceramic with a thinner \ce {Al2O3} plate}{figure.caption.68}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.1}Overview}{43}{section.4.1}\protected@file@percent } +\newlabel{fig:Repair_Diagram_diagram}{{4.1a}{43}{\relax }{figure.caption.55}{}} +\newlabel{sub@fig:Repair_Diagram_diagram}{{a}{43}{\relax }{figure.caption.55}{}} +\newlabel{fig:Repair_Diagram_image}{{4.1b}{43}{\relax }{figure.caption.55}{}} +\newlabel{sub@fig:Repair_Diagram_image}{{b}{43}{\relax }{figure.caption.55}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces (\subref {fig:Repair_Diagram_diagram}) diagram of front view of a single piezo motor with associated nomenclature. Front plate is turned around and moved to the side. (\subref {fig:Repair_Diagram_image}) shows a roughly corresponding image as a photo of the Mask Aligner. The lower right solder anchor is detached in the image and the lower left solder anchor is bridged with a technique discussed in Section \ref {ch:solder_anchors}}}{43}{figure.caption.55}\protected@file@percent } +\newlabel{fig:Repair_Diagram}{{4.1}{43}{(\subref {fig:Repair_Diagram_diagram}) diagram of front view of a single piezo motor with associated nomenclature. Front plate is turned around and moved to the side. (\subref {fig:Repair_Diagram_image}) shows a roughly corresponding image as a photo of the Mask Aligner. The lower right solder anchor is detached in the image and the lower left solder anchor is bridged with a technique discussed in Section \ref {ch:solder_anchors}}{figure.caption.55}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.2}General UHV device preparation}{44}{section.4.2}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {4.2.1}UHV compatible Soldering}{44}{subsection.4.2.1}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {4.3}Soldering anchors}{44}{section.4.3}\protected@file@percent } +\newlabel{ch:solder_anchors}{{4.3}{44}{Soldering anchors}{section.4.3}{}} +\@writefile{tdo}{\contentsline {todo}{Cite Torrseal data}{44}{section*.56}\protected@file@percent } +\newlabel{fig:solder_anchors_diagram_base}{{4.2a}{45}{\relax }{figure.caption.57}{}} +\newlabel{sub@fig:solder_anchors_diagram_base}{{a}{45}{\relax }{figure.caption.57}{}} +\newlabel{fig:solder_anchors_diagram_SmallerDot}{{4.2b}{45}{\relax }{figure.caption.57}{}} +\newlabel{sub@fig:solder_anchors_diagram_SmallerDot}{{b}{45}{\relax }{figure.caption.57}{}} +\newlabel{fig:solder_anchors_diagram_AlO}{{4.2c}{45}{\relax }{figure.caption.57}{}} +\newlabel{sub@fig:solder_anchors_diagram_AlO}{{c}{45}{\relax }{figure.caption.57}{}} +\newlabel{fig:solder_anchors_diagram_GlueTop}{{4.2d}{45}{\relax }{figure.caption.57}{}} +\newlabel{sub@fig:solder_anchors_diagram_GlueTop}{{d}{45}{\relax }{figure.caption.57}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.2}{\ignorespaces (\subref {fig:solder_anchors_diagram_base}) solder anchor interfering with the prism due to deterioration over time. (\subref {fig:solder_anchors_diagram_SmallerDot}) making the solder dot smaller. (\subref {fig:solder_anchors_diagram_AlO}) replacing the solder anchor ceramic with a much smaller \ce {Al2O3} plate. (\subref {fig:solder_anchors_diagram_GlueTop}) putting the anchor with glue on the top/bottom of the solder ceramic. The prism is depicted in blue, the cable in brown, black represents the Mask Aligner body, solder ceramic in yellow and solder in gray.}}{45}{figure.caption.57}\protected@file@percent } +\newlabel{fig:solder_anchors_diagram}{{4.2}{45}{(\subref {fig:solder_anchors_diagram_base}) solder anchor interfering with the prism due to deterioration over time. (\subref {fig:solder_anchors_diagram_SmallerDot}) making the solder dot smaller. (\subref {fig:solder_anchors_diagram_AlO}) replacing the solder anchor ceramic with a much smaller \ce {Al2O3} plate. (\subref {fig:solder_anchors_diagram_GlueTop}) putting the anchor with glue on the top/bottom of the solder ceramic. The prism is depicted in blue, the cable in brown, black represents the Mask Aligner body, solder ceramic in yellow and solder in gray}{figure.caption.57}{}} +\newlabel{fig:solder_anchors_examples_shear_01}{{4.3a}{46}{\relax }{figure.caption.58}{}} +\newlabel{sub@fig:solder_anchors_examples_shear_01}{{a}{46}{\relax }{figure.caption.58}{}} +\newlabel{fig:solder_anchors_examples_shear_02}{{4.3b}{46}{\relax }{figure.caption.58}{}} +\newlabel{sub@fig:solder_anchors_examples_shear_02}{{b}{46}{\relax }{figure.caption.58}{}} +\newlabel{fig:solder_anchors_examples_glue_bottom}{{4.3c}{46}{\relax }{figure.caption.58}{}} +\newlabel{sub@fig:solder_anchors_examples_glue_bottom}{{c}{46}{\relax }{figure.caption.58}{}} +\newlabel{fig:solder_anchors_examples_AlO}{{4.3d}{46}{\relax }{figure.caption.58}{}} +\newlabel{sub@fig:solder_anchors_examples_AlO}{{d}{46}{\relax }{figure.caption.58}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.3}{\ignorespaces Examples of the different approaches taken to solve the issues with the solder anchor points. (\subref {fig:solder_anchors_examples_shear_01}) initial state of a solder ceramic interfering with the prism. (\subref {fig:solder_anchors_examples_shear_02}) solder ceramic from before after some of the solder was carefully taken off. (\subref {fig:solder_anchors_examples_glue_bottom}) a solder anchor attached to the bottom of a previously used solder ceramic. (\subref {fig:solder_anchors_examples_AlO}) replacement of a solder ceramic with a thinner \ce {Al2O3} plate. }}{46}{figure.caption.58}\protected@file@percent } +\newlabel{fig:solder_anchors_examples}{{4.3}{46}{Examples of the different approaches taken to solve the issues with the solder anchor points. (\subref {fig:solder_anchors_examples_shear_01}) initial state of a solder ceramic interfering with the prism. (\subref {fig:solder_anchors_examples_shear_02}) solder ceramic from before after some of the solder was carefully taken off. (\subref {fig:solder_anchors_examples_glue_bottom}) a solder anchor attached to the bottom of a previously used solder ceramic. (\subref {fig:solder_anchors_examples_AlO}) replacement of a solder ceramic with a thinner \ce {Al2O3} plate}{figure.caption.58}{}} \citation{Olschewski} -\@writefile{toc}{\contentsline {section}{\numberline {4.4}Piezo regluing}{53}{section.4.4}\protected@file@percent } -\newlabel{sec:piezo_reglue}{{4.4}{53}{Piezo regluing}{section.4.4}{}} -\newlabel{fig:Z3_reglue_process_off}{{4.4a}{53}{\relax }{figure.caption.69}{}} -\newlabel{sub@fig:Z3_reglue_process_off}{{a}{53}{\relax }{figure.caption.69}{}} -\newlabel{fig:Z3_reglue_process_scratched}{{4.4b}{53}{\relax }{figure.caption.69}{}} -\newlabel{sub@fig:Z3_reglue_process_scratched}{{b}{53}{\relax }{figure.caption.69}{}} -\newlabel{fig:Z3_reglue_process_dot}{{4.4c}{53}{\relax }{figure.caption.69}{}} -\newlabel{sub@fig:Z3_reglue_process_dot}{{c}{53}{\relax }{figure.caption.69}{}} -\newlabel{fig:Z3_reglue_process_down}{{4.4d}{53}{\relax }{figure.caption.69}{}} -\newlabel{sub@fig:Z3_reglue_process_down}{{d}{53}{\relax }{figure.caption.69}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces The re-gluing process shown for the upper left piezo on Z3 that was no longer attached to the Mask Aligner Body. (a) detached piezo. Remains of the EPO-TEK H70E epoxy glue are visible as brown stains on both the Mask Aligner Body and the piezo stack. (b) remains of glue were scratched off carefully. (c) shows the applied dot of Torr Seal epoxy glue. (d) two nuts and the prism used as weights and alignment tools during curing.}}{53}{figure.caption.69}\protected@file@percent } -\newlabel{fig:Z3_reglue_process}{{4.4}{53}{The re-gluing process shown for the upper left piezo on Z3 that was no longer attached to the Mask Aligner Body. (a) detached piezo. Remains of the EPO-TEK H70E epoxy glue are visible as brown stains on both the Mask Aligner Body and the piezo stack. (b) remains of glue were scratched off carefully. (c) shows the applied dot of Torr Seal epoxy glue. (d) two nuts and the prism used as weights and alignment tools during curing}{figure.caption.69}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces The final glued position of the upper Z3 motor after re-gluing. Red line shows the deviation from the other piezo stack. The angle $\alpha $ is about $ \approx 4.5^\circ \pm 0.5^\circ $.}}{54}{figure.caption.70}\protected@file@percent } -\newlabel{fig:Z3_after reglue}{{4.5}{54}{The final glued position of the upper Z3 motor after re-gluing. Red line shows the deviation from the other piezo stack. The angle $\alpha $ is about $ \approx 4.5^\circ \pm 0.5^\circ $}{figure.caption.70}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.5}Z3 motor}{54}{section.4.5}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Step size against screw rotation data obtained to calibrate the screw firmness for Z2 and Z3. Larger x-axis values means less firm screw. \textcolor {tab_blue}{Blue} and \textcolor {tab_orange}{orange} show Z3 before swapping front plate with Z1, \textcolor {tab_green}{green} and \textcolor {tab_red}{red} show after.}}{55}{figure.caption.71}\protected@file@percent } -\newlabel{fig:Z3_screw_rot}{{4.6}{55}{Step size against screw rotation data obtained to calibrate the screw firmness for Z2 and Z3. Larger x-axis values means less firm screw. \textcolor {tab_blue}{Blue} and \textcolor {tab_orange}{orange} show Z3 before swapping front plate with Z1, \textcolor {tab_green}{green} and \textcolor {tab_red}{red} show after}{figure.caption.71}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.1}Front plate repair}{55}{subsection.4.5.1}\protected@file@percent } +\@writefile{toc}{\contentsline {section}{\numberline {4.4}Piezo regluing}{47}{section.4.4}\protected@file@percent } +\newlabel{sec:piezo_reglue}{{4.4}{47}{Piezo regluing}{section.4.4}{}} +\newlabel{fig:Z3_reglue_process_off}{{4.4a}{47}{\relax }{figure.caption.59}{}} +\newlabel{sub@fig:Z3_reglue_process_off}{{a}{47}{\relax }{figure.caption.59}{}} +\newlabel{fig:Z3_reglue_process_scratched}{{4.4b}{47}{\relax }{figure.caption.59}{}} +\newlabel{sub@fig:Z3_reglue_process_scratched}{{b}{47}{\relax }{figure.caption.59}{}} +\newlabel{fig:Z3_reglue_process_dot}{{4.4c}{47}{\relax }{figure.caption.59}{}} +\newlabel{sub@fig:Z3_reglue_process_dot}{{c}{47}{\relax }{figure.caption.59}{}} +\newlabel{fig:Z3_reglue_process_down}{{4.4d}{47}{\relax }{figure.caption.59}{}} +\newlabel{sub@fig:Z3_reglue_process_down}{{d}{47}{\relax }{figure.caption.59}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.4}{\ignorespaces The re-gluing process shown for the upper left piezo on Z3 that was no longer attached to the Mask Aligner Body. (a) detached piezo. Remains of the EPO-TEK H70E epoxy glue are visible as brown stains on both the Mask Aligner Body and the piezo stack. (b) remains of glue were scratched off carefully. (c) shows the applied dot of Torr Seal epoxy glue. (d) two nuts and the prism used as weights and alignment tools during curing.}}{47}{figure.caption.59}\protected@file@percent } +\newlabel{fig:Z3_reglue_process}{{4.4}{47}{The re-gluing process shown for the upper left piezo on Z3 that was no longer attached to the Mask Aligner Body. (a) detached piezo. Remains of the EPO-TEK H70E epoxy glue are visible as brown stains on both the Mask Aligner Body and the piezo stack. (b) remains of glue were scratched off carefully. (c) shows the applied dot of Torr Seal epoxy glue. (d) two nuts and the prism used as weights and alignment tools during curing}{figure.caption.59}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces The final glued position of the upper Z3 motor after re-gluing. Red line shows the deviation from the other piezo stack. The angle $\alpha $ is about $ \approx 4.5^\circ \pm 0.5^\circ $.}}{48}{figure.caption.60}\protected@file@percent } +\newlabel{fig:Z3_after reglue}{{4.5}{48}{The final glued position of the upper Z3 motor after re-gluing. Red line shows the deviation from the other piezo stack. The angle $\alpha $ is about $ \approx 4.5^\circ \pm 0.5^\circ $}{figure.caption.60}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.5}Z3 motor}{48}{section.4.5}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {4.6}{\ignorespaces Step size against screw rotation data obtained to calibrate the screw firmness for Z2 and Z3. Larger x-axis values means less firm screw. \textcolor {tab_blue}{Blue} and \textcolor {tab_orange}{orange} show Z3 before swapping front plate with Z1, \textcolor {tab_green}{green} and \textcolor {tab_red}{red} show after.}}{49}{figure.caption.61}\protected@file@percent } +\newlabel{fig:Z3_screw_rot}{{4.6}{49}{Step size against screw rotation data obtained to calibrate the screw firmness for Z2 and Z3. Larger x-axis values means less firm screw. \textcolor {tab_blue}{Blue} and \textcolor {tab_orange}{orange} show Z3 before swapping front plate with Z1, \textcolor {tab_green}{green} and \textcolor {tab_red}{red} show after}{figure.caption.61}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.1}Front plate repair}{49}{subsection.4.5.1}\protected@file@percent } \citation{Olschewski} -\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Screw rotation calibration data for Z2 and Z3 after front plate repairs.}}{56}{figure.caption.72}\protected@file@percent } -\newlabel{fig:Z3_screw_rot_after_rep}{{4.7}{56}{Screw rotation calibration data for Z2 and Z3 after front plate repairs}{figure.caption.72}{}} -\newlabel{fig:Front_plate_repair_tool}{{4.8a}{57}{\relax }{figure.caption.73}{}} -\newlabel{sub@fig:Front_plate_repair_tool}{{a}{57}{\relax }{figure.caption.73}{}} -\newlabel{fig:Front_plate_repair_plate}{{4.8b}{57}{\relax }{figure.caption.73}{}} -\newlabel{sub@fig:Front_plate_repair_plate}{{b}{57}{\relax }{figure.caption.73}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces (\subref {fig:Front_plate_repair_tool}) Solidworks explosive diagram of the Z3 front plate with the alignment tool. (\subref {fig:Front_plate_repair_plate}) final front plate assembled.}}{57}{figure.caption.73}\protected@file@percent } -\newlabel{fig:Front_plate_repair}{{4.8}{57}{(\subref {fig:Front_plate_repair_tool}) Solidworks explosive diagram of the Z3 front plate with the alignment tool. (\subref {fig:Front_plate_repair_plate}) final front plate assembled}{figure.caption.73}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Small capacitance stack}{57}{subsection.4.5.2}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces The measured capacitance values for the piezo stacks of the motor Z3. }}{58}{figure.caption.74}\protected@file@percent } -\newlabel{fig:Z3_weaker_stack}{{4.9}{58}{The measured capacitance values for the piezo stacks of the motor Z3}{figure.caption.74}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.6}Feed through cabling optimizations}{58}{section.4.6}\protected@file@percent } -\newlabel{fig:Feedthrough_Repairs_left}{{4.10a}{59}{\relax }{figure.caption.75}{}} -\newlabel{sub@fig:Feedthrough_Repairs_left}{{a}{59}{\relax }{figure.caption.75}{}} -\newlabel{fig:Feedthrough_Repairs_right}{{4.10b}{59}{\relax }{figure.caption.75}{}} -\newlabel{sub@fig:Feedthrough_Repairs_right}{{b}{59}{\relax }{figure.caption.75}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Left (\subref {fig:Feedthrough_Repairs_left}) and right (\subref {fig:Feedthrough_Repairs_right}) side of Mask Aligner flange. \textcolor {tab_red}{Red} circles mark the changes made to the grounding.}}{59}{figure.caption.75}\protected@file@percent } -\newlabel{fig:Feedthrough_Repairs}{{4.10}{59}{Left (\subref {fig:Feedthrough_Repairs_left}) and right (\subref {fig:Feedthrough_Repairs_right}) side of Mask Aligner flange. \textcolor {tab_red}{Red} circles mark the changes made to the grounding}{figure.caption.75}{}} -\@writefile{tdo}{\contentsline {todo}{Here}{59}{section*.76}\protected@file@percent } -\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables. Values were measured at $0.3$ mm sample distance, optically determined with Bresser MicroCam II and MikroCamLabII.}}{59}{table.caption.77}\protected@file@percent } -\newlabel{tab:cross_cap_after_repair}{{4.1}{59}{The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables. Values were measured at $0.3$ mm sample distance, optically determined with Bresser MicroCam II and MikroCamLabII}{table.caption.77}{}} -\@writefile{toc}{\contentsline {section}{\numberline {4.7}Final test}{59}{section.4.7}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces The final calibration that was performed, after all the optimizations were done. Driving of the motors was done in 2000, 4000, 6000, 8000 and 10000 steps under ambient conditions.}}{60}{figure.caption.78}\protected@file@percent } -\newlabel{fig:calibration_after_repair}{{4.11}{60}{The final calibration that was performed, after all the optimizations were done. Driving of the motors was done in 2000, 4000, 6000, 8000 and 10000 steps under ambient conditions}{figure.caption.78}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Screw rotation calibration data for Z2 and Z3 after front plate repairs.}}{50}{figure.caption.62}\protected@file@percent } +\newlabel{fig:Z3_screw_rot_after_rep}{{4.7}{50}{Screw rotation calibration data for Z2 and Z3 after front plate repairs}{figure.caption.62}{}} +\newlabel{fig:Front_plate_repair_tool}{{4.8a}{51}{\relax }{figure.caption.63}{}} +\newlabel{sub@fig:Front_plate_repair_tool}{{a}{51}{\relax }{figure.caption.63}{}} +\newlabel{fig:Front_plate_repair_plate}{{4.8b}{51}{\relax }{figure.caption.63}{}} +\newlabel{sub@fig:Front_plate_repair_plate}{{b}{51}{\relax }{figure.caption.63}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.8}{\ignorespaces (\subref {fig:Front_plate_repair_tool}) Solidworks explosive diagram of the Z3 front plate with the alignment tool. (\subref {fig:Front_plate_repair_plate}) final front plate assembled.}}{51}{figure.caption.63}\protected@file@percent } +\newlabel{fig:Front_plate_repair}{{4.8}{51}{(\subref {fig:Front_plate_repair_tool}) Solidworks explosive diagram of the Z3 front plate with the alignment tool. (\subref {fig:Front_plate_repair_plate}) final front plate assembled}{figure.caption.63}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {4.5.2}Small capacitance stack}{51}{subsection.4.5.2}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces The measured capacitance values for the piezo stacks of the motor Z3. }}{52}{figure.caption.64}\protected@file@percent } +\newlabel{fig:Z3_weaker_stack}{{4.9}{52}{The measured capacitance values for the piezo stacks of the motor Z3}{figure.caption.64}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.6}Feed through cabling optimizations}{52}{section.4.6}\protected@file@percent } +\newlabel{fig:Feedthrough_Repairs_left}{{4.10a}{53}{\relax }{figure.caption.65}{}} +\newlabel{sub@fig:Feedthrough_Repairs_left}{{a}{53}{\relax }{figure.caption.65}{}} +\newlabel{fig:Feedthrough_Repairs_right}{{4.10b}{53}{\relax }{figure.caption.65}{}} +\newlabel{sub@fig:Feedthrough_Repairs_right}{{b}{53}{\relax }{figure.caption.65}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {4.10}{\ignorespaces Left (\subref {fig:Feedthrough_Repairs_left}) and right (\subref {fig:Feedthrough_Repairs_right}) side of Mask Aligner flange. \textcolor {tab_red}{Red} circles mark the changes made to the grounding.}}{53}{figure.caption.65}\protected@file@percent } +\newlabel{fig:Feedthrough_Repairs}{{4.10}{53}{Left (\subref {fig:Feedthrough_Repairs_left}) and right (\subref {fig:Feedthrough_Repairs_right}) side of Mask Aligner flange. \textcolor {tab_red}{Red} circles mark the changes made to the grounding}{figure.caption.65}{}} +\@writefile{tdo}{\contentsline {todo}{Here}{53}{section*.66}\protected@file@percent } +\@writefile{lot}{\contentsline {table}{\numberline {4.1}{\ignorespaces The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables.}}{53}{table.caption.67}\protected@file@percent } +\newlabel{tab:cross_cap_after_repair}{{4.1}{53}{The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables}{table.caption.67}{}} +\@writefile{toc}{\contentsline {section}{\numberline {4.7}Final test}{53}{section.4.7}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {4.11}{\ignorespaces The final calibration that was performed, after all the optimizations were done. Driving of the motors was done in 2000, 4000, 6000, 8000 and 10000 steps under ambient conditions.}}{54}{figure.caption.68}\protected@file@percent } +\newlabel{fig:calibration_after_repair}{{4.11}{54}{The final calibration that was performed, after all the optimizations were done. Driving of the motors was done in 2000, 4000, 6000, 8000 and 10000 steps under ambient conditions}{figure.caption.68}{}} \@setckpt{chap04}{ -\setcounter{page}{61} +\setcounter{page}{55} \setcounter{equation}{0} \setcounter{enumi}{4} \setcounter{enumii}{0} @@ -101,7 +101,7 @@ \setcounter{section@level}{1} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{47} +\setcounter{bookmark@seq@number}{46} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} \setcounter{NAT@ctr}{0} @@ -110,7 +110,7 @@ \setcounter{subfigure}{0} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{10} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/chap04.tex b/chap04.tex index 83523af38e96c4a77f7f003c1648b13969994538..70036c40c68a9e561adb0b349f75c57e571f2198 100644 --- a/chap04.tex +++ b/chap04.tex @@ -261,14 +261,14 @@ In order to reduce capacitance noise, the cables were shortened and were grounde \begin{table}[H] \centering \begin{tabular}{|l|l|l|l|} - \hline & C Ch1-Ch2 (pF) & C Ch1-Ch3 (pF) & C Ch2-Ch3 (pF) \\ + \hline & C C1-C2 (pF) & C C1-C3 (pF) & C C2-C3 (pF) \\ \hline \hline Mask 1 before & $7.11 \pm 0.02$ & $3.20 \pm 0.12$ & $0.19 \pm 0.06$ \\ \hline Mask 1 after & $7.11 \pm 0.03$ & $3.37 \pm 0.14$ & $0.06 \pm 0.08$ \\ \hline \end{tabular} -\caption{The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables. Values were measured at $0.3$ mm sample distance, optically determined with Bresser MicroCam II and MikroCamLabII.} +\caption{The cross capacitance values of mask 1 before and after the optimizations of the feedthrough and capacitance sensor cables.} %Values were measured at $0.3$ mm sample distance, optically determined with Bresser MicroCam II and MikroCamLabII.} \label{tab:cross_cap_after_repair} \end{table} @@ -284,5 +284,5 @@ In order to determine the proper screw setup and to test the function of the cha \label{fig:calibration_after_repair} \end{figure} -This calibration shows similarity of performance between the 3 motors in the approach regime, as shown in Figure \ref{fig:calibration_after_repair}. In approach direction the 3 motors deviate by about $3$ nm/step, which is at least within $2$ $\sigma$ of each other, when comparing Z1 to Z2 and Z2 to Z3. Z3 and Z1 however can deviate by up to $6$ nm/step, which is within $6$$\sigma$ of each other. Assuming a difference of $6 nm$, as the worst case, the data gives an angular tilt per step of $\approx (5.73 \times 10^{-6})^\circ$. This is a difference in height on the sample of $\approx 0.5$ nm/step. In turn this would give a difference in penumbra of $1.2$ nm for every $100$ steps.\\ -In the retract regime, the difference between motors is within the margin of error for Z2 and Z1, but Z3 deviates by about $4 \sigma$ from the others. Since the mask is aligned during approach, deviations in retract affect alignment less. After each evaporation, the mask is retracted to about $50$ $\mu$m. This ensures movement of the x piezo does not damage the sample. Within these, a difference of $1.2$ $\mu$m would appear from side to side of the evaporation field, which corresponds to an angle of $\approx 0.004^\circ$. This difference results in a deviation of $\approx 38$ nm in penumbra. By driving the Z1 and Z2 motors $100$ steps up after the retraction this can be compensated almost fully and should result in an error of at most $\approx 6$ nm of additional penumbra induced by tilt. \\ +This calibration shows similarity of performance between the 3 motors in the approach direction, as shown in Figure \ref{fig:calibration_after_repair}. In approach direction the deviation between Z2 and the other motors is within $2$$\sigma$. Between Z3 and Z1 it deviates by up to $6$ nm/step, which is within $6$$\sigma$ of each other. Assuming a difference of $6 nm$, as the worst case, the data gives an angular tilt per step of $\approx (5.73 \times 10^{-6})^\circ$. This is a difference in height on the sample of $\approx 0.5$ nm/step. In turn this would give a difference in penumbra of $1.2$ nm for every $100$ steps.\\ +In the retract direction, the difference between motors is within the margin of error for Z2 and Z1, but Z3 deviates by about $4 \sigma$ from the others. Since the mask is aligned during approach, deviations in retract affect alignment less. After each evaporation, the mask is retracted to about $50$ $\mu$m. This ensures movement of the x piezo does not damage the sample. Therefore, a tilt of $1.2$ $\mu$m would appear over the evaporation field, which corresponds to an angle of $\approx 0.004^\circ$. This difference results in a deviation of $\approx 38$ nm in penumbra. By driving the Z1 and Z2 motors $100$ steps up after the retraction this can be compensated almost fully and should result in an error of at most $\approx 6$ nm of additional penumbra induced by tilt. \\ diff --git a/chap05.aux b/chap05.aux index 09af83cf32786340d97ab5c95bdfff5df9593fcc..67933c7e84ae2a8f0049707e029972749be79ba0 100644 --- a/chap05.aux +++ b/chap05.aux @@ -1,98 +1,98 @@ \relax \providecommand\hyper@newdestlabel[2]{} -\@writefile{toc}{\contentsline {chapter}{\numberline {5}Evaporations and measurement}{61}{chapter.5}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{\numberline {5}Evaporations and measurement}{55}{chapter.5}\protected@file@percent } \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} -\@writefile{toc}{\contentsline {section}{\numberline {5.1}Evaporation configuration}{61}{section.5.1}\protected@file@percent } -\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces The approach curve measured for field 1 until full contact.}}{61}{figure.caption.79}\protected@file@percent } -\newlabel{fig:evaporation_approach_curve}{{5.1}{61}{The approach curve measured for field 1 until full contact}{figure.caption.79}{}} -\@writefile{tdo}{\contentsline {todo}{steps wrong}{61}{section*.80}\protected@file@percent } -\@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Table with all the evaporation parameters. FIL stands for the current applied to the heating Filament, EMIS stands for the emission current, FLUX is the measured molecular flux. Press is the maximum pressure in the chamber during the evaporation, and T is the maximal temperature the crucible reached during the evaporation. The voltage was changed to ensure FLUX was in the desired range between $450-520$}}{62}{table.caption.81}\protected@file@percent } -\newlabel{tab:evaporation_settings}{{5.1}{62}{Table with all the evaporation parameters. FIL stands for the current applied to the heating Filament, EMIS stands for the emission current, FLUX is the measured molecular flux. Press is the maximum pressure in the chamber during the evaporation, and T is the maximal temperature the crucible reached during the evaporation. The voltage was changed to ensure FLUX was in the desired range between $450-520$}{table.caption.81}{}} -\newlabel{fig:Evaporation_diagramm_sample_img}{{5.2a}{63}{\relax }{figure.caption.82}{}} -\newlabel{sub@fig:Evaporation_diagramm_sample_img}{{a}{63}{\relax }{figure.caption.82}{}} -\newlabel{fig:Evaporation_diagramm_mask_img}{{5.2b}{63}{\relax }{figure.caption.82}{}} -\newlabel{sub@fig:Evaporation_diagramm_mask_img}{{b}{63}{\relax }{figure.caption.82}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces (\subref {fig:Evaporation_diagramm_sample_img}) diagram showing the Evaporation performed on the sample. Red squares represent the positions of the evaporated fields. The number shows the order of evaporations. Distances are measured using an optical microscope. Fields are at a $10^\circ $ angle with respect to the sample holder. (\subref {fig:Evaporation_diagramm_mask_img}) microscope image of the mask taken before evaporation. The mask holder is placed straight in the microscope. The mask itself is angled on the mask holder.}}{63}{figure.caption.82}\protected@file@percent } -\newlabel{fig:Evaporation_diagramm}{{5.2}{63}{(\subref {fig:Evaporation_diagramm_sample_img}) diagram showing the Evaporation performed on the sample. Red squares represent the positions of the evaporated fields. The number shows the order of evaporations. Distances are measured using an optical microscope. Fields are at a $10^\circ $ angle with respect to the sample holder. (\subref {fig:Evaporation_diagramm_mask_img}) microscope image of the mask taken before evaporation. The mask holder is placed straight in the microscope. The mask itself is angled on the mask holder}{figure.caption.82}{}} -\@writefile{toc}{\contentsline {section}{\numberline {5.2}Contamination}{63}{section.5.2}\protected@file@percent } -\newlabel{fig:evaporation_contamination_img}{{5.3a}{64}{\relax }{figure.caption.83}{}} -\newlabel{sub@fig:evaporation_contamination_img}{{a}{64}{\relax }{figure.caption.83}{}} -\newlabel{fig:evaporation_contamination_anal}{{5.3b}{64}{\relax }{figure.caption.83}{}} -\newlabel{sub@fig:evaporation_contamination_anal}{{b}{64}{\relax }{figure.caption.83}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces (\subref {fig:evaporation_contamination_img}) AFM image of field $3$ without any grain removal applied. Data was obtained on multiple different spots on the sample. (\subref {fig:evaporation_contamination_anal}) line cuts obtained from contamination particles. \textcolor {tab_red}{Red} and \textcolor {tab_green}{green} lines show the average height and width of the contamination particles obtained from peak fits.}}{64}{figure.caption.83}\protected@file@percent } -\newlabel{fig:evaporation_contamination}{{5.3}{64}{(\subref {fig:evaporation_contamination_img}) AFM image of field $3$ without any grain removal applied. Data was obtained on multiple different spots on the sample. (\subref {fig:evaporation_contamination_anal}) line cuts obtained from contamination particles. \textcolor {tab_red}{Red} and \textcolor {tab_green}{green} lines show the average height and width of the contamination particles obtained from peak fits}{figure.caption.83}{}} -\@writefile{toc}{\contentsline {section}{\numberline {5.3}Penumbra}{64}{section.5.3}\protected@file@percent } -\newlabel{fig:penumbra_tilt_sigmas}{{5.4a}{65}{\relax }{figure.caption.84}{}} -\newlabel{sub@fig:penumbra_tilt_sigmas}{{a}{65}{\relax }{figure.caption.84}{}} -\newlabel{fig:Evaporation_diagramm_field}{{5.4b}{65}{\relax }{figure.caption.84}{}} -\newlabel{sub@fig:Evaporation_diagramm_field}{{b}{65}{\relax }{figure.caption.84}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces (\subref {fig:penumbra_tilt_sigmas}) AFM image of evaporated \ce {Pb} dot illustrating the penumbral widths used for evaporation analysis $\sigma _s$ and $\sigma _l$, depicted in \textcolor {tab_red}{red}, and the major axis of the tilt \textcolor {tab_green}{(green)}. $\sigma _s$ is drawn larger than actually measured, to aid visibility. The \textcolor {tab_blue}{blue} lines are the major $a$ and minor $b$ axis of the ellipse formed on the evaporated dot. Inset shows the same image in the phase data. The data is from Evaporation 5. (\subref {fig:Evaporation_diagramm_field}) AFM image of the top right part of field $3$. Grains were reduced using post-processing. Black circles show the dots chosen for further examination on this particular field.}}{65}{figure.caption.84}\protected@file@percent } -\newlabel{fig:penumbra_tilt_sigmas_and_field_show}{{5.4}{65}{(\subref {fig:penumbra_tilt_sigmas}) AFM image of evaporated \ce {Pb} dot illustrating the penumbral widths used for evaporation analysis $\sigma _s$ and $\sigma _l$, depicted in \textcolor {tab_red}{red}, and the major axis of the tilt \textcolor {tab_green}{(green)}. $\sigma _s$ is drawn larger than actually measured, to aid visibility. The \textcolor {tab_blue}{blue} lines are the major $a$ and minor $b$ axis of the ellipse formed on the evaporated dot. Inset shows the same image in the phase data. The data is from Evaporation 5. (\subref {fig:Evaporation_diagramm_field}) AFM image of the top right part of field $3$. Grains were reduced using post-processing. Black circles show the dots chosen for further examination on this particular field}{figure.caption.84}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces Example of the analysis conducted on each of the recorded dots for a single line cut. (a) raw AFM data before cleaning with a large amount of very bright contaminant particles. (b) cleaned image. The black lines in (b) show how multiple line cuts were obtained on a single image to obtain values for $\sigma _s$ and $\sigma _l$. The fit parameters are the two different penumbra widths induced by the tilt $\sigma _s$ and $\sigma _l$ for a single line cut. (c) line cut data from one line as an example. This line cut was obtained from \textcolor {tab_green}{(green)} line in (b). }}{67}{figure.caption.85}\protected@file@percent } -\newlabel{fig:evaporation_analysis}{{5.5}{67}{Example of the analysis conducted on each of the recorded dots for a single line cut. (a) raw AFM data before cleaning with a large amount of very bright contaminant particles. (b) cleaned image. The black lines in (b) show how multiple line cuts were obtained on a single image to obtain values for $\sigma _s$ and $\sigma _l$. The fit parameters are the two different penumbra widths induced by the tilt $\sigma _s$ and $\sigma _l$ for a single line cut. (c) line cut data from one line as an example. This line cut was obtained from \textcolor {tab_green}{(green)} line in (b)}{figure.caption.85}{}} -\newlabel{fig:evaporation_measured_penumbra_sigs}{{5.6a}{68}{\relax }{figure.caption.86}{}} -\newlabel{sub@fig:evaporation_measured_penumbra_sigs}{{a}{68}{\relax }{figure.caption.86}{}} -\newlabel{fig:evaporation_measured_penumbra_sigl}{{5.6b}{68}{\relax }{figure.caption.86}{}} -\newlabel{sub@fig:evaporation_measured_penumbra_sigl}{{b}{68}{\relax }{figure.caption.86}{}} -\newlabel{fig:evaporation_measured_penumbra_height}{{5.6c}{68}{\relax }{figure.caption.86}{}} -\newlabel{sub@fig:evaporation_measured_penumbra_height}{{c}{68}{\relax }{figure.caption.86}{}} -\newlabel{fig:evaporation_measured_penumbra_circle_r}{{5.6d}{68}{\relax }{figure.caption.86}{}} -\newlabel{sub@fig:evaporation_measured_penumbra_circle_r}{{d}{68}{\relax }{figure.caption.86}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces Data obtained from the previously described method for each of the 5 evaporations, one dot each from the center, the left, the right, the bottom and the top. (\subref {fig:evaporation_measured_penumbra_sigs})smaller penumbra $\sigma _s$. (\subref {fig:evaporation_measured_penumbra_sigl}) larger penumbra $\sigma _l$. (\subref {fig:evaporation_measured_penumbra_height}) height of the dot. (\subref {fig:evaporation_measured_penumbra_circle_r}) diameter of the circle.}}{68}{figure.caption.86}\protected@file@percent } -\newlabel{fig:evaporation_measured_penumbra}{{5.6}{68}{Data obtained from the previously described method for each of the 5 evaporations, one dot each from the center, the left, the right, the bottom and the top. (\subref {fig:evaporation_measured_penumbra_sigs})smaller penumbra $\sigma _s$. (\subref {fig:evaporation_measured_penumbra_sigl}) larger penumbra $\sigma _l$. (\subref {fig:evaporation_measured_penumbra_height}) height of the dot. (\subref {fig:evaporation_measured_penumbra_circle_r}) diameter of the circle}{figure.caption.86}{}} -\@writefile{toc}{\contentsline {section}{\numberline {5.4}Tilt and deformation}{69}{section.5.4}\protected@file@percent } -\newlabel{fig:evaporation_tilts_example}{{5.7a}{70}{\relax }{figure.caption.87}{}} -\newlabel{sub@fig:evaporation_tilts_example}{{a}{70}{\relax }{figure.caption.87}{}} -\newlabel{fig:evaporation_tilts_all}{{5.7b}{70}{\relax }{figure.caption.87}{}} -\newlabel{sub@fig:evaporation_tilts_all}{{b}{70}{\relax }{figure.caption.87}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces (\subref {fig:evaporation_tilts_example}) image of the reconstruction of the tilt angle for Field 3. (\subref {fig:evaporation_tilts_all}) the same for all fields. For fields 1, 4, 5 the full field scans were performed at low resolution and due to this the direction of the tilt could not be determined from the images. The only dots drawn in this case are the high resolution AFM scans of single dots.}}{70}{figure.caption.87}\protected@file@percent } -\newlabel{fig:evaporation_tilts}{{5.7}{70}{(\subref {fig:evaporation_tilts_example}) image of the reconstruction of the tilt angle for Field 3. (\subref {fig:evaporation_tilts_all}) the same for all fields. For fields 1, 4, 5 the full field scans were performed at low resolution and due to this the direction of the tilt could not be determined from the images. The only dots drawn in this case are the high resolution AFM scans of single dots}{figure.caption.87}{}} -\newlabel{fig:evaporation_SEM_sample}{{5.8a}{71}{\relax }{figure.caption.88}{}} -\newlabel{sub@fig:evaporation_SEM_sample}{{a}{71}{\relax }{figure.caption.88}{}} -\newlabel{fig:evaporation_SEM_mask}{{5.8b}{71}{\relax }{figure.caption.88}{}} -\newlabel{sub@fig:evaporation_SEM_mask}{{b}{71}{\relax }{figure.caption.88}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces (\subref {fig:evaporation_SEM_sample}) SEM images of field 2 on the sample. (\subref {fig:evaporation_SEM_mask}) SEM image of the mask. The inset shows another image of the same mask. The image of the mask was very unstable due to heavy charging effects.}}{71}{figure.caption.88}\protected@file@percent } -\newlabel{fig:evaporation_SEM}{{5.8}{71}{(\subref {fig:evaporation_SEM_sample}) SEM images of field 2 on the sample. (\subref {fig:evaporation_SEM_mask}) SEM image of the mask. The inset shows another image of the same mask. The image of the mask was very unstable due to heavy charging effects}{figure.caption.88}{}} -\newlabel{fig:evaporation_SEM_analysis_clog}{{5.9a}{72}{\relax }{figure.caption.89}{}} -\newlabel{sub@fig:evaporation_SEM_analysis_clog}{{a}{72}{\relax }{figure.caption.89}{}} -\newlabel{fig:evaporation_SEM_analysis_clog_overlay}{{5.9b}{72}{\relax }{figure.caption.89}{}} -\newlabel{sub@fig:evaporation_SEM_analysis_clog_overlay}{{b}{72}{\relax }{figure.caption.89}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces (\subref {fig:evaporation_SEM_analysis_clog}) example of the clogging noticed on $4$ of the mask holes. \subref {fig:evaporation_SEM_analysis_clog_overlay} tilt direction from \ref {fig:evaporation_tilts} overlayed over the SEM image of the mask after it was rotated to match the fields.}}{72}{figure.caption.89}\protected@file@percent } -\newlabel{fig:evaporation_SEM_analysis}{{5.9}{72}{(\subref {fig:evaporation_SEM_analysis_clog}) example of the clogging noticed on $4$ of the mask holes. \subref {fig:evaporation_SEM_analysis_clog_overlay} tilt direction from \ref {fig:evaporation_tilts} overlayed over the SEM image of the mask after it was rotated to match the fields}{figure.caption.89}{}} -\@writefile{toc}{\contentsline {section}{\numberline {5.5}Simulation}{72}{section.5.5}\protected@file@percent } -\newlabel{sec:simulation}{{5.5}{72}{Simulation}{section.5.5}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.1}Overview and principle}{72}{subsection.5.5.1}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.2}Results}{74}{subsection.5.5.2}\protected@file@percent } -\newlabel{fig:evaporation_simulation_first_compare_AFM}{{5.10a}{74}{\relax }{figure.caption.90}{}} -\newlabel{sub@fig:evaporation_simulation_first_compare_AFM}{{a}{74}{\relax }{figure.caption.90}{}} -\newlabel{fig:evaporation_simulation_first_compare_SIM}{{5.10b}{74}{\relax }{figure.caption.90}{}} -\newlabel{sub@fig:evaporation_simulation_first_compare_SIM}{{b}{74}{\relax }{figure.caption.90}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces (a) a recorded AFM image, colors are for easier identification. (b) a simulated evaporation with parameters obtained from measurement in the AFM image. }}{74}{figure.caption.90}\protected@file@percent } -\newlabel{fig:evaporation_simulation_first_compare}{{5.10}{74}{(a) a recorded AFM image, colors are for easier identification. (b) a simulated evaporation with parameters obtained from measurement in the AFM image}{figure.caption.90}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5.1}Evaporation configuration}{55}{section.5.1}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces The approach curve measured for field 1 until full contact.}}{55}{figure.caption.69}\protected@file@percent } +\newlabel{fig:evaporation_approach_curve}{{5.1}{55}{The approach curve measured for field 1 until full contact}{figure.caption.69}{}} +\@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Table with all the evaporation parameters. FIL stands for the current applied to the heating Filament, EMIS stands for the emission current, FLUX is the measured molecular flux. Press is the maximum pressure in the chamber during the evaporation, and T is the maximal temperature the crucible reached during the evaporation. The voltage was changed to ensure FLUX was in the desired range between $450-520$}}{56}{table.caption.70}\protected@file@percent } +\newlabel{tab:evaporation_settings}{{5.1}{56}{Table with all the evaporation parameters. FIL stands for the current applied to the heating Filament, EMIS stands for the emission current, FLUX is the measured molecular flux. Press is the maximum pressure in the chamber during the evaporation, and T is the maximal temperature the crucible reached during the evaporation. The voltage was changed to ensure FLUX was in the desired range between $450-520$}{table.caption.70}{}} +\newlabel{fig:Evaporation_diagramm_sample_img}{{5.2a}{57}{\relax }{figure.caption.71}{}} +\newlabel{sub@fig:Evaporation_diagramm_sample_img}{{a}{57}{\relax }{figure.caption.71}{}} +\newlabel{fig:Evaporation_diagramm_mask_img}{{5.2b}{57}{\relax }{figure.caption.71}{}} +\newlabel{sub@fig:Evaporation_diagramm_mask_img}{{b}{57}{\relax }{figure.caption.71}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces (\subref {fig:Evaporation_diagramm_sample_img}) diagram showing the Evaporation performed on the sample. Red squares represent the positions of the evaporated fields. The number shows the order of evaporations. Distances are measured using an optical microscope. Fields are at a $10^\circ $ angle with respect to the sample holder. (\subref {fig:Evaporation_diagramm_mask_img}) microscope image of the mask taken before evaporation. The mask holder is placed straight in the microscope. The mask itself is angled on the mask holder.}}{57}{figure.caption.71}\protected@file@percent } +\newlabel{fig:Evaporation_diagramm}{{5.2}{57}{(\subref {fig:Evaporation_diagramm_sample_img}) diagram showing the Evaporation performed on the sample. Red squares represent the positions of the evaporated fields. The number shows the order of evaporations. Distances are measured using an optical microscope. Fields are at a $10^\circ $ angle with respect to the sample holder. (\subref {fig:Evaporation_diagramm_mask_img}) microscope image of the mask taken before evaporation. The mask holder is placed straight in the microscope. The mask itself is angled on the mask holder}{figure.caption.71}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5.2}Contamination}{57}{section.5.2}\protected@file@percent } +\newlabel{fig:evaporation_contamination_img}{{5.3a}{58}{\relax }{figure.caption.72}{}} +\newlabel{sub@fig:evaporation_contamination_img}{{a}{58}{\relax }{figure.caption.72}{}} +\newlabel{fig:evaporation_contamination_anal}{{5.3b}{58}{\relax }{figure.caption.72}{}} +\newlabel{sub@fig:evaporation_contamination_anal}{{b}{58}{\relax }{figure.caption.72}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces (\subref {fig:evaporation_contamination_img}) AFM image of field $3$ without any grain removal applied. Data was obtained on multiple different spots on the sample. (\subref {fig:evaporation_contamination_anal}) line cuts obtained from contamination particles. \textcolor {tab_red}{Red} and \textcolor {tab_green}{green} lines show the average height and width of the contamination particles obtained from peak fits.}}{58}{figure.caption.72}\protected@file@percent } +\newlabel{fig:evaporation_contamination}{{5.3}{58}{(\subref {fig:evaporation_contamination_img}) AFM image of field $3$ without any grain removal applied. Data was obtained on multiple different spots on the sample. (\subref {fig:evaporation_contamination_anal}) line cuts obtained from contamination particles. \textcolor {tab_red}{Red} and \textcolor {tab_green}{green} lines show the average height and width of the contamination particles obtained from peak fits}{figure.caption.72}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5.3}Penumbra}{58}{section.5.3}\protected@file@percent } +\newlabel{fig:penumbra_tilt_sigmas}{{5.4a}{59}{\relax }{figure.caption.73}{}} +\newlabel{sub@fig:penumbra_tilt_sigmas}{{a}{59}{\relax }{figure.caption.73}{}} +\newlabel{fig:Evaporation_diagramm_field}{{5.4b}{59}{\relax }{figure.caption.73}{}} +\newlabel{sub@fig:Evaporation_diagramm_field}{{b}{59}{\relax }{figure.caption.73}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces (\subref {fig:penumbra_tilt_sigmas}) AFM image of evaporated \ce {Pb} dot illustrating the penumbral widths used for evaporation analysis $\sigma _s$ and $\sigma _l$, depicted in \textcolor {tab_red}{red}, and the major axis of the tilt \textcolor {tab_green}{(green)}. $\sigma _s$ is drawn larger than actually measured, to aid visibility. The \textcolor {tab_blue}{blue} lines are the major $a$ and minor $b$ axis of the ellipse formed on the evaporated dot. Inset shows the same image in the phase data. The data is from Evaporation 5. (\subref {fig:Evaporation_diagramm_field}) AFM image of the top right part of field $3$. Grains were reduced using post-processing. Black circles show the dots chosen for further examination on this particular field.}}{59}{figure.caption.73}\protected@file@percent } +\newlabel{fig:penumbra_tilt_sigmas_and_field_show}{{5.4}{59}{(\subref {fig:penumbra_tilt_sigmas}) AFM image of evaporated \ce {Pb} dot illustrating the penumbral widths used for evaporation analysis $\sigma _s$ and $\sigma _l$, depicted in \textcolor {tab_red}{red}, and the major axis of the tilt \textcolor {tab_green}{(green)}. $\sigma _s$ is drawn larger than actually measured, to aid visibility. The \textcolor {tab_blue}{blue} lines are the major $a$ and minor $b$ axis of the ellipse formed on the evaporated dot. Inset shows the same image in the phase data. The data is from Evaporation 5. (\subref {fig:Evaporation_diagramm_field}) AFM image of the top right part of field $3$. Grains were reduced using post-processing. Black circles show the dots chosen for further examination on this particular field}{figure.caption.73}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces Example of the analysis conducted on each of the recorded dots for a single line cut. (a) raw AFM data before cleaning with a large amount of very bright contaminant particles. (b) cleaned image. The black lines in (b) show how multiple line cuts were obtained on a single image to obtain values for $\sigma _s$ and $\sigma _l$. The fit parameters are the two different penumbra widths induced by the tilt $\sigma _s$ and $\sigma _l$ for a single line cut. (c) line cut data from one line as an example. This line cut was obtained from \textcolor {tab_green}{(green)} line in (b). }}{61}{figure.caption.74}\protected@file@percent } +\newlabel{fig:evaporation_analysis}{{5.5}{61}{Example of the analysis conducted on each of the recorded dots for a single line cut. (a) raw AFM data before cleaning with a large amount of very bright contaminant particles. (b) cleaned image. The black lines in (b) show how multiple line cuts were obtained on a single image to obtain values for $\sigma _s$ and $\sigma _l$. The fit parameters are the two different penumbra widths induced by the tilt $\sigma _s$ and $\sigma _l$ for a single line cut. (c) line cut data from one line as an example. This line cut was obtained from \textcolor {tab_green}{(green)} line in (b)}{figure.caption.74}{}} +\newlabel{fig:evaporation_measured_penumbra_sigs}{{5.6a}{62}{\relax }{figure.caption.75}{}} +\newlabel{sub@fig:evaporation_measured_penumbra_sigs}{{a}{62}{\relax }{figure.caption.75}{}} +\newlabel{fig:evaporation_measured_penumbra_sigl}{{5.6b}{62}{\relax }{figure.caption.75}{}} +\newlabel{sub@fig:evaporation_measured_penumbra_sigl}{{b}{62}{\relax }{figure.caption.75}{}} +\newlabel{fig:evaporation_measured_penumbra_height}{{5.6c}{62}{\relax }{figure.caption.75}{}} +\newlabel{sub@fig:evaporation_measured_penumbra_height}{{c}{62}{\relax }{figure.caption.75}{}} +\newlabel{fig:evaporation_measured_penumbra_circle_r}{{5.6d}{62}{\relax }{figure.caption.75}{}} +\newlabel{sub@fig:evaporation_measured_penumbra_circle_r}{{d}{62}{\relax }{figure.caption.75}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces Data obtained from the previously described method for each of the 5 evaporations, one dot each from the center, the left, the right, the bottom and the top. (\subref {fig:evaporation_measured_penumbra_sigs})smaller penumbra $\sigma _s$. (\subref {fig:evaporation_measured_penumbra_sigl}) larger penumbra $\sigma _l$. (\subref {fig:evaporation_measured_penumbra_height}) height of the dot. (\subref {fig:evaporation_measured_penumbra_circle_r}) diameter of the circle.}}{62}{figure.caption.75}\protected@file@percent } +\newlabel{fig:evaporation_measured_penumbra}{{5.6}{62}{Data obtained from the previously described method for each of the 5 evaporations, one dot each from the center, the left, the right, the bottom and the top. (\subref {fig:evaporation_measured_penumbra_sigs})smaller penumbra $\sigma _s$. (\subref {fig:evaporation_measured_penumbra_sigl}) larger penumbra $\sigma _l$. (\subref {fig:evaporation_measured_penumbra_height}) height of the dot. (\subref {fig:evaporation_measured_penumbra_circle_r}) diameter of the circle}{figure.caption.75}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5.4}Tilt and deformation}{63}{section.5.4}\protected@file@percent } +\newlabel{fig:evaporation_tilts_example}{{5.7a}{64}{\relax }{figure.caption.76}{}} +\newlabel{sub@fig:evaporation_tilts_example}{{a}{64}{\relax }{figure.caption.76}{}} +\newlabel{fig:evaporation_tilts_all}{{5.7b}{64}{\relax }{figure.caption.76}{}} +\newlabel{sub@fig:evaporation_tilts_all}{{b}{64}{\relax }{figure.caption.76}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.7}{\ignorespaces (\subref {fig:evaporation_tilts_example}) image of the reconstruction of the tilt angle for Field 3. (\subref {fig:evaporation_tilts_all}) the same for all fields. For fields 1, 4, 5 the full field scans were performed at low resolution and due to this the direction of the tilt could not be determined from the images. The only dots drawn in this case are the high resolution AFM scans of single dots.}}{64}{figure.caption.76}\protected@file@percent } +\newlabel{fig:evaporation_tilts}{{5.7}{64}{(\subref {fig:evaporation_tilts_example}) image of the reconstruction of the tilt angle for Field 3. (\subref {fig:evaporation_tilts_all}) the same for all fields. For fields 1, 4, 5 the full field scans were performed at low resolution and due to this the direction of the tilt could not be determined from the images. The only dots drawn in this case are the high resolution AFM scans of single dots}{figure.caption.76}{}} +\newlabel{fig:evaporation_SEM_sample}{{5.8a}{65}{\relax }{figure.caption.77}{}} +\newlabel{sub@fig:evaporation_SEM_sample}{{a}{65}{\relax }{figure.caption.77}{}} +\newlabel{fig:evaporation_SEM_mask}{{5.8b}{65}{\relax }{figure.caption.77}{}} +\newlabel{sub@fig:evaporation_SEM_mask}{{b}{65}{\relax }{figure.caption.77}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces (\subref {fig:evaporation_SEM_sample}) SEM images of field 2 on the sample. (\subref {fig:evaporation_SEM_mask}) SEM image of the mask. The inset shows another image of the same mask. The image of the mask was very unstable due to heavy charging effects.}}{65}{figure.caption.77}\protected@file@percent } +\newlabel{fig:evaporation_SEM}{{5.8}{65}{(\subref {fig:evaporation_SEM_sample}) SEM images of field 2 on the sample. (\subref {fig:evaporation_SEM_mask}) SEM image of the mask. The inset shows another image of the same mask. The image of the mask was very unstable due to heavy charging effects}{figure.caption.77}{}} +\newlabel{fig:evaporation_SEM_analysis_clog}{{5.9a}{66}{\relax }{figure.caption.78}{}} +\newlabel{sub@fig:evaporation_SEM_analysis_clog}{{a}{66}{\relax }{figure.caption.78}{}} +\newlabel{fig:evaporation_SEM_analysis_clog_overlay}{{5.9b}{66}{\relax }{figure.caption.78}{}} +\newlabel{sub@fig:evaporation_SEM_analysis_clog_overlay}{{b}{66}{\relax }{figure.caption.78}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.9}{\ignorespaces (\subref {fig:evaporation_SEM_analysis_clog}) example of the clogging noticed on $4$ of the mask holes. \subref {fig:evaporation_SEM_analysis_clog_overlay} tilt direction from \ref {fig:evaporation_tilts} overlayed over the SEM image of the mask after it was rotated to match the fields.}}{66}{figure.caption.78}\protected@file@percent } +\newlabel{fig:evaporation_SEM_analysis}{{5.9}{66}{(\subref {fig:evaporation_SEM_analysis_clog}) example of the clogging noticed on $4$ of the mask holes. \subref {fig:evaporation_SEM_analysis_clog_overlay} tilt direction from \ref {fig:evaporation_tilts} overlayed over the SEM image of the mask after it was rotated to match the fields}{figure.caption.78}{}} +\@writefile{toc}{\contentsline {section}{\numberline {5.5}Simulation}{66}{section.5.5}\protected@file@percent } +\newlabel{sec:simulation}{{5.5}{66}{Simulation}{section.5.5}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.1}Overview and principle}{66}{subsection.5.5.1}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.2}Results}{68}{subsection.5.5.2}\protected@file@percent } +\newlabel{fig:evaporation_simulation_first_compare_AFM}{{5.10a}{68}{\relax }{figure.caption.79}{}} +\newlabel{sub@fig:evaporation_simulation_first_compare_AFM}{{a}{68}{\relax }{figure.caption.79}{}} +\newlabel{fig:evaporation_simulation_first_compare_SIM}{{5.10b}{68}{\relax }{figure.caption.79}{}} +\newlabel{sub@fig:evaporation_simulation_first_compare_SIM}{{b}{68}{\relax }{figure.caption.79}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.10}{\ignorespaces (a) a recorded AFM image, colors are for easier identification. (b) a simulated evaporation with parameters obtained from measurement in the AFM image. }}{68}{figure.caption.79}\protected@file@percent } +\newlabel{fig:evaporation_simulation_first_compare}{{5.10}{68}{(a) a recorded AFM image, colors are for easier identification. (b) a simulated evaporation with parameters obtained from measurement in the AFM image}{figure.caption.79}{}} \citation{Bhaskar} -\@writefile{lof}{\contentsline {figure}{\numberline {5.11}{\ignorespaces Simulation showing the effect of only x-y vibration on the resulting evaporation. White circles show the extreme positions of the circular mask. }}{75}{figure.caption.91}\protected@file@percent } -\newlabel{fig:evaporation_simulation_overlap}{{5.11}{75}{Simulation showing the effect of only x-y vibration on the resulting evaporation. White circles show the extreme positions of the circular mask}{figure.caption.91}{}} -\newlabel{fig:evaporation_simulation_sharpness_stick_simple}{{5.12a}{76}{\relax }{figure.caption.92}{}} -\newlabel{sub@fig:evaporation_simulation_sharpness_stick_simple}{{a}{76}{\relax }{figure.caption.92}{}} -\newlabel{fig:evaporation_simulation_sharpness_stick_initial}{{5.12b}{76}{\relax }{figure.caption.92}{}} -\newlabel{sub@fig:evaporation_simulation_sharpness_stick_initial}{{b}{76}{\relax }{figure.caption.92}{}} -\newlabel{fig:evaporation_simulation_sharpness_stick_power}{{5.12c}{76}{\relax }{figure.caption.92}{}} -\newlabel{sub@fig:evaporation_simulation_sharpness_stick_power}{{c}{76}{\relax }{figure.caption.92}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.12}{\ignorespaces (\subref {fig:evaporation_simulation_sharpness_stick_simple}) Comparison of the evaporation with harmonic oscillation. (\subref {fig:evaporation_simulation_sharpness_stick_initial}) initial phase with no elliptical oscillation and then drift to the elliptical shape. (\subref {fig:evaporation_simulation_sharpness_stick_power})an anharmonic oscillation with $\sin (\frac {t}{T} + \phi )^{20}$ . The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}.}}{76}{figure.caption.92}\protected@file@percent } -\newlabel{fig:evaporation_simulation_sharpness}{{5.12}{76}{(\subref {fig:evaporation_simulation_sharpness_stick_simple}) Comparison of the evaporation with harmonic oscillation. (\subref {fig:evaporation_simulation_sharpness_stick_initial}) initial phase with no elliptical oscillation and then drift to the elliptical shape. (\subref {fig:evaporation_simulation_sharpness_stick_power})an anharmonic oscillation with $\sin (\frac {t}{T} + \phi )^{20}$ . The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}}{figure.caption.92}{}} -\newlabel{fig:evaporation_simulation_rejection_prev}{{5.13a}{77}{\relax }{figure.caption.93}{}} -\newlabel{sub@fig:evaporation_simulation_rejection_prev}{{a}{77}{\relax }{figure.caption.93}{}} -\newlabel{fig:evaporation_simulation_rejection_after}{{5.13b}{77}{\relax }{figure.caption.93}{}} -\newlabel{sub@fig:evaporation_simulation_rejection_after}{{b}{77}{\relax }{figure.caption.93}{}} -\newlabel{fig:evaporation_simulation_rejection_comparison}{{5.13c}{77}{\relax }{figure.caption.93}{}} -\newlabel{sub@fig:evaporation_simulation_rejection_comparison}{{c}{77}{\relax }{figure.caption.93}{}} -\@writefile{lof}{\contentsline {figure}{\numberline {5.13}{\ignorespaces (\subref {fig:evaporation_simulation_rejection_prev}) simulated evaporation dots without rejection. (\subref {fig:evaporation_simulation_rejection_prev}) with (\subref {fig:evaporation_simulation_rejection_after}) $90$ \% probability to reject a deposition, when no previous deposition happened on the target pixel. (\subref {fig:evaporation_simulation_rejection_comparison}) the AFM image from which the parameters were obtained. The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}.}}{77}{figure.caption.93}\protected@file@percent } -\newlabel{fig:evaporation_simulation_rejection}{{5.13}{77}{(\subref {fig:evaporation_simulation_rejection_prev}) simulated evaporation dots without rejection. (\subref {fig:evaporation_simulation_rejection_prev}) with (\subref {fig:evaporation_simulation_rejection_after}) $90$ \% probability to reject a deposition, when no previous deposition happened on the target pixel. (\subref {fig:evaporation_simulation_rejection_comparison}) the AFM image from which the parameters were obtained. The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}}{figure.caption.93}{}} -\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.3}Software improvements}{77}{subsection.5.5.3}\protected@file@percent } -\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.4}Final Remark}{78}{subsection.5.5.4}\protected@file@percent } +\@writefile{lof}{\contentsline {figure}{\numberline {5.11}{\ignorespaces Simulation showing the effect of only x-y vibration on the resulting evaporation. White circles show the extreme positions of the circular mask. }}{69}{figure.caption.80}\protected@file@percent } +\newlabel{fig:evaporation_simulation_overlap}{{5.11}{69}{Simulation showing the effect of only x-y vibration on the resulting evaporation. White circles show the extreme positions of the circular mask}{figure.caption.80}{}} +\citation{grain_growth} +\newlabel{fig:evaporation_simulation_sharpness_stick_simple}{{5.12a}{70}{\relax }{figure.caption.81}{}} +\newlabel{sub@fig:evaporation_simulation_sharpness_stick_simple}{{a}{70}{\relax }{figure.caption.81}{}} +\newlabel{fig:evaporation_simulation_sharpness_stick_initial}{{5.12b}{70}{\relax }{figure.caption.81}{}} +\newlabel{sub@fig:evaporation_simulation_sharpness_stick_initial}{{b}{70}{\relax }{figure.caption.81}{}} +\newlabel{fig:evaporation_simulation_sharpness_stick_power}{{5.12c}{70}{\relax }{figure.caption.81}{}} +\newlabel{sub@fig:evaporation_simulation_sharpness_stick_power}{{c}{70}{\relax }{figure.caption.81}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.12}{\ignorespaces (\subref {fig:evaporation_simulation_sharpness_stick_simple}) Comparison of the evaporation with harmonic oscillation. (\subref {fig:evaporation_simulation_sharpness_stick_initial}) initial phase with no elliptical oscillation and then drift to the elliptical shape. (\subref {fig:evaporation_simulation_sharpness_stick_power})an anharmonic oscillation with $\sin (\frac {t}{T} + \phi )^{20}$ . The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}.}}{70}{figure.caption.81}\protected@file@percent } +\newlabel{fig:evaporation_simulation_sharpness}{{5.12}{70}{(\subref {fig:evaporation_simulation_sharpness_stick_simple}) Comparison of the evaporation with harmonic oscillation. (\subref {fig:evaporation_simulation_sharpness_stick_initial}) initial phase with no elliptical oscillation and then drift to the elliptical shape. (\subref {fig:evaporation_simulation_sharpness_stick_power})an anharmonic oscillation with $\sin (\frac {t}{T} + \phi )^{20}$ . The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}}{figure.caption.81}{}} +\newlabel{fig:evaporation_simulation_rejection_prev}{{5.13a}{71}{\relax }{figure.caption.82}{}} +\newlabel{sub@fig:evaporation_simulation_rejection_prev}{{a}{71}{\relax }{figure.caption.82}{}} +\newlabel{fig:evaporation_simulation_rejection_after}{{5.13b}{71}{\relax }{figure.caption.82}{}} +\newlabel{sub@fig:evaporation_simulation_rejection_after}{{b}{71}{\relax }{figure.caption.82}{}} +\newlabel{fig:evaporation_simulation_rejection_comparison}{{5.13c}{71}{\relax }{figure.caption.82}{}} +\newlabel{sub@fig:evaporation_simulation_rejection_comparison}{{c}{71}{\relax }{figure.caption.82}{}} +\@writefile{lof}{\contentsline {figure}{\numberline {5.13}{\ignorespaces (\subref {fig:evaporation_simulation_rejection_prev}) simulated evaporation dots without rejection. (\subref {fig:evaporation_simulation_rejection_prev}) with (\subref {fig:evaporation_simulation_rejection_after}) $90$ \% probability to reject a deposition, when no previous deposition happened on the target pixel. (\subref {fig:evaporation_simulation_rejection_comparison}) the AFM image from which the parameters were obtained. The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}.}}{71}{figure.caption.82}\protected@file@percent } +\newlabel{fig:evaporation_simulation_rejection}{{5.13}{71}{(\subref {fig:evaporation_simulation_rejection_prev}) simulated evaporation dots without rejection. (\subref {fig:evaporation_simulation_rejection_prev}) with (\subref {fig:evaporation_simulation_rejection_after}) $90$ \% probability to reject a deposition, when no previous deposition happened on the target pixel. (\subref {fig:evaporation_simulation_rejection_comparison}) the AFM image from which the parameters were obtained. The parameters of the ellipse are the same as in Figure \ref {fig:evaporation_simulation_first_compare}}{figure.caption.82}{}} +\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.3}Software improvements}{71}{subsection.5.5.3}\protected@file@percent } +\@writefile{toc}{\contentsline {subsection}{\numberline {5.5.4}Final Remark}{72}{subsection.5.5.4}\protected@file@percent } \@setckpt{chap05}{ -\setcounter{page}{79} +\setcounter{page}{73} \setcounter{equation}{1} \setcounter{enumi}{4} \setcounter{enumii}{0} @@ -112,7 +112,7 @@ \setcounter{section@level}{2} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{57} +\setcounter{bookmark@seq@number}{56} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} \setcounter{NAT@ctr}{0} @@ -121,7 +121,7 @@ \setcounter{subfigure}{3} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{11} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/chap05.tex b/chap05.tex index 6a69e7490e1945da7b3ab287fbbdaf7df4930033..b8da8df561ede9fdb82ee48f0f7142aa66a97847 100644 --- a/chap05.tex +++ b/chap05.tex @@ -10,7 +10,6 @@ As a test for positioning and to optimize the penumbra of \ce{Pb} islands on a \ \caption{The approach curve measured for field 1 until full contact.} \label{fig:evaporation_approach_curve} \end{figure} -\todo{steps wrong} The 3 capacitance sensors appear heavily correlated (Fig. \ref{fig:evaporation_approach_curve}) and the uncertainty on C2 and C3 is an order of magnitude larger than the step in $dC$. For this reason C1 was primarily used for alignment. C2 and C3 were recorded but went unused. @@ -338,7 +337,8 @@ The different roughness of circle and ellipse might suggest different possible r The effect of this can be seen in Figure \ref{fig:evaporation_simulation_sharpness_stick_initial}. Compared with the simpler model (Figure \ref{fig:evaporation_simulation_sharpness_stick_simple}) this is more similar to the AFM measurement. Another possibility is an oscillation, which is not harmonic. For this instead of choosing the oscillation as $\sin(\frac{t}{T} + \phi)$ with $t$ being current time, $T$ the oscillation period and $\phi$ being a phase shift. Instead the oscillation is parametrized as $\sin(\frac{t}{T} + \phi)^p$ with $p$ being the oscillation power. The resulting image can be seen in Figure \ref{fig:evaporation_simulation_sharpness_stick_power}. The effect of this is very similar to the initial circular shape. The vibrations causing the deformation and tilt are unlikely to be very anharmonic, but due to growth of thin films happening near grains, the actual growth of \ce{Pb} on the \ce{Si} is concentrated at the extreme positions of the oscillation. -In the AFM image the surface of the "half moon" is rougher than the surface of the inner circle. On average, the roughness is $1.7 \pm 0.4$ times higher. The \ce{Pb} can more easily grow at already established sites. This causes the growth to be in grains. With larger layer height this effect typically decreases. Another possible reason is a chronology of events where the growth happens first on the outer circle and then on the elliptical shape, as previously discussed. \\ +In the AFM image the surface of the outer is rougher than the surface of the inner circle. On average, the roughness is $1.7 \pm 0.4$ times higher. This could be due to particles first forming larger grains, which is common for PVD~\cite{grain_growth}. With larger layer height this effect typically becomes less visible. \\ +Another possible reason is a chronology of events where the growth happens first on the outer circle and then on the elliptical shape, as previously discussed. \\ The grain growth can be be modeled in the simulation by penalizing deposition for pixels, where no material has been deposited previously. The probability to deposit on an empty surface is a user controlled parameter called "first\_layer\_depo\_prob". It specifies the probability with which a particle hitting the sample is deposited, when no material has previously been deposited on the relevant pixel. \\ diff --git a/conclusion.aux b/conclusion.aux index d1713dc6729ef746d49db09ba0abfd1259926e50..0c9ca67559cd8f54f9a58c8da7b261f419a9f415 100644 --- a/conclusion.aux +++ b/conclusion.aux @@ -1,9 +1,9 @@ \relax \providecommand\hyper@newdestlabel[2]{} \citation{self_epitaxy} -\@writefile{toc}{\contentsline {chapter}{Conclusions and Outlook}{79}{chapter*.94}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{Conclusions and Outlook}{73}{chapter*.83}\protected@file@percent } \@setckpt{conclusion}{ -\setcounter{page}{80} +\setcounter{page}{74} \setcounter{equation}{1} \setcounter{enumi}{4} \setcounter{enumii}{0} @@ -23,7 +23,7 @@ \setcounter{section@level}{2} \setcounter{Item}{14} \setcounter{Hfootnote}{1} -\setcounter{bookmark@seq@number}{58} +\setcounter{bookmark@seq@number}{57} \setcounter{parentequation}{0} \setcounter{FancyVerbLine}{0} \setcounter{NAT@ctr}{0} @@ -32,7 +32,7 @@ \setcounter{subfigure}{3} \setcounter{subtable}{0} \setcounter{lstnumber}{1} -\setcounter{@todonotes@numberoftodonotes}{11} +\setcounter{@todonotes@numberoftodonotes}{7} \setcounter{float@type}{8} \setcounter{AM@survey}{0} \setcounter{thm}{0} diff --git a/img/CalibrationUHV_Z1.pdf b/img/CalibrationUHV_Z1.pdf index a6c5d645ea0e136651e5849944fd43699d08db5b..28ed4846f388b925bb0becd78c344fd6308060b2 100644 Binary files a/img/CalibrationUHV_Z1.pdf and b/img/CalibrationUHV_Z1.pdf differ diff --git a/img/CalibrationUHV_Z2_Z3.pdf b/img/CalibrationUHV_Z2_Z3.pdf index 17db9703017ff17e6a07acd10622ad9ca9e304da..1f83cc7700feaec45a4c4b11a440b371ac6ce515 100644 Binary files a/img/CalibrationUHV_Z2_Z3.pdf and b/img/CalibrationUHV_Z2_Z3.pdf differ diff --git a/img/Evaporation/Approach_Curve_Field01.pdf b/img/Evaporation/Approach_Curve_Field01.pdf index 0ea7af7e9e75647341dd744c511edbdc8e5a3e3f..0f915a54d6ecfe36275a69fd9a956cb45d7e8ba4 100644 Binary files a/img/Evaporation/Approach_Curve_Field01.pdf and b/img/Evaporation/Approach_Curve_Field01.pdf differ diff --git a/img/MA/CorrelationExample.pdf b/img/MA/CorrelationExample.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ddef6f836dadf9981c652e61e3a93a5c983ff51d Binary files /dev/null and b/img/MA/CorrelationExample.pdf differ diff --git a/img/MA/NomenclatureMaskAlignerFront.pdf b/img/MA/NomenclatureMaskAlignerFront.pdf index ee2538fa32431c11598036fbe9412708309ade26..a7ae26b90f0d4b2e080e8d450b1b3811c974c014 100644 Binary files a/img/MA/NomenclatureMaskAlignerFront.pdf and b/img/MA/NomenclatureMaskAlignerFront.pdf differ diff --git a/img/MA/SchaltDiagramRHK.pdf b/img/MA/SchaltDiagramRHK.pdf index 9b990c954da4fce71c2e436893b33810505ef041..06834428290e6ea70547721207da1d07af6afc45 100644 Binary files a/img/MA/SchaltDiagramRHK.pdf and b/img/MA/SchaltDiagramRHK.pdf differ diff --git a/img/MA/SchaltDiagramWalker.pdf b/img/MA/SchaltDiagramWalker.pdf index c4f647513862c4f36668024e3847f5e3a75dec17..1503b63d0f2cc75afd4eea784f0768cd60c16472 100644 Binary files a/img/MA/SchaltDiagramWalker.pdf and b/img/MA/SchaltDiagramWalker.pdf differ diff --git a/macros.tex b/macros.tex index 00b5d15178216fde1c3564681950ec681bd0f69c..a3315e8f83c87862c19c60ffb503b207c3c162e8 100644 --- a/macros.tex +++ b/macros.tex @@ -46,16 +46,27 @@ \newtheorem*{rem}{Remark} \newtheorem*{example}{Example} -\definecolor{tab_red}{HTML}{D62728} -\definecolor{tab_blue}{HTML}{1F77B4} -\definecolor{tab_green}{HTML}{2CA02C} -\definecolor{tab_orange}{HTML}{FF7F0E} -\definecolor{tab_purple}{HTML}{9467bd} -\definecolor{tab_brown}{HTML}{8c564b} -\definecolor{tab_pink}{HTML}{e377c2} -\definecolor{tab_gray}{HTML}{7f7f7f} -\definecolor{tab_olive}{HTML}{bcbd22} -\definecolor{tab_cyan}{HTML}{17becf} +%\definecolor{tab_red}{HTML}{D62728} +%\definecolor{tab_blue}{HTML}{1F77B4} +%\definecolor{tab_green}{HTML}{2CA02C} +%\definecolor{tab_orange}{HTML}{FF7F0E} +%\definecolor{tab_purple}{HTML}{9467bd} +%\definecolor{tab_brown}{HTML}{8c564b} +%\definecolor{tab_pink}{HTML}{e377c2} +%\definecolor{tab_gray}{HTML}{7f7f7f} +%\definecolor{tab_olive}{HTML}{bcbd22} +%\definecolor{tab_cyan}{HTML}{17becf} + +\definecolor{tab_red}{HTML}{000000} +\definecolor{tab_blue}{HTML}{000000} +\definecolor{tab_green}{HTML}{000000} +\definecolor{tab_orange}{HTML}{000000} +\definecolor{tab_purple}{HTML}{000000} +\definecolor{tab_brown}{HTML}{000000} +\definecolor{tab_pink}{HTML}{000000} +\definecolor{tab_gray}{HTML}{000000} +\definecolor{tab_olive}{HTML}{000000} +\definecolor{tab_cyan}{HTML}{000000} %%% An environment for proofs diff --git a/pdfa.xmpi b/pdfa.xmpi index 8999bc5119ea96272c4b2cb1b8b61f4a3e848175..435679831d4469098940acff8b2c2856c02ec65f 100644 --- a/pdfa.xmpi +++ b/pdfa.xmpi @@ -73,15 +73,15 @@ </rdf:Description> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/"> <xmp:CreatorTool>LaTeX with hyperref</xmp:CreatorTool> - <xmp:ModifyDate>2024-09-30T21:18:11+02:00</xmp:ModifyDate> - <xmp:CreateDate>2024-09-30T21:18:11+02:00</xmp:CreateDate> - <xmp:MetadataDate>2024-09-30T21:18:11+02:00</xmp:MetadataDate> + <xmp:ModifyDate>2024-10-01T21:44:56+02:00</xmp:ModifyDate> + <xmp:CreateDate>2024-10-01T21:44:56+02:00</xmp:CreateDate> + <xmp:MetadataDate>2024-10-01T21:44:56+02:00</xmp:MetadataDate> </rdf:Description> <rdf:Description rdf:about="" xmlns:xmpRights = "http://ns.adobe.com/xap/1.0/rights/"> </rdf:Description> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"> <xmpMM:DocumentID>uuid:C8CFC28F-88E1-7995-E9AD-F6D12EAD346B</xmpMM:DocumentID> - <xmpMM:InstanceID>uuid:AEB67606-830A-5A51-F42D-7C0587EF070B</xmpMM:InstanceID> + <xmpMM:InstanceID>uuid:CC514C11-A12B-5C12-61FA-6C6CA3D9F1D5</xmpMM:InstanceID> </rdf:Description> </rdf:RDF> </x:xmpmeta> diff --git a/thesis.aux b/thesis.aux index 5562289e88ea3f96b1dd05e4efdd1b9a5a87fe55..26af4dca0a20ca378393b544f69f0df409407051 100644 --- a/thesis.aux +++ b/thesis.aux @@ -7,46 +7,34 @@ \@input{preface.aux} \@input{chap01.aux} \@input{chap02.aux} -\pgfsyspdfmark {pgfid1}{4736286}{22941088} -\pgfsyspdfmark {pgfid4}{37433768}{22961862} -\pgfsyspdfmark {pgfid5}{39282063}{22687136} -\pgfsyspdfmark {pgfid6}{9657623}{30219317} -\pgfsyspdfmark {pgfid9}{37433768}{30240091} -\pgfsyspdfmark {pgfid10}{39282063}{29965365} -\pgfsyspdfmark {pgfid11}{4736286}{14207856} -\pgfsyspdfmark {pgfid14}{37433768}{14228630} -\pgfsyspdfmark {pgfid15}{39282063}{13953904} \@input{chap03.aux} -\pgfsyspdfmark {pgfid16}{6237901}{29827744} -\pgfsyspdfmark {pgfid19}{37433768}{29848518} -\pgfsyspdfmark {pgfid20}{39282063}{29573792} -\pgfsyspdfmark {pgfid21}{12300331}{22092655} -\pgfsyspdfmark {pgfid24}{37433768}{22113429} -\pgfsyspdfmark {pgfid25}{39282063}{21838703} -\pgfsyspdfmark {pgfid26}{4736286}{14857764} -\pgfsyspdfmark {pgfid29}{37433768}{14878538} -\pgfsyspdfmark {pgfid30}{39282063}{14603812} -\pgfsyspdfmark {pgfid31}{14584307}{46753504} -\pgfsyspdfmark {pgfid34}{37433768}{46774278} -\pgfsyspdfmark {pgfid35}{39282063}{46499552} -\pgfsyspdfmark {pgfid36}{4736286}{26110677} -\pgfsyspdfmark {pgfid39}{37433768}{26131451} -\pgfsyspdfmark {pgfid40}{39282063}{25856725} +\pgfsyspdfmark {pgfid1}{6237901}{29827744} +\pgfsyspdfmark {pgfid4}{37433768}{29848518} +\pgfsyspdfmark {pgfid5}{39282063}{29573792} +\pgfsyspdfmark {pgfid6}{12300331}{22092655} +\pgfsyspdfmark {pgfid9}{37433768}{22113429} +\pgfsyspdfmark {pgfid10}{39282063}{21838703} +\pgfsyspdfmark {pgfid11}{4736286}{14857764} +\pgfsyspdfmark {pgfid14}{37433768}{14878538} +\pgfsyspdfmark {pgfid15}{39282063}{14603812} +\pgfsyspdfmark {pgfid16}{14584307}{46753504} +\pgfsyspdfmark {pgfid19}{37433768}{46774278} +\pgfsyspdfmark {pgfid20}{39282063}{46499552} +\pgfsyspdfmark {pgfid21}{4736286}{25683733} +\pgfsyspdfmark {pgfid24}{37433768}{25704507} +\pgfsyspdfmark {pgfid25}{39282063}{25429781} \@input{chap04.aux} -\pgfsyspdfmark {pgfid41}{17019963}{15950922} -\pgfsyspdfmark {pgfid44}{37433768}{15971696} -\pgfsyspdfmark {pgfid45}{39282063}{15696970} -\pgfsyspdfmark {pgfid46}{4736286}{28413669} -\pgfsyspdfmark {pgfid49}{37433768}{28434443} -\pgfsyspdfmark {pgfid50}{39282063}{28159717} +\pgfsyspdfmark {pgfid26}{17019963}{15950922} +\pgfsyspdfmark {pgfid29}{37433768}{15971696} +\pgfsyspdfmark {pgfid30}{39282063}{15696970} +\pgfsyspdfmark {pgfid31}{4736286}{28252312} +\pgfsyspdfmark {pgfid34}{37433768}{28273086} +\pgfsyspdfmark {pgfid35}{39282063}{27998360} \@input{chap05.aux} -\pgfsyspdfmark {pgfid51}{4736286}{21947038} -\pgfsyspdfmark {pgfid54}{37433768}{21967812} -\pgfsyspdfmark {pgfid55}{39282063}{21693086} \@input{conclusion.aux} \@input{bibliography.aux} -\@writefile{toc}{\contentsline {chapter}{List of Abbreviations}{82}{chapter*.96}\protected@file@percent } +\@writefile{toc}{\contentsline {chapter}{List of Abbreviations}{76}{chapter*.85}\protected@file@percent } \@input{appendix.aux} \@input{acknowledgments.aux} \providecommand\NAT@force@numbers{}\NAT@force@numbers -\gdef \@abspage@last{92} +\gdef \@abspage@last{86} diff --git a/thesis.bbl b/thesis.bbl index d8b89819a0fdde3ba0db2754202c20d217d2f16a..21cf1c334deb3d64791123695742054cf6e0639d 100644 --- a/thesis.bbl +++ b/thesis.bbl @@ -164,4 +164,12 @@ Atmel. The {A}tmel | {SMART} {SAM3X/A} series datasheet. Online; accessed \bibitem{switch_datasheet} \emph{IC SWITCH SPDTX2 1.8OHM 16TSSOP}, Analog Devices Inc., 2016, rev. B. +\bibitem{grain_growth} +\BIBentryALTinterwordspacing +E.~BAUER, ``Phänomenologische theorie der kristallabscheidung an oberflächen. + i,'' \emph{Zeitschrift für Kristallographie - Crystalline Materials}, vol. + 110, no. 1-6, pp. 372--394, 1958. [Online]. Available: + \url{https://doi.org/10.1524/zkri.1958.110.16.372} +\BIBentrySTDinterwordspacing + \end{thebibliography} diff --git a/thesis.blg b/thesis.blg index 514015a4f557f12cf1f245274bedac326c2ab181..0f779b907c017704f2b7e4870fca8ce0e04ff762 100644 --- a/thesis.blg +++ b/thesis.blg @@ -44,51 +44,53 @@ Warning--entry type for "Olschewski" isn't style-file defined --line 85 of file bibliography.bib Warning--entry type for "Florian_forster" isn't style-file defined --line 96 of file bibliography.bib +Warning--I'm ignoring grain_growth's extra "title" field +--line 325 of file bibliography.bib -- IEEEtran.bst version 1.14 (2015/08/26) by Michael Shell. -- http://www.michaelshell.org/tex/ieeetran/bibtex/ -- See the "IEEEtran_bst_HOWTO.pdf" manual for usage information. Warning--missing publisher in SEM_book Done. -You've used 22 entries, +You've used 23 entries, 4087 wiz_defined-function locations, - 976 strings with 11916 characters, -and the built_in function-call counts, 14048 in all, are: -= -- 1156 -> -- 318 -< -- 93 -+ -- 141 -- -- 59 -* -- 653 -:= -- 2309 -add.period$ -- 46 -call.type$ -- 22 -change.case$ -- 28 -chr.to.int$ -- 213 -cite$ -- 23 -duplicate$ -- 1010 -empty$ -- 1095 -format.name$ -- 69 -if$ -- 3204 + 984 strings with 12124 characters, +and the built_in function-call counts, 14942 in all, are: += -- 1239 +> -- 330 +< -- 104 ++ -- 149 +- -- 60 +* -- 698 +:= -- 2455 +add.period$ -- 48 +call.type$ -- 23 +change.case$ -- 29 +chr.to.int$ -- 237 +cite$ -- 24 +duplicate$ -- 1069 +empty$ -- 1155 +format.name$ -- 70 +if$ -- 3409 int.to.chr$ -- 0 -int.to.str$ -- 22 -missing$ -- 197 -newline$ -- 113 -num.names$ -- 21 -pop$ -- 499 +int.to.str$ -- 23 +missing$ -- 205 +newline$ -- 118 +num.names$ -- 22 +pop$ -- 509 preamble$ -- 1 purify$ -- 0 quote$ -- 2 -skip$ -- 1047 +skip$ -- 1119 stack$ -- 0 -substring$ -- 526 -swap$ -- 813 -text.length$ -- 22 +substring$ -- 583 +swap$ -- 869 +text.length$ -- 25 text.prefix$ -- 0 top$ -- 5 -type$ -- 22 +type$ -- 23 warning$ -- 1 -while$ -- 38 -width$ -- 24 -write$ -- 256 +while$ -- 43 +width$ -- 25 +write$ -- 270 (There was 1 error message) diff --git a/thesis.log b/thesis.log index 0e81ae1a36aabc69ff53ca8eda1b29c98fd32d01..265cccdebd5566cc9e4b1430e6af48f0968ee91d 100644 --- a/thesis.log +++ b/thesis.log @@ -1,4 +1,4 @@ -This is pdfTeX, Version 3.141592653-2.6-1.40.25 (MiKTeX 24.1) (preloaded format=pdflatex 2024.9.29) 30 SEP 2024 21:18 +This is pdfTeX, Version 3.141592653-2.6-1.40.25 (MiKTeX 24.1) (preloaded format=pdflatex 2024.9.29) 1 OCT 2024 21:44 entering extended mode restricted \write18 enabled. %&-line parsing enabled. @@ -1593,7 +1593,7 @@ pdfTeX warning (ext4): destination with the same identifier (name{page.1}) has been already used, duplicate ignored <to be read again> \relax -l.55 ... repairs and optimizations}{49}{chapter.4} +l.54 ...l UHV device preparation}{44}{section.4.2} % [1 @@ -1635,7 +1635,7 @@ c}] [4] (chap01.tex Chapter 1. -<img/EBeamDep.pdf, id=377, 422.32782pt x 512.66531pt> +<img/EBeamDep.pdf, id=372, 422.32782pt x 512.66531pt> File: img/EBeamDep.pdf Graphic file (type pdf) <use img/EBeamDep.pdf> Package pdftex.def Info: img/EBeamDep.pdf used on input line 10. @@ -1676,7 +1676,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 54--55 [] -<img/Plots/Background/Penumbra_diagramm.pdf, id=457, 490.1206pt x 456.06708pt> +<img/Plots/Background/Penumbra_diagramm.pdf, id=452, 490.1206pt x 456.06708pt> File: img/Plots/Background/Penumbra_diagramm.pdf Graphic file (type pdf) <use img/Plots/Background/Penumbra_diagramm.pdf> Package pdftex.def Info: img/Plots/Background/Penumbra_diagramm.pdf used on in @@ -1692,14 +1692,14 @@ Underfull \hbox (badness 10000) in paragraph at lines 74--75 [] -<img/Plots/Background/Penumbra_diagramm_tilt.pdf, id=468, 316.68901pt x 226.646 +<img/Plots/Background/Penumbra_diagramm_tilt.pdf, id=463, 316.68901pt x 226.646 1pt> File: img/Plots/Background/Penumbra_diagramm_tilt.pdf Graphic file (type pdf) <use img/Plots/Background/Penumbra_diagramm_tilt.pdf> Package pdftex.def Info: img/Plots/Background/Penumbra_diagramm_tilt.pdf used on input line 79. (pdftex.def) Requested size: 207.32315pt x 148.373pt. -<img/Plots/Background/Penumbra_ImageTilt.pdf, id=469, 371.04158pt x 280.97652pt +<img/Plots/Background/Penumbra_ImageTilt.pdf, id=464, 371.04158pt x 280.97652pt > File: img/Plots/Background/Penumbra_ImageTilt.pdf Graphic file (type pdf) <use img/Plots/Background/Penumbra_ImageTilt.pdf> @@ -1713,13 +1713,13 @@ Underfull \hbox (badness 10000) in paragraph at lines 98--100 [9 <./img/Plots/Background/Penumbra_diagramm_tilt.pdf> <./img/Plots/Background/ Penumbra_ImageTilt.pdf>] -<img/Plots/Background/AFMDiagram.pdf, id=562, 525.07625pt x 367.71567pt> +<img/Plots/Background/AFMDiagram.pdf, id=557, 525.07625pt x 367.71567pt> File: img/Plots/Background/AFMDiagram.pdf Graphic file (type pdf) <use img/Plots/Background/AFMDiagram.pdf> Package pdftex.def Info: img/Plots/Background/AFMDiagram.pdf used on input lin e 105. (pdftex.def) Requested size: 322.50345pt x 225.85481pt. -<img/Plots/AFMPotential.pdf, id=564, 433.62pt x 289.08pt> +<img/Plots/AFMPotential.pdf, id=559, 433.62pt x 289.08pt> File: img/Plots/AFMPotential.pdf Graphic file (type pdf) <use img/Plots/AFMPotential.pdf> Package pdftex.def Info: img/Plots/AFMPotential.pdf used on input line 115. @@ -1733,13 +1733,13 @@ File: ts1lmr.fd 2015/05/01 v1.6.1 Font defs for Latin Modern ) [11{C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/enc/dvips/lm/lm-ts1.en c} <./img/Plots/AFMPotential.pdf>] -<img/Plots/Background/SEMSetup.png, id=697, 481.8pt x 642.4803pt> +<img/Plots/Background/SEMSetup.png, id=692, 481.8pt x 642.4803pt> File: img/Plots/Background/SEMSetup.png Graphic file (type png) <use img/Plots/Background/SEMSetup.png> Package pdftex.def Info: img/Plots/Background/SEMSetup.png used on input line 143. (pdftex.def) Requested size: 186.58957pt x 248.8115pt. -<img/Plots/Background/Electron_Beam_Matter_Interaction.pdf, id=699, 227.93503pt +<img/Plots/Background/Electron_Beam_Matter_Interaction.pdf, id=694, 227.93503pt x 203.94936pt> File: img/Plots/Background/Electron_Beam_Matter_Interaction.pdf Graphic file (t ype pdf) @@ -1773,7 +1773,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 164--130 (chap02.tex Chapter 2. -<img/MaskAlignerChamber.pdf, id=775, 569.05513pt x 566.20984pt> +<img/MaskAlignerChamber.pdf, id=770, 569.05513pt x 566.20984pt> File: img/MaskAlignerChamber.pdf Graphic file (type pdf) <use img/MaskAlignerChamber.pdf> Package pdftex.def Info: img/MaskAlignerChamber.pdf used on input line 7. @@ -1793,7 +1793,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 24--25 [] -<img/MA/Evaporator.pdf, id=802, 735.31029pt x 663.98062pt> +<img/MA/Evaporator.pdf, id=797, 735.31029pt x 663.98062pt> File: img/MA/Evaporator.pdf Graphic file (type pdf) <use img/MA/Evaporator.pdf> Package pdftex.def Info: img/MA/Evaporator.pdf used on input line 28. @@ -1803,13 +1803,13 @@ Underfull \hbox (badness 10000) in paragraph at lines 33--34 [] -<img/MA/NomenclatureMaskAlignerFront.pdf, id=810, 1014.79124pt x 812.93764pt> +<img/MA/NomenclatureMaskAlignerFront.pdf, id=805, 466.6252pt x 859.27322pt> File: img/MA/NomenclatureMaskAlignerFront.pdf Graphic file (type pdf) <use img/MA/NomenclatureMaskAlignerFront.pdf> Package pdftex.def Info: img/MA/NomenclatureMaskAlignerFront.pdf used on input line 38. -(pdftex.def) Requested size: 193.50208pt x 155.00554pt. -<img/MA/NomenclatureMaskAlignerCrossSec.pdf, id=811, 478.00629pt x 808.05826pt> +(pdftex.def) Requested size: 193.50208pt x 356.32951pt. +<img/MA/NomenclatureMaskAlignerCrossSec.pdf, id=806, 478.00629pt x 808.05826pt> File: img/MA/NomenclatureMaskAlignerCrossSec.pdf Graphic file (type pdf) <use img/MA/NomenclatureMaskAlignerCrossSec.pdf> @@ -1836,19 +1836,19 @@ Underfull \hbox (badness 10000) in paragraph at lines 63--65 [] -<img/SlipStickGrafix.pdf, id=894, 865.10777pt x 482.39015pt> +<img/SlipStickGrafix.pdf, id=889, 865.10777pt x 482.39015pt> File: img/SlipStickGrafix.pdf Graphic file (type pdf) <use img/SlipStickGrafix.pdf> Package pdftex.def Info: img/SlipStickGrafix.pdf used on input line 72. (pdftex.def) Requested size: 414.6463pt x 231.20605pt. [19] -<img/MA/Calibration_screw_image.pdf, id=902, 1220.64026pt x 1220.64026pt> +<img/MA/Calibration_screw_image.pdf, id=897, 1220.64026pt x 1220.64026pt> File: img/MA/Calibration_screw_image.pdf Graphic file (type pdf) <use img/MA/Calibration_screw_image.pdf> Package pdftex.def Info: img/MA/Calibration_screw_image.pdf used on input line 91. (pdftex.def) Requested size: 172.77046pt x 172.76964pt. -<img/Plots/ScrewRot_SwappedPlate.pdf, id=903, 462.52798pt x 346.89601pt> +<img/Plots/ScrewRot_SwappedPlate.pdf, id=898, 462.52798pt x 346.89601pt> File: img/Plots/ScrewRot_SwappedPlate.pdf Graphic file (type pdf) <use img/Plots/ScrewRot_SwappedPlate.pdf> Package pdftex.def Info: img/Plots/ScrewRot_SwappedPlate.pdf used on input lin @@ -1869,330 +1869,245 @@ Underfull \hbox (badness 10000) in paragraph at lines 113--116 [] -<img/MA/CalibrationZ1.pdf, id=997, 1445.4pt x 1445.4pt> +<img/CalibrationUHV_Z1.pdf, id=993, 3661.68pt x 3178.48857pt> +File: img/CalibrationUHV_Z1.pdf Graphic file (type pdf) +<use img/CalibrationUHV_Z1.pdf> +Package pdftex.def Info: img/CalibrationUHV_Z1.pdf used on input line 120. +(pdftex.def) Requested size: 193.50208pt x 167.9547pt. +<img/CalibrationUHV_Z2_Z3.pdf, id=994, 3661.68pt x 3184.17902pt> +File: img/CalibrationUHV_Z2_Z3.pdf Graphic file (type pdf) +<use img/CalibrationUHV_Z2_Z3.pdf> +Package pdftex.def Info: img/CalibrationUHV_Z2_Z3.pdf used on input line 125. +(pdftex.def) Requested size: 193.50208pt x 168.25539pt. +[21 <./img/MA/Calibration_screw_image.pdf> <./img/Plots/ScrewRot_SwappedPlate.p +df>] +<img/MA/CalibrationZ1.pdf, id=1061, 1445.4pt x 1445.4pt> File: img/MA/CalibrationZ1.pdf Graphic file (type pdf) <use img/MA/CalibrationZ1.pdf> -Package pdftex.def Info: img/MA/CalibrationZ1.pdf used on input line 121. +Package pdftex.def Info: img/MA/CalibrationZ1.pdf used on input line 139. (pdftex.def) Requested size: 228.05475pt x 228.04869pt. -<img/MA/CalibrationZ2.pdf, id=998, 1445.4pt x 1445.4pt> +<img/MA/CalibrationZ2.pdf, id=1062, 1445.4pt x 1445.4pt> File: img/MA/CalibrationZ2.pdf Graphic file (type pdf) <use img/MA/CalibrationZ2.pdf> -Package pdftex.def Info: img/MA/CalibrationZ2.pdf used on input line 127. +Package pdftex.def Info: img/MA/CalibrationZ2.pdf used on input line 145. (pdftex.def) Requested size: 228.05475pt x 228.04869pt. -[21 <./img/MA/Calibration_screw_image.pdf> <./img/Plots/ScrewRot_SwappedPlate.p -df>] -Underfull \hbox (badness 10000) in paragraph at lines 139--145 + [22 <./img/CalibrationUHV_Z1.pdf> <./img/CalibrationUHV_Z2_Z3.pdf + +pdfTeX warning: pdflatex.exe (file ./img/CalibrationUHV_Z2_Z3.pdf): PDF inclusi +on: multiple pdfs with page group included in a single page +>] +Underfull \hbox (badness 10000) in paragraph at lines 155--162 [] -<img/Plots/Calibrations/screw_diff_explain.pdf, id=1073, 554.82875pt x 464.6079 +<img/Plots/Calibrations/screw_diff_explain.pdf, id=1095, 554.82875pt x 464.6079 pt> File: img/Plots/Calibrations/screw_diff_explain.pdf Graphic file (type pdf) <use img/Plots/Calibrations/screw_diff_explain.pdf> Package pdftex.def Info: img/Plots/Calibrations/screw_diff_explain.pdf used on - input line 148. + input line 165. (pdftex.def) Requested size: 276.43555pt x 231.4881pt. -[22 <./img/MA/CalibrationZ1.pdf> <./img/MA/CalibrationZ2.pdf +[23 <./img/MA/CalibrationZ1.pdf> <./img/MA/CalibrationZ2.pdf pdfTeX warning: pdflatex.exe (file ./img/MA/CalibrationZ2.pdf): PDF inclusion: multiple pdfs with page group included in a single page >] -<img/CalibrationUHV_Z1.pdf, id=1113, 3661.68pt x 5460.4005pt> -File: img/CalibrationUHV_Z1.pdf Graphic file (type pdf) -<use img/CalibrationUHV_Z1.pdf> -Package pdftex.def Info: img/CalibrationUHV_Z1.pdf used on input line 157. -(pdftex.def) Requested size: 207.32315pt x 309.1131pt. -<img/CalibrationUHV_Z2_Z3.pdf, id=1114, 3661.68pt x 5460.4005pt> -File: img/CalibrationUHV_Z2_Z3.pdf Graphic file (type pdf) -<use img/CalibrationUHV_Z2_Z3.pdf> -Package pdftex.def Info: img/CalibrationUHV_Z2_Z3.pdf used on input line 162. -(pdftex.def) Requested size: 207.32315pt x 309.1131pt. - [23 <./img/Plots/Calibrations/screw_diff_explain.pdf>] -<img/Plots/Calibrations/80V.pdf, id=1143, 578.16pt x 325.215pt> +<img/Plots/Calibrations/80V.pdf, id=1134, 578.16pt x 325.215pt> File: img/Plots/Calibrations/80V.pdf Graphic file (type pdf) <use img/Plots/Calibrations/80V.pdf> -Package pdftex.def Info: img/Plots/Calibrations/80V.pdf used on input line 176 +Package pdftex.def Info: img/Plots/Calibrations/80V.pdf used on input line 172 . (pdftex.def) Requested size: 368.57838pt x 207.32306pt. - [24 <./img/CalibrationUHV_Z1.pdf> <./img/CalibrationUHV_Z2_Z3.pdf - -pdfTeX warning: pdflatex.exe (file ./img/CalibrationUHV_Z2_Z3.pdf): PDF inclusi -on: multiple pdfs with page group included in a single page ->] -<img/Plots/Calibrations/VoltageBehaviour.pdf, id=1172, 867.24pt x 433.62pt> + [24 <./img/Plots/Calibrations/screw_diff_explain.pdf> <./img/Plots/Calibration +s/80V.pdf>] +<img/Plots/Calibrations/VoltageBehaviour.pdf, id=1248, 867.24pt x 433.62pt> File: img/Plots/Calibrations/VoltageBehaviour.pdf Graphic file (type pdf) <use img/Plots/Calibrations/VoltageBehaviour.pdf> Package pdftex.def Info: img/Plots/Calibrations/VoltageBehaviour.pdf used on i -nput line 187. +nput line 185. (pdftex.def) Requested size: 414.6463pt x 207.3214pt. -Underfull \hbox (badness 10000) in paragraph at lines 192--196 +Underfull \hbox (badness 10000) in paragraph at lines 190--194 [] -[25 <./img/Plots/Calibrations/80V.pdf> <./img/Plots/Calibrations/VoltageBehavio -ur.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 198--204 - [] +Underfull \hbox (badness 10000) in paragraph at lines 196--202 + [] -Underfull \hbox (badness 10000) in paragraph at lines 205--209 +[25 <./img/Plots/Calibrations/VoltageBehaviour.pdf>] +Underfull \hbox (badness 10000) in paragraph at lines 203--207 [] -<img/CameraAlignment_bad_low.pdf, id=1297, 2938.98pt x 1334.9875pt> +<img/CameraAlignment_bad_low.pdf, id=1293, 2938.98pt x 1334.9875pt> File: img/CameraAlignment_bad_low.pdf Graphic file (type pdf) <use img/CameraAlignment_bad_low.pdf> Package pdftex.def Info: img/CameraAlignment_bad_low.pdf used on input line 21 -3. +1. (pdftex.def) Requested size: 147.43416pt x 66.95699pt. -<img/CameraAlignment_high.png, id=1298, 2938.98pt x 1334.9875pt> +<img/CameraAlignment_high.png, id=1294, 2938.98pt x 1334.9875pt> File: img/CameraAlignment_high.png Graphic file (type png) <use img/CameraAlignment_high.png> -Package pdftex.def Info: img/CameraAlignment_high.png used on input line 218. +Package pdftex.def Info: img/CameraAlignment_high.png used on input line 216. (pdftex.def) Requested size: 147.43416pt x 66.95699pt. -<img/CameraAlignment_good.png, id=1299, 2938.98pt x 1334.9875pt> +<img/CameraAlignment_good.png, id=1295, 2938.98pt x 1334.9875pt> File: img/CameraAlignment_good.png Graphic file (type png) <use img/CameraAlignment_good.png> -Package pdftex.def Info: img/CameraAlignment_good.png used on input line 223. +Package pdftex.def Info: img/CameraAlignment_good.png used on input line 221. (pdftex.def) Requested size: 147.43416pt x 66.95699pt. -Package hyperref Info: bookmark level for unknown todo defaults to 0 on input l -ine 231. -<img/OpticalAlign01.png, id=1304, 977.6525pt x 977.6525pt> +<img/OpticalAlign01.png, id=1300, 977.6525pt x 977.6525pt> File: img/OpticalAlign01.png Graphic file (type png) <use img/OpticalAlign01.png> -Package pdftex.def Info: img/OpticalAlign01.png used on input line 242. +Package pdftex.def Info: img/OpticalAlign01.png used on input line 240. (pdftex.def) Requested size: 147.43416pt x 147.43219pt. -<img/OpticalAlign02.png, id=1305, 977.6525pt x 977.6525pt> +<img/OpticalAlign02.png, id=1301, 977.6525pt x 977.6525pt> File: img/OpticalAlign02.png Graphic file (type png) <use img/OpticalAlign02.png> -Package pdftex.def Info: img/OpticalAlign02.png used on input line 247. +Package pdftex.def Info: img/OpticalAlign02.png used on input line 245. (pdftex.def) Requested size: 147.43416pt x 147.43219pt. -<img/OpticalAlign03.png, id=1306, 977.6525pt x 977.6525pt> +<img/OpticalAlign03.png, id=1302, 977.6525pt x 977.6525pt> File: img/OpticalAlign03.png Graphic file (type png) <use img/OpticalAlign03.png> -Package pdftex.def Info: img/OpticalAlign03.png used on input line 252. +Package pdftex.def Info: img/OpticalAlign03.png used on input line 250. (pdftex.def) Requested size: 147.43416pt x 147.43219pt. [26 <./img/CameraAlignment_bad_low.pdf> <./img/CameraAlignment_high.png> <./img -/CameraAlignment_good.png>] [27 <./img/OpticalAlign01.png> <./img/OpticalAlign0 -2.png> <./img/OpticalAlign03.png>] +/CameraAlignment_good.png> <./img/OpticalAlign01.png> <./img/OpticalAlign02.png +> <./img/OpticalAlign03.png>] LaTeX Font Info: External font `lmex10' loaded for size -(Font) <5> on input line 265. -<img/MA/NomeclatureMotorsAndCapacitance.pdf, id=1339, 597.50786pt x 597.50786pt +(Font) <5> on input line 263. +<img/MA/NomeclatureMotorsAndCapacitance.pdf, id=1330, 597.50786pt x 597.50786pt > File: img/MA/NomeclatureMotorsAndCapacitance.pdf Graphic file (type pdf) <use img/MA/NomeclatureMotorsAndCapacitance.pdf> Package pdftex.def Info: img/MA/NomeclatureMotorsAndCapacitance.pdf used on in -put line 272. +put line 270. (pdftex.def) Requested size: 228.05475pt x 228.04912pt. -<img/MA/Mask.pdf, id=1340, 477.04668pt x 674.3149pt> +<img/MA/Mask.pdf, id=1331, 477.04668pt x 674.3149pt> File: img/MA/Mask.pdf Graphic file (type pdf) <use img/MA/Mask.pdf> -Package pdftex.def Info: img/MA/Mask.pdf used on input line 277. +Package pdftex.def Info: img/MA/Mask.pdf used on input line 275. (pdftex.def) Requested size: 157.5676pt x 222.73038pt. - [28 <./img/MA/NomeclatureMotorsAndCapacitance.pdf> <./img/MA/Mask.pdf + [27 <./img/MA/NomeclatureMotorsAndCapacitance.pdf> <./img/MA/Mask.pdf pdfTeX warning: pdflatex.exe (file ./img/MA/Mask.pdf): PDF inclusion: multiple pdfs with page group included in a single page >] -<img/MA/SchaltDiagramRHK.pdf, id=1435, 544.13284pt x 385.4176pt> +<img/MA/SchaltDiagramRHK.pdf, id=1426, 544.13278pt x 385.4176pt> File: img/MA/SchaltDiagramRHK.pdf Graphic file (type pdf) <use img/MA/SchaltDiagramRHK.pdf> -Package pdftex.def Info: img/MA/SchaltDiagramRHK.pdf used on input line 289. +Package pdftex.def Info: img/MA/SchaltDiagramRHK.pdf used on input line 287. (pdftex.def) Requested size: 345.54092pt x 244.7492pt. -Underfull \hbox (badness 10000) in paragraph at lines 308--315 +Underfull \hbox (badness 10000) in paragraph at lines 306--313 [] -<img/Diagram/ApproachExplanation.pdf, id=1437, 578.16pt x 433.62pt> +<img/Diagram/ApproachExplanation.pdf, id=1428, 578.16pt x 433.62pt> File: img/Diagram/ApproachExplanation.pdf Graphic file (type pdf) <use img/Diagram/ApproachExplanation.pdf> Package pdftex.def Info: img/Diagram/ApproachExplanation.pdf used on input lin -e 319. +e 317. (pdftex.def) Requested size: 207.32315pt x 155.48775pt. -<img/Diagram/ApproachExplanation_diff.pdf, id=1438, 578.16pt x 433.62pt> +<img/Diagram/ApproachExplanation_diff.pdf, id=1429, 578.16pt x 433.62pt> File: img/Diagram/ApproachExplanation_diff.pdf Graphic file (type pdf) <use img/Diagram/ApproachExplanation_diff.pdf> Package pdftex.def Info: img/Diagram/ApproachExplanation_diff.pdf used on inpu -t line 324. +t line 322. (pdftex.def) Requested size: 207.32315pt x 155.48775pt. -<img/Diagram/ApproachCurve_FirstContact.png, id=1439, 1084.05pt x 513.92pt> +<img/Diagram/ApproachCurve_FirstContact.png, id=1430, 1084.05pt x 513.92pt> File: img/Diagram/ApproachCurve_FirstContact.png Graphic file (type png) <use img/Diagram/ApproachCurve_FirstContact.png> Package pdftex.def Info: img/Diagram/ApproachCurve_FirstContact.png used on in -put line 330. +put line 328. (pdftex.def) Requested size: 138.21777pt x 65.51805pt. -<img/Diagram/ApproachCurve_SecondContact.png, id=1440, 1084.05pt x 513.92pt> +<img/Diagram/ApproachCurve_SecondContact.png, id=1431, 1084.05pt x 513.92pt> File: img/Diagram/ApproachCurve_SecondContact.png Graphic file (type png) <use img/Diagram/ApproachCurve_SecondContact.png> Package pdftex.def Info: img/Diagram/ApproachCurve_SecondContact.png used on i -nput line 336. +nput line 334. (pdftex.def) Requested size: 138.21777pt x 65.51805pt. -<img/Diagram/ApproachCurve_FullContact.png, id=1441, 1084.05pt x 513.92pt> +<img/Diagram/ApproachCurve_FullContact.png, id=1432, 1084.05pt x 513.92pt> File: img/Diagram/ApproachCurve_FullContact.png Graphic file (type png) <use img/Diagram/ApproachCurve_FullContact.png> Package pdftex.def Info: img/Diagram/ApproachCurve_FullContact.png used on inp -ut line 342. +ut line 340. (pdftex.def) Requested size: 138.21777pt x 65.51805pt. -[29 <./img/MA/SchaltDiagramRHK.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 353--356 +[28 <./img/MA/SchaltDiagramRHK.pdf>] +Underfull \hbox (badness 10000) in paragraph at lines 351--354 [] -Underfull \hbox (badness 10000) in paragraph at lines 357--370 +Underfull \hbox (badness 10000) in paragraph at lines 355--368 [] -Underfull \hbox (badness 10000) in paragraph at lines 371--381 +Underfull \hbox (badness 10000) in paragraph at lines 369--379 [] -[30 <./img/Diagram/ApproachExplanation.pdf> <./img/Diagram/ApproachExplanation_ +[29 <./img/Diagram/ApproachExplanation.pdf> <./img/Diagram/ApproachExplanation_ diff.pdf> <./img/Diagram/ApproachCurve_FirstContact.png> <./img/Diagram/Approac hCurve_SecondContact.png> <./img/Diagram/ApproachCurve_FullContact.png>] -<img/MA/InsertionReproducibility.pdf, id=1671, 578.16pt x 361.35pt> +<img/MA/InsertionReproducibility.pdf, id=1661, 578.16pt x 361.35pt> File: img/MA/InsertionReproducibility.pdf Graphic file (type pdf) <use img/MA/InsertionReproducibility.pdf> Package pdftex.def Info: img/MA/InsertionReproducibility.pdf used on input lin -e 412. +e 410. (pdftex.def) Requested size: 228.05475pt x 142.53043pt. -<img/MA/InsertionReproducibility_diff.pdf, id=1672, 578.16pt x 361.35pt> +<img/MA/InsertionReproducibility_diff.pdf, id=1662, 578.16pt x 361.35pt> File: img/MA/InsertionReproducibility_diff.pdf Graphic file (type pdf) <use img/MA/InsertionReproducibility_diff.pdf> Package pdftex.def Info: img/MA/InsertionReproducibility_diff.pdf used on inpu -t line 417. +t line 415. (pdftex.def) Requested size: 228.05475pt x 142.53043pt. -Underfull \hbox (badness 10000) in paragraph at lines 425--426 - - [] - -[31 <./img/MA/InsertionReproducibility.pdf> <./img/MA/InsertionReproducibility_ +[30 <./img/MA/InsertionReproducibility.pdf> <./img/MA/InsertionReproducibility_ diff.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 427--428 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 429--430 - - [] - -<img/Diagram/cross_example_1.pdf, id=1758, 361.35pt x 361.35pt> -File: img/Diagram/cross_example_1.pdf Graphic file (type pdf) -<use img/Diagram/cross_example_1.pdf> -Package pdftex.def Info: img/Diagram/cross_example_1.pdf used on input line 44 -2. -(pdftex.def) Requested size: 147.43416pt x 147.43216pt. -<img/Diagram/cross_example_2.pdf, id=1759, 361.35pt x 361.35pt> -File: img/Diagram/cross_example_2.pdf Graphic file (type pdf) -<use img/Diagram/cross_example_2.pdf> -Package pdftex.def Info: img/Diagram/cross_example_2.pdf used on input line 44 -8. -(pdftex.def) Requested size: 147.43416pt x 147.43216pt. -<img/Diagram/ExplanationCurveDifference.pdf, id=1760, 361.35pt x 361.35pt> -File: img/Diagram/ExplanationCurveDifference.pdf Graphic file (type pdf) -<use img/Diagram/ExplanationCurveDifference.pdf> -Package pdftex.def Info: img/Diagram/ExplanationCurveDifference.pdf used on in -put line 454. -(pdftex.def) Requested size: 147.43416pt x 147.43216pt. -[32] -Underfull \hbox (badness 10000) in paragraph at lines 462--469 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 470--471 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 472--473 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 474--475 - - [] - -<img/LeakageCurrent.pdf, id=1780, 468.8642pt x 425.4298pt> -File: img/LeakageCurrent.pdf Graphic file (type pdf) -<use img/LeakageCurrent.pdf> -Package pdftex.def Info: img/LeakageCurrent.pdf used on input line 489. -(pdftex.def) Requested size: 230.36061pt x 209.02069pt. -[33 <./img/Diagram/cross_example_1.pdf> <./img/Diagram/cross_example_2.pdf> <./ -img/Diagram/ExplanationCurveDifference.pdf>] [34 <./img/LeakageCurrent.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 497--498 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 525--527 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 528--530 - - [] - - -Underfull \hbox (badness 10000) in paragraph at lines 531--532 +Underfull \hbox (badness 10000) in paragraph at lines 425--426 [] -<img/Plots/Mask_Old_Correl.pdf, id=1913, 1001.37314pt x 650.43pt> -File: img/Plots/Mask_Old_Correl.pdf Graphic file (type pdf) -<use img/Plots/Mask_Old_Correl.pdf> -Package pdftex.def Info: img/Plots/Mask_Old_Correl.pdf used on input line 544. -(pdftex.def) Requested size: 437.68376pt x 284.29445pt. -[35] -Underfull \hbox (badness 10000) in paragraph at lines 551--554 +Underfull \hbox (badness 10000) in paragraph at lines 427--428 [] -<img/CrossCapacitances.pdf, id=1921, 882.29625pt x 542.025pt> -File: img/CrossCapacitances.pdf Graphic file (type pdf) -<use img/CrossCapacitances.pdf> -Package pdftex.def Info: img/CrossCapacitances.pdf used on input line 559. -(pdftex.def) Requested size: 345.54092pt x 212.27385pt. -[36 <./img/Plots/Mask_Old_Correl.pdf>] [37 <./img/CrossCapacitances.pdf>]) -[38] +[31]) [32] \openout2 = `chap03.aux'. (chap03.tex Chapter 3. -<img/Plots/RHK/F0002CH1.CSV.pdf, id=2024, 867.24pt x 650.43pt> +Package hyperref Info: bookmark level for unknown todo defaults to 0 on input l +ine 12. +<img/Plots/RHK/F0002CH1.CSV.pdf, id=1762, 867.24pt x 650.43pt> File: img/Plots/RHK/F0002CH1.CSV.pdf Graphic file (type pdf) <use img/Plots/RHK/F0002CH1.CSV.pdf> Package pdftex.def Info: img/Plots/RHK/F0002CH1.CSV.pdf used on input line 18. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/Plots/RHK/F0003CH1.CSV.pdf, id=2025, 867.24pt x 650.43pt> +<img/Plots/RHK/F0003CH1.CSV.pdf, id=1763, 867.24pt x 650.43pt> File: img/Plots/RHK/F0003CH1.CSV.pdf Graphic file (type pdf) <use img/Plots/RHK/F0003CH1.CSV.pdf> Package pdftex.def Info: img/Plots/RHK/F0003CH1.CSV.pdf used on input line 23. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -[39 +[33 <./img/Plots/RHK/F0002CH1.CSV.pdf> <./img/Plots/RHK/F0003CH1.CSV.pdf>] -<img/Plots/RHK/F0006CH1.CSV.pdf, id=2092, 867.24pt x 650.43pt> +<img/Plots/RHK/F0006CH1.CSV.pdf, id=1830, 867.24pt x 650.43pt> File: img/Plots/RHK/F0006CH1.CSV.pdf Graphic file (type pdf) <use img/Plots/RHK/F0006CH1.CSV.pdf> Package pdftex.def Info: img/Plots/RHK/F0006CH1.CSV.pdf used on input line 37. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/Plots/RHK/F0008CH1.CSV.pdf, id=2093, 867.24pt x 650.43pt> +<img/Plots/RHK/F0008CH1.CSV.pdf, id=1831, 867.24pt x 650.43pt> File: img/Plots/RHK/F0008CH1.CSV.pdf Graphic file (type pdf) <use img/Plots/RHK/F0008CH1.CSV.pdf> Package pdftex.def Info: img/Plots/RHK/F0008CH1.CSV.pdf used on input line 42. @@ -2203,107 +2118,107 @@ Underfull \hbox (badness 10000) in paragraph at lines 52--53 [] -<img/Plots/KIM001/ALL0001.pdf, id=2099, 867.24pt x 650.43pt> +<img/Plots/KIM001/ALL0001.pdf, id=1837, 867.24pt x 650.43pt> File: img/Plots/KIM001/ALL0001.pdf Graphic file (type pdf) <use img/Plots/KIM001/ALL0001.pdf> Package pdftex.def Info: img/Plots/KIM001/ALL0001.pdf used on input line 61. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/Plots/KIM001/ALL0002.pdf, id=2100, 867.24pt x 650.43pt> +<img/Plots/KIM001/ALL0002.pdf, id=1838, 867.24pt x 650.43pt> File: img/Plots/KIM001/ALL0002.pdf Graphic file (type pdf) <use img/Plots/KIM001/ALL0002.pdf> Package pdftex.def Info: img/Plots/KIM001/ALL0002.pdf used on input line 66. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -[40 <./img/Plots/RHK/F0006CH1.CSV.pdf> <./img/Plots/RHK/F0008CH1.CSV.pdf>] +[34 <./img/Plots/RHK/F0006CH1.CSV.pdf> <./img/Plots/RHK/F0008CH1.CSV.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 76--77 [] -<img/Plots/KIM001/voltage_behavior.pdf, id=2162, 867.24pt x 650.43pt> +<img/Plots/KIM001/voltage_behavior.pdf, id=1900, 867.24pt x 650.43pt> File: img/Plots/KIM001/voltage_behavior.pdf Graphic file (type pdf) <use img/Plots/KIM001/voltage_behavior.pdf> Package pdftex.def Info: img/Plots/KIM001/voltage_behavior.pdf used on input l ine 82. (pdftex.def) Requested size: 276.43555pt x 207.32802pt. -[41 <./img/Plots/KIM001/ALL0001.pdf> <./img/Plots/KIM001/ALL0002.pdf>] [42 <./i +[35 <./img/Plots/KIM001/ALL0001.pdf> <./img/Plots/KIM001/ALL0002.pdf>] [36 <./i mg/Plots/KIM001/voltage_behavior.pdf>] -<img/Plots/Filtering.pdf, id=2262, 433.62pt x 289.08pt> +<img/Plots/Filtering.pdf, id=2000, 433.62pt x 289.08pt> File: img/Plots/Filtering.pdf Graphic file (type pdf) <use img/Plots/Filtering.pdf> Package pdftex.def Info: img/Plots/Filtering.pdf used on input line 106. (pdftex.def) Requested size: 225.75594pt x 150.50331pt. -<img/Plots/FilteringDone.pdf, id=2263, 433.62pt x 289.08pt> +<img/Plots/FilteringDone.pdf, id=2001, 433.62pt x 289.08pt> File: img/Plots/FilteringDone.pdf Graphic file (type pdf) <use img/Plots/FilteringDone.pdf> Package pdftex.def Info: img/Plots/FilteringDone.pdf used on input line 111. (pdftex.def) Requested size: 225.75594pt x 150.50331pt. - [43 <./img/Plots/Filtering.pdf> <./img/Plots/FilteringDone.pdf>] -<img/Plots/InvertedSginal.pdf, id=2348, 433.62pt x 289.08pt> + [37 <./img/Plots/Filtering.pdf> <./img/Plots/FilteringDone.pdf>] +<img/Plots/InvertedSginal.pdf, id=2086, 433.62pt x 289.08pt> File: img/Plots/InvertedSginal.pdf Graphic file (type pdf) <use img/Plots/InvertedSginal.pdf> Package pdftex.def Info: img/Plots/InvertedSginal.pdf used on input line 127. (pdftex.def) Requested size: 225.75594pt x 150.50331pt. -<img/Plots/Switching01.pdf, id=2349, 433.62pt x 289.08pt> +<img/Plots/Switching01.pdf, id=2087, 433.62pt x 289.08pt> File: img/Plots/Switching01.pdf Graphic file (type pdf) <use img/Plots/Switching01.pdf> Package pdftex.def Info: img/Plots/Switching01.pdf used on input line 132. (pdftex.def) Requested size: 225.75594pt x 150.50331pt. - [44 <./img/Plots/InvertedSginal.pdf> <./img/Plots/Switching01.pdf>] + [38 <./img/Plots/InvertedSginal.pdf> <./img/Plots/Switching01.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 159--160 [] -[45] -<img/Plots/Walker/WalkerApproach.pdf, id=2452, 867.24pt x 650.43pt> +[39] +<img/Plots/Walker/WalkerApproach.pdf, id=2190, 867.24pt x 650.43pt> File: img/Plots/Walker/WalkerApproach.pdf Graphic file (type pdf) <use img/Plots/Walker/WalkerApproach.pdf> Package pdftex.def Info: img/Plots/Walker/WalkerApproach.pdf used on input lin e 170. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/Plots/Walker/WalkerRetract.pdf, id=2453, 867.24pt x 650.43pt> +<img/Plots/Walker/WalkerRetract.pdf, id=2191, 867.24pt x 650.43pt> File: img/Plots/Walker/WalkerRetract.pdf Graphic file (type pdf) <use img/Plots/Walker/WalkerRetract.pdf> Package pdftex.def Info: img/Plots/Walker/WalkerRetract.pdf used on input line 174. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. - [46 <./img/Plots/Walker/WalkerApproach.pdf> <./img/Plots/Walker/WalkerRetract. + [40 <./img/Plots/Walker/WalkerApproach.pdf> <./img/Plots/Walker/WalkerRetract. pdf>] -<img/Plots/Walker/WalkerApproach_ff.pdf, id=2529, 867.24pt x 650.43pt> +<img/Plots/Walker/WalkerApproach_ff.pdf, id=2267, 867.24pt x 650.43pt> File: img/Plots/Walker/WalkerApproach_ff.pdf Graphic file (type pdf) <use img/Plots/Walker/WalkerApproach_ff.pdf> Package pdftex.def Info: img/Plots/Walker/WalkerApproach_ff.pdf used on input line 186. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/Plots/Walker/WalkerRetract_ff.pdf, id=2530, 867.24pt x 650.43pt> +<img/Plots/Walker/WalkerRetract_ff.pdf, id=2268, 867.24pt x 650.43pt> File: img/Plots/Walker/WalkerRetract_ff.pdf Graphic file (type pdf) <use img/Plots/Walker/WalkerRetract_ff.pdf> Package pdftex.def Info: img/Plots/Walker/WalkerRetract_ff.pdf used on input l ine 190. (pdftex.def) Requested size: 225.75594pt x 169.31622pt. -<img/MA/SchaltDiagramWalker.pdf, id=2533, 544.13278pt x 375.15868pt> +<img/MA/SchaltDiagramWalker.pdf, id=2271, 544.13278pt x 385.4176pt> File: img/MA/SchaltDiagramWalker.pdf Graphic file (type pdf) <use img/MA/SchaltDiagramWalker.pdf> Package pdftex.def Info: img/MA/SchaltDiagramWalker.pdf used on input line 202 . -(pdftex.def) Requested size: 345.54092pt x 238.23456pt. - [47 <./img/Plots/Walker/WalkerApproach_ff.pdf> <./img/Plots/Walker/WalkerRetra -ct_ff.pdf>]) [48 <./img/MA/SchaltDiagramWalker.pdf>] +(pdftex.def) Requested size: 345.54092pt x 244.7492pt. + [41 <./img/Plots/Walker/WalkerApproach_ff.pdf> <./img/Plots/Walker/WalkerRetra +ct_ff.pdf>]) [42 <./img/MA/SchaltDiagramWalker.pdf>] \openout2 = `chap04.aux'. (chap04.tex Chapter 4. -<img/Repairs/NomeclatureDiagram.pdf, id=2714, 542.86818pt x 488.42506pt> +<img/Repairs/NomeclatureDiagram.pdf, id=2452, 542.86818pt x 488.42506pt> File: img/Repairs/NomeclatureDiagram.pdf Graphic file (type pdf) <use img/Repairs/NomeclatureDiagram.pdf> Package pdftex.def Info: img/Repairs/NomeclatureDiagram.pdf used on input line 10. (pdftex.def) Requested size: 216.53954pt x 194.82251pt. -<img/Repairs/nomeclaturediagram_side.png, id=2715, 1053.6966pt x 1118.0169pt> +<img/Repairs/nomeclaturediagram_side.png, id=2453, 1053.6966pt x 1118.0169pt> File: img/Repairs/nomeclaturediagram_side.png Graphic file (type png) <use img/Repairs/nomeclaturediagram_side.png> Package pdftex.def Info: img/Repairs/nomeclaturediagram_side.png used on input line 15. (pdftex.def) Requested size: 195.80792pt x 207.7511pt. -[49 +[43 @@ -2319,31 +2234,31 @@ Underfull \hbox (badness 10000) in paragraph at lines 52--54 [] -<img/Repairs/SolderAnchorsBase.pdf, id=2738, 467.37352pt x 406.31995pt> +<img/Repairs/SolderAnchorsBase.pdf, id=2476, 467.37352pt x 406.31995pt> File: img/Repairs/SolderAnchorsBase.pdf Graphic file (type pdf) <use img/Repairs/SolderAnchorsBase.pdf> Package pdftex.def Info: img/Repairs/SolderAnchorsBase.pdf used on input line 58. (pdftex.def) Requested size: 110.57463pt x 96.12999pt. -<img/Repairs/SolderAnchorsSmallerDot.pdf, id=2739, 467.37352pt x 406.31995pt> +<img/Repairs/SolderAnchorsSmallerDot.pdf, id=2477, 467.37352pt x 406.31995pt> File: img/Repairs/SolderAnchorsSmallerDot.pdf Graphic file (type pdf) <use img/Repairs/SolderAnchorsSmallerDot.pdf> Package pdftex.def Info: img/Repairs/SolderAnchorsSmallerDot.pdf used on input line 63. (pdftex.def) Requested size: 110.57463pt x 96.12999pt. -<img/Repairs/SolderAnchorsAlO.pdf, id=2740, 467.37352pt x 406.31995pt> +<img/Repairs/SolderAnchorsAlO.pdf, id=2478, 467.37352pt x 406.31995pt> File: img/Repairs/SolderAnchorsAlO.pdf Graphic file (type pdf) <use img/Repairs/SolderAnchorsAlO.pdf> Package pdftex.def Info: img/Repairs/SolderAnchorsAlO.pdf used on input line 6 8. (pdftex.def) Requested size: 110.57463pt x 96.12999pt. -<img/Repairs/SolderAnchorsGlueTop.pdf, id=2741, 467.37352pt x 406.31995pt> +<img/Repairs/SolderAnchorsGlueTop.pdf, id=2479, 467.37352pt x 406.31995pt> File: img/Repairs/SolderAnchorsGlueTop.pdf Graphic file (type pdf) <use img/Repairs/SolderAnchorsGlueTop.pdf> Package pdftex.def Info: img/Repairs/SolderAnchorsGlueTop.pdf used on input li ne 73. (pdftex.def) Requested size: 110.57463pt x 96.12999pt. -[50] +[44] Underfull \hbox (badness 10000) in paragraph at lines 81--83 [] @@ -2363,7 +2278,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 89--90 [] -[51 <./img/Repairs/SolderAnchorsBase.pdf> <./img/Repairs/SolderAnchorsSmallerDo +[45 <./img/Repairs/SolderAnchorsBase.pdf> <./img/Repairs/SolderAnchorsSmallerDo t.pdf pdfTeX warning: pdflatex.exe (file ./img/Repairs/SolderAnchorsSmallerDot.pdf): @@ -2377,14 +2292,14 @@ lusion: multiple pdfs with page group included in a single page pdfTeX warning: pdflatex.exe (file ./img/Repairs/SolderAnchorsGlueTop.pdf): PDF inclusion: multiple pdfs with page group included in a single page >] -<img/Repairs/SolderAnchors/Solder_shear_big.png, id=2773, 2055.68pt x 2457.18pt +<img/Repairs/SolderAnchors/Solder_shear_big.png, id=2511, 2055.68pt x 2457.18pt > File: img/Repairs/SolderAnchors/Solder_shear_big.png Graphic file (type png) <use img/Repairs/SolderAnchors/Solder_shear_big.png> Package pdftex.def Info: img/Repairs/SolderAnchors/Solder_shear_big.png used o n input line 95. (pdftex.def) Requested size: 145.12872pt x 173.44493pt. -<img/Repairs/SolderAnchors/Solder_shear_smaller.png, id=2774, 2055.68pt x 2457. +<img/Repairs/SolderAnchors/Solder_shear_smaller.png, id=2512, 2055.68pt x 2457. 18pt> File: img/Repairs/SolderAnchors/Solder_shear_smaller.png Graphic file (type png ) @@ -2392,13 +2307,13 @@ File: img/Repairs/SolderAnchors/Solder_shear_smaller.png Graphic file (type png Package pdftex.def Info: img/Repairs/SolderAnchors/Solder_shear_smaller.png us ed on input line 101. (pdftex.def) Requested size: 145.12872pt x 173.44493pt. -<img/Repairs/SolderAnchors/GlueBelow.png, id=2775, 2457.18pt x 2055.68pt> +<img/Repairs/SolderAnchors/GlueBelow.png, id=2513, 2457.18pt x 2055.68pt> File: img/Repairs/SolderAnchors/GlueBelow.png Graphic file (type png) <use img/Repairs/SolderAnchors/GlueBelow.png> Package pdftex.def Info: img/Repairs/SolderAnchors/GlueBelow.png used on input line 107. (pdftex.def) Requested size: 145.12872pt x 121.39072pt. -<img/Repairs/SolderAnchors/AlO.png, id=2776, 2457.18pt x 2055.68pt> +<img/Repairs/SolderAnchors/AlO.png, id=2514, 2457.18pt x 2055.68pt> File: img/Repairs/SolderAnchors/AlO.png Graphic file (type png) <use img/Repairs/SolderAnchors/AlO.png> Package pdftex.def Info: img/Repairs/SolderAnchors/AlO.png used on input line @@ -2409,29 +2324,29 @@ Underfull \hbox (badness 10000) in paragraph at lines 121--124 [] -[52 <./img/Repairs/SolderAnchors/Solder_shear_big.png> <./img/Repairs/SolderAnc +[46 <./img/Repairs/SolderAnchors/Solder_shear_big.png> <./img/Repairs/SolderAnc hors/Solder_shear_smaller.png> <./img/Repairs/SolderAnchors/GlueBelow.png> <./i mg/Repairs/SolderAnchors/AlO.png>] Underfull \hbox (badness 10000) in paragraph at lines 126--127 [] -<img/Repairs/Z3-PiezoOff.png, id=2796, 2055.68pt x 1399.2275pt> +<img/Repairs/Z3-PiezoOff.png, id=2534, 2055.68pt x 1399.2275pt> File: img/Repairs/Z3-PiezoOff.png Graphic file (type png) <use img/Repairs/Z3-PiezoOff.png> Package pdftex.def Info: img/Repairs/Z3-PiezoOff.png used on input line 132. (pdftex.def) Requested size: 156.64394pt x 106.60286pt. -<img/Repairs/Z3-scratched.png, id=2797, 2055.68pt x 1399.2275pt> +<img/Repairs/Z3-scratched.png, id=2535, 2055.68pt x 1399.2275pt> File: img/Repairs/Z3-scratched.png Graphic file (type png) <use img/Repairs/Z3-scratched.png> Package pdftex.def Info: img/Repairs/Z3-scratched.png used on input line 138. (pdftex.def) Requested size: 156.64394pt x 106.60286pt. -<img/Repairs/Z3-GlueDot.png, id=2798, 2055.68pt x 1399.2275pt> +<img/Repairs/Z3-GlueDot.png, id=2536, 2055.68pt x 1399.2275pt> File: img/Repairs/Z3-GlueDot.png Graphic file (type png) <use img/Repairs/Z3-GlueDot.png> Package pdftex.def Info: img/Repairs/Z3-GlueDot.png used on input line 144. (pdftex.def) Requested size: 156.64394pt x 106.60286pt. -<img/Repairs/Z3-WeightDown.png, id=2799, 2055.68pt x 1399.2275pt> +<img/Repairs/Z3-WeightDown.png, id=2537, 2055.68pt x 1399.2275pt> File: img/Repairs/Z3-WeightDown.png Graphic file (type png) <use img/Repairs/Z3-WeightDown.png> Package pdftex.def Info: img/Repairs/Z3-WeightDown.png used on input line 150. @@ -2442,21 +2357,21 @@ Underfull \hbox (badness 10000) in paragraph at lines 158--159 [] -[53 <./img/Repairs/Z3-PiezoOff.png> <./img/Repairs/Z3-scratched.png> <./img/Rep +[47 <./img/Repairs/Z3-PiezoOff.png> <./img/Repairs/Z3-scratched.png> <./img/Rep airs/Z3-GlueDot.png> <./img/Repairs/Z3-WeightDown.png>] -<img/Repairs/Z3-afterglue.pdf, id=2813, 2055.68pt x 1399.22762pt> +<img/Repairs/Z3-afterglue.pdf, id=2551, 2055.68pt x 1399.22762pt> File: img/Repairs/Z3-afterglue.pdf Graphic file (type pdf) <use img/Repairs/Z3-afterglue.pdf> Package pdftex.def Info: img/Repairs/Z3-afterglue.pdf used on input line 165. (pdftex.def) Requested size: 322.50345pt x 219.50415pt. -<img/Repairs/ScrewRot_CompareSwappedPlate.pdf, id=2815, 462.52798pt x 346.89601 +<img/Repairs/ScrewRot_CompareSwappedPlate.pdf, id=2553, 462.52798pt x 346.89601 pt> File: img/Repairs/ScrewRot_CompareSwappedPlate.pdf Graphic file (type pdf) <use img/Repairs/ScrewRot_CompareSwappedPlate.pdf> Package pdftex.def Info: img/Repairs/ScrewRot_CompareSwappedPlate.pdf used on input line 175. (pdftex.def) Requested size: 322.50345pt x 241.88864pt. - [54 <./img/Repairs/Z3-afterglue.pdf>] + [48 <./img/Repairs/Z3-afterglue.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 184--185 [] @@ -2471,8 +2386,8 @@ Underfull \hbox (badness 10000) in paragraph at lines 188--189 [] -[55 <./img/Repairs/ScrewRot_CompareSwappedPlate.pdf>] -<img/Repairs/ScrewRot_SwappedPlate.pdf, id=2898, 462.52798pt x 346.89601pt> +[49 <./img/Repairs/ScrewRot_CompareSwappedPlate.pdf>] +<img/Repairs/ScrewRot_SwappedPlate.pdf, id=2636, 462.52798pt x 346.89601pt> File: img/Repairs/ScrewRot_SwappedPlate.pdf Graphic file (type pdf) <use img/Repairs/ScrewRot_SwappedPlate.pdf> Package pdftex.def Info: img/Repairs/ScrewRot_SwappedPlate.pdf used on input l @@ -2493,13 +2408,13 @@ Underfull \hbox (badness 10000) in paragraph at lines 202--203 [] -[56 <./img/Repairs/ScrewRot_SwappedPlate.pdf>] -<img/Repairs/GlueAid.png, id=2957, 302.0886pt x 542.7477pt> +[50 <./img/Repairs/ScrewRot_SwappedPlate.pdf>] +<img/Repairs/GlueAid.png, id=2695, 302.0886pt x 542.7477pt> File: img/Repairs/GlueAid.png Graphic file (type png) <use img/Repairs/GlueAid.png> Package pdftex.def Info: img/Repairs/GlueAid.png used on input line 210. (pdftex.def) Requested size: 125.4308pt x 225.35204pt. -<img/Repairs/NewFrontPlate.png, id=2958, 1507.6325pt x 1969.3575pt> +<img/Repairs/NewFrontPlate.png, id=2696, 1507.6325pt x 1969.3575pt> File: img/Repairs/NewFrontPlate.png Graphic file (type png) <use img/Repairs/NewFrontPlate.png> Package pdftex.def Info: img/Repairs/NewFrontPlate.png used on input line 216. @@ -2510,36 +2425,36 @@ Underfull \hbox (badness 10000) in paragraph at lines 227--228 [] -<img/Repairs/WeakerCapacitor.pdf, id=2965, 597.50786pt x 597.50786pt> +<img/Repairs/WeakerCapacitor.pdf, id=2703, 597.50786pt x 597.50786pt> File: img/Repairs/WeakerCapacitor.pdf Graphic file (type pdf) <use img/Repairs/WeakerCapacitor.pdf> Package pdftex.def Info: img/Repairs/WeakerCapacitor.pdf used on input line 23 3. (pdftex.def) Requested size: 207.32315pt x 207.31654pt. -[57 <./img/Repairs/GlueAid.png> <./img/Repairs/NewFrontPlate.png>] -<img/Repairs/FeedThroughtLeft.pdf, id=2973, 2663.9525pt x 2465.21pt> +[51 <./img/Repairs/GlueAid.png> <./img/Repairs/NewFrontPlate.png>] +<img/Repairs/FeedThroughtLeft.pdf, id=2711, 2663.9525pt x 2465.21pt> File: img/Repairs/FeedThroughtLeft.pdf Graphic file (type pdf) <use img/Repairs/FeedThroughtLeft.pdf> Package pdftex.def Info: img/Repairs/FeedThroughtLeft.pdf used on input line 2 44. (pdftex.def) Requested size: 216.6513pt x 200.45581pt. -<img/Repairs/FeedThroughtRight.pdf, id=2974, 2663.9525pt x 2465.21pt> +<img/Repairs/FeedThroughtRight.pdf, id=2712, 2663.9525pt x 2465.21pt> File: img/Repairs/FeedThroughtRight.pdf Graphic file (type pdf) <use img/Repairs/FeedThroughtRight.pdf> Package pdftex.def Info: img/Repairs/FeedThroughtRight.pdf used on input line 249. (pdftex.def) Requested size: 216.6513pt x 200.45581pt. - [58 <./img/Repairs/WeakerCapacitor.pdf>] + [52 <./img/Repairs/WeakerCapacitor.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 257--258 [] -<img/Repairs/80.0V.pdf, id=2998, 578.16pt x 324.92592pt> +<img/Repairs/80.0V.pdf, id=2736, 578.16pt x 324.92592pt> File: img/Repairs/80.0V.pdf Graphic file (type pdf) <use img/Repairs/80.0V.pdf> Package pdftex.def Info: img/Repairs/80.0V.pdf used on input line 282. (pdftex.def) Requested size: 368.57838pt x 207.13876pt. -[59 <./img/Repairs/FeedThroughtLeft.pdf> <./img/Repairs/FeedThroughtRight.pdf +[53 <./img/Repairs/FeedThroughtLeft.pdf> <./img/Repairs/FeedThroughtRight.pdf pdfTeX warning: pdflatex.exe (file ./img/Repairs/FeedThroughtRight.pdf): PDF in clusion: multiple pdfs with page group included in a single page @@ -2548,294 +2463,294 @@ Underfull \hbox (badness 10000) in paragraph at lines 287--133 [] -[60 <./img/Repairs/80.0V.pdf>] +[54 <./img/Repairs/80.0V.pdf>] \openout2 = `chap05.aux'. (chap05.tex Chapter 5. -<img/Evaporation/Approach_Curve_Field01.pdf, id=3101, 1156.32pt x 650.43pt> +<img/Evaporation/Approach_Curve_Field01.pdf, id=2839, 1156.32pt x 650.43pt> File: img/Evaporation/Approach_Curve_Field01.pdf Graphic file (type pdf) <use img/Evaporation/Approach_Curve_Field01.pdf> Package pdftex.def Info: img/Evaporation/Approach_Curve_Field01.pdf used on in put line 9. (pdftex.def) Requested size: 460.72124pt x 259.15506pt. -Underfull \hbox (badness 10000) in paragraph at lines 17--18 +Underfull \hbox (badness 10000) in paragraph at lines 16--17 [] -[61 +[55 <./img/Evaporation/Approach_Curve_Field01.pdf>] -<img/Evaporation/SampleImage.pdf, id=3153, 299.74013pt x 380.17047pt> +<img/Evaporation/SampleImage.pdf, id=2902, 299.74013pt x 380.17047pt> File: img/Evaporation/SampleImage.pdf Graphic file (type pdf) <use img/Evaporation/SampleImage.pdf> -Package pdftex.def Info: img/Evaporation/SampleImage.pdf used on input line 58 +Package pdftex.def Info: img/Evaporation/SampleImage.pdf used on input line 57 . (pdftex.def) Requested size: 186.58957pt x 236.6604pt. -<img/Evaporation/Mask01_Aspect.png, id=3154, 367.3725pt x 462.528pt> +<img/Evaporation/Mask01_Aspect.png, id=2903, 367.3725pt x 462.528pt> File: img/Evaporation/Mask01_Aspect.png Graphic file (type png) <use img/Evaporation/Mask01_Aspect.png> Package pdftex.def Info: img/Evaporation/Mask01_Aspect.png used on input line -64. +63. (pdftex.def) Requested size: 186.58957pt x 234.92632pt. - [62] -<img/Evaporation/Contamination.png, id=3166, 1325.95375pt x 1097.09875pt> + [56] +<img/Evaporation/Contamination.png, id=2915, 1325.95375pt x 1097.09875pt> File: img/Evaporation/Contamination.png Graphic file (type png) <use img/Evaporation/Contamination.png> Package pdftex.def Info: img/Evaporation/Contamination.png used on input line -82. +81. (pdftex.def) Requested size: 216.6513pt x 179.25574pt. -<img/Evaporation/Contamination.pdf, id=3167, 433.62pt x 361.35pt> +<img/Evaporation/Contamination.pdf, id=2916, 433.62pt x 361.35pt> File: img/Evaporation/Contamination.pdf Graphic file (type pdf) <use img/Evaporation/Contamination.pdf> Package pdftex.def Info: img/Evaporation/Contamination.pdf used on input line -88. +87. (pdftex.def) Requested size: 228.05475pt x 190.04793pt. - [63 <./img/Evaporation/SampleImage.pdf> <./img/Evaporation/Mask01_Aspect.png>] + [57 <./img/Evaporation/SampleImage.pdf> <./img/Evaporation/Mask01_Aspect.png>] -Underfull \hbox (badness 10000) in paragraph at lines 103--104 +Underfull \hbox (badness 10000) in paragraph at lines 102--103 [] -<img/Plots/Background/IllustrationSigmas.pdf, id=3190, 944.027pt x 810.77919pt> +<img/Plots/Background/IllustrationSigmas.pdf, id=2939, 944.027pt x 810.77919pt> File: img/Plots/Background/IllustrationSigmas.pdf Graphic file (type pdf) <use img/Plots/Background/IllustrationSigmas.pdf> Package pdftex.def Info: img/Plots/Background/IllustrationSigmas.pdf used on i -nput line 108. +nput line 107. (pdftex.def) Requested size: 214.46744pt x 184.18657pt. -<img/Evaporation/Field3_TR.pdf, id=3191, 957.5775pt x 812.28468pt> +<img/Evaporation/Field3_TR.pdf, id=2940, 957.5775pt x 812.28468pt> File: img/Evaporation/Field3_TR.pdf Graphic file (type pdf) <use img/Evaporation/Field3_TR.pdf> -Package pdftex.def Info: img/Evaporation/Field3_TR.pdf used on input line 113. +Package pdftex.def Info: img/Evaporation/Field3_TR.pdf used on input line 112. (pdftex.def) Requested size: 214.46744pt x 181.92574pt. -[64 <./img/Evaporation/Contamination.png> <./img/Evaporation/Contamination.pdf> +[58 <./img/Evaporation/Contamination.png> <./img/Evaporation/Contamination.pdf> ] -Underfull \hbox (badness 10000) in paragraph at lines 122--123 +Underfull \hbox (badness 10000) in paragraph at lines 121--122 [] -[65 <./img/Plots/Background/IllustrationSigmas.pdf> <./img/Evaporation/Field3_T +[59 <./img/Plots/Background/IllustrationSigmas.pdf> <./img/Evaporation/Field3_T R.pdf pdfTeX warning: pdflatex.exe (file ./img/Evaporation/Field3_TR.pdf): PDF inclus ion: multiple pdfs with page group included in a single page >] -<img/Evaporation/Field5_top_demo01.png, id=3267, 1337.99875pt x 1097.09875pt> +<img/Evaporation/Field5_top_demo01.png, id=3016, 1337.99875pt x 1097.09875pt> File: img/Evaporation/Field5_top_demo01.png Graphic file (type png) <use img/Evaporation/Field5_top_demo01.png> Package pdftex.def Info: img/Evaporation/Field5_top_demo01.png used on input l -ine 143. +ine 142. (pdftex.def) Requested size: 196.95636pt x 161.49422pt. -<img/Evaporation/Field5_top_demo02.png, id=3268, 1335.99126pt x 1089.06876pt> +<img/Evaporation/Field5_top_demo02.png, id=3017, 1335.99126pt x 1089.06876pt> File: img/Evaporation/Field5_top_demo02.png Graphic file (type png) <use img/Evaporation/Field5_top_demo02.png> Package pdftex.def Info: img/Evaporation/Field5_top_demo02.png used on input l -ine 148. +ine 147. (pdftex.def) Requested size: 196.95636pt x 160.54485pt. -<img/Evaporation/TopField5Fit.pdf, id=3269, 462.52798pt x 346.89601pt> +<img/Evaporation/TopField5Fit.pdf, id=3018, 462.52798pt x 346.89601pt> File: img/Evaporation/TopField5Fit.pdf Graphic file (type pdf) <use img/Evaporation/TopField5Fit.pdf> Package pdftex.def Info: img/Evaporation/TopField5Fit.pdf used on input line 1 -53. +52. (pdftex.def) Requested size: 262.61292pt x 196.97055pt. - [66{C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/enc/dvips/lm/lm-mathe + [60{C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/enc/dvips/lm/lm-mathe x.enc}] -<img/Evaporation/sigmas_summary.pdf, id=3280, 433.62pt x 289.08pt> +<img/Evaporation/sigmas_summary.pdf, id=3029, 433.62pt x 289.08pt> File: img/Evaporation/sigmas_summary.pdf Graphic file (type pdf) <use img/Evaporation/sigmas_summary.pdf> Package pdftex.def Info: img/Evaporation/sigmas_summary.pdf used on input line - 165. + 164. (pdftex.def) Requested size: 228.05475pt x 152.03833pt. -<img/Evaporation/sigmal_summary.pdf, id=3281, 433.62pt x 289.08pt> +<img/Evaporation/sigmal_summary.pdf, id=3030, 433.62pt x 289.08pt> File: img/Evaporation/sigmal_summary.pdf Graphic file (type pdf) <use img/Evaporation/sigmal_summary.pdf> Package pdftex.def Info: img/Evaporation/sigmal_summary.pdf used on input line - 170. + 169. (pdftex.def) Requested size: 228.05475pt x 152.03833pt. -<img/Evaporation/heights_summary.pdf, id=3282, 433.62pt x 289.08pt> +<img/Evaporation/heights_summary.pdf, id=3031, 433.62pt x 289.08pt> File: img/Evaporation/heights_summary.pdf Graphic file (type pdf) <use img/Evaporation/heights_summary.pdf> Package pdftex.def Info: img/Evaporation/heights_summary.pdf used on input lin -e 175. +e 174. (pdftex.def) Requested size: 228.05475pt x 152.03833pt. -<img/Evaporation/umbra_summary.pdf, id=3283, 433.62pt x 289.08pt> +<img/Evaporation/umbra_summary.pdf, id=3032, 433.62pt x 289.08pt> File: img/Evaporation/umbra_summary.pdf Graphic file (type pdf) <use img/Evaporation/umbra_summary.pdf> Package pdftex.def Info: img/Evaporation/umbra_summary.pdf used on input line -180. +179. (pdftex.def) Requested size: 228.05475pt x 152.03833pt. - [67 <./img/Evaporation/Field5_top_demo01.png> <./img/Evaporation/Field5_top_de + [61 <./img/Evaporation/Field5_top_demo01.png> <./img/Evaporation/Field5_top_de mo02.png> <./img/Evaporation/TopField5Fit.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 187--189 +Underfull \hbox (badness 10000) in paragraph at lines 186--188 [] -Underfull \hbox (badness 10000) in paragraph at lines 190--191 +Underfull \hbox (badness 10000) in paragraph at lines 189--190 [] -[68 <./img/Evaporation/sigmas_summary.pdf> <./img/Evaporation/sigmal_summary.pd +[62 <./img/Evaporation/sigmas_summary.pdf> <./img/Evaporation/sigmal_summary.pd f> <./img/Evaporation/heights_summary.pdf> <./img/Evaporation/umbra_summary.pdf >] -Underfull \hbox (badness 10000) in paragraph at lines 192--193 +Underfull \hbox (badness 10000) in paragraph at lines 191--192 [] -Underfull \hbox (badness 10000) in paragraph at lines 194--195 +Underfull \hbox (badness 10000) in paragraph at lines 193--194 [] -Underfull \hbox (badness 10000) in paragraph at lines 196--197 +Underfull \hbox (badness 10000) in paragraph at lines 195--196 [] -Underfull \hbox (badness 10000) in paragraph at lines 200--201 +Underfull \hbox (badness 10000) in paragraph at lines 199--200 [] -<img/Evaporation/Field3Angle.pdf, id=3489, 543.44762pt x 657.25867pt> +<img/Evaporation/Field3Angle.pdf, id=3238, 543.44762pt x 657.25867pt> File: img/Evaporation/Field3Angle.pdf Graphic file (type pdf) <use img/Evaporation/Field3Angle.pdf> Package pdftex.def Info: img/Evaporation/Field3Angle.pdf used on input line 20 -5. +4. (pdftex.def) Requested size: 216.6513pt x 262.02629pt. -<img/Evaporation/FieldsAngle.pdf, id=3490, 543.44762pt x 657.25867pt> +<img/Evaporation/FieldsAngle.pdf, id=3239, 543.44762pt x 657.25867pt> File: img/Evaporation/FieldsAngle.pdf Graphic file (type pdf) <use img/Evaporation/FieldsAngle.pdf> -Package pdftex.def Info: img/Evaporation/FieldsAngle.pdf used on input line 21 -0. +Package pdftex.def Info: img/Evaporation/FieldsAngle.pdf used on input line 20 +9. (pdftex.def) Requested size: 216.6513pt x 262.02629pt. -[69] -Underfull \hbox (badness 10000) in paragraph at lines 218--219 +[63] +Underfull \hbox (badness 10000) in paragraph at lines 217--218 [] -<img/Evaporation/SEM/SEM_Probe_01_cropped.png, id=3500, 692.5875pt x 692.5875pt +<img/Evaporation/SEM/SEM_Probe_01_cropped.png, id=3249, 692.5875pt x 692.5875pt > File: img/Evaporation/SEM/SEM_Probe_01_cropped.png Graphic file (type png) <use img/Evaporation/SEM/SEM_Probe_01_cropped.png> Package pdftex.def Info: img/Evaporation/SEM/SEM_Probe_01_cropped.png used on -input line 224. +input line 223. (pdftex.def) Requested size: 214.46744pt x 214.4674pt. -<img/Evaporation/SEM/SEM_Mask_cropped.pdf, id=3501, 692.5875pt x 692.5875pt> +<img/Evaporation/SEM/SEM_Mask_cropped.pdf, id=3250, 692.5875pt x 692.5875pt> File: img/Evaporation/SEM/SEM_Mask_cropped.pdf Graphic file (type pdf) <use img/Evaporation/SEM/SEM_Mask_cropped.pdf> Package pdftex.def Info: img/Evaporation/SEM/SEM_Mask_cropped.pdf used on inpu -t line 230. +t line 229. (pdftex.def) Requested size: 214.46744pt x 214.4674pt. -[70 <./img/Evaporation/Field3Angle.pdf> <./img/Evaporation/FieldsAngle.pdf +[64 <./img/Evaporation/Field3Angle.pdf> <./img/Evaporation/FieldsAngle.pdf pdfTeX warning: pdflatex.exe (file ./img/Evaporation/FieldsAngle.pdf): PDF incl usion: multiple pdfs with page group included in a single page >] -<img/Evaporation/SEM/ShowingClog.pdf, id=3536, 359.41805pt x 360.5994pt> +<img/Evaporation/SEM/ShowingClog.pdf, id=3285, 359.41805pt x 360.5994pt> File: img/Evaporation/SEM/ShowingClog.pdf Graphic file (type pdf) <use img/Evaporation/SEM/ShowingClog.pdf> Package pdftex.def Info: img/Evaporation/SEM/ShowingClog.pdf used on input lin -e 245. +e 244. (pdftex.def) Requested size: 203.17896pt x 203.84908pt. -<img/Evaporation/SEM/SEM_CloggingOverlay.png, id=3537, 609.2361pt x 569.4876pt> +<img/Evaporation/SEM/SEM_CloggingOverlay.png, id=3286, 609.2361pt x 569.4876pt> File: img/Evaporation/SEM/SEM_CloggingOverlay.png Graphic file (type png) <use img/Evaporation/SEM/SEM_CloggingOverlay.png> Package pdftex.def Info: img/Evaporation/SEM/SEM_CloggingOverlay.png used on i -nput line 251. +nput line 250. (pdftex.def) Requested size: 217.85364pt x 203.63371pt. - [71 <./img/Evaporation/SEM/SEM_Probe_01_cropped.png> <./img/Evaporation/SEM/SE + [65 <./img/Evaporation/SEM/SEM_Probe_01_cropped.png> <./img/Evaporation/SEM/SE M_Mask_cropped.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 259--261 +Underfull \hbox (badness 10000) in paragraph at lines 258--260 [] -Underfull \hbox (badness 10000) in paragraph at lines 267--268 +Underfull \hbox (badness 10000) in paragraph at lines 266--267 [] -[72 <./img/Evaporation/SEM/ShowingClog.pdf> <./img/Evaporation/SEM/SEM_Clogging +[66 <./img/Evaporation/SEM/ShowingClog.pdf> <./img/Evaporation/SEM/SEM_Clogging Overlay.png>] -Underfull \hbox (badness 10000) in paragraph at lines 271--273 +Underfull \hbox (badness 10000) in paragraph at lines 270--272 [] -Underfull \hbox (badness 10000) in paragraph at lines 281--282 +Underfull \hbox (badness 10000) in paragraph at lines 280--281 [] -Underfull \hbox (badness 10000) in paragraph at lines 283--284 +Underfull \hbox (badness 10000) in paragraph at lines 282--283 [] -<img/Evaporation/Sim/Field3_right.pdf, id=3582, 1003.49907pt x 822.82407pt> +<img/Evaporation/Sim/Field3_right.pdf, id=3331, 1003.49907pt x 822.82407pt> File: img/Evaporation/Sim/Field3_right.pdf Graphic file (type pdf) <use img/Evaporation/Sim/Field3_right.pdf> Package pdftex.def Info: img/Evaporation/Sim/Field3_right.pdf used on input li -ne 290. +ne 289. (pdftex.def) Requested size: 196.95636pt x 161.48586pt. -<img/Evaporation/Sim/Field3_right_sim_simple.pdf, id=3583, 364.9783pt x 280.976 +<img/Evaporation/Sim/Field3_right_sim_simple.pdf, id=3332, 364.9783pt x 280.976 52pt> File: img/Evaporation/Sim/Field3_right_sim_simple.pdf Graphic file (type pdf) <use img/Evaporation/Sim/Field3_right_sim_simple.pdf> Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple.pdf used -on input line 295. +on input line 294. (pdftex.def) Requested size: 205.71188pt x 158.36615pt. -[73] -Underfull \hbox (badness 10000) in paragraph at lines 303--304 +[67] +Underfull \hbox (badness 10000) in paragraph at lines 302--303 [] -<img/Evaporation/Sim/OverlapCircles.pdf, id=3591, 364.36125pt x 280.04625pt> +<img/Evaporation/Sim/OverlapCircles.pdf, id=3340, 364.36125pt x 280.04625pt> File: img/Evaporation/Sim/OverlapCircles.pdf Graphic file (type pdf) <use img/Evaporation/Sim/OverlapCircles.pdf> Package pdftex.def Info: img/Evaporation/Sim/OverlapCircles.pdf used on input -line 309. +line 308. (pdftex.def) Requested size: 230.36061pt x 177.05394pt. -[74 <./img/Evaporation/Sim/Field3_right.pdf> <./img/Evaporation/Sim/Field3_righ +[68 <./img/Evaporation/Sim/Field3_right.pdf> <./img/Evaporation/Sim/Field3_righ t_sim_simple.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 314--315 +Underfull \hbox (badness 10000) in paragraph at lines 313--314 [] -Underfull \hbox (badness 10000) in paragraph at lines 316--317 +Underfull \hbox (badness 10000) in paragraph at lines 315--316 [] File: img/Evaporation/Sim/Field3_right_sim_simple.pdf Graphic file (type pdf) <use img/Evaporation/Sim/Field3_right_sim_simple.pdf> Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple.pdf used -on input line 321. +on input line 320. (pdftex.def) Requested size: 149.73299pt x 115.2697pt. -<img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf, id=3648, 364.9783pt x +<img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf, id=3397, 364.9783pt x 280.97652pt> File: img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf Graphic file (typ e pdf) <use img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf> Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple_initial.pd -f used on input line 326. +f used on input line 325. (pdftex.def) Requested size: 149.73299pt x 115.2697pt. -<img/Evaporation/Sim/Field3_right_sim_simple_power.pdf, id=3649, 364.9783pt x 2 +<img/Evaporation/Sim/Field3_right_sim_simple_power.pdf, id=3398, 364.9783pt x 2 80.97652pt> File: img/Evaporation/Sim/Field3_right_sim_simple_power.pdf Graphic file (type pdf) <use img/Evaporation/Sim/Field3_right_sim_simple_power.pdf> Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple_power.pdf - used on input line 331. + used on input line 330. (pdftex.def) Requested size: 149.73299pt x 115.2697pt. -[75 <./img/Evaporation/Sim/OverlapCircles.pdf>] -Underfull \hbox (badness 10000) in paragraph at lines 341--342 +[69 <./img/Evaporation/Sim/OverlapCircles.pdf>] +Underfull \hbox (badness 10000) in paragraph at lines 340--342 [] @@ -2850,7 +2765,7 @@ pdf) Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple_power.pdf used on input line 348. (pdftex.def) Requested size: 149.73299pt x 115.2697pt. -<img/Evaporation/Sim/Field3_right_sim_simple_rejection.pdf, id=3683, 364.9783pt +<img/Evaporation/Sim/Field3_right_sim_simple_rejection.pdf, id=3433, 364.9783pt x 280.97652pt> File: img/Evaporation/Sim/Field3_right_sim_simple_rejection.pdf Graphic file (t ype pdf) @@ -2858,13 +2773,13 @@ ype pdf) Package pdftex.def Info: img/Evaporation/Sim/Field3_right_sim_simple_rejection. pdf used on input line 353. (pdftex.def) Requested size: 149.73299pt x 115.2697pt. -<img/Evaporation/Sim/Field3_right.png, id=3684, 1231.60126pt x 1083.04625pt> +<img/Evaporation/Sim/Field3_right.png, id=3434, 1231.60126pt x 1083.04625pt> File: img/Evaporation/Sim/Field3_right.png Graphic file (type png) <use img/Evaporation/Sim/Field3_right.png> Package pdftex.def Info: img/Evaporation/Sim/Field3_right.png used on input li ne 358. (pdftex.def) Requested size: 140.062pt x 123.16779pt. -[76 <./img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf> <./img/Evaporat +[70 <./img/Evaporation/Sim/Field3_right_sim_simple_initial.pdf> <./img/Evaporat ion/Sim/Field3_right_sim_simple_power.pdf>] Underfull \hbox (badness 10000) in paragraph at lines 366--367 @@ -2890,7 +2805,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 384--385 [] -[77 <./img/Evaporation/Sim/Field3_right_sim_simple_rejection.pdf> <./img/Evapor +[71 <./img/Evaporation/Sim/Field3_right_sim_simple_rejection.pdf> <./img/Evapor ation/Sim/Field3_right.png>] Underfull \hbox (badness 10000) in paragraph at lines 386--387 @@ -2906,7 +2821,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 392--134 [] -[78] +[72] \openout2 = `conclusion.aux'. (conclusion.tex @@ -2934,7 +2849,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 18--20 [] -) [79 +) [73 @@ -2942,7 +2857,7 @@ Underfull \hbox (badness 10000) in paragraph at lines 18--20 ] \openout2 = `bibliography.aux'. - (bibliography.tex (thesis.bbl [80 + (bibliography.tex (thesis.bbl [74 @@ -2963,12 +2878,12 @@ Underfull \hbox (badness 2409) in paragraph at lines 159--163 oads / en / DeviceDoc / [] -)) [81] +)) [75] Underfull \hbox (badness 10000) in paragraph at lines 150--171 [] -[82 +[76 @@ -2988,7 +2903,7 @@ pdfTeX warning (ext4): destination with the same identifier (name{section.5.2}) \relax l.28 \section{Walker principle diagram} \label{app:walker_diagram} -<img/ElectronicsDiagramm.pdf, id=3843, 778.32848pt x 492.10774pt> +<img/ElectronicsDiagramm.pdf, id=3595, 778.32848pt x 492.10774pt> File: img/ElectronicsDiagramm.pdf Graphic file (type pdf) <use img/ElectronicsDiagramm.pdf> Package pdftex.def Info: img/ElectronicsDiagramm.pdf used on input line 31. @@ -3007,7 +2922,7 @@ l.36 \section{Walker circuit diagrams} pdfTeX warning: pdflatex.exe (file ./img/Plots/Walker/MaskAlign Walker Signalel ektronik 1.0.pdf): PDF inclusion: found PDF version <1.7>, but at most version <1.5> allowed -<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3849, 845.07724 +<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3601, 845.07724 pt x 597.55246pt> File: img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf Graphic file ( type pdf) @@ -3036,7 +2951,7 @@ ektronik 1.0.pdf): PDF inclusion: found PDF version <1.7>, but at most version pdfTeX warning: pdflatex.exe (file ./img/Plots/Walker/MaskAlign Walker Signalel ektronik 1.0.pdf): PDF inclusion: found PDF version <1.7>, but at most version <1.5> allowed -<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3852, page=1, 8 +<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3604, page=1, 8 45.07724pt x 597.55246pt> File: img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf Graphic file ( type pdf) @@ -3076,7 +2991,7 @@ Package pdftex.def Info: img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0 pdfTeX warning: pdflatex.exe (file ./img/Plots/Walker/MaskAlign Walker Signalel ektronik 1.0.pdf): PDF inclusion: found PDF version <1.7>, but at most version <1.5> allowed -<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3926, page=2, 8 +<img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf, id=3678, page=2, 8 45.07724pt x 597.55246pt> File: img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0.pdf Graphic file ( type pdf) @@ -3103,7 +3018,7 @@ Package pdftex.def Info: img/Plots/Walker/MaskAlign Walker Signalelektronik 1.0 pdfTeX warning: pdflatex.exe (file ./img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf): PDF inclusion: found PDF version <1.7>, but at mo st version <1.5> allowed -<img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf, id=3931 +<img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf, id=3683 , 1194.98447pt x 845.07724pt> File: img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf Gra phic file (type pdf) @@ -3132,7 +3047,7 @@ st version <1.5> allowed pdfTeX warning: pdflatex.exe (file ./img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf): PDF inclusion: found PDF version <1.7>, but at mo st version <1.5> allowed -<img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf, id=3934 +<img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf, id=3686 , page=1, 1194.98447pt x 845.07724pt> File: img/Plots/Walker/MaskAlign Walker Netzteil modifiziert 24-05-2024.pdf Gra phic file (type pdf) @@ -3200,13 +3115,13 @@ LaTeX2e <2023-11-01> patch level 1 L3 programming layer <2024-01-04> *********** Package rerunfilecheck Info: File `thesis.out' has not changed. -(rerunfilecheck) Checksum: 1AE16294A5C843AC33F7721219E9320E;10264. +(rerunfilecheck) Checksum: 3DD35EA331F625707019EF3E442EC10F;10079. ) Here is how much of TeX's memory you used: - 32316 strings out of 474485 - 614794 string characters out of 5742790 - 1949542 words of memory out of 5000000 - 53615 multiletter control sequences out of 15000+600000 + 32215 strings out of 474485 + 611867 string characters out of 5742790 + 1946542 words of memory out of 5000000 + 53531 multiletter control sequences out of 15000+600000 645576 words of font info for 105 fonts, out of 8000000 for 9000 1141 hyphenation exceptions out of 8191 99i,19n,101p,1765b,2315s stack positions out of 10000i,1000n,20000p,200000b,200000s @@ -3226,9 +3141,9 @@ lm/lmr17.pfb><C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/type1/public ic/lm/lmri8.pfb><C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/type1/pub lic/lm/lmsy10.pfb><C:/Users/Luzifer/AppData/Local/Programs/MiKTeX/fonts/type1/p ublic/lm/lmsy8.pfb> -Output written on thesis.pdf (92 pages, 262948128 bytes). +Output written on thesis.pdf (86 pages, 262560807 bytes). PDF statistics: - 4144 PDF objects out of 4296 (max. 8388607) - 321 named destinations out of 1000 (max. 500000) - 1161 words of extra memory for PDF output out of 10000 (max. 10000000) + 3893 PDF objects out of 4296 (max. 8388607) + 304 named destinations out of 1000 (max. 500000) + 1123 words of extra memory for PDF output out of 10000 (max. 10000000) diff --git a/thesis.out b/thesis.out index 6e2f6fd58daae2b8fd56157ce2c8aa09d7bcde90..843b52dd71091fe0a8033fc5a0daab4976ec8cd3 100644 --- a/thesis.out +++ b/thesis.out @@ -15,53 +15,52 @@ \BOOKMARK [2][-]{subsection.2.3.3}{\376\377\000O\000p\000t\000i\000c\000a\000l\000\040\000a\000l\000i\000g\000n\000m\000e\000n\000t}{section.2.3}% 15 \BOOKMARK [2][-]{subsection.2.3.4}{\376\377\000C\000a\000p\000a\000c\000i\000t\000i\000v\000e\000\040\000d\000i\000s\000t\000a\000n\000c\000e\000\040\000m\000e\000a\000s\000u\000r\000e\000m\000e\000n\000t\000s}{section.2.3}% 16 \BOOKMARK [2][-]{subsection.2.3.5}{\376\377\000R\000e\000p\000r\000o\000d\000u\000c\000i\000b\000i\000l\000i\000t\000y}{section.2.3}% 17 -\BOOKMARK [2][-]{subsection.2.3.6}{\376\377\000C\000a\000p\000a\000c\000i\000t\000a\000n\000c\000e\000\040\000c\000o\000r\000r\000e\000l\000a\000t\000i\000o\000n\000s}{section.2.3}% 18 -\BOOKMARK [1][-]{section.2.4}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000o\000p\000e\000r\000a\000t\000i\000o\000n}{chapter.2}% 19 -\BOOKMARK [2][-]{subsection.2.4.1}{\376\377\000S\000a\000m\000p\000l\000e\000\040\000p\000r\000e\000p\000a\000r\000a\000t\000i\000o\000n}{section.2.4}% 20 -\BOOKMARK [0][-]{chapter.3}{\376\377\000E\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{}% 21 -\BOOKMARK [1][-]{section.3.1}{\376\377\000R\000H\000K\000\040\000p\000i\000e\000z\000o\000\040\000m\000o\000t\000o\000r\000\040\000c\000o\000n\000t\000r\000o\000l\000l\000e\000r}{chapter.3}% 22 -\BOOKMARK [2][-]{subsection.3.1.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.1}% 23 -\BOOKMARK [2][-]{subsection.3.1.2}{\376\377\000P\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.1}% 24 -\BOOKMARK [1][-]{section.3.2}{\376\377\000K\000I\000M\0000\0000\0001}{chapter.3}% 25 -\BOOKMARK [2][-]{subsection.3.2.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.2}% 26 -\BOOKMARK [2][-]{subsection.3.2.2}{\376\377\000P\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.2}% 27 -\BOOKMARK [2][-]{subsection.3.2.3}{\376\377\000V\000o\000l\000t\000a\000g\000e\000\040\000b\000e\000h\000a\000v\000i\000o\000r}{section.3.2}% 28 -\BOOKMARK [1][-]{section.3.3}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000c\000o\000n\000t\000r\000o\000l\000l\000e\000r\000\040\000"\000W\000a\000l\000k\000e\000r\000"}{chapter.3}% 29 -\BOOKMARK [2][-]{subsection.3.3.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.3}% 30 -\BOOKMARK [2][-]{subsection.3.3.2}{\376\377\000S\000i\000g\000n\000a\000l\000\040\000g\000e\000n\000e\000r\000a\000t\000i\000o\000n}{section.3.3}% 31 -\BOOKMARK [2][-]{subsection.3.3.3}{\376\377\000F\000a\000s\000t\000\040\000f\000l\000a\000n\000k}{section.3.3}% 32 -\BOOKMARK [2][-]{subsection.3.3.4}{\376\377\000A\000m\000p\000l\000i\000f\000i\000c\000a\000t\000i\000o\000n}{section.3.3}% 33 -\BOOKMARK [2][-]{subsection.3.3.5}{\376\377\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g}{section.3.3}% 34 -\BOOKMARK [2][-]{subsection.3.3.6}{\376\377\000M\000e\000a\000s\000u\000r\000e\000d\000\040\000p\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.3}% 35 -\BOOKMARK [2][-]{subsection.3.3.7}{\376\377\000O\000p\000e\000r\000a\000t\000i\000o\000n\000\040\000w\000i\000t\000h\000\040\000t\000h\000e\000\040\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r}{section.3.3}% 36 -\BOOKMARK [0][-]{chapter.4}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000r\000e\000p\000a\000i\000r\000s\000\040\000a\000n\000d\000\040\000o\000p\000t\000i\000m\000i\000z\000a\000t\000i\000o\000n\000s}{}% 37 -\BOOKMARK [1][-]{section.4.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{chapter.4}% 38 -\BOOKMARK [1][-]{section.4.2}{\376\377\000G\000e\000n\000e\000r\000a\000l\000\040\000U\000H\000V\000\040\000d\000e\000v\000i\000c\000e\000\040\000p\000r\000e\000p\000a\000r\000a\000t\000i\000o\000n}{chapter.4}% 39 -\BOOKMARK [2][-]{subsection.4.2.1}{\376\377\000U\000H\000V\000\040\000c\000o\000m\000p\000a\000t\000i\000b\000l\000e\000\040\000S\000o\000l\000d\000e\000r\000i\000n\000g}{section.4.2}% 40 -\BOOKMARK [1][-]{section.4.3}{\376\377\000S\000o\000l\000d\000e\000r\000i\000n\000g\000\040\000a\000n\000c\000h\000o\000r\000s}{chapter.4}% 41 -\BOOKMARK [1][-]{section.4.4}{\376\377\000P\000i\000e\000z\000o\000\040\000r\000e\000g\000l\000u\000i\000n\000g}{chapter.4}% 42 -\BOOKMARK [1][-]{section.4.5}{\376\377\000Z\0003\000\040\000m\000o\000t\000o\000r}{chapter.4}% 43 -\BOOKMARK [2][-]{subsection.4.5.1}{\376\377\000F\000r\000o\000n\000t\000\040\000p\000l\000a\000t\000e\000\040\000r\000e\000p\000a\000i\000r}{section.4.5}% 44 -\BOOKMARK [2][-]{subsection.4.5.2}{\376\377\000S\000m\000a\000l\000l\000\040\000c\000a\000p\000a\000c\000i\000t\000a\000n\000c\000e\000\040\000s\000t\000a\000c\000k}{section.4.5}% 45 -\BOOKMARK [1][-]{section.4.6}{\376\377\000F\000e\000e\000d\000\040\000t\000h\000r\000o\000u\000g\000h\000\040\000c\000a\000b\000l\000i\000n\000g\000\040\000o\000p\000t\000i\000m\000i\000z\000a\000t\000i\000o\000n\000s}{chapter.4}% 46 -\BOOKMARK [1][-]{section.4.7}{\376\377\000F\000i\000n\000a\000l\000\040\000t\000e\000s\000t}{chapter.4}% 47 -\BOOKMARK [0][-]{chapter.5}{\376\377\000E\000v\000a\000p\000o\000r\000a\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000m\000e\000a\000s\000u\000r\000e\000m\000e\000n\000t}{}% 48 -\BOOKMARK [1][-]{section.5.1}{\376\377\000E\000v\000a\000p\000o\000r\000a\000t\000i\000o\000n\000\040\000c\000o\000n\000f\000i\000g\000u\000r\000a\000t\000i\000o\000n}{chapter.5}% 49 -\BOOKMARK [1][-]{section.5.2}{\376\377\000C\000o\000n\000t\000a\000m\000i\000n\000a\000t\000i\000o\000n}{chapter.5}% 50 -\BOOKMARK [1][-]{section.5.3}{\376\377\000P\000e\000n\000u\000m\000b\000r\000a}{chapter.5}% 51 -\BOOKMARK [1][-]{section.5.4}{\376\377\000T\000i\000l\000t\000\040\000a\000n\000d\000\040\000d\000e\000f\000o\000r\000m\000a\000t\000i\000o\000n}{chapter.5}% 52 -\BOOKMARK [1][-]{section.5.5}{\376\377\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter.5}% 53 -\BOOKMARK [2][-]{subsection.5.5.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w\000\040\000a\000n\000d\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e}{section.5.5}% 54 -\BOOKMARK [2][-]{subsection.5.5.2}{\376\377\000R\000e\000s\000u\000l\000t\000s}{section.5.5}% 55 -\BOOKMARK [2][-]{subsection.5.5.3}{\376\377\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000i\000m\000p\000r\000o\000v\000e\000m\000e\000n\000t\000s}{section.5.5}% 56 -\BOOKMARK [2][-]{subsection.5.5.4}{\376\377\000F\000i\000n\000a\000l\000\040\000R\000e\000m\000a\000r\000k}{section.5.5}% 57 -\BOOKMARK [0][-]{chapter*.94}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000O\000u\000t\000l\000o\000o\000k}{}% 58 -\BOOKMARK [0][-]{chapter*.95}{\376\377\000B\000i\000b\000l\000i\000o\000g\000r\000a\000p\000h\000y}{}% 59 -\BOOKMARK [0][-]{chapter*.96}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000A\000b\000b\000r\000e\000v\000i\000a\000t\000i\000o\000n\000s}{}% 60 -\BOOKMARK [0][-]{chapter*.97}{\376\377\000A\000p\000p\000e\000n\000d\000i\000x}{}% 61 -\BOOKMARK [1][-]{section.5.1}{\376\377\000L\000o\000c\000k\000I\000n\000\040\000a\000m\000p\000l\000i\000f\000i\000e\000r\000\040\000s\000e\000t\000t\000i\000n\000g\000s}{chapter*.97}% 62 -\BOOKMARK [1][-]{section.5.2}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e\000\040\000d\000i\000a\000g\000r\000a\000m}{chapter*.97}% 63 -\BOOKMARK [1][-]{section.5.3}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000c\000i\000r\000c\000u\000i\000t\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter*.97}% 64 -\BOOKMARK [1][-]{section.5.4}{\376\377\000N\000e\000w\000\040\000d\000r\000i\000v\000e\000r\000\040\000e\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{chapter*.97}% 65 -\BOOKMARK [1][-]{section.5.5}{\376\377\000R\000a\000y\000c\000a\000s\000t\000\040\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter*.97}% 66 -\BOOKMARK [0][-]{chapter*.131}{\376\377\000A\000c\000k\000n\000o\000w\000l\000e\000d\000g\000m\000e\000n\000t\000s}{}% 67 +\BOOKMARK [1][-]{section.2.4}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000o\000p\000e\000r\000a\000t\000i\000o\000n}{chapter.2}% 18 +\BOOKMARK [2][-]{subsection.2.4.1}{\376\377\000S\000a\000m\000p\000l\000e\000\040\000p\000r\000e\000p\000a\000r\000a\000t\000i\000o\000n}{section.2.4}% 19 +\BOOKMARK [0][-]{chapter.3}{\376\377\000E\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{}% 20 +\BOOKMARK [1][-]{section.3.1}{\376\377\000R\000H\000K\000\040\000p\000i\000e\000z\000o\000\040\000m\000o\000t\000o\000r\000\040\000c\000o\000n\000t\000r\000o\000l\000l\000e\000r}{chapter.3}% 21 +\BOOKMARK [2][-]{subsection.3.1.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.1}% 22 +\BOOKMARK [2][-]{subsection.3.1.2}{\376\377\000P\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.1}% 23 +\BOOKMARK [1][-]{section.3.2}{\376\377\000K\000I\000M\0000\0000\0001}{chapter.3}% 24 +\BOOKMARK [2][-]{subsection.3.2.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.2}% 25 +\BOOKMARK [2][-]{subsection.3.2.2}{\376\377\000P\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.2}% 26 +\BOOKMARK [2][-]{subsection.3.2.3}{\376\377\000V\000o\000l\000t\000a\000g\000e\000\040\000b\000e\000h\000a\000v\000i\000o\000r}{section.3.2}% 27 +\BOOKMARK [1][-]{section.3.3}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000c\000o\000n\000t\000r\000o\000l\000l\000e\000r\000\040\000"\000W\000a\000l\000k\000e\000r\000"}{chapter.3}% 28 +\BOOKMARK [2][-]{subsection.3.3.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{section.3.3}% 29 +\BOOKMARK [2][-]{subsection.3.3.2}{\376\377\000S\000i\000g\000n\000a\000l\000\040\000g\000e\000n\000e\000r\000a\000t\000i\000o\000n}{section.3.3}% 30 +\BOOKMARK [2][-]{subsection.3.3.3}{\376\377\000F\000a\000s\000t\000\040\000f\000l\000a\000n\000k}{section.3.3}% 31 +\BOOKMARK [2][-]{subsection.3.3.4}{\376\377\000A\000m\000p\000l\000i\000f\000i\000c\000a\000t\000i\000o\000n}{section.3.3}% 32 +\BOOKMARK [2][-]{subsection.3.3.5}{\376\377\000P\000r\000o\000g\000r\000a\000m\000m\000i\000n\000g}{section.3.3}% 33 +\BOOKMARK [2][-]{subsection.3.3.6}{\376\377\000M\000e\000a\000s\000u\000r\000e\000d\000\040\000p\000u\000l\000s\000e\000\040\000s\000h\000a\000p\000e}{section.3.3}% 34 +\BOOKMARK [2][-]{subsection.3.3.7}{\376\377\000O\000p\000e\000r\000a\000t\000i\000o\000n\000\040\000w\000i\000t\000h\000\040\000t\000h\000e\000\040\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r}{section.3.3}% 35 +\BOOKMARK [0][-]{chapter.4}{\376\377\000M\000a\000s\000k\000\040\000A\000l\000i\000g\000n\000e\000r\000\040\000r\000e\000p\000a\000i\000r\000s\000\040\000a\000n\000d\000\040\000o\000p\000t\000i\000m\000i\000z\000a\000t\000i\000o\000n\000s}{}% 36 +\BOOKMARK [1][-]{section.4.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w}{chapter.4}% 37 +\BOOKMARK [1][-]{section.4.2}{\376\377\000G\000e\000n\000e\000r\000a\000l\000\040\000U\000H\000V\000\040\000d\000e\000v\000i\000c\000e\000\040\000p\000r\000e\000p\000a\000r\000a\000t\000i\000o\000n}{chapter.4}% 38 +\BOOKMARK [2][-]{subsection.4.2.1}{\376\377\000U\000H\000V\000\040\000c\000o\000m\000p\000a\000t\000i\000b\000l\000e\000\040\000S\000o\000l\000d\000e\000r\000i\000n\000g}{section.4.2}% 39 +\BOOKMARK [1][-]{section.4.3}{\376\377\000S\000o\000l\000d\000e\000r\000i\000n\000g\000\040\000a\000n\000c\000h\000o\000r\000s}{chapter.4}% 40 +\BOOKMARK [1][-]{section.4.4}{\376\377\000P\000i\000e\000z\000o\000\040\000r\000e\000g\000l\000u\000i\000n\000g}{chapter.4}% 41 +\BOOKMARK [1][-]{section.4.5}{\376\377\000Z\0003\000\040\000m\000o\000t\000o\000r}{chapter.4}% 42 +\BOOKMARK [2][-]{subsection.4.5.1}{\376\377\000F\000r\000o\000n\000t\000\040\000p\000l\000a\000t\000e\000\040\000r\000e\000p\000a\000i\000r}{section.4.5}% 43 +\BOOKMARK [2][-]{subsection.4.5.2}{\376\377\000S\000m\000a\000l\000l\000\040\000c\000a\000p\000a\000c\000i\000t\000a\000n\000c\000e\000\040\000s\000t\000a\000c\000k}{section.4.5}% 44 +\BOOKMARK [1][-]{section.4.6}{\376\377\000F\000e\000e\000d\000\040\000t\000h\000r\000o\000u\000g\000h\000\040\000c\000a\000b\000l\000i\000n\000g\000\040\000o\000p\000t\000i\000m\000i\000z\000a\000t\000i\000o\000n\000s}{chapter.4}% 45 +\BOOKMARK [1][-]{section.4.7}{\376\377\000F\000i\000n\000a\000l\000\040\000t\000e\000s\000t}{chapter.4}% 46 +\BOOKMARK [0][-]{chapter.5}{\376\377\000E\000v\000a\000p\000o\000r\000a\000t\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000m\000e\000a\000s\000u\000r\000e\000m\000e\000n\000t}{}% 47 +\BOOKMARK [1][-]{section.5.1}{\376\377\000E\000v\000a\000p\000o\000r\000a\000t\000i\000o\000n\000\040\000c\000o\000n\000f\000i\000g\000u\000r\000a\000t\000i\000o\000n}{chapter.5}% 48 +\BOOKMARK [1][-]{section.5.2}{\376\377\000C\000o\000n\000t\000a\000m\000i\000n\000a\000t\000i\000o\000n}{chapter.5}% 49 +\BOOKMARK [1][-]{section.5.3}{\376\377\000P\000e\000n\000u\000m\000b\000r\000a}{chapter.5}% 50 +\BOOKMARK [1][-]{section.5.4}{\376\377\000T\000i\000l\000t\000\040\000a\000n\000d\000\040\000d\000e\000f\000o\000r\000m\000a\000t\000i\000o\000n}{chapter.5}% 51 +\BOOKMARK [1][-]{section.5.5}{\376\377\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter.5}% 52 +\BOOKMARK [2][-]{subsection.5.5.1}{\376\377\000O\000v\000e\000r\000v\000i\000e\000w\000\040\000a\000n\000d\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e}{section.5.5}% 53 +\BOOKMARK [2][-]{subsection.5.5.2}{\376\377\000R\000e\000s\000u\000l\000t\000s}{section.5.5}% 54 +\BOOKMARK [2][-]{subsection.5.5.3}{\376\377\000S\000o\000f\000t\000w\000a\000r\000e\000\040\000i\000m\000p\000r\000o\000v\000e\000m\000e\000n\000t\000s}{section.5.5}% 55 +\BOOKMARK [2][-]{subsection.5.5.4}{\376\377\000F\000i\000n\000a\000l\000\040\000R\000e\000m\000a\000r\000k}{section.5.5}% 56 +\BOOKMARK [0][-]{chapter*.83}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s\000\040\000a\000n\000d\000\040\000O\000u\000t\000l\000o\000o\000k}{}% 57 +\BOOKMARK [0][-]{chapter*.84}{\376\377\000B\000i\000b\000l\000i\000o\000g\000r\000a\000p\000h\000y}{}% 58 +\BOOKMARK [0][-]{chapter*.85}{\376\377\000L\000i\000s\000t\000\040\000o\000f\000\040\000A\000b\000b\000r\000e\000v\000i\000a\000t\000i\000o\000n\000s}{}% 59 +\BOOKMARK [0][-]{chapter*.86}{\376\377\000A\000p\000p\000e\000n\000d\000i\000x}{}% 60 +\BOOKMARK [1][-]{section.5.1}{\376\377\000L\000o\000c\000k\000I\000n\000\040\000a\000m\000p\000l\000i\000f\000i\000e\000r\000\040\000s\000e\000t\000t\000i\000n\000g\000s}{chapter*.86}% 61 +\BOOKMARK [1][-]{section.5.2}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000p\000r\000i\000n\000c\000i\000p\000l\000e\000\040\000d\000i\000a\000g\000r\000a\000m}{chapter*.86}% 62 +\BOOKMARK [1][-]{section.5.3}{\376\377\000W\000a\000l\000k\000e\000r\000\040\000c\000i\000r\000c\000u\000i\000t\000\040\000d\000i\000a\000g\000r\000a\000m\000s}{chapter*.86}% 63 +\BOOKMARK [1][-]{section.5.4}{\376\377\000N\000e\000w\000\040\000d\000r\000i\000v\000e\000r\000\040\000e\000l\000e\000c\000t\000r\000o\000n\000i\000c\000s}{chapter*.86}% 64 +\BOOKMARK [1][-]{section.5.5}{\376\377\000R\000a\000y\000c\000a\000s\000t\000\040\000S\000i\000m\000u\000l\000a\000t\000i\000o\000n}{chapter*.86}% 65 +\BOOKMARK [0][-]{chapter*.120}{\376\377\000A\000c\000k\000n\000o\000w\000l\000e\000d\000g\000m\000e\000n\000t\000s}{}% 66 diff --git a/thesis.pdf b/thesis.pdf index fd2e3d8abbeb1088d3cbfe837ab4b5f1becc43df..ddeb63d8db483c190c2a62579eced49ca8c5b535 100644 Binary files a/thesis.pdf and b/thesis.pdf differ diff --git a/thesis.synctex.gz b/thesis.synctex.gz index ac069d1ad8de29b2361ddf0f6c87b15a1c1ea0b7..96b35f0ac5e0845cab039d931f7f33830f884b91 100644 Binary files a/thesis.synctex.gz and b/thesis.synctex.gz differ diff --git a/thesis.toc b/thesis.toc index 479979b6b7a2a77f603b2d3ca0487c0a554660bd..7b9650f284441d2a7d8a37d02be81ad97b3a974d 100644 --- a/thesis.toc +++ b/thesis.toc @@ -18,99 +18,96 @@ \contentsline {section}{\numberline {2.3}Shadow mask alignment}{20}{section.2.3}% \contentsline {subsection}{\numberline {2.3.1}Motor screw configuration}{20}{subsection.2.3.1}% \contentsline {subsection}{\numberline {2.3.2}Motor calibration}{21}{subsection.2.3.2}% -\contentsline {subsection}{\numberline {2.3.3}Optical alignment}{26}{subsection.2.3.3}% -\contentsline {subsection}{\numberline {2.3.4}Capacitive distance measurements}{28}{subsection.2.3.4}% -\contentsline {subsection}{\numberline {2.3.5}Reproducibility}{31}{subsection.2.3.5}% -\contentsline {subsubsection}{Reproducibility when removing sample/mask}{31}{section*.31}% -\contentsline {subsection}{\numberline {2.3.6}Capacitance correlations}{32}{subsection.2.3.6}% -\contentsline {paragraph}{Leakage current}{37}{section*.39}% -\contentsline {paragraph}{Improved gold pin fitting}{37}{section*.40}% -\contentsline {section}{\numberline {2.4}Mask Aligner operation}{38}{section.2.4}% -\contentsline {subsection}{\numberline {2.4.1}Sample preparation}{38}{subsection.2.4.1}% -\contentsline {chapter}{\numberline {3}Electronics}{39}{chapter.3}% -\contentsline {section}{\numberline {3.1}RHK piezo motor controller}{39}{section.3.1}% -\contentsline {subsection}{\numberline {3.1.1}Overview}{39}{subsection.3.1.1}% -\contentsline {paragraph}{amplitude}{39}{section*.42}% -\contentsline {paragraph}{sweep period}{39}{section*.43}% -\contentsline {paragraph}{time between sweeps}{39}{section*.44}% -\contentsline {subsection}{\numberline {3.1.2}Pulse shape}{39}{subsection.3.1.2}% -\contentsline {section}{\numberline {3.2}KIM001}{40}{section.3.2}% -\contentsline {subsection}{\numberline {3.2.1}Overview}{40}{subsection.3.2.1}% -\contentsline {subsection}{\numberline {3.2.2}Pulse shape}{40}{subsection.3.2.2}% -\contentsline {subsection}{\numberline {3.2.3}Voltage behavior}{41}{subsection.3.2.3}% -\contentsline {section}{\numberline {3.3}Mask Aligner controller "Walker"}{42}{section.3.3}% -\contentsline {subsection}{\numberline {3.3.1}Overview}{42}{subsection.3.3.1}% -\contentsline {subsection}{\numberline {3.3.2}Signal generation}{42}{subsection.3.3.2}% -\contentsline {subsection}{\numberline {3.3.3}Fast flank}{43}{subsection.3.3.3}% -\contentsline {subsection}{\numberline {3.3.4}Amplification}{44}{subsection.3.3.4}% -\contentsline {subsection}{\numberline {3.3.5}Programming}{45}{subsection.3.3.5}% -\contentsline {subsubsection}{Parameters}{45}{section*.55}% -\contentsline {paragraph}{Amplitude (amp)}{45}{section*.56}% -\contentsline {paragraph}{Voltage (volt)}{45}{section*.57}% -\contentsline {paragraph}{Channel}{45}{section*.58}% -\contentsline {paragraph}{Max Step}{45}{section*.59}% -\contentsline {paragraph}{Polarity}{45}{section*.60}% -\contentsline {subsection}{\numberline {3.3.6}Measured pulse shape}{45}{subsection.3.3.6}% -\contentsline {subsection}{\numberline {3.3.7}Operation with the Mask Aligner}{47}{subsection.3.3.7}% -\contentsline {chapter}{\numberline {4}Mask Aligner repairs and optimizations}{49}{chapter.4}% -\contentsline {section}{\numberline {4.1}Overview}{49}{section.4.1}% -\contentsline {section}{\numberline {4.2}General UHV device preparation}{50}{section.4.2}% -\contentsline {subsection}{\numberline {4.2.1}UHV compatible Soldering}{50}{subsection.4.2.1}% -\contentsline {section}{\numberline {4.3}Soldering anchors}{50}{section.4.3}% -\contentsline {section}{\numberline {4.4}Piezo regluing}{53}{section.4.4}% -\contentsline {section}{\numberline {4.5}Z3 motor}{54}{section.4.5}% -\contentsline {subsection}{\numberline {4.5.1}Front plate repair}{55}{subsection.4.5.1}% -\contentsline {subsection}{\numberline {4.5.2}Small capacitance stack}{57}{subsection.4.5.2}% -\contentsline {section}{\numberline {4.6}Feed through cabling optimizations}{58}{section.4.6}% -\contentsline {section}{\numberline {4.7}Final test}{59}{section.4.7}% -\contentsline {chapter}{\numberline {5}Evaporations and measurement}{61}{chapter.5}% -\contentsline {section}{\numberline {5.1}Evaporation configuration}{61}{section.5.1}% -\contentsline {section}{\numberline {5.2}Contamination}{63}{section.5.2}% -\contentsline {section}{\numberline {5.3}Penumbra}{64}{section.5.3}% -\contentsline {section}{\numberline {5.4}Tilt and deformation}{69}{section.5.4}% -\contentsline {section}{\numberline {5.5}Simulation}{72}{section.5.5}% -\contentsline {subsection}{\numberline {5.5.1}Overview and principle}{72}{subsection.5.5.1}% -\contentsline {subsection}{\numberline {5.5.2}Results}{74}{subsection.5.5.2}% -\contentsline {subsection}{\numberline {5.5.3}Software improvements}{77}{subsection.5.5.3}% -\contentsline {subsection}{\numberline {5.5.4}Final Remark}{78}{subsection.5.5.4}% -\contentsline {chapter}{Conclusions and Outlook}{79}{chapter*.94}% -\contentsline {chapter}{Bibliography}{80}{chapter*.95}% -\contentsline {chapter}{List of Abbreviations}{82}{chapter*.96}% -\contentsline {chapter}{Appendix}{i}{chapter*.97}% +\contentsline {subsection}{\numberline {2.3.3}Optical alignment}{25}{subsection.2.3.3}% +\contentsline {subsection}{\numberline {2.3.4}Capacitive distance measurements}{27}{subsection.2.3.4}% +\contentsline {subsection}{\numberline {2.3.5}Reproducibility}{30}{subsection.2.3.5}% +\contentsline {subsubsection}{Reproducibility when removing sample/mask}{30}{section*.30}% +\contentsline {section}{\numberline {2.4}Mask Aligner operation}{31}{section.2.4}% +\contentsline {subsection}{\numberline {2.4.1}Sample preparation}{31}{subsection.2.4.1}% +\contentsline {chapter}{\numberline {3}Electronics}{33}{chapter.3}% +\contentsline {section}{\numberline {3.1}RHK piezo motor controller}{33}{section.3.1}% +\contentsline {subsection}{\numberline {3.1.1}Overview}{33}{subsection.3.1.1}% +\contentsline {paragraph}{amplitude}{33}{section*.32}% +\contentsline {paragraph}{sweep period}{33}{section*.33}% +\contentsline {paragraph}{time between sweeps}{33}{section*.34}% +\contentsline {subsection}{\numberline {3.1.2}Pulse shape}{33}{subsection.3.1.2}% +\contentsline {section}{\numberline {3.2}KIM001}{34}{section.3.2}% +\contentsline {subsection}{\numberline {3.2.1}Overview}{34}{subsection.3.2.1}% +\contentsline {subsection}{\numberline {3.2.2}Pulse shape}{34}{subsection.3.2.2}% +\contentsline {subsection}{\numberline {3.2.3}Voltage behavior}{35}{subsection.3.2.3}% +\contentsline {section}{\numberline {3.3}Mask Aligner controller "Walker"}{36}{section.3.3}% +\contentsline {subsection}{\numberline {3.3.1}Overview}{36}{subsection.3.3.1}% +\contentsline {subsection}{\numberline {3.3.2}Signal generation}{36}{subsection.3.3.2}% +\contentsline {subsection}{\numberline {3.3.3}Fast flank}{37}{subsection.3.3.3}% +\contentsline {subsection}{\numberline {3.3.4}Amplification}{38}{subsection.3.3.4}% +\contentsline {subsection}{\numberline {3.3.5}Programming}{39}{subsection.3.3.5}% +\contentsline {subsubsection}{Parameters}{39}{section*.45}% +\contentsline {paragraph}{Amplitude (amp)}{39}{section*.46}% +\contentsline {paragraph}{Voltage (volt)}{39}{section*.47}% +\contentsline {paragraph}{Channel}{39}{section*.48}% +\contentsline {paragraph}{Max Step}{39}{section*.49}% +\contentsline {paragraph}{Polarity}{39}{section*.50}% +\contentsline {subsection}{\numberline {3.3.6}Measured pulse shape}{39}{subsection.3.3.6}% +\contentsline {subsection}{\numberline {3.3.7}Operation with the Mask Aligner}{41}{subsection.3.3.7}% +\contentsline {chapter}{\numberline {4}Mask Aligner repairs and optimizations}{43}{chapter.4}% +\contentsline {section}{\numberline {4.1}Overview}{43}{section.4.1}% +\contentsline {section}{\numberline {4.2}General UHV device preparation}{44}{section.4.2}% +\contentsline {subsection}{\numberline {4.2.1}UHV compatible Soldering}{44}{subsection.4.2.1}% +\contentsline {section}{\numberline {4.3}Soldering anchors}{44}{section.4.3}% +\contentsline {section}{\numberline {4.4}Piezo regluing}{47}{section.4.4}% +\contentsline {section}{\numberline {4.5}Z3 motor}{48}{section.4.5}% +\contentsline {subsection}{\numberline {4.5.1}Front plate repair}{49}{subsection.4.5.1}% +\contentsline {subsection}{\numberline {4.5.2}Small capacitance stack}{51}{subsection.4.5.2}% +\contentsline {section}{\numberline {4.6}Feed through cabling optimizations}{52}{section.4.6}% +\contentsline {section}{\numberline {4.7}Final test}{53}{section.4.7}% +\contentsline {chapter}{\numberline {5}Evaporations and measurement}{55}{chapter.5}% +\contentsline {section}{\numberline {5.1}Evaporation configuration}{55}{section.5.1}% +\contentsline {section}{\numberline {5.2}Contamination}{57}{section.5.2}% +\contentsline {section}{\numberline {5.3}Penumbra}{58}{section.5.3}% +\contentsline {section}{\numberline {5.4}Tilt and deformation}{63}{section.5.4}% +\contentsline {section}{\numberline {5.5}Simulation}{66}{section.5.5}% +\contentsline {subsection}{\numberline {5.5.1}Overview and principle}{66}{subsection.5.5.1}% +\contentsline {subsection}{\numberline {5.5.2}Results}{68}{subsection.5.5.2}% +\contentsline {subsection}{\numberline {5.5.3}Software improvements}{71}{subsection.5.5.3}% +\contentsline {subsection}{\numberline {5.5.4}Final Remark}{72}{subsection.5.5.4}% +\contentsline {chapter}{Conclusions and Outlook}{73}{chapter*.83}% +\contentsline {chapter}{Bibliography}{74}{chapter*.84}% +\contentsline {chapter}{List of Abbreviations}{76}{chapter*.85}% +\contentsline {chapter}{Appendix}{i}{chapter*.86}% \contentsline {section}{\numberline {A}LockIn amplifier settings}{i}{section.5.1}% \contentsline {section}{\numberline {B}Walker principle diagram}{ii}{section.5.2}% \contentsline {section}{\numberline {C}Walker circuit diagrams}{ii}{section.5.3}% \contentsline {section}{\numberline {D}New driver electronics}{vi}{section.5.4}% -\contentsline {paragraph}{pulse?}{vi}{section*.100}% -\contentsline {paragraph}{pol x}{vi}{section*.101}% -\contentsline {paragraph}{amp x}{vi}{section*.102}% -\contentsline {paragraph}{volt x}{vi}{section*.103}% -\contentsline {paragraph}{channel x}{vi}{section*.104}% -\contentsline {paragraph}{maxmstep x}{vi}{section*.105}% -\contentsline {paragraph}{step x}{vi}{section*.106}% -\contentsline {paragraph}{mstep x}{vi}{section*.107}% -\contentsline {paragraph}{cancel}{vii}{section*.108}% -\contentsline {paragraph}{help}{vii}{section*.109}% +\contentsline {paragraph}{pulse?}{vi}{section*.89}% +\contentsline {paragraph}{pol x}{vi}{section*.90}% +\contentsline {paragraph}{amp x}{vi}{section*.91}% +\contentsline {paragraph}{volt x}{vi}{section*.92}% +\contentsline {paragraph}{channel x}{vi}{section*.93}% +\contentsline {paragraph}{maxmstep x}{vi}{section*.94}% +\contentsline {paragraph}{step x}{vi}{section*.95}% +\contentsline {paragraph}{mstep x}{vi}{section*.96}% +\contentsline {paragraph}{cancel}{vii}{section*.97}% +\contentsline {paragraph}{help}{vii}{section*.98}% \contentsline {section}{\numberline {E}Raycast Simulation}{vii}{section.5.5}% -\contentsline {paragraph}{radius\_1}{vii}{section*.110}% -\contentsline {paragraph}{angle}{vii}{section*.111}% -\contentsline {paragraph}{radius\_mask}{vii}{section*.112}% -\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.113}% -\contentsline {paragraph}{distance\_sample}{vii}{section*.114}% -\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.115}% -\contentsline {paragraph}{running\_time}{vii}{section*.116}% -\contentsline {paragraph}{deposition\_gain}{vii}{section*.117}% -\contentsline {paragraph}{penalize\_deposition}{vii}{section*.118}% -\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.119}% -\contentsline {paragraph}{oscillation\_period}{vii}{section*.120}% -\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.121}% -\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.122}% -\contentsline {paragraph}{save\_intervall}{viii}{section*.123}% -\contentsline {paragraph}{oscillation\_dir}{viii}{section*.124}% -\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.125}% -\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.126}% -\contentsline {paragraph}{random\_seed}{viii}{section*.127}% -\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.128}% -\contentsline {paragraph}{resolution}{viii}{section*.129}% -\contentsline {paragraph}{path}{viii}{section*.130}% -\contentsline {chapter}{Acknowledgments}{ix}{chapter*.131}% +\contentsline {paragraph}{radius\_1}{vii}{section*.99}% +\contentsline {paragraph}{angle}{vii}{section*.100}% +\contentsline {paragraph}{radius\_mask}{vii}{section*.101}% +\contentsline {paragraph}{distance\_circle\_mask}{vii}{section*.102}% +\contentsline {paragraph}{distance\_sample}{vii}{section*.103}% +\contentsline {paragraph}{rays\_per\_frame}{vii}{section*.104}% +\contentsline {paragraph}{running\_time}{vii}{section*.105}% +\contentsline {paragraph}{deposition\_gain}{vii}{section*.106}% +\contentsline {paragraph}{penalize\_deposition}{vii}{section*.107}% +\contentsline {paragraph}{first\_layer\_deposition\_prob}{vii}{section*.108}% +\contentsline {paragraph}{oscillation\_period}{vii}{section*.109}% +\contentsline {paragraph}{delay\_oscill\_time}{viii}{section*.110}% +\contentsline {paragraph}{save\_in\_progress\_images}{viii}{section*.111}% +\contentsline {paragraph}{save\_intervall}{viii}{section*.112}% +\contentsline {paragraph}{oscillation\_dir}{viii}{section*.113}% +\contentsline {paragraph}{oscillation\_rot\_s}{viii}{section*.114}% +\contentsline {paragraph}{oscillation\_rot\_e}{viii}{section*.115}% +\contentsline {paragraph}{random\_seed}{viii}{section*.116}% +\contentsline {paragraph}{x\_min, x\_max, y\_min, y\_max}{viii}{section*.117}% +\contentsline {paragraph}{resolution}{viii}{section*.118}% +\contentsline {paragraph}{path}{viii}{section*.119}% +\contentsline {chapter}{Acknowledgments}{ix}{chapter*.120}%