diff --git a/iclr2024_conference.pdf b/iclr2024_conference.pdf index 6f27661b605e556ce6d5bf184a9b9ca6a1df339f..255dcadcf1b919426a2063820acfcdbbac8e94ed 100644 Binary files a/iclr2024_conference.pdf and b/iclr2024_conference.pdf differ diff --git a/iclr2024_conference.tex b/iclr2024_conference.tex index 1d32ccac4a6cd19baaf45e31add340df65cc6b28..d5748f7f71c3a45cc7ee9c5b1d1a5aac0316044c 100644 --- a/iclr2024_conference.tex +++ b/iclr2024_conference.tex @@ -195,25 +195,25 @@ \small \SetAlgoLined \caption{Adiabatic Replay}\label{alg:two} - \KwData{AR scholar $\Phi$, AR solver $\Theta$, real data $\mathcal{X}_{t}$, $Y_t$} + \KwData{AR scholar/gen. $\Phi$, AR solver $\Theta$, real data $\mathcal{X}^{t}$, $Y^t$} \For{$t \in 2...T$}{ % from T2...TN \For{$\mathcal{B}_{N} \sim \mathcal{X}_{t}$}{ % iterate over merged batches - \tcp{Query scholar $\Phi$.} - $\sigma_{\mathcal{B}_{N}} \gets Forward(\Phi, \mathcal{B}_{N})$\; + \tcp{Propagate batch $\mathcal B_N$ though $\Phi$.} + $\sigma_{\mathcal{B}_{N}} \gets \Phi(\mathcal{B}_{N})$\; % forward call on DCGMM with batch xs, returns logits from top layer - \tcp{Sample from the GMM of $\Phi$.} - $\mathcal{B}_{G} \gets SampleOp(\Phi, \sigma_{\mathcal{B}_{N}})$ \; + \tcp{Query batch of variants from $\Phi$.} + $\mathcal{B}_{G} \gets VarGen(\Phi, \sigma_{\mathcal{B}_{N}})$ \; % perform a sampling op. from the probability density described by the GMM we traverse the network layers in a backwards direction, returns a batch of samples based on the prototype responses from the forward call on xs - \tcp{Add generated samples to $\mathcal{D}_{G}$.} - $\mathcal{D}_{G} \gets UpdateData(\mathcal{B}_{G})$ + \tcp{Add gen. samples to $\mathcal{X}_{G}^t$.} + $\mathcal{X}_G^t \gets UpdateData(\mathcal{B}_{G})$ } - \For{$\mathcal{B}_{M} \sim (\mathcal{D}_{R_t} \cup \mathcal{D}_{G_t})$}{ - \tcp{Update selected prototype of $\Phi$.} + \For{$\mathcal{B}_{M} \sim (\mathcal{X}^{t} \cup \mathcal{X}_{G}^t)$}{ + \tcp{Update $\Phi$ and $\Theta$} % Update GMM - $\Phi \gets SGD(\mathcal{B}_{M})$\; - \tcp{Update AR solver.} + $\Phi \gets SGD(\mathcal{B}_{M})$\; $\Theta \gets SGD(\Phi(\mathcal B_M), Y_t)$\; + %\tcp{Update AR solver.} % Classifier with merged batch - $\Theta \gets SGD(\Phi(\mathcal B_M), Y_t)$\; + %$\Theta \gets SGD(\Phi(\mathcal B_M), Y_t)$\; } } %TODO \caption{do we need a caption here?}