diff --git a/natural_images/natural_sat_phone_rwf.ipynb b/natural_images/natural_sat_phone_rwf.ipynb
index 6b420cf986d2283a882dbba936c9b960ae9ca09f..2ed4923407e4245d45674dc25f0032c9ec6659a5 100644
--- a/natural_images/natural_sat_phone_rwf.ipynb
+++ b/natural_images/natural_sat_phone_rwf.ipynb
@@ -90,33 +90,18 @@
     "# show_image(\"dc.jpg\")\n",
     "def distance_update(x,z):\n",
     "    result = torch.exp(-1j*torch.angle(torch.trace(torch.matmul(x.H,z))))*z\n",
-    "    return result"
+    "    return result\n",
+    "def distance(x_r,z_r):\n",
+    "    x_r_f = torch.flatten(x_r)\n",
+    "    z_r_f = torch.flatten(z_r)\n",
+    "    error = torch.linalg.norm(x_r_f - torch.exp(-1j*torch.angle(torch.matmul(x_r_f,z_r_f))) * z_r_f)/torch.linalg.norm(x_r_f)\n",
+    "    return error"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": 4,
    "metadata": {},
-   "outputs": [],
-   "source": [
-    "# def my_loss(x_c, z_c):\n",
-    "#     n = x.shape[0]\n",
-    "#     N_train = x.shape[1]\n",
-    "#     Relerrs = torch.zeros(N_train) \n",
-    "#     for tt in range(N_train):\n",
-    "#         X_pred = torch.reshape(x_pred[:,tt], (n, 1))\n",
-    "#         X = torch.reshape(x[:,tt], (n, 1))\n",
-    "#         Relerrs[tt] = torch.linalg.norm(X - torch.exp(-1j*torch.angle(torch.trace(X.H*X_pred))) * X_pred)/torch.linalg.norm(X)\n",
-    "#     # loss = torch.linalg.norm(Relerrs)/N_train\n",
-    "#     loss = torch.mean(Relerrs)\n",
-    "#     # loss = torch.max(Relerrs)\n",
-    "#     return loss"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
    "outputs": [
     {
      "data": {
@@ -151,6 +136,7 @@
     "L = 21\n",
     "cplx_flag = 1\n",
     "mu = 0.8+0.4*cplx_flag\n",
+    "# mu = 1.2\n",
     "npower_iter = 30\n",
     "T_max = 500 \n",
     "npower_iter = 50                      \n",
@@ -173,7 +159,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 5,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -202,25 +188,25 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 6,
    "metadata": {},
    "outputs": [],
    "source": [
     "#############################################################\n",
     "x_r = torch.squeeze(X[:,:,0])\n",
-    "# x_g = torch.squeeze(X[:,:,1])\n",
-    "# x_b = torch.squeeze(X[:,:,2])\n",
+    "x_g = torch.squeeze(X[:,:,1])\n",
+    "x_b = torch.squeeze(X[:,:,2])\n",
     "#############################################################\n",
     "Y_r = torch.abs(A(x_r)) \n",
-    "# Y_g = torch.abs(A(x_g))**2 \n",
-    "# Y_b = torch.abs(A(x_b))**2\n",
+    "Y_g = torch.abs(A(x_g))\n",
+    "Y_b = torch.abs(A(x_b))\n",
     "#############################################################\n",
     "z0_r = torch.randn(n1,n2,dtype=torch.cdouble,device=DEVICE)\n",
     "z0_r = z0_r/torch.linalg.norm(z0_r,'fro')\n",
-    "# z0_g = torch.randn(n1,n2,dtype=torch.cdouble,device=DEVICE)\n",
-    "# z0_g = z0_g/torch.linalg.norm(z0_g,'fro')\n",
-    "# z0_b = torch.randn(n1,n2,dtype=torch.cdouble,device=DEVICE)\n",
-    "# z0_b = z0_b/torch.linalg.norm(z0_b,'fro') \n",
+    "z0_g = torch.randn(n1,n2,dtype=torch.cdouble,device=DEVICE)\n",
+    "z0_g = z0_g/torch.linalg.norm(z0_g,'fro')\n",
+    "z0_b = torch.randn(n1,n2,dtype=torch.cdouble,device=DEVICE)\n",
+    "z0_b = z0_b/torch.linalg.norm(z0_b,'fro') \n",
     "############################################\n",
     "X_recons = torch.zeros(X.shape,dtype=torch.cdouble,device=DEVICE)\n",
     "\n",
@@ -229,193 +215,1566 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 7,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "tensor(1.1665e+11, device='cuda:0', dtype=torch.float64)\n"
+      "tensor(19.4845, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(19.3110, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(19.4643, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(1.0007, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(1.0010, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(1.0008, device='cuda:0', dtype=torch.float64)\n"
      ]
     }
    ],
    "source": [
     "## initialization for the three channels\n",
-    "normest_r = (math.sqrt(math.pi/2)*(1-cplx_flag)+math.sqrt(4/math.pi)*cplx_flag)*torch.sum(Y_r)/L\n",
-    "Y_tr = torch.multiply(Y_r, (torch.abs(Y_r) > 1 * normest_r))\n",
-    "# normest_g = torch.sqrt(torch.sum(Y_g)/torch.numel(Y_g))\n",
-    "# normest_b = torch.sqrt(torch.sum(Y_b)/torch.numel(Y_b))\n",
+    "normest_r = torch.sqrt(torch.sum(Y_r)/torch.numel(Y_r))\n",
+    "normest_g = torch.sqrt(torch.sum(Y_g)/torch.numel(Y_g))\n",
+    "normest_b = torch.sqrt(torch.sum(Y_b)/torch.numel(Y_b))\n",
+    "\n",
+    "Ytr_r = torch.multiply(abs(Y_r), (torch.abs(Y_r) > normest_r))\n",
+    "Ytr_g = torch.multiply(abs(Y_g), (torch.abs(Y_g) > normest_g))\n",
+    "Ytr_b = torch.multiply(abs(Y_b), (torch.abs(Y_b) > normest_b))\n",
+    "\n",
+    "\n",
     "for tt in range(0,npower_iter):\n",
-    "    z0_r = At(torch.multiply(Y_r,A(z0_r))) \n",
+    "    z0_r = At(torch.mul(Ytr_r,A(z0_r))) \n",
     "    z0_r = z0_r/torch.norm(z0_r,'fro')\n",
-    "    # z0_g = At(A(z0_g)) \n",
-    "    # z0_g = z0_g/torch.norm(z0_g,'fro')\n",
-    "    # z0_b = At(A(z0_b)) \n",
-    "    # z0_b = z0_b/torch.norm(z0_b,'fro')\n",
-    "\n",
+    "    z0_g = At(torch.mul(Ytr_g,A(z0_g))) \n",
+    "    z0_g = z0_g/torch.norm(z0_g,'fro')\n",
+    "    z0_b = At(torch.mul(Ytr_b,A(z0_b))) \n",
+    "    z0_b = z0_b/torch.norm(z0_b,'fro')\n",
     "\n",
     "\n",
     "z_r = normest_r * z0_r\n",
-    "# z_g = normest_g * z0_g\n",
-    "# z_b = normest_b * z0_b\n",
+    "z_g = normest_g * z0_g\n",
+    "z_b = normest_b * z0_b\n",
     "\n",
     "print(normest_r)\n",
-    "# print(normest_g)\n",
-    "# print(normest_b)\n",
-    "# print(image_err(z_r,X[:,:,0]))\n"
+    "print(normest_g)\n",
+    "print(normest_b)\n",
+    "X_recons_r = distance_update(x_r,z_r)\n",
+    "X_recons_g = distance_update(x_g,z_g)\n",
+    "X_recons_b = distance_update(x_b,z_b)\n",
+    "print(image_err(X_recons_r,x_r))\n",
+    "print(image_err(X_recons_g,x_g))\n",
+    "print(image_err(X_recons_b,x_b))\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "tensor(4.2326e-16, device='cuda:0', dtype=torch.float64)\n"
-     ]
-    }
-   ],
-   "source": [
-    "\n",
-    "def distance(x_r,z_r):\n",
-    "    x_r_f = torch.flatten(x_r)\n",
-    "    z_r_f = torch.flatten(z_r)\n",
-    "    error = torch.linalg.norm(x_r_f - torch.exp(-1j*torch.angle(torch.matmul(x_r_f,z_r_f))) * z_r_f)/torch.linalg.norm(x_r_f)\n",
-    "    return error\n",
-    "\n",
-    "theta = 54\n",
-    "number = math.cos(theta)+1j*math.sin(theta)\n",
-    "print(distance(x_r,number*x_r))\n",
-    "# print(torch.matmul(x_r.H,z_r))\n"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": 8,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(3.7664e+14, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(5.5003e+20, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(8.1704e+26, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.2215e+33, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.8320e+39, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(2.7538e+45, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(4.1466e+51, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(6.2540e+57, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(9.4467e+63, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.4290e+70, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(2.1646e+76, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(3.2833e+82, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(4.9866e+88, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(7.5827e+94, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.1544e+101, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.7594e+107, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(2.6842e+113, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(4.0992e+119, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(6.2658e+125, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(9.5860e+131, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(1.4677e+138, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(2.2489e+144, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(3.4482e+150, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n",
-      "tensor(inf, device='cuda:0', dtype=torch.float64)\n",
-      "torch.Size([563, 1000])\n",
-      "torch.Size([563, 1000])\n"
-     ]
-    },
-    {
-     "ename": "KeyboardInterrupt",
-     "evalue": "",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[10], line 22\u001b[0m\n\u001b[1;32m     20\u001b[0m         \u001b[39mprint\u001b[39m(z_r\u001b[39m.\u001b[39mshape)\n\u001b[1;32m     21\u001b[0m         error \u001b[39m=\u001b[39m distance(x_r,z_r)\n\u001b[0;32m---> 22\u001b[0m         \u001b[39mprint\u001b[39;49m(error)\n\u001b[1;32m     23\u001b[0m     \u001b[39m# X_recons[:,:,0] = distance_update(x_r,z_r)\u001b[39;00m\n\u001b[1;32m     24\u001b[0m     \u001b[39m# err[t,0] = image_err(X_recons[:,:,0],X[:,:,0])\u001b[39;00m\n\u001b[1;32m     25\u001b[0m     \u001b[39m# # print(\"iteration:\",t,\"error in the red channel:\",image_err(X_recons[:,:,0],X[:,:,0]))\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     50\u001b[0m \u001b[39m#############################################\u001b[39;00m\n\u001b[1;32m     51\u001b[0m     \u001b[39m# save_image(X_recons,t,file_name)\u001b[39;00m\n",
-      "File \u001b[0;32m~/mambaforge/envs/torch/lib/python3.10/site-packages/torch/_tensor.py:426\u001b[0m, in \u001b[0;36mTensor.__repr__\u001b[0;34m(self, tensor_contents)\u001b[0m\n\u001b[1;32m    422\u001b[0m     \u001b[39mreturn\u001b[39;00m handle_torch_function(\n\u001b[1;32m    423\u001b[0m         Tensor\u001b[39m.\u001b[39m\u001b[39m__repr__\u001b[39m, (\u001b[39mself\u001b[39m,), \u001b[39mself\u001b[39m, tensor_contents\u001b[39m=\u001b[39mtensor_contents\n\u001b[1;32m    424\u001b[0m     )\n\u001b[1;32m    425\u001b[0m \u001b[39m# All strings are unicode in Python 3.\u001b[39;00m\n\u001b[0;32m--> 426\u001b[0m \u001b[39mreturn\u001b[39;00m torch\u001b[39m.\u001b[39;49m_tensor_str\u001b[39m.\u001b[39;49m_str(\u001b[39mself\u001b[39;49m, tensor_contents\u001b[39m=\u001b[39;49mtensor_contents)\n",
-      "File \u001b[0;32m~/mambaforge/envs/torch/lib/python3.10/site-packages/torch/_tensor_str.py:636\u001b[0m, in \u001b[0;36m_str\u001b[0;34m(self, tensor_contents)\u001b[0m\n\u001b[1;32m    634\u001b[0m \u001b[39mwith\u001b[39;00m torch\u001b[39m.\u001b[39mno_grad(), torch\u001b[39m.\u001b[39mutils\u001b[39m.\u001b[39m_python_dispatch\u001b[39m.\u001b[39m_disable_current_modes():\n\u001b[1;32m    635\u001b[0m     guard \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39m_C\u001b[39m.\u001b[39m_DisableFuncTorch()\n\u001b[0;32m--> 636\u001b[0m     \u001b[39mreturn\u001b[39;00m _str_intern(\u001b[39mself\u001b[39;49m, tensor_contents\u001b[39m=\u001b[39;49mtensor_contents)\n",
-      "File \u001b[0;32m~/mambaforge/envs/torch/lib/python3.10/site-packages/torch/_tensor_str.py:567\u001b[0m, in \u001b[0;36m_str_intern\u001b[0;34m(inp, tensor_contents)\u001b[0m\n\u001b[1;32m    565\u001b[0m                     tensor_str \u001b[39m=\u001b[39m _tensor_str(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mto_dense(), indent)\n\u001b[1;32m    566\u001b[0m                 \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 567\u001b[0m                     tensor_str \u001b[39m=\u001b[39m _tensor_str(\u001b[39mself\u001b[39;49m, indent)\n\u001b[1;32m    569\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlayout \u001b[39m!=\u001b[39m torch\u001b[39m.\u001b[39mstrided:\n\u001b[1;32m    570\u001b[0m     suffixes\u001b[39m.\u001b[39mappend(\u001b[39m\"\u001b[39m\u001b[39mlayout=\u001b[39m\u001b[39m\"\u001b[39m \u001b[39m+\u001b[39m \u001b[39mstr\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mlayout))\n",
-      "File \u001b[0;32m~/mambaforge/envs/torch/lib/python3.10/site-packages/torch/_tensor_str.py:327\u001b[0m, in \u001b[0;36m_tensor_str\u001b[0;34m(self, indent)\u001b[0m\n\u001b[1;32m    323\u001b[0m     \u001b[39mreturn\u001b[39;00m _tensor_str_with_formatter(\n\u001b[1;32m    324\u001b[0m         \u001b[39mself\u001b[39m, indent, summarize, real_formatter, imag_formatter\n\u001b[1;32m    325\u001b[0m     )\n\u001b[1;32m    326\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 327\u001b[0m     formatter \u001b[39m=\u001b[39m _Formatter(get_summarized_data(\u001b[39mself\u001b[39;49m) \u001b[39mif\u001b[39;49;00m summarize \u001b[39melse\u001b[39;49;00m \u001b[39mself\u001b[39;49m)\n\u001b[1;32m    328\u001b[0m     \u001b[39mreturn\u001b[39;00m _tensor_str_with_formatter(\u001b[39mself\u001b[39m, indent, summarize, formatter)\n",
-      "File \u001b[0;32m~/mambaforge/envs/torch/lib/python3.10/site-packages/torch/_tensor_str.py:115\u001b[0m, in \u001b[0;36m_Formatter.__init__\u001b[0;34m(self, tensor)\u001b[0m\n\u001b[1;32m    112\u001b[0m         \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmax_width \u001b[39m=\u001b[39m \u001b[39mmax\u001b[39m(\u001b[39mself\u001b[39m\u001b[39m.\u001b[39mmax_width, \u001b[39mlen\u001b[39m(value_str))\n\u001b[1;32m    114\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[0;32m--> 115\u001b[0m     nonzero_finite_vals \u001b[39m=\u001b[39m torch\u001b[39m.\u001b[39;49mmasked_select(\n\u001b[1;32m    116\u001b[0m         tensor_view, torch\u001b[39m.\u001b[39;49misfinite(tensor_view) \u001b[39m&\u001b[39;49m tensor_view\u001b[39m.\u001b[39;49mne(\u001b[39m0\u001b[39;49m)\n\u001b[1;32m    117\u001b[0m     )\n\u001b[1;32m    119\u001b[0m     \u001b[39mif\u001b[39;00m nonzero_finite_vals\u001b[39m.\u001b[39mnumel() \u001b[39m==\u001b[39m \u001b[39m0\u001b[39m:\n\u001b[1;32m    120\u001b[0m         \u001b[39m# no valid number, do nothing\u001b[39;00m\n\u001b[1;32m    121\u001b[0m         \u001b[39mreturn\u001b[39;00m\n",
-      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
+      "iteration: 0 error in the red channel: tensor(1.0007, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 0 error in the green channel: tensor(1.0010, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 0 error in the blue channel: tensor(1.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the red channel: tensor(1.6868, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the green channel: tensor(1.6709, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the blue channel: tensor(1.6787, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the red channel: tensor(1.2526, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the green channel: tensor(1.2470, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the blue channel: tensor(1.2472, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the red channel: tensor(1.0298, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the green channel: tensor(1.0286, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the blue channel: tensor(1.0292, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the red channel: tensor(1.4500, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the green channel: tensor(1.4301, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the blue channel: tensor(1.4325, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the red channel: tensor(1.0333, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the green channel: tensor(1.0393, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the blue channel: tensor(1.0316, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the red channel: tensor(1.3814, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the green channel: tensor(1.3609, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the blue channel: tensor(1.3677, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the red channel: tensor(1.0106, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the green channel: tensor(1.0529, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the blue channel: tensor(1.0202, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the red channel: tensor(1.3295, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the green channel: tensor(1.3196, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the blue channel: tensor(1.2922, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the red channel: tensor(1.0792, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the green channel: tensor(1.2207, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the blue channel: tensor(1.1161, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the red channel: tensor(1.2058, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the green channel: tensor(1.2479, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the blue channel: tensor(1.1798, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the red channel: tensor(1.1219, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the green channel: tensor(1.2272, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the blue channel: tensor(1.1195, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the red channel: tensor(1.1181, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the green channel: tensor(1.2220, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the blue channel: tensor(1.1080, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the red channel: tensor(1.0779, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the green channel: tensor(1.2097, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the blue channel: tensor(1.0711, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the red channel: tensor(1.0472, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the green channel: tensor(1.1987, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the blue channel: tensor(1.0392, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the red channel: tensor(1.0066, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the green channel: tensor(1.1857, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the blue channel: tensor(0.9991, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the red channel: tensor(0.9620, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the green channel: tensor(1.1719, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the blue channel: tensor(0.9544, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the red channel: tensor(0.9092, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the green channel: tensor(1.1568, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the blue channel: tensor(0.9016, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the red channel: tensor(0.8466, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the green channel: tensor(1.1404, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the blue channel: tensor(0.8388, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the red channel: tensor(0.7707, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the green channel: tensor(1.1225, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the blue channel: tensor(0.7624, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the red channel: tensor(0.6774, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the green channel: tensor(1.1028, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the blue channel: tensor(0.6683, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the red channel: tensor(0.5636, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the green channel: tensor(1.0811, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the blue channel: tensor(0.5535, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the red channel: tensor(0.4327, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the green channel: tensor(1.0569, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the blue channel: tensor(0.4221, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the red channel: tensor(0.3020, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the green channel: tensor(1.0298, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the blue channel: tensor(0.2925, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the red channel: tensor(0.1957, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the green channel: tensor(0.9990, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the blue channel: tensor(0.1887, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the red channel: tensor(0.1232, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the green channel: tensor(0.9635, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the blue channel: tensor(0.1187, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the red channel: tensor(0.0778, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the green channel: tensor(0.9219, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the blue channel: tensor(0.0750, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the red channel: tensor(0.0499, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the green channel: tensor(0.8724, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the blue channel: tensor(0.0482, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the red channel: tensor(0.0325, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the green channel: tensor(0.8121, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the blue channel: tensor(0.0314, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the red channel: tensor(0.0216, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the green channel: tensor(0.7373, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the blue channel: tensor(0.0208, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the red channel: tensor(0.0145, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the green channel: tensor(0.6436, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the blue channel: tensor(0.0140, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the red channel: tensor(0.0098, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the green channel: tensor(0.5285, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the blue channel: tensor(0.0095, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the red channel: tensor(0.0067, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the green channel: tensor(0.3979, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the blue channel: tensor(0.0065, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the red channel: tensor(0.0047, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the green channel: tensor(0.2727, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the blue channel: tensor(0.0045, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the red channel: tensor(0.0033, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the green channel: tensor(0.1754, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the blue channel: tensor(0.0031, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the red channel: tensor(0.0023, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the green channel: tensor(0.1107, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the blue channel: tensor(0.0022, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the red channel: tensor(0.0016, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the green channel: tensor(0.0704, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the blue channel: tensor(0.0016, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the red channel: tensor(0.0011, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the green channel: tensor(0.0455, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the blue channel: tensor(0.0011, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the red channel: tensor(0.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the green channel: tensor(0.0299, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the blue channel: tensor(0.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the red channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the green channel: tensor(0.0199, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the blue channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the red channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the green channel: tensor(0.0134, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the blue channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the red channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the green channel: tensor(0.0092, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the blue channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the red channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the green channel: tensor(0.0063, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the blue channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the red channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the green channel: tensor(0.0044, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the blue channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the red channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the green channel: tensor(0.0031, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the blue channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the red channel: tensor(8.2334e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the green channel: tensor(0.0022, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the blue channel: tensor(7.9081e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the red channel: tensor(5.9908e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the green channel: tensor(0.0015, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the blue channel: tensor(5.7512e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the red channel: tensor(4.3660e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the green channel: tensor(0.0011, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the blue channel: tensor(4.1894e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the red channel: tensor(3.1865e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the green channel: tensor(0.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the blue channel: tensor(3.0562e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the red channel: tensor(2.3286e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the green channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the blue channel: tensor(2.2324e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the red channel: tensor(1.7037e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the green channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the blue channel: tensor(1.6326e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the red channel: tensor(1.2478e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the green channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the blue channel: tensor(1.1952e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the red channel: tensor(9.1471e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the green channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the blue channel: tensor(8.7590e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the red channel: tensor(6.7114e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the green channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the blue channel: tensor(6.4245e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the red channel: tensor(4.9281e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the green channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the blue channel: tensor(4.7159e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the red channel: tensor(3.6212e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the green channel: tensor(7.8837e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the blue channel: tensor(3.4642e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the red channel: tensor(2.6626e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the green channel: tensor(5.7403e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the blue channel: tensor(2.5464e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the red channel: tensor(1.9588e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the green channel: tensor(4.1860e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the blue channel: tensor(1.8729e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the red channel: tensor(1.4419e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the green channel: tensor(3.0568e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the blue channel: tensor(1.3783e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the red channel: tensor(1.0619e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the green channel: tensor(2.2349e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the blue channel: tensor(1.0148e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the red channel: tensor(7.8237e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the green channel: tensor(1.6358e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the blue channel: tensor(7.4754e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the red channel: tensor(5.7667e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the green channel: tensor(1.1985e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the blue channel: tensor(5.5089e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the red channel: tensor(4.2521e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the green channel: tensor(8.7895e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the blue channel: tensor(4.0613e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the red channel: tensor(3.1364e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the green channel: tensor(6.4510e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the blue channel: tensor(2.9951e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the red channel: tensor(2.3142e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the green channel: tensor(4.7382e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the blue channel: tensor(2.2096e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the red channel: tensor(1.7080e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the green channel: tensor(3.4826e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the blue channel: tensor(1.6306e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the red channel: tensor(1.2610e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the green channel: tensor(2.5612e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the blue channel: tensor(1.2036e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the red channel: tensor(9.3120e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the green channel: tensor(1.8847e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the blue channel: tensor(8.8873e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the red channel: tensor(6.8782e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the green channel: tensor(1.3876e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the blue channel: tensor(6.5637e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the red channel: tensor(5.0816e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the green channel: tensor(1.0221e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the blue channel: tensor(4.8488e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the red channel: tensor(3.7551e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the green channel: tensor(7.5316e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the blue channel: tensor(3.5827e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the red channel: tensor(2.7754e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the green channel: tensor(5.5522e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the blue channel: tensor(2.6477e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the red channel: tensor(2.0517e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the green channel: tensor(4.0945e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the blue channel: tensor(1.9572e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the red channel: tensor(1.5170e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the green channel: tensor(3.0205e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the blue channel: tensor(1.4470e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the red channel: tensor(1.1218e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the green channel: tensor(2.2289e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the blue channel: tensor(1.0699e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the red channel: tensor(8.2971e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the green channel: tensor(1.6453e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the blue channel: tensor(7.9129e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the red channel: tensor(6.1376e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the green channel: tensor(1.2148e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the blue channel: tensor(5.8531e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the red channel: tensor(4.5408e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the green channel: tensor(8.9715e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the blue channel: tensor(4.3301e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the red channel: tensor(3.3599e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the green channel: tensor(6.6273e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the blue channel: tensor(3.2038e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the red channel: tensor(2.4864e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the green channel: tensor(4.8967e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the blue channel: tensor(2.3708e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the red channel: tensor(1.8403e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the green channel: tensor(3.6187e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the blue channel: tensor(1.7546e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the red channel: tensor(1.3622e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the green channel: tensor(2.6748e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the blue channel: tensor(1.2988e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the red channel: tensor(1.0085e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the green channel: tensor(1.9775e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the blue channel: tensor(9.6145e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the red channel: tensor(7.4664e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the green channel: tensor(1.4622e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the blue channel: tensor(7.1183e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the red channel: tensor(5.5287e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the green channel: tensor(1.0813e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the blue channel: tensor(5.2707e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the red channel: tensor(4.0942e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the green channel: tensor(7.9982e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the blue channel: tensor(3.9031e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the red channel: tensor(3.0323e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the green channel: tensor(5.9168e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the blue channel: tensor(2.8907e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the red channel: tensor(2.2460e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the green channel: tensor(4.3777e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the blue channel: tensor(2.1411e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the red channel: tensor(1.6638e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the green channel: tensor(3.2394e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the blue channel: tensor(1.5860e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the red channel: tensor(1.2326e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the green channel: tensor(2.3974e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the blue channel: tensor(1.1750e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the red channel: tensor(9.1322e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the green channel: tensor(1.7744e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the blue channel: tensor(8.7056e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the red channel: tensor(6.7667e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the green channel: tensor(1.3135e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the blue channel: tensor(6.4506e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the red channel: tensor(5.0144e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the green channel: tensor(9.7246e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the blue channel: tensor(4.7801e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the red channel: tensor(3.7161e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the green channel: tensor(7.2003e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the blue channel: tensor(3.5425e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the red channel: tensor(2.7542e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the green channel: tensor(5.3318e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the blue channel: tensor(2.6256e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the red channel: tensor(2.0415e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the green channel: tensor(3.9486e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the blue channel: tensor(1.9462e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the red channel: tensor(1.5133e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the green channel: tensor(2.9245e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the blue channel: tensor(1.4427e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the red channel: tensor(1.1219e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the green channel: tensor(2.1663e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the blue channel: tensor(1.0695e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the red channel: tensor(8.3174e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the green channel: tensor(1.6048e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the blue channel: tensor(7.9294e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the red channel: tensor(6.1669e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the green channel: tensor(1.1889e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the blue channel: tensor(5.8794e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the red channel: tensor(4.5728e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the green channel: tensor(8.8090e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the blue channel: tensor(4.3596e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the red channel: tensor(3.3910e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the green channel: tensor(6.5274e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the blue channel: tensor(3.2330e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the red channel: tensor(2.5148e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the green channel: tensor(4.8372e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the blue channel: tensor(2.3977e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the red channel: tensor(1.8651e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the green channel: tensor(3.5849e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the blue channel: tensor(1.7783e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the red channel: tensor(1.3833e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the green channel: tensor(2.6571e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the blue channel: tensor(1.3190e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the red channel: tensor(1.0261e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the green channel: tensor(1.9695e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the blue channel: tensor(9.7842e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the red channel: tensor(7.6117e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the green channel: tensor(1.4600e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the blue channel: tensor(7.2582e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the red channel: tensor(5.6468e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the green channel: tensor(1.0824e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the blue channel: tensor(5.3847e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the red channel: tensor(4.1893e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the green channel: tensor(8.0250e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the blue channel: tensor(3.9951e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the red channel: tensor(3.1083e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the green channel: tensor(5.9503e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the blue channel: tensor(2.9642e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the red channel: tensor(2.3063e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the green channel: tensor(4.4123e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the blue channel: tensor(2.1995e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the red channel: tensor(1.7114e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the green channel: tensor(3.2720e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the blue channel: tensor(1.6322e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the red channel: tensor(1.2700e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the green channel: tensor(2.4266e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the blue channel: tensor(1.2113e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the red channel: tensor(9.4246e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the green channel: tensor(1.7998e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the blue channel: tensor(8.9896e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the red channel: tensor(6.9946e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the green channel: tensor(1.3349e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the blue channel: tensor(6.6721e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the red channel: tensor(5.1915e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the green channel: tensor(9.9021e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the blue channel: tensor(4.9524e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the red channel: tensor(3.8534e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the green channel: tensor(7.3456e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the blue channel: tensor(3.6761e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the red channel: tensor(2.8603e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the green channel: tensor(5.4495e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the blue channel: tensor(2.7289e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the red channel: tensor(2.1233e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the green channel: tensor(4.0431e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the blue channel: tensor(2.0259e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the red channel: tensor(1.5763e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the green channel: tensor(2.9998e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the blue channel: tensor(1.5041e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the red channel: tensor(1.1705e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the green channel: tensor(2.2259e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the blue channel: tensor(1.1168e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the red channel: tensor(8.6981e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the green channel: tensor(1.6517e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the blue channel: tensor(8.2926e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the red channel: tensor(6.4642e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the green channel: tensor(1.2258e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the blue channel: tensor(6.1585e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the red channel: tensor(4.8080e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the green channel: tensor(9.0968e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the blue channel: tensor(4.5744e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the red channel: tensor(3.5815e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the green channel: tensor(6.7516e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the blue channel: tensor(3.3988e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the red channel: tensor(2.6470e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the green channel: tensor(5.0112e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the blue channel: tensor(2.5265e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the red channel: tensor(1.9697e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the green channel: tensor(3.7197e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the blue channel: tensor(1.8798e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the red channel: tensor(1.4683e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the green channel: tensor(2.7613e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the blue channel: tensor(1.4013e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the red channel: tensor(1.0980e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the green channel: tensor(2.0499e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the blue channel: tensor(1.0480e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the red channel: tensor(8.2571e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the green channel: tensor(1.5220e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the blue channel: tensor(7.8711e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the red channel: tensor(6.6481e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the green channel: tensor(1.1319e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the blue channel: tensor(5.9805e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the red channel: tensor(4.8369e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the green channel: tensor(8.3938e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the blue channel: tensor(4.5965e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the red channel: tensor(3.8206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the green channel: tensor(6.2364e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the blue channel: tensor(3.6238e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the red channel: tensor(3.1235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the green channel: tensor(4.6360e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the blue channel: tensor(2.9516e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the red channel: tensor(4.6489e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the green channel: tensor(3.4496e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the blue channel: tensor(2.5045e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the red channel: tensor(4.4848e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the green channel: tensor(2.5711e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the blue channel: tensor(2.2171e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the red channel: tensor(4.3914e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the green channel: tensor(1.9222e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the blue channel: tensor(2.0400e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the red channel: tensor(4.3375e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the green channel: tensor(1.4447e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the blue channel: tensor(1.9668e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the red channel: tensor(2.9947e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the green channel: tensor(1.0957e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the blue channel: tensor(1.9064e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the red channel: tensor(4.2918e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the green channel: tensor(8.4398e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the blue channel: tensor(1.8721e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the red channel: tensor(4.2810e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the green channel: tensor(6.6549e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the blue channel: tensor(1.8509e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the red channel: tensor(4.2742e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the green channel: tensor(5.4270e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the blue channel: tensor(1.8394e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the red channel: tensor(4.2708e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the green channel: tensor(4.6122e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the blue channel: tensor(1.7979e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the red channel: tensor(4.2673e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the green channel: tensor(4.0926e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the blue channel: tensor(1.8306e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the red channel: tensor(2.9362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the green channel: tensor(3.7760e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the blue channel: tensor(1.8279e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the red channel: tensor(4.2641e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the green channel: tensor(3.5880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the blue channel: tensor(1.8255e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the red channel: tensor(4.2636e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the green channel: tensor(3.4793e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the red channel: tensor(4.2623e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the green channel: tensor(3.4169e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the red channel: tensor(4.2609e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the green channel: tensor(3.3822e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the blue channel: tensor(1.8248e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the red channel: tensor(4.2592e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the green channel: tensor(3.3620e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the blue channel: tensor(1.8241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the red channel: tensor(4.2583e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the green channel: tensor(3.3517e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the blue channel: tensor(1.8236e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the red channel: tensor(4.2573e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the green channel: tensor(3.3448e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the blue channel: tensor(1.8248e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the red channel: tensor(4.2568e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the green channel: tensor(3.3413e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the blue channel: tensor(1.7873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the red channel: tensor(4.2566e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the green channel: tensor(3.3392e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the blue channel: tensor(1.8239e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the red channel: tensor(4.2551e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the green channel: tensor(3.3385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the red channel: tensor(4.2525e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the green channel: tensor(3.3368e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the blue channel: tensor(1.8243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the red channel: tensor(4.2525e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the green channel: tensor(3.3371e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the blue channel: tensor(1.7863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the red channel: tensor(4.2524e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the green channel: tensor(3.3368e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the blue channel: tensor(1.7858e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the red channel: tensor(4.2523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the green channel: tensor(3.3366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the blue channel: tensor(1.7865e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the red channel: tensor(4.2527e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the blue channel: tensor(1.7867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the red channel: tensor(4.2522e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the blue channel: tensor(1.7876e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the red channel: tensor(4.2519e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the blue channel: tensor(1.7863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the red channel: tensor(4.2518e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the green channel: tensor(3.3359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the blue channel: tensor(1.8223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the red channel: tensor(4.2511e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the green channel: tensor(3.3355e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the blue channel: tensor(1.7849e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the red channel: tensor(4.2504e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the green channel: tensor(3.3345e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the blue channel: tensor(1.8219e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the red channel: tensor(4.2490e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the green channel: tensor(3.3351e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the blue channel: tensor(1.8231e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the red channel: tensor(4.2472e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the green channel: tensor(3.3338e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the blue channel: tensor(1.8233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the red channel: tensor(2.9194e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the green channel: tensor(3.3341e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the red channel: tensor(4.2477e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the green channel: tensor(3.3337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the blue channel: tensor(1.7874e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the red channel: tensor(4.2473e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the green channel: tensor(3.3339e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the red channel: tensor(4.2474e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the green channel: tensor(3.3334e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the blue channel: tensor(1.7865e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the red channel: tensor(2.9183e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the green channel: tensor(3.3338e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the blue channel: tensor(1.7860e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the red channel: tensor(4.2466e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the green channel: tensor(3.3348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the red channel: tensor(4.2460e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the green channel: tensor(3.3344e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the blue channel: tensor(1.8229e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the red channel: tensor(4.2448e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the green channel: tensor(3.3342e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the red channel: tensor(4.2440e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the green channel: tensor(3.3338e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the blue channel: tensor(1.7867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the red channel: tensor(4.2437e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the green channel: tensor(3.3340e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the blue channel: tensor(1.7867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the red channel: tensor(4.2426e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the green channel: tensor(3.3342e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the red channel: tensor(4.2418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the green channel: tensor(3.3348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the blue channel: tensor(1.7847e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the red channel: tensor(4.2417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the green channel: tensor(3.3345e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the red channel: tensor(4.2416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the green channel: tensor(3.3350e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the blue channel: tensor(1.8231e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the red channel: tensor(4.2408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the green channel: tensor(3.3353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the blue channel: tensor(1.7870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the red channel: tensor(4.2383e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the green channel: tensor(3.3355e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the blue channel: tensor(1.8224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the red channel: tensor(4.2381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the green channel: tensor(3.3354e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the red channel: tensor(4.2365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the blue channel: tensor(1.8231e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the red channel: tensor(4.2363e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the green channel: tensor(3.3369e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the blue channel: tensor(1.8219e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the red channel: tensor(4.2360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the green channel: tensor(3.3367e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the blue channel: tensor(1.7863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the red channel: tensor(4.2358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the green channel: tensor(3.3363e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the red channel: tensor(4.2361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the blue channel: tensor(1.8239e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the red channel: tensor(4.2344e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the green channel: tensor(3.3366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the blue channel: tensor(1.7854e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the red channel: tensor(4.2334e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the green channel: tensor(3.3364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the blue channel: tensor(1.7852e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the red channel: tensor(4.2335e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the blue channel: tensor(1.8221e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the red channel: tensor(4.2336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the blue channel: tensor(1.7847e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the red channel: tensor(4.2331e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the blue channel: tensor(1.7849e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the red channel: tensor(4.2319e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the green channel: tensor(3.3353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the blue channel: tensor(1.8223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the red channel: tensor(4.2321e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the green channel: tensor(3.3361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the blue channel: tensor(1.7851e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the red channel: tensor(4.2326e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the green channel: tensor(3.3359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the blue channel: tensor(1.7863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the red channel: tensor(4.2324e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the red channel: tensor(4.2317e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the green channel: tensor(3.3361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the blue channel: tensor(1.7847e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the red channel: tensor(4.2317e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the green channel: tensor(3.3356e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the blue channel: tensor(1.7853e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the red channel: tensor(4.2303e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the green channel: tensor(3.3352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the blue channel: tensor(1.8220e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the red channel: tensor(4.2300e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the green channel: tensor(3.3355e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the blue channel: tensor(1.7855e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the red channel: tensor(4.2304e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the green channel: tensor(3.3349e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the blue channel: tensor(1.7844e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the red channel: tensor(4.2302e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the green channel: tensor(3.3352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the blue channel: tensor(1.7849e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the red channel: tensor(4.2295e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the green channel: tensor(3.3354e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the blue channel: tensor(1.7853e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the red channel: tensor(4.2290e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the blue channel: tensor(1.8220e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the red channel: tensor(4.2288e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the green channel: tensor(3.3364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the blue channel: tensor(1.7857e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the red channel: tensor(4.2295e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the blue channel: tensor(1.7859e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the red channel: tensor(4.2280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the green channel: tensor(3.3360e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the blue channel: tensor(1.8215e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the red channel: tensor(4.2282e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the green channel: tensor(3.3366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the blue channel: tensor(1.8216e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the red channel: tensor(4.2277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the green channel: tensor(3.3366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the blue channel: tensor(1.8225e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the red channel: tensor(4.2267e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the blue channel: tensor(1.7831e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the red channel: tensor(4.2267e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the blue channel: tensor(1.7862e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the red channel: tensor(4.2254e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the green channel: tensor(3.3361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the blue channel: tensor(1.7841e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the red channel: tensor(4.2246e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the green channel: tensor(3.3373e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the blue channel: tensor(1.7848e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the red channel: tensor(4.2235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the blue channel: tensor(1.8223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the red channel: tensor(4.2241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the green channel: tensor(3.3371e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the red channel: tensor(4.2242e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the green channel: tensor(3.3376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the red channel: tensor(4.2237e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the green channel: tensor(3.3381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the blue channel: tensor(1.8234e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the red channel: tensor(4.2237e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the green channel: tensor(3.3382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the blue channel: tensor(1.8212e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the red channel: tensor(2.8985e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the green channel: tensor(3.3383e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the blue channel: tensor(1.7847e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the red channel: tensor(4.2241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the green channel: tensor(3.3386e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the red channel: tensor(4.2227e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the green channel: tensor(3.3389e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the blue channel: tensor(1.8235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the red channel: tensor(4.2233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the green channel: tensor(3.3388e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the blue channel: tensor(1.7856e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the red channel: tensor(4.2220e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the green channel: tensor(3.3388e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the red channel: tensor(4.2206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the green channel: tensor(3.3386e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the blue channel: tensor(1.7870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the red channel: tensor(4.2204e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the green channel: tensor(3.3382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the blue channel: tensor(1.8222e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the red channel: tensor(4.2188e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the green channel: tensor(3.3376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the blue channel: tensor(1.8214e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the red channel: tensor(2.8905e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the green channel: tensor(3.3378e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the blue channel: tensor(1.7857e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the red channel: tensor(4.2159e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the green channel: tensor(3.3383e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the blue channel: tensor(1.7862e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the red channel: tensor(4.2159e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the green channel: tensor(3.3382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the blue channel: tensor(1.7861e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the red channel: tensor(4.2157e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the green channel: tensor(3.3375e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the red channel: tensor(4.2149e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the green channel: tensor(3.3382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the blue channel: tensor(1.8241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the red channel: tensor(4.2146e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the green channel: tensor(3.3381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the blue channel: tensor(1.8243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the red channel: tensor(4.2129e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the blue channel: tensor(1.8230e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the red channel: tensor(4.2101e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the green channel: tensor(3.3359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the red channel: tensor(4.2098e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the green channel: tensor(3.3352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the red channel: tensor(4.2098e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the green channel: tensor(3.3358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the red channel: tensor(2.8842e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the green channel: tensor(3.3375e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the blue channel: tensor(1.8233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the red channel: tensor(4.2089e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the blue channel: tensor(1.7860e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the red channel: tensor(4.2074e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the green channel: tensor(3.3371e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the blue channel: tensor(1.7872e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the red channel: tensor(4.2080e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the green channel: tensor(3.3371e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the red channel: tensor(4.2068e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the green channel: tensor(3.3364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the red channel: tensor(4.2070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the blue channel: tensor(1.8240e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the red channel: tensor(4.2056e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the green channel: tensor(3.3355e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the red channel: tensor(4.2067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the blue channel: tensor(1.8243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the red channel: tensor(4.2059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the blue channel: tensor(1.8236e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the red channel: tensor(4.2051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the green channel: tensor(3.3362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the red channel: tensor(4.2041e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the green channel: tensor(3.3359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the blue channel: tensor(1.7854e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the red channel: tensor(4.2040e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the green channel: tensor(3.3362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the blue channel: tensor(1.7871e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the red channel: tensor(4.2053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the green channel: tensor(3.3363e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the blue channel: tensor(1.8224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the red channel: tensor(4.2043e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the green channel: tensor(3.3362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the blue channel: tensor(1.7865e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the red channel: tensor(4.2051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the green channel: tensor(3.3364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the red channel: tensor(4.2047e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the green channel: tensor(3.3375e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the blue channel: tensor(1.7860e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the red channel: tensor(2.8790e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the green channel: tensor(3.3378e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the blue channel: tensor(1.7864e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the red channel: tensor(4.2049e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the green channel: tensor(3.3373e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the blue channel: tensor(1.7861e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the red channel: tensor(4.2039e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the green channel: tensor(3.3372e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the blue channel: tensor(1.7868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the red channel: tensor(4.2021e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the blue channel: tensor(1.7867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the red channel: tensor(4.2014e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the green channel: tensor(3.3367e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the red channel: tensor(4.2019e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the green channel: tensor(3.3353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the blue channel: tensor(1.7863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the red channel: tensor(4.2010e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the green channel: tensor(3.3362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the blue channel: tensor(1.8227e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the red channel: tensor(4.2006e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the green channel: tensor(3.3358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the blue channel: tensor(1.8228e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the red channel: tensor(4.2007e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the green channel: tensor(3.3364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the blue channel: tensor(1.8244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the red channel: tensor(4.1994e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the green channel: tensor(3.3358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the blue channel: tensor(1.7870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the red channel: tensor(4.1998e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the green channel: tensor(3.3366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the red channel: tensor(4.1990e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the green channel: tensor(3.3363e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the blue channel: tensor(1.7862e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the red channel: tensor(4.1984e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the red channel: tensor(4.1973e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the green channel: tensor(3.3353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the blue channel: tensor(1.7882e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the red channel: tensor(4.1968e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the green channel: tensor(3.3365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the blue channel: tensor(1.7882e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the red channel: tensor(4.1961e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the red channel: tensor(4.1966e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the green channel: tensor(3.3353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the blue channel: tensor(1.8245e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the red channel: tensor(4.1964e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the green channel: tensor(3.3359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the blue channel: tensor(1.8241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the red channel: tensor(2.8720e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the green channel: tensor(3.3357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the blue channel: tensor(1.8244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the red channel: tensor(4.1954e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the green channel: tensor(3.3367e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the red channel: tensor(4.1936e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the green channel: tensor(3.3369e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the red channel: tensor(4.1930e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the green channel: tensor(3.3363e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the red channel: tensor(4.1928e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the green channel: tensor(3.3361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the blue channel: tensor(1.8254e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the red channel: tensor(4.1934e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the green channel: tensor(3.3362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the red channel: tensor(4.1929e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the green channel: tensor(3.3370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the blue channel: tensor(1.7886e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the red channel: tensor(4.1925e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the green channel: tensor(3.3361e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the blue channel: tensor(1.8246e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the red channel: tensor(4.1935e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the green channel: tensor(3.3373e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the blue channel: tensor(1.8239e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the red channel: tensor(4.1942e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the green channel: tensor(3.3377e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the blue channel: tensor(1.8249e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the red channel: tensor(4.1928e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the green channel: tensor(3.3376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the red channel: tensor(4.1925e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the green channel: tensor(3.3386e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the blue channel: tensor(1.8261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the red channel: tensor(4.1918e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the green channel: tensor(3.3386e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the blue channel: tensor(1.8271e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the red channel: tensor(4.1904e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the green channel: tensor(3.3381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the red channel: tensor(4.1906e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the green channel: tensor(3.3381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the red channel: tensor(4.1908e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the green channel: tensor(3.3380e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the red channel: tensor(4.1904e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the green channel: tensor(3.3382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the red channel: tensor(4.1906e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the green channel: tensor(3.3391e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the red channel: tensor(4.1894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the green channel: tensor(3.3389e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the red channel: tensor(4.1889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the green channel: tensor(3.3390e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the blue channel: tensor(1.8266e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the red channel: tensor(4.1885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the green channel: tensor(3.3387e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the red channel: tensor(4.1887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the green channel: tensor(3.3395e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the red channel: tensor(4.1881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the green channel: tensor(3.3394e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the blue channel: tensor(1.8270e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the red channel: tensor(4.1865e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the green channel: tensor(3.3394e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the blue channel: tensor(1.7871e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the red channel: tensor(4.1863e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the green channel: tensor(3.3402e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the red channel: tensor(4.1867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the green channel: tensor(3.3399e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the red channel: tensor(4.1867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the green channel: tensor(3.3395e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the blue channel: tensor(1.7874e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the red channel: tensor(4.1853e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the green channel: tensor(3.3395e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the red channel: tensor(4.1849e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the green channel: tensor(3.3402e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the blue channel: tensor(1.8243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the red channel: tensor(4.1847e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the green channel: tensor(3.3403e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the blue channel: tensor(1.7867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the red channel: tensor(4.1844e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the green channel: tensor(3.3409e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the blue channel: tensor(1.8243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the red channel: tensor(4.1838e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the green channel: tensor(3.3398e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the blue channel: tensor(1.8256e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the red channel: tensor(4.1834e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the green channel: tensor(3.3401e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the red channel: tensor(4.1834e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the green channel: tensor(3.3399e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the red channel: tensor(4.1831e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the green channel: tensor(3.3397e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the red channel: tensor(4.1828e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the green channel: tensor(3.3402e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the red channel: tensor(4.1816e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the green channel: tensor(3.3404e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the blue channel: tensor(1.7877e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the red channel: tensor(4.1803e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the red channel: tensor(4.1803e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the green channel: tensor(3.3399e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the red channel: tensor(4.1787e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the green channel: tensor(3.3402e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the blue channel: tensor(1.7885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the red channel: tensor(4.1782e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the red channel: tensor(4.1770e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the green channel: tensor(3.3396e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the blue channel: tensor(1.8256e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the red channel: tensor(4.1771e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the green channel: tensor(3.3397e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the blue channel: tensor(1.7877e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the red channel: tensor(2.8557e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the green channel: tensor(3.3406e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the blue channel: tensor(1.7875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the red channel: tensor(4.1748e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the blue channel: tensor(1.8258e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the red channel: tensor(4.1747e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the red channel: tensor(4.1744e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the green channel: tensor(3.3421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the blue channel: tensor(1.8261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the red channel: tensor(4.1741e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the blue channel: tensor(1.7858e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the red channel: tensor(4.1737e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the green channel: tensor(3.3415e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the red channel: tensor(4.1719e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the blue channel: tensor(1.8250e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the red channel: tensor(4.1708e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the green channel: tensor(3.3426e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the red channel: tensor(4.1711e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the blue channel: tensor(1.7876e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the red channel: tensor(4.1711e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the green channel: tensor(3.3428e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the blue channel: tensor(1.7870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the red channel: tensor(4.1697e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the red channel: tensor(4.1706e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the blue channel: tensor(1.8260e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the red channel: tensor(4.1701e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the green channel: tensor(3.3423e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the red channel: tensor(4.1698e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the green channel: tensor(3.3429e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the blue channel: tensor(1.7873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the red channel: tensor(4.1705e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the green channel: tensor(3.3425e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the red channel: tensor(4.1695e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the green channel: tensor(3.3428e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the blue channel: tensor(1.8264e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the red channel: tensor(4.1683e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the green channel: tensor(3.3421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the red channel: tensor(4.1677e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the green channel: tensor(3.3420e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the red channel: tensor(4.1668e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the red channel: tensor(4.1664e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the green channel: tensor(3.3416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the red channel: tensor(4.1665e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the green channel: tensor(3.3416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the red channel: tensor(4.1656e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the green channel: tensor(3.3405e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the red channel: tensor(4.1655e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the green channel: tensor(3.3411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the red channel: tensor(4.1650e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the green channel: tensor(3.3411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the blue channel: tensor(1.8263e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the red channel: tensor(4.1637e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the green channel: tensor(3.3407e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the blue channel: tensor(1.7890e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the red channel: tensor(4.1634e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the green channel: tensor(3.3407e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the blue channel: tensor(1.8257e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the red channel: tensor(4.1623e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the green channel: tensor(3.3402e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the blue channel: tensor(1.8247e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the red channel: tensor(4.1622e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the green channel: tensor(3.3409e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the red channel: tensor(4.1623e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the green channel: tensor(3.3401e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the blue channel: tensor(1.7862e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the red channel: tensor(4.1608e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the green channel: tensor(3.3404e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the red channel: tensor(4.1601e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the blue channel: tensor(1.7886e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the red channel: tensor(4.1607e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the red channel: tensor(4.1620e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the green channel: tensor(3.3407e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the blue channel: tensor(1.8259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the red channel: tensor(4.1603e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the red channel: tensor(4.1592e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the green channel: tensor(3.3411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the red channel: tensor(4.1584e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the green channel: tensor(3.3412e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the red channel: tensor(4.1588e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the blue channel: tensor(1.8270e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the red channel: tensor(4.1585e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the green channel: tensor(3.3405e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the blue channel: tensor(1.8264e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the red channel: tensor(4.1581e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the green channel: tensor(3.3407e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the red channel: tensor(4.1569e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the red channel: tensor(4.1558e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the red channel: tensor(4.1557e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the green channel: tensor(3.3415e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the blue channel: tensor(1.8252e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the red channel: tensor(4.1556e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the green channel: tensor(3.3419e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the red channel: tensor(4.1544e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the red channel: tensor(4.1529e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the blue channel: tensor(1.7870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the red channel: tensor(4.1523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the green channel: tensor(3.3420e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the red channel: tensor(4.1522e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the green channel: tensor(3.3421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the blue channel: tensor(1.7871e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the red channel: tensor(4.1530e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the blue channel: tensor(1.7873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the red channel: tensor(4.1511e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the green channel: tensor(3.3423e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the red channel: tensor(4.1511e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the green channel: tensor(3.3422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the blue channel: tensor(1.7886e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the red channel: tensor(4.1507e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the green channel: tensor(3.3422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the blue channel: tensor(1.8269e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the red channel: tensor(4.1496e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the blue channel: tensor(1.7903e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the red channel: tensor(4.1498e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the green channel: tensor(3.3429e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the red channel: tensor(4.1497e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the red channel: tensor(4.1490e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the green channel: tensor(3.3419e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the red channel: tensor(4.1498e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the red channel: tensor(4.1492e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the blue channel: tensor(1.7882e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the red channel: tensor(4.1484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the red channel: tensor(4.1485e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the red channel: tensor(4.1477e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the blue channel: tensor(1.8267e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the red channel: tensor(4.1474e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the blue channel: tensor(1.8253e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the red channel: tensor(4.1472e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the green channel: tensor(3.3426e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the blue channel: tensor(1.8260e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the red channel: tensor(4.1468e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the green channel: tensor(3.3422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the red channel: tensor(4.1452e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the green channel: tensor(3.3434e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the red channel: tensor(4.1459e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the green channel: tensor(3.3418e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the red channel: tensor(4.1451e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the green channel: tensor(3.3421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the blue channel: tensor(1.7873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the red channel: tensor(4.1439e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the green channel: tensor(3.3419e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the blue channel: tensor(1.7885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the red channel: tensor(4.1427e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the red channel: tensor(4.1427e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the blue channel: tensor(1.7882e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the red channel: tensor(4.1423e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the green channel: tensor(3.3411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the blue channel: tensor(1.8273e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the red channel: tensor(4.1422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the green channel: tensor(3.3404e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the blue channel: tensor(1.7886e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the red channel: tensor(4.1420e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the red channel: tensor(4.1411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the red channel: tensor(4.1411e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the green channel: tensor(3.3412e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the blue channel: tensor(1.8271e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the red channel: tensor(4.1416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the green channel: tensor(3.3416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the red channel: tensor(4.1415e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the green channel: tensor(3.3420e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the red channel: tensor(4.1409e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the green channel: tensor(3.3424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the blue channel: tensor(1.7885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the red channel: tensor(4.1408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the green channel: tensor(3.3416e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the red channel: tensor(4.1400e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the blue channel: tensor(1.8255e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the red channel: tensor(4.1404e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the green channel: tensor(3.3415e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the red channel: tensor(4.1392e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the green channel: tensor(3.3413e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the red channel: tensor(4.1396e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the blue channel: tensor(1.7902e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the red channel: tensor(4.1392e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the green channel: tensor(3.3421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the blue channel: tensor(1.8268e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the red channel: tensor(4.1389e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the green channel: tensor(3.3414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the blue channel: tensor(1.7899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the red channel: tensor(4.1391e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the green channel: tensor(3.3417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the blue channel: tensor(1.8276e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the red channel: tensor(4.1370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the green channel: tensor(3.3408e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the blue channel: tensor(1.8272e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the red channel: tensor(4.1373e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the green channel: tensor(3.3430e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the blue channel: tensor(1.8267e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the red channel: tensor(4.1366e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the green channel: tensor(3.3423e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the blue channel: tensor(1.7902e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the red channel: tensor(4.1368e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the green channel: tensor(3.3422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the red channel: tensor(4.1364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the green channel: tensor(3.3410e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the blue channel: tensor(1.7898e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the red channel: tensor(4.1352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the green channel: tensor(3.3427e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the blue channel: tensor(1.8273e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the red channel: tensor(4.1352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the green channel: tensor(3.3430e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the blue channel: tensor(1.8250e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the red channel: tensor(4.1340e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the green channel: tensor(3.3433e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the blue channel: tensor(1.7882e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the red channel: tensor(4.1337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the green channel: tensor(3.3436e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the red channel: tensor(4.1325e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the green channel: tensor(3.3434e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the red channel: tensor(4.1324e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the green channel: tensor(3.3434e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the blue channel: tensor(1.7869e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the red channel: tensor(4.1318e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the green channel: tensor(3.3435e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the red channel: tensor(4.1306e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the green channel: tensor(3.3437e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the blue channel: tensor(1.7879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the red channel: tensor(4.1303e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the green channel: tensor(3.3432e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the blue channel: tensor(1.7885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the red channel: tensor(4.1294e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the green channel: tensor(3.3443e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the red channel: tensor(4.1289e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the green channel: tensor(3.3438e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the red channel: tensor(4.1291e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the green channel: tensor(3.3448e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the blue channel: tensor(1.8259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the red channel: tensor(4.1287e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the green channel: tensor(3.3439e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the red channel: tensor(4.1280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the green channel: tensor(3.3453e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the blue channel: tensor(1.8261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the red channel: tensor(4.1276e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the green channel: tensor(3.3451e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the blue channel: tensor(1.8259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the red channel: tensor(4.1283e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the green channel: tensor(3.3447e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the blue channel: tensor(1.8261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the red channel: tensor(4.1278e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the green channel: tensor(3.3455e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the blue channel: tensor(1.7899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the red channel: tensor(4.1276e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the green channel: tensor(3.3453e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the red channel: tensor(4.1263e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the green channel: tensor(3.3451e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the blue channel: tensor(1.7903e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the red channel: tensor(4.1257e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the green channel: tensor(3.3460e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the red channel: tensor(4.1252e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the green channel: tensor(3.3460e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the blue channel: tensor(1.7903e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the red channel: tensor(4.1232e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the green channel: tensor(3.3462e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the blue channel: tensor(1.7901e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the red channel: tensor(4.1236e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the green channel: tensor(3.3467e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the blue channel: tensor(1.7904e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the red channel: tensor(4.1238e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the green channel: tensor(3.3462e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the blue channel: tensor(1.8266e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the red channel: tensor(4.1245e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the green channel: tensor(3.3453e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the red channel: tensor(4.1243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the green channel: tensor(3.3454e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the blue channel: tensor(1.8268e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the red channel: tensor(4.1248e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the green channel: tensor(3.3454e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the red channel: tensor(4.1247e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the green channel: tensor(3.3457e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the blue channel: tensor(1.8255e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the red channel: tensor(4.1244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the green channel: tensor(3.3454e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the blue channel: tensor(1.7877e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the red channel: tensor(4.1235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the green channel: tensor(3.3458e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the red channel: tensor(4.1224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the green channel: tensor(3.3458e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the blue channel: tensor(1.8253e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the red channel: tensor(4.1223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the green channel: tensor(3.3466e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the red channel: tensor(4.1224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the green channel: tensor(3.3465e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the red channel: tensor(4.1216e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the green channel: tensor(3.3469e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the blue channel: tensor(1.7877e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the red channel: tensor(4.1209e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the green channel: tensor(3.3464e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the red channel: tensor(4.1203e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the green channel: tensor(3.3470e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the blue channel: tensor(1.7880e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the red channel: tensor(4.1211e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the green channel: tensor(3.3467e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the red channel: tensor(4.1203e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the green channel: tensor(3.3471e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the red channel: tensor(4.1198e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the green channel: tensor(3.3468e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the red channel: tensor(4.1196e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the green channel: tensor(3.3467e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the blue channel: tensor(1.7889e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the red channel: tensor(4.1184e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the green channel: tensor(3.3475e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the blue channel: tensor(1.8270e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the red channel: tensor(4.1175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the green channel: tensor(3.3477e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the blue channel: tensor(1.7886e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the red channel: tensor(4.1175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the green channel: tensor(3.3477e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the red channel: tensor(4.1185e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the green channel: tensor(3.3475e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the blue channel: tensor(1.8262e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the red channel: tensor(4.1177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the green channel: tensor(3.3473e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the red channel: tensor(4.1169e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the green channel: tensor(3.3480e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the blue channel: tensor(1.8280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the red channel: tensor(4.1152e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the green channel: tensor(3.3484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the red channel: tensor(4.1146e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the green channel: tensor(3.3491e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the red channel: tensor(4.1143e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the green channel: tensor(3.3492e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the blue channel: tensor(1.8277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the red channel: tensor(4.1149e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the green channel: tensor(3.3490e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the red channel: tensor(4.1138e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the green channel: tensor(3.3493e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the red channel: tensor(4.1127e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the green channel: tensor(3.3492e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the blue channel: tensor(1.7888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the red channel: tensor(4.1120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the green channel: tensor(3.3497e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the blue channel: tensor(1.7903e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the red channel: tensor(4.1109e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the green channel: tensor(3.3496e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the blue channel: tensor(1.7899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the red channel: tensor(4.1096e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the green channel: tensor(3.3489e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the red channel: tensor(4.1097e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the green channel: tensor(3.3484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the red channel: tensor(4.1088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the green channel: tensor(3.3487e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the blue channel: tensor(1.8276e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the red channel: tensor(4.1077e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the green channel: tensor(3.3481e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the blue channel: tensor(1.8272e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the red channel: tensor(4.1063e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the green channel: tensor(3.3484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the blue channel: tensor(1.8258e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the red channel: tensor(4.1060e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the green channel: tensor(3.3494e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the blue channel: tensor(1.8254e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the red channel: tensor(4.1055e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the green channel: tensor(3.3495e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the blue channel: tensor(1.8261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the red channel: tensor(4.1052e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the green channel: tensor(3.3500e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the blue channel: tensor(1.8265e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the red channel: tensor(4.1045e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the green channel: tensor(3.3483e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the blue channel: tensor(1.7878e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the red channel: tensor(4.1035e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the green channel: tensor(3.3484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the blue channel: tensor(1.7866e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the red channel: tensor(4.1024e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the green channel: tensor(3.3486e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the blue channel: tensor(1.8260e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the red channel: tensor(4.1022e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the green channel: tensor(3.3491e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the red channel: tensor(4.1011e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the green channel: tensor(3.3488e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the red channel: tensor(4.1011e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the green channel: tensor(3.3495e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the blue channel: tensor(1.7906e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the red channel: tensor(4.0997e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the green channel: tensor(3.3500e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the blue channel: tensor(1.7898e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the red channel: tensor(4.1002e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the green channel: tensor(3.3497e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the blue channel: tensor(1.7903e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the red channel: tensor(4.1005e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the green channel: tensor(3.3496e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the blue channel: tensor(1.7894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the red channel: tensor(4.1000e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the green channel: tensor(3.3502e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the blue channel: tensor(1.7892e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the red channel: tensor(4.0993e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the green channel: tensor(3.3507e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the blue channel: tensor(1.7899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the red channel: tensor(4.0976e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the green channel: tensor(3.3506e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the blue channel: tensor(1.8283e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the red channel: tensor(4.0962e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the green channel: tensor(3.3513e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the blue channel: tensor(1.7887e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the red channel: tensor(4.0961e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the green channel: tensor(3.3517e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the blue channel: tensor(1.7881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the red channel: tensor(4.0954e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the green channel: tensor(3.3514e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the blue channel: tensor(1.8270e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the red channel: tensor(4.0940e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the green channel: tensor(3.3520e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the blue channel: tensor(1.7891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the red channel: tensor(4.0939e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the green channel: tensor(3.3516e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the blue channel: tensor(1.8259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the red channel: tensor(4.0934e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the green channel: tensor(3.3513e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the blue channel: tensor(1.8273e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the red channel: tensor(4.0929e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the green channel: tensor(3.3513e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the blue channel: tensor(1.8279e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the red channel: tensor(4.0927e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the green channel: tensor(3.3516e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the red channel: tensor(4.0913e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the green channel: tensor(3.3523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the blue channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the red channel: tensor(4.0898e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the green channel: tensor(3.3519e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the blue channel: tensor(1.7883e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the red channel: tensor(4.0900e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the green channel: tensor(3.3522e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the blue channel: tensor(1.7893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the red channel: tensor(4.0907e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the green channel: tensor(3.3520e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the blue channel: tensor(1.7895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the red channel: tensor(4.0899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the green channel: tensor(3.3524e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the blue channel: tensor(1.8258e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the red channel: tensor(4.0898e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the green channel: tensor(3.3521e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the blue channel: tensor(1.7890e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the red channel: tensor(4.0885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the green channel: tensor(3.3525e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the blue channel: tensor(1.7884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the red channel: tensor(4.0895e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the green channel: tensor(3.3515e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the blue channel: tensor(1.8264e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the red channel: tensor(4.0890e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the green channel: tensor(3.3523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the blue channel: tensor(1.7885e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the red channel: tensor(4.0875e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the green channel: tensor(3.3520e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the blue channel: tensor(1.7905e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the red channel: tensor(4.0879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the green channel: tensor(3.3505e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the blue channel: tensor(1.7902e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the red channel: tensor(4.0873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the green channel: tensor(3.3509e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the blue channel: tensor(1.7899e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the red channel: tensor(4.0870e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the green channel: tensor(3.3522e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the blue channel: tensor(1.8274e-16, device='cuda:0', dtype=torch.float64)\n"
      ]
     }
    ],
@@ -426,71 +1785,59 @@
     "\n",
     "\n",
     "for t in range(0,T_max):\n",
-    "\n",
-    "###### red channel update ######\n",
-    "################################\n",
-    "        yz = A(z_r)\n",
-    "        yz_abs=torch.abs(yz)\n",
-    "        first_divide=torch.divide(yz,yz_abs)\n",
-    "        first_multi=torch.multiply(Y_r,first_divide)\n",
-    "        sub=yz-first_multi\n",
-    "        # print(sub.shape)\n",
-    "        second_multi=At(sub)\n",
-    "        second_divide=torch.divide(second_multi,L)\n",
-    "        z_r = z_r - mu*second_divide\n",
-    "        print(x_r.shape)\n",
-    "        print(z_r.shape)\n",
-    "        error = distance(x_r,z_r)\n",
-    "        print(error)\n",
-    "    # X_recons[:,:,0] = distance_update(x_r,z_r)\n",
-    "    # err[t,0] = image_err(X_recons[:,:,0],X[:,:,0])\n",
-    "    # # print(\"iteration:\",t,\"error in the red channel:\",image_err(X_recons[:,:,0],X[:,:,0]))\n",
-    "    # Bz_r = A(z_r)\n",
-    "    # C_r  = torch.mul(torch.abs(Bz_r)**2-Y_r , Bz_r)\n",
-    "    # grad_r = At(C_r)/torch.numel(C_r)     \n",
-    "    # z_r = z_r - (mu(t)/normest_r**2) * grad_r \n",
-    "###### green channel update ######\n",
-    "################################\n",
-    "    # X_recons[:,:,1] = distance_update(x_g,z_g)\n",
-    "    # err[t,1] = image_err(X_recons[:,:,1],X[:,:,1])\n",
-    "    # # print(\"iteration:\",t,\"error in the green channel:\",image_err(X_recons[:,:,1],X[:,:,1]))\n",
-    "    # Bz_g = A(z_g)\n",
-    "    # C_g  = torch.mul(torch.abs(Bz_g)**2-Y_g , Bz_g)\n",
-    "    # grad_g = At(C_g)/torch.numel(C_g)     \n",
-    "    # z_g = z_g - (mu(t)/normest_g**2) * grad_g\n",
-    "###### blue channel update ######\n",
-    "################################\n",
-    "    # X_recons[:,:,2] = distance_update(x_b,z_b)\n",
-    "    # err[t,2] = image_err(X_recons[:,:,2],X[:,:,2])\n",
-    "    # # print(\"iteration:\",t,\"error in the blue channel:\",image_err(X_recons[:,:,2],X[:,:,2]))\n",
-    "    # Bz_b = A(z_b)\n",
-    "    # C_b  = torch.mul(torch.abs(Bz_b)**2-Y_b , Bz_b)\n",
-    "    # grad_b = At(C_b)/torch.numel(C_b)     \n",
-    "    # z_b = z_b - (mu(t)/normest_b**2) * grad_b\n",
-    "\n",
-    "##### saving the image at the iteration #####\n",
-    "#############################################\n",
-    "    # save_image(X_recons,t,file_name)\n",
+    "    ###### red channel update ######\n",
+    "    ################################\n",
+    "    X_recons[:,:,0] = distance_update(x_r,z_r)\n",
+    "    err[t,0] = image_err(X_recons[:,:,0],X[:,:,0])\n",
+    "    print(\"iteration:\",t,\"error in the red channel:\",image_err(X_recons[:,:,0],X[:,:,0]))\n",
+    "    yz_r = A(z_r)\n",
+    "    yz_abs_r = torch.abs(yz_r)\n",
+    "    first_divide_r = torch.divide(yz_r,yz_abs_r)\n",
+    "    first_multi_r = torch.multiply(Y_r,first_divide_r)\n",
+    "    sub_r = yz_r - first_multi_r\n",
+    "    second_multi_r = At(sub_r)\n",
+    "    second_divide_r =torch.divide(second_multi_r,L*n1*n2)\n",
+    "    z_r = z_r - mu * second_divide_r\n",
+    "    ###### green channel update ######\n",
+    "    ################################\n",
+    "    X_recons[:,:,1] = distance_update(x_g,z_g)\n",
+    "    err[t,1] = image_err(X_recons[:,:,1],X[:,:,1])\n",
+    "    print(\"iteration:\",t,\"error in the green channel:\",image_err(X_recons[:,:,1],X[:,:,1]))\n",
+    "    yz_g = A(z_g)\n",
+    "    yz_abs_g = torch.abs(yz_g)\n",
+    "    first_divide_g = torch.divide(yz_g,yz_abs_g)\n",
+    "    first_multi_g = torch.multiply(Y_g,first_divide_g)\n",
+    "    sub_g = yz_g - first_multi_g\n",
+    "    second_multi_g = At(sub_g)\n",
+    "    second_divide_g =torch.divide(second_multi_g,L*n1*n2)\n",
+    "    z_g = z_g - mu * second_divide_g\n",
+    "    ###### blue channel update ######\n",
+    "    ################################\n",
+    "    X_recons[:,:,2] = distance_update(x_b,z_b)\n",
+    "    err[t,2] = image_err(X_recons[:,:,2],X[:,:,2])\n",
+    "    print(\"iteration:\",t,\"error in the blue channel:\",image_err(X_recons[:,:,2],X[:,:,2]))\n",
+    "    yz_b = A(z_b)\n",
+    "    yz_abs_b = torch.abs(yz_b)\n",
+    "    first_divide_b = torch.divide(yz_b,yz_abs_b)\n",
+    "    first_multi_b = torch.multiply(Y_b,first_divide_b)\n",
+    "    sub_b = yz_b - first_multi_b\n",
+    "    second_multi_b = At(sub_b)\n",
+    "    second_divide_b =torch.divide(second_multi_b,L*n1*n2)\n",
+    "    z_b = z_b - mu * second_divide_b\n",
+    "    ##### saving the image at the iteration #####\n",
+    "    #############################################\n",
+    "    save_image(X_recons,t,file_name)\n",
     "    \n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 9,
    "metadata": {},
    "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/tmp/ipykernel_1326206/2901913233.py:12: RuntimeWarning: invalid value encountered in cast\n",
-      "  image = image.detach().cpu().numpy().astype(int)\n",
-      "Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).\n"
-     ]
-    },
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAErCAYAAABDzICRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAFBElEQVR4nO3coQ3AMAwAwabq/iu7K4REAX+HDQxfBl4zMw8AkPXeXgAAuEsMAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIO7bHVxrndwDADhg59GwywAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAODEAAHFiAADixAAAxIkBAIgTAwAQJwYAIE4MAECcGACAuG93cGZO7gEAXOIyAABxYgAA4sQAAMSJAQCIEwMAECcGACBODABAnBgAgDgxAABxP8Q5DFOQnMRtAAAAAElFTkSuQmCC",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAErCAYAAABDzICRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9V5MkSZbvB/5Uzcw5C5qZlcW6eqrJNJl7sQvI4mVF8BUg+wnxDsGuyD4sBCIL7NDm09Pd06w4yYzMDOrhxNyIqu6DUvOIrK6+GODO3AkVyYwIJ2ZqqkfP+R8ujDGGh/EwHsbDeBgP42H8ux3yP/cEHsbDeBgP42E8jIfxn3c8gIGH8TAexsN4GA/j3/l4AAMP42E8jIfxMB7Gv/PxAAYexsN4GA/jYTyMf+fjAQw8jIfxMB7Gw3gY/87HAxh4GA/jYTyMh/Ew/p2PBzDwMB7Gw3gYD+Nh/DsfD2DgYTyMh/EwHsbD+Hc+HsDAw3gYD+NhPIyH8e985F/3g1rr/yPn8TD+Dx5CiK/1OYPBGINWsCtrvvzyjFcX17x4ec7F+RWr1YamadBKgRRkMqfXyxkNB8ymExaLKYNBjpQCYwAjEQLefOsN3nvvHWQGCBCAMWCMxmjQ2tC0ikZpavezURqlFFob+88YtNZoVzTTF880WtMpo2kMuOc1xiD2amwKCJ834alBChHXyf3u/7a/S6Swk/fvSen+CYF7i0zaX6SADEEmBRL7OQAp5Z1r37dXQtjvkdwz/Yx92d3UPcndfTb4GqN2vUEYuy7GGBCatAipfR2MEGhAaPue1sZdy14kfM7Ti3tNa1Bao4xBK4PSBqUVrVJoZfdPKYVuFUqpMLdcZjx9csLx4QwjNE2j+eWvf8fZy1fsyh1VVdHUNaptubq45I9/+COXl5cUecFisaCqKq6urqirmqZt7L4jkDLjzbee8N/83/5r6rrlV//0az795FOapkZphcDuw2Qy4b/6v/5XHJ0c8cVnn/PH339AWW4wRiOzjF5R0OsVIAT9fo/T01O0hi+/+JLLqwuapkZrjRCCPM8ZDAa8+dZbzOcLzl+95Pz8gqZpAIPWCjAURY/FYsG7774DwBeff8GLl69omhowZDIjL3KG/QFP33rKt//yuxgBTdMgDGi7+hi9R+DhT4VBABKERGsBRjObTvnLv/xL/pv/y3/k6PiIzWbD//g//k/89f/vb+y3dEvbNm5v7J7ZfQetFVppjNFobTDuPCqtaOqGzWrN1dUVZVmidAvGIIw/JxlZnpMXPfr9PgeHc9544w3mBwfk/QIhM4xWlra0pSVjNNpoMNq9Ziz9GA0IMinJsow8z+n1egxHI3qDPr1eQb/fJy9y8rxACIHRhrauubm65pNPPubZs2esblf0+32+9e1v8xfv/wWT2QxtNKPhgP/Hf//fc7CYdc6UPzfC/a6NnU/TNFxcXPGTn/yE/+F/+B94/uwZSmvmszmTyZirq2uur65o2xajNDheZoTlNcaYhKdk9my71y0PTNbcrw/xLPq5OY7geELkE8vVkj81vjYYeBj/RocI5PH1hrGfF9LQH/To9XLyXsZgMKDo9RCiRGvQBkyrIVMoJanqlu2uYlANKHo58fwYlNI8+/I5jx6dMJmOgjDWyqCUoVWGummp2jYAAW0MbavCgQN3+HRXePnX059CiERgmXCYvYDwUxPC/24FqklfFyKAA+mAgBf+9uFMBAPup8ACACkBY8gceMjcZ2BfmN8FA/e+hhf63dfsLyaAqztbafZ+ahB4IW7BvdZ+NxJAABhtBQ3hGnbd42tW0LtXHFgTFqxpUBqU0hitUVpZ5mUMSmu00oG5WUEm6A97HB6OkdJgkLw6P+fV+TlVXVM7EKCVpt5VvHzxgsuLC+qmAQTT2Yy5EGy3W6qqsusUAIri/PyCq8tr3nr7Ld544wlnz89omgYpZKCRsix5/uUzTk+POT095fmzMzabtRV2Tgh5etxuSobDEcPBkDzPO3QmBCil2G63XF9dcXR4wOHhIev12q2hX3dNUytWqxXr9ZpHjx5xcHjAxeWVfQYMoJBaUvQLDg4PyPOMqm3s93GM35hIt5Zw3B4ZhJFhZ/M852Ax44c/+D4/+N5fcnpyhJDwxRfP+X/9P//f/PSnP7Xzw6CNcvRnaUUKEcCeQ/jhrGm3zrrVtE1L27bJGY1A3IJJjVAKLRoaCZvNmrIsmc5mGJUjMAgyS9NohDRWmdAaY4RbO+POkrwHxNr5+/MaiFlbOiu3W16cveDTzz7h+fPnVFXDu+++ww//6q949OQJQgratqXcbJmMhvT7vXDt7n3smgdAjUBrC9LW6zVN01ihr+16FXlBJiVt24LWCLdufnpoHc62lNLyGBPv59fTAgEd7p8qNX643Q9czn7+6/H/BzDwb3x45nyv5i/+LBjgv4IxBilAZILZbMrV7Yp+v0ev1yfPC6BGaSuEjFLINkNIzW5Xsy1LBoMCKXOkAOO4wXa747PPnvGtb38TJKhW0TSatrWWgLpVtFrRGk3rkLNJ/kFX6N/bUmPPIpB+PgpPOgdNiK5wt8LfCnEpBMJr+dKjduluYRm/FJLMve9xgjAgMvu5zF0v3R9vGfDXCKDkXiDg4YtjrDJ5JwECXoswfh0cujF+WUxijcELJYNGJhzFaRpaBItJxwrT2RNQ7qfWJvzuLQHeAoAT/FYWGPu3UmilArgQBk6ODykK+5zltuGTTz+nqirauqGpaqsdKcX11TXnr86p6walFLWpMMZwdHLMzc01y+Wyg4K00pTlji+/+JI333zKo9MTDg7mlOWWRjlRaawAf/HyBVdXb3NycsLJyQmXF+eUZR3WFqJmfH19jZl3rTFWi7PCXgrB6nbJ7e2Sw8NDFos5dV3Ttgoh7BqqRlFiuL6+5vDwkIODAxaLOWVZ0rYtQgiKomA+mzMeT2ia1mnlCcpzdGqMAW0QXmAbEPQY9HKePH3CD374fb71rW+ymE0RBm6XS/7+Rz/jf/6f/xdevbqwljy0fT4riwOo8IjCa6TGWQu01jRNi2pb6rqi3JZsyy2tajBGIUwUSELIYDlRSkErqKqa29WK2XxBXvRAmnhGhUD6OQiJwVoilXJ8J7HteeChk++mlrS2btis1zz78ks+/vgjLi4vGI/H/If/8Fd857vfZTyb0zQtu92OcrOl3G45PT66AwLc3Tr8xQBaCBqtKKsdu2pH44CAUopWtXjGEM6njt+1ktvxEmn5TirktQMy8b7+3/3WoA6kN/G+X2c8gIH/EsZ9Ev812uLXu55wAAPGkwHDok+v6NHr98gKh9wNaGU1iFYopGxppWC3a9juGvKiQGbCoXWNyODZ2XNGsxnjyYRWKRqlrHZpLNErrQOjuU/g74OC9Peg3zqG030cET+TAIawToJgjpdSOvOyJJMygIFownPuBCfIMw8CcIDBgwoPHhKB7+cSf+/+7cFB+nvXUiDoPpoIZz5R2EmXzTg04BmIZZleq7NfiNq+SD7vtf5oHdAmcdcYgzb2NeOsARpoleqAAaG8+0BHF4GObgWjNPPZiMPFGGEk2hi+fHbG9c0tTaspqx11WyMR7HY7rm+uKcvSCi1t0KbldnXD22+/wcmjE16dX3C7XEbwgtXoz1685PzikpOTQ548fYPLyxvazcYBQokxUG53fPn5FxwfH3P66JSzs2fUdW3dUJZIram5bVndrimKHG0a8lzSNCLRTgEk23LH+fklhwcWDNwub1mWK9q2pXIApyDn5uaW65slj04fcXR0ws31iu22pN/LOVgcsDg8ROY5rVJB77OHxu29wGl/ns4Fo9GI99//Fj/8q+/x1ptvMBz20UZzfn7BT3/6C/72b/6eZ8++dPRn0M5dh5EIY9AWDQDCWgGxVhaNQrWapmmondWmqiqq3Y5dWdI0DaZV9ho6TtVP2wMCqTVt27JZb1itVgwGg3BmPP1ay4BjN0KAscBHA9LIuBYYtBemTrP2AK6uata3t3z5xRd88tEnrFa3PHnjKT/8j/+BN958ipSSzWZDWZZsNxu22y11XbNer7m5vmE0HOKhMeF8RWCs3Z4rrQIw9uBMax1Ar5AiWhOEieDApGfPnk4ZbiSScxtBj793Oozwrgu3djqc7K89HsDAv/HxOt3/PxkI7Bmfer2C8XhIsVwxHPYZDPpsisL6Pw1oY7UJpSS1Q/vVrqIZ9MikJS+DNds1dcsXX3zJG2++GXzS1h9IOFjgUTedefjX4+/2/YjY7z65cKAmvUxwEziBnmoQkZFIsiy6BYJ/XljB760BwmnnHs1LHAhwfuhwnz2XwP7v6d8eq+zPTXQfrTuCvPaMVDhBSPQnJybNIOYTkBDX3cTvOuZjwv7Y/VLa/h5NmMR4AK2cK8AKa4KJM4IBpVTYQ4Ph5OSQvMgwwGZT8fnnz6jq2mpZVQPauhfWmw11XSMz6RRAe93rq2uquuHo6IiDwwM26zVt0yYI0bC6XfHs2TOOjw94/PiULz5/xrbcgrYCBDfH8/MLbm5uOFjMOTk5ZXW7sv5vZ/6W0rLq3W5Hud0yGo+YTqc0TevM+wKjNa1pUa21ICxvlywWB4zGYy4urtmsN06AWCFcFiWXF5cs5gsmkymz+ZzhaMjBwZyT02Nmizkyy4LVIWy7sKLDaInRAiElh4eHfOfb7/O9732Hp49P6PVyqqbl488+5x/+4cf8/Ge/4OryGoxBSKu1I7T1YzuHlBdQHggaB/BU29KqhrKsAgCoqoq6qmidhcDvrTeRWeEXT6g2AomNK5GtYrfbBfdO3isCrRuRat8m+NaDouLPfrDSeQDuaF1r2sbGMHz5+Rd8/NFHbMuSv/jW+3z/hz9kNp/T1DXVbke5LdlsNmw2GxfXAZeXl3z66accHR3aWBG/5ol1zMcvKWOtABhDtdvZmCp3pprGxgj0ej3yLKNWyq2tvqPhG20wQqMdHwnMS2KBnz+vyVxSRSIwg+SVeI7/9HgAA/8Fjq8bLPja70ewipSSxXzKy4srBsM+w+GQfn9DVe5QWIbfqtYKvUxSNw3bbUmvn5PnI3J3QIUzja9ubrmd3DKcjNHBdJZo/CZBs54rpO9DYPBBy+88rhV4IgkCSN+OwjVlIDL8LqUPSrLmcymjGd67AiTGxQIAyCC8o8m/a03YjwN4HTgAQpBh+vn9ka6Dd1mk4Cky87hOnnH6NQsaR/r+3h6k7ymDAwNW8HtrTnAZuCAn7YR9AHkOBGinCWodgwYxMJuMOVhM3b3h2bOX3N5uaZuWpm5o2waJsNraaoWUkqIoOvPbbkuuLq/5xnvf4OTkiFcvX1j/vvaLJK114NlzvvneO8xmM05Oj7m8vGBXWuElpEQY2G5Lnn35JfP5lJOTI86eP2e1WtlnVYo8tyzTAh/DbDZnMplS140DAwRwZIxiuy25vr7h8OiIxWLByxevuL1V1i8vBUJmSCmp65rb1S39/oCT0yMGgyGzxZTBsI+UuWP8LpA7WMMkGoEsCk4enfK9732X733nfU4PF+RSUJY1v/7Nh/z13/wd//TrX7Pdbh241cHaoTuxIBHkARgH8JqmpW1qqnpHWZZWgJY76t3OAgAHCI0LMvfBekGAu+t6AKdc4JxUCtUqtpsNdVUxHI2QmSQhZfuoHljLqARY9J2cIwhAHARaadabNc+/fMZnn37GbrfjBz/8Ad98/32G4xHb7ca6BMqScrtlt6vY7Xa0bUOW5azXG/7xl79ku9lw+uiUJ08eUxQ2KNEDQh8AaK0qNih0s9lQ76pA97vdjrqu6eUFWZYjZGvXyaIdhAfn3mIAgR8Kx+fYO6v+eYOZUGBdD+wBBLOv2n31eAAD/4WN/71AoCOM3S/D8ZDRaMB2VzMcDuj1CrIso65t1LbSBlRL1ma0maKqa6qqphn0kL08XEtKSdO0LK+vKXo9yKw2GA7BPoINxGw6r6VmMpFou1Y4Oruk9xsmaxIDBt3v0mv/EpnJmBUgBXmI+LdXt75ZY7MCRMwQMN7N4ILRYjxAcp8/AQhS8/9rLQAJ8LfZAGG7AnoLsRFOq0t9y0F4QtDW/Zp3fZJ3wYFye+yBgA2oi66caP53gYHaRX87E72POLefi9qtAE6PD8nzDDBs1iWff/4ldW0DsFTTgouaXq1WlNstPlo/3cumbjg7e8Fbb7/JyekJ8/mM3bZGoZJFguVyyZdfPuPb3/42jx6d8uzLZ+zKEqWU3T8MTdnw/PkZbzx9wmw24+DwkKvLKypVY7CuMbuWmrqqkJlkPpux2Vhz9263A+MBJqi25frqiu36MfP5nMXBguXtDUpJer2C6XRqI85nE7I8oz8omMwf0+v1gsvK4EzALibAPo4kGwx5++lT/uNffZ9v/cV7zKZjhIDV7Zrf/u53/H//t7/hww8/Qmn7/UxIjANqHeuQ9kGNyp4lo2jaFt1q6rq1AKAqKcut1Xzrxmq/OoI+hIxnzqJ/F/hnIo3iY+W0BTbKuhvKbclqvWY0HlH0e+6siQhgif+8FUDraL0QHkC7c9G2LU1dc/7yFV988QWrzZq//P73eee9b5BnGaubJdvNxoKAyloH6rp2z6Tp9QxN0/LJx5/y0Ycf0e/3WMznDAYDnrzxBo8ePWI+nzGejJnN5xS9Am0MWWYzG4QQTpATMg0GgwF5niEqghA3InETuIPrhXm0xnXPox/mNX+IhJEIIeKlv8Z4AAP/pQxvWv4XuE7nTwN5kbGYz1gtN4yGfUaDAatcBmKzJkZD01qBmmUZu7Km6tfkmTO5Sx/9K9isNownW4aTsTvkJgjx/cBXgZd1Tjj5Q+OnKhKPnmdEDgt4zcS66KRjru41b/6XAiGd719m1uyPjQ0AQ+YtA9j1zTqugwRc4MFFV+D7n3czBkRnz7qPfXcfg0YUuWIEbl6DEDbqOwUDfn33GUrHJbAHFrwJ2y+4cmZ6G/9nf8fHAhgTrQEuLSwFChYsdsGCf8bJaMTBwRSBjXh+fnbO1XJJo2uqtqZR1tTf1DWb9RplNMPhiPF0SnF9Q13V4dlurq+5ur7h6PiYo5NTrq+WlKXNYpBSOC2t4tmXZzx98x0WiwUHBwuur65omgZlLHBQSrFc3nJ29pJvvf8+p49OeHn2gub6BqVblIu5MMZQ7rZs1isOD484Oj7m+vqGqq6RUmOUQWSW1jbOOjCdzjg+PmK1ugVjmEzHzA8WzKYzRuMR/X6frCgCCLCWAAu+BHYfpMiYTMe89fY7/Mf/8APeffdtRsMBRisuL6745S9/xd/87d/x+bMzjFEW6GKtFJYSPBCIZIMQzq1jYyLqqmJXVdRNQ7ndWj/6rrJZHS6A0qeaeiuYP3syy8lkFixBSikkOmqujnh1oIuWXbVjtVoxGo+YyAkyz23GgAf3zvSPcemUwmnRDmjoRIHRWlNVO5Y3S559+YybmyXvffObvP3WO2AEq9sV682astxSbktrfWoaagcEtNHkWQZGIyS0dUtZbrm8vMQYw+//8Af6/T79/oD5fMZ73/wm3//BXzKbzRBCMp1OKYqB5XfKWgHqumY0HpEXuTOU6HiGk+Nu3IZoPHaKVpv0PHl+9FUav/F8MbG8/qnxAAb+Cxn/IkDAXSnamO0PKWA6GZPnGUWeMXCxA+WuolGtZTEusCrLMlTTUpYVRS+n6PUYOCGZC4nJMtqmZX17S2/QB+kCgaR0ebPJTIRwKVRe+MfIWLN/mjqqtRfA1vxrMwNkSAu0pvg0799nEWCDBgUufcmlDxLrCEiicL/P939fmqAUcX6BefrF9X++1qJjGV738HfXad/X77+zDwK+8nf2NRFnFdBWg9PY7IFQ80FbP7O3BGjtAwd9Hn28nvbvKytsfNDa0fGCopeDMJS7hs+fndG0LbVnztYXwWazZVuWZFnOaDymKApurq4pt1sbpCigLEtenJ1xfHLMyckJz798RlmWlmYcOGnblouLS16+fMk3vvEOjx494uz5mY1DCJqooKlrzp4/5403nnB0dMTJo1NuV7e0lQFi3EDbKq6urnn8+A0LLg4PrZlYV9Z8n9kAVK01N8slp1XFbD7h8ZNH9Ho9JtMJk8mEotejyAsQxPXHIDVeQkBWMJrN+cvvfIf/8IO/5OnjYwa9gkYpPv30c37y01/w85/+gpvrG7RWLjvAmuvFfcLAWQS0D/Zs2hAUuN1urNm8tKbzpq7s3rngSJ0QpAEymQXaz/OcvMhDoKAHg4GWA336HHqbkugtK0WRkzuriI/BkU6RiCDTpaS6+iKZ17S1pm1qduWOF2dnnJ+f8+jRI95++y2MVqxubaDgzrk6qsqlrTp3Retoqc6ty2c4GtIf9EGAbFub5QRsyx3lbsfydsnLV+ecn7/iv/1v/1tGwxGLxYKiVwRwpIxhU26ZL+YUvV6w6PmYAm/IdMyhYyEIPMJ0P7i/m68T9f4aUny92oIPYODf8PhqIfLnDbMnYMCBceMiZGXOYDAk2+wsGBgPKbY7a9LV3nTZYlSONoamtoFGg8GOIh854eqsiVKw2W4YbscMx2PrPtPa2/SDluuZogc63lzaMQU4s2Fi/w+uAav1O/N/UugnEx4USOcCIKQS2joB9qePXpbOF+mZzn5kvxcO94GBfSuBnzV05+x3If0ECUPwAVX25fu1/DQFbv+zVqboRFvwLgDtla7A3C2fdRkCXuDj6gpoYiS/UrTa+kuN0mijgubvsw2M1mjVonRro8uNXat+L+f4aI4UoBFcXd1ydb20/unW+qi10qi2pdxu0VozGA4ZDPqMRkMODg+4ubmhLUtrvVCKi4sL1psVi4M5B4eHLJe3NFWVGlLYbrc8e/Ylbz59g5PTEw4OD7m9vQ0CTmBdAcubJeevXro4hGNenJ1RVWUQSmDXZnmz5Obmhrfefovj4yOuLi9oG0WWgZQZMpPODQLlbsd0Nubxk8f0B4PgCnDmJLeH0q2zy/uQOYfHJ3z3u9/mr77/bZ6cHJNnGVVV8dvffsDf/v0/8I//9Gs225JeUVhSsigC58hyoDAtWGNrPbTKpwXWwWeeBvQ1jRWSVpO1UkkbEwS0g+e26E+WI6QgyzOEkOTg0utalPLKvYkmcqPRWjgw0FCVJeVmw2bQp6+tdi4TN16IQ/D06wGBP4NOaDZVw+3NLRevzhmNRrz51psIIVitbu3zlaUtTNU0oR6A/WdpVwClKLm+urZgoN+n3+vRSAlNi1YtUhIA8Waz5oMPPuTRo8d89zvfYbGYM1tMefUyc7UGbNyAdxUIKdDtvlnAAwNvfyRYb8Lbd9lzl58kZz+ce887zeu+2R0PYODf2BAO5399DOCFgv9O/OK9fiinEWoNqjW0SlM3DbuqhSxHZJKiVzAejVgPNi7oxpogtbJVBPO2RQiomopyVzAY9OhlMhHQtkDHarWi6PeRRR4BsEfMCeMI6Tad6XptPkT4BQOBr/YXYgF8nr8X+FKGdEDhfJ0+ZVD67ACntfvcX0lX6IdZ3GMdiO/JO/t0L4Dz++BxUGr38LbcwAy6JkP/GfsxfWdf990BOvmeAVflzZlbiWbpSAe6+8+YUAnOZw+Y1oOAWCXN1x0wXqN0bgZhLLA6mM8YDfrWqqQMz89eUpZWA/XxAlpZjX/rYgX6/T55ntPv9zk6PuH81Tm7XYUvNnO7XHL+8hXvffObPH78iFcvX7KsK0gsK23Tcv7qnFfnrzg9fcSjx6ecn79is95ENiygLLc8P7OxA8dHhxwdHXG7WtI2TbK+gqZuuLi44NFjWzTo6OiYum4RRlD0cobDAZPphNl8znQ6ZTgcIDJJnuWBYYd9QqBaqzXnWY9HT5/w3e9+ix989y84PlwgpWS9KfnD7z/g7/7u7/n97z9wljltazSYBptiKK0YMCrsv98vrS3AahtbG2C3qyjLks16Q1VXwXeuWmvK9gLSCJAioygEw+GI0WhkrXnKBoVqxwPSc5EXGU1rz4BxNBVxrg1ezDJrmldKUe5KitUarTRFYSP4vR9eZlk8P4gQ+JhlWaBT1Sqaqubi/JyqqnjvvfcYjUbWGrDb2dgABwTatqFp7XNay0CLcuZ7bTSXV4q8yDk6PkIKVxvBna8OHzKGzXrNxx99xNOnTxkMR5ycnPDJhx+Fc6ealnJbMhgM6RUFZdt0gHvgIc5Hqo0Hc8KdbeP+fg0gSNY1jRn4UyBifzyAgX9rI1Eov+74SmIIggRn6te0raJuNbvamg2rpqVpWmqlEJkk6+UUg4L+oE+v17NlYpWtoqWUompq63uvDFVZsevXZEVBlhnnn5cYmQVz3SAfOYsANp/YP6iDxlKkvsO4Bv41QUwrEonAF1KQyahhgNf6rXC3FgITvmfZaDcbIBOxEuHr3AD+97uxAvFR0qyI1+5PMCF2X/iq4L59wd/93YAWNmccr607ge6tPk7ox/KvBuXvl7oCnBVBKQ0JODBp4GAyvzSLwJaUxQoqY5CZ4Pj4ILhp1psdL1+8RLU1bdtQVw3K3beqKlrd0h8O6PV7CKdJzxdzZgcLrq6uaZQCYaiqmrPnL3j7rXc4ODxgvpixWa1dpcKwUWw3W54/P+Pk5JhHpyc8O1iwK3foUJ7YVou7PL/i1YsL3nr7TR49PuHV+Qturm+tBi+dJUYLbm9vWS6XPHn8hKPjQ+q6Is9zxqMRk9mE4XjEcDQizzIrvCC4v+w6E67V7/V5++23+cH3vse3vv0O08kYMNxcL/n1r/+Zv/uHH/PZZ19ghHRfJJwTe00fNAkGb60xVti1Npitqq0LoCy3bDYbdjtbK8DHDWhHGMaB9yzLyDLJeDzm4PiQ45MTRuMxCMF6dcvLszO2603Iqffr7PP+hZSO7hIt1bnhlFYILWjahnpXUxYlWhvyPA9AIM8ysiIPAb/pOdNKBZDeNDU3yxuub66ZzmbM5nObAllVLj7AVrJsWhWtAcq6B3zKa3BtqJbz8wuKvMd4MgwWhLQsf7ASGcPZ2Rkvz15wcnrCO2+/za/+8ZdsNhuEsHEom82G0XDIYDCkqqzVC5GcYbF/zl0l0w6DiLwlzRrw3wsBg4niJ0R0Sfyp8QAG/g2N/7RMAZ/vnkT1JkLHaKv9t62maTVVrdjVDbu6om5qG+SjNdohaOGiZXu9HqPRkHJbUu8KaxLUGiU0olU0WQaNpqo1Vd0waBSZtIFBIpNoDXXbst1s6A8GyDyPrnQBPoL/zvMnL+2b51N3gK8Z4GMFfAxB1/dvVyftKxBiDRIQkIKJfRdBXGW68QCkn/d/3t2/OxkU7Fv19qw39wCC9PU718IXcjIBDHgQoIPZX4cgrP0IZuNKCvuaENp+wX7OCY9W2Vxqf/cOONAaje1VIIxN1+z3e0ynVsgZI7i4uGB1u3Z0aJku2JTVcrfDOHrLnHaotSbvFRweHvLi2RlNU7t6Coary0suLy45fXLKyekpr16eU9VNYhUzVFXFy7OX3Lz9FpPplJOTE64ubyjLbbTJCEO5Kzk7e8Hjx49cFcED1rdbV2BGWctPJmyGzM2So+NDprMJhkeO8Y/o93uIzFmfvO1Ba4w34BsBRjIeTnj3nXf5D3/1Pd599w1Goz5aac7OXvDTn/2cn/7sF5yfXyKzDJEJjG6trujdQ1q5TIMYZKaNBfaqVdTVjt2uoq5qNttNKLRTVbVTBGKZZBsIaJ8tzzLm8zmHhwccn55wdHrCaDS27gAD5xc9bi6vKMU2nIuQUQKhd4DW2gUyurPt6M1norSNoq5qZLajbTVZntErcoqiRyszMqVcxk+0MHqlQhpfDbHh5npJXTe88fQAIW3dk125o64rmrqxgKhtHc12gYB2boeesOmN5XbL5eU5iCOyTFJXNbWzDPk4oAAIrq/57PPPmC/mnJycMJlOubm5DgBis14zm04ZjYZs1mtqrbtae1ByRAAkHiSkVgQ/um5HEXSnfQ5jrL7ztcYDGPhXPv73pAqa8F+ABKFGfNsaWwWwUVRKU1UNTatsvnTThrQhb2L0ZkwhBFmWk+U5vcGA/mhMsW2oapeW5OrStwpkJqkU7CrDuIFhLyeXEgqJzApEXdNUNVXdMHTpYsYfCFIij6WCw5oYkwhqEgDgCtLIaC3w6YLBNYCvFkisHiiSWIPwnaiJ3JchcM9m3d2DBMHv2wY6QUJEhL///VTgpxp4h2mk14N7BLsPTrMBbT4YUGn/fRNoI5qWdacJVMgG8HUDQm2BmCUQAIC3OBgXAe59vEYwm06cGdgGkJ2dvWRXVbStLTHs+wFYq1RNnmW2L4aUNo5AKLIsY3GwYL6Ys91sLNM1hl254/nZc44fHXF0dMxsNqMsdxijratJSpRSrG5XvDh7wXcO5q7a4BlKtcGPLBC0jY1DuLi84PjkiNNHp9zcLK3GRw+ZSYoiZzDskxUZTdNQFAVHR0cUhU2/RcTwPW1s0x5thC0DLTLmiznvf/NdfviDv+TNp4/p93rUdcOHH33Gj370Y371q1+x3myReUFe9Kym78ooC0FoVuNjA8KeGUPbtM4KYOMAyq1ND9yWpSuN3EYa0pZ+hbB+/+FgwHQ+4ejY9mo4ODhgNBmTF0WgZKM1RZa5uYjg5jLg0kstYM+yzAr8tg0gwGqxJrgilLaBo7KqrPugzVCtTV/O85yitTzHxyRkWQYZmAwynVPXDevVivV6RX9g66E0dW2zIqoqpEN6i4DSKoCB4MbygEhKsiJDSCh3JcvlkvF4HICLL6zk4xjAsNGaDz74gOPjYyaTKUdHR3z55Rf+EFM3DRtXpCov8pC90ImJMiZY8TxPS11S+26Y4EIQ+59w0VXeRCDv4VX3jAcw8K90dLXMrzdSZGjCX14Q2Bzx1nUFrGpFVbdUTUPVNjRta6uMKZuOZTWW5Fre5ZflyLyHlC1Fb8hwpCjHmm3VouraHdicLC/o9YeMRmP6wwHjyYTFfMxoOKA36JFlMiDswXBIr9enampuN1uquulUHJP3CGOZBBgJEUuRhnQ/YULgny0cZFMGM+mFfkTh/jseHHAPEHhdnEDYLccIvwq7eUbpPxs2LdHKg7nQr/2e5r//z184Ff5efHtXgNXORXQFKaeZGi/gHRhw14td0pL7mOh3xrgyqx33gL2h8l3nPBjA0PqiLEZSyIzDw0XYk+2mDB392lbRNm0AJHVVI7ShN+i7dC9r2fCW8MFwyMHhIRfnF86na3tevHrxgtubt5lNpxy7lL+69s1/CEV+Xr56xTvvvsV8PuP46Ij1auM6Bnq3kS0i8/zsOYfHh5yennJxfoWUBUWeMxj2GI5sTMB8NmEwGHQ7UopYghZs9T2BRGYZx0fHvP/+N/nB977Dk9MjennGdrvlV7/7PX/7Dz/mjx9+Ql1Vlg5lZruE+k0FfKaAfcl39GtDvIUvgrTdblivN+zKktLl0/tqeUAAezLLyfOc4WjEYjHn+PSYo1MLpobDYTDbxxgTgzE2nTSTWaBR3WlwZQ9EelY12rofrG/EWgec+0nplqatrXsjz1FKkmUtbZvRtoXNVOgV5FkeFJScHNUqtLAuJaVaFosFQMgW8CDA1hFwwZRKu+BGHQCtp10BZEUWuh1utyUGY+9rPGi2VjLt+qggBC9evOB3v/sdP/zhD3ny+Am/++1v2e2qYEHYbLaMRiMGwyHbbek5R8IfvLk//p28e5ehOB6Wxh4IEheUiBVNv854AAP/KsdXAQFnavMah0lyfU3ULf17WmHjAJRi1yiqxroBKn9IQq14F+iVnGM7tA1sETYdTAhJVvTIepohOZChyBhNx2TAeDRgMZuwWEw4PJwzn88YDTKGgz69wjIU6bR2P1MfFGmA42rOq/NrblYbFNJWGXOahzfN3RH+iSk/mPyD2d+7BkwAAr5fgHcV7Ff9ixaCLlhIT5VIPh+/m77bNdunMQ8BvbuFNvEV+77pBgvdAQAJQPA1GCxTdRH8eCsAKA8IvJbuXALaqBAnkJqIwaYG2s87oODQZOyepoN1wXkNOvdQXkvFgwhbDVAYGAwK5rOhe17J5dWS5e2GurFtc1vVYowtabyrbRMiWy7Yz8/updaaLMs4PDpkMp1QOXeC1orb2xVnz8/4zndsOd/nZ2c0V7WjMe13h+XNklcvL3jrnbc4ODrg7OyM7QZsxoNC5hawLq9v2aw2zGYzHj0+YTQeMhqOGI0HFL3C9uxwVgBrsZLOV+uPss0QKHp9Hj1+zF9+5zt8+1vf5ORojpSCm5tb/u6ffsWPf/IzvvjymY3LkVm4vzamQxu+c53QxlkBnA+8tvEAtkKgLeSz3WzZ7XahaY4xKY0J1/63YDyZcHh0yNHJMYcnx0xnU/qJa8bWCfGMwT6jJkMpUK0ObXnD3Bzthh4f/hxJiU9RFI5HeZOCcrUJPC1KZ1HI8swJb2eJyhVZniNMYSv1ygxjNLtyhzHQ7w9seWSlaGtrCbDZAs61ZZQFAg4IW22/demTdl0GxlC4ugBKKcptSa9vU0ClFNRVG4oUaW2tNHVd88knn3B8fMzh8SGD0ZD1eo2yvhPbv6GqGAyHSN/F0POGsCDeSpD0WEmE/V1X4H0uS4EWXWDxdcYDGPjXNLx/56s2MHSlieahgMQdnWgDShnbDbBpqRplewY0LXXTOitA2kZWEmIJhEAYn+aEAxiZ861L8n7OaCiZjkdkUtIvCnJpGA4HjIY9Bv2CXpGH6PwwP6Iw9FHbFsTECmsYGPYz3nh0iBSC63VpA6Wclt8NBIx9BEK8gAcCYIELJABBRFcA1o3gfbivcwPcBwT23QP3I++oGYcDnJoDgjx/fUBgqlHuM4BOS2c3iRC9b6y482l9xmkOPl3Q+BgQrQM4CN9L87iN7oAEo3XothZ9wokLybsGQlZBMh9liwpJYxiPRvR6tjWsUnD28oJyV9Eqx7BbhUa7UsRt8DmbsD425REsfY3GNrf75uoarRukhLZpePniFW+9/RaLxZzDgwPWtyvatrG07fZrW5Y8e/6cR08ecXB4yGQ64/pqaalV5uR55oS8ZL3dMplOOTw6YDqbWC01z+5aiUS0xhkkwkgGvR5vvfkW3/vB93nvvXeYzUagG168fMU//vJX/PgnP+HVqwvyoiAvcgukfJGgDs0YjLJBjkZpWmXBU9s0VD4rwNXY930DmroJ++21Revqy+gVttbB8ckxx6enHBweMp1NyYs8xOPs02VK41pr54/fobS1Ntgy+h68uHPu7qd80x7TtZh4l4F1AWkELVraCoZS2m6HOtNkRjmtXpEbHc5univatmFX7UJPkdrVRmh84J9zB/gmWql7y/dU0MkZ2O0yxpMxUmaxemar6BU9+oMBm+3WdZG07lThmPfF+QWffvop3/jGNzhYHHB9eWWvKW0GxHa75ejokPF4HMCNXYS4rp6nhfPveIffh67yEr/cUT46NoV7rAr3jAcw8K9ofC3XQKpdRiuxY+yGptU0rXcBtOzqmqptQ/62MdzxDUsR4sedViQwzhefZTmjXsFg0GfY7zEc9OgXmavY50zwJvWLaowwKC3QoZa4F6huzsK14xXaAQ8v/KyZt6oa+qMRRWPbGkPakUzeie7P/DzwFgHTEfL+d9z7Et9N8K4b4D5gwB3LQLRqpJYavxf+vc5WGhPe8ymA9ve7MQEdRnDPTyvw/f7ZRfWdBI0RexkD3RgApRW61XH/nRD3TBDSAEAdTKKhj7oxIajwjttCx+t64WUFEU57MszmEzLHzJqm5eLCVQDsuB1sMJgwuJQyEVLc/L5oo2mVq455eMDg7Mym/WHB0nK55PzVOW++9SZHx0ecn5+zWbVOPhmMS4O9uLzi6vqGk0cnnDw64eL8AllV9Ho9BqMBw+GQ2WJGr2/dWFluo9t9HIsMGnM8lz7IdDae8c47b/OD73+Hd999i8FwQN00fPjBR/z4Rz/hV//8W7bbLXlRMBgOHdN2/zy9uPOKz+xwArVpGtpm54oElWw2JdvNlu3W1vlXqg3r7s+gj+zv9/scHBxwdHTIyaNTFocHDMcjm8K3BwKCxmoIWr1NtdOU65Lb5ZJqVzmlQQegJdw5t8BVk0tbcMzWT9D49FnhaRoP9Gwbc+HmmkkZAaf7p1xJaIHNFvJuAN22FL2es0QJB5RsFkUnPVZ5q5iLAdA6nCd/quumYb1eMxgMQNjCSr44UYUNxGzrOmQTeN6w0yXPvnjG6ckps+kkcV1a7b/a7ah2FdPp1AZfN7WNJUnXPHLjwG1cSGigrchlYsyBrbSZxFc5hdHsl3V9zXgAA/8ahugiuf3hScPxsfiaswC0HgC0FgBUjWJX1bYgkC8T6wPBvFaaCDblOomBIZcZvaxg0C8YjvpMJgPGPasFeUCqjc1JVxqa1uDL1xoc40rIVwqBdrXIbSUsEcyIwZxoDI2Gqlas1yU3yyVKt0zn09ChLnULuEKC4Wfmzof0LgG3lsEK4D6HsKmCIVYAgqb0J4MEO+r/XfPNvubkGZe45/0uALDX6/jm77MImMQVkGrkxM8q5czzJqYJxusSaEEl5WRDXYBg5rVgxbcmxmDzr/1nffqYjsDBz9n7UO28pLNCWPOs9ZVL5vNZWLr1esv1zQ2Ncw9o1WJcJUPfPc4KqC4YsNUCBUYYpITJdMxkOmGztjnqUkp2u4qzFy84eXTC0ZFtIbzdbNBtS6v9sxo26w0vX77g6OSIw8MFR8cHKKUYj8eMpxOG46HtOJdnLrhLBrqyZ0G6mhg4rS1jvljw3jdtPMDTp4/p9wrKcscv/+k3/N0//Jg//PEDdKvo9Qv6g0FCCzrQQIfdGwsEVNvQOotJuSspS9tyd722FQOrXWWLBIWgT2MDcqV1OwyHAxaLBaePTjl99IjZYsZgOAjatDFdN6MR3oGXzENbgKialvXtitXyFtW29nMe6At3+k3siYDQNrPH7Z+vNupFmQcJgFVEjEEaDcZmC7QkHRszrJVHYNMOcxsDoo2xGQbu+YP5X0cwiztDKqnBEPCXP3PGVqssy5K2bUMQpDHGmv2VQjXW5RLjQ5x5Xmuuri754x/+QNO2DAYD2/HS0YhWmrIsWSwWjCdj2mVrTWSOFxjA1/nA+LW06+8tqelw3MyBqVQpiYJC7n3ndeMBDPxnHN7v/1UwoGMBwBGMhlZZAFA3DTsXDLhrahqXR+ujXkNwF5GOPKrGSGf+F/RyyWjYZzYeMh0PGA6KkOfatordrqbc1aw3Jcv1hvV2R1nWbHe7UEK2VTqU+rUuhNya1YYDir4tVNQb9On3rDk0k5bSbcXCltV6y83ylrLcApYBHMznLs5ABjdAqBLoHsqLfyk8q/YgwHcZxMUo3G8F2A8O9AaM9LX79ibdQy9c9t+/DyTs/0yBQGDihjvf107Q+9LmqSvA1npPLAdOq/dlX40L0vJFhWIbYfeaD4TyFgRfrZDERZAIUe+iCHUEEgGknZbo295qARmGXtFnOh5gRUHG5fUNq+3W+mqVnV/j6NZasXy8gGWO3qTaJvtrMkG/P+Dg4JDrqxt22y04y8H11TXL5S0nJ8ccHB7w6uU5ddXYNXOR1lpplte3bNdbhqMRb7z9FCEEg8GALMvjPiNCF0TfbVMYRzsuF//g4IC//M63+c633+fRoxPyXHKzXPHjn/yMn/z4Z3z2+RcIKSmKDFO4TpMiCiEPATRWOAZLSdvSuJbBpYsH2Gw2bLeui2BVWdBlbPwAxliLiskocsloNOLw4ICTR6ccnRxzcHRAfzBwnTkTK+Eehe9TfaNc+qJS1FXFamkb/tjkURMEogC05zUJYI3XFckBs3srjLufcHQmfbCiQmtBhnA7b9/3rkHr689d4TMLfJTSIa3SOKZpQbClc61M6Mjo4zE6sThao4VNS1RNm5z/xFqTnP99fqKU4osvvqBwLgXb5rm2YMBoyl3JoB4ynU1DQSRSYK8tbXqg4pWh1HqX3teIbkaC1YwIYOWui+f+8QAG/nOMYDP/E0AgCATH+H02QKOompaybqwFoLF5s8HklZhwAdDCd8x0lcR85z3JsD+wAGAyYDTMyTJB0yqulyteXdxw9vKSVy8vOL+44Gq5ZFfV1lfWGidsYgS5kDbNSGsdC/8YEJnVCvN+j+FwyGA0ZD6fcXR8zHw2ZdDvYYxNCyurEimgX+TsypJdv890MrbBf164ewuAYz4pSEjT+GwmQbLOwscYvMYdEPbnq+w09mpdQ4EXGIl2kbzXgQh7oCGCAcdgzB5QSK7pv+UtAyG2TyvXVTBaZwwmBgj6FFFfM8DTh+76UK2Ac6DEX8OZkoLG7+bWahWtAW4iJszHVXJzZlUtwAjNaDSk1+8F7efq+oamrvF9DVrdhmp02vmLhfSA2YRrB4YoIRcZeVYwX8wZDYfsyjIw93Jb8vLFK46Ojmyg4WRMudna4LwioygKBoMBo/GIqtoxyAbM5/POvqS6cQST0p5PIej1+pwcH/P9736H73z7Lzg8XIAwnF+c8/Of/5qf/+yXXF5fUhQ5w/EoBGeiZefwG4uK0dpmRei2RSnbRMe2Da7YbLds1mubJui6B6qwLzjBIckLSZEXDIcTDo+PePT4lMOTI6bzGf1+z0b/i9gHwT9vQv5R83DvaQcCtDHo1hbRWS6vqOqdNXO7M6jDPEyg2zYpXOXPxJ3cd+GFvHQAyQaLIgVGCoRSCEAJ636UStG2kqZtMbvKpUlay6N2cTG+eZb21koThb9OrDB+HwSE1GYLPg1GWnDgFauwVlYNDwvmBbYFAy2rlWEymTCfzTBac1lfBuGs3PotFgvrOvJF2/z5dybgO1q+25uUvaSByZFG3eFwboWvBwUewMD/qcMHmbwWAnhU5w6SU8hQrdWYPAiompay8lYAVxXLMW8fENa5rHAHC0kmMnp5zmTcZz4ZMpkM6RUZdd3y/NUln356xieffcmXZ69YLlfsqgZa163MGMgydyWL1gOyBtBtfE7LuVHGgFaYGupdzXa5QgjBM20o8h5ZkTGeTZhNp8xmY6azCZPxgBxDZgzles2gV1CMBg4QmFge2Nn//e9ByEM4qK+LBwh7koCHVMLfbw0IG2kPaDiZcc+623mX0XYsAXufScFAwHFEZgzRIqCUBwO+vXDM80/BoM0EjGZ/46wCPghQm6TToNfug3CP1grjwIedTyxNHAMIoVUteEsExpUitp83CGbTMZm0TKpVisvLGxe8FQO6UgtAlslwUlLhYbwqqUELgRaK4WjEeDqxLiZXJ6CuGy7OL9hstsxcutx6s7aBc7MJ0+mMyWTCeDYm7+Uh794LCmNw9SnkHQY8Ho95/Pgx3/vL7/LN995mMZ/SqpZPPvuUH//45/z2t3/kdrVmMOjbZjfOzO730AZ2xr4PRlshq3WLaRW1Kw28Xq/ZbLaue6DtHdA2Ng04ADYHWqTM6PV6TGc2KPD00SnHJ6fW1dHvO0HnSNatscCCAplYuFJLpLcUhRoTQFvXXF5ecH19bSsIIgKtecuQF2rWjek7HaruKXFnSLj10GibdSIlQrvCPspyGyNsXRSwaZA68wJfI6XqxNr41329Ckvn2rkLTHxGD1w8VjB+RQjnwLhMgRS0xwVya+8AjAewIF3J54bJyTG9fo9NaUu3Z8IqTNWupK4GzOdT25VzU+IhlKd1C06iQkByawLb6coTzwNTs9PXcxI8gIH/00aak56ODnHhGa07RO4g2SyAJsQE1K0KVd8wXeFib+GI3ZszRUEmBf0iYzYdsphNGA5tN66b6xUff/Sc3/3+j3z6xZcsV1tarSJgdkLdP4Ow1UlcoKBwCFaGA2Opz+rlrdZWs/OC0586YRlFqxpa3VJfNtxcXTGeDHnn3TeZjE+Rma1NXtc1q/WK8XgYrAKZjH5/H+4kQv0Ar7XfdQEkCxQPjd8RH2sg4mf8vnTNbM5DZ9J4gKTgDikz7Wr64TPG+V/TQ5+CAn8JEzMDvEsg9A/w2rtxlQG1ckDBVTbTlrEqfz+dCPxg9rfz8NHSgZa0dmbxJCsACzqUsdzTAwitfbaBiYw3tUy5z0spmU0mYW92u8YKbmWj5pWK8Qb+NeG7rRkTTKEiLqRj4LYCYlHkLA4WXF5csl5ZwKm1YXW74vLyknfn73D86ARtFJPxhNliRlH0bTwCBqNVZ088vYc6/1KQ5TmT0Zi3336L73z7W3zjnaeMR0OqquLXv/4t//Djn/DpZ5+xLXf0+wOGowJQEdiZqJF6IR5KAGtF2zS0dU252bJzPRnWmy3bbcluV3XaRHthIIQgl4UFOJMJp49POH38iMOjQ/ojm/qYiW5QYADvbmJS+NbXkZd4rd6DM08fqm25vrrm4tWFbQLlTPEqCTD1vnMf+3GnzHFcYEvjyRHVGIS2pXq18Nk/JpxPhcCYhtZlEqmsDV0NPQ9SzsUUswMi8AlPL+LvBsLZD+3SXdZJqxQyPbdu9kHh8SfdEECRB791U1FuN8zmc+azma0bIWycQ6sU2/Wao6MjJpOxLbvdmBC75YMFIp9xVhKdztHzrS7N2uJW1pXqrRFfZzyAgf8Dx762mfp7uqZk3IFyvQEaRdPaugC10lRt7fyoMQ7Ap3l1R/dvgU2/G/asFeBwNmY47FFrxbPn5/zmnz/kN7/+PRdX17GfdxDmEWEGYSWFBQA6ec0YDNqh2Wiy6vi/wFGwO44uIM2GY0kbJS0ly9WWLz5/xnjYY/T4FH+x7XrDblqymE0DIBBEFHyfJeC+A/Ba10Aw98XX7yxtssbGROZwz9ud319rBbDcNrpvAgMmMGLrl3eav9YdS0CwAu2Z7zE+wNC/LkL7WV8rwBedUVpbxpsAPjeZBGy4EiZOs+pUKFRppUGD3nM5+DlJMjIpGU8GgZVu1tbkHWJbfDaB0WAUAhP2GR88JkToXSH8+irr/xcZzBYzposZZVnaAERhNa3b2yVVVTObTej336Lf64OQtI2rJid8MpwXPX4tBXlWkPdyDo8Oefcb7/D+N9/j6eNHDAc9bm9X/P2PfsKPfvQTnr94iZQ202A4GLjJWY3XgxbvCjCh1bO2AY2qoa6q0F53vVqzXq0odzVNbS2Anm60A2q+Z8BwOOTgYMHx8RHHJ8fMDw4YjIbIIuu2rg1nUmD2TOQm4SXe4pDeLwBFpbm5vOLZl19wfX1FVTf4TpXxGgK0DfCzTYwsDSnjhbJLI/RabTx66QmLghUQWiNcDwJLpjK4Bdo8J+tYwpyFwM3Jk3S6DiFALxki+kY8Eg/nN+Rambh+vry7BZ02uLVFI7RAKZvdpI1muVwyGo05PDjk5uqapm0RRUFP5jStrUo4Ho9tXYjblavpEtSQsF5hesLzUBJBH60DHjz4rY9Wgj89HsDAf4YRDg0mBLXUraZyDYLaVtvGQG1jg7ASYr/XzOyIwgeSSSSZhH6eM59OOJxPGAx7NKrlw8+e8dOf/47f/+Fjrm+uMUKBFvEedFNTBE5z8ofXGKTp9NVzgMCOxMgWtDNrFLDR3xZURLSqjHYg2EacL5drPvrgc6ajCQeLqV0jA8vbW+bTiW1JLBL5/Ro3wF2hLzrf2R+vsyDA/a2B93+/7zXLnCyD6X4/HmbPe2JhmRgZrLSORYN0rNSWaj3cQw9eu0/TB71gV4n/1vunw/6Fa0XfvPKajomgxGLRKADu+xdiEIRNRyuKnNFwENZmuVqx21UBQESgHBk6npZMUmUtbhi4dZPYyPHBoM/JyYnVqtcbev0e0+mU8XiC1ppM5uS5pnXV59yCOf7qo7WtmVdkktFwwOPTU977xju8//57HB8vkFJweXHF3/71b/jpL37B5fUVUmb0+z23pzqcnRTUGQe4lGqdO0DT1DV1XVFubcOgclvavgHrDU2buHIcDQlhq/llWcZ4POLwYMHJ6QnHJyfMFnP6gz5ZnjvFcu+MRqrs0KfRds7pHqT7560Xqmm5XS559uUzzs8v2O120X3gaMwLWq21CwDVCZg0LqvEnXXjK+Wlu2ri3P058rxDG5fV4l5WGiVtoSqfceLpVjitOgUaHmRb0vGdX60LyLonvOB1vEA4RSdgbH/G4hnBGNdNyHKv9BxqLdC6Zb3eslqtWSwWzOYLrq6uMMZWz9SlrXCZZRnTyYSy3KHqNt4z3TUvM6I50t1Hh5LsnV024Wm+LhZ4AAP/0mOfWUEKzCKqi82BrNm/bhVVq0ImgC1m4U3AOqDV+8zMnpELBIWU9POc2WTMwXzCaNhDG8Pnz875yS9+w6//+Q9cXV+7gBWwRXp94Yw4X59PDDjtNd7MAwZ3NKypyhGfDQSOjNra2AiMych4GO21TXQ/OE3q8mrJBx9+xg++9y0GgwKMcYFTGxbzGUIQMgnsD6vRdUz/yWvx73v2ay9OIArzu26C+8z96d/d/U6Yxh4Y0B3rQtxDY2JwIMSYkeDzdD54X/XsPnAYwIXGfd4FfakkNgDj+gRE/66vS4ADHx5IKGf+T6sPhvsloCD62fe0NGkbFPX7vdCW1hhYLlfULt5FB4EH3r3jmZ/3x6bDr6kf2tG+EHD66JhMCjbrDYNBn/nMps95ARUsa8aZUcP1JEJkFEWP0XjMyckx3/3W+3zz3beYLyYYNF9++Zwf/fgX/OrXv6Wqdwz6fQb9fjwHfj7aBYM5/45xtK1US9vYQkB1VbEtrQvA03ZZunLBwYVj8NqfBxyD4YCj4yNOHz3i6PCA6XxO0StsAyMHhrUzswezE3G9vJtoH7Sl+xr2zth5tE3DzfUNz778kvOLc9v9T2tn/jcBsGhjXH0DTxMqsbSZZBYJoQoRGiyFz3YUDTBSh8BE8O4AX1LYdRvEdYO8AySNA9fRIunILOFLxslZT3tdevM0np5pfwu/lvvWXguCFbvdjqurS/r9HrPZlNvVLU3bMMQwmYy5ublhtVq59tYjNs0a49Me9+CccFZZdzKS57Kfkglf9Q/p+fPXGQ9g4F9odM040CVpH2BjXFUs2x+gUcqBAUPVtihXitX3/o7WLGea2hueMI0QSAxFljGbjDiYTxiPBkgpWN6u+fk/fciPf/ZLzl5d0jatqxOvrMk1IOBINB1h3wn7dejUCS2ToIc0t99+zAs/Atq3h8+VlE1RrvZasQEh0UjOXrzk5PCAt99+gsisH/nq6orZdEqed7sV+t9f91oq2L/Kf2Y6TOl+YX9HA9/jHHe/YzpgKFQKxGvgqQbpY/ccQ04Ys/fP39HaTASKfr29D9paAaKp1lsLLIPsPot2GqL/PvgiRT4ewKcQGvdeAgZMF5xELdM4i4ZiOBjYfXPXv7m9ddqjClULESa4PeIaa8dYu+vswYMQ1mQupS+tm/PmW0+pd3UQ/FprlEvtwhjXwMoWnjICkBm9Xp/pbMHbbz3lL775Lm89fcx0OqKqKn73hw/5+c9/yUcff0S529kshH4vaF5eOgTAG4CZCXvRtC1VVVJXNeV2y2q1YrPesC1LqmpHXTdO6Gh8kRib3y7p9fpMpmPrCjg+5uDoiPF0Qq/ffz2fN14UmChY7tkjb+mxwM8JISfgjfKdAG84e/6c81evojtR2xQ9759XSgcNW5vY+8CDzTjP5My4/TB35m4SVuqKkpkYIKiVBmx2gVaZtS5JDzo8vST3MgbjqmJ6E3qIqYbkvBP4oM/ptxYPASRnxwNV6Jyjzt67p9JKUZYly9sbJpMpo/GQ6+sl23LL4cEB4/HYtpGuKsajEc2uoqp8DBLBGBAAmhDByhr4qp974KmJEkTiKvoT4wEM/AsNEwReJG6vdWiXQ1274L9GafevpU3zX61kT8B8NE1FeeYEeBDStpDOeDjgeDFlMR2R55Ky0nz86Rl/96Nf8Nvff2jbESvbjdB9zQ7HDO4iW/cBr2T4Ey1sDrEwhgzZIf5k2uHyFq36ojVJqpYnZuy1LPDAAQto6oaPP/2Mg4M5i8UIyLi93bLebDhazADzWjBw9+fXQ8Z+4V9nCUh/D/+IJsPuGnZNjGnWhYbgk9dauIIr+wDAYFOhRGC2KSP311XG1we4q+3FrAFDrCLoniUAki448HUIvPDQnftGAJL6mcM1wzoFtcuugxIMB0PLoIShbRSb1QalW1Try8K67xP3zVt7A0Bz4MMPKSV5kVPkBVmeuYY5hrpuUGiUEwCBRxoR/OjW596n1+szn8/4xjfe5r1vvMsbT04ZDfus1xt+9otf8g8/+inPnz9HCAs2fLdFg4+XiGcnWkycJadtUW1LXde2Y+B2w2ZjXQKr1doWCfIxFtizjxEIKcmzjF6/YD6fcXpywsHRYegcWPT7zsQdaWef5k1CI1bQJ66AZK5pjIffV9XaYj1VWXJzfcPLFy9Z3txYIKBs7YjWtR0Oriq/Kr6Mst83KcFEyWtcbQbjXAb+aIa1u2PJi4Ar0KgxoBRK2CqDmYsniPvgAVVaT8NeM1T7E8LyNtFt5uOvEX9KJAYtdCi05fGfEd0qo10e4QKtsZU2V7drMpkxn87Yrjc0dUW1K5lNpyil2O1KiknGcDKkau06pyApWk08GxZ79zUxyFYAfwYI8OMBDPynDufLsoqyY66eIeJ8Z67kqf9XtS2N0rSJ6bXjc4OOQApmooRaLZMWGG2ZQVEUHExGHB5MGQ5zDIKrmy0//cVv+Yef/IJXF1fUje/nnlgXTLxXeCD3U4guYVutRwTfW0TsnuETrAnu4/E2ppuag2cQJNdIhYfwDF9wdX3DBx99zA++9y16fRvz8OrVOfPphCLPO24Be9+u0O8GCcbnTk2S6Tw767/3+j4Y2Pex+p8mBTYATnH3y20MLhDPWZGdCyDVOoJAdoABog8/aG6OeXfM83um3pB+lnwvdG1L9zeAkOjzDc9DdAHEOXiAEdcsWkmSdcJqJjITTCejsAd1o1ivN64ATDfg0PtxUy071GZ34EVKSVEUFIU1m2eu6csu7coX5uDiFoRAiowsz+gVBdPZlEfHpzx98ph333mL45MDil7O9fUNP/35z/nZz/6Ri8uLAAACQPNiz2hXkVNgVLLmygYEtm1LXcX2wVvXM2C7LUPPgAD+tA7WirxX0O/3WCx8PMAx8/mcwWBAr9dD5LY8s9d0w7lLgGcMxPRuRpO4R7q0amM2vFvS0khTN+zKHZevznn56hXr9Zq2aaibJgCFqLzQ2Zv0bAXDo/8bCJZBiYsh6ApfrzAETQHRecZgDUOAUsjWpvHpPCMTmaNdqwDE+XSVHU+20lUr9K2rcAqPcGDCCl2DEoS/LV4RERAkPMFfP+UtWttW0pvNBhAcHCyYTKdcXV2z3e4YjSdMpxOa65pqV9EfDOj1e67pUsqfwwJ2hkl+6fK1VLHja40HMPCfMLww7AoY+6vShC5ZNhbAAQClaZ1vTTmty/vKgvBIonjB5XR70BHQtx2ZkIwHfQ4P5hxMh2S5ZFdrnr244K//7qf85jd/YL3dWaQuAqzoAABLW6IjrIXwQD4Sv81nAYRECG+SsoGEMT3vqytdRWFrTWfSBd6A1wYjaPBmPoPh4uKS8/NLnjx9TCYlt7crbm83HB8dkoKb1wcO+meNYCp973Xaf/r3vrBPh+8JkH7HKcSEH56JYVwcgA2sVNqbZiNjjVH87l4BFKT9BmLet/Bz0LHbm2f6sTSwBwLalmENWr1JycHFJ8R7eYCindAwqS/bXdM44jeCDojwFgnboRIGw56zAsGurNhstraevAc2jolLKZB5jvezC6xrwQvLLMvo9fvWGiBz0LDebkNAG35/3R5LCVJagT4ajTg+OuKtN5/w9ltvcXpywGQ8BAQvXl7wq1//Mz//x1+yXm9c06DCriFdS4h9Ruu6Ew4sqdZWvKsbW3u+2u3YJpaA3c4CgKZpguvFySxkbosETcZj5os5x8fHHJ8cM55NnHulsNUCXQqdF5ipm87TWNg73QVZERDGM+PL9ZpgxVC0dcPt7YqryyvOX75ktdnQOtdA28T98nRuSzEntSX8XBwUNKkCEoR64EYdOgzpfRD6sUX3a3KuNC4d0cUMtC1a5YmrMsOnv6bWgjTTKPAAKZCOsXrQYpCR9wmBa9CMMvaePv1bkMazxOe0++OCW13HTdUa1mtbHXMwtHtaNbULLpwxnU65Xd6StQ39fkFd1eE8xfWMLgM/giso4TPg1i0s5NcbD2DgzxgBBBCZPBi0icU1fDCgjQewDELhi1+kplV3oLwp1F/aC/2USzuzkMEaf/JcMJuMOVnMGA5yNIZ12fDBR2f8r3/9Yz78+GPqpgoH39N9PIL+7+Q9s68t+wMKCP+ez9eNQslX/UpN8Wl8w34kfvikZybCn36CAHDRgQgBm7Lk8y+eMZlPGI9HaKV49eqCg/mCvEh9Y/FhQn56ZDkdoefnko6o9d393D4o8KZR2yfAxgF0bpcgAR98GdoLGxwI0NY95NLMOnShdVejD4zcBE0vtIp16+Y1JuPcC16oKzzISBq17GnikYE7uZIKExenoIIv39Gn9t9PLBipu8ODEiUwMrMNX9zKlKVNo4ud5KxVQ0qJxtb3N8Z3lZSIDIrCdRHMbV/7um7Ybtc0bROXXNiAQws0LcMfDPss5nOePH7M22+9ydM3HnG4sJX46rrm40+e8dNf/JwPPvqQXVVZ4NDPLX0aE5q/dHbWvde6eTdNTdu0VNWOcluyXm8cELCFZpomtsf1tIPTVvu9HpPJmMPDQ46ObaXE6WxG0euRF/FZTJCKCVWHoDZLA8EttEczwaSX0K9WKpTt1aqlqirKzYbryxsuzs9ZrVbstlsap9hEwNY5HI4WNMJ5A2QS3xEEqhvdao7xb5/5ED57nwacnq1AqzYwtnXPIqVXVPChUIG/iOTrkCoLMq6PvzDxM8YYRCYxZPimTxYIuBiR5PP2ub17y2AXxfIjX7ej3JYYoNfvobRiu9syaoZMJ1NUa+MLrNWriNYcz/+TPQzPYBKqcLxDZFaZkt6CwdcbD2DgzxpdU5MFATYNsFU2LbBuFY2OJTj3U7Di8Lm29vcULfusZ/85q4UJcpnTz3MOD0bMZyPyLEMpw23Z8pvffsj/+tc/4vnzV7RNjbVPa3CH8158aIxtDuII1mgdBSoePd89lSJIDf+SZRJBsOErosnQq0CIWA9gXxB5FiGEtCZAm5Jgb6Hg1eWS2Zcv+ItvvosUGde3N9yslpwcHvgjaQWB+/l68r/7XtyTPw0EfIU++7oPFk/3qgsyjAMAvhyqBQJpqVQTKqWlANAzcW/2D8DD/74X0R8byMTmK774TxqLoBOQoB0K9e+nlhtDCgac2yIADQdgtUvJU9G9FQCJ8cFOgFFIMWDQ74ELfLotV1S1wrQJsMGmmUrnx7VZBIJM5gxHfXq9HtroAAKstuqCAR39+mZWec/2wzg5PuKdN5/y9tMnPHp0zGQ0JMsz1puS3/36n/npT3/OZ59/jhGuIZLIIkh19JIGyhroACrdKppdxW7nigRtNqydK6AsdzRNzX2ZEjKzrorReMjxyQnHJ0fMFwtGkwn9XkGW53Y+ydmIlTlSlwmkViJzD20Id159imigvVaF1r3bzYabmxsuzi+4urqiLF2VQ1f7IQUX9oilJn23NiFQP1EKIoNwa+rD2VwcDNFN4L8hnPQKZ9lK9ORQklRStJxGu14WmcuoMEYEy6afUTiVwmn0LhjKpy1q4bIahCZlBR40SJmRyWhRI5wBp964GI5wN+GArMuD9pdU2lBXDVkuQr+BzWZrS2rPFw7YtOSuO6bN2tBhLU3nvgRrhl1ml2GmNNK1/U5U1z85HsDAV4w04j09EFrHRkGNCwhslabRNl1QJT67exG1u7bcY8I6yckN5iABGBtQNB+POFqMGQ17CAGNgpvbkl/88vf87d/9mFevLmzFLGdCMyTBiPtoICkCEv72hxGDceZZIBQOlKKbdmO1kbvWjiD4jQ0Wk2lr1D1hKZwp0ZvV7A39gbK/V03DF89ecHR8zOHhjLatefHyBQfzKb08j4/grv/6jIEu6NrX+NN53XENGGfmNx4IJnn8/tKeQXeuIywjDkFaPqvE3NHkwlwcGIiNpro05BmSNgbhG65oF7iVpPlpY8tBR0uGFx4EAYwxibDy94oAxKRxCR6k+me15RBDAyXo1h+wlehsWeGsyNwthBU2Lq0wWIPomkCNccWlcktzm20ZWh37vfZBdDLLkZmNIzhYLHj69A3efvst3nhyymI2tr0v0Nzc3PKb3/6en/3il1xeLTFa2W50bt2EIFhpYppWqmVrVNPazoFNw25Xsd2uLQhYbyjLrbMENEkcUPSJF4VkMBwwnUw5ODzg8OiQ+WLBeDSiKAqyLLNCRUaVWmvIpK2DqE2sMOkbS/k1DFZHY6xkNgRwb5tY2cI/SrsUy7pht92yvFnaioIXF6zWK9q2tZYA78rAhGfw0kU78OoFtg8A9kA/+tRjVlKoOeY217sB9q2VyUkNLohQM6HDeyK9aS06YMBmmEin0NwF6pY/yACqEH59BRKJttpO4iYV1uqQZbYepW8KlTBVuxaZLYsuE8UkWD29C1ZT1zVSSfe6YLerkWLNfDFjNp1xfX1FnmcUvQJd1YmFxV03oY8AnOyM/RG7w9O+zngAA68ZMWAFwPl6ta2P7UFA7bIEFKnZN9GwvmJD9jVId1csEUbbjtDQyzIWsymHiwn9QmKAqjZc3+74+S//mb/56x9xcXkZU3qcO8MIewGBQ8CeWTgbWmi96mCAnbb3ucY6BmkkqxemIb/2zoO5a7i2n8G3fc+h9n+nkbHBbB1PItpo1usNX355xnQ6QWYZVzc33NyuOD487Bgf74sH2LcH3Lf2+69FZhMFo/9n8LECPv+5W3DEFyCx39+L7DcxSC9qdKn2RcgFT/P7vVDyT2McfRnlYw7iNZSLTu+mkrFn2Yj30uH6HizEdUvn6RbHCph73A1AiE3w64DxfnsLBjWwXpcdIASx22R4RPe8dV3TNk0Exs7ihBAYIcnygtFowMnRIW89fcI33n2bJ4+PGQ0HZJmgVYoXr17xT7/6Lb/+ze9Z3i7ts0kTS2XTFUrGRE+3b+5ky+q2VLtdtAKst7ZpUFlS1TVt3YTsDr/+Ugp6vYLhcMDBwYKjk2MODw+ZTCb0Bn2KXo8iy4IlLghdS8xBmPqOkb6RlDC6AxZDpU/3u9+DGKTs+pvUDeV6zfL6hqvLK26ub1iv1wFohe8Zm1LXiVpPzqpNcUsFLB6hhc8HcOf2NABnvJzcy2CiOzy/Ce+LyMOCRu4AkVY+RdXd07tHknHHbRGsoJZWpbQTFQF420qCQTnLJFI7q5X2phAfyyKtO0DEeifGgWkvsL0swYBqVXAB2eDXin65Yzqb0DYTlre39HoFxmiqSttCb065CHFb6Trg1tOtmXYuXCm7PPGrxgMY2B97IMBqcMZZAmx74Fa7gECTpGF5TdFrTgETfE1AkHzWH0EhBEWec7SYcDAfk2XWbFnVhourDT/7xW/4+3/4KdcXFzYQzWtuPn0qpCB6v36iPXihHCQ+7pDZwL70oOpAdJb4fUdC/3zGJAff90XA5UnnOU3TWC1O+nnRIWYv/IMJrrNGFswopXj16pzj4wMePT6iaRTPn7+0sQP5/cGL++u7/97XsQjYuIB4+AIgCMBABK3R/w0mCF6vIWqdMG+dRu/HwjskjD21CAQQlrhxvAZvXAOpkOtPBAMimVsoZJM8W7xXkiXg6D48b/K+p5lOdUO/XndcHQ4oKRcU6GoLG2Uotzu7Fgm9e8bdCe5y9KndswgkWZYjpKTX6zEej3njjce8+/ZbvP3WYw4WM/r9AiEFu13FR5885+e/+Cc++uRjqrpGygyR4YIy9/c90jI47VdZl1VdVVRVaQsEbTa2Z4BLDazrxpULjusppSDPcrK+ZDgchHiAg8MDptNpAABG2jORCdlZS4STZcaWHo4d9pL5JiAy7j8BhEQQZ91Rbduy3W65uLjg4tU5tzdLtom1JdCD30NPB8SznVpuPChMwULnlHlg4JhDUK6SRm2vU5ZS68I+PXTASCLcldIdMCOkIROZ85T6OcZgaekVE0K1CPwT2zpXMrxqv6PJMnuepFJobfmklBlZltvURif107WMhnpnfZLxb1890P6tgxIwnkzY1bbtcVH0bNxZqxOQ7MVUtDrZxUoED/7c3q1O+LrxAAYgpQTHkLFpgUrbamEuE8D6c2xut+/3fkfLNDZaPJ7c+N5+Ln/6HbC12KWUSJEhNQyKnIP5hOnEduxTWlM1msvbLT/62T/yo3/4KcvrG5TvFhgYsXJn0eUiE3NW99GxMe6weMGvVdRGPOp3ObzSB2gJAuDQWiNTkOEZuFK0IgnO0bqLUIU7cKna7qwUMZaAKPyA1WbNl8+eMZ9P6Pdyrq6uuL5Zcny0cJfReOATMM9r4NhXgQG/J0G7hgAKtK8KCNiCOik48AVKur5bL9S7ft1YP0DvF3tJhbV7EEOM1vdMWXWulwIVr5kbtPLLH7MRMD4GIMYB6L31MG4PuwI+zkd/xWv2DBgE2gpw6TpMOpDUVk0AOb6Yq2EPBAhXydJY+kMIsqxgMBhydDDn7bff5L1vvM0bT05tga3Mfne93vDRx5/yi5//E8+ev6Bx9GxdFm2kBdN1A4Rn1q7tctvSNjX1zvr/fWaAtQRU1FUTsjVsxT9Lt3me0esVjMcTjo4OQvvk4WhI0eshc2dK9uW5nbDHRA3Ox3Eol7Pv10SEObqIdmN5UQomQ6aCtlbLprYR694VcH11ZZsetTY9MHbyg1AoLA2Q8zMwYLwf3nTrPbxuRLmUBgomikNCa8m2uxgQHASUYQLGEJoS7c8XYbO4cqUsrRnHyxBgsnD1O+DC7Zsvmw5YhWifRzolKctsSWs7B4HMZBToxi9WQsckIFOkz+r4rUtR9W28lVL0+32mkynX9RXGFcSqTJVY3OyaCt/RMFlLAdEFk/CarzP+XYCBjgayN6Lp2lW3ajWtMtRNS6WsJaDRPurWdPyjcBfdeoLWmA5B7UfVd363k0OKjCLL6fd6DF2HwUGRgzA0yrCrFMv1jl/84jf86O9+xPX1EkLRGUcYEIVowqDT3NiO/BWi87dxoMcz9KLIyYvCgRSXTuWYs2dgHZOxNzsLgdAxt9kLL4+MhVsl70j0ICC17YV+CGFhBRcXV5yfn/Pmm2/QtC3Pz16wmNuqhMYdgPhAcY339+t1YMBvmw2+84IK53uPPn+vTXpr0H6/8/u0b915zZdyVbZRk8/d3wcDfkImHvzuP4ILK1oriJHmyeupK8FbK0isBQQm0q0j0H2uFIB019YKJEJ1NGOsf7VtVSAwgdXqMZGJkzDoYGpFgJAYV4VvMhnz5NEj3v/me7z7zlMODmf0+1awtkpzfn7Fr3/9W/75d79ntd7QuqArX1TGGE/r/lls7IEXvAHA1g1VVQV3wGq1oip3bEvrDqh9fQAV10RIG4DY7/eZTCYcHR1xenrC7GDBcDQkz21MAwT55YBvPP9eY43md9v8SyvtmodF5u7X2rqRVHQpOdeBqhuauma73XF5ccXFxQU31zdU1Y628d0ZY3nrsDk68spUyAQt3Au1e+E1HtK57xDOkn3uRHO1dvQ9ndxdwdjeKmGxxP69tHf347mIPVsiBEdmWW5bIEt/z5i2encIBzw9b4z8yO5vsjfgarvk4Rx9ZXxSXEkHNPbdiabTmKiua9q2pShsmmlT1yxvVxRFjnauKqVU0rXQBOHvAy89z/R4yWfpfJ3x7wIM3AcCPOfz6SK+J0CrrDCsm5baHTLlmLIJjCMllrsH456X7ggfAVE4eOZnIBeScb9gNh3Qy23QlVKGstbcrEp+/c8f8Ld/8/dcXVzZgKcARz0aNXsRpk7DTtpZdoBA8llbXcyugxf+WZbZgBjbx9P5a+3dfFWzff9xWF1vOhYilj7e2xHPCPfX0soISdodDKBuWj7/4hkHhwcM+n0ur65Z3qw4PJq7dfcAwyOCaPrtaICJNhIEbvIZhReiOKFPYDj35XDfm9PtD6Xx80g0f9XNB7dgM6kS5/cSYj4/XuCKjkvKpw2G+wTTvndt+t896LgbIe4Xw9O3tzCE+Zt9a8BdYBIuk8QcGGOjp6uqodcrkBmcnh4zHA5dOeLW7r8Dl7aSnETK3FUHnPP2W094//13eevpE8aTIVlmgWRdN3zxxQt+9avf8PEnn3G7XpPlOQaNQiVqEgEUWAbq99vuh69vX+12lNst5aZks1mHcsF1XSWNd6w1RzjwLjObNrlYzFgsFpyenjA/WDAYDi0AcBY1AtaKNCkFQYsLgbt+vYOp36+50+KT9tFoYvMobTMEttstm9U2ZAdYEFDRtgpffdTXYzDEILkg2DxoS9xRXkh6ManDeibBggk/7Jqt/SXtL/Ee8fyFM/86yyk+M8DCjRBNr0046too1zHQPqeUmdP2BUF32RPeIdDPkYnwiomnDWP2vmefyaZ320qNPsPDhNml8/bPFc9FIHW3pp7HCGNolKLclaEb5eLggMa5d/q9HN/UK4IhvOegc+9o+bhrOfiq8e8CDACJ8IlCwvrSrOayqxpabbvEKXwuuHGMNNHKtD/Se0QbiH0PhTlG6hmq9413icUetX6eMx0NmE2G9HIbKKhaw65RLFclv/vgY/76b/+WVxcXdv6OuXnqcscGQ2p+dfdIBEwABI7Be+tA5gKZsjwDAVmW22In4Rm9kLcMyGdNpIVjUm0CYuENfw8fe2AcCngdsPbz83f1QYiq1VxfL3nx4hXfePct6qbly7MXTBcze+gNiPDkXruOjM2zLR8H0LmX+1sb61hJm/dYywC0rQvuCwI4CsxUcwaXUugOqhXGLshJJ3Xg/boFUJDQRvhuF1zY6UYBH6/hAGuoR6BBy3ANLwRshSAThL9lhF6buA/Q3BX6r7WCBLq2+y2l4PL6hudnFzwVx0wmQ95+503effcd/vjBR+yqTbAWSSnJnSvg5OSYb773Dd7/5tucnizoD4rw/Le3az748BP+6Ve/4ezshTPTZyAya4XA07g7v15r8sF9xrsDWpq2ZVdV1FXFZrVms17b+gDbkrqx8QAWgFlXgAGyTJAXOePRhOl0yvHxMYeHByycJUBk0lrPtIokHM66vZTGFe3CgbQgfN1+evcRprvHxkSrEgKjNKptKHclt8tbrq+uubq85vbmhl21cyCgm25oQZ3PNjL7Vu3O/to5mwS1iI6yHqwBTtB3LNJekDt6COeeSN/BGBjYYyKs47f8pdx8wi9hrj5Aum1b8rxwtSq6IMBfIwhNEv4Trh/MiuEzRpiodBlrHcjzHIQIDcBs8anku+5XnYDPVFHyFg1Pm1rbwk/ltsS2npcM+gMW8wVtq2iamiLPrLJmrEvZzzLlY3EGSSbFHevK/eO/ODBg9/N1phu/Ce53IchzWy5VSEG1q9mWNY0ykGc4XgJE5GsXOyHC/Xsl6DeKpORtE1/zGyeMoN/LOZiOWExHFEWG1jbitK4brrY7Pv38S376k5/z6uxl0LxSDdILWoEMROCJPRI/0UQXwIN7yTdvyWVArOGzySEMAisJUtrXjP1zNU1DlufB9OtNW3FFRDx/+/vkAY4DLtJrBgba1nD2/BUnx0dMRkMuLq+4ubnl6GAWmH2nmJMHAN6XbixzSyBDYJRgU+djHAB4S4JPB/TPm0bZv05gau3NsuAr+Nm1ijncIcjQA0dHR6kgSM2SAeAkQOK+Ntd2rioyIv8edLIItDLB/xieRXta9WCnC3rSZ/buAcfzooZnDK0zR//sF//Ey5eP+eEPvsXBYs5/81//kOvrC85e7EDgAgInPH3yhPf/4j2+8Y2nLOaTAEabRnFxecnvfvcH/vmff8/1chUOUevWMwBiJ2F8jQS/sSE2Q9n0QFsl0Jr/fTzAdrulqnYxhdGdf5/BUBRWa5vPZw4EHDKbzWxmQFF0/NFaZohQGKhLGzKYjPdpJ7qLLKDbTz8VKG0Dapu6YbfbORBwxdXVNevVmrIsg9a6X17ajj33gJf17nx6PhH3OX62e1QT0ePdPB3OJjvn2+IOJwoN8fTZTQuM2XhroBGdeKYgZz1TC/gkWlaV0iityCmQwrompeM/Fnnh6gxFP7/MBCIoeW7mrvW2f6EjVwRII8gcjXtlSIjUqkfkhcnv8TF0XFHn6dXY0se7XWXBBlAUBdPphOubG7I8p+hpTF0FuvbWCxxPiLvkgo3N18YC/zbAQAIKkyE6KO/PGUEIC6vJSyDPMoaDHtOJZrnastxsETKLJneTolqBpaik0p5DkBal7t1obwQfoHu7l0sW4zEHsxGFi1htlGZbt6y3O86ev+KffvFrPvn4U9q2ddOJwWrGGGTm8rjTdlz7Kgnx84ArFStDgKB926ouIkT+C6dt23uqxL+dlj5NgZFAuGhxD5jcukjC3LwfEpEcmoDU0yhZ22QZGYlaCMHtas2Ls5f8xXvvUtcVZ2dnzKdjsixqEmm+bUeIEQFAcAF5nBJMd/Z12/7XC/4kVUsp1GuAQGohMT4n2TPl9LNJwZ00Qt/vnTFR8zeBBl2aoInphxY0xEqG5r57hOcznc8FyOoEuXHABGIUe9QqHbN0/3mXg2+wBd7CEOMT7HoKzs5ecnV5yYuz5/x3/93/nfliSq+fI3PJeDjmnbff5j/+1fd5880TVyLY7kW1q/ny2XN+9at/5uNPPqWsahAiVC30c+4cOGNIXTC49bVNgxrauqbcbNluN6w3a7abMtQH8NX2wiURZDKjKDJGkxEHizmLxZzFfM5wPGI4GtHr9V1qWQTRAhDpOidH8Q6g8p8jBpNiUlqw5f2MhlbZxkfbzTZYApbX19yuVrYvQ9sGi919xc4CkEy0ovirF8ZdvpqanR1lJvp+elbvHz4YMXU9CBkZoG+fnp5PDxs8DQW+mygF0XHhpmbt7bRNS561iDzHI2tvWURK56e3qCBYLXx1dOPrqdjMKoNLi96Ll7Ts0vFclCsMRDinboLdfXfvuVOBY37xe6olyyRN07DZbFzMg2AwGDAej1ivNhRFYV1WScM5YxIA7u/k+KgQJlqF/8T4NwEG7iOzr6C9PznSpTEe+Tk/TJZLDuYTMim5WW8t2gqacaAtt94+0EXHC3vG7aX9fXMP4NGQZxnTUZ+D2YAit9+pW81217LaVpxf3PD7333IH37/oY1g1hb/+YAe8JWvkofzKD/cMIIDf5BlJi2AEO4pEtRrwsmwQkc4H7XvHw4uil55RoaNwCFBqdpWEZTSVeFKNIYAPEgYubNWRDdLFxDYGCDPTGzk8MsX5zw5PWU4GvDq1TlPnjxiPp+G63YYoePHaZ2AaKURQWhAEnkffrdxJMbl6t8XJ7EfM9FJF3TmXkJKYfwMdIGAMYlwTgV60CT3tX8d1iR2aHPCnz1g0vmu0x+86dwRtxeilhC8sI2kZedKEDTCCbpQKS+ADx1ITxsLVMrllsuLKz799Dnj6YTl6pbhcMiTxyf84Hvf4hvvvkGRS5TSrDYbPvjwE379m99y/uocg3CuO1CqDkCGJO4lrGsKzFxFt6ZqKMuScuOqBW4tGCjL0prSfaMeLyCFdZf1e31G4yHz+dQ2mZlMkDJzWQM9er2etV6E4xNL62oTFQOv8YdhwGvuRjnfc8K00/bVRgtnJaxdb45brq+vubq8YrPZ0LjAs5hVkuw5qaUmWtzC5pCA8USWBHP/3tpi0rognpvE+iEROMQ0Ps8R07UNw1kzI7148SydwPW8wu2zm39UuNJoBjs/pRVN2wT3pDYGqZ0yYjTgqvMJg5BZfB7hTQeRpuwRNTZbJT2TDtD4vgXeQheAgEkAdljjRLHEsUxEsAgqFySYZbkFfNsSEAxdoaq6qinLln6/z87s0EpBsHDE+IbOGqeuiz8x/pWDge6DfKX8N/sfMvGbgfYDDqRVmu22YrPZoVTLfDFlPLL104WE2XRI0ypWVeMEZmx/acLUTAeVBLDg7rmfQRB+ut+lsHEC89GQXmF9XK0ylJVita24vFry6Sef8/vf/oH1emMDUAzYoLpE+09MHRYHmLgOJokLEDb/WUpp7e7SFzQxe2ubrHlicq2aBtW2SJklByPFHhZkGGUtC1mehwjewFuC9tbVFvwlBHso16+xA1xeaBltG388e/6C995/l6aqef7iJZPJ2Jm83THUTtgnCDxkBHhLiWPKOC1Ema7W6/3xoQiQ1h13QRp9b8LBjumCwnjrQwQB0XIQ61OkHQoDrWgvWGJqoI130OH6BM3SCh27N6nVQIcV9szNM/IAXt21/HdI5nvX0tAFKp740yBGvDDzoMRoslzQNorzy3NeXbykNxgwGAzZlmu0abhZLjk/v+ajjz/hw08+ptxV5DJHaUPT2gY/3vKQkrkhnim/J03botqGqtrZ7oG+RsDaugV2ux2t8kGBcUXAkBc5g0Gf6XTC4mDBdDKh3+8BsKsqhsMhw+GI0WhElueBbsLKhgJAseiUFwy4vY4BmhpDpIf0LNj8ckVd1azXa25uYqGgzWZDVdfB8uPLWwe6SX8mv4ej7fbFpGfSP0Vy/vZ5bscKsK+EeACfXCPl4GL/O25IIROjueU33vRveUvCY937Ye6eGSfWDKOtdaBwZZ3j54XlO6KrQFnBbrVBIbPIcwwhcDqmWhoQxlp9cAHV5A7U2XoeODBo9zWxoHB3j8N5cY9h6VchREZV1SGVcjwaMZvNUMqCwrzIaTx/8GvjeHwsEEYAa19nfG0wkJq//iVG1AjpTFZATJUIr0AUFXeulADdrjlrHxNZTcqwLSvKsqJRCiEzZNZnV1YM+32y3Jr7pRRMJ0N2rQ/kIfq9Q9NLs3cHL+ji/dJD5VGydz1IISiyjEG/QACqhappWe12XN2uePbiFb/97R+5uLjAqDYwkoC6w4okQYNOww5s0lhtW2YZ0lfJcuanuA/JwUjS5ry4DJtiBEoBxjco8mjUBwdG36owAikzW+ilwzPMHnHGeXrUb4zBhCma5J9nKHaN67bl+ctXHD46ZDqa8OLFBY8fP2Y6GQS6MMa4vvaxPgDY361wdIfXmZxxQlfj3QMJCEiAgf9dqzaYZDGJf3bfh+/oMgQlcjceIKUZ4z7r5VzHChEEicFlyLn3dAAVqWCIpuoIDP1KdAMWu6Al7IUh9LAIADDMx6e6xWf09/UAyxA1uf6gR5ZnNHXrKgAqLi6v+f/8L/8bWit2u4osy8jyHG0Mu8rnVxsw+k4TtrTqnC+yo1pbKnhX7dis12zXG5slUG6pq4ZWNXfWR0pJnmdOC5swX8yZzaauKVLNzc0NeV6EYMF+rxcEh+mA13jWvbjdt+bgwWYSw+KFrLW4Kaq6ZrfdsV5vWC6XFgTc3LBdb2wr4aRQkD9X8bwnwrxjPgafU985Tynwc3voeZ1xiMsfzwje3ff9mRLCqtFpzn34VLg59w0LGmS8SZxY+Dvl5X5Owilpni7B6gxGOEDYNDZeQNqUaK2ly0Tx8xP4eim2sl+WNKay95CuEZvBxVm59zS+/Ld2fQsESgLK8gQTOsyk7g6cJcspc0kqp39In63kx263w2DIMslgMGA6nXJ9dYUUtsJra1THThNkT2KFMq9Z9/3x9cFAWMG4WWLv/T+luRsioNj3McU/7wMc5u4rHSRt7x4Owj2WEa0N5a5ms93ROmGWFzne8pTL3C1gRFJFbjul1Y3Ca1Fw94DFWSQbsKfBhONnHGk5oV24TdUGqlaxXJdcLze8enXJpx9/xpdffEFd1XfvlxBXd/2w5nmcC01KstymQO1H6mJAOmFjfPUyN2/lOoHleWaJWdt2rZm3FBgTfP4CENIEbUAK62cNk0qQtmc5UUuI6U0R7/stTeebOPUA4xB7uSt5efaK6Ten7HY7Xpy9YPTNd8McdVh77wMngAQvpGO6HZFRaxNiBPaZeacDYBDWJtYLuCfYzj57DNyK1yUIpggWvupfzN6wmnkUPtqDAbOnvQdNxd/bg8r9cxRpSztQEQ5257M2oWofxERwtWf9MCa9DFmR2YwVCIx3t9t5nRCtDG1buTmbIHA86AyC1pjgtjFa0TYNdV2zK0vWG2sBWK9uKbfbWGkviTMI1rI8ZzgcWkvAYs54PEZKwW63Y7WypXqPDg95882nzGczVzgIB5YIAACiYmJM4q4INRsiiIxL7XiOIGh9ZVmyXN6yvLEgYLm8pdyW1HV9Lz1y7zW7v0f3RTxD+5/Z5+GpNutN0P7cWiupf9+dTSnd/virdfl8Kuu9mAw8e+9+Rptw2e414vOExxCea0eLgtGGttUUBeTEjBq/XlbZkG5OMihMPgXaVguUVtDnBb7zIHjLok1hVMpWiSxaQ1Hs2GyW1HrTif3QyRpGLceEktfh+TwPDoBNAy0gkK4R13A4pBqPaW9vbV8Ng8ugIfBX65ojgLp/ectA4kcm3Qg/i+7e3B17FoD7x+ve70r3eOD2CC5SWhhaw25Xs9mWNlhMEILtTOCQzsQZTrUjVQF5JhFt95odJu9f22OuJv2daKZNgYsx1k+EMbTasNqWXN6seHl+w2effsnHH3xEWZapiLx3jbpYHdcsQ0Lb2vTAPO98xjND/0pooeuZdvCX2bKbUkBV1/ZeMh66AJBEZGhh9VxcgPCmBRPBUjiAgSLMHaXBM30RkUJ8ABEpQinN5cUVjx89YjDo8fzlK04fP2E46rvsAZ8RkFgHtDXfWSHlze1d/7/WdP6OArbbKjbEDiQ/DYT0vkBn/umNB12uoEwqUPcCvryW351Dql3a60UA4Z83+VzICjBhPVLaTEdqPfC+f8DFjOhAHz49sjMf2Pvbv+YBUKS7qLWIZP7djIQ4Kf89Zx3wSbMOkLVNawMDd2WIBVivNmy2W3a7iqauUKqNJ0j4lEfptC1bKGg+nzMcDhBCst1suF2t2O1KpMw4Pj7mzbfeZLFYuCjvxAJEPDfpGoSUW0y0XvhgS+EVCsLe7nY1m82a1fKW5XLJzfUNy5ul5VtJPEC4tokWNn3PXt7ZV/tLB2DbuUf/uBcefk5pQDCiey3PA3y0YZD/IrlFEETGHWH3s+NPjZtswvdF8rIDIDK+5mMHvNtWhNf8PIxTTGwqcJYJjPb8SaLJbLC9lBgjQWTkWUFW9BFSohEYKRmMxvT7A4peHyFtZcm86IGxylLTNKimoa1aVNNSl1tG4znLm0s2myVaNSjVYFAQAr69yLG04YMVSdZGYFPb0wJfFrhKJpMR0+mUqq4ot6Xr/2JCvJBfRCliJtTXxAJfHwxoX8UpsQiE/ey4D6IWQOf9yBH2o1XjiN80EDpdOf0xCNuY7kcw+1h6jYSqjaHatay3JXXTOu3Yo+NY1jGYcUjBgX1XCEmWpLbcq0Wls+8w2dQT131Cr+1orJBtWlsydVfX3K7XnF9e8sXnX3B5dRXMz4GjOuEaxItbI38jDwTyPLfVqoQIAjWgY/9xJxBT81f6nJl0gT2unaw22vXINnGlE0uPFd4mCHq/plLE9YicwjFRz9/9qonkwCTP6z+bpm16UFWWJS9fveDdd9+m3G558eIFb7/7VgcMREuBE3ROaAuiedkLQK9kdXL3O0BBx4CzNJhQdz8HhO9G8jehjK0XvIEe91LhvD/Qaxk+ewHjNW//XDoK+sBY71oIrNshjcCPhJPSdix2Y4KwJlkDUmCS3M9fx4MYL7QT3BnWw9KLghCR7c+37swpgDV3ESlMiNmw9fZtTYDtZsNmvabcluyquqNFa0fCYLW9Is8ZugjtyXTCYDDEaM3qdsVmu6VpWrRW9IqCg8ND3uoAAU/3MgF5nsbc/vo4kiQbw4ltZyAzLjNAUVUVq5V1BVw7ALBa3lLtXGdHY0Iuu8FglEEnFqZw/USoeIlsrXkJ5HaKTojuD5q4CGfPn2zftTHk5/sTv2cVDVVChQhuhHS/UyaYvtx9385Eu2tF5Y7ARyIIiLQSntPPK7guM6/TuXMJWdZz7hxBJgtE5mOacopiQH80oj8YMxhPbBxIntMfDukPLEBEQF70KHo2fbRtWtv9sWmodyWm0dTlDtVUTNePub0+pym3bDZL1usbtKqswBbxfMdOjjEM0y+LUcqWA9EZIhNQVyAEMhOMRkOmkylNbbNfsiwLYMDKPptWKCWBJ32d8bXBgEign9X8wjupDA+/+I8npBYvlsrc+Ok7f6fX8M+jlUNU0gnqIMk9o4G2UWy2Fbu6ASnIetas5/21HgR4sSiN+zsQmAk3v4Ni/X2iOKQzWRxDc6WxgiAIsJfovBZQtS3rbcVoOKBtWpqmpiy3LFcru8GBkXjmSDh0viylV6qCKc+ZPm2qVAtCBpN+apWIGo0JJWT9fVItQWlX0jLIoshiUtQegEegBI/GI9Oks15EZuBBQNA8/AMlgirJhY8XseVory6vOTk5ZjTo8+LFGUcnh/QHgxDA5sFE6BjoFw0Cs71jgk0DCJPXlVYxVdAjeOcy6LT79QLSfd/zzf3MgwAidNQoU/CAE677czPpsyVrZ5J7+mukzYYib0junwpuQwSHfs2Nsc+aWEm8MAq0HWg0FVLmznzC57QB0XbWwi+Sp3UPhH2gXNtad0BVlZTbLZuN6xmwKW1+fbDaxBRbf16KXo/hoM9oNGIyGdPr9WmahuXyJjTt8TRsqwradsjHx8cUvV5nXl5DT/fJW2f8XAOnSXijB4/VruZ2dctyecv11Q03N9esVja7QavWAZ40psCtu+N3+8pUuoaWD2iXWmv7Q8ThgUAqnOO5SqP06VwvuYJIHXoxA0iEi0bgEDc18icv2LsgOWHlgc/Z63aypbzITJQQ4cCZlDaQT8qCTOZkWc5oNGY8mTGazhF5AZmkyAv6/QF5v0fRH5AXPUaTKYPRiLzfw0CIK7HrJ0JWVLCWSEmeW2CgAZ21FJkkU33y0Zjp0RFGK+rNisuXz7m5fEW5XdG0ti+ERagmWjdcQwa/rj6LSwiFRNIYMGaHkAKZZfQHAybTKbfLW6Q05HluUw6JfAaEy4D/FwYDYSMCVYhwcPeJxb8XgBx3xf3+de8CCi9YccxJh+AnmclgNUov3LaG9cZqBgiJzCPhJwG+6PSL2rhNTi8Wkan0Efep8DQkRJzMM30eIsr2PjFMkmoUBJlitS3Ji55rBGKfvW1rtFahkqC/TlSs4wH2v3lzodItrZIUvZxyW1PXtoiFD+7zj98pyevRPU4QCM+HUyaTJvF4cBOKehNbeCbwzwmse7b27jBxesEnmAKT9BrJ0BrW6x3nr674xjtvsd6sOT+/4MnTNwIA8BrsflpgYPD3gQFjOp/t/PP95NN/wbQHqVYYghM787AWGc1X3N/JM2F8NsHdss/hd6cJGn8e92JA/MLdAYGGACy0Y3wYgqCTIgrjzv0SoRgZUHo/K5CDMcN4sCICvzCY6CdNhEi6J8bYqnLGNd2pqsqCgO2W1e2KyrUPbpomBBoaoxMtEgqXHTCZjBkMhxTOanZ1dWXT8hwYlC4VttfrcXx8zBtPnnBweEBRFHfmlAYgehej/el7VESG5rW1tmltkaDVmpvrG26ul1xdX3F7e4tqW1vjwFsz0M48nJ6XsHCdc9sBAcRyNv5FPx/voweSgoIiubTfS18vwW9H98B2FKTgSw8UFT5n/HlOnqGbVmige+mua8LPC+OKANnnESJzP62Wnxd9ev0hvcGY3mDMdL5gMB4zGk+YTmcMR2NGsxmyV1jeb2JQdWa7aNnfZYZBo1pF1tQYozqATGtF43o7aFfpMtCDf0QhyHoFuSzQSpH3++TDEYvjx6xvr1jfXLNZLdnt1rRNjTJtAAVh3fyhEXRoTinNblfZYFeZMZtMaJuGzWaLMbZdvFLKWUhiquZ+rtjrxp+VTRDZsfPXeJPN3U93eL4Ir8QRXcEJ+fgiOvaGURi5xclch6h9/7LSNkNgsykx2Hr6vgOlUdBq6ztqHOLO8oyeawCUJeWD03gpK8VEx4eWalrxSZP//UENjC+uXefQEhmVkJKybih2FUa4rmdFHiruSd/eNLlhx82SMFj/EKppqbW3nmSunGXjug5GE2FAax7Zx/PfiUa9v2iFD8CKjMhezu98EmQIyfyTNfBrbTx9hVcigBApmPLah7u+t4RgaFu4vLzh8ckJshC8eHHG4dExeVHEJkIm+tNTX79n9NYMLzqCPJaA1RE8GStw7loNvABMswr2tXnjntc9pTYuUt/dLwhb95kABKJ2mNJimE9nHiQMPb7mn9+fMl85MAjp0O7MBpaGtUhjSvaAgP+8pdGuady+LztCKwCBPUDjf1qrSHzOtm1pdrZc8NZVCdys15S7HZUrsqO1rcAonAlWCJ/JIun1cgbDIcPRgCyT1FXFerWyZV2Dq8XljGcZRa/g9OSUp0+fspjPyPIMX9M/PLN77rutpuOzSycEjTHUdcO23Nr0wOslV5fXXN/c2ODE2oL+CMDS9M7IU0yyTtF6Ek+jl8++HgX4NOREi0+VthRUiHiNiADiF0IM0Z7Al+47sVtlOKDh73tZR5x1/Gz6qnBnG291sABAyBwpCwb9MYPRmGI4ZDiZsjg6YX50zGA8ZTSbMZlMEVmGFi741NiibCKT9rwpK7p9HYK0cZPN3TcBoPrUPgEYIckyq3yYzKBcvwqRSTKwsSkGm7VlLI9ttcHkOYPFguF8xuL0sc1sWS+5fPmC7WpJ2+4wpgl0tu+KCWXMyWlNS5XVlNmW+XzOwWJB29i0W5lndo+0TtZVcEdgvmb8WWDA4JGbJ9TXq3kmQZ1hYxN2b68X/UsRTRMPlzt41s9n0z46EacGdruG5XpDozV5lpHLDCEsUletoW41q1XJ1dWSq6tLDIbj4yOePDml3+95Odhlbn44y0Cq9dz3oF7bw3gR9hVEbuJB96+1SrHebNw3BaNBn9FgwJXXjv31/ME0nZfwgTl+zlo4a4hSNgVF2nXWWtnWzE2DkILCWQt8FUKMRnlhLSIgSJ8kNf0FAJAQm0EFJhQ2P6VFL3yEB4SpVtGlk8DhUsYY5hGtLP69zWbDq4tznjw9ZXV7y/n5OaenjzrR//taPzopr+w0yjvFhBKh6bXtTlGYfYCRgAej9rXqCAj0viANdQE8o5ZYTXMPBPi3zX6QogcG6Wo611rKXJJ5hHoVweSdgJcEkXgB7m4biC/IFv+3SYR9eM3TbkYojxy+H7VsjHGFrVqnKTeU2x1bFwtQutLBTdPQ+Jr7LuUxuM6EiwCXGXmR0e/3yLKMuqpDQyKfXme1PkGWSfIsYzwec3x8zOPHj1gsFs4q6C2L6fp6V5AvsmS1xvQsaK1pVUtZ7rhdLrm5ueH62gYGrtZrqqp2gicsKMKAcmvTWWt3Frv8RyDwcS/O8umPmvDvm/A+ntfeMdFFABhYSAIY7j37xjgg7i14OuCADm8j/XLkVfcqkMHy576vIZMZgow879EbTBhPFswPTzl69IT54TG9yYSi36MYDhgMR7YnBNatoEKFPoHRNmXPqDZYN6W3aBJ5TAzKlGB8zwFXk8BF8xu/t20b3R5A27TItg3cH4FNUc8EGVm4Vz4YMSz6jGZzZgdH3Lx6ye3VOZv1krqxLiI8+DCJixgXJKgNdVlRCkGvv2M0GjGbL6jVpeVfUiI1GBH5wtfEAn9mnYFw8ThFt+KBgUetM34nvOsiJiKxJ0zeHYI0Stu3i8xCWlwUpE2jWK42bMuGvMitpg+uqYQt3rPZlFxcXvPsizM+/vBTzp49A2n4/g+/z2Q6tq1UiQpy0EaTMyLxug17hzGuS0dL2/PPRBNeN/d3f9QuWh9s2+DxZGjjHJTB9krvztG4oJsoLJM1NwTBpoSKJjVnPpJaoFtFoxR5USCyDByTDILaa/ZEuR6DEZO1cnOSIgkStQ9uf8rYZMiP1PqQ8BeEcDXB3WciaIzfC8TtrQJGOprSKNNwcXXJ0fEhIHn54gXz+ZzcRdyGwC4IQv5O9T//L3ndM8WutcCX4aUjqO8EE2oPBmJwoAePNoWRzlkIMQcafK3z0HTICVvHf/GCu0OH/jOd9UvAYvq3id8TPiqXCBQUBH9juA8QGv6kVNABAjiQIcN59eDFioO4fmGOLijT9wwoyx3VzvYM2Gy3VLudM+kn1oeE1/h6FnmWWwbsygNrbd0LBhdcK2TYI2tBkPR6BYvFnMePH3N6emKzCqQ/y/7ciq7FxwMnbw1Bo5RdVKUU5bZkvd5wc7Pk+uqK66tr1usNdVWhjUEZHXyXHb5iguJv1yzRK1Krit9hIUzIIw8ZGUG+Ozjgz29yLP0F7+Vpwp8/EQR/qoRBBAxp3QoPPdL//fXCw3nhaoxLmiP5pKUZITJkXpD3RowmM45P3+DJm+8wPzxhNF8g8hxZFOBaR4OLk/Kav4vlkVjzv5BeuzaARmYZuYx8RhncXthIU+HoUgqRpJt7i4VdhzzPybPMVSZ1ALfXo22qcH8hBEXRI8ssDapQ5EoDmv5wyPGTN5ktDlkvr7m6eMl2fUPT7NDaWrETv6k7qwrTGEy5ReYZCEl/OLT1B65vkNJgpA4pxyJ0cP3T48+IGYgMpQsIwrvxD7fDnoCCGVL46+wJ0HuYceYOaexBbVG8NrDZ7ri9XYOA3qAIaE8bW9N/VzXc3Nzy/MsXfPjBR3z68Sdc3yxp65osz7m4uKIsKzdvV6E6FUp70e0ds6eXWp25+2ftMvb9cR8IMI4xWAunIcusm2A+nSKltJoMMVDJb63WSQqZtsFCXsM3wj2T5yjChLajGEvI+HTDzpxssaVgZkw0nc7cjYkuB2PBSnqgO9jf7WXHLCxEiEgP4MsY1+pY4VuUevdAMGO6euZSWgAQShd7S4g2bDdbbq5veHR6wvLmhuuraw4OD2IxD+P9+46JJ3nxcT+jRSDsqQME/jp+jXyPBm8t0KrrIohCPNW27UMHC4O2QoW9ewW/P3FO/rpdAZKeHbsnGS6wKdCiiWmKfu7uTPuSwv4+ASC4a2uPQEjy2U088/Fs6OSz8SzEa4KPJfBr69MD26ahrmy61Ha7sZaA0v5r6qYzN38QpDsNvmCQlJnNLrpDt1GU+f2QUiIzSb/fZ7GY88aTJ5ycHNPr5RH4hb2KgtVrizh6s706WpTrGVBVNZv11loBbpYuPXBjsxtaGyzp40TsnnghH5hrpPkA2MJb7tlF+MMvtz/L4Ty5HU6wxP5XQ/W+NHjYHl5nEXG8LsqjpC5AOikHsgSm6z7eu7nn0/4lKWTo5yINZKbAZAXFZMb85DFHj9/myRtPWRwd0x8OkVmOkNJG8WuFQCS59k2gNa21kx85AmGbFznAaAvGeR5tnIXJWgHyzHUi1B6oxclrx6OFEMFtLQRkQtBiwSf9HghomxotRCjylvk9rw1aYQW2srVrsl7OsJiS93sMJ1M2t0turi9Zry5p6p1jAsZZER2vEoa6aVmv1gghmc8zprMZdV2zWm0wmT2LxmUj3S+N7o6vDQaUiZdMEWb0/d8dHYCQaid4BiICs/GoRwpJv1fYYjdCuGsbtBFUdcPtakPdtmSFC4jDC1RDXbfcLNecnb3i448+4dNPPuPVi1fsyjKYjYTMqJrWahjESNU0uCbJfrfahbJM3moJ8ROOp4OJZsT9w7c/7kTNhwNs/86EtClNiwWjYZ91swlrm/nn1RphFELZ8qw+5UwLEHluzbEyRlPj5yki6o98Ja5xrCp415iXMpkw7/0Xw70iYAomdhKfY8rUjQkd3O5bq1QIhvVzFoQsy2KUb2Z93m3TcnF+zsFiAUbw4uULhuMRUsqumyDR5FOg9zprgP2s1ZrTts1e8+9+Lrmmjow/tSREIRtpIWrx6UGO3wmCPCydCZSqnQTxlhTthL9yFqJo7cC/i9m7lv/7juC1dwjPaelHEGsRJMLNGNJc0QACDK4Klk2V0y7qv61qZwXYsS03ISug3JW0Tcyvl8FlZIcvwiKlzZyx3TajUOzSaJcspbRFuEajIccnRzw6fcRiMSMvsvDB+OwJf7IoI1gW2rambmzJY9/5cHW74uZ6yfJ2FYBM632+xgTLD+CES0JjOC3f70syB8d2wuuWX3mLm3HCO8Iee0xkuG5yqiL4SJS2cNitChwEn112YQG/n0RgfMnaCueucW+loEMmHUIdUnP8xRbTEUiyvM9odsjBo6c8eucbHJw+Yjie0ev3yIsCz5eEsOnkvv28Uja1Ls8za7qHGC2OcXVlbDv2VrVYS7tBt00STGwJVDoTu89IsTIjAkkpHQPFqTzaFWGTEqWtsqKFxGQFUrTuOTUYG5QqEKFXRqvbYEHEWL49GE8o+n364wnj5YTbmys2qyW6rRGoCL4dkK5NS7nd0Sv6TKdj5rM5ddVgdgohc5RRwaLwdcafUWcgFXYxcMw4wpCI7heM4XVT8EQVqjQ51JNlGf1+YVtKmvgQrTLcrktWqzVZkVvTdnKI6rplXe64OL/is0++4MMPPuLs2Rmb9cbmDBu7kFJkKKVp6hblqzbdM0uPqCEKH5PMJ57JPe3BPfO+BWBf+O4Pa5mwRCmBQmaMXVnU25tby7wE1h8qQLUtmVL0jDXEapEhejk1hm1VITODxJqQuv58n1ucMk0TVsF4VG88T4iugvAsjlkELUnsBZKmAkT7QjJ+XWKBnNRq5O8d92MvlzkpwBEoUAhqYw9oXmTkvYKiKNDasF5vuLq6YnEwZ3l9zXq9YjyeRNN/GgyauglSSwCRvvQecEgD+GzNgD2G7kFCct2wHo5LhteFdAFjriZCYob2WiTgYg/iefPMPOXL6TPoZF3j3JLvEgEPbr7hUgkAixqqSc6rhyAeACSTSO9hXIXBDgBTNHXttGjbM2C73VLuSspyy66sQtOdyENcsxnpClU5gZ7lmQMEhGZYIQul48q0V7FWRluDYz6b8eTJEw6PDhmOhqFVMg68+HXAnwOwteeVdqmNFbuqDNUOrTvgms1mS1VVtoOg1i4ozOf8E+8RlyqCvI6Wlc4hPlfizKFj5g8/9pQAIv9JrZzxte7OxYyhblaQdm4psXdN8LEvIrgy4wJGxSr87oGAEAgkRdZnNF7w+J2/4PDpW8xOHjGazpFZDjK6IOIFhQ3YEwWmbSzQMBpjvLXQAw9vIchCB1aUW2sV3W+eksGeT4VBOUFtrbIOChiNkX7uMnEdW8mXCdtISwpBLiXalVdWTvuSeW5jGVpF2wh0m9tMAkcjUtoaAkoLiuGAg+IRw9GE26sLVrfXVOUGpRt8yXE7X8Ou3FkwnEkm4xHT2ZS2rWkMoWS4vEfm3Df+7JgBEC7dyP7uTUwm/ZzoEkG8RvrTMxdLkIOeE/KuzKxnAttdzdX1iqbV9Ps92z0Ky+yUhrKsuL664YvPn/PBBx/x+adfsFlvXD5v0o7UGIy0h06pND3LCXvP1AwutMG+LqTTyI0Ka/A6pJVqJV/13n4+vrNR2HoHjigG/YLFwYznZy8sUJIZGaBVi2hbRgYGDrH3egVqOMBMRnz27MwGoch4sP1x8nW8uxBAJPNzc93bv/gp95c79ALHnFzbY+mAhsYHOhqXFud200TNwRfasX86seKFYlhnvFQMQjiBVZZ2bKFFsrpG9/v0ej3aFq6vr5hMRrSq5eLiguFg2BHkJr2uv3YKTJLf7wQfpgI3Efw4H+N9loEOMAhAxKCF8qzLCtxAh7ZAijEqmVOsmy4SIBXL9aZWCGcST8BH0AjTADh3HXmPELTE6UCPtoGM6Vn3Z5j0HPn7e2uVX1eladuGuqrZ7Uo2WxtdX2137KoddV3TNC0+kyDtQSAcEM5yWwNeSBHSAKPwAu/fs0w+7okHtlJKiqJwAcRPODiYkxd5ImtEpLlwLix9tE1D07RUOzvfXblzHQRX3NzcsFqt2O0qCwCSCpVpMS/thboTcNaykp4AdzITcIebu5O3vthnMs+4RsafxeQRUruAv17SuLeLm3BxFXSD+aJCEEGgt2Ck8QAmPmqyJ+FtjHCZHmQIkTGZHvHojbc4efIOp2++QzGZkA96GKzQ1FpjnEXPFmySocOqBBcn5sz2Wjuw6PiNEbRtS63roKyE4FET0+6AUGJdCPsZ5YCbtQpb7VoYTdtol/5tH8taan2fFpyF0lqXhLLfDRYS4dybEijAMKKpK3DnQgh7llw+E2SS4WRC3isYTmZs10vWt9dUuzWqtVUNDT42butcZQWj0ZjKldE2Lhbs9Wp5d/x5qYUOdSnP1BPQphPUeFdTgFD+NfmHsf7rQb+HzKO/y6dk3CxXXN+uyYoexSC3wWjCahtNo1jdbnj54pwPPviYj/74IS9fvkK1iulswng0Yrm84eZ25RiSRhprNmsam5fsTZpBQPllEwTTkC04kSFE64B797lShPw6IJCCAP8z9btlTtu2zyYhExSDHvODBVmRQ93aNXQmyrxVDGVOhrL+IdXSE4LVbkfm4gz8yZRGuEMYHizhKhbxWrR+19/Y2eAAmiIz8dtsTZQmfNJrxzIRLs6Q2RFYVnBG61BH2HpNCQhNgNx3BLjmI77iorB9AdxBHsoBt+s1N6sV0+mEq4srDuYHDIaDqLF6X1wCNFLt3gKW+F5wVYQCPe71NFLfC9iQIqbD3FO6D0IaOveMz2/3yphIb3bevu+7DrUyjDEo3fXjxnvZwiUeUHlS9O/Zhky4dYjbHfbMfc+3WI3yJwFTXggQnxNigKbWmrauqXdWW96sN2w2G3Y76w6o68Yy/k5EetQipRP81hQcC7/Eo2aFl+48o/9MjHvx/QdOTk549OiU2Wzm7mVcWVphQZK/qqORVrVU3oqx27FZb1hvNtze3trMgNt1aBykkqqU/lzsj7RvhUjX20l4z2O7XwpfDqDAfyUK3/u+FzYz0pv7Xsz42Yv/EqKzn54Ofb0V7SPT/sTwlw8gWVjOIWWPQX/K0ekbvPX+d5kdn5KPxuTDMXmeUcgc5QSj0G7O7rz4ehh5LpFCoJVGSBsToLWmMTZ6X2tN0yqklIHP55m1ENieKQTLs61bk0W+oxVGtWhjaS80IcOySoyyoERizfDGlbbOcyTWKiCMoZUSo2XYEe3OKK5GQJYXFEUfVbeIaucAgSDLDK2yBYlkJslFxijrMRhPGE2mrJeXrJbXVPUmnNO2bdhsNmRZznw+YzY7oG0Vu7JES0mr2j+9YfwnWAYchrK/6YQwjScAS2Ap/dqf3RQsIaDXKywQkAl1GagaxfnVkrJpKQYDssxFzWJQra3edXW55JOPP+ePf/yQTz/9nNXSFu7oOY36yZNHnJ1lLG9XkUGhLcJrW5d7TvJMJEEjATMjpc0b9WM/BzRF3fuWgfssBcIJL5GY4bxgFkJCkZPntp/AdDJhNByyqpdkIgcp0UJSGU2NpkCTIRF5Tq01y82W2lVd9AfdCB2eE6GJqWSOOBNXQXgteTrPlD1S9vzFC1Vv+vcVKlOtzmsvqWne7n+sOhdLrYJAW5ryVgPhDqC3Prk11gDeyyMlQkv3nBl1WYJRSAGr5ZLpeELb1FxdXvL4jScdAXcHBKRgwPvsU/Cq79JxahmwjC+JDfCgxt1Pe7gkY9aAPy2xw58/M1ZHsEwrZi74HOmgozlwZOsV+JFG23sqtQWA7PpZAOFPadpy19Oy8kGpOnnDCZx0LwOJh/VwmQiudnu9q2zPgM02VAysqipWx3SEYq8UK9l5AJDlMTagUzQrwtfO3L0Vwf5ua5IUvZzDxQFP3njCwYEtIiQSntM5zy7FtG1bmqay7outjQe4vV1xu1yyWq/ZbKwL0gsbX6QpuIQwyXWDxCcNEDdm/3MEejHxBbfyElzAnQjvx7PrMzNidL+/j9P0nVAOy+dZT8qHEloV/ntBfzABV+wteff7ePlgYiS7kGSyj5Q9RrMjnr73Ld58732mh8cg87AXrbHV9qTMnMsvcee58+NtFkIKTGtQTRPeV21L0/gKntoG8Lk9VWgKmyIS6Ma7cKxLwMsEmxkiyIAYtxY6ghqDdGDcgx1fEMwYHLC14Nq3t259CmmybiKTFLKIVhghwRRImSO0QOsmgi8EMssZTaf0egVZ0WO9vKQsNyFDoa5r1uuVzUQbj5nPD2iVpq5qMvn1xPzXzybwDENASFlJiDxNMdofqebnmdlgMGDQ73VkpTGwWpfc3G4wQtIf9K3fyGkfbdOyXm14dXbBH/74AX/8wwe8enXBblcFwsnyjOlswsnJEXVV8WXvOaopLTFrjZEuItz7er22GrQ9E2oLeHP5n/K5hMP8FZ+L2spdsCDczWzr5IKizsllxmQ8ZjGfcXuztD5HkSFlzlYblrrhaDgiLzJMf8CmbSlrW3wibL7w25MyzuhTDDMxydSTZwnGBA+AgsCPYMALfA+j4uecwFMWuSpXKtPYpF+nCHlh6X1xkTE6ncT+n2i+/vLpUo9GQ4oiZ3W7RhtDvdNkQrDu9SjnGwbDIcubG+bzOb1BH19sx3cYDIF8aZR+EMx30wXxDMBrgA4kdMscJwGCdLVre29vto/rlv4LoNqDLgPKMyrD/5+2/+q1LUnSBLHPxRJ776OvjBsyIyMzq1JVZ2aprmk2MAOyBxwSIAiQ4PwAPvPfEPM6BAdEAzNvM2QDPSCG091VxS6ZKlRGZmhx5VFbrrXc3fhgZu6+z71ZGQUUd1XGPWefvZfw5W7+2Wdmn2VwUIMJNd55TgowYyAj85v0em7kL+jjVy+MH6BMh2KQM7OR76VURMQUkCJvkINWBqxYYnfY7bDbDRinsQITOtVsBqLeMwDwnoW3pHAEtaSuyTO6eMP1e7k81RjM+g4PHryE+/fvYXGwKDFlApAZM+QNQTf4Ydhivd5itVzh+pplg6+X3D2QcxooP/M9wJhf9QaPahzLfd/4mLA+xSZZ4aPVfurnyxRVMFaYRpMPJN8wyOtHjdqeXsCN69i7NmVOKn+hvicIwKjDCHxoPnlEgrUegEfTHeLW3Zdx59Vv4PTlV9GdnQFNAwcLR4btvDO5myA32uGNm0uDExLVdojXr0pIO/Huw8TVSNaxvgBn9COD1Wz75LqjaA9ojkAuO0VEFJE7pRJItCRA3CBNndiU+Dp4DSQUW28lPFUSz9VSWmdhYZGkL43znCTpvIchgxgbUAqco0KTnNvA9zMcnt1G27ZYXl9idX3J1QspYRgGXF9fwRrubnh4cISreCl77u9+/SOYATXQQElrqlAhbi4Gnkh5UhIjMWcMDuZzNM1+n/sQE86vllhtdmjaDo2zIG7JgZgI427AxcUKn374Gd5993188vHHuLy8zDrxvMA5M9U3DWaLGeaLGZx34KxboV9TwjQOmAInY+jd5Cz/nEiVd1LOeDWGEXmFVG+yBPVrb9O/yQ5kWC6TRieo5UXVNC2MsWi7Bqdnx/j8sy8wJUJE4IloLFbTiLTbYWE6TGmHzbArrIDkC+QHpttq7cnpQ80/ViAgXx4j+5oSBvZzAPQYmebO2fUJUTJ2eVJHaX6iNPi+Z1kMJvJ1awmcqY5fzycYjgsOw4CDgwN0dzucn58jhAm7LdA4j8vzC9x/ucduu8XFxQVu37kjin/Ic0fvPz9T8dINxFclEe5JSvGKJ5ATDvn9/ff2Nwj1bNSA6lx7ERCorydvXEQsgQw5jz64qlpB15uyOHyOffVC/qh8Xz+jG44adQEP9TMqVQMVEExcVqeNg6ZxxG67y90D12tOCByHEVEMGx/PVMPAm41zHk3j4RsurTXWVMl3yhyV/2RmpDJMFpowa9E2HgeHh3jw4B7u3r2Lrmt09laiOpyTkVmMccRuN2C73eD6aomrqyWurq6xXK6wG3ZS3VBK0XR862dYbEIBc/U11i8qaG5P6EfIuAII8p9uzFGTn3rJAzClUY2OlHHlb2zHUJ6DMED5+gxlNoiMNA4ntXc65WTdSskwCIVBkAdrLGDJwdgOs6PbeOnVb+L+a29idnSMbrFAY6WZkCEkCyn1ZM2AMDFzaHUUpWqqsQ4hTghxhDGSVxATJ3/WYMxaKIcQUwlf82aPnG8CoGz+YoSsfI57EjjAeEmJSqK4uO9IKYjIjYIUSOfrMTnPASiEpjqjuQJI8ymMR9O1cNEhRo9IxMq5IigEQ/BtA5rPcQCgb3tsN2tstktp373Dyq1gvcN8MZdmXht8ndc/qrTwxQjxxQAgo1OZSJQI3lkcLHpe7CjGf5wCnpwvMcWAvusBB64AIEKIhM16h8ePnuI3H3yI9955Hw+/eojdbiMIjrCXdAZGbE3boO87NK0XdI389xACxmEUD0dDEAXw1C+lLMv9lXv+bUDg5t/2kpzqA1d/ZxqCx9g3DZznGNfxyTFm8zmur1ewYrCt9xgp4TpNuF5P0A5q3InL5RbNQtLl6/6HrlMpRf6vKd5hNrjFE6y/R5kaLolTKUaQisPkTSXlzNp6HI1BSZGuwRVV51AfMJU5mMC4hwgYhgFPnjzB/Zfu4ezsDE+ePME0Tdhst1gulzjZncI1DS4uLnBwdIi2bdkwxJife/7BAEgJnfc4PT7CyfEhEhIuLpe4uFxis91J7JDyRrtXjUA3Yuy6gdYbw81noN64gAp2302mHtWwPO+BlnPzuEh5V+3xUxXOyEhK7pWkdOrGmFOi0o1O70MBh9wnEpBixDQx5b/b7rJCoIYCOCmwjHPtvRojuFW6x7VNg1bUAo2pW7ImdcxAMDlJFYpXKuBqxQubzWd46f593Lt/DwcH82pjBFQISZmMEDmpcbPZYbtjJuPy6grn5+dYrTYYdgOmUChknfvlfzpwvG7qcS4AW+Z6bQVkTpS1Vp6N1v8rnn9uvuiE1Y29WktEKNnz8sr2S0Ae7R0He9eo48THoVKlJ3+puITnQY4+WDIwZOFcj7MHr+GlN7+LswevYn5wCGMNvLdw3lRrjj17pcxj4pa/bdux1koIUBAeU8QUtKGURSMl5jcbYUEgkoIptWHWsPhaFKavMAGm3CExS6SJhizuY8raMgDiDSCg6FbmA68fcZ0jH1OoZgZRiSTHBKycGCXMExP3FvCsU9AYQjKEadghhgnOGBjjYJyDa1s449B1MzT9DKvlJcaRq3KM9Tg6OsLx8Qn22sL+A6+vX1oIKuj1uVdBh2WmVTXiRGidw9HBnJOA5GMEYL0Z8Oz8EnAOfd/z4BFrjYcQsb7a4ssvH+Htd97DB7/6AJfnl1k/WsMHNS+mk8Jag7br4EWUQo0Q1wdPjPRDzA+JPbeSLMJHLTW75VZvgB9dwLrgK8Ozt+iMybSf/r22DSbfEeAbj37Wwy2XODiY4+T0FJeX12LkOWnGNQ4hkHgPgHVcXuKqhX/zcT33+PYACcdj1aukG9/P9fcwsJC4ZeI2siyhmURKNlZGohg43dTKvSsrgn3F4gwICiNQj3NZ8CYbXBWuefrkKe7eu4vT01M8ffIMYZqwWW9wdXWNW3duY7Pd4OryCqdnp2IIKsARuRqicQZ37tzCqy/fx9nZCYvQENc0P35ygQ8++BBPzy8QU0Sk/UqD5yoV5N4UEJT5quNTJdWqMcsFE3I8Ga+s1pdSyT2A0P5yvvqRKlsGGcPC5lTefj3X62uR6+RckLKhgbisNYsE7QZRC+RkwM1mg912h3Hi1qoZkFTziCsACM55tK2Hbx0a33J4wGmzlZA3tyRIvsCf8vgzdJV8At843Do7w4MHD3B2egrfel5RwkAgcaJhCBOGYcQURsm8XmO1WmG5XOHy8grL5QqD2IfybFWzXg4la91A8j3y9cmzp/p3vs4b+ypMKiwcAYyOEqqKgRsrtqL3n0MKypiIB2D2Drz/yvPzBusAUwFDENINdpmJgwrQE0k1mTIivFEBFk23wP1X3sQbv/9DHN97GbbrJPkzsUaEcWznQTCUYCWDn5vwWITASoF912KaDMZxZMYAJLQ+wYq6aqH4yzrQ5jSmsidsMvg5WGORbFGhlFUGJLangYj7RsSIbtbDOC+Mq82gENVaUtupoQ1DBpFCDknrPPLOwbctgxJnYSwnRKbkuOxQhKl0zljv0Zk5nGuwXS8RwggKmqwnok0WmC0W8G2LYbth+e7dAOtWODw4xHyxeH4SvOD19cMEiVAsdpkM2Qvh+QOClptJjDUltG2Do8MFvCs9+BIZnF+u8Oz8Cr7rMGu9bMx83GkMuLrisMAvf/42PvjwI6xXG3Stx+HhITccWa0rkRiTrzPJYHVdi7btCmXOzw9R+ognSSJM4nES9gVu9KVhAn3o9ILPEKGaeMifLXkCAixgdR/b2wA1iYZA0npzBu8delFI44YpQtVapkR943NWsHpGBDU76ibI9cl/atBSwEsBMDoO+jsnppXNxxAyVRonltiE0L/a+MVkr7IYpQyUgXKNBL5v8eiss5imAAr7WdW6gWaPRegBvj0+aEoJu+0OT588xf379zFsByxXK7j1GsvraxwfH8PB4vzZORazOazzexu3SUDbOrz28n289dbrmM06MPwPMDGhNQav3DnFUfcdvPP+B/j0q0eYlPbOQEDEiCovr95cuYjD5HsiKfvhjVc1GZC/m8vzqKKHoRu9lu5VXxADvydLK99PkpxZDejexCjsgc7C4scScXJWDAFhHDkHYLvlioDNjkHAjvUBQggZpOlkUPBnDecEeO/Qdi2a1qNpGmEDkIGketGqXlJSI6tNV360lo83n89w+/YZXnrpAQ4OFnsNzQg8Z6cxcmnjMAiA4fLGi8srXF9dY7PZYpAeBimqQFCdLMlzUKs39jYD6Ia6P7xlLPLEL3S6jjLJkfMmjfzBsp6KvagBEYSG5qonKT01us7LHFBniFDWd4VY5H/VyfRzVBiKWmuGH6kk14l6kuV8erTzQ7z25nfw6rd/gOO792DbXjZSgjUeuXlV1UhoChOcsTDEFULeOZ5vzuZM/CTXyM2DYtaKIbkXImKVQmLnNaWEQMWZMwKSYqqk1+WOOK7P50hgWetkJfyQCAQpE0RpaQyRNAaVahyDUnoYE+fIZcZU1rCNESZXN/D51YFtGo+YLGKYMnsBAL5tsDBHGHYbhHFAGAnGJCQVIzJA0zZomhM0vsN6e41hnGDWa8xmM3yd19cHA6iQKlWTDQX984SRSZQIJiXMug5HBwt4V1ZmIuDJ+SWeXCzRz3pWj4oE7ulMGMcRz55e4Ne/+hBv//xdfPzJJ1hvt7DGYzaf47XXXwYA/PpXH+JaqgV4oiZB/lxKyHSUUkgJkIYRrF4VJPaqG+eeHd5D1hqjq9Xp8iRURL43WGyUa2OqNDw/OFVLM3ulUurFOGcwX8yxOFhgtVzj8HCBvmuwWm2FXeDzW8PtN58zEvXvBJRdIF/wPouR9Zf3vVqTd2/KZTdsKCfEKfAkV8ChG3ZlTLLRAEF6MZdxBVPE1jkcHC3wxuuv4rXXX8X7732Ad9/5FaBlRajnmh60Gn8BKAoi15s1Li4vcPfeXa4HH7ZYra6xXF7j9PQM290W18sljg6PxNtOMJHQuBavvXQf3/nmq2g9gHEAiOnKTHkRcDRv8Ae/9xZa7/DBJ19gNY6c2CfzqsTnyzXpiNRCWtlrrpISdc8wVDz5mnImOXbtieqsrVvq7hl5ea9OjsyOJbG+QL2D5Rps+U5ITPMPwxa77Q6TdA/UvIDdbsQUuDyQDXZ1fsGZqhDnfQPfeHSdMgEFZKfsQUU21vl+9+l4vlre/rgsucPp2Snu3buLk5NjdF0nRl8UJxMwBVYJXG9Y4XC1Yibg+voaq6oyIAl1W8JTENtSdAvyU6FqvOvZqE7TjcWYl4UOTTYeRuZw/QXNMBcoREWBUT3jshZkk9PMfctZ/LVtrplNEiVBC0gsvADNPDn0KioWYI8dhc5TFt8hAlf1wGM2O8Ubv/dDfON7P8DB6W0474XskjCmUOTjODKTAGFMU0IyUjIrzleKCdvtjkMF6miIloC1FhMZTNPIJYbZ6QIDD7FdIURuROVZsprnWpTqgaqiJ6lCKWCNg22YwdJ8mBRCVjzlsEbdMweAbPgGJifsaTZYxoECRnLiKyVwtocwFM5JSaXgwoTsZBgDuMZj7uaY2gbT0MAah21MSCFJgjk/Lt82mNMc4zRhGiIMBnyd1z8+Z0BvRBIzc8wKcm/EWZyGEmZ9h+PDOTiEzcs4RuDhkwucXy/Rz2ewkihIiSfmOI14+vQcv3r3V/jFz3+Jr758iGE3svyu46S6O/fvYNb1uDi/xOr6GjHyYk0GTKPGAALKBFAvWAxrigHjJB4AtFCyhBH2X4KMNTmMChJFtUBvvsyLfhHUawi5vNCaqiWzKYvOOYejoyM8e3qOw8MDHB4dYrXa3DgT7TED6plU7kcB+zevr2ItrLHPbbLsrUb9QZrIjEgxZKRbLqMyINW98O8KDISes04kZB3u3LmFN9/6Bn74w+/jm9/8BhaLOV558ACfffo5VsstLIp2uXpiGVDQ/qjrzylGXFxeYLFY4N79e/jyiy+wXW2wvLzG0cERLAyW11fcjEZFTFLC8VGHN994gLYxCKtLYBpgLGBcC+t7MXZ8r7Ouwe+99SbGccIHn36BbSxUv1G1ROBGq+niWemcKZt0Gcb8XfEcFaQmrQuU9xV0sB0tI1FvAr/tZXTzoaKJkJkimTPKBIzThJ140dvNVnIDthjGEdM47Zd/QVv3sqdljIFvPbxvuCTKeTgrjFYG2AKkVKY1cJKeZnjrcSFjYoVZ67oWR0dHuH37Fu7cuYOFSE7z4yQQTQgTawTsdpzPcHF5mSsD1mu+pxijhAtvgg8NQ0rlhAK7ypiX51Y9wDwZCbmMt5oLuTLG3HAg8sOpALiCQ1Pyd4w6EsoSZXSB6ppqoMLXUecDgFBkj1EAemFkymcNmRvnqKG+hlFZSWe2OMMb3/4B3vz+H+Dg1h2uvTcGRkJpuXRbb0zHk8T6JuKkXktZPpyvzwobmZDTIYjgvEWInEfitC+LgGWm8wU8WN5ou74HiISKH2W98d1oJYETISuuynJwTQPYCdC+EonFjSIlpMhjp5UMKquu8vDOOWYXpISWZbAtyyN7ldLn8EjTOBAZTBOXWCbiioPGMmMeI0taa/M+YyCaCQbj1mEcdyAKakS4PNMDAQbTuF/a+Nte/whmQCd3yp6KUkiAyeVFFBMsEeZ9h+PDBTcOAde3x5jw5cNnuFyt0S1mkuVKQskRdtsBjx8/xXvvvIt3334Xjx4+qpqUJFh4OEPovMOs79C1rSRwZezJCSbThBQixyWbVugzMVaC3KZxQtA4ky2bdGkfS8WSKx2G4jlBP1Kv6N+284rzpS81KHsI3xTkSALdZ/M55vMZ2naJW7dO8fjxE46lPXcBCVp6RRmc6EK/eX4S8MDn4qY/+waNSBaugAGOEY+ImmOh3o9eq3y3TrRkBqMgA2MMGmuwWCzw0oP7eOONV3F8fIiDgwXOzk7Rtpw49sbrr+Jbb72Jn/70lxlslRKe8jwYiIrhNoU90Czjp0+f4vXXX8fh0SGur5dYXl1jdbLEweERtus1dkKfJTKYOYvX7p9h5gkYd6DdGtPyEtYZ2H6BpieYrgdZz+OXEmaNwXe/+Rq2mw0++uohxsjqZNqNTq9Lc210SknQoFpD+VGxByUIv1DT+pG0593XUy57zqSZ00ryK8Mg5jwVSdwSl5SkQwEiSvVPuwHDlrsHrtdrjOOAzXaHcRjFi5ZMf7lObVzFAiwOXrqNNk0jTYTUC0bO3k7COqTK2GXdBCr/1vdsncVsPsO9u/dw5+5tHB0esm6AKb0SxpGZABY5WolI0BIXFxe4vi5KgSQ9A3QMc/6FIaCumKquByhATse/vAolUG/K+hD3P1sW5V5cOx+nbLelUxdP9NrC5N+yHgTlb0LAgamuff+mymHpRe+jAht6rooJcYZJ6kQOs9kxXv3m9/D6d/8As5Ozkt2bgQzb1iQlxs6YXAJdnjUkJwZ549XNV9lTVH8DgLZt87PQhmjjNOV9yVqubNCkQIPSRdXK5xmYcvv2IFVPzEywcFHT9jBmQpiGrGI4TSH3RSGtRrBSdYRSQg8YLhcUoOGsE0CnYkcCeKXskUGzg5+8VKqwEzoMA+I0ZOBvrYVtG1jDCdHr9RLDbgOEkcfSaAOvBgk3HdwXv/4RvQl4AtSLkxMlZKCJwwImRsxnMxwfKRDgT4ZI+OLLJ7hardAt5vyAkECRN9rtMODRw0d4+xfv4L133sXTJ88wjgPUWAEmo0OTmFzx3oOJXp3+/N8QEkJI6D0nKdXlj9xwQzulxVyvDfAGFp/zpg3qMhQeBl50jM5LaWBehjVlhWrTzS/9JD23uPVvKSV473B0dIyL80ucnBxjNuuxvF5Xgill5RaQsn9uRfumrh8yJn+uVGTIt4k4lk0JCBHjOEgiVUSOJNddzlA8C6OMBOryRE6IXCzmsMbgD/7ZP8PR8SF+9tOf4fLqCq+88jKc9xgl+7xpWnz/B9/Hu++9jykwjaaWVO+7eI2UDbkaVGssEvHiefbsCe7euSMbwhLXl5dYLBaglHB9fYXGO3hYHC/muHvUgnZXSCC4NHEoZDeCpgBHjlF44zK6MnHCQW/xw2+9gWG3wyfPnkpCIvICV28o5wTK3CnmlJAfG1HxgLOIUeUoVsJGORRD+6GrQu4Ia6BPtjKidSxfvYgkyboxROwGFgnabTbYbLYCAAZJCmRqNc89tQPWMADwjvvLN60IBolnyC4xtC4fSeSSpawv5fLgahXoGJIwLpZrp2/fvoXbt2/j9u0z1iGBgpiIaeTOgdvNNleSXF1d4erqCqvVGsPALZA1VygDX1PG6Ya/nce4ujC5tsqm6E/V0qhj0iUht2zKurEWS1qqI7RJUB5nUyfalk1ex5+9cxmrfGUK/IqNYEYCZQ6UW1ITu7f538Q5N7EMZ9Z7NN0BXnrlLXzjO9/H0dkd2MazbDSqjV5CAUQJFBNXS5lybWQM6whIJVS+Rp2z1XBrSI6FqJyMHX+GPedGQgAstOWdQYgBYR3Qep8X1V7eQPUzibfPuJ/lhhOxPAoRh86841JVDguRNFyS8Q8WxiRposQicjDMFFjR1CBwNYQ2WIrETJSxBk3jWOEwcbg7Bgat0QAhRunQyC/rDbxtcOAOYa3BZiUS/8K4GWEYvs7r64MBmamUfwa0apKkFMqmhEXf4fjoAM67/KCnifD5V09wtVqin8+l+xMbwkAJu80ODx8+wdu/eBvvvv0Ozp+dZ2Slmy8bzoBEhEkMrLWAc3xVFozMDChTPsZYNL6BcxYsVKXHAcLI4iKsH22lK6NBcilPDsgis7YYp2x4rTzQal+84ehX75dkvcywqOqg/HcfEvB9W2NxcHSEvutxMJvh5PgQy+trEPyNM+w9KRDtCyVlDwNqTGz2PvmeUj5UTAEpMMUaJRacs3R1t1EPxUCodr4fxgFazkPouw7HJ4d48PIDvPrqK3j86DFW62sYR3j67CnOzs5yMuJ/+A9/iU8++Qxnt87w3e/9Pr71nW/iow8/A1ROWcYDplrEVNPlNt8P04SE3W6LmAJu3bmFJ4+fYLlc4nS3Rdf3WK/XWPQzHM5mOOoa+GGDMBLIGjhDMN0MJgFxN2AyS5Cx8AcOcI08IaYWj2ctvvuNV3G13eDJ9QaInHCZiDKVQVDAsmeDs/eYqISw+AYol2QqK2WqWL5uIlwjTvnRqBIk6UlvsjdUzV/ZTKaRpblVI4ClgncYhgHr9QbjFKQmuihZqtdlpDa87Rp0fc8eTePgHLeONdaAwB6Z3pNBCQ1oK9q6qiHP4lQ2MN+2WCwWuH//Hl568BLms5mIypB0oovc7Gizk3yANa6urnF1dYXNdo0wMoiJmiSZdUnEpuUkTAECVK2NF6yw2nMHm778QDPMJxQwRrLB52dTjlqH9zSZMIcFVOTClPOZeinKvCobtTxjuTdTH0s+W/d8yN+rgUUhcJAHwCJ/UP/Mz9bC+znuv/IW3vzeH+Dozh00XSN2QKvJxIYaI/kAPG8SERx4o+IurEZSunQNJxjL9HuMEQ4uOxok7cutMHUEqsIIVsY05XATJcc2X5Jb1Q5776XMr9D6dS4IJwryPuasRfJOlDuRN3cooCcOTThn5J5K1YExBtYzOKaUQCFJuWQEUfPcXOPfE7izkoTb5FptSnC+QQoTxmEn12IyYwawJs+4rSqIfsssvvn6+mAgqjiFeCgongYlgieDvm9wfHwI3xi5GYsQE758+ATn10vMFjOOo1AJNex2O3z15UO8/fP38c47b+Py4hylKQqvNIJ6faWMhIgyeqMkwhU8LpL1HGAXBm3boXEe27wohUocxAiGwJKYgFBIkrCDsio0aW+PotWscPmvGsj83j69UJC+LFZDxXu+Sf2WpCpC17U4Pj7ExbNnuHV2ioePHiOEKHG67CdUCBewdKOmGVGuxWal4kKIkFQDJESKiOMkalrFiBd3Q8YDSi7wJLSm7hzH/7PG4KWXX8KPfvRDhDjgwYP7OD4+wN///U/xzW++ge985038+Cc/YRbp5Ah//3c/RYqE8/MLPH78GH/wwx/i6uIawxi4esKYbKSsJCEpdehMiS/HWFr2ppSw2W5xfHKK9WqN5ZLby9653yNFwnK9xvGsxWFjEFcr3rCcATUOtp+hOTyF2WwwDSPIrrl8c7YAWQtYz6VNGHH37BDfe+M1/NXb72MZYjGumUkq9jUPI1HeBOvksZtKhbyZFGNRbwQAilyw/JH2jgOdHRwCiwkquhNjwDgMnAOw21ZAgEWCphBko015k1LGxxiO+zddh3a+wHw+w2wxh7MG0zggTiOM0LKUOGyofEJKbLi1bK+uhthbB4Zjon3f4fj4GPfv38OtW8wGKJAYhgG77YDVaiUJgZwUeH29xG47IEoYgioGRT10tWGaI6Hrjof/+eoFBd9KMdebutHnJD+XlVIdov6OqZ+gbtAmswKAsOzC4JF8Z+9be7ZIz6/WoFyyshF7d5JJIZ1X+5NKoQdbcU2glVPJ808JsL7HvVfexDd/8GOcPngVfj4D7IuBOlDCiGQlBABeu8ZxqJIr+4pEOZcZNjCVoA/T8ZLvRJC5FNhWoYQA9F8uVyXEyPNM20nnHCQZkETEx03Ipa3WWrTSyyBS5LChaziUFgO87ing+0yGY/XOuRwq1Pu21oASl+VqqCQlHg9mDIyUSE/ysLQfijwNy/lNzjm0TYsUPKyxmKYRMU6YYoL1DWaLA07UNcB2tRKn4Z84ZyCmuDehVGUuJTYus7bD6fER2sbJ4HASxsPH53h6eY3+oIdznBDmwMkhw27Eoy8f4Z2338V7776Ly/Nn0Da+bEsFqfOQAlChh5BRvXWiV15N8Gnih5XAVFJCMbyaMDRNnAAVwgTnJYYvk+m5zVkz9vNCVk8fuoafo+brxVvThXWyjhqHvZrg7LHzErbW4OzsDA+/+gqLxQKHhwe4OL+CUoOoEsCEK+RDmZuAAPkzfF4BW7xLcHvWacIwDkVEQ6hmGLN37VqO6JxD0zacl+EMrGf9dAvWACck+MZhvjiAtcDh0RFOT8+wWq3wkz/8CY6PD3F2dorDw2Pux+DYY3j06BG+9dY38crLL+HTz78A6fjrNRBBanJYaAYl/qf/6himRJiGAXdu38Hnn32O66tLHB5xnHmzWiEczBCHHXYYOfTUeIAaJN/BdR260wXMdoNxs4HdbtFYz/kDBoB1SNbAEfDG/Ts4v7jE2598jl0AjFYWyHPdS+AyJgsWZQpUn31VFaAeZj0f87zRn6v/VR8qm51sfFESa42UO223W6yWy1xTP44Tx9JFRCWHJOQGrLEwzsG3HXw/Q79YYH50hMXREXePixO2q2sRCxKjmz3tohnBJX6TtPfVLOR9gGOtRds2ODg4wO07t3H3zh0sFjPAqOLkxOJGK24YdL1cctOg5ZpbB4ewLwR1Y6zyekABxDnvAhDPU8Y9g+ZK0KkaYx7kyvuuj10B9JvOWQ4J3VifNxx3Ofw+w1DPBf4gPXf8+uD5GKpbIWuIu7PWxzeZocrsz55fyQ4FJQvjPM7uv4Zv/N4Pcfvl19DM5zBWdnSV4QWvU86wj/nZ6nNIiRCJ9T2g1SRU2LQE7tbaWAct6QMM95gxBkYE5hTE6XO0lhP0tInZOE4IMeTqFaboTS5r5vBvCeFoIqB1BrAFQCrYds4hjJyErue3VvNnIgMQ6VjIz6n0wYECBwA2CUPACW2ldTdImtcB2omT5wfP0UQsTGR9AwcD4xys80iRc7sI3PzOWIvdeo0wjS+YHM+/vjYYmCjtKZUlAtOgidA3DU6OD9F1khACg0jAk/MrPHzyDO2cKcRCJXNL0ItnF3j/vQ/w/rvv4/L8HNbwQ+T6Ud10JeJqTDaqOf4mnbSIABMZcUaZUJOgL9t49gQUDYKR/6hNRrLna2SgNR4nt2r2/O+9RaceV6Zyn0PXL34VPK4YXM5pDGrlJt04ulmHg6MjzOYXOD46xvXlEiHFvIFkz00QOQORwlLUWgKkzYCqRNAU2EucpjFTqaYCJDz0poAew0l9vnGYzXt0fc+Kj12HcRwBggAFj+1ugzff/C6urq7x0Ycf4/z8HNvtFq+99ipu3bqNV155gDBFvPzyA3z55SMQEdarFc6fneObb30Tn37+OSgSI2NNSoJkEHtOyOGpyNKkMUitPxUDuNtucXx4hIODOVbXV1ivTnB2doopBKyuV9gsF7jeEhrP99NYwLkB1AZQ26M7OmWPYBgRdgPPZc9lRuQcKCX03uCt117Go8srfPHkMhu6DAQoPwIoBUnasFS8+5t0eVSWoJpblNeAPCdTkvjyzKrmQqQIErndMAVM44j1cp0Fgja7HaZxzKE19qJTlrd1rmEQ0PVoFwfoDg8xPzrG7OCI65enAdvlFcb1EmnaAmFig57UYDMYjzFhCszGaZfCDKrB3p6V3APV1rh77y7Ozo7Rtl0G8Jv1Fqv1htsGX3NOwGq5wiACMfXGn6sRboCp/Rrz/Ic9kMXIjJ+RysnW1SCQ9woo1/f0WCbv5nsZ+mbfMjyfbyMnuLm/y+81hChsgJFz8ie0AqDeyHPJqHwzAw2qLVF9uvqG8tXCEEv0nty6j29//ye4/9obnKUPDgFxdZSFMQ4w6oFD6v01OdqIKl/EMLCaYOsbXi8AvOQNJMOOGJdVMiWfRLvGeQ5HaZIhtxpmLoMBQamwUh0LZx0AgylNEtJqckmrEUdKHYokzJbu4rYqi5wCv8/n5qo17lCoz8UIQ8mOaogRFhxqYJthmR0g7s5bh0ZSTLAGiDIdrOfGTc46kOF1pGyWddzWHlF0EWKUCh2AGmB24OF8i816ja/z+tpgIMQEKzE/SXUACOisxdnRIfp5lzd6kMHF9Qqff/UYvm3hvdBAMCLEEHF+fokP3v8Av3r3fTx78hQpJswXM3RNg+1uh+1mlzP7ddNXtM+eq7bVZAxpCHtshSY6Nd6J2BEkC95kKUheSiYbWBgGMXXCEGNhRouyNWJvs84v2nsnb6WV55+9QMOlRcKBZGOv7EO91K0h2KbB6e1b+Oqrxzg5Psbj9iHidsoGysrYyrqT83J2OwMDW5AwFAiwhzhNE8I4VBni4i7kATCAtZIgw9en9Hzbtjg8WODw8BApBXznO9/G4ydPcHV5hTt37uHu3dvw3uFv/vrv8MWXX3K7WinrvLq6wiefcNzuwYMH+Bf/4j/B+fkFvvrqK8xmczjncf/+fXRdh/VmyHPAWJYg7dsWXd/C+4YbnCROCl1erbDZDDwWEt+bUsR6s8bpyTG++PILXF6c4+DgAABwtVrh2eUCprU4mHk0voF1ATZuEMmBjEWzmKNZHMC1ATEym8SMJ3c2I8te8MnhAm8+eAlPLq6xG0aYxEAvqrev/+anW36CzO89j1LGGygxdPVg6xyWTF1Lkh4IuUY5hRHjOGKz2XCzoO2A7XYn7YMLCAA0xmgk7GPhXAPXH6BdLDA7OcXs7Az90SG6toGNCcNyic3TRwjDFiYGgAISsXSslWvn8sRRqhRulCIS57cYAZatSIifnpzg3r17ODw6AEBYr9fYbgYsr5e4vLrO5YGb9ZqlgpUJSEU3JAMkHasKAOy3ETYK8/fGew9cVe+Xlck/mRt/4yVjUACgqY5ZOQx7LJu8BYCYVNsDjvmcNxyRfE8Ss7YCvNQK6OxS1jOHnPYSBwQ01B5Q9TeAhYCSSXluzg6O8cZ3foA7r76BZjYHQapJrBN1Qd0YSeLwAE3s6RNIeg2A9TR0DoOEpqdM7ztINQAMJAECCVwRwPPTg8BZ/U3Xcl6IJrgKIOOMeoeUHChKaaDhOe6sY2fOORjjEUPk/i9GwgUp5GfkjYe3zGwnTfjTZ5MIZAt4MqDcZ4EZQJPZVk6sbdjxjEW5VO0+UUKIkUtPjYEDwfvCzHJVjlYrsLSztY0wGRaEHnZ0iE6aIDkHsvs71W97ff0wQUgifiG3TAQHg5PjBQ4P5vI+b6yrzYBPP/uC9ZO9y5ONZANaXi7x4a8/wi9/8Ut89fAhxnGCtQ79bI579+9it9vh008+xRhipugZUPImpOED6yycLIhIkBAESSggwBqb2wEriodIHacYdF8W8SEGOFHpW2SQz/Xm6l3rho79xX0T8devOkwAKsYkL0B9/wZdmj9jDE7PTnF0fITLy2scHh1hvd7wdYkRV1oP+hwAIGc+CLOR1wkj6Rgixh330lZKlUFFAWEcm6sNIwMMa7kZzHw+x7e/8008fvwQhIg/+qMf4+mzC2zWO3zyyed4/PgRvOcN/Fvf/ia6rsO7776DL778EovFAf7Nv/m3+IM/+D5+//d/H/+H/+P/Hu+/9ysYY3FxcYl//+//A4ZhQON4QXd9h7Zr0fYt+q5D03hW3WobXkwp4eDgAJ9/+gW22zHHFQ2AKU7o+hb9bIbrqyusTpas3bDZ4vMn53DHczRmgbELPJfbiLQGvDUABbj5ArZt4I3HlKIo/QHWeiRrkGhCax3efPklfProCdZfPgSRwseqMZCyNwKmEzQxj3Qi8b3kTaDME/X4U/35vTkmLANFTMOE3W6LQRoHbUU2eBwmDONYautRjJo3BmQ8bNuimS3QLQ7Qnpzi4NYtHJyewDYNEAPCconN+Tm2lxdI04o9FTH+Sa4/CgU6SjmWenB54YCTwJqGGxTN5zMcHh3i5OQYh4cHaNuWExm3Iy4vuSLg4pKrAtabDcI05WMWQFRsQ/bOQXuLStd0vgzQ/vjujWn+qXqz/kQJJ+imq9/L1bdq5IHC+JqS4LvHWtw81R4wecH7ec5gT9kyUxVqC27oUBSWSezScyBADkrE3QPV+TEGrulw58GreOkb38Ts8JDj/XI85xy89TBUdPfjxM/cGp6bxrA37CQBUQFciJE1KDx78dZI2R5xMrA6eNZakE0s9BUl3GQMjPUATTDkoJfkvJdafL6eSJGdO2Ny4iJQJLKNMwCp4qHE+mWwVAhLqXwth9V9wVaePIEnQFaDhGgxmAL4nWcgk7u56pwlDa8VZiOKxoH3os8BANkZ0DweJupd4wFLwAgYF0GTgad/agVCpeCAjOqODuY4PjqAdTqpgGEM+OSzLzGmhL7vpcaTwGWEwGa1xScff4q3f/k2vvjiCwy7rQyaQde3eOXVl2GNxXa7xaeffFZtpFK6Id6/Maps1oinzRdGkKSSiSeK915q6TX+CYAotyqNMcFGnlAAVxPslRIZFRqRr8p/XrT366fyZ4Vy0p+VNyyXUR5oHlfdvaDggbIXfvfeXTx6/ASLg0MY+4gnrS2GLBskQ8IGoOADyDMgIAW593FCkGTB+vqRiOtU1WDlK0ee9L5xmM069LMWh4cLHB5+E5eXl2h8i/feeQ8X55doGo+jwwUevHwffd/jzp3b+Na3voW+b/Hu2+9yNv7REd5//1dwtoH3DT766FN8/PHHuL6+ggGwmM/Q9p1ISzdw3qObdehnPWbzmShYNrAGmIYRs9kc69UaOwk5GMmdSETYDQMODw/x+PFjXF5coJ/PkYzFl5dXmJuIheOOeUCD1nh4MrDXV0CaACRgtoBrOzTeM41HnMTpjIWBg3WEA+vxrW+8iodPn+J6HJFMEc6ppW2Vws2GXjYUnhIVw0S6SVH+fD2XcsKh1OiHMGHcbbHdrCUhcMRuyzK7PN9rfQCJy0qeh297uNkc7ckJ2rMzLM5OcXB4hL7vkcKIabXEeHmJzflThM0KlAIIoWStyz3ElIpAFZX7LvMUcM6iaRp0XfscCIgx4eL8CqvVSqoCuHPgdrvl0J6MQQkF1N5tWae6JxKYOaqp/tz0qlq9NwGWbvT1s9h7ZQBvcuJ/9aT0/0vOURX/vXm+/BvV7JA+599+/tqLYLtoirJgdR/FZhUQUp5Zvtn948MgVVDBkMfxyR289ubvYXF2F75t8rGs1NA33ldJ3oB2eCw5RwmtMMURxSsGCY0uF2vEnitw1LyTxntYSRqcdC1VLItzloGGoB4rHQ2NZ8cgBGFKKqaIfbGM3kBIGZCo8xZDlPwB5PHyTcPqlAYZjEKYDatbvH4hO8sFWCEDSV0/+rCKBL4RAJFEuIiT5tmukQAuffFa4PG0opZIRPDPPdcXv/4R1QSFVjdEmLecJ9C2ji8AjPi+fPQMV6s1+nkPAsdUYC0oRYxDwFdffoX333sfX3z2OcZxlJKTko8wm80xm/U4ODiAsxYhBNmMCTASH5YH7UTNriSQCBlGQBAPnwGD3KbCYmKlw+12iykGOPLlbwnQFrZZ6wMQgYgReUOvrM0+VGCYtpdoBN1IaQ/9q0IZ/yOTQpN41J/Pk8Pg1u1bOD46xNHRARYHC1xdX8PSPgDR22RAoDSoxq6Rk0zGYZC4VfFC9ZxKcUEQrd4LC3gY9LMeL7/8Et56603cvnMHADDsdri8uMb/9D/9fxBDwksv3UPTenzve7+Pg4M5Pv30M0zTBO88fvLjn2C33eGzzz7Fj370I3zxxVf4n//nf49HD58gxMhhgNkMs1mHbsbVIE3boG2ZFVgcLNDNeu5y1zQcT6OEruvgfYO7d2/j2bNz7LYDL2iIRxK4K+Z8NsP18gqnuzM0TYflMOHhcoVj33ACrIkgNEBDcFOEo1TN/QTTddzbwCJTloa4lMi2Fq+/+gqePL3ET9/9FbZToagZqAolLw++3nC05C3Hj9WQ1GuZZH6K9HaKMYd7xoHb727XK+x2zAgMIwPjFKL6H9nzsMZg5hqYpoWfH6A9PsXs1i3MT08xPzqCazzcNCFcX2F7eYHh6gLTeoUwblnlU5vUgE2AVgFFStxQJRYWQz0oA8A1nBcwn81xcnqEszOuEpjGCVeX11guuTTw+uoKq/UGwzAUj0yTihVgEAozVmN4ZQlMFTvPc30fzT9PkZcNs95s9v6cl7rkNdH+9p4diN9K0dbrbj80WbNCukErzZ+vR0AIXzpJQ6yMfipwUc6YqjDVXs6hTDctTDGZPik3amDRzw/x+je/jTsvvQLfdPmaDEQBUC2X0PyAlvMRjOWc3xSpnFOpbykVbJzneLm2ibZqR2WDFdvdei5fpBgQEzO7hgBrWaFSe7TEmJAsAZQ4oVwrjaSSoZoBZWwdx2lS1Jy0fcCi37GOqwZCCNyhVVdXYpaA9NngBmukbIGVKigZJ4Cr4Awc50OJIFGS5EIGJNramXMSSi8QHh9lybQrYgLtPYvf9fr6YYLIBtHCwBvgcDHDYt7r0ICI8PTiGl88esyI0RDrAliO1cQw4dmTc/zmg9/g048/wbDbZX1sRtUpMwTWGdGR1lg3ZdW9JKWGzrBnOpv1cKIwqCg2EmGSjn5N46RZkUVClCh9Yr1yoUsTRYgKEuc06Ewh2QB0mWUwwX8no6GL7Mrnn/dQvKJABRF6eFlwVYcE+aiCGkazEIGm+azH/fv38OThI9w6O8FSvGd+sYeganxWVK6UDWG6iSWFWU0wlMkj16FIdLGYYT6f49mzZ7zBwcK1Hl3f4s6d23jjjTdwenKC5XKJv/2bv0OihLZrQRSx2azxwx98Hz/60Y/wt3/7t/joo4/wL/7Fv4AxX2K72eLps3P8xV/8JXzj8cknn+HDjz/FdrOTDPIWi26OtmuYPtZ/fZNZgK7v0ElCakm6kgRDY9H1HU7OjnFycozHw1OoEoyO0xRGzBYLbM6f4fryAnfu3EUC8HS9walr0XsPICKFiNgGUN+jtQaN3bCqRppgUoTtexjrucwwlmcHAIt5ix/98LvYDTu89+HHGKaYKzRZDVN01kmNRvF09aXdz+rSO01YAhFCVM107ry3lYTA7XaL3W6HcZSKmki5tEjjzOx1eLRtD7c4QH90hMPb9zC/dQvtwYKzqKcJ4/k54vUltldXGJdXSGEETBKZahEP0ioj0utTNUFhHkipWEic16Kf9Tg9OcHt27fRzzqkRLi4uMLlxRWuLq+wWq+xXm8wjIP0K6gaKalXRNk+760lXaJscUssljcBXX83vPIakFXrU//23Kta2rWnl71sa3IC5s3P/bbfbxz2xrulXE+/y0nDUjIq16/Ofa3DgRvXoWwjVWfLANHcvG8eLwvA+g5nd1/B3de+ifZgAeP4O1ZChgoMUuKEy7ZpMMoGFUPIYQyVGVYg4JzjzrIQSWADOGvgJKEwRaHsZUOLKYKMdu40sJZBDun+5FgYzIDXWgiTSF2nLFIUJSld6/454djI/VgRMrIyf2smKnLumOFeB9YY2KZhbRoCErFNjTIHjRgF7Umi7AbkGMY79N6zpkvkkLizPoc21TbIExFRWJXQ5z0vhJDzKhKJZH6Kec1YSVr8Oq9/BDOgiJTQtS3OTo/hKtS73gV8/NlXjNKtZbpTH1SasLle49OPP8WHv/kQ15dXOX6Yono/lUE0yPR+SjJprOXsUsOZp3fv3cF3vvUmvvPWW/ibv/5b/Pzn72C52gCwiCFJZrwklzQ+Iz4YIxrWKk4U8+Qkw8ZNqdRqj4fWypYHKg84o4Z9mnLPm6gXLyTfx1RGxBQErA+ewKwAl+lJnMsY3L17FyenJ7i4uEDfd9hstzmj3sg3rXEFdRvuB0HEHuKYvazSkMUoC0I8kb33ePPNN7DdbTAOI46PD3HvwX3cu3sPm80Wn3/+GT789a/RtByDv3X7DD/+0Y/QNA5v//KXmTb8wz/8Q/zFX/wl/uLP/yPu3r2DX/zil/jok8/w8NGjbKC991gcztC1HbquE/laC982aLsG/axH3/P7xnG3O++b/GzUb9IH5RqPfjHD2e1TnJ9fIIYEjd0TcSti7xv03QyXV1c4Oj4BnMdmHPHVao1569F4gkkJFFsOAVj1uBIQI+wUgBhg2g5oW8D5PF+YKkw4WDT40z/8Idq+wzvv/xqrzY4Rvc5xmfOCEqu5InODsr/C80ySZjnEEzAOI4ZxwDhspQPfDsNuh2mqtPbzs2Ur74zj6oCmh5GkwO72HRyfnKGfzXl8djuYYYvh8hy7qwvEzRIxTqIeF0vYo9qc1WPn0rD9LH4ja9Y7BmoHhwsJCRzCGovrqyUuLi5xfn7JoYDNFlMYM81M7PKiOO8qLZ7y0yfse/cKEPL35AdCtfGLnaoVSOsZlVd5puBfvFXrvNP5bOR3/Sfl54wM+Q2wt97zoalOTy73S6hygvTD+o+MLxTo5HlTrmP/2usw5QtYj3IpmX0wpsXB4S288vq3cHznHmzXIZBInxlW/CPx6BkxG9hqA0xELN8HlI1LQ5OW3bMQAtI4cgOrvmOKOwKwuqEZaB+NEEUkTSh6dWQy82PK8bVbYHG3it6BNUbCw/xylmPyHhYkJYVp4n4IKSoQKH038uO3bMMRLavwamgYXMFgSfohaGmnPCMn5bpt17GjlrjyJ4Uo6oP78yPLJ6vkNwxC0nWgVV+UGQUVPiu6Gf/w62uDAb0iawzu3DrBrG1ynWqIhE+/fILlZoOub6VRg4VJBoSIaRjx1ReP8Kv3P8Czp08Z5cumG8WA6OCHGPIAG6OCDTIA1qHve5yenuCtN9/AS/duAd/9Nv6TP/tD/PSnb+P//t/8t/jy0ROuLWfJQRhr4X0Lbx2M0axrBQxBxE8ktmxJeh2IFbFlaWaa05icFCQDkwHBzbilMXU5UhXbkplCkDimbNqckVsf03K/b8OZp9449LMZ7t2/j0ePHuPw8Ajrzaac0+j3yoSPieU/pzBi3A0Scy2tWeW2qhLJhO1ugymM+O53v4MwBRwdHePq+gp/9/d/h+X1EkeHB3jj9ddhnMMb33gdd+/ehnNA2za4d+8enj57BiKDzz79HLdv3cHf//1P8dlnn+HqesnTSFp1dn2L2XzGwlCewzlt03CiX98xIGgaXlzWYAoBU5jgm6YYXB1rHXRr0M9mODk7xeLwAFfnVyiJm5qAGtH3HZ49W+Hq+hJHxyeYYHE+jjjbbHDUWVa2NAZ+9CykkhIbHwEFFBNcH2EJsL1j19dweMU4wHuDk7MOf/bHP8bx4QJ/97O3cX61zKaYKVlBzLphyC7GNk8MmHh/MURM45jldre7HXbbHcZx4ES7ccwUbAYCMFwJAhZLafo5moNDtCfH6G/dxuLsDG3bAVPAdHWBuF0jblcI2yXiZoM0jYhpzNes1yPTl41lZMMVQoI2HsrkmeEYb9M2mM/nODo+wmK+gLUOq+UWl5dXuLi4wvX1FYZh4HJg9dSEnSNiFTZSh0EXj0EuoXtRol1Osqw2/QKYIdU86oHtr9nKGSvArXrpfMpjUjkE9fsMZCgfK3cB3T8aio2pgIH+DkUU1ftUzkzcr3fvmvcOSxrSZJuqvSp0o3/+vm7erIN1PU7vvoJbL7+O9uAYtvEYwygtqX1W/QPYTqnnrRUAslXBiBCdcxYpiH9rgCmwLDwZZpKmaQI1DYPwBC7aAbGAlYjvGMPs1SS6FqoeyD6NtFQPISf5OSeS4mBhIGOQkxcjpdyRsCS7Q47Lji1Xq6U9b9sYrRJg79/CgOT9ElooIDFXCwFASpgooddOiI2BSVyqPKYBFEslAyBMYQXuiJhFaJpWSiBjpiMMuDWyBVBCa7/79bXBgC6Ag77H8eGiwuRcRvjw8RNYW+geHYiUEp49e4YPf/0bPPzyS45VR6ETZSPW+ZmE+gT44RlrgSg5AWCUNe9nODk5wcFiLhsZoesb/OQP/wCffvYQ//3/839EFK8/Bn7w3jpmDBMnhxAIYZww7kYGI4lgMxDQ6oLiMfPl6bKv3qMSgy3xMlQPTA2B8m+V4QBYPU7ft5pyYvLntYOdrF0EYrr3zt07ODo6wvHxMS4uLjCNIy8cka40lSQnJWZJhmHANA1SPsjHzgwH1PAwlbbbDvj008/xjW+8gcurK7z73nuIMaJpW5yenuAH3/8+Hjy4DxjC06dPcPrtN7FardH3rDlAZPDv/92f41cf/ErqX7k9rHUOvhVvf95JJQBrd3d9h77r0fUtmrbNjW6IiJt0hJI53ncJ1vu961fP0BgWDjo6OsStW6dYXS1z+Am5pCxlQ3Z9dYWDxSGsMRhSwvl2g5PWovE8hs67TIkyDRfRpgTLHB1gOR6KllvnZpbHGhgymPUNfvQH38OtW7fwt3//c3zx8DHX9lNEADgHQdmBxACUkDDFwGyAANthu8N2t8Ow481ff56kKmQvCVTWqrUWruvQtD384hD96S3Mb99GL819wm5AuHzCeQCra9C4QZy2CHFEks5pUKOmhkgpe4lJZkCfkD0QSmxE+77DfDHHfL7AfDGDcx7b7Q6Xl1e4vLxmfYBhkDLfmI0wpbKRls2e9inuao/mR0v5/nVV6mdqxbkaOJjq2IBmrisyLifQFVuHAooQmeZ9oHxYr0MpCqqvq7xINpibzEOJMRtxIlCuheorEkCkzGP+dnXOG0ymggN1Ap67oOo+OX/JoZkd4PSll9EeHmUw1ljLWiK+yZufes0xsM4EJDTUeC8x7oimAVzTIqSIKYQsF2+sRYzcVj4CQIxw3nFsP7M6yrjYLPKTUDbcME15njrrkIwq7xH3zWja3HG1hGEJ3rHgmZXOpOwocY6N946Z1VT60kzjBHjizH0ipBikpNIgwYIiVXOQ95cQ4x5rxAwXX59zDkmdV7FLKYVsqwDAVaxQkv0NYFEma4AYUdrVJd5PYkyZgf46r68NBqy1aIzDndNjtN5mCc1hDPjo868wTiOatmEdaWsREm82280On3/6BT756GNs1mtmBFLMm3DWPCcnDYbKTTrnWBAl8aBa1wISy4lKFenD9wb379/FrJ9hvV0hhBFhjFIPrkYrCHXHso/Dbij0jWjbJ03a0I2bFHBp5kBpAFIMTAKs3TMKNY2kuQI5GQbqiQOZMZAVyrlISguKsbLs4YXEVNVsMcfdl+7h0aNHODw4xJNnT+DhMgK10s4TifMBYuCkwRRZFbB+GdIMBYG/sAAZPHt6iavLn+HgcI7X33gVR0dHOD05wdXVFb75zTcAQzg8XOD8/CmIDM7PL/HlF4/w8cefYBhGZixkA22bBvOOE/7atkXbNfCNkyTABm3Xoes7AQFNZjVy4mLgBjRW+ocnInijCZbqgJSNwjqHfs5NbR599QjL1UaylCXZSwxp4zw349ls0DQ9EiwudgFP/YhFG9A4j6mZ0EwW1hBMDDCySbeJQwZMmxMcEVLLdb0wjgO5cIDljfGN1x/gzu0zfPbFF3jnvV/hw08/x2bk2ntnXbXJJoxxQhg56W8aJ2w2a2YCdiOG3VAl1MmGl1knvi/nPKxv0c3mcEfHmJ+cYnZ6htnRMawB0naLzaOHGNdr0LhGmgakOIHCiBgmDiEpgM2MRUlQ0tAA/0vSAZByOI8TQDscHBxgsTiAMRbbzQ7L5VMGAaslwsRdQ7OR1bWiAAC1HoEkSOncJd0wkTW69Bj77EXZ+Iq3p8O0PxcyiAIKSKjWbD3OJTM+H2zPra+wU/5z3oh13el7LyALmHGVrHexGCV0VIGffM4ShiQ9gJxDcWZ96+p/KFHBY1kEDvK1GsC6Bmd3X8LtBy/D9x1UG0K944SU5yGySeYSbSTuJAgnfUOszcfPlUopZSo9BcO6/YZVBFm4B0AkGM/gI0oTtZR4PraONfuVCU4pwTtu9OO9l5g6CwYlcVJVZ4B7eVh4K42MYkDTWFhnoE0HqRo8fu6WZbpThElcLsjAJMEaFjVSFoqI4BvHHrokGe51cyXKYTVjjDSI4xBr18+YCR1HZsf47gBIGaM03ONxAiDVY9YAxuuT5jyEKCzD73p9bTDQNC1O5j2OjxdCMTGyevTsCk8vLkUAKDFCUWpzinj6+Ck+++RTXFxc7MmcksjVZkQsiy2KbKVOdDWQ1ticjKKSo/VCMgCsZ1W6SFFipwFNa9lzM4VSJOIa00lVy+SJq8HgMIEpB4YRikkWTiUIUK/lOga3Z4T0k4Lyc2ap/k2+pzGhmy8iI7EfyhTZvXt38cXZKa4uLnFxec7HMmqQecIkcIYq61dH3vDFiOS9Q0GOUdOjNFdE1y/w4x//CL/3e99mL987/Mt/+S8xhQHWWlxdXeEHP/ghht2Ed95+F5v1BsM4ipqcRd91zBZ0XBrYeI+2bdB0HAbo5z3arodt/R71BpR8DWsMt6pOCW3bllJRmSNailRGzch89Tg+OcKt22dYb3acSQywJweZo9YghBHbzQbd6RxjANYx4el6i+PWo/fArLGYjAEli2QNEB1M0pLRBGcSyMpGRT3QNCDpG2GdVxk1GGNw0Fv83rfewBuvvYxf/fojvP3uB/j8q0fYbHcsmiS5HOPASYC73Sj/DtjttiyrOolSIIg3YIKAJBYf8U2PZnYAf3KM+a1bmJ2eoZ/NgBQxrlYYzp8hLK8Qt2tQGgEQUgrMBEgjMC7hLcOZOyaKdVQVuEQlO5xjxw6zWY/FYoH5fA7rLLbbHVcGXF9ju9mJ0FGo1qKCjWo+1qwaynt5PeRuPdIBrgIN9VpUIJ/XIzIOKKhdbrL2/Mvi1kVsYEwBAnvnuLlW9b9qI2jv3fxK+aJMrmvXI+hXcnimur8809VZMCUMkBmChKpRWcVI6AVYRQgktlzpC1NCLzAwxqObHeLlN97CrXsvwc9nrC9jXe4PkCQXQCMkSZzAKP/yunaAZ8ZSAYu1Dq3nLnzIehFJEoPZ7jvHjomxJnfBhAHr+yf+rAIEgG1OjJG9cMNiSY3zMPKdGsy1fQ+CydL2cZQOmmRyIqw2uzNGxkyYXO1CWEIG0uDIWK7xJ0CCGWwLjXRSTMz0pZhgrEHbcddNLZfVygFAmiYZQrJO8oxKrg4/9zJfNfTjJHdB5751Vqp8/okTCA8XC9w+mXMMRebidgj4+POvECnCGa4v5ZGPQAI2yxW++OwLPPryYUZuRFSSj3KMsUxYjcswunMySbiZEIilHcdxxDhNe9eXBEw470EEBgOR0BlbuksJNc6ghdvzZtU9cKyQgFzipUYhe9tULeu8aCqUX/2rm1oG/9oroFrk5oaRy9n9lcEBIO09eZwiESwRuq7H2ekpniwe4eDgENfXV1BKUDN8KUSEkZtj6CSSi1S/Clx+KNdryt+sMdhud3jnnXfhvUcMhI+/+BSvvvo6/uqv/gpvvfUWPvnkE0xT4Az27RZWksS6nhmAvu85IahhYaC+79D3HToBCE3XZmXBeszy9fCbcJ7FjdTzxA2DzHkc6iXy5qAlkLdu38LDR0+w3exQcry5RLBpWljnsVoucbg4BMBtQq+HEU+vV5g5oJH5TI1nnXXvEMcJRBEG3Io7WKbnbEowjYPxHsax6hmU7hUwaYxFb4AffOcbePPVl/D+Bx/jF798D59/+Qjb7YjNdoth2GK1WWOz22K34x4apSVrSc6zltt2OteiaedwswW6k1PMz26hPz6C71rQOGH75AnC1QXG6wtM2xVgJGdEN3kScKHBURmjmn4uiYKFHeCVwPHarmuxWMzR9zN47xgEXC+xXq2x3W65mYyEehJi9rp0E9GFpLahXkvlYSODCGNKmSaVaa1TBop2a9Zkb58vqyG/Wd+XMdj/sIBl2tvcqRykoP+9v+W8nL1TMT2dZL7yGGjFUnW7ci691r3R0HuqdJzqLuX5fupvFR/mhYwETIlr86bZ4uTWPdx98Cq6xSHX6ifVqZBnIaDUiuSvVgsoq53EY9bytmmakIiV8/qmwTAw06XPSe1vSgHWNnCm5CXEyOqDxTZofT/rC7Djz/ermfX67FKKoEgsY2ydSA7z81b9DQMOcU/V3uKcVg94qTRT0OKzs8pjbjPLbMUZIqms0WhwPecSSVKhgnpTSgA1lFHWOrjREgWeDwL8fNMAApwMceIiN2YqSoxkTO7j8rteXxsMLOYd+r7lX2QNPHryDJfLa9jGZu+SL56QpoCnT5/hy8+/wHK5zDFN3QqzJ1vNSqKKcsq/p+y9Eth7GaeJu9lVyB8kksky4tM4IowT7MGM2ylbDi8owmMWotTZ5yVDuikDuZ7RINeu3nzd9O6B5zd51RPAC4+AjOw0wegGFEAuP5P4bSRmSBrvMet7HB0dYbW8ZpQuuRZcfcH0V0oBRrypYuqRF5aW6Cno4d2YWZonT57iN7/+NX704x/j/fffxy9+8Utsdzv81d/8NYj48945zBZzFiHqe+ltzxmvXdehm82zboBrPJzzGeXzMNfxVHmn8hCjcHbWMhB1KiJlnouUZgYIBDRdi9Nbpzg+PsZus4N6gJqLYY2D9y3Wmx1XZTQeKRHWIeHhaoeFc5hbB5sSUttwC1PHZUUAwXmmSX2MaBKBYoBpHFzXgrwDrBNiwIpUqyvP2josGoMf//438M3X7uPt9z/Ez/7uF3jv3V9jfb3E9WbF3QNjzKWnmj1tyMB66RnQH6GZH6I9PkF/dobZ6TGcN4ibNbZfPcZwdYVxuQQNWxgaOVEX4J0jEqIJElPXgdR5vu9x196SznEWDvJouw6zfg5rLYZhwLNna6yWK+yGnchc7wMILYNiQ4a8CWj9ZV4/FQ2ewXc+jtqasg51XpcN2+z9rV5YNQCtT6Xltfq3/H35uwr7ABCqOZV5d5OZyD/vLWe1gMh5BAaSbH3DPhh1Um6gHQHsxaNHFrvRt6qo9Y1XNbbQ45Rj8n3yBti0M9x98ArmxydM9RuCtT6DRgVHBRBY9kYDcQk4kSSTAxBAQEQYx5E3zYZDWjFuAMOqfIjCOMkmR9YKJQ9hN9UmxPwcGgkthhhh5P0o7ID3Uq8fAVgGFs5adgK1oZJIG6vtSVZ62xCDAZ1zznsgBM4LAnIDvJQo90qA4wZHmkgZg4oASam3BQxYd4fZ7f18C6/9FlQmnKRbL3i/ggEzJcawiq7hWWRNVSVhHYMAIphofrvUxY3X1wYDB33LtI1Mn/UQ8OlXjxBSQsPNHMtcTawn/vDLL/H48SOEiZtR6MDlUg+qkRyXfWk8hhGQlvPxhLNIiGnCdjdiN06o3G6QIK0kYixhHDGMO8S44LiNMzm+zJNTSwt5ESQpO0wpIcQqcU+a47jcB6EIqRBSkR01VQIS7S/rrAyGyuNFuXdSY8ersgAk9ZbU25UcC13/mgHbdz36fsY5GXJM7710h4vZQGajJMaAANYYUNoQEpuUXg8cLgAePnyE9977FYYh4u133sXiYI6mYW9wPl9IGKDJdeS+8ei6FrP5HH3fo2lbFgjyXtoRF+9eR6OuxOC4ZCnljIkz6VWLgBcWdI+QKVBwty66BIv5wQJ379/BxbMLjEPIBk/P1zYNNnGN9WqFg5NDfv7G4mqa8Pj6GgeW4GjBHmvjEJ1DjFLLvN6ijdomN8HHCab1SNME27ZMBTcermkBx02DGDNbkNQVgwJOD1v82U9+D99/7QH+6uWX8D/++X/E+rMttqMK6hiAkugDOBjfoJkfojs4QHN8CwenZ2gPFzAwiJsNlwVeniOMWyAEmBRAiCySJPOT8wLKotWNUMe83oDqHAE1Wo2wPU3ToPENhmHEarXGasWdA0Pgucff37clukFk/JE3fOR1ly9K/6EkXqvJm13tcWdAcQMI5L/duAgjK41fKgld0H8JL8g1vCAjm+rrq1Z8zS6UdUf1F5+7tpuBrnI6uvGv/iSsZF66Bebnb+zTH3vXps9FGRAdMf6Vu7HMj45xcvc+bNciIcJEAFYSe02CMx5GcmcAcWqierHM4mkPmJQirPVopDnQbrdDDNxJEOq0EGsMGMvgCDBZkjiHj/fG12QbmGTTVMChzlNS2CROQiKCAz9P4/jerbW5QV6KBAOHtnWcv6YgNLGjZZ1DygJYKbMfjhwfIwZo8ztrLMjwfpJSzPLxQTqDKoOr98THYuCQkoqE6dooYQJrHEsjjwOihCog+VQ1s8xCTBb+n1pnYNE3mWKNAB6dX+DJ5RWMlwoCmfVEhDCMOH92jkePHmG723LcRBSVWFM6ZBEW9e54Y42lcYoi9ArUp8TlgMPIiVRE6lXyBsJqhfzzMOywWq1wcnKEpvGwDkgUYUTFMCbpUZBkslQbs8ZcCGWNmRzbo7zZa4y+oH2ZrC8Yvz1jVG3GtQXc84hufIeA5yb5bDEHGRZoOjg8xHazkY6PRSHrRYZQvRhbGVBjIECA9gylATBOEb/+4EP4xuHgcIGjwwMWJprN0HUdAyJpG9r2PeYCArq+Q9O0OeaX3RalA9W7V4tWeTX8XEhKP6OEdUY0TaMTB/qlYgbV25GYrAHarsHdu3fw8IuHePLoWX46mjDZNI3EtgfMDhdAYq2FmBLOdxNO1h6d9zAgGGKBkRjFyFjDmcMhQb4Em1qYJNflHIxjRsM6zyEeXfy6UYYRYbtBmgI6b/Gf/qd/hO/98Dv467//Jf7ff/6X+M3nj7DdjQAZGN/Adj3awxP0pydYnJ6h72ZI44jhyROE9TXCaok47oAUYChKNX6ChgaKl64b4P4GcXOu5XptqXpoGl9yN4zBNARcXS6x2Wyx2w0sMJZ4LeuGrZ51WcuFvdGfn7uWm2ummhsZK7/oO9V3b0TbKowggJDKHARM9W8NiPZnVzn3/ib93IaPAgRYWz8va9TZ9zVrkUE7+Dv1MWv24uY5+Jg2hzf1sy/AAnsvZQVLLRQ4ERoGgMfxnbs4vnUbEOq58w2LzjnHoWFRdw1h4nUahbkMPL9sw42LINLIMQauEpKs/RBGRLIwzuYwMxfUGBHniojRCBshayfxvXrtgitjGRNXH3BiepCwGsFZLk32huWPy3gz+2Ete9zabyB73tblql993lOI3DvBOxY5kuRXq5VgxNUHSRgM6wxAek0qgFWH2MrxrbIZIPR9DytJkZP04PBSasmhba6GijmcLQA7TFLRR0hSqeccaxl8ndfXLy205erHGPDJlw8xpIgOjikPycZHIuw2Wzx+/Bjnz55xSVrjcXBwCEoJV5dXGEbdcGVjVW9FVdUS5QkBqZe0BpJkxcqBm90OMaVM77AiG9MoKUVMYcR6vRKAYEW/3sI6pmmc5fiVxnkg4hckg5x0h8wPy+aHCTWmRq5dFBhvbrx12EBfGtfXulpAvPPa7r2ActxD9PL9+cEBjk9PsVwtcbCY46ptsBt2iHGCc5az9r3D+CJAgNp/KuqScgooODHgofGNxdnZMR48eAmLg16MKceLW2/R9h23M54xE+C9h3OlMmBvTMSeZ8GP54CAapsnTOMEL7XqcRvL703zvGWUQcxG0LA2+cHRAvdfuofzpxeM9k35rPMMpoZxRJgC2sYjRkI0BtdTxPl2wKJp4Axv4E3j2eikCJMIqfMIkWOOZBI8Epwx3GNc80xiBDwLX1FOfuTkTrE+rGjoLeAJ9+8d4X/zr/4lfvTD7+Lf/e3P8dd//wt8+fgcsZlhdnoL8+NjOO8RQ8Du0RfYXV8jbbeIcQCyOht7E2yEmWnTza3ukpbnpDE5hgoANbXPuRoO3nm0HYcKh2HKSY7DsCsgXjylfa85D3cBtNVDrzfeHFIjGaTK483A4ne8NOx1810yqXpbGSLk0ACvuxsJjNoOuD733tpEtVPfuAb9ANW+N9/czcurA17lfgm1aajvq4CpCrzp/P8HaOHnbEt1LYp9Ehl0fY+T2/cwPzqG9U0W/nGwGCcpqUVE13Vsl4nBbUqJS3EDIUxazQXAJEyBS/a4l4fU7ANo+w7GWux2O0BDVqaMGCUB3mQys9x4B01ApzzGvJZjCABxc72RAvquhfUejXe8LDQmT5M0MEpiU3kQnJVwh6STGRgOZ0gpoLEWlHsF8A2mlDAOI4whzPoZCEFKDJNUG3BeU1abNSbb17JPQCck2tZnNoTZOGEjpwCihDEGLkMmsFJjIsRk4BxlNptSxIQE+08uOqQPxgDnVys8evqMJ05KCIAsNIM4Tbi8vMDjhw+x3WzZmFiLvu/F+EFnb0aMuWgvJcRJtJ5JM+/LZ6PlkpUwTdgNY4WMpOxJsnK1ne12w73anbVoG1GuE0OpcaVJ6EwHzx4UJA6Wx082DccoOhIxNUbcPStJL4F6kemWpBnI/J5MWPWKgUw93jRw2gJ0v91r+YwmTlnn8NKDl3D+7BkoJRwfH2P7aCMZ2xO6rkHbN1ivquPLClNQw5eqnrkmubGJsRbo+haL+QxHx8e4fec2jo4OIPMSTdOiazs0LZfyOe85J8B7QahGWIgS2oAsAmY4qKj7JfYcgnScVPlQTYpp25Y3JO9zs47nXpW9NTpmxqDpGty5dxvHnx3i2dNzcBsRrgYwxqLtOmy31xh23CFRe1MMiXC+3eHAOzTWwJBDoogmMdVJcUJKHRpqOI64s1yiKv9zZOCtRSAGl7ZtcxtpYwx80wKahqNzgwhwFt41eO2t1/Bfvvka/hd/+kf487/+e3zy5BKriXB1fY3rR19hWK8Q44AkyU/W8npwYLCYUDKNC9WvHqnMA6o2Y6IMCFRD3Qk16qyDs5ZbIEtlQwwqGlbaIMtB97zS51ixF72fn1r1mynP8OZnazr05iSQO4aRpr4KJEwF2mEqb1hcch6HfapVcwI0S77exrMDcOO+ylXwPXDlQBkRruAz+1+pwFne4OU3Vayj+shUjcENZwLVs8XNYxa6ovqDpLgJ9jJwmB+eYn50BqObqLXitXPSNyLBOF/Z9FIiZw1gnEWKnO+jLeSdMYhTQBTgqWHZFCK8N2itx5Qm8BKwcA23DU4iEU8x7NnEpuHtK4QpM1e8rhqME1fGhBhhnGVxLXl6IZUS8igVA86ZAmZTAY1qg6xtQKLX4qxW71RzIKU8FpMLHFYxUukDgFk5HnDvfO6cqCC6AAN+z4nzKdgg57c1bSuMRMrqmUSiywRWgbTEtQxEIryEr/f6+nLERLDEbOiXj55gN4zwTStegMx44pa4l+cXWF5dSV0nz7WUuOQjiteHegCqScoGJiKmIBrnCZZNKZKRDM1xwGa7xTgF9K1nelsGlxkEQkTCOI2YpiDzXmIyKrozBuy2I8ZhkrwByADzJNZ+0cpaaJtLSkmkP4vKltbd6otkYe93LMTez3vex82xRqFm99uPVl6bUFTzwwO88sor+Pijj3B4eISLSxYhGqcBrSi/XVl5FgC0s2MFUWAq82OM5Y6EfYf5fMYNo6TGt2ksmtbBtx6dlA02jYcVcZEQIxBUR7w0FlEgwHaHs15109dKDxAwxYBJG1OJp9Y2Td6QeudKL4jf4v6oVjv/IuEQ6zA/mOPO/Tu4vLxEDNgzntwHI7Eg1nwu408IAC6nCce7LQ4bB2McZikCrQCy1sFMAckZkAswTUQ0EzwZNLDwCSBn4bsWaZpyPoZ1XsJmYrcts0uqiV7mHbMMr732Eu49eAmPnl3i40++wC9+9gu8d/4I1z5g0AVG/OzImFyTnpLU8evGoaAVlNeEbv6ZLNH90WotuYQDpoDVdofdMLA+vMZM5Xs1bZ43nTJx83tVTq7M8X0vVeemVu4wJqkuDJUB3juHAAD1snROyxxkRVObPWid//n6MhhLzx9b5+7ed8p5XwhM9Zr0izVRYG58pwIC9aHLqWivsVAOs6DYTVPfUZbPLldf09MF/Btk3RHxvEwCJ7ee3MLi+IzFvTQ7nnizcdVYxlTyiwDk8mBOkuMqGEjyHHdZZWvu2wY0GoRxFJ0PbkRmrRO6nmPdWuYM8DWEMOb7tuJsJGK1YwPkRDrrLKwwzEr/W6hYEWAogUKQMkS2Kc557uJKJfFRmyBREu2bKmShjCCM2DoZJxjunUOyJpE7yxZpdNNyhYKCdLWFFCJC5HUPIOdAhDTJGHDJckoJaZqQUsl0IfCYGPZzeF5QUfX9Xa+v38I4JZBxWO9GfPnwCWd8poQYGRWZZGBSwvZ6jfPHT7G6XiKGCZQA1/VomjZ7I3nSkqJnk5El11oH5K5kiSC5ZLAmAsTe/GY7YLMbcLToABiJ/yfJyOc4EKvuiRgFRKJYkhMdWOQoRhFOkQRCRVTPLW9Tbc5iPKqVvZdlrQYuyUTZ82CqY+95/UTqOu8ZO80RqK9HEa16f2f3bmO1XWO72+DgYIGnz55htxsx6xO6rkfbNthtYz6Xxl1zJYHW8nqLw8MDnJ4co229CGIEjCNwenqCk5NjHB0fomk9mq7ljdzwXA8xYLfdAjCYAzAdo1yNzem5tTaZQsS4G2A91yyrKIcxBm3b5gXXdd0epab0IV7kGQr2yIaTyni2XYd79+/ii8+/xMX5Vb4mgKk+6wx2wxZTOIBxFtFwqCDFhKthxFE7gNBw1jQclxxGwMQICg40BZiRRYgiJpDjagIzTtxOtKY9ideqtVbCTGJcwc2XjGXgAQMk62DJYtYAb7z6El575SX84Dtv4r33fx/v/+bX+OjTz/H44RMutw0RwzRxBn/29nWelt1L6ciUCiNQ/ZmHUjTkQ5gwjRPG3ZDXWJJkvgxoKy80PxEDMUiSfX9TUrecqvxG5fv7lHdZb/odrc0nKln5Ok9q7zezANVcqZNVa495b9WLt/eiK9b/GpiSoLa3+fLfUzWe+/dJ1fFeYGtQ7gv5/gAVPMsAwJp8n/stmeUK6+VBN8ecipphDQyMhfUtDo/O0M8PONclEUiaPkES1pxzWaJXN07nXe4SypUHrB3C4VxJ8pPqI8CAksU4jIiR4BvmcOAMlyJ6KbNLbBcSMQPAYeeGVfpkHHQeK6A1klQ90CCbLTCOE5rGgxJXJOWOf2BxI2eVxeQNnKeNMLTETHPfdei6HsOwwxgmAZiOhZOqlsHGmELVE2GaIlgjrwC2lDiMAuKeCDcrblSHwjdNKSGUJGJOCle7ylUP1mqCfoKT/VBB3/8fGhVFkLF4enGNy9WaSx1SAgUCWQObAJoCVpfXuDw/x7DdcTyeOHbRdR0ODw8RpglfDSPGcdhDszrJk2Ra5sleG/zEJYvjMGK7HbFc73Dn1jEIwHYURTNiTymGgHE3YJxYW93abJ1ARPDOZqEkvRdrHOtj1yhaXjrZKHvrJr+n9COAvCEBBeTslSjd+Fed52zoZHHLB7JC1c3vRZk8ibi2/fT2LZw/e4rNeo2r6ysM2x3GGav2NU2D7Wab739vDzW8cL1zOD4+wvHRAfq+yZngXddicXCA+/fv4c7dW2haLzJX7EmwMaDceWucJhjPcQT1Ehw8xmmC97xgxmmSzF+mxLxvoPSs5gN47T6WPT0ItVt7TpWnI58yutvKnzTr11qLo6ND3Lt/D1ciUZy9GUmE0iz4xnXZXk/G4GoXcOhGQHoSGDLoAERwCQ85h2QDzDTBOMetV6cI4wMwTjAwcCGyfGkioJUNuOG8Cs7WkPvUltHKD4IAiqx2iAQ4j7Pbx/jnt/4EP/mTn+Dy8hrvv/MefvnLd/Cbjz7GwyfPEKKUC1YbNduF4glnRqDCCQbFU4+RsJt2GKcRKaTMBPB6reP8OmflUtUhBzMUWm0Dq+BWvlL/l9RzQnl+ejCz9zj35m3tOWfqCSjMkUEe1xrtlL4cN8qF8+3UHrRe6f7a1fe04ydQbb4F7e/Zr3rbz7VJVD3mmzdY2xSxkql+TwFNBXp5XEqCZn1B9fH1Z1kBkMHiRMG2w3xxzGEs+RtLDDN9TWCxKWeNKLuyd62bYabyxeGYphEpiXpoIgkzskhVP+8w7EjAVJJqISdxfd6YI0VJ8gtovOPGc1IBledXhUKNFbEhgKWDEzAOE2+8jhUEVZmwdQ7jOAo7zCyi1XkjDmAM/LeUEjdlohY2IMtcT9PI4QnnpRoucT8QVVK13OyMAo+6s1wVxFjGSEJg+b2eK23TsGgYOMfNOScOLl/LNFnEaZIOpfwcVJaZJf29OMC/+/WPamEcEfHV4ycYpom9pxiRksmJDONui8tLDhFMYeRFF7nX/TAMuHfvLuZzRlaPHj5CkriwGn2tKCCJrTDSY+zNlEdCigG73Q6rzQrPLi7x4KXbaL1DnKIqD7HhEvnhGCZGqEI9wzD10nYNZrMOvuGWlk4sDmex6xrWzcdkbzyGCCM0FiXJFyCqyvMKZZZtQjaixfDlxQvcMDBJHQYB4qoqohOEcqYswCAtGkLbdzg6OcX15RUW8wNcXV1it9vh4OAAXd/BLJHDIbrTqUGylr3xxjuEMCBGoOt7zGZzLOYLLI7mOL11gqapMlXVy08cP4wpCjVnJfN/ByIGCc5wjN1JVUmIEb5tuI9B5IfSthw8zzkBpraszwOC7BFlvK0fVwDFG+A0TQjThL7v0fYdXnr5Pr768itcXS75mwnFg4kBYZrQtC3UzUgArscRjynCYgYbUxaMIdPwKQ3QIOXs484AZA3IGTEmAc47TqyMETY42C7ApBbkOfYK7wHSrH8rjY846p1Vx4i4jto2MNajbxu8dO827t76M/zhH/4YH370CX7605/jpz//BR4+eYLNZsONXNSBhMmx0ipAV9a4VNeEwCGcKXAITceVR4R0IudvqzLu3lxOZesrG1O9KZnq0erCoYog20+5q9eTzoX9zdVkNW2ARGa7ABc+JOWw24vzDVCts70ptX8RN+/1JlRRQFTbASo/3GQmdMmLt7F33zn0QQWomeqxlY2wzjl4Hj29MFSZlbogdgwAHOYHx1gcHQPSWthbw/Y/EovsGdVoMZkV0DwTIgJFtpUE0cXQ/zOGQ0xTQtd3aDsP62csvR0jkrVonIf3DhtpL9803BAPKWbWIYM+a4DAmfX1Jqr54L7hDTZKuJrnNScmq7Oi8XpNVE+xsF3WcEM7rZKYphGEJL0DDCLxfVvNRbEGjhzCNCBGju83zsN1FoMxmGjSicHgIFEJ3+pzVSfTmcyqxBQxm/UwRlkMz3ZC8h1Yz4DvS/s2QErha6fnd72+NhgYp4TVsMaT82dFzU5oFASeqMNmg+urS2y3G4jIPmAIwzRiuVzCGINbt89wfHKEJ0+eIBABVic0ASQhAkj8EwkhcRMIZ4mlFSlhu93g8tkTfPn5l/jGKy/h9ukRTo8OcHQwZ8AgbYljCpjCiK7rci2pIYO27XF4fIyzO6foZzNoAkiixJKzUCZBvBICpsgAgzRfwIDvn5Q+s/ueSPVw98yLGptqceti0g8Ug4u9DG/1xjRcoSg8yYQ8PjnGxeERFss1tqs1NpsN2q5DP+u5BnYoCZw5bChnZcEQh6OjQxweH2DW92jaLmcRh2nEzu4nV6nRSzluxomaXCfLgIW77C2lbznrBLDNMegMoe1bmcA207x6r6Xs9KYnU15Kpda2T1XErOiR73Y7WO/RtS2Oj49w+/YZlpfXGfgRIPE7YAoBvY65Ye2H0QEX44h2a+DAeuBm4Ox0QknU038jJTSB+w74xsM3DdpZJyAlwk0OLkxI4wjXdnBtA5ta7l6piZfWwVgH5BbKEJ2BotGgCmvWGSwOZvj+D76L7/zet/Gnf/JH+Luf/gx/87d/i8dPnmC53mKU+CgMSlMrkklKCVOYpItn2JMNL/s45eed57lsrLL/Zlr8uVwYfU++K1A4e7c3McHNvVd/11CLHt9Wm20OEchmm6NARHtHvMnS3XyVdVptrkaSiony8cunX/Sz3KeWLVfXeBPR1Jexl/BHyBVNNXNT0ggVO8hiLhQjiArQpwqEvfil1yyhXttgcXyKxfEx2pYrBVSY0jox1oaEPTXFaTIGKcRcRqzOk7MsPlbi8ly1laQ8l2PxFpOUREdJ6FGnaRwH6TgoGy6MbNi8KWtnQwcLLZeNMXFlTlbb4esMko/E3ytjnlUT1cESNMHCRIB3DilZxDhiGiMoRVmH0m/Au8rh4+vmcGjEJNSFAeCbEg5IxIx5UL0BZ3NYghLBGi8sBDdqM+Kh8hyPiBOXL8ZEMMbB2IA4EZzXvZMfu5Hx+Dqvrw0GtrsB5xfXuLq6Zu8rASCO7QOAjRGb5RLXl5eSVSneE4iNzTQhUYR33MXKCiQm2EwtqkRjiqGgSkm60laBMSQsL6/w6YcfASHg7tkxzLe+gd1mgy8+/wJXl1dMaxJhmoI0u+CM8abtYGDQdj1m8wUOjo45kQUag0xI4AnLutjIxmu3G7jyIHJCI4Bcly94NFsuA1EnAylrJxOl2FOS/xDk9vRcN+jXHLIQY6STNlHiRYFC2XbS3nl1eYXZbIblaolht0PfNGibFuMwVvSd/k+0sz1rCNy6cxuLxUw8WvYUm9Znyc6mafPE1FeUklAts4nTJJUFDS8AbJka8xbGcZ2yFwNhrWZ6F2NaAEc27WUiVsZvz9uRxERdPOMwwFiL2YwZgXFijYK2a3D//n189cVX2G4GaDzWO+5lzrW+rPAlOfqIsNjGEZfDgNYaLo0yBoG4miSSRQRrbaRISFPE5HcYGtZ68G2L2eECaZFAXctlkTEhjQFpnBBbVhO0TQP4BsZ5mMYDiAwKyAPSBAXGg8NScuWc4g3W6Q9oG4e3vvUmXv/G6/jTP/1jfPCrD/DOO+/hnV/9Ck+enSMiYpoCkAziFDGEkEtsGQTETKOLH4qCCLC32WdGoNqskAEG7YFd/YACi72/VHR6taehZn2o+kw+nMwDU/8uB9b+KHLBkpCpc2v/svaBgYYrBGTWjEgF9sv7Omv3OQzS7TgPis3red9TK565zun811TbmHoQC2pilqHoQOh4Uj7080DA1O8ayl0ByVi0TY/js1voFws0nsOFJnJlBiVmAL1ngZ3aqQDAuT/Ed67y6c55wIpdJ15RzComGMPrRUECpYTNZiv6BRwO0Li+9/tbFTMMlCV8eUyteMdsz11Ocozw0vhOk69TEk2AanMGEUKSnjbeZ/1/IyHmFGSDjxOatslhEeccnLHcPRaQjH/K7EieT4mdAWM4219Lq7k6g3Va1O4V/RWSJHhtrhQF0DQIcYJ1XiTaZVz1+RuT9474W4DvzdfXBgObzRrnF+fY7XaYwOUWOTZEBDMOWF5fZxU8YxxA7EnDyUWmaqPTuKjOyWqxqs5ATT2mlJAsEELCarnEZr3G6uoKq+U1/m3T4PriEo8ePcZmvSmyvSEhTAmUilKVxvuN4XLHxjdl0cvD7/uOBzhPPMJqu0VIXCdLKQI2IZGDRNCQTJVElGORYiqkckeGAOr5q7dRu785afCGKMxegoksfk2cSUhCOSXMFgvM5nPM5wfYbLbYbnaYn7aYzWYsSlRVFahpU1CgTWaIIjcDifwZZVpC5Dibxus4XjYhBmC744xggLNX27bF4dERvHWSJWww6ztmebxjLwMJnGDmxHwm5PhlNX+LF7nvuWmoQpkAPk95btzYimOgu3FATLzIb906w+3bt/HZp5+BqEiSWpjcuMoai2SkRhjABGA1BfR2QkMGloA+EofJYGBNA5MS4hgwec9I3wEgbkgSYkKIEdN8xgAlsTHxko0Nl5BCAjx3PrSxhWkbwLMnUFKGVSdB2q1a9dYgA5QE8DZ4/VvfwKvfeAM/+ZM/xnvv/QrvvP0O3n//PTx+/ASbzQ4XmytstxzOKSVOlXeq2zFBewLl196mKl5wGfiS0FU2pfLc9Pv1rnTTU1caFbqu9hi3wgiIOkg+NlH5bH6/BgwoibkZeFT3JB+vfjZ53hUOQK9dWsZmP7zcohENkn1gW917BTryoyMStkcUP7KJvBEO0wuXcad6TNL+cO+NaR7+Kvcm35gFkUXTLrA4PIXrmJa2ckwNLyntbJ3JuQoqmKPjGoV6d5YTASlqmEs0MMQR4sRagjM97yuTZsxzpr1vHHzwklfEW1WSijS1gZlBrFhFYwwaz+A+yPgm2bSt1eZWwG7HtD/UoZLwMuTzoKo6wTr4psEwCDUfCUYcxhgTXMOefZIwAhFA05ivL7NKVMKchiDSyMzuOpmT1nCyJKUqHAsAjiufYiKkQAJELAwcenHEpmEHVepUYaTfNh9uvr42GLheLnF+dYUhBDZAUjeZEutB027AZrnCOI75gUg/EqZHFXUpVQmhnqoJzypa7P0DXGutJSw8bzm7PYjhGoYtdsNOBmHAMA4ZrQIGlIIwEhw6GMcRcYqIBNxrPQ6PDqVmHfl/3nn0fVdoRgDDFLBab6CdFpN4ZIL7XjheJOUkxnDnLdC+J1uSAqtNHyWmmXMFZPyi0ljG7MXm8iIF007eN1gcLLC87tH3PZbrNcZhQtt1LFSTWOXKoiSqGYjud9LSIGDIk4r15gGu640xwCSbjcl6tcYwsIT0MAwSp+Prm4UJ3nODIsV+Vo1f4gxdTRLlhJriY5H2eNZ/onj+YtG0YZXznCik8y4Dghxi4KQg7nwYkYxFN+9x76X7+OrhI4y7AQYMTphtYcVDn8sY+RkEAwyRsB4DesMlrAGEXuSeDRFSw8Ztkv7s/DyBbhaQrEEQUEWUEKUsUx48nIucuT1FmIZjtU7+lhzBuCQbctmSAAuSRiq8YXM1AlkLeD6/dQanZ8f40z/7Y/z4x/8MX33+BX7205/jL//iL/G5tcDVNbabLUwCyDmEOEHLzTSJquzZVV17vZESisEjnfeVA1sDgL3jFFCR/yI7VKrBBZvzipJWyhioS0dyTF0mTRLEraWqOeu8g8TzDAABAABJREFU2oD3X0Y22CrBkMoV5Bfd/LEGDnkxy/XtMwllnOojmPIdAQ6JNH9Cn4HJY5uvJ2Md0fLYu859AJV/pQpgkW6g8oSNw+zgGN38EJC+C5pbok6aMeAunTLmJpGUv7Gj42QOJtEu0CoH7x3GiePvysKFEDhHqPGYmdl+RZZI1Bqh0CHZ+cZaWGJqPwZOqjWW16N2MdQGQeqotm2XPX8DzY2REtLEz4bDitwUzSZlMrgKwlrOZ2q7DjBGpLY5a59ASMSsKPcnYLsaQTDJZXBuiJmKMSYkYc6V9jcoYA6G+zUQcX8EALntcQLfozcOuzQiUYLXjokw6PsZrDEYhzHnOdzggf7B19cGA8vVEpfLJUIigERvGhZpCrApYNxusVytME5SB5pIFlUCGYsISSoR6Frqmw0yvjYMLpRO0sS/IFSLCpuoAENKEcvrq+wVJ+LYtZN4axDNAkDqTSMPcO8dTm+fYr6Yy7UAoARLrFU/732NnbFc7bDZ7liTmsokKwyALjh6weLXGF5B4rVnUJgAkolVvBwjiymrVBOJZoOEJBQMUBKKmu91Np+hbRv0fY/r5RLrzQpd18F7hxDkMm2ZiAReDKsVKzb2Mw/WI+BWm6bSS+D4lWbK8oLebjdcOmQA5zopH/IlQcZI2CQRAPEgLI+3dVxS56WUqEbSPIAo4lIp5msZdjsM4wjnHOc3NE3OtiVKwlKUhaWPLKYE33jcvnsHZ2enePTVo7JhSFMU1SFXj8s5iwkGY0pY04TW8IaTKCE23E+dGQoPZwHjTDa8xnrYTspat1s2gpGlW6lrgDYiBgfvHJwPsM7DkDIlBAoBxju4tgO8GGbLa8YY3Sz4fWMM9x9QtgAEVfCzIPSzBm+89Q28+sZr+NM/++f46Dcf4p1fvIP3fvUBfv3JJxjHAZvtBpvNlhu1GCteXbWJoQBSoDYzlVdOxXvei4ND7RMb9rxd6ZTPjcuqqhB58WOvgZDg95SXHAChsxXZK6A2ZfPio5gbIJ6K969vm/oscv8a/810/k1GoPr5BaxHvT3rn8USIG/JZfln9sSQkVbFN416Ka/MQEJ+16TrDEoAIBVQwZgygbc0Bplt1+P41m10iwPRCinXz6wArz8vHhwzh8SMVmSwZbk4BpYct9umCY3z7DhGDgvYhssMObw4oGkbzGYzwBiM4ngQacc/eZpJe3Pw/M4iO9IbxDUN63RYi0gstqOhJR3bkEWLIlcNyHrPOgoyh62zsGSBSPDW5zbhbJuEAYgcErDOwUt3XRjLTkFKIMPS3UiF1TXgzTyMI4N9a6BtsjMoAOe2EVmkkVvPJ8Psi4Y4Gu/ReI9hGJiRzoyIRd/PAbKc/BsmwJC0U/7dr68NBq6WK2y3O5FdZQ82Ej8kEyZsNhtstxueOGIoSeGiVeEG8YKpZHDzouGM0BBDVgTUnAE9Bkv/Rkm8KEs5SlJfiiw0BEogS6IoRTwohBxPNtZgvljg7NYtNF0rXj7HfhtDaBuPtmlkgRBCAi6vlswwaNKLJkfWy7ve7dU+q3UhoJT7UFlgRPsMANgw8KYpMU/SRCAJCUjyoH43L1T514DQdB3ajmWB+77HNG05K9dqbSpft+oMGBn75WqF5XIJ5w+5tI8kjiVgIUwjT3ijSNYgJs7vIHBFgDVGygNZUCME9v6VXqRkEE1iig1AnAIAhwgr3RZ1mdeeptYYMwXnfZN7oycRL2raNnf6ctZnNb4UA1g/ymQPBgY4OJjj3v17OH/6DNMYqo3Mig01JWEPBjAWAYRNjJzvYnlDmRKBjAPBIibijobcjAzWWjSdYVaACDYljOMIawwGY5GmCaETeWXPMsfOe/jUwqXESirOcbliTLBtgm0hyVEJyVhum8xoi/U4boTfZDeRdcfzz3mLew/u4u7L9/CTP/1jXDw9xwfvvY9f/uJn+OW77+DjTz/Hs/MrTpZClZAEEeVBAZHsBe5BAl0IBSnoTqvLhKj6k9CnWRMf1bFqr6leZ5Q9ZqDQr/VJS2JddQ0yFirqVZ2ID60gJr9HBbgQ7XVZfS4ZUM9RcOA+IyL2QNdyPkW6MVYVgFKBHA0rKkgqYY79NVIfyKBAo4wLZBi1H0v+uOHPNrMFTu/cR9PP8iYKqJ4MrxEnGxOHYlW7BPl6ZXTE/iVQJAQK2X4669i+GU5MHEfWgfHOw3oLlzyHKIkQaL+kmjsMyboG0/RGyoattbl74SifscZKPsyUkwQJqZRDWu7uWtfkc4jQsMctuUFZ0yXGzMSCiEv4QmBg4TjB0okwHquIeiQK0G6rWuLMfhw7rl7scS7PFDvOwkkuO80aeqHI7IpxpbOrNZZDFaLl4Dzb+mC4Yd9zuTu/5fX1mYHrJXa7kWl+6AZkgJRgYsR2vcFuu+WLR5mw2UMmZMEenWRK57LKU8nGLI2KjGSzJpDjc+kmyhnDxQtn8CFyq4iC3ljNCUbPxUju+OQYR8fHgMgbk9C+oITFrGfkK4ZgO064ul7mhhEMRKqVu2fldGGUjOYiuCOKbal4+Xrtarf0wScFUfoiZVXKmGpoIBGBImWQQkSANZgt5vDXDbpZj3HiVrKNJBFyEot4mXy5SJGwWq7x9Mkz9H0D51Wtq24XStCYckmCMmhb8cJFdIQkYVSfsbEaf9eKActKZ8SMkTEBzojgjtHSTpNL3PhSmdkZ05gXv7HSnlTGshHJUdUWUFaD2QTKscYAbrJy7/5dfPrxx7h4dpm9y3rjIRBXu1gjIQOLMQasaALTjR7zJoEmZkUiJTTJ5ettvIefOSTiuOI0cS8Cbx0mKzFBad4SRIHNEzMhTWQND9s4WO9YJt0AcDYbFAuArLReTaIZoFnS+fkoDb8/nyBbum+Buw9u4869W/ijP/1DfP7Jx/j5T3+Ov/nZL/DrDz/Cs2fn2G53GKeAIMxU8ZrLxqjZ1Kz4tr/2+TOy/q1hT1c3yD3PxhR8bSQrggCqBVULni7QQTbMgjkoAxV2JLD/klMnIDcoy89774LrvIfMWewBeGUH8gZNZu9IeZ2nsnnni98r26wqJaj6LvG5GZRVJYmCOG6yBQrFyiyuQJQ+NaNwTv4lwFqPo+NbWByeiOgVf42bw02ZVrfWZm1/HWM2w6wWqmHGlFiGmMAVAbthyN64sRo2lja/wth67+F8w/R41XdXGeI9zRUZ5Yiynzjn8rPgKobKITHcaZOls6OEIVJ+BJne154D0oApivqhMZzunpJeg4RmiEDWwrmG8yMkkdkYW+wxRLsG7Ix638AkWzmEnLQcE+cVOWfRtD6LO2kpN/fQMZyXYBxmsxkrJspNlARgDqM46wFfWm7/rtc/Imdgi2kaMUksgoizpy0R0jBgu14zUqL9TUvpNEanUrMpkyoqTZ2I+6yntDfBlZJMRLAJSKaU1NnGoWk5+W8cJqkg4ElJkodGxPLGKl6hlM7R8TG6vmcjnQgJAdZ4zDqPxbzNkgEEYLneYLnZYAosWqFe+81XbcjyAk0Ad7tgw1LKBCuTVS1+9fB1fFEZGT2v/qxKcOo5FDEk/kw76+HaBr7l1sFTCDxhhTbX82XK0xgMuxHPnl3i5PQYR8dzVPxr5Z2oqeF/rTXoRHN/vzxQmAoDQEqQKCXpoCWbrcT2THSwNuQzWe+AxGIe4zDCwqDtW2gBcYjcC7zxHgQqpUwx5oxa7R8eU0ISz0CpRooJ1nscHx/j/oOXWIRokNajTuYpRe43YARMGMnmBTBOAZtsqIGEgcuQQGiTh3XSZMtxDXCKqk9BMAkYJObdpgZEDRIFDoVQJWySWLPdRQ/fdzA2wEwOyfE8hIuAa2FcAU97XrDEGdVb3Zur+gizYguH5dq+xTd+71t449vfwn/2v/7P8dknn+FnP/8lfvHTn+GD93+F86slltsdphChLJduYLXi2t76qEGy5jYYwJCohVbUtgH2NgGARHdoX5NDS9r4EZjK2InhzSWjlDc7rXGHAE4qH2evrXJSdIzy5pxnbDmWrlul7ykfqwZdyGurNsj8SMQxMuL9K8hWBhHV3yp7WKhvDh0YGQNd93qCPQulz1vvrd4chOnxvsPx6W30iwNmUcVx47a+0gHPu4wpLKzYM+7yqcVXWlEEcI5RQsIwIsu7W1E6TRPbLuecbLIRxni0XQOS7rVEbKMa7wW2lLwRdRLZrkolWiytha0IInnvAQNM45jnKVcgSO5O5JBB3rhl3WSVTRk6azlPSiW4fdOAyHG4T5+/ADcYmwWZ9uwhAWNioGMET2o+HYhyPlVKzLyrEwJnEUQEzhoWSCNpDV3nR5T+IDzvnSRh/pPLEa+3I8axeAfsmSbOoB64eUkInA2qHnxBxUXBTEtruLxCVrQgLhDtZSVr60dF/dBSOgP0sx5Hx8cIIeDq/JIlWBMEkanR4KZGMfBDcc6j7TocH5/A+YaTRMB9uckCbdNi3rVQC5YS4eLyGpvtTkQdqk1aDY28lH6vqTtTbi9PLLUaMqehDSxytQB4gXM4QL1eSeCR8EQdGiBIGQ/PrJKEYy0DAceSvuvlMlP4MU77gEvHC8BqtcbV1RL9rEXT1GU74FigsbmRkv5NPXV9X3934sVaKX2zlnuc5+9apUI1Hmnk3tlrSUAujxklzmYMstKWgo9ECWmS1s2qgqa6EAY5/qmiJaLJwe2N793Fh7/5CJvVLoOBpEmiRrTANWYn7TMpAUNMIExIhpMZQwwIiTDvOjTeofUOvknSb0H6WkSuzFDwZmSeuGhhg5VrZgPsvMPkHJrErItPAJFkCDcNqGmBJsH4CEcJ5BIg7ArvWBbaajQnY0I9UPUKUdHrLPplwEzI0fEBvvfD7+L3v/c9/Bf/xb/C+++8g//vX/wV/vpvf4qPv3qI1UrbZfOmrpoHpUROJzmQEUC2B9hfO5DxrVgnLQ2sE9yKaSau6FH2MG+Y7O3JGTNTUBIBFZkUuKL/Zs2CynOvk/ZqB7z+TLZNNxwEQlUWCWDvAKYcTxkDLUMu55Xv1dfxos1eHaqb8oemuqIyEPvshIw9jMfi8ARHZ7fRzXoYyx7yVD0rfQxRGGHtcKoiPTlsR5S9a2MMLESimCDZ7QDISL6BjFSiDCyMMeg6ZjBDTHmTd9buMQPczlh/NjkhOduERAASjAeaxiFGg3GcMiullL/aJyKXN9VxHPMm7p3LuW5kirSv9z4np8MY6axrJbk9omkbdG3Le1gMQGS2wkvjomSAcRgBI0mLkgeU9W4k/GcrOxcoMmstZYshCEsvjLj3HiRMjjGcTGm9RfNP3cJ4CoQpSjJbYlWkRBGWCNM4YBx2IGJqjxeI1ivzPIwp5gcJwwiSGs9drFLKgiJ1+9M6PqYokYhjRf1shlu3bmMYB2zWG2zXWz00T9JUxYYMoIlg88UCs4MDJKDIKRsD7wld26D1pVhpGCdcXV1jmsbcNInkwvbJQDB9rht3jdLVAFcIPy9mofpiLODJGGZcNKO5VB3I2AB54egiUnSv9J2et29bWGPRNB2s3/I4O5eNrT4cNVwEwm63w7On5zg4WOD4ZJEdNSNUnbPSj0AWRdYpr6hencB6LjXo2gFMPVlbSknkHgXsJa1RFgMtqNp5l5P1GKyJTrq1sN4hTKJklucMSdcww/Kk4og6rfMlg/l8jrZtkRLPQ2/qDUiuUxQRCeI1yPl3KSKOCcFaBPJIMJgSofcOh7Oec1bGgB3YM2obhwYOxgQeIypxRL7+mPMirLOc08JuIyuaiZKhbT3Q9qAuwDQdh9gSVyNASh1hHTjGIcwUDNia6QOVBZZLMeV+VTnQFC/45OQQf/LP/wQ/+vE/w//yvV/jv/8f/g3+3Z//JR4+fcZJYkbnvc5pXg9KSuhmWNa1JA3nsda1YfY+RygsRllPKngmM6MC6NVEkk1UGxNVf5dkPN4wFMDcoE6eexldUuVHWau6ftQ/rz+r4PU5Kl9VEBW/CAjK4U/sj0V25CtApSepQY46tiLJAivPLwc2b4yTAgHvFzi9/QCHJ2dwXcchr0SA0Ota2ZFBimyA3jsQWdGoIEw2wIjqpjLCKSXehK3JSb2s5cPXrGvZSTllipxwY73jTh3C6ARhPbXxnIqXaUKxk9JDdRKy8Bz3xMMwDBksZDZKE5y9R9e1GIYBKoteQqNGP15EusR+emmjnqg0GmqcB9mU7Z6W7DonDZjy8zPZPjYtA4RhmEDgigxu5sf36ZyDmSbOFwgxi50VpojvNyRWbKQwsXOVDBCkGuNrvL42GAhxRIjsCSkVkxJLAE/jyGgEXCueRUtybJIvOkoZlnNcs5koYRxrapxKEljetJRRgNBCDCR80+Dg8AD91OFido5rc83nTJUnW+3H1jIzcHBwgK7rWENaS0cc94FezHpoInYCsN7ssFwu2SuNoTJKYj5uxGKeW/SiBWAAiVsWuF48jv0QwD4AoExLZVpSgQCJ8AYp/EAGEPrq+x7eOUzOou9nWK+WnAAkUtLVxcg5+NldXa1weXmNxaJH13sAhqWERbjDO890oEz4upNg+T1LS0IXverus7qjAclnrFKtKSFFXnlGOkG2bYOgG2RV1cAxQJ9jfQCQpAlJI8qDJBt/4x28t8V4yzga8GINU0QIvMkYZ2UseBPlcktuYT0JvUyGfWgDYFSKDsy6TwmyKD36KeSkKvaKfLXREixxhYWxgJkkxpmA2Cbpyx6RuhaUDHxMXK3gLJrYwiYCUoKNwqo0LZLXJFEDkzipUYFXZgqidv2iKq+gmgrlkeUNV4Pubevw3R98G6+//gD/7Pfewr/+1/8d3vn0c+zGkRt9adbyb/FgLQCS+ZHPVQHjOss/Z+qbVMBFlW9jZAyf98eR1yUhlXsoJwRgy/eo+t4LQEENYAjEOQhQAFMdhPQstPfdnGsj96Ohs+zom/q7ci26qQuo0d/3N2Xa+w5fI2Vxpbz0dPgVHVR8BW+mDvOjU5zdeQDfzhgEOIDj6Q7eGHbsAFgS5g+aXKugT+4hMUvGYj8RUwgYdjuM44iu42TmXC1mDTyceLAmg7MkToc1FnC6MfNzZLGyZi9s4SSTnxPEgSChA+c9HLj8cLvd5mMkKn0Dcu8AeUacbD2Vai3wOUMgbpMcE6yqqMqz9X2PGIKAnrGSUwfrikwj1us1Dg8OBfxyCME4wFqHlEIO1zpRITQw2A1TflROWPSUuJJO7agmmENY7xhDTozk0GOEIfvCef2i19cXHRoGTMS0OsdJePMxJBmLIXBbyJrOkkmnNke9dRiDrutKrIMI1kj5IPGk995IglhBoxpXNMbAgWPVfddhMZ9zJqUkN6kHyIuQr8c7j37WY3F0wF5YCDxo0cB5g+QT5vNOFj0vxKvlEpvtgDjxg9FQBm9WgDIEgCY1Fv9Al1vuclijfegQVV6QjENihY/scXDiSAEKoJJ7oJNW68KJIKEboZ+9Rz+bYbfboW1b7JwDRU4kDFPIx9P4o3a92mw3uLy4wtmtY/hWy94aeNENz9Q/dIPnSa5iRM93ydoHC3WGvgKHOsfEyXME+LnBsNBTQoJzknlvlXXgzwEGrXcIkHJFZ3LNMwMXUnMsxtJg3E14/NVjbFZbjGNghkh6jed4uniR1jMQitYy6EhJAI9DJMIgZVBTSkjRoW9adD4IoxL4O1TYnsk6gAx8cvCNhyWAiOlVDf8wGGYPN4WAOBqRNI1owQDDhwiaJrh2hG0akGP2BNpRzXBTFBjLyoZGKMMEBgcpVLai3j14DEzOedG/RSzmHv+rf/UvcXvR47/6b/47/OLXv8ZqN3AyHknJMRWvW3NwclWCEBVG1voe01Z727oecBNo50/rQqv/YUZIjY6pE/50HpIADCg5tn8gOYY6gsqS5HGp1my5mhvXVgEixlPV9WcjrteELD9MJHkA9fnl4xkV3KyGyKOh3ITEnumGCgpVt2I4bu2sx8HBCfr5IWIiVuo0HSf7VWDR6NFJ8kPkT9ZZNA3POQ3HGdG+mHas/eK9k+6jXJ2kidheWpNreIDbCdvKpvCm7YxjRsA6dF3D+iSGwYA6aERFVlj7pHjHDsQwspxvCCz9CxEk0jtTKeCSP1XCjSGEHDaIkdnYxjX5vM46kONzT1MJv6YQucLBN+iaFlGqqji/iVt5W+cwjFScOhVEgtwLafI8cdhBxo2fYZk/mutgrUcIsdhXWUeq4vi7Xl+/N0GYuN4fiemKxCeyAgZimIpnK95uQcZVoiAAbx26tss16zpROQs9iNfaZLqZ5Fx7VKIAkVbK5/quA0SAgiRZJW9ShhWkGt9gPpvDWIspBiAIzR2BxQzoWp8XX4gBV9crDMMoetllgfJakuugIpqiBF82FigTVW9yT0yFKl0BgEMwxEIe7IRIlUAVRrjJHkBAmfAHbPwoSXc9FsqIEodqGo8pBd5QG4555WvMiZEc81sul1gt1zg4WMB3Dl3T8qZl7d5CUjoshwMMyr9yDzp22aAIYiu0Y/GEKKVcO5tiRBDU7xu+ZpsBBF9rIR8IMITG3wQnBjBJ2ClwzDISdrsRn3/2Fd5/91dcfiTqio2UlUqqOV+YsErGcMthgjQpAXe/JAJLEyfWeyAC2mGQsIhkIicGESEROhh4x0xEQx4tJXjfwJuUPYWUfJZLBVH2OHzgcteYDHzXgGKCCx4IE5JvYD2XIsJISMZZwLIWApIHWSebMoPtTLtnb5fy85OJXsA9L2IYinA24kd//D38X7oG/9X/7V/j7979NbbbHW9ThmCJY6gkm1feWDTbPpXnJ9CnnCKvlr2tbA8Q1Njg5ufUiyeIw8KoJNufzB6a+mz75yh5AWJUb6zjfW9LAQCgTEa+SGOeOx4RMd0Uy9grU5g1lPQQqbALeqyyxasrUkIhOfSA5/MD9NLLXVs0vsfh0SmMc6ywOo7MALaqP0B5TEHINDXH2VloRzX3eWWIV2/A3QojK4BqH4EkHWmtqAHqWuVzsLaHVjvphmedZRbBarmuR2aFqucVREQlxYghRZiuA5eolzwuMqVBkZNkZiNjxbF2Raoxe+wamnSe6fsQgzAR7BhrYqXNJYuSj6P2ZD7PHruVcsgwMWugDCWVGQsDQt93mOQ7MAa+aeBCQAicU0RgZy+rP+b7Qc7ZYAe2Dh3/w6+v37UwRETDgg0qU2vAjSXGcSheat6wCmVdk3B8EzyB9CFmgyDIJwZuwWoh5VNUlfNZNl8pcojCW9bVb9sGUXSbkyliQ8oUWGvh2wZN10qugKLtiKZhxNaKnC5gME0Ry+WSJ7TQ/fmVMQmVX6o/knymNiz7hmyfEchjLEbSVH+PRJKQiTymyhTIqs+Zr/pS5G1g4NsGvnHYbUf4pmWWI3GPgSjiN+qFMw3KG/h2u8Pl5TVOzk6wOJhlLe46jqZgoGYCCmWfMI6h9DIXQNP2Hfq+ETYCvGlRCYc4a7mzGFg50HsH3ziZ+Dr4fN8mn1eeM8p7RiVdrTIorMW/3Qx4+vgZPv7oU3z11SNsdwNXLYwD2raROKjO15LIxYDSA9CGIlFyMAyciKyACIGAbQzw44jGe/QxwQYGY4EMWmNA48jAE6yNkVKCDwHeOs6CDhEpeKS2hW24Nan3rbSjBlpjkTCgSRHJBbStB2ID6wPrEtgSwoFjY2abhpUJnYIFW+VfYH/jMCbnx7BhLxsnM20JiBMsAn7wnQf4P/+X/zv8X//r/xY/+9WH2KYIUJLESyc1/XuiwXsbOYtbEXCjy2C9oqrJdePLN8BD3rjKx5Rq31+mgkDFONCesayOb6rv11+98bniIDx3eTJbKzBVlRPuVxhUR9XPqeenQMmgekb1jRcGIYdX9Kx7g4F8TP5kg9niCPPjY9imYfybE7araiC5vhg5sZWMsFeBWSPvbd5gDVnuzkdAmqpKLlmX7CRyXFwrD+o5mMuCjcb9Sf6NGIYA5+Zw3vF7QZOGHXccrTxgbtDDjqXG85nmd/ma6ioknf/6Oe1RAkiukjo5VkS/DKSrYeBwHxVlQ54jiRuVec8APTPOKLkqjm2fkeTBGEN5ZoaTNLnawQKJOB8hJgRix9sDosQY8jNzkqAYAk9Urbj4Oq9/RM5AQDQp09hEUlMsLWKTTl69YypTMmqNvZYWQjYQQUXOqF405QdY6uhlA1RnRT1xw09cqWJV4tNMfN1cdKU477h7n2Otay2P4i3DChUugjxkMAwTVust94Z/waYuTlKmMfcTofY3+b3Og/pfHR8iGU/i3C+C0Px8/VG9hapCQ6sHboICRtWap8Cfs85ifrDAZrvh2lvnMcUEaz3HrLLCnIU1lL87TROuLq9wfXWN05M5G3erVJo+h5IHII+Gzx8jiAx2uyEvtCilMTAGTSNJMVSAQ4iRczi8z6JFmYnQDchYZO387NUVg6oIXxc2azAA0y5gebXEl58/xJdffIXz80vuYQ5ucbzZcJfNrmvLogWkNTVyXN96A+vAuuTyXGMioRl5AQdKiAC2MWEXIrajJC3BoDEONiUgRthgZEHzWkqOEGyEMwYpsbZ5TAQfPZIHUmNgveTOgPMHmEKMrJBGAIUAOJvFpZIuSGthGw/jHeAdrPfsITmLZCpDV7EDujZV24BMobMRAyerUoQzwA+/8xr+T//b/wyX/49rfPjwCUK9/1Yy3NwQp2IgVP+q2l5z/Bn5cp4D0/raA9jV5pz3USogR8Fr+bzM4foIe6cg1B3GXrgJ3/iO0rXlTQPNK+bTF0++/ozO47zZZ8ChA15t5vmlqYblbxVhJ5+11Zf2EBgAwPkOi+NT9AeHME0D3zYs700ESkGcP74mFvLSMlseZM5bTSyolTdTg3GIWK9WmMYde7SuKpe0JIwvsj3JNgNS7mwB63SMuINsStJGPkSADDPIqegHWOvReIMYJq6ESBHjmDKI4V4HDayEyawrAKR+MQgo84Yk54sBNHE1gGVxoSS9A6YpcEI8ADKG2UxD3JDPOnniBsNuB5Y49iyRLGDHOS+tygnjNMD7hkMSECXFmEQwTfcW3X8k30jnQuJjw5gs3qZ5UV/n9bXBgKo3aWkUO2MGKXAPeCKVxU3S670sJFX2UuGclCJiZGpWycEE9m61AkApGo2fZiQvN5hSQshlGEydTMPEC0pj7BCa2gJkWW4T4D4GIXuiHt617PlWi3XYjdjuhlwHWjbeyjBQpYdegQFd0LWJ0pjeTVYglw8yusqGRz0zFTmq74lkTDTGry8eW4IK8Sjle3B4hM1mi2G9RdN0COMEgNXAogmVsbSwjr2DlBI2mw02qzV2uxGHh2oYdKEA1hIsJQAuv7eThKG27bmpSG5SopUPaqu4zCiInKhSYa2UQxpnJFGPBVMZ+1Wbf17D7PVzhjjPt5RYInW7HvDs2QU+/fhTPPzqEbabLY+PPJGYEoZREpxmM+42JseDboSpPF8veQOT0Og6p71zYM1MTuY3MBhixHIc0GgHTLgMjhnMEWK0SCS67lHavYqUcQLg5ZghEVxKcMmjkTXYJM4dML5BAy47claLCYp6ojHgpj/Bcz6Bd0hC2ZIkOhELu+c5TaIFolStsTaLHfHFJVCK3C48JBAF/Isffx9PHp7jv/4f/i2eLtdAYjo5wZTNzZrMehkFsPmZVtt5BQLqV7355djsi1gEOeZe+ICMsBA3P3pzo30eYGhp3X6/hMooP3du2d4r9pAqBsKgivormM/HkzHP5y+Ji+VGxfjfiCnwbVf3SKWySK+nvCza/gBHJ7fgm5Y3qKaFa3xhiWJCqJK+reNwK4gQidP0IxHI2SKLGxPGYYfNaomUAuaLRc6ITzHyZlwxfAYs1DOFKIUt4mwkBXEWbethrXTXjFHa9ip4TLknwbDd5rp7bYWsoYkASdgjBgZW5ra1tupjIHLl3kkJtuxDOuqGS7M1LyGm0irduR6zfsZOs3jzs9kMSAnTyFVOwzAghICj4yMJZ7PGgQHLuocpALlRGzfas8Zlqt9aDst01GbHioEa0+UxBAQK0vKZSzIJL8rhevHra4MB9kyZWydBxBYGFCJGVecTjzzEmCU/c65JJUYEcDxp3A2lqYKVRAr1IEmopKxoVaKKJOcIgiazZ0aUkWzekCsvwzceIXKDI63fTzbBt33uua0rabPdYpxGqLgPquPueSpiDfaAAtWUaLXxVz8rBZdiyksfCc8fP2+i5f2bvwP7ORo3cwusczg+PsFVIIxpDeuYinfegUYt0WNjyTQ7l+tRArbrLXbbAavluvKymE2BJB1618BLvkXxtDnrFtIeV9uhWmsxjRO4SBUMAtpGqgUcSuUPZ59r2F4NmtY36/ta+qR2MUwR69UGD798hA9/8zGePXsmkqcETWAzYA9gnCZs1hsYa9H1HVOAgCTOgY2tUuQkYYumgZH2yBR5vsZouXmLHp0fJXYxYjXsuDaYWoB8eWaJJVhJwMtkDVrv0ZADTIQ3HCIKMcJYB+8DfGoQU8JkR/RtCwoBrk1whpCCZSlkmXmab5O7dQprYJ2ECqzLCZ9whiWPUbx3bSBFMiesc4jZO5G1mBIQGJx0zuE//0/+FB9/+Qj/r//411htI4fPpV9IAYEAi/5UjAH2U+LU49G1omxPFvwi9bXkM+qM57lZ1mU+ZjYEz79MvqMCNm+yDgUzkFQU6G29KDZfjE6SZ0F7dqI4HfzdbCSLjaj+Y+Qe8/XJ/fOfXwxQQJRLDPUmswcJA2s85senODw5kzJUsMStLTH0rLgqpJGRHBjOgo8cwpRNiUW+wABhHBDGQcbIoG073qxDRJy454WxzIAmcNVBmIKwt21mK1Mi1u8HRLnPZexkvQUZSSK2ImZkDbYhFCCg4YdchcS2NsQJ3vjM1rRNw3PdEcJ2ixCkw6ExkmdbwhzKNOg6broWzrC9ZNAttjkBm/UGSYSQnOVOjGpjrOSxWcvOGyDlkQpMUoIFV2UoMAEY0HSdK+EUVGtHPkdE8L7llJRUwh2/6/WPYAai9AwocsEp8aaugkKkXkUiMQQVLZhEJz4wxRhDRJwmrkRITGc7NcY6f60pGaqV8UgiusBsRRWzJmQ6WnsRkAAEI2VxIbCWPn/TwNiINrAEsS5uIsJ2GLg9r9buZ+Oi2fyFqtkfJ/WEqzfppvqg2Wc+agRPCrzEKORwx/5xNBwgVwyNGRFVXR7lc0ScjXpweICrMMG6ASZyvM+5Jqt95TK4ShN9tdlgtVz//1j772fLsuu+E/zsvY+55tnMLG/gCoYACAJiSyAhGomuiW5SlFpqtVrR0f1z/zszP4wiJmImpjt6OmJmKLXE6RaNaETRE4DgCFNAoXxVVla69941x2wzP6y19zn3JQgWJnTJRGW+d++5x+y9zHd913exWi5xTkQ1vBdWbQie3W6LMY7FQgKq1XopQ4/CJcfHJyoclaASB7zbbVVus6aqa2qtx5V7EzP5M2Ji7lqQIKD4ZpDMNSFWMkT6fuTyYsNrr7zBa6+9ztVmo5F28UUlM8vQ3laFc9brdal5iu663r9MBEI7v3VDC/QXNOuAQWuSOYiJSlqKxtB5z1XfyZpLDW2qCNERHDQVxGQZg9YfG4gNBAMRKUmg6FlVV1QxUPtA7ayUBULEBIF0m9rR1JUafW17shWmiiRrCHmfOIdxMswlj2DNw41Kp4cxIinnJgnvGEJ5f+YkRCXxmpAIvufGUcU//vuf45W3XuPLr7xB6CPBUJz0FLzOPfWh186oV4HoD8pvJcSe/S85RZy9j5IUXP+KOa8gO+WD2Qo5oJhlXuWVLa85NK+PJAaz92dUVMR2Ds9/QrnUTqbZ71TREamOTQBC1nTI56ffWapm6TCAzV+TBd5kmqbD2IqT85ss1mt8Et5V3dQSfOo9yLyrMCMX++BxOJK1GBPBSqdNdsa+6+m7TvZrCfB1bVlR8IxRdDbGUbk8xdHJeURrGQapi4dcVrNC2i12U+v+JonAmI/CDfBhUOb+pH+S93a+9ynZkr07xM+EIKJFci+1dKG3U9qPR/UhtqxF55z09YcoGgXDlIQFP5K9mZQ6xZct26Z0Kpgc2JUuOF2PUebtzIP5iTA+rUcDRQMl5iBdn1tlHU1VMWpC8V5eP0Qw4Mus9zxjGYxKrfqDLHVal/nmaAlBWY9SJgg6mEiMXYniYtL2Q8qDLL26pfQg0VcMArdmqdmhsDMnXfMYIilILdZZBzEydFnNTtqvOArSIR2T6CgklFgmpBRpCzpsfyvZf5rOZ57RZ4eVe6OZ3Q+5n9OinuA8Dr8DOCgDxNn3ximIyIxjo++/jkaEGLAY6qahbRfsd1ttq9R5BUMvxj7XA2fZ0W6/5+GDK05Pzlgsa4Z+5PLyqhhN7z0xSOC0PlrT9xJFez/S9R0xCP9gt98K78AtadqlOPkUCEFLDS5CCiQrSoYuWuqqAluVCDmzjgEIMihrv99z9859Xnn5Vd555x36rpfpaClibQ69VB1NgybvA5vtjq7rWK9XRcNciFETGlsCyVlbmHViNEVXQ7xDjGlS0bWU9eqDZ6wc+xBA5VDlLOpC+ozG4aLB2QSjOI4myRq0UnOQYSopMPrIWAXaSqeh1TXJe0KsSakp5QdBBSTTMQQVerJE3ScmyEwI623hSOTA2xgr9VF1RsZkVTQwWflRUQQSksHERDf0RDPwofc9zn/7yz/P1f/n/8v33r6Lz8JYHJbIslEzZuLUzV9JEw7KFMKZf5s5ukSaqSgyQwxmBy0+eELPcnmhdE5ox9IjWfccMDiIPq5nW49+Xw7Qy0uDxfn1T3FMhr5NOc+8nsrLHl6Zmf9jdsz5K9uhTLoSKWfLYrHm/PwWVd1KJlzXtO2C2O0Z+r6odYL02tuMHsQkCqbz70+pdPmEcWTY72Vkr7bwJSiCOxJnGtHY94EUJfGo6pq2bURiPMoz3cdOSH9KKhZxIx0vDtR1LRNFVbZ8HEchQCv5PBioXT2RG6/xA1LK7Yhio/q+F7QOQTydcyQrnjokSX6qqtU2dkXBvdfyniPo+fXDgCHSVBUxCfITlIuVfJIAStEXkRwWcrLX1sTg82TeqKTlaT9k+34woyGlg7ZGUmLoO9q25Wi9LMOg/qbXew8G/CQpDCiMqMpHwROCfOFElp1F2zHNnJQ6qCDBhYYAYihizmaDOj60PqnOXy+UqETBXG+HA8KH2IuJPBJCACswVvBjYauDLHS0PBF8JBnp7d5ud9NwItSIzzKb3NsvkV3SgADme13qz2L+C6oQZ3+fGbR55iKxxRQJlsAq6zsw3UcDZXHkwOuwJCHHCimBhXa5oNrUmjVLqaJpGrpuT/CxDPuQ85GuigcPLjm/saFqTstkSWHjWtZHK4nIVRozk3VMXdH3neg5YGnamqZtpN/YgShUmkJGldKH9O0nGyE53SRRhlQlZKhRgKEf2e06bt9+h7fefJu7dx+I8EeeoqaBZBkOk4OlBKMPbDZb9vs9i0VL0zblGaSUh2kXay4PNB3OcGiahqHvS8spCFplrdWKX1JdAksyFg90PhT3kYCmqomMhD5QOQl8xFjJxLY6gQ2CVgkaIZ/13hNsVQLzFKUOap0hpEhlLc7IkKRkwYeIjaiYlgSGKBQcjASJGO1/TmCsZI+OaT9d1xIqrUtJjpmSp9JgKlWRz37qY7zx1rv8L7/9e7xzuZEZJNlAW0hR68splFtcpnrO7pHmSQc/u/7KbYP5l3MEcXrlX5ryn5yNpfkehGt1+MT3JRHOj3w9YJidGWmWGM1swPyzhx0Fs/OZ/S4HJ9lWTsMl5N+lJGr0e+aIRnm7OqOUMNZxfHqD5Xot5FMj2augs07ssJ1Isk6nZkYjCGIm1blaRhOHQUisVSsTB/fdHmstR8fHOvDHl1JJHhMu0a5imjFq2Uqcfoy6lgpRMJX1nxUEs9y5cAUiXd9JB5ryWpwGrEHVEUXIyOn8kqiTbbMEcZZBbiX5C/JMsxpoRi5ym29GHPLPDfLZQZ21LWVUJ2VvpO0xpST8BybtC+eEGSRDkTzGyn1N2mWUuyGyfe+9Z7lY0jSNHlO+r3JTiXDoB7z3hRD9n16B0I8aseYbYwFhgcbgyeOJQ3bIurDnzgpy1mSIfhqwkCG7HEnnmQQGDSR8HqU6vU+YpRKJiUGZTG2JuTMqURaJGNM8US+lRNKFnqJAQVQiELHb7cTw5kgsxWIYbHY2Sl7MAULpZdfrfcQQpFSiznyu+XoUTZ2IgzOEINubnDFkcZIciEzCLErwzJ+bGbMMxVeNCBH1XaeOEqqqxtpBmf+Hxspi2Wy33H/wkKPjlbCDq4qgMrRZOtdVQRxr0jkCMeFqERuRCN4diITk2plSzHDka4vY6ER9LAZiMBrgWMYh8uDeBS+/8hr37j6g76Ud8IUXPkgMke9857tab9QyjWqi5yBsHAXV2O87losFi8USUlYcnK2fTDI04hzzvcibTbodahUjsaCtr8aIUqF0REh9cz+MhGFgVVdArW2UgdjIAJZQWSIVCalz+mhwUXTYRdwJpklohmhlAqScniU4T6KlGrUtyVlsVYlgF4h2vJnmagjSoeW3lEjOytAZddYYGaMqUb0Blw7vjTop2U8JwoTgDSGQomfRNvzSz/wEb19e8lt/8pfc23aEBFZrtiLhMAWrOWOcr/nvl8XlD6RrP7+eo89+K/tr5tyzTclrpPSzzz9S/j7/Xd6nE2pmrn9G92/G7OfBwwHzP/8sJzB63AlVNI8EFtm2zE9wSiYotnEWx88/XsKJlAxN1XJ+fkvai8cRaZc1+NKTPuEr+bxyHb7U3PSbk96nGCLdds9mIxNeF8sVRrPsHKhYI8Rgq8e0zlFV4lSdM9KVZrM4lyAY1jjZj1r6sGYqHaYk/IWEkO0SEeHCOoX+A5a8P82sIyuScIw6lTBPW21UXtiH3BIZyneBBCI+BBxQVa6sg4wwVFVV7DRK3s2JktPBaeoQCu8tJSEAhkykJndZqIS/Ir4yF8FRWytkYSPCR1HJlE7l2Mv1hcjm6qqUY9/L64cjEKqUpCwRcYRj3xd5yAyfy9SlTD4x5eeiwS8s55Kx62LJWci8Da8sN5VAtkzKVIWoGON8f5TPZrlk7z1DP9DmFo+QlAeQldWmawt+xNiW0Xt2+z3eh5L9TQGGEca4UUeckYjZu8r9MuXy9NwOiYgcHvlRCEgdfq4HTQGFHCvFJCScWXByGESk2TmVvIJ20YqgjQ8YZJLfYrFgu91OdXM1yClE+thz//4Dbt485+zshNVyyTZuqSqHwQrL3toybtgY2Rht3eo8ATNnks4MfdJNn6l3+nMjLajRJIbB0/eeu3fu8/rrb/HwwSUhRk5PT/jQCx/imaef5NOf+RR/+O//iO9+96UCSUMqRKQQE0M/cHF5Sdf1rNdrlqulEH5idnZyv8ShZeuljq6UqzLqJOhA32tJwkBEZmDUTU1KSDfKfi8QXYp0lSMdHeEWFusDJg3az6zdBFH2RO4+kHkdlspZYpY4RTM4dXDGGFJTUycIQWS6owZZQVG2kAT9sQlMypKnE7M9ReEUiMFNpRVOSnCuoAhZdU7avCa9CxM047QylIYIyXpunS75Z5//Oe5fXPLHX/0mF9teB09J8G5SvpeyKtNBsjDt45zF52AhZ9yP7rrsLI261vxM1T7YQzZ/+ezBXoGDTJ0ps8+hwLROr7v2vM0Oz78caxY8JDKHYr4zZ+/l0c+S9+Nf/5X5XyWxuH4d8nfDcn3M0fEZzhrGfsQbHUvsNUu2Blc70GFCrspiQELoyzZq6BPOiQR2SpH9dkO320mAbCxVVTMMAWdHEd+xSOss0o5bVZXEF3HaqyL+o6O+XY13cjFzAh+YYu9IAlwF1eN3TtofQ8j99VrqSpJ9u7qibVeAzCsAIaqXseDOYVMiz9Yo83AUPZPJgvOnoPtNOQhj4WjJvm5bKcOmFBV1ifR+JJNiRw2Aoo/q3KN2YM3WjZYhAFIIdL2MhF4sRDE3t+B7RQlsVREHFe8bODjeD3q9d2Rg9JDC5IxI2ChDirLogUFqncw3l15QFnLwftQ6cx78cxjxl/bCmCHxHP3oxtZa1hRM6EAcOw3kyFs118tF1jHzFMYyHCmliG3k4VooEqqD9wyjL4INKWcjYoEP2wzJmWQqkOsc6iv3K86uM0HSGQ6UuzTBsrl7IX931O9QXyrSweXbUUM+a+GbBRMFnZnxLRaLhvX6CD88IJpcs2tompGh7wWtR6XM9ZluNzvu33vI8fER6/USV9kSvEVtr5kPJoopFbg+a0GkFJHhMVGjfFOCu3x6xhhikCzl4uGOO3fe5e2373B1eUVVNVRVxac/9Sk+/JEXeN/738d3v/Mdzs5u8Eu/9Evcvv0OL774Ihm6TUh20PcDlxcXDOPIarVkuVzovchBqLTEdl0vUy41y846/5WrqNuGpqlKv6+rKoEVR4H1iQkfItvtnnEYSn0zo84hJh5udtTJ0iwaAoFR+QMkSLWTltzKUkcnmbOx+GDk2FazBqOM8CDjTI21NCEy+IB1eRxr0pbbgEniyGMKwqDOmXCiGO2yBMmGPhTxkux/cwbi4zQvPZei5XByPjElIVSawGPHDf/o5z7Hw8srvvbd19n23aR9YPKan+fcGTXLEHXOknW/PeJoU/nPNNMgF3pyFC6cA6OU+JxAmyTrer7u8isb/5wE58z0r0cgrjv/KbC4zhkgTY46Hfxi+tkjwcEsEMh8lIlmlMMVSsBw8AX5O/XHxjlWx6e0q7US7jymbtShy+cqVds0lSYieQ9rN0EKamMiJAJ1bUkxMHR7hr7Dh8S6aSSISJF93+HqispoKSKJDHGeSmmqipjRWjKqasB4GYSnjjbbkvz3sR+Io2foZd+mGCC6nONJh4J11NoumUfYZxlk8UnCC7PWFhRzv98XG+pHgdvrpqXXUoTofITSbWF0gmG+5Qnou16sukmFMIjRYMOnGYIkzjqkyKJt8X6UbistXUT1hSZ3PJBtpCRMdS2iclnPJQaZDcGiInRdacN8L6/3jgx4nz17EQIiRSWTaC+misKUSFtSAA3QUukBzTUQYw02E3cspOi1xqJ9zJaptTBNCz47SZmEKIFI8ZRFlMYSSKUsUNV1GTVbhlEAsdaRskywoR+D9IbqNeRgIF/zlKBIJpVrcbHsugz1Z55E3mhTC+A8k8nZcr5vstFSToIeyV5Iub96HpDkZzILVPTfGKROm0TsY71ecna85g0L775zT44XIk3dMA4SrFWaZeZgxqtEcdf1LJZHLIwseO8DtnLUVaV8iEn4J8RAY2sZzGGEHa+Edu1c0J8bC8kRk2EcEvfv3+OtN9/m3r17gGW1WvP4E4/zoz/6o+z3HZ/73E/iqoob5zfY7vb8/u/9AR//+I+wWq5o6oZhHPFBRnzu9nuuLi+JMbBeH7FcLovBzByYvh/Z73b0/VBqh4tlCyQ2mx277Y66rlkfrVivV8UYNU1D3/SkYUKhomZYpXRTNlCi7wfuhUssJ5wtW4wP+owDKVVU1mKSQI0WI9yKaEjJ6znL88u7240VVVMRonADfIjUdRL9jTFqOSvikqXKTGi95+RMR/eXy5LF1pQSQ1lzQdd/LkGAziFI2NpArMjZuIuaFoQAyfOJDzzLP/3Fv0fyv89XvvcK23FQOY0cScz3k24HdXR2luLmDGielE3IlylwduHyTB892GslqM/zVcuXlrdOWXQ2JQXONyVjPLCNj8YBs/PTY2QU0mSHXeKv2Rq5Hghkm/ToMSf0YG5L5icjwaQpgbEEf7VtOFof49oWUmL0I1XdCoQ/O2IcZV/Pu7I0WxOnpM8m/27cd2yvZMJr1SxoFwtysBdGgcCNIonOVSVBtKpeWFlHNKm03Hk/tavn65L2wrpoA3g/su97hm5PLgfPbaQfPaaBlOYzDIT0Z4q4kBIfY6TrOhGfcw7vA30vXRGL42PptBgHQkpEPyWZpAm1IElJO/jMJZBnZ60lmVTaC0OQLoymqYX46Ae9Hinv1Y2RgURZfC8kwhj0OScWbTsjMENlBWEJhEJmNq6ialrpSvhPPcI4BX/Yt5rkQUm7YVl7ek/myMDh8pZav9Q26qomWidDc3IYq8hA0uxhXjcvZHd1kDELFKUwZfd5Y+jPxEiPDGPP4JXsGKWOk1KibitldBoRb8AwDANd1ynRRfUTilNNmllkA0F5SDmLyHdJHPvhv8v9AUhmhg4cOn3J6M3BAi9mS4MrcTjp4B7N/z3ddMm0Klfx+K1zPvvZv8XHPvZhXn7pFf7P/6d/weWVMN2xhuVqydXVlcDUzLL6GNnu9lxeXnF2dsxisZA68TDgdIphnuMgamCVTDo0iapW/QCF3Z1V8RIsKVmCh/2+4/bbd3jzzbe52myw1rJaLfnEJz7JRz/6MS4vL/nYxz7G6ekp1gqUOAw9N8/P6PYdX/3qV0gp8qEXXuBb3/o2fbdnv++4uLjEWDg+OpI6ZrmBcr/7buDqasPQ97SLBSenx9y8eYMnn3yCk+Nj7t69x1/+5Zfo+h7nXLluyBLWLX4IWFXnNIhU8SzXLYYsJth5z52LC4Zxwc31ioWRTAOXMM4hclDCqWlUHMWEPKND+u+NFWPs/EgdGvpxpKpFJjYZCCkK6SqBq2QUtKsrsoiDkB01U3YySx2FSjF5noG0cpnMV9BST24rJCat+ys70eYOmfwjR7JChPzMR55n9H+X7W9s+Porb+HV41uTCLNlWpLaWUAw7QuKQT98mYO/m2JJ7LX3T04/l4XmP2P2LvnLNWi1OL/pnL7va5aoHxx1ZstIExKhZoU0/2yaXL287bBdWOC0R9/7fb5S/5qv09E0K05OzrCVg1FGAzeV7N88SwOfe+kj7WJRxoOnGPEkXQ+iR2IVQRr7TlCBsadqGrmrMWuoCCRvkFq7BSkFaHnKKFmRQlZNRXPfIGTYqujABMZBWtTJ6BeJpq4ZjCDGaNacEOl747IUciAGS3SJuhaegB96fMi4kmrjpITXAV61jkYe/VjQsnEYSDFI4KJTXKP3WgbXAUxGiJJ5NonRByKsf0pC4qwlWinZJh9BJ/JquIyztty7/OhHP5BS9qWenqmjTmyNw9UikFQQ5ffw+iEIhJqdGF2LRiK7UodzWVL4UM86RjA2TBmvOitr0EEsolsfUx7tOYk6TMNNdEkneWAJcYSiAhXLBjHWQJQpaWUCVCYaeq8CEIoEaCQptVE0alPSR/AqQxzLgrvOZdALLJs8X2/+7yOO/RpWM5FZ8k/MI5/NEp15ZPEj350Os4IyFU9/N7ViyoI8OV7x9//eT/PpT3+CqnKcHB3ziU98lD/987+Q7wkCf69WSzabLTZKvVCoYoZu33Hv3n0ee+ycdnEqmvhEqRsaiLHCOmibmoXyElwlI0ohGycxSik6xiHy8OED3nzzNq+//ga7rbCQF4uW5z74Pj7ywof4zN/6DL/z734XEjz55JNYa/nCF/6Sj3/8E7z22mu8/fZbWCwf+OCH6PqRP/nTP+Nqs2VzuWGz2VJVlvXxEe2incnfiiX148h2u2UcR5q24fTsmKOjNXXt2G03+HHgarMpXkqvQjtm5F7nAUKyP+w0y7yQTU1xO9kH7Xxg3GzpRs9Tpye0WnpI0eNTpA6W6IS5XTmDTRar68UmIfz5GOiGATfUMu8hgcIGxEjp1HHNAle3pV0wxkny2TiHrWbKm4oYJAwmKT8HM6U4s7VuNJiQypoYdPm7fD6mKMqJJJYLx0/82EfZdh0P/+Vv8dq9CylPqZxsLrXlvW4wxDyzoDyumTPP6//6K2lpKiNxJStOhb1uZu+dImuYO1y9wNn+mp+H/lVtYUrTuUwIwqNbNX/Q6DqYBylZ22Q6OfmivF+u2528Dmd36NEYJEdWRrJfgyEmQ71e0xwdYayjG/f4EARqrirBV5LYEULAGkGrqtzKGoIOqQsyK6SS2SE2aStcDLpMbCHUiZ0zhQhOFvBJovVhjMHUdSmrRUWOnbWYJMT1FK9p0Cgnres6fN8TvJQpiZHoA2Mvkr51UxXBoaauGXuRKnZK/ovI/vXey9hlDdyD9xyt1/R9j8Xo5EWRR9/2ve77urQr5tkqPgsMVZLghhiobUXTNFNZO1FaHUfVNWiaRsoMhuIDy4AqY6mbhjB67aAw7Lu9dnzAOEo7MXlPG2krjkGmJIYYdHDf3/x6762Faap/Fja9sk9TmqKP7OCm7DQq1JkmUmFKhOhFWEKJgPmzUW9s0NpkWelaTpC6VY7y5jV3ISbKbGwxVlXTYJwrQUOGnQSW9eTeW6ftWJmkMQz9JDYUQ3HG1zdlhrqkbWdKa5KZkQFTLD+f44JT2UB7nKaDlh7WYnznhmPelJ0mA51RiJTmXATNxJG5Cx/60Pv5kR95gaqWCHexbPnF//zn+crX/ortdiMZpfc0TUtdD4zDAAFpy7TgfeTy4or79y84OT1SDW1BZixGZUMrmraWCYO5zifeBJKMmd7vBh48eMjLL7/KnTt32e/3VFXN+9/3Pj74oQ+ROQU/+qOf4vT0jMpV/ORP/iTGGF577TW+/vW/4qWXvsdjjz3GZz7zGYKP/N7v/wEvffd77Pc9lxdX7PY7bOVYnxyJzLDyGERTXK5zt98zDNJTfXS0pmlbff4DfT8w9D0PHlww9B2usqqymDQbEWNijKFuaoZxkPp8NDoMRQLf/B4HOukQooEhJR72HeO9yMlyyflqyaqyMARwkVQ5SCMhWpUX1aEkMYiioY8MZqQZRlX8lAA4GRh17TZVJTMJ6hqjo49t5XBNU1rJrKtKsJ3Jl9YY0qwbKSFGqcyZ1+AgGYNxDqNkrZi8ZCxa76yqSgbGpMiyrfncp36Uu3c3/Prv/SG3H14QsMJ1ueY9SxmHHAdMZbSDZD6/pxT+BbHDzCl+SYOENE/7JzSzBDjX9+HsfQc/m/5q5lk9zPb17Lizc89Hm3cWyDZP5Xjz7xQQcmrxK18zCxzK9xzAC9Pnku4/myQDXRwdUy2WGFMJL8pI90sCwijOsmiYzJIVaw3RJ0F9DIIKxQDJEcaRse8Zh0GlgSuSsG8xzipRWdd+jBijCpi6ToLulXEcCZ3wA6I1JdmMJpVhQ/n93iu/yasPyX5IfVFVOZqmncMjkuj5kaGf5JWJahM0CLAzwSPnhF+wXCxk3HDfQxSYvl0sBEEdRUQvJwa5hRCgbVsNbkVSeb/fi/7JzNcEHxh0PLPV8fByvkanE2owZ2U2Qp6EKMqvlWg5ZKTNCrrTD8JtqFyF0ZkJ7+X13ssEyWtGJEYgM85jjNqDekgUy335UheGmASeFzEFcSx935O1+Y22jOQFE4MEBEazfK3wMS87xBRIaaadbStpTdP+07ppaZqGGFORL/Y+CHOziPYoGcpqPTYluv1QejhRdKPwJKYbQh6GNM/853X/eX1P4gB1jPNsQoWOMFK3J0fmSdCDbDgm1EGPmMTV2DSxWbPxiWoAcwSeDKxXKz78oQ+yWi7LHTQGPv7xj/Hxj3+UL/zlF7Gmwgchr6zXR2zSlYhCGVPqV9vtjjt37nF+44ybN0+oKqtzyKFpqqLfb1XXIUXwqjC92Wx5683bvPzyKzx8+JDgA6v1kh/5kY8SQuAf/aP/ihs3bnJ5ccG//8M/ZLffk+7e47Of/Sxd1/OFL/wld+/e5YMf+ACf/sxnOD4+4T/8hz/iz/78L/A+SMfAw4fs93tsVbFer6lcXTIezITI5DnlIUSWK9EbqJyhrivW6xXDMPL222+xudoRSSwaeU+pleozMZaiZR5D1PUqCEsKicSk/mWZIUVWVACv/Mj+yrMbOh4/PuF00YiORm47igbn8yCtqvQMxxhh9IzjoAGZQO5j8EWxzdY1tm4wrlIikaFeLMQQSTGTqA4sjzueEwONBv3WuUlrIHvj2XWgAU8eH25ywGDlvZWpwUeOF45f+fs/yabf8m/+4E+5v+1muiXzBELDxzS5xut7T84lxwYzdIyU/f/sfHW9l//Ne3UeND8a7JeIYfa1OT+9jvTBRGKcn28WEcpnYPR7S54zxTHzS5sColSOAjmeMfnvCZn2WD5dAIGkyYeg7ooKmJqT03OaxQITTGl/Ns6WJAzNLEHmhgx9XxCU3LosvWRgUiT5QBgGEf7xI5WhEIlzjz2IbfNoX3wIRULeACnEolQ4joNcv3wBLnMKnJBTY0qFhO5cRTf0hHGQa9fx3FXTant6wFlpqxv0uLaqqbXVLs9FyT6orivqqsH3A0T5t7PSQZBCwA8DbdtgjdGyiUroJ7GzdVPTtq0ku044ccMwYILHqavNKFxGDPPkxsWyJqONKc3bGxWddVJSFkn3iqp11FVdWhfzgD6rom3JWFkb1pVSx9/0+uFaC8u/rEJbcerzz/+TAHJUGUkmE1BQASH5XQhxiqKMVFpjEtZyjEkFdpJmL46IZPK5JaeUFOJULsja98vlgqoWRbZxGKQ84B1h9EQ/kpTASD7llLTVUF59PzAOYxHHyIslIyAF+Zgbqmx8tEPC6LUA4ugVCTCzzV6CBmRjp1mb5OT89feFUDi1O2XJzJwhZQMxn3AorWiJ46MVTz35+MG0rpQSq9WSn/+Fn+crX/0afTdIHS0MGONYr4/Ybnb0Q18WbUqRu3fvc+POGaenK0UAKiWhiSGZng303cjDB3veeP1NXnn1NS4fXpLQWpw1nJ6c8w9+7de4f+8et27dpOsGzs7P+fCHP8ydO3f44he/wHq9JqXEs88+zy/+4i/Sti1/+Rdf4I/+6I/ZbLeAoesHtldXbDYbkUVeLiWCBoE4kXWZzX8mkhorLUwAp6cnfPRjH+FHP/mjXF5c8X/5F/+iECTbttVOAl0A2emQo/VqmjBmLevlglW7YLvb0Q8DqAEJIWKMlJ9K6dfAZdfTD/fYHx9xY71iiaXW9tGon7XOsVwvJwjYazuYEje9/t0ZcK7G1TVVVZPLaot2oRmG7ClZw7GoD+b2qoMuENUSIYJxisDpPXTW6hRFhYarCmyeWplwVSPZYwRPxLWWG3XFP/jZn+bBxY7f+9JXuNhutbUxIwq6H9Wx5Qd2Pbs+yNI1PikOUj5wsC+LPgCRIilsFI6fA+/6QB7NpmbOPUcbUhvT68+OPodLU9dGKu9H7eYjBy+v4swLwlA+Wkoq0ylN+Mf8x9M9nNAGMLSLJUcnJ1R1gx97SJG6XUgGmw+RMonPqlPyWK/DiUbVhSl9/oIYDOPA5upKIPK61qFf9cG5F/g/VtL7bicZeaNZ9Wq1KuRA0fCQnzfKQUhRyX+IM41GnPEwDhLExiTD17yw812sRYRLS9h5TVgtAeUR7s5ZnBGey26/w8fAsllhrGUcR+ULKFdGnW7X9+T5HVHl9WUioTjpRke+B++VoxNlrgmimur1eeY298Y0JQjLJb5K2yQFAbD0fUcWrYshMTIWfxCCjI/OXRFd30vZYvCzHfuDX+85GMjZrJhBL4taywQhajsDRiPMWb2cpBmxJaU8bCQWIxRzzdFIxB5zu5pmx2UuPZmdLWmLNZaUFI7XTVy3DUdHa27dvElK8O6dd9ltthwfHeOsDIGIOshClNVsCVCKWl0SBacQJ9SjyADPFhS6OKfbM6/RT2pV8r4paMhSztm4ZYgsZhXD+S3Xfx+wZGc/n/1AH8/snufvi5HkIqvVkvXR6pFlYYzhEz/yEZ5/5ileeukVkcpMogRW1w3HR8fEqyh1M2elfW6z4fbtd3jssRvcunWGq6T1UwyIwfvEfjdw5537vPzyq7z91m26rlcxEEtTS4bbtg2r9ZK6qnjyySf5zne+w+npKS++eIe6rnnxxRd58okn+fBHXuAD7/8gw+j5ype/wp/92Z9zcXEJSaaMDePI1dUVV5dXGCNGr65FWTAHTnNkxRht5wmBytWKMEU+8pEP81N/9+9y5867/PGf/Anb3Z6EZgx1rdmO8mJm2wIodfgYxbg8/fjj/PP/5p/QLlu+/rWv89J3X+aNN97k4cMLumEgaDnH5CE1jaPzgXeurtjuO26uVxwvFxw5BypqlBKYkCRANbKLwhhEO0NbGxOiYGa0RBCiyBi3i1pIY2rA8lpxbpI7jcyCgAQphqKXYSuDSe7AucQYJ5TQJOk0UGcRdfJhykTDyhJNoomG52+d8Y9/8Wd5++47fO3l1/ERusEDuX05cj3on1CDXDqYI8DaOpjk/IUzcw32n68Bc0iqyk57eqCRMjO9BOfTu8uPU7Zt00dzXFJ+kN9c7MajkcC8BfH6b+el0uvb3nyfnwlKmb/XTFk9sFgdcXx8hnMVfZQgOgfCog0z2bmCKqZYxHBAgn3JPKGuampruOz37LYbgbGNo8y3kKhGyreNU6TXFHtVZQXAmEp7H4j9FcqNzD0wzpa6t7NZflhQpco5BrT8gDj6qqkheOEslCROW55L+VWOZTHlgeVZNHXT6HTEaSLifrcrGgbOimLo1WarYnyT/D0I2RBtvstcuxBEPjknwFkcDvV1fb8vWb2IuGkSHaNMVTVa2jPa3qnPLAYPWuaI40hKMv3RVXUJXMZhUkr9Qa/3HgyQF54+YB3ukMkO0aRST51gcqYdgkT/JAQWyrBcShRml9FMhbzppbbrxxEfPYap1pLDkhRksS0WC4yB8/NTTk5O6fbSJjIOA34Y8E1NCF7mXccIUcUjzJTt5U3Za3dDmgUKEzIyWYh8nTmQmbdVTjXBKUvPD+d6TzNJAqJ4LcS/bgTz5w8M4yywyMHG3ELEGGmczCRwtlL7NcMmE7Q28r6nHue1l19hiGBNRUii1d22LScnx1xeyqxto+S1B/cvePPNd1iv1xwdSxtR9LDd7nnzjbd5+eXXuHvvPn4cZexm2xYOQaWw19HRmk//2Kc4OzvjxW9/m29885ucn59jjOH559/H5z//eeq65q033+Jf/+vf4MUXv8N+3wNG+4NlLOh2u6XrOhKwXK5o24XadGW6F+QkB00y3VDuV2AcBzabxJe//DVee/VNvv5XX+fBgwcYY7XNcCFs/e+T0uUszqDKZ6bSYBCeePJxPvvTn+MXPv+LXNx/wOuvvsq3vvEtvva1r/O9773C3bv32O96TFXhU6ALe2IKbHpPN3QsdgsePzridLmgxlBHoyUuEQqSnv5RWim9Z/CeBkNqBHXxMTLudjR1jTELkgZPeQ0664qkKgjeZ4HoJwNqtYsghVzXjoocTLoSIB0QGbnKXBoJlj3ONjgElwkmYlrHh9/3JP/kF36Gq9/4bV59+122Kcj45WwKIiXzLe7WTHtk/iSKxFB2juU5pQkxmD07Y7KjOyzvzYWAyAHCIx5X/m3yX7l+7MlO5vKgmb35Ggvh0VcJPq4nBtMvS8ngMF659t5SDNE7aDk+PmO5XIPJ+8ezcE5lyA/tjGiIBFUNzbyEVDgjJkk5IPiB3X7D6AecldZBMiJbO3GU2qVgZuXlFAJBA8oYAmkcGYY8JVbPxRpSUjldI0j00A90260ODrKiXYCV8chaomyamiYKXyUGT0oy+teZClfVjCom17aNziWJZR9khx20W4AknQ/90NM2LZW1jD6wXi25urwkJenSylm9zLMZBSHM5RK10cF7nLOsVgv2+32ZJ+BU2TAET11VWOdo2kbQEQTx67q+ECKFIKhiRFoqGINKPmscW9sKU1kMFcn8p55NUBxczgApkX9eKGIYr6vgyUNMmbxXSISmGGbJtIwypil1TCnZpylqNaiBMTkmKc5RYBnZ6LvNlqurDdvNlpwDxOiVsSrfX/Sj5UI0w5EIawgDPoxi0A6uJZWtNW3NSX0qOwaglAsmImHZqmQokdnmK9yAvOGvGbBcailISA4icmaSDYBG80ntoCERdMhHrgOXTEph0jR2fPi5J/jaquXORad1YsPgoR8G2qbm6PiY3daI6l5KbDZbvvfSK+z3PY8/dguAi8sr3nrzbS4uL4iq6900jWrrG3JPL+qI1qsjXnjhIxgDTz71FI89/gRHR2tiTNx++x1+53d+l5e++z3eeeeOXJsxDMOoQZ2MPu32nQinGMNyKZrd5HtrZXaGGE3xMlImnoQ4hNUrzvR733uJ74TvqGOwuEqkm1vt151SwFT2w9z5SOeEyFo/vHjIH/3xn/LJT/8Y67Njbjz5ODcfv8WnfvzH+Afdr3Hv7Tt871vf4Wtf/RbffPFFvvfaK1yRZIonMh5203X048D9bcPRYsHxsiUNlratMckSnQRmu27P0TjgBkeKQjAiQr/bS/azWBBDpO8HpPVJ+7p1NkWRHVSpcSGJ5UBA2gattVBXoj1hDckqsmFUpdCIfKpNCGO8ShANUeU6ZTCV0UKNYVFZPvfjP8qDTcf/8n/8LhfvvItJXneBaITkEdlzlr4pGW/KW7dkzfMs+gf53KwwKbB7LH/XTXmQ2Rf1T6b9pbtYdtd1p607uUgFpxm8f0BinH3m4Dtm5zbf/1zDOSYQ8vrRKB0gGLJ4jXWGWifmxdGLs45RdVxMsVVZPyJztqqqKYiYyWla3h/G0o+evhsw2vZaVxV1VeNcpXtMS6a5M8oakQgud1pr5N4Le99mBcFA5Sr9fLZVhk6nycYQqYxVsq+w/QFJPhSqz9l93Taio2FyZ0/EVZOqH4CxRhOESEiCtiWbtKslUjcNOFNsjbWWk+NTtvt9UcItImMadGMNbd0WfkSMOutAH5ozlkgs555LCtJSmUQ/wBr6fsAC3d6zWLS0y5Zx1DLnfDmkREhC6hQ/bfBIa/d7ef3/xRmI6rwpBjES9ArzXAGgLIaU4aboRRlNlwIaCADEmOdnp6KulMlEc6JPdmACFUpLi7QSyoLdXW3Zb/c8vLhg6HvWR0eqhJUUGo4Yokac01YqpJckbPKoY3oPMvNy2qmozokviAcIAeQyxzRmudy7WWmhXFLOJBT/TNkIFYOSHvlj9F4UdCUHZwph56ls8p0iYSnjmw+/NwGx63ji5IgXnn2a+5uXGZPMJHBWIvhx9FgnHALnHLvdjhgTV1dbrr79Ei9992XV4texm1Y2o1X9BqP9uddRjKurDb/3e3/A+973PIvFgrv37nHnzh3eevMtri437HZ7gb99nublpfMkewErht1aS9O2LJYyDTElmXhgsgOPUoOeWlVTWZdRdTLKlDa9/9ZWLJfrIlJ0gMZcC9Jy9pdlmEPw7LqeL3/l63zjy1/hb3/u7yiTS4zIcrXkuQ++j2ff/xyf+/mf4eL+Q9589XW+/pWv8YUvfInvfe8VrrZbdvuOkcjl2HM1DtzbObqzE5rlklUtTGifZEpaPw6Y3hKjo21qul2HIbJarwk+sA/77L6onKN202jZGEbNdlPR23DWEkCMSVWRnGZ5VaXcAYOtrAjJWCs2oSzZpIp2YH2Y7IGz0nGhgfh61fILn/vbvHux5df/3R9w9+FDEk7GK6vZRlvMHsnwVbBoSgzmDnvmhK/v3+uvMs3v2ns0yMsz7R/1xkx7D4rzZRa0zJ3n9KbZeR44/OsHL2+iIBGpXO4jx5ic9MRV0GxB32dVa8IUu5RHs5vMy0oyepeZDY8x4mZOOxPfQFpzu92eOEprnrOiLipkQJNNNXm2hhwvPz9tO0cTSg36yjllCD8ithgpqSbQ4H3Ee1c0aXJrXl036hSlwwAEsTs9O+XqSqat1k1dBMfyy4fA6GdidCZRGUPbSKlhHEcRE0qJum7w40jV1Ji+E1GupKRhHzBJtAKsk0mxkgDJeQtpeSqvZxSGKCW73FaZDLTLFls59t2eMI6KPkhybJ2hMY2UcBKESkjxtpI20nEcpUV+9Nh0bW39Na/3Hgwwc8LomiIV0tv3h79MyWZDCkr0CyXDzk5efaDsmZiPOTlCPQElUzghYliBo/LmSynhR0+/67i4uGC/39MuWtanR1RNrQTBiLQ6ykAcovARrBo/WYzS/5rPLyMTzBxxPq+DGQJm2ui5riybUqHIOPud1q1KomkokFSByFIOluaO61qmMOcy5J/rZ5I6QHlvYHO14epqw82bZ3lrF+TAEFiZxAtPP8m3XnmTe/s91joqJ7LAecZ55RztYoW1FV3XAZT+YCHGGSHKaGAQI6LvH6bMJwdlKUX2Xc+DL36JL33pP+rMcF8ylDK9LGWtbs3i0iyo8OKo2sWC9Wo9LSQEibHZkehdiImyrpyrcFYmK2KYtZ7JrIXlasVqtSb3n+dHUpyUMQfdHihi5ZxAd8GPvPXOXX73d3+fj77wQU7PTyUgsFUxqMbILINbTz3Ozace55M//ml+5R/+Km+++hp/9dWv8cUvf5lvfvclNpdbGeEaI7cvN7Ttgmdv3KDS9TmOA8Ogeuc0AkF2HcdHa2II7Ha7g51sjaFVHgQIU9oY4UbIeGIDytURvy2E4Xz/jP6JIZGifK+tnGiv22nPmhy0eeHoWEzpFw9J0JnTo5Zf/bnPce/BfX7vz7/Evc2OZII+i+8Dredtlp2t7pOcHMSDzHhad9/vVTLydPBDcsafs62MPszfl23O5NBN+WyxFbrBzbXPFqc++/x1FFA+d41s+H1tepp+ZbMS43QtOUGx1lFVMtzG2ukccwaf8k0sCKVkurUVcCj4ma0xwgkZxj3bq0v6YSctokZKxz54bBhxWJ1BIYic1T54CQBUPldJoyFn1jmBQGxlCJ5+EHZ9P3R0XaeO2TPGQbVldGCartmgm7VdtCREeGi73wpPqZZ26G4YMQQdoFZRURGrSWZ4/iwEMZFEV4SHDLt9V0oLVVXRdz3OJGqdFCjia9NQpbmvcJW0+Q5xUKEvWKxXLBcL7t+7V5CORGKxbKkqSxgFjSmBppG23DyYzVoZs2xV7j0TpC06ZPA9vH44AqFmTzk2zNS+77eQ89+n+vTEQrU2S6Eqoz7kqWwUx5kNsBwHXN1wdHTE0XpdVJ2szS0sidB7dtsd2+2OYfQ0i5azm+fcuHGO1R75SWdADGLOUmRohrSQhBTxY5ABNCE7dUrQM28xnD/gR/Z73tAlqJgyiexUZn6KiNRMJ36BGKmCOJSgoNzO8t783SlIVJ1bhtCNR4hcXVzw9ttv8fxzTxURIL0KjEsQBm6tljx76yYPX3uDaCzJGtEN7z0mJZW7FNGa9XrNMI4aPA0lQs9EHXNgAScrJpeWg6EJZo9wMCAp9+lPwd7keA15hKkoAtZ1XbgqWYQqRSUTVe5ghGchpmJomlauIYwkBNGo6prVes2ibSX8UKNVnp3+n2jbH0KnQrkXHQyMYd93fPmvvsZXv/BFfuonfhzTWqgakm2mRFO0mTFG2oxOHjvj9NYZH/uxT/Bf/KNf5a3b7/C9F7/Ly9/5Lq+8+jpvvPk2frdn23WcrFoMBq+wb+Ussa4Ebm0aRu/Z7jusMzKqO8l3ZN0FHyLOVVSLBcvFQuHEVGDWPDUxB67GTi2DWYnQZOeQUjGARrNpEY6JpdU1jB6rfc85cU0p8sRJwz/5pZ/latvxx1/+Gpe7rQx/yjdptowK4bLso7yWs55DRhJ/QDZUEKLsl9Ps/ebgPZM9y4WB6bPzXSRBEpOTn/02xxPlWHb6RZkZQgEBDq7v0ZeexUGgkMp/8lmSzyHpDAabB4rlsb2hkHitteSeJmNE2roI6ui1zZOz/DM/9Ow2F0QvCnnOVlgrPfDBS3trfm/OfqNJ1K4iWVNIgIvlUhUQrZLKI01d4wy6r6NOVBTRuKau6IYBP/SKFohMcUoivWsrqblPw70M0QfOzs7AGC4vLgDRv0hBCLdN2wi0n6SGrxESQyfDjLKgT0lky1oRxDJ64cZYp1MWMThXlfuYZ5rs+54YI3XlaJtG7YUkHFdXVyWpCiEQB/EdlQYwSTvwnK/KyGJjDcYZCWbCMM0JMpambkjB897ogz8UgVCzszRtH3GSUEziNQeeF6g4eMm6Q5JaSuVq6rohpUEywFw8SLF0E2RH3bQti9WCJ554kpPTE7rdlqurK0Rm10KSVpTN1YYQE0fHRxyfHnN+44y2ren2O/ygNyovZvLGybOup/7toEIWEgDIeWWdA0rWn69x2iQJJrZ1mlTSM7FwmkuQ99csA8CUUkzRGSjoyxQc5IAgQ4Hz6yn3u7QhUq5vu9nw4re+y8c/9lFOTpZYm42Gjp/1Iy4OvP/GDb77zl22Q5R+eWqSy32v07UYY4py2Ti2jIO04ExaCbIuSJPwUiKjB1bJLgJJVyoNmvvfS5anqETIz8KANU7RoarAal3XEYLXttRY7m8WvqmrWlpUtZ0pL81mUXNk1gyDtFTWdaODP2qVD54yy7zuJYDJKyeR0LLFhJFTOUtSZc137l3wZ//+P/CZ559k/fgp1C3UtUJrBoww/5NEt+pERK55fX7Kh2+e8eEf+ShhHNnt9mwuN9x/+zZvvfwKd15/nVe/9xI7JVT5tiHERGNFJtk1NdaK1KyrK5q6YrFYyHTDmFgsWhatBFMpJSp3SPSy1pZMP7O7dbpMQZ2clgwUjCbXdnPd3KKM56BBq0ka/OTWWo9z8MJzT/DPfvnn2Wy2fPHbL7Lveqw0FJPbmMsSz5n3bH0XuwNyL2d26vprPj55FqZqyjXtm1hsRN7HeU0wBSmRcu3GzBz+rJw5pXOozTLZ11CQjdlhs+77hO4+Glh/v9JHPma+sCyNbVQSvFIYOwSRAq7qprSUxoSSUwMmRlKQoVdgtLRKyT4Bqsoy7EZ8EHEuZ2uqumG1WutIYMozDlF4Kvn+SKYqd1bKE3ITK4XkHQliwNbNQTI2dB1hGCB6vO9lSF5MrI5kdoCtK1YnR9p7Lwp8gnyIMx7GsdgmsSVW0Yegiok68E6nN47axpgTzqquBKHTQCc/z6aqqdd5XLNYhqOjNfv9nhQTTVuDFU5R0zaAoW4qYhACdApBEi8VAkvIcUvC0y5w1spU2RBEDK7JHU7S2eB9oHaOq6sNYIhxlGQ2iELse3m952DAFuZxmikQTpnptFGywzskspT7xFQjKs5MI+WY8hwAGY+MFWLgyekJx8drzs5OcFXFJoguvQ8LylQtm2gWFUerI87Oz2jbBcYk+v2evusLc7PsmqyQlWtqep05qzQJYW2XQUu5O0IDAiZjlA1IhsRAuRN6X8omzcdPc3gRpux3+necORybmKEl3+fzxfhx7Zj5pjv2+54XX3yRr371aT796Y+xaAzWOKxxOJWtDPsd55XjifWK1/oLojrPmFXm8vmTZhlaFt1xNKEpgQygEbLcXYM856T3RFeV1KedKUgGs99nrkkIEkhIXVGcegiB/X6nDGSR7i0kv+lhMo4DvW6ypm5om7awk52xLJYty9VCIEZd0xCF+Kb3/yA7vO4M9DzFB8p1OGcgOcYU6YfIl779El/9+jf525/5BLbdy3hY50jOYYyDpgbrMLYiWQfGgavAyOwGg9QgT04bjs5OeeLZp/n4f/YZhv2eP/jXv8Ef/+7vAqiuQqJqWharNVUrQdZysaBtG9q2kdbOqhLegLZDSulGx3pHzTqNIRDAUaBR4fwkFQdL0vJlZDLd1IqWCns6rwFrnQQEpNJym39vnSWkgGHkkx9+ln/+K7/EMPR89bsvs1XBm2JCZsH3fNnP8o5Z0GCKE55QuMkmpXQg1UNGnPKeK7YrO+sCCOj7ZnYvaTCYA/xp/epaNqiIeirLM086LVeU11OagpIpnPh+Ic2jAcGj358DaAncF4uGyhp8MFR1S9U4ESByTkYAp4iJyFTX0WNqo2JstiRH0Wi1yxgV4pEpe3bR0CwWLI9WVG0j55xkyE5+HAaRip+Y+5WOOR4YVMvE6ah5WWfS6eXHEWIgjqN0B6ieTNL1k9fx8uhIIPgQiUStrSdy693FxUVBLZ2TccJUokg6DGPhOA0h69+g7xOCY6sjg4dhEB6VMVhXcbRaUdc1u/2Oru+oNZO31jKEkXEc5DzrmuPTU/p+YL/fUNc1rq4YUyQkCSrsalX4cllIbhxHKWXUIoFc1zXBe+pK+BExSnfU0EtSM3ovNkzR1Hn32g96vfduglm9WhaNLbHz/LvmDisvAGYbKNdgyijjGDTbsGVXpPwdxkjNpK6oa8dmc8W+67h8eEHwnuOTYxKRqqk4PT9luZRMRzLGka7vtKbtC5tVDIstQ3OME9a4nWUrPo89zllt3lhJ8wWD1Iizg5Z3TGIcMZFSEHjOWL0/5uDezLkHkIOrWNCFkvkYI4HI9Qcyd/ozcidpbmKUyWvkXO7cucvv/+4f0282fPgDT7NeGJrawBBorSN1PW30PHe05J2HF+w0YKrrPDJ6LOeqaR7GzEmR0wQvgwFXbvgsMUrF8BmT1euYAsO8hsrPcpKlViglhmFgv+8mlUhk09ZtTdsuWKjTC96L6I9KpQYdTpUFhLLztiV9U1milJ9LdhypIBPGiGE0GU0ykYNJdvmYzmCjJfaety8v+MO/+BIfeeoJjk8aCQTqhlQLFO+aCqqaVNeYupWAINWk6EpmmTDgakxVYSoHVmDGz/783+db3/grGAYa52hXS47PTmiWLbayLNu2oAFODaczwqUIPhS0TAKdGXKjTkDaxXRtRoH+yRl1mspYZa3mgE4diGQ7TiDimbCXNUbKjG4iy9Zm5Cc++SGS/zz/93/1v/OV771MP44yNEntTQnIy9JS42Nydn3N8KUc7MvznEYulxuraAJI9WoWJCgPJK9JSYRmQ4PI+S3TPdHFPYsfmQPLlGOVX8/+PhEv82ui6/3g1/Xug+m+KCl6HBiGDmMjVSXP17ULmuWS5CqMTqXNiFgIQRCyWbIUQsTWtojpjENPzAql+pydE4GiTO4tdzonJ7pGMul6GAL73Y5xGGmaBeujhTLiFWk10jY4dr0EKElg+RSTTOGMiNhW32PqioZcRnTkck2G3VOM2CpzZSBZOfZkgDQwVPssMuCOZKREOo5jGXO82WwRME/IerayxVdkm5cSVNaRNViAMuo4n5+rKg2iKShNtagZVdUxkRiVl9U2TZlAOG5H+q4jBEFM0Ofv7NQ1Za0TP/V9UKTv93rvwUAYS9Zl1GMd6uQ/+pkpS51l/Vrb9apIpXYAq/Bjzszzg6zrCj/KiNl917PdinFfrVY4V9E2DU3bEE9OGNqWbr+n225E8UpHFh/0+gOVnW0czRpdLUSamKLO+Q4iqjQbsWrmzjw7YDM5MLnO6XtkjUnnQjYb2YxN4znldwXqzJ9PE8RYANLZ74qtmcHi2XGVT6TsgOUcfAq8/Nrr3L9/nw8+9yTPPHmD43VLYyLp/pZOa1Rndc2qqdgOKiZlrUa7qniVmfe66ChXNz3zOSYgxjEjJNMFSUYpaloZpREDkNtRp+vN93UcR7r9rgRrrnKS8bettDK2Da22M9ZVzS2TuLq84t1379J1XSE+ZgeZzzkhty23sQatT8rfFS1SY5nSnPcycV2KKEiGgmoxiKOPfOnFl/n6t1/ixz/0DKGtsHWLrSpS7Qh1hakdpmmg6oWxVdc6N0AynGBqqvUJpmklMIiiN3D62GP89M//PH/5+78vKNrJMeujFau2FXEn60p3QCZvoWuiaL9HCWhyX7SsXSU/WR3qEudlQnWa2h6cp9jl4Lk4TGNIxmEq2TsmlOVeJixCoooiIx5sxNqRn/j0R+n8QP+vfoNvvPqWZjq6moxhXpI5NHSpOOTseMoqTLPNlP9e/KUpf587r+xQCyIx23eHyJx+0lCOX9Yw01vEXhhFEJnBDdNx5kHDdDZMiczsldfZ4WdmqBqZ12WI3uP7LXHYU5kaMw4E16iz1ImYEVUfNKJUafNaUIKf9xgjY7O9jhBOiOOPKRKCSHw3rqWpGx27S1lTEaidjMfOHK7gvTh6H6BqqCpHHjYHkIKUbce+J3lBrwppzkkLartcsFwf4ZqGxXpJiuK4803zqjibg5usclieiaIpTdMqm9+Vve+T2MBaA/e+72mahqaW2Q5+1BkJRgIoV1UyO2EUNdLFckGIUnYevMcghEWTYOwHGXRmHX3X0e12WGs4P78hybcxVNZR1Y5xGEvHjpRBRnofxO41taAnCILatirBP3pwhkdXzvd//RAEwlktVjebjAPOfdzXNmjK0Hc8cIPATKUQne6mxA+jcrZMNcFxDOz3HbvtTqZUeW1zOzpifXSE1dnTYQzsd3u6bl9GG4fcqhgn0l8xVEn09EXycXJECRjHQWSLU5hl6LlcMKvZX3tloaUCLas9SQkV8Zg5ypSjfj2emQzMAWowKwEUiHV2N4XEdg1tmFKf0haVUsDHgRQCt3cb3nzrTSGdWYOJgSNb8fEnHud950c0teXm0YoH9y80kDHaLuSk3pgevfpi/Gb2MRMfZU/mrgyZDmZypKMQnmVCDfJ4aJiuSbKInn7oC6mvqgRmdK4SMZL9HrO1WmsTNGmxWFAp4XEcR2mz7PaILsGi3H+QGv8wjBoMjiWTLSUxsmjlVKrJsxiqqhIY3siWMlY2Mhi63cg7Fzv+7Mvf4ANnxxydNNT1QFM5UlYLbBpsPYLbS1ZlDMYIlDmalurWU6RmASmQGUESlFs+/unP8PpLL+Gi52ixYLloaZtWEACDamBEUjQkExlzIJB1PxBioVFHnl8yBlnqjtGrehxJJa0NGBFBEYMqAa41BmfEmPvRH5YFrM1JE6BQcN5LRspWuETlLD/5mY/T9Xv+b//6t/jum29hg6Bc3qQyjGa+E3JgMgXEYntKMKr/LllgdpolOqHsncLIT7Pw/SBgmF4lOJqVDqafzz5Q9jtTZDALZAr6la8B/X0qOdiMQ3D9u6dXeW+alxITfb/llZe+y+ZiR92u8dHS3kw8GSJ1M/GlUpL1LR0HckxrLGOIYk/Hkco5kg/03V5HCWddCgkKDUZbswMJo212okyYmPRG/OhVj0TKFN6PbDcbqralWSwIfmC/3xedlDwZ0SuK4TSwSEa6ckwl7bZN3VLXjXKBKKqv5RpjZNG22rEE4yDZeqwiTd1QVxXb3ZZ+EGeNEzQjlzfGccQZKbcNg5Cqd7u9apxIUECM1I0gECEk0XXQyaZN04jbDoloRCZ82Hf40bNeH4mGQJ6yq8i105Zl6ypCNxQdl4SonxprShdcfhbWSZl7jur/oNcPpUCIBgJmtlDmP582GLK59WdTf3ks4hVzw1LVC4H3q0rFg+T3o5dA4PLikq6TYRSr9Zqzs3POb5zTti277Z6+79htNuLE1fFPUwpTcT4So+TNrUaenC3NLmh2rjnlvl7fl79OTrv8vXxndpA5IFKHqIEBMN3H8nkzBRL5O7QzIC/iAnUylVy49plygRnFCBK1y3CNoDWvkd1upxsykJLhncsL/vaHP8Bzp6c8vlpz97LjnpZXZPiTyNvGlOV4JzM0EbpKXjYjRF4b3KSbUxi2IsEZtWyTNQHm9zWlxOil9ha8l4i51LEDjz32BF3Xcfud2yI7DVg70vdoW50pTknulbTehCCS2FqYYtTSUvCaKVeOuq5YLhcsl0tlFMMwjFxeXtF1vUToWifM3Amj/AMw1JUlVMIi/vJrr/K3Xn+WH3nucep6T2wagWyrGtc0jBglbRqVFraEuqV++nnc0Yk4/8HLfb+WzbaLBVX01E1DZZ2uOVNq+X4QffWoo1Vljvw8WJhaL0USQUS0gvc6nc9oHdQo2RE1tJSWLpLOZ/ehtDNZZpwZ2RSlbBa108CECCHKZEUnJYllY/mZH/8U796/4v/9736P1+/cFz13DCaFHEYzO+wsS57B9MXLq3Muv0jK5NekZLZ1BK7P+3R6/yTvm/f+5HDzNDrMZCvy/xakqGga5H0ysztp+ntGInLgdIB2zH4/v8ID7Qs06WFCSmKMXF5dsjq+wcnyhIQt5SCng7bGvpdgPwfrhrKWvQ7DMnqscegZxkGuW7u6TNmXFj96tW+Copq61kBT4f3kRPK9tCVbKe12e5ZVVfrnrZUa/uhlgJpwWwRRrtxSeBA6JdQGQxf2kGJBhZumwRhXuhKsXovLJSw7zemQPTfSNI3oi1g72S21B8HrKGKnnUnWFrZ/SJG6qjBB2oDTOBKDtC9G60BlHrCJ4BNOZxWM4yDlAkTjBiTJSM5MA+hywhcT66Mjlsslzjm6/b4gBTFGmqYupT/nrJRq3+Prh5haOOnqk0RFKmrkan/A5/IikdJ3kmixZFUC6x6fHLFerYuYxLydSwZFBKq24ez0hBvn5xyfiPjN0O3p+0F7KofJ+c03RkYpct+PQaNTiVBLFjDF9IXFbst2Pqz1zzP47xcQFMZxQUceiZwAU4KCAoUXw5QmODUHH0nuZS63kHIkP8vGC6w5BSZxNiO873uGvhfypZfoM0Ul6AW4ff+SP/rmS7zw1JM8dX6D1XrF/cst0Wh7TFNjgieOXu/nrHWUeb4FmfgXvFcIMZSgKAdalRJ/6rqhrmola87uVZpaOSVgmY7vFTqum5oPfvCDfOiFD/Dbv/3bvPbqGwLt57JLzvqMlAZI0I+9tONVI21TF98q6yeSCDhXsVyuODpacnS05uzslKeeeooPfPAD9F3Pd77zXd599y5vvfUW9+7dE8gzeIxZTLwJYzBYlkvLED1vbLf86be/xxPrFUdLQ6iE1JgnEobMwRkTPkBoWpbPf4D2xk0CEdePkLxA98aBTRACD+/cxg89zaKVGmfUSaBOMjaRSPXEYBXq1XOzkik3zaSlkDPg8px8Ug150egwRvk1VpAJG6EykGIA75GhiUF7xXO13JAnk+ZAQEouVmu/shdiCJhGWNkuJY4XFf/lT/0drq4u+fXf/yPubvYaYJZwk/nOLagS0x6a9sZ8KeRW0Thl24kJtZ8twIM9pVoUpVde96fJZUeT9+thYJ5mC9fM9nXZsxpMHHh/PVeNtgrSdj0ImZ1pWcPl+gzTvUCCLKyhWS6pTC0ju7VNu9LAd/S5KydRIT9PJJXolZY4773K6Q76LKWUaK3MH0gar8qINAn2TJLnHNVJZxs2amcBlaxbV1dUlcwfaOtaJOXHQZ6VBhZRW/d8gkXbYF0lZSdrdO1LsJ8FyWJIQpSupAU5EwYXi3ZChVNiGERzpKml0y1EmQsQfChzR7L9997j1U857UKo3BQU5aDQh0BljM40yEmVgySljEjCGMfxybHY5FEG5HlFTCrlvxUhsOBJBJKPCC8tYCyslku2262UA50t5MukZe/38nrPwUAoi12mI0m6Ot9pOdKdoWCzTZEXM0i019Q1R0dHrI/WHJ8cUVUVV5eXRWwmt64tFi3n52esjo84PTlm0TbKJBfyRPBBlZxiyRDyJs3RoOwW3SzX66ZzNS7ZS4f6ATODkpJKRc4coFrQcowJHrwuKDK1HqWUCtkpt1JmaA/5ZEEEclpVavCajUXlX8zvb8nOFQ2IMSjk1DMOI30nrN1Rs8OorNmUKmwaSdFw93LP1XCb233k9OyE5KzO61ZxpqoijL5E7QevHCBBmTwmC9GUGrvTzeC9V2lRYeYuFi3O1eUeZYcqz3F2//I9L9ct9/65Z5/nZ3/27/Gv/uX/xsOLCx1sIoa1co7lcsnx8TEhBPp7fQkyJIvSdekMMG34DDOv1ysee+wWzz73DLdvv8X5+Y1CHJrWtGxANzMIGRlyrWMdF2y3O77x1jt86snH+eBja0Jj6eqKGlFbG9Gy1JDoqTj9wPtZPv0YhoDZXBJRR+5qknXYFImD5+Ht26Qw4mgESh9ljYYQGY1mJ1YMmHAfdGx3NLhK6qfOWYVxk65lHflqodfSUF1XCFcod29oRjeOhChtWJEMWlitv6J97g7jxI44e42QbA00Wl5RvxkNxCpxftLyyz/5WV6//S5/9o1vc7XbM2gAbGYbvrSB6kjfjJ4dLhdzsM+yt5waEOVYudc9rz95m3bQzDJ0dN9m+eZsd+Z24eBVgoWyNOW4xhRkRQKO2RnZXP6Q7zez35UrLLaZcq5IznbYsoiU+1xdY6wEA85ldIiCyOartCTRiQhMP7NGuptC0oREbJCrKnGAGWeLQdZTQoWgkHkEhfMTFJ2TzDkHxE2zwBrH6AfuXV7QVtL1MhqECE7CuZpkDK4WTYF2ucBWlfzcVRgj6pbBjzK7pkT7cg9iJnhHnZJJKDfKGEM/9DRNK4mSD+UZtYslfhyLul9MU/sfaq8s4tu8l0mGBiWdWoi5vFFVJGeJg7TWjoNoD2AkWCBl2x11KqwGHEZQBKGaJYahVzJlpGlb2toRRx2CFr3or4SINY+q3n6/1w/BGUjF/wc1AmWsbxk0dJjJ5qh7coYywz2RWCwbmkVd4I79rmO3k7pJNqTtoubsxjknp8dSj0mJzeZqJkk7icjkc0wJqT+NvjjzDE1O9UP9vyhTDFOcLQYkorV63tnx5td10s4Urc6DgSmKL9np3DAl1SAo0W4OAsrNno59gCroK6YyxUsGO6njzItcORPjMDIMI8PQMfQDQz9KsJWFk7JVSgmMThRcLlmc38Se3ySuWqpxxF+NxWBWlcPnIVWYMnN+nkFJL+6gE7sQeeKmpWka2rZitVrStg37rufNN96i63pSSiwWFGd6iO5k8mk8/F0S5Oj27Xf4whe+xNe+9lUePrwo77PW0jQ1i3bBYrmgaUSdT9aMuZbFTSNVY/SMo+xvY4957LHH2e52bDYbvvjFL3J+fpPKNbz8yiuMw0BCNNkXCxkGhckz4RNR2BAs2wbfeW5fbfna629wY/EsvgZbVziEeR9SlCmEOJaPPcH5c8+ICuTVQ0wE48TYYjopp/iA33VcPrgrbbARRu+pNDPBGGIKihZYaQFzem5GIE1bObzqQBANDgh5WJhJVNoSYhVFi0FlXlOkUpg1I3lWZadlSXkJInX+h6sqUlB53zDnEUjZwWYJM3XCYlIMEc+zT97gn//KLzGmwFe+/TL3Lq5ISbhKgTQp1uVlwbSfpBQ47e2Uyt/UwZWNPdsO1xr60oQmmGwE9bgFFZjt+bKD0+G+IDvanC8YyjoESPmYpBLomAIRqFM1hwFJThhm4cx03lM8rOeXyj52dc3RekWtSncoUiolVpXJNa7Iy2cBH6n3g7WJMPRCgmsaGZntqimIj8h0SCtBdj7vnFX3Q1eyculcaFgspEXPWUcYR+LYk2xDnoYqgzAdy2Ur6zsTHK34IpOizEWwlspZrKkZx6DS8RGvSEFGSIZhOLCxuVw2ek+7WNAuFkIkT0KubbRlMpejheem5Etgv9/hnGO9XksWbwLOVlJOyeVWI90PIpjWsN+NSr7V1uAkCJx084geQeVk75ZB7CHS1I6hG0tn06hlYLn3UccTWKxN1NeD0r/m9UMFA1Owa0ptHDKxLR7WN8y0gcoqNVOk3battjYFdtsdm6stm82G5XJRIJG6qlgtFwx9LxGlisuU4ALd+GnK2r33mpFKtlPXVUECKAHBtBdRZ57lXibcIGfhaXIaeg+ulyFKa90cRtBjy8cyceka9yDHCPPomWmDo9c33+BlXkLGXoSEoEGQ1PtEnnag22vmrYJAXjP8gmbo+Ulb3oLV6SnHN29xdPMmi0VL3G8hZMEgORdrLE3Tst/vDloaM2wqU8iE7GMU3nTO0DQVi0VdMmpXOY6Pjnn22Wd47bXXGIYeY6Bp2tL7XnInvcdR65bz+x9Gz4svvsg3v/lN+r4vZD7rLG3T6vAiYQKP3rPvOrIOurXTU4cpu5egTmqU+33Hm2++xZtvvkEMgQ984IOcnZ2xaJd86UtfFDizFU5BXauiWDZ8SJdMNGAqy2K94PKi55tvv8NHzk95+riFetRBLqJVHkJieXTC+559hnbR4i83xOBLxixNxR6GEcaBh7uRi/sPpIQUJIhJqh5ZBtFUFh9GVDVqInpZmZYGEK24fVn0UWHrxJhkoIq1RgMfHf1sjAydMZOQk4mS0ViMft4QkqAlUedi5Dqs1XGwU1uifrU6WIJkWTYFTOP4kRee5b//h5/nf/7f/nf+8hvf4aobGFR3/XB2CVOgqxtZyKmUPWMe2YviuEqWrT+bBxJlz5JtT1JnpLszpflX5mhmOq28n83s2GJMJrTiwGjn/W8eGbmcvy+zXebnWP5dDMbUnJhiZPSD3oNcypoIg8KiFyTOaaCXbbqZBQvjODB0e+ku0sDBOQmChW8j9yqmKIGufpExmpXHTFwV0bEs9y4qicquj5Gh79ltNtSqHWC1syWo4awQSfGo9f8QPbUmNeM4qjOPREXKKldR1a60s4cQSpthHi2cn9N+t7+WmCT6vmNzeVV6/Zu6IaXEbreVUtw4UFU1TSPqh1Zhf5Kg1DGJ+FNMonyIQYSfQBOXCmNSIT46J+JN+92OcRxLKQfkPRlJMMieretKkZpEZcAQpnks7+H13ssEMYtsACaJYpLuhRgOxxandLhASwuWLD8SMuGs73u6rmO72zH0A01Tc3ws5IgYArvNht12y9APqk0wy/aZNq/P3QOqbz94r47DaU1Hsv1iDJV8loOBfP5kgzuD9x/9M5MWlss5IMrpSU1OFzUdUXgLma2dOx3klR1+KvcnE4Km+fGzbDZOHQSQtP0mlBGgwzDQdV0hCqYohJriuBMQk8jvNgtWpzdY37zJ+rGbrI+OqEOkv7xgt7nAh1E38dRDW9cVQy/1wVwqKOGC3qN53bxdtDz51ON8+IUXqKuaP/+Lv+Tq8op9tRdRnOVSyxcimpFnhufjhaD98FCi/HLnEvTdACYVkl9d52mJtYxg1YBvGAaGftDzmnQlSrZoLIvFkr4fGL3cywcPH7Bctty8eZPj4xPe/4H389WvfJUXX/wu+/1AVTUsV0tWq7VIomaXYOSpCqybBB6vHc2i4e3dju/cucfKnlM5WTMhCKJStS1PPvEEx+dnjFcbmRug7OQUvUw1HAbM6GEMPOwD/b7DVBWoOIpxIlYUQ8I04vBjgewN3kds7UjGFIKTq5zUXnUdS9uhBI+VswSMZPuaiVvnIEAwQlarnMUHGIa+kClz0OGsEMoyBDrPdlPOso06TB0vHKOgf6aqJECIIx9//9P80//yFxhT5Csvvsb9h1egdNOYs3eTygCugyGBRndYzMZxFgjkvTsrd4rbn7XtlmNkx64uttgBM/uvOrdZHAGUBOmAZFWCg8lmzqxAaVfMgcY8UcgBwZRo5UMaJh8woSAhBsa+x4eRKoZCOquaCqjxdqpNp5QHe8neD1G8VwqBYb/HDz3RjyJo1DQsFkvqZiHPSoOdqA7KOSdosrVln6cQROnPVjIRUNGxGCJhFFVRko4EDl4USpW/gBPrnblZRhMbmyYuUeHOxDzvQKZvhhAUqZCJhxmFzghfhv03+w1t00hSlJKoCYZYtDeCti/m8qcEFg0xBrabDc7VZW6LNVKq1NBOEBQjvAhjwLoKk9TBA00jg5D6vmMYxBdYLc/FIM82jCN1JX4shFE0YFKkMom6sSoMmMpKfi+vHyoYgCRtQzavvKTSwdedZSoIAHqDpx5yyYL2uz0P7z+kHySbOz4+4uzsjOOTY6q64uHlJUMvohZoW1chzunmCXMSnML046gtKAnwELT3Oyp5Y94iJEFJZNA6UIbLbHZ+KZNVrksJp9k1GjUok2OfAoJUov+80GLun9fI43opoMTxMZM1E8nEqUthdrwYhShDiGWkZdf1RWRnVBJNidAMUvdMBle3LM7OOb55i/Vjj7E+Ppaxtvsdu6uHjLsNMYwYzRqmSZSqo19Zxn6AmJnzlGwgkVSmeKSuaz71qU/xUz/1OW7cvMErL7+K957tdq8IQNS6YVWup4o1ycwtpuiI5/rd/H45VxUEaLVacnxyzNHREbvtjmEYS4AWUypcCWtNGauc14HGl6JktlwSt2Is99s99+495JOf+Divv/o6X/iLL/DGG29irKNRRCAHApFU9AhyDGes1pqVcNe0LZtdzzfv3uOJdcO5Ex3/EOSzT924xY3HbjL2HWa3EdQqJmwMhEEJtprNZ035YghTwCUrszXQNi5viCYS/QjOYiK4VmSXc7aWkO4blA+TR84OfSf3F8cwDoTgRTq6qhmVJGidDCeSoHpURKCS5aYs8+ilZGCdtG8mA1VjSy+1s1ZJcjmgVI14J5mq0T3uLHzqQ+8n/vIvM/a/yRd3L7LrRXDFaMBVhIdKpj/Pwud+VJKBqCJi+dsP9rKy/7OoVM4cpwmlFGee7cIPzMPKQtOPziG/8ovcRTC1Kh4kKLOwYArAD7/mMAiRfS/17VQI2kkJbDnYTio5PO2IWadS1J78JEJrJkWZCxBGMNI6uFitaZZLGQXnZRS1s46cQaaEjh+PhHFk6DvJ5JsFdSPtfNmphnGg72XKprTryQyNlCQ7t1YEw3C2qLw2igDb0tILXdcVZDKT2GMMBXk0ZioVZNXb+aCi3ME1DgMhBpxR1NE6+l1PSqOSn6X7YQxCYg/eF3l1S0ZV5I/FCN/Cxlxzp6pFhbXbCxfBWRE76nRAXNs2VNpZUCmyFqNMJFwsWoyh/DyvDNGO0NboOXL2A14/RGthbqFJBT7XtULRntcNM3OLJVOtq6b0kaeYpJ87BBbLJSenJxwdHbFoW9HRv9qUGdFZVKcs7ZjK9EOvQgwZUo4xKJkplpufUQqj0bpcyYxglGRxhhCldmmNQLsxEJKXufExlvcXRxTT4eYuqAAHzirfCcm2kvZl58xhggL1DmOIB/cQzEEgIHoFsbDXR+2L77tB/vRD6ZFPer9MQlrBMNi6oVoccXTrMY6ffJL1jRsC83Y9/dUDwm6D9x2j70khSVaSRPmrzBSwc4naRB5XatQol5JNCFjv8T7w+htv8Tu/83t85zsvqn42sxp9LE5+Co7ys9Janl53mp1HVjyrq5rFcsFzzz7NT/303+W5557jt37rt/n2t79DyWyCjPrNcKOIiDgtO2ZypwSMy+USay1dJ1LWVxeX/Nmf/inDMEjmVAvXZX18XDgvORPNz7+QVONUHw9G5qi3bctbuz0v39tQr1eMKbfNrji+dQObDPurKwgeVzpOInH0Us5yDte2VKsldedJ79wmWpE0TSFqW5bReRpBIF95QNhaBLZCCCTvSxvhOIykSqWGxxE/DvhhhCoxBIFASxyta6qqXFn+otoZCmnJIMH0OAyij24d4zBgKpkpIVsvYivJmDIxV1CNhK0rxE8nYhJnRUzUNvHpj72Prv/7XF1e8M033mTsR3IMMAV2uYMhMW/Qn5MHcwmOlHWwDvdtQes0oMhrZB4HyHVMGWre77ITshys7vF5WS1HjBNAMUsozOx/OfhpXmc5caEgpYdvzkFeStP5EDUo9EFkh1V0iiikbawpmkwxyeA0+S5DyOccAkO3p+v3UnoyNa6qqSoZ2WuNJWrmiq4tzQBJfiQpl8h7QZ2C94QgY4WddRqEighRXVdEre3nFkRyUGah0kTA6ujwGGLRAgBVTHS2tCHn5z9P6oSEHnGmxtiombowWHwI7PYdoOXRtpG17seCKpsU6buhoNZo0JMSLBYtVBWD6hVY1VkQAaeoSVWlKIzYsnEcwFpcBcfHK8Z+YNHUtIuGzeaS4Dsq61g0Ui5IcZSAw07rUf7jCzT2XisFP4Qc8VRTidEU5bWplq6ogN6kmKK2H8Yyxzlpe5mxIvjSaj/ncrXUyDFLxk5aAcVNpsnJjOOo7SYZWpQH77UthnwOpUvAlSzIZlhNX0YXzaAKTrmWnDTjMhoxZkufz6NE0GnazbmEYTTjz7/LwUi+Vxk8yBnQ9LTigVGIWdtfg4CUkQoNevp+oO97+q6n6wf8GLQGHNVwG1IyRGtxGJarIxbnN2kff4yjxx5nsVzC6PH37jFuNpixhzAICzfJ5Ebp+8+oAJpoSGYti3ckafnClZr7QIhCaPHjyF/8xZ/zJ3/yJ8q+R8dPo/d7QgCEjT9NB5tKDRP6kEtOWVhIRga7AjE/8/SzPPP0s6zXx9qVgnaf7Bn7HmungUS5BSivsVz2qlTko10IX2XU+ly7WFLVIi7ULhYyHMVk0Z0ZeTTH50mhZmNK4GcxVE3NZuh45eElp8ZQJc+ydpycnbFcLum2W4W7IzXSxhdSUNVuQSTc0Qnt6SnV1ZYxJlwIGO8L90WMuaXBTHVFI62OSSHJ3BeefCjGzZIESh56LDKYxqfJSAblNmgMRW6z894rYqh1YxJd14OF2lUY40T6u66JJtsHiixy7kkvB0Yy8qqSksfgdR8mT1PDZz/5Ar77PP/Tv/ktvvPmm1z0Ay5JGSLvOktZsFPpQJ3ktDcnO3CI+CtSMLMn+XclVrUTgXY66+lv86QokSZhMaZXUu8+EZPzuUxnVo5rjE6JRN+r11ZsxtRxU65Rn49uN9Hr8CMNSe2lp3EVow/yHGNm2dvpGkqJ2OhI7C1D35XzCyEKdyZJsJuS9MnPg5osOT10ncwhqC1WRhKViZrBe/zQM/bdNC9l9PhB7EYenCS3QNZ0LukMQx4HbPDqNxKprE/5erFjXiWUnXMM/Z6YJLCoXI1ztsgAk4Sg3DQic26NoetkvHtdyXTQq6srAGX92wmhHqTsXThM1kjHTYS6aal0UNEwjux2HXa9ZrlY4FzmUXgZGx08YUwEJ62ZBKicwVUN49AX/5BTyvycSxn5kcT0r3/9cMEA6NjfSaI0zWp2KW+UvJkyJGemWkxd1dSuJp2eivGxAkF6hffzAszGSS5TIinvsw5BOoTqEmX+wKQPPbURPeqED29Q1KymbF5FOUyJ+qes/ABCPHj/ZFwy3FlOjkkF67B+k3UCpu08P2ZGW+aBTfCBfujZ7zsJBPpe710u2QhAnJLB2ArrDK5qObpxg9Vjtzh64gkWJ6dUQHh4Qf/gAeP+kjiOgMBPIUhPscQAhhS9EHSAStGTyonMrUc2WX4WdVXj60DsezLhqOtGMtciJkRgJj+6JDXrTMhxlZ0Mo7Kh89jdSTiIg2cv5aGR27dv81u//Tv8zM/8DN4HhSUDfS/3yllHXWetfleOk4OC/BK2vepgNE0J/opIi3NkGFr4DKGsvVwSc6qomRnTJk2EV+uk5/ndMfDadscTleP87JSjs1NSGOl3sq9IiVEDn4QInLTLmupoTXN8jGlb9vfu40OUToMYpQ9A25SqZpIXlguYlSRSwtrcOUAJqMcwSjYfg8CfMQuYqMFOwiXIaEhEMqUQPLWpGJW0iJHWYOMslXWqbzCRR422tMVRJuilHKwYU55LVEjZpAQpIEObRA2xSpaf+VufoB88/4//49/SvX2Hvh9lEE5KWms/TImmDD1N9yTNf6kZdMqORH4+GVxKMJyjh+t7thxS11QW6jnY12Q7YZC6rp0fpDixKc0vHyjrNCWmWSgpHy3bN13H2QkyfaeQ9wJOjx8VcbEGXRvCDTBmKpd6JW07Ywhx1Fa4oKqkla5Pvdb8/JH1lgf0mBDYbK4E6nbSP5+wVLUkhKRE3+2EixC9ttyJXyDpeTrZk0bJp1Xd0C6WYKbJijlhtZU7UFF01jB6+V1VVXRdh7WWdtEWNb9yr70EqCLi0yj/xRSiIiaXzU05XtM0pcRQtw0xixORWzaF2S/vd6qmGPGjJF/D0GOt8J6sSQRvcW3L5dDjhw7DSFXX1ItGUBLfYyZdd1kz6nZSjKrZEiEcllV/0Ou9BwPqTHN7Szn+XLVD/zsXwnFWFsNSW7ucaqWPdc1msxFeQEwFxsy2K8f3Pnglxwn0nW+wmRmO/OBypJyz9NJLPsUC+rynTZQXu/c6yMhYrNGZ1Hln6c0u9WqN5suDKDWZHLmbspmnbENZzylnJhSN8phCTmAO76QiISlK5jUOQyEH7lV5Kg/giCgrWLMgZytM3bI8OWP12OOcP/kEq7MTrHOE3Z7+wUPGiwfEYU9ChCzC6KeOEL3GmCPqEMnDQaDCOTH2wzAQYixtOQlLU7dq+LUGGANSvlKFutyKpn35TdNobRC9npzFTRPyFu2CGCJ9v8foZL1MqDTKOxhHz9e+9nXeffcu+/2e/X4vtW7vha2rNf4cCOiDgazDb6a1kVGJ+VorkG9KBC/yyF3X0fcDhcyZomYDTroM2hYjqjxyP03EGUNTt+z2W94Zeh5fnHN8ckayhv1uw6g1TwNloFJMiWaxYKX3ykTPcPmQ7cOHYhTSVDMkTc40uqkbJCYJ8MIcoi51RnESeXx3DnaiBsPz1tkJAUr02ussjt8VeeJkwVayj3IgkBS2tapSmE/DOUdMmSMQp3NNCWdr/LAlDD3G1pNUM7BYWH7+pz/NZtzz//rtP+B7b9+RLhYPPqUpFjiAhjXC1J9nFdCyhzOqx2TzpleaPgtlH2ebMofuZwayfCbbzbzv54hCOjRQJcOjvCe3NpqD487DkcO/TZ0GCeEsOiPdN37fk0ZPqBLdvqfR8myWGgcZmoO15bysBlF+9GUmgVFn7lwtkrhY1UgyZRyvMYau64jDwH63o+t2pBQJ0VC1LeuTY9rlUsm9HTHI8fNAH+EUeY1lDU3TYOuajLWGqKqsKTH4UUR9lORX1YIkjONAnPmLyk1uTwIaSyFJJ6NzFXyRLwc4Ojoq3QWZU+DqilUtuivOOtEmYEfjRBNAWiS92nGZJJiSIBMyLEpaIp21qhpY09Q1V1eX7HcbeWZo0O5HrJO2REkOswib0bKglOWSlpljDgrChFj+Ta8fUo44lcy6sOoBxQu1tg3KKAIMTnXhV+sVbd3g+4FN17HTaXLlRK2InmRHHqJkXBNqEEqEnpAaTiF6zDb7tIFMYe5fvxn5GkhgIkSfpDwRZcPmOk6MEROvbVwdkpJZ4of2Ih1s4IMvLH+PBbLM35E/l2abO6ZE9BlyGhl0WFPuEsjDNwypzJo3SfTdq6qmWq05evxxTp94iqPHH2exaAl9R3//Pt2De4T9DhNGjI0qBqLTHWewqPCFcssoOBtVordWEp5EzCGgCzIRVODCOkejPb3lXpqpnStvQAkKKvKGlvsQNci0apvECDa1TPPyKiaVg4V5NjkMI1dXG81WAyBlhOVyxWK5nPXymgJ9mtm55ONMRpdSHhH53ajw4CV934MxGvDKNDSr2e9uv2e32zOu1xwdH2OcTCczCOeiqi0MlosQSMsltqrx3cDey1x1p3B+VTmp3daWRS1lkdB3DPs93dCzvbyUDBsgBBElNILgVYD3SpY0SDeNtSpEko1pguAxUZA3tOxSW6O1ZB2FaowifA6LEG+9SsSW7g1FQ2KSIV/jOJCSGF9rIMVEbW2pJ1stNXmFpfNY8xzQZkQxJQkcjUVH08qzC3FkVVf82s9+ltV6zf/0G7/J62++Qxd6RSoNh2JkU5/5TP2XLD6TeQG6/MndCdOethMKVoKLjPhNr/k6z/m6SQcHZg5LlLZiPeykQ1AyG72GWRBTEIv8pVOOkpGLbC/l2BochJ5ud4X3Umvu/MhxSjKQDAlkgzHl+zJCYDEkI0JlMQrfxFTKF2ia0pJrMEQnn8kIwbDf47u96J0Mg3Su6Fju1WpFVTn6vafr9vhx1GcbdKy4lRkZIm5A1TTUi6Uw8XPrI9Kqnl/WSBshSZLRZKWbgSTH3fv9wfnlhDZqKbZdLKiMxffSll1XNcQ0SbqTFElQLlgMjDoCOgYZbGSckbKHH+WeIJLqzhpWiyV1I/oDuS3XaeA0DD2VczR1JTwLJWxa3Y9BxZzE6Kpqbcw6LKHYtqTJZxGvew+v9xwMmJiz6ykgyEva6OaVxZMK7Nq2LScnxxwfH7NcLPDBs3u4U72AWYavx0v6M+99CQIKMSO/J8bi/KNmpFkbO3cwHF58jtLzMcgXUiK24L1M2FJj0ehc+DSlqOUzhTvAjOiWf5W/pfz4kKxSsrGCNuTAKs0MSCpEmOBj4QT0g3YJjINKw+a8IGmmbDGuxi2WLG/c4OypJzl5/AlWx2eYGOkfPKR7cJ9xe8k47DAEHJB81GNmpr6cX659ZehL2ncsbhyojtZC9mkjfSdDgkzplMi1vXxdKl2be/r1cQjhRe9BlNr6NNlSI29bEcR/kZJA7+1yQVJUJGd2k22eEKvM/ajqmtVyxXK1FGnVbCw1I8yBgNWe8ckhmLK+9dCEmOi7PReXF/R9T9u2PPnkE7z//e9nu92w2WxZrVYYY7h//wGvv/E6l1dXGGs5Pj6WZ5zJZk5UxXo/cq/v2MfIYvQ4I1myjSgUazGVY9msqOoKP3oedg/oh5F6sWCxXJLu6zPzMqo6GkRHPSVsMngrmYgEAiPOVVRtQ4oq4+09QRnT7WqFtdLCJaU5aXdyVSWTPVURL6hTcNbStgudM5G071yM0NB3tIsV1qkaoXOlxbWqa4S46MGCa6QVzFojHIKyfyKubmgw5M6T/FBiDKSQWDQ1v/wTn8ZZ+F//7e/z0itvc7HdiPyrqYQPZHL2Pu3RAq8X6F3Lg2rHylrJPplpL5fqi5aApqBhZjNN3qV5OU01/Qk5KFaKzOtIs9JNLtVdf+/8L7L+CzNAyi55neXAIKHoYaQfOnwQ3gAGJdlVsDc0VU0wEsShzlGcq+jyj8MgwZwBY4Vb0yxEAVC2lWIkMTKOkrSZlBj6jn63lSDCScLSLpY0bUu33zGOvXaBCXqUAozBiyRvLeQ76yyjH1nWx9RNw9CPxZZMgZ7MEMAY/DgSrZX7lx1+SIpaekYjjj6jmgYpawx9L6RXrfenlNhcySTctm2lVECaygAuty8nKkW+kyLEzroivlY5JyOYQxDJ8WGgdg5TOVE/TYKgNlVFrJz4gRQlUJicColAmkk6Rw0Sigy5MYKKJXAzm/M3vX4o0aGojN8cbUjPpJucog6/qJV8dXR0xGq1xBqjjmwsmQZpFkFnVEH74cfc6pfStT8U5yQa1xIMyOQ6eei5zpczgblzmEf+oDMIlIeQZxtYY2lrGR2bt3+pxaSJGT7nCTyysZMyKa5FCAfEpXxNqn2QHbEIx4yMo6fvRvb7XUEC8v0DClmGZDHWUTUrVmfnrJ94gpMnH+f45g2csfSbPfu7dxguLqDbknwPRpjCyUDsPWPmCMidEiOr7ZoZFTAWYRLrtTdtg7HQ9y27fUeWDNY7O5ViyAxgU25H9t5Jn1FMIpaUo2yBwiBWgkSYpJvNShvTUjf6OAwFuZB6nlOSnZAEF+2SxWpB09QlkzJy88jE01zPmyMB140vRjXVx5HLywu6rqNpal544QU++xN/m2eeeZr9fs9v/uZvFW7M+fkZDx7c535/n67rODpaY62qvel6qCqHD5E7+x33uo6jxRrrA5VJpUeamGiWLSsjY0zHbqAbBqq25eyJJ+j2w5SpaoCcZBpKIfAm74nJkVyialoWqyWVtXRbnUevWbytKqwTtr9XTQYfRLzFugprch1WDRpJZaRtGSub95ZPvvAmxmEUg66GsWllfHPW96hMTVJ2ddBBTJmspi0F0mMeUchYuBgynhXi2FNVll/4iR/j/OQG//O//i3+47e+SR9GDDIRL8y24xxenwEEYjdmayCv3flyKE7aKHmwIJWm0H9zRjJZhUNuAWlCPuY/K2XO/Jk0ne8jkUb+niSA/QysUBuVD5rXW+4GC/TDntH3tEkC8RgTppoG9uQgycIM2QuicTHqNFcjgX7VyD6ra9H0CIoOZ1+BlesS+d4IFnwItAr5xyBku77vi80gCVkuBLm3i+WCGJNMP7SCsOWx8zCXLlfRsygdCeM4lmFE86Qzl7yyj8j/9t4LusVEYDbGSPs2EsBWdVUQAFkymuCEyHLRYp1lu99JwBBEgK1ylrZt6IeR7XZDt9vRNI62bVivllhnpETiR2KSqaohjRBDCfBS0NKd+slpdH06KJ/n5zeVyLQ8/R5e750zECYjpuEzdV1Taz0QhAXeNA2r1Yq2bWTKXQj046AtT1pe0MWdCLrpZYrTqPWiGCZ9eKAw15umKapYXdex2+1l6M44ALU+PJtPr7zyGN7DelvScxDSVDf0onttRBYyZw7mcFdP2UO5iqxLLhIlmavALMvQVTjr+WdCCkAj8FT0/Pf7vXYKyCaRh50lhGWjxgjO1jI69/iU48ef4OzZZzl+7BZt2xB2W/b3HrC9/5Dx6gF+6CEFEkHFlwTqzXPt50hN3iDTIpK2SKCgE1V1jKFhsVxQXW7pfF8CFIGhM4cgG10N+nL8lG/eLNgTCeOgcFfCBkeTWnBCusvoU1XVVLamrhdS586dLkiJxzknvcs6g9wwIVBcKyuU51Ne0+/yA5ZMJ7HZbOh1HoG1lv1+x4MH9zg9PebmzVvcOL/BO+/cKbMzuq4TQ51LYEzXDJKRpWR40PW8e3HBM+uFwJExFhnsyjkWuo8uL66IIdAsFpycnVO1LcPFlbTCksRIR9lfMUIgUNlGIEw/ymjYWicvdh3DvqMfe5GXrSpWR0dUjUxg6/d7fN9h6rqgJ/nB5cExy0Vb5kxkg5wbuyoDbdOSorD6nRX+iHBAZEZ9TElaEaMmGnqDRLJYFRMR0qJBDHCVZdB1T1kn0+BwFW1V8zM//iMcLSr+r/8y8vXvvc7FxZXuvahcAwkksh5E3oTmwJvKzw/gdg1W8xTIR4iB1+a06HKfQo40/9WhYy+6AAW2mA5VUIvi+A/XKZiiTpnbGQ+Onkev5zUPDH1Ht9+x9CLS1vcDy+UKV7uCKiVFgKKRThai6AdIp1FSIR/57qjDCwRRoiR4WdwsjCN+6Mmy7ZiEqyuaRUOIIkaVBwhFbbsj29eEyhzndaDDf+qaRoeMOe2xt9Zg8tRbzIFsfU5iq6pi0MDDgApkSWfA2PX0w1hIw6SkZQ0pg+V5CgBNJTyJqP7QVSLl7UeZWRDGkaaqaBdtKWmsVkvCOLDb7YQPUDkSgRCkTNDUjRK5ZUhe0pK0OH8/Bfu69nKLee6+K94tTQFpmPuZv+H13qcWaiErkUllicVqRVU3ZZOLEa6pqwofRGEw+jzy9pBgk/XmMxogoyHzUBqdaFdXrFZrjk9OOD49Yb1eUTuBSu/fv8+7d97l3r177Ha7woK1ZYPPjX6+iNmGjEjUGiXQ6XodFqE105wdg1HycZo0D0wizTajrPkMdcvNz7X3KahRcSbtSCizD2IsJKt+GNjvuxIMZHQkBxLFXhmDdcILOLl5i/Nnn+Hm00+zPD4m+Uj34IKrd27T3b9PGDpC7PX+THoFsvHkOcRkFN6fMp38+zxESbJnmWBHTCyahtEMLNtao94hr8SSgWTSXVmNMzQlE6JASKJe20Wdqzg7O2MYBjabLePYY0yjLF5pjTNGtQ6MxVQ1FUqcVCjRuSkbmLI0XRN5IWTsNAcJhsIDKYa2PHfoh47dfqsZj6BQV1cbbt9+l/PTmzx8cMWdO+/ivefi4lI5MYMQZnNglA7LQQbp1e/iwJubK96/O+OssngdSOSqGts24Bz77R7vA4vjFeuzM+qmZvPgAVcPHwpRUIOwGLxeXgLjMGnA1DXRGGptB/adcg72O5JFev9rMW4pRvrtln6/w6SEyADofbEJP/YM/V5areqa0Uum7mzeXIIWVtq6OQRPU1X4sSci1+R1iFTlHCZGknIIYhJBGD/2RRCqZDyIrkRU/QLZhglnDZGKlAwxyUCJT370/fyP//Qf87/+m9/kj/7j1xi7vTg1UglC89rMA47mz0eX6sH+zatnzk1KhnLNOYsvv5/lENkXFxR0tgZzR0GJQ/T8xEYYXZ+aQOhbyPMQ5g6AHNyYcp65TIfOmjDIbBjGjnG/J/kRPwa2+4HVetQpGhEP1EYRQmPVUAqRzRBIOvRABuhU1E01Bc/WYEIqUrp+6NldXDDuRZfAuIq2XbJaH4uf8EO5x1EJb1J+MoJS1RW2rjFI+ShrXIQYpfSlr9xy7JzD930h5mVSrQSh0o5c+FbGMHY90WmA72QqYLfflxIpxhQS3ziE4ojrqqJuXIn4TAIfIifnp3R37wqKF0IZenVx+ZDVciEjyp0BJ104Qy+dDk1diQ5DHOS+I9oaKXhVHgxqi1JBnnNgMK25Cf2YAtFE+E8vOoTaT7m4YRhZLpecnByDEVVBjJAmZKKg14Ekk4OZjpF0TKMvbVlJoSznBD45Oj7i/MYNbj12i9Pzc9brtbRkeBEbWh+thRleOd599y59NxRIzehCMtZgXNYYQPXHZy04iBPPTPQQAqaWntJ5KSBHYYX8VpANJFozMNW6S2VRQYA0tZVpEBRjLGp1Uecz9P3AThnwvQYmSd9nRGaLaKRPu64WHJ3d5PzZpzl99inObpxROcf+asvm7j22d+/RXV2QRlHJCrl1chYlRiXEJJLWJRMpiZNLSSRmMYHaOdarFTfPT3nu6ad43zPP8Nwzz7DrOv7Dn/85Q1WxXC3Z7nbCZcjhfLkT11jQ2SCqMfMhlBIIwMnJEc888wy73Y7d7uWyKZ2TgUwHBrdMWctEREvmBB0EgqaY3Wkhl19eSwjJpzmZ8pSS1Eq91jRVxMd7z8MHD/jyV7/MO7ffoWlaPvHJT/KVL3+Z+/fvSQ3cac1TzzWz5SVwtVgHg4d3r7a8fXnF4uSIttgY2Sf7fk8cA/WipVmuMNawubzg6uElD6+uJMs2dpojkURfQhh4eh+U3R3CSJxJV2e995zZ+2GgV06PdVbUAivlCoRA33UQpa86+cCovIZYSJjovqwYg5dsUe2DdUIUdUZFkNSOZFXIum30/hoVffEl+8/qdMYmrA5pF+EkCWYjUFcNKUZqa/jIc4/xP/zDzzN2HX/ylb/i3r4HIpaoqo05yM9rVhUdVVOkrJ+ZrTBl2Uwh5aGXPnz//GclKC1RQz5GtklptiwPO1eynSmvUgPOkc30u1QgN0pwMJ2m/M6rsE9u29nvO7q9BmBRHa2215YAJkinSVROSNTypq0kWBCbnr/B6ACfQL/fsdteKS9JugJOF6La13Ud49CJGJU6MmclQ/M6d6Kqa0UE9QJ1TeaJobkDJa/hFKKiqHKLs6ZAjF65AQGrarQpBrpOUK52JV1GI6nMVbHa5iwjkeVOSieSaAb0XUfdTtMNu33HZruhWTSQAj4mTBBBIGukI4AUWbSCzhEDlpoUAj55IeymTNL0JRBAE+aMrsYUhfg7s7VlRRoddWwkWI7X184PeL13ZCDG0jMNUqfY7/flgQjMKxlemE8lm22LXM8J0WtbnLQ6ZQJXVTWcnJ5y48Y5Nx+/xdn5ubBN67pcrLEWW1ccnZwQY5I5BBi6/TBFy9YU5rfwGvRpGFMIUCLKEAlJyBddt5e6uTFlsE3OLEt2nuFBNZxZSCNDYznjKyHHLOvIRiOFCQ6LITD2A/tODHCnAjd5eIx8LAnByjiqasHy5JyjJ57g/NlnOH/icRarJfQ9D99+h6s7d+guHhK6PRBIyeuY0Anyz4YsxiDlGET9ymrvrzHQOMvp8Zrnnn6KFz74AV54//M889STnK5XNAjM+Mpbb3O6bLna7rQXt2Icu6n3GSYodgarJnR4TxRYO6uRgaFpa5bLFTC1pObAKD+HpIa6oA6WoqFubdYCsIUUNKEBTGZ3Fk2XemKiHPuRtZ9S4Wtkh5dnnd+/f5/njp7l+fc9R1Mv+Pa3vsnV1ZVC50JAWiwWmFn3y8FLki6u+pFXH15wY7Xkps3CQCMmeGzlWK5WVIsWHwNXF5eM+z0P797jKkbSop00+VNG3+R6Ry8B37ISHszYD9o25SnqcEyKkkPfS+akLq1eLqWWHH2pwy6XS4iGwY9EQsnIrDHSJ+2EqyDdFW5qV9QigqXSrEi4JuujNa6WuQh+FLVLEYxyitRJX3mKAVfVFOg0eSVNSe5LQrgHREzs+eDTZ/y3v/oL7Puev/jmS2zGQeBWooxNjmAyPKiOr7Qa6n6dh4+5PXhKxGbp/xyRLGstBxFT0JnXT7KzAGOCDgpqwewYYGYt3ams11jaDvS7U8Zf54FMRsGm4NiYxDhKMGAT+EFkzJdLWafGmoLEyaEjKUkgOPRd4YyJTr88t8pOwm7OCaly6Du6bocPouGfTI2tG9bHJxhr6HZb4aqQZDKfgWEclRwMrjbSzqiTEZvFQscv24KousaVRCJ4Dxp8TpyshLEJ76f9Xtc1zql2Roh03Z5aSwgJ8VN11Wgike/bFBhVVYVB7H8uRYTgabXENvQSWEnCIIPIKmchBayNSsYcRTDNKGKrOjkhekXTpVOHlKRcliKBNM3bMNnTTPYwx5nYGUIApavub3q992Agbw4zLdYpu5gmYKUwj1KzA0iFoDH6gTJ5MEoGX9WiB3924waPP/4kZzfOWK4WAlvqQ5ZEQpxvjAkfIslYVutjPvDBUyolicUQGcee7dUllxcPGYYe9IZlzSr5t95VzTwzLA+oYpQtTignzzkoyGS7gngkvUNJtm3+t4EC64hflxp9ZuX2/UC/7+j6QWZTh6iLS7dxEnKbtRXt+pjTx5/i7JlnOX3mKZYnR9QpMjy4YHv3XR6+c5thewVBxIMSEa/EkrlAU4yZgSrmfrFY4pzl5ukZzz/zBB96/lk+8oH38ewTj3Hz9ITaOcKwZ7Pds737Dvd3W3abDQ8vN7TG4KKUDpqmZq9EwgNjmPRvCTITM4tG5eFS+Z6vV2sq59jttuz3WeGMAodZXUvWzNn/19sU7WSX85rUXZJm2uNTx4KWFlTzwFkrteVZUJADiDwFMEupkmC9PuLWzceJMXL7ndu89urr7HY7JTFK65TUxac1I9ckwahBjtn1nrevtjx9dcXR6RHGhNJStazXYB19PxL9lo33bK8u2VxeEpcrneOeCWJab7VZIRSyqoIfRLUzr/PcWuUqgXmHsZPWqSiZWbtYULc1ox8JfU/fdVhnqOuGoIgas1np9UJ05kOU8chAEVWJMWBohFDo93T7LdYaFqsjRfwUJdQOBVdZPY5MgBvDWILwzMFolClulARpUmAcBNHAgDWRF557nH/2K7+AMYmvfOdVLrqefhxlGqJBqa4Tm3xexiqZPMzWg5nS/3ncmIOwbJxnDnlaR2VByr9nwUbKv9Nf50Fl+X/n7YqzTxzGAo+cFCUATwZyJSelhO97ggZHIRrGoaNdNLjKFSRIjiuiRMTEOPQM/aAyv0777qW8KNMqpbPLGRkKF8aRoeswZJtZcXJ8g9XqGD8O7K+uZBaJc6Atu13fY4G6aZRTI8d2KdFqUC1lQikDLBeC4uYBRRmXDYpgYIRDMxHIxQuUUcZG7PN+vxfBtKykmcNh7ebIXQXWSkeSLEXZn3XTQl2z322QUqqoK8boRWUxBYhzVDGBTVREfL+XPRRj6dBJKr9dSrZzDYyC9Mh6zd1Umt6KfZxqYVJKvT4x6695/XAjjPMCKxFjFolJuo6n6LNkcjry1I+iGRCT1D4ybNm2LUfHR9y6dYsbN2+yPj6iqmWOdiLgnJAgpI1IMuntds92v8dUFTduPcaTTz7JyfkZtnIMg+fqwUPefPUV+r4rNxd1rORoTzeeZPB5WJHAWG3bSrtichhtebO62WMOSpiiz+x8jHIGYhK1rowm5D/jOBJGz9AP7LuOvh9FQTCMBD9NMcz3z7qKtl2xPL/FzWee4cazz3L02C1s5Rh3G67uPWBz5w77i/sM3Y4UhXwCU/ljckKa8Sh/Y1Ev+OD7nufnfu6nePKJM558/CZP3jhjKbghqR/YPLjD3asrus2WTdez3Q30Q0/X7dkOAYJAW8TAomnZuJ0EaSmWzVRA0hm0Kp0Kk1ZAVVWcnp7yoQ99kGEYuH37HXa73WEmbRDEJzt7dEMaI4pk5NKGKe/PxJAUEsPYixTrkHXEJRs0SGtQVVUs2wXL5epAd8AYdJ0uSOmCYRwLiTWEwMXFJa+88iqvvf4aFw8fErQlaVE3rFZHLBaLiSdS0Iq8YAxYQ93WDN3AZbfnrYeX3GoaaicTyBarJTHBbrejMhYL9PuOq6tLQkw0dUsaJZNPRh2MTwKH11NGEFNE7KUGI0ECxCwaG2Nk6HrCoJMRU6JZNhADYy9kQx88R6tjIgmvcrTWieE3mjH5IGNkUwx0KkhEEo5MAJF/jVGFyFa4qhIEBPDjSN1IN4NoBMio2WHsNUhwJRkJKpLtnKVxTSHYjmPPwi0xxtDrpMYf+/BzHP3Xv8r/8zd+hy994yXubnbsoyBwWQBIeAGp+NislMJ1J2wmB2uyl50BBGL3poy/JP15Y2dkINvMpI665PTywwlwzzoINi/qCeUrXzzxsQ7jBaNBEVoRSJikqFN/Rb+7JPiBZBv22z1ts8AZqYc73W8mWRl0pVB1VGQkl79ISR2XstydDM8K3tP1HcGLgmRKCZylWixwdVVapMMwYCqrwbHcI+dckdA2JBURMtSVmwaYJbC2IgZJEuzsOcneFIjdahlBnLDVCYISTO52O0V6pXxnnXTCie8x070nYozDVVb6/2VDAYbKWtrKEYyUJMaup64crq2JXkrXRvlxlQURLw04hLgtZRcl/qY8WOhRtDnOTEbxX2lCBSR8yaemKEh+37UA8a97/VAKhHk2sjkwuKJdb7OjTanA23n05TBKnXJq55Ca0mK54Oz8nFu3brE+OcKpEINEi6Lr7FWdqdvv2V5e8eDefa42G5bHx7zw0Y/xwQ9/mJuP3RJmZ0xcXVxyfxy4vLwUTWvQKHeCeUoWbzTyUja9wNUykU+S+0TefPmWOr3uyVHFcr3kB1YytCmj9N6LZsC+p9t39EPPMHiNaGPJXk0yOOMwdUt7eoPzp57h5vPPcv7E4zTLFUPX0d25x/bOHXZ37zB2W0IYJr7CzH8643C1o3KOumqoakfdGNqm4uknn+bXfvXz/J3/7Eep445wuaF/910u796n2+7YdR2brQjndLueTdez76W23w8juxDodh3Ge1CIra5rvO/0NkyG9QB6z6qQuvmtddy6eYOf/4VfwDnHn/zJn7Ldbgt5MksAWzN30Apl6gRFiQkmdMro07LKYO/6ju12W1AimR3eKGs4SmCmf2KK4qRclTE3ILFarVguV1xdXRT0w3vP7du3uX37tgj2aAaxXCw5OjpmsViCUcElOyEcpbQE5Bm1trLsh463Ly94bLHgiaMFbVtjsVKnT4nKWIIP7HdbdvuOetFgomTTBBT6lkBUiHlSYihISE5qdX2aqIRMDF4V10TjI9AsW6qmxfcjQz8wjp7FckFT1wUqrisnGY2B5XoNTrTt8VIyHPtOhn8xMb5lKuSaxWJZeDiijKiIhrFaSpTnFFUHxKmojYwftyJNa0xO3QTk85G6aWW/C5QnAjcx8MkPP8//+M//K379t/6AP/yPX+fNew+42u0IiuKFaw4/O73ScUJGBiFn6nmd50xzXkYqDlo/kyWupWRGgfrzMxG2e76SA/NaAoFJ+8BOyBv5GNcCgflRUj5u/pTB+4FutyXFgLHQ9b2O0DWly0P2Ty/1fw1gcvt41ncBRE1Ss1RrrGjuD31BmRJJunwWC5arlYjx6CyYECOxn1oAG0Wp8l5uamk/DFqXrxrZl846rJFOlkROfORP1qKwSiqsqoqsUBsT9H2nZbg8sVDskR+n+RpWVTFJMkwrqw9amAKHLAKm/LjKVXRhi0mB2oHTsU/WiE8RHEqUPmP0JRhI2kKYfc48EMhriexP1CLlGyQOX2zUI4Eth+v3b3q99zJBObkJ/hJHOxtokaEtrYd7L4NzsmSufFCMe7toOT455fzGOe2ixcdI7HvpInCOFBJ9CAz9wOXVFffv3ef+vft0+44bN2/x4effzwsf/Qg3H7tJ1dTsdz0P7t3jrdde45XvvcSD++8SQ5hansrmLvdRFn6YomxxzKo05Qdi8AqxSKRY9lpKh3+YDEXJ+2ZBgNeywH63L50CIfiiEY+qmlnnwFRUy2OObj3BY+9/Hzeee46Ts2OIkf3FQy7vvMv+7rvsH9wnjHti0iw3q/UlI7D/zXM+8pEX+NCH3s/56THnNx/j+PiE8/NjjhYNrYms6ojdvct47y6bO/fY3HvI1cWGy+2W7X6g2w10u56r/cC+H+i9Z/CBPkQ6H9mGQBxkU1sMbdOI9GicQ6ayOkogSCpBmVOH/viTT7Barfj1X/+XipSE8iwE+q+VLVyVUoA+RWlvMtnL6R/9zqCjsjdXV/R9R1VXNG3LcrFgtVqJDsZ6DSTu3HmXd26/w+XlJQCr9fEEt2Go6oobN29S1zXb7UYMp6I9IF0BTdPSLlpWqzUmGfq+UwQkkccmH8xEKMCuwTUV3QAPup43Li85W7SEBnZ7KR8ZSVNEjnq/JxhD5WpMU5PQeqmqmIWUMDEqSU+CXT+KgItkibGINlVtS/QCUfpe9D2Mq6ibBSkk4QBp7/9isSCMgbEbZEiTthUuF0taFRULIRAMxFHks10lXJRq2dAuZdiLq2qBqkevtAWpxecunnEcReEtGWmJNQYQ1MdaYcRbFX6RLMiQrM67V+OOkbq3bWTGvKss73vmMf67//pXODo/5Td+6w8J3UCXPIM6dFmyoqCYUaNUHCnTc8u2NZmSVWJm6NfsM9KKmFfrZMyTmMKCBhbDn5gGICU1/zM0YjLIZkKD9DfJ5FLH/H3zNshU9lQMgb7fCvpSstQIrhZRqlo08EUBT4N3Le0ZtZt+GDErU/aaw+AqQ4hCuI3Rq+2VIOT05JR2sdB6f1CHbvA+UOv+yMTp4D1VVZfptSaK6Ferjpkk7arj2CtiKB5JSIpTxpxbV9FnKtNUvU7W1PsadAIsURMEKTc55VBZg6Lbns7vMUDdVNT1SrpkoqIl1rBcNqTgcS6VfU9ujY3SxSDibOoT9RnnkkDuFJD/V9gISRJL4JhXU15zGqhlFAqMki6/vwLvX/d67wqEJjs8PXGTyWAUdbmc8WX54CKSkxekMZiUqJuGo+Njjo6PSCmJrOso8BQxEhChku1my/3793lw/z6bqx1Yw41bj/GBj32ED/7IRzi7eYOUEg/v3efNN97i9Zde4u47t9nvt0TmY4yzyExGBA6vq3IOVzk938Tm8kqjZOUWYBTGOqzdzYloc8IKSYgloyopjoUbID36UnPW3n1jcaYCY6nrBcvzm5w9+zy3nn8fNx5/jKatCF3H9t59Nrdvs7n3Lt1uo33aCs0lwAgUdnS85qd++nP8F5//z/nAB55nuWyFgZ0A3xOu7uOv7mO7kbDfs9ncZ/PufTYXl1xdbthuduz3A7tO/mz3PZte0IAheIaQ6EOii5EuRHo/4K3B1i1tXSvr2xdgSngPaWZAEcOvqpF+lOc8DiMnJyd4ZaC/8drrqldfUVUt1tZT9q9Qqsk0Y7Xac6pgCJGu67m8umIcOpq24fT0lBde+BDn5+e8+uqrGDMRFZ966in2uz0PHjxgGDzLlZrtjHYhs9VPdbLgMHuO1kgA5pxkh/vtln4ctR3IaklCrmW5WLBYtGUwSt6m1gqSsR9Hbm+2PHt0TGsNIXlyYcSrfrsPgeZoTb1eC3EzeFLOTjWwzCPEXLnnknWnGAops6oqQhLSVhhHydhUx0DmByg8nCQjDyHS70Vbvl20hJhwVc1qtYYgRC/vR8aUGP1A5WoaV7NcLYV0WOYdeAY1jDL4jKKeVsRUYiw6GHVVE4KnauqC0mWbkhDxGZvb7WISCfGUaFYNKWnnjLFEAk/ePOa/+eWf47xd8Zt/9Gd887XXebDdMETtVkligIPJLbWy4vIrk1JR4y1G2ZQHKQZ6KgdpfMEsSp0ytSTl0nJNzIOJnOFlpDcnHnJ+GS6e9pnqM6QcXs5sHAATUonizUO3Y+g7nJUySwiRpq3FeSdBd0SKWDRABHr3knVbp3X5pKiNQvOpIk+0JYk4EN5SNTVHR8caiHhNuHwJpGISqWq5lkjdaMConCKHtDq2bUvTNHTdoGT1gDNOS3BRNWqizkrI4kEyuVVmAlTaSRDxo0iXWyuJSVa7lTHcgXHsqGpHwhYdjCwSJ91FDVUtCUpdOYJJNG5J8D0pDFiT/YHYiRA82pdP0p8dtAZymM/M11VOenIyVHhNGaWeBa8HQcK14/+g1w+BDGgEExPJRDC2RCmVs0K+GAO97wssKdmxThKMpgyRWCwWBf4ZhkF1CixhFG38vuu4vLzk4sFDNtutjINsFzz+xJN86KMf5YWPf4yzmzfZ9x0Xd+/z1quv8tqrL3P58GFRvrIzxCIliorgNMvUKdu7ZrlYsGxqwjiy33e89vobpDEUkhfTM5EWKYX8rLGqlT71e+YIchhG+mFgUFJMP3RaKglI65dCOyZhm4bV0SknTzzFjeffz81nn2V9ckwcejZ379Hfu8Pm3n22D+8z7rdF+GPSfBP46uzsnH/wa7/KP/yHn+f85FRXhSelALv7+LdeYf/6m/S7gRgSfdez73t2l1dstx2bzZ79TkoDu25gP0a2w0AfAv3oGWOkD5HBR/lZjOz9yFg7KW2oYx0HadfBZmnVQ2OakujVj37Eh8Bbb73Nt779bT7+8Y/TdR3f+MY3GH3QTFrKDzltsipcb6ydFn8+/ixjE+GfDVGZzOc3zvnFX/g5nnr6KZ544kl+89/+W15/7Q02cUtSzkge6+u9sNRxEVQ5MWduck6WJi1kQJOuiXEc2W03UopI0g53dHRE2zalPrnd7ri4vGToFxwdiyNH4eLKVlS1Y993PNzveeNqw9KCiwGj7PxcLrB1JbLBTY0fRiH2VbUS71xRHzPu/0fbfz5blqXpfdhvmb33cdfmTVtZWb7a97T344CBIaiZIQgOMAAZDBBAwFBgyBAiFCFRQX2Q9FdQXwBKIvFBAChhMAYYzmCmvZmuqi7v0mfem9efc7ZbRh/etfY5WQNTHUGdjuzMyrzm3L3XXut9n/cxBmVkzWeSZec8fYiUZQXZs4HEMQlRkhGr0ervfMB52ajrWtQuk8lYoohjpJpOQGmauqZulvIMEJN19JjRqEJbM0Rri9U3aUNcFbMxQeziEaGGzHiTNnnIh6NHofG9+D3o0mDKUopINH3sMYWsRTEXCtgYUQSU0XgV2Noe82f+xJd48SPP8N//xu/we9//ESfzRvYtJJ1Vx9VYcdAHDJK+SNTS2Mhhv1p/ee/JfiN5mJB7OqlnE+wbczKgHkYKjwUnqccbF2LWj6enPvLYV4+ZvDvscQxjhPUwhvynru8IvqfSWnTxXcvG7q7M8JNjoLzriOs7+uQVYbN6RNsMfGMVqBggjQzkfUkjqJVmNtukrEZyX7y4YxKlmIg+0HY9oXf4GLGmYFxN6ZJDpbFWXGbTyFiPx9jSDs2bVVKId107vGfpWz0qqCFR0HU9OkIxKmnalsV8QQyOmIH3VIzG3okZU98xUhXj8SgVHj3GZvt7j3Md1irGVYXvO0TB1aERh8bg+3Q2JPOjkA3pII/HpLFOY/h01VS68SuxSOIuKSXuqXp9UWRkLd/blWorDBbz/3MjA3ENIssnbIZGRiPGoxFt16UOR9M0jbgxhZggX8XIVhRliTVWeAAhiGwwSRa9c9TLmvPzc05PTwWCVYrZdMalK1d59iMv8vTzz7O1tcXy5IT9ew+4c/N9Hh0c0HZ1ejgzAz9rROPjT02+UCGidWQyGbOVWPN1XfP++zd55513UiDEOuSnyIZIfs3reZh/p80shpDcESWIqev6oYINSpzPTBSnQ2VLzGjK7OJl9p58kgtPPcXG7h46Qnd8xvnBfc6ODuhOj+nqhXhte3EBQ2WikhQVo9mUn//5r/Mf/MqfY2d7Y1jcKrQw38fdfJ/FzVssTuc0rZdO3/W0TUezrFnWPfNFS123LJuGuu2p+57GOUmAi9D3Hhc8XefovKfpehyBtocCA2VFWZQ0ppFM+6yFXZtbaSWQrg9yuPkQODk55fvf+x62KIYxSlmKu11VjiQbXeX1l61F10qM+LiYyidmcp9mgjm74t79e0xnYxZL4SQEoEn8hKZpaJqWOEiwkoxr9WXTwSComIqJsBgjXdum0UGLMYbdCxd47rlnsdZyenqSXMg8jw4ecffuXRb1Em00G7NZAh+kkzRGSLVt57l/esq21WxahY4a5x2977FaszEZUY1HECNt3VAva8qRzDa1Qtzj0iEaox6IpC5ZXRNjYhnL9Qzei1xLwXRjQ4qPpDZxMSaTIEffR0prKaqKEEEbS6ENy+WS+ekpUUW0tVhrGE/GlFWJj+CbDlsYqqJEpU2qT8iJNSunytJaFJG+64cD1WiF6zpMYXFNIwgFyYGzkowFgbgjaEmcI0ScCsRUnGJTCBOgjKa0BZNpySc/+hQbW7/KbFTyu9/9I04aGcH0zuFjwA+UrLTR6jU4Nv9vbUQVE0oqWm81FDyrmX8qKqKgTnlMZHQcrjcJ5VPDKZ72WmnHc/U7oJTDvw97FcNhMLQw6d/zGs7X2weRs6kQCH1P00iAz9bmJm1T0ye/GEWK6A4iLzeFRRmDLqz8MmbwhpBIZCmSo098sQCzjY0Bsvd9J7+cSwQ6GcJ2XSfSQJ1IuFakxYUtJIMDQbFGzg3eA5HIcrlAKUGTgTTjt3gvaNciW9sn0mbfttTLxSB5tFlN03UE53E6Yq34uhAdfS/XZTIRV1PvXO51UCHg+5bge6LPyhmXLMBTTkdG1BPatdq21sP+VvcOtUIC8o2LrCzoc4zywEHK+1WQL5Z9bIL39Nnv50O8firToXUYIsNNRmtmsxmzjenQ6TdNy9nZnMNHh5JE5TzT6ZS9ixeZTCc0rTCTlZcuLERJdGrrhvl8Lpp/H7C2YGtnl2tPXOfGM09z5fo1rDXs37vLw9t3uH/nLk1TJw0usEZs0YlkpmMkhGSZqXPdpDDGsrO7zQsvvsj29g71csnbb73L4cEB9+/fR6mVGyJrevlVpbV2F0PmB4hN8mKxYLFYiJdCMlVCSx68VgJpmqKk2tzl4pPPcOHpp9m9dgVbVLTLJfNHh9T7D1gc7dPW5yJLCYHgk4FQek/5edfacOPGE/ypP/Un2N7eTH+tULElLo/o77xJffs29eEZ54ueZSNdcBc8ddPh6pam9TRNn2SOjs45Ot/jQsD5gAsRF6KgHb2j7R3OB/rgCAF63WJMMWjrfSL2yCpONYHWKGPxbUtdNzgXBubrfL4YSIFlWVFVVZI92sehr8cWZJ7fxqGFilEirV3frx4WpaiXNa73PPnk0xwc7PPEtevcunUHrTVtIhiGGAcd8vD10gO6WvO5xxMyad0Is9852Vh2d3f4+te+yuUrl7l79w69E2RIIZyK0WjE/HyO6/q0OamhCzRJrtVFz6Nlzd1RiZ1OsM4n21aFGVVU47HEgNcty/mSupZnwFYlXit0kWBbJ5p+iQgOKK+G61PXtSQ4kkKNgkjyyrKkbaWoiUpJPkEa+43GI8bTaUqLC5RlRbtsOT46JITAeDoSwmohUeXRRymQtGZUlWithqAbkVEFSF7vRmu8h67zg1rDaE3nnLgMZpdCbwhobFmlsCNRIdiykOciIztGU03GwlsoLUpHrFLina8iRSUGSM9ev8hf/Q9/mWeu3+A3/tU3ufPggJOzOY1zKBOG7kpGL6BN1vqvDl2tNGjxrs/RsmVZJH13mgOnwl1rEo/IUZUVo/GYpm5oEqktPzDyx9VhkQvgfLBkRCcmmD1GEqqwdrTkbmZALuLqWYlSlLXNkqKqcX2Law3RO4rCErxdg7SzjDRbFRtCCkazRSEGVFHM1fCBpl5Sz89xnTRB5XjCeDwl+kDf1CznZ9SLc7qukVhrnQygtErcm5JIXBH1RiPK0TgVTmYYPSslRE/vw7DfCO9KfGWMKnCuI6sutFa0dSMumn0ne3lQtE0j986LpE8pmFQT6BhUbNWoYlSWRIKMwHSS7XlRRcQgTVrwKbshq6oyTK+ySy3Dmsj3ZvV3aY2wRpRWkCmDg28AeSSfOAf5ngchJDq3kmz7FHP/YV4/FYEwIAY1aWcXuLcomM1m7G5vDWYQznnu33/I4aNDSVcrLHt7ezz//PPsXdzl8PCIm7du0yybdIC21PVCIo29yEE2NzfYvrDHtRtPcfX6dTY2N3Btz6Pb97h/7y5nZydpPppQC/SgfdWJVR1D1qTrYZaGMlTVmCtXr/C5z3+OJ5+8xv7Dh/zo++/w3jvvslguBv8EH6VCzwlq6ZatXRTRs/a9E4b9YsFisaRtm8FUaYAao7BKtbGU0002Ll7l4tNPsXf9CTb39ghdz/zhPc4fPmB5+Ih+cY53kicQ1vTxmZyZOwNjItPJlM989md4+pmn1vrlCN0S9+gu/b371MslZ23HYtGxXDb0rqV3nkUf8Y0c8F3vpFvAEUljkmRJ7IKn6x29k1/OOXwqggiRvmmgLMAWWKvpM28qbTwin0o6ZFMQQjOAljFKyJDWUJZSBBRliUQbk6SdOUQFcjKmoGbrHVc6wBNvZfBXiEL0u3PnHn/wr77J4eEhR0eH7O7usL29w8svv0zX95gE1Y9G1VrhkVm+w4MwPMh5NOC6DhQURcmFCxf4xKc+weHhI178yAtc2Nvj93/vX+GcZ7FY0DRdQgJykaEG6aFKBYFSmi4E9s+XbKCZWEuhYFJJMaGMoekF0RlQDqMppg5jNNau7I9DCIOhUH7fbWKOTyYTtgoLQZC88XiMzGndUNC1TU3vPJPplI2NGSYVCMYaXN8zPznFe8c05Rpoa4bCuW0anOspJxOM0fRtk6SG0qmLuY0VomZ6XyjQXj5fFQXRO3xCZIqykgMyrRsVIqHvUUYOka5p6ZXHTit0YYWIF7SYtVQSQ2sw9MGjEitdR7hybZu/+O//Ap/5xAv8f3/vD/j97/+YhwfH9C7Q9hKZLZBGuk/J+15geSXeC2XJL/7iL/In/+QvUlUjmqbm0aNDDg4ecXh0xPHRMWdnZ/jg+eIXvsgnP/lxnnzySbqu4//6f/m/8cabb67m3kHIbiTy6brp1oAwpDGhmDGlzp+sFpDzkCTSyKMHUtcpj6UQH2Wk56Vpco7gerzLaKbM0H0KsnLeybqNirKoGI+mA5+DYAhGUvuiF+dB14lL4MbWliA6vaNvW9p6SdfUDEqQmFQfWlOWI6qqIsaAD2CLkqKqILH5TVGkvTV3vekaISm5uWgX11IZL0AUp0rnaLuWvmvk8gaPCwweAnJdBKWIXiTTpdGUVlNYRfAdbbvEKC2FANlG3yVkwLPS9Ke9Osu78tmf1i48bvWeRwEqdf56+EgFw/2Tl08/d94bvVv5yeTDPyY04DHy/r/j9dPZEacbR0yzCSVwTFVVTGezoaPq2o6z03mKhxSt/M6FXWbbm1TTDXaUYf/giJPDU+q6oe0aeuew2jKabLC9u83elatcvHqJre1tSltwdvCIg/0HnBwdygLOc9C0wDNsnNELqdZC4ikI8zSqgunmDi9+7KN87etf4Ylrl1mcnvK9b32bk5MTuiFGM/kaDFW23JqQJYDpwQxOZl3LZS2IxnIpXgLeD3BQhhONKbDliMnOBXZvPMmFG0+yc+kSRVGwPDnm9MEDFg8f0p0e4bqamCHKtBnkUIrM+s3FgNaare0tPvPpzwwkLdEBOWjn+MMDlsuWZe1YLmrqWkYBbS/KgM45ggv0KS4ziCVkqjhlFfuEDngfH8uPyDM/FQN0LW5pUdNkBa20PBxGatmE8yMEHct0NsX1boBdIQ5yP5Nsa/PPHkkbJIKC6KQ3z6ziSG6IEmk0cRUgN0eB3vXsHxwQQuD6k9f4zGc/Td95Dg4OBuKaKTSj0Rib2O7rrl4qr/30e5YmNXWTOlvhn3Rdz/HRCdPJBsfHR7z22qvU9ZLJZJqke6K+MIUBs3JVzOCzKSzatvTec9ZFHtY1l8YjdqoCZTRY4Q/0y47FfEHd9sKO1i1T5yQK2Csh+AZN1Ctia0yBRi54Ts/lYNrc2aTrm0SCNBJqFAK2sDSLmq7pKMcjLl7ak3S1uhGGfyiYN6L8mG5sUoxLTJEQIR/pQ0ffierAWoPrWpq6JvMEJN1UDoj8ysWbS8+txHiLG50tC2y6nwpFn3LfYzBQWXov0chlVaGKAhc8OiCbYiHJnmjpbHsvFrUyr4/YQhN7z6c/8zzXnr7Kpz/5cf7wOz/k1dffYdH2PDg5SmMNR08UrbtP8bxGM5lN+K//T/9HfuVXfoWiSA1JClRyztE2LYvFksViwc7uDrs72yitODk95dWfvMrf/jt/k6Zp+Rf/4l/yzjvv0NQ1bdeJBC6ENBtPqiwY1vzKstwPkmKfEczc++i1kUFqSobpg+vp+0Zg7YRKKOXp2iV906fAMSXFf98TnUMrpBCYzAT9MEZGRirifU8bsnMedF1LtJbxZAOUwYc6SeqEWCvASS7sZS/vnZP0TG3AGGxZ4rxH+0BZFmIcNvwsSnJVSLk4hSgBhAiIFBshEHpH8A6dZH2+d6sUTNdRlZrJqGS5cLgo+5zCM62shL4Fh+tq4QxpUCqpAWBt3OHSCDEflI83jrmR0SrJ1hNKlEeoESFJDt4AiROVC5UhoyOIXN8nXlNEkDHfOwar++DxLssxswnev/v1UxUDMR0O6wzFfCDl7GeFItjA5tYmexf3mM8X8nEotDKSI907+kSw88FTlBWb29ts7+6ye+ECuxcvsbUjfvvNYsGd23c5erQvnUMMgxwpXze58DnWceUaGKNkvGMKimrCtaef5ktf+yqf+fSn2J6Nufnuu/zmb/0W9+/eFSlhWDE8ZT6citfUjWTSR4gy18wP+XKxkHGI90TU8CACsgHpUhwEr15j76mn2HvyScbTMb5pOH74gMX+AxaHR/SLOdFLLK/gQYJw5OIiJuvklZGQ/Lp06RI3btwYfCAgonxHrM/pFnN5r3VD20hH2PUyDnBJv+t8TBIePxyMuVOV0UhagCFTFvPvIjvSBHRQhK4jFjbNjS1tyC5/ad2skQmrsqSwRYZdBiTTaJV+zpym6FabIPIw2fT1oy2IVgxE8poAIWllyZc82KB8YDQa8/xzzzGdTrh96y737z/g3r37YiVajZhMpqkrST/3YNqQy4FcDMsaERmkS/8qpMXj42N+67d/m8l4zPHxMaNxydVrV9jZ3kVrzdHRkaR9piAfvx79G0khP5a+6XAxcNw2zEYV21ZsWKOHtu1pljV1I0WDTI0ibduhrEFpg1cBrT02Jh//NJsN3ktwUmKPS6ZHZFyJu1u2E3e9o66XaGu4eOki1ahiMT+naRp0LrSIjGfTFHGsZVbfdWgUdd9hjGZWTokhcr6YS1xyYkWVZYnrHS54jLUryDQEyUPQEHphcOcQtOBTUI3kVMu1VwrjBSGIWqGtpWs7SmNkPSpBm7IbQTQyqlJK4dpEUiwKgjGgNVeu7vBn/+RX+MaXPsXb793h5dff5XuvvMrLr71F3fYs21a88bseheLCxT3+6//6/8Cf+ff+DIeHR7z//ruEEAbpalVVFEXBzu421564AogD5NtvvMVLL73E1WvX+OVf+V8QQuCzn/sM+/v7PEpowsHBAaenp5yennB6csqyXrJcLqnrhr7r8SGwXCypl0u6thO5XAxrh9BKd76a8Wb8QIlUtanxaa6fRwzBS7eplIRJdTE+Nus21ibGg0gNdSLwaaOHw9Fa4U5UowlFWeJcnzz/M/qV9Ppay3rvfUKVRJqojDQVERn7aNNTlesOgXFA12CVrZHRQaMV3vW084UUlASsNWJ7rMH7XkYHSpJDy7JiMV8gscEBq0u2tjYE9XBhuDYq+YZEL0iD2Lr38p4HBcqKdJzf2+BLo9JohxX/KaTbkwui1b2ScKYsT46pIBTiZybfxjSKztbcolroexlvBR8f8575t70+fDGQDl2QHybonHsvh8LKy18e3tlswrUnrjKfzzk6Oubo8Iit7W022p7Dw0MWy5oLe3tMNzeZbW6ws7vL5vY2040ZCiF2HT54wIN791jOz4gk7W+2X4xqKE4G8gQfcOtSBlMU7O7u8ZnPf5Evfu3LXLt+hX5Z8y9/63f43ne/y/nifCDH5M8fOqm08YfIwAQVDXzP/GzOfCGjDdfnMKC0YIJcC2NLbFUx3bvI7vUn2XvySTYuXMBEqB8ecL7/gPNHB7TLsxTxuYoRVigJMVqzz5VUxDyLT1ayxogD49bm2s2KKNfgzk/om4au7WlqGQX0vfAB2l7ebwgBl6pNF4V4IpU3CcZVKJ8hbRIqpIbZlVZyfQoQ1MB5ojEUxuCGrkQN6ydmpFKJe1yemecHJ0TphLIBzvoDFWMUKVzXoJT44FejsRAMUziPFNWGsiiYh7Xcch9oljW379yhqWvu3r1L23UYU1BVY6bT6RCRHYMXaDmkTSb7GqSZX0yHlgQ9pUJGi166rmuOj45QOzs8feMGRVVydHTI7Vu3uXfvXoJCi5RXIPro7A4HsjkV1tIYTeg95y4y94EugvPQNJ2EojSNwN1JxtV2jqbpsFWFCVEcM9GPdZAiZxVJ4cbmpkD9XS+EsGT9nYl9XdcRiOxe2mM6m9I2gn7FENje2pTnwkWqySTBmpJZEZIENcbIdLIFMbKcz+l64Q7I2I7BVKoskjeAF2fSbCwUEr/BZsMXZHN1fQdaM6pGdH1LgRBy27ZjsrMlRUHX04UOrxWjC9tQiWRZJ1+AmAhu6EDXtpJ3YAu8NmAlKW9zbPn8pQt85kuf41dOz7l79z739w/44Y9e4f0797n36ITp9hZ//3//9/ns5z7L22+/w3/73/7f2d9/yGw2ZTabsrm5ydbWNhcuXOCXfumXGI/HtE3Lt779bf6n3/1drl69ymc++1nqeklRFDz33DO8+OLzCcJ/PNL86EjSWaWQlHXqnOP+vQf8k3/y/+E3/tk/4/zsHJ2SCQc/w3ywsDqc5CCKEB1tvZTRQB9xnXAGjBLpXZLuy72JSazq4yBDVQjiWpSlBMLJ1kO9XFIva9Ca7Z0dtNaSQZCat5Cs0okiLW27VQS5tfI8Cv9LUGebZIa5sPH+8fECLo9C5CywSaLe142oe5LNr+tFnaKUFJrGGgqjid5xcnRIYRQFisuXLmIKjXPC49BIIybNYGqGXU9IPIWQHAYVeshFIDeFkHJb+uEAXXciHYo1SPJ7BrJ+tmwP2bY9H/SuF9v/9Nw475KNvewj3jkp3lKzGLK86N/x+insiCETGAIyawNSp7oyechOT1ortra3uPbEVXrnOD055e0336asRsxmM1544UUuXrnCbGeL8XRKYS0heJbzBft37nDv1k3Oz87ovOj9s93kQKhQGbyXRSA643y9BRYcTzd44aMf50tf/iIf+cjzbG5Mef3V1/jdf/m73L/3kL5rBSJL8kfnU3hPvotpAXrv8b1UaG3bDgTBfGCFkDE5pHPRYGzJaOsCu1evceHJJ9m9chlbFfTzOWf7j1js36c+O6HtlsmRSnD5XOlK/oJbWeemTjUbXAwWmcZycW+PsrJ5aQGB2Df083O6pqVuOpq2kwOjdzSdS97yqftGtOQyiljTVyd3X60MRq/yDYQslMALSC5zEvgSnYPCSjFgrBxYGQqLIBHE8nv+WsMSi2kOn2xCC2sx1lAW5aDP18Zwfj7n5Pg4RVcHJrMJhbLpTQsqNJ3O8D6m0CAh69VNyxtvvCHVfhS+y2gkHAWFom3bocNQiINZUdjk6Z5/dobZnvBmAgHxS1Dao1TJ5UuXuXLlMqfHJzx8733uP3xI1wmLv6zK5HBoHmcDp/+PKoqMylq6RNI8X9YsRyMKpaANSSUhUHquRrq2Qy9rTFVgK1Ho2OBxUaOjXhW5iPZ7a2tTQl8yMKHFEtb14iiZ5bzT2Uzssxc10QV29pLx0vk51pYYWwxs9HZZp8NaCdHQaHG2a5u0jpSMogLDvNSYFFMcVpJgDZJZb2wao4gqyKfnragqetcDDgOcnZ2jihITI82ZIJHBGsa7O1BKfLM2Gu0l2FHZApTG2BFlIY6Z1lqCVkSliQR0VRGVwZqSS5MJu5cv8mlt+BN/8pc4P+84qTs2L+6xubPNYrHkwYN9rl27zmQ8petammbJw4ePWMwbrJXizznPa6+/wT/9p/8jr776GpcuXWJZNzx14wYbmxuMx2MmkynTyYTpbMZkks2x9rh8+dIf35Jj5GMf+yhXrl5l/2CfP/yDP6StGwbUjpXh0YAWDE1dkqu2tRD5oqVtG3GaNFoMrFKy37oD68BXSKNLybXQAyIagqfvWurlknIyZTKZ4pyMsnR0uK5NI7/8NUQmXJYjbFlQlCVoIXqaQlNWVVLj9KtzKDWg1uoVOowaZIUQ6ftO5v5eOvcQBcFoe5Gyi/RPZv5VWWC1YjoeUZYVukgIQCYmZk+AXFDnSOEQk+JEDddgoAwMIG2kaVoUUUZVw56nVnclZsnoCu0FQWec6weORCSjpStOQPCBtmsT0XW1LnJhIPtVTif5t79+iqAinxZQOphJFyWstIw5BY+0eRZFwcVLF+l6x8mjI4pqxMWr17jx1NNceeIJZhsbac7oWZ6ds//gPrfff5dHDx/StksyfqyHDjMjXXG18bOaFeRtvCjHXL7yBF/40pf5zGc/zZXLFzk9PuR//O3f4rXXXhPSVfI3IApBxq/N4oeqLUHVfe+S9Ex+tW1D23bDDRjIfAhMWY6mTHcvsnv9BheeuM5sa4fQt5zeus3y6ID27JRmcZ4Y7/6xa5btyXxacMHn+OEw3GS5zQLUFdYymU5lfp4f9OjAt7i2pqvlV9u0NG1P0zp6FyRxLkj6XiAVBgMiItdRI5OKgaSX3MrI/z5UuPK7jp6id3jtcOMSZS26zwtyJZVZzSfV8L1ikgO2XUuMgdl0ljbQnrKsmE4nTKdjJrMpV65c4c6du9y7d5+mERmi1VmimpjYSrOxuUlRlLSNmD2FKMzlshxRFDbBdDEpXlaEQ5EjyjgiExqtKVINmtabioyqkvkZOOdFCkQgejjYP+Rg/xGnJ6fMlwucF2KfbPaTNIrI3Zpa2xxAnNWgKkpc0xFDz3ldc7gcy/0IDt+32KrAmgIN9M7T9j1uHjFVJaZBRssILtrUUUjnIPp7jbGWsiwlSCZJlWL0CcoVtcDO3raoLZZLYohMt7aoJhPahfgJ2KrEhYiJgb6tadua4COTjQ2KsqRzTvTXIQ6HvkCZ8l6KoqDtWmySfqoo6iQfk198DKiY7JRdtu6G6CNBJc8C37NsF2yVBb5t6OuGUBZsXtlDlwUR0cMb73FtjTcFxXgM0aO8R5kS33co7zFmRFAabVNiQ9QYMyJqCC7S9p6zZcejs3PO64Zbh4f0wVMWJT54nnvxOWKIzM/nLBZzbFFSVSWf+sQnqKoR+w8P+Mkrr3J6csaT128wnkw42D+krlumkwlaa+rlEqUVF/cucuHiLpcvX+bZZ59hb28vdcV++JWNo5555mn+zJ/+U7z84x/zqGkwaY4e074YUKnIzyUnqBgImqQiaNDFhBAcXdtgNVSjAt9Z+qYhuh5FTKiDHEI6obHBB0yhKLSEDUmUfURZzWxzS9RAAN7Rdg0+ZXuMxxOWyzneeworWQTZVRJkbZSVJQSH9zJfX6kIZP9wXS8z+nwMIF1+39ZEJyoAIWC7oauXfUeQk77vsBpmkynjqqAoxeMieC8eKAmZjHkPDgnBGs6IuMqWSDbGg2nWGpIhG+AqJySPuGPM5YAazh3n0oEfUiGQkLqMfAtfwK89S2vkcrJWDgbel3zWhzrjfwrOQDLMyDrs1Ann+aJLUqDHDQ7ESerypYtsbWwx3tjg2lNPcfHKNUmgitAulxw/OuTOzXe5ffsm8/MzQtL4r1yUGCpANZSCavh7Me+wKG2ZzTb41Gc+xRe+8gWefvoGRhu+//3v8N1vf4fjk2Pquqbv22Eu7IN0w3mhrVjYQsLo2i7N6Wq6rqNt28GLeigClcC7phgx2tpm+8o19p64ztbeHlYZlgcPOX30kObsmNAs6bt0OIW1+V6Ug5eY5TI53teBWhUpq8dZFmNZFGxszFi5VSXHRydWzl3TSV55I+mITSdqAOEhyEHdZb5AHrVERFIYAoNZyapklY1Apc1aK7SHMFihyvxKBTEJiVqTgyylgo9DUSB/JxtV33v63icYu+DGk0/y1a99lX/+z39jgNv63rOcLxOJUKf7JA9MrEohFIUwvD+0kuS9lEEgP4Y8rM456qamS4E7xphEYCyAZFqU7nvbtDJGGFViu2oNxijGE+mcz07PkxYfeu+4d+8eKzlWhj4rptMZo5GY/WTyT2aLD+s6xgSPCyriQk/je47m51gCIxXF89yL054n0ntH6+RXsVgyno4pq2JY1+vwcL4RCoYZZGktRmn6BEuqIPyK8XhCfX5O7zzRGspqhKs7mvkSXVrQGhOFJ7CcL2ibnsl0OiQXei/mLflui+dIT0RcBaNKHhA6j7ys8B2ck0jc9LbzhpgPv2ws5rUSiWrbEWaBer6k84JeRBfotRPvgqBwQRPKEUVRQi8acKUUthC3Rdd3ROdR1mLUiIjBAZ3TLOqWg6NTDg5PuHvvAafzc6azKZcuXaKyJREx0drc2oYYmW1s0nbikOec5+6Dh5zXNSrC7qWL/Ik//adoGuGbmMS3Umq1iTdty/liwdn8nPffv8Xly5fZ25M1u7+/z3K5BCUyTYDDw2Nu37nNeDJhMp0Sg097shwqinRYrXZuMidIDpyWUTUBpahTcWgLMfvyXSeHTiZEaz0ccjoZ4OSGwbucvBcpRyN5L1EO7T4hRMRVV2utSXtdJjwma+JCRmk5PTaT50KS/eXGwiZJo/OZ6wVGKVzMaZkNYSA0CiJVWItJXgFBGSaTEdNxJQoc/JBIKoZBmWeTR8dheG4HehYJqcgz1LSZr05BNYgBctO4rlTKn5MLDd/3tK0gf845fN8PI+u8VwyS9ew2mpuYVAyg17/+hxsRwE9lR5w2b53TkGJuEBPZyxOsHS5DRA6VECOmLNjb3OXC5cvsXroksahdw+LklPt3bnP7/fc5PNwXaIc45C9HRLsaP3CAQC4Q5O+0FkvSG089y8/+3M/z8U98hM3NCffu3uP3fu9fcffOXRaLcyGICLQwXNjMjB8qtXRTetfTJUtkCbnpBgvNlQ90CsrRBdV4yubFS+xcu87u1auMJmPcYin8iEf79PWC6HtCdINueyUEYuhIMxu0zx8TI6gwnP9huD4qQb4q5ZCnq54LGgUuQuPEYKjuHG3n6L2nS8oAl4gpwjxNnIcoc/nee3wQX3GXvQ1ScSZV+lpgRobW0wOZ5Y/WSDEQsk9DvncholPikyxy6UhJ1zTGSNM2bGzM+NjHPsqrr75OiGLmtFgKfDafz1eynTQiytBznpgKQJBGGKlmDiHQdS3LJCEty5Irly+xvbPN8fERo/GI2XRGWVacn5/z7nvvsVws5FAvSjJhx5gSbRQ7O7sYY5mfnw8+6j5Jw2xZYI2mGo0YjUcCU7bdcDjr1CEMM5kkEYvILNSWlqaLeAWnbYM1mu2yYGw1eI9PltliGSyfV/c9i2XNeFyl9E+P10aSHROcOhRkCWWyicCXWcnWWpnJpwPNVIUUVkXB/PiUpm3ZmIypyhF+sWB+esKyXlCNxoynM0Dhul42ZC+WtrJHCMmpqEpsKR74xpqhANJGC9Nfy4YmzOuY9NsrJQ8JTfHOUS8WiaDmqLuW2d4eMRkV2WoshDbfU4ynVNWY0Db09RI7GoO2BDRRG1RRoE1JiJaoSoIuaBrHvG5ZNh3BVmzt7THd3pYAKaNwnfiqRCJVVWKslVFiJ7bMrvPUC+FavHXvHqPRiIsXL7K9vS17SiN8o7aRaOCmqWmahvNkh64U/PKv/DJPPPEEMUbu3r3L66+/nva/yHK55PT0jAcPHnL37h12d3eYTie4rqduauqlNAFdun6yNpMvQUYKgqfrlozZQKkUioV05nV63lGKbDesEgKZY6RBulUdkiNoiPQ5/rqwSQHlCH0v0tK+J0ax9lZKY7SM9zIa533ERc+4KNJ9Diik+Jb5+cpErEy5E9GlbtyLsZbrGpr6XJQSPqdmCgnV6og1sDEZMaqqhHY6sYZP19UnJIrM1VpTPAlHIJLFXoMRHxm1zY/VeoGwaqjy2Ct/rxhXTVjfiQLHdaLoycq0fC749XTIbI+fiRgwnJv5lVUaen3z/be8fspiIFU2ia1tjBHiVBRnuiKKLC3PBftkZWrLERt7F9i+cAGrNYvjEw4e3Of2rfd5cP8ubV2vyHf5Aio1hDPkC5cP7GzjKdWp5cLFy3z6S1/gi1/8PNeuXsY1Dd/8/W/y5utv8HD/Aafnp3S9W4N3WFV6yDGRN5v8cNZNTdO0LJfL5DuQSRy57tMoDGVRUW1sSRFw/RobF3YxITJ/8ICzhw/ol3O8a8UNK1l8hpCijyKDteRww5PBTPBrOdZ5hSVMTAqCVYXZpwcsr9AQA8FoYlnQIPBm14lRUNt5+pSWlYk4Lqx84cVTQDS+LsT0cIrskEwojApjgKjRUfT9SimCc8kLP+l8rSFoTZ+MWIY1ufaMCA8iSb20wjk5GA4Pj3j55ZfZ3NpkPKnY3trl+PiEk5ND+r6na9tBhmOS0chAQkyqhcHOM0GI3gf6zrFYiAR0a2ubr371yzz3/NMcHBzw8ssvp+JLPmc222Bne4floqbtpJOTTSwfpBpjNVtbW0wmE+kEE6QnIwkRe4fgqRcL+sQvEXRCDRtamVw5ldZpzWcilMEYjYueLnjmXcfIGmzMTm9CSopAH8S4JwLnizkbswllWeDLMOjkldYYJSt3QMJQiYCZioEQ2JhMKEcSOqWtIZLsiOcLzhbnmEqyRWLnODs55vz8BFuUbGxugzZ0XYt3LaHvwOiEHgqBbDQaMZlOJMXRe3wasmpt6LI3fM5tiDKz7btkKKPFLTEqRZ8kYm29ZLMoqM8XmITeRCK6MCjnCUbyE7RS+KaFvkGrJFmkwo7GxGBRIaB0iaag8Zq6dXQhQlkyKYq090QWi5qjoyPu33/A3dv32N/fx/uenZ1tfv4Xfo7r16/Tu05ySTrHg/Y+r7/+Go8eHfDcc89y6fJFCmMJznF8dCTKgcNDTk5OUyy1eDA8/9zz/PW/8Z/x6U9/kr7veeWV1/nJT37CcrkcyIOL8zknJ6ecnp1x7+499vcfphm3rJ+itBTVbPDdaLtOeE5BfPnlTPPU9YJJ16BLQ9929G3LeJZGPY1A94KGZiRDijilkiIgI6mdG77uaDQSm13fpwRDOeS6rh1GyMHH5P4nUkxrSqrKynrvWqpyvCL0KrGqdsENKIc4D+a9VKWRWU9wIgN1rqdtGwzikjudVFSloSoNxipilP04ZzCsJOVhcJUdEFmlkrQ85wCsnBxV2vPyxqFyM5IROcWqEMibuU/W9V6SHQkiVXZdL/tE8nNZz27ICgLy95MfPsm3V98K5FnPHjsfFhv4KcYEwhlIPwoqR1miiC6l8yX4zqUZZtN2oC07Wztsbe3g+56HD8VC+Patm8wXc3L0rkAp66eF/LbqZkgzkGwBahhNNnjuhRf42je+wbMfeZqN6ZS3XnuTH3z3+5yeHvPo0SPOzk4HCcswN5JhzerwiDKf8U7m1ufnc+plTdd3dJ14UqNUcjpU6ChFSDHZYOvyVXavXmP3yhVsVdKcnTPff0B7/AjfidOiQE1ZHhhTtZtHHXEYV/i1Q3olH4wrtCRmHb3A5NoYfAjcf/hAnN5GRTI3ikRbUW5sEAg0fU/T9bRdoAsBHx3RO2JUeDQehpGBoOmSudCHkJi/kh2PWkFeRusU1SzHUREV3oijnY6gvKd1Hm8MCpdsoYXIMnhopIcjBPGy98kyVmthmL/99jtoA9evP8FsJsFW9+7eGx4SlSB4Y6w8JB9wYBsshVVWLHjaVsY0qMhkMuLjH/8ovWu5ceNJLl26xL/4nd9lMa+ZRykCl8ulbJoJQs+rMY+ZBCkR5z5bFEOR6V1PU9fMl/XQHRdlwagqAdm02qZhsRBYcDqZSCbAmtRSG4vRBY6AV5Fl31I7S6VVCiqRDxQkRGpFYy1N03I+XzAZjwle49P8yaYiJnc/XqVoWWsHbkw+rOX2eMpyRNM3uD7QLcTFcXN3E601J2cnLBanRKWYbGxQViVNvaRra8mp1wp8SDCuGBdVkzHKmAHijskbokiELWUMQct2GpwfopVFnkWma6CB5ekZaE3vA1F5rmxuDodHdEpkrkZhAFfPIXq097g+Escw2hijVIkihddgaHpP4wNRKQqbA84UXdfz1ptvc3Z6RtN2HB0dc/PmbR7cv4+xiu2dbapSDrOqKshWsztbm9y4cZ2+7zHGcHp6yiuvvMpPXvkJt27f4vj4mLZu5YHQitnGlL/8l/8iv/qrv8zGbMa9u3f4zne+zd07d+k7iXPO1rvL5ZLFcsHBo0c8fPiAtmmG6JUVPps5P1BVBWUl6FbX9fRtJ06j3ZLgOywTYu+oF0vGs5k8WymDhiANgTWGoigki0SZhABLxx7SjNvagunGpiCZicBX10uJLQ5e7MIbMEWF0aXsN1F2xPF4LAd6hBB7QQW0TpJSLSPMxLUKzjMajXFJsqqJBN8SQ493MvYptWY8rtje2qCqitTEZPK0G5ogF5N3QELLYhqxCezOcLinfyarCB6PoV5d84w+k/bI4RNRSZYoVs3e9aIaSyNh52S95zHAevOaf1/ta/lMZOAmRKWxxgyR0Osqv3/X66eQFmb5npB6co2TZW/BIwYHCpq2Y1k3oDSzjQ0m0ynd4pyb9+5y8913OTo6xLkuLVL92Ndf+W0/XgjITESjtKUYjbl85Rpf/NKX+PinPsnlyxdZnJ/yW7/3m9x+/31Ojo45OTmh7TsyE3YVnLQGkyk1GJv0nczW5QFbShGQDp18U7XSGF1gi4pqtsmFJ55k59oTTLc2wTvO7txhfvCQfjmH2MuCSZDOkCnP6mcC6cAlxSu/v7j2cauzLSs0dEroylr1tm350Q9+xOc+9xk+8fHnsTpC7IQ9OxpBNU6jghw/LGMAgkojgYREBOlWQxC7HueTkiJmV1I1HHwYIICOMrPO6gJtkuWmTyTTEPApESz4VYWtUIS1P8coXuAuSYBCUGxubnLjqRsC8RYVZVHx8OyAvu/onU/acyH4DfOyyAA5ri4gwzzDOUEUfPBoBfP5nD/85jfZ29vl+vUnWC4Fpq3rZoDIF8taig5jh9nu+nwwQ3yDm2CUGeZifs5yKT734/GI7e0ttne2kzmRaOFPTk85fHRI7zoWy4gtxMRFio2Y3AQNXS/QuA+BRdtSKEU1mGklA5pEisoF4vliwc7ODuPkCTGso5jhyYQuWYXrPa5rUcYwHo/R1uJDEBdIY4lLkS91vaOaTZlubdI0NcvFHB8iRTXGFmXKeFjSNDUAhhwpHCiKEluWRNSQG2EL4QjYNEoSUETGLDEweKt3fSeeFHiMMTIL7x31cslkYyax5pcuCSztHImqgY1l8ioI+L6HGOhDBDumrMbitRAblC4IytD0gilpm3MbVlrw5WLB4aN9Tk5OAcVbb77Ou+++i1KKn/u5b/Arv/LL7F3cTddY0DKizMWrqqTrel599TV+73/6fV555RUePTrEB4np1ul7fuwTH+Ov/42/xqc+8QnqxYLvffPbvPzjlzg5PUYrZPTiJPmubcUv5OT4mDu3b9PUtXCP030ddpD0EIeYR1ASlT4ej9mYTZIDbIf3HVoFXN9ydnrKdGsnrRsxTgppdCVEPzN8caMV1og+PkPW5ahK98mn0arM7aOS2aJK8cuFkTGQSkF32hiyuZhRaW17T5/2QyH9Io2MD4hVf5Sxpe9FGbGc03cNMfRsbo7Y3JhRlRbxB/ADvD6cW4kEL0VyGODLmLbptRTz1PGz2p/TOHZAOYdPTMXCmjJNpS5+RQB1KflwZVmfk36HNEfkPBjG5Eo95oYLa1L7NNJRRqOsuLlm/58Pjg/+Ta8PXQwEH9ceEFawR6oypaqx9M6xrGucD0ynMwqtOTrYZ//2be7cvTskS61sZNNFzrGcrKqf1d2QBWTKks3tXT756Z/hi1/4IjduXKcsDa/80R/x6muvcnR4yKP9fRaLBXluHkOUFLew2g1VunPeuYEUWNd1shJuh+jlYWafbqYxFaPZFhsX9rhw5Sq7Fy+iTUl7eMjp/kPq00MIvchWVHJBTLDxullQPjSGB21ADPJqWjH6842Ww0a4EUUi1iyXS05OTjg5OaXpan7tP/pVvvbFT1OVkb45p21rTFXRoWj6nt55ei8WnETEzjUhAN57MhM/ROEKeBQuzcuys5Y2Bq3MUODkeF7JgQ+DtawBPDJyMEpLFtxQ58XhdxnNrCriGBmiRvuuY7Yxo162vPfuy9y+fZuu74XgZBO8njLQjVmXz6whTCquXets4CH2x13X8t6777GxMeMnP3mV+/fvc+HCLvfuPZCsglQo5uIrxw77TFJM10UCQsKA8CwXC+aLOTFGZrMpL7zwPJ/69Ce4cvkKt27f4vXXX6coCyaTCfNqnuKQxZ2wktaFPB+X663wRIJSLHtHYR0BS5V0zTrb46LSiCdyPq9ZNi2z6UgMdVKoEmRfA+l+VeJQSMcpSoMQobAFtijpupZ6sUQBxXjM9sWLFNZKsd3UBGUpyhGgqevl0AGKEZHFuV5S5wrJrXA+0Hdi3Wqska4OCFp+1hhA+5DIpMLd0Uon1U3qkHygWSzpnScEGI8qZrOp+D6EgKlKNArfdqttMwVsxTTiUFrjuxZsSR8VvYtgS46PHjGdjBmNR8OzCrCzs8XXv/E1lsslTdPy2c/9DLPZTAqucTWMf4Y9La0PrTX7+wf81m/+Ft/61re5d+8+dV3LOKSQ/IKiKPgP/vyv8pf+0l9ka3OTO+/d5Pvf+hb79+/QtDWFkhA3HR06it27JnJ48Ii333mbRV0Tekn9k6bBDDBxqhBWY0a1KlLGKReBShN9T3QNUVmWZ+e0C/EJ6DsZcep0f1YOnyIjRKVMDW1oaykCJ9OpjIv7Hte1uK4TpQiAsQM0aLRBG8NkOkuBdbKWy2okRY3JZ0RM5kZy/7MFsdHyvjUB19f4vqYoImVRcuGCOOJqLcWD68UGW5A7OWB9ShVcbRtrjURqRDOSmw1Sci8wkH7X9pscX5/RzqwAy++XuPLxyOF1zrnBT8YnkzXnxBApqtUZECF7Sw/jZZOUQSqdBxKjbpKfh1xfY83/PzgDK41kllWId70ceuIOGKmT/M4YSxMXnByKk9b5yZF4/avVATfMkVeNFpnlmtH8LBerqgnPvPAcX/n613nxIy+yvb3F/v37/PC73+Xhw332Hx1weHgoJJf8puNw58gYo0pM7hAkNW+xXK6pBfqhEMg3V6pdjS1GTDd32b32BDuXLzHdmOLbhtM7d5gfH9J3SyA7rGmCy/74PsFoKwJU/vkyDyGscKTHoO3h71CD614ed5yfn4vhketZLmq+9c3vcnJ8woPbv8RHXniaGDuOH97n1hu3efTwBO1AR5XChSS8KRs3ufzfKZwpkGZUiL1pjKJ/J83CyDaa2gxRpDGCweJjRGsxJ7EGcSfEohDtuFaakKvYXOhpk7rMbPwUefjgISF4lssljx4dDjpjSTKsVrbFqfgYUiNVtvdUEKVF1FoOwpDncwmZcM5zfnbOa6++zhPXr/LCCy9wfjZnNKpoGzEcUVpMgKpRlexrs5ddRm3WirgYE/S/IARRBOzu7vLlL3+Z8aRCaXjyxpO8/PIrNHUKa/LZRGqFkuW1D2oo/LwXx7c+RureYZWiSMFbPsHamkDdtLjkjnZycs7WbEJRlChNcshMjpBqdd18cnWL6Zl03jNKpNC+E2/+ajzGJB12fXIuaY/BUZYTTFng070KPjAeT6SQ6MXPIcOV+XmIXhju3nnhR6T7mi1YXS+dvM959VpSLrXWBAQeXi4WVKMRQSs2d7aFNBgctpBApOh9cjyUAafIgDVFNcZHB42nc9BpT6wM0Vh+5zd/gx/98Hv87b/1NxmNx8Pel/e8yWTMdDr5wDOa90dYFaGrIuKPfvRj/vE//qe8+uqrnJ+fyyGiAQJdV3P5yhX+7n/+v+Rnf+5n8V3Hj77zbd585WW6xZyRDpSVkbTJGPARnNFEU/DOO+/y2quvcr5cpIwQP1g7ayuEUYwZLNulaZe9TGnNdJr1/z0RT9ecEX1HMWqwowq3vIwuxqggBk0mdaAmf+0BfpY9KpPdlBbCrAJ829It08go+MFkTFAglRosQ9u1aCOJk9poisKmryVXNMUsSAFlNDGRFYsijRajp7CKwpYUxYgYPYSQxgWJ3O5ycBnD+ZUb2qE5Iw7n0PqDGJMHjBQHH4Dsc8MRIIdGAagYE/TvU5EqX8t54cDkoK7gUrCQc0ni7tcOQ5W42YNgUEYCqeM3yZBLG4O2GpuKAeEG6dTE2DUk59/++qlMh1RaUDGEQbnonFijzs/PaawVwl3rEmIgM1eRx60Y5Uplyxm9ajnV6gJkQhpaUdiCvUtX+PyXvsLnv/A5rly5hHMd3/7DP+Tdt9/m9OiYe/fusWylKh2sH9MmNNzQmGFdn8g0wg1YRQ0nj2kf0hwWlNJYXVCOJ0x3L7B95QpbexexWnNy/z7zRwf09ZwY/BDDDCrd7FTthVwIhMc2j5g0uSFmEsqqKs2jJ6XFIMaagqIsIELbdsnroF2NHqJnft7zwx/8iDdff5MLFy5grKFeLDg5PmanLHjh6jWe3t1FB0MMDT3pcwMpojjm50N8B9IDm9PJBxcHpQhqndkdhwMZZIIQU4qbAUYhMo/ycJC+tkYKgZgUKdZKDKpLioIYPGfnZ8wX58P4RCuRO2X5n9R4noAHLxuVNQJjkkYp5PeeCgCSX7yQFlWazTnm8zlEzfnpgtt37nL//n3pSLWmMCVVOgTD2gHwGOE1QXp9n2ajTubhNrGp33nnHS5eushkMmI+nzNPhj1PPXWDtm1ZLhYUZfGYzjpXyCYVga7rhtSzpu+ptGJkrci0kjbax8hiuZRr6AOn53Pq+gLjUcCYKNcqekIqcPI6B0WRtPJRCZPcFoWEyjQNtigpR5Ik6fuOxfwU56TrVsagIriupe8dRXLd9MmpM98H7yOuFztxrUjRxcm1LXdBqWNzrqfvhGmvlU4xsY5QWAyKblmL1wCK8cYssfgDRIOxUsAobYhKjHeMh+h71HQqyEPbsWwch63irKvZu1Tx5luv8/prr/Hn//xfYGtnNylg8gGwQuvk/icVkTKcnp0xn59z+fKVoZhTCs7P5/zO7/wOv/Vbv8m9u/fo+n5w9bPa0Heez3/hC/yv/jf/a566cYPD/Ye8/uMf8ejuTUrfUVYa5xUhakIwuD7geuhi5O33bvLaKz+hbxpKrYla4b2i8SFxiwCfim8dB5Kysblj1FRlwXI5xyCqlhADbVdLZknfMzKKvavPEn1LUG5QMQlxOaJMACOIWEwGPCFGqnGF0dB3LW1bi4dDysRQaX8HRWGK4QDVNv+1wntH18t1ttiU5RFAySGpTUmZGjqDBxWwKf8kBAXJRG4IdAsidR5cOIX8lNDJNDJOB34epayPqGP+X5T1ORxTCbpfN2mLJAfWNCLo06h58AQIEhvd91LQCvrsBp+AlcJs/Uxcy99Z4wEURVLjGD38/VAYJMmn0eKxURQFH+b1UyADCdZNYxWZuYvHwHKx4FAL27dpGvpuZYoBOeUr/rEvmI/GTIZQSooDUSoUTGZTPv7JT/KzP/dz3HjqBrPJhHffeYcffv/7HD465OHDhxwdHckFTBVUruLzbGidONh33TAWmC/mLBa1dD4Jqhf5nOi3jbLYasR4a5uNi3ts7O4yHlW4xSlnxycsT0/E+jQKVKbTIu86gXky9L8aNciNzT/vymI4FQKsKlTpZhW2EO27wgyxs03TDmYYA0yfBlcxwtnZnLPzOcH5QRNcL1rmzW3uHJ5ycWPG2BiKRLaLgI+KGPXqPmgjB77cvbXxDQN8ljt9pc3QZaISPKbjcHChFHqoduNjXycjcsbowTip71u8l2/oU2FmjYQAiTmJGdaW8z7N0FSakSmsFdRA2URm1HJNjRFYLdu8ygYob+D8/Jz9/QP29/c5Oz1Lh76mKEZMxkLsy/ftgx1hVh/ENftY+ZkEOm3alrfffoe+7ylLy9vvvo0xhp2dHTY2NkQWmkyAjDXkpaJYbU45b33gJASRh7ogAUnJdiBB6D7BgpFl27BolmyGMSblXIQobPC49jWNFVJY6OR5Mck+dbFc4IJ4Dhgriod6cU4znxN6yeGwaVNqlsvkvmnwfaDreqILqEJL0evETMokuBlENy6RwMjPEDwqJl16klehoQ8e5wNG2iKWiyXaWGxVMZnMEk/FYYukSQ8QE2m11Iaud8SipDQW7XrapuP2oyUP6ogZjQj6iJ3dXX7913+djc3Z8MwqEqqkVnA1qOEQ+OEPfsQ//Af/gEuXL/L3/t5/iS1kO71//yH/w3//j/je97+T+FFOOjYj6pHCWP7yX/kr/Ppf/nVGVckbr/yYm2+8Sr88w9JCIR2s1preSTmubYGJgf1797j11ptsjUdc3tthOpkwqiq6vmdRN9RtT+M88/mSs/mC3suYq+0ladIWhu2tLZaLueRUWJsOdDe4Dbb1Me+9Pefk6BHbO9so56i0SGutKcXsSudZdCre+h5FkGclRnE1DBIX7dOoVKkkM06hXmLrHSntagSXCbhoLeOzXhQM1haUVmMECyNGBz4ggdYifcT3iMGQIMEhH8SJsK3yqDKjAGknCzEOTcJAwAykYjntWYGhqYxrn7/uwxJjGKyBQ5agZ4VYSrENQfg3Of8hjy3zFHt1Kq7+LLbw+cAXSae2RhCgjBKYFOCm1cDr0NbI82k/3DH/UzgQpnk3w74vh11wNG1N72UTDCGSEzjzDAhWG/9wsAyHgxJb4QggFpjlaMy1J57g69/4Op/93GfYvbDL2ckJ/+Jf/A7379zh4f2H3LlzW4yOcsJVFA2tAtmU0vtzvUt+9462aVjWdSI/LROb06/eXCoJlTGU4xnj7W02Ll5kY2sTHQLn+wd0izmx62ThRWHZqyidWDaEyFadea4+3FwlB3ZI1r/528b0bxljEii8pKxKqdibbuAzDOlVuZNHUAZplb3wI1KnrtL3bkPg0XLOSVvz/qNHjIxlZKwYe5RFqtiTaoEM66ohVtSk6jTqlReC3OsM3Sab6pCDj2TzzuiKN4Ys4hzUESuXAkEHtMGMJ/Spm87FYkwHo3QNnq5tZSSQdOjC4BclRtc5mqalqsQwp7CSOKaNIgQoi5KqqlguhTSZIb/lsuHmzVs0+WsrTVVVjCcTRiMxpck5Duu+4o/ZM0MqUvxj/+b6nrPTU95//332Ll7gyes3cL2nKApeffVVDg4eia5/VD4GV66P4zIc6JOqQyFGUV2MMovN/AWE64GSg9XEQN22dL3DaEuMiXSlVySqiCg58iYsbPzAol7Sty2msMO2GYNncXIq6ZzOM9raZDKd0i5r2raVjSpCs6xxvRNTGZ+c4CAVbGIU03e9MP2tdC3OpcIuJH21C0OqYE5kk0OtpWt7xltjZjs72KoSIWnMc2A36LiNEXfTpuuZTDeIMdB3kftHDe/ePyNUYyo0xswZjyfi9X//Ibfv3ObWzdscH58wm8342te+wkc+8iLG5PFA4OHDA/7Zb/wGo8mEv/JX/uNhHb7zzjv8v/6f/wMvvfQS8/m5kFUHg6zA3t4e/8Xf/bt85ctfplnMeem73+bw3i2sa1A4vMqoHAl9WHmuHB4ecvO9d3ji6kUu7O2xvTNld3eHra0t2UOVpXcRpS0+wnxZc3x6xul8zvt37vHWe++xvbvHhYsXuXX7DtqWWFtwPj8XWDmuk5w987P7+P6U8WgKWKpqymhjwmg8whRlksIGogv4rqUoCjYmY+p6Cd5htcIrJfYZKgqClg7PEIIQB8tCED1IUjg5C3zvkm+IqASU6wQ2twqDx+Mg5qS+KN2/d8PhOowOc1efWvp87jzWmsZEomKtGElWsMrIQSy29YI4ZydDee6Fz+KH0KJ02Gcfh2Fc4AZXWedkn8iGdwN6PXDoWPHzSIZ2Ay/AoNKIYD0gcEAE0l5hrRCei5Qs+WFeH74YSBteXKuW1u17xekqdy9q+GF0SrtYZ3jLyPjxGkikcgVbF/b4zOc+x1e+/GWeeeYGpVW88vJLvPzKTzg8POTOzVucnZ5CjOJYFmWRZd3+ahNlOJydc9R1IzHDTSOM9JT6lTtx6S8NRVExnm2ysbPDdGsDW1V0Z2c053Nc26KiTwthxShdsVKzpXFaoMPHyG8+rD7+McZ7uqIKifEdjUYpT96zmC9Z1kt617Me0LF+X7LaQSESQdL1zX8XEETP9Q6Ho1ai9VX1em42A2SWeR06zZ2MkoNX5FcMhU4mEuXikJhDO2JK8dID4aiaTChKIVplO+tcGWo0UUn1XhRVei9500jRqIkfoRMbP+vzNzZmQ+jP2dkZ+/v7NI3Y5U4n8jMZjKw3rdnY2MAYQ10vEg9BDpymaVOXXFCVBdVoJAlnCZ53ibhorBWt9VpnvXqleWhChLz3TCcTnn3uWTY3Zzx4+ICjw5blssY7z/17D1EaqkrQjGw5ul4IgEqbgYG+G57BxjnqrheINPMmYGX8hBAdm7ajbjpKmyQgBpReC3AKQliUEZnHaoXrJXPeWptUIR6jLV0aabi+Z7Sxye6lK8SuoV4u0wZkJNa5qTFpZOZcHOKRyYVwLyOz0pQEFHjSRpuktX16fojEKLNwQQ57ludzfAyMZjOq6QSHkKq0VrR9lwxpxE5YaSWpjmWFKUrR9i8Dbzw4Yxmgio4YhemvdMudO3d4+ZVXuX37Hien5zRNTVkYDh4d8Ff/6n/KxYsX0v6lubB3gb/1t/8Gs40Z1licc7zx+hv8d/+Pf8jrr79OvawT5mcQY5nA5z73Of7e3/svuXH9OgcPHvD2j3/A8uwIEztC6GRqGhLfJZvNxIjzkfnZOXfu3uHKlYtcuXKZyXTM5saY2WzG1vYO2paMJxOMlZjfcjRiujnDaMt8vsR5xbJuOV/WHBwe8eY77/Bg/xHHx6fcf7DPyfkZk8mEEINwWZxjVFVYA309B1Ogy4Kt2ZjRZIpWlrbvU0cMKnisskTXEV2HzrkFXUqaVakz1yqhQR5rKkZVhVYRo8CoDDImhYVWEB069hg8OkJ0yU44uEGjH1mhsCGFh+V9TfbG1K584HxY7aXJpmytwcqeLdErcnx8THu7TyFBkSgp7t6nj1nB/SEhSzHl2eQz0rucDhuG4iLmCj/mJloNe29OdcyHvbESvpf/TVATm4qDFRpQJHKmsXYYE/27Xj9dhDEMATVZDw2rDpF0w42RN23zXHKtaJAvJBsFSkvlqxTlaMbTLzzPz/7Cz/PRj77Ipe1t9u/f5wff/wEP96Vav3fvHiEGMWhZn90m3Dkqhhl8cH4YCYhcTCB24Qb06aCWB08DxhQU1Yjp5jazZCKjgPbohKZeiJNVgpli8lYHBknIKkRo1dUF/7h6YLX4cnGl0lxTpGtlWVCNKkBsQSUaWZjm+efMnWPumoevpdTKJXD9+6R1kEZl5BZSpQ4nw/mDTpUVMuATEUdmoQ7l1OpaJxQBJUz3XHisr5NI6vA9mL7D2mKogHPxIGS/LG9QqGhQOpNIxRhErIoFLrx8+RKf+vSnuX3rFmenZ5RlQVlaqpE4B/Zdz8GjR/R9h48jbHI4C8joyFixrB6NR1Io9um+RtAm5y0EetdRN8uMAA4bBVqsZ6tKZujGyCOk0oOqlCS0qTTeuHjpIpubm9y8eZv3b95M4VgpbEopxqXkFYgLTxzgwvSQyXXWSvTeCTyStxJpXU/lrEDvkGD0fBPkC7Vtz3y+ZFxaKpPwGJPXjMzzszudQq5758RXw47taEEAAQAASURBVBaF2MNaQ/Qdi7MzOucZb2yytbsDvmd5fob3jul0Qt+3dE2LCmBKK6FACWnLhDHvIz6KTXlUCrwQ4yTnPuB9n2KsZZ6qo6AGxhjaume5bJhubVLNJAhJOm4hB8aQ3BQJGGPlGVeGopzgnOW4jrxx9xFnTYe1JVkBE2Pk9OSUe/ce0LVywNTzc3rnuLB9helkivOetndpZCCz+cnGFpGI6z3vvPUW/+Af/ne88cYb4koYIGoFeGJw/LW/9tf4i3/p15mMRtx66w3ef/0VQnsOQTIz3JoPCWSkqxPpX93waH+fzc0Nbjz5BBcu7DAalYynFVU5YjKbMZltoG3BJJkF+RgoR8J1GW93GC0mQVprvPP8WX6Obtly9959Fm3LrbsPODg84ujklOPjE+4/kBFsVVY0dct8saTEsT0pMaXQgsdlhVKapu8wWhA037XoGJEYYChLI/kS2QlQixeGLSvKylAVGmMLMTWLHqvkQEsrM5mvRlT06Vc+kFPmAGsj13UYP7lXxrSnsfZvHzQFGlj/2fY3Ow6qmHgsDMhOSFB/VgkQGcaWwYfBNlvUS26tUczFyirddmiS03ObkRG1VgiUZSmFgBHCtkmHvU0ETm0kNTIjASYVAHkPX89E+He9fqpiAFYASwxxtfGkl1YMhCc7vCE9yCZiyJu+/FJao23Jhb2LfP6LX+BzX/wi165fwyr41re+yc133uPw8JDXXn+NxWI+MMgzfLJKSNTDYeyTUUkmL67Chdo0MlgtApVugLUl4+mU6camhCdZS1/XtE2TMqvlwMgxq8O1iHnuk7Xcqy5d3lua/a7lGDAgEfmaaazVjMcjcezzUTzxm5ousU4HR6x8IKWpyr8OIVjN99eQmAHaSv+duraIdG35QUGlf1O5WGP4uBUsJq+sCyeNShKolhv6gWwX00HrEonmj0FWuQDJb1ytq0nioLtVSjGejPn4Jz7GN77xNW7ffpI//IM/THHHDueX9J24rMXcHcf8s6Z54NoMrtAlRVERqxW3xXs3FI4o4RiMRiOqqqRKBML5+XmKrm6YTCZMJlOsLVBKUZUlk8lE0IQgzP63336Xd999n8W8xoesNhEewGQyZjyeopRO9zesEKfVA0cETCE2sDmxTSmZJy+7jlFRUCiFsYrCyGEoWntFH8RzYGs6wZbiNKitQPU+PzMJytdGC0QfQ0JxSBuf5vTshLZuqCrxnA9eGP31Yj54GzSNyIbLshTIPnhKa4ZnwsOQCaAHCNUPJKqhS4vQO5lhO7+S+DbLGoxmtr3NeDoRG2qVmObOiU499eMq8UNChGgq3HiT827JwaIjRmHX99GjnaMqK5xzVKOK2caM9tZtFosFSivGk4qPfexjlFVF3TRyL/KMNo0n7ty6zT/6R/+IN954g6ZpkyQOuqZmd2+Xv//3/yu+/vWvE9qON37wPQ4f3EK5JdDjQyYbu0GZJc50Htd76qbh9PSYvUs7zKZTLl26yPbWFkVRMJmNmUynlOMRxWiMsiXj6QxdjIRDEgLRFpR2JOs79JKyZy0aQ2kiT7/4FNYWfPozn6TrOuZnonhYzBfsPzrn5ETyGN58821MWXFwdMzFqzMWywXTyRhTGLY2pjRtL7kvrqMoNCZIAW6VZelk7fZdR6EVk1GBLS1oKJRnXFXEqHCup1CRQqcUWoScGHyHjAT80KWHEMT0LGT5dnb8VEKoXZOSa1a+/esDgpjPkDUZoHdroT5xZVIXgbhWDOQwIUh7m/dDMeDT+3NJRTBYlMdV4bGOwsYIRum092m0WfmaCCcnkQStSRbnq8PemHTeJumzMtJg575AJTTuw7x+qmIgN5awvsmu5humKKhSJnyGeyAmDXjqzlKrqo1lurHB8y9+lG9842d5/vlnmW3MuHv3Dq+89DIHDx/y3jvv8uDBfbTSjMpq0M7mCalkcsdEfBGCoOvFw36QC7Zt4ga4BBXF4f0rbajKEePplMlsg7IsiF4CbFzKIlgnPuaCY4CIUleS4fu8gPJBvR5GEwcsCEAWqBCKLKPxmMIWKR5ZdMzZGna9opXPXCEy+fqvv1bM59XB/IEPSTcwHZjr3WQa6QywksohGKv7L2dRrqjT32s1yG9kXBfXFksivaUUsDJ5m68ezgQNrn6C4WtkOE0WPmxubnL9+nX29x/y3HPP8u677/D2W+8gAThu8IsQAuZqBCL1kxo6hPUxRCaHeS/SuKZu0EY/NoKYjEV3XhYlvXPcuXOX/f19FssFxhSCeCCHxPa2JP0tU8T1YpHRBbmuRSEPb1VVEteaipB837J/wR+7XcagrIW+R0VxiAxEjPeDGVKlZP7qXb4x4Hzg7HxOvblBacdy3b3DeIuJKpHVUvpoDHR9h03diJCgAnVTJ+i5Sms60jY1y/mctmmEN9C09K7HaiO5GN4PaGEI2fgrEpNxUEgkq8HZMY+MlIw3hJAmXiBEsc+tu5bt3V2m21vowhJjdoaUTXo0sjK+Eu0kLiq8Khlv7FFdvMbtd75L23uZj4cAzqNUzxTR3U+nE5qmwQfHaFSxe2GHn/35n+WZZ5+m7VroV3K4HLW8ODvnn/zjf8zLL78ivAmtmM6mHB8e8uJHX+C/+W/+zzz7zNOcHR3y7k9+zNmjexA6fOyTlMylgijNlrP2PATaxnF4eMjm5pQnn7rOdDKmGo3Y2tmmLCuK8Yit7W2K0VjMy5RBFRN0UckBmA4lbaRUF8KewOghKlQ5Hoo0YmS8MaMaT4hELirFsx9Vg4W363uapmU+rzk8OhmKNJTm6OSUZdtxejaXkKWzOc5LNsGybnnwwOGd5ux0ydbGhMm0oBqJ06CxkVmlmUwnNM2Sru0SoiAkxeWywUWHCzKTV4l0SELXso/LMBZNCJtKaymjsplILMou0uck47QYh/CkjFYS45A1ktECkf+FodnL44CMfGcDuzwiDsElrtHKr4YBXZY/D3bBec/SGmtEAaCSzNIWlqg02oo5k7X2MeJgYS3aWiEU5p8XNeyh8YOHxL/h9VNICx/vaPNuM8wujBEiSJoT58MvJJhZAmNEQ2KM5eoTV/nq17/Bpz/7M1y6fIm2bvj+977D7Zs3uX//Aa+++hNc31MmtnL+4XKXIW8psTW9Fy/wtqepG+aLZeIG9P8aaIY0G9aU1YjJWGxUlQLfdWLBmyQpGQdZVYV+uLirQz4OleUA0a/9L1eDYZjlk+ZAZpgVg2I+XySZYzdATT4fxANMvXYPhj+vrkW+J4//lqvidCgOIws1oABq6KBlHjoUEDGlhA0Yh/x0eTFnycuAGOQzSK3gr/y9Xe9o24aiLDHaPFat/muXFqSwI4OLwjyvSoHlb968xRtvvMG9uw/Y3tnh/r0HzOfzgR8iY58kM0xfPyTURMFA+sxv2nsn6YRti9aKra1NXnjheT7xyY+zXNT85JWfCGyLMNyrqpJDN2SOROoyojzcm5ubghD0vUDGaZ0IE1guknNOgrOQ7nv9OcpSIJWrpATvWmMSmQ6JpY2B3gdsgvKL9JwM2RXp+Wu6lpP5OeNxSYEG5yicwxSW7HWRnyWb7mt2wnRJKlWNJigFfUrt7Jqatq4xhXQlbdsk4qcRtz8l3hgRQQR9mrnqlGvSd5JxL2ZXqzjsdZSPKEmVCin0i6JkY2sbk5wMAxBc6hK1JiqND9JouKDogqW6eJXNp5/j1Tff4WB/n+XynLKsiEZTpMCjs/NzNjc2UEZRVRXf+MZXKG3JE9efYHN7Gxc9oWnQaY/LyGTX9fzmP/9NfvSjP6JpWowx6VCr+XP//p/j7/znf4edrW0Obt7ivdd+THN+QPSSw+K9+OwHFwheSJJd7xIiIt1n19Vsb25w+dplNre22NzalFTPqmL7wi52PEMXJaYao5WQBrWVAKBIRBeF3AttU+MkhYEUZTnTA1yyy9a2JGqRe+aGToWALiNV8IxnjotXNM/EJ1kulhRVIZ2sFc5EvVwyHo1xrufk6EissXvP2fmCs/MFXdsxmcw4ODjk+OQUow3zxZy6adEmsLe5Tdt1zBcLlAqMRhVWV8znPVVVEoJcc9/3aBR9Djcbdj7Z5ZSSIoEk1S2KghD8kA0iI9b1uX5Yrbm816mVDD2v3ZA8YQbybVz9Of/yQ3MYHkMx5HmW/8unROZUGWNRyJ+tlULAFBkZEIK8SoofY21SVwmPIBsLKa1TYJvsLyGfQLnY/hCvn0JNsII18kb1mCNh+ih5A49D8USHRqqYrd0dPvnpT/OVr36FG0/dYDQa8e677/LWW29xeHDAaz95hQcPH6K1XqEMJHgl/XCpoRvmMG3bSUJXXVM3zRAfmscTpLm8nH1CuBiNx4xHI4wR05zQC9wdh86f4fewVgisjxlEErJqvVeXIabqNRcNGZKHwhpG44qyrLCmpOs76uWS5bIeJInrlsQh5qvPcGLmcYB0aet4zdrHro7ux34f7t36zU02oisyXP75179AOpXU6oEbTqrHCpNMYMuwQ9JeI5kVwXuJCfZrBUxc4y0M3y4Oh6tPNsUHjw75x//vf4ItNB/5yIs88cRVQHN6esajRwdSPEVBfMqylK50KFrkYI2pUMmjtOAlFCX7NkynU1588QX+zJ/9Uygim1vb3Lx1i4cPHhJDpOt75ov5kOue1//gY56KI5u0+mWZIFovslaxOu6HaFmbIHuJtBYUbTQapVnh6tpJ8SYuLCFzLBCPiN57dCmaYxJsntdpwONi4ORswe7WLqaC2AecdcK29xC0H24laJwLKHxKmAsoU0hmQOLNeCfjFBeDeClEj3dCbvRJ2VGWhZhtuZwDn+RdSqypXegG4xVBCrIPvBSRYuooAWgqiJPl9uYO1eYGwYgEMyTHNuUVRVWkbBSNjpo+VowuXeHKCx/j5GzBaz95jcPDAx4d7rO9vcumMoQQKKOlphnGBKPxmKeffmZgZLu+x2LxOFE+hChENqX59re+xR/+4Tepl0sKa5nMBHn5q3/1P+XX/qNfozCGm2+8yp23XyU05wTX0geJNcYbeicmNJJdL171fecSD6lnb3eDy5cvE42BEJmOppTVCFOV2PGUYrqFMlZMvNCUpkCpFCAUQamY5s3JcyNKkZhti43OSgUJAdLGiD9Dfn6VEnvmNHvWRtIttVEUo0CIPdZIM6MJlBai75iMKtjepBhNMEYnhj8iKTSWdllzfPiI6XRKNZnio0RRHx8dUpYl9+89oOsk42BeL3n4cB/nQ0JPe27dukU5nnB0fAwKRuNRinWWZ9po4YssFgu01kzHYyn6zs7kuUuKGRkDCNIQfSJbP7Y3JHMgv1LehJji65Nhm6gCsqohqcQQP4MQ+EDTs9aUJZKgdPcareRwL9KI3RgjBYE16JQfkouBjAaYhLyRf18/BbK9fWqGP8zrQxcDIj8KiQ3+wfADlWCSgFJ+1RlGObC10ZjxiKefeZqf/bmf4xOf+Bg7OzucnJwOBMFb773PG6+9Ttc1VKNysC9NP9pjqMCKoCGQ2nKxZD5f0nVtchF0w0E9aEyNjBiKomA8HlOWVWI4p+5dxeH7ZERjmCN5z7qkb9Xxrxc96aDOM6IYhsM0JJiqKkeMxxXj8QjnZLF+0Plw4AXkQ3Ud0UAe3GEUka7N+ivP2+W9wkqyuDY6AEj3UGc3wbURRj5+8sGWv/tgjJQ7/jVE4Y/NusmLf3XQ+yBmT5PpRGbefT9c7+yaOtzvhMzk6FSApmnY3NzgueeeZWO2wZ279zh8dMjh4SGudyJ10oqqrIZY3tWVMkNVvkqKTKhSiotedeeWyWTG0dEjYjzj0sXLaRwh1r1N02aYRZQQiSi3XtBkQxVixLmOZb1IzoRCbhuPxsxmE8qiHCyMF8slzjsWC0EMRqOVvwFK9MNKa7GRTl1NiJHe9cRYkejow4XMRUoIkfliyen5nNJsSLpb7zC2p7Aa5xgY/zFGYoKqY/Aok4yasuFKiDRNTVt3smkpQ9/2uD5zLxIiaMVJcD2LXZOkx0HGRsGLBXJe51prdMjGSzG5xwmEW47GbGztYGwhc1DvwYvzndIaRYHvPUVZUVMwuXiNqy98hLrt+da3vsOD+w+5efMWN2++z6c+9TNMxpuyPtbm0JIYKLyWoigGQp/zPvnmR7w2BBe4+f77/M7v/A5n56fYwjIej7mwd5G//tf/M7721S/Tty1v/OhHHNx5l9DPUcHReyfW3y4QPZyf99y+c4cLe9uUlRVb976nS3n2s9km4/GUoipBG2w1ZvPCBVRZoqsKXZSDVDPDjmInLUZUEUmkVLlD1nq4HyIhTkWsMULStMWAXgbnhkMrw+xqsLQWwnXoBQrXpiBSMhqVLJdn0DuK0TT5ywjj3fmAMSUoKEclW9tbNPWSiZ5SlRWjqmBjWmGt4eqViyzmc8pCo21B772YFEXF4nxB7wNd7zg4eDSMhCeTKfcePGDRNJyeC49l/+E+J8fHjKsSaw1Ww8GjR4hM1aTzKgJeDvkgYUUYgy3KYRPNoyFJr5W9MBcCIfF8VvbsGS3I+66g5FrpwV44o0s6PdPZI8AYiy2LxI2TfUhbiymkiMq8gDweyHtDHjEmD6WheSWE4dn9MK8Pn00QVodeThbWOpEVlMT5Zsgkv2IUJvHe5St84Stf5ktf+ALXrz+BNZrXfvITbt68yf7DfV566SUePXpEaQvGo5GELST4hvTDDT94emi9E2OTZb1MrPs2kc3yIZINdOQQM4mZWVWVzGMSDAR5tp7n7zEVEitiSR41DDA7DHOix1QNH2C15gPdWMNkPGI8ls2/63vm53PJcHD9imm6du1yt72uRAhSgSSkJH/g48jA8Pdr3blKi3CVCSXynkEKmq8tDFD68PnD92Dlw5+RgeGDc/GgUJknkT8t5RbEGFEBCQrqe6pRhQ+s5tuoAULP3uHOuTRTdcPPlzX3Z2dz3nrzbXG47DuxDdZaZqlFMRRrq5GFT7P2VHikn9mntL4YRc/vvefOnbu88/a7jMdjXn/tbb7//R+glBjGnJ6ciHwTQa5EJ7/iIwxoEgGS49hiuWCRsgrKsmQynbExmzKdTqhGFcEHzkcVEZgvxNK3bVtBB/TK+VHgRJWvlhRkSkhnLksa08UX7wtBo0DR9Y7TszM2piOUttDLz1sYjcYOvvMEsTbOwT4gnUv0XsZobUuzXOJ9oBrLBu17n6yGgwSJlXJNcv569mZXMaJ9vrey7rVeISyFtXgVB9mqD1LwRxW5cGGXYlLl3Y6AvMeu7SmmE5xTmKKiNzN2n3iGy888Tx883/n293j99ddTul1gY2ObyURyDNKU7AOIFEMKpgIenNynrEou7O2JZMsYThcn/PZv/w4PH+xjTcFsNuXGUzf4L/7u3+W5Z5+lOT/ljZd/xMnd94luCarHBQn/EutZ+bVoG/YPD5luTgkhiALG9WgFe3t7YserxR9jPJ0JIjCZUowmRK0BUa/knBfvPb3vB06DIGB6Bd5pLaKVtEf6NMI1RiMJQiav5GTulTI/UrGk1/YjpQ1VNR24D2U5xmhD4cVi2iQlCsTBR0ZMnIRTUozHVOMJaCtcB2sotGj2TWHY2r1ADBJUZZPZTnSe8dgwKypsUfDEkxeFt3E+pypHwKdo+56jNII4ePSIvm0ZVSNu3byNLSpeff0NDg6PsGXF8enJwG3pXM/52ZkkYIaINYbZbDqs6xCh69u1PcULAhCTT43KjoTJaVaRiOOylvP4izWlgNF6OOBRgkQVZYnNPgLGYgsjIV8JGcgGZHn/yos27weZd5ITGP+4/Pnf/PrQxYBWkiiVbXdlYejhl7wpNcwAo9JsbG7y3Asv8Au/+Cd4/oXn2NnaYv/Bfd5+803OTk95/fU3eO3V1+ldL85c1g5+1MPhBANpKUaZtXatkFlELigJc4911jBARrnTG5VlCk+R9zoUC2RITH6XqioOsE+Gq/PFzzd7NSpIB3X+2LUDXcxrSqbTEdWoQqFY1nXyO2gfDykKcTiA13/u1X1UH4gnzd9jHZbPf5c+KdH8M2OVyOBQtQ6dr74DHygC0mv9kq6PAyDlC6RCca2gyu9jUAlkpKjvqZdLRqMRhbH45EwXlUnIQy4kVOrEc1aEwncd9+/dhwjL5ZLj41OIYrNqtKUoKnE2Q+bpBIZ1SmDwMhgMP+OK6TvYbHvP8ckxv/1bvw1KUS+XXLx0mSuXL3Hv/j3u3LmTRlhjRqOxzGBJo6vhcsXUKXiWdc1yKYhAURRMJlOJKx4JQjTbmPLo4JC+T0FB5If3A2ssFYHD91j7NxWlIOicx2TZa4YItU5pcYpl27BsGspijPIhuaJZogn4RKoLTsh83smGomLEakt0jr5raZY1dV1ji1KW11pXHUKQ3AOtUpqlxMT6VGyJR8eKwa20EpMkoLB2TSYsBaHznrbr2NrbpZpOianrdS4Cjrau8RFUmOJDwXR2gasvfoztq9fQSnHztXd47/33CSFgreG5555jPl9gbTEUA1prgvJSXESESFYEFIG3336HH3z/+7z4kRf58le+QhUDnQ/8wR/8Ae+9+w4KxWQ85nOf/wx/62/9TS5fvMjJwT5vvfQD5of38a4m4CB6QtC43tN3kmHvfKQsNR/72PODg5+E6UR2dreZjCvZ3L1jVJXiZzCZoIsCZQuMstKgxbz/CkFVJb27Nno4lNY2C3kmbZLD+TAUm0PRqYUzJIihHoyf8jMpoycEadWaGBTEgDJy38pySsARQk9ZVATfs1zOUzdcyIaEBiUQONqunkcdIQVS6YRI2bLEuV7uVaHwvqfvalARW44IQDWVHAmjNKU2XLm0QwQuXRIzpuB6nn7yEmU14otf+ARN13F2Nufk+Iz7Dw44Ojnj6OSUV155ha6bs3f1Mru7F3i4f0AxnaKVYjKdcq+wPDo8EhRSyZilSN4aPgSKQlCaoigYjyacnp7Ru3bwCsj7qE6M/6IoqKoqFeJmGA3YRDKWsYF8jNF68BrIjc76vp2bZJfNj9Y0yh9WXfjhiwGtkEo0V9MaEQhlOUf6xlFjy5LL16/y1a9/nc9/7vNcvXIV71r+6Ic/5OjwiIMHD/n+977H/sEB5aikGpVoVulKMXfAefGlTdt50dwuFjVNIttlEpL3fjisYiIUGa2lWi0KilJIgmRJXDpyB1Z76qzWD2jS987vaX0DXu86VyOFBJ8DWkt06WQ6YVSNCCFyPk9ZCE0rJKIggT7Z3fGD3wOlhrHAOvlkna3/wVEC6StlW2cJWsoa1lU062p+9cHPXfvCStCdzLnInWiImXQo60Jrg8InS1n5+EpDYSylLWVjQdH2Dhc8rm/pu5ayrPDa0/pOKu2oBy5CnqdnAl6qUljMa95//+ZgyWyMEZKplbQuYTiHFZM6yW9Wlp2Kwd4trQCx/pW8gq5tMVoz25gRQmRv7wJVOeLe/fvcuX0XophdVaOEMMU80kgHuMpFXcC5nrZZpsPIMhqNKQuRFN546jpFYXj2mef57ne+x/37D2maGpGxIrNfvebSGIUlb6wkgw7wUEQOetczdo5KgY1+dQYkdzWvAp131E3HtCrRVuNsmk8HjcLhFGjJlpNET9dRUFGVka5taJuaupFY5qoaCcLiXTrchE9jlcLqZGQUJVPAJ415doNzwafZdZJAaXEedcmcRkYrXgJsSstscyNtoFKkBCVZDE3bYIsxMKYzU7b3LjO9sIdRBqUiz3/kOa49+QQnJydiN/3wgEePHjE/XzBfLKiXLZ0V5UDaOlKtG+jalrfffouTsxO2treJQf7u3bff5ZWXX0Epxc7eDr/48z/Hf/If/xW2tzY4uHeHt176I9qzR4R+ASrNpT0peMmlg99JumQ6kL0TifLi/IyLF3bY3t5gMpV5e1mNqCZjqulYLKS1oENK5y5bJec6eZKNsUPxnH8gcYBUqBDFjEKLGZJKc2VjbWqGMsYnf9LJUVK6+yiFv8orPaGuUWG1fE9tFabQRCf7RiRii5LxeCpQfvpklQ5CkACknPCXd2WifC+FzNXRqQnTCluNUqZJbplkZBFjItkqQaiN1sJliR5lLKUeoVBs7W6wqRQXL++Akyjo8/M5Slt6/+c4PT1jOV9wdHzGt7/7fUYzsac+eLDP5d0dLm1v8ejokLaTGOXp5gYP9/c5ORPPk+3NDbq2ZffCNmVpeHR4KE2oUkOhrY2mLEpMIaqiBNsMpmajSholMRBKyoK0Ncckzc0FP3HdvyAhFel+5Zlx/HCUgZ+mGDCpC43DDR0OlxSKoJRmurHFZ7/web72s1/lyRtPsjmbcvvmLW699x7LRc0Pf/BDeZi0YjweJ/KEXtnTJnw5EwazXrPrO9pGwoWaWuSCwfnB2pcoscEqCsSVN/+V54Es4fXu448R1kLOUk9WwQogk0VWEHC6L0M1RsyQmxy0RVEwqkZMpuN0oPWcnZ1T1/UAfceYyCr5Mc6Hev6+Sq/GF+nCPHbmf/AMJxci6VFVGSKSTVTiTOXhjcA6upFHEutfeNXwB1TUw2IUjXg6rBRsbMx47pkneeGFJyF6XvrRq5w9OuPjzz7FR566zrSw9G3H2aLh8GzB/skZx4slbfq2xsicWIqrOBh+5IN+NBoN9rS5KAwhUqSZXlGI6U6IkbZrBvLlB+9tWZYURZkCPsxwE1XKOhgQLUC1LYvFgosXL0lE9PFt9g/2hXBWybhHRk15XegVrEJGioRs2PW9bNJJFxxiZDIZ8dGPvohSkcKWA0/ApQ5aq5TvrvTjm6RaFXf5PuZDoHOORVOjykJg2mRENGjtEQlV3XUsuw6tS6yXubzXAWXl+3qVZLpO8tatLYXw5xx97+hdmtFb6dKD8wMqp5SmLAq0Ukkil/g7QRQBsjfJqC9oCc3RRkZWpIJMR5WCxCSlcvvCjqTgKSGgZrTJdT196yhGJd5UTHf32Nzdow+gnccYIbptbEzZ2Jjy5JNPDOqI+fmc/YN93n77XW7dusPZ6RkwQevx4Isym8745Cc/yVNPP8WT158gBM/8/JxXXn6JEBy7u9v86T/9p/i1v/QXGY9G3L/5Pu+98iOaxSF9X6PTvuGDXOM+BQBJil1IqEcvtt1eUJMLuztcvHhBbLNLGQ1MNzYYb2xRTTehHAlPILPPs9FbQv5UXI0tRWKZDoMI3vUJYgbyWhwg/zxKU8OeKz79Kye8CAQvwVMqyLM2mk4HPkCMQpjTxqCCFZfBABhFORoTIaE48owYbeVQV9K5Rp8Oc1tIzH0IWFsSCVhbSAEMGFOiypVZlPBcEjk85SWIqiX3M+LTrwo9SL1Jmn6Moyw1Fy5s0HlPNdrg6rVdYoi0y5avf/3zRGA+XzI/n3N6dMpiUXPr5m2Wy4VILGPkyt4u3/r2d2jOz9mcTNi+eJGyLLh86SIgnh1VUbI4P6frHNoatrY3xXMlH+xKIaFCNu1VNjVzZijAVoe7XO+VCijt44nXk2XrxEwm/uNnxb/u9VMEFemhGFhXEgwOglXFjaefEbngz3yay5cusFic871vf5vz83Pu3rrFH/7Btzg/O6esKsqySGzWRDBKHVXeYIW4Ixn3bdsMI4Gmbuh7P4RfZLamUmF4P8aaQY+Z52egHjsk8vdYn+2vSILph87jgQzls/YeWY0GII8jpEsdTyZUVYVSiuWi5vTsbGCr+7BmIATDwTfc6/TfKp2+HwCDhvfFB/59ZaiTi4iVnfD63ChX3o+tD5Xvw9pfkal/gv5EtbJWVsowHld85MVn+dVf+XN846s/w7iMNPNzbn/1i9x64z2evXaFUfTUZ2ecns45HZdslQWbZcHhfMyjZcNh0z5WmAzXYW3NlWmGtrLwjo/N0UNwyXioRykpSqtS7kFZlsQYmc/nLBcL2qZhPBF4X9wQJelwMhlzfi7SRIAmBG7evMXD/YPBL0ApkZ2NRnJvgUSyk3sv7OD0ntZc0vKVRKnBPMkkWLBtaxbzltPT00FNoABttchdWZlFZSTHJJ6OV37NkVDkhJ3zOGsobCIakuJ7YxjS1jrX07QtZWEo0uGYTU1Uiv+OqIG0qUiMaefFEjtKjGxmnQcf6Hv5OcuyxFgrbnqux3VCEgyDkUsu1CTWniiz50hC81AQIl0rsOvG5iYb25visbA2bgoh0nY9fdB4O6Pc2ObCE9eZzGYYI1kZeGF0KzTGymGRG4Sq2mX3wi4f+ehHcMkL4uTkmKOjYw4Pjzg5PsV5zzNPPy0s9QhN3fD222+LDHFrg1/7tV/j3/uzf5bCWu6//y7v/eQl3PyY4GsiHh9lv/FesutdykERO9pEfu7k33rnmE1H7GxvUFUFRWkxtmA626CoKpJtH8ZKIZCTPbIyZvXQqtR5rl+vlEqoZISrE+qWkdN8mIRkH4ySdexdRkaFUKmMEeJq8LLOkaKtsCskIsuSUSo5QUpRKRHg42H/8d4T1Oo5Xh3Qolwoy5GoS/Qqbt5o8aoZ9nIn1tM6qx/S/p3DfHJGSN7NRO0jI2Cj5RqmPo6qLPFkPoARZHMie4e1BVVVcPHyrjwLzvOlL38KpQy9DxwcHqKV5a/8+l/g9OiExWJB23eczJfYsuT6E9d4+513mVRj1OWrPHjwkKZtuX7lKmVV0TvHydk5AOPJBJtMuqS4WY1NtTZyLSD5IvhBWWeNQQEOIYnnqPUQhfei1WO7/b/x9VOlFsLqUMlzTVNYLly4wOe+9CW+/vWvcfXaNUZlwTuvv8a9e/c4PTvju9/7Hjfffx+izF7yAZUZ6bkrUEpmn5HM8s6+AfOBGyDGDqkoSceGViqRYwQGLouCoigTwVGtDsj08euH+OOEv9VrvVB4nBS5dpCnkku6G4F/p5MJxgi8vVgsmM8XQ+f0we+Vj+ThMAwrlADyOIMVJLz2/XOACWkByyFpBsJknkul0zt9egICVS5AFAPnIOZvldCTFS6VCKOpPI3itPeFz32Gv/N3/iqf/uTzuOUJzdkx6vSUPaXYe/4pdAy0S4/SBbasKFrPyLRsGo0zhsZoTlOVO6Ai6ftHlcNNcucSE3gtm51iZVcrfBGHMZpqVDEZy0E/Ho+YTqeMRyNQilu3bvHw4UOapklFohBxtNbMZptoY1nM54nIGZNrZZe6FUtRlAKNa0nmHGSrCNQp9tsmuREm1Ci5R2ZyV3aXOz4+5eGDfQ4ODjh8dMjde/fonUv5D2ZQugyYUIzD7VB6uBIDPJxvXu+9BAhZPayPTISVryPvqW5bRoWlMpbGSBa60gn5CiI/W3Udnr7v6PouOW3K2IWEbLleXNaKssDYIhVIwkdwvejoMzk2F3LGrLLW0QYXvJCptKarG3Giqyo2dzYpqkqeY2NWz1CApu2JZoTd2GHn6hMUkzGKvE7y2gV06pz0au/K+5lKBUxZluzsbPP000/jfaCuaw4fHXLv3gMePtxnPp9zcnLKwcEBW1ub/Id/4c/zp//0L6Ei3H77De68/jLd8hgf+wG18dHT96LKyLkPOc7WDda0gcViyenpCRc/8jyjUUmMgbKqmG5uMJ5U2FJQgr7tUKbEFvIcrkad/DEkLKOWyugB9cv/rtcLiLx80sFhhj0wHboJwVBKSzFgJCFTGYUdvoaiKExaLy6RQqU4JkZw0LbtkB+CUmI3HXKQ2UrhE2IU3bzWaJtHEirxkpQE4GmNLUoypioIZTJYIufGpP0yBrRO+Rpa4/pW/hvZr1EKF1uc88JvQIE2UmrFPlmHQ1GOGHRRJlKUshZHleXGxjVUVBgUrmmpm4bxxgxtrMglT07R2lDPlxwfnfDg/gOOjk/Y3d2isCXzZcMbb77N4ckJWxszUZr5nmUrTU7UUuQYBUFJAxJE/oPWcg6YpPSw1tD3Xdq2k0Qy/PGz7d/0+imKAYv0GbJYrLWMJhOee/4F/sSf/EVe/MgL7O7u8mh/n5fefJP5+RmvvfYa3/ve9+i6lulkukaASAtXraCpvBE5J8YbbdfSLBvqRhABtxZHmQ+2YTEZLRG1g06zRCvJM5cHIX0vSPrPfCjnw/Vfjxis/o0BilqXacTUbZSVZTqdMB5PICqWy5rz8/kwFsguVfn7rhv/xLgqrNAC9WXIOUbZ0FZkP6kYM6s3687BrAqfoQOyCR5MFreaVaZ4CKS2KT04DPdkeD/D92UoDMQUw/D0Uzf4y//Jr/HZz3wUlqfMDw+ZPzygPz5Hd90QYGSMojCaQhsqrbE6RQ0TKEKgjAETRAe/UjPkSfIKLRke+HTPlJJ72PV90rSXXLx4gU9+6uM8//wLfOub3xZNsffUbS0OlqMRWps0RljfEOU6TqcbjEYTmZUnJn0uqnJnkYmqA3KTuqA+Bmhl/YlstRhQihzHmlEH7x3379/nW9/8FovFgpOTU7peEj91KmjGaeN8TKOc/k+nFDVCti5WoGRA5GNSFQzeDitnNhCCVQxygDddT1k4jDV0RmOUlYNTr2K/AVwM+F6KcK0MOiFwOYrVB4eyGlsWYgOLPDMuFSYhFREhmwtZg61SWqax8vlBOrDoPG3TobRh88Iu060t8cDIgUMha78DdRcZX9hl+/oN9i5fZHN3GxdSrDNCeM5jrZgfVnJT88HNLSNrCms1GxszGS3cuM5iXnPn9h1eeuklFjeu8wu/+At84fOfw7c9t998nfs336JtToihSeQ9TYik9E4ZDzjXE72Ed/Uu0nYdPjjOzhe09ZJrly8wm1ZMxiNhkxeFxFtPxlSTKcVkjGfVtQcV8SjJAFgbT+VxpkKaKqtUZgKSDW5IB7HKD1LaT2KQrlcnI6I8gojB0/YtIz2S72WMHESWhHKIkZFNJMamboDAaDwCBDHu2xbvHCbxBOIguxsOl7SmVt4igyRZm8FR0FggrT9rbdLPq3QWZDJkbjQlOjtRpcV7wIzJigalNVFbCmPpulpGFjEQXaSwI1AVRWnE7EpptLYoDA5LNAptREXQN43YmpsCNRoxGZXE4Al4JtOK0XhXCH27E55++gp99yxd01JNSoKHxWnNpz76TOJ+wNHxKU3dcnSy5OTsBBcEOdBagusODh6B0QPxUKcAsLZuiDFSZkmsEtmnNTLS+zCvD10MWGMJUSEzkJKLly7xtW98nc9+9nM8cf0JwPPjHwlB8P69u/zBH/yByAXLktl0lrpztd7IDLcxQ1U+kYayG1zTNDJn+6BSQHCTobOzZhXlaIxNo4tUVaoVGiAqgawBTV+HfCimKjt3q4oVISNm46P0aek5qpJCYTqbUFUlXSuQ4/n5nKapE5+AgdOQX1KEqKFQyRIgeUR0fgwyJxOlzLCAjZZuyhgro5CiQBflCgkxOvE3ZHNzzqNCkA3EB6J39G1D39ZCsMn8heBSpxuH0c+67t4oIbTsbG3wiz//C3z5i58D11IfHbG8c4/m9BzVyddQRjS10QesVhRWJ4c8jSaio8eEgI0RkyAvIkPWQUwzTfm7lQfCGrgzdKDS2U/5/Oc/z97FXfYu7JEh+RgjdAjXZD5PxcTjhQZDEYJ0JZUEf2Qlh3MuZVx0RB+xhWU0TsjDbCIQcttydHgsiIFzzGYbVKOKshrBfI53LpFjpftZ+gW3FgtZ8+nAt0VBVY2ZTmYrmHO98IxxuKd6jYWfR0aRfNgkiR/iCxJDsr5WK/Jp7xxNI45+1hiMgkJsG2W9Bnk4cpyxUglSToRMeZ5kjJchYYkRTymTiR2fc0JCCEQVKYtSvNWLApQaIlxt+r5N09B7z+bONju7uxRFSeeFc6B9wCuFJ+Brh48FW9evc+XGDUbTKb7P8dEKrKEPIs1UunjMuCqPDh9/qcd+k+sq16ztGja2NvmTv/RLosvvWm698RqPHtyjOTkg9AsMDqfB9XJd+l4yB1yfMuxjdmGUUKPlvOHR4SPq5ZIb169yYXcbY+T7jcaSNzCeTijGI1RhidpQFCOUlsNUK7U2Plq9ZTmYE4HOJh5OCJDSRmXNJ46BDwP/JM/e8xfLX0cSBuVApEyNVfpKWht0kefWcr2IUFUj5mdHRN8zmm5IUWytKHbCKpvE9X1yX129L2OEr6FNGjekQlrCldxg0JURpqEMWBsJ6ERIFC//YkDXSHwEpdeJuYIsFMWIvm8y8EjftxTlGJSlGtshSEqyd8oVohsDxBrXtZiRTZ4PKl2XPkH24pfjXItWUI1GlKOxEO5DpCgsk40SZeTnfzY+QfCRrumkdTOG8/mC81PhG9x/sE/b9zRdN4x867rhzv0HnJ3PBSVWFm/AOZVGrP8zIwNlWeGjoxoVfPyTn+RrX/86zz//HNvb29y5c5v33hbN949++EN+/OM/wvnAbDqVhMGUmJVue7oPMd3vlOjkUqbAYknTNsMceIArM5atVvCRSQslFwFmGD+snutBjZAWbUYDBP7OnX+uglfkmeEQFxwN0iGdO+9qVDGZTBhPxiilqZcNZ2fnw1hgpTJYq37ysabU8P6Gwz8kdrUSFzBlxGfeFgVlNaGqxlSTCeVojK1GVKMRRVnJr6KkLCuy/3Za5wPi4tcJJ76nns9pl3O6vsG5juCccDFa8T0gRrQtKMqK0XhCOZ4yqiaMRhVXL23y8z//dTZGhv70jPpgn+74FNW5tY1fo0zyEI+BwipGpSSUjSpLaRQ2BioiRRA9foZygxI9OkMBkF0BGNCRDLnr1HE3TcNLL73EM88+w6iasL8vZL/tiRD9jo6OJbMgw58qB5ms+UT4FBIiTykgaXliDLVEKc1oXDGdTZnNZozGlcx3bUmMMCor7t67L6TBrpP7VYzY3Nzm/Px0LZEOcPnPgjzYomQyngihthA3vuH+sfrR5XfZsbLXh6BLq4JgHfUCAcRiEDJdhoh9Ije2XcfIWqwGVxToJJHUCUnL6Ic2K/KV917sXaOw0GOMaYNPo4WUFtp3nTDo02FoSyuBOlWV4Gs5IMXG3OK6jq7vGc2mbO/tYopCZu59j1OBEk3UCucVi9YzuXSN6y9+DFMWlFVJ24ieHCV68LIs8d4NM1jvHcYY4W1olUYhacyTiVx5RJeudb3seeft2zRNzWRSQVdzsn8X3ddY7Ym+gZj96Rmesd5lhVMiJbtIcBHXReZnS957933O5+fcuH6ZjemYqjBUpaWsCgKR0UQk0KawiWAnnA4fAhYSgTc1OnkMAHS+S5bXUkDnQ0AjY6wEIEjj4TzBBbS1AjunwjqmfVAUWcnu1liBqvPXGBZkIpWHlY20UppqNKJrmjSqMMMzt64OM8YIWpB4CvnfV6MKhkM7IwH58733iZOQr4GnbRrhaSUSoZyjYrcdvBNEMl1HyGOKfLM1ha3wQUjpOq2PGIR4rqIH1dP3LaNqLDJ7pUBpSl1RFI6uX8h68FDY8WBXrq2FEHBOTPHGkxnKJomljpjCUBlLIGCUpm8bfN8x2Rzjo8IWJRtbM8LlHdp6wUdfeAJTlPgY8V3H4uycru+x1Yh5veT8fEHbtMQAznU473mw/5AP8/rQxcATT15nMh3zhS9/gY989CNcunyJrmn47ne+w/npCe+//z7/6vd/n8ViwWg0YjwSxyTZcGWjXc2p5aANPuC8HPrNsmOxXIhc0K0yBTJxL0PluSLMQQ05wSlvkvKSNjNXjXkB5s4lM9eRdzMgE2G9GAAGSydko9VKYQvxH59Op7Ip+sB8fs75+Zy2bR8rYPKTk0cLCRhZO+zyz1SCMhTFmGo8Y7axzWgyZTSaMJnNGM02GE2mMj8cj7BlhbFS6ZqBK6GHzn6wMk7hM7IprRK+fNvR1Quc71L3qOi7jr6rcW2Dcx5bVRTVmNF4gi5LjDJYA08+uc2165eI/YL6+JDm+DQ5+LkBNkR5lE/oABJbaq2mKi2jqmBUFlRWU2qNJaIkYi3N7ASSX3fYyrd1neexTorsuo6joyOefuop3nrrLYIP7F3c46mnbrC5ucnJ8SknJycoJTbFK+LqCjpOoAQhESWDD0PiZQyB2abYFH/2sz/D1vY2r776Krdu3R5c9nzeTJM+HiLaWEnBLKwEZnVdKsziMHIpS0lENDab/sR0JqkB2tb5r2MqWLTMgqUGeLzqD8TkBQIi+ExrWa3QARWk0GmajspYrFZ0XY/GYnQgZoc0vRa0NfwuaIbREhvtXJ9QgXQQdi19K8WA2BfLhjaZTajGIxmdxDAQHK2WQKSu6zDWsntpj9FsCkYLya7vRKxhC7TT9K0jTGY8+zOf4cmnnsF7cUJ01tF7yTKRgyK7psroMf+dBAC1lEUxjBmHgiq/UgH1cH+f4+MjtA749oT27AjdLSlsREVHwAlCE1XigySdtwu4PgzES+cCro0cHZ7w1ltv03UNly7uce3KZba2ZkxnY6azCUUpe2ZZSLyyVjp5K4gEf318s/5M5AaoKApBbpTEUq8asLXRZGRIMQ0hyKhBrzHtB0RI9lxRtli8d4NR2RAGFdMYJmnXVFqXRTkmBOi7nmos8kfS9yEmS2Rj6NuW6D22KAeENColCZTZQTQ1cjbdy+EnCukZSXyTspSgtxileyfd24yieBfROmJUYuincDWlxF9CZu8FUQX6rsOYElNUacOWIqKoLM63ibSoEplTFD62GOFcA/TUi2OKckIxGhNTwV+Nx9Js9R2lLYdI7xgF9dXJ3bEaFyi1IEQoiyqN/OR6V+Mq8aOkOCrLgrKwNM0SU1ouXNwUR9Cuo2sauf9aofQn+DCvD10M/O/+q/8tkchoPEZrxZtvvcW9u3c4PT7m29/+Nu++8y7G6DQzLdNDFtODlhckoAIxxT/mrq5e1izrhq6V/O6cQphXvdi9Mhz6mYRkTKrcsr1sgpVIc9T8sMgoQgJXQnp4h/M4rn1cTHOjmN2k0qhByzx4NC4HNEArQ9u0zOdiM7uuFlh3TByq1/QSuFijdIExlUDDsy0msx3KyTabOxfY2tulHFcURfo1rmRGlN5HXPtaSmuR3YWAMiHN6+OgWJDZoaTICbtbo6yBqsAGYZuKE3Ncs+SMa05Xkc4HDAqLShapBr88oT89pa3PyVHOwSd+BAplGOZ1OZPcGEVRWqqqYFSVVHXPKGps6GhiIE/4QirsjDaPIbfy8MjoRqkV90MpTdf3vPPuu1y+fIlPfvLjxAjvvvMu0+mMk9MT2STMSt+cu2n5j4TZRI8w86W7beqabBZ04cIFvvLVr/Dw4T161/HpT3+Kt996l7puca6nbhrcYGQj6y8kLsqoGjMqx4PtbSRbnNqBHzHwYYBIsklNxVT8wBqyqROXj2TwmhcYHYIHXUrSoxCf/PAzmhRiEwi0vmPZGWxhKHtDYZKPSHrf4tuURhlRiL15rmvLCmUKtBfZYEzweJ94FT6hG6awjKcTxuOpyM3Iz4RmIIE2nUgutzaYbG6Q3ji+l69VjaYQAy44Wl1x4ZkXuHDtSfok00JJwWGNEGh9G5E0STOoIrxzQ0Fki2JQdsQYadtWDtIEaQMs6o67d+/iXYcxkWZ5im/mjGxYSe1i8rXIxkupIMixzM47utbTNYH79/Z54403MBquXr3EtWtX2NwSwlhVjTG6xBYVW9tblFWZFB4QEd96iXzPCZMGcdRK4U6pWJO9LO9/DOvbOz8UkGTkVBtxcvSrdEmfYqAVyfVV+/TcmGE9kB0i8+EdAzFqBo+QtE5tUeL6jmx77pI9rhQC0tVrWw33J6OYCiHCGkQ5oxBJYx99KiTB2JUTpw9qcNuryipZR4sMWVQQVpQIXvYn7wK2WCEOgvRmNCWNSKOmrltmtsT7fuBACSPP45o5UVnKakJE44LHh37gatliTNMsiG3A2EJSJM2I0WRM71t8cIKYq8yxSd9XS3FQTsv/H21/1mzLcqQHYp9HRGauae99xjsPuJhRE9iUWdNMLet+1tAtPeul/0+3/o5eZNYtM7JYFJvFIquIQlVhLuAOAO5wzp7WWpkZEa6Hzz0y971g4UBGLdjFOWcPa2VGRvjw+eefo9ZFDhpaUUtC7DtItISrAhoS4q7HdrNDGU9MHlJC2vVIfY85TxAhsfxVXq+uM6Acb/rDn/4YH330IeY54x/+/u/xl3/5l5jnGdvtFkM/sN6ztuAeENRlENBsmcBkM7BPp1PTh2/M/WoRgNVIicrQGcZAJ2gtmDChXjvsIOwPFwF6ODnKo2NHiIgKPBS88J9zAxxjwMXlHhcXFxiGAaVU3N7ckSR4PiFPHDayzKxeonfC5lYCCB1St0E/7LE7PMbl42d4/OQ5rp48w/5wiX63R7/ZoN8NEINgKZXtetZLQCTAohkvtk/Vsz9BNeEd2EbrQkTFTG0DETtoFrBVK78UGkPnCgBGRFLAJ6kFKUCekE93mG5vUKeJyEPJJtikQAiIIi369uyUAhoRfZ/Qp4guCGIAOlHEUtkyUwF1oaTgCpfrYA2G8LjaFgmE77z9Dp4+fYKrqytst1v87Gc/x09++lP2DI9TU/vytYMqarH2JlkgeZeinmeSvESAlNidst/tWxnnk09+g+trtoxmY85rcXlXgrnVerX95e1crUvCIFl3+W1/QleZmj8l31NLW+9yxNpmRtHaZmEwcKboTLAzJTGSTKpEzRiQj+hDsGAgWrlpOQ+tm0EBKq9F2z8+XdDmt5uuQikZEA5r6rc0gpLcgda2BmUunFgnQLfZ4OrxYxt8pKhGIq5KAZo8V5yLoHv6HI/efg+hH5DzjCgR4zgta6PygBOwVtZjq1giImE/czyd2qjpq6tLRLDu//FHn+CLz19w+M58hk4nDCmgSwGNxGxoY86KUhTZxIPYWlmQZ8X5lPGzX3yEH//kZxCtePvN53j8+BL7w4bt1Ub0VQhSpEBP6np0w8b4DtZOaBlyiL0d2coz5lvAOjhCTCR6tro4TBRrsUuOWLreftd1LPUYGtvasVcJWYixTe3zlkRHEaqRsqNl3I4COOIqkYH9PI3oh6GVSukrzAUZl0eEstQ+G4HPMGGaRki/cJkAGNdo0cfINbMeT8Nr124nKEYk4aTIAhIxGx8mdsv9pIhN6NERwkXFjDKOCKFHjD1KjaiIyPMIEaDrthwhrFTozcrkYRsTVFkykpKNkBlJNlRt5wAWDCDwOl0ZN6W+aZ+IxGbbU8eOk+o2W4RzC/a9nTvTlOn49ZxnY17+/tcrBwP/j//5f8I4Ttjstkhdwo9//GNc31yjSx25AV3Xpihxcpw9Cduo1eC6nGeM44TziZPiWBbITccZtS6tbIApbUkTKGHEvDKG8vA6VRVFF2TBa/c+tMiJLryupUD4ZZiQ0E8yOeEd9vsdQowYxxk31zdGEhzhI2AfzBWwC1N7gDH06IcdDhdPcPnkNTx69gaevP4mDo8fY28BBgdV2PqB2W4tLoJkZK2ANt9aVKDGrHZd7Nb2ycgIcy5GyEnNcLn/DyFCUdht0LgNTjLjesSmcKaoQQFhKWIeJ6TTGfl8BkqGFsLqS+sXgxAN3mtt4kxgYJVSQD8kDJsO/SmQ9WzzCOjTpPUhB4/K1xAhAhnA9mxTSnjttddQS8UPf/h3yDnjxRcvcH+8t3a/ZIaXGc5D4SlYEWrZSMuoapOrVcUXX7zAX/zF/wfvv/8efvPJb/F3f/f3uLu7X02aJLM/hIi+67/0GU6etby/gRLMNOhsrbzjPyZCdUO/SG87tXVkTbhitWsN/2XtvoItjykIUANiE7Fa0KCSK3LkxLw5Z5zHCRI4LXEhClYz3lx5Io8kCWoNKDUzAC7VynvZAvVIsuAwIHYdsyszvh4kzplKfNv9DtuLA4btlqIpFbQLNnwqz8xw5gy888abeOudd7HZDG3qnmf5XCqXSvdOHc6r8A4IFxUif4AktpQSUkyNA3F7e4+f/+IXiAFIKJjPd+gwo4+CJlNu7Xh00hVl4pTHalPucgZu7zP+7h9+ip/+/JfQWvH8yRUeP7rExX6LGMhjmMYRAYLS9SRYdj1Csm6LNCDEHhJAAp5ypj10KRP48/HgUlpgKayVWxIBrZYwOB8F5sy6tjdjIjeALX6rkoRvLyEx152xD93yYH3O8/J+UOOasMUtGP+g5ozY9XDHr5WEYQnS5JHFEM815yBFsum7wQcIra4rREhQSC04H0/Y7HergNDQREMlUuqMlKyAIV0ptXeybN2DeLYmFkzI4wjpgL7fIPU9Sp4wzyPO4wnDZocYO4TQ0ccI2l6SUOxzMhSKFAfOSDGkjcgJye0pmQ8wPK/NdJAF5vHWzZBoH6qRw6m5MNjXCoCEEEhK/l1D5H7X65WDgY8+/Igz2M9HTPNMSVabDueQMmSdsSxCMhzCYdyAccT5dML5PCG7ApcNdfEQIAghMli7XPBxj5axtmRLvZb5sIbmfyqoY9BIfPbD6rDw+j38qkWsZ73H4bDHbrtFP/QopeL+9oSXL1/i/v7YWh3XUppL7UEgQunQod/g8Og1PH/9Hbz+9nt4+sZbODx+gmG7Rdd3kMAHvEYU1DTHFVRVJI/RNRnQ4LKl3W65g2A8BD8AmtnXDMAOQ0KZCUlLXUZcevmFhsLblPxAALVy7acMnM4Z4bxA46UIfKBQrYoKRS6zkXAURFIVNVvPu5d6UkTXdwgnHgCiFhYMlIISSecLVhppzzQwWp7nM6pS5vlXv/oQd3d3+PSzT81QqHWYdFZLja2s4IEba7CxISEPMnbfU1YPvr+/x1//9d/gb//2B3j27Dneffc9nE4jfvvb38ADPwqmDAY1a/tfUMWDiZH+tBwF0OU/X/9lR9rWZaHXoMMV+iYPfhSACRVZQCigiBE7CmA6FJZFm3BJ0YJ5mjEJjN8RWaO1djMmb0rkyz+3LoqQavsICnRdb8EACXCusQ4rabgwzZxnkzUecLg4YLPftfJAnTPG09la3QRZZ0AIt3/805/hvW9+B9snVyZ4o5xrr7BMKgAxAC74JBYgmEOC7QsxxwAsYmMh8Fn/6le/xHg+YTcMmO6+gM5nDJ3BtVqX52SBLtUWM2olOjaeC15en/HXP/wRfvHLj6Ba8OTRBa4OG+z6iL1NLo22v7sUGayaM0gdp9ch9VCJLbBcOAPaqgFLi3JdzQFhYFryzMTCAiCfPOiBgHfMsLwaW0JRS1mk4d2k2blYXwPFuIIpIjJTr9UdemDyUAuC0jGnboDW3M6YoxCtldmej0Odc5nRG5ITuw7n0wkd+mbfsSrrpK6DhgidRhzvj9jvd3afZg+hmKfZZOmtvBIWQmTjK5RifoyBa5At+iGhyAnn0xFFgc3uEkgdYtqgFGs3hqDrNgACSplNB4A+ANXbimcLRFn6ESOwI2rjdXkQXjLbmxekhmuUy8wkJQ52fQ3nYdKBagHh3O4T/6WDgdsbznDXoMxkU0SU2KJzf9GfLcYte0lgmnA+MwiYJ1PjKitugMl3huhsUIEEJ5sYpB0XuhQdVvtAeKzXjGx1U4xFu1uBxk4XS6Tg0wgZbPQDuwTY58uJcudxxN3tHV5eX+N04tQ9N4R+NZDA60dAkIg07LC7fIo33vkAb3/wLTx7/Q1cPnqMfrOhgEcIq+i7tFIFAEpJgtkgDxVbclLiFCuP/3lomJU7o7fCBylxLarAetLNOYaAnAR5nlm+EIGsyDmLI6kA5nbwo9BwnaYJN3cjNgDmeSL6kDNyrpjzkjWt/VNVtXpqRp2JJKgwG4gwjUM7iFq1tUKVOSMk65YXRwjoxB3yn8YJeS74xS/+Ed42ykCjQ9dFI5EB0zSiFG9jddVKNOIe0YOhkZzEDDBrtCSycZIgtcL3+z1KtWEvQuc3mFSxRDcqZqh9jyiW9ycWAA+aeT3kKzAJdza4GlLEDetBIB0XP2J5JwvGjesCBRBYe42w0po410RQwuIUZs2ImXDuNBZ0ISIkpYE1KKONZVUiVRJsMBlYdhqGwZA5ReriSvhKGigl5rTPJ6pP7g577I1kyWcDjOOM6TwjmeGGzkCp6IriZ//xr/Dv/92/x/MPPsA3/vh7+O53v4s333odh4tLC/gMIbBsjGhNaH96cODrDbBk4AnG7e09Pvn4NxiGHlEy8vkWG7AvPyuRNJJdC2cOGGkw14IyF5zPBZ9f3+M//OBH+OmvPoLWjCf7HR5f7vDoao/YB0gSpCgYuoTYdSjgBEkGExN2kfMbUEeudxakNNgZsKmAElFVGCx4hObok3I/1DxzuqFJxdeSERNtYa103t5ZUUtmaylsj/oMD7MznlDFlBrCE0Ky80Y73fe9oVu040k7s5Fu2+jk3VC7/UzeiWCJDABDQbslyYRiMAExfysvWfi/IRF93CJYiSFPM6JN/gwh2PPLSH0y5KFYAkOETgBrA8ycnCucvoPQIfR8/+PphGFTIMFEy6KYiiYtWZCK4/0tzqcTHj15ipgG3n2L0zJRu9i3EqEnoMvLnmEeUcuE+Vyx2V5CQo+UgFxOkBpQ7FwF40Rwm5OTUaov8gx9xeEErz7COCxCHsnGyIo5I89mCPuUlsWVUjCeR5zO1A3woMClhFv93vaAGylXDHRmbFuilu1L+7y2znYN3tsvnmXL8ndZftC+xw9Pkcz83W6Hy8tLbDdbBGtDur874ub6Bnd37BZwyNvvUaykoQojAe1wuHiMZ2+9gzfe+zpee+d9PH72HJst5Tg9Kw6uHa+87ybntIq+ndiCGMxp8fqruk63wNt7CJW6s9PmYIIZCH9WHqTxMAMx8rC2uddmtelYpR1SMaNwGjN+/fkNnr02YHIWdc6cyDYX1KJNV6EFbi0w9JJKMXjTBEAc4SjklQRhcFVN0lckQhrqRyMVU8I2EllYlyi83kkHUNnrbd+TwHrkZtjamF1gnjNub29sVrmiHwYSF4OVadZRtRmPn//8Z/jkk09w/fKa62wiINvtFqkzBAIwTgIaT0OC6abbGtP42dmx6FSM3KradvbqufH5O8vb4WGLbcm1ULUhWAUpBcepuO8s85PAToZQzVEL2ANfK+ZSMU6T9UQn9IEwJkB0R22voBRI5Xr2qSOBNBdzFCa53Fq5wP2QFVozW5+04nB5gcurR9YOxlG5OXN8MyxDJimVnQU1T3jzyR7xfsRf/Zu/wL/88z/H1aNLvPHWm/jOd7+DP/v+9/GNb34Tjx4/plbE6qwzGahtTVUXOVw6G67BR598gjlPOGw3OL78HKGM6BKQy4RcC7Qw0SjK9cqmsJinGedzxqcvbvFXP/gH/PTD3yDnjF2XcHHY47DfkjQ7GHPeiJibvsfF5SX2lxcYdjbL5DyhQ0R/2QMITXmP9pdP1LlCAbXJDbMUYpl5rcjzCAgwpM60P6I9HyNbCWvuRY3pbxupFs6IaMJNtoY+S8VLc13XLSJcwev50oKSaIhQKbnZNCcrAhUh2mAw26ecthgtWH4470UkIHYW4MpS1ONn0yao8t77nsI/CKCaZddDJKEbdsysxccMByOcw2zBBECRYjIeVTRHLpDYobeg6nS8xbA7NLJlCAkSfVqqYLO7QBDB7fVL7C+vWAKxyahU0gTE5nXMebaRxf3KXoLdFNggpgEhZ5znEf2g5INggIIEZJ+jU2qGaEWXbP1MgTQmC/Re4fXqokMptV3xZb17z7qLZYUOoec843g8Ek6eCaHl8qUs2MmBEpqTJIyJ1hMKn4ngB9lzLXdyZiSXtsGV2l7LzHyha4NjJDCa3W232F8ccLB2wVIqzqcjrq/vcHd7i/vj0SSFS/sM7hE/lAFRBmx2j/D6Wx/gva9/G6+/+y4unj5Fb3wKv0YyRznZzVEBH77jWYvX8EiwYeYpwrrhAmn7M+D7xkjHXLPpVzv5xOSJ161VdGAecUdCwVDoSi98WTCr5YmihoD784yPP73Bt157A0gD5nKNOhcOsZnJ/WisefN7DntTFIejdrMRKwnP8bk4glEbpiNmqCwgCA5xLnB+igkasSBEwmdetWIciUCpMnAahgG73RYXFxfY7/ctk/nww4/w6aef0gmGiNAHDJst1ePGM3x4Elnkiru7E+7vqfjVdT02mw022y1ijK2VdV2u8jbXB/seS7Zlu5f/rwqBzwFZzlYbWOQZtsAQA75biyAUaDG0/ayTwRpx1OBiL6uqBRBzqZCQETIlYyXyOXTJhkEVtnF5IDdsN9hstijzjCmPtreMnW0BCwAOp6mgBsF4xpxn7A57XF5dsc+92j0W5QCiKSP1VBCthvbUopjzhEePH+P9b30DT549w7/6y/+An/7kJ/j7H/0I/+6v/hpP/1//C15//TV88xvfwJ99/5/h29/9Nt54/TVTn1wR6mwhLQ/xfAbnccTHn3yELgJ6vkO+f4ltR/L0XFhOEUt0KbpkA4jGGadzwWdf3OGvfvAP+PmHn2DSik6Ai+0GV4cddkOHFIG+I7t9Ok9tXG23oYbIzsolElkmEEmABKQQzYGvLZqQEApyXFzUbSGdMTFD00ox54dFBtgMDqbzuQ2DqtYdoaWimhCS2h5zh84OALN7MWKeZ/TDwL1aawsMIFbiszPhbbVezw8ibWqfgtyPBKyc7KplXPzULPGdt456gLAEGqBGQlJm/nlG6gcESYiCpRQQItsaAWidASjmcUJFNVRKiAJZIB5CQNdvIEFwHk/YbreWxCuC+agKhaQO24sLxH7AOJFcD1CAqw8dUuotQWXykkuBhKXd1jFtD5JjGpDgUwmBmBxxEUSbsaJGYCR6V4mACwAQwXmV1ysHAzHF9hi+HASsuQE5Z4zjRD3zccTZdQNyJTQFAdqo2iUTdvZzy96bwV+uYU3ya9dgm0EVnCvvXyKe2n6mGU1QRCWliM12g4vDAfv9AcPQI4hgzjPu7o54+fIGd7dsGcxzXmqFcOdmGWrsEMKAq8ev452vfxfvf/N7eP2dd7G7uKC+dhJESUayo6Z0NOSDvf/2AO16HTqjAA5bwFpmbhAxlbSk9QJDWZengDUhbm0EMMCHKIUQkEtB9KDEDLuzW7WiKaG1NV4FW4AgF+DTl3c4zsCwv8Ttp7+2YKBgnvKS+auCs875XNT+f5yNbW2qXsXqrj5YoxEZFTYBtqIEi6rbDvTdh1WGvSAgqtpKUTQ+CZsNnfZgWvc5FwAToMBuR8JRLby2Tsk6v7y6Qnfqmxy2R9wsQyR0PadT+nhsR0XaPtWW87f9+xWexwrlcidVNT8IfNd7Fy7dbDe/HkLUggTLnAJgWhzxgZNY/xcC67qAoIDdCHPJ6GpEnMkDgCqQYlMyTDFht9uj3wwQBc5GolQT8UFcglWKjgVk0x+YxhmpTzhcXqLrO9O+t8EqpVDvIEWk1COXSuSsKlAIr3b7HVIf8Y13nuP54/8WP/7wN/irv/8JbuaCIAkvvrjBX9/9Df7mP/0tNtsNnj59ij/+4z/Cn/zJn+C9997F1dUl4edVi65yWfH5Z18AtaIPwHjzEkMEkpBoWWx/BqXDnQvbdadpxnks+OzFHf7j3/4Yv/jw15hLRgzApku42G+w3/bY9IkiYoH8DQ9yQow2v75DSh1C1yEOAzSxBs7R7tbZUyvRQI/0UBsSRDe/aBGospSgxSBnNX4AFJxpa2XVUpsAUEqJlNZSUTGbEqa325k9teybn0FGvCcaFvNjYcgy6CQ5MJvNq6jWwhhTsgx2STJ9H6tl0R6qOenT3gQ5U0SqGL8hLJFtQ0/YklkxjVQXTN2AFBK0ZuR5QkyKkHp+RuiAqkg936fqIvcslQJSQQaqv/YBva9diMglU57Yie1FUVQQ+y02HQBRdGFAnjPmcWL5WQCxMru3WgJogZd3b0HUfMyGCVvNqHViadI9gyEnKXBIl1YBam7owAMn+k+8XjkYcIPVWrPgJDNtSEAp1p99PlNkZZ5bu1lDWx1KMog02I24EfPNsP5kN/ba4NWWUMGRwGZ/W8AbWrbkxjMEZsjDZsBhf8DhsMNm2CDYpjpPM66vb3H98hr3d/cGMZfmtJcPh4kebdB3ezx/43188O0/wrvf+DYunz9H7HtoEIjNYDd5e8wwdTfU1o7j16YqyyFSwrEtyBL22EaJ1g+9tKTEEKCB0blAWhaIBOSsCMEm6OkMKCdyBZGGHgBg/atkVC02LYxPYIF6C6rYrAHpcDpm/PbmhHcfPUVBwjgdUcaM6Vys5zbbrHQfk0qNh6KKca6Y5kKN9rnglDMmRyssE5RakWqAglCflkruA1JDizxZcJW1tcOc55l68PDWoYjtZoPdbsu6IwTH4xk+WfD+7rYl1lx+E2SJEfv9AdvNDq4PQIhAFllbf17Ve/Dd6aPVVhe1wNVZUpjCpZ0mCw5oy1bysauAu+33SvEoVTKOuXX4np3EpjQYhFLQVOGjYVlnwyFQ3joI5Xp5HwqNlAouleNqo9Jw9UOPrk/Y7naIiTPk53nEPLMjqJg+gagigvMGogjqPKPME6bpjFIUTx4/xu7ygGyBDHkONpfElAJV/BmzbDLnGTEkTrTTiioFV4eEf/Fn30Z/uML/9sMfs7RghMXNZoMvPv8cv/zHD/FX//4/QkTw2vPn+KM/+WP8s+//Gb7xzW/gtdee4bDfIaaEu7sjfvXLX+HJxRWOL34LLSNSUMxlRraeb6jYzAHKCs/jhOmc8fkXR/zgH36On330K5zLRM5Q6LDfbXFx2GHTpcahEPZ1IiRCzggBsWPLYi2Fe6Xr+HOec0CR55lOI/L3cq2IHqc39FPNtthQqM7aFlvrtPf85zYFsFZTZpxnZGEbbQiB0/2c/9OcNI2fCEneWhTn4z12+x2oDMVsm5mZi8OYQa7BnmVd0FXRVXDD92f301IOscPB2r3bR/teyRnQYkGQtHY7Bga0YzElhDnheH/ExRW1JGB+rOTZZo/YiHZdqxQu55fiQsX0ATpTdBy4rpYc5JzRbwZAA2qogKs6xmTEWzWlzAlqqpWtu2nVuSSWZEoVaFHM4LA0Y/1AQ4Aioc6FHRTNrTL8DyDqW60GTXTjv3AwII0I5PAnoEpZ2NnEQeZ5tmlvowUI9QE8ykCCFy1BG3nFn/uDDGj55LYhVK2m6qiCFwwaEgCLlSxgMXYw+zMTNsPG2gT32GyGxiae5xnH+zNubm5wfX2D8+ncpHWreqeDQi3QCojoww67y2d4/b1v4N1vfhfvfvANPHry1Dg3VDhkQ4QTIpd2HWdgq910EKBYm4vPFl/aerhx14p82djTUObbzFpZNwqwYEsF2X5eS0EQkgv9ICxTwwK61AEh4VzPUBSTw/VxsyRFxkidgD4NmKH4+Ucv8fp3nqN/9BQ3n97ifJox2+jZXDJ1yCVAKXLL+r8yEDhPGadxxnmaCb9WFnWcJIeqNh/CoE4EqBYk0jNBtVHmQm1sKlfHOldyW7sQOBfh0aNLfPd730FMHX71y4/w2Wc/bwHsPE1Wa01LDzMYrPkkwZiczPRVx1y1QssKzheP7LmO1Mfg8Njm9LFKtoBGJvIg+0FXjpt661zhPAnvLqFBiODSxQAka0+KwUlz8iCbC9I1SJIEKUK5rlJZS0WNxr8pQIcOISWbK0BoO8Sw7GNjSIXIAKnfDOwnt+dXixEw5xmXjx7j0bOnyOC6J1vXcaToGEAWdrUARISIUs4VsU9fWhdgyhXXd3dsX7SWSH+GOVfc3t4jhICbmxv88pcf4gd/+3f4i3/9F3jzzTfx6NFjvPHG63jv/Xdxf3+Lr3/ta7i4fILbXx8xiNq1L0FereQVjIYITGPGy5sT/v4nP8fPfvURTlmBkBBU0QfBo90Wh2FAHyno5MoepRQMmx6b7ZZPXNDOdy2OAAKSZ3JlAlsKfcYCQOTM1emCt20GtDbnICAMHuPyO0L54ShLpt5sjRhZTjl/o9YFxXJU6WGpRSkZPZ44qW+3BzzLV7Y7+551lIgoaEGXoiVZ3m7MZxpSRM26oGF+SNScnojtdp+lQMG1UjJiqiTS+f5o1xrQbzeQFI03xK+n2CGXzCTMA3o7m7QxoX2WhIgogvE8tQQpRPIJSqUaZy0ZWunLogg0RkzzRHVVcO4OJcEVeT41wSUq6KZWYnNysMqALiTOj1EiAk6EjSEhdGx5hjzkBfnTica5gq3bq7xenUBYF8je60aEz0sLAjhmeG5w68pK20XZzQqMEONkwYcXu/AA/CHxrQgf2ebiPZvBRUMtmrOz7MvFZg6HAw6HA/qeymTcnFQfu7874uXLa9zf3WE8u2RsbZmzXYZdU0RMO+yv3sS73/oe3v3O9/Dm++/h4uoKIUSUeSYCEXiPKuR6B6FDyLlY5s/9GhCQtQI2htg1GRzGd10FNxYu0+xBwgNIWt3JOAzJe1BTGRPLGmFZY7INrYXoQwiC7B0BWhFqYMSKgAgO8ZEA1BDwycszfvjhNV6/egfh4gZ3n92gnE7IJSNXBm0hJI4VrYQpcyVf4DQX3J8mnM4zxplMbH/u1sEMrYLg0ZfSMJcigATEdliJLJF7AHD0tdVIfcNAcXFxwNe/+Q382fe/D62K+7sjfv6zn+F4PDaNhXUphTaxLoaitews+9Ihca/vwQOB1X7hzI1sJbBu2dv8ywMkTO16+RYPeSlERmlktTBLVKsX+/V4l8AQI1IAguLBefU/aTisjzkICWghAClgmnMLbqpDy0BDV5zY62RMOqLYBg+5RHg/9G2qXBVme6dpgqSIiyePUQDME2V70QlKrpjs3HUDddejcWpUhVyTUjD0FMepbcsHHM8zbu9PrDO7JkmMUAi2uy07QfIERcE0n7Hd9ri6usTjx49QasVPf/Zz/M1/+hvcXF9jNwz4b/7FP8d3338TqWZw2ExtwVopinmumKaC81Rxc5/xdz/9R/zkH3+JU8502lBEqbjY9DhsBwwpIAbY0DEGMEWpHpi6Dn3PpERiwG63Q+p7OCmuzjOm8xndsEHqBmvnBMgjcmQ1OB4AVLakuaBYBUwsiAF6CAHBe5XVSNylcB6IBDhORa4RWjIwz9QP8DJXszuB3SC3L1+y/GbBAMlyhnCVigp3ZArUwqKhKlA4UKsYIVjMJhE89WSIW3y2skBwYSMLZEKiIJEjdhbhwI+GE3e7vm8aCsG+HlPXkDJH0mphqx+DgCVLFYgFSdU4DewA0cKhYiQp8sC1mRAhtMsJiRoEqeswjWf07J3HZGqvHHJUF6KhkRKjdHDVVX7PkNEQmQDIoq4Zvaxi3BDYWf0KD+w/8/oDgoGHYhPjeGZdthaM49jG9bYpVqtA4EGNUqTBZW5cWtTn0Zn9qujyQNvGMIe5QALtsbcIFMIpi8PQY7vb4XA4YLfbc462KRMygJlwe3OLly+vcbw3kqAN9VkyOM/LBKEGhDhgf/ka3v7W9/C17/0pXnvnbVwc9owGvV9ZpLH/q5ghwBJ5SgjoWhCkrTZXSsWcmRmHuGqBFG/hMugKbdGglYEXgwvv8BCKe3hLTSkcZlGKkRmlcQsoqlOo3JbYd6+oEDMaqooxn9FhizooiszIJgDzNz/9Nd643GCTnuC0u8V4d4Lm0SYGAoK5webOEZhyxTkX3J5n3M4TTrlYhIsGX6uZNyj7n2mQ1UqdnARWV/sB4kNSluEsYgdbA2cF1FLx4sVLfP75F/jRj36E+/sjEQT73Bgj+q6Day3YE7Naq1IoxyEpdeevQAgWKBoyYFkGLO9mN0FpNU5ZGoObcYVlQgs5te04KPw8MQAprnZoRq0hUQr0KWJIlDhmd66087I+V6Y/bcgVDUoKAZqS7X9F1QLCysGMirPxLcMqhlgYFKthQbEAbYF0LQXn8YxaK66ePMWw3ZBIPM2AWj0+u5GzllQLZF2q1bklseuhElAq6+0C4O404nSeUKoiikJCR42DGPDkyRMcj0d89tmnUCg2mwFvv/U2nr/2GksY4ACn3X6D/f6A+9s7/Kcf/B1SPuODtx9D3GnBCYMcyzzNFXfnCT/+xw/x13//E0xlNjZ/gKiijxGX+z122w1i4h4QC+oVavyAxH5z458Uu9/QJVSb+hkGKnYCRNaCmAiXkBMU4CXQilpmQx4NZYMsxORA2JlwNJlIHFbEYIfx7qpt2zccljp+LaX19LskOv1vwOFw4BTCmFrAU2tBimy5necZ6xfneFDAKAbKvjPTBwXNumRsen95pwSflx9aCQJRntdSKpJ9r7b+/LScpRbEcHqkt1S3wEaX0cnn0wn9ZkP9BPPmCiItJEgrWG7lQLYWIPvlKjunQlgSQAUAiYgpoAP3b0oBFUSvU0ctgVqAOU9IqSJFzqxh6Q0NEXQhNDGOXBBBtgDdMBZDRall4HN4ft/r1YMBy0gBOtLT8YhxmkxHYEbJc5vMtiQ/1m6yCgZgEaOz4r2lbDGAgDt3C1MbnAoRSF0yYFt3vpfpBMQY0Q09ttsB+/2+zUpwqLlkMt/v74+4fnmD+7t7yiFnBgKoi800183DjIAUtjg8fg3vfvN7+OC7f4Tnb7/Z5IlVsxndCu0S63tBEA3OK8XgHoUJKTmSJShF7aER3nM4lBPPOAyF7TmytHSCgUE25TeBRde+KGAHSBDBsVL0aSqltTJme16+1p4ZxyBIhRPS5nm2TgP2QI/jCUCHGARzrZihuD0dIaWijxe4uniKdFOR51uc5wxUSpVmrZgdki8VY664m2bcTxPGmlFFrc3TIl2w5qxQm+m41Bu9TSnafoDlQFaJAYOu2mD6Wiu++OIFfvKTn+OnP/1HTNOIjz/5mGNZwTnnISWOgDade4VC1XgZZliDGvwJM0CuIdBge9urRrgSAVInqEUgNZh+gj8bGpjG+IYHQNr+RmKhlRmsvbPmjOl0hubsseCS5Yugi4GogHACGoMkrifPjBqnJjTDJcZWVw0IqChSLAuumHNpo4tLLSglIouRzyps1CyNUzJxHA/IRBQoinyeMI4z0maL3eEAUbZw1eYQ5ibZ7M5fAvXeHaXJ82SdXslkZE2QRTrcjBZQzjNu7464uLjEoevN+Ua8/8H7eO2N1zCOo5UHt+yIgBopkEHFbr/DdrvBZ7/5BP/q3/4l8j//U7z3zmsQcN/moqYsqLgfM37x0af4d3/ztziOk2l/0FwlEey3W1zse2z7gJQE0iWb+FcR7QxvrQNFAXQhoYsJuSo1A0QY5YVkmiMgcigwzYeKoCBaZsTAEOgEFxnqABR39gw8Sh4piAOqolbJjQsTbF+4yA33Bq+lSwnj8YTukFoA7kx7KBpk7gqP7DhpVrxNGNSqmOuImmfqOMSIUqp1IvgtU45aTAMBTkRN/VIe1qWMCRGkYdN6+cWCBFQ6UFgXjF8vhZEyCgK6sGnIl9jZlBAQa8HpdML+cAHBipdkDliqLMx/AREhkYbWcf1ja8FMiZwCgPZXQiTJNnZIMO6W2ZYQIlKiba9SLPjhzbGq4gOobMy5FgTpLPAxkjqKKU96wtnClH/y9crBwDiNpjRWm24A2+3qohvQUh53+tI2lUe1XhZo31slLA9fRqbC0mLSWpC0tqlPlCjmDPqN9XpvtgP6gfKea5IGyY0cLnTz8hZ3d3c2c7wsJEe1Wr7fjQDQBEGP3eUzvPP1P8LXv/cneOO99yggBLXsPJNxGqgo1rBMmFGv6uKzK2eznkLmXRVLK1iD/U3dLXSL5rhzJEIEQuYpaCJGayTGD2cgZFdmZjE5Z0zzZNKjEV1K6HrCVSlGzDbKWERQpVimUZBzgEZuxCUTDDjJFpv9azaSVDF/8QXO54IZATlPmEtufdm5Ks61IkNR2iJ7ZiIN+mz6ELaS1QwgBwJ5DdNQIQsbYggYqwkcWR0u54qf//wXDXlaOjZYYkipQzKBkxZotuzIIMfqO0LMKPjm5bOt1X9OEbqVUpsjO2raCvLVsphC28c9aEkEzOib5v08Adaf/OUjHhQGf/pekraiy9RMohKESoUkVyO60qkbcclQBOsIRFGvmRPdwer6XeqLsZJF7bSgyFY+jDHi8vKqsb9rqQbZCrQSfs0zSXosZSxlkjKzDMme8Ihse0CVJbj704hswcqHH36Et98C9rsdvBVZJLTPdvjb14QIiLDL1u7n5YtrfPzhr/Db336Bf/Ff/zN884N3sekSahFMWXB3rvjlx5/jf/sPf4ub2yM2m2FxwiroDBUYNgMksAsrJmbSyTgVXvbrenaihCAYBqqRqpMqEdueXvbhYk9heaGYXWU3kNfnWe8OkahaXZUV6MgZZMWYoB2spFUNoWBSskZjoy1anjNS37XgMKWOiOW6owBY9rkFy4sfUHQp4ni+xxyAfrNnoDVn6n6otpHTeZ7RBkcFBrZiB9E9jaNtSzeDLnvIgmGiCrTRYtc2jyPLLhYsODneHQ5VRPu26qo2OTFFtrjOE/phY3vU+WkBqBXzNC46PDFaMBMQAgPsIEsXRzCcP6XUzj+FlCIDQXHKJl8xhpUWAqCIpndxQkBCCANC7FDKtEIdXzUU+AOCgdPxxMxunjGNk2UKNmlt5c39AtoMa6Bl7WLGx2H4JnKzcvyuzaZYoJ1mbEwOFE7kS6GNgD0cttjv2DueHO61l6MX9/dH3N7c4vrljd2PtW94gNHI3faQ/cEhYXf1HO9883v44Ht/iudvv4N+M7AzwHrpc+tnt8lpWhHUeBFW73UCjcs3tw0IM/imzVAK6/vrMKlqRakCm7nXHnbqyAbPNj7YlQ2b4a1Lb29RBhaeISIEaM7I84xaZpSSOOI30hDxuSmiTflylvo8zXCSTwwk9WnscQuFbh6j7CfUmxFzvcNdnlBKxlyoLZBLQVZFroqs1NV2B+CRtjvlBSXyDJ37ppRCkk8nzTF5BO+Gkq2DZlwlYDIkwFbP+ncThmGDrqe051LzF3u/2gxyy8qsEwQAJGgLcCPcYc5NzlVXuzmG2MisITx0+MtVWVKoCzkQuSJPXnqhEl5Qr/eboQO7SqPB1NHOGU+TYyxKBlxcndNVIO6GR1ZTHVWpDZGLO06F1IJaBCSG2l7SNc+FD7Fmzpifa8HhcNHUCeeZMsSuQxFSbBok3jfuxONaqfqXa0HoEkKyGfFWvigVuDudUUEUbZrGNitCKlEORGnZf1x1+BQj2eVpggr3MERxd3eD4+mEm/sjPvl//r/x9ptv4Dvf/DqeXl1izhm//Ohj/ODv/wEvr2/Ji/CzZDtlSBGH3YChjwjRNRcsSAw2adXaLSUINpsthwsFDsDi2qNlubUFcr7nvBwaln3k9jO4LguDgRjYulc57QwedPsUO4kdh/dka0PTSqKrB6K8ACiAYbtpX/cg2wWm8jS17H7Z19UQRe+f52fHSO2EUmvLqL2W7/aQSR75VwCliCGLho0PmxIrgQWbA+AIcoBgyjOqFEq+C8grqsz8+2FDXZRpZELnTldWxOrg67X4NFWSqKdxahMe/UP9PZLNvIhxkUqGyIJ4QJFCwJRH5JnyyBBpok/B1nfpqFhshQjlvlsQEgOSkeSn8YwoBf2wWcrFzbK8WkDwysHA8XhEraXNrvfe+PZBDtnKV/9zvWW474fClGaa0fGLbuapPQAPBAz+VUUMCV2XsN1sKWe632PoWYcTN5JgtOxT2e7ujrh+eY272zuM44SSSXD0vvCWUa/6vplZdNgenuCtr30T73/ru3j6xhsYthvCVEo0wZ2U33+p1cS9yPZ32WXPSFtLnyx1vWwwOn+2IIbapD+pbKWA9eO7LkN7iNavO04TVG0QMFsU2mcCsA3G64oChJgwx8w527VgvB9twl9qa+/vvyYPVcukJCw1ekjALD1uBYjbZ8Blho4VJV+zpFCJCBQAWZU97eboneQTokKKGkmUtbhgRJsHhSRd5HBjiu1ZiwIq0YZzAHmeWV9eOXkvh/Q9NQfIZl/kUJef5c83h+5Zh0HocMeXrNYHALlaxmLM4RU6AIEx9qXdW0NE/DOt1onKZ61VUWaW4PxnOF8iNHloIofs945CsKJ1lBhk34YmrdAirFAj34uuGOiBjDuwUgqmnK1+bTMztEKs/uzlQV4KBZVLzphzRr/ZYLvfcS2sNWzd2hriMma4GTBDi1RJHCwK9F3XpstVYtKYa8XpdCbxsB/w5PETbDYUgqm5ACFRmCeSDR4AjuIOCTWPON7eoR8GdpHEiOk443iyAVhacXc+4Yc/+hH+9od/i6HvEWJnKATndaTEFsiKwvfXiosddQW6joFADMukSvppBqEhWf148FHhASlyL9JGTAhhi9DEyfBwjcy8e+dAWM0r8WABIMvdkdUY6IjdaJMgm0x8anl+67O/PA7XpLAprOt9I4vyIc+FDSiygHMaV8GCBE4WdHQrhAefVVWtHTsg9D3maTL0jjbJz5RYmbnUSiHgL5HkuhTNPi8qhhpMMjhGDLHD3d0txFBliHcAUTgoiJqzt1MqoSEOncsuWwBf5rxMe00eYFkgY9ctEpC6vrXw9n2P4+nEEccpunUCzH9pLUQW+DAY0MG70wzlsc+PYcCmDzgdb1DVRn7LYrNf9fXqZYKREqKuMOfOj1fojtP+U/7bD4HTGgAaq1oVuirOr2Fbr1P5q+mz22jSEAI2W2sRPOyxcYO+DjiEGXDOGcfjCS+v2TJ4Oh7bqGQnahXL2nmdButwKjwRge0V3n7323jn69/F49ffQL/bsOShhM1hUacHPQ7PllyQtbRb8SDIs/XGXMdCHPOSSLF62ZcJcXyfhwGUj3gtrXvD0QxfcLEAyVuTqFS1aMqz1pxzxqnYFD6bbwAjk5U5N2gzpkQpW/DxV+NLCCI0RGRsINsAfVqAMiLohHJkW6HDskWAbG4WEiDRug9AIltxtFkCnVszGA0+gkJNsAaW7TrixKBns92hDuQ9rFujYqRWQ+q8/mmoELBCuRZkyte87XVhfVVBdjnZ7UaagtoUP0XJQuQCsHZYvgeNN8sTfEsLcyqhTJ0z4J06VksUmIBQYBCQ7M9oCBSRAUEEuQLUOTe9dPX0XwCDf4MsPB7ARalSCzDXRGEPLOdcMGYaqAixdgUTzjK7QDY4p9gVZXazawqcyz72DgOtFSlETLmwCmABSTHWtKqi5oKKgBC71jrnh/w0ZZymGbkU9H3CG6+/jtR1hLCFhCtC7xGN/FgYoH/0q4/w85/9DH/6/e/j0eMtYgy4OZ1wOo+L1r8FHtmCm2iBeQyBBLdgGZtpAqQkuLzYYDskpLVNDE6cZkfGZrtBt+mQuohN3zEIBFi2AX82a0VBQRTTHLBTXWumM0AEtLBF0IM7S8g4c8DOjwX/nDYY7d/VjKRxbQSmZe/2mAqDqmnFiOeauyP2sqGfqWIIQEsaQoAGQZTOnLKLXrmCXvmKTXNEsNZlPLOIsDxm+3Lt9H2OAKczpmZXAQYZwd5rrZgbfL6NKHaHi0VTwO4Lqgi6sPAd1m9rAAZ0zocjomABoiFbEiMSWKqUIo0Myc/nTAQtYrMWzN5UJymK2T4vEQSoZkA4a0NKgkSqPRruzmcYemz2lziPR+QyssgkjjW82uuVg4GSqcIHXVin/oAAI8WZqIW3ZPhN8bVEsh4IfiXi/VIQ40bYJ9wNQ4/tdovD5QVHmDob1BbTgVEFkKeM4/EeX3zxAi9fXtu44bq6hpZnAmDtEkEhPigGETHu8OT5u3jna9/Cs9ffxHa3p269e6TlQlmvRzVY2pd1icw8svPN7pvT+RbwDWBOi61zywHhu/nAny+9l+nZQ8HBGQJrETMja7BRsPeuGoCJn5eEY0u7lKgmN54aPFVhsG5lnSrEiO1uiz70DICqf76iygxKBnfIGhE3Ad2TgqTAED5DubtDmUbiAdXcW7AgUCNCsN7hWgC1WnbrOLGNrXSdlSeTh00VCdL6ghvEaRlZiqmto4t6eKDFrF1X2bPt6eXBGlq0wHQhsFZdq0ArRbWiETVjICOfjOWCUMJyuHVR+yuVQRjRVK5fKQVlnjhcJpe2nwOsFKFAgqATdqK4oQoVHGEqzChSjMbM5pRIiI8g5nr65DpvUfK1cnnuGBgUsLTE9YqrkcYxJqQ+oYs2g6HW1oGQUsQwDE3tbn/Ys0PDkAAGFxZ01UW7Xq0c09A4w/ZyzpaFx9Z6Vis1M5xHMY4TalFM40SyXiAsnlEx14K+dsu8CglmVIFPPvkEL65f4u7uFo8eXwEArq9vMM+5ZddEPdweLGUcCFuWqyNSgcJa+80WV4cdNkOPFGG8GhItm9Jgl9BvN2y/tH/HGBv3ST25iDyP1YIfvyY6DifXmTKs7R+1uqVPI/TAYs6mTR+slbilZ/Y3CdZybN0vhZrLKqnZVrV1L6VgGDatNOSvMs/tjLkjrVpaS3VDHGwvFuOXuANvfJ1KnZBh6Bu8rsXEiFbvDdBxqghyqegjz+g0jkQh3Jna2iTL3N320vGGFjy4M1jPq6gWIDhi4CPmFQ/bBjsrrfHXzKPEDhALklYZOm2aQDUjrLqTBDC9EjRhpPWLOjGB6qCBmhVOrvRXTD024h0lTLiJakS8yusPCAZKOwhel12g9K/+t6TE9tB0IUnRAHgaxxV1Z9YSMMAmRwWWBLYDB3rY/ABfPA8u3NDXqpwyeHOHly9f4O7uvmWH/pnMAhfoNFjgolZ/RQ2IYcCjZ2/gra99E0/efhvbywtmxmDuXbWimn4AJ8jZXPPMTbPefDlzZnywDeojKT0A8rYhwJwNDN4yiLCuetpnSgm1yFqd0WsCI17zE2sf83vk8BrLau1ghhBaC2OB0sDZRgohYMaIPM3kK+QClIKuS+1wt2hZxCJ5L+VEqCZousJwoUgyQNMX0Ltr1PMJsRYS4UqmoIyaGpc9F8qwW+Tt+4EpHkVZPEiqvG7JihCXgMkzEFWw9WetwGV/XRunVukQLLV6AKpe8V/tdcgSuIVoI1q1QadcQ44ErloRxXaMoU9qMLPESIKkTb0r80ymd2FPcQqRpQCxSYOBrP8uCtEBq31XEcxaqXYm0YIgDqQp4kEQF8PJnuYmECSSPEiRgkZgFbEx2QblBnOm4n3cEiDWihlFUE8ndH2Pi4sLIAjO5zO22107AxAhX8EQPkLJHJa0CJK5LKvtz2CKfOo13CWLLCUDpuDJwWemixEiQqWexWeff4ab2zsM/YA333wDz197rZ0RQNB3HbrkLGzBNE24ubmG67/7TI41CXRBUvzv1o6mFb0ATy4O2A8DEg8ZDbidDx9L3A09hs2AYTNQ/z6wtTAmPgvnd8iKNFdrRq1AkA5BKH8L6IMM1TNpu1h2D4PdU7WWxscQoCUa7oT83KhB9LAwlDA52fftOkpGydEy6gqfBCphWR+14FlrRV6VDag4yOvg+GlrB64PtT6KzbBp2gP2sx4IrEnXvc0QEFlpsVjZbP01BvXaShmuU1K83doDIzsr0T7TP8d9lmfs7f++msO274XoZ0bhA4Wojrh0LzTUUawcWQpnYATvBvBzS2J3FZ6JXF1dNcGiEwgoXex22Ev5rxgL/AEKhP7/bTEsi/XvtEAAX10gdYO79FWbS2666suPMkMTy3C6rsP+QOng7WoYDDchDUwwwYycC6ZxxhdfvMTN9XXTlF96pNdoxJqUBnOslpVIwuHqGd792rfwxte+hsPjR+g3PaJF3qXY9bebdCMBg06dKBaMFJiNYMjNnJI7CF6B6wEwUayGGhPGL6UsExj9+1CLVGUlzlJRKqiEV1f3KQwUfJRo65vWCmS2HYks7HQfH90PPVIwvX6fNIlqPcO+uRUu+Rm7gRs4CADKqubcAZvH2HQHdIcn6G+/wOn+GtN4xng6YjzfQQEkVWTNQFVu+Cptf/k9+LNyPY11DT/XjAR3PE4kInzmAWYzlYYkOe8Bav36D/bhgvyYLW9Owf9tR6BBnI3BbA+q1VF1+RrUgo1arTOnoJo2Bwq7BIIYudEyf7Ky9WEgEGj8mZ1U1CKohia5sXUuLEmfqwvAOk5XYzybcJMFBWv0pLXsOjdCFyQlmbGljseuTbHzwUDLAB0AjkoAyAoLdNhpk4wRLsDCP6iL+BEDPJ/NznWLiMaxqQyixEY6x4rb62v8+pNfY5rZGkm+U8Ubb70F2WzQdR3+6I//GG++9TYePXpMKfLTGffHIzwrURi52HbeIgGOpX9dwaxPK3bbAVeHHZIQ+fA+9DZzJUb0w4Bht0G/7dENPWLkvHvvdxdLDDxw5P+0yQUrtcmW/aZGcvWs04I9EZ6LojNEgNQF47rMiEGbjr8AKPO0OjMREpMx6c1OVEfESFTzbiFHTJwQnmJsGe2SXLMdNpdstoxlLAGR5gAAlhi1bhyQMLj2H25LnTzoHWwebK6DA98fwdckhEY0VN/4Xg4QIbHSznXzbeAaO5/Gy8DFkC0/QJ4Ire2957NOKhVD5ioU83RG128QDDVg5q7tvVgWpOwxaiGHJAIAz6jH4kSEtYnPhZhakuuBCFFA73L6kpP9z7xePRgwuFPN+QIro2F/2oo2EGqJoKxdCL6R68PveUamMCIZo+W+63BxcYHD/oBuIHloMulYJ5qEEChoM024vz/h5uUtbm9vMY0zSs10fqu2x2bMm4GUNs8g8MkjDTs8feMdvPHeB3j09KnNNmekzrkfzIqjsZCZ7QsV8labyfkBFPtw5jUgsnQTMHrke+RCiA/VosS6HHgfeZwMss0Gyy0MbJYOsk0O1HbAhTX5ANRKUQuHxCssyzJD5PVDsWFF/bBBrYoxHhsRsswz2xMtaOFY4A5hJ0jSg4zkBFVht0KM0JQQ+g12/QW6izNSAMp4hxeffYS7m88pzzmOqJJRarKxRmaUDWkAIoK1PfmgFdizKCiQYtvZMljPyNresii1lRHaXvxdB8X3MdqeXeA4+54s+hYlF4QkUHE1TA8uufc8GKlG7qyZJZySeei9VTEKh1oRAfbDT/Z8CkDnjjkwCJQokKwsbIkZ5LCIqCCwLdADbpYmbHX9gcOMrQceDj2Kl5WsTCfBlP20jYQuuSAZGkISFoOLoWPpCUK0CWoqaVZSYJuttNKJRjv3kPb9Gtzo1VZK0VLNYVJ8poACRKIFWhOKAJgz5lzQ9xtIYEfDZ599gZQSDoeLZuC7ocez11+zcsOM8XzG6XQiFrIK/iBoNs7ryo4mCASiFQmKq/0Gm6GDL3Y0olcwHYeh79DvGAx0XYc+9RYELaVO+HMjDICqMz/bgtuquXFoGGxSM0ACFRe5ldl1EkRQ8mhnMWKeqDEQIucmlEw0K3UBMQXOK4g9tDrawPPH2QXBOmi6RQytzpD4kGjsEws9Bqc2RECZRiMh11ZCynm0vU178ZCf4+cVq3O3TCn0s5VzbkTC9rLzXq0F1udcAEsrovMAai5WZlkSA3UnsX5ZMNcS7HVGYD7PAwIAKz6QWRqzkyn1xucIUAuKGpRvaJBr+ZQ6AlD0sjUwTxvviLLjTOL8g3hWSjuvfn2Uev4vHQyYgRO4XbVsUtEiQTXnbhzn5nXXsYl3BDxAF0RaJBeMnLPdbk0khCpexSLMVl+3KGyaZsxzxvH+HjfXtzgeT0YqKdbqX5fPrtUO+hIB+jUJAqM16bC7eIznb72HR89fw2a3e0Cuaj3bMZjKoMApe54NVoOCU3zY4hFardbWL9h6VTp+woHei85oPFaBZuM0AOgSiUduKB3a08D2wjyXNupYzDMttTJ/PkssVCqFOxydiMn7oFlvF920RHm2gTN13R1RwVJCrej6jNB12G6XmdohAVO16Dh1iGlATBH9xWPI9goX51tMxxc43t2izhNqodGaxhE5M/OjhngAKjCPZ2aysC4BM9xkORdTmbT19rhbWvztvLf1Kjw43PyerL+72iceuC4BLwWcMmogca8dWJFW144hMMCrBUErtGRomfl3U0MLwmw/OtnMPsG5CDEIUgyNExCsZoywcAqCBUhwZKBStKldj91rNZGrVjZbBUjiwQw8oxXyTjr/TDqdXAq6GBG7hJCsbz11MP+AaG20IQaUmefWFRRrqZC0yD8Xc15qKIArqjHrr236pNeNSTJkp8HsZRchmbfrOux2O3h3zae/nTBPI65fXuP29hbb3Q6AE24tOLJywzSOK9VTa61dnWESJKOZNUOEakHXRey3GwQz2F6qSqlrKoMpdRj6AX3PXnBFMC7PQmBTqBEx7emz28+ux/Y8C2NGymMg7/M72nuBFjgamVNRELuImGzXVgrTpG5rAd7CK1It9ttut5Yg2mJEBmsrB7pGnYo5XIhAy2zvRbEfH0olEpD6zaLOpyQArh2sD/IBYB1VS1cZ1zNZp02BRko7k+eS2n5my6Q8CBYWp81nP40ZnbUXehDw5QRhzYX48tcB8rS8O2713WZo/Kux61rrokcgCx9JmliZ1MDJh3PGrCMDbSWa7H6T52R9HUy485wNxfPyyP8fCITtxsUyaciqfxTL9yzCbXQ+P+RfWWAnV0k7ZCEExC5hs9liu90ymoS2ljn4ZoJAC3XuzydKId/dsWWQ/djeMuifpnCdeZeUbdKNdi8qAdCAfrvH0zfew5M33ka32xt7nvdSirZ+WB+wFAI3aS1L66CjATUAEGb166hWxDI7Q1MqKoVdLNBYBx6ER0uDDosxhT3gaJMP65JYiDmFYtrjyaSR2ZNuv8OHsDyPGGB0rpZRBwG6PiHXDiX3zSBoLgjibZCcM388ntDlzL79aC2eQQB4rZLZnApQACAkxO0BabvH5vHr2OeCMh7x+GqLwybh9sULfPrpF3jx8gVKOaEUYJpnyN09bm5etojayz9NTc6yaz8p/oy9KNRiaV2d3VVk+HtjaGs9hSxGQoREsghna2uD56sJJKmVAiIUqWbANAOcBBQc+jcbEm39gu2HGOx8+DAeUyZrwkFKp00eBbNyDhMy2NbQIAWaUIyqZTQIzdBWr1EKIEZsCyHYcCIPfi0OaXVZ1rybAIwqu1I0UEyoEnKdM5G62EXErrPJeW4ruPrOpHebUU0/o+Ziug/iWQemmXLoTnKDzVm4vLxCP2wwnkfcXt/gLjBYoZ4BETXJPk2SEPJoQ7a8du49w24nvKSXVlksQDRnN3TYdCwdVA9SQeJgIwmaymUyESIvgwLaugyqlT3VAkYR602X0PazrxMlsmGoo/FRNCCGDoYrtYCdQK5AJEEgmOYz6/HRV98gfihUM2pxZnu0ICEiBLYwznmkJoO9HtbVXVvfv1cQTJiLaqcmAAcgdT0EQNdFjOOIIXJ8cqVRbaqBTvJdpHiH9nkhJdR5RlXFPE2NY+DPZ03sU6AFKX7mk5W11BKitu9B1UIXYmpmQh62UHopoGXI1RJOQ5DM4TRlQlgg6xcgAmgMNuHVkqfgJYGAKBQaO52O2Gx3hsR4BNEuiv/ZLBgBkxONnBuy3jW/7/XKwQDMCCCwbqnqITSaMW1wkUXOgItmSPs+iVdiBs8NYURIEUNPYk1nanDZxElq1eZQncE854zzecL97T3OZ85JyDYEA0qjqLJwAnz13Fg7CrhEvgIg4fLRc7z59nt49PQZCT6+OaouAbAHJMrgYkE7DCNQDqiRhj/JUrvywMgCCDetMQaI9Bx3qYC6EhwCNazdQKI2I+6Kb+SP8f5SYs29lSkK4ejUWT+zEqLm8yBc7NlLVbT2GP/dYAfD276CRqAL6IYBquwhzvaz0zyjVnYghCBm/Mi67kw9UWGqg6IInSEIFagpISAhDns8ev4UT1//GrrLXyP+5reUHwWgpeDu9ho/+vu/wel0Y9mSoKwiem8jjIjkAsmSWdnZZFbTIgEvpyz79MHrQQaEJork0AoZ+IECVtFqlbRfiBIw1xnTNAMlo3NY2EVfDJEKfiY82Q+LVkA0bXIPAmKyvwv3RAE/R1uWYWI+jtWiAkpnonAVtNiyL61cQyjlTkOkse5iYGdKZEtcMEfvEtdBF6Js13VNbz9IoCRqQyq0nTI/gH3XI9p4XToTaYYWVj/24+YcAj/3aAZdGnKQc7V5J9x7z54/x+PU4Xg8YZpHjNMZT58+Rdd3FsASXg+NtFowToZ4mWOgiFJtAVTLjENof/egb9Mbn6id72VvdD0Jg31HWdoYYlsrT4bYTcAHRlnbjKLkhngHge9FJ5yt6+TL371ryTXzFbXOKLkixq45k64foLqIlNGXkf1fSjbb7IOpKEAmAuQy8bxGQdQAgXN0SrPtPE82klcCoCwtVlVstofmwzyhBJhY1ZotWDEidVyY/x50s2NkhekJLGtmFwFUzWa7U9K25zygayig/ZksW/evrW344idWa212VyLlpVuPtc0vEQkNPUa7ioXjYVkELEOBZ11S119a9Ab6aAG12RTOAPFF1MUH2LX7AKNSs/mcinV/1D/1euVgoBEy3IWuLwCLWIuItMClIUgOSfp7wQ6AoQPRYJ/UGQNfK8pcHiAKql4nYkZ6Op1xf3+P83nkoB4LGuAPHX4Bq4XjX5ZvySpLFEHXb/Ho2Rt48vqbGHY7g5e4FdzhMFPiw3dIv12n+IYD5pm90q2O5EZNKzQvKEIIwaBH0zEvDIIg3kVAoxVhvcR2TQ5rlVIhgQvd6mcC08JmfVWLQkKxerIFIWLvGxcxEW+BYQcECX0A+7UrikGO9jkm19mHiFwrME88HACm8QwJwDSOButGzojYDJblck94X2/x8blQvLi+RQyC1549waPHj3CeM85jtvG0CZvDU9ze3eHnP/tP0KLwYkAjl/m1w6JurE6PLrGrk3+ciGgR7IM93DaKB8L2WtqbBG70odWUxyI7L2qFmIhQhGK/22C/21Kb/+5MEp4oBVOE3BHPSgRoDt8JaO6EU2TdVmidmcm5IXbHoDCky1jTfg6V+zj6vlDiKywrKVQYbEc/l8lgy8B9nzq2FEbTf4iBgi3dsF2CzbrMhPCMldr1BYjGd1h12kDwgHUPMcja0BOut9q0T9g9MtiHdfBkVXQWVIzzjNN4wrffexcvr28xl4z94YAUKbk9z5nBVoituwaomMbReA4WzFmS4kE3oX8rlbgzrubwu44IjwqiinVOmKNP7IbqusRyT5esnNLRIUYxKWwiNQtitYbqATjSWay2DGVLr647AGpTyuS+D4ixRywTSp5QUBFCzy4SdsI3e85sNLXgwx314nhgssEG51uQUPM9qlak0IOZvwmqQRAQoaGiloyqguBiZqVy1rYdORFFySN/x2v8aqqIoO2PkqB5pJprsO3sIlZQdF3E/f09tjG20fQAS5tejmqIju81O+ttpT0ar951sXAxJJCv1BDlFlSgZeoMJBwT53URcQiolXNeQqD6JMKSFLagYOVDAVhET2Eqd2Wy+n+zRu0BOYokISGCaJrblVd5/UFlgt9VS4E7iPb9Ney3XLfl0hYIrWB2LJkpYBoAZZVBt88KmGcOkDidzqYiSLKQrmDFNQpgv9ii+4fXviw6oceI7eERnrz+FvaPHiF0PKwexfmD9kh2eQ++TyloRtAd/TyjEYRCINHM59Yzp1vaahby1/JwXYiFweQC+7nEKSWhK6RauxNzP+u2MCKRsbm9Vuf9/KqUxewSM4A5Z2YTMEazwV0xcUNWLWaoLfvUZTrlZtigS53BuBXzNKHmjFoLcqmo84RSJmwyh0b57Hn2tEdIF0keHNkb/uLmFsNmwOOrCzx5fIlPPnuJXBQxAmm/wfN33sVvP/sYdy8+hYiLV3nmr3b/3N4hSiMQOkVDV8ZgCcfX22XdiY0HxgOqD8+CvbcjWfOUkTMDga6LSKnHsInYDgN2mx46jgzWRE3K2Yl7XlZZNBJ837imQDSHFj3tD8tgmhaI+rm0s9ACYDXinR8ER4kqA5YaLDsE+76jGxHfO0HMibKUEa1Nz0cHi3FUai1t3odD+CJgphNJvksdxxurwKbWkUsAc7TeQ6/wBIDlABhPCFYOcR5ErQW5AnEg3P3yxUt8+KsPsdlTlEz3e1M5ZODDdcjmCLhWeZ4f2BDPdGOMLLtkxWa/4SyCyq4aFbDk0TPL93RD4BkkW9xc5CpErpmXRINxA6IFxcu59wSC2gGUS16UCFvVR40oZ9k9rJuGn19aUCOxh9aJXSwoUN9bpu3gDi+4BK8hH1DFPI8QWgAEKGrOQKCksmoBNLJ9Vjle2R14dS0ECPJckLreLa3pasyQkMzOMJAOsWutvUEWZCD4/cG4KikRZW3GnCjWZrtva9gcNbhGD0mG68OuzRf5Uafs8Yyus64KCc0aNPjfODASF9hfrbREITi1dQbPDpK1eWYEKycuH7jYl8aL+VKtv8V77dNgQVNLbyCG0vA8si20rETLft/rlYOBdb17uUBpUZBfYIuaV9CM/55DUhDjHQSxuuTSIuJ16CXbFtuUE87nc2sXzLm2qN1RiXXw0NjAK+P3ILxSN/mMYfthi6evvYHnb7yN/cVlG0HstV+/HjeMMTjjVtrXCTPxxbZIc0bW5iGAsd6X61LYzHshTNsOfAiWtRtsWpd1KYWwFoMHaUGC/+lMf2Yny/pzkym8hzoY2S6CnA3YM1IAGCdATBPBx2jKjLFa1q2Mp1t2FyOSpEYymwCEYjW2yBGjp9MJ4zgBMWAYNtjv9ySmpYCNlVGmCZgrcHt/xKOrA/aHLTb3J9zdnZgFAthePsGb730bP7m7Q5nu0eBJh9qq174ZyQeN5gQVqy1lW0GwIFdmFBTNiXnAvoS40u7dg1B3tnlme+fQbbDZbjAMPYaOg2iSkEAYMaFPAYK0yoz4uVEWx+9iS66/IMIhOJ33LivLI27k/J6bSpvogz3bSLtrtM32n58X79yI0YltbiQNrbBuhhRim39BvoShZLCBSoVBIJGwYhC+WE99NM0Lh4BD64TxQICJlgly5UzSoUG5TTJCTIjGkIfbl7fYbJ4BgV//9a8/wbChTnvOc7vnaBMntUq7rmpj2KvXe+3BJ5MDn2dqRmw3Gzx9+oQJyfmEPGae8eDIjpUTTdsiAE34qut7pL5rrZYpRA40s9JGtLIBHvTrU9/fgzrvuFAL/IKhF3DIC44QKpGEWlFDRAhEI0qZQFG1VVBl+4H96oZoYclyS5lJCgyBg3VUgFIxzxMkBHOYAgVb4mLs4VCUKrN4iRHDdguq6Rnkn6clqGn8h4rgDF/b8yVnzssQtjtP04Su65h5ewLpzzalFuz7NumMWMjpoiZwtAoufF1twc0G+lC2Cd2waY7a53y4D6laUedi3ISl42gtbtR+WAJiYgmo1gKxRO1BFGI2mq7LzqPfp6zRyXWSLPY9/64FVqY50saXv8LrDyYQrv/dIFY3anahDxj0rSYl7YYIZ1NDwIVvHJ5eTz905zZNE86nM+acbbiQaUjXhwjCV256lfHhKwtiiIEAGgKG/QWePn8DF1dX6FLifHd43VBW/bahGcDQnqNlATE2Nb+u69D3qQUltYLZV7VMyFjDdDK6IhSiOSOAcqjVOQEeQDTSjvf/et9pbc5AhDoELbBqDhLmvG3SWVGrTweEROM42+8EzzaF6ADhRQ+Sot2XaxcoYAI7hBszEAP6ZAfL6oaFEApUz1BVDMMGqUucOLnZQEBNg2nOOJ6O2G0HXB52yGPBOGVzIhHPnr+Fl6//Br/9+Gcr0s7ymLk3TJwlSVsvz92WLbLKpts2qW1/AxbpYwlsmY2aJn+bRCbY7g7YbvY4XFwhGKmOJbQCqRkyHkmy6yIghTV6CCq0OdqwcrJOVGVJRUxd0mqsxvfw6Xvt4u0/D5B8n4fQbp7BhgXBfl9+XBT1wfmtCnQSreVxkQRnwsTAhChUAZS9z1RZLPAQyjku7FF3cli0UbelSdlKJPcBFnyVws6Dal0yft3qTlcEwzBgjhFfzJ+jlIreeEXznFH1tFyrtUZWZ32LB7Q06pMNxSFaQGcqgVPhSiUKVmrGbrcDQOLb3M1IFpA1REGYsYVEHkAILK/0AyepxmSTC6U2R158CqdEa4O2/WhlSCeLcmnUMnz1Kh6/QyML5zNAKiRahwIYFEcNJNxJgcQOMXQoJk7DGD4AteJ4vOdche0G/WYA1IbjaEGZR4ynEzbbLaTrQVa7INeynCvPnkWQS+Yo4JAWHpegkUd9zWNk62QtM0JYdAaaEivYnaGG4sQVORB2Ht0Ga0uElveAslsLquQJrH534Tv4hy5CRw8yXTcgdrRCjBz8tvI/Xj5coxntTYQZewDHcqsIYtc/uAaJ0QbbsR29lAqkZNoQvnf9kCyl6uXyST70FkaxM/0qr1cnEOJhQPAgC3eSYMvEncwg7euuhR4kWFtesrqojay0qWxqN+wHeppm5HlGdjizehYMiwKxWqA1FLC6XtrT5bkqQMYG1aBi2ODq8nU8ef4WNod9m4YnNRhjPzdHzZiGBrAqe7sdJgWwwLrRITjjCYCHTVq7kD9IXuA8MzuKwVqtAksMZHCbs1cyemOyaysUwtCKJjS03thc/4o8AyVXa7UBAM+YuXRF7f5A51Ws5l6qokwzVFkvhC68DEhtPbtL+6ZFssKDW2tlmUSXQClXysGWrBjrhHku7HOeZvR9h77rgK5HLjM+++IGT58+wn43YDoXnOeXdE6pw263x3vvfR33N5/j7uXn9mTrOhpgEpMB0UAJgriIgqx2NTyz93IXyyKrsCEYJ0YrQiXDvdSCXBUhJHSbLS4uL3F59Qgp9fx+KTRsIpCSEUuG2CyLvusQVFFgg7fEugWiE8o8OxRDzkNDCvj4eL3LmbJ9oEvQ7ZmjwANM4yTY+zb1OjMV1WrdVDCzvVQFEtdlPQ+QFQjB1BcZ0JR56aQp1k/uBtE5FjEuioMQ7pZso6aDjfnVwvaoOmeoqTNmU6Srpk8ABOKeluU9ubrCbrMDwNpxnjOyzTfYbXfo+gHn89jmcZQ6m1MKFuhnzPO0IJHV0LO6Gs+uimnKuL8/GkmPfIDoGeAShxFFSRGhS3RayTgXqbOBSyTWiSbm6KpWVjA7Uj2BKMboZyDvzyUYXOWB+lpYSpVQMyWprf5v7DQJHSQKSj5TJyBcQMApmI6UIgj63QDFyrkjNDslERh20c5SBDsIlAlAJOeATrED1HgfIVEjodInqJRGLlTl+Uyhx/l8BtIZm44SxES3KowTSXSs63A+H43H0rUzEUUwZjr7aIOEvOfefVXXdQ1B5e1IW9PmjG1zhtgxmVBlYGV+icEzf1dEkFpmX63lOi7nBA9f7TMD/V8pGUEZGNuF2M+YBw1GwKx5hSKIX0A7zy0AxBJoqQhK4QTV+KAT5T//+v8ZGfgq9KBQ9WhsWVixiNO1z4PVR20/I8N76/nzpVK6d5qmZahQVRSTH3XIzI2+iPW82jlu8K9lDwvsaNEXvDWS2S6s5/XyyVM8evoU3TCYRj4zAq+5JFN5Mltrn8UPS7FDlIpczdlZllDV2vuUbV4BjjCsNqGBdlOmWhijbXYMkIKysFvN0wKwEkKswPjVmQfAiuQmyx4qJVud0trVYrAMa/l9NYTByw0x0jjleWYWZz3fbNPpG1TnAksLM16ML0E53ZQSmb7z1IiRVVkiKUUxnc8IIjhcXGG720OCYCoVd8cTri72uLjYYswT7o9nAEDoOzx6/hre/eDb+OkP/xrTeISLWbWdqQxUZ52hokgm9rREA+ufXv3pkaYZVzoHwm8CWN88HcvF5R7Pnj7Bpk/YpYr9AMQ+ICFiu9kiCZDzjJfX17i+vqVaYopASRAw0AxWdnKoua2h/Q/C73chIjlh1a+4JQt8nsCiqeABRCsBmFbFmo/QWuc8/7L1qbYOcSXl7AEtGjpWkbNlQ14WqMvsDBd3ga56xrH0etdaMeeCOWfK6RaeHVfsLKXYvPbKwLUWCFI7D7VWjNMEhITXX3sd0zxhnkdAziiTO0bFru/RDQPGccQ4nnF3w8x3t9s3oSMG2wvaRwiYqOQ6wL6+voEYehJVl6Fdfk2qbN6w8eopJWsLlUZiXE8yFHi5qUKra4Mwgyaf0J50LSaeIw/GfGulZoMHiBL8/QB2AqCpmbLLICLFraEdBc5cr1oWYnwITcLbgxsA5C4kkuooUT7D9RhC6Lhv1lm2LnuYYkMsG2mdwSiT+6ZoQUJEl3rAuVFayZnQCg0Vol3zG46mBAtc3SB3fY/T6YRtYPDs9t8dg+/5dtrNfq8DBn+FEDhpNWekvseaGLhYD6JUqIV7U4Ba51VAFNv9wJA6P53LmOHlfLGkasPFjM/BGRdLZq+GWqGV8bzbRNpVEZ0KHFakI/J4j4c4yu9+vXIw8LCf1C6sOeSFbuXCEkEMUrcaqEtV+q/XXFDD8vu1lGYY8kw42Hs9efCXCO7L3IDmmFdPyr8u6gfKvr7yBT7mc7O7wOHpc3Tbncmz6irytvsJbqRZkwsgRJs6sqvHnFGz1enAWnvOpn2dIrSKOVJbL/uPrX4Cn08gAUghNUNdcuEBMliiFqC0EgC+stG9XtUi4GCBSJMtVospHMHwEoQRTSKZ/xBgPI9cw0Alq3nis1GgtWH1w6INzpYbK3nIoideVSEWGHToUIKP4wwNFZrPI8Y8N+Z4P7DMUopingsuLvaWyb3EaZzIpu47vPb2+7h9+QKffPgL1PmMorOBYnRmgYVR5In9xNQhd+7KEg7o6necB+AOArVCckbMGUMK2G46PLl6hmePHuGNZ89wedhj2/c4bHps+w77TY+riwOGnmWwea445xmfv3iBX374K/zylx/it59+gSokcQoTMiMTLrKmrjng10nbYfu68np9bkUbNmRoVOMOKODDYBoyFheUgc7IWpTCol62rkLagWpnmrr3/N1cCqRQmlZXAQF/Thp5K8RALQ1dSjAlZ46ZLhUIpZVeKDOcyTsA9/yUZ8y5IIJDbnJRsvKD4Dye8fnnn2F/2GPoB3uGYm21M8bTGcNui8PhABHB33/8Q8QQ8MEHH0BSwDxz4JRAAeWgF+9KWeTBOWPkfDpB1MifWjDsNmTHK9dPos17iKHNIugHkmZDMl4Olnq3Z/ctwfBnBCz2oZoepwDLU7MkpxaUYtyBZSObEzdeU8lLICdhFfbaEKYK5Fra84UKYuwesux1ubJqAeq6s8lltola8EYUPhvAO28MeDG2fggB1UhUCiCkDgvVrSDPZ3JMMqBRAOmt62tYZs1gsachRvR9h3meMAwD77V61vwwYVpzs9qcEtXWbgpQh2AcRz67FYHbf6/ZD3HiJp2yJ12U467wuSpwaLmd6fAgeXXS6ZprIOLkej4XGEEcurRd+gNfUgQz2ggIaUBySfTf8/qDCIT+Wi+mE+c8owGWgRPhS8aFRgdodUmrj9XK2efzRDjQ4Wh3Xmt+wOqC7LZXEBkessAFsNnUvjl1fZQgEISYcLh6gsunz9BttwhGHOTvm2wqBKqFC2yRaRCgBt7vnE29bGXMuelry05KzpjnGa4f3zS2K2vH3vdeakVvfcgAN13OHIoEy6Zg3RYlF1QwA4spItTFIZTqg5lgClnLmW6T5qyMU6xEk7pEsZtIeFVg40ODmg74yjiZFfEpeAq2w3U2dCWUQlZ9BUrhs48BkNS1ZxcDWesxJtRs7aGlYBrPcB5GANCnHvt9xX47oFxd4reff45i4kn9Zou33/8Gjnd3ePHZx7YnbW8oWpa07Bs0TXMxp1Z1kQQtdqjU2h2DFmxjwNOrC7z7/Cnefu05Hl3scHVxwMackWd8faLs7DB06PqE1EfE1KEHsKsbXF70eP3xHu89f4K//sGP8NNffoTsOZshNjTyDJoXSS8rHSQa1erIQF1QjKWNlXs8rspUHiyLoJV2nNDrZ7vWimRBkijY0WP2Z8ls/GrMAAWBzisDuyL/sqW1QGqlOIwbUksIaq4kGhpBEII2Xa9WE/EqavLZwDTz/PSqKFVwfx5xdx7x9OlTnMYZCkHJM8c654zpfCZ/p+tQ7ljW2e53/CwFbm/vEGOHECOmabIS2lIGeRBQCxHNnGecTuwQiAjoQkXAxs4bf95ndVCiubOAYEA3UHNDRMx5OGTupSDuVbeVaKVHbRm8S2FIBVSW69LitskwHiWzHBBrF+ZUwQqY0p9/njRHFq3VpuQReS4Y+i2KBMTUWSJBawo7J7zG0Dq/EIxbpSz9pGgdB3AY27gbtLrtLJZS256qRi7ktEBBLTM/q41etsApJAaelQO/1v4ppog8T5jmGf2wWVAdC0ynaUJvZQTfq3T0FH4LceE7BJsn4esKPwGeMHgSLCB737gwItpKUlHSEoy0cKGlHs0m83gxMInB/Yyjeoakw//uLbxLslrtmbiUtFj3l2oA+gGv8voDOAPaLm4VziyRqP1UCC6XuhCh+Cv6gBxY6JWQC6Fn5wS46E7LynRZ/N/JihSsotYvXbFvBFpO67wJyxAXrei2OxyevoaLq8fYbnoMPjAFCkg1R8qN/kA3AHZdVVsblQvELOUdBjwlZ2srMbJgBPphQNWCXDNQgDxLq4uSoM8RqpQGTiiZ6mTBDq0HR8GDMhi0HBzJYFSsRUkYMiOsWtuQEAYsFAtSKEIpGAYTHDFot9YErRn90JO7Mc8G1/pExrmxshHS4tiSOaJaKaJSOTUxBjKKOVgpQ8Ago+u7hiCFyMM5jiPJaUXRpYjDYYfURey3WxzPZ+RginOPnuKd97+OeTzh5uWn/nBopIurui0GvpaCkHxwjhtQ/k42RnWoik6Bt55e4U++8T7ef/11PHt0ia6LrfUtgKSvEAM2Q49N32HoOt5jAGToEYYBsd8Qjr69hcwT3nn2GLs/+2OEEPEPv/iwHR43NDUYKc1KXDFGRBEkM6IVy70ED7Ki3TOsE8UCNJ9FQLQ0LbDp6vUAhtRlzgVVOwm3tr1Z1Mhedj5hBMHiXSzVjBKDAbVEMWciACklIz7WJohVSkYVfoYnULWYQqMWzFUxjRnzzE4FQPD559f4u5/+I84KbLcbPH7yBJePH6MfBrx8eY0XL17iN7/+NbbbLd54802UnHG+P6LvB3z9G9/EJ598gmHYYM4zmmZ+y16dHM17jYFKqD6sS4tAQ0RvjO2sBVO1kopYSazr0Q0bpGFAGjboum3rFIkiNi3Spv95xi9YlRwWdAAW1HoXSW2S1+DXilKxMKZlGE9VaMw8g/Ze+XxG7AaEnuz81u0hsf1bUo8uONlYkfNkLcC8hjxndKkncqBq5/RM8m9gwFQBVNdSFjGJ7tgEzGBtc6KGsHqiUosdXaIJwQKKUtUcFT/Pu1Bg/sH5KTDbk1LCOI3o+qE5Tjh64J0DYoOBakWwgMcyxpbxQ6zLCmi8EfVnIljEiuxefO0ZPJk4UWiSRe3B6to3YQUWWGBAlFhgFgaKipInc/wBC2GwkP+i3kYabMjUSlNBdCWw9k+//iACob98QdYmxRc6msxmtPHDXq9cIGOPcFxAqFp9aHH4Wj2D/Sc6BexratDuV/oy/f+a8xaLyLRF0YqIfrfHxZOn2F9eYLPdIMVg5EDCg1EsDvZsSr50DcZpgJIfgGrOp6qNZPVWS2OEhxUUrIqggcY/RgQzsLVWZK32IGHRHmxUq/cAW69/I/pI20w8XAoEig+ViUbNcBgA5ogL4X6fNaClYoZAUkIxRw+DREXY2pNNUnZZfzRYXksBwgxJoZWI2NriDtkGCAU1xjgwl8zJfiJIvc2ej0tJI5eC69tbVC04ny+w2Qw4XOwhMeD2/h5VFWmzwfM330bNE372oxn3dy8hcKXF6rFBU3EsIpBMB0qHvrQWBa3YBMHzww7ffv89fO/r7+PpowuqzCWHyJmtJFcH7DqkoYcLLFWp0C4hXFyie/QYw2GPMGXcHU+IEjD0PR5fHPBffeebmMYJH/7mt85ZY9a+4Lg0MIGws1qmD13Ehaouhs7imuXvq4wGjd28bGA6A7S9TZRuPRachrwYZD7Ps+0xMpurBfTODShVG0EwhWWUdi6lcUrYH87yl88byRacukNek2GzEWfvz2eczmds6wGiga3Gx3vcTRnT8QjNnI+xv7zEm2+9gX/+z/8r3Fxf48//5b/Cy5fXeO21LVLaAAh488238Oabb6DkjOPJrL97X/UdzXuJqTNBJXJuWAYUdCFg6BO6znrsq/H+QoSkDrHvELsOXTcgdewi8CzBB4E1m+Z7SsEAsAXuy0ZQtZKXP+MQWzLiLYi87rB0XViHB8DyX+h6Zu1FIIHiQT4umr9hNW73l0Ib5JoidDAV0/mIYdhAA53oMGxtbLAgdX1zduqlT7to7yqKKXFQT1RT8lMwDDIFSLBbguJUHNlcKhMhn2HhXV0K8pk6Vx4UEjXLSgUQq7V2jZUgAUWy7XVBkI7D6FZ2zd/Pg441Ci7KUjcEkAcDlFxsK9iYYsCJkH7ttPFWPrPyjifJS4nAHwIDxaJsK2OgYVoCEhBDjzqfMU33tPlyQIhbeDKExQL83tcfUCZA+4CFciTL14zx3B6SWkuO1wFb7V9be6A/IB8xvAQOVj/B7w4CHl6Y3bA9JF1doyMSa8KeZ0+ko3bYP3qCR0+fYnvYcsKT1yyVmt4xLDU2tIetzPhLAcLS01oqW9lqJVzViTQH6PevCkg0/XUzutXrtSm2GerVRIAUzhoPgNjvrDpFiLasxDkM8oJ65K2mJhgapOhSpJ6hrw1TLQVZrB/W4Ft3JKnrMGw3lH3OThILC95l2VMuGRFs8crzzNGfISD10UIyZr+oi/Ph7iIBKWDhE6gqztMZn3/xEvf3Rxwu9nj29DH2uw3O5xNO48gsbbfH6+9+gFIUP/vR3+F492J5bnUJQKFU3RNRiJWpVAhcdkHweLvB1996A3/67a/jrdef4XDYEe2y1s9aFb0PdXFlupgQhh0Jkrw7pMMWm+evY//oKbptj/Nvf4t8GtFpQA4BMQGP9xt852vv4ub6GtenCSrRAgKP6FYRvkOGWFCzNuJ3lew7edORK5hjeSjSYstCIk5T/uRerCZ8wrMakVBN9necJlvMrrHeWR42i6Crdl/wLHR9gsuzOlnP0cB5zktdPhczkkap9cTA7vd8OuP+7ojLycSCtGCeZ8zjhKAV4ynieHdre6jicDjgT/70T/B/+T//n3B9c4t/9+/+Ej/60Y/x4uVLaJ05J0OdzOicC0A1QDXApz/GKNhuBwiAOUeM4wQBiYN935m8tK2dKhQcUe4zCTprJxTXbrCA0TtEKFDDPp72aFZOqJVjHW7HUvYKEuEDoFzbgAFwgLM6GGjwHVLfIdbEALyShCYAxJ55ih1LP24fEa3mbeAqBKnfQlPGVGYEtd7+4EhmM5MouUDqBA3JiMkZ03iPru8A9JDUQ3XTslwVF0MrmOeJcs1W9+77HrqSzVmy3uVP56mIBc+tRICHztCJq6pEQEsZUeaK0GZOCFSpBRDcp8GzdT4/t/8AS1tdDM3RwxJHto4vZE6WUvwe+GxLzgRBsATkzTe1Mw+oFmsnVmjNUFA7xaAhxH5Ah4qcJ/qHMGPt2nXtMP6J16sjA2qQlBkfJzT6mM7Q4BCrlUMbNE6j5YbfDzkXrsn0WgbZRHR4Fw8voeFJy9c8WLMfWGC1NTjD3Q3xKqxBMN2wx9Wj57h6/JQbzrMig5ZDDHTI1YMK5y8UwqKlctiHkPdQXMhHCRmqZwwlPyC8eF8xHT1HuIYQONUNXjuvll0BCIoQgaSCOfNaUojQyrGwqqydBW9Lslqy1iXDKWYwap65HmG1vtWzO5fznc2pLT3pHsSpKoZ+QA6cGEaDxQ1BgtQCO+fJyiO2Lst8AzJdS7Zphp4Fekuj1Xop2BLZSz5OOB7PrPl1Ac+fP8XlYcs2Pl4oNheXeO+b30EIAT/+4V/jePeiBR/cKx4ocV1QuSuSKC62A959/gTffv9dfPDOW3jt2RU2u4Htr+Cc9wD2xQPKzhGlvOhmu8f24oqZjFQgAMPVAfunz7A/XCBFwXGeUcYRUoisVChiF/D06oDnTx/j7uPPkMXg9eZcl0fUzoStF2D5E+2X+30aFCt/sI4YoCx6wUsAJAvqg/cECM3Pnkm6YUXBnDlrwsfaqiq6GJszcQe8kJ9sdn0I0ArUUMljc4TA9ELmbHsIxk4vFXOhSFEtSwJRSsE0TjjdHzGeJqQOrSxRasGcFaUMKPOEPM+Ypxmff/45fvCDH+Czzz7D97//p/gf/8f/O16+fIl/82/+Lf71v/43+O1vP0XfD3BCJuc+kAycCyceQhS73RZPnz7BNE64Px1JDqtsb+37FXnWjbXvNoOuPbvlugEQBgCpEfl0cTqB5MPmVJvtQtuv2kAsK1coUdGqtXXWkrVvSUpgWRSBnUkhWqeAobHBhiWVeUKdZ/TbrSGhgUiBIZTcaBHOQUkpmgIqWfPVTAo3hLVrjkf0w476JDGgHwa2WkoHCb05RyO8CkuWpdgQL4AZexDzu7yfWnwUvCVWkMavWhJHQ1Zq5RkQR6kclqc98/HG0zQipR7SkU/h7d9VFcEI4W6/vSuGAZBAqpC/EJZgBWBnTykFVcOyR9o1GB/EUJDWumkBZfD1FkcbYL4NhlC0C+DZl4g47BHSBoqCnEeEUDnmeDUZ8/e9/oBBRZYAuuUBH7oEq+3Y5+UVMaNYnZFZPsVn6gq+8ajJgwdfDLNcK+hlIQY6/O9R3z9xufDIGP77whGzQQokDhj2V3j87DkO+30Tt/AhPhGBcp3G7nGmtNeCPKDJldPUGOhkOMEjZ7bQ5JxbDbaJ1xQKglRlK0kXWd8vygja104QraYnjjZZlGrX4SgH2KueJCBrbu1QgDlmG6uai2XyIDzsKIRiYUxDgSrS2qHcuaDY50lA10cj6li9V5daNWMtO+S6WqdcUMqpoUh93yEFjqL1fi4/1K2uL9RtT13E0Cec7s/IueLm5g6XV3vst1vULLg5njCVCRkF3bDFG+9+A6Uo/vGnf4u7my8g3isOBi4CsNYugl4Ezw47fOf9d/Cdr7+LN994hsPhwIFZFtyIRMTYQwIV3adxRJ5nSOiwefQE20ePOWq74yjVOPTYPbrA7vIAiRF5mjGfZ0rY5gk5K1BI8oyh4vLyAPn0C0grQQpUIgS1qT8CsOBOHsB/q84/NFKgOSZ3Urxza1PVRa5ZgrSMA0qyp2oAkNt4bgCYpwyX282VrPo+JaSYODcIJNBBrZ3RNSzA0hZtBsmCNWdrHyYq4GxvVy3Mc2ZQCQ+G7HdLxvH+jPH+jHBgTZlcBda3SynmeMnmLqZN8MUXL/CTn/wUIsDbb7+F/+v/7X/Af/ff/bf48z//C/zFv/m3ePHFiyYTDI1N16FLEblL2O4GXOx3eDETERi6hCF2GGJs8tYWLsLr/szwbAgXq+duPFuZCWCgTRKYscUlmMQsWgKzpDX8W5OTVuVU1JWN5JtbEE9MfTmDVmokLqZAqRAVFAGqBd155LjnOGzgTlqhbR4CIC1ZiEEhwsmHLJzYtZqwUOgTtumyXTkkIqZdS4DaPBVViFZ2AZneSYArCWZUCZyhYPeZ5xOnHoYeRg8ndN78Av9Ck8K9GlP/AP0UsTZc1dbid39/h4uLnqTqYFNmLanyUpqjP3wPPLBZzR+Jn0/jJ3iU3h6b3bcELBvDzrzZPkFlGQWhZfXmErlvsHDDAKGOSuB3ACp81nyCxB4RG6jrGPye1x+gM9Cuua26wLMRy/KVm4FRvpUJikGpkGWPqz5wqGqR3zLtaYnguJHWUR/a9/gAtMGeaxaD4iFqEAIzfIHBuqHD7nCJx8+eY7vdmQZAWX2OsZ+rthaeWpbrckPpMDcV17BEr7lg1hHTxEwFAHLJGDYDdrsdSh6MOcoaeTVnq6omSwugFogJj7RDrRU+trRWQq4U+UmM1o2d3dbZUJLlWRnRhivePpO3vJQNrP24OQ+xuIqCOIvilawMDteDz5EjbR0irE1SVgKnXsKIojkXtu44sgGLwrEgBhDK2A5bQVcKVBTTVPDkYoNagTFnHK/vYT2QSJsd3vngW7i4usRH//hTvPzst5xsmanKlZLg+eUBsYwYasZ3vvYOvv3Bu3jy5IDDxQ79doMu9dYJUdiHLQHb7RYCxZQrNFbsLx/j4ukzbA47DJsNuq7DdrdFHDrEgfXUPGeMxxPFs3JGGUe2hzp5rs7ouoC+65DHkWhFcJ7KMrPDFtueEzM/ZvloAevSZmTn1eEFsO4La7N09UtvA64Ge3o2tcigygMHLwiQXFAlo3YFXVfRqQtPYSE0xojkzgMGh1rWt+4iyNO8oBy6cAuK3UMpXkpjC+XxeMLd/T3SdgONgiok+kZzsHPOiKUym9PKAGI84sXNNT5/8RKb7Q65VFxc7vHf/w//R/w3/4f/Pf7Vv/zX+F//1/8Ft9cv8fLFiClPBvPOSDHisL/E02fP8OjyCjXPmM9nnO/vcbq7QxCWU0IA5y6k2OrA1OtnXbnk3FAEombMsDle2tfPoe5VBikL7wZaEUw9cckytSE+jq76c4CIcQxWQLkF+0BtAXwtiigdahCkDZnzJL7ZQzDbloylHmKABJM2Nv0CcYQXqwFeKg+ko1txWS0JqkCQ3DqtJIoZHNroUkwRMiaIdwRpRZ7OmEtBt0/N5uSsCIkjpIn6hSVNWiFr7Ri1coDZltjhfDpizqNNdHQ31xzLAqLaX+LK21ic19Z6kSlfvcfqGpbAxG2prRkKgIJ5HhHTBiHYyGKI2dnQEuvQfgdoqbIhyTF0QMx2zjmg7lVer84ZIO/zAdzhGv3r+m4xSLoaM9jbtmqDdmicmqG3RfJaP3T1mS3geBghrxf2YQiA1dccKlsIYq6bT7isx+Nnr+HR06fotwN/vi49pLlB4No2sY/HFTgBsBpDXjiH24lB1XqmC6PocTxjnieroY+YzpRJZQCAhrA4ND70Pbouoe8pAduHQANaK82IEm0JSsJbkIAkgqCKFIAUbKa1art3n/DVSDBYJJDH2sICm87oLF9FGwijVrWzOrYfdCeyLRCYk2N6ss5LQI2EFAXaSiHVsnVvS0vGzVAs0XYTqtGKopRLTgPrMvd3E+42J2w2HS4vdrg/3uE8ZqjO1Gnoejx+7W3sLx7heHuN8XzGNJN404WKi5iB+89x1QHf+tq7eP70EbrOgyoKw5SZLWpxs8V+GJgx1YwKQRy22F09wnDYo99s0PWdicx0VMArGdNMaeXz6YxcWUUvU4YUBnRznjHlAg7kI78Ewfa5wQQcqqPL/jXDW70EVY1YFuz3VaChYXig4a/wGfRq6+kCUVDrOrHWMBVyXoDc5iLUUjCPM0K14CFIa/0LQ0clQPFEx5FAC5rNydeSm25IyQXTOJNbEskpcH2BXAx5s0CXwSXP9Pk84vb2FrurSzROkCwlCtcnUFDi1Z3iNM8YpwljnnEezwjBu1M2+P4/+2Pc3b3Av/iv/3c4He/xm1//GrUW7HY7vPbkGR5dXaHUjM9/+xt8/Mtf4pOPPsJvznc4S0YIA6c4BooIdTEhhdTKWzRndA6lFGpVRAEqeRhN1wHusAlvO3rqHCBC6NVY+W7dtHkoojtLUOClCLVALljtWsDW5eY0Q4CUCtUM6SjmFJSlxNC74FldwdnRbCoDnlqIhAbjM+XpjNhzuA/JiJYYr1pY3f6olY7H8YwQArrY0zYbOlrrjIAAVSJyokQRu34DzJOJFxnfw+YhMKs2wrN5C2/hXidw7oMgVBpMEnC4SlBUlDI3tMCRNTF0wGfgLPyAtctZ3rsYp4q8B3kQsK1LFQsfyBNioiYFAblkdCt4v6E9YtMt4f/Z77vAnrgU8oAsGYqKqhmv8vrDBhXRmzBLDL4JjCzos8VNjMYjzxYNe/TKN3vQzuR3+yV33/5/Fds+eC1r+SUoBsshefCyopYgYtjs8eTZcxyuLikQZKI0PiWwff66hFFL0wnghlvmwrcNovZQFOhCRJABeZ5QCpoM6fk4YjKxlWJTF0Ngj37fdTjsd9jvd4jaQ1LCXEdGfNbHrwajigimSayGpxBhBN/JgHFkHbZLCdNsU9ZUG2FLVTEM3urkmx1ANRW2Wtt2a2ppZqhUAMmABqOJNdTCYDXAeCIVELSgwCdyAc4rYIlizhNECNmFxDWNib37/InFIfAMR5yngi9e3uCtN59if9ji6nyJ8uIatQonQioRiDDssO+2uAyEomsukHLChd7h4jLgsge2+x4iFaUAUEFQgZaCcbxHyQWd7OgkVaGFjqvf7hD6nvXEnDHXgnw646gV0zQCfUJ32FIgZ56RtaBaUMfhOzPO8xnncW7iOo3413afZXLVCZUL/8ED7VoVwcW7VsdhyQYswDYZTueFAAWS4oLmYU28ZUmJj5P7AJXBYDKZW1EgQzFb8uksbQ+c2xhpNVJhZYY8zTO5CfOMqiwbl8p/j+OEnMltaRLncN4KMI0T7q7vcPXkZF1rJroUVzVjD2BBqLd15xSSwmgnIlQDxinjo48/xn/6mx/gsBnwJ3/0PXz/29/CdLrD559+ipfXL/DxFx/j/njE3d0drl9c43R/j3muqEonHlZnQ2yvsyMmNPVBIg3FRMQCSiKahwjUwFG/UIWPGG+tc+D6N1vnWW6wbNCwY3UEqGHJ2mB4ahR4xgprh1MPPZCCYJ4Z+MEUSXOeiTbZ+ZMoRgJeEEZ4ZmpfYNIlKHlCF3vc3d8BUGx3ewDWTmo2aw0z98PQUBDGKLQ/uWRAEpIqb1gC90vs0FsnxTSNGAZDBLBk5Vgldgq0mS0SQlOfJQLKaw/BSaAeVPIstG4wCHwaZC2ZdXgnEqLdSgtygnAssiO/nuOKH04PNNQON1ZnFQExDIDUVaJlAVyg7QurvbECAxtHjKc8tnZQp5D+vterlwm4xIQKHfYRseyENb3Wa2yX56i/kz0Wp+Ff99v48stzxJUzN4PgX/a2EvlSIAAsQUArM1g0CyhEI2IYsNlf4uLJIwybAU0OlLvVHJjdsZIToHho8IJtpOgwHrjpuG8UMTAr72IC6oAUTeinFEjXYegDxnHCJBVBKFKy2Qzou4Ttpsd+12E79DZimK2a2+0GqYsNiYFardY2lJdZSubwF49kSwa12R2tKBnTOLcW0ClVzJnSsDGQCU1o37JFKGLfmYMxNCMGJGXWX6UiF/U0gNlQyei7hKlWdiX4c5IliHQOSbWWrZQShrCBSAWq1cUc/g5AzWoHtQCiOJ4nfPHFHR4/OeDq0SVyqbg/nlGKZadSkbqAqs4gZjaSSsWjRxs8joKUZzKd5xl93wOBw1XKNGMcqaFQakGZMjRQEGmeJvSbLfLEMdqjKlDI5q0lQ0tG2m6wLY+gHYmhFRXSdZhygU4nQ4xmjGPGeZoYvYtaAJXsWJgsa5AHPc1k97tzW86P+kF9cGadNW/ZpZVxECodL5TwL3zaISzALfa9gCnnhYQm5Fn4OORcKoIhXALufflSJ1DJRAVK4cChPFNuGCLIQhRlnsipKJnEOGeFC9jeK8o21NvbG5xv74G0YbAnJM1WJ/0mQvCztRpG9Qly1p/thl3QxMjOpyOOL7/APw4RMd8jBeB4d43xdI/xdMR4OuF0POJ4PmEyjowHaSKxOQdHzYJwKFJKPUJI8AlytHm0A8WmB2bJreVYlR0uYp0NaPaRAbY7r/a8lbn7AyjcsmtCJoaEen25MrgMEtj+qmY5AiAGr1dRKAq0TK0qVcAOF8VMx2z8BlSF5hlIlpF2HUqeUbQgJmCaJkxzQMRgYkee6XqiR76ZE5RrzRAhahZSgkhn4kqAz4PwJdGaUeYJMuyoT2A2gbMxKGtPwjJ5IFpmwFonERya9+DBg68IhAytGeNIUmFKm5UrZaJXze94aSYEeeBvBWJKp4t3C4YyeNnU53boihfQghMfSuT3WwpqGUHdmx4pDYYOeEBgZHWtFro4+otV+eL3v/4AnYEFjl/YkXxI8zy3bNO8oV2MR2ururQt0bpE4O/pnp5lg/Zhy02t/kLIZfl+y0osaPAMp32ikjAjEEjscfn4CR49eYphs21tciz+maQvQINoToQT23jYCQsaWFfdCMKCN24sLRkx8Pc2SZCUB2Vz2ODi8hLH4z1ubm9RlZK+m37A/rDH5cWBEOZui/1211jOFxcXuLg42DVYYAUawZQC5rmYAVRMo81/h+m/z9aGNc/N8I7niTVZUIp0njPO44x5Zlsl2dwwOJdkSEW0zghTJASZryoU5/DpgQChtS4EaAqYRi7OkkUJtQWARXvb4N45TzSceSKBz4hQANdBqjYpXAVwc3+Hza7D1dUF5Mklaq24uz/Dh9PFYLwSz7KVCnH7XcAhCcqJwjhUfON6TRMVJed5QtQOmCfEeYTWguPtHcbziZKouOaW9Gy/zHDJvG7cAJ0g7jcLUpICZq2oM7sspqngOGbcn0gqdGIoKifm6bLZUe2ZiwJZKeBU1c6XnQvLCd2fN9lgJ6xlcLRMAbN1BmhsH22qodbk5qUo5/RUJSRcqwKdok8JpQhStK+hNOflLVLVMvV5ntvwJucK+b3WmX/Oc0bJ1QY8gc6jViPoktQKBJzPE27v7tAfWF6I0qhrWIirWIyu2ahaZpYqql1DWNoga63ItWLKM87TiD5xmFGtDFpyzq290qWBq91fq+3bc6JqpiIJR06nYAJsIfDsAnCRmFoEtQpQC1vu7GzEGAH+s+V5a1sIYCUkY/YPvvxrQmGxDHbRsoRdO5ooFdEDLdYWXgpiVWiZoAiQLvH42fMS+0iiCqF1mig3EUJKmPOMNHSIvbkXsVKEEFVqCEG7fIEEd2L2XrA2aSyBgCeAhhWi3+1MB2NqSUYUQFBRy8wyjDBgg7AUW0uFINv5AryMI2oBggVyXddbgEJ1SydQ+u95+RtguS6lhcPgSMnyz8UxM7Bh19z6efpU3AUVcpRITWUxIE8jE446IqbDUp4X2/8tqbXzCKGexJpl/E+8/kDRoWC6GdJgiWwysg83IW/djYEffjcWXw0O7LUCA9aOffn+upDg3AX7l20qRwW4OEu0pYAN36C29aMnz3Hx6DFSTCSWYQki/KkZS8KEabgZk403lmDRoQRk21YpMkgIQtIZagZKQUBGlBmqE7oQIfUM1BGHfYeu67HZbdB3Pa6uLvH08VMEUQx9j81mAwGd18XhAtvdpm0A1kYZYfZdh5wZDMQQkXPGZrPBdrttgkISBNVKBCVT/jlbr/c0TziezjgdT7g/n3F/d2eiHQH3xxPOpxElF5yOI85FUSPH6UZjvM8zM/zcHD6fSbaMkL7WOzP4nNVEmKJEMtst28x5grcC1dtbI2VRvrnrOPgl+MEzSPPl9RGbYcBhs8H9dsDxNEKroOoMr69JDEjCKZldyUidIMUASak5SyeC5lpxPp9R5oxYFBojBHeoueD++hZagb7bANnGN5cKZDoblAKUing+QiOwwxW0S8yMQ0CGYJ4r5qngOM64P0+4uT/jNBMZIGu6NpjYxyMLQtN/z6W0Nja03b4EzOSwYzlvvDsj9ppgiQXPtVK+t9q+iqqrLFbBVl/w61a/Piv10Tf9gGnmIfNAWTwSsVctRCDKbC2NqGbKDQWxIUGcN8DBRDQVpfXhF1VUcO1QObxqN+ysW8km9EHaOYcZVAliGbBrnVgQVXXZFzQQLFWUzI4eRMpd60LUzHNu7Y7VOnl8xb206M7KoUN24zC/c0NPCHshSQJAhqtaMqiuAFn+zmEy/kGzfFZ6cZKfWiTYoGuzk2Ftj9cIUl1Ea/yrVSv5RyBEfz4dkSAYYoB6p1WtJlsM6zhkNl+zYcahg6RIUSFdhlGJViJsmQOKQky2RegURbyeTmSqgSItGFg0BFryFaiJULUw0GicGOM5EM8w5JiaAtVQ1JIzUjcYnO9hVAunjCcVEEJFLqOdvkRCn5fqzIeFwMm2BVZeVTQU9Hcl5BzdLK1DrJUA4PyzADgCD4I7CAFReL3zfGZ7uJwAtXUMAbA2TJhiIbvS+C/8l+4miFZz4Q1yMfIq2sfKCDRHb5mFk1tWnnx50esvCIGuv7WgC/yCrAyNfgUuaOQM+x0PENrnBjq4YbvH1ZOn2O8vGtEmNqSHcJkRW/meSha2WI+6I/OMzr2WGiyerQioyHVCmUeTKuYoSUAxjkc6vBDQ9YmDgkrGuXDy1d3NLTgAaMAwDDZZkLW1FFkfc/ljz7b7biFMRWuTurq8wH5/QIoBXZew2WywGTpshgHBpENTTIvxUmDOM3u/DT2ACsZpRp5GnE8jbm/vcTqNOI0z7u5PuDudcDyecD6fcTqdkUsFJLRpkxUZgoJk6LM/h4rKjE5Y+8vcApBajeRXoUUxzZlDlmJCiQllzhi2W0QTdeFbKk7jjJubOwzPHmPoWW45nUaPBJfnGAXR9tQ4Z1TLFqLtqaqKeZrYATLPKPOMUgGZE2qZkc8jTvdHtgaGCBkGBgqqkFJQ8wydM4Wd7oGxFkifEA9bVBWUEDAqcJoZjN3nguvjiJv7I6acDQSx2fLrYLlSctgRM56pFeEVZsAilcqWTgGbBW81YsL/LipEB8O219AMsIJGofU321kXBUqolNwtwGSkrKp8Dhy3vQTNSzvxIjTmNVlvdS25QKtQs6EUdh7UpU1QQNSq+FoEIFfFzf0R2OyxyB/TaXirInvTa3v+Epae/lpLE0EDdMV7gskdV2gK7YyVwimq2bo/nPTr5Rc3S2LwIMsbAkmRAUEi8VU8MDAnUKzsw2AhNGSTWXCFFKqT0tbTERqzpKFrTKzQ/pTm+M1COtkXSyJGhKxCCyDJUMawBCnmQYz85qQ5OlpvL1Uj6rGuTo5OVYFWQaexhZ8iPBslZwSFBTxqzhINvWV4aBwitXuEIS5iA9iMU+D1/xASLbUQJ0AtZqYZTUgMcBEOgaMNnh2yNOlB74KtGLfN/RkYODHgKKb30gH2tRBNJKwhPm5K3U89dHj+7NfcoKXDpJJXY049Ssd2UNtgqjYlNlWUOkHrjGIYadAEESKJTVMgJPoqLd65/XtfrxwMcNY6Flit1CYx2siFWJx+y1sIIbR1WTMq2zNYLdpXSYTrf/s1mHFvqdDCZKfx1yUG8ChNTdkuBvIFrh4jxWC1WkBSQlDL9GAEnObwYbBzJUxetc2JroXkty4GCNgKWMtMx2AEjyBi08xskto0sh9dIzO9meOa729vcD6d6UxrbdmCCDsN9rsdoXNDL0JkRhFXWtSOCMUY0SVKbHZdh+12i812g74jP2G33WKz2WAYiEr0PVn0u82Aw2GPFL2tjevhjqdkGtI5F5zPI+6PJ5zOJ9zfH3F9fYvTecTt3T1ubu9xd3uH++MR4zgbSqB2b9H0BdhaKGJT9WIC9c0zxZe02sAcQSkmZ2pDoYbtFsNmQD8MmMYZt8cz0vUtttsBV4cdaik4T7CMyTQSKhnSNQTkrChRW4tl0QoUOq1pytRY14paZ8hIXkgZZ5zPI46nEeM0YXPYQ7qBn6EVdZ5R8twItOM0ot/3uOheQ00JNQbMQXA/jihTwd1xwue397g5HtkiF4MZgGrirGTuU7F1cT5LaazZNjhErTEsDqHtZwaz3n1A2JIKa7Myq0sCBK2einCk8Oo8A4XpqnDNRNhB445QURGrabkLuw2a6mbrflieKZn/JGtR4rpaGaIg2zkLGjAXCtuwtY7veRxnpOMJAS6Vbc6y8r06RUMBdK7I89K5UmplGczsQUOrQLiciFsHhTRCdJ4LuQzGt1ATHJtDWYjSVpcRCSY/HBE6EmKZRFkYp+QteXDgU/KcCEoFRLZVBr4lSpnZLmZZKfkbYnGaLohM9dKpOxEjtJkxLNXmPXiJKLDEJxIAkxlnn31E7AdosOvyIGeVCELIL0DsAHCaJIO+2WrydHihS5BghMBqsm/R7TRjA0LuBSWfqWHRbwlvt40sFjxSMM0HCwEKNfSV80Z6zmeAoM3h0AofmewCPBLp5ItzSRwNtsRQ4f6MCUstMyr4HloCRAqKZkAFEdZ5YPfhQaLIkozqEiUsdlrbMbaE03lB9nisXNS6ZvzoB5ZnNY+GTHT2fX/2sKvvzVfWhxn2P/H6gzgDtbpCnQcB65vjFVfbLM0RL3+01zobffAJsuqx9ff80m96QNCy/tUfDSGwz/QtJ3CjKQhxwMXlI+wOBzrOdoAIZ4vXbmjhGWiEYJvK2MhVEaGQUhFMgljEjHHNACr6oQNr7BW1Rsr85oxc+Tn90KPrOMVsLrndfz8MSF1i+QVqLYfsMui71Nrt2rjaFoEa29VqRjlPGMczoOx0CNcWMNjG8xkAMTKDSbHDZtjg8dUjPHv6BI+vLnE4bLHbbTGknhl0EHQdGb6bAbi42OE1PIYaOY0TJ0n0GsczjscTjqcTvnhxjdubO7x8eY3r6xvc3h5xc3uP++MZJ50xwwiXISIHIEvEWQt16QFwBg8DAahiOh8xngYMwxa7w2WbZTBOMy4u97i4iphLxvTi1nQYSEJDMPSnBJwn4BgqtoGbhfA0CZ4uFEWI06HugjpljOOEcRxJ/iwVoRvhRNaaZ07FqzyEx/uI0EekzYB4dUAOBTJ0uD9nlLHgxe0RX9ze4n48sU6J1GBYn9wWakQQ0xC0AJeQOmvYJJ+tFOfUMhysDNQKsasG1asGIC4tpKyHu44EnW8UtpDmWqEh8qwUSsxQJS3jzCOEqoFzParrp1sw4EqBWmwOBrMvFyQrqpittbDWJYBg50ZdxL78ZGvAPM04H0cEBEPLxLg+EaqwFsaCnGdOLSz1gfjXl82Pt/45Z6F4W7QFifNqT3A+gQU4taIWBgjVyqeUruZaBEgjF6/tm1+AdyapLkS2VSRH/t+6LS/Iyq7B5lYsv0KTGFovPHTp7mhkN/vdWhQpVmhkJppVoZWKmipoY66XD/SSw5opZ7wpy/pDpOKk5twGUgGAxGTwuPsLbZa6YV2qEInouuD+v30dWEp4XersdwpQZ+QyoemgNJ/OWQ3UjplR5ozkapOwkcpiLdCiRPncaWP9uYHKhGCQQzkdU3y18x4igyeWokojgpZSbWBfbHvuYaK7PGvhkBTE2JmDpx3POVv7t/EbBBClPajlyOfcJ0NQkuMp3GceAOj6vv7p1ysHA9lIZX6g24b0aGr1H7DKKNpDXb3Z77i2B21V9sMPEIT2qw95BMsB++rbL6GBA0EJXb/D1dNn2F8e4JK8DKbtZwJo3UDRjiqE1Vh7qZCqyPMIKNGAEGxzAGBveIUEbVCWCNGA83m0QS+C3W5rhCEqulG2klFhN3QQsG/Wp5whqLUzxuWACtAorIpmALTV33xj+LwI8xP2jKa5QOfaGOa1Kkqu+AXIi9hsttjtdri6vMBht8d2u8PlxQW2mw1iDNjtiDR0XUIXuXYhsHa86TrstjtcXdL4fu19rtE0Tsil4HQ64/b+iM8+f4Hr6xu8eHGDeZ5we3OL6+sb3N2fcB4jTuMEhSCFju16VrMVATQD5zxB84hhu0HqBuQUcX9/j2HT49HVHqLAi+sbwuIAarRx1rnD7XjGIBVhUHQANLPsUvKMPGeoaeWLeHBFwl+eZ8xGKptKQei6Fu3WWkyiecnYpk8yZDPgCfg8U+xwKgU390d8dneP+3HEVKiwhrCQuuhKxNjdgWRNMwrZeA1ZK6RSXyIAVJUz1UybeUlHDdvnX0LlHNKmMJhLwHI/UcGOgWK19/Z6ZBDWYquRylnbF+RiTjA66VChZWlldXi+Wvsxh5Qx+5zzgjKikhPDNTX/o2jcJGo3HAGx8oZlt/qgD5tdDF2IiMHqyOow9Jfti5gUcob3+Ht2XqwUukZBq3EQgvF0Sk0MnJTdDETsQkscml3SZd2DEZVpezzTlfY93nvl7AMruwTv1Fk5Z2eSs3PUHG1Y2pzd4bIHn58VFMh1Bjl2CdUz+VIhyZ4bjDQnLOtxNxrpsxQS7Hz1TKcEgQhymQqQgZDYDijROhDcHKtrkTguxzMtMTWY/XclhSlRLlgFNvGSg7MkmFqfhNVH2Ehp0ebAScxdOmZg/BAxVMh6NFf/AdBk2TfRqj5GImx5Nqdr5ERZBwGL7s76tf73V11bsFZG9z0FNSvmcURIifoNwo4x0YiQOoznM7QUdAm2v71jpq0Cg8Tf4Ud/1+uVg4GSK1RpIBdIxWpKVZsR86hqFWQ9fAlaFNZiBV8CbT+wWKVVxCbiHPLldtubfumDGtTj0SkLSRi2B1w+fortfm+tRWxB02rOLESS2xREAiAIUmHq4ijmgGIUxNRTOU8ivFFErfdb7D6rVkyTDXlpgQAJNrMZmnY/llkEg7fcWDjT3cNf79t2dKSx0LFqKzI4xKGihuK0LIJjbWMUiHYM9JJlcWXG6X7G8e4an/32E0wmDrPbbNH3A+cFbDbYbDcY+gEpdei6Dn0XsR022AwDNkMPscAi9Ql9zwO13W6wPxyw2e/x6MkTy64q5nHC+XjC/fEeNze3uLm7wxcvXuD65g73t0dc39xaq9JsTHgyzbXe43x3QkwDtMwo+YSrR5d4/OgRcLnDPI+4vbtjNmftQypADhF3GRgCsJXaRi1PE4M2Ok8BoVbLxl09Tyuy2kEtJJ8WExESCU00CVWR78/4zcefYjpNSEFw9/IGN7dHfH5zg9vTid0FVg+dcoakjsZLABd0qVoR4YRWUqOqoMnRMiioSBbxBd8D67Nox8ORAe6ctUNZyH8ZJAxKOzfSUB/YlE2oC9gw4Ou6hBIqqkZI8b3ID/Y5HtVaANU4BDkXM6ClBQkcxrIw/RXSBIlK5QjhUjKm+YzUbdAFkkBdKAbigRjXtIncuI0qLiZW7Vl1C0Km3iqti0CSBy7GHyCh0RQOK+W452wjMFdOvkH1RuqrCojWhsiF6Ndr5YImPrQECz7oTfxnjaehfo9mOH0mCfkisTl9YHX2VyaVJGubrVJDcxhaC5B9cJAH+IuegGedJVN4C31v6BPgULsq5x3UnJtuQtVER9/gfcCnIbZk0feaOwJ79sv3FqIhf9/H9XqkuHgSChIpgqlAautQMKIk1vecGeoYg/8rjlMsLQwR4zwhqbayTx7PRKes8yeGiFw4mC1aB4Cu/dkDJDe0Z90+SpYZCux6C3Bl3Fpra7WFAJI26DcUc6OWxJICq4QWeQqc9/H7X68cDNRSUK09S1fWxTXfvVugbTrenT3UleNewSUPlt2hQIt65cs/u35I4v3vX+o2WL1XWzRbdwVlGneXlzg8vkLXD4gSKVDjV2i3lWIAKo1PiookiiTcRDUlbIZt026XdtHGgq50yKVYu955xOl0BqDYbLaIXTSGcm1wJGuHS/sRo/vw4J61KqrQ8LpRehAkybLu7HVOS+ZhC88o2qPY1SZsSmgLJOmfo6pIJVg2NOI8Uib07niNKKZeJwvJxw0G26kiVfm6zsiQEZvNwI6AENtnqVKpMRvxcBpH5JpRdUYIBf0m4FHYIM9pcRyVmdvsLG+tqOWI8TjiumbonJH6iKETnERRNSOUgAKb8BgFs/a4nUlfimWGzmfyN0oGsN6DXCsSZnOrOZdagfPIvmABcq7YH3a4vHqEfrMlCU4rzqcjPvrlxzjf3+P25ha390fcjRPGUtgmKCTTFXBwSp8iohtZqUhGkIt2pmplO6QEQZkVc6mA0LBGAXUVvnLeFJAAV+UTNUJaqczcqoOMZkyjNsPue7vxchydCYI5B6iyTTV1kYGwPVd3SC5FvdY5aG2E6rV8m/Fh2azX9tWCDtf6aDYmZ4SUkVIPjWFBQaqhP8YI9/KVn5cQhH66ETKrJfBWovDuWKhxG1w0yToRSjWkgsS4eSb3wacXejeTdxg4YRMgvGsnDo1T1c7vmhjoZ1BaCWzt0YP3+TcmurRnDbPDD7lZigbp54IawDIHwDZC7+XXAq0BEn3csusC+FrxVMSYkKeRnVMhoObMQNSJmiFAUyK6YzLwsQU74lgFeSGxs+tcRHwEwvkHMbI85cledZey8inWQ1zKbEGQcRWEpDqIIHbRsm4woV35sYpMdC32EEm2hEvZVl1vI3DoVCtxW9B3vrvF7qpDSAMgLPMVnWlTfI85cgDrQLN9/UBqHF9+ZgIIn4UY2df3AF1kROwCpJa2PEtXhpecmjt9pderBwNWL18GvrgzWiMBtsHbHvTswu/PDawt0MrZt5ejDliievvV9hmEhLAKTPiL6n0nX0YP7HNC6nG4eoL95RWJPfbAvD0+BIEoB7bI/7e999qy5DiyBbe5R5yTugSqCICqSQINgmT3///KzDzMWnPvbZIgVKGqMo+IcLd5MNtmHgmADax152WYQRYy84gQ7ia2aawQaShinbdKcSEI9qXOuFdv3TNOTaCcTyccj2ccjzZlT7vi6urK0P6aFoYygUVIX5lxDLfi6e7izAfbi+7Lq6F4SUTsflZr8bBC8YYiKXQ2SZ6P3HEjAGEZI39GW08kqUk10QZpgfRtgAzQumBpR5Rjxf09myXBeSvrwbuu8Xzq2eRWauOd4zybW93tZ20HOrQo5mqx1RksM+pYjiveLAfMs8WTZT1D1xUK60NuTWAsC/e4mIt43zumpljOC86r1dRbQnqWCLXWPZnMZgJY8tuCdT2CMd2LC7N4cT5Bz2cshxPevXmDd+/e4v79Pd4frHLAZxWhOdhgNj1L3epkcT/p4lalYvI96SpWndAFTe1eqhYbi726ZVGShri3RZrRQxcvnbMOabXDwhGepMdKAq2IVsi04Od5DsDaGiAuIC0EULGWGs2iisedWZ7XvA0zew007eEZassCpyR0WJkqB2cpfNqpP0wRs5p7a5hmxXldUOa9K0IDPSqCZV2AAuw8wcwGTFlCYCkmMFcPB7W2InIV3Jrs/nPt1oegeY5DhDMUUQ5JwECZpO5ZIj2bMiijQDJeVrNgOTSKnSOjnwG9AZ0FsATvlLueN+JNdFhRIPSOyJC5DviEVZMHlaEME7lRrlqKudxFsZXRLqjEqyT6ekadZucNL/GkJ9bPLWJ80xf7rMk2gipLsi4+Xa8IBw45CMJqw9mkuuxnjkFP6e75LWZAVbAJVHnkvjcnsFVBaEuPRJxHAXYZjHCLbEPfrLBgPsFud4HD+29wf/8WN8+ew7oD2miqbPetDqwkPd8wUGIAe8yleHwYiCOwHIcW8bZHo0roZdHNp37y8dPbEZtEcuSUhKgDnYTDYAA3QYiOWhP7DVb/cOtjDkBUKRjkswRaAg/XSOrnHUEws26j/hcApGK3v8Tzlx/g+voKu2JlgBqWX/e4qD2EudG7oaxuHfbG+KdGq9juE9Lcqj2vOB6POB6PkGKdqHa7GVUEy/nkpU1solEwTdbHfBrrtIVot4VFFZaVAwSz/m3EcikF02xJOtUH/kSZpRh8SUWvnuBmz2mlYB6LhAbBAQ4G4AzioECgIczz/PzZh02ni7ChC+PvbE1Ny8ljhp48ZgrGs4ZdaLXWbJ5BM0UfZWE9S8mMsSRoY12s80PxightGbZSKdBSoaznXjtOS8eiHXX1QTpLQ1sa+tqd4cwz0ttQJuc/rZnTit5W1FqwtI739w+WBb7a6N2HgyVSns7uVYApLLhF2qVgpRtYO6DNAKq4ldTVhtRAvE+6TctssPpmVY2Wxk0s0VxckARjOY8U9yDKSrBne1NpxfcWPNg1J1cauXiDFdJqMTdrnWzGpyUgOm0WQenW0rU162nRltUBrSms5qPAzduT1m8YGy4DWocneJoF2aXj3LuNhJ4mHDsgekC9uITujX7OpxPa1QWqV3a01rCclwjL0SORbmfZJGZSORKw8O+wdtQtc4WNPNekV/Y/sGZHlsPBxjA0cuJ/zhNFGDow/m4tja+QYSbaALfqsxROoMWte1geiTiNUVSSN8zgGU44ytmQzeIggjJePO6fiaoKH+8OU5LmLWvO0/5sxQ0uNJwO99jvLzHNOzZGzH4NTSG9uduf3gWBqGfy9xOmeQeIe55o+QadAmUykK/u9lEp0cbansXozsBoc7BsesWSCk1+0ZK2/e6hp4TbzkVzmXn7/AUWNbA4leJ7WqCwqrMiFXa7QwI3KjKcrBh1Xh7URdykrdYMGBNeAbh+peFXQV32U3HBz5pNYExEtD54A5QLRgSTV98iniBNV+gyAAQ/f8+Z6MLvu3AjOgQcnORVAqkTJESpI8yTMJUdrq9v8fLlS9xcXaAWI0JzLXoCF9iPX6FogPQIF7Rm9eOZUdy96ZJlqy5Lw/ls3oDT2YYS3dzcYH9lZXrrunh8x2tDa8U0WcOgeZ5G/BRWGN30ZGQK2VpnLx2cUOvknoBtY4nHVn7sYci+XGMjVI3cD9oSSqVNa9HXnb236S2I/RwE+PaaW7qxGmVjJiceE37KEAiT9qxpEVrzbHRz+Ta3LhmH5vq01mxErmegc1G1M0mU7WLFJiW6p0K6KWks3hFv6WjnBf10jnpwZpA3B1KLX8fKJU3wKwB5fwLqW3RYdcO6LH7P3fuzM0Zs67V2Nete7D4Xj7f3EDz+efMdWe6K+oz17vTrJU0V3vxHO4oWeNg81rgMAt4aDzXUZgDDqgAyAUvEB2HVkgmDDkLWVlGnAmmeZ9PMImp18hCQnaMIIKWHdchkWeZh9O7dGBmL92mKGWs2fN5d4LduHoOmwKpelno8Yy0F5+U9VpFoVLbf79DXBp0mLMuC4+nkJbELmnrnQgFiBgA08gKWtuK8rlio1B0IRFVJMy9BtqTld3t4LHu3MtpSCuo8uQdE0KQBPmGva8fkrafZ4IjpX8Z7ANtQB4hg7wBVMLNf0NG7hAcBpDPohs8VGhZrqT4vgAYWLEm5ByA1InUVCulpuPFgGXZ176QlqkZaIYDitG4Nvu7ffYebu2fANIMeBlW1Mr9ms1Ns3DDLpyumqjgvZ5xbw7Tfg0YGc8es9TtHWtMbkR5oMEnRc2V6Xx0sM0+mBM0RNNDYEVvZQVcRGFu5XoOiTpMNFJJCLAsBZ9V4J1GXZyLm5aA393GS4TiWnv+ojbik1AOdnh+nXu6w5Mnw/xkY6G7B2XVcaYzCf1A87q3A+EI+cz7YtvzRH0eGpRDkEA4kelJHSQki+JtyHksYRQUFooIiM65un+P2+XPMzpxm6ZxRYKUiot0LDDpQzKVkJUfnsG7UXY6rT2E7HY84n05m+R2P5hJ0ZV+j53jPRxJz3+/nGXWeo7kKAGdmDeakhU9rn5+pNQlqjDule0gjJMD9ikSq7+3FkHch7iMJoOWEmIFUAF6/7X/TY5H3YNensM/X6dVQR7kIZqCQYv963tr5fMa6nAHt3vhl9bXPDG8A0WUxrEwvW+N14z4kGYwCQGC18UWszl7WxRoInVcsx7MPkjLQwozstXWclzVL49oaNfOW5GavjzkhEaIhlHeNqXT5uwJpWNEFqI2Aza5tPpkFVb1szzPxV19Di0orJplAr1bRVCJw5VrUn9uBcxPxttKF6U5uaQiqdpSeNEZOa72jqNHgVCw8IQLUumLqs6+nrXTh9EWY1b0ua+5/eLysB0LrQEcLL4hyTbp3AoRZ6taR0PbjYVmAahnxh4d7nJcz7q9vrYRXCm6f3aJAcHj/gPPxaDMQzmfvo+HeNHeXNK8SWRdFa4J1BU5n2+vj8Yzj6YzjacHhfMZxOWOeJizdRycvpHGGN2zftCvaYjHoya+zrg1aAXHDh0CeNGJkLQG2R+9bcTp+DLhTDmQiIgZlIwDgpZq9Fm9x6zLUwWEtxQAZrxFSwM4lG1khHn70PI9hIE9+sXtyYcG02wGHByzng819EUvotnYJHbVYpUBri9FhqVCjTOx2F5443N3bkIApZBwGfumLK3absaKc+6BD7oKMGiRzEDYe71BkClVvfOTfEO5vtHTwsIJYeMgAiU95VEB1NV1WAdEKgvxhE33PvaER/HqSvV5s2Ynw2wYw5KITAPABxvf++fEzcgYeC3y/bNyDeh3k8ISSxKPU0nxrwJi83bh9BwDjRifx6/Df4RoDIIlz+DW6AForbu6e4/LyChazWi0PsXUUaeDATlHLWAYVnrupOWSoM9GpZ+3y6XzG8XDE8eEA9tm/vLzEPE+o3iJSoKjz5FZewTRbBr762nI1SjV0O7lLiSOi6VpEkSDabNHpDBlelsSTj8tzRuAUgkKZKW4lOH0QIDbrPpUpXKFn3FRDADKcsPUeZZjB4qBOqJrKALBwwuoWtgDoPuGOoZJ1SEJrLT005rrvm+zvCOW4xWavr8EfosxVYDmX7VApYu5KGHO3xYDguizZtMabLvFeViaohZWukexGdyO9g7TqAEBqWm29W0UBBYuyj4XA3IgKqDYs2jF1G2vdtYdiJJhqULRVwz3KklJB3ozAhvdwOI50oPSOUhVVS24yYO+JeRs4P52WC9sTd+mIUbKlYG4d02zeKtPmsLJur4pY2TfAE3X60EcgS/cS4GYGv4dGmoECAyW2Ryn0rOTydD7j3f1bfPWPf+D27hYfffwRplJwdXER44X7umLe7fHwcO/NhRTL0nE4LKhywrt3R3z51bf45s0bfPfmDb578xbH4wnH8xmLN+i5lJJeH3eTa2/GR717LwYvcSPoUR/p7FZjVjIgkjvpbSglqz8MvMImDGrddL0LrlcEyGNyM9eW51X1MlQPAYZscCuZIchNP/vBeNCBLtUVQGboM5E5jUWINacqpWB/dQWOKLZhXMYYMSAL5IdmpYzFGgihCMpsoMEAR3FwfnZLm4rTKiJ6O3v+gMleS47lkXkUTOoDLGlWzD1n/2iJCkVfD5DAkKjdJ7JxlchgaAHq01MV6Vm1ngiKIql6WdkiMP1ptN38ViVkKeAeAJVoJOUQwu5Hx8oCa1I1Vqn8d8fPDBMgXDDR5GQ4RuSow/cyTxmbc1DlpApL5WXPqggJ6QvRlVOakgFC2jqxU8ja9WGtd/eXuL69w8XVJYicGM+Svno5VoeihbUKVaCpM3jmJZCpuhO7lAnTvMO062irTbp7/vIFbm5vYwJVsQkaUDUBO7l7HyIe43NrbLIqAGqRTGBzJVK853pzLw0Vnz+3uS5Jx+lCD5c+1ynAXRLwaEWLwBOoGNJBKHBec/QWQLvPM9jmE6j2dEW61yBc+8O5TLma1S9d0fuo3LPOO8rPqGg6QZAO5yFz8LX2CIzAXf49gYMzevfSM1JQX23IzrIsDlY0st5NIfvQmU7HrK1H90U0BidtpwVXgg8k78vJual6PwW6ev382lHhAgiePa8DbXhsvYh3vfSYp8X3DWSIKKQrqluCVQqaWE7CGvltFPhmido5deinrijNx7OW5F/pDefeMfc+AJGUEpmgp9GMSH3fk1/VG3+ZRbRqzzXv5glxpx7UFYeFqt1i8tyR1SfPvfnuDb788kv8z//xP/B//B+v8NFHH+GXv/wY11fXuLq5wV//+lf8/e//wJs3b/B2eo9/fP0NTocD3r1/h2+/+Rbnk+f5RBtiE+g2rdSGMC1rReslQGeUI7bmfQIQ+2zNxICi1h+i6+yyVL3JjI0RhqobVgT1jq26eWtCPpI1w7LUrUHWFZxFkZ44JI0PCYtQA23KqqLBK2F8PYYAKHrFFfOKUiagp4GC1qHVLPwOk21tXawSBAJEJcF4qN92R2UOgmU9QvsKmcQqDHhdXb2stCJ6NTCpzsteHxuoLPfL9WN1AVKOCmA5GeRqjfODw7x6BwqZezS4jL/X3r0gQ1wWWAmoSkMXOIBBAi8xQFZlMpBN7oktyBwXhjfSE9vN+9CtBYCBffYt+GnHzxxUFKSJXMrNm5sFCYUfD5zW+9ZqTQAQp9KtIInvYIu+tu+mgIUS+QFAweXNHZ69/gBXN5cW79QGaat5Avpq5SagYOpubTkYcGXBxBoqKV5vno2h6zxhqhU3t9e4vbvDxNhYLEhm/lc2A/IuZAQ47O3OZJMRRCVRJKLnekdDkuFzRO4KxIhXdUFDS55IHoOghgNkXiPQgCtU5jLEfaqCkQUdJJd5Lxy4OYMxxwB+t40E7t4EUha7XSbxjwKvh7eCyp1MYy7f5mV5iaxtjdz1/AO0S0FLxcNnteFObplC0T0Lnx6UCOsoEAmUvOQIoLkncEvfY7cEfAbdelhx3bRyZnQ7/7TV3YOFNdSunEMZWgOa6m1uiZOt1E78p1nVUhRVSNe2PvzH+y0Q65PvEzhHb12Rbus99JMRMU+JJRXm50nfBGXNPQNtXdPiCmbx8Bo83KQaVnXzfWJWf1NLmEtB7avcARHzITw8POD+/h5//evf8H/+n/9XrJVNS1xwOp3MDb2yD32C1a6KyZsvEQhZrL34SFrjrba2AJjqdMLR6OLC2hop+Ya6QmltxeotgKGKLgb0p1KgMsVaG453RelJdOEWh5jeIlX3wTMFQNwTpKpZWkyDyvm4rzavok71kRweAf8jvpFBxsMNjEJFBWizVu/qE+Os6daE5Xy2Pa7zYGhkFQsFkFUTWFisasd6PEGuClAs+ZdTRhWmYFXpDRiU4HB+Wujfz20zeWQAPIFGhFZhYMecDxPUXfixv55jQd0YIsflg9Gb5ycU6w4LWYE6oWBKnajGcYD4PAGJ81G39uh4O0epqptCw3Px2SjntyWMP3b8dDBAxbRBh49EKl9SRB3vBvnJhs7iATYfkfFE44kJEAoeXzdc3poAY8DUqHWHq5vnePbBc1zsBRNMIYieDU3papmwAFQHK1JTedp7PsFsXU2IhXvaumntL65wc3OD65trL/kYkDvgcbkayt+ed1D+oTTHdJBUhoRH4z1t1jcUcoIEKEK5CSllAGW0Ksa+BZmcKfk9bq0G5Bg8NIOl4kxmFu24T8M9DffIWeBdCiBGuJxcB6SiZOJfE5sf3tVi3Nq7Nd9pyeS0xFRMqEgp3poiXdwmsDwkoem9EhGUXsIDJSLQZg2eaik2lZBg0BWsDmEeE76PBBHGZwF53AfEpACkr60MNddkJ3uu8gOWnVcBOP3zaD3Lx8gLwuck7ShQ4aAEwgKHWL/ivFmEfSS2CWkAokcFFRO/W1cTmGOuSwIo7yTpip7g0j7nLt8yCmtxb4wpRbrmO9jfRK0EsvtDxSERhhBPkj0cDqB01eaKW20k99I7tDFJrEVeQhMLp3DjWHZo+SLWxrivWW1iypvA1a1cAkWCwWYJpb01NClQ6Um3vUMweUzeFF6tVkZmuTE2Dpi5Bjr8Z5uZnryq0UCL2iIY0SaHFqcldmKNNQwKdICR8oatrK0iwnl+uCaQrwEeMXL3fV8WTLs9VGZ/7wzr+VodqHRoW6HFgE2tBVILjocD5ktEM6cY99sVUhKMA0wx3Mojgo+tHvK9DeQsXrnmgA7qycfZi4UWCL0DLBM3z7LJHXvfvRsBoi3805olFk9z8TJKrhD8Ghr/FOmVyG6VGvJCh2dQlOFe+W6G+P/Z8TM8A4wRDTGQWO1xfcSFbq54CNzHLiHC10HhaVL2o88OoOHx2/r91xyjAaio1UYA31xdmvBbF6guhlxp5XVmxWv8TFDgyW+9Y/U4dusdy3J2lC7Y7Wbc3N7g6voqZluTJ4snAEYLUqH7Z7ScjGG3Mf5BqXAhh/XkEZYln2NA8BFC4NfdKrCESQxoGZvzBaAQb2BDMOJjmp0XIkfCTdkANHb3g4sNdGUFYhlAhoB1t6pqM+jHZ/YhPeKljejmCm8+5la8HK4UQVNjGPg6QIAyVVjvEF+LUmDlSV5+2lqMVLbe++alaGqJTDXEmbjgM4CRFQbegjhAqcO4QfAQWNAbAHE3oaaVEgwsiCSk2H6hZyNDQnFyt/bJOvQqqVp8XbhXAUh6gIKuCBCAxl1DfEcK8w98HgHEM/HZ0IqNfEo8o0CwsDJHErAEb6pXgtDqIhhQhNs6np2DZDCU+mn3yhx1UO9ePFrLpCMRJJc4aIWG5QwRX+dB4PeRRkdg7XJK8hkUZk2u6vkaykmufDZYRn7vnqTJ9SedVPS1oUHQHHhV5gGJewDKmEhorZZ7t6mGMQxHACZnxEhcyhUmqpIG4UquS9S/B8/7fuWaDZ45/PBBOSucRui0w/U1GZKMoADqPFn4ZV1RpwmcQ4Fa8kKC4C8pBR2KaT+b9+Z8tq6TE5MgqfAE4QFgV0FnCqsSsBLOuEAoXfsZ1UUi6H11b0CFhPXua+W6MPIU4jXLNzNvpa2JhROb3wvXuKJO2dVXNTsg2v2smxW2SqsexlWoQSamg2svw3nG9Mj/3WDA/a60ruKmdNTp9hmqALrV7WUmXwD0MvBhuQSDfhuvEBucvaPzvchJCBcTEpl6gsput8fzF3e4vNih6Bm6Ah0L4JOn2NJRgSihgTOgWTLmzmvr6tnGqw+lqDHtb39xgf3FPppAUDBOdcpuhRBwWlmsGwU6hS+YpJWvh2T2582KAxKhC8tOK0hC+Rt+EzvFI+AFiGtdDUUTu+Ko1/QpEbW6e2wIT7ALPoeoOGiiwLMExLFE0l9vjoV7llEyhpzx5BbNiALksCmRr8HaVs/YdZcyk/sGpWlAq4RVOt7/6DYkCBKIdSUL66Nmrkr3ltFMGuuKqvY+PSqsDe/D2lrW+JiE58DC74WthgkcsKF0iXsDMAAK2z+pmS2tjO07oEj+4ckShHWXg2WgLaDb98gHnmaC5uV4RTzZMhMV0W3qXKxnYRtVt3Zl6LdPj4fCPQVeygVEY51RiYfXjLSs2ZyKPKDdPAMSH0rZNPINrTVxRZOemnzeTNhyOeZygG3CCfgcg6Gx0mW1JkzM91CFt1HWuL7REoJf4GBC1xynawmb1deqezDBn7snYOb6WP5Nc8WYuR5pqSG7pCp5jpuatCZiz+Ljfcww2QBPrmkIqjCEIOZd6q1bK2KX14X73a3LpW2Ngcc6T2jtbHFtb7+OvlrmP2yN4IOFokKs2OAvdMW6nNHa4gOISuyvBHU7IXi4Bm6MNPXpoMkQG90hTjijN8Bk8mM4JJBiQ4J4NV7PTlZBr3dvzfIAwOZTxnhl4qyJluDe/FH23ELDO2VBGpkeLuBmuBK2+2VzNzsX3Ov93x0/I0yAIIwBJ+cS+dqrCz/AF1jTPhxjp+Mxno8PvImHUXlq8wdGAI8gzuB6BBK1/xbsLy/w4uUdri5sLr2uzWN6ZK6xPE6iCY6ViYm5hdfVp9WdrK3u5QX2e2utO8VwErKut+OtFiNLAhjQuZegbGhMBiAzLCwf176fn4nxyvwbcOsZmdzoQMC/EElJrAFWt7b5HR3Ws0NCCcdV3IILwUIEIKm0Y3Y9hUnXUNL+JZ98ae9bxj+FeTg2AWcm9pCn0i/F+8t3Ez5MBKyqqFPB2jpK9KB3xpaWVQTu+u2+PlpqCNoyTCBjHwMAPmHSbj+G7Yzg1ZUAkKCE3h3zCGS2NeANk3ytWalAJRiJl0hwggGckeZFCupc4nrknWCkwvUkxAz4mUpXzW4oAli8xd7l1DNVDUXZYImGAqB0ghyShAYdjQnCdu/bUBPPG0AT2Ch3ChNVRItfWmzhhHbQKZ5sa7kVLhMGsD0erHIhXZGmxQUpO4RmrfywBvC8GKeppqT3grVbuGB15c/x7mvv2PnK9NbRpHkXO3Nr96HhTOR9+F2FrB3eU39wEcmOf3BAsHjSGKclOhC3Xg8lnmP0zgoMXHvfXI99ayYXK5GVg1gvIbX30pMQwkqG78S6SXiXzEPiPoxaLV9CVxRM7jpfrSqBozspi3zvqfNQBVV2NidGyTcSYBJOFzYGOelJhHzZIFIpWWPNJZ6H8lHivXxAfqNk8izL/zQWIcR3QcHaFqA0xw2ZNEg9ZvrHRrlDhmvoeOX0uhkPrGAeUSQWqniJp6+yNkAXoI+ehh8/fkY1AX8OLEZBoEEOmyMIT91twxNJAgQ/TQiqzfeQhGXvDeeI8/JzW6BBITVNFbe3t7i9ucSMFW3JsIAxzIrIafMf0ezHY5ttWXA4HHA4HjFNE66ur3F9c20NfzwhhxekFVSnYcoggK1Xw58n5ZY9v45rxvXVzbdyQ75/Oip/u4/MraCCCWZ1AKRcKAxAAEZUOir2vsJcoilhLYHS3ZfFbrY1WuVDrXIfG7z4sxXBNBmztd5R3HNQJYUWGaG35mN1a1gjVOg2SdIEwbp6P3GohXK8AmFdligBpaW/eq8IC9sYg/H7kAQEvY3Z1NaPwFyICQTErWVVtbixenmYW8UEm+kVMom2rEvSYM+SSGacxwhlyesw8Y4u8OpeJ3XFuLrnKso1ex8qKVJAR6jDlSt7Y+hIG8p7a2DHSiY+MmK5bTKTQISWjJkEI1MiaY3ABkYjBKPMwWCCm/UpQIQhaPG6/WqAkLbbKIyoRPhcfgPBbwQjwRc0YNLy57fMM1DiSbhuvTX0acLipYmt9ShlXb1ZmXquQ+sCtIapNxRYD3xrB50hlEK3/aAERy/WqGRJN3CW7r2jopqiqBr3GPer+V1uhbbmMegR+DXLZUni3Qr3AUxZ8x4DCtkqfYyRD25/7ZDWXJkXH5M8+fsKSIVqQ++LZ8EXaBdY/yFNjCHUFgqZKsbkOKNtRWsnVKXVbtYyXeVsaGU0oqFLglY1L5M04OfY6L7UbUEpoeRN9nbtKFWgq1dbeOKodQSR1F+aVU7mbXCvDBS05DKrKT0mBALm/XD51Q3IbyDOMGPinx0/u5og3NfIxWJihiVpOIL1eJYmfIzuYMjl25z5+wddIvkeXW2br4nYGoGMakcpgt1uwosXd7i9mqHtDIWXpkE8Q7k5N1EIktlMGZyOR9zf3+N0OmO32+HFixe4u7uzoRWDQAv3qFcHbBOnmFhVAgBs4vLDszF2zDUdcwMoYnVgUAq2WFlXosnLPE/L900SDRYIwYgDg9bDyu99yNx3a0Oh4GQwhULUiJ+148VbgSoAmegq66gyPF9cx+9d1S0YDYTf/Wfz7Ol8ZrV2v5Dwvky7Oe593u9h7kjz1KzLit7bRiEWyZANFRCnTXJPIjnNB95YrDVphAqMjGzz0VOgb1zDmteN/BkZVSUrKDQUMV3kVNxjGaRlJpvHgXMbuF+hzJTDd7wUsmdXS5YGZ2ipgONpmwtta7Odw7GonNq6ep5EnoPXIb3ZmpA+TPGxzS/dtVEmCtLjY95PIcvs+XQD+76JhViqe4kIdkcQN64leadAvLWvJhgHIEWsKzk0AAg9N7VSALsyhve8kILTsnjHQvMgNG+wtLSGWQRAQ528P4Svr9XmK9Qz8Iu3743SWPaEGO8d6QWifMzX6V1w4U+a9ex+lqtyP0vxEdCavCuq5rH3ElQA5tmTlK2krcFNEODfkqklLFnKGIb1MieKX5corbREupEOHFgjQ0xl45bPmSnWOp39UMzIqL1FmSHXRGJ9aGVbv5JS6CkYKdAfagCU2wTNzAEZAYEqYacZVWWqLjN7nFGRTZo4Jl1RUHqDD3xx3vEnfWQgb6tnMNxHD/1mr5dhn/758bPBABVSLgoFmz1mV1PCZBi/I2qtDWofz/jDx8ZuHh54ew4C+1CMxe5h3u3w8S8/xu9/91tcXu2wridjPr+JsYyMxDo2tjkej3j//h1OxzNubu/wwQcf4PbZMyu/IWG7tSe0ModEKrs3En9PtO/ID3iM/LkeRMIaC6TQgSDITJKu0UdryWehlT02JQpXsrp9F/di3x0bK9GdFRUGvucFbDjDFqriitvKuVZNC3a0ZMYGPrRitW+VH61iKh/GqSNuH/u8BV6ttbC+JTLZXYAM6x00CX4WKNMUHeG69zmog6VW3ZUaTZioxJjr4MqDeyGlhBKMNXNBxiYrZXDf2jZ2TJU5BXmvFZk1Hmvak2aKJ6kBWzAcIKU1Z08Z6IJhDPcgCa3ojOEToIx0OuZ3AKZ82GlRvSWz9YOwNYmZEq37lD+b5bAsC46HA87nxb1J20mclC2kc/KPIAe30DApCszD9xgDHj2MdFnD2cX4wdfKDY7HY2xH8csEPqHVpRbdbb1h7RVLazbBUA18LmfvS9EUvSQgpFI2wFZQqsa6U5aOoC67jEo8x6hQaSwUz0HonkzLz1iyoceqWwcIcHRQfZQNXaE191o8Wbz37m6AIX+DgNMVNg2cAvHwHb0CEmBgQABDox7eg+e5SEGqMniVgMYHN54Neq/WhrKbo912nWav8los/CVTyl6lYRYrat4MY4+Nclff6EzKG+QHDMAQSiJvcTCI0wvBKjwLDWf1UZJfDUCFjWWvIdTVyy0jSZT0vFGqAZOQT/m/2TMQ7GEThyJ5RDbvj1+QUJgkGDJd/OQjb0CD/sAZB8JhnH1EaiAoYY/pgt1+h3/73e/x57/8B375m19i3s2RoesXDSEkis0sgHVdozZZpOCDV6/w4sUHuLi8MMuudxQpNhqzZJtKs1TIA8OzkCmGp6H7X8N68vUwSZX4WEmko+IY67I99Uxp6Y88l2tUXABq80E5QcSpVGhlMP5USh1yADSa7/AzbKwSzXs6v8vJg2l5smGQzbDPhjPR4jqsMYlrBm0xLizW02H1CXOqiJgyrecygjFVq3ePIVAUhHbeUorNdZjyO2NrWMakSy2hDIpqeLh4vdV7EQhi4ePZ2VEsBJwQhwxu+QEOjzHdUIhIy0DckorFoeJ2CRdkhAEwsvrDP1PL5Nfu6ErvCD/P/gUUR74vGyBhCmzMU2BPfID5IPZeZP27t+l0PGHxipzLy0scj0dTnusaLb/HbpNwZWSsnyWGiNUAIDZ1MhWlg9Pgia0yJhYOST3Qfj5n21hjZnUP1piDxrU1TLWhtYLT+Yzz6YzzslqL6m6hg1q9hBYJNEUKtGgkyEKBZVkwTxy1697Jnslfj3MIKK94br5uY3e3ngQDZh0TxdKgVMm/ji48+dQVvdOAaC4gPU1sLBV0EnqyR0ldqqSk8uBBepRdViXlJ2CIaw+Kjh8xOlQA3cotSwVDA1OdI2RTsAIxHdDi6aqpqDmQzYRQGVjYEymRhhzv38BC5gVBxHk9w9UCeuCy54TlbVUADDUWiDDOzyMVfa5Gh5UtMizgIEUoWwSKOpxhu1Y/5fjJYKBIAWeNB6pURjIkmCt1kA6LIqn/He0Ib3lcYN1sNxLZwDYkCNjddXQ7+0dFLDHl5vYOv/v97/Gnv/wFv/j4I+x2cwoDSLhUx/72jCuvy4L39/c4PByw2+/w8uULPH/xErv9hc8bsL7edapphVI2D1YZt4jK8XvWvw4uPiqEAeRsVkE4sjnhBF1sRKcjuADgWcwa68qJj4bnNHoVWKnSauBIbfhL87XovdtEPhfo62J93W38aGbts/dCb95gZXClj+2EU4m0cC0zdl99bjvj3ADnOuTa0kpafNwtVF3RqYEiQfRwEMC9NBzrnPMc4C52EcE0zdElbpoqdrudWdpsKlUKoBMioY8AyxtGFVX3TjwCtkiL3UItgzyR0WUt4T0JOkYmbsbgG+4dlRx5LIgkTJCwSvgeG1KFVTYIrtJNwVnoxc4h7uYdY9LcO4udU9FQkfagfVXFNKUiKs3WsnvMVS7Eptz5vkspOJ/PNjHS1+p8XrAs1ga6r+YuTxpXUFullSje9U+ZCQl1VJ7u2g33JRgQl1/DMxIUjCE6AoRxUJCqYm3GM6sCp+MJx4cTTqczljVnaKh6Xkfr6CtNF0sorMUMiq7GIyKCynkmQPACgWqWv8HBdwfKBFYU5S17kdsgZ7oOnS19v/iMvRmB9lEIOzCopYTnFZpqhiDNKqiMnnrIfQsPwdqHWOKgWLihqAKtQ6YceRwhjeqI1kt/meWhrgxZXhm5AgJILV55wZ4asOLZMnklEw2LEvwU/AKTryNYoZy0dae+MqNWO0HJgA4w6jh6GjpY6ZFxfYT3I2lT89+wd+lRJtin58+GMgEt5QMX4ke0vmyJ/0ePnwwGmvYgWofp8d5jRSeb9/2Bi1takMiiD6t+QOVckHCPuBuXkICXslOY247unXne4/WHH+LfP/sMn3z6KV588NLiULRkXdlAdZNs1ZoJoHVZcDoecTg8YN7NeP3qFe6ePbOSwcmqA+bdDrWO6D3LdRUWw7X4KZF1WvlEz5GVK0b4kg/txJLKIuquN4ubh6p38espLIOB1OOL7sXpgCt/sXGubLN7PvlApo7z+RwjeXu3aYzRR17t/eaAQTXLvJpbdkTM60ogQWuK5X5wj4B/12Nf1ce3do+nMj5swlqjdHHzvqRFP3oEioi7Q43hmMFNt/Jut3Ml7J6BYueq02TzJKrttZRikyGnKWLGdZpsLXoHPEY9WpRlABqjFcfkRcbqxZstAbQ0tkDYZJFbMT/IZwTC4kgvv5l/MuUoAeOYy2I/S3yPHqN4HvH0MBkAgVveIu58VET3vKY9yhk5WTKup2YVT1Nxj1MLmiYw5/7Ns1XorPNsdDq0pk5rf8sDGRJza47GhTZTHFzjUeAKY9re0EVM6dBVzw/Tk2V0loCc1vZaOtZScDyvOJ4WLGcrNWROjSmFTOjkGrZ1xVqKTXpEQZdmQ4q8BXtOInUvHJAtoDXliinooZokvzXIvtzzcd24ds1r/gNgxdo8MtBUh74Vfm1PkKWKfBwm1WYJyCiSuWyqFjqow33RktSGSD4cSZsgtAMqbaDhITfBQwqcsSC1OrB3iODl5qnM+Q+gDy9lbEILR9iQ4oCgD/0c3FOQYN3a0sNpyYyS6uQkwKaQGKClb/cdMCCe+3u38/1PBEAkcOT+fl+y/Pjxk8EAe3GPSTh5SHIZ9zU20T8bjJUPtx1DjA3goiKghtRHDwkQEAiKVFxdX+I3v/03fP6Xv+A3//ZbXF5fGyMOPdC3GdurdxJsWNYVh+MR5+MRbW24vLzAq9ev8eLlS+z3ewsHTKYI2Oa1OxOASh3iuRIU5Pl+bG/3GlJBIPkkRDsPy3CwYagsFYyOWM6kjMdlKRuvnUKSGfXrsprVdV4MBKyrTVr035dl21mxdZsS2FYf2ww733I+b6YD0mrq7hHofY3SQWs7S/DjPQo6XZtJMAb+NAg6whVAKNPNM6pimuegh1prhAxCMEl2POP+TPOM8pDNRaapeFWIeSfmeUadqimkeUqLTCQ9Qw485t0cVml24QOqpLuOIMC2dBzRDS9vHXjJcRMVMVxJFaeJFglIyXz5rMNrrr056jh6GZQh9jkIEgL8jLX72pDXfb35Ga6nDk1p4EBY4RZjKTaPgyBVmQtiLXxbA+bdLsBRKQWn4wkr2J7Y8zR2M2qvsfcRQvDMfe5/VLF0xv5T0Cuy2QyFLmPsaVENjYK4HZQz/LtbtjqQAAkOCFqx1saHwwH3Dw84Hc/ufndArjXkzuQjjEWmAAkiiBAZNMcJB48U8+KsChsoNexXiM2BZwhWRkVhnjoDZGEoADGZU4DokTEequoVG6SrraxHADTdymgx3Ww5SAqpc3xe2CSqVo88Uz3SNEpluQn/9FScQYf+k/tfCuVJQZEJnFsQvW6ivG/ITSAAzqe2PRrWwX73viq6mMIvBXWa/W4930HEB0l5smJ4KkceraChqJtrCeBVIbn+m8V20GsAJxtuGsjgrT8yG/BTjp+eM9BhFMVkkrhQ6myMP6nHMWS6C28tIM4G7SiG7ziaGJOBtgjVvlGnCc+ePcMn//7v+Mt//idef/gh6m6KGDbnjLPUTLvFvlszEHA6nXE8HnA4HtBbw831DT76+GO8evUKu4sLE6DVhccPWHDGp24tIQU2wHunYgasJMTADXxdwqXtCoAgaoQK6v9REJFisDSyJwJBD3+ez2dL0jpZXPZ8WnA+nS1muzYs5wXn88lmvPeG9WzlKb2vESrg4JW1rRBnOMs4Z9maCyEPGQAsHfPsfWe6dCvroFAGgab5WXs+Z5FI3Mrv8HuLu1WhXjIEbNyopDtxy9/2KidASrUJduOoaFr/kwO/ea6Y64Rp9qEqItFXYqqThxhyrHRXxTzPm+TA4kNF7HMmVjtr7x0gwteK36uFbZkpCP3zmsw9rh3pKAAi12+0FNWtHBIQXxOJNfkehxJ0AvEMUN0qTvVOgCDoGqczOm+roqzAupogFKd1xp53+z0O8wH39++RLnJr3WpgQSLfJ7wILYEOadWaAw1rMigsBM0546J4F0b3DECjodOwbD6dMT0IfB7uRGsNSzF6fP9wwPv39zgeTw4GGlSn2JPeupX+cd3cwpRiseQOa8mtAYxhoK4D6jlRCt30EkDv0cveMuvlkUJX91TaZrbVSyXrkKzoS8L8hRiWRl7s6tZ4Kjzy9Zg4y++QV1h62tUi2nxuhULbilI5GIl7sDUSANIyjaQoKt0AH0NHCnCtlO0TxjwSUnKHaklq9zUoJcMWAhpzj5ER5YopZPPIVqcZCdAl8BkPMj6TBjAIfQeNNeI5KCNN8fujAcjQmHucewteMXBkvW50uBbDZT/l+OlhAjdFabnGNgTTk4FIQHGL29djARAPjOEdnjNdYCPw8MV04T/NM169eo0//fkv+OxPf8SLVx9AxWJ4yhKqnpPmeBUFPH5mY1HX3jHNM66fP8dHH36I169fY39xMbjj8r5sU1KRxVNK3qU93AjPRvhgzxb94Vk/r7wzd29HmZ0jCUW61t3iPh1PMSdh8Xnf67piPZ9wPp3wcH9vY4CXBefzGefz4kq+Jyjw2QrMmYAjeYKLMbPZ5Fl6AGgtxhRCPhMyaWm0FJTC1i0MhHvP/mb8P9jWkwohGavl98hQ7O6nTiqM/o25ElaGV1zQ2net/z0TBsmABdNULazg97Db7TDvZuzmXeQwzPOM/X4PDl4xD4KFFspkYaniSh9qJVNFJpQ+NCoBUKSiW9tAny+/9SR0VVTlcjGOzd4DCbDH+CJ/jsl9AKIZFYChvDqBmaqVn9JCbAP7jdbT5og9H173+wkPjwtbf2BbI/a/VxvHvHoYhrQyTUc8HA7ofXWLqgQAKJ54Z7wjNhp4AA/2TEwYVDBk0EW9Uk38sz3p6dER4LzbAhDGdjCRMOkcsGZMy9pwkoLj+YzD8YTD6Rigu00rWhNMxcIMDHXNEKABEKupZ/5XV/W2yDJcpfvauYdsUFLM9ifN925d/uGls+zjMCrvkV8V/pp/Jry/PXlNB37NC3Mf/Cws01TrPVJLHUoKrR1vUbOstQD93FAnb//No8GNzZQT4kpRKQNQgN6MkIdKIZ+H5PzPEsIBnMBDxvB+B1JgFrZVQKlXi9iG59pQV9matVgLzDtbG9dJTJIoUj3/JgEdKcuDhL4eLa4RFDXwtj1WBzvpgkmcSFkszB0AAFRAi9nryAFFm3Ed/+T4eaWFMoAAIpZRlwchbRW9MZJ/b9T/wWaPhQxF/RbSpO4tuLi4xK9+/Wt8/ue/4PeffoKbuxto8czYMVtdh6UWQa1EdeZuuywXuHt2h6vrK9ze3uLm5sa6zXFjJJ8VmnfMB2M4I9w9kgQEUCCRQPOLanQzCCN+x7Kli28w3YbH4ynd/euKk1v9y/mM5XzGujIH4Izz8YjT8WTx//PZ4vy9WRtlT/aj8h8VfjSiUXcxD5nO+SzbfwPmjb+3cxOGXVZmUWSxC3HiYEQkGQywuPhIzw19iOVBjICjAZl34e+5vg0qK269KhAeH352KenWMy/AFOGDyUMRu3nG8XhGKcVe9wzwWiv2+xm1Vkxe6sTwxVQ1LGaWPJqs6/HdAJcubJhUaS895gkHiKAHJYHAmMPA31l2BWUWQnrsaBlGDkLuTIDhjWdmVKAmDWP98h6wBQJ8PYSdUcE07yClhfv86uoqANqpnHA+n9x17bkjkvfC3IwKdshTWOIWMGZnl6JA95wA1by+UpnkM41rNz4il6Q1To0s0OE8XTuW1nA8nfFwPOPhcMbh4YTlesU8T1jXZmEPAbTb+Stb3QoAbyNdpwmWhNbt9UL3vIFAGxVsSXSReyGAaj5vPId7cwXb57FlUmhJsG4KJp+d7nrVjuKtvMWvCfFxcSLRX8LkOq1pv35rsFXqlumv3uDKwUNrC6ZWPQHQaY/lnaA7PGX3RksIH4TAf/QusNf/qF/yOTsTTaPLpgznV8RAI14q+FTjn7oxQW9Ynl/iSwnSmV/gRCQVGAEQSvC8DNUMG9BPAoxrmCfANzPvQjuKd4MVtXFxeHpeAAAxiUlEQVTwPwR4f+j4GR0Ik3AeK2m7cRl+txv/QaaKEpU80/fZbhBIvqm2nSZMr66u8Yc//AF/+c//xK9++1vsLi6w9hW9sW+9u11ZJgM2GREXmoJ53uH6eoeL/R5X11eWJFgn7wg2unvc0gzUtn1mvv9YSfqiDcQ8vqQJfOH3OTSaWZbFOsotK5bVXfvnM47HE05Hy7I+n09exnTC6jH8xUubDsfjMEdhsTInhkgiEatn0xfl/saqg1ZEH56BtcBQNlvSAZW6cg7rw11UYa1RcNrPR3o/AGSg7kBeCnSw830if5SwMiAjcteRCAEXupoN+KHwsiy3iEb6DWHoVuhJjqHEdztrP32sFaU8oFYmHNYADcdDxbwzgMBwQZ0m7OYeOScszzUvl8eHgUGAwUcJF+smNtBT9UZKpqSzaVO3/jXgIBuKv40iUGzXyD8VCh/mJk5VLWGsiNjETSvtexRGGAT2Y5oIuuiZLJrgHFaP7sfYsEtglR6lFByPR/MAEBSMwITiRGhR0zOQWfg58tcrAQKYS9yH/pDCjPctJZ7ANtpiD2TaVCFrw+F4xv3DAQ+HEx4eDlhOC9Z5MkNyrljAOQqCFSt6tRHJpdfwfkASrI7WexEaB/D8Aol1w/DZbZ7KqAi5Xh47Z3mdP+/onWE76g2oLMV4vytQq60ztkZEXAQ6ABX1OQctlL2q5YR0Wr5BjQkojUV830tNY8pu1tioUpFbOaOVF+bjbvTPICeEGxfrVAJwp9s+93c8MuzwSFW7Yiah5PcYmhOXS317TtL0j/YD+AF9WyoEFaqT3a+HGS3N1BhCRQ1nPM7N+5Hjp+cMOIImD43MSAsFSAERCCpo8ZHNoRQLeZ4xKW5ccCJ4kYJnz57hsz/+EX/6y5/x4ccfe6Z3sxp4rz+Hqo2JECJMAXqOPK3TjKurS9zcXmM3z5jYFpNCRjVuMpQ37zEEhMRuh1tWvX/5YFX1zbPwdU+C6TbClKV6FsM3l/56PuF8XnA6Hf1vn7t+OruiX7yu2TwGy+Ieg9MpQgbas/HLOC/A5LX93jozqcko2VVx3MPvgUsX+ClqbJ3DndjGmmxe05lwcxoN3d+DDgY0HwxLJE/l1RJSCIFIejEC6asaU2z6U7SwfMBSKxBkpDCyhER315diddq1WhKiJzWez9XnU0zhKdi1nXkTJgsh1DqjrSvmeRczDqysToLerXX10P6Yz8HKBN76I6DKsbaFJCuaTYjcuzAmXob1NwDl2BEHJ2McWLj2OnRQC6MgD1NiGGSBr69sBTL5k2ELdcVW4f0gHBBM04zdsvj6VTw8POC8nK0ypoiPeXZYSUDbrLNhGSze8CKIJZYBYkowKtOyPwJzeHwpAvDynvkYXbvThSMwP1OD4rSueP/+AW/fvsf7+yMOxxPm3QQRxUmAWs36j8FE2q3hnEXoUOtk4TK/gd41WharkzHLjMdwCDtbcpCY4e4h9gxEci17P4iXE+be+LmGkAGBMPdwXdcAgwRiWU3gTnDeb19jTDN1h8kZi2tLza5/BK6AA4eB5szLwaRap8lu4Ra7ko17Zq+LH1aqtn+UVZIPDL4hBOkjrY78Nhh/edcDEPachbjK5tyZ3LeFF4N3QcIfg1GyDl+Mq1NWSamIGQWkC+hQ8SFeYfHfHz89TMD41VZWRdmavdbzc+NiQHKWwygYxjPpaDFkuZMRncVYXrx4ic8++wx/+s//wAevX0Frifr2ta1W2uQKm+dmfFugmGrFfLHD5dUVLi8vo+QMgyDzG0DGyEO7BDHzdX6GW9YfgQiXjKlI/YOtNRwPR6znFafzCd2z+I+HI45HV/6LZfyfjkecT2esjdUAJ3veZcHZcwGa97lf1hbggmV7Y/w5whdU5M48VNIU4hsFQUEYu5bC5QeIBGGJjgujAJ38UVo3vJmVFVyybYJSQSbcRcvoQXFzXGjQHH8+mnVAAKcybsoI7NJijMSsYuCkdbUkrMn6I8zzZE8hgnmasLqAX90LU2tF2+2wU4XIimWpmOfF8wxqKr15sgS1qt/rU19KwWaUsY7gLN3/EE8mJbENVh24lpLnBQDxTP+NlQ+fy0AFCFpMGq+V4V7GMAT3jmId4G0kXyd7ESTyviTupxRFKZM3gzIvyzxbOe/79+9xXs7QdXUHYxvOjsgmV7Xwj5FQggEqOss1YMKpZ3U/QrsE+DpUw4whBvVs+ALKD0uiXDpwfzzhu7f3ePf+Ae8fjtjtJ9QKVFFAp421XUtB8+6WE2wfWZ4sIjbtjzrLWxdHO2rJteQu2hpkfgirA1TVB3Olch97GLB0F7yHwdsw5p+wvLMNtEqPluU3wS10A7sd8P4jvh/eXc9kTla32MXdECnpnUv5qwE6mIvTfLaCVQlYDkEAzCAx0mvPfQ5gJ2APAuZnbDzBQbVDGGErHJNeKPtAWWP0GaWkZR7V56ODzZkUGY7gxUK7QKJ7boZnwZ4LhZ9xT0FIXODHrvr4+BmegR84oQudvrl53kIq0S0S2h7pfuL3x8M2v04VL1+8wr9//jk++/Of8PL1K2gR9LZCV+9s5zE2cRcjSwrX1jDvZlxdXmN/sce835sAdmINS587pRmrp7IshZPTPIv6USmf+HNoz9aWgXE6h5h4Tf+64HQ+4f7dOxweDljcsrcWpmez7Ecw4H+zt3sm/an3jl+h7u63ezbCz4REu0OWJMZ9gYLiMRLWTSRn4wJWxnwfo9Y8pwz7/ljAkrYDKAnNHH4lv5PuUaAL77d/jw7HP6m0UsCkxZK3wD0fPklLaqO27Hu9+zOpAYQO9fHFroy9f0bpDVOdooRzt9thXVccj0eUWjDX2X7Oc/yrPnFxqhWTKjD0xKjFGlvF2vtPs0pHIQGzlEsFWothUrUWt/7FSvyQAIJHR/ccrHQr11qDjkndMtDD4/0cDOMgAnY8DHCfGDmfx4HA6DVTyWE9BpYUtVtcdJpm7PeXePPdGzzcvwf6CvqZRLJMji5j5g1YWWHmaowAZusJS1tvVNbB88EQNAhcLA8eQgDoTXE8nfH23Xt8++Ydnj9/hsurvQ/msi9LnVABNLW237IUlGJld9arw2it1hplqwyzWKv5Em2Dx5g/95gSOYwiGgTd4slUxuiIslVzsnkYR5w2hnXguRnKGHl7LPsNz1rvMReAirR1m1pYxAcMiQ6JkHnOqFzDluZENGYnmBI35dn6agrQXeODv9n3zUJqgaoIXOAgIfIUGGL4EeU5GrKPjInIoaMnJoyxHmCJOub70rODYQvV9HjaGrGREoECQYuDteBS/peyy/loS57/9PgZI4wlF0MVKj3duQqY380JQXRT/6ig+/FHzq1jDK8MRG4VA69fv8af/vIXfPr557h+dmuZqENNvKpmIpkiyt9EBPvLC1xfX+Pi8hLzNEFqSeto2BKWF202nE+kmcUffdeVROfKxjP8s8RPsZwWS+Zz1//xeMD5dMbxeMTpcMDpdLCmKsvirVitDwBzBNa+eo1/G1r/Wr/zaOkLRGlMPMvwu93+9xd+q3RtrT3PKpeA7nMCiyD6wdk/UDZJUYMx6A5CAJHRSn309Q3VjrF7nnvU/MwB4ZCTDAvg0fkHMAMieL/G+FlJegg3KPI9ZVc7X9qcgujjZPuEVgwIssOeSEEt1tiolILdbhdAbl0bprli7jN6nbAsSwweQvHJl71GtURl2ZNq7FEp1vvAauvFmT/BbS9D8l4f1sEBL92ekG2cmXtPwcm1F5pdAYIlQh0mAAdac4BF4QekpZcU52jCAWGt6ZFLAFQhF4J57paHsat4u5vw9u13aP0U2erxnH7drmo97dXlUVQwJBCgEssQhwaot/tgK21N5T/ARSb6bgkXOJ0XfPvdW3z19Rt88MELPH9+g1oVvZs3aZp2Brg7YA4Re2YzXrJ17qh46W0qrXkCvUK9YVE8F8nf5aCBxC2ApsxorQVIQuyfAZ6CYgrXUQJzPsY1ZhMubjW8ARx70SS/weWF7boltjlNeWUNZUoYKgQvqpG3Qmte1e1oKnnVrMxShMdGY7CZ07tb3AkSPOmOngF6Nx6DW+66DmtEqDWsa4Cu8E5YXpZ5oqgbk6dU6L0xqcOkXqADBOJFHUjTTGEYRDBwEPKOxvsbSfJHwM2j46eDgc6kMGeHocNguF9jWUZpPMBpvh+uaQokbL/jf+93O7z+8EP8x3/+B37/x3/Hzd2dJcCtDeu6oK/e/55X7VYWh96x2824vLzE/vLSOwjWsAnHexzdYI8TceAWRxcAzdroQhNVsqcAk/JOp5Nl/Z9XnI4n3L+/x/lwxLJ4Vv9iCX6nk2VJt2jes4bngM2AQvF3BZN2VHWY9JYoumMrEEfGZcLUSB+hrJG9sKJSnIr7e5b9jxFUinZepBQJosxY2kD6ZbwOYiDKoGL83nkFxWOSHgWfbEhMQrgPxtz2CYj7AstuLeYNRVJGDSSs3uUuEp8U6JKALNbfAUatBdM0Q4DYZyYcTvMUjY7E3biz9zQotWJyECDijY3guQyloCuihDaGKiEVaRVOS9OY7gfArVmNaoWN9wemRKRvEVtYwyLBs7HHamK2FM/d3XjNeE+ZHGlrOliRGBVICjNL3FOITCi1o04F867i4mKP3f4CX3/9NQ4PDwAz1KnMSe89bh+lmyU+VnSYgiib51LN3IgemdgjBTktOsgYgQt8TRqAh+MZX337HT5694DD8YzdTjBVwel8svkDsndP14ReODJd0bRB9ezjqa0/ARst1VrM44kgRDSnGTYuitbTQMgMltix9HLcg9EdH6GJyXeld4jUCA2Mx1hiSXXlmwaFN7gqJd6Je6MRInEibBiYosq9emRCejLCKChmHas/h30pDVSbjSCD3nFDJvZTY7/soh2QGnRuwIh07s+oPZ7lsTw0EOo9Q6jTeH1WD410lCcKIGHei+z5YCvnCYEUQvx1APp8pggTDvcegyZ+wvHTqwkGhWILNlqH3EzAglrDFylwdRDnmkvJhTUCqkAzIXBxdYlf//Y3+PzPf8Jvf/97XF5dhdJdBmVJxMjmJfM8YX91ieuba1xcXFgGNzuX+LVpGcVc+vg7h930Zr3FR/djuMIcgS7rgqMr9uPxiIf7B2vyczzj9HDA8Xjytr9LJPat64KlLVi9HbD1QbAEv8fz6AOo+AYrSKi+IxsFpfEaCXnj5fied2AAdr6/DZysl0IPQCQEQbdhAlrj5haW/MYApvwEGBMHOT64OwPZR1MYb9S+wJg+GsPkEVHLEfDQ2oDE2gRU2dxXutBKuPYo2CkoRgMhwSOAEJCWZFg2e6aqPj/BztdasbBOayilWltrdjecJux2e2uRDGC3m70cTzDVCux2Zv1DIgRFJT5OszPglY2VYpekoErs5GZfTUEg7puPaV6HdP1+bz0HoLhhdcncDR6P6Y5Kt3vClxQ2ZBr3ezQcENUF/O5UK+bZKoG+/PJLvHv31owD8rIbGpZEaWvQxfIruq+T3ZclbULM6Zr9NHryU8g1CucBFCltNlPIZEiFJRJ+9+4BX339Br949QLXFzNa7Vh0wXlegTq5IgSmeW95QP7UEwoE9AqYJxIQrG78TL7/rXegdZiB7ntZ+maEuHkUfDyyIDL8yb8cl6yqMfBLO3NmRpDEPIxUbJSX0TgpQJaDQ/cWNMnx6SKIpGpLBOyRr6Ds7qkZCkBlfxHE+m7oKgSY7w57Lmya7ZS8nvrUP0E0eQslSysJikh6dpq04U/kcfJRTV7QDpsoSAPIWhAn4VPWURrx5nXgoaS3uHXtYyQ1+CBCOkS9j9fDbZXHCdv/7Ph5OQOqm1MnuneW0MFiCNdbcFKivMS2yI/ahtdScHl1jd998gd8/h9/xke/tomDbbEueYsrzc0oVTEBudvNuLm9wdXVFfb7/SB4/OLhLrL7yDgXBpAgaFhzDryfHyLetc8y+JfzGQ8PB9zf31uS3/lkOQDnM9rScD6dcDqecPLmI6sn+a30BHgLULoATfFne99wphKlDiCAa0+QNcr3dP/3WFN9RBBU2IoU7N/3mZRg3IEIRtsIVKikXiGCf6Q4+N3x/sQFsKpY2R9fLwkm2UBI/XWJ9RifJv+IWLRzcFiLvGeRXMMACnwaSZodzzvQvQzPoy4MiwK9OJDlunajUQpkCkxra2y5KuezNd+ZJuu/f54ma8/rPeKnaYoKGZbbWahhDpBIr4jREC01iXjvfr+HQLCsS1iPZWg+pBDv3wCg5ChihgyKiJXMhbLeWkMMMzDjO5KwZPu54DF6HoZ1FADZmjqIK60z5LaYt8RjobXg2fM77HYzvvnmAt999waHw8GG/Qzf5fAic6sLpAms7j2VdwAo3+vWOMUPSZcAxiTntBwH+YHQIVAoDqcTvv7mDb786ls8v7nEfpqgbcV+7ZDTYrQtgrmre3kyTs/kuL5mH4o+hCITgK6wtsYae2A4J72cIi1opRQLa0WTomGPgocUELWmbKW5MhKBakGME/bvWhvoFuEsnsNaUhtIIHtTzljmP2BhhQ71BkkedzEQ4oJNhj0I+lCFrpY8Kj423jwrXro4NCIy/qMHhLLVr+nPwWuZQdBzfsKwNpwWGMarEhgB5ptdIdoGnTe5EZTGxaBoYC2H4wKIpF8MZaEOqpL1uMZb/sIAzhNI/NTgQB4/q+nQY4yRg9LyRpQ3B6QrGBTUVPqpLAC4lWNJUJfXN/jk00/w+Z/+jA9/9TGkFpsCdjpjaWso8NZ84p0ILq4ucXNzg+vbW1xeXkSveZ4bQDYgGsDA1vJGKg5nLMvg917+57MNMXo44HD/4CGBIw6Hg7n3zyecTidTiL3j4eEBR591wAxzqHpPdbYpHRT9cN0AqCAIGMv9gA0xEKA93hzuDYUVnLAGyUVy4VqN68XNZXvW7dVl89f4K0tQ8xqpiHlUV2yRDQzDuY9nEBjSZ0MyGS4yCgfZ0lhcOS398W5DMPHzBAiOou13hiqYiyDZgXsEPWKJVkWLWVwBqNRKxcb+905rnNQn/rxM/Gw+5e5UCvb7PWavTphgHgOCidYq2JZ3dPHGNMbcSLR1HbrNpeciPD0sP/QKgrHO3Bc0rfLom588rRg9UQkiwjoCIulT/Z74elGY+5QGBHrcYwx1GuPULvgLileDdGCecHF1iQ93H+L29gZff/01vvnmG7SYgGhrP9bVAzAF0rb32T22LjqEOQYlFp8l0MxFijVJMGq/r63h2zeWO/DRBy9wsZsxT4LT8WTP6Umey7Ji8goKuH8gJhTaFbwvBgApWFdBLVlCGhNBBwXd2rZp1QgcQ7xEHgVJNOmpd7WusvmUthbd87sUVuPPRRquHTQ0ltk1B1dDq+SQfd0TfUWgTa17IsEAvFWJ5Oeh5IcSipDhHYHncagiRxQ63apClb0cig/i8jCpV0DgB5StYOPXhJMGbKSwVySMVQmRkMgHlRADsZCMVQY44HXEQYt3cI0vcd1SmieYSO8NdbBo2ezdTzl+VtOhx4cM8alHnwbGBQzi4CMkWqJXYCoTbp49w+8//QSffPYZXrx+ZeGAk3Xb47xzWnas6b6+usLds2e4vL7GxcU+rY8QRuoCl8p36/bv3neVI345kW9ZFtw/POD+/h6HhwdT9ocjDvem5JfzgvPpZO1+V8sRaL2hVut7cDgcYuLamOBH8BGKP1aMwGBcp1z7UF7UkEDsclq8CIbfTjt0xRa/DqJsVPbJ08N5RzCxfW9zDELQBONYeqQhMKYyYb+/AKA4nayLXxVgqhN2e9u/tjaclzNW7/bWVb1W2ZLnyE8JNLKNqApd2nl/Ifx4P0gwSgv4kUwLBJ6nYWmjDvxoZ+4Rq3Rg1c37xal94p0x4QpdmneTc2HeJ0uOa72ZglDF4n0KLNHMMpJ7tYqSOhngWtc1krhqrajWXQNQu49lWWNfFMwrGCnO+cCTq8IjwIZRSBAtQQ+usIXxYCtZC/oZ6UaQrthYW9nQYA8PVipc/YHfuVeWJG3DycTBzzRN2O2sZPj6+hpff/013r19B9WW5b4DD0X53jAp8XEJpzoQ577/KN077dOHZeRhBoFKwf3DAf/4x1f4+tVLXF3sMM9W3SHFPDdtbVgAVCnRkEp8mmY8uydjdFjj3BWCXgTzbOVqtn0JRgrp2kEfx7Qjlt/j7Q5OyUNMSuYaTNMc6zMeNofEzyVJKwEkWg6QysmL3p9Biyf5tQi3mpewpMwS5t0otLCU2Pnc9zKYNUnP1qC46lb3Lgy8Kl5pgzIqd/s84+35rBJr5YIF0TRIWJJIJU5wTKXtYekoYR5eB32d5qn4oSMAtjMN6c+pM2R9AL34j/L/AFqoicfG3I8dP68d8XiIi5Mf7G70U7GIfXaaJzx7/hKffPbv+N2nn+Du+XOsvfk43bNPwOsh1QkCbm5vcXt7iwv3BnB+PZBovquV+1gW7bb5ijoYsNp8m2fw7v17nB4OOByPuL9/j4eHBxwOB5y88Q9b/S7rgu6lfkz6GxlwcZDA2Btdqbx2wKHBK4ABC24sKXdlZU4uAhFvBC9pDwjFlaGzQdjRitkoO9cbSGZIvkh8Gh8cVGzwm3AanDdU8Vr63hpKEVxcXOL1L36B29vbAHMXFxeASLT85dodj9lz4XB/j++++w7HwwHH88kbKFknN5VkSXP+CThbl54BLgqx1BY8JdTZCj2JREjj4QynjFajmSmxKWhdN3ZE7wkUFBpZ3KwEGENFLCfszYR02+0iqcvaFVfMux2muXq/gobmnoZ1XTGtkyUiQiI/gWWFfFZx9yxzIwiGFGPiaVqRI1gsANS9GRnHzXLAx679uCYAiPEi3cnBD+ywmP71FPDjvlH5DKpZRCDVXeSl4LIW7PYf4fmLF/jqy6/w1Vdf4XB4MHqxE8bOtJ6ucwpcrkMAcwQzBY0Ag2iWR0YS6YEKA8B5XfDNmzf44suvcXO1x93tJabK3AfLZ2qrYimC0xnYzzvojDAgeu+Y2B2vGxiyMIatyTT5YCZo0Bm8d8KYGL2ua9xmrROYK5HrsFXoG5p5bGD5Gm09SYNHr1EeZailk84sOcOu09Nb1gQxSpwjzo1mmo9IMAmkqkEqtP6tCkewEgAQwAoHDxliUgVQCrrPKqFhRW/Zhv3V9tgSAskH3gUxQIbCkxucFkqEX4w9uhspApsb8BgE8N50oCVFhCOiI+Kgs5CXzvvAll7996K+Bz9RHf/MPgNDvDaeJ/MENnGnR8cIGcT7zEux3uSvXr3Cp5//Eb/7wx+wv7zE2lacjyf01fsHQN3qrri4uMTd3R3ubm9xeXUZLV+5AZkEZKEEbUMpYKHbybr9nVyxr+cz1tMZy+mEd+/f4+H+Hg8eCliWBQ+HA07nE1prOB9P0d+fQpwJgFQSoTCGe4k2vUTPXJWBWYzgfLtJALloocgoqCHpIsfG2yIBJOiiJYBw2Qe65bZqPVFmiDyRYatlsLBS4XPfCwS73Q5X11e4urIEzru7Ozx/+QIXF5e42O9xc3uDi8tLrO72tHOmwFndA9Q9ia6tVnZ5fDgYKHj7Hb74xxf4+quv0M7mKWrwbmRUYL7+tF5Z956ijEmDCE2TnSJ/gF5pzQK+rt6WFfBKiMEAiOzogfYJ1vx3axFqn0mBbcmEtdfYt2VZvN2xKbx53tlkvrNVILRp8jpxi6WvpWG335n7FLRBMv6vyA51pq9M+FrcN4FBrMBAQ3wO7T2HQ3WNCXwjmDAeS0VJsFaYyBUTZdR1pwnFIkMm9kiMYZ0NsoWypgjQ/D7LhFpsmuR+f4EXL17giy++wFdffWW9Ovx0KcMyJMf4vb3cXcjnnhEGlEd7y3UmJ41T58j798cz/tffv8TNzTXqXDHvJpTjEbUW1HKD7k60Uip0BpbzCtWK1rziw8ulVMwjAhoyImjNlCGbC3HuBeVglv+lbOAURO6BhecGC973uCjMcq/fBwT5u52vOeBXGi0KM7BcNveuVtHla98ehTagBAbIYVyCbKVbjG4EnsMCuGfDd8YBnQDWfwbFKmJopfv6wWk3+sZ4Z9YyWYw/14oMPXhGtSEEQbjxbf8pw8Q75YZxJ1xmemd8HYdSfNIQOTa9sWM+A0AgoQNtkte2e+I6B1vD5L87fvZsglBEw+vAoFB+gFkwvMes8FILpmmPjz7+GH/805/wm9/9G+o8RS/+vq7Q1m0Di2B/cYGbmxs8u7vD9c0NdrvZa68ppBr62j3xT8M9z0XtvWM5LTidj1hOZxwPR5wP1t3vdDjgdDzieDCPwOHwYMl/51O0+V3WM3qzPIK2cnLf4P5v2YgmntP30Yh7K/zD3ayP1ystXSAFrS3f8NkQmmnBj0I7GGQUrvGZjInbeVKBPmb2EQzYiYpnGQPTNOP5ixeY9zu8eP4cv/r1r/HBBx/g5uYGkzfVMSvQpvh1tSmRAFDbnKcckO9cCqqPfNWu0P0OUMXl9Q2ef/ABPoLiD8sf8e67t3jzzbf45quvcDge8N2bN7i/v49wUC2TN+ipWYop7mH5/pKDoQU+a1QBD5ZS7m0qM3pZIp652bFB8dDaxqNcFZ6nVvS+oFdLgioinrPCkcozVBesq8VKV2/TW2rFbt5BVuvJAZxRJ/GqhTrQZLH+FNLDbVyHcb+WOGUd4+DvW3mYbLwh27wAgiGj0+KlgJFYSYsHcGHJhCpXtrFGVObFhRzpcmgxTfAw0qI6UBsAqVmJFXMpeDY/w+XlJZ4/f4a//e3vMcWTpbiUXFQsyUiIa4om3dDyZ8mjEpwQPGvokxDoKsDSGr588x2u//EVrp/dYHexA0Qh5YRaJ0yTWe5XV9deTaRYlwW7/YSy32NZzuEFaN1CBrWwqZSiLatn+lMh+iqPNAbEACgaMSk7UvkFuOc+D/sz0nPKC1sDk3+8bg5AmyYb/10mgVSjJ2tVjuSp4Scnp5IeEiwA8GZqtUr2WnBAV0QiD0lVUabiDcI08aR7BKyvv0B18Wt5W2SlLGA4mfqOaEIjrGF0kPcgPvhI3VugBDTKREGvXINAMCGsA66mOiUOOW2PTAp0baDVzy9n91YCEd8nSYNgwzf/5PgZTYfinrYvyw+g9h84OoAqecP73R4fOhD4+Fe/Qpkqjqcj1mVF97a6gIUEdhd7XN/e4Pnz59jv96hT9TivEYJZkuqNeexe1JX1upoL/3w64/7hAYeHexwfHqyxj/87nU54cADwwFh/s46ArbO5j0/xa5yI6PXIArcwvNTDlUJ4SmjBdx2Q5CjbEgUCiUqTpbH5byDCIvG50bKPPaEQExma6wzAYYMZ3WIrvDcHDCWFw7quuLu9w+3tHW6f3eGXv/oVfvHhh7i9u8P+4sLi21511HqLCg7TB4l2i3fyK7A4Oq2qBJVDPoVxOdi8p3sp2ry/wP7iEi9fvcbvP/nUGzZZkuf79+/x7ru3eP/+Hb75+mtP5DxF4yZOBWNcWFxIVF8MpTL63nomYwmlvNMgyOQhM3T4LgUGad9oVtWytcNl2Nny1p5RpVjYr3TMams1FcspsETCxXv476BdLcSiMFDcK2o1GqWXoEsHouumWYPNS2sZ9+1NUQtpy55XPEGKVSUi205+KTQzn4CeFJGYPB+GhMhYoaKxRlSoGua405+CHTCA8GpIVJqw/0mEfoTSxp5hv7/ABx+8xvX1Ld6+/Q5ffvkl3r59i+V84rZxp4L/ZOQhPynv2UgygYGhHUmFMxwMMXUFHk4n/K+/f4HdbsJUf4P55R06Ct69P+D6+gIXpeJ8PqNrw1SN3qEV3TstttYxzVcm11pDLR4/7z5WebL5gDk61y12t1jTQ5AtiCOxUnzsrStTNjhSf2ADOvr44Uzm19i8kHet9WiiZlM7M5mRPA3NvgMhJwk0uJaqYWWTBkutATJpaBVYCK3OO6zLOcsVZes5VVVUwBW6ZofOUjdlhpzpEmLUaZIRf2g3myhKL8e2ymwDrKBc3bYYdh4fZxUU0tnAD+wgiLwn47sshw+B84jwTOa7MJbvy7MfO37GbAKeNC+8DQv0YEbySoADImeYK2y32+HX//YbfPb553j10UfoAO4PD+ZyX1uU2OwvLnB7d4u7Z3e4uLzAbreL0iiGAaJtcPf7We0cp+MJh+MDlsU6/j0cjjg83Fs1gI/+Xb3b3+l8wvF4wLKsMTGQPQ3oQgVR8uD63ygwzgz35338GTJTVJpKhjXg1gWA7HU+rh9yPceNHV1jsRdkzHgfTMff0AzreUl4daoew7bM9uvra1xdXePZi+f48MMP8er1K7x4+QHm3Q6XV5eeeWvtdOmSonDJGQ20KI3QWS8N9RwK6aB1F2upnsks3rxotAyAqCCBo3EpFaiC3eUFeldc3T7H6w8btFsoZzmd8O7dW3z37Rv89a//hbdv3qL1NeY3mMJCDPYYcNNG/sW6j9bjsK+FSUnK70dKWZ5jtHL9b1oL7PTmaCoqKwDFsiqkFWjtmMVG3K6rhQ04GKurKYhZZ0An9FXQa4P67AMtCtGCviqmqUastotfS4q97zkPRlNULnmYt6V4bsiwP7SKkELKsv9TyZplk7wBHcY5c5MdRHCpKDskZp54Ypmfl/MIUEqGWF0pmktdUCbB1XXFxeUet3d3+Obrr/DFF1/g4f7ertGsTS4VvofmtyB88LpluC/J4bHAtXkalNkmzN+9u8d//dff8frFMzy/usJ3/T2mauC0FsGynrHvM2S/w1xmLOsS3SgJOlozWVO6Ypqr91rpJvx7QxVB74sDAO+0Wgpmb3dMIOCIy+jAZyOYwQLvU5AzDEw5InoV0L0urqxj/LCvRCkF2gumaWfKvAOduSHYVr7QSyaqkKkGEIV6vg0GTxoNL3ro0FOGCQCp6FIwzZYrQA/eY7kMeJiWXi8ZQ2FcGT+lwkoh1zWMP3s+kkaNhidhyIlgpCCeN8nIAQXBm+baBNUNrfKVX1SeN8FEUN3g1SQIQcjkoUHRPzl+ZgIh3Sbwh6bk0/gX8VkFIvFCEck5u4s9fv/pp/jsT3/E85cv0AEbzLOuEfea9jMuLy7w4uVL3NzeYKrVXJoQoFtzHPXSIVWFNkU/N5zP5uo/Hh7wcDjYRL91xbt378xFeD57Upq9vpxXT1JcsC7LpreADnFUdQoJx+IIBHwtaGlyRzhZzP9CxO413UsiYgh/XMGwTDzeDbpp2ZGLcX8CBhPaY/lduLZkSIry6wrMXVe9xq53xd3NLT78+GO8/vA1rm6u8eLFS1xeXeHi8hKXVzeoswsLtVGt6vexcR8yIAuAPQrCAgEtY6eiYnZd8QZVEkoBQ+zRBH0tJSafmUDaxrgJqpjDQZqAFJRpwn6esL++wusPP8LvPvkE9+/f4c233+Lbr7/Bt99+i3fv3uG8LvEcxmqkdoK9LTCz/bb3NYSNg7LQHRKKj4xL4BdoP77nMxDchRMWilqJWO8KKR6Wcnd+nEUbeltM4NcpmJ9Dk3rvMSVvmiYoDEjYtMMecd6mHbVO9rTNvTi+9qmwJfig91TIqVwGGqCAVQS9j//IDyrimfyaFo9vhDpYs7CveCLuSGcIIbi5BVDepCWqWgCZcXFd8OHFL3H34gW++vJLvHvzBu+/e2sGiJ8vqt+8e9sI8sZQXNKERiy8uItAfa5KfNZ+wXffvcX/+H/+C3dX17i4LLi+3OP6co/j8Wjub6jt41SwLh3WeRLWyrq3qICoXXE+WzWO9V7wNdJslU2vU4HGzINYXNBitVK51hvq5LkHauHQCg5Vsme0hkUllC/7aXRkJYotYUWdBNWvxSRqrpnlQmSL4wjZeItu8j7A8svuoGVs4lOo0oM/LaExQ8cJ6k2ORgm1jEN8nBOHMkjj10xSlnXFejwZHU4TuvfmKOxYiOTmpI383SlnWHsr5U2vot3oRsbQ+8HvugwR0pfnIDAEmEfZnCJBxn9//KycASZoKcaxrwNOF0QMkQg/HrUANzc3+PTzz/Hp53/E9e2NleW5i9+eydxJL168xLNnd7jY7zOOqBYCoCtRvVTrfDzh/bv3eHh3wHk54Xw64P7+HY6HIxYfGvPunSUFMusfUJzPNvDHhv20SGiJRRw8AFCWnnx/0/OPESy4IqGU8vfG+Bfd9yOZ6MBUIrSG3C3KhD3nxJFuqOTDImMbVzKAasQApRS8/sVrvHz5AV6/foWXLz/AL37xIW7u7lAvZjCbt3dnRCC6CYuYYMn4+HD9WgBYHJMDdrg+vcPmScBji5L7WESAPjSAIqJ3q8VmMWxnphsY6LGOaj2ZwUSlKEsKpnRKnQTXz+5wdXODj375K/S14eHwgL//7a/4+1//hvfv30d2NR+ccdA4Vzw6BR/3l0BPkglDS9ktjMCML2ZJJNIwUMsYL0OGc/dE2M4Rvu4+bY316cBaqw3m8kFctVasc8Pl5SUAeLy8o0rF5HkF5u608ElrjaaQ0duwz25nhBUozt+ZC+NAxojUTiOCru2R4qQAQ6wbvQ+haP184iAkLPBi7s/RixReL4KxgQeD2ZCep1LMsKg3Ey6vLrF89CH+8bcv8MVf/4bz+TQAGAGkx8aMUJDXLmDCXO6zfT1pBWKhMXpOmsLCBRd7/NuvP4agYj8d0NoOu10FimDXO46rDd/pTne1AgpXxkXQzyt2dcLFxQVEzdMsUkzNu3dHC70DNn6boY8AWZSl6h1cB36xqpcafG9rCAh6TFJsqtDlHH0rhHkMsd8angX2EYFqtrWP5kMmb8HvMxFVioWMKQ8HGhEUSN2BHUe7AyWGcGL5mdMij3dw3MyWAi7kKIL+bWiXAQ0pxWUpwxD+uTh/SvSNPh8NJeT5aSwYP1HXqQMWo2rrptihUqF9JTMgCG645pi/JD4ASftQWvpPjp9RTZBETsVD1EMm5G/cLt6clIK758/w2eef49PPPsPlzTVO3pdfu6HqWibs93s8f/ECz58/80E0XBg/a+tYuzUCOj0ccTge8P7hHvdv3+N4f0BvHefVvAOnwwHv7++xLCvOpwWH4zFb/TqBGgJmsosrLnU3qcLbjY4AwF7vG6Q1vjso5nw7rGMoY5/YKPoROxogsO9z/rg6MT1OtiGzMcPZsrypQArEqy+eP3+ODz/+CB//6pd4+foVXrx8iXm3s971quhqsd1wJklBgGh1y5XoXYxvigPOVTlWdFByYbFnAhhjnfa+W2EdXqMffrbhubrHHnugYGuw4r26x+uR+3kMgCAscckGOipik+PKhGe7S9ze3eH3n/wBD+8f8MUXX+Krr7/Ed999i95Wv77TP38ibsEFBkHJ+Ay2Vsn4iB2O1wargjPcBRpIP7oM8lLc5y5AVReC7ERY0GpDa9bERsQSCnerzULY7XaWhAhAyoKpNczTjNbpPeIwJL//KqE08mE934O3H0Agu+RFgxUnkCLVFQQFElvl9pAhtARFFTafHe79gAMTCdc9hW4k/A2KanvkGpsCysew8xcUmTHvC37129/ig1evcTwc8fe//x1vvv0WyrCnn0Qe7Stl0wYIbC49gBMHFSLGR4fzCf/3//xfqFNBLR9jdtDTmrWqPp6sr8o8Vez21p56WRp2UoHSoKvx7LyvWBf7XIM1HWw9aa43n9jIZ1drdgYtaWAI6cy9Bf44DHuZIlEPEXj83jPwm1f8VKmwfA5kPkCpiEmBoRx9DenyF3qEKMcIov1zogHuLYdBAzRAfEiZsklRs3++6r25F67C7k3i6YIImNNh86w8AZLPAeYVWBJ73c1Gr0UAYTjDDRoQ0DPA5kSGjuxCyCN5iaEyhHHn3mXKmtAKApuomDwTeQouY0ZZmPrY+a6v+CnHz0ggZHZ8ond1IWijFq1BDJ9VfJ54cSDw6R//iN//4ffY7Wdz0y/2+WmyMqDLi0tcXV/j8vLCBGvXXAwB+tJwfH+P03LC+XjEw9t3eHc84LQuON0fcHw4YjmdsKyWEHg6nnA8WXMg6wXgcwCcmOHx6+bZ52b9IwihiFs7Ya2wbtM+G/kZwz6nwUNLpwRh0xNQiBIHhR7EMBJAeA4kGIdaKKxUQTTMqVJRpWCaqvdteI5P/v0z/PpXv8HzVx9g3u8gtWDa74JkWrPzM9velBKTi7YQhffaekdTxdTUhiRVtdnwI/p0Jqu1QgBPSspSHGsIZp4dIF2CtFwK3OpwBksLRjf3wnCOQNBFw52sPhmQ7nRelwlDpC3x/ZRSUecZt8+fY39xi48//hjffvMlvn3zDb799g3evnsL7eIlXD0zf5H7/X1llNv7OJ4csEuT3lJMMdcA7pHx6puSMcKwnLW5VS2o1QCUycqOeTbhvbqA7dpRV296VLwRFzqmXi05UxV9tmFKpRTA+xRYGSTviElNphyZdxCeLBjwzzpzi787hEEsGDTKs32BnA5MsKqjpAi5wGKr2rq3R/Y3HDCwtEqc9uKHcO81ACpr1u3STttFsL++wrzbY5ptwNm333yF4/EQe1cE4UkeEyCZnyAOguit6MGufD6CRnueh9MJ//W3L3B3fY27qz3WtWK/n6AdnrvUsX92ayWjreF4XFDrDhU2DW+Sncldp8V17UCV6GpZONgMAplcfvlaFYJQYT1/QamTORClRG5H8TK2de1OU3sogHU5h/VeajXAR7lZfK8pP3v3oERxgDnycCpB0g+NNXrMGAa0Ln9uXLAs0mkjDBEvg8z1VgM+kenffc22xloYd/5V0q49UxoVzFWg+Ga8H910Q69IWgiO5r+Re4d/Yvc2Kk96TUIP8Ob8uQXMVxlBBmItIwQxPuRPOET1R8XY0/F0PB1Px9PxdDwd/wJH+e8/8nQ8HU/H0/F0PB1Px/+fjycw8HQ8HU/H0/F0PB3/4scTGHg6no6n4+l4Op6Of/HjCQw8HU/H0/F0PB1Px7/48QQGno6n4+l4Op6Op+Nf/HgCA0/H0/F0PB1Px9PxL348gYGn4+l4Op6Op+Pp+Bc/nsDA0/F0PB1Px9PxdPyLH09g4Ol4Op6Op+PpeDr+xY//F1ay9SS7SEyqAAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 640x480 with 1 Axes>"
       ]
@@ -501,10 +1848,10 @@
     {
      "data": {
       "text/plain": [
-       "tensor(1., device='cuda:0', dtype=torch.float64)"
+       "tensor(4.0870e-16, device='cuda:0', dtype=torch.float64)"
       ]
      },
-     "execution_count": 57,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -517,7 +1864,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 10,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -527,28 +1874,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
+   "execution_count": 12,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/tmp/ipykernel_1326206/542049397.py:7: UserWarning: Data has no positive values, and therefore cannot be log-scaled.\n",
-      "  for child in obj.get_children():\n"
-     ]
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAHWCAYAAAB+JiOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpkklEQVR4nO3dd3xO5/8/8NedeWcvIkIkMYIgQqjVipi1itYqraC09myp1dixi9aoqlk1qmhtMWJU1N7qY0UUqdISQWTc798ffvf5unMn3EnuJByv5+NxPx7Oda5zznWuc985L2dqRERAREREpEIW+d0AIiIiotzCoENERESqxaBDREREqsWgQ0RERKrFoENERESqxaBDREREqsWgQ0RERKrFoENERESqxaBDREREqsWgQzl2+vRpdOnSBf7+/tBqtXB0dETlypUxZcoU/Pvvv2ZbTp06dVCnTh2zzQ8ANBoNRo8e/cI6sbGx0Gg0ysfa2hoeHh6oWrUqBg4ciHPnzhlNEx0dDY1Gg+joaIPyb775BiVLloSNjQ00Gg3u378PABg5ciSKFSsGKysruLq6mmflnnPw4EGMHj1aWd7zcqNfTZG+Xy0sLODh4YEmTZogJiYmy/PbsmVLptty4sSJ2LBhQ84anMs2btyI5s2bo1ChQrCxsYG7uzvq1auHFStWICUlJc/bU6dOHZQvX96kuqb8jnJL586d4efnlyvz1n9HlyxZopS96Lfk5+eHZs2a5UpbKPsYdChHvv/+e4SEhODIkSP44osvsG3bNqxfvx5t2rTB/Pnz8cknn+R3E82mb9++iImJwd69e7F8+XK0bNkSv/32GypWrIipU6ca1K1cuTJiYmJQuXJlpezkyZPo168fwsLCsHv3bsTExMDJyQm//vorJkyYgE6dOmHv3r3YuXOn2dt+8OBBjBkzJsM/znPnzsXcuXPNvkxT6ft1//79iIyMxKlTpxAWFoYTJ05kaT5btmzBmDFjMhz3KgcdEUGXLl3w3nvvQafTYcaMGdi5cyeWLl2KihUrolevXvm6fUwRExODbt265XczzK5w4cKIiYlB06ZNlbIX/Zbo1WSV3w2g11dMTAx69uyJBg0aYMOGDbC1tVXGNWjQAIMHD8a2bdvysYXmVaxYMVSvXl0ZbtKkCQYNGoT3338fQ4YMQfny5dG4cWMAgLOzs0FdAMqRn+7du+Ott95Sys+ePQsA6NevHzw9PXN7NYwEBgbm+TKf93y/1qpVCyVLlkS9evUwd+5cfP/99/nathdJS0tDamqqwfc+O6ZOnYolS5ZgzJgx+OqrrwzGNW/eHEOGDMHly5dztIzclv67rha2traqXbc3ihBlU7NmzcTKykri4uJMqp+WliaTJ0+W0qVLi42NjRQsWFA+/vhjuXHjhkE9nU4nkydPlmLFiomtra1UqlRJtmzZIqGhoRIaGmpQ98GDBzJ48GDx8/MTa2tr8fb2lv79+0tiYqJRvW7duom7u7s4ODhIo0aN5OLFiwJAIiIiXtjua9euCQCZOnVqhuNv3rwp1tbWEhYWppTt2bNHAMiePXtERCQ0NFQAGHzCw8PF19fXqFzfnlWrVkmDBg3Ey8tLtFqtlClTRoYOHWq0biIihw4dkmbNmom7u7vY2tpK8eLFpX///iIiEhERYbSM9G1L36/37t2Tnj17ire3t1hbW4u/v78MHz5ckpKSDOoBkN69e8uyZcukTJkyYmdnJ0FBQbJx48YX9umL+vXRo0cCQBo0aGByP4SHh2e4jvplpP88v763b9+WTz/9VIoUKSLW1tbi5+cno0ePlpSUFKO2Tp48WcaNGyd+fn5iaWkpW7duVfr37Nmz0r59e3F2dhZPT0/p0qWL3L9//4V9kJycLO7u7lKmTBnR6XQv7TORrG+bRYsWSUBAgGi1WgkJCZGYmBjR6XQyZcoU8fPzEwcHBwkLC5NLly4ZTB8aGirlypWTffv2SbVq1USr1Yq3t7eMHDlSUlNTjZb1/O9o8eLFAkB2794tPXr0EA8PD3F3d5dWrVrJzZs3jdZp1apVUr16dbG3txcHBwdp2LChHD9+3Kje4sWLJSAgQGxsbKRMmTKydOlS5Xf0Ip9//rk4OzsbtLtPnz4CQKZMmaKU3b17VzQajcyePVtE/m+7L168WERe/lvy9fWVpk2bytatW6VSpUqi1WqldOnS8sMPP7ywfZS7GHQoW1JTU8Xe3l6qVatm8jSffvqpAJA+ffrItm3bZP78+VKwYEHx8fGRf/75R6mn/2PyySefyNatW2XBggVSpEgR8fLyMthBPXr0SIKDg6VAgQIyY8YM2blzp8yaNUtcXFykbt26yo5Dp9NJWFiY2NrayoQJE2THjh0SEREhxYsXN0vQERGpXr262NraKjvH9EHn3LlzMnLkSOWPZkxMjFy+fFmOHz8un3zyiQCQbdu2SUxMjBL8xo0bJ19//bVs3rxZoqOjZf78+eLv728QqEREtm3bJtbW1hIUFCRLliyR3bt3y6JFi6R9+/YiInLjxg3p27evAJB169ZJTEyMxMTEyIMHD0TEOOg8efJEgoKCxMHBQaZNmyY7duyQUaNGiZWVlTRp0sRg2QDEz89P3nrrLVmzZo1s2bJF6tSpI1ZWVnLlypVs9eupU6cEgHTo0MHkfrh8+bK0bt1aACjrFxMTI0lJSRITEyN2dnbSpEkTpfzcuXMi8izk+Pj4iK+vr3z33Xeyc+dOGTdunNja2krnzp2N2lqkSBEJCwuTtWvXyo4dO+TatWvK97V06dLy1VdfSVRUlMyYMUNsbW2lS5cuL+yDgwcPCgAZOnToC+vpZXXb+Pr6Ss2aNWXdunWyfv16CQgIEHd3dxk4cKC0aNFCNm3aJCtWrJBChQpJUFCQQdgKDQ0VDw8P8fb2ltmzZ8v27dulX79+SoBKv6yMgk7x4sWlb9++sn37dlm4cKG4ubkZfX8nTJggGo1GunbtKps2bZJ169ZJjRo1xMHBQdlOz8+zRYsWsnHjRvnxxx+lZMmSyvZ7kW3btgkAOXjwoFKmD+b6QC0isnr1agEg58+fFxHjoPOy35Kvr68ULVpUAgMDZdmyZbJ9+3Zp06aNAJC9e/e+sI2Uexh0KFvi4+MFgLIzfZkLFy4IAOnVq5dB+R9//CEAZPjw4SIi8t9//4lWq5VWrVoZ1Pv999+N/iceGRkpFhYWcuTIEYO6a9euFQCyZcsWERHZunWrAJBZs2YZ1JswYYLZgk67du0EgPz9998iYhx0RP7vD3X69up3lM+HvfR0Op2kpKTI3r17BYCcOnVKGVeiRAkpUaKEPHnyJNPpp06dqhzhSC990Jk/f74AkDVr1hjUmzx5sgCQHTt2KGUApFChQpKQkKCUxcfHi4WFhURGRmbaHhHDoyQpKSmSlJQkx44dk6pVqwoA2bx5c5b6oXfv3pLZQWoHBwcJDw83Kv/ss8/E0dFRrl+/blA+bdo0AaDsaPVtLVGihCQnJxvU1W+/548MiIj06tVLtFrtC4/UrFq1SgDI/PnzM63zvKxuGy8vL4MjXxs2bBAAEhwcbNCumTNnCgA5ffq0UqY/Cvnrr78aLKt79+5iYWFh0GeZBZ30v/cpU6YIALl9+7aIiMTFxYmVlZX07dvXoN7Dhw/Fy8tL2rZtKyLPjgZ7e3tL5cqVDdodGxsr1tbWLw06jx49EhsbGxk7dqyIiPz1119KwLSzs1OOhnXv3l28vb2V6dIHHZEX/5Z8fX1Fq9Ua9M2TJ0/E3d1dPvvssxe2kXIPL0amPLFnzx4Az+6QeN5bb72FsmXLYteuXQCeXfeTlJSEjh07GtSrWbMmfH19Dco2bdqE8uXLIzg4GKmpqcqnUaNGBnc86Zedfp4dOnQw1+pBRMw2L72rV6+iQ4cO8PLygqWlJaytrREaGgoAuHDhAgDgf//7H65cuYJPPvkEWq3WLMvdvXs3HBwc0Lp1a4Ny/bbTbyu9sLAwODk5KcOFChWCp6cnrl+/btLyhg4dCmtra2i1WoSEhCAuLg7fffcdmjRpAsC0fsiuTZs2ISwsDN7e3gbfIf21Vnv37jWo/95778Ha2jrDeb333nsGw0FBQUhKSsKdO3dy1MbnZWfbODg4KMNly5YFADRu3BgajcaoPP02c3JyMlqvDh06QKfTYd++fS9tb0Z98vxytm/fjtTUVHTq1Mmg/7VaLUJDQ5Xf8MWLF3Hr1i106NDBoN2+vr6oWbPmS9thb2+PGjVqKBf6R0VFwdXVFV988QWSk5Nx4MABAMDOnTtRv379l87vRYKDg1GsWDFlWKvVIiAgwOTfA5kfL0ambClQoADs7e1x7do1k+rfu3cPwLO7GNLz9vZW/gjo63l5eRnVS1/2999/4/Lly5nueO7evavM08rKCh4eHi+cX05cv34dtra2cHd3N8v8EhMT8c4770Cr1WL8+PEICAiAvb09bty4gffffx9PnjwBAPzzzz8AgKJFi5plucCz/vLy8jLYoQCAp6cnrKyslG2kl75fgWcXcerb+DL9+/fHRx99BAsLC7i6usLf319Ztqn9kF1///03Nm7c+NLvkF5G31+99P2gv0j5RW3U7xCz8jvKyrZJ/320sbF5YXlSUpJBeaFChYzaoP/dpF9WRl7WJ3///TcAoGrVqhlOb2FhYbCszP4uxMbGvrQt9evXx7hx4/Do0SPs3LkTdevWhYeHB0JCQrBz504UL14c165dy/TOPVPl9PdA5segQ9liaWmJevXqYevWrfjrr79euqPV//hv375tVPfWrVsoUKCAQb34+HijecTHxxs8L6NAgQKws7PDokWLMlzm8/NMTU3FvXv3DP4IZbSM7Lh58yaOHTuG0NBQWFmZ5ye1e/du3Lp1C9HR0crRCwBGt7QWLFgQAPDXX3+ZZbnAs/76448/ICIGO9Q7d+4gNTVV6VdzKVq0KKpUqZLhOFP7IbsKFCiAoKAgTJgwIcPx3t7eBsPpA0ZOValSBe7u7vj1118RGRn50vnn9bbRB5Hn6X83Ge3Qs0rf3rVr1xodsX3ey/4umKJevXoYNWoU9u3bh127diEiIkIp37FjB/z9/ZVhUheeuqJsGzZsGEQE3bt3R3JystH4lJQUbNy4EQBQt25dAMCPP/5oUOfIkSO4cOGC8selevXq0Gq1WLFihUG9gwcPGh36bdasGa5cuQIPDw9UqVLF6KMPRWFhYQBgNM+ffvopm2v+f548eYJu3bohNTUVQ4YMyfH89PQ7sfS3Ln/33XcGwwEBAShRogQWLVqEp0+fZjo/U44u6NWrVw+JiYlGz51ZtmyZMj6vmNoPz9fJaB0z+x91s2bNcPbsWZQoUSLD71D6oGNu1tbWGDp0KP7880+MGzcuwzp37tzB77//DiDvt83Dhw/x22+/GZT99NNPsLCwQO3atXM8/0aNGsHKygpXrlzJsP/1Abh06dIoXLgwVq5caXCa+Pr16zh48KBJy3rrrbfg7OyMmTNnIj4+Hg0aNADw7EjPiRMnsGbNGgQGBr50m2flt0SvBh7RoWyrUaMG5s2bh169eiEkJAQ9e/ZEuXLlkJKSghMnTmDBggUoX748mjdvjtKlS+PTTz/FN998AwsLCzRu3BixsbEYNWoUfHx8MHDgQACAm5sbPv/8c4wfPx7dunVDmzZtcOPGDYwePdrosPWAAQPwyy+/oHbt2hg4cCCCgoKg0+kQFxeHHTt2YPDgwahWrRoaNmyI2rVrY8iQIXj06BGqVKmC33//HcuXL8/S+sbFxeHQoUPQ6XR48OABTpw4gUWLFuH69euYPn06GjZsaLa+rVmzJtzc3NCjRw9ERETA2toaK1aswKlTp4zqzpkzB82bN0f16tUxcOBAFCtWDHFxcdi+fbsS7ipUqAAAmDVrFsLDw2FtbY3SpUsbXFuj16lTJ8yZMwfh4eGIjY1FhQoVcODAAUycOBFNmjTJ8TUMWZGVftCv4+TJk9G4cWNYWloiKCgINjY2qFChAqKjo7Fx40YULlwYTk5OKF26NMaOHYuoqCjUrFkT/fr1Q+nSpZGUlITY2Fhs2bIF8+fPN+tpwYx88cUXuHDhAiIiInD48GF06NABPj4+ePDgAfbt24cFCxZgzJgxqFWrVp5vGw8PD/Ts2RNxcXEICAjAli1b8P3336Nnz54G16Fkl5+fH8aOHYsRI0bg6tWrePfdd+Hm5oa///4bhw8fhoODA8aMGQMLCwuMGzcO3bp1Q6tWrdC9e3fcv38/w78LmbG0tERoaCg2btwIf39/lChRAsCzZzfZ2tpi165d6Nev30vnk5XfEr0i8vVSaFKFkydPSnh4uBQrVkxsbGzEwcFBKlWqJF999ZXcuXNHqad/jk5AQIBYW1tLgQIF5KOPPsrwOTqRkZHi4+MjNjY2ynNZMnreS2JioowcOVJ5No+Li4tUqFBBBg4cKPHx8Uq9+/fvS9euXcXV1VXs7e2lQYMG8ueff2bpriv9x9LSUtzc3CQkJEQGDBhgcAusnjnuujp48KDUqFFD7O3tpWDBgtKtWzc5fvy40V0gIiIxMTHSuHFjcXFxEVtbWylRooQMHDjQoM6wYcPE29tbLCwsTHqOTo8ePaRw4cJiZWUlvr6+MmzYsEyf1ZKer69vhnc5Pc+Uu9my0g9Pnz6Vbt26ScGCBUWj0RjcGXPy5EmpVauW2NvbG929988//0i/fv3E399frK2txd3dXUJCQmTEiBHKHUsvamtm20+/vTO6Oycjv/76qzRt2lQKFiwoVlZWyq3Y8+fPl6dPnyr1crJtMlsP/ff1559/Vsr0z9GJjo6WKlWqiK2trRQuXFiGDx9u8Iwh/bIyuusq/Xc9o9+FyLO7wcLCwsTZ2VlsbW3F19dXWrduLTt37jSot3DhQilVqpTY2NhIQECALFq0yKTn6OjNmjVLAEj37t0Nyhs0aCAA5LfffjMoz+iuK5HMf0v65+ikl9FvjPKORiQXbhchIiIiegXwGh0iIiJSLQYdIiIiUi0GHSIiIlItBh0iIiJSLQad11BsbCw0Go3ysbCwgJubm/Lgq9yyZMkSaDQaHD16NNeWkZvq1KmDOnXqvLBO+fLllcfhP2/9+vXQaDSoUaOG0bjly5dDo9EozxsxZTl6t27dwujRo3Hy5EmjcaNHjzb7A+rykv77ktHn888/V+r5+fkZvRpErc6fP4/Ro0dn+CTfOnXqoHz58rneBhHBqlWr8M4778DT0xNarRZFixZFo0aNsHDhwmzNc+7cuViyZInJ9f38/Ay+D46OjqhWrZryPKDn6zVr1ixbbcpP+r/R06ZNy++mEBh0Xmt9+/ZFTEwM9u/fj2nTpuHSpUto0qSJSe+goYyFhYXhzz//NHraanR0NBwcHHD06FE8fPjQaNzzD1CbO3cu5s6da9Lybt26hTFjxmQYdLp164aYmJjsrcgrZPHixYiJiTH4mPK8EjU6f/48xowZY9IrC3LLsGHD8OGHH6Js2bJYuHAhtm7divHjx6NQoUL49ddfszXPrAYd4Nnza/TfB30oDg8Px7x587LVBqLM8IGBr7FixYqhevXqAJ790ShVqhRCQ0Pxww8/mOWppW+isLAwfPvtt4iOjkb79u2V8ujoaHTr1g1z587FgQMHlJc+6sdVqlQJrq6uAIDAwMCXLictLQ2pqakvrFO0aNFcf1hdTj1+/Bj29vYvrFO+fPlMX/FAeevJkyeYOXMmOnXqhAULFhiM69y5M3Q6XZ61xdXVVfn7BTx7QrGvry9mzJiBnj175lk7SP14REdF9DuT9O+niY+Px2effYaiRYvCxsYG/v7+GDNmjNGOdt68eahYsSIcHR3h5OSEMmXKYPjw4UbLefjwIXr27IkCBQrAw8MD77//Pm7dumVQZ/Xq1WjYsCEKFy4MOzs7lC1bFl9++SUePXpkUK9z585wdHTEuXPnUK9ePTg4OKBgwYLo06cPHj9+bFBXRDB37lwEBwfDzs4Obm5uaN26Na5evWpUb8qUKfD19YVWq0XlypWxdetWk/qwTp06Bm8+B569UPDMmTNo2rQpQkJClLehA8CNGzdw9epV5TUT+nk8f+pKfxh7ypQpGD9+PPz9/WFra4s9e/YoLzPs0qWLchh/9OjRADI+daU/lL9t2zZUrlwZdnZ2KFOmTIbv+zpw4ABq1KgBrVaLIkWKYNSoUVi4cCE0Go3REYXVq1ejRo0acHBwgKOjIxo1aoQTJ04Y1NFvqzNnzqBhw4ZwcnLKtddBxMXF4aOPPoKnpydsbW1RtmxZTJ8+3WBHXLVqVTRt2tRgugoVKkCj0eDIkSNK2bp166DRaHDmzJkcL/P5UxIzZsyAv78/HB0dUaNGDRw6dOiF81+yZAnatGkD4Fmg1m/v9EdCjhw5gnfeeQf29vYoXrw4Jk2aZBRAEhIS8Pnnn8Pf3x82NjYoUqQIBgwYYPT7Su/Ro0d4+vRppi8n1b9EU2/MmDGoVq0a3N3d4ezsjMqVK+OHH34weA2Dn58fzp07h7179yrr9Pw76Uzl6uqK0qVLZ/iWb1O+72fPnkWLFi3g5uYGrVaL4OBgLF261KBOdHQ0NBoNVq5ciREjRsDb2xvOzs6oX78+Ll68aDTPnTt3ol69enB2doa9vT1q1apl9IZ4U+mPWu3evRvdu3eHh4cHnJ2d0alTJzx69Ajx8fFo27YtXF1dUbhwYXz++edISUkxmIcp2wMAnj59isGDB8PLywv29vaoXbs2jh07luFpYlP3D6+1fHxYIWVTZk83PXv2rACQvn37KmW3b98WHx8f8fX1le+++0527twp48aNE1tbW+ncubNSb+XKlcq0O3bskJ07d8r8+fOlX79+Sh39006LFy8uffv2le3bt8vChQuVJ7g+b9y4cfL111/L5s2bJTo6WubPny/+/v5G9cLDw8XGxkaKFSsmEyZMkB07dsjo0aPFyspKmjVrZlC3e/fuYm1tLYMHD5Zt27bJTz/9JGXKlJFChQoZPAVZ/6TaTz75RLZu3SoLFiyQIkWKiJeXl0lPJ61YsaIEBAQow7/88otYWVlJYmKiDB06VKpWraqMW7p0qQCQzZs3K2Xpn4Kq315FihSRsLAwWbt2rezYsUNOnTql9OnIkSMlJiZGYmJilCdF69fjeb6+vlK0aFEJDAyUZcuWyfbt26VNmzYCQPbu3avUO3XqlGi1WgkKCpJVq1bJb7/9Jk2aNBE/Pz+jp/VOmDBBNBqNdO3aVTZt2iTr1q2TGjVqiIODg8FTn8PDw8Xa2lr8/PwkMjJSdu3aJdu3b8+0H/XrdujQIUlJSTH4pF+n55+ifOfOHSlSpIgULFhQ5s+fL9u2bZM+ffoIAOnZs6dS78svvxRHR0dJTk4WEZH4+HgBIHZ2djJhwgSlXs+ePaVQoUKZtjMry9RvSz8/P3n33Xdlw4YNsmHDBqlQoYK4ubnJ/fv3X7iMiRMnCgCZM2eOsr31Tw8PDQ0VDw8PKVWqlMyfP1+ioqKkV69eAkCWLl2qzOfRo0cSHBwsBQoUkBkzZsjOnTtl1qxZ4uLiInXr1hWdTvfCdS1ZsqQ4OTnJ9OnT5cKFCy+s37lzZ/nhhx8kKipKoqKiZNy4cWJnZydjxoxR6hw/flyKFy8ulSpVUtbp+PHjL2xDRk8QTk5OFk9PT/H29jaoZ8r3/c8//xQnJycpUaKELFu2TDZv3iwffvihAJDJkycr9fRPZvbz85OOHTvK5s2bZeXKlVKsWDEpVaqUpKamKnWXL18uGo1GWrZsKevWrZONGzdKs2bNxNLS0uiJzell9Dda/3vw9/eXwYMHy44dO2Ty5MliaWkpH374oVSuXFnGjx8vUVFRMnToUAEg06dPz/L2EBH58MMPxcLCQr788kvZsWOHzJw5U3x8fMTFxcXgt2bq/uF1x6DzGtL/iCZPniwpKSmSlJQkJ0+elBo1akjhwoUNdmKfffaZODo6yvXr1w3mMW3aNAGg7Mj69Okjrq6uL1yu/ofaq1cvg/IpU6YIALl9+3aG0+l0OklJSZG9e/cKADl16pQyLjw8XADIrFmzDKaZMGGCAJADBw6IyLNXHGT0w79x44bY2dnJkCFDRETkv//+E61WK61atTKo9/vvvxs9+j8zAwYMEABy69YtERHp27evVK9eXUREtmzZIpaWlvLgwQMREenSpYtYWlpKQkKCMn1mQadEiRLKTlnvyJEjGT5iXiTzoKPVag2255MnT8Td3V0+++wzpaxNmzbi4OBg8FqCtLQ0CQwMNAg6cXFxYmVlZRCORUQePnwoXl5e0rZtW6VMv60WLVqUad89T/99yejzfNhJH3S+/PJLASB//PGHwfx69uwpGo1GLl68KCIiO3fuFACyb98+ERH58ccfxcnJSXr16mUQqEuVKiUdOnR4YVtNXaZ+W1aoUMFgp3j48GEBICtXrnzhcn7++ecMX4Eg8ux7k1EbAgMDpVGjRspwZGSkWFhYGL1eYe3atQJAtmzZ8sI2HD58WIoVK6ZsCycnJ2nWrJksW7bshaEnLS1NUlJSZOzYseLh4WFQt1y5cll6xYGvr680adJECb7Xrl1Tvl9ffPGFQT1Tvu/t27cXW1tbiYuLM1hO48aNxd7eXgmg+qDTpEkTg3pr1qwRABITEyMiz8Kku7u7NG/e3KgPKlasKG+99dYL1+9FQSf9b61ly5YCQGbMmGFQHhwcLJUrV850GZltj3PnzgkAGTp0qEF9/X9mn/+tmbp/eN3x1NVrbOjQobC2tlYO0549exYbN240OGy8adMmhIWFwdvbG6mpqcpHf43J3r17ATx7s+/9+/fx4Ycf4tdff8Xdu3czXe57771nMBwUFAQABoecr169ig4dOsDLywuWlpawtrZGaGgoAODChQtG8+zYsaPBcIcOHQBAOU20adMmaDQafPTRRwbr4eXlhYoVKyqnmmJiYpCUlGQ0v5o1a8LX1zfTdXqe/jSUfp7R0dHKqai3334bAJQLvqOjo1GlShWTXuj33nvvwdra2qQ2vEhwcLDBCxW1Wi0CAgIM+n/v3r2oW7cuChQooJRZWFigbdu2BvPavn07UlNT0alTJ4N+1Wq1CA0NNTiFp/fBBx9kqb3Lli3DkSNHDD5WVplfHrh7924EBgbirbfeMijv3LkzRAS7d+8G8Oy6NK1Wi507dwIAoqKiUKdOHbz77rs4ePAgHj9+jBs3buDSpUsvfdmlqcvUa9q0KSwtLZXhjH4D2eHl5WXUhqCgIIP5btq0CeXLl0dwcLDBNmvUqJHRadeMVK1aFZcvX8a2bdswfPhw1KhRA7t27UKnTp3w3nvvGZwG2b17N+rXrw8XFxfld/zVV1/h3r17uHPnTo7WdcuWLbC2toa1tTX8/f2xZs0a9O3bF+PHjzeoZ8r3fffu3ahXrx58fHwMpu3cuTMeP35sdFH/y/6GHTx4EP/++y/Cw8MN+lin0+Hdd9/FkSNHXnqaMDPp7yLT3+WZ/jRs2bJljb5PpmwP/d/09L/11q1bG/3uTN0/vO54MfJrrH///vjoo4/w9OlTHDp0CCNHjkSLFi1w6tQpeHh4AHh2vc7GjRsz3cHqA83HH3+M1NRUfP/99/jggw+g0+lQtWpVjB8/Hg0aNDCYRj9vPVtbWwDPLnQEgMTERLzzzjvQarUYP348AgICYG9vjxs3buD9999X6ulZWVkZzVP/RuJ79+4p6yEiKFSoUIbrUbx4cYP6Gb3R2NS3HIeGhsLCwgJ79uxBw4YNcfbsWUyZMgUA4OTkhEqVKiE6OhpBQUG4du0a2rVrZ9J8M7suIqvS9xXwbBs836/37t3LsK/Sl+mv59JfK5Re+ms27O3t4ezsnKX2li1bNksXI9+7dy/Dazy8vb2V8cCzHV6tWrWwc+dOjBkzBrt27cKQIUNQp04dpKWlYf/+/bh58yYAvDTomLpMvZf9BrLLlG37999/4/Llyy/9Tb+ItbU1GjVqhEaNGgF4tn6tW7fGpk2bsHXrVjRp0gSHDx9Gw4YNUadOHXz//ffKNRwbNmzAhAkTcryub7/9Nr7++mtoNBrY29ujRIkSsLGxMapn6vc9o99Xdref/nfRunXrTNv/77//wsHBIdPxmXF3dzcY1q9zRuVJSUnKsKnbQ7+u6X/rGf2dNXX/8Lpj0HmNFS1aVNmB1KpVC15eXvjoo48QERGBb7/9FgBQoEABBAUFYcKECRnOQ/+HAHh2QWyXLl3w6NEj7Nu3DxEREWjWrBn+97//mXw0BHj2v45bt24hOjpaOYoDAPfv38+wfmpqKu7du2fwI9Tf3q0vK1CgADQaDfbv36/8UXqevkxfP/3t4foyUy6SdHFxUcKM/tbxWrVqKeNDQ0OxZ88eVKhQAQAMLkR+kbx8Jo6Hh4fRRemAcb/oj/isXbvWpG2cF+vg4eGB27dvG5XrL3h//ihVvXr18NVXX+Hw4cP466+/0KBBAzg5OaFq1aqIiorCrVu3EBAQYPQ//ZwsM78VKFAAdnZ2GV6Qqx+fVR4eHhgwYACio6Nx9uxZNGnSBKtWrYK1tTU2bdoErVar1N2wYUN2m27AxcXFbHfjmXv76et/8803BneGPS+z/3TlFlO3x/P/yS1SpIhSrv87+7ys7B9eZww6KtKxY0csXLgQ33//Pb744gv4+vqiWbNm2LJlC0qUKAE3NzeT5uPg4IDGjRsjOTkZLVu2xLlz57IUdPQ7w/SB5Lvvvst0mhUrVhg8W+Wnn34CAOWUUbNmzTBp0iTcvHnT6JDs86pXrw6tVosVK1YYnGI5ePAgrl+/bvLdIGFhYZg2bRp++uknhISEGJyaCg0Nxddff40NGzbA2traIARllbmOBKQXGhqKLVu24O7du8ofbZ1Oh59//tmgXqNGjWBlZYUrV65k+ZRUbqlXrx4iIyNx/PhxVK5cWSlftmwZNBqNQbCsX78+hg8fjlGjRqFo0aIoU6aMUv7bb78hPj7epPXKyjJzwhzbu1mzZpg4cSI8PDzg7++fpWlTUlKQkJCQ4VES/Sll/c5No9HAysrK4BTdkydPsHz5cqNp0x9hyWv16tXD+vXrcevWLYOd87Jly2Bvb59pWMlMrVq14OrqivPnz6NPnz7mbm62mLo99I8WWb16tcF3ee3atUZ3UmVn//A6YtBRmcmTJ6NatWoYN24cFi5ciLFjxyIqKgo1a9ZEv379ULp0aSQlJSE2NhZbtmzB/PnzUbRoUXTv3h12dnaoVasWChcujPj4eERGRsLFxSXT0xqZqVmzJtzc3NCjRw9ERETA2toaK1aswKlTpzKsb2Njg+nTpyMxMRFVq1bFwYMHMX78eDRu3Fi5JqZWrVr49NNP0aVLFxw9ehS1a9eGg4MDbt++jQMHDqBChQro2bMn3Nzc8Pnnn2P8+PHo1q0b2rRpgxs3bmD06NEmn7oC/i/orF+/3uApvgDwzjvvAAB+/fVX1KxZM1uHr/VKlCgBOzs7rFixAmXLloWjoyO8vb1z/D+pESNGYOPGjahXrx5GjBgBOzs7zJ8/X7muQH9Kys/PD2PHjsWIESNw9epVvPvuu3Bzc8Pff/+Nw4cPw8HBAWPGjMlRW7Jq4MCBWLZsGZo2bYqxY8fC19cXmzdvxty5c9GzZ08EBAQodUNCQuDm5oYdO3agS5cuSnn9+vUxbtw45d/mXGZO6J98vGDBAjg5OUGr1cLf3z/D4JGZAQMG4JdffkHt2rUxcOBABAUFQafTIS4uDjt27MDgwYNRrVq1DKd98OAB/Pz80KZNG9SvXx8+Pj5ITExEdHQ0Zs2ahbJly+L9998H8OyakRkzZqBDhw749NNPce/ePUybNi3DI6oVKlTAqlWrsHr1ahQvXhxarVY54pkXIiIilOtNvvrqK7i7u2PFihXYvHkzpkyZAhcXlyzNz9HREd988w3Cw8Px77//onXr1vD09MQ///yDU6dO4Z9//snzBxuauj3KlSuHDz/8ENOnT4elpSXq1q2Lc+fOYfr06XBxcTE4HW3q/uG1l7/XQlN2ZHZ7uV6bNm3EyspKLl++LCIi//zzj/Tr10/8/f3F2tpa3N3dJSQkREaMGCGJiYki8uw26bCwMClUqJDY2NiIt7e3tG3bVk6fPq3MV3/XQPq7PfR3Mjx/J8nBgwelRo0aYm9vLwULFpRu3brJ8ePHje4wCg8PFwcHBzl9+rTUqVNH7OzsxN3dXXr27Km07XmLFi2SatWqiYODg9jZ2UmJEiWkU6dOcvToUaWOTqeTyMhI8fHxERsbGwkKCpKNGzca3Q31IgkJCWJlZSUAZNOmTUbjg4ODBYCMGDHCaFxmd11ltr1WrlwpZcqUEWtrawEgERERIpL5XVfpb8vNaJkiIvv375dq1aqJra2teHl5yRdffCGTJ08WAEa3QW/YsEHCwsLE2dlZbG1txdfXV1q3bm1wG61+W5kqs+9LeunvuhIRuX79unTo0EE8PDzE2tpaSpcuLVOnTpW0tDSj6Vu1aiUAZMWKFUpZcnKyODg4iIWFhfz3338mtdeUZb5oWz6/7V5k5syZ4u/vL5aWlga/h9DQUClXrpxR/fDwcPH19TUoS0xMlJEjR0rp0qXFxsZGXFxcpEKFCjJw4ECDRy2k9/TpU5k2bZo0btxYihUrJra2tqLVaqVs2bIyZMgQuXfvnkH9RYsWSenSpcXW1laKFy8ukZGR8sMPPxg9oiA2NlYaNmwoTk5OAsCovell9j02tV5G3/czZ85I8+bNxcXFRWxsbKRixYpGdzPq/1b9/PPPBuX67Zq+/t69e6Vp06bi7u4u1tbWUqRIEWnatKnR9Om96K6r9L8H/e/8+TskRTL+vZm6PZKSkmTQoEHi6ekpWq1WqlevLjExMeLi4iIDBw40mKcp+4fXnUYk3ZOGiPJQ586dsXbtWiQmJuZ3U94IDRs2RGxsLP73v//ld1OIKA8dPHgQtWrVwooVK5S7Wt8UPHVFpFKDBg1CpUqV4OPjg3///RcrVqxAVFQUfvjhh/xuGhHloqioKMTExCAkJAR2dnY4deoUJk2ahFKlSimnJt8kDDpEKpWWloavvvoK8fHx0Gg0CAwMxPLly/HRRx/ld9OIKBc5Oztjx44dmDlzJh4+fIgCBQqgcePGiIyMNLhj603BU1dERESkWnwyMhEREakWgw4RERGpFoMOERERqdYbfzGyTqfDrVu34OTklKeP6CciIqLsExE8fPgQ3t7eRu/le94bH3Ru3br10vfgEBER0avpxo0bL3yC8xsfdPTvMLpx40aW38r8IikpKdixYwcaNmyY6ZthKefYz3mHfZ032M95h32dN3KrnxMSEuDj42PwLsKMvPFBR3+6ytnZ2exBx97eHs7OzvwB5SL2c95hX+cN9nPeYV/njdzu55dddsKLkYmIiEi1GHSIiIhItRh0iIiISLXe+Gt0iIjo5dLS0pCSkpLfzTCrlJQUWFlZISkpCWlpafndHNXKbj9bW1vD0tIyx8tn0CEiokyJCOLj43H//v38borZiQi8vLxw48YNPkctF+Wkn11dXeHl5ZWj7cOgQ0REmdKHHE9PT9jb26sqEOh0OiQmJsLR0fGFD5yjnMlOP4sIHj9+jDt37gAAChcunO3lM+gQEVGG0tLSlJDj4eGR380xO51Oh+TkZGi1WgadXJTdfrazswMA3LlzB56entk+jcUtS0REGdJfk2Nvb5/PLaE3lf67l5Prw1QRdFq1agU3Nze0bt06v5tCRKQ6ajpdRa8Xc3z3VBF0+vXrh2XLluV3M4iIiOgVo4qgExYW9tJ3XRAREZmLn58fZs6cmd/NMMno0aMRHByc383IN/kedPbt24fmzZvD29sbGo0GGzZsMKozd+5c+Pv7Q6vVIiQkBPv378/7hhIR0Wujc+fO0Gg00Gg0sLKyQrFixdCzZ0/8999/L502ISEBI0aMQJkyZaDVauHl5YX69etj3bp1EJE8aH3eio2NVfoq/efQoUP53bwcy/e7rh49eoSKFSuiS5cu+OCDD4zGr169GgMGDMDcuXNRq1YtfPfdd2jcuDHOnz+PYsWK5UOLiYjodfDuu+9i8eLFSE1Nxfnz59G1a1fcv38fK1euzHSa+/fv4+2338aDBw8wfvx4VK1aFVZWVti7dy+GDBmCunXrwtXVNe9WIg/t3LkT5cqVMyjL7G67lJSUDF/QmVn5y2R3OlPke9Bp3LgxGjdunOn4GTNm4JNPPkG3bt0AADNnzsT27dsxb948REZGZnl5T58+xdOnT5XhhIQEAM862ZxP/dTPS21PEn3VsJ/zDvs6b7xK/ZySkgIRgU6ng06ny+/mZImIwMbGBp6engAAb29vtG3bFkuXLlXWRX90Rr+OADBs2DDExsbizz//hLe3tzK/kiVLol27dtBqtUrdR48eoUuXLli7di3c3NwwfPhwfPrpp8o0X375JTZs2IC//voLXl5e6NChA0aNGqXs0MeMGYNff/0VAwcOREREBP777z+8++67WLBggXI5Rt26dVGhQgVotVr88MMPsLGxwWeffYaIiAhlOQ8ePMCQIUPw66+/IikpCVWqVMH06dNRsWJFg/XMbBvqy93c3JT+Sj9e39Y+ffpg4sSJiI2NVZ54PGfOHGzbtg27du3C4MGDMXr0aMybNw8zZszAjRs34O/vj4EDB6J79+7KsiwtLTOcLqNliwhSUlKMbi839TeS70HnRZKTk3Hs2DF8+eWXBuUNGzbEwYMHszXPyMhIjBkzxqh8x44duXILZVRUlNnnScbYz3mHfZ03XoV+trKygpeXFxITE5GcnPysUAR4/DjvG2NvD2ThDpyUlBSkpqYq/5mNjY3F1q1bYWVlpZTpPXz4EMCzneqqVavQunVrODo6GtUDgMf/f911Oh2mT5+O4cOHo2/fvvj111/Ru3dvVK5cGQEBAQAAGxsbfPPNNyhcuDDOnTuHAQMGwNraGv379wfw7D/eV65cwS+//IKffvoJ9+/fR9euXTF27FiMGjUKAJCamoqlS5eid+/eiIqKwpEjR9CrVy8EBwcjLCwMIoLGjRvDzc0Nq1evhrOzM5YsWYL69evj6NGjcHNzw9OnT5GWlpbh+gBAYmIigGfBLbM6T58+xeXLl7Fq1SosWbIEFhYWSt3Ro0fjq6++wtixY2FhYYGffvoJAwcOxMSJE1GnTh1s374dffr0QZEiRfDOO+8o80w/XUbLTk5OxpMnT7Bv3z6kpqZmuC1e5pUOOnfv3kVaWhoKFSpkUF6oUCHEx8crw40aNcLx48fx6NEjFC1aFOvXr0fVqlUznOewYcMwaNAgZTghIQE+Pj5o2LAhnJ2dzdb2lJQUREVFoUGDBrl2OI7Yz3mJfZ03XqV+TkpKwo0bN+Do6AitVvus8NEjWBQtmudt0SUkAA4OJte3trbG9u3bUbRoUaSlpSEpKQkAMH36dOVvvYjg4cOHcHJygkajwZ07d3D//n0EBQW9dH9gYWGBJk2aKPuTihUrYv78+Th69CiqVKkCABg7dqxSv3z58rhx4wbWrFmjhBhbW1vodDosX75cOYLz8ccfY//+/cryraysULFiRUyYMAEAUKlSJSxatAiHDh1CixYtsHv3bly4cAHx8fGwtbVV6mzduhXbt2/Hp59+CltbW1haWma6To6OjgCe7UvTP9Dvv//+g6WlJWxtbZGcnIwVK1agYMGCBnU6dOiAXr16KcM9e/ZEeHi40jeVKlXC0aNHMW/ePDRt2jTT6TKSlJQEOzs71K5d+/++g/9fZqEsvVc66Oilv49eRAzKtm/fbvK8bG1tlS/D86ytrXPlj0puzZcMsZ/zDvs6b7wK/ZyWlgaNRgMLC4v/2wHm0xOELSwssrRsjUaDsLAwzJs3D48fP8bChQvxv//9D/369VPWRX8aRb+O+v2Kwfq+QMWKFQ3qeXl54e7du0rZ2rVrMXPmTFy+fBmJiYlITU2Fs7OzMl6j0cDPzw8uLi7KPLy9vXHnzh2D+QYFBRkMFy5cGP/88w8sLCxw4sQJJCYmGoWPJ0+e4Nq1a0brlRF9+erVq1G2bFmDcfrvoEajga+vr9GBBwCoWrWqwbwvXLiATz/91KCfq1WrhgULFhjUSz9dZm3TaDQZ/h5M/X280kGnQIECsLS0NDh6Azx7HHRGnU1ERLnM3h74/6c68ny5WeTg4ICSJUsCAGbPno2wsDCMGTMG48aNy7B+wYIF4ebmhgsXLpg0//Q7Wo1Go4SnQ4cOoX379hgzZgwaNWoEFxcXrFq1CtOnTzd5HqbU0el0KFy4MKKjo43al9WLpn18fJT+yohDJkfUMip/2QGKF83P3F7poGNjY4OQkBBERUWhVatWSnlUVBRatGiRjy0jInpDaTRZOoX0KomIiEDjxo3Rs2dPgwuN9SwsLNCuXTssX74cERERRnUePXoEW1tbWFm9fNf5+++/w9fXFyNGjFDKrl+/nvOVSKdy5cqIj4+HlZUV/Pz8zD7/7ChbtiwOHDiATp06KWWHDx9GmTJl8qU9+f4cncTERJw8eRInT54EAFy7dg0nT55EXFwcAGDQoEFYuHAhFi1ahAsXLmDgwIGIi4tDjx498rHVRET0uqlTpw7KlSuHiRMnZlpn4sSJ8PHxQbVq1bBs2TKcP38ely5dwqJFixAcHKxcuPsyJUuWRFxcHFatWoUrV65g9uzZWL9+vblWRVG/fn3UqFEDLVu2xPbt2xEbG4uDBw9i5MiROHr0aJbmde/ePcTHxxt89Nc2ZcUXX3yBJUuWYP78+bh06RK+/vprbNy4EYMHD87yvMwh34/oHD16FGFhYcqw/uKl8PBwLFmyBO3atcO9e/cwduxY3L59G+XLl8eWLVvg6+ubX00mIqLX1KBBg9ClSxcMHToURYoUMRrv5uaGQ4cOYdKkSRg/fjyuX78ONzc3VKhQAVOnTjW4nuZFWrRogYEDB6JPnz54+vQpmjZtilGjRmV4C3VOaDQabNmyBSNGjEDXrl3xzz//wMvLC7Vr187yJR7169c3Klu5ciXat2+fpfm0bNkSs2bNwtSpU9GvXz/4+/vj22+/RZ06dbI0H3PRiBof85gFCQkJcHFxwYMHD8x+19WWLVvQpEmTfL+gUM3Yz3mHfZ03XqV+TkpKwrVr15Qn06uNTqdDQkKCwQXCZH456ecXfQdN3X9zyxIREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqvbFBZ86cOQgMDMz0LedERET0+ntjg07v3r1x/vx5HDlyJL+bQkRERLnkjQ06REREOeHn54eZM2fmdzNMMnr0aAQHB+d3M/IFgw4REalSfHw8+vfvj5IlS0Kr1aJQoUJ4++23MX/+fDx+/PiF0yYkJGDEiBEoU6YMtFotvLy8UL9+faxbtw5qfHNSbGwsNBpNhp9Dhw7ld/NyJN9f6klERGRuV69eRa1ateDq6oqJEyeiQoUKSE1Nxf/+9z8sWrQI3t7eaNasWYbT3r9/H2+//TYePHiA8ePHo2rVqrCyssLevXsxZMgQ1K1bF66urnm7Qnlk586dKFeunEGZh4dHhnVTUlIyfB9bZuUvk93pXoZHdIiISHV69eoFKysrHD16FG3btkXZsmVRoUIFfPDBB9i8eTOaN2+e6bTDhw9HbGws/vjjD4SHhyMwMBABAQHo3r07Tp48CUdHR6Xu48eP0bVrVzg5OaFYsWJYsGCBwbyGDh2KgIAA2Nvbo3jx4hg1ahRSUlKU8fpTSsuXL4efnx9cXFzQvn17PHz4UKlTp04d9OvXD0OGDIG7uzu8vLyM3oL+4MEDfPrpp/D09ISzszPq1q2LU6dOZbnfPDw84OXlZfDRhw99WxctWoTixYvD1tYWIgKNRoP58+ejRYsWcHBwwPjx4wEA8+bNQ4kSJaDValG1alUsX77cYFmZTWduDDpERGQyEcGj5Ed5/snK6aJ79+5hx44d6N27NxwcHDKso9FoMizX6XRYtWoVOnbsCG9vb6Pxjo6OsLL6v5Mh06dPR5UqVXDixAn06tULPXv2xJ9//qmMd3JywpIlS3D+/HnMmjUL33//Pb7++muDeV65cgUbNmzApk2bsGnTJuzduxeTJk0yqLN06VI4ODjgjz/+wJQpUzB27FhERUUBeLZNmjZtivj4eGzZsgXHjh1D5cqVUa9ePfz777+mdZqJLl++jDVr1uCXX37ByZMnlfKIiAi0aNECZ86cQdeuXbF+/Xr0798fgwcPxunTp9G5c2d88skn2LNnj8H80k+XG3jqioiITPY45TEcIx1fXtHMEoclwsEm49CS3uXLlyEiKF26tEF5gQIFkJSUBODZnbeRkZFG0969exf//fcfypQpY9KymjRpgl69egF4dvTm66+/RnR0tDL9yJEjlbp+fn4YPHgwVq9ejSFDhijlOp0OS5YsgZOTEwDg448/xq5duzBhwgSlTlBQECIiIgAApUqVwrfffotdu3ahQYMG2LNnD86cOYM7d+7A1tYWADBt2jRs2LABa9euxaeffmrSugBAzZo1YWFheAzkwYMHsLS0BAAkJydj+fLlKFiwoEGdDh06GASVDh06oHPnzujVqxd0Oh169+6NkydPYtq0aQgLC8t0utzAoENERKqU/qjN4cOHodPp0LFjRzx9+jTDafRHjjI74pNeUFCQwfK8vLxw584dpWzt2rWYOXMmLl++jMTERKSmpsLZ2dlgHn5+fkrIAYDChQsbzCP9ctLXOXbsGBITE42upXny5AmuXLli0nrorV69GmXLljUo04ccAPD19TUKOQBQpUoVg+ELFy4YBaxatWph9uzZL5wuNzDoEBGRyeyt7ZE4LDFflmuqkiVLQqPRGJxCAoDixYsDAOzs7DKdtmDBgnBzc8OFCxdMWlb6i2c1Gg10Oh0A4NChQ2jfvj3GjBmDRo0awcXFBatWrcL06dNNnocpdXQ6HQoXLozo6Gij9mX1omkfHx+ULFky0/GZnQrMqDx9WNRfz2PK/MyJQYeIiEym0WhMPoWUXzw8PNCgQQN8++236Nu3b5Z2phYWFmjXrh2WL1+OiIgIo+t0Hj16BFtbW4PrdDLz+++/w9fXFyNGjFDKrl+/bvqKmKhy5cqIj4+HlZUV/Pz8zD7/7ChbtiwOHDiATp06KWUHDx40OlqUF3gxMhERqc7cuXORmpqKKlWqYPXq1bhw4QIuXryIH3/8EX/++afB6Zj0Jk6cCB8fH1SrVg3Lli3D+fPncenSJSxatAjBwcFITDTtiFbJkiURFxeHVatW4cqVK5g9ezbWr19vrlVU1K9fHzVq1EDLli2xfft2xMbG4uDBgxg5ciSOHj2apXndu3cP8fHxBh/9dU1Z8cUXX2DJkiWYP38+Ll26hDlz5mD9+vX4/PPPszyvnOIRHSIiUp0SJUrgxIkTmDhxIoYNG4a//voLtra2CAwMxOeff65cQJwRNzc3HDp0CJMmTcL48eNx/fp1uLm5oUKFCpg6dSpcXFxMakOLFi0wcOBA9OnTB0+fPkXTpk0xatQoo1vDc0qj0WDLli0YMWIEunbtin/++QdeXl6oXbs2ChUqlKV51a9f36hs5cqVaN++fZbm07JlS8yaNQtTp05Fv3794Ovrix9++AF16tTJ0nzMQSNqfMRjFiQkJMDFxQUPHjwwukAsJ1JSUrBlyxY0adIkVx6ARM+wn/MO+zpvvEr9nJSUhGvXrsHf3x9arTZf25IbdDodEhIS4OzsbHSnEZlPTvr5Rd9BU/ff3LJERESkWgw6REREpFoMOkRERKRab2zQmTNnDgIDA1G1atX8bgoRERHlkjc26PTu3Rvnz5/HkSNH8rspRERElEve2KBDRERE6segQ0RERKrFoENERESqxaBDREREqsWgQ0RElEUajQYbNmzI72aYpHPnzmjZsmV+NyPfMOgQEZHqdO7cGRqNRvl4eHjg3XffxenTp186bXx8PPr27YvixYvD1tYWPj4+aN68OXbt2pUHLc970dHRBn31/Cc+Pj6/m5djDDpERKRK7777Lm7fvo3bt29j165dsLKyQrNmzV44TWxsLEJCQrB7925MmTIFZ86cwbZt2xAWFobevXvnUcvzx8WLF5X+0n88PT0zrJucnJxheUpKSraWnd3pTMGgQ0REqmRrawsvLy94eXkhODgYQ4cOxY0bN/DPP/9kOk2vXr2g0Whw+PBhtG7dGgEBAShXrhwGDRqEQ4cOGdS9e/cuWrVqBXt7e5QqVQq//fabMi4tLQ2ffPIJ/P39YWdnh9KlS2PWrFkG0+tPKU2bNg2FCxeGh4cHevfubbDT9/Pzw8SJE9G1a1c4OTmhWLFiWLBggcF8bt68iXbt2sHNzQ0eHh5o0aIFYmNjs9xfnp6eSn/pP/qXcOrbGhkZCW9vbwQEBCA2NhYajQZr1qxBnTp1oNVq8eOPP0Kn02Hs2LEoWrQobG1tUblyZezcuVNZTmbT5RYGHSIiMpkI8OhR3n9EctbuxMRErFixAiVLloSHh0eGdf79919s27YNvXv3hoODg9F4V1dXg+ExY8agbdu2OH36NJo0aYKOHTvi33//BfDsjd1FixbFmjVrcP78eXz11VcYPnw41qxZYzCPPXv24MqVK9izZw+WLl2KJUuWYMmSJQZ1pk+fjipVquDEiRPo1asXevbsiT///BMA8PjxY4SFhcHR0RH79u3DgQMH4OjoiHfffTfToy7ZtWvXLly4cAFRUVHYtGmTUj506FD069cPFy5cQKNGjTBr1ixMnz4d06ZNw+nTp9GwYUN06NABly5dMphf+ulyjbzhHjx4IADkwYMHZp1vcnKybNiwQZKTk806XzLEfs477Ou88Sr185MnT+T8+fPy5MkTpSwxUeRZ7MjbT2Ji1toeHh4ulpaW4uDgIA4ODgJAChcuLMeOHVPqpKWlyX///SdpaWkiIvLHH38IAFm3bt1L5w9ARo4c+Vy/JIpGo5GtW7dmOk2vXr3kgw8+MGijr6+vpKamKmVt2rSRdu3aKcO+vr7y0UcfKcM6nU48PT1l3rx5IiLyww8/SOnSpUWn0yl1nj59KnZ2drJ9+3ZlOS1atMi0XXv27BEASl/pPwEBAQZtLVSokDx9+lQpu3btmgCQmTNnGszP29tbJkyYoAynpaVJ5cqVpWfPni+cLiMZfQf1TN1/W+VehCIiIso/YWFhmDdvHoBnR2vmzp2Lxo0b4/Dhw/D19TWqL///sJFGozFp/kFBQcq/HRwc4OTkhDt37ihl8+fPx8KFC3H9+nU8efIEycnJCA4ONphHuXLlYGlpqQwXLlwYZ86cyXQ5Go0GXl5eynKOHTuGy5cvw8nJyWCapKQkXLlyxaT10Nu/f7/BfKysDCNChQoVYGNjYzRdlSpVlH8nJCTg1q1bqFWrlkGdatWqKUehMpouNzHoEBGRyeztgcTE/FluVjk4OKBkyZLKcEhICFxcXPD9999j/PjxRvVLlSoFjUaDCxcumHQ7trW1tcGwRqOBTqcDAKxZswYDBw7E9OnTUaNGDTg5OWHq1Kn4448/TJ6HKXV0Oh1CQkKwYsUKo/YVLFjwpevwPH9/f6PTc8/L6HReZuXpw6KIGJVlNj9zY9AhIiKTaTRAHu2fzE6j0cDCwgJPnjzJcLy7uzsaNWqEOXPmoF+/fkY74vv3778wCDxv//79qFmzJnr16qWUZfUIiykqV66M1atXw9PTE87Ozmaff1Y5OzvD29sbBw4cQO3atZXyw4cPo3r16vnSJl6MTEREqvT06VPEx8cjPj4eFy5cQN++fZGYmIjmzZtnOs3cuXORlpaGt956C7/88gsuXbqECxcuYPbs2ahRo4bJyy5ZsiSOHj2K7du343//+x9GjRqFI0eOmGO1DHTs2BEFChRAixYtsH//fly7dg179+5F//798ddff2VpXnfu3FH6S//Jzm3fX3zxBSZPnozVq1fj4sWLGDZsGM6cOYN+/fpleV7mwCM6RESkStu2bUPhwoUBAE5OTihTpgx+/vln1KlTJ9Np/P39cfz4cUyYMAGDBw/G7du3UbBgQYSEhCjX+5iiR48eOHnyJNq1aweNRoMPP/wQvXr1wtatW3O6Wgbs7e2xb98+DB06FO+//z4ePnyIIkWKoF69elk+wlO6dGmjspiYmCwfienXrx8SEhIwePBg3LlzB4GBgfjpp59QqlSpLM3HXDSiv/rqDZWQkAAXFxc8ePDArIf9UlJSsGXLFjRp0sTo/CqZD/s577Cv88ar1M9JSUm4du0a/P39odVq87UtuUGn0yEhIQHOzs7K82LI/HLSzy/6Dpq6/+aWJSIiItVi0CEiIiLVemODzpw5cxAYGIiqVavmd1OIiIgol7yxQad37944f/58rlwFT0RERK+GNzboEBGRad7we1YoH5nju8egQ0REGdLf9fX48eN8bgm9qfTfvZzcgcjn6BARUYYsLS3h6uqqvFfJ3t7e5PdAvQ50Oh2Sk5ORlJTE28tzUXb6WUTw+PFj3LlzB66urgbvA8sqBh0iIsqUl5cXABi8rFItRARPnjyBnZ2dqgLcqyYn/ezq6qp8B7OLQYeIiDKl0WhQuHBheHp6Zut1AK+ylJQU7Nu3D7Vr1873hzOqWXb72draOkdHcvQYdIiI6KUsLS3NstN5lVhaWiI1NRVarZZBJxfldz/zpCQRERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqdYbG3TmzJmDwMBAVK1aNb+bQkRERLnkjQ06vXv3xvnz53HkyJH8bgoRERHlkjc26BAREZH6MegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqvbFBZ86cOQgMDETVqlXzuylERESUS97YoNO7d2+cP38eR44cye+mEBERUS55Y4MOERERqR+DDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqVaWgk5KSgq6dOmCq1ev5lZ7iIiIiMwmS0HH2toa69evz622EBEREZlVlk9dtWrVChs2bMiFphARERGZl1VWJyhZsiTGjRuHgwcPIiQkBA4ODgbj+/XrZ7bGEREREeVEloPOwoUL4erqimPHjuHYsWMG4zQaDYMOERERvTKyHHSuXbuWG+0gIiIiMrsc3V4uIhARc7WFiIiIyKyyFXSWLVuGChUqwM7ODnZ2dggKCsLy5cvN3TYiIiKiHMnyqasZM2Zg1KhR6NOnD2rVqgURwe+//44ePXrg7t27GDhwYG60k4iIiCjLshx0vvnmG8ybNw+dOnVSylq0aIFy5cph9OjRDDpERET0ysjyqavbt2+jZs2aRuU1a9bE7du3zdIoIiIiInPIctApWbIk1qxZY1S+evVqlCpVyiyNIiIiIjKHLJ+6GjNmDNq1a4d9+/ahVq1a0Gg0OHDgAHbt2pVhAHpVzZkzB3PmzEFaWlp+N4WIiIhySZaP6HzwwQc4fPgwChQogA0bNmDdunUoUKAADh8+jFatWuVGG3NF7969cf78eRw5ciS/m0JERES5JEtHdFJSUvDpp59i1KhR+PHHH3OrTURERERmwbeXExERkWrx7eVERESkWnx7OREREakW315OREREqpWloCMi2LNnDzw9PWFvb59bbSIiIiIyiyxdoyMiCAgIwM2bN3OrPURERERmk6WgY2FhgVKlSuHevXu51R4iIiIis8nyXVdTpkzBF198gbNnz+ZGe4iIiIjMJssXI3/00Ud4/PgxKlasCBsbG9jZ2RmM//fff83WOCIiIqKcyHLQmTlzZi40g4iIiMj8shx0wsPDc6MdRERERGZn8jU6a9asQXJysjIcGxtr8Obvx48fY8qUKeZtHREREVEOmBx0PvzwQ9y/f18ZDgoKwvXr15Xhhw8fYtiwYWZtHBEREVFOmBx0ROSFw0RERESvmizfXk5ERET0umDQISIiItXK0l1X27dvh4uLCwBAp9Nh165dyoMDn79+h4iIiOhVkKWgk/7W8s8++8xgWKPR5LxFRERERGZictDR6XS52Q4iIiIis+M1OkRERKRaDDpERESkWgw6REREpFoMOkRERKRaDDpERESkWtkKOvfv38fChQsxbNgw/PvvvwCA48eP4+bNm2ZtHBEREVFOZOk5OgBw+vRp1K9fHy4uLoiNjUX37t3h7u6O9evX4/r161i2bFlutJOIiIgoy7J8RGfQoEHo3LkzLl26BK1Wq5Q3btwY+/btM2vjiIiIiHIiy0HnyJEjRk9EBoAiRYogPj7eLI0iIiIiMocsBx2tVouEhASj8osXL6JgwYJmaRQRERGROWQ56LRo0QJjx45FSkoKgGfvt4qLi8OXX36JDz74wOwNJCIiIsquLAedadOm4Z9//oGnpyeePHmC0NBQlCxZEk5OTpgwYUJutJGIiIgoW7J815WzszMOHDiA3bt34/jx49DpdKhcuTLq16+fG+0jIiIiyrYsB53Y2Fj4+fmhbt26qFu3bm60iYiIiMgssnzqqnjx4nj77bfx3XffKQ8LJCIiInoVZTnoHD16FDVq1MD48ePh7e2NFi1a4Oeff8bTp09zo31ERERE2ZbloFO5cmVMnToVcXFx2Lp1Kzw9PfHZZ5/B09MTXbt2zY02EhEREWVLtl/qqdFoEBYWhu+//x47d+5E8eLFsXTpUnO2jYiIiChHsh10bty4gSlTpiA4OBhVq1aFg4MDvv32W3O2jYiIiChHsnzX1YIFC7BixQr8/vvvKF26NDp27IgNGzbAz88vF5pHRERElH1ZDjrjxo1D+/btMWvWLAQHB+dCk/LGnDlzMGfOHKSlpeV3U4iIiCiXZDnoxMXFQaPR5EZb8lTv3r3Ru3dvJCQkwMXFJb+bQ0RERLnApKBz+vRplC9fHhYWFjhz5swL6wYFBZmlYUREREQ5ZVLQCQ4ORnx8PDw9PREcHAyNRgMRUcbrhzUaDU8FERER0SvDpKBz7do1FCxYUPk3ERER0evApKDj6+ur/Pv69euoWbMmrKwMJ01NTcXBgwcN6hIRERHlpyw/RycsLCzDd1w9ePAAYWFhZmkUERERkTlkOejor8VJ7969e3BwcDBLo4iIiIjMweTby99//30Azy487ty5M2xtbZVxaWlpOH36NGrWrGn+FhIRERFlk8lBR/+sGRGBk5MT7OzslHE2NjaoXr06unfvbv4WEhEREWWTyUFn8eLFAAA/Pz98/vnnPE1FREREr7wsPxk5IiIiN9pBREREZHZZDjoAsHbtWqxZswZxcXFITk42GHf8+HGzNIyIiIgop7J819Xs2bPRpUsXeHp64sSJE3jrrbfg4eGBq1evonHjxrnRRiIiIqJsyXLQmTt3LhYsWIBvv/0WNjY2GDJkCKKiotCvXz88ePAgN9pIRERElC1ZDjpxcXHKbeR2dnZ4+PAhAODjjz/GypUrzds6IiIiohzIctDx8vLCvXv3ADx7NcShQ4cAPHsH1vMv+iQiIiLKb1kOOnXr1sXGjRsBAJ988gkGDhyIBg0aoF27dmjVqpXZG0hERESUXVm+62rBggXQ6XQAgB49esDd3R0HDhxA8+bN0aNHD7M3kIiIiCi7shx0LCwsYGHxfweC2rZti7Zt25q1UURERETmYFLQOX36tMkzDAoKynZjiIiIiMzJpKATHBwMjUbz0ouNNRoN0tLSzNIwIiIiopwyKehcu3Ytt9tBREREZHYmBR1fX9/cbgcRERGR2WX59nIAWL58OWrVqgVvb29cv34dADBz5kz8+uuvZm0cERERUU5kOejMmzcPgwYNQpMmTXD//n3lmhxXV1fMnDnT3O0jIiIiyrYsB51vvvkG33//PUaMGAFLS0ulvEqVKjhz5oxZG0dERESUE1kOOteuXUOlSpWMym1tbfHo0SOzNIqIiIjIHLIcdPz9/XHy5Emj8q1btyIwMNAcbSIiIiIyiyw/GfmLL75A7969kZSUBBHB4cOHsXLlSkRGRmLhwoW50UYiIiKibMly0OnSpQtSU1MxZMgQPH78GB06dECRIkUwa9YstG/fPjfaSERERJQtWQ46ANC9e3d0794dd+/ehU6ng6enJwDg5s2bKFKkiFkbSERERJRd2XqOjl6BAgXg6emJ+Ph49O3bFyVLljRXu4iIiIhyzOSgc//+fXTs2BEFCxaEt7c3Zs+eDZ1Oh6+++grFixfHoUOHsGjRotxsKxEREVGWmHzqavjw4di3bx/Cw8Oxbds2DBw4ENu2bUNSUhK2bt2K0NDQ3GwnERERUZaZHHQ2b96MxYsXo379+ujVqxdKliyJgIAAPg2ZiIiIXlkmn7q6deuW8pyc4sWLQ6vVolu3brnWMCIiIqKcMjno6HQ6WFtbK8OWlpZwcHDIlUYRERERmYPJp65EBJ07d4atrS0AICkpCT169DAKO+vWrTNvC4mIiIiyyeSgEx4ebjD80Ucfmb0xREREROZkctBZvHhxbraDiIiIyOxy9MBAIiIiolcZgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqRaDDhEREakWgw4RERGpFoMOERERqdYbG3TmzJmDwMBAVK1aNb+bQkRERLnkjQ06vXv3xvnz53HkyJH8bgoRERHlkjc26BAREZH6MegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWqpIuhs2rQJpUuXRqlSpbBw4cL8bg4RERG9IqzyuwE5lZqaikGDBmHPnj1wdnZG5cqV8f7778Pd3T2/m0ZERET57LU/onP48GGUK1cORYoUgZOTE5o0aYLt27fnd7OIiIjoFZDvQWffvn1o3rw5vL29odFosGHDBqM6c+fOhb+/P7RaLUJCQrB//35l3K1bt1CkSBFluGjRorh582ZeNJ2IiIhecfkedB49eoSKFSvi22+/zXD86tWrMWDAAIwYMQInTpzAO++8g8aNGyMuLg4AICJG02g0mlxtMxEREb0e8v0ancaNG6Nx48aZjp8xYwY++eQTdOvWDQAwc+ZMbN++HfPmzUNkZCSKFClicATnr7/+QrVq1TKd39OnT/H06VNlOCEhAQCQkpKClJSUnK6OQj8vc86TjLGf8w77Om+wn/MO+zpv5FY/mzo/jWR0SCSfaDQarF+/Hi1btgQAJCcnw97eHj///DNatWql1Ovfvz9OnjyJvXv3IjU1FWXLlkV0dLRyMfKhQ4fg4eGR4TJGjx6NMWPGGJX/9NNPsLe3z5X1IiIiIvN6/PgxOnTogAcPHsDZ2TnTevl+ROdF7t69i7S0NBQqVMigvFChQoiPjwcAWFlZYfr06QgLC4NOp8OQIUMyDTkAMGzYMAwaNEgZTkhIgI+PDxo2bPjCjsqqlJQUREVFoUGDBrC2tjbbfMkQ+znvsK/zBvs577Cv80Zu9bP+jMzLvNJBRy/9NTciYlD23nvv4b333jNpXra2trC1tTUqt7a2zpUvem7Nlwyxn/MO+zpvsJ/zDvs6b5i7n02dV75fjPwiBQoUgKWlpXL0Ru/OnTtGR3mIiIiI0nulg46NjQ1CQkIQFRVlUB4VFYWaNWvmU6uIiIjodZHvp64SExNx+fJlZfjatWs4efIk3N3dUaxYMQwaNAgff/wxqlSpgho1amDBggWIi4tDjx498rHVRERE9DrI96Bz9OhRhIWFKcP6C4XDw8OxZMkStGvXDvfu3cPYsWNx+/ZtlC9fHlu2bIGvr29+NZmIiIheE/kedOrUqZPhQ/+e16tXL/Tq1SuPWkRERERq8Upfo0NERESUEww6REREpFoMOkRERKRaDDpERESkWgw6REREpFoMOkRERKRaDDpERESkWm9s0JkzZw4CAwNRtWrV/G4KERER5ZJ8f2Bgfunduzd69+6NBw8ewNXV1eTXvZsqJSUFjx8/RkJCAt+Km4vYz3mHfZ032M95h32dN3Krn/X77Zc9dPiNDTp6Dx8+BAD4+Pjkc0uIiIgoqx4+fAgXF5dMx2vkZVFI5XQ6HW7dugUnJydoNBqzzTchIQE+Pj64ceMGnJ2dzTZfMsR+zjvs67zBfs477Ou8kVv9LCJ4+PAhvL29YWGR+ZU4b/wRHQsLCxQtWjTX5u/s7MwfUB5gP+cd9nXeYD/nHfZ13siNfn7RkRy9N/ZiZCIiIlI/Bh0iIiJSLQadXGJra4uIiAjY2trmd1NUjf2cd9jXeYP9nHfY13kjv/v5jb8YmYiIiNSLR3SIiIhItRh0iIiISLUYdIiIiEi1GHSIiIhItRh0csncuXPh7+8PrVaLkJAQ7N+/P7+b9FrZt28fmjdvDm9vb2g0GmzYsMFgvIhg9OjR8Pb2hp2dHerUqYNz584Z1Hn69Cn69u2LAgUKwMHBAe+99x7++uuvPFyLV19kZCSqVq0KJycneHp6omXLlrh48aJBHfZ1zs2bNw9BQUHKA9Nq1KiBrVu3KuPZx7kjMjISGo0GAwYMUMrY1+YxevRoaDQag4+Xl5cy/pXqZyGzW7VqlVhbW8v3338v58+fl/79+4uDg4Ncv349v5v22tiyZYuMGDFCfvnlFwEg69evNxg/adIkcXJykl9++UXOnDkj7dq1k8KFC0tCQoJSp0ePHlKkSBGJioqS48ePS1hYmFSsWFFSU1PzeG1eXY0aNZLFixfL2bNn5eTJk9K0aVMpVqyYJCYmKnXY1zn322+/yebNm+XixYty8eJFGT58uFhbW8vZs2dFhH2cGw4fPix+fn4SFBQk/fv3V8rZ1+YREREh5cqVk9u3byufO3fuKONfpX5m0MkFb731lvTo0cOgrEyZMvLll1/mU4teb+mDjk6nEy8vL5k0aZJSlpSUJC4uLjJ//nwREbl//75YW1vLqlWrlDo3b94UCwsL2bZtW561/XVz584dASB79+4VEfZ1bnJzc5OFCxeyj3PBw4cPpVSpUhIVFSWhoaFK0GFfm09ERIRUrFgxw3GvWj/z1JWZJScn49ixY2jYsKFBecOGDXHw4MF8apW6XLt2DfHx8QZ9bGtri9DQUKWPjx07hpSUFIM63t7eKF++PLfDCzx48AAA4O7uDoB9nRvS0tKwatUqPHr0CDVq1GAf54LevXujadOmqF+/vkE5+9q8Ll26BG9vb/j7+6N9+/a4evUqgFevn9/4l3qa2927d5GWloZChQoZlBcqVAjx8fH51Cp10fdjRn18/fp1pY6NjQ3c3NyM6nA7ZExEMGjQILz99tsoX748APa1OZ05cwY1atRAUlISHB0dsX79egQGBip/1NnH5rFq1SocP34cR44cMRrH77P5VKtWDcuWLUNAQAD+/vtvjB8/HjVr1sS5c+deuX5m0MklGo3GYFhEjMooZ7LTx9wOmevTpw9Onz6NAwcOGI1jX+dc6dKlcfLkSdy/fx+//PILwsPDsXfvXmU8+zjnbty4gf79+2PHjh3QarWZ1mNf51zjxo2Vf1eoUAE1atRAiRIlsHTpUlSvXh3Aq9PPPHVlZgUKFIClpaVRIr1z545RuqXs0V/Z/6I+9vLyQnJyMv77779M69D/6du3L3777Tfs2bMHRYsWVcrZ1+ZjY2ODkiVLokqVKoiMjETFihUxa9Ys9rEZHTt2DHfu3EFISAisrKxgZWWFvXv3Yvbs2bCyslL6in1tfg4ODqhQoQIuXbr0yn2nGXTMzMbGBiEhIYiKijIoj4qKQs2aNfOpVeri7+8PLy8vgz5OTk7G3r17lT4OCQmBtbW1QZ3bt2/j7Nmz3A7PERH06dMH69atw+7du+Hv728wnn2de0QET58+ZR+bUb169XDmzBmcPHlS+VSpUgUdO3bEyZMnUbx4cfZ1Lnn69CkuXLiAwoULv3rfabNe2kwi8n+3l//www9y/vx5GTBggDg4OEhsbGx+N+218fDhQzlx4oScOHFCAMiMGTPkxIkTyi36kyZNEhcXF1m3bp2cOXNGPvzwwwxvXSxatKjs3LlTjh8/LnXr1uUtoun07NlTXFxcJDo62uA20cePHyt12Nc5N2zYMNm3b59cu3ZNTp8+LcOHDxcLCwvZsWOHiLCPc9Pzd12JsK/NZfDgwRIdHS1Xr16VQ4cOSbNmzcTJyUnZz71K/cygk0vmzJkjvr6+YmNjI5UrV1Zu1yXT7NmzRwAYfcLDw0Xk2e2LERER4uXlJba2tlK7dm05c+aMwTyePHkiffr0EXd3d7Gzs5NmzZpJXFxcPqzNqyujPgYgixcvVuqwr3Oua9euyt+DggULSr169ZSQI8I+zk3pgw772jz0z8WxtrYWb29vef/99+XcuXPK+FepnzUiIuY9RkRERET0auA1OkRERKRaDDpERESkWgw6REREpFoMOkRERKRaDDpERESkWgw6REREpFoMOkRERKRaDDpERESkWgw6RPTK8PPzw8yZM/O7GbmuTp06GDBgQH43g+iNwKBD9Abq3LkzWrZsqQzn9Y53yZIlcHV1NSo/cuQIPv3001xddnR0NDQaDcqXL4+0tDSDca6urliyZEmuLp+I8haDDhGZTXJyco6mL1iwIOzt7c3Umhe7cuUKli1blifLygtpaWnQ6XT53QyiVw6DDtEbrnPnzti7dy9mzZoFjUYDjUaD2NhYAMD58+fRpEkTODo6olChQvj4449x9+5dZdo6deqgT58+GDRoEAoUKIAGDRoAAGbMmIEKFSrAwcEBPj4+6NWrFxITEwE8O6LSpUsXPHjwQFne6NGjARifuoqLi0OLFi3g6OgIZ2dntG3bFn///bcyfvTo0QgODsby5cvh5+cHFxcXtG/fHg8fPnzpevft2xcRERFISkrKcHxsbCw0Gg1OnjyplN2/fx8ajQbR0dHKumg0Gmzfvh2VKlWCnZ0d6tatizt37mDr1q0oW7YsnJ2d8eGHH+Lx48cG809NTUWfPn3g6uoKDw8PjBw5Es+/ejA5ORlDhgxBkSJF4ODggGrVqinLBf7vqNimTZsQGBgIW1tbXL9+/aXrTfSmYdAhesPNmjULNWrUQPfu3XH79m3cvn0bPj4+uH37NkJDQxEcHIyjR49i27Zt+Pvvv9G2bVuD6ZcuXQorKyv8/vvv+O677wAAFhYWmD17Ns6ePYulS5di9+7dGDJkCACgZs2amDlzJpydnZXlff7550btEhG0bNkS//77L/bu3YuoqChcuXIF7dq1M6h35coVbNiwAZs2bcKmTZuwd+9eTJo06aXrPWDAAKSmpuLbb7/NbtcpRo8ejW+//RYHDx7EjRs30LZtW8ycORM//fQTNm/ejKioKHzzzTcG0+j77Y8//sDs2bPx9ddfY+HChcr4Ll264Pfff8eqVatw+vRptGnTBu+++y4uXbqk1Hn8+DEiIyOxcOFCnDt3Dp6enjleFyLVMfv70InolRceHi4tWrRQhkNDQ6V///4GdUaNGiUNGzY0KLtx44YAkIsXLyrTBQcHv3R5a9asEQ8PD2V48eLF4uLiYlTP19dXvv76axER2bFjh1haWkpcXJwy/ty5cwJADh8+LCIiERERYm9vLwkJCUqdL774QqpVq5ZpW/bs2SMA5L///pP58+eLu7u73L9/X0REXFxcZPHixSIicu3aNQEgJ06cUKb977//BIDs2bPHYF47d+5U6kRGRgoAuXLlilL22WefSaNGjZTh0NBQKVu2rOh0OqVs6NChUrZsWRERuXz5smg0Grl586ZB2+vVqyfDhg1T+hCAnDx5MtN1JSIRHtEhogwdO3YMe/bsgaOjo/IpU6YMgGdHUfSqVKliNO2ePXvQoEEDFClSBE5OTujUqRPu3buHR48embz8CxcuwMfHBz4+PkpZYGAgXF1dceHCBaXMz88PTk5OynDhwoVx584dk5bxySefoECBApg8ebLJ7cpIUFCQ8u9ChQrB3t4exYsXNyhL36bq1atDo9EowzVq1MClS5eQlpaG48ePQ0QQEBBg0P979+416HsbGxuDZRORMav8bgARvZp0Oh2aN2+eYQgoXLiw8m8HBweDcdevX0eTJk3Qo0cPjBs3Du7u7jhw4AA++eQTpKSkmLx8ETEIApmVW1tbG4zXaDQmX5RrZWWF8ePHo3PnzujTp4/BOAsLC2V5epm1//k2aDSaHLUJeNb3lpaWOHbsGCwtLQ3GOTo6Kv+2s7PLsI+I6P8w6BARbGxsjG61rly5Mn755Rf4+fnBysr0PxVHjx5Famoqpk+froSFNWvWvHR56QUGBiIuLg43btxQjuqcP38eDx48QNmyZU1uz8u0adMGU6dOxZgxYwzKCxYsCAC4ffs2KlWqBAAGFybn1KFDh4yGS5UqBUtLS1SqVAlpaWm4c+cO3nnnHbMtk+hNxFNXRAQ/Pz/88ccfiI2Nxd27d6HT6dC7d2/8+++/+PDDD3H48GFcvXoVO3bsQNeuXV8YUkqUKIHU1FR88803uHr1KpYvX4758+cbLS8xMRG7du3C3bt3je5IAoD69esjKCgIHTt2xPHjx3H48GF06tQJoaGhGZ4uy4lJkyZh0aJFBqfW7OzsUL16dUyaNAnnz5/Hvn37MHLkSLMt88aNGxg0aBAuXryIlStX4ptvvkH//v0BAAEBAejYsSM6deqEdevW4dq1azhy5AgmT56MLVu2mK0NRG8CBh0iwueffw5LS0sEBgaiYMGCiIuLg7e3N37//XekpaWhUaNGKF++PPr37w8XFxflSE1GgoODMWPGDEyePBnly5fHihUrEBkZaVCnZs2a6NGjB9q1a4eCBQtiypQpRvPRaDTYsGED3NzcULt2bdSvXx/FixfH6tWrzb7+devWRd26dZGammpQvmjRIqSkpKBKlSro378/xo8fb7ZldurUCU+ePMFbb72F3r17o2/fvgYPS1y8eDE6deqEwYMHo3Tp0njvvffwxx9/GFyzREQvp5HnT0ATERERqQiP6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRajHoEBERkWox6BAREZFqMegQERGRav0/WL5JVGm0OFoAAAAASUVORK5CYII=",
-      "text/plain": [
-       "<Figure size 640x480 with 1 Axes>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "\n",
     "# plt.style.use(\"ggplot\")\n",
@@ -564,10 +1892,10 @@
     "tikzplotlib_fix_ncols(fig)\n",
     "plt.title(\"Coded Diffaction Pattern Combined with \\n Reshaped Wirtinger Flow on the Sat Phone Image\")\n",
     "plt.grid(True)\n",
-    "plt.show()\n",
-    "# import tikzplotlib\n",
-    "# tikzplotlib.save(\"./rwf_reconstructed/rwf_error_\"+str(file_name)+\"_\"+str(T_max)+\"_\"+str(file_name)+\".tex\")\n",
-    "# plt.close()\n",
+    "# plt.show()\n",
+    "import tikzplotlib\n",
+    "tikzplotlib.save(\"./rwf_reconstructed/rwf_error_\"+str(file_name)+\"_\"+str(T_max)+\"_\"+str(file_name)+\".tex\")\n",
+    "plt.close()\n",
     "\n",
     "\n",
     "\n"
diff --git a/natural_images/natural_sat_phone_twf.ipynb b/natural_images/natural_sat_phone_twf.ipynb
index af4c88c1726ae4718664e1e5a1089cd5d3f5d1b2..d2af014f7f8e97cb3c8565cc31793663ef46fee0 100644
--- a/natural_images/natural_sat_phone_twf.ipynb
+++ b/natural_images/natural_sat_phone_twf.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 77,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -35,7 +35,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 78,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -51,7 +51,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 79,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -107,7 +107,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 80,
    "metadata": {},
    "outputs": [
     {
@@ -140,13 +140,13 @@
     "show_image(X)\n",
     "n1, n2 = X.shape[:2]\n",
     "n_chan = X.shape[2]\n",
-    "# L = 21\n",
-    "L = 2\n",
+    "L = 21\n",
+    "# L = 2\n",
     "m = n1*n2*L\n",
-    "# T_max = 500\n",
-    "T_max = 5\n",
-    "# npower_iter = 50                      \n",
-    "npower_iter = 5\n",
+    "T_max = 500\n",
+    "# T_max = 5\n",
+    "npower_iter = 50                      \n",
+    "# npower_iter = 5\n",
     "tau0 = 330    \n",
     "alpha_lb = 0.3\n",
     "alpha_ub = 5\n",
@@ -172,7 +172,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 81,
    "metadata": {},
    "outputs": [
     {
@@ -190,7 +190,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 82,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -219,7 +219,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 83,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -246,7 +246,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 84,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -260,19 +260,19 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 85,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "tensor(428.4847, device='cuda:0', dtype=torch.float64)\n",
-      "tensor(420.8617, device='cuda:0', dtype=torch.float64)\n",
-      "tensor(427.5781, device='cuda:0', dtype=torch.float64)\n",
-      "tensor(1.4102, device='cuda:0', dtype=torch.float64)\n",
-      "tensor(1.4121, device='cuda:0', dtype=torch.float64)\n",
-      "tensor(1.4110, device='cuda:0', dtype=torch.float64)\n"
+      "tensor(428.3096, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(420.7117, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(427.4226, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(0.9130, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(0.6938, device='cuda:0', dtype=torch.float64)\n",
+      "tensor(0.7306, device='cuda:0', dtype=torch.float64)\n"
      ]
     }
    ],
@@ -315,18 +315,1519 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 86,
    "metadata": {},
    "outputs": [
     {
-     "ename": "TypeError",
-     "evalue": "unsupported operand type(s) for *: 'function' and 'Tensor'",
-     "output_type": "error",
-     "traceback": [
-      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
-      "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
-      "Cell \u001b[0;32mIn[21], line 22\u001b[0m\n\u001b[1;32m     20\u001b[0m     C_r \u001b[39m=\u001b[39m \u001b[39m2\u001b[39m \u001b[39m*\u001b[39m torch\u001b[39m.\u001b[39mdivide(diff_Bz_Y_r, torch\u001b[39m.\u001b[39mconj_physical(Bz_r))  \u001b[39m*\u001b[39m  E_r\n\u001b[1;32m     21\u001b[0m     grad \u001b[39m=\u001b[39m At(C_r) \u001b[39m/\u001b[39m torch\u001b[39m.\u001b[39mnumel(C_r)\n\u001b[0;32m---> 22\u001b[0m     z_r \u001b[39m=\u001b[39m z_r \u001b[39m-\u001b[39m mu \u001b[39m*\u001b[39;49m grad\n\u001b[1;32m     23\u001b[0m \u001b[39m###### green channel update ######\u001b[39;00m\n\u001b[1;32m     24\u001b[0m \u001b[39m################################\u001b[39;00m\n\u001b[1;32m     25\u001b[0m \u001b[39m#     X_recons[:,:,1] = distance_update(x_g,z_g)\u001b[39;00m\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m     42\u001b[0m \u001b[39m##### saving the image at the iteration #####\u001b[39;00m\n\u001b[1;32m     43\u001b[0m \u001b[39m#############################################\u001b[39;00m\n\u001b[1;32m     44\u001b[0m     save_image(X_recons,t,file_name)\n",
-      "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for *: 'function' and 'Tensor'"
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "iteration: 0 error in the red channel: tensor(0.9130, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 0 error in the green channel: tensor(0.6938, device='cuda:0', dtype=torch.float64)\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "iteration: 0 error in the blue channel: tensor(0.7306, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the red channel: tensor(0.6978, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the green channel: tensor(0.4933, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 1 error in the blue channel: tensor(0.5265, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the red channel: tensor(0.6221, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the green channel: tensor(0.3730, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 2 error in the blue channel: tensor(0.4067, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the red channel: tensor(0.5282, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the green channel: tensor(0.2762, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 3 error in the blue channel: tensor(0.3040, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the red channel: tensor(0.4303, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the green channel: tensor(0.2041, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 4 error in the blue channel: tensor(0.2252, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the red channel: tensor(0.3359, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the green channel: tensor(0.1521, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 5 error in the blue channel: tensor(0.1676, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the red channel: tensor(0.2558, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the green channel: tensor(0.1147, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 6 error in the blue channel: tensor(0.1260, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the red channel: tensor(0.1933, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the green channel: tensor(0.0875, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 7 error in the blue channel: tensor(0.0958, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the red channel: tensor(0.1463, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the green channel: tensor(0.0674, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 8 error in the blue channel: tensor(0.0736, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the red channel: tensor(0.1114, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the green channel: tensor(0.0525, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 9 error in the blue channel: tensor(0.0571, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the red channel: tensor(0.0855, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the green channel: tensor(0.0412, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 10 error in the blue channel: tensor(0.0447, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the red channel: tensor(0.0662, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the green channel: tensor(0.0325, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 11 error in the blue channel: tensor(0.0352, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the red channel: tensor(0.0516, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the green channel: tensor(0.0259, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 12 error in the blue channel: tensor(0.0280, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the red channel: tensor(0.0406, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the green channel: tensor(0.0207, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 13 error in the blue channel: tensor(0.0223, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the red channel: tensor(0.0321, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the green channel: tensor(0.0166, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 14 error in the blue channel: tensor(0.0179, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the red channel: tensor(0.0255, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the green channel: tensor(0.0134, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 15 error in the blue channel: tensor(0.0144, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the red channel: tensor(0.0204, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the green channel: tensor(0.0108, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 16 error in the blue channel: tensor(0.0116, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the red channel: tensor(0.0164, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the green channel: tensor(0.0088, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 17 error in the blue channel: tensor(0.0094, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the red channel: tensor(0.0132, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the green channel: tensor(0.0072, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 18 error in the blue channel: tensor(0.0077, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the red channel: tensor(0.0107, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the green channel: tensor(0.0059, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 19 error in the blue channel: tensor(0.0063, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the red channel: tensor(0.0086, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the green channel: tensor(0.0048, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 20 error in the blue channel: tensor(0.0051, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the red channel: tensor(0.0070, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the green channel: tensor(0.0039, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 21 error in the blue channel: tensor(0.0042, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the red channel: tensor(0.0057, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the green channel: tensor(0.0032, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 22 error in the blue channel: tensor(0.0035, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the red channel: tensor(0.0047, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the green channel: tensor(0.0027, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 23 error in the blue channel: tensor(0.0028, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the red channel: tensor(0.0038, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the green channel: tensor(0.0022, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 24 error in the blue channel: tensor(0.0023, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the red channel: tensor(0.0032, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the green channel: tensor(0.0018, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 25 error in the blue channel: tensor(0.0019, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the red channel: tensor(0.0026, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the green channel: tensor(0.0015, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 26 error in the blue channel: tensor(0.0016, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the red channel: tensor(0.0021, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the green channel: tensor(0.0012, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 27 error in the blue channel: tensor(0.0013, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the red channel: tensor(0.0018, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the green channel: tensor(0.0010, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 28 error in the blue channel: tensor(0.0011, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the red channel: tensor(0.0015, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the green channel: tensor(0.0009, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 29 error in the blue channel: tensor(0.0009, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the red channel: tensor(0.0012, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the green channel: tensor(0.0007, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 30 error in the blue channel: tensor(0.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the red channel: tensor(0.0010, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the green channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 31 error in the blue channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the red channel: tensor(0.0008, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the green channel: tensor(0.0005, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 32 error in the blue channel: tensor(0.0005, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the red channel: tensor(0.0007, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the green channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 33 error in the blue channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the red channel: tensor(0.0006, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the green channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 34 error in the blue channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the red channel: tensor(0.0005, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the green channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 35 error in the blue channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the red channel: tensor(0.0004, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the green channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 36 error in the blue channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the red channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the green channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 37 error in the blue channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the red channel: tensor(0.0003, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the green channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 38 error in the blue channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the red channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the green channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 39 error in the blue channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the red channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the green channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 40 error in the blue channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the red channel: tensor(0.0002, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the green channel: tensor(9.9826e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 41 error in the blue channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the red channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the green channel: tensor(8.3774e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 42 error in the blue channel: tensor(8.8515e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the red channel: tensor(0.0001, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the green channel: tensor(7.0338e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 43 error in the blue channel: tensor(7.4299e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the red channel: tensor(9.5798e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the green channel: tensor(5.9083e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 44 error in the blue channel: tensor(6.2395e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the red channel: tensor(8.0346e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the green channel: tensor(4.9650e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 45 error in the blue channel: tensor(5.2422e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the red channel: tensor(6.7422e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the green channel: tensor(4.1741e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 46 error in the blue channel: tensor(4.4061e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the red channel: tensor(5.6603e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the green channel: tensor(3.5104e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 47 error in the blue channel: tensor(3.7048e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the red channel: tensor(4.7542e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the green channel: tensor(2.9534e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 48 error in the blue channel: tensor(3.1163e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the red channel: tensor(3.9949e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the green channel: tensor(2.4856e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 49 error in the blue channel: tensor(2.6222e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the red channel: tensor(3.3582e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the green channel: tensor(2.0926e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 50 error in the blue channel: tensor(2.2072e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the red channel: tensor(2.8241e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the green channel: tensor(1.7622e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 51 error in the blue channel: tensor(1.8585e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the red channel: tensor(2.3758e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the green channel: tensor(1.4845e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 52 error in the blue channel: tensor(1.5653e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the red channel: tensor(1.9994e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the green channel: tensor(1.2509e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 53 error in the blue channel: tensor(1.3188e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the red channel: tensor(1.6831e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the green channel: tensor(1.0543e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 54 error in the blue channel: tensor(1.1114e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the red channel: tensor(1.4174e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the green channel: tensor(8.8884e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 55 error in the blue channel: tensor(9.3683e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the red channel: tensor(1.1939e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the green channel: tensor(7.4953e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 56 error in the blue channel: tensor(7.8989e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the red channel: tensor(1.0060e-05, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the green channel: tensor(6.3219e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 57 error in the blue channel: tensor(6.6616e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the red channel: tensor(8.4785e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the green channel: tensor(5.3334e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 58 error in the blue channel: tensor(5.6193e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the red channel: tensor(7.1477e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the green channel: tensor(4.5004e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 59 error in the blue channel: tensor(4.7412e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the red channel: tensor(6.0272e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the green channel: tensor(3.7982e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 60 error in the blue channel: tensor(4.0010e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the red channel: tensor(5.0835e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the green channel: tensor(3.2062e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 61 error in the blue channel: tensor(3.3771e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the red channel: tensor(4.2886e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the green channel: tensor(2.7070e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 62 error in the blue channel: tensor(2.8510e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the red channel: tensor(3.6187e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the green channel: tensor(2.2859e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 63 error in the blue channel: tensor(2.4072e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the red channel: tensor(3.0540e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the green channel: tensor(1.9306e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 64 error in the blue channel: tensor(2.0329e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the red channel: tensor(2.5780e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the green channel: tensor(1.6308e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 65 error in the blue channel: tensor(1.7170e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the red channel: tensor(2.1765e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the green channel: tensor(1.3777e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 66 error in the blue channel: tensor(1.4505e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the red channel: tensor(1.8379e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the green channel: tensor(1.1641e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 67 error in the blue channel: tensor(1.2255e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the red channel: tensor(1.5523e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the green channel: tensor(9.8377e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 68 error in the blue channel: tensor(1.0355e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the red channel: tensor(1.3112e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the green channel: tensor(8.3146e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 69 error in the blue channel: tensor(8.7516e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the red channel: tensor(1.1078e-06, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the green channel: tensor(7.0282e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 70 error in the blue channel: tensor(7.3970e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the red channel: tensor(9.3603e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the green channel: tensor(5.9415e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 71 error in the blue channel: tensor(6.2529e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the red channel: tensor(7.9102e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the green channel: tensor(5.0234e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 72 error in the blue channel: tensor(5.2864e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the red channel: tensor(6.6857e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the green channel: tensor(4.2477e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 73 error in the blue channel: tensor(4.4698e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the red channel: tensor(5.6515e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the green channel: tensor(3.5921e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 74 error in the blue channel: tensor(3.7798e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the red channel: tensor(4.7778e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the green channel: tensor(3.0380e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 75 error in the blue channel: tensor(3.1966e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the red channel: tensor(4.0397e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the green channel: tensor(2.5697e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 76 error in the blue channel: tensor(2.7037e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the red channel: tensor(3.4160e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the green channel: tensor(2.1737e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 77 error in the blue channel: tensor(2.2870e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the red channel: tensor(2.8889e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the green channel: tensor(1.8390e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 78 error in the blue channel: tensor(1.9347e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the red channel: tensor(2.4434e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the green channel: tensor(1.5559e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 79 error in the blue channel: tensor(1.6368e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the red channel: tensor(2.0668e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the green channel: tensor(1.3165e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 80 error in the blue channel: tensor(1.3849e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the red channel: tensor(1.7485e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the green channel: tensor(1.1140e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 81 error in the blue channel: tensor(1.1719e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the red channel: tensor(1.4793e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the green channel: tensor(9.4276e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 82 error in the blue channel: tensor(9.9171e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the red channel: tensor(1.2516e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the green channel: tensor(7.9789e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 83 error in the blue channel: tensor(8.3930e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the red channel: tensor(1.0591e-07, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the green channel: tensor(6.7534e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 84 error in the blue channel: tensor(7.1036e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the red channel: tensor(8.9631e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the green channel: tensor(5.7165e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 85 error in the blue channel: tensor(6.0128e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the red channel: tensor(7.5858e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the green channel: tensor(4.8391e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 86 error in the blue channel: tensor(5.0898e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the red channel: tensor(6.4207e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the green channel: tensor(4.0967e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 87 error in the blue channel: tensor(4.3088e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the red channel: tensor(5.4350e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the green channel: tensor(3.4684e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 88 error in the blue channel: tensor(3.6479e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the red channel: tensor(4.6009e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the green channel: tensor(2.9367e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 89 error in the blue channel: tensor(3.0885e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the red channel: tensor(3.8951e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the green channel: tensor(2.4866e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 90 error in the blue channel: tensor(2.6151e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the red channel: tensor(3.2979e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the green channel: tensor(2.1056e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 91 error in the blue channel: tensor(2.2144e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the red channel: tensor(2.7924e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the green channel: tensor(1.7831e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 92 error in the blue channel: tensor(1.8752e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the red channel: tensor(2.3645e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the green channel: tensor(1.5101e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 93 error in the blue channel: tensor(1.5881e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the red channel: tensor(2.0023e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the green channel: tensor(1.2790e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 94 error in the blue channel: tensor(1.3450e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the red channel: tensor(1.6957e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the green channel: tensor(1.0833e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 95 error in the blue channel: tensor(1.1391e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the red channel: tensor(1.4362e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the green channel: tensor(9.1757e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 96 error in the blue channel: tensor(9.6488e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the red channel: tensor(1.2164e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the green channel: tensor(7.7725e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 97 error in the blue channel: tensor(8.1731e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the red channel: tensor(1.0303e-08, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the green channel: tensor(6.5842e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 98 error in the blue channel: tensor(6.9234e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the red channel: tensor(8.7278e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the green channel: tensor(5.5778e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 99 error in the blue channel: tensor(5.8652e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the red channel: tensor(7.3935e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the green channel: tensor(4.7255e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 100 error in the blue channel: tensor(4.9689e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the red channel: tensor(6.2636e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the green channel: tensor(4.0036e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 101 error in the blue channel: tensor(4.2098e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the red channel: tensor(5.3066e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the green channel: tensor(3.3921e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 102 error in the blue channel: tensor(3.5668e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the red channel: tensor(4.4960e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the green channel: tensor(2.8742e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 103 error in the blue channel: tensor(3.0222e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the red channel: tensor(3.8095e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the green channel: tensor(2.4354e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 104 error in the blue channel: tensor(2.5608e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the red channel: tensor(3.2279e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the green channel: tensor(2.0637e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 105 error in the blue channel: tensor(2.1700e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the red channel: tensor(2.7353e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the green channel: tensor(1.7489e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 106 error in the blue channel: tensor(1.8388e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the red channel: tensor(2.3179e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the green channel: tensor(1.4821e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 107 error in the blue channel: tensor(1.5583e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the red channel: tensor(1.9643e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the green channel: tensor(1.2561e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 108 error in the blue channel: tensor(1.3207e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the red channel: tensor(1.6648e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the green channel: tensor(1.0645e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 109 error in the blue channel: tensor(1.1193e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the red channel: tensor(1.4109e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the green channel: tensor(9.0226e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 110 error in the blue channel: tensor(9.4864e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the red channel: tensor(1.1958e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the green channel: tensor(7.6475e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 111 error in the blue channel: tensor(8.0405e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the red channel: tensor(1.0136e-09, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the green channel: tensor(6.4822e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 112 error in the blue channel: tensor(6.8152e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the red channel: tensor(8.5915e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the green channel: tensor(5.4947e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 113 error in the blue channel: tensor(5.7769e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the red channel: tensor(7.2827e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the green channel: tensor(4.6578e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 114 error in the blue channel: tensor(4.8969e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the red channel: tensor(6.1735e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the green channel: tensor(3.9485e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 115 error in the blue channel: tensor(4.1512e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the red channel: tensor(5.2335e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the green channel: tensor(3.3474e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 116 error in the blue channel: tensor(3.5191e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the red channel: tensor(4.4367e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the green channel: tensor(2.8378e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 117 error in the blue channel: tensor(2.9834e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the red channel: tensor(3.7614e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the green channel: tensor(2.4059e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 118 error in the blue channel: tensor(2.5293e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the red channel: tensor(3.1889e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the green channel: tensor(2.0398e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 119 error in the blue channel: tensor(2.1444e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the red channel: tensor(2.7037e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the green channel: tensor(1.7295e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 120 error in the blue channel: tensor(1.8181e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the red channel: tensor(2.2924e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the green channel: tensor(1.4664e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 121 error in the blue channel: tensor(1.5416e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the red channel: tensor(1.9438e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the green channel: tensor(1.2434e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 122 error in the blue channel: tensor(1.3071e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the red channel: tensor(1.6482e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the green channel: tensor(1.0543e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 123 error in the blue channel: tensor(1.1083e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the red channel: tensor(1.3976e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the green channel: tensor(8.9405e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 124 error in the blue channel: tensor(9.3983e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the red channel: tensor(1.1851e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the green channel: tensor(7.5815e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 125 error in the blue channel: tensor(7.9696e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the red channel: tensor(1.0050e-10, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the green channel: tensor(6.4292e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 126 error in the blue channel: tensor(6.7583e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the red channel: tensor(8.5228e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the green channel: tensor(5.4523e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 127 error in the blue channel: tensor(5.7313e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the red channel: tensor(7.2279e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the green channel: tensor(4.6239e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 128 error in the blue channel: tensor(4.8605e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the red channel: tensor(6.1299e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the green channel: tensor(3.9215e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 129 error in the blue channel: tensor(4.1221e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the red channel: tensor(5.1989e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the green channel: tensor(3.3259e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 130 error in the blue channel: tensor(3.4960e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the red channel: tensor(4.4094e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the green channel: tensor(2.8209e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 131 error in the blue channel: tensor(2.9651e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the red channel: tensor(3.7399e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the green channel: tensor(2.3926e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 132 error in the blue channel: tensor(2.5149e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the red channel: tensor(3.1722e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the green channel: tensor(2.0293e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 133 error in the blue channel: tensor(2.1331e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the red channel: tensor(2.6907e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the green channel: tensor(1.7213e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 134 error in the blue channel: tensor(1.8093e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the red channel: tensor(2.2823e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the green channel: tensor(1.4601e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 135 error in the blue channel: tensor(1.5347e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the red channel: tensor(1.9360e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the green channel: tensor(1.2385e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 136 error in the blue channel: tensor(1.3018e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the red channel: tensor(1.6423e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the green channel: tensor(1.0506e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 137 error in the blue channel: tensor(1.1043e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the red channel: tensor(1.3932e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the green channel: tensor(8.9125e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 138 error in the blue channel: tensor(9.3675e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the red channel: tensor(1.1819e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the green channel: tensor(7.5607e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 139 error in the blue channel: tensor(7.9466e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the red channel: tensor(1.0027e-11, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the green channel: tensor(6.4141e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 140 error in the blue channel: tensor(6.7413e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the red channel: tensor(8.5063e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the green channel: tensor(5.4415e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 141 error in the blue channel: tensor(5.7190e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the red channel: tensor(7.2167e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the green channel: tensor(4.6165e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 142 error in the blue channel: tensor(4.8519e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the red channel: tensor(6.1228e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the green channel: tensor(3.9167e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 143 error in the blue channel: tensor(4.1163e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the red channel: tensor(5.1948e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the green channel: tensor(3.3230e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 144 error in the blue channel: tensor(3.4924e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the red channel: tensor(4.4076e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the green channel: tensor(2.8194e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 145 error in the blue channel: tensor(2.9631e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the red channel: tensor(3.7397e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the green channel: tensor(2.3922e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 146 error in the blue channel: tensor(2.5140e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the red channel: tensor(3.1732e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the green channel: tensor(2.0298e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 147 error in the blue channel: tensor(2.1331e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the red channel: tensor(2.6925e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the green channel: tensor(1.7223e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 148 error in the blue channel: tensor(1.8099e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the red channel: tensor(2.2847e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the green channel: tensor(1.4614e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 149 error in the blue channel: tensor(1.5357e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the red channel: tensor(1.9387e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the green channel: tensor(1.2401e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 150 error in the blue channel: tensor(1.3031e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the red channel: tensor(1.6451e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the green channel: tensor(1.0523e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 151 error in the blue channel: tensor(1.1058e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the red channel: tensor(1.3960e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the green channel: tensor(8.9294e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 152 error in the blue channel: tensor(9.3832e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the red channel: tensor(1.1847e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the green channel: tensor(7.5775e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 153 error in the blue channel: tensor(7.9625e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the red channel: tensor(1.0054e-12, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the green channel: tensor(6.4305e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 154 error in the blue channel: tensor(6.7570e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the red channel: tensor(8.5323e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the green channel: tensor(5.4571e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 155 error in the blue channel: tensor(5.7342e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the red channel: tensor(7.2411e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the green channel: tensor(4.6312e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 156 error in the blue channel: tensor(4.8663e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the red channel: tensor(6.1455e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the green channel: tensor(3.9304e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 157 error in the blue channel: tensor(4.1298e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the red channel: tensor(5.2158e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the green channel: tensor(3.3357e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 158 error in the blue channel: tensor(3.5049e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the red channel: tensor(4.4268e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the green channel: tensor(2.8311e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 159 error in the blue channel: tensor(2.9746e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the red channel: tensor(3.7572e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the green channel: tensor(2.4028e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 160 error in the blue channel: tensor(2.5246e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the red channel: tensor(3.1890e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the green channel: tensor(2.0394e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 161 error in the blue channel: tensor(2.1427e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the red channel: tensor(2.7068e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the green channel: tensor(1.7309e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 162 error in the blue channel: tensor(1.8186e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the red channel: tensor(2.2975e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the green channel: tensor(1.4692e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 163 error in the blue channel: tensor(1.5435e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the red channel: tensor(1.9502e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the green channel: tensor(1.2470e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 164 error in the blue channel: tensor(1.3101e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the red channel: tensor(1.6554e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the green channel: tensor(1.0585e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 165 error in the blue channel: tensor(1.1121e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the red channel: tensor(1.4052e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the green channel: tensor(8.9850e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 166 error in the blue channel: tensor(9.4392e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the red channel: tensor(1.1929e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the green channel: tensor(7.6269e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 167 error in the blue channel: tensor(8.0123e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the red channel: tensor(1.0126e-13, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the green channel: tensor(6.4741e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 168 error in the blue channel: tensor(6.8013e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the red channel: tensor(8.5962e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the green channel: tensor(5.4958e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 169 error in the blue channel: tensor(5.7734e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the red channel: tensor(7.2976e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the green channel: tensor(4.6654e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 170 error in the blue channel: tensor(4.9010e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the red channel: tensor(6.1953e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the green channel: tensor(3.9605e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 171 error in the blue channel: tensor(4.1605e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the red channel: tensor(5.2596e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the green channel: tensor(3.3622e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 172 error in the blue channel: tensor(3.5319e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the red channel: tensor(4.4653e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the green channel: tensor(2.8544e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 173 error in the blue channel: tensor(2.9986e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the red channel: tensor(3.7910e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the green channel: tensor(2.4234e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 174 error in the blue channel: tensor(2.5457e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the red channel: tensor(3.2187e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the green channel: tensor(2.0575e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 175 error in the blue channel: tensor(2.1612e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the red channel: tensor(2.7328e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the green channel: tensor(1.7468e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 176 error in the blue channel: tensor(1.8350e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the red channel: tensor(2.3203e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the green channel: tensor(1.4832e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 177 error in the blue channel: tensor(1.5580e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the red channel: tensor(1.9702e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the green channel: tensor(1.2593e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 178 error in the blue channel: tensor(1.3229e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the red channel: tensor(1.6729e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the green channel: tensor(1.0693e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 179 error in the blue channel: tensor(1.1234e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the red channel: tensor(1.4205e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the green channel: tensor(9.0805e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 180 error in the blue channel: tensor(9.5384e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the red channel: tensor(1.2063e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the green channel: tensor(7.7113e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 181 error in the blue channel: tensor(8.1012e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the red channel: tensor(1.0244e-14, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the green channel: tensor(6.5494e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 182 error in the blue channel: tensor(6.8805e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the red channel: tensor(8.7000e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the green channel: tensor(5.5629e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 183 error in the blue channel: tensor(5.8442e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the red channel: tensor(7.3892e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the green channel: tensor(4.7258e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 184 error in the blue channel: tensor(4.9646e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the red channel: tensor(6.2762e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the green channel: tensor(4.0154e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 185 error in the blue channel: tensor(4.2181e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the red channel: tensor(5.3313e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the green channel: tensor(3.4127e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 186 error in the blue channel: tensor(3.5844e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the red channel: tensor(4.5294e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the green channel: tensor(2.9012e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 187 error in the blue channel: tensor(3.0480e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the red channel: tensor(3.8488e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the green channel: tensor(2.4677e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 188 error in the blue channel: tensor(2.5924e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the red channel: tensor(3.2708e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the green channel: tensor(2.0999e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 189 error in the blue channel: tensor(2.2064e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the red channel: tensor(2.7804e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the green channel: tensor(1.7885e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 190 error in the blue channel: tensor(1.8793e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the red channel: tensor(2.3643e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the green channel: tensor(1.5245e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 191 error in the blue channel: tensor(1.6023e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the red channel: tensor(2.0114e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the green channel: tensor(1.3011e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 192 error in the blue channel: tensor(1.3686e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the red channel: tensor(1.7118e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the green channel: tensor(1.1127e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 193 error in the blue channel: tensor(1.1710e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the red channel: tensor(1.4579e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the green channel: tensor(9.5370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 194 error in the blue channel: tensor(1.0048e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the red channel: tensor(1.2431e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the green channel: tensor(8.2016e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 195 error in the blue channel: tensor(8.6509e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the red channel: tensor(1.0611e-15, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the green channel: tensor(7.0838e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 196 error in the blue channel: tensor(7.4853e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the red channel: tensor(9.0765e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the green channel: tensor(6.1523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 197 error in the blue channel: tensor(6.5160e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the red channel: tensor(7.7788e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the green channel: tensor(5.3824e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 198 error in the blue channel: tensor(5.7153e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the red channel: tensor(6.6894e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the green channel: tensor(4.7463e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 199 error in the blue channel: tensor(5.0582e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the red channel: tensor(5.7753e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the green channel: tensor(4.2280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 200 error in the blue channel: tensor(4.5227e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the red channel: tensor(5.0132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the green channel: tensor(3.8086e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 201 error in the blue channel: tensor(4.0906e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the red channel: tensor(4.3794e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the green channel: tensor(3.4727e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 202 error in the blue channel: tensor(3.7452e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the red channel: tensor(3.8561e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the green channel: tensor(3.2059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 203 error in the blue channel: tensor(3.4726e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the red channel: tensor(3.4306e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the green channel: tensor(2.9972e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 204 error in the blue channel: tensor(3.2595e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the red channel: tensor(3.0822e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the green channel: tensor(2.8345e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 205 error in the blue channel: tensor(3.0937e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the red channel: tensor(2.8022e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the green channel: tensor(2.7085e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 206 error in the blue channel: tensor(2.9642e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the red channel: tensor(2.5791e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the green channel: tensor(2.6109e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 207 error in the blue channel: tensor(2.8637e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the red channel: tensor(2.4005e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the green channel: tensor(2.5353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 208 error in the blue channel: tensor(2.3330e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the red channel: tensor(2.2610e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the green channel: tensor(2.4773e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 209 error in the blue channel: tensor(2.2606e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the red channel: tensor(2.1515e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the green channel: tensor(2.4324e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 210 error in the blue channel: tensor(2.2318e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the red channel: tensor(2.0664e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the green channel: tensor(2.3996e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 211 error in the blue channel: tensor(2.1606e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the red channel: tensor(1.9992e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the green channel: tensor(2.3740e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 212 error in the blue channel: tensor(2.1538e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the red channel: tensor(1.9474e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the green channel: tensor(2.3540e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 213 error in the blue channel: tensor(2.1264e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the red channel: tensor(1.9070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the green channel: tensor(2.3392e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 214 error in the blue channel: tensor(2.0806e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the red channel: tensor(1.8775e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the green channel: tensor(2.3280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 215 error in the blue channel: tensor(2.0897e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the red channel: tensor(1.8545e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the green channel: tensor(2.3183e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 216 error in the blue channel: tensor(2.0755e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the red channel: tensor(1.8378e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the green channel: tensor(2.3104e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 217 error in the blue channel: tensor(2.0407e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the red channel: tensor(1.8236e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the green channel: tensor(2.3040e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 218 error in the blue channel: tensor(2.0321e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the red channel: tensor(1.8123e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the green channel: tensor(2.2992e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 219 error in the blue channel: tensor(2.0242e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the red channel: tensor(1.8032e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the green channel: tensor(2.2946e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 220 error in the blue channel: tensor(2.0181e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the red channel: tensor(1.7954e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the green channel: tensor(2.2904e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 221 error in the blue channel: tensor(2.0111e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the red channel: tensor(1.7896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the green channel: tensor(2.2868e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 222 error in the blue channel: tensor(2.0265e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the red channel: tensor(1.7841e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the green channel: tensor(2.2835e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 223 error in the blue channel: tensor(2.5120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the red channel: tensor(1.7789e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the green channel: tensor(2.2803e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 224 error in the blue channel: tensor(2.0168e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the red channel: tensor(1.7755e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the green channel: tensor(2.2775e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 225 error in the blue channel: tensor(1.9943e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the red channel: tensor(1.7717e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the green channel: tensor(2.2754e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 226 error in the blue channel: tensor(2.0094e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the red channel: tensor(1.7686e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the green channel: tensor(2.2728e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 227 error in the blue channel: tensor(1.9873e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the red channel: tensor(1.7663e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the green channel: tensor(2.2708e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 228 error in the blue channel: tensor(1.9849e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the red channel: tensor(1.7638e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the green channel: tensor(2.2693e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 229 error in the blue channel: tensor(1.9827e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the red channel: tensor(1.7606e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the green channel: tensor(2.2675e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 230 error in the blue channel: tensor(1.9803e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the red channel: tensor(1.7581e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the green channel: tensor(2.2666e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 231 error in the blue channel: tensor(1.9944e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the red channel: tensor(1.7563e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the green channel: tensor(2.2655e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 232 error in the blue channel: tensor(1.9755e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the red channel: tensor(1.7535e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the green channel: tensor(2.2639e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 233 error in the blue channel: tensor(1.9731e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the red channel: tensor(1.7527e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the green channel: tensor(2.2632e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 234 error in the blue channel: tensor(1.9717e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the red channel: tensor(1.7509e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the green channel: tensor(2.2607e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 235 error in the blue channel: tensor(1.9699e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the red channel: tensor(1.7499e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the green channel: tensor(2.2592e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 236 error in the blue channel: tensor(1.9841e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the red channel: tensor(1.7478e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the green channel: tensor(2.2578e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 237 error in the blue channel: tensor(1.9670e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the red channel: tensor(1.7462e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the green channel: tensor(2.2564e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 238 error in the blue channel: tensor(1.9806e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the red channel: tensor(1.7443e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the green channel: tensor(2.2552e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 239 error in the blue channel: tensor(1.9639e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the red channel: tensor(1.7435e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the green channel: tensor(2.2541e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 240 error in the blue channel: tensor(1.9632e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the red channel: tensor(1.7424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the green channel: tensor(2.2533e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 241 error in the blue channel: tensor(1.9619e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the red channel: tensor(1.7422e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the green channel: tensor(2.2523e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 242 error in the blue channel: tensor(1.9612e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the red channel: tensor(1.7409e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the green channel: tensor(2.2512e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 243 error in the blue channel: tensor(1.9600e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the red channel: tensor(1.7394e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the green channel: tensor(2.2509e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 244 error in the blue channel: tensor(1.9590e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the red channel: tensor(1.7390e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the green channel: tensor(2.2505e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 245 error in the blue channel: tensor(1.9715e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the red channel: tensor(1.7379e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the green channel: tensor(2.2500e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 246 error in the blue channel: tensor(2.4709e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the red channel: tensor(1.7370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the green channel: tensor(2.2493e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 247 error in the blue channel: tensor(2.4699e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the red channel: tensor(1.7367e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the green channel: tensor(2.2491e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 248 error in the blue channel: tensor(1.9543e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the red channel: tensor(1.7364e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the green channel: tensor(2.2482e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 249 error in the blue channel: tensor(1.9538e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the red channel: tensor(1.7357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the green channel: tensor(2.2473e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 250 error in the blue channel: tensor(1.9537e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the red channel: tensor(1.7342e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the green channel: tensor(2.2468e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 251 error in the blue channel: tensor(1.9537e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the red channel: tensor(1.7339e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the green channel: tensor(2.2460e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 252 error in the blue channel: tensor(1.9526e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the red channel: tensor(1.7327e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the green channel: tensor(2.2453e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 253 error in the blue channel: tensor(1.9533e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the red channel: tensor(1.7322e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the green channel: tensor(2.2442e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 254 error in the blue channel: tensor(1.9527e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the red channel: tensor(1.7307e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the green channel: tensor(2.2440e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 255 error in the blue channel: tensor(1.9516e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the red channel: tensor(1.7309e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the green channel: tensor(2.2438e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 256 error in the blue channel: tensor(1.9513e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the red channel: tensor(1.7307e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the green channel: tensor(2.2425e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 257 error in the blue channel: tensor(1.9506e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the red channel: tensor(1.7295e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the green channel: tensor(2.2424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 258 error in the blue channel: tensor(1.9502e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the red channel: tensor(1.7298e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the green channel: tensor(2.2421e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 259 error in the blue channel: tensor(2.4610e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the red channel: tensor(1.7296e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the green channel: tensor(2.2414e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 260 error in the blue channel: tensor(1.9484e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the red channel: tensor(1.7296e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the green channel: tensor(2.2413e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 261 error in the blue channel: tensor(1.9481e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the red channel: tensor(1.7283e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the green channel: tensor(2.2405e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 262 error in the blue channel: tensor(1.9556e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the red channel: tensor(1.7278e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the green channel: tensor(2.2400e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 263 error in the blue channel: tensor(1.9467e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the red channel: tensor(1.7286e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the green channel: tensor(2.2396e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 264 error in the blue channel: tensor(1.9450e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the red channel: tensor(1.7278e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the green channel: tensor(2.2392e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 265 error in the blue channel: tensor(1.9454e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the red channel: tensor(1.7263e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the green channel: tensor(2.2388e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 266 error in the blue channel: tensor(1.9451e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the red channel: tensor(1.7265e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the green channel: tensor(2.2379e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 267 error in the blue channel: tensor(1.9447e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the red channel: tensor(1.7261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the green channel: tensor(2.2371e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 268 error in the blue channel: tensor(1.9520e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the red channel: tensor(1.7259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the green channel: tensor(2.2367e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 269 error in the blue channel: tensor(1.9446e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the red channel: tensor(1.7260e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the green channel: tensor(2.2365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 270 error in the blue channel: tensor(1.9521e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the red channel: tensor(1.7254e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the green channel: tensor(2.2365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 271 error in the blue channel: tensor(1.9519e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the red channel: tensor(1.7247e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the green channel: tensor(2.2354e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 272 error in the blue channel: tensor(1.9512e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the red channel: tensor(1.7244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the green channel: tensor(2.2349e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 273 error in the blue channel: tensor(2.4551e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the red channel: tensor(1.7239e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the green channel: tensor(2.2348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 274 error in the blue channel: tensor(1.9504e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the red channel: tensor(1.7233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the green channel: tensor(2.2337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 275 error in the blue channel: tensor(1.9492e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the red channel: tensor(1.7225e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the green channel: tensor(2.2335e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 276 error in the blue channel: tensor(1.9491e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the red channel: tensor(1.7221e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the green channel: tensor(2.2333e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 277 error in the blue channel: tensor(1.9489e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the red channel: tensor(1.7222e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the green channel: tensor(2.2325e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 278 error in the blue channel: tensor(1.9480e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the red channel: tensor(1.7222e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the green channel: tensor(2.2323e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 279 error in the blue channel: tensor(1.9431e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the red channel: tensor(1.7223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the green channel: tensor(2.2317e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 280 error in the blue channel: tensor(1.9428e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the red channel: tensor(1.7225e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the green channel: tensor(2.2314e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 281 error in the blue channel: tensor(1.9474e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the red channel: tensor(1.7212e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the green channel: tensor(2.2314e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 282 error in the blue channel: tensor(1.9424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the red channel: tensor(1.7206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the green channel: tensor(2.2306e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 283 error in the blue channel: tensor(1.9434e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the red channel: tensor(1.7202e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the green channel: tensor(2.2301e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 284 error in the blue channel: tensor(1.9427e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the red channel: tensor(1.7202e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the green channel: tensor(2.2297e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 285 error in the blue channel: tensor(1.9424e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the red channel: tensor(1.7200e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the green channel: tensor(2.2293e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 286 error in the blue channel: tensor(1.9417e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the red channel: tensor(1.7192e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the green channel: tensor(2.2285e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 287 error in the blue channel: tensor(1.9413e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the red channel: tensor(1.7195e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the green channel: tensor(2.2291e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 288 error in the blue channel: tensor(1.9406e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the red channel: tensor(1.7194e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the green channel: tensor(2.2288e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 289 error in the blue channel: tensor(1.9396e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the red channel: tensor(1.7193e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the green channel: tensor(2.2280e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 290 error in the blue channel: tensor(1.9394e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the red channel: tensor(1.7198e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the green channel: tensor(2.2278e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 291 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the red channel: tensor(1.7198e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the green channel: tensor(2.2277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 292 error in the blue channel: tensor(1.9383e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the red channel: tensor(1.7194e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the green channel: tensor(2.2274e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 293 error in the blue channel: tensor(1.9391e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the red channel: tensor(1.7189e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the green channel: tensor(2.2272e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 294 error in the blue channel: tensor(1.9387e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the red channel: tensor(1.7185e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the green channel: tensor(2.2269e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 295 error in the blue channel: tensor(1.9409e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the red channel: tensor(1.7190e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the green channel: tensor(2.2268e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 296 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the red channel: tensor(1.7192e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the green channel: tensor(2.2261e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 297 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the red channel: tensor(1.7190e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the green channel: tensor(2.2259e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 298 error in the blue channel: tensor(1.9377e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the red channel: tensor(1.7187e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the green channel: tensor(2.2256e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 299 error in the blue channel: tensor(1.9380e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the red channel: tensor(1.7180e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the green channel: tensor(2.2251e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 300 error in the blue channel: tensor(1.9384e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the red channel: tensor(1.7175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the green channel: tensor(2.2244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 301 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the red channel: tensor(1.7172e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the green channel: tensor(2.2243e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 302 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the red channel: tensor(1.7175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the green channel: tensor(2.2238e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 303 error in the blue channel: tensor(1.9382e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the red channel: tensor(1.7180e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the green channel: tensor(2.2238e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 304 error in the blue channel: tensor(1.9383e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the red channel: tensor(1.7176e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the green channel: tensor(2.2241e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 305 error in the blue channel: tensor(1.9386e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the red channel: tensor(1.7171e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the green channel: tensor(2.2244e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 306 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the red channel: tensor(1.7170e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the green channel: tensor(2.2237e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 307 error in the blue channel: tensor(1.9385e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the red channel: tensor(1.7171e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the green channel: tensor(2.2235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 308 error in the blue channel: tensor(1.9393e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the red channel: tensor(1.7167e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the green channel: tensor(2.2233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 309 error in the blue channel: tensor(1.9374e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the red channel: tensor(1.7169e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the green channel: tensor(2.2229e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 310 error in the blue channel: tensor(1.9374e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the red channel: tensor(1.7165e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the green channel: tensor(2.2225e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 311 error in the blue channel: tensor(1.9370e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the red channel: tensor(1.7164e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the green channel: tensor(2.2224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 312 error in the blue channel: tensor(1.9376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the red channel: tensor(1.7161e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the green channel: tensor(2.2220e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 313 error in the blue channel: tensor(1.9376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the red channel: tensor(1.7158e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the green channel: tensor(2.2223e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 314 error in the blue channel: tensor(1.9379e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the red channel: tensor(1.7149e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the green channel: tensor(2.2219e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 315 error in the blue channel: tensor(1.9376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the red channel: tensor(1.7145e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the green channel: tensor(2.2212e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 316 error in the blue channel: tensor(1.9376e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the red channel: tensor(1.7152e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the green channel: tensor(2.2209e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 317 error in the blue channel: tensor(1.9373e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the red channel: tensor(1.7152e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the green channel: tensor(2.2207e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 318 error in the blue channel: tensor(1.9362e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the red channel: tensor(1.7146e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the green channel: tensor(2.2208e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 319 error in the blue channel: tensor(1.9353e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the red channel: tensor(1.7137e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the green channel: tensor(2.2206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 320 error in the blue channel: tensor(1.9346e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the red channel: tensor(1.7137e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the green channel: tensor(2.2199e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 321 error in the blue channel: tensor(1.9350e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the red channel: tensor(1.7132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the green channel: tensor(2.2195e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 322 error in the blue channel: tensor(1.9359e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the red channel: tensor(1.7129e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the green channel: tensor(2.2197e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 323 error in the blue channel: tensor(2.4403e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the red channel: tensor(1.7133e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the green channel: tensor(2.2192e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 324 error in the blue channel: tensor(1.9336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the red channel: tensor(1.7137e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the green channel: tensor(2.2187e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 325 error in the blue channel: tensor(2.4381e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the red channel: tensor(1.7131e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the green channel: tensor(2.2186e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 326 error in the blue channel: tensor(1.9330e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the red channel: tensor(1.7132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the green channel: tensor(2.2186e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 327 error in the blue channel: tensor(1.9324e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the red channel: tensor(1.7137e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the green channel: tensor(2.2187e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 328 error in the blue channel: tensor(1.9356e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the red channel: tensor(1.7140e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the green channel: tensor(2.2185e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 329 error in the blue channel: tensor(1.9358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the red channel: tensor(1.7140e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the green channel: tensor(2.2180e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 330 error in the blue channel: tensor(1.9357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the red channel: tensor(1.7139e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the green channel: tensor(2.2177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 331 error in the blue channel: tensor(1.9365e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the red channel: tensor(1.7136e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the green channel: tensor(2.2177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 332 error in the blue channel: tensor(2.4372e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the red channel: tensor(1.7130e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the green channel: tensor(2.2170e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 333 error in the blue channel: tensor(1.9318e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the red channel: tensor(1.7139e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the green channel: tensor(2.2168e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 334 error in the blue channel: tensor(1.9358e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the red channel: tensor(1.7138e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the green channel: tensor(2.2165e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 335 error in the blue channel: tensor(1.9355e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the red channel: tensor(1.7135e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the green channel: tensor(2.2160e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 336 error in the blue channel: tensor(1.9306e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the red channel: tensor(1.7138e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the green channel: tensor(2.2161e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 337 error in the blue channel: tensor(1.9356e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the red channel: tensor(1.7122e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the green channel: tensor(2.2155e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 338 error in the blue channel: tensor(1.9295e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the red channel: tensor(1.7124e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the green channel: tensor(2.2155e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 339 error in the blue channel: tensor(2.4357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the red channel: tensor(1.7120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the green channel: tensor(2.2157e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 340 error in the blue channel: tensor(1.9293e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the red channel: tensor(1.7126e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the green channel: tensor(2.2153e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 341 error in the blue channel: tensor(1.9294e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the red channel: tensor(1.7124e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the green channel: tensor(2.2151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 342 error in the blue channel: tensor(1.9295e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the red channel: tensor(1.7120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the green channel: tensor(2.2146e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 343 error in the blue channel: tensor(1.9294e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the red channel: tensor(1.7120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the green channel: tensor(2.2146e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 344 error in the blue channel: tensor(1.9290e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the red channel: tensor(1.7120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the green channel: tensor(2.2142e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 345 error in the blue channel: tensor(1.9292e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the red channel: tensor(1.7117e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the green channel: tensor(2.2145e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 346 error in the blue channel: tensor(1.9288e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the red channel: tensor(1.7119e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the green channel: tensor(2.2138e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 347 error in the blue channel: tensor(2.4336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the red channel: tensor(1.7116e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the green channel: tensor(2.2132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 348 error in the blue channel: tensor(2.4337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the red channel: tensor(1.7119e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the green channel: tensor(2.2132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 349 error in the blue channel: tensor(1.9357e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the red channel: tensor(1.7118e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the green channel: tensor(2.2128e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 350 error in the blue channel: tensor(1.9282e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the red channel: tensor(1.7123e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the green channel: tensor(2.2124e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 351 error in the blue channel: tensor(2.4329e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the red channel: tensor(1.7119e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the green channel: tensor(2.2126e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 352 error in the blue channel: tensor(2.4329e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the red channel: tensor(1.7112e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the green channel: tensor(2.2126e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 353 error in the blue channel: tensor(1.9278e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the red channel: tensor(1.7110e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the green channel: tensor(2.2121e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 354 error in the blue channel: tensor(1.9354e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the red channel: tensor(1.7106e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the green channel: tensor(2.2124e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 355 error in the blue channel: tensor(1.9350e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the red channel: tensor(1.7102e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the green channel: tensor(2.2121e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 356 error in the blue channel: tensor(1.9277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the red channel: tensor(1.7099e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the green channel: tensor(2.2120e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 357 error in the blue channel: tensor(1.9348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the red channel: tensor(1.7108e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the green channel: tensor(2.2118e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 358 error in the blue channel: tensor(1.9345e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the red channel: tensor(1.7107e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the green channel: tensor(2.2119e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 359 error in the blue channel: tensor(1.9346e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the red channel: tensor(1.7111e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the green channel: tensor(2.2117e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 360 error in the blue channel: tensor(1.9344e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the red channel: tensor(1.7112e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the green channel: tensor(2.2116e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 361 error in the blue channel: tensor(1.9352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the red channel: tensor(1.7105e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the green channel: tensor(2.2105e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 362 error in the blue channel: tensor(2.4319e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the red channel: tensor(1.7111e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the green channel: tensor(2.2106e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 363 error in the blue channel: tensor(1.9352e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the red channel: tensor(1.7114e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the green channel: tensor(2.2102e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 364 error in the blue channel: tensor(1.9266e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the red channel: tensor(1.7107e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the green channel: tensor(2.2102e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 365 error in the blue channel: tensor(1.9271e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the red channel: tensor(1.7104e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the green channel: tensor(2.2097e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 366 error in the blue channel: tensor(1.9265e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the red channel: tensor(1.7111e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the green channel: tensor(2.2093e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 367 error in the blue channel: tensor(2.4309e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the red channel: tensor(1.7109e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the green channel: tensor(2.2094e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 368 error in the blue channel: tensor(2.4310e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the red channel: tensor(1.7106e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the green channel: tensor(2.2088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 369 error in the blue channel: tensor(1.9348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the red channel: tensor(1.7106e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the green channel: tensor(2.2090e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 370 error in the blue channel: tensor(1.9252e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the red channel: tensor(1.7098e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the green channel: tensor(2.2093e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 371 error in the blue channel: tensor(1.9342e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the red channel: tensor(1.7099e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the green channel: tensor(2.2090e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 372 error in the blue channel: tensor(1.9343e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the red channel: tensor(1.7095e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the green channel: tensor(2.2086e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 373 error in the blue channel: tensor(1.9248e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the red channel: tensor(1.7098e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the green channel: tensor(2.2083e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 374 error in the blue channel: tensor(1.9253e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the red channel: tensor(1.7091e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the green channel: tensor(2.2076e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 375 error in the blue channel: tensor(1.9249e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the red channel: tensor(1.7088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the green channel: tensor(2.2070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 376 error in the blue channel: tensor(1.9248e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the red channel: tensor(1.7088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the green channel: tensor(2.2070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 377 error in the blue channel: tensor(2.4298e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the red channel: tensor(1.7094e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the green channel: tensor(2.2063e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 378 error in the blue channel: tensor(2.4294e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the red channel: tensor(1.7093e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the green channel: tensor(2.2061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 379 error in the blue channel: tensor(2.4288e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the red channel: tensor(1.7094e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the green channel: tensor(2.2058e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 380 error in the blue channel: tensor(2.4287e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the red channel: tensor(1.7093e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the green channel: tensor(2.2059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 381 error in the blue channel: tensor(2.4281e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the red channel: tensor(1.7098e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the green channel: tensor(2.2057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 382 error in the blue channel: tensor(2.4275e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the red channel: tensor(1.7095e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the green channel: tensor(2.2053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 383 error in the blue channel: tensor(2.4274e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the red channel: tensor(1.7096e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the green channel: tensor(2.2053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 384 error in the blue channel: tensor(2.4273e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the red channel: tensor(1.7102e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the green channel: tensor(2.2051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 385 error in the blue channel: tensor(1.9224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the red channel: tensor(1.7096e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the green channel: tensor(2.2046e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 386 error in the blue channel: tensor(2.4277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the red channel: tensor(1.7083e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the green channel: tensor(2.2049e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 387 error in the blue channel: tensor(1.9235e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the red channel: tensor(1.7086e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the green channel: tensor(2.2044e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 388 error in the blue channel: tensor(1.9351e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the red channel: tensor(1.7087e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the green channel: tensor(2.2039e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 389 error in the blue channel: tensor(1.9233e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the red channel: tensor(1.7094e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the green channel: tensor(2.2037e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 390 error in the blue channel: tensor(1.9224e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the red channel: tensor(1.7103e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the green channel: tensor(2.2044e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 391 error in the blue channel: tensor(1.9232e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the red channel: tensor(1.7096e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the green channel: tensor(2.2037e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 392 error in the blue channel: tensor(2.4277e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the red channel: tensor(1.7087e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the green channel: tensor(2.2041e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 393 error in the blue channel: tensor(2.4268e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the red channel: tensor(1.7091e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the green channel: tensor(2.2035e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 394 error in the blue channel: tensor(1.9222e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the red channel: tensor(1.7090e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the green channel: tensor(2.2032e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 395 error in the blue channel: tensor(1.9219e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the red channel: tensor(1.7092e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the green channel: tensor(2.2030e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 396 error in the blue channel: tensor(1.9346e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the red channel: tensor(1.7089e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the green channel: tensor(2.2030e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 397 error in the blue channel: tensor(1.9221e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the red channel: tensor(1.7088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the green channel: tensor(2.2032e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 398 error in the blue channel: tensor(1.9216e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the red channel: tensor(1.7088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the green channel: tensor(2.2032e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 399 error in the blue channel: tensor(1.9211e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the red channel: tensor(1.7092e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the green channel: tensor(2.2031e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 400 error in the blue channel: tensor(1.9207e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the red channel: tensor(1.7090e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the green channel: tensor(2.2032e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 401 error in the blue channel: tensor(1.9214e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the red channel: tensor(1.7097e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the green channel: tensor(2.2033e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 402 error in the blue channel: tensor(1.9214e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the red channel: tensor(1.7095e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the green channel: tensor(2.2030e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 403 error in the blue channel: tensor(1.9215e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the red channel: tensor(1.7088e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the green channel: tensor(2.2026e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 404 error in the blue channel: tensor(1.9207e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the red channel: tensor(1.7083e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the green channel: tensor(2.2022e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 405 error in the blue channel: tensor(1.9206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the red channel: tensor(1.7081e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the green channel: tensor(2.2025e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 406 error in the blue channel: tensor(1.9211e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the red channel: tensor(1.7085e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the green channel: tensor(2.2023e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 407 error in the blue channel: tensor(1.9210e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the red channel: tensor(1.7084e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the green channel: tensor(2.2021e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 408 error in the blue channel: tensor(1.9208e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the red channel: tensor(1.7078e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the green channel: tensor(2.2014e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 409 error in the blue channel: tensor(1.9206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the red channel: tensor(1.7083e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the green channel: tensor(2.2013e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 410 error in the blue channel: tensor(1.9199e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the red channel: tensor(1.7081e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the green channel: tensor(2.2011e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 411 error in the blue channel: tensor(1.9206e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the red channel: tensor(1.7077e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the green channel: tensor(2.2015e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 412 error in the blue channel: tensor(1.9204e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the red channel: tensor(1.7077e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the green channel: tensor(2.2015e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 413 error in the blue channel: tensor(1.9201e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the red channel: tensor(1.7079e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the green channel: tensor(2.2012e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 414 error in the blue channel: tensor(1.9200e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the red channel: tensor(1.7073e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the green channel: tensor(2.2009e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 415 error in the blue channel: tensor(1.9207e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the red channel: tensor(1.7076e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the green channel: tensor(2.2009e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 416 error in the blue channel: tensor(2.4251e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the red channel: tensor(1.7080e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the green channel: tensor(2.2004e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 417 error in the blue channel: tensor(2.4249e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the red channel: tensor(1.7074e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the green channel: tensor(2.2003e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 418 error in the blue channel: tensor(1.9212e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the red channel: tensor(1.7074e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the green channel: tensor(2.2001e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 419 error in the blue channel: tensor(1.9203e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the red channel: tensor(1.7076e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the green channel: tensor(2.1998e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 420 error in the blue channel: tensor(1.9200e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the red channel: tensor(1.7067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the green channel: tensor(2.2000e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 421 error in the blue channel: tensor(1.9344e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the red channel: tensor(1.7070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the green channel: tensor(2.1998e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 422 error in the blue channel: tensor(1.9195e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the red channel: tensor(1.7067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the green channel: tensor(2.1997e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 423 error in the blue channel: tensor(1.9188e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the red channel: tensor(1.7067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the green channel: tensor(2.1994e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 424 error in the blue channel: tensor(1.9195e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the red channel: tensor(1.7061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the green channel: tensor(2.1992e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 425 error in the blue channel: tensor(1.9190e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the red channel: tensor(1.7070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the green channel: tensor(2.1992e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 426 error in the blue channel: tensor(1.9189e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the red channel: tensor(1.7072e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the green channel: tensor(2.1990e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 427 error in the blue channel: tensor(1.9348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the red channel: tensor(1.7074e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the green channel: tensor(2.1984e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 428 error in the blue channel: tensor(1.9347e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the red channel: tensor(1.7070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the green channel: tensor(2.1990e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 429 error in the blue channel: tensor(1.9348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the red channel: tensor(1.7069e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the green channel: tensor(2.1986e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 430 error in the blue channel: tensor(1.9177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the red channel: tensor(1.7073e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the green channel: tensor(2.1982e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 431 error in the blue channel: tensor(1.9178e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the red channel: tensor(1.7067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the green channel: tensor(2.1983e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 432 error in the blue channel: tensor(1.9178e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the red channel: tensor(1.7065e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the green channel: tensor(2.1982e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 433 error in the blue channel: tensor(1.9184e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the red channel: tensor(1.7065e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the green channel: tensor(2.1978e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 434 error in the blue channel: tensor(1.9333e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the red channel: tensor(1.7065e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the green channel: tensor(2.1974e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 435 error in the blue channel: tensor(1.9335e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the red channel: tensor(1.7066e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the green channel: tensor(2.1966e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 436 error in the blue channel: tensor(1.9341e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the red channel: tensor(1.7070e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the green channel: tensor(2.1971e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 437 error in the blue channel: tensor(1.9343e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the red channel: tensor(1.7073e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the green channel: tensor(2.1964e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 438 error in the blue channel: tensor(1.9175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the red channel: tensor(1.7064e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the green channel: tensor(2.1962e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 439 error in the blue channel: tensor(1.9172e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the red channel: tensor(1.7066e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the green channel: tensor(2.1966e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 440 error in the blue channel: tensor(1.9172e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the red channel: tensor(1.7072e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the green channel: tensor(2.1960e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 441 error in the blue channel: tensor(1.9171e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the red channel: tensor(1.7064e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the green channel: tensor(2.1959e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 442 error in the blue channel: tensor(1.9173e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the red channel: tensor(1.7067e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the green channel: tensor(2.1961e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 443 error in the blue channel: tensor(1.9336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the green channel: tensor(2.1957e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 444 error in the blue channel: tensor(1.9337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the red channel: tensor(1.7065e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the green channel: tensor(2.1951e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 445 error in the blue channel: tensor(1.9161e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the red channel: tensor(1.7062e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the green channel: tensor(2.1950e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 446 error in the blue channel: tensor(1.9336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the red channel: tensor(1.7063e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the green channel: tensor(2.1954e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 447 error in the blue channel: tensor(1.9337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the red channel: tensor(1.7061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the green channel: tensor(2.1948e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 448 error in the blue channel: tensor(1.9334e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the green channel: tensor(2.1953e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 449 error in the blue channel: tensor(1.9332e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the green channel: tensor(2.1951e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 450 error in the blue channel: tensor(1.9151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the red channel: tensor(1.7055e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the green channel: tensor(2.1943e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 451 error in the blue channel: tensor(1.9336e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the red channel: tensor(1.7056e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the green channel: tensor(2.1941e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 452 error in the blue channel: tensor(1.9332e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the green channel: tensor(2.1937e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 453 error in the blue channel: tensor(1.9327e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the red channel: tensor(1.7059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the green channel: tensor(2.1936e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 454 error in the blue channel: tensor(1.9332e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the red channel: tensor(1.7059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the green channel: tensor(2.1938e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 455 error in the blue channel: tensor(1.9329e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the green channel: tensor(2.1935e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 456 error in the blue channel: tensor(1.9337e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the red channel: tensor(1.7048e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the green channel: tensor(2.1927e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 457 error in the blue channel: tensor(1.9143e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the red channel: tensor(1.7050e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the green channel: tensor(2.1925e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 458 error in the blue channel: tensor(2.4177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the red channel: tensor(1.7054e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the green channel: tensor(2.1927e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 459 error in the blue channel: tensor(1.9148e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the red channel: tensor(1.7054e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the green channel: tensor(2.1924e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 460 error in the blue channel: tensor(1.9155e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the green channel: tensor(2.1921e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 461 error in the blue channel: tensor(2.4172e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the red channel: tensor(1.7060e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the green channel: tensor(2.1915e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 462 error in the blue channel: tensor(2.4177e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the red channel: tensor(1.7051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the green channel: tensor(2.1916e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 463 error in the blue channel: tensor(2.4179e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the green channel: tensor(2.1916e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 464 error in the blue channel: tensor(2.4175e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the green channel: tensor(2.1921e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 465 error in the blue channel: tensor(1.9153e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the red channel: tensor(1.7061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the green channel: tensor(2.1916e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 466 error in the blue channel: tensor(1.9151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the red channel: tensor(1.7056e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the green channel: tensor(2.1915e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 467 error in the blue channel: tensor(1.9150e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the red channel: tensor(1.7058e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the green channel: tensor(2.1917e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 468 error in the blue channel: tensor(1.9150e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the red channel: tensor(1.7062e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the green channel: tensor(2.1914e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 469 error in the blue channel: tensor(1.9153e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the red channel: tensor(1.7064e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the green channel: tensor(2.1904e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 470 error in the blue channel: tensor(1.9145e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the red channel: tensor(1.7059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the green channel: tensor(2.1908e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 471 error in the blue channel: tensor(2.4166e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the red channel: tensor(1.7062e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the green channel: tensor(2.1901e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 472 error in the blue channel: tensor(2.4161e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the red channel: tensor(1.7060e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the green channel: tensor(2.1908e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 473 error in the blue channel: tensor(1.9148e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the red channel: tensor(1.7059e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the green channel: tensor(2.1906e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 474 error in the blue channel: tensor(1.9151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the red channel: tensor(1.7061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the green channel: tensor(2.1901e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 475 error in the blue channel: tensor(1.9151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the red channel: tensor(1.7055e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the green channel: tensor(2.1900e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 476 error in the blue channel: tensor(1.9157e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the red channel: tensor(1.7053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the green channel: tensor(2.1900e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 477 error in the blue channel: tensor(2.4179e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the red channel: tensor(1.7053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the green channel: tensor(2.1901e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 478 error in the blue channel: tensor(1.9151e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the red channel: tensor(1.7049e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the green channel: tensor(2.1902e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 479 error in the blue channel: tensor(2.4176e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the red channel: tensor(1.7051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the green channel: tensor(2.1896e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 480 error in the blue channel: tensor(2.4174e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the red channel: tensor(1.7053e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the green channel: tensor(2.1898e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 481 error in the blue channel: tensor(1.9141e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the red channel: tensor(1.7060e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the green channel: tensor(2.1891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 482 error in the blue channel: tensor(1.9351e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the red channel: tensor(1.7058e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the green channel: tensor(2.1893e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 483 error in the blue channel: tensor(1.9348e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the red channel: tensor(1.7066e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the green channel: tensor(2.1891e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 484 error in the blue channel: tensor(1.9351e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the red channel: tensor(1.7061e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the green channel: tensor(2.1888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 485 error in the blue channel: tensor(1.9144e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the red channel: tensor(1.7055e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the green channel: tensor(2.1881e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 486 error in the blue channel: tensor(1.9142e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the red channel: tensor(1.7048e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the green channel: tensor(2.1884e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 487 error in the blue channel: tensor(1.9138e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the red channel: tensor(1.7051e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the green channel: tensor(2.1888e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 488 error in the blue channel: tensor(1.9133e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the red channel: tensor(1.7047e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the green channel: tensor(2.1879e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 489 error in the blue channel: tensor(1.9134e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the red channel: tensor(1.7050e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the green channel: tensor(2.1876e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 490 error in the blue channel: tensor(1.9134e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the red channel: tensor(1.7043e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the green channel: tensor(2.1871e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 491 error in the blue channel: tensor(1.9141e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the red channel: tensor(1.7045e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the green channel: tensor(2.1867e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 492 error in the blue channel: tensor(1.9137e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the red channel: tensor(1.7040e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the green channel: tensor(2.1874e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 493 error in the blue channel: tensor(1.9135e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the red channel: tensor(1.7046e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the green channel: tensor(2.1865e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 494 error in the blue channel: tensor(1.9132e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the red channel: tensor(1.7046e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the green channel: tensor(2.1862e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 495 error in the blue channel: tensor(1.9131e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the red channel: tensor(1.7049e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the green channel: tensor(2.1860e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 496 error in the blue channel: tensor(1.9350e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the red channel: tensor(1.7052e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the green channel: tensor(2.1860e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 497 error in the blue channel: tensor(2.4149e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the red channel: tensor(1.7049e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the green channel: tensor(2.1859e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 498 error in the blue channel: tensor(1.9130e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the red channel: tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the green channel: tensor(2.1858e-16, device='cuda:0', dtype=torch.float64)\n",
+      "iteration: 499 error in the blue channel: tensor(1.9361e-16, device='cuda:0', dtype=torch.float64)\n"
      ]
     }
    ],
@@ -342,35 +1843,44 @@
     "################################\n",
     "    X_recons[:,:,0] = distance_update(x_r,z_r)\n",
     "    err[t,0] = image_err(X_recons[:,:,0],X[:,:,0])\n",
-    "    # print(\"iteration:\",t,\"error in the red channel:\",image_err(X_recons[:,:,0],X[:,:,0]))\n",
+    "    print(\"iteration:\",t,\"error in the red channel:\",image_err(X_recons[:,:,0],X[:,:,0]))\n",
     "    Bz_r = A(z_r)\n",
     "    absBz_r = torch.abs(Bz_r)\n",
-    "\n",
     "    normz_r = torch.norm(z_r,'fro')\n",
     "    hz_norm_r = 1/m* torch.norm(absBz_r**2 - Y_r, p=1); \n",
     "    diff_Bz_Y_r = absBz_r**2 - Y_r\n",
     "    E_r =  (absBz_r  <= alpha_ub * normz_r) * (absBz_r  >= alpha_lb * normz_r) * (torch.abs(diff_Bz_Y_r) <= alpha_h * hz_norm_r / normz_r * absBz_r)\n",
     "    C_r = 2 * torch.divide(diff_Bz_Y_r, torch.conj_physical(Bz_r))  *  E_r\n",
-    "    grad = At(C_r) / torch.numel(C_r)\n",
-    "    z_r = z_r - mu * grad\n",
+    "    grad_r = At(C_r) / torch.numel(C_r)\n",
+    "    z_r = z_r - mu * grad_r\n",
     "###### green channel update ######\n",
     "################################\n",
-    "#     X_recons[:,:,1] = distance_update(x_g,z_g)\n",
-    "#     err[t,1] = image_err(X_recons[:,:,1],X[:,:,1])\n",
-    "#     # print(\"iteration:\",t,\"error in the green channel:\",image_err(X_recons[:,:,1],X[:,:,1]))\n",
-    "#     Bz_g = A(z_g)\n",
-    "#     C_g  = torch.mul(torch.abs(Bz_g)**2-Y_g , Bz_g)\n",
-    "#     grad_g = At(C_g)/torch.numel(C_g)     \n",
-    "#     z_g = z_g - (mu(t)/normest_g**2) * grad_g\n",
+    "    X_recons[:,:,1] = distance_update(x_g,z_g)\n",
+    "    err[t,1] = image_err(X_recons[:,:,1],X[:,:,1])\n",
+    "    print(\"iteration:\",t,\"error in the green channel:\",image_err(X_recons[:,:,1],X[:,:,1]))\n",
+    "    Bz_g = A(z_g)\n",
+    "    absBz_g = torch.abs(Bz_g)\n",
+    "    normz_g = torch.norm(z_g,'fro')\n",
+    "    hz_norm_g = 1/m* torch.norm(absBz_g**2 - Y_g, p=1); \n",
+    "    diff_Bz_Y_g = absBz_g**2 - Y_g\n",
+    "    E_g =  (absBz_g  <= alpha_ub * normz_g) * (absBz_g  >= alpha_lb * normz_g) * (torch.abs(diff_Bz_Y_g) <= alpha_h * hz_norm_g / normz_g * absBz_g)\n",
+    "    C_g = 2 * torch.divide(diff_Bz_Y_g, torch.conj_physical(Bz_g))  *  E_g\n",
+    "    grad_g = At(C_g) / torch.numel(C_g)\n",
+    "    z_g = z_g - mu * grad_g\n",
     "# ###### blue channel update ######\n",
     "# ################################\n",
-    "#     X_recons[:,:,2] = distance_update(x_b,z_b)\n",
-    "#     err[t,2] = image_err(X_recons[:,:,2],X[:,:,2])\n",
-    "#     # print(\"iteration:\",t,\"error in the blue channel:\",image_err(X_recons[:,:,2],X[:,:,2]))\n",
-    "#     Bz_b = A(z_b)\n",
-    "#     C_b  = torch.mul(torch.abs(Bz_b)**2-Y_b , Bz_b)\n",
-    "#     grad_b = At(C_b)/torch.numel(C_b)     \n",
-    "#     z_b = z_b - (mu(t)/normest_b**2) * grad_b\n",
+    "    X_recons[:,:,2] = distance_update(x_b,z_b)\n",
+    "    err[t,2] = image_err(X_recons[:,:,2],X[:,:,2])\n",
+    "    print(\"iteration:\",t,\"error in the blue channel:\",image_err(X_recons[:,:,2],X[:,:,2]))\n",
+    "    Bz_b = A(z_b)\n",
+    "    absBz_b = torch.abs(Bz_b)\n",
+    "    normz_b = torch.norm(z_b,'fro')\n",
+    "    hz_norm_b = 1/m* torch.norm(absBz_b**2 - Y_b, p=1); \n",
+    "    diff_Bz_Y_b = absBz_b**2 - Y_b\n",
+    "    E_b =  (absBz_b  <= alpha_ub * normz_b) * (absBz_b  >= alpha_lb * normz_b) * (torch.abs(diff_Bz_Y_b) <= alpha_h * hz_norm_b / normz_b * absBz_b)\n",
+    "    C_b = 2 * torch.divide(diff_Bz_Y_b, torch.conj_physical(Bz_b))  *  E_b\n",
+    "    grad_b = At(C_b) / torch.numel(C_b)\n",
+    "    z_b = z_b - mu * grad_b\n",
     "\n",
     "##### saving the image at the iteration #####\n",
     "#############################################\n",
@@ -380,12 +1890,12 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": 87,
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAErCAYAAABDzICRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz914+uWZbmh/3Ce+/NiYjjvcnMkz7LdldXtSG7eziUKFEYCAJEQBe80T9A6Fa8EaQbGQgiKM5oRHLUw57ualdVXS6zsvJk5vEu4pjw3nsfuljPmueLmYsMAg3wos8LBCLi+953v3uvtfbay6+io6OjI95cb64315vrzfXmenP9o72K/6eewJvrzfXmenO9ud5cb67/aa83wsCb68315npzvbneXP/IrzfCwJvrzfXmenO9ud5c/8ivN8LAm+vN9eZ6c7253lz/yK83wsCb68315npzvbneXP/IrzfCwJvrzfXmenO9ud5c/8ivN8LAm+vN9eZ6c7253lz/yK83wsCb68315npzvbneXP/IrzfCwJvrzfXmenO9ud5c/8iv0pPe+J8XFTEArAMHwLQ+Pw+sAlXAMFANXAbmgH1gFDgL9OuZF0AR0Ak0AE+BXaAW6AGeA3W6ZwXoA7qBDeAV0ASMAS16bgMoAdo1j279bOp9RcCs5rAHjADXgAlgTWOUAq1Ar+ZbAlwBhvT/bY2zqzGLgXHgot6/p/uaNdYKUAnUAIfAkeBRpnmu6ft1wahOz10EfqXx+3RPNbCo7wc1t2qNuwOc0/s2Nf9NjfdKa9jTWjcF735gRuPMCRZjwILG3dBPhd5Rop9Tmm9+VgvcAL7Su+qBt3XPkOY/rnkX6fsXQBdwBpjXutqBNuBroJGgp4fEtSuYzGgdU1pbB0E/vwW2gA+0xnrBuBW4ozXfBp5p3TvANnBa978maKVYeEjJeELjbGrd8wS9dRH0Wau5HAK39Owz/f4jwaSeoMez+l2h95UID/OC0bo+LyJo+9vAl/rurt5VBdzUfaWCx5Rgd5WgyXXBb1b/d+ue01r3lOCUONnWvS36e0dz29faTwPLGqsKGNAYXcD3gf+zPv9Y990h6KdeuFokaDNp/JzWVa85FwH3ib2A4HxE8JZJgpanBJMKves58BHwBLhE7IfrBB10aR5b+ikl6Kpa9zzR3yP6/pTmmfC4QdBdkeDRr+/KCt4/qzneJmgeYAm4QNDKCvAOQQvjwI/0/QPNpVLv7xYu+zTnXmLP9BM03wK8FE5qNebfAN/SuC2CZQdBW73E3uoUDpcJunulua0RNPdIa36boFG0lqeCexNQLvgf6u8NYr9WE7RQTuB0ndirM4JPu+bxhdY6R9D4BY3XR5wPjYLDdeFvX/8vaexSvE9LNd9tgmZyXx7pnjOYN4wTNLBH0O5djP9nxN4u0TorNMZ7muMQsY9XBPcrGmuKoLmbmluRxn9K8PYNjVOhcS4L9ssF7zrCPP4HwF9rrE49XyxYr2gOSwStHhF761cErZ/R3EaBtzBtDmqNVwmaaiHwfVH/z+rd/+UJCg2f2DKwTAA1D+g+4IcCUL8W1kcQbzLaMgFinCCEaYIp7BDEskwQVAdxkCYRQhBXD8FUJgWgZrx5VwgCT8bVIyAUa/xHureBAP4LAmEQG2maYAj9BNFMEgdipb77lDgk2wimta851OvnFD78D/T7JoHkfgJBqwQiDgvumxCs6gimVKbxOvABk4wxD+kpghCSKf0zghhLCELOQ3xLcG0hNuZrvTOZyiZBTEX67izBnCYFp/UCmJZoLV3CxRndN635jAG/ELzKBacJzBxeaY61msuY7qsBPhcumgrGSgFrRe+9rM9eEMxgU+uoIjbxE82thCD4KX1WKdj1ae2LxOZ+RNBgMXFwXRae1okrhbU8DGsK/q/UvZW6t0xjn9X8Xui+EoLxtxBMb4OgtWcEczog8FxE0Mai5t5H0G8dQXebgueBvi8B/o5gFMXEvukiaOquxlsDHgv2zVhoHxNsigmBKwXUeb2jQb87BOcW4eAVge8DfbYl/B0Rh+9Vrf+O1tKKhYllwalYa+zWO3o1t5dYgLmiOVURtD4n2M0RjLdI797HB9Gh4LKhsQ6wELxJ7Kce/X1N4+zq3nKCltu1dvTd1L8zzxGt7xaB96mCOczpszn9Pys4r+ieFb1jQTB9T3PeIJh0pWCTeHtGHI57+n9H87tM0NpnhCA3rzEWCTzPaQ0Het+64LqBD6xBrXtL7zsUvj4h+Ew5gd/87rXmUU4ICl0F95wmaOImFtxWCDocIISpJWKfzRH0ME/QRpnGqtB4v9XzxZpvte5LAalaY1UStPFKOEjhdEPznSD4xpHmPUPQ+SHmY+V6b6fGbQbe1b1bBO0/0VzO6LNnguE5redLzScVjkaCJ2wLH036/pAQ6Ac0brVwVCU8lAnu05r7od5bC/xS9/xQzw8R5+OQ4D6qsWYE3zx7L2m838H0MSrYHWqMk1wnFga+pQl+gg/7vyQ2TYmAsqaJQkgv5wmmcQsDcpAg9P9Mz+0SQFvUwiA24zUCKSsEIKqIjVpOSJslGq8NeJ8AYuGBe1bPVBLIv0EQNBr7HEF0KS+lxlZEbLwrWtOS1nBfn6WWW0IQ57rec1b/z+t9KwRzmtI4H2muVZpnqf6uJxA7QzCBCixZvq2/mwX7XsH/NYH0JmJjbhEb9bze9YW+R89XYWY5rucuEgQ0RjDOJORyff+xPlsQjH6utZdoHS2C7WOC4N8hmF4LwYQSdqmJ1QH/SQH+6jHT2MEH+IjmfF8wTavImtZ/VvdfIjb/Kd1/mcD9E427qf8bNI8ize1I8x4TXKqIw7yCYAStWJva1ToGNMaUYFyDhcFvaz7VBB3mATyOD/g8uFc1ty2tNQ+DKeGqWGNWEQytEwufzQRd7wIf6rMDjXWk+R1p/CbN54xg1qbx2zGj38baUlrPujTvKiwUdmOBck1j1+n7aazB1WLh4l29N+dRBfxUOEkh40hj7xR8DvBP9P+W/v9DjVurscaJvVuNBcgdzT81x9Oa03UCt5/pfZeFgzx0a4WHUmLfTmqs3AeHxKE1p/e9q+8hcFyrnw3dD6HJFRE0+YjAYzexn/KAXNC9C7oXQqibIvD4kuAfaxr7NLaMppXpCnEgrQm+u5pjhWB/IDz1aPwmgrbLtYZFbGFKWM0LpmXAnxB8OXnGiN5frXlXCEe3CBp4ivlGWmXS2jCDLSOntIZ9fV8lWO4SvORXWusqFgTeIejqsn7nHk1BsIPYD+vEnmkj8J3K5znB6wJWEB5pnFbdf1pz3dV6p7TGeq25n6DLQX0+UbB+CFqpJHD9c61pFVt5LwL3MA84IvhRKrsTBF02E9aD1xo/LdGPtfa0VrTp/n7BYR/4sXDTQOyHNYJmBznZdWI3wQZBZH9PEGoeDG9pUeVaWGrLLVrkeUJouKr/z2iyP9Vk57GEuEAQZQMBsH0telVzmAD+Y2KDn9OCOwjivUQALAm6hABUaqsQyGzBgC7C5tfzxIZMhjGNtaxV4qBLqbsVWw2mCSJrIjbe44J7kpjmNZ/cJA2E5Lav9/5K79khDpoVgih3ic2Y5twKwfApsVk3iEMzpe40/7dq7Hqte5zYhOP6/ivha48g4CbBPjW0FsG4QX9XCZZfEYLUA72zVPNf1mcNBMN7q2A9aaJ8BvyLgnlc0ufbgiXEptvHAkCt8DFNHLTNhKBTJRht6R2tmn8pwQy2BOfvE0xsBzPotYJ1bgielcLhl/puQTBJLW9B8JrBtHqk+f09ppNnBF0OCneDGOdXiIOhh9i8R/pJAbOLOHjS+rAu/OSVguOQxtzUvE5j3JcJnlNY49kQDvv0XWpDqbUjPLxF0H+l5psCSlq3lgkz5xw2Y6ZrYktwTgvKlOBaLjgsCy6PsZa2WTBun961DPx3gmWLxvpXmmurcNKA6XpZ35VqXmsEfSesxvTMFYJ2xwlmvafx7xKC3hFBN6NaU7XGTxdBGUHn9wTv1Da39X0jweyfC74rWNvrAH6CrWITBN5qsbC0qDn0YGFyFQuxT7WmvL+bsMi8LVz9hNhXuWd78KG+rc/W9HenPl8RHF5rXq+15mICj58TB9w+drWtAr+HtdMZrb2KwPl3sNA9joXMt4Sj53q2DluGGwWjUoIOVvVcm8Zf11zOCx5zhFCbwnaaxa8StD6i//sJGtzQ+u5pfRWC4y3BrUTv7yHwn8LR7xKumcfYcv01thwmbIsI2pwhaDpdiymc7xH85xV2M5wVXJoJ/v2uYJOafC1WdmcIXpnu80nNb584j5eIs+kzwWxHz3RrvcN4v3zTdWLLwAUtrolgCp2a+M+Jwyx9yzXYFFhBSCvlxCa4QWyEBwTRn9OYqdFvY4n8KwKhtQQhXBYAfk4crgsEQJ8DvyGIo44A9LbmvIK1qYmC5zb0zl0Cqe9oPQcEgabW3VZwf5vWNoDNPWlyf0EQ0c+IjZ0+/D5iI7xNbKYugnhLsV/+ida5gv1urcQmSVNqMvVu7DP7CpvlxgWHJiwElROEsCH4JeM/xK6LjN3YJjbhvOb9RO+eIzb6EDY1jmi8NmwhSYvPDrGp/kL/L2i9D7AvcFxzm8cCZRdBC2cJZntB93+mNaRJdlx/f6F5znFckj8gNl0Lselm9Z4yjdlAEHy91jGid6c7qkLfdwpWefAfCD43iY22qHkvCQ49+n9PsOvGgu0FrWFV82oj8JsWqWKCwU9i11KNYPEeQf+zWmtqKQt6ZzKku3quiWBEtzX2HLYcpD8VwT3NpvN6V61+/xHBTE/p3mqCzrsIenuhNfUQgv2aYH6k9S4T+7RFa6vB8Rjv6fdpjTlE7Msu/VQSdH9Bz98RjPPwSHfTpwS9px+3QzBPq1apYLSgNT/EWnIqAUUEbZ/RO2s1t119vkXQ/HVsBdwn8N+sdTXpd9JmqeCQLoA9bJlKt9WqfncRdFSl+Q/gOKJDzF+bCDyfw0rCC633vuBxSNBd8pQS3VuhMb+vZ9JaVCz8HmjsBq0/33tV444S9DEs+FXr83+lzw817nuCwzDWfiEOsdNYwL9OmLLzAO7H7oZ1rel7BL+sJGhrWnNbF4x3CcHlErF/0wI4pbVsCbZbxD57SeD/JqaVRRzjk26ohwR/Ktc9abnYIvbmFHa31hP7Li08dQRPrCSsdqUEL28XPDcJOk9+90DjTRD43cOxHum+rsUWtCfYvZPxDqn4FWmuEHSY7pEx7D496SF/YmHgvha9TgBym9hc7QShJyHtYYYwhKXwRkJoSMY0ixlgIw7we01oaC0EsIeJjf8VgaR2QqhYx4S/g4MlXmKfeCKgVPPtwlrDJWyGniQ2TzUB0O/hgMRGAqB/RmyA+wLaZb07iXlB8yrWezuwK2VS4z7Fvqk/IYhnkeMEOY8Z7bs4wKRT96YWsUZstEt6bw1xKGwTknS31pd+xlu6pxTHWJQJ5vPCYTUO2GkmrgNiU53Ch+wTrIV0EhsUzesl9rvNEwy9V/N5D2vyZcJXmqAPhdMdwWuXODjTyrSgz0bwwVpFaH1lWk+auVYJGk2zbBe2fnxb65zRZ3nQHul30kwztgAs4ADZYv19iOM2RrTWBoJu6jS/Oey+6tb3k8Rh14i1voeab7q0hjWP57qnhqD1Dv3MCK51GrsGH9oThCCWZsg8nBaxJlUhfL5FML+nhEBdSwjv7YJ1ETaRlwmPPyqA30uC9vJQHiJcbHk4l+h37v9pwaBGuG0maGWZMNvOal4PBI8dYp+dIw6OFC7rsOCRlsBUVHYIIXKIoOO0Tmacwcd6Lq0qT7Hvt1fjjGNrxEtC6z/Sui8Q/CD37qzGqdD60gJYR/h+9wgaPcKuyArBN4XjFWIf/I7uT7rv1/07hFZaru82MY9NLTqFmykcwDqkse9gPvVrwX1e60mh5J8JzgcE/zhTMO6u5lNG8LRtHOd0ihAGawla2Ra88hBc1e9UyO7q3bPEvjnC7qh9wfuvdc+61tyOffQJwxFCey/V/PcInlRP8Ltx4eNQ83yIA4Wb8L6sx8HX6XpZx+fGvsYe0zzXCmC/Q/DC0wS/2yT8/mmlTHie1Xjt2FrQqP8pmFstDq5G+OwjaL5H63lP450hhOKnmu8t3dekd5bjwPqTXid2EwwRCLxIAOBbWvhVAsG7xAbpIojiIkEkeTgO4E2SB3YHjrqs1cQHsXS3SxBuSk7FBKN4gZldAw6iKyWIv1nf1+t93ZpLSu6Veu4FlrwbCVP058C/JBCRrodibH4tw37uPoIopgiiHyO0gGatZRj7klJjr9CzvxDs/l5jdBDI3sVBKkNY2t3CmkW9/k+z3wqW1PNgKNW8K/TzkNi4k5gRpJWigeN+4UPha54gtvTp38Jm9Va997Tue0t4zvV3EUR6SnC5IdylKSwtOSWC/b7guio4PdDfV4mNmkJYWj+eCcb3CVpK0/667k+h9IxwuKLPi7Tecc07zeLpwx7GWnGl5pF+8zQJLxC0soH9y3nwtBIH2KZws07Q+28Fl1vE/kFjpckx/dZpekwNsULvGxAOU5A9IBjzOrZCjWjuaSovx9kc6fJYFhy3sICdLqV0XaX2XI7N2AeC6f9HMN0kmN20nl0TPvb1/kdaV5HGSK29i9iLrVhouaZ7+gSD84RCUCEYDwsXO3h/pIVnW/dPYsWgDAuTHxGH4WmCNh8KNiMao0f4uIn91KmgTBHMdxlH1o9gC0wJjvWZw/75PUKheIYjzveFq1LCctOCD+UGgsb+Flsn1jXWsp4vJw6Bl4LXF/psiqDlRmLvT2vcJWJPFuFshiqs/BwQNHWa4Ov/d73vUHOZwUHOtwl8pgCwic3pu/rsEY7tSDdIWm/SAjEgWOVh1Ywzndq11kFMa0fYhZBxHg0442IIx0i0EvScVsC02p0n8N+BFYrcc/sEDW9xXGjaIBTXBmyF2yIE0FcFc0kL1CONm+fBjN6fynC6fysIPtiIrVVr+nxKc9nH7u/k62WEoNKDhZN066Q1O912HQTfWSYs+H+D6fKbrhNbBiDMTZPExhnSBKcIxKTENYz9cWcI4urTwv6XxGYaIBB4iE3nC1pA+lhL9a5lgnASEB8QgkYTQQCvCIR/os/PE4BpIwC9RmyGPGibiA1xD6ervSKIMqWp1EK+IBDVghn2/6oAcDOaf5oop/CB86nWuqd1foCtIWXYrZJ+oF2NtU9oNjME4ZRhU/Ih3kjFWtNLzaeWYIxvC74zBGNL600/Js6rOBI4Te9zBPFf1JrHhb8uzeEloVUsY6l9ntgIOwS+WwlifIGtHakZrGvsdsElBYFOfVaie0v1fSMW3v4KH4ptOMVrD5t5P8aWgFXBLg+eZPJFBH2OaK7FhFB7SjAdw5kQn2ld38PplCkQ7mgu68Qmv6x7LuLsk11C214h6Kda8FrBkcZNgkMeeBua83kcL9Kk+xcJd9Y5nBVySfc2a+5F+i4F9zRrHmFTZR6maSrPAzbxWkIwvRXBtw5ny6xp3o+xVpqWg0oC339H7LdWwStpcFLzGtSYL7SudJFNE4dnWmxOEwd5q+A8qjU0Ct5jmOf8Wu/pxW6edzX/nwhua8Q+nRbuLhN78iZWWNJi0aE1/wgHuabWv0/QyjJBC6mkXNM80z3yOU53/Ui4vY5TNP8WHwKvcTDZBkGP9YT1sA0Hwj4lcP5Q839PsD/Arq9yAuc7hEB1SNBMud6T+FzDtJK4bMTKWb63guNBcxP6/Ib+TldiN45PmMNCYLPuvYkzj94hDqoFHK9xl8B/BUETc1gIeEzw4jmcxjmqNaT17CviasIBc+WEReWK4JaxNVNYW/+NcNkqOLVga0ijxqsihPjX2IpwUfhKjb6RwP+Cvmsk9manxjuN3avr2ApbQpxdjYJPu2B5qPdeFYyq8D5awoHAKZi3a30rmteOYLKB4yW+6TqxZaCIMCHeJLSc9EvsaGJlBFArsU9+Gkf8niY07gONlwfhEPZfT2tRyfQbcSBVmqJK9N46HIByizh857HJegFnK7Tg2IPceC26fwfn4K4QB8ey5llDIH6ZQOo08M+xSaiSIMozet+hxjgkfEeDOCJ9DPvKFnBK0f+WCKZcxQF+OzjQsVnvaMdBi5v4MCzDpq5dwbNGa10ghIPPCWJPc+gq8B8C/0Zj3hcMnxIbvEfrncVR8l9q3Fmc092g8W4TTLOUIN5lHBTYRGzgGWxqLNH6GzXvlxpzG+e7lwlWy1iL2MHaZ1pYFrBFKa0MD/T5CtZa3y2YUzPBODuIg6SeYNIjBOO6S2y+lLR/g83ECA4ZJ1FD4LFE/1fieJgDYvOew5r+PeGmQmvc0JgV2Nf5bSxs5AHcTdD8Ej6YK7WmRY39icbv071HOIZlnwjw+kxjJC3sEXRzQfe2ElpRCm91uOZHHRaM6gl6SetemdaVpt8a4rDawwLRKa3zU4IvnCPoaln/l+u+CcH/rsbvImhkV+tNK9YCDoJNbWofx9w0EbT7Nzj4dhe7wgbxwT+FhfslbGKuwDSXglzyouu6b17vatI9adW7pN+Lgt2wxsp5oP9bCAvh28Re39G8/gecurckGN3FQZCf4Yj8Us01tfNKzflLrGSkKR+c5jcpWC3ieK0VwgT/c903rHfvEQLUK3xw3yD4SGqkaRlKQXaHoPEZYq+fJ/ZTWnbS9ZD7JhXDVJbSHViL3WybOBA5aaGf2Ds1wtFdHJB8X/NsxVaXdBGU6557+uwSPqxTGXmFLbzFgmFaO1/q3h3iHBgVXPaJPXqT4L9bmvua3pkW9ErgX2PrYq3gv4HdJyOaX55bm5rbWWKv/xpnu+X5kcrNWcxjvuk6sTCwL8C8Jg72KgIRnYR0tkAgpIggrEbsF87gh0sEo57E2QUdBKDy0KsiNtmUFnENmxg/12fpf/lSC3iq8Z4Sm6aWAHo9AcxljZu+mNQyX+KiHqMEoY9hDbWbYBhNxKYvwybyPBwSGbVa96pg8rne1YIJqgsjJuf4X+ONVq2/G4jNs1sw5j2ccVGM6xIUWigaCOFlQetZ1Do69PwGNisV4QJLu4JJKdYyV7HvLH37VZipgVNhcu3LBPG14Y26RBD3ZT2zjqOxz+A6Akua557e3YzrRFzSM69x7n26OdC8xwmayJiKUYJhnClYy3tEcGMPNr324HSdIywwpC/7rtbzUvMs03vvY4tXMT7MOnBwaSnO7CjFTPIRwbTyGXDQZD0hHEIIaFs42OmIODA29fyn2MW1Qxw84BS8do3fiKP8e7TGZkLD3NNPrWD7gKChHa2hVe9oxsFwOeePCfp4rHmm23CIoLVpHDXfX4CnxPs0jopeJvZWalmDBCMdxMFtKbw80drSWpYC8YF+5nB8zf9Pa5jWe8BWhvdxVknSzBwuzJNuq1RsDgg6yMOoBge/DWFXZ7pIlgvwkXBcxdrgeME7ugn6XiIOzBTgPhBODgm+MkjQY4Xw2K3PxwTjswS9dOudD3H9kh8RQkej1lNDCHwvdO8G9k+/0NyHMX2XEQd5qdaf2me6QRewpeyJ5rCmtWzjdN0qjtemaMM8YJo41NJEv4fN9PO4SFUKofvEefQpjvR/pWeqhY8Z4WJC35/R/NKtuIjrBKRZfkmfrRI4HsEBgNvYApOKxGfCwUUc17SBz4sdvasZFxrbI/h2CuL7OBV3G9fKuIIthysEbe4IDssEXT/TzxHBL58Q/KmYkx/yJ3YTZABMH/Zdl2vh6wQAn+II7jFNMgNmigjCvEaYzXZxgZ00mbyP03vKtOhhAlCpUb7AuclFWsASIVgkYwOnn6V/7CXBwFuxr7GOIP40Of0t9gu2Yp/rDA7OWMTFMLaIQ78RR2APcFx7WcMH4JS+m9HnaWFIX1abYFCOazakpaEaa6aJi/M46+EUNgmVE4fbLLEBKgiCSs2sgzC7lRHEWFsA13U9/z5hIi8jCLxVz49gn14xQYwZj/EBruyYgsV17HeeIOjhluaaGy+l+knsV94gGGatfkZwxH8voVXmQTOBhc9a3XMBa2DbBEP9jKC9DmKjVeD4kRQi1rSue4LfLtb0S3GK3gGOkj9FML7rmk8tDmg9j9OPUostw3nkZQQd3hc8SgmhZZcwcW5j2ush9lBqGAhnOwQNpAnyqWCeZuEazbUfu8JWNO/0yR7pnb0ETYLTnAr95VvY6nRf/68TwXJXiMOogcD9MnYnPdPa64k9cFlrfxdbEjcEsxVCqNgWXicIpn6L4B+1OIh0AMfBtGg9k8RBexlrqmlJSyFxnnBp3NV7tglrXuJyEPuWn2Hr1Lf0ngPh4hxBr/04BqBUn1ULJn16/zYuinZH99RgYXxZMJjC8RQPcCxUuv4mhYsPcGT5IvY7r2NrSqNg0ElkO90gBJAawTDdMkvY2rZNKFrrxEHbrDUfCi8ZF3Ae02Z1AbyfEQduulbS+nFR6znCtRPSAneWoLsyXE9mmBCsRrXuCZx1chfHYaTrLmGeGvpTzeW83pkC2RS2htQRQuc8DuxcFnweEPR6G5v9m7FwP4iF9XZsTT3UHGqx8JO8Oy1+lzRWxng04DigLcFgUc9UYotWCw6iTDrfJWj2ttZ4T7Dcx7VuTnKdWBhIv1P6iyex5FaPK7a1YZPmY2IzpP+pSBO8qzGKdc+exvoMS63jBFDOYsazL2BcwhurSt/n5q3AgXX7OJJ8n2AcL/DGuUYgr0o/R7iE7DQuslGh8fIQrsIlkdHaGrGA06S53SSsDiVa+zl914nzaz8mNsZVXHdhitiwrQQh1BFM8x3MeC4JPvV65lOc/thHBA91ac6PiU31GkfK1+ud6TNtxtXANglhIjX09FOVERv+PD5AGnGswSj2WdURB8u24FJOMKJdHKi2jP2+ZcTh36XnO3FgVYn+Lxb+PiBw/gz7SRuJDViu944LN1O4zOqa7n8tPDUTdLNG4PgTwaOdECYu40OwCEfG1xG0kzS3ThxUKay+0HxOEbTdp+/ewZpspfC4isvf1mkev8DV89IU3UjspfewZp7WlYs4PbIYR4F3EPtmA5t2ZzTGPo4SP9Q7PtDaazXOR/iQmyD2wgCusZAMs5Kwjm0S8R35fDeO/+kktMpHuIrfOnFgZezQup6dxhHiZ7AVZZWg9T2N246tJh8Re/mHOEr+vuAwhVPLKgW7VlwfpETPvsCBujUEDdXr+wFcc2SRsASkoLmE4zLqsAk7f9YImhvXe2s4nnVwSvipI3jBoX7vYoE5Bd/UZEuJPTAiWF7RM/89LgJUJVh2EfTTLXzVEG6AZVw7pR27EI5wYOy8xp0jaDP3d4NgnwdW0teUYJyHXj/B4zaxVfcyTnHcECzS8rpKWMZ+geOKDjV+Pz4sa/GhvaO1rWquB/pdg+ksz6Tfx0LqeY1/X+t/D9eBqcSFiFJYacACTsZipDDegGMDbuNzooiglQPMW7oJQfISLpQ2j5XifWK/LRJK24Rwku8YxyW7UxE+T+B9Wvd+m+BVI1hx+KbrxG6CaeA/JbTnNRzIdkgAa4PjG7oIH25gppc+llp9vk8g7fcJRtKOYwyGcInj9C/V4Br1pbj2+XXiAEP3pkntPgHgD3Gk+zyBrC1iE93B5rJ5bDZs1jtmic31Twgi+QoH2b2Fg2qWNL9vEcyxn7ActOP62g8El9Ryhwmkjen/5xqjiCDONSII6qnekRrtDEEEzRzPN20rWMeh1tKPNdM2rPHOC0Zn9J5zuBBPC8G4t3AhkWHhY034eaGx0/xeojF2iU34kNhEqSXOYQGqTDCoJzZ6WlmKcL2AFBhvF8B2DPh/67kuXN55X+uqxC6Eab1rW/NNYSD9cCkYpeCwTNBLCcE8V/V5HkY9xIa8T9DgGf3ewxaoDs0xLSNPcYntL3F8TJX+/g6B8ysEbczquU2NuY/NsBPYTJ2C8DzBIGtxHEAKq9/CUekfE2muDdhEuq915uFzD/u/Ew/L2FT5DAvFjfr+lP4ewfuzG5elTvfRAM6meViAl3Zc6TKFuUrNewwHV6aGuaV53yTorwWncy4TrorU9NI6kocDglvCdUKf9eLS2elmrMBm2R6capwW0TOEkJ37dgjHOyXdpil3V/Dsw1lA7+L0ySt69iGB+zVir7xLxG9sEYLkGBbk1nFp3h8QClYdrh65w/FMh1ME7dQTB0fyrHRFluLqjVU4lbkSa+rpzrmq+x9ga0IKOfv6GSNw/gT3v7ik578SPC7iUuPTgs8UVvYaBMcVXGr4Nq6vkgd1Wjjv4f4LZ7WOCo0xIlz8OVbMZoWvtAA9x/xjAAe7/xK7b39AnFNber5W630qmCzrvhXsIizXvas4JuOA4HdHON29RXOf1vzW9MwRQYu3CeEgrcijGu8HmuOW1liJq+F+gONTvuk6sWXgAPivsCm3gkBiSvkQm71Xi6jDaUpXCIZRjkthPsHFgUaJA68BV4lbJEqRLundL3Bp1gXd04Y1rVLiYD7SM7u4mU4VceDP4wAQCGLuIwjnidZTgq0BR8RBcUhsoJ8SpttLmMBf4liHt3Tvv9F6/1rrGSE29q917xKBpNM4R7UG91toITb9EBGs2a25L2nOOzjYsh/XJl8pmO8qsdmq9HsZBxJNYbdDPdauLmjN7bh+f8YJpLa0qc9bcL2IewXwGhNuqvGh9lpzO8Km+zpis1wk3EGtWme1YNeMTag/F372NZ8dLEzW4biTDc0jXVW7gtNpXEDqQ1x6OAWqtFrlYZ001IUbKdULbr8gaKZd43YQdD0qfKXAsE/gvR6n99VqjelyONA7+7XG9K2mSbVJc05X0hNc7CZdDsX4cHqNTaVHmiuCx4+xIFym96zgwimjuG5HjT6b0HuGBfP0Py7pZxXjO+dUTlj4RrF/PH2uKaiWETzhnYLnS7EftRi7zjox7S0Ifnn4ruEUyi+Ej7QgHGAGXqT3bOr5GmwhKCqY9z4uMJaWjykctLyre/qwRltCHEi7BD2lKboUZ3LcInhGMXHgtGIrY7meW9C8k8EXY955RBz2wzh7YJjgkW2EcHqBoLU+rWeToKFSXJiri9gvd4gDeVt4S/Mymt8d3GOlkeCXzdiqOqy5pTbdRVix0v89h+O6OnHA6BdaTz0OLE1NeA+7JB4Lb404FXENB1924EJJl7A7N3lDL26qdBU3oEsrZB3BR9M6cw1nSkzgXgSHHM/ASBdIWk4yVquXoIcFXONgRX+vEft5HcefnCcy86qwApY0s43TaKf1njwfnhTAdU94bdBauoS/twS3hOWnOA7qm64TWwYacUR4PQ4sm8Za6TIB9C1MlFuEb24HV6MqIZB4B2/aKVzooQaXxE0tr5QggkFsuk6pdRsXr3ibAPzX2Eqxo2cacXOgFs3/7wii38cm1jQVNuAyr8W4ecZ9jZf/9+D0xCLBaxaXUq7DUeGpDe/pHT/D5qQigliXcYGVXY11BTOTR1rLCnZ/vKP7wDnXX2nuT3CE7A6WTtOMva1nRzHTLSYO+fRFl+CKdn+LawBMExvnLcHiFg7ySxfHAt7UpRwvmzlICBedWKtt1rMdxIGWcLmk5wa1/tyojTjaeoA4GH+t/9c5noL0BQ7sO6U1f6K5bONaAem6WMd1EXpxcOxzPV9FaKIbxKZL33AKcF2a77vEAZZawDCB0wU9l+8p1pySKRT6Ds/iwLD72Fr2GFd0PBKOGnBg4DahPdzHGk8vwVReY4EiBaE2gpZnCbruxkFWRcLVgv7fxFXxSrAmlObWIa09+cIZTP8/JmjyLDYtL+jZFY1/T3NaJvZZm+b8Eu/BUdxIqwg33kpNtY3QJtOK0CS8fI27elbhDpZlWvs+QYN5wExh10oeMLlX0sWzhWvUXyT2yV9iPpf+5iEce5RacLpEBwrWPSa8NBI0MqJ7m7AfegbXBvkcxzSM6J3XcZGwOZximVaYZ1pXD25YdIQzvXr0O92Wc9jN9BQX3moqgGUlDmJOIb8I1yBYJQSHO4LZBeGjT+Pfx8rALs5kOtLPRb1zBtep2dF7kg5f4bLrRbjB3JfYEpQWkVQIWrFlcITA/x9hQXWUwHUZ5vsfEbS4QfDEtEJU4VTqPSzYbuFsole6dwr3uKjGlsczgsUhbmLVia1wDfj8S566iV2jpdga+03XiYWBDeyjaMalZ5cJZvpj3Lb0LqEdlGNJe4xAZgXu2pZ+nCmNcwUXVFjF1Z7SBPg3OK3pHAHoJwTinhHS1iLH/Tp7OBoVAlC1GJg/wGZ/MKKTaRdqEEsac1PrbwS+SzD7Yn3fIvi8wjXx5wgk/R6OoyjRO69jn2W6L9LknRsnhYUyzW8HBzOmZL1IbKgFzQMiAPCJYNmGc8TTmpCHwiaufHcDlz8dx4WT5jhezKePEEoO9XMfmwjRPadxq85xnCqTAS3XBadhrSnjEFKo2sB+tDNawyvN96nGrsKNkDZwYZkG3Fa6TO9rxF3jHmOh7w6u9NiB3SsZK1Gl9W7ipk6tuNhHSu6J903isCnG1oI09a1jF8dTra8OW9Jasek0/dYfEcLHhtb1FRYK0mWTFoQ6nCnyXWLfLRMWph7sQ67R3z04sHNXc7ur/9MvOoOF4pz7kt53Bguam4JzKcF0D3Fab61g+GOCjqqxoNOh9bVg33QDLmyVrqlibO0owem5Wzi19QDTRDEuipPCymutI03Vt4WzMkLDqsaHUDOxt3uFx1zfad1frr/TVVQs+DRobc90f77nvua2RPCqBs1nEveb2Na7Soi9+yFBF5/qs3G970c4f3wX1+rYwfunF5u9uwiaSOHmsvC2TeBwAhdw+i32Ux9i0/Q1rPRVCta9uO5CEbZopKukTM8s4YJdO8Shmb7/auHgNEGT/xFh9q4mhL5Tmts6tkjU43oYM7jnSLU+Oy841hF89Yjgg1/jAlSrwkHuwSrcB6aLoMl9wiJcg1uIb+l3pXD2E4JWkge14P3+WDi6hPtAXMbp44nzEq1zQmu7TNDLLLYWlmusdC/n/knr7gUsCP8Mx7Llc990FR0dnaDRMfBfFxXxM4J5pE+yEx/YJYSPch53pSrR5N4jkNqgSX9MCAtncVDQOU08Te558KYEmhL5Hi7L+pxAwiEBtHbdd5YgwhlcQyA1gmpc3z9dFkdYo2/F+dPgfuEjBBHt4U6FrwWD9C+OEYEbn2oOM8ThM4lbx+ZGrdB80lzbiuun/1rjjuC+ArnRDjXvVa39Mq73P4XrERxgkzFY8k/JfQg3HWrV9xc151NawzWC0Ca0vh2M6zR3v8QpPxUE497RPDaw+b5a4y5oPekiWsO9ys/iDZMxAhscb7rSimmjTescx9rLKs5pf4VN7dV6V+K5ErfMTlPuA9xUpZrYjF048CkP8z3srjqvOVcTQt4srjnepnfcwsV5BrGmXejO2tbzrwi8zmChOc21rfp8iNhD6XPu1tqOcOrShGAyhGmxV98t653N2IR+HQuhaaU7hS1WL3R/xr48w9USGzVe7vE2rXkeay0Z65AaYApoNTjj4iXHsztqcDbPRULrTdo7IlxtqwSttuM0uFaspW/qu1mCVtoL5lWkd1wlDsB6HJh2Rfc8Ed5uaR7l2BI0TxzItXpng/CQ1sIOwvJ4IBym9pyaajexz59gi+s6zgZKYXcSW87SHTev9d0gLAI/Jw6cKYImUmk4hbsAprUjLaMjmDaSVv+UsGTcwD70MWzdrMfm7n2sWKVFrBkH7ZbqZ0rwe4z7aywR/OOR1jaOKyzexvE+qRCtCI7dejaF6nqt/wvh5QF287wWDG7jw3da8NjAilSuo4XYL5VEaehBnDKZLik0F3B6+Q5BLy9xHEYxLgZ1iJW8FFZTiFrU2N8h0mBLiHPmCMcOPMfn3ja2eG5qramIvk3QUp6XXURW2F8D/7cTHPPF33iHrpfE4ZAm3DQ1b+BWrbMEk0iNKk04s9hM00Ecdm/hw6KZEALuEIwlzTtn9X03Nt2cwyasfS04D4YegjCbCEJPbfuIQOgQYSK6g81lKemm9pt+mte4mMoowYxmCQY0rfEOtNYXOG3qU+zuaMTR1hPYNHQKM9Z1LKhMEyb4PLQ/wHEXKUikQFCCu/W14U58lbjSVz6b2uMXmIkVE4fd93ADjCnhMdc+LVi90j19xKbpIRjEGMEAU9NMH+0F7GNNpltCaOwz2ArTh9P5lgma2dbf7QS9FevvDsIVsov9xBkf0C44bBEMsRE3uXmGD+I0xe9hhp2WjAVcvOkurrK3ovns4oyICmze3sTCx9c4TW0ap979rWBejlNMT+EI72at75XmeIALi+TeOE1os88J5vdrHHWf5vFFwWOrYLz0P/bi8t2fcNxKUaS5b3C8hPAmPlDL9ftd3EK6EWdXpMm5HxdieoKriGaMUQrmaXJ+GwfHnsb1Kbo0VjV202Qw2ITGfYLrQMwTGu51LAxV6rNd4a1W6z2tOb6FtbgBnFG0SRzySTfp+06X3C8JXlK4hxuwz3mM4D93NLfbONYhD8g6bDlKLfoiDnw+xBaO7xP0OYczr6qw0DwkGN/D7pYXBH0MCuavcCxIB67WOYlp+qbg/DbBJ2sxrTdoHW/jgzMFxTJc/XUBm91LcGxSr95/Gvd4OEvswT3d+1KfTWB3SxdOkzvE8UqlOIU1lYMZjVup8cDNqFbxHl7SHHoK8NKMM9V6BMsdXAgIrW8HKyH1BP/s1zhNgkPy3hS2O7GLrYqw9iwLBwta/z3Nc5/gDy+xZaRL77sgHPRhi/cAdn2/xumEeSb/BHcF/abrxJaB/6KoiD6CMfUSjGlPAEpLwIIW/AGuTjiFAyyqCCa4gk1Uq/o8gzmS+TXq+TTvN+PqTR04Wj59PUsE0vawNpmBJvM4O6GbYFQ1WNKtx60iRzS/1NZq9P0tzWUc94oe0GeL2Bw9ivsm3MLM4X0981vN4So2Ee4RRL6Fsy/KNI/UNvdxv4UFgrA/wcE6DwrgvIyrmH2XMK2WEMzv15pbujnWcQ/seYJw0m84RhBuPW73mXha1NzS5PsZTitq4HjhjEEcvLSucVMqP4dNuN24gU1uwrRIpOb1mmBs+wST3sSmx0Ni06V75zIhAK3gLIot3PdiUeNcwr0S0mRbjHsLVONqmqlFpD+6DAegVmiez3GBojYcqJWm5X7c1vYMcb3GaW77WLBawxX80mTYivtknCIYxi0swBxpfo167hluSpVxB/cK8HSEtd5zhNDWhqPSj4h9/lTvTcvFAcdrThziHO/fJYSg9PHWCSd72MoxT+y3PiwE7eCI+FXsj08XXNJYatK72DSamluhpgou35qHeh4Ia8QBuEwcfke41HcXzv1P3tKM44oeE1bAv9AzycNSoC0hTPmT2Eq6SOA4mXYtLkE7g4ts9RJ7YhcfQGvYtfIax0+9iwOfFwjaeqb3jGLXAfiQvI3jIjax9p9u2mEcKHoV94RpwxHyuZfSOtiJlYwGgteexhU4wb7/GdzTZJbA7xiupPgWLpJ2TeP34HotKfz/PlER9hBbLtLCNYGzmxZxT4F9XBmxhuDhw5rfEo55OYcP/hWchbSGBdMjQqOfwtkrpfgcSldvKmjpwsi4gXM4FqET1yhIXjksOKVy1oGDj+/hds7XcdzXsOB8CgfT/hD40T+kZWCckMJT02wkNseHuKlFG8FsqnFaXE6oG0fnzuI6Asnkb+MWw904t/Yaseku4kI8JdjXlQS8hzXiMoJ4+gmiWNbvfRwZe1bPDuCo5/Sv92g+53HlvHIcBPUONo2mZrihObURCE2NJzWIx3r+imD1HPuZd3Eb5G0CwZdwxbp6ramaIMolglAf4/TNU5jplODCIBsaa4Zgzu045z6tNzs4a2NF879AEF4KCFeBf1qAh/QT/gQXVvoENxPaEGxX9P8k7vf+TwTTbmxZ6sA93BPP41pvNSF8/msckNSDfevtOIA0fXobhOA1gCtj1mDNPE27Vbjh0ALuRnmOoJU1nL+/hwuJnMf1Dl5q7HLc+a5G8NzQnEZ135Dm1aY17+IUqlWOl21e0nilxCZfJ5hQOU7PHcfBnYcEfV0ktL0zuBtlI0FLq4RA+C1cb+OZ4DOPrWAj2Ew6TZi78zBLTbAelxdHa24nDthOXF0ufaNX9QOON0ptKA/Hd/V9xrO8jS02aZ5u0XvOYe1wuwAGE7i17brGfh83UxskcDlA0O8jHIfUg6vfbRH7aldzTfrawamD39EzV7E21krwjynCOnRa65nCWRvFGvtI801LYvri0y++ovfcEh62cLXEd4lDbhbX8KjQ561a8ynsS38bZwRNEftiB9Pt58Q+m9aY6wTPn8R9C9Kylxr1A9zcDBwXUK819ur5On0+ofu+wEJsvr8S02vS1SvcPOktrKAta767uOpnWlyqcefJu7gM8hncN6CW2F+zOBD2XY3xPkHr4wRtPMVBmbvYqpNWjjwTm7DVehEL/h8R5+QiQSONBL3sEjFruX+7CCF6FQcNLxJ02iJ8/ELwrNeY68JBkdZyU2vbwnEjX3Cy68SWgf9NUdG/rfN+hpDkzuEgmXYC0b9LaIlpkkrTTmrrg3hjVRCH/RMsyTZrjHmidGYpwXRf4mY67xOSfEqaXTjgaaTgvenvXsSBYdcIYK7jYiEpjEAEKR7giOPnOH2xFZsR01XSgevED2ECmMcFdCpxichtgrDvEiamz4gNsKC1po97S/NPU2UzjlbvwVUSSwkCH8KH8iHRFOpvcPWrND+dw+bvcWIDLONqeM2YGAuZUSuu2jiBU47e1Xz+hjiIUmPsxRrka6zxPyUYwF0sDTfgbmJzmIk0CSdV2Dy+j1PoUnCsJuiwSvcs465em5gxXyc2Ux4Kp/V7nGCApYSg90jrS5dFvqsa+8urtbYrBF4PhMccr0rrqMS113cxU93Dpvg6fJi1C+Y/IoSGYhwzkkJrL66xPoAtBjvYVFulz3PP3tT6XuFKbme11rR8tBeM0yCYHem5POjSNdGMA1gbcFT8EcGkfotpOQWdsxjnO9jtdQFbCKs1x0a9vxUz/z3cC+U/1dzva95pRckD7+9w9tIQrt1fjzMnanCNhkaCxppwMZwVgiZ3cMvkchyEmFryNsHjMtZoW++7SRRaSgEuYyqacTBgGY6NOsK0me6EJSzs7OIgyxQaujXONXzYVBMC3wDu25GKyihuulOmZ/twtsSexk9XTfKqj4nDt1hzfxdbf7dwYalHOOB2Hgto3cSVVoArmtdbxJ4sdC32FsA9LWIrxF45i4sfreLg56u6r1TjnsMm+LQCX8bK4hGxjw8E+xksHFUTwndatWpwKmkesLMEraUilzg6wPviAi7bPMvxBlFvEa6593AHyvcJF1RaMVOI3OJ4gbCk5Ubhr1Rz2sfKTaU+ayQCIP+v/5CWgTIsKacm/hqnSSxxvD1xSvoleqaM2CwXiU10Sb+/IDZNm+7dEEBmcbnYJ7gCWJr82vS7iTBrLhNEldriVYIolnCVwj7cvz6J6GMCab8kAJ9m8HVsLurETKQDS9pFOKr/OU7N2NEz1ThWIc2baT4vK3g+/cnp71vCjT/O6ecCLk5STDCnHoIYfo3rLjQJ7n+Hm1XsEsR9DZuhUwP9UjBpxNaYGWzOTXN4zjFNdSX67hxRhKMIH5gzhBnrLnZpbOGI8S8xc7itOdbiNNKrWNsfwkFGzcRhtIOrnVURDO4qsZlyo6VfMw/ecSKSvVzzrsGWqBKCLvNwLsZC31mCKaaGW4Xbnm5pjWeFr2LMqNNvuEPQcR2ujZ80mFrrKMc7vpXosy6cbtiBUzCTKezgOgGHhLafZslhbPG4giuRpcZWLxh2EEzqCja7r2O3wWmcD1+N6/lvEfu2rGCdf6TvH+GKcPUE7dZhl18tLi9egzMeRgvgMoYPqNe43PD3NI8viEMtXTa5pwZxBkwVQcPfEtxaNNfv4VK3R5indeKeIAMEXi8KRkuYNj7EZttlnLl0Ueu7QNDqE+GsAx8ufQS/aMFFzdaxa+scwRv/YwL/pbqvB7epLdH/O7j2wSFuKPUc92h4ifuvNBD4fC7YJK0ljzzEyt45gj+/xp0j+4jDa4fgORvEPr2ieTzSu3qJfTqHS6EvYQXjBwTtnRL80myfB1oFccBOEvu/CdPOJN77eQbME2fLut6bLs9p/U6ha5TYr08xvUwJZuW4h0EK3weCw1WC31YQVuoUzH6F3Q5LWBG7JHiex4XM6jSXZhz3UU8ovOkG+mtcibRDc7tA0HA9oSBc09itONC3CmcCpVXnNRGz8khwOsl1YmGgDwfU5QbKA7IKm8e6sG9rgwDw17iD0jyOFdghAPkOZgwlWLq5RjD2S7r/uwSCPsWtlC8RyKrT+AN67rHm+CGxSXdx4ZdePZvm5Nxkj3AQWi8uW1mGOxfO4LbHqwRBtBLM7yPcGvcl1hyrMbGkjx+NUYJbs3bg1sxpenume55rTSlttun9bwkHq8TGKcKxB8v6fxvn/CcxIriV46CcOuyPP4+rFFZgM/4h7gsAQXCpUTZioWcXN0xK/2C71l+PNbmnmtN3CRo7JAh6HUdcH2peU1hAOhCcp3Ezqj/DJTzTLVVGbMZ+HMWbJtV0WaVG2oLN8RAH2waO6H9K4PsQ59KnZten9f8editME9pvK0GXbZpnB3ZRreDAzEoiWOxDLKiU674NzbWE0EhuCH+duKZ9urHSOpN78qGefYjNw/u4z/k7ODXxGoH7PT3bjrXQaZzBc1lzzPesEV32XuOYkjMEPxgTbFe13iHMS9K0ewMXUcrDaB53bGzCQkrO58+0jrRk1eiee3q+SGt6jDXSOeD/gRvILAsuC7jjYmrxM8S+fQ8Hg6VgnCbzElxWPfdsHhJrBD1lEFkptijex3VQGjBdrxN76T5uq57PVREH6Ts43mQPB48u4iZs4JimYoI2BgkB6irh0qsXzI5wg7C0II1gt+MydjGlMpF8qITg431YAF7CnV+bNFY/wate4TLzk4LPEtZ2m3DGTVqSpghaPas1d+B0636tdUPr6cFVGsGW1Dkc1HeasMjmQXpd43YT9LJG7IG3CTp4iAX2UazkXsLBwt0EPX+AhYK/xCX0X2L3brp9izSX7+MaCM+IPTIqmL4Q/n4P9+C4JdieJWimD9P6DVw/Ia2DJZzsOrEwsI7TYqaw/6oEB6LV4k5oaepuwc1eXuJynOv6OUVspJSezmCGPIuDpHYxIyrC7VL/B8LP9SuCyTwgDqgxXDFrQ2On/+ic3nGR2NAjmLEfaQ1bWmMFIVlu44CxMwThX8RVFadx7f8ZHMw2jKNfi3BaVzeB3CTScuKwWcAZDfOa67JwcErzP9TaDvXZTWyK/EP9n6a89CX1E+lH68JF+rr6sfZ9X/PZ0X0rBOPYx4d4Lcf9jYnPJs3lMsGsWvT3NY3ViM3C67j/wjqxuf8FkRs7g+ufV2LJOyX51C4acXW7FVyQZF/wG8VxGec0n4+wz7RS+PuYYDjd2G95EbtcVnDE+Q2Clr7Q3Oe1/lGC7oqx9eMQR8wnI36BO/01EIzxbYJG3tf6hgSHERxH8gQHI1URpudnuPTvgPAyiAt9lWPh7IDQaMDBYpt63wiB9wWt93NscTnSWlOY7cYBkcN6RwqfnbjCZJH+fo475k0Lbxta+3Ncl78BZw+lOwJ8yPXiTIhNXJr5Cq7QtiY4LxP08pgQCiZw3nslQZPVBWsawHnmaQJfw/3tN4m9sYbjW15hN0pqprs4AyStK8nDpnHgWzuOeWnB9LVF0FQjbiXegjX6EWzx2cJBzKdwpkwJbmzUhys7tuBCTz/H2TTNgvuR3tkrmCU/nOM4jv+Z5nWeoMlhPTcj2KfVoJw4KDMWJq3Ij/TdAxzoVk0IFt16bwXBc6oJ4SPXmzS0hPtT7OKSww2aVzdxFvQLHpX6/Du4/Xq6EEf0ni+Fh3RRH+m9nQR95Bou612XCfpYxK3XH+kd0zjwG1zfoBIHoKZbcA03+suYihQ4y/X8st7zZ8JHuiKLcQfTIdz86R4hdJUQVtd9Tm4ZKP3mW+IaI4CzRQCoEgd3JNF1FCxilQDgIpYyLxIMK01SV3FFuG4cSHRe9zUQjLGLAP4rXKN5HVedS4kU7LPfIw71IUJa6ySEhNzAjbimfKXmW0YcpPUEgZQRjLSMYAxfE8Swhg/vA6whJRPs03ePiA2SB+iE7rmDtfRuYjPV4DSuQ33WqbU+xZ22VrEJuQx3AevRz7/WHKtw+uUA9uOn72tb8CzC6Vc3cV39JVylb4sQ5DLWIM1fqVGf03OPcT77Nm5x/FQ4WCQ2/mu9c1ywbtPY1ZpzBS7mk9oqmEmnALUnPDzBpuwNHK3biRnIezgTpAP76DN+5AhrpcsEM1vUe1dxemwymG7BL2F/iDtBNmKrT1/BXPqIg3dZP1sEnVUTh2Ot7lnFcTXVOI1plaCTDoLhVRIaTpr6S3AcT6vmlodps9ZypP+vEsFzXbjD55LmcJXYO7n+cpzK+Rnul3CI00wrCRx/jeMc0j2U7rxNYq/UE4yrArsfV4WfGlynIQ+wDDzbxRaeFPy2Bds09W/iVL8rROzCocZaIugzTfKncZ2Rl9il2YYF8jZc3+SGxqvG/C799s+wcFyutSSsT+u5WuzLT/fA28S+KSI01HrsNlvVeI85bho+wJr3Jf3e5ngQdythgu4SzIeFy2rMrxLW14k9uqU1PsQ1OC5pLutEHnwVblxVgwWFXVw4bIvYb7M4qwlc1reJoPsBXHhol6Cfz/V/ujxHcNnr0xrzFrGPyvV8xp88w3z8AcFr0iL8cyygVhN0tIizqi7jGix1BL7TwpOC0SrBg54Q++xD4pA+IujpHk4fBRes29BPWiuXcJ+W09gScwXzpA4crJh4XRHc0Du7CeGyAp8JBwQud4hYgSJcs+GbrhNbBhpwwZIknArs505z5D0CEYuaxBqWdEYIBDcQgOzFktAS9lmW4vrKbbgASErmyfQbBIBPtJBcTAopacJbxznei7gQRzL489ivW42ZSjn23/fhjdGn99wgNL023IRlh9i8h/r7U0KTO8L1tOtx6l4bbodaTDDiBmwK/anmv4ObaazhmggL+nwYR+feFmwLzYy9OAArfZ+nCEtCakQjuHRmmeD4FzhwZgEXEBomNvNrXKegWO9pw9paM8HwHhLE/Ax33fpQz6xhDa4G+/jnBafPcDW+YcHmgt65J3idw8VFSnHDlXe1zhSMWnBa6LUCXJTjjIwFzbcdl33+T7T2c1p/at5lgsERwVBScP0TjOPU6H6DTfppHi8m6CqZ34LGSq2kmtj0W7pngKCBq3rvZRwLUEkcFqV6TzEuKnNXMKzTvX8pWL3ALqQmHPC4Jximm2kfN7VqxT7/QlP/U6y1VGKhtBqX8y503xziok4lwuMWVipyr0wI1tX6bg+XEU6tsrpg3r+Lzc1vYc2oDlfn3CcO6EWCFvuwWTxpdFH3pzD+JccDQVObm8OZGwsEzffj6PLPCRwnvodwcOYQwX+WNJ+/wL0tKoWfAYLXnMWp3IcE35sswMMmbmSWlqNpXISpCVtPlnEVzmf4gET3ntb/Lwka3tbfTzXPFlxHYJ0QKNI9kVaaRhyLs42zUx5qPWndfK1nHhC08JTgQ3+H63x8TNDSO7hmSxEuFX+Z2Bcr2Pw/h037RTitMflPPSGAVGN3cRHwB4JVE47xSqE+37dNKHU9OHvmUGMPaLwzeN92CjbVuG/HaRy/0YxdqmmN3dF7UuEZxn1HBvT/As5uuaf5TGGaqMVB9d90nVgYKCeI+TruGLaH2/+mFHOgiZbjfuPv4/K+jViyH8HtcPuxSXFE441onEfYzHeIgwg7CUL9ivA5p4azQjCJBhxMMoErUz0nDq0E5CquPPYlbhl7hIOUprCZaBK7PQ4En9cadxJnSjThrlGT2GRXrnc1Ekx5niDCHa3vLHGAHmit4ziV7pZglgTWgLWYZB4/wwfcewQBPcUCz7LmMqH1VhBMdgVH9M9hJjKjsT7BNbv3BcO3sKXlNSFAfIqDDB/jQ7ha77yhtQ0RB3AFsRkO9Dv9vaWC+xpBAxvYJH5A+NGOiE1Xjc3JKXQME4y4AnfZSxN0Bu0s4ICsAxyZDqHpDwu+/4I4dAqFshacbrSitaffNnHfgIMK6zXPG9hak3jfJjSRRVw9Li1WT3Akfwqap/B+uIFbhS/gMqTDuPPaaVxyNa0IeeAsYzfLPEFzN3D7704sRO/hksQ1BF1fwsW+UgC4Suzpd3HzrRRw0zW0RwSfThKMbBSb/9N/m8LsErEnxogAwDSzLuIo7Qo98wusLSYjfFTw/rQQHeJCPunemCX2VxfuIHmEfevpLx7Blrtywe2J1p3C+1XBPWMQpnBPkDZcFfQZ7vRarrmcwdlFqR1DHC4fCqc7WFC/jJWcX+q+tzT/Wa37La0rlYJDbDUpI3jHmt6Z7+vAh/k17GrLOINS3PugAvvSF7DQsqS5ncUFqg4Fmxnh9To+OCuwRr6J3ZRLBI/pI+izSXNJa20nESzaxHE+tymcVuPmYhmXs4hdlunO+S3B+/pwUO5LLEz3CabLWKitwFaiF7iKZm3BWg6wAFyPzf5pXa7WHJ7h/b5L0HEHLgde6C6b0f83cRXECoJ+OnHZ5pNcJ3YTzOP+0mnaOYs1qNQ00z9UisuAtuE+BM9xNPs2wTgKfcuzOODtENfjTyaWEnBqApcIJN3BxXIgOgd+QGhE1wkE/wFxAEGYmY5w8GAbrkW+qnfuai6LBHCH9K6PiUN0D+eip1Z3Xs+Oa5xpXLXxAFsqigWTeoLw0vf5UHOqwO6ONq31NHEYnMVpO4nAVlwsJaXpi4TZ9hBrek9xNkQzwXheCaYf6f9t3EtiT89X42JFKSWX4IPsMva1pVVgHJcl3ccBnLO40U8KCw36/xGuZliE3Tl5eG3hzJCvcAfKRRyVnrEdjTieIOd3j6ClNa2nVc8162cFR6iDTdcVmEEmTndxCeVpXJtgmXDXtBO4u665thP0Vcbx/g7PcbOeFBrTwlFDCDmHOEVqSePdwPnQ38Fa2r5+N+P6B3O4FsYcDmLd15gfEodOOw46+xwX5LqATbtpSerQ31WCax4OpXr3KYKRleFaG+8RNJmutgsEzV/T3EYIYXJPc2nGJaO3NOe/wu6BdYIB9mkNY7imCAQuLxJm4kocQ7Kmz19ixeMMjqE4wumEjTh+aB0XLhoi6OV3cRzUJEFTae6vwMG2qThB4LyDoId93PMkrVFjuDHWJrFH+3G/k0lcc6AF98kYxulyD7AGnELpIi57fVgwn3SJvtD/6VZJAbkGB8aiMdKll/EsKQjO47iqLRz/dANX9nuMBeJRwgJaQhxqB1rHJG6xPYnjF+ZwbYZUMIsImvm8YK3d2GrdhA/WyxozrSwfEvg9wA2cjgT3L7B7YlbvmsQ9DSZx4F4DduV2Y4tHI+b9u4JftXBwm6j/cp0QAg4J3G3iHifVWk+b4PoKBzYX6749XDb6ELsWhnEvmG+6TmwZSNP9IE4FLMYFMMZwIEMufBVX3KokNtrHBONLc3sy/ofYEtCI/YjncSzBPvYJvcDRks+xZvIdguGkWaga+3ju6j2PcTW/biyN5YHViK0Pn+HGHCVYQNjGzZouEVrzbZwaOI+tCC2a32WCce/h6nptWne6VI6w2agel0Gtwj72EXzANgueTbi/+yrOQf0d7AdLd0eaa+tx0Y9avMnGNd80+Vbr5wHOskif2go2/aWfswoT5Gnsy3qHYACLWAsqJjZjO+FPTeGrBHf0+lNCe0izbJo/U5tKK8k+Ll19RAg3p4hNeh+3TC3heBGkWpxy9AhXttzDcSDTBK1lfEAJrnZZTWhd+7iyYTk24/0lzncvF4xWhceLGuea1lfD8SyQjMFZxE2i0gWVgkeD3jFYMM4VQit/CxfRuYXjHXqxKXGBoJ0UiKcJ4XkXF+FK91xq4pMF65nHgkCRcDpJ7Pt2rDkeEHsxTcKLwkk9QT81xB5KN9kSDv5dJ+ihGgdnpUsnectdXDuil+BTm0TKViNuOZtWjSNscs4x6jheNjgZ/UWtqxHTxqbw8JSgjVassT3D/RZ6CPpN4XurAAcQtNtO7OM+gh6LtZ5HONNkBNfh6MFpq+kOnSkYZxlr4Cu4F0u78JJWqps4ZTyVrC6cgtsoGK1q7o815x2CTp7g7ppbOP5mSd/d0xhpXeoRHDrxYT+CrZMluFFUMRZIlnGxoGWCBr6vtaZl6H2CXtJdtIVbiB8StFJoZVjQc2MEfZ7HfUMeEfv3nJ5Nl/QM7hMxoDl9TNDAQ4KHLRBpzAsEj1nAe2OsAEbXCJo+LxiW4eqbaa2ZJfZXClm/wRlbhzjmbBfX3LkmGDzRd6kwfdN1YmEg/eHrhBl6AuepFpo69jEC3sYtTlOKSYl0ngD2ssZ9gpncBhY0fk0gLrWWT7Tgczj/NE1QKUE+xUE8lYQ0lVJr+vx2cT97cPBOIwHIBmxabSFMj/cxYlNre4nN4LMEAtfwpm7HvdobCQJKTbNNzwxo3C5cZAksOKzqs3+GA1dmMIEd4viHlA5HsclwVXi6i3OoV/T3L3Dk/g6uA1FBCDl92Ee2p8+7iM5iPxQeNzGRp6/+Bo7IfyZc/oJgIDP4MFrDBVAOcP5/mt0GgP+G2FS7OAviEj6UX+B0w3nBpZzYOOM4Uv6IoJnUmDv1WTs216/jALQaXAa7SOt+Kfi0crw87gy2XCxrbv+UYHD1mnsytn6NeUHz6cGxAvPYX5kWmCJsiejWfe/r/SmQvI0LoMwS2vcTreU+ZmpV2PWzjy0gSb93tLZmwf4D/f0T7FbImIED4bZH67ytzzOOAMKC8Rss2MzgBi9tgkMvtmzNELTZTtDVIo73SEvcZ3qmCu+9Qxxg14kVijQ7rxDC+AuClpaxq3NPcE1B4hzmE00Ez2on6GMFW62a9e5igi5+jktctxB4P6M5ZYwABO8cIPZlu96fQtEMjlXYwWWRk8ZWBdM0V/dwvO99HaEMdemdNbjC3QLOb9/Gmm2D1noZa+JbHO8YWiK4fKI1pJJzSu9Jerqm8ZPfpsD5hT67j0u012iM93F66qzu2SMOSfR90unLApytCFalBO5/KXjUEjSwqXW+xnEDZQSPS4VgFhccGsJFfvKedK8k/2vEAtd9veM3uAhVI44DSiEiXVKvsKLWg3vw1OPGX604oLgSK63fwTEoJZrvBwR/+0DzqMc8rI2ggRJObv4/sZugArcxXtBLk/GmGaJbi1/WZNpwl78lbOptJgglpbxO3E5yFxdnSLNyFYGoc1gomMZtQM8SB00VAcRi3TOOK1YtYt9O+pa/1nzO4hriqRW04kIOozjKPLWjHlyIZIpAZmqJRdi814FTwv4Vrrm+h90hm8QmKyIOkA2M1Eua72/13Dqu+FVOSPYrOIf7Me6jvkocOFU4NiB9iC9wqeVm4vCeIzbGOVw6tVlr6cepoZ/gaohVuv8XgncL9ncuYnPbKf1/DZfQbcUBLimVzhMb8DxutpIHcz22VIxqjHqNO6H3NGjMP9Z8x/Xde8SGHSA0xRvYlVIp2DzBBWTSZDcgmJzBpul03UzjZiFlWHPvxMxlhsBr+rTRfKuwmbdJz/bhFqpzuBhKOw4Ie4H9jem2SvdRE96jGW/wkKDj3+CmP7nPenFK8JTmeRabsDc0n0e4CEu6gGrwwTIsfKWweR53mTxPHAStOHaihGCw8zimJw/KZey6u6R1N2IBbYfYp43Y9Jta+hYuLpMCcBnBJ77Uuo5wfMqUnj0SDu/r/ata/7q+n9Yce/CBfBWnUu4JJrc1ZpqC2wkLyB5htUlte1+wOsKBnm2ad46VClW6CMewnz3paB33+VjEfuplPV+Fu/6lS6SP2BMrWvMhTqlOQbCJOEjWCf6RcGvVetP9W04oBL/QO5NXVGm9aWVNhWcR8/Dcu+VadxkW+HY4XuNlHVskjzS3aaw551lSgmu2XCLo9z4uxrSNLXRNuGz9awKvNwWvt3GK/BgWCsDnwxyuVrmDy4Z3a/wDrDSk1bxP81vGJZrrcYO4tK7kOGktGdUcizGvuIstiZ/iXgS1HE9VvIVTKb/pOrEw0KhFTWuB5QSDXMKlbsexv7wK+HPMLNNnmBJbkcb6AKfJDOMGPQ0aI01xGVAxQiAqfYkLmt8K1uAaCGY8SgDtkuacJuARgohqcYBKS8EYFYQ0+gI3iZjBRU0ua+x9bDbewNGb5wWPVdycok1wOcSNKPKw7CI2VC9BNGmGyoPpEW6e01vw3kZCSPi4YN5pzl7GgU8PcSzFMM69rcad815qjFq9bw/nfKcZ7gBv9BfYxZOCxTOCWL/CVchSsFrXe3+Muw4+1vO5ARoEp3ZiE6cpdJvYPJexeb8TFxopL8DLI831r3TvjuCzhK0p3yIOx1199wC3KS4jGOAcQSevsY82x5oXfhdwiuDbOEUqNYxdQviZ0O9HWND6UHBqxcJCHsbl+j8FmHSXXMbBgYOCfwrl72DhbQe79UqFwwaCbjY0dgluBlZoNSvW72R293GO9AbWWG/hgKdSgrbbsPb8ruD6G4IWunHsQidh8SvWemrxAX0R14oow8JdMtG08Ixr/Su43XIKyBmjkJbIJ7qnA9d9SOtIKQ4eLMIKSzGu75ECw4Jw8hnOwtjErpcmrKVf1BrTjH9bsFzUGvpxO+c8zL+LG8GN4c5+a7hAW8amTAmWW4RgUkXwkaeE33yNMKWvEPxgSfMa0vg72LWxTtBrve55TpQzf4UFrHataZug2wNif36lsc7gWJ1NXHlwELuzhgmaa9P/Q8S+2df/t4SP5xwPNHyhtbdgwawE17rYw3Q0pXf8TPdcxa6MXZynv87xOLdxrfU1ztLZwS3Dk56aCX5aT5wrrwmaeEnQRx7aq4Tg9oiwOie+LuL+KsuCX73mtIJ5bI1wtkrguxkf6mcEo0Ucx7WGA9fnBbdVHDx6kuvEboIlAkDbOLVmHPdX3iUIfgNH5yZTSwJpJhC4j32Lz3B0fS4G7J9PSXkM+xW7cWDKNsFwOjV+I07f2cbWhzyUu3Cf9iOC6BpxHMA72GeXJqUiHMXeThxiw5pnSud1ONf9juDVhut0Q6SndeHudWuC4S9xWtMBbsqSJq4D7EN/RDCVBmzNuKf7f4cQro6IDX8Od6d7S+NCEM9LnPc/hBlGmqk78GbPmIG0Do1qnH5c+34eVyTrwlaUjgJ4pkk+TZuncSOaJsLi0ICLUSWdXMTVEZdxbnq58FUtHDzBwV2viU1zQDDv1zir49cEXeX89wtgvCX8beEshQ9x86eMJcnYkF3BdQYX/bmg+b6l+zqwb38U197Y1LxG9P23cT+HS7g3xBYuKJOM5iLBbCtxG+30J2/r2Ukcm7BGMKQWzacZB06W4ZK+g9iEvEpUvLtO7O0uYq904V4YndhsfoNgjPWaa/qqi/FBvY3zzpsJ/B/iNtFPiH2+Krz8ruCWdDWAS27PY7ddanALBI3e1ffXCcE3BZJkssvY1dGn7zdx1tMWNtcX67MBzbtL601GnIrFBK40+msciLyGM69OE3tgnaDndCVcJvZaulD7Bb+/1ZrSBfMedlMeYCH6BT5IWgn62dP7TuG0xlaC51zBAl4Htmimxv9jzFvSbfD/Ilx2vbhb5gHH6+VPEDQ+TdDbBhG4XaX3teK4shJCGDoi6OIFgfvzuCzzimCeAkAqCykcpXsi3T8NWHErw0G/FThY9gXu7fIMW/PSTdmMA1prcNZPusYbdf8LjqdU92h+p7Fy24ldYv2Yz6cg10HQfdJQuvHmCuA6jw/4pPdGbAm5rfntao5r2Bqdrp+TXCduVPS/LyoCXF3rsOC7y7hF8Zy+T8mnD5sU09+T5pk1bGZ+ICCkH7aIIMopnCefzLgOF71o0v93CAZZqu/S7DJLEFQ/rrN9hAPwJnETo0ps3nmGGV0Jbkf8BU7pqScIcwgXZqnDBUXmNUZu0GLBJzW1cb1vFtdXOIslwnQzbOHyk6uC9T5x6IzjSN5TOHVpC0f2v6t7XnG8Xn8tZlSVHHcDdeGNc17r+QBbgNL31aS5PScOgwUc65B+xgMcbzDG8Tz1RZyvvyZ43sPCWrovOvT8FwTe38NVzG5qnDSXLRH0tyQ4p9WmWPNPWKU5+wssKC7hLI1yjVOJi7eME61TP9Pf1cLLNg7WadLa3iMYYwMhQHbgA6wOt8jtx0Gw38PxEZUa9w8Iy9Embmm6jTMGbun+L3ElujYsUCdjaNL73tcYzcS+S82/mKDxasF+haCRKziocRG3gN7XOl7gzoTpipjXZ+P4EJ7Hgnla5EqxBeAM9q/muxOfyeRTUFolBJdSgpfU6GcYC4kLBO09Frxa9P4bOM7kiKCPcUwjtbil7qo+78CNiYZwM6dKvaeX4CW7xH4bxAWXUshPmmrR+O8Se/IcwRuPcPBfwq1c3zXpZx+Xjq7APQNGBbfrgkGa+1MI3MSp0g8JH/QgIeB8ivtfpIukBAdA7hC8Zpjg9Q9xPf4S4H9OCHFpZWnDRbTqsdk6D+Nare0LbNbuwcLyLkELh5rza6wwlOE4sw3c02OVECxXOB4oXEPQG8JnG0HDd3AxqQ+wVl6hsQ9wgaZOzXFCuBrH1rc17P7ZFfw/F1zX9N4BwmJzWvCpwELGGcG/X2udLZjXIeYvOwTNbhLWjuQjp4j98Ep4u4+tXskzi4H/4h+yUVEvztPuJ4jqGsFE1jHBpQm7E8cQLOICDmUEM5nAtbEPsfQJAbQ8sNNsV4n935exD2ke1/8+IJB9Tc8s4g5hj3EDmHbN7fs4mK4c+wBfYNPZoJ55gtOKcqOlX7WFYLBvY+lsF/u6Nwmp/0scbLSMuya2EEi9INgeYm1rDvupkkku4EC9Fiz1P9f8HxIMKzdgmsC/i60lc/p8E5ubq7XeSeKQWNIaU0C5gztzvSfYJWz3Ba8izeuS1r8nWBxik9Uirq62iCsibgrOaU0pwSmORRo/fZw/w2We7xGboJegk0+IDbtMbJJm3D3vPUIISAn6z/Bh1Y4btKD3jHE8krqSKAwzRgghVwW71IbQON/XvLs17xrBskh/XxGM0jfYJrz8Pba8JBO6h4OCEi9FWIMdxK62LhxvU4WL0FQTtNWKfbbLws053KcjaS814lLhaFC/t7T21DJ3NX4fLlozjYXcMo37DAscb2v97+m+qwT/+FywnsPWsc+Eq99gAflrbAa/hKvITeGmOxWa8yAOojqLi8hsY6vFBrF/uwjeUYPrYgwQwkNaVM5ojR36rBHn5e/hmghp2WrCSkMpjuLvxiWRH+K4h3mCP7TjXP1SgjeMErzppnDWT/CtPo3VgH3k69i33UnQQatgdVb4uEDst1qsFd/W+pZxhHsxFtxGCP47oHfWCEebBF30YyFmBafrplm+GKfP1RGH5ynhZYewpg3gfgLJH9N9NYKrI6Z7sVF4uS9YdONqkMV6d8YF1ONzLC0pk9i3P4pdrnm2HWGh6CFBt9sE3fThqrVpNb+GhZYV7EpIxasLWwX6NcYUsW+69Fkjsd8r9d7nuBlVxhicI+jkDrY8VhL77hSucZH85Juu0hPexzLOo57VpEdxi8Zb2By5rUmuEcRylmBoHxI+7n0CeSnZ7eIOZx04oOwKPnzGsMT2S5z+kpplSk9f47SsMtyspRpnKSwRBPbfcrwpS26gCsKv/JRgXPP6bgFru7kx5okNdI9gKMsE0j4UnFJLfhtr2udwAMkoJo5xzbEfB0zOCV6p7W8Tm3gEF17aEzyrtP5e3LGwG7cbXsNpWlW4zXK6Dy7os3RvLBKb9TGOhxgnmPcGsTFOa9339FkjrruQZtZ1YsOguabpdB0HI6bQ04fN8I16phm3iU6GuofbVtcQm2UCM/4ygqm8xL7hZsJ83EfQ5zIWAtPVkAfEPjZfLuHiSvNY85jDVouruN30mmDzDFeCTAGsSmN/iq1Tfdg9lkLJC4IOUpCbxSb6jPVoJugkhZVeHHT0K9y8JIX0UcEiffup2X2JtZE84M7hGKFl4WwTFzJ5hrN0kieMCF79uIVzHvRT2EUwqLW+j4vDNOmzWaI72xC2Dn6L2PNrxF57gC2FvyxYZzEWNn+tdVTi/iB3cInqLdxv5QiX1E13WMYepOA0Qrjo3sF1IJaIGJIprfemYLyg788J1imQXCb41H+Pu4P+EKc1VxHC6w3cH+AQm51vYAHnCPeKeIbz3O/iktn3CVpKQbxacO3Cjc2OcK2BFGZ3Md7TJJ8CdcaNlBOW2Dnh8WeC5xOOB3jW4q62/ZhevsABgKuaw22iFfpbhPB3HVdmrcGB6mmBXcfWhjrCzfaQ4+WZpwnBolfrH8GFwdawO3gDNxGawZawGpwltanPnxDnxnOcKXaIrQm7uFz2D4hzZFNz6ccxKpuCwwxujlaMLVlduCoiRFD0X+CS3lMETbYIP3+Oy2e/xtlNdZzsOrFlIM0vpVjSn8G+m339vKMFn8L+y5zgfXwYdxMHZFnBzwFxqAwTjOmnHM/1/hhXe1shCDVN/OMEkBrxYZZmktRydokDbxGb0HOzH+GDNZn+WWJzV2v8RlyNK81i3bjV5CCxKatxilGaqHdxne7nuJTuBY1RhIsPvcYd2tZwvMMrjTOKi3p04SChaVzDehmXgd4lGPtvsKBVR2ySJJYSgrGmfyxNdLnOHcz0P8dBhq+IwyStNzPC61ead86hCbtCyrFV4yvBCBxlWyJYnMEaUBmxoY9wjYunGv+xcJffT2vMZZwFkHjfxj76V9hVNE1s8A4c4HgVt2cdFt7aMT2nVaMauwiuEIJxwnAMmx9f46poZ7FZ+ICg0SWt9xXO1W7XnCtwoNG8cPkVQZczmv8w1ky7CUFrnrAI9eDGPAuaa+7T1AjSYlaKK4p+oPUUY23vLg4sGycY/o5+n8bdSlc1zzkcJJlumhUiq+PnWu96AWye4QJk1QSTu0AwvBQAB/XuFNwzhmIAC66rBI3kla6pLsKi8EL/DxA43yNSKEdxidezHK+cN4y1/Vx/NWbIXQUwrSBoaxnH/HyG6bpC/8/rfanYpHXmBa7VMozTX0uxC6VbuBokyvdW42C7S9iFtY8tp1NYY6zE0fi92EKVNNGCXb7niL3dpvHmcdZRp+B4s2BOIwT/KNb3rzAd575Z1JjpCm3Cwse6xmkRHJtwkblFLPytCe7ppinX3AtdJSlwjOMCPs1YiHylz5Lf1BKulDK8p9ISclW4uaTPe7Al9xFOj23EJZcfY4vjOcE9rVtlODYqXSs9mvsZrIC90HpT4E23UIXmXKM5tevnDHaVnOQ6sWUgN2ARLnu4o88O9HIIpjSAqypNAv+SIIYKHLG7jaW/LwkJ6mtcQvcVTvM5JCToSSylTRIATTNKtb4bJyTMUewPTO3jfRyFvYCr/5XgQK0ezfEF7j1+ithUaaofwykfnVhifA9HV6fkW8LxLlXncYrUGC5eVKr5pwnvjwkpdx+XgD0reJRjF8ozwb1cc+jRuI3YtP5C9x/hIlBluBHLa1xtLX1fe7hmfLpx5nGnxjxENwh6eIaj8ReEly2c1vlb4lAZF8xvE9rEEhYGmgvWUYG7ks0ROB/GQUenOJ6rvUkwhEWNdxZXp7tIbNIUWK/g/Ov0/0IIn9ewlpja4x7WdkoIHGaMyTxOB0wT9gH2i+5rfkeEZvgUF0PpF67SulZLCMP7ODCzFxdwOsKaS463gau7/TVmRJ1aWysRb5Cm5vkCWG7hUtPpOkk3VCVujbqKA7EOhKeMkUiYtGgNwwR9l2FLXis+zFKQ2tc9LTiYrF2fvUXQS4mea8eC/k9wZsACTnVcwoXHygiazniDU7imwCh2qyXd5HuOOO63ncHBX5W69wDHGTUJP2ltKcUBb/04O6lRP+key/21hlPqGghFap44QDcxT01LQ5qZGwnczuNGQU1EDMIQPsCmOV7AprUATuW4TfS0nk8rRrW+q9H/m8JJWvCKBMNK4vDJ/TiJUxlP4R4yFdjqhp7Nc2CH4FFXiT3aqfX/CDexS5fYFE6FXdfY7+EYjJeEwjiCU8Jz36QFrAEHQNbgSoIV+tnGRZwe4EO+GLv8vib40mjBfQcEnxnGcWNncN+YElzgDBwnNc3xmKl0AU5hF0y61jexsHQZx5nUEPSe1rgpHGR/RXA9yXViy8C3cGnNNMHkAfl7uAXwLiEFJVPZx/78Tdxs6AHulvc7BJNMH105LhvarHdDCA/vYYJIgBdr4V26Lzf4Mk4p2SeQmP7MazgXO32CQ7jMY5nWWYo7GD4nNsM7OJJ2DzOHWb07fXn9OBd0F0v7ecAfEkRbp/lUYPPUz3A98zbNb4kgmB4C+Qtaz7ewpn2fIJAXxAZuwqlHDfhQaMUMLyXfAdxJ6wzWMr6DNcM54kB/pfUV6/9+3Z/BaCmw7Gv+G4TlId0GXwpuP8QVzFJ639AcxnBgTzKFc8LXjtbfrTmlxSjNxwPCRf6uxgFEEwS9fUkwnyKcgvecEFQqsPsg/ZfNBDP4LcFMUgNbx4LbFCH03BUMOgnNZxlv8HJMK8U4OvyS1ned0LDKcKW09C9PYb/n3xLuhmVcvXEap1jNCFZtOCW1TeNU4ij21GB3cDBrMbEflvX+1GRPa/w93PDlvODRqL/fwwJwjnUR9/sYIGiwXmOe1XPNOEgvtbsmHDyYZtwaXLCsWmMe4gZQedAs6rtdrHn16D2peVURAtgkLiTWjAu7pHl3B9fZLxYMPiQO0+f6nW7SLYK+xrHvGlwBch5nohQRBby6CJoZJehzB/uGuzSvZ5iPtmG/9z7OBrogfA1pfQ81/zE9P4pr6O/g9tEDuK7Hq4I5p3vvNQ5CRM80aC0d2NWVgmrCqUjzKMcWlA8F/z1ccfRXuEBZOyGYH+J6HOtEU7UKzfEHuNPrLA7IXcRBfdex0lNoYQb7/2v0ee4tcGG8z7DCU4HTu5uIQzaVtGZsHewlrGk5l139XMF8rETP3iH2bR9xpiQ8dolA4mqCF/UIN0P6rkxz7NT6JzXvIsJamHBfwplmJ7lOLAyMEoBLc9oRQewdRNDTTsFiirSAEk0kLQcdBIKKCSAuEIwyNwA4QOQVrrNdQyAuN/gsTlH7ggB0C0EAvTiVrxUfMI36aSWIZRDHFIziiPourKVs4RKzW7gIyDTuiz5BMMjcgC/006411OCWtBeIg3UR99juJYjtt5pzB9YsS/WeJ9iE1ocDY5r08yvN8zkuI9xHEFpq1lU4heslrm6Vgto6LhgyjouiVBEa504BfDoJxvocF5F5ibW3Db3/29gvXUeYq3PT7QtuD3Gbzhta73Xsf0/T6QNC6JnF0vwqUU/gCPvFX2hNdzGz3MRd5moJIakFN3BKq00eKj8XLl7iMp/tWKgs0TpGdd8H2FqScRvtWIP9OxxhvoqFj7mCsU5hoSkPlDXN86Luv0HQWytBS536PBlqv+awRAjoa4QA3Y5T8fZxwFmp4JWC7xWCCX1L80ifZTv/vr/2Gk41fqCf1MTmcU53BSF0/RZnf5ThlspFeI8NEvi9i6Ory7HPfQFrW6nx/h5Bm+Na79cEXSaPGsC8KK08lYLhKC4vfKA1XyUE1HRbNmJrA1gTKydKQFfjuIF2nNKb2uGRcDhK4Dv5WQlBE9W4CFgV5kv7WDhZxgVsDgSbDs2nGVssj3A9jutY4BzQfG4Re64YV5xsETzuCobXcH+Al7iAzgcFz1Xiku3dWMlbJGh1GfcRSDdFHe6/8FtMR+U4HRx9tqL70kLTIjjcJei/neBtvbjL6SruR3Ebd8RNWDXhdOkJrEkP4WqsRwTtvMvxfgeVuBbLu7r3Dk5xriJosQXHA+X+nMOCZBOxp2pxEDjEHr2P3cJtBB7H9JP86zJOib5G4D7dSA2Cfx+2DPVjnnqS68RuggmcDncJFw5KwkjtY40AaPrO0n/9RPf3YjNpDyFI1Or+9P+/wnnd7YR0U4azFg40hwe4l/Ocxl4iTImp2W0JINO4gl/OfQMfxq8Jop0iNvcQAfgOnPqzK1gUEcSxjnPz/wnhS0/hYATXPkhmnYx/jZDgKnBJ3ZQYHxBElT7ZEdwkJglhjdjgd3HMxiSOSm/QnF8TBNZNCB8PcArkKq58dgpnN7RoDaml1XM8lWeSIPg/wLmvqSEv42Coq7j98ZHW9wofkM81j1aNm77BaVz5cV1jbeOWtW8TVpMLOBV0DzcwSqZ4E1dcG8P14HMdqY1X4Op2HVhIfa2xF3BGSwt2D+xjeurDgYx9xMZOH/IYgft0gW0RND2Cy28nY3yFheoJ4qD7mmA8KVClRtWGKwIu6/Nx3AUytYFyAs/TWv8sQRMbescp3MzlAeFKWyBo9zV2TfQKZ2jsGeyjbCH29wY+1Jaw1pZ+y4wp+SV2E+T+m8HxGudwT4SxgrVnLMAmNp0+x+b7Zv1O2D8i+EK6/HYFgzHsInuK+9d3610lGjsPzC2tpwb3pX9ba7+j8RoIPvgY1yAo1dzSajGC918N1sRncGGr97GVqwzXc+nBhaPmMbNPXjuDAz2f4PTYA4I/pvC5R+B8HaeelhOH9hVCuG4g9lwvLgv+JXGldr+JXVjVescNnH2T1qe5gufSitiIaSTdkMmvL+LiOrvYWrmANfZx4oBLV0Gj1jeAFctKjZHrSJ73lKChahybUUFo5mu48uscsQfOYGFpD8cp5AGcSmJao+ZwIGcKhFdxobRDgkcmDNMyV4zTiVOIGcZVHEdxhdEuYq/WY+XxHu7DU4R7mVRi18Q3XSe2DCzhIiLt+rmKtfdPCal2AgdLpenqExyUNIy1nlXs0z/Ue8oJRt+hd1Th9JFmjfke9j236f4ejZl+uG4cXPELbHqs0HsacJBLHmoHOF7gFt78E7i6XjHOhT6jd28QJtt57E5oIg7gFIYacMpeFyEwNODAvCoCcYs49ewQxzGkX+s1QdxzhBbXi1tblmCNZlvPp1Xj7/VMCg2DgkMXjhD+iJBSl/XsYsHcGggGWC08/He4NsE6Tm9r03xT+wJH747hOIbUDFdwdOyY1jdEMLdDvBFW9PmQ1rmBK4yVYIbWgJtPbRObo1rveEVsvgtYG35fMDjUMylgncIHQ58+2yFoqkPzqSNMl7NYk0sT/rrePUJsyiWC0V3HptoUAAe03jzwbhL08xj75Jsxo5nWd6lll+rz1G7niP2Y7pGHuClQalLdxF5ewxpwOyHQLuE23enXbcP+9G9h+kzmua93XRYeGgl6aMHlv2twg7K0TMwVwG4TF4+5RwhzbcR+rxTcPhUc+3HQXRdRnGhBa1jEGnZaBRaxP/qQOBSmsWtmn9jPzwhLzhKuMzJG7I0LeO/8Nzjivliw/QqboqcE5wHiOo1TX7txtk0FoeVdxab63BuruKJmtcZrwvFQK9iCmTSZ5vwugrbTjTKAG9504yDmtB6MaP5ojjexkJ1jnyZ4YVolJ3Ee/hJuJnQWF3tqxu65tGymINOu/9dxb4knuEjXNf1+qufrdU8Dbg08SeyFBziob4Cgmcu4XHyznmvX2laxUvhS6y/DdHUGW2i/wGmCaa1IK+MPcUOyFPzmBaM8A5PnpvVyTfNZIvZrJz5HwBaOhFXu110CnylUzOLKjju6P60UF3Bdjlec7DqxMFCMm6n8kjDFzBNEvE0cTMUEMtCknuH0rmKCyL6HD/jHBLGlWW+JANgkrhRWis2AKxq7HccklOF0lpSeG/RsBWbo27jrX2p4eXCmiTddGGmuW8XlQ+sxM7mk+4eJzdFDAD2tGUV6ZpjYlG3YFF2By+42c7yO/L7eP0hol4e4oMQAZs6VGuvXBFGmdJyWh1e4dWwvTsNJX94STs9LM22r1tCDA6nSFdSMc/dTEz0Uni5it08xTpHpwpu8mDhc38Wd2VpxalEpQQMbuMJWCjidgmluljRzNwgXLbjX97zgMqN3p1SdvtkmPf8lTpm6p3Vt4ipzqUVsEnSWAlG9cLqKK1c+JjboDwT/L/T8KVwBrhFrD9Wa/y1swnyOA2VXcBBkB5bu0z3xCudktws3iacSwb6P2D9/KHw1FtzzAuekn9ffJQXvSbN1N+4tUoHN0cW4AdQuQQNf4eyhVcGoA1eDPMSlucvxoXYOC4xLOI96AVd/GyAElNREi3DxrGEcyJjaddLgbdzCNRWBZdxKvRP3Msm4hj/DDXCSmS/gHP/0MacLaAnHsVQQh0xqiOXYRdWMrT/12HVao8+eEYf+uuaXbtK06izqnnTrXMA9WLYJQaUCx0CkSzD54zLBgyEEmFGCLps0lwqCVnpwvNMwzvyZxG2ca3DFxxQmnxA0V07Q7RAWhFuwALVPCJGluIJlKiyNBK2uaOwmwWBQeBjXevsJHrKP69hcFw7SgjBNuE4XsTW3RuOVcrz2RNJ/ugCHMB/ewu7SXkIIzvMi99UM4XY8wIL1JRzpn26lWq1hCFsB3tM6fwP8G713E7fCHsSulBIshA0XwD6FjEat/TpB93dwo6YqTnadWBhIE0kpQTR/rpeNamG/1IR/jQ/EfeyXzg3UiKOK+7G/qxqb6esIAM5hc1n6ypoIN8AwLmRSjQMwajiecvKfEYxpAqdbndI7qnCKTRtxmHTjdsrnsQ83CaRI7/57jqdEJXNJ/3cTLtCyRDC1MzhH/TlB5MO4tn6/5vEh1ja/xvnx6dt8jP32L3Bt9zRNXsYVqha0jo9wzm9Km3Va5wLBFF5iE10btgjMExpZm97Zp/df1T3LHK/YV4fjAsoE/y9xcNssDkg8rzUVF8C4HkdiT+mZUdxYpUjj/jFBg+lHT/NaMS6uUqtxkuG/Juj3ObFxVgmLR7qo1oW79FWmteWi1rysv9exRapKsOvFpvvHWOtL4TQZQqnuf4WjmCuIA6EL++TTjN9IMJx6HKvShssB1+GNn1pDud41gBsxncMdFEtxaeXch2nGflffterzDoL+ivC+rNX3l3FF0CNi72xg/3VaJKpwbMd1wS7jNWr0/2nc92SPEJheYa2wEvus7xN7Oa1794WTjH34tXBzgC2FEzhzpFe/1/TOc3quUT+ncc0UCAaf/uIp/Z2m30GcnlaOm4s1ar1zOHOoX/McIOi9Cwu4TTjmqhpXUU0r0hDB5+7odwqJf4EbCeWhsa3fF7DgklcpsQ+WdN8yEbD3NUGXqQSh32cI/LXj0u239PkaQe9DuIhVKmTlmLekMJTnyAJBQyl4pSCf1qfVgns6sJtpVnO8T9Dkh3p2FJ8T6csfEh5SmKrS5/PYNZm8uQ4HnS9ia/R1HPc1gSu01mOL2ypOYazBhcGqcBpkI45zaSD2+me4vHG6e9MisUDQxATO+KkQDG7hOiqTBC3cEL6acTnydzA/Osl1YmHgnAavIwC/RRwwKwSyunHObQLtGq6HPqkJDuEGJy818Qyk6CSIe51A9AVsPkpNpaHgfcVYyn2JAX0VBxnd09gDBCHOYpNvmq0qsXSVJtHUWi8SAL2MteyMC0j/WZpm0+RZIvhcxpG8I7jUZUrR7xLEXqu5DOL0kBpc/Wsb+A9w4FwPdickIxvFh2HCcE7w/2sci3BJ69rDvcyLsGaV7o0KLC2X4trrG8RmQrBZwRHqH2nsNuIQq8Q+t3T5DGu+fRprSu9KhnMdV0zbwmbqJtx5cVGw+WvB9m1cuCbN9wt61ygO7qrWXH5KMJ1K4gCYxiVp53C1vQNcVW5R4yV8TxOHwV0iIGobl7ztIyxgpzVuLUFb9Zj+SoS7dJF0YPp+oPm3EELFNKEdvyaYyKrue5/QyssJy8RN3L2vSzDZ1jp2cfzGGq5+uYiF3Tw8Z4SPOayJ7BFxMTUEXeehs0TsxT3cOviG5teDrS150HUQgXeH2Kd6CleaLCH2WQdu9nVACL0rOMr/LKFRbWFttRN3sEwL21WcDz6A63JkzMFHBF2cwSWe+3Cfhxqt6algXYOzQVqwlpmCc4XuncCC7Azeow+Eizw45rHFI+l9C7sRFrFLYAAHnSY9phD7Cpf63sFulzEc+1Sn9wxhOhjQ+88X4G4BV5Ns0Xy28OFZRuzFIVzXoUb3FxN7rRy7545wP4e/I+j8Ei74lPTcga2UbxHnTSMuIZ/7OwWLVD63sQCZVtpTOJX4EMe/dOHYk3UcVLqHm3Y1C4f1OM33BkGHI5pnKjO5H8sIGkjl5gIhLFRrLmtYyESfl2G8txNn5FPBpgsHw1/XPasEnpNnNgtOE7jU/i+xlXGcOINXOdl1YmGgWZO9RgDniPDF1xCpMZcIRJQTG3CG40FipQRg53DZ1I+JzXiGYCgrxKZpxIV+wFLcFwRQk7B7CYIfxk1CZgjGuU1Ius+wlLpOIG8LtwIuwwFiC9g3O01suHq96xFBLJ2af5rPD3ClsDNa5wIhsR7q+w9xpburBEHN4JzsbpzikkR5FjcTGdFPo/5Pf3gXgcC7BBHmGLsEcX0LtxU9EHxSwGnHvq0DbJ490txyY3XiA3gJZ14sY3PxsNZ6V3D8XD9b2BWRsQVXBK/PiA1Zg4uYlOCqXju4kVM/TuNJhjmDe8GPY4tNaurfxw1YqrCLZwOb6R7jamrpX043ThGOx1jUZ+h9U3q+FkfqJm3X4TiRGYL5p1ayTNB8Hnr7BNPYw66HUX0+gzuCDuBywandPCPM2vWCVWruaXKdwx3YwA1qWnAVtAFcDKoBB+deJOggmVJqzBlPsofdFZUF4+/gfgQTGvsDzWFO4w5o7Y9wt76/wkLUtNZWqTHSB7+nedzEdTRasXZcjKuUVhNMsghbqHYF94cEXaXQN4U7G6YWW03sp1qt8Sk+vNPFtYtL7zYSfOgZjgavwX0k0rWR+7JZ61/BaZpnCddGCrM3sbBUinusFAlXw4JvCpNpHU3LUzO2UDYI9jV4fzQS/GGH4zUUXuPOrmf1zmpcdbIcKywlwlc9Dsr7SLCtIej1gubVh7PApom92YXPizrBqIzQfF/iuLKkrYe6N90n6TZFsF4k9lsNEUOSlotyggcX8qMeXEDoALvW9vWuFHC+1rx+LjhdxApZDU5t3yToM60Vq7iWRPLMVcEwBYZSzBfTFbCueyb03hy7nKCrswTtVBO0+4Sgwcv6+xyu2Dqre5JHfdN1YmHgKQHsV3iD3tSiBrHpsfBARZM+wOUZN3XvBmHqmSAk7mFcKCMlqgwGOcQ1wm/gfuXNOCixDJfwrSe0RfTueVzSsZMAUCuxUa5jF8UesQlSG67EtcLXsC+3mEB4mmrTzLek/8/hsqC1GnMJa8IvNPc8QPLgLSSGNOWfw9UJc9Mt4D7W1YSAloLPKyxkfK75pGvntOB2HxcUyViG9DVtEht1WPdd1TvT/Jk+rfdxNH0PLmqS0nf61la1/lrB4HNCMz8gDtuUvudwxbFB3HypGzcPasH1t08RzPic4HRd+HxO0OoQwdgaCPq5j+MvijkeIDSFo9kPNacr2GryXRzBvYf7MEziCo7NWv9jnLJUpHd8one/TQi0Rbr/BkFbNbhS3RXCYtQsmK7gmJtkQs04sPE0Djh6RTCLlzgo6WPc1ewqrhNxC/eMmCbotVn4+qng9ltcQ+EpwVyacO3+dL1UcDzGp0FweYjLb6dl5wUu8ZrumGuC630sXKe1ppdgwBWC0QTurpjCYIXg0iE4bOLmNnM4Ba0YW3racBzHIC7F3EQcKEe4f0Wd4JxMtkn4nMCFsVqwhrun75PP7ONOd2NYISoXvtKv/We42FC6NLZwVcgUFlPbfok15COCH3Tj6PEUlDoI3tWDsz22CYF8jaDlFa0r3ZV9hDt2jzh8OogDNsfKg7hH7+4j9v0zYm8ln39A7IlB4eMUcRhOF6xxEnf8qyWEzi7cufMVDpBO68AqjmsqwWXBdzXmI8GnVWPe0ZyGcBXSLuEocT2Gra3dev4UsU/PErSSbrgxbE3Zx8WNOggeVKT7OnGAZTPOTCkhaOYI92i5qfGuYKvSrL4bwKmLHbjMepV+PyT2+Taxz1Mg3Mc1O77pOrEw0MjxVLNerGU/JZhcmvAe4ra1+wTyWomAiTR5pJYziH1CmwTxnccVxiYJ4DzB0nUdFiy+h5vaXMTm/Tu4MVGN5tOJmXkpjlxO6Tm14vdw+dRGglDP4aDEj/EmOEsAux0HDD0niGhY48xjjf621n1L72zVc19pbpdxW+QFfPgmExjB6ScJg2mNdUnrvIQzP3bxofQKB7YV4WYWGShWh7WDLn3+Ahc2mcLBSb8grtTYz+Fo4mYcWb+FmxDtYK27TuPl5mjC/tolHF+SWkgeGKPExi/0G76HU9Au4JiDS4JXFa4ElrErX+PUpIz1OKM1bQrWFfr/V7hq5SEuDNWIq/MNCt4XCJpo0nwPsPT/93pHq/5/ijWiPETSKlNCFOO6ii0caUJOAW1B6z+le9YJBt8i2PTjNN7UZo9w6+9zBNP7EXZpgQ+dI8HvDEEnZZgOO/Bh9VTjXMKuh0PcY+KufqfgfICFmHJcynkDB4/exGWQh3AV0QnBewcHDFcJ3kU4sr8dB7AOCX5b2PSaLs0RHPBbQtBSujx3cKzDVzgjpYSgn2VcBKcF85/T2F+fgmINQS+XcDbWdVxM6XNsLfpU75nBCsgZnKKZPvEURP4QR+6P6Jlx3P9jWPP7BceDOKtwXM8Mdh/kIXJI8JrzBH1/xXHLbiuOibijZ9IaNYVr/1cSvKQTx0Ts4iZmS7iQUyPW+l/ihlCzuKZNN05DvIgLnDXi5muvCCF8AweGJ3zLNGYVjgupxKb+SY2Z7rw8h8oIQWUN109Iy08KMtVazzSx/9Jkv4bdKvvYUriDY+tyrw1h62i34NzJv98qPS2Is7hqbzOuvXMLZ/Wc5DqxMDCLI9pvYu3mDEGY/bh5xTz2Ec1pwhdw+lMeDOVYaqrFNcEPCAmzTc/fIxhXLa4e1qDJP8PdmQ4IIjylOad/ZoUg1te4o1kCvgxL4zXE5n2Ja5M/IQ6aVwRg97S+BwTiF/TMMEFQ3yU2z0MsPJwjiG+GYCIQm3SaQNQcRtoYzoG9jpnSKyxtH2mtVwiiWcMm9WqNUYsDflJTaMRlcNOnPEEwxxV9/z5BfBcJgi/R2A24omO6L44KYDSFNeVxzS99vOi96Q6oxima84RJtwxnPJTgfPgFnPrZgzWpCWzxONLvK8QGvaZ3Lmk+/wH2oS4SOETwOYXjEv4G9wKoJGjlj3TPdgFO3hLM0gqTB8icYFWk/6uwOS+1wGGci50mwHZCqC3BVRfniPTNEdy7I7XpLzAjSM2qQvNKlxzEAfMYp2peJ6wOtwlc/gqbsKfw/u7HRcDqCHwu6blNrTFN8sNa5wPBaBgHlTViRlmHhc0i7Oc/IEzL/URr6Ft616B+T+AYmEPB9SPdN0XQ6SrWnK8SFphFXLMAHPdzFgvYqZk16/M23Hq4HQuFr3CgZjOuvpmCSwq4Q1rXzwgh+j4hfPyQoOcnuIxwhXBQpfktavzLmBe14IDZLa2hkuBrJZrzDOE3f635v4MtAvWa2wBxiHVjt1ILofGmi6UbuzIf6r3v4QqurbirJcLLsMa6KjyMEjS2QOD+bawQniXotg8LAiv6+0CwmsbuwWIc9/RE8G/R/Cc13iAWxKoE8yYcUzUoWH+NLX5pHRoTTk5jd2A1zpBrw67VFJrSRbJCxCt9pXeldXEKpy/Wa6xTOLUzhYUc6yPcnC2F/RnssknXVh0hUC8K9oV7vIjY06vYHXuEG5wdFODsm64TCwPvYlPHOPaLvsaSdBM2Kc/jnPQO3I99hADMeWz6SekwiTgXuIjzWX9DAHuIAPAhZka72Pd6RCB4QJ+/T2ykVtwh7wruf15GEHYygTw4Tmt+eYj1YW33CUF4c4TpbBgHovxU8/o9XENgsmBulXrPpzgyvVNwSj/+LrGhfoPz9btw7YNd3Oe8n9AMWokNkv7oHc1pDR+Ya8LBAnFInMXlestx855u4trAFbBSU1zUZ2jOjTivPs3upcLbgeDQjHO5r+FmJZdxkZwBweF9jfEJLilagw+tFDRu4dSerwhmkprSHrEpJ3TPZzhgB6x9VONc7x6Chsaxi6COwOcD3KnzLtZY6vABMk4wlWJCU57BUf1bBCNMU2n6misJ+khXSgmhOeYhuaLfA7iqZlqL6nBJ1nXiEDgS/Cpwc6sOgv66gR8Te+gpLsk9ixsHvRauZnA9+NRGj/RcoWXpEDdd6dE7DnHRqMI1LOIa+S0Eg54iBIiH+vshx1O78j0V2Gqyre+f4sC5LULYT/pOP3cLjrUp4nhTpx5cE2WXUCp+q7+XiUCsdFUmrvcJvtCBsyfeImh9maDbRX1fQhwq94iYiGWNkQdA+pIv4voSdQTup3B0fSmOsxjGke4l2I32Wmu8T9DbH2PBLpWJLhyUuKZ33McxCwe4gVnGUaVGvIC7qdbjQjdFuAnZFkGHE8B/KNykILdG0N5FQrMvx5a1XMslXNK8mrCujuFg4pcEf9zAgeAlWs9jHI+QcQit2JW8TlRDTctRPw5oLhas5wi6uYFjSCp133MclH6EYxB+iONjDnBG1q5gdAkLTOXYIgPBYyY0v+Q3W7jw0RFWLl7i+KEDnLKbbsvfEufRdWIPdeHy47O4K+03XScWBooIwhnE/qcjghgf46Y0E9gfl1rRQy1iGFcTW8C+5EPcArQca3RjmDFkQMcebhTRSjDBLwlpPKWsHRwh/xRLvMMEgveI4JlSveO6ntsmCCG1oQlsdhrBDKgYm1rvaR49uJLWChE1ew43PjrQzxhhkWjTvBYJpryEo4APcL3qFVyGdRIXeFnX/0vEQTNNbO7v4XSWSr1jGxPXa1xn4CXBBAc15oZgNqL5T+BeAnXC5/uCRw/BBN7ChH5Nn+/iOg1/QxyyD4jNP4YLYiQjX9Scf0/3l+Ma8cM4/qQUd/V6gbW1VlwFbxn7cE/p7wFiU6cbYRebDFOar8fBcC+Ey69wWmIrwbzzgKwiaH8V0+gcbiTSQTCQJYIJNmAB5SbuHJiWkNe4hsMwDqzc0H2bGrsSV9l7iLN8/pXmfh+bX1PoaiVoYItgDhta17BgP0MIhmW418Zpwh22TghtlbpvnGCeBwSuJ3HE/N/gmgJreL+mJjSHy32fJfbgKWJ/3MJplBX6bJqg+/OCZaX+b8I8Jk25pbgR1pTgOEpot5MFax7XOs8QTHhV31US9LuJeVK6hvIQLSW08FGNX4+DUNMHvU7Q2CRuPpXukSriMLygNd0E/jkuE/1tXDOlnyhXvi88pWummqChs4JnBvU14joiP8Zuxm3My15i60OJ1tCsec7gHgjdBE+sF5wWCT60hC2ZtwjNf5awMKU/vFJrv6F3fKDP81Bux8Gaa9jX/gTXaGjFVpiHuG7DKkEjbxP0nzz0j3ABpXGC9seFr1aN/zOtJ60s6coaKXhvM85wG8Wm+RIcrFdM0MM4TgvPOIUyYj+e07jpQhnW2ivwPt/CaYOT2HpcgQvudev/Bewu6hZMNnGjvkONM4ZLWNcQ/PU2bg/+Tdf/KDdBoWk2/aBrBBH9EXEop3bSiOvEF2OpZQznumeASPqW0x+e2nM7QYR5AO/hkqdJQHOEFJSb45dYyJgkiOEqFhDyMNwlkF1GIHYES5wpgaVJ/BKxca8QiEHfv4U1l2RG1YJLDXEglmJXSjcWCNJ3NUhIdo2429y3BJPfEAzqXcEufdhpfakkNk0LNuUP43LBab7c0/q3cXnRVuKQ7Bf8bmJ/YvrPGomDpgabyIZxJawBYvMkvBbxwZcC0zouqjOAU6x6sYC5QDCUL3EDoCGc072HNYRRLAgOaT1buJjHOkEfa3punTggxzTHp8JHOy568oLYXBc0r9PYrP0uYf1JIfasxhzR3EqwMLFN0GRu9s/xoXYoHO4Q9JcxKi04Z78h0MsOPsBLBZ884CkYY65gHqsFsOrC2SW/IWjsMrEP1rT+iwXrX8CR6oeEZjkvuFzheKEiCLrIg/U01orTNXKe2AupQR7izJvU0CdxgOEr3LI4mfcmsb92BffH2BT8axzcV0HszwqttQO7og4I2kt3QwtOg3yEK9t9m8D7FPA/E77K8F7oIuh2QGvrxZHg07itdoXg+gxXE1zCDb9qBL+0Fj7C++U8YcG6qHlO4RLAi4JPWlvf1udVuADXmv5+gZtNbeEsnXbcTXJKz17ELYHTvVCBrRJf44DxRo3ZLPjdI5SQAYKexjCvSTdku+7pxw2v0tXzPm461YSL1c1jK1kxQesr+v4LzeGh1pZK3k853ml0C/hfCD/PCfp5D1t2ywir2iq2xqblt5nY8zU4i+cypoVS4W4Va+7v6t0Xdf8gdmu3E3vhnODwgcbbwn0vLhC4TqGzmOB1n2DrxSWCD6XgnK7QI/0+jzugVhBnShlhgZ7iZFfR0dHR0TffBv95UdG/bcCxSSCmGufmp5kpTfOvCaC1EYTcisuprmCz9QVcOCiZ0g7OuzyFU34OcZpLEzb53SCQvohNTpP6/wLBCNLXlBaLahzIsoYDvvIQKdW7+4hN8R2CuZdqLu8QzPolzs1dxN329nGu+B6B/GuEOfNIa7lJEEy6BW4RG+EZx33tlbg1aTL7DRwclqbYSzjToA23mN4nmOQ8rjJ3HbsF0jRYo3lNYQ0u3UE1uELkDeLQ2xWMWnD1sG8TGmKa8zpw7nsRsREmsQ/+FM5EWSM21CJm3ovYHP9aeCoRnPo0zy9xCeakryKCaV/BwV9pvXhJMKRXuEz2Do6D6MNmyHp9t6zvrhHCRbPueZ84qMqIDfkIp4Mt4BzjVuw2Wi245yZOiW3Fe+UG4VpLfIBT73oE0029c4hgNCkUtBDM5x62jLzEAX8HwlNqzCvAnwL/rcbJea/j2vjp8kjtakL/3yJ4wQ3icL1N4D81ygGCWX4qHDTgfbijdd3QutKPegebb1OwLiNwnQfIT3ENheaCd40JPn0Y5zV6f7m+6+F48OhawVqTLqawNeyc5jxCCKVHgmO6iL5L0EA/9k8X4ZbRLQSOE+8ZK1KlNSWttWJesIFTuNs1v1XsEl3WvL7SeN8T3Hf0/g5cw74Hp/u1YZP+gOBWhHtiJN9JbbIEt6M+wgpLCmOncb+MCYJ39WI30XP9fUn3forrkszh+hAz+KBuJGjpssZtJGg5NfUPCKFnWWv4EvOXG8LdaYKO+vD5sI5doC+Fm7Qq9RA02Isb7m0TOC0jeOgezhiZwfn7HZiPp8ZegSuknibw+RS3Tc44g+8R/GRUY7ViC+WWnksL07p+1xG0k0GKw4LvHq5VU4/rd4wD/9UJjvkTWwZacepfO+56dwubLYuwsJAmpiOc550MchVrWhsEMxvFfd9Tw6oiGE36SK/gPP9HuP3sc5yDWUcQZS1uuLGLO5LVaJwuYqMv4yyJUxq7Anc7u0MQ5XOcjtiu978mEDCNXSAPcbWsPFwhEPuZ5pgm9lmtt4xA9F9gRgCuEncaR83WEhsyzY5dWHocxLEJE5rjOewTL9M83sXljsHV657iTZCMYQFH4jYQkecXcaGgNOF1afx/iaXkUuGlA9eOWMem/HOCaQdmUHcIxtpAMIt6gja+wuV4N/TMKGFR6NM60srRgXshPMOFUhow4xosWGcbtkKd0XpPY9dKur4qNLeMg9knDohtrX8Hpzzm4ZUm9DSNLhOCZDKONLOfw4W0lghaaNN8irTGtQI4lWMzZB3uA5ICx5Rg8bFgfwuXbi7GAtKe7vuxfr/AqcHJFK8I9mdwHvY6/36lyENin3QTtN+FAxWTXjY5nlGQh9AV3MTlFfYPI/j0YpfMb4TLFtzPIwUksKtgV3BfwRlFc1iYmdBc93Gq5CRhkajEh+Sg5pRCwD6uYVCND4VXWkNaZUpxbE8XsfcvEAJTKghthAC0iSvP9er5tLCW4mDUt7A76ZcEXXxI8B00x36Cxsr12RrWIPf19zqOhN8mDpNyHBuTpvJywaQSu8nacI38UeHjlwTuPsFC2CDBa67hCq9LWtsYpuUDHNU/TOypHf2d+EsX7hRxXowR9PEMN/op0VjnsAC9jgXPSUKoyHPgjwjeXiS4F+HA3nKtJa3PDbgWwDQOoC/C/LdRcJnUPdW657Hm2Ksx3yPorR13cS3CAdljuIpvJz4/OzT3esHyHI6HeYFrdyzjUvzXsEXvm64TWwb+L0VFPMeMdloLeUf/P8AbagynioEZ7Wvc5bCKOHyqCS3lPo7insZdD1/hEpbFWMupIgj4l5hRJHJmcGWmeX0+ioMJ64hAsF1CQ36FTUx1mME0EZsngZljFzLIWa3hJbY4pIUhtY7zOIJ4GkujlwWD1KyP9K4xwhT4GgdeFWmuz/X+m7j3QS1BCOW4+Ma83l+Lo/FnNYcLuC7DGVwk6SvNYwpXa1vCfcpTM20lNnqD7n9PzzzDhWjSrJ0aTmrrl/FBvoyDe36Bs0BWhNOXOOahW8/+rb6r1fuK9EwJzkH+kNBA9nDcRaEm9EL3pj8//eRnCUZ0A/sMV3DTm3rs5hgRTK/han7pu0vBdVY//ZiZpBthg6CtWs39ChZcUyNuwW2+72ET7UUcS9GHzbPpljrAJtEUutBnd7EP+229M4W0XRwweIgFlauC9R7HU3UPcUT+c8x82om9t4d9nem/TeGhmNDw0rw8RZhu1/TeUeIg+RpXCLxLMPV6vL/SdN2vOdzGfS729NwrwfwMdtlU4YJTPbjj22lMq2v6vkHz+1CfpVC3j/3HH+Dsg22cnbMsfDRoPtcIXrmDLV+3ib3YrOfSZL2PrYx1BG3tYuF1EwfszmvNicubuHlSG86pr8FpnKnxtmiOCC+pjZ7HGQLJtxJf7bi1dS/uHVCHYwoONd90F3di+lrHWV0d+CzYxIF3lThWoFZzKMXWghu4dksDTgvcw4XEqoSDWzgiv4VwxW4TgsxqAdzyukXwnHsas0TzWcepjx/qHS90T5Vg9Rr3M2nFRY7GcPn7i7jZ0jKu1fFcuBvBgYlNOBi2V3OZFyxSoanDmRubuHhaDbGPfvAPaRlI0/5BAWDSBZAH4TguxbiJi4pcxsUcMninC1e4e4qL3uwSxDGNK+J9jKO/h/VMPY7uHSU2KcQGv0wwhxUC6cs4jWaBEDzSxzRKHEJdxIb+E72/EgsDqU2MaB23cX5+Gc4GSDPOPmbSZwSfZlwvvAdL2D16X/r9ivTzCEdxV2htn+Gc+cd6XzIucFW9Dn02SRDfFZxXvIsrMXbhlsN/jaX1M4LZIA72Stjt4EqMU9gsmfg+wBra27jEbjsOnBvG7ph6gm7K9f40Me4Ij2f09zxuoZvaSjH26V7BPSd+huunr+G65Xex4JdMrFP3luFUx1/iwiDP9J4uIvVtB+fltwtGa7jEc63gvICLtyziYj8l2CqWB/eRnm0lGPC6cHgRV5GrIJjTAO5p8Ilg+ZSgsSZcSe2axpgVDl7iYlY9WtNLXKO/Akelb+A2x+OEewzNpRsLXulqe4XdbMOE2XZCuNvVXDoxI27A+dgXsQ/7l0SltyrcijfjAhpw4ZV0pWQc0ZLWdBGbtJcIvC5ovt0ETZ/F1swSbNF8qe8qcS2UdA9tF7wPfbamNSUdLmmMKYIOuwkh95bGP0+4GpuJ6pg3caXRdI2+1HyGBP9nOBhsQ/NoEhxWcA2Gr7CVYp7YPw9wlcy0xPYRe/NI7y3VHNdwXNNpXNn0FY6dahR8u4WPjKlIWNfiypVo/rnvSvSOCYKvj+BurOAAyrTSLGIaOSSypdKae46wpBThrLYtHM+0jU31M9i1PIldjAfEGfCSUGTO4uJkRThLZYrjwmNa2c4TuJ8n9lcKOjVa4xyhjBYT9JdWleTTB7hUeinm42W49PZ1wfccThe/hoNr23DjqxZc/yVdhJd17wuCP5zk+h8lDDRhra8WVywrJ7SH3KgpbT8nCPAL/d7DgWw/x36yLcKU+JI4QPpxw4pK3KGriSCqF9h8t4SrQDXjYiRfEhvoZ7h4wxSObm7H9av3sInz7whC+NOCdW/gUpm9+v2XuKrVqObbiCthVeBc1SSUQyx5dxPEekQgdAHXm27UnGqw/7oK556uYmm5Hke0rmk+X+F6/pV6vp5gTK1ad5nuPY0DEatwZG4rNkVPEoJSmirb9Hma5jI+o0Hz+AhL7Jsa65DjwZu9OB82n6vFBWrGiY3yBY5HSQ29SHDOOaZGcBZXJTsgDrFlgi7zp1m/ywk6+i1uvdxL0F6r7pnAGvYa4QKZBf6/Ws9VIqinW/Br0POduFPbayyQtOCaDuB67KlxD+IMgQ8IRtREmPAXtMZ0W0xq/qkp1Oj3OG6Nndamv8Wm3sT7AUFnvxJOhvT8UxxceiBcbmnMOmLfXMAdFoex1eoydmGtET7sg4L5HmitN7S+Ec3pKi7AlRbAdPGV4mZUszi+qB8Ho31fsLsnOF3BBax+SBxSs8TBN08IwilEpkadsKrEdRuOsEBWhdPoNgX3DRxH8VywvUQcFpUE7S4KXtOEtWoId0mt1ffTBF1cxi2D38ZuqlOYH2zj/Ppe4oC4SPC8VZx62SK8fl94HdLczxKCSO6/VwXPdmMTeKf+P42rbf4ENxtrJYS1dwiefxEHSZdjC8pvhMNunGKX7p9fCk59xP6bwopm8upO3AFxhxBaNnBO/Rqh+a7hOJDk0WXCb7pl0sL8AbHfFnBhJzieRn6E49Q6cX2PBpyut4fTlzO2A83xCW5Bn/u9ArsOyrErZQZXnk3r4mPcJ2SWwOkzgp+sYytqP7ZEpTtxUO9fwla6k1wndhP8H4uKeIELKmxpMW8RxVHKsO/2OY4SPcJxBqvYl75KaFifEcD7Gqe67OHc3kHCHPOaYH5l+v5Pdf99LTp9oQ0E0KdwIYlKzXkEH5wrxOH4WM/d0lyasaS7iNPGWgkm8xlu0DONTaZVur8Wm3tbcBrWJoHAeWwluYzTVVYJxPdrvoMEkyzGfq+MUUhtawBX00tTfgoHNYLBuuC4S0jB93AzpvGC9z0iCPFDXBipSrhZEhxbhdtNXCSjXHCo4HiO+Sou+jSBo5r3iM37AMdtjGg96To4I1juaNxRwX4GV1kbIJjuCyyQfUhs2NQGavW+TZy5cCC4PyTcRj/DaUyXiZzwOs17AJe7zbUt4ADOIlydcVb39BI4bhJs08IzrjVeJ6wwqW32E4Lrtsaqxu1c0+TXiCv6dRFawiWCAZYIVqcEn8vCxyCuktakz75D0MQi1oCe4uJh84L/KhYuyvRZNbG/H+JGWy9x3vYhrgxYrHeNEbS1jM3MKSBPFOCpi6CrFo3Ro7nnMxO4p8cedp3cIawjj7A2WIJTUgdwWddVYg9dJ1xSvdgtOI7de98h9tk+bkyzRxzoa5juXxH7I+exq/t+n9g/CeNe4eW03t+OS54vYJN4Ws72CZpswrExg7gU9ZZwUoEtf7O44duW1j1C8LQ72E3YjPtR/Jy46gn6mtX/XcJDuuDWtc5UPmpwF8q0vu7jAMNGgs/8DLudanGhubM4jfAQ5/IvY+18D1s50s33HMcb1AsW4zgVcgU3FzrC3TDrNIcigu/8FvcwSRfnMC6pX6U57ggeDQSdr+AYq1bN7SxW8LZx+mk5dlWAg5ursZsjXYDtBO9qJvbwA0Ih+wUhCFZi92Vav/+YyKg51HdPBd+rmucsbnbVp/f+7/4h3QQPcf5mS8HifoGZRguOAdjAZtfUsrb0WTkuwbstQFwgtJA0ddThtqYvcBnQNO/9nNh0aS6DIM4BggF04pKWw7pnEZt0t/We7+m5JVxT4AqhnZ0iiOVjnE55ndiEU4RQkBtmTeOny+A9XCgi/Vd1gsGm5vCAIKyHBEHkAbaF03GmCYJ4iBlUm953H6e5DBMMvQeXrawlNkqZ4PprHJdQh3OYK7EpMxnVEXYDdWA/Yieu+1CF62NvEYR+lWBClYJ9Kc6FPUcw7wlc/GiY2MCDxMavx37XOcGlAdd8mMExFhnrsIVrGAxgrW6D2Gwf6v8FrDFVCn7gmITPsAuqnKC5p5rjEq6Ct05swl5cY/4ApwMeag1PNH4FZpipiaeF7Bmxaev1PAQzaMaWmGS4KdycxUJwKSFUVxe8+wgXaqnHboW/1vuWCU1xBwt5C1jjKNSATxO08TZBg1WC3So2sZfiyPAURF8IH6MEXXXhvZL7M10hud8rCRpJulrGAtwXWCj+Lk4L/I3u6cMuh37Nd1praMDa8jhBI8u4r8kPtN4OQlt9jhsc1RL8ZlDjNHG8OdEIzqrp0RqrCdpId2Wd4F9F8Kx0BZbpXWllmROOUrDcxOXEN/XZaZwquYBLerfhCP0Fghel0tOAs6PO4iZHR7gHBsTe3SZ4yj72m7diIaiPoKnUvht0/6zeOUJkekxiy8IsTsXOvZlKQ9L+NCGcT2P3TBnBs74k6OIWzqpILXoC1w5ITTwtqM0Evl9r/l8S9Hke90W4U7DeFLLmcNzVC+GwQzBKa+h1gkZrNOdOXA4+LWvtOG4GnLa5g+O5arE1KgX4IdyILxWOMgLHn2CaT4GynKC1XeLszTiFAb3zJSe7TiwMdBKHZAuBwDoCUKkNHBBa5z3C1HtFEzyHm/vkQTmk54ZwtHEN9jvXEED7c2wNOMI+lyKc4pL+r2Qg2zidK01fZYTJeAdviAbiMP6MINa7BID7cYW+Q82lmmBqlZpPB7G5VnAXxync22CbEJKu67tOXNHw+wSR7OLCMGcE1wHNI4WohMkhYdoqxQ1xzuBmHlUE4bTihj8ZK7AvmLXgynzXBcMurSUlzrScpMkrLRW1eveW7juNhavUiFJzfoI1zQF8kB3hstC3hYNTHO/3/a8xc9vB/vIDbCKtI5jKDEE/qYEc6blR3IltAzcuysN7RbBt11pzo+dzLQVzSLik3zl/0uf3EgcJFhG0fIlgmL+Hc90XNO9trKWlCbCTYOItBd/dxcJDEbGPbuM6EYu4s90pgskVE8x8GOe/9xHMMLWrHZwWlVpx+mgXsEBxBXev6yd8tnvYTbaptXbp57KencOCL4SJfoLjve7TjfMKl8N+oM9eEzR4H6d9zRO0kfhfxX3k8zCr19pGcJBbxh18Qhwcjfq+HrsK+4h6HGvYsndICPJtOCOpgjjoVwrgWKp7FjS3DsH8V9gVs6n39BCMPt1O+zg+YJnjhYXqsYk7/b63dO9LHN0+jq2EHwveTYRA1KUx7+BMklNa/xMcq5Ju2owFGMKWxH5C4cr1lWmMCX23iC12A4TidkHjTmPX54rmcxM3JCoX7JIO7+BAvOQTTcJFKY6ZuKc5bxTAsVcwf4HbYl8l8ArBnzPQbgDXJWnUXJMeirSWBq1jVetdweXv83dnAZxG8FnwAFtCarHi+52CNTfi4PgMWLxKWC2St7zEBZHSon2aOEufYoHpQ473dxkkilot630VHM8k+abrxG6C/0NREdeIQ66LIJwGLJlUYyk8tcoNfb+Po/83cVvY9OW/xoV0KojN3ohrA1TidI8fEZLnocZsx9rVPG5ClGaiQi23DJe/rNc9j3E8QRcByEPN/QruRLeEswMqiM1/Ch8aVQQRpbujkHC2CY2jU+Ou4g5oRRrvBkEEaeZ7hAMqy7H/vblg7cs4Fe413tgPsDawgEvMHhCEd5eQjud032PclStdJCVYEOvCpvY0P23gXgXduCvhDu45vqJx5zVOoUlwithMiwSjGCeuEoLYi3Et8jTjLhMMchXXTDin+VfjfOKPBcO/x7Uo/kD3LRMMZBC3HG3D/RJeC17LhAD2meaVPttG7J8sJjbpDDbZ12iNuZkvYnxXETjexHEXa9iFlm6BlOzXcW34pOsjPZNaTCc2kac5cU/vGiXoYwoz8gVszejQ8yMao0v3pA+5Svc8JjTtF7jpWO6DVj27gUvejmF+8ALHMJTjOIBqbDlL198HxGGVc0ntrgwfmDW4fG6aSRM/swWwKcG1SPax6ypNvAccZ9ronmZc3GoLuw0r9ZMWyrO4a2G/YPUVsRe2BO97uNvqz/WO28Th14q7G24Te/YUQQtfYyE9Ba1PcYByi+A9r/uqsMl9AQsmjbgXR/rpi3DZ+HT9pMB2GufGNxD7ZAjX1p/GvRQWBM+3cNxImqybcHBcC67NUoq14mqciQVWeEoI/r6puV0gTPvlWHBKfJbh4MFOzWGY2Jffx502U/jZx62eJ4lzo47gg1cIy/Rf4e6nZTgw/KAA/mkxvaz7ZrBbq1jjP8R7dFawrMO9dC7q2Re4Udxl4asdN/hLxeWVnnmE0zpTWDiLz+UyQvj7FfC/xgr6/+kf0k1QQRBUmixy01QSBF5HbIQGHADSQzCjTlxLe5AgjCXs3+jCgROjhLkoD5V9HJTVhv36qa1vE5pLHvK92JzWjAGbjCv928X44F8lDqRV4J9qvVdwZHK/PkuCbiUOoef6f1jf/1rw2SKQ+jlux9uBSwmfxamJy7jx0TQOJktN5YL+Th91DSFFpjmskEjT7NmAi7Ms4LSvs7jpSi/unHcad7za01rqcVWwNT3zNu7wmBpkEy6Nu4Bz0TOepBpHCU8ROJ7CEe9/gFPp6rSOI62xEQuYawRDWsLSbg1xeG/gKnUVxIZJU+UijtmoxO4CcFXEPYJOKjTOBwQNrhCMvJ7wBacGeiCY9eGgpWqNcRpHgP8uLuOazCcPuE3CPN2Jq1dWEQfCt3Ep4TSNH+FmK42C565g9xE+7FLI3cUpn2/hSp+92GqzS+A43XuvtbZl3ZeMv5agq7QCpr93CqdRzRGC1S9wq+FZgmZ69Z4yHPSZrpjv6Z6rOHK7kaAtcMfO54LVLsE0E1YThGBbgi1daWVLt066NY8Ey/dxemojwbx7cHBuuqfOYyE5FZ9W3DelV5+vEjSQLpXCfbiDBc7eAngW40Mx4Z6WxTVcrvcpwUcu4n37GvvoO7G7YJrYU7nHXxJ09C4O/vye7qnU/T8jhLe06vVhpeArHDH/BbbWpHDezfFAtxe4cFMvwVM3cRps7tM/wU2U3iJ4HMLlQ+ExTfw1BP/tx6W4U+OtxlU8x7DL+TRWMrb1TLqh5glhLPlcWmZnCf5djK1xzbq/GKdilgi+l3E641kcl3VAKCFHwtEuQTOz2NL6ijjH5jXOKFaCRgjB8RlxiKf7sVWwOI0tCqewi6VIa23HLer/OcEL2znZdWLLwH9ZVPRvD99ubLZLn3exFjqJq8rVYFPSJNaulnAXurs4WrwFp2JUEUT8GKe+PCI2UroSHmHJeglH/c4RpvBnBHHXEYiuxGarPpyDm6a8NBPeIJBzt2C8DRxoc5FAwDauulijdZfi+uIlBENJ7X+PIPBOHENwoDWmqalBc0LrTk2+hUDqPX02iptxbOP6/oW+r239n0FHt7Bmc4GQ+iGItAIHzqSJsxJniozgfPIinI65SjCinH/6XidwfvQWFiYbcX+CKWIz7BAM7iOCTsaIjTKAzZL9BOH/BAeIlQlvNVpXCo77ml/6Ctu01gPBNM27JTjrYgAz2neJoj+pyYIr2i1hTaeBODj3cKXI9AWmFtWhd/8Ixyjs4qj/bmL/dOAApSPB6ZVwMobTD4uw2a8DZ9EkLR7qnmTcGciUAmP6IJMuX3K8dfBbWEAcxPSUh2pa36oIvF4kDoG0xCXdLONy44VutiZCkP4Zbs27g+uqr+NsgSMcvHiA6+w3/jvrKsUKxZTg0oprM6Q1K90MFQS+t7GFa1vPNePg4zlcu6QDF66pwi2KZ3HA9Fmt8Zlg1YWtnAimqzh4tk1j5Zrq9WwD7lhXirOMtnDr+BzzPFY+5gn6PiWcVOLGVWvYbfae5nVdMEphvQFnff0aZ9+s6adbME4+fA27Zy7gTpHT+knlohy7yj4iaG5NcP6O4JwHbiuOpUoBbB2nkJdhnjgg+DwVPDJ2ZxIXH5vChaT2sDVqA1up0mJQItidEnzSKt1O7OEqLFC+jatKplWwHmduVevzDuFlUp9V4WyUTaxc9GCl4V1iP6S7pRxXp8w5fahxH2MrSoueSYvscxxo+f/8h7QMjOJUj9S+XmI/yQA2F8/iSnlphp7FwWplOLq7VuN3aezrBADLiUCJfgKIQwLGgN73iADiHO6H3YJ9aaM40OxzvJk7cD38Duyfn8CV6hZwYFuV3pN+02Ld1419dZ0EsQ4RDByCgN4nEPJcsKjA/u7XOEgqXRjncFDVlObxBT4c0tw3hc2hKdU34zTJixyv65C+3XRDfBc3ybmBSzw/xxsq3R/pSnmOMx9yQ0zgXhMpBS/jaN88ZBcK1rqMuwamn31eMCgS/PIgS5P2IdZOSgvgf4BjCw5xTfsDXDRqGEfIH+De6HVae7Fg/opIhWvDft+L2Jozh3umH+mzLmwp2sFBXOME7g9w6+kH/8443dgcPYCDA5uwRSCtNzvC57dxFbtiwXQJN/aaJ648BBInK1rPgOZUVQCbszjgalvvW8DMvETzTLdU0uAacdhP48DdU7q3AuP2Ds5XH8NVIcu1hkJBolLjgH2vHTiDIONnVnVvoRWgHMevlBH7qwx3Rx3FxcMqsPugtGDcarxXzxAWzzbN/R1cCbVZcEtXQg8uL7uAFYwl4J9hi859gg5uYhdqqeY0iVMvx3BEeLqFanG/jBR+BnDNjBWcPjtM8KSLeucrbJJ+V7/b9dx5bKofISxqL7DlMQ+xOhwAdxPHKw3jA3uL47ESRTjtsUnP3BfcDnCm0hJ2hS5jnvFU72wUPNLdtohTnks1/jbOJDnAbre0WBfj1uu7gtMOTgf+Q71nnqDPHYKev0vwzTN6T6vemYJnrWDYrrHO4oDyXuGlFgeUXsCF4KZx+upzTEvPcBnuBly0rwJne4xxPHj1KsF36gT3RZytlZaXb7pOLAw040YbL3EUcSU2Bd3HUdePcT73Wzig5xCnyxXjqOJt3ZOCQ5ne9SuMvMvYLNmMo5i7cLxBmm6KcS5sMrkSQhJN7bUDByammWWEYGAvOV4P/AGW0now8xjQ/69w6dBbekdqAK24kMc8QfBpUWjG0uGOfh5gP1eD3vMhoanlGEe6r1uwqdHvEoKw9ggiLRU8xgrg/Hc40OtnuKFPuca7hev0n8Z1yss0xrcwM93Uu1Ng+o/03R7WWH+foJOPsLb3nNiEzbha2aeEtlGk963jUsX5vgp9V45rcP9WMK7S/FMDzIClK5rzGjazp485XV2Netdz3EjnN1h4LCY27ywhtKW1oV5zbyLou1P42tE606LxHLe3TUaQPvgJvKeWcarRPK42mSb7SVz86jp225VrDeewpeRd3CgrrRcfcTzQ9CnHUySnCCFpApvWd3Vv7pvUah/hjotrBK1UaJybeudbgkllAV5e4Sj7XmxxSY2yFHcEXdV6Pta7bxMMtwvv2TrhZ4rj1RdPEft/HaftlRHBnW2C86Fg8r7g2ip43cMm8ibgz4g92IlLYvfpvc1Y2B3DFoJDYs+meTrdDZMEzS/jktI7+LDb4//P2n/1aL5l6Z3YL7z33kdmRnp3Tubxp6rLdFc7dg/JISlCI+hClISBLvQBBnM3gC4E6AMIkG4kYYYiR5wm2WSbqu4uc7xJ701khvfe+9DFelY/b2gEVFx0AImIfN+/2Xvttdde9lnOJ/iAWPtHuv7vMHb/I61BGj4tuL17p+axgzvlpQKwiNHqNnADuRrRIQ+oi7gEsxcjk+4RvPtvcCVDMa6SSi9Vk2j1AENAH+J+DKP6PmlXghEZLxB7+QNcCdKqueXZsk14d2tx75B5bDCu4OZO93FV0BBOKDyn5z8lZER69SpxDlEV9lR0aL4vcGXXM4LfHheMYxWDcZVrDM917bxo3aPrXmPchPTQ1BM/M7r+IrFnynHuz5LWqxXjDNTiPLlpXBlzmp9Thwn+u6IidjEAQguxMK0EYa9jPPwjHEurw9bqjr47IATuZWJjfEIw+TVcSz5NLNo2dvWU4+Shi8TGntJ7tomFzbheGRYMVRgb+hl21R+IWOd0zRsMDHOM696Tebsx0MgydkUfEZvqfRznmiEYp150qcH9ybtwhcQ6dq2lm/W8nlNBMNPXGEVwUu/6mNgUZ3HP8XcxqEknTkDpxe1Ld3HderoAj4nNc4QZ8ozue6ixdOi+EtzKOZWQXkKgtBMMe0fXJ507iZ+0eD4QXV5prSY1jlVCCLzU98W4ScsWIdC/wjgU53F2dAXBBxu4jXRq8CUaQ855mticqdyi64eI9X4mmuS6VxI8MS8aZGw7E9169N6rWqtDgqc+IwT6gt67ibvwleBOi9dx9UB6E8qItc812hKtKoi17tfvbl0/pTHX6rMJQjjUY29AKqqZUzBH7NdWDIn8GmNETOLa6AVc/72FPTxpqVViC3mRkzC63djzli7RGmxxJo/+AuNv3MOKxQXc9OY9gj82CWv9O61fCSGYJ3EDr3JCDr3WezYI/lzDXfgGcQv2FNyLGIq3FbvoKzAyZ+7RXtGlm+DND3HZY+YAZKy5Huc7zeOeEoPEPss1WsVYLksYevhHRE7GPnZvb+nvBo01vS6tuLHOnxKVWWlcbGB45E69Z4rYz1u41fAxwRN3sfJUiz1LM3r2NzhEsELIpAfYqzKHw2fluIS7jthzjzmZb3GNSLjexuXOPThpfR2XznZovX6fWPsbGs8kxr0B53B0EjK7mNgLy9iYTWXpOgYCWsMAU8k7o3rvHk4ontbc+nAe0SW98yVWXI+w8rqj+d3DwFgXMCz8Me7/UKP/p+cwvUiNGmsPwXcpp5bwmXsI/Hf/kGGCOb04raQGbL0MEIdBuvJLcJLDFsbqX8MQvDu4o9UzghlGsDW7IaK8KZj0BawhThKLmoKthGCOKwSTvsKtc1sJhtnDsct5fTaI+1JX6R1PiHKtDdxJcF3XDeBM0mFsAZzX85cxvG2l3pEu55/iRJDvsBX4TOMcIjbSM4Jh3hJM9lPc5KVN9PkSg0xcxHHFVtz1b5IQmEe4AuJ/oWf36VlXcbONdGHv4+56mzgHYRN7dFpxSGAB16XPilazuA57hZNusAZ9/ha3Fu7EfeArcBeuEdxAKt93hJNNW0SDd7HruBl7jjr1zkWN/ykuaTsghPiSvpvCGArncL5Jav+HGLGuCbuxVzTXdNOt6v+3cG5JumJTcX1JWLv5ebo50yKqwjHtPY0nvRFXiH3xBiPYdeg5NaLZMU483cI5Jxt6xpbo3I7LnhYw7v4IzkE4xgmFGbZIOk/g1q7NuNVwIyHUt/XMM4Ti9IcYQGuYkBsthOWWnr4ZjbuE2G9zWFF6rvedKViLm1hIXsEgOcsYWfGM/qWXMOPPd7H3bwMj3b3EnowMRWUuyy0MQtOJW/N2EPzVieGT27VGzZpbu+awiRFI7xMhoC5stVfh/I8VYi88Iw7fGgxf/QeEAlKJsSp+h/hJeZs5S20EH3XjrqaLBB+fw10z86AqJfbEe9jVfk7Xv9U47mPs/pRBcziEO4urCMpxp8yfaIzzBfNM4+6lvuvEaLN12DOYimQfLqF+qfl+rnXo1r21oms3bjtdiuV5ruN7WA5muLWek831NjAKZhtOSi/C+AsZVv4Yy5Rrek+J5pXWfiX2ljfhNtXtONQ6ir0GO7ovvYjdGOPhW4KHO0WXY6yop2f3t/2cWhnYxCV8N3EiUx4Yi7jM7RyObVVhYQGh8U0QC/guJuAk1miaRZic/BrWyGaJw68Vd4frIw7SIcIy+wlumHJAHJxrhLbahZHKfkQIogs4Y/4yhrNd070NxML0YgSsWb3jpp6VwrcSL8iMnjPBSVS4eY17BrdrLic02heEIH2hz1sJC/OXGBGtmxBID3T/I4yPsIbd3hDCuYSotz5LJMaNaC3XcF+HDC2s61mNuFnOLXxIlBCMf05jfowzZdcwCEjGqQ9xedZlff81zqCeIjbsGMEjdbg5xxbBAw9E21Wc/FmPkzD3RNMV3OEsXZfpwdnDCX51hPKWrtI8cMHQr0c4S7eS4LkbBI81iy7/K1xOOEaEOZYwMNNzjGXegGO05XruOKGs9WIQlseEZVKBY32Heu43uLtkPXbRd2D8+fx9SdeuEwfyXa3TjOhWXLCeK1jxyrBEL+E2rcOAWylMu0SPMSx0DnFCVaPeOY6RI+9iwbuKraNtfDi+gxMZf4rr/NPDmNZ/HtKbuC3umN6zq7ElXd8j+GVX9/1Y63lB9GjROPqw/CrTe97B0LP3NO4OQsFIRSAt/Gndt0fslae4tXULwXcXNdb02K3gOvHfYI9Y5p1k3HoHYx38O9z++h3R+CE+hHdF6y3cZ+Ivcan3NsF7xQQvgo2nFc2lFeegVOBeI7+Hc632ccJiejRWiP3UKFr2Ys/Q+1qzs5rTF3rGLa3PK+zl28bKyGWcH3RZ78ywYRdO/swY+oLmdRmH/fKaPJcOOImDMEYYZ/O46VwVLvWsweiixcS5ld7Fx9goXsbr/ADnctzHWC01OLehTmuXXs3zumdeazCMvYEfEPuyDCtHL3BC5HmNdUK0KRz7I073c2plYAC7k0txXfg7GvwljHxWj5sTFeG+3+tEKdkETtwZwK6ntKiPifhzO3EoVGG3cBd2w6ZmlZb+GwxX24ahKXsIYv8ANxwqJaz/Jf3/qubzZziRrxf3UE9h/kjXjxCH5V2NMeM/+1g5SuWhTnNdIg72s4TVcEXjXMO41WsYTGSQYIh3Rfd0349hDbKLOFzmMereBs4Mr8ZgI6M4kScTYNLK/SnOPn+Nu+wV6dmHGFWyX2P5iJPAQrsad+aF9OmZDzEkb8a+U9C/g/MznmHmXiWETx0WKBXExprAmvK4xvmt7qvE9e6lumYW50hsa3y7OO+iAScpjWEPUQrsEdwWugRbl3+r+9dxTkgeEtU4geguRn/M0NCP9I56QhifwZjzL3XfKO4B0axnp4K1hRuvpMIzgHMkXmkt/zEuy00FJA+EUXx4P8XlazMEb32hv1/gdrdpqX4vOqXbNkMDfQS/gNuxpkuzDHtYekWLboJnLuhdBxhcZ4/Ybz24omJBc8/QUzPBhxmXPcIZ25u4D8i8xvM3un4dl+2m8joiGm7pfV/i8s//EodBzonG1wiFqYvYa2m5pks4cz7S67nByU5zVTjD/Ee4b0U3Do1lmKsWh+Iyp+AB5rlyvS8Vp/M42z5j97s4oXZJn9WJjg0Y4Kgc7/GXuBlWhi7v4iTjedFxhdhnE6JtysgMPdTgLo4ZBishvL972Hr/Ic6bWMK5PSkf2nBZ3wtcBVKJu/f9O2Kdj7BhkSHhZgyVf0af/xhjuszicNEb4izoxG3rSzE+wijBk0saRxcGharXeyowSNMiLhOeEl06RKOvCeVxBsvxRpyr8xKXUbcScrCcUHb7MPpki+i/LNpu4DLd3/ZzamWgCbfwXdVA+zXZDeKAS8aq0oAqsSbTiJGSMgHlIbFo43r2jwkiPSBqLccIAXWOIOweThp5jN196WZPi/G53nkGW5Sdem5q9esaa8bFviEWKxNbtjX2m/r7kv4VYwulGLekXCeYMS2hRmKxzxFMso3hcR9onN9j91MbISDTLdVLLHglRvXrwZr3GO5wdYhdZ41Y+cjkmQvEwd+IXdm52cpE/19h91rmAKRwaycEy4De8xlhKX2p+Z3FFSANomsRLo27iDuXfYrRAqsxkFCrvivHuR5jelYXsRGeYZSuRpxlX43LBA9xc6ltPeeN5nIWh1v2ccZ8aumX9Y59whOzTxwc7ThBdElzbcLVLyO4tLUIQ2iXEfzXTwjzn2GMgGnR4x7ugbGFG+L0Av8VRpccxXgAxTjxbAOXrKardQQfki/0niaMH7CCKxBacYOYBZyMlDkFaYm/T6ztEAZe2cUNkS6J5hW67jxOxMoDLT0xKQ96OJnTkp/vabzX9J42DC9+rM8nsJKwQ/ysEPv7JY4vz2Lv2Dz2nszjjnsdOLO8lHC7p0t9XrR8LhqsYMv/LVGBsk/E5DM0dlFrkYJ5keDtSt0PRuq7rPns4VKwfpwsVyVarInuZfr7Ig7n7eAKnXLssV3SeNaI/dtPJPM2iO57GIL4SPPbLBhzkWhxDoduXxTMrRi75utxhc6q5tFH8NAq9iAUFzxrQN+lIjkmOqaxVoHR+DrxwfsCe8bSSNrTs6dwmO5Ya3uf4Mcj3b+itVog1n1CdOvC/RfQNV/gkFPuzx3C83QdNz5KL8U+VqBKNZbnuNR8AXsn57F3rVNjTTn2DrGnykXT3GODuMHeAoaErsYtnW9rfc4R/LXI6X5OrQzsaIBXsYYzjA++5zjj8gVxmCzgZKGM7d0jNloTLmnaxRmdmXSzisunJvWuNT2zVmNK19EH2H38BgNTLGKo2zc4ufF9HPPOeMwi9misaR7LuucjXNvdpXm04hKwcpx5+kL3pyvwc727W7Tb05i2calbCvivsdVXj5WvRoLJH+JSvt/hZG15JiWlRT6BE9eG9dmSrp3CVmqFxv8BIZQ2cBz4MXYjH2DFqAhnn/8tsQF6sGs9N14psTGe6z192FIsxqUvmfvxUDRKa3dWn6dVc0Zr0KJnNepfFRZO6SpLAZeutUPCezCGO1a24gS9RoxQeZ3YdEM4N+GI4JH0/PRovCl8M2Z6QCh71aL3tO7LwzjnOkYcUuUF93yAu5m1AP8BJw7u4VbXLaJDCcEn/5Tg/U2cvzGPUR6PCL6s1nzOYoCWS1igTuMa/RFCednE8et60bFSNH4XdyqdFv2TnxY52XK1CB8wu4RbtoTgpwkMG76BMefvYECdGlweOYUFeo6lHXtoFnFGdxsGSSvGyafHWoMLBK/tYzjqbcxra7g99X/WtZdwAtwMwZ83ifDkGZwbsEnIqnGMxJr7oJoQ2nkwPiHyKVYIwyQF+SputZ0x9Mtah0u4I94ETjqr17X7eucaDoM9wgh2DXrXVVxhsqjntuE+HtNYIa7C5dcVonf+btVYc3+V43DXJl7vqzi3pVnj6cDlk6nsTmFD6Ssc6kg+P9K8Xumd1zHwXCp467gb6pDWIr29yZuVWAGrxE3xGjEk9D/DnSRfEMbCNLGPVnRfyqQ8VCdwRUjK/jTCVjTHPCfS+3kW78cdjfOt6P5a393VmH5f977COXMduu4sYWx+h734v+3n1MpAK8EYTzXhAX3+Ri9fIOJeXbg71w5BsHR9j2Dgh4w1VmIc8BksLHswbkARQchx3IihX+/oweA3z3Enqe8IYZ25DhAbKJka3IZ5Elt4Sbg9jWtIc/5L7Lp9hj0bGQNaIZi6AtdKVxPM3EVsuvQ+dGOAjzKCKYaxF+VYzyvVXMdx0lYdDr/kuw5xo6TccBkTrMXJbVO46cjHGBWxjjgo/xpbR2eJQyVdU6nQncUHfRch/AZw+CHd5SlMivEmfyVar2p+d7Cikm7w5zgpK63eVBhXCAG6q/veYuFWicsq38PJkE9wg6c8SNMVW0nwQr3m9li0e6D3J4//Ps6RSaXqPo4Z/jHOal7XGIZwg5JOvJnRunyqvycJ3v0hhpc90vzGNNcvMQ5AWsHFxFoeiEap9GxjgKVt0ew8zsspwgJ5S/Q+LlizzNk5xJU9NQTfP8fuePRZCt605DK2XXi41hE8cANjKQwS65WJXYfYQ5LKUKPe9VL/0otTRFjG10Q7cOJWL0aa3MD48Pu4TfAT3PTlNU5Gy/yFbYJHpvWu+7p/BSvRFzE2QKto8QQroUO4MueWxvcCNz+qxrgLEOv7FiesHhFy8lNcVZB5AFMEnz3H9e+p5PVjz2UqLFU4EXIHl+GmC3uW4LdR3Ar9DQ7FHWC8+x2M1pkhjj6Mzvo5wYfDuJqlCFfElOO8kzXNfx5781o1nwu4fXTSsRonBffi/ZWKb4bR0oOcrvoyIvEyvahn9KwyDDc/ojmn9+UdjB9yA+Mc7Gs+a7i/xxqu8uok9lINdv/X4oqAP8bIuCXE3kkD5gti775PyOMVbHSmp3OP8NbcEO1yPGV6/jO961d4DxVxup/SU17391rcFYJpJrH7u0yDrceY8TmRJdwbuxhnjC5i1Kk97PraxEk3GzgOnQfgPI4pbxOH/88JgnZizPkV3L51Dbfe7MANUZKhtwhGaONka84zGD73mNicN/XshxrbEIao7MWgPKuawxliI7Rg5t3AFtaUPmvApXOdom+6r7eJDbeCsQy+w1UMGVr4U30+hxterIhGxzhnIDdXG0bTKwH+JWH9HGDNeAFbjTWENdiFvQ69hAZaps/OYsZNF1YbBi+5RQjXFCpvNNdjgl+SH8CYArsYm+IFTjz6HJc6FoZZtnHlS8ZQFwlBlMJlQc9bLbimVt91Yk17DLcincNoi32YF3+JS6LWRONJjL52GYPgpCvzgDiQDwiF4qnmcIfg8zqcuDmBmyM1a+wpDJZwb4ZVHKccwoiQ+7hHxi5GFtzDYGL9uOPla10/jjtGdmL37QWMmDej8ZQSvF5HJKmW6lnbuCQ3BWojbvh1jOOoO7jtbyqXZYRg29V7pnHb7EM9r0t0uCXa/g5xUO4TQv0+5r1vcN31fYxV8YjY9+NYefwTgsd2MEpoWo5zuPvdCO5WWI95pB9bt1U4R+AZbvo0i+XCLi5ZrdNz8pAuIvikEnfNXBfNX4jOtbjx1F9pLLnP06V+iN3ZHcThs6OxzGFvwI80jhnNZYaQT3cwvG9bAS3ThZ6Wb8bN86Bfw9glI7r/GrZ6V7FSCMHzGWbbwj0ZqrD3Mvd7vvOlPhsUzaZxT5xZPXuA4MWPCb5K5W4Dg0mBeX+fWOO7ODcjZXkFDtekPG/D1Wur+vsuLnO+i/tifKBnT+OS4/S4NhPy4Q32lqXH+InG2IDLL18U0C/PoJzXaQ/5U3sGfkow4+ea6DIuUSrVwM7o8xc4LtuJiZRxWjSJDoKYH+IEk0sYW6CEsNg39F2LPs9kiUbchnWdYIBOgoDHuEdCurKKCCGRbvlW3HAoY7B5CJcRmyM9ISmsHui5ZzXuTY2nCcdgU3Gp5GRr43RvV+K4Vy0hLAc0zj/CXa16iTyKjHOm4LqAMRjSBdmN45atxEF7iBu+7Oiafc3lMT5E5nBnxyMccywiBEAbdh8vE7gQiN6jGmu6gid1TaPuqxHNz2NI1FTSMkbdQAjqJU5m0HcRfNeIwTjSontJuGVvYpCZUhy/X9Kzc0O0EjyQ8ehV0fNTDDzUh4FFlnHo6wDXD5fomnsYLXETd/grw/DVR5rH34gu72GB+B6hJKTAyhyLARzr7BMthgr+3sNd7SoIHkxrs5vgsT2CT19rLA9wkmoenhMYf+FjjOq5izvMzeN9nEJ/Vdf0YhjpXV33mOChs8Raz2OEzHLiEMq5duDqj1VcdlWCy4D/XDTZxolznTjnpQZX9lRovVL+lOJqpoz5/htCZjVpjh3E+u+JBmD3eisOIQ4Rylda0+npGsfu5VaCx48xlkrmamzgGP0aRgVtIw7Es9idvorBiloJ5fsKTgBND+ED/f0aJwxnnHwdl3RmaG4Cw1EnXzzB1m56Gxb1rO9xH5cMQ74VzdM71Co6fija1WJvcDe2XMFQ1m0Y8rcCe1/P6pmThLLUQXjL0jLOda7WO5IPWnCviyo97y2hRB0TB256rWsJuTAL/FusPL2He9k8xz1N9jSeBzgXKuVoGhVfYEW+lMCB2MR5T+ntynkvA7+r8Q4T8modK8VncY+DzIOo0TvbNcYfYOUy17qCWP92zPvpBUoP52/7OTXo0H8t0KGzGOFoAIP81BML9TlWDlYwaEYtTnxIQdtMbIDXWCjWa3IZC+zBbV7TDXIVQ8Ie485ajcTCX8cLkcS6UfCMVQxOUqU5vdVzK3B53xZOXnmFO8SlR2KtYAzbuvai6PFtwZhe4kYbj7EwONa7P8eQr/PEwj/HJVHrGLQoNb8qHO9Od+4ududXaj1+SGyEUs2xAWOfr2FcgyrcOnpf9xfh/IxGzTXjtKn4rBPWVwUOo0xjBMlGHItfIwRmHfZaXCI2W1rlZ3DFyi6OtbZp/TLpsAG3t90h1jwPymXRvJQQtk9xzH0EI/b1Y4S9Oc2hRWv1OcG3C7g0MRWeDmJ9yzBwzhQGClrC8fUl4uCc0e9cwwqcN1ONLbQjYk/UEVZYxkEf4CTItJ6GCE9QejJeiX55ICC6buvadWxdd+m+dVy+NotjoFU4n2EOx97n9KxdrLSDPWALxN6YxsBO6QFrwvjvxTi7v5Tg+WaCR68QB1UDDhnew4dmuoLLCH76THQuxkK4G8fuJ/WMGZwL9D7uGzCOO8Z9SFjVhWM/xF6gZpxvtEQcNiOE7HiL3euV2NpeL6DlDzS3Przf3uLEu7eEYvwd9mQ1FYwDwptzjthD5zBk90ucwFmB842WMDZBHmZbGtceVt7WRa863NmxCVvzqUyWa/y1GOr7AMfc93H5X5t+H2EQrTKsBO7rOa0aWwPBWyUaVypSYxgLY0frVYIrqYpw+HkJV6Vdxf0T6vT8OY0vlegPMPZIO24FPodDlAPEnkgv2BrBpz8XPftxhVYaoqksN+Bclg6CT8dwcvEoBpzb1PVFet44LrOuxJghixhxtg+XfH+Jc8aOMe//n05xzJ86TJAH9A62sDI2s6mB/QozQCvhanqN3dBPcc5AKXEQ3MVITJPYFdeOYXufYIbfJwRjsyZ9lxBEb3EsKt008xiNcAeXnqRVs6n/T+Ba7VpiMWqJhW8ghOzHGsvnuBVlo+ZVhl13e8RBMU8szlu8kVPrPsCAN6/wonfjTPRa0XIP48N3YSG0qrE1YcYvwlp5IyEs/o4Q3g91fzuOp7cSArKEk61hq7R2E7rnO+zyLiE2S+Zl5Bq06bm9uOXreb23DLdKHcYgGPXYa7SOWzynopNemVVcqTCCteJewjvwUOvRi3kmFbQlXBZaRgjjCRxOOMCW9hnR4wucZX+TUA7TwrysdWzHWcCvtT67OPch90C6LjexxXsT59nsYICiOc0vD7Ir2NOSVvEmbsqS4Y0Drcs/F33TJTyNMeW/13Uf4j4YvYRLP0MYSYu0bNK71YIFTwvBs7cJIXZdY3uDAZzyEJ3VHDpwYuOxaPQSe/yG9O+XuJw2FcFuXI3QK3otap1T6G3oviLcQXRW8xkn+LAZZ/vfIvjlCqGcD+Bk3M+IhOExPWcFV8pk/PwpVuYe4m6shwRPlWjMC6LnACcPoo+wi7pHn+ecz2DE1pfE2oNDZ0169mvRfk5j/YDgjyFCXqbncEXPLcVYEbMaw4jo+xij7mV8Or2q1fq8QfRO72wlBpkCgytdwd0923DJY+YWHBCKz29w/kAqUoWhhaT1AM6fSoUlleMybDh0E/ttgpA1M/q9gnFDdjXW9HRmiLYGl/qtEKHaGoz4V4c9X6s4OfJzPesKIWfBycTXtDap1KQ3/Rr2wFVonj/ELY+T728Qa9yPlfZdwlD4WPRbwUnzpVqL9Ez36/nXC+b5235OHSY4h7ukleDNnnGxv8Ma4xyxoI9wRv8xtojSYn6lAawTm2pJBMhY1y5uebqN25fWEYR9QxAqXeid+n0fW2eVIs4LQlik9l6OtbReYrH3CGZ6B5cUpctwHEOM1mDteazg3sea+wqxaE2iTzUhOJcxRGa9/p/u0YyJpwb9Dq5rvqhnNGFL/bjgdxNGZiw85NL6ncb9zodxg5sJrGG+C/wLjbsTx5JTiTjQ9RlnnsEu6U7RK63QWxrTA5zwk1Z8Ay6PWiIUpzmcXNShZ2wU0CW9AnnNLk6k+w8E/xzgBjvrWFvfwhbECIYK3cTx3MxdeUMcKvUYdnsLg3w04/r9jJG+0vtmcE/yaT33S8wPx4TQqCH2Rborewk8hbSmbuBkvT3R6wca0xBuBbyMD/ExYn3/glhfRPPcR6mYlWNAki9wzXmJxv0jHG7ZwNgOhZ6k3HMjuGRpRePe0LvmcElrFXF41un+GSwUhzBuw3OMmdGLGzelwlokWs8Re3Gd2NMXNO4aXfe+nl2DXetLuveSxp7jSXf0tj7fFa0fYejw5LdW7Ik7JHi5iZCLZzB+w7Fo+FPsWWogDva08jaJwziVu9/HxsFbfPg14PyjKj2/GcvD5DuwcvmVaHdH9x+JBk0YIbCL4JkDQmb9Di7v3tfaLYuuaWhs6113cVhmC5crFuP+El9oPR9rHrW4lHJF3/eKTgMEz/ZrTSY13z/AnuY03vIgbsPGQBtujlSM90kVhoneJRSOazgHYEHzmtDcN0XHHr3jjejziuCHSRwuPsZyf55QtFuxnP59LCOSB9e0Fp/jTrP7Bc86xl7QPexhWRLNU4avEl6yYdFzGOOa1BL7KQ2IZ9hTcZqfUysDk7ilbcagxomEnCrsnjunwaUQrCWYb0cDnsLlO5W4XjvdyhnXf0YQ8r6ek9/noXoF19yv4AzstziJ5obuq8XhhAWszU5gLa8Ng3vcw1ZFtb5vJzb0BezyPdJzdjDiWQ+2OPI5dXp/O9b2prDW3o0bYPSIjtO4rOwneteI7junz9/qs2o9vw33VpjQ+x7qWXl9hnM6MTRppa77t1g4D+sZQzjDOOPgi1iLThfhLV2Xbs8zuHvbAqFs9OFM9qTpDRyTr9Tc0/XVrjWbJw6zDRyeSF5Ka7YRK1TlWqM8wM7jBMNajFP/AY6BZ5jlDnZXDmqezRpDOa5KaBQtdvS8DwgtPL1RI9gD9Iw4iL7HWdPHBePN8aS3bQYLiYzdVxN7YVz/PsCWeg3GV6jTc+/i6pkpfIBNYwvxWOv0rtbyqdaqmxDSIzgMOI3jyiM4fp1C6SlWtGb0nFlCqC7ihN0drekv9Bn6fyVGMFzWer2LhWCr6DCqdbmlz7/HFSvpDcnQTTtWdGpxJ712Pb8BI1Ciuf1aa9WCIYOLsAzaxR6ySdH1C4zAmIrad1jxfYu7itbipkC9xEH6H3A1wTGu1mklchouETL0AvacZdjnXdzJcRd7wRpxm3Fw/D4P8Er93iOU1mKsqLzGTdv2CMv1Ks5MbyTkW8qZL0WnM3iN87BORbVS48h1XMClnoM4ZJvhracacw9OGs0zZpeQtwt6X86lG8ucLlz+vorDeOl1mMQGwzM9/xrBr9/gZMsirCBnGHMeJ2A24p4VOddFXZfe7QyDluDKp14cPruDEUgvEPJqDhspP8M4HulhzGcMik6TWGk/wEB5GTI6zc+plYGbOD79Hgan2dVAKgjCjWniTRgA4iVGzdrUdecJwqebvFMTq8PuqEFiUX+Cm1qAIUv79P9jfd+o/1fr9yt8aPUSC34Bu/wyppLx/mPs6qzAVkojtvpHCWJ3EIya1vshTmJcwy78UoyBMI/Lv67jEqRPRd+zhKIyhvu71xGJT6M4HNONS7SKiENiF2e+D+CNuE0w+STu7HYTQ95WY09OLcY47yXW+YnuqcBlhYfYRdWoayexQlIqeqV1WE/wwC5uT1qPy6XqC2jxrT6/p/H3E8J1RO9pxl6id3GC0qLG+TFOdpzS7xQi68TGnNN9s4RQXtHcL+FSzWrcpbBKY58hDqESggfGRNtLmt8ccTBsaJ3eweWVdwle2cPx1nOa21/gWGBaJLcJYVKt8a0TSubHhAXyUPN+g1tep9ftESGMGvR3xuJT0UthuotbOM/reblH1og92UXwV3rJSvX9hwXfp+u/jeDvToyi14YP3twrMxrzMs7YfoSBitYJPnyguadFfqz12SD4/gbBM49EjzrR6xEG4EmXfbqkM19oBmOY1GPFpEL37xNyp/DQn8EQrwe4FLFYdPmYWPN+3CjpiFjbtErfYK/ZN8RB0Ka5XMeojemBuIN7fqRMSG9AD8F3R7hx2Dq24h9jD08myDURiso2scb/e7xHHmL4dzDGQcrQdMlPEWs8q3kt6fom3CMiw0UXC55ViyGWJ/WueZxND07S7MLtmev0/wyJXdNYO/Sebqys1eLKhPc1hiqsoG0RPNKCDYH0ds9jwLerGF+lBHsvSzH41Y7WbQDnTFUTsuprje+w4F+n/hURMjiVtiOsAP8QN446p+eOEcpRieg7inM/vtM13bh0dZPwEG3r2nFO91N6yuv+vh97jwbXTQjsImLRNjETFRHEvo6BWtYxcuGmJt+Js743CeL04MZBaTVlOKKVWITzeJEOiA06SxxW6Sb6jNgQ6Y6/RTDLU41tkoBqfY7RqHo1z/MYunIYI/lNYtftHo6JrhILOUAI9lac2PMC5y3sYiyCF8RiPSWsmwu4YVMNUSb4VLTew4J1U9d14SS5ugI6LhGC/8eadwrRjHFCHEx/IvpPcFKTzg1YgUslv8SMX4JBQdLL8RxbqRlH3BDt0xW2SQiGFIwbuI95Ixba6BlvcIjoj4mkrrQAr+O8hKRJue57hLEa3iE2whGuTrmi+2aw23WRky2SM7+jCIeM8mcD83IXTtTK+d7AnqMt7O7O8E+6KPf0nnRDp4Dvx3xRgfn8vNYrvQsp1A702QB2pV7CAiMP0B3RoAWHSxZwx7Zm7Fr9HntbMnRVinki9/4cLuFMBf193CviFkbR7NI9h/p7S/TN0OIkwddpndTq31WNPemTMewugtcf4ryaFgypPYdjpRMEn8xghfecnjOIu/ulonlO8/5L3Ten56Qgv6153cJAYcWaXz+21Fdw/sS3Gueqrkkr/ZAIGXyFm89sEfy9q3t6CeUBDL/bha3DY7yP1grmOq9xXSP2SOZqFGPv0wFuFNWOa+/Tc7uBvV8v9R0Er7zEAE8Dev59ffYhwROfYRTFVVwumO7wFtFpDoeSr2LDp5Qw6voI/lvW79uEMpU81I5RV2eJw/ZXGstHBF98gzEE5nBlR54j4M65ecAu4yTiDtHi94nKrRUiPJ77sJeQcd/gipsajLx7hBvudeiZwwQf5R76lti/K4QM7NPnbVqPcezdHdUYZzHmTp2uKcGe7TpO93Nqz8AQQfgpglDPiAXJWP02ZtISjLa0KYKU6mU/xtZJF86iz+SIUsIF+jP9PtJkbhMLe5sQAl8QC/ouxnie0bPncD1panTf4cqGDYIJ7mC0vSpcxz+i+SaDNuL4VrXm80vcMAVi4/0VwUxbBOMPY8jTQmFTqbFcIhj5Ira0Swkmeo4P+Q699xA3jcnYZDMOg9ThDPb7GEFrFVtKR6LBHdFkWM+vwrWx6cpPoZsC+ZcYnrhEY8lY9DzBHxkquiY6jWNX+6zm+R22WIpEv5u69lPcLCfjiL8gDvEyHG9bwmGK87o2Y3PNuMzrDMYb79T85nFsO62bbtGrFTdiygNsHbsKz4umZ3X9PX22SwiNCT3/PrYK0yoqIjb+eYK/DggeqNTvTzSvpYI5bupdT4m1vYDL89YxchkEn9USStoKTtq6Tyiw7XpmH7FXLhGx7QNcKrys52XoJq33aX3ehbtGNmLMijlCcU1L9RpuhdyOFfl2nAQ8iLtc5iGaz8yQxDeEcpl5Ok8JXtggYt0DOOSxoutqcFkfGttLzXkUV9wcY4Ck8xpPre49wkmjtzXvZqzkHWDY3SZ9njkR6TVYJ/bGTwl+2sau6XZ9l97WQV3TiF3Km0QOQyoSmxr/kn5/XbA+P8QVHkW4eVoxITumMW5DypwSjAbYTeztbRziXSF4b1R078d7cx67zhux5Z1e1cfYI9yB0RinCb6qx5Uxm8TaXtLnO8T5soUPzhXR9Qgre6nILBHG1SIhQ5ox2NIZ0eAb3TuIET3nRPNenOy5S/DUGAakAqOpvsX9UFLJHSByHLoInriF+Ti9zZe1Lgui3V8T6w6hCN/HHTSPCP4/o/eMEmfSGHHedYjeUwS/dRJK8ZToti0apQJzjtP9nFoZ2CYI0kEsQIf+n0J+ADeAKCEWcY/QaH6kF9URDPwzgmgzuj5dIKN6zxihlX+LE9d+ofemO7aL2MB3cDZ4CcE0C/q7C7sKW7Ggh1ikapxpm4IuYzlvcR7BmuaWh24ePMfEYbqHa3EzLPJWz+zEis4qxtJ/D1cQbOEs0klCKL/Ve7uxBr8qGqWbqx0n3GwRVvEqsTlGiI33ApcPlei9KxixLy3jdG1nKOMLze2O6NWIIZe/x22dP8O4/rO4tjyt3gwbnMElN/c0pmGcKPiGYOS7ev9rQqjkQfsKJ/sd4ZDMz/R7H8N1zhE8MydaFRFC4Ah7niaxgvBK432JsdnXdN2e6LmhayY5mdxXjttPn8e9N0qIzbmAE7MWcN5KDUZrTNdjp8bbjeOfNaLLFdHvreYwSCjWGQbaINZ2lRD0N3H3t0PcHTMt61YMblOhMVfg/IByImP5PO5m98eEUP0CJ+u+QyjtjaLHJiHYfil6ZhjmSPOdFS3excpBF25Ak3syFaSfaiyt2FX9RHR7rfc34oZfCxhnPj1bVwjFIWnbSRxWZwmeryXW+BHBe3nY7ui7hwSvvsRQ2Y0YEjmt0mKC5xZwg6IjjLvfjGPEeWAX6fl5AC/qmno9bwTnvBzjUlg0r/QaTeFmPwfYmvwQ9zH5rIDWm6Lz34oWB7iFd1rsy9iTeoCVss9E63cJPrzJSS9PN4Z9b8ZyJ2XxiNatDcMpJx804aqPYoKnmnF+Va3ouo0BtlY1jhacB/K3GPjtOaHQnSH271d6Z5Ge245zJd5ggKFUtDt13yZuFX5Fz/xU96SSMEGcW2kwNeKw7wXNqREboCU4jJmK2x3NZwEn2JcQPHEfV7B04Pyo9KoO4pB4hhu+4XQ/pw4THOHM5LSshomNndrZOu6wN4M3zJ9rUt36/XMMFDNPLPY0Rqq7SjBDxo0WcDxmRROe5mTTnSk9ZwjHxttwJvChPntFCNMd7HmYxNm8qW21EQI2D6CnGNZ0HlvGqbEfYXdyLmy+sxH3BUgX3A7hvnpEMNaM5lhPLHbmKjzFKFMHOBFoTc9Pb0IFToQqw/WxDaLThNbpW9z0qQlruJV6zqDuSU2zFJe29GhePQTDdmE34pJodogb3fwpsRGWCEGa3qMBjTtpvI3dpa+wovJcf3fjA+p3CSG1iV34KQjTungueiwRG3yb2LAfaFwZQ0wvzzYhZHsJ6/xXeu6A6F2M6/0nNeZ3cPLkfd37NcY2uKTnDOJKin6c37GAkQwbcaz7Z4SFtYMPtT6N/zPcEW+KUPSOMaLbPiEsXxAKQTtORNvE4FoTGFDllcaee7gDA9qguWZuzhjm5Qw7TIlmKbRacdOw5wQfDRAHTp3GVYM9eK9wDD4tswbR++9wX4r0bh3jOvRqQjFJK3obA0P14k6LdcThfgVXmnyg9crDb0W068c969NQSMFeSyiy7bqmE7uCk69u6FnPcKL0qJ6zQlhpMxgSvVtjXsEhIwjZOqjvUunvJ/jySHRIpTRdzKOEgrNP8N8zLLPTa7sqGoyL3pdx74J2jRe9bwjnc5Xrnpz3Fm65nJZonWixSygIv9R7n+rzWxpDjeg7Qih7aTwtYaMlvV6poJfi8ueUk6Ua4wbBi0sYHXEfd8vNvIFazXGM4OlBrd+X2BDKsMscbhp1oPmmNzMP/cvYY3KAW3JfJ/bQTT3nBiGHnmHjBEKmP9V96S3PcEqGFkbx/i3BkMvlnExKTCN6HOO+tBK8ljz1235O7RkA9wtYxMlIFRjysYpgqt/DcfVGrMVUEkzQTyzEHoYhPsbta0cKJnysSV/Rdx/hmPA8Lu0qxnCvqa0PYFjjdY3vJrGQK4TQnMIJVUsaU8bhB4mF6ySSg/b1zFFiUZqJhW/CIBEruuZ9HAZJQdVDaKct2OreJjKYx0XPx6LZPsE8GTdPN9YZjJtQjZMtwXHzHH93wdzSQ1GGqzjSon6HYPZRYpM9xlnTKdDSQk7tcRDX8ffjjomLOGv7e9zNrFTfPdc7f4O7TaYlsEBskGGCZ0qITVRDCNFaYrNfx/3oc4ONazxdGtuMrtnBZWap1J3D+RFbWqs+ff8rreNVwpoZwmGbF6LpJUKpmtA7DjHPVmD0r0ZigzaJJndxa+oi3T+NMdpfEhZNKU74e0Twx44+L8JdOG8TfDmB8R1KcYfQUeLQSYt2RWt3C/gvsAW3o/nNYBjl21jgdOGKgVbsTco45hwnYcPLceipTX/fxsiWT4k9kXMcEo12de060Uq8CXvjygreV6a1eImt6U1i32V+RiqlO7jZVREhL/4n0eo97HZPD8g3WssMMc7o9xIGQVrAin4p3gcV2KN3Ue+q0vWINsOa07/EHsFzGnsrFvhtOLfgO+LQXBGtLhJrvoZDA+sYY6Mfw6pXY6V+RfdM4OS2N7jy5UhzPEvssSpdO4y7jF4leG4DA8Y9wqGVTmJ/pKGYHsc6nE/wRrSbx+V3meeQsrKCk56FW7gV/RNi/dNaX8femnpsdU9iz9c4rrQpxiGjp7hh3RE+8DtwImeGJzdx5v8RoRiW4F4zpVi56sH4IEtas3pi7YtxE7Q0pJJOZdgbtYJBlC7gfJBBHJZLr0+u+T7GQ1jX2l7gdD+n9gxcIATvA71wGNdjN2iCg5rAf9akOojNkYd+IwbLSDdVWnbpKjkkGKSBWLBrRG3moZ7ztxhUIrX6JGAZwWQrWGEYxfXmy7jr3w5GDzwmCHhF9x9i7bkVJ5CcIRZ+m1jIR8TGGcYx+SsEg81h4Z2fzeKyvkFiU7ToGemerOck3kAVzp7O2HwqY80Y+vYysfAPdN3vcbK8bgZ3BntLMFGP5vqbgncsaHxtGutdQljN4eYzaaX3ib5zotcwhhd9hEGkqnXPBdx4KmOFRVqfjYLxXiEOp0Hcuvci7pf+BfZUDWILsAFn1Nbj2PUrgve+xlnhFRjwZgIfbi3EgTCGralU0GaIPVCPQZZK9b5+3Vuh5z3RmK9jIKBGHMuvwZgE6QGr0hyeE0K3luCRDoLntjXealzf3E3wwa9x45kSLIDmcanXuv7tEHyScevz+iy9MTexq/g5IYhT2FViCNhVYu9k0lUtVlxGsIfgIqFkNWKY60lsVU4T1tP3uG48lcd1bIGPY2voDcGPXdjV+gZ3PxzDsM5PRaMJjIi3QMiiBszr4Fr19JLMEYfIip6X4Yd3iMPgCfC/LJhfhk++wlbbIO7m+T3B92Oa8xquwtnXva0Ez85iULO/wZ6KlH3duErrWN89IOTUS93XgxEN2wl+eA+36Z3DzZYWsExKnklZ+C7B5xmmqiE8vilDUx58g3tLLBN7sJhY8z7NvZjYwxkyPdRcUsnq0VqN4LBv7tv09lbrnfm+GowyuIJRMA9xHsgUwUN9OIw5ITqkTG3CeUnHWoM5/X2TUGg2RZv3sUf6P4tGdRjwrRonL4NRJ6cI/s88ok6N54rGU4Ohpc9i7+YQziO7iHMX1nEVUqWes6V7BgheOM3PqT0DX+IY3wAu4yvVpJYxqEUbwXBjGJGrTZPYJbSel5pkE4YqvYRR/Kb1zG81wT2cELaOGzqUYqsoNwZ4k5USizeI43Q9GJr2R4RAuIoZ70hjbSI21IcY4e8LbAX/E825hlicHoIhP8aQvfv6+4Bghn1Cu3yD68NfEYuXFk4PcYicIQ63VQwyM4hLN8swOtY32IKqE03nNIZhYoOnVdCIQxmzGkcf4XWp0DjyIMoDoYwQgFU4u3sV51T0av1SmevGgv2IKNMqdIO14dDGPK6LHcUZs30EH6WFUUooGZs4s32G4Llb+v8rnHwzgJEHW4lNV6rPr+g5n2EgqRGC3w6xdXkXI+fdxl6YSdG2XO+dwvgYQ7gEdBEnrW5prF9hhbBadJ7QOF/qvRtat/QKZex0QP8fx3XQRbis8KZot47bozbpuS9wdnwrRmUbJvbiXY3pNbZMDnDFzXHBOlQSLXe3CUF4h9gbRcB/pfcPaF4vcBfEeSz8WzEM7wNcmjYgWqVnoBZXH4Ct11u6poPgvSHcE6ELH8Qp2Bfw/k6X/Aq27P+YiAFXYbCeXtzl8nMcS36K8zP+DLvw7+mZ1zCM9SRuwtSiMdzF1Ry9GPk0DZgVQn7eJOTPh4QykUZAI8Y12NPnFXr+sb6/RvD3vD6fwslzX+PS8B6M4XCovzN0VkzIhUn9v4pY7yWCh8/o3YPEQbmHE4/TK9ut/6erfga71Xf0ewE3EHuFy5PrNJZUHtPITG9aF/ZcHGIExzwIN7HSeU40TD56I1pWYIW3jOClXt03iHu7vMFe1zRWywje3SP2foazM2SVYZ6U86MYjbC0YKy38HmZBnZ6y8r0nDGcx/QCwztv4x4E5cTebcU5LLWc7ufUysDG/8//FwhiXdOkUmufIDblFkHIbg1+FAOyDOiaekIoX8FNh4pwjejvaoB56KQ2lAK9ASdTNePs/gNCyEzgntdPMRrhKC4x+lLjSDdQJyfhgxcIZlvW8yr0zG49Z1fPfIWTl8pxSUcPsTjtuCTkjwnG3McNNzZwOcugaPxc95TomX+ocXTgOOO4aNdBKBBp/aeSsqxnVRLegnTztuBYeDkuY0vF4Q2x+fdxSekmDrlsEgx5pHnn4Ziuy2Oc1FKNWxO3EwfSdazppltvnbCWawgtOy3yI9GgnTiQz2EB0oYbE6XSUoPdtaWa2yT2GE1oHskDbdhy6cSAMJW6fkrzWMXofPX6LGOVBwSfDWnMs8S638ZNgY5E1358mB9iSOJKnFG/gAGhSnA8863ee4QBoRZwaeADvS8P+2Pcla4Fl5h1YwU1rfoWPb8cV07kundhFL23osG3GluGCNpw+eNlHOp7TvDGh0Ss/oDYL9P67hJWau9iPIdyfMjlnj3WOMYI4TuMPUpVOF5cDPxTQrHJg+gAK2HrGLY5x7+v91Rp3foxX6RhsYpzjIYxqM19QialNzRjwwuE3EqlogQnNpYTB+0Rwevf4BLhq7rmKyzH0ktRjQ/EI9yH5Czuwlqs9enAFQddBdd2EPxZQqx/sb77AJeLL+HM/hVCEd/AeVh7xIHUjlFKq3AuR52uG9azhjEEcqGnc5jgq6qCZ14nKiRGRfsbODeiHeN4rGFjs4OQ2TvEnr2HE3CrCcVoX+tXhlu8F2lOF3XvzwmPTwtOEs59eBU3KhrS/SmfjvXeX2i+k8Rem8F5Wdt6xnVcGr5IKJo1OGy2iL1+lbihWynBD7vYk3SMIaSHdM3XomkLsZdO83NqZaBIE71EbPQ83NYxU+Zhv0Qw2ge6phG3GJ7S9ff1/TOcIVusiTZg4b6KM64f4jhgMU7g+1LPrCQ22oeEsFjBh0ke+OnV2CU2TbotZ3FL0d/XM85hF2INwWzNxKZcxHHC7oI5VGGo2XS71RJJVnlg/mcM3DGu51/R9bXEQt7HscwhYmPMYAZIxWgZ17d/QQiujzF2e+YtnCXCAWnZl2ld+zT+14TgOdac9jXXHxasXaPW4bbWLhWjagwilWGfFVwGVKl1fYUPo0XcebIL5xo8Fn0f45rdOuxyfIHx82/g5kBj+v4dnOD0GscCF4hDoBIj42WM+jF2NZ/jpNWcAijdsx0YLjQPv22NtVHz+E+4ZrpM9NnD2AWpSIxgZasf1yCnZ2AGI0rW4XyLVLQ2Nc9OfX4T1xj3YbjgdQwck4f9IcFfU7itcjVOJmskFOik0TTBR816Zu6ZdEXXE4L7LbbkMuyRFtKvtX5ncHjonN7RSPDZWdxad1qfPyLW+DH2Wh3hSp6NAjr2YRTL73TtIsGfNTjMl3Hd/7WufYvDXG8w2FY5sZ/KCd7a1fe5V+pwx8B7hDzb0P11eI/kYZhe1DU9/zHGlEjl+AAn4e5r/L/EIEQvsByowE1qjrHimfL0Ni7tW9Q7J/VdM8Fvf4xDd6m0pheznpCLHaJhhg5WNO/7OB/lErHHSom9OYLbaG9rbYc4iVmyjJMXP9IaHenzzzAi6z0MH57ewR3CGAUn7/bgsGI5sYcy/LuD23dnGLBMNCrCpebXcCjsK73rRxgltEHPeaV1zYO7HAPwleLGWpexN6EcVw30YdyGZoIXNnG57AtCbl3Wu9LTlyGcJr27SvSbwOHcsoLvv+B0P6fuWvivioooJ9y2SwTzT2Es64tY4y8nFj3d/690XbsI8kyEmsaoezcJhv5LYpE+IDbMAwy4M6R7Kwmil+NEvn3MdLs4ISPjkwM4fp6Wc1oUHxCEPsAx1Q5ioWZx96y7GO5yilgEsIKRFmQ1bqM6gOtiO3CMqgNnOfdhi+8irkXNOPQ4sbgZN+vA8foUjOl+68XoiVt6bzLgPuFx+TmO6R1g1+U+RkxM1/oWIcRacROQTkIwHBHoiBnHO4fdsYu4EqFetBnCSTpFmHFrMB5DKT7sDnGFxE0shAYKvntC8FVaP82EIvdLHM8v52Qc7xxu9DSu54/ipNhGfdeNoUfLcYz2sea8g6sRFnEJ6D6xtrU4MSvjeantj2Pc+QXRZkRj2dcYa3DTmk7gv+dkq9qMTx7juOQ+DgnVaL02cW7MJrEfzuCcjl59Xo2rYMZEV3ByV43GnRZ2uiAzzrqKhVDGO5eJPfsOse4N2CJ/hZvRLGksY7pvFTd6ybhqGS5B3tMcUr40EnyfBsV14qBKw+ECdvO24F7zxTghOBXXY11TiWGoq3Cy2xLBh134EGzAWBsdnIRIB/cLOY9B1O7jbn1Vuuay3pNetxZiz36NIdE7cC7Fa61bl+bRqM93cBVDJ85Nybkv4+TCfgw5XoY7QB7jGvxK0fBr3IW0BqO5ppdtQusypnl3YvyLc7hD7aeEcjtNKBBTmm8/DuVcxGV+AwT/9BBnQgWuzCrCmB3JC+XEehfjlt1NOLGwC+dHreu7Eb3rLLGfk49TOR/UPemNaMflzAcYD6cb+B80/xrRLb2XKY+qdF8nsT8acKJ2Bw4NlmOldAvjaKT8S5l5Teuaxk0t9sz1Av/qH7JrYQexAN9qsiUEQccJZriHLYEVnBE/TZRLfU9sljkNcqLg5c04boiu+ZoQkCkM23VdDRZ8EBtrDceI0rX3UOMpIxZ4DAvwzCtIrex73TuAYTL3sYa3SjBuHnqpje/p/jxQ9vTMZXz4TmBgkxLioPqGYK6zGu8IBmZ6QmyUdHeuYDfROE7IeU4oMduEUBklmPURTti5jTPPXxHr9XMMhPMBRiTLQyHj/d/g5hx1GIgpPR6LGEs/BeYmTo67gbEafkUIwWdYUZkUDW5jN/W6rt/GYadmHEuvE51fEJt0HSflteMynPQQzen69Grt41AWONN8WfentZvvfEAcKksYzW0Tu/fz4OnR897X2KoJfqvEtcxH+n4clwIO4fa1IzjZMQVrxrrXicTZOsLDtKUxP8FeuXzetN7RKfo+xvX/rVqfPPDaCJdlHnRLOE48hQV1D+7q1oeViSWNPT0WGdtfw43Icg0zLDKr8bTgLpPLnCzvXMQhtTK9M13sI9g13o6R80oKnp/KDNiFuyX6PCf47weaxwvM/2c03lT0L2FsiWXds6TxpLu+WXRexGWYqcCAkyarcbvtA9zC/RBnka8SysMODl1V4EY6K4Qs7MA4LRkXr8S9Wqpxo7diXG62iNf5dwkZ24OTepvwQVyCYc2rMBhbhq7GsZJQrnsnNKc8mFaxZ2Rd96wRCs8Y7kPQVDD2B6LhGga428cl6C04jLqMgZJ2CV5Ib90LnFOUXqNlTgKwpWdxAedzLOHE+BWN9QnBFxs4IbcCV2uUE2dIKfaO/SPCE7uFW2nPYe/FFobA3iBk8QNCHqaX/Vg0r8fN0tZwCXsvrgpbxX1MUrEp1bxmgH/Fb/85dZignCBobo6MbX6AGRcNPOPCS1hYpSaZB/ABBl05h13X9ditu4Pj2WWEG+cXuCxsl9jAH2lcz4mFuyMCVGlcNdhdeYUgeFqZy4QrfA9bQ4Ma5yTublaDk5QGsLVSS2zQjIuNYW0sFYIc55TGOKTvP8etZd8nNtYgsZAtOO7YpfEMYa28k3Bh3cNxu8wnSPfXfY1vjJPCKZloFtfcN+vaOVxjv42Tvvr0711cMpeC44cY+W5Onz3T/emqzznViZYfEuVSi5r3AsEHW5jX9nApTgkGm0pL6hLuHriCk8L+RnN/receEAdbP0YaLCd4cxG7UJOva7HmnwI0lZUtQrHJkE6L5nao93XjeubzxLq36nlfaE7dosGiaPoSYxqkYE+vzTDusllO8Pcs7pKWFng9dtuDUd4ONM91nIF+oGdu6JmfEbz0AjeiOY+T2Ua0XmmFlWJ458/03lXc7vdDHPNfJhSYdFt34JDFmObcgJM2M2RQQvDkJnHIrGIQrnJiH7/S/6+LlsVEXsz7muMFgt/6sWcj5csT7A6/gmPeLwk+7MNodCmD9rAXaxfzW9J4mZMGQ20B7Xc5Kdc6CP4vwhVBH2seu3iPjhHrXIaty2cEr5XjvJ4l3Bei0PvQiVulZ17Hz/TOFdxNsw8fVtWa9yxO5C7S3wtav4/0vi7N75nm1UkYHHt4nx6LDs84qRxfJAyf2YJ17sNKdLrfU/71aIzTGNmwXrT+kPiZIWTqoJ6VPJTexsYCmuf8dkSfXVzNs6tnH2N01g0MYNeMw0kNBK+dwXgtz3Fy/Q7OR0PPGCPWuEj3Z9hii+DBSl1bimXQqmhxHYOH5Zrv6ZqkY5menSG80/yc2jNwiBHkLuJKgDJCSLxPbMYDTf7fE0KqnDiw0j1/SDBfutGLCGZqwIlUF0SAOZxhO0EwUTWheaVXYhqXItXjXgglescAxkbYwm6eckJQZA5CWpITGL62TdfdIgTibwiGSkG5RCzMhubVh5NQvsZ1/xt6V4vGu0swb6Vok3NMi6CRYIjUWCeJwyVduC2i+U+IsMqu7nuFyzz39I67xIZKSzZj3RWiTz/G6p8uoPUHOOM33WHjosW3uq8Xw8XOEYdzNXGAndM6fYKzsu9gKy1DPN2ibYfWLa3hQVw7XaF/GcNPPlkVLQ5xpcIMro2f1JgG8AbcJHh2GKNoniF+yjBPvMEWdHqSMoSxgxMJV3GJ5kX9Hta4zhGKSadosInBogYJHunGSZC9uIToGEPvzhB81Kr3TROH0iyGsi7C3oQjXMN8Tus4ipNCz+Cql69F23OEAKvFSYLHOCfi73AlT+bQ/IxQBlpxy99RQniOFtD1EYaJ3tHnD3AHtwxjFYtuQ4Si3Igt6SZCib+n8TzBOUh7eP891Lh/QPDprmi4hBskTeN9uI5bs6/q2lSwSzAc7iVsFDRojftEM3Bvj3kcfkxXboZN7+qZl/S+X2vdinFflBKMo3BT73uD9/UKDmNNYcU0D6oZzWlQ40pv7L7o1i7apYWc4dYt3NHxjzXXdoIHP9b/b+qdGSf/p5pTKyHr7xNrnR6dD4j99Eb0uEDw1TIhq2sIz9Uh9mik0QQhv94Q+2NYn9/U2pzRGLb17gON9wOi5PEpLntMBTiV+T3CU7Ki9+xjL8gCNmJbiPVdwx1Gu7DiO014F6pxmLYBe7/AVXcluDpgHCcLb2JP2UvcYjpDZMf4HHmP2FfDeu4gsdfGiHXMM6xN82jF4ZfT/JzaM3CgyZ4hCHSGYKrPCSLfIxjhKS5x+xDjshe6vlaxJfQSuyC3cV/yQRyjfaH7L2GCpmvrAkb3WyQIW4WF/HmC8XowUNGM7tvFrvwnuMVrM7HASxiCcwWXu9ViBkurv5JYlA3cUrgFW3gNuK3oACGEX2DQorSyN/TdFCGE8rBYwS7XKV33DXYlzuJOhdO4fW66tNNLso8t0HoMWFGEXewdBMOtiW43cMjmnt4zQhwE6SItx9UW1RjpMS2wF7iGuhJnDlfgLNxRYrOntb+B47qNoud3osGSaFtC8N8ecTh8hBsBvYP7B+RBtsRJcKIrOFZ6iOOpA3p3xhn/SHO8KlpfwM180pprFP3T0vgLDKBShqtUVoik11qM7pfej1s4ebBf9+1rLUb1r1BYzIp+ffjQv4VjwRV6Xua3HOHugs9x7shTjOSWgvVIa7GP47mbxH5YIPb7Oc0p80KKcWLfC1x5MYgTRt9oPdZw7DYtwhI9txEjdl4tGOOa7v19ze0aBm35GuMeHBBWZzGRP7KJlYAZjHGSIZky3TeCc3MqCfm2iuULuOX1NnHYpSu2ijgQu4kDKg/YLtH6gu5/jZPPVjkZzjkWTc9gKz1zTraIA+EIg/u8xrkG7RrPNMHTZ3BG/yViPz7GCLJX9L5J7PHpJbxEmZ9xEeczpTs+5V2G2bYJHunR/6+IFk8ImbAp2raJFjnP51iZP8RgZOkqf4hxEM6JFst6diqro9iwrCW8EoWGVRnBA+mle19r81jfd+PS4GFsUR9q/E24uVZ6KStxmXKGdqcKnrGEK8oasXe1CFfHpMxvJfbKc9xkrhcbyGexl30Sw3k3EDzxnd7bjvO8ajAC6wGn701was9AamIvcU34AcbsnyUWsVQTeg+jq/URzJpWaW7GXX1+hrBwj4lN1qPfy8RiDRFMsYfrXXtwTkBabum96MIlV1W6dxN3KKsjFmeQWLw6bKGkV2EeV0vsap7zBIGnCeLnhv0Vxs8ewzGdKYzilmGNDoz/X4qT/l5inIROYhOlJrypceShe4gz8tPaqtNc8/syHDNPpadOa5NzPScazxJKySu9bxTHAZexUK/TNQM47NKo39e1Nl8TJZBzhKDKWGgLPvx3sSA9JjJ1/060qdE9o7ikax7nGlTiBk3PCaGR7uslHI4AdzAsFq0GCtalAuPA/w4hHFIotuBDrxwrwOuaU73mXIMVl1XCEs0wSSURUtkk1raJWO/U4CewEjOgdanDLvEe3Gd9B0PuZugiY4g1es4krqiYxgh5XThUlhbCA1wZso7roFNRX8PKdJfuGdd4qkSzYxzqSMGXHqBxjMuxhV3stdit3ordnGs4V2ASK3YtOLeoltjP74rGXxHr3ofDiU3Enn5BKAL/TutwDSN6VhAy5xlOWq3CwDafEg3HynA1xyquknij63LPDhAHbQrpZqy8VxIGUXohGrRme7g87q3Gn16tPn3WiGHO0zAowYriAi4j7MM9WvIZI8S+ybBBxqE7sCytxkmzs4Q8qMIe1yrcrbUVJ9WlByLDqulBPCKU8RcE74xgRNcMlx7ougocCjgk+LBW9HyO+4mkslUjOpwlPCrFBZ+fxcZNKhqtGNJ+Eoepj/XOm4SRcIw9UnOc7BK6jhvLjWAFdlX3/R7O92rHe7USA0Qt4TL7Z5pjB8FHOwSfpGfiWHN4gLEFqjFexksMMZ7KbBFuhzwuuvbr31vshTzNz6k9A+BcgNTmwKU1YGuhhtjEb7GbfBwjL/UQRE63xi9w6UUmV9Tqvk3CFfWSELaNxELt6XnfYdCgWmLBdrH29pog9J8ShKvVszJW26BndREHQinBELXEov8Jtgp6CKvrEAu4FxgrfVfzOat3v0e4rcBa2ohocFbPmiU0y0o9v09jSov5De5kto3j6Y9wn/ubWAg34nJCMDztMsF8HwP/O6LL1jD2aLwpoE0RbgE7pt8Z/68hmKYJC6wWfZex0ie4hDA3bSnBJ+M4eWcF43y/K3q8IIR1J05KqyN4IWNufdhVuII7wa0Tm+kysYHacZVJrdagEZdwtWle3+J65j3NvQI3HrqLM5M3sAX7LrGeWzihtopQitdxNnsKxA2MijdAKCH3cY16A45pp3Xdpc9aRbciTiasruGqhnbiYCrWezJX5IcYz70el9ulknmIobhbiMOzTmOeJRS8StxhrwtDME9jONwG0b1N70+XeK2e9Xu4P8U93DgpY9gZJspchit674qe/3v48DkSnXdxA7I20WOSqLyowof5I4yHv6m5pgKRe2SXUErTKEnDIN9Xh3vSZ35DJT6g1/Wuv8Yl1G+0Vs2i3TYGvpnAMO3LGHn1CgZnKsMu6Md4jxfpOeluPksI/QwR7mO+yfvaCb7+Qz03Das+XJr2BgO2zeCeItPY9Z1etPRatBKyfhZ7Z+8Snrlq0Ts9IeUYwncQV4Ds46z5DF3MEd6BuxjH5XPC8LiOwaEWMIT6op6boYc0jjLUUKK5pmJ6TPDoGWKdqzXu9JgsE7kdFzS+TUJp+oRI6n2NG8SlF7gMG3PpzU7v0proWctJ9/0LXM45ikMEGTbaI86Tq8S6jmv853HDrI9wcuprnOg+xul+Tu0ZyNhTMYbOzNhkxjUynp3u6QFcrpbaUoUGWkws2h2cPbolojQT1vaW/k6t8TLGNe8WUSb0+Rcaw319vopLsA5wtucExpXexwJ+QmO8pbnu6vM5jTGt+HRnNuHs4S8xlHIfjt1P4UzhWdxkYpfYPJMY1raTWLRirBA14wS0VQwW8khrki7OR7jVba4HGnsVDs9UEow2gXvbD2pMZ4mNV00w8C7BgOO4LO487u6XcawPcJw4312By3b2MFhGmeiWikYX7oD5EGfZb+LyzQWcnZxK4EPC4hrBB0A7LvVa0XUHuIQux7KEM+K/xPCyGStP1/ysaHCV4K1BnMW/ivMZekXrRf3/Ng6VfaC12cKKQA1uovIMA6X8Bh+c7xN88Ijg5QXikMwQUSv2zOSapuWY1mIqYJkgtU+s8Yzm0Krf6aHLcMUWbgObVulRwXW9uPfEIdE58T5Gw5vHDXsOCQH1f8O5L8Ua+z/TmH6teXYRvLGF227/OQ6v9erZ0ziRbw3Hl2twu/JNTkLsXtY1qbDt42qEctyDYxmHRqaJNa/R2NNTle/7BFcq7eCyyiqMNfJjQs6gee/iCoQm3KsireBXGtsMobRvY1hyCJ58q+eu4n4Ys4TCl4bDjOY6jrvdpbt9Cu/9cdzYaAkncQ7gctlKXPmRORMvicP4WwwSlobKFCdDYpsYt2MUx9AnC+ZVjBXMC6JLKU5A7dS82wl+WNUzuzT3Jdy1NL03TcQZ8YDYd9/hnJY1jNy5q/saMUhUeqUzNJbhzwpibZsJz1Ra/xWaTyWufhjASdUH+EzpwIBLB9i7ewNXAxzhvLEMRfTiVgB1OBy7hhX0CU56OY5xieJpfk7tGZgmBF0bRlcrIZh2gCilmMREhRCKpRjIJLXWjFVPEAudsbgmwk1Xht3YaSFvYIbI0EAdYZ09JAjbps9SUx7SvVvEQZtWT5Xu7yY2zjyhNabF0EEwQwuxmW/hGvm7OIa5STBFL46rjeKM9A3N8xNi01wntLsyzbOPOFSSXoeiVxWO748SB0UTsVG2NOdiXd+g9/1j0blVtFgSPdY1xg1C2NzQO/JQ/lJz/g0h1CAUp2OcUDiOS2TeEoLrTwgG/FrzSY24AR+SGbdawj0NJvRdHlxPcRvmbhyrXCeETFpeB1rDGo3x59jl2U9snMmCe4txr4pjjHo2hRu+VIh232CwlirRt40Qdi/1+T7O5q0Une8Q/DOCUc/a9M5qQniewcmYjRr7GC61LSO8NO/hOvt0/00TvN2Nk2dLcIvtjCN347K0bzWeq1jgpJs0Q00ZaijVfArXuojg90tEvDg9QC36Li3GYpyw14y9JR/iGPkmYcmBLcFqPeMe8B8LxjhWsJaHONmtVJ+vaZ3eaD4zGJ45re4MsaVXZ4OQA4eEtbeM+zZ0iWZ/ipXI9I6lAF7E1uJN7F7OeRdjZNJSgh97cGOipwTfd+qeKj3vKT6Ix7DV2owV4VcET03iLohLBN99SxhNtfhAXcHQyyW4BHkKH3qlGOdiAx/A6J4PMP7GtK5NT9cEJ6tv7uKywww5FGvdVjCuwhGuqQcr1AO67xxWJgYIObSE99VPiD2UClZa898Rcu0CIdNvEufKGZwI+ITg3Sqs6KSy9q3o3kvI5RaCb8DYAR1al7e4SVA9Lq1ND0kxJ5vJlWLFfx4n0ievpreoAyPHppKa5+QOsdZpQE0QZ0Y19qItEXw0hA3dbmLfFuGwYXqJf9vPqUGH/uuiIj7AIBf1BINexJmbQ1hAzWLozRFiAW7hZhKHOE5aQTBfH/YiVBIM0qDfDwmLaUdj2MFZuG9EqEli0Rrwpl/HLSB3sFsl41T7nERTTMZdJxZ8hhBGeVBmCGEHex3yMKzCtaB9uP9Ai+bQTWyiZj3riHAJvsVVEOnCelnw3Hdx9vgiFpR72MWbQm8Lg4x8qPet4NLNPewqWybqjbcxVkQ+t0bj6sfx8z18mBRpPHUEc2bs7jEuOYJg9m+IdW3FMLAVGucbYqPUEPxzqM+2CQvoF3pXHU7M+kLPTtdqke7t01jWcK19P6FRn8ed1G4R1mjGOt8hDvZWHM7JuPAM1sIvYuS5fq1f7odtreUixsavxVjt1zTHz3FI6RM9L4UtGFvinxMJiLXYHZvzzThnoSCvwsiM+1jZec1JCNsSQkhWcdJjd0zszUvEAdKHUTa7sEWelhLEnvuGsEqf65pOPXtY9FjFgrUHH3r1BBJnDU4sy4OvC2NWtONwXhMha/ZwDkIaFus4se6AELxleucvsTUJLht8iksw7+u7Ltyz4DzOn1jG1nGbxpVel7O4cdsGDqNNEmtbQcivTwle/XN8QGfYdRb3cujD1T3tWCYlX7UQymQX7qEypbW8qvcN4wOiS+M6ozE+IvjjJS7rrSa8OG+xHHpTsA4pi8Dl4qnwt+OW9ZmbcST6vcL4FhU4f2tA797CJd6temYpNja7cQvwctwIbFXvbRIdlwi+asdJumjOCzjUUaffH2AsgeShAz33kODpEZywu63nrWOZ34SVsUn93sJy5U+wIZfe8HKcgHqo993GaI27el8j7mHQpvddxN6GNey97sR4Fge49PgcRoX9v57imD+1MvB/LCpin1isHZwYkYd2xo7SbQV2VR5gTWmTWLBjwlq+o0nOEQs1jl1pVQRzluHs3iNsqRXhRMbLuAnQOUJjfISTxVqx0JzEJUtgS/wSQbg9jJaWbqMa3bOIXawZey3CCUCNmk8xxsIvwQkgE4Tw6NZcc4N+rne9QyxgCbZOwFZcel9acILPl4TC8IJgsH9OCNqMM1fr8zWCkfowmtyx3jlBrOkPCGv/U+x2W+akWzoVn2S8dBm3iCaDuA79Ii7J3BJt63CVwDDBU5M4iWwLH1SbGMTlGOdO5IFajturorkVEUKog1jTt9iyrsXogK+wxv4Ge4rmdO8S5s113Zeu6Dp9l0Ip3ZHb2HN1XvM5Sxw2x6LbJ7q+Flur6bKeIfjsAww4Mou7HQ4Sh3mZxjustRnEsLy1hEAuxRUZm0Rs/rHm9gCHrTK0t6Kxfa+xj2MwqcwJmMWwtemxGCKE5jsYTGaPOIjLNcYbeucuxnGYJfbmBVwRlFZtKmVnNYdrWLFZwe2iX+PGPJsYh6ISJxOXYP7u0GdPNc4+jb0TozTOFvyd+QMfEgfUKCGcf0Ds2VTCj3XNv8aYFFcJJeldTkJJQ8iZEmwwLRPeodcE/5bhhj3o/2eIfZuh0rRURwgeXtH/bxOybxQj6J3FnsJGgt/HCujYgl3eizhfpRLDKPdoDQf0zA+IcG7G/Wtw7lArwZPjem7mQ6T1fAYbAocad4Y3dnAL5/QMFetZVzT+vyHk/IiuacB4IxmaqMPhjm5i7TM8eUfjuELwRSphR5rXPWJvp0Hagdt7nxftZvSOeqz0F4kO54k1XsYhyz6C13+Dk8XTu5A5Ulv6/bs4Tynj/g3YG3ULt7b+BntD0xuTa5d5Dv/PUxzzpw4T/AyXy60QG38AA4aUYCCX1CSLCCIe6b4U1LW69nM94y4uW2nAiT3DODniNkHkARFiAB+GJbg0bYhgtO9wxcEZzSEPpC4M8tNKLP5HxGE6gutgV7AFskAw5xWN7zLOVE8XU7N+3yWE8RYuVfpb3P98FrcpfoR7MNzSPNaJBXwXIwDu4+ShdIdu45juC7zh7uv3NVyymG7etJbexxm+32JEwF9rLBkjPYtzMBqJjVWBhVm6VCt17QJWtl4RG7kHd21La2Ael9ZN4Xr+W7i/wHm9s033ZaLPELHu6Q3oxLXOTfqskRCyj7AHZxYDgKR3YU7rUkTwbsbYcmOu6Lp+XXsVH1irGO3sIq7o+J2CMac7tJngmYydp6LbJDpM+kGbLAABAABJREFU4vyCXdF/s2Atz2ts97Dg28cNXCZxTXu6eK8S/JoKzF+K1juEoP4Q+BecLCt7gaHE0wpL6yRdyN0YyGkdl2RN4Jbl6c16g7Eb0orL+HI1RpAsxwnKDRrLMXG4VBL7eQJXFKSVX46RIfdwyVcqG+m+Lyq4dgbvjxYsYKdw741PiDUv1jtHCr6vIPjnou4bEQ2+xzk6WzjXaRT3GOgSHVL5qCT4Lt3PtRhm9k9wn/oeva8w1FlH7LHigmeWEjzylpA71zCmRz/2uqUc7iFc7EsYPXSP4KsdDKy1qjGlR2yBOITWcIiiGFu/NZp/0nAN80budbQOGfr9iNg7BzgXZhfLgGbCoHpE7PVjTuKPVIlGF/TuUQw9PCi6bOKy9C1CVs9qvuME3yzgKqtKPWMSd4G9gNu8Z0glfzIUMaF/HxFrm/Jknmh5nd6FThwWaMNhjF+IXkvYo1FXMNc5ves3uv4sxqLpw50/+7An+rf9lP72S+JnjhACy8TizOM4XZ++P08w23uExniNWLxOTaqBEADpep4TAUo1iXTTZ8w1Nax7hDZcq0m34LroVk4mZt3QGHoJZmjXNTM4kaZT78+Y2yghMI5xZUQ/ju/VEZrZ17iEpgwjRvVgj8ErYiF6sLtsEtcKt+PkknsE8w7q8+c41l+BUc3y0C3GVuljbNWkgCrBKI6HuEojY2et2Jr7D9hjc07Xp9Wzred9RgjGRdwatR3DNFeJzumlyTjmG9xCNWOI3biMbV20myWETBEWIunOy1BThhtKdG0VRioEg/2kh6Re117BAidp0ohr8Utx2KQRN0BKr08zruaowH0g0hO0SfDUCnHofqnxtxGbeA7D+1ZirPx05WfcNF16Hbi5ySrBRxkGmCIUoVZdP0UciC8JAfYu5s30omQexR7BJwsYtneGsGz/hhCGq6Jfeva+xZZ15vSkxfF7ROldNSGYcr9Viha5t+d1z8+0Vl/gbonNxCF/Rt8NEIZB0q9c885ciB2Cl1JpTNrucZJfp4kDqg8L9q9xaXK65kswtOy+nn1M7PVFXI1RaLUv4VLOaYIXXmB0vrP6/1l9Vok9SvnOUgwsU4UNiykMm5tyJb1v+7h89iGGJ94n5GkNxsOo1jtbtN7pqSsleOkbffYAl+emPKzTe/LAPtQ7viH2YK7zsdbkQ83liu6bwFVSVQQPleLy4EZOIkhmSGVFc76u7zcIJSiV9QxVZQ5CKd4/57BiWa4xtGDl4iLeR1N6R8qpZqyUpxKVispnnETNncUJ4KVEI7IV3Zt5EikXbog+NRrvPWL9u3XvG+xl3MTJ6Pui5009u0brOYFz2PKMSd7rxR0UVwm+aNNn9zAa5mVO93Nqz0CRBnNDAzpPbNIuXAP+gGDCUUJAVen6BU0y3fKpKdURAvK2CFJDLFzGdf5AE+7S9Y36/Dscl6klBNArve8/Yc23kVjoXYLoi3p2upibMUTuM82nh2CmtOwbcc+EdDkOaT6r2HKqJA7dc5rfd/gg3yW0yX7R4luC2dO62iA25QxhkZTr3syvKCMOg1QkyrHicg43lNkkGGkYx9hWsYDODZWuvDLiUOgiGL0au84eay3uYSt4Ctew14v+Y6LhDsalH8BWyJLmtYGBZzo0hn3iIL2JM9eXtAYfEDxRr3HXY0v9bzEO+hRhkY3ixMlK3EdjFfe4LyJ4ZFPPzs19n+DTI917A9f9nsUlkhmPzEN3HUNQp6J0gKtUKnFyz12cXT2H+1p04RKuWiKHYJTYC2e0FiuiQXrC3sMHfT92X14kNv57ONO9WrTI2HYNwYN/jvsUZCigFh9IGepKd/cSsZc+wxDA5wg+u4Kz82v03hsEj43hSp9Fja2X4OsrxL64jy33fa3tIa7bTkuxX3N+qfFmTDwtsVQkRnH52aHm1UbIpPPEXsrQUip/I4Qc+iMcsz/C+TDtWIZdxy7pVIoXNaZ7OCmyVnO9hct99/FeGiEUkB7ip4rgtRI9+z/p8zrM+9cIz1mtaNHLyV4BTcRe+13stWvDrur06F3Eh9I6Roh9V3N9iCsDjjBA1LLW5L6uHyFk788IK7iRODhzr1RrTDnOZdG8cN7Fes4MBu3p0HejhNJTRuylPCfy+5xflf5e0RqUaFyVum6DkOnPMPhTGkelhKxIz8gRTkxMGqZylufgvq69jCsf2rQOvRhs6kC0Sy/bmu4/g6GZV7BSvKn5f6S1+RSH1Pd0TaGiOErsrwyhreP8p2li/33O6X5OnTPw3xQVsUQcVq9wDHYPg31sYqCddGGXFlxTihNy+vTcRVwHn4lF89gFf4Dj4yl0k6G2sRbbhGFiD4mF2cDJdu1YS2vT+w9xt65k+E296yYhtN8SC9mg51VgSNMpzPBVuExun1AgcmMWa15dxCaqwnGwywSjP9T15VibmySYNcMA53HyZCOu2S7F2byzuB49Y3kfEgxyLHq/JRh2ALv1M5yTrubUPs+IPh8QNdhtOIcg3WMXNOcxDGSUGu5zYkOuYsF5AXfVWiWstww3patxQM9+pbXa1Dgb9OyvccfMQ+JguaExT2guczj5MRWAs8Q6lxGHy69Eq+u6Lw/Bb7ELbwPz8lmN/X4BndOiSJ5sxeV49ZrDj3HlyhliXX9OHD7rxAFXozGn1bSLobLT2t0m+OghcbA+xbC+Y4Ryl3vkEbZyh3B2+IzWJRXKJhw+mif4I2lyFydxdeHEtDy4xrCylHw7r/Hn3q/EgFcHRIjqMbZOjwhFukI0z3DCMY5XNxH81Cya1OOa7WqCF68T/J25OJXEIdOu8Sdd00gZ42RO0CauBGjCwE1VWqf/CefupGfoIgZR2xadJzBU8yaOp1dy0ttRr/EO4RyJA6wUHeqZjQSPzHEyPDKEFcUuYn+MYITKDN/24MNim1B6NnD+TjlxSKY3dB9jvDTj5PDH2APTjcM89zCPFhN7YwgnDzbpXa9xqfExzhcoJXgmPawZFpnVerTp8zYMe94lGqaXZAl7jhcwqm0p7j66Syg76zjBukj/3hJ8mEZJKa4EWcKYOPUY8jxD5uk5+0NC7meIKpWdcs39qmjYjBMI3yOMm1S2bxJ8+Qrny5RhQ7kM57Gk8jlAKA9/hxO1U1me1Xz/H/+QOQMrekm69/LwqNUgP8MW2BbW2NP9e4DxsD/AqH6dGDmqC9f8XsHE3icE2zoW4u8UPPcAg/WU6PcEsWgHGs9TvCFncV/0SewSbCJgTms151YCHS8F0RqxaF/h5KpUakpx3PGe5p4aYYYy3uBs7zZiIy4SjNmLBfcxYe0uEYfeY71/g2Dgixjt7EDPeIKTWoo016u43GhczykC/omefYfYBB+JJt1Y8KZSUIKBhA4wqmMqN8dYgP0xzn5fx3HsTZxok67JB9gbs0ccYhnHW8bwsVvEAT+Ds+Hv4qzvRtyf/he4McokITTaiMNgSONL4bGO3XnNGPhpT/O9jt2bS8Qm7cJgHz1EfPMf6fnXcHJlKgdpRWQ4aQuD3YwR++jXRNxvBCd0VhP7aLvgeb/BlTX1OGGwHyuXx3rua61rHxa4G4S36gW2LLo0z3XiZ53Yjxly+x6XW7VyMs6Z7uISbBTsac1mdc8O9r7VYlnRIFp1ib7PsNdjh9jrr3HsOd3CbTgJcxYrGuuc7GdRqnGMilbp5akjFOqPMCBTJSc7HlYQ/J+8Xaz5Ptb8t7Ew/ljP/CNCqP8OLjP8BoP37GEX+SqGfd7W/U/xnstQRilGdDxL8E4eBh8RvDOMDZIMEfYSPHcVW/VbGlsj9uBexXXq88Te6CTkTJ/okJ7LHb3jhsbbh0Mbq7p2hFCgP9f73mAFf0L33dB6nsPlx6nsoHGfI5SVV7g9d+6JVSzvRoj1zZDRLiGbHmKvb3ok9rBy+UTjOdAYvsPgZ03YSOvFCdz1Gv87mmsbxlwpJ/jugtaxGXdfHSB4f173VWKPxhUMmpcGahqRa4R86cZIhMsYcrwFh7rqNf6vcOvl5wR/X8fdhk/zU3rK6/6+LHACt2TswIxdLYJsYjCeM7gkqU4DbMK9ul8Sh1uV7vlWhHmHEAjXdF077lCWB3KHiLKLkafmCEa6r3eexQlEIxgFqkZzSRdkatHp5vqI0NZS+O1jT0UvBoGpJ5iigWDCQz073Xr9GKWtnvCqZByxDGeep1UJwRRNur8aux0hhOZbDOixjzPPS0TXOdy45CVxIP4dxmtIN3U71hy3sTUMIRie4JK5ZRyz3RRtlzWnPNhaicN4S88aJYTZkcY6jw+RQc2rlDhwyojqh2NC0Zki1nkGHx4HmsMmhuLM/IMmYuP9nODTIz3nCcEPb3DZ4XXCrZbW7mWCL9Iyy3jrE9yTIt3aTwilJQ/XUWLTDmJX8T52uXbimvFazW8Ne3xGsCu/lxCE05p3D05cncB4EiXEmrdovc7jGu0ivetI35cTobZfEGuenqApQhilpZWehTJCqBThMFxatr0YxKdK41gklKSHuHLjewzEU42RO98j+OY69pa9xiWSlzT3CmLfvsGNynYL6LeEPQjDuGdGA3EQ7ePM/imc89GDwWnu4VbDa3r/HHb1luJ924u7WlbqOenhPMAZ8HdxyWK6ky9hCNp90WkfK0KHotWPCHmXcm2N4MkhXfMdVrzKMHR5KgJlmlNaj/0Er7+D0UAnib2e/J2GUq++e4zLF1eJfdSBjaXvMDx1m2ia3pV9bIUv4oqJelx9kp6IPYJHy3RvN/bwZWw8Q4PrOBExFdvXol+GhQ40jlc4FDmp8fwjrFTmuEoIuZGGyjaW5y8IWdKAc5NSlqZXbgcnjq5jmOZ8fnoxWzSGYQJg69cEL+Ze+wrneaRMzXmf1fPv4AT1dgyY9gp3JH1P43iCW0rXYXj0csIbcpqfUysDd3D9ebsm1qLBXtLE72Ds7xe4Lr2eEJyHxCZJAmwRxH1KHML9BPHSVZTxm4dYAG3jGE7Gp59jpWMUl+y0EMz2F9g1lXHdLYw9nvG9BxgRMV1gjcTCzOAmO4cYperXuNFGk8aXrp1hgsFrcdJfBWFRjOMyugpiIa9id36OvQF7JkZwX+yM0WcIoR1vkAbs3norOpVgz0ta1lXYFdqqOXZrXGs4uWYD43anpZZxuxZ9N6vx1OBwRoXWKl3mdQTzruEa/SJi3cf1rBlcypbu2xUMHLWPlbwljOv/SM/6a6y91xCbrofYLJe0JoP44M/Dah8Dh6zgJNlG7NIrJjxgVYTbf1jPH8DemhQem7i2vZ8Q7N/rGW80h8IDox/DwV7DiYZ9uJ58Qv/f03y69HdamG8JxfAOxomYIvgnLejM5UjL7QhjP7zB3pC0aPsIPp/X+9qxkliMIYwXcIZzBQ5xrOn3W0IReIJzeNIKriN4+5xolyGkak56Wo71/HKNvRUnsa5g4KRibI2ex/0HqkWP9Mi9o2dP4HLmDG3sac0ydPBjXOI5gTP063AoJ0MoG5h/zuC+HKu4hPR9IkT1GJdOn9HnX+qZb7RemeMwjuvZm3AF07HoOS+azGPrspVQ2P4aC/s83HPvpML8GiN6PtBY/7nWbBtb0jn3DF1UYG9qIw6rVoj2x9j7m3PfIPZDemV2cQ+HKc37GFfxDOu6IdGrDyc9Fol2d3F1RSWRc5EyNJX+I2yovsbIiBn+2cWdKC8R6/41IX9+Qsj7OuwJTg/jIW4rvqvnrug5b3HL8369+8+Iff6M4L063Zeh6gPcNRNdd0XrNIXRVNNr0oeVrhVir2VYco7T/Zw6THAVN8JJF3W6+zcIwk5hBLX3cC3qgiZynVicUQ20Tc9O918eMlt6xueY+S9hId+Bk5s2MeJSKY5FFeGWmsfEoqYiME8QOS3XXhzH7sWJcK+xFdag+XViLb2eiBMd4C5gxTiWeQ7H8Udx7sS3GBQptf0q3If6J9ga2cQNP9CzOzXXD/XOWaxdF7pPR3DXyFrd06xxzeAmIRW4o2IZdpWtElbIeWJdMyZXo3V4gYX7VQxV+4bYGI2i3T7GcMjQxBpOGpslBFalnlFPJECVYMTAYs2vAQuuDBEV4YTALtwZrQHHpHuwq28b9z2fwPgMqXRVidb7GsMzwvL6iEjoAddwN+oZI3ruexh8K3mynsjAT+9DGQGE04qb7Ixjb9AT0eFTQgg2aexNmsem1uwMwbclGsM+IRCv4T7vnVqfftH3NY737+D9s4jbBHdiOOG0xK/i/JljjJ3fITq/T+ztT4l9XoqV8iLR6bl+DxA81YORQn+AW0ynolaHXfe9OBGwHSeyDeMEwAxJpOW+TaztPMHHxXrfH2msaS1fxpgWN3E5ctKuB9fdj2NX8Lre8RS3MC7H4aISXMKb1t99IoTw32vMx7jRVxtu957rNa45XMCJcuCE0Et6RrrGS0XP8zgR+yutX4YpirC7uoYwtnIPrOIOh7WEsjKL+ylcxBDema+Sxl01ToybIWTvIa74WMGdCZdxmPgijqPv4zyqtLZTqSsl+Cc9K3vYE3qAea4JgwGly74Fy5tpgteqsfxNI7cUy8SnhLexDmORNBO89AbncqTRs40ROdPzC6FAbGEP9lti76dSmaGr9Do1E7I9PT5P9aw0CD7CWB7bouGkrs/wRBEGJLrI6X5OrQy8FlGWCQE9QLjS+3EGcjFOpPmcIPALffcEuyV79N1FYiE3CUFRhfuxDxILla7KVwSR9nBXpk49O11HAwQxe7C7r5tY9N/o7z6C2esJpjuPm/ys402wo+ctEUw9Tgi9FCrP9XcmjBRpfDMY/Szdc3WaT1od27r/kGDAtLKSgX9NMHsHrr/ewklD6a57hl1P6Ukpxm7LEs25iygJKyc2e7oI09uxia3VdPFVE4fKALb4DrC1u4hxCyYJ7flAa9qJhfgCDh1kDkha+GkBv6f1/VjPryOEZimOnw7ikEMFbm7yGmvoRZrLW4yY1o47+Q1jl/ZZghfew10SR3B29D72WqQH5Qt9n3HL9ELdEN3WRbfky1qMk39DdEvrLOPjGY5YwPCuNUSy2v9dNFvSmN4Q67qp6x7i2ucmQuBXEnxZRbh689p9rFD0ah5rBF8/wBb5lt73htgn1biksZjgoefYup/HuOznMALokWjXhN3HeYjO6n0b2FORFt2S5jWDKzjqsMWzgOGVy7V+bTiBthaDFr0QrUuIte7Xmn6ptVvCJVy5Tm/12XPCCm7EsOSres4KdvEvY1d+meZ4HicS/xLHznexlyMVQ3Du1TfY0lvDfVDSWt0k5FYnLpP9DLvT50SnWez9QeP+ntgDbXpGE4ZIXscW84HelQfbdzgfZ17PHxNN+jWmB9gD8Jbg63T3p+zKPdYq2qRbf1v/5jXud3E76FSqxvBZMKX5zOOOs/WaZynuXTBLKFBDOIdsCjcHStlbT+yTzBMpKrjnHG4qlPw7XvD8HEubrt3B8fl1wqC5hnO7enXftzj09wcEnyzj1t6v9C+9AukhX8Jhol7MfysYpTVDGN/jSouHnO7n1GGCtLrBHcv69KJ0hW5rknP67AmGeWwlhGkxJ+NCEItfqt8ZZ9zCtbvNGIoy8wcW8AJV4ESVYuKQTxfVLk6weYoPmG199hGxoXpxOcwRsVDzOKO0GNf45lxrcYXDDnEgNuKQRafm14BDG1uixRqxoaZwU5FN4vBuJA65DB3c1b3Neu+Wrr+mZ3+Jy7bQWN/Xc9sIgfQfsXC5rmeuY9THVsJ67cS11kUY6nUIQ++uEkw3gRtzlBfQ6nvCIzSOvTnpUu3FtcyvMOTvOlH3ni7xVI5SaC4SG+U2oYQu4JLT1LiP9buXUOruaZxfEBvrBbGx6rE19xKXTHXibOy0hib1rgGMj16u34g+jzCY1ee4Ic1Zveelxj6AgUwatJaHOEdgHjeRSW9GhmVuim4buFx0hZMekh2cZPUd5rk9vfcWbrTzE4LPxrHCla7qOYJHMnZ8R/PJcMuhxpUHUJXuzRyKFUI43sCIdq/w3lrCzVheYW9AuryLcdJthhkPib16X+u4r/m+xG7pLmI/9mAY2TyIZjXvDIWdx0mQjwj+qNLziwkP0oxocxeHLDpxjfogzg5Pq/0x4a3LuP4+sdfRvHNt8wArJvbFI9zwphYnX/fiyqxN3VOk73+EQ4V7uCX7isbagEub3+IKjPOaW1qalbgh0ia28kuwMpJeojmcwLai5+VhlcrmU2wgThOHfyNGdy3X/bXY5X1ONMzPlzEc77GemQrVBg5R72iuTTjMlwoIOCerSddNEd6rh4S87sc5FH+B8RDyvi5iL6XCXonznrYwbkkHDhmt6t1/hpFRGzD41wVi377G1Ww9ONnvAu5uW4S9wWlg9YkeGY57hEGt0iPRo+u/J/j9ND+nVgbSdXyk36k1nSEIM4XjgIe43GwL17GWYTCM39FE3uDY1T6xaOvEhsqFTub5FrsJe/T+MY2vQ2PZJA73QywcMgyRrrOnuDYfnAyVMcuMs+bnTYRgv0sciuv6fAGDAdVhfIAD3Op4H7vcM5QwgrX8S8SGHMOIhb2EhvyEYNpkwGXcDAisNLRr3GsazzDufZ3uyWui8TUcExvC7qslomnLY1zDDEbwahN9Z3EGaxdO4srrlwlF4IHm/LHmt0McPAOiXTXBzLM4zLOIu79V4LDBrMb5APcB78du4Vm80as1lv+PaP+CEJy5YdL6BIeUKkTvX+OyoF7NvRq7/ZO/Loi+a/osvUpLWOisEWv6z4jY5arG0qnxjBCHZTWuPHiNQZPSCpoiFKDHetcGBgdqw4l/6SE4S+zRN1ip6SbWeELXZOz0oejajq35CUIReCga/IbghxXNL9ezkzg4+4n9dJXg7S8I/rpICMM+vX8Du/93MJhUegdK9dxNLMwXcW+Pm3puWtM7+PBo1TqOEId4P/DvMKR4Ghhpledh+hx7gFYwaEt6Jw5weGoP55C8xdnmpdi7OaBx/VJzTrfvNEZkXdH4z2iN0ohp0jzrCV69jMMm53Gy2ShWsDNss6vrOjF6Zj9GRMzDe0rrN48VhjQ+nuIeIse42+wKLvkrxkBdjzHg0qeEzF0jePx9gi+fYqCm1xpfl95fjnOtqgk5eCBaplwo5SRkb72uLSV4shnz9DNsnQ+KhunRacZhnPQeZcgxQ0F7eO0bde0ULtGuJ/bHu4QcGsXe4PR+bWkMT0XDVMbrcCg581Yyxr+mz36N85y29c46XNo8p/s/Fm06MaJtDQ4VjWCvSgXOcTnNz6mVgSu4O9gyPuT3CQFwSf//lFiAWZytu4wTdGpxqeAWxlJvFBHykNzBmbhTxOZpxMh0FcSGGceobTsYVnWW0Jw/w+7KGYIpweVii7jT3gpm0mncVfAtVnKGsca+rL8bcSb8up6R4ZEevW8Xo23l88aIRU7mBFsOqeW+izXqjIGPEUz3kBCcwxjBqwID2ZRhy2EYh2A+0lge4RjkFeLwmycERGsBrcZxHsgattbe4MzxKmLtx3Byy77mOqPPynAzjg1cPpXW9nXikO3HCYqLxGE8q3d044TSJYJfMgw1iN3bx1hw7eFQTo3ekd6hMiKm+pFo+lrrUUys5SHBX3dwJcOYvh/COTTF2NN1jCFcX+DSvctam7fYap0soHcqRNVEJvQjjeU57t5YiRt89WB8gsu44csRhgfvwF6wCmIfzOMw2Hui2RaufkjvSnr0ZnH3t9e4CiWt1ku4vW4K0HLc3rjQWtvESXWrOPdhEtd5T+OS2OIC2lYS69xP7LW3BG+2a+3SknytcW9h72CfxvYBRr7c1rPeau4DuMKjkeCb2wSfrRF7dZzg0zO4Nj2Vi1d6/ndaqxsFtJjC/Nyvz1KxK8alwzs4E70RQ7en13SZ4J3vcXXOPG4KVEHs5T0s3Ocw6M8jveOH2LJeIxTcCeyRKiIMml+IVvUY8+Qm7tT5rp55Cyd5VmH3ffJP8vgOTuae1mfjhFV+hJOPu/T3BPb61eN+ALOa43mchJcH4gz/c9S9NPAOCVjuGtysaAZ3rkwL/iY2gJswWuEI5psFHC47JGRzegjTC7BB8GYau5lLto8V5Cmc77Crfyknu/EZ2Yl7cTTh/jI/xMrsmu49iz1StZzu59SgQ//boqK/b0DTRyzIEMEsGwTxHuvadIPvERbDtxiRDNyKc0EDrcAdukqIxU2NshXDcGZeQpUmO4Wt2jbCKhgmFmIIu8HSfbOhvxtxnfYCQcRiDGSRLvwMP+SG7Cc0uDxEGnAb3BmNfxfHls7jlqKviMVcxyUrGR5Jzfc8oXEW69pnOEZZQjBFFbE50kNzVECnWr2nRLTP+NigxnUWa4mzOIs1BXEJIQiKMfhIfcEzL2nur3Emecbmr2ErYg8rfJ24NjvneYxjtJ0Y8euO5pdhpCOsgJZhMJJ9zWMdg5qkgnWkz5qJ9R8kLJ6LWPk8SwjsY05i7q9jnPYVrBj24hBDDbb+H4qu17Abuh9jXPwUux2/wwk66UW5qetmcfOucVxuuI8hvrt1f4e+Ow/8Dxic6CLuCdGsZz/DULPpXekjPFydhFLzB0RWeyoP6ZLPkEAjwZPVGIxqX+NNpWRZ87mAy6wacKlhhuxKMRz2Lq6VTu/KNULY7ot2X+DOhG8xemQbBpGqIvZSGgvf4YZTRXrvDwiXMLiGfoeQOUPYgt3SGJ7iZjcZrijX+B/hcr5SQuZ8gxWJ6xjy+SdEFn/mGsyJRukdPcRhllTUd3GPjl/reeU47ACubqnTHFcJHs01HcGdUs8T650Wdj3BfxexvGjE+AIZVkoFchqjv67iTP0t3E1vGCfwJu/k/p7WHGbxfu7V/QvYS9lCeBTmCH5D8xkVzT4k+HEc93FIaz5j7RmimsVK+oquuYRDOhkazDDKDK5wOiRkRuYlLWFkvwm9O70SS7r3rP5OT0cxwUc7hGF8A7cuPiLk/wucdHhE8M9rXPGTRuIQsUdGcMi4CHs4zuPSwm5inw4SfPQAn5P/l3/IroX/h6Kiv28Es6HJpJvyLS6pGBdB+nDiUMY4M2ZeqE2lgFrVxB4TC3OLYKQFfZ+uxR7CdblHbMRnWJu7rntGsBdiQePPjbGCGf0yzpZ+RDBQI7aupzE06jmCAYdwDA5cDtdCCI5RQhBP6t5ajXlC9z7B2vei3leGm7pcw1mr6YVI2m5rTLcJRn8sGizgsp07hJU7iWOy/cQGGOJkrWvGIHdxFmsFzqtYwImY6eLMfIG0Vm8RwrBcNHvDSfTDQYwul0pVrZ6Z7uVjgp8uYx7pwzXbbwkLZEW0TuWkUe9PjXgFH6LlGIVrXb8v4JKfVT3jtr7PGFx6pXaxYCzFraWrME5GHS5DXCAsjXKCP/sx1kR6s35KCOu0VlNgpVKVHqVSHEZZIgRFDe4DcqD3H+v9uWZPNOer+p2xzDVsNZXi8MEO8VOi+WUI4ymuvy/R+zKmO6F/57DFnOGTPCzKcWOqbZxzs4jju7t6fl6XsekmwtJ5Saxz5kOUiEYlGNOkA0OT74nWq3hP554dwK71r3Es/xLhuegTTb7GCYuPCc/GkdaskRCu6RV8g2u6N3CoMK3CctwdcwznQYGVujnCip/X5xdwNUGx1uwd0aIRI3me0TVb+v0nGluFaLGBG3iBoacXCBnYTsi7toIxP8BKQR32KD3T+55hD1h6eXLPP8XIixWi9zon+5IMiNaVOIFwU7RMj0QrRlM8xNC8pYQcWSJ4ewv3qMi8myKs6KaV3Y4TUVsJ2TmAPYo/xR3/MgTXiD137Vq3MYK3Umk/0v8/13sHCF77OVYcMm8kw53VuANrHy5pRc+8QuDBbBNyeBF7MuuwXNvA3UvR8zZxA7kW4vy7QBjhrcS++j//QyoD/21R0d9bBSMYUKeCYNiMb2wRBK4nGPNdQsNvJIg2QwjDQU7WkOfENnB3rGVcgbBDMEILzo5MIdCi97cTG/oIu9U3Ce3oOXEAr2Kt/AMintuCBU664zIOtIO1tI+IBXqIkzXO4TrvYdHnCs5zuFMw1kKl5ZBgylnMoNeJg22p4JnFhCt3EW+6JxgBsg1jkj/TO69ii7+eYOYanPSSB2eL6JTu2CrNvQhbaLvExjuD1/cTQsAUYws+43FLGJ56TvNsJDbAW6y8JS3Slb1CrHc5EW7YJQRjk75PQfYr3CQnLco2DP85onuKRPfzRBggXW7bGMTkHc3tISEo+jEwVpFo04HRwUYxLHVNwTWF8cNBDIVaOIZXBWOswQrKFEaG2yYUog3iMGrCJV33sUU+g62TSuzx2cdlnR3YiqgnhMMrgtfW9M4xnOz3krC+hvXsWdF3FCsuZTiPZx93Q6vBWP2p4A7g/hrvYA9TGcZLGBP9kyYdWoshXGJ5gI2GPKiLiX18VeP5Fh/CBwXXpKWYnqZqjfMBVkpbMbz2Ou7YWKR/nTiBbFXPOKdrqjCKafJIEY5Zb2kMG7hGfhRbp20YNvsI42cM41K5UkLGbhOGQrqWj/XMVLD2cHVAKmUZcl3XeuziJkvbWB7sYhTA9CaWaX12sZI8gkMB6ZVM3n5H91Vgb1clxgupxB6jA6w8pLcww1PJY+2ax6cYJbARwwKn67tCv18Q8nwe78s5/f4EV5RdJtZrTc/InJsxXI2WYb1SHBo8IuRHKicVGL+lSs8sJkrNv9UYFjDSZ4b7OnAvkfaCuabBkJ6DYc03lYBFgl9aiT1eRoQS09g+wi2Tm/WMXVy++N/+Q8IRLxAMnEJ5jdh0aJK/0AQmcSLINqEYZKymBfdef4pdd2lBJXHewTG1ddzC8hlOmukjyuVSU5slmPRjXPZSi93YzQXP6sA1vAeYYOlFqMXtdbcIxr1EbKQXWEMc0jsz96AKZwTXabw1uOZ7Accjt7EQSKaa1/87sPA9g8s0m3Hp4gbOfv/H2OX1jp77VM9Ll3JasRO4Tv1QY13CSYkrxHq26fndGMBpD6MH9uA4bbpvDwvmu6HnTRAH2V09q5Jwm13F5VEZ4yvRNX9F8NqyaPBItP81BhD5l6LTv8Dhlj1cx7+CrdcO3Hb5HLGWM8TBM4xxwUdxsk7Gdhv03BnsTtwTfRcIfr2BlYyv9J5+gj/AiW9dOCEt49lnMQ+s4Ozq3CcLms9tHFZowkBfw6Ltkq6tK1iTNoyG9wLXM88SAvwqwV912KtUSQicWxrzP8YdKKsIgXuMYb9LMNJfF1awXuKDYBIbADO4b0gNjjG/xHkZ4HyWY06CI7XgkNlvRNtm3MTrmp6RobhbotuP9b4GIjRyFYOEpdfpKgbRKRW9UiGpwj0GFnC30UUM6TuOW403E+ufVt0KDgWMc1KZS2u7E5dwpoJ0GycaH+A8peSfXo2j8KDKuPk+dpm/0uctxJpnKKlO4x8UrR8TcuuOnn+VMG5SuR3C2ektOFR3j+DFXVyi14UbDFXicvF6DNDVSvBCueZyW9em9f5AazaAkzgzvLyD8T4qcM5ELVZUUq4+LnheKnmfah4ZJj3A3pEOHI7uxpVfdcThm+/Mtct9PYaNs1QmFjGmTHqtmnElwaFo0I7PihKtyxSWQ80aY3pMx3Do4Qkuk1wmFKgMN37E6X5OrQz8EFsYuQEuEoK5iiB8OcG0lcRmvKZ708V5gGtdbxJMOa9nPCIW6gquv/4psWjtuGHIK1zvek8EqcQdo77HCU6p0R1jF2IZwQzTBNFTa1zC7tpGjeGYYNB1gpmmMFrZWQxM9Eg02dFc+jSOQT13GTN8KU6+Adfsr+H68CqMkz2F4XArsGaeB14DIRRT0RjXd3kIbuHkuYzTLWAgl0q9bx4zdw1OTsoY9tcYBvgIt9wsxz0fMpY+g93LeQCWiSZ9um8aA8PUYHS+tBbmMLzuseiUh9s0US2wRigO7aJ7cQF9K7GFNUMI13LcjjY9GW/1vkE9e0jXncEuybdYUS3G2cCzBP99T/DEAPb6fE8oQYc4Y7uV4LHn2POTimOV1iuTlRqxAPlWz5rFWA9LODk1LcBFjFcwruelJV+nv/81IQQPcc3+st7/A2L/vtB3n+jeNuJwmMZ4ALdxwl4Psf8zTLiPMQsuYAjeadxxcx/Dvr7W/RmGSQFf6E79BJfWLmm+bRh2fI0QjFV69jCuXvq64JljeE/OE/z5BJfsXtQc8kDPPdtGNB8qwVU/d3HCZyWxzh/i3iw1+jv3xbLGu4nhlT/WXNJruYPLrtPDsYxLMpcwwmkv3mebGHymSXTvxHwNhh6/p3dkmGddn+We68dW8gLBe/METxYTcqedkOFtel8jzjnJnIxRff5ENBrXXOpwqCkP4VY98yn25mbewzjGL0gDqQUrvWOaQ8rZFpxTlPyS3qs9XbePy+AznJK8knt9Q+Puxo2UynFn2jXi8J3EXoYMA+eZ1I9zpLq0Lh/j3gjtunZf70kD6ywOQ32v7w5x9V0fce6kp6kUh9g3RadU6P6O0/2UnvI6HuoF93Hyz30N6ggL3rTc2zSoJEQJdvt/V0CYLU3+x8TiPdBku3Ai14gmnC69tNjTXdpEEOsvcQLOAC7XqyCYvRsnNS5id9BZghEuEYtZSwioEo1/i9hUY7hs8DXBGFcw+Ew5bvF7DitArXr+IMFUecC34jaXH2HXYiYF5SbrJAR0brazuFRqimCofa3DVd17E+dPHGLrcgUrPWsaxzxuyZmCtpLYEOmKL+PkQXukcd7GiZjVGEAlD7lyXGPcovdfJhi0WGtTo7Xs05oUYyttHlu7tTih8wC758twfX3Go+c03jFc75zvP8LIco16zoK+HyMO0U0MpNRFCI5WnDSaccyMi68QPHFDtH9N8MYLjW0O41q8wpUEn3IyC7oR97q/g8sgbxK82SM6Z8z6iFC6l7ES9xqHLcr0vF2sfC3hiokPcdnSVxjXYJIQLumlqMJK/Q39/yNi3+eB3YBzHJoIwZ5u0TGNPb1g6YFYwaBT6XbPMMQCrib4FpcgH2CX8Peiz7TW5L6+m8ZJutUYAbRU363o/0UEb6UXoJ1IZPueKBG8WjC3hzjvJeP2xzjz+4CoXurDeUU9nLT+K/D+bsbNlNJq7MAhpB2t67b+XtGzJ3BodBGX+y7gw7iM4I0R0aefk56FVNracU5Eeov69HcqMeA249uiTyo8O7gMsIngh8zX2MSYLY8IResl7iMzDfyXotUznPRchcOFGRbZJc6NDMmM4kS/eUIm38OlrymLawi5vo8xa2oIuTmJG8TViEajWPHpJwytaoxpUoSTEa/gCokNHOLbw0ZMJ+5WuKaxP8Bl3xt6dgtu3FavMaV3aUL3TuOS+ie4Y+/f4n4GN/XuPQzolWv4235OrQxs4XKgUtzooxRrMSvEws9qEEPYTZ8HcloaGS/7ktD6SzTZLtzVagO7ZA4IBoaTaIOLRCiiGCcZtRALX4IrFXrwAfofMWRpJbHAaUEVa5xDxKK0EJt6Xc/Ig2RB960TDPgrjAXwLt4gKWwyVnaDYLA63MGvDbc2rsf1v2+wBp9ejUxquUdgNTwmYkf3Mcb7LsHUGSPPmGBq3QP6/C3BrGu4rKwcC4tUpIqJjTCDLY0izfUrPfsMdhWv6L5+rWETTkxaxYmRtYTwS2G2ia3Z18SmzHfX4Cz8YYyP36L7B3ElyKDGeowrGc7o3n3cgfNI4+nRPXdxQ64djJXegL1eK5pXKhzHuNZ3iVAg0o26rXHcxDDHz3H2ffLEc9wHvpnwwj3Ue57hUEk7IVi+wtZoJ8EP7aLnMBZc8/psF8e8iwleuU2s/4o+W8CJieWi9UutyzTO88iQQxMubWrGyZFVnFQKX2EFI3ODlnAS8XWNKw/UdI9XYiW1GCtlh9gLUKLrMwb7YyKUNEcI+XKcLzOOkQBzr6cXJr2Z3QVzL8YY//2iwUVcwvUCN39axvDa53HVQD3uhvm+/i4hZOcxThLMvd6JDZFeYr/2EofBAhGCacQJiPcIRWoYw+2mC7kVQ2XvYg9Hk9ZhW2tTx0m5Mouz4lNp6ca1+OPYu5iu62Ycs97AKLDr+vxj3OEwPUI1hKz6M4wds6Sx/SH2+u5rfOOE5yq9BLMFcynVs98n5OEG9ujuE/t5FkP8PtH3o1gR3hcNN7An60ucQ9DFyf0zRfB5DS6pTuNtTddP4eqrQYLn6jF4X2kB7dJruKP1a8cVJG16Rg8uM7+OkWzBoGz3NEcwjsIMp/s5tTLQjhlgQxOtIYi6TxBmRoMsI5i7BtfP56S3CY3qNwSB3sOWQy1BgBQ6q/ggbcb16SWEdnUBu29KiY35NYZbfYdY7BVcWvdSY/yWOJjvEwtXQ2yMPQzacEgs3CU9+yHWoKv0zjrCGjjC2ApfaC5pOR/+//m3huGDX2OI5H2C+TLmngfOLu7EVy8aPsQxsUHsZVnFh/U10eMebiK0jpWZPNhrNK813MK3HXeUe4S7lc1h9349rr+t1lp2iuYvcELiK9GuS/f2YRjSGr3nZ4THoIyA8vx3oscgIdSaMQhHKyHgtnB/8irdm8Ivk292NZZU/Lb0+STuvjasd0zjzpSpdJ4j1vgeseFXccOsehwbP9T45vBBVILjepexRVVKdIfcxaBcxYQwSxfmUcGcO3AiVTPmvwUsSFJBTq9JBdGS+wGGEy8WDSZxE6FKHIpa1Jj7RZN5DMYyzUkXcono0U545Q5E84uixfvEPu/BZW9DuE30Ec67OI9hZlMW/CFu71pGKEYb2MuRCschwefbnKzFTwU6vTK1GlvSYhXzUHqw3mIAtX68/44JJay/4L48hDoxpv5zjKcwiJXGOiyPrhBdOvtwjXkeACMYmrcNh59mcXLsHG53/DWhbG7punJ9njKpGlvqI9hzew1XjGTeSS/2iLaKnimPVrHsncfVH50YlbIIY8EsYJz/u6LbOmEoTRaMq0e/JzD65T2caZ9K3yFOEL2CG+Vlbs9LIocsQ1HP8f7M0HQalGexF2QPVwO9InixSf9Pg7BV371LVAycwdUZ/4ZQBlZw4nofoQC9wCBp46Jfyp/0kndonvexR3kOl7A2a82GMB5LLUaubcfYP3vEPurHDZjexUBXv+2n+JTX8QkWOi24bKwcxx+3cDYonIwLdhMMfBm7HpPgW9jqb8SlOJsEwW5j9/Wmvk93cW7qMWwNTuB67xVcGztNLMYj7Oq9jRuWTOIDPmNbXxKM9q3mfQEnT/Zpbo04gakK9yI4xv2sH2qOj7F7fBtjJ6SLuIQ4nGpx46NUDN7g8qopgilriM2WsaNujLJ2hBM1ywlhmskptwjGa8FhnlKsBEzqGbN6Xg0+wGd13U1c999KbK4KjSEFXAqMVAoncMiojlj/K8Sm+FZrWYOF4xGx1knXeuy2yxhyie7pJvi0Udd2YlCbUuzBSCHVgK3i9IiU4r4Q1zS3n2s9/xCjgxXrWRnW2NW42vXcHsyPl3FS3YjoXkfAL28QCnG6w69qnXLdt4j9NIMTqzJnYQ+3EL9LCOVnBL+t4zrvPeIQrNPYeon91YkTmab19zXdt4K9HjM4gW4Gt2F+ITod6/vc63moP8Gtdkcwrx9g5MFFYo+PYYXghxiAah13DkzX+BmNEZwMV03s1S5cDdKNe89XYGvyCnEgrOh53aLrIhFiSAVnBofG0spdJ/itU9ekwdMgemzp+ec172KcIPmFPvtLTmbFrxL7900BPcs1rxdYPkHw323RsgMbLbs4fLuEEzzPYajxLYz49xQnrB4T/LRI8G2v1m4R40LUEbzZhhuwpXctlYTct814H+S+T4u2Uc8oxqWsqUQuYK9QGTauGnXtUxy+qiLk6bsY5voZrvjJvbiHgZ32OAkvPad3bOIS7otYmUvF62/1/M2C+RzjlsLrBWPuwOHBDLfW4JLAYeyZqsKVJvsY8bEZt7wHJxOew03FyvWvCVd25P6rJHj3iFDGhzjdz6k9A+MEIS8QgvGvCeK+wFnFpYQGNYOBP8oIhv8Wew/Gcb/1LzTo6wRhRzD8af68xPXIudBNuncQW/MbOBZahUFzPiGqHc5hYXmOYKxVnNVeRLiSvtH3BwQTpocg42Pt2JVeRTBPHgzpXVjCgCV5mGeOQsZFN/X/Gs3rKwxYlDHQaoIR6rEV/ggj8XUSG2JBnzeL5jdFt0Ni8z0XfVOLnyAUgg3cY/6mxvVzQiBcLqDLHsYYGMe9stN1nW7dYmw5ncVWXDLpIE6I2sD1tEf6/B8TsfI/wxvkhdawlBBeS7g8rRY3z8owQanG8Qxb0JWcbIGdnoM8oNBntzEmflow1RjWugt3BMu4b5Pe1YGtxSLcUGYYl0oNEXvgE2Kjbun7CxjpsQQrm9s4FweM4XFP33UQB90obnudYYEXBC9D8OeOrjlHrPW3+vs7vWMYYzzUYBftEsaIbyig51bB2N7T2Df1nBJ9lhbkGG7k8kRjyvDQJd07Q+y/B7jjYy2GUN4meP0ZzjtYIPjvvsacHpYMB2RMeJIQ0v+BOKj7sFJUg/MUfk3s28uYJ/sJ/hrCHrFhDIg0Qxyiyxpneu+u6rqruuYtbko2Q/DHMME/O8Sap4JQIlq+i0tBwf0gbhMH/CEhM/MgeYvxGmrxPlnCoGAzmmM1zrx/onFu4yTpc8SeWMMK/AyuLurHGCttBL9dxJ7TdL9fxv0f7ul3WrG/Ing4wzCbxD7Y0VibcZj5U1zptKZnTOo91zS/DB23YUs8wxKN2Cs6h7tupgd1DHuSP8AlzMc496Ub4xLMY+ChDD9eIvbia33WiUtM63H+VZHuT4OxHys/qdyV4oqDHHd6H9cwCF3Kz0Pc/n1dzxjk9GGCU3sG2vSCO0RyTT3WfNMzcIjjd9M41lssgqTG9R7usHQD19l/g3EM0qV5jGP76WKrJxYwNbBWfLimi3MBd5H7jZ73Amt8GZuswJZrD3adzRCM95ZghDJcw5oJGbf0vGbsNs24WXPBXA4Ixm8A/qnes0McCB/ieO4l3D0sD7RunLm6hev/86AaEN3u4+SSCgyr24S19iXNLV1Nh7hH+ghhmfwVIYCKcSz+HXx4zuiZF3GrzF8XPDvdilc0lgVik9XhDNpF3IZ6SGMrJ4Tzd9h1e050a8ZIkRO4RLEVg/W06p4XhOWwhHnnra4fwy1Hb+P8hhnsHdjUPWl1fUJs1ncJ/kvP1oDWs1K0+5eE8jON48ENOIRWhmOcya/dGlMKtiKN4QIukZwjNnUq1UOiQRXujFeOvQtfYxfjJQzPXYyTD0cIKzrfdxkL7nLCArtP8MMssf69nGzNuo/7uu/h+GgquBdwAldatUe4FfQf673tGu8GzjavwtUu7Vjw7WtcRcQe79b1f4ORPA/07nUcg36FD456gkd+hfMYJjX2C8SBUU8I9FUMQfwOTmpc0Xx29M7LxKF+DpffrWCMhRXd9yHBEz/AENv7GGNkEwvuLd37Aisrh6LVOm7yleHNsziG/UcEz7ZjSO5SYs/OEAdZus/3scXerDFP6d6Hou8cbt0+hFtJj2LMjCPsAt/DrvBSjbkeYyKkXP+S4LdUHpf0nnpOHvjonuTrcYJftzE0cBf2NqScuY6rV9JTlh7m9IJuaE3Su3qNUAS6cA+b61iOdWMF/DwhH68SMruYKANfKRhfrl1609NQrde7BzDYUSOWjaVYrh5pPJWifx76Jdhb8xOcJ7RPyN/0SNRxup9Tgw79q6Kiv0+KOMLZsdsEwTP2m5ZMui7qsNVeowkcYYjLZQy28y4hgJ4RG2sGw7T2ixij2MJLK29Kz8tknIWC/zfirmideka7nv/vcZ/7PDBKcY/5aewCPIMVgUlio5ZgYbFNLNQ0BsTZIjbOKHZR/S5upgRxKD3kZOznAsboP0Mw3i8wpGkvdlu9qzk+IjZruh0rCKYcxK73PBD3Cua1r/Gnm3AdJ3nuEEyY7scmnI1+UWOdxt3YwEmmqeXmAVtNbJ4UDKmolGIgpFQaazWutIIncGz7EMefSwru/wCHgV7hkMA8cVC+FQ2eYFdfN44fZ2z+CcZ4KMcgKh24heglwnq9SPDeOsEPG7jrW3oIbuKOca8w+mKDaDypdTqDc2IWsJt3UJ+/Jjb8Ao4pp/V6pLENE7zRgVveJi1vaj5H+IBsxAdtu+ZyTTTIOPQz0fQsBkSZJBSaQeD/LZqkQNsUXYYJReoVVuwLFbffEPkMU3r+HFY0K3EXvUPNd4DgnbR2Miw2QygX9/ScEv3LEFIerr0Y+z3DL2kZ72OEzR9j5NIjbKDU4UNwGWe5f4BBj8qwcjMg2qbcg+DjRgygk6HB9HruiE6XcK37E2JPZYwaDDs7p/X4Hh/E6a3oxW3My3FnwUqCV/8SV8SkC/4mwTcT2ABJOd2Dq6LOEIdeFfZUdOmeWZwI14YTUnON04g8xsrpS9EyjYs3OJT3T3CL8hViLx1jqPcWfddNGAGV+v6qaLdE8Fkfhjt/Qci627q3Qfe24R4IKxgX5yn2WI0R59Wgxv7XGuMXxHrm+XeIPXWp7GzjUuP0Hn8qmmWIZIzItfkWe3hf44TblKUZlv6VnvEMw9KXYnTaWSK599N/SATC/01R0QnUwQFCyI5oIi80yQNO1rgfEodaupC79Lwpguhbuv8aLttJ13IZsRD1xEHbTgiRA2Kz3yIY5wHe/M0Y+CiVg3TBrePSj3z3IFZoLut9lwnGfYvzDbZxmCTjrW84icqX7pklQpC9IDZrGbE5x3CTmPx/peizpDlnaGEMu4F+QljMF/XMOozKtoSVrH3sLurFsdkiXEb2CHsrMi75HiG08yDt1HP/hBCyyxhB7ZBgtF6MQVCOtc93cL3yS81nUnRY1nv7sKCswNm6LzAyZXoDpghhNEVou29xaGhLnx8Sh9U8xmjY0XrVY6/RLOaTtOYqMD9lLsS06F+OETCv4F7mmRvyiuDb+zh3YhrH87s0hyXR44e4SqOS2OifYcyLDBet4qqYMaxoHeM4/izBiwOEZdxOCKMMMxWLTreINR8voOus3tGBkdJu4A5v25zcMx0YMvcc7sfwWNekEOzhZLlnrZ5zASe0VuDk3ke4FfM2Ru78K+LASY/KCi6RqyV4bw1bUYWhoVsE37VozumV6MBJnS249Oo5sZYZitsmQlV/jhPCKrGhkFZtp8aV3oLklXKCR/8IK/fTGvem6LyGS5MHcF39fV1fi42D38Vx5iWN+QVOIl3W8z7AGAZPRMvMcUjvVK+emQrSDlZaKnHYsx4nph4Tcmdb4ygi1vMbjfk1zoFK67gN98IoxvLjPYyx8ZHGeU7vv0/wRIaQukS393HJ5KT+pQeoFJdTp7U8ifNjZnDN/hbur5CyFWJPDGH8iSL968GhxTxLUgFMr2SGclL56cWgQqm8LWEP2rHGcRY3MTun69/gXLUWXfMQ41E0YcVsBVeBrGDUyLNag7/EpdxbBM/8N/+QCIR1OCZTGDNNRr2BLeL0BJzD7Wmb8ELcwzChJYRmM01opHeJRVwhiFyna54SceTrWIP6c+y62tdkUos+xBjs6S4G460XE0Q6xLDI3+qab4gD4F2MWthAEP8ucQCVYQs4LaivMTJgasszmscjXImxpfeU4STEDYw5kDkUJaLtW93za4yBPi+6/QkGukkFYZvYkGCkwznczOIDggH3ic3yQu98hZPYikTvt8TmTw/HA5ypeoZY14oCut/Ru87jzm8NuGNjJXYrHhFCuhm7XNdw6dgt/uflSGDXXwr0RlzqVo57rkPwZ8bPzmlu6SG4qbXKOF+zrruiObXjBk5P9K6zWqsxjJvfrHftEbw4hxMRO/WvFMdCc9PdweGTbWLtpnHsPQ/tM1hxy3Bdp679TN8t4YTIGhyz/RyHzHKth3BIK8N49wheLCME73kMZLOD0R3nRKsvRYf0zl3Fis4W7k9wQAi1L7Hh8AOtywIuN24h9tbXBev5CLetLta6dOJckLQ+a4mDZkv3v9GzrumeTwieukYcOOkdLMPhvXJO5j11EzxWJ/qnGztDRGMYW6BN9NrHHf5SWM/iyoMq4tBbJPZXCy5T/hqXPg4W0HVSdH2F5W8Jjus3iF5fEzJym9jfzzEuwTHBz28JJXhQdMkwZsbpy4g9N6+/09pfIWReerMe4nDRbZxTNaZxpgdgDLvhe3FFzwWcPD2PPZiThMKc3tfknXk9dxsD8XyCy5xf4pa/F3G11gwGSWrFZZcHGDJ7TeO6gkvkP8R5ZHu4U2MdbtY2jLEKljAOxDiG1U951qI5ZFjvpWjzqeg0gctCjwr+7eGmdDNaqzSoi3CDrfTMPgT+R0LO1ereixir5Lf9nFoZqML912s10b/S/zdElBrc6rGG2JwvCQviJrFh0/3Zi+N83xOKwSu9I63nMWyVtOJM5AGixr4V49kfEdpcegOaCGZpwNrabdxMJjfbBE5kSndUaodPsZsyXcmDuCY2NcYK7G14SzBAk8a3SixkL3Zjl+MM79w4TTi29xYrE+nGhDj01zWuIuIw+ZIQmk1YCYJQbBo05hKCiTcI4QtGM8yQQybiFBEhiQrcRvR7nNHdgOFoR4iDJd32Rxji8ytc5pOhojaMdthKCNmk4zZGYqvHXbdu6flXMNxubvZu/f8yduVXY6zzFf29jsF1UpDlAbSkcZwjhNRDgq/Tgq7RveUa10uCT1qJUsjXWDCWae0aNdZhPb9K88r1mBM9X2AN/gxhBW1jZLoeQug90VxeYuCSjNO3EntrE4OTtBKu0RW8wTO/4QruLlqFc0fSo5Rx3VYMopL7oQK78OcxUNI0wYM1OCFqgNjL+wRP9+OclmfYxVuKkzQ7CQX8oubao7md15wbsZW9hrEzqomM7/N65iVc9fOY2CO9xAGZFl4dzr/pJQ6CLiyEp/B+StdvH1Y4KwlZUIzBk1awV+6e3tuse2px/scUTsjdxC27V3V9htIacde+m3r2nYI1ybBJtcbWqjVqxN0q13BTnz2t1wWCt8/pve9gpTdzCg4xNPOUPvsQN8L6EHdNLMPVBgca8zixHw809lHc86IJt+RdIfgkw7MbhJxu05q8i+HOjzCuzRgOGZ8jZGMahG9Eg32t1SxO/lvEIGw7ovPvYCPlPY29AqNHlmgtV3G/iCu4gRi4dL4DK93DolOxxv9a1zbisGM7NuCqMRbBjNY013UI53rNEPxVgXNIvtPzMpRarGvv4+q+3/ZzamVghyBSxtZWsZvqhia9TSxSA0GQOowB8HNiI2/izPx0Yx3oHc0YgGRB1+SCPNfknxKHxBLBMLm5WgkhkC6lekIQdGhs9YS1MIzdWWAmzsP8isaULp0GYhGqCGFRjcMK1QTzpHWbB8aI5j1GMNKK3nsGVxscaw7rxAZvFR3asaKUcedXhIA8Jqyb3AB5YKVbKTXAGtyeGOzJuUps/DUseNLCSqFyASfPNXIS/rhRc2zAbrqkVbe+f04IkbUCGqfbexMndb0lGDqVndSAd7HFNK4xDYsGZzGwTgrlYlwe1Kr37eOs4yb9+0rzPaO5XcS5Lb8WDe7o86T9IcYab8MokiUYhCuVjvQO1BHCbxuHvWoIXvya4I9+HNsrwmiPUzjmPaznP8Dhp0PNaxKHFvJAHiSEa5nG/Fei6QVcinkDh0UQXRZxKeoxLstcx56cHuxFS/74AeHq7SYE1QD2gJSLJt9hy3odl0ctYYyJC5iP6zSmcWKPJs0r9OwvsAW/prW6ghHomjFkeLr9hwhXe+6vagwbm8rnMj6gOzD0d+71KtEnLcHvMOZ8rvMyBp1Jj2cTXutUhD/EeVDprQIfeBkGmtL/r2g8x3rGkMaVHsJegncaCGVogzgAIA6fBdxPpoFQsv5HfZ8KXQlGg03l+bzm+lI0/5LID5kgeHIHN8YawAmg6Z06wBgfL/WOH+LmUS80vj0C6XFC9/TghkrbBK804iZFG7gbZwVuaPevMQTwECFzrmFZOqe5zeJy5npiX+SeqsDAU4+xZyet9jO6p4EwGtJrcYghzlNGXSdkbRrHfZrbe3peG8GjX2JDpBJXGhQT+3gMo6dWYpTB9Fqi35eIPdCkufYQynwnkdx8mp9TKwOlODZyHWc/DxFC7nsNpAXjN9/FVm0y9RViE1fpu9/TRMoxalRaFZ8QxK4vGGzGhu5hzIOMzz7Htdjr2OpNt/46FjrppcgY3LzG/BRb++9hd2sDwfjPNYYpHIubxa7UdoKpR/SeIwx3/Bscn+vTnNdxw5MMK2zo/mFC6JZqvpV6X4neuURs2uMC+p8nmHGQ2DTluNXoY3wY1+LFP8Kdyar1vFnRJV1rFzFOd6nWqB+Xku4QFl/GV7sx1OmG1ind5xd1bxPB3D8iDsxSje2h6PIjQvNNxeYp5q10x29hpWmXEDQDWqOM+RXhrO0nostLYiNOaN7zuFztECu+6cqbJBSYaT1/B+Py12DY332C72txsmaZrsnwRB6M9TjrugiDpBwRa/8AV11UEhv7NsHXbVrjt6LLC73nPYxL30koOrnGd4iD4hPcLOuQ2M9FGEp7A5eqTunfKMHXnxP8MUVY4zPEnt7ESXkzGk9av/ex1+2x3p3htHaMZX+AK3FmifWdJPbdLm7ZXImBVzK88oDYoz/GbXKf6ppfEgL0gp43KBpOYvjvBn3/Du64t0vsmw8IXr2McTnKiD26RSgHSeM1rFidFQ1XCF5I6ze9AeBW07u4Kdhl3NBngkgSe4n3/g62Er/S2N7gw3OZkKm9nOzFso357BBXIDzBoZh1goeXsaWfSlQx9ryl/HlHz7yMQzGb2GhID+RZIrdlnvBa7muM7Zrnx3rWr3BpYoZxDjG07kXdMy96P8cgZuktmsbx+yksA3+NEU/3cOVYMTYqfo4hzDPUMYbz4b7B0PVDBK8OYG/hAsFXrzW2es33gNgLz3VvG25uNqXvLuu7Mzjk2Ees+d9g0LfMmyjFmCZF+Hw+JvbgpP7+95zu59TKQMZrurB76yzWLDNueYzjWel6LME4+WMYEfAWIShGsButniDwNM6q7sSAMCsixFXc2aqVOCxHCSZ5i91sGXtKBaOJIPBTnDlbgTPHM5b+Ws+cxdn6mTcwgJWWOgzysIlja8sYCnVFtMg4drXG+Bxn/x7onaO6v5VIZDrW93u6d48oy6osoEe6qtY5iRHfjTXeXRyLnsCH/AZ2h6a1ngfsPi5hq8WQ05WiyyLBvM04qXRXz0qXZBkhTLeJw32V4JsawpU9QKx/FbHey5infoFb5Q4UzPEtESvP+R/peYs4t6AI81W64a4TvHRT32esswQ3MHlBuA0HtE5/g/tCpBdljJPdMvdxjPI6RocDt+z9hFjTFmylNmNrEAyfncJzXn9/SvDtPLGeEzjXpFvzfRdX28xhZfii5tWOS98+E512dE85EfI4g7POO7G3q4jYAzUa14zm/AkhsD7X2FZxrspNHBJs0TpUa77TuCRqAbvPu3VvJa7Hb8F7qJ6T5bJpBPwUK/2jGBhrG3db3NC4RzHi5+9hiNoDreFfYkyEH+i6ZxgV8kcYzAicbJYKwu9gfhzBrXtLca+ODFWknEDrNIlryI80zhpC2TrDyRbVlwgefReDUKUyd0goDzWcVCrSi9CNs+RLcEO5MzjskWHHtPLRPe24AVSN1g6ssH4rGmTo5319P4wBjzKc8VzjWeVkjX8X9ijv4cqLPuyZbtY7zxLrvyh6/7nG/YTggU6MPtmlz9Zw+fCSxvZca5NGxRUc/98m1nsLQ1U/FI27sYv/Ca6iS8VrE5cV7ujzO4QStyrapHH3tebzHbGmXRp/F5Y9izj5d1vfLWo+s6LjMlaEJnHy72/7KT3ldVRgTPkObE1t4YShIk6WNxThLMkyXdOBM7Q3iUWuIA7qVRz3qNCkNnHTjYy/tWGs8hQaRXr2IbGYqT2WEgt2B2ezjuDe5BCWwhxhXae34SPCLVms+aXgbyaIn+GJcew92OOk1VKEa4FT467D9dj7hBB4XjC/TRwumcTNZUpxacxbjbsO15ama30F1/cmLX6KXfJppffj+uc8GOsJQfW+6DGCE/J+KTpOi1512EW9S5TXHOJ8g0rcPGREc/pG83yp778WXaowIFOuJRjhbJ0QjI269jKxmV5h4ZluzRZ9nhbRhua1o+uu4s6WdYSlvYq7pzVh11wNVgC7MOjOON7wl3BoqAsDZF3GLsQ1XIKZ2vu61mAQo+xNY6CfWSIjPZXcegwl24qTidY1jhEM/dyAPVnHmtfX2F29r+fVYEs1D41V4lDYxlZVenEaiYOxHwNgHeDQyzKGB+8lFOgrGH2wGe+lI823BCvVf4P3Q8qMlBsLOK+gi1jrDJ3UiI4ZOhkkDrqzuETx/4VLdccJr9BHhKI3rXFOadxFGC9lRuNv0Fh/gw2QYgwss4rXek33l+izj3Ey6ANCuXuLe3hcJn4ydJUu6QxDbIj2Q6JxpWh7meDjG7rnjWiVLuVW/RvVHHdwE5xhXbtPHD6p9FwTfRoxit4etmLPY7yVTtEmDbjzxPquaixncGJr3nMVw4WXEPvlNiHb0qPSj5Xvu/q9Tcj0NBRKCD4r0727OOk1eetHui5D0bME7zTi8tgSzb0YA7qV4jbkE0SY6b6en57lIoxz0UGs+VlcofZCz+7CnstN/W7Rc29gDJaU83+LQ5BTBWt1qHsGtR5phKT34QLB8xmm+x1CYanD59xv+zm1Z+BALzlPbN5KYoM2EpvtDLEg6c5JC7YU92Vu0ATmNNnXGEDnCz1jQhMfJQi9QwiJZkKQZWxrg2CUpwRBcyIpdFKQleCyjvsae2r6Ffhwzjh+F3bxpvWxqflu4BhiLW5Lm3GuDhx3vEIwbyn2PjThkqsLxObPmPsMtmaGNZdjzERFxKL/AB+eRxjrIRNj8vDewjjjb7ELcltjfkocmlcw9G96U17jlrQZP6/DZaEz2Po80Pj+LYG3vqj3jOueAezeOsRW4oT+Zfy4Eys0x7i18wSGs8147gTOrK4C/hnO0E56bWPXbi8uzbmL4VpTmVnVO5txwmgPYXUNYaVyGqNrJn2fEBtyHitxVaJPO8EPl3HiWwnBqx/jsNKH2DvULpr9I0J5msXKRxU+eNPVWcbJ3Jkdgk9ncZx6R+uW+/c8sQd6cHVABU4cu4tbzJbjRi9f4UqYUkLYTGh8z3Fdee7tNBgGMH92aj3yQD3GLWN3MabHIi5L69fnW7rmDo6XpiellOCR1xrPJb2jESPmFRX8/wwhVyYI3jjCPJWHxl/jsFkK1FQcN7HhM4ld4mmFncUlYTsFdEtFJkN3q5rPd7ivwjZurpbybJRQYjc05j1iD7/WunxHWM4DeucN0fAviNBMM8E3H+EGVu/jMNcu8Kc4eTQt8xpcTtmIYdwbcHnna0K2viT4aky0TjmW4bdtwnNwB3tmm4nz4iYOIY4QfPtMtL6LK17mcGlmngPzGJxqR3S9jCu9mnCr6zms9K1qrm+Jff0AdwFNLwsYS2YKl3xWEZ6x/y9t/xGjeZeld2K/8N57lxGRkd5nft5VVVdVVzfZZLPFYVMcQoSghSBpI220kTAjQcIAWgoCBGglzWg0EjQUySZbbaqry1d99dnML7034b33PrQ4z6nnjZlFhYCaABIR+b5/c++55557znPcgebSL9pN4roJZbg/wRpOD63HDZTWcVxTm/514k6bhQf0NdFwhDg/LupfjZ6TLoIy3C4+3akn+TmxMnCNgHWLCcbbI2q1T+PuX9vEwtURGtY8Qew6/RvTtVN6RkI9XQSRv9J1ac0lDNRILNyuCDFBMMxVrCV2iDCLIs47GDKfwwE+lYQmWovzSsdw04wyQig8xJAW2Lf8CcEM38aFNJL5q/RvBufUPyU2GoRQS0i+jGDIhNLTp3RAMEQlVgZ6cLGKz7H1kUpY+pUSRcnNm+86g4N7anGeci/BqLNY+845PSCQlIyNaMGR7vn8OWIT9+HDJGHdba3TIK4qV64xLxKoQQ+hwbYTB2+naFSGYw4K/fEz2NKoJ3jjPMET13GcR/JbWtBfizZvMBTfqDXZwx3IUtBVEUJuUbS6iHvdp298V9de1DiTjxJFSJfNsNbwFHaj1BPC85Lo/xuc/96ncb7GQbJ1GGrewc2kanEFxVybFChrOJ03+W0Qw5FncavXdeJg/ynOqy7S+n4PC/y0dM7iFqroPR/jUsZghGlVY3gPpzymcNzUOtzHhbAmiT1WR6xrNbGHFnAp9DXsBknovU1jqCNcHrU4O+KMnrOAUbx50TOVztzDozil733sTy7TXNo1tz29/zqGut/gA2paY7qg563jvXOIofuMlUjFJxGIdhwvs673FOPsmj7Nr0L3p498g+CJzwg5e6j1GiUOrb/E9UgOiT3UgmXeLEZo+7S26UaoIJCRGixvr+AW4eUYHWkmZOQBcahP446WuZcTlr5BnC/dxEE6T+y7NtyLpbaAno3EQfw+Tq1Mo6pRdMv9/hR305zEnWWncCG0enyG5BwSFWon3GC5Zvm+OuC/0j2XseuuDLtnFnG9nA3ivOrSZ3+E47uW9fx0Cbfg7Ks10ekdXIr9NHajX9Fnt7GrcA5XPL3LyeH/EysDmwQE3IzT4+Zx/vGQJvQ2sVDtOBWqBxcl+RWxCGm1gOHVFHB/gMsDX8DR87U4QrtX772JrfX7uEnJfZyqVE8EFrXjOIC0tneIDXmGWIROnA43pfcnpNuCy3t+Six+Pa6JMI0FxwbBKGdxl7ZlXLf/kf5dxQ2Q0q/bifuBl+r7yxgdOIXho68IZv9AtCzCgUyp3d7GfrlDPSt9TFexXznvr8LNmdYxPFmFgyJvEUx5B2cdLOIYgwPN9w7BxJ8Sgncdpy0V48ItD/FBtE9o6XM4OrkaN3xK9KVC1z3HdeE/Ex2bMdqwi5GAKtwprV5jriUUxFn9f07vOy2apM89od89gueuE3vgUcE464n179R8mzFEnGhTsX7Pay0v6P73cUe5VNjSMku/7SLHG85U4KqeefhX4oDaZYKHKnBgXylx0D7VMwZwVsMB9k9vEgpCF+6w91z0uULw0Z7o9x8IPssYhGFi7YsIBOo2RsDS4qrFefi3iEN8jwjiSsg8Yd5buJvkFUJ+5FrM6H0jxH77ilAA93Ct/mbcUrkE1wnIPdCpMTUQB1Mdjpup0f+vYKv4Q2J/PsbVRj/B69tNyLGXuDNlNUYIJkT3AWL9r4h26edNRGQU9y0pIxSpORyPkfB0yuVh4mBKWH6IUMSuEzLmJnYdreNc/wqcAjlD8Ekqyb/B1TyrdN08cR4k4nsWGxUXcGrnA9zcKd2gpwieSkVmXe87TeyzLmKPLuJsnH1d/zWx9i9wgPofEPt3HQekThAHbjV2ifYTfJXo7zYhT/Kw7NH143j/pzulBSOCjdggGCGMgFSCdrHCeYSVj0PRqqlgjZdxCfpB3D75ht6/q+c24oDJRAzKNYafYyNwB5eFHhTtB3Dlyt/1c2JlIBnnOc4Vf4i7U41q4M+Af4ObW2QA1yoWRGm1PiIWOX3c93AE9BqxGOOE5j6pf50EM2wQC5Q+kwaN8wiXQc7FrsDdvxpxRkMR9lXnBky4pZMg6ASOKt0lhMspjeG5rqvR+LewayH9wiP6vE7z2ySETyn2Zaels4JjBWawRbyBrec20aQT58UmHLWKLbIbxIYcIjbK+7ig0ThuAPIlzo/u1O93CWbex0FeiVbcwIFDi1jgJsS/SmzSGuA/JoT4ACGQUvE60BxPEwy4KDot4G5bRzgyPC3QOpyxso79zX04oCn9hg165issBArRnFpcLbJY4/5IazOksfwCBy89wMGT72gev9F9fRrPusYwqWfv6tprBM+U6rMU8KP40BwgDt4d/f0fYctgBxfJKtb4KjFaMIA3ciId6YK4hLN+DnDNgCZivWsxHLxArOWYnpUK+Pua5x/rmkcEnz7BKcIJN6fy0oODfmvxoXqodTvCXQnLcOXLXP9V3b+FFaG7xH4fwz07ElUbET2/Fk3z8LmK92AD7pdRiQvXvMap0KX6extbVddwGnUNwQdTOCL8NrHXXmNlo0Zj+URj79TfDZrzBCGbnuIOoS9xBHkprkaXSmG6XA+wO6VF9HqIa3YkulYqGt8l5EPOpwdXCF3V+Lawi6mdWPM+fXZLNOsnDqMzWL4v4IOridgvKVcf40DyRq3Zdwvemwr5c9wj4rLm/RTzwbcw2pY80Y6bwf0S9515it1i94jDdlXzWibWsZPjsVjncTXXy4T8y8O5Dwd5/6WuWST2yWVs/MxqDeoxClSKs9/mcTZUNy41fKDvFrD76QluVFdGyM7cJ2kAtGNFONG4p4TCfJPgpW4ca3KSnxOXI/4fFhXxPYKB90WEJF4lAaV044CvT7BfqwqjCB24l/MhFkLJeIXw3TCxgLcIgXmTWPQDQkBew4R+j8itfodYqCZCYUkUoQjXI1jFASKp2c4Tftq/w/61N4QwWdGYUntPS6cepxJVEwz0UONrwsVEdnCgYaIcI7gufpHeOaz3FDJwqb4/j6uILWjMCR83E8zxNW7UcZbYDNe0NjnHjF3Y1f3PMZqQ8H8DPkxSWOzg4LNTuq8el2Y+IjZEh+b5WOM60hrtYOUiN+AMrqa4htPodkWbW7jD2wIuIpKHywH24XbgeudnNPd+re8ywas7hFDZ43h57CrRPqFAcA+CNzhlq11zSTdDKkNDumYA+/lOE4pWMbFH7uDo8csayx6hmLVgtGQDW5YLGkuzvq/F2SGtuBzrG1wAqwVD26k0deC4iOuEFV+EId7HhDBMIdmFAyXTyi/Fvs0pXGdiS2OrK6Bdj2h+mhDURbgM6xtc1wDsDqzUfS9xOezcv4laXCb2XuGeay+gYZueuYYLE5XiEtEdhCVVCMnu4WIvQzhTokT3DYnWoxid6sTxFqlQruMOcV2ixyuCzxPFA2dVFPqVv6X7HxJ7K+MT5ol168NKXjch9NPtVKMxvRKNO/ABvaJrdkXHdNP+A81nHDfCSeRnGQcgluPuhgn1n8NI7LCel2jlXb3rPUJhTCt1WtdcxUrX5wSa+RiX6U6Fdkzrc4k4b9LFCHY3VIl+KT/HNNdEPcZwBkEHsRcrcHxSv543TpwZf6W1eEe0HMeFi6rwIV8q2tXjIOpE+ZqAf0bw/BxGhBoJefwKy9c9HIR7SJxrtRpTFSFH0u0wQci0Vzg+KJ99RPDdaMF4PiiYb7Oe/789wTF/UncC7xGabwrgemzVN2ACp788LcdpgrneIyD6Rqx97+CNPqHJNeNObpcIIbpGbPoFXMJ3Q+8YJzbmI453G2vG3QFfY0u3HMcRVBE+0We4qNIV4lA9TQjOhDcTwk5fTAmxSVoKnjuFIUUIwZbw7SoOjntFBOu8gwshXcTtJ5Ox3xCW+BPNYZpg7LSEE0YtJtwvexrzpMbVgeM2Cg+WfdwTAszYc6JDtWg/q3kNaJ3u4EOpFnf429NzGzXXcYIRF3RfO07dq9Yzp3G0cTtO+2rE1Qh7CQUvfY1lhF94jRBEUxp/Lw76W8SHXQcO6mnGvthUNh/jQkIDovcGoQR0aTzprjmNW7SO45ziBpwFsIIzavaINb2n9asX7fp1zw9xQNs2TlGtx/3MS3EsyGmc/pYH1bbmXotTKtMd0oWtmCn9v4ngk0a8zxYIXkmUqhjHu4CVwh393Vvw+REupZq+8lS687DP8XTjTIUGnEl0HtfKLybQmQf6/2WCF/JA/Q1uw7uM3Q2rWHkp0vhPYwXvHxL88//heH+HZlx1shM3mirCgYCV2Md8GvczGMUBwO8SMuMyLjjzDNcFqMcunGYcf9JPwP8vMeKzT/BOWulDGEXJ9R/AyvdFnJqaB+9FXMjrDU4LTX/1v8N7YwPX42jQ+IdFn7PYnZhIz6TmmwhHuehRilHWLZwp0oZz4V+KBpcJBeg2wQ+JCuYhl6691zgjZAYXMUrXwjsF43+Da9+cF23a9NkzDN13a369hNytxod7NS6Ml8peBW5cdhNnv73AQdynCMPlPuGiGtEz+kWXDQzZ72iuN3XvpziwGNwtsYTgmQasjJRo/ON6VioXafwe4Joz7cSZe1djPcnPid0EL4lNsUss0Fmsic0TzPsYF2howVbSLsFE+8QCjxFMcEgQOQVJQpcHuA9A+gbLMbw7iyPTe3Gv7mTId/S7VZ9v4mpnMziFZRk30SjH8GBavkW4F8JbGP7NQzRRkXJcdSyhzrQem3EL2R1io54lNsKEaLZPLGipaNorGr1DbMZrxEZow6k+iRK06dq3NI9hff6X+v0A59RW6e+Ehzu0Vn3YqqrBgTSv9N4vCE2zj9jES9gH2qI5FeveewQjJiydaEO6VjKeIuMZ5kTPLb2/TuuSh+yHuGRtWmhp9Q5oLh2E0EyfbAmxqdIdkWhC+oCf613VxHrPELxah4XHBFY4lrGPfpBQIN/guIxZ3Jp5l1jnUWLPtGtuCUs2E2vep/e1Yct/HvtwX2ls0zhLYAfHjmzjQL8WvDfLic1/n9gXb+NuZwnR59yrC2hbTvBexgGcwUGUPVgoHeIc5nPE2l8ilOizuuamfk/gqPQD3F67suCduwVzWiSEVyMuW3xI8PCnOC3xMsFTZzDEPo1bkvfhg7eMQAO2cJOjIsxnXxMK9CDHEZ9zuGnTBLG/trFSVoL9viMEL97Fh+03OFVtEZfITn/+qsbVIjqfJdY/XVtNGPVZJvzfqZhewCnIm7i3yA0Mo+e6JgrzEgfHtRA8e0VjOoPz+Us0l5TVw7j3yqzo9IyQX5PET4meX0VYpcMEX3ysMaR7sAa74BCNR3CtiSbCPdGIXdGJcqXxmahAs2icbpJrxLrva10OCBmQrrZ0Ec7gIOIzOPMs3cz9OJB0m5D/ycs/xOuZ6E0iPV8Q++a26HyDWOt1HMw6ilPPE1G6jPvcbOEMmBpcK6EFB16O4DouXRrvRRwwvY+Nr78m5MLHnOznxMhAWokJlT3VpK5oImP4cBghGCkPiUWcFraBN049XvA8hCcIhqjHqV/F2I+ZCEMKmH2cXpTBKZsc78+eDDmOSyUf4bSphPkOsTZ5Xe9Jf+E3Gvc/JVwJNYSlcg4H62wXjGtFz1rR59cJBnikd10jhHYXwXAVoukesZhrOBVwBvssl4gN9RL3MdgnNtSf4+IZ6WrI60pxFOoSx1OpwMrdMu46dhYH35WKVqtYcUi//ZrokUKxkbBAa/TMMn13S78/wf7SBWKtW3Eb5Q49e1bz2MGZJ6METyQy8U+IDTqqzw4xTJiuhUqc/1yKC0zlcxPiPoNT017gQ2odu0N+gQ/wReJwWSIEGbr3uj6b178u0b1S91dji+kZzkfvE73TnZMoQxkhZAZw2mRu+k4c9DSPrYAjrVUiDqdFi7PEwZqoXr/GfBoXplklDsl0NxUT1taoxrKkz+5i5bQU8848oQTs4wJGZ3H3xMcF1/WLBrm/j/S8VtxIaVT0SSt5RuNJaLZB373Ae/4swWNF2LA4wDB6ugfyoJvUuw5wXZBGvW9Qf7fgrnqHONYiZcaeaNOJAxqrNL9OjmdarOAU1AZs0Sa8Po/54g2uu7CFK9Z9gWNkLuEAs7ymGddTWcf57aNYCSki1jrdh3O4ZHMe/IMaSyLCy7hA1YrmtK35jOJU7XUcZzGOMzKK9e52bOX34DisFhwUO6bP53Cp3VKMNN0X3V5o3OlOqSbOknRR3hNNq3Dxnz3inGrGysfPsGv2gOCNOY0hkahi3Lb7Og5oTAV7hpAlbVq3Fb0rx79H8Ee6yv+M4M9S0eRHuNLjLCE7drBLqFAuLBPypVtjfRcrJUUYzTnJz4mRgTK9ZA9reDsEI63g2uVl+n2D44FZc4QQmMX59I0YUk/hWkQs0N/jRkHTxAaqJYKs9vXONQwXnSI21QTBwOBAwPcI5i3TPekXPEMQ/QcEM/wjfChM6X0PcKDRAWFxF+E6+i9wEEceOPkzjRukVGMkIaHuWYLpv9bvMhwssk4wTD9udpTIRQ1GLFYIRhjDTVLKCWYowx3QJkTfKxiW3xN9vqP5juCufBCKzjyGctPqKNZ7x7GStY6zQ+7ovbW4YlarPn+DXT+VOBWsghAk54gNtodTCddxBPUkhuFKCe3317jxTS+OH2ggLLoGDOFf1hhHcanicV03IjrV4uJSI4SASh//Mk7B2sNFmFKjv0AI9BJ8GOdBsYLTtKpF22Icyb1A7KsWbEHs4cqFqXhVYp//IQFNHuAGKokoFRPC8m1cMvoVDuy9SKztOYzoDROWfTkhvF6JBl9oDT7DgWStuIdHne7v0npNYaUmEZFrWFG/hF0vGfCVSEcqFxW6flmfP9VaPcB1C8AKQvqPJ/B+aMOxDp045XJfc7iJA3w3cafNUuIgSxfaXf1bx7UeyvT3lP6+ofG04II2B3pmxgKs6fmzem6u8bj+tenadY1rmeDn17gFdMZsdGED5zUuqpUH3YTelejkAi6s1YsV0f6C59bgTKENXPo690odIT+KRaNvaY7tuCrnHA5UTDrnWdBS8IwFHBC3hq3+Lo09z5QRHOCXh/kb3PJ6Hgeml+n7dlzCO2NhEm1pIGRQmZ4xhY2eLtwHJtGVMoK3z+EKj4fE2j8hzqQ0TIuxMXMDV289jQ2PYkJmLBN7YgwHVL7GrpJDnB10Efc/qMXlk9cJWf9r4gy6h+vfpJvmpMrAiQMI/89FRb/t/nQKR8wOYy1zGQs2cBBLal2puZ7DPQR2icW+hhta7OtfLS7SU48j+utxcZkyXGf8I1yOcZXQmldw9O08ToeDINgtwhocxq6LYX2fm/ItYoG+whDnKCFIUjE5q3Hls05pXr0EE6wTi1eBO6YlA3bigk3rxCZtxIFlCec+wymaxcQm/krf7eOOctsFc97Xs2oJwX5JtGrC3deOtGZvsPXdhKH/tPA2cSnTBVwYJO8fIhh7Q9cNEYFCm9hfeVb/n8V+2W7c074Da7O5/mcJJt8VTa7hQiQJradlsaTrf6z16McdGRPxeaI1/ZnmsKw5/kOiHG09x8u71hDC5YA4kL6l+d/HrXpTCUu//6d6di8OeurWs6ZwLE05oXw+wJb7Q1z5sgh3iku4GewX38E+0CUshHN/pj84Eb1DQoFt1jpOYwu9XXNpJJCwdHmt6rsSnG1TTSgdU7jYS1ptbbiq6BSuLtiGfbl1xFo/w0FRqVTcxPUTVgleOEPww2uMZvRh4yItpRKtzSAh1G/jNNceHFjWgX3QpzT+b7RGb2kN7+u9v8TBWudwKelp7Jopw5bbltbjJVYE3yPk2x4uzNSAYxDmNM73cOrZAe7SuU/wwCucOncJtxIf13o14sDGJc0zXSgbOHX0NZY9i1jRbyHQz1e4vXAiYzdx+nclUdDoEKMviUZ2EopTOyFLOkWPx8Q+qMD58m+IdU+EI42qXMs3BWMc1BiXcF+XDhzke0igjr/ASEuT6DlA7Kte0f1L0fbbBI+OEfvoFs66KMflwhsIXljDRX/mNd9N7IrcFC3bcXG1VEg3cMXXTT3rLYIHvsLF7F7iZkYvCONxAhdzqyL21qrG+UT0SmP4LZx5N6f3/B9PcMyfGBk40GSqcWrFKs6vTD9aHs5bxOK14UCoQV2/hPuOL2ONuVT3fkBsxnYMF8/jGgPFuINgJSEMThEHxrDecZ44jL5DMMgGrhaWftZqHAtxGle8qyfqlqc19hXBALsEY4xprIvY2t4hmG2Y0Ah3CGZ7T/f14ejoDLi5iX2nFwiG2SE29GliQZdEpynRL62yDY23SWNMhGWNYOiLxEZZxrBiccF8S/ABPEZsgEqc0rmkuQ1rDbqxv/9rgklHsDbcggXhNdHpF1hYpLvmNU6juU6s6Za+a8TtRtsxBNuMawOc1Rp16Z1XiY1+A0chz2kOW8Qh265nV+JgoYe49fV/j9jcqbU34FLY7QR/z+MyoT8T3c9h/2AHsaYvCGQgLfV9XKlxCNdE6NF4xnDwajuO60iYuI9ATo6wW+0mxzM+EjFo0BxGCcH7HEfB3yX20RucdpdK3pE+/4rYR2+INX9M8Fxa6+O4C2IlLie9iRXQUhyc+jd6RiJfcwSfn9Xf47h97T5OWb1HKAmLOFamW++swcjVhOg1gH3oxRrjFdxG/bBg/GcJnpvXM/JgOsQxPpMEH+6Ibpf1jlPYZTlKyJM1LEdGOJ7J8G0Mv+fhW6mx5b5+hCPLD3FBpLRwP9Q83sdFZzYIRWxUY1zCitIdDJfv4mDOQZz+t4i7Mmac0imC184TjW2+xm6gRNUe4mC9b/TMAVxoLOVBJS7VnXLhgWjbh3sflOEGaC+Iw2sGV2F8hHsRpDs4lam0du8TwdhDem4quokQ3cW59k04nTef95caX6KJpTg+phOjwBlbdIRjjVIxPiAUhTKs/M3jVPEZ3OEw3e2pbJzHKCu46NR7uJnZKlaaruE+CKm87+G6DUXEvp8g+CH36kl+TqwMnMWZAAnnT+OI8jPEQX4JH/y3sW+6RM9pJgj/LtYwEw7qwJ0Gu7EV1IIjr49wIaHLhFBtxUVzzur3K12Th09apXs4A2BN1zXoGamBn9bnS8Rhc07PGiKY+S0cQLJPCLzHek4TrqN/jtgE3+Ae6g2iTTXBIH249fAvsY/7Di5+lBtsEQcgLeudW1hbXsblVCdwJGwXrnO+TTDgAt6cl3RtQnA9xAF3VmNdwZs//VCXcbpPvZ6ZiuGXhMC7gWuWr+JUnVLsD+zGsHUiIS0awx6hOD3SZ6UEz5Xq3h2C/9YJxWMOC9EFYk2rsHtoHvu9j7CP/tcEn9zHmy8V19xgzbgQSwsRE7GIKwq+0ThTgWnQ2GZw5cCvsKW/SAiGjIHpwbnQXbir3ZjeexVD+0t6Tj/uU9FKKL7r2KraJHj2K5wSeaj5vcLtmJux9XMbB6oOaU5pxX+HWNt+HPldh2N8rmvcnfq9R/BKWs61hLDe0rNv4BSsMxpPzjnRxn3dvyU6NOCgqmJ8CA7q2XkwpjuxEUOtPRrnDV1fCB2nq+uF1mUJtzCfwsHJ2xpnui9O4aqnLRgFnSX2/imcvZO+5pSbtZjPF3EPiXRRlOKKfJ9i11Qq/2U4HmAdV+Y8KHhfMSFT7+LiVcWac1qzz3FzsgnczOcUbqX9Lwi59yn28yf6kGu+hI2eUr2zDgegjhKy8ZnuzfimU6LfIkad8sBNF18poYQPa6wbxN4dFJ3TfbqMS1UX4z4Oqcis4CJxqTQsEfv6psZcQezBYXwupVxI99CexpFG8AOcbbOH+2rs41iPRH/mNL8/JHj3Fe7ZM0YYc4kUlIpuf0Ls8XpsEE9hpS9dju04NmVB63Sek/2cWBn4a3ygvEVsiB5CmHXjCP89XJ/6EDfAGcRpFi9FgC1cqe+IWJCnhFDeKZjsCI6W3sClQw8IwXSIC2kU4Ujr/xch3EYJws9gJkoN/ir2e+5g6LkW+6u/0RimcVGLDQzdHOGmRP36PjXrST0ztdznHK+WlZrgrsZSqKwUE8xbQVgCTQQzVuG+BF2EcMuAlX0c7Q/uK3Ba7zml7+o1ny811noMI77WfFtwPYIzuKjMKQwHp+D6EgcL9RAMfw8H4x3iwLO01BYIXlgveP+A6JfQ41l9/1rzqcIldMFBjEN691PNrw27D57hXhLfEg0bMQSYQmELH3C/wpD+kN71A5yRkodrKyEgS/EBl8I698OAxrGgedcQPH9G78/NuorLup7Gke+tRCTzkZ6TiFH6/7sJnv0ZFhTfwtX/VnDRnRL9ayQEZB7sJZrDoD7vFs1T6ZjT+24RfF+HUyh/resfi/4jOGahQXM7FH0OsPBO6z/5/AnOQlnSPSnsXut9S7igWK3GclHvv4p7za8Af0Hwx03RbZqQB7/SXBJp7MdFwBLJOsSumVKCD9NX3aZnJry9Kbp1aa3SeOjW3NOFkK6mRBV6iH2TyGkePD367C1cKCddgIm+LhF804EV1xrdkwGWFXpnOXFApIVYQsiSWq1VHnaTuFjRHsGvb2tej3DDqVpCzqRVu4RRhi1cnAzRLBGZtzAC9H3R5wGOtk+reYvgn7ewdXsWB4lva8wlBN+fxXVsSnFa6xFugNeC42KuE6hFfr8jOk0SwXw3cWxAiWiRPDGCkbB2Yp/e0nVL+ve2xrGN3SJntE63cFbDXxF7J5HTV5rrPcyLiXx9o+f8Apd7TmOmgXCRJ7rwEveYSEXqJD8nvY5VXBryiCBs+vwqiI34Od68KXx6iU2+iSP4m/GBm4yZMNVtXMwmD4QrBPHW9LxhXIHqMQ7sSldGccGzqwkB20gQNBGG3FgzuA7AP9DY7xAMVkosTBcuXtJDCLz0d6XWnwfRIcdrmVfh7mareufPCcGYcFIdwYi5yJu6Lg+QetF5GscV/HNC0C8TB24e2ke4ctYytlTS0kglIn2EB7gEc1pVeQgt6LvzBGoxg2NAbhDMl5DoAvFTihua1Oj5iSI80u8Jvb+I2ByTWJv/hAhSW9V4jnAg2AquY9Cvz6Y0T0TT1NDrsDuhHlcJSytwGwdYjmgeSxidSAUtoeomQrlL2qR75xkWztuidVodrRpbo965gQX9hr5bw4jUP9Tcl7AFk9Z8m/7/DSGwFnBfi2qcf7yO22Fvc7zZyYR+l2EFYhyjLomgnSN4uQQHNtYR/H6oub0ieOMlrr3xCS5XDK5aOY+78XVi//uC3junvzPeok/0+ZhYvx9hf+tpYn8043K1pzTeVoIHcl5tWrvcE7U4n/00IcMacQGrAc0xXTRrWodEGjoxEniFONB+pfGMYQSkilDGRnBk/ZbuT7h6n5At1bhS4gOMYF3SHGbxXko31hy2epOXU9H4BruvWkWj6xidbcG9TXZxY5xd3HwrD6ES3O1ymthD6fve0twrsPXeon8/xXySyNMeriNzRPB5vvOu6PEJrtLaiC3pBcJgqcaysQ2nZX+FXWaluJZEzgcMqXdrrbrwGbCGXeA/wj0kwPEVhWhbotwfEvt/lFAuljXePKsOsNK3pP+PE/J0HXebHRQt0xg5xIhZukSuik7v67oajamjYJ47xLqfI9Y33VivONnPiZGBDBzpJzTvPUIQp39lCkeNtxOHaYkmcAvn8F4gNvtpgug7BGOMEwQ7g/3f6Z9ZJQidEd19GKWowyVyv4Nhmz7cSRFCgUhXwDyxQH+I097qcNezq4TfbFTPntI1bfrdgHPI9wgmKy+gSQexiGmNpoV0DVdATIhuG9cqqNW1V3VtG7bYxrFv84gQHBmJ3aLnZzDUFVxtLK23FtzNqxFXJ0tY8SruWviUEAKH2DXQhmG5OizQ/wkhtP8Ew5RbhMJzUPCM1xi5SITiFCF8+3Ghqn+reQxhOO4Mzv99RQjaPCxT6M3jmJNtYoNcwE2oUun5XGvUr+8f6P7LesYwtg4rsGWRqFFafZU4qKgG9+jYEH0G9P2hxlKL3QWp1PViH2MTtpjXcTRxEe7UNqwx/JKw3s8Q+2BG/xIe3iN4dwArH+9g10QlbhPcgpsbnSH29hSB+J3V9024gco4DoybxKW3X2EkLK3ft3FBo7TqdnHediq+nXhvvy645gv9O497C6Qvuhzz4rS+m8appWexInUXN+Y5i33UCTcnkvYIK7J7BF+cxcXRDkSXVCwfYFg6fcevtK6/wTFEGT+1LDqs4b2aFv03WAEtxRUGm3AVxg4cAb+OFdVUxvYIPniqNSpUZPc1zgXiQNzHMSRf6/oLBPp1Fcfn/Ct8oFcXrE075s/XouUZ3NioAxcESsNkHdcdSVdDIiKlOO26gtj/FTiNsB7D4ImsleHo/R9o7Raw8lyMD+jHxDqP6t+nhBLxCLt69rV2KRPTBVOsvztwcbVS0S2V2HTVZIR/BUYmawk59B1spB7g+g+PiZ9C5fUyTvduFS3Lcb2Sb4h1LsYKSD8uwz5K7NV2jJT8rp8TZxP8J0VFbGCBl/BqHYZPIAi1SjDAkgZ+CldeSq35Lo5cfqxJJePnIu7jA+Q0YbEnzJkET213m2Dud3DN8xYMQZXgDmp7uJ/BAkGwZf1LVGGTWMwPCMZpxP6+doLxE0bt4ngAWMLYm8RmqySYbAT3wK7U++pw1Gcf1sDf4GCWBmLxk1nTd5jwYzFm2nOae52eX49htdvYl/sGN/F4prW7iNsD5wFeh9tzrujZXXrefQwjT+i7PgyDpeXWibXwfRyIuY7h5iLR5yNCkH6bUBJTmExiaL5aNPgOYUl0aH3u4CI2i9jF0oELhUxiS/A05rMe4oAodD0VWnW7OIbjisZ2STQ4rWdkME+n5raChWjydB+uzHmE/ZBFhFKV7pYWHPewS6x1WtI39Ps1hvNLcUAS+vsbQqjO6LP0maaVuqg53Cb2zQqhEB0Q+3VF3yc03qxxr2vsZwmBCEYB53FAUwOuSvhSn73AmQyroudVjiu2axiNqCeUk1sFtOnVfK/i3iVd2H3XhOMqxnCp5iaOpxB24RTVOzjf/AAXwbqOfeqLBXP6hFj7Ztx0qFnzWyT4LnlxXPT9MY4BKiN4/RkObCvXWHYxKnRE8Pq/0LUvsaU9iQs07Wq8qWh3EcpIqf7ONQQXFbuNi9lUEYpLF7H3vtG1Qxjx7MCupYSyL2EZnvw+qjXKA2pVz5oR/Zpxtbx9fXekZ73AtQESgTtN8N0EkenwFcHzh7iM/TniTLmA/fUvCMh/DsvP66LFOYye1eBiWmdwOuwbrddF3BxoErd/Lid49Q02XNIaT9SjBsusNf1OF/Sa/v0r3OXyLwhZMahrH+OyyokElog+y9jtuqO5pCJbof836/f/6feZTZDC6ECEOEsQPhn7GtYgb+EI//Q/zYtQe0QE5yusuZZgaGcStyUd0PvWcYendULg/SEhDC7o+hQ+L4gN2KXn93NcqLfjhjfjWBNb1VivE8w9pGeUEAzSiGtwT2ucqdk3iw5b+vwzXJWxGPvAU0Ds4oY07xBMPoWh2bu4RHMNDqCsJzZsLWaqZs3xBu7hvYitnTlcjW9dY5wuoG1qxheITdeASzZX4u5cibA06PlfYWYe1hg/LphzWjgHek5u5uSLdFvs4DzbRB/A7XiLdc85rDwuEpvl18RGeEVYaQfEuj7DisZbomsjjkRuFE3K9a5GzfN9QiiuYMWlnlAI+zh+UL2l5/8JPnRqMB+cwYJinFjfVNjGNIcP9e7rBF++xqWvNzHitVXweVrPj3ADryNcx2CB4IlHuAJjJW6OlLy+iZXpLuJga8Tphu2E0nMfp3h9peelDzXjH/6Q4L0HGPrcwk2wTuEDKCHShEJnCLTmFfbrJi2TP2ox4pRuqKvE4TqF/dyLuNZA+tjTHZVIywgOaq4gePcrzBsHuKBMLXH4TRK8d0XPbyYUhErd16DrHhEy7l2c5z2p99zWuOexrHmGY2fGCZ7Z1/Myjmpf4/97rUE9RqHAAcnFev7bolOud5nGto0VtVaCz3dxLE8RronxM4IHFjG8Pk/wwipu+JbunAeEPDkkZMg/wsGATzWvZezyu4prIVTjc+M+7oVQQuyxCqzAdxNrvorPjQ2969f40BzEBd0e41bYFYQSc05zaCCMgDynevXcROISbTkk+LsCy4zXousL/X8XByOeFR2GcO2ZDmzktelZvQSi8XPsAkwUYphQtBMBmSV4+AjXiEHrUo47sh4WjHkb889Jfk6MDPxnRUW/tUQWMWw1RlgZm7jRyxaufT2EizrsiAgvRZBaYrF+oGvv4MChcwShqwjG28epFmkBP8L5ozsaWxL6sYiR0MkK7gtQgdv2luHqYylsE75fwkFbpVjLTV9VwsXVeFFasKB/jjdmNQ5Ia8VwZDGGpocIoZCQ2xZmyCKCeT7FqYHNuIZ+E45q3sCRro24l0FCqEW4tWaJ5nENl+BNbXwWF0hJCCth3UnRsJuICZnAmyyRgkaM2KRg7tN3+7jGwT7ujvcFbgqSluJNYgNs4tSjVq1pHa78ltZxu/6lNp+K6CY+YA41t4v4wEwY8iGOaF7T8z/B0eoHuAJaAy7Ok8rMc1y0qBS3fZ3Gvu4Sgq86iENxDpeandE4Ep2aw/EN9zge5JaWQTcuS9xZMIelgnk1YLdDrWjyCh+kfcR+btUzpnRts55zRdfNaI0uar0+wr7Zcr13AWcDXBMNHhaMtR2nfabL6hvcPjnjDV5pvb5FBFHuiw71uAhNxny8r2eNYHSqQ3TP/deKf17r2Rc0rkTzEuLdxMHRFTh1toVwF0wTB1i76Fam61ZxMalEMdPt8hfEYfiZrrmIY0QaRPOPNe8rhA+7U2swhvlnC8vFJo3tn+JDJRHQSuwPTwt1RnOYxLX1m3B8SwWxp7+tv2dwMPcEVux2cc2HPWwULRKy4Lk+P49ja5ZF02qspJdgZWSVUL4XcR2PA40XQpamq7FTz76Du9lO6R1NWr8qHKPWjl1lG1j5BQcA5sH/OW5DngZOnnG5F78SnTv1nK6C9fgJjo9IF96f6blzxJ7IdXuJZf8KwcfDuq9T/+qxCyjdokfYjfcGByumLGzHbeP/N79PZOAFQbyEuptxFbRW7DtL9GCROFC+wYds+vS6NOh1gpmGCUGRlks7sajf1XvSP12JG3lU40IL5SJIEcEsb3CryBQa0wTz1hIW1wz2Nw3haog1mEEhBHaTrhvW/C8TG6gWw8kbWBPeEB1q9c5/ji3TOmzt9mF/aqfGkWO8gFOD8qDZxtHNB4TgvKexTouu6fNqwqVqq/X/i8Tm+ZbelQhJPbGhZnE/gVvE2qalnr7NLv2/CJetLcfWf875FnFI5GGY6MQ4jsDdxJHQG5rnWf3rISyDcqL8cyJMbTjyOJ99SesxgF0YS7hfeiluWZ0C6wN9P6J5LuOArSaccdKIBV4qDXsaY43W8SFuPTqHfeBnCF7uxQFcxdhnuIDrsm9pXdLFlpZxPw5EShdAi95xleDlXnyoNnE8aOuGaNSvOa1qbBNaux3R6xwu09yCg5HO4gY28zjN8AouKzwhul/BBW/mcIOrVWKvn8HBaen6O8AppMXEAZ1uu2GsuP4U+/23cDGjDZwt8IA4QPKnV8+o07wu4OJas1hGTGmMNRhZWCqgVxVuHNUiWuZ4Lug9afXmQfE9fIg1E/v0AbHG3bhRTVq3lbjK5q9wobKPNZ4dwsBIZOW06JDQ9S6BPtzWc1KmVBHGVsqMVJ4T0k+kNGM2FnHRsSnR77memYp+wvCVBO/nIb8uupcR65nK0GtibTsJGVSpcb1L8FIlwWPbuv/Xet8VjSnjI4b1/aB+p4K2iVP/0mhZw8190ph6UvCMRGrTdbGrvxsJvk5kKd154CDgNEiSZ3ZxQa9VAsW5VfD+LkI+/Z2uf09j+RTzezc2GuZEr3RB3SP2asbIFGmeNaJZGrrpoq7Aqb9TOLPjd/38/4UMpD+tQYNL39QejmBObeeMBnFfkzmLC+D043KaaUHkgZL+xCVcXrEK19jfJxhqjDjQcjOtEhvkrsZ7ndikKxzPR5/E0bVluK57A94E67hs6fcIuHMblyjeIYTzx0QwV6Pu/UTjfoEXZR4HBM2IVv045es8rtf/uWj2WnNYxvnEjQQDNen964TQWdRYEuJLuHEcV/1bF40/1jMW8KGWG3ZFzxvH1Q17CQirAmva66LfDO6N0I3rfqPfbbhBVDWOeN7XvzrCWrig++9gVCnpdog71qWVcUBstGGt0YBo/Zzgh8LNlX7Dbbzhl3ChoC9wM6o7GvOg5vd/x5kF04RiuobLtu5pvI8Lnn1R49/EkH8envsa1xvskzzCcHs7LtxSTRxu48Qhva7n9eLo4sL4i0OtTz9hrfTg9Kx3tSYLBN8kkvVIdMkDqZjYPznHRULp/Ur0zjG06No1zfOSaNCk+TTq3W0EX/4Ed7NMv3ib5r2GDYYzOLUyEYo9nKvdgV1jqUCdxZZhmeh1EQcjHxF8kO6MadGgTDQ6EG3KMWo2LRo1YQTyrsb3DVZA23D77AqNpxu3uc2DZJCwAr/GLotqrHQ+x9kgKQ8TyRrDAaYQfJputi8xSrpOHLTonZex8VWH98kLHPg3hdNSF/FhPKB774pGfVhh+xzHYV3Seo3i3gIrOE1uBldqbNH7jrCrp5Xg9VNaj1a9s0O0/lTzm8W9WEpwGd9E3Q40pxl9nwreGkb9arF7o1PvSzdGNc48asC9UdJgS8QiFaBE6baI/VaM67PMifZjODC3nNgD6fr7NkYYXoiu17DyOYdlZzHHs7yGNKZRHBA9SfDRH+rv+ziWoAaXzP5f/D5bGB/gPOA1YvF39PJtYlF7CAZcEbE+0//LNbAxguAJZaQmmAQ9IKzDfRFkkVjYEdw0Z5MgYA92T6xhotXpWfdFnIu42l76mvawL2YMC+Y13A2qlVjsL3G54x5cbKkS57QnLDhDbO5+3NSjCpfqXMMVE89r/nkgPCUWfAbn9R6Jbqfxpoc4rH6GrZZFnDfeh4PKviEOg2Xd90ut36zeXS865xql0DgS3X6FK7+N4K5h5TgoqQO7K5Z1Xfr2+/R9Hi5HWGgu65rkg/M4eOgqjrZ+QqxxL+4xnhu/WN+nj3oYH7SrOId8G2ee1Oqd3+Agpeccj0bf1vxLRfMu3b9QQKsNzbsNB4Cm8lFHWH4Jx0+K/mtYWLYSa5yH3TZ2H63q7+e4ytw2brVbq3HtEkrkz/WuWdG7BZeAPsTBhony1Bb8XUnwZvqH93EVzrSaXmPXyAIuf1suuuQcKglr7v+LW/ymAp+IYXUB3aaJ/X4g+jVrbE24r0EJwXNrBN9vEnye9EmfbaJYjwm/+QQObr4out/VWqQMqdP9uwVzSKPlUM/5CbEHHxCKQSqUu7gSaSJfL7D75rRoN65/lYT8qMIH8lONvR2jqW80z/NYjhXhWJZUrFs0hg6N81PR67Se2S0avdGc1rRWi7hV8gSuoLqKI9bHsZtrFaf99uDU3GUM3b+D67Mk32zhTKKHBWvRJPrdwPJgD2dc5f4oxu6NNJpKiL1wBWeyPcEFpLZEk2HN/Zdan3dxuvEeDjg9wEF9vURnyP8rRvxO4WDedDmlUrCCi6ZdI9w/JdhFNSfapAE5gLPV2jHqBY7x6sfu5kqc9lwhej/B8U6F7oAqgvfyDCshDL/kvVy/3/VzYmTgPy0q+m2gUcIZGUxURjBBD7G5d3G8wBvcZWmXWKRWXJ+gFUdpT+CKbgk95vMvEES8QwiRIl03TwjIFr3ru8QGriOERTexiW9zvE1vt8ZaRSz0IM7JLsbIwVX9nZbeFj7g9nCRi1SA0iq/SSx8L+6gV4kzBNLfe0Rs1gWcF35ACLDUHHc0zjpdN4Bzxqtw2ta+6PkJUSSqEMkp099vOA4ZZvDJrsb+HGvIRQSjL2ANdA0jEWM4GrmNOGDbcC5z+mmfE7xRpvuXcZnRPGDKcNDWdzS+z/RZr65JP1/68BqxS6kM9zpvwYdorucAViZTKQRbsqW4QmTSegajXHmQvybQoleaX1qAiUpV4xryCzjt85Xuz3iGBxjpeAujZuf1XZ1os4GLbOVPl9Ytfa1pWaVbo0X3jeCsgEVcOGcCW/jXcVGs5LVUVnZE+19guL4WFzJJVOUFcXg0YyvrCOdXr+BKgg36d48Qfi2a+/2Cd6TL44zo/SdEvMCWxrOOS8/mGlThNLKzeu5r7NLZ1Tv2cYbJHCEb3hC8fZPgpQpCzrTgLJ8dYo1X9JxSQiY9LKB3u9Yn0alabBWv4F4km8S+2sJuz0R4ruNy5a24jv0ibky2S7gbXuqzBsJoSXi4grDc05Ivwxklf07waaJpLXpmH8EX6WZ8iXm6F+//OeLQ/I2ee4jl+5LmkodyGcGrVYScXiMO8k29P9GfPC+qcSbPvuiWRsAWjntJpbGN6CXyPsHXvyH4Z0A0eEQc6LOEW3ASZxWVYoVnGLuBlnVPKkXdOFajjdhfP9M6vkucY4lSdOGUyVJcNG0e1wHZwO7wDaJWxU80tu/rvcuEjFoj9gCETJgRbeqIs3Uap8nPadwvcAD3OdzM6n/3+0QGygmtu1qTeEuDeoxL+zbiAj0TBEO24rSdbWKzTuEAh21c4rEEa5QXCeZLODP92inwN3EBoRW8gf69CDFAKAlNBJN06r5zuALiJm78kITYwJrUWQzJt+DywgnzpM9tFMc1rGKofxwffqW6r49YvEQdKghh26KxDOj7YWzFNhLM/DPsB79BQLgdGt8faUzDuEd7CuBhXLikWmvUp3E3EwzdrPVaI5hqg1jbEoyIJGNlkFD6GK/ggk6VxNq/p2f+1zhuo0PPTp/mx4RgrcB1wcv13EfEpkm4eUbPO4eLpuzhIKj0Je/iuuc72H+evvpTmu81XG60Cge1PdRnH2suHYQPs0w07yIUrYTh0uLI+aVSOyVaF+HqaJdxau5pHLRYynEfX8LtU/gAOo2tpgvE4ViBC/9M4sI+H+qeWwRqsIoRlWuaSzuxB36EayW8xF0+h0Wvl8RPIw7sTBi8RO/d0TVrBL+OEPx8G/hjQmjlPnuFFRZEr3lCEH6jcW/iWIlGgu/TvVSh+3Zwtct1jW1Jc0m34a6+f6z5XsKuijy4DjFE/gDvr0ZsiSacPI2DAYeJPd5D8GceTp/jmhJluKxsHaFE/gUBFb/BHVdHRINKwpo9IvZnHoj1Gv9L3DX0b0SHBuwzT0VgjUAKygnDYBi7Uad13xROG6zReBpxJ8PzWAFexqjDAo41SWMsofY0lvaIvfJGY8t9MIibsO2JrqexwlqFXbSJjpWKLgnDzxG8sSj6dBKyogI3vBrF1VGTNl8RvFGud87hWgxloskSdr2t426bpfjsW8dBnJMYqenEDevWNfdTGFV4gg2vZzjg+9dY2RjRmD7U+IZwAHo75tl0e8wT8SC/wchSJaEo/gIHpq9xsp/iE17321rrCTHOEAdDWiwHGtSSBtlIbOL09ZbhQJwDfKAkM2zj0pI5qBc4cvJHOOWrFFs5Cd++T2ygLUJROcLW0z5B8EmcO5oHfBf2x8/rHRmEMqL5dOualwTx/7hgvOMa/wGuzDhNaKNniEW8gP3As8Ti/BgrMt/T8/ow1LSAo/pLiQ14oGdA+Lt/gKNKZ4lN204cmCOYga/iildFhEC+J/qP6PoeIsBlh2DMGdHhFe4m+RXuBHiNUAKKRYMBrGikhXWPUGL2iLW/il0R3bh8dDexcZIXHmHfaSIoNfr7G+KwXdf7b+neVRzPkRD4OYIvzuMAz3W9Mw/d5LVX2A9+Ss8ZwcpK+l7HMM8nVF+LD+RRgm8HcN56K6HcgtOL5nBN8fs4BTNRm3FcK6IFZ/DUEbyTrp5hrd2RxnNO6/UUFzHaxwpGokdV2BJ/ibtPlhCIzFO9Y1Hj3tbcD4k1TjSiFkfiJ/rViK28OzjgLRWhdhwb8oJYz28072uiWyeWC0vYj/tCNBrBaXFlBK8OaR2nNJYe0asXW4ZtuHbJocZfgyty7hIKYe6XEj1rTM9t0XPasQtphdiPPxet6jC8/of4QPqy4PoPdO3nxL5vwh1WW3FfhGLNoxrHZRQT6Nkgx5tObWoO6arYJw6FRYyyfKF5zGB3XifharhF7JU93O1uEyuk47jE7iWtwQUcQ5Jr3K7/n8PBuImK1GiM7+o51QSP1+B6IznvEmI/1eFyxGcJXigi5EvC/JdwDEeeUcW4DPIgweN1mO8WRftTuL18n9blI1yJs4pQblZxv49aHBxbjmNIRnFhqEXRfBHH69QTPPS2fk8T/JzG7z5GvMZxqfOUOx042+xDPTuN03RLP8Wu8ESMT/JzYmTgMc7nLdMkmrC1O4XLQdYRAiYnewEXSUiitBNC4Oe43WcX9tunL6iSIHz6e94Qi1FPbKi7OI+6UWP9grCMk5EaNK70vZTgBUr4fAXXFdjGDXlGcTTpEO51kMybh2cJLrO7hEu2lmp+l7GVMKrPH2JXyIDo9XNi85cTB0X6zXLBF3Bw5QGG8B7h3uq7mk83hl8LYxbGiQ1wE+eOJzScsQazotf3CEYcx0WOxkS/RBjKCQbu0bM+0PuHiYOpmNhYf4WRoAqc/jhH8NIsbrvbh7NH7uu+PyMUzlWtR/LSEm6ffF7zfkMIqxV9/xHBK+cJJeJTghcacOe0cr0nLeRSvf+PtBZ3iU0+jIPZXuFDMjdTM3YdpOJRrbVbwQWvlnGhqQWscP8ZsabpiqggDp7ku4Qe87BMy/hAY6kj+GlWn9dqXMkXe8T+2sPVOotx7Y9aQljdwfUermiMD0Xz07jIzxAOjEsLZxWntG7hILR3cV2JO3jPLhL8d4h5rwinRqZynDEadQT/fkHw3CCG2itwy/J0Aa3jVtG7eva3RIc+XD1ujxDMaXg0aP26NK+7uDFVEcHfaB67uDjZjK4f15r1EUpWuv82NbfLBE8t6529uMZ9yrR5jeEqjlVZw0GOldgld0QYYem6XcBlyTf0/AMcN1FE8HjOZwGjJUmLjKV5g5XOXs17ROtxH7vw0q2Wivkq7r+wr79nsZFThl2ArdhdlkpGui+6cB2Z64RyldD5z3BmTDdOY13GDeEO9Kx0TxRh1+hDrEz14gyLRHZTDqdMAceqdePKmPu4qNcYDjScxfE4+4QSmIhdN8Ebqeys4LL6n+C4nURqvkXwfS3m3zKCZxoIVPMzvT8VsJP8nBgZSGs5YeSE/Utx+d0xQjCM4Br6FdjaSf9oQjlvE4fEHxAbIq2sMxiWe4bhmVkcafkV1obKCMIW4Qp493BU6Ra2DFNja8QpQWhsu7iP+ja2gNYxU43jamszhNAtxlXX2nGBiHdxXe8xAl4s1Xi6CM2uiRAwa7iE7xKuA5DxDY24NekBTt+5QgiDfyF65OHXQwiPYoKxt3Dwy2XiwPsZLhyygQ/81CovEkxVRqz3P8MbJH29y6LFBRyE9IZQKLo09g6C+dNK3caW/wZO6+vXs6dwlPUUsd4HOCbhADc5mdWz0ke9TwiJSkIByGCcC0Q8yZHWMdegUXT8FWFFgQVSCpp0KTXhHhOrovWg6Pyh5tmp+ytxZHIRToscI/hpWu9IqyLXqp7gg2e4wlqLxp+xMQkHNmLocRL7CRsJRKQW110fxnDolL47Ita1W9+Xauw3CCHTw/GsjAOCHycxkpYK2R5GgHpw6vE+IQvSr9yDA8t6canxVGASCk830gWN5xD7pVcJHvohzncfI/ilFSv1a4QsypiSVWL/92MDpoKQFWD0YV/r0Izjhi7hAlGXccfHeo33BraWp3E8VPrVP9X4E7It1/z3ibWeJZSbhN33scullljzT7GrZgLXNBgU3X7J8YyPHYJnIYy5RuzOymemFb+Mg/IGiMO4DPv+i7HCW0HsoUqCP5pw6u4WsS8TIa7FNffTCASn1pZiBO285nVN1w/jM6FN96aL4AFGKXs1h3QVPtb/zxes0TB2be1hF8N94gBuIg7ZZl3/C1yddK6AnnUE7+XvFWydV2s9JnV/HsQdBC98QLjD3scITz02bupEl4+0BquEXHxCnJczWqO/wqmHf6570ygA+A84q6yJ/w6UgWHcqjInntD4DM5/fKAJn8e+t9S4inEJzwbM6F8QhG7UJF7jnteVev/3sCWO3vcjHNRRRljHS8Si/5E+O417IFTjlI90MVzUZ93EwuxrfOhZXThfugvn0+5ji2VK45ktmNseIYTbCKgwfW3VGkuiBuXEos8QQuZQ/78oGpwhmK0HVyX7DkYmbuOgkgociTut56QPsU70HMJ1yDc0l/R9J5yUB9Qubn/aQQTroPuq8OG/o7mc0XWPMMSdAiMVsbO4X0PC0q24AUy6gEoIIZ2wZz8hDOZx/EeD3nMe+04zlmSL2JQLOI3xnq47J5plvMcQrp2R6zqMc7VXNY9BgudT6asm1nyHUHZmcCnaQWJTb3A8I6OO0PabNKdO0S03cxvOzhjAbXP3tWbpr1/HNeFviGbtuLnVv8co0aLelUhGQvXpZ17B/Rv2cPBcwq6JSh3q8w6tYQ0OFEXr9yk+0MYIZXUUxwOllTeP/cFp4aaiWKZ3/hqnvXbqu2Vc6z3Rwk5c2TGVtvc1ph7R8C+wsp/v2CL4oR03FKsj+KNQoXtF7LMavSuRnDxQW3HRmlS4f0Dw4Vs4DmoLB6TWEcrOgsY5jqsCFuuZR4SCkO6INLjScHlAyLd1HCezgjMrtnDmwUHB+r3AQcnLolWjxptuoZ/gWKg32KLvxhbttp61rn8Zg9Gv+c3hgOvLOIK+k+DBa9iv/j5heKzhqo9ruDR2LS6XvagxPdBnX2EUr1T3pXzpwvUMjnBMQBVuGLar69LwrCR44KzGt0vwSQuh9PfjmhRVhBKRe3hRz0jZVokLVf0SV1O8SLhl5gvmmW5OROM0Amf1/31inbu1bs+IM7AU985ox52CM17gpIf8ibMJ/kdFRVzBpUnLcORw+g7LicM+N3cLhsybceGKek2mH0fzzxBCYoNY4B6CWX6ud14ilIa0bhLqS0iwi1iMXVw8Z59YjLPEIi0T1uErnCqUC7FEbOAxwlJsJha8GWtodbi/whpGRYpwyeAXxGLNaZwlhIDfwvEK+zhq9EOcongBly69TAjXhGn3cZ3rFlzuuJU43KuITbaMc8XrRe9tXNGuHm+UZo6nNh5p7fJgncUpkLMEw9/FpaP7cMOZYtzNLN/VhtudzuKYhUvYZ56HxFXRONGPt4ggqVRIEgoGR3g/wRXBjnBb21ZizX8u+j4qoGFaBjPYNVGOW2xPi44LOGipSM/9Y9F6XPdm7EIJ9vnn2m8TyNcUjnK/SiiE6fu9Sqz1TsGaVOLgrb2CMfQRh/7nWHBP6/dZPXcA17ioI3jkCsHv13FNiEVcJyIDk+qw731e/3+N6wD0YyG0p7Hu4gDCPARTiajDVnATYSD8iNhzk8TBMIQLTTXoPZ2a3yvsW38kWv5M9zThOI0lQrDexUpmE27v+khjTqX/IT70vq05LmDlMt07jTjAGM3tDIE6/Uei269wT5J1HASc+yddFAd6ZymGj9/V2EpxYG4nVqRe4/LCkzggNhXxJtGrG/dGGNEY6jCSehkHu9XomRMEL81iKP4s5ttRnENfi9OqlzWnRFwXReMKjABt4BS3NWzErGGFZwErr9WE0pexUKl4duBuga3EPv4c1wnZLnhXHbHP2nD1wXVCkSrBGUQjWMGaxXE3vTh7oBKjPqO4EuYLXAG30HW9hSs7rooe1YRsSjnfgKsEDmLkaAfHKOX7KnC/GgqeVV/w7DbR6KWe9wC7Kmo0v59gheA88K9+nxUI03J4gYXHHLFYvbiqWPo8drAGtIALJXxHgxzCwWRbxKafE3EgNskr7Idbwlb1Pk5pSZ/NMMGcU3peLUGoT/T9oD77CguN3MhD+r1LCIIS7C9c0dhTSUkL+gLh3pjAFlIy6BgOimkhFn8O+17f1nu6cU/3Q+zj7NFnvTg69TJOE3yEtexZYuPkwZwuiy3cuvkAZ3s04Rz+JY1jROO6SRwaRZgxhgkmXsW5rEV4k4IrPLYR6/kxrr2wgcse51ie4MDKVBpSqTwruv1az06k5pz+36AxHxIHzBEOrLyEocwvcMW+Zs25DZd1RnP4ru55RKzbttakASu5jRrv3xAbrxTHnKSfuxELhz7R4RX2nZYT8Q6pNA9in3whjJrw44HoV6b/7xAH0SKhuD3DVeJeYf/1IIbUb+G+HXdwimOnrksBfEmfv8IZJM8xLJ+Kx1NiD/YR/LhBrHUZcbi04DLUqWyuE7xwD0eAb2IYuIcQ+nO4ZsYSTpnNQ7USo1HDuG32Vf2/hrAuu7B/Nudcp3mmf7qqYD3y8E6ougv7bFNhXNf7c7w/Af41jocpxgHVad1VEXspx9Wt9ZgieOYhhopToR3DVTCvEzLkKwypzxVcM0V0DF3U2Ff0vDRmkn/mtJ6Hum4KGz+9Gmsqn3U4cLgFGzxFhBxPC38Fo34txH7swTEXiYrW6fl3Cb4owW6Bl7rmC0JG3yAUliXR/B6G6bewEtfJ8aj6fWz9piKRKEkTdseh8fcQ+ymVgA5cKXWQOOf6CFnXRKzxEs5Ea8GxU4u4N8ILXBxuC1cfvKB3FxWMbR2nSrfifie7+izdcvdxCv4qcT7M4JohrVqrP8KF3CqJbKdEdNZxca3f9XNiZWCDEJg7hIbcRTDGZYLhXmnQr/EmTug+N/QssQHTh7+Pc803iTSbKqwFvcYbYYHjmvYpgrCp1V3X/1v1jAHiEJ8joMtJHIjzcxxE81zv6SCE7V2c83qEmbsVBwt24BKdg3rXGWLhyokDLe/rx8VBcsO8xmltc4QVnBZ7G86EqMOW6tcEQzzFPvT0/Y4Rgm8FR0Vv4jrjJbi50WPRIaH3aQz1p/I1jTuo3cQR/0O4ElYxwWxdGku5ntNDWICpbGTAzAd633ncMGYdQ+gHGMLcw6U2S0WjvG5KtHqhz//nhJBtxl0Dh3HA3TRuQ5woydfYffIlDiZqwwFW41rjM7gYz67WqhbHjbQRB+Inesc0bvN7DpeETRi6CisQpbq/nhCoVXrurMa6TPDCaUKBnMZlivdxjEIJzldfxkGYSYcU6qlMDmMrsBJ3bmvBrXZ3CD55TVixDVipuUdYaSu4/O9rjfETLNRaCH5ox8VPRjD/ntW6/inBs8u42FMKzoThvxCtPtTaPcCpo5sEn5bjQMP7xL48q/ufEnxwTu+6hX3I5dhts4Ut84T9O3AZ8SOMfKTbYA23757B+zqt81Si6gnemcPZDlvE3t0i9tUl0eEFlo+7uDR1ujNXCXmzpuc1Yqv1Koa/V7BffUJr0kvw8RN8qO/injHpKkrFK+XGBLHuC7jyazcObF7XOE5jP3k9Rs2Sp7Zxg7ZPROsf4qyDRwTPnMJxFOO4IdQaRifA3VJTAZrVHO4TMiBpmN89Jdb7hebwU3yorxMI1KHe14kzL3axIjaMu5OmsjWt5w/r/X9aQI9xQjGYEF0aNPYLmM9LCb5cwtkoc5rfOo4xKNHaVRM8kIbyAlZcOrDr6hEn+yk94XW/9YO+IBYvoaSErfcxbJMugrSULxHM8EyftRGEO0Ms4oKemVb+pq4v1+ed+n1e39XpuRdxauEUzmVtxvD/Fq62VY0jm0uITdHM8UZCA9hK6sCw0bvA/5tg6Nd612OskSYUX4sLV5QSyk81ETz4pcb896JppcbwAmdRlGK/Xx4aZdgCOY9bDrfgtL/8Lg/Os1qbrwghWCR6D4set/WuHuKgThj+LkYQZnHhpFM44nYFw9P3Nc4Uol/rPf1698eEMvZTXBzmIq4weZU4XGYL3pkH+0VdP6b1GMIWYw2ObP9aNLiqz8dxXMsMbty0jQuDtOAOjke46Rb6fwPOGNjCwZWpVJzDgaX1xObMw2QQC7WMCdklsgQe4HzpI2xVpzB6I9qeximjCaF348Y3Z/VdI8E76S9Nl8IbfGhMYRdII841rxCN5zX2NoKfLnBc+b6Pywffw1XkzhF88Vr0/ZHWaB13/xzHPUzu4+I15bh+wm9wF7kx3D44fzcWjHtW78o1mscIXgW2TtEYPsOxFKWEMrKMMzkmcXbRE2J/txP80C96pEuyg+DDMhwUuoFjC1KA7+k5i7iZzEv9ayR4OKHr3ANvsPJXjyPQmwj5V0kcmLUab87pALsSi3Ap94ydqCYO9jpcZOcCceC9RxyMX2M+PcKIUZfmX4TLxxfjxmy1WpNlQvbcxllmlXrGJCE/bhGyJS3ie3rXjwvGv6739Ogd7+v7ftE9DZqE3G9hIzMNtgqtz0vsxk2ZXFUwjnRFj2G3ZCpg7+FA3vcJ+dVA8M41LHNS4Uy3YhWxTy/iirBXcYGhdG8lalmq6w8JRXoTuxCuE3siFYgSrKRWai2GNa83hAypFx3T/dOK4yJO8nPimIEfFhXxU4IJ9jWpK4SAfYVLRE4Qm6dQO93FzWh6OR5V3owt4Ebsh2zFwmQI17JuFUFmcaneEuyWKMaWXROG0BaJQ+oUsQF2cabAqsbboDmkK6KX8AuW4ZLKS8TCfa5nncJlWVOoJET2mmCQJdzGdZJgnIvEhujAVn4HIThGcJGP5YJn7uHqgGkhlnG8mNESoSyU4pSeVlwQ6YBgsJea5/eJTbyEfcKJGmzgKpNVuvddnHFxCmdelBOMmArXOsGgP8b+zj4clPc5RiyKNcdyYrM+xQLmHhZ6lTjnvEtrk/ETdTjAMFGnt3F5zjfEmpfjGJbHek6iM2/0jjwgenBdgi7icL9EHOiNuINhF+bxP9XcIATFpzh9rhuXrD2LK6IN6doHWNBV4AYu9/SMDzWfz3FNje/g1t9fEwLhQ0KQpRshFfB1fdaFEYxzxNrO4oOtnOC9O6LpRdEo5/sGW2bluL35LUJAzRN7p5rgv118eCQCMkUIwRkcEZ+upVeEQG7geIGvz3F30R2Cj0b1vAnMg4ei77DGlb7rclyroB4rEU0Er/wtx2OR0pDZxb1JKjWGepxqdwW7yipxVc5U5Ktw87Rl/S7XmibatUNk67wSrcawj78M78t0W6XAr8JxUq04D/6haPoUN+7qwMG1vbgs7nOtZzFuxpUI7QZuvT6B6zIs6/vLBK/VaV2u4YqrDbjvRi8hZ+oJ2VOu71r02SiugdGAjZ5D3Gq6Uf8mNcY8wBdxQOsidienst6GG5ftEmudcQaJQvRpTJ9pDM04CDMV6XM4mHAHGxrNhIxs1HWJVCTfDuA6MOh5w7jRXAXOcLmLUdF2XOthEccZnCLOsoc4biMVgW6cCbRF7Nta4D/7fVYg/EvcdCX9mqua/BZB7AvE4t7VQC8QC5IQWi5uHsJNmFETCrlc8NwqQtilbzwXsEQEWcSQahMu6zuL85HzYB4gmDD9aqU4kv4crpv+ChfF2NDvckKDq9Pzn/43nrOAg6rKcdvJ9Gcv4tKWKWxeaA4NOBitUnT4Y70jfXoruPRxMW7feYADfb4ihHwycW6WhK/KcQnnXRwk85Bg0lat6fcIC2+f2HSn8OFahVsLV2iM7xNWRhEuNf0rje1vCUE5R/ysa11SGWvGwZ6VuKfAvMZ9jxBsB7hBzxHOyU56d2NUKlGqFuKw78S+/A8JgZRQbhnHg5pKCV4cxBDwV9jK79LY88BM+DvjGtI6bsGCewOjUNuiQ/LtOC5NPK7vRrRG1QQ/j+Oa6L8RfXpx8aq/wYfVgd771zj6fk/jbiP23xTusHaIM0gqRdce3EtgU2uxLPq14la0h1g57tKY5nBjlBca9xbBoyUEz2zj/h0zek4PoZT+HXFoXiSsrtMYPp0B/hHR92CA2MvNmDfriX1UQfDDb3ARlz5cCfKQ43Xvd0STuwR0PYqb/JTjypc1uN/9NlbI6wnB/h7mp02N+X2MmhwRa11ElFf+Atc0OUXsjR/i4LmLOIOrEsdSNBPrPIML5XwC/Be4AuUmYdwkGtiqtRnRsxMOn9f4i4j9lIpPomY7uNjXKi4AV4zz83+BXZp9uBR1J84SqsNZAdcJebuJ0ZlZja2d+JkneOINwQMZIzCn95bpu4e4BsI+Lm6VxukXmm89bnWdyGG+owTLnXTVTODW9tW41scaYeBMYF4owa2xH2EZVIHr4rzgePOtYq3rGK5xkch57rdW0WVe65LzatZ9w9j10omVxVGMQNQR+6SCk/2cWBk4wIf3hF6cB9UhbopxmVikhMrewppn+sPXsX8zlYohXAugA3cam9BknuNCNfU47eIZTmUZxgFDScwNYmFHCeGacHEZLvizRxDvLwjGHsJug0mC0Q5wF6gagjEuY4s2FyAP/h0MfzVqzk8KiN6NCwXN4MIb9YQgW8PWTg+GgrdF7/SPPsZpmW/0vh/gEpUJmRbhZkfpa7tGMPM5HDyUsN2+ntVBbKRnOEBsCZfF/bnon1bSbRy406brEtbv03hP4QZTZzTvhCIhmHyTEPoN2KKoxHn2KeDO697bOIgHYoOkGyA37We4D0Aqae9igTJFrH36xn9DbPpaQjHZwAdRau5lOMo43QdPic07gQXkLrGpM/6iTuMqJ/rQp9/4osaTyNQvccR3OXZ5NWpOH2Llq1TXdeEW3W2E33UUox2VGAVoxb1GynTNM313TTRKIfYQW2oZR9Gl9XxAHEB3Rccq0fo+wfepfKeS9Aq7GkqJQ34DQ89HeJ8s65l/S/DcPY3jCQ7269VaropmO8T+T5TrodbsDwkenMZuxgnsZuwn3HmHOJD4u8D/E8cA9WKU6Yxo/1PcMnwQF61qJfZphdZsmNj3iUClFbmED5YlbAB8hWNq0sLNtUsr+D/Xu+Zx4PMDjpfxfktrM6fn9hF7+7HWrRrXW9greM4MruiXbsxDXdehvy8TPPOG2D+zuG13kb47Ev3/jlC6bmPZVI/dqKkMPcMxGuAKf4lMVeF6EhV4r2ccwAtcE2FXtDql+0+LDlNap0NiT1dqLhO4GuIWbrf8VOvRhl2zZbho0wbBnzO4TXg1TvXe0BhSMWgmeGJAa7eAlYQhjTmVry6Ch5eIvddCrHE7IW+v6p3pck/Z36t7TvJzYmUgNawJrIXP4qjNGX13iJvHZPBDKSGI54iDKgMylokDOgnVpQkd4gYiN4jNs4ZLWS7jrmYJSyWsmprxNwQRu7EmnNpame57hsuppj97U9eM6r5Fwmppxb3iG3At9+aC+Rb6EGcIRvsSC5m0/sp17Ue4eE0tTj+qx3nnO9i/fKh7HhCL3ovTUZKJakW3Q2Lzv4fTLFOg5Jififatov1L7KMawS6XKuwrH8BVyhYJvhjWvEawJZ6IDLrnS81pDReIWcM+zl3d21Aw1l49uwXXQijHVnZaXmdxMNkRPtB3cKfCj3X/K63FYwKBeYEr1/UV3LOn8T3F0dXzWHncxOVNwTEOJdh6y+/3Nf4f48jef6znPiAEzAauxZG+8vsa61Psg7+LeaYXw9yJKh3qHX04GHMMp+6u4IyTSdywagR3t0sFrQTHoKzhiqCruPjUtO5NHnmFffFb+vscIfz3CX4dIPbLKZxVsIJzudOlNYqjoTtwito1zWdBdDpFrPlnosUGLiu7gJW3fcyjUxpr7rOEdb8mBOs8PtT+tdZhE5cufoxTjNONlr7rdGNWExZqHvSJOh3h3g/lWDkaEr3fJpSLYhwcfVvXj+G+DgMaRwWusT9E7Oszotc4zghJOZBW77TG+BD3xzjCjb0WcbxLKa44u4wRvF1s7a5gHt7BLZQnsetlABftWccdEHtxgbV0Ie3rGfW6N+e2R+z9RE+/wYbHGdwVcg77+huw8v0VNlYTHeoRTb/ALo90YafcSET1JU5rhuCXUuzWea7PG/T7Cq762YfjsJY1th5sQOYznunaKs3j+1iJ38MutS1cWCxdEZdw8blaLE9+10/xCa/7rQ9rh2DAZwUvWSUI0EccLAnlJ/y6juvL7xAbq4GwWNoJmGuO2EQPCSH2klio1Nj2ccBdEfZTT2LN8F2CYc/p2ZU4s6GUsL4K4eA1nCP6UmOv1lxvEZtpAEfQpl/4sZ7RiBGEUqzQdIsuB7h96hsiUO8Ap7wNF8xlB5dhPtI8LmoeN/SeMtxpcVF/53s+15gf4GpyyQgLOAc+LYs8RPuIDfQzXNiiQ9fuYEh8i2D+NkIY7+I0qB4cozCCMzXW9f3PcDW3XI+zelYiCtX6+zWG0SZ1bQcuPNJOHBIJ+e4RvLet+25qfmsF49jFfAtGoD7TPPdxj4cenO7zHrbGSrBgryLWPv1yGci0hIvn5ByaRJtS3K2thnC7/RhXFVvlOJ/XYpSroYA2NYRC+D09f4I4YN4iDrmEruuIfXCD2FPpa14R/c5hyyctmYf6e01z2cKFsE5hlGWO4LEpgn9qCJ6YwsrPoOhUQgjfJYyqPdFYM16hUmO7SezHBY5nBqWS95zg+R2cdlarZ32G+03U41oYmzjL5c9xbfh2gu8vaq2ea05pDNThiPNqrBxviub7WEFfx2jmd3BZ2h2C94+A/wEOpOwl0IYtgkdTIR8kFNQRvH/7cQ+AMXxAptKeh3cXUfwmjaR6AiFpxinbV/SObqwc1RE8Uiw63sBV/NIFlgjTGdGkDlvFzbhBUp/W8QohnxLNexu7+taxgleC4382MVLVjl1LmwTPzuDU2iOChyuJvdGD4wieE3E6v9S6JRKyQvDMku6/RvzsEPyQRmEDcR7luZDxAAeYT8p174HGmoprJcHbqQwtaH6lOEVwkpCJ3+h9R8TeXtN96a5IRbNfY/8MG0x1+Byr1fcvCYOnRd8nUrGA67P8rp8TIwMf4Pr1wwQjVBLMP6drlrBl365BNuPmLKmRzuHgsdcY/k3m2sZ1CxaxkCwjNsAtYlHyQLik389w1asWXFSlg9D40/eVzNNHbIznmMGbCQI+w/7RbxMM9pAQZpu6vwVXBuvGwSMzuDDGur5PH2Cxxl2mcdZhP88pXJRmGqd+pT8tIbN20fkioQSc12dfE5t5CheHSZ/4JPbJdRECekTjnMUoyrrufQ+XQ+7TOtXiqmS7OGNiAiMuu/o+YeQxDLemQlmLD50zeucSoWFX4Va5y9hyPCQOi0eEhdCMK0su6vndOLBrCLf0PNTvFRwhfhNXgdzA6NYiVtieYHdTG4Z3v09Y6NMEL1bpuY+0nh/hVM8rOLL4PME7LaLnKu7Ml2hHCswevWOLECI3RdtnGlcDVt72RItb+n5X7zslGvcSQuSevuvGftEVwsp6iWvTV4j+j/XeBdxkKtdmm+CRMRwI2YR5JZWjxzgI64hQAsuwX7qygPbDovdVXEkyUYJi3A74kb67jLNffqB7cu0X8IGegvG56J2W8JT+/zZOjR4peH4e3Eu4vfpFfDgcaQ6ncXzNSxzwu4/bTP8Hre3PcZzABY2tROszR+yvwnXtwFkOrTi2qV70SrdsojC1otUIVrJ2sdG0id0cU4R8mMGZJ9V6b6U+W8Gt3+tF10IZtqLvToluqViWYgVpGMfy7Ise6xheP9Qz+3TfOK6wmpbwHq55MIjrSbzArpqMJSjWMyc0nkv6najTssb6Dkb7XuL0zF/pXR8Tbo0O7Fo8jZGNPA9TRi0R/FaEZVu1aN6MjaVDHCD5p0TdihLsrlnTOyY11w2NrxYrujeJvdVC8M4wgWDt6vpEsmZw9tnv+jlxNsH/rKjot5Zl+rZqcCWsU7ixyoIGXqZJp2WZ1kadiDOBD6g3uBscONf/BrHhtwkBmIfVu4QgSu2zBKdZPcNpNhXYmkiCpx9pC2vwqTg8IDb8Is5YKMbR9FPYwtnClceu445yOzgOIZWcNuw77tE1T4iCEc9xVOgZvHmP8MFQjoNzdjWXIawgnSeYo6NgfWY0hxLsu2zCFcxm9dwW3DxpADd42sPw2hABVa6ITmO4zsPXuCZ9qdbyXYJBx3CQaCqKRVgA3MBpUG2Enz5h+woMfe9htGdVdNnQ3x8SkGEe5FVEQagU/tc019t6xtc4La6a2PC9OHDuY12/gruS7WBLfAcrEMWEgHhD/DTitKZyHOz6Gvvkt3H2wpw+fxfn7iO6fI277CUcWkMIlF6t1VNi4y/jAN8j0bELw/91uENah/7uwK6+MdEkofd0+XViS/eIUChacZvXaoLP07JK5X0K81wbVtzT1VaGodVt4lD7FT7kbmq+OzgzaUTjOKP788DLPfEOoeR2Yl93BUYMLul5q7gaYANR4Kq3YKyJDs6JRk04ZmcBH0zVOEW2BDdtyniYQpfVpubxAvvPhwlercBGSh02ruaIvZaI6BOMxB2IdumebCMUoh9hHkhkrUTPb9ZzxjE/3NDvRdxkqh8XPZvX38Wa7yeEQpMyoQK7sxKVqMZK9gzun3KH4PM0KNLVtYn7wKTLqbWAFqkYjur6En33nFBky7FLYw8HRLbgQLtrOPXvFCHn6wh+y1icRGmO8Lqny+0Bdtee1nX/ktgP29itNEjwZ67dGCETxrBxPKz5buj6RO4SmZjGxs8D3BL6meiSSNSCaNbJ8XLWHbinyqrG/F/+PrMJUiPZIhZkSxP4NSFsdomFuY8PoxUMh5zGlfpSYPxDYvPO4sCLVwTj/THBBA/0eZHuSaGyizd6lQi0SRyKy/o9jQuppM/nDe6OuIAjs9uwZj+re9OHuU8s4te4iNAC7pH+Fa7S149RigNsBUxgiOuVfr+lz/aIw7IUQ5TFGtuDgjn3aWyVGPbqFh3Sx7arcY0QzNykd2xpbMM41S+t8CqN8xrBxOP4MB4kGPBv9NlVQqv+iDjgHuBKfa8IPmkkhF6lrnuFK/pNYaXkEKeGDRCH9Q3cGnhPdB/HgYsThDCc09o04QOsheCxU8Tma9PvR3ijjONslkR40h9dTPDhCMFzS7ji4R1i0x7gCobruNBQumFScdnESmMbdu9U4L4PR7rmJqHwntY7X+PmKHm45EF0Sc8YwwfFHsEXu6LnCi4JW40VjBrcuGsFR8Wn0HtA7I0GXAE0x7Orz68SSuegaLlacH8jwVdpeZZr/eY1h1RqzxBKTD1G0tK/OYWj+ksJfljTu7+DC/hUawzPCIRiBwdsTWFFoBTHMKTFNaS1S4W/R/TYxLUmdnEzoxZsDMzgIlJLes4HhJwrwfyQyF8vIRvy2bn39nF2wQVcHncNK6AZ23CAKySW4ICwEgynXyIO6WX9/UZjewejenlAV+H6D+mCWMKlgx/i6ntpcafL7Zc4C2pWz7mJ3WfrGtsMrtw5g9GF+7hQVtK5m+D3fRyMmy6SpxpnuifAhdZ6cQXJDRwEeohjmbr0rsfYOn+CXWRNOGW0X7/THTes8c0QZ9yBaPtLYm/+EruvruAial/gA7tV4/sUw/pVuJhcoh4rODtsQd/14DTzVzh18CGOFUkDvUJz/Q0ORk9Xabo1ftfPiWMGNgkiXyMW4CN8gI0QC38b11U+1Ge3cHvfFPBXiM35HzDstI0rAfYRVsI3evZbBMOWEIuSPphZnF5WTxAvmesVzvEtIg6bfkJJaMaBLo24BOlfE8JkA+crv4X92X+Ki8EcaG6vCIbPWIFZ7Ifa1ru+wlpXCuc2zXcHR6fWEhviieg9Qgi8amwdNeK6B2d1TVrI1bjyXDWu0dCHIdC0ahdwVcYiDN1v41SsIuxu2cVumxRoGReQftTLOI2tSLS/izXnMWIzDeHAqxW9+xca+z3NpUZrtq61uoYrdJ3DKTXpt+0STQ5wFkYqEAfY2lrGXfG+0RqMEAJhQ+Ntws1qWoiNdw0jSVMYUkzXyA4uiFMYM3CEU8TyUHrK8XrjX+k5D3AE/IjG+7nGkcL7VcF6DeLKaKu4o2cRLsDybX0/hAOgUilYwn0aNnAtkOS9ftFiWXQodH3taz5DOH1tH1c8myfg9y3N8w8KrnmAD6UcT1qhxaLXluY3hoMAn+H6AB0aY6Ifb3Aq5T6GaxOxGSJ4r1TPS5/uZQzxtmmeOzg4q49A/SZxWnAVrjdwEfexSEQQHC+yglGtd/X5DzCPFBE8t46VyBo9YxNnZUzjQMC3cOofGttP9bxd4uCZLhhHJa5XcoRLER/oObs41bOG2Fe9om0tIa+HOA7xL2ve9bgJ0xSOQanHJa/LcWplJcHLKcuKNO5l3JxnHLeKT9i7BPdN2dZ70kX1mOCPPUK+92vuVbhgU+7HQxxk26GxtuOaOK9xjQkI+d1C8FgbYRDWEufRc1xeOVGgF9iYSWV5A6MNieJ8V/MYx9kAub9TgUgXShHHXSqJzqdxcYgD1HMf1WDX+i4n+zkxMrCLreMiQpAe4dzTF/jAXsXR3LUEArCMI+Mf4+5YNzF0msJkn4Cj0n+ecNcl3ADlUsGz0qJOC6wMKwavcEGgMtyFLX16k7iWeomuL9d7zhLM0aDx/1LzrdF9X2Dr5AtiYYqxlris8Q3gnNpcyEOcX5yukjpsddThamh1OLbiQ9GlhjhUyojAoUQixnB0PfjQ+iXH/cWtuObDtNZpCStCJbiwxpHeXcnxHtmVOM6jDMNo5ThFbFPj2CeQow3N5RwucpI+tYQEV3BxkVRCS3Ct9Uk9cxU36xjGlf9GsDKTQulTYsMkurWJD45UBjPmY1FrlgjNEU7HSvi8Bgc/FuMCUOkGmim4f0q/bxFK9JrWcJo4MFf1zCHdByGAXmkcacm0crz6XSGke5HgtXac696D63yk8ryB/eFPNKZvMGy+IlqncpU03yMs8M91f9J7DyNRadFW6p5l3H9iQ+NKV8W+xrehaxOKT6RqBxcKq9Z9iTKmVYnGmRD3NaK6Zy/OIZ/CzZu2cX+EiwRv5P5fxbXlq3Bxr4vEwbSLhewVgg9yjglbpzBNQZ6WfzmunngGW4mHekc/x4MSW3GKYzchJ/LQSsMp0ZjnWreUbam4t+Igw5SHbZpvN47xWcOdEEuJ9f1QvzM+4a6enbL8VzhKv1w0e4Sr5OVzi3ARsCFcACp5rgX4BwS63IrLJVdhGVSie4ZxSngDIfM+xUHNKacGcaT/DUI+nNLzHxNIyR2cKbOveZzGyE0iv7sFz/4Q74UOrMQMEwrlC9xeuhrXUJnD6fJTuJvva9F3AJenHyTOw5/h2IlEl2uJfXQbF0ja07zu4Aq16eYoxghqDyf7OXHMwP+qqOhYpb2EOBcJrf/vMdFHcRRswkW1BHGXcavgQmtiA2uwENr4ir5LuDa1sGl8AM3gutMJ963hdJhmPfv7hPZ8FTcg+QYfXCt4MzYTzDRACORlwo8M1nrvE0JhhVj0SwR88w8IqOYj4N/hIhRluuY+PjjmcdXAKqzJpRugEucnbxMC/SKGog40zu8SzDhGCKUl3AmtW89MxaEY14y4rM9rcLOnJY3zMd4ILbh739u4U2ENDsJbwrUKEgofxVBxCvxuwvpPFKRDz0sBfBYHGy5gyK8B+9Y2cFWvQho9wEVU8iDbJjb6HtbYX+EI222NtVW0yM3UqWfuieZ3CJj6sd6b/uUJXHWuE9fNOMAlghMBSMW5T59/iYV6+gW/0bg6caW2dONk7MoOweND+n5TNFgh1r0IpxWWi3YT+LC6hvOxhwghdVnzTpdSCsSE5Gv1/wHcYvkZcVB04fSpRwQvtOo5idZsYHdSWq3levYwLpJSjAPw/oBATd4l+H0Dy45BQohu6Bm3dN+anjtPZFzcwSnL6SKqKaDlIrG/0yW4g1v2luF6F+mvnsSBvH2EjMvva7DlWqrn5uF0Tc9a0Li+xKhqncaYSm7Ks5SJrQQP38aFpdqJfTKscTUQyva/xaVxbxLr/AlG9b7RM94h+GsZd93cIfb3U+yuTF4uIWTnGa3JOI7TAq9xJa5P0IZTXHdwo6Ii4qwYxXLkKTYKcs8nijGvdz/HrYPTbbaF27L34yyvTa3DJ8C/0RhrcOxSMU4n78AoGxgdOCD4rUZjv4tjkq4QEf7F+FA+wuhUxju16D2pIDTo+xcFY1jFWUhVuJLq+4S8Sbf4MsEnf0BkIzXhdPpZnH1xhDO0dgje+U9/n10LK0WATUzweU3+73FRkTGs1Uxr4gs4Z7cG+8lz089jZinU2CdEqCKs+R6JGI2abG6OIT37DIaBjvTsiwQMnYd3iT4vx4Fo6RLowL6l55p3EbERizAUnNGgRYQQT3Tjr4mD78c48rpKz1/G0FgbLrO5QGyeflx/Pv1xJcThWarxrRCHWfqr6wimfK3PZnDp5mb9HsFZFcUY1prX+NoIpivH2SJpuZfi+tudosOY5pIw2bLu68bZIMNaj+8RP3lIPdc1pbiMb0KqtbhueAmGNrcIIZYupJuE0jCoeb3AfvtGPWeW4J/TuBLhLsEzH+DMiAXcorpM1ycakFr+XUKIfIkDp8pxI6cdbFkN494NbTjiuhz30xgnkIFTWNlNPu/Cil+j6Jrw73lsZR/hIk37hDBM5WxD42rTfecIIfSPdf0M3sebOCX1AVZuVghF9RRuRZ4upil8cO0T/P4lTiOuI3jrAB8OtTgHv1bP3SbW+Ptax3Zd24bzu6twTA+4nHL6j0uJfTMpWiUse4uIczlFHO5juGX6Sxy8mUjWoe4rJeQEOLCtgeC7eoIHe3ExqYT6jwhrNX3AaX2n5Z+GyRKx9olMVhNFp2pxT48enB3yLsHrTwkl/UjrMIprB2xr3SZ1fx4CqYD/RHOcwopvInpv6Rr0vEbNs5XggaTHaWIv3teczuNianO4bG4PbnM8yvH26Ys48LIEK/l3cexJIl3LOOUy3S0XMeoygRuBbWAX7bBotUDw2l/gQNEqfFD/geZ5nVAY1nEvmZSr3yHk1brm9y5O154mFOgGjJQeEDJpUPQfxPw1TSiF8wRP3dD7LhKFsNK10SK69eGKrdO4gNMgwdfn8ZrOEVUtf0DwSifODOvGe/V3/ZxYGZjC5YQriQVLLegUcWAc4QITC8Rit+NOb/O6/hxWAmpxZGxq5Zv4EM2NeQ3nSP8IR5umnygJ9lxjHCQI++c4mGtUf7dighURcNpZ4qBLTasI5wGX4sp3uwQTjeEI20Ncoz21ToiFTu2tXrRY1rvS//w2oaXv4S5b27hMa8JJDzS3Hs013QA12BKoxIE+lVqTSj0vN+MBDsiqwPUW0hebrop1rc9lwhJIf16X1q8Ww7y5gdNF040h+xls9czgNqjLOHgwkZxX+vshjiVI6PFA/1IZSRjvUGNOvpzU37dE23liQ/2Y4OEV3TeHLfQjvbsSdyHbwNXFlnD2QzMu1rNLbPC03qdxWu0aIZyW9M4pfT+D/c7lBOLUL7o84HizlfS1Nur3fezzrMDBUpW4TW4HsU/v6bnva7w39NkprUcNYW3NEsrSLkbFxrElMqC5NOESyc8IKDPdFGkBrmH/KzgFLa9Zwa2v7+JumWM4A2EfK+l39JxH+n2eOBC3sNvqCAfspSK/TSgnua5FuBHUhsZYji2+WhxotoJjFxLVGsA1EcpwptAe7vzZjw+1TlzMqQU32nmCYzCq9c5+jrecncKxBwmxv8QGQ0K+KeSL9P8qXIsi0cAWrFB+jQvbDBK8UE/swVQ83iGMpi188CQCk5D2U6zs575o0bP6NKabuOpsQth5WJ4mIPeXuHbDrmjfpndUYyV9BCtgqwXP+BMs92aIfXxZtGjAjXq28F4+wuWHv9S9j4kGdHM4aHVTa/UXet5rgi/v6tkXcNG6Bl0zhtu8r2ss5zX2D4h1ayHW9Ic4lXGK49ke6f9P4zmRVwjD6jluVXxI8Em6FH+BkfcVgg9n+e+g6NAlrKGnv28QW6ELevl53MryIm5heogr5D0nmPKCBl9KLFgnsUGu4qjeDQJyv4+FZgfhL5rFUewLBEO3EZkIPXrn3xCLmdp8P3G43SMWvwznQhfp+7S4kpkSbl0nDphZYgEacL2DYUJAd+LmQwlxber+H+GAsgUMDSVzN+MDKeHGfUKAt2sO97GwzUPrUPfu674trFCcxuWSD7U+f4wDpHY0viks5BYw1DQrGn2AfeQTuNLbArH+PyAs5hWNt173TOFubCW4Gt8FjBo04xr6efi9RTD9VY3vT3B0dploeJcQ8F2iT/pX32DkaQzXcGjBOdgrHI8mThql8tKGywan0ruG0apmYr2bcKvZQeLQWMS543XEPhjCEN6arp/RXBLtgBCmO7rvbdEpFeaMVWgghNEh3kuPcCpeWiqLhNBbxa2r0bUtOGtkGSsS+5pbj+b9GB+2jdggOEUI0/O6fxPXZ2gi9lKd5vZE8yomXFp7xHre0Hif6T0LHO8ZsoUrE6Y/9Al2Tzbp+XuEcP0pVvhriL18BgvIRLEWcZXQ3KcruL3yKA6WmyAOwKf6Oy3xRBbf4LoXs/gwmcDoxZfYfQnuE3JHn+ceTBfTJPYLp9usG/dnaNSYtwke2xStarB/+Q8I5bIcd+5r0b97mCeqNeZZgpcuE7x1muDvM7hAVVrzHbiVbhNGK/Z0/R2t2SIOcq7F2VC3sRsmlcUh4iD9IcHzYJQUgrdzDqNEaeoKQka/i4P/zhO8UonrzxziwmsXcIfGRP7SaJnEcRnl+rtN89rFBlQxLrRUi90M6Hmn9c5Udp5ipekQ7/lET34smg/oPSu69kfE+hYRqNNnuFbKM1ywKfmpAZ8NyRN/gANSf9fPiWMG/qdFRXTowVUE42zgamxpcRURAjtho0u4LO48cWD/P3Clt8c4b/csrv73S3w4l+CqaQ+xj6sXN+6Zw+VrUxAf4YIppwkh+ET3tuJc0GqCEQfxYXFAELqCYJIGnDaVjFCNYck1zfVLXE65iVA8LmDLL+HpUpwPnb78NT23ClsQg6LjK1zhqw7HAzzQmDo0vzO45OtdnLbTo8/R3IZwc5tF3G8goeWE31IzTx9aL7HZWwrGO1/w3n2M2PTiQKVpDH8mTYtwVsGg1ulfEzy2J5ontJrIxYS+q8coyDbuQpl+zjyQynF2Rw1OP8o1uC76TGCLvp/gm0S/DrSezTj1ch8Hgu4R9SJSoKQ/PQ+iOpxxky6oQcIPXo6t8mrgXxABVcmHaEyNOLe/GFvCiziDoFjrt6Cx3dQ7UoGYJpC2tLhqNa9xXHZ4Bbc+3cKtqcdxy/J0nRziznUbhCB+oe96cbxAKvan8AHaj3ssJMT/NnGo5xqnxViEO/Kdw8poog2LevYUsa6dev9TgqduYzdVqcaQ809XZ6nGWqE1OksE0XURsmMGF8Iq0n2lWptEI7oJ+VOu8YBRrANcTS4NqzxUMq6kmZAfXaJjL27DvYUrTCZ62ovLWH+HkG2NOPjyouZ+hKtqXtD67GH4Pv3dbTiWpFjvu6g1accd9Sr1fa2uv0IcxOk+fknwZ6ITbwhezAOyHvfPaCMMnEZcMKwU83J/wbqU632bxD5IlAiCPy9hBK5Nz0sl5ZroM4PRxBmNbxNnYpXp830c4/MesZ83tEa1mkfyXM57Rc96u+DvN3r2EebpUzgu6Sl2MyU/DOG6JLUYQfyvCb4fxK2QL2Jlowan0+7iWjoNnKxr4YmRgWbcgnUB13O+iev17+nabV2zj1N+NogFfIMP69SQjgjoaBxDN9eJBdvUcy8RC5DCoRJH8+4QUa6pqDQS2uJVAlW4jSuAteGYgT0cENhAELaCsFh6cLnJPex6eE4s5jncM2FZc6zBKWRHxCH2Dobdu4lFPsJpLqV4MzYTC9+FU6tmseugEQdlzRKbc0jP/6lo/xL7lne1XnXYkrpMHAarGPGowjmvM7hEZgqgeZzGkz7RZv37RHM4hyvhbeJug2B30Cnc72EeR9qmz/0Ozk2u0fdvNNdt/b2Dsz0ydqER14ff0LyncdnchBKHtV4JsXUTfJqbcVLfJ9rTqrU4o/9XEgdRMcEnLVi5+RWxtogep/lvw+A7OAp9Stf04W6TLYSy+wRXHDuDlcPNAtocEHzRpvF3YKv6IrGfFgkeqsNW1GuMHizjlrro78tY0Od7VwkBN4OL9nRil8MC7ueRh+Morm5Xi7vFPcFyoQvX4WjGHSW7tIancfzGPA5e7dfzvsHK8CM9Py2ldKXtY/fWJK522YiLwNTjtMMGzWFA757FyskYLiKV1l/OO+9Lvn+E2/geiI6NGns5tvrncB+H23p23gdhBKxoHumObNd1eWAPYLflc4Ifqon178FFpg4K5nIdB0nP6T2LuCxujWj+9/psB6eQphslFerkpSNcb6IV9zoowY3n0jc+izNHLuFMh5SNDTjwd1TXZ6zFCsE3JThIPQ/19YJnjODGZXM4APoaLkudcmNNc6nCsQgTOLi8Xms0QPDZWVyXZA0rE1XEIb2KZVUxVgQOMdq6WDDPQ80pld5ExxKBGda8Bjhe2fNLgrdacKzOEcEjS7hS4kl+Sn/3JfEzqwle0++rBLFSe57TgGY0+LQM02ebAmSBgIAnMWxaqufsE8RPX/7bhJAdwAUwDggF5Igg1hHBIKM4eK5Iz9vC8OAGTn9Mi3ERV7k6wMLvObZCKnE09UtCeDzEzHGke/LgATfXSFjrteiRPsoqHITSq+8H8KYawKWI0/powXnB6Zc6JJCHVkL4p08653KEszDSYj3S/Cf17nrc1OOW7h8grNMUZCncz2KBu479aM1EkNIQbpYxAvwZofVv670vcTXKRHVeYwvtI1wb4THB0M/xz2ksRDpxk6FibEWdE72+0BircM2IWaJG/E+wO6hY77yqdzXi2ItpQjFM3+grve8stjqKRK87uKRwxkB0cNy6XdRz8+BYwBH1F3GL4SJcIXIaFxkq1Xe3iHVPN1NaT53E4f85rueee6YaR/MfEYdEI0baUshPE7z2XHSoEw2rMcq3q/Fd0ZxqcLGcAz17WXTJmAtEtwnNYRn7ctdxcZ1i3Ha1hoh5+BRXtqwiYO5U0NNdUYX9859iJWMR15JI5f4NLtNcLDqk6yB91+PE2ifSl4rAjJ77EPcAWNL4O3B0fiXuulqM1z95JpGy8/p8RTSdF63THXUTBwd34xLjA/o8Yf6UDclP/cQezgOvjICaV/HaV2gepwklbQy7ilr0/QNcoTBdFenWW8O1IN4l9mOikj24gE87hrEXsSthD6dcb+H0zHPEwf9lwfhHcdfURByasbuzDrv02nFp6xXcRCsV/nT77eDAwU6c7j6vcaVVnsp3KlDpy9/C2V3LOC14G/NzD8cbHJWLLok8Fut3p9akkUDF38XdehNF2iYU4F1iLSs0hlNao2kiGPFrrU0JwQernOznxMpAB7EgjzTw9Delz6SL0GwH8MYZ170J/4CJnn7XfVyWcozYWKnFpfacQUdDWItNeC39Lrv6foxYtGG9ox0jAt165jJO59vR5w169l2NPX21w5pbKW6CM4wP0wOCoer1eR76tZrDj3FEaC3BHOlrbtHc09e3geuv1xObKwVpC3ZxpDZbhQX9Ki6Du4eb96RSdkq0eQcHTz7HilceBvO4tWdaRmkZb2CobA+n7b3Amz3jCpaIA+spTkPt1fseiyZnCWGxjVtQbxB8tIqDtlJDfoFhwYmCuc7pWZPEQf8+DqwD5zQ3EsFC1cQaT+OfZ4RVPEXw0hLuNzEheozqvqcaU5foskTw3qrm0o8DC9PtsK/3JOKRCvOA6PM5dtkcYeRiTeP6Dce7n9UWPGtL75/ECMGG3vHPifbAQ4Rg3xEtT2mtUplawN03q/UvD7kqrUmue+6hWdwsax830ynFKVOduHZDCuSruF9JQrsHeM+kwJ3CvvA2nB3SiatXpkLcpnHM4wJkr3BNgxT4z3C0fINo0qKxthJ7c0djXcdBuJV69wON6x8R/HpH9KnVO1KBHMU1DfJgPa0xPcTxCJvYep3BRkC6NFIx3MFpr0M4YLmB4I+VgmdljEY7rug3T/DtFHYhduAqrymXwIHc7fp/D3aH5oGxoOvXCb6YwS6xq4QR0KHr0ngb0fzncXnz0xpX7vNqnJ5ah4O4mzH60Kl33yNSuSdF037RahQHM5bhIOp87yhWntMlcohjqNZwdtOBxpfuvVXccXEQF0CaxG6GOlx581A0SCMnx3FArG3G2Dwj9tMBYdileyhR3UMc0NyEG5ztF3x2TWNNIyCV01RyftfPid0EqblcwQfgFkG4xwRROwjGv8rxdrzlGvA6IYRK8AGch8s2IRjOYXRgm2CeFwQxxwmG6iMOtSYcQVyiSZcTzPSH2CWwqTnkRs+DtB2nwixhBaOWIOobgrC5eOPE4fVdHKm5huMJruHc5EVi8etwZ7X0wYJhv/dEo7SwSvWeeWxhFuPI1Wr9/x1cFneFWPQenL+e1kgTIaCTBl9rHZ5pfN/gwkcVWoMiLJh3cdzA27hhzAqxGSZwLEVaN/u4vnsNRhga9b7cPHuEovFxwfrlYViKYxAK4x6+r/eni+qUnncfu3juEIEz3yc0d7A/fxEHQPXou5saX1rGGSiWympaXnW6txGXRD1DHIKrWoNijBzt4XLW04TQ3iR4vgKnd53W8z7QmHpwCmsTzudOwd6ErYstPX8NF3/p1zvKiYCsVD63cFXOLT0/4ebrWHlKReePNL8GgrczXiDjMQ4IHkh6XMLphB9iGL2POIDAFQjrcBOuf6RnDGm9TuldJYQMaBH9Sgi+bcNW+SyGoCsJPljDLsc8iNPvfKngvqeEMF7DzbzyMJ4lDvs5XLdjAReoSqMoXUzpotwi+KgKF7BJl8tjvDf6cAxIKk2JZmwRe6JR9FnGHVpLcD+UOtzY6jWhBCxrPDO4PHPK31fYLZLWdhGhSPfo+en+S/j72ziDCv1OHuwg1nUDV6RM5XxWdOsgjI6fYbfNMu4ZskTsizxYh7R2ezjgeBMjVl04UHmNyMTYwR1QE6mbFk2/i92350SD89j4TIVqXtcncrmscY9guTRIuEW7OF7yOc+zPhykuaIxbeMOu2UEf5/VeNLYTGP1HI6leYxlc7pQPsJnVrrPLxB79I2uT7ncq3kmj53k58TKwBIhMNLiGBIB3iKI+ApHaW4RGls9Tl/LA/9rglnGiEVvx9Hg0zgyeUrvSNShFHcwG9XEl4nFqtY1e9iSKCKE7DpOW/oKw543iQO1WOPpwlHHczjCtBv7rnY1tn+PrZM9YrEONL7LuLlLKgJ50NQR1sdzYrEfEovXjbMuxrBwacMKWCNu3HSEK6uVYCa+TDDTBRx9vqx/ae0v4ojjlwX0fC5afENs0mGCedvxwZLw6mPcTGkYa/Ob+iytsF2CZ5pxsaEiQgG6QBzau0SUbAqQZc29AwfKpOU7S/BMWoFPsNsg4zQmcQDVDIbu0p/Zj4t3lOBiIp24s1uu512Cd8/jw7mT2Mg7mtcU7huxq8/aceGbRa3ZKsH72xrPomgwhXPxC32THVhYfInjHj7TeiU6VIQVizmM3mzqmTW41GseHguaXzcBR1Ziy65Ic63D8SNV+m4Fl/HOz/YwkrBB8Or39YxW7DtPpbAcx8nks16Lfo+xUt6kMa7o/116bifBozmfi7h2wFPRdlfP68Rr3YdLue7hA3GYWO8tYg/uE8J4Suu4i5HMagyZbxP8t6t3DhP7uVxj2sByZBdX5ZvHfREGcWDZIq6vUkS4uWqx7BzSWq3jWJrkpSc4ij19+Kc0/jLRsAJ3RryNex+UFTxzG2edPNF713FcyxKu0jqN3bqNODVvS79bOV7D4wwu+XwFV+crxkF/xbiCahFWllOZTcX0Fe522YJT0esJRaAMy8QRHHC9o/vTd39K4zxLuN7ASFgTRriqCFj+BcHPEzhGLA/md4j9vIUV4O/jFuC9BI/O4+DiNJze4IJQtaJLopaJCqSCX42DtA+wG6GDkNv5vkWt1UeEDD7Jz4mVgWkCqhwlLMR+fNDuEIuwg8sqbhObog9DWHkArREM0YktpSGsSTfjqmutmvQFnNKXATIf4WCwBd2b/uxfEoJgApcYPcIdAm8TC7uN+ygUc9wq7CGYI+HS1ACLCQFdhjuhJaSVAu0RIfx7cORuHSH4hrDAW8R+uXGCwc4SG+CU6JrCvohgnG7sD1omNu4wkYqyg9OyUtikb7xT4zlbQN+E74ux0LiPBccy3lxNxNqj51zBEfnluCdAsz4bwGhHbsJdLGzLcDOQMj2zm9gwj3BzoTKNKSHJNY1hEzd8WRYNG3Fsyp7mdF3jrsKb7BxGqRDddvHBkOhDL26O9LHWYIzYeEc41epdbJ3M4jKttYRSUadnrBH89R5xeE0S1nspzjtuI/hiHKM02zj+YBsHNg4Q69yGswBmMfR8iDMTvo8D2DZEo2nduwT8xwSiVkkoask747jTXzFOa0uLY07/foYPyde4zO1VPauO2Lc/IORA7o17uGnYEq6v0Sja7mgNfqz3lRN8uoCrLv5TnClwgLvQpYvxNEY8JnFQalqrt3CgZx6i6SevwkW+jjTOhMjzMElabxNxTh0YmZjGtREu654+XGHzLJaRB1jZTCU3/cr39NwP9e4mnEK2iLuh/lnBMw5wkPUyVsjSnbmHaxvU6pnluJreFFZswD0aDgue+5hAd85pfhn7UYTLIKdi2Y8DCue0Lm0EX6RV/RLH6iTqUEXw1z7BGzOEQZcKVCoeGZuRyGIDlvFHxLo/w0WZVnFr7wpiva9gxQfcNySRsz/D6NQIsWfGCEW9FBcRu4N7Pbwm9kE9sQ9eaAxpxKyIVmNau31s3a9hlOqQ4OFV/W7RmGo138/07CZCucgz+yQ/J44ZSF92HrxPNekv8EG1QBDwtibyEAfJpFVdRSgJqTWXaFK/xsKnBBfEmCGIfoSrlr3BaSY39BuNZ5KAhkZw2drXOH+9GkPRKzgN7RGu3T+O4xZSoz/U9d/XGGf12ZQ+P8RpSfX6bAIX4xjGqAW4stee/t+B00Be6vkXsS8dzfUrXKhjGQcIrog+m8TmXCUyLGYw9DhJCKYaYuMO61lduCd6L26pO0JslDrCp53wfREhjH6ocf0CK3BtBB88IdavHqfJJKz8WjRPiK4EpzFmwE4zYQFsa2xnRatf44jxXQyrJYrySjRoIZSK8wSvtmBr/gD4r3Ar3nRp1eBUtxWMsCSKsYwLUCVsPYL5pR/3k3iIFa5FnM4Ijqc5xDXft7Fyk+hGES41W6yxvcbpli80h3qc0dKJla910aBJ3/8YQ/nVBL/eJVwqvyLWehFnC93FFeMqCR69iOMkEp2ox+61TY2rDXd4m8GKRw2ucjjO8b11GqcAThEQda7pEva/l+MiZKkYzGG3ZBkhVDuxeyAVq9eEcjiPy/qmAlKDLcaLBH8n9NyPs0g6Nb4GnE7ci0sSH4mOaeVB7KF2Ys/dwDFNDaJjI0YJMjYiD7F3cFfUTs1lHVdbrSf286Ho/xvR6TT23VcSeyxdHi04HbuI4KMqzSvHly6QCd3TijvPzhTc10zE6jQR67wsun+C3ay7uPtnHnANuHrmZc3pFSF7ZnEl1laOB+el6/dLwiBMV8IRdpusEzx8G7uKKvHZsqi5fJuoRVNFyIkDnDJfg8t8p0vhI801UZENXGUwXduTOH7oud5XrHmew709GnFQbQ+OXZgjeGVUa1dO8E8ZzqzY1vV9OCNug5DhuY9m9P4znOznxHUG/vdFRb89zNLaKSU2zlWCiRYJbe0VwYQJRa5rMssEka/i9K0mHJTUhZWGNwXf7eKAj2Xc4es8wdxHIsQ1PXOGsLye6O/TItIFYlFTqDzVOwYIKz4h/2WCuJvEYowTlsMs9tuW4iqKjaLJqmhQgWHWJmJh6wnm/YBYnM8JJujGcFi13v0Sdyjrw9Z5MY4eT3/fPmEplBPIwDZWaHKjJ0S7ShxSAzjyeAEfbr3Yx9mhd0xgiD2FbTLwjGh2FguPMlw8Y0Tzr9cYHmOh2EBs1ge4WuG0fjfieJJ5XCGtGvuEK7Avrh7XAFjHEHA5tmD6iZ8pHFhzCvdFuIAFdB4KUxhundfzr+gdjzF0ma6dKpx/Pk+s9Rca9wAO1ComhNIktjTHcZR/xlOkopMKUjeGwhtEyylsCX+E3TvpK1zS57mO04TgfYUVslIck9KAEZvkv9aCse/onTU4JXZDn39MHEQZi9KNu1zWY3RgE5fATjh5A/v+U0EuIg6U+7jLXbHGPaLrz+Agq1SkighZMoVh5gmNsRAJS8V0GRc6m8RC9jXOUS/HtfybcL75Bk6l7sa1IUpx5dEqXEdkVmNOF9+Brk+L+gHB67WiTwmu9DmMa/lPEQpLWogLeF/fxi6oJdxA5yJWGvu0Ru9qzQ5xHMIybm19CReR+1xz3MLxVSmLMzZhHhc/S9fAa1wRcBdntQzr3iJClifv3yRk5TO8D45wddcNjXWY4KNarEBX4Z4C67g2xD4OTk2X6kVif+7j4LxhXJY8Ze0jnCLbhittVuMgvyrCUEs081DPABfOatR6JZ/u49LQbxHydhQbD/n+GhxonojVEHEG/yEOnkz3U8rr3O+twP/hBMf8iZWB/3FREc04LxuOp3WlbyOvuYz9v11EvmrC6gsYin1NLM4tYtOndrRGCOL0V5fiIJ8U9OAgr0acQ72LG/+kQtKIYwoWcce6ThxAMoDLftYTi91DbJ5Z/T2OG5OcxlH2GWOQ6Mc+wWyzGJ7uwoLmAHdDfInrAHQQC5+H+QgORNwU7edwo55lYtNta8yPNe51DH1V4fiGdFmcJjZ3Kj+pcFUSguQpDjhrwodzDQ4gndT/W/ChdUNzT4v4IrHBlrHF2o37K6QbaZUQyHdxFsQQLnGcykgKhG6cwnmEEab027bgNLERQvDn/NZwfYJNjlto3RhhatKa9uk5bUTa2lWN8QHOwqjGRUKOOF786g1OV0w/ZJnef15zTHiwAkOjNVhhTkvj+9gdVELsm/RjHxBCJSHZFCiHBL9WaLypQPdgVCyRiDxsRnDp62rR4LnG2C36zOHKnL16zw4u2tSLezAs4OJUO1hx7sAlsjdxfNCqxnoel8xNy20AV5bM/V5CVLT8RuPqxEr4OEYU38LIRj1W+I70zEQBEj7PA7IUI1jThLXeTqAHm1hpL9fvXoIHBnBjt2FssVXqXWnRnsHZHedwVPu6njmIA3DBvSVacZGvCaxgdOKU7i3N9z2sIGUMUSchM9L4yr0wrjkW6fkPcWzIe3rXc811iJBh1RjKLiNcc+mWTdfAAM59nyXOiXrN4yFOdf4C5+dv4MZFFRjRuYOj5hOp+lPiUC4RnTsxIrKHMxG2iXW+jY2BFV27TBhYB7iuDjg+ogK7cV7irDRwYPoSdqEP4kZ6I8T+eq35d+O00EKZDXYRJprcr7mlG2aX4LN+vetnBfe26fccwSv/5QmO+RO7CbaxtTugCc9ibfk6Lj3bp8/rsL/rUJN4jNP5nmDY9Ze4m9iqJlhHbJ417MsvJjbvS0LQpcW/pDHcwVBtmT4fxQFEEzgwZw8v9DyOxE3IeY1YkIc4hbGCIO48LrSzrH+HmkM7dkPUYJfHOm6WsU0w/BEWwKlYVGEtMi3JhKtHcUDiHE4j3MWR3jVamwFdmxv/HUKgfoAbBi0TG/EKUbhoR+uSG6dP868jNv0w3pQJNTdgX3o7Lt5Ti/PvU1N9ibuPreGo9v++Pt/DFtWK6HCIaznUadwrhBBYxZ3wEuofIjbdFWIz14oegzgQrhLz9AHuaZCH9w6huCY/5jrXYRi3R+NbEB36/xtjPUsoDBdwEZEN7KpY0bumsWU2LFqew1356kSrOuLgTqXoQP/fwhkHJRpfKpqd2B1UQ/DEKiGod4i1bcPR8LOEcpIBm91YsUmIswTn63frXU348Hyhsd7FVvk7eu9t3dOpcc/gqp5F2P2SQvCHBH+2aL7pz67Ffm4010fEulcRvDikMVZgQyV55BB3V0yrdYlQXieJfZaWd6KARzj9awHDuWs4kLmE4LN5zSt9uvf0O5GHcl2b7q453OBmkijXfE/r9IDYt8Uaw1ns0y/HcTF5QCSUnC7XRc093aXDmv8kx+NiUklsxplEq7jXSbnW6+dYcarEwadHxLqCM2GqcVD2AaFkvE3ImCqN7w0hF17o3YvYeNsn0IsZjadc43+Ds2BWcaDo34kuPVqbA2yNH+E6OFUEX7yHu9duYsXlALtrEw2ZIvb9ErGf0+hdwT1etrAbu1Tv+FrvGeN4vZwDPf8WLi+cMUEtel4X7uiYbsM0ZsBBz7P6Lo27I5waOsbJfopPeN1vLar05z3C0HYbrvudkFi97lshNspbBLNfx0VgwL64SwQhmnHk6hou4lKuv5uJA6oCa44viM3apusGNJZxnKI0ivPYK/BGSaFZhLW0Ir1zCZe/TL9mGYZeFvCmSC07obNWjXMO+23KCt41iXP8y3G1qoTfrup3mcbwihAKqxrbtOh5iVCOinBVtR0c3JIW4iFx2PeLLos4FQqci3pN17cRDDaFg8geaA3SD/o2sf6j2BL/W/3/XdxdLq9v1L8yAlJux763e1hBWcOVCM9jqy1RnREcpLeDa9qnm+El3jyX9e4KQuEcwYJuk9ho47qmSePYIQ7w9AV2iW7PsZ+6EM7rEi3HRY9nGKVp07vSPTKhd47pPWk9gLMXFggBkshVWsnbuj/jHErwnhzU/3+GYetiYv0qcFXLYVwDfwn3D6jDjXLStXMZt/ytx0We8rDs1HimcWpWP8GPwxxHnD7D9UGasQWWaFsTrh7XLLoME3w7g90k72jctdi/mq6WVcIH3IfrGOTh2ooV/HE977sYOdzGgbcHen615vVKz2zQc1J5SqUtD9FdnDqXAnoEFyHKw2kAZ46ka6QauymGCNRuXvdXEPz9bgEdRnBQ6RzOUx/F2SzVuErkLEYTSvXZZdFtRv+vxUVy0nVURPD5AI5bSaPmFo7mr8A1UNJtN4YRwhat8VlckKuzYP7zxM80Rlr7sdxMBX5Cz6kTzR/hLqu5frdEkwaN8zrOHEqj6l/qu2ea+yNcyK2e2Ec12PA41Fj2sTsiEcgKoiPoLd17GlcyLMclotMt0K3v0y27rbkvYHfXNO6x0IN7GeR6dGDjZU//n8Ru9GHC1ZIukJP8nNhN8L8uKvpthbzvELB/Jy6i8C0sXG9hSGOA2IA9RBeoSmJDz+m+K4TgSz9gPa6zn1rwNC5dfAO3bUx/VRthgQ7iYLIW7HPLQ68O+3H2CcF/gFufXiUI/EjzSotllTh0G4kDYR8HuKQSkZB5q/5+R++ZJIRFKi/TuMd8E/YdNeBGRBkkcwUHtuTht497gffhUpy5Oa5gmGxY65Ca/yzHreo3uDbBBLFp1nFnrFRIvsIK2iqOdk+GTBdBuhU+0rNHRO8pQsCV4uCXBs29BcOWSxgdyjFv4ijbK5pTPYZge3HhmHFcInhL4xwjNnEjLsaRilJCl20c799QijMUMoAnLfFp/U44ewFXFLyiMSTKMFQwhu9ipfUAQ8XtBEKUCmoxhutTKCbCVo2rpiVPH2G3VDXxk6jNHj5cV7Avfhy7APYIPsqfGWLPPcKoTweuildJ8O1D3MGwmeMd7Dr17G3c+KgGu3wqCT5ISyet4zXR5qLouo39n61YEesUPeqI4K9r2OpNKy6RonZi7fPg3MNK+RVs5aeidZOwFI9wrE26CKpxn4lBIpi1HkeeH+C6EKkQJZqxQeyF5J9cs9zPLaLPssZ4Vb+XMMp1UXN7IhqmcryND3q0bhdwCvETHGfThQO+E5rvwNkS6R7NA+mQ2GdT2M1YjlGKdDWt4BLFFbpnEyvANTira4zguc9wcZ8FnC6afH1F63oOVwpsJaz/QVy5FY4jGZdxtkUpoViB42HqcUfFKlxgrBE38VrEAYS5F1M+pPvxG+yiTpdVC0ZtS3Dc2b5oBEa2a7EilQr3vtbqIz3rp1helWI38zbOfsn9lq7DTtxfYUC/T9Kb4MTKwP+kqOi3AUQV2A+6htt49opo/1KE+orQZhNSayCEALil5CUcKNKnSbfpeQM45SZ9MaM4cCd9R43Ewjbrns+JjXcgQoxhoTOJi/EkzDdGELmYsFg/J5huD/vqc+OmX+djjTWhnEFCQaolrNkUXNN652V8eN7HKZTp+jiPI+VXsdBMBCEPr27sH05LZEjPfoUZLLXQUaIiX1qr8zhrYUXv3dK1t4D/m557DR8iCY+O4ZSXUxjmbsUFqGrxZt4k0IMyjX+PKGTztwW0/ktC+HTgA6QMR9mXEJt1kBCuGUdxhBWJcUJgzOJ0pwFcNa1N/98jtOV2jgejJrxXynE/e7nonVbfReJAT8XvOs5Ff4bh30bsmvkaH9jvYj6aI3gwfeopiHdwYN6o1qsC+7V3cO3y9IkvYcu9ElsD10Svn2KYuxS3HP5Uz76IYe55XPAlrfU2QjA/xQVoygh+6yJ+Bgj4OP2ip3FWRyIIpfosIfFvCEXtrOY1iyPXU8l/RKztqN6RKNIVjeHXuOxrm2iwIhqeIWRQOd5nbcR+eKBxfSp6Jbyah0pabxu4pG2iZ0cEX6/jNOfbOBXtACM+h/gALsbuztPYWqzGcUmHuJ7LAQ6yS7fC2wTPHGjMFzTnGT3vHa1LI0ZxEnJOpCldVMU44+gubjpWhxG9S7iAzh3NvV7vfaN5rWreLQRPvsR8mAdTK25gdEbPLNGcO3Hgb7oPBjHafEnv7sdBpyO4HkG6TAYI2V2K5UIJ/+0+JI24pfwortx5gONlqrFC/TEh2/exW/E6jkFLmlUS8vRnhCx9jV3VuZ5NBfelLDst2uSaNGMEfI5Q2BKBuYgr+i7qnc2iyR2M6KZCk2fuf/77bFQ0iNvlTuAGKsnk5bhD0/8FW4AJVSzi3OH0OVfiYJP0pb+lv0sJpj7QM5txDndCZKmxDRMH4gRO5VjAAU21uLrWFWJzjmM/9wBBzB69I/05ixii7MK+uUaCieawz/jHuBHQI9xsJpegCPv+lvAmmdN3TzFceYBrlg/iFMIizb+S2CBNuGRtC25fvENslEGCee5ipWgVl1/dwMFje0TZ2lrRfkZjuk8wY/qHK0TLL3E1wg2sbSfE3oBz0u+IBjUEOtQkWlcRB9YNvbeM2KBnNIYBve8mPiBf4fiTtOja9Y4Z0e0qbr6UvugpzWWQWPvkz7QguvXctzHUnTQbxtr9NO4eeV/jSRh3U+N6hYue1OI0uE2sjL0ihPUHxPq24BiYUZxKV4vTVTe0rg2aY5furcQBqr04ZfON1vBj0aNV9BjHMREDOBo/La8ynGp2GVflSzThOa793qG5fU74RdPHPo4V2xWsTIKLZqG53sE9QJZxW9lPcWxCPS5P3IxdNf2aQyJ6acmfwchfDVYWajHvVuJc/l0cO3MKdx0cwqVlu3HhsMe4F0X6bbuJIMZqnE52QKzlG11XjjOVtnHToj4CXS3Xe5NejcQBn+7ASs1tDxd6miDcI804NmYaG15VuPFaie5Pgyjjtq6LNmk0LeEYlkR8T+kd6boqwanLp0X7tLY3iWDXSdw/4IroPI+RoIwZStldggPLH2ief0fwxRzORKnDQbZdBP+movW25n0GI3jJb+mq2MAVErtw8blVgicuYNnWgCvptmPXdCJGm6LjOoF2TBNBvi9w8Goq47kXKgn+XcFBouliWNU7fold6tui8yPd30jwxHnN7a7G+62Cuaf7PhHB3/VzYmVgDQcDvo+rZl3CEFZq0tvY99KqAaWfJ/2UuyLGGPZ7VeDDJl0L3cQiPyMW/zouavRYv9MSKNY1pwkm2SUIXaHPvsAFejr0/CFsqYCD8uYJJkmfzF39/Yhg8gNs6c9jbfs2jr6uJxizD8cgpNBu1PPqiQ1VrDHviD6f4QjTDdwvIS3nWc31Ci7BvEww2S3s90zrLDdSWphNuK7DGiEE5rSmuzgtcZBIX0nBcwsfdImKdBBK3C7BnHkwV2ArslZz+SdEpG4JsclrcW75iu4b1z1TBTRZxhbW27hX/IY++zY+MIbxJmjH6Wqt2KpZ1PgaiQOvVPRIC2+C4Jlu0Soh+0Qt5nHTnEfEBh4i9sEljndBO8C12Uc0l4sET+ffKThWcSzKHu7tXoqtgxlc6XED51mnRXoLoxzdonMiXKex8j2LG7ZUYMX1EJcbfkIctl/hdLMuzLevcYppugw6cffDdb3vKu7cl667twi+GtK9h7rmvp5XKjr24QCv17hVcR2Ofi/CykonocAWYwi8DisTJYSi/ktcSbQKl/rNv+dw9soAri2Q8RjbOEisR2N8oud1EHyXLqoyfPAn+lKL0+zSmi7XHAeJvV2DKwS2itbrWqc1zf+QUJxWCd5/jFsTl2ClpEb338N9P54Qiuk3uBLgBnbtJM83i8bpkkilrBG7LvKMSARzGBcCu6z33iL21hiG0Bf1jkSg+kTvUtEqldvk0bs4kDfRpFTCizF6Vqe/dwi+v4bTyNPwqsCVZgdxplkiA9vAvxOtmkXjXY6XrG7AMWgruDov+vx9gtf39JwG3E+mB7vG39P1acwWEwrSeY7LqVdaqzuEYnsBpz//Rut0u4CuQ5zs58TKwDT2d6V1U8Hx4hZFunYQF/NJwX4REyz9oKX6vBwXztnEQmle/y7rvUM4VaON0ILaCILew5Get/XeZMRp3EM9faB5OB/psxfEJryGg2HqiIMwocC0SP9a10wTh+s1vfs89mG9hav5NWAEIKGx9NFdIpikAVvTQ4TwHNTc0mf8HFs0swVjyMNhU79f6dn3CauwlmCYUmxRT2nMH2kMPxKduwlhfxdXZnyGU15WcHphD+6N/jf6vhdrzDs4Lz4tpwpCcKS1sEwIr3qcc92JlZ639YyE40/j6l8ZG7AiOjRg32RaM+k/X8OoVro6tnFMyBQOagVXcNsn+KwVV2qbxMGQ6cKZFy2mNc4N0X9M8ztF8GStxtNIrOMTbHkP4MqOB8Cf6519BH/WEDzUofndwxHQ6cKq0FxnNKaXuMbCDZwlMkvwxB6uwDaGodRZvTtRtDz4T+vaK9gF04XryI9xPHo9LbARPeeevt/APs+0lu7iUtRz2M23juMcWgi+eMlxpXMV1w9J3/M53JPjsdZqA2cK/AEugz2NFchdXAXva1yxcAAXAEs/7TIuq7xHrOs13Pp2Eytb6PtynN6WrsoNYp816roqXOVwWvO5rXGNYLQrkbJmrUEvLgC2IBqM6dqzBB+uEgpsLe4EekH/f5+QAymn23Vv0iYt5iMcy7WFXbtX9f8JnHX2iuDf9zWmWs1xD8fJnBYN7mEjsUvP+2cET+9pbudw9dBmQuHq1/ya9OwWHIxdRazhI9FwC/POCEYpunGg3n2MBOzgeISaAhoPE3tsGzcqW8VoR43m9EOt0R8VzHNUNJzTWM4RvDauawaxUtWmd/xlwXhmNaYd3Z+I8prmX4sNvlJO9nNiZaCPYMD3ccWz9Mf8Fbb+UrAu43S3YmIRUpOtxTD9I91bggtWbOGSuXm4DWHrLDf+tu5/qXe8RSxgKz6Y0m+0rXGlddSFXQyrWPufwJGj3ye63OVhvYx7DdTjA+MN9plX6fmf4cYVFZrPh8QCVWgcZ7H7Ig/1Q0JLH8WlZJtxZOwZ3ftt0TY36sf6/xVcGOY5UR2wTGOtxn3SW3Bq1Zjmc1ff9WrOqfyt4FTSFVyLv4NQJC5pLlOEQOvFVknCzK9xrfp7xCF4Rv9/SjB0hZ5ZQQjUUtHxAuEbriKEys8w+pNCcEI0S2EAjj4+h5XIFJK7OIL6GYbUWnEOfB4Qf6s1GccBbMl/q8Sh8TbBz6mtp+JXi6HmStF1XfPu0Xzv4OphxcSB0EX44NNCbRHt7+GArHShfIB9uas4z34A52WP6d5yXKluRu9Pwdqj93bh1KRNXGTlFK5I+AinXeZPjX7f0BgrcKfAMzhavR9bbIlq9WttJvQveb6ZEIibWreXen/GdvQSfNuk/yfKtq7nXMP9T9KqPiR4rpxQ4JvxYdeA20uP6/kJs6fFekDs23ncp2EEpyn3YDmT6MdpYs8uEAf7KFZkPiP20Aiu6/8r4nDoxHn8V/S8RPQacfBaO5YH67hiazvBH2Wacy2hCJXhRminCP6rJfbpQ9yjoRhn80zjLqM5/l1ij7+l593BFe9+hA/7l8S+KDx4GwlreI+Q8XXEum5h2Z/W7i5ON0w07ACnG+/hgjx3cfG0VLYyvgaM9rbhvjYLhBxPV2olDmouwwXVNkWHFVyhNNHIWlwjpwIjU3m2/Q0hvxIdSNTziJBpqXwtic4lmus45tsLmkcixYkATonuW7onlfkp7Db5XT8nVga2iA07SxCuHkODO7gQTRvBzK242tUwwdAZI5ABGOc10QNNAHygzRCKx8eE9dpELMIoAfenoE8YdoDQnOrxZkh/VRMhTOsJwr3CVtopjleGmtY9H+CCFGkpFcKc6W54TDDTIcFILwimWsIWYqloNoG7zE0TB8wszkqo03VncNvUr3Aea5HokvDepD7v1f/biY3Qg2G2Lbyp6nBTkxWCYf+eYLxJHJ08Twi+QT1vAiMbm7jtJ7joTbos5nXtd4g1foKh6K9whbZNnHtfSQjDHtHsgf4NY59aneZeTQifDY5XHNvVcx/p/Wu4POlLjT0FWx2OrWjDyM0A7pNRSwisWRzX0o/rH5QTvNOgNUh3VyoYrRpPGfaD7+HiS12458W+rv9n2KdfqecMiKYZO/IB7oBWi6OlSzAMvoDX/QDHZlTiNMkZXfMaC99qQjhX6vopzX8HQ8WPsOJUgRv5JFS+w/HeIm9wWutZ0W4KIzUjuKPfAccDJYtw0FkiU1u4QmWPaFCncXYRa7yJg5szzqgEN9y5qefcwy3TOzA6s6H/v8StYc/iINgjnBa3jH24W/ourcpL2BjaIpTKtPbO4EDSdo1lG8dDNOC2zcU4ev1L0a0UR+xXYwOtiODfTqwgLWne/xjHeiSaU4wVzRE99yOtyQDODLiFo/MTKSzV3Gc1rsu4+FEbzobY1Jwqcfptndb1N4TyWKlrM57oA70zDcRTet4mVgTR2P4aB9v24RoKD0XrVEg6cGp4IlmJcGRcR5nWJt08PbjQ1JzmeFnveI4DD9OlUI/XuxXzaYtonhb8oOZzCpeEP4eLnm0QPLeKZfcgodB1iZ5ncBG33BurhOJZjo26LznZz4mzCf6ToiLqCaYfJoh9Fvsdb2GN8gour7onQjzSxOdwNsB7hEZ0BWt6i7hB0RoOKmrB0ewJd/9DXBCniBAoRfr3Fm7hOUMoHiW4QEwNsbmKiENrVs9PP3s/LtDRil0eaWHnAfkBIVCrCUXglJ6TllZCoumDvYn904e6t1T0W8B1BBYww4PzfEeIxR/DsQgXic15nxACJcRmfKh7E4bbxemJTwlFa09rOYHT0DY01n9OaPqrxGb7QH/v4NiHSXygr2j+T3GOfznWpGs01x7iALuOc7/LcUBjFbEx0uKv1jy2cNZEK26jXY8Ldexr7b7UnMdFu/SfvcaKTDGxoZ4QgrtO839JCAawFVupsT7EMGcHwXMpMKpwed5B0edvNeeEB/dwCl07sYZvNJ8PCOVsE7vL1okshG3NpRO7i3LeHZhX0RqkhZJ+ySqCZ94j+PYJIYQXcPrkK5x6uYxhxrSYD4h1PaXxfoX95pUYcWnC6XZtxN5qwGWNG3FRocfY7VGNG2yl6yWtuid4D3Xhwl0fEIfThOZ5hJXmVoLvrmKlbhL38KjBgrsHF4g5Em1GMMKRcuUM3rPp4ruv+Z/Frqsj0X4at7tNK7ARtwKex4dml9aolVCmn2gePyACb/ew334AB4Y1iQYpMxNxSYg/rdBqYo98qnv6CJ58jt1PZzSGBo0nFYQKQl724doHR9jlW41LDBeJ1pU4hbkRx2ndxdU+J7CvPZHcc7ihWZvuu6vvewj5kgpgk+Z8BqNUpbqmB/coSKs640XOY1k2iVsagy38GmLffq3PizGa90zv3sZKzBIhL54SClkrdglv6d2nsVy+iFO3U/FPxfwZ7oFxSPD5fUK+XdaaNWIjuQ67OYs0lnJcivm/+H1mEyzpwXkgJ9SRFl0j4RO5golWiuucV2CE4BD3nU9/aD1usTuA07pWON6opZxgwtSmOghCzuB0xTbcg3pT483N2qdxPcTtgB/hEsbvE4yVPp0+XD8gr09lpozYGMU4cKmcEGbd+rwBC7EBXO0sfakDeu8KznxI+CqFby9xcJ7G6V950HVqjq/wIb1GCJIa4sC/igsXpcJVTmjlD3TPDeJnDffKfoaLhhQTGzI30Cf4EOjHAS9zosuenl2GC/ikj+w2LmP7iuCDLzCfHOLUmWoMjW3h1qrDuIHHnGjSjw+ttzT/GmLzl+ICLC3YN7yhOSwTG/dnuMrcIM7j3dB8unAw7GPcrfMScdAm3JxC/hyxvt16zie651v6/g3Bc3OEIrBC8HJaFJ04jXcXdyS7gNvhTmL3U/L/ErHXkl/OEQpn+jSLMAp0H9dxv4FjGjaJfbCNU+tSDjzGsSoHOEPoFMGbGeeyhCOn10WHm/o+rcApzXsSuxcrcQbEGxwEV4RTqa7p81mtVTUuX7ynfweEsB3D3R7TlbKh94MzZL5H8Ow2ljMZP5RK9EeELBnHwZi9BK+N6poJ3CdkHfvzm7BsmsEBrudxzZF54N+I/iu4fv77hHwdwoW3Eg1KSz+VpzpsJS9qzuUYER0k9l4zsW/OiX5f4Ap7axjxmCPkyLjW+ZZo9zau97JEyOOzoukFzbkeuzbSev5Qa1hNyI402tKlMI+zovKQSgh/V2uS9Fwn+HEEx0ckunoeu68SEbyMS4Dv486QlcT+vabrVzTfOj2jX9dP4bS9Nhx8ni7OTux2eIWV2gECAfon2JIfJ/ZcA1byM1ZmBiu3k5rLnp6xR8jtdVxNNRGwWVwvIhHKk/ycGBn4XxYV0aQJzOIgvzpi0TeJRVrQ38UEUUdx0EMeHp/jjm2XcbvJ1MC3MWOX4SYfcwRz3MHlSdPKb8VR0Pdx/fplnLNfor+rNcZlnJfer/eeJ4TCNdxMpgOXrKzR/79LRJk24kOzjDi0E9puxDEFKVAO9Y57+v0a+21XCSUl4bsUaJX4cHiAyyCPEoy4pnuW9Xf6pqtxEMu6xv+B6Ji+9hHcdvg+cYiOY+2/S/d2aWwJUXbicsFruj8t6IR96wlhsUgIx1ZcobESKz+PMPT7luj1DVYq+nABlyKOF9wZ0vXvEkL4ErFJkgbjGKVYwgWSVrGiVYUt04RqX2ssc/gATqH1HUIgzOt3CospnNNdofmd17ifE/ujkxBCH+OeAWmVjBPC5aze8+MCuiZisyf6fah7yzX2Bhyh3Y2rEPbh+vtrWrMruAlPukjAftcS7N9OpKYN92pYLpjbI8yjRThWZAf3lijRmE9pDU5hpGgVB0G24j4DudYlBdekkdFPuB1KsEGwgWXSMM5xn9f3Exh9TENiHruyGvSeCuIguYtrDqQrogRXq0ykoIaQUy241Hq6KVJBai6YVyv23bfouV8TymHKriWCB9JtOIsrWW7jDoTJtxu4gU4vTrWt1JybRO8DXV+m6xJWThfuMsHrQxrLBsEbXZrnTeDf6vlbot1vNK86rAyWEJkaDQSq8RNc6KwaK5XlOIV1E8diVOOCbEO4QuIb4iD9icawiONkcvw7omuuSzlWEmpw/ZM2fHCC2xYXYcT3tsZ0SeNPmfYewTu1hOxP9LOO4LlJjWEUZwrd0PW/xrU4ki/TbThOnDsHuicR7lQSr2tM67j3xZbmuUrs9VWsyFdjZf73igwkBFhDEPESsSkrCAaexgF8b+u79Mt+jSvrJbR1gLsO7hDCMTX9f4B9K8V65wJONbmgz27hvgSHxIJ9TWy+dCtU4+5vaTXu4wCxTVyyuBZ3tVvCMP0isYCDGsdr7IdJP2wnwWjndd8GbmDSRwiYU7iefDXOTx4imHJJz0xfdjdx8FfgGIxb+v+SnjGMNchaglkvEQyRMFXGY3Tqs0piY83hNK2EozZwzYIuXBK6lxBQvdjCb8TR/OOi5zBu+1pLKH7FuLJa+vof4xzZt4n1PEsoO19pbh9iiyF9vvW4S1gz7og4qee/JngklaAijpfaPUUoDp2EhXdGY07lpJjY4D3Exnqhvy/z/6Ptv2J837L7TuxTOeec6+Qcbjg3374dSJEUOZyRRpY9HntgzVgPHsCGYcBvNmDBDx4YfjFgQLD9JHiCRp4gUiJFspsdb+gbT86ncs45Jz+s7+rvv+CHPgJ6CihU1b9+Ye+11157re9Ksa7rwJ/hbIsiTrfYXtKYekS3WY3pbQI5y1iGz7AV9gw3vrqCEacyzNsVnC4c9DkuQJVrkdv9A72vFFtivYSA68dutz/G/vJifCi0aszLeuYSYa1NYZ9vJ87ySAi6ECLfFx1TEU3XyLbGfoSbtuxixbUIdxIcI/ZcGhpXNL+7xL4Y1Ji+w8okBF+8iWN0Soge9ANYoVgi+OURjq9oxd3fBrFr8Q5WdN/GSkCvaDeGlboy3P/gI+yiOot7MSRq2KG1GeR0UbNigifTTVqDsxOu6f6kexpEKxghHdPn7+LiWv9T4jBvwgp2WvZrxCHTjNdxgeD1bo37BSG3/gBngSQ83qI5TuCYqA695yei9e/hDLSMYekRvRZx3ZlrxNquai2XsPJxgQisTAUrff69olUqAKvE2ifas6/rzugZLbhPAbiuzDvYrT2IlcZ9XPa7Ezdmu4u7E+bn5VhhKyf223VC4RwR3Zdwl8IqvTuNkER8enHNjwXN+THONMtDfgDHHe3g9Mce0eI2/wOUI/7HRUVcIBb5MxEh4wMqcSvaTZy3u63r86DLoKcK3GgkYaJ1EeAxLqm4heGvx7iO+buEINolFmKVWMQmQni/JQIt4SCzJEhaUgkTJxy8DPwJcRClwDjR89YJot7XmPoJRusjNkCP3v0Cb9wh4lBexzXU8xA7SxyS+wSDDWIt8pHeO4iLORXj3Ol0yXym33twEOcFPaeBYIoOQqjsYSYsxnnK07gD2TBWAhpw7YQTXIBkCWu8aXUkjNVcMMca7EZaxJUOh3AGwVlcRe8+9iMP6fdSHHWccRJdhNC6qDEl/F2Ny0SfI9b3GgG71+neSuxbnSc20Tru6JjuqWHRPK3CRlyWeAtb4+9gCyAV2n2cEpfWZPLirq5Zw5XsjnD52gpsCW1rXgn9DYou6ZMc1f/atH6P9ayE0z/BylkPTgmdxYrmGkZcBonDPg/eVAghBFKiGnUEjz3S55MErF4iulZgxeQ5Th9uEV2v4LTYSmK/v9J7trGS/yVuN15LWER/QazvTZwuuKfr7+MI8YvE3nqfkEnb+l8Pbkw2ga2g94m1/prgg34cyZ1IYiuxZnn4/1TrtIkDQ9PQWSf2xIfEQVSDlZREFsf1/jWC/+c0hjdF213sAz/G8SULhMCvxcWdmnDJ5kZiL28QfF2Py173aQ33ib3xCsfHtGgsHxMZLHltk9YCHCQ3iEtJX8HVY9HY8lBcwu28kw+aNZ5d0aJKY5vQO59o3mO4g2K95v4Mx0yc6N2Jvi4RCMRnOLi5St9Jp3Q9VuqZy1rLDlzO/BC7FdYwKjRL7L1USKaxEbKCA7z/vYI1WiP2Vh1uFV+LKwZewuncU4Si9hC3pm8k5Fat5pmKd8ZvLBF8NY4rLKZyNo2LMS2KVv+r3yUyAKHdPMZd6BKa2cQd8FIIvcJWZxWhzdTiwjEviIV6haMfn+PYgVyclzi1cAcLmg9FjDzY17GP+Tuc792HA99So2/W52VYOSgmmDGt18+JlJ86zX0CKxRHesY0IVi3iYVMiKkVp3Ol4nOGYOIpXVON60zPYJ9VJ+7oVoUbzXymdycTN+n5CwQjnMV1vjcwGnOgdXmKixK1YDfLCafr7Ccic6Tnl2N/ZgUuydmN+7y34kCyWlxqM2H0ZewLnsF1AkaIzZWBTzM4pSzdOrkh09VQh6up7WvNpnD70WON6RvRa57gl0nRoExzT9fNEobTn2Dl9AQHeV0hNlpaCv24fXEqfZOi/zFOuZvXGixpfRYIa7ENW6ldOECyC9eAuE8IgBEiPTSVkFHRpYbg8Z/gAM2MmZkj1r1G7xrV82tE12WcBTCABXMDDqLMw2dGNOgiDuUq7GarIJSzv8JFmBJ1q9eabhB81IZrLOTPz7BrI+mTKEgKu1WiaFKn/p7hdO+HCmwQnMHw/pfYB1yh9wzgXvWVxME2LfqBC1+lu/ISwWs7ur6bUBSasILaq3sGcf+IMkIG9eMspi3cl6QGB5hmXMFZ3BOlFMf/lGMkZxMrcolUnNffq7hZVBVxyKRimvD1oj5L1POu1qKYQAh+omtXCR5L+XWC+xCkL7oSZ02cxY2e5nGA5j/CMrEUZ1id1Tv3Nedy3JVzlXDBzuMGS7MGZIkAAMogSURBVBXYF/8RofClW6IINwdbxxkl4zg4tUPPT1lTjFMFH+EsqRLNY4fg4afE3kmErhlnH4yJfv24uNqQnvdKz7iBW2Zf1TjmNIa/Ivjomd7/Fe5dgNawBaesH2OFpAIrLCeYB9px+vOHGKlb5PW+XlsZ+JCwjjew3+kywaApfJJ5+wnheg34Q2KBvyI2Xvpde3GjlAxqSUFUgfNq38Yd11LDPiaI2IRTnq7jIK1qfedCgMvLjhCHxxihiZdg/2U5Fg49OPAv4fYdHNg3x+mqXjVEL+1iwjIpwpB2LnJaMok2HBHC7V2cw/2uaJrwz6be3aH5nxACOINSljBDT2CFKNGQOT17HwcBTuLe6lu4l/l5vS/dFomAVOHOaxO4DnexxlMpWnbo/83EJn8HpyA9w9BwMaEMfo/YFGmp7+EiQEnv1PLP6v5VjfF7uCHMMrHuVzSGpzjAqZTw8adQG9L9N7H75Txu+9mLgzJ3CYH3Nc713+Z0fMEqUWejUfS+igMJezT+WuIQSfdIO7Z4zuAGNulnbsBIWh2ng/MO9a4rBH+X4oO7VN9PCR7vJ9Y6LbJKjekTXCzmJa5Yt4KzfdLHP4Nh4UVdW45T9BqIfXdVz7xecG8eIL04QPMBjrQ/wJkOT3FAVB4cxxhC3tb/ZnR9P+5EOktYtQsaVyU2PlLJnSN4sBIbBbnX0z2QPv23NLdn2MLNA28dl8tOXks/9HVc1z8ViyZ9lxN7YYXgj1e4nfaMnnsTuwfRM9JVskXw/wFO9VzQc/YIWdsk2lzHQaIl2BWU40hZDO4l8AvcW6Eapz1249oyLzS3XY05DY/c01sa169Es3+Ka82kcvomjjvZJeT7Eq6+mQjZMS56lgjgFiFbjwg5Nq5njRL7epdQwpawMXVI8FwJPlDrMVKXaFAVsa4V+t8Qrt2Q7rIpYr0rsEvxPi72s0vwQSNGB5pwy+xd7Botx304Ehlow9lejbjfSbpv+rU+WzjNOtEPRMPLWrMvcIDs6x7yr60MLOP67VW4mlc/LtF5hFM19jTJn2rgVzXx1NLHiUOnBmvQOzjwLa3hlwWDLNK7O/ABO4at2YTY6onNm/Ddg4LnFmsO+7hpzQdY0ywhFJ8u3Nq1lPAbvoFrJSR8X0VonMu4D8M5nNqVVl+L3lOr8adPvR4z6bdEcEzCf+U4FakRW+ALolkHLojyEHdIW9X72rQOYxp/+iN3MIS0jKvWHRObcxR3ZqzT3/s453hO432BD9UxTit1gxg2PNbnjbht6xqxvnXEwXYDpzoe6u8ebM3O4ZTSLwmtvB03uyrXe/5Wa3gP1/9/SfDkDXzQ3CV4MGHXPDQ3NLYi0edE63ZZz0yY/xJWfjPYa47TvQxO9NwNQojUif4jWIn6CSGMG7VeqWC14QqZh7hgUwlWoF/iSn6luOnPCXEg3CP45SIB529i5KsC+Huc9m2WEvz6BLt6wDEmDzFqkm6HbdH2nu6Z0hyGMYIzj0sQJ/Q+jvtR1BAKQzGOy1jEQjGVe/Ahsah5VIs2h/p7EFv0PbhtehOO99nDVnYDwQvo2mZCjtTg8uuH+myWkAGjuAZCI8EbadVu48Y5C7gDYhsu4vQMK1FV2Hoexw2T0hVyRmMeIfZJoog3sEWbfvIjPa8Gu3rS3fkLvbMW81DC1x/pXbWa26jG/zF2jfUT/PUFTntewZHz6V68WLBOPQTf/QGulZAwfqIfU7iiX9L8GSGDc6yrhHw51pzXNf9+XKF1CRsstTim5IHeeV70uYyRqSk977L+N4lTWvux6+kKPtTfIypXVuPuuGmkHQH/E1xq+gCnmR/hnhEluGHYMaGIDmHUopTYMzcIGTur69I4TLSrglj7TXxetGr81bgb7Qqv9/XaykD6tzuxRTuB03UqMTSRg+3DudzLuHHQNYJYu/osrd2Elx/jAj+L+q7XRBNmz4P+h7g8ZQOG9A5wieBljWkA+4jriMXZJyy/DoIZSnF6ykuCEcuJzfhFwdybRJcHGMJsIgRPbuT0vaUL5KcY2rlGKA0NhEtiGacipkAs1TOGiQ2yjSOJU7PP+RZr/It4Uy3iQj6PcYvgs1rLN3RPbtBbBHM/x933PsAa/zix6cqwT6tUz9jGjXlOcNbBhv7+Hk7lS39s8tQrvXNM1x3rs/SXDuNI2RrNexpnijzX71sYNqzECMa+fv4tpzvJdWI48RinFDYRvPERISgqCB5uIXjoFnG4L+EMiQNcAncHF+A5Ivg1LdIqHDFcgwup7BBWTSql+4Qw7sRR7D2695Dg0U5COJ3Vcx+KDpdxzMcSPtB+SPDcAS5lXYFdI9N63jkc2FiHu0qmMjaH/ZgVOP7ml8Q+yUM+4yjWCf6a1v3reuYZnBmSAi+V03o9pxxnoORYKBhDGS7XmghPNZEimrx5D7veOnXPIS4z3ETwaaJk1aJf7sVuYr/uEXt4HQf2pltmU//vwnu8CMfIVGssafCs4D4Gg7gIzTZGKpsxpH8LIzItxCGRyv8cVhjKiX20rHfN4BTvZQwnN2CFdRw3J6vCFQafYdlwqHfX4WZKt3G8QCo0jQT/FeFuiKlUfU5Y9g04KLsMuwLSym0XbfaxW3Iexz4sEHtlh1j7TwqeWaa1m8Ip44lojhBKXSLZl/SunxLK8wDeL3OicTkunFRJGDB/g/f2HYLnUnZvEPtxGjdsO4ebRKUi1oQ7tebYv8Luw2KslB7gLqT/gOCpH+DMlfMFtJrDfLOua3Z4va/S17yOHaKcYkKWV4gDfJRgnvdwr/mLxGJ2azBbuIRrI67Kt0gsQjVGGkYwtPcDwnLax/3KTzSeLoLAv8blcRNdAEMxQxpTCpsDQnEo0rjnsLW2oHvzwMvYiDWcU9yD4eEuDHmmxrqN29Newj7jfHcXLi/ZR2zcZlwR647o8HPsVqgnGGcX12ZvwalsK4QWuaJnT+OgxiXR85rGvI5TAmdxm9NrhJ89Bfh1HMCWPr4nuCXtBC4mcwF3FVvX37/GEdPnCF45wD0Ics5DWJAMYCXoCLcSTtfKdUJA5QZp1bNnMDT7Bs5iKcNxHh04rmRL80//8Iae/Vzv6cNlqgf0zkMcOZ1wejdGESB4tA7HxJRhd00K+TKs3WegFziYNYV2Ca7j34+bXKUFUokraabPeQSnz41jC3kOWx5NmnPCzCei1Vu67iEujtNfMMZlrV0VzjWvw66cVNJSCOV+TpfLAQ6MSlQk42wqOO0LXyQE3F1cPKyI4JllHAdxSzQZwpZYHgZNuJLjDb3rimhwF6dJ5tjHCF4+L7rkAV+N+8xv4yqs94lD/IRA0xIRnSP2UkLTyTezBe9KFKOUQLX2RZdmrMxv6O9a4kB9joMht3VdEW7JfqL7JrQOdXpmKnQ1BF//EgfebWq92kXntI6vaPyJgPbgTIUDzLPbok0fbjM/hF3BidA+0Vw/wBkHFcS+/Ujzm9ezB7F7pxTHUhRjxaGfWP8pPeN93Np3Ru9LxaFYY5shDudUDmZE43SDPtf/WzGPpJKeiPcPCFQyFe193NgsDd0xnJb9KbEPJrVG6QZNBa9C8/+rgrlu4/byady24QZpO7hOTBNOwy/GqfiTRLXJNJz3eb2v10YGdnBwzxXcOOhNrEmlAE8/9VdYG79ECNwFwhJfIZjspe5fwn7EUj3nJ7qnh9gYYL9ePdbY0pof1/iWiejSCRwVnvBzN840mNLYzhCEPCaEfRPBSBW4sEcJ9hF+hAvczBKC5gQfPOf182+JhfyQ8J9fJJivVnR5jmHSQQJOWySY6IQ4VNs13xbRbk10GsHVr3YI4ZQKzNsa17qemwE2+zjTYEI0KMcFodLPVoIDe+Z0b9LgCrZKikS7PFRS+31JbKwpXBa0iGD2doLpPsbZCDdwStRX2P3UhAuUJJKwjes1dBIC7RKuyT2F4fpinHPcTWzmIs2rWmOpEk3KtKZHuEDUNHHAT2o9K/TORKIQPRIOP8YQ9xnsFtkpeGeuYfJTu9bxGq4glkpDFw5Ky+svEMLvEi5kc4ng13asOH+Mi02t4ICzPLTWcY2QVhxTsozTupr1+RxOWzrQmlUXrFu5nrUh2lzRe+eJvXFZ125huLcC19Rv0NgqRLt0dfUQwraU4OeXuALqAXZHrOn+9/XOKj1nCBsWdQTfLui5K6JvulUSXp7A6akJ5S/o3gOcMVNC7Il3iAP2Hm45nXEOxdj/vEcc/In6dOvavGdBcz0heHqf4OVZrcXbxP7pI3gz5cYHGAm8hlMp38LBzBlvMKxnNePW50Wi0S9xLBN696be+YI4YPdxHYlzWJlY1jN3cIBlr8b+LW5rXKO1OsQW9zCxpy9hObSKG+ONE/xUh4OEd3EszWWNb1Fjf4aNjlcFa1WBUZPFgjn26zkDhJxbwAHVEHuujeCPu7gsfyFSto6V6i3c1bNTY67T/Fdxb5t01y0RFn89Ri2rCeM63aV1GveW6LmPkZuUUf04iPMyYdg9xPEZr/P12qmF/6eiot9UoSoiDqPUnN7CFZcyaOXvYK29hdikZThivAQHU+RmLdVkEj5L/2ktTodrJgTISwxH5uZrxxrnORydXIvbGd/UZ5M4rWoc14DPg/JE7+/V57dx86FcyEMMbZURi9yBFZ0OgjGe4kCfm5rHS4JR3iUOywuchnTmcY5x+lsXcO3sWdG7C1dYLNEzGgnNvkfrcRE38tnAvr1tglEqsEY6hMuCFolWHxAbfgNvjC/wwXpLc7+PhXw9VtKWsXBoIZj2HbwxL2q+w7gIyRkcEJN+0RFcX6EeKxuDGDEawcWuenBhkSZczngZ14CY07gu6vd13D2xWLRcxj7HEUKoPycO3FWNu5cQFgn9HWmMaSEv6L5RrNiCoex0N6R1lzED6V471hiGcCXOeVzIJV0sk7jlc1rH5di6GNBnU7pvX9d2Y8SsROv0ObE3u/DBta+5fKj57nEauUrhU4cV6kQRmwheP8Iph3nopfX6NnHwbBBujX+ND/4BnL6bBsMWwZ8pf9J/nnuyHFveiV4kbD6uZ/wD3VtB8NOY5lWiuX+C6zzMiJb/Us9KvruBy4Lf09q0aBybuE5A7qmSgudPEPw+jlv/9uPS5JUYpSnVODZEs0RE1nCW0CNs5NwTPd4SXeuwf70DK9RpCM2LBrs4myZdNan49xIHTR7ezViR3MUy+inB10tau1lCVnyHm0yV6Jm7OLX3B4Qxsqm57+j7OiE33yD4qbhg/mnUTOJg0DRgzhLyt09jyv2wQCCx9/X3OHbnbeNKo9M4uL0IN787j2MmTnAgZbq7DnVdEyHH1vTur4mzL5GpdJVdJPZGokNFmsMWlqmvcMdMCmg/gJuKVeNifzua0//5NY75fytlYAoz0EuCQVZxDfJxHJhWTwj8r3D05TruZFcq4qSlUUsQfV/PWsSpHokgVGI3RW6MhMJrRJCMMTjC7W+T2FU4W+Epwdw7uG/5GwVjTwGUC7iI0YP023fo84TIarAF0YLbkE5j98i+3ruIERRwsMd1PWNXc/hA9Mh4hhWCIRqwf3wHB7SlH+mI2HgzunaAgLjSSn2fQCCWdW0PwfBncWe8FFxpHdXg4M4jXL3rELeP7SEOvb/CEbTHOBCyBMOIV3Ct/jHdX0ts2s/whu3S7y917UfYFXNP83xCZK78QnTewmV1VwmeGyZ4sAHn5KYClXBbI67vcBu3An4Lw7U1+rte858QzVLRSMunBlfqaxP9r2Lr5QQXx3lZ8Pc+ht8ndW0hZHuCI/z3NP9EFeY0rmHMG3VYYf593Kp7Dufdl+I17sEVCktxCle5rikhBHczDmrcJA7vFF77WPmdItb3Eq7QuKhre3TvddxYZgkjOhs4kjvRoWsYEcs9eECscyoexdg1mQpNxrpUELLqSOt1C8cRLOKiP2cI5esEF2QaEj37CV7YwfEB6TpJnh/EsQjtuAviY+yq2ccxEV0a/zfYJZrK/i7BOzO65i7xlWucY895dBP7aBxXGm3GrW+rseW5jHsCNBOycQsX8VkjFM0nuKZFCWHIPNd4nur6dF90E3z+JqE4NGGlfkW0TV6dx7VFNnG8QSWuhvgSF6e6Thg7zcRe7sTtte9qvFdwEGqiyPVa2zmsdCV6mOjbmsaxjFMSk59bOH3oDugZV3Ddk5QjGaewR8jwUdFgGMfZzWgNm3A6chodzbhQ3xGuQJvuxxKNo1fz6dUcJoh1n9Tfibb/v3+XysD/s6iIZzi1Lg/lCRzleUwQ/D1COG5gn/HPiUWE2FC50c8Si5nBGddwB770kaTvMQ+EXuyOqCeY7kT3zmC4r0XXvtBY1zEz1hBa4T6RCrOP0/eSiNU4EnqBEIYduCPaMj7wu3Xv34oWbYTwu6DxfaHr0tJ9SjBBwoWduHDOBK4utUsw5zZWCmpwTvoKDojMed/BwXYv9b/39PwlQki9xL7gTdGxRWNPRaAJdys8xIpKQnbHom8lwaCPcSRvWmQTGmMVgRa9xMU/NvFGfhN3dEvf9SZu/7tHHM6/wP0ItgvefaJ3pB9tghDyxcQhs0Js2jU952ei5zAuB1rB6Qp6Ddhqb8KNihIinSYO128JYduLy5yu4WyCCzhGJn2F57BgHsMHDxrL94j22ScYJs14lC5dt62f6xg+LycUlft6x7LmeB6Xtf4cF/U5iy3uhNRPMPr1AcEPTVix38dKwzy20s8X0H6bUM4e4FztSox2zRP806z5JGo0jguFNep5twjZ0KvxP9K8K3GufrHom4rEitYhoeRHGK3a0fodalx/SPDEP9ccljDKc4UIMDvRve+LLkNYqd8kDsZf6F0Q++2/0bOaCVmwqnnPET7dX+EiUOmrP9HzVzFMn+6GBpzGvICD+3qxQvcDff5MzzgWjdKgqib4NhX8fWxVN2ClJGk3Q8jVh4TcSPfqeZydtIQ7Ti5hRWINVwcsxkGSc3j9zxFrnYhSO85IacX9FDJmYBA3MFrBDa+aCDk1j7vWlmBUuI1Q5t/APReWRbNuQtGpJRSuLzWfTUJZgljvcoJP+7FCkAj0sp5TR8jBd3HaaQ8ugHeIlbdSPT9lx3zB58W4MmGRxnuGQBUacFbYMnYpXsE9Q94l9v2hrv8//C6LDo0T0OCCCLJIaCA3MHRdr0E8JBihjWC8nxMLUqYJJTxWQhD0K02ilYCQ9giBlr7MY/09QTBz+oKSySoIApZjAZiWawq5Q+znLsJ50eOY4LMa7wwO5qjAncsuY+VgCcPrNbi5R4+eu04IwV8Rm7ABR+zuY3/Sc81jFOd6pw+wjljg/5nofEBshh7cJ2CAOGwqiE31McEk6eO7ojGP4UNjCkfA1xMH8QCOGr+JMzm6cOrWOLGZ+nDQSqVo1qDvK6LnXVzitEFr8xS7bopxmtax1vSlxvkM54Iv6flrRF30G7iRyUUc5HiIy+XO42CsMa3lB3rGjv5/WXOo5nRNiSIc0b6F3VCpsNXjinG7hK81LcNL2I/dgusfrGALM5Wgfq1vF+6Y+Baun35MHILVOG3sCY52TpcWOLB0gFC4HukZy4RwvYarIn6FS2Jf0mc/xt0cE/VqxTU2GnHJ5jaCz97EEfRzWuM9nFZ3hVA6anRt7sHv4bTgemLPpZL6HXYhoOcv4lTNeRwLUoIDQg8Lxpfwfo1oWo957C09I2Hvfs0v/drniAMj0b1p/V2i5wwQvPmSWNN7OJ/8KS5Os0Z0GUx0tJpA4Z5orJcxupfuzTMa1zPRL6H7LdFiV+9NerRr/DXEvryquX+OU06bcT57CY5xSp91Ws2NOB3xIxwfdkjEMT3Q7wd6Zhmuk7CKazOs4nobzRh5PcIBvVc19k5cGvk57r8xqDHlgZfrfaj1KScO3QONdY2QAwv4DEjkYVPjTOSum0BdtrFiPoaR3Tw8G/HhXk3I50s4mPlItEo0dhunaaYBuordF3Mae8ZupAJ0pPfvY1Q20dVUnNpw/YgXOBi1ESN2JQSv/gS3DUjX0QJ2e/62r9dWBmYJwTdALFgfQbw3cAW5eg04tbUOTfKAYISHxOGYvrxGrCkNERv1TWIB/nOCsWcJwj7GAqqRIPC2iHAda6LPicMxodzLuLRqF4bQP8UpITUaR7XmkxtvAkfMb2GLfQwrAhWa9xi2oD8gmDth9AGcf9+i+2r1v1LcGbGTOOzSFTFGKCbfENb0qp7xCndm3MRtnBN6fUAw3AMMVd3V85ZwP4NqDMttEAKtGhffOSYEyXrB+Jv1+Q19VqV3tRBruoxblrbjgja1uD79dU6n2TTgLIMdrd81XAZ2Fmet/BpXg5vBCMgaDiK7gkuIHopeD3AzkSGcGluMlZkS3Cb1AAcqpVX/LzESM0cIttvYJ13I2+lfLCM2ZCou6/rfS2KvjGM31hPisMy4lRe4I9krrOVv6fMUCglDVxN7tBhXvPsaB3emhZkK8YTomUr3Doa6U+H5OT5Av4cFSwnBr3+ktdol1vk+Rr4qcLBgn97/Nzj9aRrn+p/DBaRSoZgkeGWU4P1l0asJt5Qex4WDEv3Zx5HlFbhWwY+xq3BQ89/SXD7DpXyv6/mJpJRg42MeW6GJiPbj1st3cLOanEsHjlOoJ3hgF/cFqMUK2jHutFqNLftGYl80ErxUhuOMPsT9Ii7i+hirxL6sJNYZgr/rNO9a0eFd3NU193wqPV8SxsEJbmV+gdhnuY/TFbqAFf8mveu63lNL8PBP9FxwjMH5Avokf9bhTKVj/XxKrHG6KV5q/C8I2faZPr+Bff9nif2c7qIKgi/GcNDvC5zWvkLs6cu4HHMPRu0u4yquKU8yhqMYV3UsJ5SVcwSPTxEy623coC2V71vEnniFg+A3CRk0itHaNnxgV2ms5wne78cZdScabxozu7ze12u7Cf6zoqLfaBopiG8RBPsZsQg9muSUrnubIHQ/Qfwq7HN8C1eUq8Q5rge4IEQttijqcWGUR7g+957GNyjipEVXgX2rxzjY4yGGl9LSPsFBjB3YR7mqMWWw1hHW2Bpxt6wZHDj4p3rOX+vdt/WcFYKh72KY6BquVf0SKxOrxKIP4k6N6Qtcx9bEVxpbg/43i+sVQBxWj7Hl2qlnN2CkZkH/L8eW7yKnEZda3CY4fdMJ+xUX0GkVp3fWEopZNfY7ZyBObpZunDLzBAveE4Kx7xGKVPq4Z3EEcwrLPBiPgf+R6HtIHCT7uP3zfQypleAYkAPso0uYdB4XPJohLIANPSN91qWaS7qoOnX9KvZ3turvSwTfLeKo+VvYf/5M7+zDHdumcCBXwse7GG1I2PH3cCpVKnO9mCeXcDW8bULZHsGut2IMfdbpmU8Lxr/HaWWrDO+9clzoZpL4atC7izB/nOjdc1rPlxgd6icE5jiGeBtxh8YmvP+ncQe9YT033YlFGm8twR/p8khFrVzvSBi9ljA26vXOTRwpnhYpOPA0rdF0SRxqPL36WYKr2L0S7Zu1Nh8R67xXQOtc718SrqavcdxVk2jVhmN46nHVyF6t4Rqu1fAUuyYfYlfVoT5L+ZX7dkLPPEPI5lmNcxzD9AN6djFhPJ3FiEy6xLaJPVeCO8x24FoouS+GCTn2suAZxdhi7sGVX5eIvbKPA6K7cWzJC5wCXUXw/Ayx1/qwcr2G+fFE19VhV8wZjfEKzpiZ0P/f13v/RuPcw8bJoeaVSl0vRk2eYhT4NjZiwLy9gLNX0u3VhAubpWtsXfT6kdZvDffX+CPcujzXrE3vO4vlXxERAPu/+F26CUrxAqamv04Q65hYrAGcslaNyzGW48purYTm1oVLieaheh1HYTcVPCO1sTWczz6uZ13gdDvOSUJAnCUIeA4rLzPEgl3ARTwSTvm7OBDpPo4GPsZwciVB9BOcQ95ELPIWwSh/TViQl3DsQQeulNaC07jSapjWM0ZwH4NiXG0saXSAgx2/0edVOCDlEMO4xxpPi75LMSqR0FHCuv04x/g+9vEv43z7Q9GxglDktnX9SAE9OjF0OanPKnAf8JxzFbEpn+h9T/W8RFeGcQDdCe5mmD7IRpwW1601TcE7S2zsHtxkKa3RMxpLJ454TlRmDmcZFBGKzJCu2cKR3lUaxxIhlDZwjvEOYZkNaBwZVPUc+zET/vyG4JO/Jr4Swh4nIOv0Fyd8OY1jGaZxutCfaRyTxNpX40I/Ozgocgt3nKzUGKaI9c133NfnqQglzwzrXeluSYGYMR11encnrqJWLTp2iDa9uLPn+4RP/TpG+FZw0GXGQrTj/iNp3U3iAMxDnP7bj8tt74g+57Q2TdjdmNb3DLaaOrDlXYczg6qI/ZjQ+CTugzGD+xt8jDsyvsJd5ZJuW7ivfbHGkO7GKj2zCheQSeu3SutzHVclTPmRyN2RxlOlZ97TO3cJfi8Sjc8TfPn72D8+rfFOi9Z3cUzUZWI/zuEGUHV6xsca4090TSo6jQRvpJxqwchJFU6bzL3XqPuv4ADXxzjoeZ/gt1ZsgH2F6yt04sqjnXpO/l2kOS4RRtEZHMS+pmfNEHz6FHcqTcMo3Y/ncM+RJYzkzuNCeAe4hXUNTvErPIvexPskff0buq4VG3Q1WEZN6x1P9fsU7m3wSu+dx/Ffe7h/SQc+txZ4va/S335JfNUQxLqMfbhluCPUOi6lmwd6as4rOAp9kCDSLs7LvIKL0iziDIUqQmgUE0R8qGsGMJz0DYbN1nCUZimuOraLUYIO3Pf6Kg5w+zca30NCE/slIfy3cWT2+8Qi1GClYAKXmTyLFZ9Z7M/5Bc5jTWguYer0YXdhZeSZ6HysOe3isqmNuFb/BI4uTuGdgjoRlV2cxplrloyW7xjH7pxLmmNC5V0ad8LeCUNdwEE2S7hE9ToO/MnYhGdY63xbz09XRBEhEDqJzf8KR/weam3ewR39SghhdQV3VKvCQZ1ntV71GkOZxrWoed7SdRWYZ3aIdU7huo7LhXYT8HLC2au4GU1aYB26px+3xs2YjFf6vB3nqLdqPM9wU5lvNJezeudDXLjmiubzna65JtoeiiYP9ROtxzAuEX6id7XqWcPYMq4SzbtEk17CShnAPQoea4369J57en+VxpfWSVoizbhu+wYOFk3Ubg1X2GsklKBmjPiV4/SsddGrHSNcZ/Ssfiwg8/B+pTlucbq3/bfYLTeJqwRW4dKvqTQllHwZp5mOYqMi5VsR5t8vcUT9nsb6scbwklAEElLexwp6upoSXVvBdRJ6sDtqnrDaRzldTroMF0aq1LsriD32Fa7xUqq1qtN76vXsK7iB2JjG9CkueLWtd63gTppPcEzG+YLxl+DDdY/g41zz+9j4qsMK6AxuaJVK4I7W4Rj3XlnTu5/hOKIavfsvseIzhcsEb+j9bThl+U2cxv0YpxxmPM2E6JgK1gzu1JnoQMrYdGmm4ZWKaS/25UPwRiI6JTh9eF3PeU4oe6mcN+nvV5rXmzjAuERjbCL4Kdc3z58W7C7exqmXr3vIvzYy8BTnjY8QCwJOr5rHEZ8JA7XjKNdGgvEeYTfAJgH/jmEL+y1cV79bkxnHi3aABcAjQug91/1XsXC9SyzeEi6lmb7RUuyT7CKYtB77CBOK/1rvTjdCWmCPdO0SbpZ0jliAeY19Sc9JOg3r3gb93YCrenXhvN5ZXFZ1n2DYNizcjnEw1dt69yix+S/jXgnlxGZvxyWU0z2RlvNzXBDq9zWXZYKht3G2QsLER7hBT1rSa5rPjJ5XgpsSXeW0z7WEEMxLGutj7OvuxMV4jgi+STTkC41nBEP9KxrvxxpfKjktGs8SRqHGcOW09PtW41bC5/Fmu0zEjSQPz+uaKbwRK3HQULPG24JzhjdwBbXU9sGW1SuCl1I4fIaVqW3iwE3Lql1z3cDW2QNcWCcP7RmMBm1r3rdwFPxtHGR1jPk9ea5Y9B3ElfZSSSwnDoEe4nD4WmNcJvhgHAvRXWLdLxBrf13P7BdtDwhBuaN5TRDtiV/gFN6EoHcJnprFBwK4UE6rxnQOx0UknH+o/23gAKxaYg/NELKmAvNGK07nq9HcVnRdL4Z200XwA419ELfR/j6OzB/SHOow7H6B2LvfxzEba7i6YJloVy26VhDxAB/htZ3DQYOpLE9jfkvlvBOjZFO4ydUcjkm5h6tWnhB7qZlY+xbRdRejUIu4quMusT9eaNwNxL5JJHVXc1sUDZ7joMtqXPHxQGPYx4drH67Y1yzaJFqWyM1l4M8xojQr+tYSZ1XKkjxcdwi+rcWVV6uIfV+jZ6zjgnDjmA+29NkVPbMcW94Q/LHFacRijtgzFcTan9W8Voi9eRb3pnmkub7Szy9wf4E85KcIZfwQ12dJN94WrqaYRtCWrp3RHF/n67WVgTzYNohD6DzO9U5fTPqYSrEldIIb5pzHPrcKXEShmNCA6nE63ypB8K+Ig7Qda8MNet9NHJl6jziEFnChoyr9/yoO8HgHd5GawcF2yxjGGyIEaQUO2Ek/VA+xCNO4IMY67oK2Shxya5p7HsBpaaZf8iJm9oR4rmNIf5Ng2OcEE3eJ1kcEQ60QDLKEMwFGcWOTetw8aEDzq8UlUidwWeNxXbeCBXVqy4vEJq/RevTiQMA+XXMdlyadxhUS63G+boW+L+nzLzFk2o6zKUpwhHMR7kOxKdrnRi8n1n0XQ3rjhLJxWXQZJ4L6jjD814F7jic/f6tnT2JLZBAL2AHc5vea5tSEg+g29ftP9b5tgkczxuSx1refEBAn2Dd9GUcR1+ndqdRW6bp2XO9gUM+sIHg5kYZy4iCcIoTil7ggTIvmCa4rn7ElJdii7BMd+jSnD4i9nlb1OUIgXsZK/w1iHxyKtulymSf4rw7Xh3gu+iUas4EzKqqI9X5PYxvUOPqJfVBC8FYx9kev4piddVzFrlQ0St4rwUXHKnG9jDz8SwnrdRynFuYhkjB7GVZKVgmB3UGgRpMEspNuo0T4pvS/RtHsmejyX+s9acgc4gJgG3rHBsHXSwRKuVow3jrssgJX0Wwi1j4PkDOiYS9x0Ddprmn0pAWbNEnD7UTv3hANzus5jcR6l+CeJolADRMGWPJUMW6bPKL5PcaBrUXY1bqPZU+r/p9++R3NMZWsOVzitx9b5Z2ibbr2LmvOLTh75AAHnPbo2mFCvu1zGg04V0DfIj0THCfQoO9eYp/nObRO1FjJ86eS4LsxjDAnwtiMC1wl2lSLMxXS5XeEFYh0AZZoLkUF46nFNR7+PjZ0J3i9r9dWBhIanyGEZ0LUQzh4JK3jJmKhLuKAnj6C2G/g+syXCYZtwm0lP8UFfx5hH/UT7DNrwNZhr55bTMD4gzjVbFrPSp/3DO5Ydqzx9eHo1lIMva1z2k1wBR8wbRpXLQ6qWtez+vR3Qur1RDxCN4byUoC9TQiUR8QBdR9be22441qH6LyNS/IO4OCwI1xwJC2GtHZKcUDVnu6rwznXDTjo5vu4HG8lLqf7QHR+iruAJT0y4KdeYxwheKUGBxy24tzzLZxvW4S75PXiYKBmLHhaCT45Ryh8jcQaf4PhzDKChxqIwyY15Qu4dWoiT+lWOkcooNdEh6fEV8ZkpLJYhAP4JjTHaoxGpRCfx+6xdHm06zl54B9yOr6gSb836PkLuC5GznMIC+4NQuAu4qDbdFOUE4ffTaxA7eAc7Wbcez3X5wpWylNIfaH33MYw6wbOFFjRs0uwP38DC8nkm4Szv9LYEgV5pDkmovYCuxT2sdX+M7x/GkXLCzh2IuOKUjGtFW1X9fx1Ql6hMeb8UxmaIPjukt7/h3ruNLHmKX96MCJRgpXeDpxRcF1zqS4YxwqhjDVq3GloXNZ7nuHYl30ioj8Vp1r9Pk4coGl41Yjm83p2r8aX6GzKp0XCipwlDpsSwr//puabKEm9/ndT9El+HyPkdBfO4qoW7VJprdF8XmH+rMR1KHZE/3MEDx3p+jt6znsF95URvDul+UzrnaMEz93A6Gwae72iYaKOC3pGF86y2tA9r4h90KnxVGA07Lze9y6Ob8i9cKhrvsXytwwbaVX6fAW7Dm7jwN1DYo8loteKOzA2Y5l3AfdmuUDsk3tYSUs3VofG0K1npXugUde2a2wjBNp4Re9IdPq3fb22MpBWUvpF3sD9uw+JA/kJIcAqCKGSGtmaJrdELMokISzGcBrNMpG6VIdL3h5i2KsGF6n5O1g4P8H9ntNfV4oj1X+AO0O1E4u4q2fNYv9wPUHIJYK49wlm7MNdCWuwVlyDfc+TmDHBFRVPcJGPa9jnNIlbLvdgGDWtpVqNfUjz28GwZh1xoD3FzPRSc5rGVmZq5XuicdKnhtj8HxKbrBy3kX6CmwCNYqUuIbLbGveA6JOCcwzDxOdx5kIycUJoedBvEkLhSONN5s8YlB1icwxrHe/h4iFHWMie4GyNRoKHPtUadOG0xVVindPSeIjz/iH4uAkrAHPY2p8n0ut2cFDqGu7hkMrwjOZ+gDdnFQ5E3cL8u6/3Jex+ESsUKzgyOi3yIdzNcIDTEfINOBA3ocJD0XIJ75Pk+Q3ceOen2FXSgItXJar1kODRFo13VbSa1rN3iTW6jAOMx0WDtzT+pGuP7n8D+/j3cUOdAyworxOoR0L6xbhq3m1cjKgKB6V9i1GzXdzT4y5WLgcK6FCJlf8KAklZw0V1UoHKQ6geW7HncZOmWux2msQlbD8ilP1yjI5ewam1qfh04jS5VWxVV+DYkzqt0Qyxl0cJ/p7CiE8rDqjbIg6OqxgpWSFqHyxrjYr1exGWyYfYGv0ay7+vCR5MRWMeZ5Vcx7U6tjXHM8S+rcGo57bmMyt6/Bp3jVzBPLuIjZ8dzfMJTpO7o+fMEPIPLJ+r9fcRoQA84bSb6BP973uizdvEmo/gZk+5lmlVNxMH9CBxdvRhfirH9WkSDR/F7kEIvnyBW5+nwbZP7K0PcH+BJc3rh7jexwyxl+7ieI56XAPkqt47j+vI1BD8NoOrn77O12unFv7joqLfFFJpxTBSA2a2P8RNaV5i2CMPlC7cRauVIOrf4oIeK8TCJJR8hoBdrxILu4416WUch1CCm0Okb29H/3uXWMRK3ZP+2wP9rCaY4ymhSPTg6lV7uJd6pa7PQyStwGms9dZimL4CW/KHxOYo9O1V4e5TeWAd6r3NenceZrMEQ68U/CwpeO81vfsl1vr3capJjZ75LS7RO4erl1XhmtdrmBHLcUnVYeJQSGZMKDOvuYc3x77m30UIh8c4JXUYByvu4CC/JlyTu9Bvu4/LshZpHpcJyzF5YAv3EC/S2PpwUaZpXJJ1X8++iNsWr+Py1Y/0nHZCCLZgwduOO1D2EgrRWaxozeK+G4v6fYrTsSgZU5Ao2qrGlAfVcsH8y3XvgNZnGEedN+p5bdja7SAEwCF2W6XLoga34z6D4d1Sgm/aiIN6mVDkE0VKaLZcz/p3iJS8VIRXdV9abOeIw/I+Ltub0O2vcWvifkLZ+ICAwdMvege7FxtxkZxtDP+PEDwwR8iGORwEl1Z4Ge5sOqs16SeEaoPGfyCaX8Supg91TSlWMuc0vkZCsdonFOlOYk9tEDLkWcH7igmY+imuxpn8nofJS9zu94hY3xl80HThALNvNYcBzbMWy7J8bsqrCkKOQSB5F/WORwR6uoZdeWD0LhXCGuwCPhRtDnDp5se4l8Id3IX1QO9a02eDhPxZwWXG60WnPVzpcgBXBewRvcHunyL9XYcz2g5x+fl90WoLd9fcxOnmFwheq8JK9TFObx0l1vsqDlQ/FE1mcBnjt4nzqJE44MHFmgZxEy4031yLLVyfpAujw8fYCE3ZfiTaV+EqhLk+azgGa5SQrUXYIGkiZOwjHC82TPDxf/Yax3zpb71CX3sYhpzHVuYlHL37GSEM0qdxUYNe0v+XCOH5gFiUezha8ggfhs9xp6Y9nH2QB/W2Jlqrdx1jX10vLpzxI0IApX+qVeP/HMNjXxBWQWrg08SGeaq5DGl+t7ElfExoa2OEkLhKLOArzek2PnwSopzGNQoWNe8J7PNJH2ZuvDbRL5WrWgyHruIUvRTyGwSD5cbfxwFv6Qs8wlB8KUYFFggf03+HUZ6LonHS9wKhkNXjgiDp60z/82VsDR8RG2mX+ErotBQXekpou0y0ukNstJ9oDB2458EEDjb8CmvHaGzo2Ql1rhLr+JWuu6z3PSA26HeEYFvjdORt0ndMn6V7oVif/77okDy8QDS6eYWzJDr1jn6MDPx7uAnODO5xP0jw+7Dm1EXwXB+uF/8VsQ96cDT2Kg7Yu4WzGUaxsplIS6mua8Q95hs11oTZtzTmDlzdbEJjv0AcRhcJf2gnDmwdx62rL2ELaBe3bJ3UnNJvvk3Igndxf4FjYp8kgtKuOX5IHK4LuAPkPkYc03dPwT3bxFoPa0wTWLE61t+1mmO6E/ewoD7BMQbp0mrCqbrHGAXsxnEE6fpJxXRKtK0ruOb3Rcs93FxpDUPUx7jJ0h7Bw4u4SVAzDkpLH/gt4gBrwel0xzjjYUyfFWsduvSOM7iYUKKz4NotGVdTS/BJi963g9PEi3DxuEQU0jgbIWTjS5zylwjOLVyL5jtcaXEZuzhTRsxjV1Mfri9SQuyJRRyf04h7p+zgdNJOjD68xF1nm4h9e4wRkhqCN9H8qnCZ7VaCv040pj49b5jgw0Gc9baIS6xX6DktWDld1Hh7NZ4mwjhOw+AA99Ho0hyWsWJRgmXyMY5tua55JKrcz+t9vbYyMKAHJwS/gYtXpE+xCGvO6dffwr26ExYtJxammVioN3G1sDdwNbYMUlrE7oc8ZOswEcdwJOeh/vcBLt9YQwi0XxSM9ZAQnNcIBr1EbNQH+v8Zggk3cFDRCI4cr8CR9L8iLIOENRdxoZQUOB9q3ptYQ804hhqCkcYK5rmKtdoqXIRpAQcBvocZaoPYJL/AtfPX9fm7BfTMse3qeZO4OEUZhrkXcdOOZqzgpe83XRqXcZONDULYpz+yn7CgJol1T2ZNgdqM6ykcifZHOBjmQGvyKYbd0i3RgoVT+qoTkvw90eEhjkxOOO+yftbqfbW42ccLvfOPiUNvk9j8Izj3+CvRuRjn9f9S/7+gdTtP8M5WwTVfEPw2Q2zss7iWeoWuuYj3zwXRM5XZFnyg1BP8/URrMa31SitgHzd/6cP9F7pxB9AOrdkAbpD1BcHnCdOWiKZ3Cdh+RXN6pTGlJbyDLfkTjSsPzxUcpPcC888tnKK8iUvnLhOK9hqhJE0WXHuDUNwvYJThInGYpKHQhgtXndP/ynAwXs6pT+97qfe9wAG5hcpcHpC7ous5HKw6jFGOCWLd1zX3ddFqW7R8n9i7E3pejvEYx1uN4MP+APcQqNe6XtD1I7jr6BuE/LqO2y4349SzQWwIrGlMI4Ti9AhnAIyKHr1YaSjDMTjFhLz5QnNON1wivt8R1miihRnj8LXmVkzIvB7ReEhj/QYrOqs48ysP0hY9s0zjXxFN5rEV3qv5zuPMolzrJmIPpwuwUfTs1djTdZtGZr3uSej+EnYdPNBYO/XeRAsXOF299jZuBZ3o5QVczbMCK+IHhOGZqNU2wYtFWFnux+neiSanIn4HuzfOY7mW63IierzO12u7Cf7ToqLfNInIh5fi6M9lYrFv4WYcfZrcFM5T3yQY8yLumFZHMN0LbNVs6fN5XB89rbj0uW5gqHSLIN4+7guwre93cITwC1yVqgGnAeY7EypLIX5ACIwDPf8LgiEHCEFVpTk1EEjEz4iFbyYYO33YPRjiqsSWUxFGJeYJhnql93cRi5tMkhpwaoXpXmjltEUDjlhfwALhieaRSsSGPp/C1swu7oNQzv9/1Gtab2kZpLA+IDb9v8LFLmoJBi0nNN5Ec1YJ4bVJCKY6HLcxjmH+VNzAVlsPrtL3t/rfJi4+tKRxrOHA0H79nWuwh2HbtIwTOi7V+tQRVs0IDoraINY0LaePRK+EPetEy7RenmB4cRH7njf1M903X+P+D4cEf32sd3fr+QPE4fiJ3j2he7/CdQyGMMw7Q/DmFVxKtRi7VPIgTVg7XTsp4MuwJbpO8PSc5ntIrN93+OBcwEWitgilaxRbLas4tbeI4LEFrcucxvIUo2d1+IApw1H3jVjIb2CFdLZgXTaB/4RQCMtxvf+Ehav193Xdt4urPqYx0YJTehcwipYoX85nATfESgi8DCMY6ce+SMieI73nku4fI3g7Yecz+t9f6x03cEXXUiJeagr3WzhPKDN/iUvjruk5L7HLdQoriQl7b2ueHxEH34rG0YaLTXXg4MA1bFmnX/wjnIlUhmMsOnDb8UTxjnBBs3QHluLaHIlmgHmpHSsoh4RsPI9Lnu9i93ManKk8TBHnUsr4XlxO+pzmV4ndvukaGiD2TAdGJHPPPMUdDrewe/s9AtHswXEarfrfsN73CmdwdOvZBzhVvBa7LsuIfd1F8Fu6mlY13t/DisYz7ALPWIF06y1rrP/0d9m18P+oFsYthADoI9JqEgKrwHXZ5/Ehl5BOIwHLP4XftELuIRZwGFeXSwgq4eU2XL0tXRS5OUcJAnYTAuGnOD/1IrEQjbj4TTG2stIPn5D6Ic7BLsL93xc53VCjrWB+7dhXlrBjscZ9pPEmbLaDGT5dJZew9TmK/dgVGl8iCRdwMEgKrxnR8AUO6nyqd13XWMtF/0s4syJ9wBUYUqzGGQjbuPTmCU7pa8GWygqx4apw5cImnF66q2t6cNGneU4XwkmfWip3B1h41BDa9X3NYU3vLcGHRwNOn1rAPTG2sAIyTfBXWq69eGOd4KDHHkLhqsbBi+2iyVbB/e24N0SJ3r2NAz6XCF5rwEplk567RGzsFYJ3nhL7KGHoeoyuHGCU5g+wTzYVmTKCJ+YxhJmHWavokwrjvuiRFnsftqhKcWOUIf3+a9y2dgBn9kzq+g5C+FzFTYpqcdfPdb3vLi5XW6F5/TEhMBMN68ad9ZI3mnEg7wB2L9bhKp5p2VYTh+llPXNe43pF8Hxa87MYpZvEbWgncKrsJo5/KcFBpBWEVT+je6/h4OhtjWEAl6BO+HiR4Jt3CBmUdE3UBM27BbtdExl6CzfASbh5F5cIXil49w6BEs3j9LmUFfdE5x8RrtG3iGqcl3BnyAfAn2DU51uN6S0C8erVM1KhXCeQ3HsEHw/ofe1ah0lcUfKi7ruAs00GNf/PcZ2QhwRCDD4v0hW5jVGdC8TapzKxhBsjzWisg8T+7SN4+EvRuU+0ydgHRK8uXJOgErcDPtbfk9hfv4Zj2fYIPv8CFyKrxHEnIzi74gWxx9/EXSEXROe7OKNpDmdhpQzK8+aQ2F9T2I07pzWoJ4zIRKURXToI47QD+Ce/S2XgHxcV8UfYTzmKg6+aiAXqwr3ET3CxmircvGISW4UrOPr9Z7gM4yFB5CqCAbqJzbSGg1JaCWbZxT7fI/3cJBYirYd23Ao5YdEUJM24bsESjiqdwwu4TQjATnzwt+CgpTpczrOM2EjJ0C+wBr6tMXbiqNx6Qrt+SjBOq57Tp2eXi/6FfrTcyKsa5wm2aHbxYdtGKAXpr6ohmD4154Thcp1GiU3wIY6ruIMDorpx+s8aLnX5Us/ZJQRCauTvaP5VBLNvYPiwCUfqTmINfAJXqCvCGnW6DdJ/f4B7L1Ri18cJRjU6ceBZKj91GKJsxGVmy7DlmDB6KhjFhJa+iJtUJVq1ojU8wPn9FzGCtq81eqtgbI/0MwOAEin7KcE3P8BBWg8Iy/MQp1S+ReyHHayEI1o91e/72B2W/HqW4OMt0eR7hDskaXRd9+YcEy6tw2Wz8yBLl0qH5r+EA/eOiDV/W3N/ThxAK3rHPRzse150H8P1StZwidpavXeaQEUe4fr3G7i99EtdX4rrfuSaH2I3UQ1uhjUumq7r/e26bgWjW/uEzCjBhayKdG8DwUuJNgwQezoR0n+pa87gIjLPcZXJY9yYZobg494C+s8TyMC6xoTo9Q2nS33PAv+unvVrnEa8jQsHXcLxONU4a2gXt/LNw7YM+6jTXZHzXyPkyoLGk8puzj2VorTAkzcOcV7+lO69iGVoB45f2NS4OgleXcLV+J7oXWW4iR2a5wwhUzawYZkGYTduBlRMKHhPsEK+jg2IqzgrpQwHflOwPnk2pfFbSeytREzqOJ31soONI/T7vtarHJfxzrNpECsTDzXGDqyUpPG1gjOU8iyqEm0Gsfv+//a7VAb+70VFv8nxTat7jzhAzuOAwW+xX7oUC5pz2JeV8ORTYrFvEAQ9wA10CqGjnGAZ9okUQuVVxMFzFwf+pL/lS6xlpvZ7hdig32hu2/rsAYY1+7ElNombSozq908IATRHLEyHxnsPuzoyLmAdV8ObxyVji7DilK6PSmJT/z0CAm7TOxZwlbo9jTN9RZXERngH5yA36Z7UfDuw7ziVhioceFam546LJicYsisnAuA+xQw6gTfZE1xYKqGrHO8JwR+Nov86cSB8SmyIXgI9KScUiV+LVgl3HuIGJy2EkG0ooM0zXC/iOU7dLMaFe8Zwo5dljalZtBnDhVLqcXU2ML8OatznNNYc99/iTIdEXE5w4OEKp3uPD4i+af0fYZ9wB27n+zYuMJMoSCIxTfrsY9HmX4smiXBNYas0fdFb+j5H8GeLxtxNWIr9WMnfwQrjWVwApgnvtzOEgBrXWKd0XQex7o0YFl7DSvsHxGGT6FYqUZ04liIVnHQBVGq8KeS7tc7zONNnndiz+wSvbBMCPNG69AsnKnOCDZgq7Kos0/8/0Dj+UrRJ90GH1nIJw7FHuH9FuiK+T/DJDs5MWcbBxwfEXk1E7ZiQU5cwGthKKBp5uNzEnRPT6DiPkbCXBB/cxUrbtuh1iJvwVOnvPt1zBafwXsDKRO6tPyF4phi7GRLR68GFoNJ4yX2WxmANp1tnv4eVjHG99ylW4MFZL8Uayz4Onk5+PNHY13BdkOS1dClc1fr9BcFDC7iUbx3OmqrG9Uiqta5bOIC5CxecOoPTixs0jkvY6B3CnUmT7nUYEd7CacM5/0Tv7ureRCFrcZ2BKuwS+wIHYO7peT2i3QYO1E4jcA/4f/wuGxWlsJgjmGRFk3kHB3nc14s7cY3+hFs2cfeoXxNBd0vYp7eP88DTaioniLpKCLgt3COhBFuo6wTDJuTbqGsXsHU4hg+yaiKYoxgHtdXi/tsn2ArsIIR4QoBXcVWnhJkriAUaxznCaVGU4UyGpziX+RpOO/kIR0o3Ewz8iIDKE6rPDVBCCPWXGluiLemLXMFloZMWpVhLv4Hh/FWcJriHsw8GCMbNuaXfuIwQ5s8IwVGBKzGOEQLvut57CVviY7r/vq75DAfQpCJQjss8dxJf6UpIVOksjuS/KFp8qLX6KSEw019bIzrNFdAgte9iHOSU8OxFrLxsERtwCfdEryKUx2LN70uN8VjPmcU9DhKOTN96q+55pflVi34tuPPfd1gYbeOCRUcESjBNrPeorvs58F/iym65L9dxxb5DnFfehS3pDwn+eYDb4s5oDlu4RsYL3PBoXWN/SMSFjOAI7EPR5RYu+duuOQ9gC7YEH8x54LzL6f4mN/T7LnFwrBPK2KzoPIn33Q6xxh/gpjwvcFGxVLrSgjuLU8rWsEvxBBfHWcJtn5uIPdFDCP49PfOHomcv7vlwGeegf4sVxkQr0+V4EcduJG+mwnCoNVzCB+CSxvudaD+PA/2KCH74TOv85wT/pEFTT/BNoqJXRbs7uClSO8FPI7iU7VnN6QKnD65ESys0v0ocePwKB2r24ADtdEOW6ecQblk/RZwDx/p/0mAfl17ewKmYGzjwslfvvEMoXwfEwXqCC9Wl0dWsZ71J8Ne72BW7pbV8h5AfaURcwZVKX2GEOhHMVFI2NccGXEMhkcNWPTtjOb7DjZ3ybBvSnH+BG6i9jZHfIdH/Dwj+mi6gby0O0AV33/wIdyFNhfl1vl4bGfiPFECYB08PPsy7NIhtfKhf12SeYoGZVm76Q8sIBryg+ypxT/eEwv6AEFoTOKI9BXkHrrp0iCO081BMODyVki5iQ7bp/X9CLOBjzJBpRaXFUkYQNmHzKmxppxY8rHtO9OwmYtPuEALkpub4Z8SGHMLNKI6w33ucCAx5LNol7N1AMOJNggF+pfkt4l4H+ziLoIUQ7gc4ZWpCY72ocY1hFCZRgm1i0/WL5je1Jt9gyPSW1nSX00GW26Jhohfpkz3E1khumjIMS6YWvoqroz3FUbpN+v8bhA8z3Qc1OIthHyNF7aLvRdElof5qYqO9En2qRfs5HDleonc9Ex26RL9p4mB6iFPUChWO77SG9zS2v4uFfVqND7A74x1C+K5oDBs4D7tUP4dwYZu09nM/fE3w15uEAnWMa/HnYZdwda/W4SzBt/0Y2RnRuxLdOSbW/LnmcRP7XLcJXryjeV0QPbr1M+d5nrACGzHcnMjGPdG4FrvLDjS2HT13C9cmSGXyBCus3ThmYB8Xg0qfdonuGcZoTzsOJl4ilOw5XLmvGyNE0wQfJlx7hIvxHGBXR8qC5xhaXsSo3bpouEgo/iNY6Zgh+LoRxyZ0Y2g6FbJUaPoIZeNTXAUxkZdSjL7tYuNpHluHx1h538QVLNPoKtZYf42LgxVrzL04TTONg6RFCU7zbNT/ljD6l4p0CSEv3yVcJ1d0T5HGmi6RY1ya9xCXK/4jbEgk+tGhvxNJOo/rftQT/JAulJxfpWiX+7BG6zyIEds6jfdYz+7DwYnLOAsuEdl3cJfAMuw+OeF0ZtUBp+M6ruBAwXR5HBH8UY/dg3u498IBRpsT+UulYkpjrSgYZ6IvRcA/+x+ihXE74W+5oMGXEwt6BsP50wQTpHKwgNMCU9iV4mIiF4gNmJrgNO6F8Je44E8t1sLTp7iKc0AXiIN0A8OOLQSkmv7DGkIYXMeBWVvY719ECP4k8BzBfO1Yy0oYdRpnFJwlBOUx1vZbCYbcIxjje5gRZ3FQY0LXCfs3EMLlWOP4E435Z4TQWhDdOvTeP8LBbcui+T7WpDcxRLkrGvxQ42wUbbeIw+R7uJ59FYap0zr/BgvCRmIj5P/v4KCde3pOQs9ruKJeOd6oraLpJ4Qw/I5Y+4TapjS2u7oukY0ZXLnspsbTiqtwbePeAVW4HTa4fW3S5zbBR2uchidf4pSrKZzCmAftiMaVSMAbGsMl7Mv8irAUc+NewPn35fjAHtT7XxEo0xxx0DzCqUnHokUeNMnjA/p7u2Bsg4RgKdN4hnBNg5/hDIVB4iBKhK+uYP7D+CBJgQ/B878S7YYxapP+/1LNf5lQxvZxEbIb2FW1RciCF7h87qHecULs/1GN9RaGkZuJPf0WYUV9jQN/y4m9fhNHrI8Rbrd0s0zgKoDDBMoySfB/+nXfwK7OHoJXJvS8Sc2njFCI+zFUfh1baoXum2pc6bOS4JOygu9lQq6BkZJiDF8/xAo3nO6g+CH2HY/jpmSl+GD/BneRnMNy6BcYgUiZcyy6H+HMmg4ik6GUkDVvEmver/W4rjlc0/c0jkXoxf1Iagll/wlumd1Y8O40WKpxKvpfYAt7SZ/P6GcqDPdw+e1SHIQ+i5tRbRS8Z6GAvqM4XmFO9F3ESvUeroB4jdOul58S8nWI4NMT3P+gVv9r08/3cXfZ5MXk13Qv7ok+HTirLZWnFlxN8IzGM6c1zRiEOXwuVeJOr6/zVfrbL/FXO/aZpfXcpEH8Cud07hOHchtuwHCC4fgKXAlqnSDkKrbGMrAlXRMpMNcJBlvWvd8nhFsehDsF7yjBrXfB/sCzBOMc4vzzemKxnuo993B1tiaNbRpXmjuHKz+1iRatGHobI5jxGnEYJGRbigObigvGnKjCLYIxf6Sx9+uer/X5m7jaWgOOKP0GZzusEkyTcGxq5Vs4QPMeThPLw+8EF2SZ0PMe6jnvEAJ7FaeJnSU2zE2tRzLxIK6rvSZ6PMZWVhchaB8Rm6YDKxopJDdxfQM0zgocWVuGU9BO9L5uXPAmYyiKcFnkYgJOniUO8F5ijVNRSXhyXmNow0poBy4hOoIjj1txRkkKjH3icBnVGPsx+nFZ17/Q76u4Ucostr43iYNlCbcmXhQ97okW5dgq28A9JpKvuwkF5vcI/hnAluYRTrMdw/U61nBU9iFu/XpP63cOK/aturZVn+0Sa/0E+zfLsMKwRfBlWuBNWBFPn2+ueQmhNHyucZWKNgu49PhjXMntjOiRbpizBO9e0TWNRHOgZZxxkgjhGu5vv6Fnvyig6ZDGWiH6prvyLBEz0iE6tOHAvXRhzuA24XW4w2Aeksk3Z4j9OIy7g17SO1eIvdKJO2NWE7yTrqRVnJbboOc24dTJVKwe4Lr7CfOXE/zRiStNTmHktlLjTRQkXRqPcIGyUmL9r+HKpC3EgXQed6itwdX0Dgl5vqjfN4i92Ebsh3VCDl3EQYXrhLz5CU5ZP6N7LxHyp1h/J8LVr/WcLnhvoiuvRONbOIOkEe/VjM1IGbmEZWWiPeme2hP938WG8i+wG/dN3CeiSONIlGgKozxbuKrhIz3rES7fnYbiLj68NwnltIbgx04CRcrYhpSjv+3rtZWBjzFUU4OzABKqTmhsQ/8/wn7AZtxkohK3xWzGsPk+wYAf633jelYPLm25qGue6dnvYuj5MW5qsolbv/bjAKgpbEWVYlfDJsGICZOkD7QSBw8WEwtaSTDBSxzBnhpdujISfl/UmLYJhpvCJURbCCHbrnsv47zghI2LsZJUQzDrOb1/l7AgS0SbKowALOLc1XmtWSexWe5xuvJYCqYU0F9i900XDnA6h1tsvqs5rOAUmiocH/AJATmWEAJ0BBcSqiCEUov+/7meP6t5TmN3yyIOvunGXckuaZ4lOMizX7SqwwGEqYgO6nmvcGzJLzW/LmLTJ3LSj1PmqrEykUJ7EhdlSndTumz6cErkgN63r89X9T2hZyfslzEK5TgtrwKXxE1XXAqxdF9tETy7TAiMKexWWdA7VnHznYTO08/ejItodeOCLDO6voywvI9wau5gAZ1K9P88+L4h1ryP4PVjjN7kuG6LftW45OsZwrqf1rx+hnOj052wLLol/RsI/j8rOvYR6MsJRjDKiH33CO/rPkJJK8OQfDfev09wXNEk7q43ig/ERAXvE4dWQuNr+HA+JmRU+vZb9Kz3CUVxHzcdeoiDKTM+oAhnzvwHWqfvMHx9Vs99oDXI53XjaqVNWLFMpeyQ4K9JgjcXcF2NdB1U4C6Zl/R5GkxD+nlX76jSNWNEcbA/K3h/J8Fzm/p9Cnf8HMLuzXd1fyr4T7FylS6Xet1fRxhXhe7TjCdYw5b0MaEA9Ovad3AL5EnN7Ujr0oozuYpxSfU8QOtwSfPc07fx2dKsd9VrHb7ENQNu4bLcW/hc6dE1j3BwaTkOpK0XPf+V/r5K7NtGXBG3ldgTRzhQ8xIhTw+IPX6N2E89vN7Xa8cM/O+KihjAlkcnzp9s1Gf3MBQ/oAlPEhpq4SGZB8wErjr1Nq60NY99KCWEht+CrbPcyA04Cj+h9rTa6nXPK4Jpj3HzmfcI5pnXvQ9xwZU+Qqv8M/2vDRffqMcba0pj7cMWxxyOut4jhNG7uOBPByEk2jD83ILjLIaxNVCk66txtcO0FLdwe9Y5nB6Ybo+ERxvwYXNJY9glBMhjgknTcmgivuoJ4dNBCI6vCcGTfsrLOGXl53rGBG5GU03wQyIrebAOEsJnn+CHcmKDvcDulApdP09stKTVBC7P2yLaN+HDNH19Zdi9sa3rd/SsTVwwaVnjvYot/VSO2jT3VRx/UaVxntHPXl2/gstKpw9zRvMe0HpuEPzdhoVvD3ahpb+0VTS5SFgU7xI8sq5rL2pMBzjCvRW7NvJAmCLWd1jv68HZLAs4m+YZEWg0in2m5wkBVKbrPyYE9RbO+58seGc5LtS0hLMU9nDBljHsUkohnO609J3P4opp0wSPDhCH2wJWmCeIw6kHw75nRZeLxCF1Xu/6Esc9TOCCVQm3d2n8SwRvjeOg2lQk8lDsxu6utOB2Cj4bJIT8ChbY6ZYsJ1COHewuSn5rxTIufeS5JxdxI56kwYjmfRnXuz+jn7MEz6RLY1T3LeKMhFJCzuTh3EHw0iRGdK5ozJ8TCOUTXAujEQdd1+BU0EPN5xVGZlM2J2q7qPUZxMF83+F6Jo14rzTgWgHJsxcIfjnGnWf3iEMzFeF0tRzp/9dx0bY1vH9uF4ztU2z4VRL79A5xiCb6va//pYK6Q/BHIrvHWImqw0WZGnFgZgl2mQyJdunSPdTzv0coO6uEvN7BKbetescop5soPcDITC2OZ9jXPfn7/+d32ZvgCLehbcYRp+U4ejf96lM4z7kTB+9s4ayCHlyEJYXaDC4Akgc8+pl+5EYcJXmoZ5TiIKB1XAFqCEOeY7jH+dcY9tkgmOOZ5jSGuy3WEIvUjUtaPtb/GnCxiMKAnhKN6WvNYQTDZuvYh3mMC4qU4QZBibAc4HSzUY3pEmaGE0Lg92ChUk4I8E2c2tSLi3KU4qIo5bhmwgGxSdMt8yON+x4udHFFn+0TMN1FnJ7Th+vDJ7SXPn5Ep3uifypGrbjnQ7Holtbyou47wSjJSxzIlijILc3/x8SaN2heqelfwg2E0i83q/Hkhu7HRV1SgdzQO/KAyzV6Ljps45LKuZYzBG81EDz/Nc43H8LWdAuuLbCBKyOeEELgS4IPv9I4011RXjD3MoxYJDK1iWNayjS/FpzqmYp2L3HgQgjvXRzB/gAfhNPEwTmsdUurJpGbP8blc+c0z1TCEgpd13sacbfFTb3zFbG/hrGRsIot43k9+31CYJdiizPRklzD87hI1yJWELuJA+dHOK6gBSN6azjdsw33COnABYs2RcNuXOtgguDfl8QB/GtsWa5o3RYwfP8Vp1Nku4gDOHm7UuOvwkZEIgUpexLFST68qPc9I/jnhuj9BCtLxRpLkebQjhWETYJXF3FRr12t5bLohJ5xBvvdS3G11A79XY676C1rrnkIrem+FtG4jpCLT3AwXbptBkSfdmzIVesZw9goSTlahIvTtevnDEbEpnCHyRLikP9WzyrXZ2lVZ6xNg+5PZKULB1DfwJD9DwneSpdBulHTkCoTzfr0zHTdfYcLkh3r3cl3MwSKkcrEfwD8v/T8RzgQu130G8Ou3owlqCR4agA3PXrdQ774t18SX6n1V2owvyIWcJrYtJfgN+WKj3HKQ5/uP8EVtNI/20AQ7R1iM+0SBE/NMhlvHzdg2cUa2zGG79ZxU5sOHHT1SM+4iSHVQVyN75jYAOexFjhLBMuk5p3W4gPcHKcZN/IpwrB0M7H5i7HroR4X3LmAy+/26RkJxS4RTHkBV3M7EE3ex3n0K9h6KyGYNZnxKac36BphAdfi3uzlmkORfl7CgZhTuF1r0jjXvR4HeQ1hJW+nYGwLxIGW7pcBHGS3imHDXX1WjfPEE/3Yxb7g9BHnmAu/HuJslRLNrV/0u0wI7TykMxalDKfFjeo5K3gjTOvzatzitFnPvINLb39L8FG9/n+Ea7B/QwiTMwXPbseFXI6wW+Y8PgRSgS7BZYLXsYurhdgXO9h3vYHRnRQq9zBUnijdtGi6QASc3cSCJJWhVPL7NM5H+v8TLJBznkO4ac0FXLK2Xe9M98+7GOZtwQK/h7CEajGqU16wfkWi3Ze4RPIGhrI7CLlRiX3iS3h9G3EMxxhWAppwafSEgw80vm1cx+AhLqSWSnM1bgxzFwespWKcFvhTjIKs4TKxzQX0zjiNVBI2cO5+H86KWNF7qzTntzGalMjDOC4HnwbLMQ5UTqv0mDhYOvT+Z4SSVIHLOZfhrJQvC+aRMQXXcdviMmwVL2HlexG7NO5gY2yZ4KFD3BUz6VarOSE61OBeBmmNp5FWpzUoIhSGazg48IRAxgZxkO0zgr8XOF3gZ0fvuUPwXbXm/G8wIrZGxBqlEZkH8mcF6/kdzjraxZkjKf+HiX2c7stGLBMGCaS6idhTPyb2x1PchTYNrCHRYwr31kiFKo2MeYJn2ggZdYCzZn7b12srA6u4+cMGoSHX4vzJ9NmnBtSiSc7ig/9IBLmk56QfbIlYoHO4S1ZqdAcEofo5XSZ2A7coXSQWr4FYvNwAOxr7tzg/dgUXMkkhMo1rhEMIxGKCCX5BLEpCf5f13YG7LeYzq/XOi/p8j2DWZT3vDq4q1qFxpwCoJ1LSTojNnRYSxOH0ChdzqcHBMLnJd/S+HRy4V6pn/Az39d7BKS7dGgu4j0EDwYjTnA4iOiSYP1GbXRwIcxFvzNTka4g0uCnN6QY+XI+x77da6zWL4d5i3Fb4FYZmWwrm304IqFocgbyND/K0pktFi1y/Xay1t2P06LzWJF0rI1iwfYUD1lJIQShgC9iHuoJrAyS0v0Pw4gKO7J3E+dv7on0L7s8wQQi0UtxVbUufv8Tafm70DzT+ASKzpBcXgNrDUOK8njMq+jbgapb9uOT0GaxAX8VNmnL+Oxp/A84Dz3HN4KIvB3rnIM6AWceH/7e481u66WqxS6eJ2J/gdc+DYxnH/Hyj8XRrDVYIfruE022fE4fZGgFRt+Og23SJLRHrfk7vHMZKyX3sx0/3YjFOoW0l+O4j7P/u1mdXiXWuw2XOx3C2yle6Jl1S+xjRXNRc38bKR9I3kdFPsNW+j7MMvq81Sxj8mNjbj0SH5Mcc55potIIzXhLZStdQR8Ga5n58SMj6KdGtgaiImPKmm5AFg7jeRisuNZwxEtWiTxp1NaL7usZ5F/PhDYJHBnF80jjOcEp6pK++QfNOV9eO5r8v+vdhpPMOlj+pNCE6NhC8ehFnzN3G7tkGThdAe4755gFOr0+FaQTX6kijulTPb8CtyB/h8+DDgvVAa5RGWhq0n+Jg9du83tdruwkSVkuYYp4QWPMazDCxcBc08bdwsN4qQfw8PJ5imOeEYKaE5yAYPIN71oiN9YhYvEcEk5XhlK4lPWtEY3mCg6waCcZL6LmMWMRS3Bs9IbW7uuaZxpR+9Nyc3bgOQaH/agf7js5ipSlRhFXMlNUaS7fGkD6hGqwJturzHoIhJgjBV0Qw6youD5zw8Lbm1kAwz2VsKXRiRkpLvpXYPKnAbYjmHViRKi8Yc7qJivEGBsctpAL1Clc7nMHtRJ8RTN+G4fdVXIiljNNdHjcx3F+huWwTfJWoQq7bKi728xT7ms/jUsZXcR2EI13Tpbm9wgprKlAHuPjMTYKnRggh0YcDkEY1hseEhVJO8GwqdTO4a2da8SnMJ3EU+CR2u5Xj4KBFjWsQN+BawBZ1l66ZxK17l3Hp4xpdm8pDuqSacVxH8vUBtgpXsdKfsOcMwUupBPSI3r/EOextuH58BUZ7OnC9j/PEAd6LXQbpe+/CCFwGdBXrviXsKjom+GZedGvWGv+a04dfQsXtoksTocQ16rNJQg680vVpuaffuUbP7yV4ukXzXsVVQNO67Rcdr+GsgEQU8/CowmmIVbi2yoTe04jbjx+JJjPEnq7HdRc2MYq5jYMa2wmZNIVrcdzHFn+V5vtc73sXtzh/n5B713CRpwnsKruKA6dXcKzTeY01EYwtHCCaKGkb7rraig//D3Tvtzgzpqzg7zuEfMl9lCjFCXZtpHuxnpBDcxjR3MVydB7LxjHcI2MMu56qcNDpHk4X7MKp82k0pGKxrf8vi0bjuHDXia5t1bsTqdzHxk8JoQSME7ySsuK+5tSqays1t+9Ei1vA/1drdA0XGEu3UCpyD3i9r3+rRkUlOEBkClv4qTVfxmmHvQTjdGvg3+GueEm49OFtEMRvxlrhiSZxDgckPSOYap1gzlZ8sEzgxj8QxEs/4HUc8JXw8AZBwIwBOI8h5x6cuZCLcY3Y7H+FW9o24yIZxXrGIWbeQVzF6j2NfwML6iPgD3FK0HNiQ/4U53wnhFeOg7WOcEDZLm7dfIzr6BdhwTSrtfiQyECoJoRip8axpv+n0G0iNlWVaDmK/cApnNMXWLgOecCky6QGR+enInkWr30zzu9+iQ/DC3rOnsY4i4Vbp+hwjhCoUwTDz+Oo4l7cGvcKzrj4lejxa6wkVYj+zRj+rsdd9dLHd4Kj/hcJgVqtdfi51muOsOC+0hzSz7mIlaotrdsgp4NIEx34seg3iAOL0gpOJWZK4y3DSnNaP6O4YmQrrlj4R7gY0BDOpy4jXGJ/gYM0G3F2zxmc0ldGrOcOLm6Sh+as6Hcf56cX67puIvL+L3DswSYOyi3Bro73cLrVBqH87WFXUxn2ASdkvIZTwXo0t38I/Au9+0h0eFvzmyH4Ygr7qqcKxtaHC0bV4ip2+zi4tQjXYkjFP5WSPVwW9wArkJv6/YzG+j5Gn9K4SUUtEYJZgm9S6Wsm+PYVPgQWCVn3kgioG9bYHhJ7fl3X5yHTrDWexz73a4RSV6J1HNXnB/pZi2MWlnFvjmO9r1ifFRoahwW0SSVzXrRPGX6VkKeJbLbgehgNokHK99sFvy/glLwBXTuFewJM6h3VGMHYw1b3M4JH90WPGkJB7cT89VTzb8Qp5oXIcj+hOCRiNY0P/4v44G/UfYM4Ji7jNFp0zTTu2/AWDgKfxJ0kd/XOxwR//AAXdTrB/S0qsbs+DY///HfZm+A/LiqijiDoNWLT92Mf3p4md1cTT6urSYMvw8FGJTgftBIHUV3ERWd6cVnOOl3bqOcm09djfxC4zWhaFJ/q/nqcK5x+z2OCaZuxJbCLg2B2iMN9Vd+3sGvgpea2qTEvYr9vLy6eVIv7n4/iAis1BAOfxw1McoHfICzSCZwyuEEIkMf4MF3FUGcjzjPdwpD6m9i9MI8bG5Xjg6kaIytVGn8Vjtatx+ld+exdHEC6qc87CeWtAh/G/QW02sfR7hex37MUt9r8RM9+VEC/QxyNfEM0/FzrUy8apiDcwfD3Om5Csqy1SzdVWqQb+uwA99soxemu5bjoTwcWUifE5k0/+QXcyXIbt9Gu1hrsYgQo1ynnX4aRl1aMRIAr6P1Mc/8UR7S/oWema60CB03tEwfNaAEtPgD+e81jCTeCKSp4Zvpyr+OMnUnigF7F/Ste6b5+bOWU4lbGqbCWEryUB2EqPfc0tl7cJTMPw6vY0hrDaZGJqJwQsqJUNPiZPvu+rh3XWO9onDnudN8tE7z0tmjxhNiTd3A8QAshWNPQWCb47AIhb0a0Nlf1dxGODi/VfE9wrYhV3IRrFccspAvkI723lOC3HezmWi2g71XNMV0HJcQe+Vj0OiRaH/fgttoNum8CB4a2Yt/1HA5gfV80SOPiSN9bxFrXEHu8iJCf7xD8kb71Fv2ec82DpQGn9tZg2btA8GA15r1i/T2MrfxtnDa6hVMaZ3Dp7bdxAOwKLjDWjJWYeY3jAq4D8jWnMy32CT65jw03NKbvE8bgOdz/oUZz7caVUNNnn+Pd0+e12NU2S6Ay97ABnArpnxDu6b9PGAeLhIJwV+/4UL9f0bzGNbebWA5CGADzBC/9x79LZeB/W1T0G/ghtaSErQYIon2N+wUs6bo8LEuIxT8gGOsJ1gozmGRV32mBnsMQ/Bo+hJpw4MoiTv9ZJhY//e2zOFgjFwGNYx0H6ZXiOgZrBPPOYR/WiJ53Hh8I6e/awAdmNyFUHuFDdo/YZP9G76rVXFMJOMQukyVcmW9ZnzUSQi/9ZSfYTbIm2twhmOBjvOHHNb+nWDtvxtkbCUdv4OjcG1iI/RoLhHbcRyH9W+dx5Pm+3v3nolen3jOl+X9MaN0NuJPaBBZ6ad2OEvzTRmz0OXyYva/3j2CLpIg4tDsxErSBy3buEIfQJVzr4Qtd2yk6vUMoWZ8QQUEH2I9drbVA49nG2Rf1Glu77u8nDs0/w1BowsR5qFYQQnsG10ZoI/jpHYJPFzWHC4QgOE8cFo9Eww7sxqjEqXuduJ1wWt5p+aQveUXvzIP1Bo53qNRzu0SfjPXo09/pD13QmJd17ZzoWINbwfYQe/sbvTONiErcNjx9snuYJ1IJb8Xpom0ED1fhbIMUqolEVuNo/ucacyIVWxpfKiNNOA20hygcdA67mvqxkXGAuzXW4vbQaYWm7zjlxrbmWIYV0UkccT6JXXrr2HK7VrBmiRqs6hmlum6a4OPn2FW7oM/KcNXHalzB9YTTh+EOVuivEzyVFv+uaJ1G0DHuZfEEx90k4piuzQN99j4OXEwen8E57rui+fcI2XKke+4TyNR/S8iAZ6LpCxzdX07IhjewQnUZZ5j1EHLh+zgL5lh0nccFe9ZwD5K0nNtx7Fa/Pu/ClQzT/Zhulj2Cp98i5NCE3tdMyLlFbEDs6+cTYj+n0dmGyx+344DpBRwwvy96LGKEdBN3ZFzGfTUa9fn/mFD4q3HJ9jR2/q+/S2Xgf11U9Jto/1G9aFQDSajzSINKbSj9hJ3Eps2NMoPLWg4VDL5Sk0+4up0g8gK2jvdwIMskcXh+hWvPTxMMfYib/9TiSlD1evYJbhYzhtO/jvSePmJRewnG3CM0stwQvbhZ0UUC2k93Q2qCmxhu7Mad9w6wspF+tgPchKQQcUioNa3RWoJRBgmB+wVuoHKM6zKME5unntA+0yJewNZhK66StoIF8TAOzqwjNugRtoQPiY1WRljpl3CA4gS2HNLCK8EFidKCSDjvpX5PxOgWscEHtJ6f41LGg7iKV5PuLSc04mpc+rYQTVrByEQHVu72MRzaqHmlAluNK89VYYUjkZNtDAvP4ACnKhylfoaw5M/q/saCa5Zw17VVPTORhURQDjAK0aQ1foM4GPcwarOEu1DWag2v48JclQX0b8WwYjmxT7txquEhjq1I/3MtoWz+1xrXm6JZJ06fywNrXs+pw+nGRcR6X8f1PP4eYWFNcjqNNyHoPayUJUqV+3YdW3J1eD+0YsViWu8bx26W97EbsFH3FOP21ZdwcOg3GLnsxoViJvWsHxI+bbDLLC3KMZzLPo6rM5bg/g3ruNBTGY5JaCF4M42m5ItazfcKwROLeA/v4b26pXH04GJJDXp/u+i2ipXnXeIA/WvRZJk45O7p5zTOp1/Tez/CNQoOcernPk4dT3SgUDFpIeRMuvze0O/juIlaKsngeLJi3EytS/9rJmRUunfSdV2Gm4wlXJ8IZQV2r80Q+3IXQ/gpvxKxGMd7Jul8keCflDu1mm8armt63l0cEFuuMTcRa/suVgSuYVmUc2rADdNGif2WLrQ3CcRgC8e5lODg+ApcE6EO75kK4H//u+xN0IRreRfjsretxCKN6vMLuIb5PqfLc17EjWtSeXibYM5bmmBa2SWaVCoUZ7DVlP6g9K0N4nKlCXl24FbDxcQh1YszIFqIw2MOC99iwrqbJvxn9QTB/y4uwbmIW18uix4/wWl4r3BK2SKxuKlp3sC1FD7AUaDjuOhOLvQWruw4q/suEpu0Qc9vJgREL5FLPagxPNHzX+GiF+9i/1o5LsHcShyQxYRme6Bx/CnB4Kk4leLOYK1a3wnR5XkBTYr12VUcIJU0fk9jPUswa7/GvFfwruea60tCKO/glp6juFb3Aa6N8FJr2aBnJ1xdjq3PNo35EdaWKwh+mMS9BaYJodKo52U8x67ue447MKbP9QRbZZVYOXgXw5WDGvcWwat9xIEyS/DQkug0qrmUEfzynn7vxj0HNgkkoRqnt3boOw+UjwvWaV7zeIXTavPw7CIU2G79/gqn8X5CHG6f4xiPRWIt0+p7C6eeVuNAz2Nd9xEuu7ovev8C97iv0xznMPrXpnv3dd2Rfg4Sh/Z10e8KhribCN5KHkwFslv0+0y0SQPjPZyCm4fdS5ynnnD1OKHM3cV+7afE/jmD0/p6cBnvi1gpeQ+7JTdxxkj6u9Onu6J3VOIg1mmC9w61xt9il1UVDmCcxXDwAUYak/8bRL9Z3BU23Sb/Guekn8VNl74mvpZw99ZBnLb6NSFnPtXY0j2ViOYWsb/KcP2FJxj9S9Tw9wg5UFsw7maN+S3cvvoORgR2sdwox4p6M5G1cAsXAbqksbyNS66nsj+nzxK5Pq/xVRJKTgd20+zgM24XxyRV6d6XuC7FvsaUrscB4lxsxgjFvO6ZwkrcP8b1X5Y4nR5bRsiJTb2vAhfT69CzE6VNNCxdBk95va/XVgaGcQ35hCr7MbSTAngOL/QW4f84JiCkb/RZScHLnxPEWiaY9Y6IcKjPHmM4ZgWXQ17D7YtT+HxCEOU8EVNwiDX1VDI6cRDhGhbif6r7v9N9dwhGqcXBj6XE5m7BVtvfw5UPL+lZCffc0limsWXRquvuEwz/e8QmfEFYE40YKUi/c2vBZxsEk7cTAXFPcHrNVSwk89B7qHE/FX2f41iORCHuaT2+wKlQ/1xrdYNY725CSM+KfsmkZzW2ixgeHcWbew6n0zzV2j3X+77C3R3rceOkOj1nCFd9nNO6JJRXrDH8fSx4tjndZ+AGcRClEpaH6E3N/ztc6nhU46rT2kzjCO4G3B40UZ308yVEe0wIiV7R7zEuPPQ+DpRdFs3KCF5Kjf4QK2p1uHnKDA6Ce4pTpr7AkeMlOFunSc/6NS41exZHNj/CxY4OCMVhDFtl5/WcPiLgr5SwSMrxXhvCcUM/xulR4HTgLv0+jWN4jrFi1UgoX+0E7x/pszMa2yWCh87iNKuegnv7tX5f6rqvCKXlPMFvl4l1f47zyCdxm+dvMTqVzz/BPvE1Yu0PsfV1g9ijrzSnXoJPP9Ccl0Xbx8S+PNQY0z/fijMWKkWvatxQKqH/RKCaNbZ04WziVOZULFIJy+9+nBlygOtCVGlNKnTfhwSPdeOS6aO6p4o4PAc137dxdcFjXV9M7LFcu4TEB3GwcSp8fXpPuiuXsPGU+x+sNK3iGKV0L49pHhkL0Y73+CTBF6NEBc0cT5U+OyZ4oxVby82EUjlN7JkrhAFYq/UZEZ17cYxFomHpllvBCtlV7HK5qfE+xrL3U1wa/wIOhM/DHI31Eu602Y6LXqXrugu7tzP2pIvYJwPEHinW82/gAlav8/XaykA19rnNEgsyhmGnARyFW48bcTzCAYJFxAZ8k9DGhjXocYJB8pD/IbEAg8TCnNFnVXpHje5Ln3FC+wnLpiZ6TeO6TCxQvcb/BrEgN3AO8acFY4NYwGXcie4dvLC5ycCNXS7hw3oE96pvwlUCi3Fb1w58+CaEVkVEQXdgC2EZK1+thHAb0vhTO/1XxKK/wJbuEW76co9gxDy40p/fhjNC0m+/g/Nq5wj3x2XcxKNE7xrXO2YI669H69KEXRpt+r1Xc0gIP5GIqwRTX8L56Vs4cr5dn9VgYfdLjb1Sz/5XGtMEdj98jNMIt3HMRymxQV+JTi2aZwnOFU64Nv3yhwRvnsXIyBlCkHxDCOvb+jlLCP8ZXFtindgDD3BlseSdOdzYq47grSZsuXfg/g8zOJf4pv4/hFGViwTvFuG+7EW6fhrHWZzgLo0lBC/2EfydfLFPKDCHosmPcerfHMFXCbm34RTWesKau6D5Nem+tFLqCN7sJ9b2JbG2GWMxguMyVoi9t43TXH+uz18QgnMH18HIw2kC+2S/0TheiX7XsdunHleEXMCpdm9io+EywXO/R6A8I4QSUYUNmQpC4U55lYdUG+5wWiM6b+H0uCZsZY7ps3VCfuzjst/H2AC7qHmAeeQQF7jqJvZluebfpf/V4qqB7Zr756Lvm8T6VwL/Ia6V8pKQG0OEPEif+R1Cye0ilNl6nCHxNs6aSZj6Mo7vOMLxKw2a/zgulNZF8MY5rVXuk0R9ygmZ3kvIvkFcQ2VPn28S8jzl8VWNaUHjuaixNOPCTBcIvkzl+kBz7dQYbuBgym1dk0rppmjzFa5f0I1TmDux+2IOx21AKK4thKsmeT7dokfEvinBrnJwUG4zro8xgutOXNNafoxbTZ/j9b5eO2bgHxUV/UagJPHyYMjAoF3s586BHRICeJdg3r9LLGApji/oESEStk3opI7QYCsI5pwVAdKqOdR4bhIL85jYhF9ggXQWR9F3aLwzWPuvxpHJDzi9yRIeS59MP7FASwRDv4s7Yz3GgUVvYGh8X59148jTf5841MaJhdolNsJVYmF/haNbxzSX9A9VEptgpWA8k4SQryY2QaInOaYMUFnT2iS0dQGXR27Cmv8iRib+DoYim0TTx1igL2pslwhhs6R33sTlOlODTctwXu+8jGsXpO+thuCHcnyYjWILY1njmMc+0B5i/ff0eZ/GPo2VsgqcnnVDNB7AKUptGOa7gy3dCa3diNaqTut2gziUZrH/MGHA7wH/BfZ5V+neVNjqib3xRcHYVnEJ4QqNv0bjSbj1iq65p7EV6Web3p98uYJz8FOQ/EDrNkoIEDTHf5dQqK4QQjRdGft4f5fiPXFA8OUTHLi3iS2VRRy8WS36nMGxGp1ap0RgGvXsFf3vmWjzSvNfxE1xynXtFHHw/ErjrdD/Jom1P9C9f4u76W3jtrJ3MB89IKDlfyG6jOOg03Qt3iKUgFcYJbpJKAH7oksHIQ8e6Z2JHqZf+Vhr+IeEUvMPdG0lDhCcwyW6J3DU+jJ2a5XgGilfYYTiRJ+9JA6SOV1bjQ/SdVzP/7/AcVqNOH1xFRdS+h5utFOOkdgLuKTxFc1rAaN+VXrOTa3Hr3D9iHQFVBIyZALHGHTjTLQ0Ju5r/U5w0F8jTvNs0lxzf2/j6oMPNNe/xnUp9nDMxjNdC2GYos839PsKNqBuEEpLGjDpvl3BdU2asAGSVnwqPAnrl+N4kR2Cj8dxNsE0wT/pBqrQ2jwn+PABrj1RjQOED4izbhvzeqXmexP43/wuYwZKcdrePN6A2xrEM738A2LDlBDMMopzTFs1mXZcmW1fE1nAPaRv4CqDX2Mrt0nEmsKVCdPX9gWxSF9jC3MbQ0xVuOTwFkHw3KA7BLE3CEYvJxaoFfscN4nNX477nR/jwjBVhDC6QGzISpzvmW6RY4KZ/iUuHJNa+ybwXxGwZzLNOq7N0IRz4dv02VON5azWZpBgoLeJTdaEfXArBDN9gv1mJZixE+pODbSPYObnBWOdIwTiOQxxTev53+BysF2EsnMDR/RvYGGxqffPEwpBQnepBKSimTEiaU0/whDaWxjCXSYsmIRRwc1VlgjBNIBTzf6NrkkFJBWfHYIfv8UKyAnBR3e0dg0aUwr9AZy3fQ6nq51gy/pEz0uX1Y7oU4kP/ISEK3Dmyzl9txKb/0A/O3Cjrl2NZx6nh3bigi1pyfwKZ4GkxbBD7Js2XORmSO9ewV0Om3HPh4yF2ceQbx0+oP5AY+oj+O+PcGT7hmiQtDnEcRgbGmsFwWdVBC8N6DkDxLonLwxrfi9wN80JYu8NEDx0BSuaQxiB+Uaf/Zz4+glWdLY1h0397wXOJPljrOQkDVpxH5V7uPHYMg6gfJM4+E6w++ZfiS4vsFGU76zXfO6LBmVatwYcz/JA70o0bwrzVAXuYNiL4w8Smv8pwVftOHNjl9P1AvoI3sjDexJnZXxLHDbdOLNsHhe7SldiKbFPDnBKdSt2Z/XhfhPNhPzqxfElywQf5L48wFVL01X4NubndYwGrIpWzwgl7WOCN4ZxWjX6LBWoQpfdGg5CLNLz9rB7tZNQljIOJV2nS/qZhs8qLupWioN/S4l99zNCNtTjeIsPcUXSPdwrogG7MU5wBs223jmES5L/nuhWhwvu/bav11YGbhdMDGwVJLxXpJ8/xt3I0k/4HLfATVg/oalmnOdeQQibSQKyatBk/oZgzBVcqrhHBPkhhsISurlJEG8HN0LpIoKIivBBmxblH+I2tY9xcZVe3X8OpzqVa8yvRIceHIXfiRt0bOAgkMuaywXsGqkhDudxXK3vesFYj3DDjTk9owzXG8h4h0Nio50QjH8f+G+IWIbcSJvYKv68gE5bmGFf6v5qrDycxRG8w9hlk4dlHgRrRABjGy74saGfVzGMt4ED8W7gDVQr2hziGgjTGtcsDpIswW2Yf4FLdyZsd4UQKM2a+w3igO3FGQHJF3uid26AQ2ITfqK/0xpJ/34FcdgsE8LlGFvEm6LXVzhANP3MNaJRMS74sqKfxTiV6BIOzkvofBUHrLbjTI0dbGGfwa2Wu3Gd/C1ck/8sRlnA8Sfpb67A/SgqcDGk2zib5hDnhFfrmeW4te0Z4pB9RCgA21g5byH4p444UCtxy+v0L9fqGYlWfYz37wjBR0uELNnVNfdwW9p1jakU+O8IPkn35AnOgkl+qxTdE3k4JJT9AxwHkRb5A0IBqyF4jILnpuvriODVTa1rF26/+xxHlicCWo2DJlP2/RDDw6s4ir6uYO1acVxEyogNnB2VaNSern+GleS0cNMdm8ZaL8Hj0wX0HSH46QAHJSYE3UCs6Qoh7xa0dse4kFwaWcWEcgZW0N/Q3/cwqrFGIIn3CL7dFM07C8ZarrG9wO6Ye7heRtLiv8fZVPu6fouQt+kG2SRQ6jO4vXY3rqJ5jN2ne6JLnnFlOF5rH3dDnMOdY09wQPs5Yi3TzbEr2g3hGK0SQna2aZztxDq244P/Hu6FU40Nw2Li8E83aSmOUwMrmb/t67WVgVlcdWxGg1rFhXX6NbC3CcKM4z7Vl3Cxh2I96xnOoTzAPpNFHIuwhLsQHuG2nZOEkJgkBOQE7vrVSDDVKLGgaQ0cEIwyTQiqC/p7h9DOmgkFZRsHEc7hoiOFVt6exvGAWNAW3OXsAAuD85pXP7EBn3C6bGeiH2/hEsYduMToJex7ekYwxjc4kOkHGGHZwlBulcZ2GWcL7GBL4T1dn77XM/q8GqcWzhNKRx4aKYiTFikId/X+Z6LhFC6+Mktsgh8SykKL3rWpdT5bQOeEzxr1vgni6zJx8A8QvNWia2r1zlYM9d0lNusr0W9Y8xvG2R9zuv4MYREu4Sj8R9iS2cHtUxP2PsKltNcIvmwkeCmFfDlOJbyEC7ukAlaEO8kl4lKF0203sSDf1P9LcJ3+NT3rvK5vxkGra3rOgsa0jRWxPb0/oXiwlVaKOxCieSRPT+q+tM7yEH6FY1Mu4qCwYgKeryb4PpXKpOHnxJ6ewBkPFwjeHsZQ+TTBGz0a359jNLAYw8t7uBjSNo7+rtdcjnB6V7o90s0ERgov4zTIWpz6XI9r5D/AluVDfPDV6t493F3zGLttbmDF66zmvIEVsF19flfjeI6LMC1rrqmovYGVynT7XddcRjAq20AotxcxsjCrOaSCua37NvTcUtHigX5P3/86bpaVis86jsJfIuR9MYbDa/TZOHYlH+IOtOn+eErs61W964iQV/WidSouM/isOItTa1c1/iJ9/wkOqksUuoHg1acYpb6ktZrG/NSIaxYUa13/I63JBdys6nnB2m2JLik/0zhp0zgasAuijpAvIzgVtVv0+ze43fR/S/DEJk53nsc9PZ7qf5/hoOYxvB9rcMXWWtzR8bd9lb7mdb/xP9ViiGgD52mP41r/nRgGXMH+/BOs5ZQQwmIEQ1HdOBXsG07nXH6Mq3c9xXXK+3DA4A3cIGKDOEBWcFrITVxKODf1vp6Zik4prrd/QCzYAcEQ+zjQcZdYnPTJDuIiTF/iaotncO35XT17FAuUI2LhSnFP7hPc+rIEd7RLi/drzS+VjMsF11RqvWb1nkRkEvbKQJZeHETXgP15L7Ag3xG9LuKsgYxhGNKz8jApwb0A1vXZCYEiJJS4rc+qCAtrQWPZ11iLcDrceX3+HFdUG8dumLS8y3TdbUKYpiDcxP5uiIC4V4RV/wVOfdvWXO/j1Mta7B7owZUytwke/Rzza/pSizWXPr1vt2DOVwmeTYQgD6BqnIHxCgdp9eH0ygOt0RJuXJQoRA0hxLr0vA5cIvgr3EWuVGuSdCvCNRJyPx/r54Ce8win6Bbhnhy5d39EHPpncJ+CCdxY6hBXXUzXXhGultiq8awW0OuAgNQTuUkrOS3JVGDTzVVLKJo/xpUAz+Jy2j8h+KyZ4J1eglce6n2lOPZoX/NqFV3vYmv8Ko7e39T/V/X+PhxgV4/l0Be46l0K83QnPcTF0HoLxlOO61/U4foPqaAnwnIf1w64RRgvvTiN8Jg4WH6G4wW2sKt3kljnA1wy/CWuDXOIG5rlPLsJudaG4xFu43iwLc33KiFLGjEicYizXFo1vvy6juM3ljX3JhxPkZb1EEYpFwh+vokzFFJBH8LFzbpx06VagidGdN09jDSU4uJ2xYQsTyPgM6zQtBB7plk/W/W9RvB1v8aWbvR1gj8ShdzGcUVg91aiyqmE1BEK0ktscFWLHm24NkOpaP6Wnt2IA4/z/elafJ2v11YGinG3qu9rQCu41WklDiRpxNXeOvV5Hw4ATKjlCYaUGnAwWTeuZbCCUxMPiI1XR2zyQ5zudIY4JA803jYcUNSl5zzFDS/SZ5VIQyUh4H6O8/jP6GfCbovEhu/D1vgyFqz1GJJ5TDBbGQ76S0UkmakbIw2NuEFRHxaE+/hw+hKjBRko00i4Uc7hZil5SH6JgyTr9L+7GCG5qc9+rDFVElbrz7EPc1PrMI1zq9dEv1E99x/ivgtNuMhIHrgLomnS6gKGcc/jjpOtWJn7E8Ia3MH1JhaJDdLB6a6No8TmTuG+jrMNWrHFW0do4F2aVxGxkcAWyQDBl2k59um5r7BbpRXDzWPEZq0gBOGBaJ8+6A8JZKMWdy5cwIGqKxpXh2g3rrGd1+fPcb5zL7HuDcS6PyV4IVGKpMUeboT1Ckejt+H6IEWa8ziO1VjAudtFWKG5gwOSGojD4DMcf5CujQtYGUmFvIZYw9xTudcPsRzIsT3DVUi3MRL3HDcEOqe5pmtwATdyqdP3DE7rXBZN+nFBmiJiH7Vit16j3jFMuDJyvkXE4TuIuyym8j9K7JVaHP2+juvR9+meJzgb4InmPq8x3SMU1ElCZib68xT3+Hib2MvjxGHXTvDwCK7mlzEJ07grZrfW6B6uu5B8v4p7UUwRX5c17me4kdAxp905O3p3F06R3MPVOFcxApPy9ZXGdx13KL2o66Zxk7curUkZrtOfaEUafCljzmFUBd1zot/X9ZxEo+Z1X6JOaSy04FiW72GeSddPETZy53BWS8YW3CVkaLvolofvIc4ueqCxTOqZb3HafbCKlds7ouUQsa5DWNlJRXQbB5s/xX0adjEa9ms9D2JfLfB6X6/tJpjRJFNzH8cVwTqJqORVrBF+gSGmMYJxm3BN9FyMBQzztOvzcWxF1xDCvJnYgNW4QmEpQeBtXJ0vLYwDXMXwCS7MUUpsjKsa1wYufjJGEPoMcSgM6do9ghly3BuiybbGk36cRDmu4F4GR9hafwtXJ6zjdDGcfuxXnSIYf1Zjewf7dh/p/X24fXQTsTFGCKGxj9M/U6AnErGNi7Lk9WmRTOn5HZyGz8dxIMsz0SEFwhHubf8IdwnrxsFwCXPnoVGv55/B9cJTYz8iDv0fF9CvD5d//UTzfsLpcpxncDpmGw62mtK1D3HWRJ2uvYUDCMsJXnmF4egqgq++xR3J1vT/fdxmdR+nD21j33K37n0HW0l7uCRtuoM29YxHOL0MQjh/hIt7gaHEISLWpQfXuHiE0bdUpm/j0s6lmve81usEu5AORMcrBO/dxMLhC9ElBXmiRAuEUjBKIBErouPbuI/IBxg6zaCqFo0X3HhpQvN4jMsfF+NWtx/ibIxpYq+kCyJdVWvYtVeGgw/bsQXYiiv7fY2bZ73AWR+ppAxr3JsEr9RoTo2acxkRrb5FHAxpLQ4R/LiEqziWEIpDQreHemeiQjOEHzrjFG7qWSWEhb+pe9pw+/hWQnFJhXpE32cwTJ18mcrnkX6fEr2mNc4XhNL1Aitra7hfxhQuQf49jGRs40N5A1e33MZxQi1YvhwTSuNzPT9jAlYJ2fKl1mUcu+oSrS3W8+c1joe4dsQiDjxvxPKzmNhvu5pXh667TOyFLlwdtgYHAXbgqo+zxL4EIw1t+t9j4sCvIvZ6ujC+0Zr24Z4NB4RitkTskUUcu7ZErP2K1hacgdaqtbyNz9Rp3d+FU+0TYU/jcU9jT4Xpt329tjKQAuMXONI64b4zRITqPkHEYwy5XBAhdgjNMA+njDPo1XNHCYa/in1Io9hPNksIuzqCwA9xU6E64oBJmLZPz/9TXFp3jdDWkrHu4qCj/xRbDkUEc6WL4pbm0YKhyxJi0RqwryzdIQmp/pxYrFWCSTawVpv+swVi4zQQzHBb935f11zCwYoJFdfjmIEHBFPMYiGyiyN3e7HwqyM26EXceXBfz67DAvUyLpe5hlM0a3Ar3imN5Ypo8rXWalJz3iWYMd0LLXpmld77HYaVJ3TfHWzVNhEBMUu4816OL621Rr1jSfeP4sqSR7hT2lmMDHVrTuk6eoQVoiYMZ+8SAjfps4hLJ6fvtojQwLcIgf8hIaAGsWVwSPDafZxTPKI5XMbKcVqKxdg98a1o8xW2aCaxmy19h624Z8A6FlTpHtjU2Hr1/LQs38IdIdtxLMinossUcSC9hYM9bxNfmzh9rA2nkw4SgmgIt9rOeQ1glKYCW/ubxN47T+z75gIadOPMmjGtXSlGHXZEo/PYbfSR1mpb9zzDzcnSKtzFB/QEwY9VOOVtHNfcH9YY/7neN4flQQrtTqzw9Oj908Se6cYK3xVCVvbjoM1NrHwO6H3pa6/DcU/7uONeuivfJuRYHpjtuBreLsEjjwmZ2omzczo17icEn18mZM1t7Br5AS5wVEzwxwtivf8cB9PWYxdahcaccRHHuPlPp+aURlkxcVh+p+vO4LiLSkLu5PM2tZadel8egBA8l0jcIU4d3RYt5jSPFv3dR8iKlzgGbV80TGOiC1eXTUPxB4Ti9xbuQJiKVSuhFCfi2YXT609wEGK6SQdwp991QtlewmhEuuwouOaiaLCOYyWqdd8mNnQrsIGbiGui1b/t67XrDPwvi4powFDJpia1qYlewrXGj7AP7lADbsO5k5sEY35IHCQJPVYSi7yk5y1hAZkbGhyYUYajVtPqqMIpKXsi0oe48MoQTqfZxpbHAi5EcoArkqWScUgwxAixwfaJjb+ArZxJHLm/oTkfYojoQ0LQpg9xH8cHXMaRscO6fxDDwRkzMEgI0jzY0odcTxxcF3EGQmrSV3BVr7dxytK+aDSDU7aacbGc8zh4p0bPHSQ2U9ItUYYzos1ZXLYzre1G/f1ItCklNucmIQzqRMtzxGHUSqzpDD789wkhip5/QeNZ17MTLXoL56iDq0eu4X7k6X/bwZvuR3rfPezKqNHzRwmBmgdDh97z17gOeAZlJa2bCYW1Gwe3Jg27sJsNHMGc8QGpSCesW0sczH8pOj3HXepOsCtljYCc13G6awqJetGwmuC3u9h99QyXJp7S2PPAr8Xuql6MgpVrrndxr/aEid/U583YpZXQ9AWCRz/HbsV6nAJ4hIVnB1aUf59QfndEswVc1vYEt7vdwRB1ObH3LhM834E7IOa+yPelFfmBaDaJg5cXRf8FgsfGNJ6fYR5pwChfGgzDWAF6i4ixSBdhGkdrBdfdJg6GQWL/5sHYgGv0N4m26fZb1bhKMERfj2uGjOh56brbx8hWytspnO67juPB3sSFb9LomsFZSuluOsEu22v6mQjNVaxQV4jW2xi9TXdPif6PaLKF+5g04qy1RANz7Yux8nWIa5VcIfilSfS5gVPKR/C5Uqp1mMcpsBlHlMbLEk6XHdNzKjEK3YeDSFdwxtUZYq9+QqzxIi44Naf/F+uZjXgPn9F4Z/WcVCxKcZZJLS4wt0Xw5x6usQLeT/vAP/ld1hkoJpi9DFtmVzFEtEww+k1sYfXiQKkizDCz+t/fYn9/+oUv6doXuI1oCYZJS3ClqFWCqBlEsU5s/CTSCXGgLeC6/xcJZk8rsk7jTXilGluPqzg6+EC/j+BApfT51+u7Gbej3ceti0v1v4Spa3BZ4xPN/0vRZxtrkMUYhanWXF7ixhg9OD8WXZOIxY7uS80w0YufiKbDuOFTJYbj/33cQvcFtsZqdd0T3MznD3G52mbNZxvDhNU4cLICt4DOazJgqErPSeF6WPCzj9iYZ/FmrBFtX+HOZUmzR7iy2BruzFiG4yJSIBURfHNe83qAc+q3sfA4Q/BCObHme3r3JwQ/1eI0u5fEpv8CB8J140jqFLwZS3KWOICKcExGKgWdmlsiG2cIZfaSfq8jDtd+Ym+2EgpICvAMPkoYdhF3i0xlI/3cR1iJOyKg4DJin/eK9htaw02NZ4xY+zHdcx4HjvbjyPFc3zxYf6Z7jnHA5RqukPgGsY9TIbyDu0FOYvfKKxyVn/vvHO4rsapnJKpURihhzRrPBLEPhnVdFaHo92DlYpeQN1O4J0MpgdhU4fofJ/o5ipGkKzgz4wUOtDvQtRO4DsgOTn97gstO9+L+DHmIrIgm0zhwMZW/YlzJcYbg7xPcCG2G4NVbot0LnK++VfCzDZcNT1dpojKVGIVM+l4nDrAprUu91vNn2IWzj3tDpLvlDMHP6YvPQ/UDgp9WNLcnGOHowsWazut5Z0WLO9gd+Ye6/wj3SNgi6kj0454G7ThupU/jacDdX7uIvfYApyLuYrdSHeEK3MJN+WqxQTaKO/DW4xiLBV3bLNo0YWXqAXbPlmLlrZsw6AZwLZ9iXADtKaHc7+LzKBXo3/b12srAOxrkPkHg1C6rcZW/XcKyOsI15DcIRpjAOdZVBMPsijg/1v2TuMvVvib8nq5bx1HMvbiBTTMOujghCPyexvUOLgKxiVNJ5gghmpBaN7aK9wmGaiEi0FMj39V8kskXC971He7PkG6S9MGW4ijxBoLxPsZQbjeu319KbORW3TMk+lUTB/QkoeVfED0mCUE2pXGn/3uG2JwdOFagGQv39DEl/NyOBdtdXNL1Fm5D3czpdqfreu4N0XEK9xqvxX74cr0noeQ93AhqHFsND/EhlYhKEw4AKsOwZCku7JECNoVyK+avE4JXmjDsuIlrGaTf9AXeXOkv3SI2Zs63Xs+a0/xGCEH3AvfiKMECphgrwXn4XyX2RR6mebi8xP7R5JNVQkHc1Li/1roc695Hev4GzkRJZfdmwTyOsAC+qPGlf7RINO3HKYJN2L9bg6PYU5BvEgKzA++rIuLrG6y0X8WFiNIfmq6OtMwTmanBDYoaCb4f0f3v67l7OECqS++5TBy46R55huHfyxp3FS47nAjSPnFQnNc88kCr13qM4gJaqziocow4XBOVq9e96WLc0tg6cW37hK/TEEjrcw0XLkoo+NcE3AxGS4pxWuuPNa4LOGPpiZ7RjevAFOHCPRs4YC396XuEG3ODcMd1EahEKh8buFR2Ggq39Zz/BMuwRGOPNbd0ESbfXdWzdwjEKg+bWowuJJ8dYrfqDdxnpBPHjCzhmgN1ONV3Xs/6A2KPtOLOg+miaNbfKUeKsCL5nFACW3C57yMc/b+ma8/iCoGNOL6riygkN4f56CZuUV1KyLtiXBp4T/P+D/VZM8EzU1j5Sbm+hqt7FuMMj2cE73XpmWdwUbx9ggee4qJ3v+2r9DWv+432n5pGatHLOLBvjCB2E4YRNwlC1hELlXBtBW4wdJbYOOkPPcRwdC5mwlT3cE59Hc5/LcHwSGqRE7ixzxVcJSsPkgs4pQusUbfoWTO4DeYFXIjkPM5AWMJFQTqITdaB6yY06pr0Yc2ITiko1rHFu61n1uNuWk3YR1pFHPKfai26dM27ONNhARfD2SIY5IRg4ov63xzuEzEn+vbjFsoJsz3HgSkjBWNpxH3fZ0Tv7oKxH2qc67p/U3RLqK0MV69LF0tae8vEIZzCKDXjVdxtLn2frwgtOZWmQ2LN97DSky6VfexTTEHZpXt7iUPkTVyauIIQzOmySJ/dNVwFbQQHH6WbpBYHUqXfu09zSAXhvuY9qs+3RZMaIiZnl1Bkf64xpzWbykIFTpftxwrjPnZpTeIaFJV4X1ZpvivY/QEuA1uuOX+OSymP6Zr02+5oHGNaizOa9zbBZwuEcve2nlOD+yzkOKpxGtgl3Atkh1BCU4F9jOsoDGkcU7iexgw+CCtxUaT7BN814Z4TqUyllTeizw/1s1Fj/Rzn7q/iOhiluF5HK3bz5HPqcMGc3CcdBJ/24poNeUiM4eDahLsbNJ/PNI+XxP5+gq3XGbynzxAK2x9w2tjaI3jjKY5SX8D7KpGcKVz06A3s6kvXS+79JV3zDBtujbgM8S52bR4RfPE17lnzLa6BUUbERSHa/BJXutzVtbkvfqh3z2OEpRlb3Ye4RPYjvW+b4JtaveOEkAOJ1DVr/Ic4kwZcMOxz0eSi5rqG0bkt3OehTu99gdHEbT0r5ftVvfcTff5A78yz6L/CzenK8Vl0grv/VuFGVnXY5VBErF81Dkwu1txacJXdOV7v67WRgSVis6W1l5BL+oXBAVuDGlg9wUBniYW5jP12CYmV4ajbfYLpe4jFvIijqxv0jlViQ6QwOyash1nslywmNtQrHIzxCvuVa/X+xwShP9bYbuFmNuu4eM0qIbB6cCnLPmzFXtJzhnHZ0EQZ8jCtIJhtCxddGiA03lRu0kpIK68DB5aM6N1f6N07OE94GVsae8Tmb8CtkAex33cOx1Ys4DrXZTiAZQ4Lxox3uIGt/RoceHWAc1pzk65qLOnP2sW+uy2cTlZF8NSivtsJnvkSC8yE2JNnDkWTasJKW9P8cwyptQ/iAhwTot+E1uI6biRThANz8kBKX2UVjmx/pvm80PVjWGErJnilCKdw9RJCfJYQAI9wPnELwWe5jv24W2ed5vCl/leLA4Cu4hTCtJhWcbGTbpwZ0oozOhZxw6NjXH42Ywme4wCvXs0xETFw+dX/OY4tyfiLAVxsppoQmtXYlZOHULrAruPyu40a2xZOXWsWvQZwxbr0gxfjWgHJi4N63zWNqQZnbTQSCslZzMeXcIW/bqwwLeN6IpW4r0ARse8vYCE+qPdkXEOiGgvY7Zn3PsWd5IpFs3S31BAybARHyz/AvVuu4+ytbc3hIRGvUKG1nMSK4jRu51yBK7u+wFk/Z0SvNizfZjBfJNo0j6P6a3CK8iPRaonY63V61pjue6A129O8X+L6KakE3taYEq3Y0O9XcUxLIi9TetcrvfuQkLHHmN9TBi3ijqOHONB3A7tSD3DdgR+Jfkv6mf76Mv2e50A5Lo6WlnoilJMY9a7Wu5/hRlpPCmjwGRHgmi6TRISmC+YDwfv/CLeWTmV3R3M5j7O23sLp9E+wgvSpxjVG7JnX+fq3CiAsxr7I3Bi9mMETbh7HkZZ7xCE7oWsT2vgaF7xIJWOPWPwdnIM+RAjPFnxQ1hMb5SFuu/odYTX+Uv9PpnuIlZfUfIYJ4v8hsRH7cdGbERyEsY4LZSRisKfPP9FYR3X9bsF76rG/vREfGG/jmtjj2P9UhrshHhNW+SSudjWIkYjUVldxMFc7sdk2CaFyhmCwUWKDpVsn/UttxCFVh6vtleJNdYQtow3s/28gkJkmvf8tHEA0orl9TFi3G6LHeb1vWXN5GyuJf0nwxiz2h93T/J/qve2EIG4gFKGEscGBpPcJvrtNCLZxosHSNzhuoRkHhLVqHA819hUMxa3gvPhugs8fEuu4QfBKoltPiMNjHHfbO8CFqRLRqRQ9XxWswxVCuPTgg6qCEABb2LKswZDhWRztne63Mpw6lejHBawknOjedpz2Oo1h62oc0FaMI6+7CB5u1Hcq7WvYx7qNLfR0ZzThojGbOEhrj+CXm/rfomj8rWhyQ2NYImDTPf3vRO/IGIJ6nAGzht0hbYSsKNb4DjWHJa1pC/a/jwL/DuH3n8IBf004YG8TN1Taw/1J0n9+gZBFKzhQukRrtIxjSGZwz4hlzBcpj9K3265xfI2bEaWy0oZ7R9whZOi8aDaG4y26ON1RrwErvcM4/qpIz835buNOrAe6vhxXLF0voGPGC6SCWkHIvyEceN1FHICNhJI2rzEV43or6zjD5xBX4ywl1jpdaWA//DGu418o+zb0+xsYgXqCSz6/hWtMHBJ77Btdn/RLGVhOyIY9HJBZihGUZn0P4wJxt4h1ndO1zzXuRAuL8RnXi4uApTLUiWsh3CDOsnO4c+oqdhW9pbG34EDZJ7gmzgFGGStx2vb/5XcZQFimSWfgRr++1wltcBQ3oZkkBGS6FL4jCDVMEP4+4auqwXDrHsFAZbhC2irBsHt4I/Zp0l8QDNRHHBx/B0NprQRh0we1javvpRXZpXH8vq7r0Jhv6/43iYX7ENfd7sSb4Rkuezqh31Mp2MZ1pudxoZQMSJnFWuVdbEU3EIv9QHSYITb/CQ4EuydarmtM6auuFN369fxp/T2KN1o3zj09Fj3qCebPjZX+p3r9vxmjGa80j/OEhbWqeaf1cIkQCtu65hYh/JMvzusZ3+GmQw8JJkwFpgsfov0E6rNFKHkrOB0u/XOvdH0dIdxPCJ76NW7G1ImDe0o0hzFO1ylvw1DcD3FTqy9xlO++rhnFvJnQ9h7BN2kVtxNCrUTfiUqlewYcx7KN4zDmNbfneuYo9nuvYp9uBQ4cTCFwiJWDs3p+Jw6eOiT4J4VVPz5kbuMDahDDyRvY91iFG8icEMrCqn5OaAwduLnVeYwGVRN75i903QWCJyv0zC8IS+yQUAJyT55gyLMGN7Sq1By2cbGhIpx+Vo7TVtP6LdJz23DdiV5i372BMy56cGT6hOibykE3oZAnCtBI8MElHCN0RTTcKXhOKWFA/Ai3wp7FLqXviLVu0Ps79MxD0b4bF5pZwQdWL5FCfVHPSbQmrduvcCxFobJ1TMi4CWLfzeDS42tYwUsX3Kqem1Z5FbG/t/XsZnzIleJCWZ/iFtNTGN2rJIy3I1wueUf//wwrTmuidRpqbYRinbywhNsNPyICpP8W16vpxgfyCm6EVYZjV36AjaA9HGeR7ueE4E80vyFci+AHWGHMmJoiHCvTQaz7iT7bxiXCb4gOy1jpuE/sjXniqwyndO8Te+NYa5boRRtGgX5A9AYp1xqlq/p1vv6tWhgPEkyzi337VwhC38P+jtS0E/quJqJDv8WVzdIPc4zr1I/jvPt1bNUUY8WjChc22iSYIrWhQst2SZ8lHJrQ6gTWoqYJRnqX2IhPCF/tl3pnn96VvvMbum4eV3VKiPQWIVymCMGyQgjJ87iK4Lrm3Y8LmuQhvKPvtA77CaZNuoxjyy21+lI9pw+nzy3jimajOCXvjN43jiHC27g07j4hWBZxGczU1G9o7fr19xOtbTLgOYKBd0SbtBi3cbDeLI7qPsQVClNT38FNiZqBvyI28iXCWkoLs0Y0vqb5pEXbSWykhODRnCtwj4KPsUJ2QAjsjDEoF92GcNvSBVwHPhW7dM8M4LiMnNdtQvD+AVF3o1HfT3DqYCJItRrzp6LdHg4AfKJrzmpONTjfu1LP6MV1FtLtVYlT+ZJWZTidMRXyI40nY16uY9/onK5dwIrmMS4WVULw60P9TJ6u0nXlOLA3D4AUZB2ixyMMVx8T/JaxFkXEofdEz7yGg1XLCb5Pl8a6xjCLq/eV6J0XcS73AMHX7xGH6R5OP27HfTSa9JynxB5+jLvwpQWbQvwrnPkxrHsnNca39P80as7pf4kcpTL0guDXdGGm7/pAY0rla1Pvb8cunXTXlogWjdhYWsathtMltKBnNGOIPg/wHmKPoc/mcY7/oe5r0DWJXLYQvJVKax4iiYL+Mba610SfY2zpXsY1B5p07wrBe0WEsvMzHCyXSkYx7hdzrO/r2HWRFn4ncVYdaX7pQuzCsWaT+MyYx0hOF077bsZZLjWE/KjGVStniH2aZ94wLtF+iVDyunRdL+b3pF+R3puycoLgwTwDc/2WsFvvHK7r8kdY4SrTfbc0n4fYKPxnv0tk4BzBnAnLdeNoziHisK8jiHaEg1L2Ncmf4AYqq1hD3MDR4eexD7eKOHyu4vSMtJw2cBBeXruGKzUdizCtBFPkwbGB4ZyEZ6r07BliMb8kBGW7nvUYF774Ss+pIhb6mGCWQ5wvf4s4OIex/2sR50BXYIFwHm/IcuwGqCUWMdGNPGyKsRaNrrmj644wVPyFnntGz53CkaqtWoe0hHNt06+XcGn6YRsJTX1btD7EyksTYfnPEALtqX6mmyf9xhO4xW+V3nlCdA2rx3nSCZkv4+qGM5pvEw4ofAM3i1rGSEIF9n9uab7f4ToXX+j5NbjkdbPefVW0LtfPAWKNezF0XKOxN2j9zmlcR/gQvkFYJrk/inCjnrR21zGqUi6aTeO87BRa67hWfAmxd26ITnnQp+/yuu79Po79SFdDwrRLuMJmHS6be4KLQh1jN0ifxvcBwQu9mleiWHM4WO6crk+rNiHgYxx/sYQDZR8T+2SaUKLWNfYLODugiji49oiU1yvEGn+la6r1jrf03HqcwrxG8MkgzuP+FpfXTvkwi3tebOIAwb/WPBf0ecqUUqKkdR7eS1ixGcRGSSfm15eiVy+xd4oJXvye5tiKK1m2ETKgi+CtA+yzflTwdzGxp18QcrJH73pIfJ3Fa54K+CJxeDeJ5rW4f0Ir3jfgSoLJqwu40dhjQk5+gwtm7WlMd3CFxR0cl3SMs4nO48P1sq5PXtzV36PEev4+wU99hLwox9H3gxrTj3AMR36V4qJrqQCUaV7PCaRxF3cQbdAYLuE9coDjibb13B1cnvslLgC2SPByJWF0dOJS3KM4S2YYxwZdJNYtEWxwZcmUDRkDknwzQyhJSwTPjuKGfsU4Q2ma4IFKrKj9tq/XVgaasA+1Dld0atekpnHnvxqcUXADV8H7OwTxr+BUuhQ8efCmLwhcN7sHN3Q5wTUJqnCVtR7CmqjHzXeaicN5GZfmXMXxBxW6ZgN3zEvoaQLnBqf/r5/YgKs4grQBb9oVXd+CMy9eYbg1g+XmNOcFbNmtEhtolbBoxjS2n+KyoU2a/0sM9UMEpSRU1YItvhmtxyC2FrZ17w4hOFIRa8LZC/WEFfUYx3+U6J51jA6tYSVrSGs1iNGOUmJjVGC/3HmcOjeLazoM4RK5EO6ZXMs5jCxU4HTEXWwRL+LiGzv67H0cY7CGYeek/QgW4s24KVY9wXv12DXUgaOrU4FIF0efvkc0j1Tm8lA/0OeJLryLo+pvFDx3DEffr2Jf4brGOEvw+gIuxFUYZ/CSULrT35oH4wpxkGzhegH1GucS4ZbaEJ3fIfZz+ky7sVV/oHn14bzndnzQp/tgXGN4gq3ZNY1lF9cF+Ijg4bTevtHcPsQH2Dgu+dqMWwP3EFbRBLbGdjAyNK15r+CW5r2EkH+fUBSKcEnmBSxPughZ0CK6dGFlrVhrlpblCQ5OW9Q77uJy6Wn5lWIY/yqxD57h6qyX9b9c4yOMeCTq1kjsywMcb3BTNLiHa2d0czqlsALXh1jDxXHO4sqU1TgbqBQXfmrEBYsS0u4voFH+ndbtCK6umIjafU4r+A9wcHCz/oeed4QNvwYcS5MuuxZiL9Vjl+Q/w5UGO/SsCVzCOd12TVjxSR/+PiHPijFKcr/gvhNivS/gdMnvtH4XsbwuxobBr4jz4QHOlmrGbqxKXGl1Fdc0STffHE6BBSvftzGC26j/DRM8kDzxAFdsfaDP3+P1vl7bTfBPiop+E2yWvrJWvDAVBHN9ioVtiSZXSzB6twb4IwzzNROCqgFH5k5jLa9P7yklLM9+HPw0RTDbOg506cPNiNLHs4thl/QjtxDCs5dYwDk9c4RYlH5cKKYCQ8yFNJgiGOYDggH2CKYZ170fEAz5Avt4hzBE3kAwZwqJFVwAhgJ6XMeBbgv6+xmOdH6KC0ucAH+P8JmX6PpOHG3biwPZSolN0osD9lpxcGIprrC1gis3VmtNX+LSuwf6/z1iAyyInrM4rbRIcy7HKZoluIFVk8bwnBCCeQhN48IwKQTLMcrRrTHeI2JRPsUKXgmuvz+GFcFqbPXc1nNmdE+13teBq9i9QwjSMVyn4a7m04Dr1V/D6Yy7GLF4JTq8pXGeaF06cbR3FbbQO3DXwnLc8a5N9JrBh0Ra0WdwbnWdxvlK8zyDa2WU6jkpnGf1edLlSO/rx6ljo7imRKOe+anWtAkfOhnXUUcoKb/Wtddx6eNNgmc+xUFn53EVwE28/x7hgkrHWMjXEL7Yz3AZ8ETB2rVO/bjg1AKxzoX0KcVNYl7gfPd9jamfWOMU+tu6poXYf9dxLMx9veschs8hBPVDzPut2A2xjcsklxBydINQrA6JPTaPK3TuEnKqCmedXCNkViqQ6UPP5yRSOohjQ/4CuyFSkUs0Iw2ZZ0TszLrmMaX1fK5nLOHeCns4HfhItL5FIGSJpvTqnnTHlBJ7NiH4dP8eE7I04fnLuGnbR8TeOcQyrAUH/M4Ta18uWrTjtNsTnE58V79fxrUZDok98gpXSE1DJQ3XVPDGiQO9H7v0mjldV6IIF+crw0pXoqQHGHU6xDU1XujvY1zx8YCI72giULErOG16i5A1Q7g40SBWwtoJuf9Pf5duglFM7B+IEFdwnexjYnNfwXD8JSzk0jdWgQNC2rGWf4K16HMEM51gv+iIJv0ca7q38EF0nthcD/X3CIb/K3BVrVVcSKQBM2gl9iGV4nKet3Hb01HN6yzuKldHaIqNuKpZaoObuN9BL6GhJbKyh7XoVEKOcBGPHmzp7GBEoQL7m27ibnrvYQv2JYb2jnGd810c/FOka88RG+wMLi2cgjIRgTOENVtHbMhVnOucmzqVphMMT6b/bVb0uKz5deIc/4QxR0THIVwmeZuAdkf07kZdO4CV0fSVvdDnT/EGnNCzhkSTTdGiFFc268J5002iwTguiJLowyh2jWxrbhfxAZEH1CphPbTgwKOM60hkpgTvky9xIFMlcQAU48jnUmK/fYAP+4T9X2reGxrfl8T+mBYdhjXP67iQUFp7EPyR8Qwp6LYJvijTvaUYKn1IWO9bxCH9J6LfWV33NqGgbOC6+mdxlbYljesyrqjYoefN4AC3es1jSXRLRCIVqvQJf6v709raxxHnnbgj3gKx/xJ5vMhpy3kNK0h9uMDWGEaE2rFl/IyQf7mfFon9egNXTezFqbN7BG+m67SeEOqpBB7jIjJlmmPSMNGUZzjg8bbmUUsUIhoTvZZxj41e7P66hC3H+zgmaVdjP9T/ugg+Toh5vWBMM4R8P0/Uv9jRc2dxk6RRXHH017jK5iauqXAGK28rBD+vaVzzBH98gN1o1Vq3KYzUHuAMjJQTXUSGSCoRDRrLCg44PtHvncSeWMS8uy76bej7MQ7iO8EBvEcafx74qdRvE8pTh2h0qHvT2n+KeahMn9/GivMxIYch5FoaIS0Y+Xug6zewYXhB9/RrzhVYjieK0Mnrfb22MpDM8oRgkG+IEqF7mmAnYfUkJNOqSSdikFrnAME0o5rUPm45ewcf1kN63wVikRpwkSKIhVjA0e1fEgxah9GA88RmKCM01ycaVz3WrvMZpbjvwgWCaer19zHBDHWEQPyWgHNz4as17yrMGBWaxytcivhvCAG9q3cM4vKitdhCKMVxBku4g9tFYtHTr/t5Ad0XNL5a3XtJz+rCAYuHuNJgBz6QNzTWExw0eF7PLiYE1yO98yec7nL3HsGkf0Qc5gOE4BgkBGuFxt0oOlwmhMOs3r+NU6Dew9DxvOj6Ed5kDZrDNSygjon1/gHxNSy6XcDdCdOySuUyfa7lmv8QIaSWcU2DtJB29dwVzQ1ctfFY1w8R61yL/c77uG9Eu55zgxDaJdjnnv79jFWoxjU8GnBxr+9w9bVK7I9M+LkP77dtLHiKReucSyoa46LVOWLt03o7VzC+IuwOOkvsnTbcT+Q+rvvRTfBjHtSrhJzYJPb6F7jM65Tosk0I5fO4rPZlXNFvH+egJ/3bCZSuAdcE+JbTDWGK8SG3r7ENEtZVqea/huNQWog04z2tZafuqcWZBSMEH76vd1bomRX6X7omO7H/uJSQkz/AqcpoTLc0ryGMirUSClXKgHGCL3Y1jjY9+wWuATGg74Tcz+GA2mOcnlZCrDc4ZupQ7/6YQCrO4dLnW7hr6qpofRvnxA+Jhts4sK9INDyDWyRX4lz/GRxwXFTwvnUMj7cTcrpWY5rCvQHGMSKxqvH9kECa1wj5uo3jn35I8G0ieSvYx5/+9We4DsYEztJImiYCOYPLI/fgKrhncOfVT7ESnwp/L06b/xtOt1Ce5nQL7bcL7q3GKNoCNvTacbr7P8Qp/WU41mZYNBokFIoxXu/rtZWBtwnhXUtsvGPc2SsnlhbsMoae0zJbwdbMkb57NdAePePnOHr5Bs4Rb8GwT7XGkn61x9htcQtXE2snFqhEY/q84DlHuMjIVd07WUCQNmLTdxEMcrHg+rQUu3XPA1w/vkXPy0NiE3c93NM40t+6TDDJZcx0tdjPVqXP+omDZlx0TB/puYJxTmO//wGubpXuiGKCaXtwJPccLgFciqukfYiDx94hBECf5nWFWO93cDDQ11rbv9H7RgkUYZcQvonAXCcOwid65xVsqS5qzI+JQ6Nea3JPc/059qm3Y/fQJWKDZEzFCA6a3MYCt0hrm9r6C61NPc5GWcC16BewXz7RjlWCh/b1zGlsqXUQguuZPn+MS0uv4C6XJ7jH/GPN8SxGigY0t1VOF/jKw6dWtLyKMw8aNKcjbEVfwShDteiTrpWEVt/UmI9xDvOUfs+DsBsjSGC4+QrB++lum8BBwQkDbxBrOoYRpCJsGe5jX+k+Lrf6BLvSdrU+qZi+IvjrV7iQVfrI063Yi4OmSjXPMo0jhfaCrk00YYdQthLuXiWg5GmMGu5gRfgEu5XyoPuJPvsON3o6weVj0/pOd0K6Iqo1l+ca778QjTPOoV/vWMLFnyZwxc78rFJ06iZkSgVxYIzr7yXNuZvg+2WN8ypGu/4SR9Ynspd7KPm3DLsET4jW9ZXYZbKr+1OhqyPkRa7VGHZdDGHf+BrBv4e4KNAYLnBVJLos4DinIuBfE/ss4z0SMagj+KkW9/zowinFB6Jhm+jXg2VkCQ6qTtlwovfc0XvmcMBqrcY5SBhFG7imThXuXdGJlZ1VzeEIy8jPdO8UPkP/FLsvNjCiM43jfMDu61ReizTecWxA/7av0te87jeRlzmQN/XSFzhivlYTPcFNaKZ1/0NsTa3p530C2vkG56UuavLp69vEBThWNek1/fwRQdBpnGL0gZ67hyuNvUsI8oTdp7CF2KP7rhMb4b7mkNbVCC61uo2LTiTcOo/bAm9hlGEfL0r6N6f17kpsSZYQB3rCfjMa0z1cqOSQEMCtuh8Mc47gDnPFuLRzG4bVOkT/TqyIDOLCQBW6fhjXWx8XXU7wITWJ4wI68SbJ7za96xutXcJZ6cftIJg3/YtXOR2Y1Y398CcEjz3VeO4RQmVI180TguoZ5rcTHOF7REQfPyR4rRFb04MazwROo3uXiDDuw3EMR1qrPtx5sErvPcJwXE0BLdr082td86dEmmRxAd1TsSzF5bGL9Vm/nvGNxv02ThGt0HoOE3ukRevUTvBZrnEKiTyUcv4JyVdimLERC6VEJKr0v/u4ZOs0Dky9jKtZpiArx/EWj3A6YwryCVw+Nw+uCSz4ujS3TuwKGsXWaSI0OdYRYg91446ndRr723r/JLGXuwhZ9AvCyDjSs4Zxl9I6XG+iHFvOuQfLcMXVPZzHfYzdaQ9wH5Jujf8sTrs+1LuSNkW4FPUSTvecxKmCiabu41TihH3T9TeMy0aP6rqHODV6DMfbDGNe7SH2V+X/r70zW677ys77D+dgnueBIMFZICmQlCipqW6pJUtx3LbTsZNKuZIqV27yDHmYPEByk0rZqXJSXem2rZbUrVZLokiK4gRwAIiJIOZ5BnKxvpXvwDeNi1xZZ1ehAJzzH/Zee++11/gtXOp9DAeuncWBdJPE2qzC6IrTWPj7JQ6srcfQ0/2ExtyK+dNdHMMyjSvcfouLAFXhGgypbD0UXZOP3VM/hzX+tGKk1fE7vK6f6Np00zzAoGi/Up/RXNXrWefx3mzGys77xL6bxfEDKwRvHMdp4eC6LE3YapSKyBliT6S7s1H3pDB+F5e4LuizJyW/1/X9l4Rg/wIXCMx1WsPx27EDCP9zRQUX1fkuvKFeaSCzhDnsC1wZ6tfqVBNH8dtTU0uNtR7nc98q+e4tgvg9GJM7/TvjRGpODY6abCMI34ajUofUvylcTWyNOGie45LLawRB54nNfwKj7e1j0A00liKx0Bf1rK8w8EwtrpV9Wu/u0XXTesYUTg07pfFsYYkzXR2DOFDxNI5iX9BzMvBnG1cHu6l3j6sfDaJtmtsO8UKsJg7lrwjGlqa7l9jnuIRR0KbxYi3q2WMYpTDjJoocBRTZIhbp73DwUg1GXSzifPtXmrevcJbDIUfLFacrKjXsJkLIeImzF24Qa+AWBnO5r3tncN7vIYaDvYthbkewhtGNs1L+TH9PE2voPBaILmLJP02ueWhUaS5b9fd2yTxMY2EFrOmn5rSBY2qScW/hw74Op+emNS3nvlLzNa5nFYgD/SEuzlKPa2Ok//xLXB3zG1yvPQWRUdHwqeiTc/m0ZD5u4wOwAbvRXuHc802CgQ5jrIRmfDi/R6yF+zh//IDYr5vE+ruk+Up/7Q6Gky7qnkuEBt6EUfY2sdC+SgjdYGyLAnYzPSbW/jixL6twKm2zfq4TqYdpdWjEYD57GnOR2IvbGKX1jwlhpfSgz/6M4sDNb9TXFLTS8pQWoDyQRzQ3C7gGyQlsDj+Jyy/PiJ7XiTX3j6J7AVvW0r2XLpbkKZM4GLtRz09T+wrGWnhBCAJPsCKV62MdwwzP4/W4qXsbce2VBpxGvi5adWH8iLTs5l4otTKhcYzizKU6HAQ8Q1hCK/SMXxPrp66kP2kpLOiZ6Ra9hlNtNzW2YWIvduuzXmJfv9L7xvFZ2IrPpm28Ng5KxlHEVt1l9esyLmt8X/c047TRPDP+0//PAMI8sKeJiR/FQUYz+v4LbNK8JYKsaSCpge8TE/ovNchGfHjex3CZDVgLmCQY7FVCE0zTTgbrvIsXevr507KwoPcuaRxLxCa9jfGrlwlpbw7j+3+H/a7LOEWsWn1M0/E1HI16gANWNrDG2qD33McLqwtXGHyE0bk2RNv0IfbiIhnjosO7uE5CEZeyPE8s9kkMhtStcbdi32kPPpRaRKuf4aJGDbjU5ghhgflOY+kp6fMOTiltxId1DUaC68GVzDJ+YAdjfqdWtYzdFh04NWwGV5a7ijEW6ojD6V3svvoCa8MF0XsWB6Y9wnjuEIxpB4OVPCDWbBsOOK3U+3PsRWxWTyHhITZXP9czdogDrpPY/Of07k6MTLiA67yf17NuiN6vYx/4Itbor2A/6GmMY5CM4bL+z/U0QayztDDt6GdM76jHvuxt0X5RNDmJi2xV4GjsTmw6HhWtrxN7oa/kWQ9w3Y5rGs84jnmYJ9bcn2Lh8ypenzU4tbACM8tDHBNTKbrNE3P/CJu0U3g/UL/SLbWA3W7gQ6wZBygn60zfcRuhnMxgyNlx0eEkRuy8qzmqJg7WdAPM6Vlpzm0UHT/E9RpuEmt6D+Pf/5YQ/hpw5sKbODDxJ1ioasEoi0WcxjmGU1nnsKXohN5X0POKhHWskxDAUuttJaxyM8R6WhENRnBsQ8YM9IvOLThgdlTP/B5XnxzAxY9OYAEtXaorGGVyEa/LHax0pIUplYoTur5d42rAMTDrxD4cwVkPFRjDpZPAuRgmzq7f6P4WzeOSrjmP8U8OsCvtUwwrvogzYtpxgGo7sS7exBlZFwgBpIixB5awZSrn8W09bxpbEXbU33rRONf8Bl4LXxDWleO0Y7sJilgD2CEW7wvMKNZwEZs1ffaSoxUHXxAL4RIGWnkTM6l/rWu+wXnK14mF0URoB7nRIDT3Dmz+bMEIeY3E5koNrk/XzeKCQhN6T6Pu69S9afpbIphOmkOXcL7oAc7lHMK+rXZiQ8zoutcJDWsNA3xU4KDDlBTTytCGgZAKuBDMFvb//x8cJLSF63vf1/3juHLZCaytJTMYwodxNU5JWhE9k/kg2vw3HEWbmys15QJHS4o26b7XiENyDqPfpZZ8iE1ZS9hSkCbSNo3tNM7oeIzR5VLST//3DMFguwlmVlnyf5ore0T3fYw8l1pIG5bIn2DTXBFjtPfo3kP1YU3v7sU13JMp3SX2xUNsrrtLMIV3MIOu1Ri/I9ZZu+iRB+Z1QmjNQ2CEWKP/gmA++3reOI67mcRBRQ0YPrkbr4VOzd0Srs1xBrvliqL3oMZ7F2PQLxFa8yaxHk6Jnvf0/2d61jaO9t4SfU7jolzpMnlGrIsh3X8PA89U4DifhxhIqyCa5bzMa1wf42C0HgxKdUE0+xoX5drCacTpLioSLddaWgzSjN6JAxJfigZvY+advGEEp+Gh69PHPofN0LlnN7Eg/pTgUS3EXtjGwdJXcJzCC73vM107gita9mETci0Gx9rEufurGEJ6gFg3d7Bg/bn6XqPv/gu2Bp/EEORXRcd03S5j9MqC+ttF8LhdQlBNgQRCSEze/VTv6NQ7nmvuhjH8dxtxfnxD7K2cqzo9rwljNzwiBLj7GHthFVvFktem1v4JLkNdxK7MXJNPNZ5cFwe4CFgHjoGpwcJDCjvFEhpkDECRWFf92H2+h4PWq7A1YUE02sJwxum+S/d9kdiPM1jJ6RTNj9OObRmoIJhTBjT160XXCK26Agdb3NQ9c1jifKBOVeBDJBlpWgN+rb+vY5z9VwRhnhAbcJhgBMlkK7Cv7j7Gea/A5Xnb1bfU1tLX24YLr3xGTHYtNh/VEpP6GvYZ1eBI4tR2fqfPLusd+1hTeKr3N+BI3A0cwb+le7cx8EluyDd03WNCaEoN74BYUKgfjzQfHaLDeY0xD88PMbxuH9b2GomNmi6GfZwq2C665EZNjeoL0fU+NpvnnOamKOD00qscLY7yWP1PX3GnxpKH1a6en36yWQyu8gznjNcTPsZf4QDVKQwalCbiHn22jc3RqcG9hWF+m0XDS8QBW9S7LunzWYzqV4vLEs9jLIN1HKi2S6yb1HbyEKnH+OL7BMPPIKIvMc5CCg/tun8Dpw19j6OH8/d9jAI5iasUFgjryWv4ELwvmtzEIFG3cM5zamV1xJ4tEmmE6dvuJfZfF842AKdtruJo60ldfwNHnz/AGlT6vWcJYX+RWAs3caZPWubqNddzxN59H0Nk1xMHxBJHkRdb1Le/1RgfEQx9G1s2W0W79Ke36/k/Ef0m9KxhHGPSV/Ldn2NgKIg106G/U6BM60Lyly3MK36EU3WbcBbIPrFG0wf/AFcn7cfWmhUcmNyPwZ5+SuybGs3JM1xwrVLveoOY57/GfvNVPfMKzuBqJfhyp/pah2NLBjFIUwrRGZcwiLNsrooGfQTPfqw+jRC84E+JOe3FlVI3CPdzxuPMEPEJO5rDc4QgOYj5RL7/9RK69mh+Wok90oOVyhpiHi+of89E//MYrOs0DhIcwsiv32BBeknzk7T+Vv3fJnhTxodU4QB8iLX1vui9QKy/G/rdhDN+0iV0VuOuJ9ZVJS4Ln3vwGU5LTwXtD7VjCwN7hGTdQTCEF+rAC3XyOsEArhAS5jrBYLdwWlwfxh5v1KD+AmuyySDXMRNfxIu9HhcRSsKkH/UBMZlLxOSk5viCIFit/v8WCxKHGtcoNh22EZvoJM5b3sBS9jTBYKaJSe/CEMy3icU6rD69wgF6e1ir7MG+nWqMtV2n736LA1fWMJBGClB5oO/huIcDbG7sJRbLdYJZTuE0ohqcR75WQq9FvJiWcCR9+snSt7WHMbLTP5b+ygIhRc8RGy6tGWMcFfy6ic17FltTFjG0dJ3+ntDcDRObuEZzcAnHgKTQ0EMIH3lIp7lxAQs18+rfBo4XaCXm/xHOfZ5Q314XPdPS1atnTelZc1i7KujzyzgAahGj5r1GrIfnGN2woeSaQz1nWDS+ifO3T+OaFnn4p2XlGYa3rsaaRydONbyovl7BNTCy76P4oKpWv/axxvw79e9/Yr/lCY3pMg4iSxNpEZeDfoozYx6pH6+Jnv8Ol32dINZGmk2LxB44pz7fJNZkWpeKGHlvlzgA27GbaplQLDaIdTGKkUFr1Y86jXMHCxO1eu685uYuLmz0M9GoiTi8a4iDdAb4G4wLv6Q5WSf2VaPo/UuCf6YgtUUw+T7CJJ2C7AK2XqWL9IZoPo2tBqeItbOKD4zBkudMEaA/D3GKcAqoabVZwO6/X4guy3pPNxbS9gll5CvR+c+Av8LFkP63aLyN4crRPKXbpg37wCGCpm+K/hdE+xcazxSGD39GBOBmjEIbtqYe4LoST3Bmy5xoP4oziMYx+NAbeA9P42yqxzizKxW+VpyNUsSorBNYYBvH/Lpe9ySvyD15A7uOx4n92U/M5Q1ivaYFYhZXJd0l5jCtMuk6ncOWhwPCQtVLrL+McTlUH37N8dqxhYFZXEoyfbKp/S3jKlJplqsimFcugFYN9jxh5p4iCPtfcUrTBYLJdWBc7/fwQbGkz1cIabERb6zUSM9gv2Kade/q/i19/wFOg+nC2NdVGCWtHS+k3IRTGLe/DQcDDuAc5kpiw32t54zgcpVnRbM7GOwkta0VjfcO9uVnDMUArlD4EvvN1vX+NvVtRPfOa+xXMbDSht45o7nqwZsutfVezcGa+pmSayNxIOX3KQxU4UjjHsLnNsTRQh/D2DrUSszfvq57ijMA1kWf/GnB5bCLuu4arvD4GrERWjGwTz0uzNOIUfhSQ6xSv5MJvdTzfoyLnbQQcz2B6xjU6vrH+NBZxbgH7xGMNAWBtDSArRZLxNp/iQG2UqgbwxHzOQ/NmqtWjb9Hz3uEC1I9wXnK5zGOw3ONoUfXfyb63MYQy03YcpCm80N9VqW+tag/SzjP+ylxgMwSgWYr2LTZQKynk+pLM/Zf7mqcw7gS5ap+D+DI9Yc4zfIlwdCncApo+o2/1vi/I+Z9AWvrG6LHgPrXjC1MNVjDfAtjm7ytft7DtVcaMIP9HB86v8el1KswQNd9HKz5HAfV5pxv45oJlZq7KTzH1QQTT2Up19pXeu+PcHzOHN7jC3r3CD7Itwlhdh1jLvQQ/KVRdDiLYxqqsBUq9+ghwVd/QmjIyd8+J6ws9QSv+IDYj4vEPkhrwCL2qbfpeU+wi+IlBhWawVk264SV7GPs7uzC8My5f6pK7t3StW/hqn7VOD5rVXNyiCP9u3BNh3QXbOHA0mFiHaZr4hCnlU7q73pcy+AKjjN4U3M3INr/PQa9W9ZcJI9KhWMOg/k9JvjdPoYP/2NinawSgvItnEXztfraheOAUhA57iF/7JiBDowUV9CAXxKH6Agx8WmqmlCHb+E89k4NfhhLZ2PE4r2M/T+rOCK8gZj0IYIpnMe1zr9QnyowtsBDjDHwGNcsaMOBRo26/pSuT4tDasKdhEmxUtedwdrDBA5KbMUmn0kstbbjg3ueWCTpR6vBUZ47omsePgd44WwRmygFhG9K+pi+rxSw0gSXJq8iDoT6FNcgryI22RB2oXRhiN409d/Qe3Iu6olF/t+x1t2hfrVj32otoc316Zq3iAPoItYG1nXdGKGJnCWY8ApH6y20YLCS1AhmObq5KrE0nvMzisuiTosuOxgQpoDTPpexNWRGNLuMTbCH6ssa9lXe0XN7iH3wU4KprYp2Y/hASk2zBpd2bsLxEGPqbz1xIM0QDKdH3/0DDuY80LW1OPjseclYBrGPuRIfpNvEepnEAUmLOFI5tdvvsV+5SdcMEmugSs8bJhh+p+ZqgGDEPViAXsc16A+wpSBNx8nIZnEa8TVcI2FZfx/o/c90zQYG3mrCCHSbxJqcxCAtJ4lDdk00asfBk2m6/i0OnJvAJclX9a5+7LtOH38FsVZvE263IrZOruvaVs3TAd7rjdiCeYYQJH4nGqXFaUnf3cKgTW8Qa+0ONi8/x0XaGnG67hNiL7dpbqoJ18UT7ALp1zuLoscMthxV43K7HxOa+CxOAx0Rvc7hfViPtep1zLNrRKPk3evY0niIgdC+xQXAunDFvrT0FvTedzFK7Gns618QXQax22mDUPySN05gEK5BjHhYjQ//RcI9kS67Jd07pX5mTMA6tkRU4QyNQ+wurNN41on9u07skcuYjyRdqnFdm09E25c4qPUsIejW4bi1/4Gtd6lIZszENiHIphDeiy2kNRyvHVsY6CcWZjVBrFVM0BqCOMsE83mme9oxYMYCTtNoJojdSBBjTM/PAzitDUWCqPXEhA4Tk5n+z5R+LhFaSg8O/ijiSM7rBIOYw3mtCwShDvAGO62+7WHJ73McyJb+wuuiwQzW5Iaw+fVLDOzyqfp6Xd+lVl2Bq3OlRSM1gWWN8zr2Q2/r/V0Y/32UWGTpT+7EQYLr2If2CBfS+E7PqcYQm3XY9JpBPDU4L3YOV7Abw4hzE+rnDYyZ3oprOCxqbsCpng0YOrOREDJq9PwUoBYxOmEPwVxOYrfUELEJTuKAxEk95wHWwAsYUbAT++129f7nGJglNaIaDGhyoPlI60Q9oZ09IwLSnuI0qrS+5PymqTE3+Zae1UWsk2uixRYGkroiWiezTQH6le5rwqAvr4h1uaTnt4rWBfX/EGsNKZhs4RTNNnwAH2JgorTIbWFhahpjtT/Ws55ztMZGCnInsOXqGRayHuPDfAUL+5sYNrlZ85kWt6uica7ldv0+i7NnnuuzZGRzOLgxNdc/0mef4qygMRzlndacVtFiHWfk9OP8+HvEAZwCxBIWSpZwyuVLjfEd4kBbFU0ui3Z/RLhdBjDz38L4+l04qLid0Cp7cCGjFIJTAD/Q/3dwVP/nGsvH+JDJvdJDzPMosb4miPUIrgsyQQgR6ZY5xCb8PRy826rnvFnyjgK2Jp3HNVFqcUR/keAbU8T8V+u9B3rGpL6bwhg0tVibXscKwJL6nhbKbuwi/Uq0f06cG8nHd3HJ7sfYDL/FUbyX58S6TMH+UNcVsaWkiTgXnmArQzsuc16DiyRNERabHozYmRbYUxjUal80+YjgD90YBn1Z175BzP+2njOAURYhBK4tHMP3h9qxhYFbJZ1uU0eGiYn4gDBT/HsCorhfHRrFEdwZ7HFO/3+JMdF3cOT0KsGkkqE3EwuyFxdlmccmtxPqUys2t9fo800MRrTLUb9LHvqpnXTjQMAbuPxyujDa1bfUFm5jMJAVYiM8wCkuW8TEDeEUrNTiK4jJnMIRzC161ij2Rc1iTTzNsDsYSXAIm9dex8Vk/g5L4inVnsIgM4c4X3sPZ4SkdnCAgxBniMVYo2v7/sm87ONDd1n9uiJaFXQv2Px3DyPo5aHZL5ou67OkSUNJ/+Y1ByeweTE/m8fIhE2ar2RK1SXPS63rIjbNb+OAyTzo9ohN+An2IT/HPvpWYr6TNu16frU++ytife/oPbvERn2BGRtY6EwXyTmMBdGl+XpFHCqzuic1pJ8T5v8ljBvxDRYW0g1SgVP1+nBA66ruy7X9quTeou59G6cZVuFDugunI6bvFJwl8TGuqNjL0QyHeWJ9NRN76VtinlNIq8CxE2mVGCSYXvq5v9c786DbI9bhPM4uGSQE3y4cOHcC86E6zVGL6L2J03V7iHntwpUJNwgX2TKxz9v1jgpd06VxzmFt8YXu2SHWxmeix2+wCzGFmx1irf2O0CYb9a6nGHM++9KNU4LrsPtxBh+4p3G9j23187TmM7XSWoJfHBL87GfE/kxlpU7zmq7DO9jKm3EmU9jV0kyswTy0p3HKaNL4NBa0XmGo3eR/m8TaSmEjLULrmscP9Vmf3pVu6CqNcwYHh46q/904wBS9Pw/bVDDAsTp3cLxUjuUNjSPPiH3RpBXX1dgj+Oauxv0KC2encJn7SexS6sKVa6exe7FS8/KLkjFUEQL/U737Fk4/3MeFzVawZeslxz/kj+tO+H+m3jQz/Z7YPM3YfP6PJQNqJaTBUwRTSR/336uD6Vs5RWhb32AUsEGMPdCOFxQ47x9C0m7Ch+5JQvpLf34eLjsa6KI+b8LAMj3EBviO2FTJvOZwOhDYrLuIU1F2cYxCuiX6sMbxBEvVm7huejVh7kqT2yrGpq/D/qRagild0v/bhNksGesrnOv8VNfvY1z8m3r3ZWwmHiDM23sYfKaBOKB7MdLVJYzRvqXxFwjGcINgiBW6Jl0RV4nNPkswz2SmSbcWLG1v4NiJ1Kpb9fx2DC86oP6lJWeJWGutODWolpj3fc3JM42hR/R9jvOlc/NP4SyJCizoDeJ4hwMcqNRCMMt0e10g5voQxyqcJJjG73HcRQuGsx4g1lpaCsbxQVtHHHgpINbj0raLGIgpNblf4n3WQASxncOpvAfEGqnBpsTcRwu6pxOnwB6qr0ViLU3ovQ8xUFju2Z/i4LAdXG2uFoOfbBLrLi1NP8XBidm/pOWgxnYFC4dncGzDJA6Y68Xa7ScY/CuF1QosyFeKxg9xrn/S8gmxXpcJ/lPALo/bGv8sTp3cxFr7VRzrs64+1Or3u9iV1Y8zoJaIdbCpvlwmDv9Swfx73bsmGo1qHEu4wFUVRvVMwe1bnN67QeyLYZzq1kvEaZzHWSYbGs8nmJ/8EmfMHOr6NzBUdCUhgCXvGRUdP9dzR4jWor41ElHyzTgG5nNi33Rrbi4QmDMpOKcbt4bgX1M43e99nLH2DV53RWItf6D5qcDugC4c09aH3SWHON28BfOyGWLvbZfM2wPCdZJ8pQkDDw3gYOwmPaMCF4ga0FyN47ieXfXnJK6GmDEO+cwURt7XOAewS2Zf97dhXI56Qng6xNDP0/o9yvHasYWBcwTBkyEP4bSoRxzNq31ALNBnOKK+Q/f2EcziNewnrsCpWet6zhZGHixgFK8prFEOczRyf5ujufntGOJxEwfFlPqO9nG9gT58EKzioJk6jFiWPtUpLA3mIvhLjOk+pM8ncDGSU+pnn/qUE5obZRtnOawQ1pZVLCW/TmBxL2tsLzCE6QoufLGiMX1NLMQ6XAL2KXFY7RKLbERje6jPJvXZLWLjprZWwAfpPrGBzmMY0D4clHmAI/M3cNXK9Let4YJWGeTSj5HM0gfZjouqtOEgsH2cf5uH2ye4MuRZgvk1YaS6LSzIjWOAqItYWJvB6ZG/UL+qdP+PRZMXBAO8hxEHm4nD64VoW695mMGmyHpsKUN0PkscRP3Exs37cj4bsYbRo/no0Vg29F2a9w+IqOFbBCN6DVtHtjF6ZBvOjV/WfbPY0taEU13XROPUUtf1/m81hkZiDaV2vkTMaYGjbo410fd7nFE0hrHvC3iPHxAHRAoO6Q+eI9ZDD9Z+0yo3jkGDco7TvJsxC6l9pVk2Tap9xB6txhlIGQPTjwvZVBBrfgwLGinEFYn904ktBEVcLyP7leboKzjrppFQRLaxD/ksrlzapetvEAJVu/rWgaHPU7BawK6gfX13UeN5RbhcKzBUchvej12a04803pc4IDFdb824JPUcdpMMYVdUuoln8b7cxzVhGvWuDdFrS888wNVQO7GC1YyxLw6JNXRB70k37ylceXSa2Is/B/4EW5wacIxQNa58Oo5xSpLXrpfMw7Let43TAZ/pOTexq3Ubu0zW9d5l0T3dX3uYv6VAsU7w9RM4kHVM/U3B6AIOWkyF6hDzzSaNpxGnsfbglOcdjteOLQykZpAboYiLxFwlJqkHmz7Sj1XA8I+7xMLOoJt6XB61BiM2pXae5pwLhIQ6h81yuag+wEBCEJv3CQ6aW9Pn6Vo4RSy21DiXsHaXi/gVIbUXiANmS30+UB9aiElaIBZy+rN/gzHVn+Bo6XcwCERXyVhPaBwpPZ4TDVMgqcepKo+Jw30BB9S9L1q9iSPYv8L1tZMZpvXhDDaRT+Na2TPEhq7STweu111BMIZOXHL1e/XrK+KQXMVAUSkAJPNOaTatHVdEx2nRqQ9H1M+qfzXY/N+gez/S/T8SfR5ivILT2Hrwicb0vfqdwVGpSYAjygc0TwfY1ZAm2j2sZfweW21acWndFmJzp2B4Uf24IxqmCbcZF0M5QUQFV4p+vxe90DwNiZ5XcN3zZc3dWcx0ijhwdk/9SeHye+zXHcWWln4iMvweNi/+G4y02YkR1qr1rneIvZd+0/s4BWtffS/ovWeIdXuJo7gfBzjgbV9jPKvn3dT/p3DRqs+JA6he1w1id+ASTp/sxnEOaa3ZxTE8p3DhmXx2K7FmvsbAUdV69izWWlMgGuBoOeItLHyNYHyHdfU7zcgpKJ/kaLGbNzBo1Qq2plQR+zDX01X16TKOlH+AeXAVjh9owsBT6S/uxoJP3z+ZpwKuGbMmuj3U/Z+W0OSqnltN8LnUepsxL60XDZaxeb+RWHPpIkm/egoB0zjrYxorgSlELhPzm4rYqv7+EtdB6MJWrdwLz/T3ZUIw/pXeu0OcC1s4QHCO2AcDokMrsTdqCb7ahHP1D/GB/BZOZ5zDmS8FgofNYavfS4zW2IUVj3RpLerdCzi+6L7e+QQLDPMYgGoaI84m/RqwazTpMU3smTkMXf+H2rGFgfTF5d/TxIJKP01KHxvE5HVgiSgDHtAgP8SSWAWuZtiugeVhltrkOi7ze4AFjW5C8m7Q9Rs4reaS/i7ihQjGSa8lGEKbrnlHz/kRMeGPcYzErMa6gyFg009ziE2/NYSJcR+nW/Vi7WSQOFAPCGZfg01o1/SucxiS9xKxmD7FPuRqYgHXqY8PCW1wW9em73kca9+nRMfS/hU1lmsE41rAgVHLxALsw0WPlghGtqV+pqn5b3C6ZQH7YJswRHMXRsO7o78vE8ymHZv6Cth0nL7jakKQfCBa3tE4r+uenZL73iY2XIe+m9Dz93EmShehZZ3HhWImiYjieuJAa8LFt07i9MkRLOG/IjS6HmIdjxAMZQVHUb+NTetj2Ef6FGspu/p8CTP9Do0zhZxLGFAntb99jsadPMfrrhJXDQRrNulia9Y1lwkLyB6xjl8Rfu0ThEtkEVuX0pLyE2K+73EUe2EVB9KN4CDU9FOnsN6OAYdScPpfhBA3jMsGpxY2ShwCoxgxsJpY3+nSSu1rA8PMPsUMtxIXO6sS3fIAviO6dKt/Uxy15LQT/GCXmNsdjXVf16+I/kmXCX1epb7NYuXpPYx70UysrbSINqi/M5inzOtnl9Dq9zTGn+MAwnRvpB/7LBac0sJIyXPSupeCZK7zGixg1ej3GC5edAbjH5zG7r5zuj5N/Bs45qVD9x3ofVM4gPYysQfX9N6i+rIqmk/gdOAhvauod9VjnrGtfl0kDvFKbM5PN9hZvfc/YLyITawE3NB8/APBT59h69s0sf4vEmvub7EgM6xxP8D8q45YC4PYfZiu4SUMDtSLXWI1mqe0qo3idNkc3zlcOC3Pi17R5a7muBMX5avELvg8+/5QO25swZGyn+vYl5qLMJnaGWxya8HY7QcYTz01+2pio93TM+/gwg7pkpjHdZkvYIm6nZi0HhykUcTIXjsE40tXRm7eaYwAdVbPOIkDcCZElBZiEtN0ntrqNsFgdokJGtPvFuJwzkU2iiWtbYyK1k8cyK/jyNmHGDGtUWO5iiNDz+ENkOb/Now+tYXzm5dx+eMOjLb3GrF4X8fog/PYJZOMuwsXahpVv9L0ek/jOYktNNsY1KWeYHi3Nfb0Uaew16f+bGOgqOxrCh37OIj0OiE8Vuvd9YTQht45S6yTej3nqX7fxZUeW3Gp4bu4rPRDQiDLeIi/0/vXsMl8X+9PF1W6S3pxHEGn6PZMfTqFkc++xYhyaWmAo4GKZzHE7rc4yv0j0XeGYKJnMOTxHi5MVE2s9dRoegjB4SGuZljEoC+j2Cd6DweiFbEgPav7LxHWixlsLZrANdvRtX9ORMfn3PXjOgcp3NzGVSvP4/oPMzgAdpzYmxPYd/62+rmPY0oW1Lc5jT3X1H28t9txkOhJYj89wGnA6SdO82oK/1XE2j+h+bijMXZoHk5gF0UqO5OERSA1vzkcMV+JXU9j+IBLE/ScxnlJ49/GAbVVHI1J6NEYHmB+lr7mAwwH/ggXaHqMcSNqcQXGA92fY14jYlbewkA6Lbomla7UbqeJQ+c2BjVqxrn/qYwcYCCoBwQPSr6drpSzouEVLHxPE/P+HLs8B/ScJxh+vg1nSLRpfDnvbdjq208I7rluN3HKXRvBF5dxye81HD8zhUslp2tim6PZMH+NFbINXOoc0aYV46CkuyN5zJxomlaVVo1/ESP3rmF0yBeixwViHzUQfK2AaxV06/MZjB9ynHZsy0A7MUE96vhpjCJWi4sk1GF85JcYsS8nb4cg0EtcfhQMA5kmxfQlzxPmt6fE4kvfXZWIkebu9KPU4yyBOYKgl3Cd+wIupzmFC8l8h2Emh4hJ/hpDz76BMwHSHbKLzUPruEJZBZ6AepyK96XeWY/Nu4913XMM9TyEkc7+rWiUJswrovk6ltzP4HSxfNYOYS7eJDSJTWJD7Ytet7HfsKDx9RMMcAnDWq4D/1H9eYvYBNdE02tYcm/QGBfU13WNsVOfTWocqwTjSBMnGLv7FE7TKWCY5bexULGCgUia9f+a+pw+2lxjF/XeVwSzzo0xj+uGTxJM6i2MK54HRa7TNOH26ft0r3yIJfi0Fszp70sYXe85sa6ribSyc8Tc5rgfqP+XcSGmtDSkVjCFsyku4zndwX7lcWLNLmNNvx7nZufaTQ2jDePttxFzXoHLE78suW4KF4wq4uqcvcT+7MYxLOnnr9d3O1joK2p+H+FCRGnyrdb738O51E+wFnlAWC5OaqwZe/IxofGdx0FiKfz0EAfxJzjYdhZjSDzTu/txdHkKnx3YddeIA+uGiDUyV/Ks3ZL+dBB74zK2glThfP+0kjzBWCjPiLm/iTOYkjd1i873Ma5LWl/TBD+od+dhkf70Co3nnPpyDlsrx4l1V8DKwy29cxoHTi6pn7m/RjSvqfTt4zovGZ/SjBWaVFROEm6xPVyo6IX+HtF4n4gOKTgtYZcGOHMkFadzGss9zFv7OYoV8pLYbwvYPfQR8K8wVksDjs3oFS3miLlP6+IE5ot5xjQRPHxW/yN6volT4p/iDI7zGBStruRdDSW0LGhcf4KtBRewtaOBENy+IOZ3UGP/TuP8MUZvPeT4OAPHLmFcbuVWbuVWbuVWbv8827EtA+VWbuVWbuVWbuX2z7OVhYFyK7dyK7dyK7cfeCsLA+VWbuVWbuVWbj/wVhYGyq3cyq3cyq3cfuCtLAyUW7mVW7mVW7n9wFtZGCi3ciu3ciu3cvuBt7IwUG7lVm7lVm7l9gNvZWGg3Mqt3Mqt3MrtB97KwkC5lVu5lVu5ldsPvP1fxYQx/LRhGEUAAAAASUVORK5CYII=",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAErCAYAAABDzICRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9V7MkSZbnif1Uzcw5uzwiMiMzK7OrqquL9M4Cu4LFA0T2KwD4hPO+soDgZSErAuw2Ld7FWVaSygx+mXNzI6qKByWm5tcjMqqnB9M9fa0q0v26m5upKTnnf/6HqDDGGO6P++P+uD/uj/vj/vh3e8j/0g24P+6P++P+uD/uj/vjv+xxDwbuj/vj/rg/7o/749/5cQ8G7o/74/64P+6P++Pf+XEPBu6P++P+uD/uj/vj3/lxDwbuj/vj/rg/7o/749/5cQ8G7o/74/64P+6P++Pf+XEPBu6P++P+uD/uj/vj3/lxDwbuj/vj/rg/7o/749/5cQ8G7o/74/64P+6P++Pf+ZG+7Yla6/+c7bg//jMfQoi3Os8YgzEGrWGXlzx58pxXV7e8eHHJ5dUN69WGsirRSoMQpElKp5My6PeYjEdMZ2N6vRTp72ckCHj8+BEffvg+MgEwCCHCvYwGpQ11raiUpnSvldIopdDa2H/GoLVGu6KZvnim0RrTfggQAozBAOINNTbdFTCAFKLpJ/deIEDY/hNC2ucKfwukdP+EwH1FIu0bKSBBkEiBxJ4HIKUMvz80NvHn0t4M/2Lv4O9v/7av5jXjbPA1Ro2x/zD2D2MMCE1chNSOCRgh0AaE+86vf+MuEs7DzRf3mXJjpYxBK/u30opaKbSy46eUQtcKpVRoWyol7zw85/R4ghGaqtL87Je/4fmLS3a7HUVRUJUldVVze33NH37/B66vrsmyjNlsxq7YcXtzQ1GU1HXtnkkipeDx40f89/+n/46yrPnFz3/J5599TlWVKKXCOIxGI/7b/+N/y8nZCV/+6Qv+8LuPybcbtNEkSUKnk5F1MoSAbrfL+fk5WsOTL59wfXNFVZVorRFCkKYpvV6Pd999l+lsxqtXr7h6dUlV14BBawUY0rTD0dGMDz54H4AvvviSly9fUVUlYJBSkmUZvW6Pdx+/wzf/6i8xQlBVVZjbfg21h9z/rTFGgJAgJFoLMJrJeMxf/dW3+O//D/8tJ6cnbDYb/qf/6X/mb/73vwEEtapQqg7X1VpHa1WjlQ6faW0wxo5pVVWsV2tubm7Y5TlK16ANAhBSksiEJElJOh163S5Hx1MePnrE9GhG2u0gpQzXRTVzShsNRqOVv5cO81FKSZqmJElCt9ulPxjQ6XXpdDK63S5pmpKmKUJIjDHURcH8ds5nn33K0ydPWa1WdLtdvvHNb/AXX/86o8kYbQyDXo//+//t/8rRbNJaU74fhHuvjUEpRVlWXF/f8MMf/pD/+B//I8+ePkUpzXQ6YTgccXt7y+3NDXVVYbRdQ1prjLCyxl5TIKRo5AMCg72+VhpjdNMn0Xo0blEbI9zitjKhkWmwWC34quOtwcD98W/3eFsgEJ8vhKHX69DppKSdhF6/R6fTAXKMdopFa2oUiZIUZc12V9ArenQ6KSKxastg0Erz9MkzLi7OGI0HDgiAVlArg6oNZV1TVDWlskBAGYOqVVhwQFgE+8LPRN+H5w0Ky4TnDwsufk77DgQBUARF33p1C1R6gGAaMCAaMCAFSAkYgxSSRAgSDyyicXgdGDj4GTStvgMczKGP3fPuvWoA4/5vhYnWXoBEgAAL0Iw71/ddrHiCInBAyoI10BqUdq9KY7RGaYVxYE61lIlGazsm3X6H4+MhUhoMkleXl7x8dUVRlRSlVfBaaaqi4OWLF1xfXVGWFQjBeDJhKqZsN1uKoozmgkZrweXlFTdXtzx+/zGPHj7gxbPnVFWFkNL2hTHkec7TJ085Ozvl/PycZ0+fs9msI6WnqWuFMZrtZke/P6TX65Gm6Z15ppRiu91ye3vDyckxJ8fHrNdrzHYbhLjWirpSrFYr1us1FxcXHB8fcX19Q1HsWoq408k4OjoiTVOKqnJjdPcQbiIYN+jCSI/7SNOUo9mE7333O3z323/F+dkJQsKXXz7j//n/+H/xwx/+yI68sQrXr1783GuBQB2+s2NowUBdVai6RmvVBpgA2qDRCKEQdUUpYL3ekOc548kElD1fCtdmoe3cNnZS2cs1/SyldO+b59faoDFtUO/6wqiafLvlxfMXfP75Zzx79oyiLPnggw/47ve+x4NHDxFSUtc1+XrDaNCn2+lEc2lvHbTeW+BcVRXr9Zqqqux81RoMdLKUxF3bgyPduqbrb4E1ONyzGQHGAWiDBQLaj0O0sO37BggEQOD65G2PezDwb/xoKcADx58LBNxVrTGaCCaTMTfLFd1uh06nS5ZlFEWB0laBaKVI6gQhFfmuZJvn9HoZQqbIyGLdbnf86U9P+cY3PwIJqq6pKkNdWyagrBWVViitqbVuKfN9ZX/QGnKfx4p//3e2Q0KTmvOFwLMVVvnLRsF7K1+KIIRii9wqfA8CHDtgQCT2vMRdLx4Hj/z9+OwDgNcCgcAC+PcxEHDQKzyraIMBQySEGoGukZFmcYJGC6fi20Cs/Q+Ue/VMgDEEJsArCJzi1wbQxv6tFFp5hWEBx9npMWlqbaE8r/js8y8oy4KqrKiKMvzm9uaWy1eXlGVFrRSmKDDGcHJ2ynx+y3KxCH3ordY83/Hll0949913uLg4Z3Y0ZbPdWnbL3V/VipcvX3B78x5n52ecnZ1xfXVJnpeBxRKCYJXe3t4wm87AKR8voL2yF0KwWi1ZLhccHx9zNJtaZsOxFsZgrUQ0t7e39pyjI2bTKXmeU1c1RhqyLGMynTIcjaiq2rEpjULw1qQxxioaT/8YEHTodVIevPOQ733vO3zjGx8xm4wRBpaLBf/w/R/zv/y//1cuX11aq9xUaGOZOKuJiOikBozjnlNrHRRfVZbk2y3bPEepGm2UY+QExlgL2DMnQimUFJRlwWq1YjqdkWWZRdHGTWghkB6QConGYKTAGBHYKIS1hsOcFNquBdFcA6AqK7arNU+fPOHTzz7h6uqKwWjIf/Mf/ppvfutbjCYTqqpmt9vZZ9hsOT89cWugkRX7rwEUCEGtFXmxI9/tqOrarolaUanaPpdnQq2Gdr9tWDvh5IdnD/06V44NCE1xc6dhf2hjgD2YaKfm2wGCezDwX/HxzwECdvI0Smc46tHPunSyDp1uhyRLHAh1gkEIalEjpaSWNbtdxXZXkmYZMhFYrK4RCTx9/ozBZMJwNKJWikoplPYKRaO0tkxCREvGxyHlvn+OFziv6wcrRKLvAwsfKXvsq/237xZw1JtTzIkU2FOMBQMRqAgsQtSGfeV/iDGI3zfn3v3euwz8I+0zARAJDmOBgGUETJDztPpZtD4LQhevFyJ3jXFMgGdrNGigVpb+1446FqqhNYOLQDcUsFGa6WTA8WyIwFpET54+53a+oKo1u2JHWZVIIdjtdtzOb8nz3FqfWlMbw3I15733HnF2fsqry0uWiyXGKUZtDLVRvHjxksvra87Ojnn4ziOurufU6zXG6GCJ5dsdT778ktOzU84vznn+7CllWTpQYcJrXdeslmuyLEWbCpkIhJSYQF/bebLd7ri8vObo+IjZbMpisaTILSAoCuumMKTM50tubxdcXFxwcnrGfL5io3K6WcrR7Iij42NkmlIr1Rp7oZ3ol36IJdJ+w2Aw4Otf/wbf+963efz4Eb1+F2M0l6+u+NGPfsrf/d0/8PTJE+cOw1nzgJHYVaudIsaCQ9OwOUppyrKiqkrKsqQoCordzoGYClMrpOuvMD+NaAECaTR1XbNZr1mtlvR6PYQDycHAkQ7UeIBgvOvOA2S/PgxGgpRJRLHbG5dFyXq55MmXT/jsk09YrlY8evSI7/2H/4ZH776LlJLNZkue52w2G/LtlqosWW/WzG/nDPp99hVs7CrTxsoq5dgQYyw4DO5WB948bR8AhBSBlWp+Exkohmb9GR2+M/HnQU40vwt95/pe/xkq4B4M/Bs//nmW/xuvSDz5O52M4bBPtljR63Xp9Sw7UJdVWBTKKYCqEhRFyW5X0ut2SHpZuKYQkqqs+fLLJzx6913rkwbnD3SK5i0s//33b0K9IqzA+OlEoFPjeAAgKH8hJEkigxvA++etD9+elwQAYQI4kLSVu4j+fhsw0Fig8fdRy98w1CZYYXsWjKcJQ586yypQwgesnQPjYILy1zYuwI+Zo3BDPIBjd5Syyhp9Fwwop9S8YDs7OybNEgA2m4I/ffGUoizZ7XZURWn9prVmvdlQliVSStc/Vond3NxSlBUnp6ccHR+xWW+odW1Bq2v7arXi6ZOnnJ4e8eDBOV9+8ZQ832K0decYYf3hl5dXzOdzZrMpZ+dnrFYrq+RqhdKKJLHt3O12bLdbhsMBk8mEur6lUIVjJBR1Daq2Vv9ysWQ2mzEcDrm+umGz3lilqjXKaNJ0y/X1NbPZjNFoxGQ6pTcYcHQ04ez8lOlsikwSlGcyPAgUGoMELTHaApKj42P+8ptf59vf/ibvPDij08koqprP/vQF//iPP+AnP/4p19c3OIPbWu1Y8IaDEn5N2pvYPrbPVFOril1eBABQ7ArKsqCualRdh7EFgRHGEy/4wB3tGCqlNLJW7HYF221OURSkHS8v7CM21rfxFJldE26NWGDh14Zj8cJ6MFSVZQSefPEln37yCdvtlr/4xtf57ve+x2Q6pSrKAGI2mw2bzcbGYwDXV9d89vnnnJwc04naFa8Ry3g5l6aLf9ntdlRlhWXeHPujNJ1ulzRJKB04MGEB+H6xSl8agVbKurDizggAoM3UtOX/AdAiPMv31cc9GPiv8PhPAQj7ylVKyXQ65uXVDf1+l36/R7ebUeQyWHkIRVVXiERSVBXbbU63m5JlksRT544qX86XjEZL+qMh2iNo7iqfN7Yttmg9JbjfB/48/36vb0QkQOJ4ACkFibRgAOMYPvc76VgA6ajhRAI2xC+AhUOK/pAb4NB739/7bT3YDxG9iGkveK/kvSQ2UV8FAWHagu11AMD/U54FMKCUY3OUsx4Nbi5YF4BnBjDYgDP3r24pCzuGk9GIo9nY/qnh6dOXrJZb6koFCloiKMuS1WplA8Y6Watt+Tbn+vqGDz/8Gmdnp7x88dL5Z737R1LXiufPnvHRR+8zmVgle319xS6vQTpftTFst1uePnnCdDrm7OyUZ8+es1qtLOhRTb9rF/swmUwZjcaUZUVRFO6xhAv4Umy3Obe3c46PT5jNZrx48YrlcmlpdM80SUlZliyXS7q9LmfnJ/R6fSazMb1eF5kkQfBbCt+5IpAYBDLLOLs459vf/hbf/ubXOT+ZkUpBnpf88le/42/+9u/4+S9+xTbfOn+6jeXwlm0zHJbhwYNEbYFfXdWWBSh25LvcKdAd5W5nAYD2lqtuJqWbZ843ZZWdsOuncaUo6qpmu9lQFAX9QR+ZWEDiKe+YyRNSYrQKt/BrLl4vPvBOK812s+bZk6d8/vnn5Lsd3/3e9/joG1+nPxywdSxAnufk2y27XcFul1PXNUmSsF5v+NnPfsZ2s+Hi4pyHDx+QZTYo0a9RHwBo57dCYNhuNpRFYWNktGbnwFInzUjSFFlXaNfHOrAAjmnQoKWLa2oxAJ6FaIDAIfngsULoPkHr/K867sHAf2XHvzxTAINhn8Ggx3ZX0u/36XQ6JImkrHAUmQGlSGpFnSjHDhT0ehm9CFVLKVFlzfz2lqzTgSRxPrfXW/ltnoI2ECD+0lGKe4LIK3Lcq79e4/+PXAJJkyGQutgA+xurSC0QEA4IWCbAuHt4qjmOBwj3/ApAEH9u398dg/CZo03D43ulH/XfQf+mf40oTv9dnCl0CBwo47MEaDI7IldOQ/87KtnRyWAzROIgvPheAjg/PSZNE8Cw2eR88cUTS0HXNXVVucAza9nvtluEsNH6Uki0C4KsyooXz1/w3nuPOTs7YzqbUOQFCh8TYJ9lsVjw5MlTvvHNb3Jxcc7TJ09s1LtSCCEBQ57vePbsOY/eechkMuH46Ijb62sKZ9F5MKO1pnAsxWQyYbPZ2DbudhEjBHVdc3Nzw4MHD5hOpxwdHbFczFFK0ulmjMdjJpMJ48mYJEvo9Do8mI7pdDpO6TSR5kYrRAB6kqTX57133uE//PV3+MZffMhkPEQIWC3X/Oa3v+X/8//9Wz7+4ydW6eAAj/YsQMMOxUGNAoE2lgXQtXUH5NsduyJnt9tSOMu3qiqUriNg6iaodHNZSISfC/jYHKfwnG/fOICYb3PW6zXD4YCs23GgIWK5mqkf2IHGBbFnHRtCDMOrF6/44ssvWW02fPs73+b9j75GkiSs5gu2mw3b7ZZiZ1mOsiypqsoFbHaoqppPP/2cT/74Cd1uh+l0Sq/X49GjR1xcXNgsgdGAyXRG5sBpkkjLHAmrzD1rWlU1vV6PREonmnx7m2eM158QBJAW2Du9R3G+5vDyyBIm3uXzdsc9GPiv6PjPAQQA0jRhNp2wXGwY9Lv0ez1WaRIUq1G6UYRSkMqEYldR7iqyJLGUu5R2QgvBdrUmH43pj4aOxW8Qstl7hBglAy6uybjvHLWOV/CNa0AIEdJ2MFYQ2ngA+5mQMTNgg3cSF/Qnnc8XIJEm+CgFLiBQRlZ/1NbXpQx+VVzA3ePuZ7Gl72XCvtvEuxnugADaCj585y2NGCyAo7D9TYQLCtQogwMFGkIsgE2VU6puKf19OjUGC/4ZR4MBR0djhEuBe/r8kpvFgkqXFHVJpRRCQFWUrNdraq0ZDAaMxmPmN3PKdRmebX475+Z2zsnpKadn58xvFuT5DqNBCHvOblfw9Mlz3nn3/aCYb29uqaoKY6ySV0qxWCx5/vwlX//6X3B+cc6LFy8pb+cYU6NNbbsFw263ZbNZcXxyzMnpKTe3txRFEVxHvoqLZwfG4wmnp8esVnOMgfF4yHQ2YzwZMxwO6Xa7JFkWLE+Ji/PQ1txTGqRIGI2HPH7vff7DX3+XD772HoN+D6MV11c3/OxnP+dv/vYf+PLpcwzKzkmXmmf5IwcETOPqEUKE8UEb6wIoCsqyYrvdkm+3lE5hhnF0fuzganOrJEkSkiRpmCCjEEa7wEYL/I17LmVs/MWu2LFarRgMB4zkCJmmIShTCB/gauepBhvNIGy/GGNAChI3q7S2cSbL+YJnT56wmC/48KOPeO/x+2BgtVy62IANed4Am6qqbPaLSyUFjRRQ1BV5vuXq+gqjDb///e/pdrt0uz0m0wkfffQh3/nut5lMJgghGY/HdDpdF0NilXhZlgyGQ7IsC24kb6/csX8cAye8h9ODgYjlu3tEbIH/xLtMjGgYm6847sHAfyXHvxQQiINQ/CEFjEdDsjQhSxP6/S7dXpftrsDUTXRzXVckSWLRfl6QdVKyToeeU8KplOhEoirFermk0+uCtJHC0r22/PtC2M+c+hexT9x95rzHzfOL5rfWQPGZAT4YULhaAXHef5NC6N0atk6CS2NybIBwffG6OIDXKf03gYE3fYZ/0jvr3+A9JLGQiJU/Ec34JhdAeO9eQ2Cf8ayPSxE0oHA1BJT1r/uAOU+TNu8bq8azCEorl1Lo+lQYTk5nZJ0UIwz5ruLLp8+pqpqislaacdkAm61NQUvTNAjV+c0teb4Nlnqe5zx//pzTs1POzs549uVT8jxvPWtdK66urnn58iVf+9r7XFxc8PzZc8qybM37sih5/uwZjx495OT0hPPzc5bLZfDZ+8DQurLxChcPHjGbzTg+PraU986CFJlYcKy1ZrFYUBQF4+mIBw8v6HQ6jMZjRqMRWadDlqYgROh/327PhJFkDCYTvvWX3+I/fPeveOfBKb1ORqUUn3/+BT/80U/5yY9+yvx2jtIKKQXaCBtICdEqio5ovFRdU5UVZVmycbR9nhfsdjvqsmzXHWgmn1s/SUjnS7OUJE1tvEiYA9rP2hAzYAMSFVpL6qp2zMqSNEtJOx3rkqNh7UKgqgvY824O1yB7fa2pXKzJi2fPuby64uLinMePH2O0Zrlcsstzdtuc3W5HWZYB4NR1E8uSZVVwW3RFzxoPtXQBn7DNc7Z5zmK54NWrV7y6vOT//D/8Dwz6A6bTqc2M8AyG0WzyLZPZlKzbsSyoaABeDAiC7XJH6ZuW7POfBWF3AB9Y/OSMJvl2uuEeDPwbP/6lQMBduqp51dogZUqv1yfZ7Oj1u/QHfTbbnKqsqJVxbsw6RM+WZUWe7+j2OqTpgCSxFrwUAi1hs1nT3w7pD4cgGv9bHETn4wm8/R2EmfHLwNns3jdpOyQwBkLaoCoZF/IQUf0AWxAgKH/pfJo+NgDjPnPCPzlg8UPj5z+k9PfPjY+73/kxEO0xCS93FXn8d6zQDvn9D32nfKSyu4+12rwflFaBGWXsOBvtMgKUotba/u185IFy9pan0mhdo3WNUha+CaDTSTk9njoLSHBzs+TmdmHdA7WidoWtlKORtdb0+n26vS6DQZ/Z8RHz+Zx6mwPWsr2+vGK9WTE7mnJ0csxiuXABiE0/bbdbnj59wjvvPOTs/Iyj4yOWy2XoEyvAFfPbOZevXvK1D7/G2fkpL1485+Ymt+dpO0ZaaRbzBYv5nMl7jzk9PeXm+pq60pC4QNMkcW4QyHc7xpMhDx4+pNvrNa4AB06Ns4Q9+NIIjEw4PjvjW9/6Jn/9nW/y8OyUNEkodgW/+c3H/N0//CP/9PNfsNnu6GQZQhiEtLkAjgeLFKkJilQpjaptemZZlhQ7q/h9YKQt8lSHWhEBZjqTNkkSSKwLLUkSUpkgEkmSJo4xSzDa0uTBSNVAcAlaq1lpG2+0y3O2m621upWyrqDIjecDBuM5HWcOCQNoqFXFcr7k8vKSwWDAu48fI6VN89ztduzynLIoAxtg0zXr4M4SWGB5c3NLf2Bdon6cLHugbCqne7bNZsMfP/4jDy4e8K2//EtmsxmT6ZiXLxOobIrlbrejrip63Z5zwzRr3Dr4Xb0E4eVZxAaISPaJ2Fhq5EkoMRAfxsRw4a2OezDwb/R4exDQWJb2J9EkOggAXHCYBlUbKyyqml1Rg0wRiSTrZAyGA3rrDbtdYYuxYGwRodr6G4UwFGVJvsvp9Tp0XXS+SARCCaqqZrVakXW7yCzds2hxC8RyZdozrqZpvaFR7FEEH56d9QDA/xOeDRBRxUCwNGQAANZild7nJ1yGgWiyCPb7/hA7EH/3NixAo4gid0AzfAGZ7YOBN8UIxNc+9M9f2pZ0cGNOExPg2YbY2vfVH43es/hrlzmAVRyeAjYODHiQ0DTLcDSdMOh3Acs0PHv+knxbOCVVo6oapSDf5WxdrEC327HV/bpdTk/PuHx1yW5XBGW1XC549eIVH/7FR1xcXPDq5UsWZdnqzqqquXz1isvLS87PL7h4cMGrV5dsN5smngRs7MBzGztwcnLMyckxy9WCqirxQV0IG69wdXXFxYNzjo6OODk5pSxqBIKsk9Lv9xiNR0ymE8bjMb1+D5lIkiR1AjseU8/CSNIk4+LRQ771V9/gu9/6C06PZ0gpWW9yfv+7j/n7v/8Hfvu7j6lVjUGTZQJMha1C54PwfLpbO2ZDVTV1XVOWFgDk+Y71em0t5aKkqitX8EsECx83/2Um6Q/6DPoDkAlaudoHSuH5Oh8zkWYJSS2p6wbsB2NWG7TQJCZxVQ0VeZ7TWXfQWlvrGkiSBJk0KYP78zoU6HGuqKooubq8pCwKPvzwQwaDgQ0SzG3GQuWAQF2XVHWNql3BJF8kCJcxc1OTZSknJydIKZr6DvHydG1Yr9d8+sknvPPoEf3BgLPzcz794yd4YaaqinyztWC20yHP6wD+/Lq3RowIboIQCxEzIHcjqOynpgEM+/ETjUD96uMeDPwbO/6l4wL2GYC61lS1sjnejjYsqpqqqim1sui/k9LpZXRd2c+qLKldeeJaWZpXiAxZQplnFN2SNEuRSeObNzphl+cUu5xeOgy+feO1ML5ojlXEwfp3lokIn7n3UcCfjKyJZE+QBKWP9f/7SoLe/y99dIC7VhIxCV/l+z8UK/DPG4s9kPYGELCv+OP3nmb2v7fWui9p6sbcKX3jAwSNwRd3trEBMTNgLcqYXjYuhXA/TiDOIjBG2ftg08JkIjk9PQpums0m5+WLlyhVUtcVZVGF4j5FUVCr2lrSPpJbCCazKdOjmfX5KwXCsCsKXjx/wfvvvc/xyRHT2YT1ak1ZlYFdEkKw3eQ8f/ac09NTzs/POD6eUex2oTyxMRKta66vbnn14pLHjx9z8eCcV69eMp/XGKPxaNEYw3KxZDFf8vDhQ05OjynLHWmaMRgMGE9G9IcD+v0BaWr96Q1l34AuISRGQ6fT5f333ue73/423/jG+4zHQ8Awv13wy1/+mr//hx/wpy++xAjp2oET9sIFVHrrGUCH/Pe6tql/dVVTFB4E2JS63a6kKHYNC+BSR71LJJGW3RgM+xydnHB6fsZgaNfserXk5bPnbNZrCxyiqRuAuJQNu2AapWXQKF0jNJRVRVkUjgUyrsSwDDEISZZyKCYnzDsMVVUyX8yZz28ZTyaMp5PwrLvcugVsH9jy2NY1oFEO0DTjb/vr8tUVWZoxHA1sWmUEGPwa8/d//vw5L1684OzsjPffe4+f/9M/sd1uAQvwNtstg8GAXq9vi7Y5eYkxGCHwCb+ttSvu6nH/7AEsRPJBOJYhAItojr7NcQ8G/g0d/zwg4P1SniFoJoYX/kppBwI0RanYlRW7sqCsShs4pjXaIWjhLPxOJ2Mw6JNvc8pd6Sg/S0/WlaKUCUjNrtTsiopepUmkDQwSiURrKOvaUoO9PjJNY7mGp+/9M4Tnj/pgn56P3QG+ZoCPFfAxBKFsMI5M8PEAgWBogEa76uDbKfo4Uvhtxu3QQn3T4n0TK3DwWvhgsaacqQcBWlvaP1j8TlDr6B7GKQiNCWDCWys+mGxfSOoIHGinBJSx5XEx0O12gpIzRnB1dc1yuaZWOghdL5Dz3Q4jhctgScI1s07G8fExL54+pypLF5wKN9fX1lJ/eMHZ+TmvXlxSlmUkMKEoCl68eMl77z1mNB5xdnbKzc0t+TZ3Qtb2XL7d8vz5Sy4eXHB8fMzs6IjVamt93UaFaP+qrlksFpycHTOejDA8oN/v0+8N6HQ7Yc04ez3spRFIH5Mw7I/44P0P+G/++tt88MEjBoMuWmmeP3/Oj370U370k59yeXmNTBI7eU2NF/RCxJkGzqp046BqG9xZOIVfFAXb7dYG0Tlr2WgRotdDUSCXXZMmiQ22PDni7OyMk7MzBsMBSZqCgaurDvPrG/LtFqUNQjTFhsC7SiRaSwdOI6ofQnEqKRRlUZEnObVSJElKlqV23KUkqWvLECSRu8+5YbQDMEVZMr+dUxYlDx+9g5QygIGyKBwjoBzdX4fAVqUsODDOTSBcoN/WBw6KYxKZhIwD3+fBlak1tzc3fPHFF8xmM07PThmPJyxu52FtrNdrxuMx/X6f9WaNVuUdlk54oUQQgYFl8f3VeENj+RJ+4aMLQiB2kz/11cc9GPg3cPxz2YDXKRptoHYugKpSFEpTFBVVbTfcKKraWRTxZiSOABQSmaQkaUan16PbH5JtK4pSgfOH2ahzqLWkVLArNXUF/Y6t0S1SiUwyRFHawh9lRd8FUPmJLfx/RWNJxIrYL0gZMwLOEgEXFBgFAwopIgDgvscFBELkNhCt6x0KFnzdmPz5TEBEy3B4ye4r/tgCD0IiBgTRb1tK3fjocWFBm2k2FTKOJrhzfkgNc9fzwYGeblavCxr0bXR/46hqV+Z2Mh46GtgC0efPX7KLhLX/fVnafQmSJCHrdBBuIxulbPGf2dGM6XTKdrOxAELb1MDnz59zdn7Kyckp48nEAgrdlAlWWrFcrHj+/AV/efRNzi8ueP7sBapWruKgVYg24PCK6+trTs9OOL84Zz5fsFlvLPOVuI2Eel2SNKGqKrIs4+TkhCzLQpqZicZDaBsLoBEgUqbTKV//iw/43nf/inffeUC306EsS/74yZ/4/vd/wC9+/gvW2y0yyUiyDsZEZZzdrLHK3ylXPxbGNCxAnrPd2qC3PLe59aUrjeyNyVAe37FpvX6PyXTEyandq2F2dMRwNCTNogI8WpEmSdMWYeeXwYQ2WIWdOoOjbvwwznK1QFOE2IGkSNDGkCQ1dW37NE1TsjQlyeyGRMIBDF8AKkkSyrJivVqxXq/o9noMBv1QHTGOEahdTIoNaFVhDns3gxAgtWVCpITdLme5WDIcDgNw8IGGFoTZ9aG05uOPP+b09JTxaMzJyQlPvvwyrImyKtk6diBNU1uYyM1zb4AYbWxJZbBsgWgKNyFE2DQs3DvIjljuBM7JoQTD225OfA8G/pUfX6lgYveyOPAhBEpYKSt8y1o5BqCmqCrK2uZ1K+0XhxXa/jIGbzWCSFKStIOUNVmnT3+gyHPFtqhRZWnpvdSBhW7fbujS7zEcjZhNhwz6PTo9W6fAGOuf7/X7dDpddlXJarOlKKsmLTCi6eP+iOl/ISJK0i8sYaKIZBD4QkFe6TeoO7AB4ZZ3gcDr4gTiz2Lq7uBQGdM6txkcbyU6avAA9f9G338MFiKaP7gCtMY4t4vWhkpZye+/0y6H2V8nCMj4PsY05+qmwuAdxR+VZfVMQ+1cBRhJJhOOj49c6qatLXB5eRWCs5ra/RYMYAzdzFZv823wwrjX7zM7Oebq6sp+ZkDXipcvXrL84D0mI1s4aH57a6/l+sUW+Sl49eoV73/wmOl0wunpCev1xu0Y6Bkiw2az4dmzZxyfHnF2fm6tc5mSpRm9fkZ/0GM0HjOZjOj1em0q2wls36/a2MA6mSScnpzyF1//iO99+y95eH5CJ03Ybrf8/Le/4+/+8Qd8/MfPKIrCgdrE9qsfI+dy8aDAAi0bne8rAZZlya4o2G4aFsBH0Nu+cnPEWfGJTEmyhMFgyHQ2tWDq7JTJdEK/3w8Bfe35Z91EUiZhTvv54CefEKLl81fOjWFTDQVGCpehUqNUQlmXaDRpkqCSBKVqqjqhTjPSOiXNbPEerSTG4klUotHaZgDUteJodgTYrJCyKKn9/gmV30TJxih4qz0umOWVaJolpFlqGQLHGKVpGtaAXVPaBc7a53zx4gW//e1v+d73vsfDBw/4badj604IG3C42WwYDAb0e5ZRjWWIV+yxHd8y5g4Ydh5T+a/abgNjS0Dbzr7z20PHPRj4V3q8TqkcUije49QCBu4/NqhPUyvFrlIUlXUDFI7yqkOteJ+2E8+7ZlJZ4WZ9m0nWIelo+qQYEpRIGExGJMBw0GM2GTGbjTg+njKdjhn0Uvq9rt29K5HBavcNtu23fxXFlFeXt8xXG5QtDUer3v8h5R8p70D5u+6TwTVgSFw1QUnbVeB913G/HwICX8UGvC4wML7eQSVO9GruMjpvBAGmuUKI4IdA+6sgl31gqGd73I6QuqkIZ19jha7Qrloa2pdfbeIBfHaB1s09tHF54DhQYgzaKLybvdfNmE767skk1zcL5ssNVVUH+tYY68vdlUWwLr216RWSVookTTk5OebFeMQu34Gwz7BaLnn+7Dnf/MsJp66KYHl7C8b5Zd3UW8wXXL684vH7jzk6OeL58+ds1+DDs6UDrIv5ks1qy3gy4cGDc4bDAYN+n8GwT9bJbLS5i6L3ClAIFzXuQKfSkGVdLh484K++9Zd88xsfcXYyRUrBfL7k73/2C37wox/z5ZOnNgMmkSSpDACv8Sc380Fo46xLCwLqqnI1AnZsXSGf7WbLrtgFoIVjjyybYN0AaZoxHA05Pjnh+OyUk7MTxpMJXeeasUPVti6FEGgSlDLo2ipSovnpye7A1vm1JEVogwhWr30wpRSyroMrRTgGKEkSjN/OXCnSLMOkNgBTZKATCyB3+Q4MdHtdC4qU75cmW8BWxzR3WC0PDLSztPs9Q5ZaFkTpmjzP6XY6ds8VKcJ89b8XwlbJ/PTTTzk9PeX49ITeoM96vQ7gdbfbsSt29AZ95FxSq9oG/zkDIMgZKdwmWvuyxo5/y3tqJCIoe88WRt/TZhTedNyDgX+Fx9vQzS3rsTHhAULJ2LK2mQBFZasCFlVNWdWOBWg2HjFaWsrOOGs5+CJxCzdxvnVJ2k0Z9CXj4YBESjpZRiYN/X6Pfj+j3+3QyZIQqNe0L1Ka8buAbK0A6XcTHl0cI4Xgdp1jhG1bHA8ATZS/39zEpwM2Vr5prHwPGFoMQNO+17kB3sY98Do2YJ/Kf9343aH5X8MKvPa39k0TvW9cYRZjgwLt9qoNEIj/NeDAW/XeyvfbCzcg4dA+A1ZBRy4Fg6NN4yBFY9MTjSAxhuFw4LbCBqXg5csrm5HiKdu6RuN2w6tqVxo6CSDJ3wtpK9wNhgNmsylzVzxISkFdVbx88ZLHjx9zdDTl6HjGerWirqugfIyxZYyfPnvGxcMLjo6PGY0n3N4snKJKHMuVgJCsN1tG4zHHJ0eMJyPSNCX1ACCeF37OG4MxEoGk1+nw+N3HfPs73+FrH73PdDLA6IqXL1/xTz/7OT/44Y949eqKNMtIs9QxAE1xIHtBnCXulITS1KqiVg4E7IpWjf2d2zegUVi+0I1VyEmS0MkyRqMxJ2ennF2cMzs+YjKZ2GBf6XY/8vPXBCkTDq21vU+xC3PHKnhtrX7XcMvIJWjprHIPYL3FIjyAbVgfWx9ENhkrWpM4q97LLg8Uvc9/V+xCamNZ2iC9Ohg8KszpfSDg91SwwEtTVYZ8lzAcDVtxKlVd27opvR7b7db2rbIFmDwQvLq64vPPPuNrH37I0eyI2+ublgst3245PjlhOBqiFk0qrv+9ASQyUuqxPHDyJuRqxvECNv7G/uVcMOGbtzvuwcC/ouNtQMAh5eKtea0NlcsGKMqaoqrZlSWFo8gsBUsTA+D+SaHCxDMuzMk4X3ySZAw61i/a73bodzt0O4ktxxt27POWvbumcHvaB0+DIJqz3l1omQbj6uQ72lrVFrh0BwOySlG7WuT7aYJxhH8iaTECwgGLlgsgCO2mpPDrrP/XAYA3sTWBonsDCj+k3A/FBMRjfOi18cNbAdAECdq/40DB/RgA6/NslxKOGQOIAwB9ZHlU7MU0QYX7bEWbIrb3tpsW4eaZYTIdkThhVlU1l1c3lM5FYFRz36qqLIvjLNNWTrnwOeeGNEuYHR/Rff6Cyil7bQyLhc01f/fxO5yennB1ecV65X3kzg1R1VxdXXNzO+fs4pSzizOuLq+QhaTT6dAb9OgP+kymEzq9LkVVkqQJaZLg41ikKzFrB8dPbzsRJ6MJ77//Ht/9zl/ywQeP6fV7lFXFHz/+hB98/4f84te/YbPd2riDfj8wKnjq34+tc80Yt/2zMcb5wHdUZcl2m7PZ5LbE7mYblLMNEPVK1wYESinpdrscHc04Pjnh7OKco+Mj+sNBcL3RPI610D3j4VgZIazlmq+tP70sCksPoQOAANyukTZCIk0kRrk0QuLdF2mAnks3tJfQVr6YBKllqDZojCFJFF6ySFfh1GdLdDodG+CpBXVdhVTnOymyUdyL8nPZB8EKqKqK9XpNr9cDhAuC1DaVs7C7IdZlFYEgD5p2PH3ylPPzc8aj0Z0MCLsHQsF4NLaVHf2GbxBKCWNcAKjReyyAl0GRHAp2lpVpFpg0MlkIb2Z99XEPBv6VHG/ja25/Zl9tYI6xAKC2AKCoFLuiDHu+++pw9ofut+F+AmVckR0MqUzoJBm9bkZ/0GU06jHsWCvI7brplJGlPitXJU5pJ8ZCJLEP0BOhFrkQsmEdILxiDJWGolSs1znz+QJlasbTsY0ehj0g4JT6/mu0vbBtQRwHYN8k7vu3cQe8yQXwVWP0Oit//7t9JX/ou/h9s32wO9fbX9q4MXDf6/1r+lgA5dL2GqVjfbba0bw4680BE2P3VA/n+nzrMN5tYNGkejXBflaoWWU0nU48EmS93nI7n4fALq1qW69eq7B7nFdQ+2DAW05SCkbjEePxiO16jXLW4m5X8PzFC84uzjg5OWE2awINlbOSjTFsNltevHjBydkJx8czTk6PUEoxHAwZTkb0h7bwTJomYWc/P6+sNWstaOFAhpQJ09mMDz/6kO98+1u8++gB3W5Gnu/42c9/yd//4w/5/R/+gK41nW5Gr9cLYytMA6a8MMezLUqhHDVd1zW7XU6e2/r6a1fvo9gVqDraJMpzcokkkZJ+v89sNuPs4pyLiwvGswl9V/fA7gXQBIsavHJq5n0IAtUGVdWslytWiyXKUfv2IQLrH1wkdt2BlgJFsz5bXINTxgqQ0tcYEc19TZuBs7VMBHVtZVNZlmi3HXXMaDVlsvdKZBtfUjlab8IDcmOLXeV24yKftWC0CbS/qurQJm+dCyGoqoqbmxv+8Ps/UNd2T4K6rsP+EFopdnnudrEcUdeLhrVxYxbcQhGwarpKRDyrRw/NKX6PjUa2EhjQrzruwcC/guOr4gPan7mCQEqH6P9dZZmAXWULaVR1E/XqFYG9j7sGbpEaYYW0gE6aMOh3mQz7jIc9+t0Umdgf1LVityvZ7krWm5zlesN6uyPPC7a7HVWlKOuKWulQqtW6EFI6WYduv0enmzEcDOj0unQ7lg5NHLrQ2tgiROst88XClZHV1GiOplMXZyBb1n8TCBilAoqoPHH0mYDQrkMswFcp/TcBgUNWfPz+TRS/f30bEOCZF0v/+/dOUThXgIoAQEP5N4FdTfBTs+GOBwPaBeB5C0kFxRC5CGLF7wSW1h5Q6FYbwRVzUXYrYQl0sh7jYQ8v2a5v56y220D71loFd4EPJJSxNarbflQhBEki6HZ7bp+BOXm+RTh6+fb6lsV8ydm53dr41ctLyqK0QEhYQWurCC7Zrrf0BgMevfcOQgi7sYz3l4exsCPhd9v0/l7r4084Ojrir/7ym/zlN7/OxcUZaSqZL1b84Ec/5gc/+DF/+uJLhJRkWYrJdFCYHmCbKHbG5/sbrTCqarbb3eXk+Y7NZsN2uwvpgcptM+xz/e0+HAlpJhkMBhwdHXF+cc7J2QlHJ8d0e83ue8H18hUWZKXsHgNGKcqiYLWYs91s0Gi08/8H8CCcsjcxTW1hVCIEtZtfIiAe9+oyDGyZcjBKIbSAFFRtGQpb0tquaVs90JZAFy5Gwcu9uvagr10OWykX+Ke9O8atM+ObYsF0Uditmf0+CX5s4ofypc39fBTCFij68ssv6WQZ3W4v7PXgcz7yPKc36DOejENgJ9GaD+ygm3RWjtmNuWw73byLhitkXpnQsAAmdHTtNx33YOC/4PG2bIAzxDDKUCtNWSmKqiYvK8sAOL+Yp7ziSHAAo/1EsfPIl95NZEK/27MAYNRj0E9JEkFVK26Xa15dzXn+8opXL6+5vLriZrFw96sxtbZKyfnwjKMRoZnMiZRW5rqNirJuh/6gT2/QYzKdcnp6ynQyptftYIwNAMqLHCmgm6W2jni3y3g0dHsGtFkBzwLEIMEuXO8uaAIOfX+/TWDg27pr3m7svpoxeB0YMJEA8u/BBuhpVyTIgM0CCemfuFgBExUSckGDvmZACCJs7ynQUPymuYa7zr5bQEXsQcMyeLBqWQatbHVCjcEIyWDQp9PtuDliuLmdU5WlPU83aV7+9VDVudidYcc8IU1SptMZ/X6fXZ4HxmSb57x8+YqT0xOOT44Zjobkm20oopN2rGU+HA7YFTv6SY/pdHpwnOJxD9aXkGSdLuenp3z7W9/kW9/8OsfHMxCGy6tLfvyTX/KTH/+Mm9tr0ixlMOw3a1PLljAPbIuzEnVdo1RFXVXkW6vwN9sN67Xbene3oyyrEM1ur2nblqaSLO3Q6w/s3goPLmxQ4HRCt2vz9hGi1ZetZ/SvJup3BwK0Mehasdmsmc9vKcpd22p3c1AInHxolK9VSs5qNR64G9ACI93nWmPcGnZ+Iqv7lKZ27gUBKCWRtd0REGwaqEvUD2DXBxx6ut0Dg+DOjAyl+OGFm58gSGQDno2J53kU8OdpeincqwWwo9GI6XSCMdrWunC/UbXdi2E2m1nXUVmijArrx7NMLQUfgS0TcwOvk12+CwX3boJ/zcfbMAFWqONqAmhXFlg5N0BNXngWoG4CvODwAhce9UsSkdBJU0bDLtNRn9GoTydLKMuaZ6+u+fzz53z2pyc8efaK+XJFUZRQVxZZGwOJRLia/QnWRxUQs24Wq6c3tTHgBFxVFGyXK4QQPNVfkKYZaZoynIyYTMaMJ0MmkxHDYc/mKRhDvl7T7WQMBj1SGQEBog2HiGMGPGpuo/X994fG4j/FLfCmc16n/PfPab+352saYey6FWVAq2bXOeX8+v63MRj0TIC3+H1NdT9ntFHhN8Hy1g4QRG3S2t+PUDcgvnZgG0yTMREAhDt/Mh5aRYSmUorr61tUSO+yCgMPJiDsIgm0sqOCcMQVzhKC/rDPaDxisVg42lrYUsGXV2w2dqOY07MTNps1nazDaDJiPB4zGo0ZjodknTRQz3H/eUBiu8HvryEZDgc8ePCAb//Vt/jow/eYTcfUquazP33OD77/E3792z+wWq3p9bp0u11r8fq+wF3LtIG7rpV1lShFWdpdAn1GwGazdVZkExToaX1vLSbSbos8mYw5PTvl/OKc09Mz+sMBWa8bUfjG+fib/pSRJeo+DH/v15Koy5Lrq2vm89uIYfIKNJ6/ItQXsJH6kWzyrxFYt/tkeDeMRmK3XBZC2hREpVBAIkCpBCnbAYF+2+NWXIDZY6+89e8YAMJoWCXbdotYMC3F3XVrv/fxDfYZtPbuSFylw4rR6SmdbodNvmGX79z8h2KXUxY9ppMxVVmy2WzdtYyL/vcuEvaOWG5EsVjR4dlK4RCB5M5FDh73YOD/T8fbugL8BFTKUCtLddksgIqdiwmoake/Bj+vn6T7IMBR2CIjlYJuljAZ95lORq4uPMznKz795Bm//d0f+PzLJyxWG5cX7pW6DruC+UAiaHLXvRne0OWhBhbKLRTtEHHwQTp3YK3sJiHlTcn89obhqMf7HzxmNDxHJjatxwrEFaNhP+wdkEgZrH4ZHjUCA+Hvu8qf1vl3lf/rMgP2fxtbBocU+v7n8WcNLXv3Hl6QBkGMTVHzLoGwf4AxIThMOaXux8UOm2VuVFDMURGhQPs7Ienb40GH1gjaStEYe63YurMCt6lVoFUsdF1fGG3ZKCmZjIa+Byl2FfPFsoni1iooOKVqO4+cBY4xGOFq3lvzKChVY2zxrCzLmB3NuL66Zr1a2XM0rJYrrq6v+GDyAWcPzjFoRsMRk9mELOuEHfFsMR/dEr72/tLOaClI0pThYMD7773HN7/5DT58/x2Ggz67ouCXv/wN//j9H/L5F39im+/odnv0BxmgggJqxXo4YNAAM0VdVVRlwW5jd9bb5FvWawsCCrcHiAdveGUgbU58J+swGo04uzjj4uEFxyfHdAc9W/woDgp0St77sDFN/E48PxuQEQFFY33ptzc3XF1eUu0KG0yKaYLw/HVc7YDKReo3zJOLP4l8ljqUILftwq0t7QCflAaUBWG+jQKBTETw6QfQajSmbvrYz6n99ScEId7RTUmnWhsgboyxMRgRGPAQwsY+3V2/wrEaBk1ZFuT5hsl0ynQ6oSx21sWZJJZdWa85OTlhNBqGGgnBbvP9obWb74KYMGmAZQxf7O+MW7/NF/fMwL+647XWpBP22ti9AepKUdW2LkCpNEVdWjdA3cQB+DSvvcvYw+tobE5/v2NZgOPJkH6/Q6kVT59d8qtf/5Ff/vJ3XF/f2s1JtC07G/vAYmFhHFWP9jDAhNXUasse/dkIHb/YtP+1pfaUQUvJYpXz5RdPGfY69B+ehwfZrjfsxjmzydi5B5z3UdxV4m8CAa9zDRxiDt5k+R+yEr7q3PiasXVk4vMIuKsRZvhKgbrFBFi/pnYbAZnWNbX/zhiMEa054y0pLyiFE/LeUhTekoquAVFaYkSx+t31AjAwcdpi0yZpbM78cNQPgm6z3rJxwVhaq6bssd0WEVskKohEP1AOJDlr0oBW2lpTCXYzoNmEPM9tAKIDDcvlkrIsmUxGdLuP6Xa6IAR15VLZhGcwrFkXRsUI0iQj7aQcnRzzta+9z9c/+pB3HlzQ73VYLlf8w/d/yPe//0OevXiJlDYnvt+zcRHGWceW6vXuAVfHwY+FcweUhU0NzLc5m/Wa9WpFviuoSlsQzM8JD/bsHh8p/X6fo6MZp6cnnJ6dMj0+otfvI9OkVT/jTSA1Hqt4Q54WY2QMRmlur294+uUTbm9vXblyB+QigIKBOpT89YBTBwBiIBTGikIM/PQNNLk/QvCobKZCXSuEVKTJXoGsqIBWw1S0lmRYa/HhZV0DS/y50RowTska08RIiCiWRRDWl5T2/MViwWAw5NilGdZ1TZZlyE5KXVdst1uGwyF5nrNcLhtqwRsEnrFo+5QiFscGtTaNjuS3n3v3zMC/juOr6GZfFbCqNUWtKGu3T0BVUzp6Pkbd+4rIo3efcqKMQSJJJHTTlOl4xNF0RL/foVI1f/zTU370k9/yu99/yu38FiOUKxxjF60hUopOgVufL4GFkGGiEtrgnzIOqPMLZd/vi4ytau0Qr0EgWS7WfPLHLxgNRxzPxuAYhsVyyXQ8cvnHYb6/1g3wVUr/zxmnrwoSjI/97+McY/96RxhDFEEsXLEea/H7okGNBe78/cZaY+LAfLBCUTdWqA9GcxsNNTEDNmjQC5fG4mzcTZZZaN43v20/2/6/VsoVhiy1O/j5Y7FasdsVESPg54w5OGdallcksmMl1ut3OTs7s1b1ZkO302E8GTMaDl0Mgq0dULv0SkvVm5BJY4Wn9TuLJGHQ6/Hg4pyvfe19vvH1Dzk9nSGl4Prqhr/9m1/x45/+lOvbG5eu13Ht1AGo4Mc1HhNVW3eA1lRlYa3Hbc56s2G33bJx2QF1XYcMjzgXXcqEJE0YDgccH804Oz/j9OyMyWxKp+cqNUZW5GuP14xXPG/Dd654z2qx4OmTp1xeXdqNnbzbKYAB3DNaVkAb1bi33PM3bGV7R0R/eP97PLbCgSmtIieLUI55qEKAsV0nTWqu3wo4XMutMc8K+D41XvO6TguFkTy4wTTPh2e8cMhFBmXt42zs+hFoXbNeb1mt1sxmM6azI26ubzBG0O/3yHPNZrMhSRJGI1s4qy7rFrD3gtW3RQgPBAjtijOoWkOMCRkKb3Pcg4H/TEdbmIVPsQPo3AC1LWRR1sqWCK5VyASwgS8Ea8sPfrOAG0rTo0SBIJOSTpoyHQ05mo4Y9DtoY/ji6SU//Omv+OWvf8/N7a0ThmB3PVfB52wv5ZS+V9gxUncWlBAiQvduEWFBhbdItHFsQminwUi/AN1nwkUGGyf4kFzfzPnjH//Ed7/9DXq9DGPsRh/b7YbZdIIIzMBhVmD/s/3xeN04xUo/Pl4HBF4HDN6o+I2vEeC/933jlL5p4gNUMNrvFgoKvvpD4JAm48RvHxwHDd5V3kSvtjH+un7/gjf9vh2j0H7v+7fb7dBxFd2MgcViRbmX/+1G4Q6gvAMmXzM+QgjOz0+RUrBdb+j1ukwmNn1Oawuy4xoLSYimB5AIkZBmHQaDAefnZ3zrG1/now8eM52NMGi+fPKMH/zgp/zil79mVxb0ux163W4DpNzhAyq9f8evVa1q6qqgKkuKoiTPt6Fc8Ga7Id9aRkMFF45VoMKl1Xa7XXq9LidnJ5xdXHB6fMR4OiHrdJBJEvpKe+d1BO48PvFuov3x2h9XzwagDXVVMb+d8/TJEy4v7cZPtdYu8NOETcp8fX/tyyM7mdIEvbXliB8zP+fwACb+AOxGSrb1hGqk2sYQ2C2UvRqLjY8gYQhMgVfiNC7FoNhdW0K/CREYUb8WYgDlQUvMHPjns9exu0rudjtubq7d5lwjlsslVV3Rp89wNGIxn7Narez21r0+m3qNcaDHRE/RjKG3gozf88myIfKAjAvr6N5N8F/kCBZvw/PgLRCf1lLVdn+ASimquqaoDWVdh1KsxtWU1SaiLk2Mov0Ed+tdCCSGLEmYDAcczUYMBz2kFCyWa37y8z/ygx//jOevrqmrCqMVGGX9dqKZ5LGS9pZF/ByeAfA0W9gLwcSeK4+g8VVd3dryNFwzOcP9tPuP+0ojef7iJWfHR7z33kNkYgXp9c0Nk/GYNG3vVhj3+5uyBF73WejVqB/83/F3+6/7gODQb/Z/FyoFBirTAwHjZW/bmjRxQNQBq800QNENBT5LwLIA9UGBv/8s2mWG+N+Do7Gd9bdP/78ODBy6jzaKXr9nx81YxmO+XLr0QesmsGiyqfW+Px4BoEYZK/F4+1zwNE159913qIrSUd4uyKwonTS1FdykkEhsHAsyodPpMp5Mee/xu/zFRx/w+J0HjMcDiqLgt7/7Iz/56c/45NNPyHc5WWaLb3ky1iuPO6AxjJ2Nei+KPDABq9XKZgbkOcVuR1mVDTvnFJaUkiRLyTpWkZyennByesbxyRHD0ZhOr9PM532QZBpK/k1jFo9Vk4rs2CRliz/Nb295/vQZry4vwx4S2jEAtar35oeODAu7oO1WRAcAXWRkOLvXyYhwZrDcjQ/O0841hHBGk8ZnnrhVdTgGwgEMr+/jQwjZyCYng3x9BNMs0NZ6i1Xsvuy0ctKl/GrDLs9ZLOaMxiMGgz638wXbfMvx0RGD4ZDtZs1uVzAcDqmKkp0uQsqll6F2HXmgIwiuMqJ20wRj4tkC/yxvcdyDgX/BY9+yDNaeshZJWdUOBGgqpSmV2xyo9j5XA6YJTDGGMImjuxBMY3ckQjDs9zidjZmNB6SpJC80n3z+nH/4/k/5ze8+dlXeaid4iUyFpkxp3HbhgnW8otdEStIh9MSI1sL1733AoEvlxtCwGIHkdfeT/kHx4MEu9Kqs+PTzPzE7mnI0GwAJq+WW1WbD6WyCFxRfxQR8lZsmPg4pyf3v/Pvwz4EyIqV16HzvBjAQggCtMLYCI/bFt4W0cIK6bc356yrjNwa4a+3FZVf3f7cvLEM74+wDY9qpa69R9q/rM/cBRgkGvb5j4A2qUmxWG7s5Ta0wyvt3naCjUfJemflxjAMvpZR2Rzu3Q6AvHVvpCoVGubLIYbmYqACLECRplyzrMp2O+fDD9/nwax/w6OE5g36X9XrDj3/yM/7xBz/i2bNnCGFL+GZZBzvXfQxHM5ebfy5lU6mwaVC+tSyA3z54tVpR7MooFRgs6LfPnaYJnW6H6WTC+fkZRyfHHB0dMRgNybpdC4AcC2Dc8xD1ldY6KMUmBbRJH70DND0AMMYVgFIUec78ds7LFy+Z397aNFDdlO+tq7aLp1GWJsg+KYVlRyLMIrBWsx/n+PftdRtLF40xtkaBdXfZc2pVk6ra1VWwylsHgGTTbsMf/jUGBCLiLYzLHIjYKSklRssA3u3ZvtxyPP/By8BgMDnRXVY1y9XaFqSaTNhuNjZQdJczmYzQyhaRSrOE/qhPUbuKnKGJ+0DKpjH6OeMBinCBmAEwNM5b3ua4BwP/icchBWAMQahWjvr3FQIrpakj6jVeiO1reLvcSRwaRWy0wGgrDLIs42g04PhoTL+fYoCbec6Pfvob/vGHP+WVK/dq51PELkTW5JueyX7QnBoWrLf+94T/XVq3LSwxIJrgZizD5SkEQPgiGYKb2zl//PRTvvtX3yDrdqhVzeWrS2bjEVmaBqovvvd+Ww4dsdCJP4tf3/R5rBD3zzFeEIaTCX87Oeyi/+2zK71XCW1fIbsgqNdS8caDyDb9e8fS+wpF7oXXfiyAxjTtewPD0LbA4v6ypVxHo0GQSWWpWK83wbqMr2eVnAyC1hjj8s6bv6W0WwdnWccVB5KuKl+0K1/zdM6v6yxtBx4m4xEXZxe88+AB73/wmLOzI7JOyu3tnB/95Cf8+Mf/xOX1FWmSkGVZC0yBVfhW3ApL67r22wwZWyWwLAp2+Y7t1u4X4MFA4WqDtFwBwmYGdDoZnW6Ho5mNBzg5PWU2m9Lr9eh0OojUlWeO+joAbPcaskbcex3NBfbGTOumxoOfb3VZsct3XL+65OWrV6zXa5fpUFKrqKqf9uykm7f4OBFalmug3MN4OGND75Ul9vPGGRImoupjYKi1zTCwGxtJ6lqRJIYkadwELZlDxNgaP5fcXifaZujYKRZCnDHN8rDXiwCCbUs0JwFiN2u4n3FB4bXd9hrB0dGM0XjMzc0teZ4zHA4Zj8dUbn+JXq9Ht9shz3d3gXVk5TeBxtiS7sKOnUgieeil0FvaQ/dg4J953FUm9lVpG+nqAUDpAYCytQK0adK9QvAXoAUI3RakGrcgItTpp0ciJMNel+OjKUfjPkkq2JWGpy+u+Zu/+yG//PUf2GxzywQIE4Qrr5lg3sr1KWX7C8r7yCwOsP+TfmOMyCq5M4GDCIgUhWroXvud84YJrJAV0kUea64ur7m8vObhOw+QUrJcrlguN5yeHBODm69iBOI2vs4H/VVA4NDzxT7+cM7+03tFixVk2ojgi1dhAxWv9PcUa2AQ7lLxLetP1+73jfXnN1Hxnx+i+pt2+397FLK/vnIR8O5Ew93gyBaIcHENiZCQGPr9TrDOd7uCjSsNvM9aSCmRaYrx1g7S6XMRrPNOp0OWdkiSFAys11t2u11wbxAAqZ1nMknI0ozBYMDpyTGP333E43ff5eL8mNGwj0Hw8uUVv/jlr/jJP/2c1XrtwEYWyi/f7S/LWQsHDFStqWtFWdkNgna7Hfl2w8bFBOx2BWVZ2RoBRrssCEtZyNRW6xwMhsxmM05OTzg9O2M0GdLv9UlTlx4oIws1nt9hTF4/zuFfxKzYwjy1a79laeqyZLlccXN9y+XLl6zWa1fCWVNXdWuPAFpK0zRz3bk1hWiVMwBi9qw5H3AKq+VMCMZBc1rEPjr6XklfbK0GEjeHEtc247V8S6b5fhcIkAKpfR3/toz0f/s26dpgU0210/3SsU6m5fKI14SU0ro2jGG93oAQzmWWURQVq9WG2WzCeDwO8QSdTkZRlC0WLE4FjYGf5SlsXxkRg58GIL7tcQ8G/hlHCHrxCtr4gECr/Mtau3gAKyAU8aYhe9aUaBR8iNhnTzF5hY3NrklTwWQ05Gw2od9N0cKwzmv+8Mlz/re/+T5//ORTyroMC79hzfYVtb2pv2+IrA2UXrMohHfYGZwAtIrbbi+7t4xb8Q1tuq85xwsBV3/ANH0ifaaMEGzynC++fMpwOmI0HKBqxatXVxxNZ6RZ5CPjza6B1yl6f+i21Gqdtw8KWpY5FtzZE8KvwosRjRXXsAE+xc9bZnvzIlhdh636liXtxsHeo8ka8OWDY/fDIUVhKWV/7+aZw3lRFbm4L5p0KqeIjGmqFpqm3LF2tYjthi/2yPOCPN8Fa9QHn0kp0dj6/tZKE3a76USQZbYGfeIKVZVlxXa9dpsTNXNJCBmAphC2rPBsNuXhgwe89/hd3nl0wfHMVuIry5JPP3vKj37yYz7+9BPyoiCRCZ1uZp9Jm1at+zCy8XhoTVXZ7cBLt3Pger1ms92ydbsHWj+7Cf3olaIQgm6nw2g05PjkmJOTE46Pj11QYGb3A3HVAk20jmKA6ZlD3+d3QIA2nrcO/aR9oF/YzteyGPlmw831LVeXV6xWK3bbbdjox46TL5gcK2jbhsDqR77z9tqPpYQIv/H6ullfzuCIv2gvrmatCDt36romUxmJTCKQIsK1fY5+/NuGfZI2uym+g26UqAG7lTUGqV2pYx2znc1jtlkI94WxLIjNNoB8m2OATreD0opNvmUw7DMej6nrmny3szvBZlkrzVO6PmtJLeG5qTZrGM//PwcN3IOBP+No+watYK+VRcy1smmBRa2otS0b/CZLDAw6zMAG2XvMHGhS/4kWpDKlm6YczwZMpwPSxO4nvtzW/PI3f+R/+9+/z7Pnr6irElvsxBZuuWutuxYYQ1DwTil4BqDlV2v/yjIV/pkAXEqicvnTXsn4/QS8D26/D31QoV21uLbqBsUDRhleXc8ZP3nB1z/6ACkTbhdz5qsFZ8ezVgwC0evbHq/rG/9drKTbPvco2O+AoAq/MXFlNmHTBb0wdgGl+xZ2UKwH2ABogxHjgi8tgFCtc7XWqD0w0LxG1tYBwNPUIjBNwaK984TAUmE08yF2eVgdpJCyS7fbccDTsMxXFGUNdRR05ixsqb2ryQrQRCb0+z063Q7aaAsCtmsqR7ML6WNTrNtMJglpp0O31+Ps7IT3332H9955yMXFKaNBnyRNWG9yfvvLX/OjH/2EP33xBUbYQjBJCCTD7aXkKmw2LugWoNK1otoV7HZbdrndNXC92bDZ5A4ElCEA0x++jVmWMRz2OT074/TshOlsxmA0dJsipSQycZXjGsVnPLo8ABIPBokav1YJYxOAQK0CG7DdbpjP51xdXnNzc02e76gruwtgS3b5vhHtteGG3zVVBmNh36iQNJ5s7R4F7rokDe4mB8zbmBXxbfJ7WSQuoyJWiBZceOPFXSzSkQEM783/FlNhhN0ELbkbeyNCG2VwJ7gLu0dwGSuuzUobyqIiSYQFGUqz3mxJk4zZ7Ah1fYVSygHf1I6BjwsJfWca+ei6ysaaufZhCzIF4PUGGRcf92DgK459CtxOBgsCQjyAUlTKUGuXvqTbAv6Q1SkQSGMi+oemtG88MQUYI8mShOlwwMlsyKDfQQioFMyXOT/52e/4+7//AS9fXaGU21jDUejeMLijI11xF+KF5Vpmlbtftl4w0kx8fwljml3soj7yExVjq8PJaGvUfWVp+1hHizVGtAaEZFfVPHn6gtPTE46Pp1RVyfOXLziajumk6WuFxaHj0P0PsQb7zxQzAcaNVbNzoG2q8YxJ3D9uS2FPsVsLzmeWqINKFnd+7PNvWadRe0SIPbER+fuxBbqloImAwAErH1rttP9cTEP0P/u4HrD4fmmuFc8DY6yiTTO36Y8RVtnUcVU6ux68y8M/oxQSkVqVuPFpd1E8gBCNcvUKdjab8e47j3jvvXd59PCC2WRo975AM58v+dVvfsePf/Izrm8XGK1s0CENjezbFMrzxv2ttd05sKxQVcVut2Pr0gI36zXbbU5R7MK2tPaazZzMsoRer8d4PObo6Ijj02OmsxnDwSAEQeJAjTcDfBCuV6A+WMyWbvYlodsAAB/xrpu8fqU1tQMDdV1TlyXFNmcxX3Bzc8PV1ZWrb2C3/Q1VKvf6IO6jlruNxgXgWT1jdEPHx5DZj3H034OHMdZN6mMIDoBubTTS6BYYaAwb7+NvLmn7UroMB2eHeH3eaFagzRZI0exciJC2EmTUVGEIKaBN3FSDZLws19ruUyAT6UCaoNiVrMSK6XTKZDzhdn5rA0izlMJoJ3Nce4WwVQqNF+x2TXkhbT9ugJtr3ev7ODruwcBrDi/IjBfyrjBPraJ4AOX2wwaXd+ujou3xVVYn0BKAnm8KFjN24LMk4Wgy5ng2optZ4ViUhtvljp/806/527/9PlfX17YkrZ8k3rQXvrKcR+8ewjvLQQSxY9sVUX5+OgX3QYDtTtAceL7wXC7VK/i2Dyjo130WFImVaCgD6/WGJ09eMBqPSZKE29s58+WK0+NjWsTka+IBDrUxfr//WSNsIiBgfFYAQclaPRoxRuEauN+3I/utQo4p+/0gP0IueCzowbfJCVav0H36XGSRHypS1QpKdA0Mln9csyLELzTK3f/zfeMVwr7i99+Hc918se5ulxIIrNd5U3kwWgehxKto+q4sLQUfKxnhGSchSNIOg36Ps9NjHr/zkK998JiHD84Y9HskiaBWihcvX/HzX/6GX/7qtyyWS9syCULuZf9Ec8HDI7+5U1VVaFVT5Dt2ee4AgA0I3G63Nve+slU84/GRUtLpJHb74KMZp2enHB8fMxqNyLpdOt0OmUzurgXfD35TJGe9CuNfVXDdePDoJ55ncvbHr9bKZjasNyxu59xc3zC/ndu4AJ8y6MFGiFAPU6F1+P4njJ9tp2iEhxtPmwXQCrR2Ax7XH4DGidDuh/ZvPMsRrHAHjLR027SHtesq80VH01xfYCp6OPdWGLvlug+ADPLZ2FgEmWikEqgoScGDgAYI2EuHbJOwuMCvY1U3riK7K2xBp5MzmYyp6orlckmnk9k1oMvwrDigqsN8FUHc+2fENMWXbJvuduuh4x4M3Dm8UPOCze4RYOsD+H0BNJXWriKbtZaCMA6CAHedrwYE4NWzX1g+ehWyNOVkNuJoOrTRshiK0nB1s+HHP/kV//D9H3F7dWWrgPmrCLfZh9ABCYcCwh4MOKXQWOPNIiP222ED34TxSN/Rsd7Sd8/rF038O+Git6uqChNz//lbyt+YqA+acySWtn716pLT0yMuHpxQ1Ypnz17a2IH0zcWCXtf3b8MIaOPT/mgDAp8OiK8h4cfftjwIY2PwOwW2qHfjLXWX/heVqyV8385aiEFVsPz36WEaMOD71AfzmTBXI+p3715xv8X3iD8/5Po6GEwosDXlpdvRTYBRhu3WxQu4/3kl71+CYvSKzglv4awzuw1wl9FoyKOHD/jg/ce89/gBR7MJ3W6GkILdruCTz57xk5/+nE8++5SiLBFSIpIID++N+/7zGKVAG7cFrSsV7LIC1uu1rQ9Q2ip4Yc0b44Cw3T2w3+9zdHzE6andRnk8HpN1OqRJgpF2cyHp3RN+PgobayEcI4ObQ3F7vXvFz0njgKllOZo552NSardT3vXVNVeXr1jOF2y3u8C2tMBoKNofpzkbx1I2yrlRQk0VvwjLtan2SKaIIGPbjGmYCw1aaKxs1zZ/HZ9D78Gt36VQ2UXl5I2fU75FQarcsdw9MDEYZ+U3zChu86Am3VChtR0zmVg6XwoPhgj96K+KEIFBs21qxtq3w9AwcaPRiKKwG1V1ssym39YqNGcffIe1440ST3nsnftVxz0YuHPYgVR+u+CycumANhugVlbx+/3e71gWERBoXTWaTPufe8QohYumFglSQy9LOZqOGI96JNL6m4pKc73c8v0f/xPf/8cfMb+Z4yPJRZgAlsIKGQGo9gL1t6SxXrzlFahFmoUmpQzR3FL6iFzZIGY/uf2zGOs+UMHvZ8J1/UI0AutPi7vDSYK4n5pJD6vNmidPnzKdjuh2Uq5vbriZLzg7mbkLeGugYXUOmjX+2V4DBoJQ9O9psgbsv6CnGnAQKVO4qzDvKu6mfkBgBw7ECRxSuL6tQclHSiEEEnorxNH+B6PL9d1Axbj9B2MZ9s597Wc4mhxpmQHnujLKUBdu1z0ELu47zFf8kLm14C0vhCBJ7JbDx7MZ77//Dh9+7X0ePTy3BbZcStV6veGTTz/npz/5OU+fvaDSKliRRivClAh54u12a91E1quqpNzl5PmOzdalBm5yu31w0Wwf7DdvEgKkS10cjUacHB+F7ZP7gz5ZJ0OmqS0fawjBwz5zwlvLTTpns21uw5w06cjauK2k9+eWDVRBKUVZVqxXK25v5lxdXXFzc2NLCbuSzKGORDAXcFR4xLD58THNGIXMjWBSt1UrNCA2BF0ICai7MsiNgX0+4XIC7Pn+esb3jwNOOCvfTiv7pq4VmVJhB1NjlPttHD/QKHl7GaesTeNOuMvSNCxCkiRkaWr7LMHGdkSVLD0IACuPvbEQAwWMCayK1toWVdPK1pxRim63y3g85ubmBilTOlkXo3cha2lfru3LsTCOxhsed1M4Dx3/LsDAvmJ5/Xmga02tDGVVUyhbJKh2lptWPu/69QPhF4TeH6CYJrsjOO2PpEjIkpRup0M/S5iM+vQ6CQhDpWBXKBbrHT/96a/4x7//PvPbhRMk0fXwgFzc/dw7x6LDF2HxPaO1dnEAtm1ZlpJkmQMpDXjwC2s/Qj1YskLYvcn3FKKQIlh6xhUYalp4d4wagQJowdXVDa8uL3n87iPqqub5cxs7kKYytLk9GgcA294YxN/5j7R2vjonCD0L1GyJagIYMJhW5O++gjykiP1mNcZt0qNdJsChcw+1OwYtWkdFjIyJ+sFEyl63GAET7VGw30cH4xiizzHG0eGH+rPpQ2MMaLvBlp/kPoIegw1+tBRWGHcfOIhjAoyzskejAQ8vHvD1jz7kg/ff4eh4QrdjN+Opleby1Q2//NVv+PVvf8dyvbEUegQsjVNkMWAGQrYFxgLYuqwsE5Dv2O1yVsuVTRPM7e6BIR5AeSvaKtEkSej2OoxGY05OTjg7P2N6NKU/6JOmKTJJvM4Mc7MB3D7GxvaHDfrTCOPcFGGFNFkaXtAHZkk37ihVVtYdsNlxfX3D1dUl89u53RmvqsOcjMcfE6ARXrO35WY8ztw5jDMCIo3aUOz2g+jFyYdg6jZfGf9OQAiYwO9fAggvMzwH58fXyi2llHNPuvGWfl7GGQXxTYWfgs1zRYGktqnNM0shbUaL65/X6xQTvXq3RCTvTXN/44CRdTXZjYyGoyFlWbJcLsk6Kdp0AosTtyeOi/DzqOlzOz/EHiP7uuPfBRg4PGCernFZAbVF0r4eQFnVlFq7veI9geQFB80C3V8ZBoy5e783WqKR/ysVkmE3Yzzu0XUFRpTS5KVivtrxy19/zN/+7T9wc3UdCbpoUkYLMp50MR0f94uIzlVuZ0StVMgEsLSsXRAgHH1mjxCx7nzch6xLdyM76ZtNCqL7toVF/Pt4a1J/fllVfPnlU46Pj+h1ulzf3LKYrzg+mbpHDRoGvxBbysm9BpTt2xCdY0yjJKwC9dsIixAcesjyv6uo9xSzaSz/YFVG19sX0LESjvvU6a7W94fbw53PfN34fbBxZ06att95v//2z91XKmFEjaEoKoqiotNJkYndP6Df67uUtTrQwRjjfJzSWkSdLtPplMePH/KNr3/A43ceMhz1SRILJKuq4ssvX/Dzn/+Kzz7/E8v1miRNMWgUdTQPIjBunDXoJL2vp6+UotjtyLdbcr9fwHpj4wGqkqqq8Rk6SjkWwO1SaNMXJ8xcoaDZ0czuHJhYRkM6TdZQyEHlunUfrVnflzqy8iFkAvhccq01aMtg2jG1GQLWhbFhMZ9z+eqaxXzOrijsutYe5MexHo2Cio2FFg3tWtt4+CP2ToSVG86PI90JvzZh3Zvo/EY+tWlu6WqN+EM0yxntNzeLJprSGqQIsTm+1gBauP1QmvndMAR7h/A1XbxMMKEccONpcGyWMSHlMhhfkTRjv+2+b1zfaoeEPRA1RrjUwhyZSgb9AUdHR9R1zXa7pdNJA/DztQ5iMNWMU5tNbVD3Vx//LsDA4cPFA9TKBnAUFbW2wWoKt2Octh3pF4sV5n7Q7wpRuEt97wvMWIH7w9OY3TRlPOgxGfXopIlV0LVhVykWq5zffvwpf/N3f8/l1VXTHndNv3C8pe0FcXgftWc/Q8L/nSQJEoF2ACBJUpJE+kZijEsc2lNi+5Xp/DP5IJfGzQD7AOYgoIn7jnYhpLrW3N4uePHiFR988Jiyqnny/AXj2cTWJ3DCPtg5prEhglKGEAdgZwJOu9q/tTEoGisb43fss6DR+2sbv63vy/1cfH8Pb8GrQM3rA2mAr7PI98EFiHDfmJGJlXejMOLKbX58vA+TQHHfuV9UM+CQ0j/0vj2vraiSwlaSfPb8knfEGaNRn/fef5cPvvY+f/j4j+yKbfDt2v0FUvq9PmdnZ3z04df4+kfvcX42o9vNXHtguVzz8R8/4+e/+BXPn71AGY0QCYiEurZZFU1KrXXJhOcLfW7T0eq6ptgVFGXBZrVms16z2bhNg8qKSlmXhlXY9v5JIkjT1FWPm3B6esrx8RGzoxn9QR+RSHd/vytkW0a4GYEwlqm4U7TKNAGnVk6111esFHzJ43yXs1wsuL2ec3NzG4GAuj2vjMv8CDItah80FH4E6kxYU/HIxl96H0HD8/mvLPhqr+n4fp6taSoYNGMlpAgQxM9bb8lDZOSFsTFUdW2ZGF9zwFPz7sGEaHiFwIp6POb+aFKs/XciVIn07UrTtLXW/BD6tnkQoV0WQKOw7eHlqHH9p50bOs9zhJAkMqHbtWC4rhVVVZK5HTeNsvPbZ4zF+xfER2B03kyIh+O/WjDwNullQgjSVNqcTGlTPLZ5SaUMpEkLVLWVfzRh7/iX9lH13Xs3WNu9GkG3kzIbDzgaD8gyGRRPVVbcbHd8/sUTfvjDn/Dq+YtgLcTC2E9k4fJ8CX+3moygHdnrTgsxAaQyIHRv0Yto0TR+6rupb0Gpu+eqq4o0TS31G/nOvHJ801g1lof1ofp0K4ygqg3Pn73k7PSEUb/H1fU18/mSk6NJEPbBHxuNna/GZwVSBBkc6PDdpvR+oSD/vCYKArwbZX9IYWpXYdAYQiqe7StFvM3wV1Hzd8HkAVC21wZfIGW/fYeuG0yicK4DM+iDzxVf0yrLxhgKcNlYd4JWmh//9Be8fHnB977zTY5mU/77/+573Nxe8eJFAQI6nQ7D4ZB3Hj7i63/xIV/72jvMpqMARqtacXV9zW9/+3t+/evfcbtYBT2kfH9G69pbXe3MCDcWtXcH7Fw2QM52u3GvW4pi19Dxbq0JF5WdZXYr5ul06kDAMZPJhE6vS5ZlrbmsRUITjNf0Lfju3k/jtIBSR3PkLki0ykop7erb71gultxc33B7e8t6tSbPc2u1QggktNPbo90A/4ISt3hJe/0SmJrQ7rAuY70TEftBMeO1amQxE+4vkEFB2zOaHHrjGQf/vaEBBBGg8sHVTTPamQVKa1JvRCgNEscmNWZ+++cxuMElcDTKNjx46xwR0lIJOkI4kGWC8hemATMtUBTCjxN8hUKJRsmE3a4IYCPLMsbjEbe3c5I0oaNTCl24tM+G3bEyVTTtCAMh4qX9xuPfBBhoL/L28baRkocOq+ukreqXSPrdDqORZrHaslxvEUkSikUQ0J/r5L3J0oqG/4rO1w6teTHVSSSz4ZDjyYAssRO/UpptUbPe7nj+/BU/++kv+PzTz6lrGyy4H10skyRcPcKnTfuiz0J/ShHSYvwz+OuJ6DPhwKU2JuwS1rZUmjgBfy9Vq2brY4famz0JfBDiIWDSBlrBrg9gxp6zXK158fwlf/HhBxRFyfPnz5iOh8jEPyOtrZfbyixSVsYvKi/7nBJxn8fPbH3zUeGW1wCBdgaAU0A+3eu1530VGLDP5dmGwEyEOIa7+xCE5/ABhf6546BBwhfhvva5xB0gsN++1jM0OjcoNa+8jIHnz19yc33Ni+fP+R//x/8L09mYTjd1lOiQD957j//w19/h3XfPGA17fqQpdiVPnj7jF7/4NZ9+9jm5231wv5ZHfMRtC+doHTYNqsvKugK2a5cdkIdKgXUotONXuiSRkiyTDIZDjo6mzGZTptMpg+GAfn9Ap9sJOe77bRG+a/YAQRsw+nTEu+MYZr0zTGpln2G72bJcLLm9cemBqxVFWdrgR20rC8aZIvG9I9UeiQoT1pcReyl/bWd7s9ZdFKRfq+1jTwjGi9g0QcvGZSk1WN+EPmsMiL3LOKngLW7/YrRBCkNd1aRJGhSq7+MmFmW/zc796daDdOWehJDud1HbHYABy6QCKGzwH26N2i52fdWc3jxLAN9NFgbGXkcmCVVVsdlsAv7o9XoMhwPWrkx2XdfUpg5BqLZNEo/8BcaVsbeCW+z14euOfxNg4F8aBMSHXxvel5WmkuPpkFRK5qutXRgxZQRhAvq66bTqV0YL7TVH7JdKk4TxoMvRpEeW2BuUSrPd1ay2BZdXc3732z/yh999YiOYXUnQBrgf8H/Fq4R2X/lFIBNbs91vBrJ/XjjfKwZjrZFWAJNqgumElI7uixZf4vNvY6R6tz3+s32hEgMC4ya2F4x1rXj54hUPzs8ZDHq8fHXFw4cPmE7HjdKLBaFbc3GdAOPb69wQ/kQd4kQIfvbaWdlNylbbYttX5kERGeOi2NtK2J/jX1+rcP1+ABFIiQGFUjo8W8zUhDHaAxzhukFwNYwDxtVAMG0le0iRhdLaAUWJVrvCrnQQCjTliy3XVzd8/vkzhuMRi9WSfr/Pw4szvvvtb/C1Dx6RpRKlDKuNdQX88le/4fLVJQZh5582rp6+V2pR6tl+G0NQWU1ZlOzynHyTk+c5+XbLZrth56zo/XLLQgjSxFK1g2GfyXTM0WzGeDwKuyV2Op0ABA4dAbA75RAYPdpjrZUCn0a49wwW8IGqlQsoW7FcLrm9veXm6obNdmM3EIrcAcoBsaBUY0Mlttoh9Fvw17vP/CGi9vhnCX7/SBiG74XnC9rpyf5evm+bQzjXqp8v9jspZHArhjMdUxkUbfyZ71ljGbGqqkLev+9HKT0rQWhbEtd48IjEv6UBRd7Ct0IhrqkQATpD6Pd4PiKasQ93MDbltsk2sABXVBVJklCWhjxPEELS69nsgrIsyfOcTrcTntO6GxrGI4zhHoB7m+PfBBj4yiN+3tAHdzshnlhKabbbgs1mh1I109mY4aAXzpuM+1S1YlVUgYYyJqpKJYhm1d37h0WzJ1C9ADVYf2o3TZkOe3QyGyNQK0NeKFbbguubBZ9/9gW//c3vWa83tvyqQ88BoYTFuG9V+69NU75SCJI0dZueuEVkpfXrsYunXLWhLCtqVZNI60LxiilYLgiS1JbYlImtMeD9wfH1g5I/aFHc7TcrfFwUsWiU5Hq95dmzF3z4Fx9QlSXPXrxkNBoiQulWE9rllbsHAjqurkbj+sCdGwK2gkD20ds6BJ01yrb5vR/fuDSzR5z71n78/hBIMMY4664pXmSMj3dwf6tYsdAAnNCmdkDiwfmIF2imFSsQj1ejnFyfGkIhHN+LzfXjvrDKTxtFkgrqSnF5fcnLq5d0ez16vR75bo02FfPFgsvLWz759DM+/uxTS5fKFKUNVV2htGrtYeGnZ9PHjWCuar9z4M7uHuhrBKxtVkC+21l/urkLkNI0odfvMR6PmDkA0O12ALvJUn/Qp9/vMxgMbMCiuQti9/sOr4wNe4yLxo1oaw0YY+OZVK0oi5L1es18Puf6+obF7ZzNZkNRlnY8tLZsgNZhPYt4bMN7ExaiwYS+JFbuIlJYrV807fJsoS18J9zyN9EPDIesevbpfbzO8vubNDUIGiHrQUXDOjZtNf4lWNq2jW6/gix1QK0BED5N0DOMHvyIUCdAtsZTSvt92D8FjZGu5opT6GmaWvmgmvghL3fDo0T92Zob4fN4/tp02LIoHYOiGQ4GTCYTG+halvaefj2GvhSBwW0OG2z4Nsdbg4EYMf9LHPsTZf+67b/9uYfubaJvG2X4unsqZdjmBXleUCmFEAmy02WX7+h3uySpjXoXQjAe9dnVLg8cP3kM+FKWXr0EYNlELPv7HRSqwQcvyJKEXtfu6KZqKMqa1W7HzXLF0xev+M1v/sD11RVaNXXCQ5qK75G4rwJybiw1hHQlW2VA0j4rwLhFJ/ba7Ce1wwIBfGhlhY91LZiW5BCu0pwRArT1qUmZBAFzeGyb++73mfeF+X8ee/l7lrXi2atXHF8cMR6MefHiigcPHjAe9cL5xhgULtiuGRr8GtLa1YsICjjK2dfef7vnEomD9lQd0gIxTQT+oYj9Q0r/TefEOxmGLWsDUHHKJaIgrWIzAbj48Y2v2QJi+3PUtIHA/u/COVGhhUNgI1iiERjyI97tdUhSSVUqVwFQc3V9y//yv/5vaKXYFYXdJyBN0cawK4pAoxMJzzBvIuBkx0tR1xW7wu4euF6tyTcbclcp0FrRag8E2DanWcqg32M0GjGbTRlPRmRpRlmWzOdz0jQLwYLdTgchbTprUHxR4/b77u4/X5mz3QbPKBVlSb7dsVlvWCwWXLtqgdvN5k6hICIL3ERleO8eTTqwX1ktRjPSw+1ruPGO3XpCNDLQ4K7r5IURd8YJ2mu31TzT1BjwSt0aL42saESGRyxWcXsXZmi+qzlgYypqRNcyk95t4rPsLDYSEVsgENKmqvo4E2OcPItcEs26tgDObrBlt09WCrv5k1KAdjImSvcT8YP4OIioI4RnFO2vKsC4rYx91sp4PKa6vXXBtgmhpgy0xjx2I99BYK853h4M7L+J9c/hj9u/jxoap7TtH28LNtqT3ePKCFnuHVob8l3Jertz0ceSNEvxLFMqMkfleNrRVv9L04SyUi2k+7rFdtAiYG/iQ6hmJYwhdVXVtIGiVizWObfLDa9eXfP5p5/z5ZdfUhTlnfuFv8XdJw6+eEAISZLa2u3NwoqYDqdrm4IWDdVmN8xILdp0k0sKGQmEBnv4nQ29ULMpiRFV5YGUabfTPUL4XStoJ3qyZl64djoJkOc5L55fMv5owm6348XzFww++gACre6hhNt0JugxJ5QhSrcjKHSrXNoKW0evwVXgrqeDZRBnGOgw9vb1buaB9SQcVr77/+6mD3qp6p+18T3H7Y2V/EEFv3ccAg/hcxrls589caiddsQaIGfAMkaJXXt+Xu12O+9EQitDVZXhWZp2talnCziaSnuqqgKVutlsybdb1uuVzQyoyjtxHsJR0WlqgwI9EzAcDpBSstvtuFpdU1UVx8fHvPvuO0wmk5Bu60zuMFPN3vv9/vD39X/HzyKEcEWCbPsXi6XdN+D6hsViSb7NKcsygFHtFIkHXb58cGAfWkPbuBU9CIrXWAz0vOKwstStNm/97ysbIZpxNTYmqAlWa56r+dtbTf5+TmYHmj78zN1LhLY3Vr97ntYjNLUCGqbflo7PDPitho0hrIPmOUEgXXVKFyPmaH0hvRFlsxM8K2Gc61Abhao1wgiyjibLCjbrBUpvojXQ7m/hduM0LZeEe5omfhOlDQbrki0KEcod9/t9BruClduLwRiDqZsgTAKDEcvUtzv+DDAg9j+IGfEWqoz+DMfbNOqrztmXXfFCet2hNeS7ku02t8Fiwm5JGX7vrqkjqs6YJmI1TQSiunvf1ylnf00v9O1njT86AJcgKOx+ArU2rLY514sVLy/n/OnzL/nk40/Y5TmxBm3Rkf4z9sgBN3FUXdv0wLTt0/TCObzf82X7e3jLWAhbEMNe28J7C5i88vdWQ9Mq4crPWlZAtECAMTY7IA5qjH8bn/c6d4JXLEppbq5uWF9c0Ot1ePbyFecPHtIfdINy1E4xB4NW23SzfYQfC2+vpA8p4XiDoTi98lB6n3+Ou0DRxyNESnNvHN4EBPw1LIDxbEYbDFhFEQMfG8OwXxCr3a67CgyvRIxdIUbpFmjyx35ApW1LA8D2+8J+7tMkdVgeujUP/Fxt1g40IKCu7e565S63Owdut6xWNjNgt8stE6Dq6Pd2fktXzKjX6zIajZhOJ/T7fYQQbDZbu4XvLkfKhNPTUx4/fpfZbBbo2VjIt9a+e43ZG+P8yd7Vg3D+4qivd7uCzWbDarFksVhweztnOV+w2Wyj+dbMS7/BWVBu3jbwkMor7xb+dhZ4S87RZhq90tyrQtjOkIotd1rX8h9490FM8YfGNMZxGBYHMwMg9CxCc7/mB0E++fNNUzzNP5GfX3WtSJMM7QugkmBIMAYSpG2bSEiSjDTrgtuSXYuE/mBIp9uj0+3aEtidDlmW2bVbK+u6KivqsraFnnY5/eGU5fyazWaBVhW1rjBuE7HQKAi7UDbxLrZvvKFmY1hseqoPfhRCMBwO7P4FZcE2z0mSFK0rtzW2u7wHGubPAwRvDQZ8EJP096JNBd1VUex9e1gAxUcs/A9fgyDg/J2kbD9oLGiKXc16m1NWtbOOfTCaj5a2hL9PxouRvZ90iafDo+/f1P7mnMMD4ESkrS4GFGVFVVsf0a4oWa7XXF5f8+UXT7i5uW1RreHKwk96JyhFI2y9oEvT1Ab7iYbpCNbhXj8J09DbgoYl8P4qYasO2UmJQErXloj3i5W2EM2CxERRvP4OQTY4ayYqkPXaYFHTWJe+H32fb/Ocl69e8MEH75FvNzx/8YL3P3hM2G3PodUmjc8pf+ws8Jal97F7hs3HCsRWdZxNsA8GQrCfV5Sug/eBwF22wbsWmnHwCxmavQbi75T2+WECTzn7rA1/nwYw6Lv32pvL+0o9pOQZH3RpAujwboJ94NK+r/+NP0e4fm3YBtsWD1RFUJgialPsXw9zwfW/LciyYbfN2W7WoUhQUZSUpReQrr1uGUspybI0RGiPxyN6vR5aa5arlaPhbTBelmUcHx/z+PG7TKfTEJ1u56h07bf95N1OHuD7tEz//HYF6KDgtLEBn0VRsFptWMwX3M7nLOYLVouFLRlcq5A10cyXdpqh72chmkI2LVvcgfEGTzXj3LB6zTrzUqbxoTegIpzjx9qPG4317q/Z6OSWxndrLjJfo8YK1zyfdWRoy4OIIGie0zGgRsiGeIhknlYGrSBJO9hgPYEUGSJJkGlCkqRkWY9uf0C3P6Q3HCHTFJGmdPt9ur1eoByyLCPrdBBC2G3r6xpVVRS7HFMpqnyHqkomqwcsby8pd1u2myWb9Zxa7YK72S3uVp/HUs8IE2SJ1BKRCCgLkFa2D4Z9huMRZWV3mExk6uRBkIq2d+S+Tnrz8dZgwOfFNtRQW+k19xPhpVFQ8RQ9dLSF5cEzjLem7MTyFfLausNafFWl2WwLirICKUg6CVL4CHLbVSbcNfrMC1eX3mLbfteqPWRFt9uqsTz2fgCh8No2rMKirllvCwb9HnVdU1Ul23zLYrVEqRpfltQDCJ9KIkP/mqC8hFtNQtiglqqqUHUdKWjc+EWBJ+4afl16oBADsxCJG54vqj2AFxz2r/jzIBxcjxsOaHMBRNeLx7/1mYlb2T6U0lxf33J2esqg3+Xli2ecnh3T7fWcm8ArJYL/v8keIGzDfJeG1wc/j4EAAUD4uAQdBHRot7cI3aPt3z9sA6y9xRutB9pWZdy2FsAL92orZbj72/bRZISE33rXhTGhaqSxD+f8oYfvE//dZgcMcWyBPy/EAhBdQ0TXsCfadvixqBV1VVEUlgXYbjZs/J4BeR6s6JBKZrxygKyb0e/1GAwGDIdDut0uVVUxny/I8zxsqCWEoNvrcjQ74p13HnF6ekqWZXeeL/iWcWPsXwNjYv/FrJcPNCuKkuVqyWJuMwNub+es1ja7Qananada99SxUjYxqPZz3P0hgvoNcsOfZxekt6kbgyKAAHdqI/buZgXEoAGiYDvahlybpRCNtscDlOh5mh6y8x2//iN0ILzsjmufCMfi2qqVShuksNtBJ0nGYDBkOJowGE8hzRCJJE0zut0eWbdD1umRdjoMRmO6gwFZt4MBaldsysttnxUV7hsKDwkyQCUVJAmJ6pEOhoxOTsAois2K65dPmV+/YrddU1UFtaqcnPYsnSFxBpPHa8ZY94MRNtWxMmDMzhp7qY0fGI3GLJcLZCJJdUpt6rv9H829rzr+7GyCu5ZvFLkeNSNGnF/ZnJC7F5/YoE9jCAtMCLeVpIzPs7+va1hvtuyKEoREpg3qanTfXmylNqE6njnQSu97fx3C2reMmgdpxxj4c6KKvLbNSrHa5qRZp9m7G0Nd28no9wYMA+t1aet+zYKWBpSqqWtJ1knZbkt0aVxVLtlcIG47oF0EsICQBuPPiZ/DiQ+XuypcPQKrCOP9xH0vGAOx6HgjSdSaMyKk6HiAExq7N9+MhvV6x6tXN3z4wWPWmw2Xl1c8fOdRAABBMUZ0flB4e8p/X+kepOg9VR7/O0jlRxb9XjssO3Tg/v6zaKKG3Q9f46c/9H7/s/15E7fFA45gofsYEa+o47Z7Sv/g9RtF2NowyV0zxLO02rm3tvb6r65rjNJUZUmxK8jzbUPl53nY5jj201o3lZ1QWZo6d8CQXr9P5lizm5sbyrIM4M77ZTudDqenpzx8+JDj46MABGI3iAd/4Ioe4V1+MRCI1xpUla12uFzazIDb2zm3tzcsl6vg7miDUOX6yq+jRt+3QFPc/+5eRMaadjKw6ffI2hYeIzRBn3GAqb9P6xAOjNA2hgy0quF5eW3CjV6nFBr50A4YDCHh2Ch/AOmCkl12VJKSJl06vQGd3pBOb8hoOqM/HNIfjpiMJ/QGQwaTCbLTVLH0v5XSWt62tLTNJKhVTVKlaKNs0SL3LMqlqVpQWofPPXD1z5l0MtJehlaKtNsl6w2YnT5ks7xhNb9ls1pQ5GvqukQZex3tr2BEcAF5RR6MkFpT7ArL/ErJeDKiris2my3GJDYWzj1fBOXeMpfgn5FNEP/dTIR9NBDnwfOac5pz99/GAsQ4IQiQJH7P6PZ1lbYZAptNjsEGr/mtrI2GWrtqfsrSf2kqXbUwj8gi0IGf6LYx3re37wM+1C/B+jN3P99ftA3ClORlRbYrMEKQpgmdLEW6iSCFDBMYiNiB5toiup6dNDWlE26JtCVaK7+FqxsYn1Vgf9xE5cbsQHQT19OEV4NxSNmBAhGvc/uZFwatw1/XSqDmmfwCiEBmLCAaQOKv4dMMrQJTNdxcz3lwfobMBC+eP+f45JQkzThUkKdF7+8p7f3zDo2/3/jnq9gEPxf8PLbvCZPNUvCH4wF8B+gQlGjutGW/vf63NkC0oaX958EoNFHQmVcQxs0N3PLxv9Xt6x8CAm0AEJ3vrvum9RC/htoM7n1d15S7gqoo7K6BW7t98G63C0V2bFaH2w3PBbLauS/JOhn9fp9+v0eSSMqiYL1a2YwCr9CNCRXlsizj/Pycd955h+l0QpomVsnH7fbzM/SHl1HNZ349aG2oqoo8z1mv1tzeLri5uWU+t4WCytL5lE3E4ERprmEuxDJANPUymn4VbRbHEGfb+aEForgBP46ieW8pR7fCA9NoL6BbpeyauKqYybIPbvB4pBn2tgwJf5jWm3AN4xWhlO4+CUIkJEmHTndAfzAi7Q/oD0fMTs+YnpzSG44YTqaMRmNEItEOD2ptkKnNpgqMi8HWQXHuKoMrJKaazBVMe38Uz45qrTFJgqorq7gTSULqQKWNSfMFf2qtMWlKfzZjMJkwPX9Asd2yXS+4fvmC7WpBXe0wVG6eNXEEuPXjq5WSJFQlSFmQJ5LpdMpsNgtAOEkTTG2ZJ4QOnfxmVr45/pNSC+8gxtb50bnO6m68xiacc+habWFqozqzNDkQHwC7XcVivaHSmjRJSGWCEBapK2Uoa81ylXN7s+D65hownJ4e8/Dhhc0dlvttaD+T9NbwnjI/1DcN6j5s/h6KhxBCUCvFerNxfSPo97r0e72I4fF0ngmbnrQQezAH7Od+0SqlSIQkkc660HYL5rqqAs2VSBdJK23hD/UaoBO317/60ADPGNhDtxT9nfwOr/gj52IjXtsgc991YKJnFE6Y+bsYY9hsN1xeXfLw0TnL1ZLLy0vOzy9CzYCDintPefvUq7vn2D6OLfn4dy2AEX+uTLPZjPYxDA4kEIOFdhyBH3cLFJpqgw0w9GB5P2gPF4rhUWmbGQHLOIRgNo8sTeNzbAoymaCY98ehgdDR0HrA4Z/JWTpN2ySxu+AQKNBKo5S1kuu6It/u2K7X5FtbKMjT+ZVX5n6+hb0vZNhWNs1sYSAppWMAbHEhnwbng66SJCFNE4bDIaenpzx4cMFsNg07bNq2NcWdYjAWj7dfC/5zpWryfMdysXBMwCKUDC6KMnIVNcq7AV6+T5vXljHh5kbQG7Gydco7igBwBcGMJ344LKNM+3M/zxCBaWhcBG7xR+17Hbt6+B57hwhaAYFBGIEUCcIkpFmHbm/EYDRjenTOycVDpiendIZDsl6XrN+j1x+EktFSCFcR0LjsAMve1Mq6TCVOyWvjwA9unfmetYF7dp5bBkIK2QIDdV233Cd1VSMdW9AMBK6cdmI7SAqyZIBIO/QnU8azExavXrK8uWSzmVOWO7Suw6A368wxB05+iB1spaTTyRkMh0ynM6r6CmUsgyKFGzN/jQOu7EPHnw0G3vbiLWsuonv8fw9ZCtBeXFKIUDhi/5ZVpVisNmzzyi76LMWiWRucUyvDZpNzdX3L0y+f8+kfP+fZ06cIYfjOX3+H0WhEp5MFdOut3X3kKr3i2WvzobYDLYo9/k3bur3bfz5aHwydLGU07Nuc19o4a8ezRj4/PNygWYlOMnglIYRAoZygFPjNLbQWNhpWKUyaItMUlLrTxv3n9T6ztlCK39wFEhJC0aNDfSfi986ia4kLEzEE8W8ChSbwpaGVqbi6uebk9BiB5OXzF0ynU7elabMPPBCU/Juo/UPKal/pQ0Phx9+FAj57wXZeSYe/Q2qhV/R7liF3mYa4fw8pVmNAuvO0iAHE3nx188QY7/ZpAxMNrc/v3McT0C2F5f9ZZfE6EO2BUSgi5Kz7qqwodjt2eU6x27FxOwjacsF1oGl9n3n3mU95TdOUJBGhpobd3dAFx7o1EMcUeLfAdDrh4cMHnJ+f0e93LRDQhGeA5nf+Wf2YaWdZamXbpJQi3+as1jYw8ObmlvnNLev1mqIoQkVG77tsyY9moluA0BiJrXXTyGHhgiMd0xP5nkM73YKJCYAwZoEKdDf2xAA4L4t04U+iVdY27K3g+xUXRNkQewicEgsuPjteviCp31eyBXGERCCRSYe0M2AwnHJ6/pCHj99nenzGYDpDpCkyS208mMsME9KWlA/ATBskdh5o4cCZNoAtiJZGckbZjx24kghjQZbEFlvz2qvJWLDpqGmSUCuFzwjTnQ51VdiKo87dkmYdZGLntVZ1qEaK0XQHfU4fvcPk6Jj14pabq5ds1nOqaocxdaNLXPdpozG1a2ue2ywxmdDt9xlPJnb/AmmDJB0piI9de5vjz0gtbAuiNwGCfYWxrwTvKNADwjiRkk4ni9gAO3TawGazY7laYwR0ellrMlbK7kB4O1/y/Mlz/vjxJ3z26efMb+dUpQUOV1c35LsCH0goEaG/TDR3Q5v32rbPjhjjadlGsL+uX+70q7HlQ71/3FKVKdPJGCkkijoswkYJYgWV8SleDqsn0q4KiRPSTtjopv+NsfEDtCKjQ2sIQTt4qlPcOc8KiQYYGJ/k4xoYK2+AxFFtOpoHxikDNE35ToEt/+zSmqTwkcLt/vOFjWQILDLOYjNsN1vmt3POz89YzOfc3twyOz66wwzErADcTYtrC36v/LhzHa/Iwu/UHpBwFn18HdvTXunS9MX+OR4k7AGU5jva7TOGYIk7JW1c39xZYxEocSfcvdZee/b76e79m4Cr152Dd4loHfqzrirqqqYoCnbbrXUH5DZVMM9teqA50BYfuGqzZywbYEHA3ryNNI53Dfj4gG6vy2w25dHDh5ydndLppA0oczKvwU77feFKdGtL8ZZlSVGUbNZbxwIsWCwWbLcbyqJ0BapMdB0HFkP77Li5YWwazZ7btRFXjVz2DJ1rrwzfR0eMBjx74OZ1kCteBkQ/jL3B9tqtKCAnM/firg4BEHdd/xxSCFvNT2ukEUiTYWSHbDRmevaAk4v3ePjOO8xOTun2+jbKX0hqZfdfEIiQa19Xtbu2XSdWfyQIpB0jbKyZwWer2HlcRWWckyQNrJHRZm/+6vCccWnhxMmoJEnodC2DoqoKLTQ4N4Q0NpWxcteTgKkVIEiyjH6aknY69EdjNss589sb1qsrqrLwgh6/YhE2Db4sNevVGiEk02nCeDyhcJUqE2MQRlr3TctyfPPxZ6YWNuPs//ST9G2wx13h0FgO9p9CCkGnk5Ht58YbQVFWLFcbyromydJA21iFaijKmsVizfPnr/j0k8/4/LM/8er5K/I8Rxvr9xNJQlHV1MoX0XFCg9gqtp/4qHmbnuJWnAn2iF+/YNr986Zjn/oOFLufKELSyTKOpjMG/S7rqg6LUUq3F4LW4MqPCu1Sz4SdNyJNwSQY2UxeXDuN2EM6vI6xEOG/LdkRya3GBWSjYlugIgJMIceaRlDEufUYcycK2R9aNPEaUYMtQekqcCV+e+REIIxN+bl6dcnRbAYIXrx8Qd8VkbmjpM1dBuB1yjA+1zMMwYrf86nH10S/+Zp+6I17cyhAEBqqP96Fr+myRqnHwMUYOzfirJBYEfmYAenb8AYQsN/mpk3tyPkGDOwBf9cXCBOqtGmtqYuSPN+x2+WuSqDbO8DvGeD86fsGhs0mssFfWWo3PAqzd9+V5SawBfJ+q+SEwaDP6ekJFxcXTGc2PsBP8BZoo+lTBK64lKGuS8qqpCiKUOhotVxxe7tguVyS5zvKsnLPqtzcj+I9wnPp0P9E4M1b1yYImjDceMbCg3djopoBDjwgBELHarvpD+MWc5ARbg7KsK6di9QD8mBHm6ZOf7isaRgGR05YrBEpPw8ChC24E9prJInISNIug/ExRw8ecfH+1zg6f0B/OKHT7ZBmafittXWswq5rWxjNu3nqurb3jQOghUYmIJPUBVa7jCJTt4KJ/ZwyGpeRotpyBx8/5mWjfSApBKlM3Dqz9QlIQIjGjWCATrdjv1d2w6zaxa9p1/EiTekOh2SdDt3hmMFixGp+w2a1RNcFxqgwCnY+QlnW5NsdnazLeDxkOp1SlRU7rcGkGJyrhLc7/mww4KYDPrXQzllDsgcHDgn35jt7JR/Y5SdzkiT0utmd2AClDMtVzmq9JskS0ixrOtoYyrJmne+4urzhT599yR//8AnPnz1nvd5QV1XINxciCWUqVd3sMnW4ffZolHekwN2vDgnM+DeHjkPfWWbCUssJ0JEJw36P8WjIcr601a+EBQpS2GwBqRUdA1IYlJSITkaFYVsUyMSgTdLsPEgwHhrhIhoBG5a5aawC4du6BwK9kPDT0tYh93xA+3wfMR/6SMR91gixpi/teIR2GRfsZBrlG2CYEFTGON+wJM06ZJ0MrTXrzYabmxtmsynz21vWqxXD0YiwZfABn28MOvYV4n4cQBP1D0bF+xrQ+j4o5+geDSvigJKQhK2CaSxmXH+EypABdBxQDjRT2T+D2oslaECCcdc2NENmWuyF75fmLvY39rk03u6MQYBXm741/vq+SmLTDzaY1VrRds+ArYsF2O22bs8AFTYOCs9nTLTPha3/kbgMGSkJSjEYJ4Hh8n8TgECapkwmEx4+fMjJyTH9QZ/E79Vhoj52ytkrRO0CzAKLUVj2Yr3ZMp8vuL25ZbPZhh0QbdyApkkho+mnSNHbcfbj7mMfXFuCKd0wdv46LYAUXnxGiIgwmZdLjRwL6cqR8scYfIlfe76Iv7L3dE8QWwrR8rZj5B9qj5XxQcsGbwRJUtllOJrx4P2POHrnPSZnFwzHU2SSgtSRvGxqGchEkpBh6irIB2Nk6Dvfyx4oeKPRZmqakJMfsmfc4WNQfHqq35TNXlCjpQeZEml8H1iJJIWN2rfgQKJtkj/K9btIE4TooquaWgi0Sm3at2qKCslEorUk63c5yi4Y9EcselesF7fsdhuUrgi1PrBzJt/tQqbYcDRgPBlT1yWV9oGirUd84/HPyCYQSF8xRzQI0eydd5gSj19N6GwhoNdJg5JvribY7kqub1fUtabb7SATR/IYg9KQ5wW3N3O+/OIZH3/8CV98/iWb9cbRsz6K3Ape4XxKoa63l4aiQVtBM/oWCBcEUjX7pb8J6LwNEIjT78CnlUikASMFMhH0ehmzoylPn78EY0hlQgJoXSPqmqGBHgKEIet00P0uZjTkT0+foVXtUi+be3gYE9fyNvhYBLHXvuazu4fxXeb6wv7AaOPrulhPcpA8tASWH95WBTe8AI6tzEggG3NHiXvJJqSgriEpK3TdJet0qOuam9sbhqMBStVcXV3R7/fbinzv391sgbZyPwQa9veij38b/u3FDFh/pnZ9piOfvgMDmKaolu8Td12MrysfK+DQXdF97Yf23LblCDq0CeMhCIgD/utmEAhAoA1ETATo29Z76CMneI0rElQWJbtdzsZlBRTbnF1RhPTAfYDtr2vjAZKw/4X/115vAh9YF88j/3tbcCjj9PSEhw8fMjuakjmr01j+FfA0cDPJjTFhZ8DdbheYgNVyzXK5Yj6fs1yuKIrCbhikmvgUrXWjoBwYFL7v4nkTrwYTgTBw2+v6PyPt2iCAVh/4eRFqwwTQZ8+QWKxg6f7mOYVzzQUgEsBRO9On2SjNtDObovniXQLeTeNZDxszYDMDRuNjLh6+x9nD9zl//D7ZaETa6wDCZXsYjNBo4eeaLXgG1iiycWLu2trWQhH4suMi7F7on02FuKgmhsS+yqDQa6Vcil78GxBGoyoVpX/jCtKJ8Htf0hgAZVmAYE+5+UeSkAqBoU9VlJBo6rpCCFfZFAvURCLpjcck3YzBaMJ2tWC9umW3W6PrCoQCY6vMbjdbpExI04zBYMBut0OrtR0R5UtXf/XxZ4EBH0mqTJg/YRb4XNZmPpi93++7BOy/LE3pdjskaaR+jEAZw3yx4na5Jsk6ZL0UJCEYpKo0q+WGly8u+fjjT/jkD5/w8uUraqWYjEcMBn0bxbtYRWVpbaBUVVVB8Di7PCgtA8i9xeuFjreeX3e8Dgjs+91jfztAYmeeeza7o2DW6zA9mlmKrHQ5rcIqg6RW9GVKYmpMBkLVdESf1W5HIhOUK2oB2vqrghaOUY596IZqDJA6EkSNNWIiinEfahrXr7GK8taH/z7MnyAALeXtg298W2LF7I27mEYNiscJSCkEQgq3Va2iqxV92We1XrNYrRiPR9xc33A0O6LX7x2cg4dAQtzuVvyAo+m1B5XBWm/mRaDjfQaAaQCBBzVeWBp8UGMMIHBggVZbgv/Qny/suXFueNMWH4TrB8V+5udwYDkaZNgaTyBUU9zvk7hvmvZEn0XPqbWmdvUBqqJks9mw2djUwG2eU5W2ilrjk22vGa/0LRXsXEKiKYQTM3du5kVg27hrCLf/QJ+zszMuLs4Zj8chW8DHHjQGgusHF4EeWIzdjvV6w2a9Zrlacnu7YLVcU1VlSFXc3ylyXyQEViiaL4dESqzyiZ6tWZaNxYxT7A37IOKfNVfyewy4udeAgOY3luMzToE3qadS2nS/dhrh3Xa3nsEZWWEhu8DAbnfM6fkjHn/9W4xPz8kGQ9L+gDRNyWSKEga0QmjLJPiS6L5vk8TFEylbT0I58FUZGxyolaKq7Hsv5z1DkMjI/ezmj4070I0BqWq0Ec4t0BQBs+tRu8wCUMbXp0isdY6rWGsMyCTEctm16OS+tBlvSZqRpTWqqhHFjroukVKQJIZaFYDd/AgxQCYdesMRg/GI9eKa1eKWotyGtVbVFZvNmsSlG04nM1Rds8t3CGm3X3+b489PLcRbjRZJ3yk7LbwlEvrbvbYtKyGg08nodTttt4CBslJc3izIq5qs1yNJrFvC4AsvlNxcL/js0y/4/e//yJ8+/4LVckld13S7GbOjCQ8fXvD8ecpiuWoWnhtwu3+5akAsXjd6wefcIEIgpQ088cehKPtW/+yt/kN/x//sh8ZNTAlZSpqlJGnKeDRi0O+zLBakIgUp0UKijKZEk2FIkIg0pdSa+XpLUVaBjgMwQjfyQOgQPuMXQuMK8NZQzAnYz2IQsy/4/WeedjSmsRaE4U4uPsbtAhl84Cr4wb0fzoOyffDVeu/nt5QI7TIljKHY2ntIAcvFgvFwRF2V3Fxf8+DRw4Mg4FB9gUOW/r7//1C8gO8D9q5lTHAE2ABPHzRo9u/rut0xArYPdUg31NHCFu4+Alz5UhzL5ZSRSzS392kyKYzxeeru/gcyYJT294+/84CjHdcQgEhUz8FbZeWusHsGbDahTkBRWBq9ruP8fYJS9nR+kkiSVLaYANcMO/QexDpQ5Q9/nnButTRLOTo64tGjhxwdHVkGMqAkvB1t37vxrOuasipcLEPOerNhtVyzWCxYr9dsXNlir2yaOaQbIz7qb3+vw5k1pv1ub857eSu9bA3/bY54o7FWsK9wbIkxjUEQxQ5J3+Hhvo1LQyJCnFHAk76VQRY4mRGd4HW/lQm2RkAiu8ikw2BywjsffoN3P/w64+NTkI07szYKaezmQFmWtZhAP+/89aUQ1LVBVc0cUrVuFZ9KEtmsDWyaNaZxPShtg/i0VmFjNl9zwCYgpi0DxoM4HbWjWbcWzFpga/vQb29tGfB4jAUigVRm7vpgXBaDFClogdEVBtDG5lzIJKU/mtDpdEiyLqvFNbt8g1I1WhvK0gYPZlnGcDhkOj2mVtd2G+Q3sNXx8fZgQDcpXWGye2FCRCu/VlG6qHdHc/Z6Pbt1b9RObWC9zpkvN2hhI31tjpQVFlWl2Kw2vHx+xR9+/zF/+MPHvHx5ZdN1/ARIE0aTEadnJxRFwZedZ9TV1l1DYxJbvlb5vaddk4MicxM8zHPEnRiGw8/3embAf7fvHmg+B1xxIykzsjIllTbveTYds7xdOGsyQcqUjTYsdMVJv2+Zg26PTV2TVxVK61BDPW5bs+B1IxT22uHHz0R/W1zRThFrKy4TfhPu587zpX9VVF3NoDFKufs3ue7WQqN1D+Ea4HiJVhsadtPu5JVlGevVGm0MZW7TUjedDvl0Q6/fZzGfM51O6fS6dwIJ93dsjPstAAYVAxofROgsJ2cxqECl712DPUrYNEAqGG0HgIgQfj8FLBDYu3aggcEGuHpgFgkpLRoQg6tToAMw8Ti04fXCbnRE40u7ja2iR6ZhAZS2ILuuKnauUmC+2ZJvc0uv7wrKqmS/5LJnprwrIElsjQApcJVo28xaNGvD88fnBFCBLSv86NFDHjy4YDQaBnYzYF83kfw8rWqr4IsiZ7PJWa1WrJYrFosly+WKXb61exeYxnXkLdZWq6KxR7QBVwNq78pKvNIOurvJrmF/XgUFb+OJ7hgpYUmbQNcjGuDsb+ffhOnkb3e4hTSg0Cv+fflnr6UxCJlgSMl6Y04u3uHs8deYPXxM9+QYsozEuUeFBBKBkRbEJcJQG4UA0iR1wXbtsbMMcRVZ9zarQGvjCgwRskv8mo3niVXUtvaAjxGwxoHNVFCJigCoNSSty8DWsPF6wbejMSx86WLpmGWnT3z7MXYXWUDXwtV8yQALIAQ2psCCFG03OzLWxZH2+oyPTul0OqyWc9bLOXVVorXd52KxWCCFpNfvMx5NWNRzlHy7GoRvX47YQOSBDMg00HSYO5PRxBPOgDaKRAhGgwFZ1q4dUCvNzWLFersj63TpJhKL5wxKG8pdwfx2zZ8+/ZLf/ub3/OlPn7OYz1v7eluvtSTNMruZw7BvI4RNgKmgta0PXVX4jVI0TS5ps2gbQe1zmIUxdxD4IZYg7pf99/HfASD4CSqtSM6yDkJIOt2Mo+MZT758RqUNClcKU0hWZYkWO4aiR6V3bIsdVWmLCUW7STVCZK+dngnZH6tD7W4p4fjcSFkEMOUAn9EGpSrHAqjgr7NCZ0/R3GmiXe06+tCw/95aJHVtadzxeEyv3+X65pqqrhE5bJKU+c0tF+/0yPOc29tbTs/OArL3cyd+RuGFr/GBkRaPhqI/XiF6WhFaVuEhlsH/7a3xFrjaA6JxPzegxV1P+ViFpgAOe9aTl81hfA1t8OP/OcVghLVU/OfS/043LgX/bB6UB+bDRWUbJ0iromTnagRsN1sXTFdQFgVK61Z/eyUMnqq1/vw0Tcg6qdtXXmGMnzPR3I3mpf/OfuT2K8EGCY4nYx49uuD8/JxuN8MbJWGGG4ExCqUdi1GWFsRstywdAJjPl6zXts5BXddo3aSiGcydwMs2v08Y30ZzRl9F58X7B0T62Vnnzarwc9SnjXlWwyf0CiHcFu0i9LMIgW8gnFu0uUfMHBKIAw8IGkTQBGf69Ruqo+49lDdwBAlCdhlMTrl4/BEP3/uQ/mRqo+ZlYtssDEYKmx0krUuzqiowwYGLUQphIJMJVV1RqxLvz9cuSJCwdkRgGgx2K2Df66qu0dK7faNqgh4Au/mvlHYbZiUgUuce0U6s+n414feeVWjmpo1Z0NpmG3j2xZpC9tCunHmos+ErZ4qUrNtB1wlKK5QxVMqW4/aFtdJuBmaAAXqdHnm+YbtdUZWlc2WtkEnCYDBwm3lteZvjrcGAMo0Ptz32hwFA8zdBSaSJZDTs0fGWqzu1rGoub1ZUqqbX7UFigYNxCGy72fHq5RV//PhTfv+b3/Pi+XN2uzwEU3lqx05cjZSCrJPR7XVtgJBDc3YIrZugcHuD41wCvlznHXAtGtpx/xlfBwT2v3sTY+BvYpG77eM0y+wui1IynU3oDwYsl2ukF9jOLbBUNcv1GiGl3eEqka3oWXCyKdCLxlkc3hIXB9u5z2AcspibginOGtYapZWNrleqoYy9j13rYImZ6LoQCUKvJGkrovAckdXkLS4MFEXB5eUlDx5ecHJ8wuXlJaUrAbtarZjtjpBZyu3tLaPJmE6n01rAwajz11eabpZyNJ0wm47RaG7nK27nS7Z54dIlG1ZBRcFyh0CA8b2/97nvYx9NHMclCCMaJsDQuq5Xal45eDbAugKi4igeuETKK3R+lKLo+9cLpjilqj3uDZuCxvlmC5vOtNuFCoGbzYaiKCiKMqR/+XnVgE77z7oCEjpZx1KgaQIYlPbV3GKrJpqXxo2bCN+44ELBYNDnwYMHjg0YNL92DIS35rWuqVVFUZTk2x35Lmez3rBYLLi5uXEgoIzciu2Sw8Tj4WVjqP4YzV/T6Nq4Xz3jRWskmvUQ4h6ayzTXdWAuXD8C0m155ZjNoPFNONdE44xowGR8j1DvwHgAZ0KZY9206P9H238125JkaWLY5yIitjjy6hSVmZVZWnVXVfd0T6MxRgDkEICRRjMK4xhf+QP4b8hHkkaQBhrmiQABw9BsyBHdbdNiqrpEqhJZqW5eeeRWEeHuiw9rLXePfW5WZdGaUXXznrtP7BAu1vqW+hYyihC3t4GDdx1OX3odL7/1Tdx66TXMDw8lf8NyPBylPNJJ4p2ByUmnbdvlVuwMpiNSYu+NyqimaSZlw/sHG1vlndkBwYBpv7Qwm7UUq/kGrHfZkMkeljgFAlPjkOdN/52qyhgjwIeNJfmeszBRwEVM3IHRG1iy8IbQgZidMAyiKxw3RWpaOOPQzeZouhmury8xDlyWayxXzBwfnWBCs/tbjt+rtPBzVZoKjMmHVY04EVrncHSwgPelPyUBWG16PD+7gHHciQlgqyumhDFErC+3+OzhY/z87Xfxi/d+gYvzC2ZyoiLMNKbGwpHvZ61B23UsXEgSuIV9L4QRfb/LiUsQd2zC/oLSSc2P/LngJ8fOX6D49fPP8xaoBarxfN94zOYzuOtrHBwscXJ6gouLK1mQCcYCrnUIoSgC61wGAiUPYE+AVM+pd9bHKHHWmyyD+v2MvKGCkDPEmVlL2gBX7vT9kVBgoBmaJv+nthRNVn769FmOTcbfZFAQUwRG4OnTZ7h//x5OT07x7NlzjCM38bi8vMLtO3ew2WxweXGJ01unk1I9AKDIyL9xDnfv3caXXnmAW7dO0LZMGBJCxJOn5/jFL36NZ2fnnHWMaaXBC8GAmYKp+h0mXgMVZlIsQHgxyVD+zOyBg2q6MgBX6wVV6OFFwK5aF8VzoLkg03UQQ+D2rZIP0O92mRdgk+mCQ46d7q8jK9aNcw5N26BpnHgEfOaB526deVUU21PGRQWyhhDUFeu9x+3bt/Dyyy/j9PQUTcO8ATmPKbGiUW/SOA7Y9Vusrje4vl5htVrh4uIS19erLB/y/KaUx1zXslrcqMZ/AgSoenbsGRoGnOsi/0zSna4GDTfGzoiMoKrErzolJwIb3JRDLGDydWswrZ9lI0HX2g3lKpasKdwoGdQYgHOtHACLtlviwatv4o1vfhdH91+F7TopASVJ+pWSWmJjziaWfprkF0OAtRazWYdxNEwnPXILYAXObElPXfx5fkSqWqMuegE3MEh5zQCaIF7mrPByaBOr2XwG4xx7MPb3SSVX8zjKuMYQSmVJzmNwaNoW1nCyIVlwT4HkEIPI00wWxLkC3XwB5xts19cI4wCK7HmAsZlUbL44gG9b9NsttqsVtrsexq5xeHiIxXKJL3L8/9yoqLz41I3H4Fg2griM27bB0eES3mnxGS/qs4sVnp1douk6zFuPurHKKARCH/36Y/z0Jz/HL3/9AdarDdrG4+j4CMPQY7Vao+ZrZwHKiSQgg27Woms7IG8dftYYOL6SJIlQF5YK4P0jhwlQFuLnjcW+gK1BAG8aq3qsKEvDrjw9yzmPxYJDHLOOGdKcd8UTYqpSK1n0mmVdZmGfRKkgVn22EvipPQJ8LlviRXCoJcSKOiLFgBhGBGbxmCi04k4UC7C6vgxWVv4GzEJmxX03jgFKAZrBl9HZ44HTudKhZoyUsNtu8ezpMzx48AC7XY/VaoXNeo3rqyumJTYWZ8/OsJgv4JzPgkgturb1eO2VB/jKV17HfN5B6oNgYkJrDF69e4qj7ut4+71f4KPPHmETUh6XlKIkS1YCQp7/hYRUhJxESKSufxL0wKfshxyKwCkeg0Q3rfjJepS5Uy9DXgr5IeReMac38hqjqVKKgamAx2FgqmBlCNxsmS2w73OP97xu5CI6/9ayF8B7h65r0LQN2qbJ8dMi0Hn0jHCsF2GuYyBzTwyCvbdYLBbSc+RlHBwsc0Mz9ctwQmPE0BeSoM12g/VqlUmC1uttDmlovotmk/PYKSCTvaR7IgOAMl5FNspc1MBAjGhWyGx+s2SU6+UQ3xRAaOEk1Z8omK9BfGW81HNY78tpe0H9q+TpoAKTWTJRuaqykLJ8YDePhYOBR7s4xGtvfh2vfu07OLn7ALabSS4AiavdyndK578xjJLgxyRkxrncfTVJtQzbElRAY4jI6bQy5tZ53heiCwIFGIl7aGJ16QZZRpKvmZACry3vfA6DpJh47A0QZIw0R+HGfJsyYgoCaqBiDFc+GedKZQy4es5apt+3ySKGMfMhAOwtXh4cod9tEIYeYSAYk5AQQGC96dsWTdPBNx02mysMw4j1ao35fI4vcvxedMR57PYUH5FuOfY+EkspmJQw7zocHSzhXVmhiYCnZxd4en6N2XzG7FGReNIMI7Lnz87xy/d+jZ/99G18+OFHWG+2MMZjcbLA62+8AgD45S9+javLawEdAEzKiwSU0Eg2stZwG3C5FrNXhUxGVKzM7P2uBK8s+lSSwFSoisxC2S46PFMPwUSQg6DRsAlYMNwulq0mg/lygeXBEqvrNQ4PD9B1DdarbRaGRt1Feu/Pdduw8siDnze2zmEdBpmiXSXUYIuVy25SjEhhFOUQJxsKioqrx+FnKxwECj40/GKdw8HhEq+/8SW8/vqreO/dX+Ltt9+HFBeLXJpAJ+hkkSkAQdHLerPG+cU57j+4h/5DZrZbra5wfX2F09Nb2PZbXF9d4/DoSIR0AhKhdQ1ee+kBvv7Wl9B6AEMPEK+jLDgJOFo0+INvfAWtd3j/w0+xHgbEHCrhsU6VcJiAQ+RByOOspDwszMpcvch7MPEgTOb3xdb+/ucZ9FbPZvJaFkWnQIbYcxJSQIoRfb/DbrfDsOslKVCJgnrpGRChsWxVPGyosgXkPfOI+Mah6zpxFbtJqIQTNblNbF6L4k1SRcS6zgLGwDceXdfh1q1T3L9/Dycnx+i6DgCy6zglVjRD32O9WWOz3mK1WmO1WuHq6qpUBgycCxBTzPdSRa7umuLtqp6JpsB7HwDVR/4uqStdwK1cplLP/O5Gl94esNjbZJp1ZLDfWXBvPeheqoyEMl/V86oMVOKi6l7VWwAkXf+Ybofl8/wUr3/ju3jj29/F4eldOO8z+6iRTpJqdbNTVnpIpIgEJinT7qopJmy33LJXE76NVdlpQWQwiqUMY0rWvEVOrh1DhHdMV+2F1TammJtWFU+PWu/czthyU5qcD0OSm6CeBCee2CDNiVTha5gjKrCq598UvaJ8ArlFvXhLIB4SLRnmZ+K95RqPuVsgtA3GvoExDruYMkOhdpBtmgbzboFxHDAMAQb9jbX4ouP3yBkAMusgkIlTtL48gViAa5MESpjPOhwfLsDhoASQRYjA46fnOLu6xmwx57pQJBhR0uM44NnTM7z/7vv46U9+hs8+fYS+Z45m4zip7u6Du5h3M5yfXWB1eSXdx+Q5RKAQcTzSywRSRvAJSWqHQ4zimhfEWgljUIXAjQj5fbetblBMN+DnHlS6ICoIUAtGFbquZ+8sjo6O8PzZGQ4PD3B0dIj1aqOyB6jvecO1XzwE2W1VP4aga91AxXuxr0gEmSamkA2D8KvHQtWp1kQ2aPbAVJZbVoiJpGTMe4e7d2/jza98Gd/97nfwla98GcvlAq++/BN8/NEnWF1vReiLS0zmRK9N1WarMCooRpyfn2O5XOL+g/v49NNPsVltcHVxhcODI1gYXF9dYj6flTlICSdHM7z5xstoG4OwugDGHsYCxrWwfgYoYCLCvGvwja+8iWEY8f5HnyJGBqNJgIVRQGANatk8YaETwb7PU7Cv/PN3Uw3oppZ+7Xl4ESjIMEyBJABTl8JV4FbDCCFEpBAwjEIXrMp/u8N2s0XfM0mQ7r2yrgDA5KZWrvFomgZt20gYi3tvqIctgxwBAUzTGm+8C8nYK3DtuhZHR0e4c+c27t69g+VyOXH3culikKTAHTabDS4uLqQqgL0A2+0m5zQUt2899oQb1SHG5LEq50zHGQpcqs9IvQEE9jBUgCHP1T6I2Ad9YCUIoKqyqO45aQSw932a/k69BGVdFKBRPAKYXs/kVxPvhp5rYEyD+fIWXvvad/Hmt/8QB7fvwDUNy5fEYV8jdNQKfhUIid8IRML6J/OcY/myVlJKeRsCBO8tYmTiJA2PkpBqMVgQRkRrYJ3LQDGEgIGGyb5TZa7XiYn7GzAR3pgbZOk4ReLGVJrvwHuIB1VziKxzsJYyYLBW+2eYHC7Xa/rGAeRLR05wxUFjDYiscJpwdUXjPXsnLOu2fuswDNzcCDlM7tA0LQICxvEfmmcAJEK5QsyqAMAuHEoJiAmWCItZh+PDpSSKKCNUwsNHz3Cx2qBbzmGc2CSRewvstj2ePHmGd99+B+/8/B08evQY4zCIYiYY8rCG0HmH+azjRDCiiYWfpL45xgjvtYWpgXpcNMak56REOfueXTuVi1QVWY477QnZPUR9A2F/zrEfPtAdociReBVjvlhgsZijba9x+/Ypnjx5ijAm5HygbBIXitjyHLWCuLnh822l30HxBggISARIH+0YIsLIveO19lfjkyZfswiq+h31BY0x8I3BwXKJl16+jzfeeA3Hx4c4OFji9u1TbipiCG+8/iV89Stv4kc//lkWddZWIYPEm7twrhdBCnnPGCOePXuG119/HUeHh7i6vsb15SXWx8c4ODrCdrPGdrPGYj4HkUHrDF57cAtzT8CwA23XGFcXsM7Adks0c4LpZoDlJjYmJcwbg2+99SVsN2t88PAx+pSYFIpdTzAEaQddhPCLFH3GqPXn5iYYyAyFL1AQ+VxBigZVkhepu5dKebAo19pKFDMIIbCrf9z16Lc7bLe7nBDI7HtDLqPSJyDi+LnGgp13aLznvyUZ1mVXQZ0wWXoUaMLWfghufxys5VLS+/fv4+69Ozg6PETTNBNwoSRBWnvNHAHXOD8/5/LAvkcMbHFpWELHogZs++BYj5Q14k19O5mYemFOrvY5R0H68s3iBRSHguQp6P6tzqdCEiUumTw3+hSqfJlo0UznPicU/LYHNCWHhAjWsAUMOMzmR/jSW9/GG9/8A8xPbzF4lmcpXqeENDDwcsbCeZFJSZn6JAcH1c+Vgi4hohLObds2v6OGD7jcUJ7XOlgLyUOL2XJXQyy77mXtqIeL5UhipdrNgHHgEj5Jho2jrHlr5fkNk+JJuC1lkMy5LPoezjlY8ehmsiORuUaseussmtHLO3K+St/3iGNf5tNZeNNgaTgher2+Rr/bgIJ0v5X3876ZcJP8tuP3SCBEnoiywEy2piMRC8EYsZjPcXSkQIDPDJHw6cOnuFyt0C0XMBaM4iJ7ErZDj8ePHuPnP30b7779Dp49fY5h6AGtEoDhCoPImcxGBhkwOfItt0IIrMAa36BtfLGMjQrFJElQMZO5AAwUosaQqwTMup5ULRTdpNVWy8eLkgUnGb61GX0DPAioSQneORwdHeP87AInJ8eYz2e4HtcCXKZ2cQkFFGFRhsRkFJ+VuCkLeXK+hAMoMR/AMPSIgRt3lJgiMuMkATfetf7bWm73uVwuYIzBH/7hH+Do+Ag//vHf4/LiEq+++gqc9xhEeDdNi+9899t4+533MIYIjaby1bQJiMGENlwtGlKLgDfPs2dPce/eXazXK6zXK1xeXmBxsERKCddXl2i9g4PF8XKBe0ctaHeJBIKjESmOiLsBNAY4OGYua1wWSIgjDjqH7331y+h3PT58/gyjhv1lfzD18NRvdNONX9ZEyc2Qf1fLo2ZhzJ+l+juyErO1SjLnqb5I3r85yZRYcKUYmbVM4um7TckHUAAwjmGv0qDMv3eOqwK6lhOklJVNEgaRPWuxWN+JEMI44Xqox0LHSAXpfM6Nhe7cuYM7d24xD4mMTQgR48BVQtvNFpvNFqvVNS4vL4UoiCsDJnkJpCVkRWGXnis3gVv5PKk9jMkxNbeL99SYPFdAkZvA/tpgBa9jSuCkQnElZo8ismepXEOVafbsk+6Z8ky1R62EPAANoQIFApnq7+oJ65fl/xkP3xzgwatfxZe/9h0c3b4L03h4W4UYwfkfnPJEoBhhvS89TsS6iaZUFdQAd9/jqeE1zjMq56sx1TSNhAA4dGcclyCvQkDrfZbbtTd1/2e19ktoDWJQ8g9OdY/k/Vgr/QoAIATAQHojeNZTRjwFmePBwBibGyyFEEBg1sHWaWltAiiJ/E1wBgiRz1Vbz3oDbxocuENYC2xWvL+MKy2196vhPu/44mBAkmYo/wwAWprFsNWmhEXX4ejooFQNABjHhI8/e4ar62vMlovczIISEFLCbrvDo0dP8fOf/hzv/PxtnD0/y6xNRbgSKI1IIAQRsNyNCoAsZlVAavEbw24eZx2YoZoYgBAQhpC9A8iEHQbJkWKPvJmUllIXHYhgrGxC5ejGVCnWx36cVkv9ipLbV+Dyftbi4OgIs26G5XzOBERXV7912ijXGBdRZUD5DgaGS1f0XYBcYmQATgyMI+IYEMcxc60XJaQuDP3RwGlGgFEgxAt+NutwcnKIl195GV969VU8fvIEq/U1jAWeP3uKW7duZ+vw3/7bv8KHH36MW7dP8a1vfxNf+/pb+OCDj1ETEnF8EdDYNFBi6IryiXQMgN1uixADbt/hcsPV9TX63RbtbIb1ao3FbI6j2RxHXQPfbxAGdu07QzDdHCYBcddjNNcgY+EOHIxrZIY49ng8b/GtL7+Ky+0aT6+2CJEQVUHnzP8X8FGodV5b7DIHmngri6esOflelskpcTaxWHxFeJZ1BBkrtQwzcJA/48DU3JwYyF4A5d9frzcYxjG3ZZ6uaSZWsc6ibVt0sxknBzaOW8ECme43hpDvp4yKHIqY5p3UIEXzLqzl6y+XCzx48AAvvfSAGws5mz0KIQSuaNhscb1aS3ngNS4vL7DZbHJOw37nx7znSVXgiwHA3rTlvaUe7zK4+RIsKbOxUE4BCgQwBsWzbxQ0IefXZHliC2W6hmXzveXiqTycYEmpi8e0lDfnDRiTc1V139QGVV5iOifVe/D2NwAsvF/gwZe+gje//Qc4uncXTdfIu5VqMpUJCew9M1blLcFZJVWSxOoKSDvrEKk0HFJ4wlULtmKGVSbT4kUgYTplIKYVQWNJfARJrwuTuSL2kwJ56EubbNdYDgnKfOkzaamx3ts5x6HVzFRoYL2D9Q6IlFlwGRj7G2uNv5fAOUvqVfVI1sKmBs5HpDBg6AdZf7wP54sFQFxqPW5VZtQT+9uPLw4GYrpRJpXjbIngyWDWNTg5OUTTFFwZIuHho2c4v7rGfDmHc66QphBht93hs4eP8POfvIe3f/4zXJyfQZufZOEuLkxrigAgIo6ZELH1xSFwJo0YA8IQYJYGXdvBew/aVQgwJQxi7YQQYKzPirJkgxcwk2lAq81mSJG0orzpeO2HDG6EE6rknP3FUJKqCF3X4vj4EGfPn+P2rVM8evxEaFyncf76GkauX24pmxBWxkg3lUgiyZqOKUpv+VHCA2GKzOvwgnoXnMv9AWx2YbLL+OVXXsL3v/89hLDDy688wPHJAX70ox/jrbfewNe/8RZ+8MMfYjGf4/jkCD/60Y+RYsLZ2QWePHmK7/3B93BxcYVhCCArc5Blo4X2gbfGwJlS4cFd4oog2u62OD49wTq7ii9x7/4MKRFW6zVOZi0OG4O4WvE4OANqPOxsjubwFGazwdgPILuGdR5mvgRZy2vGRBgMuHfrCN9643X8zc/fw7XG57IpoWuk2Fm14s4KXmeqqiDYn9cXKqkkioel+kSI85f4PyQWGUDCoJbQ9zv02x7b3bYCAsoPEERZa24QJuPvmwZN16FdLLFYLERBG4x9jzAOMJKbQynBqCtUnkNrs+sa7xe9n/ce3azD8dERHjx4gNt3bqHrWhDAnQOHHrttj9XqGtcrnt8r+bPd7iayov6Tx+PGGFf7vBrL8nyAZL3JsFYgq/Yu1P/Ne4f/MwHV+RtFNulhgFyCq8q7MvJR31GfpXgmKJ+xXxoKkPT1MLlniwHqIpZ8fwNTcQnItw1gYJnPws9w/9U38dZ3f4BbL38JfjHPTKo1oCteQjFCLPcPSOBmP/m9JW9M5b+1lil7K54KdsdLmJWAlGJeq/nZTQkFOMc9ApLU8QcFDTJWpICZSGs3M69BaYbF+4nbZkszoxjyvmMeg4RkOKygYKAGFNYaQJ41iRcgJR4PTUxMKQkZHg+Gem350QwgYYamaZCChzUOwzgAcURICdY1mB8s4ZsGvQF2qxWDxH/oMEFI0wuSUHAmiY/O2g6nJ0doG0FwZBAT4dGTMzy7uMJsOYNzXBfpwEq93w149NljvP3zd/DO2+8wEFC3nSp5hcGCc3mDh7zIjHOTjUJEGAOTiWgsM8lkwZhsSYzjIE1SRmmSZKDxpBvKObs6SZRqzSlgsrWax2YPCNTup0nsfu/csp9V8rIr7NatU3z28DMsl0scHhzg7PyyRBlAU/Se5VolvfWjyf1TFhwmaWtWbi0bZWORbBoj46sAQP+UWnHuJmmdhbGWXZuUkJDgG4fFkl1Yh4dHOD29hdVqhR/+8Ic4PjnE6ekpjo6O2aUsyPzx48f46lfewpdefQkfffwpKDOoVY5ZJ4jdMKeaegaKh4Dyehn7AXfv3MEnH3+K64sLjjO3Ddara4TlHHG3ww4DLBiBgxKS7+C6Dt3pEmazwbDdwG63aKwHuhmPh3VI1sAR8OUHd3F2fo63f/MpUmTWzDoEpUpIZiJbx/tr7fNAwIt+rkG1Cj89h7IyE8EsHhiTSLK0mZBpdb3KLXd3u35CopJdycReNuscfNvBz2bcOOXoCIujI3SNB+KI7eqKOR9MIVSpgY4Bt9+eUrfur1Eu5W3bBsvDA9y9cwf37t3BQsJMIUQMAyc1rldrXF0xTfD5+QVWqzUnBiv1NU07TGJvvIv61sfUsRfvl4YMUX43CbkoCNtTpHnnTea2vls1z5PXZ1eBoXIftUIVnKjXoMxv5V3Yu3YNaPh1yjsQpcwZUB6NCuERTJF1k3ewSGThnMfpg9fw5W98D3deeQ3NfC5JjbIOjbAmOOkkKAqp3p8pJUTi/ctZ+2yU6HsnsMHXVLF9yOcsC1JOVNUjpQRjCc4LFbAxGMYRIQbuVaDnigFjxMDUkeKOjjw+1jn2AFcAEmDlHYYRwxjz/a1V/gH2Tmi7YwBIFEvTNmiOG2DEQ6A6VH9mL4M8Zk0gl7lFwL0MfAMPIwDEI4WAEAYQDKzhsd6tVxiHfUD44uOLgwFK0hhFXxBs+aSEWdPi5PgQXaeX47rJp2eXePT0OdoFuxC5hSUAQwjDiPPn53j/3V/gvXfew8X5c1gDIZxgy1dypaFd2VTwqZWB/Bm43MFyJmeihDEEJENwDSd98TUKYBikc2FOGNS4kAx2cekVDK+bv6jq4ubfBwC/7VAhPcmHz8+wZ2EYg24+w+HxEebPz3F8dIRLraAwPJa8maoJrwUJVIkWEMCfVzXyga2sUVgZmQGPZA5IZNS0Y5y1Bs5bzBczdLMZmrbBrOu4ZIi4kqNtPTbbDd5881u4vLjCBx98gLOzM2y3W7z22pdw+/YdvPrqywhjxCuvvIyHDx+DQFivVjh7foa33noLH330MSgw0NANp2/jnYOVGKMmooVQSoQ0VrvdbnF8eISD5QKrq0usV8e4dfsWxhCxul5hs1riakdovMN8MUNjAed6UBtA7Qzd8QmsbxD6AWHXM/IXhkhyDpQSZs7gq6+9iicXV/j06YWUohZlrcK2Dhl8HhDQn9XimwJGyuu5Dj3p3MpXKuuMQQB7fALGfsBqtcZ2s8Fuu8Nmx50Ds6VOVBKiQLCuZRDQzdAuDtAdHmJxfIz5wRHXL489tteXGNbXSOMOCIO4TaV1r2y6SAw21RtXnpnfV60n56yEl05w7/493Lp1jLbtOCdgHLBZb7h/ycUFrq85J+D6epUJYvIYKT/A/p6V9ZPVZNabUw+FQcVvkHdj/cwyl6AMzAklzFEXlu3Ho/nblPeS6v5cJluvh3ovk6b56ToqoSSp6VaTPnN16HGT64IfugCJAk6mnAimOt3AEFP0Ht9+gK9954d48KU30M1m4jEQQiE4GOsAk/J4jOLZZURjkCLPUd8HGBi0jc+eCu989ngYqwTKIoETW8zWu9KzQDxAPLYcBs55XqKcm8azBS7Ag/tfNLn6zMgYsseZQxpsdPIYO+f4c8lzAWk5LOC9zVY+wDH7KB0V1QAl8HWdtYCzGEOAGsxB5qZ+FsVo1lmpSpAwSlRQKw30PM9ZAw9ypUmSaYD5gYfzLTbrFb7I8cXBQOAqASPWMcnC7azDraNDzBddNWUG55drfPLZE/i24fwBhrhsMcWIs/ML/OK9X+D9d97F86fPkSJJ5nwjpUDbTLpgpOZT3U5cfqJZ5iJ4gIm3Ikb+rPEO3oljvOJbjzEJ0hbXkOH3igoIUGwWcbDXTt4vOmw3BDkAdqUZA62+r434ohDEEjAE2zQ4vXMbDz97jJOTEzx+9BjbsBX3VuKQA930TpBRIDDNxlWUSzFJvJh7NSgqzYcIc40P1x4RY7m86/BgiYPDQ6QU8PWvfw1Pnz7FxcUl7t29h7v37qLxDn/z1/8eDz97iGHgEp1hHHBxcQkigvceL7/8Mv78z/8DnJ2d4bPPHmEupEAPHjxAN5thvdllC8XIxp61LbquhW+80DEnxCHg+mqFzWbHbjfJwA8xYrNZ4/T0GJ88/BQXF+c4ODwAAFyuVnh+sYRpDQ7mDRrfwLoAGzeI5EDGolks0CwP4FrOp+B2oy0AB8CBbAT5hJPDJd586SU8Pb/Crh9gNGFqovypoi2YrqOaB6CeR/1dntfqmjWZiVJDgyB8Golji8PA3QK3zBWw3TJr4FCBAEAz6U2uB3fOw80O0S6XmJ+cYn7rFLOjQ3RtCxsT+qtrbJ4/QtjtYFIAKCASsweqZRyl8Q+7cktHOVWoKri9d9zFdNbh9PQE9+/fx+HRAQDCer3GdtPnfgH6Z7NZM8gRL8R0LIq7Xz1nqhATKpBWbWcFX9N9mCeinJOB/BTQZOWb3fUFgOQTja5jk08t31MXdwEgxSrde5wKjCgQ0DFncFGARQEVYjnl1556F/So3gyTFqRyrfnBMV7/2ndx90tvoFksoF3+jOEOhE7IekDcOZDIZOVOEBIf0SVRPwOkSoifXcMHSvimACgwf6CsT1dkQtciSQM6fc7svWwYNJDkvhjwdZ3kIMF58TqFUmkh4QqgeFQb65BMQqpyYAACRQPjprvZOu6Twz1MDBu4jhkInW/Y8IxTsjZ97hRDJpZzIPjKG8vFXzKGhg0yYxvIRgJhBjNYJMdcMK0wJ36R44vzDES2GrTzpyGCg8HJ8RKHBwsNb4FgsNr0+OiTT2Gcy12YsmsoJlxdXOPXv/wAP/3pz/DZZ4/QDyOcdZgt5rj/4D52ux0+/PAjjGFb3CTEIR1jNIGRF5q1whIlyk/BQggBnK3J2ZyaNAL5fQxBdZ0oDSNILd1A0caqopVNXhn0Zf9//oDfsApuKAfzIq9+OccAJ7dOcXR8jMuLKxweHWGz2cjGYauG934uRhIhU7q3ZZcmpHwyRcQQMex2THFJxTrKsEfDA0aFQvGEWMONZRaLBb7+9bfw5MkjABF//Mc/wLNn59ist/jow4/x5MkTeGfRtB5f/dpb6LoW77zzDh5+9hAHBwf47/7b/x5/8IffxTe/+Q38L/9X/3O89+77MMbi/PwC/+bf/Bv0ux7eOTTeoZ21aLsW3azDrGvRNMxi59uGm0ilhIODA3zy8afYbofsETGGMMYR3azFfD7H5eUFTk5OcXh4iNV2i4+fnsEdL9AYi6ELvJYbjml6awAKcIslbNvAG48xRXElAtZ6JGuQ0ojWAm+++hI+evIEq4ePqzFLImRkPss/oHH0Yrkir1NdYvvx7RuKKq8lrswBlaZB/ZYbB22FNrjvRy5TiiWOD+J55fI/B9t0aBZLdMsDNCenOLx9G8uTE7i2AWJAuL7G5uwMm4tz0LhibgVRLZSTgzn+OYbhRn5AVp7GZjrixWKOw8MDnJye4PDwAG3bStOjIfMDXFxwVcB6vc4u1QwupNJnmheAar9WlrOOGZD7MWTTe29Mp4x/mPzbwOQ5rXMBZCQmlnn2ZIrQsTXoU2VN9ROI9+fGTFfyQ95RHflkkPs1qHej+lIFFGStfI5NI3Yby1xAEmIlP6fpcPflL+GlL7+FxeEhjCs05s6xtQ4S3ggCEPgmnO+lpX2a4c7zlsDJpE4qUoyBuPTFWDJUmgdZC2NTrvNPifOhrPVINMKQ0whiprg2hpPKIwUALLcYpMizSRi4cRZB5IjG6Ev+VkKk4sonKlZ8giQuAkxyB+SQBy8JynpMaf2d9yBIN1eUNZso5rWjoFY9ab6uhFAPL3FIQGxa9oRbQhwMe2fCCE//0AyEMWZ0ZwQMHB0scHx0AGvL9hiGgA8/foghJcxmMy4hJMZ+FIHNaouPfvMRfv6zn+Php5+i73dQuslu1uHVV1+BtRbbLSsTde8bU3pTq/Kz1qHxDSNk2fA8ETGXQXnvczlHHVvTVqUxJliXkETZK2uZvDVgSuMX+URB6u8eMyplHRNrL/9ea3ulPJJko1YAQxFu17a4d/8enjx+iuXhAfDYiMVTWw4qVDjGC1M/p8yBbNRxHBGGMXsEjIAhowrLVP3TE6SVtKBTA3jvsJh3mM1bHB4ucXj4Fi4uLtD4Fu++8y7Ozs7RNExD/fLLDzCbz3D37h189atfxWzW4e2fv40YI46Pj/Hee+/D2QbeN/jg1x/iNx9+iKurSwDAcjlHO+vQdS0T13iPbt5hNp9hPp9jtpjB+wbWAGM/YDFfcCLcw8cydjzaiQi7vsfh0SG2j5/g4vwMs8UCyVh8dnGBpYlYOou28QA1aI2HB2CvCEgjgATMl3Bth8Z7RMOhE8CwhUEONhEOrMdXv/waHj19jqthYBhQWVUlFm8qIVCAAf+/LC7NO1C1UOdDACUmrp0iwzhi6LVr4Ar9bhAvwIBBqmcm4Bxc823h4NsZ3HyB9uQE7a1bWN46xcHhEWazDikEjKtr9Bfn2J49R9isQCmAMEoJo7yPCOgwDjm3pyYX0tWviVBd1+Lw8BAnp8cZBMSYcH52idVqlUHA9WqF3ZZzG9QVCqLs1chAK+8tGSJRiTlRkcq4TrbwCxx+n+elqU83cocJ3sjYQmZN+37UPTn4BgUI5PsXEAhU+3Hv/npSnSCorY6NVJjk5D/D59UJx6g8KPULZRCj45TjGIAhh+PjO3jtzW/g4NY9+LbJz6U19I3U1Cfx3sZUdaqUQWo8y+MkuWNIBDhOBFZFzmNCEo8uhkjrPcv3EErVjho/hsNMtnpPrRDw3uS4vMqx2kgjiiBhwCWIfqnaQscQgOrfMEyopT0qolQuGNFl1jB3Dqh4qzRESNhrJgawtzihehf15iIDAn0fiFzj0GiR8Zz7IF4X5+DFUPafh/r2jt+jmkCaRIAzVBdtg5OjQ7StA6TSPybCw8fPcblaY7aYgSCK1TpQChj6iM8efob33n0Xn378CYa+ZxIgxGwuzBdzzOczHBwcMA1lEgsexJMBbksJGHinfaMl1m5SFv7qyWC2O+2SWDbAOA7YbLcYY4AjP0XnQhGr7lwjk5BoyAuT12C2wydjtZ8oqFOR62rzfpRzKiBjqFyTZVmx0u/cuY3j40McHx3i4HDJvatpT8BAr02VACiuMwYCA3Owh1Ax4JV62lwyQ1TF7EwmlpnNZ3j5lZfw1a++iTt37gAw2O12uDi/wv/7X/5/EGPCSy/dR9s2+Pa3v4mDgwU++uhjjOMI7zx++IMfYrfd4eOPP8L3v/99fPrpZ/hX/+rf4NGjp4gxchhgPsds3mE+7+CcZx77tkU3a7E4WGI2n3GXu5a7loG48sJ7j7v37uD58zPstn3mF4dhADjvOsznc1xdX+Fkt0XbtLjuRzy6vsaRb7gOGRGEBmgIbkxwmvADA0MJputgnGfaUwj7WeKW27a1eP3VV/H02QV+/Pb72AbNCGZln13yZeKh+RsvsvgVgWfxJmAYKJnXnPzJFv92s8Fms0IvrYT7gfMFkiYFApkq1RqLmfOwTQu3OEB3fIr57dtYnJ5ifnQE33i4YUS4usL2/By7q3OE9Qph2IorkwRkCweC5OukFBHiKHFhfgndE0SQ3gQdFosFTk6PcPsWcwaMw4jLiytcX6+kNPAyVzjsexcyCCAtf0PeV1A9koqwV4WWFUA9vBPLvij58vne7qruZfLOlX8rIFCvmngPbu5QZJkHoMr5qUMC5We9ZXkeky+bS0cr+VJjC5UQWkI5ASz7j6a/lD2vnhVDDrPFMV576+u489Ir8G1XDYfsARQuE3Xha0WS1dBoLHkO2fVtOBTZeA9rwO2uU8xVA9P1QwzYDTDGAO4EzF4CTZrT+Y6V5ygIYRqMyV6kPb8NryPHyc8xxmzIZTe+KbLeSr5SDGOu52cuDZM9RBkMVnehxHkVZCTvyrn8e+YPcJw757hXT+nVUTwEBhxiyFUUsiaUDdRkkr0yF1/k+L3CBASOsXsDHC7nWC5n8ltGTM/OrvDpY84TgCFQCkjWgSIvimdPz/DLX/wKH/7mI/TbHQMBsZKMTCiMhRW62hLrJlhDIDJIkulrrcN8PuPufvryshgjJYziBm0aj7btijuHh5L5ygdusZqIuQZ4AVENRsXVXJWA1YLFlAYhvL6nIEAPY7Smd29zC6qtOiSIkaCAg+9lLMc55/MZHjy4h6ePHuH2rRNcX11OAE79d2btQrFSYmBKYWUTzDFWeQ6i0gJ2sZzj7PlZWVDeop11uHfvDt544w2cnpzg6voaf/t3PwJRQttxMs52u8b3vvMdfP8H38ff/d3f4YMPPsCf//mfw5iH2G62ePb8DH/5l38F7z0+/Ohj/Oo3H2K36XM9+UG3QNs1aBoP3wmVrW8wX8zRzWeYzVp083nhtVcvirWwxqKbEU5uHePk5AhP+udQb4du/GEcsVgusX3+HFcX57h39x4SgGfrLU7dGnPnAEgjpjaAZjO01qCxG2bVSCNMirAzYSQ04lFBQejLZYvvf++b2PU7vPOr36APMVuNTGwVQXu9F/bBwIuswSQAFwSEKA1QwsCdAzUhcLOV6oCQO6Cxe5bXGBkDa5gFrWln8MsDzI6OcHDnHha376A7WHC8cxwxnJ0hXl1ge3mJ/vqS2c1MkvbizDaa2yxDwYk2Zpm+k7XIVNSz2Qynpye4fec25vMZUko4P7/ExcUlLs4ZACjroV5zer0yNjo85e+iGLUmX0NtxStzwwmAKdmQrdV7QQf539U8yZ+c5S9tfI3s+/05LN+bqoliYNw4Md8W1Tuqta86O+nPIrMyG+H+BWVcbt5Cn7vIMgUWlgys73Dr3qu49/pbaA8OoGSjBmyNKxBIiWVs9thKibJemYRmuK5IUmUVY+Kkb2vhfJOVOSqFllJCMEViGkuZl4MSt3dXuWBhMpeFKndvHYLU8Tvvhf9f15HG5bnzIoiQqHi3eOyktNYzgZBrWiSnsX/eF6omdB3kOauG3RgL67kKQJ/RGK5mKvkbZgJoicC5BzJPKTGAyPlckPFKZS9qeeQXOX4Pz4C6Oghd2+LW6TGc1sECWO9G/OaTh4hEaKxFSiwAOD49Yn21xke/+Qgf/OrXuL64zIQMSWux1XKSRa3sZSkZ6VPuckJc6xvcv3cX3/jqm/jaV76Cv/2bv8NPf/JzXK02MODWvuM4slfBWh5gca/AmEx6wUIr5sWZDE9o3X+d/+bJU6VaTzCVHXgDAKA6z4gQUTudTDXJGUSUnZ8FNywXSgiCvnfvPk5OT3F+foGu67Ddbm8gP1vFuowxleuWG7aEMYhAV+mSAOEgSInQNA5vvvkGdrsthn7A8fEh7r/0APfu38N2s8MnH3+MX/3yl2jbFrP5HLdvn+IHP/g+msbjZz/7KQjsNvyjP/oj/OVf/hX+8i/+He7du4uf/vRn+ODDj/Ho8eNsPXnvsTyco2s7dF0n7WwtfNug7RrMZjPM5h28dLdruhbeNy80tGAA1zBwuHXnFs7OLhBCmghRpamezWa4vLzE0fEx4Dw2w4jPVmssWo+mAQxFUKRpAhMlIEbYMQAxwLQd0LaAZTYyI1wXSBEHyxZ/+kffQzvr8PP3fon1ZgcrPgc12Yyunz0QMFk7us6Esz0FDoEx536f+5dvN5wcGELM7YNBKN4hAzjj4FwD08xglkvMTk7R3bmLk5NbmM0XIEqcDNjv0F+cYXd5jrC5RoojkBQ0q4JNJWGXpFtovNm/Q8GtVglwS+5jHB4ewhiDq0suCzw7u8D19QrbzRaD5BmACJQ0zIYssPn6pQK+9raB1NFdAYHqbw6RSJy5spanR1GiJb5O1e/2lp2RqL286/78GVH0Ki1U6WRAkD1EU4Wh18zexeo0o55LvT+VdZUfVZ5DAaTgBiUerrwhqkzKmxdL2MKgwcHhbbzy+ldwcvc+bNchEMEDcNI6GoZd5QpANDyc5A/EI1CzueqzA2LlDwMab+FmMy7Po1Lrnxn5TEKI8q6k1OxaBlnmOSeL7pWKEyoiIWORTGFutVY4U2BBUlKYRhJmZRIPiJnIV7kQu/UjgUKaKF/9OXsmZPzr0ErXdQgxIIZC/76/j4CqfNoYONeAYBASAxv1yABKuJSEGr0Kkf2O4wuDAV1h1hjcvXWCWdNA88piTPjw06e43mzRzlpp1GClTJfbhn72yWP84r1f4PnTZ4L0hXgkyqAbRnjcsQy5jI0XgsTerWOr4uQEX3nrDbx0/zbwra/hz//sj/DjH/8c/5f/4r/Cp4+eghsejXnim6aFtw4mZ9xZxJBy33XOWSA4q4s3ZbivG1at7NriAMTaV0X/AkAwFYwqCiD7PgkboSwy2USQygbAskvXsFXojMNszkmWjx8/wZEkEpZ7FOu0dnFpjsCw6yte+VSEU4VDlKgnhAHf/NbXEcaA46MjXFxd4Uc/+hF3/Ds8wBuvvw7rHN748uu4d/cO02i2De7fv4/nz89AZPDxR5/gzu27+NGPfoyPP/4Yl1fXvIysQdM4dDN22bddi8Z7eOfQti3aWYvZrBMOAw4DkGWUj3HMXPQ3ligvUMwWc5zcOsXy4ACX55eTeeBsbc5nef78Oa6uLnF0fIIRFmfDgNPNBked4eZaxsIPnlnKiBnBjFSvUExwswhLgJ05Rr6GwyvGWXhvcXKrw5/9ox/g+HCJf//3P8fZ5XVWXMx9QTBk82cQ4TwRYMS5LjFEjANXBmw3W+kYuMuNePp+yBZO/a5GiFKsbdDMFmgODtGeHGN2+w6Wt26haTuYYcR4eY64XSNurxE2K4TtGjQOSHHISoefs6y1pEInl3SWEIZsFekPwommR0dHuaHQ6nqDi4sraR98yaxpYaw6takSljLj6r0ATDrwmjx8EpJJRcHX+66O9yIr071zM4zQ76DcqD4MckivbOryQ1H0ZYNNE/rqy74IkJTvletAgID+SJNT6vuXpGGqsE3xQlpTzi3XsnteAwsYD+vmOL33Km6/8jra5RFs22AInKDrnZ946ThxsDysAiWWkTw/zjmMY4AxLKfGELIRmEhkd9OIu5ugXeRIEvW4lYwBxhGjgEanvRCADEBSZXE7Kc8zgHRFLPssUsqlg3U+DQBhuhTgrta2YbI1ds3HXM3F8ttmGaNzXnAq5ak0KbFMl+fypmGDNyVQ6hEih8e5nBo5r46vA3B3RQ/vW6QUAIpiLLPishawkpNB/9BgQOMwB7MZjg+X4j1jNHB2tcbjp88yPaSiehAP+Nnz5/jgV7/Co4cPMQy7woUeYy4Fcc5yrEiscue4TIUztXhAnXWYz+Y4OTnBwXLBS9kSuq7BD//oD/DRx4/w//h//r+Q1OoXlOatY3bHJEl0YJ6DYTeINUOwGQhUpYXV5KnSN6AJjSfkd7WLXid+Inyy4Cm7N2MTQR4ZWAhXNxnNGNWv89jcvXcPh0dHODo+xvnZOYZxEFcRezB0QbL1VjwC49hLuUxxl5bH4Y1qrcFu2+Ojjz7Bl7/8ZVxeXuLdd99li7ppcHp6gu9859t4+eWXYAzh6bOn+PrX3sRqtcasm2E2m4OSwb/513+B93/xPrzziJHd1c45+LbBbN5htpiJsndwDZeUzboZVwy0HPt3npN/emkso5tXE0Pro05Sco3H4dEhbt85xfXVdeapyO542dDee1xdXuJgeQhrDPqUcL7d4LS1aDzXJHvvYBzEAmbk3iaCjYk5yC0xgGs6nkv18lgDQwazWYPv/8G3cfv2bfztj36Ch4+eYLPbYkgkI67Jm+B8AFkPIQb2Bgiw3W132G13uWHQVn4eg7T8zQRdCkINjHHwXQvfztAsDjG7dRuLO3cwk+Y+465HvHiKcb3CuLoChg3iuEWIA/MTKDFVorIms9ue12ZhE6ytcBZys1mH5XKBxYL/OO+x3e44HHBxidX1Gru+506YUmPO85snlfeEpsgbvUexgiFrWMGDrgG1xHVtcEhS9vHEyi/fu6lYae/zCswDQres3oapMt//zJgyPvwlATgy/+r50Gdnb2TWb9V1q0uIEZL3cvX4CQSr18xvWt4928P51SvAnK/DnoFmfoDTl15Gd3iUq0W88OrXHSjZ9c9VA5zZxmux8R4xahweaJoWMXESYOM8hxmsyXkhEQBi5P2fn7t4EdRIVM+DfhbGUfQUwVuLUcbYGJJnbVj3pJS9NSkxr4GGsNi7oBVlCd47xKhhcgYEYwogAnwjcf0YJFwMADaXDJKhPOaq12z1DlG6EFrnkMYxf+69R5R7aAMj9U4A4NwcIyy8znIlRQQXeIpRoWy9xHENfJHjC4MBay0a43D39BhtYwVVG/RDwAeffIZ+HNC2TY7NUOKyiu16i08++hQffvAbbNZrnmz1ClSUjURADEmodjksYK0DEVs8kRKsbdmFA2QQoULCeYMHD+5hPptjvb1GCAPCkMQtpRSojEYTScLVts/uGzK6uCTuUpnZRgWsONkyzlcLg1IuQ6mtMj2mi5mvojk6GUDI/YgAiuq+k/HhzBiEFGFhMF8ucP+l+3jy+DEODg/x7NkTWOvz81prBUhJLa9wz2tnuNqoNkmkDmqOf4Pnzy5wefH3ODhc4PXXX8XR0RFOTk9xdXmJr7z1ZcAQDg+XODt7BiKDs7MLPPz0MX7zmw+x67muncM+CW3TYNl1aNsObdei7Tz3op934gno0M06NG3L4QDNvtb3CdyARi2QiStdJFcZewYd88Ucd+7cwuPPHuNqtYHLlh5lCeudk6Y2GzTtDAkW533As/WAZTuicQ5jGNGMlhF3ijDS27xNiV3nTCYANydOhHUOxjggGQDMYOacxRuvv4y7d27h408+xdvvvYdff/QpNgPX3jvrRMlyWdEQudIjhYhhGLHZrBkM9AP6XY++7yXOqBUynDSEpAlDDaxv0c0XcEfHWJycYn56C/OjY2Zc3W6xfvwI43oNGtZIY48UBlAcOCFKy5by+iYYMhMwpsCKwwOU58Rag6aZYT7vcHBwgOXyAMYYbLc9rq+fSXngSvoFTBsfZR2Pab5BCcYV5a6Tn53tlZWdde6Ek6d482pgWL4oVqEQo+XWzrU7HyWRLa+/Fxj0+6EePW3ynKT28s3z+B1M3qdTD6NuV7UQKoiSFX2VNzEZr6qCgu24rGw1MRww5bPELHe37r2EOy+/Cj/rZFxMLuvmEFHYey+UNr6W5TWlBKoqq+psemcdLHEILMWEaNmIy0RCkWC8zZ/pGkwpcTtfY3K2fUopywnvvcTUmTcjabmf4QogTjy1cGBQG8YRvnEc7ktqgbO80BC1s1ZycSJSEnp3IUNzxiFQBOe28VjYlnPRXE2pXAHbmuSLYqFh7mZzJgkbBxAp+6+CYiMegCTeCZl/wx4BvjwJ1b5BiIWq+bcdXxgMNE2Lk8UMx8fLfLNEBo+fX+L52QWs4wS9FCHkREAcI549fY6PP/wI5+fnU55wQfy60bWPOp+jgyaCJ3H3ukScQTkId3q9jwzAHZw8I6JxZOTZtjbHchWlERkh3OlzlnURQBpvMpXRYLhrnW6Sqq9AvZX3PQNZ6OiZVGKoek59rqLd/YPIAJrsB0aXzM52isvzc1xcnEmyiCl/DC+dGALGMGaPgG7WOsOa/6MCzgjSj+i6Ob7/g+/jm9/4Gt5//3147/BP/sk/wTD2cM7i8vIS3/3u99DvRrz99jtYrzYYhgGQuNqs6zCbzdB1Xc70b9umcAXMmb3QtloPbG4AAWMM2rZFSil7DOpzpsK6zIhvPI5PjnHrzi2sNuyNys4ZlFrnMYzYbDY47RYYErCOCc/WWxy3Hp03mDeOLYzEoQoTHZAUZCY4E5GsAYcPZkDTIHGshwFaNDmmeDCz+MbX3sAbr7+C93/5AX72zvv49LMn2Gx3uXlJSoF7Bux22O04BKB/hmHkTpsCVjVObK0DDOfG+GaGZn4If3KMxe3bmJ/eQjefw8SIYXWN3fMzxNUl4nYFSiNAnCQVU0RKXPMMKmtTLdryRywnBQbC+W6NgW8cZvMZDpbcr4BLhHe4vLzC1dUVthsOa4QY5L7TsILO6cSrJnNGqJ33umfyP8p+qkA1VyBV+7Fy2aL6ar3WCiCpHHoivCcgQK45fSp9zuoi5QVufJbFjFh/bCtkyIPs3dDLVffLzc6oPIEqdWUX0eVeKI9Ltn/9MHlcjCmhDzIg49HND/HK62/h9v2XuPeAePg00z/H/uWKmgsWxRi0lhn0YIxk6pMoPIfWY6LEU+JOrYy7E5yUIEJi66rktdZfP8tWtyjqGCPn+hDY6jfcy0LlrDGGWRNR7q8MlolK1Yp6O7Q1NyV2xWsXwhwysFbm0sI4AhBhc5soC+sM2txJUZS/Neg6rsjI5bKp5Dd550A2IVmHwHS/smcKV8f+XvFasSH7lPsyJNj0D+wZOFgucedkwWQNYOW96wN+88lnCBTRGp8HL4YIJGBzvcKnH3+Kxw8fYRQ3yNSyqLq68W8ZQRIvCmud1KlGOHF9xhgxCK1pfSQCKJG4lgjjGNlyMrZqi1kGMkTmOE/SvAWVq660Gy1uQWvthLrT0LQK4Eai0p4QUqtCBZueUwu9mkGtPsgI06Ccb4kw62a4dXqKp8slDg4OpJthEcyMyCPCEKTxkDSp4cfPQsYIyty/pzHM9fD2z98RNx/h4W8+wmtfeh1//dd/jbe+8hV89OGHGEfpGLfdwjmLbtahm7VomhbzOTeJckIONJt1mIkXoOs6+K7l0r/KAtK/65+991gsFhks3EjOrICNom1ruQTyzp3bePz4KbabHTdvglonSchHPNbX1zhaHgImIRrgqh/w7GqFuQVaY4AQkRoPeAs4hziMYNZLzjWJYv3YlIDGcUazc0i5qxrnu+i4zgzw3a9/GW9+6QHee/9D/OTn7+CTT59gu+2x2W6x63dYb9bY7Lbod0NmCsxuUbXWjYHxHs61aLoF3HyJ7vgUi9u3MTs+gu9apGHE9ulTxMtzDFfnGHYrSMwMWuOdwTlS3gvFrV1xElSlWrXV7pxF17VYLrjk00s44OryCqv1BtvtlgFp0GTDUqq17wvnjOwyt2Wike+noHj6HNXe00/UiySfZIt5ss6rb1TXqz83+dx93oHycPU6rK392oW/d2cYaNnYiwmASuijzHl+NX1neUAS61XHKY/PHvypkx1vICOjxo7sQdvg5PZ93HvlNXTLAxhvuWmQmYZc1JrV/ZkkREDEoMBVGe3jOCIRU/jOmgZ9z54uvYa+ZwoB1jZwVkoOK09BPQ+qc2pQoB5e9U7DcG8ESlxBsC9DcvdaKEdN0S2cq8bl6SERIIl53vli2ct4KUjRJEP1gqfKQ6XALlEpFdS1oyXdGsqovWacW1dkeCSCbxretYmbgRnLnRzrMB4ZoJA3/Pbji4OBRYfZrOV/EFurj58+x8X1FYxX34TJmzKOAc+ePsfDTz7F9dV1frFaaRKmaFzdjnXskaTOjykV2XoZxhH9EGQSVAtwO2S+nsE4DBiHAe5A+iIIeivuvdLwqFjv/HJRazuzFFCOgJtH/m6lxG8KDXrx5pNDM5q1E+K+45BUIItFGInLdRrvMZ/NcHR0jOvr60lCirMW0bCLiFt5AijAM7uqiswz8p4lez6mhGfPnuGXv/glfvDDH+C9997DT376M2x3O/z13/4N2CrlJKLFco7ZfIbZTACAt7mevJstMFvMsqJwmg9gNOZ686hRb4389e+sDKtRUutGraqma3B6+xTHx8fYbXZQ0hCdM2scvG+x3myx2W7hGo+UCOuQ8Oh6i4VzWFgHmxJS60HeIzrOIwC4GUpCgk8JTSJQDDCNg+lakHOAc0iGYCxztVvjxF3NltGiMfjBt76MN197gLff/xX+/t//DO+880tsrq5xuVlxZ80YS314ViwG3jfM8Dk7Qrs4RHt8gtmtW5ifHsN5g7heY3v2BLvLS4zX16B+A0MjZ0kbsJRIhIixXDf/Rz0AU6BaN5Jh4cXeiK7lRFBrHfp+wPPn57iWBkihKmHN11MLWIBN5exHTXyVFV6lBFUBZYu/+lyvrR4TXRyVb66sFbnEdK8KCJV9sZ94qGMy3efyAHseqto7sL/tVV4oECqigSbXL2NVnjOPjQJoKtfTZ9dnugkFMmLO75VBjwo8YnVjjEXTznDv5VexOD4BnMvrlohgbPG01ICg3psEErp0TmZTAqBBeqCYhuvpY9ywxe187j2QiOWPM1KlEPfDU6UxlyYZM+usQU7sM6aK64M9DN5Lj4GUc6s0q18HPNqUFbUTpU9EcJ6bARXPCuUSPu+9eCrYE6C9F6KUFVspvzTCTZLEEzjNtzC530KMSQxjyXcB0xQDxEqfDFKU91WSJFu6IEJyO0yckub9tuOLg4FZCyduHmMM1kPARw8fIaSExnhBO7LkEmG9WuPRZw/x+MljjGHkF5JJ1h4DuiD5b84XCDmOSHmzMVolGCTENGK7G7AbRtlQyNcJIYDA9wiDEutw5zwOYwAuyxzmrI/EyjYRZ/NpidREaUL6busCyJst5dBdHcved/XXm2PfqtUrsVuOqnui2rsiJDRbW76nbrNZ12E+m2OzXpffeQ8zjDlJReVj9VQQR2puBMIfyT1EUKaU8OjxY7z7zvvo+4if//wdHBwu4BuHrmuxWCyFHZDXBysIh7brsFjMMZvN0bStlAR6jr1lYpDPGY+99aFoXbkIJqyOWSrWeeCGM5DhsDhY4N6Duzh/fo6hD4yrczo2l6mu4wqr1QqHJ4ccYjIWF2HA06srHFqCxRKUGlATEZ0rbX3XW7QxZqvDxxGm9UjjCNu2nKTVeLimBSwhIsq4cgtXYw0SBZwetfizH3wT33ntFfz1Ky/hX/zFv8P6ky12A7IwIHC3T2McjGvQLA/RHhygPbqNg1unXPttDOJmjd35OXaXZ4jDBggBJkUQorT55nHn/AQIsFdwZF84/tmFiZIX4JsGbdOgaT0a36LvR6xWdefA4s2YAGGi4nmrlHWt/CdKtAICtYuUn6WsZv0usyG+wBqu9qTJa0ABfh2qMFOQmYEYXnAUkDb5lAr42AczeTPqSs3PRvlZdUzqm+bggV6qLOEXPJPcN3tGyrvtvwjvGpFNcgq/vcXi8AQn9+7Ddi2XlRLgjIdzAJkEZz1MSrlFbiICpG4fYLCoYd/SMIj5SHbbLVIYWXGJ0UJE0i9Ak6FLGXhtJdfeVzV+tKZeAYd+J0IxroJc7qNQj4u1Fs5zg7wYAQObm2OBCn+Cs0o0FDIIyHtFwEKMhciNWXOteAeicDOUFt51WLTWBdY55ljIgI6gCTApJXhrYUAYhz6/t1Y36H7TaebmSP/ApEOLWZMHNQJ4fHaOp5eXMJ6BQJQBISKEfsD52RkeP36M3W7LzHXOcTkFsQuoOCSRFWUSvnwleMhuOiMgOnE5YD9wIhURKzIGIoq02NXY9zus1tc4OT1C03hYBySKOb5TyqJkU4pA1JIvBfa1i1BLECHnkrrXa8vkc459T0F212ULogISexaJnFWs2sTLZLZcZBfWwcEhtpuNJGDSJMa2L6z42kWP1pbhxDKRARjHiF/+8tdwjcPh4RJHhwdYLueYz+foui675a236GYzLBYLdDPxEghqz6EaoBrVMrb7QEo3v1qWUcI6TdPk79w8ahuL/9l0Le7du4NHnz7C08fPdST5jyE0bQPnHHbbHovDJbsWCegT4WzX42Tt0XkPCwZjyUfE6DiVx3DuCYXEXTNTgk0tjHqznINxYjF5j0gVPbXUZFMYELcbpDGg8xb/g//oj/Gt730df/Pvf4Z/+Zd/hV9+/Bi7fgDIwPgGpp2hOzrG7PQUy9NTzNoF4jigf/YE4/oaYXWNOGxhUoShmAUKjPCpp1Q6Ku4d2Xsna7IWwmq9NN6jFWBnjMHQR1xenAnZUZ/54hNFaMLTpKOmzEvWiRVQmCjO/Z8n60V/r797gdLM+6o6qkWf9+3E0pc4bwXA+TJqnhegrnTG2TPwottV71AbAsaY6vsFaEydh5WV/7mGXXVTW8ZZLf4XfW0yokaToqdyjsnePI7v3cPx7buAdZwI7BsmnfMOkSJXB3mf3ezaQC4GCXc2LlPBE7hs3Itlboy45ylyKa6EmRMoc6owu6aBNT57HljXWXgnXXCNyfLBCVBPKeT4vDOOrXKjrex50mqvQIgxd7uFWNhczlwWKBFX+HjvYb3j8LJsoZwkSSTVB7z2nTMASaiby9RYz71AHqs3A4ZDwNZabiI3juzxlXLqYShAoi5B5vcdcwiEJEEfzmY+oN91/B7VBNDVjSFG/ObhZ+hTRAfPHMla55kIu80WTx4/wdnz5wghoGkaHBwcgBLh8uJigqbyhp+wlyUhVtCMWo70cpLViH4YsN7t2I1UsVfFyEmF3MJ4wHq9lnpWdqtqch3XYRqMI1swSFINIBs+Ji5ArE0PXdRcssMIkyo+AEbWN3kG6r+BIhy0sRKASWtoPX9fKO57UhIRlgcHOD49xfXqGgcHC1xeNNjudojSu7vtGnjvMFSIsbbQ1E0p3kFpeKH1yQWPWQv4xuL09BivvPISFgczAdoEbx1cw+yEs/lMSgalNNA1eaOUcSxAQyJ6LwQCug7GcYT3zESogED/fRPk0FSgGm59fHC0xIOX7uPs2TmDJYNsCTnPwq0fmIypbTxiIM4dGCPOtj0WDfc+oMRUyc7zBjcpIQZlEAsgk+DBrk2jdc0ELhH0HnA2Z1TDCFUrDMhY2FkH4x3gCS/dP8L/5J/+E/zgD76Ff/23P8Ff/+inePj0DLGZY3F6G4vjY7ZCwojdk0+xu7pC2m4RQw8YZnGDWBNEJJndxatUe+Ym459zZTCxeozhLGrvOfkTIPQ9kx7ttj36odAFa6ivWmjV7ECeqSgsUFXyWc8nyeLL3jJZm5NzPgeAG+Qk3xtWu15LlG22QE1lJVesijnEUN2biIT9T1bbHqipHmNqVBSCgImlkd/tBe+kgAGYhipvgJ2J3OFvVrB4eugzyQOKHS7Ag1leu67DyZ37WBwdwzYNs+1ZAweLYZSSWkQ2BpKwDJKARssgOY4hV3PBEMYQQClKPb/I0Ai0sw7GWux2OyCV1tdFVBGQZG7E89A0DuyZLbFPlvMutxiOIWGkEc52cM5J3xGwMSqGqRobQCFn0o6I6tli8OE5XAGwt6LuFQB+76EfYAxhPpsjEecLEJgDIWbwXdbTDf1QnJxoW5/Do7CcwG6MgQmcrzTGkGV1lFJIQwYeLu/lFCMn9dM/cM5APozB2eUKT54xsYy6YrQWOI0jLi7O8fjRI2w3G34XZzGbzxBDzF4ABg5SKiFKWBeVEhGV8eHzIzH/chhG9P2AmLt6lQZD6kEIY8B2s8M4DnDWoW1aNL6FEThnjZFSRs6kdvDgBCrHwirp1PEdnOMtowlQIMvZniQiRN8LZfvVE167tvScGslPh1isjwr57cdvQexOevDySzh7/hwUE46Pj7DdcUZ/TCParkE7a5DbWdPevSgxpXIeZZuFIyBJeF2D5WKBo+Nj3LlzB4dHywzSmobDA23LvQRc4/mP9xxbRBFwRSCabBmpR8IYw/HrGBCk46SWqKpXgcMQLsfmXuTtqAWsjpkxBk3X4u79Ozj6+BBnz85QGlJzgmnbddhue/TbHbxbZIuwT4Sz7Q4H3qG1BoYcEkU0iV2dFANS6hBTw+EPzYMwFmQsHBl4K53QQLBtq2wvLLiaFtA0HKoUjrPwswavfeU1/LM3X8N/+I//GH/xNz/Ch08vsBoJl1dXuHr8GXbrFVLsJZbIOYocTpB1CvUAlFyc0oNiGpPf/6N7yVqXvUzW2MxxoJUNMSkIKMmv2ihnum5lcm7o8gJA8vuT2T9pT+8VU1pr7Sdznt3eJt/TZPeiPuP+0mENTUn2sdFnLeAo3xTyiFP32s31CPVAVFkLAsYmgP8FoEVw0nSe9EkpXwp7v9SXqVwvN4/spSBwOE3laMZeFovDUyyObnHDG+9gnLLKypqKBON87v4KBQIGmcUvRQ65eseWJMvcgCj7X2V+ChHeG7TWYRQXu7MWrnHwkhAHmEn+CQxTzRtwRVDKFRmGOTTGHSv7yJ4HBrE8LEE91OIR4LbLqMBs8ZpxmTZXBtE4oO8HUcw21/5n74QAhNEFLjM2EsqFeqJ5Yry0TNYwSs4ZABudISZ4ba6nzywVOE3bSadHrUyQ55Tn5YZJ/D4A5+7FL+YY+D3oiIlJLCIBDx89xa4f4Bsu+SJjhGMxYtjucHF2jtXlJVJQSlFIr2lxx8QkCLDKuyWOJcYgvPApQLmereQBJ8OoPYycdT2MAbPWZz5wZadCIgRiKzII05UmDaWYAEOgIWC3GzD0I8d/RCgZ4kWcogKValEI0EBmWhMBghL74VeRGOxePKj++YYl9KIxr8BA/d0603R5uMQrr76KD3/9axweHuP84pw71A092iVT817ai1wCpgePSelWmC0wA/jGYT7jmP/BwQGcZ4XsG4u2FY4AqQzg5B1xc6UIClLqZlHatKoABlsMkE0whjG3PCXwgh+rJCDd2KqMNOxRg6wbR21xqdKzJXfg4uICKajC4Xf2jq2Moe+xWC6h0boA4GIccLyzOGjYdZpSBLWATwloHcw4IjkDGj3MEBCNg6ceDQx8AshZuK5FGkfJCUmwzsM6AZ2AdLPjTGAjJUnc84A9ZK+99hLuv/wSHj2/wIcffoqf/v1P8e7ZY5APGEC5IkA7nSUx/SjFnISkN9M50b+z9Q9IO19d78r+yYJrHAKXO/Z9BgBJwlU1yFS3dw0CCjBIWUepLnpxWKA8yCQEUE95NsqnYPlF1hYJ6KvfGZgCIl38hQTo8/YnTf7Cb9nHBOQ8IL3f9F3pxuf7YzEBDaqxa68ADyLPLYTe4nP2xmSMSJ9JFZ/lBZAAZz2Wx3ewPL4Fmz2q7KKPKQrtCQPyKCW7Ot5WLVhjkSKHD7yznMshijeB4NsGNBiEgTlJmqbJ+UBJFoiXayUpreMkwSG/i/auSRKlM2LOcAzdwiQlm+KwswXyexhKzFA4jpmy2zkOeaACBJwAybw5zno4K6BXSJJCFOIga3NJNQz3/1DgbcStrkCXADQtV0nV4VDnnOTNJYyiG52MM1c4SNm441wNLUnMpo2sa/Xi8xiVjoe/6/jiLYxTAhmH9W7Aw8dPmakvJcTEC8okA5MSttdrnD15htXVNXfFI8AS0DZiAhUvcd7wGT2T1lrH3AGNUuVOB1PChjBis+2x2fU4XHYAmKNZ63UZfSf0Q49BSxrBg4cUQAA8eYSQECMhJuQFSJgSlEw8F1rdQCX2pL/P9baKeoFJKUwex98BDPbj5/tIFdBxlw5xINy+fwfr7Rrb32xxcHCAZ8+eYbcdMO8SZt0cbdNiF3d61yJgjboHJSnMWRweHeD05Bht6zOhyDAAp6cnOD09xtHxISeNda0k//D8hhCw224BGJgDvnSOwVqbBXeJs0cMux7Rc3ey3BXTMK+Axgi7rnuhS22S27A3rtkbS1pKSWi7Dvcf3MOnnzzE+fPL3F8cgIAdg92wwxgGGOcQQYjGYBsJl/2Ao7YBgeffwLHQjYCJDhQSaAwwY0SyEREG5AJgA8wwluQeXS0k0XRrMx01975g1kNjhbjIAMk6WLKYN8CXv/QSXn/1JXz362/i3fe+ifd+9Ut88NEnePLoCYZhxBAiem1CpZYIL+iy9Ujd8wqQq/Vc70mpIx9HbnPd7/pcTRCphBBe5LmqJoWJkCSerbOlluTvPLK7W8HNdO+8KCxX7xtjtA23yeOv52VlXNLxkVuX1whh770mcgsyjzqee1/PoTlMP/9tn0zAbL5h7V0gAW3ECWmq1M3edRTfmxc8V/FTYFIGKWNjfYPD41uYLQ54LwhzK9j8zx47fo6UCYY0mQ9gEGSdgSOXywsTAcZy1QAAUDKyrgi+4XwtOMtd+4RhVAEnu/SjdDVtMjspiazPAA8Eaxxm7QyGepGfwDCMaKTlMAGl4x+QvZC6LrT5XM5lI24NPutmmHUddkKdzV1cmUJY313nXMnbiDjniiN1Jo90ioQAbieu5YDZI2d12zJo8mhkryZkhkeWFEhgveTk3tqZMabShfb/D42KIshYPDu/wsVqjQQpwQuEZA1sAjCOWF1c4uL5GXopK2Jhk9DNOhweHSKMIz7rmWM9mwg6ROq6kdr/XOamm4MIaRwx9AO22wHX6x3u3j4GEbAbRoRMIMQuG+biH2SB2GyZgChTYLJ7kxe0FQGchWR1qGJJlDirX3YZb6gpWdC+0NkPFbxIgE7ikdX5NRioz4mpZOmicTi9cxtnz59hs17h8vISvfDWW+fQtA222y3EcVyNuQIgTjg8PjnC8dEBZrMmU0p3XYvlwQEePLiPu/duo2k9u7plXjQhTV37wzhyUyhTOAEsXI79G0mMMcbAS1zOuUZIPVLOB6i9AHrsewNqAHUDGBBvF7VgrTU4PDrE/Qf3cXF5lSmKAaYDdc5hkBwSL2VUBGA0wMUu4NANgLpHk0EHFl7JGHTOIlkLMwYY50HWwowRxgdgGGFg4EKAaxpWzC1rDtN4OCdNjqBgp1rzWctEQOJ/cB637hzjH9/+E/zwT36Ii4srvPf2u/jZz97Grz74DT57+oz3QRLRqH5GWffqkib1JlRKrIypQYzE/ACSwESVN0qtnN8GBLIg1e1rTZ4X3SH1jiEqytPkz8wND0D1lZsKsLo3D6HJa73E2CVWnQG3flwU82/12O3v81rhT4z2m9eg6lOxf2p7olxDf1AAYMqvqR4/vbWgEkLZ2ntDXYEJvV35l+ZKGMMyvWs7LJbH8L5lUAppj5uitAQXUiCp/a8z41Vekch2TnobONRgDCgBLB6YpGq+mKHvd9mybduW6Xmlb42xFpGUsTagUQpkocfm9s38RnnbWKBx0uZ44H4XQz+CCPDOIsSAMAZYxx5PLXUEODxRUwYnKeMmsKxrmgYtEWxAZg4cx0E8C67KQSjcCtYYRFMmmUMP4hkkI22NnayFUkEHcNnkfD4HwAmX3NdhBMDMruPYI46jhLsDrCny1ToHZz2QlMHwtx+/VwvjiIjPnjxFPw48ozEiJQOSZgrjboeLiwtcX11iHHtoTIMbqfS4f/8eFjL5jx89RkrEsY2MwpT/XXaIYeSpu8EIjfFut8Nqs8Lz8wu8/OAO2sYhjjHX4aekvQ+YcMc6jfsQEAHnHbquwXzewjUOEQlOdo/2Bjd5l/HfUazxGCIMJV5xSbbRHqjZd9NNymL0Z7VggD0Bk7LUIMINIABSHgT+d4oREYR21uHo5ARXF5dYLg9weXmB3W6H5cEBulkHc11ZVqQxfF6g1hph93MIoUeMQDebYT5fYLFY4uBogdPbJ/ANo/EUYo571oqCXXMWMQUMww7s3grwpskK2TnHnORdyyxg0WRvAICcE2DMCyXkDc/Ai0CbCiR2b48Yw8hMiLMOL738AJ89/AyXF9cM6BJyXkLccr6Cb4uETjC4Hno8oQhLc5guMig1AJkGgjrQgKCNrToDkDVIrggT5x0nVsYIGxxsF2BSC/LErGUeDDZMApGVxkec3UA5AZBgQoRxDYz16NoGD+7fwb3bf4Yf/tEP8MEHH+LHP/4JfvyTn+LR0ydYr7cYhTVNTVjmXdcQ2NQy1bwbtZqYuZJkLRYFpD/UFvCLAe+ecqWpSi8Au/5+nunJvE64CPTXNP09/yBaMH+dXvgsU2B5E5SXC1eJgzoH9buaAqDy/VV7FzuGFbdq5xoEAEx9K+9UhwT0qQ0PEjTU+aL8pHKjG0O394YKQsR1kBM1AZsAgsXi4BjLo2PhFmBmuyheVGMZhIUQQa54BWqAqaQ5bHjoWJscShzHJKykDZyzCFKNYK1F4zy8d9gMA8YxommlIV6KN+rlc26TYe+mAkSVNY13ACEnAsbA1WokYYPaWLNMAJD7CqiBwe8dAUpiWDLhUIoGUfSTeqis5UTDvu8RYkTbNvDOo5vNYKTJmEExXoj42lnLVEDO7BEXzeaz/HxOGEcZjJSePpQIybI8h5TCUwZLv/v4wmBgGBJWwxpPz56Lqzxyb+pq8+82G1xeXmC73eTlRyAM44DrqysYY3D79ilOTo7w9OmTkj8IgOvbA1JUMiELIGW045i5AokStpsNLp49xcNPHuLLr76EO6eHOD06wNHBEiCmL+b+BwEhDuh8Jz2ymSu+6WY4PDnCrbu3MF/MecOr290WBVlvnpDryUmENnhCtO5fFlM98AooJhtXrZM0FTyTGGslMPYtsBp568+JOG50dHKC5eEZltcrbFYrbNYbtEIJrMkqeh1jpq4jVdSHR4c4Oj7AbDZD23SwrlReKAf3voVekwJ1TTtxe43DgMv1Nbx38M6iEaVvnEGHDu2s5XiueBGmyv53r8sXAYKalyAlBo/OO3Rth+PjI9y5cwtXF1fZdZ2IcuOjcQzoRPAaY0AGGCxwPgxonYFFC2cNjDOSQMoO1EjS6CoRt/EOI9owYGwarsmfdfL7CDc6uDAiDQNc28G1DWxiGmNj2RKDlUZdxuUx4TGyRWokKYVyBgcHc3znu9/C17/xNfzpn/wx/v2P/x5/87d/h6fPnuJ6vcEQOL7Ja9SqLcXrjTiEpiBgQhtOrDDKfIgyRYm5a+7PTc9XWdFl8Zs8tgaVdavzmX/aA9jVXKtCrL+Y1w4Vz5cxhdCrXN+IrJF7q07cX1gTS9pU71CdAs7gVsWqJDwm37wIuIJR1Ntx444TIJClhlFgUQBGBjRiQZIpio2fqej5z/NyGDXC8rywJ8aYBsvjW1gcH6HtJFmNl43Ew/XNCVHcPpq4lyRB3DuHUYwna232CrD1zOOhwFNpwTX5jl33lN9lGHrOV1IyI3AOAcVUGQ11fhJ7MYx3JatO1oeS/LCHUqeInzEJ3a+RZ4N2TDSFDCnGEWMfQU2U0Cfz0TjvSjK4jKUVQ2lMhc1QORY0tKFVU2zFW24uBJLcCjYeiLhRm4Kq4q1IYP2YRE5weNqDdREB0rSIq+O+yPGFwcC273F2foXLy6u8wDgngGGtSRHb6ytcX1zIxEqUyXDpwyi5AJoRzkItyEIGbz4ihDhyxyZhVRJno8gShxQSri8v8dEHHwAx4N6tI5ivvondZoOHn3yKy4tLpJCABIwhIMSETkgkmraDAdB1c8wXBzg8OoJvG1mcBGMSEkwmz8mbD8BuN7ClFKMkNCrUJ0Dd7/JP3mc5oJevUR8q1GqlX8c7yznTf9cZr7XXgIgwm81wcnqK1cUV5rMFVutr9LsdZpKcMwxDEQ45YVCby3gcHC5w5+4dLJYzTuaMCSkkNK3DKNTNTdNkVK2HlnVqmU0YRzjv4ZuGGcDMFszbzR4a7x28uPqs1czuInr3Acckrlmh9lrQ6abWzdP3Pay12SMwjCOahsmPHjx4gM8+/QzbdZ/fRQVLFIHhSF17BhEWmzjgfNejtVwhYIyRrGSDBIsIFDAQIgbv0Dcuh2nmhwc8d12LpvFATEhDQBpGxJbZBG3TwPkGxnkY78FZmAnGeBAcS3crn4vCgHYUFEXYNg5f+eqbeO3Lr+NP//Qf4Rfv/wJvv/0u3n7/fTx9/hwRkoyUDOIY0YeYgQCDALacctwdpTT0RWEukxWKzFQ2eVUsqpJMeW7ra+jMFx9csYgnHjNdE0ZVbgUA9LuGU8ggFjQrRnkOUn1alHqOwtTXr3/WvVcrYFOeB3oPo+NfuAPyilbFr25t2rt59c55TRtIwh3LGKrG8iZq4fsmqrgFBAi84OTpIE9mgMFh085xfOs25ssDNL5BTAEm8TrgihTuJuidrS4lF7Mm02Urfbp3rJRDCMI9AeTEOrF0rey/lEhozZnJr219Bgf7XUoVsKrMqUMUmnToZL0pB4Fy9ZMAEefdRJ4CQEjiHfQeStNurcTmA3MfjGlE0zb5ns45eGM59A2gkV4qtUeYnyllD4jNsgVSHQBYX9hfNUSu3lXNf0mk1M8OMY6wjlsfwxjVknnfJFmLpazxtx9fGAysN2ucnZ8xxSg4KUxLikCAGXpcX11jvV7LZnKMnCgpG7xqPQAvsvps/nWhZ0TeTJQI0RIQElZX19is11hdXuD66gpt0+Dy4hxPHj/FZr2BNuWJISGO0y5bGoIwxjA7nm+KwhX0NZuxJ0GPmAir7TYnKVKSpDdShoE02VscJ68+URetDgNqIDAVeERaBjZl3Kq9AdPzSgJNjBGL5RLzxQLL5ZJ7Bmx2WJy2mM3n2Gw2gkRZkejCM/Le89kcy+UCmsjJmcI233sYhmzBy4tyTDnwJmZgxSWCbdvi8PAQ3jrJEjaYzzv28nhmhIRw5MMwvS90nWSlkSugVeblM7KyMiZ7Amp2QgA5XNS1HXZDj5gCmsbj9u1buHP7Dj5afwwQv4+zDppjANlwPFY8kyOAdQi46kc0BBgizGOS3Dy2qJAS4iDEJM5ygjYMmq5DiIQxRswXc8znM26DbA188qxMHQMv+MjAoG1h2gbwLKRF/wMUwRTcwiqW8zfEKpYQQNc1eP2rX8aXvvwGfvgn/wjvvvc+3v7Z23jvvXfx5MlTbNY7nG8usdtyCRY3aUkvsFiL4s1KlurPyhrN5yu4zRsi/2dyfq2T9i3Y4sLVJWGqS9UugaIgyz4uWj4DgQnk+Pz76eXrd6TajQBRfntewKz5q+sqyK1SH+oRyJauKlNOUJ7Sx+bXh3go8quJ1ZFUnlZARofF3LwrqLiN9ZHVS0TwaNolFoencN1M7s9x/pqkzRgDcgICTSHu0XFS0jhnHZz3XEGEkquhN7dSruqkZFV7AljhtGhaBzeywlYwoKV4QKm2UlCoY6DWvzWGs/0Nh7FzgqMYYv1uUJO1GFixABbGcDYnTPqmwW4XJVeCchJyjBHOF7noPZMkDeMg1yhryypglnmy1k5kuzG8pYM0l6Nq3UHKPGMipMDnKzBQfTXsdjBEsM6WPJ/PwYT7xxcGA9fX1zi7uEA/BiZOoYSUgKRtXXc9NtcrjIKOeECLskokqCvFLLxU10MWrjGsrFNgJOpcw5ZJRUMao3RY2yX0uy0TVcBgHJj8pOx55m7m8gseFO52GBEJuN82ODw6ZGSppgixS2g261B70fsxYLXe8HV08Sib1OeMdFL3lbUQf91EztalK/vCjNdKAQPM0x2zUORyMeSOi1EzbmXTLA+WuL6ao5vNsFqvMfQjNwbyHimxO04T1dRdyxnolEuD+p5j/gRxU4EbY8So3Nz8fusVXz/GCNv38G3J8p3P5/ANNyiCfMOKuzPFlPuPW537PD57MWSxIIy4KRX4DFVbY0XlbdtOBAOBy526tuVNayy6xQz3X36Azx4/Qr8bYKGZwEp2FEVwGImRcvPBPhLWw4gZLCxGRABdkvpmIlDjYAxJaIVhIiWgnQeQNQgpZMskzjpOxhS3kXMR1nnEMcI0HKt18gLJAcYlfhbtOytzSE5CB4QcYjDWAp7vb53B6a1j/Ok//kf4wff/EA8/+RQ/+fFP8Fd/9Vf45GMLXFxiu9mKk8tijGNe00xyU2x1wcsTxXkDOlSGr1blsIKq1v/edyegAPuKWrVVaTpjjCbs1pZy8aDl61O9ljRZeApiXnQo4Jmo0vydqcKvD5MBv95fExn1eiav3+xZMOpdody3CeAM+OwJEOChVrcOyWQdiLzQp5w8ocxbyZFUoGYKwAAAYzE7OEK3OAQMu87L2BXuCbKlRa8Ry5gI3CjOOkkWFU+QuNqdd0ijdibkdutqgbvGY27mk4osNjJlXxodf8rWuPYi0PPVu6fWfxSqeRBJ19MyKmq1a0KjhsmM5d4FNglBkmTp26YFYNB2HRtAYeQQiAxbEjZG50v5cwTBCvOg7hlrLMbIJY3qUcpEUqoPDZc6142M1ABLYEDjjENIg8h7kbfGYNbNYY3B0A/ZqNH00C9yfHEwsLrGxfUKo2bTJ7B7dAywKWDcbnG9ukY/Dlm3oo5tS8Z+kjhnbsIgVjrEuFEqUwPJ7LQGMekG4vIz7oNOSBRxfX0lbEuJqS0Nl2pY63KmK4GtsJTY4p07h9M7p5gvF3lvJ0qwRGh9g8XMC3rmxXm12mGz3UlYpMRT8+aXo3Y11ki9FuDlM5r8rIpXWbBIxXDK2JXPUe5v4riZuoFqt9RsMecs1NkM19fXWG9W6CRBcBx1U5my0UEYw4jVaoUQArqZF/dkqhoX8UD1fS+bT1zlIeSOhTEBznc5IY+Iq0NgFAETQFEYHCV2bHlxc/OfaVklDySktIk4iUgQ8E6rJazFfD4XopEx31dpi/nfynrHhCNN43Hn3h3cunULjz97zJuGi6c5izkps6UR5jWLAIMhRqyJ0BoDYwlplxC9z2MUo4e1HMNXoW+th+3ENb81gClEIyk2QJsQg4N3Ds4HriEmJ/NPoBC4IVHXAV7mS8cfYp3q/Bj2IMBq/gqhMPgRunmDL3/ly3jtjdfwp3/2p/jgV7/G2z99B+++/wv88sMPMQw9NtsNNpsNxhCRRJgTinVzQ6xUijG71HMpY+m2CQVM2LPCsz4vv8vKutpn2VNINVgQkA31IFRWlD4PStXApK1fdXoJiaiWld9XyhPqqajffc/wvultkPeSZ84hhfr7KHu97qvAXBE1kCkhjxoAQd+bitdEDQoFS/mO2kglj3kCh1UYiDfdDMe372K2POByWJTyTZYvHCv3lscpGzSBmQQ5K17Cu8YijBEjRTTOC9cMl9SZRoB3SIixl4x5TpAb+sIjEKPSaQORkiT5FUpvoHgK6goktfA1MZVzGgrbIFFkHWG4b4CxNlv5JFa1E74ZJ2WQzpUGTNZYDJGTAa0oZ9ZrFkaeG9K/w6TSaI2v4xCGQYwUSUCv1zwMe06pNHTS+6qM5yRLTlRMqRh0xlrMZgsQWcQwIoYRMCn3HPldxxcGA5fX19juuC88GXHbEyv1JD3hN9tt3pyZ7ET4/A0g7iJejFYmQJG0MexeZtQVoZmoCiRMKnHiEitHyaKMhCgtHp0lwLE1yZ4B5IYXxhosDpa4dfs22q7lTSex38YQ2tajFUUCAkICLi+vS4mVMj9lhD21MnQzlz1fWylFYBRXf+UBkG+ra8fIF9VayrwLpMlqSeahxL0McU19N+vQtC1msxmGcYtGuK3VAuZnLMAlhIjVao2rq2uc+sOsVHmDAeM4YBxRCWb+boqc30Ew6MQq1/LAXGJkjQgiVmQ56QWQGL1DBK8HdtcXC1H/aEy7aRp2AVYxwhA4LBEnirwIlCjeKFXwMMDBwRL3H9zD2bPnGIdQCXojrF5m+q7GIBhgEwOsoRwfHVMCWQcyFjERvLcAswzDWou2M0iW8wtsTBiHAdYY9LBI44jYjvANb27v2a3qUwuXEhhdORjHtcy2TbAtuEuoSUjGwIpnAtaArCy8fcO3DChA3G3x/sv3ce+V+/jhn/4Jzp+d4RfvvIef/ezv8bN33sYHH32Cs7NLjEPECBUmYqJSEgWKrIRzfX61vie3rpTovodAH8vYmznPJBbxxJBXk5jkfFN50/KrU4ULFLBnE+XGM+p1icoz7bkFyteNQU4WnGrmDIb2x+JFoUBV8Pn7VO6p4CC/eAbGYqJoaFYmgqrfT0MdChCq60/tEpRfG7TzJU7vPEAzm8u9ZI+n0uHVqTUrHq76KPk/poCsmBAoSP+CxGRFKeU+AUPPeUxe2n4779lFToSQPcLyxE7nRySOtVzuKG587V4I8Bb0UsYcgiYTJxCEKChGafmrPWem/BTOutw0SeWYjoFa3WEcQSGw8ZM4CdCr14qMcCGw10Dluuq8ECO8YZpviJxiD5HJ+U/7TZcMDCgyaZ/2W6DE4CVG7oWQCJl634C4AuJF6/0FxxcGA1dXK+x2PUJM2UqLSdxbIWK73qDfbrP1UAtyntGpRcyLR7IgU4LLE6/eA5M9BZpdWcdWAN0M4kbPSU8JBhzrTSkhCADJNZ/O4fj4GEfHR4BlxUSGiS5ACYv5DF4GkozBdhhxeSVgICmlZLFM9m2l+v2K8qXJpNbn1QuQwyki2CqSltxgprpO7molGy7JeSQJZfPlEv7qCt18hmHccYlf08IOg7jMjAjM4gJcXa/x7NlzzOYNnFNWxbJQp1aa0SFAK7kC6lpnlsgS/2NXX+L6e7VqpeQlIsGaAGdcRvCqAEJggikVTJSmeQv12ALI5Ym1G1CZwfRzEBCIeSbu3b+Hj37zIc6fX+T5ZI9HNaFGFJVhd/wQA1ZiRcbksWgcaBiQDBAooU1OjHQGRX7uJERGMIH5xL11GO0IImbb9IGTLdu2hSf2hDQxIQWCaxysd5xoZADoeIKdAKTc70owpEbADQu0NmHZhWtg4Fvg7st3cOf+bfzxP/4jfPLhb/D3P/4J/u7HP8UvP/gAz58/x3bbYxgDAkUEVLpJFa0YB7rmJ3vfQFpzV1a+WL26f/JSqtcYoCqR93Q9J/m7ewcpGC8hDdWBeyOQPyHSN6mAvJ5bEEW2vAjIZX71uWr5I+3dodrnxSOi8KROOKyyB2rLv8Cb/LmeSbQHbKp3rsezMIxORyLTchNgjcfR8W0cHJ0I6RWfGYUePO8nY6UJTpLnL+PTijJWue2dAeAwDD12fc9eNmcl3EUIKXEVDJu1swABAABJREFUTqLMRuoaz7z7VTWXJtxlKngdc2haKh+18nSOXf5qSACSzU+2eFFJynhROsCWhEXmDAgpZnnECl0VM0qPD2vhnLRlT1H26BSopQxgtJqhyC6Vr8poaCV5UgGBlnJrSSQDcof5fM6ARPYeN2lig5jDJh6UPXO/+/g9cgaYgGRkuj5x3XDTntT32KzXCKIw1XqtUbCR1rgpKkWjuG9E8SVDwhNwU6ESIXsHSJLrXNOgaRse8H7kulfZ2MScD3mg1V1kHbtjj06O0c3mSKRNiQKs8Zh3HgeLNk88Abhab3C13uTklglnAE3DAi9CYOwi2hOQlYWiVQjMVqVKH8Bks5fmL8VlVxIHMyjQZyNCO+eSNd80cN5jDAHeN5MFsm+57HYDzp5f4OT0CMdHy8ki2rdu9OC2wgwCpuWB4h0y/G46dnXfcG2mEYOFtUqZSbDeAQkYxgFDP8DCoO1aAYUmewk0qaiOE2byEI3dpYgUKtIpY0GRYBuH45MTPHjpJVxeXiP1sqmcgkv2JqgLUQVhBDCMI9aVNZqo501IhJA8rJOGWI4blHBVBscwTSL0MvZtakDUIFFAjGVufdNI6VSAjw38rOVnGB2Sk1IlF0Gu5a6IUI+NjCwxkJ2ah9VBKlNUEXNYrp21+PI3voo3vvZV/Mf/2f8Yn3z4Mf7+Jz/DT3/89/jFe+/j+eU1VtsdRmGCy5YwQUhgVEkWxSUrmZVpVqwmZ79rVnVWrjY31Ba3OGkiftkzWUerMhfPhVrWuq51nWXQm/L9oYBEvB5agliUWxVLB5BjFPIzu+0xKd+7UaJYAf3pXhKooy9CKARKe+ABNDU3ag5+ndtib033M+UlQOXSBpNngawB33Q4Pr2D2fJACMBkPcraTcTZ9zp0FjYrKNaHJithPdqmESZYoXd3hlkJneXQAsneFblnGqD1LRsT2vo4JTTeC3RVUCjWehReGWJZqKBFeQayjDDAOPQy3cVDqDlC6jUoho6VaxbQpm2AOT8LcE0DJ/oFsiZ5HhkMKSGThsCd6LohBQ7j5STIohes9DGgxOBaWUCtKwma3nElliY6JgEAKjvqNe68NFWL/8B0xOvtgH4ICEQc/0mcTGdSQuh7bHdbpmhEsXbLItSYdoTGzTTOaiplp5a9zIAgHUGgBOkXwBuum89wfHyMEAIuz84xjgHsUNCqBBILdZAGSYwU267D0fEJnG+k3CXBGQeyHm3TYtG1WRilRLi4uJJOgHHvnYoltP93DRj43OmY1K60XBGQXjxm9Ube9w4oMo3S/8+kihZZsl+ZYKnD+voaBpzpGuNYFHoWYAkxgkMFlyvM5x2axk3eDUBW+LWQy/SkIrVLg6HyueYYlHifKAMhx+B4JG+YRKogSp34MAwiyNzE6tfxrrkOdGNEzVcQ2mR1fHICPqHrGtx9cA+/+vUHoNWWN6FVJ6SAWFt5QqQHAwHoYwSB+w3EGBFSQKCERerQOIe2cfBNkn4LFtYQKBrZA6KIZY26KD3ZY0LqKCdWWWvRCHuYSwaW2E1ITQNqWtiGqw9ACeS4KiPbl8ZmRVfV/kF9xVntVRqPdB1Zg+PjAxx/71v45re/jf/8P/+nePftt/Hv/vKv8Td/92P85uEjrNabXEIMI8RBqIEITe6ofxPU4C6faiJVae3KgpqflP87VYqyXgRI1PtxWoWzd+Ns/xelrqs/J3JNhmpq3dUXli082bPTU+rPqtAIqpvwApfSNQ1P7IVLqlBBbYnTzZd74aEWNCZjXl/eAMZjeXiCo1t30M1nGXCrYsreHKgMUqYK5KZy6jVJRJkzgOfVMbMrScKzeCWjVhigKHOVjV3XAv0g8p9bBzvhtKmTDJO8jpXEc+URYJnA+9h4oGkcYuTSPyOcGZobpMm+xtgcBmByIJOBQ52Pxe53i8ZzjlLJS+DnSJGT5H1bkpajcNQ4y62XVQYN/QAYVtrW8XVL6WMF+kSGxhAztbcS4LGHiEEAJ4gbYSDkXAbnLRtXX+D4wmBgDAljJESx+KJkRlsihKHH2O8qpMtJGhrbYmFf1V0acek0hDAGjiHr4qo2lzHl37UyNI6Txm7dvo2h77FZb7BdC/e+7AtNIlGGJx5Ti8VyicXBARPFCNBIhvMFurZB63MhJPphxOXlFcZxmFidekwSofY8A1PQ8OL6av33fvhDgUz5XXknygAiVWOTYGHyAtc7zDou5WuaDtZvkVIUxWiyF4FQAxTCbrfDs2dnODhY4vhkOXHhZqVfKXV1ZdVgSH+fP1dFbAtFJyNekzUF6XvL+mI3l8kWLEHahVYCTWNr+udFhDnWsSu0cR7yKNJClS3GxWLBmzZxEy2XrbjyPvoebIQabtcNwi5FpCEhWItAHgnAmAgz73FoZuz+HEa2W2NE23h4OMCM3LO9fgdvhXs9wTce1jFLo644HwkUAm/utgHaGagNMG3HjJiJqxGYFdMA1oHRS4QCAOYp0AnNmwLlA4L2MVCL1RiDk5ND/Ok//hP84Ad/iP/hu7/Ef/3f/Hf413/xV3j07DnCMFauWgNOopLbpTojXzwpukZQQJa6vJH3ULHsdbbLJ2LBm/JvVe/6DJl23JjMwKYKkcRLqefpHAOYJPDJRqyGQv0MlTI25TyqrjM99uQC9mRABZqISsLe5DOjY3Hz+SaQQxQTVVO8f199RoJElIyH8wuc3nkZhye3YNuOa+oTc8PYPeOm9vYyI6nuO0Kw3LI4K3awdd73A4w1Oak3JYBXv7IKkoQJSz8Xtd7VuxfEMzqMvHf0Wpp7ZMVLqLInpsih7EiIEej7PhORqUwiUPYedF2Lvi9yg/WGydskLzdjkQx7aHzDYQhKzDLqnUMjBEm6zeo8pilwNLlnSdOysh569vo55zivISF3ax3HkcPBIYJMAVK8DpVQjhkbRylLDMkgjgbW/wMnEI5xRIwcG1XXROICVIzDkN3oRjcoEUpsEgIgigvXS4KZxskt1C0lgyclbtmrAOQEROc4WeTw8BBhNsP52TmucCkLEBWaznZDZsJaHhyg6zqEGDhD1XKTGucIi/ksy0YCsNpscXV9jb7vORaE6Yba3/z7m/im1WBe+HsVgNnir/IKFAzUQKHU2cb8eZIxru/HzINOyHfmWK+u4Yy46aT/Q7aWqHgjri5XuLi4wnI548oCFKXPfzzH/oy58UfPVYZDDRkAlTdIXNik53OsCCkZIOoG5E3dtA0rSLGU80gaI9TFhagjpQJQ1FPgrEXjndQBA1kjEXGyTozcijekDB6yp4LRKLv9FJjI6mDyNcIQU674YDAAhMgVC13u5264mVHK/gaYNEiyELERP1o4z5ZTTFwyFENE6lpQYjAQI79vEyNsYiHkxONmmhbJN8WTkRwmLakNZ41De5tbyuOfF3y9TLN2pew9aFuHb333a3j99ZfxB9/4Cv7v/+U/x88/+gT9MNTDOlFYapCrbameB1V6N0OC+1auXi1l61g9C5PvAsUVUMz2CjRgr5igVqrTZy7PXUCzfnXCaKh7Ur9DN69ZbGr5mDUhajeEtvPVp6gev/xdv99kXMqRAWv1DFODRb6nj28MjHU4OLqFW3dfhm/nHMqyRT5pGSeBYOGQwGQ+mhtgjMp6iBUfc8ggBG5wNY4DOmFC5Y6XAdYCHp7BuRelH+OescHXiUGy852D941QBmNSSqgewSgGKJfcmUxfX+c9AcV7qeMGMGmb5obp4DvngMB1/5ykZ7lUUfSAmzmuMktJejD4DGSU/2S9XuPg4KB4xJlYNIOWlI0fC+3EGPoxgzprLBt7kiydw7FU9BF7fNkYYg6ggJQ4OfuL9jD+vRgIxxSQTBI+eoAowhAQhgEpBBhKNzZ41si1O9dwzabWUSZKuXQpyaLynl3LBK1pzY40eMNuqq5tMes6LBcLiT2V5AlF87rnvPOYzec4ODyAleQQI4kplAzaJmG56ApypoSr6xW2214y3qf5AhPQgfqdP1/hl+QqeSjsKXlV9Lq5sqU8BQg1aOCNSNllmdS6I4LzHvP5HLvdDk3DDUAoBjRNizCG7FUogIAVzGazwcX5JW7dPoZvuOyPs919Vsp1fI2FgskA4GaXrAIAJhvdWMlA1raiJEq6CHe26CO0nXV+Dlt7HXjjto1DCCTuOCkxBW+ywhZJ2Wrp+xFPPnuC9WqLYeCkJee5V7nJioXduNY7KVnlpkQpadklIYLDBgnEdcTOYTY06GSsrAkgx3XbzBmRMFpe2z5x4xVLABG7V9XjY7SeG5ZzDgaT44UNDFxMMCGCxhGuHWAaZjJUelIjVQ7cAdEys6GSFSUwQEhVPLEGBwqEIJ6FrEkTlguPf/pP/wnuLmf43/8X/xw/+8Uvsdr14GJjg0iWDQX1CKmlWgf/DSqvjxgMEwuasvKvFVi9VmVD3FCKtUvBGDPh8niR9U7Z/1KDoylI0c+MKOcpiNnT0/n58+NOL69CXH5fyjZNeZ80eQ0AyApILpB/mz0j8iC1N4VDRqasZzK12II1DZYHJ5gtDhETZ583psuld+UQkE7I+w4ArLNoGl5zNRsgDLDbBeyGXizvDsYA3tuKPVAz5lP2AFjNKZP34dJezyx81mHWsXueOxu6LPeIKMf+Y4qwruEcKcuNiIzZoyOu1oEaL1Ow4ATQRIzyfQ5zpOxlBLGsgXMga0FjCb9GCQs0vkHbtEzVnMMOrL+sc+iHPjed0xBAfhfikAFZQtM26NKsSqCkArIladxajyAhcfay8VoJ4z9wzsAQRgRwbEKRGSFx+9phQAxjRpC1ospKA6xgCZyM0bUtBqlZVwRIxG5VTsrgzFQLKxtjz42e2CvRzLjhzWzWAr0kiFXhiNpt3fgG88UCsJZJJSBcBhFYLoCu9XmjhBhxebXiWs4YxOqhyTupIi4WI/K76HHT/X8TBOgRVVGlAgYSKPMJ1H8mSDdplFsAh1ZgENB2XU4saZsGQwrwlhWQenNq74QBl9BcX1/j+nqN5cGScy3adlKeqO/6Is9AvdHq95yKYQVdgmVMmVdNfuOywMRWgfc5W5lJioqFxt9NsAZovIITzegFIG41EBjERsJuO+DTTz7De++8z+VHkRF327QV4mbrCZYzc7XlMANUvj9n9icEUq4LHsu2514OkJrsJlnEZBASYQYgOgtghyZ5djl6D2eYKIu9Y40k//DcN549Mj4QQgIiGfhOEg2DB8II4z2slGgxGJD6aXl2JA+yLoNsJimSsanc37Wwn2g6dvHBUISzEd//R9/G/65r8H/4P/+X+Pdv/xKb3U4saoIliaGCrcfaPU35P3pr8VJQFVaYKNc9AFA/cfV8uo5qoa5WFyowX3v36rW4v17rtZz3yAvAB032/J4hlDFLAaEEibHHKKGJemD237qo/DKGZe2zNkRWitkRYgy07LJOGclhCANYsmibDodHJzDimk5DD2sdXOty7wOgIgsTN7VJBkRWvLxexpaKfEjI5di+7bICZoOttPw1YijyWDN5USYE0ud0Fh4OxmrCclPWQzW+alzGGNGnCNO1e0ZYeb46mVlll3b7M8YgUrHYIQaL9QzER/FgaAKi9+zhsLF0cDSG8wuapsFysRCLXUIDKTEHQy77M3lWuWyV0M07hDHIHjbwtoELATQqbwEbe1bkZP0+hYyJvcf74e3PO75418IQEA279SmSLithguszuc/NSoJK4cka9t7lmE9ZwOW76naxEErvyivAE4ucxemNQeuZ8jZKtnkKMZeIGDFBrLXwbZN5o0NUgzrCe0ZszC9AABmMY8T19TWGcUTuDS9HvVj3Bcs+ENC/f1cIgW0uyko8I0wFPjRNMuSNkAQ0pCrztSrHBOBaD984bMPADILjAEoRTVOSW9TaUAsjpYTNdovL8yuc3jrBwXKGtmUO7P14+hQcFOGZUsI4cD4IhyVYqbWzDrMZt+Ssk8M018FaCwhQ49COhxPvBJ/NngwiZBc8CyG+f3H9yd9W5ouYi3+76fHs8XN88JuP8Oizx9iKG3MYdrlzYyVhyh2NhZU4fF6DJJ0YjcnCciROlPLDgMY7zEKCc7xvIrE3BMOItvUAOPkzUkITAscareQOhICma+CawLFP38LaiKYltMYiUY8mBSQX0LQebWxgfQCcAAAli7IGxllY34CczbwF6jmoAVxejwooASF6KeDAgIAUgRRgEfCdr7+M/+0/+5+h/z/+V/jxL36NXYoAxQLkJx4Z7B0E5d6vreiboQK9900je/96Nyz0F1n4OrfyXpTqfVgUzA1vxd4zMg6Zrr/6/lRdk6RktoAgdsHrE6W9B6/nQu+jgFk/r3GHVjaUvAIq72CqacjIwAKmwXx5hMXxCUzTIBkj7dnFoNPcC3ke5fjXCoowstfIOVtyC8hiJOZ20U6ytYxIgcfXWpcrD+o1WJcF68+q0Po+wDnxAldKjkFEyEqwfl4tjXTOiZufeyAYYydVSLr+nbRPromCfJWPECuAb43NAISISyVTSkKHkBAC8ydYbd9cGcoAYByvBydJiVGMTp3bOnRCib2kKabMw+CAnCulz6CAIAaa6NQvcnxhMBBCRLQp5wkQMVpM48i1joLS9IWJsoMvM+QpUyAk5gRByk6ynimlnASWiOvoM39ARsZ1XbIw6UEVYgIiJrFz/Z71DrP5TGIrMXsGLBmArDDAFXKVvh+xWm8RJMMUuFlWWCv02oKo/wamSZGUf1eQrbrr1TqCWPsE9haYalLrxTQJHei9qkRNSgnWOSwOlthsN9y50XqMQv7BLI0VoodFEoKoMAZcXF7i8vIKJyeLKsY2fc/aI6DPxkDNYLfrJzW0LBQNmoaTYrKgiVxKFCnlfJKm8ZxIJ8l6IC21QX5e5BGV9VA9Tx6rCIy7EdeXKzz85BEefvoZzs4uOM4Ntl62mw1AhK7jstJSsyKilTiO6pyFdUAMRXAxIHACOhkgJADbmLANCVvpm04wgGGrgGKECTzXURRYcoQgwKJpfF43PnqkhvWv8S6zUcboQakBeSaacgRQ4HCE0jsn2S+wFrbx3MnNO1jvQYZLlpJx2ZrWuU3Ea87AcMmbc7mhmCEAMXCtOUVYA3zv66/hf/0//Y9x8X+7xK8fPUUgSdBEiWtSNn+1kVDZxyo3stVKvE5qRfQigVasqptKWK3arECr6+VVQy/Kztffl/CFegP4eUsSX3knVP82029nYMHZ6Qllz+d8gs8T1hlY7xkYRn9lJ0BmkgqqD6xzps+czwC877A8PsXs4JCbZEn1ESsRNv507pyV8KArTH1EUuFFlEMdcAZDH7FeXWMYdsIMaDNAMZbPNVKZk137WiqXmHZbufUBlEobkvwBMmykJQYjbKh4NN4I8x5T1nM5YUkSbJqGKxsgLKHYA4goHVhVhtSlymRKf4NMvESUmU91zmJKMIYmeU4EcB8QsMJuu07ASmKSIBikSBjHPhO2AdIMMJYERKBU7kDzjVBanVvH3gIYZjGFtTAp4oscXxgMJIqczSilUSB+iBSU/1/RpEy7MXlTqkBIUgKRUkSIY7be2fpiV3dKMbs9NIEwx/SI4a8q/yDCWBfJOIwszKsSRI2twFq03QwEYOh77pEAA2c9vG+5C1Xlhut3A7a7vrxThbBe5PXYdyfuW/35v5XlQ+JxKGGNYl5omEUFs/68f49SFYD87/r3xhgcHB5hs9miX2/QtK0QAnG4JphQCUtWdhBAsd1ssF2t0O8GpMOSyJhj/Gb6/kSUaYLbZpaRuT5zEq+H0XeXjZoik2m4pkHXSdtkx4ooIcGpD6ES/kWyE3ILWaNeBkIcE3abHs+fn+OjDz7Co0ePsdlss2BlhZrQ9/y83XzGLUNBgK49qK+Eb6fc46O6neVc7xyCnCldXdHHgOuhR+usNBGR8ioiUJNgQEjRoiGXhaqTZFYIIPFEmbDIxQSXvADkiCZ6Thz0DRoww6FzkHIrTfDinAZjLSh4kHMMKDzHeElKLpPl/ArZWDlUo2PAoQalbNUwVOQcoZAACvjzH3wHTx6d4f/03/wLPLtewSQuPSajZaiAZKYVMFztH3Vz5/WEep9M11j9GecSTY+SB5OvlAGHzv0UBEwVuhJfKcjWdaVABRXg3Lvz9NkABlOybmulXpZvWWM3jxrsiCCFySBDgYGeRlngyu8Squ6FpQSO72bhZwc4OrkN37RwzqNpW+4mqt+PSeSk8HZIGR6ImCI8JQQB8EmNgpgw9DusVytQClgul5wRb7mduDUS58/7SsjhQiwhHmErBfiazGPiMA4jGw15fwIacnDOYZBmckzeEwAkSSZOAAKs5bwybakMlIZktaGleUn7FWTGMLufGlwxlVbpzjlOkBRPhLUOs/kckMRCivx3CAFHx0fiuYwcfoTJ7cP5cwMklk/WFC+IJsF31DGQVW+G5XBcCAGgIHNFxTu+B3g+7/jCYICVDCdxJSjyZpd8YedLoqT5PIPsUWFVX23cMA4Y+h3GfkCKvNCj4zpsiMVsjctVBXV9KRF3gAuRgUkuF8kWSEGuJBuCDOAbLwpgm62KZCN820niGHT3YL3dYpCSwn0Q8CJL5fO8B/XP9XWSZBUrcNk/L1tIEBdiDbbEhYu953nR/ZJ4B46PT3AZCcNmzSQWgVuRYhAlbTkOrx4CdU1t1zvstj1W12toPgKEjQ9CFOVdCy/5FuPI1NSY29w2OQgy1wU9DoM0fAJgTG51zN4KXTNsVXL5E/JYKGAzIvj0mTT2GsaI9WqDzx4+xge/+g2ePXuOcRyqtVPcb4M8q7EWXTeTBivI3gASxaqCJ7ffthyPR4xIkRBsgrWV1UUcWuhDxKrfMZc7WlDDGf4AMVeHZSAQE3sFGu8ZHJgIbzhEFFKECcyR0cRGXLUW1LZADHBtgjOEFCxTIYsXpXA9SLOXwCEEq6ECzSdgsw/kpB+C7Gsj3RBJwIR1Dsk6RFUsjGxAgcF95xz+0//gT/Hhw8f4b//d32C13TEve01wlRX/tIQuW7IQA4NIbeYMaOu9RZWlq9+qywQ1aVHEiO6I/F8tGZuqZlX8JNf7nL0LTCoMIPd7kUKnfM0C8hV467+zzKkHYXKRApagz0e5Zqu8RCX3ikeiul5WCDo+HsvjUxyenAJWGC2lxbiRNa/EPkL7wV5YWVcx9cXjaQTEQgDC0CMMfZ6Ptu3gnEO/27EhIp4Ba7mrYBgDwshls7PZrBhCwsGge9D5QjPunAUZlz2BSoXMnuXA60fe2VoFVCw3QyR4U1z/mgvlnMN2u81hBZO/b0tVkBgwuiaaroWrOhtqqCIlwma9rqrjOOQJa7LOYnlXvA8KQNio0z2S4JwXLwiHJmaSB7afC1B/3/kWMQGIsUz97zi+uGdAkBCBstVuEit1JUkgIi7/S1Tcg7qKE5MkxJFdjPzzyIpB+JXtXgmEstoBshcE3ZdYksZeiutKn4OTWFSJltK4EAKSiDS2oCLaMDIFsSgLArCTutT9QSeIl6CC4/sC60VAIf8Rq2Q/7yBvbJJFu6fkJ+fSlLch27BJBBnftIAH4sY9BwcHuBxHWNvDmABIZ8gQYm5Hqskvai+tNhusrtaYz+bwUgsfQuHq3mzWMIZRsfMW88Uc4zjiOl7h8OAoh4eMZwW8ETDSCjti450YjAns9lShzglOWfnrn8oyAwGGDEwE+n7A1eUKH/7mE3z80ce4vl5NkDGpJQUu3RvHgPVqjRgilsslu8zzuhbBn/nyi0vRV/znLDC5wxmXBQFK9GMM9yTYhYCrfieVBC0SecQERAckx94FGxnkxJaQWrbuEwycAxCZ/MU3HiFFNLGBdxY2gcMNMYFSQNtwUqgBZQvLWwfjPchyTYC1TnIGLJeQOUYwZHgPGQkvwBjAsTcAhkmbUoz5fO0emYQ4yURCDD1uHXj8L/6jP8MHDz/C33/wCeIAGJMmOommGjrvKlmy0JVHudGAeYHyr23m6e8K4MaNfai/0LW9H9rT39XC80XXqJU7j9+L3okfMCfh6d/Qz6C4ke+r98zKXz0aZf0ClMtBi5cj32oyMOrVge4XATxMg2thrMfR6W10ywNORvUOTdtwfbvcUxVLCXMKARCcMnexUhOQ6axB2PUYdjs4GEA8ULn6SEBHSoE7+I28+AphmEHTOKRkMQxjlnMlr6kAwiSgxxB/FkbJD4gDV39psl4ViqjnVGPxOp8ppezhzkBI3ptLBOt+ASV00AhbaN/36PuBZ4YIMYwY1QcjHjXjLOZdm8sg9VnU8MjvKONeg/lxfLGRmTlQKj3BlQwOrfcYadoo6bcdXzyBMAZoXXtBt4YzqKsEBhBlkJsVl6A8XlwphwJYscQKYUPcIxK3sSY3ZOAVXrkPicT9gzzZeTKBbOEr+ZAz3AQHKWHchbzpjfHAMrIFmkgIJYCN8rGHwI2ZKnfdvpVvVCjsWee1R6P+rj4XZ9emQvSyd/39+5AoVhgzDVskdZHjhd+JQkrUtC3arsN2zQo8JS4z7Huuw/Ua36qutdlucXFxjaPjY1jbYhhGXF1d54UXQkCKDJyWB0s46R0Qwoi+3yIl9Ras2ep3C7TdTDL9I2IgWEpgHzf3L0jWwiUrPcm5KyALRdlUABB5XW23PZ49OcMHH/wGTx49wW7XQ0mZ2Frn8IdaBQQuF1qv1tjteiyWCzjvc623InIZQJGlReRa69C0bc48JsNzYnUN25LbEmLA6B22McJIQxYOhjU56TMZpnL21gJjyJ6gRODmXOBchUiRib98ROs9r9XYgJQaeN7KmiKR0xbkCeoqNTBIRhJLo80cG+r1MBIqMNZygqHQC2t1TiKCiWKFSeMVEFvJNhF2Q49kBrz1+j38b/7T/wSrf/5f49efPUOIJTluf23KkEKT8IqKE3BIJoOrrP2p6Mk8RxkqUvn3njWUFbLKJ6hIMXne5UTek9Ux9SIgK1hoGOVzPAN6P/2OyQJs7xyU90rVWEDWlD4rTIk/g3QnTJBWedv8dX5OIxchKSntZgucnt5B03Sc6NY06LoZ0m6LQfoI6OGsk1AXgEQIcZT7I4f92KNoEMcRvTSs837G7IDAhGHQifsvhghKLGu8b9B13ISMEoOEXdplpa3ud01iVIveOW5GNIjxpuy4nP9UqhZyZcBkGktL5HEc0fd9jv3XREF6ruYe1KyEIQTprmtBxPqMGQyZRplVlYaI2HCAldJCASoKqqLor0haGZFgrc/PU4OUfb3C787hViLC0O/QdR2WyznGYby5Nl9wfHHPQCw0iQALDzJW4v9B2iVWG7/gbxEmWsKkaCtk14e+EIkln6QPtKwicYtTFs5INgsi3dw54YMkLm1SnsAY2KoxAMI4lqxNAN4xexslPo+El3qz2RTPgL6Noi9UFgjPVBE0e9ZGbfVn178onhT3BGO+BzL6nFxHSwyr59FnKUj2RWyGvMBggdl8jpWwVCFxaU/bdtjttohhugEAYBwDzs8vcXrrFE3rhV53hJGmI8uDhcS72GukG8Z7j52ADAMmD+q6Fu2s5bVDEZSpQcGCzFkgWc64J65zJpuyNRQjh56GfsRms8OjR4/x6aef4fmzMyboyeup1IOrq40FAmEcuTvjdrfDrOvQtm01lwZZ3OYhkDCE1QsaDn/0fWa3VAWurIIGzDNunQVZi0DALkaYoeiCVgBIpAjvLJIXZkiMGQzYyF4aT9waGWA3aLAOFKMAAo4pWseJS96yhea9CjDmBGHFz8BQPSsxRaYlEhdpIva8GGvg4DKYhJ2uaaWbZYVAIArwYt2QT/iT730Dnzx8iv/rv/iXeHS9AiXARCYWi6L8DcChoj0dqutZwbrKCw0DTg45qd6PL4gPVMoT03MSSk8APa/2MmRFrx/odWvXQQ1hPv/I157o7gLikV+Ppr8zNaCAeG/4ySrIkB+PT7JZ5gAoPYpEdmhTovlyCUOQrHS2XJ2EB5MVVlNiPnztI1K7sLmkEIgDexZNy+XKu90Wxlo0h4fShTCo7QhjmWgHwr3PHs3E8lkqaRSYEXHYr4QLSkhY6c6dc+i3W+x2OxAl9k5A1jOkbXGUvWlcTk4nq93+IrRrYdtOK6xUluk+Vxmb+56o0QrD3WEH9pLzo1oxuHjMNOO/aT0clJZc2E1BCGFg75sFXOM43yZxYjVy62WutJvP5mjbNgMG5i+wgOO9MOwGhBgw61p+76pfxG87fo9qglES2ZRbneurU4xI8lDcTpfjodmqEiWujRXUyk8hSmaoQv0iVGNMuayF1FMgC1pReF15MJERVDYeUQEwXMYibZIrcogk7WEpcewKvkUIEZsNc6+HxPeexGfkHfYVL4Acz98PLejOJaRqsRf3vx4vIhfS35dETKrGp1gy6nXZ/56OOxHBtx7zxRz9bsefJQjngJNNUAMTvudqvcHZ2QUODhe58VEYg8TxPLsIfUQndb3ah1vJRpqmkXO0xCaBxGLIjZqgXiTOzgcZUIpIUcfZYhwSzp5f4jcffITnz8/R9z3atsFXvvIWUkx4//1flARBUgmIDK6GMeDq6hrb7Q6zeccJPrBFoKvMVSvR8qAbAaUQG5Qzk72QmbDXIRHBGWYqdELSRImwHUbEYcSi8UDTwIDBbmpbNM4jeIsWPgt15iLgpkbWWsZHkmsBsFswmsLbH4MFTAcfQs5xsNbDWr5mbjmuylrWQs5yFquGrSle2za/r+G8xxcoKa3y4H5O/O8hRlBiIfQ/+g//FJ9dXeK//8u/xfPNjvvGk3hZBAxYSOUGFU2dgUC2e/W+U3Cc52oPIOyJAvESVmq+cqlmeaL7q/4+lXOh39PrmZv3zV+rkhcn+w+lOVP+LF+fr1x7S4p3qpyXQU81VvVhrEFK5X0zZjEF2IAMmqbD6ekdKTUeQVBu/njD4pQfuKoKNSjTUjkAxB7i7WaL1WqFcRwxmy9gnRcDSNaIKTkJqlS9Zw+Bc5ap6fOYSI68sZL3xc9SMwcShBwI0soerIidY88DifHASaaa/a8Glc2NjdR7oDlO9ThM76XMppTLDXUtaRl0Xm8y0cWbIV5NAoNQ6bmQJAFZWX31nsaA84Uq3Wgl1yekCGe4AVMSr6T3Lus1TfZfXV9zy/e2eeFa3T9+jwRC4b2nKBPFSm3s+8KJLwBAM+RrtwURhEDFyMLTErQiZOryOT005TARu35I/FJJUNMksVCHjUqJXYiBe8hrXoHcN8ehCAUMhBHGMDPiZrsVrviQJwOVYCjPnLKQKOoHkyx/7H+2Z7nnd61yL/LvxEqEgCrVWRpeMBLayJUXLwAR9WEAdF3HiycEAIyYu9mME16S9okoQKXve5ydnePW7VOcnh5hPp9jk9aCai3z5VfJMxrr4rp9zyXNVVlgNUoiVyoGOMOzzrFCQkoB/S7g2dMzfPzxQ5yfXyGlhOPjI7z1lTfxyssv4Q+//z3863/1b/HLX/4qs4zxeDL6TpEByuXVFXa7HsvlEvP5vAhj0rBIYoUWa7IRk5WdAiVNiupz8itX28AATdvwmO0GbLdb9P0IA8LOW9DBEs7NYEKEoQHJJfjESjUl7i7WiLUTEzMcemeQfCMeG8Ba7p/Aw2hBbYOGgBhZCCbLZYxc8cXg3BjuLmrEmppm5fOezBUEssxSlMCYJE4pqxz3f0/FQtSGM9bAgrtNkg24ezLHP/vP/hOcXV7hL37yLi5DD6r+l+de91O1j8semdjgGTTU5XT171SlKw1zNgheALr3q3/0+0X40mTzmno/1Z/LPwv4rIBAtdQJNOnsWBc65vSI/EH1synXKnkFN1+/vNcLPtSBFD0+Xx5ieXACby2GfkQUD2/u8GoNXOMB8Vxqo5uUEnxOeo2gnmBdw+E4StitV+g3G/avGQvvGwxjgHUj2qaREIHJOWLee9FylBOpNa8LMPCu4aoiNRDyOIu8S1LWCFa6lKI0HmK2QB7rKhmSRriGCdSMMej7Pt+zBtv1eqnJ8+qkwul0lRyEQc5vmgb/X9r+69m27DrvBH9zzmW2OfaavDctMoGENyRIUaJAb6AiS6JcSKUuRbR5rX+k+r1eqiI6oiK6Kror2khVKkaLIlk0oihaECIMCSKBTKTPm9cfs/deZpp+GGPOtfbJSzIRwdqIxD1nn22WmXOYb3zjGwloSNLiqAlpipHeT+JGZdKiF/sR4r7GQQ40nA6NCyHQ9T3d0LNo2+JfRcdElHxdXZNGX8rof/OiQ6OIieTINCVxROPQE2a9+BQHdqVWrkSQ3EJR4Jo85kQZsjFNzrp8ZBSDllIgT2bLk6BAiSJ2ilTnGzRrP5fvD54wepWATNjGqPnQqN7CMHqGYdKoztlKWSRXHHYpHxhzxdB+0OlPz6WS7eSdOl98xfGnicCTfalwGPTaoMHMDFK9ii7AZORIicWi4WC95vEwYkwkJqirhqYZGboetBfY6pf4FNlsNjx8+JijowPW6yVVJahCSkk2vKIE5RrIl8rvdn5d5L9c2hFHO0HC0mpk8D6w2265e/ce7713l4vzC6pKgosvfOHzfPwTH+cjL36E73znO5ycnPL3/t7f486d9/n2t1+Z1igSyfddz9n5OeM4slotWS4XJetMCSG3xkjX9/hxnOQ7NYupq4q6qWnauhgLp6iHH72UxrQVaHO5YxyHssZNogzFeny5o0qOetEQCIxEkqkls6olqEuVpVJiXjIGgqi5eTshaxYjY5iNZjQhMngvpQnlCkh5K2fjCvdeWZ+mTDZkhnYJcpF1IHKSE3VGg48TuckYikqxwM+OmBKD9zgTuHnY8E9+5sd4fH7JN777Jpu+9JBIOqFBTa64GxRVnKEQ88D7aqlgcsA5qNxzx/oximBM75r9NHPKZl/XgNl3zbPx/U+46pcLjjG7pk8KXCjZer4Ws5O64tFnZRIDRi/4Bxsqs8+f8RfK9zDpLriK1eERi9Va1+iIqdpybQ3qHI3FVBQJZMME0WcbEyM4ArauSTEwdDuGrsPHxLppcJWsh67vRNLcifqlTdIKmNemqSY1VND6uF4/mxKjD4X3MgXmhqEfiWOQkt04kmKA6IoU/ziK2mpul7TWivpqVWGd2xMlstYWFHO32xUbOo4jrZYT+75X+xyL/0kpffD4oQQa1ky8BIz4KusnEj5QgrBF22K8kOrzPc9ljLqeVokxRoWRInVTU1VSjiilDWOhrfFdR8hB/Yd4fHhkwI8KlYkCYUoJkyI+jCSmE5PF4kv0XqCtNEH7PisMGkOaTVGL0Wu0F4tjzkYn6m7P+vWTow8l0xDLMtUbI6LLPPqRKghT1gfPkMkWQKjDlK/o4vQ+MI4TKXIeDDy5dTA791SyLAmYYjFY2RFmFcG9zIjJSKekJZXZfp63FubvLcEB6tTiPiqw9zoDKRph3ltYr5ecHK5xFu69/5CMpDR1wzgM0pqjQjPZsHgvioxd13OyPAAW9H0vEN8MFs/XUGrSnsbWOL3Hzonjl3/NLCAQjkBMhtEnHj64z7vv3uHBgweAYbVa89Stp/j85z/PbrfjS1/6Eq6quHZ6je1my2/95r/nM5/5NKul1NJEXjgy+sBut+Pi/JwQAgcHBywWi9IrnWISJvAgLYZDLxrkMlSlJZHYbLacnW9o6ob1wYr1elWMUd00VE1PGlQ7w3spfylRFmQN5j3Q9z0PQ8RxhFs2oNlAioGUKpK1mCRG0ieoK0EIUpzQjhJYkXBjRdVUoikfElWI1JU47KjyzMYknLFURgxwzpQw4JwKyYCIlWhUZhR6LWsp6Pp3IslqoOxDW4u4gXK7cTHvgQDJ89mPPss///JPk/xv8bXXvsdmzK1OOZKYukdyZYJIWRvZp8uI4ydZpqj7Zxbc5VVbXp/T6ilUkKczqXQeCOiOTLMAYh7gz16XAZoP+OX0gR/2HuVeinefxzezQCCVc58H8n8ZKHD1+PJnmRwYGzDJUduGg/URbiG96oP31PVCpnXO3h/GgK2kjl9EbkIUKWJRupnZm8i427E5lwmvVdNKq67aPT9KsF2bCoul0vJBJgNmJx3N1BLrR0+Mo+wj/S7rjAj0KFwf/EjX9wzdThx0zOVluTF+9JgGXFKlEk1SR++xQaYSWi1fhBjpuq5oFnjv6bseawzLw1Y6LcYBkiDcPk5TY4sCq2b4Qde4QWJ5a2XWSS4lhCDKpU1TC/FREwfvK4xx1E0rNliR7xiiJOPqY9q2xQ8yvdEAteqcBJj8blVRt62Qm/Px/TWPDx8MhFBqjvJErseHWdYsVcC/fMnK67wXZyxs0AxX58w3lRbGHK1OdZmCuanTzAhDECha/yh2KmCQ+on3I8PYM3hFBqIXsmBK1G2l9SyjjFnDMPQy6SoGYbjP5X5LVjVPUubQfD7Avzx4mF43z5bnm2vKBiakgL1rQspcgQ+WBYoOQX5ErXU7x1M3rvF3/s4P8alPfZzvvfo6/81/899xcT6USHW5WnFxcSFOyILBFknf7XbL+fk5JyeHLJcLnJMZ4bKhZSBIJsHUlQiNWKMKW1nVViN7Z2V4ToqW4GG367jz3l3eeec9Li4usdayXi/57Gc/xyc/+SnOz8/51Kc+xfHxcYHXhqHn2rVTul3H17/+NWJKfOzlj/Htv3iFvtux23acnZ9jLBwcHrBcLPeyS3HQAxcXMoNisVhwdHTI9RvXuH37FoeHh9y//4Cv/PFXi6FYtAtsM0GKTd0yDgFjNAAwFpghZUzZVQA23hPPzhiGBdcOViyNomMxYZxjVIMlQ1Gqcr1E90H1IKwR3Qw/UvuGfvS4uip6GiGpYAkyEc45hX21bTDGpC2bBpOzwAyVGlPkikMCE2PRRyfrK6jnFhGoiLSJZMazLGdrnAxYSfBDn3gB73+MzS9f8s3X30U7sbGKSimMlHdSuTeFHyTmZgaZzzP1q3nPfrZdUpIrKEP5o9nPzAWBvNId8ERnf8WJz49mH8AAZmWKdKUcMQMh5ohm/h69TcVeFMecP/lJB6H2x+RODD1RYyxNs+Tw6BhTOdIoAj6tMuSlldsQPSWgbRcLGa89+oKUGpdE2Q7RnzAYxr5nGHZ431M1tSYgsdyFoe9Lbdsi6GtBmPM5xVRkFI1C/QZD5SppQTYGYlDn6SFFYhTf0dQ1g0E7FEJRVnWVKyXiGCM2RJKLItZVWboh69XM9mtUsSWLdASQVQZFIGhU1NgYUa6tXKWqh+IPq8ppgBGK/kHWRJG6PsUOWetwVtruYwhYKwqs2R9aa2WGz2yt+FGmhMYonXw9ij4oAd86h3GC1JZOpw/x+D4IhL5kFLKBUuERkGZEixJaS5QSAZvm7RAJVNO9co5orRIGpw2T+1sz3Dx3okaDjZgkAwuloyBnB6ZAQplA6L3H6QISkkYqRLsQYqllVTrkJiMIglJodDZztvkxry1x5Tif5Nj33zsnH87Azdl7JvW++EHDk43izCiV98ZYroP8QX4+Olzz0z/9E3zxBz9LVTmODg753Gc/ye//wR+pkxAyzXK5ZLPZYGPCuaktqduJot+Nm9c4XRxR1xUySVA3v7Le27ahXbQ67dAWDXKYkICULGOfePz4Ee+8c4e33nqbzWaHs5Z20fLCCy/w8Y+/zA/90Bf59V//DQBu376NtZY//uM/5rOf/Sxvvvkm7733LtYYXnrpZbp+5Pd+/w+4uNhwcXHJ5nKDqywHhwe0i2kiZba+Ml70UqHAhuOTQw4O1tS10+cHLi8vZ37HyHUqzkCIRM46PFYG89g4M8ICE2Y1zpzZbn3AX27ovOf28REL7V1OUfTN62iJzpKSkemLKWHzOk9Smzch0A0DrqlpQssiMXP2EIOXTL1pcXVb2gVjjDjt9jDOYStR3kwgx2kM5X8ZOtfznmfIJouwRLEFxib9WfZgJIpyIoblwvGjP/BJLruOx//6V3nzwRlB17CZZZiSDMyy7ysZfkpXHPm0GSh4OAqVRw0szBSY77n9vYBiemq61YoeFWd65duemK3n3v69o5oSBCh1/z10MO1/QwkOBB7ZszsZMblqi+ZZfZ5jUG4IBpssEUu9PqA9OMQYRzfsdNx2reS3nHxFCAFrKiortf/cTRBjIvkgxOFKZobYJMTs7PyztkCtQmMpqS/IbXVWEIsxc7fqeiod+zxLQFROvR+la8DOAqiYSEFGE/tehuSJrkwkBs/Yyyjhqpk0QZq6ZuxFg8BVQr4LSnL23uMyoVn91MF6Ta8BzDAMsmfqik0vqrS1KhEaRV9yGVpsgtPgKWBttdelkAOBlJJMSoWCZhYfFqcWcmuszJHRUoZ1hl230zUN4zgRGqtZmTaPiQ6KLHyYx/chR+zRCRXSk4wptXgZQWkn56aWL2nmEOP+0Imki2fQ1r3SupEEkgpRBI6YRcFzI5QvWChZtwFE0ckoRGCsoW5ane0c9o41pkAilE3jrBUdAu0xzW1jcVaymBuieRBwVcs678r9ftA0O075dyobROZWKb9nTr5kzr/Y0ySYygv7rYXT642RNjFXWT72sRf59KdfVjlOWCxbvvyf/Rxf+/qfcbm5FAMeAm3bMgwDwzCACTpPO+F95OzsgkcPzzg+OlAN7aCL3tA0FcZWNI3MFshktRzsGAQF6HYDjx7d47XX3uDevXvsdh1VVfORj3yEj33sY+X4P//5L3B8fIJzji996UsYY3jzzTf5sz/7M1577TVu3LjBD/3QDxF85Dd/67f57ndeo9v1nJ9fsN1tsc5xcHhA3QqZJ5Kkpq4R9W6309KAZX0gsqkgmz+LiDx6dEbX97g8qtVIIFmyGiNw3+gHuR9R6oL5vsdy5iDuSbL6ISUedzsGHzherjhdLVlVBqKX9srKkdJIiNpCpZPTiIlKA+hhHKlVolXaxy3RUOqMTWWxdS2jjessX+xweeiUs1gnJC6Dkg3zWraztSobqkCqZCelKIJRffqQvHAkVHWwqipMknkNy7biS1/4HPfvX/Kvf/N3eO/xGTFJR9KeJ0NZ2xnyNVMvf06VJwg/l6WuGKvihfOv6tT1xXuZt/59HpDL3srv/2DmbcxUDst72ZRIZt9xl/R+nkzMUI08vrcc214wMfs5zff97DtyrWKKOq5cDw3qkrS6tQeHuMUSq2OBE5pBom3XXtHQGV8KxEZGHzDahmdSghggWfw4Mva9ErUd1tUkcv+8IeQWagx5SJCxDqPnnidzjuNYiHgxzIcWJUKYVP5ySW7oe6IfIQpsX3wP0vHTNO10MfR+jeMIRvQEpLUw4sw0HyErpKYkKoeVrVguFzJuuBci4KKVMsjF5YVwFUoQUE1DgxA4X66fpWkqdjspZ8w7IoL3DDqdUMaka+KUpMtC7qcF6wRdsJamluDMuUrQCmPIeiLWGvqhkzJ8VWlL/ZPQow8+PnyZIIWSjNqkrRtxqoHnjSt7IpY5BAojkFIgxtwKaPCq2jSxNW2Rg0259hK19mItrmw6rVeRHZ9ERiKlKSNZrdZ96qbVEb7SxuGVLJJkBizo2BerMKh0SyW6bsCPo/ZBS235KjIwVwCcZ/6l7j8nGe5Bl9q5rAZNugFS+cyyAfU6TNf/SehDNkjzYGDiJJRjMrBerfj4xz7Kerks+8MY+MxnPsWnP/tJvvLHfyIZrk/4FDlYH3CRLqSEY4QrIhKbW+6+/4DTaydcv34kqoQqedk0lbYLTdMNJUuV47283PDuO+/xve+9weNHj/EhsFot+PSnP0kIgX/yT/4p165d5+zsjN/5nd9ht9tx//4DfvRHf5Su6/jKV77C/fv3eemll/jiF7/I4eER/+E//C5/8Id/iPeBvh84O3vMdrfDOcf6YIWralmDKd8fuU5SZhgIMbJctbRtrQ6/Yr1e0fcj7733HhcXW5JJ1FmTQD6k3CdjEq6WWmAMYriMFfngFBJSycvhqgZ7SV4TElx6T3dxznboeerwkOO2gRAxqPpbNFif4Ui3x+xmGPHNUAhIAVnnaKeMrRsJBpzwCsCwXCwk6DVSbijkVCvQYiGJFTBAgpuMNRbHWd5nylqz1monhgYMVl5bmQp84mhR8Us/83fZdBv+zb//fR5uOl3jihAwR8r0/3MGPbdFs3+n18/xhHln0b7jTPnE8j4x5sonTj9eLXc+CZJPZv73K39Ls8/NQISZBGjISYU+v3cIRj78g0hI+aBytnPEI/8pXxZjEKnuZHCu5vj4hHaxwASVfjc6sCpONtxaS1KEtO8H1flIQrTVtRVJOpsiEIaBcRgY/EhlZqp4isICpBDwCJ/KujATk0OZ9uIIh2GY7heJqppktTOSm3lnzjnGoRONG91TwuVp8SHiYqBS0Z5+HDCAq6syMdcrCTDbzjwmfewHTEw0tZZPkJLFOAws2hZrjJa6kyLTcq+bpi4BgJ2dj3Sk6bhkDbLzuTsV8FosV8Bkw33RP0BLHRI4SimhompE/TBrvMhy0oDAiFZLisL/qasP5+a/D86AcgFMJrrlec5KFixrWWEmZvC4RkqZHMjspubNbK1c1KxWmLNjowshhpBxM0o9MU3dAvk91lqWywVV3QhZZBiI3hO9I4yj/uwnR5ud96ydo+8HxlHmyqNqdnvBgF74nDhMEbyS0rKzz1l8hkJJRYp0L6PX6xZjLBNGrzr/uXxxfsT5Oey9Z2qHsVayr8ODFU/ffqrwLvJnrVZLfv7nf5avf+0b9EqgC2HE4FivD9hcbumHTlETuRb37z/g2t1jjo5W1I30tOcJklJSlnsaQqLvRh4/2vH2W+/w+htvcvb4XBZeJQzfk+NT/uE/+oc8fPCQGzeu03UDp6enfPzjH+fu3bv8yZ98hfV6TUqJ5557ni9/+cu0bcsf/9FX+N3f/Y9cbjYkvWeX55dcXF5QVRWr1Yq6bsQqRsm4xNjJJfM6YMtYqUkCnJwc8clPfYLPf+7znJ1d8N/+t/8dwQds5WSAUmWn+1juvfQ613WlE8YSzsJ6sWC1aNlsd3RDj0FUGWX4SNSsSFFsazjvOvqhZ3d4yLXViqWxVBqAWSPKbqNzLFcLMJWeV9K1LHVu7wVedEZgUVfXMlhFIkthKytXw7rZuVhb9lkilSFFEtxH3QfIyNXStkcZkCJcFiEXJhtLW5eramkZjAlPwLWWa3XFP/zpn+DR+Zbf/OrXeLzZYGwmSqp2RsoBgiQcOYgm75SZ/99j4pMdsrxg7pv3uCJqZKeMfMr2Z/n8Ez73g8/NO4KMyWRf9px7sQdXP/2JkMb+j3PE0Vw5p+mYZvwFMwVCEXAZ4jCGxWLJ+vCIqq7xw0Ai0WjCNF1ebaPTGnQInuBFbGLKVE35fmsNwzBweSk8o7audehXXU7CgI7e7XG1o6am0uufUYa8ZzM5UDQ8EpXC7KC1fO30scYIChZlAJC1FhOlBh+8JKNVrKlngUS+llnRNBSdAYtIszu2ux0hBlbNCmMdw+hFbtxO82+kQ6Iv8zvCjDSc55fk4Uz5O6yWW4yB3W5XrqOgeAFjppJGRsozslq5CldZ+r4r6yvEBH7SyxF0xZauiK6XLr84+A/skb/s8aGDAV1fFMg8xhJVhRRxTJyBEONepirL2JGSUdW9CGQ5Xl0wKjUbZmgDqFCFZqbo0krJqMZ2dqZJCFVtw+HBmuvXr0Ey3Lt7j+3lhsODQ5yrZOri6IlBVKmME9g1hUiW9E1JHEs5B1VezOc2Z/3vQXdXs4o4ZSVzkaHSqqPnntGAmLL4zuxjZoHAXwYTzn+/elz5+jhnWa2WrA9WGagpD2MMn/30J3n+2ad59bXvaQRqGb2nqVsODg6JF4LiyGwCz+Vmw507d7l58xrXb5ziqvnMcoMfYbftuXv3Id977Q3efe8OfdcXklIWIWqbmtV6RV3V3L59m+985zscHx/zyit3qeuaV155hVu3bvOJT7zMiy9+lHH0/Omffo0//IM/5OzsXPxhFLj84vyCi4sLjDG0iyWVGpAMM+ckMd/DXMOrXF2kUj/+iY/z4z/2Y9y9e4/f+73fY7uVgVa16v7beSmM/evonJNWqhBxVc3Tt57iX/6Lf8Zi2fLNb3yTV7/7Gm+9/S6PH5/RKyIRmYR+qC2dD7x/cc5m13FtveJouWDtBE6VYBqRZIjisGOS6YwpyJ4ZfSQ5cE2FqSpsXcn3+Ejb1ti6KpryCm7gXDVbK0Eg3BykxFDaVm1lSqdDdrYxijaBNYZkEraqVM9ABF8wKoqSEjhLtNBEeOHGCf/0yz/Fe/fv8PXX3sYn6IdRd3goez/71FJfLxl2KoTC6SaonTFZb2O+QWa5/1477yyJKWtjvpfN3odkJ2tmbyokx3l0mD9w9jUfKBXs7cH88iv1Eq7s9avlFDPxUPZeb2YIJEZFp2CxPODo8BTnKvq4BcC5WpP+yRalpIQ0k8htdOU7s1M02nJrLWfDju32Uq+Qwxg3C4Y0uGhqRXontLJyVSlp5fa+hHTdCPqrZSgniJMcr2EcPUPfCVnPOQZyYiSOXmYseOlwShMfRVryYln/GcHIx5TLFPn9IU4TEbfbTUEv8tChy8tLRu91oJop98Z7D6q5krl2IYSSyYs43BzJjXRdKOUDay22koAlRtFIaU1Trn1GF6IGa7lEL+REVTGsallTKeKVm/DXPb6PMsFsYRYnN4mPRCus0Cf1uMvDkIPUfGMLfJ5hKDOhCvKIRTFQTjrLN+aDQhTQkGlXxsDJyTHHx8d0u05hpAE/DPimlig3SHYmDtuAERnWxOToh6IRnzkD+10B0zXZ7xd9UqBwFb6flxTyZ5Tr+QQnf9W5X30uL+Z5eWL+iDHSuIa2XeBslW3m3qO1kRefuclbr3+P3husqQgk+qGnaVqOjg45P08MQy8Lbww8fHjGO2/fZbU+4PBwAUDwhs1mxztvv8f3XnuDBw8eCQEoZ9a6mCuFvQ4OD/iBH/gCJycnfPvb3+Zb3/oWp6engOGFFz7CL/7iL1LXNe+88y7/67/5ZV555Tvsdh2COgQtDfRsNhuVI00sV2tpa8pZm7VlOZVMOMp8AgnOAuM4cHGZ+NqffoM333iHP/uzb/Lo0SOMsdpmuKSqq+KUyr0yQibMmWblKrxNJRi8dfspfvQnvsTP/8KXOXv0iLfeeIO/+PO/4Bvf+CavvfY69+4/YLftsVWFT4EuSn/z5bCjGzoebhc8dbDmeLGkNoY6GaKXTDtZ4UAMfqQfR7wfGX2lEL8YYx8j43argi8LUmKvFu+KoppuJgQJwE8GNHcYCDKIBCZGgvc8CKaERmZazyJfLtokxtUiwUokmIRpE5/4yG3+2c//FBe//Gu8/t49tvq5WLCxCD7mT0ZDAHLGO9slTFHBFPTt/U3ghrJf5vtrXt6bB47l/TNEIbvYLK6QzGzPTqn5lTUys298kPg3f+teweKJr5ueK6+dv2mW3ZcniiaJ5fDohOVqLdmsdlQ5J2U+p0TwfNq5n17u8ewYi72RdtTgB3ZbIdtaqzoXKTIOPbGWsd1Sho17tioGGRcXlfTnx0m5NJdARRxUEj+LBHl9P7LbbPB5dLCxWIS5nx1309TUsRJ/5PMUP4czIsgzqphc2zYlYMj7QBz2KGOSScXJDsNA04hDHr1nvVpxcX4u5zcTLRrHUSWQJQmzKgJmtLSQE7PdblcUAzMaMo5j6bCrG2nztgjy0HW9JCTKCwghFbTBe88YRpnHEJOcp61EnritSOZvejbBbKXkSXIojCdlAtmkV/vdc+STYizElEyay34waW+oLYGELnwVtSlDeUxup8ulB1S4SOo11sqIx+2lsMm3lxuSRmwheG1JiUXjIH9ZjnStziUYwiA1oRD3vv+qM58gmlCEJeZBAHmxzx16PkH9VwxsvrKznCTtb/65s59qq4h2QPlglNm6D0mGrO2AXrr8nTlbGTs+/vwtvrFa8P5ZJ9fCGQYPwzjQNjUHh4dsN6LalVJic7nh1ddeZ9f13Lx5HYPh7Pycd995j7MzUQmsKlEhdFVVhnJYvdbOOdarA15++RMYA08//TRPPXWLg4M1MSbee+99fv3Xf4NXv/sqd96/VxzCOA54VZH048hutxOtfGtYLlcFUkyaoQYl+5XIPekQIJOj61g28GuvvkqM3ynojXMyk7xtmqkUlvRO5XuR8sU3ylWR43p0dsbv/sff5/M/+AOsTw65dvsprt+8wRd++Af4h90/4sF7d3ntL77DN77+Lb71ynd49c3XcST8MAhfJiUuu45u6Fm3Cw4XLYfLljRY2rbCJEt0jjEEdt2OYRxxY0VMgryQEv1WujNsK2Nh+34gJZlfUDlHJGsO5I0YyjUqQ1RyS2Ew2Lom6u/JZuKwU6VGUU+zCbAWW8n+jVH3lrXIaOcIWBaV5Us//DkeXe74f/zb3+D8zn1EVR6dTSFllIkwW7wRNuWyGCULlntSXjLLtPe2297fJtSBYo/y3suPIvWte2u+H3OGmb9zfpzzkiLlOz/o4OePyULs9/zPP2f+6wc+crYWjZ6+rGVhodc6MS+OQafFRpw6cMicpVgSthADVdWQh1XNy5RGEaFh9FJejAmrrXh1VWMLsU1KozHkcfMa8c0PO0kG3fe9Bg6WEDyVkymctsCZYn/8OErt3FiGoVfUUvQvpAXQUVW1dpsFatvgrLRAJgORiKsmwjiAsUbmICjfLQZKu14iUTcNxlnG4MveODo8Yrvriqywz6qHGkwZa6idK0FztolJ95kzlpgitZNj9+pLpUyQxKFbhOQMdMGzWLS0y5ZxFGXdvCbyigkpQrTUCAFS5is4Pszjw5cJ4hQOZCEVNNMSKEkd44xYl6P5HBCE6JXJzwS6ZXGWmLsTcrSocGGaXkPK4FfSDRYVMWDqhb/csNtseXx2xtAPrA4OcLUj8wJEFS4RjcHZaSdZm0dBIjCulg4KN2D2mBxB2vsdM1VnMqogSnByLeQ8n9Dmke2GmZw+acpQPhhczYwSacIKzdSHnDev0e/sul7IZU/43th13Do65OXnnuHhxfcYSSQsziZSCAyjkHXW6wOsdex2W2KMXFxseOXbr/Lqd7+ni3wau5mjWCkfuFKjLShGTFxcXPJbv/nbfOQjL7BYLLj/4AF3797lnXfe5eL8Uhx9UF2KlGazKCaDlL+zWSxYLpdYa2Zrala6SkiPfDnxvG7l96K1r1bW2orlai3aBNbM7ksGsKfrn92RtUZFRTy7rudPv/ZN/vw/fY0f+bG/rZoNYkQWqyXPffQjPPfi83zp536Ss4ePefuNt/izr32Dr3zlq7z22utcbDZsdh0jkfOx43Loub917E6OaJZLVrVgxCEF+qFnGAdMb6mjY9F4um2HIbFarwkhKJNZjr2qnBgpvT8xKAFLA32nUGgAPFLPtU4Ij1ZbEgERpdExtXlAWHZ6RsnA1s8kw52V4NWIQ1ivFvz8l/429862/Kv/7be5//gxCYtPU/eASPiaIiZTyo76ZakEAnNHTQny5+W7fYctn1ug9PkunwV9V+cn5CFLefTw5Pz3AbeSMOyH+NOmm63ffU8/JVrlQ68EAh84zL21qNcDIBotCwmSU+UyUbZL8/viHCYJL0ACgVicWpU/Pe0L2ITB0213xNHjcrlISWzOaldXSoX7BZBnh5AiIUqXTU4Qs8PEUNAAIgQviVWI0jUzjqMohc7sQVYArHXwWNAOA5BywPHJCRcXF6QUaZp6lpTKw4fA6MfpmqguQKWfN+ZOi5RwtbQC1k2D6XtQgrRzTkrRKVKp/atV+jh3MpTZByl3zE0Jb+5GyATOxbLFVk40b8ZRbJsmmNYZmrYpAnWuUr6Q8gxyguNHr6qVf/3j+yoTyEXKWZdmwrOywNVHzlhFN1mitBBzl0EuCUyfnxKlhs/MH+YsYHI0dSGB5ANLEfwQ6Hcd52dn7HY7mkXLwfEBlZYIJicg322iLVBovogy2c6LoVGHP1cA/EAAkM/dTFszxSzHnNQo2Yk3EHNpoVyhCY7NC2MWDMx/j1evsV6Y6drvv2cSSgpcXF5ycXHJ9esnc3OBRO6BlUm8/PQt/uL1d3iw2+mGlqE5Xg16VVUsliucq+i6HpgcdNZrEOjKTdGxKeZUDjdOGg+7rufRn3yVr371PxWYDHK2LoQcgfD215hBmfB6TO1iwXq10kwt32PZ0HY2AjfFaRaGsxXO1oxjV9a02F4ZqLRarVit1mCsnkv+7snoZpRKArJseCzOyaZ+7/37/MZv/haf/PhHOT49loRololhZJbBjaef4vrTT/H5H/5B/sE//iXeeeNNvvn1b/DV//SnfOu7r3J5cYkfIz5F3j+/YNEueO7aNZxen2EY6YdR12DDdrtj7DoODyQQ2G63szUjRM92xqpO2g1S1+L0cyuhISfeloQlquqYSaJ3EEMiRdFZt5XDWUeys/ukjhtlXltkTSXQmQlwfNDySz/7JR48eshv/OFXeXi5BZMVOKf7mR3n5EBzi7Gu4bwnmZC+Jybjadp3eUjWHhSgn53LJPk+5Ra+q1D+/HjmAUWZ9njlPXuHUt6v+3EW/O8f75Xj/0tse+lTnw0xkOsiAbkITwn5LtuN3HNfDpRsG6YWWmMNacw2SWxdDJFh3LG5OKPvt/JdxhJ8ln0fhUeWE8aogaQmKFmlNQ9vyiPujTVFWS8TGPs+EaKnH3r6rlPHLJlxnvfgqmoKOJJA/O1Cun9c5dhsN8JTqlvR9x9GDKFwfRxurzVwfo8ysTuEWNCE7a4rpYWqqui7juQcddsoR2BCEIA9X1FV0uY7xKE4/uVqxXKx4MGDB9IyqWJHi0UrXK1RO+nISZUEpMLBkz0d0tQ6PQaPHydC+Id5fB8EwglyKzHsHC7XFT+vocmGcmXDldq6OnUraKBcKJtPNL934g6kBFXVcHBwwHq9xjoVFjKazYdEGDy77ZbN5ZZh9DSLltNrp1y7doq14P0sGp6VCbIDc5UT1nYS6cdYiIxPKnukD9zgDzxmDnpPpyClyUjm80MVv56ADMy7CK4aCVOusTpaJceU6Dbfoxi5ODvjvffe5YXnn8a5uTWJmCpBGLixXvLsjes8evNtkrE4BxFH6AMxUqJWV1Ws1q6MeB6GsQwpKgzhYrzFGIktnYKVeSEyn1sWijI6OCUb83l5JsP/OTBcLBaqdxALITNH2sZIYJJFj6SRZUKtmqZlGEftnrDaFVCz0o2ZoJDqchaY79i8VDPdb9kHxhlMhF3f8aff/AZf/8qf8OM/+sOYxkLdgG0mm+6cqLkZCSSObp5wfOOET/3AZ/n7/+SXePfO+7z2ynf53ivf5fU33+Ltd97Db7dsuo7DVYPBFMOYWyP7occ2DaP3pF1XBL5AOgDqWr7fh4hzFdWiYblYUNXCGp+QHafb0ij6ZlG2VFEiNNk5JDHcBW0gy7DmyXGJMI4FVZDrJ9781lHDP/vyT3Gx6fiPf/oNzreXBAE+9urV5VGc2d42ktIO2ruvkHC6+gHzTDsZnYY3IwXufeAEuk071cyfYO+XvEZzB8QsmZnWyHzJXNnPs9emvWOavsUYff4DwdHsK9SGmuyMNXlztsIZKz35UUqbTVNrV0i+DugEvVzjz8c57dX8rx96tpfnRN+TTFKbLqp3IpJTTwhylIA5GoHOozEMQ0eMkeVyWerrIowVpBvG6KjfFBljEGQ5Bpq6ohsG4SUEIbHm2r91DltXIhWeESwrdfeT0xOknHkGiK5GDAlXy5yR0uZe1hj0naj/ZUGfvcRLH1mG3FlbNEYkCKl04JgpHQ25nT6XUKeOr8T55UW57iEE4iBJZV3X1CFoR4bH+YrK6bq2UtKtcKVDD5RIWbek6Jnon3/14/tABjJRTpdpcYh5K13JnPWCFsMf1WCkqO1ctR7sUAYWGXWcgiSo0XdK4loteOrWLY6Pj9htt1ycX+iNsyQCg8rKxhg5ODzg8PiQ02sntG1Nt93iB1GfImWBkOl+WmNws7qZH5UvEKY+2awpF0rWz5VNmLMh/eA0638wucY8cyCzazX12+Za6FSLlqh6Cg6YOaESYDBLFpIQ5MQWyfV3JrK5vOSVv/gun/nUJzk6WmK1B5yk42f9gIsDL127xqvv3y8a8i41RDcU9ayi+GgMdVXj1hVN6zUgGIWtWw7XTChJSuQZFsZanDGasWggpnXscnNS0glevoiSgIiYuKqirqqSgXfdbiIExow6SUBSuUrGLus0M9l4cupNW3Ng1lKTs5ambkSNTeHUqTy1L1daAoOcVaYEZrovlbOkKINQ3n94xh/89n/giy/cZn3zCJpWAwIN7U0FVZWjUnUAEpisT495+foJH//0JwnjyHa74/L8kgfv3eG9773O3bfe4o3XXmWrhKrQNtrGVNPWrYoLifiTqyuaumKxEBnpGCOLxYJFu1AlSaicKbMPclaTM/08Hpk8NVSvhwSW2W2Zcv9ypm4Q2XDRTlBlPA1+hFXtcRZefuEW/4df+DkuLzd89duvsO06GfAk7omC3MwUBa+Wi6Y9k4mA82w9ZytMDirB1Ig3KyuYXN6kfE52lHuImu5ZwZNQBCXtfV0xNSZv30RWd4wzO2RmbwNTWpDn8UDm+eTPKW8uL6BEH3KtxDYaIx0xVa0wdvAkJxC4qwTOjgmFwSMmin6A1bG7UVvdcvYJUmoatiPeD/RDj7M1Vd2yWq9LjTzfF2HlT79nhyXrx5XSQNVUFG2aGLF1I7aQJDLEXUcYBogeP/YSDMTE6uCQummwdcX66KDoEFhrpFvGSDA8jqNeH7nHVhOnzPmqlNsk9kZmGOTAIMao5MKAH4MmpPJ8U9U062qWICQODg7KwKO2bcCCqyxN20CCuq2JIUi7YJi6sQSZQ1uUxSYu2hZnLZvNRhDUYYBGkL3aGqgqgg9UruLi/LKU/qKi7Llj6K97fOhgwFqZjATao5shvDTVTMvynDnJDAuVm0AmHWankciJVybahRQLLFvXNUfHRxwerjk5OcZVTlSbhp7gF5PYkU20bcV6fcDJ6QmLdgEm0u929H1fmJt6UAhtWY2XmW3ack7yb27LKZmIOtuQw/55zjDLHkMQroBsCs2CmIzYPMp80r8pZbAulfnyc2Rij8yTL285pimal38d3a7nlVde4Wtff4Yv/uCnWDQyutgah1OiXdjtOK0ct9Yr3nz0mKj96FEnfMm9k+h+zsquVJY0hJoYJ3g1Dy7CaG12QsfLPXDWFqRivytDrmpWmpyfd96E2+2WcRxK7a1kM/n7ScJy7uU8mqahbRuslaDDOsti0YrCWBbbUcJQQX3m8+Fm97s8UkaxpmviHKQkEsP9EPnqK6/y9W9+ix/5wc9iF52MI3WWZCvp+69rRQgqVRpz4HSWQNIe6Lrm8Ljh4OSYW889w2f/1hcZdjt++9/8Mv/xN36j7JUEVE3DYrXCNRXOWpaLhUhEtw3GGpqqFhEjDaqkFCP9zkR1IsYQCOC0BQuROI1JIMmICH0lI+dZhj+lVHQK8hqw1hVJ1ExSy5CncBECJo187uPP8S//wd9jGHq+/t3vsdEWs2nNXLn6T4ANMkppyFm9mQVsFP5HGbdYyGwpf4u2LZqSYRfHb4xycWzZa3Nnz3xvksMSSpBRHH3Zu7MQM3+X5k5PLPNeee4DiGS2p8URq5aFMdR1xbJtqazBB0Ndt1SNpV4sME40WJLaNj96gvcYUxcULttsKcPoXgmBcRjxw4hbNDSLluXBmmrRkEtnUw1eDt5q1guJuhYJ3ax2KkqbFSAlThHPEY4AIRLHUQKZ6Av8nmWPq6pieXCAU/EvqclHrEuFGH52dlauTQ5CKpVMlpKDoF2jH8v1ds6RtPVROtZEV2Ecp+62g9Wauq7Y7LZKZqxLgCF6JgPWWeq65vD4mL7v2e020jlQ18Q0EEk0VY1ZrYpOR+ZDDOMocsOKgFZ1jR89ddVIwBsTfpSEWL5zLEm1BJ4fbjrB94UMlJ9jJNlcB89hrcbNM4dVFqxuyqiLNcRJRUrqUrmEMGWreSEvly11XYle/OU5u67n7NEZIXiOjg9JRKqm5vj0SJXkFlTO4f0o2tVhGpmcH1az0+wQbDWR3VKKOvUt190lMs2QfFILYGImGE7QsdF6aG7LiRqdT8nuX3J9dLOUjVMyH70cajiu3JDinOZcgj0YSwO1aAIpwvt37/Pbv/G7DJeXfPylZ1gvDE1tYPC0tiJ1PU30PLde8v7jM7aq/VBXAgFLz+z+YcyPGyiQvAGSy0bA7F2D+XvJrzYfvCbkFXHlS4dhUDTAF8KkUwQp/2dV8GOz3WowOJTN1batjvvVQLC0tNq/BPWZ1v+8di3SvNP11oQDkOFAMRrGPvDe+Rn//o++yidu3+LwqIHKkeqGVIvQiGsqUiWywdStBASpJkU3BdIYsCIrTOUw1tE2DX/7Z3+av/jzP4NhoHaOdrnk4OSYerHA1YZluyhogHNiOJ2x2nbl6UuNdF+oKg+tsVY067NeulNui9V1uieGZWbIgLVaNxfolJiQoTKyHqwBiwWXhXoStRn50c99jOR/gf/+f/63fP2179H7ETAEo1l4KjnFhEYw+33mRcvfcxCX99V8MaWSTJfzL5WAWUkp6ReXcbR7Hz0FEmXtXEkw1HIUFconPRISrMQS1M/ghSe/Ze9c5y+ZoxxRHUo/dhgbZQaLNdTtkna5JLmq9MVnLlgIgaqu9/ZeDBGrioDRe/zQk7TlW1BcGQ08JXhPsEu6RgTFCwyDjCofh5GmWbA+WBCSOMOoaySFwNj3BOVyxVHbBRXl894Tux5TVzRqD6zLpT0K7J4lejNXJrf0lfbYK8ebB7BljDePM67rWmaW6F4Zx7EIkqH3kIzKOidbd9Z6CMLhyH9P2v1jtVRSLRYMwwjjAEy8rKZpSrnBj+LfYogMvbRbi7qjy/HrFMT9Jevt6uPDtxYGP9t3muFnA/mE1TrZBo2SC7tebnSRBk7zmHxqzytQdFPh/chuu2Xb9Ww3YtxXq5X2lLa0bUM8Pmboe7rdjs2lCFJkCeJ9AaRpwctXmgKjYsQweS/vSzEQiaV2aWbHJigJU+KhG3jeRmj0vFOark/KgVHUaXVlj5ji4OeIywRAzIOryaBNGWya0Bqm2pfBlGMIIfC9N9/m4cNHvPT8bZ69dY2jg4bGJOKDDd2QIEVOmppVU7EZgpRPrES1Ifg9VCIHAvMEba9MNFsI8s/V+mbS0bShROzzv02w//T7OI7azaDkHec0429xzmkw0OjgjpobJC4uLrh37z67rivqX4vFAtysg0DvVcztPXFiKseQxaJ0cmZixnuxZZ1bnR8g9eokmXqA0Uf+0yvf45uvvMoPf+xZQuOwTSutepWDusLUDuoGU3cSDKiMMEmccDA1bn2Esa3sN+W+nDz1FD/xcz/HH//Wb9HWNcdHhxwcrFi1LY12AeTuAEFN5BrHlHQy4qT/nkVY8nq0tlaJ7w/yY4wxInOr+2kuAlYcpjFgHKaSvWNCTnspExZJiUq0Fgk2Yu3Ij/7gp+j8SP+vf5lvvfmuSGIX5yjBW3HQZcHktTZzjHld6ncaIjO8vrx1WndT0J3K981xJsoe3bN4+f3zj7m6J2fBAfP3XTHU+4Y7zf55AosgJ1BXAwf9nKTfaYwlhpHQb4jDjsrUmGEguGbKHDXQyiJvxs5KdoqICFrgcCoW5P1YkqPMGRmHgca1Mlxn3FcsjEnIc+LAZd0F7xk6GYVeV1rnj1KSMEhLYhhHnUMQSHlmjCJTISbaxZLlwQG2aViulqQUChJsjNGkM5bgJmfsc86bMYamaYg+UFknCWGU8qbU3yVw7/uOppFyYu5qGHrhTIQg49xDjIRR7MdyuSTEsZwrSlQ0KTH2o6Cq1tF3Hd12hzGGa9euCcJqjPKYZCJsTjAlkR7xXubIuLqW0rYBiCwWTSHCW7cfqP5Vjw9PICwZ02TUffD4PaLXtBCzkU0xgpttMrLk8EwlTKMYq0xSUipw8zgGdtsd2+1OMn3vsdrmtjo41NnTAT94dtsdXbcTyDNPNMzSxrqJJ9Z+nla4r0KVkN766EdRYMsZBbme/8FIawoElCioCAkzx5nizFGWYGFmeEy2DU/OkElTV8PcFM3LAfkYKcc86TKkGPBxIMbAbnvJO+++wzj0QnqJngNb8+lbN3nx9JC2tlw/WPHo4ZkEMgYlk0kkPS9HlOPXH/KPGR6VpTNrG0oCsZqcUWukm89FEusPEiaFqNjTD72S+iSIq6pGFNWUmLPdbDHa0VCXGnnFer0uhMeuk023WC70HskRxzCRIX0YNXCd1nuuK8+hTzkG6Wtu26acvEEy8WYBu+3InbMtv/+nf85LJwccHLbUzUBTSRCQqhrbNNh60HIBCrU7YQablurGbeEbpAC5QzSJof/MD36Rt159FRc96+WC5aKlbVqcjp/OQjApGpKJjBoAxKz/gSI6KRbuDIgaqE2JpONVjUanuZaMEQZ33v9ZOlnazGTwTRRVJnmvyep1cl9jSoV7hJGyFS5ROcPf/eKn6fod//2/+VW++867WC/7xWf/lPIOytlE8YJln+Z1mH+O6pTTLP3Yf2Q4Pyc684CBCQDV9cJ8jc588bzDIK+TPaeft+++GbkSlGQi4iwMuHrIT/hMUw5QAp9sH/rdltdf/S4XZ1uado2PlvZa4laI1E0m2EZ8knJAbmNLSD+8D9qqNyYqV5F8oO9U4wOKkzVWRhtHr4kfhqquC48ADT6sMUXyva6kTBH8wGZzSdW2NM2C4Ae63bYEHlIiCIWsbJ0jGinl1k2NUdW+pm6oq1rabWeJC1BI5IvFQrukYBxGIFFXDXUticRmu6EfBtFLkJGJBV0exxFrHE1V0w89IUa2253OLpFkMsVYNE+Cl3Jl9KoW2NSiwRtkLs2irel3HX70rNcHjGNGs73al0pLDx5nK3o/EEMsMwcyuVG0ZOboXgST/uanFspqmS32K1sq18aZ/a4/TDWsmPXHcx1D2J917WjbpWg6t7USrI0EAruOs/MLum4g902fnJxwenrKom3Zbnb0fcf2UlSwon7HVUnkvKlyUJCzOT0hrmYKV0cMFzd7JbO96rjn+gNTtp/rhako1u1do4w4lEBoUjUsn/+B+lsqmWwOBp54y1IihSCMcz8I5DYODIMI9vhxJHqpi79/fsaPvPwSz58c89Rqzf3zjgdZLMRZnNbC5pMTr34XTLZunk3OA7K8YItmuDVoV3Hp6Z5fT5ANOI5DMT6VboQQA7dv3KLvO+7cuaOfafDe0vdoW53ZCz5jirrZImU4H5HRj3R9J0QqQwkolssFi8VSpxYahmHk/PyiBKfD0OsYWPcBiVNjappKOgu+9uYb/PBbz/Hp556ibiyxqXX4UI1rGkaDSIkig7wSFl+3NM+8gDs4kqx2yKQmO0PEE+1igYuepq6ptCsj5VIGCd+L+lkcJ8TDKKoxCWaJw7QCfZCSTFXL8+ZDUCdhAJuKHK5VNISUynQ778XAWswEWesj1zBjEmdhgsh+29oRndiJZWP5yR/+AvceXvD/+d9+k7fef4hPeatOiUU+//kOfnJ2PTnYArnlcDzlFsPpHdkGTGs7O1rKGs77OgFZzlyy6Ckol481sw+ZIRNZs4DZ0+X0Ji5WnsQ6XcMJzdo7wL3rsY9WxBQ5vzhndXhKvTwkoVMrrdFgthIoXtd+tvPWSImvDM6xeR5AzzD0xBSLRotBNCoMSH97Jp/GiKmy9r7C+9ZJx1aIuq4kW+/6HcuqKv3z1lqGIP3yWRpZuCvQVksWi0ZZ+wEboAs7Umq1vdErY9+W0q0xeapnLITiaQiScBmauma5XOrE21hQFqfcqRAiOKNkeEtVq8BRCtRqI8cxK+cGfZ8D5QljIfqIq2tNeMdiz/phIIGOfq/LsWYSekqJg4M1q+US51wRXQtekpemaSRYijLkCYD6b1h0KKVJV58UpZYzg8yeuCgNxTAahZJy774xRp1/w+HRAavVWkZhqvBDjujGccB7T902nBwfce30hMPDQ1zl6LsdfT8obDLsOx2y859g9GRM2XTluMhytVNULgspYMlKiakEEnOY/Gow8IGM/kqWkj8/ZxbT62dKdvpv2vuXWYYaCrlyLhwCs0x8HkB4IYZ57+m7vmziibMhglEpJO48POd3/+JVXn76NrdPr7FarXhwcUkyQhpydY3xXlrEFMW4Cu1fjcC9DrLKNTvICEqkqmSOeo7Gr5YRmF3jqN0M+TyDF4Sirms+9rGX+NjHPsqv/fqv8eYbb2tb6Pz6yiZcLBakJLKn3gvE1zS1fmYOWkQQpHKO5XLJer0q5NWnn77NSx/9KH3f851Xvsu9e/d59913uX//vpyrkoxyfTCvL7u0DHHk7c2G3//2q9xarThYQaicOG8n09FCbnMbEz5AaBqWL3yU9tp1AgnX95A8KZMMbYIQePz+HfzQ02ipRDo4AioOyDgGlUi1CvXm9R/Byjz1HAwUh5bXu09UzqnWQ8QY5dfkLkOxixADeI/3qDpclgcTibJiO2ZlCGMF+XCZUxAiphFWtkuJw0XF3//xv83FxTn/6rd+l/sXO7UfeabJhCoUB2uYoPnsamdBqvw77en8GfOcfC8xmP2WUYic4easO2vD5z0wd9oZ5cpJR45Dyn7P3zETDmN6NwlBWxITMfdJLZcJTcbmSeAsHijBubXUyyWVkQl7Ge3Jge/gveyflKhgBuuP0uZmGoL3dLudEu20NGamtjrvvbQaMk0arEhCVA5BMnwNwMZcaqjkva6qqCrLOA60SnQdh4Fc+hS7kkhJkKtl28gYbmN0kq4gXtnuWGOJUQJWV8nIdQlmRhaLFmuzr4n0Q48xMuSrrpsyBMl7X4iG2caN3pdZC65yGGv2EwG975mTkPdMLtulJMqnQsh0HB4dMvpR0BLtcKiqSsoOwZfAJYSRpMiLTBIWxG61WrLZbITT46wK7aGf9Tc8myBkVbeUIFqpRcT55sg+LufA6QPKR1lMwhoRODk4OGB1sObo6ICqqrg4Pyf4UIKBuq5ZLBacnp6yOjzg+OiQRdsQgme7VV6ADyXqS7NjyQiBEMw0PtdQe+IxCEEwxkklTRL5WPyyMbOtPbu5+ZEhvOz85s5sHjTMH/MgqgRZ+fn5a5jQhfIXNQLyfWFKaBJ7BgmV7B39iB9lxGjfjyLnqYSUGHX2dqowyROj4f75jvPhDk/3kePjI3COGEZMSkVjIIzyPrt/e+W7o6AMefKYQHq5JdApkc1pS2DHOAozt23bvYBgzk7P6o7za5OviMD2ieeff4Gf+qmf5n/+1/8Ljx+fkcd/gkT0y+WSo6NDvA88fPiQeZtnvp/S/iQm2NoJXlytVty8eYPnnn+O9957l2vXrilyNcyCXVO00SeDACSDaxzruORys+HP373LF27f5aM314TG0lUVNVacdkajhkRvKo5fepHlMzcxBMzlORF15K4m6Tz4NHgev3+HFEasEXaxH2WNhhAZzVics9cJh8J9EMjeGavZiy1ObQoy5Tr0QYhbdS1M7xR1nLky60OZHTLtM5nS6HFG/FMekRxTFPRgFsRGa6CRz9bORaIxRBc5PWr5hb/7d3jrvXv8wbf+gottR+8zqZdidHPwMg/2876ZO/R9lCLt/VOCCHUqmryX12Y0s6ybnESkSaJ9r+Q1D1LUMxeyr2HinqpdTGl2TrOkIWpQIUtTVBFL2+QsCErT15TTMhqIiGy5OJSqboi2pmlF4c5Y6caydiL6GkWIjKrLZraJNaoaqC3Embvjqkq6LcxEorbG6TqRjqgYAjFzfpIIE+XM2TlxfE3TYo1l9CMPzs9oNEgZB0pruHM1yRhcLYTFdrlQ21KTnDj+9UqClqz5MCcrJ1XuLG3IKIld14fMZGm0zj/xHtrFAj9Os3JitonOiRNGZM8bbUEM2ppo9bqIJoJeKwfDINwkaZHUeSFOAgURXhuKkmvW5RlGPW6TGHQyYYqRum1pa0ccZQga1qsseSSZv+kyQZo2VSBiVSJUnOGMVZ2mDVbAsji1u4QkLNHFUohei+USax27bcd2systG3LxK06unXJ0fEhTN0Dk8vJiUokyOaLOrYB6fHlYhBoHjCn/knOVnAWWccZTlG4xqtophI05W/9JJLg4k/ecO5jitPZjgT3EQIKrecAB8zfkQGF2G+T96nQzC74EE1GUHqMPDMPIOIwMY8fQDwz9IMSdpEFS0iuXkrQZWotbLFheu447vU5atrhxxF+O5eAq5xit9B4nu8/YzddjIrhIRJqJnkL0q1itljRtTbcbeOedd+k6mXfQLlrRI3/CNU4pK1ey9/w4jty58z5f+cpX+cY3vq6BQG43NbSNDGlaLhcCoYWdGoF5oCbHPqmFecYxj2Q+5KmnbrLZbrm8vORP/uRPuHbtOpVreP17bzCMg1wXDVydlSxFPwodysuybRg7z52LDV9/622utc/hG7B1Jax6LW3JbHLH8qlbnD7/LJUz+IvHQqpyCmubDoKUf/ym4/zhfbk+EREayhm4rmFnxViNw6CMZQNGao62cngNQlB5WBMjuTlOdM1NKQVI5idk4Ep5Pvl6C1ycHZMnBU9yKmRUVaSghFFtnTJGhyDlzEm8C2AUYjZEPM/dvsZ/+Ut/jzEFvvbKa9w/u9C9IC2+1uRwv2wQ8mY2uqeMet95XJ4dXCHBocFErtVfCXazal5OOnLQMQWmV7P1GVyfpt8yUlXES2YBQm5kNdOyZCpz5uc0+coyGPMEbC8amD5ElsR0cK6qWa9XNNpaWtoF1WnL51oZi50m5T2RCZaELow9Yz9Q1Q2uEoQr76EUIRqB4k3Wr5BMTEtrXdG08Nq5sFispN3OOiHgDT3JNlrGkm40jGO5aGXdZKllK38zKYn2iRJmbS2l5oJIK7lVSgQoKW8K7nK5bPSedrFg0balpOack1HPUMrRuSMpl753u63Ktq8lizcGZ50Km4VyH7yXAKhdNOy2Y/le0fsIQJRyoZUJjJW1WiLV9RkiTe0YulGDLoPXgX4GIAZdEyIpX+bw/DWP7yMYSGUxilGYNlZM0p8c4v5QnmLUZys5/962jaAAwbPdbrm82LC5vFSDKsarrmpWywWDDqfotVVw2k2UjSROSERqckaaZ0vnkY856laAQCNsJcyU5yfGdd74TyoJTJdlvzRx9Zrl7BZj9pxcactMPPG902v3DdjesWhLXG5FlChWSitDP9B1PeMgtfZR2ac5CDEYiSCRjLZqF6yPjzm8foOD69dZLFrCboOJsdz7nLG3TcNu90HuQEYspK42wdGVMzSNo21rHUE64CrL4eEBzz33LG+++SbD0MuHtNNo0avXOGt6z4OrcfS88u1X+Na3vkXf91OWoa2Gy+VSh1hJC1C360rWZq3dM85CunF7XJPtdsfb77zHu++8TQiBj370o5ycnNC2C7761T9hGEcWjXxPXTd7UDiI0YwGTGVYrhecnfV86733+eTJMc8ctVCPZZBL0JLN4uCIjzz3LO2ixZ9fEoOMSS2EOz/C4EnjwNl25OzRQ828vHQjWUtSJ+20w8EPo+LLQZ22kL28Gilr3d71zgS6cQSnbYbjMBQkrVJjXMSJAEwoxiklQXNCEnJi1EFZuQ5rnS3OoPhCY4o2BynhENtSNY7PvPws/6d/8gv8j//Lv+WP//wVLrqRYRh1mp2KG2Xnt4ekaVCU8l7TvZVv/BO2bMkqZqgA8g3IaalBm0kUzINKM3PYehBTYHL1u3QvJs3+8+8CKpQLM/+kaQ9/wMbvoxPTF+WyT8Rru5qxk9x0THkmRVUI17mtLkuH52QqRYG3h35H8KMIs9Ui750wyjn4YKBd7F/MjjmQUNXBGcJcVaKN0cfI2PfsNpcC0YdYOlt8iphkVFJcymJYmX1TG5mV4b20AfoQiWMmHLsiBYyy/3ObYU4ws93ZbXdFoj7b4b7vuDg/J0UpTzZ1ozZio5ymkaquaFT9MKjGgKAjEpRUtbQvpyDXtK4bDFkZVNCxcRxl8qBzWAPb3RY/jqWUA5FhEG6Hc9q9FCNNXU1IjUmYFLR9+gm+6QmPD18mKKQ3gCSFQkXBsvGMcTLU8wXpnBMG8myTxBjVYXVstlsZEVnXHB0dsFwuiSGwvZTJg3m4QyE+zTZyhu4zIUyGM4xKIFREYjpwudnOTs+nXI9OBf3IxiNDXJnFv8dHmJ3fXtuVGpO80eVhJPvX2rsBFVa6munqtZ3eNfs8qb1mRT+jz6GORJCAQVn3cl1FHGMsjjR/vNHjtLaiblpWx9dZX7/O+uZ11gdr6pDoL87YXpzhw8icQQ8IO7iXzgS7VyuQa5WIe3XzdtFy++lbfPzll6mqmj/6oz+SQURVhzWW5XIpAZ8fJvg6y9bqsWeUIYsCFeQpIVPTTGK5XOqGqWVDqkphWW8qbiLHZafsDqlBgqVtF8JD0ej/8eNHrFYLrl+/ztHhIS++9BJf/9rXeeWV77LbDdRVzXK1ZLVaU1X1FPxmx6BtpSFFXC3ZwJ3tllfuPWDlTqmcnIMMZAq4tuH2rVscnp4wXlySfMDEIBlzEOMShwEzehgDj3uZx2GqGmIi+FHEgJITeLeulC/gcVa0D7xP2NopdJn12SttZZSsPo8gTkkUFQOjBP0qMGSdgwDBCAxaWUcAhlHJlLnt0lqcdfjRa+93KPsu309BByakQPZkhJiwlYzTNtHzmRef5b/4+z/PkCJff+VNHo4XkGR4jQQapjj8soNmQXy+K/N9VgpOswSjOOd8jOX/Jxi92Dl9XUEnzGwH56WgOfvkFzUd0YBJXmc+YFtSzlridOzZbqXy3ZSAJ3dm5KQmI6H5rES9rseHkSoq3B0jVVMBtZBMZ4S6fJy5zm50Pw7dFt93RD+KXkHd0C6WNO1Cgrk0dd1UCuUH5SsMQ48fBxmGNI4ih9005EQxhEAYRVU0I3/ee6yx2EpQpjyDIAcbxkzIgNc21HwOMYbSUWOtISav6oGWYRiK8x+VuJcDksvdBW3T0i5aUkrstjsNrqXbJ2pQZJUrEIJIKIcoaq9ZHTWEgDWoNHLWRHE68VG4V85pq+EotqlpGg24OpUaSFgj5bkYZA2GcaSpRAwsBJFUTyniTKJurOrp5YTzf5dgQGYl54lkpKTSwZOaYNxj4cvD2jm7Wmonu+2WRw8fq/KU4/DggJPjYw6Pj6jqisfn5wxdR9RJUYncJjftoTkJLv+X2zLyw4c8Oc9KDSy3N8llEpKIRnU5Orcz9mlm618NBKbsfBYYzLMK0v7ryHXkqBn5lP1/MJJHjL/JWY5yIooj1M+NOvkqyHkPg3AC+r4v6EgO0OY1yITFNS2L4xMOb9xkffMG68MjauuIuy3bi8cM20vZ7CkWKBgkszNR6uveB2B+PZPWWqWfOLNkP//5L/DjP/Elrl+/xuvfewPvA5vNTgcaRe3PrTRoGUmpnq6JycHjLCC4Emg6V1FVjtVaeAEHBwdsNxuGYRo6knRtCOcjS49mozJ9Va1M4k0URvx2u+PBg8d87rOf4a033uYrf/QnvP32OyL608qkxNVaAoGMimWdAVlOCZLCpCnRNC2X245v3X/A7XXDqZNsOIREionb125w7cZ1xn6H2V6SgowFtjEQ8j3N2bwRTXkxhNJZ4azMW4/ovdHsPXqvQTC4SvqkUeQmIUJg+KDHKQHm0HdyfakYxoEQPFXlsHXNGKZsK6kTzgYJKnXOOrrVezmPzM42hqoRNjlGGOhYw9Rqq7amquTctJTnLHzhYy/yL3/hF/Ddv+NPtq+w7QMWuYal/EPOoHMCMxOVmTtzSYt1m+k79hABXRdMzneuGzCtz4mDlEED9j5mxgmYoQ1XkYLyTRlF0Puak5mUrmT9+ccPGPsrqCnT3vVK0E5RZdfVAccQpxg2I5JaPi1JntockxJhHPBBhmNVTc1yvaZZLmUt+xFLbtue7NyoSZ1XRxeip2kWSiCuRRUwRMI40PcySr1pWoRsLOWMvuu0TVH0T/JgqqYWV+aMLTMJuq5T5zu1tGbVwRzs5FJBiFcTPTNdJz3urHZorWW73ZLSqF1E0v0whqCTH6WFULL2pB0Z8p/FQJDAyKhccFXLPup2Iz74goz3igi2bUPlJJirdA9JKdOzXLQYKM+bbHOM0ZIbZFmAv+7xfQ0qys7e5L7lND1/VS5XV6FmZCNV1ermF6M3DCMhRBbLBUdHRxwcHiq71XB5cSkEjZzdz9Z4jFHbUYJCMGl284JIacaZiE2ayEVTRpBRjQS6KaSVS1XXjESUIXlIepFnhiqfL3r+sn/mbUhXN2eueU9TrJghEbmXnzKfYU5x2m9zTGkayCNSlzLBq+8Gul0vffJhVIneNBkU3emubqgWB6xv3OTo1m1W16/JMXU93cVD4naD9x2j70khqXJcKARCawzJUmREpf4mm17mjstxZuXHrE3w9tvv8r/9+m/wyivf4eLissDyMEOW8j1SY5TvUybzZfTJ2Ym9m2eXL5ctzz33LD/x4z/G8y88z6/+6q/x7W9/h7ypQwhFi8CpiJJ1k2CQ0aDOWqujkC273Y6h77k4P+cPfv/3GQZBLqqqZrFacnB4qENWXHFA+f7nvvA8l8EYQzARVwv68N5mx/ceXFKvV4xJeAer9YqjG9ewybC7uITgcaV1VOBOi8E4h2tbqtWSuvPEO3ewNhJQlMtHDUQsKYkuh9Pyha2UBBoC0QsUD5ZxGEmVZrh+xI89fhigqhl8wPuBnKiShG9S6XmDEw2LFMrQKEMgVWJIU5B7No4DppLOCRKqCOdIetzGGIyT+qmtK4go/O/LWqxt4gc/9RG6X/wZLi7O+PO338H3oywZkffT4CDNfP/kdq+W+CbvPe3HsvlMLkFM+2fy3lpWTKKvkDTRKMibmYKH4t1nLYcllsimcpZUmGnpUyzWzKaa8tnM1t3sg2anLDFORkEjwY8S9CVJhFDIPkqPqJg1o2jj7GOj0TMOgaHb0fU7Cf5MjXM1rqqxTstGRkjGchyqSREjyXuSF3uVYXnvPSFG5QrYoqgXvLDpkzXT2F9FN2NKOENp5bWazUupLZD0q2OQclRlp7Lj1XJvCJHgo5Q5NFizCr1779ntxK5bK2VHkCS0oFspMWiLcfYx4yDrsV20OLWTOflISRJr7wUVKAOWjCAy4ziAlZkqhwdrxmFg0dQ0i4bLy3PCKAH6QrtuUhyxRoz8tHYlgaQkJHyox/eBDIzlg6MqRJV4eRYEZDOeUiwZ9jCO1MMgsGOUQUWL5ZK2aVkslyxXS0iJsR9KECD+diYHqp8fgtcezqFEd8Kc1lJBCuVGz4OJDK9lwy+fqucTdHyumWrJCWX5qzBL3mP7mXw+2+lvU+SSZhF7uSpTUCKrmrKdE6j1K59ZeBnzQECDodFnFGBg6Hq6fsCPQWvAcTKCKRGtw2FYrg5YnF6jvfkUB0/dZLFcwTgyPniAv7zAjAMpDHiveg0hT1uMzFBHDKZsxFGFZYxJStxxDHEo92McR/7wj/6Q3/u93ysjiueSrvPgyFlXBouklNcY5NYlkM0jtX07CwZcec2zzz7Hs888x3p9oPc+lc6F7MxrHUiU10Jhi+i9q9RhtYuFQnVy3O1iSVVXovO/WIjQSWkrSxrsSlAkt3MaqZs7aywG19Rsho7XH59zbAwujSwrx+3TE5bLBd12I7B5itQqHCT6/ZJtN+0Ce3BEe3xMdX6JTwkXAsZ7IQBqAGRsxJm61BWlbitrO0Okxjpye5I40sTYyxAYh4wa9tlIWivGMwsQGTDRFMNpdfhS8BFTWfquBwu1qzBG+tpdXRONJBVF0th7gX6LE837VHqlU3Kl5Y3kaWr4O597Gd/9Iv/D//rv+M4773LWD9hUCUaQhxnNAsoM2M2dgslIgF6zvSDemD0HPAPW5FHKG9P7ycjBLLNPcyNt52GJKfu//K6v0xxGDyMnNBOKgzEqjTC3N3oU+TVAgVBnqIL3I6MfaNQRx+hpbMXoA8IjCjppz06HFKeASDq5NiqBK+cdgjDfF0laA1PSMebka66oTYr0Xccw9IIwGUdEYXIgeiljjH0/jU8fPX4QYpzJ61gDXcmzBRXKexstfaHXIfuHuY/K6oPOOfp+R4p5z8uclEwKBiHkNnVdEtWu62SAUFUx9D2XFxeTXTKWhCLUwyBcJeUpWGsIUaKUpmmomlqv28h222HXa5aLBc7lWRCe4BMpePwYqVSMC6B2Blc1E89qHuDmNaS+JiedH+bx4eWIlZhgkmE/ysrtGWkawasLNiIEKtSQ5CyuqiqOj48hCktzGHvJ6PP8gJT2CD4xxT3nkh39/DiyOMNVQZ/JeU8b+yo0L2psYYa6TRn1PIqck9f2R6BfqUtmnX0z3YgcuEzwN2Ayb2Ceuex/ZuYhZNEh7yXD7bpOg4EOPwS8dj4k5ROQEPUsa3FVy8G1ayxv3uDg1i2WR8dUCfzZGf2jR/jtOdFLL29UGV7hZxh1LAJ7BaAyszY6a1UML58DVFVNXQdC6Iqj7DuBj/PlywqCQGktyg46kwdTEluGyd0ITSEzTfdX2c9av7tz5w6/+mu/zk/+5E/ifdSMItL3okch0p6tqhK6fLPKZ2Xjlw1IhfQcZ4OWpVqrKovAKPHP5+sV9zgPZTa7McWZJFTzvKq5N3re3Gy5VTmunZxwcHJE8p5+uyGXg0Zl7Cckc2uXK6qDNe3hIaZt2Y0P8SFgXO6xnoLSytXlWhqlgJeSRJLWUK+BozUiKiS9zhK4WyVbpZTK9ZKJbqGgIRHpQQ/BU5uKMQjygkq4GmeprCV4uefjOEpftqIycRyllW92L4q/jVJXFo5LICXJ+aMPVMnykz/0Wfph5P/+b3+F7r179L0vY8j3HOyVx7RXp303IQSmZHwCdOW8W21IzrLnaTuzn0sgwhTjm/29XV48y9rF3ClJMWWnng9z4glM5VY51lS+b+qM+OAe0d/VjqQQcFYTBS/IlTXo2ghyzrOpfIVRb4ySVHvlCzmMrTR5ku4yo8hbAh1yJC3iJgQuN5fEEMqQrIShqRtWS0kGu92WceyJUYIUPwz4PI8gSvBYVbKmjLZItoslGAlIjB5DHhls7RRVZVGj7Ie6rsNaGVQWVM0v73PjDT5KUircIzfrQtCpglGQ5MwxmMaoR+pWZI2nDgJTksz8ekl6g3YJjAxDj7VJhqYZCN7i2oY09PihZ8BT1TX1olGb05MHT6N+OLeeSvKqZZ7/PWYTZKeUM53p883ehpg7RglKxSgsF4vCsrTW4uuRy4tLUbGKsVywEsgrKCDSsJ5xGAvjen6B5TXT/IH944glONm/HlOgkIVxfGY7Gyv9sbnsEWcBTja0KTFZgyudBJoWTNdoFnSkuJeBTGOgnzxxOgc5Kco5jkqA2+06dt0WP4qgUAyxwGcW0aJxrsbUC5ZHJ6xuPsXp7adYnRwLmWe7o3/0iOHsEWnYkRDxilyPTjPEQuDWqW0yj/p0Roh6wyB9rTnbN1iaWvTzRz+WemSIcmAiPJLVv1xx9EW6U88XIJqknSCJtl0o1N+V9ZLFZ2IMWjYa+cY3vilzCHY7drtO2nr8iLECzy+WC6qrIz3NrHyja6v8PtMNKPY/JZUu7uU79lqUUtFSWCwWLNsWUxmsBofRRJwxtHXLdrfh/aHnqcUJB0cnJGvZbi+pc6CSkiqTyX1oFguWtbRomjgynPdsHj8uWUAmeUksLtyc6CLOpRI0AQST029Ag8eIEpRUySy/ZM6Zma8BYx0xJPogvc51XeuMAlPmDthKRIVyIJBCVNU7USlUXygErCRtqzFOBo4kLHU/bAlDj7H1JNVMYrGw/NxPfJHLseP//Wu/zWvvvi/OLFp8SjoiOEHct0vT/pqca4yTzSqvmrX86sqY/Zud8OR4U7EL80xNnpt3CBg9HgryNfEQ8ryHZPa/35gcZ8gPKVFaE+fW6Oqx5rZoiQUNYRwZu444jqQq0nU9zaLVaYK5U0vr/XYSlrOKZEjL8IjwEARlc5rgGawqUorzzfe66zri0LPbbum6raJWhqpdsT46ol0uGYaBfuhkAJIKgsnxZ01/aYesmwZb1ZpspuIP8kwZCcIFoXSVlC/HcdzzF/ORvhlllE4HQULruiaonkC2zQcHByVRyfuoqivqusKPY5mLkoDGyYAx51w5D+FXxYJMVDrwKbc7SplBOhQuLs7ZbS+Fd0HCWuVh2ITHaXAU8q3SVl1tvdZ2/5j3e4gfWPd/2eP7lCPW+LhkrTkLUSgrTQs/L+OqEl341XpJUzf4fpCBMTpN7oNwsSzunJ1mIlyOsrIzzi1KkOH0vYhECElXREL2/q7fRUxEn6SfVrsPnNZxYkoYNRLTpk/T+8mlkdl2fMKFT5omGE13s7nIBnxKJaZHUQaMUbQChoHdblfg7kIOzBkGBhOlQ6CqKqrVAQdPPcXRrdscPnVLIuC+o3/4kO7hA20b9BgbilxxyPoNxchNLX0pJZyNxMpiba0RrkTfIeSOjKgwrTiCxtmiOCl15Gld5A1ojGrS68yCEkBNl5hE1GEhjXJNsvKWKoxZAHE4IhV8KQxbbXOyrmK5XGm3QZW9gN7P/ah9/lx+TGUl4W8MQ8fFxQVd15f3ymTNumS/u53M0zg4WHN4eCgjiZMKVNmEqy0MlrMQiIsVtqrx3UDnLb5yOFX4DC4SLZjKsqhFnS30O4bdlm4Y2JyfSYZNwijZMOSMNoE3RlstkQg7GRUhkusdokCRNkaREHYWVzkqgQqIKRT1wGR0RgUSwPY6KrXO7VRawhFDFRjHnpRklrz0YydqFSkCsFqO8XE+u0IJV+rMpYyhGgYWGRwWJTALcWRVV/yjn/o7rNYr/odf/lXeeud9uq4n5O4EzZLm/feZB5CfKuTYK75+jtfPkb2J6jgJnU3Q/DwwyHB22u/uysmC/vwBuL/E4vPvnwUEidkx5O0/5zeY6T36KhEDMsQw0G0uCaPHLqDzI4cpd0NEVcLUUocmZtJ2bQCp20fVMbFVha1qqqYpLbkGiModqNWm97sdvtsxDF0hjCdExne1WlFVjn7n6bvdFAREWaPWWIa8JqylahqaxYJhHMs45ARSz9eLZI1REqGQwZ2NhQQZYsD7rc7Q2B/tGwRWo10sqIxj7Ad8P1LV0qmTe/lJiSoLcGkmnjkDIchwN+OM2FTVzYkkRi/dB6vFkqYRUq6oNmbRL6SE4sSemKiJWYo6U034DcZYCNJhFFGUQkWUcqIUFVlPSir8MI8PHQyYnClzNfu3GDNl9pnJaI2hbVsODw85OjpkuVgSgufRow19308QikIB888UUYosMzxjhCftVojTTTDaG74HwTPB+CWRz5uC6Q+S4QXRdR4nLeymrsrnX92UVwOBHCBJnX7ahKT90cJ72UIJpOKUhedkQ783+IAPojKVA4C+k0x3avPT90YVhXE1brlkeXqN46dvc/zULVaHJ5gY6B49pn/0kGFzjh+2WIIkFj6qKIafggANUkpvf15gKeFGiztYS39vaui6Slr7FGeMhEl4JCUwFmty7c7qtVHYWiFO4WYE7USZ5JatrTBa9owmlmx7pwNSEr7oQ5S7kidEGhH8qOqa1XLJUqdcTgvE6HfY2dqdBQGGPQcC4jS6bsf5+Rl939O2Lbdv3+LFFz/C5WbD5nLDarXCGMPDh4946623uLi4wFrL4eGhZh96bk4UGXs/8nDo6GJkOXqccYLwxMkgmtqxbFZUmoU87nr6YaReLFgsV8SHojMQvGi2R0OZ6GYwVM5jkrKvQ9J2LkdKAvkSAkEHrrQrEQFLJG3VHQAJkPNkT/mbwJxOuyrKfIOoWUqMDF1Pu1xhVXFSHL8Y76quwFjGwYMF19QSjFsjqIHukZgirm5oNBALwZf9GGMghcSiqfmFH/0izsD/9Cu/zauvv8u43WCtqL1Jp9C+k87E3KlMlCZEIq+PlNn/++ugkPdmaNHVYF4+wurHzAL2vGvzRph9dv7M/Pn736k2LZceZy/I32GmV87sM/q7BNUpBoaxw8eRRu2OdVbQsl1PXVV4JUIKMiEOvqqk1DMOfZEjN7bCVZVwWKqqXEujwf+IBOs2Jca+o9tuiMFLmcDV0o7YtHS7LcPQazIScc4SQmLU7pWqrmWfO+mGWNWH1E3L0I+qAmgKYpWi8BYwFj+OaosUqgKiTs7048jIWKYR5utnnZMphEEkyWtNDIXUHsp4dEjFh+WxzSkmah3oloPHrLaK0fZC9Tl+lO6K2jlM5bDOQIrEIC2DsdLOihSpXFGnmvmtcfo5Tiq6OTnPy9Gy7xf/qsf3USYQdqYxiPKcLjyRT8wHazAKHy8WCw4O1ixXK6wx9F0nLU9x1l8vJS2JJmNmyEtLV+YGXP0vO6c8MKLA1hoJGjOPjGcIQP7bbBdFbR/zWieVrMTS1DWQuRC6CdV5X3XqIHB/YmYk1IjlBVFeO0UmJRCQ4RmmBAIxBBUK8vS9oAE5MBrGkazvLwtSrrsxFdVixer4lPVTtzh6+ikOr1/DYek3O3b37zKcnUG3IfqeZALBaI1w8IzBzwIMyj2aowLGSKbYIwlmu2yx1tD3LbttJ50AZjJE03nHcsXmdjY/KY5fxJKSGvg82rqqYiEJRg386qbGqBTwOIyFTxJVhzyRCklw2a5YrBY0zf5cdpMDAD2YSRMhH98HQdcYRbDl/PyM3U4mlL388sv8nR/9EZ599hl2ux3/7t/9aqlJnpyc8OjRQx4+fEjXdRys11g1LPnknbP44Li72/Kg6zhYrLE+UGm9L8YAMdGYlpVxsi66ga4fqBYtJ7du0e0GFflJxQgnazBkRxSJ3hOTI7lEpaTdyhq6bS+jyZXIJJmeaDP4QRUrg6dZLGRWvclGS2W5gcWiFVGhXKLQDeeTL0zvcRAxFoFDg8rgVkXfozIVyesQmcErpC5cFZS86ipHipIQGb2HKKEqjj1VZfn5v/uDnB5f43/8N7/GV//iWwx+xBgnwX664kEz0kfmAk5BpEr0zIzoEz09sxBCg+GUPfaU8avtKWqo86+/ss4K+qAvKC+ZYgkm2CIVm5GvV5qdY0ErSiJkil3qB+kWaqGIDJnKCnyuiQyygqbgKUbCMEh5IQVFDmSfyRAvUbPMZR7p7xclzoRk1bnjyodAaw218oBEJK0v5yAcFVskf9tFS4qJqqpFHCvJ5EynSZtzU/IR8xyUvhf0YFYGyK+Zxnbn9ygfa/QTipUmye7c0lzXNVVdkduh83UmQQqR5aLFOsvlbivPx6jBj6FpW4ZhYLPZ0G+3NI2jaRvWqyXWGQbVbYgp0HWBkEaIYcKgghBjy8C6GGfnHPaQ84JW53N+0vp9wuPDBwNhpvymi7au68LMBJGRbZqG5XJF2zZqxAPD4As7Pe5tMHWiEYKPe7oBSVsYJaKqSm05t6p1Xcd2u6Mf+j2WepYF299n+1lfIQMhke8YPLuhJyItK01d7220q1yEq48SDUNp+5ujGWbWGmdyQJBllHXz5UCnlANUPjijKHNVPDDEgMK/jvbwhMOnbnHy3LMc3rwp6o7bDbsHj9g8fMx48UgywBQAzdxg5vDzuNEpe9oL2shQamIYRByjqg4BleCtNvi+L1Pwppp+unKdtDuBychlJEJqacPs/gtzWfqM054QSlXVOFvTVEL8nGqdtnQ51DpzfC5+VO7V7Of5PdSlMv1+Ba25vNwUAyMTw7Y8eviA4+NDrl+/wbXTa7z//l1CCHIPdx1CMrJFKEW3D6DBQDI86jrunj3mmXULEfysm8Y5R6vz48/PLogh0LQLjk5OqdqG4exCWmFJqgSa+SNAEAKX9yPRj9RtS1NXGAtD3zHsdvSjtgxWFauDA6q6wYcg0G7fYdSJl+uTUKhUjF/OfPJ1DfncDLRNKzVRRGHNB3EQiahT1uJEvApT+64xSJCSOQ5afoohUBmrgSfqFBxUCZyjrSp+8oc/w8Gi5v/2ryLffO1Nzs4vpyC8QN9mT+bbaFJSyIHFoeZTnhzvNOFxnr2nwnMp2bna4rwDnlSmKH8r20TekH+f1ql+R3HsUyhTggUNNnLRclrYU0CClkuGbke327L0wtbv+5Hlci3O3CTheihpNRrpZCFK10fQ6YHS5m80kdNynHUT6mEMVoyMyMMrNyylSIgJV1e0i0amDTqjme2U6M0DMGm/y5wrCSZcXdM0wqcpwagx2MbqcYnM8YSQiGpuVcm48/zIOgF91zOEnm4YpPav9zi3BTZNM9kaoKlqadFFbLqrDA50uqIEP01V0y5axnGQ8sBqifcju8utoi2ORCAEsQVN3QihFhmSl7QmJERAvyerzBU7/YEyuQY6Id+PD/H48MHAbGFnxvJyuZLpTiEUJaZ8cbNjE0Ka1Cpz3CoLZqolh8LIntT+KlcJxLtecXgkYkTr9YraCez36OEj7t29x4MHD9hsNyUyci4T98wHDLywdPVn4b+IhnZI0oOuYhCu0rqnMv3zJowxlhPIWWX+AumRn+SY9wKITAvIgQIqUxuzoEcqpZHdrmO72zH0Q0FHmCEIcp8Ntq6pVmsOr93g9LlnufHs06wOjogh0j064+LOHXaPHhKGjhh6reMKuYQ4zVNI6IS/OMFt0yLbLweBkLxMSiyahhEIi5q2bYqyXzn3bHxn4OUcGckIQkJklEc/CmxWSVY9DAOXl5eMIxgkCJSSkjp3KzW/ytQCZRopleSpYFbJbOU+zRLDlA11SqXMUNZJYsrusvFNiX7o2W43pR8e4OLikjt37nFyco3Hjy64e/ce3nvOzs7Zbrf0w1COpTiQWfaTeRddGHj38pKXtqecVAaPSo1WFbZpMNay2+xkKuLBmvXpCXVTc/noMeePHwucaHQQShBUJRmojCOkAVPXRGNorMwQ8Z0EAt1uS7JCzHJ1rfMDIv1mQ7fbita7YwraTBLBmG5Hu2ixdVVmiUwBQyp2wBjDEAJNVYmiIwg3QuerV85hYiQVspgwzb2flC1LxoOR+ipCkkIDa2cNkRohk3qwA5/75Iv8V//in/I//Zt/x+/+6TcZux3RSOdEWT8ZfcjrcZZBl0VCyc/Lpt/b18W8CJl1ctiz5ZOt5hX4X+ajZLRy7vry4SSdOJK/fsIhcjZKmkoDqSCihjK8UFVL5eolwBJSAt8x7naqJxHY7AZW6xGH2N/cNRRjIBlLQto+pbSXHbXW4ytH3VQleDbWkELSDBv8MLA9O2Pc7UTN1FW0iyWr9aH4CZXrzZwRkSv2UnfX0pTVUb/Bx+x8yOJB+eGUmO6sFZGglMpALIPY26xNkhMOawxj1xPdqJC+IQbpaogxSfCa75uFMEzBRVU5Fo2jNlMA50Pk6PSY3f37xGFgCJNg29n5YxmLjAQOWBj9gO1F7rupK5IfiVFb8JP4HwmKhaOR0aqkvibzseYBjyzduc7J1XL1X/74vgiE86xxGIYyCQ5mTGXN2oMXSdO8sFOa19RFhS94jw85swMZrOBo24b1wQHXrl/j+s0bnJyesl6vVaFKYPT1es1iucRVjnv37ktPszoL0UuXDMg4S9lxs82uQKAs/iDzp0MMYGradqnwoWbyTMI/pAzBUTLa/PeriMB0Y2bXLsNU+d8QJRPrBna7LbtdV8Rx8ueJiJ0h6RjOulpwcHqNk+ee5eS5pzm5dkJlHbvLDZf3H3B5/wH9xRlp7IlpLFH33JDNSwDZsKSsyAfaZxxwlWO9XHH99Jjnn3majzz7LM8/+wybrud3//APGUYZPLTdbgkh7p17vtzlWhQkdj8QyBLSxsDB4SHPPvss2+2WrQZ5wQVcinvZdTbO4vBdcUi5RJjnUUzY/3wdT+uZ2b38QOAyu8einibReTWDDx89fsTXvv417rz3Pm3b8tnPfpavfe1rPHjwgBijOsbqA6WrQlx0jsHD/YsN751dsDg+oHGU4SIxBXYqwtIsWprVEmPh8vyMi8dnnF1cEvxIMBYTIiUSiJoGZ8a6lUApaseICEYl8kyCjKAIZLsjBmnDSorEGGtIMdB3HUSoq5rkI2MMe1CsMYgQU+UYg5ds0UhLovSTa9CmMOowjNqNYqjbWrNvgagFWk6lVBRCkOl6aFujCizFJC2TddVo3RY+8fxT/J//yX/O2Hf83tf+nAfbTjNjTUIwZShQWRcFBVQStElTa2GaZeq6iEoWPsvYp2RnvubM/udfDZL3ooGk5irvxXQ1uS9rcyLk5kAkhx+zIBgjjiVNr/fBM/Q9udd3t+vodr224okYUWXF3mTyqEiej+qoFDXU9QvTtMt8ytZYWS+7LZvNBX6UkpNJcLxoqKuKvtuJrsAwlEFG4sCtyFeja6/YXEGCkjGlQyCXEPMalu4wVV01k6ZAjJmzFIRLoq24u26AFFmsRDxsYNB1ZnBVnk0QyV3vmXcUo/i5pm2V4+Xpdj2Xm0uaRVMQkBCkG0BUQEcMkUUr3BsUNUsh4JM6/STS4dIl5oWDM0NLctCUpwgXhGqGJllrC4FwPwH7qx/fh86ATqDSb44xstvtyg0RmFfnMQdZfHaOk6UcBARClHJA8DlDEuNQ1Q1Hx8ecXjvlxlMSBCxXK+rZaFtjpVZ0cHxETDKoJmLodkOR6xUVQTGkgNxUq4axOAltR9Epf123K8qFWSzCRF828DxjLrr5s6hsr1ZTbprCPECZMqiQfwyxBDa7rqPrREZ4HAdtQ9F7mBJYsMZRVwuWR6cc3LrF6XPPcnrrKRarJfQ9j+7c4eLuPfqzx4RuB8mTFNaKIZTocGqliuq85fq7qtKJgdA4y/HhmuefeZqXP/oSL7/4As8+fZvj9YoGgZhff/c9jhYt55ttQYPGsZtq8WTHN2VLedFOyFAuDcn5Nk3DarUCKHX/HBjlzxOyapYXzf5OjJ61U6vQXCv+ato1v297EHi+PjNgwOjr84yHnH3lgPjhw4ccHDzHCx95nrZZ8O1v/wUXFxcEdYRVVbFoW3Wmae8Y5ADke877kTfOzri2XnLdCmQ1DhHCiKsqlqsV1aLFx8jF2SXjbsvj+w+4iJG0aAscPCcQxSQT2BKJRVVBFDGUPIaVmbBMrruOfS+tunrD6uVCDHAUBzIOA8vlCpIRApcSRjM/YLlcStCRZJiL1Zq9THZTwhUV3oskbYyJ9cFa6r8gbPIktV9jrKgt6pjdFAOuqmVPxUAogbXQd0kI94CIiT0ffeaE//KXvsyuH/ijb73K5TCQ8ATtSCAZjInT/U5pNt/gyqKRiJ6UxS9QtCwb4zLqfJ9LMEco51ya3B6YZ5UkmUS1t0fnAQgqaFX2ERmZ2A8J5sKzJiM60zuK7ss4SjBgUsIPI13XsVgup71VeDUSTJACQ9cx9J3eSwm4rRMI3+XhV0YIdTaJneh2W0JQDX9TY+uG9cERxkK33cgkTSPzLwa9/2XaqZE9M/YDdSOEQ1fXxRekGHFNwzh6QGSArXXlXmZ7LaWyzEVwRc/EugpCYNcNe0iDlK+avXtR/I8x2kappc0gSq/BB5qmJmig5XQegvci1lfrXA5rZEZJ9KO0IBttOcx2OnolAivHIiVtD7xSCigJlfycA7kcaGbkUxDTWSb0Vzy+D2QglcWZL9AkRzvL2GYGL5N28omMo8eHrDIo8asYzJrVasnJ6TWeunWbk2uixOZUb9orWWm6wYngIwnL6uCQlw6OqOpGmMghMo49m4tzzs8eq0qTXhRyv6867ITO6w70/aCLStWknCX2imakmbNXJGEO98Lk+PTFZLhuek1S2D0qK3eg76VDoOt6ei2piKjLBDmKc6tZrA85vvk0J889y9Gzz7A6OqCKkeHRGZv793j0/h3GywuIUnOKir54LdPkTKFI/6qDXbRLnLNcOznmhWdv87EXnuOTL32E527d5PrxEbVzhGHH5WbH5v77PNxu2F5e8vj8koU1VDFRu4qmqdntduThUDkDkkuyn8GQsoCSLwFJbkF1zrHdbtjtdrPrpv3taGxk5+qEZpaVZjKgKSgE2VSmqb4250NkaDEP03Iz6dJZ7jYzLFbrhvL8wfqAG9efIsbInTt3ePPNt9hstxiEU7NaraiVKT+tk2ldGCLOWDrvee9iwzPnF6xPDrCIszMWVnUD1tH3I9FvuPSezcU5l+fnhOWKytUkN5WqBNa0AhAATq/COA6YRCk/ZdKtqyqMsQxjX8az+tHTLlrqtmH0A0HXqnWWumk06wlMc3QT9XKpf4tFK8GPA0H7tU3TYA0MfqTfbbDWsFgdUFVOW1sFwXJaqgtRR9I6xxjGggwJN8XSWCUNe6/DnAKDlzatZBLORF5+/in+xT/4eTCJr3/nDc66nj6OGII4G4HBCiKQg/d9ftGEBmb4dTK82TyKXUlqa2Yh8Z4VnRP9pNlv9ncr/7c3DXSKKcrPuYshH1uaHff8kUcbT1tPjjGmiO97/NhLUBUj49CrfK5Tsmd+r0LzMTEMvZJKJSGqXKWaApIpO6SzqzJGWvF0BoExSfd5xdHRNVbrA1HeO78kRC9s+SSluL7rJDFsGkF1kS6Zqq5p2wWokJfYAekuMqafzS1RhFoRjDy2eb+UlVX+prLvbrejqqqCJMh7M23FTLLBKpdtVNDIWkPdtKS6Fm0Ak+WMJYC2iMJnitopYa1MFDQJR5QZJFr6yh06KYk2Cxk9TfPW12ld7Xc/TUiV2MkpEMjqrX/d48NzBnJKxyxaTUxM7tnz822QVDFsVPVAydbzgdrSfnj9xnWuXb/B+vCAqpYpV8kHpBtDMoEUAkM3sN3uuNxtsa7m2vWb3H76NoenJ1jnGEfP+aPHvPvG6/TdjhhzhGVK5IrCmYWpE/OwItGcFulJh00OQxQpWCi9rnNeQCkD6I3LpQCrMM38deM4SlamWgt9P8qEPO2Jn4xAAmNxtqJdrFic3OD6c89y/bnnOLh5HVM5/HbDxYOHXN69R3f2kKHbkuIIKZTIOGS+BpCwKr4iAc6iWvDSiy/wsz/74zx964RbT13n6WsnLEiY3Y7UD1w+usv9iwu6yw2Xu57LnRAa+27H5ehB61lET9u0wkLXKBYd95ox+Xm2k9m42dnXtShSfuxjH6XvB95//322210xmrrqtI10WthWRnOJIlmaoO6pDhshSTvdOPY6ZnQQ0ZQ0MbedFSg/Dx7KraoZ9hZBkQUpnemkMlt0MM7Oznn99Td48803eXx2VqYAtouW1eqAxWIxQ6wmGea8T5I11G3D0A2cdTvePTvnRtNQu0BlYbFaElNiu93ijMUB/a7j4uKcECNN3cLoRTTIyDo0XvddZQvyID3UoaBXczU12QLSChgHGYgUU6JZthADY98z7GR8+MHqkEjCD52sKucgRoyqynnvqYwMoOp226JdYYEwJi1BROqmZrlcqXa7yM36caSupV0tGaNrOTGMIjQlyoZKVBT2gBCvXCPOJiX82FM5yXB773EWfvDl5zn857/E//OXf50/+bNXebDZkuLAWBRP8/qcSHrFmRv2kK0SEJCRmAnCLuB/5ibN3pgDjGzQ8/rLJYCMZIGRe5ZytT+p/omd0AYlAM/tcM4Qma8vDciNQQmOkZTE8Q79BcP2Qmr2rmG32dE2C5xmvk4Fv0yyRKbEImi2mmV2SROpLUYRlYoYnZfSieBXbgV3lqpd4Op6mqY6DBinXIYEWJmImecDmJQKw7+u3NTJlnRschBuxbwDII9Ql/59V9Z6Rj1qJz9vt1spg2hdv4w4DqHYHUkaIsY4JfnVegsUJbCWtnIEAxfe47ueunI0bc2Y53moGFBlwTkwKeCMEOqDBrFoW3U2kgaKnyElJlOaNCie7vXcJkoJbAqAntQZ9Zc9PnwwEFOpwxamtcmZTtxrN8zrMeoCGsdRIRCNxBChmbZdcHp6yo2bN1kdHeBUiMEHT+UkI/BWZmR3ux2b8wsePXjIxeUly8NDPvbJT/LRT3yc6zduSNtWTJyfnzMOA+fn51KHVieSmHz//BjzcUrteiorJPKGjOXmgFYZEjo3YUYUzJF5mlq85hwL7z1919N3PbuuY+h1qJAP6rT0BiaB3mzd0h5f4/TpZ7n+wnOc3nqKZrkSqO7uQzZ332dz/x5jtyGGobD9M6tZjtXhaqfynw117agbQ9NUPHv7Gf7RL/0iP/K3Pk8Tt4TzS/p797i4/5Bus2Hb9VxuRDin2/Zc7np2g7Q39sPANkS6bQ9e2r9qHR3s/Q5KjDo3nvm3fdKLc47r16/x8z//8zjn+L3f+302mw3DMJLrx1ez/xxIlt+T2UMK5CFtrlFVC+UzBSWy1hbVwxhFL/2y70QpLQZWq5XOSBCZVUtitVqxXK64OD8rAZb3njt37nDnzh1GL2utqioWiyUHB4eStej6QuuueV3lNaObC1NZdn3He2dn3Fy03FovaBc1FtX4TwlnRLlvu92w3XU0bYPJfJCQZA9GnSwaZTBMVgFMUcWL9DZMNV5bHHFuaR3GQLNsqZqWsR+VzOpZLFuaqi5QcV1JIBCA5XpNsgafIvgkCm6DdFNYQyFz1VXFcrVmsViW9tuYonZBZMMcCFHuUwwCmzorUw6t044ha0QYKWYdejTIkJKMiXJ9hVgW+NzHX+C/+pf/lP/vr/42/+E/fZN37j/iYrcl6EqdIFfpzc7S46VFc+9+pRLklr1mJ0Z7XocpvyVpKasEDdoOKBte0QYza02cghPirPtlryDAPmowC5qnh5leM8MNDIbRD3TbS2lfc4mu6xmGnqT1f1dVWFcxhF7ODfUBiuYKWVcGTkXvlaclpN4YAv0gI8kzyc1WFdViwXK9Ull5aeUOMRAV9clTAXOpzhik/TDE0kKcVQCdldkGXstgIYshxYnxn0mFlU5EzXa/7ztSSkU5VPhbgmTkhM9k7YAUSodSLoHmwLRuKpwT5cYQIpWr6MMGkwK1A6ft6daITyEzVbRUHoPIvxOnlvWryKGsrYzosleGZWYP83uudnF9PwHB9yVHPK95GcUjyhjY+f/nDoEQ8MFrhqonprBF27YcHR9xev0a7aIlxEjf90UzIIVEHwJDP3B+cc7DB494eP8BXddx7fpNPv7Ci7z8yU9y/eZ1qrpmt+t49OAh7775Jq+/+l0ePbqvSmsZMo6FDGPIm80UOEYIYVKvDMHLsJ7g9UQzKzdfi0zUygTD/ZuXf89BgPcip7zb7tjtdqVdMOggIFIm41iMqakXBxzcvMWNj7zI9Ree5/D4AJMi27NHXNy9z/bePbrHDwnjTggnuY6ZBD6rnOP69VM+8YmX+djHXuT0+JBr125ycHTE6ekhB4uG1kRWdcRu7zE+uM/l3Qdc3n/MxfkF55stm+1Atxvotj0Xu4Fd39N7gWF7H+lCZOMDcRhJRjK/tmnouo482GR2Nbja1wtTff/WrVusViv+1b/610I+DVlrQPkMTjgcVuuSUyScA4X9xT7nRex2Oy4uLhiGrkiGLhYt6/Wa9fqA9Vo4Cnfv3uX99+9ycXGBMYb1+lCdgYQ2rqq4dl3W2nZzWQzJOIxgpM2zbRvathXhIazyHaaZBZMeRg6oTVl7VVPRD/Cw73nr/ILjxYJ1Mmy3feGypBgKqhSNoa5qjM5OCD6Am2Bjk+c/RJFOFgnUrB44Kaa5tiV5nTI5jBLUOCfQZ0jaFuYBw6JdSomrG6iauugGLFdL2sWi7PUA+r5BuhSco1rULJZLUX6rKuHrjF5oCwrLVtqnnkdfk8APozpeq7VRySKz8EtUs5OMxbWuGHfUqFvtZXeV5SPP3uD/+M//AYenx/zyr/4OoR/owsigqIpV5xlz547e+zn+XhIhrUNd5YLs2Uum48xrNWbkQRHKVE5gKiHss8KZnP28VFCCl32bY/YLD3I+M0G07GVjDPT9FghlT8aYZJiUq6jUCafMe0oT4Rl0jsUwslwZ/T3gaHCVwceE17InJOF2JDg4OqZdLEpwmh1s8IHKilJmaXf2InFdRM+iEBvb2dRLZyvGsS8zEMCUQCAnEbl1NV/XEASlLrwHDEn3hyGWGSgyQ6EqaE4evdypjHbVVNTNCj+qRH5KOAvLZUMKXiXAk9byo1xnbZ2UTi4t384Q5bxmkty0ybnHafjZXGRtnhzN28Dnokd5XXyYx/fVTbBHpENtj5lIWHnBZPngDAXNA4mUhKB3eHTIweEhKSW6vseMhtpVECIeUYi6vNzw6KEIt1xebDHWcO3GDV761Cf46Kc/wen1a6SUJAh4513eevVV7r//HrvdVjaAMWCsZEm4Uj/KD40HxEhXUmKIKXF5fiEMV7SmZwwfkDyeXY+9axMnYokfRyk/DAOddgnkcZwpZS15izNSs63rBcvT65w89wI3XvgIp0/dpG0rQtexefCQyzt3uHhwj357qVC3ThbUfME5w+HhAT/+E1/iP//F/4yXXnqB5bLFqLNm7AiXj/AXD7HdSNhtubx8xOXdh1yen3NxfsnmcstuN7DdDWz6gc2uY9N7umFg9IEhRPoIXYh0MTL4AW+NIBnqIMbgJyOmkMw8OM31amOEFbzZChJwdHTEer3GWMNbb74lr7MVlWtxti61r2Ib82xmMxnC/PkxRrpdXwKBpmk4Pj7i5Zdf5vT0lDfeeAOgoARPP/0M2+2OR48e0w+e5UrgR1OgVyHEnZycsFQt9VyGkaDGFGe23e7KzA1hWkvk75xjuVyyWCyoKiWh6vFm8mM3et6/3PD8+pDW5iFRcmZ+GBi6jjEG2oM19Xot09O8J6mj1ObRmWQWBQkQ7fjZKOeqIiZEgVJHYYcgXQvWWi1dCURsKynd9bstKUUJ4BO4uma5XENI+F5KMGNKDONAXdU0TrpNlsulHJGBeU95bq/LMHPZT1Eg1BiTOgVP1dSklOcvaEaHEIpzWywxFVi6WTWkJC28wci5375+yL/4hZ/ltF3xK7/7B/zFm2/ycLNh1Kw3dw9NY8tm7ch7qfh0bXOZIHMFsq5IyXCZyF6yXCfNf5Nr18xRrfyQVtAJ6lfkYDYsjlLeSAUqn46xnEHeiBPCYRJ9t2XoO5yVMksIkaatCEm07b3PCp+JMA6EMEoma9De/qBr1ykK7KlT1qWQi2OdAysywgcHosIZg9eEy09cmpg0e5Z73zS1BIy5ZRwjwUArszm63cDoR0GRTb7/MnUxxVTIgLl0kPX/q6qiVpn0cRi5vLzUtnijxxMFjfCebvRUtchhBy0dlJbEYSD4hqqWiYtVXRMNNG5J8D0pDNg8LChlTkCgDA5KYVrDe0kkMynomZIkBmdnSICWSPM5XnX8+XVXk9S/6vHh5YjzkapEpXVO6rQ6ZrR2tUzU8/ttcTFmmVmpzcqkqIXoE/hIbwackn6CFWJh33Wcn53z+PFjgXfHgbZZ8NSt23z0k5/k45/5FCfXrrPrOs4ePOSdN97grTe+Jz3XXtpCShtage/zfshTwaRuVFcyRGnZ1PhxZLvrePOtt4mjGKKICGwkNaiygc0HLnbKvftByFcyeEMg1l0vLNwYVNsbA0lrYiZi64bl4THHt57m2gsvcu3Z5zg4OiQOvbQJ3r/L5cOHbB4/ZNhthJ2dUjklMViJ45NT/tE/+iX+8T/+RU6PjnVFaXvK9iH+3dfZvfkO/W4ghETf9XR9z/b8gs2m4/Jyy27bsdnu2HUD2zGyGQZFBDxjjILW+EgfIn2M7PzAWAtkhxHH6lWUBmM+oAufpYYr5xgVNXn3nXf59re/zWc+8xm6ruPP/uzP8TrP3FUVdVMXoyc8Acgs7GyT598Bkm3sdpeFyXx6esqXv/yzPP3009y6fZtf+ZVf4a0332az2XJ5eckwjKVdKWQjZVNO2mTDWUtlBCZtFm0ZDBWDsPS32wkxcM5xcHBA2zalPrnZbDk/O6fvew4PDlSSVze6kY6MXd/zeLfjrctLlg5cDOAkoOi7DlLC1hXtaoVtpfY6dB22kkDMqXAMgFE9/zya21jD0Ad8TDR1QxkBm6Q+GWICa2nbJUlRJh8iY0w0ybLd9fhhYLUWVndIiXa1wlhLt9uy64TnEVLCVY52uWSxaLGVwyvpMk+BlGwzj8mekgWngZX3A7nVLJPCZL8FjLGEUf61jcM1DT54LJYxjbjaTUOTQqSqpNxnKkswkeOTJf/Zz/xtPvGJF/l//bvf4N9/5T/x6FJKH0FZ/U7bFYvtY6oSaK+bJguzWn9elzkbnAUKZYVmJ66iY9YYInkux1SKTYqk7R1AhqoKWpFJyhOClV+eNPCaPTFZC60ejGNPDCOttTr/pOfw2jWoHCl4FXsCiwiCjeMgwmw6alxEhnIgBDZJaaq0RWZ+AZaDgyPqdqEBk5XZG1EcYlLOVvSeoEqDy8WaweeJmZVMu7VWOgaWS6qmYvSjmhmDczI0bU7Uzf6naVrJ7IcRm6BeNGL3LkUeWUkaBQGJoy+J3IKW5bLVLrlRBww5DAHvB6rKsFy0hHFABN0GLIFkhBAo3S4qr52DXfUlpUymx5t5ZiZjFmY/QLTZr82Q0CeWBvROB+3qi/Pa8V/x+PDIQLpSrygHaFkuFiwWCwbVqLfWsOs60igM+lGZnlUrSk7OCXu4jxEXKjKxL4RAtxVY9+zsrLD7Dw4OuHn7aT72yU/w4ssvc3x8zObsMffevcNbb7zOg3t36YeuQK7ZqGCmToaiForwAaLoC7FarThW1ny32/HG62/w6quv6kzsKQAgR/eJaXjRHA3IHIEYVR1xS9f3WofV4TpGIEWnm8e4hmqxkpLA8y9w/YUXOLx+ExtheHzGxb07nD+8x3D2iGG7KaWL4L2em5oYY1gdrPjpn/ox/vE//M85PTmcNn/sMZd38W+8zuaNN9mcXdL1QQIVP4q+wXbHbjdwuRnY7Xq2XceuH9mOA50PJVMYR4+PkX7w9MGzGzyeQD8YaipM01LXDdZ2IhCSF+isbiVwniXodYox8vjxGX/8x39MVVeKoIw0dYNzFU2zKNPHJlhsvx2wBAQlOIuqTDnoZhEU4t333mV9sGSzvVRGPWw2l4yjL0OgsuXNmc08qJ7gObBlZFxk6Hs2G5nAKRyI63zsYx+lqirOzh7RLhaMg+f+/Qe88847QgZ0jkN3IAO15JuwlWgBdIPnvbMzTivLkTPYyuLDyBikdn60WtAuhZg47Dp22x1NqwG6QdjxNpEny2UkKo8AJ036ArkDB+1NXh8eKklWCHohCRN8wDOMkaaSEkKMIopUO8d2s+Hi/ByM1IZdJQhIk7sOuoGqciILDUooHotOfYZHm6rCmFRImjHJhEc/9LiqxnedTN1MEsC4tqJqtaYcE1gZiUtMeCM8pqquIYjiIYBxkgCs1g2f+/SLHJ78Qw4WDb/1R3/KWTew3cmwHJ9Scejl/huKcmEm/7FXw82Jgkx1tIpQGZuN+ywzt9PCdVZRwgI2RIydZ/L5s23x/IKJXNkCKTt6M3ti9u8saEhJyd954I0f6bsd1sDJ0ZFoAOw6cWhJRG9CjKW1G+ewdS0S1s5J1qqQe4o69yQGcfJJ9EMahezD2BPGQTQvNCAgSQ0fa0lRavSLqpbScS0lpoSgWAvvJRDT7o3tVuR/h0HusascztX4IJyscdwU1Nog7bPb7QaviULmKQzDIOdpJcEVwSXPOHZYA+2qVl6UKDJaAyZG4tiTwkgKg0799CQ9NxlJPc3T2VN1zevLTMZlzjm5ihQV3pQV8s9+y7WWq5Iib1DKrSH+TQcDs0VnmByhdZaDgwMODtZSRxoHuq7n/OyCB1502f0YWK9X3Lx5k9VqRdd3pYVj1Cxs9KMQuS4v6XY7fIhUdcPJ6SnPPPscL7z0Irefe4aqctx99x3uvPU2d95+WxwKkoUaO6nP2eIwLMEILJnrtAapT51cO+Hjn/g4xyenbLdbvvud17h/7x7vvfcu0gesFztmYYd8Q6cI3KRJ1td7EaLYbDZsNpvSQ59C0EWuw3cMMov76Do3nn+JGy9+hGtPP03VNvSbHZf3H7C9e4ftw7v0uwuIvqhRhRiELVrqlHKuL7zwHF/+8s9ycnwkx2wMJvawfcj49ivs3nyL3YNzzjcju06ygCGK6Ma46+n7wK4bRQZ58IIEKDHGxyh1wBjph5FR/x6CSDnHBKPtqWylw4EqQhz3F4wuZudE+nO362VSpMKyl5uNOFmF7aW2v8S5qix2gV1N+Tx5boLF8iPX90pLojXsdjv8GHj++Re5d/cuzz7zHG++8TbWWvpegje5PzJye8KGU0GZJshO/nNA1/VcXJzjvaAKp6enfOlLf5fbt2/xzjtvM3ppHYV8Xgv8eIkfRmUkTzFTVTmcdfQp8GC74+224cX1kioI4cg6qBYNzXIpsOeuZ3spGXlMCbdoMN7I4JMYCF56+vfIbYlCyK3rWpQKq4qo4kFNI9oOVg3O0PfaEhxYLoUAZowEc41r6bc9jx4+IMTAcr1URbpGeT+S8TlrRZ7cWIFXtZc8pQB1TUzSThgCDEPQEoVXERiPMyLYAhCDI2JxTSOO3kirZN3Usi+Mwr3O0K6WjMOAayqMTVRGoOZkEvVCpGw/+txT/F/+6S/x0nPP8yv/4fd56849zs4v6bzHE0sNOqfTha1iJlRA0CpLVVcFOm/KABzZBDL/IKMeMg+laaR7JfOIclBkUpZ9zPLduVQwV6+coZUzR7JfJJAXlYFKZs77kjkofbelbrf4ocd3ggjUdUX0Qg7NNi/oWGtXCQKYsBhbUzVZrz9hkwFV8NtdXuB1wmi9XLJcrmU9dDt2l+fsNhdKRA2lvIXyBpqmJne8GGtpFguahQQDTksS+TwysTCPoM/tshgRLBoVYULLBX3XaWeRjh2Phq7rhFsQgozZRpJEBkoXW7NoWTQNKSVGP1BpwmlCj0yX9SKxHXR2w0wbYJ69F2p1yl0iUwkp6RrJPKjMa7taAhCCay5BpIk2EqO2p+dZBUnH0v8NBwP5pJwTUYcMVVSu4uDggNPT42J0xjFwp3qfBw8eirZzXXPz5k1efvllrt+8xoMHD3nzzbfYbSVQ6Pue3U6mGcricBwdH3J6/QbPvPARnn7uWQ6PjvD9yL233uW9d9/mXFndxk4qYVmpLBOnch3NWUNKAq8kLO1ixa3bt/nhv/VDPPf8M9x7/32++pVXef3V12ZMdlF5ykOKsshEfhgkSJDzlaFCAgVv6Lp+prGvEGHS2dSuplkdcfjUbW6++BFuPPcsR9evE8aRyzvvcXHnDpuH9xk3FyTfQxJn6/N8Ar3hBVZ1ifVqzQ988Qu8+NJHisHHJBi2+PvvML4rPIrzbmC7GdjudEP4wGaUzG0YvWb+owheEApPIoszDaMX2WAl4YQspxwSY9eRmhrqWsdxmry6Z6tIIDZXV8RuV65kJthZa2gaCQJqHYs6ITITwcbEqe0vb5r5vckktIndLdnmW2+9y+/+h9/jwYMHPHz4gGvXTzk9OeUb3/iGzhxw1K6Scagl4mDvs0sNLslnbjaXjMMABtq24caN63zu85/lwYP7fOKTH+f6jev8zr//XbwPMqSkHxCip4YURvvKNcYRFMQyxMC9yy1HxrKqKioD67alXYgIUD8MdNud8C3GkWgttfc4ZyWrSVMmkvdEPu6+F4Gr9XrNUX1MipHdrmO5WhQEYbFYEHyg33X4EFit11LasDJm1VUyq/3y8Rk+eNYHa7lntaITKdFr0N+sVlTOMg7yOzESwqjlPLBJ+h+zZnyBSw0CVyPLqG5aSDr1EIuJiTiOWCd8jaHrGU2gWotUMsZIaYCEaWUMrUMmJ5pGSjQ2we1njvkv/v5P84Of/Tj/v3//H/mdr/wp7997zOgD/ajIioFgJhsgpC1l16v2ws/8zM/wsz/3MyzaBV234/79B9y7d58HDx7y6NEjzs/PCSHwIz/yt/jc5z7L888/zzAM/Nf/9f+Vb3/72wK7pySBnxHCaJ51kss5EwphdLKjOMTsIOYoRSolhGkP5p+NcijGYYAYBMXQGRbBSwt0Jn4HHSbkw1jsWdO0LJdrqqpWpTyHsxFnxan2uw1+GMAYjo6k7Vvaqnv63Zah2xVnGZPwVyQYXehsgIgPUDUNdduCol5O5+GEEDRZCaJQjKVtJ0GioG2FdVUDiegF3eiHnnHoChLtU559kBFgQRxiEO2K2lmaytJUhhQG+n4nLb7WYlAZfe+JcSSFwMRLy6XynL1rBs+EBJayzhU0oEivz56bP0JBHaSc5HP5WYmX3nsJaoyZuvg+xOP7RwYUKs+186qqaduWg4MDyahAZ8pf6JSpikWz4vT6NQ5OjlisD7hmHPfuPeDRgzOBhYeO0Y84W7FcHXB8esrNZ25z8/Ytjk9OqF3N+b373Hv/Do8fPpC2FJO0FzX3S6kT1Eg6E5SEpyCtKImK9fEpn/j0p/nSj/0ozz5zi83ZGX/8+3/A2ePHDGOvsFhme8rtyiIX8xsYo9SK+35ks9txeXFJt9vidRxwyJm7tr05W+HqBatrN7j2wvPceOF5Tm8+Rd3UbM8ecXbnfTbvv0//+CF+3AlUqLXBoFFm1EBgHhkbYzk+OeaLX/giy8VS69wGoof+knD/HttNz3Y7st127HYdu21PP3oG5QJEHxlDICRttNLzzTc6xIAPER/SND8CabuRGleEsSfsKpXxrLBGCEZF8kxrYCmJkMx6fVACpvzI7X7OVorJiopkyopxZMlhNQxOyD2JyQjmzTSRvaR2OY4j9+7fI6XIc889ww/84BfwY+DevXsS9ERBopbLpa7jpA4b3eAz66qOdhgGut2uMKOdk575Rw8fsV4d8ujRQ771rW+x221ZrdaiM+FHsEKWMi5nblMpytYVruoZQ+R8GHl/t+Op5YKTthY9hUoD7l4moO16IVEl27P2Htc4UjBakrJSLsgOxYgEr4+B88sLYoocnh4xjj3OGionddiYRI2t28qMjGbZcuOpGzhnRG9gGCDWXHY9PgTWh0c0ywZXV8K3CIkxDjJroqmpKocferrtTrImzdLqShxEvne542QMeWpdKDoFddNQkUuVhnHopcQQLCxqRm3brNsWU9cyAAcElasdxjr+/6z92bNlSZbeh/3cfY/nnDvGHBk5VWZWVlXXPHR1V1U3GmADICFDgxQJoNGUiRBAESAFmgZSpB5Imfgqmf4E8gWkBvBBAGlGAIVuQgC7ax66MrNyzsiIjPnGjTudaQ8+6GG5731uVqErS4ZjFhmREffec/be7r7W+ta3vg/NIJMs46nRvCbXhN7x2c+/xPXnrvPZz3yKP/zOj3jjzfdYtD2Pjo/orexrSxDZbhfIlAajmU4n/Of/5/+M3/lLv0Oep4JEx8RKWnHLpRQKe/t77O/torTi5OSU13/6On/rb/+vaZuOP/iD/5H33nsvOpXKGHIIIhaVhNpSME5Juvcu2gXIRFE6oQaEQG+SBsdApIBgZfxzkCpXgPJ0zZK+lYpSa0XfRY0YK9NZZV5R1zOKQpBAQT0kiWk7O7RXuq7Fm5x6sgXK4P2a4G1swaooWbwpniNIsTYGZTJUZsgKMc7SUZsi+ICA4OpcUi3KgiIDnFxPCUGq5d7K+GM8111vxQUzCDGyyjWTKmflLL3zIiFMxrSUCSHnLX23jiOyoJS0QgIiqpVaA6mNmI4Kzp1BYaM2EsRaAMdYzCghSZ5vhY6JyuDREYm1buPs7Pse349xS1DqNJWx0a79Ba//v5KB4VBkPHyTYAMISWxnZ5tLly6yXCxj1SPaAn1vZXF1vTCyvSMvSrZ2d9nb32fvwgUuXLrMzt4umTE0ywX3Ht3jyeHBoKetdFpAYx+XKG/r3GjoQ6yoMzLycsK1557lq1/7Gp//7GfYndXcvnmTf/zNb3L/3j162w0V91DNx+Dl06hcEDWoEESrfnOTN81agjbn770yYExBMd1i99p1Lj77LBefvkE9neCahuODhywePWR1dES3XBBcJ9mkghCJDpsztJtOXILUwKXLl3nmmWdGPX4CynX49Zwu9sfbdRO1wIUYs247YRB7CfLWSW8pjb4QUZUBJtzMMIMkKpKsSDKgvcJ3HSEXG9w8y2i8QFU6PisJfALDlWVBno/LLyW/WisCDpcWcxpNlcuKI3oSYEIWUQg9biAIol8f59XTptTaU9U1L7zwAtPphLt37vHgwUPu33+Ac5ayrJhMpoNjmXxjHP3c+PzpvodYYVsbqwElTOPj42O++c1/Ql3XnJycUNUF165fZXd3H601R0dH5HkuVsxKDZs8PjbRhMgzuqbDBsdx2zCrSnYymaYIDlrfs16vpdUSe67eB9q2Q2US+Jz2aO8wIWmpyzP1zsVZcIFXu6YDAnUkd6WK0FrLar1CZ4ZLly9TVSWLxZy2WaMI5PEjV7NpRCtE48B2HRpYdx0mM8wKgYfnyxXeColQKRWJpkJuTQde4tzEWy6mUPGMSb4k+BDvtxate5VjnCAEQUki2rUdhTG4riMoKIqSwSXFaAk0SmFbETsyeY6PrPcr1/b4V//MV/nGVz7Du+/f5dU3b/L9V1/n1TffYdX2rNtWTI+iUNKFyxf5z/+z/4w//6/9eZ48OeLWrZt475lMJpFAWpLnOXv7u1x/6iogh/c7b73DK6+8wvXr1/md3/mLeOf5whc/z8GjAx4fHnJ09ITHB4ecnp1yenrC6ckpq/WK1WrFer2m7+Q5rVYr1qs1bdPJ1JQXkRzZVBv9ZAYGQoILRGytWUd4O+3lpPDqhvvepaQjfm+Snk4VuPZRqMhomTqwwgVBaap6Ql4W2JhMKU30M1BDayrLMnrr0JmI6bggRknaSCvHWos2PUUhqIDwjj7M55CkICXwRiuc7WkWS1wcGzSZITMaqxExJEBpjUNRFBXLxVJGcoMn0wU7OzNpE/WjDsBgI+z8wHmQKYuR8PkzsH5EzIdtHs/3VMimNk4iRSc0M137OTL+4CsyGhUldCIMMdBh+4QqhXPaM3/S65dOBmQN+ZhVJ1nX0ftZLl4xm025/tQ1FosFR0fHHD05Ymd3l1m7LU6DyzX7Fy8y295mtr3F3v4+27u7TLdmKKBZLjl8+IBH9x+wXJwRcCRGdOrfDdkssa8WgEiakt6yHKz7e5f43Je/wq9+7atcu3EVu1rzP37z9/n+d7/HfDWP1bZUxT/jCx3hoyQlnESUFvNFhH3bCElH/f+AjEuh0blAXNOLl9i/8TQXn77B1oULmKBYP3rM/FEaFTzFdu3GiJEsFG9FiyBleyGqVMkik41jjOHq1ats72xvgIEBbIOfn9A3DV3b0zQdXe9oeyuoQC/tB+8TJ0DaImKFG2SqSasYaBl+bcKOGoVRAR+EP+ycqE2G2K4xKoo9DRXJBsxJIsSIGMeY4PgNpUCZRFEREZBKC7quQSE6+GVVYXIRQQkbX1vkOQs/6hs451mv1ty9e5f1esW9e/fpui7qA9RMphOKvDy3cZVKRLvznIH059SnTOvSOiEiHh8fo4Bnn3mGoix4cvSEOx/c4f79+0JYyvMoo6rG90tnjRLhFW00vnfMrWXhnOi2e2iaLgpYyYhh6jG2vaVpO7KyxPiA9kP9N+7TqDmQZRnb29si89v1Ij+bZQRUFAgT3wUfAvuXLzKZTWnXa5bzBSF44aWEgLfjNIEGuqbBdz1dNBiaTqcQAqvlkq5vMUqqoTRSGoIXt7YQIqs7ni3G4L0EmyzLxN0w3fO+lSBT1XR9S05AB0mEJns7khR0PZ3vcFpRXtgllOLLoEMc+/Ne7HW1kD91lkOW47SB6JS3Xed86fIFPv+rX+R3Tufcu/eAB48e86M/fpVbdx9x//CY6e4O/+n/6T/lC1/8Au+++x7/5X/5X3Fw8IjZbMpsNmVra5vd3V0uXLjAb//2b1PXNU3T8p3vfId/+k//KdeuXeMLX/gC67X4e7zwwvN8/OMvkubGXXwO6/Wao6MnrFbydULSlVG5B/cf8g/+wX/PP/wf/iHzs7nwLXzi+DP0y9Xm+k1RywtnwNkOZ8F2GSEli3HfSMWfiqQUfITELERtE6WDx1G+9WrFer0Cbdjd25Nx474bpuFCEA4MXrhebRzpzpERvaKs4zRIRlGWgghsFJ9JwjytD0kQxtn6LPpwdOuGvm0JXpJO26czRxJNkxkKIzyJk6Mn5FqRF4rLly+R5RprBZnRCQmILQ0CsaViB25D8qxQG3c+FSJZlg2txPMnoPx/ips+iGBYghCSGF4SUkpFWd/3Qxvcewn8idsiX5Nk3lVsZfORXr+0zkAEaIakLIlVpKZnYk1qrdjZ3eH6U9foreX05IR3336HoqyYzbZ46eMvc/HqVbb2dqinU/Isw3nHerHk0d273L99m8X8lM6JNW6a3YVRzWu4kRtJgeQCCnRGPdni45/4FF/51a/wiU+8yPbWlDdff4P/8Q/+KQ8fPKLvWmF+Rn1utwHBp+uVg0rGBb0XYaREEOySk90wgyQZqxj/FFQ7F9i/dp0LTz/N/tUrZGVOv1hydnDI8tED1vMT2nZFCPF944/Qceymd5GAGCt1jx/GUSSDFGj68oWLFGXGGG499A39Yk7XtKybjqbtZAogJgM2MFSHHmEz+yjMxHB748iQSq50432J488yWhchLnzAW4vKhWVusyzagOoBNiX2yYfseQPiDyEIarFaIWYhObnJKYqCqqqoqhKjDfPFnOPjE1brFc57JrPJBjIg8OF0OsO5EMl9ArE2Tctbb71FcslMeud1XSNs4nZD0IjYcxQDpGHkK8Gt8ZdPssvWopxCFYorl69w9eoVTo9PuPX+LR48ehRHDqEsyqhwaDbW2jigBsLSz7KMprdYFzhbNayrmgKglfno4J0QBeM+6NoOvVyJyE8hLoOZN9gQBlY7IXIujGZ7Z5ssmf4EZJrA+1itSxAqq5LpbEbXdjTLNcF59i5eIM8zFvMFeVaIr4EXcaJ2vcb2HUEpJrMpymiatqVthY2tTDqc/BBsjJbqR0WhHx0TCxktNUKUGoKjHIRFWdHbHrAYYH52hsoLTAg0Z0s5BjJDvb+HKnLRYDAa7cB5UFkOSmPyiiJvBB3IDF4nBrlHlyVBGTJTcHkyYf/yJT5rDH/mt3+b+bzjZN2xfeki23u7LJcrHj444Pr1G0zqKW3X0DRr1qvHrJZrskySP2sdb77xJv/df/ff8/rrb3D58mXW64ZnnnmG7e0t6rpmMpkOqMJkUsU/X+TKlcs/9zz+5Cc/wdVr1zg4eMwf/eEfyfhpXEsaGe1NrbR4SMXJSI3H0bbSkgg+o23X9H1PZTTKRJdLLzPymlSkqCEISa9fxopDDH7BefquYb1eU9RTJpPpYD6ksNgN4zEfPN56lDYUZSX8gLh2RWpbxOnKqpQAmM7kOJaZZaP8uATfsYK3fSctIu8ITmTwNZrOdqKfQYhOjI4iz8gymE5qiqLE5KCQ6t8lPRcfz8aNCh3vhY+iYKSWxgMxFamBOKV0XjZ4eIaxiE1UL78BLYsqrrQWfWwVu9QqjmJ5Pu7VTYQxIZvpRyllfuZ9f97rl/AmcMCYfQ0LImWNhPOsRaXI84xLly/R9T3Hh8cUZcWla9d5+tnnuPrUU8y2tkT4xDmWZ3MeP3jAB7ducnjwkLYVWdsBDdiAhFLvRcWDP2K4g9VlXky4fPUpvvyrv8oXvvA5rl65xOnxE/77f/JN3njjDZbRLUvgZ1kUKRnYbBMQpOcikw4tTSOStW3T0nbthr6+XK9BoU1BUU2Z7gsasP/U02zt7OH6htMP7rA6ekx7dkqznEfGu928NBEhGR56fPDBbWSf6aMFtA7kWcZkNo0yrfKkCBZci23WdKs13VpgxKbtaVpLH70ivJfZcpf4CD6JYMibaKWiEUm0nA0OReIJjNV6FqRHr3EUncVqS6gLdGZk9jg9L520AcJQUcteSC6A7SCIM5uJrn/f95RlyXQ6YTKtmU6nXFVXuXv3HvfvP6BpWvIiihLFsS55fJrZ1pY4HzYtXS9ZvtICG+d5HpOUQNOs6WMQFDncEIl42UBozOSEGNpTQQWqqmBxFjkdLlYDDh4fCMR7cnLKcrWUGXit5bCfTsZWBGPHLaZ3QCBTGUVe0DfSBlg0a56sxFbbeIvrW0yRCxSLHBptJ2I/pqgo6gqTaax35CFV3tHGVmuZusnkPbq22Uh0/PBZnfPsX7yI0ppuJf7u050dynpCu1xBCGRlET0PPF27jl4ggcnWFnlRyMRJ38U53ijH7AXpAsjznLZvyZIXRBAPehcSUzygI3qVLM+BAaYt8pzgelbtip2iwLYN/brBFznbVy+ii5yAQesM4xy2XeNMTl7XspadQ5kC17co5zGmwCuNziIjPWiMqQhaNEjb3nG26jg8mzNfN3zw5Am9czJCGRwvfPwFvA+CGi4W5EVBWRR85tO/QllWHDx6zE9/+ganJ2c8feNp6smEg4MnrNct08kErTXrlYirXbp4iQuX9rly5Qof+9jzXLx4cWgrpV/eC8rz/PPP8ef//J/llZ/8RESEQlRPVPE/UTtB9lxCLx1eg+1bbNtg8gnWyfRIpqGsclyX0TdNtN4VvYBRe0D6/d4FTK7kGQaJByiFMprp9o5MAykIXvgJthfp4bqesFotcE7UB7XRJK+MENdGUWZ4b3FOEKWU0CajuT4SFEPS0UATnKVv19KScm5EIUIYgrmKqrJ9Z8kMTKdTJmVOXug4amsHDZQQQnSajdbNyUAoncUbbUQFQ6KSXGLTgZ3aGLBxhoSUosmZG3zApjPfj9bu3rrhazenBVKCslnEbpIRGWrkjVbkn/D6pZABlZQ105spcYey0XHMpDnY4bIDeZFz5fJldma71NtbXH/2WS5dvU5ZVagQaFdrjg8PuXv7fe58cJvF4kyyLh0GqWMC4wNPZJMwPAcICqMMSmfMZtt85vOf4cu/9mWee+4ZjDb84Aff5Xvf+S7HJ8cDOQci0hFv6IcZlz5CLV2cEpDvE6MesZj06VKlolEak5dU23vsXLvOxadusHvxIpkyLB8/4uzwEc3ZMb5ZiYd3dIcb6T6j2UZ6wEnKmKgrd36aQQ7hIs/Y2prFezX2BL0VKeeu6YQ02DQ0bUfTSYvARnU37wO9T9LIMSONSYL4gkuA2kyStNIE5QfZVll/CYp0KGdRPhfSpvG4MYcZ187Gn5M8bh/RlzzPefrpG3zta1/jH/2jfzjcZ9s7VssVOopXJdjM9T2hKIYKchgh1ZqyqsiLghCmch0+VQ599IhoQInTWFEWFEUOqLEfu17TNMK8L0uRzc4ygzaKelIz3ZpxdjqPSmnSKrh///7w2VBskGynVGUFRHtreVTjZ2ZY7oPgkvWWxvYcLeZkeKrodiZKe6IF0DvRfcBZitWKelZRlHl8vgkRGNs7pLaNl0OlyDKM1vS9H8arqqqmries52d01kJmKIoK23Q0yxW6yEBrTADbdqyXS9q2F5SvKLBeRmFtb8U8KV5zUs7Mcxkf0zE5AZF0Vlo0SLLMxMNMDv2kUChGMh6lHC6NjLYdbuZoFks6F9i7eIFgPb22ol3gFdYrfCFiZ/RWDNOUIssrgdx7mTHXWYZWFWCwQGs1y3XL4dEpj58cc/f+Q87mc6azGZevXKbMReXQmIztnV1CCMy2tum6jj6O1t17+Ij5eo0KsH/5En/mz/3ZYeLIGD3q3gcIStG2LWfLJWeLObdu3ebKlStcvCiKgAcHB6xWK4ChWn7y5Jg7d+8wmU5YrycSMHobx4GdVPNakq2huie2z/oO17fk5YQQ76fSMiaZ5Tkuti+H1lkM2KInk/g6UT/fhghre4qyYjqdIvyqHtu2MkoYIjwThB+TipBUgDjryHNRqc2MkL9T1eudOxcD8lzaB30qyoLYHvdBOCTWNoh5W+qvQ5YbiiyXil9rJpOKWV3KBE6cDrCxbZU0EHwSxtq8D2krEYXUNtD/sUA8f9aNpO8BCyUlAul9bN/TNR0+uPFs82HUKYgEyXSfz/FCEnK+IbjHxvv/otdHVyDUasOPQLLNFPZdzPZDrEISo9XHwKaLnIvb++xfucyFy1fIy5y+a1icnPLw7h3u3LrFkycHIjqR0ADUuYvUahy3kOvcmMPUGpPlPPPcx/iN3/xTfPJXXmZ7e8KDe/f5Z//sf+Le3XssF3OWy8XQx4FRH2DzJdmuiKL0rUgiL1fLAQlI6nRDZYtCq4xyMmP70mV2r99g/9o16rrGrlY8OTxk+UQMhXDd4NdgnR1A/bEmDAMcmsZnBJZOWaiA6jryBUCCWF1X4zOPQTsosEDjpGps4q/OOvrYj7QDAWWUfg1qTAQENRASZojPJaL8IrqB5ApGK1E/j9lt8J7gHJnReKVFEW9zs3hxuZOPK1/vrATT1E5om5atrRmf+OQneOP1N/HeRw0HuT+LxUKg8qFltLEJU99OxUNr434FJbDacr2ma1vKsuDKlcvs7e1yfHxEVVVMZzPKomQ+n3Pz5vusVqKBkMXDx1pHEf0S9vb2MCZjPp8P2bqNM9lZLgI8VRTl0lrTdu25JFINB4YeNm8gusLlGU0nmNxp25AZzW6ZUxkNUVFNIaJANiI6675juVpT15W4fzqH1ZrcmCjREHvIG/dMfABEI8T2ItlaliVdJ/9vSrEHL4qcxfEp67Zla1JTFhVuuWBxesJqtaSsaybTmZwJXRf5BxaNwvU+HrCeopT5dBMNYNLnUEYPTH+xqk08ETuqt0U0MPWu18sleVGKdkLXMbt4UQyTupasmAwyunk9pSwn+LahX6/IqpqgMzwarw0qzwUZCBlBFQSd0zSWxbpl1XT4rGTn4iWmu3sUZS7ytZ2spUCgKIqor+FoO5HKdZ1jtVyzXCx45/59yqri0qVL7O7sssyXtE0bD3+xBm4aEb6an81puw6l4Hd+5y/y1FNPEULg3r17vPnmm8P9Wq1WnJ6e8fDhI+7du8v+/h7T6YS+E/+K9UqQTJmEiITcZOzk0xnr6boVNVtopYWkDULuTUm1UgNRTpmomjnwfUTkJvhRdbDvrSThefQacBbf9/RtI8EthGgoJbojxN524js47zG5JOWpJaqNcAW8CyRXURG1cgTr49kjuieua2lWc/q+wUdUQBP5DQpyHai2a6qyQCYfrBAo430VMSbhNHw4RoxF0fk9fA7ejWf5hyX6hoIugAqp8EuJjCS9fd9jO2kLyHMbvSMG5NonGXpEtCzu5Q+3IVTkR2h+tj3x816/hByxGmHS2EMVzQGFDcJyzyKEJNKmMiLUu0BeVGxdvMDehYtkWrM8Pubxw4fc+eAWD+/fo2lkPCstvM133byRww0PY3ZojGH/0hU+96tf4Stf+SLXr13FNg3f/uff4q033+LRwUNO56diKMMYMNINTi9hZ4pzVWoHiJLgqDM/thGIEHNGnpdUWzvsPXWDvaeus31hD+0Di0cPOXv0kH61wFqR/fRR4tOnZCKE4QEO3ARrB33tc4lKzJxDAK9GNz9I/vSQWMQ+eLzRhCJnHeHNtnV0vfzq3QY/ghD1AgT68lFcyHmGhMAGLxajOs3BKrHi9FqEVIOSoB+ZvonRaowh0zoy3jce57lsWZy7ZN5cYa3c3ydHR7zy6qvs7GxR1yU7O3ucnJxycvJEpiPaduAJ6LgOx00ajVlS4hchRDFXsSwXK3rbs7O7w9d+/au88MLzPH78mFdfezUmoPJTRD9jj9VqTdtKIlcUBYP4EQqTaXZ2dphMJoPSpI+KY/JspdperZY/qz2hJMCKKqeI1MSFIT3/XGxTrXd0wbHoOqrMkEWZXXw3LA3rIvEOxXyxZGs2pShyXCEQO7Efb9SIxqTkQ1QAwXby+SYTaWU0TSOuh8gYXbNYMl/OMWUhviKd5ezkmLP5KXlesLW9A9rQda2Q0vpoT+tFrtloqKqKyXSC0pGzEu+11nowkEkjyiFIa6CLFbCOjngBJWhW39Os12znBav5kmw6pahKSabyDBX5MCbL0Urhmhb6Bq1cbDmUZGWNCkI4U7pAk9M6zbq1dD5AUTCJ4kaEwHK55ujoiAf3H3Lv7n0ODg5wrmdvb5c/9Vu/yY0bN+htR28tXWfp2we8+ebrHB4e8sILH+PKlUvCj+otJ0+OODw85MmTJ5ycnHB2dhYNnHpefPFF/ua/+9f57Gc/Q9/3vPbam/z0pz8VZMwIeXA5X8ieODvj/r37HBw8GkYxZW1lFMVMqucokd73vTwPKxWnR2S7p90OqjCCJrYt9WyLoijoG0Ec01SP0YbMZIMqqPMOHURsyUWtkhDkOQcFzvWChHadeGt0HUopslz8EJKssVKaLCsoM0MfpGVYFiKuFbzFKx33QpomYEjSJTaItmwftRK8tzLW2TUYFHVVMZ2UlKWhLAwmE2nrVGkPqGxsBwQ/qgYmoroUutLySjLQ6bwYsbeRx7ZJevxwEpHGxG2cRMCH4R71GxM95/gVG59JpXPUBxmb/RAAoGIyvalZ8Itev4QcsY8lYYrJauglB+sHxzKlhBDU9cJgx2TMdvbY2dnD9T0PHz3k3u1bfPDBbZaLeYRY0gEcsya9SQw5D7UkjoBShno644WXPs7XvvENPvbyc2xNprzz5tv88Hvf5/TkhMMnh5ydnQpDOcLKmxKOmwx2Z3uc9TRNy2KxYLVa0XedmLhE+d/kemgArTLyyRY7l6+yd/0pLly9iikL2rM584MHdMdPcJ14wKee7TAiElnvbCySlGwIOeVDpi0f6gUl7wVtxDzmwaOHIgRT5ULEIqCykmJri4Cn6XvarqftxGjIeUtwFh+DuAujs5gkrhqHp49JgPV+UHfTWqr/TGmckbGVoAIZCm8ygUxRaOdoncMag8JGYqIoq6XqNDVIfJBxJWuT45jMAL/37ntoAzciv2Rre4t79+4Nm0QOFdH0Dz7qS59rpahYDcdN7a0QpvoWpQLTSc2nPvVJetvyzLM3uHzlMn/w+/+U5WLN3K/o+1aUCUPcjKnvrsb1o2I7Io+KeClzt1YIdYvVatgXRSHtAqVEi0PIqL0w4SdTyrIae7qANhlG51glkx6rrmWdZ5RKESLYISRG8LFCMVnGum2YL5bUdY13GicqPkN7jSDVl0PcGE28f9ZKRVdPJ3L4eUeRVzS2wQZPuxAVx+39bYzWnJydsFyegVJMtrYoyoJmvaZrhEioJVrEPeAp6inlRJjiAnGPCFuOaEooo+VakFaX7cVWWWtBmBKcroHl6VymOKwnaMf+9rYko84RrJIxVyP71a4X4C3ae2wfCDVUWzVKFSgv0xsBQ9M7GucJSpFnekCeurbn7bff4fR0TtO2HB+dcPv2HR4+eIDJFLu7u1EnI6MsxVApBNjb2eaZZ27Q9z3GGE5PT3nt1df56U9/ygd3PuD46DjqCcjxOtua8td+76/wl/7SX2RrNuP+vbt897vf4d7dezJOGFn8XduzXi1Zrlc8Pjzk0aOHtE0j9ABGpHE4MxSUZU5RFtIa7PsB+em6Nc51FGFC6C3NcsVkNiPLcozS0bhVzqTciMSzVgYhpinhNLloZtT3ZFnOdGtbjnPnZMSvEQ0WIlm7bcDkZUSGDIlGXNc1JuoE+NCjEFVOGSnVIsAWW6zOOuqqimq2AU3A25bge5wVAmGhNPWkZHdHfEKMSdV/RCxi4LcxERjOpYhwDrBtvJ+pvpBzK7YM3ACijPd84A2ogWAeYrtM4o0IOTlrZZ3bPhIGRdNBWtFhQNoJm+2HETHZFCdK55ExZrCE3pzy+0Wvj54MDBlYUvwboXbxpEYEDhQ0bcdqLSNAs60tptMp3XLO7fv3uHXzJsdHh4N868ALiJBQBCDSNQ9PQiV8WmUUZc2Va9f5yq/+Kp/6zKe5cuUSy/kp3/xn/4gPbt3m5OiY05MT2j7O7MfP+eFkICUu6cGsV2tWqzWr1WpjUiAlDSFmWjlZXlLNtrnw1A32rt1gursNzjK/e5f540fY1ZwQZKY6ZXMD3LQJ0f4cAsgmLDVUcEiM01pFHXDp6RW5SMf++Ic/5otf/Dyf+tSL5DpA6PDBoqsKypomOnB1vaUVwUBJqoKMDYm3ttx7IREKbyCghlZPiDLAWmvR4VWCbHgdBsMeY7R8rRNYznuPVaIA6d1G8NxYuKkdZIyJ99vhnGJ7e5tnnn1GIN7oeTA/exyFeyQ4mCynKEqGOeoEsw+bJha/cQ1ZZ4Wg6BzawGKx4I++9S0uXtznxo2nWK0Epl2vm6GKEt1z6Qnr2MPc3Fyb6E26Lussi8Wc1WqFdZa6qtnd3WF3dzcSE3PatuP09JTDJ0+wXc9qtSTPU5Uku8sYMR5SnZw01gcWbUuuFaXWGC1fEyCabMt9bH1gvliyt7dHkGFRQtDDOkrrLB0UYrHdoaKros4y4UbEkbGwltZWby3FdMp0Z5umWbFaLrAuUFQ1WV5Ej4dVJP8mUShZH3leCHcDRRMroFRdZtHSWAiecZTNEdt1dnBATD/TOo+LUyfT2UxszS9fJs8yOViVQ2vIQoHvHQr5eoKYLpFVFGVNcB4XGpTO8crQ9B6HeEGcF39RrJZLDg8fc3pyCijeeftNbt68iVKK3/zNb/A7v/MXuXhpfzhbktFTlhnKsqDrel5//Q3+2f/3n/Paa69xePhkILZpJe/5qV/5FH/zb/4NPvPpX2G9XPL9b32HV37yCqenx2gl2gbJ6a9rpVA5OTrm3p07NOuVrPIg42l+I+kmDGGMkODyumZrNsFay7rtca5Fa4/tW85OTpnu7EJMoq2zeIIQgo2J1ab8NBGrkupTx9nBvCylUHEy8mZdH/Uj4vlupBVmjJB9dSZ+EcZokT2OZ7+JiV0f91iWi5R7iGz6qJgt5EJnaZo17XqBbYUrsL1dsbU1FTdVFav+DY8ASfDTGN54Pm3GvCHwbsSi8zFkBCA3OwUDD20DHcBLy3Xgg8VkwEXJ4DQtcw4RGO6bGs6xTdHppLEyovZGpox0kn83GzH2T3595GQgIo3RJGGEQQKBvrOR7JbRWytmH84znc7Itebo8QGP7tzh3r17ArkHN86YDz3TeDGMgTqEjRsQBFra2tvn05/9HF/+8ld49pkbFIXhtT/+Ma+//jpHR0c8PjhguVgOC28Uygnj77G6cPEQFDnkNcvlakM3wJ8j1SkUxpSU0x22L17kwtVr7F26hDE5zZMnnB08YnX6BJwozHm1MXcf/M8EeTkwxM8gJQKbSEB6bd4brTWZMRRRO3+1WnFycsLJySlNt+Yv/1t/ia995bOURaBvFjTtGlOWdGiavqe3orAlJiygPHh85BA4BhOnEA1qUNKLRhi7IBwFrYwQ8WImraOtaqrWdfAYwCEthk5pNmcmNq8zQZiiLZDaHXaYzZ1tzVivGt6/+Rp37tyh6zq0NmQxERBdfT8YU8mzGl9q431kPNQK1Ieh7Vpuvvc+W1tTfvrT13nw4AEXLuxz//5Dlstl5He4QbcgiWo5JzobAWmdJM/3VHGvlkvhNITAbDrlpZde5DOf+TRXrl7lzp0PePONN8nzTOD4+Tz2CkU/oIwjoqmVkEhU1srFrK0ltxafRYQghAE2DRBbPCLys1y3TKeVELXU2J6QZTgmnl3XDeiXmBQJ6THPC/quZb2UQJPXNbuXBeY+OTmhbdYEnZEXQopcr1Y0a2nBlGWF1hnW9TIqmedobbBWRiN9lIu1ETXxSklLwstct7jEieaEVvqc/gfO0yxXUYcC6qpkOpsK4tV7TFkIT6HtxmPTO7rOEsqC2da2iM10LWQFfVD0NkBWcHJ0yHRSU9XVuf23t7fDN77xNTEgaxq+8MXPDW2kui6HNts5NjdyIB8cPOab//ibfOvb3+HB/Qes1+LumGU5RosXxr/+b/wl/upf/SvsbG9z9/3b/ODb3+bRg7u07ZpcycSICqKiZ61D43ny+JB333uX5VrY877vIRANq8ZAMVaWEjSCEvJeXdc06zUEI0Y7dk1QGav5nHbZgBalR+dE8lmSNzWQCGVyIMrAayMKk8B0NkUpJR4UbYttOxRexksz4SIEooutMUymM7I8l1ahVsO0jTYp8ZaCSauI4joHwSPWyZ24KvYrnG3I80CZF1yoZjG5VpHI2g8xy0fGfxIL2jxrh7OJsbAYz+0UrzaLgAG+PneGb57pm2J2thcFRhtbinZABuyADotBX+yrRmRCBUnrdYyLemMCQ2UGbfRARk3tQIkX2YYY3Z/8+uicAWUGqEINFxwEEXB+MNpIvXajM5qw5OSJBOj56XF0vVIj/r/RSA4JbYi9uc0HpJSmKCd87MUX+LVvfJ2Pv/xxdnd3OHjwgB9973s8evSIg9h7G4xF4o8fqmu/UYnGSj25C47TAv2QCAQEb5MNZTB5yXR7n/1rT7F79TLTrSm+bTi9e5fl8SF9twastDzQeJuCz+jdvtlDIiICzv8siTHxM4a7o2QOOo82tT6IkEtKXJbLNd/+1nc5OT7h4Z3f5uWXniOEjqNHD7jz1h0ePzrBWJk7tl6qIx9HckMI9D7OykdoyyPJgAfcJuAYN3EaOlY6i20J+X5jpKIUXfUglavyyNAlkVgXxxTTfVDSFlguFxv9scDDh49Ed2K14vDwycCcNkYqrbwoyUw2IBwhhI2M9fz6GkQ9ouGTrDdhPi/mc954/S2eunGNl156ifnZgqqSfrkEWj1MA5xDatJdcRu9wCD228vlikTM29/f56tf/epA8nz66ad59dVXadbiEZF4KJss4zBUGUoEgWIFHwL0Xto+uVLkOpMEIJqrhOBZNy3Wyto6PZ2zszWhyHMJfjGgJuGfkbxpB3gxEajSqGrfynhjWdeYuqLIS9YnZzTLJb2zFOUEU4j872ot+hCTekKWyWihIFqS+Kf9EOLncM7KHovPFS/sdNtHNnzfC4oTNRB0vIZgHavlkrKs8FqxvbsLWmG9JcuLoVXgI/roIHINNHlZ44KFxtJZRacdoTQEk/H7//gf8uMffZ+//bf+Paq6Ho+RuL4mk5rpdHIO2RrPKYazbFjbwB//+Cf8/b//D3j99TeYz+eSMIulH32/Zv/qVf7Of/C/4Td+8zdwXcePv/sd3n71Vdrlglo7ylLsn6VlB9Zogsl5772bvPH668yXS1wcRXZR2llnBmU0JmQiYZ1OlTh6i9ZMp1OZYXeSHHfrOcH1ZFVDVpb0qyvovBaxJogqolFGW8rOIVAHiFwEeVZlVaIA17a06zU+jpdm8XuSdoRCEoy2bVFGRadSQ55nUpzoEaVP6zszhuBlzL3IjbhRBkeWCeegyCtCEA0AMQ+Ko3o2GZelYmTkA/y8nv4mNL/JRToH13Me+t8s9lQIg09A8ngY2wP9gAb7OOY9igu5jVZDRKeCGngK6e+EfJtJ8DcxGcg2kwHxesmyfCDp/qLXL2lhLKs+qQ6CZH/Nas1iPpd+5WpF10qfvOtaVqu1jBMxErPGg09BSCp18QQMG49fycVcunyVL/3qr/GlL3+Rq1cvY23Hd/7oj7j5zrucHh9z7/591hGaHBXd4mhiTC7SA0zZWNd1zOeLwWpY7Cujw5Mi9rA0mc4p6gmz/X12r15j5+JFMm04ffCAxeFjumYBzo2SuCi6KBXqIntatALOQ01JOjkhBOmwTxuM2EOUbE+snwnQtp1oHcR5fO8DBMdi3vOjH/6Yt958m4sXLmCMZrVecXp0zF6e89K16zy3v482GcE39MTv9YgAUYxAIS5wG2QiIXL8Res+fvywadgSjEDQETkwWpNGhQxQ+sACFTdSnDQZu0wEGKVMN1To5vMzFovF8HdaafI8Iy8KUWBTUpl4HLjYL4+ZMcpEMt75sUdIny0ZTAkkly8WBK85O11y9+5dHjx4MMieaiOCMUWsVobEIh4om1BsbwUm7/tuhL+95733bnLp8iUmk4rFYsF8viAzOc89+wxvRxErUZUzG4mF/CZe7oKSpB7lurcUWlOZNGanRCbbe5arFalXezJfcHl9gUkV0Cbeq+DwUQJWqxFwLIqCZLOd5zl5loupTNuS5QVFJeIvznYsF2dCQFOgjEHFHnTfW7KswJTlIJgiJEppE7VW5MR1fFbBh6irkaBWaTHZXkhnNloZKycJi88zDIputca7gFeKemuGyTOs96igMRnS8tA68kU0xkFwPWo6JXjQTceqtTxpFWfdmouXS95+503efOMN/o1//d9kZ28fn2SPU/uSsLE/I0tbGU7Pzlgs5ly5cpXErlcK5vMFv//7/4RvfvOb3L93n66X8UitZCa/t44vffnL/G//9/87nn3mGZ4cPOLNn/yYw3u3KXxHUWms0xFuNtje0/fQh8C779/ijVd/St82FEbEoZ0TroNSkYTqAr2zaKcGkrI4DkKmNWWes1ouhjmbgKft1rS9SMWXmeLS1Y8RXIsXRwYZ6UWjtEcZDyZA8DLPH/dVWZWYiCi07VpIpArZ/ylRD4rcjPwaXaQjX0ZzVS/3OcPE2OFBuaG1IJM3HoMD5YXMjMZ7BVFELrm8hqTeF9U3pdDUsX12HqFMbeoh1nE+SZBCeDwjRc1ybBek+JLOF9tJ738I/Ik0uDEaKBNqkcjoooZLKgoIg2omEelJPIA8z0djvsQPMBttHKWG/0+E3F/0+iWmCWTBJNlrKcJkwy+XS1DyoJqmoe9GUQwYfQRSpTtkqimTTojIAIFIP3gynfKpT3+a3/jN3+CZZ59lNplw8713+dEPfsiTw0MePTrgydERCVEYYJ4Q5OGrEbaT5KQbtAIWywWr5XroITsfGfNKdPaNMmRlRbWzy/bli2zt71GVFf3yjLPjE1YnJ5Jthmh6EpOYrhMW66BfkCAiAirEmTzGscY0gpIOmhDbGFprslzHwGdw1sWZ9yaqEiY+wgZdKATmZxJsnI0JCrAODfP2A+4enXJpa0atDXkyyQFcUISgh0WvjR62SgLNxs82Lgh5Dx0RgzGT9skcB+RanBvcHyHE8SA9CHMYo5lMZxizpus7lEv3aNRHz6Iqn2jUW2wfk6n4cXQkVeaZmB2pLEMEZ+SzpI3jAwOhL13v4mzO48ePOTg44PT0LCZnmjyvqOsJZVUNa+jDFeHYi2VIMuWa5P2atuXdd9+LNrsZ7733rkzA7O+ztbVFXYuuv1xbVJHcOHyIScWYQEtPvXMeGzw6SOXn4rPE2UFzYt02LJsV274Wv3kf8EGjY4KRDmeTZWLhGpEQk2URcVpivaeqKkyWk+mM9WJOs1gQemH1Z3mOyXKBm70EDN97urbHW48pNN56fGgJeExsB0ibIsGeMaYEhwoB2/WxlSCHdxc9NIwC0KyWK5TJyMqSyWQaeSqSiDjnBtl6HwKFNnS9JeQFhcnQ0TjozuGKh2uPKWu8PmJvf5/f/d3fZWt7NqI1xEC6ce9lSYtmwo9++GP+7t/9u1y5con/6D/+jwavjQcPHvH3/t//Ld//wXc5OnoS9QQMaEVRSmvrr/3e7/G7f+13qcqCt177Cbfeeh27OiOjJeRRQEZrrHUQFIXJMd7x+PA+t995h51JyZWLe0wnIsnd9z3LdcO67Wl6x2K54my+oPMWoxVt32IyGTfd3dlhtVxIqybLYmHSR8ldT7u23Hr3FU6eHLK7t4uylkIrTFaQZwWZkcRVx3tibR+RO09ZVfGsbeLZFCIiJye+C7JGjBEVSO8DVZYPktOEkc/Sxdah0YKKFpmOdCVH8BZwRDNlkRx2vfyeFAOH8exUsad95c89y6TpH8J4hm0SvIe9GBLJOhY1nnPnWggOa6W16KyNksFilJS4AklTRYrFDan5jbi4GQ/T2hsDvljW68ygsyyOZ5oBESB+jdHyd1mRR4+HX/z66AqEadY9/X+8Kc47mnaNjbLB3kVjH6WGHlC6vg/9xDH4xGwRJY50RVVz/cZTfP0bX+cLX/w8+xf2OTs54Q/+4Pe5f+cujx4+5N7du1gni1ltTAooGIRlRlKekGCadcN6vYrz6svo025RUU5ZxXJcGUNRTan39ti6dInZzjbGe+aPH9Mv5oS+g8hE9UjbJFiB2FPv58OERXnO8XOF8d/jnRh7jUggKYqCsizwwQ+GSG3bnu+dpoA9qGGJo1fqtOh4KNrg6VZLTtuGW4eHVMZQmZyiyIQkFr83ZbjaCLEzGyCnmMJFdcTUc/OpsmO837LYnWgYIH02a/SQGHyYF5HWhdGGST2VoDQkOONaUUrER9qmGaY6UoY8vG/X0TZNlBiekGcl1qcxTC9jfGVJs7KjfGcIrNYNt299QNO2EhCV9C3ruqaO+gCJEKSVoCRyOWOiqeL1S6IxJna2t5yennLr1i0uXrrA008/je1lfO7111/n8eNDsmibrBLIwCY8GaLBigi0uHhnOufogpAGYz0qZNQQQImqpAmeddvSdT1G51KFGVAbToYmJkpDlRaRtWYt4lgmehYQRCJ7eXpKs1rRW0u1s81kOqVdrWnaVohkAdarNa4X4SCRTpVmk9agIlriuxBHVKVqcTFhDF44Bc762JsF18teSzoNXdtT7dTM9vbIyjJqXATRyHB2eD7GZFF/oGcy3SIET98FHhw13Hxwhi8rSgx6vmAymWBtz4OHj7hz5w63b3/AyfEps9mMr33t13j55Y9jTEraPY8ePeZ/+If/kHoy4fd+798mj2ZL7733Hv+v/+ff45VXXmGxmA/QebrfFy9e4D/8O/8hv/bVr9IsF7zyve9weO8DMtegEKKeTaibIgp8ydnx5OgJt9+/yY1rl7hw8SI7e1P29/bY3d2J8HFGbz3oHOdhuV5zfHrK6WLJrbv3eef999ndFyO423fuYrKCLMs4WyzQKLTxG3vPs5w/wNtTqmqKIqMqp1RbE6q6QmfSjknmSK5rKfKcrUktvgROkhAXycNKSWCUxT22fQZxIRUVTyMc7qJfgSbOGlix/tYZGDwOaQ+EOMbrnB2EglJgT8lIfGjDWRsiyjPUogMalyYJ0j0QeD75QAQvnz+J/cjXy5jvQH72TiS945lAENLgmADEpMAlbZcxDgxhIiUASoo5lZC8GPiV0YMzrDEy6qmNjm6P0jLIM9HxyPM8GkP94tdHTwbi3ZMDKwwkioEkEckkigTPyijIJnv8Q1cc4ZgI4CqDznJ29i/y+S99ka9+9at87PmnKYzmtVde4dWf/pQnT55w9/YHnJ6eQghSSYU43vZzejwpC7PWsl43LBYLQS76Ljo/RXhogJINeV5Sz7bZ2t1lurtNVpZ0Z2e08wW2bVFBnPg2A/AAAW38+plEIH5tCAz+AsNfp7aAgrzIRf42k4NsuVixjKQsH5W7UvAlCPN/M9Xa5CW4qIwVgrT5bW+xWNYRktNrNSZiEL92dBlU0bfbxI0qQkGSBKTDOfChzRTvqUjKxuevFeWkJs/LIdiGjQ0qNkcCI+Z5OXx+uT7ZaE0rsPEoEywIwNbWbDD9OTs74+DgQHQrQmAyidhTZK0rpdne2iIzOsL5PSKFHGiS2EqWURTSGsgyEz0FZH5ZpQQpIhWjR8b5fZL67t57iqLghRc+xtb2jEePHnL0JLXOHPfvP0JrqMqSsizOVSYhjGYzWslUAX0nZ5CC1lrWXU+mi9h2SZWLGta1856m6Vi1PUWeITMHoPToDRCCkSTSCrEp0xrXtzTrFbnJ4iipkP3atmW1XGL7nmprm/3LVwldw3q1FLfFTIutc7MeEkhro3lM1DKQvRGJpqbAK5FwxnsI0WLW+mgBLpCBcBqkL71eLHDBU8+mlNMJNnhpCylF23fDzDoI/6B3DvISkxd4azleed56eMrSQxUFX/qoLXL37l1efe2n3LnzgJPTOU2zpsgNjx8/5q//r/6XXLp0Ia5NzYWLF/hbf/vfZbY1IzMZ1lneevMt/pv/x3/DG2+8KdbW0bAs9ZO/+MUv8h//x/8Rz9y4weOHD3nnJz9kfXaE8R3BdygNwcf15OMUUpAxuMXZgrv37nL16iWuXr3CZFqzNavZ2pqxvbuHMTn1dIoxgvCUVcV0e4bRGYvFCusUq3XLfLXm8ZMj3n73PR49PuTo+JQHDw84PjtjMp0Qgme9biKZtSQ3cSzT5KgiZ2dWU02mKJXR9f14dnlHpjKC7Qi2Qwcf21stxKAuM6EabRTgMKakKku0CiJ7Hn/5WJlnWmB/HXo0TtzZrSQWym9OKfhxz7lRZ2E8c0ejpvOw/7hvBveGjQJNIn/kT23A/0l2X3hK0n5IkvGDHk0kU/sNPt0oIx1/Dft9PEYSJyApc6bJsQT/61TtD6ODIk42cAcyI+PWERkweXYOyfyTXr+ka2FI9+pcMJNRLROhlRBhTzkwFYzzksP3CCkiGdgopSjqGc+99CK/8Vu/ySdefpnLe7sc3H/AD3/4Qx4dPOLO3Tvcu39PiGkJEiH1uhOuMr5Xsnps2zaOi4msbNe2w9xzyv5kUiAjLysm2zts7exS1xN0gPbohGa9jK5qaRGN1fkoRuQ/lBz9nGRguG/jfZSPrWKAyymrEhBZUGEut6NG9s/cR4YFvJlwnUu+Nn4Lm9/kRTciWm0wNMtglBn1TshpkY2qejsmIsRgD7iY8cc2W0xYILHDlFPoPiPLiiH7Tp9R+tZ+QEdU0JE4FE1WrKfvJNvWWnPlyhU+85nP8MEHdzg7OyUvRMO8jPKnXddzeHgoRNDgJGGMvXHvPSbLmM22KKs6Joo9Sb/d6OQiKB7y6/VqSILTcyM+q7IsKcs0J60GuE4pTRdn7I0xXL58ke3tbW7fvsOtW7fp+3ZYJ0ppikJkf1EbUwnjHZZETqtx3jv+vcfT2p7CZaLtDjEAn89Pmq5nuVgxKTLKRCYzanh/iCZAPupTqEBre1DSArDOkWeK4HqWZ2d01lFvbbO9twfOspyf4ZxjMp1gu5auaVGe2McPkcthxCxIxfcK4k2PQpTUNpIn7/pBuMo7iw5iWmSMwfU9q1XDdGebMhohBVKfNvpkZNJqMSZym5QhLydYm3G8Drx175CzpsNkBQRRTw0hcHp6xv37D2lbaU+sFnNsb7mwe4XpZIp14vgpsK1HK81ka4dAwPaOd995h//67/7XvPX229H4B9GCCEJk+xt/42/wV/7q7zKpKj545y1uvfEavpuDl/FnG1uVaZ057+jaHmsdzbrh8cEBW9tbPPP0U1zc36OqC+ppSVGIYuZkuoXOcyazmSgyBk9RVRRFSb3TxbVJrHIdf/7P/Sb9quXe/Qcsm5YP7j/k8ZMjnhyfcnJywoOHjzg6OqIsSpp1y2KxosCyOymk9YNmUpSgNG3fYVQpYkhdK7LHwZNpKHKDCtLaIwS0jkZcRUlRGMpcWsIueFSwZCoTAiSiG6A8KDwqOCnEwmjT6/w4vp2mOX7mfNxAIsd/S4fUiKymMzv9LhH6/PeluOJiohaimFpau86JlHfa38OEQBxpHDwFNg7/kUunhrFl0e8RuL8oComtaaw8xlWjzTBqnuX5gABkxghqkM7wn1Ow/Itev7SF8YdvslzTCJum3m6CNRIDOPVH4nePWWKWc/HiZb745S/zpV/9CtdvXCdT8O1vfYvbN2/y5MlRNBdakOeF6MInyCdWGVqbQTxCvJyld5vGgJKvQN+noOqHjy2fuaCeTJlubzOdyZiLbRraZjV4VpPQj40qXBahOzenmiD0sFH9/7zFOY4gafJMU9VVhFUlM0/TDSI+ERdsfA8VNiEvhtZICqjnNsSw7sMQ7hNa41N7IqELERFgaAvIDxjaAAn6iu+torBKUPEzbay5sfIP5zbMID+bkJxhCY3oxHBtsWqzzqK0YhJFgr7xG1/jzp07/NEffkuIa53F2lUUUmnjvY9jatk4HjTcc60HZEF4FyO7fd2sadYNoDBGU1UVZVkIgdAH5vN5tK5umEwmTCZTsiyXhLYomEwmg99407S8++773Lz5AcvFUmaoIwMpi6OFdS0WwEJE2jCjGvaWnEsmM9HwRRIvrTWdtay7jirPyRWYTA/SwumeWu+YL5fsTGuyXJA0k/mYNG9UMnGCoOvFurgoCnyIJM2gOT09oWkairJiMp0SvGN+umS9XEoC5TxN2+CDoCEBQSbyLJIig8gqhyB8DR0vzFvpp/rhkJT7I7Csw9oRTm3XDRjNbHeXejqVsc64VqyzUYFRqkqlk0YGBFNi623m3YrHy44QxICrDw7tRIlQBJdKtra2+OCDu6yWS5RS1HXFJz/1SYqyZN00BEY+iEKhQ+DuB3f4b//ef8tbb78tqo1aCIZd03Dh4j7/yX/6n/D1r38d33a89cPv8+ThByi3ItDjvB3U/YSLN8qR970kAqdnx1y6vMdsOuXy5Yvs7uyS5zmTac1kNqWoK/KqRmUF9XSGyiu5bu8JWU6RVUiC0UsbMcvQGJQOPPfxZ8mynM9+4dN0XcfiTCYeloslB4dzjk9OuH//IW+//Q6mqHh8dMylazOWqyWTSU2WG/TWlKbNWa8bettR5JrMKxxiurVyQlzs2pYiz5hUOVmRETTkylGXJSEorO3JlcgFax2LBOfwrpMCLJwf01apYo//L46XAi/4eB4KKhGDLkl/YaC+DbyrdGbaOMOrhkQhIW5jMpDijI970UaieNhQdk2o9PmCMZzb3wnBCKR2eogxUw38KEEFBKHTJiMr8iG2qsj3ySLnx2zE3HQUqxg7Psrrl08GIk45ojCxroyJQJkymY2sahxtGE9/bXKmsy1e/PjLfOM3fpMXX/wYs60Z9+7d5bVXXuXxo0e8/95NHj54IOMqRTlkTAL5+PhIhbgRYjVn+3FkcL1eD+N31sZqPoXP2MYoyorJZCYKakUOzrFuG2wUHRr51nyo+v9ZkaB0PwgwihVFBCGqDqZFCUKcy4ucui7JoxDNcrmKLnsyqqMilLV5UG62CeJd/Zn3D7FUT4lDDN+bXxm/bwziKRHYnEv1kYOQkoWhQD7/E8bPFjYSnvhDRWLVjkSq4cf9vIx1JOkkSC3Z2m5vb3Pj6RscHBzwwgsvcPPmTd595z3hhFhL07SsYyD/sPLWZn9fPtuYwKJkkmG1XLFumjjrPLYgJvWEsipFnrXvuXdPZGiXyyXG5GSZMKNNZtjd3UVrHTkpfRwzjNerZVQwj8hCnhdA7HNvBHA2ccP0+TOBAF0nB4iP6pC9FYlYpaFUYh3t7LgirAucni3Y396iMFoEoazFuAwdFCHzhJBgS4/uNVlRoE0mfu3e00Q3wqIqYyUvPJbVYkHbNMIbaFuZJogeCNZKcpHGMSVhlT0rJFAXE20/8jdiMuq8THooiKNjss/WXcvu/j7TnR10LmqXPnicFWnjqsqGCQXQ2KBwqqDaukh56Tp33vsebe8wSqGcAetQqmeKiANNpxPWTYNzPWVVsH9hn9/4rW/w3Meeo+1a6ONYV4JsgcXpnL//9/8+r732Gm0rFtiz2ZTjoyd8/OWX+L/8F/8Fzz//HPOjJ9x87SecHd6H0EahL0kErBUFv9RXlt89XWN5cvSEre0pN569wWxSU1YlO3u74rxZV+zs7pJXNc6DVwaVTzB5KUExBUkjhNKgItEO8EGhyhp8EEnoEKi3ZpR1TQAuKcXznxCYu+9slGlvWSzWHB6dxFaOBaU5Ojlj1Xacni1YN60QmF1FnhtW646HD3uc1Zy6FTtbOZNpTlnV9LbHZIFZqZlMJjSNiL1lGopCdClWq4Y+Og8mQrFonMTppFila4hGTHFKJYxFzzkEMp3VkVemQ1RfjdC/CkMH+5xqbPBJE8bF830j8KdkN+kGeIlJLvIXnEtJvsSd4RxSoIwkxipxJoxoA4iVsx4UVokoQJ5HsmVMSBO52iRCYbpexiLoZ1r0/4LXL8UZOFdFQuRXjCxHyVjMcABI8PDIKI5cDEEg+WvXr/Pr3/gGn/vC57h85TLtuuEH3/8ud27f5sGDB7z++k+xvaXIxf1OBHE2guJGMpJ4AV3bs14LOVC4AXYDmhlJaemzlFXFpJ6RlyVKBdGF9qOFJIQhgxyzwRHmGeCjtCDO37Hh65JWvZR0EmzzzAwBhqBYLETvIGngD9mvGgPskMgMlfz4KH7eA1fngv947alqHxjqgfOz//Hfx3HIMCQy8Ytkww0BNn2UlGh96HMFYRy3bSuwlx4nF35e4Esv7x1ZlmGtoC9FUWJMxu3bt3nrrbe4f+8hu7t7PHjwcDAKshsz86MJDueQgfO3JJJLV0LQNFqxs7vDSy+9yK98+lMslyt++tobpFFE5/zQHkjcCR+iaVOs2Le3twevAvG1kPcxRkYwFVL5LpfL4TqTtHfK9MdnM0oeG2NwKlaQ0aO+8x7jHJky5FkmYjswHDDihNZyOp9TVzm5MmB7Mpuh82xwR0vrWJ5lhPOdx/Yy0lXWEwCsawXCbtY065UcVnk+oAIELQIvsTjwJJ13HwmKssa6rh8q4gSNhhDi79FPIYhTpULGBbOsYLaziylzpFUCPgZSZTRBaZyXCsp6ReczykvX2HnuBV5/+z0eHxywWs3FWthoQjwwz87mbG3P2NYiqfyN3/h18qzgqRtPsbO7iwtOKv4IwyZiV9f1fPMf/WP++Md/TNO0GGOYTCWo/YX/2V/g3/8P/n32dnY5vP0B77/xE9bzA3BCgLVOCeJhfRynFAn3JELmvaNv1+xsb3H1+hV2tnfY3tnGe09Wluzs75NPZui8QJc1WmW4ADorYvsnoPJclBd1FhEpSQx8VBfVxqAyqWxFBbEgaI9CD+iG8h5dBErvqGeWS1c1z4enWS1X5KXYgOssE17WakVd1Vjbc3J0hMkymt5xNl9yNl/StR2TyYzHjw85PjnDaMNisWDdtmjjubCzK+jEcolSnqosyXTJYtGjIlLVdT2u79FEPsgQCuJ0Wkh8tmhiRhgMk/p+E611AzchIcxp+i3EAmrTHyBV/Ulm+nxLeEQrXJSTBz+s47EyT8jtiEprpTE6G9rl56r8FFMjF0D+PnlDZENSmmVRWGjjXHWxMhMtgw3tnT/h9UsgA+f73Frp4YJU7HunoJUIFgSZBQ7eyqieydje2+Uzn/ssv/brv84zzz5DVVW8d/Mm777zDk8OHvPGG6/x8OFDmSrI840DPdpY+rG/nKrHtu1Yr5ph9K5t23PsTZXQDC2wvDGGelJTV7VsCO/w3Qj1fxjel16mHXp68ivBumMQHklv4TxJMAIiSo1JQFmWZKag6zvWq9Wgx5C0BwYBHp8+CxLAGSvyNDXxCx7bCN+nP3+ojyRIgIrWE+N4ZnpfNdyLBCHEJCEqD0oUTD9vJDmGoNBJBhc1PJMizz8kthTiph5RinSfpc0k5iqHh0/4+/+ff0CWaV7+xMe5/tQ1FJqz0zMODx/Hdo2IGOVFEROahAqMmzBdiiJK3nYtbSeTBNPJhI9//CX+/L/6Z4HAzs4uH9z+gEePDkia7ovFKJCkUCPpKWlUhDAEyaKoABnd6rouSh33w7rMIgu970aOQ1VVFHkxCP/Emy7KjyS0JsKaQSxcp0UWeTTxgBp+d9jgOZkv2d/dJ1MQlBc3QmNENEy74VGCaP0rxAjI49EmR8WRTghRa77B+XjQBoe3nbDAgxDe8iKPLbTo8ukkyKSxPGuT3HdCCiJypsOAKnovzprKe6zz7O7vUW1vDR4YPs5oKw+5yaOaoUYFjQ0l1eWrXH3pk5ycLXnjp29w+OQxT54csLO7z44yUSJbzhd7bCnKkrqe8Nxzzw8Vl+17TMiwypJluYxPBghK851vf5s/+tYfsV6tyLOMelqDCvw7f/3f4S//W3+Z3BhuvfU69959Hd/M8bbDegn4wRmsFS2A5F3f95a+s9Gzvmf/whZXr1whiKA+03pKUVaYsiCfTMmnOyidyfSE0hQmRylBZWXdh0GQRrattLOyuL+MHttriHgAAQAASURBVPemSWx0LUTPkJAEogS5kpFUgigD5pXH+154QBGALwwE1zGpStjdJq8mUT/EydETTY7a1ZrjJ4diCz6Z4oJivW44OnpCWRTcv/+AvpP7vVivePjoEc55OS+7jg8+uENR1xwdH4NSVHXFarVMUCQmto2XsYU1rSeEEDg9O5PpDqViuy3gg0wDpLM0+ICO/gXB22gwtzGZFmJbOIyVd0IthoQ6irD5TX+DeJgOITQmwINIkJZCOs/HEWqTKv48G8Z/k9hQHrVZYjA+X1AFhIAa2xoD8vYLXh85GTAmGypgnaqWjYNKbozDeTUiA7HC0NqQTUqefe45fvNP/Sa/8iufYm9vj5OTE374gx/w6OCAD96/xVtvvEHXNRRleW4k4sPEufRgUua2Wq5YLEYp4b6PwhOpOldRvlHL3L70gaW6S32lVCWkiJlYz+l9Nkf6hj4S54MWjJrUHyaeaK3juFpFVVcyKbBc/qzyYUgwf1w8mxV//PtfBPsMvaiEAGwmchEvSK2d8dfwzWPFz/hZ0tztkCTE6DEmgj+vL5XQjBh4vaXrWlFx0zrKD8dEQI3vByHOPMc1Fe9906zZ3t4Sdv5si7v37vPk8AlPnjwZzGyU1rJ+YpCNdwyFSX2QmAuF4dkmRbC0RozJmExmHB0dEsIZly9f5d13b0rfOgrxCAoQCYcueiSREo8wTFWI5HTPer1kuVziIwG2ritmsyl5LryF1XLJcrUaEYMpVGbUN1CM8qNpTaV2Qd97QlUKRIofnpEijbEGFosVp/MFxe4WWim5X5khzwzOEiFKE7knbujZqw2/Cbwclk3T0q47OayUoW97cTwMAax0ZbMMMRDyKXGOUi8+jvpaQQaSZXVCVbTXJFjJ2QixOk9R12zt7MoocTzksDJhoIxGBY/rHXlR0JAzuXSday+9zLrt+fa3v8uDB4/44PYH3Lp9i89+5nNM6+24ts3Goe5lpDFWYSn5t5EgHXzAaYO3nlu3bvH7v/9POJufkuUZVV1z8dJF/sbf/Bt87de/im1b3v7xjzm4e5PQi0lS76zIRVtHcIH5vOfO3btcuLhHUWZ0XS+Wxq2QCrdmWzIiW5agRfdk+8JFVFGgy1JQAZ3WuWS3iSshfApFlpnYNgnk2gzrUhE1/b3YiffWYbJ8SJKdFTVDNSA2anhWhCBTC14cR7XJgYKyLlgvz0Bb8moai4zoNug8xhSgoKgKtnd3aNcrJnpKWZRUZc7WtCTLDNeuXmK5WFDkwinrnYsiRYrlfEnvHF1veXzwhKaVlvBkMuH+w0csm4bT+RxtDAePDjg5PqEuhWtmNDw+PIzFpI57KBDw+JDUYj1ZMGR5ce4sTdM0cqSoAR3wabwxnfspCffx5Ivo+KZmQFLklPPDCA9OS5DP8oyiLAexOZ2lpECSgSFROBcbY3BIfDWXfBjOj7D/otcv4U0QD5iNJGC4KKUFxt+oaOWDgjIZl65c4Utf/TW++pUvc+Opp8gyzes//Skf3L7No0cHvPrKKxweHlJkMlanjQh9pJ+1KSGbNq23nq4TI5nlhjRvUnGSHn0MeKiN2X1JNBKUxBDkklTlKAqUev2byUBqKA1JQepLeS+w5UZAT4pxJpPDf1JPRO+975nPF6zX65i4RHjpXEUehgW0+Xd/4mvz8wzVNiL9mYp62FiQm5X4BnDAZmAeE9sxOUnIwBjEE4FQxYU55KLxm30IaC8kItv3lFUlFb+TpHFkUgxMkCjeJIEpVdxpI5ydLXjn7XdZLldY1w3tqqIQ/kUIAeX9AJ2F6OUmolYMz9o6T9+LG2GqYu7evct7796krmvefONdfvCDH5IIgicnJ7HlICREOUDVsCHPtYZCwHnLarVkuRSvgiIvmE5nzLamTKe1SOp6z1lZEoDFYoX37lxLBRgtw4f7OrYQnE8EXRmRAoQA5YW9DdBZy+nZGVvTCqUz6HtMZrBGC5nMxFHJtMd6SwgOhVSWwTtc14kq4WqFdY6iqglB4XpHb+M4lZZ+J6hRjS2J+ISAEpesQZgrjafqCJEGNYrOpODsVeDihX3ySTW0qDwiWdx1PdlkgnUKo0t6s8X+U89z5fkX6b3jO9/5Pm+++SZVVWOtZ3tLJoUkEQlDMivrO64xl4P3WODhyX2KsmT/4sWhX3u6POH3v/n7PHr4mMwUzGZTnnn2Gf7Dv/N3eOFjz9PMz3jr1R9zcu8Wwa5A9TgPzgVpeVm5rmXTcnD4hOn2DOc9tu+wtscouHDxYnQnFZneejrDlCXZZEpeTQhKJvBTUFFKRWEbO1SbIYSoXhePBi2TOs46FELwVNEaGDQoM6wfMQ7zUYMicg+Gs0Wq/LKc4oJwm4qixmjxmkAFTJ5HnlaIZNGIokVlyKKuqeoJ6Ey4Dpkh1xrvHSY37OxfIHiR6s20fMZgHXVtmOUFWV7w1NOXhbcxX1AWFYrP0vQ9xycnaG04PDykazvqsuL27Ttkecnrb77J4ZNjsqLk+PRE0CSt6W3P2dkZzvX4EMgyw2w6xUaXRx8CXd/ibTqL/cavyMaKcSAVV96NKLaJWiXDVMCmkmCWoZQZWgSpNWBiIlAUxdg+SM92Mx6EsY2bfA5SOyO1Ij7K6yMnA1oZ6cPo9AapooyGQyiCV7gki6I1s+1tXnzpJX7rT/9pXnzpRfZ2djh4+IB3336bs9NT3nzzTV5//U3hBhSF9DzT5w6bTPmxJ2+tpW072qbbaAt0w+GyCXGzAcWkUbAsHqh+eGixR7QBTSZSSHA+9jzDiDL8jB5OiKjMJrwvn1wrRV4UTKY1VVWikJFB0Ttoz/nbD65eG0E5sfdjjD//2oT8NxGEmIWqhHQoRlOdEAlQkXA21o/jn+SSwvk3GXQINtsUI+SVvkzakoFk9q1i35F4HSqA78V6ta4q8XWPfTi5Pj0gIunzd91oJuKd58GDB4D4yh8fn0qVEjW587wUKDdeg4sBSDbPpm10DACByAWJiYIXTYPj4xO++c1/glJiBnX58mWuXLnCgwf3uXvnbhz5qSVx1UnalI17KIiA8z6OiC7x3kcG+ITJdDKgRLOtGYePjwaug3zEsZ+driWhA+pDzzvEpNf6aO6TkIEIo3utBcVRilXTsGoairweJH6dM3ij8Sr2PK30Wl2cotEhkGkhE/ZdS7Na06zXZHkxTDeklo/3HqOlKnWpQhpMYoDgIkIkjnFaaRlLRfQdxmQ4tgicp+k6di/sU06nBD1KjTugXa9xAZSf4n3GdHaBax//JLvXrqOV4vYb73Hr1i2p9jLDCy+8wGIh0s+SDET5ciVGSS6uB3JhJLz77nv88Ac/4OMvf5yv/tqvQfB0zvOHf/iHvP/+e4Cirmu++MXP87f+9r/H5UuXOH38mLdf+QGLJw9x/ZqAKOV5r0RSuBOhM+sCRan5xKdewllBBGxvIXj29veY1iUBeUZVWYieQT1BZzkqyzEqkwItjOev1ioiQSN589zBEf9sMjMI36RkM/2ebOq1lj8rpQhurHJ9OpcTSuWlkFJG1mNRTPFYvO/J85LgelbLhSAUKkfYNeI+azIDOhsLAR2GyR4dEamsLKLDLehcxXZbAwqyosID1VSMsozSlNpw9fI+AbhyeVfcU23Pc09fpigrfvXLv0LTdZydLTg5PuPBw8ccnZxxdHLKq6+9RtctuHTtCnv7Fzg4eEweUczpdMq9/AFPnhyJkVD0aciUGaaHiiyjC0FaRvWU09MzetsN0wGk89gYtJKWQFmWEdEU2N+k6j8iAHmex68x0sqJlcyIeqZjf5xC+XkcuY/y+iWMigTSgNgejmjAkFXHfg1Bk5cFV566xq9//et86Utf4trVazjb8uMf/YjjJ0c8fviI73//+zx+/JiizCnrAs04MpgqrAR1+wgXW+tompblcsV6tY6aAe5c5Z76jSqRGmOlImjAOHZ3jvymwqAxPSgIxoNps++f7n0YUJKoa7ChKZACsNGasoyJQFnjfeBsMWe9Er0DgaiTmp8f3iOEMdR+mACohrw9nO9DhSRnOfbGE2Q4ijrpQdt6TDB+jhjUEO43EoJUPYUENUCILQKtNCaPtLVIbEMFCgNFlpGbAqPl63tr6WMF1HUtZVHitKO1fURy0jXHexjJWpsZ8HKx4tb7H4jgSKzmU58tjbHKM0otLR37bGbQARjgj3h9SkUCUVC0rQjXbG3N8F4U44qi5MH9+9y9e5eAiF2VVSGa3yEdYPGTK4aExjnxcZdglFGWtSQEk4pnnr1Bnmd87PkX+e53v8eDBw/EHCmylcUvfrMPGKLymJHEIe6L1Ntd95aVtVQGtPcblxeDp/Z03rJuOqZlgc40NutxXuBel/Y4sYduLb3tyCnFBbNtaJs1TbMWK+OqFEqvtzgniJz3gSzXZFrEqVwQhCHNmKckXaoxM1TlSmswkhikZMfanrbr0EXGbGdLHOyII6oKvJWpoayoIdR0ZsbuxStML1wUTQYFL778AteffoqT4xMODh5zcPCYx48PWSyWLBdL1l1LZyxVnYSuEkjo6dqWd999h+PTE3Z2d/He0zUtN9+7yWuvvoZSiv2Le/zpP/Wb/C/+7b/G7s42j+/f5Z1X/pj29JBghQTnQ8BbUdRzcaKm64V/lObSBSkQzYaLF3bZ3d1iMpV+e1FVlJOacloTsgxlMllrEWIOKiliyo41JjuPeCoVjaEU+DBoMyhjUJGfZLJsRA82SDXapN5XnPmPez5hv0qLXkymhaCnM4XJFcHKfodAlsvY9mq1omYUM0t6+SaNAX545C7Iz9ZKgRayrtKKrKxEf2SohsCYYkA+jJK2j9GaEJxIXJuMQlcoFDv7W2wrxaUre2ADbSseNUobevcXOD09Y7VYcnR0xre//wPq6QznHQcPD7i6v8eV3R0Oj57QduJjM9ve4tHBASdnc4oiZ3d7i65t2d/fpSgMh0+eUFaVaGxYNyQDMiYvyUBqW6jYoiyritxIspTl2XCv5NFEYmSKR2HkBYgao4vn6MZZ/dEmC38ZzoAZoXHGKYLUc07WttOtHb7w5S/xtd/4dZ5+5mm2Z1Pu3P6AD95/n9VyzY9++CNeffVVtNbUdY3JUpshntAhDAspEJMAZwcBofl8QbNq4uid/zl9EdkkKQBsah6omNkOC27jsB1aEGl+FNkEQ7UeNitmeSVhofS96V7keUZVVtSTCXkuvcCzsznr9Rrb26ElkOCl8xVgSuB/VrlxoxaP/5/+k+ZiQ/QjGDNCpZPMp44/c0QaxlbHBlQ6ZDzju6gkeBuRCMVYiWxtzXjh+ad58aWnUcHxkx+/zvzwjE9+7FlefvYpZnlO37ScrVqenC05ODnjeLmijddrjEZ5OajQY2slBBGQqaLuurN+kHH2IZBnQhDM8wxtBDruuoYkQCLXJPcmNDI3n+fFALXFf4oJhIxypfZK27YsF0suXbnMyfEJx8cfcHBwQAghVvRTirzYqNJjYqkY0jUfUQ1ROWSYHw7BM5nUfOITL6OUXIdzjuVqRd/1A7SbxzX7YeGqlJAPbYKgCAo617NsG1SRUajoBR9ij54RKVl3Hau2Q+uCzIHvHVZpVBaEja/ckBR3kcGfxt663tJF8yGxj/WkKQv5nHpIul1EBPpeVOIU51VLCR6UsKB1puJ+Eija9pa2k/u2d2GPoqpQ0cY4wZ5919N1lqwusFnJdP8i2/sX6X1AW48xQnTb2pqytTXl6WeeIs1+L+ZLDh4f8O67N/ng9l3Ozk6BKVrXaC3tjdlsxqc//Wmefe5Znr7xFN45lvM5r776Ct5b9vd3+XN/7s/yl//qX6GuKh7cvsX7r/2YZnFIbxsUSbo24KygNl3Xx+JFRIbarsO6yMcIngsX9rh86QJFnotmxXTGdGuLemuHcroFRY3OC4zJpBDTo29CiIFhIMv6gEr+I0FGNLMY9ImTKz6eLyquFany0pnmYzAWFbwAURBKo3yg7Rqq6TTun8Swl0kOvNx778EYRVHV0kINROn3gNaZnK9KiMvBRcvdLI8TOF7QJzxZpqOtrwR+iuQnkKS0Y2ES1SfTFJYcA7JWVa4j+oqgHyqAsRSF5sKFLTrnKKuSa9f3hRezavn6N75IQCa9FvMFJ0enrJYrbt++y2q15OjoBBsCVy/u863vfJdmPmd7MmH38iWKPOfKlUsEPEVeUOYli8WcvhOuzvbOtiAjw7k7jg7KWZXFNpEZvmQ4b5xMMA2+N3GUMriIhCqFimRjAbM/XPD9/NdHbxNo6bemIDokAUpHA46KZ597nl//+jf47Oc+y5XLF1gu5nz/299hvphz9/YHfOuPvs3Z2Vz69nGOlNRzUefhaSHuiM99246TAut1g+3cGFATLK/C0L5I8EoiWwyJgD9vXHQO/g8hjjNt3LiYfSVxiaGPHh+OzLuGAW5M7zuZTAbL2+VyzdnZ2egy6Pw4aqg2iYuyIBJLXAL3gAOc70zIBYzcAIhITezPJTRAbyRsMTqOiUf8tnMJ0eYTl4NBvnN0+ZLqwFBXBS+//AJ/6Xf+At/49c9RF4FmccadX/sKt99+nxeuX6UKjvXZGaenC06XDTtFznaR82RRc7ha86QRv3k5mMI5USP5bEL4lDG+9BlHsqYCfHCRNNqTuCFlkVNPJoOo0GKxZLVa0jRrJpNJlHuWbDvLRPxnfjaXfifQuobbH3zAweMDlksRM1JKCdGplmcLDDPF0naJvIwQDyqf5udVDIQSIPs+jnQpTds2LBctp6en4koYEadMZxRlsnIbrzslL0oLdJuefxJT6aylzwx5tJlVSuD6NOcPyPRK11Lkhtx5euvRJo78bdh/J7dIgfWjAYuVfqoxevS0dz4e1KLNkGWZJFd2tCD2GxofIR7UQkwPUeJ6YxTMB7q2xfnAbHubrd1tIRKnIBf3Y9f3WK/x2Qy9tcv+UzeYzGayVgjghNGtUGK7q0axoLIs2b+wx8svvxyN1lYcHx9zfHzMkydHHB+f4Jzl+eeeY7VaEbxYU7/77rvM53O2d7b4y3/53+Jf+1f/NfIs4/6tm7z/01dwi2O8bQjBEqJD5kBQjSRVZ0UTxVqH7UbnzNmkZHdni7LMyQsxf5rMtiJ5UIPJMZnoP8RdHlte46ZNbQFtNlClWO3L+hNjHwF2Y5BPyGbwESGQVN85ORN98IPmvfJSnOlYPNjeDs6cqXhJ75eUIHtrRVejqlOhKlWsGvdxakEQ+Q9FUcl0idZDsZeUPlNR09suqvCZAXQSErDwC0aBO1nFsgc83gWMzuLzke8riwJHG+OQARWoJkUsSHLKMufSlX3ZC9bxq1/9LEoZeud5fPgErTN+73f/TU6PjlkuVzR9x8liRVYUPPXUdd577yZ1WaO5xsOHj2jalqevXaMoC3rrODmbE4DJZCIJQoyHiZ8RQhgIrJ6o+OqiWFpQg8mTjQh3KiJSy1pvHqp/wuuXGC2URzn0ltIPyDP29y/wxa9+ha9//etcu36dqsh59803eHD/PqdnZ3zv+9/n9q1bhKCYxmxSFqsfApsPyZhERjOcc/Rdz7ppWC7FU6Druih2kYKpHDCDwcUGKSPPC9HUj4fnZvU7IgmjBOXANdhIFnyU2d0c4UvkQGBIJrQS+eW6njCdTDBZRtd1LJdLFoslfd8NKEL6mQxw8ngvU4Mg/WWqOFW8R+n9JSCa4euEGZsy41HAQm08q3MogmIj8EcUZiMhScmZ1LkRkEtwZFAURcmXvvQ5/oN//6/z2U+/hF2d0Jwdo07PuKgVF198Fh08zcqhdE5WFOStozINW0ZjjaHRhlPZwcP7S8DTQ6WTmPlaj0S4pFkhYh52UJY0RlOVJfVEAn1dizyx+BbA7dt3ePToQKDl6BCYCE2z2RZaG3HpiwpjiYuSkjwhn1YoraJzpB2Ct9E6qv+ZQSMgeSokJrGzboCGT45PefTwMY8fP+bw8JD79+5jexthwkhMTA6Gac3Jk4ttHjU8H1SsDEiGKI4Qnc1glOeWn+OjsVhLnWcUWUabGXQWIedUZcTAQZDDv+87+r6TZBkVP5tUfraX+5AXBSbOmwv3wMq/2dGtLSVyqfcp1Y/Beica7FrTRl38vCzZ2dumiD1VOQzjAeehaXuCqci29ti7dp2irlEERoplXEORMa83WmaQAiSDEuXe3i4hPIdzjvW64fDwCQ/uP+TRowMWiwXHxyc8fvyYnZ1t/uf/5r/On/tzfxYC3Hn3Le68+Srd8hhPT9CgvMZ5J6OCNoorxX6uIANpQsmzWq44PT3m0ssvUVcFPjiKsmC2vcVkUpIVBWVR0LcdyhRkudpoc4XhPDt3bUirQ0l/bjgT0nWPlQDxfJNzyYwVgvABXDLe0jKxYYwojBtFtvG1WS6uqiJeFcYzNwSw0LYtVVUNKIbRaqjSk2aDigQ7E5MUnY1ntoqOsN6FKMRTkPRUldrQtSGdJQjyFDxaR6turbF9i9ay77MoU25Di7WOIhfDK6JNM0FstL2HvKgi8O7BBPJCULGqzHjm+euooDAobNOybhrqrRnaZKzXDccnp2htWC1WnByd8PDBQ46Oj9nf3yXLCpbLNW+98x5Pjk/Y2ZpS1zXW9axaKYSDkn1tlMizW2tFN0ALEVrH+6mUjghKHztCMikhbs//kpEBpTKUSox6yExGVU954aWX+DP/yp/m4y+/xP7+PocHB/zkrbdYLua88cYbfP/736PrOiaT6QbLNeEem1Wql8PFOWzfi3ZAdBhMh69zbgymcS/omE0mElmWZeSD8EYEuVU8NOMa8XHuNQWgIfip838nfWR/DnZP+vFpJttkGUWZMZ2KtCxBsVo1nM3PaOLBlpCAnx3zSEFPDz9/5A8ExsAsWXP6nMkTYAz2Qi5RahwRy0w2yJuG4EBtiAh5HzG9WK0FCfLjp4oZfnzWqZOfkp7nn3ma3/u3/wpf+PwnCatTmidPWDx6TH88R3edVK5AZhRZ5G2U8bDXGjSe3HuKIDPkKiVkw7unGiId2ma4F2EDbu46EWgqioJLly7wK5/+FC+99BLf/tZ3ZKbYiaOmVpq6rmLF4GNFsIHGKMN0tk1VT+XA7oXDIE5uo35/1/V0XR9XFUPh3ntZD0Yb6rqmLIuhdea9eDsEKzfUWcuDBw/49re+zWKx5PTsdLA9FrfESg5OfrYtBOIoqbSSMb8PJZY2BKwPg2sfEckh3lsT11Df9zRtT56Ls2CmozOlDqCT8I+8t/T9O/EfSZNDSiYYbLA4L7BnVuSgdSQOxmTeOnysiFPA0pkmK3NMIaPDzjvw0hIK1tGtW5Q2bF8QpcG4qLHOgieq9nnWXaC+sM/ujWe4eOUy23u72CC6BIbEuRiRryGx/hdUSenrsixja2vG1taUZ565wXKx5u6du7zyyissn7nBb/3p3+LLX/oiru258/ab3L/9Dl1zQgiNyHN7jQ+iomgjauJsH8e9AtZ62k5kiOfzJe16xfUrF5lNCiZ1RV4IU35ra0Y9qSknU/JJjSOLwRRxZ0SkkNWQFIQRuUWq5EwgS1kgSscCIVbJqfCJZ0bwUvUKCsOALFnvaPuWSktSjRErZp0RUQ4RMtK5vI9IeXuqWkh9RVkKt8tastj7luCkNm/+ENCTjXY6AZQ24H1EeBREW/osko+HjIZEhozFQkwekjCv0Rne1PJztIxbBp2Rm4yuXeOjq2KwgTyrQJXkhRGxqygMJOEyEIxCG0mW+6YRoqTJUVXFpCpEnyA4JtOSqt7He4ffn/D8c1fou+fpmpZyUuIdLE/XfOaTHxs0HY5OTmnWLUcnS07OTum95fRsjtZiXHfw+BCMjKnraE5EgGbdEAKDi2tQHosXTlX2L3maINNZDFNSBVy6fJmvff3rfOGLX+SpG08Bjj/+sRAE79+/xx/94R9yeHhIHkepBjRgLHxjZiiHmvfCYG67bpARXq/X9LaP1ceGelQMTwkGl5lMM1Z8apSiFY1rgSeTvXIKKgP0nyYKGOeypT8giyy+28CkBQlZeVVQlRXT2YSyLOjansVS+kvrSAYTWDMMPa504bFIH6BenWZ4N/rzksgAymC0icFUqiljMrIsJ89ydF6QxzG05GUt1bNUpESIX2a2LX3b0LVrGRfz/QCxJaZ28nBPo6OZicYYWcbuzhZ/+rd+i6/+6hfBtjRHR6zu3qc5naO6qCgXJWmDc+RaUWSaLjPkRqHxaO8wwZGFQBYCbSTNyT3xBJ0Y0iPywcZ9Bwbd7yT/+qUvfYmLl/a5eOEiIAJHhEBopTJZLBaRFDomGulhRAReVCkjCpDgbGvtYBjlHeR5RlEKCXA6rQFF07QcHR3RNMliWmSMy6JmyRJv3XgNIbCyS+4slojlsOyqLI7VTqfT2BbZNDRhTArjurdpAcWfGVSU8bUW76XFMHh3BBW5JAwQ9bpthUNhNEZBZpDKLxBbMlEf3vuBH5RG/kg/J9oFJ030AXKO/vYDOuAl+c7LgqwoyBKvIPI7sqhMum5aeu/Z3ttlb3+fPC/onIyXGudxSuHwuHWPCzk7N25w9ZlnqKbTiLw4WR+Zofcymql0IpbK50itw1/8kgDVdg1bO9v8K7/9rwhbv2v54K03OHx4n+bkANev0FicAutkr/e9BHvbC8lsVLAL2N6zWjQcPjlkvVrxzI1rXNjbjcm8oqprJtMp9XRKXleoPCNoQ55XKC3BVKtN7tP4iWWKwGz00uN4rRnh+IQShGRAFgsgE4WN5Of4oTWjjQRECkkeEidGa4POk0kUJOZsWVYszo4Irqeabp0L3MPPBWzfi/pqutuxveuipgOxBawiP8VZOwh0bbYKBd0dWwI6EhKVFhfckBL3yEdQ2mwUUaI/khcVfd/E8xj6viUvaiCjrDN8EI6HVmCyYkjSVfAQ1tiuRVcZovmg0HmJc738WUk73NpWkv2qpqgmcsxH0a7JVoHS0sb6GE/hXaBrOvnkxjBfLDk7Fb7Bg4cHtH1P03XSHiGwXjfce/CQs7OFJDkqwxmwVg3r4KO8PnIykJcl3muKuuBXPv1pvvb1r/Piiy+wu7vL3Tt3eP+9d1mtVvz4Rz/ij//4j3HOM51ONySK4+1PZKth4ckisb0IuqxWSzG86G0UJnGcr+AVacQqJQMpCRjgqY1X6puICAMDA5uIRshi0cNn8qkFQSKzhVglxwRByUMrq1KMZiY1MoLWMD+bs1gs4tz6BrExcQCGSj/lq/G/sTJXyqCQPpjSo9BEUUwoy5pyMqGoa/KyIo+OZHleRAewYhg7kWuRxS7jXaN4kreWZrmgWS3ouzXWW3zf06zX9G2DtUJiM1lGXlRU9YSinlKVE6qq5Nrlbf7Un/o6W5WhPz1j/fiA7vgUOjsmbcqhjBw4BE+eKarCUOaGusxYGkXmPQWBzHtwiRUfa+44drbZ2hnIljBArEprvBWp2FdeeYXnP/YcVTnh4OAAHzzTyYQ8zzk+PmK1agBBkRhIRqkHObYo2EhCbBSGWq1WaK2p6pLZbMpsNqOqS+nvZsJkLsuS+/fuC8mu66nKCUVesb29y3x+KolYgv3dyE3RRkfGtShiph7ssGx+XkKgxtVzLicgfGjNpRFNqaySdbRz0PU9bd9R9eJ66HKRMpae49izJDAgHMR7n+f50GMOwQ+ENudsHEHs6Lsu9sml2suKjLKuRPrbaAhjLzgzmUiB9z3lbMLOxX1MrHBcbwlKyIlBK6xTLFpPffkpbnz8k5gipygL2qalKitQ0PWSCDgnyEdqKRljhhHOEVrmX5gcrFc97717J3JNSujWnBzcQ/Vrcu0ItgHS+SS1g/CckvppIiUHvJVEYHG25P2b7zNfLHjmqStsTWuK0lCWkmR6AlVdyehelkWCnRbUxXuy+LiHoD4kiQzXmNbIMPWEir1oBOZXohvhrUdnowdFKgKCT4FYipAUpIefAXENGlRsUyUZaaU0ZVXRNc3wfFVEnjanw9KzyCJPYWghbKz3cdxRjV8XzzHhJCSegqNtGuHybLRK02SFd1YQSa2HRGAo+KQMIM9KnO8FHdFpr0iLQQUHSqTF66pGK4OLaG2hS/Lc0vVLgmsIDoqsJjMG54MQKvFYu5Lvn8xQWRyx1AGTa8rIczFK07UNru+YbNe4oAQl2plx9coe7XrJJ156CpMXovQZjaX6vicrSxbrtaBNTRuT/p7eWR4dHPzc9f3h10dOBm48fYPJtObLX/0yL3/iZS5fvkzbNnzvu99lfnrCrVu3+J/++T9nuVxSVRV1LYEsZWYfXrgSpBzWCfTarNuozX9eSjgd1CkBEHa8HjLJzUmBdHgFFYZFK1D/yAkY3KxIEFuEypPOvPsQArHxNSr2xyYTqeDkwBGHr/nZnKbthoNgnLxQgzLU5ox4IodotGT8ypDnNWU9Y7a1S1VPKesJ09mUarZNWU/Iy4KyrqORjJAVpWqT9ksiQKYkJnEUvNuw+XQO13a06yXOdQMqY7uWvmvo2wZnHVlZkpciDKKLAqMMxsDTT+9y/cZlQr9kffyE5vg0XrPFJSMPpVBOx+Au/f4s0xRFRlUWVEVOmRvKTpMD0WKNoAWqFlYyA3KzefCBtHmEFyEa3F3XcXR0xLPPPss777yDjARe5NnnnmF7e5vj4xNOTk7RSqp+IU7J2ZLm3UFaSNEZSloMTRN96T3TyZSXXn6RL3zh8+zu7vD662/wwQd3sP3YAtLG4KPBFcgI4nQ2I8symraVvnsS4FHJtrqgKMo4hz2ujwH7h3N7JvFBBh6BSrlmvDeE4XA1Sg8SzQPpV34Q1nqapqPUkgx0nSjOGe2RQz6hamPiHoLQSK33lLmMQPW2x4h+K846SQTaVgiRtgfEbGUym1DW9YAgJKMfE6u+rhNFwwuXLlFNp2DEarfvOunDZznaavq2J0xmvPC5z/P0s8/jXCeywVlP7/qBOAzjBNQQdJDioG3bjXGt88VJenkfeHRwwPHxE7QO2PaE7uwI3a0oM7HUdVhchLydk7PDWRf9IPwG8dJj28DRk1Peeftdur7h0qWLXLt2he3tGbNpzWQ6GcbI8qKQPrTWoq0QYgdno30zFlfjmZrneUx2xZNibImEc/uHMBY+OoSBqJf+UfQD0pkrFbVzduBdhDiiKEtNkaTik1phXtTS8u16dG2GRTqoGSbEIY6GZ3k+fE1QimAtOs7lpzixiVwMexVFiHyToshFqCuAyfIBBUkoirPCPTJKGPpayzNWSvQlZGoiJyhP33UYU2DyMu6tpGyaYV0bZcEVykSNBK3I8gprGxQ96+UxeTEhr+ohmSvrmr5dY/uOIiuiEFxMOHQmZ1AIVHVOp5b4AEVeIhZMcr/Luoz8qHR2ZBR5RtOsMEXG/qUdjDLYrqNrGnn+WqH0p/kor4+cDPwf/5P/A4FAVcv4zdtvv839+/c4PT7mO9/5Djdvvjf0TGVRasagt4mLj4YO4jS3ZrVuWK8aurYTIZQY1KTy2RDPiSMxY2sgjV/IIvbBo0LycR43iywqN2SlqT8+IsabPIFx3C5ESUmtk51tyWQ6oY6HWtt2LOYiM9u13YYS3Ie4ARvwmhzKkgAYU1IUNbOtbSazPYp6j639C+xe3KeoyzgKV5HXJUVZDGS28cfKvZAgHFBhHI9L1yHMXSGE2a7DO4XKDJSiHS8EHeQwD1IhBO8HW16PaN9rJHDPZlvUtcGtTuhPT2nXc6m8IknKx/65Mgg8HUB5GXnJjCIvMooqpyoLynVPFTS5t7Te4zAyraAVTsXeHpy7XtFUSGTTlFjJqNnNmze5cuUyv/LpT0KAm+/dZDqdcXp6SgiiSZDlaclHYmRIExnxUAuSIHRdR7Ne4UOgyHMuXLzIr//6r/Ho0QOs7fjsZz7DO+/cpFm3UW54PRq+aBldEr6JpqxqyrKWdR/bRcmUKNmr+sjtSCE9Jatjr3u8E9IKU0NwTiZJDjEp8h4hzw7iRcnQJSYSiL9BaztWvSbrNUVmyM1ITjQmMrmJrYyQNNcF4ciKEmVyTEzYvff0tpdkoLeDkJPJDfV0Ql3PUCYmdzHIpIq9b8QXYrKzxWRnaxiJc1GRr6ymgMd6S6sqLjz3EheuP03XWalWlSLLy8hJUnStR9wkzTAVsYkIJNg63cOUHIwseFitO+7du4ezPcYE2tUJrllQZaNqYgg6tnNGK2jnfEwARFyo7xxd47l/74C3334LreH6tcs8df0qOzszJpOKsqzITEFelOzs7FCWBcbEkTs0WkmvWunkMGlkjaQzNkTMKaQ2Y1wr8TepdsfzGMZevI8MfJS0aXVkpnvvQcu6yYyJY4jxnPUBE9sL0v7UhKA32p6Q5QW276Q9pkQdkTg6mrQSdByrHTCueOb3zmEQYq5CRhpDEHfOEJCph4gZOq+GdmxZiBW1NtnGFIS0OHGCEDjrMfnI0UprXcUzWoKyZr1umWUF3vUDB0oyCIdtFwSVUZQTAhob260yrZKR5TVNsyS0DpMVZHmJNqIXYa04VmZxDycPkTSVF4KhmBb46C4pREyPtxmmyFHGDSTaoHPMpKSuJrh2LehylpFNCkxRYG2HUols/otfH51AGDx93/H6u+9w995drLW8+eab/PAHP6Dve+q6jizocaxFqTFzTcS/NOsrugEdzVrGBvtOdANGBv84rjIiAsmNTg4TucaNKh5FMiOSgJgkYTdbDelbJCkIsTcle2kjgIfxADZGsbU9E3i4qnDWM58vmM/nsaXRj+TGmEAMiVASUokIQJZVlNWUerbH9t5F9vYvsbN/gelsm2Iyo6gqikmJymTheycz45nZEA1K1UyUyZT7E0gKgyoS3kIciZSpCoNnNO7ZnApRPvYDnUJveGIDqDjTOniGKw+2w64XdPMzfNdGC9nRvhOthJCWDvwgCYJUPoayyGLwURgVyBXoEOJkAQQTnfeSumVEetLzS8/URYe3Ii946sYNLlzYZ2dnh7quef/m+7z77nuEIKNqWS5S1AMKEILY+caR2XRPk7eEsOfFTMjEim0ymZEUNx88fMTZ6dmAZMkYXZJ3zSCOlp0bDzWajI37niBZSQfGz7WxFs8ltaRnN6Jgco6O6zYJWck68RgUXjl5Vy+mQ0FFQSAvJL+m7SiMITcGFRGgsBFgRmRAPk9ifCeoPwXDvu/p+oiMKDFrEtGcCSpL990Na9j2LlYwiqKq2NnbI8uzWMm5wTxKBYXtPGuvyC5cYufGM+iixNoelKFtu/F+hjTtIK9NhT0ZFcsGVBFgvV7RdZblcsXOzrasAR+4d+8BR0+OKTLw/ZrQNZSZkLES2hhZnDgrv6yNcsMR1bR9YL22vH/rLu+8+z4Ez41rl9jd3WY6q6JNr/SZQ1BkRgR6srwgL4UjoHUaJ5QKWZtiSFiNUsNqCvFc1UakbTdNrpKq33i+hXiuiXpe8oEJzg1V+GbLkVjJp2R/RChC5JKkiQ0JaJsoQNI7MNrQdy1FWUqOEn/muMDVgALmWYazduhIaJ3RdS2qGLlMIGcOMZBaJXo0RVXLZ0hIR2o1GiNImbf4yMVK0sHG5OP1ZIZKF+SxIPShx7UtWhcYU+C8wWOwfYtSkOe1aIIE4fnYIEqjtclETtlZlLORkGnIi5JkZHeuRamJ57YUAVlMlAYCtYmJbF7E/baBAJqMbFrEfRcJ87kCk8keMR8tzH/kZOD//n/7v8qIyETgrHfefYfTk1PyLGM2nZJFNGAYFZEnHis4P8B1vRUjjvW6pW1auq6TIBKJKOcMbySGkkXOgThrjeNVsqbGWeu04BMKIIeZH/QIUrthQMuClx6Z/A9jFzZEeExmkqezicyAGkPb9pydnjGfz8VuOCIZmzLE8tF1DM4CPxXlhOnWPjv7l9m9eJW9K9fY2ttjurU1SFKaYXNI5ejdmMj0vY1wlCHPRPvdBxsdIjfGh8L4CXrrJNvPRAhkc8QkbSg3+G/HZGK4h2EYVTQq4HWACDv3bUu2brBNA84SvBq8vyUJie0aPVrh+jhKZIyOLQNDUWbkuca0SohOENXFBEEyQUcdlA1p3nhtXRt97oMnyzMuX76Mc47XX38Day1HR0csl0vyXJS8inxMVMNGgBMewUY8DclwSw4a6a/C0dEx3/7Wt3n22Wd4+PCAN15/i8ViOchgC/lS1maRFxGB8rFa0sP7ElGyhDjB5pjrCNVuwrrDZ+b8MwwbP2v4f4iEvcirMYrg9UYS5OMZIlCyi+OIfW9pdIdS4paYuDdJo0D2s/x8rUTERlpTkajp/DBLr+IoYFbkZFWJyTPhd3gfUTE59HprsT5QT2vqrRlFXUMA7cPQclNaY7sOpQO9haevXuOpG09TVSVZXMODlDMjNKzUOKlTFKL5kayiXQx41vaxRZNHQq60FebzJbfefx+jIcPRrZfk9BRGDWN4KRFPnBzbuTg1YGXfWlgse9546z3ee/823gcu72+zt7vN1qyW1oMTiWetFHleUETNfZ3JOK7KSrQpUApR0gsanSV4nuH5pHNPDwiknEPexUpfyTkoscdvxvgBESEmSlLUhPPJQHol9GDou0e+SCz6rLXjzyMMdslGC+HQaIO3FpMX4xr3kTCsZT2aGEMGwmpy9TMytlpEjY/xnCPC/rJvm/WaajrZQFBH3Q/xv8gFok/4mIcsil6lPePxcZxRev7Odti2ReUyZpgVBc529H1L064pqwnG5Gidx5hC5NMElHHxfSyeQGZKdNAxznmkepVWbpaZ6BMhg4yDp4NSpKtNyZjOlKiQek9QkTCpy9HEiwytc0EkP6IE4UdOBu7fvUdnLcv1SvqEUbwjKfxtbsb0SgeYs8mis6dpWppmTdt0g5XrSHhi+Bkq6gbI1IAajB1SNpUqoqGKihMBm4fo2CML5z6T9+d7hZvHqyIK11QFs9mMuq4G8ZrlYsXJyamY46RRx1SBb0JzQaFUhtIZRVGxtXOZS1dvcOWpZ7hw9Tqzvf3Y+88G9muqfEEq/hA0ARfV42JVFsYpChAFsc2gAwyiQ+lzBeexIap3aYWKIyohyEifd8l/OxKpYnCR+CTBSvprQr7rbGC9duhGNCCscziroqCKJBaegHV9HFkSwpqwzMeMVke+RzFY746zsSGAtxYX+8pKjw5dKUBrbWjbhkBgPl9w585dFosFh48PhoQhEUuFVa5Gwad4n7VObFsz9Frln2LrJK4R50S46Cc/eZXXXvsply5d5JlnnqFpWg4OHgEyyqSVosirCGOGQTZVhZBa+uP+iI9tWIMbe2Dzv+fX8bBBxpOQdPSPrSgf+S/p0NOZxhDnkmMLTQXxEZHWhQjjdCrp2whpTJ6ZQ2XyLsLaTmvUDyhK8OkAgjwvROHOaEwu99/EylY+ugSz3vb0tqcoS2ZbM6qoAa+CaBd06wZvHcYobOjBO/rGc/+9mzzz4svU+zviZxCTCnlOcWrD6AFlSkmy1km9MQxJYRKeShLWSU3vzp0PaNqGaVnQLY7BNhS5oKNp/aSee1ITdK4XHwZraRvHyeman7z+Drc+uIcPjgu7W+zMaiaFYVqXTOpK0D4gz6JdewwGWR4h4awgqCiiFM5X5KkbkPglIwJJXFgKZ3tZmTEBSs6D6ZwKUegpRJLOQKx0bpCGT2gQIQwtsPQZRIxLrI0VCLIQEQIVybjeO0y0ic7ykuDtiBbHpGwgqiaiUEQVrespMvnZWZ7TrNfn94RSca/JvwdtCF3LarliOp3IvlBpX8vnzQsZO0/FTtpTIaKX1kmBKCZWGq1qijLDqTXNekUeAtVkB7Ick1U419H1HTmKPK8AsVwXHQCJAfi0Pvt4zVrig4otQxOGgmks0nopZAekRu5RkmHXpoyfb8B5JNHGxzO0Q0VpZvUvOxk4PZvHA4ZosZicl873sDchxZQtdl0XvdzXtG0nLYENMRI52wI+CKFIpR6OrAl5n5ggxDc6B2NK0aIIOh2q8veDR/UAtTL0RGMyDKmfuuF6N51O2NqaUdUV4iAn+tVnJ6fSFohjbc672HNOkK8SQqAy5OWEyfYFrt54nqeef4mLV66yvRulVSPDdsy+7XlhiAEyiocnfpRWzjf0+uM9cj5B3qLvrnXKdMFHOIwgh2CmNRawfcApgdiU2SDn+ZRye6AfNr5REpjXbc/psqUCEaOx4pRmrajZjcpX48uH0Qba973c8lghGlSEOxXBiTobRsiH1lq03FFSL1Iqaj0oPApM77h163ZEgJKsqbQkUoLT9yJY5VN1raJlStxokpiUDCONIcSWjzxn20PXNeRR1ngyneCdjQenwLJlWVHVdax8xb0tPdAhjjPiR2OuGteyGslYsIEkqM3vTMqSZkCFNLH9pdLESiSmhjC0lnRMVnRS6jRykOiI3HWhxziF6Q1968TuNlMErYb75eO8t3BRpBp3TngnJj6TEET2OMtlHxudola8qiDBt1m3gGI6mzLd2sLkyUoYutbSNpsHdw/Ok7vAzT/+ET/83g+5+LHnefFXPsknPvEy165fZba1LffEJ1zMkzT6U/IsQWpMyMY24HiGzedLHtx/RFUUGOXo13NqPDp4bHA4G6TXrhzeiU2ztRY7eKc4Dk+W/PFP3+bdO/cIzrI/m7C3PWF3Z4opNCpTGKMo8wyT57jgMbmJyUTHxBD1F+QeYRVZVsY9IOtKK40PihDJbMP1xKTSA972BK1BRZleZ2VWH7nPJBRHCYpAvA8qLYxEqkrnTZApoxARHq2zWKlKopCKpiHZD3k8C9J5EA/0uKzTOZGlSYRYyKQvHVAGJVVwGYWL0r8L6rAxQ58ZClOjY4vBdj1mY+Ta9lKwZEUWSZOpgFEkno6MAfohBmkU6BxdAMqwWq8pK4fS2YC8KW0QuSuNVp7Vck6zXrO7fwGdlXFvx73uLZ7opxBHeNPkw/iKz9C2eNfRN56q3o5tZrBuDT7xgWIS5ZwgP0oJmhFJ68H3EuM+wusjJwNBKyGyqDBYLOpUoQSGfk+aVfeBGEhFQrht2yEpcPHQ30wcULFqMRsSujpldsiEAJ5BsCgG9nTOJBRzIB9+qJiCcR2NJ7P8QZTjREZ4e3ubqqoFRuytyAmfnjFfLGjbdiAJDSW0YmhRGFOQ5ROmW3tcun6Dq09/jMtPP8vexUuDCAcw3Lt0vGulo9sjpH5mCCF6u0tCYPJEpgtDwDBGIRmhlwWsUsUy3lsVN1K6+KGPp0ZHx8DonAgj2uK9IrlfaSRzXneWR0/OuHS5pAvConbW0veOvndR5Oi8V0QibtrItHZO1PgE5UjJTfSZQEJnMDrOsjsyJezfdD0h3qNEVk0JSBplGhGk6OTnJTCIvLGYgxSFVIV9b5mfnUXnsUBZiJhHgrXdZlYdRbFu3rzJgwcPOD0RYmISAanqmjw3wyGXOARCeBxRqxT8PzwlEOGIIZFOm0vq+xHtSkRAlb5uYx0OxFHvyGLf2KSWwQYEO/SF4x7yPtB7T+a8GAQpCFVGsaHctwmNp35mlmUUWY63IjvsfexlJxnw9OBCACuWzm3TgPfMdrbY3tmV2W8lQcY5sW9WsUL2zuKCTBa4vuPq/hSzaPnxt7/F//SHf8j27jbXrl/j5U+8zGc/9zleePFFdvf2yIpi2KOyFMOwltN9HHgxCQHygXsPHtDbjlldsjp5gvEteQbW9thg5Vz1kvBYJ8iAqKVa2sby+HjOj159i/fuPsRay6QwbM8mzCaVkGbLQlpf8V5WRc5se4fp9hblVEZLu6Ylx1BsF4DGO2LQ3uixe6R6xQ8+A+n81QLlYfsWgHKSx/lzUXFEmRjrJXlwIcTnlAoCSX6USi0GSTeSXLj3frDU7fvkp5H6+WOlJUlWiJMIeuOeR8TRKLq2FbloRp0EIkKY/EIkFkRhLHlgAzA27h01jEeKTogDLXoGklRm5GUt+iRRuAilYSOZsH0PdFGwLYAyksYohTI5RfQ+WC/nlNMZyhgpKHSGMjkBhQ+KarKFVor56QnT7R1JmiMKo6O0uoqGQr3tyYyJ+gXjVtFZBlSYrERbS9O3FIUkK5qSgCQQIY4hO2dR2pPHpDohQFkWE72P8ProokNZNgTPxOofWwIhfqDR5CRpcotgiyjxJTnOcYwFkrHOUMGksl2N/5ZuEAkdDec+WuSXhYEboBJ8DoP5RqoXEvlC3k+RFyWTesLWbMZkJnPp3nnW6xVnp3Pm8wWr1WogCW72m2XzBYwyKFVSTXa5ev15nvnYx7ly42m2Ll6giHyKAQKOcNugCx5G2+Rh4Ss5/E2mUS4mSUi1oHUKoCN6IhmtHmBw72Ekn6ih8oUk94xAqQoUJmrHx2p5M9MGQhC9gEAAo1g2Pfcfn/HS5auQlXTulNA7bG8HFnkilEn7I043ECKk6+gizyJsIDwpGZGEwMjXCz6C1w6lRh/vlBCA9ObMsEAYkx4vioHWChfFxIA9mdRsbW2dGw29d+8ejx8/pm1btDYUWiYA+t5imybCtAwSq8vFitWqIUQZ3qoSREDEgjZEq2JgT/D9uWUb1+h4qMVEzAcY1DMTgjBKYxP/LiWGSqV5hBAP0WH7yPMNMSGM9y0lSpvPOcTk3TpPqy3aRonTiLTlufRyQ7S8TQhBUVfUVS2GRLYd/NuFka4GngI+oDyiMNgK4XayNWV7Z0fm3H3ABKTX3lkxIMrNsGaGvrzr2Nnb47mXXmDv0kX+8Ac/5r133+Wtt97mez/6CRf/8R9w5eplXvjYC3z285/n5Zc/ztWrl6mq6meud0jI0j0Gmrbl/oN75AZCs8QuT6gzQRmcjwlsLHSdl2Sg7yxd27NuHI+PFvz4tbd4/+59Oh/INWzVFTuzKZOqIDNQ5NI7b5sWk2fnSJaT1C4xGVmRo1QGSkfO1EYikF7ei3ZNrPAHpEbFqRHvIGwWLpIgp7MrLZa2aaJsd0S0grQXE2ktvW8K6Gl0Vsiyhr7vYy8/bEDdsghFRtoNCWRISUJIipuloLgIEpjBMNEwkKXTgk4JcLz8c4I6Kk3xxJNeG0wWpPK3PVlRolWOiQgkSir6LPIX8LIK+rbF44WzoRQD5yzI58mLKEnerqnrWsjVIaBTIUZAZTn1bAtTlLSdkOtVkDOy0DlZVkiBFhFfcfH058SQAkGkkZXBZCVZEIJ6QEYnkx+EyXJ5vFGoLLngKoGXEU7Uv2QCodmQNByW5OZBHoOatVZQgF5EGtqmlerM+YgGyAccDislh4Y2Y3KhVJrJF0QgdUNT0JevicTBUb+F84zsMCweCLF/Ki+diTZ1VVVDYEgSstb2LBZLTk7mLOYLaWv0dghw8rHi2GPQZCZH65KdvSvceP4TPPvSJ7ny1NNMtmeoLEKCKhM5UueEaa9HQpn4ist9UWqEztSwAaTiU+mwxwxjfyMhcrwnxEWWNoz3Ub86Ii7WOUyCobTecL4aXcA2YVRJrOQegsI6eHy8YNVBOd1m/vghPqIC4tUuWgPyrFOVK/KYLgS63mFjxW1d/HMiZSVEwYtqmgoS1F0kiI0hdnzJOlIDlJlm8Ls+JQIy719VErTTRIG1DoIYJU0m9SCsYp0j8wKHbu/skBfFkMymKuT/R9ufNV2yJNeh2PKIyNzDN9R0xu5zutHoBhogQIKkTJdm0pXus+zKKD3r5f5LvUkyowhRFI1XAi4Ago2x50afoaq+ae/MjAjXw3KPiF2nAZw2A7f16ar6hr0zIyN8WL58eS9DTNjv95Z5uPTz0LUyem/AEBp7RM0h+VoPGWwtl4gb0NCBxi1Q79Lhqrizl+rCXOxNTza9s7bgsGty+L2Uws8r4LCurWRMNSJmhxeVEoXgXkox4Xi8wrzfWY1/6xwVgG2l9jnJxMC2dcG2rFiXDXGOuL69RZon5JLhk+ZKKVjXzUa3zsiOFFVlaxiA+eqINAd875P38MHz/x3+4qe/xP/853+Ju4069K+/fIs/evhj/PGf/CkOhz1evXqF3/u9f4bf//3fx7e+9SmePbvtrc/djEEV+OLzL4FaMQfFcvcGuwCkAMLLriWhfM5boVbDum4sDbx+wB/96V/gb3/yC2ylIgbFLiVcXx1xddhhPyekGJFCRIAYcsrAKU0TUuJ/YZoQdztomqBCZ+BBVanVOqk8fHEUlu2lFd1hV2WS4iVCJ5/TVrB8ogC0FArk5GytrtaRgs3ku73dzt+AZUjucQaJnmhAzUZX12ex/RaklZVqrajWwhhTwqg02pAaELVwtUIAjfRpRhI5Zzuz2fwHp/T5uQAcya5YF6oLpmlnWX9G3lbEpAiJ6IsGAaoizc5fGuSeK210kBkICXEOmAFoqeySKJnyxI6iFUVRQZwP2E8ARDGFHROmZcXhuEMVQMRK7dGlpPiHwoiqtUBESU6Me1qAuqHWjffsnkGcqG4D5TjjG50f8k4Q+fe8vnYwMGpGj2j7iATwMK825IUBQWOrj00CMjp+N1AdrhtfPkO7O7/+2f0i+BcdnD43rAUPZnwR0GZIX19f4+qKqnoxpmaI3r69x9s3b/Hw8NgU1NTEiDxAgUVtMeywm6/x3offxne+/8/w6Xd/G7fvvY84z9AorX81Wi1nUx0Y5L3LgvbcB3H4gR2CLGGPbZRkdbRe144hoIaIvG4987P1zZohwaLymmmlxToVYK05QqJL1YxaM3zyF4AGJWsoqMJpdZNMOJ0yfnl/wifPX6FowrI+IS8Z67mw57ZkSC1W0+RccQXhyGUrWNeCbVMsW8Y5Z6wGdakYj6FWxKpQKt0DUFRh26P3LTt8OWbbvn84CW6DK6LFGLHf73E8Hkz3n4qRXj54eLg3Ryz2ntogx6urKxz2Bys/2QcFJye6sXJUAy1T8OfDUaIXV9lKAGr1VcAd0hjUOQTaz1nrHvCuDT8PjjJUxRTIgVDQcU82QGnVTv7zVwjUXA8SUOp2EaCUWpFrgNSKWCMgEbvdAdOccDgemZ0oULYFa2ZHULHunKqKCE58CyKo24qyLViWM0qpePnifRxvr5G1tvMNC/o2U9Gzp9GC3WziRtO8Y/AoFbfXCf/mX/wWputn+E//5S+AEIgU2fP+4osv8KMf/hj/83/+/0GC4P333sfv/f4/w7/8gz/Ad7/3XXzwwXu4vuJgsYeHJ/z4Rz/Gy5tneHr9S9S8YI6EcXPJbX9w5oCibAXbsmI5Z3z+5RP+5L/+Df76pz/GuawIEpHChOvjAbdXB+xTbBwKAZ1OSBEQigrFiS2LtRRqdEwTetMgbVjeNjpHc4jZe/19TzVj2PdGmBL3lXccmG5/zrlxOby0tm0bALSusJoVMVkC1Jy0oayWwGlRnJ8ecbw6gspQzLbhAb0IkVkRSA0YkVknfcfYkQcAXY5YBk+jnBMC5zPZ90rOgBZUlEbEFhGbhEm55ZgSwpbw9PiEm2cT3afZx5I3hBjQJhgo6+9+v86NYD2/mD4AnXBMu4E7EdjpsN8BGlBDBXK2Vl6boRAU026mzLCWpsLoaIwjDwJhJ0MVaFFsWI3zw/ks5Cco6lbYTn5h+/j7GhUa1EpJgnHuzD/0+vojjCW27QbAal6smXGq2WbdAucLFcHOlEZ3+sGTudDYzf7gvxIQeB21KQdiTKPaBallXQ3O9R+rfbAFHcIR19dX2O13mNLUgpmnxzPu7u7w9q0NGGq15gpn53q+HZAwhSOOt+/hw299F9/6re/j0+98D89evjLODWEjBiUW2UvXC+9QstfDGGVynd5tfeM6uRRog+lsTStoRAG2Cba2Kl9HRWMHO7TUGMTqfb1k4i72TLO9X5PsRWgs5zntsEHxNz99gw+//z6mF6/w9vN7LKcN27I2IpXP1TZ6G+UztWLdCpY147RuOK8ZW7EplHAEhC16KNWbGcg3gCAJiUAQEuSI2frWkba2W97gHBZm8RHPn9/id373+0hpwo9/9BN8/vnfXgSwhDdjC4QU3t3AyD2mTmL0V0M9tEIN3SEzu+tXaFWEaJCm79PLk9SeN7fv0BXjOIj/TjWkpBhKMaAPwf6LQkIWM7iuztlmB2iFSGptaCRIBdQa2vqVUlGjIX0FmGYa1TRPSFNCmlKTKK5FDXkmcSnGiHm/Yz+5iGVVXYPg9sVLPH/1Clm57pMx+peNLceABacAZShtb+RcEec+gMxgRay54u7+ATFNxjfqfejUA6GU9N3dHX70w5/gT//0v+AP//A/4Bsff4znz5/jo48+wre+/QkeHx/wm7/xG7i5fYn7XzxhH4jQ+PCcCvq3UhVLzljWjHXJeHt3wn/9y7/BX//opzhlBUKCqGIOwLPjAdf7nWlqRHgqVUrBvJ+NR8Tt7gGQr6cEQPIGiWB3RjKN/pLJAVE6d0DNEVZDp4jMBYfBowsvCUQoPxxFDCka9p4naKrkasSumNpKD+EyQInThHp+4qS+4xVcypt7zMKTqg2NIoxdMCUOqOpy0LRVPvWSZxc9iRtKAX5qWGoInGJbMmKqjX/EA+HXGjAf9pDEEp4TDlOcLMgTO2La/kuhj+gGrOQgguW8IsbaWmcriNaEQG6LVrH4R6AxYttWSGFiULbCtnhR5O2EkHYmH52MiFkNfGFZV2WHKSRULdRpqd7SKQzgJ87KaaU4oJ0NoRPsLYX/9MhAbdGqOySf7sYg4ITzeaHoSHYp4eHlpZ8BnqQjHGqLQwnAN0CDW93XtxKSZXHuSKRzD3wjqZCR2pGAK5u5zpompUlXPD484s2bOzxaWYBBTG1Sru5oiDpExHTE9bOP8elv/S4+/f7v4uNvfQs3z55xCtu2IQSwbUiC1cVrM1I+GtafEftKSdYZ4Xo1FMHbSqJ1beSSqSnuTv8dFMHXohv2Ai1lcApctwBpWQZKZeYdgiE5FgBVG43M4gTiLkICUEPAz9+c8Wc/eYsPn32CcPMWD5/fIZsKXzGuQAgJimKEK9Zc11xx2goeTwuezpuVDby1SxCqNKgraLAyEexeMiDWX+D8geAZBwAbfW3bjbtJFDc31/jud7+LP/iDP4BW1vz/+q//1mbV+yEMJPJYvVKr8rMtaB0RMe47uy5DpJwQ5r5b1WrgJSPUSySsXaD00pXvfsZ41Ry9ANKJuQwWK4lOtVrpiD/GSX3AHAKSWHDg8aDvEc9kgGa0Aqz7JAas6gPB6ABLrY3ES415Gk5+3XgtBnMzK7Rxz7u59ay7+uV5WSAp4eblCxQBtpX7GIktn+t5RSkV046669FGKkMFxdoHd9dXBgc7mhLwdM64ezwZ6ZOBtf/M4XhA1Yy8UrlvXc84HGY8f/YML148R6mKv/rrv8Ef/fEf4/7uLY77Gf/b/+5/hd/59seINaOWrbcSVrXEp2LdKs5rxf3jhv/yVz/EX/zwRzjlDA0BAYqEiuvdDjeHHebEQVDBnzk4CVJCsLkj1DmQGHA4HjHNcwtk67ZhOZ8x7/bWlmcaAVIbebvD7ESuSt66ch+4FiQ50pkEIwWr8lwyKKDDdnplsATFk4Fto8zzGDSoIa3H62vcv30zCHr1Mhc7GCoAd2QK1IICNT5RhSASUrf29BQj9/7YXQXrLAqWpQ8DlkKkIFFLAkff4X4hBEzz3DUUzPjGlPz4wEuMznvxlkw31AJpc0PIaVDEFKGF7ZNpmtvZ9vPm3Suq4NAkrUjThHU5Y5IAQcBWjZAfkqEmHniRlBhlas/LSdCOEEQ7xyVn2gAvNzg3RAYxqK/x+vrBQC0IBks443dbOeN8XRacTt573wey+BOR0KEZGhZjnkpX03NewJgl9Y4ARw9ghhgXD9zLWa5NAIBCM/NsSMA1RYO8pgIb43pecX/3gDdv3uDpkSRB5zZ0w64t8wwqCGGH4+0H+MZv/S6+/bv/HB9+8k3c3BwRBa3X2qFpEaCKeggFRs3cZJOTY0D4nQFWxZb5M9EOj/MnWnBlm9YNC7M3ZvJhGFJS7fA4T2BdV0SbZ0D0gQ4nhtBU3mIKqGpSp81oVCw5Y8IBdacosiGLYs3AH//VL/DRzR679Aqn4wOWhxM0L1ZfB7w1UdVGutaCNVecc8HdecPDtuIps9XmYuyuGTe1AJQO0tq6hJPAXHnRmbPemtRgekM/qs2Or7Xi9evX+OKL1/jBf/0BHh8fKWpDyAoxJkzzNBwc7jMyj4fMyfaoKJGDhgJ4UDCUAXpG3mucji6MXI92VIbshIbMroNbh8I+NglQLaBrxEEo5jRhPyfEhr55J0dt18QNyjf0DjIa4QBF5BwLZfA2NQVIQrC1GkelVpRi4ZZBsWrtsI5olFLan+fljKqKZy9fYXfYU3Nk3azNkHr+3kKrtsc9I1dlR0lRpViNhCbyJQh4OJ1xWlYOhRHFFCZqHMSAly9f4unpCZ999hkUiv1hh29845t4/4P3KTQERYiC49Ue19fXeLx/wP/yJ/8FMZ/wm998QZlfWzfyoSq2XLBsFY/nFX/xw5/gj/78L7CWjCLWuqmKOUWSBk1LIES0LikSg6dWZhIrbRAdI7RfrbU27BLmyRAD9emRQv2KwA4fGNpTy2ak5NqQJUcgiRw4HM11DiFAM4NKKChONexDf41qf97T31Au+/719TVJhC6Tbf6C9x6Mpd9fdFBermALdWsBXlYiT2mU0PUAxA+FBUJBIMpWxVIqUuT3auvPTxgTTLHEjHuF5YQW2KiXwRXL6YR5vzc1R0s6AYirMKpakO5ct871chudbeBRtBkbjO0jQgqYwOAypoAKdmSlic+2FGDLK1KqSHEChNfAs+KTWp183PllDNCrnXDX50lmuy7tzN/3+vrBgElVAqzJnp6emnogWdsZPljIyU5sh0Fjuvb/OqNZVTtbHUP2hV739PSH8La2h8OFdyEVEvNiTJh2Ew6HPeu9hwOmyfuVKWG7bZQfffuaAkI+KrmUirbLgYtMOyAghQOun3+IT7/3u/iN3/ln+OCbH2O32yEXhWqx+2DPcAiMYAMAVcJyxay6l0tCSxfM0EpFELQo2QmZWhVFckMKxBWzqprsKck50RAPP8yTQYJPlehNtTagIGLSwV6T91HQETEISqZeAcfQVgARtWYsywmqE6Ipsd1DcX96gpSKOd7g9uYVpruKvN3jvGWgBCsPKDabQ7+ViiVXPKwbHtcVS80mrVRbVpJrtTJLR6P8eRQTM4qSWqbiswroO9XIi653UPHFl6/xl3/5N/irv/oh1nXBz372M2wbJWxj4JRIkso4y72OjlN7kKJWwnBtCbhjrMXKmb29SQQ0aBXwEdZAbNcMLws429s3cwcnG6zPn2WAt53O0Jw9PuVBt8BgsvarAB3koLUHt1Aiaw3hg0nFBkCJuBSbwldywRqCGWu7xxqxZevdr2hBrARBlGhG0gIQUaBUlPOK87Ih7Q84Xl/RUG4bUYrArNNneLpOuwTqvZMdDuRtZaJo4jYwfkOViLtlxTlTv+L+/gk3t7e4TjPr8yHi29/5Nj746AMsy4Krqyvs95wrUqFGXOVz4MyRPT7/xc/x7//jf0b51/8c3/rm+wDEZo4oSlFsm+Jpyfjbn36G//RHf4anZbVzx+cfRXB12OP6asZ+FqQkEHNuotWkxSMO+z12hwMUiikkTDEhV3bQMJ0UlhyiB3A2FrwqkQEF++QNvaGDoJP1ziyYpr9gMqe0UBAHghhmVMkma9wRMPWavdk9COWBz08nXF2ndg4hAjE1Q2+x08quhhiCxxgQoE0Y1KrY6oKaN5u/QNTCVQXVzkxVhbQRywaNp7k7B61NfQ8iSLu9V6ropIOYwAqAII08yy6JQm4UAqawb/cp3s4dAmItOJ1OuLq+6fcLmOibkgswZtvG06rW3eFJgLdgphSs9EpugIRIgnSckIABLTYEONmZlYoQOzrNeMMHUAXr/CjskjCdArYRFksMPeH8Jy4TLMtCI1ErzqcTkQFjETddfs+MDManm3Oxk0tt/YYIGNKJ0f4qMGq6++80wt0QHIRIBznNM/a7HQ6HA/aHnU2D6xK0pXIC2vm04OHhEW/f3uHx4ZFwpQ61zyHQcD8gGiHY4XD7Pj757u/iN3/n9/Hhp9/C7rAnQ7xQg7oWn9Dnyk+wmyLsHrgdYAAeXAkLwwYKrq2Avgk9CAvTUBOzt5Zo0L9tpBHK8/ckyTCYZGxGtWBg2daGQkxpwjQlhEjW87bR4IpQ2x5gZFoKq9MccuTXGnCSA3ZX79vBV2xffonzkrFqpEpXYTvhlityVSylYrNAwWghaB0gftC036gjR0RCShNt4hrVloHHGIzL4lLNHEX8N3/zty3rHutzCup9p0SVQof4+2tEudqFWoJigalxA9QMXpg6IsAAJ7C80wKFrx7Osdwz/hnseovNP9DC/mQDDRpi5mWBAPRz5uexQa7mqOFcAYHPi1cYudVY1X4NBWJa6mhnXUT6KN3hWrwMwS2vyFvG6XxGjBG3t7dGpvKBPgW1CjQIJCUKednzjaEHtGVjizL3RUSxz1FlCe7xtFhHSsFPfvoTfEM/wfF45KwL0MHd3j5rdsBto+ucVBUiKbZCb968xc9+8mP88pev8W/+13+A7/3mp9hPCbUI1ix4XCp+9LMv8P/5//4J7h6esNvv4E2wooI5BtxeXWG/3zF4bxKzsPowyxkxRswzO1FCEOx2k5GHC0QTKMc1clS6gXQDXwF7ftIkkn12hoJsfD7v2rhZjqRBQI6HdT3XWhtCcWGfAUQrk+UtI80TyZ6F0wa9rbF1FMBIgDZkrAW/oE2fUsTj+REhAPP+qrWgT/MMKCFztYDRh3nBESoA3iqpQEPbejdDR+ak/Y6AY5Zpr2o1OfWJLY2t3CjSun3mecfgYzibtRSkROQsbyvm3b5B0vTNAaFWbOtiHTyJg7nsOkIg8uuDwrRUztYRafcMMHGIlki+aydiDJbEKEghi9S7qCcERISwR4gTOI1Wf6Wd+YdeXzsYOJ1O7cEtC3uKxwFAfPUb8KjeocNgaEB3+Ix+4EpJwFfsrm/6r9TFLXiOkbWg3W5nY0DZO+7KVX4tjl48Pj7h/u4eb9/c4enpxL78VqOvDQY1Xg4MiIMi4fjsPXz63d/Fd373X+C9Tz5hW5XA4GLXWECrrXKoj0eMatBnadHiuw/KDW3O27CR27JadibtgfnDnqaEaK1y1bKtYGWKJpesrO0WVRLdPEMMAbUN2ckoJZksamrPLNrMbaDDzuvqBD0bWoMAjTMeoNA9UK8X1PsF2+kBD9vCQMyEhpwwmFWRUVsA7zfq9VLPnP27HqKprXUQgXit2tajGowoEJTsw1nooNZ1IWalfC9vbaIA0c4CAR32nYusWOAJRwzYNSAAJKghPD142SrVNYP0e/GMY5yUN778n617wPaLKKClIC82/Md4AgKThrW9QXSMA6kEihg8QATaZjZhqXe5C14Gc/ZCmhJRCNM1qNZPz/VVSC0oxYFIriWhV2OsmzZBzRwBnUvB9c0Ndrs9UBVb3dpeZeIWmwaJk+i8RbOKYlNySoJl10UrgvJ8lKp4eDoTaq2cNFm2DWrjhKtQSa7YXoouamawahAgryvUeCgQxcPDHR5PJ9w9PuFn/9cv8cnHH+H73/tNvHp2izVn/OinP8Of/vkP8PrtW7apQVEFSEEQqmKXIq6Pe+zmSOJoCg3RDFYSCFb3liDUQGhBQjR7Z5vJSl18XmjPTQYHg/YM0PgzsGAgBnbfUIkxwsM3V40NccIkwWY7kHQ69u6H4fN3h/3gsPjsnJyd1xWTDyBqe5p8gGpogdhnc5aBjVu3jHoc6+1/Ov8KAOI02bmrbRw1Y3Hr+jFn2n4XgjVvqFIwzZMBLdZtEALm3R7blrGtKxVh++J2Dlrw9RrPCs+HT9d1gSR48gW0zoyUxISD+L4hpYbOpRCw5qUJIo0JULD19Y4KpxH7TJFpmtHKkDEgBZYZ1uWMKBXzbn9JpPw1Xl87GHh6eiIrOG/Murw9xANWgx99URx2amRBX80W7epFBvLuq98MN/o4HISyvAmH/YFypldXmOeJ06MM2vKNxTHJhga8eYuH+0cqCebaDFkLaMQOokXYUDLJD9cv8Y3f+B6+/du/g1cffUSBDtCxerfLGBCVWjn9U7Xpv3tGCpAEGNXbSsbxp8UOBiNrJ6zAsjPYoWnraWvk/brLutr3B4c21LJ8g6lSPFNiQg4Z23pCrgXL44olRUyTwXqWJqd3yEMiva+dmQcACdhkxr0A6fA+cFuhy89Qt7fYakWuRAQKgAxOXTBxYGbPgcattn1hQaXBpj0f4J+ODrTSSOuUYAucKvXvNdszBsxAMhPe7fY2W6NrNjiK44+yH6eOFtXKGQuwmQ0xmbS0oWYAjN086rhzrbr89kAcFPtM9ICR0aXxHTIND+FesT7/0LI1VYUGGpgojKwCpJH9vO6uHihJZ4U7MdBvNlrWGsR4GlanLqVi3SgEFNG5PVVZOukBtd0r2PaVc6Yw0dWxrQWREj7PUjJrysWHQnWj6/vP+QJTmhDjZO2bLC2uteLpzHbFed7h5YuX2B8OAEzTIyZr74ptwl8EtQ9qXvB0/4B53rHrIkasTxueTqeGgD6eTvizH/wAf/pnf4qdDRByjQwRxTQlQvcNqay4Oe5xdZgxTWTJ+0wVQu7WXZQSWyBTwLTz/ceBZp4ElLohKIOE0T42SXZDqOogROaBrBg5DZIacZBlVGbZUEM9VQBJpkLME1KbTe52Q22fhhCaWNi4h8ScqE8qDCFYOYPXuC4L5nnvN8CsWjygDhf353YmhoAwz9jWFSpdNK3tI1vXUivJs++Q5CYrN3jAIoYsOWKyixPuH+4ghip7IOBclRDUnD0ubJ1IQJrnC7XWsplGQwjsapHAaYFA41mIBKRpbnX/eZ7x9HRCTFPjR4ihdQFCJMPP5uA72J0m9vhNhCjssJ8DTk93qGojv4cy6td9/VplAndcai1o42Zo/7UYcCgPQC6xVzdQcERRmzEYM3qgOzMiARFTCNgf9ri6OuLq+qrpBLSRmWZoa2EU+fR0wts3bBl8Oj0hb73lEW7QtNgB8v7WCratRRz2t/jGJ7+FT37z+3jx4UeYDjsz/rCDgcHIUnM8wGr5wzS1BnuaQ6ixM99H+WDPIJ0HMToTN5DN8Hq2ptIIW42IKf0Q9xJEaJ9fSqFhDOxFzznjVB6xZU7XEhGqkClVvJwpTiMWe523VqhmZgEhAtgjHAL0VQHKGVJX1BMNaIObBchK5yyEFyCFfdMIAUUBBLS9Y2LIPJimf+LkNAigkfvNnV6IEfv9EbOSH8Lrp8F0EiWDADWn16PvEaLio/NMzWFT9Q4qlKIs0yhLYxW1TfErRSAyDWEE38/1Ktw5wDgBUOVshpyB0kcik3FNWD8GQZSAFJjJpihc11KQxLkCbhhJCMQgDd2JkM5ZCW3PEcIeUD07Qz4TZCsFa2YtkiUGohi1Xipo2iIxg48RR1Pg7PtbOpJWFSkk1Lw2WNRRNec71FxQERESYXSuL9f/vGac1w25FExTwkcffog4Tfy3mNBNAFQjnLNRC2Hzn/z4p/ibv/5r/Is/+AM8PxwQQ8Db0wmn09L3JYgWZhhL36W5gym/2V50DsYUBLfXO+x3CSlIU3/0s+wy1/vDHtNuQpoidvMEKBEyRGl2MysHSMXgmgPurLPxqCJD6prN8Yt9XVhKCrwuNg+psfGN1Gz6DtDqJXkLAvg5FAiys9QY8Qq1tmfP9H0KZIzRuAuhJw0hkFxqZF/aWO55V9AbbeOIDBBV9aSSyIPvy9Hpe39/tcmsrpkAoAXoY2nOuQH8AcXV9e1QkrTuAdWv/J7b376HI6rrnQAUVLOgU1UhMSKBpUofC+/vESJnItQi2B32Zlas1GhBPPNZx0UDVDMg7CZASYiRao++LyQAEmbsr25xXp6Qy2IS5LBn+vVeXzsYcAbzpXHrEaJ3BgQL+TwwGH64ZaVqcIn9z0/U8DIEYXCQ3rJ0PBxwfXuN/X5/oZbncJY72LxmPD494fWXr/HmzR0ZzVZD9oDG1Q1FA1Rp4KBqCsYRIV3h1fvfwie/8dt478NvcNZ4TOYItV+yclwnjH0v0pdVLu4ZbbP75qRz1rYBGpIi4eKAoB3qCpFy8V7u+UXJChZbD9XSWq38vScjtvi1ibAFLKUEUeC8nNqzUGXXxWYaDyFGHI8HzGFu+6BWI/NgI7QWJmwakfYB08uCSRX1zRcoD/fI62KZZDC7w+whRB7cEDlwowmVuA7FEODYlbesURVI8Cx82DPRHGZKtr0EEnvJSgwFUul6+x6werfuxY5UKwnYeF+yszfr4bayiqE53pYaqCXd9ij7xAuk9hZPeAkpF5S8QvOGminZ7WGQlwQiBJMFAz68K1YgCwmDEaDKnWU0xfgF/qyBbhSDewG4kZWGFLjCnCtlxmGkMbsuyCtpffhDKWq327es8ur6ahhp64GjGf9muIncdFSRdy2gGqg7GS+tefmNypQcIlaLYtOVgbh498aGrRbMdWriWZzyRrnuX/zi53jz9g0eHu7x/MUzQIC7t29tAqIF4kAvf9i/xYL/aZpIe/UzWjOuro94dnOFw25GCjB4HtbdEDnFcUrYHfaY9zPSlFjmi7Fxn9QgbTGyZHVStp0HOg5Xu4Ppj1j3hguaVSeZMUBwPgYz4265KqqVR0wGXslZKhaEqrAMopWfSZSotGfcJN8BlK2LntUWGJSmfnrBtg+uetlFj5qdNLLzbrdrKoTenurv3VCJQN5IrpWKgKpYloUSx+6obW2SZe5ue9V+fxxS5WfBDgyFgUJoiIErIOr4c2D7ur9a8BAnQCxIGjJ0QbCSpGkc0LjYHxVa0NDt8SXCs7IVJmb+3MbEOaYZe9v/TAzr8Lv/+OvX6CZgj7el/c2gNiSgRaa40A6Q9v8jtwDNKPBm1BZGW3br0LFEiuLsDzvc3t7i6uqqLX71bMquB+ADXM4rHu7u8eb1Gzw8PlKRzqDI5pTRg5I2NEjM6VZBDDu8ePURPvqN7+HVN7+Jw+01DzSYHVatnb0rrEeVyvajGMPF5svZhHjEDWp3zlwLI16hw2CqXXvAp9Mp0GRxPdL2IMiz3uQMb/GAS9vG9pne/XeGkdBQGjjbSCEEbCBJ1AfIlFKwTakdbn9iEGatHuECEVkTND3D7kYRZQ9NX0If3qCeTwi10ukLICbdGaIiAchDAOhBpW2qFvw0TKlWVBUy14M9OzOcdnHwsbjchT1Abf3jvhkxROOVdXmFAB4wEtNsP+eGr5GlHH2ZJtRKbk3RigTLrKq251W0QlIkYSmTHFi2DSVvNPS1UvPAzpSIIIJBwGQlguT1VhGrnXJ6YgyDQdaOWPUyj6EtYoNvYmjBV4g9KBilYX2yY+vjFoquxGlClIDT6YQ0z7i5uYEEwfl8xvF4bGfAnbhhQQyeA8WgemDqSm8wZ9dnbbhN8WeTNUMqgwvqgvhZjKZ7UvHF55/j7uEBu3mHjz76CB98+AEhVmuLm9JkpQd+5rquuLu7a9eJ2metwIKxHtT1bowQmARMInhxc42r3Q4pCIDSy0QiiBNbV6fdjHk/Y97v2JtuPIKYqFCobgODGXsAtWbUCgSZIOLCQwrYjBKI9CE+sKRLQOQgM6OMVt/2/nmFdnb8YA9ZXWLg6AkO0Qe7jpJRsqv0VZTiHSCjPdNWz8/qZYNqdoJrMlkm73vDywvRpJGztTJK4F73oPPd0ttsMwTGklepJi4kYxms7zsd/nQiZPM79nMxpaFVfLgvebfE927a0L/Ha6cNcf0YSg8Hikk1f+RZPMgRUrcpAQ3NQzS+C98n162dGTU7B2g/Q4PSY/x6scDXDwZ8i6AthnQkAJ74GypAq0zjLMxuPIp08KNlYvLOcrrhjoRX5inh6voa19dHHA5dQ36sU1IyF2yHWjd8+cUb3L19a5ryppU/RF+WZrf7YV9u6JCfJFzfvodPvvNb+Pg3fgPXL55j3s/m8OwAvIOQjGvQlPvMWWxbvtC2n6bUIuFWHwskK9bCkcrVnH0pxYZaGBJgTq7aQybhx4VigJyHMoItLZ2DAujRvIvLpMSI041CMOMy72akwL7aLCvJoqDgzQKrbStraMx4ZkiI5i+LjSCegP1zHKZrzNcvMd9/gdPjHdbljPPpCev5AcC5wb6iCsRIByd+QHhlUYw97XUCO75ELzI7IQJJYAQ8HX2w7aUd7nMlSZ/aFgYUqj3Ith/V9gjgZJ5L6NAierWsdNgTWtUIdR0BI9fEBjIV6rRTVrVS+leYwbmzd+OTQsRkZYIYpDl9sVJVtT2UmjHQi2tsgeFw3Dzoa85DhBknPBhQCxhjQwyqcsYEJYdpbF3HI00JecttMNAobR0ir1sAbIpOrkW5YIRXV+KstQds2hE2KPkAAW4HKH8dhT3aEivu3r7Fz3/xd9g2tuM+mrjUR9/8BmS/x5Qm/N7v/R6+8Y1v4tnzFyi54nw+8+f8rEkPPAXS4GRHQCxOpEOtFVeHHZ5fXyGJoZQCq+V3RzXvdtgd9tjtd5h3szm71PrdRTxIdV4JMTFOUN2ammWD1dUg/2E/Ygg+q25ED6YAVGvLDak5BwFQtpVnRplBSkzGpOfBcdQyGFEtpmRr04XCVIlIeUY78glqzpw/AdqyOM383JyJwPm+cq4CnDA4HkdpJQHnUTU0M4S2r92Ru+Iq43d+37kDGL72FTGewdGrI5X+dTEu2GgfPNFypHcIoLudcCloxbYumGZBMNSAXSiDbS9sFWTwV5DixKABAbAJklGKJUUmGAVhgKFuRDsCEYIN+hp81T/0+vpyxBaZc0a6tWygZ0me4bcsyjZTy7B8keH1IQ8EbLPZUJsQLeuIFA26ub7G9fUV0o51xzYC2R6mDznJ62rjhu9xf3dPxqeWzm/Qi+fXHIEA0GAMbYM9pvmIVx99go+/9R08f/WKPbE2NayoZ/JsuQn2W9EEL9p9ahe7YTDibO5LzYUYqU8uGDIRkAegpR/4IIIQqGwYQmB/tnUNqLqyIcmJPmK5RbKRdaVaBeSn9Yy45HG6IRiJWjY373bMvmIg4a8UZrA+mMYzvC0hHAWJC2vXJEAI0BihaUKYdzjON5huzhz+stzjzec/w8Pd58jbGdt5gUpACaQV1uGB1RrYolNB6MvnczvkjIKcrZ/ZkRp70OJGu53f2tABWJ/0V46KDr+AHrS1wGI4E0HYuRBSgMpAPpReHhozi4DAkkDN0JKBymBPFOboeWrIt+FlUOMCTUfASZAhEBUodlGuwteDZDRjDqBpBnBwFDN8O8QDyS209XE9kOj/RQtYnWiFghQC0jR15bwYsJtMj11IPhU1lTQLgKQagVVJatNoKBUMQaiKGtCRoFqts8LKfJaJFgRkBedg1IgiCmwcp+3EwPP5jC+++BJTSri+uWlytNNuxnsffmDlBir9nU4n+GN2sqNIdxrMnDu0LAhEcaC4vdpjv/PJrtrWLQinDk7zhPm4w/5qx7+nuSteinSEygIhBKEzb9yDwARB+7OqlZoBTozj3uNQNe7LhXwqjdhWagyEyLkJJZNflSZKHVMad0atXT4dIEeBSCAAUNBJoKh1G7JQc2hWHmj9Kwp2c6xLK59Vs505L1xbra17aXyvywDH9m/srdPOg3Ai4fgSoM1dacON0FsRW9kql4G8x/UfkUL/Oss2RIW/Yh+G5MrRGbWk2KyEIZSClGYGKgPqY8oSgCE2jkaUugBQTHIwRE7hPdgUi6OgUEuvVa1zQ1qA3/3SP3EwIObrBJ79+3VUOCHJVmf4LV6seuqHHtXyPQenaG8aQkBI0USDyA0IiWN2c84tEnaySs6cifD0eMLd27d4ejoPcxHsGtSCEDOMDZDwq6xcaA6VmXC4eYH3v/kpnr//AXaH4wW5ynu2G5M9WMBjm3TsDrjobUbXS+AbqJGbjPRXe/DA+zNnUwWa7aArN5TPrB5bchg5F05YK8UOLe/bR+v2IM3uW1k3BDo6wWyFQUqKyUNcqHI6XdnWNunQ7zWvbOeadhlhmnA4HPp1pYTV6t81JcR0i5gS5psXCIfnuDnfY316jaeHe9RtQc0rSt2wLgtn2JdqGuIBqECuZ2ZQcIdvz0QrUAtSsDonAO+0d6DKln2Ixvs6jGDAV5CBX/EewcLHICbhHKopa3a4sdaKmukwyZwsCLVCywYtGcE6ZILtezp6om3WDAAfdx0NLmUW3Q2gmsKcqKF06gZVzaeoQ1bD1/toYPN83J8irLaEno1JEEiECWnxfaqSr5GsDu7zIrzLBxDEUlCVhq/kTJjUSL2l0Ah7Lb+oDaLxQNjWrmsSEPJ0pIGOkWqAuVjZxSSfpyng6uoItpOuWNcV27rg7Zs3uLu/w+F4hMK5RcLAqLItcV0WN2oNHYnGB3HbF1NsgaFqBSpnyF8d9qS5ijbEJSVznvb33bxrQYqiB3TcZkQhSDC1gIwofcsy2btRoJaxk1hG5rnrlvgJr4C18QGKgjhFztcAgEphmjQdWvbrpS4OFavoFlLQA2I7GvUS7cJg34u3iIqglg02Eo2kRnWbH5DmfVfny5nZ7RAQNAQGTiLvZN9gHJK8bag5QyMlsasS3nf/4gTuMVjoTpvPfl1yby8cEFi/c197L72Nr1Y28hbDZlCAdoAHdxinqZVoGSHApEouib1SAycfbhmii2kw9FZHd769saSxqlC2DCQKqfF7/w0IhO9GakwiHMqSi591wlvPwMZafX+/keWZzDDElLDbH3A8HpoYw2qCR+1agli3QMH5vODp6YTHB84VcDh+RAP4kByl4FWIRzf2HZYJAqb9Fd776FO8/OgTTMcj26kif7dYa2PLogMQHAauHVbs9S3CROPwFA8OojF7VdRaFC87CgAz9BKQtbTDWEtBCT0784PTSek9iy2V5qM7O/7b+4RbGiQe3KCtkCeO85xQ6oSSKQoiAmguEMmtH3zLK56ezki5YLffYzLW9JhRCUiyrCIoADREhMM1Docr7F98iKuckZcTXt4ecL1PuHvzGp9/9gVev3mDXE6U6dw2yMMj7u7fMHuy3nkI2lqIUJ1wzCjgO69F8+/u7X9w448be9jrhjpYWYWiLYPQikXw1aRqtWSgFBIBbWa8o2x0PGKiQfyTWSWaBK1nmslaFqPJx8YqKAbVBmF25o2UIQaXt0IzpkBzqkxCB8lnNeVAD0ZigFjgEY3o5mULGUoMyWreMSaiM0rRmIpA4nHlrIHNRkqnlBDnqWXptWUXvnf7vi7ZUIjSdTQsZ+dU1OIjuBUuPnV7e4t53mNZFtzdvcXjI68zb5k6HkHYWixmG9S4B+N5smcv7gFtn42ZJcDujeM8YT9RbKsaLU9BMu9kJEGOvJ6RItsKxVABAC1gcOE2EskyRFKzNwhj4VchgQ+TqGNp9ou8ArFnqjZIx/ZroIbEup3Z8hZguK3fk0J1g4GMEFPnFIkIoWf0AZfOlUtFW0f9fLvKmvn3pkNh7dQA+RIApimS9Bc5PrnNSBk0OUTUEgJFCLv2edEDAlVs62oCRZ27ML1TbhhRAggnNKpxosbfE5G233x+Qfu6ExiHPeLomg8SA5QyyRbgqvGrEELvXvA9HwOkDKixtQ4GCYhSkLcVp6cn7I9HI5VK37ft8wUwlC2AgnIaFS789HVfXz8YcETAapnMKqQv7uUP92x8SLuao5JOUmrEqxQxzzvsd3sTinDJ3E4ccZgo54xty1iWFQ/3j+QGrBtyLZ3hWofP9QuyAMXrkD4EhtmOAEh49uJ9fPzNb+PZq/eQ5h3RCpFBodAeQDOgrvnt0WSHsCAO0brQh7bP7oGkRZchYLZhGgCg1TO5gJTCQHirxmTvevNavTUIrabmyEEpBSVkismIGFTXBXnUMk8nFXl7TCml1aRaDS4EiEaEKWDa7aCKNtgpmyCVmiMIQWj8ElnXk2WWAVQdhCiiIRyhgqgBJoTdFZ5/8AqvPvo25tu/Q/y7X1JsRwAtBQ/3b/GDP/9jnE53iF76GCJ6ZgOm9uaNFsNBbyGpoUbjmcKvOjqOIo0BhAdWyqw8RKuPV9bFoYpg+ySXgnVboaVgjhFTMnEZBcRQBOqk9zCDU12tldAytmjkvpgGKe/KlrQgwVpcrYZcGay6wVJpQ1pRS20kLo4W76hTrdo06kOMVrIzp2B1/WRaHkFtpHVKrVXTv+clqzBkW20JhXwUb7eqhho1ro3Vj72U5eNd3Q5Ed1zKGi5HCheW60Sxbhvee/99vHg14enphHVbsKwLXr16xfOVC1QNXrdxtKoFi5UfG9tcO3nRkxnWZ4e+eCX5eL+bWSJr55uHW4IgzRM5AhNlaX2wUzIEzvkEIRpHwwLHAiefDZldQ314fVzOjvhwuQugwTpnKlA3IzVPkEDUZpp34Bjdau27QJNrL8V8VLRyYYQYDyG7sl0UCj8hAGJlJ+3wvaqN5JUIaLGyomJ/vLYwVS2b5aalMBuDH2mBVGf+u49YlxUpDkmloCkXrssCqCLNPjBoSMstgO08NWl/pmloc3zHV1U7x2NHDvehaxDUSwAlWFL5zpAl3xd9+Jhdn/uSIOxk9zhFQtMbmKMF1GooQhjuTB3tlp6AGJpVajZuxFAW/UdeXz8YcM6APcy2Cc2IXtR6hrUga7VDL/4zTjhxAl2MNCq+CS7HH/dDljPnC5zOZzw8PmA5L5Y9dO2D8bC262h/75tJ+jehEEy7PZ6/9xFefvgx9gcKpTgAU/z+TEsA8BbBcPH+vM7eg9trYZeZfBeRCA0V8Y3vgQS7CMR6uwcBJ3duyjYg7xxwaVJAkHNfi5wVIqwnEU03dCMyw3QWtsN47IDITRSqlIyK0j4HQRDSBECwC2yfwbbCMc1lIZS/LotBzRGHw4GqjUEQA+Aa4qJiuvc8fG/u7pGi4IP3XuL5i+c4bxmnheI0QRL21y9x93CPH/7Vn3RjMRhh3yMA0QeysoeNrAzYvNykcASpGw8RsA/bt5AF8d4JNBopIoLsaCh5IwEyF6AQuai1IAK4Ou5xdThAFNgez+xGgdq0QQu0xFEqRwZoXEKQRpaaYmfo55pZfdCB5WxnzQc/BdsnrjtRqiL6z6j2MawRUPDseSthSKZHEJnlpilhipGCR8pRydO0w7TbI1oLoZcDiD4x4+K41wIxEqELtFQjPwYJfa4BGHyIl35svX1MN9zhVCWUWshYn+ysrHnD6XzCb//2p3jz9g5bybi6vkaKlNzetoxQCYujVmsjVqzLeSgddGJv41go6AQHVEArS31pMq6KCqIGEy0zONxEvKYp0c6lhJgmxDQxl4p0SHTG9qwUwAVUDzi/BcVqyyBjvyEHYGaudubFSGcxCmJZKV6lBSHuECRCNAEozVHwehP6FES+Z7eRbC+fZs++GSTUvLBrJkwAIkLwqaECQYSGiloyqgrCZO6mKJoGtAXFJS8WbFn2rnmwrTaLJJ8hc7ffLv8eoJimiMfHRxxiREodEdi2bWgtfScpBdqf7eDbofeAyLkYZPU72oshqBhNR7chFrLBeTi1smU4BCM9tm4v/2Fp+92vgz43YtpF2xP9ufRXbZ/pI9clCCKsRBnfsX//wOvXKhOM2a9/bfx7u+CWPft1dAphgBk/y36CGQvP+i+g7zGAUGDbMk4nEn1YEmBW4DrjXgO9YE8OAeLl/fRn713cx+vnePnhN3D1/DnCPFm2ZWRJkRYEjTwAv3cA7frd0W8bjK3fa04N/rTWOv9ail2REL5mwXtOGS2OKAlAI15yhYQ+cUvBzL9Uqta5aEgjlkARa4TWSmKTKehtObfstFodlZAupU1dFNB5Dm4gAcVut8OU2JYoqNiWFaVsBu9W1G1FzisO+YDJWNQhxpZ9YIqoYrMLSsHru3vs9js8f3aDFy9ucf78DbaiSBOQrg54/5Nv4bPPf477159BmtHsAWqpBSimPyBGwELfj15y6fvCD/i4X/o/tB3WHgj784b2PZG3jHXNDAaU0rQpzdjtAg77PY67GbougCiyGAHVS22hOxovCXyllGbBQLQsElWwDRvZn0eradcKNRQgXATk0oIDtsQWxNoDwW480c9pINpAdIf97SlGDuBp18hMfsuZw33aICwwgIyhlRKKwcnJSI0cwyrts5g4GVcl5y5qY+/lGZGfAwFr1QHAmzdv8JMf/wT7qyvsdzvo1RWV3wAULRRTUhPOsYxw27ItYLclnrWXzGz3cCCHia2jGUDlBMJ5asiau0HOqyiIgZoEaWJpIPm6GbkQ8EFR7kR0aKOknkCVgIBBJtietSo6IY0bB85Z0TI45ThD62KZZCFhOYjB/XQuql6eFNvTsHVZmPSiIoDdLwiUVCYKEZGENfOqPn2S+yDa3s4buwj8FIqys0FCbHyfnDeEOFn2rM3etTPAr1JQKiXr3fftzOmB+8NVs53NUaOXxdppb4Zf2vkdX0yGNkyTdVU4J047eR4W9DYRI3RnThRA7Xn4+UmGPGUERLTW/xGtGK7V5yr4/TDeG4uUMBJ8DwQpFMWkj+hjIZ/morDz97++djDQjOCwcJdrqO2PbnLQAgMxh8brtxuQwGzBDocvRq+D1/Yh27bgfF5wOp0ascwdaYfMe0TWMrqhpWwMLlr0bIdh3h3w8v2P8f5H38TVza0Rhbh9x+CkG0brAR0Mk2oPeqh0l0wEyHv/0TTzeREGcWtujmDkDUQbQuTkKf9+PyQCjXKxBi0YGRzYCLWJTYaqRZpxpURrbMZYAWBZmaHGiCCx6Uqwlgd4i2atxbK/gCTJYieBngGYFHMwjsPp6YTzskJCwG6/N82IiJjM+aliXYGtAvePT3j+7ArXV3scHnd4eOAsiQzgePsCH3/rt/D48ICyPthtEjp1MqaKoojNBre2nHF9Pd0XNcejTpDyNkLAyzxah/2EDtG6ciaMl5FzRSnAbj5gf9hjt5sxT2xJTaKQWhCwYk4RTe1Su8N19nmb9ineJ81AYYoRk2vd2zWGGCBb3xcXGZDv82Hvt31soaP3+vRauQ7n0YNeGiF2O5AdH0JoWRzhVLatOkEwO8lUSystOum2DntYhAbeDYqz59VsQc2Zw7WsXc8TKdheDLZG92/usH9/DzFhnJ///OfYH9jiuA0jdH09OBDGWPmlYDWF1fG8eMlts3a/3X7Gq1cvcTqdaIeWzaZd0o7Bg3kj3vqapZgw+cwUC7JaIA4Kezlx97Jfv0DAPnIiJlbWsP0aZCDHNWPrfAJrXw0RQdguWMoKQYFD8R5VaLX+dCNE+hNX0GkXGzUcIp0nSsW28RxP5uQVTEBinNs+UlXriovYHw6gmp5B/nntI+rJyLX9q340ASFKOtkMkt1uxrqumKaJiJxzTmxvO3lwtMOTqV+2MlN0jYT+uuA2iZesCnJeMc17I+MAJg7Q9mpVRd024yZ0hz6KG/nPIpAgrNY2KFob58Y+nHY0uGy3JVx+fUMg4IFjC/yHpBywwEp4RmupaAv9j7x+LZ2Bi39Jz0TGF33QEDC0zW0ZNWxTu7MMHcLxekyDWuwhLuuK88m7BFgn1IERPRq6dkVmvV1lsC+g3410Ay8R+6sbvPrgI9w8e8bRv5ZFew/5RZQ6GFeWQHjwHFb0Ouo82+aUfs78Pouxho3i15jFzb/Ywa72e60OpV5isM83x1CLttIEST8cWOPsZraYDQhNpFJVKawn07jz3rbVp175mgaQOU8yET+3PzOvWdIlE86HENpPiTXZbdvYMlgKpFRUPUNVMe92mKaJEyf3ewhYu102SkkfjzvcXh+Ql4JlzRxaIwmv3v8m3nz4d/jlz/4aWjZCcuiNrE3cZ0QFPGDzw32xn2XYIrW1nvJf1QcUcg8rbPxttfGoRE8OhyvsD9e4vnmGGKk9LwhWx9+A5YnKfROlglW70U3WxhckNMY6Axnfo2Kz0+kwUHgIHRUbT6Ib0h6gM9NyBxXMePi6XAQKQysilJWiSTwglB4oWCZJjkC2LJHPt9hoXUshmB0WDugiZMo1o9F0YiAdqjLJYTCQMzRTaZBjur39UVCME7Tb7bDFiC+3L1BKwZx2rcz19PRkiKN1SsQEVQ/eFT5VsmrBmjcLMuw8ayXrX7URZWspOB6PABQpReR5QzLhMahxgSyYjik1LkCcqJ7q2gIkIVbjEZlsrQWtqJ2YFuw6Q+z2lLM7jKg87mHxa/cskoghf45cjKgBdeMAH4kTYpgoZ20dLcL+Y5yeHiiwdthj2u8w6WwZbEHZFiynE/aHA2SaW5JIFMjOmZVXIYJcMq6ubyAhWZDuZbAIlzxuJRnNqGVDCFO3U4a4CAQp0bHnbfuKFoG3oPZBSx29dV2Bmon+pHd+dywbuC2IKXXmv/b1tZG83P8xUvROh3NmQfSIRLTvCzP2AI7lVhFDTIZAJEZINQVIZdILQ1IdtbEMpfmCy24+0zsppSUVNj3mH339GgRCtKzx3RigRWIX2a0x7m0Vozi8TqcTrP0hWnbq5DM3jrVWbBunDW7bZkhAadCzDhldu8Yx+xcnjbyLYPDi1aAoICKGPZ7dfoiX73+M3dURkhjEoNKQk9ziDgWWIWf7txnu0AUn3LG6QW6TsCQQZq9o9yi2t/LmIh7WTyxoLG3yBzzzI2eBSmQFOddGNuyIU3d+kIq80aCVbEQ8aIN7tVDRjQaN8FTZ+swEDj8SY4VX+ES9GtBKG+KDdqSjJ5MRc5LPcTexqFyqddkpzqcV21oQp4BtXbGz7GmeZuSy4rPXd3gvPMfVcY/lXHDe3tKwp4Dj8Qqffuu7eLz7Eg9vvkDzdBVmmNX+WayTNzWSViv+o53rd2KDy+EpEOG72JTN6i2PWhFDwrzf4+bmFjfPnmOaZpMWZlYrIog1I5SMUCnGNE0TZ1sMLGJHgogGeOBsBs32V3PfFnwFD7AtKGuyp7bxGbh4F0toexcA6/LCzLRCSaBVtSDY91PfR1G6RHZVdrmUWsgnUKBsXK9Sis2hqA3e9UDaW1x9Tb1cVmtFSHTatXL0cd0oyZwLBbtyMQlxnjBmtTECIeDls2c47umkpxRtmBo//3A4Yp53OJ+XxgkguapCCte01NwCYN8VavM+ckMqgXXNeHx87PeTAqKfN+3BFIQtiGFKCFNi+c05F9PEMk8tJOPCmOm1QosQYbDpZwySEkJgl4cjOOQ5eCcNg4juj7S1Natr14NMWgkTJApKPgN1g4QbBtENFRIgCObjnsFdd8loCFEEdkeq4XESok17lQSfSMhBPxOgFNNCSKia2f4ZKDQVJABGNIQGpDjjfD4D6Yz9lKBFTCq8MvC1dtdpmnA+P7GEGr1zgqJkizn7OM/NVnogIECzSRf8Ngxo2ZDJxzihqJWOnN3XE3KeSTFtFfB51MJnisa7+ErOwc8w7kgpGUFLS7DaQxTPAAIgRFw6iuBJirQkoQWAZi9CME2cslkZ6SsO8Fe+fu3WQn6k2yNt+8UDhBEZkcFYOUzYOgjM4OSBwQsApZY2ctiDAG5wb93jFSgcO+tZs28Me1YW8Xaio6ovmGVXGgEEpHmHm5ev8PzVK8yma+BypMUYo5OJZlhiMmTNYD9xqO8oIzqi5qxz1rXqUOv0nwsQrJVqYdM70phukF2El9fPjDvnLsAzlg8Ah9zcEXBtOKzEvhYsGkdtG8rJUrWyk4AqhwJUaxUz4wgllCwg0U3QBzCJdDSot6IRck3zBLFnKvDyR0apivV8RhDB9c0zHI5X5DGUioenE57dXOHm5oh12/BwOgMQxHnC8/c/wKff+W381Z/9EdblicanrZPpe1VF1YwkQLJyh6JDke2wNnSjP1dXfuT8AO5LzzBc0ez6eIX3Xr3Efk44pIrrnSLOARERx/0eSVjzfvP2Ld6+vUeuVFEjHMsecVeqa61mdmbc4Pg6pxCRLMPfTOXRr53rHYZ9rq2Wz66B6ghwQ4AaH2Fw/h5MeAkkaAcgm8H099WKnK3F0LPn2gdwjfv8q/Pu6TS2TI5BFAtLVG2k8WbnTxvCw5n0bPXyVt51WYGQ8OEHH2LdVqzbAl0EVVdQZEsJ0e92WJYFy3LG4x0z3+PhChCxQLtBcnbNRO+2dcEoF/727T0AivpEJUIQ2u/YORUGrPM8M6CPTHpSTJgTR47HyODKy078L0B8Zoo4r8PlkUsrr3p3TENyku9Rnr1GeDQnU23iJcuyESkeSNrV0sp/5BLAHMygh6LDH8Ikzktyxcats/11avum/66Hr1bCE5aNVDdAGMjB9SgQMaUZaAEn7RC0ooYKUR9Lz6vhCGHL8O2sTPOM0+mEQ7BWzcqZHWas257vz5g359D8+AohcNpqzkjWsdBe7uPsWaAW7k0BqskE0+bHdj9MTruN6WOGu1+ttXbNAgSMGhTtmtm/iM5lGwmfdnGiUAmIEAQ9Iy9P+Dqvrz+boNaW/fcAyTagtEfeITnbVNGis0sowxSihgiNWW6X7i0GNzoMWms3UE4UdIfcsruLw+xw2YWd7wun4OFAwv7qFjev3sd0uGLfp/ABkA3tsqKGAgTW5II5mjTRweScW28qwFp7zjDZzAitPrcbLUDy6yxAb/MJ1i9qG7qYY/YbrpXT8rzP3DMsAK3lbNQgcJhRQoTrVTM4Cxc/78+B2dQBgHcFCCTw87Y1I29ERNz573asGfq9RFeTk9SeXwVINBPBBDTGcbADW0rGeuYchFrZDTDtWGYpRbHmgtvrK2YTX7zBaVlZWpknfPDNb+P+zWv8/Md/g5pNUMfhR28TEyCvdIguBNMw4bYnuUk8yPXSio/ODiUj5oxdCNjvZrx6/gyvnj/HR++9h2fXVzjME673OxzmCVf7Gbc3V9jNM6IEbLngnDM+f/0aP/7xj/GjH/8Ev/xsoTO3GnK0AFk8m4HrxKN3BgTAlTvFdKm7LKxzDaxF1P7NjLVCW4uadEM0ZBYdzet6GLZCFuj3NkoOjGLAOk7mHAMCsUymWr94CAHFIGs3vmwR3sijCRxH68GEo0iqVM3c8oZtK4h7lghyVbLyY8CynPHFF59zium8a0EcbcqG5XTC7njE9fU1BII//9nfIQTBd77zHaQUkLcNOW8tCPd7aMRFoP37fDpBlGcq1ordcdemeyIQ5g1RgBiQ5gnTzqSHp6nPqBevU9u6N9TGQ9mOyLQgHTCEmkZNIC1AKsValz1Bc/sHY63X3JBJeDDMFWpbP9diXRYBUEGIU7+SwcYAYkib7xULWBXWnSFwdqrCA9ww3BMTJBLJA6oPXQOsQym0ayvbmRyTDGgUQGZUYWtkV2vt9jTEiHmesG2rDSvqY7N9TXrraLeZbv9U2TLoP5+mCcuysFPGSw21d4F1/+vETe6gUjLvrRQiUA4HD2eZpudyzoKXOsbEm2clAMa3AJwT1vkNfu1uw+xgAwgIaY+k/8SDiljv6ZsDw+YYiRdQl+KM5oTCkOVeEvHcsddaycQeNPy1fa//WduDVdv3ltX4oYIjE9aiBLLguxbfGIfxWIWYcP3sJW5fvYfpcDBpzPa8Wn3VZ7t7ZMq15vvm7Opll21idMh03sUMn0/K8iEu3lbncG6tFSlOfX43AjYjHLQNY8NBSi6m1y9NoMmz8lHauF23GaJWarHIkz9bkaZkRCEGBCLC2lYg3M9Sgo+rBQoqtuAZiPedR4PACrBVVFFUK2O4cpg/qxgipimglMRJfaUamevMaNja8uY0oR6o/15ub/HLL7+gPHKtmPcHfPPb38XTwwNef/4zQHI7mB4susKkwzXJ5sS7JnvbV+qUOrKuayGD+hgDXt3e4NP3X+EbH7yP5zdHPL+5xj5NCMGIfTFhtpG0u93EyX5zREwTZgDHUnF7M+PDF1f49IOX+OM/+QH+6kc/RfZ9KEOZqQWq0oDeGKWT1Oy5VndC8IBc7KcdsTFX7vvZ0ANHHkbSKks61nMOQIsCQTmqVR3y647IYynW0m1vljLUWSkUg8rZ7dWyPVji0Jy+Bf7IYhMD0QJeZux0HuuaseYNsypKFTycFzycFxL6lhUVnHIYAwOU9XRCqRXTNOHhoSDXiuPVET5P/uHuESmS/LeuK3Jmlsz9UgciLp11sPd9Op2QQrQJkhViY2h5jgUidPyTDSbygGDazV3rw1GfEFoNHZaAQEy4aggK24h1R5ErGnrg9WFIJ6N5uRUijXVfto1BeUz+GKEqLCWIst0XbPHLW8FuPqBIQEwTQojNEbl1FWZJqMWJgixFVHvuKVrHQfMPzlnxXQ2zPZ2wWJWJl8tNV+MCwQXa1FvnYmtfjTZ4ys9BTBF5W7FuG+bdvvsa25/runI/mn4Fyy5WDtYupAUPLmwCYjtntr7azoQ9k0D+QJBI8rJptERJ7jTtJ4fgBD3gG8t93smD9ln+UZ1joc6v84C+ockWmCi/VzUA8w5f5/X1CYQetQ7RJ6MSB2X5M67d7VlnME6AHzB/FVWg1qYbkA0JqMUMnar9Hc3ZX/AD7OsWTrfgYnxd1IEUCMJouRq+GlUxHY+4fvUBrp89x+EwY05UwipQQKoxaK3mNsJn6I7GUYzgBtwDMxGgMhBwASWBIEZg3s2EWUsGKkwdLbMVLwGMkGlkU0hW+e4kwGr1+2Csft9MbhM4N9uIg05+FCAr24OyX14tWDdmRaEU7HYd+meNN0FrxrzbYbPSDeFan8iYEdmXRklpWEkocRBHrQHbmuFz70NIgHIzl7pBwKBomqeuO2HkxmVdWEYqnHJ2fX1AmgKOhz1O5wU5cLrX7fNX+OTbv4ltOeHuzWdso7NgoI2g9azTAqGQSK6B1xTtd4rNkYhVMSnwjZfP8Pvf+za+9eGHeP/5LaYpmrgITC2QJLHdbsJ+nrGfqKynAZDdjLDbIc57BAjK/T1kWzG/9xxX/+L3IBLxgx/+5MLQQIEa3LZzr6XACYbJ27bQg2RR67WOYBZibG3PXKi9Uc1opJax91OEi3Pp5FZArNOCn8VyHs9kjCZ4BADKZ1WLO09DxkQYUPB4YstbM94UZmHg5+WAKorNxIpUwbYt/gVZGQzkjUNvgAlffvEW/+Uvf4izAofjHi9evsTtixeYdzu8efMGr1+/xt/94u9wOBzw0ccfo2wZp8cn7OYdvvvd7+HnP/855t0e2a6roWMAXOrcOyuijf71oFmF7XlzioiRcsprzdQYCC7LTP2Fad4h7faYpgNJwmL8i8iHNupLwJOtZlC7XVPrymBmbqmOwMikSsXCmCzzNAQVmefAYuFtOSNNO4R5atl+RWk1ZpYcZkzOURAmOkQqGazkLWNKM2KcrLRSsSxnkn9D4HoCqK6lLKz9A5GzJ0pvPxT1IWFmxivxJpfeDRZQlNr9ANQJc8H2hzYn7kF1ShHLumCad83BNvRg6L6ohRNCgwU8PvK3+RiRVg71xNXRWNj1dv/SfQ2zeTrr9G69Xi2kGn5+/JN+zt83ND+Q82oxyoiyF5Rqk065YkZIDMN7XvrNf+j1a7QW8uPGhRozjxF69hqZt2Q02NoMiGo3On7AemfAWHP3G9F3/byDup1lL17b9P+XCyygiSX6zhNBRcS0v8LNy5e4ur3Bfr9HiqY1b1P5InqNrtes7CMVlg2p3acS9rIHwHGVneDhokBOOOTk3a78F2xjV2PCezY76gq4A+AamI649Zp6Eseg0CLDWlBXM+CqMFeCWjNKQVMaVFVoqdgggLVU5by1zxcRzPsdcilYBigS6Jt7KwUaNjpag6m15uGZUmnMxP2hEGylINgzSTMPZUyxPftSCt7e30O14HS+wX6/w/XNNUKMuHt8IK9hv8d7H38TJa/4mx9seHx4A5KTrNQz7KUGFfpEbjPO3CmKUCsOInj/5ojf/ta38Dvf/Tbee36D/TwjpgEil4hkRjRNHE3rSo4VCp0Sws0tpmcvsLu5QlgzHp5OiAjYzTu8uBH869/5HrZ1xU9+8cum48BszpwDDFaMAYjMIh3O7+fC+frvnE1BcwwXQfHwotBU39t+5rzEFEKwLKc2SJ++yTXj+fSZmTCD7wTBCCeVhlo6p8Suv+SOCmSbYNcmitb+vLIhgo+nE07nBQcTc1q3FafTIx6XjPX0BDWnfnVzg4+/8TH+9b/6V7i7e4t//+/+Pd6+eYv3PzhgSnsAAR9//A18/PFH1nHghtfXyIInOFoykX0uQC3cy+aysJt3mBKV6Eo1ja4QIWmi3HKaGAyk2eR/rUUsdqTUTVZ1p+3dV2ar3OypElpvJpfjC62MWi3brgDCgGb2UmxIEbHOzNqLQELqaIQ6ektIX91fSjVbVqxMzfVZz0+Yd3sgTIghYrc72NhgsuMj/PnRcTsyW2thJ0BKHDwWlX36qoCnYLXCGVIUp4rIhclECN1htq4ucGbKPM/Nrqc0owx+fVxr7zYIElAkNzJ6kIndHINdG9Hu5rzNVrH6kjmV1++BEU1DMGL0hLQnpt0G9c6viyT3nUBdDFXwjjUKxBXzIwExzKjljHV9hIgC4Roh7t95r6/3+jXKBFYP8iBAYRGfQT8GazlprEKh2ch/lpE53N80AuBOtLYs2zX6yQ+wB+MPwK/FYRM3oI5WeGqFoZbih1y9P9wcpwQgTLh6/hLPX72H4/WRUrK1sjUK1o4T+1haRtPDtQ68B0BbO1WtJspin1ttDRrkE8T+bWWEqhRlSbGNcCVBRhqU1ESLGomyPxe7YwqpWIQPdd61SSMXBiJafEymdWToZQ2tloIidNokCPWIepom7A97rk+mzn6rFxpyxFpvRkRs5Z9SC2KISDNHv+pmjrleIkYtwEM/iKqK83rG51+8wePjE65vrvDq1Qscjzucz084LSskROyOV/jo0++gFsVf/+DP8PTwBpznpw1G9PWnAwPEapfOeUlB8OKwx29+4yP8/m//Jr754Xu4vj4iSJ8uV1UxGweGfAiFxIQwHxF3s31eRbo+YP/eh7h68RLTYYfzL3+JfFowQZAD50A8v9rj+7/xKe7evsWb0wpINHSNGZBKvDAO1a7fZ2Q02V5LIi7WDXZ2hmzo3fzAJ3p6yUoVxsK3AUOV8r+U/GWLLzUVCK+rw5SeFmhHLACSOac59TorbKZI4f7Ztq0hZsil3ZMHO7QDLBnkbcHjwxNuX2bbF3Qs27oioGI5JTw93MPD3evra/z+P//n+D/+j/8j3t7d4T/9p/+MH/zgL/D69RvUuhni1401ExlANSCokp+FihQD9ocdBEDOkaqaACarT6cpGpLg/e5sDU0ThzZNbVSxCckEwtwwPYlqqNSFirzZWXf2/iUGfrWZnCAU7dFSgSimSGjUexfjkg7up3lCrAlbyQiVJDQBINUHq01MKCCMlBGt5u3+UJDmAzRlbGVDULQZB0C3kyLUU5FKcie7kDLW5dF68mdImqG6b1muipqjLtjWlaqOwsx4nmfoUFpoZ2LIqC80NkJoJYJ3X63UqixTlrKgbHUYlCRQNS0AS259b3sSp8NzyTlj8s/V7ntK6XbV/+vkRSPP59zHSUv3WZ1Y6AE69TR4PrJ93XRKJCDOMyZDD8jXyRhd+0hA/Idev1aZoF2cuLMJLUKRYTO4cyd8zlayVvevo+Y3zEjXZtgcJkQz3Gien7bNcv4eVDfUYsyAGkEE7QdgFC076AHz7grPXryPZy+oW+6OyUelekuQVt8MXbyiWn1bItnNnKteHXXmtEEtRhzMGAkvpWag+oOn/nsIAVoqikXHtXTdcA2MimMk9KqVbX21siarSiUsl571xelBFpEGjYGSuaoNHrdorG1mRwScJjrWsvwe5nlGDpl1fjPYosq+eumwc14pGKOVBDYGFQKNzGZLdqRI2+EAgFAKZoPbmXnssC0chrQsC+Yp4P33X+Hm6oiaK7ICCIL9zQ2+9b3vI4SAv/izP8LTw+seuMINavWoA2b2EEVxc9jjk/df4vvf/hTf+eQb+OC9Z9gdZ3JfJBKyRDDCniLXgqyUF90frnC4ecYJfqhABHbPrnH13nu4ur5BioKnbUNZFoh1aVQo0iR49ewa7798gfuff4YiQlgPaNftz1Lbn7ZeYKmtNsQLbX1lgCZtGkR7jybqZQet6106Sc6cY+hQ42azJlxCVdUUM63lzH/3oivIWvu0KkeEuz0wnkAtlUqFmS1s1dn73mlwkUAUrOcFT48nLKcFaUIrS5SasWVFKTPyulqAsOGLL77An/zJn+Czzz7Dv/yX/wL/0//0f8HrN2/w//4P/xF/+If/Ab/85S8xz3vuAYERAlnezKVY4MMSxHuvXmJZOBCt5IygiinNF9ko3Fi7YVKWGGPrEffgjAFAEreXnew5llUBXGrFKHjWzZ9wmFGvx1ethqiAdsqSAQQOq0KgFkaIgeUfJ8ZG8n3KtqJuK+bD0c6KCWM5QsmT0oKnlKI9T7Lm25ESMAGqGdvyhHnHYFpiwLzbcXKfTAhhpg2y8DmI21AqO9IBcy/X4awSnbGkQXlOnF/Vnb8hY5ZwOrt/dLa1WvAhgnVdENOMOBEt8T0Ns53cz0QwG8HQfIg46W/oUgCYRPKsdQXRfg09uXM0pwdcnrxyA4yI3QBM8AIsZlBJiLsrhLQHx7kvCIFtz2whHq/t73/9eoOK0Nm2fdGNLGjU59wyYDWp4Nqi/dEhunN3OMkDBrfVGBbGyRHdq3sU1i7j8t/+M/5J3hqkgYYJbOHYHW/x8r33cX3FVrYqatC7gh3AHmlKE5fQ6tAcDXJ27YNK6N3bs0opwILGiYB0ohplLOl4Y4ptcEyxCJqkrIKCYNCQNOCDMb+aU+vEtyiCFKK1ZfaeaSq3acvao7GJmQW6Y6gdoaloymZe0gjBNratq7dMbcPUOABda0GGXnV7aqUUnJ9O7WDM84wUAnLVRmT0Q+2Bh4hgShPSHLGbE06PZ+Rc8fbuAbe3V7g6HqBFcPd0wlpWZADT7oAPP/0uSlH88K/+FA93X/Zn1wwInVMSwSyC926O+P63P8H3v/MpPv74PVxfX2O3nzHZ9YhExDRDgiChYl3OyFuFhAn7Zy9xePGCo7YnoidxN+P4/AbH22tIjMjrhu1MJ1Xzyol5RQxaLbh9doXw2ZcoqlbeCUQFUC8OMo2HNCSjGQNbYyevAp1Aq3Z+GvXWnLIlFcw4YEhEZWasyNSHAJCUfBZOC+QezblgTokksTBmW9odmge+xe7JWjOrSRXnxqMxbkehlkDech9i5N5FC3LNDAYeF8g1RwBXFZRCJKUWRzgs+M4ZORe8fv0Gf/kXfwUR4Jvf/Ab+T//nf4v/4X/43+P/+e//X/gP/+E/4ssvXyMESgRDY+uC8pkCV8cdbq6OyOsCQcVuStilhF2ICPCsPniawdITxBwpqDQ32CQvM8GeF22j1YYl8iz4A3V0oNkxG4BlZ76yttKRPRW4aFGwMm3LTMXaTo17hMISURGgBs5HyQvHPcfdHlDW+lW1zUMAXJlvQwzUFpAAtidDOvomgjAnHNKt7UMFJCKmo+3TAAm8SVGFaEXRjVoEQRBs7VQzqgTOtbD7zNsJVYEUZ7OEoQUjaG7BxLpQsW2FExIH9NN5SVBtnTVPjw+4uZm5/tbm2zRVhjXu74ELm/WV0gIGNcELX2T3bUhUx+uknXGBJU8IF1l9d3HODWvRgCUARHNqVdR8AuKMhD1U/om7CcYV6L7XjJVfk/Z6YyldUMR/yYmAvOnuhNqdOszi0O7g5PuRaOvRDk0LGGT8nj+ES/YmACPyTDjePMOLV+/jcDhYq6CNCgaMwOg1ejTCE5ehQzoeCLTeahBqr7lgU8W6bljXDTBnvNvvcDweUPKO0alNhKvmbFWVmvVC+I4a4xyq4ll0rR5kkXgpIkgxIcXIOmzOPbLVwRXIwCAfVnUM7tRIPx4IoLUjWm4QQ+tN5lqGi0Pi6zGlqYnMONHQ5YJjCCw4K7DljDTN5Ew4N2KUXuZxR0wRu4MgFXIy1rXg5e0eWoAlZzy9faR3iwHT/ohPvvNbuHl2i5/+8K/w+vO/w3JesG0kYaUkeP/ZNWJZMNeM3/n2p/it3/wEr15e4/rmiPmwxxRnKg0Wyi1XEez3RwRRLLmgRsX17QvcvHoP++sjRzdPEw7HA+JuQtyxBpm3jOXphGXdsJWMfF6g1dveMkrJSJO1RC2L7Wf3BV2XA/ZviDGJPcuvjpZ1+LQFz+38+PPp8z9qCX0wlXZ0yN+bz1agukE2GpsgATUXVMmoU8GUCqbUn5uz750zJGDe4xyc6i3DhdoC27r1oEG1yYwX084o2cpiZk+enk54eHxEPOyB2B2rCn9/zRtiKRBDH3PNeFqe8OXdW3zx+g32hyNyqbi5vcK//bf/B/z3//3/Bv/u3/0h/h//9/8b7u/e4PXrBVteuSaFA26urm7x6r338fz2lgHG+YzzwyNOjw/U62+oHfdoEKqrcmKfld1yxmzT9GopwEQ+Ra3SSIW+fiEMGaQ474bEzMCMYsgy+/n159qeg5givcNGMDRBFUBtiUktiigTahCk/a7tL+ckkA9RSF4Vy4zDRGlj0y8QiGXhrm0iFky43e32ks61IlSAY9BZEpUojWMmAEqhhLTEBPHr1optPXM+wVXvSspZLYDkz7Bk0R2w2xJ/uRN1pCbGCefTE7a82ERHNHtpv9Dtm/35q4YDu7/p69zP5HgNPTBxUrq3XhYABdu2IKY9ydbmXKkfwb0gbT09zLQ/rVwV4wTAyOjy30R0yJucvI4NtIEqbgzMcXRi4MBk1AEJwEA0Qv+ae/j22OxLjgro+A3/8XY9ww2r20GPwI24IwZ1qiCkGS9efYBn773CfCBc6FoKvFfLeD0YqYqCMjhBAVXK2H8dTTeW/lMbaz3nDetysh76irwtWM8nGlar95PAQtGMGIIp8SXMc0IUwRwCsrJlJ/h6WcYRrOUxBf49CWvf3qLpLWu18niIZxMw4YsALNWy5uY0zJk4Y90CvWBrIzIcdA84hgjY63euOhhjsACG151d1MjEcIJIU6JU9OFOzuRVrShKVce0i4AKHh9XPBxO2O8n3N4c8fj0gNOyQVWohDbNePHBN3F18xxP92+xnM9YNw7xmELFTczAwxd4NgO/9Ruf4v1XzzElE0eyYUBl2bCcz0j7PY67PdJ+T+QGAWl3wOHZc+yurzDvOXabiMnUWO/rthoickaulUd9y+zHtwxrzQUk0dOAIvj+12aEGnnKSVPu0Kt/T4h6VTGirAynqTaykr9qNSGXKggmz6thCCLICOV8jRhQc8WGFWKoUQ0m1DNZmSVqRytUO6/FMlt2hHQdjpIztmVFNqW8WjuhOOcKFRcf8j3CezmfF9zf3eP47BYj8lSrlxoZYE0XqJhgyxvO64olbzgvZ4RApcLr6z3+1b/8PTw+vMa/+e/+NU5PT/i7X/wCtRYcD0d88Oo9PH/2DKVkfPHZ3+FnP/oRfv7Tn+IXpweckRHiDpMFsTFwvkeKyQSGejscBYwKJOcm4lVLBQIGgz+YrxaM0VEQQh9kxyz5QbNv0pFVc3DOveoj52kvqvGaCAEGSKlQzZCJ5c6ggpozwmziQqjGFK0AogURzMYJ2YvZVzrq3Tyb/YgtU6daIZqN8DWBUsuE7bk9EGHNfkNAgCoROdGIUpWlnW2leFGtVuKxeQiVqAcDUTVbklr56rKEzPMV4oQkAdfPEhQVpWwNLaCdGxCPi/W+DDd6INDHv6eYDFHrz2YsVXSfNb53QNGAXDKmARVsaI+43sAI/VNQbCSnJ+yQkXn+NePrvL6+6JAaazlIc5gsDRBuKUMQ4IbKax6eMTgBarz5dqvqtzxiA0PbyQUwMGb8/F11Y2Rfu4hG/Tu8cAgidvsrvHzvfdzc3lIgaN1Ypw8OMQ0Gxa7GldO8lu0Bh45Kh5ZthQCrN8/I24JcgCkGQAtOT0tTVyyZmzrYbPh5mnB1dcT11RFRZ0hKWAs1DGIgc12TN/EJ1pkBSEqASEUKghR2WBfWYaeUsG61yT3TwNLY7nYshUSrMTJDNITFAyOgDXRph9WfQFDSxIbD0iNo44aItSgWV+liRkreCI2CD5KJMUISM6qYqMXQghTjQzHASTivGV++fouPP34PV9cHPDvfIH95Z0axMCiQgLA74Gra4yaI1asLQj7hGg+4vRXczILD1QwRDhmCukxzwbI8ceyoHADY/i0M9ObDEXGeUGEaErUgn854VKrWYU6YrsmyzlumRK+wHq2msHfeTjivK8V1gJ6B2MJXsA4cAvuFQ1tfNQlhy7IuDIPXYL24LD3DMYfB+rwpIdr+ZYeEtDWG6Vy1up2yDSyR4AJRNq5RZ2IymL1nqj5yuPr7GzKwbjxn25Z7X3klmXA5cy0c3vZz6xD8uqy4v7vHs6cTUAyFqxVIoX2u2N4TiAWhjtxt8KFaFHAJWNaMn/zsZ/hf/vhPcLXf4Z//s9/BH/z297CcHvHFZ5/h7dvX+OmXP8PT0xMeHh7w9su3OD0+IOdqrXM00EE8EeBnxsiWw5Rcz8IGfAVByQElFWb5KaEGTlCEasvg6CjcgRp/qSf4puljxF0lMjImWwJtMDw1Cnoypa1sSPuRgmDbOPERkSJgOW+EnSPPn0SWtELwrBRAy2bdplJyvuQVKc54fHwAoDgcrwCkNrPh0gkK5t2uoSC+P4OALaSSkFTBPt3A/RIn7Ay1WNcFuznBkxcvd3li51a8Gn+Fug5o8Lu4PwgRydoBtXJeC4OMBJhgUkt0SobYPJ0LHyY8K2rPsRbuw6jxItbzgKCjA05q9zcJiHEHiKMhvp+VlSRTUe3v1d/bBcjoryLHkntH1dd4/VqzCTrZQQw2lkYKLIU1uq8gARgdhV+cw1Z9MfXic3T4Cr/qsOe4mO6kxwhN4UiAIQra3wGiCBoR4w77qxvcvHyO3WEHlwMdr4DDQXiYuqpgsODEZDNErO5t8FwT0FBEUYt4J6DukaKVHUrGbppQ5oBlWbFKhSBhnifs9zOmNOF4mHF1mHDYz5xsJoQgD4c9FQ99IypZq66d7S2OLvHsRM2SmVWVln1R7tkN17pVbLliy8b6n8gA5iheHrJptnqsGRWuRUCNEcWMnUduCkBLpoRzLSab7KIYBjmb9nuFopYNaqz2XdjB+9BDYzYLEICSmZGqZECAp2XD69cPePHiGs+e3SIXxePTGaVYdioVaYqo6mRKEzapFS+e7/EiCmLeyHQe2pNyKSjbhmXZTAWykggZM5bljG1dMe0PyOuKkq3Vshibt2RoyUiHPQ7lOTR5T34F5glrLtD1CVvOWJcNy1JwXleOXRYnoHHfRnhpSDi8xALeakF3qeXymPTt2/8pJMBWYRATPXMPzJgVDNoDQkcP1FnpChrD3IOVBExBiBIMCUD7aEMtPDDg/iMqUErGtmWUjWqjEEEWcge2dcOWN+4VL1HZ9fggoFwyHu7vcb5/BNLepjwKXJqYWSjro9Q1oCImM8Muvdy2lNVjzqcnPL35Ej/cRYTtEVMUnB7eYDk9Yjk9YTk94fT0hKflhNUIoG6iqEoam8Szv2+IESlNHFglLthF+1eNKMzCrw0psumjUi2bD24CDUm1Bf4K7Dw6pJZ5W7uxsUvV68tWmqPyH9erwi7D4PXGmyorPJ4sUARRKDIdM+icyU/YGuoapgklb6haEBOwLivWLSBiZ2x9D1od+wq9/bqSKS9iSFZKEJlMXMkdnbScUWtG2VbI7sjyrrV0sy0bpvtCRx8EJmBkcwO8s8OSEcCDrwCEAq0Zy7IgpRkp7QdXqiQ0Qts8By/tXPpbacOQml+TTsR25JSvzgvw4KQNJXLUuxTUsgCoCGlGTDu4TL1rEpB3V1qSeLEv5B2j8Pe8fq2phS1+8SwRrIltebP6uufsvkk7dMIWGg8UeiBwSciQi6+hf2kIQvvPjESqDsH08KDBav6eKiCjdsbtC84i2O0PqD5W2KWTQ4AUtECA6oNdaz8aLCilQ5hGtG7COVoVURUBFfskSJqQc8b++hq3t7d4enrA3f0Daq2YdzN2ux2ur4+4vbmmwM7hgKvjgUhEiri5ucHNzbVpmls2DidOBWybPwfyFEr1oSwFeatYt42yq4WBwHJem/pXrgXbmnFeKfmaTRWxVsW6ZCOCFvs81vliSghuJEQgMVpt055dVUyzACliW1Y4uewyKrYfrVzEaihBiAGaVwZCrlcBYzBXbc9VAdw9PmB/nPDs2Q3k5S1qrXh4PNmYV5Do5LtBAShLAcdjwHUSlJMRI404VLSirFSUzNvKtrB1RUwLtBY83T9gOZ8wzTs84I5XUSqQ2YqplUIm89UemATxisakaoEmwaYV1ZzhuhY8LRseTyty8YC5ktzVBs0MGYDVC3NVm3nhx8nWQ+z/PLsXsSqkUoxItXfRtxJQ7iW/2CeIOuyq/juaoXBmN4CUILUiVp950Pk2fi5dPtwlh12Tw9EJrXzmqsogIbOEwN7t1Np8eXRZBz6fV9w/3GO+TobI2WS2YX+pB3+18p6NpU7UsrQOh65uynbHNW9YNhvMVTNKZYKTc7EAzFuiYWvipsZLJFxXJgOCKaQ27jmGSBVJGHJVAS2CXMlVmk0ISMzOwDrd+k6/DAREL7/W0qcBiocJFamGwXqb35KOpmgt0GL8lFIQjaukCJApWdDEven21rk/ObPTRMHgLaSELW9IuwlxNvciVoqQCGhoCEEzzoCR46XZaCad/FkPBLw84gnlfDxSB6OudKJNjKeilo3t2mIBmzgRukLA7L5hbAqIDWmD+ETd2WzgRtzBy8D2e9XXwiD6UVmVzyW08ykyfr0nJuPzbLyshgo5Km5aDAjI64JcVqS6IKZr+HwP7hMPUJyvYGtmIm9f5/VrEwibMYcpk9lBsRyuJypeHoA74toMyQWXwF5q0czFhv9KRKMt4PD36ZvKMvoGj8IIUnYtAMQ2Wpx2ePbyfdw8f4kYEupAhGmxR7CfN8njYAYuRjKPg0k+qojlTYoUaZiiSxBqhtaCgIwoGaor5hAh5QytC66vJkzTjP1hj3me8ezZLV69eAkRYD/N2O/3NA4p4eb6BofjvnUWlMJ6kPf/l8xgIFpHwX6/x+FwaIJCJC/lXrM1tvW2sbb9dDrh6emMp/MZDw8PrQPk8fFMVGGrOJ1OOBdFjSQYpomM920rLBPB5Tz5ADwjFHRVQ7dwCl4TtRUARsGKXFZIJfLxcH9PUlZgyWCaJkxpQvC55QZpvnn7hP1uxtVhj+NhxtNpsR56lgsUwqlxEhElYioZaRKkGIDhEDeJXK04n88oW0YsCo0r5PSAmgse396jVmCe9pRbhgKlAJnjV1HozNflhBoFRzyDTtSPKBKQIVhXrvvTsuHhtOHu8YzzlonwKAe6iJUDBNYKZux5VUW2Mpwa2gXARnW3re9lf3hZQaGmeFmsBuv3jDbASlX7iGI/p9KzsSAFQYCzkgOA3Q6yocHjbszGrMR5AGXN9uUKxwarVmimISymcljUA91KeFqVLZQQFAhyLXh4OuE4XyGXDK0ZiNFOrlgOYsQsy+LatNNqCpRVMU5kBPg5W+EsAjVMxu1UKRyh3AICrQ3BEUjrpGpGWWC6K46guqFnNlpruQCHgYg8dNRUgCx/yxiD8Q+aXVRtzoOiQHYv75B5x9LlCCFptT3g7Y32WcF4BbkUnE9PSBDsYoAGG7Vea5Mt1ip2HZkzQSAIYYLELhrmmbAoy6Alc0ARR0lzL9Apwmw/bYfl7C1gGTUEjN8MkQkIYmc8o0scG8/BRh26LG8IPjGT9i9NO+uk8bXpaDRHXAeEUJHzYkhwQlNPtWTXA9BSKwPufhzhpu7dF8dWj/yF2k5sqT41lCJSAoI7CAFReL3bdkbNGyAnqHIdOTfB9iECA5zK8xagwD91N0GbsuV3q9Y258piQ8buL9qhnl1cQBftZSHEO0hB+5D2M/1nv/oubgouv+K98twP/UDuj1d4/vIVjlfX7cFGQ3rUst2OMXikyusRqPXt+zXzaymStBJANCDrirItlpGYoiEUy/LEDRY4yCREHqjzuUBLxsPdPbRWzLsd+3IjiWHzbocUWR9rQ5yUyoLzNHMr19qClWe3N7i6ukaKAdOUsN/vsd9N2O92CCYdmmJvyYHaMJi8Ec5dN0AFy7ohrwtOpwUP9484nRaclg0Pjyc8nE54enrC+bzgdDqz3iuhj5xGgaAg9fgAAFEijuk1oRtw02utJPmJkeO2jczsmFBiQtkydgc0URcAWKE4LSvu7h6xm2fs5hn7/Q6n03JxGkUCjOANQLBumX39Vv/2vZe31SZmrihbRqmAbAm1bMjnBafHJ+SsQIgIux00RrY9lUJjt2VmVY/AUgtkjojXR6gKSog4q+Jk2ebjlnF3WvD28QlrzpDAfRhMx6PCMgO1urI4gwKW0dqQIh4zllK0DmOL7fdbRuVZcp9YmEulYtzwX7o4c7wWUaAEQVQBMrC27gMSzyabXeEkps5s787ea7Ku0Flyhip5FNlKRsWcb0wkofnkQkdvSlXcPT5Bd+fW+uXBZetYEWlzEBx2dZvhAmguU+3kYq0wVKyiamhnzFsUsykmOjIA8RkRHQlpyxYCJEVIFKpxpmDBAeDkzmJoGH+3t6DxmVZIUVMn7ZoP3uLmyGxDu9ypuuM3RMG1PbrFtDBRK7QAklzwh+/lqqsIDEqkBSS2n6y9VJ2MbOWNisJAtXJOR7faPBvUZrDAy2eEGMTQEGK3vqoeYgFNm4QdTNBe/w+BQVPw0pqWxqVgl2ZAU2Zt3kHbutUyTHC9WJsh0AJRHCZUBRqUTP1aUNTGRAtYIsJwW+2+Lj3VSB4cv+bos9aCYm2CSaY2XIzKoxGQGSFVlLpC68YiogpEEkRI+PQAj4gAO3O+ZjPB1w8GQnBOP6xVbBzZ64v51azf8xJfl3dJD+8u2OVLL/4UhMbu9APo2ZE/BNifCmV5yw6HKDdOCIFTCp+9QIqBTMsAijMYNAr0a3SVA1ocwk+lsjwSRVDrChHFFAMEFVILat0IGZthooGMkGj13nVFmiZETUBVbNuKvGU8loLz6UzItFIB0bOcKZFYOBnTHr4JJSCKk1w6IhRjZHufEDk4HA5EIGym+uFwwGG3x25HVGKeE+Hz/Q7X11dEOSxKBdCMe8k0pFsuOJ8XPD4+4bSc8fj4hLdv73E6L7i/f8DdwyMe7h/x+PSEZTGluWJwsDsH63qAVBLQbB56zhkKk6kuNEK5qMG2K9bljN3hwGvf7Ugsezojvb3H4bDDs+sjaik4r8rDEijbLNX610NAzooSGxBP+eeiyLl2ZTytqHUDFrZClmXD+bzg6emM87pif32FMFkrklbotqFsfO5VFcu6YL6acTNF1DihpoAtCJ7OC8pW8HBa8cX9I+6fnlCUok2sq1qGht6x42qVF+fKSgG0O3bugp8KnpPeq29+U/uzDCLIhpwkC8boGAJHv8Lrz+DzoPgZKVWV7ZYiAskCwORorZTGkeOE+Guh6BVbcytJmCZYQ9EgEiz92nK1566GFhQiJUGZ3T8tG9LphABt3UxiDPqcCyag77FckLfSeAUu9V3VumPcUkqFqoveTFAwUMrVkK9STWOktoFaOQTr0unuL0hEmihdHVLktM4glkSZs9PQZIddkKi3FbKFjCI3PM+lbIhhgjuZwofH525ZLMtI3kJsJQBTsgz2/IuV8cSDqGAlPgnQkpngBAFCRJx30MBALkgnl8JtuQiqKBAnAAURPpJ8YzAEdraEiQqFnCkhNhLbbszMKiH3gpLP1LCYD3RmbrzNClMwDZZEWPBQM2DdSSFNkDCZU0zGba9AJSLhAjwSAW/PlsF2tjM0fK5IRNWNdgBue8nQFxVEmEqoJ74Y4P13Ah6gBwLqcYl9LYi0ABEKZAhiMsRLe6AugeVZzQv3UpgsHnakiJ8pmO2eKsYyxT/0+rXKBFUJZZSBkT62VHT45FcgBMNLfa3HrwsMxucq8dlc/qK6kZOBCDS+Ad55Y/vDpr5CVRDSDte3z3G8vqbjbJKqhMCqQW8MOPhnHzxhLODKbEpqRagZweRtXXYTWjHvJkC9zz7aUJaMXAmbT7uZ0pwidlC4KWabbpZNK0BC7zKY59Rn3lug4Ju3oyB8FjmvWM7nFji5iJBv8hipbxBDBCJ1CvbzAS+eP8d7r17ixbNbXF8fcDwesEszxHgS00SG734H3Nwc8cH7L1j7tborFNgKiXZPTyc8nU748vVb3N894M2bt3j75g73D0+4u3/Ew9MZZ92wQa1fOyIFIIeI81KwkT1nz8+07BVYjdQ17w64ur4x2LHivK64vr3CzW3EVjLW1xtyYWQcJQDBQpsiOK3AKVQcrNWyqNWxW/+/IV4V1iJaUNaM9bxiWVbTDagI02L7vkIzFRfdqDw9RoQ5Iu53iM+uUUJB2M14XDaUpeL1/Qlf3t/jcTkhhIgpJERzGuNc+Eb+AoVginaJbxEKaTVOzoByRMs6Wk955eAontdq8DpMs4ABQoIPwmHnjAqFxGKIEAVyoXMherHhDFhnAxn0sbp+upH6SrWJfjw/PmmxWGtpUbW22Q7jewlSjGzn5GMaVo7SPj0tCCC6xQgl9M81bkDeNkzzNGg69JG9o/nx1j9PcHzUuFqQmI0X5d+rJjxWi9o8Bpj4EproUjJFUK29IHDBlTFUyrXytWXg3aJVQWvbbm15o0GUCwPIL4VgrHpc7IVGdrNfqKUixQKNASEKclZoKfCZBRIHiV1z/l7u5cvatQ2dkGDjrSugOVsnED8rRCrhtb2MwVF6uqgKkYg0BTdR7euwvVtqwZQm8wMFqJtJ8JZeonIH2AYjMdic5p0ljay/iyEhItqg++5v/HMDUqTEeClbRxCUMzZq3oj+WHmGLbwWsJVqJbcO0V/6s+6vRCIQqA/QuhGUCp0xxLZ2/JVoIltPDGjnZAhK6hiISB8VoIJ3/ejf9/rawUD2yPpiOpm0jdY2dNuH3SF/Bdh/NxDgkhgBCm0Tc7/0nmn05XvnvWT4B39KLfLsGb5AETHNR84iuL227xldJfqBhdWMCFVVg9UEiiTcBHldAK2YUkAIRqxheghIMcIqoSxmSQXn89kGvQiOxwMJQ+CUvFJKa8ObdnMLwJvUc9C2sbwOyHPqsp1okKUaS7h3fAwscVubqoqyFejmA6RofEuu+FsAKU3Y7w84Ho94dnuD6+MVDocjbm9ucNjvEWPA4XjA4bDnqFZbuxBYO96nCcfDEc9uaXx/49uEwVbrLT+dzrh/fMLnX7zGm7dv8eb1PbaNbWNv397h4fGE8xJxWhYoAlKYsK4LULheAoFmYMkrNC/YH/aI0w4lBTw9PmK3n/D82RVEgddv79jWBUAjNRmQZ9wvZ+ylIuwUEwDNLOOUvCFvGWpa+SJ0DFsmyTJvG/kWpWC1bMQ3czVn4QGxiGD9WYbsd3hhWWyKE0654u7xCZ8/POJxWbAWKqwhc0iMIbWAiFcAETU28lKuxeSQ6TCZNasR6rTB0dWQgZY5oKMCJGhpOwOwFrTMWAZRAiLQ2/xskiFNpBnTAEjIdEC1IkYxwSFmSHSaue0x72apNp201mKdHpctr6iKgj7OWKsjGl7D33A+PQHCpkp2TxpqOBC3SsmYShyQFYe4zb5Itxsl1zYQB3amvPWXfePGN7CgsdSKUDKDhGqjiRUIiQF7U4Ks3dB1svQwWRIwZ1Iuvgd7VilFK8ew7s6kqwcWEizg0He+NgaG9l4CtE6eXIliBZlQvR5fOG+EZRkGKxCyPCzXN7SukGDnq+ek3kA7WtYCZCAktgNKcMTL7bU7TmcH2KyQEG1n9eBnXLeU+vjlYmU5sYCJqHFocQSTN+5YMdQH1TsJfM9XwIpk3o7cc3B/bgkhTHbfGXOMRIbzZglpbIPsPAhoz+ndZPYCIcA7L++soIcLKNT3WBbElBBd+roqRCNCmrCcz9BSMCWAAn5WyreFbvyVX0Ve+BWvrx0M9JKARXK8uyYk4wFkRwX+/mhEPIiAB7c9OvAbaV4O/XA6YvDuu/H1br+m1578xehpd7jG7YuXOF5dWUuIiZxUOrMQI7zsoNaXHLQiuqRvXqFloeFLs9WzXEXMtdS9XcU1/StVCAU4Hg+YptTIXMxWeubQMnjtgy1GMhLE23BKu1cSRriJejAwlA5a64pBWLZeDFoEARNh0NR7sk+PGx4f3uLzX/4ca2Ef8nF/xDzvEGPEbr/H/rDHft4hJc5vn6eEw26P/W6H/W6GwER8poR5xwN1OOxxdX2N/dUVnr982QLMbVlxfjrh6ekRb+/ucffwgC9fv8bbu3s83J9wd3dHNcdtg4vMlFqg9RHnhxNi2gFlQ85nPH9+i+fPn+PZ7QHbdsbdwyPboLydSABIwkNesAvAQSpV62rGtlIDwhEJ8Pw1h5VrQQan6W3LgpCLBXzMQKhwmNphyE9n/N1PP8N6WpFE8PD2Dnf3T/ji7R3uT0/YKvUHtCqkZIhMQK2GUJFGxJHMYoEgGqGuydpqRdbQ2gaDaTmoZW1eplMQzRrPoTsOJ3I1gxU8UOAedBEr1YjAC7LZAdyH05RQVJBUkRsbWkFmtycR7H5x9UQXJmv1+dIddptiCrbPEl2wgK0UYOM43hQCR9BKxCULW3pGW7th1urBGlGVlCbyUlICp2rCrtMEkkq23nOvHRvCohW5mIxyNqb8hZO3JMacdTW+lSNyIXZhGyIKPYNszHeHsmMPCBwd8M4NKDsqnOAnhvaMiMKYmEHRbFUtFVKtDdtRjFzQeQRo9+ImmQFjRoUA82yaIWbDbf+EGClcZKWMqolKgg3eB3waYkMAAK6h2oVqL896AngxjlcCYpqbzR0TQQoS6TCFkGwu2wCw1gW758yiXLOX70ItnlBFLNuKpN61osjLGSIBU2C9PoRoehbVEFxTQnRfNiC5jYdxwR/o3BGBQCJ1YJwACyNhqwCSdpj30bhjpZUC+HnMKHpu/U+sM1BLaSRA32CEGFm7YfuSxzWX0Sv6WtjftW0u3oC2TcBIckj4/dlL/+kxdBi3i7++AosIQ4UUZhxvb3H94jmmaYcoEbWpq9B4iLIWz8l+BSlSMyBZL3ZNCfvdni1nIsYetQBJQ+NQsKd6w/m84nQ6AQD2e/4ehWq6MXReAcVKjM7lgbQZtVoVKmTDVut1HjONfvMDKsD/GzKhrlKlOm5Cz0ZcSGOye+DapOKDYxacFwoEPT69RbSfVzNmPjqVNTBCoJzsxtbJGDl0KKVe7qjK1C9nZt2lVCzLwkOlG0Ko2O0Ez54dUPKENvyqMnPbnOVdK2p5wvK04G3doNuGNCXspoBJFEUzUgkoMNZ7Emw6434jEziWDdjOyNuKrWSgsZx9xxEdqP75sFkSebF7YY356nDE7bPnmPZ7pDRBtOL89ISf/vCnOD8+4f7+HnePT3g4r1gy899iCFGlrAPmlBgAqEKqNKJntIdYa6VBCAElK7ZsWhMCRIk2C0OaDQIcygWKggax2v4onpn6vrDAPjrRM7b38H1GwrAZJURgodJimhJqDS3Y93asYvMI3Mmjdji+WpZYzMF6l4T/Wz3osPKBB7M1c4bBPkVUG+/sKnxBxO6PGg+5ltbCGIzI547LxWeqOkrWTrNxG/rocJdYVwv0SsnIxidIxg1waWGxDNQnljJQuEQJ/F/jeb3Mho38yAjEWOPWYSIBDbIf/ZehUhgza/8MkENRA+Dj5APbrOxaC7QGDl8bs/nhegUsKeZ1QWwS1ZkTWk1FFCFAUyL/IlibtQcVjjCAmXaIkwUS4cKe5Y1y0OoQPtS3OJxEyzhCbAjW1pAPBRCMVAcRxCla1g0LXg3BVkVFphJnnCHiP9PLtup6GxI4ehm2AS3oWx7uEZ9NCGnX4P6iG9G8YOtmdhgY2/+AS8T2Eg2BO/Xow4bsMLsPlYQ4RUgtvijwsrbrzvjrawIDv04wUBtk2GpQjhLokIEAHbX3i/cLbRmwbVCPAZp7Hw0w2gKOP+Fv4GvzLlkR7d8dquXPKkKacPXsJa5unyFMEewHti4Ci5gJuwKiGUHIbI+BAQGs9cY06vxizBn1rGVdV5zPC87nhUODquJ4PMIH/owoi3douKKjs799rRxp6KgMLv7ujtw3kbeGcQBSvDAaTlQZs4V34bg+XAPw4ODSCQztl81NAuwzb08RVYFcga0EyDkiPrpYElp2ovBaIFng2mBgHliOzuV0RO8RFzG2vSg0KFJkMDLB24wqtlPGm/WMaWKztmwrUJgBBJvBHoIgaMJ5Y+a5qxWxVOR1w5ops6q1G2rA5gls1Tgz2pT0Sjk357ffk3muy4p12bCdF9y/eYP7+zs8PDzi8cTOgaymRG7GYqtlUAGsiCo27Y8wrVQe1iBsMaygY8+1sApqDro6ItZmS/hR1CYnrBKac/SaNexzGNCqZXiX+6SUgmmarH3UGOWJ5945DNkMF30DHQpbQGvLttUQjKI+AbSQawGQlQ5FQbXOCF5X0a58KYHPrFrXQckb4rTrtshKBlvegADMhQ6b2hEF21YQ6AVNoKtPc6RiIrNJL7GUqtgquxpqdWIkN3Iu/esu+uUQvYCO0OdbBHhbTX9VZQbrgYSrEDY9A0cDVG1Oie3J6E6lc4I8oxa/hia0hPafvyfg7b6ONPBaFNqemx2z7nrtTSSwS6LmFTFN7WzEGJvnESNRiDBorxt/ViBAUNOc4LkPNl0vSGx2nx0g2YjfHpB6mlktCWt3BEDNafI/V35sCamAARX6OvY+wMEhDSvlSMS7ZQrnE8zTHqeHL/H4eIfrZ8/5uSKoYPLk+gwY9C+6XS/mn0YuxbuvsXukZ/g9iOyIUrfZzq/RX/F+//DrawcDjE5hNXS0RXq3JHCBAIxBzjvCB9IeLGzR24/2d2sIQofT1IMfGWJEhr4tEPD3dZlQvk3EvDvgxctXZOUHIGpt4jSAtT3ZRhMpCFIhwq9vWoFmzKy/vDLS84EzubCufDqfcT6fIUEwTRPmeWKP6LpaFuQiGgEpkWzEAUCXMFWXdq4XAUGDkkQalyCl2JCFVl6w+xeJ3agL/OwM7+PBDSN2f41TtzxQ8Afwq1CJ/rP9+eZcIJKxWeBTrb4ZWrRsWUrl57tCoogFCqVAs4vPGNPca9DZRWxMT0BpkDcTkQo2VKmp09maI0RojHSouWDZ+HxjLqibkQU3ShcLrH2qavvPmeWlVFPOy5blBGy5UPTInt+6mIbDicOKCPHTUMMyxyomDlTZk41arNWS15wrJYeJwJheQCWiwUnYtSsUKgnhI8Pdo2t30FooXuS16hDV6uo0Uu15KzjDQPr3fPRre6/KEhLZ0IoYaQSDfT/YqNtcqDzYZag7B4loj+8pzxt5/XS0aCI/KuTxbLWiLguuUsKyAtAT4u4A7BgcrMuCctxTFMkCmW3djD/is+FrcxRi159LpTy0BQal/ZxPGLQ1VQuyFVD/+TqMabayRi3sHIhuqNETFLG/0+F76YBGnwEEoDU2P9xtqgs92VlsZ88y32E8ekuNLGFjV5g0/+fObQzxnaRNJMbaFq2K0SavIkAig9KUknVomKqivYcE6pBEKJbTI3a7A9I0s5Yv0gJSqEJqMdjf0QWBaEQtG2pdkKYZEE7kEy8J2zXWilYqojgV+QMNpRGBty6yi6C0LhKiLK7450mTB0fufL1LA/1lxN3r5y+Q7TwmC6647uyaChItUQ+DzYv0IVVb8vdVkp/rD/gDvPSZfsI9X5YWpPg9DA3DXzMu+DVnE9imwhABY3TQ/aJarj9kJ+2+WuRiDn34/WpOA36jhhb4r7TNbdGtP6QLcsbw1NyJxTDjeHWDFy9e4vq4R2pRn0Xfyk3GdiMF+1apJldqbjXDWjrTnJK9G8qWsW0F67rgZGhAKQU3NzfYHdmmV/LaoE86mIAUA+ZpwmQ9vQB8jtJFTXUMAFwpLsbY4PZeXsDFffc1vHiQ3SC1w0J0olYPrHo26AFBE+gYor3Oj/Bn2H/v4jrU+r4VLdjwOqfDCWP92O83m2iRloJqapC5lVeqta/14KRk1ni9Lt2CUjPiowJisjnzqoBUtrZhqxRQ2dhGWNcVPuzGAxZmzTBEgF/btmx1ZEDCAon3nKK3bW3Mc3Y5VTskwcRbSqUhUXMKW2FuH98JpAMMara1rbD2OXUOAct4RIMqW7hkMB7aRWhM6h1ikq1BK4rXuu2gSRF2BqSEINZ/rXSWMVbqakhp0rtBCB+73oCAe0ZyteyQYkleelIYf8CeZ1H+28WCoA6xozH2i3UfEBEhKiLnFVsI2B4fUETaOOz9bkbNBWqjtpdlsZZYBmRRHJr35tJO5s0lkzBqaFRVtNZE7j92EXRJWm3cIJV+LrZt43mdEu81CIoUIPqIZo7RHpFWp3+pPy/ff8OZ9XJOQ/xwiSD4xnGkqRcKtWWsEoma+fUqtE0ZFWX/OkJwF8p2RFz6Q0eGo1i5gIetb1y4TgAFvh7v3+L69hmQpoYwMIAvKIWzU2Kau3OWiBQV67ZiLQVpt+MZqkwgAZYIYrD6vBpu6+ilWmTcbAB5QcESTJoyGwbl3VnoCCXXzVp6RYChlAZhaTymxIFCFjBb+mmqmJWJR0NwgFEN8YLPAf68Bx7+nwfHbUnVA6nuJwEP5sbgwZP0/xbBANTam+wmtW+wSwJH8yWjS4a+e0FyubGkoTPdQfldjNkpM31/UJdvehkQmF8LzJZimHC8eY7b588xTbHVqmtdEYyuHKxrgA+R91oLZWa9NUlLH8NaMzWs12Vh5nc6t/almJLV1KTDO0InGEPEPE105qmrizU40GFac17vZvveyz0ykt91wGNbmgdnvAZp2QSGn+PPmqN5lwFtNfJ3EaFmxGq9eEZjOcNfl2qU9vy018+89Wxs/1rXFXlbiQgM42/H//iMeh8569MVnRVeL67DA0w//N6eFoRQO8qGUDLqmrGdOXugrYEZ5lKqERlZ719bYNBb41w8p6EvMLIe2PbjQ1OADvnXyhpmBRBlQF3c0IsgBo6/pRIeeiueUAhxEkIKo4H2o1WV+8/7zkVgWTxZ+W3wq3o2pSw/WP3bzUvRiqLcgykESKZxjDEj14QUOK2NtC0WeivYlpi33IyTekBtAVapDGqkdnjXg4Cq1dbJGP1ia7BuNvAn4PT0iHVdcby+scw64PbZNQKA08MTlvOZSM66mo4GJwy6YabAUEbeFKWw3e68FqxbxnlZ+3/rivO2YkoJW7UWsM1q7h64ux2u2kogiUVkynsDEHuuHsi7oy+uyGlnazzLLDWUr5z3Xn+mE7ZvXGacxTQSYjCJW7PhatfR5HrRkQN7Rz+zzVqI2DwDU2P0wW3A8IsWICMgzTNwesK2nji5UQIgPHeKimgtjaVs3IeBctyKgHne23mrVgroAdO7vAgu+mb3lkgPsKCDfsAJkWOI1DkIo01qhwHkg4XR+Xpy49wuVUDUtB2IDvj7sWyTTaAIgLoKYX803bcx8Qlwkb+O2nLZPWAvF1gOhnsRT7IuPOw//vr6ZYLBoOrwxLtD9gikefV+MQOE7z/R0/3xQzq6ANT2cMes07sG+kaVi19W+KaVllVVEWiIuLl9jsPxCIAEP6mAlgrSyrRtbtZDzNmVTBiwsgfdHR+zODqkZVlxfjrjdDpZXVtwOLBrIEZbjxCwM+GmYEJA0zRB0dt+ACMvipCQg84BaAbBtQKGYKFP6OpR4BgQ+NMagyf1I6CsJfN3aoti+7PWSxQGPfN5NyDoBvwSLXC0yGvRvlfUHSw868ptLUrOLav277lz9Z+jIlxnfntZYXxG/l/Ol2M8nREudigFQqnVahoSqqhbRtk25Lw1ZMBFl1ju6dmuw9xVCS82otFgsC6fYyfY1arsKLA6/KqKWDyTMKJuLsjKYU6sRfdSAcCgIIiiZkOQwJKCB91C2M1QAw7CCUFInhIgqJogTDcs/J7Y1MpwcYwbWmQkPREghIJcKqapDiUlWBYYjANinS9aWwAHy0wdeZHgSqfSSIbFoNhcdRAoUhRvyUsTFBm5ViyvV9w/3OGzz36J29sbfPTxR0gh4rjfIxmyVq33/OnpiZyFrNg2xdNpQ5QFd/dn/PLzN3j9+g3evnmDt2/vcD6fcV42bIWCVAcJyE5erV1FjvdWTYuB3xNHlpQDl6oyyPLOgnZuhjMUQg+iPfjftg1R04Xq3Yj+SGuplsYdsBy6Bypmg7wUw1KJB2CeQAyOX/tfFH1f8igzUAuuOyDDZ2oFJKDate+OR1sjTiT0iZpdwlzsbFLPRYJpFQRBmBg00G1wb9W6ti6S0DpJCmpZmYGbPC/qiBUPnR4NOWMHgigDaW+bb8JIPKUtSHC/xOtELzmItPPB1Spw+WLvAmnaBtJdr3e2ADCtHQ5aigFtP7gFF7suD+j7c2Fnj2rh3cnEn2vEzX/89WtxBpohg7R6ysVrjAG8FUD7DTYz86sCAX+Li2jJ3xT8TXtWYhGbanf+zVLZB9Gw+icGpPmAq5tb7I4Huy5GUBEFYsJBVJAqDa6xp0LCibGOfS2aQzTILc0zplKRM6cBPn/5AlfX15y+BbSeXd4jIdUQAmtjtW+mZF0K/u/LzN0ORghtQuLolL/yrNxZoztwfwrNyNgB4q9fZtHjvY7/bga8IQ4KwGDSi9TAn1OPuC+ueXAGo9OW9m+9QAEah8CvST1ItdBmeJ9270rH7fc8ohYjD8Pv22c5+BGq28ZhXBuHODUlO8uISnvvvr9bHD/AlXT72jKGYOdCBJzECG3tXNCBgQ5neiukVERQmc7iQVTn4ihLxUVry/al+phWr+9zz4sqYpU29a+VFWqASB2CcgYVJSgk1JYZOV8ixggEb3EFyw61YqquJe9nv6NG3gVTCx2nWjCHIfAX5TopOsmwWKDFUpuR+wCrAQOiEaZHC8++l3XBm7ev8dlnn+HHP/oR/vzP38NHH32Ejz/+GFdXV7i6vsLPfvZz/PwXn+Ht6ze4u3/AL7/4EufTCQ/393j9+jXWZaFgWAu4+ZnR1Ae5LyJ2U8A4EElNyjgZ8ie253LmwC8GX2p18woFlTdjCG3/Os+qrx8DoFDNFnrQ5ufUNsUFP6sqfBbFeJbb74o7YH/uvQ3PWxn7OR5LAGgOlec3I4QEVJ8hUGk7beBWBWeslLxBc6Yzi9OFfRttBsf/Et1RFaAyiJDExM7tfdWMYERpXw0X6TGtRmAMbMRozxfr5zy4bjs9IfVuBbZCeiJqKEgtlur7ebxMeIlk2L9EIAhMMqXYQEkPsEd7HxAlcaqkebAWtDjPAGiqmx4oeJClRqJmO3ps7/F1Xr+GAqH2qPHv8+SdjWc3192CR6bjy/kEPYsaMtkWfAzBgPr7tCtqt6rDe4p/wX9VAg43t3j2/iscrw+IKUBQICUDWqDIJL+o9ajC2phYkG2Oxl/ulNxZT9PENqwpIcWI65sr3NzctjGWzcY7tO/G2iR/HfYfeQHjvYyr1tfxEjEZ64UtQh02aDVocnSSDKJGZ61feUYO67fDNzjk3llQjYnsqXC/6PG+RhTDn5+TiDghr/+8t5z1e0IzRk3jvp1gtNKUZ6Se9YyclbFr4le9GsyviqwjSbE2pbyqNnbZ4Gqow4pj0CptrdvnSofN6SArgo2Y9XWs6HvW669qGYBnYcXHlLpmgj27Vu83hx9D3z+swdcGXUsFipC8FMWDXJZOnPjniRq5B2rf633uADi10LsWzOGJUD/DSYXvlqs88HJpXNf7H/c32u8Z7csyau4JV/2zv2tl5qcVUGqEOOKFAgSlENXj4yN+9rOf48///L+2dklVzqI4L4uRC7OVD71Ux0AkuvCP8Fpc3AiO6gyIlO+f2gx0Lz1S6ljhQzIE1qEiAZQ3IZm0lmqBmrW6gfoHYxlPpCOngPiG8Y1sjtq+qwIfYuRdJq1caGez5oIQOGRo9B79rNheHw+MjEfdEMQwOLmSW2LmCECKCdu6cr/FqdkpaA94gGB7P1uQxxJuPi+QIwnA1fZ1Q2RgREcR0K3ZVanRBlSbv+js/OHeoKbo2QONllBBUUs2zm8C0B0xBee8bM6baY/F9pEPEiJ5mVo1kIwYEwB2P3Rz4bwHNwb9/fh52ZKwCV1mmNfv/rIFNXCbednC+Pe9vnYwQIWnDvP+SgZk2xnaLqr5c//72JZnG6HFLr4A8qvimQ5hNSMLf5sOWTUGPa8SCiDFGYfrZ7h9+RyHHXXYachXcLKgBQOARVYjDF775apNMLPaYi8dUE1rtz/i6voK19fXvYY3BCU+Bnkksl2SgrrT/FVBQDt8xKJ7lOEbBpdOfXTy7jTbRZmloGjIO1nD+Fy18w3q8P7DO8GlSd3CdZEj7R/17u/Zv30WeA2hbVxv7+J7AK7ZzrVh1th8X6gtCDWf2/aUR90SAmDGVPyehnUfyzT+b1XOfIcElpTE6o0l0NiWglBpvB2GvAgA0GMo/7e3Q9n8lKbtr/b1dk6CBzDd8aL9rGUM/ubWUlbsXPozoTqhaffbXmgnwzI+EXbUuIPwclEI1kUBJ9kJogTrk+9lFYDX2ssf2r7Hn+8S2L4H3Hk2Qql2aWKIcRrsQY6uxwOBqpyql7VCG+m1tmwZluVheLbNCargfD73PVirOW2lRoJWkjfsYTmsL9Udgz0T7aOht1JRckXN1VQVFUxkFT4joFQSLpvRVn62BmGJwkotQCcNCux6wHtwu8H1osiRcw10+L9Lu2yBkbHX4RMOVb3aCqhSmyKA58Q5SBcnvO+rMZMP6DarWtAjF4mTtq/Zk7EsXlC3DWneQWWy760gIyLaYJ7KEm1gYBMjk6fz6YTpAGoZqJHoXKwneEDgz6nbHqJy6sfzwru0EzsYEMbPRAABbZl4d6za9hCCwuccqBZLiggVai12jd1bhUBuRC4ZaTpCGlvYg+KRJ+DJKB+YNDvZHUt/QobqBJZNxH67v+8//Pr6ZQIXBbDo8BLd8dDF/9ofiNu4rrU+brNLp9828jsxhn/Gu+GBv8uwGu19/QIFETEl3F7f4vp4QERFyBS0QeEcAWeqoy26G67aMgQn9Y269eu6tsMwzxOub69xPB77ITULHL02aGSlMVt6989fmb2qWvmqH/QLxzMEAiMU7l9TVWuX7MGDL9iogf/uc/Ba4pixSuSMgrYX3MvU/nlinQJO8wTGAKX/509IMZQq1Frauhf0JUAI0f7koebI5NhQmtb5YPVptYAp2HSx9rnDM/D2IxUeNG/pIrPdWf8+cpWbOdSeGTjxcQykeG/S1kb8M0ESISzY62I/aL/TYgJzwoMZNjLqWBrjw9dm2P33KOqqADIIG/ta90fd19mFZ5pJMXTVSpYtILMZSJa1OnpVLTjznnbu4Q2diParxFV6uYcG0wPSi58VgTPS1X9PXZzIgnZzrlUVqIXGEmr8iGFfD0F5Ox8irbXcP9vP/HitX0WSrMQFbdLQXsZgt4EjZTAxpE6w7c5aAY2tfbXAgi7vSbeAQkI/117LJxKhaHLSHgRheG+3KVaetDDO9pohWcZPgva9xn/6Yg16JvjVL//Jlsz0rci9qZZx2H5VAHFKLL/kTBE2ZdmIfCl/9kx6tNY2byHtJtRcUNcVkhJC6oJEDdK3Z9PId26nxHkcsX9Ac7r803VQGNxkVGXQJZIwLDSfv7qOhpfAFQ7Rd4TAy2LWcunlcomIiUPfyFXwQMNXrvObiEp4mfryWTDAs6eg/pld3En7O/w9T+/y9etxBppH8D86AaPl4ka6GKPxVgZoL0GfNHj5Gb/ik80Qq/+zvwd8DbpB9d3ZHggE8zTj+YtbHA4TQl2p9IaNRBb17KG03+fZ0gZPEi7ODRXYti45mRKn/e32e+z2u684e/+ZkQD4bljT0I7hyzSk0hz++HqXJzDW/Xp55fL9LwZXecAW0IiS7yI9hPBtPcywMXMbAgWr5UHU2oToXBopUG2T1ssWSa1WggEueAHerqlNv97r+eXinksp7bpJxlILTDrU77MaIAIKgxFq5Y8OwchwyGmsjQzVCNnMKly/PZgYUAi+PziICqoX2W4zZtDW2x1MkMdX2dey+tkaHEbb23aNweuD6mGxtPcK0Z4JLPCwe3I7MUTp/Lo/K4D8KlwGgMH3v+U4IiDkbtcWq89AIKeB83BNOyOgZSUOV49dL22GhjtUf65glqUoF/u3OVD7Hfr5Hpzz91h/77XVbiPHAGA8G7/qnLSz1NCa7ojbPZjT9/1dlegA9Qn6EClVkktj9YxU7fkClNLj83aeTJtTIL27oGpFRLy4jneDE5JyiznGIaHQfvOjSip/xz6/mg0XQGwAlk8H8Hkr4zqJb0rhm9bqkDvJpKVQDrmJF/nzrhUSQ3uGIQjilJDLSp5BsDJPzWT+c3Xhg4VcWA+Bg79QWd4phehCVy/siFe/X5YQaB9Y7os2UMmjVRmet/+uYkQDxkCg7RRwqNOIpCifrVZw5BevhRNuEztlGuLF0dawIKKXxO164RL3emEzPIBmwDD4ZCNjMhFwcTeWUIDO6/mHXr8GZ6A7Jhm+NEwXsv8pxKP56oGAZ4jSDsZXgfDhpT2yBfzc+CEYH7YtFswxtYtrEQFUAnaHA168vMXVnnPpay6mtmaqeUP7mYCtTK5H7kaKXQMLlnVBCBGHw57SupGykKz797aVGAKnuFnt9GIWOXrgc2mQxmjAfm78+2jAhqUbo/dRkxxAi3b5Ntqcg9fNYOSi0Rmo0HmKk/HgznYIyAajzpKFO8ZLkp9aP3Yj9gE8zKbip6ptql1rx8KwNgpIjEjC8kGonIrnhjTEaFLEJPKFGC517s0IFwgQ7VnWyp50y2SdtKUKqyf3GrC3KE7z3Lbk5ZyO/mxGydz+/cuShD+/nEuL7N0pjkFkEzxx5y8w0miHOkMIJp39buumncMhW3NDPIaiHsx3OD4guOMSf1T2fEE6VgiBf4oitPKIvwffP4xnFxZJjNtch98Znnlr6WrbzKSFvb3KEKm2DWslrK3cYy0QaqaFz+ddpMyDwIvkQ8iZKFkvnisACwbkIthTcy4kkVq5wDL2XAqVCRvp0Jx+KSQUmrKnMUJ6EDac3TFA9++NNqMp/sFIlZuhNzE0+J7qhpc24SLQMqfdmexGovZKiz+MxtTvJOrOkkdbK/qu/gDb9RoHpZYKqwry3JaMrBkByaDzzEA89tZIf5atzg8AQRDnmXNi1M+NlRZsv7LkkYbr4bXWpuUf0U+Gr00PBhyRahsW/T75lWCtwtr3p/rP9DMWYFNpQ7G4obeA+no5yVk8SBz2av9kLx/7maVKarPNXjZ21VlUQAugG1AvO6n+vtfXDwaGC+sHbfx3f4nVpnyjtMPVIKnLxWU8NAYZ7z4EwKGc/rDszwv/ORohxgcxRVzf3ODm+oAEjinVIVOlFG4PJiq0j02tVL4rW8bpdMLpfEZMCTc3ZCJftP0Nm9ZJgWNG9JW48p2sxIOO8M7B/dVoib3H4JtbCtdionc+0b/vzmIsyttnqxsHFctujP2s2RxcvxYGSmqiKNoMlDv9MeiJg5MDAARORhTh5wR7HlGGQMb2Wy0FIQpI7KHjdK16ac8/tNZBgXLGgTG782a946W0zC6bgFR/PiQK+jr12my9cGwxJsuAfJ4Ff6H/fGl7vU2URF9r3yuqVm5yEl0ZWyK7sFILxOx3feKfhcRNdMr3jnNZWmfEUMLougtW0Wxn0uWfh71RnZDVz0LzEFVNDVCthDIQQk3YhcE/d2aX7hb/X9MNaJu3mm2xJID1dL4fURrjNdSekHiAzX3AYU5QtkdebnvpTqWZUvSIQtoy2O7x710GEEN81DLvWipqArZMVCCXYTSz2Q7CwAxYYQGCJAboVSvi0GLWYGfV4XO/Wqbwr7XgWr1mTw0KjQNKYtc7vqfftlpZ5cJ51woNanV7bWvXLK66Y3KlSyNStk4hg8RFgFF+WSvE9i4CUQKJTlZUQCKocLkRLUCAVqJ6TnJuQYG5Q7HAqp8zojClLIj///bebDuO41gb/SKzqrsxAxwsarItS6Yky/v9n+Zc7HW2tyWLlEiC6O4aMuO/iCGjCqAt/utcHSHXIgH0UFWZGRnxxczdg1q9K0cuR2yNdP+NLBZkJBr3Gjz6giDQEku0jSlHKSfwrNkWxACyzFXpknRtTIlIqXM+LUBD98ZBRrOY6GGFBVv6WSLbebXthR4T/258hGXA1mAlxJg1+FNWWA6pHCvbpKbx+FWW17j3yur6iMRc7z2DbbinXOmdMxE2mw5Pri9xcdqD5xGsBTsYGgmsWQSozaxtqLqWguE44P3dHcZhxGazwZObG1xeXiJ32U2VNjlKUhRmXSRoYWp7aP3CWAvSeIgXVgVCy97kaC66f+31dRxJ+nXbOgNLzbfWKq4A/awFqrU4C8Aj2zXfy1st63zdNOouiaYpePAew/N1ozBjtOjpRiSqhxK0+mKHbqOBSKWi325Fq9RCKPM0u6vBaIlUExRtgNxF4YAJLbBSShoXB4htzSWVTxfH984sGmtGvgZ45jIyAWTCLWqGHpxFtNgTa2+dUnIAEE3J9kylLvdyni0V0jQl/bzOOxZzsvgYAAqWFEDPRSPjVbiXBjpMcJpVBE4vrVASU0sbreFZXbmC8Dj5bjE/hjfCsvuKb11ov6tVgs9sbd3sKpyIlE7b+/D52O3te94P1Jt6VXcL2pxsPpYNMIzSntszHuaKeZwxb9p5zp30zyjF5iBCw86JZXFEQe/nJdDNwgoUflazmpn2qeCSNbq/BN5SDAzr97n50NT93gAkaVBk5F1OM/KXYS0Npm6xI2xrHNyRjs90j8RNxtqPICidCiw91ZGbFUMhYTgPkopqm1tqRa5F0gwNmPiaC0iQNRVaTslKErero1Hagq7amTZL3xIQGFg3kJQ6mZcBJpVOphtDWiyzzKcWgAJICuC3PRvDAgr9Kf05YmaXPgf9NjH/UamFhpzsnDWUSTCt1EyRcrDXiDYu3geuv5hieM/8kKt3XeEFS8iSfBQpJfSbDT777FN89dUfcXK6QSmDEJsRoR4W4VANbZup+3g84vb2FsMw4uLiEk+fPsXF1ZU3dzFmnVKSAiKJPDjtIaG/Bgb2+kPIf/nzgdWy6+Fh32e89lrDcECwYNj2gxdFVLzwhjEGRaxWK59rbSVUoW1Xoal5zF6BUZQOKdGK2nylHifg60JBo5VnNeYiwUTm7xZTYBeAV6kSjAVv+qJpSW5iXR5qO8xEUl89Ct1aJb3LhOSiR3kUuAacgEVgolW+bKmTvACIVi8i7lNiBuXkLiW7R0brWmjAL2p4FvimF4edL91OdaE0nNNcNsKA7PMGCqMVYQ0oY3wHIMy5WR+CRUJdbJJzryZ0jbeZJu3oeThgHKfmWgqCVinYhUZsw+3/oICQgbqpi711YWN8iFWRCOsgHw8M1QWGfIhcCEWQbrQuZn4BWwlTTRinWVpbz1qXYjZLWXKGT0S+NgSpb78AiIH+WGnXmhfZPsTzbvtgFi55zib0a60gDbDlIm6V6D6Ke8uVRbFTYO/ipVY1AyzdnPJ+swQRiZ7ONQYDkoOBJjwa8G8PYbELCU2UQVPzmlRYWDb0bNW5IG168yIhd70WIpv0sUOBH9exRdoI3bbzEV0Dxg+bhaHdXwCQubqWVlZYfwW0OTr9anOYyLKFDLPT8zpl0MQlqwVgkU3gNLwEJcneD8/+n8ZHpBbaxILJJr5vChUtBboTusOg9l22+XCbBPw3v4K/6oEedjNbvXCQrLb5ZrvBn/78Ff72w9/x6Zefod90QtguCOECj3jZC2CeZ+z3e9zd3YGI8OzZM9zcPMH25ATmzyVqgsgjoNuk7x3w9XhIa1+sV1gM0kMCRF+03O/fWRHsY4mgte8trYudG5ploF2jHXRKuTF2PXTTNPu9Yn51E+qysV4qWNe4VAkMnOcWKFgtD5tbYFnS9bWyqAwsTPWbzUZAhK1tSuKHrKbtNzDGzNK9MSenDddKQO5zz137TiwNaxoH5aSRyNayWY2jJODvXq58YMS2fxzIP9JH3EtVE1qGgzFpXQOO9GHnxoSdSblIiAocnP5IYnZy6pDYfPQEw/LxTEeBLFeUWvdSQngJVi2gz8BpmZvVSNxwzQo0DINXltydnEiJ4GnGPE8os/ja53laxGtEoBNTfQXMiWViy7t2ZoI2Z8FjviRBiWnKjfyU9RU2WssykLHq/pMfdRF6c6mYE6MrBeM4YRwV7JRZLQSMnE1YtzNI2ugmgqhpmrTCZBB0NRR1CjRjHVANLOt2axpu8fnbszPEktEZuww8xiuBBnrzoGEjS26KTAQqzjsaqUDiDrRgUNsNf7vxcQN78uUIywDA2hFTjEsLg1UgA1XrAGQXfl3u3SqWMAPeHVD86dLYTG7lVgVuCoLueiOdhrFdobWKrU4RjFY4DCLUrbGSf9ZN/FboTRoledxGW/F2P3sWLYhnWR6xN4EsYm7AIUaM/zYs8BFgwKOZmwECYK925fdbPENAf8HBHbe0CcwY+LaAE/p/TJmjoB2xK68EIHcJ5xeX+PNXX+H7H37AHz59gb7vfQO9RKcKubVJdJ4mvL+7w36/x3a7xZMnT3B98wSb7a7FAWiHQMuHXgCfMK94eB/S/v11PRG8Xpxw3Yd+b8u01vwR0K5IIvKKMxodb0idW5Mgrm0dTMhb5gSz+OKncXTGbq9blkUtUhDHQIFphGYFiMzJQEZRDVzMdML8RMNPsP7tNg8DXtM0+RrGzopEhM7aqCqAIjJXggp8NRsmTfXr+k6zPYCuy9hsNhIsphUeOSVkzs4knQLVGpSZgWCdiPtsGrsw+yVYiFaiKOAjkIjXqmEd1vQUT0zTZhp4d8sINZZLlBYgTKnIAUW7T3hP52QNZqzTJDGpn1J+p66dzVREaImrRZ6r67pmpqaErp8wTZ3ThDV4mrT6o/Fpbg+jT2Ngy+JVWOMJA4MmAwa+HCsFhBwAR6tLtEaw7mtRK5itjVSFLJjThAmM43HAsB8wDCOm2YIIC5i1S10R94Fcs6LQrO20k58RIkJO7d7VO5zSotbAUii31Ne2nVb4qAH8yhWlNsuKzQvQ4FTCkgepe6CVC17ugbj4GJS0RDasOZLtjWTlUBX7UyVGJUizrVJBXWt57C6NrMiZ1PKkckbtMCqHmisOBLWmVc2EgMIDjfbXbqdyl9bFsUlNeT2FGgR2VmTdzeYcAhSjVmtgmayzBysYEzDLLGmBBixYnxcuzLn9C3vnUTe8jB2QAkUJAibabMwt8ZDgp5Xs+dD4iK6FVYnWp9wQE8I8sNReIlSoOmHTjiLaWpq/WtBhlH1yXVqUOI1IbrPZ4PknL/DXly/x9Tff4PrJE/Ht8zItx7R/r3FfKsZxwjxNGI5H7A97bPoez589w+XVFTa7DXIn2QF9v0HqOtk7Z9AW6EyeYgMYA20EEzX3OETLaP60hbD4gImQwzXXc1v7F5vWBkieMqTimpoz53EQADBXjMOISVsy1xKKK+l9TKsraiGQDALWhk4zWLXHeTY3gAI2fuCfWSnAUo2L4FkBElfQiNsK8QhwgfvMQVqo5gOFnMyV0GilZQYkSt5xL6WE3GXtJ6FVIVNC1/Xouuw+49x1vhYIACDuV6LWMyKmpdn31m6kh/bU5rzOeY/DhFekEQqHUmcM65Ug6xbz+JMU6zEB6UXF5JkqWvqj3z+ABcWhi7mZoDXNnkjqPAggtZoEGbVqoxWloXme5XmT9O3oug5932MaRweUDlrBDhLbGRCmL+lurcGLF2uJvmaG05bQYvTlmquI29prbQOpXW+tYeWHWwaIMYwTjsOEcSyYZ/aYIut06fSgazjPBSnN0kEzWTljwLrftE6kzXoQaekhuliAnNW5e8h16RY+zfmP+280s/qS1CwBWtFDtrwIpTlq6w2QFA+CuiiSM3xxHeSg4LjCWODBh01BhssFjWmgQIsOkJMBvOrg38qRN/M8NRDCDM/f93oIcZ1kpkb7rpSam43i5w1MSjdbT3VMBKLeAVsEqTJaZpL1hIgu9tW2he+xf6AdzfuunKV0/vD4zWAgk9U2Vw37AZNkfMzG4OAb6tNf2JbC8MXSmcUCK+3bi4UCCIkyTk5P8OWf/oTvf/gBX/7pjzg5O10cQEsPtL8NDNi/w+GIYRhQ54Ldbofnz5/j5skTbLdb5D6rNUC6DALQA16VFuTZRCtpgTPQ1LElyjPGE4kBrdf1ChD40qy0gfh6BAS+PqYN1Ip5mrQ+wqxd20TrmucZw/GozXhmTKMI9MoVXCSwxhjFrKVUa63CoDV9yqwAsRbAopeABSahCTcT5k2INgIIZ9Tn4wzQwYO812u5Z2ZWS01wEaC5DUBWg5/Qdb3eG6ptyZ5mzQDp+15+bjp0vWg8opFJDELKDXiYxcm0XGdOuTEpiy+xv2OA6Hov7ZDE4jeRDlrA5n34vwYXprkyNw1xXfyn3VZU7yWoIMkCWQHYyIDJtB3moPEA1nil878ZzCHbpABFQVlVLpZSkuqAZfZr5pxAm41nj1RuTarMqmTPVhZracFVUXPDch7SYxakqms8m7YqDs70PwdyCDSmALWkhGmasT8csL/bYzhay3IV5JyFB80zqOv0mSJAhJbXlYBmayesuyHWqgD6FxYltLm1wLLw/AGsxpREd+VoZ04CNEVtRR/M3hIbDvoofgAG+KMgAolsLlpUyjolgllaIpPUJRCjpQV6Ulj1INRMeNYmON3qo9pY5SrNtZLxQOlMSZSVJtWNiSYkXazaGrUdX7xvf0tNgwpiaWBGKSF10nDO9lMAsOT7N3BBi9iPBlYNgBvvI6zLBy8BmX2n+POxgVtOTva8+P7/x2DAU2+CdqCPthRaMIGPdorcjh88R+z/Lb5ror5d0vSbBgQofCHnjKvrK3z917/ih7//Hc9ffIKsvQIsEK0o45AWxOzugWmepePg8SAdB0vB+dk5Pv3sUzx99gzb3U7NwQTKa22uPaMzCFiKjVlNoptAF5EDoFJCSX7BxcTDwsj3/LDrspmwZbVu1OCHN6F9PBwwHo+Y5xnjMGEcRgnaKgXTOGEYB8xFtP1pFO2s1tmLLJUiQKDMBUQCgooWBPIgP00Va9YIlqpyoSoa8xJI3kf1S3qI5s315+2naJP6tx60aEZ16lGTPmCFc1oMQddlLwYkQj+76yDnjL7LrqWa5SZnsR6Y1QBEbn2oClKi28BcEkRiXTKtSs7UksF78ZmUFq/fY7S2Fg9ofY3BLIEzc+QSur7Ggk3TV3IzLhMZSQQTUTDZtW19vDqh/m/Pn2ZgnhlE2ZtzWWbEZrtB33d4//7Ozf1WgS8B4EQiQACvOInS0iZrEYDfTOnWO8TmGi2J+lwOTpcgSLQ7m4Fkk0Sria2dUWwpBRMlTHnG3X6P93d3OByHEIjb3IG1FLAK48SWrltAiUGcvSerPK/tR4XI3xCfhHY+DEwApGtHWKeTWQEseQaLhQnBijpdq6XgXScDPVlpXefxRnsWaGvEw/BKm5L6JsA0x++BwWWWwFxYXnxTnBbaLzeVUALJ18WXTLESBUz0DynFvQASCg7l+6nRhlvwzG1Bugcr0GNAxvgYF82gysrrhbaE11lGQJQbBmLk9cbzDNQu5UukM7mGzdniOyyGQKUJZW1O1O7FoHvg7kPjt7sJzISzvnAQiDI3DtwE+kBGVPYli+iMYSU2AaUhW7jweg1o0bS858+e47sffsC333+L62dPwSR+b9ZWqaUW74EOwAO5rFiIlBOt6DY9zs6u8eKTF3j+/Bm2262UwWRezNGnHQWUk4c8K2td6nuWD0NyMFAAKY9JgcHr5kVhYAqOleeUojiMYRjExx+qIs6z+PXHYcDhTvq7l3nGOAoIKNOMUiqGcQwtgov2cm/d/awCoBUSYmUY0rSnpdfJvvLqcBpT4UD4/0aj0f8cXDkZNZpLC7OaEIlgp+TBdQZMmxbM6uNNQFZrgH7dMgU8YBDCwHIWIKCnGpvNBv2mx6bf+H73fS/0QQl91yGrmTclclNrrCkgVosOVC0FSkairGyg+uejCfghMHDPOqDrsFj72kzfETi4n9VUBw6ZGmDpnmj3XsbpLQHImqpXmsca6HlNAWp+bwBuHjeLgUVtH4cBh/0eVYulSHlp6WwYhVSztLS5cq3aSEiUELYGMcpYm9C08r42hyAw7Fe1BHP7kLt94uEuDExzwZATjuOE/XHAcTiK63EumHNBlxK6JACkzsULe0mXW6mIx0oD0g+hhmcCAG3+lPpgXTLwPQd6A2pVBcNSI9W124T38rwy2IP1EOgNWsjG6cuUOXussuLXWi/CqhfmlGEFq4T2CIklWI8TUMeC3Fn9/3BNa9PuwleBD5n1LQGqGWu9Zv+68ddleV+jSYv9KVpWxq6jNVO0jHdUVBduE7ZAQCWkfiN3INJYFAa0iZEuuK+P/NXmJc9nQYRR2rU9Z1UWsHg9AvACQlGwBEgAYUKt0D6RVkwKv2n89nLEq78bNgjMwVFY+DQBxLQIVGqxhB94SoZIbVJESGFRSUx7u90JvvjiS3z3tx/w1Tdf4/zyHFWRrXe8q0GYQjY0Z32+KsGGJ2mHy6sLnJ6d4eLiAudn5+g3vYI6+o8LSUQOMJyRrARlDcTVDheUIO0G9pzqn2c5RBbodzwObu6f5xmDav3TOMq/WSorTuOIYThiPA4CCvRf0SjtuYjgn+ai6TcWzFe1/S38/t5i2LeX7/1bbJsCnBoOJ9u+KcE+gOXbWgZtoDFgOe/F4WMEBAChSrMg+dYSSSvDlQPb7pVAKCqUk2kwQPP3KyATwNkt3AdJfdrH46C/bwQ8QCwLm22P7pjR9b2CC/lOl3kh8I1WTGhnj2uAC/61iyH+9PWMoIp5ARbWFgdmDmdO7w8srDqybCFOQOkygt+HhP/achHp30ZlqxWhmlUit6LM84y+60Da24MAqfg5DIhWJdaHbL5YQs5WIU9cIiiWgirEQ1oulyhyHFsbq9DZ1sVAk9OqzqsC0s4cavK1sw4BPNNccBhGHI4j9ocBh8OA+XxG7Trp5FgTshIjV6mDIoCWpc8GWQ68uv1EW5C5OxgskN4c1GIv6P6eMLPE4NljrugEtYq1ZWVR8r2ExRhVJNZ0Vw6WK4gQ9AJgZPve4kaoFFgRYgNxYtWRdS5lQldyS6cFwWsAGA+IwnhBdND3bL/UugACmUAOe91AlfLURC6ImmtX9/8ByWRR/DC1Q+pu3xPgxqOc78GCQe28iWUMC5eUAhqj64bzw3VtHnbexBIAsxTYU3BF0oJHxEWsabyezcPj43oTuCbcpm1joTEsVLzldVrxQWUIvF56MqgZLkWOnIgIp6dn+Oovf8Hf/+u/8Pkf/4jNbou5Fk9JQ9UCN1YsAyIAmCQdCCD0mw3ONj122x1Oz06x2W416ryllj1korWxDgT7kKCM5j5jWGwqqiPqpdnLgvZmzcc2gT4cBwzHQX3/A8ZhwDiOWqe7yOeGAUd1C1iAYNEKfCYsitbzt5RBPVNawMWAMTetLuKVBdhZAgIiSydmJ9gYI+GAyS+3tP/A13pJv1bQylC4vCno2qwwUfi11bboZjm4xvMrANJaNgYG3N0Q9jsRYQA0Z5qw3WwdHCQtLmW9Kez1fMjYbCQArus7cTt0Hfq+otMARGEMDTAlMxubBqvPsTZPs2pbBriYq1rL7EpwX/NDbgVfzwAS1oKiOjHgHs0v6hmsrvfQz4fuGUd0i9jfzXLQ4juOx6HNSfkD3eMxoT12AlI1nmF0JtHmMMEqvrkg+II7Dw3YGm1Edi+MNvn3AKAwg+aCw3HE3d0B+8OIw/6AcZjQ9x0oAV2vxWeUd8wg1MzoUoeUqLk/IDThvETvISm0La2vqqtlncmyLl38ob0gXlqhYjwLU/u+f14FemWpuyFdQGuwskRaZAcqUKHuDXtgFrMkVgE2MN94gSlxpAWqoK48fROoWr48myCvWlHxQy2YFeg62FG05+skWQry6MFS8cBoboeVqDbB7OcOaAACgMddhFNLDYzEegarOz7wkvAgrh2AqjEYQIVZTCTDpxUE/M/jo1oYR75jmpfPc/UTwCJX1TQOQ40wpm/18hWombbTiFiRFUka0tXlFV5+9y2+/9vf8IfPPpWuV7WKVlw0fa2KJpBIc6MhC1Khvquuw+npKc7OT7HdbJBzp1YHWhD/Q8zND2u6f5Di9xaHyFiJI9Hq61RLQZ0FXUfBP6tZfxiOGMdR/PvDgHEYUecZ02z+f8nbnjVXexhGTNPopmIT+lKrvwV8AdU1fwdaiZo7AAbBjHnA0etyTXTzmFsJU3/fGLYx2RCwY6TD7FXkFiZwA0xoyMDTjfXbnjKjtNUqfFGzurBGC3OkvYa+rdlK0zvb7175bZL0Ry5F3Ah9r5kIaQEIzGpQymYFFHqUaUbXb1wwZGvlCjHr55zBoViMTy010OOvEencpeKlCQw7O1Fodzmj5bYHYNs2YEHbkX7tfK8tFnE4qFiB4sZ07+kDKozbmSCiRVfPLmd0XY9xHAVQ5Tsc9nvpEkri+mE7f2xwk73egdCKgTubC6ESa1dDeNniqIUxVrEsGuwa7SkAmisCRtfyncIV4zzh/d0e7969x/u7Iw7HAX3fIRFjJCBlclqBPgel5mvOudP4FlL6VN+30gSbrmR0HfbgHt9Z7YtZpiwrg0ppCxD2zl1ZvHR3AfAATkLvoF1S9yzYG60XQpm9TTOYQehUIItfW/zbTag2X7xeiVssElUNFGSl/Sp8TR1OIsCrFUB6KFCWG0uxuyr92BvkHZFsXY02mpJioz11BF0KBhaAxq6d7DGwNDfbHplSYvcX64/T5prfGljLUrYZSSenQKdZ3/W93zA+rlGRCXRbgiY1QKm6BmcP2wSIFntZIZSFouAWAoZHRaIteqKEm+snePntS3z/Xz/gyfPnQE4aHxAag1ArUlOxjLLvcka/3eDk7BQnu52YcqOWYTMNxB/R8tqk1oS9PnYEENXmwk7wRjilFBwPR0yjCP8yzSiTRPYfj0eMGgswTROGwxHjOIjvcZ4xjgNqqZ6HPY6jF2mZ1fTfBH8I6gvPBhMe1txCQRtbL/fFHq98iwHFt/W6D5rsEDTab8KK2heVCJbWIWdqYKBKbncl0+CapSJATUf6LhYZ7gdt4JP0M3VBewtfutK4CNjSsjwqC7/JErnedR0wCyiMYGDW2AurWcAsEfBTzujnCcOw7FthZnKu1a1SQMugIF4y9Eh7TrukWTOrWBWbl2lEdl0AbkZfG0TXvTGicFlojoEuHjo/vpd4YCjzExcbwZpEiq8zaQqapvJut5JqmDu8f/9eXV6t8BWH+VokfGHN7oCAAp8HMRLM3B5AvVNRe16zipmrcaH5ElTrtUBUFQPMmGrF3XHA23d3uL3d425/xHbboeuARIyO82JNpY+JaHNWBdM7ABIJs9eCP0yshYrg930InEXrTQSB0ZrJzO0eRM2tAgvqTPeuJ98p9+6xLkduPQ8oEWqRGgZi1S1eN1+aKAVN2BQUhljx1msOVndEc5uUovehCumcySYPA8gzehUN3XiBgTjvIWIFhxzUfEgmLKhkse5LIAaAi9IJAalvpH9vWFAm+3M2irS4Fns9AhMFR2S8tiJRp6CopXsCD9703viIokPxwmExAh9tqYAc5qOf56CxGUTjwHRsqovVkov0fYebm2d4+d1LvPzb97h5/gxIWvltLurvLlIZTn2+nkJYCvpNj9OTU2x2W2y2G9HsQl56nJ9rWXV5eGJA3zqSmqAatQXXIQjAKm12ZxXgZRZt/+79ezUjDpLaN83q7xftf3ZhL75/y7Mep6nNTWvEe4XAsrRO8AqlyiN5vLKDASd+Zgd3ETg4DUShbevVyCB8DksrweKdSOqsnQP16uG+JtAZQFWasTK9Np/oX7PvNCABT4Xl1RNEJmMaggEfYr2fDssvLxAGVsFICrRMGNjedF0nLpx5xlYrJR6PRwcMFnsg/zrk3KFyRWdBi7ZPLiTyPRq1QLuFlqJpj1LfRJiGW66StXJpa+Zzqy1y3NbD3AxLZt/uv2TQ98caMDuDjHsQPuO/GwNXIU5Zi3vVAvAJum6DzfYEb9/8iv3+rs2FObj/TMO3tDnCMjiTVBGkfzsXo0P5Z5UQVdDofyYWGjuUz9RScRxGvL29xa9vb3F9e4WT0y26zuJEJPWNwCja30OeT4TFPM/IaIGnlrZaNXCYkjTgseqFD4GB9XhIsYmgnBTs+udJOUcQbvYdc2XE+7Tna0JUSocHlyu0NwKATFlcNsShYl84k41tBcUBmnHBmqBQXXhKlcvqgM9lkF1TCwfBNHXjfVCQ4HEKOWzqvx9x/vfpmQFuCpmBpWj185oGsjNNmeGC5lpN8HoLzLIwHlS6dA2RK+rK0zlkePzG8RFgwOSCEaEsqp0GrrEkbwADCwEQXufF23oPRULQ1qUQzen5c8kY+Ot33+Ls6hIgQpmkaI4VxCn+HQ0iVKLdnuxwdnaG3clOfZDa9hXLTVz7QuNmRwCwSKlrKqp+pmg7XdEopnHEeBwwqMlfarGPOB6PGA57LcU6eZ6/RP2LO2Cap5DeV7xOgv3u+cuAWwLWc2lok8PfWHzWtCkiATCKn33P24FqAtoOt23fguQIDjKc+G3fA8EujQgB6fplyN0H9koIJFeNjr0ploNS1ZTb1sS5GA4187WvEMwXvd57d20ZatelK0WeBwQHAlZfvy8dyqwV9jJ5lbnNZuOR8/M8e8pi7SvGaZIgN9WoUkpIJSG7IGsapTm/5PqSpuca3go4xDW219cafQS7Pu8Vw/+QReBDVovlbqLRzYe+S7QocGTfTSmBdkliLrqMvs94967Hu3fvMB6PGqwezyoUOK4EXyJINPlSGxYXb6MZOccBULPNKVhdNLC5MqsFNkAdLT705u0tfn79Bk+e3uD6+hw5M2rtQETouw2YpW5LzpZeaOd2FleGY27T4gtyTkiFNN5Mni+CyPXeuXXpAT5nQr0LhYbsnCek4Ap5mJasCJevOSSGYF0bQ3VEWzgVkgpErAWw0oafWdXAK2vfExWGJssTglBnAQgkS6+8p0qAH7VunKZxk89B+1SYZUDljS9jRCHOr4y25fkeBmKqGWnan6y/WUCMgBjsEJ2W30WVqolAM+/be15Ai/x6JpdNJpvlIz79bwUFHxFAuDzM8sOiYZupLb6+/C4Ayyc1LVSFQ5MDFL5L2Gy2+MMnn+Dv//V3fPXyrzi/vERFlRrmahUAmgFFfKMFqBX9psfJyQl2JyfY7LYPRmvb77G615pprk1uXBshloC4SykYhkGi/scZw3HA3e0dxuMR0zSq33/EMIwYR4kDKBrlX4pU/LMGLhb8Z8U6EMyVrrUZGDGmFQTgAtismDpjKRisuYe7NRrHW2A3R/ztNMlnQtUu0gNrzYTsHoESFCSkRb3xpoEgAIZGF6bhMuCGJvlBLvttbna9tUXAlwMMjyqFaa1AJFjyTwawZ/eGMJLKGlimaQpRm27uMpm/xQ8AmpOuNehzTuj6Hp1mKphQ7vse0O9ZbAFRaemSyuQrs54BXjB9+5ljENoDWuQ68Cy6Eh4CEg99b/3de6+H76y1zA8BE27EI9XuOkLKFblL6DcdTk622G23ePXqFxwOexVsZn6uvmfGY5ilO19h6/YoQCDVpYZNtCwE1bqSOmXJ/04/jWZ9piyJavvjiNe/vsW72z32xxGbDaHLhGEc0HUdNrRVs7dkBAjvYtUMJ6nIqfRpfvqck9QIgFiq2nO3VMm14G+mbQMdtrb399a6GlpfHzPLt9bcbURXQhOSsmcMDTZUwG7arXW0ZX1JL9S0aQo8x4onRYXEk1FII/m1WZp/SYMKvftfA/gAaXEjW4MAgAxc6MedTskCbG2ONfCBB4AAV3hAsz0nESxDJHLTBUOxNUSFBxeS7a8GBOozwJ4ndHFlAxgGBOzZI8P8DeOjsgl8RBS3+NTa0+LfRqvfELi5/anXF9+paPi7k1N88acv8e3fvsefvvoKJyenmi1QWkncWjy3ter3+74Ta8D5OXYnO2QtKhOfRe6He0RuByoReZGiGNTmpjAWgTBNE47DqClQR+zf70X7H0Yc9weJ/B/NNTBoJzP5e1LLhuXzl1pC3n8s4FMDCkYTXmzmMHJtyNZxzWjv7V94jcPvEkQY8attt5+Sdi1/rTFyaeCz1PoB1TSCWSxpMynPVFBy8F4ETr9KHNRej4Ddw4RcY5Z7+OOtqbGh0sW8TIdxwNugRhNmCPEHQAuK0kIw0a8qZXgnezSUkh0wmvm/11oGXd9hs9lis+khALj3jBephLiRfG0SPzXQhHyMxI9/x9eTM2Sdr66BaWetoiPCji9Nv3GsAYXfH+yNnJZLvvq+1TXglrO/Nl87ILT9yoTMzWXSqbtlu9vh53/9jNvbd5jnqfmsbU6udWrufWKUqq5EJi+6Y1ppBWsBGmP8plH6ZMLakTNfNqsG2vvDPOPt7R1evX6D58+ucb7rUXLFxBOmfgalzq/d9UYfcptOa8/LGW4gc541XC63EuvrioJr96dbFFLSdSguYI2nGVBLxuOqpoIHLd/oaw02mtWAg4VJr6/WgkLFiESVDzmnEgjYOpGyxopEVwBrT5EG7qImHUjWeFllINUA2ACxWuj9WLv+ETSeRC/CkVYZFs3eBLP0G5BbGYNq1joR4nMD3RQsAnaPRc0AE/aRX6o7LT56yDywVZU9UHcvy3Xd2nIPb/w2IAB8TAAhxcVqj06mQXKLtmwa3gcuFKdnn9UNzynj9PQMf/76L/ju73/Diy8+Q7fpUeZJCgRppbFFK1XSHO++x/nFOU7PTrHdbEM/8igUqz9H83NhQQwFaH3grTwnkeTnD6PU759G7LXa2HiUfOjj4YBp0CI/g6QBGgiY50kBhmr9sxa6YImKtdoI0UTpzxzq+9vyRYYX5acxfovwtf3wvdK5N73XNLJ7WyLMY41gV9pnU82pEWMw77vGZ/8HTTBBGoyQlXEGAGthmoIwYNbDFdcDqxlALQIrHMHhfBjDDnNyiEJrK0N71nav1lEQbDElsuoGOBWaYpqmFqxH1c2qBoTG1EoaT+OEoevEjaDug67rULWmhADaFnDIfu9lgJ8xIntvu90CED+0Cd32TLojFnQL8kY5UUBH7bNpYFhcQ5ih0thKO/X3fX/uc4V1meQWwInFHhARckqoidCnhKurS/R9j19/2eHtmzc4HA+Y50kEg35NeqoYAyfdnapug8aorGoiA+0cGi0ZkaxAt9NNOE3R8nE4Dnj9yxu8evUGN+en2HYZXGZs5wLQ6PPqNWvBAvqcJwSQabEcpQClLAHomgai4Dbt0iwflsJoBYke2iObZ60VqWi9g0ALUeO2AmUpXE9osGhWgdQXXPAgrpq9x5q9lDRvkrUso5n+JYVzoV3os/FcQMonyKxO2ikxFiIygRjN6Br543tPbDttls0lfcqaSp0BU2i9WZJauxkziBVoMQHohGet5Z1TVXSxOKWB7gHqGBelQOIeIJd7GN8zXrsAB79hfERq4fq6vOoAhiDY25/tAk0QMawEr35OgUTKAgS+/us3+O77v+GTzz8FZcJwHDCPk7YFtfr3qmkR4eT0BGfn5zi/OMdudyJM1/1Z8hRNc2tgQK6j3f1MwLIJWI0Cn7WW/zhiPB6x3x9wuNt7Pv/hcMA8CUAYxgEWTHh3t8cwHL3Ij0fhxpa/fnhltZjZNTVHVGjxCtGv5rsQiN6XdIFowyG3eZpoWwh2JSh2MoIIv7B3LmzpPj36xxrytWubqTKar838mFXIV9UsU24aaVUgkALzYTb/L1x7NEgQUf5og2B+AAAcbklEQVTqZMCsBh6zgAAe2AnZcQLZN/QZFkVMfE5yrxpiCQCLWpe0wWilcc1NtWPTyKQCZPFyutvttqUqbjYAMWptWQgPmdoNLES6iCAgfsc+ZwI/kxVguu9qiNYGSUNdgtX4u3WedFoN94jP25axpStHLfyhegYOSlRzrKhA1+Hk9ASbzSe4uDjH61ev8cuvv8h5q9XN3O2ckdKJmPpnbvOsqYFniQky+5A+W21r3cib/Nmh12oCWMzuv7x9h1ev3+DF0xvsNj36DhiOIxhSLKkyY5oKulQ0lqlZfyjsZ7NiZsxFumXaOllH0PWar4tWkfIDB8Cp7YvxirhelJPU6UA7JwsNNDfoDNzfbzf1A2LtYigIgZw1+6mWMCYCF5aMEntumEJi/JkdqGSt/2HPVasoFsSsVgDbQXWrsrhhTHNnVUiYrUaBBd0tmZvxAhkpKF/GwyvI3VOEFpBI7TWbjPNkozflI8Zz2KClxThQ+yIQ1jY6QWlBmwySGhIP8Oh/Nz4qZmA5aJGO4pNFJI32esCg7bNkPwhd7nB+dYmvvvkGX798iZvnz6R73jBjGAdpCTrPfg3Tks5PT3F5dYWTs1PpJbCWUgwPtoupdgIGpK0oACdQY8rTNGG/3+PuTnKcJxX+x7s9jsej5/3Hhj+m/dVaJS96nrzdbyzn6+bFuKGrv6MWFgU+oWk9LrKD9WMZeGcE1FD5enkc6UMOz+L9QMNCfORgz/18iydBawBD7csECDNNQE4dthvRWMdxdGGUuw7b7QYg8vWfFajFfut1MVcDJoSW3hiqmdr8TcK3SfsTszPxNXgFxMzpmN12pdU3MCZVGVVL4pqGWZhBtTpDNwBoMQCgJvRq7ZC7ilybsM/aI0GYhzRMql2HUpQJAg4eAGvT3DnDTyljmmY0rbWVaJZ5t9lWFnho947afQQSa0uBvd/G8nP2+2JZI9hguLARZi7lkVtmQBDk4TwQSV0CYd5S1rjf9Dg5PcHp+Rl+ef0at+9uJQOkLudLBNQg2G0u5LRv8S6tCmikFwp01WggCFUGkKAV9YD93R4//+sVXj+7welug76TIlaUCGm7RZ0rJkxyBnIGrLNjbjEWERyVAswTiXUkNOqKa+tmf6U9U3jiHpAGCVpqJRFp1dHm7sqb3ht8xSEBzFBeQGj58M2q4dcI6bJVqxmKtZUlON46WyJ5KrDskYYyJ62NAgGPHrcuB3chcwC7lvBXisCNWavxoRUgk6f2uS/4lvE6E9he2poUgFSHCPfCqRfliLm97iAn/HtAYLPvqdFekJ7h3EY+2OZpXKq4gvIh1956fISbgO4hgrU52z+6+tv27cH3SSJar65u8PW3L/Gnr7/G1c015ioV9aZplPx51UoIcghOT09xcXGBi4sL7HY7pC7fMzdKUI4G+Gkby6jR1FrBRXNny4xaKt7f3uJ4OOB4POLu7g77/R6HwwHDOGIeJ4za3XBW//40t6C/eADbayrE6vLevjbK5Bz1OkNagiYogzIltjH5dYAgOwEz2vWarwmN6J3Y9UZNVsh3KBBcSmHfSGPwyB/Rn4uWzXZyzqhlRuoTdicneP78D7i4uNB0ux4nJztAtRgzgVtK3vEoNRb2d3u8ffsWw+GA4zi6W0W7lQqGFg7StCkDVgvQEv5eFJ15SHA1sGvAx5hexORrk541ZzLZRQtNSfynpoHHAD+LJ/Bc85SwqZuFlkcka9RtpGJdrFcgwGAOgYpyDYk3aPOrysXN3WGCwC0cYR3Wgt/2NGqQi/cX2gruXcv+NleGgRT7aSzGAGVcW4IqXdRoDgC63HpB5JzxYrvFzc0NXr16hVc/v8LhcPC211zZA03czQLyaoT+rGoJaHTD/vqC5vUX13ShFi5uroNxnvH6zRv89PNrnJ/ucHF+gq47gkgUoJwSyswYE4EHacPe9ypw1RqQdH/s+UuRzo/M7BaktdXF5mh71hSpUPqaCKUW3xNhFUuwHfeXAs0wlnUngGaBYnd3WEyQZHckSlo1WN+vzVpWCK1QXLX21+o61afx82i4ULV/KSNOmA0AVEvp0x4jgtiFR6WEStq4jAH3t6dluq5trgQEGp1n32sX9srfBbQnd78ILasbkQniFmCloRV48HNjNKfuCFPtudGhQYsGiOwjgV7198TyDA8BjofGR7kJfI3i637Ya5Bl97WBBcskO9gJXb/B02fP8Ndvv8Wfv/4LticnmMuM8TiIb121+VIlUGa3O8Hl5SUuLi5wenriRVuItBucaRIsrgQuVRvusKdqWLW/4XjEcBgwTyPmQUr5vr99j72CANP894cDhnHQWACr899K+pZwcOOBYtVmzfwfmajLI90401biWgPQcs3txaTpONb200pLOHMOG2YAgMM1zSXgBgFEgad746h4uZdmMnesS83UnfSzfd/j7Owcp6cn2Ope3Ty5wW53gu12K66ckxNNwzNA0bQyS7G0yOZ5nlDLjOP+gMPdHd68e4uffvoJv7x6hTLP0owKQKmzRC+zCJXK8Lxyj0NwFh4EGOm5quzPAITzF9bMUT017ZH0d/t7DXzlWk3QidSFg7HGsAk5tyY0RIRpmlo9gipNk+Z5gzxJSmLfmcuENEisgLdRG1O2HejOArwK4KmM0WW1EIgrYe+m2CDQF5qfB7viHjAwbXRpUWpjHUi4fs/Asn3b4hPa+hJSkvLPOXf4fLvFzfUNfvzxJ7x+/UqqFxrhhttb21v49YIlQveT0fbQrQQEdy02QNW+o9QBYmB/HPE/P77C+fk5cp+x2XZIx6Pu2TkMv1rcyTTO4JqRO7EQsfdZgDQ20+yimmgRZ2BrZXsRNfO1dSdadNYuJt9jBSCxY+vSzdPWX8CsacxwC4E3X6oVqUteGa+sXBvCJyU+Qe4PPXKmjJh7h10xEctGO8+mQ9cyg5E0HqZFRLMyPaKWxlo1LTt14uNva9WIxWUfa6oiIHsAo0cFJUQih9zv3/iBfFcIR+E4nPkotTjtOR+nEM+gFEXsIMueMNbyizRcF8DjP4//i94EjOX1jfiVMMiX694wtMgkRJ67DT759DN89/33+PLPf0Tue6+qVzWdxjZwu9vh/Pwcl5eXOD8/x2bTw1rPiuDV3gTaoMjy/U1o1VoxDVLwZ9K2xcPhKL7+wxGj+v+PxyP2e40JGAct8ztjmkeJU5glBqCyVSiTQ2UFf0AhoEg5SW2pFIuo8wf3yQRNZFomt1ywk9eesBAVe9+uzYCb+BbggpauAGFs0Ry+BA6Lww+03gBE6LsO1zdP0G96XN/c4IsvvsDTp09xdn7ujX0MGKUswYJzUSZU+3bdYDHpU0LuOwdT/XYDMOPk7BzXT5/iBRhff/st3r19h7e//IJfXr3G4XjAmzdvcHd3B1Z/b2/NTwwQcGPYFCep61nJ6FNBVGAykSE18GSC4qHMjQYImmw0DbQJVT9TzOCcUeuIUq3dsblLshQl6nvvgpdzxtx3GDX1sN9sUGbJTGAAOc/eZ6NFmCePkjezsVgOOjADlYWZA1i8bzSwNkU7UODGsJOqyZUlz1vOry2KMkoQQA/HA6xTe92CsERmTTMCHvyeab5X11fY7Xa4vr7Cjz/+iP3dHuM0Sj8HbkJfBAuvLGN+OzT3mRCSAVhWYEgEP4VNcEBoBIyxFPz85i3O/vUzzq7OsdltRdtMA1Lu0HUJeZ5xdnrmaYTTNGG77ZC2W4zTCKgVoGjqdNbMKyZGmWakHAWi7MuCxoAFMPBYKVNcVnvwYGxKIGgKrxOR1joRzmcusVqr9ujokTppSIRE4NL2fw0ySikq5cifx7e7ilKXEy1qLTCrVSElj61InZz/5AHgED6XEihl4aE8KV/QssjKd8UVazn9cnZhNFObHHTZo3wG3kfELBOA1LYAWodCAlEXKEVfc9LjxWvhlKByaQqJfdoPmAERk8O2bq6p/MfxEeWI24PHE2Oo+J6ZKnBE+3TsJb/ZbPHi00/x8vvv8dnnn4O6DsfhiHmyqoJCrP2mx2a3xdnFOa6vr6WCYNepmVMIYS6iIXKpKJrIalqKmevHccTdfo/D/g7H/R7jUbv9DaO3TB2GAfv93lP8xnESM5UKfavxHgMArVIP12oQUJiN9Q9XCnOTWVzJlcAA4OZJArUPoJEGK1IgLRAQZHO4btOAQeTmdL+OS0P2K8fMCz+gqjEwS7XDy8tLnF1c4PLqCp99/jn+8MknuLi8xHa307a/stulWstoE74KGFmq4dUqloRSA1o2xhPQcTUtgDSKXN0A/XaH7e4ET589x1dfV5QS9vj2PW7fvcP72/d4/fqVWHjGwQtUkfkm4yEGkMl8gojGOF9PZ4QKFlwbjIE+rskoUGBoJLterya/vqRuheC6KsC11oqUk+SSO51JMFrOkiYmlekmrV+wQWV2FwvXCu6Sx6mICZaQqaoJU7v4mR/aI6CBMldtQNNcRA8J5AgQmqUAntrXrC5NSxFLiF6P2x43el0CDTDcdCuBgMmZrYNUQTG+h7A90LPIIGx3J3j2rMf5+QXevXuLf/38L9y+u8U4jvYNf1S/r4IcB362X0oDNZHW1GAHC6EDG5RI5MzrfPfDgP/58V/SxCp/if7JJSonvH9/wNnZDjllUYK4oMtSbEra0c5gJi+BzbVKj4ykWnaVYMqk9f5Znepihq9ejrkBgVa4xgWpWouIkmdpucWHlbaDtuoKIYvVoAlNIXoJ7p49psW6d/qeK++yVFR3kTrA0392N5Y9rWCvr2H7JoWJxIWW+w3maQSq0LoXNQo8JgMq0FnBlFbvpHb22VzSxlt1vlp0GeAqcSGeehkbDNUGHmAZHVYJx5bUqhKi0VB4X/5ODfjqM8k+Kahwpr/kVX4+2SpeIqzBvx8fBQbYHyD+7X/dAyBejwbtoKckNdu/+OOXePn9d3j24gUqGMfDXpv2FPc5bXdbXFxc4vLqErvTHTabzT0zmJl5pNokA5MAieF4xOG4l4p+xyP2xwMO+z32+722/p0wj5MXAToeju7/51oXdQZYBbsz+lX6XzTtNNNRez3mtzXGSDqPZn4EoPnKzX/XDoR9L0TaqlAny90J3+E1Uw73kH2Q69i9U5YiOLWK1nB+doaTszNcXV/hxScv8OzZM9w8fYJ+s8Xu9EQZdZaobdWwLLq22sEms3IEgKarU9VC5MI1rKXXe/Do3jY/qyxpgpxSBjJhc3KCXa04u7jGsxcFqAXzJL0c3t++xZtf3+Kf//gH3r57h6puCCt+wRBlNZTEUk0h0Levr/0wV4G+YBkOrDRAmnIUDoUc5OTbIXUWZL/MzWLzT1kacxUweJK977oCYAOAMc+Mvt8oeJT0rpwTmHswd6C5oOYsjZEoAYlBVdxKFpcga7ysksaa3mX0szbdm9ZoAtkEcdNX2LdMXFpG5+ruWwXxGh02INXAl7ObEJ1tNOafUZqyBkTQvZMjJn7h1PU4PcvCTy4v8Mvr1/jpp5+w3+/l+5V1P2QOkngWzl7U20wI+ppQe93BtdCOaZsmmG9v7/A///gRz2+ucH16irf1Pbos9JASYZpHbGsP2vToNxtMs7i+hOfJ05Qi/CdVRtdn1fAriDNQKjIl1DopAEh6/+TBhgYEbLfEcqTB1LWBsgj4LPjZahUwiyWUWOi8ehoz674n1CoxQUQJXIFKjX/KuW6xPbXqtboUYn7UXYDwDORv6VmxZ7DlyaiUkPtmkWwCFQuwXvXMipU1WEC50TLpeaZaJabMsl2yBUESgOxxKHZtuVYECAv2DKMyEY5L2WLfWbrn7OHtugFM+NyWGQ/NXbCsTvvvxkeBARMy9gjWICGyAlo8VPOpJpIo981ui6+++QYvv/8W109uUAEMYystDAK6bY/dboebmxtcXFwgdx26JNqSC+agNXFh1KlgHI4S/HcQoS8BiDPe397i7u4O4yTugWmS2v/jOGvaoNYBKOJiqFwXTUoMuSo7UK1PNX+T867tyLrcA0a6Ybr/TqgpNWI1AOEH0b+rcQJ25Ii83a3viwIMss8rEksErd3etFcxD6tQrozLi0t88uIFnn3yB5ydn+Pm5gYnp6fYnZzg5PQcuTefLbTqotylKhMntMA0PakwPzspOm8FPuDpYUk7YcY+6RZIZ+tugKCUoi2Hk2dktLWCFJ1hOE2AEqjvsOs77M5O8fyTT/HV13/B3ftbvPn1DX55/Rpvfn2Dd7fvMGl+PdAAge8ZsAiWBKLQYsRe6LYPFBiClb91QevFlxpANG02ln8FsxdlYhKmyzxpVkZbS+aMUmcFCx2Yd37PUpKbalNKyJ1oj5JymPU8W3ZLdbebEe/aTWBnOQJhe94F6FE6a350UQJiNo+tdwWpxbCBQV8TKx2clcaUBl1JB1plSnvF/1C6s89wAlGH3ekpPtlucXlzjVc//4x3b97g7u0tuNTmJdD4Iz/zBroRsen9gD2NigCRAIsKOBDWL+Hdu1v893//A5enZ9jtEk5Ptzg72WI4HpGz0E6fOzAnTFMFUJAzY7PZutZORMiVMYwjctLy6uSL5mfI1jQlRilzoOjoGxfAZlkqZsEUkEG+5wYcvC8GwdMaTWNveytAwFbFChjZmvm9gsuUAWAu6DrZTxe8nnFTPV1cbxLAXwSuzXXclkR4n8dFLJr4oGn7LogbkE/MoDJjPg4SftBJPxGGFk+jBoL9eswLOjF+2dbeCoEthcQifTkyB2HarjgBBItBcAXRR0wvbgDlt4yPq0BoaANrbcEem5rlwiei00nA+fkFvvnuO3zz3bc4uzjHOE3SgayKKc7MSTc3N7i6usJ2u1XNAfdMlVXSBDAeNejv9oBxGjAOB9zdSUbANEkHudvb97i7u8M0jSiz+F3GyQIB5YBZQIvN1YL/3KQp7yx4+FLri8+ma2UMI/Ao1yeI3LLYwEAM5FOtQv7zlDWLATCrQFzp9XehJqwEBmchwJQSnj1/jqdPn+LZs2d4+vQp/vCHT3B+eYm87bWNsQY06uHzehKkZOwAqQGVWAUt07JeetE4ngpqgYN6n5QIqA/4hvVaZp0xDXXmUJJZ14HVVWMMwcqutkOpRNklnF1d4fT8Ai8++xx1Ltgf9vjnP/8XP/7vP3H3/r1YDNCOK0CLVtxNAVoKNe+SbNqUAsimtiBovKvDyV5PzL9v2QBJ17fWGbWaUE6qzQ0opVXY7LoZpVR0vUSpp5TR9zNOT08dXFilzq6TngmEpoFVDaRr0dPrWAiLdWia42K+MDo11EdqDTGTa/Jr2FoKGa0AAmtqHiWwNWexta3hnnYeXDBQa4nu29XAO0Cg3KHP0jRqd3KK6ZMX+PnHn/DT//4To9YJcW3elZsoOtpaLMznpoE2/ONPYLXzmRhzrfjHjz9hu9viT1+8ACHhfXdAKRtsNhlIhE2tOGomkqwdI2UCo0X+V56xyR263U6ANRtvIEmhA4OTCcC0CDR0kIVGj5VbR0fAehdktbDoSjIDMHO1KAbTNLqQpUSoFaqtm2Z6v9x7A/u11W9Q077zXohwtMyhxvd0gTX9UixCWqujzC5/TFIRZwmkc56I+4OLHV4oodkmy7mpRWVebmWWWSwKbJ9bWIrIv97YdAMD5LDTeJSC7gjSyALyTQWUOBxmazttwIYW9/QzywzSBkhcl6mlHxof1agIYFVukyMuwyrOLq3fdCJfhJQSLq+v8PK77/DNy5fYnZ9JbX6LKGUg5w7b7RbXNze4vrpSxGMLo0KnSIeqeZow7MX0f7e/w9279zjcHcClYJwGHI8HHA8H3N2J/38YRhyPA6Z5bhH+ZrZ0V0CVpVMkleSUiCBo0lo1E9tlAw/hfdOIoBoSIwSxNaYXQYEDBQeD8m4i9bFT+2z82YhJCEaiwxvRpZyx2+1wdX2DF5++wKeff4Ynz5/h5skT9L2UuRVGIObj4lumTXhULTKfqfn7GNC0FWC24hmB4UbrhpgA4esstFK9TnhlVv+WrjfMbFbV91gdBZsmYmvtbhs9v37WS3X0HtfMrAxMBMoZXepwtTnBxeUlvvrLX7C/2+NfP/2MV69+xtt3v0qgaKktaNJWIwqcKJQg2mwghDVhLCWFWwA4vEVqBUAIwFvuO1GFWB1MW5tV48qY54pu6tRS0Hvmy2azQdf1qsWJdtZ3PVJt5sic2Ikw5w5lriu/qzyjGSgXPn5I9VCotceDqSiD0PppeO0GFaZmRZNgX1bmTn7+EYRWwjKzQPZS98SuJxShb9Oi3ovPQSaIrGD58z/+EU+ePcdwOOLHH/+JN7++gUb+NEXHADEv95IMmStvsF+h1i8BEuyB1cyM/Tjg//l//0fiP9Kn6LOknZUiAu44jJjmGX2Xsd32qFUKExFlJG0VX2dCt8mYpxldl1FQxLJTSxMfc0HqLZo+CDbW5lcq6WtVN5F1YyRoMKkJcnMNGV0KwCsO6rIErImMBqpaglBcMEc6MQuwKCtwMBljCEgX0+K0LObA4oYcdHFVC2MBNJMBEHoCEZDVp+8Mtgl6cTUayRvItXLKFldQwATkjfQL4URC0xZMDNa6BlBwEIAERAui+9QHB1deCAtGuU5nscERUZbruZusge4laI/uahbeWWf8lvHbLQNkDNyEF/kGmtA3fNKWXAK/Lq+u8M133+Krr7/CZttjHAfMUwFBCoZstzuc7E5wqt0FSUtTCuMFQIQyFQzv7zCMg1QCvL3F7fGAYZ4w3B1wvJOOgPPcegUctTfANE6Yptn927UURc/SvIS1/KVrGw4tze8nm5SiAILRljHyxryMgyTz7yuTIG5mfF0eu1I7MdSYs8mBtTmyASQ7tEDKhI4yuizFaq6ur/H1X1/iiy++xPWTpxKV3yV0241tqGjskAPHZOZ10zyCGTTIr1ILCjO6wqDKqFInxdG8PV9Kms8MBQKWekmkBcGq58Qs8ttZtPLCqtGZMAjapzw+O4iDCeika6ulpMl9rXYfllTNygJodT8pZXSbHpf9NU52F/j0xaf49def8cubX9yVYIjMLCIGkmBAaLFQYb+MhuIiRvpSxtOAgAEKajQG8oBR07IFBJjAlXMmzNKYpwCCeYYz0dxVDeiyIM+KrmYJzmRG7RTEpQQUES5gwJtzLSxP1TMVfF8paUU3dqFYFAB4QyyIblRZewAEfFRVMVgSO/yccNHmYHZckgEwOF9a7oFp9XJnErYCLUsD164SYXd2is1mi67vcXJyil9/eY3jcd+uFgAMtw2Hp/cSeU19A1DyuQClTDAS4TAM+MePP+Hy/AwXp1vMU8Z2uwNXqVEyTYzt5YVHyA/HCV3uAYjQ62ij/EWuO09iYvcAOwukpgLq2rpbCi3rGRLBnJCyZJXI92eAk9PiPBe1MgnvkLgqzTjJnaY7yh6JIUI2qIqJB2bfQm7Klu1RUzJJeZHl7bMId2pnQvhAFetDFJR6LrlWsWbaPZhlHhbpL04pLErzsfFgo7PGwplNqMKVCGXkCjT1Q1VkQ82ypq0JG4V/Rpvh2YwgKFiebS6mVLjiaCizuW7uuakWgGLFb37DIL5ns3wcj+NxPI7H8Tgex+9ppP/8kcfxOB7H43gcj+Nx/P95PIKBx/E4HsfjeByP43c+HsHA43gcj+NxPI7H8Tsfj2DgcTyOx/E4Hsfj+J2PRzDwOB7H43gcj+Nx/M7HIxh4HI/jcTyOx/E4fufjEQw8jsfxOB7H43gcv/PxCAYex+N4HI/jcTyO3/l4BAOP43E8jsfxOB7H73z8H8y3/FObCgI6AAAAAElFTkSuQmCC",
       "text/plain": [
        "<Figure size 640x480 with 1 Axes>"
       ]
@@ -396,10 +1906,10 @@
     {
      "data": {
       "text/plain": [
-       "tensor(1977.4713, device='cuda:0', dtype=torch.float64)"
+       "tensor(1.7057e-16, device='cuda:0', dtype=torch.float64)"
       ]
      },
-     "execution_count": 11,
+     "execution_count": 87,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -412,7 +1922,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": 88,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -422,7 +1932,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 13,
+   "execution_count": 94,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -438,7 +1948,7 @@
     "plt.legend()\n",
     "fig = plt.gcf()\n",
     "tikzplotlib_fix_ncols(fig)\n",
-    "plt.title(\"Coded Diffaction Pattern Combined with \\n Wirtinger Flow on the Sat Phone Image\")\n",
+    "plt.title(\"Coded Diffaction Pattern Combined with \\n Truncated Wirtinger Flow on the Sat Phone Image\")\n",
     "plt.grid(True)\n",
     "# plt.show()\n",
     "import tikzplotlib\n",
@@ -447,19 +1957,20 @@
     "\n",
     "\n",
     "\n",
-    "\n"
+    "\n",
+    "# "
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": 90,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "tensor(1.0000, device='cuda:0', dtype=torch.float64)\n"
+      "tensor(1.9664e-16, device='cuda:0', dtype=torch.float64)\n"
      ]
     }
    ],
@@ -474,62 +1985,62 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 91,
    "metadata": {},
    "outputs": [
     {
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "tensor([[[ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
+      "tensor([[[ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]],\n",
+      "         [ True,  True,  True,  ..., False,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True]],\n",
       "\n",
-      "        [[ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
+      "        [[ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True, False],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True, False,  True],\n",
+      "         [ True, False,  True,  ...,  True,  True,  True]],\n",
       "\n",
-      "        [[ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
+      "        [[ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [False,  True,  True,  ...,  True,  True, False],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]],\n",
+      "         [ True,  True,  True,  ...,  True,  True, False],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True]],\n",
       "\n",
       "        ...,\n",
       "\n",
-      "        [[ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
+      "        [[ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]],\n",
+      "         [ True,  True, False,  ...,  True,  True, False],\n",
+      "         [ True,  True, False,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ..., False,  True, False]],\n",
       "\n",
-      "        [[ True,  True],\n",
-      "         [ True, False],\n",
-      "         [ True,  True],\n",
+      "        [[ True, False,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True, False],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]],\n",
+      "         [ True, False,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ..., False,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True]],\n",
       "\n",
-      "        [[ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
+      "        [[ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True],\n",
+      "         [False,  True,  True,  ...,  True,  True,  True],\n",
       "         ...,\n",
-      "         [ True,  True],\n",
-      "         [ True,  True],\n",
-      "         [ True,  True]]], device='cuda:0')\n"
+      "         [ True,  True,  True,  ...,  True, False,  True],\n",
+      "         [False,  True,  True,  ...,  True,  True, False],\n",
+      "         [ True,  True,  True,  ...,  True,  True,  True]]], device='cuda:0')\n"
      ]
     }
    ],
diff --git a/natural_images/rwf_reconstructed/rwf_error_sat_phone_500_sat_phone.tex b/natural_images/rwf_reconstructed/rwf_error_sat_phone_500_sat_phone.tex
index 8b85399153b3bf30e65c7762046769767a8729ac..28c19b790490886a8337972d91a85327db8fc080 100644
--- a/natural_images/rwf_reconstructed/rwf_error_sat_phone_500_sat_phone.tex
+++ b/natural_images/rwf_reconstructed/rwf_error_sat_phone_500_sat_phone.tex
@@ -21,1535 +21,1533 @@ xtick style={color=black},
 y grid style={darkgray176},
 ylabel={Relative Error},
 ymajorgrids,
-ymin=4.95664122975232e-17, ymax=8.58298981357649,
+ymin=2.83381160988222e-17, ymax=10.6136402279401,
 ymode=log,
 ytick style={color=black},
-ytick={1e-19,1e-17,1e-15,1e-13,1e-11,1e-09,1e-07,1e-05,0.001,0.1,10,1000},
+ytick={1e-20,1e-17,1e-14,1e-11,1e-08,1e-05,0.01,10,10000,10000000},
 yticklabels={
-  \(\displaystyle {10^{-19}}\),
+  \(\displaystyle {10^{-20}}\),
   \(\displaystyle {10^{-17}}\),
-  \(\displaystyle {10^{-15}}\),
-  \(\displaystyle {10^{-13}}\),
+  \(\displaystyle {10^{-14}}\),
   \(\displaystyle {10^{-11}}\),
-  \(\displaystyle {10^{-9}}\),
-  \(\displaystyle {10^{-7}}\),
+  \(\displaystyle {10^{-8}}\),
   \(\displaystyle {10^{-5}}\),
-  \(\displaystyle {10^{-3}}\),
-  \(\displaystyle {10^{-1}}\),
+  \(\displaystyle {10^{-2}}\),
   \(\displaystyle {10^{1}}\),
-  \(\displaystyle {10^{3}}\)
+  \(\displaystyle {10^{4}}\),
+  \(\displaystyle {10^{7}}\)
 }
 ]
 \addplot [semithick, red]
 table {%
-0 1.41277381683938
-1 1.41277381683938
-2 1.40405363171051
-3 1.38767149450661
-4 1.36583388230054
-5 1.34118469157566
-6 1.31609408383138
-7 1.29226309577892
-8 1.27067544116119
-9 1.25174810767307
-10 1.23552889785253
-11 1.22186074567351
-12 1.21049270703468
-13 1.20114543867341
-14 1.19354556734121
-15 1.1874412896346
-16 1.18260765413135
-17 1.17884669523493
-18 1.17598535427772
-19 1.1738727463789
-20 1.17237752663542
-21 1.1713856540158
-22 1.1707986025077
-23 1.17053194270322
-24 1.1705141659526
-25 1.17068562015417
-26 1.17099745299653
-27 1.17141050055535
-28 1.17189410412557
-29 1.17242487611473
-30 1.17298546046372
-31 1.17356334238739
-32 1.17414975806063
-33 1.17473874152868
-34 1.17532632871443
-35 1.17590992140952
-36 1.17648780056652
-37 1.17705876938414
-38 1.17762190255246
-39 1.17817637769753
-40 1.17872136728879
-41 1.17925597284175
-42 1.17977918720753
-43 1.18028987445866
-44 1.18078676002176
-45 1.18126842616015
-46 1.18173330970492
-47 1.18217970017404
-48 1.18260573723299
-49 1.18300940695622
-50 1.18338853664549
-51 1.18374078812353
-52 1.1840636495013
-53 1.18435442544868
-54 1.18461022600395
-55 1.18482795394858
-56 1.18500429075848
-57 1.1851356811242
-58 1.18521831601271
-59 1.18524811422226
-60 1.18522070236062
-61 1.18513139315378
-62 1.18497516196813
-63 1.18474662140235
-64 1.18443999377591
-65 1.18404908130732
-66 1.18356723373751
-67 1.18298731310917
-68 1.18230165536178
-69 1.18150202834081
-70 1.18057958574845
-71 1.17952481647705
-72 1.17832748866455
-73 1.17697658768779
-74 1.17546024716156
-75 1.17376567183132
-76 1.17187905103
-77 1.16978546110381
-78 1.16746875488893
-79 1.16491143592534
-80 1.16209451460916
-81 1.15899734288935
-82 1.15559742338072
-83 1.1518701878591
-84 1.14778873898369
-85 1.14332354770263
-86 1.13844209707315
-87 1.13310846108668
-88 1.12728280442934
-89 1.12092078580847
-90 1.11397284339149
-91 1.10638333587109
-92 1.09808950651463
-93 1.08902023011901
-94 1.07909449399001
-95 1.06821955400747
-96 1.0562886960625
-97 1.04317852306041
-98 1.02874568135327
-99 1.0128229441437
-100 0.995214595187401
-101 0.975691126719474
-102 0.953983422375394
-103 0.929776912371221
-104 0.902706789324628
-105 0.872356458981946
-106 0.838263257510587
-107 0.799938412858837
-108 0.756912334653785
-109 0.708820599728918
-110 0.655546614179295
-111 0.597424578058717
-112 0.535466514344593
-113 0.471504262111616
-114 0.408074374846721
-115 0.347936506441013
-116 0.293374401354215
-117 0.245676385719461
-118 0.205082704581169
-119 0.171102168061874
-120 0.142900129351625
-121 0.119570974931888
-122 0.100275652652015
-123 0.0842913165806198
-124 0.0710171212240379
-125 0.0599622029025204
-126 0.0507285268578558
-127 0.0429939858671926
-128 0.0364976588959343
-129 0.0310276293630742
-130 0.026411177127057
-131 0.0225069783161879
-132 0.019198932523845
-133 0.0163912814726892
-134 0.0140047423271857
-135 0.0119734350483952
-136 0.0102424309494917
-137 0.00876578813765824
-138 0.00750496979084616
-139 0.0064275646639968
-140 0.00550624726335321
-141 0.00471792898016092
-142 0.0040430621120041
-143 0.00346506688316632
-144 0.0029698578897102
-145 0.00254545128544235
-146 0.00218163782860435
-147 0.00186970988089666
-148 0.00160223278316256
-149 0.00137285287192324
-150 0.00117613585907941
-151 0.00100743045821314
-152 0.000862753069897319
-153 0.000738690085098415
-154 0.000632314968616582
-155 0.000541117773371147
-156 0.000462945134435102
-157 0.000395949117214534
-158 0.000338543561331547
-159 0.000289366781866392
-160 0.000247249671576372
-161 0.000211188398645392
-162 0.000180321020114213
-163 0.000153907435963449
-164 0.000131312196549967
-165 0.000111989749713415
-166 9.54717757953761e-05
-167 8.13563110248122e-05
-168 6.9298403838897e-05
-169 5.90020860567947e-05
-170 5.02304980254625e-05
-171 4.27775089511826e-05
-172 3.64422637196385e-05
-173 3.10549863067973e-05
-174 2.64720805289767e-05
-175 2.25720202199109e-05
-176 1.92518983283551e-05
-177 1.64245266547244e-05
-178 1.40159962549691e-05
-179 1.19636236507882e-05
-180 1.02142204771872e-05
-181 8.72263454141408e-06
-182 7.45051884430325e-06
-183 6.36529223731526e-06
-184 5.43926131132265e-06
-185 4.64887804427552e-06
-186 3.97411184590808e-06
-187 3.39791806856349e-06
-188 2.90578791994957e-06
-189 2.48536711147484e-06
-190 2.12613258341287e-06
-191 1.81911833070335e-06
-192 1.55668276461099e-06
-193 1.33231123048799e-06
-194 1.1404482976572e-06
-195 9.76355274867155e-07
-196 8.35989109588073e-07
-197 7.15899423035393e-07
-198 6.13140933155157e-07
-199 5.25198939833111e-07
-200 4.49925902712196e-07
-201 3.8548744282601e-07
-202 3.30316353398042e-07
-203 2.83073420066229e-07
-204 2.42614032584118e-07
-205 2.07959723947359e-07
-206 1.78273903177803e-07
-207 1.52841158443643e-07
-208 1.31049600772564e-07
-209 1.12375797983462e-07
-210 9.63719158253379e-08
-211 8.26547404603184e-08
-212 7.0896304975751e-08
-213 6.08158838379829e-08
-214 5.21731542487481e-08
-215 4.47623531479306e-08
-216 3.84072839353531e-08
-217 3.29570485587128e-08
-218 2.82823989125101e-08
-219 2.42726171525347e-08
-220 2.0832847785742e-08
-221 1.78818157395971e-08
-222 1.53498742600671e-08
-223 1.31773346993479e-08
-224 1.13130372787129e-08
-225 9.71312787300273e-09
-226 8.34001097938527e-09
-227 7.16145336002551e-09
-228 6.14981658571215e-09
-229 5.28139984116035e-09
-230 4.53587709988513e-09
-231 3.89581503775795e-09
-232 3.34626006828497e-09
-233 2.87438454470789e-09
-234 2.46918360958786e-09
-235 2.12121542225947e-09
-236 1.82237853315404e-09
-237 1.56572106285722e-09
-238 1.34527713788585e-09
-239 1.15592666756143e-09
-240 9.93275125705142e-10
-241 8.53550466963979e-10
-242 7.33514731774388e-10
-243 6.30388242240393e-10
-244 5.41784579483109e-10
-245 4.65654820243059e-10
-246 4.002396942278e-10
-247 3.44028546067932e-10
-248 2.95724122481247e-10
-249 2.54212361230141e-10
-250 2.18536468475888e-10
-251 1.87874667800058e-10
-252 1.6152111303325e-10
-253 1.38869496321899e-10
-254 1.19398987470095e-10
-255 1.02662157635445e-10
-256 8.82746150183926e-11
-257 7.59061096718541e-11
-258 6.52728909194096e-11
-259 5.61311498428383e-11
-260 4.82713866156364e-11
-261 4.15135750096423e-11
-262 3.57030070346949e-11
-263 3.07067279425698e-11
-264 2.64104728512623e-11
-265 2.27160326518968e-11
-266 1.95389970201732e-11
-267 1.68068114252088e-11
-268 1.44571104316467e-11
-269 1.24362820030635e-11
-270 1.06982407428016e-11
-271 9.20336677065018e-12
-272 7.91759824053271e-12
-273 6.81165131549097e-12
-274 5.8603475735426e-12
-275 5.04203950001523e-12
-276 4.33811309160853e-12
-277 3.73256233992154e-12
-278 3.21162332827025e-12
-279 2.76346212510156e-12
-280 2.37789958835616e-12
-281 2.0461829190608e-12
-282 1.76078499469049e-12
-283 1.51523080829948e-12
-284 1.30395328520318e-12
-285 1.12216223987272e-12
-286 9.6573830553223e-13
-287 8.31138821045092e-13
-288 7.15315815842855e-13
-289 6.15647539330501e-13
-290 5.29878235460847e-13
-291 4.56068255958964e-13
-292 3.92548079821293e-13
-293 3.37882403062548e-13
-294 2.90835996179586e-13
-295 2.50345525017498e-13
-296 2.15496745821779e-13
-297 1.85502913193763e-13
-298 1.59687134559257e-13
-299 1.37466664462705e-13
-300 1.18340831465435e-13
-301 1.01877876420998e-13
-302 8.77070425745216e-14
-303 7.55087244852781e-14
-304 6.50083588690456e-14
-305 5.59692261954875e-14
-306 4.8187922200893e-14
-307 4.14894967604772e-14
-308 3.57227295760434e-14
-309 3.07582897647097e-14
-310 2.64843715856361e-14
-311 2.28047696261426e-14
-312 1.96369561846174e-14
-313 1.69097519900123e-14
-314 1.45614968460699e-14
-315 1.25400760140982e-14
-316 1.07996048130522e-14
-317 9.30126075999859e-15
-318 8.01127208305699e-15
-319 6.90096200081709e-15
-320 5.94497050825447e-15
-321 5.12200103565694e-15
-322 4.41388983192795e-15
-323 3.80455201341185e-15
-324 3.28050505249422e-15
-325 2.82943980631959e-15
-326 2.44189002682097e-15
-327 2.10898088764985e-15
-328 1.82321908793871e-15
-329 1.57815311702323e-15
-330 1.3683300205874e-15
-331 1.188753721478e-15
-332 1.0357701962875e-15
-333 9.89552096552775e-16
-334 8.90022817521541e-16
-335 8.08149889507172e-16
-336 7.41712016699833e-16
-337 5.60588509207059e-16
-338 6.45678117902562e-16
-339 6.12105517033056e-16
-340 5.85879923614635e-16
-341 5.657272282579e-16
-342 5.50100710036055e-16
-343 5.3832008731083e-16
-344 5.29137373627922e-16
-345 5.22327019902802e-16
-346 5.17254720297619e-16
-347 5.13221268174984e-16
-348 5.10313752324219e-16
-349 5.08022940360065e-16
-350 5.06380001188293e-16
-351 5.05105118693941e-16
-352 5.04231552735152e-16
-353 5.03611571782292e-16
-354 5.03066860020335e-16
-355 5.02560761796926e-16
-356 5.02536826120241e-16
-357 5.02212206257081e-16
-358 5.01902424358062e-16
-359 5.01754475323656e-16
-360 5.01573600559433e-16
-361 5.01607373235816e-16
-362 5.01448740778524e-16
-363 5.0149918083218e-16
-364 5.01441952698756e-16
-365 5.01349499285684e-16
-366 5.01383824490769e-16
-367 5.01325264929071e-16
-368 5.01265086857704e-16
-369 5.01284300437101e-16
-370 5.01360968451308e-16
-371 5.01216878690939e-16
-372 5.0142204931464e-16
-373 5.01293891052051e-16
-374 5.01446674225907e-16
-375 5.01376956388978e-16
-376 5.01478875046034e-16
-377 5.01375863161035e-16
-378 5.01381109619448e-16
-379 5.01430211564608e-16
-380 5.01485167620923e-16
-381 5.01461348986688e-16
-382 5.01551565545746e-16
-383 5.01360186047089e-16
-384 5.01416271755882e-16
-385 5.01308165143301e-16
-386 5.013932760009e-16
-387 5.01307311693925e-16
-388 5.01539612262798e-16
-389 5.0137695785504e-16
-390 5.01407651340008e-16
-391 5.01370726717883e-16
-392 5.0141352696432e-16
-393 5.01304746016272e-16
-394 5.01391669610059e-16
-395 5.01437856677298e-16
-396 5.01522785015708e-16
-397 5.01511885533226e-16
-398 5.01539782699734e-16
-399 5.01374739348804e-16
-400 5.01448761912808e-16
-401 5.0137816410572e-16
-402 5.01409803339271e-16
-403 5.01389634345237e-16
-404 5.01320268261291e-16
-405 5.01312362712095e-16
-406 5.01224317790095e-16
-407 5.01275557467135e-16
-408 5.01289885707457e-16
-409 5.01308286363245e-16
-410 5.01210217967033e-16
-411 5.01260997185787e-16
-412 5.01316402475795e-16
-413 5.01313817646602e-16
-414 5.0126618043364e-16
-415 5.01287778300504e-16
-416 5.01252642443702e-16
-417 5.01285554128995e-16
-418 5.01172789339586e-16
-419 5.01284338995787e-16
-420 5.01266228341917e-16
-421 5.01341069606017e-16
-422 5.01225963349769e-16
-423 5.01307712364255e-16
-424 5.0124962259374e-16
-425 5.01207798829158e-16
-426 5.01153629019372e-16
-427 5.0124272527242e-16
-428 5.01309530285411e-16
-429 5.01309589489748e-16
-430 5.01403045305799e-16
-431 5.01316647515273e-16
-432 5.01371942263826e-16
-433 5.01335422625892e-16
-434 5.01325229089393e-16
-435 5.01257571593698e-16
-436 5.01369545536425e-16
-437 5.0127972248642e-16
-438 5.01402222389024e-16
-439 5.01412408594361e-16
-440 5.01308681944518e-16
-441 3.01147080314348e-16
-442 5.01301560227402e-16
-443 5.01076006702284e-16
-444 3.01129598223252e-16
-445 5.0118627748136e-16
-446 5.01263926004197e-16
-447 3.01162646615987e-16
-448 5.01215630772613e-16
-449 5.01106896836602e-16
-450 5.01226826813073e-16
-451 5.01154483904761e-16
-452 5.01171698909292e-16
-453 5.0112198270891e-16
-454 5.01243727484495e-16
-455 5.01137053100154e-16
-456 5.00974933878901e-16
-457 5.01140430268209e-16
-458 5.01107072202104e-16
-459 5.0110116838593e-16
-460 5.01131376824859e-16
-461 5.01143193424179e-16
-462 5.01244471596885e-16
-463 5.01111489733839e-16
-464 5.01105142615766e-16
-465 5.00990318789511e-16
-466 5.01213595590911e-16
-467 5.01147594022245e-16
-468 5.01296526222966e-16
-469 5.01193674621717e-16
-470 5.01255808585355e-16
-471 5.01103902056047e-16
-472 5.01258754062727e-16
-473 3.0117141444475e-16
-474 5.01326580373825e-16
-475 5.01199786162146e-16
-476 5.01216636569793e-16
-477 5.01131100670507e-16
-478 5.01189766840844e-16
-479 5.01132408020536e-16
-480 5.01119583429162e-16
-481 5.01174880319994e-16
-482 5.01050527910706e-16
-483 5.01167547225287e-16
-484 5.0121450448116e-16
-485 5.01311300575466e-16
-486 5.01342887922602e-16
-487 5.01328770824958e-16
-488 5.01395400944446e-16
-489 5.01259716157239e-16
-490 5.01242381284204e-16
-491 5.01346459293966e-16
-492 5.01226883826493e-16
-493 5.01265419054097e-16
-494 5.01257398572013e-16
-495 5.01316660354813e-16
-496 5.0138744013764e-16
-497 5.01370964458488e-16
-498 5.01347177253966e-16
-499 5.01327341090121e-16
+0 1.00074586801071
+1 1.6868218123211
+2 1.25263698079135
+3 1.0297941260358
+4 1.44998443738169
+5 1.03325286813443
+6 1.38143373932664
+7 1.01060775435465
+8 1.32948873788063
+9 1.07917504673713
+10 1.20583713241243
+11 1.1218540079197
+12 1.11807514585236
+13 1.07794845316244
+14 1.047179500889
+15 1.00660985997812
+16 0.962034480921937
+17 0.909222619770717
+18 0.84664577681531
+19 0.770689137363532
+20 0.677395628354106
+21 0.563608771795283
+22 0.43265866217846
+23 0.30197388891175
+24 0.195653330466221
+25 0.123170297729902
+26 0.0777995559739119
+27 0.0498862489956395
+28 0.0325341250828546
+29 0.0215506580200378
+30 0.0144698754386949
+31 0.0098287850135905
+32 0.00674269394697365
+33 0.00466509569519606
+34 0.00325150099504432
+35 0.00228083234276688
+36 0.00160896017282267
+37 0.00114064322000335
+38 0.00081219214547537
+39 0.000580575050824566
+40 0.000416449626829298
+41 0.000299645824476183
+42 0.000216198329048023
+43 0.000156375324409178
+44 0.000113355813261773
+45 8.233406368815e-05
+46 5.99083066317952e-05
+47 4.36603880037577e-05
+48 3.18647960445956e-05
+49 2.32860226391293e-05
+50 1.70366630288625e-05
+51 1.24775489270469e-05
+52 9.14714228227171e-06
+53 6.71140837821246e-06
+54 4.92809326162788e-06
+55 3.62117849972507e-06
+56 2.66255649621059e-06
+57 1.95884800830707e-06
+58 1.44189439269887e-06
+59 1.06188416380572e-06
+60 7.82373433589904e-07
+61 5.76671467373059e-07
+62 4.25212551630552e-07
+63 3.13642016828624e-07
+64 2.31420365263306e-07
+65 1.70803939144795e-07
+66 1.26099684111855e-07
+67 9.31197258372068e-08
+68 6.87818008899853e-08
+69 5.08162818891243e-08
+70 3.7551189374954e-08
+71 2.77543167656993e-08
+72 2.05172192677097e-08
+73 1.51699141364434e-08
+74 1.12181275041365e-08
+75 8.29710489886269e-09
+76 6.13759763910578e-09
+77 4.54080479579081e-09
+78 3.35990549631293e-09
+79 2.48644333974264e-09
+80 1.84028473780023e-09
+81 1.36221074652743e-09
+82 1.00845016277837e-09
+83 7.46644092988935e-10
+84 5.5286642256621e-10
+85 4.09423382174893e-10
+86 3.03228128462486e-10
+87 2.24599827143727e-10
+88 1.66376200853459e-10
+89 1.23257594178601e-10
+90 9.13220796249654e-11
+91 6.76669354867549e-11
+92 5.01435277562912e-11
+93 3.7161225310648e-11
+94 2.75423559902626e-11
+95 2.04149012765201e-11
+96 1.51330980434077e-11
+97 1.1218687729461e-11
+98 8.31743192592556e-12
+99 6.1669263081049e-12
+100 4.57277650814178e-12
+101 3.39095717013062e-12
+102 2.51475181800006e-12
+103 1.86508203442051e-12
+104 1.38334417829077e-12
+105 1.02610437180532e-12
+106 7.61168945345241e-13
+107 5.6467531139434e-13
+108 4.18933735982894e-13
+109 3.10825163694457e-13
+110 2.30629542283852e-13
+111 1.71136588883416e-13
+112 1.26995813222239e-13
+113 9.42463912332864e-14
+114 6.99462309208853e-14
+115 5.19146000532284e-14
+116 3.8533709361001e-14
+117 2.86031352771594e-14
+118 2.12330042368106e-14
+119 1.57630157516163e-14
+120 1.17052336355887e-14
+121 8.69813980933904e-15
+122 6.4642206075213e-15
+123 4.80802951796178e-15
+124 3.58154183674529e-15
+125 2.64703026179247e-15
+126 1.96972828553126e-15
+127 1.46831410786226e-15
+128 1.09797241089379e-15
+129 8.25705922660355e-16
+130 6.64811677349937e-16
+131 4.83686638306805e-16
+132 3.82060449900284e-16
+133 3.12351281986232e-16
+134 4.64885253773733e-16
+135 4.48484180467528e-16
+136 4.39137055954418e-16
+137 4.33746031672154e-16
+138 2.99470889968997e-16
+139 4.29175112170883e-16
+140 4.28096209457351e-16
+141 4.27416508290057e-16
+142 4.27075394175611e-16
+143 4.26733811466308e-16
+144 2.93624854960093e-16
+145 4.26411484890944e-16
+146 4.26358461202747e-16
+147 4.26225611706801e-16
+148 4.260897045337e-16
+149 4.25922226723084e-16
+150 4.2583125751176e-16
+151 4.25726770969525e-16
+152 4.25684324641059e-16
+153 4.25656714323803e-16
+154 4.25510958825661e-16
+155 4.25250850481161e-16
+156 4.25251054426769e-16
+157 4.25237310805219e-16
+158 4.25229961841113e-16
+159 4.25266673601401e-16
+160 4.25219680665699e-16
+161 4.25192625926213e-16
+162 4.25176121538865e-16
+163 4.25108524566756e-16
+164 4.25038904162001e-16
+165 4.24896364465815e-16
+166 4.24721806789244e-16
+167 2.91936151355279e-16
+168 4.24770003014642e-16
+169 4.24732359283561e-16
+170 4.24737286543845e-16
+171 2.91829608256277e-16
+172 4.24664440786626e-16
+173 4.24601350880379e-16
+174 4.24477693075121e-16
+175 4.24398670435486e-16
+176 4.24366270701617e-16
+177 4.24258645935244e-16
+178 4.24184421164326e-16
+179 4.24166120034132e-16
+180 4.24159779511216e-16
+181 4.24079345312507e-16
+182 4.23825109591521e-16
+183 4.23814314129036e-16
+184 4.23649821984426e-16
+185 4.23633925359074e-16
+186 4.23595639318322e-16
+187 4.23582284540878e-16
+188 4.23610545926648e-16
+189 4.23437476937517e-16
+190 4.23336548364745e-16
+191 4.23352525096893e-16
+192 4.23356200061498e-16
+193 4.23310610562191e-16
+194 4.23193110176739e-16
+195 4.23209988588763e-16
+196 4.23264716797528e-16
+197 4.23240599296623e-16
+198 4.23166207969337e-16
+199 4.23165247644657e-16
+200 4.23030339110221e-16
+201 4.23001036389334e-16
+202 4.23042144010159e-16
+203 4.23024018055896e-16
+204 4.2294556169524e-16
+205 4.22900850109556e-16
+206 4.22884345961006e-16
+207 4.22949285665332e-16
+208 4.22803691348738e-16
+209 4.22819850956568e-16
+210 4.22773523718597e-16
+211 4.22666504812091e-16
+212 4.22673662473957e-16
+213 4.22536037170173e-16
+214 4.22462157614407e-16
+215 4.22352913520773e-16
+216 4.22413936978623e-16
+217 4.22418586022364e-16
+218 4.22365512922556e-16
+219 4.22372885029553e-16
+220 2.89845050778311e-16
+221 4.22411364301089e-16
+222 4.22267280370411e-16
+223 4.22326882079787e-16
+224 4.22198751505318e-16
+225 4.22062009044018e-16
+226 4.22044354996725e-16
+227 4.21882045000641e-16
+228 2.89048423313315e-16
+229 4.21590285850445e-16
+230 4.2159069585085e-16
+231 4.21571982365656e-16
+232 4.21486820231697e-16
+233 4.21458173839231e-16
+234 4.21294957486066e-16
+235 4.21010217209292e-16
+236 4.2098455691124e-16
+237 4.20975440858488e-16
+238 2.8842343770491e-16
+239 4.20890512654548e-16
+240 4.20737415924818e-16
+241 4.20802207146944e-16
+242 4.20681497065523e-16
+243 4.20697486339362e-16
+244 4.20561718279253e-16
+245 4.2067078025595e-16
+246 4.20589308445475e-16
+247 4.20508746110198e-16
+248 4.2041189792177e-16
+249 4.20397856592924e-16
+250 4.20531718543712e-16
+251 4.20432297846126e-16
+252 4.20512694596265e-16
+253 4.20473106971795e-16
+254 2.87903126330443e-16
+255 4.20494152814552e-16
+256 4.20393503434766e-16
+257 4.20212662252659e-16
+258 4.20135733989428e-16
+259 4.2019280440419e-16
+260 4.20095282423914e-16
+261 4.20055002362523e-16
+262 4.20070837617534e-16
+263 4.19942742149722e-16
+264 4.19982523797909e-16
+265 4.19895737603822e-16
+266 4.1983640709283e-16
+267 4.19727503460881e-16
+268 4.19676494442247e-16
+269 4.19612700237051e-16
+270 4.19659806572781e-16
+271 4.19638698415494e-16
+272 2.87202541579306e-16
+273 4.19538037900876e-16
+274 4.19361367340814e-16
+275 4.19295817819431e-16
+276 4.19277132411717e-16
+277 4.19335417802141e-16
+278 4.19285381265034e-16
+279 4.19253256581385e-16
+280 4.19345508891688e-16
+281 4.19416762077471e-16
+282 4.19277045513254e-16
+283 4.19246616593335e-16
+284 4.19175438542979e-16
+285 4.19042926606161e-16
+286 4.19060104087977e-16
+287 4.19077193575256e-16
+288 4.19040646274742e-16
+289 4.1905782099366e-16
+290 4.18943464412089e-16
+291 4.18888577650373e-16
+292 4.18851038949172e-16
+293 4.18867390428279e-16
+294 4.18814893337822e-16
+295 4.18645248597065e-16
+296 4.18633321809346e-16
+297 4.18673509150342e-16
+298 4.18672144807409e-16
+299 4.18525277990184e-16
+300 4.18492011551843e-16
+301 4.18469947498256e-16
+302 4.18442746323308e-16
+303 4.18381584997844e-16
+304 4.18336031441103e-16
+305 4.18344359262212e-16
+306 4.18311409178216e-16
+307 4.18276261544244e-16
+308 4.18159118242134e-16
+309 4.18034878990327e-16
+310 4.18027908533966e-16
+311 4.17872213645833e-16
+312 4.17818682672352e-16
+313 4.17699460564266e-16
+314 4.17709958209621e-16
+315 2.85567831680655e-16
+316 4.17477187839178e-16
+317 4.17465557546363e-16
+318 4.17444111264102e-16
+319 4.17412354205297e-16
+320 4.17371213560738e-16
+321 4.17192313235505e-16
+322 4.1708215536535e-16
+323 4.17108467459851e-16
+324 4.17112328484713e-16
+325 4.16966107901452e-16
+326 4.17064555402633e-16
+327 4.17008845670969e-16
+328 4.16982225928534e-16
+329 4.17046823154292e-16
+330 4.16949884779095e-16
+331 4.16828137719309e-16
+332 4.16773444345861e-16
+333 4.16677599451257e-16
+334 4.16638318180451e-16
+335 4.16648259811438e-16
+336 4.16564769765849e-16
+337 4.16553319171448e-16
+338 4.16501717382018e-16
+339 4.16374737803361e-16
+340 4.16335172205193e-16
+341 4.16227123216212e-16
+342 4.16220034387734e-16
+343 4.16230487383661e-16
+344 4.160790524907e-16
+345 4.16011134397701e-16
+346 4.16069942609371e-16
+347 4.16201313531252e-16
+348 4.16027836282568e-16
+349 4.15920356250086e-16
+350 4.15844335896428e-16
+351 4.15884426495433e-16
+352 4.15852580905102e-16
+353 4.15812123685458e-16
+354 4.15689411123669e-16
+355 4.15580525705744e-16
+356 4.15569695632212e-16
+357 4.15560526326505e-16
+358 4.15436586496643e-16
+359 4.15289211805025e-16
+360 4.15233199199643e-16
+361 4.15218137113165e-16
+362 4.15295536185405e-16
+363 4.15110531536646e-16
+364 4.15109322421726e-16
+365 4.15069413527332e-16
+366 4.14964677179374e-16
+367 4.14981097573032e-16
+368 4.14973192639816e-16
+369 4.14895885864369e-16
+370 4.14979784784296e-16
+371 4.14917257597037e-16
+372 4.14838221093916e-16
+373 4.14850004966114e-16
+374 4.14768704736629e-16
+375 4.14737644931654e-16
+376 4.14715594620727e-16
+377 4.14677093514847e-16
+378 4.14517229523159e-16
+379 4.14585286154463e-16
+380 4.14514611488623e-16
+381 4.14391582279151e-16
+382 4.14266731060818e-16
+383 4.14266937364996e-16
+384 4.14226504621985e-16
+385 4.14215279294068e-16
+386 4.14204378600603e-16
+387 4.14111827722369e-16
+388 4.14107833624011e-16
+389 4.14158565122272e-16
+390 4.14148752063313e-16
+391 4.14094579425872e-16
+392 4.14076983339476e-16
+393 4.14002925435668e-16
+394 4.14040109065193e-16
+395 4.13918868924392e-16
+396 4.13956932264529e-16
+397 4.13920655360728e-16
+398 4.13893079442743e-16
+399 4.13910834465044e-16
+400 4.13699658962402e-16
+401 4.1372669197426e-16
+402 4.13664636710962e-16
+403 4.13679639102129e-16
+404 4.13643545638207e-16
+405 4.13515210720449e-16
+406 4.13518585086725e-16
+407 4.13401741781872e-16
+408 4.13372399049731e-16
+409 4.13247533969814e-16
+410 4.13241396223684e-16
+411 4.13183894789042e-16
+412 4.13055149201559e-16
+413 4.1302600516945e-16
+414 4.12943718333426e-16
+415 4.12894490014726e-16
+416 4.12910175820661e-16
+417 4.12865238775837e-16
+418 4.12798667297487e-16
+419 4.12763565664593e-16
+420 4.12832998064044e-16
+421 4.12776684237653e-16
+422 4.12758509163277e-16
+423 4.12632469336064e-16
+424 4.12568041868654e-16
+425 4.12523287477612e-16
+426 4.12320976325633e-16
+427 4.12355476360448e-16
+428 4.12384168859614e-16
+429 4.12451361318675e-16
+430 4.12434159192227e-16
+431 4.12480969060586e-16
+432 4.12469327872186e-16
+433 4.12444005649333e-16
+434 4.1234703262647e-16
+435 4.12237674555291e-16
+436 4.12233581892311e-16
+437 4.12240946016965e-16
+438 4.12164564009071e-16
+439 4.12091775402375e-16
+440 4.1202731188181e-16
+441 4.12112635106932e-16
+442 4.12034654910005e-16
+443 4.11982130131583e-16
+444 4.1196469300621e-16
+445 4.1183817000927e-16
+446 4.11748620298523e-16
+447 4.11746541930157e-16
+448 4.11845579711999e-16
+449 4.1176722961832e-16
+450 4.11693725238666e-16
+451 4.11515514886485e-16
+452 4.11460156895828e-16
+453 4.11427476216318e-16
+454 4.11490525774214e-16
+455 4.11381173614289e-16
+456 4.11267583705838e-16
+457 4.11204696909894e-16
+458 4.11091700137919e-16
+459 4.10963269905058e-16
+460 4.10973413677647e-16
+461 4.10880718284353e-16
+462 4.10770201220359e-16
+463 4.10634151769792e-16
+464 4.10604984382077e-16
+465 4.10553287153279e-16
+466 4.10520036396503e-16
+467 4.10447695568083e-16
+468 4.10354240856264e-16
+469 4.10237997691248e-16
+470 4.10221528413831e-16
+471 4.10111808363946e-16
+472 4.10113082572705e-16
+473 4.09971921495496e-16
+474 4.10016605241481e-16
+475 4.10046313134055e-16
+476 4.10003603840501e-16
+477 4.09925823116011e-16
+478 4.09757343315601e-16
+479 4.09619156713499e-16
+480 4.0961406834267e-16
+481 4.09538864892822e-16
+482 4.09399341170717e-16
+483 4.09394355602967e-16
+484 4.0933987962115e-16
+485 4.09286180235633e-16
+486 4.09274456314222e-16
+487 4.091268203392e-16
+488 4.08979248566792e-16
+489 4.08997720832156e-16
+490 4.09071620582006e-16
+491 4.08988080579888e-16
+492 4.08979567728346e-16
+493 4.0884772073542e-16
+494 4.08950784047632e-16
+495 4.08904621173151e-16
+496 4.08751311245635e-16
+497 4.08792782323396e-16
+498 4.08733227930995e-16
+499 4.08699300895397e-16
 };
 \addlegendentry{R Channel Error}
 \addplot [semithick, green01270]
 table {%
-0 0
-1 0
-2 0
-3 0
-4 0
-5 0
-6 0
-7 0
-8 0
-9 0
-10 0
-11 0
-12 0
-13 0
-14 0
-15 0
-16 0
-17 0
-18 0
-19 0
-20 0
-21 0
-22 0
-23 0
-24 0
-25 0
-26 0
-27 0
-28 0
-29 0
-30 0
-31 0
-32 0
-33 0
-34 0
-35 0
-36 0
-37 0
-38 0
-39 0
-40 0
-41 0
-42 0
-43 0
-44 0
-45 0
-46 0
-47 0
-48 0
-49 0
-50 0
-51 0
-52 0
-53 0
-54 0
-55 0
-56 0
-57 0
-58 0
-59 0
-60 0
-61 0
-62 0
-63 0
-64 0
-65 0
-66 0
-67 0
-68 0
-69 0
-70 0
-71 0
-72 0
-73 0
-74 0
-75 0
-76 0
-77 0
-78 0
-79 0
-80 0
-81 0
-82 0
-83 0
-84 0
-85 0
-86 0
-87 0
-88 0
-89 0
-90 0
-91 0
-92 0
-93 0
-94 0
-95 0
-96 0
-97 0
-98 0
-99 0
-100 0
-101 0
-102 0
-103 0
-104 0
-105 0
-106 0
-107 0
-108 0
-109 0
-110 0
-111 0
-112 0
-113 0
-114 0
-115 0
-116 0
-117 0
-118 0
-119 0
-120 0
-121 0
-122 0
-123 0
-124 0
-125 0
-126 0
-127 0
-128 0
-129 0
-130 0
-131 0
-132 0
-133 0
-134 0
-135 0
-136 0
-137 0
-138 0
-139 0
-140 0
-141 0
-142 0
-143 0
-144 0
-145 0
-146 0
-147 0
-148 0
-149 0
-150 0
-151 0
-152 0
-153 0
-154 0
-155 0
-156 0
-157 0
-158 0
-159 0
-160 0
-161 0
-162 0
-163 0
-164 0
-165 0
-166 0
-167 0
-168 0
-169 0
-170 0
-171 0
-172 0
-173 0
-174 0
-175 0
-176 0
-177 0
-178 0
-179 0
-180 0
-181 0
-182 0
-183 0
-184 0
-185 0
-186 0
-187 0
-188 0
-189 0
-190 0
-191 0
-192 0
-193 0
-194 0
-195 0
-196 0
-197 0
-198 0
-199 0
-200 0
-201 0
-202 0
-203 0
-204 0
-205 0
-206 0
-207 0
-208 0
-209 0
-210 0
-211 0
-212 0
-213 0
-214 0
-215 0
-216 0
-217 0
-218 0
-219 0
-220 0
-221 0
-222 0
-223 0
-224 0
-225 0
-226 0
-227 0
-228 0
-229 0
-230 0
-231 0
-232 0
-233 0
-234 0
-235 0
-236 0
-237 0
-238 0
-239 0
-240 0
-241 0
-242 0
-243 0
-244 0
-245 0
-246 0
-247 0
-248 0
-249 0
-250 0
-251 0
-252 0
-253 0
-254 0
-255 0
-256 0
-257 0
-258 0
-259 0
-260 0
-261 0
-262 0
-263 0
-264 0
-265 0
-266 0
-267 0
-268 0
-269 0
-270 0
-271 0
-272 0
-273 0
-274 0
-275 0
-276 0
-277 0
-278 0
-279 0
-280 0
-281 0
-282 0
-283 0
-284 0
-285 0
-286 0
-287 0
-288 0
-289 0
-290 0
-291 0
-292 0
-293 0
-294 0
-295 0
-296 0
-297 0
-298 0
-299 0
-300 0
-301 0
-302 0
-303 0
-304 0
-305 0
-306 0
-307 0
-308 0
-309 0
-310 0
-311 0
-312 0
-313 0
-314 0
-315 0
-316 0
-317 0
-318 0
-319 0
-320 0
-321 0
-322 0
-323 0
-324 0
-325 0
-326 0
-327 0
-328 0
-329 0
-330 0
-331 0
-332 0
-333 0
-334 0
-335 0
-336 0
-337 0
-338 0
-339 0
-340 0
-341 0
-342 0
-343 0
-344 0
-345 0
-346 0
-347 0
-348 0
-349 0
-350 0
-351 0
-352 0
-353 0
-354 0
-355 0
-356 0
-357 0
-358 0
-359 0
-360 0
-361 0
-362 0
-363 0
-364 0
-365 0
-366 0
-367 0
-368 0
-369 0
-370 0
-371 0
-372 0
-373 0
-374 0
-375 0
-376 0
-377 0
-378 0
-379 0
-380 0
-381 0
-382 0
-383 0
-384 0
-385 0
-386 0
-387 0
-388 0
-389 0
-390 0
-391 0
-392 0
-393 0
-394 0
-395 0
-396 0
-397 0
-398 0
-399 0
-400 0
-401 0
-402 0
-403 0
-404 0
-405 0
-406 0
-407 0
-408 0
-409 0
-410 0
-411 0
-412 0
-413 0
-414 0
-415 0
-416 0
-417 0
-418 0
-419 0
-420 0
-421 0
-422 0
-423 0
-424 0
-425 0
-426 0
-427 0
-428 0
-429 0
-430 0
-431 0
-432 0
-433 0
-434 0
-435 0
-436 0
-437 0
-438 0
-439 0
-440 0
-441 0
-442 0
-443 0
-444 0
-445 0
-446 0
-447 0
-448 0
-449 0
-450 0
-451 0
-452 0
-453 0
-454 0
-455 0
-456 0
-457 0
-458 0
-459 0
-460 0
-461 0
-462 0
-463 0
-464 0
-465 0
-466 0
-467 0
-468 0
-469 0
-470 0
-471 0
-472 0
-473 0
-474 0
-475 0
-476 0
-477 0
-478 0
-479 0
-480 0
-481 0
-482 0
-483 0
-484 0
-485 0
-486 0
-487 0
-488 0
-489 0
-490 0
-491 0
-492 0
-493 0
-494 0
-495 0
-496 0
-497 0
-498 0
-499 0
+0 1.00095014178353
+1 1.67087098235772
+2 1.24701982732465
+3 1.0285957768824
+4 1.43005915083823
+5 1.03934989258295
+6 1.36092052523279
+7 1.05290484740549
+8 1.31960983473312
+9 1.22068167724216
+10 1.24789297426872
+11 1.22715156893451
+12 1.22201751932254
+13 1.20974782471849
+14 1.19867753703325
+15 1.18570964620883
+16 1.1719402192376
+17 1.15684077135662
+18 1.1404346211364
+19 1.12249817654727
+20 1.10281892272665
+21 1.08109684081357
+22 1.05694007526273
+23 1.02980744285062
+24 0.99898198660717
+25 0.963466069176554
+26 0.921902680342581
+27 0.872364078964801
+28 0.812087103832484
+29 0.737307099010209
+30 0.643596843160304
+31 0.528459734581391
+32 0.39788574277044
+33 0.272670531274854
+34 0.175374334390435
+35 0.11071046527583
+36 0.0704027173053537
+37 0.0454782048487208
+38 0.0298614655119067
+39 0.0198990763930201
+40 0.0134302390322869
+41 0.00916339544657805
+42 0.00631056019556702
+43 0.00438084116505697
+44 0.00306238561256629
+45 0.00215372817663484
+46 0.00152275363612124
+47 0.0010816940533992
+48 0.00077158223335908
+49 0.000552410535239181
+50 0.000396797318288127
+51 0.000285857220574559
+52 0.000206475316682028
+53 0.000149487948174554
+54 0.000108456946824746
+55 7.88365565734046e-05
+56 5.74028331713698e-05
+57 4.18600685643528e-05
+58 3.05675850037058e-05
+59 2.23489846795012e-05
+60 1.63582659121828e-05
+61 1.19854010192503e-05
+62 8.78945313410378e-06
+63 6.45101117168508e-06
+64 4.73824049644588e-06
+65 3.48257180793689e-06
+66 2.56123977264853e-06
+67 1.88470732994981e-06
+68 1.38758630208899e-06
+69 1.0220675870321e-06
+70 7.53157628613565e-07
+71 5.55218203885961e-07
+72 4.09448750485722e-07
+73 3.02051729000214e-07
+74 2.22893888638312e-07
+75 1.64528183532376e-07
+76 1.21478379116748e-07
+77 8.97152630766993e-08
+78 6.6272788358644e-08
+79 4.89665282643175e-08
+80 3.61870155794313e-08
+81 2.67479425884043e-08
+82 1.97745874306172e-08
+83 1.46217592703662e-08
+84 1.08134203931308e-08
+85 7.99823700117436e-09
+86 5.91684175010212e-09
+87 4.37771218887007e-09
+88 3.23939077138917e-09
+89 2.39737461614384e-09
+90 1.77444539689504e-09
+91 1.31353449737508e-09
+92 9.72457271945529e-10
+93 7.20025734829892e-10
+94 5.33178136475269e-10
+95 3.94858930922832e-10
+96 2.92452624611932e-10
+97 2.16626563251246e-10
+98 1.60475713345908e-10
+99 1.18890515861927e-10
+100 8.80895400481113e-11
+101 6.52739234308485e-11
+102 4.83718173437908e-11
+103 3.58493699426836e-11
+104 2.65708992290445e-11
+105 1.96954452500528e-11
+106 1.46002210579683e-11
+107 1.08239663967834e-11
+108 8.02502043306317e-12
+109 5.95028702563256e-12
+110 4.41226051590749e-12
+111 3.27201458674897e-12
+112 2.426607955186e-12
+113 1.79975675426141e-12
+114 1.33492610280747e-12
+115 9.90214648073855e-13
+116 7.34564110345244e-13
+117 5.44951645500215e-13
+118 4.04309194548874e-13
+119 2.99982772104168e-13
+120 2.22589941987612e-13
+121 1.65173682300546e-13
+122 1.22575303555755e-13
+123 9.09683757718072e-14
+124 6.75156013010782e-14
+125 5.01123352586085e-14
+126 3.71972306408894e-14
+127 2.76126898263935e-14
+128 2.04993486041685e-14
+129 1.52200162116e-14
+130 1.13191741494884e-14
+131 8.39380013075911e-15
+132 6.23636899303264e-15
+133 4.63604237741327e-15
+134 3.4495909535446e-15
+135 2.5711414393115e-15
+136 1.92222825056771e-15
+137 1.44473662596564e-15
+138 1.09573412981502e-15
+139 8.43979557939711e-16
+140 6.65490219689436e-16
+141 5.4270055865108e-16
+142 4.61217831470621e-16
+143 4.09260244245718e-16
+144 3.77596832278813e-16
+145 3.58801036128357e-16
+146 3.47928035230066e-16
+147 3.4169393976515e-16
+148 3.38220793631162e-16
+149 3.36203376467721e-16
+150 3.35166184892723e-16
+151 3.34479329679099e-16
+152 3.34127817088468e-16
+153 3.33917269534378e-16
+154 3.33849945042583e-16
+155 3.33676088740873e-16
+156 3.33706988427376e-16
+157 3.33679813901632e-16
+158 3.33663450083346e-16
+159 3.33646076290167e-16
+160 3.33645030651952e-16
+161 3.33568397426375e-16
+162 3.33585799144145e-16
+163 3.33554873542117e-16
+164 3.33445048695844e-16
+165 3.33507943036892e-16
+166 3.33377095921546e-16
+167 3.33408666449998e-16
+168 3.3336500650198e-16
+169 3.33392358110428e-16
+170 3.33343022763487e-16
+171 3.33376140274012e-16
+172 3.33476685995579e-16
+173 3.33438343938873e-16
+174 3.33424056685638e-16
+175 3.3338157201302e-16
+176 3.33397869997209e-16
+177 3.33415219354136e-16
+178 3.33482159423876e-16
+179 3.33454217459931e-16
+180 3.33504587135935e-16
+181 3.33529865647318e-16
+182 3.33546036101442e-16
+183 3.3354383056538e-16
+184 3.33604531097818e-16
+185 3.33691402351458e-16
+186 3.33667562162265e-16
+187 3.33634273646391e-16
+188 3.33601389803803e-16
+189 3.33657030049249e-16
+190 3.33643332783218e-16
+191 3.33568326568692e-16
+192 3.33567101100773e-16
+193 3.336041453608e-16
+194 3.33530657557776e-16
+195 3.33609679070763e-16
+196 3.33593195914397e-16
+197 3.33601337190567e-16
+198 3.33605680461853e-16
+199 3.33563339697989e-16
+200 3.33518546056358e-16
+201 3.33545710633547e-16
+202 3.33494343395991e-16
+203 3.33519510393333e-16
+204 3.33542115121717e-16
+205 3.33601243043252e-16
+206 3.33642211149316e-16
+207 3.33646904185913e-16
+208 3.33596416018085e-16
+209 3.336592455957e-16
+210 3.33656537955517e-16
+211 3.33695098603899e-16
+212 3.3365043281671e-16
+213 3.3361285204822e-16
+214 3.33726594550195e-16
+215 3.3370134763644e-16
+216 3.33708260805353e-16
+217 3.33763156670421e-16
+218 3.33811610900387e-16
+219 3.33820567761685e-16
+220 3.33825020290369e-16
+221 3.33858126729864e-16
+222 3.33890227791992e-16
+223 3.33878048204808e-16
+224 3.3388406349943e-16
+225 3.33855327365372e-16
+226 3.33822693286105e-16
+227 3.33758641132821e-16
+228 3.33779331104508e-16
+229 3.33828231974304e-16
+230 3.33818787437261e-16
+231 3.3374980753776e-16
+232 3.33816806843774e-16
+233 3.338126413109e-16
+234 3.33695607634297e-16
+235 3.33589081098575e-16
+236 3.33517955266029e-16
+237 3.33577720962249e-16
+238 3.33750304368629e-16
+239 3.33701675374811e-16
+240 3.3370940741206e-16
+241 3.33707649531792e-16
+242 3.33639781240105e-16
+243 3.33646967948197e-16
+244 3.3355273866421e-16
+245 3.3357462905209e-16
+246 3.33565346534189e-16
+247 3.33618798244268e-16
+248 3.33594731703782e-16
+249 3.33622277658175e-16
+250 3.33630368084826e-16
+251 3.33621791853507e-16
+252 3.3363871572623e-16
+253 3.3374557776666e-16
+254 3.33778154225118e-16
+255 3.33734705335241e-16
+256 3.33721823116952e-16
+257 3.33697105067816e-16
+258 3.33669874229618e-16
+259 3.33534613352197e-16
+260 3.33622426199177e-16
+261 3.33584194376128e-16
+262 3.3364310212979e-16
+263 3.33583128675121e-16
+264 3.33664174839199e-16
+265 3.33629376291543e-16
+266 3.33567806287925e-16
+267 3.33530248715284e-16
+268 3.33645832646662e-16
+269 3.33572915557088e-16
+270 3.33534382716134e-16
+271 3.33592671192308e-16
+272 3.33569583342017e-16
+273 3.33673049905508e-16
+274 3.33693764221594e-16
+275 3.33626232264016e-16
+276 3.33614512397173e-16
+277 3.3361976245838e-16
+278 3.33701440215676e-16
+279 3.33608646903111e-16
+280 3.337267185519e-16
+281 3.33767600838994e-16
+282 3.33761990474158e-16
+283 3.3385517292799e-16
+284 3.33861865855299e-16
+285 3.33808839094087e-16
+286 3.33808029635283e-16
+287 3.33801077960735e-16
+288 3.33817818977493e-16
+289 3.3390796697474e-16
+290 3.33889345567866e-16
+291 3.33902680377937e-16
+292 3.33872832894937e-16
+293 3.33954151982716e-16
+294 3.3393563706384e-16
+295 3.33944209773982e-16
+296 3.34024869242581e-16
+297 3.33986836223098e-16
+298 3.33949231612461e-16
+299 3.33947086673943e-16
+300 3.3402485554027e-16
+301 3.34031753273747e-16
+302 3.34086561129894e-16
+303 3.33980943838311e-16
+304 3.34009083499973e-16
+305 3.33992992786167e-16
+306 3.33974907965725e-16
+307 3.34017944249183e-16
+308 3.34043331094718e-16
+309 3.34084098244389e-16
+310 3.33991352893198e-16
+311 3.34015780777977e-16
+312 3.34082292292702e-16
+313 3.33962876854236e-16
+314 3.3397074278059e-16
+315 3.34057273900923e-16
+316 3.34167354429282e-16
+317 3.34141798849943e-16
+318 3.34214716363063e-16
+319 3.34095686125334e-16
+320 3.34153854767289e-16
+321 3.34235185077966e-16
+322 3.34256341449085e-16
+323 3.34244764167619e-16
+324 3.34283127027395e-16
+325 3.34144885381958e-16
+326 3.34244420485725e-16
+327 3.34234435018906e-16
+328 3.34294010712503e-16
+329 3.34246573495697e-16
+330 3.34283404921332e-16
+331 3.34207286695158e-16
+332 3.3420017088116e-16
+333 3.34179204831091e-16
+334 3.34160440082576e-16
+335 3.34162193008357e-16
+336 3.34048588312652e-16
+337 3.34113703680879e-16
+338 3.34106762064268e-16
+339 3.34067681212378e-16
+340 3.3406736679503e-16
+341 3.34024820348246e-16
+342 3.34087022901759e-16
+343 3.34013855363036e-16
+344 3.34036294279771e-16
+345 3.34142495767134e-16
+346 3.34078164605559e-16
+347 3.34065801350673e-16
+348 3.34136947064809e-16
+349 3.34106569859357e-16
+350 3.34116201359643e-16
+351 3.34077098407454e-16
+352 3.34046689686099e-16
+353 3.34070168367921e-16
+354 3.34167350698262e-16
+355 3.34096806629869e-16
+356 3.34150719249428e-16
+357 3.34189137125842e-16
+358 3.34182858318805e-16
+359 3.34180281138215e-16
+360 3.34204379113828e-16
+361 3.34210494848848e-16
+362 3.34177682608993e-16
+363 3.34226680976175e-16
+364 3.34216027544247e-16
+365 3.34218729263814e-16
+366 3.34177850916428e-16
+367 3.34291997069252e-16
+368 3.34172482665574e-16
+369 3.34186913267183e-16
+370 3.34239804613244e-16
+371 3.34137389283514e-16
+372 3.34095533668589e-16
+373 3.34241330925594e-16
+374 3.34183546089406e-16
+375 3.34237523286415e-16
+376 3.34256925056535e-16
+377 3.34221330282841e-16
+378 3.3433605985497e-16
+379 3.34176993999912e-16
+380 3.34205817279403e-16
+381 3.34187447870572e-16
+382 3.34137799392659e-16
+383 3.34078765734149e-16
+384 3.34114797968884e-16
+385 3.34039843256429e-16
+386 3.34104893293893e-16
+387 3.34101249844516e-16
+388 3.3411994466679e-16
+389 3.341563988543e-16
+390 3.34198606747565e-16
+391 3.34240880937177e-16
+392 3.34158929663877e-16
+393 3.34166443139491e-16
+394 3.34152457489867e-16
+395 3.34126275238058e-16
+396 3.34165656120993e-16
+397 3.34206951815292e-16
+398 3.34139372638278e-16
+399 3.34170769873567e-16
+400 3.34083086657007e-16
+401 3.34299651372013e-16
+402 3.34234507136924e-16
+403 3.3422259027037e-16
+404 3.34098466419398e-16
+405 3.3426861732354e-16
+406 3.34296265717091e-16
+407 3.34333341405217e-16
+408 3.34359936744151e-16
+409 3.34341439031271e-16
+410 3.34338835315406e-16
+411 3.3434988400614e-16
+412 3.34368269084514e-16
+413 3.34321313346174e-16
+414 3.34431592745647e-16
+415 3.34379251276643e-16
+416 3.34476257063671e-16
+417 3.34389035957649e-16
+418 3.34527608032963e-16
+419 3.34508774196903e-16
+420 3.34469497599524e-16
+421 3.34548549199819e-16
+422 3.34532472699149e-16
+423 3.34509435717409e-16
+424 3.34595875741262e-16
+425 3.34595086728188e-16
+426 3.3462338658542e-16
+427 3.3467044901663e-16
+428 3.34622290179082e-16
+429 3.34532474415887e-16
+430 3.34540067273212e-16
+431 3.34536236884842e-16
+432 3.34565206813558e-16
+433 3.3454314755653e-16
+434 3.34584824689733e-16
+435 3.34578414681004e-16
+436 3.34657716940858e-16
+437 3.34649308343991e-16
+438 3.34687920861748e-16
+439 3.34641455793274e-16
+440 3.34695856922213e-16
+441 3.34671487350011e-16
+442 3.34709998191974e-16
+443 3.34681882287393e-16
+444 3.34674911869581e-16
+445 3.3475355013855e-16
+446 3.34766366580565e-16
+447 3.34773255115235e-16
+448 3.34746958272597e-16
+449 3.34734419927595e-16
+450 3.34795580015962e-16
+451 3.34843904802248e-16
+452 3.34907062458698e-16
+453 3.34920209309721e-16
+454 3.34896912580203e-16
+455 3.34926748569523e-16
+456 3.34923340685701e-16
+457 3.34973197629033e-16
+458 3.34958720589046e-16
+459 3.34894673013418e-16
+460 3.34838766946044e-16
+461 3.34873005840257e-16
+462 3.34809692709389e-16
+463 3.34843473118091e-16
+464 3.34939039409433e-16
+465 3.34945683116295e-16
+466 3.34995313168294e-16
+467 3.34828875928718e-16
+468 3.34837789068694e-16
+469 3.34861124661231e-16
+470 3.34912303752933e-16
+471 3.34877876835466e-16
+472 3.34945038751919e-16
+473 3.34998044096807e-16
+474 3.34967193261681e-16
+475 3.34956887033532e-16
+476 3.35023639700057e-16
+477 3.35074439517428e-16
+478 3.35064632701605e-16
+479 3.35134713845526e-16
+480 3.35173421006294e-16
+481 3.35140100898234e-16
+482 3.35200775453097e-16
+483 3.35162056075333e-16
+484 3.35132882855581e-16
+485 3.35134158972572e-16
+486 3.35157897605275e-16
+487 3.35225604793175e-16
+488 3.35188851564576e-16
+489 3.3521757504019e-16
+490 3.35196622675145e-16
+491 3.35242347355305e-16
+492 3.35211115472e-16
+493 3.35245133978469e-16
+494 3.35149820550809e-16
+495 3.35227506555142e-16
+496 3.35204878668292e-16
+497 3.35047552730695e-16
+498 3.35092808145873e-16
+499 3.35215807069823e-16
 };
 \addlegendentry{G Channel Error}
 \addplot [semithick, blue]
 table {%
-0 0
-1 0
-2 0
-3 0
-4 0
-5 0
-6 0
-7 0
-8 0
-9 0
-10 0
-11 0
-12 0
-13 0
-14 0
-15 0
-16 0
-17 0
-18 0
-19 0
-20 0
-21 0
-22 0
-23 0
-24 0
-25 0
-26 0
-27 0
-28 0
-29 0
-30 0
-31 0
-32 0
-33 0
-34 0
-35 0
-36 0
-37 0
-38 0
-39 0
-40 0
-41 0
-42 0
-43 0
-44 0
-45 0
-46 0
-47 0
-48 0
-49 0
-50 0
-51 0
-52 0
-53 0
-54 0
-55 0
-56 0
-57 0
-58 0
-59 0
-60 0
-61 0
-62 0
-63 0
-64 0
-65 0
-66 0
-67 0
-68 0
-69 0
-70 0
-71 0
-72 0
-73 0
-74 0
-75 0
-76 0
-77 0
-78 0
-79 0
-80 0
-81 0
-82 0
-83 0
-84 0
-85 0
-86 0
-87 0
-88 0
-89 0
-90 0
-91 0
-92 0
-93 0
-94 0
-95 0
-96 0
-97 0
-98 0
-99 0
-100 0
-101 0
-102 0
-103 0
-104 0
-105 0
-106 0
-107 0
-108 0
-109 0
-110 0
-111 0
-112 0
-113 0
-114 0
-115 0
-116 0
-117 0
-118 0
-119 0
-120 0
-121 0
-122 0
-123 0
-124 0
-125 0
-126 0
-127 0
-128 0
-129 0
-130 0
-131 0
-132 0
-133 0
-134 0
-135 0
-136 0
-137 0
-138 0
-139 0
-140 0
-141 0
-142 0
-143 0
-144 0
-145 0
-146 0
-147 0
-148 0
-149 0
-150 0
-151 0
-152 0
-153 0
-154 0
-155 0
-156 0
-157 0
-158 0
-159 0
-160 0
-161 0
-162 0
-163 0
-164 0
-165 0
-166 0
-167 0
-168 0
-169 0
-170 0
-171 0
-172 0
-173 0
-174 0
-175 0
-176 0
-177 0
-178 0
-179 0
-180 0
-181 0
-182 0
-183 0
-184 0
-185 0
-186 0
-187 0
-188 0
-189 0
-190 0
-191 0
-192 0
-193 0
-194 0
-195 0
-196 0
-197 0
-198 0
-199 0
-200 0
-201 0
-202 0
-203 0
-204 0
-205 0
-206 0
-207 0
-208 0
-209 0
-210 0
-211 0
-212 0
-213 0
-214 0
-215 0
-216 0
-217 0
-218 0
-219 0
-220 0
-221 0
-222 0
-223 0
-224 0
-225 0
-226 0
-227 0
-228 0
-229 0
-230 0
-231 0
-232 0
-233 0
-234 0
-235 0
-236 0
-237 0
-238 0
-239 0
-240 0
-241 0
-242 0
-243 0
-244 0
-245 0
-246 0
-247 0
-248 0
-249 0
-250 0
-251 0
-252 0
-253 0
-254 0
-255 0
-256 0
-257 0
-258 0
-259 0
-260 0
-261 0
-262 0
-263 0
-264 0
-265 0
-266 0
-267 0
-268 0
-269 0
-270 0
-271 0
-272 0
-273 0
-274 0
-275 0
-276 0
-277 0
-278 0
-279 0
-280 0
-281 0
-282 0
-283 0
-284 0
-285 0
-286 0
-287 0
-288 0
-289 0
-290 0
-291 0
-292 0
-293 0
-294 0
-295 0
-296 0
-297 0
-298 0
-299 0
-300 0
-301 0
-302 0
-303 0
-304 0
-305 0
-306 0
-307 0
-308 0
-309 0
-310 0
-311 0
-312 0
-313 0
-314 0
-315 0
-316 0
-317 0
-318 0
-319 0
-320 0
-321 0
-322 0
-323 0
-324 0
-325 0
-326 0
-327 0
-328 0
-329 0
-330 0
-331 0
-332 0
-333 0
-334 0
-335 0
-336 0
-337 0
-338 0
-339 0
-340 0
-341 0
-342 0
-343 0
-344 0
-345 0
-346 0
-347 0
-348 0
-349 0
-350 0
-351 0
-352 0
-353 0
-354 0
-355 0
-356 0
-357 0
-358 0
-359 0
-360 0
-361 0
-362 0
-363 0
-364 0
-365 0
-366 0
-367 0
-368 0
-369 0
-370 0
-371 0
-372 0
-373 0
-374 0
-375 0
-376 0
-377 0
-378 0
-379 0
-380 0
-381 0
-382 0
-383 0
-384 0
-385 0
-386 0
-387 0
-388 0
-389 0
-390 0
-391 0
-392 0
-393 0
-394 0
-395 0
-396 0
-397 0
-398 0
-399 0
-400 0
-401 0
-402 0
-403 0
-404 0
-405 0
-406 0
-407 0
-408 0
-409 0
-410 0
-411 0
-412 0
-413 0
-414 0
-415 0
-416 0
-417 0
-418 0
-419 0
-420 0
-421 0
-422 0
-423 0
-424 0
-425 0
-426 0
-427 0
-428 0
-429 0
-430 0
-431 0
-432 0
-433 0
-434 0
-435 0
-436 0
-437 0
-438 0
-439 0
-440 0
-441 0
-442 0
-443 0
-444 0
-445 0
-446 0
-447 0
-448 0
-449 0
-450 0
-451 0
-452 0
-453 0
-454 0
-455 0
-456 0
-457 0
-458 0
-459 0
-460 0
-461 0
-462 0
-463 0
-464 0
-465 0
-466 0
-467 0
-468 0
-469 0
-470 0
-471 0
-472 0
-473 0
-474 0
-475 0
-476 0
-477 0
-478 0
-479 0
-480 0
-481 0
-482 0
-483 0
-484 0
-485 0
-486 0
-487 0
-488 0
-489 0
-490 0
-491 0
-492 0
-493 0
-494 0
-495 0
-496 0
-497 0
-498 0
-499 0
+0 1.00080892856594
+1 1.67873881270839
+2 1.2472031771211
+3 1.02924823006483
+4 1.43248515430483
+5 1.03158624427673
+6 1.36765936084978
+7 1.02020196660541
+8 1.29222872345673
+9 1.11613644570851
+10 1.1798475510341
+11 1.11954314754296
+12 1.10799714087412
+13 1.0710595563865
+14 1.0392045404828
+15 0.999085436588158
+16 0.954406624516564
+17 0.901578895564351
+18 0.838806629473497
+19 0.762432895804866
+20 0.66834166106848
+21 0.553527992383412
+22 0.422099508368368
+23 0.292483839828798
+24 0.188745431153266
+25 0.118728731781192
+26 0.0750301470845583
+27 0.0481512140012844
+28 0.0314260297381783
+29 0.020827993606456
+30 0.013988994675338
+31 0.00950304937097007
+32 0.00651867475024762
+33 0.00450907929569475
+34 0.00314170733062904
+35 0.0022028893688406
+36 0.00155322691613581
+37 0.00110054965959159
+38 0.000783205076444335
+39 0.00055953078384845
+40 0.000401119344178461
+41 0.000288446452117461
+42 0.000207997602643454
+43 0.000150358793751799
+44 0.000108934732809625
+45 7.90811070332111e-05
+46 5.75122550212235e-05
+47 4.18939425884498e-05
+48 3.05615598127068e-05
+49 2.23239460230414e-05
+50 1.63260807651429e-05
+51 1.19524997518686e-05
+52 8.75904919765158e-06
+53 6.42446447319578e-06
+54 4.71588482414727e-06
+55 3.46420877676066e-06
+56 2.54642692426297e-06
+57 1.8729205382033e-06
+58 1.37830654656798e-06
+59 1.01482313723793e-06
+60 7.47540700139344e-07
+61 5.5088763804428e-07
+62 4.06125592666152e-07
+63 2.99511695013812e-07
+64 2.20958948044785e-07
+65 1.6305843236092e-07
+66 1.2036475411439e-07
+67 8.88732970389446e-08
+68 6.56374153947832e-08
+69 4.84878531812418e-08
+70 3.58269222848632e-08
+71 2.64774077915556e-08
+72 1.95715731303943e-08
+73 1.44695719316542e-08
+74 1.06994414371181e-08
+75 7.91294565637911e-09
+76 5.85306620523219e-09
+77 4.33005781180547e-09
+78 3.20380489967679e-09
+79 2.37081619702176e-09
+80 1.75463480067081e-09
+81 1.2987644427478e-09
+82 9.61450185571672e-10
+83 7.11826316130198e-10
+84 5.27072550976203e-10
+85 3.9031410864668e-10
+86 2.89070711597291e-10
+87 2.14110778838718e-10
+88 1.5860477945281e-10
+89 1.1749952136321e-10
+90 8.70556335536093e-11
+91 6.45056206505107e-11
+92 4.78010163021296e-11
+93 3.54253916741832e-11
+94 2.62560420618318e-11
+95 1.94616694469356e-11
+96 1.44266788832515e-11
+97 1.06951611012581e-11
+98 7.92943516636916e-12
+99 5.87936575921749e-12
+100 4.35964719246802e-12
+101 3.23298869189064e-12
+102 2.39766491349688e-12
+103 1.77829420386868e-12
+104 1.31901288550664e-12
+105 9.78417543076551e-13
+106 7.25819511087685e-13
+107 5.38470421955999e-13
+108 3.99506162998974e-13
+109 2.96423627714501e-13
+110 2.19952602526785e-13
+111 1.6321982719279e-13
+112 1.21127774426741e-13
+113 8.98959812271781e-14
+114 6.67211406915638e-14
+115 4.95236938804666e-14
+116 3.67610147703692e-14
+117 2.72888300940018e-14
+118 2.02588210792476e-14
+119 1.50408281961414e-14
+120 1.11676327014844e-14
+121 8.29258239775334e-15
+122 6.15847199090643e-15
+123 4.57437658333982e-15
+124 3.39880389596557e-15
+125 2.52653918112593e-15
+126 1.87978121496335e-15
+127 1.40127586721064e-15
+128 1.04800581908507e-15
+129 7.87111180217239e-16
+130 5.98050799206009e-16
+131 4.59653492767806e-16
+132 3.62375452363479e-16
+133 2.9516305370331e-16
+134 2.50445192475335e-16
+135 2.21712894364279e-16
+136 2.03996091796078e-16
+137 1.96675332831235e-16
+138 1.90640229835532e-16
+139 1.87213892663212e-16
+140 1.85086776509335e-16
+141 1.83935359768204e-16
+142 1.79787101136216e-16
+143 1.83064906255609e-16
+144 1.82788607381122e-16
+145 1.82545892082025e-16
+146 1.78868404449936e-16
+147 1.78875992180587e-16
+148 1.82481169858002e-16
+149 1.82412731943475e-16
+150 1.82360415988116e-16
+151 1.82483820549433e-16
+152 1.7873432507479e-16
+153 1.82394447143133e-16
+154 1.78686558479852e-16
+155 1.82425967111777e-16
+156 1.78628890057281e-16
+157 1.78580298828536e-16
+158 1.78645731666788e-16
+159 1.78669440624648e-16
+160 1.78755392655619e-16
+161 1.78633498811082e-16
+162 1.82233656881488e-16
+163 1.78489616044021e-16
+164 1.82194668482104e-16
+165 1.82311119092594e-16
+166 1.82329115672755e-16
+167 1.78679451828905e-16
+168 1.78739477899337e-16
+169 1.82283789985665e-16
+170 1.78653736950261e-16
+171 1.78597840197134e-16
+172 1.82283794260825e-16
+173 1.82287681674526e-16
+174 1.78745332438826e-16
+175 1.78669820488425e-16
+176 1.78665597650721e-16
+177 1.78644431862752e-16
+178 1.78474705119993e-16
+179 1.82283871197751e-16
+180 1.82312851508373e-16
+181 1.78698683014382e-16
+182 1.82239194069071e-16
+183 1.7867750490544e-16
+184 1.82311052427581e-16
+185 1.82186699265083e-16
+186 1.78625478728331e-16
+187 1.78675628628196e-16
+188 1.82385553715343e-16
+189 1.78544557741638e-16
+190 1.78520807853018e-16
+191 1.82206587507081e-16
+192 1.78474138292073e-16
+193 1.78488569372676e-16
+194 1.8222922736431e-16
+195 1.78511629292365e-16
+196 1.78634385239336e-16
+197 1.78642688424903e-16
+198 1.78468786581674e-16
+199 1.78532005479403e-16
+200 1.82195204962786e-16
+201 1.7854504676639e-16
+202 1.78439526874108e-16
+203 1.7849048108298e-16
+204 1.78528679056811e-16
+205 1.82198544003848e-16
+206 1.78568403520483e-16
+207 1.78588013584302e-16
+208 1.8214776641337e-16
+209 1.82157168213141e-16
+210 1.82248202699347e-16
+211 1.78306070512943e-16
+212 1.78620451516997e-16
+213 1.78406734458183e-16
+214 1.78475405124204e-16
+215 1.8222983013077e-16
+216 1.78783561203914e-16
+217 1.78694120397978e-16
+218 1.82341211581638e-16
+219 1.82124328244263e-16
+220 1.78469467534906e-16
+221 1.82283749050096e-16
+222 1.82348578860811e-16
+223 1.78561824739437e-16
+224 1.82283562849341e-16
+225 1.78698517703488e-16
+226 1.82215707357897e-16
+227 1.82143991516924e-16
+228 1.78573729028112e-16
+229 1.7861883900186e-16
+230 1.78609274181555e-16
+231 1.78676616533098e-16
+232 1.82408985270492e-16
+233 1.82430383343395e-16
+234 1.82302767568115e-16
+235 1.78642210074748e-16
+236 1.78638617578649e-16
+237 1.78676258663871e-16
+238 1.82326250844685e-16
+239 1.78597269200339e-16
+240 1.78721375612255e-16
+241 1.78688818609153e-16
+242 1.7880400572667e-16
+243 1.82402527383497e-16
+244 1.78800643996874e-16
+245 1.82426528631766e-16
+246 1.8236045430471e-16
+247 1.78639309882169e-16
+248 1.78542869266741e-16
+249 1.78711266028457e-16
+250 1.82238478540258e-16
+251 1.78647692255251e-16
+252 1.78642512874387e-16
+253 1.78596972809618e-16
+254 1.78635294762919e-16
+255 1.78607777281359e-16
+256 1.78676506880452e-16
+257 1.78672884324344e-16
+258 1.78745166877168e-16
+259 1.78628086382454e-16
+260 1.82270510948332e-16
+261 1.82275985946701e-16
+262 1.82440167997843e-16
+263 1.78699644367534e-16
+264 1.78789544127442e-16
+265 1.78617422427144e-16
+266 1.78807073311107e-16
+267 1.78815394831571e-16
+268 1.78824114681758e-16
+269 1.78784142938203e-16
+270 1.82454165994929e-16
+271 1.82406163024165e-16
+272 1.82441069874711e-16
+273 1.78776826191827e-16
+274 1.78796365557684e-16
+275 1.78749505611547e-16
+276 1.82535207540033e-16
+277 1.78809213238773e-16
+278 1.78864694093273e-16
+279 1.82464330300133e-16
+280 1.82385714028789e-16
+281 1.82492327130045e-16
+282 1.78844933575196e-16
+283 1.82609977302331e-16
+284 1.82709256788769e-16
+285 1.78876113588329e-16
+286 1.78927448499167e-16
+287 1.78924310619634e-16
+288 1.789131591603e-16
+289 1.78829695146229e-16
+290 1.78927296547286e-16
+291 1.82658951816086e-16
+292 1.78908639303708e-16
+293 1.78753598763281e-16
+294 1.82696213128206e-16
+295 1.7871402653208e-16
+296 1.78785474873376e-16
+297 1.78796489010013e-16
+298 1.7874291471125e-16
+299 1.78780774683916e-16
+300 1.82433600965721e-16
+301 1.78673316685497e-16
+302 1.82434011233075e-16
+303 1.82558683333806e-16
+304 1.78784180940967e-16
+305 1.78839699159478e-16
+306 1.78745991024742e-16
+307 1.78931432546738e-16
+308 1.78774574524629e-16
+309 1.78935478247541e-16
+310 1.78867390267471e-16
+311 1.78852893614213e-16
+312 1.78886079096974e-16
+313 1.82564534494064e-16
+314 1.78767487092596e-16
+315 1.78747216246893e-16
+316 1.8257945332948e-16
+317 1.7889169974905e-16
+318 1.82609802543642e-16
+319 1.78577797715984e-16
+320 1.78685395817719e-16
+321 1.8250431108295e-16
+322 1.78844194165207e-16
+323 1.78759295783593e-16
+324 1.78703670381898e-16
+325 1.78785364252353e-16
+326 1.82599379580001e-16
+327 1.78776421964403e-16
+328 1.78730263995455e-16
+329 1.7883076440147e-16
+330 1.8264332887032e-16
+331 1.78782717784276e-16
+332 1.78843521658412e-16
+333 1.7891430434181e-16
+334 1.78884465497203e-16
+335 1.78872580645627e-16
+336 1.7888761760583e-16
+337 1.78959503660973e-16
+338 1.82631783729854e-16
+339 1.78899476458756e-16
+340 1.82567883794164e-16
+341 1.82471151093777e-16
+342 1.7879707097049e-16
+343 1.786195803722e-16
+344 1.78838493699225e-16
+345 1.78861003833599e-16
+346 1.78869897524225e-16
+347 1.82588387633736e-16
+348 1.78927716494164e-16
+349 1.78788286119447e-16
+350 1.78963070275107e-16
+351 1.82700021151675e-16
+352 1.82638120617893e-16
+353 1.78777825658993e-16
+354 1.78844038379366e-16
+355 1.7869291581793e-16
+356 1.8251552448981e-16
+357 1.78783325156548e-16
+358 1.78692310771947e-16
+359 1.78703460131248e-16
+360 1.78790989775099e-16
+361 1.78707860781357e-16
+362 1.78734575941623e-16
+363 1.78834911752703e-16
+364 1.7885834216792e-16
+365 1.82685816928363e-16
+366 1.79029305852415e-16
+367 1.78958179359421e-16
+368 1.78916574286344e-16
+369 1.78867417238254e-16
+370 1.78798722093914e-16
+371 1.78817292456351e-16
+372 1.78686124586652e-16
+373 1.78836387014537e-16
+374 1.82669134748321e-16
+375 1.82529397221289e-16
+376 1.82595360721842e-16
+377 1.78946399704827e-16
+378 1.7883884081939e-16
+379 1.78930548321806e-16
+380 1.78728280982713e-16
+381 1.78852711444716e-16
+382 1.78809624559062e-16
+383 1.78824134838312e-16
+384 1.82726149820712e-16
+385 1.78860009369295e-16
+386 1.7889074535747e-16
+387 1.7891011758885e-16
+388 1.82710728370843e-16
+389 1.7886969399613e-16
+390 1.78891294305019e-16
+391 1.78850968955698e-16
+392 1.78829741083777e-16
+393 1.82549279465673e-16
+394 1.7895458131074e-16
+395 1.78962027064354e-16
+396 1.7901814822519e-16
+397 1.82682491887727e-16
+398 1.78986971046727e-16
+399 1.82758622552422e-16
+400 1.82718802251846e-16
+401 1.82665878595183e-16
+402 1.79021838844963e-16
+403 1.78942742776939e-16
+404 1.78975762226464e-16
+405 1.82730860595558e-16
+406 1.82496820112293e-16
+407 1.78818288921037e-16
+408 1.78888506031967e-16
+409 1.78940593129217e-16
+410 1.7869232841249e-16
+411 1.78827180217946e-16
+412 1.78792584945971e-16
+413 1.78854359158213e-16
+414 1.78809573833739e-16
+415 1.7887744952089e-16
+416 1.82591128658623e-16
+417 1.78807179113269e-16
+418 1.82611959556705e-16
+419 1.82589762197574e-16
+420 1.82612352186991e-16
+421 1.78986467018271e-16
+422 1.78925781159883e-16
+423 1.79032103375811e-16
+424 1.78940797087463e-16
+425 1.79030387406278e-16
+426 1.79013545571334e-16
+427 1.79044227295335e-16
+428 1.82663415157991e-16
+429 1.78949526374766e-16
+430 1.82677225779182e-16
+431 1.789201858474e-16
+432 1.82546007852827e-16
+433 1.78773414616712e-16
+434 1.78825269681455e-16
+435 1.82528851299307e-16
+436 1.78879819251225e-16
+437 1.78926114672787e-16
+438 1.78766065835058e-16
+439 1.78839454310881e-16
+440 1.78796413980132e-16
+441 1.78923277610153e-16
+442 1.78893722807521e-16
+443 1.78942955239439e-16
+444 1.78893538972078e-16
+445 1.82698381934575e-16
+446 1.78859021665936e-16
+447 1.78945888105563e-16
+448 1.8262379830147e-16
+449 1.78951537361894e-16
+450 1.82803435966585e-16
+451 1.78943824530713e-16
+452 1.78915804476118e-16
+453 1.8276543967998e-16
+454 1.78869038317191e-16
+455 1.78832296589362e-16
+456 1.78877064399275e-16
+457 1.79028746962101e-16
+458 1.78990346769304e-16
+459 1.7891149368963e-16
+460 1.78913299488274e-16
+461 1.82758045005737e-16
+462 1.82722088772632e-16
+463 1.82582644347929e-16
+464 1.82540946197791e-16
+465 1.82606284528722e-16
+466 1.82648900613745e-16
+467 1.78777848907405e-16
+468 1.78662920875931e-16
+469 1.82604676181729e-16
+470 1.789157487474e-16
+471 1.78913298797481e-16
+472 1.79057891276602e-16
+473 1.78981108611748e-16
+474 1.79031086413828e-16
+475 1.78944502188943e-16
+476 1.78917122922829e-16
+477 1.78991222562785e-16
+478 1.82829307488095e-16
+479 1.78873551796801e-16
+480 1.78810390327786e-16
+481 1.82701188014687e-16
+482 1.78913606625991e-16
+483 1.82586719579231e-16
+484 1.82732066187003e-16
+485 1.82787510405743e-16
+486 1.78955782746841e-16
+487 1.78956837978142e-16
+488 1.78834215075669e-16
+489 1.78927513664217e-16
+490 1.78948993136464e-16
+491 1.8258287485053e-16
+492 1.7890416904319e-16
+493 1.78842630981417e-16
+494 1.82637897763382e-16
+495 1.78851928816544e-16
+496 1.79048635011326e-16
+497 1.79020405047322e-16
+498 1.78991024997428e-16
+499 1.82743868406999e-16
 };
 \addlegendentry{B Channel Error}
 \end{axis}
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_0_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_0_sat_phone.png
index 90da40c6dc1deea3fad1f337f904c7c7badab966..d3a104aca481c30a7bf855083609df15715e1743 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_0_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_0_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_100_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_100_sat_phone.png
index 90c9f200f67e0f52f425b948d7758d9165ff6fb5..bfdd198b67bf1c4a1ed08695bd038fb6247fe4dd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_100_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_100_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_101_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_101_sat_phone.png
index 1775fcd78db8843a462a7648297d9d5fccc55156..a77147f27a42a5346720282220507f9bb9bcabb3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_101_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_101_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_102_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_102_sat_phone.png
index ca3a6f6118139728d6ca691760a3943553ce5368..5db726edfceb3a9e62be623c0c4e9a09d6ad35b3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_102_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_102_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_103_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_103_sat_phone.png
index 9319a34d83aa7964d3d08cadef64e34844e00f84..ebc44eaf2660d8ada7c5a358583890157befe451 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_103_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_103_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_104_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_104_sat_phone.png
index 69a87e1a90f8fdb921507d0817698b3358cddf88..da011b79d0809cb7d59cfa9092f4479bccdc819a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_104_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_104_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_105_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_105_sat_phone.png
index b1a71a331f5dfddc6fb3066ff7c7b3a6952984a5..201a4aaf6aa4b42af32a62ed5664b1afbbb83a7d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_105_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_105_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_106_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_106_sat_phone.png
index 3fbc23a112d9ec9d07f2240b1c8a73ba671fd64f..ad095403927cbdd85384752c4023b0073dd79f10 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_106_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_106_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_107_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_107_sat_phone.png
index bc6f45483394091a46c863c4d98e5a218269ec01..366039b06c3bf9c70c7673cd79b4b8710ed12506 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_107_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_107_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_108_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_108_sat_phone.png
index 8144dd4aa84333ed86f9cbeb3398ff5ceb976f8e..4ad71381c35d404dcea3e1b5698465d1358b8bcf 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_108_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_108_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_109_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_109_sat_phone.png
index 3df76080355bd6e69a689d03d5834c49b07836b2..a9c7e239c39623f9f01142fbb7d5791bcbaf89e5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_109_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_109_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_10_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_10_sat_phone.png
index 4c02b0b0954f501c691b3dce049c7f56741b8e0c..611ac9511b54e4da423910c821733b987120a3ef 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_10_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_10_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_110_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_110_sat_phone.png
index 2e2c8061afa4f5c8dc8d3d7ec2a0caf67ceba417..ead1c98b5b47789ab034e492acfc4868cafe37c9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_110_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_110_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_111_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_111_sat_phone.png
index b50aad1b7ee49cac1f270403facbe913ea441dff..5c30a29a5ddca4c471aac4df9d73295a17d333dd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_111_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_111_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_112_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_112_sat_phone.png
index a2328df40f5247ac0b7f775191c4c778711d8dca..4ce6bc1b77076b38f9c9b842a05a89a2894e16b5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_112_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_112_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_113_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_113_sat_phone.png
index f68cc2f018db952b8c62e15e5681586dae679eaa..62bdf2880713f110dd5d01ceb3042d650817c75a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_113_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_113_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_114_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_114_sat_phone.png
index 683eac740395b25aa1bda20e7bcd59b81f9d5700..927a217a877f65cc0caf2dc5b4673180c3351d14 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_114_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_114_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_115_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_115_sat_phone.png
index f78058cbb57a5347b2b63b2a015d258e7b796bf6..8723bcaae32bb9cd85962a8ee1b7b5363fe3022d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_115_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_115_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_116_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_116_sat_phone.png
index f98e4d820a74b00eee66b0aaf4733ae5469a58a9..682f034d079184d7c1a27105fbde4ba486ae971d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_116_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_116_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_117_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_117_sat_phone.png
index 606aa8d4524b5d8112ada539b3a74afd84e4b575..b423622c88d41629a952874c2d38eb829129a42d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_117_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_117_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_118_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_118_sat_phone.png
index 3b6001724262cd238ff4ed31e34da97327891077..7aab994bddf5d7fb6b4bf968cb092fd2e287e2e3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_118_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_118_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_119_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_119_sat_phone.png
index 16d4f4e0cd230bda6613b327ced7b1d796241392..dcb8e4b83730921c80fa134e599fe13aa551f1d1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_119_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_119_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_11_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_11_sat_phone.png
index 448d9c2cfad75c15e3a15d0e7d7dd44512c8e34e..f1dcb57e932434f2f3c735650c2f204a16a9e284 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_11_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_11_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_120_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_120_sat_phone.png
index 38636948a4a556fcff7b4e5d4051ad723ea14705..a67493f78cb05af2b1d287ea01f4c51b4eae1096 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_120_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_120_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_121_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_121_sat_phone.png
index 626f54dfbe417937b30feae8089027d732b356b3..6844427d88b35e0f5f4d3725c3992e49b7abd110 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_121_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_121_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_122_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_122_sat_phone.png
index b40986b34ebe0e840e0a17be77db2e9d386eafa0..a50dbeb736f7e1c374a9429114057db9b857e9bd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_122_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_122_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_123_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_123_sat_phone.png
index 05a41a1cf2040596b533003654d96cc06f07a0f1..8be1a075a23e9ded7cf88a3a996dc679f5ce4265 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_123_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_123_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_124_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_124_sat_phone.png
index 51bf340196abeb1d8b1b1a06cf976ef40aab99cd..6fddfaba6beb92eff7a156ae142a0cfd89566e96 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_124_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_124_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_125_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_125_sat_phone.png
index aee079cebc8c6302d7e7ba2c8057f6958ee1f185..a5c0e5c1b7625112a3d415b9a529405f8fd0eb9b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_125_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_125_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_126_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_126_sat_phone.png
index 4667a6e96d0e1de44ac22f7b0c6b391d49b7483f..c4217aa12f002d2199b79cd5d23b7bc25dc8494e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_126_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_126_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_127_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_127_sat_phone.png
index 7c8b7fb6c3a8ce0e1858231fed81c6a747b58d52..57edb5d8ee37ad52707ad413e87181f9866883f3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_127_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_127_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_128_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_128_sat_phone.png
index 026f78fbab7b453c2e906eace667a9129bebb327..49c59443c78dc1a61f8b7b7a42af492f3d1b72db 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_128_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_128_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_129_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_129_sat_phone.png
index 14751ee5330a9a738108be5695e7b05399523841..95525ce96642cc2408722906f5b20323faec5f06 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_129_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_129_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_12_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_12_sat_phone.png
index f5228e1f77ae732edf0ced5886c5b94978d99897..db401e7bd723039ce0f110fe7ad5fd2de434950d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_12_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_12_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_130_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_130_sat_phone.png
index 1cc554ff1b4309c6cb7891a9723057d444430c8d..1e902ed28e2a5748c5ce988c6d0c2fb8968d79d4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_130_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_130_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_131_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_131_sat_phone.png
index feac5d13aee908924175e5e85a8449b3f1cfa2b4..d4ab6ceb590ae7cce8a14a5c9a171de4ec51fe40 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_131_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_131_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_132_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_132_sat_phone.png
index 9ad0117e0d8bbdfff47a7c7c675d092a0ea6cace..dc6e75ee31dc0986a694c7beaa5373d23c0520e4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_132_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_132_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_133_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_133_sat_phone.png
index 4f1092fbb35ef291bb265c895458fb7218c4a801..ab70b7d4ad33a6709d12460512bb9fa0b96ebded 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_133_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_133_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_134_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_134_sat_phone.png
index 39b6321f754113e087de4fb831b13189a8ce29ac..49292098727351e94d3b0b4eae31b9335a322daf 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_134_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_134_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_135_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_135_sat_phone.png
index 1325643ac05df60dc6ca2827ed029dcfa941da6d..82f514bc24788d735bd54ca195fb6badd1124008 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_135_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_135_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_136_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_136_sat_phone.png
index 5223afaf69cb6f90ca59cbca38a1a7c1b0dc65e1..c38ed545cfc7dacd56aa71743d4b82e276240572 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_136_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_136_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_137_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_137_sat_phone.png
index 0c557643d36ea47441bf3af072590adde09c1f70..9421e9b2d062d43f87a514755f4fdcf875d30e6b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_137_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_137_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_138_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_138_sat_phone.png
index c04245d50c15652e7b409240de6d8b7d6579e2e0..9b6fb3711758c43cc8dac3c983c15118d775b9c7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_138_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_138_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_139_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_139_sat_phone.png
index 9dbbaf022c9e80ff9a07056c79b573e598e81dbb..46e485b7ace12b63b4031856373dc9cf0725e462 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_139_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_139_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_13_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_13_sat_phone.png
index 9e2da6b67da449e9e18eb5bfc083e095db836811..7e7b3c320a097de026316e89829800afeb9636a0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_13_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_13_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_140_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_140_sat_phone.png
index 93dfbc0c788b08a4940735188d2b47a13e665e66..0a02e199d520984d4994a87141e68217453e9c5e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_140_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_140_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_141_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_141_sat_phone.png
index e54b1e4642be5b8a7e9512dc865abdcad341b6d7..009604ec6dc26e2e6d875fe089482c586b8fee47 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_141_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_141_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_142_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_142_sat_phone.png
index 72a116aeb54ea1aaf4037fe94e9e60e2a07b068b..ca97a727f838f7cf799783bd414d4e6a19898845 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_142_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_142_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_143_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_143_sat_phone.png
index eaab6afc8ef5d804b15b8dc7d754e250b76fd32c..f04e9d5c5ceb0171879928c328da81662bb28c7b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_143_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_143_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_144_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_144_sat_phone.png
index 8fe481cf52131e8efa3b7f2e50989054f7a746ed..2506f5eb34305fe351949d3fc2955a1d241eccf0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_144_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_144_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_145_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_145_sat_phone.png
index 835df3e74ff783a4ee5ff1f59c500b943951f1c2..d4c7d8405079734981eb9f4ed10c27ee46ce157f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_145_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_145_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_146_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_146_sat_phone.png
index a1de28072bc2aa0bfc31757ce5630b490920734d..fde38c969580ca1201859417e92009a64c544bbb 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_146_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_146_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_147_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_147_sat_phone.png
index de2f766d257969361047714efa76de7a8e2a7787..295635b6f73034cdc7f1826fb3cbcdf83d3e5f83 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_147_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_147_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_148_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_148_sat_phone.png
index d1d34ca6a09a1e1dcd7343677ce72542d30443f5..ae81a3c4e4fa879cd11a2b2e625a8f95409049c6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_148_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_148_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_149_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_149_sat_phone.png
index c0fec9c9f6dc6099917feff7563f9ed4ab937ecb..bb41d83a5a5295d0c10a294e661d2604403b5ea7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_149_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_149_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_14_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_14_sat_phone.png
index c205f734a946d98f2a54d50db9b4442aa2686d18..289e095a974ddb2b8643d2e776959a427efaa7ff 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_14_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_14_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_150_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_150_sat_phone.png
index 36107311862d8e139dc40a52a6b21c3eae8ac7b3..3011dfdd95a04b031b341cd28ce1e5e008640ac2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_150_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_150_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_151_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_151_sat_phone.png
index c6c654a5cf727c344e3a3cf851a2d21e2d844138..acfbe3e7076882cc522e1010fefdd0cbc2328b3c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_151_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_151_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_152_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_152_sat_phone.png
index f11ad5de811aee98f48774c0d1a3735e9a875eff..2909d80e3e6c0734ba461f46f30386af22c51533 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_152_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_152_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_153_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_153_sat_phone.png
index 0247c589fed34f965090631c54834a8c2b365701..14a8063d18ad0d95557471dc19e32d31c6b9ed68 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_153_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_153_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_154_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_154_sat_phone.png
index 9cc6db5ff6ef5f80d23f902188d7f87889d656ac..a591720a4c3771e2c2f81fabd212c0645ec02df6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_154_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_154_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_155_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_155_sat_phone.png
index 3455891946df1d4b72844369ebb70a9c7cddec3c..49c43e0024169a308fb27877229700d7f7245885 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_155_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_155_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_156_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_156_sat_phone.png
index 68a4c1d7b8770dceac27acd38da379ec83a28f7d..01b64e94c822072c02d660d37bf1f5454fcaced4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_156_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_156_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_157_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_157_sat_phone.png
index d3ab1b130a32be5275531543ad13adafdc33d098..399e1a339c7b18494a491fdc02394f55dc267b5a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_157_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_157_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_158_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_158_sat_phone.png
index d09b741abd84c32ac55da9fe25bb1c855d206f05..cc885a5fa9e1345961a8b10c2a943a57674fb955 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_158_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_158_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_159_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_159_sat_phone.png
index f4d569949b8c0491adcd5103e96f0c2987d3516a..7ff9c2c3433e1bae207540c3be44b9162af890a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_159_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_159_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_15_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_15_sat_phone.png
index 00e9065fdb27f8f061e909d34192c0c76c1e486d..190fdccf216d72791a140cf09d7937838d61e07e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_15_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_15_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_160_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_160_sat_phone.png
index 5b8470af86f7db21e01b09824863f52d0f94a5b5..942d94a9b4dca80ec56f40b7140a8d20c2082345 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_160_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_160_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_161_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_161_sat_phone.png
index d23f729711de3e1515acf8b1645f25f1b7557006..d136cfd8a56dbec374654e9080b4c3ed5e1443a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_161_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_161_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_162_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_162_sat_phone.png
index cc4369e0085415d8365faa0c0ae409293da84295..0cb62624d97e508f0d899f9ced3ab39e2373496d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_162_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_162_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_163_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_163_sat_phone.png
index e20184d5bc5b7e782b72df19facf2fca0e321ab6..00df82158cad05c32b242c21e6cadcfef9723d81 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_163_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_163_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_164_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_164_sat_phone.png
index 7bc6471a6e72aa1c299123d9a214a2240526b4d1..96ae8d8031335fd2ef2e6445813a713c0767d71b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_164_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_164_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_165_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_165_sat_phone.png
index 73486771ca45286912c6b85d67f366d8bc756e39..54fb5cd0550d5cebc1330e939e386c90cedf9b86 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_165_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_165_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_166_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_166_sat_phone.png
index e990a950d292efb72ce7336f885353c1abc341b5..be313579956da42c105e5c465ba4543160fbdfc8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_166_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_166_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_167_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_167_sat_phone.png
index a9d7a1e7ed92c46a866456eec4973d44379f5734..45d03bc97771c10dd9315b42f5664f62435d3606 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_167_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_167_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_168_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_168_sat_phone.png
index 3cfb5cd8182458f9e48054ee929cf34e49cf1887..365c0d946952aa5fe257b3d8fcfcfadc3f8c9404 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_168_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_168_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_169_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_169_sat_phone.png
index 5464aca34a5dd804a6f7864d52a338238c9192ba..55a63dda833a0bccdfa2a81e4f2f39149492d30c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_169_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_169_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_16_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_16_sat_phone.png
index 45f8116ee3a23ac4d24d59b83f018d24a788a4de..d19475bb4d68689fdb586158195c2629d6d744d6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_16_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_16_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_170_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_170_sat_phone.png
index 932c7378203a339c0e361d770af25692a9a792e2..165e752b07378d23251e2ef1a697e5ecd9b8cee1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_170_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_170_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_171_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_171_sat_phone.png
index b08f8b218994e92b43e29114c0e100e989c59d61..aab701afb5fc89ff3961b2fe2ed00fea68522d3a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_171_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_171_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_172_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_172_sat_phone.png
index ee50e22d9ed57f5da1d3bd979a3bb9a408720c99..2daf60a607817342bc932e6adc0ab6aa8d48228f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_172_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_172_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_173_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_173_sat_phone.png
index 9faac476c1fd40ab6262ed2df92cbaaeb9048650..d167d9c5b2b043e651e38c01f2511ed908ea1816 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_173_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_173_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_174_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_174_sat_phone.png
index 8c3f094a902a9c713695d2b898367517b21c0413..6fc8b53155d1168284dde50b9f4feb1af88bb46b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_174_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_174_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_175_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_175_sat_phone.png
index 4517c6364aad37df53b01c2646570f0f0a517906..bfea2141d304966039d7939f1d28a971fddd73f9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_175_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_175_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_176_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_176_sat_phone.png
index 5aaabf07e7c0c14250a478fec849c301c0c26ab0..31ca3d18500f7dba069b1b2a403a84980ea28c64 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_176_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_176_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_177_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_177_sat_phone.png
index ad956a36aff38a34a8ed9fd57312ec2fce7b91bd..7bd637f545d9e2fba024abe4346804c09fa47cf2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_177_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_177_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_178_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_178_sat_phone.png
index 54918bc26e04c624d62f745f3c861ca5cc7fcd85..bc2097c79ee35ae135fe829f02348e2a97dc8a3e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_178_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_178_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_179_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_179_sat_phone.png
index 9e68a77eede58c63f5ff8509da2b05c60472a84f..356a12c9b76b92ae59e4c6b524b9c530e54817f9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_179_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_179_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_17_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_17_sat_phone.png
index 3a392e1c36906280f9e502cfec60588332f91c84..2ccd10494a93c54ebdf75a5bc4c40d209a58a0d4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_17_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_17_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_180_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_180_sat_phone.png
index 46d6b932301916f1715d16ea958b32b4b54f576a..94506a6eb5eb90b4168672bfa0979e00784ef14a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_180_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_180_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_181_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_181_sat_phone.png
index cea77eec1a8e963e18b66301de2aec03532a4428..b493b89e0848d859aeac34936db8d9d7e9f6816d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_181_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_181_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_182_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_182_sat_phone.png
index a6417310752f09c93f80145b94be9d34646a8cdf..aa2a27ccff70097e01708e919e806dcf2387c37f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_182_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_182_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_183_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_183_sat_phone.png
index 547563c1da846f3c58d168f1a86e38c832b72e59..a3f169a98850efa548ca2bc817fd5348e2f6330d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_183_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_183_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_184_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_184_sat_phone.png
index cb641472701ad337530cc03be85a6fff5a8c3acb..56bba8325f6255f59d4cfdd25cb1cb53a4e11f19 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_184_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_184_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_185_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_185_sat_phone.png
index 32eaa65643c2db8a398b7b99301de0121c64cdf1..8156b6b05e975317f2b930a38518b213a7f3f405 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_185_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_185_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_186_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_186_sat_phone.png
index 82563ad4a48e0586131e417710aba26d78c59704..29fcc3d8a44c0750006d1b27cebaac39dc3ee24e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_186_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_186_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_187_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_187_sat_phone.png
index 0bd5a4835f57cea6ce1ff4ff856b223fea997fb2..66b6b8cbf2199d560cc4545d86c5d3d7b223e23f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_187_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_187_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_188_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_188_sat_phone.png
index b935807abfcc5f3c6b2a7ee943364e7d501ea850..4c4f5a656c2972f2bc8f5aca7c922abe26615ea9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_188_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_188_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_189_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_189_sat_phone.png
index e2b128544e4c377efed0ffe079dea351316a36f5..c5e455e2fee000bbb1224e7b052019dad6385fe9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_189_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_189_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_18_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_18_sat_phone.png
index 328de94e9c025f1c00d611a0ae658c21e76bf751..fdb7e5bc742a58c910e13cc7c19532ee0d141127 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_18_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_18_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_190_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_190_sat_phone.png
index 4887a7a2ad9b5e825059288b8bb4adfc4b285e9e..e28e8ede38843ec7ad9b8f87354c7a7cf3a3145e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_190_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_190_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_191_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_191_sat_phone.png
index 22fbc022fac4fd536b0a7cdac029fd44a716b876..ea6c106feb0b919ba74af1131b60d403d4749097 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_191_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_191_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_192_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_192_sat_phone.png
index 2f9adeb7e737f65408733ec2f48699565b12e781..fa3262828579042fb72e681e06b4d6549f16b6a5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_192_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_192_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_193_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_193_sat_phone.png
index 1fed6baa79c79bce0ef4e2ddae6eaa274683e1a5..7c5454b7af42e56343bcb83c8e8feaaf8f3a4ab9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_193_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_193_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_194_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_194_sat_phone.png
index 1386445fb9c13f1c279bf1a482dba4bdb2a87f9f..540411417bc04fc3a7c575c05682bbd4e159a8ac 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_194_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_194_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_195_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_195_sat_phone.png
index 2f2213aaa432b98d41a754130620e50485323a83..df5a044e3fe559acf48fd20c66ae0579ca41ad50 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_195_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_195_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_196_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_196_sat_phone.png
index bdc3ff77de1a1fe517705f2a02857d474eb9ab31..a11a7fec2285475dee4b7ea41d1caf1679718a94 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_196_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_196_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_197_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_197_sat_phone.png
index 1cf30979bf0bdfd9974b2cf1619506f32b4aa974..9daff69f8702163ba94b5c814cda5eb306f539c7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_197_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_197_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_198_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_198_sat_phone.png
index 9ec590ebde5e1887a229e65e565c647468c5d6a4..5dd10aa31bd4a4dd15cb2cb53a09c9ba4bf49836 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_198_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_198_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_199_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_199_sat_phone.png
index 12fcec9b2ae47ac966fa11860a55152c7cdd76ca..289b3bab9c11f80509a1f74ccb52800da4f10866 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_199_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_199_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_19_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_19_sat_phone.png
index 8befad5b92ff5027e70e1d116ddb4d3804767ba6..4a726653f6d910de6b7af84040c728a70e81f512 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_19_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_19_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_1_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_1_sat_phone.png
index 90da40c6dc1deea3fad1f337f904c7c7badab966..30191c783707940e941c0cf217c963dccddc9edc 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_1_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_1_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_200_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_200_sat_phone.png
index d5aae69fe9a6998c13e25d27aa617e65ffbb8e1a..64d328cbc6462a99a911d0d60887d480e8d77624 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_200_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_200_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_201_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_201_sat_phone.png
index 437a282b0813197d586639556f07b5379a547b71..c1045ed72d2213625c57def32563fe75878ed012 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_201_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_201_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_202_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_202_sat_phone.png
index 5c50dbe784791eafb48b3a0c14554df7d08e78d6..b5cd33baa43f51bf6dced63142983455f3917d39 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_202_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_202_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_203_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_203_sat_phone.png
index 1471d4a8d3d4d12fba4f37038a436df87592d40e..486bea1d0d0121ab4a857bad18dfbefade2ff875 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_203_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_203_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_204_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_204_sat_phone.png
index 90356a864019fe4b404c66972ffd70ebc9bec975..3317c920d4caefc265dc6b84827a1d292aa1343f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_204_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_204_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_205_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_205_sat_phone.png
index 4d96571a45c84f2e6c1366e420657deb200cc003..47b50f6dfd686c3136a37ff7052e246c96e64dc3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_205_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_205_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_206_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_206_sat_phone.png
index b6776f8cf051cae31330601a7a8edd4b51e60ada..a1b8c3840ed3e693c31de8ed22864f99deb1f0a1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_206_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_206_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_207_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_207_sat_phone.png
index 7f03fbde1de294aab1847cee2f4cb50017fd4d4c..8a8570fc53839ca2675d1397dfc52d7e8e4b7de9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_207_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_207_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_208_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_208_sat_phone.png
index 2047b4f9ead900c872444fa0de5b76a575fc6bd1..e1043efd0d1ae167a327f474baa4944b363ae0a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_208_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_208_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_209_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_209_sat_phone.png
index e97ffd0c889c59a3b72356fa49c81e07dc69eade..773314685d1027ecfcce87d1138697ca1101770c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_209_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_209_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_20_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_20_sat_phone.png
index 82a7ccfbd75a5b7b92de4d9c762ff2c9689d33c0..0c42902e410b6c8c7b3852881b804b2b8ce8efc8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_20_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_20_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_210_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_210_sat_phone.png
index f3cd0ec4871815a1ea23ce0b5a26dad88eebb16a..0db25ce3a1419d57d177af77ecab2a5e88da2b5d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_210_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_210_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_211_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_211_sat_phone.png
index cac6d3babdeeb3f1778ce5278216e935e63dfdca..44b569245487b79028c6bcee728583923ff2c204 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_211_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_211_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_212_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_212_sat_phone.png
index 53ec62acd9a3c27ad04ea9cc12bd058eafe11edc..4e46044ee0516be12d3a18023db558d8579d8699 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_212_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_212_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_213_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_213_sat_phone.png
index 8af6b23420d82ce3b0bdf974b05f1f92cfbab9d1..104c184750242113cd4d3305d5002d0fbc9695ee 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_213_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_213_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_214_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_214_sat_phone.png
index 03e02c3679e66aca89af674f1785a48a56c71d07..aad31995b7b933c342e4633e42084a2fba969633 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_214_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_214_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_215_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_215_sat_phone.png
index 72bd5fff3852a6caca216b2e4fde4d0889989907..96a7433082dd550fed96ca3b3791049c41f2f5f8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_215_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_215_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_216_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_216_sat_phone.png
index db509edd72751a7d95ff7360cfe556c6cac3f4ab..d0e06452c64e8f42a901ed19e7f45ac12d5b7f30 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_216_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_216_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_217_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_217_sat_phone.png
index e450858d4a67c79c8c00b86731ad9772f14eb41e..1ae0218eebc0d564ead50927e97997854a78244e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_217_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_217_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_218_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_218_sat_phone.png
index e5ff12de8cf7ba94db65d402a9d85cb4cb3cd2ca..ffb6f5639c0566d7ba8bbff8b2438b2687799c21 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_218_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_218_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_219_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_219_sat_phone.png
index 65ab34d5b4d634ff039d7bcac7027c2d2250dd30..f4b5939c10aadf460927abbec2aa63ade81b4dd8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_219_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_219_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_21_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_21_sat_phone.png
index e1c167139bc98993d0fe9e85a7a9adab8b785fdc..d1a45389b47094eaf7809da87a88f8d28983719b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_21_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_21_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_220_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_220_sat_phone.png
index eb522e444d9ef0505fc9a31eebc0db68cb0e7207..3ec9c3fa8b763a54a74ad325faee5a36c8f081a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_220_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_220_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_221_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_221_sat_phone.png
index 22c29c71966c55c4d27ce5e2a2668597268673ac..215fe124a6c546b70a25d78e8bf3444e0c31f69c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_221_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_221_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_222_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_222_sat_phone.png
index 55382ae9288f765a76a1a28380539b941c5f6562..835a7906df7feca783b96f49f3110fcbe3dd5f39 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_222_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_222_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_223_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_223_sat_phone.png
index 521bf0214ad46068d289f247e5b774a5c31fbd72..065cad05c6b6938d95ac4ec9f7041d706d745be9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_223_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_223_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_224_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_224_sat_phone.png
index b43c6b9a0cb7a6e174c0490d7be5c22796cc5f45..f02a25d437d2c26763edf1dcac8ba155e2f5b497 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_224_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_224_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_225_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_225_sat_phone.png
index 8fe57edb3a7c8e29dcbcd72e9e1a17ae099bba8b..e6419b2a3c21fb97d8a45d269e6696dbeb3aa436 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_225_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_225_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_226_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_226_sat_phone.png
index 69fa46d51e68b23cb2a71886246cac6b67686f3d..5ec46ef0f1910f5361cf4cef6fdf290daee8c8dd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_226_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_226_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_227_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_227_sat_phone.png
index d0ac0596f0a8b04d5abfc627eaf8e34f82540d50..1d814f181e868dfe1ecb6216476573f75e05c5d7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_227_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_227_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_228_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_228_sat_phone.png
index 8e02ce1e7abcddcc16c24195159081c6f743904a..79abe370318a0d588920bceb57d77124add82d8f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_228_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_228_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_229_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_229_sat_phone.png
index ece51f1b63a19c2e567141069c6be8f3ed1094ca..b71653506906a71a978ec68cb8f0988b80612a68 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_229_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_229_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_22_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_22_sat_phone.png
index 6ff4d2da581a6c7c4e00569ed0e8a7aa035ac574..26e25c5eef8abb81b294d88095d9b5facfa2bb6e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_22_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_22_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_230_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_230_sat_phone.png
index e136e8ed3bfa8a4f71fc4c3a6aff9315d1cbd50c..f173f9a2ac8ff24896df78b0f67eac61b126d182 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_230_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_230_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_231_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_231_sat_phone.png
index 85959d2d5c3d0bd335c00fac7fa97839ccd47907..9ebb01c4cbbcff5e8f91c8f6e4e3d17bc3a14f23 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_231_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_231_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_232_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_232_sat_phone.png
index 47751546073f45f2e07ea27cafcc6504fcf05204..bf58ee22efc397f398d50766e8e944764f8e9a43 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_232_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_232_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_233_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_233_sat_phone.png
index c4b523fb44abf6eadf6768aaeed407811f5e2406..61f61324c10d5ef3c4a5bf20f8b3eb15e5804ec9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_233_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_233_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_234_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_234_sat_phone.png
index de97022e606986bfbd8fa921197a0ac5c8a0f007..91623601e72f1c7d28fc7c0b87fab9f7345627fa 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_234_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_234_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_235_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_235_sat_phone.png
index 53fb75df0bccc233733db8e91a65b0cf2416703e..ffa21ba996845c28394c7c0194506ea9b8e72ef6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_235_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_235_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_236_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_236_sat_phone.png
index bb45440fc326c2d45c9322445aa53e5fb9542389..5c85f0cafa2397307b215aca0a2d46d9f8743d2a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_236_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_236_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_237_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_237_sat_phone.png
index d00d4d324450ed01737c19b4ca73e01e32007493..10b6f606cd655e36cb7de1b67efaba34c4e96002 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_237_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_237_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_238_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_238_sat_phone.png
index 6b21e40d53003f36ec3f9115459dac5c0c0126f9..07afe311d274952325fc4b07bdc98ccf37f62b0e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_238_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_238_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_239_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_239_sat_phone.png
index 5d33ad46236c51eccfce67fb7696f66718966915..de1f8aebf830ae7b66159785ae872b5d465e911c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_239_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_239_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_23_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_23_sat_phone.png
index f66752afb1083045fcb113dc20858606d034ec74..ff2cca04fb5067853b2ddc971d1faf403fceb031 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_23_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_23_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_240_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_240_sat_phone.png
index 42e43502b9d6bc8093037bfb0c8a07186e8cad53..ebb057812ddaf011d4e9f332055273dbb358bcc9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_240_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_240_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_241_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_241_sat_phone.png
index 5fec7d15305c23a94047c342f056ffa6ce0daa41..ba0a286be92dd60735301f31ea06913458c29d23 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_241_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_241_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_242_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_242_sat_phone.png
index e699f45c2ea87efe649f2c39c930ac6e804d971e..6deeb6c9ac74d50b5f23f50d2de071629c27b216 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_242_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_242_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_243_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_243_sat_phone.png
index 946b3fee4b4198a0302651b4233bb4d1f36025da..8bdee6159ba0f4f6802ae69b4051b6729cfc5ae4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_243_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_243_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_244_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_244_sat_phone.png
index e8a458c88f9eac9b85627af27421374d65c58c25..c4b22150109712b65339d868306ee51c7de612be 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_244_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_244_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_245_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_245_sat_phone.png
index 1c15bf7322378921067bb319e44ecc7996f716ef..02198d89f87f1925442c58a7e793f7f63441dc1a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_245_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_245_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_246_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_246_sat_phone.png
index b2c5e9345551851f3b36a63e13ceb32a48387a7b..bec1e02b71c0360131fd47eea0fb9580385ec49d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_246_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_246_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_247_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_247_sat_phone.png
index 119b8b02392d1d901fc388638540e21803016379..0cb2962190b6ab6278ba52c92ca58546c756e12b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_247_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_247_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_248_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_248_sat_phone.png
index 2fd921dfb99bb34957d7e3018c7e00106e2f0607..a9f84599f20a6082a1c626bb1aa84121abd7dff4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_248_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_248_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_249_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_249_sat_phone.png
index 0cedb81106d6dd5240358f5c7f2d38ee4f8c7e1a..123c799b136be9507c3a8da3adb99bca557f3182 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_249_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_249_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_24_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_24_sat_phone.png
index 411d4e8a2cc0de90db2f4879dbe12b510aade5ef..bd3cb7c9f4d9ba9750443c444950300488ae4d54 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_24_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_24_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_250_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_250_sat_phone.png
index 125195f9cce0df91528df5b0af047679797bf1b0..066b1baf0f73ef9f5d72fd599cdf6b5dd1294d04 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_250_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_250_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_251_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_251_sat_phone.png
index 1402582bee34ab01b99719587f20b1685a3d3d1e..a86475f6c1f64c3faf891d6560ebd3caa7c30b5b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_251_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_251_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_252_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_252_sat_phone.png
index 744646d07004c99083c5af3dc02a02c4016a0399..b86da02c1b8b32903f4252115282481cf22f0c25 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_252_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_252_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_253_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_253_sat_phone.png
index fa96bb3dbb0e4d7642724cb7d51e70d059c68dd5..820c7d6f441cbf8ddff01ba9ab5dbba367687240 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_253_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_253_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_254_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_254_sat_phone.png
index 4ecfd9ce702cb8ecd1e6b93bc00476a6e65121b4..1cfb4880f716baa3c43ef939d54bc6172a023b2b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_254_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_254_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_255_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_255_sat_phone.png
index f720e5ca204612e2a7b78a9615d7bb9bb3de2c5a..bc526def6aef299706a64d3a169da12f52c142c8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_255_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_255_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_256_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_256_sat_phone.png
index c8dd476cabb25e5842de32b37b5563f9525a9fe9..78b2a4ec7f04d391ee6d63161c614d2ab3d57241 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_256_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_256_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_257_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_257_sat_phone.png
index 6e91767d996d7998b8477fb3409415d5c843df11..e47fcdb97d7730a019b6244889e5a0c28745f15c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_257_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_257_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_258_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_258_sat_phone.png
index 78a3c63c582b0881e6d18d1c56127069feede14f..1337752956d856d9430ba085814bf7f8fe8bb013 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_258_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_258_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_259_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_259_sat_phone.png
index 029882037022f857d85c2f74dddc1d49993fe582..eb4831a36647efde125c5afc2c40270db59f5d86 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_259_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_259_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_25_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_25_sat_phone.png
index ff1427e7df3d8ccbafe6c84dc4a6e994ac0fce7e..f6c51652d6068b5817fb3796adf4e65789c7a508 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_25_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_25_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_260_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_260_sat_phone.png
index 6dadf360189ded136349187731747423478ac832..ca7576a9ed0faae4fafeb52d34de9b6d56d348ec 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_260_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_260_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_261_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_261_sat_phone.png
index 6d6b8b0a58c6a3a8e76343c486426bf50f37a914..d3d1ca4c243219bbb5a4293b4bd4d72314474915 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_261_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_261_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_262_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_262_sat_phone.png
index 8a187740efabd0c5614f61cb5b0e241da2396653..cd7985db4f11b5de7134443c1befd3f30553b6b0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_262_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_262_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_263_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_263_sat_phone.png
index 65c1ad9a5b62ecd18ea55c1a62352435e9269c46..8f24d9cca7b57619cead2b23f66c6157f32cc882 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_263_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_263_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_264_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_264_sat_phone.png
index c4cea031f591edb7a2b74531b765fa520d3ce514..0646c63c434e0ed3d9f5910f4cbdca20d1585910 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_264_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_264_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_265_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_265_sat_phone.png
index 27c558fce7894f19fa51012ae388a1441c96a8fc..1dc7645f4fc037e9d33a4bfc3207c721b07189a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_265_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_265_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_266_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_266_sat_phone.png
index 24bcb7568ff8791fefd9c0ad092696ff030bdb73..a38b91d1fafdccc55cf6815c04bd39a9a7a0393a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_266_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_266_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_267_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_267_sat_phone.png
index cc7607d3addd1ae53e891c5dea37cb66a18d2d75..cff078c27f63bdff13b59af189b7e31b932938b8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_267_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_267_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_268_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_268_sat_phone.png
index 49290e9ddd9dd0da50b12c2aabe8a417e5e8fd8c..59f4bc7b91afaddce00a69a6658728bc711c6a6f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_268_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_268_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_269_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_269_sat_phone.png
index e8d9ee303e5b8675091de804f5bf3245820594a1..96459a2ba89bcdfdccc81bf6efd908e84488e93f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_269_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_269_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_26_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_26_sat_phone.png
index 370d4703b38e8a996dd4adf90a65503e64f3d472..9a3cc37c1a514ba6c4937bb918899865c3deafd0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_26_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_26_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_270_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_270_sat_phone.png
index 6105a590f988b926d26778419580dc5aa3b681ea..2c32f4d6be18563d9a0d6f5a6597cbee69ae6fee 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_270_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_270_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_271_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_271_sat_phone.png
index 5750a3283759919d92721f26bc8b45a36708b9b5..d3cd7b2c2ebd74414966ebc3808a2fe26793351c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_271_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_271_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_272_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_272_sat_phone.png
index f5de3541923da9642c7bf9a9a0cd6601699a790d..ffa43185dd79520fb20b739534b9a081da33d616 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_272_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_272_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_273_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_273_sat_phone.png
index 61b15b0ee915ac028ee305dec1e012373a81fd79..51b5a0bff9644bbaf13866124ee93ec519b0c068 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_273_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_273_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_274_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_274_sat_phone.png
index 33cad0d6733e32f58ad3ba1afd8285fba9e2d7dc..f626db3ac874e153731623345740ba7015646273 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_274_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_274_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_275_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_275_sat_phone.png
index 428a61d2282b0389e07b41ef98a601cf5cd20559..97135cb0e6ddc64a4b6d6ade33a081a0203fd7cb 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_275_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_275_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_276_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_276_sat_phone.png
index 9f109a7efb8eee476ef7177ba6a165c7e415767d..b4375f94ed97a9ea2053917d67cc5cc3b664e622 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_276_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_276_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_277_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_277_sat_phone.png
index 75bba9b60dfcadf56249c13e76dc5662e7909a67..037ea91355b7a20008c7052f680fb1a28457d24c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_277_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_277_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_278_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_278_sat_phone.png
index 5b39deb27e25b90886f260789b3283b1c4b49476..8774a76ab1c7db29628a3922697618b2e540c454 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_278_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_278_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_279_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_279_sat_phone.png
index b2b1c16b1ec3b00f90eef639f3b61e2fd763ff7a..9db8336efae9b7ed6595923c5b052e7ebed48d26 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_279_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_279_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_27_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_27_sat_phone.png
index 62a33e73c8434b7b3b3d5dc4f600c05fd31e16c1..0823c1681e3bacb7e2b69fb70e54955dfb94c280 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_27_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_27_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_280_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_280_sat_phone.png
index ec09a04cf927d8d8d0a639799c20f8633216df2c..b853054b81d0cf953afa0acb563ad70c70f5b897 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_280_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_280_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_281_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_281_sat_phone.png
index f7a0ba68246fec37949de7b8c31f93c3579ea45b..7e7019280d15e680955741c3288f1236e027e84b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_281_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_281_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_282_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_282_sat_phone.png
index 7cf8b8418565516451cb24c523fc66ba792530f0..689cb51b8c6d81ef9ece744d9fbc991fd8c69709 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_282_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_282_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_283_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_283_sat_phone.png
index 588308275afecc6f4f9856f09d96b6369b79308e..ac9f7b0afac5488187efe0e6c0d9780b2b42fa85 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_283_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_283_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_284_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_284_sat_phone.png
index addbbe596f061469b3537bcc6e276f1b38b442f6..989a73a1ec9359db8f0dfdb241446c72732a142b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_284_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_284_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_285_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_285_sat_phone.png
index e22eb3fdef58fcc6ddba8e2dc734aab4169e0275..34077e8f938fd627ec29ad5597a6431c9eea65a5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_285_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_285_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_286_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_286_sat_phone.png
index 03e26363c72abd45702db085838e234ec3181368..258429f18723ac8689758d2f8c0d20e2d7df0ed2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_286_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_286_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_287_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_287_sat_phone.png
index c28f3ca0a1cc62f7ad3a6a6e312d97c013c08700..4038a369effee408366f873c1233655c2b7dcac5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_287_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_287_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_288_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_288_sat_phone.png
index 07aedd8bf74641791d6998d84cd01be4d90cab87..510713bfeb51e8a7ceed4db31d3f46f0a25170ae 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_288_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_288_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_289_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_289_sat_phone.png
index 2968ba199664437fd15647db63aba391ba845f0b..2a2915d9c5cddec218cb57a98e70eb21ba453721 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_289_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_289_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_28_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_28_sat_phone.png
index 599f963a2ed3d2d775372ea722df9b0c27a925ac..679535bf3a7e9c05da84a6c2ec33d725a3aa699d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_28_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_28_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_290_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_290_sat_phone.png
index dd1e5668f1dcbd94fb1143213d80bcc99f181b3c..ee0cfffb5758ba31e3f43682c2d0f2a360cb230d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_290_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_290_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_291_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_291_sat_phone.png
index 176cd71e9922b4417baa908dfd3ea7796c6e3b90..0f1d1aba6ad3cd2dd3ed9bdd3606001d523758d6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_291_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_291_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_292_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_292_sat_phone.png
index 0ef11ad81c066c0bd540dc38f029663404f7f0f2..367b22c980527973431058a5779967f7309579a4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_292_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_292_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_293_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_293_sat_phone.png
index af75c12602575e783b2a4cb1a4edce2c43158e42..22d58277a361b3e96dae87728b387eebed4b25a8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_293_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_293_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_294_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_294_sat_phone.png
index 4461016646113fda55c9f7e866e4f7c61f7f2016..c3f73f93abffc30369258acdd4ca77cfa874553d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_294_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_294_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_295_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_295_sat_phone.png
index 4b40493f3692a26d724d9e02914ec60ba48d4573..ffa27a1eeb898bb10fc9ec2f1504e3ec704a6383 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_295_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_295_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_296_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_296_sat_phone.png
index 9224481106c98aa374bfaa8d396729db4b897aa8..856abec4126a7376d13bf57fda2e37172eb4e615 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_296_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_296_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_297_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_297_sat_phone.png
index 3913f5e4054a00cc6569791aa6865bc9fe6f5a27..f6cf58859f3ea188a83d6fefdfa192abef7d7347 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_297_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_297_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_298_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_298_sat_phone.png
index 2404b10822827b1bcaf9e1b89d0deebb438afabe..b8908dc579f103613727ed562052024a5f31d25b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_298_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_298_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_299_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_299_sat_phone.png
index a4bdca94e29300478ca1c484e2a7f44bf762d303..295ece01869c076ae2a1199b877741e074ea50ab 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_299_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_299_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_29_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_29_sat_phone.png
index 1179f5be3948aca5d1dc6697ce02f0b674c07443..2c44bab9fe03fd435308ea1f16657ecd9904cd1d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_29_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_29_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_2_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_2_sat_phone.png
index 9b502a0a55391642b7bbe7646091bb7416677c47..e017b5bbf45bc8f4add9f69627e2305fa31ea2a6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_2_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_2_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_300_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_300_sat_phone.png
index 0264adbdf7f871e0695e791a929f5782eff49a5c..4e8579656f7b261c1dd046340c28bf705b03fabd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_300_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_300_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_301_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_301_sat_phone.png
index b9463b1c77f4b45323a86ac419d5d59438353e90..b3dcc230540e9d6f3ec8c3eee84fd632bd8be662 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_301_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_301_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_302_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_302_sat_phone.png
index d774ae0d5a1079f6e255652ca911e3a663880cac..824af7e2b4461193ea405e84ee1891cebe5ed16b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_302_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_302_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_303_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_303_sat_phone.png
index bdd2dfe9dec28e69d421419b27f9223c39d123a0..efee82eb7e11b112505747fe49b58f2d094d0378 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_303_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_303_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_304_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_304_sat_phone.png
index 5d2d1bc2009b7fdf2a4db58f8785ae007cac7c71..305a30e1476b3fbd6ec5d35d40b08063a95cbdb1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_304_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_304_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_305_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_305_sat_phone.png
index 5318dfcfbb05cfe8a1f3eb47651b4786dac09125..d7dfcb93f5869119503d463421248a3625f20378 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_305_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_305_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_306_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_306_sat_phone.png
index b8e9e54ba2ce9f271448d10b20374adf59ab464a..886906c2b28f7cbedc441ef4ff5c29b10ac4f8f1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_306_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_306_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_307_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_307_sat_phone.png
index 925d18df5ed04fd8e2aa077b3633959378ed6a57..0de5563095950483632ed514e7e2b794a1bb69f4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_307_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_307_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_308_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_308_sat_phone.png
index 404ca70a52c95ac6145bbd644e4f13a90552d701..5372862b1c2a11cffc83636c846a398ea1cd8aa7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_308_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_308_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_309_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_309_sat_phone.png
index 841a94df36058d8029f3ec8adf1d2ee260e6b69b..0fa30f92369f4eeb6699417a1d71537e3a9b74f1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_309_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_309_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_30_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_30_sat_phone.png
index 6fcbb7bcef72e60a5e831471c7a81bc0835c9cab..439b287596710ec38515b1f0a90e79ec5ef6c182 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_30_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_30_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_310_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_310_sat_phone.png
index 6f490467c9132548b168ac0208d34c0633dad3b0..9e8eed72bc071a37454a7947f0f2576d827a6c64 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_310_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_310_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_311_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_311_sat_phone.png
index 9d3e5c6cd76cbbf5ac0e859f1e9f315da4f95e22..a49891925af6780f7713a10bca176ef6db1c7d3d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_311_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_311_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_312_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_312_sat_phone.png
index 7734c3be25b773e76612583040e09fd3179e5290..c577cc04310275385dbaf00d6582af1692d87745 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_312_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_312_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_313_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_313_sat_phone.png
index 21d79bd7a033af9fcd4b98873cf0c75ca1ae39d1..84b819f40c6e562f4a38894b4832280b71eae5b8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_313_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_313_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_314_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_314_sat_phone.png
index 9f3c38e59e914954b28c907deb7eb2cc258d635b..37f9eb62e2ffe88cf22fa639470fde7089d7aafc 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_314_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_314_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_315_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_315_sat_phone.png
index 9e861fbe8a0fe79dcdfc32d1a898c0cd106d0aa5..b6cdf80fc1b6f01c6df8163525d44edb1d50bd73 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_315_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_315_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_316_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_316_sat_phone.png
index c4a71b37bc5d0fca3706b3315b7030f1eaf029a0..81a132a0506262f8b684f37cd267e0aefb0e6a46 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_316_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_316_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_317_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_317_sat_phone.png
index fb213de0497b324526cdf2a7de52cae35ccc0210..36fe98f9c0ed7d292a6bbf03cfe4d46ca1dfc45f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_317_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_317_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_318_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_318_sat_phone.png
index 31413a89106eea0822752a5c2c752dd3a0a51155..ec732159957a0113707047e72e116bed69e4c300 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_318_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_318_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_319_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_319_sat_phone.png
index 9d7c6d14ea340ad4543f135840ae1e2c84c093c9..012644132810fb9c96c3048b0950d3cf6cbff012 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_319_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_319_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_31_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_31_sat_phone.png
index 3d844e5836c0de17c080e753368512d54b306354..6383846d692a2c169ee32063fa0649b584c5ad38 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_31_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_31_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_320_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_320_sat_phone.png
index 0392f35b1479951bbe7eef41e4d658d624b4bf74..b3b1673f89bbe65ca4d50b5455f870678f4e7340 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_320_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_320_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_321_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_321_sat_phone.png
index 339b6feeca53eced5f1146e451a82f00b817c518..989277c1972349b6c06766b79f085d83ac24affa 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_321_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_321_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_322_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_322_sat_phone.png
index c5516c644c770441c6d24c55fc56e30918f42987..04534ffb0b12ce7b34a2ef0726440683969d49a2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_322_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_322_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_323_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_323_sat_phone.png
index 25311a77403357330461ebd2bce5e4ceaa432bbe..2c8dd40a05e7cf96e5e3c5c7caa09eda4bd68072 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_323_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_323_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_324_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_324_sat_phone.png
index bde426218a7683db8fa9d7d33726fe90f7015539..96151b3d039e1d2907bc410782459aeabac087ef 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_324_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_324_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_325_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_325_sat_phone.png
index 9e4d6879cdc35180fee9a5522ae4f6b7b971ef21..5eb256f8febaa78bea9324c6e5fe23109b62d815 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_325_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_325_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_326_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_326_sat_phone.png
index 6aba854648523e4e6bfcaf7e9f161190e26a4191..0e03d97625fa59174435c289aff83aa566f707a9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_326_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_326_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_327_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_327_sat_phone.png
index c3c2de9dafb131f72072bdccd58d1fecca16c318..68dfc9dad06e6b3875c7ed43e196aea6b3866ad2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_327_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_327_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_328_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_328_sat_phone.png
index e17324829a3ce86c259944bd66762f62c10ffa33..645e6f3cd9f2c8dbf73d5e74ca3b385d88327c46 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_328_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_328_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_329_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_329_sat_phone.png
index 8a19206e6337bb89e7bedb08c81447ef5e8f90be..e01660eb6b16587c2f9a3b27f929364bb9026e41 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_329_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_329_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_32_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_32_sat_phone.png
index d953b3bfc1ae37bb854ff24074f828c07c372ca3..db08b69ed0e783c8d2773a669262dab9bc79af63 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_32_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_32_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_330_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_330_sat_phone.png
index b4f747e5839f2960992513f632e2ee4519973b0e..67aa5f69145c5936ba4e77a338d94d04be14c77c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_330_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_330_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_331_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_331_sat_phone.png
index 34b151c85170a005b3e40ed93a0d99784c673b4a..814611d69c0b7ef25a4b4496479c0339786ef0b5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_331_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_331_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_332_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_332_sat_phone.png
index fc5ec7f5c6d60b9a90fad44e26bfc2b9b7b81320..be006177f365f88fa3eedfa5b67aa93ccfc57d97 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_332_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_332_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_333_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_333_sat_phone.png
index 6cf23e553858a68d6c6ee947f26754b2c4aabe64..6fa40f36e872bab37e6bc5c43c9cdddcca150902 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_333_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_333_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_334_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_334_sat_phone.png
index ca17bdc965f1f6e076284d738eef5bbad78e754a..1a6fb37c95d5d2505c2502c44159cf332aee3b75 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_334_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_334_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_335_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_335_sat_phone.png
index f7be2bdf2560ab7d9502886e9d8ac9416ca4a53a..ed2cfc8bad2610c9e0fb7dd167cf4cf46e465359 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_335_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_335_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_336_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_336_sat_phone.png
index 42e2d67ad83e98fe0ff771929c606fb3ff27a983..c3706f4abec2a5696b88b3a35113e21ec6d5606a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_336_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_336_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_337_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_337_sat_phone.png
index d595706a1a845794c13a552638ba2892ff383a48..bc774f942b5cf2a42835e26ac37999e8a473d0a7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_337_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_337_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_338_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_338_sat_phone.png
index 9fa6f25bc92af03518000ac7ade5bc6efcf548b7..16648f7120a0e8cfd78b35f473013688fe298604 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_338_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_338_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_339_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_339_sat_phone.png
index d49cbdee5b731baaf6767f073b2e0641e41da724..10bc24dc73f575e40fc3006c13ba5cfe2312749d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_339_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_339_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_33_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_33_sat_phone.png
index 226db832c9bd64a48b3811435e775e2317c49aa5..0801867a53a1f5dc0d25014db0f669166029a92d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_33_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_33_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_340_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_340_sat_phone.png
index f88020aa413ac99f361f59ee68c2449648056337..ec63816b1c69b5d10c253fd391ee2f6a115577ea 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_340_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_340_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_341_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_341_sat_phone.png
index c26a4adad893a9d972478c922b2427735146581b..6d3ab48a270eb2e852b5461b34f5e651abc6a2fc 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_341_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_341_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_342_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_342_sat_phone.png
index 19e696c7faa6cfdc56ef45b8f81bbbc8814e3807..9403db3ed2b84bb1c01612d949f138296802c39b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_342_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_342_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_343_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_343_sat_phone.png
index 27afcccbc078ae8a99f15075ec02e272d10a2eb1..66864c4457d7e9af90c27e45ff05bb159426bba9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_343_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_343_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_344_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_344_sat_phone.png
index 1aa4f64165ea064a3c6ac2db838ac86363b32c9e..4602cdf3c12090f30c6e44c5c693cfdd91b6253f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_344_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_344_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_345_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_345_sat_phone.png
index 7ccbc85cc107807f26a43fba4fb33feb8975ba87..54583d1a8d71ca729ef8a7fe20a7734aa2b1806c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_345_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_345_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_346_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_346_sat_phone.png
index 633805018c2a1d71b4f80ddc0aac462ba0ba06d6..481e29f1fa88e5579ba3ca3a2cc706a0f9652bb6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_346_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_346_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_347_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_347_sat_phone.png
index 8e31127dd13bd0cb5b0e721f4c8c00be040a2a33..0676eb64efb06e895b3506360f868f704bce23ec 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_347_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_347_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_348_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_348_sat_phone.png
index ac6a2c6a72b5a5c115431d4b4b4dd5fd9305c9b2..40a81769c769b5cfc7ece1cba85916d96c2f508e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_348_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_348_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_349_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_349_sat_phone.png
index a8bbaff78aa383d76d01d8ac293ad26998f44fef..cc455180da3e48a13622d18b7966b08e30a4ae8e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_349_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_349_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_34_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_34_sat_phone.png
index 1c6ef416d8d18ec4e07737c1e2a4c8588e6e077a..c0d315d8987fdcacd1ba87003946b39391c7daf4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_34_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_34_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_350_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_350_sat_phone.png
index 2d781da4c3728b871705b7f044c488b6b59c5e5f..b5a7b531c2ce145790285172c22bea78d3dbf0df 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_350_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_350_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_351_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_351_sat_phone.png
index ee4b750e29169b7cb0ef0437bf83eecae977104f..dd76c55df68cc265e302f6c182438e5f79dc31b1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_351_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_351_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_352_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_352_sat_phone.png
index 362298ec84979dc9089dd570822765f962287ced..bb412cf106dd6f598026a016185a1e4a1d687499 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_352_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_352_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_353_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_353_sat_phone.png
index 491f326bf95e60484e14153af9adf8d84ee4f9fc..663daa59b6c6a3d4e5f18a7f26edad3264350448 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_353_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_353_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_354_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_354_sat_phone.png
index 48978ff3f5b0c136269956cf09f9f0f98711e6bd..f653e674575d508686e8f46a46bb93aff45e3971 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_354_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_354_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_355_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_355_sat_phone.png
index 34de8ca4a979b9446c6236cef377cc7661bfdae1..0fc7bd8e9084c8c0731d91972ad7885379700d3a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_355_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_355_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_356_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_356_sat_phone.png
index feca0efa1697a322a470002564d2ee81d18c9599..77d7ff5dda82fda3520c73af0836a84b5b4de668 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_356_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_356_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_357_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_357_sat_phone.png
index b9213b3c4dce981640fda47c16e968fffeecdbad..282db3c71dac9bc92db8c09797e984900710b3c4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_357_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_357_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_358_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_358_sat_phone.png
index 586e169f2126bba273f077b656742352b495e33f..93bf8adb71b9d72ef2ddf3ff7680998fe92fe9e2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_358_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_358_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_359_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_359_sat_phone.png
index 9124823b8b48704a9dbcc30c3d6306838a7a9aac..47715bbce9d458230695d6c34daf23ac8c6e69db 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_359_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_359_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_35_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_35_sat_phone.png
index 78c0acfa65b98d1aca44056843cdb8ec525557af..661e9bed46b9dc32b37665d256624238b1cb5493 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_35_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_35_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_360_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_360_sat_phone.png
index ea30c51ae5cf64388bb4c41dbdae7a5fe9a7de4f..f18cc760894a5032353743213913cc018e2aba4a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_360_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_360_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_361_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_361_sat_phone.png
index 7b714c518694a67b8340415771c1e7e13c297154..2afe22a747a3f1131f56826fb78da3636489287d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_361_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_361_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_362_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_362_sat_phone.png
index 972b6d6f6defe65958dfa0a70816f24bf5a4f186..97d40c5e3cf88309fb38336ab8ab20ee30c975c2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_362_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_362_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_363_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_363_sat_phone.png
index 127d50294c0af49f3ae749b657300e8a0ddf31f0..c037e45cb9d96ef5067a0891d1a08ab87345fada 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_363_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_363_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_364_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_364_sat_phone.png
index 32429df6c395a2c1914f870a8100871a1a70dae7..3bebf66b19419a25c88d54b998f1f397d11f4402 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_364_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_364_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_365_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_365_sat_phone.png
index 22aae300968c0418438336b4389b20ad559af5c7..45e6966cf288a812966855f482ec0eb4a98b418f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_365_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_365_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_366_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_366_sat_phone.png
index 24ee9819bf3d8b06dda90568d468ef98ca1e004c..4a4d9eda10f8c67d6630e106f113896e4ba2af63 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_366_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_366_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_367_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_367_sat_phone.png
index 8730bd69d8a485b6f94e72dbd6d5a686855312d0..e3bba2ea8886b5bf51144737c6ad40de2d6c739c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_367_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_367_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_368_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_368_sat_phone.png
index f0a4a564e65fd5cfbfcf9b7f929efc2d9c3e22dd..8eabeaa595c58ed2edb7276b986386443c415c8e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_368_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_368_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_369_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_369_sat_phone.png
index bef74b83027d74c8e62c0d0d57a0d456f3db0d63..3a55abaab431c784de4c00a58b86e1b81c1ad52e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_369_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_369_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_36_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_36_sat_phone.png
index 6616a05989de48c752a325e58c62133dd3353b8b..3ed3b9e4f1f5aa0ff01bc1518adfaf7ed80b2bd0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_36_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_36_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_370_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_370_sat_phone.png
index 7bdfbeb06cfbea2109372ebb1c7f6e38419f3bdf..3c54074000e69634f49231c86bda94874fa01a85 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_370_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_370_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_371_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_371_sat_phone.png
index e3bca1b2eaccbe837c27fa8846e6ce4f8e2a5a53..60a5312204d6e28b04fe3a7219e619681c0f4ba1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_371_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_371_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_372_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_372_sat_phone.png
index 244d6fbbc0ef9bbcf2ed4a3b91c0633fdccacdd4..91464575b95d1fe4d2e1b135e90d70866cae68d3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_372_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_372_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_373_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_373_sat_phone.png
index 9419fdc055ab86c0d12ff8626ab45c2fdb964473..c60968044193b85bc9ab758b3698479fdc62b01d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_373_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_373_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_374_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_374_sat_phone.png
index 319f2d04cd8216e71d335b63335c40e1907edd5a..ac3cbcb708b467cd26bdd6919782a2fe30ae3447 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_374_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_374_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_375_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_375_sat_phone.png
index 8b7e616b35d0c82187753d7532651e1299cb0a41..1d9ab7497a8fca14eda129d2c88323c97c5aeee5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_375_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_375_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_376_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_376_sat_phone.png
index 3155dcd4f5a4af101020cf1bb5b5973d75f9c1d2..069c710949c51a9db50fb21a111f08d15939446e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_376_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_376_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_377_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_377_sat_phone.png
index a4e3fd9d74b09a832c21c468d5bf03920e5abcce..d87869c10accf36a3f1829f68ed8af73f5084a1a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_377_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_377_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_378_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_378_sat_phone.png
index 7a7aa3328faad7afcca93d3e5f495642f6df57a0..cfc2669c7f981b8c2775df064dab051470f4d4c1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_378_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_378_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_379_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_379_sat_phone.png
index 591f97f7e1ebe5e82a1cbd0c695b217e9a92c027..4e102e03f08616b02085cb167157d1f7f5ea3bbe 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_379_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_379_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_37_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_37_sat_phone.png
index abd6126eb50eb82c9e87713315b337f7733df3fa..a0796de39d56a5d9cf23a33bcfa205ac99b81cfd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_37_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_37_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_380_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_380_sat_phone.png
index 8402f01abc673b8dc2f9e17e59348ebb5b7c05df..63ae4e86498d250f0e6e5cec5fb016b80b952433 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_380_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_380_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_381_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_381_sat_phone.png
index fd91a07f6311b5d5ccc1b3a988743e36b517b0d6..22d5d35e5dabda20b5b4912db4cdbadd70721b4e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_381_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_381_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_382_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_382_sat_phone.png
index f2c551ef400b274c7d6feea011828226fd59cb83..7a7717b4f1bd170eddd34a17b5577f33e3359a0b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_382_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_382_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_383_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_383_sat_phone.png
index f88c5df95c9778f65edeb8bb25789d83ed97c769..f4ed990c753e0e4633fffc2753196d7ef22efd73 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_383_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_383_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_384_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_384_sat_phone.png
index ef6ce344c09c2234dd18f812fe4dff4cf80f7d9a..ac5757ab9596a7729e58772883b53653bf3b5c98 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_384_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_384_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_385_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_385_sat_phone.png
index ca1375f5acb3080fad6d3396940ff7c64efe73d6..c5179901dbe381adfd641c42a2868ca49e0e703c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_385_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_385_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_386_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_386_sat_phone.png
index 07a35fed3b930bc50f3f364aba42cd1ed35ef9ea..2101056b63d3bc9d9bab5fc6108ee693d15a54a8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_386_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_386_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_387_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_387_sat_phone.png
index 1b6f0728ad5378c48ea755e6d3525d8b846649ba..ab294d86da1e1d7c8d063cc97e5d8566d0133b22 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_387_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_387_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_388_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_388_sat_phone.png
index 30c1a39ac053fb4dcbb74d332cbf12c0703e1a60..72fc3a989aba9f2bd1c169a5379fe48f3872136f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_388_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_388_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_389_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_389_sat_phone.png
index ca4bdf5fc8c6d73a17e70de2bc8bb728a2535da7..ff4587f92130b843a37fad333485a68c0e7c4471 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_389_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_389_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_38_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_38_sat_phone.png
index d1f109ce767500a9ebbcfad23eb2f7ed11eeed9d..de2abee0471574bdf4824eecdcb2001595f7142a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_38_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_38_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_390_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_390_sat_phone.png
index 9b5da10127cff5ec65a000970b66498604bfdfed..e41ddd06b48e2dcfecf5c501f182b36059f6a661 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_390_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_390_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_391_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_391_sat_phone.png
index cbed5fc526e561e762f754d4d664c57bbc3fc09f..102621b0022fb5bec732f311eec83453634b8276 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_391_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_391_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_392_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_392_sat_phone.png
index a62c2a3242d0ffc1f8b381d987135bddc2b9d459..96538d34fb02080145367ae206ea4577d6350249 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_392_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_392_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_393_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_393_sat_phone.png
index 00c2d5ffdefe4819bc5247c6a9dcec0eb83ef2a4..dbe5c7fb6fb0d24c516d436c3c2b7dba6987561f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_393_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_393_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_394_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_394_sat_phone.png
index 9f087cc021475de176ae8a77e29ca03a368deade..82ee8d8cca602e16e56004d7e84869c24b84125a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_394_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_394_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_395_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_395_sat_phone.png
index 00106e7395bfa3e910ee078bde0078fcb2b180a0..d395bd16ba09114f030b99a784434e05a14806f9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_395_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_395_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_396_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_396_sat_phone.png
index bd148fe867a744dfec5f07238c64866566538402..19e4ed632dc2b5657d9959e308370dce60b8efdd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_396_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_396_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_397_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_397_sat_phone.png
index 11b739d03a3d9e587ea1d159f22c02b793094f4e..e7ef08bb19c655ad0b3b63366879fd1e4d6477f8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_397_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_397_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_398_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_398_sat_phone.png
index e2bf869bb19e174143ee0803408dd4f9758a5b01..a774159a516b0e41bebc03438fe56756b0b35244 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_398_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_398_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_399_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_399_sat_phone.png
index ae775c1f55fd0aabb768f97c26809ec2ce950b79..959049879bda0e0947489d479adf07447e3bb157 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_399_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_399_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_39_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_39_sat_phone.png
index 81572c319ddbf2fd645f8396c10e5be5cceb939c..f8824dcff88769eeb604038140c83ae249d27d70 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_39_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_39_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_3_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_3_sat_phone.png
index 7d41cb40f706dc954e6a6552bd3087e5fb21ba5f..3c340b22fca1d49596dfb54d93d2a8c72f1320a5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_3_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_3_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_400_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_400_sat_phone.png
index bedff39275534e43fb3b59098f66a64672f6e4d0..2836cb97292b616b149bd5667d19055e9f403fec 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_400_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_400_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_401_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_401_sat_phone.png
index 4d16287c84c88c4e451e3ff35222f81227cd07c0..7f3215e9c25093d567642add3c7948f973716d7e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_401_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_401_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_402_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_402_sat_phone.png
index b6750dfe728a38035577e5a2062991083d85f064..ed6747250d4dcddb936babbe3df637b7cc42bf74 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_402_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_402_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_403_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_403_sat_phone.png
index 7141dcb60054f820700e8f92bd007e1c9421a2a7..dbf1ed8e832bd64e5106406e59b56a77b8106bb3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_403_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_403_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_404_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_404_sat_phone.png
index ba7648e652a1633b391ec34bffbb8dffea4141b7..37e92dd85ba399e382affe028ee0d8880d6d757c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_404_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_404_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_405_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_405_sat_phone.png
index 1b29366a68337232d159a23e41c6f3bde610c362..57d9fdb19935f27375c451699fc2d6afdc77a312 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_405_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_405_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_406_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_406_sat_phone.png
index e7f5d90062cc31cda9971504abe763328442936d..50533db61a0044fb42bfc7c6357eb95d5d5b60c5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_406_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_406_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_407_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_407_sat_phone.png
index 5af5a2b160aeb38893c29fbf11f8f98e57467dc5..e17350f59ed4b9961d835f66c1ea47846fba3869 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_407_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_407_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_408_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_408_sat_phone.png
index efbaa00a6d84dd74fc59cb5624fdb84a1fd259ce..caf20e4fbc8933fcad1e5570d1c8268748854e93 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_408_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_408_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_409_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_409_sat_phone.png
index 07b26b096cca3790fee092be85ea26c9a8cba4aa..6f4b14dab983ae3e4d74fdbe6b2429d35a80b69a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_409_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_409_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_40_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_40_sat_phone.png
index bceaa5b4747b16cbb79b28de055250e8bf4c3cbe..8289c72f3864030748b82ac155bf22616e49db79 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_40_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_40_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_410_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_410_sat_phone.png
index 9579688e64ecc2131f87c808ce9e946f16e15fe8..d501729ff2f31d7cdecb54d69795f0c835a6cc8f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_410_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_410_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_411_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_411_sat_phone.png
index b1d51085d3d3f18a264687ae81c2275034f48b1f..56c8fe36165223f41d49d564f2357da61af2c808 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_411_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_411_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_412_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_412_sat_phone.png
index d2af1823794868f99a983216185f66b3d9a771ef..b55b6eb9a85706c366482703e000a455e58ee23b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_412_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_412_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_413_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_413_sat_phone.png
index 224d4ef8e38f0e993e8ab9093552887ebbfdc33c..1168136f040c40890a45d2ee6cb4869b909cc95a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_413_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_413_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_414_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_414_sat_phone.png
index b3b4437fb407527cb217362e83de61aa60637fb9..d3dcf209495769366c033d163b45b61cc77f1975 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_414_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_414_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_415_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_415_sat_phone.png
index 0099891c53963d40fa50c9674b82ba3daba4f051..53081ac5fca4c3d5a5cfb083d924f5238597d100 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_415_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_415_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_416_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_416_sat_phone.png
index 337e28df47944e223aeb2ba0edfb7d2610732f70..713feb5002bec04792efb2181316088d16fc707b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_416_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_416_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_417_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_417_sat_phone.png
index ea73283b996a197c3d68d52e86ea431b779be811..064e80169e661fb037d64b612fa9fe6b43f12a6a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_417_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_417_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_418_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_418_sat_phone.png
index 21dbabdc585b85ed0b1954319af6c58c438c3657..eafa503031f1b95bfddfba64c246783b7a3efa6d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_418_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_418_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_419_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_419_sat_phone.png
index 568fb2c8a7cc849cebf37e8e2c244f780e5b3588..88c6d4ae75df42a8ced82f87dd6d1023c40973d8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_419_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_419_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_41_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_41_sat_phone.png
index 8564d0144b7bcd21e6e763be2ecc9d5e02a07e3e..48abba81503f29dc93540c757748a56eb4eb78d1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_41_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_41_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_420_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_420_sat_phone.png
index 5c290011dc44acddc2b7cbf2e39086c36462d839..29eb9464adb20b8081ff2d6233f5adf1d019944f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_420_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_420_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_421_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_421_sat_phone.png
index 2d3a3084cfae6c8bd0e0d5fa40ed0bf8b04e3490..dbf3cd98afd778118f5c71ec999b46a001e5301e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_421_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_421_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_422_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_422_sat_phone.png
index e7631fd5dbdf24e868ad0a042cc712256b01751a..8624b8b0d2c2b3ba3deb521eb8afd98e3b0d5f9d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_422_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_422_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_423_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_423_sat_phone.png
index af773057473a3b0fe9fe2e118ae4e01344d6641b..6c29b1b8ff69c2ad7e9c11798434aa481329427b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_423_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_423_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_424_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_424_sat_phone.png
index 3513938685ccb1fa1d0b9c0abe49f0415ac58503..2f3e3ef30b36283e9829f095d1293318c04430db 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_424_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_424_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_425_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_425_sat_phone.png
index 74a2c568239b5bea33e48a0e386a310a392c6769..308338a2f9ec39eecb05d97fdccb340eb3aae12d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_425_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_425_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_426_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_426_sat_phone.png
index fac0a8f6f5ef3e3b487801007509c96109319662..42339c059c753abf359da169d6b0833794971341 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_426_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_426_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_427_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_427_sat_phone.png
index 95a89523f097c479ec09d64e82ef5c60723241c3..505fbeeb043d946199ce665cf99c8d4baba56c3f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_427_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_427_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_428_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_428_sat_phone.png
index 338cca12a2bd1dd94e4babdef35dd93d27888af0..1cdee6827d4457afa5e50aaa69f2ea7166925199 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_428_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_428_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_429_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_429_sat_phone.png
index f32c5ec8ca99c7e53fa30abda3b5ef6dd923fce7..0b01bb095a1197016e2406c911587dfc91280a7a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_429_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_429_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_42_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_42_sat_phone.png
index 0f4108b13876662641fdc98fbcfc8c0ee6b481f4..007c6ba72907986cf3958fe3c122964def97fe7d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_42_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_42_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_430_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_430_sat_phone.png
index dc1d8f0a914aee27aa7574937a5a35760509a51e..498b29ae98f55417d68ebb17033f30f627aa5da7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_430_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_430_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_431_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_431_sat_phone.png
index bbb42c555298490d9bbc99e16352aa19d86461c9..53132e237677457367c7a0bbf778114ad2c91cb7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_431_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_431_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_432_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_432_sat_phone.png
index 41314cf82d0631bdbaddcd9ee2b10787b9b5697b..e334aa14d976565c8f8d742bd2a7a0638cf6e3d2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_432_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_432_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_433_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_433_sat_phone.png
index 2971af34d395797dffc4e34b62825f7640afdbfc..5ac6f5efc97a2b2bd9adebcbf8aaf95cb8c9c11f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_433_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_433_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_434_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_434_sat_phone.png
index 38a27b5803dc43863a63d68955bb8ed5fc648f1a..5274760147d0d77e95d26df98e262ae8b627cd71 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_434_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_434_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_435_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_435_sat_phone.png
index 157dcd25519eb2f550fa16222f82e4ffa22ff097..a67c01c12e56eb50499e27002de6dc50dc8e5326 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_435_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_435_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_436_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_436_sat_phone.png
index 801e11231d39ca5feb9ebb43d2b2e5cd6579c943..fbd3417b091f69c6dff08ee49eb1f595f7681f2d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_436_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_436_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_437_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_437_sat_phone.png
index b71196fe4476c57c3a53a4174c3d378c8abc5002..cc2bd388f9cc6437bb65e913a72034c1ded4488d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_437_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_437_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_438_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_438_sat_phone.png
index e0a9a1c90fc616be7ec45748e2bf9f92a77233dc..3e11d12ee1fd75936c98d421fe83210adb8f013d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_438_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_438_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_439_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_439_sat_phone.png
index 20712e89fffda09963b15aeddb4884d7108fceec..789b1f4c9159e1ebcf22ba837430498b5f72b2d3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_439_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_439_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_43_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_43_sat_phone.png
index e7454cafb6cde575410a5912a711992dd1ac7cb8..10165073175acd55a19532ffd36bfcbf7ffc54a1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_43_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_43_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_440_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_440_sat_phone.png
index 2c1e4511c1b917fdee97ac9d5845bb583dcb213c..dc684a25728ac9aa25f4cbf7c0c882ebbcafe06c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_440_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_440_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_441_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_441_sat_phone.png
index d9b9e5b0cc8a27ac5cf40f3d2b1621935cd7192f..a011707b3f0d6da76cf65b063dfc8f127d5d56cf 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_441_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_441_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_442_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_442_sat_phone.png
index fd458d9c020131b44f29f103adc9d26b727af526..4a43dc2c5dec7ebb2f6827a3916c35028bc6b0d4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_442_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_442_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_443_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_443_sat_phone.png
index 723ddd1f1a81c8fa4218bd9782369a2fe8184dc0..17e560298af45338d776dbc549e45fc04476dd51 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_443_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_443_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_444_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_444_sat_phone.png
index 038daaa43eaca1db1b20dd757a114e844f65af5c..a187b4858744117fa39212622ff1dfb5528f5e14 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_444_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_444_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_445_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_445_sat_phone.png
index 43e1448eb0b0483350e39830c903ed62a6ed6856..4888b208884d6c89515d10a7ccd2df0c835a3803 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_445_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_445_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_446_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_446_sat_phone.png
index f141ba83027671c5994bb82eb5a90d87b56b6330..36d70c9583f476b1623a4e484a045244b9f86318 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_446_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_446_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_447_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_447_sat_phone.png
index e41874e7b41da38ae88a3af2ae41843147219bce..96a7a02eb649357743fd84a98995a13de56bcf21 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_447_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_447_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_448_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_448_sat_phone.png
index 0ea5dcf65bc46ec75736b1c3479662cd0bdde5a8..4a6ce63782138a06d3f97014aa544a46ca1db9ef 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_448_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_448_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_449_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_449_sat_phone.png
index fe9336baed5be73e047742d1b9e079a08e059313..432fa7254245a78b3b7ca1ade0184506a4e3ac96 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_449_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_449_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_44_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_44_sat_phone.png
index 64bde0bd6afc98b25a61d7f90f1a3089666e2b48..daddf6138750a9fc664e21b62731ec03947e82f4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_44_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_44_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_450_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_450_sat_phone.png
index dc11aa4efb6bd7124f2b57df14857ccb8320afcd..7ff0d39f5ad3223ce856f576b95f7c2735c7866d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_450_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_450_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_451_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_451_sat_phone.png
index 2f477e4af14ba83b20d0df2eb81c43fbc18dddee..7af756af863ca6d6529de80d74baa95fc440efd3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_451_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_451_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_452_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_452_sat_phone.png
index 9c773558c33ceff9e4670b49026509997993f4c5..a9676513147e7fd68b79c56308edeae9b70b7b80 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_452_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_452_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_453_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_453_sat_phone.png
index fc186cec14cc2a7195a64fd34a080ff1475de242..f0258af532b91a54d755ea7741461a2947eb1c98 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_453_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_453_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_454_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_454_sat_phone.png
index 22b7866d095614937adf4146110a180483978c48..fe047e11e7caf4e193793c596b0c817b23103cc6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_454_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_454_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_455_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_455_sat_phone.png
index 3011b7edc95a9a59f6f8d09872ffafedfc7c5548..ddcfc0eb076772c86814e3a0c38b7f5731403caa 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_455_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_455_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_456_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_456_sat_phone.png
index 78c5fc8503f11b5bb99db99a04f351750348b8fd..f9356a7820bd2b11551f1f4b40ce90cd17fdd3d3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_456_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_456_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_457_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_457_sat_phone.png
index 01b8a3eb7276f2342e088a66ea4bc5c2c71ac097..1802d659ac90cf6aed6b2741c5f581f9998a1455 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_457_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_457_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_458_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_458_sat_phone.png
index 2fa5b5656e92e4af7454f036e347991869186716..74ce289a7e025117f7bc99bc81b645d0a4b9cab9 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_458_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_458_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_459_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_459_sat_phone.png
index 723849c1570d5ecbe7c3b48db4762379110b1d62..a1a2c8594644037c3dba3d7d8a0ae59a72d6df23 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_459_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_459_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_45_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_45_sat_phone.png
index af2c33c1eb993091f775507ce0f4ca0d86d75c75..cbad52a887718e5778309892e9cc6029f14510ba 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_45_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_45_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_460_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_460_sat_phone.png
index ab1a23f1ee68c8b8141089717e894ac1e47b777a..0069f9ffb3898763bae7b02e078d5903203c792f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_460_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_460_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_461_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_461_sat_phone.png
index 019ffb674d5217a1f69658a7fc61f900afae9ac9..5b3f61b2d0d2e702b46fc0ec3551567fa1862228 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_461_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_461_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_462_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_462_sat_phone.png
index f696793c0df0cf35d2097e75c85868495c7df69f..d6dd0e8e39a7dd2ce0911962e0190e0d4cc6e3f4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_462_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_462_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_463_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_463_sat_phone.png
index b44c49046cd9c4637ee954ceef1abf4e23372960..4d7ce69f87d36f04b961239c72f798fd73b6b40e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_463_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_463_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_464_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_464_sat_phone.png
index c75d5f74f1721c005accd5ab2e173dcd844d3497..0fd0484cacaadc82265484c47ec5890ac4814f21 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_464_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_464_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_465_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_465_sat_phone.png
index 6c68af1215c4074cb00a5714b8b41c78496ff178..7174e6c0131b2f27974733a9a921acb96f5251b7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_465_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_465_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_466_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_466_sat_phone.png
index c31937099558bb3b4767730b747ee786a960d2c3..bb3f7ea28793ef809466140483221239847f205a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_466_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_466_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_467_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_467_sat_phone.png
index 6ede0b58d97734b6c151c0587194853903be84e3..aab04338d5aefa62e021fae555e2603e72e99073 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_467_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_467_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_468_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_468_sat_phone.png
index 13e1e8e714d43b73f16fd801aa3d834175fc8da2..0b338537e70c3c6db69bcd679b12625d407de09d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_468_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_468_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_469_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_469_sat_phone.png
index b3d5ca8e28add2777b2449b86a83bfa1375b281f..bf5f79d82ae3c7277b5aaf4de782066a1cf623ba 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_469_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_469_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_46_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_46_sat_phone.png
index b2e77f5ebf440fd12d8631f5bd6b3480ba8bbf72..54d141c93fecc42952d4734eba0638e618d1e362 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_46_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_46_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_470_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_470_sat_phone.png
index 57f7e43823ca5d2be64e6323030a69ef78189761..3e52a2e85efac1d92c91a4a08c4e2bd6ae62cc1e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_470_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_470_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_471_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_471_sat_phone.png
index 5acfb5ab1142a4899dca5857bb9913fd9cb021f4..5ab4a72c040a519d41dc54ca33d3aad0dee334fc 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_471_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_471_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_472_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_472_sat_phone.png
index 1d2a246974ad1869f65d394ab3bba00e31c456f0..3f6c95c5ad5b160ac5d13ec9162027a13572d314 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_472_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_472_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_473_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_473_sat_phone.png
index 0503b21b76f6a67d39b0ce933e16c311862b9b6b..c18b35dfebef22391a2a7a95dc8a5a86292280ef 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_473_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_473_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_474_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_474_sat_phone.png
index 37d555e37b91559bc72e9ae2162de5dd78f96fa6..82d65baf7c9e68544116b345a4c92d5c81de3510 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_474_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_474_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_475_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_475_sat_phone.png
index 8f1b656fb0bd65e572dc31c08f473a52a7f343cc..b67b6311f2134136044023c927b058dacb50ba42 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_475_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_475_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_476_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_476_sat_phone.png
index bc14d80b1ffe48b1dd240c59f895c576a299e6fd..e61dfc8d1526ad1203f5e36573154ffad7405f45 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_476_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_476_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_477_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_477_sat_phone.png
index 02aba79bc9958d04e1030a24dd987effeae27847..8595839296eb6c24720280ecafb9a7510cf28e25 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_477_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_477_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_478_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_478_sat_phone.png
index f3c426e80c6bb846de08d428d1528d8663c9e083..3e6aa035200ea6c737ea29ae266f0e58bafdf417 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_478_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_478_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_479_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_479_sat_phone.png
index edb51286d35eaf8041a5447ac29d086858348f46..03ab1ed98555a3ec12325fa12f7331325ba163db 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_479_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_479_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_47_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_47_sat_phone.png
index 484e05ec36b53b9d04987c2ac5143179f8dc28b2..38220efc0fb4c90b3514314359ee2f575ccfab38 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_47_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_47_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_480_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_480_sat_phone.png
index 7e860fd92a9b0a843c19ea8a3428222f1fef3141..fe3c91b6f398c1778e8d651bad0828bc866cdc43 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_480_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_480_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_481_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_481_sat_phone.png
index 8fcbe522dfd58b60374520c4e43699f997dadc65..1c4702a0b846dbd3297251f3448d606bd9c6ce69 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_481_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_481_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_482_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_482_sat_phone.png
index 5da7a4127806de2128df8263bf3270fcd88ad655..d431174e143dbd772ed753328229301be95bc433 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_482_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_482_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_483_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_483_sat_phone.png
index 15d66467bf9f3623b04568ddbbc9c38888230d20..d9734d58fbfe3262ed475188aaede5c6d72192d4 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_483_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_483_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_484_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_484_sat_phone.png
index c56e973e2f48afbdcc8010fa8c66a67ba2b2c24b..3676fcbe094b03c40f8ce31a4f8a16c167b4acdb 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_484_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_484_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_485_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_485_sat_phone.png
index cced01ada85f89fbe518b34f4216546a78be8224..f33df4a7e0ece717482edc22b3f1a575c92ed829 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_485_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_485_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_486_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_486_sat_phone.png
index d09071931770d8be39ad3864274da3511a6994cc..4cec8cd0d064a2fa95e829e16e2cf13c2320a8dd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_486_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_486_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_487_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_487_sat_phone.png
index e33e1cd00c71d7e07f5e90800ecb33346ee179f0..75c0977a2d10543ec53052b26dd33158b1131d8d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_487_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_487_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_488_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_488_sat_phone.png
index 2276ecfeb1e934935d74cf48d97c69078cabe7f6..aae08eb4a9ee79e3532b804bd4fc99d9f2611d10 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_488_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_488_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_489_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_489_sat_phone.png
index cabd7ec780cad8001b608df373bc00796f429b53..4140d2c3794a65f52de832e0f3cecdaed46dfa41 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_489_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_489_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_48_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_48_sat_phone.png
index 30fc50cfd47ee416a65b3ca793c08005dcc07c99..8ee06272b2a856fc10e1ac892b9bf4dc1c424ae7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_48_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_48_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_490_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_490_sat_phone.png
index bd2f14328afd7d14be08a674eac626cb0bdde6ee..44be8008f0a29839ba98adc5f76e26cf45adc4c5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_490_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_490_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_491_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_491_sat_phone.png
index 42021b5bef63d33b362ba5d2d028b28a4212ea52..6eeeb2c3111c505131b9965b91236e477d68bf0c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_491_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_491_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_492_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_492_sat_phone.png
index 08cd74c37a4b0118ec9be63fae221029a3f4398e..6203feda38749f5173943907fd5493e225865eb0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_492_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_492_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_493_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_493_sat_phone.png
index 6db22d227da2b24d0d5b72cb5c11e9f579ee70a8..5a1d79f4f2978cd7809f205da51e0799c788a477 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_493_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_493_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_494_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_494_sat_phone.png
index f58f51bec8a3f4ef31b7a6168542ae601ae23370..8f4f6a09b40b84c4ae700cab105cfacb6497d6be 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_494_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_494_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_495_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_495_sat_phone.png
index 35d0f441ea5eaacb909842d1e80567ce9e918193..2aad97a851ec9cba105127f7ce99ea4ca21e6edd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_495_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_495_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_496_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_496_sat_phone.png
index 093a6363719aec226147983f862c2a9dc2ac3325..323fbad2fad0bece7fa7034a030475ffd2326a1e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_496_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_496_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_497_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_497_sat_phone.png
index 7ebc9072d0ba0d970f1811eb5c80dcafe33d1ca0..616193e4e2965e19dba9139affb9a1047b4df45f 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_497_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_497_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_498_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_498_sat_phone.png
index 719a2c39b3307f5c51a0abb3efa108db39f75918..ac5d2a9fa8ac492a6e26da25195c0b02e2f2fe25 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_498_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_498_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_499_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_499_sat_phone.png
index e3d3f1e84f99c44b42eb3d71c73cbfa269bfdc96..f443903ccb1cc8349beb78d81f4cf690a3c278e1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_499_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_499_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_49_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_49_sat_phone.png
index 2380951cd140e98cf766a6f57a86cfa3e4b84587..8407c16214aa40ddcb93e88cd5138aa23bd58555 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_49_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_49_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_4_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_4_sat_phone.png
index 63b9b406c3573e1ccaa3e9e4b8d2ae8f347243cf..b988928b6b791fdbf94452a0a483096eff0581c5 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_4_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_4_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_50_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_50_sat_phone.png
index 98c91406f93b1f8c094327789ee6fb08e5c9d095..11eed9daba7d6901095e544929e5e83989b91b95 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_50_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_50_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_51_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_51_sat_phone.png
index 137215d62212e4e33103b204f1fa8df3a3ea50de..d79020f16f3125d4e2eeb4815c60372008c5f8b2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_51_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_51_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_52_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_52_sat_phone.png
index c31f183e8089e4eceeab3b38a949ebba300944f6..2ed29844c84a040fd47642f916bd6533ff378fcb 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_52_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_52_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_53_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_53_sat_phone.png
index 5f4cfa6ff85c96d120af257e4f6db30fc113cd3e..0f5d8491f68c65d5eed059054631896fb8bf8cf6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_53_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_53_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_54_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_54_sat_phone.png
index 876a82c03f95cb46d6d72fea196bbb34824b0241..0d71bade6664d5502dbbca6a05c34612b3b6a6f2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_54_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_54_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_55_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_55_sat_phone.png
index 8e906dc28630dd58c2a1315deead6f0d7b3a082c..1c545ed7f97d5ede58349315b5226fd7ca2c11f7 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_55_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_55_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_56_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_56_sat_phone.png
index 7e78ed71403a3d8535e3ab457b784ae47d92eb3c..96b27eb0e942a5d3627033aebc3645c8622edf6c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_56_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_56_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_57_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_57_sat_phone.png
index a69b05a20521fa9e4505b9ef40fd12b51e784b6f..098d89edaaab2684abb7c634fcb1e15fd797187c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_57_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_57_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_58_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_58_sat_phone.png
index fb8bbb4875765a363e984201810d976c28f36587..b37eef25a928ef3461fa17a4ed1cc0b0a4eaa374 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_58_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_58_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_59_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_59_sat_phone.png
index b89587e05d520a47443d8476393030f113187599..9dfd560bf6b32d6c4f565b3badc7f066fb31d695 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_59_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_59_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_5_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_5_sat_phone.png
index fc72e22c659f65b5ba94a1221ed7bb397fdeca26..105b9791d0c1ae11347a50b0b53e9b4349a21d03 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_5_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_5_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_60_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_60_sat_phone.png
index 6c76232a474b019667a8f2de2c60bd9fae18d03a..55a014da31017b2c8c3f56aa35d9f0688aa70177 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_60_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_60_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_61_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_61_sat_phone.png
index ef9e6e083259eefc6e135fb04925b29b7ebd52e3..fb4ef99353f9a90405a926abd8aef4cbecd284c1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_61_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_61_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_62_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_62_sat_phone.png
index 2a75c888c4c895ecdb08b08155c1aa06c531cf2f..ed6b4726a511a751b7741f91762ebfb21c42a195 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_62_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_62_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_63_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_63_sat_phone.png
index 4f39c7878a00898f5a6cf697baed0a50d13c2a07..3456b4b7b35df720a11f6a080a14df13214166a3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_63_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_63_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_64_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_64_sat_phone.png
index 973e65d182a309a06422c8040b010abced18a88f..e6dc45747f75dbceaf0faed03cff4189316707a0 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_64_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_64_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_65_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_65_sat_phone.png
index 532fec9f5e5742bac1bd2375b497bffabc632d4d..3c73d700d412a60ff81465268c0858b89e929583 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_65_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_65_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_66_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_66_sat_phone.png
index 6929f54d9655a19ae159f8c9bc7c472a034f3c06..a48753987af1a48ebfc1d0164d6fde8cc4bd732c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_66_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_66_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_67_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_67_sat_phone.png
index f5dcddcedf555ee525732769af024a0f754091e1..a2267560da8eeb17dc430dc5938940238a24f8da 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_67_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_67_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_68_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_68_sat_phone.png
index 096763a610a3af7026c6089604162b5f51bc0924..20031d178abdc76a72474abde5d40b3162aeb5b6 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_68_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_68_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_69_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_69_sat_phone.png
index 81ce997279b044cd098e605a486a56cf73232cdb..66df73b5da63ff4241f718802c2e6afb62f23a17 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_69_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_69_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_6_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_6_sat_phone.png
index 0478fc641c701841d7f7767854da7651801f36dc..7f61ded3667ba8b9fa94e6fbadc24673c057f571 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_6_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_6_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_70_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_70_sat_phone.png
index 3b1dc0fef05e4002fa4e122b4e8b1fe735376f05..901eae2a395079007e28e9859efc19a71b24e29a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_70_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_70_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_71_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_71_sat_phone.png
index 9e8a5d286d1c532ac6089619c5c3297aeb30516f..2d720171f4e35af1f3234d79c7174734fd0d006d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_71_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_71_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_72_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_72_sat_phone.png
index 34df4e79aef53611ef04677801d0fc8e5fa8b6b3..5455ab6abf76dc1523238984db0be4746d3ea61a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_72_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_72_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_73_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_73_sat_phone.png
index 40b2a13f8888ce359c213d94891bf02f59dcd584..d910bd966f120a1434afad9649f40108e651233c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_73_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_73_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_74_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_74_sat_phone.png
index 22d09996fcfae116a873e786eb437f67a1e84dd9..694696b5528dbd534af474167dac85722a8e99f8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_74_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_74_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_75_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_75_sat_phone.png
index ad94482ec351b0fdbd1a69c2e4b698eb37e61ca7..b9da3ee0091949add15c6aa1ca6e05f02a1ae48b 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_75_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_75_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_76_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_76_sat_phone.png
index 0928ce5c2dc2736bc98b704127f7a8f6875d6242..64bce3c2091538c6ecc9328deed2cbccf35b004d 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_76_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_76_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_77_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_77_sat_phone.png
index 70d819b15afcff349a58249c15c6c76c6398fd4f..8a240fd6335b4367d4d683f48021ee4b63284c1c 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_77_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_77_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_78_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_78_sat_phone.png
index 76a2cf6704e727d167c29f6c40b8f301945c4dc7..6b1c4dd6da7a39e3442edc607ee103d372066243 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_78_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_78_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_79_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_79_sat_phone.png
index 759d8ef103a53c4363992dea907d624b2753ae73..70fa151c35050605ba9662e7bcf370e4f606f98a 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_79_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_79_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_7_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_7_sat_phone.png
index 2043758deadbdad9b8ef87cda65183ce97ad3df9..bd8d2c98bfc2df8e4441c97645eb7520f91ab099 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_7_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_7_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_80_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_80_sat_phone.png
index 26192262fadb615d67fc39045695db8d040ab973..115bb54440caa5e11c372d8ad1d06bbbadc3a3a2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_80_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_80_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_81_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_81_sat_phone.png
index 8f1236eb48bd8fa509eb336f1533db63deb8ef9b..7b7c677c6042ba15750319454224fe86beca0c78 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_81_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_81_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_82_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_82_sat_phone.png
index 1bc73f436b7137e17bb959ba802c9152fc626ab3..ebe39c4528a8e77794e341e73583c862d01bbbdd 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_82_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_82_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_83_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_83_sat_phone.png
index c046f3854a6990a2c9cc4fd6da4a1b16778e7463..6610bdd0bcbddf44df6b55fc0271c94ea14cdac2 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_83_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_83_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_84_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_84_sat_phone.png
index e6a92604595f6b0cedcb1eb8c620166c3cac4583..2981652266288b84b4e88c048658382d776f5821 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_84_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_84_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_85_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_85_sat_phone.png
index f587a52647bb15d60eba01fbe214d87b09693c91..f4b4432fc947c72e884d02ceab9b43d465fc2dbf 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_85_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_85_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_86_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_86_sat_phone.png
index 38413353b52284e097fd03bbf7244902eee4702b..986623ff49b715e921b82df9eb0054cbf77fd433 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_86_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_86_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_87_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_87_sat_phone.png
index bbaf803076cd9cd7ebccef066f57df3b0b0fe5bb..169b5ed4519ff3e456becdaef5ce316290f802ab 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_87_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_87_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_88_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_88_sat_phone.png
index 1a12a9b7420da8248a5ee6dd2d54db80cad8bcf8..1ae25528f66270f3b7df8e793db0885e4ac33bc3 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_88_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_88_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_89_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_89_sat_phone.png
index 73c12c3a672e35d7c364f7f5ce4dd698df205161..279948c93a5c31bf63c6e451e3c13973a8938722 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_89_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_89_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_8_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_8_sat_phone.png
index 8c5fbd9e9daab8de858b65cd9725b2a1d09b475b..3b1045ca46e5a90b5055315538ebd6c2130914fe 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_8_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_8_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_90_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_90_sat_phone.png
index a559773681fcbcd761beb24e948b7b952d7a8235..b63a13b83a58ad60425a1ebfb0960ad83f77255e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_90_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_90_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_91_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_91_sat_phone.png
index ab2aba20a49e9e628625e4c0137d734635160fea..a529276992ad2be580cd67d60ca9a77e91fe905e 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_91_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_91_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_92_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_92_sat_phone.png
index 840dbbbf9d10b54ad8fa2a306c21f4d2e2d321f8..bea3b3acdcb52f61391627c4e8565e251a6b8241 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_92_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_92_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_93_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_93_sat_phone.png
index 7e7195692d20cee46ae81381fbc0b12135fbe270..8f4fbc3396a956142b42fc3fd608d72cc0d5e088 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_93_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_93_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_94_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_94_sat_phone.png
index c55ebeb7e574d514ca38eb7f33fc5a4d6c4cb30e..a9c7fed81dcfbbb9e68e848e17b4be1a727a1c99 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_94_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_94_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_95_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_95_sat_phone.png
index 3f7eea2a3def3dd72c967ed85263855b5d6b36a3..d0490d18ebcef152918331d8aaae0688562c65d8 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_95_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_95_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_96_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_96_sat_phone.png
index 3fd6d1401aeaf2e6fd41202c1cff99e03bc3ae82..44f14b4bd06bcd370510e14b8b88dbd080cd9f85 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_96_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_96_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_97_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_97_sat_phone.png
index 63e70e22d4e9d42dd41010e5ea07ec76e9d5484c..55f391c2c8abb33d4733234e91456490af475cd1 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_97_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_97_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_98_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_98_sat_phone.png
index d0a9898ff3fb03b33d4d94822c7da6b97c893f3b..c5d9a246ca2ed487f80c80f8ed3b6abd0ffaccdc 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_98_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_98_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_99_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_99_sat_phone.png
index 8a83c95fa5c6b12f703ac2524d33659ffd935e17..f5bc36a02350f8871a56a48be37cd3a45714e024 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_99_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_99_sat_phone.png differ
diff --git a/natural_images/rwf_reconstructed/rwf_reconstructed_9_sat_phone.png b/natural_images/rwf_reconstructed/rwf_reconstructed_9_sat_phone.png
index 3f9f57d199e62c506bee7ec1cb9e2677aeb8c7ff..f31ac3553fce1d8fb6ed5f8ce82c234b89f34a33 100644
Binary files a/natural_images/rwf_reconstructed/rwf_reconstructed_9_sat_phone.png and b/natural_images/rwf_reconstructed/rwf_reconstructed_9_sat_phone.png differ