diff --git a/hp4155/savedata.ipynb b/hp4155/savedata.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..447d2340cb19d608968c2cc4e14d4c1b70bf3095
--- /dev/null
+++ b/hp4155/savedata.ipynb
@@ -0,0 +1,145 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "d119393c-bc09-4646-a812-d17081d0d105",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import hp4155a"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "af3fb977-e43b-4120-9e76-8924c8e24d7c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "device = hp4155a.HP4155a('GPIB0::17::INSTR')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "ed0d34d0-da93-4f68-8c71-159d47b32347",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "time = device.return_values(\"@TIME\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "fa4ce64d-fb66-407b-bcfb-fe1faeca2df9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "R = device.return_values(\"R\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "dbf0d611-d5a6-49f2-9fc4-e1df92c2a5c1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data = {\"time(s)\":time,\"R(Ohm)\":R}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "25ba9dff-dfa6-4a2d-8a68-d39e36bd9651",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "977fab8d-7664-4f7d-817c-45f53b2544cc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df = pd.DataFrame(data)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "81f38ff3-0d53-4730-ae4c-d187e23a5f58",
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " time(s) R(Ohm)\n",
+ "0 0.0 2.514458e+07\n",
+ "1 60.0 3.031222e+07\n",
+ "2 120.0 3.103662e+07\n",
+ "3 180.0 3.669725e+07\n",
+ "4 240.0 3.880481e+07\n",
+ ".. ... ...\n",
+ "846 50760.0 -5.347594e+08\n",
+ "847 50820.0 2.450980e+08\n",
+ "848 50880.0 -2.325581e+09\n",
+ "849 50940.0 -5.154639e+08\n",
+ "850 51000.0 -9.259259e+08\n",
+ "\n",
+ "[851 rows x 2 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "af5de74d-307a-4530-8b63-3fc7f974c7dc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "with open('Retention data Bor-Han.txt',\"w\") as f:\n",
+ " f.write(df.to_string())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "edfa472e-39d6-41cd-b771-a70904207528",
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}