diff --git a/hp4155/.ipynb_checkpoints/ctlm-checkpoint.ipynb b/hp4155/.ipynb_checkpoints/ctlm-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245
--- /dev/null
+++ b/hp4155/.ipynb_checkpoints/ctlm-checkpoint.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/hp4155/.ipynb_checkpoints/labview_ctlm-checkpoint.ipynb b/hp4155/.ipynb_checkpoints/labview_ctlm-checkpoint.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..363fcab7ed6e9634e198cf5555ceb88932c9a245
--- /dev/null
+++ b/hp4155/.ipynb_checkpoints/labview_ctlm-checkpoint.ipynb
@@ -0,0 +1,6 @@
+{
+ "cells": [],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/hp4155/ctlm.ipynb b/hp4155/ctlm.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..56c1cc39b805fa44770595685d2ff4c4f6b83b3d
--- /dev/null
+++ b/hp4155/ctlm.ipynb
@@ -0,0 +1,176 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "0b73312a-cf9d-4541-8ba6-70a54c9ca4f5",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import measurements\n",
+    "from measurements import *"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "2eb2ca08-1c7d-4c78-99f3-bfd33cc3110b",
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdin",
+     "output_type": "stream",
+     "text": [
+      "please press enter to continue with the next measurement or finish after the last measurement! \n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "     Voltage(V)  Current(A)\n",
+      "0     -10.00036      -0.050\n",
+      "1     -10.00044      -0.049\n",
+      "2     -10.00042      -0.048\n",
+      "3     -10.00036      -0.047\n",
+      "4     -10.00032      -0.046\n",
+      "..          ...         ...\n",
+      "96      9.99960       0.046\n",
+      "97      9.99950       0.047\n",
+      "98      9.99946       0.048\n",
+      "99      9.99956       0.049\n",
+      "100     9.99960       0.050\n",
+      "\n",
+      "[101 rows x 2 columns]\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHHCAYAAACvJxw8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIUElEQVR4nO3deVwVZf//8fdhBxFQURBFEXdz10RssVu5w3JJM3MrN1IrtUUzszSX7jstc8u8tX53aX2VLLW8y7xNXHLPvcx9ySVFsDTAFRDm94c3J48cRkDgcPT1fDzOQ8411zXzmTPCvM/MnDkWwzAMAQAAwC4XRxcAAABQnBGWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAKCI/fDDD7JYLPrhhx8cXQqAXCAsASgWjh49qoEDByo8PFxeXl7y8/PTfffdp+nTp+vKlSsaO3asLBbLLR8PPfSQJKlPnz7y9fU1XebcuXOt4zZs2JBtumEYCg0NlcViUbt27QpjtfNs2bJlGjt2rKPLAO4qbo4uAAC+++47denSRZ6enurVq5fq1q2rtLQ0bdiwQcOHD9fevXs1ePBgVatWzTrm4sWLeu6559SpUyc9/vjj1vagoKA8L9/Ly0uxsbG6//77bdrXrl2rU6dOydPTM/8rV8CWLVummTNnEpiAIkRYAuBQx44dU7du3VS5cmWtXr1a5cuXt04bNGiQjhw5ou+++07169dX/fr1rdP++OMPPffcc6pfv76eeuqp26rh0Ucf1cKFC/X+++/Lze2vP4uxsbFq0qSJ/vjjj9uaPwDnxmk4AA717rvv6uLFi/r4449tglKWatWq6cUXXyzUGrp3765z584pLi7O2paWlqZFixapR48euZ5PWFiY2rVrpxUrVqhhw4by8vJSnTp19NVXX+Vq/MKFC9WkSRN5e3srMDBQTz31lE6fPm2d3qdPH82cOVOSbE49AihchCUADvXtt98qPDxcLVq0cFgNYWFhioyM1Oeff25t++9//6vk5GR169YtT/M6fPiwunbtqkceeUQTJkyQm5ubunTpYhPE7Jk7d66efPJJubq6asKECerfv7+++uor3X///UpKSpIkDRw4UH//+98lSf/3f/9nfQAoXJyGA+AwKSkpOn36tB577DFHl6IePXpo5MiRunLliry9vTV//ny1bNlSISEheZrPoUOHtHjxYut1VDExMapVq5ZGjBhhDTo3S09P14gRI1S3bl2tW7dOXl5ekqT7779f7dq109SpUzVu3DhFRkaqRo0aiouLu+1TjwByjyNLABwmJSVFklSyZEkHVyI9+eSTunLlipYuXaoLFy5o6dKleToFlyUkJESdOnWyPvfz81OvXr20a9cuJSQk2B2zfft2nT17Vs8//7w1KElS27ZtVatWLX333Xd5XyEABYYjSwAcxs/PT5J04cIFB1cilS1bVlFRUYqNjdXly5eVkZGhJ554Is/zqVatWrbriGrUqCFJOn78uIKDg7ONOXHihCSpZs2a2abVqlXL7m0NABQdwhIAh/Hz81NISIj27Nnj6FIkXT8V179/fyUkJOiRRx5RQECAo0sCUAxwGg6AQ7Vr105Hjx7V5s2bHV2KOnXqJBcXF/3444/5OgUnSUeOHJFhGDZthw4dknT9QnJ7KleuLEk6ePBgtmkHDx60TpfEp98AByAsAXCoV199VSVKlNAzzzyjxMTEbNOPHj2q6dOnF0ktvr6+mjVrlsaOHav27dvnax7x8fH6+uuvrc9TUlL02WefqWHDhnZPwUlS06ZNVa5cOc2ePVupqanW9v/+97/av3+/2rZta20rUaKEJFk/IQeg8HEaDoBDVa1aVbGxseratatq165tcwfvTZs2aeHCherTp0++5p2enq5//OMf2dpLly6t559/3u6Y3r1752tZWWrUqKGYmBht27ZNQUFB+uSTT5SYmKg5c+bkOMbd3V3vvPOO+vbtq5YtW6p79+5KTEzU9OnTFRYWppdfftnat0mTJpKkF154QdHR0XJ1dc3z7Q0A5A1hCYDDdejQQbt379akSZP0n//8R7NmzZKnp6fq16+vyZMnq3///vmab1pamkaPHp2tvWrVqjmGpdtVvXp1zZgxQ8OHD9fBgwdVpUoVffHFF4qOjjYd16dPH/n4+GjixIkaMWKESpQooU6dOumdd96xuXbq8ccf15AhQ7RgwQLNmzdPhmEQloBCZjFuPrkOAMiXsLAw1a1bV0uXLnV0KQAKENcsAQAAmCAsAQAAmCAsAQAAmOCaJQAAABMcWQIAADBBWAIAADDBfZYKQGZmpuLj41WyZEm+igAAACdhGIYuXLigkJAQubjkfPyIsFQA4uPjFRoa6ugyAABAPvz222+qWLFijtMJSwWgZMmSkq6/2H5+fg6uBgAA5EZKSopCQ0Ot+/GcEJYKQNapNz8/P8ISAABO5laX0HCBNwAAgAnCEgAAgAnCEgAAgAmuWSoiGRkZSk9Pd3QZKGLu7u5ydXV1dBkAgNtAWCpkhmEoISFBSUlJji4FDhIQEKDg4GDuwQUAToqwVMiyglK5cuXk4+PDDvMuYhiGLl++rLNnz0qSypcv7+CKAAD5QVgqRBkZGdagVKZMGUeXAwfw9vaWJJ09e1blypXjlBwAOCEu8C5EWdco+fj4OLgSOFLW9ueaNQBwToSlIsCpt7sb2x8AnBthCQAAwARhCXny0EMP6aWXXpIkhYWFadq0aQ6tBwCAwkZYQr5t27ZNAwYMyFXfOylYWSyWbI8FCxY4uiwAQCHh03DIt7Jlyzq6BIeZM2eO2rRpY30eEBDguGJQdAxDSr98/Wd3H4nr0YBClZlpKD75iiSpQoC3w64B5cgScnTp0iX16tVLvr6+Kl++vCZPnmwz/cajRYZhaOzYsapUqZI8PT0VEhKiF154QdL1U3cnTpzQyy+/bD0SI0nnzp1T9+7dVaFCBfn4+KhevXr6/PPPbZbx0EMP6YUXXtCrr76q0qVLKzg4WGPHjrXpk5SUpIEDByooKEheXl6qW7euli5dap2+YcMGPfDAA/L29lZoaKheeOEFXbp06bZem6wbTWY9vLy8bmt+cBLpl6W3Q64/skITgEJzMe2a7n9nje5/Z43SMwyH1UFYKmKGYehy2jWHPAwjb//Rhg8frrVr1+o///mPVqxYoR9++EE7d+6023fx4sWaOnWqPvzwQx0+fFhLlixRvXr1JElfffWVKlasqPHjx+vMmTM6c+aMJOnq1atq0qSJvvvuO+3Zs0cDBgzQ008/ra1bt9rM+9NPP1WJEiW0ZcsWvfvuuxo/frzi4uIkSZmZmXrkkUe0ceNGzZs3T/v27dPEiROt9zM6evSo2rRpo86dO2v37t364osvtGHDBg0ePNg6/2effVa+vr6mj5sNGjRIgYGBatasmT755JM8v7YAAOfBabgidiU9Q3Xe/N4hy943Plo+Hrnb5BcvXtTHH3+sefPmqXXr1pKuh5aKFSva7X/y5EkFBwcrKipK7u7uqlSpkpo1ayZJKl26tFxdXVWyZEkFBwdbx1SoUEGvvPKK9fmQIUP0/fff68svv7SOlaT69etrzJgxkqTq1avrgw8+0KpVq/T3v/9dK1eu1NatW7V//37VqFFDkhQeHm4dO2HCBPXs2dN6UXr16tX1/vvvq2XLlpo1a5a8vLw0fvx4mzpuZfz48WrVqpV8fHy0YsUKPf/887p48aL1SBoA4M5CWIJdR48eVVpamiIiIqxtpUuXVs2aNe3279Kli6ZNm6bw8HC1adNGjz76qNq3by83t5z/i2VkZOjtt9/Wl19+qdOnTystLU2pqanZbuJZv359m+fly5e3foXITz/9pIoVK1qD0s1+/vln7d69W/Pnz7e2GYahzMxMHTt2TLVr11a5cuVUrlw58xfkBqNHj7b+3KhRI126dEmTJk0iLAHAHYqwVMS83V21b3y0w5ZdWEJDQ3Xw4EGtXLlScXFxev755zVp0iStXbtW7u7udsdMmjRJ06dP17Rp01SvXj2VKFFCL730ktLS0mz63TzeYrEoMzNT0l9fJ5KTixcvauDAgXaDTKVKlSRdPw03b968W84nJxEREXrrrbeUmpoqT09P0/kAAHKvuFzhQFgqYhaLJdenwhypatWqcnd315YtW6yh4s8//9ShQ4fUsmVLu2O8vb3Vvn17tW/fXoMGDVKtWrX0yy+/qHHjxvLw8FBGRoZN/40bN+qxxx7TU089Jen69UeHDh1SnTp1cl1n/fr1derUKR06dMju0aXGjRtr3759qlatWo7zyOtpuJv99NNPKlWqFEEJAAqRIz98Wvz32nAIX19fxcTEaPjw4SpTpozKlSunN954Qy4u9j8TMHfuXGVkZCgiIkI+Pj6aN2+evL29VblyZUnXPzm3bt06devWTZ6engoMDFT16tW1aNEibdq0SaVKldKUKVOUmJiYp7DUsmVLPfjgg+rcubOmTJmiatWq6cCBA7JYLGrTpo1GjBih5s2ba/DgwXrmmWdUokQJ7du3T3Fxcfrggw8kKU+n4b799lslJiaqefPm8vLyUlxcnN5+++3bClsAgOKNsIQcTZo0SRcvXlT79u1VsmRJDRs2TMnJyXb7BgQEaOLEiRo6dKgyMjJUr149ffvttypTpoyk60dvBg4cqKpVqyo1NVWGYWjUqFH69ddfFR0dLR8fHw0YMEAdO3bMcRk5Wbx4sV555RV1795dly5dUrVq1TRx4kRJ1488rV27Vm+88YYeeOABGYahqlWrqmvXrvl6Tdzd3TVz5ky9/PLLMgxD1apV05QpU9S/f/98zQ8AUPxZDD7zfNtSUlLk7++v5ORk+fn5WduvXr2qY8eOqUqVKtyH5y7G/4M7SNql6/dYkqTX4yWPEo6tB7jDJV9JV4NxKyRJh//5iNxdC/aORzntv2/GfZYAAABMEJYAAECx58jzYIQlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlAABQLDnyrt03IiwBAACYICwBAIBiqbjcNpuwBAAAYIKwhNuyceNGubm5qWHDhrc1n/Pnz2vIkCGqWbOmvL29ValSJb3wwgt5/p44AAAKGl+ki3xLSkpSr1691Lp1ayUmJt7WvOLj4xUfH6/33ntPderU0YkTJ/Tss88qPj5eixYtKqCKAQDIO44sIZuPPvpIISEhyszMtGl/7LHH1K9fP+vzZ599Vj169FBkZKTp/DIzM1WxYkXNmjXLpn3Xrl1ycXHRiRMnVLduXS1evFjt27dX1apV1apVK/3zn//Ut99+q2vXrhXcygEAkEeEpaJmGNe/udwRj1xeKdelSxedO3dOa9assbadP39ey5cvV8+ePSVJc+bM0a+//qoxY8bccn4uLi7q3r27YmNjbdrnz5+v++67T5UrV7Y7LutboN3cOAAKAHc7R95GgL1QUUu/LL0d4phlvx4veZS4ZbdSpUrpkUceUWxsrFq3bi1JWrRokQIDA/W3v/1Nhw8f1muvvab169fnOsj07NlTkydP1smTJ1WpUiVlZmZqwYIFGjVqlN3+f/zxh9566y0NGDAg9+sHAEAh4MgS7OrZs6cWL16s1NRUSdePAnXr1k2GYahHjx4aN26catSoYXfs/Pnz5evra32sX79eDRs2VO3ata1Hl9auXauzZ8+qS5cu2canpKSobdu2qlOnjsaOHVto6wgAQG5wZKmouftcP8LjqGXnUvv27WUYhr777jvde++9Wr9+vaZOnaoLFy5o+/bt2rVrlwYPHizp+jVJhmHIzc1NK1asUIcOHRQREWGdV4UKFSRdD2CxsbF67bXXFBsbqzZt2qhMmTI2y71w4YLatGmjkiVL6uuvv5a7u3sBrDgAAPlHWCpqFkuuToU5mpeXlx5//HHNnz9fR44cUc2aNdW4cWNlZmbql19+sen7r3/9S6tXr9aiRYtUpUoVlShRQiVLlsw2zx49emjUqFHasWOHFi1apNmzZ9tMT0lJUXR0tDw9PfXNN9/Iy8urUNcRAIDcICwhRz179lS7du20d+9ePfXUU5KuX6xdt25dm37lypWTl5dXtvabhYWFqUWLFoqJiVFGRoY6dOhgnZaSkqKHH35Yly9f1rx585SSkqKUlBRJUtmyZeXq6lrAawcAcCaOvJs3YQk5atWqlUqXLq2DBw+qR48eBTLPnj176vnnn1evXr3k7e1tbd+5c6e2bNkiSapWrZrNmGPHjiksLKxAlg8AQF5xgTdy5OLiovj4eBmGofDw8Bz7jR07Vj/99FOu5vncc8/JMAx9+umnNu0PPfSQDMOw+yAoAQAcyenC0syZMxUWFiYvLy9FRERo69atpv0XLlyoWrVqycvLS/Xq1dOyZcty7Pvss8/KYrFo2rRpBVw1AABwVk4Vlr744gsNHTpUY8aM0c6dO9WgQQNFR0fr7Nmzdvtv2rRJ3bt3V0xMjHbt2qWOHTuqY8eO2rNnT7a+X3/9tX788UeFhDjoHkgAAKBYcqqwNGXKFPXv3199+/ZVnTp1NHv2bPn4+OiTTz6x23/69Olq06aNhg8frtq1a+utt95S48aN9cEHH9j0O336tIYMGaL58+fzUXUAAIoJR961+0ZOE5bS0tK0Y8cORUVFWdtcXFwUFRWlzZs32x2zefNmm/6SFB0dbdM/MzNTTz/9tIYPH6577rmncIoHAABOy2k+DffHH38oIyNDQUFBNu1BQUE6cOCA3TEJCQl2+yckJFifv/POO3Jzc9MLL7yQ61pSU1Otd7aWZP2Ie04MR37eEQ7H9geA/Ckufz6d5shSYdixY4emT5+uuXPnypKHY30TJkyQv7+/9REaGmq3X9YpvcuXLxdIvXBOWdufU7wA4Jyc5shSYGCgXF1dlZiYaNOemJio4OBgu2OCg4NN+69fv15nz55VpUqVrNMzMjI0bNgwTZs2TcePH7c735EjR2ro0KHW5ykpKXYDk6urqwICAqwXoPv4+OQplMG5GYahy5cv6+zZswoICODGmgDgpJwmLHl4eKhJkyZatWqVOnbsKOn69UarVq2yfkfZzSIjI7Vq1Sq99NJL1ra4uDhFRkZKkp5++mm71zQ9/fTT6tu3b461eHp6ytPTM1d1ZwWznD6xhztfQEBAjoEeAFD8OU1YkqShQ4eqd+/eatq0qZo1a6Zp06bp0qVL1mDTq1cvVahQQRMmTJAkvfjii2rZsqUmT56stm3basGCBdq+fbs++ugjSVKZMmWyfZGru7u7goODVbNmzQKp2WKxqHz58ipXrpzS09MLZJ5wHu7u7hxRAoAC4MgTM04Vlrp27arff/9db775phISEtSwYUMtX77cehH3yZMn5eLy12VYLVq0UGxsrEaNGqXXX39d1atX15IlS275HWaFwdXVlZ0mAABOyGLwUZ3blpKSIn9/fyUnJ8vPz8/R5QAoLGmXpLf/d+Pa1+MljxKOrQe4wyVfSVeDcSskSYf/+YjcXQv2c2m53X/f1Z+GAwAAuBXCEgAAgAnCEgAAgAnCEgAAKPYceYU1YQkAAMAEYQkAAMAEYQkAAMAEYQkAABRLxeXrVAlLAAAAJghLAAAAJghLAACgWCouX8hGWAIAADBBWAIAADBBWAIAADBBWAIAAMWeI28jQFgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAADFniPv5k1YAgAAMEFYAgAAMEFYAgAAMEFYAgAAxZIj79p9I8ISAACACcISAACACcISAAAolhx5u4AbEZYAAABMEJYAAABMEJYAAABMEJYAAECx58jbCBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAABAsefIu3kTlgAAAEwQlgAAAEwQlgAAAEwQlgAAQLHkyLt234iwBAAAYIKwBAAAiiVHfgLuRoQlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlAABQ7DnyNgKEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAUOw58m7ehCUAAAAThCUAAAATTheWZs6cqbCwMHl5eSkiIkJbt2417b9w4ULVqlVLXl5eqlevnpYtW2adlp6erhEjRqhevXoqUaKEQkJC1KtXL8XHxxf2agAAACfhVGHpiy++0NChQzVmzBjt3LlTDRo0UHR0tM6ePWu3/6ZNm9S9e3fFxMRo165d6tixozp27Kg9e/ZIki5fvqydO3dq9OjR2rlzp7766isdPHhQHTp0KMrVAgAAxZjFMBx5yVTeRERE6N5779UHH3wgScrMzFRoaKiGDBmi1157LVv/rl276tKlS1q6dKm1rXnz5mrYsKFmz55tdxnbtm1Ts2bNdOLECVWqVClXdaWkpMjf31/Jycny8/PLx5oBcAppl6S3Q67//Hq85FHCsfUAd7iUq+mqP3aFJOnQPx6Rh1vBHuPJ7f7baY4spaWlaceOHYqKirK2ubi4KCoqSps3b7Y7ZvPmzTb9JSk6OjrH/pKUnJwsi8WigICAAqkbAAA4NzdHF5Bbf/zxhzIyMhQUFGTTHhQUpAMHDtgdk5CQYLd/QkKC3f5Xr17ViBEj1L17d9OEmZqaqtTUVOvzlJSU3K4GAADIpeJy7stpjiwVtvT0dD355JMyDEOzZs0y7TthwgT5+/tbH6GhoUVUJQAAdye+SDcXAgMD5erqqsTERJv2xMREBQcH2x0THBycq/5ZQenEiROKi4u75XVHI0eOVHJysvXx22+/5WONAACAM3CasOTh4aEmTZpo1apV1rbMzEytWrVKkZGRdsdERkba9JekuLg4m/5ZQenw4cNauXKlypQpc8taPD095efnZ/MAAAB3Jqe5ZkmShg4dqt69e6tp06Zq1qyZpk2bpkuXLqlv376SpF69eqlChQqaMGGCJOnFF19Uy5YtNXnyZLVt21YLFizQ9u3b9dFHH0m6HpSeeOIJ7dy5U0uXLlVGRob1eqbSpUvLw8PDMSsKAACKDacKS127dtXvv/+uN998UwkJCWrYsKGWL19uvYj75MmTcnH562BZixYtFBsbq1GjRun1119X9erVtWTJEtWtW1eSdPr0aX3zzTeSpIYNG9osa82aNXrooYeKZL0AAEDx5VT3WSquuM8ScJfgPktAkUq+kq4G467fZ+nwPx+Ruyv3WQIAACh2CEsAAAAmCEsAAAAmCEsAAKDYc+QV1oQlAABQLDnyrt03IiwBAACYICwBAACYICwBAIBiqbjcCZKwBAAAYIKwBAAAYIKwBAAAYIKwBAAAij1H3kaAsAQAAGCCsAQAAGCCsAQAAGCCsAQAAGCCsAQAAGCCsAQAAIo9R97Nm7AEAABggrAEAABggrAEAABggrAEAACKJUfetftGhCUAAAAThCUAAFAsOfITcDciLAEAAJggLAEAAJggLAEAAJhwy8+g1NRUbdmyRSdOnNDly5dVtmxZNWrUSFWqVCno+gAAABwqT2Fp48aNmj59ur799lulp6fL399f3t7eOn/+vFJTUxUeHq4BAwbo2WefVcmSJQurZgAAcJdx5G0Ecn0arkOHDuratavCwsK0YsUKXbhwQefOndOpU6d0+fJlHT58WKNGjdKqVatUo0YNxcXFFWbdAAAARSLXR5batm2rxYsXy93d3e708PBwhYeHq3fv3tq3b5/OnDlTYEUCAAA4Sq7D0sCBA3PVLyMjQ3Xq1FGdOnXyXRQAAEBxUWCfhjt06JBeffVVVaxYsaBmCQAA4HC3FZYuX76sOXPm6IEHHlCdOnW0bt06DR06tKBqAwAAcLh83Trgxx9/1L///W8tXLhQlSpV0v79+7VmzRo98MADBV0fAACAQ7/6JE9HliZPnqx77rlHTzzxhEqVKqV169bpl19+kcViUZkyZQqrRgAAAIfJ05GlESNGaMSIERo/frxcXV0LqyYAAIBiI09Hlt566y0tXLhQVapU0YgRI7Rnz57CqgsAAKBYyFNYGjlypA4dOqT/+7//U0JCgiIiItSgQQMZhqE///yzsGoEAAB3IUfetftG+fo0XMuWLfXpp58qISFBzz//vJo0aaKWLVuqRYsWmjJlSkHXCAAA4DC3deuAkiVLauDAgdqyZYt27dqlZs2aaeLEiQVVGwAAuIs58hNwNyqwm1LWq1dP06ZN0+nTpwtqlgAAAA6X67C0YMGCXPVzd3fXb7/9po0bN+a7KAAAgOIi12Fp1qxZql27tt59913t378/2/Tk5GQtW7ZMPXr0UOPGjXXu3LkCLRQAAMARcn2fpbVr1+qbb77RjBkzNHLkSJUoUUJBQUHy8vLSn3/+qYSEBAUGBqpPnz7as2ePgoKCCrNuAACAIpGnm1J26NBBHTp00O+//66NGzfqxIkTunLligIDA9WoUSM1atRILi4FdhkUAACAJMfeRiBf3w1XtmxZdezYsYBLAQAAKH7ydRgoPDzc7jVJSUlJCg8Pv+2iAAAAiot8haXjx48rIyMjW3tqaiq3DgAAAHeUPJ2G++abb6w/f//99/L397c+z8jI0KpVqxQWFlZgxQEAADhansJS1nVKFotFvXv3tpnm7u6usLAwTZ48ucCKAwAAkBx7N+88haXMzExJUpUqVbRt2zYFBgYWSlEAAADFRb4+DXfs2LGCrgMAAKBYyldYkqRVq1Zp1apVOnv2rPWIU5ZPPvnktgsDAAAoDvIVlsaNG6fx48eradOmKl++vCyOvFMUAABAIcpXWJo9e7bmzp2rp59+uqDrAQAAkOTYu3bfKF9hKS0tTS1atCjoWgAAwE0Mw5BhSJmGocz//fvX8+ttxk3TbnyeaXd81rhb98nMNGTo5uXe0CdTNnVk9f2rrr/6ZBv/v/XLzLS3btKV9Oz3dHSEfIWlZ555RrGxsRo9enRB13NLM2fO1KRJk5SQkKAGDRpoxowZatasWY79Fy5cqNGjR+v48eOqXr263nnnHT366KPW6YZhaMyYMfp//+//KSkpSffdd59mzZql6tWrF8XqAIBVTju4G3cepjvBzOufrba7w7tph2XI/k7R7jKyasu8dR32as5Wh5FTAMje56953bDjNQkMOYeK7Dt3I9trnvPOPXcBIOu1vaGuzJyXYeh/QeQWQQiSh6uLXJztu+GuXr2qjz76SCtXrlT9+vXl7u5uM33KlCkFUtzNvvjiCw0dOlSzZ89WRESEpk2bpujoaB08eFDlypXL1n/Tpk3q3r27JkyYoHbt2ik2NlYdO3bUzp07VbduXUnSu+++q/fff1+ffvqpqlSpotGjRys6Olr79u2Tl5dXoawHcMt3fZk3/4HOvlPM/gfV/k7R3rvPm/81e2eZtaO65bvPrB1FTjufPPax7riVw3pk23FnvV45v+O9cRlSLl8r/dXHI/Oqsm7N++j09bosz7yv1407VXaKKCQuFsnFYpGLxSKL9Wf99dzFIouynltu6H/9XoouLjeMl26Yxw3zc8k+/q955twnaxlZfV1c/rfMm2vM6iuL7qseKDfXfH3pSIGwGIaR51/Rv/3tbznP0GLR6tWrb6uonEREROjee+/VBx98IOn6fZ9CQ0M1ZMgQvfbaa9n6d+3aVZcuXdLSpUutbc2bN1fDhg01e/ZsGYahkJAQDRs2TK+88ookKTk5WUFBQZo7d666deuWq7pSUlLk7++v5ORk+fn5FcCaXpeRaSg+6Yrp4dac/uia7QRz+44uN33+2qGZ7/BuHG/7jtZ+H5sAYLLDu3nnk5t3nzJ9rWzH5+Xw982hIadl5P03DsWFt65qv1c/SVLtq5/oihz7hsqS087npp2izU7wfzsfuzvFbDvV/83TZId38045N33s/XvjMrPtVHPR5695me94XVwsOb9WJgHAZpkmO/frr5flFnXkplb765/T63njeD50lXu53X/n68jSmjVr8l1YfqWlpWnHjh0aOXKktc3FxUVRUVHavHmz3TGbN2/W0KFDbdqio6O1ZMkSSdfvF5WQkKCoqCjrdH9/f0VERGjz5s05hqXU1FSlpqZan6ekpOR3tUz1mbNV6w//USjzhnO51R/Lv/5A3/oPau53Ptn/Nd2pWm71bjZrXuY7vL92aH/t1M363Pju095O0e5OVbcKAH/VeuNzt4wr0oLr2+T/+kVIHj52XyN7O7zsoeIWfbLqU06hgp0iUFTyfZ8lSTpy5IiOHj2qBx98UN7e3jIMo9B+ef/44w9lZGQoKCjIpj0oKEgHDhywOyYhIcFu/4SEBOv0rLac+tgzYcIEjRs3Ls/rkFdlfT3ttnu7u8rHwzXbzifHw602f6AL8F2fS07vZu29A7v5HZr9HZ7NTlW37mO+Xnbe9eWiT1abcrHDs66jTPq43FSrburjcvO6Zd9JslMsJtIuWX9sGlZK8ijhwGIAFJV8haVz587pySef1Jo1a2SxWHT48GGFh4crJiZGpUqVuuO/H27kyJE2R6xSUlIUGhpa4MuZ/GQDPRVZWbFbTurbn+OVeu36zT9dLNLD9wSrZ0Ql1a3gX+DLBQAAf8nX1VIvv/yy3N3ddfLkSfn4+Fjbu3btquXLlxdYcTcKDAyUq6urEhMTbdoTExMVHBxsd0xwcLBp/6x/8zJPSfL09JSfn5/NozBYLBY1rlRK73VpoK2vR+nNdnVUtWwJXUrL0OdbT6rdjA16/F8blZhytVCWDwAA8hmWVqxYoXfeeUcVK1a0aa9evbpOnDhRIIXdzMPDQ02aNNGqVausbZmZmVq1apUiIyPtjomMjLTpL0lxcXHW/lWqVFFwcLBNn5SUFG3ZsiXHeTqKv4+7+t1fRSuHttSCAc3VvkGI3F0t2nkyST8cPOvo8gAAuGPl6zTcpUuXbI4oZTl//rw8Pe1fZ1MQhg4dqt69e6tp06Zq1qyZpk2bpkuXLqlv376SpF69eqlChQqaMGGCJOnFF19Uy5YtNXnyZLVt21YLFizQ9u3b9dFHH0m6fuTmpZde0j/+8Q9Vr17deuuAkJAQdezYsdDW43ZYLBY1Dy+j5uFlNOCzDK3Yl6iMzFuPAwAA+ZOvsPTAAw/os88+01tvvSXp+g48MzNT7777rultBW5X165d9fvvv+vNN99UQkKCGjZsqOXLl1sv0D558qRcXP46WNaiRQvFxsZq1KhRev3111W9enUtWbLEeo8lSXr11Vd16dIlDRgwQElJSbr//vu1fPly7rEEAAAk5fM+S3v27FHr1q3VuHFjrV69Wh06dNDevXt1/vx5bdy4UVWrVi2MWoutwrrP0q0M+Gy7VuxL1Nud6qlHRKUiWy5w10q7JL0dcv3n1+P5NBzg5HK7/87XNUt169bVoUOHdP/99+uxxx7TpUuX9Pjjj2vXrl13XVACAAB3tjyfhktPT1ebNm00e/ZsvfHGG4VREwAAQLGR5yNL7u7u2r17d2HUAgAAUOzk6zTcU089pY8//rigawEAACh28vVpuGvXrumTTz7RypUr1aRJE5UoYXuR45QpUwqkOAAAAEfLV1jas2ePGjduLEk6dOiQzTS+wwoAANxJ8hyWMjIyNG7cONWrV0+lSpUqjJoAAACKjTxfs+Tq6qqHH35YSUlJhVAOAABA8ZLv+yz9+uuvBV0LAABAsZOvsPSPf/xDr7zyipYuXaozZ84oJSXF5oGikedbrwMAgDzL1wXejz76qCSpQ4cONhd0G4Yhi8WijIyMgqkOAADAwfIVltasWVPQdQAAABRL+QpLLVu2LOg6AAAAiqV8haV169aZTn/wwQfzVQwAAEBxk6+w9NBDD2Vru/HaJa5ZAgAAd4p8fRruzz//tHmcPXtWy5cv17333qsVK1YUdI0AAAAOk68jS/7+/tna/v73v8vDw0NDhw7Vjh07brswAACA4iBfR5ZyEhQUpIMHDxbkLGGCb+EDAKDw5evI0u7du22eG4ahM2fOaOLEiWrYsGFB1AUAAFAs5CssNWzYUBaLRYZhew/p5s2b65NPPimQwgAAAIqDfIWlY8eO2Tx3cXFR2bJl5eXlVSBFAQAAFBd5umZp9erVqlOnjkqVKqXKlStbH6GhoUpNTdU999yj9evXF1atAAAARS5PYWnatGnq37+//Pz8sk3z9/fXwIEDNWXKlAIrDgAAwNHyFJZ+/vlntWnTJsfpDz/8MLcNKELGrbsAAIDblKewlJiYKHd39xynu7m56ffff7/togAAAIqLPIWlChUqaM+ePTlO3717t8qXL3/bRQEAABQXeQpLjz76qEaPHq2rV69mm3blyhWNGTNG7dq1K7DiAAAAHC1Ptw4YNWqUvvrqK9WoUUODBw9WzZo1JUkHDhzQzJkzlZGRoTfeeKNQCgUAAHCEPIWloKAgbdq0Sc8995xGjhxpvSmlxWJRdHS0Zs6cqaCgoEIpFAAAwBHyfFPKypUra9myZfrzzz915MgRGYah6tWrq1SpUoVRHwAAgEPl6w7eklSqVCnde++9BVkLAABAsZOnC7wBAADuNoQlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlAAAAE4QlJ2ZxdAEAANwFCEsAAAAmCEt3AEOGo0sAAOCORVi6A1g4IQcAQKEhLAEAAJggLAEAAJggLDkxrlQCAKDwEZYAAABMEJYAAABMEJYAAABMEJYAAABMEJYAAABMEJYAAABMEJYAAABMEJacGF9yAgBA4SMsAQAAmCAsAQAAmCAsAQAAmCAsAQAAmHCasHT+/Hn17NlTfn5+CggIUExMjC5evGg65urVqxo0aJDKlCkjX19fde7cWYmJidbpP//8s7p3767Q0FB5e3urdu3amj59emGvCgAAcCJOE5Z69uypvXv3Ki4uTkuXLtW6des0YMAA0zEvv/yyvv32Wy1cuFBr165VfHy8Hn/8cev0HTt2qFy5cpo3b5727t2rN954QyNHjtQHH3xQ2KsDAACchJujC8iN/fv3a/ny5dq2bZuaNm0qSZoxY4YeffRRvffeewoJCck2Jjk5WR9//LFiY2PVqlUrSdKcOXNUu3Zt/fjjj2revLn69etnMyY8PFybN2/WV199pcGDBxf+igEAgGLPKY4sbd68WQEBAdagJElRUVFycXHRli1b7I7ZsWOH0tPTFRUVZW2rVauWKlWqpM2bN+e4rOTkZJUuXdq0ntTUVKWkpNg8AADAnckpwlJCQoLKlStn0+bm5qbSpUsrISEhxzEeHh4KCAiwaQ8KCspxzKZNm/TFF1/c8vTehAkT5O/vb32EhobmfmUKkOGQpQIAcHdxaFh67bXXZLFYTB8HDhwoklr27Nmjxx57TGPGjNHDDz9s2nfkyJFKTk62Pn777bciqREAABQ9h16zNGzYMPXp08e0T3h4uIKDg3X27Fmb9mvXrun8+fMKDg62Oy44OFhpaWlKSkqyObqUmJiYbcy+ffvUunVrDRgwQKNGjbpl3Z6envL09LxlPwAA4PwcGpbKli2rsmXL3rJfZGSkkpKStGPHDjVp0kSStHr1amVmZioiIsLumCZNmsjd3V2rVq1S586dJUkHDx7UyZMnFRkZae23d+9etWrVSr1799Y///nPAlgrAABwJ3GKa5Zq166tNm3aqH///tq6das2btyowYMHq1u3btZPwp0+fVq1atXS1q1bJUn+/v6KiYnR0KFDtWbNGu3YsUN9+/ZVZGSkmjdvLun6qbe//e1vevjhhzV06FAlJCQoISFBv//+u8PWFQAAFC9OcesASZo/f74GDx6s1q1by8XFRZ07d9b7779vnZ6enq6DBw/q8uXL1rapU6da+6ampio6Olr/+te/rNMXLVqk33//XfPmzdO8efOs7ZUrV9bx48eLZL0AAEDxZjEMgw9V3aaUlBT5+/srOTlZfn5+Rbbc/p9tV9y+RL3dqZ56RFQqsuUCd620S9Lb/7uv2+vxkkcJx9YD4Lbkdv/tFKfhAAAAHIWwBAAAYIKwBAAAYIKwBAAAYIKw5MQsji4AAIC7AGEJAADABGHpDmDwlboAABQawtIdwMIJOQAACg1hCQAAwARhCQAAwARhCQAAwARhCQAAwARhCQAAwARhyYlxwwAAAAofYQkAAMAEYQkAAMAEYQkAAMAEYQkAAMAEYQkAAMAEYQkAAMAEYQkAAMAEYcmJWRxdAAAAdwHCEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCkhMzHF0AAAB3AcISAACACcISAACACcISAACACcISAACACcISAACACcISAACACcISAACACcISAACACcISAACACcISAACACcKSE7M4ugAAAO4ChCUAAAAThCUAAAAThCUAAAAThCUAAAAThCUnZji6AAAA7gKEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAABOEJQAAABNOE5bOnz+vnj17ys/PTwEBAYqJidHFixdNx1y9elWDBg1SmTJl5Ovrq86dOysxMdFu33PnzqlixYqyWCxKSkoqhDUAAADOyGnCUs+ePbV3717FxcVp6dKlWrdunQYMGGA65uWXX9a3336rhQsXau3atYqPj9fjjz9ut29MTIzq169fGKUXGoujCwAA4C7gFGFp//79Wr58uf79738rIiJC999/v2bMmKEFCxYoPj7e7pjk5GR9/PHHmjJlilq1aqUmTZpozpw52rRpk3788UebvrNmzVJSUpJeeeWVolgdAADgRJwiLG3evFkBAQFq2rSptS0qKkouLi7asmWL3TE7duxQenq6oqKirG21atVSpUqVtHnzZmvbvn37NH78eH322Wdyccndy5GamqqUlBSbBwAAuDM5RVhKSEhQuXLlbNrc3NxUunRpJSQk5DjGw8NDAQEBNu1BQUHWMampqerevbsmTZqkSpUq5bqeCRMmyN/f3/oIDQ3N2woBAACn4dCw9Nprr8lisZg+Dhw4UGjLHzlypGrXrq2nnnoqz+OSk5Otj99++62QKgQAAI7m5siFDxs2TH369DHtEx4eruDgYJ09e9am/dq1azp//ryCg4PtjgsODlZaWpqSkpJsji4lJiZax6xevVq//PKLFi1aJEkyDEOSFBgYqDfeeEPjxo2zO29PT095enrmZhUBAICTc2hYKlu2rMqWLXvLfpGRkUpKStKOHTvUpEkTSdeDTmZmpiIiIuyOadKkidzd3bVq1Sp17txZknTw4EGdPHlSkZGRkqTFixfrypUr1jHbtm1Tv379tH79elWtWvV2Vw8AANwBHBqWcqt27dpq06aN+vfvr9mzZys9PV2DBw9Wt27dFBISIkk6ffq0Wrdurc8++0zNmjWTv7+/YmJiNHToUJUuXVp+fn4aMmSIIiMj1bx5c0nKFoj++OMP6/JuvtYJAADcnZwiLEnS/PnzNXjwYLVu3VouLi7q3Lmz3n//fev09PR0HTx4UJcvX7a2TZ061do3NTVV0dHR+te//uWI8gEAgJNymrBUunRpxcbG5jg9LCzMes1RFi8vL82cOVMzZ87M1TIeeuihbPMAAAB3N6e4dQDsI9YBAFD4CEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEsAAAAmCEtOzOLoAgAAuAsQlgAAAEwQlgAAAEwQlgAAAEwQlgAAAEwQlpyY4egCAAC4CxCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWAAAATBCWnJiHq4s83VzkylYEAKDQWAzD4CvGblNKSor8/f2VnJwsPz8/R5cDoLAYhpR++frP7j6SxeLYegDcltzuv92KsCYAcG4Wi+RRwtFVAChinMABAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAwQVgCAAAw4eboAu4EhmFIklJSUhxcCQAAyK2s/XbWfjwnhKUCcOHCBUlSaGiogysBAAB5deHCBfn7++c43WLcKk7hljIzMxUfH6+SJUvKYrEU2XJTUlIUGhqq3377TX5+fkW23KJyJ68f6+a87uT1Y92c1528foW5boZh6MKFCwoJCZGLS85XJnFkqQC4uLioYsWKDlu+n5/fHffLcaM7ef1YN+d1J68f6+a87uT1K6x1MzuilIULvAEAAEwQlgAAAEwQlpyYp6enxowZI09PT0eXUiju5PVj3ZzXnbx+rJvzupPXrzisGxd4AwAAmODIEgAAgAnCEgAAgAnCEgAAgAnCEgAAgAnCUjH3z3/+Uy1atJCPj48CAgLs9jl58qTatm0rHx8flStXTsOHD9e1a9dM53v+/Hn17NlTfn5+CggIUExMjC5evFgIa5A7P/zwgywWi93Htm3bchz30EMPZev/7LPPFmHluRcWFpat1okTJ5qOuXr1qgYNGqQyZcrI19dXnTt3VmJiYhFVnDvHjx9XTEyMqlSpIm9vb1WtWlVjxoxRWlqa6bjivO1mzpypsLAweXl5KSIiQlu3bjXtv3DhQtWqVUteXl6qV6+eli1bVkSV5t6ECRN07733qmTJkipXrpw6duyogwcPmo6ZO3dutm3k5eVVRBXn3tixY7PVWatWLdMxzrDNstj722GxWDRo0CC7/Yvzdlu3bp3at2+vkJAQWSwWLVmyxGa6YRh68803Vb58eXl7eysqKkqHDx++5Xzz+jubV4SlYi4tLU1dunTRc889Z3d6RkaG2rZtq7S0NG3atEmffvqp5s6dqzfffNN0vj179tTevXsVFxenpUuXat26dRowYEBhrEKutGjRQmfOnLF5PPPMM6pSpYqaNm1qOrZ///424959990iqjrvxo8fb1PrkCFDTPu//PLL+vbbb7Vw4UKtXbtW8fHxevzxx4uo2tw5cOCAMjMz9eGHH2rv3r2aOnWqZs+erddff/2WY4vjtvviiy80dOhQjRkzRjt37lSDBg0UHR2ts2fP2u2/adMmde/eXTExMdq1a5c6duyojh07as+ePUVcubm1a9dq0KBB+vHHHxUXF6f09HQ9/PDDunTpkuk4Pz8/m2104sSJIqo4b+655x6bOjds2JBjX2fZZlm2bdtms25xcXGSpC5duuQ4prhut0uXLqlBgwaaOXOm3envvvuu3n//fc2ePVtbtmxRiRIlFB0dratXr+Y4z7z+zuaLAacwZ84cw9/fP1v7smXLDBcXFyMhIcHaNmvWLMPPz89ITU21O699+/YZkoxt27ZZ2/773/8aFovFOH36dIHXnh9paWlG2bJljfHjx5v2a9mypfHiiy8WTVG3qXLlysbUqVNz3T8pKclwd3c3Fi5caG3bv3+/IcnYvHlzIVRYcN59912jSpUqpn2K67Zr1qyZMWjQIOvzjIwMIyQkxJgwYYLd/k8++aTRtm1bm7aIiAhj4MCBhVrn7Tp79qwhyVi7dm2OfXL6u1PcjBkzxmjQoEGu+zvrNsvy4osvGlWrVjUyMzPtTneW7SbJ+Prrr63PMzMzjeDgYGPSpEnWtqSkJMPT09P4/PPPc5xPXn9n84MjS05u8+bNqlevnoKCgqxt0dHRSklJ0d69e3McExAQYHPEJioqSi4uLtqyZUuh15wb33zzjc6dO6e+ffvesu/8+fMVGBiounXrauTIkbp8+XIRVJg/EydOVJkyZdSoUSNNmjTJ9HTpjh07lJ6erqioKGtbrVq1VKlSJW3evLkoys235ORklS5d+pb9itu2S0tL044dO2xecxcXF0VFReX4mm/evNmmv3T9d9AZtpGkW26nixcvqnLlygoNDdVjjz2W498VRzt8+LBCQkIUHh6unj176uTJkzn2ddZtJl3/Pzpv3jz169fP9IvbnWW73ejYsWNKSEiw2Tb+/v6KiIjIcdvk53c2P/giXSeXkJBgE5QkWZ8nJCTkOKZcuXI2bW5ubipdunSOY4raxx9/rOjo6Ft+QXGPHj1UuXJlhYSEaPfu3RoxYoQOHjyor776qogqzb0XXnhBjRs3VunSpbVp0yaNHDlSZ86c0ZQpU+z2T0hIkIeHR7Zr1YKCgorNdrLnyJEjmjFjht577z3TfsVx2/3xxx/KyMiw+zt14MABu2Ny+h0sztsoMzNTL730ku677z7VrVs3x341a9bUJ598ovr16ys5OVnvvfeeWrRoob179zr0y8NvFhERoblz56pmzZo6c+aMxo0bpwceeEB79uxRyZIls/V3xm2WZcmSJUpKSlKfPn1y7OMs2+1mWa9/XrZNfn5n84Ow5ACvvfaa3nnnHdM++/fvv+UFis4gP+t66tQpff/99/ryyy9vOf8br7OqV6+eypcvr9atW+vo0aOqWrVq/gvPpbys39ChQ61t9evXl4eHhwYOHKgJEyYUy68oyM+2O336tNq0aaMuXbqof//+pmMdve3uZoMGDdKePXtMr+uRpMjISEVGRlqft2jRQrVr19aHH36ot956q7DLzLVHHnnE+nP9+vUVERGhypUr68svv1RMTIwDKyt4H3/8sR555BGFhITk2MdZtpszISw5wLBhw0zfFUhSeHh4ruYVHByc7ar/rE9LBQcH5zjm5gvfrl27pvPnz+c4Jr/ys65z5sxRmTJl1KFDhzwvLyIiQtL1oxtFscO9nW0ZERGha9eu6fjx46pZs2a26cHBwUpLS1NSUpLN0aXExMQC30725HXd4uPj9be//U0tWrTQRx99lOflFfW2sycwMFCurq7ZPnFo9poHBwfnqb+jDR482PqhjrweZXB3d1ejRo105MiRQqquYAQEBKhGjRo51uls2yzLiRMntHLlyjwffXWW7Zb1+icmJqp8+fLW9sTERDVs2NDumPz8zuZLgV39hEJ1qwu8ExMTrW0ffvih4efnZ1y9etXuvLIu8N6+fbu17fvvvy8WF3hnZmYaVapUMYYNG5av8Rs2bDAkGT///HMBV1bw5s2bZ7i4uBjnz5+3Oz3rAu9FixZZ2w4cOFAsL/A+deqUUb16daNbt27GtWvX8jWP4rLtmjVrZgwePNj6PCMjw6hQoYLpBd7t2rWzaYuMjCx2FwtnZmYagwYNMkJCQoxDhw7lax7Xrl0zatasabz88ssFXF3BunDhglGqVClj+vTpdqc7yza72ZgxY4zg4GAjPT09T+OK63ZTDhd4v/fee9a25OTkXF3gnZff2XzVWmBzQqE4ceKEsWvXLmPcuHGGr6+vsWvXLmPXrl3GhQsXDMO4/ktQt25d4+GHHzZ++uknY/ny5UbZsmWNkSNHWuexZcsWo2bNmsapU6esbW3atDEaNWpkbNmyxdiwYYNRvXp1o3v37kW+fjdbuXKlIcnYv39/tmmnTp0yatasaWzZssUwDMM4cuSIMX78eGP79u3GsWPHjP/85z9GeHi48eCDDxZ12be0adMmY+rUqcZPP/1kHD161Jg3b55RtmxZo1evXtY+N6+fYRjGs88+a1SqVMlYvXq1sX37diMyMtKIjIx0xCrk6NSpU0a1atWM1q1bG6dOnTLOnDljfdzYx1m23YIFCwxPT09j7ty5xr59+4wBAwYYAQEB1k+cPv3008Zrr71m7b9x40bDzc3NeO+994z9+/cbY8aMMdzd3Y1ffvnFUatg13PPPWf4+/sbP/zwg802unz5srXPzes2btw44/vvvzeOHj1q7Nixw+jWrZvh5eVl7N271xGrkKNhw4YZP/zwg3Hs2DFj48aNRlRUlBEYGGicPXvWMAzn3WY3ysjIMCpVqmSMGDEi2zRn2m4XLlyw7sckGVOmTDF27dplnDhxwjAMw5g4caIREBBg/Oc//zF2795tPPbYY0aVKlWMK1euWOfRqlUrY8aMGdbnt/qdLQiEpWKud+/ehqRsjzVr1lj7HD9+3HjkkUcMb29vIzAw0Bg2bJjNO481a9YYkoxjx45Z286dO2d0797d8PX1Nfz8/Iy+fftaA5gjde/e3WjRooXdaceOHbNZ95MnTxoPPvigUbp0acPT09OoVq2aMXz4cCM5ObkIK86dHTt2GBEREYa/v7/h5eVl1K5d23j77bdtjv7dvH6GYRhXrlwxnn/+eaNUqVKGj4+P0alTJ5sQUhzMmTPH7v/RGw9cO9u2mzFjhlGpUiXDw8PDaNasmfHjjz9ap7Vs2dLo3bu3Tf8vv/zSqFGjhuHh4WHcc889xnfffVfEFd9aTttozpw51j43r9tLL71kfR2CgoKMRx991Ni5c2fRF38LXbt2NcqXL294eHgYFSpUMLp27WocOXLEOt1Zt9mNvv/+e0OScfDgwWzTnGm7Ze2Pbn5k1Z+ZmWmMHj3aCAoKMjw9PY3WrVtnW+fKlSsbY8aMsWkz+50tCBbDMIyCO6kHAABwZ+E+SwAAACYISwAAACYISwAAACYISwAAACYISwAAACYISwAAACYISwAAACYISwDuOGFhYZo2bZqjy7Dx4IMPKjY2Nk9jZs+erfbt2xdSRQByi7AEoFhp37692rRpY3fa+vXrZbFYtHv37jzN02KxaMmSJQVQXf588803SkxMVLdu3ZSWlqbAwEBNnDjRbt+33npLQUFBSk9PV79+/bRz506tX7++iCsGcCPCEoBiJSYmRnFxcTp16lS2aXPmzFHTpk1Vv359B1SWf++//7769u0rFxcXeXh46KmnntKcOXOy9TMMQ3PnzlWvXr3k7u4uDw8P9ejRQ++//74DqgaQhbAEoFhp166dypYtq7lz59q0X7x4UQsXLlRMTIwWL16se+65R56engoLC9PkyZNznF9YWJgkqVOnTrJYLNbnR48e1WOPPaagoCD5+vrq3nvv1cqVK23GnjlzRm3btpW3t7eqVKmi2NjYbKf4kpKS9Mwzz6hs2bLy8/NTq1at9PPPP1un//7771q9erXN6bSYmBgdOnRIGzZssFne2rVr9euvvyomJsba1r59e33zzTe6cuVKbl4+AIWAsASgWHFzc1OvXr00d+5c3fjVlQsXLlRGRoZq166tJ598Ut26ddMvv/yisWPHavTo0dnCVZZt27ZJun5U6syZM9bnFy9e1KOPPqpVq1Zp165datOmjdq3b6+TJ09ax/bq1Uvx8fH64YcftHjxYn300Uc6e/aszfy7dOmis2fP6r///a927Nihxo0bq3Xr1jp//rwkacOGDfLx8VHt2rWtY+rVq6d7771Xn3zyic285syZoxYtWqhWrVrWtqZNm+ratWvasmVLPl5NAAWiQL+WFwAKwP79+w1Jxpo1a6xtDzzwgPHUU08ZPXr0MP7+97/b9B8+fLhRp04d6/PKlSsbU6dOtT6XZHz99de3XO4999xjzJgxw6aGbdu2WacfPnzYkGSd9/r16w0/Pz/j6tWrNvOpWrWq8eGHHxqGYRhTp041wsPDsy1r9uzZhq+vr3HhwgXDMAwjJSXF8PHxMf79739n61uqVClj7ty5t6wfQOHgyBKAYqdWrVpq0aKF9cjLkSNHtH79esXExGj//v267777bPrfd999Onz4sDIyMnK9jIsXL+qVV15R7dq1FRAQIF9fX+3fv996ZOngwYNyc3NT48aNrWOqVaumUqVKWZ///PPPunjxosqUKSNfX1/r49ixYzp69Kgk6cqVK/Ly8sq2/O7duysjI0NffvmlJOmLL76Qi4uLunbtmq2vt7e3Ll++nOt1A1Cw3BxdAADYExMToyFDhmjmzJmaM2eOqlatqpYtWxbY/F955RXFxcXpvffeU7Vq1eTt7a0nnnhCaWlpuZ7HxYsXVb58ef3www/ZpgUEBEiSAgMD9eeff2ab7ufnpyeeeEJz5sxRv379NGfOHD355JPy9fXN1vf8+fMqW7ZsrusCULA4sgSgWHryySfl4uKi2NhYffbZZ+rXr58sFotq166tjRs32vTduHGjatSoIVdXV7vzcnd3z3bUaePGjerTp486deqkevXqKTg4WMePH7dOr1mzpq5du6Zdu3ZZ244cOWITfBo3bqyEhAS5ubmpWrVqNo/AwEBJUqNGjZSQkGA3MMXExGjDhg1aunSpNm3aZHNhd5ajR4/q6tWratSo0a1fNACFgrAEoFjy9fVV165dNXLkSJ05c0Z9+vSRJA0bNkyrVq3SW2+9pUOHDunTTz/VBx98oFdeeSXHeYWFhWnVqlU2oaV69er66quv9NNPP+nnn39Wjx49lJmZaR1Tq1YtRUVFacCAAdq6dat27dqlAQMGyNvbWxaLRZIUFRWlyMhIdezYUStWrNDx48e1adMmvfHGG9q+fbuk62EpMDAwW8CTrt+oslq1aurVq5f11OPN1q9fr/DwcFWtWjXfryWA20NYAlBsxcTE6M8//1R0dLRCQkIkXT+a8+WXX2rBggWqW7eu3nzzTY0fP94apuyZPHmy4uLiFBoaaj1CM2XKFJUqVUotWrRQ+/btFR0dbXN9kiR99tlnCgoK0oMPPqhOnTqpf//+KlmypPUaJIvFomXLlunBBx9U3759VaNGDXXr1k0nTpxQUFCQJMnV1VV9+/bV/Pnzs9VlsVjUr18//fnnn+rXr5/d2j///HP1798/z68dgIJjMYwbPpsLAMjRqVOnFBoaqpUrV6p169a5HpeQkKB77rlHO3fuVOXKlXM9bu/evWrVqpUOHTokf3///JQMoAAQlgAgB6tXr9bFixdVr149nTlzRq+++qpOnz6tQ4cOyd3dPU/zWrJkicqUKaMHHngg12NWrlypjIwMRUdH57V0AAWIsAQAOfj+++81bNgw/frrrypZsqRatGihadOm5enoEADnR1gCAAAwwQXeAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJghLAAAAJv4/vCdfi9SOm28AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdin",
+     "output_type": "stream",
+     "text": [
+      "please press enter to continue with the next measurement or finish after the last measurement! \n",
+      "please press enter to continue with the next measurement or finish after the last measurement! \n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "     Voltage(V)  Current(A)\n",
+      "0     -10.00030      -0.050\n",
+      "1     -10.00034      -0.049\n",
+      "2     -10.00042      -0.048\n",
+      "3     -10.00042      -0.047\n",
+      "4     -10.00038      -0.046\n",
+      "..          ...         ...\n",
+      "96      9.99956       0.046\n",
+      "97      9.99950       0.047\n",
+      "98      9.99948       0.048\n",
+      "99      9.99954       0.049\n",
+      "100     9.99960       0.050\n",
+      "\n",
+      "[101 rows x 2 columns]\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1DUlEQVR4nO3de1hVVcLH8d85yMUbECogCt4itbyVJmFTmjJiOZZvvo4Sk2Wk2YhWmOMlk6yZqCwvlZPT+5Y2jzqW1tRkvTZmZRfJFO3itct4Semg5gCKCchZ7x+MJ4+cw8U4HNh+P89zHj17r7XXWmxg/dhnX2zGGCMAAACLsPu7AwAAALWJcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACylkb874A9Op1O5ublq3ry5bDabv7sDAACqwRij48ePKyYmRna79+MzF2S4yc3NVWxsrL+7AQAAzsP333+vtm3bel1/QYab5s2bSyr/4oSGhvq5NwAAoDoKCwsVGxvrmse9uSDDzZmPokJDQwk3AAA0MFWdUsIJxQAAwFIINwAAwFIINwAAwFIuyHNuqsMYo9OnT6usrMzfXUE9ExAQoEaNGnEbAQCopwg3HpSUlOiHH37QyZMn/d0V1FNNmjRR69atFRQU5O+uAADOQbg5h9Pp1N69exUQEKCYmBgFBQXxFzpcjDEqKSnRkSNHtHfvXsXHx1d6IykAQN0j3JyjpKRETqdTsbGxatKkib+7g3qocePGCgwM1P79+1VSUqKQkBB/dwkAcBb+5PSCv8ZRGb4/AKD+4jc0AACwFMINAACwFMKNxQ0YMED33nuvJKl9+/ZasGCBX/sDAICvEW4uIJs3b9b48eOrVdZKQWjy5Mnq3bu3goOD1atXL49lvvzyS11zzTUKCQlRbGysnnjiibrtJHzDGKmkqPxljL97A6COEG4uIK1atbpgrwC74447NGrUKI/rCgsLNXjwYLVr1045OTmaO3euHnroIT3//PN13EvUutKT0qMx5a9S7lsF1IU3Pj+kOW/u0MffHPVbHwg3VTDG6GTJab+8TA3/0iwqKtKYMWPUrFkztW7dWk899ZTb+rOPxhhj9NBDDykuLk7BwcGKiYnR5MmTJZV/lLV//37dd999stlsrvv8/Pjjj0pJSVGbNm3UpEkTde/eXX/729/c2hgwYIAmT56sP/zhD4qIiFB0dLQeeughtzL5+fm66667FBUVpZCQEHXr1k1r1qxxrf/44491zTXXqHHjxoqNjdXkyZNVVFRUo6/F2Z5++mlNnDhRHTt29Lh++fLlKikp0YsvvqjLLrtMo0eP1uTJkzVv3rzzbhMALlQff3NUSz7Zpy8P5futD9znpgo/lZbp0tnv+KXtnQ8nq0lQ9XfR1KlTtWHDBr3xxhuKjIzUzJkztXXrVo8fxbz66quaP3++Vq5cqcsuu0wOh0NffPGFJOm1115Tz549NX78eI0bN85V59SpU+rdu7emTZum0NBQvfXWW7r11lvVqVMn9e3b11XupZdeUkZGhjZt2qTs7Gzdfvvtuvrqq/XrX/9aTqdT119/vY4fP65ly5apU6dO2rlzpwICAiRJ3333nYYMGaI//vGPevHFF3XkyBGlp6crPT1dS5YskSRNmDBBy5Ytq/RrceLEiWp/3bKzs3Xttde63W04OTlZjz/+uP7973/roosuqva2AAD+R7ixiBMnTuiFF17QsmXLNGjQIEnlIaNt27Yeyx84cEDR0dFKSkpSYGCg4uLiXAElIiJCAQEBat68uaKjo1112rRpo/vvv9/1ftKkSXrnnXf0yiuvuIWbHj16KDMzU5IUHx+vZ599VuvXr9evf/1rvfvuu/rss8+0a9cuXXLJJZLkdkQlKytLqamprpOg4+Pj9fTTT6t///567rnnFBISoocfftitH7+Uw+FQhw4d3JZFRUW51hFuAKBhIdxUoXFggHY+nOy3tqvru+++U0lJiRISElzLIiIi1LlzZ4/lR44cqQULFqhjx44aMmSIbrjhBg0bNkyNGnn/ligrK9Ojjz6qV155RYcOHVJJSYmKi4srnMfTo0cPt/etW7fW4cOHJUmff/652rZt6wo25/riiy/05Zdfavny5a5lxhjXYzG6du2qyMhIRUZGVv4FAQBcsAg3VbDZbDX6aKihiI2N1Z49e/Tuu+9q3bp1+v3vf6+5c+dqw4YNCgwM9Fhn7ty5WrhwoRYsWKDu3buradOmuvfee1VSUuJW7tz6NptNTqdTUvmjCypz4sQJ3XXXXa7zf84WFxcnqfY/loqOjlZeXp7bsjPvzz5yBQCoPpv891xG683aF6hOnTopMDBQmzZtcoWAf//73/r666/Vv39/j3UaN26sYcOGadiwYZo4caK6dOmir776SldccYWCgoJUVlbmVv6TTz7RTTfdpN/97neSyh8y+vXXX+vSSy+tdj979OihgwcP6uuvv/Z49OaKK67Qzp07dfHFF3vdRm1/LJWYmKgHHnhApaWlrmC2bt06de7cmY+kAKABItxYRLNmzZSWlqapU6eqRYsWioyM1AMPPOD1GUhLly5VWVmZEhIS1KRJEy1btkyNGzdWu3btJJVfWfXhhx9q9OjRCg4OVsuWLRUfH6/Vq1dr48aNuuiiizRv3jzl5eXVKNz0799f1157rUaMGKF58+bp4osv1u7du2Wz2TRkyBBNmzZNV111ldLT03XnnXeqadOm2rlzp9atW6dnn31Wkmr8sdS3336rEydOyOFw6KefftLnn38uSbr00ksVFBSkW265RXPmzFFaWpqmTZum7du3a+HChZo/f3612wAA1B+EGwuZO3euTpw4oWHDhql58+aaMmWKCgoKPJYNDw/XY489poyMDJWVlal79+5688031aJFC0nlR0fuuusuderUScXFxTLGaNasWfrXv/6l5ORkNWnSROPHj9fw4cO9tuHNq6++qvvvv18pKSkqKirSxRdfrMcee0xS+ZGdDRs26IEHHtA111wjY4w6derk9R411XHnnXdqw4YNrveXX365JGnv3r1q3769wsLC9M9//lMTJ05U79691bJlS82ePbvaNzwEANQvNlPTm6lYQGFhocLCwlRQUKDQ0FC3dadOndLevXvVoUMHhYSE+KmHqO/4PmkgSorKb+AnSTNzpaCm/u0PcAGYuuoLrco5qGlDuujuAZ1qdduVzd9n4yZ+AADAUgg3AADAUgg3AADAUgg3AADAUgg3AACg1hn573olwg0AALAUwg0AALAUwg0AALAUwg0AALAUws0F6JNPPlGjRo3Uq1evX7SdY8eOadKkSercubMaN26suLg4TZ48ucaPYwAAWA9PBUedyc/P15gxYzRo0CDl5eX9om3l5uYqNzdXTz75pC699FLt379fEyZMUG5urlavXl1LPQYAoGY4cmMRzz//vGJiYuR0Ot2W33TTTbrjjjtc7ydMmKBbbrlFiYmJlW7P6XSqbdu2eu6559yWb9u2TXa7Xfv371e3bt306quvatiwYerUqZMGDhyoP/3pT3rzzTd1+vTp2hscAAA1QLipijHlD9/zx6sGzzQdOXKkfvzxR73//vuuZceOHdPatWuVmpoqSVqyZIn+9a9/KTMzs8rt2e12paSkaMWKFW7Lly9frquvvlrt2rXzWO/Mw8waNeKgIADAP5iBqlJ68uenCte1GjzF+KKLLtL111+vFStWaNCgQZKk1atXq2XLlrruuuv0zTffaPr06froo4+qHTxSU1P11FNP6cCBA4qLi5PT6dTKlSs1a9Ysj+WPHj2qRx55ROPHj6/e+AAA8AGO3FhIamqqXn31VRUXF0sqP8oyevRoGWN0yy23aM6cObrkkks81l2+fLmaNWvmen300Ufq1auXunbt6jp6s2HDBh0+fFgjR46sUL+wsFBDhw7VpZdeqoceeshnYwQAoCocualKYJPyIyj+arsGhg0bJmOM3nrrLV155ZX66KOPNH/+fB0/flxbtmzRtm3blJ6eLqn8nBpjjBo1aqR//vOfuvHGG5WQkODaVps2bSSVB6YVK1Zo+vTpWrFihYYMGaIWLVq4tXv8+HENGTJEzZs319///ncFBgb+woEDAHD+CDdVsdmq/dGQv4WEhOjmm2/W8uXL9e2336pz58664oor5HQ69dVXX7mV/fOf/6z33ntPq1evVocOHdS0aVM1b968wjZvueUWzZo1Szk5OVq9erUWL17str6wsFDJyckKDg7WP/7xD4WEhPh0jAAAVIVwYzGpqan6zW9+ox07duh3v/udpPKTg7t16+ZWLjIyUiEhIRWWn6t9+/bq16+f0tLSVFZWphtvvNG1rrCwUIMHD9bJkye1bNkyFRYWqrCwUJLUqlUrBQQE1PLoAACoGuHGYgYOHKiIiAjt2bNHt9xyS61sMzU1Vb///e81ZswYNW7c2LV869at2rRpkyTp4osvdquzd+9etW/fvlbaBwCgJjih2GLsdrtyc3NljFHHjh29lnvooYf0+eefV2ubd999t4wxeumll9yWDxgwQMYYjy+CDQDAXwg3AADAUuok3CxatEjt27dXSEiIEhIS9Nlnn1VaftWqVerSpYtCQkLUvXt3vf32217LTpgwQTabTQsWLKjlXgMAgPNlVP0b0dY2n4ebl19+WRkZGcrMzNTWrVvVs2dPJScn6/Dhwx7Lb9y4USkpKUpLS9O2bds0fPhwDR8+XNu3b69Q9u9//7s+/fRTxcT46SZ7AACg3vF5uJk3b57GjRunsWPH6tJLL9XixYvVpEkTvfjiix7LL1y4UEOGDNHUqVPVtWtXPfLII7riiiv07LPPupU7dOiQJk2apOXLl3NfFQAA4OLTcFNSUqKcnBwlJSX93KDdrqSkJGVnZ3usk52d7VZekpKTk93KO51O3XrrrZo6daouu+yyKvtRXFzsukz57MuVAQCA9fg03Bw9elRlZWWKiopyWx4VFSWHw+GxjsPhqLL8448/rkaNGmny5MnV6kdWVpbCwsJcr9jY2CrrmBo8tBIXHr4/AKD+anBXS+Xk5GjhwoVaunSpbDZbterMmDFDBQUFrtf333/vteyZj7hOnjxZK/2FNZ35/uAjUQDwzKbqzdG+4NOb+LVs2VIBAQHKy8tzW56Xl6fo6GiPdaKjoyst/9FHH+nw4cOKi4tzrS8rK9OUKVO0YMEC7du3r8I2g4ODFRwcXK0+BwQEKDw83HXCc5MmTaodomB9xhidPHlShw8fVnh4OHdhBoB6yKfhJigoSL1799b69es1fPhwSeXny6xfv971AMdzJSYmav369br33ntdy9atW6fExERJ0q233urxnJxbb71VY8eOrZV+nwlS3q7oAsLDw70GdACAf/n88QsZGRm67bbb1KdPH/Xt21cLFixQUVGRK4iMGTNGbdq0UVZWliTpnnvuUf/+/fXUU09p6NChWrlypbZs2aLnn39ektSiRYsKT6UODAxUdHS0OnfuXCt9ttlsat26tSIjI1VaWlor24R1BAYGcsQGAOoxn4ebUaNG6ciRI5o9e7YcDod69eqltWvXuk4aPnDggOz2n0/96devn1asWKFZs2Zp5syZio+P1+uvv17lAx59ISAggEkMAIAGpk4enJmenu71Y6gPPvigwrKRI0dq5MiR1d6+p/NsAADAhanBXS0FAABQGcINAACwFMINAACwFMINAACodZZ+KjgAAEBdItwAAABLIdwAAABLIdwAAIBa588HZxJuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAACApRBuAABArTMyfmubcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAAGqdTTa/tU24AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAlkK4AQAAtY6nggMAANQSwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AAKh1Ntn81jbhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAA1Doj47e2CTcAAMBSCDcAAMBSCDcAAMBSCDcAAKDW8eBMAACAWlIn4WbRokVq3769QkJClJCQoM8++6zS8qtWrVKXLl0UEhKi7t276+2333atKy0t1bRp09S9e3c1bdpUMTExGjNmjHJzc309DAAA0AD4PNy8/PLLysjIUGZmprZu3aqePXsqOTlZhw8f9lh+48aNSklJUVpamrZt26bhw4dr+PDh2r59uyTp5MmT2rp1qx588EFt3bpVr732mvbs2aMbb7zR10MBAAANgM0Y49ML0RMSEnTllVfq2WeflSQ5nU7FxsZq0qRJmj59eoXyo0aNUlFRkdasWeNadtVVV6lXr15avHixxzY2b96svn37av/+/YqLi6uyT4WFhQoLC1NBQYFCQ0PPc2QA6r2SIunRmPL/z8yVgpr6tz/ABWDqqi+0Kuegpg3porsHdKrVbVd3/vbpkZuSkhLl5OQoKSnp5wbtdiUlJSk7O9tjnezsbLfykpScnOy1vCQVFBTIZrMpPDzc4/ri4mIVFha6vQAAgDX5NNwcPXpUZWVlioqKclseFRUlh8PhsY7D4ahR+VOnTmnatGlKSUnxmuKysrIUFhbmesXGxp7HaAAAQEPQoK+WKi0t1W9/+1sZY/Tcc895LTdjxgwVFBS4Xt9//30d9hIAANSlRr7ceMuWLRUQEKC8vDy35Xl5eYqOjvZYJzo6ulrlzwSb/fv367333qv0s7fg4GAFBwef5ygAAEBD4tMjN0FBQerdu7fWr1/vWuZ0OrV+/XolJiZ6rJOYmOhWXpLWrVvnVv5MsPnmm2/07rvvqkWLFr4ZAAAAOC/+fHCmT4/cSFJGRoZuu+029enTR3379tWCBQtUVFSksWPHSpLGjBmjNm3aKCsrS5J0zz33qH///nrqqac0dOhQrVy5Ulu2bNHzzz8vqTzY/Pd//7e2bt2qNWvWqKyszHU+TkREhIKCgnw9JAAAUI/5PNyMGjVKR44c0ezZs+VwONSrVy+tXbvWddLwgQMHZLf/fACpX79+WrFihWbNmqWZM2cqPj5er7/+urp16yZJOnTokP7xj39Iknr16uXW1vvvv68BAwb4ekgAAKAe83m4kaT09HSlp6d7XPfBBx9UWDZy5EiNHDnSY/n27dvLx7fmAQAADViDvloKAADgXIQbAABgKYQbAABgKYQbAABgKYQbAABQ62yy+a1twg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AAKh1RsZvbRNuAACApRBuAACApRBuAACApRBuAABArePBmQAAALWEcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAAGqdkfFb24QbAABgKYQbAABgKYQbAABgKYQbAABQ62yy+a1twg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AALAUwg0AAKh1RsZvbRNuAABAreOp4AAAALWEcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACyFcAMAACylUV00smjRIs2dO1cOh0M9e/bUM888o759+3otv2rVKj344IPat2+f4uPj9fjjj+uGG25wrTfGKDMzU//zP/+j/Px8XX311XruuecUHx9fF8MBANSQMUZOIzmNkdMYGSOZs947jecyZ687+335+rPKO/XzduWhjNNLG2f65lSV/Tj3X4/9qE5fXW2c+b/7e/c2zirvPHdsHto4axySlzadFdswUtVlzrSjn7/mnsZ1vPi0X7/XpDoINy+//LIyMjK0ePFiJSQkaMGCBUpOTtaePXsUGRlZofzGjRuVkpKirKws/eY3v9GKFSs0fPhwbd26Vd26dZMkPfHEE3r66af10ksvqUOHDnrwwQeVnJysnTt3KiQkxNdDAlCJqiaoqiYxp7OSCaqSX8yeJjGVnlS///Rrw9dHdDrghMf+eOxHeSdqNEFVVebnSb3qScz1XlVPYmfaqM4E5Zp8VcnXs0J7nicxT5NxxQBwZqLFhaZzdDO/tW0zxvj02y4hIUFXXnmlnn32WUmS0+lUbGysJk2apOnTp1coP2rUKBUVFWnNmjWuZVdddZV69eqlxYsXyxijmJgYTZkyRffff78kqaCgQFFRUVq6dKlGjx5dZZ8KCwsVFhamgoIChYaG1tJILzxVTQwVfyF6nsTO/kugqknM7a8Rb3+J1XQy/U+75cvOb4Ly+sveefbYqpjEzp5wqpjEyie96k1iZybI2p7Efi5ffyexxjqlXSF3SJK6nnpRP4k/fhoKm02y22yy2yTbf/6128rveWu32crX220ey5xZbzvnvf3s7biVL2/Q7qXNs+t765enNlRFmzbb2f2vuozdXn7HX/dtym2916+VzSa73XsbZ8ra7ee06dbGz32tqkxo40BFhdb+z1t152+fHrkpKSlRTk6OZsyY4Vpmt9uVlJSk7Oxsj3Wys7OVkZHhtiw5OVmvv/66JGnv3r1yOBxKSkpyrQ8LC1NCQoKys7M9hpvi4mIVFxe73hcWFv6SYXn176ISLd24TwU/lVY5iZ09QVU1ibkmES8TVMXJ+9zDop4nMfd11TssevZ2gNpw9iRR1WRhq2aZM/82VqBUUN7OZTFhKrWH/LJJ0F5+S/kqy5w9WXiYoCrUVzXKnNmWKk5iFdrw+LXyPiFVnLirFxi87jP7mb56KWM/JwTo3LGW1wHOl0/DzdGjR1VWVqaoqCi35VFRUdq9e7fHOg6Hw2N5h8PhWn9mmbcy58rKytKcOXPOaww18dZXP2jh+m983k5D5W1CslU1oZz55Wj/+Zflub+IK/xlokomQbuHycLLBFXhF648lfll46rW2F3/r85fVR7+2vU2If1nEpIq/1pV+OvunEnMYxuqOIl56odPlRRJj5b/d/WERCmoqW/bA1Av1MkJxf42Y8YMt6NBhYWFio2NrfV2RlzRVl/nHdcbn+eq4KdSt3VtwhtrWM8YXdQk0OMkWNlfVWcmGKmSv5jOmYwr/MVk996GTRUnMW8Tkq2af7nV+SQGAMB/+DTctGzZUgEBAcrLy3NbnpeXp+joaI91oqOjKy1/5t+8vDy1bt3arUyvXr08bjM4OFjBwcHnO4xqaxwUoIdv6qYHhnbV+l2HtTrnoDZ8fURlTqND+T/pxU/2avClUfrv3m3V/5JWTPgAAPiAT+9zExQUpN69e2v9+vWuZU6nU+vXr1diYqLHOomJiW7lJWndunWu8h06dFB0dLRbmcLCQm3atMnrNutacKMA3dC9tV68/UplzxioB27oqs5RzVVy2qk1X/6g25ds1tKN+/zdTQAALMnnH0tlZGTotttuU58+fdS3b18tWLBARUVFGjt2rCRpzJgxatOmjbKysiRJ99xzj/r376+nnnpKQ4cO1cqVK7VlyxY9//zzkso/3rj33nv1xz/+UfHx8a5LwWNiYjR8+HBfD6fGIpuHaNy1HXXnNR20I7dQj6zZqU17j+nAsZP+7hoAAJbk83AzatQoHTlyRLNnz5bD4VCvXr20du1a1wnBBw4ckN3+8wGkfv36acWKFZo1a5Zmzpyp+Ph4vf7666573EjSH/7wBxUVFWn8+PHKz8/Xr371K61du7Ze3+PGZrOpW5sw9Wl/kTbtPebv7gAAYFk+v89NfeTP+9zMfWe3Fr3/ncZe3V6Zwy6r07aBC05JkfRoTPn/Z+ZytRTQwFV3/ubZUgAAwFIINwAAwFIINwAAwFIIN35y4Z3pBABA3SDcAAAASyHcAAAASyHcAAAASyHc1LHy5yoDAABfIdwAAABLIdwAAABLIdzUMSOuAQcAwJcIN35i49QbAAB8gnADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXADAAAshXDjJ4YbFQMA4BOEGwAAYCmEGwAAYCmEGwAAYCmEmzpmE0/MBADAlwg3AADAUgg3AADAUgg3dcyIa8ABAPAlwg0AALAUwg0AALAUwg0AALAUwo2f2LgiHAAAnyDcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHc+InhRsUAAPgE4QYAAFgK4QYAAFgK4QYAAFgK4aaO2cStiQEA8CXCDQAAsBTCTR0z4jIpAAB8iXADAAAshXADAAAshXADAAAshXADAAAshXDjJzauCAcAwCcINwAAwFIINwAAwFIINwAAwFIINwAAwFIIN35iuFExAAA+QbgBAACWQrgBAACW4rNwc+zYMaWmpio0NFTh4eFKS0vTiRMnKq1z6tQpTZw4US1atFCzZs00YsQI5eXludZ/8cUXSklJUWxsrBo3bqyuXbtq4cKFvhoCAABogHwWblJTU7Vjxw6tW7dOa9as0Ycffqjx48dXWue+++7Tm2++qVWrVmnDhg3Kzc3VzTff7Fqfk5OjyMhILVu2TDt27NADDzygGTNm6Nlnn/XVMAAAQAPTyBcb3bVrl9auXavNmzerT58+kqRnnnlGN9xwg5588knFxMRUqFNQUKAXXnhBK1as0MCBAyVJS5YsUdeuXfXpp5/qqquu0h133OFWp2PHjsrOztZrr72m9PR0Xwyl1tnErYkBAPAlnxy5yc7OVnh4uCvYSFJSUpLsdrs2bdrksU5OTo5KS0uVlJTkWtalSxfFxcUpOzvba1sFBQWKiIiovc4DAIAGzSdHbhwOhyIjI90batRIERERcjgcXusEBQUpPDzcbXlUVJTXOhs3btTLL7+st956q9L+FBcXq7i42PW+sLCwGqPwDSOuAQcAwJdqdORm+vTpstlslb52797tq7662b59u2666SZlZmZq8ODBlZbNyspSWFiY6xUbG1snfQQAAHWvRkdupkyZottvv73SMh07dlR0dLQOHz7stvz06dM6duyYoqOjPdaLjo5WSUmJ8vPz3Y7e5OXlVaizc+dODRo0SOPHj9esWbOq7PeMGTOUkZHhel9YWEjAAQDAomoUblq1aqVWrVpVWS4xMVH5+fnKyclR7969JUnvvfeenE6nEhISPNbp3bu3AgMDtX79eo0YMUKStGfPHh04cECJiYmucjt27NDAgQN122236U9/+lO1+h0cHKzg4OBqlQUAAA2bT04o7tq1q4YMGaJx48bps88+0yeffKL09HSNHj3adaXUoUOH1KVLF3322WeSpLCwMKWlpSkjI0Pvv/++cnJyNHbsWCUmJuqqq66SVP5R1HXXXafBgwcrIyNDDodDDodDR44c8cUwAABAA+STE4olafny5UpPT9egQYNkt9s1YsQIPf300671paWl2rNnj06ePOlaNn/+fFfZ4uJiJScn689//rNr/erVq3XkyBEtW7ZMy5Ytcy1v166d9u3b56uh+ISNK8IBAPAJmzEX3iMcCwsLFRYWpoKCAoWGhtZp23Pf2a1F73+nsVe3V+awy+q0beCCU1IkPfqf+2rNzJWCmvq3PwB+kerO3zxbCgAAWArhBgAAWArhBgAAWArhxk8uvDOdAACoG4QbAABgKYQbAABgKYQbAABgKYQbAABgKYSbOmYTtyYGAMCXCDcAAMBSCDd1zIhrwAEA8CXCDQAAsBTCDQAAsBTCDQAAsBTCjZ/YuGgKAACfINwAAABLIdwAAABLIdwAAABLIdwAAABLIdwAAABLIdz4ieFGxQAA+AThBgAAWArhBgAAWArhBgAAWArhpo7ZxK2JAQDwJcINAACwFMINAACwFMJNHTPiGnAAAHyJcAMAACyFcAMAACyFcAMAACyFcOMnNq4IBwDAJwg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3AADAUgg3fmK4UTEAAD5BuAEAAJZCuAEAAJZCuAEAAJZCuKljNnFrYgAAfIlwAwAALIVwAwAALIVwU8eMuAYcAABfItwAAABLIdwAAABLIdwAAABLIdz4iY0rwgEA8AnCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCDQAAsBTCjZ8YblQMAIBPEG4AAIClEG4AAICl+CzcHDt2TKmpqQoNDVV4eLjS0tJ04sSJSuucOnVKEydOVIsWLdSsWTONGDFCeXl5Hsv++OOPatu2rWw2m/Lz830wAgAA0BD5LNykpqZqx44dWrdundasWaMPP/xQ48ePr7TOfffdpzfffFOrVq3Shg0blJubq5tvvtlj2bS0NPXo0cMXXfcpm7g1MQAAvuSTcLNr1y6tXbtW//u//6uEhAT96le/0jPPPKOVK1cqNzfXY52CggK98MILmjdvngYOHKjevXtryZIl2rhxoz799FO3ss8995zy8/N1//33+6L7AACgAfNJuMnOzlZ4eLj69OnjWpaUlCS73a5NmzZ5rJOTk6PS0lIlJSW5lnXp0kVxcXHKzs52Ldu5c6cefvhh/fWvf5XdXr3uFxcXq7Cw0O3lL0ZcJgUAgC/5JNw4HA5FRka6LWvUqJEiIiLkcDi81gkKClJ4eLjb8qioKFed4uJipaSkaO7cuYqLi6t2f7KyshQWFuZ6xcbG1mxAAACgwahRuJk+fbpsNlulr927d/uqr5oxY4a6du2q3/3udzWuV1BQ4Hp9//33PuohAADwt0Y1KTxlyhTdfvvtlZbp2LGjoqOjdfjwYbflp0+f1rFjxxQdHe2xXnR0tEpKSpSfn+929CYvL89V57333tNXX32l1atXS5LMf+6E17JlSz3wwAOaM2eOx20HBwcrODi4OkMEAAANXI3CTatWrdSqVasqyyUmJio/P185OTnq3bu3pPJg4nQ6lZCQ4LFO7969FRgYqPXr12vEiBGSpD179ujAgQNKTEyUJL366qv66aefXHU2b96sO+64Qx999JE6depUk6EAAACLqlG4qa6uXbtqyJAhGjdunBYvXqzS0lKlp6dr9OjRiomJkSQdOnRIgwYN0l//+lf17dtXYWFhSktLU0ZGhiIiIhQaGqpJkyYpMTFRV111lSRVCDBHjx51tXfuuTr1nY0rwgEA8AmfhBtJWr58udLT0zVo0CDZ7XaNGDFCTz/9tGt9aWmp9uzZo5MnT7qWzZ8/31W2uLhYycnJ+vOf/+yrLgIAAAvyWbiJiIjQihUrvK5v376965yZM0JCQrRo0SItWrSoWm0MGDCgwjYAAMCFjWdLAQAASyHcAAAASyHc+AmfpgEA4BuEGwAAYCmEGwAAYCmEGwAAYCmEGwAAYCmEmzpmE7cmBgDAlwg3AADAUgg3dcyIa8ABAPAlwg0AALAUwg0AALAUwg0AALAUwg0AALAUwo2f2LgiHAAAnyDcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHcAAAASyHc+Inh4eAAAPgE4aaO2cStiQEA8CXCDQAAsBTCDQAAsJRG/u7AhSahY4SMOumKuIv83RXA+gKbSDNzf/4/gAsC4aaOXRPfStfEt/J3N4ALg80mBTX1dy8A1DE+lgIAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZCuAEAAJZyQT4V3BgjSSosLPRzTwAAQHWdmbfPzOPeXJDh5vjx45Kk2NhYP/cEAADU1PHjxxUWFuZ1vc1UFX8syOl0Kjc3V82bN5fNZqvz9gsLCxUbG6vvv/9eoaGhdd6+LzG2homxNVxWHh9ja5h8OTZjjI4fP66YmBjZ7d7PrLkgj9zY7Xa1bdvW391QaGio5b6pz2BsDRNja7isPD7G1jD5amyVHbE5gxOKAQCApRBuAACApRBu/CA4OFiZmZkKDg72d1dqHWNrmBhbw2Xl8TG2hqk+jO2CPKEYAABYF0duAACApRBuAACApRBuAACApRBuAACApRBufOBPf/qT+vXrpyZNmig8PNxjmQMHDmjo0KFq0qSJIiMjNXXqVJ0+fbrS7R47dkypqakKDQ1VeHi40tLSdOLECR+MoHo++OAD2Ww2j6/Nmzd7rTdgwIAK5SdMmFCHPa++9u3bV+jrY489VmmdU6dOaeLEiWrRooWaNWumESNGKC8vr456XD379u1TWlqaOnTooMaNG6tTp07KzMxUSUlJpfXq675btGiR2rdvr5CQECUkJOizzz6rtPyqVavUpUsXhYSEqHv37nr77bfrqKc1k5WVpSuvvFLNmzdXZGSkhg8frj179lRaZ+nSpRX2UUhISB31uPoeeuihCv3s0qVLpXUayn7z9HvDZrNp4sSJHsvX93324YcfatiwYYqJiZHNZtPrr7/utt4Yo9mzZ6t169Zq3LixkpKS9M0331S53Zr+3NYE4cYHSkpKNHLkSN19990e15eVlWno0KEqKSnRxo0b9dJLL2np0qWaPXt2pdtNTU3Vjh07tG7dOq1Zs0Yffvihxo8f74shVEu/fv30ww8/uL3uvPNOdejQQX369Km07rhx49zqPfHEE3XU65p7+OGH3fo6adKkSsvfd999evPNN7Vq1Spt2LBBubm5uvnmm+uot9Wze/duOZ1O/eUvf9GOHTs0f/58LV68WDNnzqyybn3bdy+//LIyMjKUmZmprVu3qmfPnkpOTtbhw4c9lt+4caNSUlKUlpambdu2afjw4Ro+fLi2b99exz2v2oYNGzRx4kR9+umnWrdunUpLSzV48GAVFRVVWi80NNRtH+3fv7+Oelwzl112mVs/P/74Y69lG9J+27x5s9u41q1bJ0kaOXKk1zr1eZ8VFRWpZ8+eWrRokcf1TzzxhJ5++mktXrxYmzZtUtOmTZWcnKxTp0553WZNf25rzMBnlixZYsLCwiosf/vtt43dbjcOh8O17LnnnjOhoaGmuLjY47Z27txpJJnNmze7lv3f//2fsdls5tChQ7Xe9/NRUlJiWrVqZR5++OFKy/Xv39/cc889ddOpX6hdu3Zm/vz51S6fn59vAgMDzapVq1zLdu3aZSSZ7OxsH/Sw9jzxxBOmQ4cOlZapj/uub9++ZuLEia73ZWVlJiYmxmRlZXks/9vf/tYMHTrUbVlCQoK56667fNrP2nD48GEjyWzYsMFrGW+/d+qbzMxM07Nnz2qXb8j77Z577jGdOnUyTqfT4/qGss+MMUaS+fvf/+5673Q6TXR0tJk7d65rWX5+vgkODjZ/+9vfvG6npj+3NcWRGz/Izs5W9+7dFRUV5VqWnJyswsJC7dixw2ud8PBwtyMiSUlJstvt2rRpk8/7XB3/+Mc/9OOPP2rs2LFVll2+fLlatmypbt26acaMGTp58mQd9PD8PPbYY2rRooUuv/xyzZ07t9KPD3NyclRaWqqkpCTXsi5duiguLk7Z2dl10d3zVlBQoIiIiCrL1ad9V1JSopycHLevt91uV1JSktevd3Z2tlt5qfznr77vH6l8H0mqcj+dOHFC7dq1U2xsrG666Savv1f87ZtvvlFMTIw6duyo1NRUHThwwGvZhrrfSkpKtGzZMt1xxx2VPqi5oeyzc+3du1cOh8Nt34SFhSkhIcHrvjmfn9uauiAfnOlvDofDLdhIcr13OBxe60RGRrota9SokSIiIrzWqWsvvPCCkpOTq3wo6S233KJ27dopJiZGX375paZNm6Y9e/botddeq6OeVt/kyZN1xRVXKCIiQhs3btSMGTP0ww8/aN68eR7LOxwOBQUFVTjXKioqqt7sJ0++/fZbPfPMM3ryyScrLVff9t3Ro0dVVlbm8edp9+7dHut4+/mrz/tHkpxOp+69915dffXV6tatm9dynTt31osvvqgePXqooKBATz75pPr166cdO3bUiwcGn5GQkKClS5eqc+fO+uGHHzRnzhxdc8012r59u5o3b16hfEPdb6+//rry8/N1++23ey3TUPaZJ2e+/jXZN+fzc1tThJtqmj59uh5//PFKy+zatavKE+IagvMZ68GDB/XOO+/olVdeqXL7Z58n1L17d7Vu3VqDBg3Sd999p06dOp1/x6upJuPLyMhwLevRo4eCgoJ01113KSsrq17eNv189t2hQ4c0ZMgQjRw5UuPGjau0rr/33YVs4sSJ2r59e6XnpUhSYmKiEhMTXe/79eunrl276i9/+YseeeQRX3ez2q6//nrX/3v06KGEhAS1a9dOr7zyitLS0vzYs9r1wgsv6Prrr1dMTIzXMg1lnzUkhJtqmjJlSqXJW5I6duxYrW1FR0dXOCv8zNU00dHRXuuce6LV6dOndezYMa91ztf5jHXJkiVq0aKFbrzxxhq3l5CQIKn86EFdTJC/ZF8mJCTo9OnT2rdvnzp37lxhfXR0tEpKSpSfn+929CYvL6/W95MnNR1bbm6urrvuOvXr10/PP/98jdur6313rpYtWyogIKDC1WiVfb2jo6NrVL4+SE9Pd11EUNO/5AMDA3X55Zfr22+/9VHvakd4eLguueQSr/1siPtt//79evfdd2t8ZLOh7DPp5zkrLy9PrVu3di3Py8tTr169PNY5n5/bGquVM3fgUVUnFOfl5bmW/eUvfzGhoaHm1KlTHrd15oTiLVu2uJa988479eKEYqfTaTp06GCmTJlyXvU//vhjI8l88cUXtdyz2rds2TJjt9vNsWPHPK4/c0Lx6tWrXct2795dL08oPnjwoImPjzejR482p0+fPq9t1Id917dvX5Oenu56X1ZWZtq0aVPpCcW/+c1v3JYlJibWyxNTnU6nmThxoomJiTFff/31eW3j9OnTpnPnzua+++6r5d7VruPHj5uLLrrILFy40OP6hrTfzsjMzDTR0dGmtLS0RvXq8z6TlxOKn3zySdeygoKCap1QXJOf2xr3s1a2Ajf79+8327ZtM3PmzDHNmjUz27ZtM9u2bTPHjx83xpR/43br1s0MHjzYfP7552bt2rWmVatWZsaMGa5tbNq0yXTu3NkcPHjQtWzIkCHm8ssvN5s2bTIff/yxiY+PNykpKXU+vnO9++67RpLZtWtXhXUHDx40nTt3Nps2bTLGGPPtt9+ahx9+2GzZssXs3bvXvPHGG6Zjx47m2muvretuV2njxo1m/vz55vPPPzffffedWbZsmWnVqpUZM2aMq8y54zPGmAkTJpi4uDjz3nvvmS1btpjExESTmJjojyF4dfDgQXPxxRebQYMGmYMHD5offvjB9Tq7TEPYdytXrjTBwcFm6dKlZufOnWb8+PEmPDzcdTXirbfeaqZPn+4q/8knn5hGjRqZJ5980uzatctkZmaawMBA89VXX/lrCF7dfffdJiwszHzwwQdu++jkyZOuMueOb86cOeadd94x3333ncnJyTGjR482ISEhZseOHf4YgldTpkwxH3zwgdm7d6/55JNPTFJSkmnZsqU5fPiwMaZh7zdjyifruLg4M23atArrGto+O378uGsek2TmzZtntm3bZvbv32+MMeaxxx4z4eHh5o033jBffvmluemmm0yHDh3MTz/95NrGwIEDzTPPPON6X9XP7S9FuPGB2267zUiq8Hr//fddZfbt22euv/5607hxY9OyZUszZcoUt3T//vvvG0lm7969rmU//vijSUlJMc2aNTOhoaFm7NixrsDkTykpKaZfv34e1+3du9dt7AcOHDDXXnutiYiIMMHBwebiiy82U6dONQUFBXXY4+rJyckxCQkJJiwszISEhJiuXbuaRx991O3o2rnjM8aYn376yfz+9783F110kWnSpIn5r//6L7fQUB8sWbLE4/fo2QdzG9K+e+aZZ0xcXJwJCgoyffv2NZ9++qlrXf/+/c1tt93mVv6VV14xl1xyiQkKCjKXXXaZeeutt+q4x9XjbR8tWbLEVebc8d17772ur0VUVJS54YYbzNatW+u+81UYNWqUad26tQkKCjJt2rQxo0aNMt9++61rfUPeb8aUH1mXZPbs2VNhXUPbZ2fmo3NfZ8bgdDrNgw8+aKKiokxwcLAZNGhQhXG3a9fOZGZmui2r7Of2l7IZY0ztfMAFAADgf9znBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWArhBgAAWMr/A+A3PqZ5aseLAAAAAElFTkSuQmCC",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    },
+    {
+     "name": "stdin",
+     "output_type": "stream",
+     "text": [
+      "please press enter to continue with the next measurement or finish after the last measurement! \n",
+      "please press enter to continue with the next measurement or finish after the last measurement! \n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "     Voltage(V)  Current(A)\n",
+      "0     -10.00036      -0.050\n",
+      "1     -10.00044      -0.049\n",
+      "2     -10.00044      -0.048\n",
+      "3     -10.00034      -0.047\n",
+      "4     -10.00032      -0.046\n",
+      "..          ...         ...\n",
+      "96      9.99952       0.046\n",
+      "97      9.99960       0.047\n",
+      "98      9.99952       0.048\n",
+      "99      9.99948       0.049\n",
+      "100     9.99948       0.050\n",
+      "\n",
+      "[101 rows x 2 columns]\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0u0lEQVR4nO3deXxU1cH/8e8M2diSGCAJgYRdFtkUJQZrUUkNSlEeKYWYimIqagmoQcoiGsFqVFRwq9SnCvYHFAVbrOiDD6LiQkQIoLK6lEWICSBPEgiShMz5/ZEyMmSyYSaTHD7v12teMOeec+85c5Oc79y5c6/DGGMEAABgCae/OwAAAFCXCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsE+LsD/uByuZSTk6OWLVvK4XD4uzsAAKAGjDE6evSoYmJi5HRWfnzmnAw3OTk5io2N9Xc3AADAWfjuu+/Uvn37Spefk+GmZcuWkspfnNDQUD/3BgAA1ERhYaFiY2Pd83hlzslwc+qjqNDQUMINAACNTHWnlHBCMQAAsArhBgAAWIVwAwAArHJOnnNTE8YYnTx5UmVlZf7uChqYJk2aKCAggMsIAEADRbjxoqSkRN9//72OHz/u766ggWrWrJnatm2roKAgf3cFAHAGws0ZXC6Xdu/erSZNmigmJkZBQUG8Q4ebMUYlJSU6dOiQdu/erW7dulV5ISkAQP0j3JyhpKRELpdLsbGxatasmb+7gwaoadOmCgwM1N69e1VSUqKQkBB/dwkAcBreclaCd+OoCj8fANBw8RcaAABYhXADAACsQrix3BVXXKG7775bktSxY0fNmzfPr/0BAMDXCDfnkA0bNmj8+PE1qmtTEJo0aZIGDBig4OBg9e/fv8LyPXv2yOFwVHh8+umn9d9Z1C1jpJKi8ocx/u4NgHrCt6XOIW3atPF3F/zm1ltv1fr16/XFF19UWufdd9/VBRdc4H7eqlWr+ugafKn0uPRITPn/Z+RIQc392x/gHPDGlgPa8l2+EntG6bKurf3SB47cVMMYo+MlJ/3yMLV8p1lUVKSxY8eqRYsWatu2rZ588kmP5acfjTHG6MEHH1RcXJyCg4MVExOjSZMmSSr/KGvv3r2655573EcxJOmHH35QcnKy2rVrp2bNmqlPnz76+9//7rGNK664QpMmTdIf//hHRUREKDo6Wg8++KBHnfz8fN1+++2KiopSSEiIevfurZUrV7qXf/zxx7r88svVtGlTxcbGatKkSSoqKqrVa3G6Z555RhMmTFDnzp2rrNeqVStFR0e7H4GBgWe9TQA4V3389WEt+GSPvthf4Lc+cOSmGj+WlqnXA+/4ZdvbZyepWVDNd9GUKVO0du1avfHGG4qMjNSMGTO0adMmrx/FvP7665o7d66WLl2qCy64QLm5ufr8888lSf/4xz/Ur18/jR8/Xrfddpu7zYkTJzRgwABNnTpVoaGheuutt3TTTTepS5cuGjhwoLveK6+8ovT0dK1fv15ZWVm65ZZbdNlll+lXv/qVXC6XrrnmGh09elSLFi1Sly5dtH37djVp0kSS9O2332ro0KH605/+pJdfflmHDh1SWlqa0tLStGDBAknSHXfcoUWLFlX5Whw7dqzGr9sp1113nU6cOKHzzz9ff/zjH3XdddfVeh0AAP8j3Fji2LFjeumll7Ro0SINGTJEUnnIaN++vdf6+/btU3R0tBITExUYGKi4uDh3QImIiFCTJk3UsmVLRUdHu9u0a9dO9957r/v5xIkT9c477+i1117zCDd9+/ZVRkaGJKlbt2567rnntGbNGv3qV7/Su+++q88++0w7duzQ+eefL0keR1QyMzOVkpLiPgm6W7dueuaZZzR48GC98MILCgkJ0ezZsz368XO1aNFCTz75pC677DI5nU69/vrrGjFihFasWEHAAYBGiHBTjaaBTbR9dpLftl1T3377rUpKShQfH+8ui4iIUPfu3b3WHzVqlObNm6fOnTtr6NChuvbaazV8+HAFBFT+I1FWVqZHHnlEr732mg4cOKCSkhIVFxdXuJJz3759PZ63bdtWBw8elCRt2bJF7du3dwebM33++ef64osvtHjxYneZMcZ9W4yePXsqMjJSkZGRVb8gtdC6dWulp6e7n19yySXKycnRnDlzCDcA0AgRbqrhcDhq9dFQYxEbG6tdu3bp3Xff1erVq/WHP/xBc+bM0dq1ays912TOnDl6+umnNW/ePPXp00fNmzfX3XffrZKSEo96Z7Z3OBxyuVySym9dUJVjx47p9ttvd5//c7q4uDhJvvtY6nTx8fFavXr1z1oHAMA/7Ju1z1FdunRRYGCg1q9f7w4B//d//6evvvpKgwcP9tqmadOmGj58uIYPH64JEyaoR48e+vLLL3XRRRcpKChIZWVlHvU/+eQTXX/99frd734nqfwmo1999ZV69epV43727dtX+/fv11dffeX16M1FF12k7du3q2vXrpWuo64/lvJmy5Ytatu2rU+3AQDwDcKNJVq0aKHU1FRNmTJFrVq1UmRkpO67775K74G0cOFClZWVKT4+Xs2aNdOiRYvUtGlTdejQQVL5N6s+/PBDjRkzRsHBwWrdurW6deum5cuXa926dTrvvPP01FNPKS8vr1bhZvDgwfrlL3+pkSNH6qmnnlLXrl21c+dOORwODR06VFOnTtWll16qtLQ0/f73v1fz5s21fft2rV69Ws8995wk1fpjqW+++UbHjh1Tbm6ufvzxR23ZskWS1KtXLwUFBemVV15RUFCQLrzwQknlJ1S//PLL+utf/1rjbQAAGg7CjUXmzJmjY8eOafjw4WrZsqUmT56sggLvX8ULDw/Xo48+qvT0dJWVlalPnz5688033dd2mT17tm6//XZ16dJFxcXFMsZo5syZ+ve//62kpCQ1a9ZM48eP14gRIyrdRmVef/113XvvvUpOTlZRUZG6du2qRx99VFL5kZ21a9fqvvvu0+WXXy5jjLp06aLRo0ef9evy+9//XmvXrnU/PxVidu/erY4dO0qSHnroIe3du1cBAQHq0aOHXn31Vf3mN785620CAPzHYWp7MRULFBYWKiwsTAUFBQoNDfVYduLECe3evVudOnVSSEiIn3qIho6fk0aipIiL+AH1bMqyz7Use7+mDu2hO6/oUqfrrmr+Ph0X8QMAAFYh3AAAgDpn5L8Phgg3AACgzjnk8Nu2CTcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3JyDPvnkEwUEBKh///4/az1HjhzRxIkT1b17dzVt2lRxcXGaNGlSrW/HAABAXeLeUueY/Px8jR07VkOGDFFeXt7PWldOTo5ycnL0xBNPqFevXtq7d6/uuOMO5eTkaPny5XXUYwAAaocjN5Z48cUXFRMTI5fL5VF+/fXX69Zbb3U/v+OOO3TjjTcqISGhyvW5XC61b99eL7zwgkf55s2b5XQ6tXfvXvXu3Vuvv/66hg8fri5duuiqq67Sww8/rDfffFMnT56su8EBAFALhJvqGFN+8z1/PGpxT9NRo0bphx9+0Pvvv+8uO3LkiFatWqWUlBRJ0oIFC/Tvf/9bGRkZ1a7P6XQqOTlZS5Ys8ShfvHixLrvsMnXo0MFru1M3MwsI4KAgAMA/mIGqU3r8p7sK17da3MX4vPPO0zXXXKMlS5ZoyJAhkqTly5erdevWuvLKK/X1119r2rRp+uijj2ocPFJSUvTkk09q3759iouLk8vl0tKlSzVz5kyv9Q8fPqyHHnpI48ePr9n4AADwAY7cWCQlJUWvv/66iouLJZUfZRkzZoyMMbrxxhs1a9YsnX/++V7bLl68WC1atHA/PvroI/Xv3189e/Z0H71Zu3atDh48qFGjRlVoX1hYqGHDhqlXr1568MEHfTZGAEDj4M8bZ3LkpjqBzcqPoPhr27UwfPhwGWP01ltv6ZJLLtFHH32kuXPn6ujRo9q4caM2b96stLQ0SeXn1BhjFBAQoP/93//Vddddp/j4ePe62rVrJ6k8MC1ZskTTpk3TkiVLNHToULVq1cpju0ePHtXQoUPVsmVL/fOf/1RgYODPHDgAAGePcFMdh6PGHw35W0hIiG644QYtXrxY33zzjbp3766LLrpILpdLX375pUfdP//5z3rvvfe0fPlyderUSc2bN1fLli0rrPPGG2/UzJkzlZ2dreXLl2v+/PkeywsLC5WUlKTg4GD961//UkhIiE/HCABAdQg3lklJSdGvf/1rbdu2Tb/73e8klZ8c3Lt3b496kZGRCgkJqVB+po4dO2rQoEFKTU1VWVmZrrvuOveywsJCXX311Tp+/LgWLVqkwsJCFRYWSpLatGmjJk2a1PHoAACoHuHGMldddZUiIiK0a9cu3XjjjXWyzpSUFP3hD3/Q2LFj1bRpU3f5pk2btH79eklS165dPdrs3r1bHTt2rJPtAwBQG5xQbBmn06mcnBwZY9S5c+dK6z344IPasmVLjdZ55513yhijV155xaP8iiuukDHG64NgAwDnNoccfts24QYAAFilXsLN888/r44dOyokJETx8fH67LPPqqy/bNky9ejRQyEhIerTp4/efvvtSuvecccdcjgcmjdvXh33GgAANEY+Dzevvvqq0tPTlZGRoU2bNqlfv35KSkrSwYMHvdZft26dkpOTlZqaqs2bN2vEiBEaMWKEtm7dWqHuP//5T3366aeKifHTRfYAAECD4/Nw89RTT+m2227TuHHj1KtXL82fP1/NmjXTyy+/7LX+008/raFDh2rKlCnq2bOnHnroIV100UV67rnnPOodOHBAEydO1OLFi7muCgAAcPNpuCkpKVF2drYSExN/2qDTqcTERGVlZXltk5WV5VFfkpKSkjzqu1wu3XTTTZoyZYouuOCCavtRXFzs/pry6V9XBgAA9vFpuDl8+LDKysoUFRXlUR4VFaXc3FyvbXJzc6ut/9hjjykgIECTJk2qUT8yMzMVFhbmfsTGxlbbxtTippU49/DzAQANV6P7tlR2draefvppLVy4UA5Hzb5mNn36dBUUFLgf3333XaV1T33Edfz48TrpL+x06ueDj0QBoOHx6UX8WrdurSZNmigvL8+jPC8vT9HR0V7bREdHV1n/o48+0sGDBxUXF+deXlZWpsmTJ2vevHnas2dPhXUGBwcrODi4Rn1u0qSJwsPD3Sc8N2vWrMYhCvYzxuj48eM6ePCgwsPDuQozADRAPg03QUFBGjBggNasWaMRI0ZIKj9fZs2aNe4bOJ4pISFBa9as0d133+0uW716tRISEiRJN910k9dzcm666SaNGzeuTvp9KkhV9o0uIDw8vNKADgCw/K7g6enpuvnmm3XxxRdr4MCBmjdvnoqKitxBZOzYsWrXrp0yMzMlSXfddZcGDx6sJ598UsOGDdPSpUu1ceNGvfjii5KkVq1aVbgrdWBgoKKjo9W9e/c66bPD4VDbtm0VGRmp0tLSOlkn7BEYGMgRGwBowHwebkaPHq1Dhw7pgQceUG5urvr3769Vq1a5Txret2+fnM6fTv0ZNGiQlixZopkzZ2rGjBnq1q2bVqxYUe0NHn2hSZMmTGIAADQy9XLjzLS0tEo/hvrggw8qlI0aNUqjRo2q8fq9nWcDAADOTY3u21IAAKDh48aZAAAAdYRwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAADUOX/eOJNwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAADUOYccfts24QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAA1Dkj47dtE24AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAANQ57goOAABQRwg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAECd467gAAAAdYRwAwAArEK4AQAAViHcAACAOseNMwEAAOoI4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAqHPcOBMAAKCOEG4AAIBV6iXcPP/88+rYsaNCQkIUHx+vzz77rMr6y5YtU48ePRQSEqI+ffro7bffdi8rLS3V1KlT1adPHzVv3lwxMTEaO3ascnJyfD0MAADQCPg83Lz66qtKT09XRkaGNm3apH79+ikpKUkHDx70Wn/dunVKTk5WamqqNm/erBEjRmjEiBHaunWrJOn48ePatGmT7r//fm3atEn/+Mc/tGvXLl133XW+HgoAAKghf94402GM8ekZP/Hx8brkkkv03HPPSZJcLpdiY2M1ceJETZs2rUL90aNHq6ioSCtXrnSXXXrpperfv7/mz5/vdRsbNmzQwIEDtXfvXsXFxVXbp8LCQoWFhamgoEChoaFnOTIADV5JkfRITPn/Z+RIQc392x/gHDBl2edalr1fU4f20J1XdKnTddd0/vbpkZuSkhJlZ2crMTHxpw06nUpMTFRWVpbXNllZWR71JSkpKanS+pJUUFAgh8Oh8PBwr8uLi4tVWFjo8QAAAHbyabg5fPiwysrKFBUV5VEeFRWl3Nxcr21yc3NrVf/EiROaOnWqkpOTK01xmZmZCgsLcz9iY2PPYjQAAKAxaNTfliotLdVvf/tbGWP0wgsvVFpv+vTpKigocD++++67euwlAACoTwG+XHnr1q3VpEkT5eXleZTn5eUpOjraa5vo6Oga1T8VbPbu3av33nuvys/egoODFRwcfJajAAAAjYlPj9wEBQVpwIABWrNmjbvM5XJpzZo1SkhI8NomISHBo74krV692qP+qWDz9ddf691331WrVq18MwAAANDo+PTIjSSlp6fr5ptv1sUXX6yBAwdq3rx5Kioq0rhx4yRJY8eOVbt27ZSZmSlJuuuuuzR48GA9+eSTGjZsmJYuXaqNGzfqxRdflFQebH7zm99o06ZNWrlypcrKytzn40RERCgoKMjXQwIAAA2Yz8PN6NGjdejQIT3wwAPKzc1V//79tWrVKvdJw/v27ZPT+dMBpEGDBmnJkiWaOXOmZsyYoW7dumnFihXq3bu3JOnAgQP617/+JUnq37+/x7bef/99XXHFFb4eEgAAaMB8Hm4kKS0tTWlpaV6XffDBBxXKRo0apVGjRnmt37FjR/n40jwAAKARa9TflgIAADgT4QYAAFiFcAMAAKxCuAEAAHXOyH/nxxJuAACAVQg3AADAKoQbAABgFcINAACocw45/LZtwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAqHPcOBMAAKCOEG4AAIBVCDcAAMAqhBsAAGAVwg0AAKhz3BUcAACgjhBuAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAIA6x13BAQAA6gjhBgAAWIVwAwAArEK4AQAAdY4bZwIAANQRwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAdc7I+G3bhBsAAGAVwg0AALAK4QYAAFiFcAMAAOqcQw6/bZtwAwAArEK4AQAAViHcAAAAqxBuAACAVQLqYyPPP/+85syZo9zcXPXr10/PPvusBg4cWGn9ZcuW6f7779eePXvUrVs3PfbYY7r22mvdy40xysjI0H//938rPz9fl112mV544QV169atPoYDAKglY4xcRnIZI5cxMkYypz13Ge91Tl92+vPy5afVd+mn9cpLHVcl2zjVN5eq7ceZ/3rtR0366t7Gqf97Pvfcxmn1XWeOzcs2ThuHVMk2XRW3YaTq65zajn56zb2N62jxSb/+rEn1EG5effVVpaena/78+YqPj9e8efOUlJSkXbt2KTIyskL9devWKTk5WZmZmfr1r3+tJUuWaMSIEdq0aZN69+4tSXr88cf1zDPP6JVXXlGnTp10//33KykpSdu3b1dISIivhwSgCtVNUNVNYi5XFRNUFX+YvU1iKj2uQf/p19qvDulkk2Ne++O1H+WdqNUEVV2dnyb16icx93NVP4md2kZNJij35KsqXs8K2/M+iXmbjCsGgFMTLc413aNb+G3bDmOMT3/s4uPjdckll+i5556TJLlcLsXGxmrixImaNm1ahfqjR49WUVGRVq5c6S679NJL1b9/f82fP1/GGMXExGjy5Mm69957JUkFBQWKiorSwoULNWbMmGr7VFhYqLCwMBUUFCg0NLSORnruqW5iqPgH0fskdvo7geomMY93I5W9E6vtZPqf7ZaXnd0EVekfe9fpY6tmEjt9wqlmEiuf9Go2iZ2aIOt6EvupfsOdxJrqhHaE3CpJ6nniZf0o3vw0Fg6H5HQ45HRIjlP/qvxfp8NRvtzpqFCn/Hn5V5Cdzp+en76+8uee6/JsX3F9jtO3W02dU2WqYps/tT/Vruo6zv+MVzpznfJY7jEunVHHWfk2TtV1Os/Ypsc2TtWvvk5o00BFhdb971tN52+fHrkpKSlRdna2pk+f7i5zOp1KTExUVlaW1zZZWVlKT0/3KEtKStKKFSskSbt371Zubq4SExPdy8PCwhQfH6+srCyv4aa4uFjFxcXu54WFhT9nWJX6v6ISLVy3RwU/llY7iZ0+QVU3ibknkUomqIqT95mHRb1PYp7LanZY9PT1AHWhppOFowZ1zpxQmipQKijfzgUxYSp1hlQzqVU+CTpqUOfU5CBVnDw8J6DTlqn6Oqe2UT4BVZzEzmzv8NavSiakM18Pz0ms4mtTkzpO52mTpbc6zjP2mc4ca3kb4Gz5NNwcPnxYZWVlioqK8iiPiorSzp07vbbJzc31Wj83N9e9/FRZZXXOlJmZqVmzZp3VGGrjrS+/19Nrvvb5dhorj3dVDlX8g1jJZOGo8Ie34h9ib3UqnbSclf1B9Zyg3O+qTuu79zpnvFusZoLyeFdVTR33u6pqJqjavqvyvs7KXyuHKp/EKuwnnVbHeebYKvbDp0qKpEfK/7v8jgQpqLlvtwegQaiXE4r9bfr06R5HgwoLCxUbG1vn27nhonba8X2hVmw+oKKSMo9ll3drrYQurdTEYyKuw3dVzvJ3gJXWcZ5xGFTeD1d664fkfRKr6h11vU9iAAD8h0/DTevWrdWkSRPl5eV5lOfl5Sk6Otprm+jo6Crrn/o3Ly9Pbdu29ajTv39/r+sMDg5WcHDw2Q6jxpoFBejh/+qj6df21Juf52jJ+n368kCBJOmjrw/rQP6PunFgnEYNiFVYs0Cf9wcAgHORT69zExQUpAEDBmjNmjXuMpfLpTVr1ighIcFrm4SEBI/6krR69Wp3/U6dOik6OtqjTmFhodavX1/pOutbi+AAJQ+M05sTf6E3036h5IFxah7URP8+VKQ/vbVDN/71U393EQAAa/n8Y6n09HTdfPPNuvjiizVw4EDNmzdPRUVFGjdunCRp7NixateunTIzMyVJd911lwYPHqwnn3xSw4YN09KlS7Vx40a9+OKLkso/3rj77rv1pz/9Sd26dXN/FTwmJkYjRozw9XBqrU/7MGW276P7hvXU/8vaq8dW7dS+I8f93S0AAKzl83AzevRoHTp0SA888IByc3PVv39/rVq1yn1C8L59++R0/nQAadCgQVqyZIlmzpypGTNmqFu3blqxYoX7GjeS9Mc//lFFRUUaP3688vPz9Ytf/EKrVq1q0Ne4aREcoKG9o/XYKu8nUgMAgLrh8+vcNET+us7N7sNFuvKJD9QyJEBfPphUb9sFzlklRdIjMeX/n5HDt6WARq6m8zf3lgIAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhxh/OuS/fAwBQfwg39YhbRwIA4HuEGwAAYBXCDQAAsArhph5xqg0AAL5HuPEHTr4BAMBnCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUIN/7ApYoBAPAZwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEG39w+LsDAADYi3ADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcOMPxt8dAADAXoSbesSFiQEA8D3CDQAAsArhph7xaRQAAL5HuPEHPp8CAMBnCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUIN/7ApYoBAPAZwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKv4LNwcOXJEKSkpCg0NVXh4uFJTU3Xs2LEq25w4cUITJkxQq1at1KJFC40cOVJ5eXnu5Z9//rmSk5MVGxurpk2bqmfPnnr66ad9NQQAANAI+SzcpKSkaNu2bVq9erVWrlypDz/8UOPHj6+yzT333KM333xTy5Yt09q1a5WTk6MbbrjBvTw7O1uRkZFatGiRtm3bpvvuu0/Tp0/Xc88956thAACARsZhjKnzq67s2LFDvXr10oYNG3TxxRdLklatWqVrr71W+/fvV0xMTIU2BQUFatOmjZYsWaLf/OY3kqSdO3eqZ8+eysrK0qWXXup1WxMmTNCOHTv03nvv1bh/hYWFCgsLU0FBgUJDQ89ihGdn9+EiXfnEB2oZEqAvH0yqt+0C56ySIumR//y9mZEjBTX3b38A/Cw1nb99cuQmKytL4eHh7mAjSYmJiXI6nVq/fr3XNtnZ2SotLVViYqK7rEePHoqLi1NWVlal2yooKFBERETddR4AADRqAb5YaW5uriIjIz03FBCgiIgI5ebmVtomKChI4eHhHuVRUVGVtlm3bp1effVVvfXWW1X2p7i4WMXFxe7nhYWFNRgFAABojGp15GbatGlyOBxVPnbu3OmrvnrYunWrrr/+emVkZOjqq6+usm5mZqbCwsLcj9jY2HrpIwAAqH+1OnIzefJk3XLLLVXW6dy5s6Kjo3Xw4EGP8pMnT+rIkSOKjo722i46OlolJSXKz8/3OHqTl5dXoc327ds1ZMgQjR8/XjNnzqy239OnT1d6err7eWFhIQEHAABL1SrctGnTRm3atKm2XkJCgvLz85Wdna0BAwZIkt577z25XC7Fx8d7bTNgwAAFBgZqzZo1GjlypCRp165d2rdvnxISEtz1tm3bpquuuko333yzHn744Rr1Ozg4WMHBwTWqCwAAGjefnFDcs2dPDR06VLfddps+++wzffLJJ0pLS9OYMWPc35Q6cOCAevTooc8++0ySFBYWptTUVKWnp+v9999Xdna2xo0bp4SEBPc3pbZu3aorr7xSV199tdLT05Wbm6vc3FwdOnTIF8MAAACNkE9OKJakxYsXKy0tTUOGDJHT6dTIkSP1zDPPuJeXlpZq165dOn78uLts7ty57rrFxcVKSkrSn//8Z/fy5cuX69ChQ1q0aJEWLVrkLu/QoYP27Nnjq6EAAIBGxCfXuWnouM4NcI7gOjeAVfx6nRtU45yLkwAA1B/CDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbf3D4uwMAANiLcAMAAKxCuAEAAFYh3AAAAKsQbgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVw4w/G3x0AAMBehJt6xIWJAQDwPcINAACwCuGmHvFpFAAAvke48Qc+nwIAwGcINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuHGH7iDJgAAPkO4qUfcLxMAAN8j3AAAAKsQbgAAgFUIN/WIU20AAPA9wo0/cPINAAA+Q7gBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuPEHLlUMAIDPEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3PiDw98dAADAXoQbAABgFZ+FmyNHjiglJUWhoaEKDw9Xamqqjh07VmWbEydOaMKECWrVqpVatGihkSNHKi8vz2vdH374Qe3bt5fD4VB+fr4PRgAAABojn4WblJQUbdu2TatXr9bKlSv14Ycfavz48VW2ueeee/Tmm29q2bJlWrt2rXJycnTDDTd4rZuamqq+ffv6ousAAKAR80m42bFjh1atWqW//vWvio+P1y9+8Qs9++yzWrp0qXJycry2KSgo0EsvvaSnnnpKV111lQYMGKAFCxZo3bp1+vTTTz3qvvDCC8rPz9e9997ri+4DAIBGzCfhJisrS+Hh4br44ovdZYmJiXI6nVq/fr3XNtnZ2SotLVViYqK7rEePHoqLi1NWVpa7bPv27Zo9e7b+9re/yemsWfeLi4tVWFjo8QAAAHbySbjJzc1VZGSkR1lAQIAiIiKUm5tbaZugoCCFh4d7lEdFRbnbFBcXKzk5WXPmzFFcXFyN+5OZmamwsDD3IzY2tnYDAgAAjUatws20adPkcDiqfOzcudNXfdX06dPVs2dP/e53v6t1u4KCAvfju+++81EPAQCAvwXUpvLkyZN1yy23VFmnc+fOio6O1sGDBz3KT548qSNHjig6Otpru+joaJWUlCg/P9/j6E1eXp67zXvvvacvv/xSy5cvlyQZYyRJrVu31n333adZs2Z5XXdwcLCCg4NrMkQAANDI1SrctGnTRm3atKm2XkJCgvLz85Wdna0BAwZIKg8mLpdL8fHxXtsMGDBAgYGBWrNmjUaOHClJ2rVrl/bt26eEhARJ0uuvv64ff/zR3WbDhg269dZb9dFHH6lLly61GYp/GX93AAAAe9Uq3NRUz549NXToUN12222aP3++SktLlZaWpjFjxigmJkaSdODAAQ0ZMkR/+9vfNHDgQIWFhSk1NVXp6emKiIhQaGioJk6cqISEBF166aWSVCHAHD582L29M8/VAQAA5yafhBtJWrx4sdLS0jRkyBA5nU6NHDlSzzzzjHt5aWmpdu3apePHj7vL5s6d665bXFyspKQk/fnPf/ZVFwEAgIUc5tSJK+eQwsJChYWFqaCgQKGhofW23d2Hi3TlEx+oZXCAvpyVVG/bBc5ZJUXSI+VHizUjRwpq7t/+APhZajp/c28pf+DGmQAA+AzhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwCuHGH865a0IDAFB/CDcAAMAqhBsAAGAVwg0AALAK4QYAAFiFcAMAAKxCuAEAAFYh3AAAAKsQbvzB4e8OAABgL8INAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALBKgL87cC4JaxqoCVd2UXBAE393BTg3BDaTZuT89H8A5wTCTT2KaB6kKUk9/N0N4NzhcEhBzf3dCwD1jI+lAACAVQg3AADAKoQbAABgFcINAACwCuEGAABYhXADAACsQrgBAABWIdwAAACrEG4AAIBVCDcAAMAqhBsAAGAVwg0AALAK4QYAAFjlnLwruDFGklRYWOjnngAAgJo6NW+fmscrc06Gm6NHj0qSYmNj/dwTAABQW0ePHlVYWFilyx2muvhjIZfLpZycHLVs2VIOh6Net11YWKjY2Fh99913Cg0Nrddt+5rNY5PsHh9ja5xsHptk9/gY29kxxujo0aOKiYmR01n5mTXn5JEbp9Op9u3b+7UPoaGh1v1An2Lz2CS7x8fYGiebxybZPT7GVntVHbE5hROKAQCAVQg3AADAKoSbehYcHKyMjAwFBwf7uyt1zuaxSXaPj7E1TjaPTbJ7fIzNt87JE4oBAIC9OHIDAACsQrgBAABWIdwAAACrEG4AAIBVCDd17OGHH9agQYPUrFkzhYeHe62zb98+DRs2TM2aNVNkZKSmTJmikydPVrneI0eOKCUlRaGhoQoPD1dqaqqOHTvmgxHU3AcffCCHw+H1sWHDhkrbXXHFFRXq33HHHfXY85rp2LFjhX4++uijVbY5ceKEJkyYoFatWqlFixYaOXKk8vLy6qnHNbdnzx6lpqaqU6dOatq0qbp06aKMjAyVlJRU2a6h7rvnn39eHTt2VEhIiOLj4/XZZ59VWX/ZsmXq0aOHQkJC1KdPH7399tv11NPayczM1CWXXKKWLVsqMjJSI0aM0K5du6pss3Dhwgr7KCQkpJ56XHMPPvhghX726NGjyjaNZb95+9vhcDg0YcIEr/Ub+j778MMPNXz4cMXExMjhcGjFihUey40xeuCBB9S2bVs1bdpUiYmJ+vrrr6tdb21/b2uDcFPHSkpKNGrUKN15551el5eVlWnYsGEqKSnRunXr9Morr2jhwoV64IEHqlxvSkqKtm3bptWrV2vlypX68MMPNX78eF8MocYGDRqk77//3uPx+9//Xp06ddLFF19cZdvbbrvNo93jjz9eT72undmzZ3v0c+LEiVXWv+eee/Tmm29q2bJlWrt2rXJycnTDDTfUU29rbufOnXK5XPrLX/6ibdu2ae7cuZo/f75mzJhRbduGtu9effVVpaenKyMjQ5s2bVK/fv2UlJSkgwcPeq2/bt06JScnKzU1VZs3b9aIESM0YsQIbd26tZ57Xr21a9dqwoQJ+vTTT7V69WqVlpbq6quvVlFRUZXtQkNDPfbR3r1766nHtXPBBRd49PPjjz+utG5j2m8bNmzwGNfq1aslSaNGjaq0TUPeZ0VFRerXr5+ef/55r8sff/xxPfPMM5o/f77Wr1+v5s2bKykpSSdOnKh0nbX9va01A59YsGCBCQsLq1D+9ttvG6fTaXJzc91lL7zwggkNDTXFxcVe17V9+3YjyWzYsMFd9j//8z/G4XCYAwcO1Hnfz1ZJSYlp06aNmT17dpX1Bg8ebO6666766dTP0KFDBzN37twa18/PzzeBgYFm2bJl7rIdO3YYSSYrK8sHPaxbjz/+uOnUqVOVdRrivhs4cKCZMGGC+3lZWZmJiYkxmZmZXuv/9re/NcOGDfMoi4+PN7fffrtP+1kXDh48aCSZtWvXVlqnsr89DU1GRobp169fjes35v121113mS5duhiXy+V1eWPZZ8YYI8n885//dD93uVwmOjrazJkzx12Wn59vgoODzd///vdK11Pb39va4shNPcvKylKfPn0UFRXlLktKSlJhYaG2bdtWaZvw8HCPoyGJiYlyOp1av369z/tcU//617/0ww8/aNy4cdXWXbx4sVq3bq3evXtr+vTpOn78eD30sPYeffRRtWrVShdeeKHmzJlT5ceH2dnZKi0tVWJiorusR48eiouLU1ZWVn1092cpKChQREREtfUa0r4rKSlRdna2x2vudDqVmJhY6WuelZXlUV8q/x1sLPtIUrX76dixY+rQoYNiY2N1/fXXV/q3xd++/vprxcTEqHPnzkpJSdG+ffsqrdtY91tJSYkWLVqkW2+9tcobNTeWfXam3bt3Kzc312PfhIWFKT4+vtJ9cza/t7V1Tt44059yc3M9go0k9/Pc3NxK20RGRnqUBQQEKCIiotI2/vDSSy8pKSmp2puS3njjjerQoYNiYmL0xRdfaOrUqdq1a5f+8Y9/1FNPa2bSpEm66KKLFBERoXXr1mn69On6/vvv9dRTT3mtn5ubq6CgoArnWkVFRTWo/eTNN998o2effVZPPPFElfUa2r47fPiwysrKvP5O7dy502ubyn4HG/o+crlcuvvuu3XZZZepd+/eldbr3r27Xn75ZfXt21cFBQV64oknNGjQIG3bts3vNww+XXx8vBYuXKju3bvr+++/16xZs3T55Zdr69atatmyZYX6jXW/rVixQvn5+brlllsqrdNY9pk3p17/2uybs/m9rS3CTQ1MmzZNjz32WJV1duzYUe3JcI3F2Yx3//79euedd/Taa69Vu/7TzxXq06eP2rZtqyFDhujbb79Vly5dzr7jNVCbsaWnp7vL+vbtq6CgIN1+++3KzMxssJdMP5t9d+DAAQ0dOlSjRo3SbbfdVmVbf+67c92ECRO0devWKs9LkaSEhAQlJCS4nw8aNEg9e/bUX/7yFz300EO+7maNXXPNNe7/9+3bV/Hx8erQoYNee+01paam+rFndeull17SNddco5iYmErrNJZ91pgQbmpg8uTJVaZuSercuXON1hUdHV3hjPBT36aJjo6utM2ZJ1mdPHlSR44cqbTNz3E2412wYIFatWql6667rtbbi4+Pl1R+9MDXE+TP2Zfx8fE6efKk9uzZo+7du1dYHh0drZKSEuXn53scvcnLy/PJfvKmtuPLycnRlVdeqUGDBunFF1+s9fbqc99507p1azVp0qTCN9Kqes2jo6NrVb8hSEtLc3+RoLbv5AMDA3XhhRfqm2++8VHv6kZ4eLjOP//8SvvZGPfb3r179e6779b6yGZj2WfST/NWXl6e2rZt6y7Py8tT//79vbY5m9/bWquTM3dQQXUnFOfl5bnL/vKXv5jQ0FBz4sQJr+s6dULxxo0b3WXvvPNOgzmh2OVymU6dOpnJkyefVfuPP/7YSDKff/55Hfesbi1atMg4nU5z5MgRr8tPnVC8fPlyd9nOnTsb7AnF+/fvN926dTNjxowxJ0+ePKt1NIR9N3DgQJOWluZ+XlZWZtq1a1flCcW//vWvPcoSEhIa5ImpLpfLTJgwwcTExJivvvrqrNZx8uRJ0717d3PPPffUce/q1tGjR815551nnn76aa/LG9N+OyUjI8NER0eb0tLSWrVryPtMlZxQ/MQTT7jLCgoKanRCcW1+b2vdzzpZC9z27t1rNm/ebGbNmmVatGhhNm/ebDZv3myOHj1qjCn/oe3du7e5+uqrzZYtW8yqVatMmzZtzPTp093rWL9+venevbvZv3+/u2zo0KHmwgsvNOvXrzcff/yx6datm0lOTq738Xnz7rvvGklmx44dFZbt37/fdO/e3axfv94YY8w333xjZs+ebTZu3Gh2795t3njjDdO5c2fzy1/+sr67XaV169aZuXPnmi1btphvv/3WLFq0yLRp08aMHTvWXefMsRljzB133GHi4uLMe++9ZzZu3GgSEhJMQkKCP4ZQpf3795uuXbuaIUOGmP3795vvv//e/Ti9TmPYd0uXLjXBwcFm4cKFZvv27Wb8+PEmPDzc/Y3Em266yUybNs1d/5NPPjEBAQHmiSeeMDt27DAZGRkmMDDQfPnll/4aQqXuvPNOExYWZj744AOPfXT8+HF3nTPHN2vWLPPOO++Yb7/91mRnZ5sxY8aYkJAQs23bNn8MoVKTJ082H3zwgdm9e7f55JNPTGJiomndurU5ePCgMaZx7zdjyifruLg4M3Xq1ArLGts+O3r0qHsuk2Seeuops3nzZrN3715jjDGPPvqoCQ8PN2+88Yb54osvzPXXX286depkfvzxR/c6rrrqKvPss8+6n1f3e/tzEW7q2M0332wkVXi8//777jp79uwx11xzjWnatKlp3bq1mTx5skeyf//9940ks3v3bnfZDz/8YJKTk02LFi1MaGioGTdunDsw+VtycrIZNGiQ12W7d+/2GP++ffvML3/5SxMREWGCg4NN165dzZQpU0xBQUE99rh62dnZJj4+3oSFhZmQkBDTs2dP88gjj3gcXTtzbMYY8+OPP5o//OEP5rzzzjPNmjUz//Vf/+URGBqKBQsWeP05Pf1gbmPad88++6yJi4szQUFBZuDAgebTTz91Lxs8eLC5+eabPeq/9tpr5vzzzzdBQUHmggsuMG+99VY997hmKttHCxYscNc5c3x33323+7WIiooy1157rdm0aVP9d74ao0ePNm3btjVBQUGmXbt2ZvTo0eabb75xL2/M+82Y8qPrksyuXbsqLGts++zUnHTm49QYXC6Xuf/++01UVJQJDg42Q4YMqTDuDh06mIyMDI+yqn5vfy6HMcbUzQdcAAAA/sd1bgAAgFUINwAAwCqEGwAAYBXCDQAAsArhBgAAWIVwAwAArEK4AQAAViHcAAAAqxBuAACAVQg3AADAKoQbAABgFcINAACwyv8HxMQvbCcP6z8AAAAASUVORK5CYII=",
+      "text/plain": [
+       "<Figure size 640x480 with 1 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "ctlm()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4525940f-4158-4582-8478-45cb8e5def4d",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "3a1e95a0-2c78-4892-9acc-0fc6d14d4b4b",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/hp4155/labview_ctlm.ipynb b/hp4155/labview_ctlm.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c863587e769b5e18f3830079dfc76aef12005f9f
--- /dev/null
+++ b/hp4155/labview_ctlm.ipynb
@@ -0,0 +1,303 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "id": "44cebdf0-d79f-4c34-83c0-ed74f9eb3cf9",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import module\n"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "id": "b1a01977-062f-4bf2-8539-743a9fbcc10b",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "device = module.HP4155a('GPIB0::17::INSTR')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "id": "28c660ec-3c79-4075-aa6c-e4b7078a199f",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'q,k,e,@PGT,@PGD,@PG1W,@PG2W,@PG1DL,@PG2DL,@PG1B,@PG2B,@PG1LD,@PG2LD,@PG1TR,@PG2TR,@TIME,@INDEX,@MX,@MY,@MY1,@MY2,@MI,@CX,@CY,@CY1,@CY2,@L1X,@L1Y,@L1Y1,@L1Y2,@L2X,@L2Y,@L2Y1,@L2Y2,@L1G,@L1G1,@L1G2,@L2G,@L2G1,@L2G2,@IX,@IY,@IY1,@IY2,@L1CO,@L2CO,VGND,V2,VS,V4,IGND,I2,IS,I4,I,V,R\\n'"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.show_variables()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "id": "773d5cc4-4830-48f8-9ef8-e14d8a726ed1",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "23"
+      ]
+     },
+     "execution_count": 4,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.inst.write(\":PAGE:CHAN:MODE SWEEP\") #go to sweep page and prepare sweep measurement"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "4d0f1206-743b-40c5-839b-35cfc619fd83",
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "''' some instructions for the measurement setup\n",
+    "smu1 is constant and common(GND)\n",
+    "smu2 is constant and mode I(2)\n",
+    "smu3 is VAR1 and mode I(S)\n",
+    "smu4 is constant and mode I(4)\n",
+    "\n",
+    "we calculate the difference between i4-i2\n",
+    "'''"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "id": "7ea283a7-827d-4194-a7c4-7f05fec34339",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'+1.000000E+001\\n'"
+      ]
+     },
+     "execution_count": 5,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.inst.query(\":PAGE:MEAS:VAR1:COMP?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "6aa55567-d9ca-44c1-8121-2aa58031da68",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'+3,I,V,R\\n'"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "'''\n",
+    "smu2 and smu4 have current zero\n",
+    "the line of voltage=0 returns if \n",
+    "'''\n",
+    "device.inst.query(\":PAGE:CHAN:UFUN:CAT?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "86186b8c-87ab-43f3-97aa-b564ef35e7a3",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'\\n'"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.inst.query(\":PAGE:DISP:DVAR?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "id": "d4dab174-5f7c-42c3-b46c-5fc234a3e414",
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "UnicodeDecodeError",
+     "evalue": "'ascii' codec can't decode byte 0xf4 in position 9: ordinal not in range(128)",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mUnicodeDecodeError\u001b[0m                        Traceback (most recent call last)",
+      "Cell \u001b[1;32mIn[9], line 5\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;124;03m''' from this command the data variable v4-v2 is displayed\u001b[39;00m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;124;03midea: v4-v2 is zero when two smus have created a shortcut\u001b[39;00m\n\u001b[0;32m      3\u001b[0m \u001b[38;5;124;03m'''\u001b[39;00m\n\u001b[1;32m----> 5\u001b[0m voltage\u001b[38;5;241m=\u001b[39m\u001b[43mdevice\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreturn_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mV\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\labcode\\hp4155\\module.py:168\u001b[0m, in \u001b[0;36mHP4155a.return_data\u001b[1;34m(self, variable)\u001b[0m\n\u001b[0;32m    164\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mreturn_data\u001b[39m(\u001b[38;5;28mself\u001b[39m, variable):\n\u001b[0;32m    165\u001b[0m     \n\u001b[0;32m    166\u001b[0m     \u001b[38;5;66;03m#send command to instrument returns a string of comma seperated values\u001b[39;00m\n\u001b[0;32m    167\u001b[0m     command \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m:DATA? \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvariable\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m\"\u001b[39m \n\u001b[1;32m--> 168\u001b[0m     data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minst\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcommand\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    170\u001b[0m     \u001b[38;5;66;03m# separate the string to a list of strings\u001b[39;00m\n\u001b[0;32m    171\u001b[0m     values \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mreplace(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;124m\"\u001b[39m,\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
+      "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pyvisa\\resources\\messagebased.py:648\u001b[0m, in \u001b[0;36mMessageBasedResource.query\u001b[1;34m(self, message, delay)\u001b[0m\n\u001b[0;32m    645\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m delay \u001b[38;5;241m>\u001b[39m \u001b[38;5;241m0.0\u001b[39m:\n\u001b[0;32m    646\u001b[0m     time\u001b[38;5;241m.\u001b[39msleep(delay)\n\u001b[1;32m--> 648\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
+      "File \u001b[1;32m~\\AppData\\Local\\Programs\\Python\\Python311\\Lib\\site-packages\\pyvisa\\resources\\messagebased.py:486\u001b[0m, in \u001b[0;36mMessageBasedResource.read\u001b[1;34m(self, termination, encoding)\u001b[0m\n\u001b[0;32m    484\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m termination \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m    485\u001b[0m     termination \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_read_termination\n\u001b[1;32m--> 486\u001b[0m     message \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_read_raw\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdecode\u001b[49m\u001b[43m(\u001b[49m\u001b[43menco\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    487\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m    488\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mread_termination_context(termination):\n",
+      "\u001b[1;31mUnicodeDecodeError\u001b[0m: 'ascii' codec can't decode byte 0xf4 in position 9: ordinal not in range(128)"
+     ]
+    }
+   ],
+   "source": [
+    "''' from this command the data variable v4-v2 is displayed\n",
+    "idea: v4-v2 is zero when two smus have created a shortcut\n",
+    "'''\n",
+    "\n",
+    "voltage=device.return_data('V')"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "id": "419bca96-97ca-47ba-876b-2b3a99722a68",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "True"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.operation_completed()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "id": "7e49a29b-6261-4b0f-8fb2-fbeaedf604a7",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'MED\\n'"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "device.inst.query(\":PAGE:MEAS:MSET:ITIM?\")"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "id": "2ddb04ba-1368-4443-94e6-6440c772899b",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "'\\nmeasurement range has range limited 1nA gnd\\nauto for smu2 and 4\\nlimited 2v for smu3\\n\\ndefault wait time 1\\n\\nshor 640 microsecond 0,032\\nmed 20ms 1\\nlong 320ms 16\\n'"
+      ]
+     },
+     "execution_count": 8,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "'''\n",
+    "measurement range has range limited 1nA gnd\n",
+    "auto for smu2 and 4\n",
+    "limited 2v for smu3\n",
+    "\n",
+    "default wait time 1\n",
+    "\n",
+    "shor 640 microsecond 0,032\n",
+    "med 20ms 1\n",
+    "long 320ms 16\n",
+    "'''"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "id": "076df1d7-3df7-4355-9503-585847927a93",
+   "metadata": {},
+   "outputs": [
+    {
+     "ename": "NameError",
+     "evalue": "name 'device' is not defined",
+     "output_type": "error",
+     "traceback": [
+      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
+      "\u001b[1;31mNameError\u001b[0m                                 Traceback (most recent call last)",
+      "Cell \u001b[1;32mIn[10], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m \u001b[43mdevice\u001b[49m\n",
+      "\u001b[1;31mNameError\u001b[0m: name 'device' is not defined"
+     ]
+    }
+   ],
+   "source": [
+    "del device"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "id": "dae1e02e-3e61-4a56-9c23-643d45d2892c",
+   "metadata": {},
+   "outputs": [],
+   "source": []
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "Python 3 (ipykernel)",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.11.4"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}