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Preface

These lecture notes grew out of a BMS class Discrete Mathematics II that I gave in the
Winter Semester 2008/2009 at Freie Universitdt Berlin. I made several improvements
during the summer semester 2010, when I gave a course on a similar topic, again at
Freie Universitdt Berlin.

The course should give an introduction to the theory of discrete mathematical op-
timization from a discrete geometric view point, and present applications of this in
geometry and graph theory. It covers convex polyhedral theory, the Simplex Method
and Duality, integer polyhedra, unimodularity, TDI systems, cutting plane methods,
and non-standard optimization methods coming from toric algebra.

These lecture notes originate from various sources. I got the idea for this course from
a series of lectures by Rekha Thomas given at the PreDoc course at FU Berlin “In-
teger Points in Polyhedra” in Summer 2007 (unpublished). Most of the material can
be found in the book of Schrijver [Sch86]. A not so dense treatment of polyhedral
theory can be found in Ziegler’s book [Zie95] and the book of Barvinok [Bar02]. The
part about optimization in graphs is based on another book of Schrijver [Sch03]. For
the parts on unimodularity and TDI systems I have also taken some material from
the book of Korte and Vygen [KVO08]. For the more practical chapters about duality
and the simplex method I have mainly looked into Chvatal’s book [Chv83]. An easy
introduction is the book of Gartner and Matousek [MGO7]. For more on linear pro-
gramming, the excellent lecture notes of Grotschel and Mohring are a good place to
look at. They are available online.

These lecture notes have benefitted from comments by participants in my courses and
many other readers. In particular, Christian Haase, Silke Horn, Kaie Kubjas, Benjamin
Lorenz, and Krishnan Narayanan gave valuable hints for a better exposition or in-
formed me about typos or omissions in the text. There are certainly still many errors
in this text. If you find one it would be nice if you write me an email. Any other
feedback is also welcome.

Darmstadt, February 2013







Cones

This and the following two sections will introduce the basic objects in discrete geo-
metry and optimization: cones, polyhedra, and linear programs. Each section also
brings some new methods necessary to work with these objects. We will see that
cones and polyhedra can both be defined in two different ways. We have an exterior
description as the intersection of some half spaces, and we have an interior descrip-
tion as convex and conic combinations of a finite set of points. The main therem in this
and the next section will be two versions of the Minkowskl-WEYL Theorem relating the
two descriptions. This will directly lead to the well known linear programming duality,
which we discuss in the third section. The basic tool for the proof of these duality the-
orems is the FARKAS Lemma. This is sometimes is also referred to as the Fundamental
Theorem of Linear Inequalities. It is an example of an alternative theorem, i.e. it
states that of two given options always exactly one is true. The Farkas Lemma comes
in many variants, and we will encounter several other versions and extensions in the
next sections. Before we can actually start with discrete geometry we need to review
some material from linear algebra and fix some terminology.

— k .
Definition 1.1. Letx,,...,X; € R", and Aq,...,A, € R. Then Zi:l Aix; is called a
linear combination of the vectors Xy, ..., X,. It is further a

(1) conic combination, if A; > 0,
(2) affine combination, if Z:{:l A; =1, and a
(3) convex combination, if it is conic and affine.

The linear (conic, affine, convex) hull of a set X C R" is the set of all points that are
a linear (conic, affine, convex) combination of some finite subset of X. It is denoted
by lin(X) (or, cone(X), aff(X), conv(X), respectively). X is a linear space (cone,
affine space, convex set) if X equals its linear hull (or conic hull, affine hull, convex
hull, respectively). Figure 1 illustrates the affine, conic, and convex hull of the set
X :={(-1,5),(1,2)}. The linear span of X is the whole plane.

We denote the dual space of R" by (R™)*. This is the vector space of all linear func-
tionals a : R" — R. Given some basis e;,...,e, of R" and the corresponding basis
e},...,e. of (R")" (using the standard scalar product) we can write elements x € R"
and a € (R™)" as (column) vectors

X1 a;

xn aTl

To save space we will often write vectors as row vectors in this text. A linear functional
a:R" — R then has the form

ax)=a'x=a;x;+- - ayx,.

Using the standard scalar product we can (and most often will) identify R" and its
dual space (R")*, and view a linear functional as a (row) vector a* € R".

Let B € R™" be a matrix with column vectors by,...,b,. Then cone(B) denotes the
conic hull cone({b,,...,b,}) of these vectors. Similarly, if A € R™" is a matrix of
functionals aj,...,a; (i.e. the rows of A), then cone(A) := cone(al,...,a ) € (R")".
Define lin(B), aff(B), conv(B),lin(A), aff(A), and conv(A) similarly.

Fundamental Theorem of Linear
Inequalities
alternative theorem

linear combination
conic combination
affine combination

convex combination

linear hull
conic hull
affine hull
convex hull
linear space
cone

affine space

convex set

Figure 1.1
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linear half-space
affine half-space

linear hyperplane
affine hyperplane

polyhedral cone
finitely constrained cone

finitely generated

dimension

Figure 1.2

Fourier-Motzkin elimination

v

Figure 1.3

Definition 1.2. For any non-zero linear functional a® € R" and 6 € R the set

{x|a'x <0} is a linear half-space, and
{x]a'x <6} is an affine half-space.

Their boundaries {x | a'’x = 0} and {x | a'’x = 6} are a linear and affine hyperplane
respectively.

We can now define the basic objects that we will study in this course.

Definition 1.3. (1) Apolyhedral cone (or a finitely constrained cone) is a subset
C C R" of the form

C:={xeR"|Ax <0}

for a matrix A € R™" of row vectors (linear functionals).
(2) For a finite number of vectors b,,...,b, € R" the set

C = cone(by,...,b,) :={X_ A;b; [ 4, >0} ={BA| A >0}
is a finitely generated cone C, where B is the matrix with columns b4, ...,b,.

Definition 1.1 immediately implies that a finitely generated cone is a cone. Note that
any A uniquely defines a cone, but the same cone can be defined by different constraint
matrices. Let A, u > 0 and aj,a; two rows of A. Then

C:={x|Ax <0} = {x|Ax < 0, (Aa] + uaj)x < 0}

Similarly, a generating set uniquely defines a cone, but adding the sum of all generat-
ors as a new generator does not change the cone.

Definition 1.4. The dimension of a cone C is dim(C) := dim(lin(C)).

-2 -1 -1 1
Example 1.5. LetAzz( 5 _1 ),bl :=( 5 ),andb2 = ( 5 )

Then C := {x | Ax < 0} and C’ := cone(b;,b,) define the same subset of R2. It is the
shaded area in Figure 1.2. Note that we have drawn the functionals aj, a), in the same
picture, together with the lines alx =0, i =1,2. O

We want to show that the two definitions of a polyhedral and a finitely generated cone
actually describe the same objects, i.e. any finitely constrained cone has a finite gener-
ating set, and any finitely generated cone can equally be described as the intersection
of finitely many linear half spaces.

The main tool we need in the proof is a method to solve systems of linear inequalities,
known as FouriErR-MoTzkIN elimination. The analogous task for a system of linear
equations is efficiently solved by the well known Gaussian elimination. We will ba-
sically exploit the same idea for linear inequalities. However, in contrast to GAussian
elimination, it will not be efficient (nevertheless it is still one of the best algorithms
known for this problem). We start with an example to explain the idea, before we give
a formal proof. We consider the following system of linear inequalities.

-x + y =< 2

x + 2y < 4
-2x - y =< 1 (1.1

x — 2y =< 2

X < 2

See Figure 1.3 for an illustration fo the solution set. For a given x we want to find
conditions that guarantee the existence of a y such that (x, y) is a solution. We rewrite
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Chapter 1. Cones

the inequalities, solving for y. The first two conditions impose an upper bound on y,

y <2+ x
<2 !
y= 5
the third and forth a lower bound,
—1-2x <y
14+ 1y <
Zx =Y
while the last one does not affect y:
x<2

Hence, for a given x, the system (1.1) has a solution for y if and only if
1 . 1
max(—1—2x,—-1+ Ex) <y <min(2+x,2 — Ex), (1.2)

that is, if and only if the following system of inequalities holds:

-1 — 2x < 2 4+ x
—1—2x§2—%x
-1 + Ix <= 2 + «x
—1+§x52—§x

Rewriting this in standard form, and adding back the constraint that does not involve
Yy, we obtain

—-x < 1

-x < 2

-x < 6 (1.3)
x < 3
x < 2

This system (1.3) of inequalities has a solution if and only if the system (1.1) has a
solution. However, it has one variable less. We can now iterate to obtain

max(—6,—2,—1) < x < min(2,3). 1.4

Now both the minimum and maximum do not involve a variable anymore, so we can
compute them to obtain that (1.1) has a solution if and only if

—-1<x<2

This is satisfiable, so (1.1) does have a solution. (1.4) tells us, that any x between —1
and 2 is good. If we have fixed some x, we can plug it into (1.2) to obtain a range
of solutions for y. The range for x is just the projection of the original set onto the
x-axis. See Figure 1.4.

In general, by iteratively applying this elimination procedure to a system of linear
inequalities we obtain a method to check whether the system has a solution (and we
can even compute one, by substituting solutions).

Theorem 1.6 (Fourier-MoTzkiN-Elimination). Let Ax < b be a system of linear in-
equalities with n > 1 variables and m inequalities.

. . 2 .
Then there is a system A’x’ <b’ with n — 1 variables and at most max(m, ’"T) inequal-
ities, such that s’ is a solution of A’x’ < b’ if and only if there is s, € R such that
s := (sq,8’) is a solution of Ax < b.

/ !

Figure 1.4
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Weyl’s Theorem

Proof. We classify the inequalities depending on the coefficient a;; of x,. Let U be the
indices of inequalities with a;, > 0, E those with a;, = 0 and L the rest. We multiply
all inequalities in L and U by ﬁ

i0

Now we eliminate x, by adding any inequality in L to any inequality in U. That is, our
new system consists of the inequalities
al'x' +a'x' < b;+ by forjeL,keU 1.5)
a'x' <b for €E.
Any solution x of the original system yields a solution x’ of the new system by just

forgetting the first coordinate. We have at most |L| - |U| + |E| many inequalities, which
proves the bound.

Now assume, our new system has a solution x’. Then (1.5) implies

a;.tx’—bj <b,—a,'x foralljeL,keU
which implies
1ty . sty
I?EaLx(aj X' —b;)) < I]}lellrjl(bk —a, x). (1.6)

I f we take for x, any value in between, then
Xo+a,'x < by forallk e U
—x0+a;tx’§bj foralljeL
The coefficient of x, is 0 for all inequalities in E. Hence, they are also satisfied by
x = (xo,x’) and we have found a solution of Ax <b. O

Remark 1.7. (1) IfA,b are rational, then so are A’,b’.
(2) Any inequality in the new system is a conic combination of inequalities of the
original system. This implies that there is a matrix U > 0 such that A’ = UA and
b’ = Ub.
(3) U or L may be empty. In this case only the inequalities in the set E survive. More
specifically, suppose that L = @&. Then, given any solution x’ of the projected
system, we can choose

n
. bi— Zk=1 Aix Xk
Xp = min ——M—
i:a;p>0 ;o

and obtain a solution to the original system. Further, if a;, > 0 for all i, then
the projected system is empty, hence any point X' € R""! lifts to a solution of
Ax <b. 0

Now that we have studied our new tool, let us get back to cones.

Theorem 1.8 (WEyL’s Theorem). A non-empty finitely generated cone C is poly-
hedral.

Proof. Let C = {BA| A > 0} be a finitely generated cone with a matrix of generators
B € R™". Then

C={xeR"|INER : x=BA\, >0}
={xeR"|IAER" : x—BA<0, —x+BA <0, -A <0}

This set is the projection onto the first n coordinates of the set
C'={(x,\)€R™ |x—BA<0, —x+BX <0, -A<0}. 1.7)

Using FOURIER-MOTZKIN elimination to eliminate the variables 4,,..., A, from the sys-
tem of linear inequalities defining C’ we can write the cone C as

C={xeR" |Ax <0}

for some matrix A € R™*". Hence, C is polyhedral. O
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Chapter 1. Cones

Note that the proof of this theorem is constructive. Given any finitely generated cone
C we can write it in the form (1.7) and apply FOURIER-MOTZKIN elimination to obtain a
corresponding system of linear inequalities. Using WEYL’s theorem we can now prove
a first variant of the FArkas Lemma.

Theorem 1.9 (FARKAS Lemma, Geometric Version). For any matrix B € R™" and
vector b € R™ exactly one of the following holds:

(1) there is A € R™ such that BA=b, A >0, or

(2) there is a € R" such that a'B < 0 and a'b > 0.

Geometrically, this theorem means the following. Given a cone C generated by the
columns of B and some vector b,
(1) either b € C, in which case there are non-negative coefficients that give a rep-
resentation of b using the columns of B,
(2) or b & C, in which case we can find a hyperplane H, given by its normal a, such
that b and C are on different sides of H,.

Proof (FARkAs Lemma). The two statements cannot hold simultaneously: Assume
there is A > 0 such that BA =b and a € R™ such that a‘B < 0 and a'b > 0. Then

0<a‘'b=a'(BA)=a‘(BA\) <0,

a contradiction. Let C := {Bu | 0 > 0}. Then there is A > 0 such that BA = b if and
only if b € C. By WEyL’s Theorem the cone C is polyhedral and there is a matrix A
such that

C={x|Ax < 0}. (1.8)

Hence, b & C if and only if there is a functional a* among the rows of A such that
a'b > 0. Clearly, b; € C for each column of B, hence a’B < 0. So a is as desired. O

Definition 1.10. The polar (dual) of a cone C C R" is the set

C*:={aeR"|a'x<0 forall xeC}.

See Figure 1.5 for and example of a cone and its dual.

Proposition 1.11. Let C,D C R" be cones. Then the following holds:
(1) C € D implies D* < C*.
(2) ccCc*.
(3) C*=C*,

Proof. (1) a'!€D*meansa'x<OforallxeDDC.
(2) x€Cmeansa'x<0forallaeC*.
(3) a€ C*™ means a'x <0 for all x € C**, which is equivalent to a € C*. O

Lemma 1.12. Let C be a cone.
(1) IfC={BA| A >0} then C*={a' |a'B < 0'}.
(2) ifC = {x|Ax < 0}, then C = C**.
(3) IfC is finitely generated then C*™* = C.
(4) If C = {x| Ax < 0} is polyhedral for some A € R™", then C* = {\'A| A >0} is
finitely generated.

Proof. (1) Clearly, the inequalities are necessary. Let a satisfy a’B < 0‘. Then
x =B\ € C implies a’x =a'BA <0, as A > 0.
(2) Let D :={\'A| X > 0}. (1) implies C = D* and Proposition 1.11(3) then shows
C** — D*** — D* — C-

Farkas Lemma

polar dual of a cone

Figure 1.5
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Minkowski’s Theorem

Weyl-Minkowski-Duality

(3) Let C = {BA| X >0}. Then (1) tells us that C* = {a|a’B < 0}.
By Proposition 1.11(2) we need only prove C** C C. But this follows from the
observation that, if b € C, then, by the Farkas Lemma, there is a‘ such that
a'B <0, a'b > 0. The first inequality implies a’ € C* and the second b & C**.
(4) C is the dual of D := {A\'A| X > 0}, i.e. C = D*. By dualizing again and using
(1) we have C* = D** = D. O

Theorem 1.13 (MinkowsKr’s Theorem). A polyhedral cone is non-empty and finitely
generated.

Proof. Let C = {x|Ax < 0}. Then 0 € C and C is not empty. Let D := {\'A| A > 0}.
By WEYL’s Theorem, D is polyhedral. Hence D* is finitely generated. But D* = C, and
so C is finitely generated. O

Combining this with WEeyL’s Theorem we get the WEyL-MiNnkowski-Duality for cones.

Theorem 1.14. A cone is polyhedral if and only if it is finitely generated. O

This finally proves the claimed equivalence of the two definitions of a cone in Defini-
tion 1.3. The FOURIER-MOTZKIN elimination also gives us a method to convert between
the two representations (apply the method to the dual if you want to convert from a
polyhedral representation to the generators). In the next chapters we will see that, al-
though mathematically equivalent, there are properties of cones that are trivial to com-
pute in one of the representations, but hard in the other. This affects also algorithmic
questions. Efficient conversion between the two representations is the fundamental
algorithmic problem in polyhedral theory.

Before we consider polyhedra and their representations in the next chapter we want
to list some useful variants of the FARKAS lemma that follow directly from the above
geometric version.

Proposition 1.15. Let B € R™" andb € R™.
(1) Either BA = b has a solution or there is a such that a'B = 0 and a'b > 0, but
not both.
(2) Either BA < b has a solution, or there is a < 0 such thata'B = 0 and a'b > 0,
but not both.

(3) Either BA < b, A > 0 has a solution or there is a < 0 such that a'B < 0 and
a‘b > 0, but not both. O

We finish this chapter with an application of FOURIER-MOTZKIN elimination to linear
programming. FOURIER-MOTZzKIN elimination allows us to

(1) decide whether a linear program is feasible, and
(2) determine an optimal solution.

Let a linear program
maximize  ¢'x subjectto  Ax<b

be given, with A € R™*", b € R™, and ¢ € R". If we apply FOURIER-MOTZKIN elimina-
tion n-times to the system Ax < b, then no variable is left and we have inequalities of
the form

0<aq; (1.9

for right hand sides a;,...,a;. By the FOURIER-MoTzKIN theorem, the system has a
solution if and only if all inequalities in (1.9) have a solution, i.e. if all a; are non-
negative.

To obtain the optimal value, we add an additional variable x,,,; and extend our system

as follows
A O b
s (L20) am(2).

1-6



Chapter 1. Cones

In the system B (.., ) < d we eliminate the first n variables, and we obtain upper and
lower bounds on x,,, in the form

a; < Xppp <

The minimum over the f3; is our optimal value, as this is the largest possible value
such that there is x € R" with

—c'x+x,01 <0 = Xpp S C'X.

If we need the minimum over ¢'x then we add the row (c‘,—1) instead. Observe
however, that this procedure is far from practical, the number of inequalities may
grow exponentially in the number of eliminated variables (can you find an example
for this?).







Polyhedra

Now we generalize the results of the previous section to polyhedra and collect basic
geometric and combinatorial properties. A polyhedron is a quite natural generaliza-
tion of a cone. We relax the type of half spaces we use in the definition and allow
affine instead of linear boundary hyperplanes. We will see that we can use the theory
developed in the previous section to state an affine version of our duality theorem.
We will continue this in Section 4 with the study of faces of polyhedra after we have
discussed Linear Programming and Duality in the next section.

Definition 2.1. (1) A polyhedron is a subset P C R" of the form
P=P(ADb)={xeR"|Ax <b}

for a matrix A € R™" of row vectors and a vectorb € R™.
(2) A polytope is the convex hull of a finite set of points in R".

Definition 2.2. The dimension of a non-empty polyhedron P is dim(P) := dim(aff(P)).

The dimension of @ is —1.

Example 2.3. (1) Polyhedral cones are polyhedra.

-1 1 1
(2) The matrix A := ( 1 0 ) and the vector b := ( 0 ) define the polyhedron
0 1 1

shown in Figure 2.1.

(3) The system of linear inequalities and equations
Bx+Cy <¢
Dx+Ey=d (@]

X >0

for compatible matrices B, C,D and E and vectors ¢, d is a polyhedron:

B C [d
D E d
Put A= _D -E b:= _d
—I 0 0

(4) R"={x|0'x <0}, @ = {x|0'x < —1} and affine spaces are polyhedra.
(5) cubes conv({0,1}") C R" are polytopes. O

Proposition 2.4. Arbitrary intersections of polyhedra with a affine spaces or poly-
hedra are polyhedra.

Proof. P(A,b)NP(A,b)={x|Ax<b, Ax <b'}. O

A polyhedron defined by linear inequalities is a finitely generated cone by our consid-
erations in the previous section, and we will see in the next theorem that any bounded
polyhedron is a polytope. The general case interpolates between these two by taking
a certain sum of a cone and a polytope.

polyhedron

polytope

dimension

Figure 2.1
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Minkowski sum

homogenization

Affine Weyl Theorem

Affine Minkowski Theorem

Definition 2.5. For two subsets bQ C R", the set

P+Q:={p+qlpePh qeq}
is the MINKOWSKI sum of P and Q.

We will prove later that Minkowski sums of polyhedra are again polyhedra. The next
theorem gives the analogue of WeyL’s Theorem for polyhedra. We will prove it by
reducing a general polyhedron P to a cone, the homogenization homog(P) of P.

Theorem 2.6 (Affine WEYL Theorem). LetB € R™?, C € R, and
P :=conv(B)+cone(C) = {BA+Cu | A\, ;> 0,24, =1}.

Then there is A€ R™™ and b € R™ such that P = {x € R" | Ax < b}.

Proof. For P = () we can take A= 0 and b= —1. If P # 0, but B = 0, then the
theorem reduces to WEyL’s Theorem for cones. So assume that P # 0 and p > 0. We
define the following finitely generated cone:

o={( 2)(2) oned

:{( B)\Z:-f-kél.b ) }/\,uzo}.

Q is the homogenization of P. We obtain the following correspondence between
points in P and in Q:

X

XEP (I)EQ. 2.1)

Q is a cone, so by WEYL’s Theorem 1.8 there is a matrix A’ such that
Q={C) 1A () =0}.
Write A’ in the form A’ = (—b|A) by separating the first column. Using the correspond-

ence (2.1) between points in P and in Q we obtain P = {x € R" | Ax < b}. O

In particular, we obtain from this Theorem, that the Minkowski sum of a polytope and
a cone is a polyhedron. Using the same trick of homogenizing a polyhedron we can
also prove the analogue of Minkowskr’s Theorem.

Theorem 2.7 (Affine Minkowskl Theorem). Let P = {x € R" | Ax < b} for some
AeR™" andb € R™. Then there is B € R™P and C € R™™4 such that

P = conv(B) + cone(C).

Proof. If P = (), then we let B and C be empty matrices (i.e. we take p = q = 0).
Otherwise, we define a polyhedral cone Q € R"! as

= {(2)( 5 5) ()=o)

Again, in the same way as in the previous proof, we obtain the correspondence x € P
if and only if (1,x)" € Q between points of P and Q. Q is the homogenization of the
polyhedron P as a polyhedral cone. The defining inequalities of Q imply x, > O for all
(x0,x%) in Q. By Minkowskr’s Theorem for cones there is M € R+ sych that

Q={Mn|n =0}




Chapter 2. Polyhedra

The columns of M are the generators of Q. We can reorder and scale these generators
with a positive scalar without changing the cone Q. Hence, we can write M in the

form
1t o
=% ¢ )

for some B € R™P, C € R™1 with p +q = r. Split n = (A, ) € RP x R? accordingly.

Then
1A
Q‘{( BA+Cp ) ‘ )"“ZO}'

P is the subset of all points with first coordinate x, = 1, so P = conv(B) + cone(C). O

Combining the affine versions of WeyL’s and Minkowskr’s Theorem we obtain a duality
between the definition of polyhedra as solution sets of systems of linear inequalities
and Minkowski sums of a convex and conic hull of two finite point sets.

Theorem 2.8 (Affine MinkowskI-WEYL-Duality). A subset P C R" is a polyhedron if
and only if it is the MiNKOWSKI sum of a polytope and a finitely generated cone. O

Using this duality we can characterize all polyhedra that are polytopes.
Corollary 2.9. P CR" is a polytope if and only if P is a bounded polyhedron.
Proof. Any polytope P = {A'A| A > 0,>.A; = 1} is a polyhedron by the affine WeyL

Theorem, and it is contained in the ball with radius Y ||a;|| around any point in P.
Conversely, any polyhedron can be written in the form P = {BA+ Cu | A, p >

0, D' A; = 1}. If it is bounded then C = 0, as otherwise rC\ € P for any r > 0. O
Here are some examples to illustrate this theorem.

Example 2.10. (1) The 3-dimensional standard simplex is the polytope defined
as the convex hull of the three unit vectors,

oimem((1) (1)) ~{(3) ezonesems)

(2) Here is an example of an unbounded polyhedron that is not a cone.

{13 )= (3}
=conv (5 ).(5 ). (1)) +eone((2).(1))-

(3) We have already seen that the representation of a polyhedron as the set of solu-
tions of a linear system of inequalities is not unique. The same is true for its
representation as a Minkowski sum of a polytope and a cone.

w={(D1(5 4 3)(1)=(3))
cam (). (3 ) e () () ()(2))
ceom (D). 2))reme(( ) (2]

(4) FouriER-MoTZKIN elimination allows us to explicitely compute one representa-
tion of a polyhedron from the other. We give an explicit example. Let Id; be the
(8 x 3)-identity matrix and

HON R

P :=conv(Id;) = {IdsA | A >0, ZAi =1}.

Affine Minkowski-Weyl-Duality

standard simplex

2-3
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unit cube

exterior description
H-description
interior description

V-description

affine map

affinely equivalent

We want to compute a polyhedral description. As in the proof of the Affine WEyL
Theorem, we extend the system to

Pi={(&)AIA=0} .

We apply FOURIER-MOTZKIN-elimination to the system

Xg— A1 —Ay— A3 <0 —Xg+ A +A,+ A3 <0
x;1—A <0 —x;+2A, <0 -2 <0
Xy — Ay <0 —xy+A,<0 -2,<0
X3—A3 <0 —x3+A3 <0 -4, <0

Eliminating all A; from this we obtain

XO_X]_XZ_X3SO _X1SO
_xO+X1+X2+X3SO —XZSO
—XOSO _X3SO

so that P = {x = () | AX < 0} for

OO O =
|
O = O
|
= O o+
[=NeNei -

Separating the first column we obtain P = {x | x; > 0,x; + x, + x5 = 1}.
(5) The 3-dimensional unit cube is

001 0 0 1 1 0 1
C; :=conv 00 1 0 1 0 1 1
00 0 1 0 1 1 1

={(x1,x5,x3) |0<x; <1,1<i<3}. O

Summarizing our results we have two different descriptions of polyhedra,

(1) either as the solution set of a system of linear inequalities
(2) or as the Minkowski sum of a polytope and a finitely generated cone.

The first description is called the exterior or H-description of a polyhedron, the
second is the interior or V-description.
Both are important for various problems in polyhedral geometry. When working with
polyhedra it is often important to choose the right representation. There are many
properties of a polyhedron that are almost trivial to compute in one representation,
but very hard in the other. Here are two examples.
» Using the inequality description it is immediate that intersections of polyhedra
are polyhedra, and
» using the interior description, it is straight forward (and we will do it in the next
proposition) to show that affine images and MiNnkowski sums of polyhedra are
polyhedra.
Amap f : R" — RY is an affine map if there is a matrix M € R?*" and a vector b € R¢
such that f(x) = Mx +b. Two polytopes P € R" and Q € R? are affinely equivalent
if there is an affine map f : R" — R? such that f(P) = Q. For any polyhedron P € R"
with dim(P) = d there is an affinely equivalent polyhedron Q € R¢. The first part of
the next proposition supports this definition.

Proposition 2.11. (1) Affine images of polyhedra are polyhedra.
(2) Minkowski sums of polyhedra are polyhedra.
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Proof. (1) Let P := {BA+Cu | A\, pu > 0,2 4; =1} for B € RV, C € R™ be a
polyhedron and f : x —> Mx +t with M € R¥*", t € R? an affine map. Let T be the
(n x r)-matrix whose columns are copies of t. Let

B:=MB+T and C:=MCcC.
Then

FP)={MBAX+Cu)+t|A,pn>0,224;=1}
= {BA+CplApn=0,22,=1}

which is again a polyhedron.
(2) Let P = conv(by,...,b,)+cone(yy,...,y;), P’ = conv(b],...,b’,)+cone(y;,...,y.)
be two polyhedra. We claim that their Minkowski sum is

P+P’=conv(bi+b;|1§i§r,1 Ser’)+cone(yi,y;|1§i§s,1 <j<s).

We prove both inclusions for this equality. Let
p:= (Zirzl A+ 20, ujyj) + (Zirzl A+ u;yj) ep+p
with 3 A; = 37 A/ =1. Then

Y= D MY+ 2o, MY, € cone(y;,y; | 1<i<s,1<j <),
so we have to show that
X:= Y A+ X Wy, €conv(b +b)[1<i<n1<j<r)  (22)

We successively reduce this to a convex combination of b; +b;. in the following way. We
can assume that all coefficients in this sum are strictly positive (remove all other sum-
mands from the sum). Choose the smallest coefficient among A,...,A,, A’l, . ..,A’r .
Without loss of generality let this be A,. Define A := A1 =24, >0, A7 :== 4,2 <i <1/,
and 1; := A;. Then

x—nu(by +b) =27, Ab;+ > A/b.

and 2:22 A= Zir=1 A!. The sum on the right hand side contains at least one summand
less than the sum in (2.2), so repeating this procedure a finite number of times gives
a representation of x as

X= Z n;;(b; +b3~)

1<i<r
1<j<r!

for non-negative coefficients 71;; summing to 1. The other inclusion is obvious. O

Remark 2.12. More complicated examples require the use of a computer to assist
the computations. One suitable option for this is the software tool polymake. It
can (among other things) transform between V- and H-representations of polytopes
(using some other software, either cdd or 1rs). It uses the homogenization of a
polyhedron for representation, so that a matrix of generators B should be given to
polymake as 1|B’, and inequalities Ax < b are written as b| — A. polymake can also
compute optimal solutions of linear programs. See http://www.polymake.de for
more information. O

We will see in the next section that in Linear Programming we are given the exterior
description of a polyhedron, while finding the optimum requires to find (at least some
of) the extreme points. If we are also given the V-description then linear programming
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characteristic cone
recession cone

lineality space

pointed polyhedron

is a linear time algorithm (in the input size, which can be very large). So the com-
plexity of linear programming is to some extend related to the complexity of finding
an interior from the exterior description.

Given an exterior description, there is no polynomial bound on the number of points
in an interior description, unless the dimension is fixed. A simple example for this
behaviour is the cube

Cpi={XxeR"|-1<x;,<1,1<i<n}.

C,, needs 2n linear inequalities for its exterior description. For the interior description,
it is the convex hull of the 2" points with coordinates +1 and —1. Conversely, the cross

polytope
Cr,:={xeR"|e'x<1,ee{+1,—1}"}.

needs 2" inequalities, but it is the convex hull of the 2n points +e;, 1 <i < n. We
study this problem in more detail in Sections 4 and 5

Definition 2.13. The characteristic or recession cone of a convex set P C R" is the
cone

rec(P):={yeR"|x+ Ay P forallxe P,A > 0}.
The lineality space of a polyhedron is the linear subspace

lineal(P) :=rec(P) N (—rec(P))
={yeR"|x+AyeP forallx € b\ R}

A polyhedron P is pointed if lineal(P) = {0}.

lineal(P) is a linear subspace of R". Let W be a complementary subspace of lineal(P)
in R™. Then

P =lineal(P)+ (PNW). 2.3)

as a MinkowskI sum of a linear space and a convex set P N W whose lineality space is
lineal(P N W) = {0}. So any polyhedron P is the Minkowski sum of a linear space and
a pointed polyhedron. Note that this decomposition is different from the one used in
the Minkowski-Weyl Duality.

Example 2.10 continued. Consider again the polyhedron P;. We compute the lin-
eality space L:

L :=lineal(P;) = lin (( _i) )

if we choose a transversal subspace

wi={(2) |x=v}
Q:=PNnW :=conv((%),(%)) +cone((§0), (:E))

and P splitsas P = L + Q. ¢

then

Proposition 2.15. Let P = {x | Ax < b} = conv(V) + cone(Y) be a polyhedron.
(1) rec(P) ={y|Ay < 0} = cone(Y).
(2) lineal(P) = {y | Ay = 0}.
(3) P+rec(P)=P.
(4) P polytope if and only if rec(P) = {0}.
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Proof. (1) Let C := {x | Ax < 0}. If y € R" satisfies Ay < 0 and x € P, then

(2
3

(€))

A(x+ Ay) = Ax+ Ay < b, so C C rec(P).

Conversely, assume y € rec(P) and there is a row a; of A such that s := a;y > 0.
Let r := inf,cp(by —a;x). Then by, —a; (x+y) = r —s < r. This is a contradiction
to the choice of r.

Now consider the second equality. Let Q := conv(V) and D = cone(Y). Clearly
D C rec(P). Assume y € rec(P), y ¢ D. By the Farkas Lemma, there is a
functional ¢ such that ¢'Y < 0, but ¢'y > 0. Choose any p € Q. By assumption,
p +ny € P for n € N, so there are p, €Q, q,, € D such that p+ny=p, +q,. Q
is bounded, so there is a constant M > 0 such that ¢'x < M for all x € Q. Apply
¢’ to the sequence p + ny to obtain

c'p+ncy=c'p,+c'q,.

By construction, the right side of this equation is bounded above for all n, while
the left side tends to infinity for n — oco. This is a contradiction, so rec(P) € D.
Follows immediately from (1).

“C”: x € By erec(P), then x+y € P by definition.
“2”: 0 erec(P).
P bounded if and only if rec(P) = {0}. O







Linear Programming and Duality

This section introduces linear programming as an optimization problem of a linear
functional over a polyhedron. We explain standard terminology and conversions
between different representations of a linear program, before we define dual linear
programs and prove the Duality Theorem. This theorem will be an important tool for
the study of faces of polyhedra in the next section.

Linear programming is a technique for minimizing or maximizing a linear objective
function over a set P defined by linear inequalities and equalities. More explicitly, let
AERP" EeRT*" beRP, feRY, and ¢ € (R")*. Then we want to find the maximum
of ¢'x subject to the constraints

Ax<b
Ex=f.

This system defines a polyhedron P C R". Techniques to explicitly and efficiently
compute the maximal value ¢'x use algebraic manipulations on the representation
of the polyhedron P to obtain a representation in which the maximal value can be
directly read of from the system. We introduce two representations that we will use
quite often and explain how to convert between them. We will first do the algebraic
manipulations and later see what this means in geometrical terms.

Definition 3.1. A linear program in standard form is given by a matrix A€ R™", a
vectorb € R™, and a cost vector ¢' € R" by

maximize cix
subject to Ax=Db
x>0. (non-negativity constraints)

A program in canonical form is given as

maximize c'x
subject to Ax<Db
x=>0. (non-negativity constraints)

Note that the definition of a standard form is far from unique in the literature. To jus-
tify this definition we show that any linear program can be transformed into standard
form (or into any other) without changing the solution set. Here is an example that
should explain all necessary techniques. Consider the linear program

maximize 2x; + 3x, subjectto  3x; —x, > 2
4x1 + X9 < 5
X1 < 0

we can reverse the inequality signs and pass to equations using additional auxiliary
variables x3, x4

maximize 2x; + 3x, subject to  — 3x; + x4y + X5 =-2
4x, + x, +x4= 5

x; <
X3, x42= 0

linear programming
objective function

standard form

canonical form
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slack variables

feasible
feasible solution
infeasible

unbounded

optimal solution
optimal value

correct the variable constraints by substituting y; := —x;
maximize —2y;+ 3x, subject to 3y, + x5 + X3 =-2
_4y1 + X9 + X4 = 5
x3> X4, Y1 Z
add constraints for x, by substituting x, = y, — y3
maximize —2y;+3y,—3y; subjectto 3y;+y;—y3+Xx3 =-2
—4y1ty2—ys  tx4= 5
X3, X4, Y15 Y2, Y3 =
normalize by renaming y; — X;, Yo — Xo, Y3 — X3, X3 — X4, X4 — X5,
maximize —2x; +3x,—3x3 subjectto 3x;+x,—x3+ X, =-2
—4x1 + X9 — X3 +x5= 5

X1,X1,X3, X4, X5 =

If we want to write this in matrix form, A, b and ¢ are given by

( 31 -110 (-2 N B
A—(_41_101) b—( 5) ¢=(-23 -30 0).

An optimal solution of this transformed system is given by (—1,1,0,0,0), which we
can transform back to an optimal solution (1,1) of the original system. Here is the
general recipe:

minimize ¢!x «— maximize —c¢'x.
ax>b, «— —ax<-b
ajx=b, «— ax<b;andax>Db;.
ax<b, «— ax+s;=b;ands;>0.
x;€R — x;=x7—x7,x ,x7>0.

i?
Definition 3.2. The variables s; introduced in rule (4) are called slack variables.

Definition 3.3. A linear maximization program is

(1) feasible, if there is x € R" satisfying all constraints. x is then called a feasible
solution.

(2) infeasible if it is not feasible.

(3) unbounded, if there is no M € R such that ¢'x < M for all feasible x € R".

An optimal solution is a feasible solution X such that ¢'x < ¢'X for all feasible x. Its
value ¢'x is the optimal value of the program.

Note that an optimal solution need not be unique. We will learn how to compute the
maximal value of a linear program in Section 6. We can completely characterize the
set of linear functionals that lead to a bounded linear program.

Proposition 3.4. Let A€ R™" beR™, and P := {x € R" | Ax < b}.

(1) The linear program max(c'x | x € P) is unbounded if and only if there is a
y € rec(P) such that c'y > 0.

(2) Assume P # @. Then max(c'x | x € P) is feasible bounded if and only if ¢ €
rec(P)*.

Proof. (1) If max(c'x | Ax < b) is unbounded, then min(z'b | z'A = ¢, z > 0) is
infeasible. Hence, there is no z > 0 such that z'A = ¢!. The Farkas Lemma (in
the version of Proposition 1.15) gives us a vector y < 0 such that Ay < 0 and
y'b > 0.

Now assume that there is such a vector y. Let x € P, then x+ Ay € P for all
A > 0. Hence, ¢'(x+ Ay) = ¢'x + Ac'y is unbounded.

3-2



Chapter 3. Linear Programming and Duality

(2) As P # @, the program is feasible. There is no y € rec(P) with ¢'y > 0 if and
only if ¢ € rec(P)* by the definition of the dual cone. O

Now we want to show that we can associate to any linear program another linear
program, called the dual linear program whose feasible solutions provide some in-
formation about the original linear program. We start with some general observations
and an example.

Let A€ R™", b € R™, and ¢ € R". Consider the two linear programs in canonical
form:
max(c'x |Ax < b, x > 0) P)
min(y'b |y’A>c’, y>0) (D)

Assume that the first linear program has a feasible solution x, and the second linear
program a feasible solution y. Then

c'x <y'Ax <y'D,

where the first inequality holds, as x > 0 and the second, as y > 0. Thus, any feasible
solution of (D) provides an upper bound for the value of (P). The best possible upper
bound that we can construct this way is assumed by min(y‘b | y*'A > ¢*,y > 0).

Example 3.5. Let

8 6 22
A= 2 6 b:=| 10 ct:=(2 3)
3 5 12

and consider the linear program (P) and (D) as above. Then y = (1,0,0) is feasible
for (D) and we obtain

2x71+3xy9 < 8x; +6xy < 22

so the optimum of (P) is at most 22. From the computation you can see that we
overestimated the coefficients by a factor of at least 2, so a much better choice would
be to take y = (%, 0,0), which leads to

2x1+3xy < 4x;+3x, < 11.

So far, we have only used one of the inequalities. As long as we take non-negative

scalars, we can also combine them. Choosing y = (%, %, 0) gives

1 1 42
le + 3X2 = 6(8.7(1 +6X2 +4X1 + 12X2) S 6(22 +20)= g = 7

Hence, the optimum is at most 7. It is exactly 7, as x; = 2, x, = 1 is a feasible solution

of (P). O

The program (D) is called the dual linear program for the linear program (P), which
is then called the primal linear program. We have already proven the following
proposition.

Proposition 3.6 (Weak Duality Theorem). For each feasible solution y of (D) the
value y'b provides an upper bound on the value of (P), i.e. for each feasible solution
x of (P) we have

c¢'x <y'b.

In particular, if either of the programs is unbounded, then the other is infeasible. O

dual linear program
primal linear program

weak duality theorem
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duality theorem

However, we can prove a much stronger relation between solutions of the primal and
dual program.

Theorem 3.7 (Duality Theorem). For the linear programs (P) and (D) exactly one
of the following possibilities is true:

(1) Both are feasible and their optimal values coincide.

(2) One is unbounded and the other is infeasible.

(3) Neither (P) nor (D) has a feasible solution.

A linear program can either be

(1) feasible and bounded (fb),

(2) infeasible (i), or

(3) feasible and unbounded (fu).
Hence, for the relation of (P) and (D) we a priori have 9 possibilities. Three of them
are excluded by the weak duality theorem (wd), and another two are excluded by the
duality theorem (d).

(D) )
P) by @@ (w
(fb) yes (d) (wd)
@) (d yes yes
(fu) (wd) yes (wd)

The four remaining cases can indeed occur.
(1) max(x|x <1,x>0)and min(y | y > 1, y > 0) are both bounded and feasible.
(2) max(x; +x, | —x; —2x5 <1, x1, x5 > 0) has the solution x = R1, and the dual
program min(y | —y > 1, —2y > 1, y > 0) is infeasible. These are the programs
corresponding to
A=(-12) b=1 c=(11)
(3) Consider the programs (P) and (D) for the input data
A:=(_%’%) b:=(_?) c:=(11).
We can use the FARKAS Lemma to show that both programs are infeasible. Choose
the following two functionals u =v = (1). Then
u'A=0 u'b<0 u>0
VIA<0 vie>0 v>0
Dual programs also exist for linear programs not in canonical form, and it is easy to
generate it using the transformation rules between linear programs.

Proposition 3.8. LetA,B,C, and D be compatible matrices and a,b, ¢,d correspond-
ing vectors. Let a linear program

maximize c'x+dy
subject to Ax+By<a
Cx+Dy=>b
x>0

be given. Then its dual program is

minimize u'y+v'b
subject to u'A+viCc>ct
u'B+viD=d"
uz=0
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Proof. By our transformation rules we can write the primal as

maximize c'x+dy, —d'v,
subject to Ax+By, —By, < a
Cx+Dy,—Dy, < b
—Cx— Dy, + Dy, <-b

XY,¥2= 0
which translates to
minimize u‘a+vib—vib
subject to wWA+viC—v,C>

u'B+vD-v,D> d°
—u'B—-viD+v,D> d°
u’V1:v2 Z O

Set v:=v; —Vv,. and combine the second and third inequality to an equality. O

From this proposition we can derive a rule set that is quite convenient for quickly
writing down the dual program. Let A€ R™", b€ R™, c€ R".

| primal | dual
variables X=(X1,.-.5X) V=15 Ym)
matrix A A
right hand side b c
objective function max ¢'x min y'b
constraints i-th constraint has < yi =0
x; 20 j-th constraint has >
.X'j eR =

Observe that we have one-to-one correspondences

primal variables <=  dual constraints

dual variables <= primal constraints

This fact will be used in the complementary slackness theorem at the end of this sec-
tion. Now we finally prove the duality theorem.

Proof (Duality Theorem). By the considerations that we did after the statement of
the theorem and the fact that primal and dual are interchangeable, it suffices to prove
the following:

If the linear program (P) is feasible and bounded, then also the linear
program (D) is feasible and bounded with the same optimal value.

Assume that (P) has an optimal solution X. Let a := ¢'X. Then the system

Ax<b cx>a x>0 ™
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complementary slackness
theorem

has a solution, but for any € > 0, the system

Ax<b c'x>a+e¢ x>0 (**)
has none. Consider the extended matrices

(%) ()

Then (**) is equivalent to Ax < BE, and (*) is the special case € = 0.
Fix ¢ > 0. We apply the Farkas Lemma (in the variant of Proposition 1.15(3)) to
obtain a non-negative vector z = (zy,z) > 0 such that

Z'A>0 but z'b, <O.
This implies
z'A> z,ct and z'b<zy(a+e) 2>0,2,>0.

Further, applying the Farkas Lemma for ¢ = 0, we see that there is no such z, hence
our chosen z = (z,,z) must satisfy z'b > z,a (otherwise z would be a certificate that
(™) has no solution!). So

zoa <z'b<zo(a+e).
As z, > 0 this can only be true for 2z, > 0. Hence, for y := le we obtain
0
y'A>c' yb<a+e.

So y is a feasible solution of (D) of value less than a + ¢ for any chosen ¢. By the weak
duality theorem, however, the value is at least a. Hence, (D) is bounded, feasible and
therefore has an optimal solution. Its value is between a and a + ¢ for any € > 0, so

bly=a. O

We can further characterize the connections between primal and dual solutions. Let s
and r be the slack vectors for the primal and dual program:

s:=b—-Ax (ie. AXx<b&s=s>0)
r':=y'A-¢ (ie. yA>c'<r>0)
Then
y's+r'x=y'(b—Ax)+ (yA—c)x=y'b—c'x,
S0

y's+r'x=0 — y'b=c'x. (A)

Theorem 3.9 (complementary slackness). Let both programs (P) and (D) be feas-
ible. Then feasible solutions X and y of (P) and (D) are both optimal if and only
if

(1) for eachi € [m] one ofs; and y; is zero, and

(2) foreach j € [n] one of r; and X; is zero,
or, in a more compact way

t

ys=0 and r'x=0.
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Proof. The Duality Theorem states that X and y are optimal for their programs if and
only if ¢'x = y'b. (A) then implies that this is the case if and only if y's + r'X = 0. By
non-negativity of y,X, s, r this happens if and only if the conditions in the theorem are
satisfied. O

So if for some optimal solution X some constraint is not satisfied with equality, then
the corresponding dual variable is zero, and vice versa. We can rephrase this in the
following useful way. Let X be a feasible solution of

max(c'x |Ax <b,x>0).

Then X is optimal if and only if there is y with

yA>c! y>0
such that

where a’ is the j-th column of A. So given some feasible solution X we can set up the
system (3.1) of linear equations and solve for y. If the solution exists and is unique,
then X and y are optimal solutions of the primal and dual program. We will see later
that a solution to (3.1) is always unique if X is a basic feasible solution.

Example 3.10. (1) We consider the polytope P := {x | Ax < b,x > 0} = conv(V)
with

00 0 1 2 5
A:=( 11 1) b;:(s) V= o 0o 2 4 o o |.
2 12 2 01 00 3 0
The polytope is shown in Figure 3.1. If we choose ¢’ := (1, —1, —2) as objective
function, then the last column of V is the optimal solution X. This is the blue

vertex in the figure. The corresponding dual optimal solution is y = (1,0). We
compute the slack vectors

s:=b—Ai:(12) rfi=yA-c=(0 2 3),
Then
5
yis+rix=(1 0)(12)4-(0 2 3)(8)=0'

(2) We consider the linear program max(c'x | Ax < b,x > 0) with

1 1 1 1 1 5

= -2 1 1 -2 =3 b:= 2

-1 2 1 0 -1 4
ci=(-1 3 1 1 1),

We are given the following potential optimal solution X and compute the primal
slack vector s := b — Ax for this solution:
0
s:=1 6 |].
(£)

We want to use (3.1) to check that X is indeed optimal. The system consists of
three linear equations

1 1
(yl yz Y3)(é):3, (Y1 YZ J’B)(_(z))zla YZ:O

This system has the unique solution y* = (1,0,1). This is a feasible solution of
min(y'b | y'A > c',y > 0), and c¢'X = 9 = ¥'b, so both X and y are optimal for
their programs. ¢

1l
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Figure 3.1
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We want to discuss a geometrical interpretation of the duality theorem and comple-
mentary slackness. Let

max(c'x | Ax < b) ®)
min(y'b |y'A=c", y>0) (D)

be a pair of dual programs for A € R™", ¢ € (R")*, b € R™. The inequalities of
the primal program define a polyhedron P := {x | Ax < b}. Let X and y be optimal
solutions of the primal and dual program. Complementary slackness tells us that

¥ (b—AX)=0. )

Hence, y is non-zero only at those entries, at which Ax < b is tight. Let B be the set
of row indices of A at which a;x = b;. Let Ay the (|B| X n)-sub-matrix of A spanned by
these rows, and y be the corresponding selection of entries of y. Note that by () this
contains all non-zero entries of y. The dual program states that ¢’ is contained in the
cone spanned by the rows of Az, and the dual solution y gives a set of coefficients to
represent ¢’ in this set of generators.

Example 3.11. Let A, b, and c be given by

-1 1 3
1 2 3

A=| -2 -1 b:=| 3 cf:=(o 1)
1 -2 1
1 0 1

Then

i::(_;) y=(Ys 13 0 0 0)

are primal and dual solution. The primal solution is tight on the first two inequalities
—x; + x5 <2 and x; + 2x, < 4. The corresponding functionals satisfy

s( -1 1) +15(1 2)=(0 1)
See Figure 3.2 for an illustration. ¢

Using this geometric interpretation we can discuss the influence of small changes of
b to the optimal value of the linear program. We assume for this that m > n, |B| =n
and rank(Agz) = n. Hence, Ag is an invertible matrix and X = Agle. Let A € R™
be the change in b. If A is small enough, then the optimal solution of Ax < b+ A
will still be tight at the inequalities in B. So X' = A;'(b+ A)z. However, using the
duality theorem and complementary slackness we can compute the new optimal value
without computing the new optimal solution X'. We have seen above that the non-zero
coefficients of the dual solution are the coefficients of a representation of ¢’ in the rows
of Ag. By our assumption, Ay stays the same, so the program with modified right hand
side has the same dual solution y'. By the duality theorem the new optimal value is
y'(b+ A). Further, changing right hand sides b; that correspond to inequalities that
are not tight for our optimal solution do not affect the optimal value (again, as long
as the set B of tight inequalities stays the same). See Figure 3.3 for an example.

The crucial problem in these considerations is that we don’t have a good criterion to
decide whether a change A to b changes the set B or not. In Section 6 we will see
that we can nevertheless efficiently exploit part this idea to compute optimal values of
linear programs with variations in the right hand side.




Faces of Polyhedra

In this chapter we define faces of polyhedra and examine their relation to the interior
and exterior description of a polyhedron. The main theorem of this section is a refined
version of the Minkowski-WEYL-Duality. We will explicitly characterize the necessary
inequalities for the exterior and the necessary generators for the interior description.
As intermediate results we obtain a characterization of the sets of optimal solutions of
a linear program and of all linear functionals that lead to the same optimal solution.

We introduce some new notation to simplify the statements. Let A€ R™*" and b € R™.
For subsets I € [m] (J € [n]) we write A}, (A,;) for the matrix obtained from A by
deleting all rows (columns) with index not in I (J). Similarly, b; is the vector obtained
from b by deleting all coordinates not in I. If I = {i}, then we write A, instead of
Ay, and b; instead of by;;.

Definition 4.1. Let A€ R™" ,b € R™ and P := {x | Ax < b}. For any subset F C P
we define the equality set of F to be
eq(F):={ie[m] |A,x=0>b; forallx € F}.

An inequality A;,x = b; is an implicit equality if i € eq(P). A point x € P is an
(relative) interior point of P ifA;,x < b, forJ := [m] —eq(P). x € P is a boundary
point if it is not an interior point. The boundary JP and the interior P° of P are the
sets of all boundary and interior points, respectively.

Lemma 4.2. Any non-empty polyhedron P := {x | Ax < b} has an interior point.

Proof. LetI:=eq(P)andJ:=[m]—I. For any j € J there is some x; € P such that
Aj,X; < bj. Define x := \}_I Z]EJ x;. Then x satisfies A;,x <b;. O

In particular, if P # @ is an affine space then eq(P) = [m] and any point x € P is an
interior point, i.e. P = P°. In this case, d P = &. We will see later that this characterizes
affine spaces.

Definition 4.3. Points a,,...,a, € R" are said to be affinely dependent if there are
Alseeos Ay 2 A =0, not all A; = 0, such that Y, A;a; = 0, and affinely independent
otherwise.

In other words, points a,...,a; € R" are affinely independent if and only if

1 1 ERH+1
a, yeens a,

are linearly independent. The dimension of the affine hull of k affinely independent
points is k — 1.

Proposition 4.4. Let P := {x | Ax < b} be a polyhedron and J := eq(P). Then
aff(P) = {x|A;,.x=Db,}.

In particular; dim(P) = n — rank(A},).

equality set

implicit equality
interior point
boundary point
boundary

interior

affinely (in)dependent
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full-dimensional

valid hyperplane
supporting hyperplane

face of a polyhedron
proper face

dimension

Proof. Let p;,...,p, € P and Ay,...,A, with > 4; = 1. Then A,,(3,_, A;p;) =
Y MA;.p; =b,. Hence, aff(P) € {x|A;,x =b,}.

Now suppose z satisfies A;,z = b;. If z € P then there is nothing to prove, as P C
aff(P). So assume z ¢ P. Pick an interior point x € P. Then the line through p and z
contains at least one other point of P. Hence, the whole line is contained in the affine
hull. O

A polyhedron P € R" is full-dimensional if dim(P) = n. The previous proposition
implies that this holds if and only if eq(P) = @.

We will now show that we can define a finer combinatorial structure on the boundary
points of a polyhedron by intersecting the boundary of P with certain affine hyper-
planes.

Definition 4.5. Let P := {x | Ax < b} C R" be a polyhedron and ¢' € R", § € R. The
hyperplane H s := {x| c'x =6} is a

(1) valid hyperplane if ¢'x < & for allx € P, and

(2) asupporting hyperplane if additionally ¢'x = & for at least one x € P.

F C P isaface of P if either F =P or F = PN H for a valid hyperplane. If F # P then
F is a proper face.

Different hyperplanes may define the same face. Faces are the intersection of P with
an affine space, hence faces are polyhedra themselves. The dimension of a face F of
P is its dimension as a polyhedron.

Proposition 4.6. Let P be a polyhedron. The set F of optimal solutions of a linear
program max(c'x | x € P) for some ¢' € (R")* is a face of P.

Proof. Let F be the set of all optimal solutions. By definition, any optimal solution
X € F of the linear program satisfies ¢'x < ¢'x for all x € P. Hence, the hyperplane is
valid. O

We denote the face defined by the previous proposition with face.(P). Note that
face,(P) = P, and face.(P) = @ if the linear programming problem is unbounded
for ¢'. In the last chapter we have seen that the objective function is in the cone
defined by those inequalities that are tight at the optimal solution. We will see that
this gives another representation for faces of a polyhedron.

Proposition 4.7. Let P := {x | Ax < b} be a polyhedron and I € [m]. ThenF :={x €
P A, x=Db;} is a face of P.

Proof. If I = @ then F = P is a face. So assume I # &, and define ¢! := ZieIAi* and
& := Y,.; b;. For any x & F at least one of the inequalities in A;,x < by is strict, and
thus

. { =6 ifx€eF
c'x

< 6 otherwise.
Hence, H := {x | ¢'x = 6} is a valid hyperplane and F =P N H. O

Hence, any subset I C [m] defines a face face;(P) := {x € P | A;,x = b;} of P. The
argument in the proof shows that more generally any conic combination of the rows
of A;, with strictly positive coefficients defines the same face face;(P).

Example 4.8. Consider the polyhedron P := {x | Ax < b} = conv(V) with

-1 0 0
o -1 0
A= 1 -1 b:: 1 174 :( g é ? 3 (1) )
1 0 2
-1 2 2
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Then

Fs:={(x,y)eP|—-x+2y =2}
vy ={(x,y)eP|x—y=4} ={(x,y)eP|x=2,—x+2y =2}.

face{l,s}(P)z( (1) )Z"s eq(( g )) ={4,5}=v,. ¢

Theorem 4.9. Let P := {x | Ax < b} be a polyhedron and ¢ € (R")*, § € R. If
F = {x | ¢'x = 8} N P is a non-empty face of P then there is I C [m] and A € R/,
A > 0 such that

F = face;(P) A, =¢ A'b, =5.

Proof. H := {x | ¢'x = &} is a supporting hyperplane of P. Hence, the linear pro-
gramming problem max(c'x | Ax < b) is bounded and feasible, and F is the set of
optimal solutions. By duality

max(c'x |Ax <b) =min(y'b | y'A=c', y > 0).

Let y be an optimal solution of the dual program, and I := {i € [m] | ¥; > 0}. The
complementary slackness theorem implies

xeF o ¢’x—6=0andxeP < §F(@Ax—-b)=0andxeP
& y,ALx—b)=0andxeP & Apx=b;andx€P,

where the third equivalence follows from y; = 0 for i € I, and the forth from y; > 0
foriel. Let A\=Yy,. Then A'A;, =c', A'b, = 6, and F = face;(P). O

We collect some important consequences of this theorem.

Corollary 4.10. LetP = {x € R" | Ax < b} for A€ R™", b € R™ and F € P non-
empty. Then F is a face of P if and only if F = face;(P) for some I C [m]. O

Corollary 4.11. Let P be a polyhedron and F a face.
(1) faceeqry(P) =F for any proper face F # 0.
(2) IfG CF, then G is a face of F if and only if it is a face of P.
(3) dim(F) < dim(P) — 1 for any proper face F of P.
(4) P has at most 2™ + 1 faces.

Proof. The first three are trivial, for the forth observe that there are 2™ subsets of
[m] that can possibly define a non-empty face, and F = 0. O

Definition 4.12. Let F be a proper face of a polyhedron P. The normal cone of F is

N ={c" | F Cface.(P)} .

Let F = face;(P). By Theorem 4.9, 4} is finitely generated by the rows of Aj,. If F,G
are faces of P, and F € G, then A; C A;. A5 is the span of all linear functionals
in eq(P). Hence, if P is full dimensional then .4, = {0}. The collection of all nor-
mal cones is an example for a more general structure characterized in the following
definition.

Definition 4.13. A fan in R" is a finite collection & = {Cy,...,C,} of non-empty
polyhedral cones such that

(1) Every non-empty face of a cone in & is in &, and

Figure 4.1

normal cone

fan

4-3
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complete fan

pointed fan

normal fan

(ir)redundant constraint

(ir)redundant system

facet

cr

Figure 4.2

Figure 4.3

(2) the intersection of any two cones in & is a face of both.
A fan is complete ifUceg C =R". It is pointed if {0} is a cone in & .

The normal cones A} of all proper faces F of P satisfy these two conditions, hence,
they form a fan, the normal fan &, of P. It is pointed if and only if P is full dimen-
sional. Proposition 3.4 states that every linear functional defines a bounded feasible
linear program if and only if P is not empty and rec(P) = {0}. Hence, the normal fan
of P is complete if and only if P is a polytope. See Figure 4.2 for the normal fan a
triangle. The normal cones of the three edges are the generators of the normal cones.

Definition 4.14. Let P := {x | Ax < b} be a polyhedron and i € [m]. A,x < b; is a
redundant constraint, if it can be removed from the system without changing P, and
irredundant otherwise. If all constraints in Ax < b are irredundant, then the system
is irredundant, and redundant otherwise.

Observe that redundancy is a property of the inequality system Ax < b, not of the
polyhedron. Redundant inequalities may become irredundant if some other redundant
inequality is removed from the system. Clearly, any system Ax < b can be made
irredundant by succesively removing redundant inequalities.

Example 4.15. Consider P := { (jz(,)

x,y,zZO,x+y+2220,x+y+z=1}.

Both z > 0 and x + y + 22 > 1 are redundant, but removing one makes the other
irredundant. See Figure 4.3. O

Definition 4.16. A proper non-empty face of P is a facet if it is not strictly contained
in any other proper face.

Example 4.17. The facets in Example 4.15 are given by the inequalities x > 0, y > 0,
and z > 0.

Consider P :=conv ((),(3),(9)) . This is a triangle with three facets

conv (), (s)) conv (), (7)) conv ((5), (7)) 0

Theorem 4.18. Let P := {x | Ax < b} and E := eq(P), I := [m] — E, and assume that
A x < b; is irredundant. Then F is a facet of P if and only if F = face;(P) for some
iel.

The number f of facets of P satisfies f < |I| (< m) with equality if and only ifA;,x < b,
is irredundant.

Proof. “=”: Let F := face;(P) be a facet for some J C I and choose j € J. Then
J € E, soAj,x < b; is not an implicit equality. Hence, F fi= face;(P) is a proper face of
P, and F C F’. But F is maximal by assumption, so F = F’.

“<”:Leti€l and I’ := I — {i}. Let X be an interior point of P. Then x satisfies

Apx<b; (and Apx=Dbg).

But x € F, so F is a proper face. By assumption, the system A;,x < b; is irredundant,
so there is y € aff(P) that satisfies

AI/*y S bI/ Al*y > bl .
Hence, we can find A € R, 0 < A < 1 such that z := Ax + (1 — A)y satisfies
Ai*z = bi’ AI’*Z < bI’ AE*Z = bE .

See Figure 4.4. This implies that z € F, but not in any other face of P. Hence, F is a
facet. O
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We note some consequences of this theorem.

Corollary 4.19. The dimension of a facet F is dim(F) = dim(P) — 1.

Proof. Let P = {x | Ax < b}for an irredundant system Ax < b, and J := eq(P). Then
F = face;(P) for some i € [m] —J. Let J' :=J + {i}. Then J’ = eq(F) and

dim(F) = n — rank(A,.,) = n — (1 + rank(4,,)) O

Corollary 4.20. If P := {x € R" | Ax < b} C R" satisfies dim(P) = n and Ax < b
is irredundant, then Ax < b is unique up to scaling some of the inequalities with a
positive scalar. O

The assumption that set J = eq(P) = @, i.e. that P is full-dimensional is essential for
the corollary. Otherwise we can add linear combinations of the implicit equalities to
any inequality without changing the set of solutions. However, if we require that for
I:=[m]—Jand any j € J, i €I the rows A;, and A;, are orthogonal, then the set
A, is again unique up to scaling. This follows essentially from the fact that we can
decompose a polyhedron into a Minkowski sum of a pointed polyhedron and a linear
space (see (2.3)).

Corollary 4.21. (1) Any proper non-empty face is the intersection of some facets.
(2) A polyhedron has no proper faces if and only if it is an affine space.

Proof. (1) Any proper non-empty face is of the form F = face;(P) for some I C
[m], I #@. Then F =), face;(P).
(2) P ={x|Ax < b} for some A€ R™" and b € R™ is an affine space if and only if
eq(P) = [m]. O

We have seen that a system is irredundant if and only if each inequality corresponds
to a facet of the polyhedron. The following proposition gives an easier check for this.

Proposition 4.22. Let P := {x | Ax < b} for A€ R™", b € R™ be a polyhedron, and
J :=eq(P), I :== [m] —J. The system A;,x < b is irredundant if and only if for any
i,j€l,i+# j there is a point x € P such that

Ax S b Ai*x = bi AJ*X < b2 .

Proof. If the system is irredundant, then we can choose x € face;(P) \ face;(P).

Conversely, assume that A;x < b; is a redundant inequality. Then face;(P) is contained
in a facet face;(P) for some j € I. Hence,

{x|Ax<b,A,x=b;} S {x|Ax<b,A;;x=b;}.
This implies that for i, j there is no x satisfying the assumption of the proposition. O

Faces of P can be ordered by inclusion. This gives a partially ordered set, the face
poset %p. It completely captures the combinatorial properties of P. For a polytope
P this is even an Eulerian lattice, the face lattice of P. Two polyhedra P and Q
are combinatorially equivalent if their face lattices are isomorphic as posets. Note
that this equivalence relation is much weaker than the affine equivalence defined in
Section 2.

Theorem 4.18 completely characterizes the facets of a polyhedron: They correspond
to the constraints in the exterior description of that polyhedron, and we need precisely
one inequality for each facet of P. With the next theorems we want to study the min-
imal faces of a polyhedron. Similar to the relation of facets to the exterior description
of a polyhedron we will construct a close connection to the interior description of P.

Figure 4.4

face poset
face lattice

combinatorially equivalent

4-5
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minimal face

Figure 4.5

vertex

vl

Figure 4.6

Definition 4.23. A face of a polyhedron P is minimal if there is no non-empty face
G of P withG#F butGCF.

Theorem 4.24. Let P = {x | Ax < b} be a polyhedron and L := lineal(P).
(1) F =face;(P) for some I € [m] is minimal if and only if

F={xeR"|A,x=Db;} (= aff(F)).
(2) Any minimal face of P is a translate of L.

Proof. (1) A face of P has no proper faces if and only if it is an affine space. Hence,
if F = {xeR"|A;,x=Db,}, then it is minimal. Conversely, let F be minimal. We
can write F as

F - {X |AI*X=b1, AJ*X S bJ}

for some I,J C [m]. We may assume that all inequalities in J are irredundant.
But then J = &, as F has no proper faces.

(2) Let F = {x € R" | A;,x = b;} be a minimal face. It suffices to prove that the
lineality space of P and F coincide. Clearly

{xeR"|ALx=0} 2 {xeR" | Ax = 0} = lineal(P),

with equality if rank(A;,) = rank(A). Assume that the ranks differ. Then we can
find j € [m] — I such that A, is not in the span of A;,. But this means

{x|Ax= bI;Aj*X = bj} ¢ {x|Ax=b},
so face(;;(P) would be a proper face of F. O

Corollary 4.25. Let C := {x | Ax < 0} be a cone. Then L := lineal(C) is the unique
minimal face of C. O

Let P = {x | Ax < b} and
n, := dimlineal P = n — rank(A).

By Theorem 4.24 each minimal face of P has dimension n,. In particular, all minimal
faces have the same dimension. Minimal faces of a pointed polyhedron P are called
vertices. They are 0-dimensional.

Example 4.26. (1) The polytope

= ()

has 5 vertices

zZO,x+zSZ,y+zS2,—x+z§0,—y+z§0}

0 2

Vl = (8) :face{1,4 5}(P)’ Vz = (g) — face{l,z’s}(P),
; 0

V3 = ((z)) =face{123}(P), V4 1= (3) = face{1,3,4}(P),
1

Vs = (1) = faceqy 3 45,(P).

The last vertex is already defined by any three of the inequalities 2, 3,4, and 5.
See Figure 4.5.

2 G ;={(§) | —3x—y§0,x—2y§0}=cone(‘§%

The minimal face of C, is the apex a := (), see Figure 4.6

4-6
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x -1 1-11
3) G, ={(y) {x+y—z§0,—x—y—z§0}=cone( 1-1-1 %)
The minimal face of C, is the line spanned by (—1, 1,0). See Figure 4.7. O

With the next theorems we obtain further characterizations of vertices of a polyhedron.

Figure 4.7

Theorem 4.27. Let P = {x | Ax < b} be a polyhedron andv € P, I = eq(v). Then the
following are equivalent:

(1) v is a vertex of P
(2) rank(A;,)=n
(3) There are no x;,X, € P such that there is 0 < A <1 withv = Ax; + (1 — A)x,.

Proof. (1) = (3) If vis a vertex, then there is c € R", 6 € R such that
clv=25 c'x< & forallxeP,x#v.

Assume that there were X;,X, € P and 0 < A < 1 such that v= Ax; + (1 — A)x,.
Then

S=cv=2c'x; + (1 - A)e'xy, < A6+ (1—-A1)56 =6,

a contradiction.

(83)=(2) LetJ :=[m] —I. Then v is an interior point of {x | A;,x = b;,A;,x < b,}.
If rank(A;,) < n, then there is y # 0 with A;,y = 0. So for ¢ > 0 small enough,
yy:=viteyeP,andv= %(y+ +y_).

(2) = (1) The affine space defined by A, is 0-dimensional. O

In the following Section 6 we develop the simplex method to compute the optimal
value of a linear program, which uses the standard form of a linear program as defined
in Definition 3.1. Hence, we want to consider polyhedra given as P := {Ax = b,x > 0}
for some A € R™", b € R™ and their faces. We translate the previous theorem into
this setting.

Corollary 4.28. LetP ={x|Ax=Db,x>0},ve P andI :={i|v; > 0}. Then

v is a vertex of P < rank(A,;) = |I|
(& the columns of A,; are linearly independent) .

Proof. LetK :=[n]—1I and

o= ) a=( ).

Then P = {x | Cx < d}. Using the system of linear inequalities Cx < d we define the
equality set J :=eq(v) of v. Then J = [2m] + (2m + K), so

K

A
rank(C;,) = rank ( ;A ) = |K| + rank (A,;)
I
The claim now follows from the previous theorem. O

Proposition 4.29. For a nonempty polyhedron P = {x | Ax < b} the following are
equivalent:

(1) P is pointed.

(2) rank(A) =n.

(3) rec(P) is pointed.

(4) Any non-empty face of P is pointed.
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Proof. (1) < (2): The lineality space of P is lineal(P) = {x | Ax = 0}. This is {0} if
and only if rank(A) = n.
(3) and (4) are clearly equivalent to (2). O

Corollary 4.30. (1) IfP = {x|Ax=b, x > 0} # @ then it is pointed.
(2) IfP = {x| Ax < b, x > 0} # @ then it is pointed.

A
Proof. For the first claim observe that P = {x | Cx < d} for C = ( % ), and

rank(C) = n, so P is pointed by the previous proposition. The proof for the second
statement is similar. O

Corollary 4.31. If P is a pointed polyhedron and x is a bounded optimal solution of
max(c'x | x € P), then there is an optimal solution that is a vertex of P.

Proof. The set of optimal solutions is a face F of P. F pointed, so it contains a
vertex. O

Corollary 4.32. Linear programs in standard or canonical form have a finite optimal
solution if and only if they have an optimal vertex. O

We can now prove a first refinement of the Affine MiNnkowskr Theorem 2.7.

Theorem 4.33. Let P = {x € R" | Ax < b} be a polyhedron with r minimal faces
Fi,...,F.. Choosev; € F;,1 <i <r. Then

P = conv(vy,...,v,)+rec(P)

Proof. Let Q := conv(vy,...,V,)+rec(P). Then clearly Q € P. By the Affine WEYL

Theorem, there is a matrix C € R**" and d € R®, such that Q = {x | Cx < d}.

IS_Iuppose there is z € P\ Q. Then we can find j € [s] such that cj.z > d; for c]? = Cj,.
ence

d; = max(c?x |x€eQ) < c;z < max(c;.x |x€P).

If the maximum on the right hand side is infinite, then by Proposition 3.4 there is a
vector y € rec(P) such that ¢'y > 0. But rec(P) = rec(Q), so y € rec(Q). Using the
proposition again we obtain that also max(e‘x | x € Q) would is unbounded. This is a
contradiction, so the maximum & := max(c¢'x | x € P) > d; is finite.

Let F; be some minimal face of facecj (P). By assumption v; € F;. Hence, c'v; = 6 > d,,
so that v; & Q. This is a contradiction. So P € Q. O

Given a decomposition of a polyhedron into a polytope and a cone, the previous the-
orem constructs a minimal set of generators for the polytope. In the rest of this chapter
we want to achieve a similar set of generators for the cone part. We will see later that
we need to look at faces of dimension ny + 1, i.e. one level above the minimal faces in
the face poset. So let us first explore their structure.

Proposition 4.34. Let P = {x | Ax < b} be a polyhedron, and F a face of P of dimen-
sion dim(F) = ny+ 1. Then there are I,J C [m] with

F={xeR"|A;x=b;,A,x<b;}, rank(A,,)=rank(A)—1, |I|<2

Proof. F has a representation of the form

F:{X|AJ*x:bJ:AI*XSbI}

4-38
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for some subsets I,J C [m]. We may assume that I is as small as possible, so that
J =eq(F). Let

H:={x|A;;x=b;} =aff(F),
and for anyi el
J;:=Ju{i} H; :={x|Aux=b;,A;.x=Db,}.
By our assumption any row in Ay, is not in the span of the rows of A;,, so
rank(A;,) =rank(A;*x)+1=n—dim(F) + 1=n—nyfori €1.

and all H; are minimal faces of P. Hence, all H; are translates of the lineality space of
P. Their intersections with H are parallel affine subspaces of dimension dim(H) — 1
(they are all parallel to the lineality space). Choose a complement ¢ of H; in H. See
Figure 4.8. Then { is one-dimensional and intersects each H; in a single point. By
convexity, there are at most two intersection points where £ could enter or leave P.
So, as I is irredundant, there can be at most two such subspaces H;. O

By this proposition any face F of dimension dim(F) = n, + 1 has at most two facets,
which itself are minimal faces of P. Hence, we can write F in the form

F =lineal(P)+e

where e is either a segment or a ray. If P is pointed, then F is called an edge if e
is a segment, and extremal ray otherwise. Two minimal faces of P are adjacent if
they are contained in a common edge. If P is not pointed, then F is called a minimal
proper face.

Example 4.35. Consider the polyhedron P and the cones C; and C, defined in the
previous Example 4.26.

(1) Theset{x|—2=0,—-y+2=0,—x+2 =<0, x+2 < 2} defines an edge of P
-1 2
(2) Both R, ( 3 ) and R, ( 1 ) are extremal rays (and minimal proper faces)
of C;.
(3) The proper minimal faces of C, are
Fi={x|x+y—-2=0,—x—y—-2=<0}
Fy:={x|x+y—-2<0,—x—y—z=0}. 0

Let P be a polyhedron and u, v adjacent vertices of P. Then Proposition 4.34 says that
there are I,J € [m] such that

u = face;(P) v = face;(P) [INJ|=|J\I|=1.

Remark 4.36. There is a similar description for faces of codimension 2. These are
always intersections of exactly 2 facets. There is no similar easy description for faces
of dimension d with

ny+2<d <dim(P)-3. 0

With this preparation the next theorem constructs a generating set for a cone.

Theorem 4.37. Let C = {x | Ax <0} C R" and L := lineal(C). Let G4,...,G, be the
proper minimal faces of C. Choosey; € G; — L for1 <i <s. Then

C = cone(yy,...,y,)+ L.

N

//
el

Figure 4.8

edge
extremal ray
adjacent minimal faces

minimal proper face




Discrete Mathematics II — FU Berlin, Summer 2010

al

Figure 4.9

Proof. Let n, := dim(L), d := dim(C) and D := cone(yy,...,y,) + L. By Proposi-
tion 4.34 we can write the minimal proper face G, in the form

Gl Z{X|AJ*X:0’ AI*XSO}

for some index i € [m]. This implies A;,y; <0, asy; € L.
We prove the theorem now by induction on k := d — ny. The claim is trivial if k = 0,
so suppose k > 0 and write C as

C=1{x|A.x<0,Apx=0}.

with E = eq(C) and K irredundant. By Theorem 4.18 the facets of C are in one-to-one
correspondence with the inequalities in K. Any proper minimal face of a facet of C is
also a proper minimal face of C. Hence, by induction, each facet of C is contained in
D.Letze C and

A:=max(u|z—uy, €C).

As Ay, < 0 and Az < 0, A exists and is finite. For at least one j € K we have
A;(z — Ay;) = 0, so z — Ay, is contained in a facet of C, and hence in D. But this
implies

p

z=Ay,+(z—Ay;) €D. O

Combining this with the refined affine Minkowski-Theorem, we obtain

Theorem 4.38. Let P := {x | Ax < b} and L := lineal(P). Let

» F,,...,F, be the minimal faces of P and
» Gi,...,G, the minimal proper faces of rec(P).

Choose
x; € F; for1<i<r y;€EG;—L for1<j<s
and an arbitrary basis z,,...,z, of L. Then
P = conv(xy,...,X,)+cone(y,,...,y,) +1lin(z,...,z,).

and

» X;,...,X, are unique up to permutation and adding vectors from L,
» y,,...,¥, are unique up to permutation, adding vectors from L and scaling with
a positive factor. O

We want to show that this representation is minimal. Let a polyhedron P be given by
P = conv(X) + cone(Y) + lin(Z) @)

for matrices X € R™",Y € R™¥,Z € R™". We may assume that cone(Y) is pointed.
Then

L :=lineal(P) =lin(Z) and rec(P) =cone(Y)+ L.

Proposition 4.39. Let F be a proper face of P given by (*). Then there are I C [r],
J C [s] such that

F = conv(X,;) + cone(Y,;) +1in(Z).

4 -10
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Proof. By definition, there is ¢’ € R" and & € R such that
F=Pnix|c'x=56},

and 6 = max(ce'x | x € P). So

¢'Z=0 'Y <0 c’X <5§.
Let I:={ie[r]|cX,; =5} J:={j€[s]|cY,; =0}
and F := conv(X,;) + cone(Y,;) +1in(Z).

Then F C F. Any u € F can be decomposed into u = x+y + z for
x € conv(X) y € cone(Y) zelin(Z).
So there are A € R", u € R®, n € R* such that
u=X\+Yu+2n, and S=cu=cXA+c'Yu+c'Zn.

Thus, ¢'Y =0 and ¢'X X = §. This can only hold if y;, = 0 for k ¢ J and 2, = 0 for
k&1. So x € conv(X,;) and y € cone(Y,;), which impliesu e F. O

Let F be a face of a polyhedron P represented in the form (*). Minimal faces of F are
minimal faces of P, and minimal proper faces of rec(F) are minimal proper faces of
rec(P), so the above Proposition 4.39 implies that

(1) for any minimal face F of P there is i € [r] with X,; € F, and
(2) for any minimal proper face G of rec(P) there is j € [s] such that Y,; € G.

Now minimal faces of a polyhedron are disjoint, and minimal proper faces of a cone
intersect only in the lineality space. So columns of X (Y) corresponding to different
minimal (proper) faces must be different. Hence, any representation of a polyhedron
in the form (*) contains a representation as defined in Theorem 4.38. In particular, if
P = conv(xy,...,X,), then {x;,...,x,} contains all vertices of P.

A polyhedron P is pointed if lineal(P) = {0}. So P is pointed if and only if P has a
vertex. In particular, all polytopes are pointed. Recall that we can decompose any
polyhedron P into the Minkowski sum

P=L+P
where L := lineal(P) is a linear space and P’ is a pointed polyhedron obtained by
intersecting P with a complement W of lineal(P), i.e. P = PNW. So P has a
representation

P = L + conv(xy,...,X.) + cone(y,,...,¥.),

where x/,...,x/ are the vertices of P’ and y/,...,y. are generators of the extremal
rays of rec(P’).

Proposition 4.40. Any pointed polyhedron P = {Ax < b} has a minimal representa-
tion as

P = conv(vy,...,v,)+ cone(yy,...,¥i),

where v,,...,v, are the vertices of P and y,, ...y, are generators the extreme rays of
rec(P), which are unique up to scaling any of the y; with a positive real number. O
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Complexity of Rational Polyhedra

In this chapter we want to look at algorithms, their running time behavior, at the
complexity of the interior and exterior description of polyhedra, and the complexity of
solutions of linear programs. Here, we have to give up the choice of R as our ground
field, as numbers in R do not have a finite coding length. The usual choice here is the
field @ of rational numbers. So from now on, all numbers, vectors and matrices have
entries from Q. Clearly, if

P = {x| Ax < b} = conv(X) + cone(Y) +lin(Z),
then

A, b rational e X,Y,Z can chosen to be rational
X,Y,Z rational = A, b can chosen to be rational .

The most successful distinction in complexity over the last 50 years has been between
problems that can be solved in polynomial time in the size of the input, and those for
which such an algorithm is not known. The first type of problems is subsumed in the
class & of polynomially solvable problems. Often, one sets these problems against the
so called A'# -complete problems.

Clearly, except for very simple problems, the running time of an algorithm will depend
on the size of the input. So we have to fix some measure for the input. Implement-
ations on a computer usually use the binary encoding, which we will choose in the
following.

Definition 5.1. The size or coding length (s) of an object s is the minimum length
of a 0-1-string that represents it.

2€Z (z) =1+ [log,(|z| + 1)]

re@Q r:%,a,bEZ,szwithgcd(a,b)zl,then
(r) =1+ [log,(la| + 1)1+ [log,(|b] + 1)1
v)

Z(Vi>
Z(aij)~

ve Q" \

AG men (A)

Table 5.1: A list of some common objects and their sizes

There are many other common choices for such a measure. However, most of them
are “polynomially equivalent”, so changing the measure does not change “polynomial
solvability” of a problem, which is what we are interested in (the notable exception of
this is the unary encoding of numbers). A list of some common objects and their sizes
that we will use is in Table 5.1.

Now that we can measure the size of our input data, we can define the complexity of
solving a problem. Usually one distinguishes between two different types of problems.

size

coding length

unary encoding
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decision problem
feasible solution
instance

yes-instance
no-instance
optimization problem
objective function
minimization problem

maximization problem

algorithm

running time

running time function

elementary operation

polynomial (time)
polynomial-time solvable

Landau-symbol

complexity class

certificate

Definition 5.2. (1) Ina decision problem A we have a set S, of feasible solutions
for every instance I € A of the problem A. We have to decide whether S;
contains a solution that satisfies given properties. If there is such a solution,
then I is a yes-instance, otherwise a no-instance.

(2) In an optimization problem I, we again have a set S; of feasible solutions for
every instance I € II of the problem I1, but additionally we have an objective
function ¢; : S; — Q associated with the instance. The task is to find an
optimal solution in S; with respect to this function, so either a solution x € S;
with ¢;(x) < ¢;(x) for all x € S; in a minimization problem, or ¢;(x) > ¢;(x)
for all x € S; in a maximization problem.

Example 5.3. Examples of decision problems are

(1) Does a system of linear inequalities Ax < b have a solution?
(2) Does a graph have a Hamiltonian cycle?
(A Hamiltonian cycle is a cycle in the graph that visits each vertex exactly once)
Examples for an optimization problem are
(1) Find an optimal solution of max(c'x | Ax < b) or determine that the system is
infeasible.
(2) Find a shortest path between two nodes in a graph. ¢

An algorithm .« is a finite list of instructions that perform operations on some data.
.o/ solves a problem A if, for any given input y of I, it determines in finite time an
output z € Sy, or stops without an output, if there is no solution.

An important characteristic of an algorithm is its running time. This should clearly
not depend on the specific hard- or software used, so we need an intrinsic measure.

Definition 5.4. The running time function of an algorithm .«/ for a problem A is a
function f , : N — N such that

fa(s)=

H}]E%X) (number of elementary operations performed by .o/ on the input y)
y with (y)<s

Elementary operations are
addition, subtraction, multiplication, division, comparison, and assignment.
An algorithm is said to be a polynomial-time algorithm, or just polynomial, if its
running time function f satisfies f = 0(g) for a polynomial g. A problem A is
polynomial-time solvable if there is a polynomial algorithm that solves it.
The notation @ for the estimate of f in the definition is one of the LANDAU-symbols:
f=00)

which is useful here as we are only interested in the asymptotic dependence of the
running time, so we want to neglect coefficients and lower order terms.

dC eR,IngeN: f(n)<Cg(n) foralln>n,,

In the definition of an algorithm we assumed that the elementary operations can be
done in constant (unit) time. This clearly is a simplification, as the time needed for
the multiplication of two numbers does depend on their size, but it is a polynomial
time operation, so this choice does not affect polynomial-time solvability.

Decision problems are categorized into several complexity classes with respect to
their (asymptotic) running time.

Definition 5.5. (1) & is the set of all decision problems A that are polynomial-
time solvable.
(2) NP is the collection of all decision problems A that have an associated problem
A’ € @ such that for any yes-instance I € A there is a certificate C(I) of size
polynomial in the size of I such that (I1,C(I)) is a yes-instance of A’.
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(3) co- NP is the collection of all problems that have a polynomial-time checkable
certificate for any no-instance.

An example of an A & -problem is the question whether a given graph is Hamiltonian.
A positive answer can be certified by giving a Hamiltonian cycle, and the correctness
of this can be checked in polynomial time. Note, that there is no known certificate
for the opposite answer whether a given graph is not Hamiltonian, so it is unknown
whether the problem is in co-A'%.

Problems in /% Nco- A% are those for which both a positive and a negative answer
have a certificate that can be checked in polynomial time. Such problems are also
called well-characterized. We will see some examples later. Clearly, we have & C
NP Nco- NP . There are only very few problems known that are in /& Nco- N2,
but not known to be in . One of the most famous and important questions in com-
plexity theory is whether

PEND .

It is widely believed that the class A% is much larger than 4. However, there is
no proof known. Any answer, positive or negative, to this would have far reaching
consequences:
(1) If # = NP, then it may either imply a completely new type of polynomial-time
algorithm, or it may prove that the concept of polynomial-time does not serve as
a good characterization for algorithms.
(2) If  # NP, then this will likely give insight why some problems seem to be so
much harder than others.

Definition 5.6. A problem A is said to be (polynomial-time) reducible to a problem
A’ if there is a polynomial-time algorithm that returns, for any instance I € A an
instance I’ € A’ such that

I is ayes-instance <> I’ is ayes-instance.

This implies, that if A is reducible to A’ and

(1) A’ e#,thenalso A € 2.

(2) Ae ¥, thenalso A'e ¥/ P.
A problem A is A% -complete if any other problem A’ € 4% can be reduced to A.
If A is reducible to A" and A’ is A% -complete, then so is A. A @ -complete problems

are in some sense the hardest A4 -problems. There in fact do exist A % -complete
problems, e.g. the TRAVELING SALESMAN PROBLEM (TSP) or integer linear programming.

Let IT be an optimization problem. We can associate a decision problem A to I as
follows:
Given r € Q and an instance I, is there z € S; with ¢;(z) > r?

An optimization problem II is 4% -hard, if the associated decision problem is A Z-
complete. Now we analyze the complexity of linear systems of equations and inequal-
ities.

Lemma 5.7. LetA € Q™" of sizes. Then {det(s)) < 2s.

Proof. Let A= (%)U and det(A) = § for completely reduced fractions 22, 5 and
ij )

qij>q9 > 0. We can assume that n > 2 as otherwise det(A) = A and

Z(pij> zn,

as otherwise det(A) = 0. Clearly, we have

n
q+ 1= l_[(qij + 1) < ZZIng(Qi;‘+1) < ZZUng(Qiﬁ'lﬂ < gsn
i,j=1

well-characterized

(polynomial-time) reducible

NP -complete

N P -hard
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By the definition of the determinant via the Laplace formula
n
|det()| < [ J(lpyl+1)
i,j=1

Further we have that

n
Ipl+1=det(@)] g +1 < [ [(pyl+1) (g +1) < 2550141000541
ij=1
< zzUng(\Pij|+1)+logz(q1‘j+1)] <2 — n2 .

Combining this gives (det(A)) =1+ [log,(|p| + 1)1 + [log,(q + 1)] < 2s. O

Corollary 5.8. LetA <€ Q™", b e Q™, and assume that the rows of the matrix (A|b)
have size < @. IfAx = b has a solution, then it has one of size at most 4n*¢.

Proof. We may assume that rankA = m. Then we can reorder the columns of A such
that A := A, is non-singular.

Then x := (X,0) for X := A'b is a solution of the system, and by CRaMER’s rule, the
entries of X are

_ det(4)
Xi=—=—".
det(A)

where Aj is the matrix obtained by replacing the j-th column of A by b. Now the size
of these matrices is at most my, so their determinants have size at most 2m¢, and
hence,

(%) < 4mep.
So (x) < 4mny < 4n?¢. O

This implies that the problem A; of deciding whether a rational system of linear equa-
tions Ax = b has a solution is well-characterized:

(1) If Ax = b has a solution, then it has one of size polynomially bounded by the
sizes of A and b, and given such an x, we can check in polynomial time that
Ax=b.So A, € NP.

(2) If Ax = b has no solution, then there is y such that y’A = 0 and y'b # 0. Again,
we can assume that y has size polynomial in that of A and b, and the correctness
can be verified in polynomial time. So A; € co- A4 2.

In fact, this problem is in &, as can be shown by proving that GAussiaN elimination is
in%.

Lemma 5.9. If a system of linear inequalities Ax < b has a solution, then it has one
of size polynomially bounded in the size of A and b.

Proof. LetAc Q™", P:={x|Ax < b} and I C [m] such that {x | A;,x =Db,} is a
minimal face of P. By Corollary 5.8, it contains a vector of size polynomially bounded
in the sizes of A, and b;. These are in turn bounded by the sizes of A and b. O

This implies that the problem A, of deciding whether a system of rational linear in-
equalities Ax < b has a solution is in &/ Z.

By Farkas Lemma Ax < b has no solution if and only if there is a vector y € Q™ such
that y > 0, y'A = 0 and y'b < 0. Again, we can choose this vector to be polynomially
bounded in the sizes of A and b, so A, € co-A/Z. In total, A, is well-characterized.
This implies the following proposition.
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Proposition 5.10. LetA€ Q™", be Q™ c€Q", and § € Q. Then the following
problems are well-characterized:

(1) Decide whether Ax < b has a solution.

(2) Decide whether Ax =b has a nonnegative solution.

(3) Decide whether Ax < b, ¢'x > & has a solution.

(4) Decide whether max(c'x | Ax < b) is infeasible, bounded feasible or unbounded
feasible.

Proof. (1) follows directly from the above, the arguments for (2) and (3) are similar,
for (4) use the dual program and the duality theorem. O

Further, it is easy to see that the problems (1), (2) and (3) of the previous proposition
are polynomially equivalent, which means that, if one can solve any of the problems
in polynomial time, then one can solve the others in polynomial time.

The four problems are in fact in &, which follows from KacHivan’s ellipsoid method
for solving linear programs. However, this is currently not a practical algorithm. The
simplex method, which we will meet in the next chapter, is still both numerically more
stable and faster. However, the simplex method is not a polynomial time algorithm.

Definition 5.11. Let P C Q" be a rational polyhedron.

(1) The facet complexity of P is the smallest number ¢ such that ¢ > n and there
exists a rational system Ax < b that describes P and each inequality has size
bounded by ¢.

(2) The vertex complexity of P is the smallest number v such that v > n and there
exists rational matrices X and Y such that P = conv(X) + cone(Y) and each row
of X andY has size bounded by v.

Proposition 5.12. Let P C Q" be a rational polyhedron with facet complexity ¢ and
vertex complexity v. Then there is a constant C > 0 such that

v <Cn?p o <Cn’v.

Proof. (1) v <4n?p: Let P = {Ax < b}. The claim is a direct consequence of the
representation of P as

P = conv(X) + cone(Y) +1in(Z).

where all rows of B, C and D are solutions of some subsystem of Ax < b, which
are, by Corollary 5.8, bounded by 4n?%¢.

(2) ¢ <4n’v:
Assume P = conv(X) + cone(Y) for rational matrices X and Y whose rows have
size at most v.
Suppose first that dimP = n. Then each facet of P is determined by a linear
equation of the form (where & is the variable)

1 &t
det 1|I| XI* == O.
Oy Y

Expanding by the first row we obtain

D (—1) (det(D))§; = —det(Dy),
i=1

for the (n x n)-sub-matrices D; obtained by deleting the first row and the i-th
column. D, has size at most 2n(v + 1), and each D; has size at most 2nv.

facet complexity

vertex complexity
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Therefore, the equation and the corresponding inequality for the facet have size
at most n- (2n(v + 1) + 2nv < 6n?v.

So assume dim P < n. By adding a subset of {0,e,...,e,}, where 0 is the zero
vector and e; are the standard unit vectors, to the polyhedron, one can obtain a
new polyhedron Q with dimQ = n such that P is a face of Q. By the previous
argument, this gives us n — dim P equations of size at most 6n?v defining the
affine hull.

Further, we can choose n — dim(P) coordinate directions so that the projection
P’ is full-dimensional and affinely equivalent to P’. P’ has vertex complexity at
most v. By the previous argument, we may describe P’ by linear inequalities
of size at most 6(n — dim(P))?v. Extend these inequalities by zeros to obtain
inequalities valid for P. Together with the equations for the affine hull, we
obtain a description of the required size. O

A direct corollary of this theorem concerns the size of solutions of linear programs.

Corollary 5.13. LetA€ Q™", be Q™ ¢! € Q". Assume that each entry of A,b, and
c is bounded by s, and that the optima of

6 :=max(c'x|Ax <b,x > 0) = min(y'b | y'A> ¢,y > 0)

are finite. Then (5) is bounded by n and s, and both the primal and the dual program
have an optimal solution of size bounded by n and s.

Proof. Each linear inequality of Ax < b has size bounded by ¢ := (n+1)s, so the facet
complexity is at most t. The optimum of the primal program is attained at a vertex,
so it is bounded by 4nt. The bound on the dual solution follows similar. Both imply
a polynomial bound on the optimal value. O

Refining this, you could even prove that if 6 = p/q is a completely reduced fraction,
then q is bounded by n and s. So given any lower bound on &, you could prove that
the solution space of a rational linear program is finite.




The Simplex Algorithm

In this section we will introduce the Simplex algorithm to solve a linear programming
problem

max(c'x | x € P) 6.1)

over a polyhedron P = {x | Ax < b}. This algorithm was first considered by George
Dantzig in 1947, based on work for the U.S. military, and is still one of the most
successful algorithms for solving a linear program. Similar ideas have been developed
independently by Kantorovich already in 1939. The main idea is to enumerate vertices
of a polyhedron in a clever way, namely to proceed from one vertex to another with
better objective value along an edge.

Many different variants and improvements have been presented since then, and we
will consider several important in the following section. The Simplex algorithm is not
a polynomial time algorithm, just because there are polyhedra with an exponential
number of vertices in the number of facets, and you may have to enumerate all of
them. Nevertheless, it has been proved by Kachiyan in 1979 that linear programming
is in &. To prove this, he developed the Ellipsoid method. In 1984 Karmarkar
presented another polynomial time method, the interior point method.

However, the simplex algorithm is still the fastest method for many “real world prob-
lems”, as degeneracies leading to an exponential running time only rarely occur. There
are up to now no useful implementations of the Ellipsoid method, but in recent time
some useful implementations of the interior point method have been released. Still,
the simplex algorithm is the most flexible method and can easily be adapted to take in-
herent additional structure of a problem into account. In this text we will concentrate
on the simplex algorithm and only briefly mention the main ideas in other methods.

We introduce some standard notation of linear programming. The algorithm is often
discussed in a purely algebraic setting, and many notions used for linear programs
reflect this. We will introduce several along our development of the algorithm to make
the connection to standard textbooks. Let

maximize c¢'x
subject to  Ax
X

b (6.2)
0

vl

for Aec R™", b e R™, c € R" be a linear program in standard form. We have seen in
Section 3 that we can transform any linear program into this form, so it suffices to find
an algorithm for problems of this type. Geometrically, we want to maximize a linear
function ¢’ over the polyhedron

P:={x|Ax=Db, x> 0}.

If some row of A is linearly dependent from the others, than we can discard it without
changing the feasible region. Hence, we can in the following assume rank A=m < n.
This reduction can be done efficiently using Gaussian elimination. We assume further
that P # . This is a restriction (we exclude infeasible programs), and we see later
how we can detect empty polyhedra.

Simplex algorithm

ellipsoid method
interior point method
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basis

basic and non-basic variables
basic solution

basic feasible solution
(non-)degenerate

feasible basis

Figure 6.1

Figure 6.2

Given P # @, Corollary 4.30(1) tells us that P is pointed, i.e. it has a vertex. From
Proposition 4.6 we know that the set of optimal solutions is a face F of P. As P has
a vertex also F has a vertex, and we can in the following restrict our search for an
optimal solution to vertices of P. It is standard in linear programming to write Ay for
the matrix A5, S € [m]. We will follow this notation in this and the next section.

Corollary 4.28 states that a vertex v of P corresponds to a solution of
ABVBZb, VN:O aIld VZO

where N C [n] has size [N| > n—rank A=n—m, B := [n] \J and the columns of Ag
are linearly independent. By adding columns to B we can always assume that |B| =m
and Ap is non-singular. We might have a choice here, so the assignment of a set B to a
vertex v need not be unique.

Conversely, let B € [m] with |B| = m and Az non-singular and N := [m] \ B. Then B
determines a unique solution

VB :ZAglb VN == 0 (6.3)

of Ax = b which is a vertex of P if vy > 0. So the linear program max(c'x | Ax =
b,x > 0) has an optimal solution of the form (6.3) if it is bounded. This motivates the
following definition.

Definition 6.1. A subset B C [n] is called a basis if Ag is non-singular. Variables with
index in B are called basic, all others are non-basic.

A basic solution is a solution x such that x; = 0 for j & B. Ifx is also feasible, then
it is a basic feasible solution. A basis B is called feasible, if the corresponding X is
a basic feasible solution. A basic solution is non-degenerate if no entry of Xz is zero,
and degenerate otherwise.

So we have the following relations:

unique . . . not unique . .
vertex «—— basic feasible solution <«——— feasible basis

Example 6.2. (1) Consider the following matrix A € R?>*3, and right hand side
vectors by, b, € R?, for the basis B = (1,2):

A= (1_%3 AB:(}}—%) b; = (45) by =(43).

This leads to the basic solutions

=(3) =(3)
x; = (4 x=19)-
The first solution is non-degenerate, the second degenerate. The polytopes
defined by these inequalities are

40 03
P, :=conv| 48 and P,:=conv| 30
04 30

respectively. See Figure 6.1.
(2) Consider the linear program

x + y =<1
2x + y < 2
x,y =2 O

The set of solutions is shown in Figure 6.2. The polytope has four vertices v, v,,
vs, and v,. Introducing slack variables r and s, we obtain

x + y + r 1
2x + y + s = 2
X,.)’,r,s Z O 3
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Bl A | x| | vertex |

1,2) (; }) oy =(1, 0)|(ns) | (1,0, 0,00 vs | degenerate
(1,3) ( ; 1) )=, 0) | (ns) | (1,0, 0,0)| v, | degenerate
(1,4) ( ; 1) )=, 0) | (r) | (1,0, 0,00| v5 | degenerate
2,3) (1 1) (1) =(2-1) | Go.s) | (0,2,-1,0)| v, |infeasible
ea| (1) 09=a v oL o] v

caol (1 )]|eo=a 0 e oo 1| v

Table 6.1: Bases and solutions for Example 2

and in matrix form

1110 1
A:(2101) b:(z)

The bases of this matrix are shown in Table 6.1 In this example each (2 x 2)-
minor is a basis (which is not true in general!). The vertex v; corresponds
to three different bases, so it is degenerate. All other basic solutions are non-
degenerate. The basis B = (2, 3) with solution v, is infeasible.

(3) The previous example showed that redundant inequalities lead to degenerate
solutions of a linear program. The following two examples demonstrate two
other types of degeneracies. We'll see later that there are no other.

(a) Consider

A= (349) bi=(3).
The corresponding linear program has two bases
(i) B, :=(1,3) with basic solution x = (é), and

(i) B, :=(2,3) with basic solution x = (z) .
Both solutions are degenerate, but the basis is in both cases uniquely de-
termined.

(b) The degeneracies in the previous two examples may seem artificial, as they
originate from a redundant description of the polyhedron. We can get rid
of them by removing a row (redundant inequality) or column (redundant
variable). In dimension 2 any degeneracy is of this type. However, starting
with dimension 3 there are degeneracies that are inherent to the geometry
of the problem. See Figure 6.3 for an example. The polytope in (a) has no
degenerate vertices, while the top vertex in (b) is degenerate (it lies in the
intersection of more than 3 hyperplanes).

Polytope P C R" with the property that at most n hyperplanes meet in a
common point are called simple. ¢

We have seen that any bounded feasible linear program in standard form assumes its
optimal value at a vertex of the polyhedron. This is a finite number, so the following
is a valid algorithm to compute the optimal value:

(1) compute the finite number of bases,

(a): non-degenerate

(b): degenerate
Figure 6.3

simple polytope
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(2) check whether they are feasible, and in that case
(3) compute the corresponding basic feasible solution and its value.

The maximum over these numbers is the desired optimum. However, there may be up
to (") different feasible bases, which is far too many to enumerate in reasonable time
(consider e.g. the case n = 2m. Then (T,'Z) grows roughly like 4™, which is exponential
in n). So we need a better idea to obtain the optimal value of a linear program.

The basic idea for the approach that we discuss in the rest of this chapter is to move
along edges of the polyhedron from one vertex (feasible basis) to an adjacent one with
a better objective value, until we reach the optimum. To start this procedure we need
an initial feasible solution, i.e. a vertex of the polyhedron. We postpone finding such
a vertex and assume first it is given to us and develop a method to move to a better
vertex. The outlined approach a priori does not guarantee that we do not enumerate
all bases (and there are examples where one does!). Yet, at least experimentally, it
seems to be a far superior method than pure enumeration.

In the following, B will always denote a (not necessarily feasible) basis and N :=
[n] — B. To simplify notation and computations, from now on we think of B as a vector
in N™ and similarly N € N*™™, In particular, B is ordered, and for B = (1,3,2) the
matrix Az contains the columns 1, 3, and 2 in that order. For 1 <i < n we let B(i) be
the entry of B at position i, and similarly for N. We will still use the notation s € B
when appropriate.

Example 6.3. This will be our running example for the algorithm. We omit O’s in the
matrix to emphasize the positions of the non-zero elements. Let

1 1 3 -1 5
A= 1 1 b=1|1
1 1 2 -2 3

Then B :=(1,2,3) and B := (1,4, 3) are feasible bases, and

11 1
A= 1 Ay =

N = W
— —

Now suppose we are given a basic feasible solution x for some basis B, i.e.
)_(b Z 0 )_(N = O .

Multiplying a system of linear equations with a non-singular matrix does not change
the set of solutions. By assumption, Ay is a non-singular matrix, so we can multiply
Ax =b with A™! on both sides to obtain

A'b = A'AX = x5+ A Ayxy .

This immediately implies Xz = Aglb, as Xy = 0. We can achieve this transformation
with Gaussian elimination.

Example 6.3 continued. Using the basis B = (1,2, 3) we have

1 1 -1 1 2 1
Apl = 1 A'A= 1 1
-1 1 11 -2
3
X3=A;'b=| 1| >0
2
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Remark 6.5. Sometimes it is easy to find an initial feasible basis for a linear program.
Consider the program in canonical form

max(c'x |Ax < b, x > 0)
for a vector b that satisfies b > 0. If we transform this program into standard form,
max(c'x |[Ax+1d,,s =b, x,s > 0),

then X := 0, s := b is a basic feasible solution. O

A key observation for the algorithm is that the set of optimal solution of our linear
program is invariant under adding a scalar multiple of a row of A to the objective
functional ¢, i.e. for some i € [m] and A € R the linear programs

max(c'x |[Ax = b, ,x>0)
and
max((c’ + AA4;)x |Ax = b, x> 0)

have the same optimal solutions. The optimal value of the program is not invariant, it
changes by Ab;. A very convenient transformation of the objective function ¢' is

=t ._ .t ta—1
c :=c¢ —cAB A.
Then

t
:ct—

tA—1 _ =t __ ot _ atp-l
s —CpA, A =0 and cy =¢y — A Ay,

Cp B

so ¢'X = 0 for our basic feasible solution. The corresponding value of the original
program is chAglb. The functional ¢ is the reduced cost (of the basis B).

Example 6.3 continued.

Let cf:=[10141], then Ef=[00012] o

It is common and very convenient to write the reduced costs ¢ and the transformed
matrix AglA and its corresponding right hand side Aglb in the following concise

tableau form.
—ctAz'b | @
T:= { A;'b | A5'A ©4
B B

The offset —chBle induced by the change in the objective function is placed in the
upper right corner. This corresponds to the objective value of the basic solution X5 :=
AZ'b corresponding to the basis B, as X = 0. Hence, if x is an optimal basic solution,
then chglb is the corresponding optimal value.

Definition 6.7. Ty is the simplex tableau associated to the basis B.

Example 6.3 continued. We have chosen B = (1,2, 3) as a basis. So

-5 1 2

r,=| 3|1 2 1
1l 1 1

2 11 -2

reduced cost

simplex tableau
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The simplex algorithm works on these tableaus. Roughly, in each step the algorithm
checks whether the current basic solution is optimal, and if not, determines a new basis
of the linear program corresponding to a basic solution with larger optimal value,
and updates the tableau accordingly. In the following we work out one step of this
algorithm.

First we need a criterion to decide whether our current basic feasible solution x for a
feasible basis B is optimal, and if not, a way to improve the basis. ¢’ and ¢! differ only
by a fixed linear combination of the rows of A, so we can consider ¢' in the following.
As Eg = 0, a change in a coordinate of x; does not affect the objective value. So at
least one of the non-basic variables x,, must change (which then possibly also affects
basic variables). As x > 0 for all feasible solutions, it must increase from zero to some
positive value.

First assume that ¢, < 0. Let z € P. Then ¢,;zy < 0 and hence
t, — =t t A—1 =t t A—1 t A=l At At
cz=cz+ Ay Az=Cyzy + A, b S A b =X = C'X,

which implies that X is an optimal solution. Hence, we have found a simple ter-
mination condition for our algorithm: If the reduced costs are non-positive, then the
corresponding basic solution is optimal.

Now assume that there is r € N such that ¢, > 0. Let r’ be such that N(+’) = r.
el € R" be the r-th unit vector. Then there is A > 0 such that

Xp > A Az A, (6.5)
If X is non-degenerate, then Xp =A§1b > 0 and we can choose A > 0. Define a vector
A
x”* by

Xk =% — AA; Ay e, X = e (6.6)

Then x* > 0 and
At = Agxh + Ayx = AgXy —Ag A A5 Ay el + Ay Ael) = AgX; =,
so x* € P and
Xt =X —ci A Az Ay el + el ael) =
X+ (¢, — Az Ay Ael) = X+ AT, > c'X.
So we can change our solution X by increasing the r-th entry of X from 0 to A and
simultaneously decreasing X by AA;A e(”). The new objective value differs from the

old by Ac,. If x is non-degenerate, then we can choose A > 0, so Ac, > 0, and the
objective value really increases by a strictly positive amount.

Example 6.3 continued. In our example, ¢, =1 > 0, so we can choose r = 4. If we
choose A =1/2, then

3 2 2
1 1/2
A_ _ A _
xp=1 1 -5 1 | =] 12 xN—[ O]'
2 1 3/
The objective value increases by Ac, =1/2-1=1/2. ¢
The condition
Xt = X3 —AA;'Ayel) > 0 — X5 > AA Ay e (6.7)

tells us how large we can choose A in this process. If AglAN eg\,r) < 0,thenany A >0

satisfies (6.7), and our linear program is unbounded. If at least one entry of AglAN eg)

is positive, then (6.7) gives a proper restriction for A. We want to determine the

6 -6
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maximal A so that xg > 0. To simplify the notation we introduce b := Aglb and
A:=A3'Aand define
. (E
A:=min| —
Air

Then (6.7) is satisfied, but any A’ > A would violate it. Choose a row s’ at which
this minimum is attained and set s := B(s’). Let B’ be the vector obtained from B by
replacing the s’-th entry with r (i.e. s with r).

(6.8)

ie[ml]A;, > 0) >0,

By our choice of s’ we have A/, > 0. Hence, using Gaussian elimination, we can trans-
form the r-th column of A into the unit vector e®) € R™. Formally, these elimination

steps can be achieved by multiplication of A with an invertible matrix AE;, from the
left,
_ A-14-1
M = A AL A. (6.9)

By construction we have (Ay,); = €®), so My = 1d,,. Now My = (Ag;,Agl)AB/, o)
Ayl = AL AL" and B’ is a basis. Hence, B’ is a feasible basis.

For later use we note the exact form of the transformation matrix A used in the proof.
We can rewrite the equation Agg A} = Ag' in the form Ap = AgApp/, SO App is a unit
matrix in which the s-th column is replaced by the r-th column of AgA, i.e. the solution
of the linear system of equations Ad = A,,. Its inverse A];;, is then easily seen to be a
unit matrix in which the s-th column is replaced by a vector A defined via

otherwise

We fix some more common linear programming terminology.

Definition 6.10. The index s is the leaving index, the index r the entering index
in this step of the algorithm. The corresponding variables of X are the leaving and
entering variable. The element Ay, is the pivot element of this step.

Example 6.3 continued. If we choose j =4, thenc, =1 > 0. and (6.8) tells us that
we can choose A :=min(3/2,1,2) = 1. Then

3 2 1

xﬁ: 1 [-1-]1 =10 xﬁ,z[(l)]
2 1 1
The objective value increases by 1, and the new basis is B’ = (1,4, 3). O

Note that existence of a pivot element Ay, > 0 does not necessarily mean that the
program is bounded. We just cannot detect this at the current step of the algorithm.
There is one case we have not dealt with yet. If ¢, > 0 for some r € N and A;'A,,
has positive entries, but x is degenerate, then A may be 0. We can still move from the
basis B to the new basis B’ by exchanging r with s, but the objective value does not
increase. This can indeed occur, and we postpone a discussion of a possible solution
to the end of this chapter.

To finish the step of the algorithm we have to update the tableau to the new basis.
Given B’ we can of course compute a new simplex tableau by inverting Az. However,
on a computer inverting a matrix is expensive and numerically unstable, so we want
to avoid this.

We have already seen above that we can move from A;'A and A;'A by multiplying

with Ag;, from the left. Now

AJA = AL ALA implies Ab=ALALD.

leaving/entering index
leaving/entering variable
pivot element

6 -7
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pivot element

Hence, the lower part of the tableau can be obtained with Gaussian elimination using
only the s’-th row, which we apply simultaneously both to the matrix and the left
column.

It remains to update the reduced costs. Consider the vector

¢ i=c— .u'Zs’*
for some u € R. The entries Ay, and ¢, are positive, and the only non-zero entry
among those in B is Ay;. Hence, we can find u > 0 such that &, = 0. The following
proposition implies that then already & = ¢ —cj,A;'A, i.e. & are the reduced cost for
the new basis.

Proposition 6.12. If B is a basis and \' € R" satisfies (¢' — A'A); = 0, then A" =
ct AL
N/1p

Proof. Suppose we have X\, u € R" such that 0 = (¢! — A'A); = (¢! — ufA)p. Subtract-
ing the two equations gives 0 = (A" — u')Ag. As B is a basis, Ay is non-singular, so the
only solution of y'A; = 0 is y = 0. Hence A = pu. O

A similar reasoning as before shows that extending this operation on the left column
gives the new objective value. Thus we have obtained the complete simplex tableau
in the new basis. This completes the step in the algorithm.

The crucial property of the simplex tableau for this procedure to work is that

¢, =0 and Xy = 0, (6.10)

i.e. the non-zero entries of ¢ and X have disjoint support. This implied both the simple
optimality test and the way to choose a leaving and entering index. The final update
of the tableau is necessary as after a change of basis (6.10) is violated.

Summarizing, we have now developed the following rule to transform a tableau of
one basis into the the tableau of another basis.

Choose a pivot element Ay, > 0 in the tableau.

Perform Gaussian elimination by row operations in such a way that the r-
th column becomes the (m+1)-dimensional unit vector with a 1 at position
(s + 1) (which is the position of the s’-th row of A).

Example 6.3 continued. We have chosen B = (1,2, 3) as a basis. So

-5 | 12

r,—| 3|1 2 1
1 1

2 1 1 -2

We want to bring r = 4 into the basis. The corresponding column is

3 2 _ 3
A,.=1]1 and b:=11
1 2

To determine A, we have to find the minimum of %, 1 and 2. The minimum of these
numbers is A, = 1, and it is attained for the second row, so s = 2. We mark the chosen
pivot element in the current tableau by a box around that entry. Performing one step
of the simplex algorithm gives the new tableau

—6 -1 2
1 -1 -1
Agzl — 1 TB' — 1 1 -2 1
) 1 1 1 1
1 -1 1 -2
for the new basis B’ = (1,4, 3). o
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Repeating this step until the reduced cost become non-positive now computed the op-
timal solution, which completes the simplex algorithm in the case that we are already
given a feasible initial basis of our linear program. This algorithm is commonly called
the phase II of the simplex algorithm. The following table summarizes the different
steps.

THE SIMPLEX ALGORITHM (PHASE II)

INpUT: AER™" beR™, and c€R".
P:={x|Ax=b,x>0}#0Q
B feasible basis.

OuTpPUT: An optimal solution of
max(c'x |Ax =b, x > 0) = max(c'x | x € P)
if it exists, and the information that the system is unbounded, otherwise.

ALGORITHM:

(1) Compute the simplex tableau Ty for the basis B.

(2) (optmaLITY TEST) If ¢ < 0, then B is optimal and we stop.

(3) (ENTERING coLUMN) If not, then we choose an index r, such that ¢, > 0.

(4) (BounDpEDNESS) If the corresponding column of A];lA is non-positive, then the
program is unbounded, and we stop.

(5) (prvoT ELEMENT) Otherwise, choose an index s’ such that ; - > 0 is minimal. Let
s :=B(s"). '

(6) (excHANGE) Exchange r and s in both vectors B and N.

(7) (upparte) Update the tableau Ty to the new basis using Gaussian elimination.

(8) Return to (2).

r

The algorithm in this form only works if in each step the basic feasible solution is
non-degenerate. There is still choice in the algorithm as we have not yet fixed how we
choose the entering and leaving index. We will see later that we can consistently deal
with non-degenerate solutions by fixing a rule how to choose the entering and leaving
variable. Obvious choices are to take always the smallest index, or the one with the
largest increase in the objective function, or to choose at random.

Example 6.3 continued. We finish our example and compute an optimal solution.
Given the tableau for the basis B’ taking r = 5 is only choice. Also for the pivot
element s’ = 1 is the only possible choice, as all other entries in the last column
are non-positive. This gives A, = % = 1. Using B’(1) = 1 we obtain the new basis
B” =(5,4,3), N” = (2,1) with associated tableau

-8|-2 3

A_l = 1 TBN = 1 1 —2 1

2 —4 1 1 ] 1

3 2 -5 1

The only choices in the new tableau are r = 2 and s’ = 2. The corresponding pivot
element is marked with a box in the above tableau. So we obtain a new basis B :=
(5,2,3), N := (4, 1) with tableau

1

A_,}/ == 1 Tpm 1= 3
B B 1
8

phase 1l
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phase |

Now ¢ < 0, and we have reached the optimal value 11 for the program. The associated
solution is

0

3 1

xg» = | 1 | .  Reordering the entries and extending gives x= | 8
8 0

3

O

Before we discuss degenerate solutions we want to find a way to compute an initial
basic feasible solution for the linear programming problem

max(c'x |Ax=b, x> 0) = max(c'x|x€P), 6

which we left open above. We may assume that b > 0, as multiplication of an equation
in Ax = b by —1 does not change the solution set. We consider the following auxiliary
program:

6:=max(—1'z|z+Ax=b,x,2>0). (AP)
This has the obvious basic feasible solution
B:=(1,...,m) z:=b x:=0,

so we can apply the phase II developed above. If (P) has a feasible solution X, then
(0,X) is a feasible solution of (AP) with objective value 6 = 0. As § < 0 for all feasible
(z,x), we have

X feasible for (P) <= (0,X) is optimal for (AP) with optimal value 6 = 0.

Now (AP) is bounded, so by duality there is an optimal solution (z,X) with optimal
value 6 < 0 and a basis B C {1,...,m+n}. We distinguish the two cases & < 0 and
5=0.
(1) 6 < 0: Then P is infeasible, i.e. P = &, as any x € P would be optimal for (AP)
with value 0.
2) S5 = 0: This implies Z = 0. As X > 0 and AX = b, X is feasible for (P). Further,
I:={i|X; >0} CBand |I| <m, sowe can extend I to a feasible basis B of (P)
with basic feasible solution X. B is unique if X is non-degenerate.

Solving this auxiliary program to obtain an initial feasible basis to start phase II of the
simplex algorithm is commonly called phase I of the simplex algorithm.

Example 6.15. Let

A::(fﬁi) b::(g) ci=(14 2).

We compute the reduced costs d' for the auxiliary program as
—t 1 0 2 3 1
d=(-11000)+(11)(5 0751
=(0 035 2).

So applying phase II of the simplex algorithm to the auxiliary problem gives the fol-
lowing tableaus. We again mark the chosen pivot elements in each step with a box.

8 | 3 5 2
Top=1 5|1 2 3 1
3] 1 1 2
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2] -2 1 1
Tasy==1| 2|1 -1 1
3 1 1 2 1
[ -1 -1
Tesy'=1] 2] 1 -1 1 1
1/-1 2 11

This tableau is optimal with basis (3, 5).

Removing the auxiliary variables from the tableau we obtain the feasible basis B =
(1, 3) for the original problem with feasible basic solution )_(; = ( 2 0 1 ) ¢

The final tableau of the phase I contains almost all necessary information to write
down the initial tableau for the phase II of the algorithm.

(1) The first column contains Aglb.
(2) The next m columns contain Agl, the rest is AglA.
(3) The reduced costs are ¢ = ¢! —clgAglA and the current objective value is —cBAg1 b.

Example 6.15 continued. We have

o (1 -1 4, (11 (2
AB—(_l 5 ATlA= 11 A= ]

To start the simplex algorithm on the original program we have to compute the re-
duced costs for the original cost function in this basis.

ci=(1 4 2)+ (1 2)((1) } ?):(o 10).

So we obtain the following sequence of tableaus from the simplex algorithm.

4] 1 5 | 1
T3 = 201 1 T2 = 1 ‘ 1 -1
1 1 1 1 1
sox = ( 1 1 0 ) is an optimal solution with value 5. O

This example was particularly nice as the optimal solution of the auxiliary program is
non-degenerate, which implies that the basis only contains rows of the original matrix.
This allowed us to obtain the initial tableaux for the original problem by deleting the
auxiliary columns. For a degenerate solution there might remain auxiliary variables in
the basis. The restriction of the solution (z,x) to x is still a basic feasible solution for
the original problem, and we can compute the corresponding basis and transform the
matrix accordingly.

The following observation tells us how to avoid this. If s is the auxiliary index in the
final basis B, and s’ the corresponding row (i.e. B(s’) =s), then Es/ =0inb:= ABTIb.
So we can safely multiply that row by —1 without changing the linear program. So to
remove an auxiliary variable from the basis we can just look at the row corresponding
to it, take any non-zero element corresponding to an original variable and do a pivot
step on this element. This replaces the auxiliary variable by an original one in the
basis. Observe that there must be a non-zero element as the original matrix A has full
row rank.

Example 6.17.

Azz(i i _i) b::(g) ¢=(21 3).

6 -11
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two-step method

Then
9 | 3 2 o] -3 -1 3

Taz:=| 6 11 Tazpy==| 0|1 -2 3

1 2
3 1—1 3 11 1 -1

This leads to the feasible basis X' = ( 3 00 ) that we can use to start phase I
of the algorithm. However, the solution is degenerate and the variable z; is still in
the basis. Feasible bases for the original problem are (up to permuting the entries)
B=(1,2)and B=(1,3).

We do one more pivot step to remove z; from the basis.

0]-1 -1
Tuny=|o0|-1 2 1 -3
3] 1 -1 1 2

We obtain the basis B = (2,1) with associated basic solution solution x; = ( 3 )

for the original problem. Now B does not contain auxiliary variables anymore, so we
obtain an initial tableaux of the original problem by deleting the auxiliary columns
and recomputing the reduced costs.

-6 | 2 -9 | )
Ty == 0 1 -3 Tozy:=1| 92|32 1
3|1 3/2 | 1/2 1
SO

0
x=1 92
3/2

is an optimal solution of the problem. ¢

Combining this phase I to obtain an initial feasible basic solution with the phase II
described above is commonly called the two-step method for linear programs. We
summarize the complete simplex algorithm.

THE SIMPLEX ALGORITHM

INpUT: AER™" beR™, and c € R".
OuTtpuT: An optimal solution of
max(c'x |Ax=b, x > 0)

if it exists, and the information that the system is unbounded or infeasible otherwise.

(1) Reduce the matrix to rank A=m > n.

(2) If m = n, then use Gaussian elimination to compute the unique solution X and
check whether x > 0. If so, output X, otherwise the program is infeasible. Stop.

(3) Solve the auxiliary linear program

5 =max(—1'z|z+Ax=b, x,z > 0).

If 5 < 0 then the program is infeasible. STop.

6-12
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(4) Start phase II with the initial tableau obtained in phase I.

Theorem 6.18. If all basic feasible solutions are non-degenerate, then the simplex
algorithm stops after a finite number of steps.

Proof. There are only a finite number of bases. In each step the objective value
strictly increases, so the algorithm visits each basis at most once. O

We have not fixed a rule to decide which variable we choose as entering and leaving
variable if there is more than one possibility. The assumption that all solutions are
non-degenerate is essential in the above theorem as long as we don’t specify such a
rule.

We never return to a basis with lower objective value. So, if the above method does not
terminate, then it must stay at a degenerate basic solution. As there are only finitely
many bases it must cycle between bases By, ..., B, defining this basic solution. This
effect is called cycling. The following example shows that this can indeed occur also
in small problems.

Example 6.19. (This example is taken from Chvatal’s book [Chv83])
Consider the linear program max(c‘x | Ax < b, x > 0) for

/2 —11/2 —5/2 9 0
A= |12 =32 =12 1| b:=| 0| c:=[10 =57 -9 —24].
1 1

Introducing slack variables we arrive at the simplex tableau:

o] 10 -57 -9 -24

0 1/2 —11/2 _5/2 9 1
0| 12 =32 —1/2 1 1
1 1 1

Now we fix rules for the two potential choices in each round of the algorithm:

(1) If there is more than one r € N with ¢, > 0 then we choose that with largest c,.

(2) If there is more then one element in the chosen column that could serve as a
pivot element, then we choose the one corresponding to the basic variable with
smallest index.

In the following we indicate the current basis by labeling the rows of the tableaux.

o 53 41 -204 -20

; 1 -11 -5 18 2
6 8 -1 1
7 1 1 5 -18 -2 1

‘ 29/ —98 —27/4 —53/4

1 1 1/2 -4 —=3/4 —11/4
2 1 1/2 -2 —1/4 1/4
7 1 -1/2 4 3/4 =11/ 1

cycling
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pivot strategies

lexicographically positive

lexicographically larger

smallest variable index

steepest ascend

largest improvement

—-29 18 15 -93
3 2 1 —3/2  11/2
2 -1 1 2 /2 —5/2
7 1 1 1
—20 -9 21/ —141/3
3 -2 4 1 1/2 —9/2
4 =12 12 1 Ya =54
7 1 1 1
| 22 —93 -21 24
5 -4 8 2 1 -9
4 2 —=3/2 =1/ 1
7 1 1 1

|10 -57 -9 -24

5 /2 —11/3 —5/3 9 1
6 /2 =3/2 —1/3 1 1
7 1 1 1

At this point, we are back at the original tableau, so the simplex algorithm does not
terminate if we use these rules to choose entering and leaving variable. ¢

To avoid cycling, we need an additional parameter that we associate to each pair of a
basis and its corresponding objective value, which increases even when the objective
value does not. As we have observed already we still have the selection rules for
entering and leaving variable at our hand to achieve this. We discuss in the following
several strategies for this tasks, and prove that some combinations avoid cycling. This
will prove that the simplex algorithm with these selections rules also terminates after
a finite number of steps even for degenerate solutions.

These pivot strategies clearly influence the path of the algorithm along the graph of
the polyhedron, so they also influence the running time of the algorithm. We have
seen in the example that not all pivot strategies avoid cycling, and experimentally
strategies that avoid cycling have a longer average running time than others. As (again
experimentally) cycling is rare in practical problems, a common choice is to use a
strategy that promises to be good on the given problem, and switch to another if
cycling is detected. We need some preparation.

Definition 6.20. A non-zero vector x € R" is lexicographically positive if its first
non-zero entry is positive. We write X > 0.

A vectory is lexicographically larger than x, written asy > x, ify —x > 0.

The lexicographic order > defines a total order on R". For S C R", let lex-min(S) be
the lexicographically smallest vector in S.
Here are some common choices for the entering index r.
(1) smallest variable index: Choose the smallest index r of the variables with ¢, >
0 (observe that this need not be the first non-zero entry of cy).
(2) steepest ascend: choose the column index r with the largest c,..
(3) largest improvement: choose the column index r that induces the largest im-
provement on the objective value (i.e. such that the A defined in (6.8) is maximal
for this column).

6 - 14



Chapter 6. The Simplex Algorithm

The first rule is very easy to implement, while the two other rules are computationally
much more involved. Yet, one would expect that using them leads to a smaller number
of rounds in the algorithm. Given the entering index r here are some strategies to
choose the leaving index s = B(s").

(1) lexicographic rule: Choose the leaving index s’ so that

1 _ 1_  _

—Ay, =lex-min | —A;, |A,>0] .
As/rAS (Air ' ' )
(2) smallest index: Choose the smallest possible s’.

(3) smallest variable index: Choose the smallest s.

Theorem 6.21. Using the lexicographic rule no basis can be repeated. In particular,
the simplex algorithm with this rule cannot cycle (independent of the rule to choose
an entering index).

Proof. Assume that the initial feasible basis B satisfies B = [m], i.e. A= (Az Ay ).
Then all rows of A := AElA are lexicographically positive.

Now assume that at some intermediate step of the algorithm all rows of A = A;A are
lexicographically positive, and assume that the algorithm chooses the column r. Let
J :={j € [m] | A;, >0}, and let s’ be the row chosen by the lexicographic rule. Let B/
be the updated basis. The rows of A’ := Ag,lA are

~

jr =

jeJ : Ay, =0 by the choice of s’

e T T

|

s’

o _ A.
JrAs’* =Aj*+ _J”
s’ As’r

~

Zs’* = 0.

J&J :

e
So the rows of A' are lexicographically positive. The reduced costs change by

_ c, —
cC =c¢— =—Ay,,

As’r

so ¢ < ¢ and the reduced costs strictly decrease in each step. This implies that the
tableau for any basis is unique, so no basis can occur twice during the algorithm. 0O

Another rule that guarantees finiteness of the simplex algorithm is

Bland’s rule: In each step, choose the smallest index for entering the
basis, and then the smallest index for leaving the basis.

Experiments suggest however that the lexicographic rule or Bland’s rule are not a good
choice. They tends to create many more pivoting steps than other rules on average.

We have already observed in the introduction that in the worst-case, none of the above
rules is “good” in the sense that it guarantees polynomial running time. For all com-
mon selection rules there are linear programs so that the simplex algorithm with this
particular rules runs through all vertices of the polyhedron, and there are polytopes
with an exponential number of vertices in the number of facets. It is an open problem
whether there are (yet undiscovered) selection rules that guarantee a polynomial run-
ning time. For a randomized approach for the selection of entering and leaving index
it has been proved that the expected run time is sub-exponential.

Finally we note without proof that there is no optimal pivot strategy in the sense that
it does not effect worst case performance. There is a huge amount of literature about
which rules may be better in which cases (expected, on average, ...).

The simplex tableau is a nice and useful tool for solving a linear program by hand.
For implementations, there is far too much unnecessary information contained in

lexicographic rule

smallest index

smallest variable index

Bland'’s rule
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revised simplex method

the tableau, and we compute lots of unnecessary information. In particular, in each
tableau we store a unit matrix. We will discuss a way to reduce both stored data and
computation time. However, we can only touch on this topic, as there are far too many
different ways to attack this problem in different settings (i.e. for sparse systems, many
redundant constraints, ...). For a more thorough treatment the reader is e.g. referred
to [Chv83].

Now assume that we are given a linear program in standard form with matrix A €
R™ " right hand side b € R™, and cost vector ¢! € R" together with a feasible basis
B and its corresponding basic solution X;. We consider one iteration of the simplex
algorithm.

In the first step we have to determine the entering index, i.e. the index of a positive
entry in ¢’ — c{A;'A. We can compute this vector in two steps by solving the system
of linear equations y'Ag = cf and then computing €,, := ¢!, —y'Ay. Depending on our
strategy for choosing the entering index it might suffice to compute only a part of ¢'.
If the basic solution is not already optimal then we find an index r such that ¢, > 0.
Given the entering index we have to determine the leaving index. For this we need
the current basic solution Xz and the r-th column of the matrix AEIA. The latter can
be computed from Agd = A,,, and the minimal quotient A as in (6.7) determines the
entering index s. The new basic solution is now X — Ad corresponding to the basis
obtained from B by replacing r with s.

The simplex method in this form is often called the revised simplex method, whereas
the tableau form described earlier is the standard simplex method. In each itera-
tion we have to solve two systems of equations with m equations instead of Gaussian
elimination on an (m x n) system, and we basically have no update step. Given the
matrix Az we need only one new column of A in each iteration, namely the column
corresponding to the entering index. This is particularly advantageous if the matrix A
is too large to keep it in memory, or if columns are only generated when needed.

The efficiency of this revised method mainly depends on the fast solution of the two
systems of equations, one to determine the entering, and one to determine the leaving
index. Note that the constraint matrix Ay in each iteration only differs in one column
from the matrix used in the previous iteration. So usually, these systems are not solved
from scratch, but some method is implemented to reuse part of the computations. We
sketch one such method.

LetAg , Ag,,...,Ag, be the sequence of basis matrices obtained in the iterations of the
simplex algorithm. From our discussion above we know that two consecutive such
matrices differ only by multiplication with the matrix A_ 5 _defined in (6.9),

ABk - ABk—lABk—lBk :

Doing one initial Gaussian elimination we can assume that A; =Id,,. Then

ABk = A3132A3233 “ 'ABHBk 5

and we can solve the system ytABk = ¢}, by successively solving

t — at t 44t t 44t
uk—lABk—lBk =¢ uk—2ABk—sz—1 =0, tee y ABle =up.

Though this might look like a stupid idea, note that the systems in the above chain
are extremely easy to solve, as the matrices differ only in one column from the unit
matrix. Thus, in each system only one entry has to be computed. Similarly, we can
solve the second system Ag d = A,,, , where r is the entering index in the k-th step,
with such a chain,

Ap V1 = Ay, Ap,p, V2 = Ay V1 e Ap,_pd=Vi ;.

There is one problem left with this approach. If we have done a large number of
pivot steps in the algorithm then despite their simplicity the time to solve all these
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systems might become larger then the time to solve the original system from scratch.
However, given a decomposition of a matrix A into a product of upper or lower trian-
gular matrices gives a similarly simple computation of a solution of a system of linear
equations. So at some point it might be advisable to replace the product

Ap ,Ap,p, A8, (6.11)

by a decomposition into upper or lower triangular matrices. Doing this with the first
basis matrix also spares the initial matrix inversion to obtain Az = Idy,. As there
are many different ways to obtain a decomposition into triangular matrices there is
much choice in the actual implementation of this approach. One also needs to decide
at which point the sequence of Ag_ p is replaced with such a decomposition. These
choices, and the previous choices for strategies to choose the entering and leaving
index greatly influence the running time of the simplex algorithm. See standard texts
on Linear Programming for more on this.

Let us finally discuss an economic interpretation of the simplex method in connection
with the slackness theorem. We use the following general setting. Any variable x;
counts units of some object or service provided, and a row of A corresponds to a
resource used in the production of the x;. An entry c; of the cost vector gives a profit
obtained for each unit of the variable x;, and the column A,; of A collects different
resources needed to obtain one unit of x;. Given a basic feasible solution X, the

slackness theorem tells us that we can check optimality of this solution by
solving Y'Ap =cj and checking y'Ay >¢,.

The system of equations is precisely the first system we have to solve in the revised
simplex method, and the system of inequalities is the one we have to consider to find
the entering index. If it is satisfied, then the solution is optimal, and otherwise any
index corresponding to a column that violates it can be taken as an entering index
(well, almost, as for degenerate solutions X the system of equations considered in the
complementary slackness theorem may be smaller than the above).

Solving y'Ap = ¢}, can be seen as assigning a value to each resource such that the
return c;xp of the current solution matches the value of the amount ApX; of the re-
sources needed to obtain X, i.e. c;Xz = y'ApX. In this interpretation y is sometimes
called the shadow price of the resources. Evaluating y'Ay gives the current shadow
prices of the variables that are currently not in the basis. As X, = 0 these correspond to
goods or services currently not produced. This process is sometimes called pricing out
of the non-basic variables. If non of these variables costs less in the shadow prices the
it would return according to the objective function (i.e. y'A,; > ¢; for each non-basic
index j € N) then the current solution is optimal (The converse does not necessarily
hold if X is degenerate. Though there is an optimal solution that satisfies this we might
need additional steps in the simplex algorithm to obtain it). Otherwise we can pick
a variable r whose cost is less than its return, i.e. some r such that y‘A,, < ¢,.In this
case it is advisable to substitute the production of x, for some of the variables in the
basis. The second system of equations Azd = A,, precisely computes for us a way to
substitute one unit of the entering variable x, for a mix of the current basic variables.
The maximal amount of the new variable we can put into our basic solution is given by
the parameter A of (6.7). In this process exactly one of the currently produced objects
is removed from the basis, i.e. its production is stopped. Observe that the y* computed
in the first system of linear equations is nothing but the dual solution corresponding
to X. By the duality theorem it will be feasible if and only if the primal solution is
optimal. We will meet this last observation again in the next section.

shadow price

pricing out
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Duality and Post-Optimization

In this chapter we introduce variants of the simplex method using information on the
dual solution contained in the simplex tableau, and we discuss the effect of changes
in the input data on the optimal solution, and ways to quickly regenerate an optimal
solution. The following discussions just touch the surface on these topics. Using as
much information as possible contained in a tableau, and being able to quickly cope
with varying input is important in many real-world applications of linear optimization.
So there is an extensive literature dealing with these questions.

We have seen at the end of the last chapter that the simplex tableau also contains
information about the dual solution. In the following we want to explore how we can
use this information for solving linear programs. We modify our definition of a simplex
tableau to support this.

Let a linear program max(c'x | Ax = b, x > 0) for A € R™", b € R™, and ¢' € R" be
given. We assume rank A= m. If B C [n] is a feasible basis, then

_ —cpA'b |
B A7'b | A5lA

is the simplex tableau associated to B. We have already observed that A];lA always
contains a unit matrix in the rows corresponding to B, and the reduced cost ¢ are
0 in the entries of the basis. Hence, this part of the tableau does not contain any
information about the linear program. However, we used it to keep track of the current
basis when transforming a tableau into a new basis. We can record this information in
a more compact form by removing the unit matrix and E; from the tableau and labeling
the rows of A;'Ay with the corresponding basis index, and the columns of Az'Ay with
the corresponding non-basis index, so if B = (by,...,b,,) and N = (ny,...,n,_p),
then we can write the tableau in the form

ny [P | .

a1 —t
ctAL'D | cy

by

-1 -1
Az'b AG'A
bm

Example 7.1. Reconsider the linear program given in Example 6.3:

1 2 3 -1 5
A= 1 1 b:=1| 1 cf:=(1 01 4 1).
1 1 2 -2 3

The basis B = (1,2, 3) is primal feasible with

2 1 3
AjlAy = 1 Ag'b=| 1 o=(12).
1 -2 2
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reduced simplex tableau

So the reduced tableau is

4 5
511 2
1 31 2 1
2 1 1
3 211 =2 O

The simplex tableau in this form is called the reduced simplex tableau associated to
the basis B. We need to modify our update rules for this tableau. Let A := A;AN. If
r = N(r’) enters the basis and s = B(s’) leaves it, then the column below the index r
(the r’-th column of A) is the pivot column, the row with index s (i.e. the s’-th row of
A is the pivot row, and the element A, at their intersection is the pivot element. By
construction, this is positive. In the original update step we used Gauss elimination
to transform the r’-th row into a unit vector. We still do this Gauss elimination for all
columns except the r’-th (but including the right hand side X = ABle), and in the r’-th
column we enter the s-th column of the original tableau, so at the position (i,r”) for
i # s’ we write —A; /4., and at position (s’, ") we put 1/4,,..

Example 7.1 continued. We finish the example in the new notation and obtain the
following sequence of tableaus. The pivot elements are marked with a box.

4 5
5] 1 2
1 3] 2 1
2 1
3 21 1 -2
2 5
-6]-1 2
1 1] -2
4 1
3 -1 -2
2 1
-8 3 -2
5 1| -2 1
4 1
3 3| =5 2
4 1
~11| -3 -2
5 3] 2 1
2 1 1
3 8 5 2 O

Note that we can write down a simplex tableau even if the current basis is not feasible,
so we don’t require this in the following. Feasibility of a basis B (the set of row labels)
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can then be read off from the tableau. B is feasible if and only if the first column in
the lower part is non-negative. A pivot step that replaces some index s € B in the basis
by some index r € N not in the basis is allowed as long as the set B’ := (B \ {r}) U {s}
is still a basis. This is if and only if the pivot element Ay,» # 0, where r’ and s’ are
the column and the row of the current constraint matrix A;'Ay that correspond to the
variable indices r and s.

If we consider linear programs and their duals it is more convenient to use the canon-
ical form of the program as this emphasizes the symmetry between a program and its
dual. So for the following considerations we look at a pair

max(c'x |[Ax < b, x> 0) P)

min(y’'b |y'A > ¢, y > 0). D)
of dual linear programs for A€ R™" b € R™, and ¢’ € R". Note that in this form we
cannot assume rank A = m (and indeed this is rarely satisfied). We will see later that
we can easily transfer our considerations to a linear program in standard form and its
dual. (P) and (D) exhibit the particularly nice feature of programs in canonical form
that they one can be transformed into the other via

A — —A
b «— —cf
and ¢c «— —b’.
To apply the simplex method we nevertheless need programs in standard form, so
we transform both programs in a symmetric way by introducing slack variables (and
taking the negative transpose of the dual). We introduce u as slack variables for the
primal, and v for the dual. So our programs are
max( c'x| u+Ax = b, x,u > 0)
max(—b'y | —“A'y+ v= —c¢, y,v > 0).

Note that the primal program has as many slack variables as the dual has variables, and
vice versa. We have the following obvious basic solutions (not necessarily feasible):
for the primal: B:= ( 1, ..., m ) (u,x):=(b, 0)
for the dual: N:=( m+1, ..., n+m ) (y,v) :=(0, —c)

Writing down the reduced tableaus for the two programs using these initial bases and
B=(By,...,B,), N=(Ny,...,N,) gives

N, ... N,
—cib | ct
B, for the primal, and
: b A
Bm
B, Bm
cib | —bt
N, for the dual program.
: —c —A*
Nn

Looking at this we can see that the dual tableau is just the negative transpose of the
primal. The criteria for feasibility and optimality obtained in the previous chapter state
that




Discrete Mathematics II — FU Berlin, Summer 2010

primal feasible
dual feasible

dual simplex algorithm

(1) the primal tableau is feasible if b > 0, and the dual tableau is feasible if ¢ <0,
(2) the primal tableau is optimal if ¢ < 0, and the dual tableau is optimal if b > 0.

Definition 7.3. The basis B is called primal feasible if b > 0 and dual feasible if
¢ <o.

Hence, we can read off primal and dual feasibility and optimality from either tableau.
If both tableaus are primal feasible, then the current basis is already optimal. We want
to show that this property is preserved in the simplex algorithm if we do the same
steps in both tableaus. Let s € B be an index that we can replace with some index
r € N, i.e. A, # 0. Then we can replace the dual basis index r with the index s,
as (A"),, = A, # 0. We go back to standard tableaus to compute the transformed
tableaus. For this we define

K:=(1d, A) K:=(-A" Id, )

Doing a pivot step amounts to multiplication of K and K with an invertible matrix A
and A from the left to obtain new matrices K’ := AK and K := AK. We obtain new
bases B’ for the primal and N’ for the dual. As we have exchanged r for s in B and s
for r in N we still have the property that B’ = [n+ m] \ N’. The special form of K and
K implies KK =—-A'+A=0. Multiplication with A and A does not change this, we
still have K’(K )t = AKK' A' = 0. Hence,

— —/ —/ —/ - —
KL (Kp)' +Ky (K ' =0 = (Kp)' (Ky) "= (K)'Ky,

The new matrices in the reduced tableau are (K;) 'K}, for the primal and (K}, (I?;)_l)t
for the dual, so the negative transpose property is preserved for the two matrices. This
is easily seen to extend to b and c'. This implies the following general relation between
bases of the two programs:

B basis of the primal <= N :=[n+m]\ B basis of the dual program.

If one of the tableaus is optimal with primal optimal basis B, then we can read off both
the primal and dual optimal solution from the tableau. Note however, that we have
implicitly solved the linear programs in standard form, so setting

X;:= b X\, =0 for the primal
and i’;v =—c fr); =0 for the dual

gives the solutions of the problems in standard form, and we have to project X'to the
last n variables to obtain the primal, and ¥ to the first m variables to obtain the dual
solution of the original programs in standard form.

If we use the algorithm with reduced simplex tableaus as described at the beginning of
this section, then we can now start the simplex algorithm on either tableau, provided
the associated primal or dual solution is feasible. However, we have seen above that
the dual tableau is just the negative transpose of the primal, so we can interpret the
iterations of the simplex algorithm on the dual tableau also in the primal tableau. In
this description the dual simplex does the same steps as the primal, but we

(1) exchange row and column operations, scale the pivot column so that the pivot
element changes to —1, and write down the negative of the scaling factors in the
pivot row,

(2) choose an index r with negative entry in b as the entering row, and

(3) the leaving index s among those with negative entry in the r-th row.

This simplex algorithm for the dual program operating on the primal tableau is com-
monly called the dual simplex algorithm. As a primal pivot step in the primal tableau
results in the same tableau as the corresponding dual step in the dual tableau, we can
even drop the first change, and just do a normal primal pivot.
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Example 7.4. Consider the linear program max(c'x |Ax < b, x > 0) with

-1 -1 -3
A= -2 -1 b:=| -5 ct :=( -3 =2 )
2 1 8

the obvious primal basis B = [3] of the linear program max(c‘x | y+Ax = b, x,y > 0)
with X := b is not feasible, so we try the dual program max(—b'y | —A'y + x =
—¢, X,v > 0). This has a basic solution y = —c > 0 with basis N = (4,5) which is
feasible. We set up the tableau:

4 5

o] -3 -2

1 -3 -1 -1
2 -5 -1
3 8 2 1

We have to find a row with b; < 0, so we can take either the first or second row. We
choose the second, i.e. s’ = 2 and s := B(s’) = 2. Among the negative entries of that
row we have to find one that minimizes the quotient ¢j/a,;. As —3/-2 < —2/-1 this is
r’=1,1ie.r =N(r") = 4. So after the first step the tableau is

2 5

15/2 —3/2 —1/2

1 —1/2 | =1/2 | =1/2
4 5/2 | =1/2 1/2
3 3 1 0

Note that we can obtain the tableau in two ways. If we want to do the dual pivot
step, then we add —5/2 of the second column to the first, —1/2 of the second column to
the third, scale the second column by 1/2 so that the framed entry is —1, and replace
the second row with the negative of scaling factors, so with 5/2, —1/2 and 1/2. For the
primal step we add —3/2 of the third row to the first, —1/2 of the third to the second,
1/2 of the third to the forth, scale the third row by —1/2, and replace the second column
with the scaling factors. Either way gives the above tableau.

The first row of the new tableau still contains a negative entry, so we are not yet
optimal. For the next picot step we have to takes’=1and r'=2,sos=1and r = 5.
The new tableau is

2 1

8| -1 -1

5 1 1 -2
4 21 -1 1
3 3 1 0

This tableau is optimal. so the optimal dual solution is ¥ = (1, 1), and the optimal

— 2
primal solution is X = ( 1 ) with optimal value —8. ¢

We can use the dual algorithm to replace our phase I used in the previous chapter to
obtain an initial feasible basis for a linear program in canonical form. In this step, the
objective function is irrelevant, we are only interested in a vertex of the polyhedron
{x | Ax < b,x > 0}. But feasibility of the dual solution hinges only on ¢. If this is
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negative, then the trivial initial dual solution is feasible. So to obtain a feasible solution
we can replace ¢’ with an arbitrary non-zero cost vector d* that satisfies d* < 0. A
suitable choice would e.g. be d* := —1°. We can then solve the dual problem with
the above method, and obtain an optimal dual and primal solution for the modified
problem. The primal solution is in particular feasible, so we can use this to solve the
original problem. The only thing we have to change in the last tableau of the auxiliary
problem is the cost function.

Example 7.5. Consider the linear program max(c'x | Ax le b, x > 0) in canonical
form with

2 1 12
A= -1 1 b:= 6 cf::(l 3).
-3 -1 -6

The initial reduced tableau is

4 5

0 1 3
1 12 2 1
2 6| -1 1
3 —-6|-3 -1

Hence, neither the primal nor the dual solution is optimal. We replace the current cost
function by d := ( -1 -1 ) to obtain the tableau

4 5
0]-1 -1
1 121 2 1
2 6| -1 1
-6 -3 -1

Now the dual basis is feasible, and we apply the dual simplex algorithm. For this,
we have to choose a row with negative first entry, so we have to take s’ = s = 3.
Then among the columns with negative entry in this row we choose the one with the
smallest quotient. In our case, there is only one such column, and we have to take
r’ =1, r = 4. If we do the pivot step we obtain the tableau

3 5

2| =13 —4/3

1 8 2/3  5/3
2 8|13 23
4 2| =13 =13

This tableau is dual optimal, and we read off the dual and primal solutions to be

(3

“=(0 0 -13)

As we have only changed the cost function, the primal solution is also feasible for
the original problem. Observe that the tableau also tells us the values of the slack
variables. Indeed, if we plug in the primal solution into Ax < b we obtain

12

6 —

-6

2 1
-1 1
-3 -1
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reflecting the fact that the first two slack variables of the primal are 8, and the last
one is not in the basis, so it is 0. We can now set up a tableau for the original function
using our feasible solution by replacing the cost function

3 5
-2 | 4/3  10/3
1 8 2/3 5/3
2 8| -1s 2/3
4 2| =1/ —=1/3
We can solve this program with the primal simplex algorithm. ¢

Similarly, we could modify the right hand side b to obtain a feasible primal solution,
solve the primal problem to obtain a feasible dual solution for this modified problem,
and then solve the original dual problem to obtain optimal primal and dual solutions
of the original problem.

In the previous chapter we have considered a primal problem in the standard form
max(c’x | Ax = b, x > 0). Here, the dual problem is min(y‘b | y'A > ¢'), and the
duality between the two problems is less obvious than in the formulation (P) and (D)
used for the dual simplex algorithm. However, the reduced tableau obtained at the
beginning of the chapter shows how to transform such a problem into our format.
Given a basis B of the program we can rewrite the constraints as

AX =b, x>0 << Ayxy +A4pxz = Db, xy,x3 >0
< AAyxy +%x3 = b, xy,x3 > 0
— Aj'Ayxy < b, xy > 0.
The cost function in this basis is
c'x:=cixp + ¢\ xy = c{Az'b + ¢l xy =k +clxy
for k := chglb constant. So we can rewrite our linear program as
max(clxy | A'Ayxy < b, xy > 0). (CP)

The program has the same optimal solutions (the omitted variables x; are the slack
of the obtained solution), and the optimal value differs by the constant k. (CP) is a
linear program in canonical form that yields exactly the reduced tableau associated
to the basis B that we have defined for the original problem. With this transformed
problem we can now apply the primal or dual simplex algorithm as given above.

Example 7.6. Let

_( 2 1 -3 -4 -2 _( -6 . .
A.—(_B 1 a4 s 4) b.—( 7)c.—(13 5 -9 2)

Then B = (1, 2) is dual feasible and
L4 (-1 =1 - (1 -1 -1 -2 = (-1
AB_(?) 2 A= 1 -1 -2 2 b={ _4
c=(00 -1 -2 -2) v=(8 5).

So B is not optimal. The corresponding tableau is
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primal-dual methods

Using this algorithm we obtain the following sequence of tableaus:

1 4 5

4] -1 -1 0

3 1| -1 1 2
2 -3[|-1] -1 4
2 4 5

13/]0 -1 —4

3 4‘2 -1 -2
31 -1 -4

This tableau is optimal as lower part of the first column is non-negative. The linear
program has optimal value 17 and primal basic feasible solution

if:=(304oo). o

In the simplex methods we have discussed so far we have only used the duality the-
orem in the observation that a primal and dual feasible basis must be optimal. In the
end of Chapter 3 we have also proved the complementary slackness theorem and have
seen that we can sometimes produce a dual solution from a primal one by solving a
system of linear equations. Solving equations is much easier than solving inequalities,
so we now want to exploit this also for our simplex algorithm. This leads to the so
called primal-dual methods. We consider again

max(c'x |Ax =b, x > 0) = max(c'x | x € P) ®
min(y'b | y'A> ¢") = min(y'b | y € P*). (D)

As before we may assume that b > 0. Now assume that we have a dual feasible
solution y and some vector X > 0 with the property

X, >0 = YA; =¢ forall1<i<n. (7.1)

The complementary slackness theorem tells us that if AX = b then X is primal feasible
and optimal. Clearly, if b = 0, then x = 0 satisfies (7.1), so it is optimal. Otherwise we
have that 1°b > 0.

Let J={ly
and A=A,

>
&
I
,\‘ﬁ
—

Consider the linear program
min(1‘z | Id,,z+ Au=Db, u,z > 0). (7.2)

The first m columns (which are an identity matrix) are always a feasible basis for this
linear program with basic feasible solution

z:=b, u:=0.

It has objective value § = 1'z = 1'b > 0. The program is bounded below by 0. The
duality theorem implies that there is an optimal solution (z,u) with optimal value
5 :=1'z > 0. We distinguish the two cases § =0 and 6 > 0.

If5 =0, thenz =0, and

X =u i[n]—J =0
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is a primal feasible solution that satisfies (7.1), hence it is optimal.

Otherwise 6 > 0. Let W be the dual optimal solution corresponding to (7.2). Then
5§ =w'b, w<1, wA<o0.
By construction,
VAr>c forallkgJ.
Hence, there is € > 0 such that
F —ew)A>cl,

soy :=y— ew is a dual feasible solution. Its objective value is

¥)b=yb-ewb=yb—e5 <y'b,

so ¥ has a better objective value than y. We may repeat these steps with this im-
proved dual solution. This may, however, not lead to a finite algorithm, as we cannot
a priori control the improvement €6. We need some argument that ensures that this
value is bounded below in each step by some strictly positive lower bound to guar-
antee finiteness. Often, this can be guaranteed by giving some interpretation of the
restricted primal program as a simplified version of the original one. We’ll later see an
application of this method.

At the end of this chapter, and at the end of our discussion of the simplex method to
solve linear programs, we want to discuss the influence of changes to the input data on
an optimal solution obtained by some simplex method. There are four main scenarios
that we will distinguish:

(1) A change in the right hand side b,

(2) a change in the cost function c,

(3) addition of a new variable to the program, and

(4) addition of a new constraint to the program.
Such considerations are quite important in real-world applications, as the input data
might change according to changes in the market situation (e.g. prices raise, or supply
decreases), or measurement of some input is subject to uncertainty and we want to
adjust the solution or just estimate the stability of our solution.
Let again max(c'x | Ax < b, x > 0) be a linear program in canonical form, and assume
that we have an optimal basis B with optimal solution X and value 6. Then B is primal
and dual feasible. This implies in particular that the associated reduced costs ¢’ are
non-positive. Let y be the dual optimal solution corresponding to X.
We start with a change in the right Let b’ := b + A be a new right hand side for some
A € R™ yis a feasible solution of

min(y'(b+ A) |y'A>c', y>0).

This implies that y'b is an upper bound for the optimal value &’ of the new program,
so that

5 <y (b+A)=yb+YA=5+FA. (7.3)

We may view y as a measure for the sensitivity of the optimum value of the original
program for a perturbation of b. The new basic solution for the basis B is

—/

o a-1p — a1 _= -1
Xp i =A, b =A (b+A)=X3 + A A

The reduced costs ¢ = ¢ — c]gAglA of the current basic solution do not change, so the
basis B remains to be dual feasible.
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» If X' > 0, then B is still primal feasible, so it is optimal. This is the case if and
only if

—A'A <Xy

which is clearly satisfied in a small region around the origin for non-degenerate
solutions X. In particular, we have equality in (7.3). We have met this case
already at the end of Chapter 3.

» If X' # 0, then we can use this basis as the input for the dual simplex algorithm
and obtain a new basic solution.

These considerations also show that the set of all right hand sides b for which X is an
optimal solution is the polyhedral cone

Gy :={x|A;'x < 0}.

Now we look at how changes in the cost function c affect the optimal value. Assume
that we change c to ¢’ := ¢+ A. Then

(@) =c" + A" —(cz+ Ap)'A;'A
=¢ +A"'—ALA'A
¥ — -1 -1
and (" +A)X=cA;'b+ALAL'D

As a primal solution X is optimal if and only if the reduced costs are non-positive, our
solution remains optimal for the new program if and only if

c+A"-ALASIA<O.

Otherwise, some entry of (¢)! is positive, and we can replace the old by the new
reduced costs in the simplex tableau and restart the primal simplex algorithm.

Now we examine how we can deal with the case that a new variable is added to our
program. This adds a new column a = A,(,4) to the matrix A and a new entry c,,
to the cost function. The basis B is still a feasible basis. We may compute the new
reduced costs via

— _ t At o ot
Cnt1 = Cnp1 — CgAgA=Cpyq — Yy A,

where y is the dual optimal solution of the original program. If ¢,,; <0, then X is still
optimal, otherwise we can add c,;; and A1) = Ag'a at the end of the tableau and
restart the simplex algorithm. The first step puts x,,; into the basis.

Finally, we look at the addition of a new constraint to our linear program. Let a; | €
(R")* and b, € R. We add the constraint a, ;X = b,,;; as (m + 1)-th row to the
matrix A. If it is linear dependent from the other equations, then we could discard it,
so we assume that it is linear independent and the rank of A increases to m + 1. We

distinguish the two cases whether X satisfies a;,_ ;X = b,,;; or not.

Assume first that the basic solution X satisfies a;, ;X = b,,;;. Then X is also optimal for
the extended program. We just add some non-basic column to the basis. X becomes a
degenerate solution.

Now assume that the basic solution X does not satisfy a;, ;X = b,,,;. Then we intro-
duce a new slack variable x,,; and change the new equation to

t

am-H

X+ &Xp1 = by

where we take ¢ := 1if a; ;X > b,,;; and & := —1 otherwise. We extend the basis by
the new last column and put x,,; with value b,,,; — a|, ;X into the basis. The new
basic solution is primal infeasible, as x,,; < 0. However, we have not changed the
reduced costs, so they are still non-positive. So the new basis is dual feasible.

7 -10



Chapter 7. Duality and Post-Optimization

We can start the dual simplex algorithm, which will choose some entry of the new
constraint as pivot element. If there is none, i.e. if this row is non-negative, then the
dual problem is unbounded. This means that the intersection of the added hyperplane
with the original polyhedron is empty, and the problem becomes infeasible.

Otherwise, the dual algorithms computes an optimal solution X. As we have added
an artificial variable x,,;, we still need to argue that there is an optimal solution for
which x,,; = 0. If this is not already satisfied, then we can transform our optimal
solution in the following way. Let

o Xn+1
n=—-————-
Xn+1 — Xnt1

Then 1 > 0, as X, <0. Define
x:=nx+(1—-n)k.

Then X >0 as

- Xn+1 — ~ Xn+1 ~
Xn+1 = txnﬂ +xn+1 - jxnﬂ
Xn+1 Xnt1 Xn+1 Xn+1

1

=z —— (Zp1 X011 = X1 X + X1 X1 — X1 K1)
Xn+1 — Xn+1

=0.

The dual solution y corresponding to X is dual feasible, which implies that ¢!X =y'b >
c'% by weak duality. Thus, the objective value satisfies

c'x=nc'X+ (1 —-n)kx > Ac'k+ (1 —n)c'k=c'x,

So X is optimal.

There are other important changes to the input data that occur in real-world applica-
tions which we will not discuss in this text. In particular, we have not discussed how
changing a column or row of the matrix A influences the optimal solution. Efficient
handling of all these changes are quite important for any practical purposes. You can
find extensive discussions on such problems in the literature.
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Integer Polyhedra

For the rest of the course we restrict to rational polyhedra, that is, we only look at
polyhedra P = {x | Ax < b} such that A € Q™" and b € Q™. By scaling inequalities
with an appropriate factor, we may even assume that A€ Z™" and b € Z™.

All vertices of P and all generators of rec P are given as the solution z of a subsystem
A,z =b; of Ax < b. From Cramer’s rule we may deduce that any solution of a rational
system of equations is rational. Hence, using Theorem 4.38, we see that P can be
written as P = conv(X )+cone(Y) for rational matrices X and Y, and cone(Y) = rec(P).

Remark 8.1. We can scale a generator of a cone C by an arbitrary positive factor
without changing C. Hence, we can even assume that all generators of rec(P) are
integral, i.e. Y is an integral matrix.

Using methods similar to those presented in Chapter 5, one can prove that the absolute
value of all entries of Y is bounded by the maximum size of a sub-determinant of A. ¢

Definition 8.2. Let A< Q™", b € Q™, ¢c € Q". The integer linear programming
problem (in standard form) is the problem to determine

6 :=max(c'x|Ax=b,x>0,x<€Z"). (IP)

The weak duality estimate
max(c'x |[Ax=b,x>0,x€Z") < min(y'b|y'A>c,yez™).

remains valid for integer linear programs. However, we usually do not have equality
in this relation, i.e. the (strong) duality theorem fails. The LP-relaxation of (IP) is the
linear program

&), :=max(c’x | Ax=b, x> 0). (LP)

The optimal solution of (LP) is the LP-optimum of (IP). Clearly, 5;, is an upper bound
for 6, but this bound may be quite far away from the true solution.

Example 8.3. (1) Consider the linear program max(x | 2x <1, x > 0 x € Z) with
dual min(y | 2y =1y > 0 y € Z). The primal optimum is 0, while the dual
optimum is 1. Without the integrality constraint, both programs are feasible
with solution x = y = 1/2 and optimal value 1/2.

(2) Let
1 1 1
A=| -n+2 1 b:=| 1 cfz(o —1)
n 1

The integer optimum is (0, 1), but the LP-optimum is (1/2, —n/2). See Figure 8.1.0

The second example suggests that, if the two solutions differ, then the matrix A must
have large entries. This is in fact true, one can give bounds on the difference between
an integer solution and the solution of the corresponding relaxation in terms of the
size of A and b, see e.g. Schrijver’s book [Sch86].

rational polyhedra

integer linear programming
problem (standard form)

LP-relaxation

LP-optimum
o
—@ @
[ ] o V
T @
Figure 8.1
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integer hull

integer polyhedron

0/1-polytope

integer part

floor

fractional part

Figure 8.2

ceiling

Remark 8.4. Note that for integer linear programs we also have to be careful with
transformations between different forms of the program. Consider max(x | —x <
—1/2, <3/2, x > 0, x € Z). This linear program in canonical form as the optimal
solution x = 1. However, if we introduce slack variables y and z to write

—x+y=-1/2 x+z=23/2 x,¥,2>0

then we cannot require y, z to be integral (as the solution x = 1 corresponds to y,z =
1/2), so the new program is not an integral linear program. We discuss transformations
that preserve integer points later. ¢

Definition 8.5. The integer hull of P is
P, :=conv(PNZ").

A rational polyhedron P is an integer polyhedron if P = P;. If all vertices of an integer
polytope are in {0, 1}", then it is a 0/1-polytope. See Figure 8.2 for an example.

We need some notation for the next theorem. Let @ € R. Then the integer part (or
floor) |a] of a is the largest integer a smaller than a. The fractional part of a is
{a} := a — |a]. The ceiling [a] of a is the smallest integer larger than a.

Theorem 8.6. Let P be a rational polyhedron. Then P; is a polyhedron. If P; # O,
then rec(P) = rec(P;).

Proof. If P is a polytope, then P NZ" is finite, so P; is a polytope. If P is a cone, then
P =P, by Remark 8.1.

So assume P = Q + C for a polytope Q and a cone C. Letyy,...,y, € Z™ be generators
of C and define

S
n::{ZAiyi|0§Ai§1,1§iSs}.
i=1

IT is a polytope (a parallelepiped), so Q + I and (Q + IT); are polytopes. We will show
that

P=(Q+1I);+C. 8.1
“C”: Letx € PNZ". Then there are q € Q and y € C such that
X=q+y, and Y=, A

for some 0 < A; < 1,1 <i <s. We can split the coefficients A;{A;} + [A] into their
fractional and integral part. We define

Z:= ijl{z’i}Yi ell and y/ = Z?:l LAlJyl eC ﬂZ”,
soy =Yy + z. Hence, we can write x in the form
Xx=q+y=q+y +z = x—y =q+z.

The right hand side x — y’ of the second equation is in Z". So also the vector on the
left side of the equation is integral. This implies q+z € (Q +11),. Asy’ € C, we obtain

x=(q+z)+y €(Q+1),+C.
“2”: This follows directly from the following chain:
Q+M);+CEP+C=P+C S (P+C) =P.

Finally, if P; # @, then the recession cone of P; is uniquely defined by the decomposi-
tion in (8.1). Hence, rec(P) = C = rec(P;). O
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So in principle, an integer linear program is just a linear program over the integer hull
of a polyhedron. However, to use this approach we need an exterior description of
P;. This is in general difficult (non-polynomial) to compute. It is slightly easier (but
still not polynomial) to decide whether P, = &. We will see a method to compute the
integer hull of arbitrary rational polytopes in Chapter 13.

A central problem for integer polyhedra is the characterization of those rational poly-
hedra that satisfy P = P;. The next proposition gives several important criteria for this.
In the Chapters 10 and 12 we will give a characterization of two important families of
polyhedra with integral vertices.

Proposition 8.7. Let P be a rational polyhedron. Then the following are equivalent.
(1) P=P,
(2) each nonempty face of P contains an integral point,
(3) each minimal face of P contains an integral point,
(4) the linear program max(c'x | x € P) has an integral optimal solution for each
c € R" for which the maximum is finite.

Proof.
(1)=>(2) LetceR" and 6 € R define a nonempty face F of P, i.e.

F={x|c'x=8}InP#Q.
Letx € F. As P = P;, x can be written as a convex combination of integer vectors

X:Zilelixi forXiGPﬂZn,liZO,1§i5k,2§:17ti:1.

k k
Then S=cx=c"D_ Ax =2, Aic'x;.

Hence, ¢'x; <6 forall 1 <i <k implies ¢'x; =6,so0x; €F for1 <i <k.

(2) = (3) This is just a specialization of the assumption.

(3) = (4) If max(c'x | x € P) is finite, then the set of optimal solutions defines a face
F of P. Any face of P contains a minimal face of P, so also F contains a minimal
face G of P. G contains an integral point by assumption.

(4)= (8) Let H := {x | ¢'x = &} be a valid hyperplane that defines a minimal face
F of P. Then 6§ = max(c'x | x € P), so there is some integral vector in F by
assumption.

(83)= (1) Let Fy,...,F; be the minimal faces of P. We can choose an integral point x;
in each. Let Q := conv(X,...,X;) and C :=rec(P) the recession cone of P. Then
Q = Q; and C = C;. By our representation theorem for polyhedra, Theorem
4.38, we have P = Q + C. This implies

so that P = P;. O

In particular, if P is pointed, then P = P; if and only if every vertex of P is integral.

Corollary 8.8. If P is an integer polyhedron, then the integer linear programming
problem over P can be solved with the simplex algorithm. O

We have seen in Proposition 2.11 that affine images of polyhedra are polyhedra, and
any function that maps polyhedra to polyhedra must be affine. Clearly the same is
true for rational polyhedra and rational affine maps (i.e. affine maps x — Mx + b for
a rational matrix M € Q™" and a rational vector b € Q™). In the previous chapters
we have sometimes used affine transformations to obtain a nice representation of a
polyhedron. For example, up to an affine map we can assume that a polyhedron is
full-dimensional. Implicitly, we also perform such a transformation when we solve
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Figure 8.3

unimodular transformation

unimodular matrix

unimodularly equivalent

lattice
lattice preserving
transformations

Hermite normal form

systems using Gaussian elimination. All row operations preserve the space spanned
by the rows of the matrix, which ensures us that the solution we find in the affine space
spanned by the matrix in row echelon form is also a point in the original space. Further,
if we are given rational polyhedron P € R", a linear functional ¢’ € R", and a rational
affine map ¢ : R" — R", then the optimal solutions of max((¢*c)'x | x € ¢(P)) are the
affine images of the optimal solutions of max(c‘x | x € P). Both properties do not hold
anymore if we restrict to integer polyhedra and integral optimal solutions to integer
linear programs. In general, the affine image of an integer polyhedron is not integral
anymore (shift a segment with integral end points by some non-integral amount). The
number of points in |P N Z"| for a rational polyhedron P is not invariant under affine
maps (Think e.g. of scaling a polyhedron. For any polytope P there is some ¢ > 0 such
that [eP N Z"| < 1.). Hence, finding an integral solution in an affine transform of a
polyhedron doesn’t tell us much about integral solutions in the original polyhedron.
In the following we want to determine the set of transformations that preserve integ-
rality and the information about integer points in a polyhedron, i.e. transformations
that preserve the set Z¢. Such transformations are called unimodular. Clearly, this is
a subset of the affine transformations, so we can write such a map as x — Ux + b for
some U € Q™" and b € Q". A translation by a vector b preserves Z" if and only if
b € Z". Hence, we have to characterize linear transformations U such that UZ" = Z".
This is given by the following proposition.

Proposition 8.9. Let A € Z™™. Then det(A) = £1 if and only if the solution of
Ax =D is integer for anyb € Z".

Proof. “=”: By Cramer’s rule, the entries of x are x; = *det(4;), where A; is the
matrix obtained from A by replacing the i-th column with b.

“<”: If |detA| > 1, then 0 < |detA™!| < 1, so A™! contains a non-integer entry a;;. If
e; € Z™ is the j-th unit vector, then Ax = e; has no integer solution. O

Definition 8.10. A transformation U € Z™™ js unimodular if |detU| = 1.

Two polyhedra P and Q are unimodularly equivalent if there is a unimodular trans-
formation ¢ that maps P to Q.

Obviously the inverse U~! and the product UV of unimodular transformation U and V
are again unimodular. Figure 8.3 shows two 4-gons that are unimodularly equivalent
via the unimodular transformation (3 ¢

Remark 8.11. Unimodular transformations are more general those transformations
that are lattice preserving. A lattice A is a discrete subgroup of R". It can always be
written in the form

A:ZV1 +ZV2++ZVk

for a finite number of linearly independent vectors v;,...,v; € R". A non-singular
transformation T is lattice preserving if T(A) = A. Z" is the special lattice spanned by
the standard unit vectors. In the same way as for Z" one could also consider integer
polyhedra w.r.t. to any other lattice. ¢

The equivalent of the row echelon form of linear algebra will then be the HERMITE
normal form, and we will see in the next theorem that any rational matrix can be
transformed to such a matrix using certain unimodular column operations.

Definition 8.12. A matrix A= (a;;);; € R™" with rank(A) = m is in HERMITE normal
form, if the following conditions are satisfied:

(1) A,y =0 forJ =[n]\ [m].

(2) A,m is non-singular, lower-triangular, and non-negative.

(3) a;; > a;; for j <i.
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Example 8.13. The first matrix is in HERMITE normal form, the other two are not.

N W U
= A O
» O O
o O O
N W U
N b~ O
» O O
A W U
= A O
N O O
A~ O O

0

Similarly to the column operations used for Gauss elimination we consider the fol-
lowing three elementary unimodular column operations to transform a matrix into
HEerMITE normal form:

(1) exchange two columns of A,

(2) multiply a column by —1,

(3) add an integral multiple of a column to another column.
Similarly we can define elementary unimodular row operations. Elementary unim-
odular column operations on a matrix A are given by right multiplication of A with a
unimodular transformation. Similarly, row operations are given by left multiplication.

Theorem 8.14. Let A € Q™*". Then there is a unimodular matrix U € Z™™ such
that AU is in HERMITE normal form.

Proof. Wl.o.g. we may assume that A is integral (scale back in the end). We use
elementary column operations to transform A into HERMITE normal form. The unim-
odular transformation matrix U is then given by multiplication of the corresponding
transformation matrices.

Suppose that we have, using elementary column operations, achieved the following

situation:
,_| H O
A= [ B C

for an integral upper triangular matrix H and some integral matrices B and C (we may
start this process by choosing C = A).

Let y4,..., Yk be the entries of the first row of C. Using (2) we may assume that y; > 0
for all i. As C has full row rank, not all y; are zero. We apply the following two steps
to the first row of C:

(1) Using (1), we can reorder the columns of C so that y; > 14 > ... # 7%
(2) If y4 # 0, then subtract the second column from the first and repeat.

This process terminates as in each step the total sum of all entries in the first row of
C strictly decreases. Then y, = y3 = ... = 4 = 0 and the number of rows in upper
triangular form in A’ has increased by one. Repeating this, we obtain

A= H 0]

with an upper triangular integral matrix H, and all diagonal entries of H are positive.
If still
h

<0 or h;; > hy; for some i > j

ij ij

then we can add an integral multiple of the i-th column to the j-column to ensure
O S hl] < hii .

If we apply this procedure from top to bottom, then a once corrected entry of H is not
affected by corrections of later entries. This finally transforms A into HERMITE normal
form. O

elementary unimodular column
operations

elementary unimodular row
operations
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Remark 8.15. For a general lattice A spanned by some vectors v;,...,v; € R" it is
not obvious how we can decide whether a given vector v is in the lattice or not.

The HErMITE normal form solves this problem. If A is the matrix with columns vy, ..., v,
and if B is the non-singular matrix obtained from the HERMITE normal form, then v is
in the lattice if and only if B~'v is integral. This is immediate from the fact that the
columns of A and B span the same lattice. O

The HERMITE normal form of a matrix A € Q™*" with rank(A) = m is in fact unique, but
we don’t need this in the following. This is an easy consequence from the observation
that the lattice spanned by the columns is invariant under elementary operations.

Remark 8.16. It follows that if a system Avx = vb has at least one integral solution
X then the set of all integral solutions forms a lattice in that hyperplane, i.e. there are
integral solutions X, ...,X; such that any integral solution is of the form

§+7lel+"'+7thk

for Ay,...,Ax € Z. ¢

Theorem 8.17 (Integral Alternative Theorem). Let Ax = b be a rational system of
linear inequalities.

Then either this system has an integer solution X or there is a rational vector y such
that y'A is integral but y'b is not.

Proof. If X is an integral solution of Ax = b and y'A is integral, then also y'b = y'Ax
is integral. So at most one of the two possibilities can hold.

Now assume that y'b is integral whenever y*A is integral. If Ax = b had no solution,
then the Farkas Lemma implies that there is a vector z € Q™ such that z'A = 0, but
z'b > 0. By Scaling z with any positive factor does not change this property, so we
may assume z'b = 1/2. This is a contradiction to our assumption. Hence Ax = b has at
least one solution, and we can assume that the rows of A are linearly independent.

Both statements in the theorem are invariant under elementary unimodular column
operations. So by Theorem 8.14 we can assume that A has the form A= [H 0] for a
lower triangular matrix H. Now H A = [Id,, 0] is integral, so H™'b is integral by
our assumption (apply it to all row vectors of H™! separately). But

H'p }

[HO][ 0 =b

H-1
Sox = [ 0 } is an integral solution. O

Proposition 8.18. Let A € Z™*" with rank(A) = m. The following are equivalent:

(1) The greatest common divisor of the sub-determinants of A or order m is one.
(2) Ax =D has an integral solution x for each integral vector b.
(3) For eachy, if y'A is integral, theny is integral.

Proof. All three claims are invariant under unimodular column operations. Hence,
we may assume that A is in HERMITE normal form A = (B 0). But then, all three claims
are equivalent to B being a unit matrix. O

Proposition 8.19. Let P = {x | Ax < b} for rational A and b. Then P is integral if and
only if each rational supporting hyperplane of P contains an integral point.

Proof. Assume first that P is integral. Any rational supporting hyperplane intersects
P in a face F that contains a minimal face. So the claim follows from Proposition 8.7.
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Now suppose that every rational supporting hyperplane contains an integral point. We
may assume that A and b are integral. Let F be a minimal face of P and I :=eq(F). So

={x|Anx=Db;} (by minimality of F).

If F does not contain an integer point, then there is a rational y such that
¢ =y'A, €T but 5:=y'b, &7,

by the integral alternative theorem, Theorem 8.17. Adding a vector y’ € Z™ to y does
not change this property. Hence, we may assume that y > 0. Now let z € P.

Then ¢’z = y'A,z < y'b, =6

with equality if z € P (here the inequality needs y > 0). So H := {z | ¢'z = 6} is
a supporting hyperplane. But ¢ € Z" and 6 ¢ Z implies that H does not contain an
integer point. This contradicts our assumption. |

A vector X = (x4,...,X,) € Z" is primitive if gcd(x,,...,x,) = 1. Any integral vector
can be transformed into a primitive one by dividing each entry with the common g.c.d.
of all entries.

Corollary 8.20. LetA< Q™" andb € Q™. Then the following are equivalent:

(1) There is an integral optimal solution to max(c'x | Ax < b) for each ¢' € Q" for
which that maximum is finite.

(2) max(c'x | Ax < b) is integral for each integral vector ¢ € 7" for which the
maximum is finite.

Proof. (1) = (2) If the maximum is attained for an integral vector x and ¢’ is integ-
ral, then the maximum is an integer.

(2)=(1) Let H := {x | ¢'x = &} be a rational supporting hyperplane of P := {x |
Ax < b} for a primitive integral ¢’ (i.e. the g.c.d. of the entries is 1). Then
6 =max(c'x | Ax < b), so & € Z. By Theorem 8.17 we know that H contains an
integral point.
H was arbitrary, so any rational supporting hyperplane of P contains an integral
point. Proposition 8.19 implies that P is integral, so max(c'x | Ax < b) has an
integral optimal solution whenever it is finite. O

Let C be a rational cone. Scaling the generators with a positive factor does not change
the cone, so we can assume that all generators are integral and primitive. Any integral
point in the cone is a rational conic combination of these generators. However, it is in
general not true that any integral point in the cone is an integral conic combination of
the generators.

Example 8.21. Let C C R? be the cone spanned by (1) and (_%) Then (9) is in
the cone, but cannot be written as

0) — 1 -1
5 =2(34) + U( 1)
for integral A, u > 0. 0
We have to add further generators if we want to obtain a set of vectors that generate
each integer point in the cone by an integral conic combination.

Definition 8.22. Let ¢ :={h;,...,h,} C Q" be a finite set. 7 is a Hilbert basis of
C :=cone(h,,...,h,) if every integral vector in C is an integral conic combination of
h,,...,h,. S is an integral Hilbert basis, if all h; are integral.

All Hilbert bases that we consider in this course will be integral. So when we speak of
a Hilbert basis, then we implicitly mean that it is integral.

primitive vector

Hilbert basis

integral Hilbert basis
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Figure 8.4

Example 8.23. Let k € N. Consider the cone

c=eone((3).(1))
e={(3) (1) () (3))

is a HILBERT basis of C, see Figure 8.4. This is minimal in the sense that no subset of #
is a HILBERT basis and any other HiLBERT basis must contain 5. Hence, computation
of a HILBERT basis cannot be polynomial in the size of a generating set of the cone. ¢

Then

Although the previous example shows that a HiLBERT basis can be large compared to
the set of rays of a cone, it is still finite. The following theorem shows that this is
always true.

Theorem 8.24. Let C C R™ be a rational cone. Then C is generated by an integ-
ral HiLBERT basis . If C is pointed, then there is a unique minimal HiLBERT basis
contained in every other HILBERT basis of the cone.

Proof. Let y;,...,y; be primitive integral vectors that generate C, and define the
parallelepiped

H:={Zf:1?\iyi|051i51,15i5k}.

as in the proof of Theorem 8.6. Let 5# := IINZ". Observe that y;,...,y; € 5, so S
generates C. We will prove that 7 is a Hilbert basis of C.

Let x € CNZ" be any integral vector in C. Then there are 14,...,m; = 0 such that
k . .
X=,_, n;¥;- We can rewrite this as

x=3" (I + ) i, sothat  x— Y [y = 20 inidyi.

The left side of this equation is integral. Hence, also the right side is integral. But

h:= Zf:l{ni}Yi ell,

sohelINZ"™ = #. This implies that x is a integral conic combination of points in J#.
So  is a Hilbert basis.

Now assume that C is pointed. Then there is b* € R" such that

b'x>0 for all x€C\{0}.

Let K:={yeCnNnZ"|y#0,ynot a sum of two other integral vectors in C}.

Then K C 5, so K is finite. Assume that K is not a Hilbert basis. Then there is x € C
such that x &€ NK. Choose an x such that b*x is as small as possible. Since x & K, there
must be x;,x, € C such that x =x; + x,. But

b'x; >0, b'x, > 0, b'x>0 and b'x =b'x; + b'x,,
$O b'x; <b'x, b'x, < b'x.
By our choice of x we get x;,x, € NK, so that x € NK, a contradiction. O

Remark 8.25. (1) The minimal Hilbert basis of a non-pointed cone is not unique:
{£e,, e } {e;, ey, —e; — ey}

are both Hilbert bases of R?. See Figure 8.5.

. !

Figure 8.5
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Chapter 8. Integer Polyhedra

(2) Every vector in a minimal Hilbert basis is primitive. o

Remark 8.26. Combining Theorems 8.6 and 8.24 we obtain that for any rational
polyhedron P there are integral vectors x,...,X; and y;,...,y, such that

This gives a parametric solution for linear Diophantine inequalities. ¢







The Matching Polytope

Let G = (V,E) be an undirected graph. G is bipartite, if we can write V as the disjoint
union of two non-empty sets A and B (the color classes of G) such that no edge has
both end points in the same set.

Definition 9.1. A matching in G is a subset M C E of the edges so that no two edges
are incident. The size of a matching M is |M]|.

A matching is maximal if it is not contained in a matching of larger size, and it is
maximum if it has the largest size among all matchings.

A matching is perfect, if any vertex is incident to one edge of M.

It is easy to see that a maximal matching covers at least half of the vertices, but P,
shows that this may be tight. Clearly, |V| must be even if G contains a perfect matching.

Example 9.2. LetV :={a,b,c,d,e, f} and

E :={(a,b),(a,c),(b,c),(b,d),(b,e),(c,d),(c,e),(d, f), (e, f)}.

Then M := {(b,d),(c,e)} is a maximal matching, and M := {(a, b),(c,d), (e, f)} is a
maximum and perfect matching. See also Figure 9.1. ¢

The characteristic vector y” € {0, 1}¥! of a matching M is the vector defined by

v, )1 ifeeM
Xe =10 otherwise.

Definition 9.3. Let G = (V,E) be a graph. The perfect matching polytope P,,,(G)
of G is

Py(G) := conv(y™ | M is a perfect matching in G).
and the matching polytope P,,,(G) of G is

P,,(G) := conv(y™ | M is a matching in G).

All characteristic vectors are 0/1-vectors, hence, they form a subset of the vertex set of
the cube [0,1]'?!. This implies that any characteristic vector of a (perfect) matching is
a vertex of the (perfect) matching polytope. The origin and the standard unit vectors
of RI¥l are characteristic vectors of matchings, so dim(P,,(G) = |E|. The dimension
of P,,,(G) is certainly smaller than |E|, as all points are contained in the hyperplane
x| 1'x=1vi/2}.

Let w : E — R be some weight function on the edges of G. The weight of a matching
M is ),.,, w(e). The problem of finding a maximum weight (perfect) matching is the
linear program

maximize Z w(e)x, subjectto x€P,(G) (x€P,,(G)).

ecE

Figure 9.1
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Figure 9.2

Figure 9.3

In particular, choosing unit weights would return a maximum matching. This could
be solved via linear programming if we had an inequality description of the polytope.
We want to derive such a description now. It is due to Jack Edmonds (1965). It
is sometimes claimed that this discovery initiated the use of polyhedral methods in
combinatorial optimization. We start with bipartite graphs, as they are much easier to
handle. For U C V, let

6(U):={e<cE|lenU|=1}

be the set of all edges that have exactly one end point in U. If U = {v}, then we write
5(v) instead of 6({v}). Further, for x € RI¥l and S C E let x(§) := Y . x

ecS e’
Clearly, any convex combination x of characteristic vectors of perfect matchings satis-
fies the following sets of constraints.

x,>0 foralle € E (9.1a)
x(6(v))=1 forallveV (9.1b)

The next theorem says that these inequalities even suffice if G is bipartite.

Theorem 9.4. If G is bipartite then (9.1) give a complete description of the perfect
matching polytope P,,,(G).

Proof. LetQ := {x € Rl | x satisfies (9.1)}. Q is clearly contained in the 0/1-cube, so
it is bounded and a polytope. Further, P,,,(G) € Q, so we need to prove Q € P,,,(G).
Let x be a vertex of Q, E, := {e | x, > 0}, and F := (V, E,) the sub-graph defined by F.
Suppose that F contains a cycle C. As G is bipartite, C must have even length, and C
can be split into the disjoint union C = MUN of two matchings in G.

For small ¢ > 0, both
yi =x+e(x" =) and yo=x—e(x" = ")

satisfy (9.1). Hence, x = %(y+ +y_) is a convex combination of two different vectors
representing X, so x is not a vertex (by Theorem 4.27). This contradicts the choice of
X, so F contains no cycles.

Hence F is a forest, so any connected component of F contains at least one node of
degree 1. It follows from (9.1b) that all nodes have degree 1. Thus, E, is a perfect
matching. O

Here is an alternative proof of the theorem, that uses the characterization of the Birk-
hoff polytope.

Proof. As before, let Q := {x € RIEl | x satisfies (9.1a) and (9.1b)}. Then Q is a
polytope that contains P,,,(G).

Let X,Y be the two colour classes of G, and let x be a point of Q. By (9.1b) we obtain

x| = %) =Y x(6() =1|.

vex vey

so |X| =|Y|=: n. Define a matrix A = (a;;);; by a;; = x, if there is the edge e between
the i-th vertex of X and the j-th vertex of Y, and a;; = 0 otherwise.

By (9.1), A is a doubly stochastic matrix. By Exercise 12.4, it is a convex combina-
tion of permutation matrices. By non-negativity, these permutation matrices have zero
entries whenever A has a zero entry. So any permutation matrix in this combination
correspond to a perfect matching in G. Hence x is a convex combination of character-
istic vectors of perfect matchings in G. O

Example 9.5. (1) For a general graph the first two sets of inequalities are not
enough: Let G be the union of two two disjoint triangles, i.e. the graph

G=(V,E) V={AB,C,a,b,c} E={(AB),(B,C),(AC),(a,b),(b,c),(a,c)}.

9-2



Chapter 9. The Matching Polytope

Then x = %(1, 1,1,1,1,1) is a solution of the first two sets of inequalities, but
clearly G does not have a perfect matching, so P = @. See Figure 9.2.
(2) The converse of the theorem is not true. Let

G:=(,E) V:={ab,c,d}  E:={(a,Db)(b,c)(c,d),(d,b)}.
See Figure 9.3. Then P,,,(G) = {(1,0,1,0)} is characterized by (9.1). ¢

Using this theorem one can derive a description of the matching polytope P,,(G), which
is defined to be the convex hull of all characteristic vectors y™ of all matching M C E
in G. Consider the set of inequalities

x, >0 foralle € E (9.2a)
x(6(v)) <1 forallveV. (9.2b)

Clearly any convex combination of incidence vectors of matchings satisfies these in-
equalities.

Proposition 9.6. The matching polytope P,,(G) of a graph G is determined by (9.2a)
and (9.2b) if and only if G is bipartite.

Proof. “=":If G is not bipartite then G has an odd cycle C. Let x, := % ifeeC, and
x, = 0 otherwise. Then x satisfies (9.2) but is not in the matching polytope.
“&”: Define a new graph H = (W, F) by taking two disjoint copies G; and G, of G and
connecting corresponding vertices in the two copies G, and G, by an edge. Then H is
bipartite if G is bipartite. The first graph in Figure 9.4 shows H if G is a square. For
any x € R®! construct a point in y € RI¥l by

(1) y,=x, if e is an edge in G; or G,, and

2) y,=1-—x(6(uy)) if e = (uy,u,) is an edge between corresponding nodes in the

two copies G; and G,.

By this construction we have
x satisfies (9.2) = y satisfies (9.1). |

Hence, y is a convex combination of perfect matchings in the graph H, which implies
that x is a convex combination of matchings in G. Figure 9.5 shows the decomposition
into perfect matchings for the graph H of Figure 9.4.

Now we head for general graphs. These are much more complicated to handle. Again
we first deal with perfect matchings. The general case follows from this with almost
the same proof as for Proposition 9.6. Consider the following system of linear inequal-
ities.

x(6(U)=>1 for all U € V such that |U] is odd. 9.3)

It is easy to see that these inequalities are satisfied for any perfect matching in a graph
G. The following theorem tells us that together with the previous inequalities (9.1)
they also suffice. We will later see in Chapter 13 that the additional inequalities arise
naturally from a construction of the integer hull of a general polyhedron.

Theorem 9.7 (Edmonds 1965). LetG = (V,E) with |V| even. Then its perfect match-
ing polytope is

P, (G) = {x| x satisfies (9.1) and (9.3)}.

Proof. Let Q be the polytope determined by (9.1) and (9.3). Then we clearly have
Pn(G)cQ.

Suppose that the converse is not true. Among those graphs G for which Q # P,,,(G)
choose one with |V| + |E| as small as possible. We may assume that |V| is even, as

la 34

Figure 9.4

>SN

Figure 9.5
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otherwise x(V) > 1 by the third condition, which implies Q = & = P,,,(G). The same
argument also shows that each connected component of G has an even number of
vertices. Let y € Q be a vertex of Q that is not in P,,,(G).

Claim1. O0<y,<1foralle€E.

Proof. Assume y, = 0. Let
E:=E—{e} G :=(V,E) Q:={xeR¥F!|xsatisfies (9.1)and (9.3) for G'}.

Then the projection of y onto RI¥| is in Q’, but not in P,,(G"), so G’ would be a smaller
counter-example.

If y, = 1, then either e is an isolated edge or there is an incident edge f. In the first
case we obtain a smaller counterexample by removing e and its end points. In the
second case y; = 0 by (9.2b), and we could remove f by the previous argument. ¢

By (9.1b) each node has degree at least 2. This implies |E| > |V| by double counting.
If |[E| = |V|, then G is a collection of cycles, and by (9.3) each cycle has even length. So
G would be a bipartite graph. However, in this case the theorem follows from Theorem
9.4, so G is not be a counter-example. Hence we can assume that |E| > |V|.

By the choice of y there must be |E| linearly independent constraints among the in-
equalities in (9.1) and (9.3) that are satisfied with equality.

By Claim 1 no inequality in (9.1a) is satisfied with equality. As |E| > |V|, at least one
of the inequalities in (9.3) is satisfied with equality. Hence, there is an odd subset U
of V such that y(§(U)) = 1. Let U =V — U. Then

1 = y(6(U) = y(6(U)).

We can restrict to odd subsets of size 3 < |U| < |V| — 3, as otherwise the equation is
already contained in the set (9.1b)).

Let H, := (V;,E;) := G/U. So H, is a graph with vertex set V; := U U {u} and edge set

E :={e€E|eCU}U{(v,u)|v €U and there is w € U such that (v,w) € E}.
Define a projection y™! of x onto the edge set of H; by

1
ye(l) =Y, forec U y((v,)ﬁ) = Z Yoow) forveU.

weU ,(v,w)eE

Figure 9.6 shows an example of a graph G and a subset U of the vertices. Figure 9.7
shows its two projections H; and H,.

Claim 2. y" satisfies (9.1) and (9.3) for H;.

Proof By definition, y) > 0, so (9.1a) is satisfied. Now look at the inequalities
(9.1b). We distinguish two cases, vertices v € U and u.

veu: yOEN = D ¥y Dy =y =1

(v,w)
weU, (v,w)eE wel

yPE@) = Y Yo =¥(6W)=1.

veUwel
(v,w)EE

by the particular choice of U.
Let W C U U {u}, |W| odd. Again, we distinguish two cases,u¢ W andu € W.

If w ¢ W, then by the definition of the values of y) on the edges connected to 1.
yP(EW)) =y(6(W)) > 1.
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Figure 9.8: The decomposition of y1 and y® into perfect matchings.

Ifue W, thenlet W := W — {u} and W” := U — W’. As |W]| is odd, |W’| is even,
and |W"”| is odd. Thus, 6(W) is the set of all edges between W’and W”, and all edges
between 1 and W”. Hence, by our definition of the values of y(!) on the edges,

yOGEW) =y(s(W)) > 1.

This proves that y™) also satisfies (9.3). So in total, y!) satisfies all inequalities in
(9.1) and (9.3) with respect to the graph H;. o

Now H; has less vertices and edges than G, so it is not a counterexample, so y is in
the perfect matching polytope P, (H;) of H;.

Similarly define the graph H, := (V,,E,) := G/U. The projection y® of y onto R/*:!
satisfies (9.1) and (9.3), so y¥ e Pyn(H,).

So there are perfect matchings M{U, e ,M,El) of H; and Nl(z), ... ,Nl(z) of H, together
with coefficients lgl), s, l(kl) and Agz)’ e, Agz) such that

k l
1, MY 2), N®
Y(l)ZE:AE)XM’ Y(Z)ZE:AE)XJ ]
i=1 j=1

See Figure 9.8 for the perfect matchings obtained for the example shown in Figures 9.6
and 9.7. y is rational, so by multiplying both equations with a suitable factor, and
repeating matchings if necessary, we can assume that

1& ) 1< @
yh == yP ==
pPi3 )

9-5
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for some p € N. We can even assume that p is chosen large enough that py, is integer
foralle e E.

We can lift a perfect matching M i(l) to a matching M; in G that covers all edges in U

and exactly one vertex in U (so it contains exactly one edge from §(U)). Let v € U
and f := (v,u). Then by construction

1
p.yj(f ) = Zpy(v,w)) .
welU
Hence, we can choose the liftings M; in such a way that any edge e € 6(U) is contained
in exactly py, of them. Similarly, we can lift the matchings Nj(z) to matchings N; in

such a way that any edge e € 6(U) is contained in exactly py, of them. See Figure 9.9
for the liftings in our example..

Thus, we can pair the lifted matchings according to the edge in 6(U) they contain.
Relabel the matchings from 1 to p so that M; and N; contain the same edge from
6(U). Then L, := M, UN;, is a perfect matching in G and

This implies that y € P,,,(G), in contradiction to our assumption. So Q = p,,,(G) O
Recall that E(U) for some U C V is the set of all edges e with both end points in U,
E(U):={e€e|eCU}.

The characteristic vector of a matching in G clearly satisfies

x, >0 forallee E (9.4a)

x(6(v)) <1 forallveVv (9.4b)
1

x(E(U)) < §(|U| -1) for all U C V such that |U] is odd. (9.4¢)

The next theorem also shows that these inequalities suffice. Its proof is completely
analogous to the proof of Proposition 9.6.

Theorem 9.8. The matching polytope P,,(G) of an undirected graph G = (V,E) is
given by

P, (G) = {x| x satisfies (9.4)}.

Proof. Each vector in the matching polytope satisfies the inequalities (9.4).

We need to prove that they suffice. Define a graph H = (W, F) by taking two disjoint
copies G; = (V4,E;) and G, = (V,, E,) of G and connect corresponding vertices by an
edge. For subsets X; C V; let X, €V, be the corresponding set in G, and vice versa.

For any x € R/*l we construct a point y € RI¥! by
(1) y,=x, ifeis an edge in G or G, and
2) ¥y, =1-—x(6(uy)) if e = (uy,u,) is an edge between corresponding vertices in
the two copies G; and G,.
Assume that x satisfies (9.4). Then
1) y=o.
(2) Foreachv; € Vy, y(65(v1)) =y(65(v)) = 1.
(3) Let U =X, UY, be an odd subset of W = V; UV, with X;,Y; € V;. Then clearly

¥(6,(U)) 2 y(6u(X; = 11)) +y(6u(Ys — X5)).

9-6
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So we may assume that X, Y; are disjoint.

One of the sets X;,Y; must be odd. So we may assume that this is X;. Then we
can as well assume that Y; = @.

So it suffices to show that y(64(U)) > 1 for all odd U C V;. Now

U1 = y(6, (1)) = y(5,4(U)) + 2y(E, (U))

veU

so that
y(6(U)) = |U| - 2y(E4(U)) = |U| - 2(%(|U| -1)=1.

Hence, y satisfies (9.2), so it is in the perfect matching polytope of H, so x is in the
matching polytope of G. O




Unimodular Matrices

In this chapter we will look at the special class of unimodular matrices. The nice
property of such matrices is that polyhedra that have a unimodular constraint matrix
(and integral right hand side) are integral. We will see in the next chapter that many
graph problems can be described by a linear program with a (totally unimodular)
constraint matrix, and that this property, together with the duality theorem, gives
particularly nice and simple proofs of some important theorems in graph theory. In
particular, we will prove the MaxCut-MinFlow-Theorem, and MENGER’s Theorem.

Definition 10.1. Let A€ Z™ " be an integral matrix. Let B be a square sub-matrix B
of A. Then det(B) is a minor of A. It is a maximal minor if B € Z*** fors = min(m, n).
(1) A€ Z™" is totally unimodular if all minors are either 0 or 1.
(2) A is unimodular if rank A = min(m, n) and each maximal minor is 0 or £1.

Observe that this is a generalization of our previous definition of a unimodular trans-
formation to the case of non-square matrices. Let A € Z™*" be totally unimodular. The
following operations preserve total unimodularity:

(1) taking the transpose,

(2) adding a rwo or column that is a unit vector,

(3) deleting a row or column that is a unit vector,

(4) multiplying a row or column with —1,

(5) interchanging two rows or columns,

(6) duplicating a row or column.

Proposition 10.2. A matrix A € Z™ " is totally unimodular if and only if (1d,, A) is
unimodular.

Proof. “=7: Let B be a maximal sub-matrix of (Id,, A). Let J € [m] be the set of
indices of columns from Id,, in B. Let B’ be the matrix obtained from B by deleting
the first |J| columns and the rows with index in J. Using the Laplace formula for
determinants we obtain ¢ € {0, 1} with

det(B) = (—1)° det(B").

By total unimodularity of A, det(B’) € {0, £1}.

“&": Let B be a square sub-matrix of A and let J be the row indices missed by B. Let
B’ be the maximal square sub-matrix obtained by taking the complete columns of A
corresponding to columns of B and the unit vectors e}, for j € J, from Id,,. Again using
the Laplace formula, there is ¢ € {0, %1}, such that

det(B) = (—1)* det(B’) € {0, £1}. O
Theorem 10.3. Let P = {x | Ax < b} for A € Z™" and b € Z™. If A is totally

unimodular, then P is integral.

Proof. Let I C [m] correspond to a minimal face F of P. We may assume that I is
a minimal system defining F, so that A}, has full rank. By reordering the columns of

minor
maximal minor
totally unimodular

unimodular
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A, we may assume that A;, = (U V) for a non-singular matrix U. Since A is totally
unimodular, det(U) = £1 and
U_lbl n
X= ( 0 ) € Z

is integral. Hence, the face F contains an integral point. O

Corollary 10.4. LetA€ Z™",be Z™, and ¢ € Z". Assume that A is totally unimod-
ular. Then

max(c'x |Ax <b) =min(y'b|y'A=c,y>0)

with integral optimal solutions.

Proof. Integrality of the primal problem is immediate from the previous Theorem 10.3.
We can represent the dual program using the matrix

At
A= | A
—1d,,

which is also totally unimodular. So also the dual has an integral optimal solution.
The equality is just the LP-duality relation. O

Theorem 10.5. Let A € Z™" and rank(A) = m. Then P = {x | Ax = b, x > 0} is
integral for any b € Z™ if and only if A is unimodular.

Proof. Suppose first that A is unimodular and that b € Z™. By Corollary 4.30 (1), P
is pointed, so any minimal face is a vertex. Let x be a vertex of P. Let I := {i | x; > 0}.
By our characterization of vertices of polyhedra in standard form, Theorem 4.28, the
columns of A,; are linearly independent. Hence, we can extend I to I’ such that B :=
A, is a maximal non-singular square sub-matrix, and x = B~'b. But det(B) = %1, so
x is integral by Lemma 8.9.

Now suppose that P is integral whenever b is integral, and let B be a maximal non-
singular sub-matrix. We will use the characterization of Lemma ?? to show that detB =
+1. So we need to show that for any z € Z™ also B™'z is integral. Let z € Z™ and
choose y € Z™ such that x :=y+ B~z > 0. Let

b:=Bx=By+zecZ".
We may extend x with zeros to a vector X so that AX = Bx = b. So X € P, as by

construction X > 0.

Let I :={i € [n] | x; > 0}. The columns of A,; are a subset of those of B, so rankA,; =
|I|. Theorem 4.28 now implies that x is a vertex of P. By assumption, P is integral, so
B lz=x—-yez™ O

This theorem implies integrality also for other representations of polyhedra.

Proposition 10.6 (Theorem of Hoffman and Kruskal, 1956). Let A € Z™ ". The
following statements are equivalent:

(1) A is totally unimodular.

(2) P:={x|Ax < b, x > 0} is integral for anyb € Z™.

(3) P:={x|a<Ax<b, c<x <d} is integral for any a,b,c,d € Z™.

Proof. (1) < (2): Ais totally unimodular if and only if (A Id,,) is unimodular, and
by the previous Theorem 10.5, (A Id,,) is unimodular if and only if

Q:={x,y)|Ax+y=b,x,y=>0}

10 - 2
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is integral for any right hand side b € Z™. So we are done if we can show that
xisavertexof P < (x,b—Ax)isa vertex of Q.

The polyhedron P is pointed, by Corollary 4.30(2). By our characterization of vertices,
X € P is a vertex of P if and only if x satisfies n linear independent inequalities of

i ]x=[o]

with equality. Let B be such a set of n inequalities. Let

I:=Bn[m], J:={j—-mljeBn{m+1,...,m+n}},
K :=[n]\J and I:=[m]\I.

Then x; = 0 and A}, x = by, and the square sub-matrix A, has full rank |I| = |K|. This
implies that also (A | Id,, ) j has full rank m. Define y € Z™ by

y;:=0 and y;i=br —A;x.

Then (X, y)x 7 = (X¢,¥7) and X,y);; = 0. By our characterization of vertices of poly-
hedra in standard form in Theorem 4.28, (X,y) is a vertex of Q, so x is integral. The
converse direction is similar.

(1) & (3): This follows from a simple translation of P and rewriting the inequalities
in the following form:

P={x+cla—Ac<Ax<b—-Ac,0<x<d-c}={x|Mx<m,x>0}

A b—Ac
for M:=| -A m:=| Ac—a
Id,, d—c
Now M is unimodular if and only if A is unimodular, so we can use (2). O

A direct consequence of the second statement of the previous proposition is the follow-
ing characterization of total unimodularity by the integrality of solutions of a linear
program.

Corollary 10.7. Let A € Z™". Then A is totally unimodular, if and only if for all
beZ™, ceZ™, the optimal solutions X andy of

max(c'x |Ax < b, x> 0) =min(y'b | y'A>c', y > 0)
are integral, if the values are finite. O

With the next theorems we study criteria that ensure unimodularity of a matrix A. In
particular we will see the incidence matrices of bipartite graphs and general directed
graphs are always unimodular.

Theorem 10.8 (Ghouila, Houri 1962). Let A € Z™*". Then A is totally unimodular
if and only if for each J C [n] there is § € {0,£1}" withJ = {j | ; # 0} and

A¢ € {0,+£1}™.

Proof. “=": Let A be totally unimodular and x € {0, 1}" the characteristic vector of
the chosen collection of columns of A. Consider the polyhedron

Q:={xeR"||;Ax] <AXx < [;Ax],0<x<x}.

10 -3
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Then % X € Q, so Q # Q. Further, Q is pointed by Theorem 4.30(2). So Q has a vertex
X. X is integral by assumption and 0 < x < x, so x is a 0/1-vector. Let

£:=x—2xe{0,£1}™".
Then & = x( mod 2). Further, A = Ax — 2Ax, so
Ax —2[3Ax] < A6 < Ax —2[;Ax].
which implies that A£ € {0,£1}™. So £ is an incidence vector of a partition of the

columns as required in the theorem.

“&": We use induction to prove that every (k x k)-sub-matrix has determinant O or
+1. If k = 1 then this follows from our assumption that each column has only entries
in 0 and +1. In particular, all entries of A are 0 or 1.

Let k > 2 and B a non-singular sub-matrix of A with column vectors by,...,b;. By
Cramer’s rule, the entry Bi ; at position (i, j) of the inverse B lofBis

3 detB;;
Y7 detB
where B;; is the matrix obtained from B by replacing the j-th column with the i-

th unit vector. Using the induction hypothesis and the Laplace rule we know that
detB;; € {0,£1}. So

B :=(detB)B~!
has only entries in {0,%1}. Let b be the first column of B and I := {i | Ei # 0}. By
assumption there is € € {0,£1}" such that I = {i | £; # 0} and B € {0, £1}™.

By construction, Bb = (detB)e,, where e, is the first unit vector. So for 2 < i < k we
get

Jj€I

As b;; € {0, £1} this implies that for all i the set {j €I | b;; # 0} is even. Hence

B¢ = cey for some ¢ € {0,£1}
¢ = 0 would imply that B is singular, so ¢ = £1. Now ﬁBB =e; ==*B¢, s0
=+ b.
¢ detB
But both & and b have only entries in {0, %1}, so detB = %1. O

Corollary 10.9. Let M be an (n X m)-matrix with entries in {0,+1} and the property
that each column contains at most one 1 and at most one —1. Then M is totally
unimodular.

Proof. We give two proofs of this:

(1) The matrix M is totally unimodular if and only if M" is totally unimodular. By
assumption, the sum of any collection of column vectors of M! is a vector in
{0,£1}™, so the claim follows from Theorem 10.8.

(2) Let B a (k x k)-sub-matrix. We prove the result by induction on k. The result is
obvious if k =1, so assume k > 2.

If B contains a column with no non-zero entry then detB = 0. If B contains a
column with exactly one non-zero entry then the result follows from the Laplace
formula applied to this column, and the induction hypothesis. Finally, if all
columns of B have exactly two non-zero entries then the sum of the entries in
each column is 0, so detB = 0. O
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Definition 10.10. Let G = (V,A) be a directed graph with n vertices vy,...,v, and m
edges ay, ..., a,. The incidence matrix D; := (d;;) € {0,£1}"*™ of G is defined by incidence matrix, undirected
graph
1 ifa; is an outgoing arc of v,
d;j:= 4 —1 ifa;is an incoming arc of v;
0 otherwise

Corollary 10.11. The incidence matrix of a directed graph G = (V,A) is totally unim-
odular. 0

Definition 10.12. Let G = (V, E) be an undirected graph with n vertices vy, ..., v, and
m edges ey, ..., e,. The incidence matrix D := (d;;) € {0, £1}"™ of G is defined by ~  incidence matrix, directed graph

P 1 ifa;j is incident to v;
Y 0 otherwise

Theorem 10.13. The incidence matrix of an undirected graph G = (V,E) is totally
unimodular if and only if the graph is bipartite.

Proof. First assume that G is bipartite. By renumbering the vertices of the graph we
may assume that D; splits into

where D, corresponds to the vertices in one color class and D, to the vertices in the
other. So any column of D; and D, contains exactly one 1. Let B be an (k x k)-sub-
matrix of D;. We prove the theorem by induction. If k = 1, then the claim is easy, so
assume k > 2. We distinguish three cases:

(1) If B contains a column with no non-zero entry, then det(B) = 0.
(2) If B contains a column with exactly one non-zero entry, then we can use the
Laplace formula and the induction hypothesis.
(3) If all columns of B contain exactly two non-zero entries, then the sum of the rows
contained in D, equals the sum of the rows contained in D,. Hence, detB = 0.
If G is not bipartite, then it contains an circuit of odd length k. Let B be the (k x k)-
matrix defined by this circuit. Then we can reorder the rows so that

1 0 1
11 0
B= 1 :
10
11
Hence, detB = %2. O

Lemma 10.14. Let B be a m X m-matrix with entries in {0,£1}. If |detB| > 2, then
B has a square sub-matrix C with |detC| = 2.

Proof. Consider the matrix B := (B1d,, ). We consider the following operations on
the matrix B:

(1) adding or subtracting a row to another row,
(2) multiplying a row with —1.
We transform B into a new matrix B using these operations in such a way that
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(1) all entries of B are still in {0, %1},

(2) all unit vectors occur among the columns of B,

(3) the first k columns of B are unit vectors.
Let B be such that k is maximal. Up to sign these operations do not alter the determin-
ant of maximal sub-matrices. Reordering the first and second m columns of B allows
us to assume that there is an (m x m)-matrix B’ such that

—/_ Idk / 0
B_[ o B Idl}'

Up to sign the first m columns of B have the same determinant as B. |detB| > 2
implies k < m.

If we cannot transform any further column among the first m to a unit vector without
violating condition (1), then up to multiplication of rows with —1 there must be I =
{i1,i,} and J = {j;, j,} such that

~ 1 1 ~ 1 -1
BIJ:[l _1] or BIJ:[—l _1].

Let H be the matrix with columns ji, j, and all unit vectors except e; and e; and let H
be the corresponding sub-matrix of B. Then |detH| = |detH| = 2, and as all columns
of H corresponding to columns of B with index > m are unit vectors, B must have a
sub-matrix of determinant +2. O

Corollary 10.15. LetA € {0,£1}™*". Then A is totally unimodular if and only if no
square sub-matrix has determinant +2. O

Theorem 10.16. Let A € Z™". Then A is totally unimodular if and only if each
non-singular sub-matrix B of A has a row with an odd number of non-zero entries.

Proof. “=”: The number of non-zero entries in a row is odd if and only if the sum of
the entries in that row is odd.

Assume that B is a (k x k)-sub-matrix such that all row sums even. We have to show
that B is singular. By Theorem 10.8, there is a vector & € {1} such that B €
{0, £1}%. But even row sums imply BE = 0, so B is singular.

“&": Let B be a non-singular sub-matrix of A. By induction, any proper sub-matrix of
B is unimodular, so if the claim fails, then | det B| > 2. By Corollary 10.15, detB = £2.
Consider B as a matrix over GF(2). Its determinant is 0, so the columns of B are
linearly dependent over GF(2). Hence, there is A € {0,1}™ such that BA has only
even entries. Let J := {j | A; = 1}. Then the row sums of all rows of B,; are even.
Hence, by assumption, no maximal sub-matrix of B,; is non-singular. So detB =0, a
contradiction. O

Theorem 10.17. Let A€ R™ " be a matrix of full row rank. Then the following are
equivalent:

(1) For each basis B of A the matrixAElA is integral,

(2) for each basis B of A the matrixAElA is totally unimodular,

(3) there is a basis B of A such that the matrix A;A is totally unimodular.

Proof. We may assume that A = [Id,, A] as all three claims are invariant under mul-
tiplication of A by a non-singular matrix.

(1) = (2): It suffices to show that A is unimodular. Choosing B = [m], i.e. A=1d,,
shows that A is integral. For any other basis we obtain from Aglldm =Ag ! that Agl is
integral. Hence det Ag = £1.

(2) = (3): By specialization.
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(3) = (1): Let B be such a basis. Then A;A is integral. For any other basis B,
Ag,lA =Ag,1ABAE1A, and Ag,lAB is integral by the total unimodularity of A (its rows are
the solution ong,lx =A,; for j €B). O

Theorem 10.18. Let A € Z™*". The A is totally unimodular if and only if for each
non-singular sub-matrix B and each vector y with entries in {0, %1}, the g.c.d. of the
entries of y'B is one.

Proof. LetB andy be as in the theorem. Let g be the g.c.d. of the entries of y'B. Then
ény is integral. If A is totally unimodular, then B~ is integral, so éyf = éthB_1 is
integral, so g = 1.

Now assume that the g.c.d. is 1 for every combination of y and B. Then A has only
entries in {0,%+1}. Let B be a non-singular sub-matrix of A. The common g.c.d. of
the entries of 1'B is 1, so at least one entry is odd. Hence, B has a row with an odd

number of non-zero entries. The claim now follows from Theorem 10.16. O

Remark 10.19. Let G = (V,A) be a directed graph and T = (V,A,) a directed tree on
the same vertex set as G. Let M be the following (JAg| % |A])-matrix: For a, € A, and
a = (u,v) € Alet P be the (unique) undirected path from u to v. The entry at (ay, a) is

1 if ay occurs in P in forward direction,

—1 if a, occurs in P in backward direction,

0 if the path does not run through a.
This matrix is the network matrix of G and T. If we allow loops in the graph, then
class of network matrices is closed under taking sub-matrices.
In 1980, Seymour proved that all totally unimodular matrices can be built from net-
work matrices and two other matrices by using eight types of operations. The de-

composition can be done in polynomial time. This implies that the decision problem
whether some given matrix A is totally unimodular is in &. ¢

network matrix
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Applications of Unimodularity

In this chapter we want to present several applications of total unimodularity and
integer linear programming to combinatorial optimization. We need the following
notion.

Definition 11.1. Let A C B be two sets. The characteristic vector of A in B is the
vector y4 = ()(;‘)JEB € {0,1}®! defined by

A [1 ifjea
X =10 otherwise.

Let G := (V,E) be an undirected graph with n vertices and m edges. A matching M
in G as a subset of the edge set E such that no two edges in M are incident. The
matching number of G is

v(G) := max(|M| | M is a matching in G).

Clearly, v(G) < %IVI. The MaxiMuMm MATCHING PROBLEM asks for the largest cardinality
of a matching in a graph (observe, that not every inclusion maximal matching realizes
this number). We want to use integer linear programming to find this number, so we
have to translate this into a geometric question.

Let D be the incidence matrix of G. Then x € R™ is the incidence vector of a matching
in G if and only if

Dx <1, x>0, X integer.
Then the size of a maximum matching is just
v(G) = max(1'x|Dx<1,x>0,x€Z™). (11.1)

Now we restrict to the case that G is bipartite. Then D is a totally unimodular matrix,
so by Proposition 10.6 the polytope

P, (G):={x|Dx<1,x>0)

defined by D is integral. Note that this is exactly the matching polytope of the bipart-
ite graph G that we have studied already in Theorem 9.4. Hence, all basic optimal
solutions of

max(1'x|Dx<1,x>0). (11.2)

are integral and coincide with those of (11.1). So we can find a maximum matching in
a bipartite graph with the simplex algorithm. Let us look at the dual linear program:

min(y‘'1|y'D >1,y>0). (11.3)

Again, total unimodularity of D implies that all optimal solutions of this program are
integral, so (11.3) coincides with

min(y'1|y'D>1,y>0,y€Z"). (11.4)

characteristic vector

matching

matching number

Maximum Matching Problem
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vertex cover

vertex cover number

7

Figure 11.1

vertex cover polytope

VAN

Figure 11.2

perfect matching
k-regular graph

Let y € R" be an optimal solution. No entry of y is larger than 1, as reducing it to 1
yields a feasible solution with smaller objective value. Thus y > Oimplies that y is the
incidence vector of some subset

W={|y, =1}CV.

of the vertices of G. The condition y'D > 1 implies that for each edge e = (u,v) € E
at least one of the end points u and v is in W. Such a set is a vertex cover in G. See
also Figure 11.1. The vertex cover number of G is

7(G) :=min(|W| | W is a vertex cover of G).

Any integral optimal solution of (11.4) defines a vertex cover of minimal size 7(G)
in G. Clearly, for any graph, not necessarily bipartite, this number is related to the
matching number via

v(G) £ 1(G),

since any matching edge must be covered and no vertex can cover more than one
matching edge. Already the graph K; shows that this inequality may be strict in gen-
eral. See Figure 11.2.

However, if G is bipartite, then v(G) and 7(G) are given by (11.1) and (11.4), or
equivalently, by (11.2) and (11.3). The duality theorem implies that the values of
these linear programs coincide. This proves the following classical result of Kénig and
Egervary.

Theorem 11.2 (Konig, Egervary 1931). Let G be a bipartite graph. Then the max-
imum size of a matching in G equals the minimum size of a vertex cover in G:

v(G) = 7(G). O

In the same way as for matchings we may also define the vertex cover polytope
P,.(G) SRV

P,.(G) :=conv(y¥" | W is a vertex cover of G).

Here G need not be bipartite. However, for bipartite graphs we know from (11.4) that
P,.(G) is defined by the inequalities

0<y,<1 foreachveV (11.5a)
Yuty, =1 foreache =(u,v) €E (11.5b)

In analogy to the case of the matching polytope of a bipartite graph, we can charac-
terize bipartite graphs by the exterior description of the vertex cover polytope.

Theorem 11.3. G is bipartite if and only if P,.(G) is determined by (11.5a) and
(11.5b).

Proof. We have already seen above that (11.5) suffice if G is bipartite. So suppose G

contains an odd circuit C with n vertices. Define y := %1 € Z". Then y satisfies (11.5).

However, any vertex cover of G contains at least "TH vertices of C, but y(C) = g So

y & P,.(G). O

Theorem 11.2 has some nice consequences. Recall that a matching is perfect if each
vertex is incident to a matching edge. A graph G is k-regular if all vertices have the
same degree k, i.e. if all vertices are incident to exactly k edges.

Corollary 11.4 (Frobenius’ Theorem). A bipartite graph G = (V,E) has a perfect
matching if and only if each vertex cover has size at least %lVl.
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Proof. G has a perfect matching if and only if v(G) > %IVl. O

Corollary 11.5 (Konig). Each k-regular bipartite graph G = (V,E), k > 1, has a
perfect matching.

Proof. |E|= %lel. Any vertex covers exactly k edges, hence, any vertex cover con-
tains at least %IVI vertices. O

More generally, we can look for weighted matchings in a graph G. Given a weight
function w € Z' on the edges of G, the weight of a matching M C E is

weight(M) := Z W,.

eeM

The Maximum WEIGHTED MATCHING PROBLEM is the task to find a matching of max-
imum weight. Expressed as an integer linear program, we want to solve

max(w'x | Dx<1,x>0,xe€Z™).

If G is bipartite, then D is totally unimodular, and we know that any optimal solution
of the relaxed problem

max(w'x | Dx<1,x > 0)
is integral. Note however, that a maximum weighted matching need not have max-
imum cardinality. We obtain a min-max relation as before.

Proposition 11.6. Let G = (V,E) be a bipartite graph and w € Z! a weight function
on the edges.

The maximum weight of a matching in G is equal to the minimum value of 1'f, where
f ranges over all f € Z'} that satisfy

futfozw, for all edges e = (u,v) €E.

Proof. Using total unimodularity of the incidence matrix D of G and the duality the-
orem this statement can be written as

max(w'x | Dx<1,x>0) = min(f'1|fD >w', £>0). O

A vector f as in the proposition is called a w-vertex cover. The value 1'f is the size of
f. So the proposition just says that the maximum weight of a matching in a bipartite
graph equals the minimum size of a w-vertex cover.

Another closely related problem is the MiNIMUM WEIGHT PERFECT MATCHING PROBLEM
(alternatively you can of course also search for the maximum). Given a graph G and
a weight function w € Z™ on the edges, we want to find a perfect matching M in G of
minimum weight

weight(M) := Z w,.

eeM

So we want to solve
min(w'x | Dx=1,x>0,x€7Z™).
If G is bipartite, then this coincides with

min(w'x | Dx=1,x>0).

The corresponding polyhedron P, (G) is the perfect matching polytope of Theorem 9.4.

Unimodularity and the duality theorem again immediately imply the following state-
ment.

weighted matching
weight function
weight

Maximum Weighted Matching
Problem

Ww-vertex cover

size

Minimum Weight Perfect
Matching Problem
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edge cover
edge cover number

stable set
stable set number

Proposition 11.7. Let G = (V,E) be a bipartite graph having a perfect matching and
letw e Q™ be a weight function.

The minimum weight of a perfect matching is equal to the maximum value of 1'f taken
over allf € 7" such that

Yuty, Zw, for each edge e = (u,v) €E O
In a similar way we can also derive another classical result of Konig about bipartite

graphs. An edge cover in G is a subset F C E of the edges of G such that for any
vertex v € V there is an incident edge in F. The edge cover number of G is

p(G) :=min(|F| | F is an edge cover of G).

Determining p(G) is the MiNIMUM EDGE COVER PROBLEM.

A stable set in G is a subset S C V of the vertices such that no two vertices in G are
connected by an edge. The stable set number a(G) is

a(G) :=max(|S| | S is a stable set in G).

Finding a(G) is the MAXIMUM STABLE SET PROBLEM.

Theorem 11.8 (Konig 1933). Let G be a bipartite graph. Then the maximum size of
a stable set equals the minimum size of an edge cover in G.

Proof. Let D be the incidence matrix of G, and let S € V. Then y € R" is the
characteristic vector of a stable set in G if and only if

y'D<1 y=0 y integer.

A characteristic vector x € R™ defines an edge cover in G if and only if x € {0,1}™ and
Dx > 1. Again, we can reformulate this to

Dx=>1, x>0, X integer.

The incidence matrix of G is totally unimodular by Theorem 10.13. So integer and
linear optima coincide. Hence, using the duality theorem, the optimal value of the
integer linear program

max(1'y|y'D<1,y>0,ycZ") (MaX STABLE SET)
equals the optimal value of the linear program
min(1‘x | Dx>1,x>0x € Z™), (MIN EDpGE COVER)

where the first computes the size of a maximum stable set and the second the size of
a minimum edge cover. O

This theorem is dual to Theorem 11.2 in that it interchanges the role of vertices and
edges, and minimum and maximum.

Proposition 11.9. Let G = (V,E) be a bipartite graph and w € Z!"' a weight function
on the edges.

The minimum weight of an edge cover in G is equal to the maximum of 1'f, where the
maximum is taken over all f € Z, that satisfy f, + f, < w, for all edges e = (u,v) € E.

Proof. This is completely analogous to the proof of Proposition 11.6. Total unimod-
ularity of D implies that the theorem is equivalent to

max(w'x [Dx>1,x>0) = min(f'1|fD<w,f>0).

This equality is now just the duality theorem. O
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Now we consider a directed graph G = (V,A) with n vertices and m arcs. For a set
UCVlet

STU) ={(w,v)|ueU,v&U}

be the set of outgoing edges of U. For a vertex v € V we set 5T (v) := §T({v}).
Similarly, we define the sets 6~ (U) and 6~ (v) of incoming edges. A subset C C Ais a
cutin G if C =67 (U) for some U C V. C is proper if @ # U # V. Let c € (R, U{oo})™
be a capacity on the arcs of G. The capacity of a cut C is

c(C) = Z Cq -

aeC

Letfe ]R’f‘F be a non-negative vector on the arcs of G. f satisfies the flow conservation
condition at a vertex v € V if

Yifi= D fu

aeds~—(v) aedt(v)

Lets,t € V be two vertices of G. fis a s-t-flow in G if

(1) f satisfies flow conservation at all vertices v € V — {s, t} and
(2) v(f):= Zae5+(s)fa - Za€5‘(s)fa = Zaeﬁ‘(t)fa - Zaewr)fa = 0.

s is the source of the flow and t the sink. v(f) is the value of the flow f. It is the
net out-flow of the source (which equals the net in-flow of the sink). A flow is a
circulation in G if flow conservation also holds at s and t. Let ¢ € (R, U {oo})™ be
a capacity on the arcs of G. A flow f is subject to c if f < ¢. A maximum s-t-flow is
an s-t-flow subject to ¢ of maximum value. Finding such a flow is the Maximum FLow
PROBLEM.

We want to transform this into a linear program. Let D be the incidence matrix of G
and D’ the matrix obtained by deleting the rows corresponding to the vertices s and t.
Then D’ is totally unimodular by Corollary 10.9 and

f is an s-t-flow subject to ¢ — Df =0, 0<f<ec. (11.6)
Let w be the row of D corresponding to s. Then w has a 1 at the position of an outgoing
edge of s, and a —1 at the position of an incoming edge. Hence, if f is a s-t-flow on G,
then v(f) = w'f. The MaxiMum FLow PROBLEM can now be written as

max(w'f|D'f = 0, 0 <f<c). 11.7)
Although the matrix D’ is totally unimodular, we cannot conclude integrality of an
optimal solution, as the capacities may not be integer. However, the cost function w is
integral, as it is given by a row of the integral matrix D. So we can pass to the dual
program

min(y'c | y > 0 and there is z such that y* + z!D’ > w"). (11.8)

Here, the constraint matrix and right hand side are

-Id,, -Id, [ =W
wo (e Y (W),

By Theorem 10.3 the polyhedron {x | x*M < b'} is integral, so (11.8) has an integral
optimal solution (y,z). We want to interpret this in the graph G.

Extend z by z, = —1 and z, = 0. Then

¥ +z'D>0. (11.9)

cut
proper cut

capacity

flow conservation

s-t-flow

source, sink
value of a flow

circulation
flow subject to c
maximum s-t-flow

Maximum Flow Problem
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s-t-path

arc disjoint path

Define
U:={veV]|z, <-1} and C:=56%(U).

thens € U and t € U, so C is an s-t-cut in G. We want to compute the capacity of C.
Let a = (u,v) € C. By construction,

W

z,<—1 and , = 0.

But (11.9) implies that y, +2, —z, =0, so y, >z, —z, = 1. Hence
c(C)<y'e=v(f) (11.10)

by duality. However, the capacity of any cut C in G is clearly an upper bound on
the size of an s-t-flow in G, so we have equality in (11.10). This is the well known
MaxFLow-MINCUT Theorem. See Figure 11.3 for an example. The dashed edges in the
graph are a cut. The arc labels i|J denote the flow and the capacity of that arc.

Theorem 11.10 (Ford & Fulkerson 1956). Let G = (V,A) be a directed graph, ¢ > 0
a capacity function on the edges of G and s, t two vertices of G.

The maximum value of an s-t-flow in G equals the minimum capacity of an s-t-cut in
G. If all capacities are integer, then the optimal flow can be chosen to be integer.

Proof. The only missing piece is the integrality of f if c is integer. But in this case the
value of

max(Ww'f|D'f = 0,0 < f<¢,fez™)
equals (11.7) by total unimodularity of D. O

Let s,t be vertices of a directed graph G = (V,A). An s-t-path P is an alternating
sequence

P=vy=s,a9,V1,a1,V, e, Ag_2, Vk_1,A_1,Vx = L,

It is arc disjoint if a; # a; forall 0 <i < j <k —1. Let Py,..., P, be s-t-paths in G,
and yp,,..., xp, € {0,1}™ their incidence vectors. Then

£i=xp -+ xp,

is an integral flow of value k in G.

Theorem 11.11 (Menger 1927). Let G = (V,A) be a directed graph and s, t vertices
of G. Then the maximum number of pairwise arc disjoint s-t-paths equals the min-
imum size of an s-t-cut.

Proof. Define a capacity c on G by ¢, = 1 for all a € A. Then the size of a cut equals
its capacity. Let C, be a cut in G of minimum size s. Let P;,...,P, be a set of arc
disjoint s-t-paths. Then s > k as C, contains at least one arc of each path.

By the MaxFLow-MiNCut-Theorem, and as c is integral, there is an integral flow f of
value s. The capacity constraints imply that f, € {0, 1} for each a € A.

We show by induction that f can be decomposed into s disjoint s-t-paths. Let B := {a |
fa =1}. Clearly, if f # 0, then flow conservation implies that B contains an s-t-path P.
Hence, we can construct a new st-s-flow f' by

fl=f—uxp.

f' has value s — 1. Further, f; = 0 if a € P. Repeating this, we obtain s arc disjoint
s-t-paths in G. O
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Chapter 11. Applications of Unimodularity

We finish this chapter with an example for the primal-dual-method for solving a linear
program that we have seen towards the end of Chapter 6. There we started from the
dual linear programs in the form

max(c'x |Ax =b, x > 0)
min(y'b | y'A>c"),

where A€ R™" b € R™, and ¢ € R". We want to have a slightly different form here:
We multiply A, b and ¢ by —1 to obtain the dual pair of programs

min(c'x |Ax =b, x > 0)

11.11
max(y'b|y'A<c"). ( )

The primal-dual method applies with almost no change also to these programs. We
just have to reverse all inequality signs. Given a feasible dual solution y € R™, and the
set J := {j | y'A,; = ¢;} C [m] we looked at the restricted primal program

min(1‘z | z+ A, ;u=b,u,z>0).
and the corresponding dual program
max(w'b|w <1, wiA,; <0).

Using the optimal solution w of the dual program we showed that there is some ¢ > 0
such that y + ew is a dual feasible solution with better objective value.

Let us consider again the MaxFLow-MINCuT problem that we have introduced above.
We give a different representation as a linear program. Let G := (V,A) be a directed
graph with n vertices and m arcs. Let d € Z" be defined by

1 ifv=t
d,:=4-1 ifv=s
0 otherwise.

Let f € Z* denote a flow in G, ¢ € R, ¢ > 0 the capacities on the arcs, and w € R the
flow value. Then a maximum flow can be computed by solving the linear program

max(w | Df —dw <0,0<f<c¢)

11.12
=max(w | Df —dw <0, —f<0,f<c). ( )

The inequality system Df — wd < 0 may seem to be a weaker condition that flow
conservation, as it only requires that the in-flow of a vertex v # s, t is larger than the
out-flow. However, b := 1/(Df + wd) = 0, which implies that every entry of b is 0. So
Df+wd < 0 implies Df +wd = 0 for any feasible solution (f, d). The additional row d
of the constraint matrix can be seen as an additional arc from t to s that sends all flow
back to the source. This way we have flow conservation at any vertex (i.e. we have a
circulation in the graph), and we want to maximize the flow on the artificial arc.

We can use this linear program as the dual program in the pair (11.11). As ¢ > 0 we
know that f = 0, w = 0 is a feasible solution of this linear program, so we can start
the primal-dual algorithm. Let now (f,w) be any dual feasible solution. In order to
write down the restricted linear program we have to find all inequalities of the dual
program that are satisfied with equality by our solution.

By our above consideration, the inequalities in Df + wd < 0 are always satisfies with
equality. Let

U:={ae€Al|f,=cy} L:={ae€A|f, =0}
The dual of the restricted linear program for the solution (f,w) is

max(z | Dx—2d <0, x; <0, —x; <0, x<1,z2<1).

circulation
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The constraint matrix of this linear program is totally unimodular, so we have an
integral optimal solution (x,2). If z = 0, then our flow was optimal. Otherwise, z =1,
and we may interpret the dual program in the following way:

Let G" be directed graph on the vertex set V obtained from G in the following way.

(1) for all arcs a € L we insert a into G',
(2) for all arcs a = (u,v) € U we insert (v,u) into G",
(3) for all arcs a = (u,v) € A— (U U L) we insert both (u,v) and (v,u) into G".

G’ is the residual graph of G corresponding to the flow f. The linear program 11 finds
apath P fromstotin G":

(1) We have an integral flow x that is < 1 on each arc.

(2) Itsvalueis1,so —1 <x, <1 on all arcs.

(3) 0<x,<1lonarcsa€l

(4) -1<x=<OonarcsinaeU (so 0 < x, <1 on the reversed arcs in G").

(5) Flow conservation implies that at each vertex we have at most one incoming and
one outgoing arc.

(we may create additional disconnected loops in the graph. They don’t improve the
flow.) The path P is an augmenting path in G". Figures 11.4-11.6 show an example.
The first figure shows a graph with a feasible flow and capacities on the arcs. The
second figure shows an augmenting path, and the last the new flow after adding the
augmenting path.

The new dual feasible solution
f:=f+ex wW:i=w+¢ez (11.13)

increases the flow along this path by some £ > 0. We can determine the maximum
possible ¢ by assigning capacities to the arcs in G":

(1) ¢, on arcs originating from L or U.
(2) ¢, — f, on the forward and f, on the backward arc for all other arcs.

The minimum of the capacities along the augmenting path is the maximum &. This
is strictly positive by construction. Viewed in the graph, the flow update in (11.13)
does the following. For each forward arc in the path P (i.e. one that has the same
orientation as in G), we add ¢ to the flow on the arc. For each backward arc in the path
we subtract €. All other arcs stay unchanged. This is the Forp-FULKERSON algorithm
for finding a maximum flow in a directed graph. The arguments above show that it is
in fact an algorithm based on linear programming.

If c is integral, then ¢ > 1. In this case, the flow value increases by at least one in
each step. As 1°c is an upper bound for the maximum flow, this algorithm reaches the
optimum after a finite number of steps. The same argument applies if ¢ is rational,
as we can scale the capacities to be integer. If c is not rational, then this algorithm
in this form may fail to finish in a finite number of steps. However, choosing the
augmenting path more carefully also guarantees finiteness for non-rational capacities
(see any book on graph algorithms).

If ¢ is integral, then we can also choose the flow to be integral, as we may start with
the flow f = 0 and then always increase the flow on the arcs by an integer. By an
argument similar to the one in the proof of Menger’s theorem, one can show that such
an integral flow can always be decomposed into a set of paths.

There are more graph algorithms that can be seen to be a primal-dual linear program-
ming algorithm. Among them is e.g. the Hungarian algorithm for finding a minimum
weight perfect matching.
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Total Dual Integrality 1 2

In the last two chapters we found a condition on the constraint matrix A that ensured
the polyhedron P := {x | Ax < b} to be integral for any integral right hand side b.
Matrices with this property are exactly the totally unimodular matrices. We have seen
that already this quite special class has many interesting applications.

In this chapter we want to study a more general relation. This time we want to con-
sider which combinations of a constraint matrix A and a right hand side vector b lead
to integer polyhedra. This naturally leads to the notion of totally dual integral systems
of linear inequalities. We will see that this completely characterizes integrality of a
polyhedron (however, as integer linear programming is not known to be in &, there
is no good algorithm that detects this). In the next chapter we will see that this leeds
to a method to construct the integer hull of a polyhedron by cutting the polyhedron
with affine hyperplanes that separate a fractional vertex from all integral points in the
polyhedron.

Definition 12.1 (Edmonds and Giles 1977). A rational system Ax < b is totally
dual integral (TDI) if

min(y'b | y'A=c',y > 0) = max(c'x | Ax < b) (12.1)

has an integral optimum dual solution y for all integral ¢' € Z" for which the dual
program is finite.

Adding any valid inequality to a TDI system preserves TDIness:

Proposition 12.2. IfAx < b is a TDI system and ¢'x < & is a valid inequality for
P:={x|Ax <b}, then also Ax <b, c¢'x < 5 is TDI. O

Proposition 12.3. Let AX <b be a TD|-system and b € Z™. Then max(c'x | Ax <b)
has an integral optimal solution for any rational ¢' for which the program is bounded.

Proof. If b is integral, then min(y‘b | y'A = ¢,y > 0) has an integral optimal value
for all integral ¢’, as Ax < b is TDI. Now the claim follows from Corollary 8.20. O

Corollary 12.4. LetAx <b be a TDI system andb € Z™. Then P := {x | Ax < b} is
an integral polyhedron. O

Theorem 10.3 (or Corollary 10.4) now immediately implies the following characteriz-
ation, which implies that TDI is a generalization of total unimodularity in the sense
that it considers both the matrix A and the right hand side b instead of just the matrix
A.

Corollary 12.5. A rational system Ax < b is TDI for each vector b if and only if A is
totally unimodular.

Proof. Total unimodularity of A implies that the polyhedron P* :={y |y'A=c/,y >
0} is integral for any integral ¢'. So Ax < b is TDI. If Ax < b is TDI for any integral b,
then P := {x | Ax < b} is integral for any b, so A is totally unimodular. O

totally dual integral
TDI
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Figure 12.1

Example 12.6. TDI is a property of the inequality system Ax < b, not of the poly-
hedron it defines:

-1 -1

-1 -1
Consider A= 0 -1 and Ay =
1 -1 1 -1

Then A;x < 0 and A,x < 0 define the same cone (see Figure 12.1), but the first is TDI
and the second is not. One may observe that the rows of the first matrix form a Hilbert
basis of the dual cone, while the rows of the second do not. We will see later that this
indeed characterizes TDI. ¢

In the next chapter we will discuss an algorithm that computes the integer hull of a
polyhedron. This is based on the fact that we can describe any polyhedron by a TDI
system and that faces of a polyhedron described by such a system are again given by
a TDI system. This will use the following theorem.

Theorem 12.7. LetAx <b, a'x < 8 be a TD! system. Then also Ax <b, a'x = 8 is
TDI.

Proof. Let ¢’ € Z" such that
max(c'x |[Ax < b, a'x = ) = max(c'x |Ax <b,a'x < f3, —a'x < —f8)
is finite with optimal solution X. The dual of this program is
min(y'b+ (z, —2_)B |y'A+ (2, —z_)a" =c',y>0). (12.2)

We have to find an integral optimal solution of this program. Let (y,z,,z_) be a
(possibly fractional) optimal solution. Choose k € N such that

w|
IA

k and k-aez"
ct

and let e +ka', and u

u:=z,—z_+k.
X is also a feasible solution of
max(é'x |[Ax < b, a'x < f3) (12.3)
and (y,u) is a feasible solution of the dual program
min(y'b+uff |y'A+ua’ =&,y >0,u >0). (12.9)

The duality theorem implies that both programs (12.3) and (12.4) are bounded.
As Ax < b, a'x < 8 is TDI, the system (12.4) has an integral optimal solution (¥, il).

Let g, =1 and Z_:=k.

Then A+ (E, —2)d" =yA+aa"—ka"'=e" —ka' =c".
so (¥,Z,,%_) is an integral feasible solution of (12.2). Its objective value is

§b+ (&, —2)B=§b+af —kB <yb+uf —kf=yb+(z, —2)B,
where the inequality follows as (y,u) is feasible. (y,z,,z_) is optimal, so we must

have equality in this relation. Hence, (¥,%,,2_) is an integral optimal solution of the
dual program (12.2). O
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Chapter 12. Total Dual Integrality

Proposition 12.8. Let A€ Z™ " and b € Q™. The system
AX < b,x>0 (Ax =b,x>0)
is TDI if and only if
min(y'b | y'A>c', y > 0) (min(y‘'b|y‘A>c"))
has an integral optimal solution for any integral ¢' for which it is finite.

Proof. The system Ax <b, x > 0 can be written as

([ )x= (o)

So it is TDI if and only if for any integral ¢f
min(y'b |y'A—z' =c',y,z>0) (12.5)

has an integral optimal solution (y,z) if the program is bounded. But this has an
integral optimal solution if and only if

min(y‘'b |y'‘A>c’,y>0)
has an integral optimal solution. The second claim is similar. O

Now we give a geometric interpretation of total dual integrality by relating it to Hilbert
bases in the cones of the normal fan of a polyhedron.

Theorem 12.9. Let A€ Q™", b e Q™ and P := {x | Ax < b}.The system Ax < b
is TDI if and only if for each face F of P the rows of Ay, are a Hilbert basis of

cone(Agq(py)-

Proof. Suppose that Ax <bis TDI. Let F be a face of P, I :=eq(F) and J := [m] —1.
Let ¢! € cone(A;,) NZ". Then

max(c'x |Ax <b) = min(y'b|y'A=c’,y>0) (12.6)

is optimally solved by any X € F. By assumption, the minimum has an integral optimal
solution y. The complementary slackness theorem, Theorem 3.9, implies that y; = 0.
Hence ¢! =y,A,, is an integral conic combination of the generators of cone(A;,).
Suppose conversely that the value of the programs in (12.6) is finite for some ¢' € Z™.
Let F be the minimal face of P determined by ¢' and I := eq(F). By the same argument
as before there is some y such that

¢! =y,A;, € cone(A;,) and y,=0.

However, y; > 0 may now be fractional. Using the assumption there is a non-negative
integral vector z such that ¢' = z'A,,. Extending z with zeros to z such that z = z; we
obtain for allx € F

ct=2A and Z'b=7'Ax = c'x.

So z is an optimal solution of (12.6). As c¢' was arbitrary, this implies that Ax < b is
TDL. O

As we may always choose the optimal solutions in the previous proof to lie in a minimal
face of P we have even proved the stronger statement that it suffices to consider only
minimal faces F in the theorem. Using this and choosing b = 0 in the previous theorem
we obtain
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minimally TDI

Figure 12.2

Corollary 12.10. The rows of a rational matrix form a Hilbert basis if and only if
Ax<0is TDI O

Definition 12.11. Let Ax <b be TDI. Then Ax < b is minimally TDI if any proper
subsystem of Ax < b that defines the same polyhedron is not TDI.

A TDI system Ax < b is minimally TDI if and only if each constraint defines a support-
ing hyperplane of P := {x | Ax < b} and cannot be written as a non-negative integral
linear combination of other inequalities in Ax < b.

Theorem 12.12. Let P be a rational polyhedron.

(1) Then there is a TDI system Ax < b for an integral matrix A that defines P.
(2) b can be chosen to be integral if and only if P is integral.
(3) If P is full-dimensional, then there is a unique minimal TDI system defining P.

See Figure 12.2 for an example of a TDI-system defining a triangle.

Proof. (1) Let F be a minimal face of P with normal cone Cr. By Theorem 8.24, the
cone Cy has an integral Hilbert basis 54 := {a;,...,a,}. For 1 <i < r define

B; :=max(a;x|x € P). (12.7)

Then FC{x|ax=f;} and PC{x|ax<p}

for all i. Let .o/ be the collection of inequalities a;x < f3;.

Let Ax < b be the inequality system obtained from all .«/;, where F ranges over all
minimal faces of P. Then Ax < b determines P and is TDI by Theorem 12.9.

(2) If P is integral, then the ;s in (12.7) are integral. So also b is integral. If con-
versely b is integral, then P is integral by Corollary 12.4.

(3) If P is full-dimensional, then each normal cone Cj is pointed. Hence, again by The-
orem 8.24 it has a unique minimal integral Hilbert basis. Let Ax < b be the inequality
system obtained in the same way as above, but only using these minimal sets of gen-
erators. By Theorem 12.9, the system Ax < b must be a subsystem of any TDI-system
defining P. O

Corollary 12.13. A rational polyhedron P is integral if and only if there is a TDI-
system Ax < b with integral b that defines it. O

We shortly discuss the complexity of the following problem:

Given a rational system of linear equations Ax = b, decide whether a

rational system of linear equations has an integral solution. (12.8)

HerMITE normal forms can be used to show that this problem is well characterized.
It is even in &, as a transforming a matrix into HERMITE normal form can by done in
polynomial time (see Schrijver’s book [Sch86, Ch. 5]). Using the methods introduced
in Chapter 5 one shows the following theorem.

Theorem 12.14. Let A< Q™" with rank(A) = m.

(1) The HermITE normal form of A has size polynomially bounded by the size of A.
(2) There is a unimodular matrix U such that AU is in HERMITE normal form and the
size of U is polynomially bounded in the size of A.

Proof. We can assume that A is integral, as multiplication of a by a constant also
multiplies the Hermit normal form by the same constant.

(1) Let (B 0) be the HErMITE normal form of A for some lower triangular non-
singular square matrix B = (b;;);;. The main idea of the proof is now the follow-
ing observation. Let j € [m]. The g.c.d. of all maximal minors of the first j rows
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of A is invariant under elementary column operations. Hence, this g.c.d. is the
same in A and (B 0). But in the latter it is just the product of the first j diagonal
entries of B, as all other maximal minors are 0. Now B has its maximal entries
on the diagonal, so the size of B is polynomially bounded by that of A.

(2) We may assume thatA = (A; A,) for some non-singular matrix A;. Now consider
the following matrix and its HERMITE normal form:

A A, ) B 0
( 0 Id, ) with normal form ( B, B, ) .

The sizes of B, B;, B, are polynomially bounded in the size of A. Then also

v (A A (B o0
=\ o 1, B, By |-
has bounded size and AU = (B 0). O

Corollary 12.15. If a rational system Ax = b of linear equations has an integral solu-
tion, then it has one of size polynomially bounded in the sizes of A and b.

Proof. We may assume that rank(A) = m. Then there is a unimodular transformation
U of polynomially bounded size (in that of A) such that AU = (B 0) is in HERMITE

normal form. Then
-1
X:= U( B (l; )

is an integral solution of Ax = b of bounded size. O

Using the integral alternative theorem, Theorem 8.17, this implies that the decision
problem (12.8) is in /% Nco- A2 : We can assume that A has full rank and is given
in HErMITE normal form A = (B 0). Then a positive certificate is given by the previous
corollary. By the integral alternative theorem, for a negative certificate we have to
provide a rational vector y such that y'A is integral, but y'b is not. By the proof of
the corollary, some row of B™! has this property if Ax = b does not have an integral
solution.
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Chvdtal-Gomory Cuts

In this chapter we discuss the method of cutting planes to compute the integer hull
of a polyhedron. The central idea of this approach is to successively cut off fractional
minimal faces of the polyhedron by hyperplanes that separate the face from all integ-
ral points in the polyhedron. This general approach was developed around 1950 by
GoMoRy to use linear programming methods in integer linear programming. This has
been quite successful, and there have been developed several similar approaches since.
It has turned out that his idea is also of great theoretical interest. We will discuss in
this final chapter one of the first approaches by Gomory and CHVATAL.

We need some more notation. For any vector b € R™ let |b] and [b] denote the vector
obtained by applying | . | or [.] to each component of b. Let P; denote the integer hull
of a polyhedron, i.e. P; := conv(P NZ"). Let c€ Z" and 6 € R be given, and consider
the rational half-space

H:={x]|c'x<65}.
Its integral closure H; clearly satisfies
H, CH:={x|c'x<|5]}.

We have H; = H if ¢ is primitive, i.e. if ged(cy,...,¢c,) = 1. Geometrically, H, arises
from H by shifting H along its normal vector ¢ until it contains an integer point.

Example 13.1. Consider ¢’ :=(3,3) and 6 := 9/2. Then (see Figurel3.1):
H={x|c'x<4} and H;={x|c'x<3}. O

Definition 13.2. Let P be a polyhedron. The elementary closure of P is the set

PW:= () H.

H rational half-space
containing P

Inductively we define P®) := (P(k’l))(l).

As P; C H, for any half-space H whose boundary plane is valid, we know that P, € P,
It clearly suffices to consider supporting half-spaces in the intersection. The affine
hyperplanes bounding the the half-spaces H; are cutting planes of P. Repeating this
procedure, we obtain a chain

pWop@op®>  cplo op, (13.1)

A priori, this does not seem to be a useful definition, as the intersection ranges over
the infinite set of all supporting hyperplanes. However, the next theorem shows that
in the case of an TDI system the intersection is already defined by a finite set of
half-spaces. The approach of rounding down inequalities is one of the central ideas
behind cutting plane methods to solve integer linear programs. The general method
is the following: One successively solves linear programs over P®) for increasing k
until the obtained optimal solution is integral. The elementary closures need not be
determined completely as one is only interested in the optimum with respect to one
linear functional.

cutting plane

Hb

Figure 13.1

elementary closure

cutting planes
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Theorem 13.3. Let P := {x | Ax < b} be a polyhedron defined by a TDI system
Ax < b for an integral matrix A € Z™". Then PV = {x | Ax < |b|}.

Proof. LetQ:={x|Ax < |b|}. If P = @, then PV = &. Any x that satisfies Ax < |b]
also satisfies Ax < b, so Q = @, which proves the theorem in this case.

So we may assume that P # @. Each inequality in Ax < b defines a rational half-space
containing P, so

P C ix|Ax<|bj}=Q.
We need to prove the reverse inclusion, i.e. we have to show that
QCH;

for any rational half-space H containing P. Let H := {x | ¢'x < &} be such a half-space.
We may assume that ¢’ is a primitive integer vector, so that

H ={x|c'x<|6]}.
By duality, and as P is contained in H, we have
6 > max(c'x|Ax <b) = min(y'b |y'A=c’,y>0}. (13.2)

Ax < b is TDI and ¢’ is integral, so the minimum is attained by an integer vector y.
Suppose that x € Q. Then

¢'x = y'Ax < §'|b] < [y'b] < [5],
which implies that x € H;. So Q € H;. O

Lemma 13.4. Let P be a rational polyhedron and F a face of P. Then F\¥) = P{ONF.,
IfFFY) # @, then it is a non-empty proper face of P\,

Proof. It suffices to prove this in the case t = 1, with the general case then following
by induction.

Let P = {x | Ax < b} for a TDI system Ax < b with integral A € Z™*". Let the face F be
defined by

F:=Pni{x|c'x=6}={x|Ax<b, c'x <5, —c'x<-6}. (13.3)

for an integral vector ¢' € Z" and & € Z. The inequality ¢'x < § is valid for P, so by
Proposition 12.2 the system Ax < b, ¢'x < § is TDI. Theorem 12.7 implies that also
Ax <b, ¢'x=6is TDL. & is integral, so

PYNF={x|Ax<|b],c'x=6}={x|Ax < |b], ¢'x < 6], —c'x < |-&|} =FD,

where the last equation follows as the given system is the elementary closure of the
right hand representation in (13.3). If F(!) is not empty, then we see from this repres-
entation that it is a face of P}, O

Theorem 13.5. Let P C R" be a rational polyhedron. Then there is t € N such that
P, =pPO,

Proof. We prove this by induction on the dimension d of P € R". If d = —1, then
P,=P=P® =g, Ifd =0, then P is a point and either @ = P, = PM or P, = P =
P©. So in both cases, t = 0 or ¢t = 1 suffices. So we can assume that d > 0 and
the theorem is true for all rational polyhedra in dimensions strictly less than d. Let
H := {x | Mx = m} be the affine hull of P.
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If HNZ" = @, then P, = &. Using Theorem 8.17 (integral alternative theorem) we
find some rational vector y € Q™ such that ¢’ :=y'M is integral, but § := y'm is not.
Let x € H. Then

c'x=y'Mx=y'm=25,
so {x | ¢'x = 6} is a supporting hyperplane of P and we obtain
POC{x|ex<[6}n{x|—c'x< -5} =0,

as & is not integer. Hence, t = 1 suffices in the case that H N Z" = @&.

So we may assume that there is an integer point X € H. Translating everything by an
integer vector does not affect the theorem, so we may assume that H = {x | Mx = 0}.
Further, we may assume that M has full row rank n —d. By Theorem 8.14 we can find
a unimodular transformation U such that M = [M, 0] is in Hermite normal form for
a non-singular matrix M,. Transforming P with U we obtain a polyhedron P’ with
affine hull

{x|[M, 0]x=0}={0} xR™,

and P’ is full-dimensional in RY. U bijectively maps Z" onto Z" (by Proposition 8.9),
and for any rational hyperplane H we have (UH); = U(H;). Hence, we may assume
that P is full-dimensional.

P, is a polyhedron, so there is a rational matrix A and rational vectors b and b’ such
that

P, = {x| Ax < b} and P={x|Ax<b’}

(take the union of sets of inequalities defining P and P’, and choose the right hand
sides of inequalities in b and b’ not needed large enough so that they do not affect the
polyhedron). By (13.1) we already know that

P, C p(f)

for all t € N. So we have to show that there is some t € N such that the reverse
inclusion is true. Let a’x < 3 be some inequality contained in Ax < b and a’x < 8’
the corresponding inequality in Ax < b’. Let H := {x | a’x < 8}. Then it suffices to
prove that P®) C H for some finite s € N, as there are only a finite number of such
half-spaces.

Assume by contradiction that there is no s € N such that P¢) C H. By definition,
PUC {x|ax < |}
Hence, there is f” € Z and r e N such that § < 8” < |f’] and for alls > r

P® Cix|a‘'x<B"} but PO Z {x|a‘'x < B” —1}. (13.4)

Let F:=POnix|a'x=p"}.

Then F is a (possibly empty) proper face of P'). Further, F does not contain any
integral vectors, as P, € H = {x | a'x < 8} and 8 < 3”. Hence, there is u € N such
that F® = @ and we obtain

o= F(u) — P(r+u) NF = P(r+u) N {X | alx = ﬁ//} .

So pUtW C fx|a'x < 8"},
and hence pUtitl C fx|alx < B’ — 1},
as 3" is integral. However, this contradicts (13.4). O
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Corollary 13.6. Let P be a rational polyhedron. Then P = P; if and only if each
rational supporting hyperplane contains an integral point.

Proof. If P = P, then each supporting hyperplane contain a minimal face, which
contains an integral point. If conversely each rational supporting hyperplane contains
an integral point, then P) = P for all t > 0, and the claim follows from the previous
Theorem 13.5. O

Corollary 13.7. Let P be a (not necessarily rational) polytope. Then thereist € N
such that P®© = p;.

Proof. The only thing we need to show is that we can replace P by a rational poly-
hedron Q such that Q; = P;. Then the claim would follow from Theorem 13.5.

As P is a polytope, there is some M € N such that
P CB:={x]|||xlle < M}.

For any z € B \ P there is a rational hyperplane H, such that P and z are on different
sides of H,. B is bounded, so |B N Z"| is finite. We can define Q to be the intersection
of all half-spaces defined by the H,. O

Theorem 13.5 can be used to give an algorithm that computes the integer hull of
a polyhedron. Observe however, that this is not a polynomial time algorithm, just
because the size of a TDI system defining a polyhedron P = {x | Ax < b} may be
exponential in the size of A.

INTEGER HULL

INPUT: A rational polyhedron P = {x | Ax < b}.
OutpuT: A description of P;.
ArcoriTHM: While P not integral do

(1) Replace Ax <b by a TDI system that describes P.
(2) Let P’ := {x|Ax < |b]}.
(3) SetpP:=r.

It is now natural to ask whether we can give a bound on the number of steps that this
algorithm needs to compute the integer hull of a polyhedron. The next example shows
that there cannot be a polynomial bound in the dimension only.

Example 13.8. For any k € N we define the matrix A;, a vector by, and the polygon
Pk by

-1 0 0
A= 1 2k b, := | 2k P, = {xeR?*| A, x<b;}.
1 —2k 0

P, is the polygon with vertices

(3] =[] ee[i)

while P, = conv(vy,Vv,) is a line segment. To compute P we need a TDI system
defining P. For this we have to extend A;x < b, by the inequalities

N [

xzf].

_XZSO
x1+jx2§k+é for0<j<2k-1
xl—szﬁk—é forl<j<2k-1.
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k—
From this we can compute that |: } € PM | and by induction we get that

2

for t < k. So P; # P for t < k and we need at least k steps in the algorithm. ¢

N = =

Example 13.9. Let G = (V,E) be an undirected graph, and
Qn(G):={xeR™|x(6(v))<1,x,>0forveV,and e € E}.

In Chapter 9 we have seen that if G is bipartite, then Q,, is the matching polytope of
G. It can be shown that

x, >0 foralle € E (13.5a)

x(6(v)) <1 forallveV (13.5b)
1

x(E(U)) < 5|U| for all U C V such that |U| is odd. (13.5¢0)

is a TDI system that defines Q,,,(G). So we can compute the elementary closure of Q,,;:

1
Q(G) = {XE R | x(6(v)) =1, x,20,x(6(U)) < 511Ul } ‘
forveV,e€E,andodd U CV

We have seen in Theorem 9.8 that this defines the matching polytope P,,(G) of G. So
the general matching polytope is the first elementary closure of the bipartite matching
inequalities.

For a rational polyhedron we can bound the number of facets and vertices by the
dimension of A. This is not anymore true for the integer hull, as is shown by the
following considerations.

A polyhedron P := {x | Ax < b} for A € Q™" has at most m facets and (':) vertices.
Hence, the number of facets and vertices of a rational polyhedron is even independent
of the size of A and b. Now let in the above example G = K|, be the complete graph on
n vertices. We have seen that the matching polytope P,,(G) of G is the elementary clos-
ure of Q,,(G), and the corresponding matching polytope has f := (]) +2""" different
facets. On the other hand, the size of (4, b) is ((4,b)) =n(}) +3(}) = (n+3)(}) =
0(n®). But 2"! cannot be bounded by a polynomial in n®. ¢

We repeat the result of the previous example in the following proposition.
Proposition 13.10. There is no polynomial ¢ such that for each rational polyhedron

P := {x | Ax < b} the integer hull P; of P has at most p({(A, b))) facets. O

So we cannot say much about the number of facets of the integer hull of a rational
polyhedron. However, it can be shown that at least the facet complexity of the integer
hull can be polynomially bounded in the facet complexity of P.

Theorem 13.11. Let P C R™ be a rational polyhedron with facet complexity ¢. Then
there is a constant C € R, such that the facet complexity ¢; of P; is bounded by
@ < C(.PG O

This theorem has two immediate consequences.

Corollary 13.12. Let P be a rational polyhedron of facet complexity ¢. If P; # @,
then P contains an integral point of size bounded by Cn®y for some C € R, O

Corollary 13.13. The problem of deciding whether a rational inequality system Ax <
b has an integral solution is in /% . O
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Z"-width

The problem to decide whether Ax < b has an integral solution is in general A" -hard,
but proving this is much more involved.

The above examples show that we cannot expect to find integer hulls of polyhedra
within polynomial time. The situation is slightly better if we only want to know
whether the integer hull is empty. Namely, if P, = &, then we can check this in a
finite number of steps that only depends on the dimension of the polytope. More pre-
cisely, we will prove that there is some t € N only depending on the dimension, so that
PW =@ if P, = . We need a theorem from geometry of numbers for this. We will not
prove this here, but see Barvinok’s book [Bar02].

Definition 13.14. Let K c RY be a closed and convex set. The Z"-width of K with
respect to ¢t € Z" is

width(K, ¢") := max(c'x | x € K) —min(c'x | x €K).

Theorem 13.15 (Flatness Theorem). There is a constant w,, € R such that for any
convex K C R" with K NZ" =0 there is ¢' € Z" \ {0} such that

width(K,c¢") <w,. O

Remark 13.16. It has been shown that w, := n: suffices in the flatness theorem.
However, if one wants to explicitely compute a vector ¢ realizing the bound in polyno-
mial time, then one can only guarantee a bound w,, = ¢(2"). Still, this only depends
on the dimension of the polyhedron. ¢

Theorem 13.17. For each d € N there is t(d) € N such that if P C R" is a rational
d-dimensional polyhedron with P; = @ then already P*®) = &,

Proof. We apply induction over the dimension d of P. We may assume that t(d) >
t(d—1)foralld > 0.

If d =—1then P =@, so t(—1) := 0 suffices. If d = 0, then P = {x} for some x € R".
If P, = @, then x £ Z", so P = @ and t(0) := 1 suffices.

By the same argument as in the proof of Theorem 13.5, where we proved that P, = P(*)
for some t, we may assume that P is full-dimensional, so d = n. By Theorem 13.15
there is a primitive vector ¢’ € Z? and a constant w,, that only depends on d such that

max(c'x|x € P) —min(c'x | x€P) <w,.
Let 6 := |max(c'x | x € P)|. We claim that
plkHi+ked=1) C fx | ¢fx < § — k} (13.6)
for 0 < k <wy + 1. We prove this by induction over k. For k = 0 this specializes to
PWC {x|c'x < 8}

This follows immediately from the definition of P(!). Suppose that (13.6) is true for
some k > 0. Let

F ;= plkti+kild=1) q x| efx = § — k}, (13.7)

be a possibly empty proper face of P*+1+kt(d=1) " A the dimension of F is less than d,
we know by induction that F(!(¢~1) = &, This implies

d-1
(P(k“”“(d—l”)“( Yafxletx =6k} = Ft@D =g,
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This means that P*HIHEFDIE-1) C fx | cfx < § — k}

and so plk+2+(kDe(d-1)) — (P(k“Hk“)t(d*l)))(l) Ci{x|c'x<6—-k—1}.
So (13.6) holds for k + 1. Take k :=w; + 1 in (13.6). Then
pat2HwatDHd-1) € fx | efx < 6 —wy — 1}.
On the other hand, P C {x| ¢'x > & —wy — 1}, so that
t(d):=wg+2+wyg+1)t(d—1)

satisfies the requirements of the theorem. O

Definition 13.18. The CHVATAL rank of a rational matrix A € Q™" is the smallest
number t € N such that

fx|Ax <b}, = {x|Ax <b}".
for each integral vectorb e 7.

We extend our definition of a unimodular matrix slightly and say that an integral
matrix A € Z™*" of rank r is unimodular if and only if for each sub-matrix B consisting
of r linearly independent columns of A the gcd of all sub-determinants of order r of B
is 1. If rank(A) = m, then this clearly coincides with our earlier definition. The proof
of the following characterization of integer polyhedra is completely analogous to that
of Theorem 10.5.

Proposition 13.19. Let A< Z™ " be an integral matrix. Then the following are equi-
valent:

(1) A is unimodular,

(2) {x|Ax=b, x > 0} is integral for any integralb € Z,

(3) {y' | y'A> ¢'} is integral for any integral ¢! € Z". O
This implies the following characterization of matrices with CHVATAL rank 0.
Corollary 13.20. An integral matrix A has CHVATAL rank O if and only if A" is unim-
odular. 0O

There is no such characterization known for matrices of higher rank in general. If A is
totally unimodular, then it follows from Proposition 10.6, that A has CHVATAL rank at
most 1. A priori, it is not even clear that the CHVATAL rank is finite for every matrix. In
fact it is, and we will prove this with the following theorem.

Theorem 13.21. LetA < Q™" be a rational matrix. Then there is t € N such that for
any rational b e Q™

{x|Ax <b}, = {x|Ax <b}®).

We cannot prove this directly, but need some estimates on sizes of solutions first. This
is interesting in its own right, so we formulate the results as separate theorems.

Lemma 13.22. LetA e Z™ " such that all minors of A have absolute value at most 3.
Let C ;= {x€R" |Ax < 0}. Letyy,...,¥x be a set of primitive vectors spanning C and

k
H::{Z)\iyilosli§1,1§i§k}.
i=1

Then ||x||,, < nf for any x € 1I.
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test set

Proof. Each generator y of C is a solution of a subsystem A,;y =0 of Ax < 0. Let B :=
A,; and assume that B has full row rank < m — 1. We may reorder the rows of B such
that B = [B; B,] for a non-singular matrix B;. Splitting y = (y;, y,) accordingly, we can
construct a solution by setting y, = (1,0,...,0) and y; := —B; Y(B;),;. By Cramer’s
rule, each entry of y; is a quotient of minors of B. So, after clearing denominators,
each generator has components of size at most f3.

By Caratheodory’s Theorem we know that for any x € II we need at most n generators
in a conic combination of x, so the claim follows. O

The next theorem is the basis for a test set approach to integer programming. It shows
that, if we have a feasible solution of an integer program that is not yet optimal, then
there is another feasible solution not too far away from the original one that improves
the objective value. In the test set method one wants to find a finite set of vectors &
with the property that given some feasible, but not optimal solution y, there is some
t € I such that y +t is feasible with better objective value. One iterates this step until
an optimal solution is found (i.e. there is no t € & such that y + t is feasible).

Theorem 13.23. Let P := {x | Ax < b} for A € Z™" such that the absolute values of
all minors of A are at most 3, b € Z™ and ¢* € R". Lety be a feasible but not optimal
solution of the integer linear program

max(c'x |[Ax <b,x€Z™).
Then there exists a feasible solution ¥ such that ¢'y > ¢'y and ||y — ¥|| < nf3.

Proof. If y is not optimal, then there is y’ € P N Z" such that c'y’ > c'y. Split [m]
into subsets I and J such that

AI*}/ S Al*y and AJ*Y/ S AJ*Y‘
Define the cone
C:={x|ALx<0,-A,x<0}

and let £ := {a;,...,a,} be a Hilbert basis of C. Theny —y € CNZ", so there are
nonnegative integers A, ..., A; such that

4 —YZZAiai-
k

Then o<c(y-y)= Z)Lictai
=1

implies that there is some index j such that A; > 1 and c‘a; > 0. Set ¥ :=y+a;. We
check that y € P:

ALY =AL(y+a;) <b;
k
AR =An(y+a)=ALl +a;— ) Aa)
i=1

ZAJ*}/ - (AJ - 1)AJ* - ZAiAJ*ai < b_] ,
i#]

asApa; <0,Aja >0for1<i<kandA;—120. Further
c'y=c'(y+a)<cly,

as c‘a; > 0, and ||y — §|| < n8 by Lemma 13.22. Hence ¥ is as required. O
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Now we examine how far apart integer and linear optimal solutions can be. We have
seen that we cannot give a bound in the dimension and the number of inequalities
defining our polyhedron, see Figure 8.1. However, the following theorem shows that
we at least can give a bound in the size of the constraint matrix A.

Theorem 13.24. Let A € Z™*" such that each minor has absolute value at most 3,
and letb € Z™, c € Z". Assume that the linear programs

max(c'x | Ax < b) (13.8)
max(c'x |Ax < b, x € Z") (13.9)
are both finite. Then

(1) For each optimal solution X of (13.8) there is an optimal solution 'y of (13.9)
such that ||x —yl|| < np.

(2) For each optimal solution'y of (13.9) there is an optimal solution X of (13.8)
such that ||x —y|| < nf.

Proof. Let X be optimal for (13.8) and y optimal for (13.9). Then there are I C [m],
J :=[m] —I such that

Al*i<AI*§’ AJ*)_( EAJ*}_r‘
This implies A;,X < A., ¥ < b;. We define the cone
C:={x|ALx<0,A;x>0}.

By complementary slackness, we know that there is u > 0 such that u‘A,, = ¢'. Hence,
c¢'x > 0 for all x € C. Further,

ALX-Y)=ALX-ALY <0
AJ*(i_g’):AJ*i_AJ*;’ZO
so X —y € C. This implies that there are vy,...,v, € C and A,,..., A, > 0 such that
X—y=AVy+ -+ AV

By Cramer’s rule we can assume that ||v;||,, < 8 for 1 < i < k (the proof of this is
completely analogous to that of Corollary 5.8, except that we are only interested in
the size of the largest entry, so we don’t have to sum up). Now let uy,...,u;, = 0 be
such that 0 < u; < A, for all i. Then

A +uvy+- o+ wvi) SALY S by

and ApF+ vy 4+ uvi) <AL (Z2— (A —pg)vy — - — (A — i) ve)
<A;,x<b,,

SO Y+ Uqvy + -+ + U, vy € C. We define the vector
yi=y+ v+ Advie =X = {4}y = = {A g,

As c'v; > 0 for all i we know that ¥ satisfies ¢'§ > ¢'y. So ¥ is an integral optimal
solution of (13.9). We compute

X =Flloo = 1{A13v1 + - + {4 Villoo < MIValloo + -+ +IVilloo < 1B,
which implies the first claim. For the second we define
X:=X—[AJvy = = [Advie =Y+ {A vy -+ A )

If for some 1 < i < k we have |A;| > 0 and c'v; > 0, then y+ | A;]v; is an integral
solution of (13.9) with ¢'(y + [ A;]v;) > ¢'y, which contradicts optimality of y. Hence,

c'x > c'x,
and X is an optimal solution of (13.8). As above, the claim now follows from

Iy = Xlloo = [{A1}v1 4+ + {AidVielloo < MValloo + -+ 4 IVielloo = 1. O
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Theorem 13.25. For each A € Q™" there is some M € Z!*" such that for each b €
Q™ there isd € Q' such that
{x|Ax <b}; = {x|Mx<d}.

IfA € Z™" and all minors have an absolute value bounded by 3, then we can find
such an M where all entries of M have an absolute value at most n** ™.

Proof. Let A be such that all minors have an absolute value bounded by 8 and
L := {u | there is y > 0 such that y’A=u, u € Z", ||lul|,, < n*"p"}.

In other words, L is the set of all integral vectors in the cone cone(A) with infinity norm
bounded by n?"3". Let M be the matrix whose rows are the vectors in L. Observe that
A s a sub-matrix of L. Let I C N be such that A; = M.

By Proposition 3.4, any vector ¢! € R" is bounded over the polyhedron P := {x | Ax <
b} if and only if ¢’ is in the polar cone cone(A) of the recession cone {x | Ax < 0} of
P. Hence, any linear functional m* of M is bounded on {x | Ax < b}, and m" attains a
finite maximum over P and the integer hull of P.

Now fix a right hand side b. If Ax < b has no solution, then by choosing d; = b we
can achieve that also Mx < d has no solution. If Ax < b is feasible, but has no integral
solution, then its recession cone {x | Ax < 0} is not full dimensional, which implies
that there is an implicit equality in the system Ax < 0. Hence, both a and —a are in L,
and we can choose d such that Mx < d is infeasible.

So we may assume that Ax < b has an integral solution. For each ¢’ € R" we define
5. :=max(c'x |Ax<b,x€Z"),
which is finite, by the above argument. It then suffices to show that
x|Ax<b}; ={x€R" |u'x<§, forallueL}. (13.10)

We show two inclusions. “C” just follows from the definition of §, for any u. So we
need to show “2”. Let ¢'x < § be a valid inequality for the left hand side. We then
have to show that ¢’x < § is valid for the set on the right hand side. Let z be an
optimal solution of

max(c'x |Ax < b, x€Z"),
By Theorem 13.23
C:=cone(x—z|Ax<b,xe7Z")
=cone(x—z|Ax<b,xeZ",||x —z||, < nf)

C is the cone spanned by the integral vectors in the cone spanned by all directions
pointing into the polyhedron Ax < b from z. It follows that there is a subset L; of L
such that

C={y|u'y<Oforalluel;}.

Here Cramer’s rule ensures that the vectors of bounded length in L suffice (by the
same argument already used in the proof of Theorem 13.24). For each u € L; we have
that 6,, = u'z. By construction, we also know that

c'y<o0

for ally € C, so ¢' € C*. This dual cone is spanned by the vectors in L;, hence, there
are uj,...,u; € L; and A4,..., 44 > 0 such that

' =2u] +---F A
and
Se=c'z=Auiz+- -+ Awz=A5, +--+ A5,
Hence, the inequality ¢'x < &, is valid for the right hand side of (13.10). O
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Now we can finally prove that the CHVATAL RANK of any integral matrix A is finite.

Proof (of Theorem 13.21). We may assume that A€ Z™*" and b € Z™. Let 3 be the
maximum absolute value of a minor of A. We claim that

t ;= max (t(n), n? a1 4+ t(n— 1)) + 1)

suffices, where t(n) is the function obtained in Theorem 13.17. Fix a vector b and
define

PP .= {x|Ax < b}.

If PIb = (@, then t suffices by Theorem 13.17. So we assume that PIb # @. By the
previous Theorem 13.25, there is a matrix M and a vector d such that all entries of M
have absolute value at most n2"3 such that

PP = {x| Mx < d}.

Let m'x < & be a valid inequality of Mx < d. We can clearly assume that § =
max(m'x | x € P). Let

6’ := |max(m'x |x € P)].

By Theorem 13.24, ' — § < ||m||;nf8 < n?"*2B""!. Now one shows in the same way
as in Theorem 13.17 that

(Pb)(k+1+k-t(n71)) C {X I m'x < 6/ _ k} .

Hence, for k := §’' — & we have that P> € {x | m'x < 6}. m‘x < § was an arbitrary
inequality of Mx < d, so this implies the theorem. O

This finally completes the proof that the CHVATAL rank of an integral matrix is finite.
However, there is no characterization known of matrices with a given CHVATAL rank r,
except for r = 0.
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